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Introduction

We’re still in the Middle Ages in biodiversity research.
We’re still cutting bodies open to see what organs are inside.
(S.P.Hubbell)

Although the mathematical methodology was introduced in biology
more than a couple of centuries ago [1], it is only recently that the tools
developed in the realm of statistical physics have shown themselves as
helpful in understanding complex problems arising in the diverse areas of
biology. In some field this type of approach has become well established,
as in the case of the study of biopolimers and proteins; in other cases this
methodology is not so widespread but the interest is growing rapidly. This
is the case of ecology.

There is now a growing availability of extensive datasets, thanks to or-
ganizations like the Center for Tropical Forest Science (CTFS) of the Smith-
sonian Institute, and his Forest Dynamics Plot project [2] which provide
regular censuses of many forest plots all around the world; or the TIDE
project (Tidal Inlet Dynamics and Environment) [3] monitoring tidal areas
such as lagoons and estuaries. Moreover, novel techniques like spectral
data analysis of satellite images (as we will see later) have made possible
to have accurate data from vegetation patches that were before considered
impossible to analyze quantitatively.

With more and more data available from many diverse fields of ecology
it is of paramount importance to find models that are capable of explain-
ing them. However it is not an easy task due to the sheer complexity of
the ecosystems i.e. the inextricable web of different relations between the
species present in the system. A model that will be able to explain quanti-
tatively or even qualitatively a whole ecosystem is, and will be for a long
time, completely beyond our possibilities. The ecological processes act si-
multaneously on very different scales of time and space [4]. Nevertheless
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it is possible to focus on certain aspects of a certain subset of species, as
we will precise later, and to construct models capable of explaining this
simplified ecosystem.

In this work we are mainly interested to the study of the spatial dis-
tribution of the vegetation patches. We will utilize data that come from
the tropical forests of Barro Colorado Island (Panama), and Yasuni (Peru),
along with a different set of data about intertidal vegetation (the vegeta-
tion that is periodically submersed by the sea, due to the tide) in the vene-
tian salt marshes. Due to the very recent availability of data1, the field of
spatial explicit ecology is not yet a well developed one, but it looks promis-
ing. Many models were proposed but we still lack a unifying perspective.

In the present work, for the first time we will be able to fit empirical
data about spatial distribution of species in a meaningful way using spatial
explicit ecological models. In particular we will use a neutral model to fit
the data from tropical forests, where the number of species involved make
unpractical to characterize each one of them. The result show that the
neutral approximation is very well suited to fit the data, provided that
an additional effect, called the Janzen-Connell one, is implemented. On
the contrary, salt marshes vegetation distribution will be explained using
a non-neutral model because the number of species involved is very low
(3-4 species at most), and so it is possible to write and solve analytically a
model able to distinguish between different species2.

The core of this work consists of the analytical solution of two spa-
tially explicit models. The solutions will be always verified with explicit
computer simulations which are also used to calculate quantities not an-
alytically accessible. In the case of the models developed for the tropical
forests we will be also able to find a scaling form for it, linking together
some ecologically relevant quantities that were considered independent.
In both model, their analytical solution is utilized to fit the empirical data.

The organization of this research work is as follows:

1 The first data about the spatial distribution of trees in the tropical forest are available
since the early 80’s, but the real study of clustering has begun much more recently, see
for example [18]; the data about the intertidal vegetation were taken during the last years
and the spatial distribution of species is analyzed for the first time in the present work.

2 In fact the solution that we provide is valid for any number of species, but the ap-
plication of this solutions looks unpractical if the number of species is much greater than
here.
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• In the First Chapter we will discuss some patterns identified in the
last years by ecologists in this ecosystem, in their research of a mean-
ingful measure of biodiversity, focusing in particular on the spa-
tial patterns. We then will describe the two ecosystems studied in
this work, the Tropical Forest and the Intertidal Vegetation in Salt
Marshes.

• In the Second Chapter we will give a brief survey of the past line
of research relevant for this work. We will introduce the important
concept of neutrality and outline some dynamical population model
used so far.

• In the Third Chapter we will study the voter model with speciation
that we will use in a modified form to fit the data from the Tropical
Forests. We will study also a scaling relationship for the original
model.

• In the Fourth Chapter we will examine a speciationless non-neutral
model with the purpose to reproduce the spatial organization of the
Salt Marshes, and discuss the fits that one can obtain.

And finally we will state some conclusion and perspectives, assessing the
relevance of the work done and looking at possible improvement of our
theories. We will discuss also the proper use of our models and how this
can contribute to the research in ecology.
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Chapter 1

Spatial Patterns in Ecology

If a tree falls in the forest
with no one to hear him,
is the tree really fallen?
(Koan Zen)

If a man is talking in the forest,
and no woman is there to hear him,
is he still wrong?
(Peter Kay)

In this chapter we will outline some of the patterns highlighted by ecol-
ogists during their study of the ecosystems.

1.1 Community, Metacommunity and Trophical
Similarity

A complete and exhaustive study of an ecosystem is a formidable and
probably impossible task with the tools currently available. Indeed, an
ecosystem is a very complex object composed by many individuals of
many different species with different sizes, diet, reproductive strategy,
and so on. Most of the time there will be plants and animals (along with
fungi, bacteria, etc.) in the same ecosystem. The relations among them
can be very different: there can be competition, symbiosis, predator-prey
or parasite-host relationship and so on. To further complicate the situa-
tion, ecosystems are not closed systems, and are subjected to immigration,
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6 1 Spatial Patterns in Ecology

environmental and climate change, etc. In an effort to understand some-
thing from such a complex problem it is useful to fix some guidelines and
restrict the observation to something simpler than the whole system.

A first and natural choice, that we will encounter later in the Lotka-
Volterra model, is to consider only few species and to consider all the rest
of the ecosystem as an external perturbation. The hope is to reconstruct
the behavior of all the system starting from the simpler interaction of a
subset of it [5].

Another approach, used in the main part of this work, is to focus on
similar species and ignore the remaining environment (that is assumed to
give the same conditions of life to all the considered species). To this end
we will say that two species are trophically similar if:

• The species are similar (i.e. they have roughly the same lifespan, the
same body size, etc.)

• The species compete for the same resources

An ecological community is the ensemble of all mutually trophically sim-
ilar species living in a defined area (a single island, an isolated forest, etc.).
A couple of synonyms for ecological community are trophical level and lo-
cal community. If the same kind of species exist also on a larger spatial
scale (like a continental scale), then we will speak of metacommunity, the
main difference with the local community being that due to the large scale
species belonging to the community may not directly compete or interact
whatsoever.

The definition of trophic level implies some desirable characteristic:
first of all it restrict all the interaction between considered species to the
competition for the same resources, thus simplifying a lot the problem.
Then it allows to formulate in the clearest way one of the biggest problem
in ecology: why species have abundances so different among them? In the
same trophic level the species are all similar, and so the answer should lie
in their competitive dynamics. This is obviously a gross oversimplification
that can be justified only a posteriori, by the results it produces.

Good datasets about single-trophic level ecosystem are today available
from exstensive studies on tropical forests [6]

In all the rest of this thesis, unless explicitly stated, we will assume that
we are studying a single trophic level.
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1.2 The Law of Constant Density

One of the simplest and most important characteristic of a generic ecosys-
tem is the fact that, by definition, the ecosystem is finite. This means that
there is an unavoidable physical constraint on the total number of indi-
viduals that can be packed into a given space. Space per se is not a re-
source, but it is often directly proportional to real resources (water, nutri-
ents, light), and thus can act as a surrogate variable for these resources.
Although the real resources are abundant, the very physical size of the or-
ganisms give an upper limit on the number of individuals that can live in
a given area. Obviously, in a community of trophically dissimilar species,
the number of organism per unit area will vary, depending on many fac-
tors such as their relative size, the energy demand and so on. However,
if the community is composed solely of tropically similar species, one can
guess that the density of organism should no vary too much from differ-
ent local samples. MacArthur and Wilson [7] noticed that the number of
individuals J in a local community depends linearly on the area A:

J = ρA (1.1)

ρ being the density of individuals. A striking example of this law is illus-
trated in Fig.(1.1). It is an enumeration of trees in a closed-canopy trop-
ical forest, specifically in the 50-ha plot in Barro Colorado Island (BCI),
Panama. The relationship holds very closely for five orders of magnitude
(from 1m2 to 5 · 105m2), despite the fact that the trees counted belong to
many different species (> 300 species). While the linear shape of the av-
erage number of trees over the area is linear by definition1, one should
remark that in Fig.1.1 are also plotted the standard deviation, and that
they are barely visible.

Now, there is only one way for this relationship to hold dynamically
with such a precision: the landscape is saturated with individuals. This
means that:

1 Let’s divide a given plot of area A in N small equal zones of area a = A/N . Let T

be the total number of trees in A, and ti the number of trees in the i-th area, i = 1, · · · , N .
Then we have:

〈t〉 =
∑

i ti
N

=
T

A
a (1.2)

that is linear in a, where we have used
∑

i ti = T and N = A/a. Remark that correctly
ρ = T/A.
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Figure 1.1: Number of individuals vs area in the 50-ha plot of tropical
moist forest of Barro Colorado Island, Panama. The tree conted in this
plot are the ones with a trunk diameter > 10 cm dbh (diameter at breast
height) of all species. The points are the mean of one hundred random
starting points for accumulation of area within the plot. One standard
deviation about each mean is also plotted, but they are so small that they
are barely visible. The mean density of individuals > 10 cm dbh is ρ = 419

individuals per hectare (see Eq.(1.1)). Picture taken from [9].

• Non-saturated landscapes are temporary: they are created by dis-
turbances (treefalls, forest fires, etc.) and no unused resource goes
unharvested for long time2.

• A new individual can born and grow only if another individuals
dies leaving some resource unused; or, using a game-theoretical ap-
proach: the dynamic of ecological communities are a zero-sum game.

It is thus perfectly natural to study models in which the number of in-
dividuals is constant; in particular for the study of spatial distribution it

2 It is obviously possible that the disturbance are so severe and frequent that the land-
scape is in fact not saturated at all, showing open space and unused resources.
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will make sense to study models defined on a lattice, with one individual
per lattice site. We will allow empty sites depending of the magnitude of
disturbances that we want to modelize . For the Tropical Closed-Canopy
Forests we will not allow any empty space: a new birth will follow imme-
diately any death. Such a model is developed in Chap.3. In the case of Salt
Marshes and Intertidal Vegetation it is easy to see from the experimental
data that the empty space plays a essential role in the dynamics of the sys-
tem (i.e. the disturbances are more present). In this case the number of
individuals is no more constant and we have to take into account explic-
itly the dynamics of the empty spaces. A model with these characteristics
is presented in details in Chap.4.

1.3 α-Diversity vs β-Diversity

Presented with the overwhelming complexity of the ecosystems, and search-
ing for meaningful ways to characterize them, field biologists have de-
fined a great number of measurable quantities in their studies. Most of
these quantities were defined to provide an estimation of the biodiversity
of the sample ecosystem under examination. The aim of this operation
in obvious: such a measure can be extremely useful for quantifying the
environmental impact of man on a natural ecosystem. So far nobody has
found a simple and meaningful quantity for the biodiversity of a system,
and in fact the problem seems more difficult the more one learns about it.
Obvious answers, such as “the biodiversity of a system is the number of
species that lives in it” face at least three difficulties:

• An experimental one: It can be difficult, or impossible, to catalogue
all the species in a given environment due to the rareness or the ten-
dency of the individuals to avoid man.

• A metodological one: the classic definition of species as “the set of
individuals that can have fertile offsprings” it is flawed because:

– It deals only with species with sexual reproduction.

– It is fuzzy because the transitive property doesn’t hold always.

– It is difficult to apply on the field, because to verify directly it
takes at least two generations of the species under examination.
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• A theoretical one: it completely ignores the relative abundance of the
species and the spatial variability of the ecosystem.

In the following paragraphs we will try to overcome the last difficulty
stated. The former two are connaturated with the field metodology and
are probably unavoidable.

We will divide the various quantities related with the biodiversity in
two broad categories: α-diversity vs β-diversity. The former refers to the
measures of the biodiversity in a single place considered perfectly uni-
form; the number of species being the most trivial example. The latter
instead is concerned with a spatial explicit measure of the biodiversity, i.e.
the spatial turnover of species. In the following sections we will examine
the most important and useful quantities defined for each category. For
the α-diversity we will examine the Relative Species Abundance, while
for the β-diversity we will present the Species Area Relationship and the
2-point correlation function.

1.4 Relative Species Abundance (RSA)

The RSA, φN , is defined as the number of species having a given number
N of individuals in the sample ecosystem. In a theoretical model or in the
case of repeated measures in the same place it will be more convenient to
use 〈φN〉, the average number of species with N individuals. This quan-
tity is used to determine how many rare species there are, respect to the
abundant ones.

The first data for RSA were obtained by S.Corbet, an entomologist,
in 1941. He collected the data for 620 species of butterflies in the Malay
Peninsula [10]. After two years was published an article of Fisher, Cor-
bet and Williams [11] with analogous results with a four-years light-trap
study on the moths at Rothamsted Experimental Station in England. The
resulting distribution (see Fig.1.2) was monotonic and long-tailed, with
many rare species and just a few common. Fisher found that the data
were reasonably fitted by a distribution of the form:

〈φN〉 ∝
αN

N
(1.3)
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with α < 1 as a parameter characterizing the system. Typical values for
α are very close to 1. This distribution is known among ecologists as the
Fisher Logseries3.

Figure 1.2: The data set of Fisher, Corbet and Williams, and the log series
fit. Picture taken from [9].

