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Chapter 1

Introduction

The paradigm that quasars (QSO) and, more generally, Active Galactic Nuclei

(AGN) are powered by mass accretion onto a super-massive black hole (SMBH) proposed

long ago (Salpeter 1964; Zeldovich & Novikov 1969; Lynden–Bell 1969) has got very strong

support from spectroscopic and photometric studies of the stellar and gas dynamics in

the very central regions of local spheroidal galaxies and prominent bulges. These studies

established that in most, if not all, galaxies observed with high enough sensitivity a central

massive dark object (MDO) is present with a well defined relationship between the MDO

mass and the mass or the velocity dispersion σ of the host galaxy spheroidal component

(Kormendy & Richstone 1995; Magorrian et al. 1998; Gebhardt et al. 2000; Ferrarese &

Merritt 2000; Tremaine et al. 2002; Kormendy 2003). A very strong relationship is also

present between the MDO and the photometric and dynamical structure of the spheroid

host (e.g. Graham et al. 2002, Erwin et al. 2004). Although there is no direct evidence

that all MDO are black holes (BH), the evidence for a singularity is actually very tight in

the Galaxy (Schödel et al. 2002; Ghez et al. 2003) and alternative explanations are severely

constrained in NGC 4258 (Miyoshi et al. 1995; see also e.g. Kormendy 2003). There are

also empirical evidences (Ferrarese 2002) that SMBH mass, M•, is also linked with the host

Dark Matter (DM) halo mass Mvir.

How and why SMBH have become so closely linked with their host galaxies and

with the whole surrounding DM halo? What role do SMBH play in defining the Hubble

1



2 Chapter 1: Introduction

sequence of galaxies? To understand these points we need to insert them in a wider per-

spective which must include the problem of galaxy evolution and the general processes of

structure formation in the Universe.

According to the standard cosmological frame of structure evolution, DM halos

have built hierarchically, from smaller to bigger units. Galaxies, in this scenario, have prob-

ably formed out of the hierarchical build-up of their host DM halos. However hierarchical

models tend to predict substantially fewer massive galaxies at high redshift than are ob-

served (Blain et al. 2002; Scott et al. 2002; Daddi et al. 2003; Tecza et al. 2004; Somerville

et al. 2004). Moreover can merging form and preserve the tight correlations between SMBH

and their host spheroidal galaxies? On the other hand, the traditional monolithic models,

whereby galaxies formed their stars on a timescale shorter than their free-fall time and

evolved passively thereafter (Eggen, Lynden-Bell & Sandage 1962), do not fit into a coher-

ent scenario for structure formation from primordial density perturbations, and also tend

to over-predict high-redshift galaxies.

In this situation it is essential to look for guidance from observational data. It

has long been known that stellar populations in elliptical galaxies are old and essentially

coeval (Sandage & Visvanathan 1978; Bernardi et al 1998; Trager et al. 2000; Terlevich &

Forbes 2002). A color-magnitude relation is also well established: brighter spheroids are

redder (Bower et al. 1992). The widely accepted interpretation is that brighter objects

are richer in metals and the spread of their star formation epochs is small enough to avoid

smearing of their colors. The slope of this relation does not change with redshift (Ellis et

al. 1997; Kodama et al. 1998) supporting this interpretation. The star formation history

of spheroidal galaxies is mirrored in the Fundamental Plane (Djorgovski & Davies 1987;

Dressler et al. 1987) and in its evolution with redshift. Elliptical galaxies adhere to this

plane with a surprisingly low orthogonal scatter (∼ 15%), as expected for a homogeneous

family of galaxies. Recent studies (e.g. Treu et al. 2002; van der Wel et al. 2004; Holden

et al. 2004, 2005) suggest that ellipticals, both in the field and in clusters, follow this

fundamental relation up to z ∼ 1, consistent with the hypothesis that massive spheroids

are old and quiescent.

Direct evidence that massive galaxies with M ≥ 1011M� were in place at z ≥ 2,
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is provided by recent K-band surveys (Cimatti et al. 2002; Kashikawa et al. 2003; Fontana

et al. 2005). The space density of Extremely Red Objects (ERO) at z ≥ 3 is only a factor

∼ 5–10 less than at z ∼ 1 (Tecza et al. 2004). The submillimeter surveys with SCUBA

and MAMBO (e.g. Blain et al. 2002) on the other hand indicate the presence of numerous

protogalaxies (with comoving lenght not more than a few kpc scale, see e.g. Greve et

al. 2005) with very high star formation rates (∼ 103M�yr−1) at z > 2, most probably

already harboring at their center an active central SMBH which is growing parallel to the

surrounding spheroid (Alexander et al. 2005).

All these data are at variance with the simple recipe of hierarchical merging and

point to a strong co-evolution between the SMBH and the surrounding spheroid, i.e. the old

stellar component in the galaxy. In fact while the evolution of DM halos is controlled only

by gravity, and therefore the underlying physics is simple (even if the evolutionary behavior,

especially of subhalos, is complex), processes involving baryons are intricate and may hold

the key to reconcile theory with observations. The central problem is to understand when

the bulk of stars has formed in a galaxy. Large objects may be formed very early by

interaction and merging of a hierarchy of primeval gaseous ”clumps” in a protogalaxy (this

is practically equivalent to a monolithic scenario). On the other hand there is no doubt

that DM halos do merge and evidence for interacting galaxies is present, especially at low

redshift. However it has to be understood how, and to what extent, the passively evolving

galaxies and the disks are, if at all, modified by such processes.

Also the cosmic density of baryons Ωb = 0.044 ± 0.004 has been very precisely

determined both through the Cosmic Background Radiation anisotropy and measurements

of the primordial abundance of light elements (Cyburt et al. 2001; Olive 2002; Spergel et

al. 2003). An important complementary information is that the density of baryons residing

in virialized structures and associated to detectable emissions falls short respect to Ωb. In

fact, traced-by-light baryons in stars and in cold gaseous disks in galaxies and in hot gas

in clusters amount to a ΩG
b ≈ (3 − 4) × 10−3 ≤ 0.1Ωb (Persic & Salucci 1992, Fugukita et

al. 1998, Fukugita & Peebles 2004). On the other hand, in rich galaxy clusters the ratio

between the mass of the DM component and the mass of the baryon component, mainly in

hot intergalactic gas, practically matches the “universal” ratio ΩM/Ωb.
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The circumstance that Ωb is a factor of about 10 larger than Ωb,lum puts forth both

an observational and a theoretical problem. On one side observations are needed to detect

and locate these “missing” baryons (see for a review Stocke, Penton & Shull 2003). On the

theoretical side galaxy formation models have to cope with the small amount of baryons

presently in gas and stars inside galaxies.

In this thesis we propose solutions to the these basic problems in galaxy evolution,

through both theoretical modeling and deep exploration of several pieces of available data.

We used the model presented by Granato et al. (2004). The Granato et al. model is rather

simple, and physically grounded, based on a set of a few coupled differential equations (see

Appendix A). The set of free parameters (see Table A.1 in Appendix A) is rather small

compared with the number of physical outputs which it aims to fit.

Basically this model follows the build up with time of the global statistics of viri-

alized DM halos which can host a single galaxy. Then trough semi-analytical techniques

(SAM), in each of these DM ”galactic” halos, the model computes the evolution of the

baryon components, divided into hot and cold phases. Stars are formed within the dynami-

cal/cooling times of the host system. Radiation drag, proportional to the actual rate of star

formation, feeds a reservoir of low-angular momentum gas which ultimately falls into a cen-

tral seed SMBH. The kinetic energy injected by Supernovae (SN) is increasingly effective,

with decreasing halo mass, in slowing down (and eventually halting) both the star formation

and the gas accretion on to the central SMBH. On the contrary, star formation, and BH

growth proceed very effectively in the more massive halos, giving rise to the bright SCUBA

phase (during which the protogalaxy is obscured by dust) until the energy injected by the

AGN in the surrounding interstellar gas unbinds it, thus halting both the star formation

and the BH growth and establishing the observed relationships between the BH mass and

the stellar velocity dispersion or halo mass. After the AGN shining, the system appears as

a luminous optically detectable AGN (QSO phase) and then evolves almost passively (ERO

phase). In the whole this model predicts that any spheroid builds up at high redshifts and

in a relatively short time, in general ∼ 0.5 ÷ 1 Gyr. Such a feature naturally produces

numerous, massive galaxies already at very high redshifts.

In particular in this thesis we will characterize the physical links among SMBH,
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host galaxy and DM halo. We will show that the stellar and AGN feedbacks played a

relevant role in unbinding large amounts of gas and eventually removing them from the

galaxy host DM halo (see, e.g., Dekel & Silk 1986; Silk & Rees 1998; Granato et al. 2001,

2004; Hopkins et al. 2005; Lapi et al. 2005) solving the missing baryon problem and setting

the correlations observed today in all spheroidal systems. Moreover we will demonstrate

that the central SMBH and the surrounding spheroid, i.e. the old stellar population in the

galaxy, have been built within a short time since the virialization of the host DM halo and

therefore galaxies will ”keep memory” of the initial conditions in their energy, mass and

structure.

In more detail the scheme of the thesis is the following (the expert reader can skip

Chapters 2 and 3, which are mainly reviews).

• In Chapter 2 we will sum the most relevant empirical and theoretical aspects regarding

the local SMBH population and we will also discuss the main observational results on

AGN evolution, statistics and global properties.

• In Chapter 3 we will introduce the main aspects of DM evolution from the primordial

inhomogeneities to the properties of virialized DM halos. In particular we will address

the fundamental problem of the actual number of DM halos viriliazed at any epoch,

and which is the fate of the smaller halos (the sub-halos) when they fall in more

massive structures. In the second part of Chapter 3 we will present the details of the

physical model by Granato et al. (2004).

• In Chapter 4 we will use local data to compute the SMBH mass distribution, a funda-

mental tool to understand how these objects have formed. We will test the predictions

of the Granato et al. SAM modeling on this observational result.

• In Chapter 5 we will study the match between AGN statistics and SMBH local mass

function, to probe the main average properties of accretion. From such a comparison

we will define the actual role of merging in building local SMBH. Finally we also

compute the AGN visibility timescales, their dependence on SMBH mass and on the

survey wavelength.
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• In Chapter 6 we will use Granato et al. SAM modeling to reproduce the AGN lumi-

nosity functions at all redshifts. We will then compare the predicted activity AGN

timescales and SMBH accretion history with the empirical results of the previous

Chapter. We will discuss the relationship between high redshift galaxies and AGN

statistics. We will then check that our high redshift AGN modeling is able to pro-

duce a good fit to the high-redshift galaxies in the K and submillimeter bands as in

Granato et al. (2004). Finally we will show that the very low-redshift AGN evolu-

tion can be reproduced assuming a self-regulated, supply-limited, accretion onto the

already massive SMBH, which are re-activated at very low Eddington regimes.

• In Chapter 7 we will reproduce the dispersion velocity function and the fundamental

plane of early-type galaxies, deriving basic properties on the very early stages of

the protogalaxy evolution and the effective processes which have dominated galaxy

evolution, at least at redshifts above z = 1.5.

• In Chapter 8 by comparing the local number density distribution of galaxy lumi-

nosity, stellar mass, velocity dispersion and black hole mass with the Mass Function

of ”galactic” DM halos, we will derive the relationships between these characteristic

galaxy properties and the galaxy halo mass. From such relationships we will derive

conclusions on the type and efficiency of the main physical processes which govern

galaxy evolution and compare these empirical evidences with the model predictions

presented in the previous Chapters.

In this thesis we use the following set of cosmological parameters,

h = 0.70 ± 0.04 Mpc−1

ΩM = 0.27 ± 0.04

ΩΛ = 0.73 ± 0.05

t0 = 13.7 ± 0.2 Gyr

σ8 = 0.84 ± 0.04

emerging from a number of observations (the Concordance Cosmology, see Spergel et al.

2003).



Chapter 2

SUPERMASSIVE BLACK

HOLES: An Overview

2.1 Supermassive Black Holes in the Local Universe

2.1.1 Looking for Supermassive Black Holes

All spheroids, elliptical galaxies and disk galaxy bulges, appear to host a SMBH

at their center. In any given galaxy at a distance D and with stellar velocity dispersion

σ, a SMBH detection can be roughly quantified in terms of rG, the radius of the sphere

of influence over which the SMBH dominates the gravitational potential of its host galaxy

(Barth 2004)

rG =
GM•

σ2
= 0.11

(

M•

108 M�

)(

200 km s−1

σ

)2(
20 Mpc

D

)

arcsec (2.1)

where the second equality holds for a telescope measurement projected onto the sky. There-

fore a direct SMBH detection, carried out through the analysis of the motion of gravitating

bodies embedded in the strong SMBH gravitational field, can be obtained only in nearby

galaxies (see Ferrarese & Ford 2004 for a recent review on these topics).

In particular in inactive local galaxies the presence of SMBH in the central region is

tested through dispersion velocities of stars, water masers and gas. The mass of the central

object is calculated from the collisionless Boltzmann and Poisson equations once the surface

7
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stellar density and galaxy dispersion velocity profiles are measured. The most exciting

example is the detection of a SMBH at the center of the Galaxy, which also represents one

of the most tightest constraints on the existence of a SMBH. Monitoring has been carried

on for about 10 years on 40 stars orbiting around the center of the Galaxy. A few of them

have passed the pericenter and Ghez et al. (2003) have measured, from a simultaneous fit

to the stars orbit, a central mass of (4.0 ± 0.3) × 106 M�.

In active galaxies a first attempt to the SMBH mass determination is performed

from a direct spectral fitting of the ’Big Blue Bump’ (see Section 2.2.3), the optical/UV/soft

X-ray continuum thermal emission from an optically thick, geometrically thin accretion disk.

More secure mass determinations are performed with the Reverberation Mapping technique.

