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Chapter 1

Introduction

1.1 The way up

The standard model of strong and electroweak interactions, based on the gauge
group Hy = SU(3)¢c x SU (2 x U(1)y, successfully describes, or is at least con-
sistent with, all confirmed experimental data in particle physics [1]. Despite this
remarkable achievement, few physicists believe that it is really the ultimate the-
ory of elemeni?’ary particles, since, among the other things, it has a large number

of arbitrary parameters and it leaves several unanswered questions. Outsta.nding

mass scales in physics,

The unification problem is related to the gauvge interactions, whose pattern of
groups and representations js complicated and arbitrary. Why should there be
three different factors in the gauge group, with the associated coupling constants
taking the values they do? Why should the fermions transform according to chiral
representations of SU(2), x U (1)y, so that parity is violated in weak interactions?
Why should the electromagnetic charges of quarks and leptons be related by sim-
ple rational factors? Mbreover, gravitational interactions are not included in the
standard model: how could one give a consistent description of all elementary

particle interactions, ‘ncluding gravity, compatible with the principles of quantum
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mechanics?

The flavour problem has to do with the Yukawa interactions of the standard
model, which introduce several arbitrary parameters into the game. There is no
explanation for the existence of (at least) three fermion generations with the same
gauge quantum numbers nor for the complicated pattern of masses, mixing angles
and phases.

The hierarchy problem is connected with the scalar sector, which is used to
describe spontaneous symmetry breaking of SU (2) x U(1)y down to U(l)q via
the Higgs mechanism, and which has not been checked experimentally at all. If
one takes seriously the possibility of fundamental scalar fields, then one has to
face the problem of quadratic divergences in perturbation theory. If one regards
the standard model as a low-energy approximation of a more fundamental theory
which explains the origin of the different mass scales in physics, in particular the
smallness of the electroweak scale (mw =~ 82 GeV) with respect to the Planck
scale (Mp = 24 x 10'® GeV), such a hierarchy can be stable agaiﬁst radiative
corrections only if quadratic civergences are cut-off at a certain mass scale, which
must rougﬁly correspond to the mass of the scalar(s) involved in the electroweak
breaking. This mass, if we want the couplings in the Higgs sector to stay in the

perturbative regime, cannot be much larger than 1 TeV.

Many attempts to go beyond the standard model, solving at least some of the
problems outlined above, have been made over the last years: in particular, grand
unified theories (GUTs) [2] with simple groups like SU(5), SO(10) or Eg are able
to give some partial answers to the unification problem (though there is still some
arbitrariness left in the choice of. the gauge group and of its representations, and
gravity is not included), but they do not improve significantly our understanding
of the flavour problem and they make the hierarchy problem even more acute.
In addition to that, the scale of grand unification (Mx > 10'° GeV) is many

orders of magnitude above the electroweak scale mw, so that it is very difficult to
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extract phenomenological consequences from GUTs. Indeed, the most dramatic
suggestion, that of nucleon decay, has not yet been verified experimentally, and

the present limits already rule out the ‘minimal’ SU(5) model.

Among the problems listed above, the hierarchy problem is the only one whose
formulation implies that some new physics must appear within the TeV region.
"I'wo main lines of attack on it have been pursued. One is the attempt to formulate
models which do not contain fundamental scalar particles: the so-called technicolor
or composite models, where the Higgs sector of the standard model is replaced by a
strongly interacting gauge system, and fermion condensates are supposed to realize
gauge syminetry breaking and the associated mass generation. No completely
satisfactory model of this kind has been formulated until now. Another approach,
which will be followed in the present work, is N = 1 supersymmetry (SUSY), which
produces automatic cancellation of the dangerous quadratic divergences between
boson and fermion loops. Of course, supersymmetry.cannot be an exact symmetry
of Nature’ but, as long as it is broken ‘softly’ and the mass splittings inside the
supermultiplets containing the ordinary particles are not much larger than 1 TeV,
it still provides a solution, in the technical sense, to the hierarchy problem.’

Models with low-energy supersymmetry have been extensively investigated in
the last few years [3], with particular regard to the problem of having a phenomeno-
logically acceptable scenario for the spontaneous breaking of supersymmetry. Ex-
plicit ‘soft’ SUSY-breaking would solve technically the hierarchy problem, but it
is theoretically unsatisfactory, since it introduces by hand several new dimensional
parameters and it is incompatible with further unification with gravity. Earlier at-
tempts focused on mcdels with spontaneously broken global supersymmetry, with
or without the inclusion of grand unification. It is not impossible to formulate
realistic models of this kind, but in general one needs rather ugly constructions to

avoid problems with the mass spectrum, chiral anomalies, etc..

The most natural framework for low-energy supersymmetry turns out to be



4

N = 1 supergravity in four dimensions, which automatically includes gravitational
interactions. In these models spontaneous breaking of local supersymmetry takes
place in a ‘hidden’ sector of the theory, constituted by fields which are singlets
under the standard model gauge group and therefore communicating with the ‘ob-
servable’ sector only through gravitational interactions. This allows the generation
of a mass my/, for the gravitino and is compatible with a vanishing cosmological
constant. Moreover, soft supersymmetry breaking scalar masses, trilinear scalar
couplings and gaugino masses can be generated in the observable sector, with a
common mass scale m related (in a model-dependent way) to the gravitino mass
mgyss. If m is of order mw this scenario allows one to describe electroweak sym-
metry breaking as an effect of radiative corrections, which generate a negative

mass-squared in the effective potential.

While supersymmetry and supergravity are able to sclve the technical aspect of
the hierarchy problem, they do not explain, in general, the origin of the observed
hierarchy of mass scales, (mw/Mp) < 10718, nor the observed smallness of the
cosmological constant. An ambitious attempt in this direction is represented by
the so-called ‘no-scale’ supergravity models, in which the small scales of physics
are undetermined at the tree level and could be fixed by radiative corrections, and

the tree level cosmological constant automatically vanishes.

Even four-dimensional N = 1 supergravity models cannot be the final word,
however, since although they improve the ultraviolet behaviour of conventional
quantum gravity, they are still affected by incurable divergences. One could imag-
ine going beyond them to extended N > 1 supergravities or to more dimensions
d > 4. The requirement of chirality strongly argues against extended N > 1 super-
gravities, which have left-right symmetric fermion spectra, with no way of pushing
the unwanted ‘mirror’ fermions beyond the 1 TeV region. One is therefore left
with higher dimensional theories: most of them also conserve parity, but one can

incorporate chirality by introducing elementary gauge fields and going to an even



number of dimensions. The largest even number of dimensions in which N = 1
supersymmetry can be inc;orpqrated is d = 10, so interest naturally focuses on
N =1, d = 10 Yang-Mills supergravity. Anomalies are a danger for chiral theo-
ries, but they can be compensated by a Wess-Zumino term if the Yang-Mills group
is O(32) or Eg x Ej. Of these possible choices, only Es x Ej gives an acceptable
chiral fermion spectrum. These last two results were derived from work on the

superstrings.

1.2 The way down

We have seen in the previous section how, when trying to go beyond the standard
model, one can make contact with the less empirical, more cartesian approach to
physics represented by string theories [4].

In contrast with conventional point-particle theories, string theories describe
extended one-dimensional objects, strings, each of which has an infinite number of
states with masses and spins increasing without limit. The scale for the mass split-
ting between these states is éet by the string tension, T, with dimension of (mass)?.
The first string theorizs, like the bosonic string or the spinning string, were devel-.
oped originally in the early 1970’s as models for strong interaction physics. These
theories, however, hac severe theoretical inconsistencies, because the string ground
.state always turned out to be a tachyon. Superstzing theories, which evolved from
the spinning string theory, incorporate supersymmetry and do not suffer from
tachyonic ground states. In fact, the ground states have zero mass and are simply
the fundamental states of interesting supergravity point field theories. Superstring
theories are therefore re-interpreted as theories that include gravity and the natural
mass scale set by T is the Planck scale Mp.

Some other remarkable properties of string theories show up only at the quan-
tum level: for example, the consistency of the quantum theory selects a special

dimension for space-time, the ‘critical dimension’. For the original (bosonic) string



theory this was d = 26, whereas supérstring'theories (in their usual formulation)
require 10-dimensional space-time. Another important fact is that superstrings
can be formulated in d=10 with chiral fermions and Yang-Mills gauge symmetry,
but in this case the theory is free of Ya.ng-Mills and gravitational anomalies only if
the gauge group is SO(32) or Eg x Ej. If so, the theory is also finite to one loop and
possibly to all orders. Therefore superstring are candidates for a mathematically
consistent theory unifying gravity with all the other interactions.

The main phenomenological problem with superstrings is to relate these the-
ories of extended objects, formulated in ten dimensions and supposed to describe
physics at the Planck scalé;‘with a low-energy four-dimensional effective field the-
ory of point-like particles, with chiral fermions and a realistic gauge group [5]. The
most promising theory in this respect is the ‘heterotic’ string, in the version with
gauge group Eg x Eg.

One step in trying to descend from SO(32) or Eg x Eg superstrings to the stan-
dard model is to‘consider, as a low-energy approximation, the corresponding field
theory in the zero-slope limit, i.e. the field theory of the (massless) ground states of
the string, disregarding the excited states. As a result, one obtains N =1, d=10
supergravity coupled with Yang-Mills theory: the physical fields in the supergrav-
ity multiplet are the graviton gu, the gravitino 1, an antisymmetric tensor
Bun, & spinor A and a real scalar ¢, the dilaton; the super: Yang-Mills multiplet
contains the gauge vectors A%, and the associated gauginos x. All the fermion
fields are Majorana-Weyl spinors, a are group indices and M,N =0,1,...,9. In
addition to the terms already present in the convenfional formulation, the result-
ing lagrangian contains some higher-derivative bosonic interaction terms which
are essential for the mechanism of anomaly cancellation discovered by Green and
Schwarz, and terms which supersymmetrize them.

Another step in the approach to the standard model is the compactification

from d = 10 to d = 4. If one considers the standard formulation of N=1,d=10
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supergravity, without higher-derivative terms, there are powerful no-go theorems
which forbid compactifications to d = 4 with chiral fermion representations. This
obstacle can be circumvented if one allows for the higher-derivative terms which
are induced by the massive modes of string theories. Some of the possible vac-
uum states are of the form My x K, where My, is four-dimensional Minkowski
space-time and K is a compact six-dimensional Kahler manifold of SU(3) holon-
omy, a so-called ‘Calabi-Yau’ manifold. In this case it is possible to have in d = 4
unbroken N = 1 supersymmetry, a realistic gauge group and fermions in chiral rep-
resentations. A series of results on Calabi-Yau compactification will be presented

in section 2.1, as the starting point for the following phenomenological discussion.

With the present knowledge, nothing prevents the optimist from regarding the
heterotic superstring as a candidate ‘Theory of Everything’, answering all the ques-
tions that are not answered by the standard model. It fixes almost uniquely its
gauge group (at the moment Eg x Eyg is preferred over S 0O(32) for phenomenological
reasons, Wlthout a deeper theoretical explanation) and the number of space-time
dimensions, d = 10. It includes automatically gravitational and Yang-Mills inter-
actlons with chiral fermions, is anomaly-free and possibly finite. Compactification
from d = 10 to d = 4, for example on a Calabi-Yau manifold, can determine
dynamically the number of generations and the Yukawa couplings in the four-
dimensional theory, solving therefore the flavour problem. Unbroken N = 1 super-
symmetry can allow for a solution of the hierarchy problem, and the second FEj is
a natural candidate for the hidden sector of supergravity models. Moreover, the
no-scale structure that seems to emerge coula permit a dynamical determination
of the scales of SUSY and electroweak breaking, reproducing some mechanisms
‘previously suggested on phenomenological grounds. Up to now, there could be an

answer for any of the questions raised in the previous section.

However, many problems have to be solved before a rigorous connection (or

absence of connection) between string theories and low-energy phenomenology can
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be established. First of all, a covariant second-quantized description of interacting
strings is not available, so that nox?x-perturbative questions like the determination
of the correct vacuum of the theory cannot be addressed. First-quantized string
perturbation theory, the only viable calculational scheme at present, can be used
to impose consistency conditions that restrict the class of possible vacua. However,
even in this approach there are several unsolved technical problems in the com-
putation of multiloop amplitudes, and a rigorous proof of perturbative finiteness
is still lacking. Finally, there are several gaps to be filled in our understanding
of the low-energy limit of string theories, especially when N = 1 supersymmet-
ric compactifications are considered and one wants to determine the structure of
the effective four-dimensional pointlike theory in order to discuss problems like

supersymmetry breaking and the low-energy spectrum.

In view of the above considerations, trying to do superstring phenomenology
in the absence of a better understanding of the theory might seem premature

or even foolha.rdgr. However, as physicists we should not be only interested in

the mathematical beauty and the internal consistency of the theories, but also 1n -
their chances to describe the real world. Indeed, phenomenological constraints are
already playing an important role in guiding the theoretical investigations about
string theories, helping to bypass some dynamical aspects which are very poorly
understood. The fact that at low energy space-time is four-dimensional and there
are at least three generations of chiral fermions, with a gauge group containing
SU3)e x SUQ)LxU (1)y and, possibly, N = 1 supersymmetry broken in the TeV
region, is already focusing the theorétical efforts on a restricted class of possible
compactifications of the Fg X E} heterotic string theory, leaving aside many other
possibilities (e.g., type-1I superstrings formulated in flat ten-dimensional space)
that seem equally good from the point of view of the mathematical consistency
alone. Of course, we are still very far from the stage of giving unequivocal and

detailed predictions from string first principles. What we can do, however, is to



explore in detail different plausible scenarios, trying to understand their problems
in reproducing the known experimental facts and the possible new phenomena they

suggest: this is the spirit of the present work.

1.3 Outline

The present work is organized as follows.

Chapter 2 is meant to be a more extended introduction to the original part of
this work. There general issues, associated with compactification of the heterotic
string with gauge group Eg x E} on Calabi-Yau manifolds, are discussed: the spirit
is that of describing the possible constraints on model-building that are common
to this class of models, without making reference to any particular manifold. Sec-
tion 2.1 will review the main ideas and results about Calabi-Yau compactification,
including a discussion of the gauge symmetry breaking at the compactification
scale. Section 2.2 will intrqduce the general problems that are to be faced by
superstrii{g-inspired model%’kbuilding. Section 2.3 will discuss the problems asso-
ciated with supersymmetry breaking in the hidden sector and its transmjésion to
the observable sector in the form of soft SUSY-breaking terms.

Chapter 3 will discuss in detail a ‘minimal’ low-energy supergravity model,
characterized by an extended gauge group SU(3)c xSU(2)xU(1)y xU(1)g and by
an enlarged particle content with respect to the usual supersymmetric extension of
the standard model, which satisfies the general constraints imposed by Calabi-Yau
compactification. Even if no specific manifold is known giving rise to such a model,
it is nevertheless representative of the new phenomenological effects that could arise
from superstring theories. Section 3.1 will illustrate the ingredients of the model,
stressing the assumptions behind them and their motivations. Section 3.2 will
examine in great detail the possibility of generating radiatively the breaking of the
extended electroweak symmetry in a phenomenologically acceptable way. Sections

3.3, 3.4 and 3.5 will study the particle spectrum of the model, with particular
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emphasis on the features that make it different from conventional supersymmetric
models. Present limits on the new particles and prospects for their detection at
future colliders will be presented.

Chapter 4 will deal with what is probably the Amost interesting phenomeno-
logical possibility suggested by Calabi-Yau compactification: the existence of an
extra massive neutral gauge boson, Z’, in addition to the Z predicted by the
standard model. A general parametrization for flavour-conserving neutral gauge
bosons from Eg will be introduced in section 4.1: popular superstring-inspired
models can be recovered as particular cases. The structure of the mass matrix
for the Z — 2’ system will be explored in section 4.2, and a systematic fit to all
the existing neutral-current data will be performed in section 4.3, to extract limits
on the mass and on the couplings of this hypothetical Z’ in section 4.4. Finally,
the prospects for the detection of a new Z’ at present at future colliders will be
explored in section 4.5.

Chapter 5 will contain some concluding remarks.



Chapter 2

General problems of
superstring-inspired models

2.1 Some results on compactification

This section summarizes a number of results on a class of possible compactifications
of the heterotic string [6] from d = 10 to d = 4, which will be used in the following
as constraints in the construction of realistic superstring-motivated models. We
shall conéentrate on the so-called ‘Calabi-Yau’ [7] compactifications [8], with some
comments on alternative possibilities [9]. Orbifold compactifications [10] and direct
formulations of string theories in d = 4 [11] will not be discussed here: they are
promising fields of research, but at the time of this writing the corresponding

phenomenological scenarios have not yet been explored in sufficient detail.

2.1.1 Calabi-Yau manifolds

In order to be realistic, the SO(32) or Fs x E} heterotic string in d = 10 must
possess a stable vacuum state of the form M4 x K, where M, is four-dimensional
Minkowski space-time and K is some compact siv-dimensional space. In principle,
that vacuum should te selected by the underlying string dynamics; in practice,
the only thing one can do at the moment is to expand the corresponding two-
dimensional supersymmetric non-linear sigma-model around a background field

configuration of the desired form and to check the consistency of the solution, in

11
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order to derive some conditicns that must be satisfied by K and thus constrain
the resulting four-dimensional theory. In a famous paper (8], Candelas, Horowitz,
Strominger and Witten imposed the following phenomenologically-motivated re-

quirements:

1. the geometry of the background solution must be of the form M4 x K, where
My is a maximally symmetric space-time and K a compact six-dimensional

manifold;

2. there should be unbroken N = 1 supersymmetry in four dimensions at the

compactification scale, in order to solve the hierarchy problem;

3. the resulting gauge group and fermion spectrum must be realistic, with the
gauge group containing H, = SU(3)¢c x SU(2) x U(1)y and the fermions

transforming according to chiral representations of it.

Even if the a.?alysis can be conducted at the level of Lhe point-like field theory
limit, an essential role in the compactification process is played by the higher-
derivative terms of the lagrangian which are induced by the exchange of massive
string modés. In the absence of these terms, there are powerful no-go theorems
which forbid supersymmetric compactifications of N = 1, d = 10 supergravity
with four-dimensional chiral “ermions. For the sake of the present discussion, it
is enough to recall the modified form of the field strength H associated to the
antisymmetric tensor B:

H = dB — (wsy — wsL), (2.1)

where wsy and wsy, are the Yang-Mills and Lorentz Chern-Simon three-forms, re-

spectively, defined as:
1 1
w3y = §"O"T7'(A/\F - §A/\A/\A), (2.2)

1
wyr, = tr(waR — gw,\w,\w). (2.3)
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In eq. (2.2), A is the gauge vector field of Fgx E} or SO(32), F'is the corresponding
field strength and the tracé T'r is taken over the adjoint representation of the gaugé
group. In eq. (2.3), w is the spin connection, R the related curvature tensor and
the trace tr is taken over the vector representation of S O(1,9). Note also that eq.

(2.1) implies the Bianchi identity:
1
dH = trR\R — é—aTTFAF' (2.4)

The requirement of unbroken N = 1, d = 4 supersymmetry, combined with
the constraint of eq. (2.4), turns out to be extremely powerful. Assuming for

simplicity that ® = constant and H = 0, so that eq. (2.4) becomes
1
trRAR = ET’I‘F A F, (2.5)
one finds the following results:

1. M4 must be Mir kowski space-time (vanishing cosmological constant);
P

2. K must be a Kahler manifold of SU(3) holonomy, with the spin connection
w identified with the gauge connection A of some SU(3) subgroup of the

ten-dimensional gauge group.

Upon compactification on Calabi-Yau manifolds, the quantum numbers of the
light fields of the resulting four-dimensional theory are determined by topological
invariants of K and of the gauge fields defined on K. The massless gauge non-
singlet fields in d = 4 originate from the gauge supermultiplet (in the adjoint
representation of Fg x Ej) of the corresponding ten-dimensional theory. Gauge
singlet fields originating from the gravitational supermultiplet will be considered
in subsection 2.1.3. If the gauge group is SO(32), then one gets SO(26) as a gauge
group in four-dimensions, under which the adjoint representation of SO(32) has
only real representations and therefore does not allow for chiral fermions. Much

more interesting is the case of Fgx E§. Considering the maximal subgroup SU(3) x
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E¢ C Es, and embedding the spin connection in the SU(3) factor, one obtains
Es x E} as a gauge group in d = 4. In particular, the only fields transforming
non-trivially under E} are tke corresponding gauge bosons and gauginos. On the

other hand, the adjoint 278 representation of Es decomposes under SU(3) x Es as:
278 — (1,78) @ (3,27) & (3,27) & (8,1). (2.6)

The first term in (2.6) corresponds to the vector supermultiplet in the adjoint
representation of Eg; the second and the third terms correspond to chiral super-
multiplets in the fundamental representation of Fjg or its conjugate: the numbers of
27 and 27 are given by topological invariants of the manifold K, the Betti-Hodge
numbers b; » and b ;, respectively. In particular, the number of chiral fermion

generations, ng = #(27) — #(27) = by1 — by 1, is given by

ng = %d, (2.7)

vyhere x is another iopologica.l invariant called the Euler characteristic of the
Calabi-Yau manifold. Finally, the Eg singlets corresponding to the (8,1) term
are likely to bea]l superheavy, and will be neglected in the following.

The number of achievements made possible by Calabi-Yau compactifications is
impressive: first of all, the four-dimensional gauge group Eg X E} and the light
particle content are suitable for a realistic'model, Fg being an acceptable grand-
unification group and Ej being a natural candidate for the ‘hidden sector’ of low-
energy supergravity models. One can generate chiral fermions and they naturally
sit in fundamental 27 representations of Es. Moreover, the number of chiral fermion
generations can be associated to a topological invariant of the compactification
manifold, and the Yukawa couplings computed (at least in principle) in terms of
the ten-dimensional gauge couplings.

The results described above have been derived at lowest order in an expansion in

o [r?, where r is the radius of the compact manifold, and are subject to corrections
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when higher orders in o//r? are included [12]. However, the qualitative features
that will be used in the following analysis are not expected to change [13]: a

detailed discussion of this topic goes beyond the scope of the present work.

2.1.2 Gauge symmetry breaking at the compactification
scale

Models based on compactifications of the Fg x Eg heterotic string on a simply-

connected Calabi-Yau manifold K, have to face two very severe problems:

1. the number of chiral generations, ng = |x(K,)|/2, is in general excessively

large;

2. an acceptable Higgs breaking of Eg down tc the standard model group H, =
SU(3)c x SU(2)L x U(1)y is impossible, since the only H,-singlets contained
in the 27 (27) of s are also singlets under SU(5), so that one would end up
with a low-energy group containing SU(5) with unacceptable baryon-number

violation.

Both difficulties can be avoided [14] if there is a suitable discrete symmetry
group G that acts freely on K, (for any element g € G other than the identity,
the equation gz, = z. has no solution for z, € K, or, in other words, there are no
fixed points). In this case one can consider the (non simply-connected) quotient
manifold K = K,/G. One has then x(K) = x(K.)/N(G), where N(G) is the
number of elements of G, so that ng = n%/N(G) can become acceptably small.

Moreover, a new mechanism for Eg symmetry breaking becomes available, the
so-called Hosotani breaking [15] (flux breaking, Wilson-loop breaking). Single-
valued fields 4(z) on K, and in particular the zero modes of compactification, can

be replaced by fields 4/(z,) on K, satisfying the following boundary condition:

P(gz.) = Ugp(z,) Vg €G, (2.8)
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where the mapping g — U, is a homomorphism of G onto a discrete subgroup G of
Es. Therefore the above equation ;expresses invariance under the direct sum G@G.
The quantities U, are analogous to Higgs bosons in the adjoint representation of
Eg, and can be shown to correspond to vacuum expectation values of Wilson-loop
operators of the type

U, = Pexpi/rg Agdz™, (2.9)

where A2 (z) are non-trivial gauge configurations on K with vanishing field strength
and the path ordered integra® is taken along the non-contractible loop I'y on K,
which is the image of the path from o to gz, on K, (the path independence of
the integral being guaranteed by the identification of the gauge connection with
the spin connection). Since massless gauge bosons of Eg are invariant under the
action of G, the subgroup of Eg which remains unbroken after compactification is

simply the maximal subgroup H which obeys the condition:

[H,E]'r. 0. (2.10)

4
Finding out all the possible subgroups H of Fg whicl contain H, is a straight-
forward exercise [16,17]: it amounts to classify all the possible discrete subgroups
G of Eg which commute with H,. To do this, it is convenient to consider the maxi-
mal subgroup SU(3)¢ x SU(3)r x SU(3)r of Eg, under which the 27 representation
decomposes as (3,3,1)+(3,1,3) +(1, 3,3). In view of the following considerations,
it is useful to label the different fields in the 27 as:

u Ho H+ e’
2=\ d |+(w d& D)+ |H H v |, (2.11)
D e v N

where SU(3)¢ indices have been omitted, while SU(3), indices correspond to
different rows and SU(3)g indices to different columns. On the other hand, since
we want to leave SU(3)c unbroken, it is not restrictive to assume that the Uy are

of the form:

Ug =1lc®@UL @ UgR, (2.12)
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where 1¢ is the unit SU(3)¢c matrix and Ugr and Ugg are SU(3)L, and SU(3)r
matrices, respectively. In éddjtion, we want to leave SU(2)r x U(1)y unbroken,

where the embedding of the SU(2),, generators is given by

0
el V@ ®1g (2.13)
00 1

and the one of the U(1)y generator by

Y = YL-}-YR, (2.14)
with

1/3

Y, =0c® 1/3 &b OR, (2.15)
—2/3 L
4/3
Yr=0c00L® —2/3 . (2.16)
-2/3 ),

From the above expressions one derives that any matrix U, commuting with H,
ml;st commute at least with its rank-five extension H = S U(3)c x SU(2)L x
U(1)L x U(1)r, and therefore the allowed four-dimensional gauge groups H can
have only rank six or five. Rank-six groups correspond to abelian discrete groups

G, generated by matrices U, of the form

g Bg
UgL = ag 5 UQR = g , (2.17)
a;z 5g -

with g, B4,7,8, € C and 8,4, 6, = 1. Rank-five groups correspond to matrices
U, such that

) , (2.18)

g

Qag B
U = Qg » Ugr= ( ‘ V.
a;z

with oy, B, € C, the 2 x 2 matrices {V,} constituting an irreducible representation
of G and fydet V; = 1. A complete list of the different possible groups H is given

below. The corresponding form of the matrices Uy, and U, g and the decomposition
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of the 27 of F into irreducible multiplets of H can be found in the literature [16,17].
Different embeddings of the same H info Eq are considered as separate cases.