Some years later, Preston [12] found that the logseries was unable to
fit correctly the data he had assembled, primarily on bird species abun-
dance. The main problem was that Preston’s data were non-monotonical,
showing a maximum for species with intermediate abundance. In order
to obtain a clearer plot he made a log2 binning of his data, with the addi-
tional prescription that species at the edge of the bin are equally divided
between the two adjacent bins. This plot is known in the literature ad the
Preston plot. The obtained histogram appeared to being well fitted by a
lognormal distribution (see Fig.1.3).

The main problem with these curves is that they both lack an under-
lying dynamical model. The Fisher Logseries was obtained by assuming
that the true distribution of species abundances was a Gamma distribu-
tion (which is completely arbitrary) and the RSA was a Poisson sampling

3 This is because it resembles the Taylor expansion of a logarithm:

− ln(1− α) = α +
α2

2
+

α3

3
+ · · · (1.4)
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Figure 1.3: Lognormal fit to species abundance for the Rothamsted Field
Station. Picture taken from [9].

of this distribution. The Preston Lognormal was justified on the basis that
it is the result of a multiplicative random walk4. Apart from the lack of a
convincing explanation of why the ecosystem should behave like a multi-
plicative random walk, one should remark that in such process the stan-
dard deviation of the Gaussian curve should grow with time, and this
effect is completely absent in the data. Another problem is that the data
show a “fat-tail” for rarest species, and this tail is not fitted by the lognor-
mal. A tentative solution of these problems will be given in 2.4.

1.5 Species Area Relation (SAR)

The SAR is defined as the number of species S that lives, on average, in an
area A of the ecosystem under scrutiny. The most used form for SAR [7] is
a power law:

S ∝ Az (1.5)

4An alternative explanation is given, among others, in [13]. It should also be noted that
a multiplicative random walk with the constraint that the total number of individuals is
fixed does not give a lognormal curve for the RSA, but c curve with a fat-tail for rarest
species, as the experimental ones. See [14].
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It should be noted, however, that such a form is unable to fit most of the
data at once. Experimental SARs, indeed, show a behavior similar to a
“piecewise power law”. The exponent z of the power law is in some sense
a measure of biodiversity: the extreme example of a z = 1 would de-
note a maximum biodiversity, with each individual belonging to a differ-
ent species5. Obviously in real ecosystems z is always less than one and
the growth of the number of species with the area is sublinear. Depending
on the specific ecosystem, the typical values of z range from 0.2 to 0.4. It
has been advocated [16] [17] that this relation is caused by a self-similar
distribution of the abundance of species, meaning that the value of the ex-
ponent z can be derived assuming that the probability that a species living
in an area A is also living in an area A/2 is independent of A. But again
this lack the explanation of the dynamical origin of the species area rela-
tion. Only recently there has been some attempt to try to explain the SAR
with dynamical models. In fact, curves similar to the experimental ones
have been numerically observed in simple specially-explicit lattice mod-
els, such as the voter model with speciation [15]. Despite the simplicity
of those models, it is very hard to find an analytic expression for the ex-
ponent z. We will deal with this problems in Chap.3, where we will find
a numerical value for z for the voter model with speciation, along with a
scaling relation linking RSA and SAR.

1.6 Measuring Spatial Turnover of Species

A meaningful suggestion on how to measure β-diversity in tropical forests
comes from [18] (but see also [19][20][21]). The idea is to measure a func-
tion analogous to a 2-point correlation function. The exact definition is as
follows: let’s choose two trees at a distance r apart each other; we are in-
terested in the probability that this two trees are of the same species. We
will denote this function by F (r).

The first set of data with which we will calculate this function come
from the tropical rainforests of Barro Colorado Island (BCI), Panama, and
Yasuni, Peru, see Fig1.4. Both these location have a large plot censused
completely with an area of 50 hectares for BCI (1Km x 500m) and 25 hectares

5 Assuming, as we have shown before, that the number of the individuals grows lin-
early with the area.
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Figure 1.4: Map of the location of some of the tropical forest plots censused
from the CTFS. In the present work we will use the data from The BCI plot,
Panama, and Yasuni plot, Peru. Figure taken from the Supplementary
material of [18]

(500m x 500m) for Yasuni. In particular the plot of 50 hectares of BCI was
established in 1980 in the tropical moist forest of Barro Colorado Island in
Gatun lake in central Panama. Five complete censuses (1981-1983, 1985,
1990, 1995, 2000, the sixth is underway) of the forest trees has been carried
out. In each census, all free-standing woody stems of at least 10 mm diam-
eter at breast height were identified, tagged, and mapped. About 350,000
individual trees have been censused over 20 years [22]. Then, both the
locations have many plots of 1 hectare area at various distances, all com-
pletely censused.

One has to use two distinct procedures for the calculations of the 2-
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Figure 1.5: Some of the typical spatial patterns in the forest plot of BCI.
Picture taken from [19]

point correlation function (from now on “the β-diversity function”). The
first deals with distances smaller than the linear dimension of the biggest
plot of the location: one counts all the pairs of trees at a distance r apart
in said plot, and computes how many of them are conspecific. This ac-
counts for the left part of Fig.1.6 and 1.7. For distances r greater than the
linear extension of the biggest plots one takes two 1-ha plots at the chosen
distance6 and for each plot (let’s call them A and B) and for each species
present in at least one of the plots compute the density of the species in
the considered plot7. Let’s denote this density by fP

i where P = A, B is
the plot and i = 1, · · · , N is the species. Then the β-diversity function F (r)

at the distance r (the probability that a tree randomly chosen from A and

6 Assumed much greater then 100m, the linear dimension of the smaller plots.
7 The density of a species in a plot is the number of the individuals of that species

present in the plot divided by the total number of individuals in the plot.
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Figure 1.6: 2-point correlation function calculated for the tropical rainfor-
est of Barro Colorado Island (BCI), Panama. The points at shorter distance
are from the single 50-ha plot, while the ones at greater distance (with er-
ror bars) are calculated by the similarity of several 1-ha plots. Data from
[18].

one randomly chosen from B are conspecific) is:

F (r) =
N∑

i=1

fA
i fB

i (1.6)

This methods permit to measure the β-diversity function up to 2500Km8.
The resulting data are shown in Fig.1.6 and 1.7. Remark that by definition
we have F (0) = 1, due to the obvious fact that a tree is always conspecific
with himself.

8 But one could wonder if this function has really some significance at such big dis-
tance.
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Figure 1.7: 2-point correlation function calculated for the tropical rainfor-
est of Yasuni, Peru. The points at shorter distance are from the single 25-ha
plot, while the ones at greater distance (with error bars) are calculated by
the similarity of several 1-ha plots. Data from [18].

A first attempt to fit these curves has been carried out in the original
article [18] and developed in [23], but the theories used were unable to fit
completely the curve, lacking the features at very short distance, while the
features at greater distance were correctly fitted by assuming a diffusion
of the seeds with a kernel with finite mean dispersal distance. In Chap.3
we will derive a theory capable to fit correctly the data and explain the
behavior of the curve.

In Chap.4 we will use a species-specific β-diversity, i.e. we will need
the probability that two trees at a distance r are conspecific and belonging
to a given species X . We will need also the probability that, of a couple of
trees randomly chosen at distance r, one is of species X and the other is
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of species Y . We then generalize the β-diversity function to Fi,j(r), when
the indices i and j indicate the chosen species for the two trees. It is also
plainly obvious that:

Fi,j(0) = δi,jfi (1.7)

where fi id the density if species i in the considered plot and δi,j is the
Kronecker delta function. With these definitions we will analyze the data
from our second dataset, the intertidal vegetation [24] [25] [26] of venetian
salt marshes [27] [28] . These data has been collected from a Compact
Airborne Spectrographic Imager (Casi [30], characterized by 15 bands in
the visible and near-infrared part of the spectrum, 1.3m resolution) and
from a Multispectral Scanner (MS, 3 visible and 1 infrared bands, 0.5m
geometrical resolution). Such data are part of a larger dataset acquired
within the TIDE project [3]. The data were substantially interpreted using
nearly-simultanoeus ground truth observation of species presence within
selected reference areas, whose location was accurately determined (with
accuracy ±1cm) [29]. More details can be found also in [31] and [32].
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Figure 1.8: The site (barena di S.Felice) from we take the data about the
salt marshes and intertidal vegetation. Courtesy of TIDE project.
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Figure 1.9: Image of the S.Felice salt marsh taken from satellite. Courtesy
of TIDE project.
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Figure 1.10: Same image as before, but with the classification of the veg-
etation superimposed. Legend: maroon: soil, green: spartina maritima;
yellow: sarcocornia fruticosa, pink: limonium narbonense. Courtesy of TIDE
project.
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Figure 1.11: The actual part of the salt marsh used for the analysis. This is
the maximum part of the scanned section outlined only by natural bound-
aries (i.e. not cropped by the scanner borders), with the exclusion of a
section in which the classification was dubious for the presence of both
water and plants. Legend: black:water; maroon: soil, green: spartina mar-
itima; yellow: sarcocornia fruticosa, pink: limonium narbonense. Courtesy of
TIDE project.
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Figure 1.12: Samples of the vegetation present in the analyzed portion of
salt marsh. Courtesy of TIDE project.
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Chapter 2

Modeling Ecosystems

An ideal world is left as an exercise to the reader.
(Paul Graham, “On Lisp”)

In this chapter we will give a brief outline of the more recent concepts
of population ecology from the mathematical side. It is beyond of the
purpose of this work to give a complete survey of all the work done in
this ever-increasing topic: we will sketch only the most relevant aspect
relating to our research.

2.1 Typologies of Models

In the attempt of write a meaningful ecological model, many ways have
been explored. The various proposals of models can be roughly divided
in few categories. Here below we will examine briefly two of the main
dichotomies in the formulation of the models: the stochastic-deterministic
one and the discrete-continuous one. As an example of a deterministic
continuos model we will present the Lotka-Volterra model of predation.
These examples are intended to show how different will be our approach
of modeling respect to the ‘classical’ one.

2.1.1 The Lotka-Volterra Model of Predation.

One of the first ecological mathematical models, and by far the most fa-
mous, is the Lotka-Volterra prey-predator model [33][34]. This is the first
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known model that address the issue of the existence of a stable equilib-
rium situation in an ecosystem. The model consists in a system of two
differential equations:

ẋ = x(a− by)

ẏ = y(−c + dx) (2.1)

with a, b, c, d > 0, x represent the number of preys, y the number of preda-
tors. This system has been widely studied, and display many non-trivial
feature, such as periodic oscillation around the fixed point x = c/d, y =

a/b, which is marginally stable. Similar oscillation has also been observed
in real systems (see for example [35])1. the Lotka-Volterra model can be
extended to more species and more complicate interactions, but this is be-
yond the scope of this work.

2.1.2 Stochastic vs Deterministic Modeling

The first characteristic of the Lotka-Volterra model that one remarks is that
it’s perfectly deterministic: it does not allow for stochastic environmen-
tal variation nor implements any noisy behavior. In fact the role of noise
in ecological systems has just begun to be recognized. One of the conse-
quence of the strict determinism of the Lotka-Volterra model is that any
extinction is impossible in it (see below). Indeed, experimental data on
prey-predator systems show an oscillatory behavior with nearly constant
period, as predicted, but the data themselves are very noisy. In the follow-
ing section we will rather adopt the opposite point of view: the noise will
be the central characteristic of our models. The very dynamic of them will
be a stochastical one, and the solutions that we will find will be solution
in the statistical sense.

1 It’s interesting also to remark that the purpose of Volterra was not to find a model
able to reproduce the oscillations, which he has not observed. His aim was, instead, to ex-
plain the variation of the population of fishes in the Trieste gulf after WWII: it happened
that the war reduced greatly fishery activities and so it was natural to expect that the
population of fishes was grown in the meantime; instead it diminished seriously. Now,
fishery in the Volterra model act like the parameter c: a suppressor of predators (it is as-
sumed negligible in the prey species when compared to predation). At equilibrium the
parameter c is irrelevant for what concerns the predators, but affect greatly the preys: if
we diminish fishery (i.e. we have a smaller c) the prey species diminish accordingly. So
the model was successful to explain a paradoxical situation.
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2.1.3 Discrete vs Continuous Modeling

The second major problem of the Lotka-Volterra model is the fact that the
population is expressed as a real number and not an integer one. This
causes all sort of problems when dealing with the analytical solutions of
the system, especially when generalized to more than two species. In par-
ticular it should be highlighted the fact that, being the axes (x = 0 and
y = 0) an invariant set under the dynamic Eq.(2.1), then no solution start-
ing with both x and y greater than zero can ever cross one of the axes. In
physical terms this means that in the Lotka-Volterra model the extinction
is impossible. This is linked to the problem of how to interpret exactly x

and y, or, more precisely, how the numerical values of x and y translates
in actual population values. Due to the fact that in Nature all popula-
tions are composed of individuals, one should recognize that it is correct
to represent a population with a real number only if the population is very
large and so the corrections associated to the discreteness are negligible.
But when the population become very low, then one should use a discrete
variable, so to allow for the extinction of species. A correction in this di-
rection for the Lotka-Volterra model will not be attempted in this work.
We simply remark that all the models that we will develop later will use
discrete values for the population variables.

2.2 Island Biogeography

One of the most important work in the modern study of ecology is the
book of MacArthur and Wilson on the island biogeography [7]. In this
work they provide a simple theory for the fact that the number of differ-
ent species coexisting in a given island has a functional dependence from
various parameters like the distance from the mainland, the area of the is-
land, and so on. To be more specific, an island of greater area and nearer to
the coast host generally more species than a smaller one, or a more distant
one from the mainland. To explain this dependence, MacArthur and Wil-
son postulated that the number of species in the island varies as an effect
of immigration and local extinction, and that the rates of these two effects
in a given island depends only on the number of the species present at that
moment on the island itself. In particular, one assumes that the rate of im-
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Figure 2.1: The basic graphical model of equilibrium in the MacArthur-
Wilson model. Picture taken from [8].

migration is a decreasing function of the number of species, because of the
difficulties to settle in an overcrowded environment. On the other hand,
the extinction rate will be an increasing function of the number of species,
because the more crowded is the island, the more likely is that a species be-
come extinct2. Then, obviously, there exist a stable equilibrium when the
immigration rate and the extinction rate are of the same magnitude, see
Fig 2.1. This theory is fairly general, not requiring a specific shape of the
curves, but only the fact that they are monotonic. The exact shape of the
curves can be influenced by the environmental conditions. For instance,
a larger island will have a lower extinction rate, and an island nearer to
the mainland will have a greater immigration rate (see Fig.2.2). With these
assumptions, the position of the equilibrium point varies qualitatively as
expected.