The masses are obtained from the virial theorem M• = f RBLRσ
2/G, where f accounts for

the geometry and kinematics of the system and RBLR is the Broad Line Region (BLR;

see section 2.2.3) radius. Such a radius is measured from the delayed response of the BLR

emission line flux to variation in the continuum ionizing source flux, caused by the time spent

by light traveling from the inner source to the photoionized clouds positioned on a sphere of

radius from 10 to 100 times the size of the inner accretion disk. The reverberation mapping

technique can probe a radius of about 1000 times the Schwarzschild radius, sampling a

region far more inner than the orbits of the nearest stars. The implied measured mass

densities, of the order of 1010M� pc−3, thus provide a stronger proof to the existence of a

very massive collapsed object at the center.

Various authors (Vestergaard 2002; Kaspi et al. 2000) have noted a quite tight cor-

relation between the BLR radius, measured through reverberation mapping, and luminosity

of the type:

RBLR = (30.2 ± 5.6)

[

λLλ(5100Å)

1044 erg s−1

]0.66±0.09

lt days . (2.2)

Such a correlation, extrapolated to all types of AGN, is used for measuring SMBH

masses from the virial theorem. In particular (Vestergaard 2002), using the CIV λ1549

emission, has calibrated a relation similar to the one in Eq. (2.2), for AGN in the redshift

range 1 < z < 5, where the redshifted UV data are accessible from the ground.



Chapter 2: SUPERMASSIVE BLACK HOLES: An Overview 9

2.1.2 The correlations between SMBH and their host spheroidal galaxies

Kormendy & Richstone (1995) were the first to notice that SMBH masses correlate

with the blue luminosity of the surrounding hot stellar component, i.e. bulges for spiral

galaxies and the whole galaxy for ellipticals. In particular the authors demonstrated that

the scatter of the correlation significantly increases when the SMBH is plotted against the

whole mass of spirals (bulge plus disk), clearly indicating that the SMBH mass is tightly

linked only with the mass of the spheroid.

Ferrarese & Merritt (2000) confirmed such a correlation on a wider sample, claim-

ing a scatter of about 0.6 dex. McLure & Dunlop (2001) then noticed that however the

scatter is reduced if only ellipticals are considered. McLure & Dunlop (2002) moreover found

that both local inactive and active galaxies, Seyferts and QSO, follow the same M•−Lbulge

relation over more than 3 decades in SMBH mass and more than 2.5 decades in bulge lu-

minosity. This strongly supports the conclusion that the host galaxies of powerful QSO are

normal massive ellipticals. Contrary to previous claims (Wandel 1999), the authors noticed

no systematic offset between the Seyfert 1 and quasar samples, showing that the bulges of

Seyfert galaxies and QSO form a continuous sequence, from MR ∼ −18 to MR ∼ −24.5.

McLure & Dunlop (2002) found that the scatter around the best-fitting relation M•−Lbulge

for the whole sample is only ∆ logM• = 0.39 dex, reducing to 0.33 dex if only inactive galax-

ies are considered. The authors claim that such a reduced scatter, as compared to previous

findings, is due to the two-dimensional modeling of the high resolution HST data and to

the more accurate, inclination-corrected, SMBH mass estimates provided by their flattened

BLR geometrical model (McLure & Dunlop 2002).

It is now clear, from the above studies and ad-hoc near-infrared and high-resolution

observations at redshifts below 1, that the hosts of all luminous QSO (MV < −23.5; see

Dunlop 2004 for a review) are bright galaxies with L > L? (being L? the knee of the

local galaxy luminosity function, see also Chapter 3, Section 3.4.1). Either Radio-Loud

and Radio-Quiet QSO hosts are undoubtedly massive ellipticals (as their light profiles can

be very well fitted with a de Vaucouleurs, r1/4, profile, see Chapter 3, Section 3.4.1) with

negligible disk components. It is clear that a given AGN above a certain luminosity, which
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Figure 2.1: Left panel: the relation between SMBH mass and blue luminosity of the galaxy
spheroidal component. Right panel: the relation between the SMBH mass and central
velocity dispersion of the host galaxy. Filled symbols show ellipticals galaxies, while open
symbols show spirals and lenticulars (Figure taken from Ferrarese & Ford 2004).

corresponds to a mass > 108M•, can only be hosted by an elliptical independently of its

radio-loudness. In the whole AGN hosts seem to be spheroidal galaxies very similar to their

inactive companions.

The AGN hosts moreover seem to be dominated (Dunlop 2004) by old, well-evolved

stellar populations (with typically about 1% of mass involved in recent star formation

activity). In less luminous AGN the probability of finding a significant disk component in

the host galaxy gets stronger (see Fig. 1.3 in Dunlop 2004). Moreover also the fraction of

molecular gas, the fuel for star formation, is much higher for lower luminosity AGN.

Kukula et al. (2001) have found, through HST infrared imaging, that the QSO

host galaxies at z ∼ 2, independently of their radio-loudness, have the same structural

and photometric properties of local ellipticals and the formation epochs of these sources is

consistent with z > 3, allowing for passive evolution after that time. The authors argue for

a moderate increase in the fuelling efficiency of massive black holes since those redshifts.

Moreover Woo et al. (2004) show that the 15 AGN in their sample lie on the

same fundamental plane as non-active galaxies and their Mstar/L evolution shows a similar
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trend to that observed in normal early-type galaxies, consistent with single-burst passive

evolution models with formation redshifts z ≥ 1.

A very tight correlation has been observed (Ferrarese & Merritt 2000; Gebhardt

et al. 2000; Tremaine et al. 2002) between SMBH mass and the dispersion velocity of

the host spheroidal galaxy M• ∝ σβ . Its scatter is very small about ∆ logM• ∼ 0.3 at

fixed σ. The conclusions of the previous groups are similar even if Gebhardt et al. use a

luminosity-weighted line-of-sight dispersion velocity inside the radius Re, while Ferrarese &

Merritt used central velocity dispersions normalized to an aperture of radius equal to 1/8

of the galaxy effective radius Re. All the group find a similar normalization in the relation

and slopes β ∼ 4 ÷ 4.8.

Marconi & Hunt (2003) point out that the scatter in the above relations gets

reduced when the sphere of influence of the SMBH is well resolved and when the galactic

luminosity is a good tracer of the old stellar population. Interestingly they also claim an

even stronger relation (∆ logM• ∼ 0.25) between the SMBH mass and the virial bulge mass

of the host galaxy Reσ
2.

On the same track Graham et al. (2001) found a remarkably tight correlation

between SMBH mass and concentration of bulge light, defined as the ratio of fluxes F (R <

1/3Re)/F (R < Re). This seems to be a direct consequence of the fact that in ellipticals the

brightness profile correlates with galaxy luminosity. Larger and more luminous galaxies have

shallower brightness profiles and host more massive BH. Graham (2002) found moreover

that the Sersic index n, determined from the r1/n fits to the bulge light profiles, correlates

extremely well with the dispersion velocity/SMBH mass. Erwin et al. (2004), through

accurate modeling, found that the structure of disk galaxy bulges, as measured by the

Sersic index (or by central concentration), is closely related to the central SMBH mass with

a scatter comparable to the one found for the SMBH dispersion velocity relation.

Taken together all these empirical evidences point to a global link between the

SMBH and the mass, potential and structure of the spheroidal host. We will use these

relations, in particular between SMBH mass and its spheroid luminosity/dispersion velocity,

to calibrate the SMBH mass local distribution. A more critical analysis of such correlations

will then be given in Chapter 4.
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In a more general view the SMBH mass is tightly linked with both dynamical

and photometric properties of the host galaxies. In fact observationally early type galaxies

exhibit a well-defined correlation among their effective radii Re, luminosities L (or equiva-

lently surface brightness T ∝ L/R2
e) and central velocity dispersion σ (i.e. the central SMBH

mass). This Fundamental Plane (FP) (e.g. Djorgovski & Davis 1987) is often expressed as

Re ∝ σaIb (2.3)

with a ∼ 1.49±0.05 and b = −0.75±0.01 as calibrated from 9000 early type galaxies by the

SDSS team (Bernardi et al. 2003) and a very small scatter. Projections of the fundamental

plane have also been measured independently but such relations present a much larger

scatter. In particular it has been found that the radius-luminosity relation is of the type

Re ∝ L0.630±0.025 and the Faber-Jackson (1976) relation reads as σ ∝ L0.250±0.012.

The FP has typically been interpreted as a manifestation of the virial theorem,

which relates σ and Re to the total enclosed (dynamical) mass Mdyn and predicts a corre-

lation in the fundamental properties of galaxies:

σ2 ∝ Mdyn

Re
=

(

Mdyn

L

)(

L

R2
e

)

Re ∝
(

Mdyn

L

)

IRe (2.4)

giving the relation

Re ∝ σ2I−1

(

Mdyn

L

)−1

. (2.5)

Clearly this virial theorem expectation is incompatible with the observed funda-

mental plane in Eq. (7.8) if light traces the dynamical mass. A systematic variation of

Mdyn/L is assumed to ”tilt” the virial theorem scalings into the observed ones (see Boylan-

Kolchin et al. 2005). Since
Mdyn

L
=

(

Mdyn

Mstar

)(

Mstar

L

)

(2.6)

this tilt could result from increasing Mstar/L with L due to, for instance, varying the

metallicity or stellar population age, or from increasing Mdyn/Mstar with L due to higher

dark matter fraction in the central parts of more luminous galaxies.

In literature there are conflicting conclusions on this point. Padmanabhan et al.

(2004) claim that modeling ellipticals as a stellar Hernquist profile embedded in an adia-

batically compressed dark matter halo (see also Chapter 3) the fundamental plane tilt can
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be explained with a constant Mstar/L and an increasing Mdyn/L with luminosity. Opposite

conclusions are reached instead by Gerhard et al. (2001). We will discuss this issue in

Chapter 7.

Moreover the FP of ellipticals is now been observed up to redshift z ∼ 1 (see Treu

2004 for a review). Data are showing that the FP already at that time has a small scatter,

at least for the most massive objects. The FP slope and normalization at z ∼ 1 indicate

moderate differences with respect to the local FP, consistent with passive evolution of the

early type-galaxies since that time. Numerical simulations have tried to address the problem

of building a fundamental plane at high redshift within the framework of hierarchical models

and different authors reach conflicting results (see Boylan-Kolchin et al. 2005): however

they agree that mergers of subunits constituted by bulge baryonic systems within dark

matter halos usually reproduce a FP with a tilt larger than observed (Dantas et al. 2003)

and the FP projections are difficult to preserve (Nipoti et al. 2003).

2.2 The Supermassive Black Hole Paradigm: the AGN phe-

nomenon

AGN are all those extragalactic sources not powered by starlight but most probably

powered by a compact central engine made of a SMBH. Such sources in fact produce very

high luminosities (up to 1048 erg/s, which is 104 times the luminosity of a typical galaxy)

in a tiny volume. The spatial information is derived from the observed source variability

which ranges from a few hours to few light days. Therefore if the radiation, emitted from a

region of size R that is moving with speed v, varies at a timescale ∆t, then we must have

R ≤ c∆t/γ. If γ ∼ 1 and ∆t ∼ 1 h then R ≤ 1014 cm, less than the Solar System.

The only process through which it is possible to generate so high powers in such

tiny volumes is accretion onto a compact object in which one can easily convert rest-mass

energy into radiation with an efficiency of a few percent (just for comparison the nuclear

stellar efficiencies are of about 0.008). In fact given a body of mass m that falls from

infinity to a distance of, say, 5Rg, where Rg = 2GM/c2 is the Schwarzschild radius (see

Section 2.2.3), from a compact object of mass M , it could radiate an energy equal to up
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the potential energy U = GMm/5Rg = 0.1mc2. Accretion onto compact objects, in which

M/R is large, is therefore accompanied by the release of large amounts of energy.

2.2.1 The Eddington Limit

The photons released by an accreting object exert a force on the accreting gas:

the outward momentum of the photons is thereby transferred to the gas. If F = L/4πr2

is the radiative energy flux at a distance r, and k the opacity of the gas (scattering plus

absorption), the acceleration due to this force is grad = Fk/c. This force is just balanced

by the inward acceleration of gravity g = GM/r2 when the luminosity L has a value called

the Eddington limit or Eddington luminosity

LE =
4πGMc

k
=
Mc2

tE
' 1.4 · 1038

(

M

M�

)

erg s−1 . (2.7)

being tE = kc/4πG = 4 · 108 yr (expressing the opacity in terms of the Thomson optical

depth) the Eddington timescale. A steady photon source bound by gravity, cannot have a

luminosity significantly exceeding this limit. At a larger luminosity, the atmosphere of the

source is blown off by radiation. The value of the Eddington luminosity depends on the

opacity of the gas, and thereby on its state of ionization. It depends on the mass of the

source but not its size.

If this luminosity is generated by accretion, equating it to the accretion energy

defines the Eddington accretion rate

ṀE =
4πcR

k
=
LE

c2
' 1.5 · 1017

(

M

M�

)

g s−1 . (2.8)

If sufficiently strong the radiation pressure building up would prevent further accretion, and

the gas would accumulate in an extended atmosphere around the central object. Eq. (2.8)

provides at any time during the accretion a proportional link between the accretion rate

and central mass which will go exponentially (see Chapter 5).

In the specific case of a black hole (BH) the accretion rate can be much higher than

ṀE . An atmosphere surrounding a hole is not supported at its base, but flows in through

the horizon. In the process it takes with it the photons trapped in the gas (photon trapping).

Depending on the density of such an atmosphere, the accretion rate can be arbitrarily high.

The luminosity as seen from Earth does not become much higher than LE however.



Chapter 2: SUPERMASSIVE BLACK HOLES: An Overview 15

Very recently Abramowicz (2004) has shown that the Eddington limit for rotating

bodies has to be written as Frad < Feff = Fgrav + Frot, in which the radiation pressure is

balanced by the sum of the gravitational plus rotational force. Such a condition can be

expressed as

Lrot
E = LE[χ2

mass + χ2
shear − χ2

vorticity] . (2.9)

For rigidly rotating, radiation supported stars the shear is very small and the

condition Lrot
E < LE is always fulfilled. For radiation supported accretion disks the shear is

always dominant so L ∼ Lrot
E > LE.

