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Introduction

Or, to change the metaphor slightly, professional investment may be likened to
those newspaper competitions in which the competitors have to pick out the six

prettiest faces from a hundred photographs, the prize being awarded to the
competitor whose choice most nearly corresponds to the average preferences of

the competitors as a whole; so that each competitor has to pick, not the faces
which he himself finds prettiest, but those which he thinks likeliest to catch the

fancy of the other competitors, all of whom are looking at the problem from the
same point of view. It is not a case of choosing those which, to the best of one’s

judgement, are really the prettiest, nor even those which average opinion
genuinely thinks the prettiest. We have reached the third degree where we devote
our intelligences to anticipating what average opinion expects average opinion

to be. And there are some, I believe, who practice the fourth, fifth and higher
degrees.

John Maynard Keynes [1]

In this Thesis, I will address two general topics about socio-economic systems,
relating to social choice theory (Part I) and to the properties of fluctuations in
financial markets (Part II). Before describing the problems we will encounter, let
us discuss the general context in which these issues arise and also, why a physicist
should care at all.

The study of human behavior has always been a challenge. In the history, most
of the greatest minds in literature, economy, biology and philosophy have spent
time and dedicated works to understanding what are the basis of rational thinking
and what its consequences and to study what motivations guide human activity
and how they arise. In particular, economists and sociologists have tried to bring
this subject in the realm of science, thus to develop disprovable theories of human
behavior. When one attempts such a demanding task, many assumptions have to
be made in order to treat a system as complex as that composed of many agents
acting each with its own beliefs and expectations. Such complexity did not scare
economists, who have tried and succeeded in developing rich theories of human
behavior and to derive from them economic laws.
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6 Introduction

Often, the emphasis of these studies has been on motivating the assumptions
about people’s behavior. Of course one can devise more and more refined models
of human rationality, describing in details the agents’ expectations, their beliefs,
their strategies. The derivation of laws for the collective behavior may be a chal-
lenging task in these cases, and it is legitimate to ask whether all this sophistica-
tion is indeed needed. Since Boltzmann, physicists have realized that the laws that
govern aggregates of objects are due to statistical regularities that arise only at the
macroscopic level, and that the detailed information about the microscopic con-
stituents is often unnecessary. One clear and famous example is the Ising Model
[2], which was proposed to explain the properties of ferromagnetic materials. The
model is very simple, replacing each atom with a spin variable, thus forgetting
all the details about the structure of the atoms, the nucleus, the electrons and so
on. Yet, macroscopic properties such as phase transitions and magnetization are
captured and reproduced. Such collective properties can be shown to depend only
on a few key quantities, such as for example the dimensionality of the model, but
not on the details at an atomic scale. Hence the lesson is that macroscopic laws
emerge as a result of statistical regularities, and do not depend on the microscopic
variables.

The idea is then to apply this approach to socio-economic systems, to model
the emerging collective properties of such systems on a coarse-grained level, with-
out resting on hardly testable behavioral assumptions about the individuals. To
this scope let us introduce briefly some key ideas in economic literature, as well
as the problems they generate and how statistical physics has helped and can help
tackling these problems.

One of the basic assumptions of neoclassical economics has been that of being
able to model an economy through the representative agent approach. This rests
on the hypothesis that each group of agents can be modeled by some function
reflecting the average behavioral motifs of the members of the group. The typical
example is the way in which the price forming process of supply and demand
is analyzed in classical economy textbooks. One assumes the existence of some
demand function, which represents the quantity of a given good the agents acting
in a particular market are willing to buy as the price of that good varies. Though it
has given rise to many important theories and results, this approach misses some
key features of systems as complex as the one under study.

First and foremost it misses the fact that the collective properties of a group
of items may, and actually do, differ dramatically from that of single items taken
separately. Going back to the previous example, the demand function is itself a
collective property of economic systems, and it may have nothing to do with the
characteristics of individuals. In an empirical study [3], Hardle and Kirman have
analyzed the price and quantity details for trades in the Marseille fish market,
deriving from the data demand curves. They found indeed that at the aggregate
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level a downward relationship exists, while in general this is not true at the indi-
vidual level, and concluded that ”regularities are generated by aggregation rather
than derived from individual behavior”. Then, if this is the case, one has to de-
rive macroscopic laws for socio-economic systems from carefully aggregating the
individuals’ ”microscopic” properties.

Moreover, direct interaction has often been neglected in the economics liter-
ature. For example, traders in a market are thought to interact only through the
price of goods: they receive a signal (the price) and react to it. They are not
influenced by each other, they are not even aware of each others’ existence. Mod-
els where there is a direct, conscious, interaction between the agents are termed
models of ”imperfect competition”. Thus, the standard picture is a ”competitive
equilibrium” where the signal induces the agents to make choices that clear the
market (i.e. the offer matches the demand). This is somehow a benchmark and
other models are often judged in respect of how they deviate from this one. We
will come back to this issue later in this Introduction. Here we just note that in
practical contexts there are many situations where the behavior of agents is di-
rectly influenced by other agents’ actions. One clear example is the widespread
occurrence of conformism, where people imitate each other, with which we will
deal in the first Part of this Thesis.

To tackle these problems, and keeping in mind that we want to develop the-
ories for the collective behavior without entering in too many details about the
individuals’ motivation, the general plan is to take into account the interaction
among simplified agents and then derive macroscopic laws for the aggregate. This
kind of situation, as we said, is quite common in statistical physics, where it is at
the basis of the theory of phase transitions. It has long been known that studying
the properties of a single iron atom, however deep the study may be, does not
help much when one is interested in ”emerging” macroscopic properties such as
the magnetization or, say, the fact that at high temperature a solid will melt into
liquid state. These macroscopic properties are the result of the interaction of a
large number of microscopic constituents and cannot be inferred from the analy-
sis of such constituents. Just as anyone wishing to study thought processes should
not simply generalize the average neuron, or one considering the motion of flocks
should not concentrate on the ”average bird”, an economist should not model mar-
ket behavior by ”modeling markets as individuals”[4], and it is precisely here that
statistical physics can help.

Given this general critique that can be moved to economic models, we can
be more specific by looking in detail at some ideas that were developed to de-
scribe socio-economic systems. In particular, the notion of rationality is central in
economic theory, where one wishes to model purposeful behavior. The reason is
readily understood by thinking for example about financial markets. There we find
speculators of many different kinds, like for example trend-followers, investors
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wishing to minimize risk or fundamental traders who take trading decisions based
on their belief of what is the expected ”fundamental” value of a given stock. How
can we model the agents acting in this environment, if not by resorting to some
assumptions on their expectations?

A tool that was devoloped in this direction is that of game theory [5]. Game
theory is designed to take into account explicitly each individual’s expectations
and strategies, that are focused on anticipating other players’ moves in an attempt
to take the better decision. The assumption upon which the theory rests is that
the players know everything about the other players’ strategies, beliefs and ex-
pectations, that is, there is ”common knowledge” about what everybody knows.
Then one looks for static equilibria, that is, situations in which each agent has no
incentive to change strategy. The richness of such models is indeed vast, but this
idea of rationality can be criticized in many aspects. The fundamental point is to
realize that this notion of infinite rationality can be thought of as a zero-th order
approximation. Indeed, there is a unique way of being perfectly rational, and it
is the one discussed above. On the other hand, there are infinitely many ways of
limiting the agents’ rationality. This relates to what we mentioned above about
competitive equilibrium. There is one way to deal with markets and derive a gen-
eral equilibrium, but there are many ways of introducing interaction or imperfect
competition. The idea behind the general equilibrium is that agents learn and react
very quickly, so that their deviations from full rationality can be disregarded.

However, it turns out that if one wishes to model accurately individuals’ be-
havior, many refinements of the perfect rationality are appropriate. For example,
real world players can not be asked to store and process such a large amount of
information. The notion of bounded rationality [6] has had some success in trying
to capture the need to model economic agents as actors having not only a finite
computational capacity, but, most importantly, as players that learn from the past
events and whose rationality is shaped by the very same games they play. An
example is that of markets of perishable goods, where the same agents trade the
same goods day after day, and each day their decisions will be shaped by their
previous experience. Realizing that an agent acting in an evolving environment
(the market or in general the economic system under study) will necessarily have
evolving beliefs and strategies, and thus that it can not be modeled as a static entity
with a fixed plan of action has also been a concern to eminent economists [7]. This
type of questions have been addressed quite seriously in recent years (see [8, 4]),
but their history dates back to the keynesian beauty contest [1], that exemplifies
the idea that investment is driven by expectations about what other investors think,
rather than about the fundamental profitability of a particular investment, and the
explicit strategy of each player with respect to her expectations need in principle
to be taken into account.

This chain of models is what we were referring to in the first part of the In-
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troduction. As statistical physicists, then, we will try to capture only very essen-
tial assumptions about the agents and work out the statistical laws that emerge at
a coarse-grained level. Moreover, it becomes an extremely hard task to handle
game-theoretic models with more than a few players. Tools capable of dealing
with large number of microscopic components to derive the collective resulting
behavior are needed, and again statistical physics can help providing this tools.

The physics community began to address this questions in the 90s, and one of
the most famous approaches was that developed at the Santa Fe Institute, which
rests on the idea of modeling markets in a way much more similar to how one
models biological systems, that is, as evolving complex systems [9], composed
of interacting heterogeneous agents. One of the first to introduce this view of
economic systems was Brian Arthur [10, 11]. This gave rise to a wealth of pa-
pers, one of the most famous being the ”Santa Fe stock market model” [12] (an
artificial model for stock markets, but see also [13]). The interest has since then
focused mainly on financial markets, and the reason is twofold. There is certainly
a practical interest in developing testable theories of financial markets (as easily
understood!), and there are now some books covering this aspect in depth[14, 15].
But there is something more, namely the fact that social theories are very difficult
to analyze on the basis of empirical evidence due to the scarce availability of data.
This problem was eased in recent years by the availability of a great amount of
data regarding financial markets. These data concern trades, and trades are the
result of the individuals’ decision process. Hence, financial markets are a proto-
type system to study for they provide a mean to test theories of collective human
behavior as well as general assumptions on beliefs and expectations.

The detailed statistical analysis of financial markets has revealed important
aspects that now go under the name stylized facts. These mainly concern the
anomalous properties of price fluctuations [16]. The price of stocks was shown to
udergo a process characterized by anomalously large fluctuations and non-trivial
time dependence, with bursts of high volatility followed by periods of relative
”quiet”. This excess volatility, and its ubiquitous presence in different markets
throughout the world, is hardly explained in terms of economic fundamentals,
and it is now widely accepted that it stems instead from some internal market
dynamics. One benchmark model for this is El Farol’s bar problem [17], which
led to the development of the Minority Game [18]: a model that is capable of
reproducing and explaining the anomalous features that arise at a macroscopic
level (aggregate) as resulting from the interaction of many heterogeneous agents
with heterogeneous strategies, which, as we said, is precisely the goal of statistical
physicists studying socio-economic systems.

Within this generic panorama of current research, this Thesis addresses prob-
lems that exemplify well the above discussion. In the first Part of this Thesis, and
in particular in the first Chapter, we will deal with a problem of social choice. This
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amounts to the aggregation of the preferences of N individuals over a group of S
items, or alternatives, which is a good example of a situation where one needs
to derive the properties of the aggregate, given an heterogeneous group of agents,
as discussed in the first part of this Introduction. Each agent, or voter, will have
her own ranking of the S alternatives, from the preferred one to the worst. What
are then the collective property of the ”majority”? In particular, is it possible to
define a preference ranking for the majority? Certainly, one must carefully deduce
such properties, and the question of how to better aggregate individuals’ prefer-
ences has been long since debated. Many voting rules have been proposed and
studied, but it turns out that each of these rules has its flaws, as stated in Arrow’s
theorem [19]. In Chapter 1 we will discuss this issue in connection to one of the
most studied voting rules (Pairwise Majority). The problem with this rule is that
it can define a majority that prefers alternative A to alternative B, alternative B to
C, and alternative C to A. This intransitivity is however not certain, and we will
study the probability for the occurrence of such situation in a random population.
This issue is also of practical interest towards determining how often one expects
to encounter such problems in typical situations.

In Chapter 2 we generalize the above issue to the case of an interacting pop-
ulation. In particular, the type of interaction that we will introduce among voters
is one that mimicks conformism, with agents trying to align their rankings of the
alternatives to each other. We will ask how this interaction affects the findings of
Chapter 1. Thus, we will face a system with many interacting agents and we will
study its collective properties, along the lines drawn in this Introduction. We will
borrow concepts and tools from statistical physics, introducing an order parame-
ter that gives a measure of the collective order reached and, just like in standard
statistical mechanics, a phase diagram will characterize the various ”states” of the
system.

This analogy will be pushed further in Chapter 3, where we will analyze the
above-mentioned properties for real data. In particular, we will study the prefer-
ences of a group of voters over movies. In our view, this is a good example to test
the theories developed for two reasons. First comes the fact that in priciple any
ranking of a group of movies can be a legitimate and reasonable choice by any-
body. Also, with all the advertisement for movies and with the fact that movies
are almost always seen with other people, there is certainly a good deal of interac-
tion upon the subject. This will conclude the first Part and our dealing with social
science. In the second Part of the Thesis we will devote our attention to financial
markets.

We have said how many anomalous statistical properties of asset prices have
been revealed, and how these properties suggest to model financial markets as sys-
tems with endogenous feedbacks on the price dynamics. Our idea in the second
Part of this Thesis will be that of generalizing these issues to a multi-asset market.
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Hence at first we shall describe, in Chapter 4, the properties of such markets with
a focus on the inter-asset correlations. Clearly, in a multi-asset setting, these are
important quantities to characterize the market, and they have been widely stud-
ied. We will show that also here we can find interesting non-trivial behavior, and
we will find some hints for the influence of internal feedbacks on the temporal
evolution of the correlations.

This will lead us to the final Chapter, the fifth, where we will develop a model
to explain and understand typical patterns in the temporal evolution of inter-asset
correlations in term of an influence of financial investment strategies on the price
process. The main point lies in the fact that investment strategies are determined
by the historical properties of the system, but there is a feedback of these strategies
on the price process itself. Hence this often-neglected interaction makes financial
markets systems that feed on their same output. This feedback loop will be shown
to be partly responsible for the observed fluctuation properties of the inter-asset
correlations.
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Chapter 1

Probabilistic approach to
Condocet’s paradox

1.1 Introduction

Social systems have in the last decades attracted the attention of statistical physi-
cists as a wealth of papers concerning social questions have appeared on physics
journals. In close analogy with what happened for econophysics, the definition so-
ciophysics has been proposed [20], though it hasn’t catched as much. Among the
problems studied one of the first, and most famous, is the neighbourhood problem
put forth by Thomas Schelling [21]. This amounts to studying how an hetero-
geneous population, initially distributed randomly among the possible ”houses”,
evolves to a state where homogeneous neighborhoods emerge through a dynamic
where the agents prefer to have neighbours similar to themselves. The clear anal-
ogy with the physics of ferromagnets is striking and has been exploited in several
models (see for example [22]). Other benchmark problems concern social choice
and voting theory as for example, the voter model[23], that has been proposed to
study how the vote’s outcome between two alternatives is affected when voters
influence each other. The reason for this outburst is that all this issues involve col-
lective phenomena (such as the emergence of a common opinion in a large popu-
lation) that are reminiscent of the collective phenomena in statistical physics. This
approach to socio-econimic systems is thus very general and stems from realizing
that the emergence of a ”macro-behaviour” can be the result of the interaction of
many agents, each with different beliefs and expectations[24, 21].

Social choice and voting theory address the generic problem of how the indi-
vidual preferences of N agents over a number S of alternatives can be aggregated
into a social preference. In the case of two alternatices (S = 2) the voter model
represents a clear link between the social problem and statistical physics. Also

15
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the random field Ising model has been proposed [25] in this context. In both cases
the idea is that each agent in the population is represented by a spin variable si,
whose value corresponds to the opinion of the voter. Then the interaction is a
ferromagnetic one so as to mimick conformism: each ”spin” tends to be aligned
with its neighbors. The outcome of the ”elections” is dictated simply by the usual
order parameter, the magnetization m =

∑
i si.

This ”majority” rule can be naturally extended to S > 2 alternatives by con-
sidering the social preferences stemming from majority voting on any pair of al-
ternatives, i.e. pairwise majority rule (PMR). To be more precise, let us consider
the case of three alternatives, and let us label the alternatives A, B, C. Each agent
in the population has a transitive ranking of the alternatives, where transitivity
means that if A is preferred to B and B to C, then A has to be preferred to C. The
population is asked to vote between A and B, each agent votes for the alternative
resulting higher in her ranking, and we get a statement for the preferred alterna-
tive like A � B, if the majority of the voters prefers A to B. Then we repeat this
procedure for each pair of alternatives. The outcome A � C and B � C would
lead to the social ordering of the preferences ranking A over B over C.

This extension however is problematic, as observed back in 1785 by Marie-
Jean-Antoine-Niclas Caritat, Marquis de Condorcet [26]. He observed that the
PMR among three alternatives may exhibit an irrational behavior, with the major-
ity preferring alternative A to B, B to C and C to A, even though each individ-
ual has transitive preferences. To see how this can happen, consider the case of
three voters and three alternatives. Let the first voter have the transitive ranking
A � B � C, the second one B � C � A and the third C � A � B. Then,
in PMR voting, A would be indeed preferred to B, with two votes against one.
Similarly, B would be preferred to C and C to A. These so-called Condorcet’s
cycles result in the impossibility to determine a socially preferred alternative or
a complete ranking of the alternatives by pairwise majority voting (see also Ref.
[27] for a relation with statistical mechanics of dynamical systems).

PMR is not the only way to aggregate individual rankings into a social pref-
erence [19, 28]. However the situation does not improve much considering other
rules. For example, the transitivity of social preferences is recovered by resort-
ing to voting rules like Borda count. This rule was proposed by a contemporary
of Condorcet, Borda, in 1784. Actually, there was a fierce argument between
the two mathematicians over which rule was the most fit, as both had their own
strengths and drawbacks. It is interestiong to note that this harsh rivalry did not
prevent Borda to risk his own life in pleading for clemency for Condorcet while
the latter was listed to be tried as an enemy of the state. As to the Borda rule, here
each voter assigns a score to each alternative, with high scores corresponding to
preferred alternatives. Then the scores of each alternative are summed to give the
total score, which is used to determine the ranking. It is clear that in this way,
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a transitive ranking for the majority is always generated, but other flaws emerge
when looking carefully. As Condorcet immediatly pointed out, this rule is incom-
patible with PMR, since there is a chance that Borda rule will not elect as first
choice the winner (when there is one) of PMR elections, that is, the candidate that
would defeat all the others in pairwise elections. Indeed, this rule violates one of
the basic requirements of a social choice rule.