2 Equivalently, if the island can support only a fixed number of individual, then more
species means less individuals for each species on average, and it’s very well known that
rarer species are in greater danger of extinction.
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Figure 2.2: Multiple immigration and extinction curves indicating effects
of differences in size and isolation on equilibria. Picture taken from [8].

What it’ really important about this model (and, quite surprisingly, the
authors themselves didn’t stressed in the original publication) is the fact
that the final number of species is a dynamical equilibrium. At the times
of the publication (1967) this was a revolutionary approach to modeling
ecosystems. Let’s also remark that the immigration and extinction rate
depends only on the number of species present in the island, not their
abundance or what kind of species they are. This means that in the the-
ory of island biogeography one can substitute a species with another one
with completely different habits and characteristics without changing the
behavior of the system. This is an important point, and we devote to it the
next section.
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2.3 Neutrality

Hypothesis is a toll which can cause trouble if not used
properly. We must be ready to abandon our hypothesis as
soon as it is shown to be inconsistent with the facts.
(W.I.B.Beveridge)

The concept of neutrality was developed in the field of molecular evo-
lution by Kimura [36] to provide an explanation to mutations that are
evolutionarily neutral (i.e. that provide no particular advantage or dis-
advantage in the genetic pool). According to this theory, many patterns of
molecular evolution can be explained postulating that the overwhelming
majority of possible mutations at molecular level don’t bring a relevant
change in the fitness of the molecule (or the fitness of the organism to
which she belongs). Or, to put it in other words, the original molecule and
the mutated one performs the same work with the same efficiency. This
approach is not antievolutionistic, in fact quite the opposite: in neutral
theory the evolutionarily relevant mutations aren’t ruled out, only they
are recognized to be extremely rare. The key idea is that most of the time
the genes perform a sort of random walk in the space of sequence. It may
also be that neutral mutations become relevant ones due to the changing
environment.

The neutral assumptions was extended, in some sense, to the field of
ecology by Hubbell [9]. While in the theory of Kimura, most of the mu-
tations were functionally equivalent, Hubbell now assumes that every in-
dividual in the same trophic level is functionally equivalent (i.e. undergoes the
same dynamical rules) regardless of the species it belongs to. It is important to
stress that the neutral theory applies at the individuals level and not at the
species level: the functional equivalence is enforced on a per capita basis.
This means that a rare species may undergo a different dynamic than a
more abundant one, provided that the rules that specifies the dynamics
(that can depend on the abundance of the species) are the same for all the
species. 3

3 It is worth to report here the original definition of Hubbell: “The essential defining
characteristic of a neutral theory in ecology is [..] the complete identity of the ecological
interaction rules affecting all organism on a per capita basis”. This means that in neutral
models the different species have no differential advantage i.e. species cannot be selected
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The assumption of individual equivalence means that we are neglect-
ing fitness differences of the various species against the stochasticity of
the demographic process, by which we mean the randomness associated
with the birth and death of a species. This is obviously only a first ap-
proximation and not a complete theory of demographic processes, but can
be useful as a null-model i.e. as an aid to interpret data [37]. In fact, we
should note that the assumption of ecological equivalence gives no hint
about what the dynamical rules precisely are, but only that the rules are
the same for all species. Some authors [38][39] claim that there are no di-
rect evidence of neutrality in real ecosystems. This comment in fact misses
the point: the neutrality assumption is just a zero-order hypothesis which
has the relevant advantage that leads often to analytically tractable mod-
els. Furthermore, models obeying the neutral hypothesis often compare
surprisingly well with experimental data, as we will see in the following
chapters. Last, but not least, the law of constant density show that, though
neutrality can be not strictly true, there are ecosystem that behave as if in-
dividuals of different species would be equivalent. The debate about the
usefulness of Neutral Theory is still alive [40] [41].

2.4 The Unified Neutral Theory of Biodiversity -
The Drift Model

In his book about the Neutral Theory [9], after having stated the neutral
hypothesis, Hubbell presents an implementation of it. While this model
is very simple to state and define precisely, its solution is a bit involved,
and was given later [42] [43]. This model is known as “unified neutral
theory of biodiversity”, or, more simple, as “Hubbell’s drift model”4. the
model is defined as follows: let us consider a community with a fixed
number J of individuals, ‘surrounded’ by a larger community, that we
will call a metacommunity,as defined in the previous chapter, in which
the relative abundance of the species are kept fixed. At each discrete time
step one randomly chosen individual dies, leaving an empty slot. With a
probability 1−m, m being a parameter of the model, the empty slot is filled

in an evolutionary manner, not existing any relevant difference between them.
4 Obviously, other models have been proposed along these lines. See [44]
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with the offspring of an random individual belonging to the community
in that moment. With a probability m there is an immigration event: the
individual is replaced by another one belonging to a species present in the
metacommunity, with probability proportional to the abundance of that
species in the metacommunity itself (that we assume being distributed
according to a Fisher Logseries, Eq.(1.3); we will justify this assumption a
few lines below).

The natural mathematical framework for such a model is the theory of
stochastic processes. It can be easily shown that the probability that the k-
th species has n individuals evolves with time according to the following
birth and death master equation:

Ṗn,k(t) = dn+1,kPn+1,k(t) + bn+1,kPn+1,k(t)− (bn,k + dn,k)Pn,k(t) (2.2)

where bn,k and dn,k are respectively the birth and the death rates. It is
interesting to remark that, if we pose:

bn,k = bn

dn,k = dn (2.3)

with b and d constant, then the equilibrium solution of the master equation
is the Fisher Logseries, Eq.(1.3), with α = b/d, from which we can infer
that b < d. This is the dynamic that we expect at continental level (i.e.
metacommunity level), and so the metacommunity of our model will have
abundances distributed accordingly.

The drift model is then defined by the master equation Eq.(2.2) and the
following birth and death rates:

bn,k = (1−m)
n

J

J − n

J − 1
+ m

µk

JM

(
1− n

J

)
dn,k = (1−m)

n

J

J − n

J − 1
+ m

(
1− µk

JM

)
n

J
(2.4)

where µk is the abundance of the k-th species in the metacommunity and
JM is the total number of individuals in the metacommunity. Remark that,
when m = 0 and j � J then we have again Eq.(2.3), with b = d = 1/(1−J),
and in fact this is the dynamic that we expect for the metacommunity. It is
possible to find a stationary solution for this model by satisfying detailed



2.4. The Unified Neutral Theory of Biodiversity - The Drift Model 33

balance; and after averaging over µ one obtains a curve of abundance that
can be compared with experimental data:

〈φn〉 = θ
J !

n!(J − n)!

Γ(γ)

Γ(J + γ)

∫ γ

0

Γ(n + γ)

Γ(1 + γ)

Γ(J − n + γ − y)

Γ(γ − y)
e−yθ/γdy (2.5)

where 〈φn〉 =
∑

k P
(stat)
n,k is the average number of species having n individ-

uals, γ = m(J−1)
1−m

, and θ is the biodiversity parameter, equivalent to Fisher’s
α (see [9] and [42] for details).

When we plot a fit of this solution on the experimental data from BCI
and we compare it with a fit done with the Preston Lognormal (see Fig.2.3)
one finds that it’s hard to discard either one due to the experimental errors.
But on the theoretical side, the neutral solution is on better ground: it is the
equilibrium solution of a dynamical model; while the lognormal is hard to
justify in these terms: as we said before the lognormal is the solution of
a multiplicative random walk, but his variance should grow linearly with
time, unlike the data.

Some final observation about the drift model:

• It is clear that this model is a generalized version of the theory of
island biogeography but with the focus on the dynamic of the single
individual instead of the dynamics of the species.

• This model does not implement spatial differences, apart from the
distinction between community and metacommunity (which is well
defined only for island or isolated places).

In the next chapter we will generalize a similar model with adding
explicitly the space, we will solve it for the 2-point correlation function and
we will find a scaling relation linking this function with SAR and RSA.
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Figure 2.3: Data for the RSA from the BCI plot, along with a fit with the
Preston Lognormal (black) and the analytic solution to the Hubbell’s Drift
Model (green). Notice that the difference between the two curves is mini-
mal if compared with the noise of the data. Figure taken from [42]



Chapter 3

The Voter Model With Speciation

Justifying space exploration because we get non-stick
frying pans is like justifying music because it is good
exercise for the violinists right arm.
(Richard Dawkins)

3.1 Motivation

Spatial explicit models are much rarer in the literature, due both to the
additional difficulty of taking into account a community that is different
from point to point and to the past lack of data about the spatial turnover
of species. With the purpose of providing a context, here below we list,
without any claim of completeness, a couple of important breakthrough
on the theoretical line of research that leads to the present work.

In 1996 Durrett e Levin published an article on the voter model model
with speciation [15] which contained a numerical study about the behav-
ior of the Species-Area Relationship. We will describe in detail this model
below, and we will study it in depth, both with analytical tools and nu-
merical simulations. We now remark only that in their article Durrett and
Levin identify for the voter model with speciation a typical length of the
order 1/

√
ν where ν is the speciation rate. (see also [45], [46] [47])

More recently Leigh e Chave [23] have found an analytical solution of
the voter model with speciation for an analogous of the 2-point correla-
tion function. They found that this simple model, that implements only
diffusion and speciation, can not explain the β-diversity data of the trop-
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ical forest. Their solution is analogous to the one that we will give later,
but the formalism of our solution is such to permit also the introduction of
density-dependent processes, that we will found necessary to explain the
real data from tropical forests.

The voter model was first defined by Liggett [48] without the specia-
tion process, and in this form it has been thoroughly studied (see [49], [50],
[51], [52], [53], [54], [55] ), the main result being that in a finite lattice, or in
an infinite lattice with dimensionality d ≤ 2, after an initial transient the
system attain monodominance, i.e. all the sites have the same label (which
can represent the species of an individual, or an opinion in a voting sys-
tem, etc.); and it is clear that such a system in monodominance is perfeclty
stable. Instead, in an infinite lattice with dimensionality d > 2 there is
the coexistence of many labels without a single one being dominant over
the others1. Obviously, the presence of the speciation process change com-
pletely the model, and now the monodominance is possible only when
the lattice is much smaller compared with the typical length imposed by
speciation, and even then it is not a stable state but can be invaded by
another species introduced by the speciation process. All these statement
will be made precise in the following sections. For further details about
the voter model with speciation see [56] [57] [58]. The work described in
this chapter has been published in [59]

3.2 Definition

Let we have a d-dimensional cubic lattice, with side L. At each side there
is a variable holding a label, that specifies the species (or the opinion, if
the model is meant to represent a voting system) that is present in the site
(one and only one species/opinion is availed at each site at the same time).
We can start with one of the many possible configuration at will (one can
show that the initial configuration is unimportant for our goals), then at
each time step we update the system as it follows:

1. We choose a site at random (this simulate a tree’s death or a change
of opinion in the site).

1 As can be easily shown, (see section 3.3.2) the relative abundances of the various
labels in these conditions are constant over time.
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2. With probability ν we put on the site a label which is not already
present on the system (this simulate a speciation/immigration event,
or a new opinion/candidate arising).

3. With probability 1−ν we replace the label with the label of a random
chosen neighbor (this simulate a reproduction event, or an opinion
spreading).

Some worthwile notes:

• we define “time step” as the update of a single site; “whole update”
as the update of Ld sites, which correspond to a “mean” update of
the whole lattice.

• This model is neutral in the sense of Hubbell [9], as we have de-
scribed it in the previous chapter. Then the only way that we have
to distinguish the different species/opinion is the label that we will
give them.

• A consequence of neutrality is that if we can solve the dynamics of
a single species/opinion, then we have information about the whole
system, being all the species/opinions equivalent. This is a very use-
ful feature from a theoretical point of view, and we’ll make exsten-
sive use of it.

• Each site of our model is always occupied i.e. at no time there can
be an empty site. This modelize the law of constant density that we
have stated in the first chapter.

• Here we have defined the model on a d-dimensional cubic lattice for
simplicity, but the model can be defined on an arbitrary lattice. In-
deed, the simulations in d = 2 has been carried on on the triangular
lattice to eliminate anisotropies. The quantities on which we are in-
terested are rather insensitive to the precise underlying lattice, as we
have demonstrated numerically.

• The neighbors of a site can be defined in several ways, but the most
common choice is to define as neighbours all the sites within a given
distance R1. In the majority of our calculations and simulations we
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will use R1 = 1. In this case in the square lattice we are left with the
freedom to use one of the following two definitions: the neighbours
are the four sites that are adjacent to a given site in the horizontal or
vertical direction, or the eight sites adjacent to a given site in horizon-
tal, vertical and diagonal direction (Von Neumann neighbors). Both
choices lead to identical results, but the former is easier manageable
in theoretical development, while the latter leads to a faster equilib-
rium in simulations. In the triangular lattice the nearest neighbours
are always the six sites adjacent to a given site.

3.3 Master Equation Formulation and Solution

3.3.1 Lattice Master Equation

We now focalize upon a single chosen species/opinion’s dynamics. To do
it, we rewrite the labels in the following way:

• We put the label 1 if on the site there is the chosen species/opinion.

• We put the label 0 if on the site there is another species.