This simple argument suggests that probably the Eddington limit could be easily

overcome if the central object is accreting in non-spherical geometry and/or rotating, a

condition which data seem to support, as shown by the Soltan argument and extensively

discussed in this thesis.

The highest redshift QSO observed is SDSS J1148+5251 at z=6.42 (e.g. Walter

et al. 2004) could be a direct evidence of a SMBH accreting at a rate higher than the

Eddington limit. It is a very luminous QSO that, if emitting at the Eddington limit, would

have a SMBH mass of ∼ 109M�. Thermal emission from warm dust has been detected

at millimeter wavelengths, implying a far-infrared luminosity of 1.3 · 1013L� corresponding

to about 10% of the bolometric luminosity of the system. If the heating of the dust is

dominated by young stars, then the implied star formation rate is ∼ 3000M� yr−1. High-

resolution Hubble Space Telescope (HST) imaging does not reveal multiple imaging of the

central AGN, implying strong magnification unlikely. Using the Very Large Array (VLA)

Walter et al. (2004) from CO emission data have measured a total extrapolated mass for

the bounded molecular gas of about ∼ 5.5 · 1010M�.

The ratio M•/Mstar,∼ 1.8 · 10−2, is much larger than what observed in local

galaxies. The authors therefore claim a possibility that in this object there could be no

parallel growth between the central SMBH and the stellar system around it, i.e. the SMBH

has already grown to its final value while the spheroid is still building up. However it

has to be noted that the local proportion between SMBH and spheroid mass could be

easily recovered if it is assumed that the SMBH emits at a level slightly higher than the

Eddington limit (say a factor 3÷ 4 above). In this case the central SMBH would have a
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Figure 2.2: Left panel: Eddington ratio as a function of redshift. The gray symbols are
broad-line quasars (FHWM ≥ 2000 km/s) and the black symbols are narrow-line objects
(FHWM < 2000 km/s); the mean values of Lbol/LEdd within ∆z=0.1 are shown as filled
circles. The solid horizontal line marks the Eddington limit. Right panel: same as left one
but only broad-line objects have been plotted. (Figure taken from McLure & Dunlop 2004).

mass of ∼ (1÷3)×108M�. Indeed in Chapter 6 we will show that super-Eddington emission

is one of the most suitable mechanisms for building enough luminous QSO by z ∼ 6.

Mathur & Grube (2005) investigated the accretion of local Seyfert galaxies show-

ing that these objects are accreting at super-Eddington regimes. It is still yet not clear the

amount of parallel star formation which occurs in these galaxies, especially in the central

bulges, however these systems seem to rely below the mean M• − σ relation, suggesting

that the central SMBH are in the main growth phase. Interestingly as an extreme limit

Kawaguchi et al. (2004) (see also Section 2.2.2) discussed that when the accretion is occur-

ring at a rate much larger than the Eddington limit, the accretion is occurring not through

a thin (see below) but a ”slim” disk, with a cooling time larger than the viscous time, so

that the energy is advected towards the SMBH before being radiated. The luminosity can

then saturate, and never be larger than a few times LE.

SMBH masses

M•(t) =
1

ηc2

∫ t

dt′L(t′) (2.10)

keep the archives of the luminous history of AGN sources down to the cosmic time
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Figure 2.3: Distribution of Lbol/LEdd with redshift binned in M•. (Figure taken from
Vestergaard 2004).

t. Eq. (2.10) relates the cumulative variable M• to the quantity L which signals current

source activity. Here η = ε/(1 − ε), being ε the radiative efficiency, represents the actual

fraction of the rest mass energy accreted onto the SMBH (see Chapter 4).

The integral nature of Eq. (2.10) allows different activity patterns (as discussed by

e.g. Cavaliere & Padovani 1988). For example, the AGN population could be comprised of a

number of sources continuously active over several Gyrs, but such a trend would accumulate

many large massesM•(t) in excess of 1010M�, at variance with observations in local galaxies

(e.g. Tremaine et al. 2002; a similar bound is also found for QSOs shining at higher z see

McLure & Dunlop 2004, Vestergaard 2004).

At the other extreme, Eq. (2.10) holds as well during a single accretion event of

a mass ∆m over the time scale τ , much less than the Hubble time, to yield a flash of

bolometric luminosity L ' ηc2∆m/τ . Here each SMBH mass is accreted in one go over

a constant τ , so M• = ∆m applies and the ratios L/LEdd ∝ L/M• ∼ εc2 / τ are closely

constant. We will show in Chapter 5 that, through the single-flash approximation, we will
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be able to reproduce the local SMBH mass distribution integrating in time the overall AGN

statistics. In Chapter 6 we will discuss that only 20-30% of the total relic mass density

today can be accounted for through re-activations of already formed SMBH.

As observed up to redshift z ∼ 4 (see McLure & Dunlop 2004, Vestergaard 2004),

the Eddington ratio seems on average to decline significantly only at very low redshift

(z < 1). At higher redshifts the Eddington ratio is almost constant (see Fig. 2.2 and Fig. 2.3)

though with a large scatter, due also to large empirical uncertainties, up to factors of 3-4,

in the SMBH mass estimates (Vestergaard 2004). Moreover, as discussed in Section 2.2.5,

the break of the AGN luminosity functions, in every band, declines strongly with redshift

pointing towards an average decline in luminosity density. If this is the case, over the cosmic

time t, new SMBH ought to form continuously, but with, on average, progressively lower

masses so as to track the population decline to lower luminosities while retaining nearly

constant (or slightly declining) Eddington ratios L/M•. For this to occur, the trend in the

hierarchical formation of structures toward ever-growing masses would have to be somehow

reversed in a closely tuned way for the active SMBH. Therefore even the tight correlations

between SMBH and host galaxies, such as the M• − σ relation, would evolve markedly,

being progressively extended toward smaller M for decreasing z, still with a narrow scatter.

2.2.2 The Basics of Accretion

The simplest situation for accumulating mass at the center is stationary spherical

accretion (Bondi & Hoyle 1944) controlled by the continuity and Euler equations

Ṁ = 4πr2v (2.11)

v
dv

dr
= −1

ρ

dp

dr
− GM

r2
.

In this stage the accretion onto the central object reads as

ṀBondi =
α4πG2M2

•mHn

c3s
(2.12)

where α is a dimensionless parameter of order unity and cs is the sound speed of the gas.

Recently Volonteri & Rees (2005) have shown that the Bondi rate in the initial

stages is higher than the Eddington limit and it could have played a crucial role in feeding
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the first seeds of the SMBH population (see Section 2.3). Comparing the accretion rates

they find
ṀBondi

ṀEdd

= 40M•,3n3T
−3/2
gas,8000 (2.13)

where the density is in units of 104 cm−3 and the SMBH is normalized to a 103M� BH.

It is clear that Bondi accretion was probably dominant during accretion in the first high

σ-peaks of the density fluctuations in which Th > 104 K.

Usually the accretion, as discussed above, will be limited by the central source

radiation pressure to be at the level of the Eddington accretion. In this case Bondi/spherical

accretion is not the most suitable physical type of accretion for a SMBH. The Bondi recipe

has however been implemented in some numerical simulation (e.g. Di Matteo et al. 2005),

which have confirmed results of previous Semi Analytical Models (SAM; e.g. Granato et al.

2001, 2004 and the work in this thesis): after a fast growth the SMBH at the galactic center

can energetically or dynamically back-react on the Interstellar Medium (ISM) ultimately

halting star formation. Granato et al. (2004) in particular (and further analyzed in this

thesis) have pointed out that the standard recipe of an Eddington or at most slightly

super-Eddington regime, applicable in the case of disk accretion, can still play the role

of the fast spherical accretion, letting the SMBH grow substantially within just the host

cooling/dynamical time (see Chapter 3), therefore building massive objects at even very

high redshifts (z = 6).

Mass will generally be accreted from the outer skirts of the host galaxy and the

infalling gas will be endowed with substantial angular momentum. In this case accretion

onto the central SMBH will proceed through a disk. Following Shakura & Sunyaev (1973)

we’ll describe the basic process of accretion through a disk. We suppose the simplest

geometry of a thin optically thick disk, with the vertical thickness H being much smaller

than the radius R. This could imply the accretion luminosity L not to be always equal to

LEdd as Eq. (2.7) has been derived assuming spherical symmetry.

Vertical support in general requires according to hydrostatic equilibrium

GM

R2

H

R
=

1

ρ

∣

∣

∣

∣

δP

δz

∣

∣

∣

∣

' Pc

ρcH
, (2.14)

where Pc and ρc are the central density and pressure. Using v = (GM/R)1/2 it is possible
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to write Eq. (2.14) in the form

c2s ' Pc

ρc
' v2H

2

R2
. (2.15)

For the disk to be thin it is necessary to have H << R, requiring c2s << v2. In the same

limit the radial acceleration due to pressure is given by

1

ρ

δP

δR
' Pc

ρcR
' c2s
R

' GM

R2

H2

R2
, (2.16)

which is much smaller than the gravitational acceleration when H << R. These arguments

simply show that the fluid in a thin disk moves in a Keplerian orbit to a high degree of

precision.

In this situation the radial velocity vR will be much smaller than the azimutal

velocity v. The amount of mass crossing any radius R per unit time is −2πRΣvR with

Σ(R) = 2

∫ H

0
ρ(R, z)dz (2.17)

the surface density of the disk. Being Ω(R) = (GM/R3)1/2 the Keplerian angular rota-

tion velocity, the specific angular momentum varies as R2Ω ∝ R1/2, which decreases with

decreasing R. Therefore accretion through successive Keplerian orbits towards the central

mass is possible only if the fluid can constantly loose angular momentum because of some

viscous torque.

If we set F = νΣ(RΩ/dR) the viscous force per unit length, with ν some unspec-

ified coefficient, the viscous torque will be

S(R) = (2πRF )R = νΣ2πR3

(

dΩ

dR

)

. (2.18)

The direction of the fluid is such that the fluid at a radius less than R (which

is rotating more rapidly) feels a backward torque and looses angular momentum whereas

the fluid at radius larger than R gains the angular momentum. Therefore the net angular

momentum loss due to the torque acting at R and R+ dR is, once integrated,

νΣ =
Ṁ

3π

[

1 −
(

R∗

R

)]

, (2.19)

where R∗ is the inner radius at which the shear vanishes (for a black hole usually R∗ is

given by the radius of the innermost marginally stable orbit; see below).
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The viscous dissipation rate per unit area is given by

D(R) = νΣ

(

R
dΩ

dR

)2

=
3GṀM

4πR3

[

1 −
(

R∗

R

)1/2
]

. (2.20)

It is interesting to note that in Eq. (2.20) the rate of radiative energy loss is 3 times the

rate of release of binding energy (GMṀ/R). This extra energy release is the work done by

the torque S, and it derives from the binding energy release at small radii.

The corresponding total luminosity is

L =

∫ ∞

R∗

D(R)2πRdR =
GMṀ

2R∗

. (2.21)

Note that L is the total gravitational potential energy lost in the drop from infinite distance

to R∗. The other half of the potential energy is actually present in the form of kinetic energy

of the fluid at R∗ and is not available for dissipation as heat.

A thin disk in steady state radiates energy through its top and bottom surfaces.

Assuming that the spectrum is a blackbody with surface temperature Ts(R) then we must

have 2σT 4
s (R) = D(R) (with the factor of 2 arising from the existence of two surfaces)

implying that

Ts =

(

3GṀM

8πR3σ

[

1 −
(

R∗

R

)1/2
])1/4

. (2.22)

The results in Eq. (2.21) and Eq. (2.22) are independent of the coefficient of

viscosity and can be expressed entirely in terms of Ṁ . However the entire mechanism

depends on viscosity. It is worth noticing that the standard fluid viscosity due to molecular

scattering, νmol = λmfpcs, with λmfp the mean free path and cs the local sound speed, is

inadequate in this context. Infact the Reynold’s number

Re ≈ (Rv/νmol) ' 2 · 109(M/M�)1/2(R/1010 cm)1/2(nT−5/2) , (2.23)

is very large for typical values in accretion disks (n ≈ 1015 cm−3, T ≈ 104K), showing that

molecular viscosity is irrelevant.

Turbulent viscosity could instead be effective with Re ≥ 103. The viscosity in this

case is written as ν ≈ vturblturb, where vturb is the velocity associated with turbulent eddies
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and lturb is the size of the largest coherent turbulent cell. For a thin accretion disk one can

then write, assuming vturb << cs and lturb << H

νturb ' αcsH . (2.24)

However accretion which occurs through the simple form of a thin accretion disk

could develop in a complicated way due to instabilities usually determined by large-scale

magnetic flows or high-degree turbulence. The most general criterion for a thin accretion

disk to be stable is to have d ln Ṁ/d ln Σ > 0. Analytical and numerical studies (Abramowicz

& Marsi 1987) have however shown that the Ṁ(Σ) curve has a S-shape. Therefore if the

accretion rate lies in the instability strip (where the slope of the curve is negative), then

stationary accretion is impossible and the system will always ”jump” in short periods of

time to very different accretion rates.

The physical scenario described above of a thin disk has some limitations. Abramow-

icz et al. 1980 have calculated that in some accretion regimes the Keplerian motion may

break down and for a wide class of non-Keplerian angular momentum distributions the ac-

creting material can form a toroidal structure, in some cases resembling a sphere with two

deep and narrow funnels along the rotation axis. Indeed observations are more and more

suggesting that a gas toroidal structure around the central SMBH could be a very common

topology for the AGN population (see Sections 2.2.4 and 2.2.5) .

Following Blandford (2004) we can therefore set ṁ = Ṁ/ṀEdd, and distinguish

among three main rates of accretion onto a SMBH.