The basic desiderata of a social choice rule are that it should be able to rank all
alternatives for whatever individual preferences (unrestricted domain), it should
be transitive, it should be monotonous, i.e. the social rank of an alternative A
cannot decrease when an individual promotes A to a higher rank, and it should
be independent of irrelevant alternatives, i.e. the social preference between A
and B cannot depend on the preferences for other alternatives. For example We
have seen that PMR fails to satisfy the transitivity requirement, while Borda rule
clearly violates the last one, the independence of irrelevant alternatives, since I
can assign the lowest score to an alternative which is perhaps my second-best, if
I think that by doing this I increase the chances of my preferred alternative. Inde-
pendence of irrelevant alternatives is important because it rules out the possibility
of manipulating the election’s outcome by falsely reporting individual preferences
(see [29]). Another example of a system that fails to satisfy this requirement is
plurality voting, which is used nowadays in most presidential elections, where
each individual casts one vote for his top candidate and candidates are ranked
according to the number of votes they receive. Indeed, plurality voting satisfies
all requirement but the last one, as vividly illustrated by recent U.S. election out-
comes [28]. To be more clear on this issue, there have reportedly been supporters
of the independent candidate Nader that have cast their vote for Gore, given that
their preferred alternative had no chance of winning. Hence, by falsely report-
ing their preferences (voting for Gore instead that for Nader), they can alter the
relative ranking of other two alternatives (Bush and Gore).

The discomfort of social scientists with the impossibility to find a reasonable
voting rule has been formalized by Arrow’s celebrated theorem [19]. This states
that a social choice rule that satisfies all of the above requirements has to be dicta-
torial, that is there exists an agent – the dictator – such that the social preference
between any two alternatives is the preference of that agent.

A way to circumvent the impasse of this result is to study the properties of
social choice rules on a restricted domain of possible individual preferences. For
example in politics, it may be reasonable to rank all candidates from extreme left
to extreme right. If the preferences of each individual has a “single peak” when
candidates are ranked in this order (or any other order), then it has been shown
that pairwise majority is transitive [30]. It has recently been shown that pairwise
majority turns out to be the rule which satisfies all requirements in the largest
domain [28], thus suggesting that pairwise majority is the best possible social
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choice rule.
Another possible approach to this problem relies on estimating the probability

that these problems, for example Condorcet’s cycles, occur in real situations. Ac-
tually, one could argue that the above discussed difficulties are just an academic
problem, while in a typical situation one would not encounter them. In this view, it
becomes important to quantify how good is majority rule by estimating the proba-
bility that pairwise majority yields a transitive preference relation in a typical case
where individual preferences are drawn at random. This issue has been addressed
by several authors [31, 32, 33, 34]. Here we will give a solution to this question.

1.2 A solution for Condorcet’s paradox

Let us consider a population of N individuals with preferences over a set of S
choices or candidates. We shall mainly be interested in the limit N → ∞ of an
infinite population. We limit attention to strict preferences, i.e. we rule out the
case where agents are indifferent between items. Hence preference relations are
equivalent to rankings of the S alternatives. It is convenient to represent rank-
ings with matrices ∆̂i for each agent i = 1, . . . , N , whose elements take values
∆ab

i = +1 or −1 if i prefers choice a to b �= a or vice-versa, with a, b = 1, . . . , S.
Notice that ∆ba

i = −∆ab
i . Let R be the set of matrices ∆̂ which correspond to

a transitive preference relation. Clearly the number of such matrices equals the
number |R| = S! of rankings of the S alternatives. Hence not all the 2S(S−1)/2

possible asymmetric matrices with binary elements ∆ab
i = ±1 correspond to ac-

ceptable preference relations. For example, if ∆1,2 = ∆2,3 = ∆3,1 then ∆̂ �∈ R.
Below are two examples of matrices ∆ ∈ R.

Ranking: ABC
A � B; B � C; A � C

⇓

∆̂ =


 0 1 1

−1 0 1
−1 −1 0




Ranking: BAC
B � A; B � C; A � C

⇓

∆̂ =


 0 −1 1

1 0 1
−1 −1 0




We use the term ranking to refer to matrices ∆̂ ∈ R in order to avoid confusion
later, when we will introduce preferences over rankings, i.e. over elements of R.
We assume that each agent i is assigned a ranking ∆̂i drawn independently at
random from R.

In order to compute the probability P (S) that pairwise majority yields a tran-
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sitive preference relation, in the limit N → ∞, let us introduce the matrix

x̂ =
1√
N

N∑
i=1

∆̂i. (1.1)

The assumption on ∆̂i, that is, that they are randomly drawn from R implies that
they are i.i.d. variables drawn from the same distribution, which has a finite vari-
ance. Hence we can apply the central limit theorem to obtain that the distribution
of xab is Gaussian for N → ∞ and it is hence completely specified by the first
two moments

〈
xab
〉

= 0 and
〈
xabxcd

〉
= {G−1}ab,cd.

Let us address the problem of the profile chosen by each voter by defining an
utility function ui(a), which defines the utility of voter i with respect to the choice
a. The preference relations of each voter are then expressed by the condition:

a �i b ⇔ ui(a) > ui(b). (1.2)

To realize the condition known as Impartial culture, namely, that every profile
be equiprobable, it is sufficient to state that the ui(a) be chosen randomly in the
unit interval. One should note that by doing so, we ignore the possibility of indif-
ference between two choices (i.e. the ≥ sign in equation 1.2). This is so since the
set of such points is of zero measure.

Now, the preference relations of the majority can be computed by first calcu-
lating the quantities

x̂ab =
1√
N

N∑
i=1

(2θ(ui(a) − ui(b)) − 1) , (1.3)

where θ(x) stands for Heavyside’s step function. Now the condition for the ma-
jority to prefer choice a to choice b can be stated as

a � b ⇔ x̂ab > 0.

The case where the equality holds can be disregarded with certainty if we restrict
to an odd number of voters. There are S(S − 1)/2 independent x̂, since that is the
number of couples out of S elements.

Now we can proceed to calculating the correlation matrix {G−1}ab,cd = 〈xabxcd〉
from the uniform distribution of the ui(a). We must note that the indices do not
scan all the possible couples (a, b), but only those with b > a, hence the matrix
G−1 is a S(S−1)/2 times S(S−1)/2 symmetric matrix. The ui(a) are iid random
variables such that ∫ 1

0

f(ui(a))dui(a) = 1
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and
f(x) = 1,

but we note that the results are independent from the distribution of the ui(a). We
thus write for the correlations

〈xabxcd〉 =

∫ 1

0

N∏
i=1

dui(a)dui(b)dui(c)dui(d)
1

N

N∑
j=1

φj(a, b)
N∑

k=1

φk(c, d), (1.4)

where
φj(a, b) = 2θ(uj(a) − uj(b)) − 1 (1.5)

which gives, after some algebra,

{G−1}ab,cd =




1 a = c, b = d
1
3

a = c, b �= d or a �= c, b = d
−1

3
a = d, b �= c or a �= d, b = c

0 otherwise

(1.6)

where we have introduced the notation M for matrices with elements Mab,cd.
The result of Eq. (1.6) can be obtained even without the direct calculation, but
simply looking at the structure of the integral in Eq.(1.4). First, we note that the
off-diagonal terms (j �= k) do not play any role, by symmetry, and the result
depends only on the relative value of the utilities. Then, the result {G−1}ab,ab = 1
is trivial, as well as {G−1}ab,cd = 0 when a �= c and b �= d. As to {G−1}ab,ad,
with b �= d, let us fix the utilities of a and b such that u(a) > u(b). Then, there
are three possibilities. If u(a) > u(d) and u(d) > u(b) the contribution of this
configuration to the integral is positive, and the same applies when u(a) > u(d)
and u(d) < u(b). On the other hand, the contribution is negative when u(a) <
u(d). Since the three possibilities here presented are equally weighted in (1.4),
the result is 1/3. Then, again by symmetry, {G−1}ab,da is −1/3.

The matrix G−1 can be inverted by a direct computation, making the ansatz

Gijkl = g0δikδjl + g1[δik(1− δjl)+ δjl(1− δik)− δil(1− δjk)− δjk(1− δil)] (1.7)

and imposing the condition G−1
ijabGabkl = δikδjl. With a few manipulations we

obtain

g0 = 3
S − 1

S + 1
(1.8)

g1 = − 3

S + 1
. (1.9)

and we find that the matrix G has the same structure of G−1 but with Gab,ab = 3S−1
S+1

,
Gab,ad = − 3

S+1
= Gab,cb = −Gab,bd = −Gab,ca.
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Let us first compute the probability PCW (S) that one of the alternatives, is
better than all the others. This means that there is a consensus over the winner,
while nothing is assumed for the relations between the other choices. The pre-
ferred alternative is known in social choice literature as the Condorcet winner,
and much interest has been devoted to it, since the presence of such a preferred
alternative saves at least the possibility of electing a favorite choice. PCW (S) is
just the probability that x1,a > 0 for all a > 1 multiplied by S. In this way, we
recover a known results [32], which can be conveniently casted in the form

PCW (S) = S

√
2

π

∫ ∞

−∞
e−2y2+(S−1) log[erfc(y)/2]. (1.10)

Notice that PCW (S) is much larger than the naı̈ve guess S/2S−1, derived assuming
that xab > 0 occurs with probability 1/2 for all ab. Indeed asymptotic expansion
of Eq. (1.10) shows that

PCW (S) �
√

π

2

√
log S

S

[
1 + O(1/

√
log S)

]

decays extremely slowly for S 
 1.
The probability P+ that the majority ranking is equal to the cardinal one (1 �

2 � . . . � S) is given by the probability that xab > 0 for all a < b. This is only
one of the S! possible orderings, then the probability of a transitive majority can
be written as

P (S) = S!P+ (1.11)

hence

P (S) = S!
[3/(2π)]

S(S−1)
4

(S + 1)
S−1

2

∫ ∞

0

dx̂ exp

[
−1

2
x̂ · G · x̂

]
(1.12)

where
∫∞
0

dx̂ ≡ ∫∞
0

dx1,2 . . .
∫∞

0
dxS−1,S and we defined the product r̂ · q̂ =∑

a<b rabqab and its generalization to matrices r̂·M·q̂ =
∑

a<b

∑
c<d rabMab,cdqcd.

The normalization factor is computed from the spectral analysis of G. The matrix
G has S−1 eigenvectors of the form zab

1,k = δa,k−1sign(b−k+1) with k = 2, . . . , S,
and eigenvalue λ = 3/(S + 1). This can be verified by direct calculation. Note
that the vectors zab

k are not orthogonal, but are linearly independent. Direct sub-
stitution shows that all vectors of the form zab

j,k = δa,1(δb,j − δb,k) + δa,jδb,k are
also eigenvectors of G for 1 < j < k, with eigenvalue λ = 3. Then λ = 3 has
degeneracy (S−1)(S−2)/2. The set of S(S−1)/2 linearly independent vectors
zab

j,k with 1 ≤ j < k ≤ S allows us to build a complete orthonormal basis of
eigenvectors and to compute detG.



22CHAPTER 1. PROBABILISTIC APPROACH TO CONDOCET’S PARADOX

1.3 Numerical simulations

We were not able to find a simpler form for the probability of Eq. (1.12), however
one can perform numerical simulations to confirm analytical calculations of the
previous section. The two approaches that we take here are, first, the numerical
integration of Eq. (1.12) via Monte Carlo simulations, secondly, the ab initio
simulations of the system with a finite but large number of voters N .

The numerical integration can be performed in many ways. The first step in
this direction is always to draw a random S ∗ (S − 1)/2 components vector x

from the distribution [3/(2π)]
S(S−1)

4

(S+1)
S−1

2

[−1
2
x̂ · G · x̂]. Then the simplest idea is just

to evaluate the probability P+ = Pr{xi > 0∀i} by calculating the frequency
with which we draw a vector x̂ with all the components positive. Then one has
the estimate P (S) = S!P+. This simple method of integration is adequate for
small S, but as S increases it is clear that the probability of drawing a vector
x in the subspace xi > 0 decreases very rapidly, hence one ends up drawing
many vectors that are then not used, with great waste of computational time and
reachable precision. One way to tackle this issue is that of adding a vector with
components equal to λ to the vector x̂, so that there is a higher probability of
obtaining a vector in the desired subspace. Then we reweight the frequency by an
appropriate factor which depends on λ. The price we pay for this reweighting is
that the error increases with λ , so that also this method has its limits for high S.

The method which turns out to be the less expensive, and thus the one we
finally use, is the following. We still draw the random vector x̂ as usual, but then
we proceed to evaluate P (S) directly, instead of going through the evaluation of
P+. To do this, we write the majority matrix:

Mab = θ(xab) (1.13)

such that Mab = 1 if the majority prefers a to b (that is, xab > 0), 0 otherwise.
Then we search for loops (Condorcet’s cycles) in this matrix. This is most effi-
cently done by writing the vector ci =

∑
j Mij which counts the number of ones

in each row. The majority is transitive if the vector c contains once and only once
each of the integers 0, 1, ..., S − 1. This method turns out to be quite efficient, the
results are plotted below.

As to the simulations of the system, one simply sets up N voters, assigns to
each of them a random ranking of the preferences and then checks for transitivity
of the majority.

Fig. 1.1 reports Montecarlo estimates of P (S). For S = 3 we recover the
result [31]

P (3) = PCW (3) =
3

4
+

3

2π
sin−1 1

3
∼= 0.91226 . . . (1.14)
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Again the naı̈ve guess P (S) ≈ S!/2S(S−1)/2 based on the fraction of acceptable
rankings largely underestimates this probability. This means that the collective
behavior of the majority hinges upon the (microscopic) transitivity of individual
rankings.

5 10 15
S

0

0.2

0.4

0.6

0.8

1

P
(S

)

Figure 1.1: Probability P (S) of a transitive majority (•) compared to the naı̈ve
guess S!/2S(S−1)/2 (+).
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Chapter 2

Statistical physics of interacting
voters

2.1 Introduction

When studying human behaviour it is often convenient to treat, as we did in the
previous chapter, the agents as non-interacting. Actually, traditional economics
relies on the assumption that one can model a population through the represen-
tative agent approach. This amounts to replacing individual preferences with av-
erage functions (like for example demand function when studying markets), a
feature that of course simplifies the treatment of the model, but certainly misses
one of the key features of human dynamics, interaction among individuals. Such
approach has become the subject of debate among sociologists and economists in
recent years, and models where interaction is explicitly taken into account have
been put forth. The introduction of many kind of interactions among individuals
has been one of the main reasons for the success of game theory in economics.
The paradigm of classical economics has been questioned and investigated by
economists using the tools of game theory as a mean to explicitly account for the
interaction among agents since the seminal work of Nash [35]. This approach,
although very interesting, has a limitation in the fact that one is forced to study
systems with a finite number of participants, and the extension to the limit of
large populations can be problematic. However, it was understood that studying
systems composed of many (possibly heterogeneous) agents, like for example the
system studied in the previous Chapter, one needs tools to explicitly account for
agents’ interaction.

The idea of interacting agents where the state of an agent is determined by the
explicit form of the interaction with other agents is central in statistical physics,
and there it gives rise to a wide range of interesting phenomena. Here, the emer-

25
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gence of macroscopic properties which differ dramatically from the microscopic
nature of the agents suggests that this approach can be successfully applied to the
study of socio-economic systems and that this can lead to the derivation of some
”thermodinamic” laws for the bahavior of aggregates that could differ dramati-
cally from the expectations of the representative agents theories, as discussed in
the general Introduction.

In this view, we want to study how to generalize the analysis of the previous
Chapter to the case when agents influence each other. In particular we restrict to
the relevant case where the interaction arises from conformism [21]. This case is
one of the most studied since its history dates back to Keynes’ work on beauty
contests [1], and a quite general treatment can be found in [36]. Basically con-
formism can stem from three different reasons [37]. It can be pure or imitative,
because people simply want to be like others. It can be due to the fact that in
some cases conforming facilitates life (instrumental conformism), which is proba-
bly one of the mechanisms at the basis of the emergence of languages and culture.
Or it can be due to people deriving information about the value of a choice from
other people’s behavior (informational conformism): if many people behave in a
certain way, then I may be induced to thinking that it is the ”correct” behavior. An
effect of this kind is thought to be present in political elections, when there is a
fraction of the population that seems to vote for the alternative that is most likely
to win.

Whatever the case, one has to explicitly take into account the interaction
among individuals to treat phenomena where conformism clearly plays a cen-
tral role. Among these, we cite for example fashions or fanaticism, where it may
lead to the rise and spread of broadly accepted systems of values [38], crashes
and rallies in financial markets [39] and motion of crowds [40]. Another clear
case where conformism is at the basis of an emergent property of a system of
agents is Schelling’s neighborhood problem [21], which is a special case of sys-
tems where one studies the conditions for the emergence and maintenance of co-
operation among individuals.

A model for this phenomenon that comes from statistical physics and has at-
tracted much attention is the Random Field Ising Model, originally studied as a
model for disordered ferromagnets [41]. Here N spin variables si interact with
each other with direct couplings Jij and a random magnetic field φi is present at
each site. The analogy with social systems is carried out by mapping the two states
of the spin into two opposite opinions on an alternative (choice or issue), the ran-
dom fields into a priori opinion, and the interaction into the influence that agents
have onto each other. Then the macroscopic property of interest is the emergence
of a common opinion (magnetization) [25, 42]

We will introduce interaction in the system studied in the previous chapter with
preferences of the agents being shaped by the interaction among them. Namely,



2.2. INTERACTING VOTERS 27

to mimick conformism, we will assume that agents will want to agree with the
majority. Then we study the emerging properties of the resulting model by ad-
dressing several questions. Is there the emergence of a common ranking of S
alternatives? How much information should the agents share in order to achieve
consensus on S items? What is the probability of having a transitive majority
when agents conform their preferences to each other? Will it differ significantly
from the non-interacting case? At any rate, our discussion will focus on the con-
sequence of conformism on the collective behavior, without entering into details
as to where this conformism stems from.

We show that the occurrence of a transitive social choice on a number S of al-
ternatives for any choice of the individual preferences, is related to the emergence
of spontaneous magnetization in a multi-component random field Ising model.
We find a phase diagram similar to that of the single component model [43] with
a ferromagnetic phase and a tricritical point separating a line of second order
phase transitions from a first order one. The ferromagnetic state describes the
convergence of a population to a common and transitive preference ranking of
alternatives, due to social interaction.

Remarkably, we find that the ferromagnetic region expands as S increases.
Hence while without interaction the probability P (S) of a transitive majority van-
ishes rapidly as S increases, if the interaction strength is large enough, the prob-
ability of a transitive majority increases with S and it reaches one for S large
enough. In other words, an interacting population may reach more likely consen-
sus when the complexity of the choice problem (S) increases.