We will call this model the “Single Species Voter Model With Specia-
tion”.

Now, let St
~x be the value of the label at site ~x and at time t in a given

realization of the model. Let we fix the initial conditions i.e. S0
~x. Then,

define:
P t

~x ≡
〈
St

~x

〉
(3.1)

where brakets denote the average over different realization of the system
with the same initial conditions (remark P 0

~x = S0
~x).

At this point we can write the master equation2 of this process, in dis-
crete space-time:

P t+1(S~x = 1) = P t(S~x = 1) +
1

N

(
− P t(S~x = 1) (3.2)

2 For the theory of stochastic processes, and master equations in particular, the reader
is referred to [61] [62] [63] [64] [65] [66]
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+
1− ν

2d

∑
~y(~x)

P t(S~x = 1, S~y = 1) (3.3)

+
1− ν

2d

∑
~y(~x)

P t(S~x = 0, S~y = 1)

)
(3.4)

where ~y(~x) are the nearest neighbors of ~x.
This simplifies in:

P t+1
~x = P t

~x

(
1− 1

N

)
+

1− ν

2dN

d∑
µ=1

(
P t

~x+µ + P t
~x−µ

)
(3.5)

where N = Ld, the sum is over the canonical orthonormal base and the
time unit is a single time step. We can easily transform this equation in a
continuous-time one:

∂P t
~x

∂t
= −P t

~x +
1− ν

2d

d∑
µ=1

(
P t

~x+µ + P t
~x−µ

)
(3.6)

where the time unit is a whole update. This equation can be rewritten in
the following form:

∂P t
~x

∂t
=

1− ν

2d
∆~xP

t
~x − νP t

~x (3.7)

where ∆~x is the discrete laplacian.

3.3.2 Lattice Solution and Total Probability

This equation can be solved for P t
~x in two ways: by the use of a generat-

ing function or by Fourier transform. Both procedures are performed in
details in Appendix A. The solution that one obtains is

P t
~x = e−t

∑
~y

S0
~y I~x−~y

(
1− ν

d
t
)

(3.8)

where we have defined:

I~x(t) ≡
d∏

i=1

Ixi
(t) (3.9)

and Ia(x) is the modified Bessel3 function I of order a.

3 For the theory of Bessel functions the reader is referred to [67] and [68].
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It’s interesting to calculate the behaviour of the quantity 〈n〉t =
∑

~x P t
~x

(mean number of individual belonging to a single species) respect to time.
To calculate it, we recall that [60]:

+∞∑
j=−∞

ajIj(t) = e
1
2(a+a−1)t (3.10)

then, putting a = 1 we have:

+∞∑
j=−∞

Ij(t) = et (3.11)

Then:
〈n〉t = 〈n〉t=0 e−νt (3.12)

Remark that for ν = 0 the number of individual is conserved (in mean).
In practice, the fluctuations around that average value are so prominent
that in all finite lattices, and in all infinite lattices with dimensionality
d ≤ 2, the dynamics end in a state of monodominance (consensus), this
meaning that all the sites of the lattice share the same species/opinion.

When ν 6= 0, this last equation assures that on average all species be-
come extinct, meaning that even in a monodominance situation there is a
finite probability that a speciation event is able to invade the system.

3.3.3 Continuum Master Equation and Solution

Now we want to write a continuous-space equation for our model. With
this purpouse we define the probability density function:

P (~x, t) ≡ P t
~x a−d (3.13)

where a is the lattice spacing and a → 0. In this limit we have also:

∆~x = a2∇2 (3.14)

where ∇2 is the Laplacian operator in the continuum.
In the continuum limit we have:

∂P

∂t
(~x, t) = ∇2P (~x, t)− γ2P (~x, t) (3.15)
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where γ2 = 2dν/a2 and the time has been rescaled t → 2dt/a2 (in other
words, 1 time unit is now 2d/a2 complete updates).

To solve this equation we use again Fourier transforms.

∂P̂

∂t
(~p, t) = −

(
p2 + γ2

)
P̂ (~p, t) (3.16)

Then:
P̂ (~p, t) = P̂ (~p, 0) e−(p2+γ2)t (3.17)

Antitransforming we obtain the solution:

P (~x, t) = e−γ2t
∫

ddy P (~x− ~y, 0)
e−

y2

4t

(4πt)d/2
(3.18)

It’s interesting to remark that:∫
ddx P (~x, t) = e−γ2t

∫
ddx P (~x, t) (3.19)

that is a result analogous to the one stated before in the discrete case.

3.4 β-diversity

3.4.1 Master Equation and Solution on the Lattice

As explained in Chapter 1, in ecology the term β-diversity refers to the
spatial turnover of species in the landscape. A proposed measure of this
quantity [18] is defined in this way: first we calculate the probability F (r)

that 2 randomly chosen trees at distance r are conspecific, then the quan-
tity −∂F

∂r
(r) is a measure of β-diversity.

Our aim now is to write a master equation for F (r) and to solve it. To
fulfill this goal we begin calculating the equation for the probability P n

~x,~y

that at the sites ~x and ~y there is the same species. We can fix a priori an
important boundary condition: P n

~x,~x = 1. So, the master equation for this
quantity is, when ~x 6= ~y:

P n+1
~x,~y = P n

~x,~y

(
1− 2

N

)
+

1− ν

2dN

d∑
µ=1

(
P n

~x+µ,~y + P n
~x−µ,~y + P n

~x,~y+µ + P n
~x,~y−µ

)
(3.20)
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Then we impose traslational invariance (i.e. P n
~x,~y = F n

~x−~y) so we can
rewrite, for ~x 6= 0:

F n+1
~x = F n

~x

(
1− 2

N

)
+

1− ν

dN

d∑
µ=1

(
F n

~x+µ + F n
~x−µ

)
(3.21)

with the boundary condition F n
0 = 1.

This equation can be solved on the lattice with the aid of Fourier Trans-
forms, as can be seen in details in Appendix A. The solution is:

F~x =

(∫
−π<qi<π

dd~q

(2π)d

1

l(~q)

)−1 ∫
−π<pi<π

dd~p

(2π)d
ei~p·~x 1

l(~p)
(3.22)

where:

l(~p) = − 2

N
+ 2

1− ν

dN

d∑
µ=1

cos(pµ) (3.23)

It appears that this approach to the solution is suitable to give a closed
form in 1 dimension. Again the detailed calculation are in Appendix A,
and the final solution is:

Fr = e−r/ξ (3.24)

where:

ξ =

ln
1− ν

1−
√

ν(2− ν)

−1

(3.25)

is the typical lenght of the solution. We can remark the following facts:

1. ξ > 0 when 0 < ν < 1.

2. When ν → 0 we have ξ → ∞ i.e. at equilibrium with vanishing
speciation there is only one species that dominate a finite landscape.

3. When ν → 1 we have ξ → 0 i.e. when the speciation is unity then
reproduction is forbidden and Fr = 0 if r 6= 0.

4. When 0 < ν < 1 we have dξ
dν

< 0 i.e. when speciation lowers each
single species tend to occupy more space (equivalently: to have more
individuals). In a finite landscape this also mean that there are less
species.

For d > 2 this approach does not give any closed form solution. With
the goal of find an approach able to yield a closed form, and with the
future perspective of implementing other effects in the model,
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3.4.2 Solution in the Continuum

An easier way to calculate F (r) is to transform the discrete model equation
in a continuum one, and treat with the available tools for solving differen-
tial equations.

To simplify our job, we can write the lattice model Eq.(3.21) as:

F n+1
~x − F n

~x = (LF n)~x ∀~x (3.26)

where:

L~x,~y = L~x,~y − δ~x,0L0,~y (3.27)

L~x,~y =


− 2

N
if ~x = ~y

1−ν
dN

if |~x− ~y| = a

0 elsewhere
(3.28)

Remark that in this formulation the boundary condition at the origin is
now implemented in the model equation, and does not need to be imposed
afterwards.

The probability distribution function (PDF) in the continuum is F (~x, t) =

F n
~x a−d with t = nτ , τ being the microscopic time unit. Then we can state

the following correspondences:

F n+1
~x − F n

~x → adτ Ḟ (~x, t)

(LF n)~x → 2ad
(
−αF (~x, t) + D∇2F (~x, t) + . . .

)
− δ~x,0

∑
~y

L0,~yF
n
~y

∑
~y

L0,~yF
n
~y = − 2

N
+

1− ν

dN

∑
~y:|~y|=a

F n
~y

→
a→0

− 2

N
+ 2

1− ν

N
F n

1

≡ −2τb (3.29)

where the quantity F1 is the limit of F~x:|~x|=a as a → 0. We don’t know this
limit, so the resulting multiplicative parameter b is another free parameter
of the model and can’t be fixed like we have done for the solution on the
lattice.

Performing all the substitutions and reorganizing the result we obtain:

Ḟ (~x, t) = 2
(
D∇2F (~x, t)− αF (~x, t)

)
+ 2bδd(~x) (3.30)



44 3 The Voter Model With Speciation

Imposing the stationariety (Ḟ (~x, t) = 0), we can solve this equation as
follows. Using Fourier transforms:

D~p2FS(~p) + αFS(~p) = b (3.31)

Solving in P0(~p) and anti-trasforming the equation yields (with γ2 = α
D

=
2dν
a2 , s = b/D , r = |~x|) :

FS(~x) = s
∫ dd~p

(2π)d

ei~p·~x

~p2 + γ2
(3.32)

=
s

(2π)d

∫ ∞

0
dλ
∫

dd~p ei~p·~x−λ(~p2+γ2) (3.33)

=
s

(2π)d

∫ ∞

0
dλ
(

π

λ

) d
2

e−
r2

4λ
−λγ2

(3.34)

=
s

(4π)
d
2

(
r

2γ

)1− d
2 ∫ ∞

0
dz z−

d
2 e−

γr
2 (z+ 1

z ) (3.35)

where, in the last equality, we use the scaled variable z = 2γr while r ≡ |x|.
Then we let z = el and using formula 9.6.24 from [60] we conclude:

FS(r) =
sγd−2

(2π)
d
2

(γr)
2−d
2 K 2−d

2
(γr) (3.36)

where Kµ(x) is the modified Bessel K function of order µ.
It could be interesting to see the limiting behaviour for big and small

distances:

• For γr � 1 we have:

FS(r) '


sγd−2

4πd/2 Γ
(

2−d
2

)
d < 2

− s
2π

ln(γr) d = 2
s

(4π)d/2 Γ
(

d−2
2

)
r2−d d > 2

(3.37)

• For γr � 1 we have:

FS(r) ' sγd−2

(2π)
d
2

√
π

2
(γr)

1−d
2 e−γr (3.38)
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3.5 Scaling Relations

A picture is worth a thousand words.
(ancient chinese proverb)

And from a formula you can generate a
thousand pictures.
(T.Zillio)

To measure the α-diversity of our model we define the species abun-
dance relation as the function that give the number of species with n indi-
viduals. Let’s assume that this relation scales4 like:

f(n, ν, A) = n−β f̂(nνa, Aνd/2) (3.39)

where ν is the speciation parameter and A the area (or volume) of the
sample (remember that ν−1/2 has the dimension of a lenght). This relation
defines the exponents a and β.

Let’s also assume that the number of species scales like5:

S(ν, A) = Az Ŝ(Aνd/2) (3.40)

(defining the exponent z), and that the fraction of species φ(n, ν, A) ≡
f(n, ν, A)/S(ν, A) scales like:

φ(n, ν, A) = n−bφ̂(nνa, Aνd/2) (3.41)

(defining the exponent b).
Now, it’s easy to demonstrate that:

∑
~x

F~x =
〈n2〉
〈n〉

(3.42)

(see Appendix B), and we can also show that, for ν → 0:

∑
~x

F~x ∼
{

ν−d/2 d < 2

ν−1 d > 2
(3.43)

4 Finite-size scaling techniques such the ones used in the present work are become
increasingly popular in the field of ecology. See [69] [70].

5 Recent research has established that there is a link between species spatial turnover
data and the Species-Area Relationship. See [17] and [71] for details.
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(see Appendix C).
Guided by this relation, we assume that:

a = min(1, d/2) (3.44)

Now we need the further hypothesis that f̂(x, y) ∼ xcg(y) for x → 0.
Since:

S =
∑
n

f(n, ν, A) ∼ νa(β−1)
∫ ∞

νa
dx x−β f̂(x, Aνd/2) (3.45)

A =
∑
n

n f(n, ν, A) ∼ νa(β−2)
∫ ∞

νa
dx x1−β f̂(x, Aνd/2) (3.46)

we have three cases:

1. 1 + c− β > 0: this leads to b = 1 and

z =

{
0 d < 2
d−2

d
d > 2

(3.47)

2. −1 < 1 + c− β < 0: this leads to 1 < b < 2 and the scaling relation

a(2− b) =
d

2
(1− z) (3.48)

3. 1 + c − β < −1: this leads to b = β − c > 2, c = −max(1, d/2) and
z = 1.

Detailed calculations for the three cases are performed in Appendix D.

3.6 Simulations and Scaling Exponents

Simulations are like miniskirts,
they show a lot and hide the essentials.
(Hubert Kirrman)

The model has then been explicitly simulated on a computer. The sim-
ulation were carried out in hypercubic lattices of various sizes and of di-
mensionality d = 1, 2, 3. In d = 2 we also used the exagonal lattice, as a
test to verify the insensitiveness to the microscopic details. The goals of
these simulations was:
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1. Verify the solution for the 2-point correlation function, both in the
discrete (in d = 1, Eq.(3.24)) and the continuous version (Eq.(3.36)).

2. Provide various instances of RSA and SAR curves with the aim of
collapsing them using the theory presented in the previous section,
thus having a numerical estimate of the critical exponents a, b and z.