1. Low Mass Supply. When ṁ < ṁ1, with ṁ1 ∼ 0.3, the radiative efficiency is very low:

being the accretion rate so small the viscous torque are not so effective in heating the

electrons and the energy is transported away from the disk by large-scale magnetic

fields or is absorbed by the ions, coupled to the electrons by Coulomb scattering. For

example in the Galaxy, with about ṁ1 ∼ 0.003 and, as mentioned before, a rather

small central SMBH about M• ∼ 3 · 106M�, has a bolometric luminosity of ∼ 1036

erg/s, which translates into an efficiency of about 10−6. Therefore in such a regime it

is possible to ignore cooling and the accretion is adiabatic with the pressure dominated

by ions (the specific heat ratio is γ=5/3).
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In this adiabatic regime (i.e. no radiative energy losses) the mass and angular momen-

tum conservation equations are unchanged. The energy is advected/convected inward

(ADAF, CDAF; see e.g. Narayan & Yi 1994). However the gas is no longer cold and

the total energy (kinetic plus gravitational) of the system E must be augmented by the

thermal energy. Therefore the net energy flow outwards will include also information

on the thermodynamic state of the system, i.e. FE = SΩ − ṀE → SΩ − ṀB, being

B the Bernoulli function B = L/2R2 + Φ +H, with L the angular momentum, Φ the

gravitational energy and H the enthalpy. In adiabatic conditions, FE ∼ 0, therefore

B > 0 implying that the gas has enough energy to escape to infinity with positive

kinetic energy. This is been pointed out as a mechanism for producing jets and/or

outflows in some classes of AGN (see Narayan & Yi 1994). Instead in the Adiabatic

Inflow-Outflow Solutions (ADIOS; Blandford & Begelman 2004) it is proposed that

the flow is non-conservative. The energy is still removed in some form of outflow

which could be a magneto-hydrodynamic wind with very little mass content.

2. Intermediate mass supply. When ṁ1 < ṁ < ṁ2, with ṁ2 ∼ 30, a radiative accretion

disk is supposed to form and the physical state is the one described above for a thin

Keplerian disk.

3. High mass supply. When ṁ2 < ṁ, the mass supply is so high that, although there

is no difficulty in emitting radiation, the photons are trapped in the gas as it flows

inward onto the black hole and cannot escape. Broad absorption-line quasars, and

perhaps most radio-quiet quasars are example of this kind of accretion. The flow is

mostly adiabatic with γ=4/3 as the gas is radiation dominated.

In the most general case accretion is linked to the geometrical properties of the

infalling gas by the equation (Rees 1984)

H

R
'
(

kTgas

mpc2

)(

1 +
Prad

Pgas

)(

R

Rg

)

. (2.25)

As shown in Eq. (2.25) disks become geometrically thick either because radiation pressure

becomes competitive with gravity (this is regime 3 above; this is known as ”radiative tori”)
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or because the material is unable to radiate the energy dissipated by viscous friction, which

then remains as internal energy (regime 1; called ”ion-supported tori”).

The shape of a torus depends only on its surface distribution of angular momentum.

If the angular velocity is a function of angular momentum, Ω(L), then the binding energy U

is given by dU/U = ΩdL/(c2 − LΩ2). Therefore where L is minimum, U tends to zero and

the tori ”puffs up”. A self-crossing equipotential surface exists in this case, the Roche lobe,

which has the shape of a cusp. The location of such cusp R = Rin follows from the condition

that the Keplerian angular momentum at Rin (given by the gravity of the hole) equals the

angular momentum of the rotating matter there. The nonzero thickness of the disk in the

cusp implies Roche-lobe overflow and, as in the case of close binaries, dynamical mass loss.

The gas lost through the cusp goes towards the central body with roughly free-fall velocity.

The cusp can be considered as the inner edge of the disk. The accretion rate through the

cusp and the energy loss rate scale as

Ṁin ∼ ΣinHin

Lin ∼ ΣinH
3
in. (2.26)

For Ṁ > ṀEdd the cusp goes very very close to the marginally bound orbit. The energy

per particle released by the process is the binding energy of the circular orbit located at

the cusp. In the extreme case Ṁ >> ṀEdd the cusp will get closer and closer to the

SMBH even over-passing the innermost stable orbit. In such conditions the efficiency of

the process tends to zero. It can be shown in particular that the radiated luminosity L

grows only logarithmically with the accretion rate for Ṁ >> ṀEdd and one can therefore

conclude that systems with Ṁ >> ṀEdd have low efficiency compared to standard disks

and L ≥ LEdd.

The thick-disk photosphere emits relatively soft thermal radiation with a spectrum

close to a blackbody, characterized by temperatures not very different from the correspond-
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ing ones for thin disks. Deep in the funnel one has

Tmax ∼ 107

(

Ṁ

ṀEdd

)

(

M•

M�

)−1/4

K

hνmax ∼
(

Ṁ

ṀEdd

)1/4
(

M•

M�

)−1/4

keV . (2.27)

The interior of the funnel is much hotter than the rest of the disk surface and therefore

the same thick disk appears different when observed at different aspect angles. It has

been shown that most probably non-accreting perfect fluid tori orbiting a Newtonian center

of gravity are subject to violent global nonaxially symmetric instability which could also

destroy the tori.

2.2.3 The efficiency and spin of a Supermassive Black Hole

The factor 1/2 in Eq. (2.21) represents an actually non-physical upper limit on the

possible extractable energy from a BH as it is correct only for nonrelativistic disks. For a

disk around a BH the correct coefficient is the one that corresponds to the binding energy

at the marginally stable orbit.

The effective Lagrangian for studying the motion of particles in a spherically sym-

metric potential can be written as

Leff =
1

2

(

gtt ṫ
2 − grrṙ

2 − gθθθ̇
2 − gφφ sin2 θφ̇2

)

. (2.28)

Because the effective Lagrangian has no explicit dependence on φ, the associated canonical

momentum pφ along the polar axis is conserved. If the metric is stationary the energy-

component of the four-momentum is conserved, which can be interpreted as the energy at

infinity E∞.

In the case of on-rotating time-steady spherical symmetry the metric around a

point mass of mass M , i.e. a SMBH, is called the Schwarzschild metric and can be written

in the matrix form as
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















(1 − 2M
r ) 0 0 0

0 (1 − 2M
r ) 0 0

0 0 −r2 0

0 0 0 −r2 sin2 θ

















(2.29)

where we have expressed the Schwarzschild radius as Rg = 2M in units of G=c=1.

Using this metric (Krolik 1999) the radial motion equation for particles of nonzero rest mass

is

ṙ2 = E2
∞ −

(

1 − 2M

r

)(

1 +
L2

r2

)

. (2.30)

Eq. (2.30) can be simply described as the motion of a particle in the relativistic

potential Veff (r) = VN (r)+1/2−ML2/r3, where VN = −M/r+L2/(2r2) is the Newtonian

potential. For any given value of the angular momentum L, Veff = 0 at r = 2M and then

tends toward 1/2 at large r. As L increases the shape of Veff changes from a curve that

rises monotonically to one that has both a maximum and a minimum before reaching its

asymptotic value. The positions of these extremes are given by

r +m =
1

2

(

L

M

)2


1 ±

√

1 − 12

(

M

L

)2


 . (2.31)

As for classical dynamics circular orbits occur when the energy exactly matches

the value of the effective potential at a place where the effective potential has a minimum.

In this case the there are no stable orbits for L <
√

12M , and the smallest radius for which

a stable orbit exists, called the marginally stable orbit, is rm=6M . For accretion to be

maximally efficient the particles should lose as much energy as possible before disappearing

into the SMBH. Therefore the maximum accretion efficiency is given by the binding energy

at the smallest stable orbit, in this case Veff (6M)=
√

8/3. The binding energy is the energy

given by the difference between the rest mass of the particle and its energy at infinity:

Eb = 1 −
√

8/3=0.057, which is the maximum radiative efficiency of accretion for particles

falling into a Schwarzschild SMBH in rest mass units.

If a SMBH has instead an angular momentum J = aM then the metric reads as

ds2 =

(

1 − 2Mr

Σ

)

dt2+
4aMr sin2 θ

Σ
dtdφ−Σ

∆
dr2−Σdθ2−

(

r2 + a2 +
2Mra2 sin2 θ

Σ

)

sin2 θdφ2

(2.32)
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where Σ ≡ r2 + a2 cos2 θ and ∆ ≡ r2 − 2Mr + a2, and the polar direction of

the coordinates coincides with the direction of the angular momentum. Note that this

reduces to the Schwarzschild metric in the limit a → 0. Around a rotating SMBH there

is no static observer, the SMBH will ”drag” any frame of motion along as it spins. The

value of a is limited, it is bounded above by M , because any additional angular momentum

would increase the energy of the SMBH and therefore its mass. When accretion occurs

through a disk the axis of which does not vary much in time, the angular momentum

of the central SMBH builds up rapidly. The marginally bound radius in this case reads

as rmb = 2M ∓ a + 2
√

M(M ∓ a), and the limiting values are rmb(a = 0) = 4M and

rmb(a = M) = M (for prograde orbits). Therefore, being E∞ =
√

2Veff (M) = 1/
√

3,

the efficiency will increase from 1 −
√

8/3 to 1 − 1/
√

3=0.42%, as a result of the decrease

in the size of the marginally stable orbit from 6M to M , and therefore an increase in the

release of the maximal efficiency of energy release during the accretion process. It is however

worth noticing that in realistic disks, some photons produced in the innermost disk could be

captured from the SMBH and this could limit the spin parameter to the value a ' 0.998M

and therefore diminish the efficiency to ' 30% (Thorne 1974).

A Magnetic HydroDynamic (MHD) simulation has been carried out by Shapiro

(2005) of a disk accretion onto a Kerr seed BH. As studied by the author the collapse

of a non-rotating Super Massive Star (SMS) (with a mass of 104 − 105M�) could lead to

the formation of a Schwarzschild BH. However stars in nature are most likely maximally

rotating and simulations have shown that SMS could collapse in Kerr SMBH with a/M ∼
0.75, the rest of the mass going into an ambient disk around the hole.

Shapiro (2005) has in more detail investigated the possible evolution in spin and

mass of a SMBH originating from POPIII remnant seed in the range 102 − 103M� (see

Section 2.3). The seed is surrounded by a relativistic, magnetized plasma in a torus-like

geometry threaded with a poloidal magnetic field. The source of viscosity is MHD turbulence

driven by instability. The author finds that limiting the emission at the Eddington limit,

the MHD accretion drives the SMBH to the equilibrium value a/M ∼ 0.95, corresponding

to efficiencies ≤ 0.2, which are close to the values we have found in this thesis (Chapter 5),

however still below the maximum limit for a Kerr SMBH.
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Hughes & Blandford (2003) examine the coevolution of mass and spin in binary

merger growth scenarios and find that SMBH are typically spun down by mergers. Rapid

rotation results only in a few exceptions, i.e. if the binary’s larger member already spins

quickly and the merger with the smaller hole is consistently near prograde, or if the binary’s

mass ratio approaches unity. Therefore if most SMBH spin rapidly, and consequently have

on average high (≥ 0.1) radiative efficiencies, then this limits the importance of merger

scenarios in building up the local SMBH population.

To similar conclusions have recently arrived Volonteri et al. (2005). They studied

the distribution of SMBH spins and its evolution with cosmic time in the context of hier-

archical galaxy formation theories, finding that the coalescence of comparable-mass holes

increases the spin of SMBH, while the capture of smaller companions in randomly oriented

orbits acts to spin holes down. As a whole the SMBH spin distribution does not change

much with time retaining memory of its initial distribution. However if accretion plays a

major role in building the SMBH local population then the SMBH are actually spin up

on average with time due to the fact that the disk accretion is usually aligned with the

central SMBH spin. Interestingly King et al. (2005) have shown that even if accretion at

the beginning occurs in a disk not aligned with the central SMBH spin, torques always act

to align the hole’s spin with the total angular momentum without changing its magnitude.

Volonteri et al. (2005) show that if accretion is via a thin disk, about 70% of all SMBH are

maximally rotating having radiative efficiency of about 30%. Even in the case of geomet-

rically thick disk, about 80% of all SMBH have spin parameters a/M >0.8 and accretion

efficiencies > 12%.

The hole’s spin J could also exponentially decay for the interaction with the torque

N of a surrounding magnetic field (associated with the hole itself or with the disk). This

process extracts energy E from the hole at a rate Ė ∝ −→
J · −→N . This energy extraction of

rotational energy has been discussed first by Blandford & Znajek (1977; BZ) and reads as

PBZ ' gṀc2a2 (2.33)

with a the dimensionless spin parameter and g a constant which depends on the geometry

of accretion.
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2.2.4 AGN Super-Unification Model

According to their spectral properties and luminosity AGN have been classified and

divided into various subclasses. This taxonomy may reflect real differences in the physics of

these objects but it is commonly accepted that many of the observed differences could be

explained by geometric effects (Unification Models). However as discussed in the previous

sections, a more comprehensive view of AGN physics is now emerging which connects in a

Super-Unification scheme: accretion rate, spin and mass of the SMBH.

In the standard AGN unification picture (Antonucci 1993), the active galactic

nucleus is surrounded by an axisymmetric region (probably a torus) filled with cold and

dense (gas and dust) material that intercepts and redistributes in wavelenght and direction a

substantial fraction of the primary radiation. The source will be classified as an unobscured

(type 1) or obscured (type 2) AGN if its nucleus is observed directly, at a small angle to

the axis of symmetry, or through the torus, respectively.

Broad emission lines (FWHM > 2000 km/s) are observed in the optical spectra of

Seyfert 1 galaxies, while in Seyfert 2 galaxies are not. According to the Unified Models the

nucleus of Seyfert 2 galaxies is seen through the torus and the region where the broad lines

are produced (BLR) is completely obscured. Moreover spectropolarimetric observations of

various Seyfert 2 galaxies show broad lines in polarized light which points to the fact that

radiation of a hidden BLR is scattered towards the line of sight. In X-ray Seyfert 2 show

absorbed X-ray spectra (with NH ≥ 1022 cm−2), while Seyferts 1 do not.