We finally contrast these findings with the case where agents need not express
a transitive vote (e.g. they may vote for A when pitted against B, for B agains C
and for C against A). This is useful because we find that then the probability of
finding a transitive majority is much lower. In other words, individual coherence
is crucial for conformism to enforce a transitive social choice.

2.2 Interacting voters

So let us now introduce interaction among voters. We assume that agents have an
a-priori transitive preference over the alternatives, specified by a ranking ∆̂i ∈ R.
We allow however agents to have a voting behavior which does not necessarily
reflect their a-priori ranking, that is, we introduce a new matrix v̂i such that vab

i =
+1 (−1) if agent i, in a context between a and b, votes for a (b). We will first
study the case when v̂i ∈ R, which corresponds to agents having a rational voting
behavior. This means that even though an agent is influenced by others, she will
maintain a coherent choice behavior (transitivity). We will contrast this case with
that where the constraint on individual coherence v̂i ∈ R is removed.
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To account for interaction, the matrix v̂i depends not only on agents’ prefer-
ences ∆̂i, but also on the interaction with other agents. Within economic liter-
ature, this dependence is usually introduced by means of an utility function ui

which agents tend to maximize. In our case this utility function will depend on
agents’ choice, that is, on their possible preference profiles. A voter will have
the profile that maximizes her utility. Notice that this utility function represents a
preference over preferences (rankings). In fact, each ranking is itself a preference
relation between the alternatives, and it specifies what alternatives are better in
the agent’s view. By introducing an utility function, that is a function that maps
each ranking a voter can have into a real number, we are actually ”ranking the
rankings” to determine which preference profile is best suited for each voter.

Formally, this utility function depends both on an idiosyncratic term ∆̂i ∈
R describing the a priori ranking, and on the behavior of other agents, v̂−i ≡
{v̂j, ∀j �= i}, through the majority matrix

m̂ =
1

N

N∑
i=1

v̂i. (2.1)

More precisely, we define an utility function

ui(v̂i, v̂−i) = (1 − ε)∆̂i · v̂i + εm̂ · v̂i. (2.2)

where the last term captures conformism as a diffuse preference for aligning to
the majority. For ε = 0 maximal utility in Eq. (2.2) is attained when agents vote
as prescribed by their a priori rankings, i.e. v̂i = ∆̂i ∀i. On the contrary, for ε = 1
agents totally disregard their rankings and align on the same ranking v̂i = m̂ ∀i,
which can be any of the S! possible ones.

2.2.1 Nash equilibria

In economic literature, when one is presented with a problem defined by an utility
function ui(si, s−i) for each agent i playing strategy si when all the other play-
ers play strategies defined by s−i, to find the solution one has to find equilibrium
points. These equilibrium points are termed Nash equilibria, and are defined as
follows. At equilibrium, each agent will not have any incentive to switch strategy,
hence her optimal strategy s∗i will be the ”best response” to other players’ strate-
gies s−i. But this has to be true for each player, hence s∗i is defined by being the
best response to other players’ optimal strategies, that is one needs to maximize
ui(s

∗
i , s

∗
−i). Since we are dealing with a problem that arises in the context of social

choice theories, we will adopt this formalism to tackle it.
Let us characterize the possible stable states, i.e. the Nash equilibria of the

game defined by the payoffs of Eq. (2.2). These are states v̂∗
i such that each agent
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has no incentives to change his behavior, if others stick to theirs, i.e. ui(vi, v
∗
−i) ≤

ui(v
∗
i , v

∗
−i) for all i. The random state v̂∗

i = ∆̂i is (almost surely) a Nash equi-
librium ∀ε < 1, because the payoff of aligning to the majority m̂ = x̂/

√
N is

negligible with respect to that of voting according to own ranking ∆̂i. Then we
have ui(∆̂i, ∆̂−i) = S(S−1)

2
[1 − ε + εO(1/

√
N)]. This Nash equilibrium is char-

acterized by a majority which is not necessarily transitive, i.e. which is transitive
with probability P (S) < 1 for N 
 1.

Also polarized states with v̂i = m̂ for all i are Nash equilibria for ε > 1/2.
Indeed, with some abuse of notation, when all agents take v̂j = m̂ for some m̂,
agent i receives an utility ui(m̂, m̂) = (1 − ε)∆̂i · m̂ + S(S−1)

2
ε. The agents who

are worse off are those with ∆̂i = −m̂ for whom ui(m̂, m̂) = S(S−1)
2

[2ε − 1] ∼=
−ui(∆̂i, m̂) + O(1/N). Then as long as ε > 1/2, even agents with ∆̂i = −m̂
will not profit from abandoning the majority. Therefore v̂i = m̂ for all i is a
Nash equilibrium. Notice that whether the majority is transitive (m̂ ∈ R) or not
depends on whether agents express transitive preferences (v̂i ∈ R) or not. In
the former case the majority will be transitive whereas if non transitive voting is
allowed there is no need to have m̂ ∈ R and there are 2S(S−1)/2 possible polarized
Nash equilibria. Only in S! of them the majority is transitive (i.e. when m̂ ∈ R).

It is easy to check that there are no other Nash equilibria. Indeed, let us assume
that there exists a finite magnetization, that is a finite fraction of agents choose the
same ranking, while the others choose their a priori ranking ∆. Then, for ε > 1/2
every agent playing ∆ will benefit from switching to the ranking preferred by this
fraction, hence ∆ is not her best response. Summarizing, for ε > 1/2 there are
two Nash equilibria. Depending on the dynamics by which agents adjust their
voting behavior one or the other of these states will be selected. Here, statistical
physics methods can be applied since the situation is analogous to determining
which stable state (minima of a free energy) a hamiltonian dynamics will select.

2.3 Statistical Mechanics of interacting voters

Strict utility maximization leads to the presence of multiple equilibria, leaving
open the issue of which equilibrium will the population select. It is useful to
generalize the strict utility maximization into a stochastic choice behavior which
allows for mistakes (or experimentation) with a certain probability [44]. This on
one side may be realistic in modelling many socio-economic phenomena [24, 45,
37]. On the other hand this rescues the uniqueness of the solution, in terms of the
probability of occurrence of a given state {v̂i}, under some ergodicity hypothesis.
Here, as in [45], we assume that agents have the following probabilistic choice
behavior: agents are asynchronously given the possibility to revise their voting
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behavior. When agent i has a revision opportunity, he picks a voting profile ŵ
(∈ R when voters are rational) with probability

P{v̂i = ŵ} = Z−1
i eβui(ŵ,v̂−i) (2.3)

where Zi is a normalization constant. Without entering into details, for which we
refer to Ref. [45], let us mention that Eq. (2.3) does not necessarily assume that
agents randomize their behavior on purpose. It models also cases where agents
maximize a random utility with a deterministic term ui and a random component.
Then the parameter β is related to the degree of uncertainty (of the modeler) on
the utility function.

When agent i revises his choice the utility difference δui = ui(v̂i, v̂−i) −
ui(v̂

′
i, v̂−i) for a change v̂i → v̂′

i is equal to the corresponding difference in −H ,
where

H{v̂i} = −(1 − ε)
N∑

i=1

∆̂i · v̂i − ε

2N

N∑
i,j=1

v̂j · v̂i. (2.4)

hence in the long run, the state of the population will be described by the Gibbs
measure e−βH because the dynamics based on Eq. (2.3) satisfies detailed balance
with the Gibbs measure.

H in Eq. (2.4) is the Hamiltonian of a multi-component random field Ising
model (RFIM) where each component vab

i with a < b is a component of the
spin, ∆̂i represents the random field and the term ε

2N

∑N
i,j=1 v̂j · v̂i is a mean

field interaction. Indeed v̂i has S(S − 1)/2 components which take values vab
i =

±1. The peculiarity of this model is that the components of the fields ∆̂ are not
independent. Indeed not all the 2S(S−1)/2 values of ∆̂i are possible but only those
that correspond to a transitive ranking of the S alternatives (∆̂i ∈ R) which are
S!. The same applies to the spin components v̂i when rational voting behavior
is imposed. Were it not for this constraint, the model would just correspond to a
collection of S(S − 1)/2 uncoupled RFIM.

The statistical mechanics approach of the RFIM [41, 43] can easily be gener-
alized to the present case. The partition function can be written as

Z(β) = Tr{v̂i}e
−βH =

∫
dm̂e−Nβf(m̂) (2.5)

where the trace Tr{v̂i} over spins runs on all v̂i ∈ R when voting behavior is
rational, or over all v̂i otherwise. The free energy f(m̂) is given by

f(m̂) =
ε

2
m̂2 − 1

Nβ

N∑
i=1

log

[∑
v̂

eβ[(1−ε)∆̂i+εm̂]·v̂
]

(2.6)
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where once again the sum over the v̂i runs inside R if agents are rational, or is not
limited otherwise. It is evident that f is self averaging. Hence in the limit N → ∞
we can replace 1

N

∑
i . . . with the expected value 1

S!

∑
∆̂∈R . . . ≡ 〈. . .〉∆ on ∆̂i. It

is also clear that the integral over m̂ of Eq. (A.8) in this limit is dominated by the
saddle point value. The saddle point equation

∂f

∂m̂
= 0 (2.7)

yields

m̂ =

〈∑
v̂ v̂eβ[(1−ε)∆̂+εm̂]·v̂∑
v̂ eβ[(1−ε)∆̂+εm̂]·v̂

〉
∆

(2.8)

This equation can be solved from direct iteration and shows that for large
enough values of β > βc there is a transition, as ε increases, from a paramagnetic
state with m̂ = 0 to a polarized (ferromagnetic) state where m̂ �= 0. In Fig.
(2.1) we plot the result of such iterative solution for the RFIM case, i.e. when
S = 2. Since for some values T, ε both the ferromagnetic and the paramagnetic
state can be stable, we have solved for the magnetization m̂ starting both from
a m̂ = 0 and from m̂ = 1̂ states. Then we selected the correct equilibrium
state by comparing the free energy of the different solutions. The stability of the
paramagnetic solution m̂ = 0 can be inferred from the expansion of Eq. (2.8)
around m̂ = 0, which reads

m̂ = βεJ · m̂ + O(m̂3) (2.9)

where
Jab,cd =

〈〈
vabvc,d|∆̂

〉
v
−
〈
vab|∆̂

〉
v

〈
vc,d|∆̂

〉
v

〉
∆

. (2.10)

Here averages
〈
. . . |∆̂

〉
v

over v̂ are taken with the distribution

P (v̂|∆̂) =
eβ(1−ε)∆̂·v̂∑
û eβ(1−ε)∆̂·û . (2.11)

When the largest eigenvalue Λ of βεJ is larger than one, the paramagnetic so-
lution m̂ = 0 is unstable and only the polarized solution m̂ �= 0 is possible. In
Fig.2.1 the line that marks the region of instability of the paramagnetic solution is
plotted at the bottom.

2.3.1 Constrained case, v̂i ∈ R
Let us specialize to the case where a rational voting behavior is imposed on vot-
ers. That is, agents will influence each other, but not to the point of picking an
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intransitive preference profile vi. Hence both the individual a-priori rankings ∆̂i

and the voting behavior v̂i of each agent are transitive. Results for the numerical
iteration of Eq. (2.8) are shown in the inset of Fig.2.2 for different values of β
and for S = 5. Fig. 2.2 shows the phase diagram for S = 2, 3 and for S = 5.
The transition from the paramagnetic phase to the ferromagnetic one is continu-
ous for intermediate values of β (βt < β < βc) but becomes discontinuous when
β > βt. The transition point βt (•) generalizes the tricritical point of the RFIM
[43] (S = 2).

The condition Λ = 1 on the largest eigenvalue Λ of βεJ reproduces the sec-
ond order transition line. The line Λ = 1 continues beyond the tricritical point
and it marks the border of the region where the paramagnetic solution m̂ = 0 is
unstable (dotted line in Fig. 2.2). Below the lower branch of the Λ = 1 line the
paramagnetic solution is locally stable but it is not the most probable. Indeed the
polarized state m̂∗ which is the non-trivial solution of Eq. (2.8) has a lower free
energy f(m̂∗) < f(0). Still in numerical simulation the state m̂ = 0 can persist
for a very long time in this region. The polarized solution m̂∗ becomes metastable
and then disappears to the left of the transition line in Fig. 2.2.

With respect to the dependence on S of the phase diagram, we observe that
at β → ∞ the phase transition takes place at ε = 2/3 independent of S. At
the other extreme, for ε = 1 we find that J = G−1, since with ε = 1, Jab,cd =
1
S!

∑
v̂∈R vabvc,d. So Jab,ab = 1 and Jab,cd = 0 by symmetry if a �= c, d and

b �= c, d. Furthermore Jab,ad depends only on the relative ordering between a, b
and d in the permutation v̂. The permutations where a is between b and d, which
are 1/3, give vabvad = −1, whereas the remaining v̂ give vabvad = 1. Hence
Jab,ad = 1

3
. Likewise we find Jab,cb = −Jab,ca = −Jab,bd = 1

3
. Thus we can apply

the spectral analysis carried out in the previous chapter for the matrix G, to find
that the largest eigenvalue of βJ is Λ = β S+1

3
and the condition Λ = 1 implies

that

βc(ε = 1) =
3

S + 1
(2.12)

Hence as S increases the region where the polarized phase is stable becomes larger
and larger. In other words it becomes more and more easy for a population of
agents who influence each other to become polarized on the same opinion. This
is somewhat at odd with naı̈ve expectation, because as S increases the complexity
of the choice problem also increases and reaching consensus becomes more dif-
ficult. Indeed the probability P (S) to find consensus on S choices in a random
population drops very rapidly to zero as S increases. Nevertheless, the effects of
interaction toward conformism becomes stronger. We attribute this to the fact that
for large S the fraction of allowed spin configurations v̂ ∈ R is greatly reduced,
thus inducing a strong interaction among the different spin components. This re-
sults in the fact that ordering becomes easier and easier when S increases. We will



2.4. P (S) WITH INTERACTING VOTERS 33

see later, in Section 2.4, what effect this ordering has on the probability of finding
a transitive majority.

2.3.2 Unconstrained case

Here the constraint v̂i ∈ R is not imposed, while we keep ∆̂ ∈ R. This means
that an agent can be influenced by other agents’ preferences to the point of picking
an intransitive preference. In this case all the traces over the v̂i in the above equa-
tions can be computed component-wise, independently, as in a multi-component
random field Ising model. A direct computation of the matrix Jab,cd is possible,
and yields

Jab,cd = δacδbd

[
1 − tanh2(β(1 − ε)

]
. (2.13)

Notice that, for any β and ε, the maximum eigenvalue Λ = βε[1−tanh2(β(1−ε)]
of the matrix βεJ is independent of S and it coincides with that of the RFIM (S =
2). Hence the phase diagram is that of the RFIM for all S ≥ 2. The different spin
components behave independently. The correlation induced by the constraints
on the a-priori preferences ∆ − i ∈ R does not influence the thermodynamics
properties. Note that for ε → 1 the condition Λ = 1 implies β = 1 and for
β → ∞ the phase transition takes place at ε = 2/3, independent of S.

2.4 P (S) with interacting voters

The main result of the previous section, that is, the fact that ordering becomes
easier as S increases when rational voting behavior is assumed for each agent, has
interesting effects on the probability of finding a transitive majority. To investigate
this, we analyze the probability Pβ,ε(S) of a transitive majority in an interacting
population. We will ask if this probability differs much from that of the non-
interacting case and, if it differs, in what direction. Of course one is led to think
that when a magnetization is present, it will be easier to have a transitive majority,
but to make a precise statement and to understand to what extent and in what range
of the parameters this is true we will derive an expression for Pβ,ε(S).

The calculation is a generalization of the one presented for the non-interacting
population. Let

ẑ =
1√
N

N∑
i

v̂i.

We want to compute, at a fixed ε and β, the probability distribution of ẑ. We shall
first compute average quantities keeping fixed the realization of the disorder ∆̂i

(quenched disorder), and then average over the realizations of the disorder. This
is correct procedure to take into account separately the in-sample fluctuations and
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the differences due to disorder, since averaging at the same time disorder and in-
sample quantities (like the vi) (annealed calculation) leads to wrong results. The
point is that thermal fluctuations are governed by a time-scale much faster than
that of the disorder, like what happens in the physics of disordered systems.

P
(
ẑ|{∆̂i}

)
= NTrv̂i

e−βHv̂iδ
(
ẑ − 1√

N

∑N
i v̂i

)
= N e

βε
2

ẑ·ẑ ∫ dλ̂eiλ̂·ẑ∏N
i=1 Trv̂i

e[β(1−ε)∆̂i−iλ̂/
√

N ]·v̂i

now the term λ̂/
√

N is small compared to the other one and we can expand it

Trv̂i
e[β(1−ε)∆̂i−iλ̂/

√
N ]·v̂i =

= Trv̂i
eβ(1−ε)∆̂i·v̂i

[
1 − i√

N
λ̂ · v̂i − 1

2N
(λ̂ · v̂i)

2 + . . .

]

= Trv̂i
eβ(1−ε)∆̂i·v̂i

[
1 − i√

N
λ̂ ·
〈
v̂|∆̂i

〉
−

− 1

2N

∑
ab,cd

λabλcd
〈
v̂abv̂cd|∆̂i

〉
+ . . .

]

where, again, averages over the v̂ are taken with the distribution (2.11). The factor
Zi = Trv̂i

eβ(1−ε)∆̂i·v̂i can be absorbed in the normalization constant, so that if we
re-exponentiate the terms, we find

Trv̂i
e[β(1−ε)∆̂i−iλ̂/

√
N ]·v̂i ∼=

∼= Zie
− i√

N
λ̂·〈v̂|∆̂i〉− 1

2N

P
ab,cd λabλcdJ ab,cd

This gives

P
(
ẑ|{∆̂i}

)
= N ′e

βε
2

ẑ·ẑ
∫

dλ̂eiλ̂·(ẑ−ŷ)− 1
2
λ̂·J ·λ̂

= N ”e
βε
2

ẑ·ẑ− 1
2
(ẑ−ŷ)·J−1·(ẑ−ŷ)

= N ”e−
1
2
ẑ·[J−1−βεI]·ẑ+ẑ·J−1·ŷ− 1

2
ŷ·J−1·ŷ

where ŷ =
1√
N

N∑
i

〈
v̂|∆̂i

〉

and J given by Eq. (2.10). Now one needs to take the average over P (ŷ). In
general this is a Gaussian distribution

P (ŷ) ∝ e−
1
2
ŷ·A·ŷ (2.14)
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and, considering the ŷ dependence of the normalization N ”

N ” ∝ e
1
2
ŷ·J−1·ŷ− 1

2
ŷ· 1

J−βεJ 2 ·ŷ

we get
P (ẑ) ∝ e−

1
2
ẑ·K·ẑ (2.15)

where

K = J −1 − βεI − 1

JAJ + 1
J−1−βεI

(2.16)

As before, this probability can be computed to the desired level of accuracy
with the Montecarlo method once one has an expression for the matrix K. The
derivation is different in the case when we impose a transitivity constraint on the
voting profiles vi or not. Let us see how.