Rank 6:
N SU(6)g x SU(2)N
2. SU(6)¢ x SU(2)r
3. SU(6)oy x SU(2)L
4. SU(6)c x U(1)
5. [SU(6)c x U(L))
6. SO(10)e x U(1)
7. SO(10) x U(1)
8. SU(5) x SU(2)x x U(1)
. 9. SU(5) x SU(2);.>< U(@1)
10. SU(5) x SU(2)r x U(1)
11. [SU(5) x SU(2)L x UQL)Y
12. SU(5) x U(1) x U(1)
13. [SU(5) x U(1) x U(L)]
14. SU(4)e x SU(2)p, x SU@)x x U(1)
15. SU(4)c x SU()L x SU(2)r x U(1)
16. SU(4)o x SU(2)r, x U(1) x U(1)
17. [SU@)e x SU@) x U(L) x UL

18. SU(3)C X SU(3)L X SJ(?)R X U(l)
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19. SU(3)c x SU(3)z x SU@)w x U(1)
20. SU(3)o x SU(2)1, x SU(3)r x U(1)
21. SU(3)o x SU(2)r, x SU(2)r x U(1) x U(1)
22. SU(3)c x SU(2)p x SU(2)x x U(1) x U(1)
23. SU(3)c x SU(3)z x SU(3)r
24. SU(3)c x SU(3)y, x U(1) x U(1)

25. SU(3)C X SU(2)L X U(l) X U(l) X U(l)

Rank 5:
26. SU(6)

27. SU(5) x U(1)

28. SU@)c x SU(2)L, x U(1)

29. SU(3)c x SUB3)p x U(1)

3(3; | SU(3)e x SU(2)p, x U(1) x U(1)

As we shall see later, most of the above possibilities do not represent good candi-
dates for a realistic lov-energy theory, because of several phenomenological reasons.

To complete the discussion of symmetry breaking at the compactification scale
it is also important to understand which components of the b;;; (27 + 27) survive
as massless fields on K . The rule for the determination of the light ‘survivors’
is set by eq. (2.8). Since the index theorem ensures that ng = n%/N(G) chiral
generations, corresponding to ng 27 superfields, will survive on K, to determine the
additional self-conjugate light pairs coming from the b;,; (27 + 27) it is convenient
to concentrate on the b;; 27 on K,. In general, they will transform as a sum of

irreducible representations (IR) R; of G. On the other hand, each 27 decomposes
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under G (which is a discrete subgroup of Eg) into a sum of IRs L;. The survivors
on K will correspond, according to (2.8), to the fields invariant under G @ G.
Given a multiplet ) of H contained in a 27 of Es, it will belong to an IR L; of G,
‘and therefore it will survive on K, if and only if it also belongs to an IR R; of G
such that the direct product representation R; ® L; contains a singlet of G & G.
If ¢ € 27 is light, then the index theorem ensures that the self-conjugate 9 € 27
will also remain light.

Historically, the first class of manifolds which was considered for model building
were the so-called V-manifolds, with b;; = 1. In this particular case, the single 27
which is present is invariant under G, so that its surviving components on K are
simply those invariant under G. A complete classification of the survivors for the
different subgroups H of Eg can be found in ref.[16,17].

On the manifolds with b, ; > 1, however, the situation is radically changed,
since it is the general condition (2.8) that determines the survivors. If one is not
working with a specific manifold with known discrete symmetries, one can contem-
plate the possibility that an arbitrary given set of H submultiplets, contained in
the by, (27 + 57) of Eg, can remain light on K, for an appropriate choice of the
manifold K, and its discrete symmetry G.

Before concluding this section, a peculiar feature of the Hosotani symmetry-
breaking mechanism must be stressed. Since the gauge multiplets of H, in the
theory formulated on K,/G, originate from a single multiplet of the theory formu-
lated on K, (the E¢ adjoint r=presentation), their couplirgs at the compactification
scale will still obey the grand-unification condition, and the standard renormaliza-
tion group analysis of the gauge coupling constants will be valid also in this context.
On the other hand, different chiral multiplets of H in the theory formulated on
K,/G will in general originate from different irreducible representations of Eg in
the theory formulated on K,, and therefore their superpotential couplings will not

obey Eg Clebsch-Gordan relations: this allows to circumvent some bad predictions
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about particle mass ratios that characterize conventional GUT's in their simplest
formulations.

Finally, let us remark that we have concentrated on the Hosotani breaking of
FEg, which is the gauge group in the observable sector, but a similar mechanism
can be operative for breaking the hidden Ej down to some subgroup of it at the

compactification scale.

2.1.3 The effective N =1, d =4 supergravity theory

We describe here the possible form of the effective low-energy N = 1, d = 4
supergravity theory which would emerge from Calabi-Yau compactifications of the
Eg x Eg heterotic superstring (or, more generally, from N = 1 supersymmetric
compactifications on My x K, where M, is four-dimensional Minkowski space
and K is a six-dimensional compact space). A consistent approach would involve
integrating out all the massive string and compactification modes, generating in
such a way effeitive interactions ainong the light fields. This procedure goes beyond
our present capabilities. A simplified approach, due to Witten [18], is a truncation
of N :1, d = 10 supergravity, whose results will be presented here and used
in the rest of this work, assuming that they reproduce the essential features of
Calabi-Yau compactification. At the end of this subsection we shall also comment

about alternative approaches and possible modifications to Witten’s results.

As a starting poirt, one can take the standard form of N = 1, d = 10 super-
gravity coupled to Eg x E} Yang-Mills theory [19], corresponding to a truncation
of all the massive string modes. One can then assume that the light fields are
invariant under translations of the six compactified coordinates 2™ (m =4, ...,9):
this would give rise to an N = 4, d = 4 supergravity theory. Finally, one can keep
only the fields which a-e singlets under the actior of SU(3)p = SU(3)s & SU(3)g,
where SU(3)s is a subgroup of the rotation group O(6) ~ SU(4) of the internal

coordinates ™ [under which the supersymmetric charges @4 (A = 1,2, 3,4) trans-
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form as 1@ 3 and the coordinates ™ as 3@ 3] and SU(3)¢ belongs to the maximal
subgroup SU(3)g x E¢ C Es: the residual N = 1 supersymmetry corresponds to
the generator which is a singlet under SU(3)s. In this way one obtains as surviving
light fields in d = 4 the gravitational supermultiplef (9w ¥u), the gauge supermul-
tiplet (A%, x®) of the unbroken gauge group, one generation of chiral fermions ®*
(corresponding to a 27-dimensional representation of Eg), plus two chiral gauge-

singlet superfields S and T', whose real and imaginary spin—zero components are

given by:
S =Sp+1iS;, T =Ta+1TI, (2.19)
Sp=e*¢7%t Tp=e"¢** + 8.0°, (2.20)
Sr=3v2D, Ty = —/2a. (2.21)

The real parts of S and T are different combinations of the dilaton ¢, already
present in the d = 10 supergravity theory, and of the ‘breathing mode’ o which

describes the fluctuation of the overall size of the six-dimensional manifold K:
Gn = €799, (2.22)
where g is a reference metric normalized so that:
/K d®y[det g/ _ Mz®. (2.23)

In the definition of the imaginary parts of S and T', D ard a are pseudoscalar fields

parametrizing relevant zero modes of the d = 10 antisymmetric tensor field By

45“3/2@6"pr = gwpaa"D, (2'24)
Bmn = €mna. (2.25)
The first equation above corresponds to a four-dimensional duality transformation,

where Hyp = -13-(3“Byp+3VBp“+<9pB,w) + Yang-Mills Chern-Simons form (without

Lorentz Chern-Simons form, since we are neglecting higher derivative terms in our
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truncation procedure). In the second equation, €,,,, is the S U(3)s-invariant tensor
€45 = €87 = €89 = +1, €54 = €756 = €93 = —1.

Considering terms up to two derivatives in the fields (Which should be a good
approximation at low energies) the resulting N = 1, d‘= 4 supefgravity theory
[20] is determined by two independent functions of the light chiral superfields: a
real function G, called the Kahler potential, wkich determines the kinetic terms
for the chiral superfields and contains information about the superpotential, and
an analytic function f.g, transforming as a symmetric product of adjoint repre-
sentations of the gauge group, which determines the kinetic term for the gauge

supermultiplets. According to the truncation procedure outlined above one finds

(working in units where Mp = /8T /Gn = 1):

faB = 6&35, (226)
G = —log(S + 57) — 3log(T + T* — 28:3%) + log [W(®)[?, (2.27)

where: !
) W(®) = hapd°3°®°, (2.28)

habe beiﬁg proportional to the characteristic third-rank symmetric tensor dg. of F.

Note that the Kahler potential G of eq.(2.27) has a remarkable Sgg')l) X SU‘.S(Z)(ZIII)(U

no-scale structure [21], whose consequences will be described in section 2.3.

The truncation procedure of Witten applies to the case of a hypothetical Calabi-
Yau manifold with b;; = 1 and b,; = 0, corresponding to only one generation of
chiral fermions. That procedure can however be extended [22] to the generic case
in which b, ; > 1, b; » > 0, and the no-scale structure of the Kahler potential is still
presefved. Although the structure of the supergravity model derived by the trun-
cation procedure is very appealing, there might be corrections to it coming from
the massive modes which have been neglected, corresponding to terms suppressed
by inverse powers of the heavy masses: this is particularly important in view of

the fact that both the string scale Ms and the compactification scale M¢ are likely
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to be of the order of the Planck scale Mp. It is therefore interesting to compare
the previous result with the most general effective lagrangian compatible with the
classical symmetries of the underlying d = 10 supergravity and superstring theo-
ries. These symmetries are, apart from local d — 10, N = 1 supersymmetry and
the Yang-Mills gauge symmetry:

1. ‘Axion-type’ symmetries, corresponding to the invariance under the change
of the antisymmetric tensor By by an exact two-form, implying that in the
d =10, N = 1 supergravity lagrangian Bpsy has only derivative couplings

through its field strength Harnp.

2. ‘Scale invariances’, related to the fact that the vacuum expectation values of
the dilaton field and of the breathing mode (associated to the determination

of the gauge coupling constant and of the compactification radius) are not

fixed at the classical level.

Using the set of ixii;a;iances described above, one finds that the resulting d = 4,
N = 1 supergravity model must be characterized by exactly the same gauge kinetic
function and the same S-dependent Kahler potential as in the truncated case, while
there could be modifications to the part of the Kéahler potential depending on the
(T, ®*) fields. The generality of this result is confirmed by explicit computations
in orbifolds [23] and four-dimensional superstring models [24].

Even the last result need not necessarily be the final word. There is still left
the logical possibility of corrections to it coming from quantum effects, both at
the perturbative and at the non-perturbative level. Speculations have been made
about the possible modifications coming from string loop effects, but the literature
on the subject is controversial, and a complete computation of the one-loop stririg
corrections is not yet available. Another plausible source of quantum corrections,
this time at the non-perturbative level in the effective field theory, is gaugino

condensation in the hidden sector, whose effects will be considered in section 2.3.
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9.2 TFirst problems for model building

In this section we briefly review some phenomenological problems that must be
faced by the various candidate low-energy models allowed by the general rules of
Calabi-Yau compactification and Wilson loop symmetry breaking [16,17,25, 26,27,
28]. For the time being, we shall assume the possibility of generating an acceptable
supersymmetry breaking in the observable sector: this point will be discussed

separately in the following section.

After Wilson loop breaking at the compactification scale, from Eg to one of
the groups H listed in the previous section, the subsequent stages of symmetry
breaking, down to the standard model group Hp and finally to SU(3)c % U(1)em;
are expected to proceed through the conventional Higgs mechanism, with some
of the scalar fields in the chiral supermultiplets acquiring non-vanishing VEVs.
_One must thérefore make sure that among the sirviving light fields one can find
Higgs particles with th= appropriate quantum numbers. For example, the only Hy
singlets contained in the 27 or 97 of Eg are also singlets under S U(S):Jthis implies
that most of the models with simple factors of rark r > 4 in H are ruled out, since
the complete breaking of this simple factor must occur at the electroweak scale, and
this 1s phenomenologically unacceptable (among the other things, nucleon decay
mediated by S U(5) gauge bosons would occur at a Very fast rate). As explained
in the previous section, on manifolds with b1 = 1 the condition which determines
the light ‘survivors’ 1S particularly simple, and strongly reduces the number of
acceptable models. Things become more complicated on manifolds with b1 > 1:
in this case the identiﬁca,t;ion of the light survivors requires the knowledge of the
discrete symmetries of the manifold, and non trivial constraints of this kind can

be implemented only in specific models.

Another serious problem of the models under consideration is baryon and lep-

ton number non conservation (29}, possibly leading to nucleon decay. Nucleon
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decay via gauge interactions is harmless in the models where the corresponding
gauge bosons acquire mass in the Wilson loop breaking, since their mass is ex-
pected to be close to the Planck mass, giving enough suppression to the relevant
four-fermion operators. An additional source of trouble, typical of supersymmetric
models, is the possibility of nucleon decay due to renormalizable |AB = AL| =1
combinations of Yukawa couplings in the low-energy superpotential, in the present
case those involving the exotic (D, D) colour triplet superfields contained in the
27 of Eg. This problem has two possible ways out. One is the existence of an
intermediate scale of symmetry breaking, such that the (D, D) particles acquire
heavy enough masses (of order 10'® GeV'): some obstacles to the feasibility of such
a scenario will be mentioned later. Another solution, exploiting the peculiarities
of Hosotani breaking, is the existence of global symmetries that prevent the oc-
currence of the unwanted combinations of Yukawa couplings. A similar solution
(R-parity) characterizes the conventional supersymmetric extensions of the stan-
dard model. In the present context, however, the symmetry should follow from
the properties of the compactification manifold, but no satisfactory example has
been found yet. Of course, the symmetry relations of the surviving gauge group

H must be respected.

Oné more problem is associated to neutrino masses. The existence of a ‘right-
handed neutrino’ state, v°, in the 27 of Fg, allows for the presence of superpotential
couplings containing v°H®, which generate a Dirac mass for neutrinos when H°
acquires a non vanishing VEV. Due to the restricted particle content of these
models, the elegant ‘see saw’ mechanism of conventional grand unification is no
~ longer possible at the level of renormalizable couplings. Different solutions to
this problem have been proposed. One suggestion [30] is that large Majorana
masses for the v° state are generated by non-renormalizable operators of the form
ﬁucucfzc*ﬂc* if ¢ acquires a very large VEV (if M = Mp, m,. ~ few TeV requires

< 7° > ~ 101! GeV): these operators could be generated in the effective low
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energy theory by the exchange of massive Kaluza-Klein or string modes. Another
proposal [31], which also a;ssumes < P° > # 0 and exploits the structure of the
resulting neutralino mass matrix, can solve the problem only for one generation.
Both these approaches need to assume that < ¢ > # 0, but this is likely to be
a source of many other problems [32]. A third possibility is to assume that the
Yukawa couplings corresponding to Dirac neutrino masses are forbidden by some
symmetry of the compactification manifold: in this case the right handed neutrinos
can remain massless without particular problems, since they are singlets under the
standard model gauge group.

An additional set of constraints that must be satisfied by any acceptable model
comes from the conventional renormalization group analysis, starting from unifica-
tion of the gauge coupling constants at the compactification scale M. More pre-
cisely, one has to check, for each symmetry breaking pattern and particle spectrum,
the resulting values fo: the Weinberg angle and the unification mass. Moreover,
the validity of the analysis is related to the perturbative behaviour of the effective
gauge couplings. In particular, many models with excessive light particle content
must be discarded because of Landau poles in the gauge couplings evolution. In the
absence of intermediate mass scales, the number of generations must be equal to
three, and the only acceptable low energy groups are of the form SU(3) x SU(2)L
x T [T=U(1)or U(l) x U(1) or SU(2)x x U(1)]. If intermediate mass scales can
be consistently generated, four generation models and different gauge groups can

also survive the generel tests described above.

Taking into accoun’ the previous discussion, it is very important to understand
if models with intermediate mass scales (IMS) of symmetry breaking, between the
_electroweak scale mw and the Planck scale Mp, are phenomenologically viable. In
order to preserve the supersymmetric solution of the gauge hierarchy problem, any
acceptable IMS breaking must correspond to an approximate flat direction of the

scalar potential. Therefore, the scalar gauge-non-singlet fields which acquire large
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VEVs must be self-conjugate multiplets contained in the b; ; (27 + 27) pairs, and
their VEVs must be appro:dmateiy equal, to avoid a large D-term contribution to
the scalar potential. Since one wants to break H to a subgroup containing H,
the only candidates are (N, N) and (&°,7° ), which will be simply denoted here by
(z,y). Moreover, the superpotential couplings which could induce a large F-term
contribution to the potential must also be absent. Another necessary condition
for the generation of IMS is supersymmetry breaking, in the form of soft SUSY
breaking terms characterized by a common scale O(1TeV): without these terms
the degeneracy along the flat directions of the scalar potential cannot be lifted by
radiative corrections. In summary, the relevant part of the effective potential can

be written in the form:

V = milzl* +mlly* + g’ (z|* — [y]?)°
fﬂ 2 n n
" [(n+1)2_]‘|/.74%|m|2 lyl>*(lel® + lyl*) + . ..
- P
- 4+ 1—loop contributions, (2.29)

where c and f,, are numerical factors of order 1. Note that we have included possible
non renormalizable terms that can be induced by the exchange of massive string or
compactification modes: the integer n > 1 is the smallest value compatible with the
symmetries of the theory and the dots stand for possible higher dimensional terms.
A detailed study [33] of the potential (2.29) shows that, for reasonable values of
the parameters, it is possible to generate radiatively IMS ranging from 10° to
10'* GeV along the flat directions of the renormalizable interactions. Possible non
renormalizable terms in the scalar potential are not necessary for the generation of
a stable minimum, but set an upper limit to the allowed IMS: M; < 10'°—10"! GeV
forn=1, M; <10 — 10" GeV forn=2,and soon ....

Even if radiative generation of IMS is possible, there is still a long way to
go [34] to formulate a fully consistent model of this kind. In order to solve the

nucleon decay problem, one must have My > 10'® GeV. Also the requirement of
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perturbative unification tends to push M towards very high values. However, this
might create cosmological i)roblems because of excessive entropy generation at the
IMS phase transition. One has also to check that the effective theory below M;
has the right structure to describe correctly the electroweak symmetry breaking.
Even if there is no no-go theorem for IMS models, their consistency is still an open
question.

Before concluding this section, a final comment is in order. Many of the prob-
lems discussed above could be avoided if the unbroken gauge group emerging from
compactification (before Hosotani breaking) were SO(10) or SU(5). Possible com-
pactifications on manifolds of SU(3) holonomy, where the spivn coﬁnection is no
longer identified with the gauge connection, corresponding to SO(10) or SU(5)
unification groups, have been suggested by Witten [9]. Unfortunately, these vacua
are generically unstable with respect to non perturbative effects at the level of the
two-dimensional sigma model [35], and they might also have some phenomeno-
logical drawbacks [36]. Effective unification in SU(5) or SO(10) still remains,
phenomenologically, the most attractive possibility, but its implementation should

probably rely on orbifolds [10] or four-dimensional superstring models [11].

2.3 Problems with supersymmetry breaking

In this section we describe the problem of supersymmetry breaking in the context
of the effective N = 1, d = 4 supergravity theory abstracted from the superstring.
Our starting point will be the modified no-scale model introduced in section 2.1.3,
characterized by a gauge group H x H' C Egx E{, by the chiral multiplets (S, T, $°)

and by the gauge kinetic function, Kahler potential and superpotential:
fag = 605, (2.30)

G = —log(S + 5*) — 3log(T + T* — 28:8°) + log |[P(®)|2,  (2.31)

P(®) = hop3*0°%°. (2.32)
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2.3.1 The origin of supersymmetry breaking

The most interesting compactifications of the Eg x E{ heterotic superstring are
those corresponding to an unbroken N = 1 local ‘supersymmetry in four dimen-
sions, both because they have good chances of being quantum mechanically stable
and because they can lead to a solution of the hierarchy problem. However, one has
eventually to break the remnant supersymmetry in order to get a realistic model.
In the phenomenological supergravity models developed before the superstring era,
the most satisfactory mechanisms for SUSY breaking required the introduction of
a so-called ‘hidden sector’, constituted by superfields which had only gravitational
interactions with the ‘observable’ sector, to which the ordinary particles belong.
In particular, one of the possible sources of supersymmetry breaking had been
identified as gaugino condensation [37], in which case another crucial ingredient
was the existence of a non-trivial gauge kinetic function. All these features seem
to emerge naturally from the superstring framework.

At the grand {inification scale Mgy, to be identified with the compactification
scale Mc:

1

S
Mo =<e™>=_ Sg >1/2< Tg >1/2’ (2.33)

the effective four-dimensional gauge coupling constant is connected to the vacuum

expectation value of the Sg field:

1

_—. 2.34
< SR > ( )

Jevr =
Let us consider the largest non-abelian factor H' of the gauge group H' C E}
left unbroken after compactification. Since the only light fields transforming non-
trivially under H’ are the members of its gauge vector supermultiplet, they will
become strongly interacting at the scale

<sg>
Acong ~ Mge™ 2o | (2.35)

where b, = BCz(fI ")/16m? is the coeflicient of the one-loop beta function of H'. This
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can plausibly trigger gaugino condensation, with < Tryx > ~ A2, ,. Inspecting
the supersymmetry tra.nsf;)rmations of the different fields, one can show [38] that
gaugino condensation can induce supersymmetry breaking, thus generating a non-
vanishing gravitino mass. However, this also induces a non-vanishing cosmological
constant at tree level. One possibility to improve the situation is to introduce a
constant term c in the superpotential, whose origin was initially attributed to a
non-vanishing VEV for the field strength H of the antisymmetric tensor B. In this
case, after integrating out the gauge superfields in the hidden sector, one obtains

for the field S the following effective superpotential:
w(S) =c+ he™PS, (2.36)

where 8 = —3/2b, and h is expected to be of order 1, so that the full superpotential

below the condensation scale is now given by

W(®,5) = P(®) + w(S). (2.37)

§

The corresponding tree-level scalar potential can be easily calculated using the

standard formulas of supergravity:

Vo — eﬂ(g/kg//lzllg,l _ 3)

1 .
t GRefG(GLT) (G T %)

1
= — S «\]2
G ST+ T —amsgaypll T@—ws(E+5)
! P;P°
6 (S + S*)(T + T+ — 28;°)
*mMaadHby2
. (63 T=3b) (2.38)

(S+ ST + T+ —28:%°)?
Each of the three terms in the above equation is positive semidefinite, so that a tree
level minimum with vanishing vacuum energy must correspond to their separate
vanishing. Neglecting the possibility of flat directions for the gauge non-singlet

fields (which would not modify the conclusion of our analysis), one obtains that
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< &2 >=0: to simplify the notation, from now on we shall omit the ¢ dependence
wherever there is no risk of confusién, putting all the & fields to zero. The tree level
vacuum expectation value of S is in turn determined by < Gs >= 0, corresponding
to

<w—-ws(S+5")> = 0. (2.39)
Introducing the variable z = (Sg, and denoting by zo its tree-level VEV, one

obtains:

cos 51 = —1, (2.40)
(1 + 220)e™™ =c/h. (2.41)

On the other hand, the VEV of T is left undetermined, and the same holds true

for the gravitino mass

lc + he™P5|? > . (2.42)

2 9 __
Mgy =€ =

1
< (258)(2Tr)°
It is also important to note that all the possible soft supersymmetry breaking
parameters in thé observable sector remain zero at the tree level, despite the fact
that supersymmetry is broken with a non-vanishing gravitino mass. This can be

easily checked using the standard supergravity formula for the gaugino masses:

1 _
(ml/Z)Cﬂﬁ = < Ef;‘g‘eq/zgllg”k 1l >

1 _
5043 < 55;60/29'3(9" l)g >=0 (2.43)

and the explicit expression of V, given above, since

%

2\a __
(mo)b - 8@;8@5 (244)
and
3V
= ————, 2.45
Ahate = Fae58v0- (2.45)

In summary, the tree level analysis leaves at least two unanswered questions.
What fixes the VEV of T (and therefore the gravitino mass mg/; and the compact-

ification scale M¢)? How is supersymmetry breaking transmitted from the hidden
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to the observable sector? One might hope that one-loop radiative corrections can
provide a satisfactory msﬁer to both questions. However, explicit calculations [39]
of the one loop effective potential show that the T direction is destabilized, so that
the VEV of T cannot be computed in perturbation theory. One has therefore to
assume, as a working hypothesis, that some other effect (string loop corrections?

non-perturbative effects on the world sheet?) does the job.

2.3.2 Supersymmetry breaking in the observable sector

Even assuming thaf the ‘true’ potential has a minimum at a finite value of < T' >,
it can be shown that soft susy breaking scalar masses in the observable sector are
not generated even at one loop [40]. The conventional proof makes use of the
fact that the T-dependence of the G function zlways occur in the combination
T +T* —2%;9%, so that (md)g = 8*°V/(89:6%%) = OV/OT = 0 at the minimum
also at the one loop level.

Even ’iif soft masses for the gauge-non-singlet scalars are not generated at the
one loop level, this does not mean that the observable sector cannot feel the effects
of éupersymmetry breaking. There is still the possibility that non-zero gaugino
masses and/or trilinear scalar couplings are generated by radiative corrections in
the hidden sector [41,42,43,44]. While, contrary to early expectations [41], loops
involving gravitons and gravitinos do not contribute to gaugino masses [42,43],
loops involving the ccmponents of the S chiral superfield give in general non van-
ishing contributions [42,44]. The magnitude of these contributions depends on the
model dependent parameters h and ¢, but in principle allows for the hierarchy
mm << mgsy << Mp. Trilinear scalar couplings can also be generated at the one
loop level, but their magnitude is negligible when compared to gaugino masses.
Once the seed of supersymmetry breaking is introduced into the observable sector
in the form of gaugino masses, all the other kinds of soft SUSY breaking param-

eters are naturally generated by radiative corrections in the observable sector, as
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will be seen in a specific example in the following chapter.

Even if there are some indicat’ions on how supersymmetry breaking is trans-
mitted from the hidden to the observable sector, the problem of supersymmetry
breaking still presents many obscure points. The origin and the form of the super-
potential (2.36) for the S field could be different [45]; the effect which eventually
fixes the VEV of T' and generates the desired hierarchy mg;, << Mp is unknown;
the tree level vanishing of the cosmological constant is in general destroyed by
radiative corrections. Qualitatively new ideas [46,47] are probably required for

further progress.



Chapter 3

A ‘minimal’ model

3.1 Generalities

This chapter contains a detailed phenomenological study [26,48,49] of a ‘minimal’
low-energy model [14] which is compatible with the generic constraints imposed by
Calabi-Yau compactification. Even if an explicit example of manifold giving rise to
such a model is not known, a complete classification of all Calabi-Yau spaces is still
lacking, léaving open the possibility that in future such a manifold can be found.
Moreover, this minimal model can be viewed as the most economical representa-
tiye example of the new phenomenological possibilities allowed by the superstring
scenario: light exotic fermions and scalars originating from 27-dimensional repre-
sentations of Eg, an additional light Z’ boson, etc., which could also be present in
non-minimal Calabi-Yau models. It might also be that alternative compactifica-
tions, e.g. the ones on orbifolds, can give rise to realistic models with very similar

features [50].