The BLR, within 1 pc from the nucleus, is expected to be formed by dense clouds

(ne ∼ 109 cm−3) rotating fast around the nucleus and providing the broad optical emission

lines. The obscuring torus should re-emit in the IR band the absorbed optical/UV/X-ray

photons. The medium in the Narrow Line Region (NLR), extended on kpc scales, and then

visible whatever the torus orientation is, should be photoionized from the central source

and produce the forbidden narrow lines observed in the optical.

Radio loud AGN are 100-1000 times more luminous in the radio band than radio

quiet AGN with the same optical/UV luminosity and are roughly 10% of the whole AGN

population. According to the Unification Schemes for radio loud objects the strong radio
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emission is always due to the presence of a relativistic jet extending on kpc-Mpc scales

along the torus axis and emitting via synchrotron radiation. In this context BL Lac and

Flat Spectrum Radio Loud QSO are those AGN for which the radio jet is pointing towards

the observer while the counterparts should be FRI and FRII radio galaxies (respectively),

which in the radio maps show extended jets on the plane of the sky.

As discussed in the previous sections accretion and merging could modify the

mass and spin of a SMBH. Accretion plays a crucial role in the formation of a disk/torus

around the central engine and it could also be linked with spin intensity and with the basic

mechanisms of jet production. The Super-Unification scheme could in principle explain all

the complex AGN taxonomy connecting the jet, the accretion rate and the SMBH mass.

In Fig. 2.4 a sketch visualizes the basic properties of a Super-unification scheme for AGN.

At high accretion rates and close to maximal spin we find objects with bright accretion

disks, strong emission lines and powerful jets. When seen on axis these are the powerful

blazars, while at large angles they appear as radio loud QSO or FRII radiogalaxies. At low

accretion rates and high spin we find objects with radiatively inefficient accretion disks and

therefore little trace of thermal radiation (no emission lines) but still relatively powerful

jets. The magnetic field sustaining the BZ effect is determined by the accretion flow (not

by its radiation) and possibly profits of a geometrically thick disk. In general radio-loud

AGN could just be the high spin tail of an angular momentum distribution and any AGN,

in the past, could have been, for some time, possibly radio-active.

The obscuration of an AGN can also be due to the host galaxy itself during major

starforming episodes (see also Chapter 3), during which a lot of dust can be produced.

Recently Alexander et al. (2005) have clearly shown that large SCUBA surveys have un-

covered a large population of massive submillimeter emitting galaxies (SMG) with f850 ≥ 4

mJy at z ≥ 1 in which a substantial fraction (up to 70%) also harbor intense AGN activity.

Martinez-Sansigre et al. (2005) have confirmed that Spitzer Space Telescope, with a sensi-

tivity 10-100 times greater than its ancestors IRAS and ISO, has unveiled Type 2 AGN in

the mid-infrared emission at 24-µm, which corresponds to emitted 8 µm. At z = 2 in fact

dust extinction, unless extreme cases, is negligible at this wavelength and the authors claim

that at least half of all the objects in the sample have intrinsic high luminosity obscured
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Figure 2.4: Schematic picture of the Super-unification scheme for Active Galactic Nuclei.
(Figure taken from Maraschi & Tavecchio 2004)

AGN.

2.2.5 AGN Spectral Energy Distribution

The spectra of AGN extend from radio to γ rays, with a bolometric luminosity

ranging from 1040 to 1048 erg/s.

The spectral region in the 1-20 keV spectra of both radio-quiet and radio-loud

type 1 QSO are characterized by a power law with slope α ≈ 0.8, very similar for local

Seyferts and radio galaxies. In addition high energy spectral cut-offs with Ef ∼ 300 keV

have been reported. Therefore the average type 1 AGN hard-Xray spectrum can be rep-

resented as F (E) ∝ E−0.8e−E/300keV . The average obscured AGN spectrum can instead

be represented as F (E)(type2) = F (E)(type1)
∫

f(NH) exp[−σ(E)NH ]dNH , where σ(E)

represents the photoelectric absorption cross-section for solar chemical composition (Morri-

son & McCammon 1983) and NH is the average hydrogen column density measured along

the line of sight. In Fig. 2.5 we show examples of AGN spectra computed numerically as-

suming various absorbing column densities. It is interesting to notice how the spectra at
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Figure 2.5: Hard X-ray AGN spectra produced with XSPEC for solar metallicity and dif-
ferent Hydrogen column density; the dashed line represents the type 1 AGN spectra; the
other lines and symbols are for obscured AGN: from left to right the spectra have been
computed using NH = 1021.5, 1022, 1023.5, 1024.5cm−2

Optical/UV wavelengths are progressively damped due to absorbtion.

The primary power law emission is believed to be produced by a corona of rela-

tivistic electrons via inverse Compton on the thermal soft X-ray photons emitted by the

accretion disc. Some of the primary radiation is reprocessed via Compton scattering by

the accretion disc itself and/or the torus around the nucleus, producing a flattening of the

spectral slope above ∼ 10 keV. A strong fluorescence iron line at 6.4 keV due to the same

reprocessing media is also observed.

Below 1-1.5 keV a radiation excess with respect to the power law emission is

detected in a large fraction of Seyferts. This radiation excess is believed to be produced

by the high energy tail of the thermal emission from the accretion disc. In the soft X-rays

another common component is observed in the X-ray spectra of Seyferts which is believed

to be produced by a ”warm absorber” (T=105 K) on the line of sight (see Fig. 2.6). This

gas should be responsible for the OVII and OVIII absorption edges at 0.74 keV and 0.87

keV observed in about 50% of Seyfert 1 galaxies.

QSO and Seyferts seem to have a similar spectrum, even at high redshift. However
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Compton hump

soft excess

Warm absorber
Iron line

Figure 2.6: Average Hard X-ray spectrum of an AGN; the more the object is obscured the
more evident are the reflected components in the spectra. (Figure taken from Risaliti &
Elvis 2004)

there are signs of less reflection and iron line features, due to probably higher accretion rates.

These are other empirical evidences that accretion rates are actually decreasing on average

with time, as discussed in Section 2.2.1. Radio loud QSO are generally harder than radio

quiet QSO having an average spectral slope of α ∼ 0.6 − 0.7. Their harder spectrum is

usually ascribed to the presence of an additional X-ray emitting component associated to

the radio jet via self-synchro-Compton radiation.

It is believed that the Cosmic X-ray and Gamma-ray background above a few MeV

is to a large part a result of blazars. The spectra of blazars is dominated by Doppler-boosted

radiation from a relativistic jet pointing close to our line of sight, compared with the quasi

isotropic emission from normal quasars. The 30 MeV-10 GeV spectra of most blazars are

consistent with being simple power laws with average energy index α ≈ 1.15.

The optical to UV emission of AGN is characterized by the ”Big Blue Bump”

(BBB), where the peak of the AGN emission is usually found. The peak energy is around

the Lyman Edge (λ=1216Å), and the spectrum can be well approximated with a power law
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both at lower and higher frequencies. Interestingly Binnet (2005) has shown that high-z

QSO show a break around 1000Å which is not present in local AGN, a clear sign of the

strong presence of Crystalline Carbon dust in their environment.

The infrared (IR) emission of AGN (2-200 µm) is, on average, ∼ 30% of the

bolometric luminosity, with values in single objects ranging from ∼ 15% to about 50%. The

spectral shape is characterized by a minimum at 1-2 µm, corresponding to the sublimation

temperature of dust (between 100 and 2000 K, depending on the composition of the dust

grains) an IR bump, typically at 10-30 µm due to the thermal emission of dust, with a

temperature range between 50 and 1000 K, and a steep decline (fν ∝ ν−α, α > 3) at large

wavelengths.

An important issue concerning AGN spectra is the estimate of their bolometric

corrections, essential for determining the total, bolometric luminosity and, consequently,

the mass of the central SMBH which powers the observed emission (Risaliti & Elvis 2004).

Given an intrinsic dispersion in the SED of AGN, any flux-limited sample selected in a

given spectral band is biased towards high ratios between the flux in the selection band

and the bolometric emission. Elvis et al. (1994) estimated from an X-ray selected sample

the optical-to-X-ray flux ratio to be 〈αOX〉 = − log(l0/lX)/ log(ν0/νX) = −1.35, while Laor

et al. (1997) found from a local optically selected sample of PG QSO 〈αOX〉 = −1.55,

which amounts to about a factor of 3.3 in flux ratio. Here l0 and lX are respectively

the monochromatic luminosity at the rest-frame frequency of 2500Å and 2 keV. Moreover

many authors have empirically shown that αOX is correlated with the optical luminosity as

lX ∝ le0, with e = 0.7 − 0.8. This would correspond to αOX ∼ 1.4, for the most luminous

objects, which is somewhat in between the two previous estimates. Finally Ueda et al.

(2003) showed that if e = 1 (constant αOX), the apparent evolution of the Hard-Xray

Luminosity Function of X-ray type 1 AGN becomes significantly slower than that of the

optical Luminosity Function, whereas their redshift evolution become reasonably consistent

(see Fig. 2.8) with each other if e ' 0.7 consistent with the results for high-z AGN of Vignali

et al. (2003).

The optical bolometric correction seems not to have any significant dependence on

bolometric luminosity, a clear sign that it is linked with the inner engine, i.e. it is a good
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tracer of the inner accretion onto the SMBH. Finally we stress that there is no empirical

evidence for any significant variation in the bolometric corrections with redshift (see also

Chapter 5, Section 5.1.1).

2.2.6 AGN Evolution: Luminosity Functions

Current constraints on the z ∼ 6 Quasar Luminosity Function have been given

by Fan et al. (2004), but depend strongly on the spectra of their SDSS sample. These

authors find the bright-end slope to be consistent with −4.2 < β < −2.2 and a density for

quasars with M1450 < −26.7 of (6 ± 2) · 10−10 Mpc−3 (H0 = 65 km s−1 Mpc−1, Ωm = 0.35,

and ΩΛ = 0.65). These QSO are usually detected through photometric techniques.

Constraining the high redshift QSO Luminosity Function (LF) is of fundamental

importance for explaining the global re-ionization of the InterGalactic Medium (IGM). It

is still controversial but it seems from the analysis of the Gunn-Peterson troughs, i.e. the

absence of strong Lyα absorption due to neutral hydrogen, in the spectra of the distant

luminous quasars (z = 4 ÷ 6) that a significant fraction of hydrogen is ionized (about

xHI < 10−4), while there is sign of nearly complete absorption in the spectra of the luminous

z ≥ 6 QSO. Even if the actual numerical limit on the mean mass (volume) weighted neutral

fraction is only xHI > 10−2, due to the large empirical uncertainties it is still hard to draw

any firm conclusion.

However even if such a limit does not directly establish the end of the neutral

epoch of the IGM, there is no doubt that the ionizing background emissivity has a steep

increase from z ∼ 6 to z ∼ 5.5, much steeper than the known galaxy population. Indeed

Stiavelli et al. (2004) show analyzing the galaxies in the Hubble Ultra Deep Field and in the

Great Observatories Origins Deep Survey (GOODS) that possibly most of the reionization

at z = 6 could have been caused by galaxies, even if large uncertainties in the UV escape

fraction and high redshift galaxy spectra are present in these models.

On the other hand the optical AGN population seems to fall beyond redshift 3,

even if X-ray data (see below) indicate a much flatter density evolution. Various studies

show that the extrapolated number density of the high redshift QSO population falls short

of producing enough photons for reionization, however an ad-hoc choice of some parameters
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could increase their contribution (see e.g. Meiksin 2005). We will also demonstrate in

Chapter 6, that the high redshift QSO could posses activity timescales up to an order of

magnitude longer than previously believed, and therefore they could play a more significant

role in the Universe reionization at z ∼ 6, than previously thought.

Fan et al. (2001) confirmed previous observations of Warren et al (1994) and

Kennefick et al. (1995) showing that the luminosity function of QSO with redshift 3.6 <

z < 5 and luminosity −27.5 < M1450 < −25.5 arise by a factor of about 3 per unit redshift

from z ∼ 6 to z ∼ 3. Moreover they find a flatter slope for the luminosity function at z ≈ 4.

In the redshift range 2.5 < z < 4, Pei (1995) has shown that the evolution of the Optical

QSO LF can be described by a double power law where the characteristic luminosity can

be fitted by a Gaussian distribution peaking at a redshift z ∼ 2.8 and declining at higher

redshifts.

For lower redshifts Boyle et al. (2000), Croom et al. (2004) and Richards et al.

(2005) have fitted the Optical AGN LF with a double power-law evolution with a faint slope

of −1.5 ÷ −1.8, constant in shape, changing through a Pure Luminosity Evolution (PLE)

with the break luminosity increasing with redshift. The 2-degree Field (2dF) and SDSS

QSO combined survey explored by these groups selected AGN through their UV excess

with respect to stars. This selection technique is valid up to z = 2.2, the point at which

Lyα emission shifts into the observed B band and QSO begin to loose their characteristic

UV excess.

Radio loud AGN are only about 10% of the total population. The LF for this

population (see Dunlop & Peacock 1990) was separately obtained for steep and flat spectrum

sources by means of several samples selected at 2.7 GHz. However this analysis confirmed

the presence of a so-called redshift cut-off, similarly to what observed in optical bands, for

the all powerful radio sources, QSO and radio galaxies, with a decline in comoving density

of a factor ∼ 5 between z =2 and 4. The evolution can be described by a PLE but with a

negative density evolution at high redshifts.

In the X-ray bands the AGN evolution seems different. In the soft band (0.5-2

keV) Miyaji et al. 2000 have detected a constant AGN comoving density above redshift

z ∼ 2 at variance with optical surveys. Early works on the Hard-Xray LF (2-10 keV) (e.g.
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La Franca et al. 2002; Cowie et al. 2003), mainly from Chandra surveys, have pointed

out a strong AGN evolution. In particular these groups have claimed that lower luminosity

AGN seem to peak at lower redshift with respect to higher luminosity AGN. Hasinger et

al. (2005) have now collected a sample of about 1000 AGN in the soft band combining

Chandra and XMM deep surveys with ROSAT reaching a 95% completeness level. The

authors confirm the previous results showing that the space density evolution with redshift

changes significantly for different luminosity classes, i.e. a Luminosity Dependent Density

Evolution (LDDE). In particular they find a density increase at low redshifts up to a certain

redshift and then a flattening.