2.4.1 Constrained case

When v̂i ∈ R we have

{A−1
}ab,cd

=
〈〈vab|∆〉〈vcd|∆〉〉

∆
. (2.17)

Fig. 2.4 (�) shows that the resulting Pβ,ε(S) may exhibit a non-monotonic
behavior with S: first it decreases as P (S) and then, as the point (β, ε) approaches
the phase transition line it starts increasing. If ε > 2/3, there is a value S∗ beyond
which the system enters in the polarized phase and Pβ,ε(S) = 1 ∀S ≥ S∗.

2.4.2 Unconstrained case

In this case
〈
v̂|∆̂i

〉
= t∆̂i where we introduce the shorthand t = tanh[β(1− ε)].

Then A = G/t2 or

P (ŷ) ∝ e−
1

2t2
ŷ·G·ŷ (2.18)

in addition

J = (1 − t2)I (2.19)

hence setting f = 1 − βε(1 − t2)

K =

[
1

1 − t2
− βε

]
I − t2

1 − t2
f

t2I + f(1 − t2)G . (2.20)
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The behavior of the probability can be understood in some interesting limits.
For β → ∞ we get

K � G + O(1 − t2)

which simply states that as the temperature goes to zero the probability reduces to
that of the constrained case, as it should. Note that K → G also as we approach
the critical line where 1 − βε(1 − t2) → 0.

Instead for ε → 0 we have

K → 1

1 − t2

[
I − 1

I + (t−2 − 1)G
]

The high T limit β → 0 reads

K � I − β2G−1 + . . .

that is, since the matrix K is diagonal the probability of finding a transitive major-
ity drops to the trivial one, namely S!2−S(S−1)/2. So without the constraint of ra-
tional voting the probability of a transitive outcome can be greatly reduced. Again,
Monte Carlo simulations are shown in Fig.2.4 (∗). Note the marked decrease of
the probability of finding a transitive majority with respect to the constrained and
to the non-interacting case.

2.5 Conclusions

In conclusion we have studied the properties of pairwise majority voting in ran-
dom populations of heterogeneous interacting agents. The heterogeneity is given
by the endogenous preferences each voter would give in the absence of interaction.
We have shown that the properties of pairwise majority in a random interacting
population are related to the properties of a multi-component RFIM, whith a con-
straint on the components which reflects the transitivity of individual preferences.
The model is interesting both for its applications to social since, but also because
of the novelty of the constraint we impose on the components of the spin.

This model can be solved exactly and features a ferromagnetic phase where the
population reaches a consensus (i.e. a transitive majority) with probability one.
The transition can be first or second order, with a tricritical point that generalizes
the one found in the standard RFIM with dicotomous field. Thus we can have,
depending on the parameters, a continuous transition or an abrupt emergence of
consensus.

As to the dependance on the number of voters, we find that the ferromagnetic
phase gets larger and larger as S increases, meaning that consensus is reached
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more easily when the complexity of the problem (i. e. the number of alternatives)
is large enough.

We can also compute the probability of having a transitive majority in an inter-
acting population for any value of the interaction strength or of the temperature.
With respect to the case when rational voting behavior is not imposed, we note
the strikingly different effect that intereaction can have, dependant on how this
interaction is introduced. In fact, if we impose a transitive voting behavior, the
probability to find a transitive majority is increased, while relaxing this constraint
can result in a decrease of this probability.
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Figure 2.1: Phase diagram for S = 2 (top) S = 3 (center) and S = 4 (bottom).
The plot shows the magnetization, while on the S = 2 graph we have also drawn
the line that marks the instability of the paramagnetic solution. Note the increase
of the ferromagnetic region
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Figure 2.2: Plot of the magnetization for S = 2, 3 and 5 (dot-dashed, straight and
dashed lines). Dotted lines mark the region where the m̂ = 0 phase is unstable.
These meet the lines across which the transition takes place, at the tricritical point
(•). Inset: magnetization for 1/β = 0.25, 0.5, . . . , 1.75 and S = 5 as a function
of ε.
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Figure 2.3: Magnetization for 1/β = 0.25, 0.5, . . . , 1.75 and S = 5 as a function
of ε.
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Figure 2.4: Probability P (S) of a transitive majority. (•) shows the case of a
non-interacting population, (�) shows the case of an interacting population with
β = 0.45 and ε = 0.8, ∗ show the same case for the unconstrained case.



Chapter 3

Transitivity in preferences over
movies

3.1 Introduction

As we said, one of the problems with social theory is the difficulty of having real-
world data to test any theory. This is also the case for voting theory, where it
is difficult to find complete rankings of alternatives for a large number of voters.
Think for example at presidential elections. There, each voter is simply asked
to cast a vote for its preferred alternative (candidate), and the winner will be the
candidate receiving the largest number of votes. Indeed, PMR is not used much.
Nevertheless, one would like to compare the statistical analysis of the previous
Chapters with some real data to answer a couple of questions.

The issue of preference aggregation in real situations is very interesting and
we can ask how PMR works in practice. More precisely, can we calculate the
probability P (S) of finding transitive majority in a real case? And how does
this compare with the theoretical findings of Chapter 1? Indeed, the main criti-
cism to PMR is related to the intransitivity issue, hence being able to quantify the
frequency of occurrence of the Condorcet Paradox is an important goal, with a
practical application, namely, estimating the ”badness” of PMR’s failure.

As to the theory developed in Chapter 2, comparing the theory with real data
could shed light on whether conformism plays any role. This issue could be ad-
dressed either by the analysis of P (S) or, more directly, by looking for the exis-
tence of a magnetization in the preferences.

In this Chapter we will try to answer this questions resorting to data taken from
the web. This data describes ratings people give to movies and we think that these
ratings constitute a good tool to test the findings of the previous Chapters. A first
reason for this is the fact that a priori we don’t expect any particular ranking of the

41
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alternatives (movies) to be largely preferred. That is, we face a situation where in
principle all the alternatives are equivalent. This is so, since movies are in general
produced in order to have the best possible result in terms of income, and to this
scope producers are always looking for niches of possible users to satisfy. This
process will result in the production of heterogeneous movies designed to fit the
preferences of large classes of persons. Since of people’s attitudes are in general
very heterogeneous, it can be thought that given a group of movies, it will be
possible to find people who rank these movies in any order. That is, there is no
reason why there should be any a priori ranking of the alternatives.

Moreover, the issue of interaction treated in Chapter 2 can be fruitfully dis-
cussed here, since there is certainly a great deal of interaction on movies. That
of movies is an often-discussed topic with friends. The first reason for this is
that there is a lot of advertisement about movies on television, on the newspapers
and so on, and this advertisement brings its subject more into the discussions (it
is precisely its goal), and hence increases the interaction. Then, movies in cine-
mas are rarely seen by one’s self. Rather, often people watch movies in groups,
and discuss about the movie as soon as they finish watching them. With all this
interaction, people’s preferences can certainly be shaped by each other, and the
ratings that we will analyze are reported after the interaction has occurred. Thus
these ratings represent preferences affected by the interaction, and not the a priori
preferences that would have been given without interaction. That is, to use the
terminology of the Chapter 2, the ratings give us the v̂’s of each voter, and not the
∆’s.

In the next Section we will describe the data we analyze and how we treat it,
and in the following two Sections we will look first (Section 3.3) at the behavior
of P (S) and then (Section 3.4) at the existence of a magnetization, to investigate
the presence and type of (imitative) interaction. Our findings suggest the existence
of a macroscopic magnetization. More interestingly, this magnetization becomes
more and more evident, when we restrict the analysis to the most popular movies.
For what stated above, we believe that the more popular a movie is, the more
interaction there will be regarding it. Hence the fact that magnetization increases
with the popularity allows us to conclude that this magnetization actually emerges
as a result of an interaction which could be of the type studied in Chapter 2.

3.2 Data analyzed

The data we analyze was downloaded from the web page of GroupLens Research
(http:www.cs.umn.edu/Research/GroupLens/index.html). This consists of ratings
given by users to movies, precisely we have 1 million ratings for 3090 movies
given by a total of 6040 users. Each user gives an integer rating to movies accord-
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ing to the scale from 1 (the worst), to 5 (the best). This is a large enough dataset to
analyze, and to look for example at the intransitivity of these preferences. More-
over, the ratings are given by a very heterogeneous group, with people of both
sexes ranging from 18 to 60 years old, and coming from very different profes-
sions. This point is very important for allowing us to expect heterogeneous a
priori rankings or, to use the notation of Chapters 1 and 2, equiprobable ∆’s.

First of all, we have to get rid of some problems. This very large dataset
contains votes from people, but not everybody has rated all the movies, since
there are persons that have rated around 20 movies and persons that have rated
more than 2000. Similarly, there are movies that have been rated only by a small
fraction of users, and movies that have been rated by a lot of persons. Then, we
can have different approaches to these problems that arise when using all the data,
that is when working with the unrestricted set. The first idea is that of analyzing
the 33 most rated movies. There are 415 users that rated at least 29 of these
movies, and we refer to this data as the restricted set. Within this set, almost all
the movies have been rated by everybody.

Then, we have for these movies the ratings of each user i given by ri(a), and
we can construct easily the vote cast by each user, and hence the corresponding
matrix v̂, setting

vab
i = 1 ⇔ ri(a) > ri(b) (3.1)

vab
i = −1 ⇔ ri(a) < ri(b) (3.2)

vab
i = 0 ⇔ ri(a) = ri(b) (3.3)

Here we will have many draws, both because the ratings take discrete values and
because some users do not rate all the movies (hence the number of voters is not
always odd). To deal with this additional problem we have two alternatives. The
first is to consider only those vi which are different from zero, which amounts to
considering only strict preferences. Otherwise, we can complete the preferences
by adding to each ri(a) a real number drawn uniformly in the open interval [0, 1] .
In this way, if a movie has a higher rating than another, their relative ordering will
nor be affected, while we will be able to decide a relative ordering also for movies
that are rated equally by a voter.

3.3 Transitivity

The first property that we look at is of course intransitivity. We want to derive
results similar to those of Fig.1.1. To do so, we select S movies at random, and
then we have for these movies the ratings of each user i given by ri(a). Then
we can construct easily the vote cast by each user, and hence the corresponding
matrix v̂, as stated in the previous Section.
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Now we construct a matrix M̂ which contains the properties of the majority
of the voters by writing:

Mab =
415∑
i=1

vab
i . (3.4)

The matrix element Mab is positive if the majority prefers alternative a to b, neg-
ative viceversa, and zero in case of a draw. We will show the results obtained in
the restricted set (415 voters) both for the strict preferences and for the completed
preferences.

We analyze the probability of having a transitive majority as the frequency
with which transitivity happens, when repeating the above procedure for many
different choices of the S movies and for increasing values of S. The results are
plotted in Fig.3.1 and can be compared to the random non interacting case. We
see that the probability of having a transitive majority is much greater here.
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Figure 3.1: Probability P (S) of a transitive majority. (•) shows the case of a non-
interacting random population, (�) shows the probability obtained by sampling S
movies, while (�) shows the same probability, but when we add a random (real)
term to each voter’s (integer) rating of movies, so as to obtain strict preferences.

The randomization procedure introduced in completing the preferences will
of course add some intransitivity, but we see from Fig.3.1 that P (S) is still very
high.

This results seem to suggest the existence of some order, given the very high
values of P (S) both in the ”pure” and in the completed case, and we are tempted
to say that there is an emerging order. We will directly investigate this issue in the
next Section, by directly looking at the magnetization.
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3.4 Magnetization

To look for the existence of an order, we analyze the distribution of the magneti-
zation in the realizations studied above. For a given realization the magnetization
reads:

P (m) =
2

S(S − 1)

∑
a>b

δ(m − Mab) (3.5)

and is then averaged on different realizations and choices of the S movies.
The result for the restricted set (33 movies) is plotted in Fig.3.2, and we see

the emergence of two small peaks close to m = 0 for both cases of completed
and strict preferences. The fact that the distribution is broad is explained, in the
theoretical framework of the previous chapters, as the temperature being greater
than zero. The two peaks suggest the existence of an ordering responsible for
the emergence of the macroscopic magnetization, in clos analogy with the model
studied in the previous Chapter.

To shed some light on the above finding, and have a more sharp evidence for
the presence of ordering, we analyze another quantity of interest, the overlap. This
is defined as

Oi =
2

S(S − 1)

∑
a>b

sign(Mab)vab
i , (3.6)

and describes how much each voter is aligned with the majority. Indeed, for each
voter i, the contribution of each couple of movies a and b to the overlap will be
positive only if the corresponding vab

i is aligned to the majority, Mab. Hence a
positive overlap is a signature of ordering. The overlap distribution, given by

P (O) =
1

N

∑
i

δ(O − Oi) (3.7)

is plotted in Fig.3.3. In a ferromagnetic state, we expect that a vast fraction of
voters will have a positive overlap. As is seen from the graph, 96% of the over-
laps are positive, which is a very good indicator that there is indeed an emerging
magnetization.

To see this more clearly, we can refine the data in Fig.3.2 by restricting to
couple of movies for which we have more than a certain number of votes. If
we construct the magnetization in the unrestricted set, each term mab will be the
result of a certain (variable) number of individual votes vab

i since, as we explained
above, non every voter rates every movie. Let the number of votes being cast on
each couple of alternatives be nab. We will look at how the distribution of the
magnetization evolves when we consider only the couples for which nab is above
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Figure 3.2: Distribution of the magnetization.

a given threshold value nt, that is

Pt(m) =
2

S(S − 1)

∑
ab|nab>nt

δ(m − Mab) (3.8)

The idea behind this analysis is that the distribution of the magnetization will
be sharper if we restrict to the most popular movies for two reasons. First, more
voted movies will be less noisy for statistical reasons. Then, one expects that most
popular movies are the ones for which there is more information exchange, hence
interaction with other people (also induced by advertisements). This turns out to
be correct, as seen in Fig,3.4, where we plot the distribution of the magnetization
for different thresholds on the number of votes. As we increase the threshold,
the two peaks become sharper, reminiscent of what happens in the ferromagnetic
state.

3.5 Conclusions

Here we found an example were the theoretical framework of the previous chapter
can be applied to a real-world case. That of movies seems to be a particularly
suited dataset for many reasons. First, the large number of data points allows us to
compare the findings with the analytical results which, strictly speaking, would be
valid only in the thermodynamic limit. This is indeed an important part, since not
much insight can be gained by analyzing small datasets, and since this problem is
one of the most troubling to social scientists wishing to describe real data.

Then, the movie dataset is also a good choice for the particular model we
developed in the second chapter since we think that not only there is a certain
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amount of interaction between people about movies (that of movies is an often
debated subject), but most importantly because this interaction can be of the type
we analyzed, that is, imitative. This is so because there is a common opinion that
typically arises through newspapers reviews, movie trailers, and to the fact that the
more a movie earns (i.e. the more it is seen), the more media of any kind are going
to talk about it. This generates a positive feedback that can be the origin of the
emergence of a macroscopic ordering, and is confirmed by the analysis we carry
out restricting to the most popular movies. As we select more and more popular
movies, advertisement, discussions and information about these movies gets to
play an increasingly important role, and hence the interaction becomes stronger.
Indeed the presence of an ordering becomes more evident.

We can thus conclude that this interaction leads to the formation of a common
opinion, hence making voters’ rankings conform to each other. The emergence
of a magnetization, the existence of a positive overlap are consequences of this
ordering, and the final result is a marked decrease of the probability of finding
Condorcet’s cycles, that is, intransitivity.
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Introduction

The rise of information technology has provided scientists with a wealth of data
that is somehow related to people’s activities, like for example data on the internet
and e-mail usage [46, 47, 48]. Parallel to this, physicists have realized that finance
is a field where GBs of information is easily accessible, and this information re-
gards prices of stocks and, ultimately, buy and sell orders. Since this orders are
initiated by some subject (be it a person or a society) on the basis of some decision
process, it is evident that financial markets constitute a prototype system to study
empirically motivations and rationality that guide human behavior.

In his 1900 dissertation[49], Louis Bachelier (1870-1946) anticipated much
of what is now a standard in financial theory, from random walks of prices to
martingales. The basic observation is about the prices of assets, pt, on a given day
t. Bachelier suggested to look at the daily increments in prices δp , defined as

δpt = pt − pt−1 (3.9)

and to model them as a random process. He thus derived the probability distribu-
tion of the Wiener process, actually before Einstein’s 1905 paper, and from that
he calculated a formula for the barrier price of an option. His work was unfor-
tunately largely ignored by his contemporaries, and it was only in the late XXth
century that these considerations attracted again the attention of scientists. More
than seventy years after Bachelier’s work, Black and Scholes wrote their famous
paper [50] on option pricing, by modeling the price as a Geometric Brownian
Motion. This means that the relative increments of the price, or returns, are inde-
pendent random variables, rather than the price itself. From this, more accurate
option pricing formulas can be deduced, and since then financial mathematicians
and physicists have developed more and more refined models for the price process
(see [15] for a review) and now these models extend to a wide class of stochastic
processes [51, 52]. This accurate analysis and description has become a must,
since the availability of high frequency (tick-by-tick) data made it possible to de-
tect many important and quite striking properties of financial time series. Among
these stylized facts, the ones that drew much attention where the existence of large
fluctuations and the presence of scale-invariant distributions. There exists now a
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vast literature on the statistical description of financial markets, and we refer to
[16, 15] for a review.

Clearly, the detailed statistical analysis and characterization of financial time
series is of great practical interest for anybody willing to invest money on the
basis of scientific theories. The two objects which are of greatest importance are
the expected return R and the volatility σ, defined by:

R = E[x] (3.10)

σ2 = E[x2] − E[x]2, (3.11)

where E[.] denotes the expected value and

xt =
pt − pt−1

pt

(3.12)

defines the return. These two quantities give a measure of, respectively, how much
one can gain from investing on a given asset, and of the risk associated with that
investment and are thus deeply studied in investment analysis books [53].