3.1.1 The low-energy group

As explained in section 2.1, compactification of the Eg x Ej heterotic super-
string on a non simply-connected Calabi-Yau manifold can yield, as possible four-
dimensional gauge groups in the observable sector, many different subgroups H

of Eg containing the standard Hp, all of them having rank r greater than four.
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As reviewed in section 2.2, many of the possible models associated with the dif-
ferent groups suffer from fatal diseases when faced with simple phenomenological
constraints: neutrino masses, proton decay, the measured value of sin® 8y, etc..
Among the surviving models, there are several ones which can work only if there
are intermediate symmetry-treaking scales between the compactification scale M
and the electroweak breaking scale m: even if they may present some advantages
for solving the problems with neutrino masses and proton decay, they have also to
face a series of phenomenological problems [32,34]. Here we consider those models
which can be acceptable also in the absence of intermediate mass scales (i.e., the
‘minimal’ ones as far as the number of relevant mass scales is concerned). The
analysis of gauge couplings renormalization restricts then the choice of the gauge
group among the unique » = 5 candidate SU(3)¢ x SU(2)r x U(1)? and the r = 6
candidates SU(3)¢ x SU(2)r x U(1)3, SU(3)c x SU(2)L x SU(2)r x U(1)2.

For either of the rank-6 groups to be acceptable, one must be able to break them
down to the standard model group Hp, i.e. to reduce their rank by two. Each 27 of
Eg makes available to us two Ho-singlets: one, denoted here by N, is the SO(10)-
singlet contained in the decomposition [27]g, — [16+1041]50(10), and the other one
is the SU(5)-singlet contained in the decomposition [16]so(10) — [10 + 5 + 1]su(s),
denoted here by v and conjugate to the ‘right-handed neutrino’ of conventional
grand unification. To get frcm r = 6 to r = 4, at least one representative of each
of these types of fields must acquire a vacuum expectation value, and they must
be larger than the VEVs of the SU(2)L-doublets giving masses to the W and the
Z, since the extra gauge bosons must be heavier than the standard model ones
in order to be phenomenologically acceptable. However, a non-vanishing VEV
for the scalar partner of the right-handed neutrino, v¢, is disfavoured by various
phenomenological considerations [32,34]. Even if with some special construction
it might be possible to build an acceptable model, we discard here the possibility

that < 0[v°|0 ># 0. Under this assumption, the only remaining possibility for the
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gauge group is the rank-5 candidate:
H = SU(3) x SU2) x UL)y x U(L)y. (3.1)

Note that, as explained in section 2.1, the embecding of the extra U (1) inside Eg
is completely fixed, and therefore the couplings of the different particles to the

corresponding extra neutral gauge boson are also completely fixed.

3.1.2 The light matter fields

We now seek to specify the matter content of our model, in terms of light chi-
ral superfields, after compactification and Wilson-loop symmetry breaking. The
sources of ambiguity are in the number of generaiions ng, in the possible addition
of some pairs of conjugate multiplets from (27 + 27) representations of Fg, and in
the presence of additional gauge singlets.

The first of these ambiguities 1s easily removed, since in the absence of inter-
obtained for ng = 3: we therefore assume the existence of a suitable Calabi-Yau
manifold with |x| = 6, so that ng = [x|/2 = 3.

To discuss the possibility of surviving split multiplets from the bia > 1 self-
conjugate (27+27) representations of Fg, we have to remember the general analysis
of section 2.1, and in particular the generic form of the matrices U, of the discrete
subgroup G of Eg which corresponds to the four-dimensional gauge group H:

oy 8,
1e ® oy ® ( v, ) , (3.2)

-2
Qg

with o, B, € C, the 2 x 2 matrices {V,} constituting an irreducible representation
. of a non-abelian discrete group G, and B;det V, = 1. Let us consider first the case
in which b;; = 1, or by; > 1 with the (27 + 27)s singlets under the action of G.
Then for generic values of oy, 8, and V; there are no light survivors. Only under

particular circumstances one can have either (e° + h.c.) [if o;? = ;] or (H + h.c.)



38

[if @y = B,] invariant under G and thus in the spectrum of light particles. The
situation is different if the b; ; copies of the (27 +27) transform non-trivially under
the group G: in this case, as previously discussed, no definite statement about the
light survivors can be made on general grounds. In any case, in a model without
intermediate mass scales we do not see any compelling reason for introducing these
additional fields: in fact, the job of low-energy symmetry breaking, with acceptable
values for the particle masses and sin? O, can be performed with the fields in the
conventional 27 representations. On the other hand, since the 27s do not couple to
pairs of 27 representations, an acceptable mass spectrum for the survivors could
be difficult to obtain, and many additional parameters should be introduced. We
therefore regard as the most natural and attractive possibility the one in which
there are no light self-conjugate chiral multiplets.

In the Calabi-Yau compactifications under consideration (where w = A and
H = 0), gauge singlet superfields like S and T' do not mix in the superpotential
with gauge non-singlet superfields. Even if they are essential in the discussion of
issues such as supersymmetry breaking, they do not play a réle in the low-energy
considerations of the present chapter, since they are likely to have only very weak
couplings to matter O(1/Mp) and superheavy masses O(Mp). Therefore they will
be neglected in the following.

Summarizing, the matter content of our model is: ng = 3 generations of 27
 chiral superfields with the quantum numbers of the fundamental representation
of Eg, no light split multiplets from (27 + 27)s and no light gauge singlets. Note
that this is the most economical (‘minimal’) choice that is possible in Calabi-Yau
compactification.

With respect to the gauge group H = SU(3)¢ x SU(2)r x U(1)y x U(1)y,
the 27 left-handed chiral superfields contained in the fundamental representation

of Eg¢ have the following transformation properties:

Q = (u,d) ~ (3,2,+1/6,+1/3),
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u® ~ (3,1,-2/3,+1/3),
e~ (1,1,+1,41/3),
D ~ (3,1,-1/3,-2/3),
H=(H", H°) ~ (1,2,+1/2,—2/3); (3.3)
d°,D° ~ (3,1,+1/3,—1/6),
L= (ve),H=(HH)~(1,2,-1/2,-1/6),

N,v° ~ (1,1,0,+5/6). (3.4)

Group and generation indices are understood. The first two numbers in brackets
denote the dimensions of the SU(3)¢ and SU(2)y, representations, respectively; the
third and the fourth one the Y and Y hypercharges, respectively, with conventional
normalizations: the properly normalized quantities Y and Y", such as TrT3 =
TrY? = TrY"? over the 27, are given by vV = \/575—Y and Y’ = \/2—3_/—5_Y’ . We
can iden?ify eq. (3.3) and (3.4) with different representations of the maximal
SU(6) ><>.S'U(2)N subgroup of Eg: (3.3) correspoads to a (15,1), (3.4) to a (6,2);
under SU(5) x U(1)y: C SU(6) one has 15 — (10,+1/3) + (5,—2/3) and 6 —
(5,—1/6) + (1,+5/6). The fact that the components of the 27 which fall into
SU(2)n doublets [eq.(3.4)] have the same transformation properties under SU(6),
and therefore under H, makes the identification of the ordinary charge-(—1/ 3)
quarks and charged leptons a non-trivial problem: in the minimal model, however,
the solution is straightforward, and will be presented in the fo.llowingr subsection,

after introducing the superpotential.

3.1.3 The superpotential

The states introduced in the previous section have, besides the usual gauge cou-
plings, also generalized Yukawa interactions. The most general superpotential cou-

plings allowed by the original Fg invariance, followed by the Hosotani symmetry-
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breaking mechanism, are:

f = hyQu°H + hgLe’H (3.5)
+ h HLV*+MHHN (3.6)
+ M\ Dd°v° +kDD°N (3.7)
+ AMQD°L+ hpQd°H (3.8)
+ 2DQQ + Ao Doude (3.9)
+ AgDeu’. (3.10)

Group and generation indices are understood for simplicity, but the different cou-
pling constants should be interpreted as 3 x 3 x 3 tensors. Two important points
are also worth stressing. First, that as a consequence of the Wilson-loop mech-
anism the different superpotential couplings need not be linked by the usual Eg
Clebsch-Gordan relations: this is to be contrasted with what occurs in conventional
grand unification. Second, that consideration of the most general superpotential
couplings a.llowe:i by H gauge invariance (like HH, HL, He°H, Le‘L, HH,
HLN, DDv*, Dd*N, Qd°N, Qd°L, QD°H, D°u°D¢, d°u°d°) would be mislead-
ing, because couplings other than those in (3.5)-(3.10) would not be allowed by
the underlying Eg structure.

Note also that, treating the superpotential couplings as phenomenological pa-
rameters, as a consequence of the fact that H commutes with SU(2)n there is
an overall ambiguity corresponding to arbitrary rotations between the two sets of
fields (D¢, H, N) and (d¢, L,v°). To remove this ambiguity, we may without loss of
generality identify L with the standard lepton doublet, in which case lepton num-
ber conservation requires < 9|#|0 >= 0. In order to identify the mass eigenstates
corresponding to the ordinary charge-(—1/3) quarks and charged leptons, we must

examine the corresponding mass matrices, which take the forms

de\ _( hp <O|H°[0 > 0
(d D)Mys ( De ) P Mys= ( A, < 00> k<ON0O> ) (3.11)
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and

c I+ e 3. _( hs <O[H°|0 > 0
(e & )MI(H—)° Ml“(hu<0|z:cgo> A<olnps |- 312)

The physical squared masses are given by the eigenvalues of the matrices le 13M1/3
and MIT M, respectively. We assume for simplicity real Yukawa couplings and
VEVs. Note that, in order to avoid unacceptable zero mass eigenvalues in (3.11)
and (3.12), it must be that < O|N[0 >% 0. On the other hand, the possibilities
that Ap < 0]v°|0 >, A < 0[r°|0 ># 0 have potential phenomenological problems
[32] with flavour-changing neutral currents and the physical values of mg, m.. Thus
we will assume in the following that < 0[2¢|0 >= 0, which implies < 0|H°|0 >3 0
to avoid zero eigenvalues in (3.11) and (3.12). It must also be that < 0|H°|0 ># 0
to give masses to the quarks of charge +2/3. We are then led to a situation where
we can identify (d, d°) with the ordinary quarks of charge —1/3, (D, D) with some
new exotic particles, and there is no mixing between the two sectors. Similarly,
we will icfentify (e, €°) with the ordinary charged leptons, and (H*, H-) with some
new states having the quantum numbers of the charged Higgses in the standard
suﬁérsymmetric model. The identification of the fields (u,u°) with the ordinary
quarks of charge +2/2 is unambiguous. In addition, to complete each 27 of Eg
there are the two standard model singlets N and v° previously introduced. Note
finally that the extension of the above considerations to arbitrary Eg superstring-
inspired models is not trivial, since for many of the possible symmetry breaking
patterns different members of the SU(2)x doublets have different transformation
properties under the low-energy gauge group: for a more general discussion see
ref.[51]. |
Now that we have identified the different physical fields inside the 27 of FEs,
we can comment on the different possible couplings in the superpotential. Some
of them (hy, hg, hp) are nothing else than the usual Yukawa couplings that

are used to give masses to the ordinary quarks and leptons, via the VEVs of H




42

and H, in the standard supersymmetric model. Some other couplings (A, k) are
necessary to give masses to the exotic particles D, D¢, H, H, N contained in the
27 of Eg. Moreover, as we are going to see later, A and k play an essential role
in the radiative breaking of the gauge symmetry, through their contributions to
the one-loop renormalization group equations. The coupling A is also needed to
avoid the appearance of a massless Higgs field in the particle spectrum. When, as
shown in the next section, < 0|N|0 >3 0, one obtains an effective uHH coupling
as in the supersymmetric standard model, with the additional bonus that now
the phenomenologically desirable scale of 4 = A <O|N|0 > < O(1)TeV has a
natural explanation and does not need to be introduced by hand. There is no
renormalizable coupling which could give a Majorana mass to the right-handed
neutrino v°. In absence of intermediate mass scales non-renormalizable effective
couplings would also not be able to generate large enough Majorana masses for
v¢. Therefore couplings of type h, become extremely dangerous, since they would
generate, after H acquires a VEV, Dirac mass terms for neutrinos. In a realistic
model they must be vanishing or extremely small, and the same must be true
for the masses of the right-handed neutrinos. Another possible source of trouble
is the sirﬁulta.neous presence of the two sets of couplings (z) = (A, AL, Ag) and
(12) = (Ag,A¢). In the absence of intermediate mass scales, the scalar components
of the (d,D°) supermultiplets cannot be superheavy, and therefore the explicit
baryon- and lepton- number violation associated to the simultaneous presence of
(2) and (72) would lead to unacceptably fast nucleon decay. On the other hand, at
least one coupling from the sets (i) or (i) is needed to make the (D, D) particles
unstable. Fortunately set (2) conserves both B and L if we assign B(D) = +1/3,
L(D) = +1, B(D°) = —1/3, L(D°) = —1: in this case (D, D) have the quantum
numbers of leptoquarks; set (i) does the same if we assign B(D) = —2/3, L(D) =
0, B(D°) = +2/3, L(D°) = .O: in this case (D, D¢) have the quantum numbers

of diquarks. The existence of non-vanishing couplings either in (z) or in (:2) is
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phenomenologically acceptable.

In summary, the consti'aints coming from neutrino masses and nucleon de-
cay require that the couplings A, and [(z) or (4¢)] be vanishingly small. How
plausible is this possibility? The superstring offers two mécha.nisms for setting
Yukawa couplings naturally to zero: the first is topological, and has to do with the
non-intersection of complex hypersurfaces in the manifold of compactification; the
second one is the possible existence of discrete symmetries. The topological mech-
anism seems very powerful: ref.[52] gives an example where only 111 out of 8436
possible Yukawa cduplingé ;re in fact non-zero. Though no one has an example
of Calabi-Yau manifold which gives one of the patterns postulated above, discrete
symmetries may be unnecessary eventually. In the mean time, it is encouraging
that one can postulate relatively simple discrete symmetries to obtain the desired
result. We consider here three possible cases, all corresponding to an invariance

under Z; ® Z;:

2

1.
Zy : [3,3lsue) — (—1)[3,3su(),
Zy VS — (=1)°. (3.13)
This forbids the couplings characterized by Ag, Ac and A, leaving the ones
corresponding to hy, hg, hp, A, k, AL and Ag.
2.

. Zy [3,QSU(3) - (“1)[3:3]SU(3)’

Z, : [L,e] — (—1)[L,€°]. (3.14)

This forbids the couplings characterized by Ag, A¢, Ar and Ag, leaving the

ones corresponding to hy, hg, hp, A, k and A,.
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Z; : [L,e5v7] = (=1)[L, €07,

Zy VS — (—1)S (3.15)

This forbids the couplings characterized by A,, AL and Ag, leaving the ones
corresponding to hy, ke, hp, A, k, Ag and Ac.

Each of the three possibilities above is acceptable and coald give rise to interesting
phenomenology, as will be discussed in section 3.5. More complicated possibilities,
involving for example the gererational structure of the couplings, could also occur,
but we regard the ones given above as the most natural. It should be stressed
that each of our choices (3.13), (3.14) or (3.15) of Yukawa couplings automatically
evades several kinds of nasty problems with flavour-changing neutral currents and
weak universality. With respect to flavour-changing neutral currents, box diagrams
could be of some importance but, as we will see later, our spectrum is relatively
‘heavy’, so their contribution is of no great concern. Similar arguments apply to

CP-violating effects, (g —2)e,4, the electric dipole moment of the neutron, etc. [32].

3.2 Radiative breaking of the gauge symmetry
3.2.1 The structure of the scalar potential

Given the ingredients of the minimal model introduced in the previous section, we
want now to investigate how the extended electroweak symmetry can be broken
as an effect of radiative corrections, generalizing a procedure already applied to
conventional supergravity models. As usual, we will parametrize the effects of
supersymmetry breaking on the observable sector with a set of soft SUSY-breaking
parameters: gaugino masses, scalar masses and trilinear scalar couplings.

In the study of low-energy gauge symmetry breaking, all the parameters in the

effective potential must be evolved from the superheavy scale M¢c = Mgyt ~ Mp
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down to the electroweak scale O(mw), according to the corresponding renormal-
ization group equations (RGE) In order to express the corresponding boundary
conditions in terms of only one unknown, we will assume here that the dominant
seed of supersymmetry breaking in the observable sector (at the compactification
scale) is a universal gaugino mass m;/,: this choice is motivated by the consid-
erations of section 2.3, but could have more general validity. One-loop radiative
corrections will then generate scalar masses and trilinear scalar couplings of com-

parable magnitude when evaluated at the electroweak scale.

As in conventional supergravity models, for a certain range of superpotential
couplings some neutral scalar fields can develop a negative (mass)? at some renor-
malization scale @ ~ Mpe™'/Y, where Y = h?/4r and h is a typical Yukawa
coupling: this will destabilize the origin of the effective potential and produce
gauge symmetry breaking with non-vanishing VEVs of order Q. In the discussion
of radiative symmetry breaking, therefore, the Yukawa interactions play an impor-
tant role:’ in the following we will consider the case in which the dominant ones
(influencing the RGE in a way comparable to the gauge couplings) correspond to

the following superpotential terms:
f = hQauSHz + AH3 H3N3 + kD3 DS N3, (3.16)

with obvious contractions of group indices.

Some comments on the ‘reduced’ superpotential (3.16) are in order. First of
all, in the model under consideration the only fields which are allowed to develop
non-vanishing VEVs are H,, H, and N, (a = 1,2,3). We can therefore neglect,

- to simplify the discussion, the superpotential couplings which do not contain any
of these fields [A, or (Ag,AL) or (Ag,Ac)], assuming that they are small enough
not to perturb the RGE and generate unwanted VEVs. In addition, we assume

that the dominant ccuplings in the matrices A and kay are the diagonal ones
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corresponding to the third generation:
A= Adazz and k = kaas. (3.17)

This simplifies considerably the RGE analysis and evades some problems with
unwanted minima and/or flavour-changing neutral currents. Finally, we assume
that among the Yukawa couglings of ordinary quarks and leptons (hy, hg and hp)
the only non-negligible one is

h = hy,,, (3.18)

associated to the top quark mass. We will see in the following that this assumption
can be justified a posteriori. A more general form of the superpotential (and of
the associated scalar potential) will be considered in sections 3.3, 3.4 and 3.5 for
the discussion of the particle spectrum.

Given the superpotential (3.16), the low-energy lagrangian at scales Q@ < M¢

will include a soft supersymmetry breaking part of the general form:

i

K 1 _ i
~Laope = SBaMa(Aara+hec)+ Timl|2|?

+ [(hAhqugHg + )\AAF3H3N3 + kAkD3D§N3) + h.C.], (319)

where the z* are all the scalar fields, the A4 are the gaugino fields associated to
the different factors of the gauge group (A4 = 3,2,1,1’) and the A parameters have
the dimension of a mass.

With the structure of Yukawa couplings introduced above, it will be possible
to consider situations in which only Hz = H, Hs; = H and N3 = N acquire
non-vanishing VEVs, while

< 0|H,4|0 >=< 0|H,|0 >=< 0|N,[0 >=0 (a=1,2). (3.20)

Therefore the part of the scalar potential relevant to our analysis will be that
containing the Higgs fields F/, H and N only:

Vitigga = wa|H? + mE{H> + mi|N|> + (AAAHHN + h.c.)
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 UAPINE + PPN+ 17T+ sqwtCn 7 O

13,1 13 ,,5

2 H?)? + 2_2 2__1—“22
+ 5Bt GIHP = SR + S2RGINE - 2mp - SRR, (321)

Of course, in restricting ourselves to the simplified potential (3.21), we implicitly
assumed that all the scalar fields different from H, H and N have vanishing VEVs.
To prove such an assumption would require the minimization of the full scalar
potential, which is clearly a fool’s errand. Nevertheless, previous studies suggest
that no other VEVs arise if all the soft masses m? (apart from m%, m% and mj)

are positive and the following conditions are satisfied:
Af < 3(mg, + i + W), (3.22)

Ap < 3(mp, + mipe +hY). (3.23)
Given now the potential (3.21), to discuss its minimization it is convenient to
set, by definition:
2

+ . ——
<O0|H|0 >§(vv ), < O0lH|0 >= (UU_ ), <O|N|0>==z. (3.24)

In general, one expects all the entries in (3.24) to be non-zero and complex. Making
use of gauge invariance, one can make vt = 0 and v,z real and non-negative.

Taking this into account, one can write instead of (3.24):

VHigga = ﬁ"}z'ivz + ﬁ"gﬁaz + 7‘7‘7,%,;1;2 + )\A,\a:‘u(ﬁ + ij*)
1 3 —
+ A@2? + [722? + [9)%?) + g(gg + ~912)(”2 — [o]*)?
1 —izn2 , 1 242 4
+ -1-5691,(5:1: —4v” — [3]*)? + (5092 + 91) + 120.%]1 l
+

[+ M2® + gz(v + [of? )-———91(0 —[o1)

— gpeh(Ee — 4w = P (3.25)

One can immediately note that in (3.25) the only term where the phase of ¥ is

relevant is AA zv(7 + v*), which is clearly minimized for ¥ € R: in particular, ¥
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will have the opposite sign to AA). One can therefore write Viiggs = Viewtrar +

1/char‘ged ) with:

Viewral = mgv’ + mik +miz’ + 20 AxzvT + A} (v2® + 722 + v’0%)
1 2 4 72)?
b oL@+ S T 4 o5t — 4t =T, (3:26)
1 3 1
V;hargcd = [g(gg + —S_gf) + 120g1']lv ‘4
~ 2 2 s 3 1
+ [mE+ (A + _91')2’ +(_92 2091 + 91')'”
1, 3 1
+ (292 + '2_0912 + 6091')” Jlo™ 2. (3.27)
Let (z,v,v) be the global minimum of Vieutrar. Then {z,v,7,5~ = 0) will be a
local minimum of Vg, if and only if
3 1 1 3 1 .
i+ (A—1 gu)-'c +G 39~ o9 g+ (38 + el + et > 0. (3.28)

In particular, if all the addenda in (3.28) are separately positive, one can be sure
that it is also a global minimum: in all cases of interest g2 =g% < g2 and 771% > 0,
so that the mentioned sufficient condition simply amourts to:
v_Llaso (3.29)
PLE '

In the following, therefore, we shall restrict ourselves to tne minimization of Vicutrat,
checking a posteriori if conditions (3.22),(3.23) and (3.29) are satisfied.

Let us discuss finally the minimization of V,eurai: One can easily see that if
- X # 0 it is automatically bounded from below and the symmetric minimum z =
v = T = 0 becomes unstable when at least one of the masses m};, M2, Mm% becomes
negative. The precise determination of the minimum of the potential and of z,v
and U is too difficult to be done analytically, so that a dedicated computer program

has been devoted to it in the present work.
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The parameters appearing in the low-energy lagrangian (and in particular in the

scalar potential) depend on the energy scale Q according to the renormalization

group equations: we have derived them according to well-known techniques, in the

supersymmetric one-loop approximation, and they are listed below for the different

types of couplings.

Gauge couplings and gaugino masses:

5{231 — b4 4
dt gr2J4
dMA bAgi
dt 8m2 Ma,

where t =logQ, A=3,2,1,1 and b3 =0, b, =3, b, = b,y = 9.

Yukawa couplings:

dh R, 8, 3, 13, 2, , 1.,
= snz(“393 — 592 — 3091 — 59 + 3%+ oA )s

fodx X\ 3, 3 : 7 3., ., 3.,

= = (=fgi_—g : —-h hd

dt 8«2( 2% ~ g% g9+ ght + 23+ 0K,

dk 8 2, 1

- - _ : A2 2

dt 87r2( R T k )

Trilinear scalar couplings:

dA 1 16
5 = 5.2(5 Mg} +3Mag} + M191 + Mugv

+ 6ARRE + A0Y),
dA, 1 s 3 . 7 2
= 5.2(3Mag: + Mgy + cMugy,

+ 34 hh2 + 44,02 + 3Akk2),
dA, 1 2 2

Scalar masses:
dm?2 1 16 1 4
Qa __ 2 2 2.2  * a2 2

5 = 3= M3 g3 — 3M; g5 15Mlg1 15M g2

+ Sash® Fh),

(3.30)

(3.31)

(3.32)
(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)
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dzia = g,lrz(“‘lgnggg - %Mfgf - %Mﬁgf' + 8.32R2F),  (3.39)
=2
d?tdi - 83,2(“13EM329§ - %Mf g — -l}ng'gf'), (3.40)
dqzic = 8:,2(“3M229§ - nggf - l—lng'gf'), (3.41)
=2
d?;g = 8,1,.2(‘“152M1293 - %Mf'gf'), (3.42)
~2
d?tug = 871‘.2(‘“'2’M12'912' ’ (3_43)
dTZf;,, — 811r2(-~3M229§ - -E-Mfgf - nggf,
+  6433h° Fi, + 8a3A°F), (3.44)
~2
df;?“ = 8,1,2(—3M§g§ - '?;Mfgf - -l-lng,gf, + 8N FY), (3.45)
d?fv s = 871r2 (—ng'gf: + 6,320 Fx + 6,33k Fe), (3.46)
dﬁ;t%a = 3:;2 (_?Mggg - %Mfgf - %Mf'gf' + 8a3k’ Fie), (3.47)
dzg%ﬁ = 83,2(“}355‘ 293 — %Mfgf ~ 1—15-Mf,gf, + 6.5k F).  (3.48)

The functions F;;, F\ and F}, are defined by:

F. = mj, +mi +my+ A, (3.49)
Fy = myi+m&+my + A3, (3.50)
F. = mp, +mp + 1y + AL (3.51)

Note that, as long as they do not involve the Yukawa couplings h, A and k, which
have been assumed to be the only non-negligible ones, the RGE for scalar masses

assume the simple form:

2
< 1 .
b= o Yaca(i)Miga, (3.52)

where 7 is an index running over all the scalar fields and the coefficients ca(t) can
be read off from eqgs. (3.38) to (3.51).

To solve the RGE, one must also specify the boundary conditions at the unifi-



51
cation scale Q = Mgyr. According to what stated before, we shall assume:

93(Meut) = g2(Meur) = si(Mgur) = 9v(Meur) = gouT, (3.53)

Ms(Mgur) = My(Mgur) = Mi(Mgur) = My(Meuz) =myps,  (3.54)

h(Mgur) = heur, A Meur) = Acur, k(Meur) = keur, (3.55)

mi(Meur) =0,  An(Mgur) = Ax(Mgur) = Ae(Moyr) = 0. (3.56)

In words, we have, &s required by the superstring, unification of the properly
normalized gauge coupling constants at Q@ = Mgyr. The values of the Yukawa
couplings h, A and k at the unification scale Mgyt are, together with the universal
gaugino mass 1, /3, the free parameters of our model. All the soft supersymmetry
breaking parameters in the scalar sector are assumed to be vanishing at Q = Mgy
trilinear couplings and non-vanishing physical values of the masses will however
be generated as effects of radiative corrections.

Givensthe boundary conditions (3.53) to (3.56),vae have all the tools to solve
the corresponding RGE. For example, the equations for the gauge couplings and

the gaugino masses are trivially solved to give:

2 ch;UT
_ 57
) = B e low(Mor/ Q) (350
2
Ma(Q) = i%(i)ml 2. (3.58)

Note that, with our boundary conditions and particle content, the gauge coupling
constants and the gaugino masses associated to the two U(1) factors evolve in
exactly the same way. This leads to considerable simplifications in the RGE for the
Yukawa couplings and the other SUSY-breaking parameters, which have however
been written in the general case.