Regarding point 1 above, Fig.3.1 and Tab.3.1 shows the beta-diversity
from some simulations of the voter model with speciation in d = 2, on a
200×200 lattice, varying the speciation. The graph displays an excellent fit
between the analytical solution and the explicit simulation of the model.

Figure 3.1: Points: simulations. Lines: theoretical fits. This graph shows
some simulations with varying speciation in d = 2 and the relative theo-
retical fits (which parameters are listed in Tab.3.1).

Regarding point 2 above, a series of simulation was runned for the
determination of the RSA curve, with fixed lattice size (L = 200 for d = 2

and L = 100 for d = 1, 3, L being the side of the hypercube used). Another
series of simulations was carried out to determine the SAR curve, in which
we vary both the speciation rate the size of the lattice. We defined S(ν,A)

as the mean number of species in a simulation with speciation rate ν lattice
size A = Ld. In particular we were not using the “nested area” method to
obtaining the number of species, but we were only taking the total number
of species in the lattice.
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Table 3.1: Value of the parameters for the fitting curves in Fig.3.1.

ν Species 1/γ s

0.2 16883 1.33 0.28
0.02 3752 4.35 0.23
0.002 682 14.3 0.19
0.0002 122 35.7 0.16
0.00002 40 58.8 0.15

Once obtained the curves by averaging over multiple runs (up to 1000)
of the simulations, the curves themselves were collapsed using our pre-
viously described scaling forms. The actual collapse was done using the
algorithm described in [72] with some slight modification on the form of
the main functional, to suit best our needs. In brief, this algorithm allows,
given a scaling form and a number of curved to be collapsed, to find the
exponent values that yields the optimal collapse. This way we can have
a numerical estimation of the value of the collapsing exponent present in
our theory.

In the following figures (Fig.3.2-3.11) we will present the original RSA
and SAR data for d = 1, 2, 3 and their scaling collapse.

The values of the scaling exponents obtained by our optimization of
the collapse are collected in Tab.3.2

Table 3.2: Scaling exponents for d = 1, 2, 3 determined from the scaling
collapse of the normalized RSA and SAR plots.

d a b z

1 0.5 1.05 0.03
2 0.87 1.2 0.3
3 0.95 1.21 0.5

As one can easily verify, in all the three cases we have 1 < b < 2, and
the corresponding scaling relation Eq.(3.48) is satisfied with very good
approximation. The main deviation of the data from our theory is in
d = 2,the upper critical dimension for diffusive processes, where a = 0.87,
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Figure 3.2: Species-Abundance relation in d = 1.

Figure 3.3: Species-Abundance scaling colapse in d = 1.
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Figure 3.4: Species-Abundance relation in d = 2.

Figure 3.5: Species-Abundance scaling colapse in d = 2.
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Figure 3.6: Species-Abundance relation in d = 3.

Figure 3.7: Species-Abundance scaling colapse in d = 3.
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Figure 3.8: Species-Area relation in d = 2.

Figure 3.9: Species-Area scaling collapse in d = 2.
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Figure 3.10: Species-Area relation in d = 3.

Figure 3.11: Species-Area scaling collapse in d = 3.
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while our theory predicts a value of 1. Our data are suggestive of loga-
rithmic corrections, that are nevertheless very hard to verify numerically
being masked by the global power-law shape of the curve.

An alternative and independent method useful for finding directly the
value of a is to plot the value of 〈n2〉 / 〈n〉 vs. ν for different simulations,
because, as we know from the previous section,

〈n2〉
〈n〉

∼ ν−α (3.49)

This quantity is easily calculated using the RSA curve.

As can be seen on the following figures (Fig.3.12-3.14), the value of α

found with this method is always compatible with the one obtained from
the scaling collapse. This supports our claim that the strange value for a

in d = 2 is due to some pathological property of the model at the critical
dimension and it’s not due to the particular method we use to measure it.

Figure 3.12: Behavior of 〈n2〉 / 〈n〉 vs. ν for d = 1. The line is the linear
regression on the log-log plot that yields 〈n2〉 / 〈n〉 = 1.25ν−0.52.
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Figure 3.13: Behavior of 〈n2〉 / 〈n〉 vs. ν for d = 2. The line is the linear
regression on the log-log plot that yields 〈n2〉 / 〈n〉 = 0.975ν−0.87.

Figure 3.14: Behavior of 〈n2〉 / 〈n〉 vs. ν for d = 3. The line is the linear
regression on the log-log plot that yields 〈n2〉 / 〈n〉 = 1.22ν−0.93.
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3.7 The Janzen-Connell effect

In the fight between you and the world,
back the world.
(Frank Zappa)

As it is apparent by the shape of our solution Eq.(3.36), the simple
voter model with speciation is unable to fit the experimental data about β-
diversity (Fig.1.6 and 1.7). In other words, speciation and diffusion alone
can’t explain the spatial patterns that we find in Tropical Forests. It ap-
pears that we could be able to reproduce the overall shape of the data
if there were a negative density-dependent [73][74] effect for shorter dis-
tances. In practice we are searching for an ecological effect that disfavor
the birth (or favor the death) of a tree if there are too many of his conspe-
cific in their neighborhood.

Such an effect was discovered experimentally in the early seventies in-
dependently by Janzen [75] and Connell [76], who remarked that a seed is
more likely to germinate, and a seedling more likely to survive, if they are
far from conspecific adult trees. This effect alter substantially the dynam-
ics of the system we have so far described. Janzen and Connell postulated
that this increased mortality rate of seed and seedlings near conspecific
adults arises from the presence of pests that are host specific i.e., special-
ized to that type of tree, and experimental evidence supports this conclu-
sion [77].

To implement the Janzen-Connell effect in the voter model with spe-
ciation, we will add the following modification: each time a new tree is
born there is a probability that it will immediately dies directly propor-
tional to the number of his conspecifics within a given radius R (called the
J.C. radius). This obviously does not apply if the tree was placed there by
a speciation event, since there aren’t any conspecific of it in the lattice by
definition.

Following step-by-step the algorithm described above, one can show
that there is an effective speciation rate equal to:

νeff = ν + ν(1− ν)pd(~x) + ν(1− ν)2p2
d(~x) + . . .

= ν
∞∑

n=0

((1− ν)pd(~x))n
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=
ν

1− (1− ν)pd(~x)
(3.50)

where pd(~x) is the probability that an offspring will die due to the Janzen-
Connell effect when there is a conspecific adult a vector ~x away. In other
words, νeff is the probability that at the end of the process in the chosen
site there will be a tree from a new species, while 1− νeff is the probability
that the new tree will be chosen from among its neighbours. Using this
effective speciation rate in Eq.(3.21), one obtains (for ~x 6= 0):

F n+1
~x = F n

~x

(
1− 2

N

)
+

1

dN

(
1− ν

1− (1− ν)pd(~x)

)
d∑

µ=1

(
F n

~x+µ + F n
~x−µ

)
(3.51)

along with the boundary condition F n
0 = 1.

Using the same procedure as before, we obtain:

Ḟ (~x, t) = 2

(
D∇2F (~x, t)− α

1− pd(~x)
F (~x, t)

)
+ 2

b

1− pd(~x)
δd(~x) (3.52)

with the same α and D as before. We will define αeff(x) ≡ α
1−pd(~x)

. If pd(x) is
piecewise constant, a general solution of this equation in d = 2 for a single
zone in which pd(x) in constant is (see Appendix E):

sγ2
0

2π
K0(γ0r) + cI0(γ0r) (3.53)

In the standard Voter Model, c = 0 because I0(r) → ∞ as r → ∞.
Instead, in the Voter Model Modified with Janzen-Connell we assume:

αeff =

{
α0 if|~x| < R

α1 if|~x| > R.
(3.54)

And thus:

F (r) =

{
c0K0(γ0r) + c1I0(γ0r) r < R

c2K0(γ1r) r > R
(3.55)

with c0 =
sγ2

0

2π
. Here we have followed the standard approach of solving

the equations separately in the two regions and then imposing the conti-
nuity of the function and its derivative6 at r = R. This condition has been

6 It is necessary to impose the continuity also of the derivative because it is a solution
of a differential equation of second order in space, and a non-continuous derivative will
yields some spurious delta functions when derived two time in space.
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enforced along with the boundary condition as r → ∞ (that forbids the
presence of the I0 term in the most far segment from the origin).

The continuity of the function and his derivative at r = R is assured
solving: {

c0K0(γ0R) + c1I0(γ0R) = c2K0(γ1R)

c0K
′
0(γ0R) + c1γ0I

′
0(γ0R) = c2γ1K

′
0(γ1R)

(3.56)

which provides the values of c1 and c2.
To summarize, our final expression Eq.(3.55) depends on 4 parame-

ter: c0, γ0, γ1 and R. While it may seems that 4 parameter are really too
many, we want to remember that the theory explained in [18] has 3 pa-
rameters, and was unable to fit the data at shorter distance, lacking the
Janzen-Connell effect.

The fits (Fig. 3.15 and 3.16) were performed by minimizing the square
deviation from the data and taking into account the square deviations of
each point. The resulting values for each parameter of the fit are collected
in Tab.3.3. The inverse of the γ’s are typical lenght of the system; we expect
that γ−1

0 ∼ R, and in both fit they are of the same order.

Table 3.3: Values of the parameter in Eq.(3.55) obtained by the fits.

Plot R (m) γ−1
0 (m) γ−1

1 (Km) c0

Panama 46 68 210 0.012
Yasuni 86 69 23500 19

Independent measures show that the order of magnitude of R is cor-
rect [78]. In particular it appears that the Janzen-Connel radius that we
obtain from the fit is overestimated by a factor of two, more or less. One
suggested explanation is that the experimental procedure used to measure
the J.C. effect depends on the time of the observation of the forest, and that
in the last 20 years of observation the measure of this radius was growing.
However, this point deserve some further examination, so we can’t say the
final word on it.
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Figure 3.15: Fit of the voter model with speciation and Janzen-Connell
effect to the data from BCI, Panama.
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Figure 3.16: Fit of the voter model with speciation and Janzen-Connell
effect to the data from Yasuni, Peru.



Chapter 4

Spatial Patterns of Intertidal
Vegetation Diversity

People don’t do hard things gratuitously;
no one will work on a harder problem
unless it is proportionately (or at least
log(n)) more rewarding.
(Paul Graham)

4.1 Motivation

Now we will describe a model capable to describe the β-diversity of the
venetian salt marshes. Before the definition of the actual model we will
describe a general master equation formalism for a linear spatial-explicit
model on a lattice without speciation. Then we will specialize the formal-
ism for the intertidal vegetation that we intend to model. In this model
we will take into account also empty territory1, and we will not follow
the prescription of neutrality. The simplicity of the model and the little
number of parameters will permit us to have a transparent picture of the
non-neutrality in action.

The dynamic of the model will be as follows: each site can propagate
it content (being it an individual of a species or the void) to the nearest
neighboring sites (mimicking in this way the reproduction by propagules
or, in the case of empty sites, a ‘desertification’ process). Also, each indi-

1 Thus breaking the law of constant density at the level of the single site
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vidual present on the lattice has a certain (species-dependent) probability
of dying out on his own, and each empty site can give born of an indi-
vidual of any species (with a species-dependent rate, this reproduce the
presence of dormant seeds scattered around the territory).

4.2 Master Equation General Formulation and So-
lution

Let’s have a lattice with N sites x = 1, . . . N , occupied with S interacting
species. We denote the specie at site x with σx = 1, . . . S. Each site can host
one individual, or being empty (σx = 0). Let’s also formally denote the
generic state of the system as ~σ = (σ1, . . . σN). Then we are interested in
an equation for the probability of being in a given state ~σ at the n-th time
step, namely P n(~σ). We can write the master equation:

P n+1(~σ) = P n(~σ) +
∑
~σ′

[W~σ,~σ′ P
n(~σ′)−W~σ′,~σ P n(~σ)] (4.1)

We will assume that the time step is such that a single event can occur,
and that the W ’s do not depend on n. Moreover, we assume the following
form for W that guarantees that the transition probabilities for each site
will depend only on the state of the site considered and his neighbors:

W~σ,~σ′ =
∑
x

W~σ,~σ′(x) (4.2)

when:

W~σ,~σ′(x) = C
∏
x 6=y

δσy ,σ′y ·

Iσx,σ′x +
∑
z(x)

Nσx,σ′z

 (4.3)

where z(x) are the nearest neighbors of x, and the constant C will be useful
later for tuning the time scale. In this equation, operator I is responsible of
the action ‘on site’ while operator N will take care of the diffusion effects.

In order to be able to write a master equation for the 1-point and 2-
point correlation function and ensure the conservation of probability, we
have to require (as seen a posteriori) that:∑

σ

Iσ,σ′ = k (4.4)

∑
σ

Nσ,σ′ =
1− k

q(x)
(4.5)



4.2. Master Equation General Formulation and Solution 63

where q(x) is the number of nearest neighbors of x, and 0 ≤ k ≤ 1 is a pa-
rameter balancing the relative importance of ‘on site’ processes and diffu-
sion processes (the greater k is, the more ‘on site’ processes are important).
To ensure this last condition, we require:

Iσ,σ′ = kL
(1)
σ,σ′ (4.6)

Nσ,σ′ =
1− k

q(x)
L

(2)
σ,σ′ (4.7)

with: ∑
σ

L
(i)
σ,σ′ = 1 (4.8)

then we can look at the elements of L
(i)
σ,σ′ as transition probabilities.