The empirical analysis of these and related quantities from financial markets
has revealed a wealth of interesting features, in particular fluctuation phenomena
of great complexity [15]. For example, the distribution of returns is characterized
by anomalous, ”fat” tails, that can be described by an power-law behavior. This
means that large variations are far more probable than one would expect from a
gaussian model, and this observation has implications in the evaluation of invest-
ment’s risks. Another striking phenomenon is that of volatility clustering, namely
the observation that financial time series are characterized by periods of high fluc-
tuations and periods of low fluctuations, and again this property becomes impor-
tant for investment decisions. It is thus clear why a wealth of theories have been
proposed in order to model the price behavior. Roughly, we can divide the models
proposed into two classes: there are those that attempt to give a phenomenological
description of the price process, thus trying to reproduce as accurately as possible
the statistical features of the empirical time series, and models that rely instead
on some behavioral or motivational assumptions about the traders in the market to
derive the resulting price process.

Among the first class, discrete time ARCH-GARCH models [54, 55] or con-
tinuous time stochastic volatility models [56] constitute an attempt to describe
phenomenologically via a system of stochastic equations the price process. These
equations have become more and more accurate in describing stylized facts such
as volatility clustering or leverage effect [57], and, as mentioned in the previous
Chapter, are actually used in practical contexts, for example for option pricing
when the underlying asset exhibits non-gaussian behavior [52] as compared to the
classical Black-Scholes formula [50].
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If these models are oriented to the characterization and possibly to the predic-
tion of the statistical behavior of financial time series, a second class of models
has been developed. Here the emphasis is shifted towards understanding the ori-
gin of the observed anomalous features through the study of equations that take
into account motivational arguments. According to standard economic theories,
the price of a stock should be the discounted value of all future dividends. Since
the actual dividend process is not known, one will have certain expectations about
it, and we can think that the volatility of the prices derives from this uncertainty.
Can excess volatility and excess trade volume be explained by this fundamental
view? It was found [58], for foreign exchange markets, that roughly 90% of the
daily transactions cannot be accounted for in this scheme, and are instead due
to speculative trading. If this is true, then one has to model explicitly different
trading strategies and their impact on the market price.

This line of research was further stimulated by the development of agent-based
models, where the market is depicted as a system of heterogeneous agents that in-
teract via various mechanisms (minority/majority games) [18, 59]. Here the ratio-
nale is to try to derive the stylized facts from models that incorporate behavioral
rules for the agents. Indeed it has been shown that many stylized facts of financial
market fluctuations, such as fat tails in the return distribution or volatility cluster-
ing, can be reproduced by such models of interacting traders in a market [13].

The approach that emerges is that of explaining financial fluctuations as an
endogenously-generated phenomenon stemming from the interaction of many agents
and strategies, rather than an exogenous component, in line with the general ar-
guments that we discussed in the Introduction to this Thesis. In this second Part
I will adopt this approach for multi-asset financial markets, first (Chapter 4) by
describing the correlations that emerge between different assets and in the final
Chapter by developing a model that tries to describe the observed fluctuation phe-
nomena as stemming from a particular type of feedback on the price dynamics
induced by investment strategies.
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Chapter 4

The structure of correlations in
financial markets

4.1 Introduction

Most of the models discussed in the Introduction are focused on the properties
of a single asset. From a practical point of view, though, a financial market is
composed of many assets, whose dynamics influence each other. Hence, apart
from the study of the statistics of prices of single stocks, one can be interested
in characterizing those properties of financial markets that derive from the inter-
dependence of the assets it is composed of. The idea to model stock returns as
random walks, or, in general, stochastic processes, offers us a first important tool
to the scope. Indeed, when one is faced with many noisy time series, a typical
quantity of interest is the correlation between them. Hence one can ask for the
correlation properties of group of assets.

This information is of great importance also towards determining investment
strategies. This is easily understood from a simple example. Suppose we have
two stocks, whose returns follow a random walk. Investing 1/2 of one’s wealth
on a stock and the rest on a stock that is anticorrelated with the first one is a
simple way of trading some risk at the expense of expected return. However, the
importance of inter-asset correlations for determining the risk of investments is
highlighted also with heuristic arguments. Think of investing all our wealth in a
given stock. This will result in a complete failure in case that stock price falls
abruptly. Since the abrupt fall is an extreme event, investing in two uncorrelated
(or anticorrelated) stocks diminishes the risk of such a dramatic crash. Hence the
general rule: diversification reduces risk.

It becomes thus clear that the detailed characterization of stocks’ co-movement
is essential for planning effective investment strategies. In fact, the very structure
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of the correlation matrix determines how much risk can be diversified away and
how this should be done. The precise mechanism by which this is achieved is
explained in portfolio theory, whose details are presented in Section 5.2. For
the present scope, it is sufficient to note the importance for practical purposes of
studying the properties of the correlation matrix.

Many studies have been carried out to this scope, and it turns out that the cor-
relation matrix of a group of assets exhibits properties largely independent from
the particular assets under study. The models we will describe in this Chapter have
been developed to explain the observed patterns and predict the future correlations
among assets. Let xi be the price of stock i. Then the covariance of stocks i and j
is measured by

Cij = 〈xixj〉 − 〈xi〉 〈xj〉 , (4.1)

where 〈.〉 denotes temporal average.
It is important to note here that there are two kinds of correlations one can

be interested in. There is the historical correlation, which is observed from past
financial time series, and the expected future correlations. These two need not
be the same, and actually the idea behind the theories discussed here is that of
deriving the expected future correlations from the historical ones. To this scope,
one has to understand what factors enter into the determination of Cij , then devise
techniques to extract this information from the observed time series. Finally, we
need to use this very information to make predictions on the expected movements
of stock prices.

The question that emerges is how these correlations between different assets
build up. Are they the result of some endogenous properties of the market? Is
the correlation due to the specific activity of the firms? Is there a component that
arises due to the price impact of a particular type of investment? As we will see,
it turns out that the answer is often yes, and the task one is faced with is that
of determining what effect is most important in different situations, and try to
quantify all these components.

In the next Section, we review the classical theories developed by economists
to explain the observed correlations and predict future ones. Economists have fo-
cused on the idea of common factors that influence the dynamics of assets’ prices,
that is, they explain the correlations as a result of some pre-existing common be-
havior dictated by fundamentals. For example, stocks can be correlated because
they belong to the same sector. The models that translate this idea into mathe-
matics are briefly presented. Then, in Section 4.3 we will describe the approach
physicists have had with this issue. This approach has been more empirical, and
we will review the detailed statistical analysis of the inter-assets correlations and
in particular of the spectral properties of the correlation matrix. Moreover, we
will see how techniques have been devised, to obtain a ”network structure” from
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financial data. The idea is that of translating the correlations between assets into
links between companies. Those that are mostly correlated are joined by a link,
and if carefully done this can reveal interesting structures. Then, we will present
a new model that we have developed in order to construct a network structure
from financial data based on very general assumptions. Finally, as an example of
the various type of information that can contribute to the coefficients Cij , we will
show that there is an interesting link between the covariance Cij and the compo-
sition of the board of directors of the two companies i and j, at least for the Milan
Stock Exchange.

4.2 An economist’s view

In addition to the empirical study of correlation matrices, one has to devise some
model to predict future inter-asset correlations. Indeed, we have already said that
the historical correlations can be used for predicting future ones, but they are not
the same. The typical investor will have to follow more than 150 stocks, and
it certainly a hard task. Traditional methods, namely having a security analyst
predicting the future expected returns, will not in general be useful towards the
determination of the correlation structure. This is so due both to the very high
number of correlation coefficients that are to be determined, and for the fact that
security analysts are typically specialized in a particular sector, say steel or oil,
and will encounter difficulties in estimating the co-movement of stocks belonging
to different sectors. Hence a simple testable model is needed in order to make
investment decisions based on some sound analysis.

An empirical model that accounts for this idea is perhaps the oldest and most
widely used simplification scheme to describe assets’ returns: the single index
model[53]. This model stems from the casual observation that when the market
goes up, most stocks go up, and viceversa, thus suggesting the common response
to market changes as a major reason fo stocks’ co-movement. One can write the
return on any given stock i as:

xi = ai + βiRm (4.2)

where ai is the component of the return independent of the market, Rm is the
market return and βi is a stock-specific constant that measures the expected change
in xi given Rm. Given this model, one can observe the price changes over a certain
period, the fit the model to tha data to obtain the parameters and the distributions
of the random variables ai and Rm, and then use this very information to make
investment decisions. There is a wealth of techniques devised to get better and
more accurate estimates of the parameters, but it would lead us far from our point
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to discuss them. In Appendix B we briefly describe how this model is used in
portfolio analysis.

A simple generalization of this model, the multi-index model. It is clear that,
apart from market return, there are othe factors that influence the co-movement
of assets. For example, there will be a positive correlation between two stocks
belonging to the same industrial sector, as they will both go up when the sector
is in a positive trend. Hence more refined models have been devised in order to
take into account many different factors. The general multi-index model can be
written as:

Ri = ai +
N∑

j=1

bijIj (4.3)

where again ai is independent of all the indices, while bij measures the expected
change in Ri relative to the value of index Ij . The single-index model is a simple
case of this, with N = 1 and I1 = Rm. Does one gain much from this added
modeling depth? To answer this question one has to make comparisons based on
the performance of these models. That is, one model is better than another if, when
used to predict future correlation matrices, it gives better (more accureate) results.
Elton and Gruber [60] found that while multi-index model are generally better in
reproducing the historical correlation matrix, they are significantly outperformed
by the simple one factor model when it comes to prediction, if one uses as indices
the industry classification. This means, as they clearly state, that the added indices
”introduce more random noise than real information in the forecasting process”.
However, these models can indeed outperform the simple single-index model, but
one has to be very careful with how assets are grouped and what indices to include.

4.3 A physicist’s view

Physicists have had perhaps a more empirical approach to this problem. Instead
of devising models for inter-asset correlations, the first step has been the detailed
statistical characterization of correlation matrices.

Let us suppose that a group of N assets undergoes a random process, such that
the returns on each asset are drawn from independent normal distributions. In this
case, the correlation matrix spectrum can be calculated analytically, and it turns
out that the distribution of the eigenvalues is [61]

ρ(λ) =
q

2πσ2

√
λmax − λ)(λ − λmin)

λ
(4.4)

λmax
min = σ2(1 + 1/q ± 2

√
1/q) (4.5)
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where q = N/T and T is the number of observations for each data set, while σ2 is
the variance of each dataset. Notice that this distribution has a lower and an upper
bound (λmin and λmax, respectively), beyond which the probability of finding an
eigenvalue is zero (in the N → ∞ limit). The authors of Ref.[62] have shown that
there is a remarkabe agreement between the predictions of RMT and empirical
data extracted from 406 S&P stocks, with 94% of the total number of eigenvalues
falling in the bulk of the RMT region, as shown in Fig. 4.1 . Similar results have
been found for the Tokyo Stock Exchange [63].
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Figure 4.1: Smoothed density of eigenvalues of C. Taken from [62], courtesy M.
Potters.

One might be tempted to conclude that no useful information can be extracted
from the correlation matrices, but the situation is not so bad. Actually it has been
shown [64, 65] that in the classical portfolio problem noise hasn’t the relevant role
one might expect (the displacement due to noise is relatively small, 5% to 15% ac-
cording to [64])1. More importantly, the eigenvectors corresponding to the highest
eigenvalues have been shown to carry much information. In particular, it has been
shown [66], that these eigenvectors are centered around well-identified industrial
sectors, hence somehow enforcing the picture of multi-factor models: each eigen-
vector corresponds to the collective motion of a group of assets belonging to the
same sectors. This information can actually be used for practical purposes. For
example, filtering out the eigenvectors corresponding to eigenvalues in the bulk,
and retaining the large deviating ones, one can have an estimate for the correlation
matrix Ĉ that is much more useful since, having removed the noisy component, it
contains only effective information. Indeed the use of filtered covariance matrices

1Note however that the situation can be dramatically different when introducing non-linear
constraints, see [64]
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has become a must, while this kind of questions have attracted much attention,
and many different filtering techniques have been devised to get more accurate
estimates, see [67, 68].

If correlation matrices contain useful information, it becomes important to
study the stability of their properties in time. The time dependence of the large
eigenvalues has also been studied in some detail [69], and it was found that sudden
decreases of the stock prices are related to an increase in the largest eigenvalue
(that is, they are more collective), while this is not the case when prices rise.
The temporal evolution of correlations was studied also in Ref. [70], where the
authors found that there exist a directed network of influence between companies,
with the time dependent cross correlations showing a peak (maximum correlation)
at nonzero time shift. We will also study issues related to the time evolution of the
correlation matrix in the next Chapter.

4.3.1 The network structure of financial correlations

Another interesting approach physicists have developed is that of visualizing the
correlations among assets by constructing networks out of financial data. In these
networks, companies would be joined by a link when they are highly correlated.
One such approach is that of the Minimum Spanning Tree[71, 72, 73]. A spanning
tree is a graph without loops connecting all the N nodes with N −1 links. To con-
struct it, one calculates the matrix Ĉ, then introduces a metric distance between
pairs of stocks by defining:

dij =
√

2(1 − Cij). (4.6)

Then the MST selects the shortest N − 1 links spanning all the nodes.
An example is shown in Fig.4.2. Some important features can be extracted

also in this way, the most emergent being again the sector classification.
Two basic extension of this framework have been devised. The first one is the

study of how the emerging tree structure evolves in time [74]. The topological
properties of the tree have been related to market crashes. Another approach is
that of using the same technique to construct trees of world markets, of volatility,
and so on[72].

Clustering the assets is useful not only in visualization of correlations, but
also to determine the optimal portfolio. In particular, the authors of Ref. [75]
have shown that the use of clustering algorithms can improve the ratio between
expected and realized risk of the portfolio.

Although all these techniques work quite well, in the sense that they give rea-
sonable and interesting results, the procedure can be questionable. In fact, there
is no reason why one should construct a network of assets as a tree. Forcing a
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Figure 4.2: MST of 100 highly capitalized stocks traded in the US market Taken
from [72], courtesy G. Caldarelli.

particular network topology can be misleading, and most of all, any loop structure
is missed by construction. In the next section we introduce a technique to recon-
struct a network structure out of financial data that does not rest upon any a priori
topological assumption.

4.4 Gaussian model

In what we have seen, the correlations are identified with interactions among com-
panies. Pairs of assets that are most highly correlated are joined by a link, to
represent their interaction. However, there is a more subtle link between the two
properties, since it is the interaction, present a priori, that induces correlations.
This is the starting point of our analysis in this Section.

Let us assume that the observed time series of the system under study are the
result of some stochastic process evolving on an underlying network structure, not
known a priori. Then the existing network structure will be responsible for the
interaction, and hence of the correlations that we will find. In particular, we will
assume a gaussian model of harmonic oscillators interacting with each other. The
(unknown) adjacency matrix Aij specifies which node interacts with which, being
Aij = 1 if nodes i and j are connected, 0 otherwise. The equation of motion of
this network of harmonic oscillators is

m
d2

dt2
xi = −J

∑
Aij(xi − xj) (4.7)

where m is the mass of each oscillators and J is the coupling strength. The Hamil-
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tonian for such a system is

H =
1

2m

∑
i

p2
i +

1

2
mω2

0

∑
ij

xiLijxj, (4.8)

where L̂ is the Laplacian matrix of the graph, given by

Lij = δijsi − Aij (4.9)

and
si =

∑
j

Aij. (4.10)

In (4.8) ω2
0 = J/m. If we consider the network of oscillators in thermal equi-

librium with a heat bath at temperature T , we can calculate averages with the
Boltzmann weight, and the correlation matrix C will be the inverse of the lapla-
cian matrix of the graph, L̂:

Cij = 〈xixj〉 = (L−1)ij. (4.11)

These considerations have been developed in the context of generalizing Peierls
result [76] for the thermodynamic instability of low-dimensional crystalline struc-
tures to structurally disordered materials [77].

Here we borrow this idea to develop a procedure aimed at reconstructing
the network topology (that is, obtaining values for the adjacency matrix Aij)
by exploiting the relation (4.11) between the expected observed fluctuations and
the Laplacian L̂. The first problem we encounter is that in (4.11) we have that
L̂ = Ĉ−1, hence in reconstructing the laplacian L̂ the importance of each eigen-
value of Ĉ is inversely proportional to the eigenvalue itself. This means that the
high eigenvalues, which we have seen carry a lot of information, will have a small
weight as compared to the noisy small eigenvalues. Then, we proceed as follows.
We first construct the correlation matrix Ĉ from the empirical time series xi and
then diagonalize it to obtain the eigenvalues λ and eigenvectors |λ〉. The resulting
eigenvalue spectrum will in general have a lower part described by Wigner’s semi-
circle law, with the highest eigenvalues deviating from it. These eigenvalues, and
the corresponding eigenvectors, are the ones that carry the relevant information,
as we have seen in the previous section. We can define a threshold value λth that
defines the boundary between the ”RMT” region and the informative part of the
spectrum. This can be done in several ways. One possibility is that of defining
λth = λmax with λmax defined by Eq. (4.4), so that any eigenvalue above the
threshold would be above the high cutoff of RMT spectra. We will follow a more
phenomenological approach, and define λth graphically, as will be clear in the fol-
lowing. So, we construct a matrix C̃ by keeping the eigenvalues in the deviating



4.4. GAUSSIAN MODEL 63

tail and replacing all the eigenvalues in the semi-circle part with their mean value,
so as to keep the trace constant, TrC = TrC̃. Hence by definition the eigenvalues
λ̃ of C̃ are

λ̃ = λ ⇔ λ ≥ λth (4.12)

λ̃ = l ⇔ λ ≤ λth (4.13)

and
l = 〈λ〉λ≤λth

, (4.14)

while
|λ〉 = |λ̃〉 (4.15)

We state now that

L̂ =
∑

i

1

λ̃
|λ̃〉〈λ̃| (4.16)

is the laplacian of the graph. Again, this matrix will have a central part (of mean
zero) given by the random part of C, and thus bearing no information. But there
will be a negative tail corresponding to the important part of the correlations. We
will thus fix a threshold value Lth and construct the adjacency matrix according
to

Aij = 1 ⇔ −Lij > Lth (4.17)

Aij = 0 otherwise. (4.18)

In this context, the maximum eigenvalue λmax simply corresponds to motion
the center of mass. Hence we can also exclude this eigenvalue since it carries no
relevant information about the structure of the correlation matrix. This observa-
tion is important in particular for small systems, where the number of non-trivial
eigenvalues is small, since then adding one large eigenvalue that tends to link all
the companies can easily disrupt the structure. This is the case in the example
studied in the next Section.