A first simple exercise is the computation of the grand unification scale Mgyt
and of the weak mixing angle sin® 8y (mw ). Assuming the validity of the supersym-

metric one-loop approximation for the gauge couplings in the whole energy range
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mw < Q < Mgyr, and taking as physical inputs az(mw) = 0.11, a(mw) = 1/128,
one finds:
Mgyt ~ 4.4 X 10" GeV, - (3.59)

sin® O (mw) ~ 0.21. , (3.60)

Note also that, within the above approximation, the SU(3) B-function vanishes,
so that agur = aa(mw). Taking into account the possible correction to our ap-
proximation (higher-loop and threshold effects), the above results are satisfactory:
Moy is not far from Mp and sin? Oy is reasonably close to its experimental value.

Passing now to the RGE involving the Yukawa couplings and the trilinear
scalar couplings, we note that they constitute a system of coupled nonlinear ordi-
nary differential equations, whose exact analytic solutions is not possible: we shall
therefore adopt in the following numerical methods. The same holds true for the
RGE for scalar masses which involve the couplings h, A and k; for the other scalar

masses, however, the analytic solution can be easily found:
i

#2(Q) = ﬁz__f;__g/Q_z {63(1;)% log(MeuT/Q)
| 1
+ é—cz(z)[l - i+ B(QéUT/gﬂ-Z)log(MGUT/Q)]z]
1 . L
+ 'l'é'cl(")[l - (1 + 9(92y7/872) log(MGUT/Q)]z]

1
1+ 9(giyr/872?) log(Maur/Q))?]

where the coefficients c4(i) have been defined in (3.52).

1 .
+ Ecll(‘l)[l - [ }) (361)

3.2.3 Numerical results

Now that we have displayed all the necessary tools to analyse low-energy gauge
symmetry breaking, it is clear how to proceed. Given a set of Yukawa couplings
(heuT, AcuT, kcut) at the scale Mgy, one must evolve the relevant parameters,
solving the corresponding RGE, down to the symmetry breaking scale Q. Here one

should minimize the effective ootential (for a given value of m, /,), determining v, ©
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and z. What fixes the scale Q at we should stop the RGE clock? As seen in section
2.3, in the absence of flat ciirections the complete one-loop effective potential can
be approximated by the renormalization group improved tree level potential only
at a scale Q of the same order of the field VEVs, where the finite logarithms in
the one-loop corrections are small. Since the mass scale in the tree level potential
is set by the gaugino mass m, /s, it is natural to expect (and can be checked a
posteriori) that the vacuum expectation values z, v and ¥ scatter around the value

of m, sp: therefore in the following we will make the identification

Q =mye. (3.62)

Both the solution of the RGE and the minimization of the Higgs potential can
be performed factorizing out the gaugino mass m, ,, whose only role is that of
fixing the scale of gauge and SUSY breaking. For this reason, it is convenient to
express all dimensional quantities in units of m,/,, denoting them by a hat (" ):
e.g., the VEVs of the neutral scalar fields, in units of ml /2, Will be denoted by 7,
v and 2.

-What are the constraints to be satisfied by a given solution, characterized by
a set (M2, 9,7, %) and corresponding to some boundary conditions (my /2, heur,
Acur, keur), to be considered acceptable? First cf all, one needs m,/, < O(1)TeV,
in order for low-energy supersymmetry to solve the hierarchy problem. Second,
one has to impose that all the VEVs (v,%,z) be different from zero, to obtain a
satisfactory mass speczirum for quarks, leptons and gauge bosons. In particular,
the experimental value of the electroweak breaking scale must be reproduced, and

this corresponds to thke constraint:

2 =2
mw = ga(mw)y/ *2’” ~ 82GeV, (3.63)

while the top quark mass (at the scale mw) is given by

Miop(mw) = h(mw)v. (3.64)
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Other phenomenological constraints will be considered soon.

The crucial parameters in the study of the scalar potential are the soft masses

2

& and 3, for the symmetric minimum v = ¥ = z = 0 becomes unstable

mi, m
whenever at least one of them acquires a negative value. The typical Q-dependence
of these masses is illustrated in fig. 3.1: (@) shows the evolution of h}; = M} /mi,
for hgur = 0.025, 0.035 and 0.045 (when Agyr = 0.1 and keuT = 0.05); (b) shows
the evolution of 'r'hgﬁ = ﬁz%/m'f /2 for Agur = 0, 0.1 anc. 0.3 (when hgyr = 0.035
and keyr = 0.05); (c) shows the evolution of 1}, = m};/m?,, for keur = 0, 0.05
and 0.1 (when hgur = 0.035 and Agyr = 0.1). As can be easily understood by
looking at the corresponding RGE, the behaviour of 7}, is mainly determined by
the top Yukawa coupling h, rh%— has only a very slight dependence on A, and the
evolution of % depends heavily on k and to a lesser extent on A. In particular,

for reasonably small values of hgur, Agur and keur the only masses that can be

driven to negative values in the TeV region are mm} and my.

The appearafice of symmetry breaking in the TeV regibn as the renormalization
scale goes down is illustrated n fig. 3.2. The requirement that v, ¥ and = must be
all non-zero at the scale @ = m, /2 = O(1)TeV already selects a limited region of
parameter space: for hgyr cr keur too small, or Agyr too large, v and ¥ cannot
become nonzero around the electroweak scale. In the opposite case = and ¥ vanish.
Restricting oyrselves to values of (huT, AcuT, keur) which give v,%,z # 0, two
qualitatively different scenarios emerge, as can be seen from fig. 3.2, corresponding
to which soft mass becomes negative first. For larger values of hgyr and/or very
small values of keyr and Agur, one has the situation represented in fig. 3.2a
(corresponding to hgur = 0.035, AcuT = 0.17 and kgyr = 0): at scales Q@ >> mw
both % and 7% are positive, so that v =7 = z = 0. At a certain scale Q’,
m% becomes negative and at the minimum it is now v # 0. At a lower scale Q",
also 7 and = become non-zero simultaneously, due to the presence of the trilinear

term AA,voz in the potentiai. The above possibility presents the general feature
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Figure 3.1: Typical Q-dependence of the soft scalar masses iy, mZ- and 3.
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Figure 3.2: Dependence of the VEVs v, T and = on the renormalization scale Q.

that v > «, and is therefore incompatible with neutral current phenomenology,
as will be discussed in subsection 3.3.1. Much more intriguing is the opposite
situation, which occurs for non-negligible kgyr - which is also necessary to give
phenomenologiga.]ly acceptable masses to the D-particles - and/or relatively big
values of Agyr and/or relatively small values of hgur, corresponding to values of
the top mass around 40GeV. In this case, illustrated in fig. 3.2b (corresponding
to hgur = 0.025, Agur = 0.1 and keyr = 0.05), it is m% that becomes negative
first, and this allows solutions with z > v, in accordance with phenomenological
requirements. In particular, when we calculate renormalization effects fore values
of hgur corresponding to M., ~ 40GeV and even relatively small values of kgur
(e.g. keur ~ 0.05), we find that one can naturally obtain at low energy situations
in which m% < 0 and m},m% > 0, with all these (mass)?* being of order m},.
Conspiﬁng with the other terms iﬁ the potential, this pattern is able to produce,
without fine-tuning, ratios z/v of order of several units, which are enough to satisfy
all the phenomenological constraints of subsection 3.3.1. Note also that, due to
the presence of the top Yukawa coupling h, in general one has miy < rh%: a

consequence of this fact is that one always ends up with v > w: typical values
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Figure 3.3: Allowed -egion in the (kguT, Agur) plane for hgyr = 0.025, corre-
sponding to my., ~ 40 GeV'.

of the parameter v/v range from 0.4 to 0.6. Our neglect of the b-quark Yukawa

coupling with respect to the t-quark one is therefore justified a posteriori.

To proceed further in the analysis, it is convenient to reduce the number of free
péxiameters, by fixing the top Yukawa coupling hgyr: as an illustrative example
we take hgyr ~ 0.025, which roughly corresponds to the representative value
Miop ~ 40GeV . At the end of this subsection, hcwever, we shall also consider the
possibility of higher to> masses. For fixed hgyr, the residual parameter space can
be graphically represented in the (kgur, Agur)-plane, as done in fig. 3.3: we shall
see in the following how different phenomenological constraints lead us to discard
most of these points, leaving however a finite region (the shaded area of fig. 3.3)

corresponding to solutions fully consistent with phenomenology.

A very stringent constraint is given by the correct fitting of the electroweak
breaking scale. Requiring formula (3.63) to reproduce the experimental value of
the W-mass, together with the condition v,7,z # 0 and a gaugino mass in the

range 50GeV — 3Tel/, is enough to forbid a considerable region of the (kcuT,
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Figure 3.4: Relation between the symmetry breaking scale Q = myy; and the
corresponding value of my . Case (a) corresponds to hgur = 0.025, Acur = 0.07
and kGUT == 0.05; case (b) to hGUT = 0.025, AGUT = 0.12 and kGUT = 0.07.

Acur) plane, the one outside the solid lines in fig. 3.3: too high values of AguT
and/or too small values of kgur give v =7 = 0 or mw < my" =~ 82GeV; values
of Agur and/ orikGUT in the cpposite direction give mwy > my”. The role played
| by the mw-fit in determining the value of Q = my, can be understood by looking
at fig. 3.4.

‘Another important constraint is given by the requirement of an acceptable mass
spectrum for the many exotic particles which are present in the model, combined

with the consistency of our minimization procedure for the scalar potential:

1. From ete~ collider data we know that all charged particles which have not
been seen up to now must weigh more than O(20)GeV [53]. Moreover,
from the CERN pp collider limits on monojets we can infer that mg,m; 2>

O(50)GeV [54]. This limit will be considered in more detail in section 3.3.
2. All the (mass)? of the physical neutral scalar particles must be positive.

3. Conditions (3.28) and (3.29) must be satisfied, for the consistency of our

minimization procedure.

8.0
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4. Conditions (3.22) and (3.23) must be also be satisfied, to avoid charge and

colour breaking minima.

5. The lightest supersymmetric particle must be neutral and weakly inﬁeracting,

to satisfy stringent astrophysical bounds [55] .

The region of the (kguT, Acur) plane that satisfies all the above constraints
corresponds to the shaded area in fig. 3.3. Note that a big region (on the right of
the dotted line) could give, as an effect of negative D-term contributions, negative
or too small squared-masses for the ‘unhiggses’ HE (a = 1,2): the exact location
of the dotted line depends on the Yukawa couplings of the unhiggses, which have
been neglected here; a more detailed discussion of this constraint can be found in
section 3.4. The region of fig. 3.3 under the wavy line might also be excluded,
because there the sufficient condition (3.29) for the consistency of our minimization
procedure is not satisfied. To decide if these points are acceptable or not, a more
detailed study of the scalar potential is needed, which goes beyond the scope of
the present work.

Let us now comment on the general features of the solutions corresponding to
points of the surviving region. The two parameters of greatest phenomenological
interest are the ratio /v and the gaugino mass m,,: the first (combined with
U/v) determines all the neutral current phenomenology, beginning with the masses
of the neutral gauge bosons. The second gives the scale of the spectrum of all
the supersymmetric particles. Depending on the values of Agyr and kgur, one
can obtain values of z/v from ~ 2 to ~ 20 and values of m;/, from ~ 100 GeV
to our upper limit of 3TeV. The values of z/v and of m,/, are not unrelated,
for the following reason. Because the allowed range of variation of kgyr is rather
restricted, the magnitude of £ is essentially fixed. On the other hand, the mag-
nitude of ¥ and the value of m;;; must combin= in such a way to give the right

value of the W-mass. Therefore high values of /v correspond in general to high
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Figure 3.5: Theoretical ‘scatter plot’ showing the correlation between z /v and my,
for some representative cases corresponding to hgyr = 0.025 (mop ~ 40 GeV).
gaugino masses, and viceversa. The points of the (z/v,my/2) plane corresponding
to some allowed points in tke (kguT, Agur) plane are rresented in fig. 3.5. The
corresponding points in the (z/v,v/v) plane are shown in fig. 3.6. The region
of very high z/v and m,/, pcses some problems of naturalness: if my/; >> mw,
radiative correcfions to the scalar potential are large compared to mw, and the
corresponding minimum with z >> v, %, which is related to approximate cancella-
tions of certain terms, becorres less stable. A related effect is that the dependence
of mw on Q = my /2 1s very strong, as in the r.h.s. of fig. 3.4b, requiring a sort
of fine-tuning of parameters to obtain the correct mu. This is no longer true,
however, for smaller values of z/v and m,/,, as shown in fig. 3.4a and in the Lh.s.
of fig. 3.4b.

This requirement of ‘naturalness’ is difficult to quantify exactly, and largely
a matter of taste; as an ermpirical rule, we asked that small variations in the
input parameters AgyT, keur do not produce too large variations in the ratio z/v

(related, as explained before to the ratio my/»/mw):

log(z/v)] |
Bliog keur, dovr]| = (3.65)

If the constraint (3.65) is to be satisfied, one can obtain values of z/v up to ~ 10,
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Figure 3.6: Theoretical ‘scatter plot’ showing the points of the (7/v,z/v)plane
corresponding to some representative cases for hgyr = 0.025 (Teop ~ 40 GeV).

corresponding to gaugino masses 1/, up to ~ 500GeV . In the remainder of this
chapter we shall consider only this more natural class of solutions, corresponding
to the darker region of the shaded area in fig. 3.3. The general features of the

resulting particle spectrum will be discussed in sections 3.3, 3.4 and 3.5.

Let us comment finally, for the sake of completenéss, on the possibility of a
top quark mass significantly heavier than 40 GeV. A different value of hgyr will
correspond, in general, to a different allowed region in the (Agyr, kcur) plane. A
general result is that, as long as the top Yukawa coupling increases, m% tendsr
to acquire lower and lower values around the electroweak scale, making less and
less natural the desired hierarchy z > v: the phenomenological success of the
model considered in this v;rork tends therefore to ask for a relatively light top
mass. Increasing hgyr has the effect of shrinking the region of the (Agur, kgur)
plane compatible with the naturalness constraint (3.65): this region disappears for
values of hgyr around 0.045, corresponding to a top quark mass ~ 70GeV. Higher

values of the top quark mass can be permitted if one relaxes the condition (3.65).



62

In view of the considerations of the following sections, the main results of
our numerical investigations have been summarized in table 3.1, which gives the
preferred values of some relevant model parameters at the electroweak breaking
scale Q@ = my/;. A few remarks on the origin of the different limits are in order.
The range of variation of /v is just the result of an extensive numerical search in
the parameter space and is strictly related to the allowed range of variation for the
top quark Yukawa coupling: higher values of the top quark mass generically lead
to smaller values of ¥/v, and viceversa. The lower limit on 2 /v is enforced by the
constraints on the Z — Z' mass matrix, to be discussed in detail in subsection 3.3.1
and, in a more general context, in chapter 4. The lower limit on m,/; comes from
the requirement of a positive (rmass)? for the left-handed sneutrinos, to be discussed
in subsection 3.3.2; it can be tlightly improved by enforcing the constraints on the
unhiggs masses, to be discussed in section 3.4, but this kind of limit is much more
model-dependent than the previous one. The upper limits on z /v and my/, are
more subjective, being related to the naturalness constraint, and must be taken
with a grain of salt. We have already commented on the strong correlation between
my, and z/v, and further comments will be given in section 3.4. The limits on the
other parameters are obtained just taking the allowed region in the (hgur, AcuT,
kcut, m1/2) parameter space and solving the RGE to obtain the corresponding
values at the electroweak breaking scale. Even in this case there are correlations,
which can be easily guessed looking at the form of the RGE and which will be

taken into account in the analysis of sections 3.4 and 3.5.

3.3 The particle spectrum

In the rest of this chapter we examine in detail the interesting zoo of still unob-
served particles that are predicted to exist, with masses within the TeV region,
by the model under consideration. After writing down the relevant mass matrices,

we discuss the model predictions deriving from our analysis of supersymmetry and
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02 < T < 08
28 < = < 10
100GeV < myy, < 500GeV
015 < XA < 035
—065 < Ay < -035
025 < k < 055
300 < m} < 335
2.95 < ﬁzgg < 3.30
-35 < A, < =30

Table 3.1: Typical values of the model parameters at the electroweak symme-
try-breaking scale.

gauge symmetry breaking, as well as constraints on the model parameters com-
ing from the existing experimental data. Furthermore, working in a less model-
dependent framework, we try to point out the possible signals that should be
looked for at present end future colliders, when they differ significantly from the

ones of the standard supersymmetric model.

3.3.1 The extra Z' boson

One of the cleanest features of the minimal model is the existence of a second Z’ bo-
son, associated to the U(1)y: factor of the gauge group: this possibility is discussed
in great detail and in a general context in chapter 4. We collect here some more
model-dependent considerations that follow from the previous numerical results on
gauge symmetry breaking and from some cosmological arguments.

The mass matrix for the massive neutral gauge bosons (Z, Z’) in the minimal

model is given by:

1 sin 8w 4”2”_3.2 1 a
M, =m? , 3(v2+o7) =m2 . (3.66
2z =™z ( sin O 3?:’;_’:;) sin? O 2—-i—————i——52 (Uzli%g ) T 2\ a b ( )
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2

2 . .
where m%, = Qz’%ﬁﬂ(vz +9%) = 3% is the unmixed Z mass, corresponding to

the standard model prediction. The eigenvalues of the matrix (3.66) are given by

m, = Sl +0) F b T datmy (3.67)

and the corresponding eigenstates by

Zy = Zcos@+ Z'sinb,

Zy = —Zsin@+ Z'cosé, (3.68)

where
2a
1-b

For a given value of mw (or sin?#fw), the mass matrix (3.66) depends only on

tan 20 =

(3.69)

the two parameters /v and v/¥: contours corresponding to different values of
the mass of the heaviest eigenstate Z, are displayed in fig. 3.7. An important
fact to note is that, for the preferred range of parameters given in table 3.1, the
off-diagonal ternix in (3.66) is never negligible, and it has the effect of lowering the
mass mz, of the.lightest mass eigenstate Z; with respect to the unmixed value mz.
This introduces a stronger constraint than the ones considered in chapter 4 (where
we do not‘make any model-dependent assumption on the relative magnitude of the

different VEVs). Two differert definitions of the weak engle,

2 2
. JRp— m
sin? Oy = 9 and sin? Oy =1 - X
2,5 2 m
93 391 Z

(3.70)

which are equivalent in the standard model limit, correspond now to different

quantities, and the relation
A = sin®  — sin® b < 0 (3.711)

must be fulfilled. Contours of A in the relevant part of the (z/v,7/v) plane are
also plotted in fig. 3.7. Recent UAl and UA2 data on the W and Z; masses,

combined with the relation
_ 38.65GeV

mwy =

3.72
sin Ow ( )
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Figure 3.7: Contours of A = sin?6fy — sin®f (solid lines) and myz, (dashed
lines) in the (z/v,v/v" plane, calculated for the input values my = 82GeV and
sin® fy = 0.224.

which includes standard model radiative corrections, yield sin? 6y = 0.224 4 0.011

and sin? fy = 0.212 £ 0.022, corresponding to
A = 0.012 4 0.023. (3.73)

Taking the representative bound A < 0.05 and .f{xing the values of my and of
sin? Oy to their preferred values sin? 0y = 0.224 and my = 82G‘eV, we infer from
fig. 3.7 that, for 0.2 < ¥/v < 0.6 as suggested by our numerical searches, it must

be
z/v>28, mgz >185GeV. (3.74)

Cosmology has the potential to provide a more stringent constraint on the
model parameters. As discussed in subsection 3.1.3, the right handed neutrino v*

is essentially massless, and could therefore affect primordial nucleosynthesis. The
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presence of a total of 6 left- and right-handed neutrinos seems to conflict with the |
conventionally quoted upper bound N, < 4 on the total number of equivalent left-
handed neutrinos [56]. However, even if one accepts this bound, it can be reconciled
with the presence of 3 right-handed neutrinos because their cosmological density
will be suppressed if mz, >> mz and the v° decouple early. Requiring that the

¢ decouple at a temperature Ty > 300MeV before hadron annihilation, one finds
[57]:

mgz, > 400GeV for T/v=04. (3.75)

However, there are claims in the literature [58] that the nucleosynthesis constraint
can be relaxed to N, < 5.5 or even 6, in which case the cosmological lower bound
(3.75) becomes much weaker or even disappears. Due to the many uncertainties
that still affect nucleosynthesis calculations, we regard the bound (3.75) as less
firm than the bounds from particle physics experiments, and we neglect it in the

following considerations.
¢

3.3.2 Squarks, sleptons and gluinos

We turn now to the discussion of the sparticle masses, starting with those which
have a counterpart in the supersymmetric standard model.

Since the one-loop coefficient of the SU(3)¢ B-function vanishes in our model,
from the RGE (3.31) we deduce that the gluino mass m;y is just equal to the
primordial gaugino mass m;/z:

mg = M2 (3.76)

The other gauginos, associated to SU(2)r x U(l)y x U(1l)y, mix with the
higgsinos in the neutralino and chargino mass matrices, to be discussed in the
following section. The entry in the neutralino mass matrix corresponding to the

photino is associated to a mass

ms ~ DTy /2. (3'77)
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In general, however, the lightest eigenstate ¥ in the neutralino mass matrix is a

mixture of photino, other gauginos and higgsinos, with a mass

my, ~ (-;' to ;f:)ml/z- (3.78)

Usually this state corresponds to the lightest supersymmetric particle (apart from

a very small region of parameter space where the lightest supersymmetric particle
is a left-handed sneutrino) and has mainly gaugino components.

Passing now to spin-O particles, when their Yukawa couplings are negligible

(which is the case for the partners of all ordinary quarks and leptons, apart from

the top) their masses are the sum of a soft contribution (depending only on m, /2)

and a D-term contribution (depending only on z/v and 7/v):

2, U

m; =mi(ma) +m (=, ). (3.79)

= -
vv
In the case of the top squarks one has a mass matrix of the form
¢ -~ -
4y Up

with

miy = g, + b +mg
miR = T;Lig + hzvz + mfcz
mip = hAww+hizh. ‘ ~(381)

The off-diagonal term increases the splitting of the degeneracy between the two
mass eigenstates. For the allowed range of parameters, however, the masses of
the top squarks are of the same order of those of the other squarks, and therefore
relatively heavy. The only coloured scalars which can be light enough to be of
present experimental interest are the spin-0 D-particles, to which section 3.5 is

entirely devoted.
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The soft contributions m?(m,/;) can be easily calculated using eq. (3.62). One |
finds for example that: ;

mg:my: mg

im;=2:07:04:1, (3.82)

However, one must not forget the D-term contributions, which are important for

the lightest states, and whose general expression is:

2 1 .
mP(E2) = Lamse -

e
2 yH 2 2 1—2
+ 25 Y (gm —-Ev ;—gv)
= (- T;L[ngj;]
(0/v)?
+ Y't [1+(v/v)2]

iy 2o 5(z/v):—4—(T/v)?
Yt T Ty

where the numerical values of Ti;, Y* and Y* can be read off from egs. (3.3) and

(3.83)

(3.4). One can then try to put bounds on the SUSY breaking parameter m,,
using the negative results of the low-energy SUSY-search experiments. Since one
finds = /v > 1 > ¥/v, it is clear from eq. (3.83) that the D-terms are most negative
if Ti, > 0,Y" <0, Y" <0, and the quantum numbers in egs. (3.3) and (3.4)
therefore indicate that the o, H° and H* have the largest negative contributions
to their ma.ssvsquaxed. One does not expect large supersymmetric masses for the
U, while for the H° and H* this possibility cannot be excluded. One must require
m2 > 0 in the physical vacuum, and this is shown in fig. 3.8 as a constraint in
~ the (z/v,my/2) plane for the two typical values ¥/v = 0.2 and v/v = 0.6. The
vertical line in figure 3.8 ccrresponds to the bound A < 0.05 discussed in the
previous subsection. The discussion of the limits coming from the H° and H +
masses is more complicated. In addition to the Higgs doublets H, H whose neutral

components develop non-zero VEVS, our model contains also the unhiggses H,, H,
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(a = 1,2) with the same quantum numbers but no VEVs. To give to the fermionic
partners of their charged éomponents, f?;*‘ and ﬁ; , masses greater than 20GeV,
there must be in the superpotential couplings of the form A3 H, HyN, which were
assumed in section 3.2 to be small compared to \AHHN. In general, therefore, the
unhiggs mass matrices will contain additional contributions proportional to these
other Yukawa couplings: if these contributions can be neglected (which need not
be the case, since the validity of our approximation depends on the unknown value
of the Aga), then we are left with eq. (3.81), and in this case mg+ > 20GeV
would give the more stringent constraint on m;/, shown in fig. 3.8 as a dashed
line. Because of the lower bound on z/v corresponding to the vertical line, we can

derive an absolute lower bound on m, /2
my s, > 140 (210) GeV  for /v =0.2, (3.84)
my /3 2> 100 (150) GeV  for v/v=0.6, (3.85)
if we use m > 0 (my+ > 20GeV). We reemphasize that the M+ constraint is
more moZlel—dependent because of the unknown Yukawa couplings Ags: this pint
is discussed further in the next section.
fhese constraints (3.84),(3.85) are much more severe than those arising from
unsuccessful sparticle searches. The pp collider bound on my just translates, via
eq. (3.76), into
my /s > 45GeV (3.86)
which is also shown in fig. 3.8. The pp collider bound m4 > 50GeV is even less
interesting, since eq. (3.82) tells us that m; > 2m; before the inclusion of the
D-terms, which do not change the situation drastically. In the relevant range of
z/v and my /5, me, < mz, and the ete™ constraint ms, < 22GeV is also shown in
fig. 3.8. The UA1 bound [59] on (me,,m;) from the absence of W — &b decay is
not interesting in our model, because eqs. (3.81) and (3.83) tell us

1 —(7/v)?
¥ (5/0) (3:87)

2 _ 2 2
msz, = mg + myy|
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Figure 3.8: Bounds in the (z/v,m,/;) plane coming from various phenomenological
constraints for (a) T/v = 0.2 and ¥/v = 0.6. On the horizontal axis the values of
mz, (in GeV) associated to :he different values of z/v are also shown.

so that m2 > 0 provides a lower bound on mg, which is greater than the UA1 lower

bound of 33GeV if v/v < 0.85, as expected in our model. The ASP bound [60]

on (mg,myg) is also uninteresting, since the constraint (3.84),(3.85) due to mZ >0

and the relation (3.78) tell us

ms

2

15GeV,

whereas the ASP experiment is only sensitive to my < 13GeV.

(3.88)

Summarizing, if one leaves aside the constraints coming from the unhiggs

masses, the tightest constraint actually comes from the theoretical requirement

that m2 > 0, which corresponds in turn to the following lower bounds on sparticle

e

"
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masses:

my 2> 100GeV, my > 15GeV, mg, > 55GeV, mg, > 90GeV, mg > 180GeV.
(3.89)
The model therefore predicts a rather heavy spectrum of squarks, sleptons and
‘gluinos, although the naturalness criterion forbids pushing the sparticle masses

beyond the TeV range.