We define the 1-point and 2-point correlation function respectively as:

P n
x (τ) ≡ 〈δτ,σx〉

(n) =
∑
~σ

P n(~σ) δτ,σx (4.9)

(remark that
∑

τ P n
x (τ) = 1), and:

P n
x,y(ε, τ) ≡

〈
δε,σ(x) δτ,σ(y)

〉
(4.10)

We can obtain a close equation for both of them (see Appendix F), and
imposing stationarity and translational invariance (and symmetryzing the
2-point correlation function) we have:

P (τ) =
∑
ε

(
kL(1)

τ,ε + (1− k)L(2)
τ,ε

)
P (ε) (4.11)

and

Fx(ε, τ) =
1

2

∑
a

[
kL(1)

ε,aFx(a, τ) + kL(1)
τ,aFx(ε, a) +

+
1− k

2d

d∑
i=1

(
L(2)

ε,a

(
Fx+ei

(a, τ) + Fx−ei
(a, τ)

)
+

+L(2)
τ,a

(
Fx+ei

(ε, a) + Fx−ei
(ε, a)

))]
(4.12)

for x 6= 0, where q(x) = 2d, d is the space dimensionality of the system and
ei are the lattice versors and

Fx(ε, τ) =
1

2

(
F̂x(ε, τ) + F̂x(τ, ε)

)
(4.13)
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is the symmetrized 2-point correlation function. When x = 0 instead, we
have:

F0(ε, τ) = δε,τP (τ) (4.14)

We assume now that:
L(2) = 1 (4.15)

that is, each individual can give birth only to conspecific offsprings. Un-
der this hypothesis both equations can be solved (see Appendix F). The
solution for the 2-point correlation function is:

Fx =
∑
a,b

vR
a,b ca,b f(x, µa,b) (4.16)

where the formalism utilized is explained fully in Appendix F. This equa-
tion will give us all the correlation functions Fx(ε, τ) (the indexes ε and τ

are contained implicitly in the term vR
a,b) in a numerically computable form

(even analytical in d = 1). The great advantage of this system is that it per-
mits to obtain the correlation functions at the desired precision without
the explicit simulation of the model, thus avoiding all the problems corre-
lated with simulations (sufficient statistics, sampling errors, long simula-
tion times, sloppy numerical definition of equilibrium state, etc.).

We are now free with the choice of one among the many models that
can fit inside this formalism. In the next section we will outline the explicit
embodiment of our theory, our guides will be simplicity and the need to
keep the numbers of parameter at a minimum.

4.3 The Model Definition

4.3.1 One species plus the void

Different models can be fitted in this framework specifying the elements
of L

(i)
σ,σ′ , i.e. the transition probabilities. Our first assumption is that each

species can diffuse only conspecific seeds, and that means that the ma-
trix L(2) is diagonal, as was assumed before: L

(2)
σ,σ′ = δσ,σ′ (remark that for

consistency, even the empty sites can ‘diffuse’, a process that we will call
‘desertification’).

For now, in our model we put S = 1, i.e. each site can be occupied by
species 1 or be empty (in the next section we will deal also with the case
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with multiple species). Now the last thing to specify is the matrix:

L(1) =

 L
(1)
0,0 L

(1)
0,1

L
(1)
1,0 L

(1)
1,1

 (4.17)

For our model we choose the following matrix form:

L(1) =

(
1− v d

v 1− d

)
(4.18)

with the following interpretation: kd it’s the rate of mortality ‘on site’ of
the trees, kv it’s the rate of birth ‘on site’ (i.e. not caused by diffusion, this
meaning that can be caused by a dormant seed that suddenly germinate),
and 1− k is the diffusion rate.

Now it should be noted that if we can change the three coefficients
k, v, d, preserving the ratios of the rates kv, kd, 1 − k we obtain the same
model as before except for a change in the time scale (thus not affecting
equilibrium properties). To see how to change them, one writes the fol-
lowing system of equations:

1− k = c (1− k′)

kv = ck′v′

kd = ck′d′
(4.19)

where c is the change of scale of time. Solving these equations we arrive
at the following symmetry:

v → av

d → ad

k → k
a+k (1−a)

(4.20)

where 0 ≤ a ≤ 1 is an auxiliary variable and the change of time scale is
given by:

c =
a

a + k (1− a)
(4.21)

Please remark that regardless of the value of a, if k has the value of 0 or 1
it will not change its value(i.e. k = 0 and k = 1 are fixed point under this
transformation), as it should be: the case of pure diffusion and the case of
pure ’on site’ process must be invariant.
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It is possible to construct the invariants of this symmetry, and it is easily
seen that, for 0 < k < 1, we have only two independent invariants:

ζ =
kd

1− k
; γ =

kv

1− k
(4.22)

If now we substitute L(i) into Eq.(4.11), we find that at equilibrium we
have2:

P (0) =
d

v + d
=

ζ

ζ + γ

P (1) =
v

v + d
=

γ

ζ + γ
(4.23)

These are the equilibrium density for the species and the empty sites, and
are invariant for the transformation above because they can be expressed
in term of invariants only.

4.3.2 N > 1 species

In this case the matrix L(1) is of the form:

L(1) =


1−∑N

i=1 vi d1 . . . dN

v1 1− d1 0 0
... 0

. . . 0

vN 0 0 1− dN

 (4.24)

meaning that an empty site can become a site occupied with each of the
species, and an occupied site can become empty, but an occupied site can’t
become occupied by another species without being empty in the mean-
time. The matrix L(2) is still the identity L

(2)
σ,σ′ = δσ,σ′ .

Again we can construct a transformation that leaves unchanged the
actual probabilities, and we can find the invariants of this transformation:

ζi =
kdi

1− ki
; γi =

kvi

1− k
(4.25)

2When substituting L(i) into Eq.(4.11) one finds that the values of P (τ) are found by
calculating (L(1) − 1)P = 0
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Substituting L(i) into Eq.(4.11) we can find the stationary solution for
the densities of species:

P (0) =
1

1 +
∑N

j=1 vj/dj

=
1

1 +
∑N

j=1 γj/ζj

P (i 6= 0) =
vi/di

1 +
∑N

j=1 vj/dj

=
γi/ζi

1 +
∑N

j=1 γj/ζj

(4.26)

4.4 Application to the Salt Marshes

The use of this model for simulating the intertidal vegetation and fit the
experimental data faces many approximations and inaccuracies, namely:

• The experimental data can classify the vegetation with a resolution
of 0.5m. This means that we can not see the single individuals, and
each pixel of the data is assigned by a majority rule. So our first
approximation is to neglect the minority part of the vegetation in
each pixel.

• The classification is done by analyzing the spectral photography of
the zone of interest. The passage from the spectral photograph to
the actual classification of the vegetation is not exempt from errors,
though it can be done with remarkable precision [30] [31] .

• It should also be remarked that the various species that compose the
intertidal vegetation are very different in size and density over the
territory. We will consider our lattice as coincident with the grid
given by the data, in which each site has a side of 0.5m, and so con-
tains more than one individual. Thus our coefficients are not the
ones of birth, death and diffusion of a single individual, but they are
the effective ones for a 0.5x0.5m2 zone of vegetation with the addi-
tional hypothesis that the pixel can behave like a single individual in
a certain sense.

The fits are performed on all the mixed β-diversities for every barena
considered, minimizing the sum of all the squared deviation from the data.

If N is the number of species present in a given barena, excluding the
void (soil), then the number of effective parameters nP required by the
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model is:
nP = 2N (4.27)

while the number of β-diversity curves generated nC is:

nC =
(N + 1)(N + 2)

2
(4.28)

Then the number of parameter against the number of curves goes as in
Tab.4.1; the strikingly feature here is that we are thus able to fit the β-
diversity data with less than one parameter per curve!

Table 4.1: Number of parameters required (nP ) against the number of
curves generated (nC) for our model.

N nP nC

1 2 3
2 4 6
3 6 10
4 8 15

Here we present the graphs of the pure β-diversities (i.e. Fx(i, i)) and
the relative theoretical fits from our model for the salt marsh of S.Felice
and two of its subsets, Zone A and Zone C. In Zone A the presence of
Sarcocornia Fructicosa was so small (79 pixels over a total of nearly 40.000)
that we eliminated it completely to have clearer data. The parameters of
the fits are presented in the tables below. Numerically it appears that the
curves are fairly insensible to small variation in the parameters.

The coefficient γ (ζ) should represent the ratio between the probabil-
ity that an individual born from a dormant seed (that an individual die)
and the probability of diffusion by propagules. However, due to the im-
possibility of an empirical measure of such quantities, we can’t confront
our theory with the field data apart from the fit presented here. A deeper
analysis of this theory is now under development.

The model has, nevertheless, also an interest on his own, providing a
solution to a fairly general class of equations, and his applications look
promisingly.
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Figure 4.1: β-diversity curves for S.Felice salt marsh (labeled with RGBi)
and their theoretical fit.

Table 4.2: Parameters from the fit of β-diversity data in S.Felice.

Species γ ζ

spartina maritima 3.77e-5 2.58e-5
sarcocornia fruticosa 3.22e-7 3.82e-6
limonium narbonense 1.48e-6 1.52e-6
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Figure 4.2: β-diversity curves for a subset (zone A) of S.Felice salt marsh
(labeled with RGBi) and their theoretical fit.

Table 4.3: Parameters from the fit of β-diversity data in the subset of
S.Felice named Zone A.

Species γ ζ

spartina maritima 1.00e-4 6.63e-5
limonium narbonense 3.93e-6 9.04e-6
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Figure 4.3: β-diversity curves for a subset (zone C) of S.Felice salt marsh
(labeled with RGBi) and their theoretical fit.

Table 4.4: Parameters from the fit of β-diversity data in the subset of
S.Felice named Zone C.

Species γ ζ

spartina maritima 9.07e-5 5.91e-5
sarcocornia fruticosa 4.31e-7 4.15e-6
limonium narbonense 9.32e-7 1.27e-6
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Chapter 5

Conclusions and Perspectives

A scientist is somebody who constantly questions, gen-
erates falsifiable hypotheses, and collects data from well
designed experiments – the kind of people who brush
their teeth on only one side of their mouth to see whether
brushing your teeth has any benefit.
(Richard Smith, in ”Doctors Are Not Scientists”
(BMJ: 19 June 2004))

As we said in the Introduction of the present work, the field of spatial
ecology is a young and still developing one. Much work is yet to be done,
and many problems are still waiting for a solution.

What we have shown in the present work is that relatively simple mod-
els, with the important feature of being analytically solvable, are apt to fit
experimental data with very good approximation. Some precisations are
now due.

First and foremost, the model presented here are simulations of the real-
ity, but not emulations. That is to say, we are able to reproduce some of the
observed patterns, but we certainly do not claim that the dynamics of the
system is exactly the one displayed by our models, nor that effects differ-
ent from the ones modelized are absent in real ecosystems. What we claim
is that others effect are, to a certain extent shown by the accuracy of the fits,
ignorable from a statistical point of view. An example of this concept is the
notion of neutrality in the tropical forests: it is clearly a hypothesis neglect-
ing many details of the real dynamics. Anybody looking at a map of the
distribution patterns of vegetation, such as Fig.1.5, will recognize instantly

73



74 5 Conclusions and Perspectives

that the various species have strong preferences regarding the terrain in
which they live, and that these preferences vary among species. Also in
the salt marshes the various species show the same behavior, due to the
different degree of terrain salinity in which the plants prefer to grow. In
our models we have ignored both the species preferences and whatsoever
effect due to the terrain (all our models are solved in an uniform terrain).

Thus, it appears that many important characteristics of the dynamic are
in fact negligible if we limit ourselves to the examination of β-diversity.
A correct explanation of the causes of this observation should wait for
some more accurate research, because the elements we have now are not
sufficient to draw a definite conclusion. Nevertheless it seems useful to
advance some hypothesis.

The β-diversity can be a “robust” function of the raw data, meaning
that there are many configurations that give the same shape of the curves.
This can also be rephrased as: the β-diversity does not characterize strongly
the data set. Such an effect will allow many models, producing different
configurations, to have the same β-diversity curve. An alternative, but
closely related explanation is that other effects, absent in our models, are
important at the level of the single plant/tree, but are statistical irrelevant
when considering the β-diversity. Whether this fact is a coincidence or
the ecosystem is tuned for some reason to this outcome, we do not know.
What we can claim is that at the level of spatial similarity the system be-
haves “as is” the only relevant effects are the ones modelized (neutrality,
diffusion and Janzen-Connel for tropical forests; non-neutrality, diffusion
and birth from dormant seeds in salt marshes).

Secondly, in this work we have taken into consideration only the spa-
tial turnover of species. One can easily verify that the voter model with
speciation and Janzen-Connell effect is able to fit also the Relative Species
Abundance (and in fact the resulting curve is rather similar to the solution
of the Hubbell’s drift model, showing that the introduction of spatial ex-
plicitness has not a strong influence on some important quantity), or the
Species-Area Relationship, but it is not possible to fit all three curves at the
same time. In other words one has to change the parameter of the model
depending on which quantity one wants to reproduce. This is a strong
indicator that our model can’t be a an explanation of what really happens
in a tropical forest, but only a “statistical approximation” of the reality.
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The consideration above can be really puzzling: the models are good
and at the same time they are not good. The explanation comes from the
theory of critical phenomena: many models that have different ‘micro-
scopical’ rules display the same behavior at large scale. This effect is called
“universality”. Universality is very useful because it permits the study of
a simple (and often analytically solvable) model for a complex system,
on the grounds that when we do the thermodynamic limit (i.e. when the
system is really big) the simple model behaves alike the complex system.
Now, it appears that our models shows universality properties for what
concerns spatial turnover, but not for other quantities. It is just because of
universality that we can’t affirm that the dynamic in our models it’s the
real one: there will probably be some similar model with a slight different
dynamic that yields results similar to ours. Our merit is to have found for
the first time simple models capable to reproduce real data.