4.4.1 The Dow Jones companies network

Let us see in a real case how this works. We take as our time serie the returns for
the stocks that compose the Dow Jones Index starting from March 1991to March
1997. The resulting correlation matrix has a spectrum that is shown in Fig. 4.3

In this case we see clearly some eigenvalues deviating from the semi-circle
law. The largest one, however, simply corresponds to the collective motion of
the assets. It is known as the market mode and, although it is interesting for
other purposes, it should not reveal information about the network structure, so



64CHAPTER 4. THE STRUCTURE OF CORRELATIONS IN FINANCIAL MARKETS

 1

 10

 100

 0.1  1  10

P
(λ

)

λ

Figure 4.3: Integral distribution of the eigenvalues of the correlation matrix for
Dow Jones Companies.

we decide to exclude also this eigenvalue. By inverting the resulting C̃ we obtain
a proxy for the laplacian of the graph and, by retaining only the non-random part
of it, we reconstruct the network structure, which is plotted in Fig. 4.4
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Figure 4.4: Graphical representation of the network obtained with our procedure
for assets comprised in the Dow Jones Index.

To validate our procedure, we run a gaussian model on this network. We
simulate a system of coupled oscillators via the set of Langevin equations

ẋi =
∑

j

Lijxj + ηi, (4.19)
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which is the equation resulting from the Hamiltonian (4.8) where ηi is a Wigner
process such that

〈η〉 = 0 (4.20)

ση =

√
〈η2〉 − 〈η〉2 = α. (4.21)

We then construct from these artificial time series xi the covariance matrix Cij =<
xixj > − < xi >< xj >. Then on this ”artificial” covariance matrix we repeat
the extraction of the network to test if the results are consistent with the starting
network structure. If the procedure is correct, we should get a good agreement
between the two networks obtained, the one extracted from real data and the ar-
tificial one. For adequate values of the parameters the similarity is striking, as
is clear from Fig. 4.5, upper graph, with a 10000 time-steps run, and even in a
smaller simulation, Fig. 4.5, lower graph. In these cases the maximum eigenvalue
was retained in the analysis (i.e. it was not included in mean of the ”noisy” eigen-
values), since we can subtract the collective motion directly when simulating the
Langevin Equations.
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network of Fig. 4.4 for 10000 time steps, with α = 0.001. Bottom graph: network
obtained by running a gaussina model on the network of Fig. 4.4 for 3000 time
steps, with α = 0.001.
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4.4.2 NYSE

Here we use dayly data from 4000 NYSE stocks. The tail is stronger in this case,
and including the largest eigenvalue is no longer a big problem.

 1
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 0.1  1  10  100  1000  10000

P
(λ

)

λ

Figure 4.6: Eigenvalue distribution for 4000 NYSE assets

The network obtained with our filtering procedure displays a wealth of in-
teresting features. The first thing to note is that we get a very neat community
structure, corresponding to the sectors. For example, the light cyan cluster on
the bottom-right is composed solely of oil companies, while the yellow one just
above it corresponds to the electric sector. On the left of this lies the pharmaceu-
tic industry. The big cluster on the top-left is composed mainly of banks (green)
and investment companies (cyan). On the bottom lies the sector of gold (golden
colour). The company that is linked both to this sector and to the bank sector is
De Beers. Now we start to note that we also get information on each individual
assets’ connections, and these seem to be quite precise. For example, a striking
fact is that the two big companies heavily linked to both the pharmaceutic industry
and financial sector (they seem to have many common interests) are Glaxo Well-
come and Smith-Kline. The data analysed is from the 90’s, and indeed the two
companies merged in 2000. Also, we can see Halliburton’s link to the oil sector
companies, not surprisingly since it is an oil-services company.

Thus we have developed a technique to construct networks from financial data.
This technique can be very helpful in visualizing the structure of financial correla-
tions, and its results agree with the finding that highest eigenvalues contain infor-
mation about the sectors. But there are two advantages with our procedure. First,
with respect to other visualization procedures aimed at constructing networks, we
base our procedure upon a very simple model of correlations. We make no a pri-
ori assumption on the topology of the network, and we think that the resulting
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Figure 4.7: Network obtained with our procedure with 4000 NYSE stocks.

structure will be more stable, since it accounts by construction for the presence of
noise 2. Moreover, taking into account all the possible links we highlight many
properties that are more detailed than the mere belonging to a sector. We can
have information about a single company and its specific links, and this gives us
important clues that could be exploited when taking investment decisions. For ex-
ample, in the NYSE network we have seen two such cases: Halliburton, a services
company linked almost exclusively to the oil sector, and Glaxo and Smith-Kline.
Having to invest, one could certainly exclude simultaneous investments on these
two companies, or similarly, exclude investing heavily both on the oil sector and
on Halliburton. Of course this could be detected also via standard portfolio se-
lection procedures but though preliminary, these results suggest the possibility of
exploiting these information systematically. The development of this idea is left
as a subject for future research.

4.5 Board of directors

Among the various informations that one can extract form financial time series,
one of interest is that concerning the board of directors of companies. Each com-
pany has a certain number of people in its board of directors, and one might think
that people involved in the board of a company are experts of the type of market
that that company belongs to. Since a given person can belong to boards of more
than one company, one is led to think that companies sharing a common market
will have a higher probability of having one or more people in common in the

2It is not clear, for example, how noise affects the overall structure of minimum spanning trees.
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board of directors. Then it is straightforward to ask if the financial correlations
reflect, at least in part, this information.

To test this hipothesys, we used data from companies traded at the Italian
exchange in Milan. The data available on the board of directors is from 2002,
then, to compare with financial data, we collected daily time series from Jan.
1st, 2001 to Dec. 31st, 2003. Of all the companies, we selected only those that
were traded for at least 300 days in this period. Moreover, we had to disregard
some companies for which we could not find historical quotes, like companies
that merged with others or died due to bankruptcy. Of the remaining 69 companies
we constructed the correlation matrix Ĉ. We then divided the matrix elements Cij

into two groups: C0 and C1. To do this, we calculate the matrix B̂ according to
Bij = 1 if companies i and j share at least one person in their boards of directors,
0 otherwise. Then

Cij ∈ C1 ⇔ Bij = 1 (4.22)

Cij ∈ C0 ⇔ Bij = 0 (4.23)

We can the run a statistical test to check if the two groups can come from
the same distribution. Using the Kolmogorov-Smirnov test [78, 79], we found
that the probability that the two data sets are drawn from the same distribution is
7.2510−4. The conclusion is clearly that financial correlations bear a trace of this
information.

This conclusion can be seen also by Fig.4.8. This is derived by merging to-
gether data in C1 with data in C0. Then we rank all the correlation coefficients from
higher to lowest. Dots in Fig. 4.8 indicate that at that rank there is a coefficient
from the group C1, that is, a covariance between two companies that share at least
one member of the board. From the resulting histogram one can see how data in
C1 is grouped at higher values with respect to data in C0. Indeed, 15 correlation
coefficients in C1 rank amongst the highest 10% of the whole group of coefficients.
We note that there is also a peak at low values of the rank, but the Figure confirms
the statistical test in neglecting the possibility that the two groups are drawn from
the same distribution.

4.6 Conclusions

In this Chapter we briefly reviewed the tools developed by economists and physi-
cists to determine and predict the structure of financial correlations. We have
seen both an attempt to model correlations in order to have good forecasts of the
coefficients that enter the portfolio optimization problem, and a detailed charac-
terization of the statistical properties of such correlations. These techniques turn
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Figure 4.8: Histogram of the rank distribution of the correlation indices for cou-
ples of companies that share at least a director in the board. The empty dots
represent one such correlation coefficient, while the rank is with respect to the
whole group of coefficients.

out to be very useful in having precise estimates of risk of investments, as well
as being of theoretical interest. We have also shown the existing methods used
for the topological analysis of financial markets and presented a new procedure
to cast financial data into a network form that can be used as a graphical aid to
visualize the existing correlations. This procedure reveals microscopic properties,
such as the detailed links of each company, that are hidden to the macroscopic ob-
servation of the spectrum of the correlation matrix. We hope to be able to extract
from this type of information new tools for portfolio optimization, but research is
still ongoing in this area.



Chapter 5

Dynamics of financial correlations

5.1 Introduction

The statistical properties of ensembles of assets have been shown in the previous
Chapter to display very interesting features, for example the existence in the co-
variance matrix of large, stable eigenvalues carrying information about the market
dynamics. Also these features can be thought of as deriving from internal market
dynamics since certainly the bare economic factors are not the only contribution
to financial correlations. Moreover, these large eigenvalues exhibit themselves a
temporal pattern of fluctuation phenomena of great interest. One characteristic is
the presence of instabilities, or peaks of correlations, evident when one looks at
the evolution of the largest eigenvalue of the covariance matrix, as clearly shown
in Fig. 5.1, where we can see abrupt peaks emerging often. These peaks then
decay with a characteristic time-scale, but we can see that the height of the peaks
seems to some extent to be scale-free, with similar patterns being developed for
small as well as high jumps. That is, it seems that the dynamics responsible for
the high jumps that we observe in Fig. 5.1 is responsible also for the many small
peaks that are present. This is what happens in many phenomena in statistical
physics, where the origin of this scale-free behavior lies in the collective nature of
the processes under study. This intuition is indeed confirmed by the direct investi-
gation of the dynamics of the largest eigenvalue (Λ) of the covariance matrix. The
broad distribution of the day-to-day differences δΛ = Λ(t) − Λ(t − 1) is shown
in Fig. 5.2 for group of companies belonging to 4 different world indices, and all
show a similar ”fat tailed” behavior.

It is difficult to explain these features as an effect of exogenous shocks to
the system and we will try to resort to an internal mechanism to generate this
dynamics. What can this mechanism be? Among the other contributions to trad-
ing activity one can consider those of speculators and investors. An investment

71
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Figure 5.1: Maximum eigenvalue of the covariance matrix as a function of time
for Toronto Stock exchange (see [80] for details on the data). The covariance
matrix for each time t is obtained via Cij = 〈xixj〉 − 〈xi〉 〈xj〉, where 〈.〉 denotes
an exponentially weighted average with τ = 50.

component which has a particular significance for financial correlations is that
described by portfolio theory, as explained in the previous Chapter. Large traders
such as institutions or banks certainly adopt such theories when taking positions in
a market, and these subjects can move a great deal of assets. In the 80’s and 90’s,
another large player emerged in the market: hedge funds. These are funds that try
to take advantage of various investment strategies, and they have indeed obtained
great success. The assets under management by hedge funds grew from a value
of 193 millions U.S. dollars in 1980 to the considerable level of 109, 576 millions
of U.S. dollars in 1997 [81]. These investment funds are often quick to react to
news, given their light structure with respect to financial institutions. Moreover,
their managers have among investors a reputation for astuteness, and their moves
are often followed by others. All this can lead to thinking of a possible positive
feedback. That is, the rumor that hedge funds are taking a position may encour-
age other investors to react, and if this effect is large enough, it may well have
an effect on the price. It is thus evident that prices will tend to move along the
direction determined by investment theories, and that fluctuation phenomena in
the dynamics of prices or of correlations could be due partly due to the feedback
effect of strategic investment.

Our idea is then to take into account this component (financial investment)
as an internal influence on the market dynamics and derive the resulting effect
on the correlations and thus, ultimately, on risk. In particular, we will specialize
to investments done on the basis of standard portfolio optimization theories, that
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Figure 5.2: Cumulative distribution of the day-to day change in the maximum
eigenvalue for different indices: DAX (+), TSX(�), DOW(�), ASX(×).

allow to decrease the risk of investments through diversification. One of the key
functions of financial markets is indeed that of allowing companies to “trade”
their risk for return, by spreading it across financial investors. Investors on their
side, diversify (i.e. spread) their strategies across stocks so as to minimize risk,
as postulated by portfolio optimization theory [82, 53]. The ability of a financial
market to absorb risk depends (see for example Section 5.2 and Appendix B) on
the cross correlation between the assets it is composed of. On the other hand, it is
also reasonable to expect that trading of the optimal portfolio induces correlations
in the financial returns, i.e. that it affects the ability of the market to absorb risk.
This suggests that financial correlations enter into a closed feedback because they
determine in part those trading strategies which contribute to the price dynamics,
i.e. to the financial correlations themselves. This feedback loop is indeed implicit
in Capital Asset Pricing Model (CAPM) [83] which assumes that all traders will
invest in the same way (according to the optimal portfolio) . Thus, the correlations
among assets can be described by a single factor. This intuition is confirmed by
the fact that the largest eigenvalue of empirical correlation matrices is very well
separated from all the other ones [69].

The issue of the feedback loop discussed above has been recently addressed
also in the economic literature [84, 85], with a detailed characterization of in-
vestor’s expectations about future prices. From this expectations the trading deci-
sions are derived, and then the price is changed via a market clearing mechanism
(offer = demand). In the following, we will not deal with so detailed models,
motivated by the idea that the laws that govern the collective properties we are
interested in are not very sensitive to the small-scale details, given their statistical
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origin.
The purpose of this research is to show, by resorting to a simple model, that a

non-trivial dynamics of correlations can indeed result from the internal dynamics
of a financial market were agents follow optimal portfolio strategies. This, how-
ever, occurs only close to a critical point where a dynamic instability occurs. Not
only we find very realistic dynamics of correlations close to the critical point, but
maximum likelyhood parameter estimation from real data suggests that markets
are indeed close to the instability.

In the next Section we will review the standard assumptions and results of
portfolio theory, and we will use this results as a source of feedback for the stock
prices in the model presented in Section 5.3. We will then give an equilibrium
solution of the model and characterize the resulting emergence of a ”phase tran-
sition” from a stable to an unstable phase. We will show how the dynamics of
correlations in real markets closely resembles that of the model close to the phase
transition. Then in Section 5.4 we will devise a technique to fit real data from
financial markets with our model, and we will find that indeed financial markets
seem to lie very close to the transition.

5.2 Portfolio theory

Let us start with a simple example. Let us suppose that we have two assets and
let us denote their daily returns by x1 and x2, the respective variances as σ2

1 and
σ2

2 and their covariance as σ12. Then we want to calculate the expected return
and the risk (variance) associated to the portfolio obtained by investing a fraction
z1 = 1/2 of one’s wealth into the first stock, and z2 = 1/2 on the other. If
the expected returns are R1 and R2, then expected value of the return Rp on the
portfolio will be

E[Rp] = R̄p =
1

2
R1 +

1

2
R2 (5.1)

since the return on a portfolio of assets is simply a weighted average of the return
on the individual assets, where the weight for each asset is just the fraction of the
total wealth invested on that asset. As to the variance, one has:

σ2
p = E[(Rp − R̄p)

2] = E[(z1x1 + z2x2 − (z1R1 + z2R2))
2] =

= z2
1σ

2
1 + z2

2σ
2
2 + 2z1z2σ12 =

1

4
σ2

1 +
1

4
σ2

2 +
1

2
σ12.

Now, it is evident that choosing two anti-correlated assets, with σ12 < 0, one
actually decreases the variance, hence the risk.

This is precisely the mechanism that one wishes to exploit to decrease risk,
and portfolio theory deals with how to allocate one’s resources optimally to this
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scope. The theory has been extended to general systems with an unlimited number
of assets, with the presence of a risk-free asset, when short sales are allowed or not
and so on [53]. The original theory was derived by Markovitz [82]. Let us briefly
recall its main conclusions. Call ẑi the fraction of one’s wealth to be invested on
asset i and let Cij be the covariance matrix of the returns xi:

Cij = E[xixj] − E[xi]E[xj]. (5.2)

Then one tries to minimize the variance of the portfolio, which amounts to mini-
mizing σ2

p =
∑

ij ziCijzj with the constraint
∑

i zi = 1. Introducing a Lagrange
multiplier λ one seeks

|z〉 = argmin|z〉

(
1

2
〈z|C|z〉 − (λ − 〈z|1〉)

)
(5.3)

where we have introduced bra-ket notation1. The result, after some simple algebra,
reads

|z〉 = 〈z|C−1|z〉−1C−1|1〉. (5.4)

The basic extension of this framework requires one additional constraint in (5.3)
by fixing the total return on the portfolio Rp =

∑
i ziRi. The calculations are a

little more involved (see next chapter), but the idea is the same.
In the following, we shall develop a model to test the feedback that this type

of investment strategies can have on the dynamics of assets prices.

5.3 Model

Modelling such a complex systems as a financial market inevitably implies deal-
ing with many complications. For example, portfolio investment decisions are
in principle based on expected returns and covariances which may be different
from the historical ones and different from trader to trader, also because traders
may have different time horizons. A market mechanism needs to be specified to
describe how investment decisions influence price dynamics.

Our aim here is to focus on the financial market as an interacting system, trying
to capture in a simple yet plausible way the interaction among assets, and the re-
sulting correlations, induced by portfolio investment. Hence we will rely on very
rough approximations: we shall assume that i) all traders have the same trading
horizon and follow Markovitz optimal portfolio strategy and that ii) that they use
historical data to estimate correlations and expected returns. Finally, rather than

1|x〉 should be considered as a column vector, wereas 〈x| is a row vector. Hence 〈x|y〉 is the
scalar product and |x〉〈y| is the direct product, i.e. the matrix with entries ai,j = xiyj .
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deriving price impacts from a specific market mechanism, iii) we shall postulate a
simple linear impact function for the price dynamics. Such rough approximations
will leave us with a simple model of interacting assets whose dynamics accounts,
in a schematic way, for fundamentals, portfolio investment and speculation. The
model allows us to study the interplay between these contributions to trading both
analytically and by numerical simulations. Rather than insisting on the validity of
the approximations on theoretical a ground, we shall draw the main conclusions
and then compare them with empirical data from real financial markets.

Let us consider a set of N assets. We denote by |x〉 the vector of log-prices
and use bra-ket notation. We focus on daily time-scale and assume that |x(t)〉
undergoes the dynamics

|x(t + 1)〉 = |x(t)〉 + |β(t)〉 + ξ(t)|z(t)〉. (5.5)

Our focus is on the properties of correlations, so we shall keep things simple and
neglect issues related to fat tails or volatility clustering by assuming that all terms
in the right hand side can be well modelled by Gaussian vectors, uncorrelated in
time. The rationale behind Eq.(5.5) is to write a phenomenological equation to
describe the dynamics of the market. Hence the first thing one would write is a
process were the difference in the log-prices is given by some random (possibly
gaussian) process, and this is the term |β(t)〉, which is the vector of bare returns,
i.e. it describes the fundamental economic processes which drive the prices. This
is assumed to be a Gaussian random vector with

E[|β(t)〉] = |b〉, E[|β(t)〉〈β(t′)|] = |b〉〈b| + B̂δt,t′ (5.6)

|b〉 and B̂ will be considered as parameters in what follows.
With the other term we try to capture inter-asset correlations emerging from

portfolio investments. To do so, we will assume that the vector of log-prices is
affected by fluctuations in the direction |z(t)〉, which represents the direction se-
lected by portfolio investors. The vector gives the direction in the N dimensional
assets space, and the fluctuations are given by some random process. Here, ξ(t)
is an independent Gaussian variable with mean fixed ε and variance ∆. These
parameters describe fluctuations in the number and impact2 of portfolio investors.
The vector |z(t)〉, which describes the direction along which portfolio investment
affects the inter-asset correlations, has to be the optimal portfolio calculated with
standard portfolio optimization techniques. This is so, since this is the only di-
rection in space which is preferred with respect to portfolio investments. So, the
vector |z(t)〉 will be determined by a risk minimization procedure for fixed ex-
pected return R (expressed in money units, not in percentage, so that |z(t)〉 itself

2Fluctuations can be either in the number of investors or in the impact that the investments
have on the price. In fact, the variables ξ are the product of a population term and a liquidity term.
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has the meaning of money invested in each asset, not of percentage of one in-
vestor’s wealth). We also fix the total wealth 〈z|1〉 = W invested, and keep it
fixed (in the framework of the previous Chapter W was set to 1), so that |z〉 will
be the solution of

min
|z〉,ν

[
1

2
〈z|Ĉ(t)|z〉 − ν (〈z|r(t)〉 − R) − σ (〈z|1〉 − W )

]
(5.7)

where Ĉ(t) is the correlation matrix at time t. In principle one can consider sev-
eral component of portfolio investors, each with a different return Rk and with
different impact parameters εk, ∆k. This would lead to each investor having a
different vecor |zk〉. However, it can be shown that this problem is under general
assumptions equivalent to the one above, with effective parameters R̃ and ∆̃ that
can be exactly computed (see Appendix C for details).