3.4 Gauginos and Higgs particles

According to the postulated structure of the superpotential, in the minimal model
under consideration baryon and lepton number are exactly conserved by the renor-
malizable interactions among the light fields, so that we can consistently assign
B =L =0 to the chiral supermultiplets H,, H, and N, (a = 1,2, 3). As an effect
of gauge symmetry breaking, the fermionic members of these superfields can mix
with the gauginos of SU(2)r x U(1)y x U(1)y+, while four Goldstone bosons are
‘eaten’ to give masses to the W, Z and Z’. We examine here in detail [48] this
sector of the particle spectrum, which contains additional states with respect to
the corresponding sector of the supersymmetric standard model!. We investigate
the structure of the mass matrices for charged fermions, neutral fermions, charged
scalars and neutral scalars, commenting on their eigenvalues, their eigenstates and
the corresponding couplings. We explore the ccnstraints on the model parame-
ters iﬁnposed by the experimental non-observation of charginos and charged Higgs
bosons, as well as by the numerical calculations of section 3.2. We find that the
‘mass of the lightest charged fermion depends on unknown Yukawa couplings, and
could be anywhere above the present experimental limit of ~ 20 GeV. The light-
est neutral fermion is expected to be stable, apart from a tiny region of parameter

space which gives a left-handed sneutrino as the lightest supersymmetric particle.

1For related work, see ref. [61].
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The lightest charged scalar could well be lighter than the W, in contrast with the
minimal supersymmetric standard model. We identify one neutral scalar which
generally weighs between 45 and 105 GeV, and there could be other neutral spin-
zero particles as light as 70 GeV. For the latter particles, which could be light

enough to be produced at LEP, production mechanisms are also discussed.

3.4.1 General framework

We introduce here a slightly more general framework than that of the previous
sections, in order to perform the following analysis in a less model-dependent way.

In the minimal model, the chargino mass matrix is 4 x 4 [for (W‘”,—I?I_I—' 2.3)
x (Wﬂf[f}'a)], the neutralino mass matrix is 12 x 12 [for (Wa, B, B, I:I{"m,
:Ifiz':,, Ni.23)?), the charged scalar mass matrix is 6 x 6 [for (Hips, (H )ias) X
((H*); 2,3 Hy3)], and the neutral scalar mass matrix is 18 x 18 [for (ReHY,,
ImH?, , Reﬁg,z's, I m—ﬁg’m, ReNY, 3, ImNy, 3)?]. Short cuts are evidently nec-
essary if we are tp extract usefal information from these large matrices. We exploit
two such short cuts.

The most useful is to note that we can always choose to work in a basis for

the matter superfields in which only one of the neutral superfields with each set

of quantum numbers has a non-zero VEV 2 for its scalar component. These we

denote by
<O0|HJ0 >=v, < OITIglo >=79, <O|N|0>==z, (3.90)
so that
< 0| H?,|0 >=< O[H} 4|0 >=< 0| N3,2/0 >=0. (3.91)

In this basis, consideration of the effective scalar potential shows that it is techni-

2We assume that the physical vacuum does not violate charge or colour conservation. The
numerical results of section 3.2 show that, at least for a specific range of parameters, this is
consistent with our theoretical framework. A more detailed investigation in a generalized context
might provide interesting constraints on the parameters of the model, but is beyond the scope of
this work.
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cally "natural” for the Yukawa coupling constants A of the H;, Fj and N, super-
fields to take a pa.rticula.rly simple form. Including soft supersymmetry breaking

trilinear interactions of the spin-zero components of the H;, H; and Nj, superfields,
Veore = Axi A H;H; Ny + hoc. + ... ., (3.92)

and the soft supersymmetry breaking squared mass matrix mfj for the N; scalar

fields, the condition that the potential be extremized when < O|N;—; 5|0 >=0is

ov
aw;

= 213, + 2X33: Ax .5 0T + 2X33:(v? 4 T°) Asasz = 0. (3.93)

This is obeyed if AjiAjrs = 0 when ¢+ = 1,2 and analogously for the D;D5 Ny
couplings. The leading order renormalization group equations for small A, etc.
then guarantee mZ; = 0 and the second and third terms in (3.93) vanish as Az3; = 0
if A3s3 # 0. Similar considerations for < 0|Hj 5, H; 5|0 > suggest that it is natural

that in the basis (3.90),(3.91):

é

/\,;33 = )\3,'3 = )\33k = 0, fOT‘ 'I:,j, k= 1,2, (3.94)

whilst ‘
Aij3; Aiskey Agjk, Aije 7 O (3.95)

in general. Assuming (3.94) greatly simplifies our mixing analysis: the 4 x 4
chargino matrix becomes (2 x 2) + (1 x 1) + (1 x 1), the 12 X 12 neutralino matrix
becomes (6 X 6) + (6 x 6), the 6 x 6 charged scalar matrix becomes (2x2) + (2% 2)
+ (2% 2), and the 18 x 18 neutral scalar matrix becomes (6 x 6) 4+ (12 x 12). Note
also that one of the 2 x 2 submatrices of the charged scalar matrix has a massless
unphysical Goldstone boson eigenstate, whereas the 6 X 6 neutral scalar submatrix
includes two such Goldstone bosons.

As a second short cut, we can assume that the Yukawa couplings of the matrix
Aijk are all relatively real, so that CP violation in this sector is negligible and the

VEVs v,v and z are also real. Then the (12 x 12) neutral scalar submatrix further
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breaks up to become (6 x 6) + (6 x 6), whilst the forms of the other matrices are
not changed qualitatively. We are now in a position to discuss the different mass
matrices.

In doing so, we shall work in the framework in which the only seed of soft
supersymmetry breaking in the observable sector at the compactification scale is a
universal gaugino mass m, 3, as assumed in section 3.2. Moreover, it is not restric-
tive to work with areal and positive Aass, so that, since the renormalization group
equations drive Ay,,, < 0, also the VEVs v,7 and z will be all real and positive.
When making numerical estimates, we shall restrict the ranges of variation of our

parameters according to table 3.1.

3.4.2 Charginos

We start with the chargino mass term, which in the basis introduced above becomes

My, —gov 0 0 W
T R S 0 Hy
Lc = —-(W H3 H1 HZ) 0 —)\11333 0 gi{—
0 0 0 —A223T HY
the. (3.96)

Two eigenvalues associated with (3.96) are trivial, namely

mfz = |Mis,228l = | A113,223] (':‘) J‘lGF[-’- \—:i(ﬁ/v)z]' (3.97)

The condition mit.z > 20GeV from PEP and PETRA corresponds to a region of
the (|A113,223], z/v) plane which depends only slightly on T/v in the dynamically
preferred range 0.2 < /v < 0.6, as seen in figure 3.9. The input values my =
82GeV, sin® Oy = 0.222, Gem(mw) = 1/128 and az(mw) = 0.11 are used in
calculating this and the foliowing figures. These lower bounds on |A113,223| are
much smaller than typical values of Agss found in the dynamical calculations of

section 3.2. The eigenvalues of the non-trivial (2 x 2) submatrix in (3.96) are given
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1A

Figure 3.9: Contours in the (|A113,223], £/v) plane corresponding to the constraint
m,fz > 20GeV, for the cases /v = 0.2 and v/v = 0.6.

by |
mdo = sl + mhe) £ (mhs — mRa) +Amiz),  (399)
where
miy, =M +(9:9)°, map = (Asssz)’ + (g20)7, (3.99)
Aem TNy /2

© mip=—M(gv) + (Razsz)(927), Ma= (3.100)

o sin? O
We have studied (3.98)-(3.100), varying Asas, ™/, /v and /v over the dynam-
ically preferred ranges shown in table 3.1 and taking into account the correlation

between m,/, and z/v. The lowest values of m$ that we found are shown in fig.

3.10. We see that an absolute lower bound is
mE > 43 GeV, (3.101)

that there could be as many as three charginos lighter than mz/2, and that two

of them could have masses close to the present ete™ experimental lower limit.

~ 3.4.3 Neutralinos

We now turn to the neutralino mass matrix. As in the case of the charginos (3.96),
- - - - =0 < ~ =0 - ~ =0 .
the (Ws, B, B!, H2, H,, Ns) sector decouples from the (Hg, H,, N2, HY, Hy, N1)

sector.
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Figure 3.10: The lightest attainable value of the chargino mass mZ as a function

of my /5, for some discrete valtes of ¥ /v, with /v and Ass3 both free to vary inside
the ranges given in table 3.1.
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The sector containing the neutral gauginos has the rather coniplicated mass

matrix
1 1
(M, 0 0 —yiev ew 0 )
0 M, o B9Y  —yaT O
0 0 My Lav —/Eav Sl (3.102)
0 A333T  Azas¥
SYMMETRIC Assgz 0 Agssv
\ AsssU Asssv O /

Using the region of parameter space allowed by our previous numerical searches,
we find that the lightest neutralino ) in this sector most likely has large gaugino
components, and a mass obeying eqs. (3.78) and (3.88). Indeed, if the lightest
neutralino were predominantly a higgsino, its annihilation rate in the early universe
would have been so small that its present relic density would be unacceptably high.

The second neutralino sector has the mass matrix

0 k223$ Aggg-ﬁ 0 0 A231"i)—
O A322‘U 0 0 A321v
0 Al 325 .)‘31 2V 0

; 0 Az A (3.103)
‘ SYMMETRIC 0 Aanv
0

In order to understand its eigenvalues, a convenient limit of (3.103) to study is when
z/v — oo with U/v fixed. In this case there are 2 + 2 heavy Majorana neutralinos
with masses ~ |Aj113223|z which almost make two neutral Dirac fermions, as well

as two light Majorana particles with masses
g, ~ (Aizj, Asiy)® v®
o P Azl =

As already mentioned, consistency with cosmology requires my, > mg. This is

G5 =1,2).  (3.104)

not difficult to arrange, given all the uncertainties in the couplings A;x. We do
not explore in detail the bounds on the A3, As;; and A;;3 that come from'requiring
myg < myg, (3.104), as they would be complicated and difficult to interpret. As an
example, if we take Aig; ~ As; ~ 0.15, Az ~ 0.05 and z/v = 3,7/v = 0.5, the
estimate (3.104) yields mg, ~ 23GeV, which is comfortably above the comparable

minimum value of my.
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3.4.4 Charged scalars

Next we examine the charged Higgs mass matrix, which breaks up into three
independent 2 x 2 submatrices, as already noted. The 2 X 2 submatrix M2 mixing

the ‘true’ charged Higgses HY whose neutral partners have VEVs is
g 3

— Hf
3

where we use the minimization condition on the potential to eliminate the soft

supersymmetry-breaking mass terms in favour of the model parameters Asas, Ax,,;:

a2 = [ TP Ana Y (398 = Nsa)¥ —Hasadie + (305 — Asa)vv
37\ =333 450 T + (395 — A33a)vT  —Ass3Angg, T + (393 — Mas)v? )
(3.106)

Solving the eigenvalue problem, one finds a zero mass Goldstone boson which is
eaten by the W, and a physical field of mass mg+:

)

mis =mi + [——/\333A,\333z (; + %) — A2as(v? + 6"')] : (3.107)
Using the dynamically preferred values of table 3.1 we find that the square bracket

in (3.107) is always positive, and indeed
[.. J(z.107) = 1700 GeV?, (3.108)

implying
myg+ > 90 GeV (3.109)

for mw = 82GeV. It is more difficult to analyse the eigenvalues of the charged
unHiggs mass matrices M? ,, i.e. those whose neutral partners do not have VEVs.

They take the forms

1

M2 _ 'ﬁL?{‘ + mgi + A?ﬁmz —A,:BA333’U‘17; A{,‘3A)“-‘-3€B ('I, -1 2)
T T =iz A3 vl — AiisAn. T ‘ﬁ?.%‘ + m%,, + )\?Bmz ’ D
(3.110)

where 2, — are the soft supersymmetry breaking masses that are calculable using

2
H; H;
the renormalization group equations, and the D-term contributions are

2

1., 3 1 _
mie = =5 (g — ;)" — ) = ol (52’ — 4’ =), (3.111)
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Figure 3.11: Dependence of the lighter charged unhiggs mass mi, on m,/, and z /v,
for the representative values T/v = 0.5, Azas = 0.2 and A3;3/my/ = —0.6. Lines
corresponding to m,.f. = 20,60 and 100 GeV in the limit |A;;3| — O are shown.

‘ D’_lz _:_3_22--2 122 2 -2
mﬁ_—4(gz—5g1)(v -7 )——-@gl,(Sa: — 4v® —7%). (3.112)

Since the D-terms (3.121),(3.122) are negative for # > v > ¥ as expected, it
is possible for charged unhiggses to be relatively light, even close to the ete”
experimental lower 'limit of about 20GeV. A full analysis of this possibility is
complicated by the large number of unknown parameters in M? : my s, 2, ¥, Xy,
Aaaz, Ay,;. We use the parameter values in table 3.1, which are valid if | Ais| < Asas.
We present in figure 3.11 results for the lighter charged unhjggé mass m,f, over the
(my/2,2/v) plane in the limit Ays — 0: larger values of Ais give larger values of
m,f‘ On the right of the lowest diagonal solid line in fig. 3.11 which corresponds

to

myjz ~ (57GeV)Z (3.113)
v

for the representative choice Ay,,/mi; = —0.6, Ass3 = 0.2, T/v = 0.5, we find

m?f‘ < 20GeV in the limit Ay3 — 0. In this domain, whilst m,f, is generically
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O(z) for larger values of Aus, there is for any value cf (my/s,z/v) a restricted
range of )3 values which give 20Gev < mf'. < 100GeV. On the left of the line
corresponding to mys = 20GeV in the limit A;3 — O there is a somewhat larger
domain of (my/,,¢/v) plane for which 20GeV < mi. < 100GeV in the same limit:
lines corresponding to my: = 60 and 100GeV for A;3 — O are also given. Values
of Aiis up to 0.1 give m,’f‘. only slightly heavier. Finally, the region to the left of the

three lines corresponds to m;+ > 100GeV in the limit Ays — O.

3.4.5 Neutral scalars

We now turn to the neutra. Higgs bosons. As mentioned earlier, their mixing
matrix breaks into two 3 X 3 and two 6 X 6 submatrices, in our basis in which only
Hj, Hs and Nj are the ‘true’ Higgses with VEVs, and if one assumes that the A
are real. The mass term for the real and imaginary comgponents of the neutral true

higgses, defined by ® = (®r +i®1)/V?2, (& = H, H, N), are:

i

1 ( _I_{'g,,, \
Lrr=—3 ( HY; Hpp N )MRI Hpr |» (3.114)
Ng 1
with
(@ + 59N (N —g* — 59700 (43 — Fg%)ve
—2A333A>\333 e +2A333A)‘333 +2A333A;\3336
1 (¢ + 2g7%)7° (42255 — 39%)vz
2 _ = 333 )
Mp = 2 SYM -—2A333AA333 = +2X333AN;35V ’
2 g2,
RIC 9
MET EPSNOIIE: -

(3.115)
where for notational convenience we have put g = g, and ¢’ = \/§7gg1 = \/3_/591:.
In the limit of large «/v and m;,, the lightest mass eigenstate of M% (3.115) is
HY = (vHY +1_)HR)/m. It is easy to check that m} = O(v,7), not O(z).
This is to be expected since for large my/, and z the low-energy effective theory

reduces to the standard model, which must contain at least one real neutral true
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Higgs boson with mass O(mw). We find in this limit that-

Mipy = — +§2{ (g +9™)(v* -7+ 9'2(40 +7°)? + 4235507 vz}—‘-—, (3.116)
where
1 20 VT 5
€ = ﬁ[(4A§33 —_ —é—g'z'uz -+ 4A333AA333? -+ (4A§33 bl 59,2)1)2],
Cc = 2959 (3.117)

The dominant term ir (3.116) is the first one, whilst €2/2C makes less than a
10% change in myo for small ¥/v, and a larger one for 7/v = 0.6. Varying only
the parameters Agss and Aj,,,, one obtains an interval of values of qug which
are possible for a given set of values of z/v, m; /2 and T/v. For z/v ~ 3 and
™y 2 ~ 100GeV the approximate expression (3.116) gives a lower bound for milg
which is larger than tle more precise numerical calculations by 10% for v/v =02
and by 3»9% for ¥/v == 0.6, whilst the corresponding upper bound is reproduced
with a few percent accuracy. We have verified numerically that (3.116) and (3.117)
give a good approximation to m H2 (i.e. are accurate to within a few percent) when
z/v > 4 and m,/, > 200GeV .

In general,we find that
45GeV < mpyy < 105GeV . (3.118)

for values of the parameters in the usual ranges. Fig. 3.12 shows contours of m HO
in the (z/v,T/v) plane for typical values of Asss, A, and m; /2. The other two
real neutral true Higgses with masses O(z) are tco heavy to be detectable at LEP.

Next we turn to the imaginary neutral true higgses, whose mixing matrix is

M3
v/v 1 v
M?- = (“‘A333AA333:1!) 1 'U/E 'U/(B . (3119)
v/ vz Tv/z
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Figure 3.12: Contours of m yo in the (z/v,7/v) plane corresponding to the rep-
resentative values my/; = 250GeV, Asaz = 0.15 and Aj,,,/mqi/2 = —0.35; the
dependence on m,; is very slight.
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This has two massless eigenstates which are the Goldstone bosons, eaten by the

massive neutral gauge bosons Z and Z’, and one massive state

T \/v/v + v/v + v /22 \/U—/ZHO " \/;/_;HI ARG (3.120)

with
m’ = (—A33345,3,7) (T/v + v/7 + vT/z?). (3.121)

This state is also very heavy in the limit 2 — oo, but can be interestingly light.
Taking the minimum values of Azs3, Ay,,, and z/v from table 3.1, we find

mq > 70GeV, (3.122)

which could be even lighter than the real neutral true Higgs (3.118). Figure 3.13
shows contours of m, in the (z/v,m,/,) plane for typical values of Asss, Aa,,, and
T/v.

The final bosons tc be analysed are the neutral unhiggses, i.e. those in multi-
plets Wit];OU.t VEVs, whose real and imaginary components are associated to two
6 x 6 mixing matrices. These matrices are rather complicated to analyze and de-
pend on several parameters: their explicit form can be found in ref. [48]. A generic
feature of both of them is that, in the limit as z,m,/, — oo, all six eigenstates have
masses O(z), as one might expect since none of them have any reason to weigh
O(v,v). It is of course possible to obtain a light-mass eigenstate by playing the
positive and negative O(z?) contributions off against each other, a game which is

easier for smaller values of ¢ and m, /,, but this is not a generic feature.

3.4.6 Production in ete™ collisions

Reviewing our results, we see that there could be as many as three charginos with
masses below mz, additional neutralinos not much heavier than the lightest one
having mainly a gaugino component, a charged Higgs boson with mg:+ > 90Gev,

two charged unhiggses as light as 20GeV, a real neutral Higgs boson Hj as light
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as 45GeV, and an imaginary neutral Higgs boson a as light as 70GeV. Searches
for light charginos and cha?ged Higgs bosons are sufficiently straightforward (for
a recent review, see ref. [62]) that we do not discuss them here.

The neutral Higgs boson Hp could be produced at LEP via the reaction ete™ —
Z° + H? with a cross section

o(ete” — Z°+ HY) . g?{gzz

oete™ = Z° + HO)|utandard modet 9077

: (3.123)

where

dmpzz 1 g 2 o
gHozZZ - 4m{(av+ﬁﬁ)cos 9+351n6WSII16C059

1. .
X (4va—78)+ g sin? O sin® §(25zy + 16va +TB)}  (3.124)

is the ratio of the H} - Z° — Z° and the standard model H® — Z; — Z° coupling
constants. In eq. (3.124), a, B and v are the coefficients in the decomposition
H? = aHP + ,BEO +vN, and @ is the mixing angle of the two neutral weak bosons
present in the model we are considering. Since the neutral current phenomenology
and the data on the Z° mass constrain the mixing angle 8 to be small (|sin | <

0.11) one can approximate expression (3.124) with

gH? 1 .
7 EZZ ~ = — (o + B + 0.6 sin? z). (3.125)
5°ZZ v2 4+

For values of m H? close to the lower bound of 457eV, the H® and 2 components
in H} are dominant (,al,|3| > |7|), and the ratio of cross sections (3.123) is of
order unity. For instar.ce, in the case mygo = 45GeV, one has ¥/v = 0.6, z/v = 3,
a = —0.61, 8 = —0.78, v = —0.11 and, correspondingly, (gHgZZ/QHOZZ) ~ (o +
Bv)?/(v? + %) ~ 0.8, giving a large production rate at LEP. On the other hand,
the imaginary neutral Higgs boson a has no Z° — Z° — a coupling at the tree level
and so cannot be produced with an appreciable rate in association with the Z°

boson in ete™ annihilation.
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If toponium © is heavy enough, it can decay (for a recent review, see ref. [63])

into both H? and a with the branching ratios

B(© — H? +7) a2 v?
B(© — H® + 7)|standard model AL+ 'vz)’ (3.126)
B(©® —a+7) 1+ 9% /v?

B(© — H° + )| standard model 1+ 2 [v? + 0222 (3.127)

Both ratios (3.126) and (3.127) can be of order unity when myo and m, are close
ﬁo their lower bounds. In particular, in the cases mpo = 45GeV and m, = 70GeV,
which correspond to /v = 0.6, v/z = 0.2 and = —0.78, we have 0.8 and 1.0 for
the ratios (3.126) and (3.127), respectively.

The phenomenological scenario we have explored here certainly does not ex-

clude plenty of gaugino and Higgs excitement at LEP!

3.5 Exotic colour triplets (D-particles)

In this section we discuss the possible phenomenology [49] of the additional charge
(—1/3) colour triplet particles Dy/; of spin 1/2 and Do, D§ of spin 0 which are
contained in each matter generation in the model under consideration®. For the
range of parameters suggested by our calculations of radiative symmetry breaking,
either a spin-1/2 or a spin-0 particle could be the lightest, and either could be as
light as the present lower bound from e*e™ experiments of about 20GeV. The D
particles could behave as leptoquarks coupling to quarks and leptons, in which case

the single production process ep — Do{D§) + X would occur, and Do(D§) — g,
D, /2 — lgx decays would dominate. Alternatively, the D particles could behave
as diquarks coupling to pairs of antiquarks, in which case the single production
process p'p — Do(D§, Do, D) + X would occur, and Do(D§) — @, D5(Do) —

49, D1j2 — qgx decays would dominate. We present cross sections for ep —

Do(D§) + X, p® — Do(Dg, Do, D§) + X, ete™ — DoDo(D§Dg) and Dy/2D1s,

3For related work, see ref. [64].
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% — DoDo(DgD§) and D, /25;2-+ X. We calculate the experimental signals
and estimate backgroxmd:; for D production and decay in these processes. The
decays Do(Dg) — lq and D, j2 — lgx or Ggx would be detectable in most of
these reactions, but Do(Dg) — qq decays may only be detectable in ete~ —

DoDo(DgDg) collisions.
3.5.1 Constraints on (Do, D§) and D, /, masses

Here we discuss in detail the mass matrices for the exotic fermions D, , and bosons
Dy, D5
In the field basis defined by eq. (3.90) and (3.91), the part of the superpotential

contributing to the D;;, masses is simply
fg‘l";‘ = kab3 Do D{ N3. (3.128)

We have not used, up to now, the freedom of redefining the fields D, and DS by
independent rotations in generation space. We can therefore move to a convenient
K

basis where the following relations hold:
ks =0 for a#b. (3.129)

The two-component spinors of each generation contained in the chiral superfields

D,, D¢ will then combine to form three Dirac spinors D, /5, of masses
mp, = kaasz (a=1,2,3). » - (3.130)

Note that the masses of the D, /2 particles are completely independent of those
of ordinary quarks and leptons, being proportional not only to different Yukawa
couplings, but also to different VEVs. Moreover, since we need z > v,ﬁ-to agree
with the experimental limits on neutral currents, the present non-observation of D
particles is naturally explained in our model. This does not exclude, however, that
the relevant Yukawa couplings could be small enough to give to the D, /20 TNAsSSES

close to the experimental bounds.
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The mass matrix involving the scalar components of D, and D} has a slightly
more complicated structure. Even in the convenient basis we chose above, one has
in general a real symmetric 6 x 6 matrix, with non-trivial intergenerational mixing.

The matrix elements are
M} 5- = mb,, +mp, +G*(D), M, = b, +md, + GHD°),
M}, 57 = Wby, +mb, + G2(D), Mpzp, =iy, +mb, +G*(D°),
M}, 5; = by, +mb, + (X(D), Mpzp, = b, +mb, + GH(D°),
2

2 — =7 — 2
MDlDf = Thyss T + Asacki1cV7, DD = ™MDia>

2 _— 27 2 — 2
M12)1D§ = Mhyzs T T Asackyzc V7, D,D; = MDia
MD1D§ = Mheyss T + A33«:"’1&"1'0’ (3 131)
2 — = 2 —_ 2 .
MED-—; = Mheg13 L + )\33ck21c‘v'l), MEDE = mD;:J,
2 — =7 2 — a2
MD—fl_); = ‘r]k313m + A33ck31c’U'U, M‘D—;'D; = mDia,

Mp,ps = Mz ™ + Aszchzzcv,
MézDg = 7],,233:13 + A33Ck2_'.;c1)§,

2 — Frd 2 —
Mﬁﬁﬁ; = 7]]‘32393 + Asgckgzc’u'v, MBED; = mpga,

M3p, pg = Thasa™ + AszckaectV.
Symbols appearing in the above formula correspond to the following general ex-
pressions for the fuperpoi;en’tial and the soft supersymmetry breaking part of the
scalar potential:
f = daseHaHsN: + kmDangc +..0, (3.132)

~2 T ~2 e
‘r/'goft = mDubDan + szngDg +...

+ My (DaDiNe+hc)+ ... (3.133)

where the dots represent terms which do not contribute to (3.131), mp, are the
fermion masses given by eq. (3.130) and G*(D) and G*(D?) are the generation-

independent D-term contributions to the scalar masses:

5 m%v tan? Ow

G?*(D) 5W[l + (B/v)? — 2(z/v)?), (3.134)
G¥(D°) = g%ﬁ —1/2(3/v)? — 1/2(z/v)*]. (3.135)

To bring the discussion at a reasonable level of simplicity, some short cuts are

necessary once again. Our first simplification is to assume that the only Yukawa
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couplings contributing significantly to the RGE for the soft SUSY breaking param-
eters are those diagonal in generation space (Agaa, Kaaa, --.). In this case, the soft

supersymmetry breaking part of the scalar potential assumes the simplified form

Viete = 1, |Dal? + 7 | DEF* + ...

+ KabeAiy,, (DaDEN, + hc) + . ... (3.136)

Moreover, the mass matrix (3.131) for the Do/D§ bosons becomes block-diagonal

in generation space, with each 2 x 2 block given by

Mz, = ( md_ +m} +G* (D) mp,Ax,., + As33kaasvT ) (3.137)

MpP, Alkyps + A233Kaaav¥ ﬁzzDﬁ + m%a + G*(D°)

Let us examine now the phenomenological constraints on the quantities ap-
pearing in egs. (3.130) and (3.137). These constraints are derived assuming the
boundary conditions (3.53)-(3.56) on the soft supersymmetry breaking terms.