Finally, ons can rightly ask what’s the use of such models if they do
not implement the real dynamic. As the Hubbell’s Drift Model, our aim
has been to obtain the greater amount of information possible from the
simplest possible model. This way we are able to use our models as a null
models. For instance, the original Voter Model with Speciation was a null
model, and it was not able to reproduce the real data. Then, having such
a null model, one is able to ask “what are we missing now?”. It appeared
evident that we lacked some negative density-dependent effect at short
distance, and it was natural to introduce the Janzen-Connell effect. This
allow us now to claim that the Janzen-Connell effect plays an important
role in the spatial turnover of species, while other features, such as the
terrain dishomogeneity seem to play a secondary role. In other words, the
use of a null model lead us to an important insight regarding a complex
system. So this is the use intended for the models presented in this work:
to show the results of simple processes and to be a comparison against
which we have to weight the data. Because it is impossible to understand
the real significance of the data if we do not have some expectation or
theory about them.
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Appendix A

Lattice Correlation Functions for
Voter Model with Speciation.

Math is like love – a simple idea but it can get complicated
(R.Drabek)

Here are contained the calculation for the solution of 1-point and 2-
point correlation function of the Voter Model With Speciation on the lat-
tice. There are (at least) two equivalent ways of obtaining the 1-point cor-
relation function from Eq.(3.7): solving it with the method of generating
function and by the use of Fourier Transform. Both are presented here in
details. The 2-point correlation function will be obtained only by Fourier
Transform.

A.1 1-Point Correlation Function (Generating Func-
tion).

This is a generalization of a calculation done by Krapivsky to solve the
discrete voter model without speciation (i.e. with ν = 0). See [49] for
further details.

Let:

G(~a, t) ≡
∑
~x

(
P t

~x

d∏
i=1

axi
i

)
(A.1)
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Then Eq.(3.7) can be rewritten:

∂G

∂t
(~a, t) =

(
1− ν

2d

(
d∑

i=1

(
ai + a−1

i

)
− 2d

)
− ν

)
G(~a, t) (A.2)

that can be easily solved with respect to time:

G(~a, t) = G(~a, 0) exp

[(
1− ν

2d

d∑
i=1

(
ai + a−1

i

)
− 1

)
t

]
(A.3)

Making use of
+∞∑

j=−∞
ajIj(t) = e

1
2(a+a−1)t (A.4)

(see [60], 9.6.33), where Ij(t) is the modified Bessel I function of order j,
we can write:

G(~a, t) = G(~a, 0) e−t
d∏

i=1

+∞∑
ji=−∞

aji
i Iji

(
1− ν

d
t
)

(A.5)

Remembering that:

G(~a, 0) =
∑
~x

(
S0

~x

d∏
i=1

axi
i

)
(A.6)

we have:

G(~a, t) = e−t
∑
~y

S0
~y

d∏
i=1

+∞∑
ji=−∞

aji+yi
i Iji

(
1− ν

d
t
)

(A.7)

= e−t
∑
~y

S0
~y

∑
~j

aji
i Iji−yi

(
1− ν

d
t
)

(A.8)

Then, by confronting this last equation with the definition of G(~a, t),
we have the solution presented in the main text:

P t
~x = e−t

∑
~y

S0
~y I~x−~y

(
1− ν

d
t
)

(A.9)

where we have defined:

I~x(t) ≡
d∏

i=1

Ixi
(t) (A.10)
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A.2 1-Point Correlation Function (Fourier Trans-
form)

Let P̂ t(~p) be the Fourier transform of P t
~x, i.e.:

P̂ t(~p) =
∑
~x

e−i~p·~xP t
~x (A.11)

P t
~x =

1

Ld

∑
~p

ei~p·~xP̂ t(~p) (A.12)

where:
~p =

2π

L
~n (A.13)

and ~n is a vector whith components ni = 0, . . . , L− 1.
If we let L →∞ then Eq.(A.12) becomes:

P t
~x =

∫
−π<pi<π

dd~p

(2π)d
ei~p·~xP̂ t(~p) (A.14)

Appling the Fourier transform to Eq.(3.6) we obtain:

∂P̂ t

∂t
(~p) =

(
−1 +

1− ν

d

d∑
i=1

cos pi

)
P̂ t(~p) (A.15)

Solving as before with respect to time:

P̂ t(~p) = P̂ 0(~p) exp

(
−t +

1− ν

d
t

d∑
i=1

cos pi

)
(A.16)

Anti-trasforming:

P t
~x = e−t

∫
−π<pi<π

dd~p

(2π)d
ei~p·~x P̂ 0(~p) exp

(
1− ν

d
t

d∑
i=1

cos pi

)
(A.17)

= e−t
∑
~y

P 0
~x−~y

d∏
i=1

∫ π

−π

dpi

(2π)
eipiyi exp

(
1− ν

d
t cos pi

)
(A.18)

Then, using the integral representation:

In(z) =
1

π

∫ π

0
dϑ ez cos ϑ cos(nϑ) (A.19)

(see [60], 9.6.19), we find again Eq.(3.8).
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A.3 2-Point Correlation Function

We can solve the model directly on the lattice with periodic boundary con-
ditions, going in Fourier transform (following the conventions like Eq.(A.12)).
This way, the eq.(3.26) becomes:

F̂ n+1(~p) = F̂ n(~p) (1 + l(~p))−
∫
−π<qi<π

dd~q

(2π)d
F̂ n(~q) l(~q) (A.20)

where:

l(~p) = − 2

N
+ 2

1− ν

dN

d∑
µ=1

cos(pµ) (A.21)

It’s easy to see that l(~p) < 0 ∀~p if 0 < ν ≤ 1.
We can now write down the solution at stationarity:

F~x = g
∫
−π<pi<π

dd~p

(2π)d
ei~p·~x 1

l(~p)
(A.22)

where:

g ≡
∫
−π<qi<π

dd~q

(2π)d
F̂ (~q) l(~q) (A.23)

but imposing the boundary condition F0 = 1 we can also write:

g =

(∫
−π<qi<π

dd~q

(2π)d

1

l(~q)

)−1

(A.24)

So we see that the multiplicative constant can be fixed in the lattice model.
This approach to the solution is suitable to give a closed form in 1 di-

mension. Let d = 1, z ≡ eip and r = |x|:

Fr = g
∫
|z|=1

dz

2izπ

zr

(1−ν)
2

(
z + 1

z

)
− 1

(A.25)

=
g

iπ

∫
|z|=1

dz
zr

(1− ν)z2 − 2z + (1− ν)
(A.26)

Where the path of integration is the unitary circle.
This can be computed using the theory of complex variables i.e the

value of the integral is equal to the sum of the residues at the poles of
the integrand inside the path of integration times 2πi. The poles of the
integrand are located at:

Z± =
1±

√
1− (1− ν)2

1− ν
(A.27)
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Remembering that 0 ≤ ν < 1 we see that both the solutions are reals
and positive.

We can also see that in the case ν = 0 our integral has no poles in the
complex plane (because there is only one singularity in z = 1 and is not a
pole, being of multiplicity 2) and so the integral is vanishing. This means
that g = ∞ and so the problem can’t be normalized.

Instead, when we have 0 < ν < 1 we have 2 simple poles. To see if
this poles are inside the unitary circle we simply have to check if Z± < 1.
We have that Z− is always inside the circle and Z+ always outside. So we
have:

Fr =
g

iπ
2πi

1

1− ν

Zr
−

Z− − Z+

(A.28)

=
2g

1− ν

Zr
−

Z− − Z+

(A.29)

Imposing g such that F0 = 1 at the end we have:

Fr = Zr
− (A.30)

=

1−
√

ν(2− ν)

1− ν

r

(A.31)

= e−r/ξ (A.32)

where:

ξ =

ln
1− ν

1−
√

ν(2− ν)

−1

(A.33)

is the typical lenght of the solution.
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Appendix B

Relation Between ∑
~x F~x and

Moments Ratio.

We want to demonstrate that on the lattice:

∑
~x

F~x =
〈n2〉
〈n〉

(B.1)

First we remark that (by traslational invariance of Fx):

1

Ld

∑
x,y

Px,y =
∑
x

Fx (B.2)

where Px,y is the probability that the trees at x and at y share the same
species. Then, denoting with σx the species of the trees in the site x, we
have:

1

Ld

∑
x,y

Px,y =
1

Ld

∑
x,y

δσx,σy

=
1

Ld

Ld +
∑
x 6=y

δσx,σy

 (B.3)

The last summation can be evaluated in the following way: if the species
σx has k individuals, the sum over y yield k − 1. If now we sum over
all sites x in which there is an individual of the same species, we obtain
k(k − 1). So we can write:

1

Ld

∑
x,y

Px,y = 1 +
1

Ld

∑
species

k(k − 1)
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= 1 +
1

Ld

∑
k

fkk(k − 1)

= 1 +
S

Ld

∑
k

φkk(k − 1) (B.4)

where fk is the number of species with k individuals; while φk is the frac-
tion of species with k individual and S the number of species in the sam-
ple. This three quantities are related by fk = Sφk.

We can simplify the last result noting that:∑
k

fkk = Ld (B.5)

and: ∑
k

φkk
i =

〈
ni
〉

(B.6)

Substituting this two relation, along with Ld/S = 〈n〉, in Eq.(B.4) we
obtain our thesis.



Appendix C

Asymptotic Behavior of ∑
~x F~x

We already know the exact solution for the β-diversity function on the
lattice, Eq.(3.22). His Fourier transform is:

F̂ (~p) =
1

l(~p)

(∫ π

−π

ddq

(2π)d

1

l(~q)

)−1

(C.1)

with l(~p) given by Eq.(3.23). Through some manipulation, we can rewrite:

F̂ (~p) =
1

K(~p)

(∫ π

−π

ddq

(2π)d

1

K(~q)

)−1

(C.2)

with:

K(~p) = ν +
1− ν

d

d∑
µ=1

(1− cos pµ) (C.3)

Now:

∑
~x

F~x = F̂ (~p = 0)

=
1

K(0)

(∫ π

−π

ddq

(2π)d

1

K(~q)

)−1

∼ d

ν(2π)d

(∫ π

−π
ddq

1

dν + q2

)−1

(C.4)

where we have used the following approximation: for ν → 0 and p → 0

we have K(~p) ∼ ν + p2/d + O(p4). Now we distinguish two cases:

85



86 C Asymptotic Behavior of
∑

~x F~x

Case 1 d < 2: We change variable in the integral: s =
√

dν q so ve have:

∫ π

−π
ddq

1

dν + q2
= (dν)

d−2
2

∫ π/
√

dν

−π/
√

dν
dds

1

1 + s2

' (dν)
d−2
2

∫ ∞

−∞
dds

1

1 + s2

∼ ν
d−2
2 (C.5)

Then: ∑
~x

F~x ∼ ν−d/2 (C.6)

Case 2 d > 2: We carry out the limit ν → 0 in the integral:∫ π

−π
ddq

1

dν + q2
→

∫ π

−π
ddq

1

q2

∼
∫ π

0
dq qd−3 (C.7)

and we can easily see that the singularity in ~q = 0 is harmless and the
integral behaves like a constant for ν → 0. Then we have:∑

~x

F~x ∼ ν−1 (C.8)



Appendix D

Scaling Relations

We need to study the equations:

S =
∑
n

f(n, ν, A) ∼ νa(β−1)
∫ ∞

νa
dx x−β f̂(x, Aνd/2) (D.1)

A =
∑
n

n f(n, ν, A) ∼ νa(β−2)
∫ ∞

νa
dx x1−β f̂(x, Aνd/2) (D.2)

So we distinguish three cases:

D.1 1 + c− β > 0

In this case both the integrals in Eq.(D.1) and Eq.(D.2) converge to a con-
stant as ν → 0. Then we have:

S ∼ νa(β−1) FS(Aνd/2) (D.3)

A ∼ νa(β−2) FA(Aνd/2) (D.4)

and from the second of this relations we can easily see that FA(y) ∼ y and
a(β − 2) = d/2. Using our assumption for a, i.e. Eq.(3.44), we have:

β = 2− d

2a
=

{
1 d < 2
4−d
2

d > 2
(D.5)

Moreover, confronting Eq.(D.3) with Eq.(3.40) we have:

z = −2

d
a(β − 1) =

{
0 d < 2
d−2

d
d > 2

(D.6)
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Now, dividing member-to-member Eq.(3.39) by Eq.(D.3) we obtain:

φ(n, ν, A) = n−1φ̂(nνa, Aνd/2) (D.7)

and, by confrontation with Eq.(3.41), we find b = 1.