Both the expected returns and the correlation matrix are computed from his-
torical data over a characteristic time τ :

|r(t + 1)〉 = µ|r(t)〉 + (1 − µ)|δx(t)〉 (5.8)

Ĉ1(t + 1) = µĈ1(t) + (1 − µ)|δx(t)〉〈δx(t)| (5.9)

Ĉ(t + 1) = Ĉ1(t + 1) − |r(t)〉〈r(t)| (5.10)

where |δx(t)〉 ≡ |x(t + 1)〉 − |x(t)〉 and µ = exp(−1/τ). This makes the set
of equations above a self-contained dynamical stochastic system. In a nutshell, it
describes a simple way in which the economic bare correlated fluctuations |β(t)〉
are dressed by the actions of different financial investors. Other more complex
choices for this interaction are possible, but Eq. (5.5) can be thought of as the
lowest order of a phenomenological equation, similar to Landau’s theory of criti-
cal phenomena [86]. Higher orders, e.g. |zt+1〉− |zt〉, will in principle be present,
but we assume that their effect is small. The system of equations above represent
an interestingly complex system, which, as we shall see, has a non-trivial behavior
worth being studied and it sheds some light on empirical findings.

With respect to the economics literature, we note that our model can be viewed
as a single-index model, given that the dynamics of each of the assetts is governed
by a stochastic variable (ξ(t)), to which an asset-dependent index is attached (zi).
However, our index is not given exogenously, but rather is endogenously deter-
mined from the history of the system itself. To be more precise in this important
issue, the index (or factor) that links the return on asset i to the market return
(which in some sense is to me mapped on ξ(t) in our model) is nothing but the
investment on asset i given by the optimal portfolio. Since this portfolio is deter-
mined by the return process itself, we see why we have a model where the indeces
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need not to be specified a priori, but can instead be determined from the model
itself.

An issue one could address is how the bare economic correlations described
by the matrix B̂ are dressed by trading activity to yield the matrix Ĉ of financial
correlations. Notice that returns |r(t)〉 and correlations Ĉ(t) are directly measur-
able, whereas their bare counterparts |b〉 and B̂ are not easily accessible. The
effect of financial activity will be mostly that of modifying correlations along a
single direction and will manifest in the largest eigenvalue of Ĉ. The structure of
B̂ along other directions will be weakly affected. We shall assume in most of the
following that B̂ = BÎ is proportional to the identity matrix. This does not affect
much our main conclusions but it will make our analysis much simpler.

In what follows, we shall first study analytically the limit τ → ∞ and then
confirm its predictions with numerical simulations.

5.3.1 The equilibrium solution

Taking the expected value of equation (5.5) we get

|r〉 = |b〉 + ε|z〉 (5.11)

while setting to zero the derivative of the argument of Eq. (5.7) we get, again at
equilibrium,

Ĉ|z〉 = ν|r〉 + σ|1〉. (5.12)

By combining the above equations we can derive for |z〉

|z〉 =
1

Ĉ − νε
|q〉 (5.13)

where |q〉 = ν|b〉 + σ|1〉. Since

Ĉ = E[|δx〉〈δx|] − E[|δx〉]E[〈δx|] =

= B̂ + ∆|z〉〈z| =

= B̂ + ∆
1

Ĉ − νε
|q〉〈q| 1

Ĉ − νε

and since B̂ = BÎ , the matrix Ĉ will have N − 1 eigenvalues equal to those of B̂,
and one eigenvalue, which we call Λ, parallel to the state |q〉 This equation, along
with the constraints 〈z|1〉 = W and 〈z|r〉 = R, must be solved to find Λ. Since
Λ = 〈q|Ĉ|q〉, we get the system of equations:

Λ2 = ΛB + ∆(νR + σW ) (5.14)

W = 〈z|1〉 (5.15)

R = 〈z|r〉 (5.16)
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Let us first describe what happens for ε = 0 and 〈b|1〉 = 0. Then, the solution
is

Λ = B + ∆

(
W 2

〈1|1〉 +
R2

〈b|b〉
)

(5.17)

We see an inverse dependence of the correlations on the market return (note that
since ε = 0 |r〉 = |b〉), which means that portfolio investment will contribute
significantly to the observed correlations mainly in stagnant phases.

In the general case when ε �= 0 and 〈b|1〉 �= 0, the algebra is a bit more
involved, and we get to a second order equation. The correct solution can be
choosen by looking at the R → 0, W → 0 limit, and it reads

Λ = B +
∆〈b|b〉

ε2

{
γ2

2
+

εR

〈b|b〉 −
〈b|1〉εW
N〈b|b〉 (5.18)

−γ

2

√
1 +

4εR

〈b|b〉 −
(〈b|1〉 − 2εW )2

N〈b|b〉

}

where γ =
√

1 − 〈b|1〉2/(N〈b|b〉). Notice that, 〈b|1〉/N is the average bare return
and, if total return R and portfolio investment W are both proportional to N , then
the contribution to Λ due to portfolio investment is also proportional to N . This is
indeed the order of Λ in empirical data.

In Fig.5.3 we plot Λ as a function of 〈b|b〉, the inverse dependence of the
maximum eigenvalue on the mean squared drift in numerical simulations follows
precisely the theoretical line, both when ε = 0 and when ε �= 0 (here we have set
〈b|1〉 = 0 in the simulations).

In figure 5.4 we plot Λ as a function of ε along with the analytic result.
It is worthwhile noting that the strength of the feedback-induced correlation

depends on the properties of the noise ξ in an interesting way. The inverse depen-
dence on the mean ε shows that these correlations decrease when the impact of
portfolio trading becomes stronger with respect to the fluctuations of the impact
∆. On the other side, when ∆ increases the correlations grow. This is not surpris-
ing, since by construction the term describing portfolio investment contributes to
the covariance matrix proportionally to ∆.

5.3.2 Transition to instability

Even more interesting is the fact that for W greater that a value W ∗ the system
has no solution, as evident also from Eq.(5.18). Correspondingly, for W → W ∗,
we see that ∂Λ

∂W
→ ∞. The critical value is given by
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Figure 5.3: Maximum eigenvalue of the correlation matrix as a function of 〈b|b〉
for N = 20 ∆ = 0.04, R = 1, τ = 20000. Line is the theoretical curve, Eq.(5.18).

W ∗ =
N

2ε

[√
〈b|b〉 + 4εR

N
+

〈b|1〉
N

]
. (5.19)

As W → W ∗ the solution of Eq. (5.18) develops a singularity with infinite slope
∂Λ
∂W

→ ∞. This is reminiscent of the divergence of susceptibility χ close to a
phase transition, signalling that the response δΛ = χδW to a small perturbation
δW diverges as W → W ∗. In Fig. 5.5 we plot the maximum eigenvalue as a
function of W along with the theoretical line from Eq.(5.18),

The importance of this result lies in the fact that we get two distinct phases.
The first one, which is the one we solved, corresponds to W < W ∗ and is a
phase were the system admits a stationary solution of the equations in the τ → ∞
limit. Here, when performing numerical simulations at finite τ , we will get a
convergence to the analytic solution as we increase τ . On the other hand, for
W > W ∗, no equilibrium solution exhists for large τ , fluctuations become larger
and larger. This behavior is evident from Fig.5.6, were we plot the normalized
standard deviation of the maximum eigenvalue versus W for increasing values of
τ .

To better understand what happens as W → W ∗, we can look at Fig. 5.7.
There we show the temporal evolution of Λ for different W . We see that as
W → W ∗ the dynamic becomes unstable. Many singularities emerge, where
correlations tend to become very large, due to the fact that no solution to our
equation for Λ can be found. In this view, one may think that we are studying a
type of market instabilities that manifest when the investment grows close to the
absorption threshold W ∗, and indeed it seems that the temporal evolution of Λ in
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Figure 5.4: Maximum eigenvalue of the correlation matrix as a function of ε for
N = 20 ∆ = 0.04, R = 1, τ = 20000. Line is the theoretical curve, Eq.(5.18).

our model close to criticality closely resembles that of real markets, as emerges
clearly from Fig. 5.8, where we plot Λ for the Toronto stock Exchange companies
(a) and for a simulation of the model close to the critical point (b).

The idea that an internal mechanism like the one we are studying can be re-
sponsible for the observed fluctuation properties of the covariance matrix is en-
forced by the results shown in Fig.5.9, where we show that the broad cumulative
distribution of the daily differences in Λ can be reproduced by the model close to
the critical point.

To test this hypothesis we will develop in Section 5.4 a technique to fit real
data with our model, and derive thus the values of the parameters W and W ∗ for
real markets. Before moving on, let us discuss the issue of temporal fluctuations
at finite τ .

5.3.3 Fluctuations

Given the solution in the τ → ∞ limit, the natural question arises of how that
solution is affected by fluctuations at finite τ .

To study this interesting issue, we will analyze a simpler version of the model
of Sec. 5.32. In particular, we relax the assumption on the wealth. Setting σ = 0
is equivalent to allowing for infinite wealth, that is, to saying that investments are
based on fixing the return one wants, and then investing the wealth needed. The
algebra becomes simpler, and here there is no critical parameter. The equilibrium
solution reads

Λ = B +
∆R2

〈r|r〉 . (5.20)
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Figure 5.5: Maximum eigenvalue of the correlation matrix as a function of W for
N = 20. ∆ = 1, R = 1,τ = 20000, ε = 0.1.

Let us define β = 1/τ and write

|r(t)〉 = |r0〉 + β|r1(t)〉 (5.21)

Ĉ(t) = Ĉ0 + βĈ1(t) (5.22)

where |r0〉 and Ĉ0 are the equilibrium solutions. We are interested in finding the
fluctuations with a perturbative expansion around these solutions. We thus have
for small β

|z(t)〉 =
R

〈r(t)|Ĉ(t)−1|r(t)〉Ĉ
−1(t)|r(t)〉 (5.23)

from which we get

|z(t)〉 = A
|r0〉 + β|r1(t)〉
Ĉ0 + βĈ1(t)

(5.24)

with

A =
R[

〈r0|Ĉ−1
0 |r0〉 + β(2〈r1(t)|Ĉ−1

0 |r0〉 − 〈r0|Ĉ−2
0 Ĉ1(t)|r0〉)

]−1 (5.25)

up to order β2. Setting 〈r0|Ĉ−1
0 |r0〉 = L0 we get after some algebra

|z(t)〉 = |z0〉 + β|z1(t)〉 (5.26)

with

|z0〉 =
R

L0

Ĉ−1
0 |r0〉

|z1(t)〉 =
RĈ−1

0

L0

[
|r1(t)〉 − Ĉ−1

0 Ĉ1(t)|r0〉 +
2〈r1(t)|Ĉ−1

0 |r0〉 − 〈r0|Ĉ−2
0 Ĉ1(t)|r0〉

L0

|r0〉
]
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Figure 5.6: Relative fluctuation of the maximum eigenvalue as a function of W in
a simulation of the model with N = 20, ε = 0.1, R = 1, ∆ = 1,B = 10−2,τ =
1000 (+), τ = 20000 (×) and τ = 50000 (�). Vertical line is the theoretical
critical value of W .

Now, since we can always write Ĉ(t) = B̂ + ∆|z(t)〉〈z(t)|, we get up to first
order

Ĉ(t) = Ĉ0 + βĈ1(t) = B̂ + ∆(|z0〉〈z1(t)| + |z1(t)〉〈z0|). (5.27)

Assuming that the eigenvectors of Ĉ are not changed to first order in β we
can project Eq.(5.27) along |z0〉 and compute the maximum eigenvalue Λ of the
correlation matrix. After some algebra we find

Λ(t) ≈ 〈z0|Ĉ(t)|z0〉
〈z0|z0〉 = Λ0 + βλ1(t) (5.28)

where

Λ1(t) =
〈z0|Ĉ1(t)|z0〉

z̄
= (5.29)

=
∆3R2〈r1(t)|r0〉

1 + 2R2

Λ0〈r0|r0〉

1

〈r0|r0〉 (5.30)

We note here that the term 〈r1(t)|r0〉 is the first term in the fluctuations σr of
〈r(t)|r(t)〉. Hence if we are interested in the fluctuations σ2

Λ = 〈Λ2
1〉 at high Λ, that

is, when the model predicts a collective motion of the assets induced by portfolio
investments we find a relation with σr. In particular we can write Λ ≈ 〈r|r〉−1

and, since z̄ = R2/ 〈r|r〉,
σ2

Λ

σ2
r

∝ Λ4 (5.31)
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Figure 5.7: Maximum eigenvalue of the covariance matrix as a function of time
for τ = 50 N = 20, R = 10−2, B = 10−6,∆ = 0.04,ε = 10−1, and, from
bottom to top (curves are shifted for clarity), W = 1.2, W = 1.32, W = 1.42
and W = 1.48. Components of |b〉 where generated uniformly in the interval
[0, 2 · 10−3], resulting in W ∗ ≈ 1.41.

This result is confirmed by numerical simulations of the model. In Fig. 5.10
we plot the quantity σ2

Λ/σ2
〈r|r〉 as a function of Λ for increasing values of the time

constant τ = 500, 1000 and 5000. The line is the curve Λ4, and we see an increas-
ing accuracy of this approximation as we increase τ , i. e. decrease β.

5.4 Fitting the dataset

Here we will try to fit real data with our model. The idea, as stated in the previous
Section, comes from the similar anomalous behavior of the temporal evolution of
correlations in simulations and in real markets, as in Fig. 5.8. Moreover, the wide
distribution of day-to-day differences in Λ can also be reproduced by the model.

Let us rewrite The model as

|δx(t)〉 = |b〉 + |η(t)〉 + [1 + ζ(t)]|y(t)〉 (5.32)

where |δx(t)〉 is the vector of daily returns, |η〉 is a zero average gaussian vector
with i.i.d. components of variance B, ζ(t) is gaussian i.i.d. with zero average and
variance D = ∆/ε2 and |y(t)〉 is the portfolio with 〈y(t)|r(t)〉 = ρ = εR and
〈y(t)|1〉 = ω = εW . Notice that |y(t)〉 depends on ρ and ω and it is computed
from the past data set’s correlation matrix and returns. We compute the likelihood
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Figure 5.8: Maximum eigenvalue of the correlation matrix as a function of time
for τ = 50. a) Toronto Stock exchange [80]. Here the correlation matrix is
obtained using Eq. (5.9) with |δxt〉 taken from historical data. b) simulation
of Eq.(5.5) with N = 20, R = 10−2, B = 10−6,∆ = 0.04,ε = 10−1,W = 1.4.
Components of |b〉 where generated uniformly in the interval [0, 2·10−3], resulting
in W ∗ ≈ 1.41.

P{|δx〉||b〉, |y〉} = 〈
∏
i,t

δ (bi + ηi(t) + [1 + ζ(t)]yi(t) − δxi(t))〉η,ζ (5.33)

The gaussian integrals are easily carried out, and we get

L ≡ log P{|δx〉||b〉, |y〉} = −NT

2
log(2πB) +

1

2B

∑
t

F (t) (5.34)

with

F (t) =

{ 〈g(t)|y(t)〉2
1/µ + 〈y(t)|y(t)〉 − 〈g(t)|g(t)〉 − B log(1 + µ〈y(t)|y(t)〉)

}
(5.35)

where we defined |g(t)〉 = |b〉 + |y(t)〉 − |δx(t)〉 and µ ≡ D/B = ∆/(Bε2).
Setting to zero the partial derivative of L wrt bi, we find

|b〉 =
1

T

∑
t

[−1 + µ(〈b|y〉 − 〈δx|y〉)
1 + µ〈y(t)|y(t)〉 |y(t)〉 + |δx(t)〉

]
(5.36)

Substituting this back in L leaves us with a function of the parameters B, µ, ρ, ω
which has to be maximized. The ratio µ = B/D satisfies the equation
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Figure 5.9: Cumulative distribution of the day-to day change in the maximum
eigenvalue for different indices: DAX (+), TSX(�), DOW(�), ASX(×). Also
shown is the same distribution for a numerical simulation of the model with N =
20, ε = 0.1, R = 1, W = 14.7, ∆ = 1,B = 10−2,τ = 100.

µ =

∑
t
〈g|y〉2−B〈y|y〉
(1+µ〈y|y〉)2∑

t
B〈y|y〉2

(1+µ〈y|y〉)2
(5.37)

Notice that the solution3 |y〉 of portfolio optimization problem can be written
explicitly in terms of ρ and ω as

|y〉 = ρ|ρ〉 + ω|ω〉 (5.38)

where

|ρ〉 = Ĉ−1χ11|r〉 − χr1|1〉
χrrχ11 − χ2

r1

, |ω〉 = Ĉ−1−χr1|r〉 + χrr|1〉
χrrχ11 − χ2

r1

(5.39)

where χab ≡ 〈a|Ĉ−1|b〉. The two vectors |ρ(t)〉 and |ω(t)〉 can explicitly be com-
puted directly from the data-set. This means in practice that it is enough, for each
t to solve two equations of the type Ĉ(t)|x〉 = |a(t)〉 for all values of ρ and ω. The
likelihood can be expressed explicitly in terms of ρ and ω and the partial deriva-
tives ∂L/∂ρ and ∂L/∂ω can be computed. In order to do this, it is convenient to
write |g〉 = |h〉+ |y〉, so that L depends on ρ and ω only through the combinations

3The index t is suppressed, when not needed.
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Figure 5.10: Fluctuations in Λ relative to the fluctuations in 〈r|r〉 are plotted
against Λ for N = 20, ∆ = 4, R = 20, ε = 0.001. The time constant is τ = 500
(+), τ = 1000 (×) and τ = 5000 (∗).