As independent parameters in our analysis, it is convenient to take z/v, /v,
™2, (ﬁz?,‘/ml/z)z, (pg /m1/2)%, Akeus/T1/2, Aass and ksss. To simplify the dis-
cussion f;n'ther, we shall assume that the only non-negligible Yukawa couplings
con_fributing to the RGE are indeed those considered in section 3.2. In this case,
inéiéative ranges of variation for the different parameters are presented in table
3.1. The couplings ki13,223 are assumed to be smaller than kss3, and there are no
lower limits on them adart from the experimental limit on mp,.

Let us see what are the indications on the D, , and Do/ D§ masses coming from
explicit model calculations. To begin with, let us consider the D1 /2 mé.sses, given

by eq. (3.130), which in terms of the parameters of table 3.1 reads
mp, = Kaas® = kaas(%){%/iGF[l + (T/v)?]} 712, (3.138)

where Gp = 1.166 x 107°GeV ~? is the Fermi constant. Using the limits of table
3.1, one finds mp, > 105GeV, while for @ = 1,2 the lower limit on mp, is the

experimental one:

mp, > 20GeV (a=1,2). (3.139)
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An indicative upper limit on the D;/, masses comes from the naturalness con-
straint, which forbids very large values of z/v, since they would require a fine
tuning of the parameters in the scalar potential which would be unstable under

radiative corrections. Using the values of table 3.1, one finds:
mp,,Mp, < Mp, < 1TeV. (3.140)

In summary, model calculations suggest for the Dy, quarks masses ranging from
20GeV to 1TeV. Although the scale of D;/, masses is generally the same as the
scale of the extra Z’ boson, since both are related to the breaking of the extra
U(1)y gauge factor, some D/, particles may be considerably lighter than the Z’
if they have small Yukawa couplings to the N field which acquires a VEV.

Let us comment now on the structure of the Do, D§ mass matrices, eq. (3.137).
First of all, note that, for the range of parameters given in table 3.1, always
mD¢A§33 >> A3azkaqsvT, so “1at we can neglect this last contribution to the off-
diagonal entry. Note also that, for large values of /v, the D-term contributions
of egs. (3.134) and (3.135) become negative and big. On the other hand, the
positive cpﬁtributions m}, and 'ﬁzf)ﬁ are proportional to m? /2 This suggests that
light Do/ DS masses can be obtained for relatively high values of z/v and relatively
small values of m;/; in particular, to avoid (mass)? for the charged unhiggses
which are too small or negative (as seen in the previous sectic;n), a relation of the
type my /3 > Ko (z/v) must be satisfied, with K. slightly dependent on the other
parameters, and generically in the range Ko ~ 55 — €5GeV. Even taking into

account this last constraint, together with the correlation between 7}, , 7p. and

A¥ ., one finds the following results:

1. Calling D, and D2, the two eigenvalues of the mass matrix (3.137), with

masses mp: < mpz , the following two hierarchies are both possible:

mp, <mpy <mMp2 , (3.141)
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‘ mpr <mp, < mp3 . ,(3.142)

2. Under our set of assumptions, masses of the DX, (D3, ;) particles as low as
100GeV (170GeV') are allowed. These lower limits come from the study of
the unhiggs mass spectrum presented in the previous section, and have been
derived under some model-dependent assumptions. Relaxing these assump-
tions, they can be significantly lowered and could be as light as 20GeV. On
the other hand, the addition of a common scalar mass to the primordial
soft SUSY breaking terms would generally lead to higher Do,/D§, masses,

favouring the case of eq (3.141) with respect to the one of eq. (3.142).

3. When the lowest possible value for the Dg, masses are attained, the mass
eigenstate Df, is always an admixture, with contributions of almost equal

magnitude, of the interaction eigenstates D and De.

This i$ essentially all the information on D, /2> Do, D§ masses that one is able
to extract from model calculatioz;s. Despite all the constraints on the different pa-
rameters, there is still a large freedom for the resulting spectrum of D, s, Do, D;
masses, which is not significantly bounded from below, thus motivating the phe-

nomenological analysis of the following sections.

3.5.2 Single Dy/D§ production and D-particles decays

D/D¢ couplings

As was mentioned in section 3.1, the D, D° supermultiplets may couple directly

to ordinary quarks and leptons through the following superpotential terms:

f 2 XDQQ + AcDufd’ (3.143)
+ AD°LQ + AgDuce’ (3.144)

+ ADdvc. (3.145)
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According to the results of section 3.1.3, we take the sets (3.143), (3.144) and

(3.145) as alternative cases to study.

Couplings to quark-quark pairs

As discussed earlier, in the model under consideration no mixing of the D
particles with conventional charge —1/3 quarks occurs. Single production of the
scalar D is possible in hadron-hadron collisions via §+g — Do /D§ (¢+q — D5/ Do)
followed by Do/D§ — G+ @ (D5/Do — g+ q). The squared amplitudes |M|? for

the decays of Do and D§ to quark pairs are given by
|IMp,|? = 24Xm},, | Mpg|* = 6X5mp, (3.146)

and we have no idea what the ratio of the couplings Ag and Ac might be. The

differential cross section for the process h + h — (DS/Do — qq) + X is given by

o = (1/48m)5{u(z1)d(z2) + u(z2)d(z1) + .. }dz1dz2b(sT122 — 3)
L (649 2(4/9)
(G —md,)? +Th,mb,) (3 —mby)? +Thymby)’

(3.147)

where /3 is the centre-of-mass energy of the subprocess g¢ — Dj /Do — qq, T3
and z, are the fractions of the momenta of the incoming hadrons carried by the
quarks with distributions u(z), d(z), etc., and I'p, pg are the decay widths of the
Do and Dg. No mixing between the Do and D is taken into account in writing
(3.146) and (3.147): its effects can be trivially incorporzted.

In fig. 3.14 we show the -otal cross sections for the above process as a func-
tion of the mass mp,, assuming mp, = mpg and Aq = Ac = X for simplicity.
The common Yukawa coupling is parametrized by its retio to the electromagnetic

coupling

Ay 4m A% [4r

F (3.148)

If

Qem Oem

Note that although neutral current constraints impose severe upper bounds on

flavour- or generation-changing couplings of the D / D¢ supermultiplets, there are no
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m (GeV) 125 145 168 188 208 228 268 288

m (GeV) 11.0 12.3 13.7 145.9 16.2 17.3 19.5 20.6

do/dm (ab/Gev) | 3.107! 9.1072 3.1072 1072 7.1073 3.1073 4.107% .| 6.107%

8¢ (nb) 3.3 1.1t 0.41 0.15 0.11 0.05 7.8.1073 [ 12,1073

alnb) o.8.10-1 | 0.3.107!] 0.1.10! Jo.5.1072 0.2.10"2 ] 0.9.1073] 0.2.107% jo.6.107%
F=1

Table 3.2: Signal and background for spin-0 D search at the CERN collider.

severe constraints on their dingonal couplings. Note also that the three generations
of scalar D particles could in principle have similar masses, in which case the
estimated cross sections should be increas¢d by a factor of 3. Figure 3.14 includes
curves for all high-energy hadron-hadron colliders currently envisaged: CERN pp
at /s = 630GeV, FNAL pp at /s = 1600GeV, LHC pp at V/$ = 17TeV and SSC
at /s = 40TeV.

These procegses will appear experimentally as two-jet events. We have made a
detailed comparison of the signa.l—to—background’ ratio at /s = 630GeV using data
pubh'shedb"‘wby UA2. In table 3.2 we compare their do/dM(jet — jet) multiplied
| by the widths §M of the bins they use, corresponding to their mass resolution,
with the Do/ DS cross section we would expect for F' = 1. In table 3.2 we have
assumed, following UA2, that the mass resolution ém = 0.29[m(GeV)]*/* and
we have computed 8o = §mdo/dm. We see that the QCD jet-jet background is
between one and two orders of magnitude larger than our expected Do/ D§ cross-
sections. We expect this state of affairs to be repeated at future colliders, so that
it will be difficult to see the scalar D in this way. Nevertheless, it would be useful
for theorists if collider experiments could in the future quote directly upper limits
on cross-sections for new particles decaying into jet pairs.

We turn now to the decays of the fermions Dy/,. In fig. 3.15 we show diagrams

contributing to their possible decays Dij» — @+ ¢+ % in leading order. The
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squared decay amplitude in the rest frame of the D, is given by:

|MD1/:|2 = Azc(\/ﬁe)z‘i
(1/3)2mD1/2E1(mD1/2E1 + %mf)l/z - %m»%/)
(P —m? )
R

(P>~ )2
T (1/3)2m01/2(m01/2 Ez)(ij./z(El + Ez) _mD1/2 + 3 3)
(K2 - ng)z
_ /3)(=2/3)m}, ,(2E1 By — mp, o (Er + Ba) + 3md, , — 3md)
(P —m2)(P? — )
_ @/3)(=1/3)mp, ,(mp, ), — 2B5)(mp, ,(Er + E2) — imb,  + 3m3)
(PT = )(K® — i)
n (_2/3)("1/3)mD1/2 (mD1/2 - 2E1)(mD1/2(E1 + Ez) . %m%)l/z + %m%)

(P? — i) (K* — mdy) )
+ A (V2e)4
{(1/3)2v4:mD1/2(mD1/2 —E, - E2)(mD1/2(E1 + E2) - %m%uz + _;_m?_y)

X

| (5 — 3,
’ 1 2 1 2

+ le/zEl(le/zEl + Elelz —3 ms

T R G ) N (G Vo N
(P =g,y P2 ) (P - md (P )

(_1/3)'mD1/2 (mD1/2 2E2)(mD1/,_, (El + Ez) ~mD1/2 + 3m )

x|

(K% —m})
(=2/3) (1/3)
x [(P2 Tt} TP ]} (3.149)
where
P? = mp, ,(mp,,, — 2E1), K? = 2E, E5(1 — cos @), (3.150)

® is the angle between the two final-state qua.rks, E, and E, their energies, we
| have assumed that the lightest supersymmetric particle x is essentially a photino ¥
" and we have neglected mixing between left- and right-handed squarks. The partial
decay rate dI' of the D;, is then given by

1

= @ {M Dy |*dEydE;. (3.151)
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Figure 3.15: Tree diagrams contributing to the decay D;;» — gg7.

The decay rate given by (3.149),(3.150) and (3.151) is a complicated function of

mp,,,/mg g In the simplifying limit where mp,,, << mg g and neglecting quark

masses and ms, we find

1 s L
(2r)3 P-/2192

x {N3(v2e ,24[(1/3)’ (— 2{3)2 (1/3)( 22/3)2]

UR mdgm
Y 13y (Zaf CUDEB2, (5
dr G maLmJL

Rather than use (3.149) in calculating the missing energy signature for D> pro-

duction discussed in the previous subsection, we use simple phase space. We do

not expect our results to be sensitive to this simplification.

Couplings to quark-lepton pairs

We now turn to the case (3.144). Single production of the scalar D is possible
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in ep collisions via e~v — Dg/D§ (¥ — Dg /Do), while Do/D§ — q+1 (Dg/‘_l_);k—;

gl) decays dominate. The équa.red amplitudes for these decays are
|Mp,|* = 6Xgmp,, |Mopgl* =122 m],. (3.153)

Neglecting mixing, all of the Dy decays are to jets + charged leptons, while the
Dg has 50% branching ratios into (jets + charged leptons) and (jets + neutrinos).
Again, we have no idea what the ratio of the couplings Ag and Ar might be. The

cross section for the process ep — Do/D§ — lq is given by

ds 8. .
do = -l'g;;{u(s/s)‘*‘}
224 b
< i , (3154
G =gl + Thgy | G-y + T, 1Y

where /s = \/E:E; is the centre-of-mass energy and § is the invariant mass
squared of the colliding lepto-quark combination. In figure 3.16 we show the inte-
grated cross section as a function of mp,, assuming mp, = mpe and A = A} =
N? = 41de F as in eq. (3.148). Results are pressnted for HERA: /s = 314GeV/,
and for two LHC/LEP options: /s = 1.4TeV,1.8TeV.

These processes will appear experimentally as (lepton + jet) final states. the
cases where the lepton is an electron must be compared with the background from
the conventional process e + p — e + X, whereas the cases where the lepton is a
neutrino must be compared with the charged current cross sections for e +p — -
v + X. There would be relatively little background if the Dg decays into a pu or
a T, but flavour changing neutral current constraints severely restrict the possible
couplings of these leptons.

We show in table 3.3 numerical calculations of the cross sections for e™p —
(Do/D§ — e~q) + X, compared with the continuum background coming from the
conventional electromagnetic and neutral current scatteringe™ +p — e~ + X. To
estimate the background we have integrated over bins in & corresponding to the

e + jet mass resolution expected for the HERA detector ZEUS. We see that the
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my 100 200 300
5 .
x = a2/s 0.1 0.40 0.91
3ackground
cross-sactions
27 (ab) 42.3 1.4 2.0.107%
da/dx
23(nb) 245 Q.7 9.3.1073
5a(Gev) zeusil’ 2.05 2.9 3.5
86 = sabmo/s(nb) | (L) 0.35 0.032 8.4.1075
(zzus)22) (]) 0.20 2.015 3.9.107%
gy (F = 1) (ab) 3.5 0.32 0.83.107"
o

Table 3.3: Signal and background for scalar-D searches in ep collisions at HERA.

signal-to-background ratio are very favourable if F' = 1, which may be an upper
bound on the Dgl coupling. It should also be possible to detect the Dq /D§ even
if F' is considerably smaller than one. The process e + ¢ — Dy/D§ — vq can be
detected almost equally easily. The background from the standard model charged
current reaction is slightly smaller than the that shown in table 3.3. The resolution
for the mass bump in the (v + q) channel is in the ZEUS detector only a factor
~ 1.6 worse than in the (e + g) channel. The other HERA detector H1 is expected
to have an (e + ¢) mwass resolution somewhat Letter (by a factor ~ 1.1) and a
(v + q) mass resoluticn somewhat worse (by a factor ~ 1/ 17) than the ZEUS
detector. Similar calculations can be made for higher energy ep collider projects,

with similar conclusicns.

The squared amplitude for D,/ — ¢l decay in the D/, rest frame is given by

[Mb,,[° = Ai(v2e)’12
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1 (2/3)2 (1/3)’
+ (—z-m%1/: - 2 ?1 - mD1/2El)mD1/2El[(P2 m- )2 + (P2 )3 )2]
L

2(1/3)2mD1/2(mD1/2 - Eq - El)(mD1/2(El + EQ) - 2mD1,2 + %m‘z'?)

i (K? — mby)’
n 2/ 3)(2mD1,2E1E —mp, 1/2 (mDuz(El + Eq) — mnl,, +3 2 m3))
(P2 — )(P 2 - )
n (1/3)me/2 (mDuz(El + EQ) le/g + L 2)
(K?— 'm’DC) .
x [mD1/2 (le - 2El)(1/3) + (mD1/2 - 2El)(—'2/3) ]}
- ) (T ) GECA
+ (ﬁe)212
( 2/3) mD1/2E1(2 Dllg - %m?'r - le/zEl)
X (PZ 2 2
n mD1/2Eq(-]2;m2D1I2 - —m' - le/zEQ)
(P?— )2
(P2 eR)(P 2 - )
(1/3)2mD1/2(mD1/2 - Eq - El)(ij./z(El’ + EQ) - lz_m%?llg + %m?’y)
(K% — m},)? b
(3.155)
where:
p? = 1’!’1,131/2(’1’7711)1/2 — 2El.q); K= 2E[Eq(l — COSUJ), (3.156)

«w is the angle between the fnal-state quark and lepton, E, and E; are their energies
and dI' is given again by eq. (3.151). In the simplifying limit where mp,,, <<

my, Mg, We find

oo L M
(2m)® 192
1 2/3)? —1/32 2(2/3 2
x {AZL(ﬁe)zm[m«; - (77’/L4) —( m/ ~— ,m(z /m)z ]
52 ar dr Gy’ eL
_92/3)?2 1 2(—2/3
o a2 L 2, (3.15)
mg, mé, M mE

which is used in calculating signatures for D12 production in the next subsection.
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Couplings to quark-conjugate neutrino pairs

Finally, we turn to the case (3.145). Since in our model there is no D/d mixing,
there is no single production of scalar D in either hadron-hadron or electron-hadron
collisions. The dominant decays of the Dy are to dg + v°, which would have the
same experimental missing-energy signature as conventional squark g — q+4%
decay. The dominant decays of the Dy, in this case are to dg + v° + 4 via the

squared amplitude

(1/3)2mD1/2EV(-]2;m2D1/2 - %m'gy - mD1/2EV)

[Mp, .2 = A2(V/2e)%12 . (3.158
1/2 \ (P2 _ mga)g ( )
P? = mp, ,(mp,,, — 2E,), : (3.159)

where we have already taken the simplifying limit mp, j2 << mj,mg which is used
in the phenomenological analysis of its missing energy signature in the following

subsection.

3.5.3 ,Pair production in hadron-hadron collisions

In this subsection we discuss the possible cross sections and signatures for p(p —

DQD-;/DS_IT‘%- + X and D1/2D1/2 + X.

Cross sections

The forms of the parton-parton cross sections for gg,gq = DoDo/DEDg are
identical to those of gg,gg — §g if one compares the limits mp, 2 > mDo,Dg
and mg >> my, due to the fact that Do/D§ couplings to gluons are identical to
those of §. The only difference between the total cross sections in these limits
is therefore an overall combinatorial factor counting the total number of Do,-Dg
or g species. Previous works [65] generally assumed 5 approximately degenerate
flavours of squarks(4, d, 5, ¢and B) and added together both left- and right-handed
quarks. Here we add together the Dy/Dj§ scalars expected from three generations.
In this case, o(DoDo/D5D§)/o(3q) = 3/5.
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The forms of the parton-parton cross sections for gg,qq — Dy /2D, ; are identi-
cal to those of gg,gq — tt if one considers the limit mp,,p; >> mp, ,- Equivalently,

these parton-parton cross sections can be obtained from those for gg,99 — gg in

the limit mgz >> mj simply by adjusting the colour factors.

Possible signatures

As discussed in the previcus subsection, possible decays of the Dy, D¢ are to qv,
ql~ and qg, while the D, /; may decay to qux, gl~X or qgx, where the x is a weakly
interacting neutral Majorana fermion similar to the photino, which can carry off
missing energy. We therefore have the following possible event signatures:

Missing energy:

DoDo/D3D§ — (qv)(aP) (3.160)
D1y2Dyzz — (3ax)(agx) or (qvx)(3PX) (3.161)
Charged lepton pairs:
i —_— ——
D,Do/D5Dg — (g1™)(gl") (3.162)
Leptons a.nd missing energy:
D1ysD1pz = (g7 X) (@ X) (3.163)
Dijet mass bumps:
DoDo/D5D§ — (g3)(q9) | (3.164)

While the semileptonic decay of one D is not compatible with the simultaneous
hadronic decay of another D, it is in principle possibls to mix the semileptonic
decay into a charged lepton of one D with the neutrino decay of another D. How-
ever, we will not discuss such dijet + lepton + missing energy final states. Nor
we will discuss final states with two charged leptons of different flavours: etpu¥,
e*7¥, u*rF. We concentrate on the missing energy signatures and on the charged

lepton pair signatures. We present here results for pp collisions at Vs = 630GeV
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corresponding to the CERN collider, and 1600GeV corresponding to the Fermilab
collider: results for pp collisions at /s = 17TeV corresponding to the LHC will be

presented elsewhere.

Missing energy signatures

To discuss these quantitatively we have used the same approach as in previous

work on UA1 data. We divide missing energy events into the following categories.

Monojets: only one cluster of hadronic energy within AR = \/ (A®) + (An)2 =1
above a threshold of Ex = 12GeV, and missing transverse momentum pr in excess
of 40, where the measurement error o = 0.7/Er(GeV); dijets: two such jet
clusters and pr > 4o0; trijets: three such jets, etc.. Our calculations include a
somewhat more subtle characterization of the UA1 detector which is described in
previous publications. However, a full description of the assignments of missing
energy events to different categories is impossible in the absence of a full detector
simulatiogx. Therefore in this work we restrict ourselves to quoting cross sections
for monojet events and multijet events, and emphasize that a realistic detector
may shuflle events between these two categories.

Dg /D§ — quv. The signature for this decay is identical to that previously discussed

for ¢ — ¢ with m5 = 0. Figure 3.17a contains our predictions for monojets and
multijets* from DoDo/DED§ production at /s = 630GeV including the factor of
3/5 in the cross section which was mentioned previously. The horizontal lines
correspond to o = Tpb (solid line: five events in the present event sample of
about 700nb™'), o = 1.4pb (dashed line: corresponding to one event in the present
sample) and o = 0.28pb (dotted line: corresponding to perhaps five events at
the pp collider with ACOL). We believe that a lower limit on the Dy/D§ mass
could only be established by the UA1 collaboration itself. If it would establish

an upper limit of five multijet events in the prerent data, that would correspond

“Note that in this and the next case the vast majority of multijet events only contain two jets.
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Figure 3.17: Total cross section for monojets and multijets from pairs of D-scalars
. having the quantum numbers of quark-neutrino pairs at the CERN (a) and Fer-

milab (b) colliders.

to mp, > 60 to 70GeV. Figure 3.17b contains analogous cross section curves for
/s = 1600GeV . At this energy, a sensitivity comparable to present CERN collider
data would increase the possible limit to mp, = 120 to 130GeV.

Dy — qux. Here there is some additional ambiguity provided by the unknown

mass of the ¥. The model znalysis of the particle spectrum suggests that mg >
15GeV, and it would be easily a large fraction of mp,,,. Therefore we plot in
figure 3.18a our results for /s = 630GeV as contours in the (mp,,,, mg) plane
corresponding to o = Tpb (solid lines), 1.4pb (dashed lines) and 0.28pb (dotted
lines) as in fig. 3.17a. Naive interpolation between these contours will give cross

sections accurate to better than a factor of 2, which is in any case the expected
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Figure 3.18: (a) Contours of cross sections for monojet (circles) and multijet
(crosses) events from pair production of D-fermions with the quantum numbers
of quark-neutrino pairs at the CERN collider; (b) total cross section for the same

process at the Fermilab collider.
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accuracy of our calculations. We see that monojets events are are always more
copious than multijet events. We also see from fig. 3.18 that the UA1 sensitivity
to mp, , is essentially unchanged for 0 < myg < 15GeV, but decreases significantly
for larger my, and disappears in the limit mgy — mp,,,. Less than five monojet
events in the present UA1 data would correspond to mp, P 70GeV if the x is
light, or mg > 50 to 60GeV if mg = jmp,,,. We plot in fig. 3.18b cross section
curves for /s = 1600GeV assuming for definiteness that my = -;—mD1 2 We see
that a sensitivity comparable to present UA1 data would increase the possible limit
to mp,,, = 120GeV .

D, /2 — Ggx. This is an alternative decay mode of the D, /, which has a signature

similar to the conventional § — g7 decay, although the cross section is somewhat
different and the mass of the ¥ may not be negligible. In fig. 3.19a we have
plotted for /s = 630GeV contours in the (mp,,,,mz) plane corresponding to
o = Tpb (solid lines), 1.4pb (dashed lines) and 0.28pb (dotted lines) as in fig. 3.18a.
We see that the fultijet cross sections are larger for low my and large mp, /2> While
the monojet cross sections are larger for bigger my. Thus monojet and multijet
searches to some extent complement each other. An upper limit of five multijet
- events in the present data would correspond to mp,,, > 80GeV for my < 20GeV,
while an upper limit of five monojet events in the present data would correspond
to mp,,, > 60GeV if mg = jmp, ,. Cross section curvss for /s = 1600GeV" and
mg = imp, ,» are plotted in figure 3.19b. Here we see that a multijet sensitivity

comparable to that presently achieved by UA1 would reach mp,,, ~ 150GeV.

Charged lepton signatures

Taking our cue again from UA1, we have taken the following cuts on charged
leptons: |m| < 1.3, |n2] < 2.0, my+;- > 6GeV and P, p2 > 3GeV for muons,

p%,p2 > 8GeV for electrons. We have also tried the effects of the isolation cuts:
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(2, 2E2) < 9GeV? in the combination of cores with AR = \/ZAQ)'*’ + (An)? < 0.7
around the two charged leptons. Thus we quote cross sections for (utp™) both
total and isolated, and similarly for (ete™) pairs.

Do/Dg — ql. Our results at /s = 630GeV are shown in fig. 3.20a. The

total (solid line) and isolated (dashed line) curves are for utp~ pairs. The ete”
cross sections are indistinguishable for mp, > 60GeV and differ by less than 10%
even for mp, = 40GeV . Note that here we have assumed a 100% branching ratio
into qu~ for each of the three .generations of Do/Dj particles. This is probably
unreasonable, a better guess being that at most one of the three generations of
Do/ D particles would have a large branching ratio into qu~. In this case, the cross
sections in fig. 3.20 should be reduced by a factor of 3. Taking this point of view,

an upper limit of five events in the present UA1 event sample would correspond to
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Figure 3.21: Same as in the previous figure for pairs of D-fermions.

™MD, = 60 to 70GeV. Corresponding cross sections for /s = 1600GeV are shown
in fig. 3.20b. A sensitivity comparable to UA1’s present achievement would then
yield mp, > 140GeV .

D15 — qlx. Here we meet again the ambiguity in the mass of the x. If these

events are treated simply as possible missing energy events, and no attempt is made
to identify the charged leptons, then the result of fig. 3.19 are directly applicable.
Alternatively, they could be analyzed as (I*17) events with no attempt made to
measure missing energy. In this case, their signature would be similar to that of
Do/D§ — g¢l. Fig. 3.21a and 3.21b show cross section curves at /s = 630GeV
and 1600GeV respectively, assuming mg = imp, j2- We see from fig. 3.21a that an
upper bound of five events in the present UA1 sample would yield mp, , > 80GeV,

while comparable sensitivity at the Fermilab collider would yield mp, 2 160GeV.



Chapter 4

New Z Bosons from FEg

In this chapter we shall consider the possibility of an extra neutral gauge boson,
Z' (in addition to the photon and the Z of the standard model), with mass in the
range 100 GeV—few TeV, associated to a flavour-conserving neutral current of Ee.
Superstrings are the most recent theoretical motivation for such a study, but not
the only one: even conventlonal grand unification in a simple group of rank higher
‘than four, like S 0(10) or Es, can give rise to a scenario of this type. We shall
therefore try to perform our analysis, as far as possible, in a model-independent

way.

In section 4.1 a convenient parametrization will be introduced [66], assuming
only unification in E, or a subgroup of it [thus including, for example, the case
of SO(10)]. Section 4.2 will examine the structure of the neutral gauge boson
mass matrix [67], exploring possible constraints on masses and mixing angles.
Section 4.3 will collect the present experimental data on neutral currents in a
suitable set of phenomenological parameters [68]. In section 4.4 we will extract
from them the corresponding limits on the mass and the mixing of the new Z in the
case of three representative superstring-1 inspired models [68]. The possibilities for
detecting signals of a 7' at present and future colhders «ill be reviewed in section
4.5, where a detailed analysis [66,67] of the expectations for hadronic colliders will

be presented.

110
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5 ZO 1
u | 2 e 1_2.2
v 3¢ oW cw (4 33‘”)
u e 1
a 0 swew 4
d| 1 e 1 1.2
v 3% | swew ( st 33W)
d e 1
a 0 syew 4
e _ e 1 2
v e pr— 3T sw
ac 0 e 1
aucs.w‘ll
v PR — Y
v 0 swew 4
a’| 0 ——e_1
swewr 4

Table 4.1: Standard model couplings of the known fermions (v = u,c,t; d = d, s, b;
€= e, T} V= Ve,Vy,, Vr) to the electroweak gauge bosons v and Z°.