The most recent work on a complete Hard-Xray AGN LF is by Ueda et al. (2003;

but see also the updates by Brandt & Hasinger 2005) from a combination of Hard X-ray

surveys above 2 keV performed with HEAO1, ASCA and Chandra, down to a flux level of

3.8 ·10−15erg cm−2 s−1 in the luminosity range 41.5 < logLX < 46.5 and redshift 0 < z < 3.

They authors find in this band a strong LDDE AGN evolution (see Fig. 2.7). The Hard-Xray

luminosity function is shown in the top of Fig. 2.8.

The level of NH column density for each AGN is calculated by fitting the observed

spectra using the code XSPEC (which we have also used to reproduce Fig. 2.5), which

computes the resulting spectra of a Type 1 power-law AGN after absorption (the metallicity

and photon index are input model parameters). Ueda et al. (2003) find that the fraction of

absorbed AGN decreases with increasing luminosity, while the redshift dependence is not

significant (see Fig. 2.11). This result suggests that a modification of a pure geometrical

Unification model could be invoked to explain the data. In particular such findings point

towards the intuitive possibility that more luminous objects are probably less obscured.

This is also evident from the bottom of Fig. 2.8 in which we report the comparison the

authors produce between the Hard-Xray LF and the optical LF by Boyle et al. (2000),

assuming typical bolometric corrections (see Section 2.2.5). It is interesting to notice that

at all redhifts the optically selected AGN match the high-luminosity tail of the Hard-X LF.

Computing the luminosity density in a given luminosity bin as a function of redshift

(Fig. 2.9; we will produce the same plot in Chapter 5 for the SMBH mass density) it is

possible to infer that most of the luminosity density is contained in objects with luminosity in
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Figure 2.7: AGN comoving spatial density as a function of redshift in three luminosity
ranges. (Figure taken from Ueda et al. 2003)

the range 43 < logLX < 44.5 peaking at redshift z ∼ 1 and with about 50% of the luminous

density already emitted by z ∼ 1.5. However it has to be noted that such luminosity

evolution could not imply a proportional mass accretion history for SMBH: the objects

could be radiating at very low Eddington ratios and have instead already accumulated high

masses or viceversa. We will address such issues in Chapters 5 and 6 showing that indeed

theoretical modeling of the AGN accretion history naturally leads to the conclusion that

about 60% of the SMBH mass density has been accreted at z ≥ 1.

Ueda et al. (2003) provide a fit which correlates the luminosity of an object with its

hydrogen column density NH . The authors notice that the recent detected high level of the

X-ray Background (XRBG) normalization (see Section 2.2.7, Fig. 2.11) requires some extra

obscured AGN populations, not yet detected, with column densities logNH ∼ 24.5 cm−2 and

logNH ∼ 25 cm−2. Moreover the ratio of obscured-to-unobscured AGN must not depend

much on redshift and increase for lower luminosities. Such findings have been also confirmed

by the recent study of Treister & Urry (2005). In Chapter 5 we will show that the choice of

inserting these extra-populations in the Hard-X LF, following the prescriptions by Ueda et
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al. (2003), is needed to match the recent empirical constraints on the XRBG normalization

(see also Section 2.2.7).

More recently Barger et al. (2005) have used spectroscopically complete deep and

wide-area Chandra surveys to determine the cosmic evolution of the Hard-X AGN. These

authors confirm Ueda et al. (2003) findings that broad-line AGN dominate the number

densities at the higher X-ray luminosities, while narrow-line AGN dominate at the lower

X-ray luminosities. The broad-line AGN Hard-X LF agrees remarkably well with the optical

one which appears to be missing sources at lower luminosities. Barger et al. (2005) also

probe the z ∼ 4 Hard-X LF, finding a pure luminosity evolution from redshift z ∼ 2− 3. In

Chapter 6 we will compare the outputs of our theoretical modeling of the AGN luminosity

functions with the data sets by Barger et al. (2005) and Ueda et al. (2003).

2.2.7 The X-ray Background

In the Radio band around 100 Mhz, the extragalactic background is about 20-30%

of the total background emission and is well explained by superposition of radio galax-

ies and normal galaxies. In the 1-1000 Ghz frequency range the black body spectrum of

the Cosmic Microwave Background (CMB) dominates over any other component, while at

higher energies, in the infrared and optical bands, several Galactic components dominate

the background emission.

In the γ rays, about 50% of the background emission is due to our Galaxy, where

the γ rays are mainly produced by the interactions between the cosmic rays and the in-

terstellar medium. The residual extragalactic γ-ray background can be explained by the

integrated emission of unresolved sources (most probably AGN such as Blazars which are

thought to produce most of the extragalactic light in the 10 MeV-100 GeV energy range).

Recent SCUBA measurements have resolved most of the non-CMB extragalactic

background at 850 µm into single galaxies, whose sub-mm radiation should be produced by

dust heated by a starburst event or an AGN. Heated dust in galaxies should also be respon-

sible for the extragalactic IR background. Silva et al. (2004) have shown that exploiting the

Ueda et al. (2003) LF, the contribution of AGN to the IR background is negligible (< 5%),

implying that the latter is dominated by star formation, however the AGN host galaxies
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Figure 2.8: Top: Hard-Xray luminosity function up to redshift z ∼ 3. Bottom: comparison
between the optical QSO luminosity function (symbols) by Boyle et al. (2000) and the Ueda
et al. 2003 Hard-X LF. (Figures taken from Ueda et al. 2003)
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Figure 2.9: Differential contribution of AGN to the 2-10 keV Hard-Xray Background inten-
sity as a function of luminosity and redshift. (Figure taken from Ueda et al. 2003)

Figure 2.10: Fraction of absorbed AGN with logNH > 22 cm−2 to all AGN with logNH <
24 cm−2 given as a function of luminosity (left panel) and redshift (right panel). Dashed
lines represent best-fit to the data. (Figure taken from Ueda et al. 2003)
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Figure 2.11: A selection of XRBG spectral measurements collected from observations with
different satellites as labelled. The solid magenta curve represents the analytical fit of
Gruber (1992) renormalized by 30% upwards in order to fit the most recent measurements.
The blue and red curves represent the integrated contribution computed through the most
recent synthesis models exploiting a Hard-Xray LF non-corrected for very obscured sources.
(Figure taken from Comastri 2004)

may contribute significantly to the IR background, up to 20% in the 1-20 µm range. In the

optical/UV band, there are no direct estimates of the extragalactic background intensity,

which is usually computed by integrating galaxy counts to very faint magnitudes.

The XRBG is a diffuse X-ray glow shining from each sky direction. It was discov-

ered 40 years ago by a rocket flight (see e.g. Giacconi et al. 1967). The first measurement

of the XRBG performed by the HEAO-1 satellite covered the energy range from 3 to 60

keV. It was discovered that the XRBG emission, peaking at about 30-40 keV, could be ap-

proximated with a bremsstrahlung emission from a very hot plasma with T ∼ 40 keV. Later

on, however, this was proven to be no more than a coincidence, since the bremsstrahlung

spectrum vanishes when the contribution of discrete sources is subtracted from the XRBG

emission. Even the satellite COBE measured no Compton distortions in the blackbody

spectrum of the CMB and this means that no intergalactic gas with T > 108 K could

contribute by more than 0.01% to the hard XRBG intensity. Therefore the origin of the

XRBG was completely ascribed to unresolved sources.
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In the 0.5-10 keV energy range, where the best X-ray measurements are available,

the XRBG is mainly resolved into AGN. Actually the whole XRBG emission up to ∼ 300

keV is likely to be produced by AGN. Above 0.5 keV a thermal component is needed to

explain the XRBG spectral shape up to ∼ 1 keV, which is also featured by strong OVII

and OVIII emission lines. The plasma responsible for this radiation is believed to reside in

the Galactic halo or among the members of the Local Group.

At about 1-2 keV the Galactic extinction is low and the isotropy level of the XRBG

increases. Surveys by ROSAT and Chandra satellites have shown that at very faint fluxes

most of the 1-2 keV XRBG has been resolved into single sources. The major uncertainty in

the resolved fraction of the soft extragalactic XRBG resides in the flux of the XRBG itself.

Above 2 keV the Galactic clouds are almost transparent to the X-ray and the measured

isotropy of the XRBG indicates that its origin is entirely extragalactic.

Setti & Woltjer (1989) were the first to propose that the flat slope of the 2-10

keV XRBG was due to a population of obscured AGN in addition to the bright unobscured

AGN with steep spectra. Comastri et al. (1995) then showed that assuming for the obscured

AGN a distribution of absorbing columns and the same evolution of the unobscured AGN

in the Hard-X LF (just increased by a factor of a few at most), it was possible to fit the

XRBG spectrum and integral counts. However later Maiolino & Rieke (1995) showed that

the local fraction of obscured and unobscured AGN was around 3 − 4. Gilli et al. (1999;

2001) then showed that significant additional obscured AGN at higher redshifts are needed

to fit the XRBG. It was also proposed that the fast evolving starburst population, with a

rapid density evolution up to z = 0.8 and then constant, necessary to reproduce the ISO

mid-infrared counts, could be responsible for these extra-AGN (Franceschini et al. 2002).

However, as clearly shown in Fig. 2.9, most of the obscured sources responsible for the

XRBG intensity, are detected at low redshifts, z ≤ 1.

Up to now the deep pencil-beam and wide-area X-ray surveys (see e.g. Fabian &

Worsley 2004 for a review) of the Lockman hole by XMM-Newton and the Chandra Deep

Field North & South (Giacconi et al. 2002; Alexander et al. 2003) have been able to resolve

∼ 70-90% of the XRBG up to 10 keV. However this fraction drops significantly to ∼ 70%

in the 2-4.5 keV band and to ≤ 60% for higher bands (according to the Lockman Hole deep
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monitoring by XMM). Such findings confirm what already stressed by synthesis models:

significant additional very obscured AGN sources must be searched for and included in the

estimates of the accretion mass density.

2.3 Seed population and Intermediate Mass Black Holes

As it will be discussed more extensively in Chapter 3, DM structure formation is

bottom up, with low mass halos condensing first. However a few massive halos of about

105 − 106M� (at the 3σ level; see Chapter 3) could have formed already out to redshift

z ∼ 25. If baryons fall in their potential well they can further contract being these host

halos enough massive to overcome pressure gradients (their ”Jeans mass” being MJ ≈
104[(1+z)/11]3/2M�, see e.g. Haiman & Quataert 2004). In these early structures baryonic

clouds could then fragment through molecular H2 cooling.

At very high z H2 formation is inhibited as the intermediaries H+
2 and H− are dis-

sociated by the CMB. At z < 100, when CMB photons are redshifted to lower energies, the

intermediaries survive and a sufficiently large fraction (xH2
∼ 10−3) of H2 can accumulate

sufficient to cool the baryons in a timescale less than the dynamical one in halos with tem-

perature above ∼ 200 K and a density of n ∼ 104 cm−3. In these minihalos of about 105M�

3D simulations have shown that the metal-free baryonic gas cannot fragment in clumps

below 102−103M�, but it rather forms unusually massive stars. Stars with masses between

∼ 40-140 M� and above 260 M� collapse directly into a black hole without an explosion,

whereas stars in the range ∼ 140-260 M� explode without leaving a remnant but polluting

the environment with metals. So these first massive stars, Population III (POPIII) stars,

could both account for early metal enrichment and for the SMBH seed population.

Volonteri et al. (2003) have discussed that in a Gaussian theory (see Chapter 3),

halos more massive than the ν−σ peaks at z = 20 contain a complementary error function

erfc(ν/
√

2)=(0.00047 for ν=3.5) of the mass of the universe. Therefore the mass density

parameter of 3.5σ pregalactic holes is Ωνσ = 0.00047Ωmm•/1.1e7h
−1M� > 2 · 10−9h being

h the Hubble constant in units of 100 km/s. This value is much smaller than the one derived

locally in nearby galaxies (see Chapter 4) Ω• = 8.4 · 105M� Mpc−3/2.8 · 1011M� Mpc−3 ≈
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3 · 10−6, where the value at the denominator is the critical density today. Therefore if

SMBH form out of very rare POPIII BH, the present day mass density of SMBH must have

been accumulated during cosmic history via gas accretion, with BH-BH mergers playing a

secondary role.

However this is increasingly less true if the seed holes are more numerous and

populate higher peaks or halos with smaller masses at higher redshift. As shown by Madau

& Rees (2001) and Islam et al. (2004) (see also Koushiappas et al. 2004) if every halo

mass at 2 or even 3 σ peaks at z ∼ 24 forms a 260 M� BH, then the density per comoving

volume is estimated as ρ• ∼ 3 M� Mpc−3, already about 70% of the present-day SMBH

mass density. It will then be sufficient to add just some gas accretion to grow the BH to the

present day mass. The problem at this stage remains the low efficiency of dynamical friction

for objects that are still not massive enough. Therefore many BH will keep orbiting around

subhalos instead of sinking to the main center. Semi-analytical merger-tree (see Chapter 3)

calculations have been carried out, taking into account dynamical friction, tidal disruption

and encounters with the galactic disk, to determine the abundance and distribution of

SMBH in present-day halos of various masses (Islam et al. 2004): the result is that it is

difficult to reproduce the observed SMBH mass distribution with only merging of the initial

seeds, and that substantial gas accretion is required.