〈h|y〉 and 〈y|y〉 so that, e.g.

∂L
∂ρ

=
∑

t

∂L
∂〈h|y〉〈h|ρ〉 + 2

∑
t

∂L
∂〈y|y〉〈y|ρ〉 (5.40)

where we used that ∂〈h|y〉/∂ρ = 〈h|ρ〉 and ∂〈y|y〉/∂ρ = 2〈y|ρ〉. Defining

Ha(ρ, ω) =
∑

t

∂L
∂〈h|y〉〈h|a〉, Lab(ρ, ω) =

∑
t

∂L
∂〈y|y〉〈a|b〉, a, b = ρ, ω

we have

ρ =
1

2

HωLρω − HρLωω

LρρLωω − L2
ρω

, ω =
1

2

HρLρω − HωLρρ

LρρLωω − L2
ρω

Note that the indices ρ, ω are labels in H and L. Both coefficients depend on ρ
and ω. Hence the left hand side depends on ρ and ω.

Setting to zero the partial derivative of L with respect to B yields a simple
linear equation for B itself:

B = − 2π

NT

∑
t

(
µ〈g|y〉2

1 + µ〈y|y〉 − 〈g|g〉
)

(5.41)

Now to avoid part of the difficulty of fitting a model with so many parameters,
we can rewrite Eq.(5.36) into a simpler form, given that the equation is linear in
|b〉. We thus get

|b〉 = (Î − Â)−1|a〉 (5.42)
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with
Aij = µT−1

∑
t

yiyj

1 + µ〈y|y〉
and

|a〉 =
1

T

∑
t

(−1 − µ〈x|y〉
1 + µ〈y|y〉 |y〉 + |x〉

)
.

To do the fit we now proceed as follows. We first calculate, as starting values,
|b〉 as the average drift of the assets in the period considered. Similarly, B is
taken to be the mean variance. Next we perform a maximization procedure on the
function L, for example using a simplex algorithm. This is not too difficult, since
we are taking fixed |b〉 and B, while the parameters (i.e. the dimensionality of the
space) are just three: µ, ω, ρ. After the simplex has converged, we recalculate |b〉
and B from equations (5.42) and (5.41), respectively. Now we perform again the
simplex to get new values for µ, ω, ρ, and so on until convergence. Actually, a
smoothing parameter α is introduced, so that at each iteration the parameters are
taken to be α times their new value plus (1 − α) times their old value.

Since the procedure is quite complex, we performed some tests. We generate
an artificial time series according to our model, with known values of the parame-
ters, and then we try to fit this data. In Fig. 5.11 we plot the result of such a fit. On
the horizontal axis are the 100-days periods. To each point corresponds one such
period, that is, 100 data points, that are fitted to give the parameters. The results
shown are for ω, ρ and ωc, and they are quite close to the real values. In this case
both the time scale used to generate the data (τ ) and the one used to calculate the
exponentially weighted correlation matrix (τ ′) were the same, τ = τ ′ = 100, but
tests with different time scales have also been performed. The stability is quite
good as long as τ ′ ≈ τ (that is, the two time scales do not differ by an order of
magnitude), as expected since for example when τ ′ << τ the correlation matrix
does not contain all the information used by the investors to calculate the portfolio.

Another test is to use again artificial time series with different values of ω, and
run the fitting algorithm on this series, without varying the initial conditions, that
is, the starting point of the simplex. In Fig.5.12 we plot the results of such a test.
On the horizontal axis is the real value of ω that was used to generate the data (ωr),
while on the vertical axis we plot the fitted value, ωf . Each point corresponds to a
500 days period, over which the fit was performed.

In Figure 5.13 we plot the same quantities, but obtained with a slightly mod-
ified version of the algorithm. This was devised in order to test the robustness
of our fitting procedure. Having at our disposal two methods can be helpful in
understanding how stable the results that we find are, and this is important for the
application to real data that we will perform in the next Section. The modified
algorithm goes as follows. We use the simplex method only for the 2 variables ω
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Figure 5.11: Each point is a 100-days period. The data were generated with ω =
0.05, ρ = 0.001, ωc = 0.14, τ = 100, ε = 0.1, ∆ = 0.04.

and ρ. For µ we use instead the same iterative procedure used for B and |b〉 using
Eq.(5.37). Note that in all the cases the iterative procedure involves some smooth-
ing. In this case, results on artificial data are quite robust, but there is a sistematic
error, the cause of which we were still not able to identify. This error can be calcu-
lated by fitting these artificial sequences, and it turns out that ωf/ωr = 1.18±0.01.
The plot (5.13) is drawn after correcting ωf for this factor.

5.5 Real Markets

The first thing to do if we want to fit real data with our model is to test the two
methods discussed in the previous section. Here, having at our disposal two meth-
ods, even if clearly correlated, helps us to check the sensitivity and the errors that
we do. Hence we try to fit dayly data for stocks composing the DAX index in the
german stock exchange, for the period 1998-2005. We use τ = 100, while the
period over which we fit is a 300 days long window. The choice of the time scale
is such that we are at an intermediate level between the month and the year (250
trading days), which is a reasonable time scale for many investment decisions. In
Fig. 5.14 we plot the results for two quantities: B and ω, while on the horizontal
axis we have the 300 days periods. Results are given for both methods, and the
agreement is accepptable.

Next we proceed to fit real datasets for four world indexes: the DAX, the Dow
Jones, the Toronto Stock exchange and the australia stock exchange. We use again
τ = 100 and 300 days windows. In Fig. 5.15 we plot the results, that show how
these indexes are quite close to the critical line ω = ωc. For each index, each
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Figure 5.12: Each point is a 500-days period. The data were generated with ω =
0.03 (+), ω = 0.05 (×), ω = 0.07 (�), ω = 0.09 (�). ρ = 0.001, ωc = 0.14,
τ = 100, ε = 0.1, ∆ = 0.04. The starting point for the simplex was the same for
all the realizations, even at different ω.

point represents one time window, the fit is done with method 1, which seems a
bit more stable and does not require a posteriori corrections.

The picture that emerges once again, from the analysis of this section, is that
of financial markets, in particular world market indexes, that lie very close to the
transition point from a stable to an unstable phase.

5.6 Conclusions

In summary, we have studied a simple model of multi-asset market which takes
into account the feedback of risk minimization strategies on the dynamics of as-
sets prices. The model is very stylized and misses many important aspects, but
relies on the idea that, when modeling complex systems to look for the collec-
tive properties, statistical regularities emerge, that are not closely linked to the
microscopic details. Rather than insisting on the validity of the approximations
on a theoretical ground, we have compared the main findings of the model with
empirical data from real financial markets. Since our interest was in the correla-
tions among assets, we looked at the time dependence of these correlations. We
found that the model reproduces realistic time series of correlations along with the
statistics of the maximum eigenvalue of the correlation matrix. We then analyzed
the equilibrium solution of the model, and found the existence of two phases, a
stable and an unstable one. The critical point for the transition between the two
is dictated by a parameter that measures the scale of the impact of the feedback.
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Figure 5.13: Result of the fit, performed with the second version of the algorithm,
of artificial time series. Each point is a 500-days period. The data were generated
with ω = 0.03 (+), ω = 0.05 (×), ω = 0.07 (�), ω = 0.09 (�). ρ = 0.001,
ωc = 0.14, τ = 100, ε = 0.1, ∆ = 0.04. The starting point for the simplex was
the same for all the realizations, even at different ω.

Moreover, the analysis of real markets within our framework predicts that real
markets are close to this phase transition.

This does not mean that external influences on the market do not play any
role. Indeed, the scatter of points in Fig. 5.15 for the same market implies a time
dependence of the parameters that the model cannot explain. Furthermore, it is
undeniable that global events have an effect on financial markets (similar patterns
in the dynamics of Λt for different markets can indeed be found). Our point is that
there is a sizeable contribution to the collective behaviour of the market which
arises from its internal dynamics and which is a potential cause of instability.

Furthermore, the finding that real markets “self-organize” close to a critical
point where correlations become unstable lends itself to a simple interpretation.
As long as the impact of risk minimization strategies is small, market correlations
are stable. This means that these strategies are reliable and efficient, which attracts
even more investment on these strategies (i.e. W increases). However, as W in-
creases, the market approaches the instability line, where correlations respond to
further investment, thus making risk minimization strategies less efficient. This
suggests that W should self-organize close to the critical value W ∗. Such a sce-
nario is reminiscent of the picture which Minority Games [18] provide of single
asset markets as systems close to a critical point. There speculators are attracted
by an information rich, predictable market which gets less and less predictable
because of the very impact of their trading. This pushes the (Minority Game’s)
market close to the critical point where it becomes information-efficient. It is in-
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Figure 5.14: Results of the fit on Dax companies. The starting values of the
simplex are ω = 10−2 and ρ = 10−3 with simplex amplitudes (see text) δω = 10−2

and δρ = 10−4. Smoothing parameter is α = 0.1

deed exactly there that Minority Game models exhibit statistical properties very
similar to those of real financial markets [87].

Our findings provide a further example of a case where, when the scale of hu-
man activity reaches a critical point, the collective properties of the system change
dramatically. In all these cases, the assumption that the individual intervention has
no impact on the aggregate – the so-called price taking behavior in markets – fails
because the system reaches a point of infinite susceptibility. These problems nat-
urally arise where agents rely on the exploitation of a public good [88]. Their
appearance in financial markets – the prototype examples of perfect competition
– is somewhat paradoxical.
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Appendix A

Appendix to Chapter 1

In this Appendix we give the details of the calculation of the free energy for the
model of interacting voters of Chapter 2.

The partition function can be written as

Z(β) = Tr{v̂i}e
−βH (A.1)

where the trace Tr{v̂i} over spins runs on all v̂i ∈ R when voting behavior is
rational, or over all v̂i otherwise. Thus we have

Z(β) = Tr{v̂i}e
−β(1−ε)

P
i ∆̂iv̂i+

βε
2N

P
ij v̂iv̂j (A.2)

and linearizing the last term yields

Z(β) = Tr{v̂i}e
−β(1−ε)

P
i ∆̂iv̂i+

βε
2N

(
P

i v̂i)
2

(A.3)

=

∫
dŷTr{v̂i}exp

[
−β(1 − ε)

∑
i

∆̂iv̂i +

√
βε

N

∑
i

v̂iŷ − 1

2
y2

]
(A.4)

=

∫
dŷe−

1
2
y2

e
P

i logTr expfi (A.5)

where

fi =

√
βε

N
v̂iŷ + β(1 − ε)∆̂iv̂i (A.6)

and we have used the relation

eλa2

=
1

(2π)1/2

∫ ∞

−∞
dxexp(

1

2
x2 + ax

√
2λ). (A.7)

Now setting ŷ =
√

βεNm̂ we find

Z(β) =

∫
dm̂e−Nβf(m̂) (A.8)
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with the free energy f(m̂) given by

f(m̂) =
ε

2
m̂2 − 1

Nβ

N∑
i=1

log

[∑
v̂

eβ[(1−ε)∆̂i+εm̂]·v̂
]

(A.9)



Appendix B

The single-index model

Here we will briefly review the single-index model, with a particular emphasis
on how it is used towards portfolio optimization. This is an example where the
mechanism of diversification and portfolio investment is made very clear by the
structure of the equations. Of course in real markets the situation is not so simple,
there are many types of correlations among stocks, but the general idea is the
same.

Recall the single-index equation:

xi = ai + βiRm (B.1)

where ai and Rm are random variables. Let us recast this in the form

xi = αi + ei + βiRm (B.2)

with αi = E[ai], ei is a random variable such that

E[ei] = 0 (B.3)

E[(ei)
2] = σ2

ei. (B.4)

We also have by definition that E[(Rm − R̄m)2] = σ2
m and by assumption the ei

are uncorrelated with each other and with the market return. Simple algebra yields
the following:

R̄i = E[xi] = αi + βiR̄m (B.5)

σ2
i = E[(xi − R̄i)

2] = β2
i σ

2
m + σ2

ei (B.6)

σij = E[(xi − R̄i)(xj − R̄j)] = βiβjσ
2
m, (B.7)

which highlights how the correlations between assets emerge only through the
common link to the market return.
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The expected return on a portfolio of assets is

R̄p =
N∑

i=1

ziR̄i. (B.8)

The variance of the portfolio is given by

σ2
p =
∑

i

z2
i σ

2
i +
∑
i	=j

zizjσij (B.9)

which gives, after substituting for σ2
i and σij ,

σ2
p =
∑
ij

zizjβiβjσ
2
m +
∑

i

z2
i σ

2
ei. (B.10)

If we now define
βp =

∑
i

ziβi, (B.11)

we get
σ2

p = β2
pσ

2
m +
∑

i

z2
i σ

2
ei. (B.12)

Now suppose we invest equal amounts of money into each of the N stocks,
that is, zi = 1/N∀i. Then the variance of the portfolio can be written as

σ2
p = β2

pσ
2
m +

1

N

(
1

N
σ2

ei

)
(B.13)

The last term decreases very rapidly as we increase the number of stocks held
in the portfolio, while the risk that is not eliminated is the one associated to the
term βp. Thus the single index-model allows to divide the risk of each security
into a diversifiable component (or unsystematic risk) and a nondiversifiable one,
the systematic risk.



Appendix C

Many investors

Here we will show how the question of many portfolio investors, each with its
own parameters Wk and Rk can be remapped, under suitable assumptions, to the
general case discussed so far. The first step is to generalize Eq.(5.5) and Eq.(5.13),
thus we write:

|δx〉 = |β〉 +
∑

k

ξk(t)|zk〉. (C.1)

Here, each |zk〉 is defined by the solution of Eq.(5.7), and it is the portfolio for in-
vestor (type) k characterized by parameters Rk, εk and ∆k, with obvious meaning.
For simplicity, we have set Wk = 1∀k.

The difficulty is due to the fact that we cannot write an equation for Ĉ with
a single preferred direction, since the direction of each |zk〉 will depend on the
lagrange multipliers νk and σk associated with each investor. Taking the expected
value of |δx〉 is not a problem, since we can write

E[
∑

k

εk|zk〉] = εT [ν̃Ĉ−1|r〉 + σ̃Ĉ−1|1〉]

with εt =
∑

k εk, ν̃ =
∑

k εkνk/εT and σν =
∑

k εkσk/εT , so that the average
return is still affected by portfolio investment along a single direction, determined
by the weighted average of the vectors |zk〉.

The quadratic relationship becomes instead

E[|δx〉〈δx|] = B̂ +
∑

k

∆k|zk〉〈zk|,

which does not allow to state that the correlation matrix Ĉ will have all eigen-
vectors corresponding to those of B, except one. In fact, each term |zk〉〈zk| has
components along two directions, namely along Ĉ−1|r〉 and along Ĉ−1|1〉, as is
clear from Eq.(5.12), since we have

|zk〉 = νkĈ
−1|r〉 + σkĈ

−1|1〉. (C.2)
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The coefficients are determined as usual from the minimization of risk under con-
straints, and they are1

νk =
χ11Rk − χ1r

χ11χrr − χ2
1r

(C.3)

σk =
χrr − Rkχ1r

χ11χrr − χ2
1r

. (C.4)

In the plane defined by the two directions Ĉ−1|r〉 and Ĉ−1|1〉, let us define θr the
angle between them. Geometrical considerations show that the direction of each
vector |zk〉 forms with the vector Ĉ−1|1〉 an angle

θk = Arccot[Cot(θr) +
Ak

Sin(θr)
]

with

Ak =
σk

νk

=
〈r|Ĉ−1|r〉 − Rk〈r|Ĉ−1|1〉
Rk〈1|Ĉ−1|1〉 − 〈r|Ĉ−1|r〉 .

This means that the direction is determined solely by Ak. The derivative
dA/dR reads

∂Ak

∂Rk

=
χ1r − χ11χrr

(χ11Rk − χ1r)2
(C.5)

and it tends to zero as R grows above a value R∗, and this is fundamental since
if dA/dR goes to zero, differences in Rk will not correspond to different Ak,
and hence investors will have different |zk〉, but all parallel. The single direction
argument works in this case, and the analysis carried out in Section 5.32, assuming
a single eigenvector deviating from those of the matrix B̂, is correct. To get an
idea of the value R∗ we can look at what happens in the completely random case,
that is when we assume that |δx〉 are uncorrelated random variables. Here the
matrix elements of Ĉ−1 can be calculated. If |r〉 has elements of order sr then

R∗ =
sr√
N

We thus see that our monodimensional analysis will be more and more valid as the
system size (number of assets N ) grows. This is a quite attractive feature since,
as we have seen in Appendix B, it is in the investors’ interest to have N large, so
as to diversify away any nonsystematic risk.

As a test of these calculations, we performed numerical simulations with 4
different values of Rk (that is, 4 portfolios). We expect that the theoretical line of

1We use the notation χab = 〈a|Ĉ−1|b〉
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equation (5.18) holds, since we are using (without loss of generality) the same ε
and ∆ for the 4 components. In a first simulation, to simplify the analysis, we use
different investors bu fix the random variable ξ, that is we write:

|δx〉 = |β〉 + ξ(t)
∑

k

|zk〉.

In this case the analysis is very simple, there is no need to introduce the angles θk

and, after simple algebra, we get the effective parameter

R̃ =
∑

k

Rk (C.6)

Curves obtained from Eq.(5.18) with the effective parameter R̃ in place of R
perfectly fits the data, Fig C.1
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Figure C.1: Maximum eigenvalue of the correlation matrix as a function of ε
for N = 20, with 4 different portfolio investment components. The different
components are generated by setting Rk = 0.1 + ρ with ρ uniformly drawn in
the interval [0, 0.1]. ∆ = 0.04 (lower curve) and ∆ = 0.09 (upper curve), R̃ =
0.648141, τ = 1000, W = 10. Note that here each Rk is of order 0.1, while we
have sr ∼ 10−2 and hence R∗ ∼ 10−3. That is, Rk >> R∗.

If instead we write

|δx〉 = |β〉 +
∑

k

ξk(t)|zk〉. (C.7)

we have to set

R̃ =

√∑
k

R2
k

∆k

∆̃
(C.8)
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∆̃ =
∑

k

∆k (C.9)

ε̃ =
∑

k

εk (C.10)

and again the theory fits numerical simulations, Fig. C.2.
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Figure C.2: Maximum eigenvalue of the correlation matrix as a function of ε̃ for
N = 20, with 4 different portfolio investment components simulated according to
Eq.(C.7). ∆ = 0.04, R̃ = 0.648141, τ = 1000, W = 1. Note that here each Rk is
of order 0.1, while we have sr ∼ 10−2 and hence R∗ ∼ 10−3. That is, Rk >> R∗.
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