4.1 General parametrization

Since Eg has rank r = 6, there can be at most four gauge bosons, neutral under
SU(3)c xU(1)g, associated to flavour-conserving currents. The most general form

of the corresponding lagrangian is:
_ Tk k k krru
ENC - ¢ ’Y#(va + aa75)¢ Za) (4‘1)

where summation over repeated indices is understood and Z,(a =1,...,N;2 <
N < 4) stand for the physical vector bosons of definite mass M, and width T',:
a = 1 corresponds to the photon (M; = 0,I'; = 0), @ = 2 to the observed Z
(M, = 92.6 £1.7GeV,T'; < 4.6GeV), a = 3,4 to possible extra gauge bosons.
The index k runs over the different fermions. For the standard model N = 2,
and the corresponding vector and axial couplings v%, a*(a = 1, 2) for the observed
quarks and leptons are given in table 4.1. Here and in the following we a.doptvthe
conventions ¥ = swAs + cwB and Z° = cw A3 — swB, where sw = sinfw, cw =
cos Ow and A; and B are the gauge bosons associated to T5r and Y, respectively.

Finally, e denotes the (running) positron charge.

A convenient way of parametrizing the neutral current lagrangian (4.1) is to
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- Ty 5y | By | v~
BIEAIRE
daL 0 -1/3| -2/3| 0
o 0 -2/3] 13 [ O
AT
( :Ii ) ( j{72 ) -1/2| -1/ | 1/2
BIEAEREREE
( 22 ) ( —1{?2 ) 1/2 | -2/3| 0
eiL 0 1 1/3 0
2k 0 0 [ 5/6 |-1/2
ol 0 0 | 5/6 | 1/2

Table 4.2: Action of the orthogonal basis (T3z,Y,Y”,Y") for Eg neutral currents
on the fundamental representation, 27.

rewrite it in the following form:
Lnc = J,5CsaZt, “ (4.2)

where: J,5 = ;b—;kvﬂT[;"'npf [all fields are taken to be left-handed, L = (1 — vs)/2]
are four fixed (diagonal) neutral currents with properly normalized orthogonal
generators, obtained by expanding the SU(3)c x U (1)Q-néutral Eg Cartan subal-
gebra. We choose for convenience Tj to be Tsr,Y,Y’,Y” (their action on the Eg
fundamental representation is given in table 4.2) . Then, all the model-dependence
(apart from the fermion assignments in the currents J,,3, which will be discussed
later) is carried by the 4 x IV entries of the matrix Cga.

Let us consider, for the sake of simplicity, the case in which only one extra
gauge boson (Z3) survives at.low energy: the extension to the case of two extra
gauge bosons can be found in ref. [66] . Then the index c in (4.2) runs from 1 to

3 and we can call it j, and Cg; are 12 model-dependent parameters. An equivalent
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set of parameters is obtained by writing
ng = OﬁiggOgj (ﬁ = 1,2, 3, 4; i,j = 1,2,3), (43)

where Op; are the first three columns of a 4 X 4 orthogonal matrix, g; is a 3 x 3
diagonal matrix and O:J is a 3 X 3 orthogonal matrix, providing altogether an
equivalent set of 64+3+3 = 12 parameters. In the absence of intermediate breaking
scales, the matrices O, § and O’ have a definite physical meaning. Op; defines
the rotation from the Eg current basis conventionally chosen to the one which is
multiplicatively renormalized and g: defines the corresponding renormalized gauge
coupling constants. O is the rotation diagonalizing the gauge boson mass matrix.
In Eg superstring-insp:red models, the set of 12 free parameters reduces to three

when the different physical constraints are taken into account. Actually,

Tsr, 1 0 0
Op= L, |9 a = (—3 <8,,< -’3) (4.4)
i B = Y’! 0 —81Ca C1Co 2~ 12 2 ’ )
! Y” 0 8185 —c182

depends o:; two angles ) 5 ( ¢12 = cos by 2, 515 = sin 01,2 ) instead of Six, because
S U (2)r is a good symmetry at low energy and Tsy, does not mix with other gen-
erators. Besides the remaining two currents must include the hypercharge Y, and
a combination Y of the other two Eg currents fixzed by 6,, Y = Y’ — 8,Y". The
orthogonal generator s;Y” + ¢, Y is assumed to be broken at high energy and the -
associated current decouples from the low-energy theory. The mixing of Y with
Y is given by 6;: a non-zero 6; can be generated by renormalization of gauge
couplings in presence of incomplete matter representations, or if there is rescaling
of gauge couplings at the compactification scéle. Moreover, as we argue below, 6,
can only take two different values, depending on the mechanism lowering the rank
of Fg: ¢ = 1, 85 = 0 for non-abelian flux breaking and ¢; = \/.?78_, Sy = \/5/‘8 for
a large VEV of one of the standard model singlets in the (27 4+ 27). Out of the

three coupling constants g;, only one is not fixed, but it is in principle calculable
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and its order of magnitude known. If charged currents are described by SU(2)z,

- Gr
3 = g, = “\/—isszv (4.5)

is fixed by the measured My mass andk by the Fermi constant Gr. The running

positron electric charge e can be used to fix one combination of the other two

2 2
g s _3(1 1
§§+§§”5(e2 #) (46)

couplings,

We choose the remaining free parameter to be
r=2 (4.7)

which is a number of order one in any realistic model. In the simple case 6; = 0, g,
and §s have a clear physical meaning: §» = gv, §s = gy The fact that the photon
must couple to the electric charge @ = T3z + Y always allows us to decompose O’

as

‘ S5 4 0 1 O 0
Oﬁj =| dd —dsy s 0 c3 s3 |, (4.8)
she, —shsy —& 0 —s3 cs3
with
1 _— € !
& = Sw = T, ¢ = Cw, (49)
(7)1 {
5 es; 5 eq
P
2 3 nga, c2 3 chz ( )
and A
C3z = COSs 03, 83 = sin93, -‘—22‘: S 63 < 121: ' (411)

[We have chosen to parametrize O’ in such a way that for 63 = 0 the second
column of Cp; corresponds to the standard Z° current. This greatly simplifies
physical applications]. If the Higgs sector lies in fundamental Fg representations,
as happens in the models we consider, then 5 is known up to a sign in terms of
the standard model prediction M%, = M /ck, and of the neutral gauge bosons

masses M, 3, as will be explained in the following section. Finally, we comment
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Cn = e
Cia = ¥
. Ciz = 5;9_1133
021 = Jge
Cor = —y/3[casw +s3s1c1(A — 1/))]
Cos = —y/2(sesw — caser (A — 1/)]
031 - O
Cax = /52s3(2/A+Asd)cy
033 = — gf‘igs(af/A + AS%)Cz
C41 = 0
Cya = ~— g;:v—s,g(c'f/)\ + Xs?)s,
C43 = §§C3(€/A + AS%)SQ

Table 4.3: Neutral current couplings for the photon, Cai, the observed Z, C,,, and
a new (Eg) gauge boson Zj, C,g, in the current basis of table 4.2.

on the range of variation of 61,23 and A. It is not restrictive to assume that
—m[2 < 2,1,2,3 < /2, noting that the global sign of ¢;, s; does not enter Cp; and
that the sign of J3Op;3:0}; cannot be measured. On the other hand, we can assume

A 2.1, because interchanging g, and gs amounts to redefining 6 (6, — 6, = m/2).

In summary, the 12 model-dependent numbers Cp; can be parametrized in
terms of two angles 0., (although 6, can only take two different values) and a
ratio of coupling constants A: their explicit expressions are given in table 4.3. To
determine completely the lagrangian (4.2), the masses of the gauge bosons Z, 3 have
to be specified [M; has already been measured], as well as the fermion assignments

in the currents Jg.

We now discuss the fermion assignments in the Js currents entering the la-
. grangian of eq. (4.2). A more detailed discussion can be found in ref. [51]. Out
of the many angles which can be introduced to describe the mixing of all fermions
with the same SU(3)¢ x U(1)g quantum numbers in Eg superstring-inspired mod-

els, we will consider only one. Its precise determination, as that of other poorly
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known angles, requires the study of the interactions of the new fermions expected
in these models. This is not our céncem here.

Matter fields lie in fundamental representations, 27, of Eg, whose field content
has been given in table 4.2. We assume, as suggested by the smallness of flavour-
changing neutral currents, that the fermion assignments within the 27 are the
same for all generations. Moreover, it is believed that a good approximation to the
pattern of fermion masses can be obtained as a result of large ATy = 0 [SU(2)L
invariant] masses and small AT, = } [SU(2)r breaking] masses. In that case,
three angles are required to describe the mixing within the 27, which rotate dj ,;,
(1,21 €1,2r) and vy 51 respectively. We will only consider the common angle defined
by the rotation of the current eigenstates fi,) = {di(z)L: (12)0, €12)L)> Vs(a)L] in

table 4.2 to the mass eigenstates fy(2),

iy _ cos@ sinf fe
(fzw_(—sinﬂ cosﬂ)(f:f)’ (4.12)

fixing to zero the other two angles. In the above equation fi(2) stands for known
(new) fermions, and B = 0 corresponds to the standard assignments of known
fermions in the [16]s0(10) € [27]Es-

Taking @ into account, the Eg superstring-inspired models with one extra gauge
boson introduced before can be described by only two values of 8;. They correspond
to the two known ways of going from Eg to a low-energy group SU(3)c x SU(2)r %
U(1) x U(1). One is non-abelian flux breaking, which lowers the rank by one unit
and implies 6, = 0. The second one is abelian flux breaking, which conserves the
rank, followed by Higgs breaking at a large scale. For Higgs breaking, we have only
two SU(2)z x U(1)y singlets at our disposal in the fundamental 27 representation
of Eg, Uy and Us !. These two singlets form an S U(2)n doublet, where SU(2)n
is an Eg subgroup which commutes with the standard model subgroup, already

introduced in chapter 2. For the rank-6 group H surviving after compactification

19, is arbitrary in Ee models with arbitrary Higgs sectors.
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there are two alternatives: H contains or does not contain SU(2)x. In the first case,
one can assume without lc;ss of generality that < 74 >= 0 and < &% > 0. This
configuration can be reached from any combination with < g >3# 0, < i% >#0
by means of a suitable SU (2)n transformation. Therefore, using the quantum
number assignments in table 4.1, one finds ¢; = \/5/—8, Sy = \/5/_8 In the second
case, if one starts from < &3 ># 0, < &% >3 0, the rotation considered before is no
longer allowed, because SU(2)x is broken and 7 and i have different quantum
numbers under the residual group H. Therefore, since we are interested in lowering
the rank only by one unit, we have to assume that either &4 or % acquires a non-
vanishing VEV, but not both. The two cases are equivalent, as we prove now.
Using eq. (4.12), one can see that any model with < ¥y >= 0, < &% ># 0 and
given B is equivalent to a model with < % ># 0, < s >=0 and 8 — 3 + /2.
Therefore, it is not restrictive to assume < ¥ >= 0, < % ># 0, and then
= \/3_/;, 8y = \/5/_8 Note that, if one is only concerned with the standard
quarks ard leptons [df, (vr,ez)] € fi in eq. (4.12)], a variation in 6, can mimic
a variation in B by properly redefining the other parameters. However, these two
angles are physically different. The difference becomes apparent only when the
exotic quarks and leptons [DS,(H°,H ) € f, in eq. (4.12)] are considered. For
example, B # 0,7/2 implies a non-zero D{d$Zs coupling, which can never be
" reproduced varying 68, if 8 = 0,#/2.

Summarizing, in the models under consideration we allow only for one non-zero
angle B in the fermion assignments within the 27 of Eg. This removes the possible
double degeneracy for §; in the case of a large Higgs VEV.

Comparing (4.2) with (4.1) and using table 4.2 and (4.12), v* and a* can be
expressed as functions of Cp,. The result is given in table 4.4. As there are four
independent currents, all v*, a® can be written as functions of four of them, e.g.

¥ q¥

“ a¥, vt and a?. Using now table 4.3, we obtain, for the case of one extra

gauge boson, the vector and axial couplings that are needed for phenomenological
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u 1 5. /3
Va 4Cla t+ 13 \/; Caa
u - _1 1 3q, _1. /3
aa - - 4010 + 4 \/;0201 3 \/;030:
dy 10y 1 /3 1/3 1
v = —3Ci— 12\/;Cga+4 £C3q — 5 c0s23C 4
di — 1 1 /3 1 /3 1
ag = 3C1a— 4\/5—020, ~ 151/ 5C3a — 2 COS 20C4q
el = —Y¥—oh
x a @
alt = ag1
dz - u dl
'vs = vy vz
al? = —aj;—ay
a o @
eq — dy u
% = v} -
eq —_ —_—nl dl
xS
150 —_— —_— 1 . Loyt 1 U
Vo - Vo 2Ua 2aa
v2 = ail
v3 —_ u
vy = a}
e = ool
123 — U gdy
va - a’a a'a
a¥% = —v% (1=1,2,...,5)
didz2 — 17.u u dy d
v3 tar. 205 (vs + af + 205 + 2a3)
v = R = o = —ydrdz
aﬁld’ = a3 = a2 = a/ss = vgxdz

Table 4.4: Vector«(v) and axial (a) couplings of the matter fields in the fundamental
Eg representation, 27, as functions of the current couplings, Ca,.

applications. They are given in table 4.5.

To make the discussion more concrete, we shall work in the following, when
giving numerical predictions, with three representative superstring-inspired mod-
els, specified in table 4.6. All these models are obtained by fixing A = 1, in
which case physical quantities do not depend on #;. Model (a) is characterized by
(cz,82) = (1,0), and is nothinz else than the minimal model [26] discussed in great
detail in chapter 3: for this model physical quantities do not depend on 3. Models

“(b) [17] and (c) [27]' correspond to two different realizations of the intermediate
mass scale scenario, discussed in chapter 2, with (cz, s2) = (\/3—/5, \/5_/.8) they are
characterized by 8 = 0 and 8 = 7/2, respectively, corresponding to two different
assignments of the conventional quarks and leptons inside the 27 of Eg, which we

believe are the most natural ones.
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o= e '
R 4 P bt
vg = ‘m‘ﬂy 83 i § )+ 63%8W8101 - i
afj = 0
a3 = e 1%E— 8sSWK 19 —1) + (2 + 2%
ay = é_ss‘: + casw} |§81a(X% — 1) + 3(F + A%} )OJ{
T
v = P % (—-—— + lsﬁy) + salswi [ sie1(A? —1)
+ (c'f-}-/\z )(Cz+\'/—32‘3052ﬁ)
'Ugl = cwcw (_2 + 3 SW —6343WA [ SICI(A _1)
b ) (ot ySenconaf)]}
F =0
ay = - csk +ssiswi [8161()\2 —1)+(d + A%}) ("%62 + \/-3_32 cos 2ﬁ)]}
e = P {332 — 63;;sw1 [s1c1(z\2 — 1)+ (& + A%s?) (—-écz + \/gsz 6082/3)]}

Table 4.5; Vector (v) and axial (a) couplings for the up (u,c,t) and down (d,s,b)
quarks in Eg superstring-inspired models with one extra gauge boson. The remain-
ing couplings can be trivially computed using the relations of table 4.4.

(c2,82) sin 8 model
(a) (1,0) - minimal

(b) | (1/3/8,1/5/8) | 0 |IMS (ref. [17))
(©) | (/3/8,4/5/8) | 1 |IMS (ref. [27])

Table 4.6: Values of the parameters 8; and 3 corresponding to the three models
considered in the text. It is assumed that A = 1, which implies no dependence on

0.
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4.2 Structure of the mass matrix

Any extension of the standard model with one extra neutral gauge boson gives

rise, after removing the photon, to a mass matrix M? of the form

M2=(2 103) (4.13)

where the first entry corresponds to the standard current eigenstate Z° and the
second one to the new Z. Such a matrix is diagonalized by means of an orthogonal

transformation,

M22 0 _ Cy —S83 A C ’ C3 83
( 0 M32 ) - ( 83 C3 C B ( —83 C3 ? (414)
where we assume, for definiteness, that the eigenvalues satisfy M7 > MZ. The

mixing angle 83 € [—7/2,7/2) is given by

' A— M2 l MZ—A
=) C 2 == 2 . °
ss=sign(ON\ "3 =\ 12 2 (415)

At first sight A, B and C or, equivalently, M2, M2 and 63 seem to be three
~ independent parameters, the only constraint on them coming from the fact that
the matrijfi’Mz must be positive-definite. However, this is not the case in gen-
eral, and in particular in models where the Higgs sector contains only standard
SU(2)r x U(1)y doublets and singlets, transforming non-trivially under the new
gauge interactions (as it happens in Fg superstring-inspired models). This will
allow us to extract information on Mg from measurements of M,. The main point
is that A and M? can be measured (B can be traded for M7 if M7 # A), whereas
C, which is a model-dependent quantity, is bounded from above. This bound is

translated into an upper bound on Mj, for
2

M;=A+ 37

(4.16)
Eq. (4.16) follows from eq. (4.14), noting that

M2+ M:=A+B, (4.17)
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MIMZ = AB — C*. : (4.18)

Let us then discuss the determination of the right-hand side of eq. (4.16): a study

of this constraint in the minimal model has already been presented in chapter 3.
In the basis we choose for M? in (4.13):

M2, __ma 1

v V2Grs¥ Sy’

where G is the Fermi constant and o the electromagnetic fine structure constant.

A=Mj = (4.19)

That is the standard model prediction? for M2. We assume that at the scale
under consideration charged currents are described by SU(2)r. Therefore, A can
be measured by measuring mw; another determination of M%, can come from a
(model-dependent) fit of s, to low-energy mneutral current data, as we will see
later. On the other hand, M? is expected to be measured with high precision at
SLC and LEP. Thus, knowledge of C in eq. (4.76) will fix MZ. C only depends
on the SU(2)r x U(ily doublet vacuum expectation values through a definite

L

(4.20)

i
combination. We find

5
s

C= f:\vY‘M%o {(1 — A)s1c1 + (& + Ns?) [%(—4 + 5¢) + \/; 26(—1 + 21)

where

|<in>P+|<in>|
= 0,1 4.2
¢ [<in>P+|<i>P+|<is> P (€ €[0,1]), (4.21)

_ l<l71>|2
Tl > P+ <>

n (n € 0,1). )

For conventional assignments of quarks and leptons inside the [16]so(10) C [27]Es,
UL = i, " = s, H® = U3, where H(H) denotes, as in chapter 3, the Higgs of

hypercharge Y = —2(3) which couples to down (up) quarks. In general, standard

20f course, the precise standard model prediction Mzo depends, via radiative corrections,
on unknown parameters like the top and the Higgs masses. We assume here three fermion
generations and myo, ~ 40GeV, taking into account only the leading standard model corrections
to a : a = a(Mgd) = [127.7]71. Other smaller radiative corrections to A, due to different values
of msqp, the Higgs sector, exotic fermions, supersymmetric partners and extra gauge bosons, will
be neglected in the present analysis, where we focus on tree-level mixing effects.
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left-handed sneutrinos are a combination of the iy 2 directions

U cosfB sinf i
(I_I%)::(—sinﬂ cosﬂ)(f/z)’ (4.23)

where the angle 3 is the one defined in eq. (4.12). Then lepton number conserva-
tion, < v, >= 0, implies 7 = sin? 8. The conventional assignment corresponds to
B =0 (g = 0), but B(n) can be different from zero in general.

Using eqgs. (4.16), (4.19) and (4.20), constraints on the parameter space (M2,
Mj;, Mzo) can be extracted for every Eg superstring-inspired model, and in partic-
ular for the representative examples we have decided to consider. Note that ¢, in
principle, can vary between 0 and 1. However, for ¢ = 0(1) the down (up) quarks
would be massless. Moreover, detailed model calculations of radiative electroweak
breaking restrict £ € [0.04,0.27] in the minimal model (a); similarly, one obtains
¢ € [0.04,0.41] in model (c). In case (b) C is independent of £.

Since direct measurements of Ma and My already exist at the CERN collider,
we will assume in what follows that both masses lie within the one standard de-
viation ellipse of fig. 4.1, obtained averaging the UAl and UA2 determinations
[69]

M, =92.6 £1.7GeV (4.24)

My = 81.8+1.5GeV. (4.25)

Fig. 4.1 also displays the line corresponding to the standard model predictions
(4.19) for (Mzo, Mw ), varying the angle By. The values of (M3, M) compatible
with (4.24), (4.25) and with the existence of a Z5 are represented by the shaded
area. We have checked that this values can be obtained in any model for a suitable
patterﬁ of VEVs. Infig. 4.2 we plot eq. (4.16) for the three representative models
of table 4.6. We fix Mzo by choosing Mw equal to its central value at the CERN
collider [eq. (4.25)] Mw = 81.8GeV, whereas the range in M, corresponds to the
lo limit given in fig. 4.1. M2 has to be smaller than MZ, as required by egs.
(4.17) and (4.18). In the limiting case in which M2 coincides with the standard
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Figure 4.1: Allowed regjion of the (M, M) plane according to the present collider
data.

value MZ,, no constraint on M2 can be drawn. This happens in model (a) for
¢ = 0.8 and in model (c) for ¢ = 0.4: it is not possible in model (b), where C
is independent of { and non-zero. Then C = 0 and Z3 and Z° do not mix. This
is possible only in model (c) within the favoured range of £. But if M, happens
to be smaller than Mgzo, an upper bound on Mj; is obtained. For instance, for
My = 81.8GeV and our favoured range of ¢, if M, were 92GeV, then our bound
would be M; < 435GeV (a), Ma < 290GeV (b) and Mz < 264GeV (c).

4.3 Phenomenological analysis of neutral current
data

In this section we present new, model-independent fits of the observables in low-
energy neutral current experiments in the vg, vl, Ig and [l sectors (v = neutrino
or antineutrino, [ = charged lepton or antilepton, ¢ = quark or antiquark). A

detailed description of the different pieces of experimental information and of our
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Figure 4.2: Allowed region in the (M,, M3) plane for the models (a), (b) and (c)
of table 4.6.
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analysis procedures can be found in ref. [68]. Here We limit ourselves to a summary,
focusing mainly on the re;dts which consist, for each sector, in best fit values of
convenient model independent parameters. In the next section these results will be
combined with the collider data on the W, Z, masses to derive limits on the mass
and the mixing angle of the extra Z’ in the three representative models introduced
before.

Before going into details, a general remark is in order. Even if we are working in
extended electroweak models, radiative corrections, which must be applied to the
model-independent parameters, will be evaluated in the framework of the standard
model. This approximation is justified because we know that the standard model is
comnsistent with all present experimental data, and therefore we can anticipate that
in any acceptable model the effects of the extra Z’ on measurable quantities are
small perturbations of the standard model predictions. Thus the effects of radiative
corrections involving 7’ itself are expected to be a second order perturbation, and

will be néglected altogether.

4.3.1 Neutrinc-quark sector

The phenomenological lagrangian parametrizing the effective neutral-current in-

teractions in the neutrino-quark sector is

v Gr _ _ -
£l = —7—; Pyl — )] [ur@y™(1 —vs)u + drdy*(1 — 5)d

+ur@y* (1 + vs)u + drdy*(1 + vs)d]. (4.26)

Among the different processes described by eq. (4.26) (deep-inelastic scattering,
pion production, elastic scattering, etc.), deep inelastic neutrino-hadron scatfering
~is by far the most important. Making use of 38 independent experimental mea-
surements on isoscalar and on n and p targets, and applying the QCD-improved
quark-parton model znd the standard model radiative corrections, one can deter-

mine the four squared chiral couplings u%, d%,, v} and d% with the corresponding
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errors. From the squared chiral couplings one can then derive the linear ones,
removing the sign ambiguities byya comparison with other processes sensitive to
these choices. Adding together in quadrature the experimental errors (statistical

+ systematic) and the theoretical uncertainties, one finds:

u, = 0.356 & 0.020,

dr = —0.417 +0.018,
up = —0.164 % 0.027,
dp = 0.058 +0.080, (4.27)

with a correlation matrix

"1 0963 0.388 0.378

B 1 0361 0.412

P= 1 0.89
1

(4.28)

4.3.2 Neutrino-electron sector

The effective nedtral current lagrangian for the neutrino-electron sector is given
by

£ =~ L~ v WllarEr (L — e+ gmer (L 4wl (429)

ff ‘/5 B

Neutrino-electron scattering (which by the way is assoc'ated to the historical dis-
covery of neutral currents) is free from all the theoretical uncertainties of strong
interactions that plague neutrino-hadron scattering. However, due to the small-
ness of the cross-section, stasistical errors a.te>present1y much larger. A combined
analysis of all the existing data on (EL and (De, including radiative corrections

(even if they are still small compared to the experimental errors), gives

gr = —0.27340.018,

gr = 0.228+0.022, (4.30)

with a correlation

p = 0.042. (4.31)
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4.3.3 Charged lepton - quark sector

The neutral current interactions of this sector which are relevant to our analysis

are described by the effective lagrangian

G -
£} = 7; [(Bvu75€)(CruTy*u + Crady d)

+(EVue)(Coutyvsu + Caady*vsd)

+(Evue) (hY 4T ysu + kG 4 dy s d)] (4.32)
and are probed by three different classes of experiments: parity violation effects
in atoms, asymmetries in deep inelastic eD and pC scattering, asymmetries in
ete” — qq.

Parity violation in atoms

Experiments measuring parity violation in heavy atoms give informations on the
coefficients Ci, and Ci4 in (4.32): they are characterized by different experimental
methods, atomic elements and transitions observed. After including some theoreti-
- cal input and radiative corrections, one is able to extract from each experiment the
quantity Ciy + (Cha, where { = (Z+2N)/(2Z + N) depends on the element under
consideration. We use here data from 11 different experiments: the corresponding

values of Ci,, + (Ci4 can be found in ref. [68].

Asymmetries in e — ¢ and p — ¢ interactions

A parity violating asymmetry Ap = (or — o)/(cr + o) was measured at SLAC

in the inelastic scattering of longitudinally polarized electrons by deuterium:
er r(Eo) + D — e (E') + X. (4.33)

The measured asymmetries at different values of the kinematical parameters can

be fitted to the formula

A 1 1

—Q'I;) = K [(Clu - ‘écld) + F(y) (CZu - ’iCzd)] , (4.34)
where K = (3Gr)/(5+/2mra) = 2.158 x 107*GeV 2, y = (Eo — E')/Eo and F(y) =

[1—(1—v)?/[14(1+%)?). In order to determine the two combinations (Ci,—3C14),
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(Cou— %Czd)‘ and their correlation p, we have performed a fit to the published data,

obtaining
1
Cru— 5C1a = —~045£0.12, (4.35)
) ,
Cou — -2—0’2,1 =0.21 £ 0.38, (4.36)
p = —0.954. (4.37)

For the consistency of our approach, the above results should be corrected for
the complete one-loop standard model corrections. These additional corrections
depend on y and @2, and renge from 0.4% to 4%: therefore, they can be safely
neglected when compared with the experimental errors which range from 15% to
50%.