However the question whether halo/galaxy mergers lead to BH mergers is not yet

resolved (e.g. Milosavljevic & Merritt 2004). During galaxy mergers SMBH sink at the

center via dynamical friction and form a black hole binary on parsec scale. For the binary

to further shrink and coalesce it is necessary to lose its angular momentum which can be

transferred to nearby bodies, such as stars, gas or other black holes. In triaxial galaxies it

has been claimed (e.g. Yu 2002) that as stellar orbits are chaotic, it is highly probable that

the BH binary is surrounded by low angular momentum orbit stars: in this case the decay

time for the binary becomes much less than the Hubble time. Successive halo mergers, at a

rate much higher than the rate BH binaries can coalesce, can eject the lowest mass SMBH

out of the nucleus of the merger remnant. These ”wandering” SMBH (Volonteri et al. 2003)

can then accrete gas from the surrounding and could in principle be detected, off-set with

respect to the galaxy center, as Ultra-Luminous X-ray sources (ULX).
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An empirical way of assessing the actual role of SMBH mergers will be via their

gravity wave (GW) signature (see e.g. Menou 2003 for a review). It has been shown that

with up to 3-year monitoring the Laser Interferometric Antenna (LISA), with a signal-to-

noise of 5, will be able to monitor hundred of mergers per year mainly due to coalescing

SMBH with masses 103 < M•/M� < 106 at high redshifts (z ≥ 5). However the expected

number of event rates will be much less, up to ∼ 1 per year, if only deep (Vc > 100 km s−1)

potential wells are able to harbor SMBH (Haehnelt 2003). It is worth noticing (Menou et al.

2001) that all the calculations performed on the predicted detectable LISA event rates have

been calibrated on the merging events of dark matter halos assuming that the duty-cycle

of SMBH formation within them is 1. If such a duty-cycle is much less than the predicted

redshift distribution for LISA event rates will peak at much lower redshifts (z ∼ 2), where

the merging rates are higher (see also Chapter 3).

As shown in Section 2.2.6 there are signs in the high redshift AGN spectra that

the IGM reionization took place since redshift z ∼ 6 and before the IGM was much more

neutral. However the WMAP satellite has detected a large electron optical depth implying

that a significant ionization has already taken place at high redshift z ∼ 15. There is

still debate and uncertainty but the value measured for such optical depth seems to be

τ = 0.17 ± 0.04 (e.g. Kogut et al. 2003). The free electrons produced by an hypothetical

”early” reionization in the Universe is detectable also on the CMB spectrum itself, where

the damping of temperatures fluctuations at small angular scales, due to photon scattering

(see also Chapter 3) boosts the polarization at large angles (l < 10; Zaldarriaga 1997).

Therefore from the WMAP temperature-polarization angular cross-correlation has been

established that the median redshift for reionization is z = 17 ± 4, very close to the value

discussed above for the production of the first SMBH seeds. This is a sign that probably the

reionization history of the Universe has been quite complicated and it could have developed

in two phases.

A population of seeds SMBH, as described above, could have been effective in

reionizing the universe so early in time. The first massive stars infact would create HII

regions and inhibit further star formation preventing gas cooling as UV photons in the

Lyman-Werner bands are able to photo-dissociate the fragile H2 molecules. At the death
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of the first stars the massive black holes can then accrete the surrounding gas and become

”miniquasars”. Madau et al. (2004; and see Haiman & Quataert 2004 for a comprehensive

review on these topics) demonstrated that such sources with their hard spectrum can deposit

up to 1/3 of their energy into the surrounding medium, and produce enough electrons to

have a positive feedback on the formation of H2 molecules which in turn could boost cooling

and fragmentation of baryons into massive stars. As pointed out by Hui & Haiman (2003)

in this scenario normal stars would concurrently heat the IGM and through the overlap of

their HII regions keep it fully ionized. In fact Dijkstra et al. (2004) have shown that high

redshift QSO which fully reionize the IGM would overproduce the soft X-ray background,

but a population of miniquasars that only partially ionize the IGM (up to say 50%) is still

allowed.

It has also been discussed the possibility of forming massive black holes within a

star cluster (see Binney & Tremaine 1987). Infact the self-gravity of a cluster can have a

negative heat capacity that makes it vulnerable to the so-called ”gravothermal catastrophe”:

the core collapses on a timescale proportional to the two-body relaxation time and the

resulting high central density may lead to BH formation. In clusters with many stars

(N > 106−107), analytical and numerical methods have highlighted the concrete possibility

of forming Supermassive stars or runaway merging of massive stars at the center of the star

cluster out of which Intermediate Mass Black Holes (IMBH) of 103−105M� can form which

would bridge the gap between the seed massive black holes, remnants of the POPIII stars,

and the SMBH in local galaxies.

There have been empirical extrapolations downwards of the M•−σ relation search-

ing for AGN signatures at the center of dwarf galaxies. Filippenko & Ho (2003) have found

an upper limit of 104−105M� in NGC4395 radiating much below the Eddington limit. Barth

et al. (2004) find a value of about 2 · 105M� for Pox 52. Recently Barth et al. (2005) have

measured SMBH masses ranging between 105 < M•/M� < 107 and 30 < σ/km s−1 < 100,

in a local sample of Seyfert 1 galaxies. The most interesting case is M33, for which an upper

limit of 103 − 104M� is measured and seems to be below the extrapolation of the median

fit for M• −σ relation (in this thesis we will give physical insights to what conditions could

produce such an effect in low-mass systems; see review by van der Marel 2004).
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Finally we recall that in the literature it has been proposed that another possible

mechanism for primordial BH formation is through the direct collapse of density fluctuations

(Carr 1975) even if, in the very beginning, the universe is highly homogeneous and isotropous

and the associated Gaussian density fluctuations could be too small to collapse to a BH.



Chapter 3

Evolution of Dark Matter and

Baryons: where SMBH fit in

3.1 The cosmological context

To build the metric of the Universe it is usually assumed, based on the observations

made on very large scale structures, that the three-dimensional space geometrical properties

are the same at all spatial locations and do not single out any special direction in space.

Such a three-dimensional space is called homogeneous and isotropic.

As matter follows geometry, through Einstein equations, it follows that also mat-

ter/energy must be homogeneous and isotropic but this is not the case at scales less than

100 Mpc, where we observe filaments, clusters and galaxies.

These matter/geometry considerations can be applied also to entropy. There will

be microscopic processes for which entropy will grow linked to some local non thermal

conservation (i.e. growth of structures), but such events are overwhelmed by the large scale

homogeneity in the thermal conditions, which prevents any large heat flow and therefore

keeps the average entropy constant. This is the reason why large-scale evolutions in the

Universe can be, in a very first approximation, thought of as ”reversible” (i.e. the big

bang/big crunch theory).

49
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The full space-time metric with the above assumptions reads as

ds2 = dt2 − a2(t)

[

dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2)

]

(3.1)

expressed in dimensionless coordinates (r, θ, φ), i.e. in a ’co-moving’ frame in which a given

region will always contain the same mass/energy with expansion. The time function a(t)

is the expansion factor and k = 0,±1 indicates the value of the curvature of the three-

dimensional space. Both values must be determined through observations.

As a(t) multiplies the spatial coordinates, any proper length l(t) will change in

time in proportion to a(t), i.e. l(t) = l0a(t), in particular this will be true also for any

photon wavelength λ which will be stretched proportionally to the expansion factor causing

a red-shift, z, of the spectrum of any light source in the sky, quantified as 1 + z = a0/a(t),

where a0 is the current value of the expansion factor.

Setting in Eq. (3.1)

ds2 = 0 (3.2)

we get the equation of a null geodesic and the radius. From an object with intrinsic lu-

minosity L we’ll receive a flux F = dE/Area dt = 1/4πa2
0r

2
em(1 + z)2L, where rem is the

solution at the time of emission te of Eq. (3.2).

We therefore get the ’luminosity distance’ of an object of luminosity L

dL(z) =

(

L

4πF

)

= a0rem(1 + z) (3.3)

Einstein equations express that the space-time geometry is determined by its mat-

ter/energy content and viceversa. Using Einstein equations it is possible to derive the

equations for the dynamics of the Universe. However it is more intuitive to use the princi-

ples of homogeneity and isotropy.

From the first principle of thermodynamics, dU + pdV = 0, setting r = a(t)x,

U = ρr3, and from the conservation of energy v2/2−GM(r)/r = k, where v = (ȧ/a)r, it is

straightforward to get the two independent Friedmann equations

ȧ2 + k

a2
=

8πG

3
ρ (3.4)

d(ρa3)

da
+ 3pa2 = 0 .
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Eqs. (3.4) combined with the equation of state p = p(ρ) determine completely the

the three functions a(t), ρ(t) and p(t). Introducing the critical density ρc(t) ≡ 3H2(t)/8πG,

with H(t) ≡ ȧ/a, the density parameter Ω(t) ≡ ρ/ρc deriving and rearranging in Eqs. (3.4)

one gets

k

a2
0

= H2
0 (Ω − 1) (3.5)

ä

a
= −4πG

3
(ρ+ 3p)

which connect the curvature of the Universe with the total ’amount’ of mat-

ter/energy and the acceleration of the Universe with the ’type’ of matter/energy.

For a general equation of state of the type

p = wρ (3.6)

and using the energy conservation equation, d(ρa3) = −pd(a3), one gets from

Eqs. (3.5)

ρ ∝ a−3(1+w) . (3.7)

The cross-correlation of different and independent experiments, by the WMAP

satellite on the cosmic µwave background, from distant SNa Type Ia, Nucleosynthesis and

Clusters of galaxies have now shown that about 23% of the Universe content is made by a

still unknown form of matter, called the Dark Matter (DM), clustered around galaxies and

about 73% of a diffusive form of energy, the Dark Energy (DE). Baryons constitute just the

4.4% of the total and other particles, such as neutrinos and photons, contribute less than

1.5 · 10−3 (see Spergel et al. 2003; see Fig. 3.1).

From such findings, one can write Eqs. (3.5) in a general form. Introducing the

matter (DM plus baryons), Ωm, the dark energy, ΩΛ, the curvature ΩV and radiation, ΩR,

parameters one can set

ȧ2

a2
+

k

a2
= H2

0

[

ΩR

(a0

a

)4
+ Ωm

(a0

a

)3
+ ΩV

(a0

a

)2
+ ΩΛ

]

. (3.8)

Eq. (3.8) shows how the Universe has passed through various phases during which

different components have dominated in the rate of evolution. For pure radiation w = 1/3
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Figure 3.1: Constraints on the cosmological parameters by cross-correlating data on various
experiments as labeled. (Figure taken from Knop et al. 2003)

(Eqs. (3.6)), and therefore from Eqs. (3.7), ρrad ∝ a−4, while for pure matter w = 0 and

ρmatter ∝ a−3.

Combining with ρrad ∝ T 4, for thermal radiation, one gets the law of evolution of

a plasma energy in an expanding background

T (t) ∝ 1

a(t)
. (3.9)

Therefore in the past the Universe was hotter, denser and dominated by radiation-energy

density. In the standard Big Bang model the Universe evolved from an initial singularity, at

energies comparable to the Planck scale (Gh̄/c3)1/2 ' 10−33 cm, to a rapid inflation phase

in which it expanded by about 1050 times its initial size.

The matter content in the Universe from a hot high-temperature plasma cooled

due to the expansion. When the energy scaled down to kBT ≤ MeV the nucleosynthesis

of some amount of deuterium, helium and lithium took place. The formation of heavier

elements was prevented by the fast evolution of the Universe. Only stars will be able to
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synthesize them. This is the reason why the abundances of helium and deuterium are a

sensible test for cosmological models.

3.2 Linear theory for Structure Formation

According to Jeans theory, starting from a homogeneous and isotropic ’mean’ fluid,

small fluctuations in the density, δρ, and velocity, δv, can grow in time under the effect of

self-gravity.

The gravitational potential that is due to a density perturbation δρ = ρ̄δ in a region

of size R will be φ ∝ (δM/R) ∝ ρ̄δR2. From Eq. (3.8), in the matter dominated epoch,

ρ̄ ∝ a−3 and R ∝ a. The perturbation δ grows then as δ ∝ a, making φ constant in time. In

particular the fluctuations that existed in the Universe at the time when radiation decoupled

from matter would have left their imprint on the radiation field. Photons climbing out of

a potential well of size φ will lose energy and undergo a redshift (∆ν/ν) ≈ (φ/c2), creating

a temperature anisotropy of the order of (∆T/T ) ≈ (∆ν/ν) ≈ (φ/c2). Such imprints

have been actually detected by the COBE satellite and confirmed by later missions. The

cosmic µwave background radiation is smooth 1 in a part of 105. Such very tiny thermal

perturbations are considered as the first seeds of structures. For example galaxy clusters

have escape velocities of the order v ≈ (GM/R)1/2 ∼ 1000 km s−1 corresponding to a

temperature anisotropy of just ∆T/T ≈ (v/c)2 = 10−5.

A simple criterion needed for a fluctuation to grow is that the self-energy of a

spherical inhomogeneity of radius λ, U ∼ Gρλ3/λ, must be grater than the kinetic energy

of the gas thermal motion, v2,i.e.

λ >
v

(Gρ)1/2
. (3.10)

For baryons which is equivalent to say that the free-fall time is less than the hydrodynamical

time, i.e. that self-gravity forces are greater than the pressure forces. When such conditions

are not satisfied, pressure dominates, the perturbation will propagate like an acoustic wave

with wavelength λ at velocity v. For a collisionless fluid, such as DM, the behavior is

very similar: when the gravity is not able to sustain the ’pressure’, given by the mean

square velocity of the particles, these cannot be confined and therefore they undergo free
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streaming. Fluctuations in this case do not behave like acoustic waves but are smeared out

and dissipated.

More quantitatively we perturb a smooth expanding matter background, controlled

by the Poisson, Euler and continuity equations

a ∂tδ + ~∇x [(1 + δ) ~u] = 0

∂t(a ~u) + (~u · ~∇x) ~u = −1

ρ
~∇xp− ~∇xφ

∇2
xφ = 4π Ga2 ρ ;

(3.11)

here x is the comoving coordinate, ~u is the peculiar velocity (subtracted from the Hubble

flow), and φ is the gravitational potential.