D.2 −1 < 1 + c− β < 0

In this case the integrals in Eq.(D.2) converges but the one in Eq.(D.2)does
not converge to a constant as ν → 0. Then we have:

S ∼ νac FS(Aνd/2) (D.8)

A ∼ νa(β−2) FA(Aνd/2) (D.9)

and from the second of this relations we can easily see that FA(y) ∼ y and
a(β − 2) = d/2 as above. Using our assumption for a, i.e. Eq.(3.44), we
have again:

β = 2− d

2a
=

{
1 d < 2
4−d
2

d > 2
(D.10)

But now, confronting Eq.(D.8) with Eq.(3.40) we have:

z = −2ac

d
=

{
−c d < 2
−2c
d

d > 2
(D.11)

Again, dividing member-to-member Eq.(3.39) by Eq.(D.8) we obtain:

φ(n, ν, A) = nc−βφ̂(nνa, Aνd/2) (D.12)

and, by confrontation with Eq.(3.41), we find:

b = β − c =

{
1− c = 1 + z d < 2

2− c− d
2

= 2− d
2
(1− z) d > 2

(D.13)

With a bit of algebra, this last equation can be rewritten as a scaling
relation:

a(2− b) =
d

2
(1− z) (D.14)
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D.3 1 + c− β < −1

In this case both the integrals in Eq.(D.1) and Eq.(D.2) don’t converge to a
constant as ν → 0. Then we have:

S ∼ νac FS(Aνd/2) (D.15)

A ∼ νac FA(Aνd/2) (D.16)

By the second of these equations we haveFA(y) ∼ y and:

c = −ad

2
=

{
−1 d < 2

−d
2

d > 2
(D.17)

Then, confronting Eq.(D.15) with Eq.(3.40) we have:

z = −2ac

d
= 1 (D.18)

Moreover we have, proceeding as before, b = β − c > 2.
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Appendix E

Solution of Differential Equation
in J.C. Voter Model

In this section we will restrict to the case d = 2, but the procedure is fairly
general and can be repeated for different values of d with only a few minor
changes. As seen in the main text, a stationary solution of Eq.(3.21) is the
modified Bessel function K0 (Eq.(3.36)). Of course, this is not the only
solution; indeed all function that satisfy:

−D∇2F (~x) + αF (~x) = bδd(~x) (E.1)

are valid solutions. Now, consider the homogeneous equation:

−D∇2H(~x) + αH(~x) = 0. (E.2)

All the functions of the form

F (~x) + cH(~x), (E.3)

where F is a particular solution of (E.1), H is a solution of (E.2) and c

is a constant, are solutions of (E.1). We have already found a particular
solution F of (E.1) solving the standard voter model, so now we need only
to solve (E.2). We will assume H(~x) = H(r), r ≡ |~x|. Then one can write

∇2H(r) = r1−d ∂

∂r

(
rd−1 ∂

∂r
H(r)

)
(E.4)

=
d− 1

r
H ′(r) + H ′′(r). (E.5)
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We define G(r) such that H(r) ≡ rζG(r), and from (E.2) we get an
equation for G(r):

r2G′′(r) + r(2ζ + d− 1)G′(r) + (ζ(d− 2 + ζ)− r2γ2)G(r) = 0 (E.6)

where γ2 = α/D. Our goal is to find a solution that is well behaved at
the origin. Recall that ζ is a free variable – we choose 2ζ + d − 1 = 1, i.e.
ζ = 2−d

2
. This leads to

r2G′′(r) + rG′(r)− (γ2r2 + ζ2)G(r) = 0 (E.7)

and setting γr ≡ t and G(r) ≡ y(t) we find:

t2y′′(r) + ty′(t)− (t2 + ζ2)y(t) = 0 (E.8)

Setting d = 2 yields ζ = 0 and the general solution of the equation is

y(t) = C1I0(t) + C2K0(t), (E.9)

where K0 and I0 are the modified Bessel functions. C2 = 0 because K0(t)

is not regular in the origin. Thus the general solution of (E.1) is

sγ2
0

2π
K0(γ0r) + cI0(γ0r) (E.10)



Appendix F

Correlation Functions for
Intertidal Vegetation

F.1 1-Point Correlation Function

We want to obtain a close equation for the 1-point correlation function:

P n
x (τ) ≡ 〈δτ,σx〉

(n) =
∑
~σ

P n(~σ) δτ,σx (F.1)

(remark that
∑

τ P n
x (τ) = 1). Thus:

P n+1
v (τ) = P n

v (τ) +
∑
x

∑
~σ,~σ′

[W~σ,~σ′(x) P n(~σ′)−W~σ′,~σ(x) P n(~σ)] δτ,σv (F.2)

The contribution from x 6= v is zero since Eq.(4.3) implies that σv = σ′v.
Indeed, interchanging ~σ with ~σ′:∑

x

∑
~σ,~σ′

W~σ,~σ′(x) P n(~σ′)δτ,σv =
∑
x

∑
~σ,~σ′

W~σ′,~σ(x) P n(~σ)δτ,σ′v (F.3)

=
∑
x

∑
~σ,~σ′

W~σ′,~σ(x) P n(~σ)δτ,σv (F.4)

Thus it can be easily seen (using Eq.(4.4) and Eq.(4.5)) that:

P n+1
x (τ) = (1− C) P n

x (τ) + C
∑
a

Iτ,a P n
x (a) +

∑
z(x)

Nτ,a P n
z (a)

 (F.5)

It should be noted that changing the constant C > 0 we can obtain
different equations for the same process by changing only the time scale,
i.e. the properties at equilibrium will not be affected.
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F.2 2-Point Correlation Function

Proceeding in the same way one can obtain a close form for the 2-point
correlation function:

P n
x,y(ε, τ) ≡

〈
δε,σ(x) δτ,σ(y)

〉
(F.6)

i.e. the probability that at the n-th time step x and y are occupied by ε and
τ respectively. Remark that P n

x,x(ε, τ) = δε,τ P n
x (τ) and that∑

ε,τ

P n
x,y(ε, τ) = 1 (F.7)

By the same procedure described before it is obtained (with x 6= y):

P n+1
x,y (ε, τ) = (1− 2C)P n

x,y(ε, τ) +

+C
∑
a

[
Iε,aP

n
x,y(a, τ) + Iτ,aP

n
x,y(ε, a) +

+
∑
z(x)

Nε,a(x)P n
z,y(a, τ) +

∑
z(y)

Nτ,a(y)P n
z,y(ε, a)

]
(F.8)

F.3 Stationary Solutions

At stationarity, in a square d-dimensional lattice with periodic bound-
ary conditions, we look for a solution which is translationally invariant:
P n

x (τ) ≡ P (τ). Eq.(F.5) then becomes:

P (τ) =
∑
ε

(
kL(1)

τ,ε + (1− k)L(2)
τ,ε

)
P (ε) (F.9)

Remark that this equation has always at least one solution. This can be
seen with the following argument: in order to be a solution, P (τ) has to be
a (right) eigenvector of the matrix

Aτ,ε = δτ,ε −
(
kL(1)

τ,ε + (1− k)L(2)
τ,ε

)
(F.10)

and his eigenvalue has to be zero. Now remember that the sum of each
column of the matrices L(i) has to be 1, by definition (Eq.(4.8)). Then each
column of A must sum to zero. This in turn implies that there is a left
eigenvector with zero as eigenvalue, and so that det(A) = 0, then there
exist at least one right eigenvector with eigenvalue zero.
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Analogously, we define P n
x,y(ε, τ) = F̂x−y(ε, τ). Then it is convenient to

use a symmetrized version of this quantity as:

Fx(ε, τ) =
1

2

(
F̂x(ε, τ) + F̂x(τ, ε)

)
(F.11)

(so, obviously, Fx(ε, τ) = Fx(τ, ε)). With the help of this last definition
Eq.(F.8) becomes (when x 6= 0):

F n+1
x (ε, τ) = (1− 2C)F n

x (ε, τ) +

+C
∑
a

[
kL(1)

ε,aFx(a, τ) + kL(1)
τ,aFx(ε, a) +

+
1− k

2d

d∑
i=1

(
L(2)

ε,a

(
Fx+ei

(a, τ) + Fx−ei
(a, τ)

)
+

+L(2)
τ,a

(
Fx+ei

(ε, a) + Fx−ei
(ε, a)

))]
(F.12)

and so, for a stationary solution:

Fx(ε, τ) =
1

2

∑
a

[
kL(1)

ε,aFx(a, τ) + kL(1)
τ,aFx(ε, a) +

+
1− k

2d

d∑
i=1

(
L(2)

ε,a

(
Fx+ei

(a, τ) + Fx−ei
(a, τ)

)
+

+L(2)
τ,a

(
Fx+ei

(ε, a) + Fx−ei
(ε, a)

))]
(F.13)

where d is the space dimensionality of the system (and q(x) = 2d), and ei

are the lattice versors. When x = 0 instead, we have:

F0(ε, τ) = δε,τP (τ) (F.14)

Remark that both the 1-point correlation function and the 2-point cor-
relation function don’t depend on C at equilibrium, as stated before.

F.4 Analytic Solution for 2-point Correlation Func-
tion

From now on we will assume that:

L(2) = 1 (F.15)
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This assumption has an important physical meaning: each individual can
give birth only to conspecific offsprings.

With this assumption we can write Eq.(F.12) as:

F n+1
x − F n

x =
1− k

d
[∆F n

x + MF n
x ] (F.16)

where
M =

dk

1− k

[
L(1) ⊗ 1 + 1⊗ L(1) − 21⊗ 1

]
(F.17)

and

∆Fx ≡
d∑

i=1

[F (x + ei) + F (x− ei)− 2F (x)] (F.18)

Then, the stationary solution should satisfy:

∆Fx + MFx = 0 (F.19)

To solve this last equation we need to find a complete system of left
and right eigenvalues of L(1), i.e. we need to find two system of vectors tRa ,
and tLa such that:

L(1) tRa = λa tRa (F.20)

tLa L(1) = λa tLa (F.21)

tLa · tRb = δa,b (F.22)

where λa are the eigenvalues of L(1). We also define:

vA
a,b ≡ tAa ⊗ tAb (F.23)

where A = L, R. Remark that:

vL
a,b · vR

c,d =
(
tLa · tRc

) (
tLb · tRd

)
= δa,cδb,d (F.24)

Now, the vectors vA
a,b are the right and left eigenvectors of M with eigen-

values:
µa,b =

dk

1− k
(λa + λb − 2) (F.25)

Let’s now define:
fa,b(x) = vL

a,b · Fx (F.26)

thus:
Fx =

∑
a,b

fa,b(x)vR
a,b (F.27)
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Now, left multiplying Eq.(F.19) by vL
a,b one obtains:

∆fa,b(x) + µa,bfa,b(x) = 0 (F.28)

This is just a numerical equation (not a vectorial one like before) and so
it’s easily solved going in Fourier Transform. Let’s also decompose fa,b in:

fa,b(x) = ca,b f(x, µa,b) (F.29)

where f(x = 0, µa,b) ≡ 1 by definition (or equivalently ca,b ≡ fa,b(x = 0)).
And so we can write the solution of our model as:

Fx =
∑
a,b

vR
a,b ca,b f(x, µa,b) (F.30)

We’ll now divide our derivation in 2 parts: in the tensorial part we’ll
derive an explicit expression for ca,b in terms of the vectors tAa , in the spatial
part we’ll study the behavior of f(x, µa,b).

F.4.1 tensorial part

First of all we introduce the following notation:

(tAa )i (F.31)

is the i-th component of the a-th eigenvector of type A = L, R of the matrix
L(1), as described above. If we denote similarly the components of the
vectors v described above, we have:

(vA
a,b)i,j = (tAa )i (t

A
b )j (F.32)

Moreover, due to Eq.(4.8), we know for sure that there will be an eigen-
value λ0 = 1. Their eigenvectors will be denoted with tA0 , and will play a
special role in our theory1. Remark also that µ0,0 = 0. From Eq.(4.8) we
can also find that:

(tL0 )i = 1 ∀i (F.33)

i.e. the left eigenvector with zero eigenvalue has all his component equal
to 12. From Eq.(F.14) and Eq.(4.11) it’s easy to calculate that:

Fx(i, j) = δi,j(t
R
0 )i (F.34)

1for instance (tR0 )i will be the density of species i inside the plot considered
2Rigorously, there can be more than one eigenvector with a zero eigenvalue. In this

case we will denote as tL0 the one with all his components equal to 1, which is guaranteed
to exist.
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Remember also that from Eq.(F.29) we have that:

ca,b = vL
a,b · F0

=
∑
i,j

δi,j (tR0 )i (t
L
a )i (t

L
b )j

=
∑
j

(tR0 )j (tLa )j (tLb )j (F.35)

and so we have an explicit formula for ca,b.

F.4.2 spatial part

Now we want to solve the equation:

∆f(x, µa,b) + µa,bf(x, µa,b) = 0 (F.36)

with: f(x = 0, µa,b) = 1. This can also be written as:

Axf(x, µa,b)− δx,0 [(Ax − 1)f(x, µa,b) + 1] = 0 (F.37)

where:
Ax = ∆ + µa,b (F.38)

Defining the Fourier Transform of f(x, µa,b) as:

f̂(p, µa,b) =
∑
x

e−ipx f(x, µa,b) (F.39)

we have:

f̂(p, µa,b) l(p)−
∫ π

−π

ddp

(2π)d
f̂(p, µa,b) l(p) = 0 (F.40)

with:

l(p) = 2
d∑

i=1

(cos pi − 1) + µa,b (F.41)

Then the solution is:

f(x, µa,b) = g
∫ π

−π

ddp

(2π)d

eipx

l(p)
(F.42)

where:

g =
∫ π

−π

ddp

(2π)d
l(p)f̂(p, µa,b) (F.43)
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but imposing the condition at x = 0 one can also write:

g =

(∫ π

−π

ddp

(2π)d

1

l(p)

)−1

(F.44)

Then we are left to evaluate the integral:

I(x) =
∫ π

−π

ddp

(2π)d

eipx∑d
i=1 (1− cos pi) + λa,b

(F.45)

with λa,b = −µa,b/2 ≥ 03 Using the formula:

1

a
=
∫ ∞

0
dt e−at (F.46)

one have:

I(x) =
∫ ∞

0
dt
∫ π

−π

ddp

(2π)d
eipxe

−
[∑d

i=1
(1−cos pi)+λa,b

]
t

=
∫ ∞

0
dt e−(d+λa,b)t

d∏
i=1

∫ π

−π

dpi

(2π)
eipixi+t cos pi

=
∫ ∞

0
dt e−(d+λa,b)t

d∏
i=1

∫ π

0

dpi

(2π)
et cos pi cos(pixi)

=
∫ ∞

0
dt e−(d+λa,b)t

d∏
i=1

Ixi
(t) (F.47)

where Ixi
(t) is a modified Bessel I function of order xi.

For d = 1 we have that:

∫ ∞

0
dt e−(1+λ)tIx(t) =

(
1 + λ +

√
λ (2 + λ)

)−x

√
λ (2 + λ)

(F.48)

and so:
f(x, µa,b) =

(
1− µa,b/2 +

√
µa,b/2 (µa,b/2− 2)

)−x

(F.49)

For d ≥ 2 this solution does not have a closed form, but it is very easy
to calculate numerically.

3it is very easy to show that the matrix L(2)− 1 is definite nonpositive, and as such all
his eigenvalues are negative or zero, and the same is true for all µa,b.
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