A different kind of asymmetry has been measured in the deep inelastic scatter-
ing of longitudinally polarized muons by an isoscalar carbon target:

g = T (=IAD = a7 (+A])
‘ ot (=AD) + e (+AD’

(4.38)

where a*(]) is the cross section for u* with polarization A for the reaction p*C —
ptX. Correcting the data for one loop standard model corrections, and fitting

them to the theoretical expression

. 3GFF(y)Q2 u .1_ d l
B=- 5V [(Paa — 2hAA) + A(Cau — 2C'zd)], (4.39)

one finds:

L 1.y 1, . [081£035 for |A| =066
(Paa — EhAA) + [Al(Cau — 2024) = { 0.68 £0.17 for |\ =0.81 (4.40)

-+

- Forward-backward asymmetry in eTe™ — qg

The forward-backward asymmetry has been measured in ete™ — ¢g reactions at
PETRA and PEP. The main sxperimental problems are flavour identification and
the distinction between quark and antiquark, and no reliable method has been

found for the light quarks u,d s. In the case of the ¢ quark, two methods have been
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used: a) direct observation of D%*, D**; b) observation of direct leptons in decays
c—WwX (Il =ep) In the case of the b quark, only the observation of direct
leptons in decays b — lvX is available. In both cases all the experiments have
the common feature of low yields and high backgrounds, and the errors are rather
large. For this reason one can neglect radiative corrections and fit the measured

asymmetries Ag% and AE?)B to the linear expressions in s:
Al (s) = as, A%(s) = a®s, (4.41)

To improve the approximation, one can also apply s dependent but model inde-
pendent theoretical corrections which compensate for neglecting the terms O(s?).
After these corrections, considering 8 different experiments in each case we obtain

the best fit

a® = (-1.2840.32) x 107*GeV 2,

a® = (—1.9840.40) x 107*GeV 2. (4.42)

/
One can now collect the different pieces of information on the ! — ¢ sector and

perform a fit to the parameters appearing in eq. (4.32). The result is:

Ci. = -—0.1809 % 0.0551,
Cia = 0.3274+0.0490,

Coy — =Caq =ﬂ —0.1213 £ 0.2344,
“ = 0.6048 £ 0.1515,

he, = —0.511240.1052, (4.43)

with a correlation matrix given by:

1 —0.979 —0.892 0.564 —0.172
1 0885 —0559 0.171
p= 1 —0640 0.163 |. (4.44)
1 0.059
1
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4.3.4 Charged lepton - charged lepton sector

This sector is probed in the reactions ete” — ptp”, r+tr—, whose forward-
backward asymmetries have been measured at PEP and PETRA. To keep the
analysis at a model-independent level, we fit the measured asymmetries AFp to

the following approximate theoretical expression:
At = As+ Bs?, (4.45)

so that all the information can be condensed into the parameters A and B (which
in turn can be used as inputs in any fit to a specific model with an extra Z'). The
asymmetries A% presented by the experimental groups already include corrections
for detection efficiency, bremsstrahlung events of the type ete~ — It1~~ and other
QED radiative corrections: all these corrections are experiment-dependent. Before
comparing Afp with Atho, two further corrections are in order. The first one
takes care of the 1eff;_-over standard model radiative corrections. The second one
."takes care of the diﬂ'érence between the full tree-level theoretical expression for the
asymmetry and the approximate formula (4.45): this correction depends strongly
on the‘ value of s, but it is practically model-independent within a reasonable
range of variation for the model parameters. Fitting the existing 28 independent

experimental data we obtain :

— (—0.56 £0.13) X 10"*GeV 7,

= (—1.38£0.96) x 103GeV ™, (4.46)

with a correlation p = —0.947 and x?/d.o.f. = 23.5/26.

4.4 Limits on the mass and the mixing of a Z'

We use now the information collected in the previous section, together with the
direct determinations of Mw and M, to establish [68] a lower limit on the mass

M, of the extra Zz boson and an upper limit on the magnitude of the angle 03
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describing its mixing with the observed Zs, in the three superstring inspired models
of table 4.6%. In order to do this, we must be able to express the phenomenological
parameters of egs. (4.27), (4.30),(4.43) and (4.46) in terms of the vector and axial
couplings of table 4.5 and of the gauge boson masses M, and Mj;. Some trivial

algebraic computations give (d = d;, e = e, ¥ = 14 in the notation of section 4.1):

3 A 2
wdn=3 (5£) bt - allei ¥ a) (4.47)
1=2 i
3 AC 2
grn =3 (£2) o7 = oo F o), (4.49)
i=2 i
3 A 2
Crud = —8 ?::2 (]VZ) af’v;“d, (4.49)
3 A 2 u
Crua=—83 (55) wrare, (4.50)
3 A 2
AEd — 83> ( C) asa?, (4.51)
i=2 M;

-2l )]

. 3 at 2 as 2 (vcac + ,Ucae)Z _ 2[(aeve)2 + (ae,ue)2]
B=—= 2 3 _ 273 372 2v3 3-2 .
2 {(M) ! (M) MIME  (459)

where A% = Z&——- and Ar = 0.0711 = 0.0013.

The models of table 4.6 are characterized by specific values of the parameters 6,
and (3, and since we Lave assumed A = 1 physical quantities do not depend on 6;.
Moreover, as explained in section 4.2, their mass matrices can be characterized by
only two parameters, for example 63 and M3. For each separate model, therefore,
the parameters to be fitted are just three: the weak angle 6w, the mass M3 and
the mixing angle §3. Using egs. (4.27), (4.30), (4.43) and (4.46), plus the addi-
tional information that can be extracted from the UA1 and UA2 determinations

of the W* and Z, masses [69], we have performed a least squares fit using the

3For related work, see ref. [70].
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computer program MINUIT. The results for the three models under consideration

are summarized below.

Model (a)
M393>| isgffv } (at 10), (4.54)
s3 = 0.231 + 0.006. (4.55)

Model (b)
M;303>| ZZ_%;V } (at 10), (4.56)
sy = 0.230 £+ 0.006. (4.57)

Model (c)
JVI}303>[ ioggzv } (at 10), (4.58)
s%, = 0.228 £ 0.006. (4.59)

4.5 Prospects for present and future colliders

In the previous section we have seen that the present limits on new Z3 bosons,
coming from low-energy neutral current data and from the measurements of the
W% and Z, masses, are not very stringent. It is therefore interesting to study
the possible signals of these new bosons at the existing and planned high-energy
machines.

One way of detecting a new Z3 boson could be the observation of its indirect
effects at future ete™ and ep colliders. At SLC and LEP one will be able to perform
precise measurements of the Z, mass and of cross sections and asymmetries around
the Z, peak. At HERA (and perhaps at the LHC in an ep configuration) one could
look at parity and charge asymmetries. On these topics there exists already a wide
literature [71].

The most attractive possibility, however, is the direct production of Z3 bosons

at present and future hadronic colliders [72]: SppS (+ ACOL), Tevatron, LHC
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Figure 4.3: Production of [™!™ pairs in hadron collisions. ‘a’ always denotes a

proton and ‘b’ a proton or an antiproton, depending on the collider. [* corresponds

to e*, pu* or 7%,

and SSC. The most promising decay channel for the discovery of a new Zj is,
obviously, the one into charged lepton-antilepton pairs, which led in the past to
the discovery of the Z,. Another interesting channel, which could give some useful
compleri{entary information, but is geﬁerally less favourable than the previous one,
is the one into W*W~ pairs (through the mixing between Z, and Z3). These two
dégé.y channels will be studied in detail in the rest of this section. Decays into
ordinary quark-antiquark pairs appear to be uncetectable, due to the huge QCD
background. Other fancier possibilities require the presence of exotic fermions or

supersymmetric particles in the final state, and will not be considered here.

4.5.1 Decays into lepton-antilepton pairs

The unpolarized differential cross section for the process p(B) — 1T~ X depends on
the lepton invariant mass M, on the rapidity y and on the angle 6* in the centre of
mass of the colliding partons (see fig. 4.3). The general form of this cross section
is, for tree level amplitudes,

do

2 o* A -
M dydeost (g5 (y, M) Sy(M)(1+cos® ") + g5 (y, M) Ag(M)2 cos 6], (4.60)
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where the index q runs over the different quark flavours, S;,A4, (which are the
only model-dependent quantities) ;nvolve the vector and axial couplings of quarks
and leptons to the different neutral gauge bosons, while gqs , g;;’ involve the parton
distribution functions of the colliding hadrons: the precise definitions will be given
below. One usually integrates the 8* dependence, which only reflects the spin
structure of the interaction. One can also integrate the y-dependence, which gives
the parton distribution within the hadrons and is an input, or the M dependence,
given that almost all the events concentrate on the resonant peak. However, one
loses in principle a lot of information in both cases. If the rapidity dependence is
integrated out, given that the structure functions weigh differently the (anti)quark
distributions for different y values, one gets only one average of S, and Ay, while
keeping explicitly the y-dependence one might probe different combinations of S,
and Ag. On the other hand, if the M-dependence is integrated out, one loses in a
similar way relevant interferer ce effects, as S; and A, are sums of products of cou-
pling constants and propagators. If a signal is detected, the best way of analyzing
the data would be to perform a fit to (4.60), given that the 6* and y dependences
for the production of a new .7 are calculable. For this the general parametrization
of the Eg models we introduced in section 4.1 is convenient, because the preferred
model can be singled out at once. However, the only sensible thing to do at present
(in the absence of any experimental indication of a new Z) is to give numerical
examples of differential cross sections and asymmetries, integrating out 6* and y
or 8* and M, respectively.

Experimentally, the situation can be more complicated. To discriminate among
different models, the lepton charges have to be identified and the momenta mea-
sured with a sufficient resolution: this could be non :rivial at LHC and SSC.
Moreover, to take cuts and detection efficiency into account, one should multiply

the lepton cross section by an experiment dependent function of M, y and 6.

Finally, the results deperd on the parton distribution functions: in our calcu-
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Figure 4.4: Lowest order graphs contributing to the process gg — I71™.

lations we use those by Duke and Owens [73], set 1; other choices would not affect
significantly the results of our analysis. QCD corrections can also be non-negligible,
and in particular partons can carry a non-vanishing transverse momentum. Here
we neglect all these effects.

At hadron colliders, the production of lepton-antilepton pairs is described, at
the quark level, by the graphs of fig. 4.4. Searching for isolated lepton-antilepton
pairs Wi;h large transverse energy one can observe the Z and possibly new neutral
gauge bosons. The corresponding differential cross section is given by eq. (4.60),

with

M .
954 (y, M) = 2wl £ (o, M) 7 (0, M) 2 7 M) 1D (2 M),

(4.61)
where the sign +(—) corresponds to S(A), and
P (vivg + alag)(vivg + at,aj) (4.62)
@ =SBz — M2 + iMaTa)(M? — Mj — iMpTp)’
(viad + alvg)(vias + atvg) - (63)

Aa = Bab i T 12 4 iM.Ta) (M? — M} —iMpTs)’
We follow standard conventions and the notation of ref. [74] if not otherwise stated.
Quark and lepton masses are neglected. Aa, and t are the two colliding hadrons at
centre of mass energy /s, z, and z; being the momentum fractions of the colliding

partons in a and b respectively (see fig. 4.3). M is the lepton-antilepton invariant
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mass, y the rapidity (z.5 = M/\/se*¥) and 6* the scattering angle (al™) in the

centre of mass of the parton systém qq. Finally, fé?a(f ))(%(b), M?) are the relevant

parton distribution functions.
All the model dependence in eq. (4.60) is in S, and A,. Then it is sensible to

integrate over §*. We will present plots of the differential cross section

do \° log(+/s/M) 1 do
arl = d dcos@*—— 2
(dM) /IOK(M/\/;) y/—1 cos dMdydcos 6’ (4.64)

testing the dependence of S; on the model parameters, and the asymmetry for pp

— APF
APP(M) = e

I A dy(f;"ffx)dcwa*mig%;?r
- (do/dM)S ) (4.65)
and for pp
do /dM)4??
A (M) = iy
i (fc:og(ﬁ/m - lzguurh/?))d"(fo1 "ffx)dc“"'nﬁw
B (do7dM)S ; (4.66)

testing the A; dependence (for a sizeable differential cross section). We also give
the differential cross section (do/dMdy)3;_p, at the resonant peak M = Ms and

the corresponding asymmetry

(d"/ dey)f{=M
—_— Ty
Aly) = (do/dMdg) gy _py.

1 - d
(j;) - .]f],) dcos 6 dey:cose‘

M=M3 . 467
f:: dcos8* Eﬁd‘ff_mf IM=M3 ( )

Equations (4.64)-(4.67) are our main concern in the rest of this subsection. To
calculate v* and a* and the cross sections, one should also fix the value of ;. We
put it equal to zero in all cases. In fact, 65 is known to be small (|6;] < 0.11 from
the analysis of the previous section, but this limit rapidly improves as Mj increases
from its lower bound) and for the Z3 decays into I*]~ we are concerned with, it

can be safely neglected. This small mixing can be important to obtain bounds on
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M?, as seen in section 4.2, and for the decay of Z3 into WtW ™, as we will see in
the next subsection. Howe;rer, its contribution to the Z3 width and the Zs-fermion
couplings, which are the relevant quantities here, is at most a few per cent. Note
that the absence of Z°Z; mixing does not mean that there are not interference
effects: they result from the addition of thé different amplitudes in fig. 4.4 and
could give important information when measured.

We plot here the lepton differential cross section, (do/dM)° in eq. (4.64), and
the asymmetry, APP(M) or APP(M) depending on the collider in egs. (4.65),(4.66),
for the three representative Eg superstring-inspired models of table 4.6. Fig. 4.5
and 4.6 correspond to the CERN collider (a,b,+/s) = (p,p,630GeV); fig. 4.7
and 4.8 to LHC, (a,b,+/s) = (p,p,17TeV); analogous figures for the Tevatron
and the SSC can be found in ref. [66]. In all cases we use the Duke and Owens
parton distribution functions, set 1 and we assume My = 81.8GeV, My = M. th —
92.8GeV and I'; = I'}, = 2.8GeV (83 = 0, see above), and a(Mzo) = €*/4r =
(127.7)"% vk and a* are those of tables 4.4 and 4.5. Msj is fixed for illustration
purposes equal to 150GeV for the CERN collider and 17eV for LHC. The Z;
width, I's, is calculate] in the two extreme cases: (i) Z3 can decay only into the
oBserved fermions (including the top quark); (ii) Zs can decay into three families
of 27 fermions and the corresponding sfermions. This illustrates the possible range

of variation of I'z, which we calculate using the decay rates
_ M , :
[(Zs — ff) = ﬁ(l — ) 2Co{(v])? + () + 2(v])* — 2(af)’Ins},  (4.68)
for fermions, and
;T Ms \3/21 f £\2
I'(Zs — furfLr) = ﬁ;(l —4n;) Zcf('vs Fa3)’, (4.69)

for sfermions, where 1, = (ma/M3)?* with m, (a = f, f-) the fermion and sfermion
masses and the colour factor C;y equal to 1(3) for SU(3)¢ singlets (triplets). In

doing numerical estimates, we neglect finite mass effects in the final state: they
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can be trivially included using egs. (4.68) and (4.69), but in case (i) they are
negligible; in case (ii) they can be sizeable, but neglecting them we obtain an
upper bound for the total width I's. In table 4.7 we give numerical values for the
relevant quantities I's/M; and B(Itl™) =I'(Zs — ete™) /T3 =T'(Z3 — ptu~)/Ts.
We consider cases (i) and (ii) above for the three models previously introduced.
I'3 /M3 does not depend on M3 (in the massless limit for the decay products) and
is given in units of 10%, so that the numbers in table 4.7 correspond to the width
(in GeV) of a 1TeV Zs.

In figs. 4.9-4.11 we plot (do/dMdy)3—ps, and A(y) in eq. (4.67), for the same
models and colliders and with the same assumptions as before. Finally, in figs.
4.12, 4.13 we give the total cross section for the production of Z; decaying into
ete” (or ptp~). The number of events corresponds to integrated luminosities,
J Ldt, of 0.37pb~! (SppS) and 10pb~! (SppS + ACOL), fig. 4.12 and of 10%*pb™?!
(LHC), fig. 4.13. The horizontal line in fig. 4.12 corresponds to o = 3pb, the
present upper bound (at 90%ec.l.) from the UA1l and UA2 data: it can be easily
translated into a lower bound on Mj3 for the different models.

Looking-at the different figures, two final comments are in order. First, the
hadron célh'ders, through the identification of charged lepton pairs, could detect
quite heavy neutral gauge bosons or impose strong limits on their existence (fig.
4.13). Second, the width of these new gauge bosons is quite small (table 4.7 and
fig. 4.5 and 4.7, and distingiishing among different models might require good

resolution detectors. This point is raised and quantitatively discussed in ref. [75].

4.5.2 Decays into WtW ™ pairs

We have seen in the previous subsection that, if a new gauge boson Z3 exists, it can
decay into pairs of fermions, ff (and possibly of sfermions ff if a supersymmetric

model is considered) independently of a possible sizeable mixing with the Z°. In
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do/dM)® as a function of the lepton

invariant mass M for the SppS, models (a), (b) and (c) and cases (i) and (ii).

M, = 150GeV is assumed.
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(i) (i) (ii) (ii)

103 X F3/M3 B(8+C—)% 103 X Pa/M:; B(e+e”)%
Model (a) 6.5 3.6 38 0.6
Model (b) 12 5.9 38 1.8
Model (c) 6.5 5.4 38 0.9

Table 4.7: Width and branching ratios into electron-positron pairs for the Z; of

three representative models.
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Figure 4.6: Lepton asymmetry APP(M) as a function of the lepton invariant mass
M, for SppS, Ms = 150GeV, models (a), (b) and (c) and case (i) only; the figure
is essentially unchanged for case (ii).
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Figure 4.7: The same as in fig 4.5 but for the LHC and Mz = 1TeV.
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Figure 4.8: Lepton asymmetry APP(M) as in fig. 4.6 but for the LHC, M3 = 1TeV
and case (ii); the figure is essentially unchanged for case (i).
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Figure 4.9: Lepton differential cross section at the Z; peak (do/dMdy)m=p, as
a function of the rapidity for model (a) and cases (i) and (ii). For the SppS,
M3 = 150GeV; for the LHC, M3 = 1TeV. The figures corresponding to models

(b) and (c) are quite similar.
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Figure 4.10: Lepton asymmetry at the Z3 peak as a function of the rapidity A(y)
for the SppS, Mz = 150GeV , models (a), (b) and (c) and cases (i) and (ii).
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Figure 4.12: Total cross section for the production of Z3 decaying into IT]~ at the
SppS.
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Figure 4.13: The same as in fig. 4.12 but for the LHC and an integrated luminosity
of 10%*pb~1.

addition, Z3 can decay into W-pairs if M3z > 2My and it has a non-zero mixing
with the Z° #. The coupling of the Z3 to W pairs is illustrated in fig. 4.14 and the
corresponding decay rate is found to be

My

T'(Z Ww-) =
( 3 127

(1= b 1+ 20my + 1208 P . (470)

In the aboye equation, é is the coupling constant associated to the vertex ZzW+W—,
mw = (MW/M;;)2 . As can be observed comparing (4.68), (4.69) and (4.70), the
W*W~ channel can be very important for a heavy enough Z; (small enough nw),
unless ¢ is negligibly small. Actually, in the physically relevant limit M? >> M,

N(Zs - WtW-) 1 ( M; )4 82
T(Zs — SfF, 5 ff) 24 \Mw/ BC((v])? + (a))?)’

where sfermion masses m; have been neglected with respect to Ms. (If sfermions

(4.71)

are not considered, there is an enhancement factor of 3/2).

Formulae (4.70),(4.71) are model independent. If § = O(1), Tw+w- ~ O(M3 /M )T

implying a very wide (heavy) Z; decaying only into W pairs. But this is never the

case in extended electroweak models, where § always scales as M;? (see below).

*Decays into gaugino pairs can be safely neglected for they are suppressed by a factor
(Mw /M3)* with respect to decays into W pairs.

107

108

-{10°

Vevents
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Figure 4.14: Feynman rule for the coupling of the Zs to W pairs.

Still, however, the W+W‘ sample from Z3 decays will appear to be experimentally
sizeable in hadron colliders.

In general,

6= élcw33. (472)

This follows from the observation that W+W~ only couple to W3, with strength
Gi. Then, it is only through its mixing with W3 that a new Z can couple to (and
decay info) WTW~. However, any heavy gauge boson can mix with W3 at most
proportionally to cw, for W3 mixes with the photon proportionally to sw. In the
standard model, there is only one massive gauge boson, Zo, and it saturates cw,
then coupling to WW~ with strength Gicw. Defining Zo in the same way in
models with one extra gauge boson, the new Z; will couple to WTW~ through
its mixing with Zo, ss3, and proportionally to the Zo coupling, gicw, proving eq.

(4.72). Using now egg. (4.15) and (4.16), we can write

. = C
J (M3 — A)(M; — M3)

(4.73)

This proves that, if C is bounded, as it happens in any SU(3)c x SU(2)z x U(1)y %
U(1)y model, then s3 scales as My 2 In fact, M2 has been measured and A and C
are essentially bounded, up to Clebsch-Gordan coefficients and ratios of coupling
constants, by M. This follows from the observation that any VEV contributing

to A and C has Q =0 and T3z and Y # 0, then contributing also to My In this
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case eq. (4.71) reduces to

(2~ WW)  C 2,
T(Zs — Ty [T, 5, F) M 24l T Csl(wd)? + (af)?)’

(4.74)

which does not scale with Ms: C is bounded and so is eq. (4.74).

To get some insight in the size of the W+W ™ signal for Ee superstring-inspired
models, let us compare I'(Z3 — W+W~) with I'(Zs — e*e™), which are easily
computed using the results of sections 4.1 and 4.2. Figure 4.15 gives the ratio
R=T(Zs —» WW")/T(Z5 — e*e~) for the models (a), (b) and (c) of table 4.6
as a function of Mj; for diffexeni: values of ¢. For values of £ for which there 1s no
Z37Z mixing, § = 0 and so is I'(Zs — W+W-). In all cases M; is required to lie in
the shaded area of fig. 4.1. For this range of M, and for given (model dependent)
¢ values, M3 cannot be arbitrarily small. Then, in some cases the corresponding
line in fig. 4.15 starts at valuss of M3 larger than the threshold M3 = 2Mw. We
can observe in fig. 4. 15 that the ratio R depends mainly om ¢, changing little for
dlfferent M, and M3 values 2s can be guessed from eq. (4.74).

From fig. 4 15 it is clear that the WtW~ s1gnal is of experimental interest,
as it is compa.rable to the ete~ one. However, in general it is not the main signal,
due to the penalizing factor for W pair identification with respect to lepton pairs.
The detection of W+W = appears to rely on the chain Zs — WW— — (lw)(57)
where | = e, . Taking into account the branching ratios for W — ev,jj and
the detector efficiency, a (optimistic) ‘discovery limit’ of 20 Z3 — WTW~ has
been estimated. In figs. 4.16 and 4.17 we plot the total cross section o(ab —
Zs — WHW-) for the CERN collider, (a,b, V3) = (p,P,630GeV) and the LHC,
(a,b,+/3) = (p,p, 17T eV), respectivelir. We also give the corresponding number of
events for an integrated luminosity, [ £dt, of 0.73pb~! (SppS) and 10pb~t (SppS
+ ACOL) in fig. 4.16, and of 10%pb~! (LHC) in fig. 4.17. In each figure, we
present plots for the models (a), (b) and (c) of table 4.6. The calculation of the

W+W~ cross section is standard, but we use for the Z3 production and for its decay
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into W+W~ (usually not considered) the coupling in fig. 4.14, together with the
results of sections 4.1 and 4.2. Our parton distribution functions are as before
those of Duke and Owens, set 1. We assume that only three standard fermion
generations are kinematically accessible. If Z; is allowed to decay into all fermions

and sfermions in the 27 representations of Eg, the cross sections would be reduced

(X3 o

by a factor ~ Besides a factor of 2 of uncertainty characterizes the parton
distribution functions. As in fig. 4.15, lines corresponding to £ = 0,0.5 and 1 are
shown, while the shaded areas correspond to the favoured values of €. As before,
we fix My = 81.8GeV and we allow M, to vary inside the shaded area of fig. 4.1.
Comparing the W+ W~ cross section with the 20 events discovery limit, we observe
that to detect (or exclude) a new Z; through its W+W- signal, we have to wait for
LHC (fig. 4.17) or SSC, the CERN collider being out of question (fig. 4.16). This
allows to comment on the two unusual events which are present in the W sample
of UA1 [76]. It was speculated [77] from the kinematics of these events that they
could result from the decay of a new boson of mass ~ 250GeV into W+W~—. It
is clear from fig. 4.16 that no Z, arising from an Fjg superstring-inspired model
can give the presently needed cross-section: they are off by more than one order of
magnitude. Moreover, as explained before, it is a general fact that the WHtW~-Z,
coupling is gicwss, where g; e is the Z coupling and s3 the Z,Z; mixing. Present
experimental limits require that in extended electroweak models (even more general
than the Eg superstring-inspired ones) sz < 0.1 for M; ~ 250GeV . Therefore, the
cross section required by the Z3 — W*W ™ interpretation of the present UA1 data

is one order of magnitude larzer than expected in any extended gauge theory.
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Chapter 5

Concluding remarks

In this work we have considered some phenomenological N = 1, d = 4 super-
gravity models that can be regarded as possible low-energy limits of the Eg x Eg
heterotic superstring, compactified on some Calabi-Yau manifold. After explain-
ing the philosophy of our approach in chapter 1, we have reviewed some gen-
eral features of these superstring motivated models in chapter 2. In chapter 3
we have discussed in detail a prototype model, characterized by the gauge group
SU(3)¢ ><iSU(2)L x U(1)y x U(1)g and by three families of 27 chiral superfields
with the quantum numbers of the fundamental representation of Fg, mainly focus-
ing on those features that make it different from conventional supergravity models.
In chapter 4 we have examined, in a general framework, the possible existence of
extra Z' bosons (in addition to the Z observed at the CERN collider), associated
to ﬂa.vour conserving neutral currents of Eg. We have established limits on their
masses ’a.nd mixing angles from the analysis of the present experimental data, and
we have studied the prospects for their detection at existing and future accelera-
tors.

It must be stressed once again that, at the time of this writing, there ié no
sound way of extracting incontrovertible phenomenological predictions from su-
perstring theories. Much progress is needed before such a connection (if any) can
be established. It seems however that, if the low-energy limit of superstrings is

going to be just the standard model (with or without supersymmetry), it will be
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extremely difficult to find even some circumstantial evidence in favour or against
them. This is what motivated oﬁr investigation of possible new phenomena that
might be related to this theoretical framework.

This situation is expected to improve in the near future. On the theoretical
side, it could be interesting to compare the class of low-energy models we have
considered with the ones corresponding to some other recent proposals, like orb-
ifolds or four-dimensional superstrings, to understand differences and similarities.
On the experimental side, the forthcoming colliders will give us an unprecedented
chance of exploring the TeV region. If none of the new phenomena considered
in this analysis will be detected, this will restrict significantly the possible phe-
nomenologically acceptable options. On the other hand, the discovery of just one

of them could give us the clue for what is beyond the standard model.
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