Considering only the zero and first order terms, in the approximation that δρ << ρ,

one finds from Eqs. (3.11)

δ̈ + 2
ȧ

a
δ̇ = 4πGρ̄δ (3.12)

In the static case, H = ȧ/a = 0, the growth of perturbations is exponential, δ ∝ exp(iωt).

In the radiation dominated era recasting Eq. (3.12) in the variable y = a/aeq, where

aeq is the ”matter-radiation” equi-density (1+zeq ∼ 3.9×104(Ωm h2)), the solutions read as

δ = 1+3/2y and δ ' ln(4/y), showing that in the radiation dominated epoch, perturbations

do not grow significantly (as a logarithm of time at the most): they are ”frozen” until zeq.

This is known as the Meszaros effect, which prevents growth of perturbations in the radiation

era. It is a direct consequence of the very fast expansion of the background Universe during

this epoch.

In a matter dominated Universe (z < zeq), of main interest for structure formation,

the solution to Eq. (3.12), for a generic set of cosmological parameters, reads as

δ = D(z) ≡ 5

2
ΩmH(a)

∫ a

0
dx

1

x3H(x)3
, (3.13)

with H(x) = [Ωmx
−3 + ΩΛ]. An accurate fit to the growth factor D(z), used in this thesis,
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has been given by Lahav et al. (1991)

D(z) ' 5

2

Ωz

1 + z

(

1

70
+

290Ωz

140
− Ω2

z

140
+ Ω4/7

z

)−1

, (3.14)

where

Ωz = Ωm(1 + z)3/[ΩΛ + (1 + z)3Ωm] . (3.15)

Baryonic perturbations evolve following Eq. (3.16) in which also the term corre-

sponding to Dark Matter gravity is included

δ̈B + 2
ȧ

a
˙δB +

(

c2sk
2

a2
− 4πGρ

)

δB = 4πGρδ . (3.16)

In an expanding background if gravity overwhelms pressure (the first term in the parenthesis

is less than the second term), i.e. λ > λJeans = cs(π/Gρ)
1/2, then the perturbation can

grow. However even those baryonic perturbations which enter the horizon in the matter-

dominated epoch (which have a wavelength higher than the Jeans scale) do not grow but

oscillate until recombination. In the early hot phase infact, the baryons are in thermal

equilibrium with radiation through Thomson/Compton scattering and therefore, supported

by the strong radiation pressure, are prevented from collapsing.

When the Universe cools below the hydrogen binding energy, electrons and protons

recombine and the radiation decouples from matter. Such a transition occurs at Tdec ' 3·103

K and zdec ' 1.7 · 103. (The decoupled radiation dominates the background intensity and

appears now in the redshifted µwave band (CMB, see Chapter 2, Section 2.2.7) and it is

very well fitted by a perfect blackbody spectrum peaking at a temperature of T = 2.73 K).

After zdec baryonic perturbations are then free to grow within the dominant DM potential

wells.

As noted above the Universe is dominated by non-baryonic matter, in principle

composed of a variety of particles produced in the early stages and now present as cosmic

relics. Such relics are subdivided into thermal, produced in thermodynamic equilibrium with

the rest of the Universe (neutrinos,...), and non-thermal, non in equilibrium (monopoles, cos-

mic strings...). The first species of particles can be grouped in hot matter, which decoupled

when it was still relativistic, and cold matter which decoupled when it was non-relativistic.
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To get some knowledge of the moment of decoupling from thermodynamic equilibrium of a

given species of number density nX one uses the Boltzmann equation

dnX

dt
+ 3

ȧ

a
nX+ < σAv > n2

X − Ψ = 0, (3.17)

where the term ȧ/a takes into account the expansion of the Universe, < σAv > is the rate

of collisional annihilation and Ψ denotes the rate of particle creation.

For the collisionless component we can define the Jean Mass as

MJX =
π

6
mXnXλ

3
JX , (3.18)

where λJX = vX(π/Gρ)1/2, one finds that at the moment of decoupling for hot thermal

relics

MJX ' 3.5 · 1015(ΩXh
2)−2 M� . (3.19)

Perturbations less than the Jeans mass will be damped. In the relativistic regime,

when their velocity is vX ' c, the particles will be dispersed from overdense to underdense

regions, a process which is partly occurring also in the non-relativistic regime. Moreover

perturbations smaller than the free streaming scale

λXf ' a(t)

∫ t

0

vX

a(t′)
dt′ (3.20)

will be dissipated due to the natural free motion of particles.

In this Top-down scenario, structures evolve through fragmentation from large

perturbations, pancakes, into smaller units. Therefore small-scale structures emerge very

late and this is at odds with observations of high-z proto-galaxies and Quasars (e.g. Fan et

al. 2001). In the Cold Dark Matter (CDM) scenario instead the maximum value of MJX

is much smaller ∼ 105M� and therefore structure formation in this case turns out to be

Bottom up or Hierarchical. However as discussed in the Introduction and in Section 3.4,

Hierarchical models are still short in reproducing many observations regarding the High-z

galaxy populations.

Before ending this section it is worth noticing that new work has been recently

developed on the linear theory of density perturbations. Naoz & Barkana (2005) have

added to gravity electron scattering and gas pressure in the evolution of perturbations and
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they concluded that the effect is ≥ 10% in the baryonic power spectrum on small scales.

Moreover Barkana & Loeb (2005) have proposed that infall of neutral hydrogen in the DM

potential wells can imprint acoustic oscillations on the pattern of brightness fluctuation

and in principle could be directly detectable through observations of the 21cm fluctuations.

Such observations could probe the very first stages of galaxy formation in the range z ∼
20-200.

3.3 Non-linear Evolution: Statistics of Dark Matter Halos

3.3.1 Spherical Collapse

Up to now we have considered the linear evolution of structures, in which we have

derived Eq. (3.12) from Eqs. (3.11) in the limit δ(x) = (ρ(x)− ρ̄)/ρ̄ << 1. For studying the

non-linear evolution, when δ(x) ∼ 1, we can restrict ourselves to the special case of spherical

symmetry, to get the general behavior of a DM halo in this regime. An overdense region

will expand more slowly than the rest of the Universe and at a certain turn around epoch it

will reach a maximum radius, then it will collapse and eventually virialize (i.e. it will reach

an energetic-dynamical equilibrium configuration) to form a gravitationally bound object.

After this we will then rely on statistical tools to describe the evolution of bound structures

in the Universe.

The radius R(t) of such a spherical region will evolve according to

R̈ = −GMDM

R2
− 4πG

3
ρ̄Λ (1 + 3wΛ)R , (3.21)

where we have separated the contribution of DM and dark energy.

Let us first quote the solution of the previous equation in a pure matter-dominated

Universe, where R̈ = −GMDM/R
2. The non-linear density contrast as a function of redshift
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is implicitly given by (Peebles 1980)

(1 + z) =

(

5

3

) (

4

3

)2/3 δ0

(θ − sin θ)2/3

δ =
9

2

(θ − sin θ)2

(1 − cos θ)3
− 1

(3.22)

where δ0 is the density contrast at present if it were evolved by the linear approximation.

The linear density contrast at a given epoch is in general In pure matter dominated Universe

the radius evolution is provided by Peebles (1980)

δL =
3

5

(

3

4

)2/3

(θ − sin θ)2/3 . (3.23)

Now the evolution of the perturbation is straightforward. The transition to non-

linearity (δ ≈ 1) occurs for θ = 2π/3 when δL ≈ 0.57, i.e., at redshift 1 + znl ≈ δ0/0.57; the

turn-around occurs when δ = 4.6 and δL ≈ 1.063, i.e., at redshift 1 + zta ≈ δ0/1.063; finally

at θ = 2π all the mass will be collapsed to a point. However, long before this happens the

analysis based on Eq. (3.21) breaks down because the random velocities of DM particles are

no longer small. The DM will relax to a virialized configuration in a time which is essentially

that corresponding to θ = 2π. So virialization occurs when δ ≡ ∆vir ≈ 18π2 ≈ 180 and

δL ≡ δc ≈ 1.686, i.e., at redshift 1 + zvir ≈ δ0/1.686.

The overdensity at virialization has to be larger than in a matter-dominated Uni-

verse owing to the anti-gravitational action of the dark energy that counteracts the collapse.

Moreover, it is found that ∆vir slowly depends on cosmic time; a good fit (wΛ = −1), which

has been used in this thesis, is provided by Eke et al. (1996)

∆vir(z) ' 18π2 + 82 (Ωz − 1) − 39 (Ωz − 1)2 , (3.24)

where Ωz is given in Eq. (3.15).

3.3.2 Gaussian Statistical Field

We can describe the density perturbation in the Universe as a realization of a

functional f(x) ε [f : Re3 → Re]. To each point of the space we associate a scalar, the value
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of its density contrast δ(x), and consider that such a random field has a Gaussian probability

distribution function with median zero and σ equal to the square root of the mean square

deviation of the density field. Converting in the Fourier space it is straightforward to check

that the modes δ̃(k) are independent.

The two point correlation function in Fourier space is expressed by the Power

Spectrum defined by

< δ̃(k)δ̃(k′) >= P (k)δD(k − k′) . (3.25)

P (k) =< |δ̃(k)|2 > expresses on average the amount of power of the perturbation field on

the scale k ∼ 1/R. The power spectrum P (k) contains the complete statistical information

of the Gaussian random field and the WMAP data have indicated the initial power spectrum

to be nearly scale-free, i.e. of the form

P (k) ∝ kn (3.26)

with the spectral index n ≈ 0.99 ± 0.04. A slight sign of non linearity in the spec-

trum has been detected. The so-called ”running” spectral index, reads as n = 0.93 +

0.5(−0.03) log(k/0.05/h), which flattens the power on smaller scales.

The evolution until the end of the linear regime for each mode is parameterized

as D(z)δk(z) = Tkδk(z = 0), in terms of the transfer function Tk which gives the ratio of

the late-time amplitude of a mode to its initial value, where, we remind, D(z) is the linear

growth factor between redshift z and the present.

As discussed above, to calculate accurate results for the transfer functions is a

technical challenge, mainly because we have a mixture of matter (both collisionless dark

particles and baryonic plasma) and relativistic particles (collisionless neutrinos and colli-

sional photons,...) which does not behave as a simple fluid. There are however, as mentioned

above, essentially two ways, Jeans mass and damping effects, in which the power spectrum

that existed at early times, detected by WMAP, may differ from the one that emerges at

the present.

Bardeen et al. (1986) provide a fitting formula for the power spectrum, which has

been used in this thesis. For a CDM model the transfer function reads as

Tk =
ln(1 + 2.34q)

2.34q
[1 + 3.89q + (16.1q)2 + (5.46)3 + (6.71q)4]−1/4 (3.27)
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with q = k/Ωmh
2 Mpc−1. A non-zero baryonic density lowers the apparent DM density

parameter. An apparent shape parameter Γ = Ωmh has been defined for the transfer

function in a model with zero baryon content, for which q = k/hΓMpc−1. The effect of

increasing the baryon density Ωb is to preserve the spectrum shape but to shift it to lower

values of Γ. For general models with Ωm 6= 0 and not too large values of Ωb Sugiyama

(1995) finds

Γ = Ωmh exp
[

−Ωb

(

1 +
√

2h/Ωm

)]

. (3.28)

The effect on the statistics of DM halos (see Chapter 6, Section 6.1) due to the inclusion

of baryons in the power spectrum can be significant: the number of halos formed at any

time and any mass, especially those in the range 1012 ÷ 1013M�, diminishes as, according

to Eq.(3.28), less power is attributed to a fixed scale.

Once the power spectrum is known the variance of the Gaussian fluctuation field,

σ ≡< δ >2, can be computed

σ2(R) =

∫

dk

2π
k2P (k)W (kR) =

∫

d ln k∆2
kW (kR) (3.29)

where the result in the integral of Eq. (3.29) depends on the window function W used.

This is physically relevant as for Birkhoff’s theorem, any scale evolves knowing anything

of larger scales therefore through such a filtering only perturbations below R contribute

to the density contrast on that scale. Often the window function is expressed as W (x) =

(3/x3)(sinx − x cos x) because it allows to simply relate the size of the averaged region to

the mass contained within it as M ≡ (4π/3)ρ̄R3. Following e.g. Mahmood et al. (2004),

one can then write the variance simply as

σ2(M) =

∫ ks

0
dk 4πk2P (k) dk (3.30)

with M = 6πρ0ks, being ρ0 the mean background density of matter in the Universe. When

σ(M) → 1, that particular scale characterized by R will go nonlinear and matter at that

scale will collapse and form a bound structure.

The evolution with redshift will be that of a typical perturbation, i.e. σ(M, z) ∝
σ(M) × D(z) ∝ a(z). Approximating the power spectrum with a power law, P (k) ∼ kn,

then we can write σ(M, z)2 ∼ ∆2
k ∼ P (k)k3 ∼ a2M−(n+3), which clearly highlights the
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characteristic hierarchical build-up of DM structures, where smaller masses first achieve

non-linearity in time. Infact σ(M) → 1 implicitly defines a ”characteristic mass” Mc(z) =

Mc0[D(z)/D(0)]6/(n+3) that is to collapse at a given epoch, being Mc0 ' 6 · 1014Ωmh
−1M�

the present value and smaller at earlier times (D(z) ∝ a(z)). In a statistical description

we could think of regions having a density contrast of, say, ν times larger than the typical

value σ(M, t) occurring with a Gaussian probability P (ν) which will collapse at any redshift

for which the condition νa(z)σ0(M) ∼ 1 is satisfied, being σ0(M) the fiducial value of the

density fluctuation today.

3.3.3 The Press & Schechter Mass Function

Gravitationally bound objects in the Universe span a large dynamic range in mass.

Let f(M)dM be the number density of bound objects in the mass range M ÷M + dM and

F (M) the number density of objects with masses greater thanM . Given a certain realization

of the linear density field δ(x) there will be regions with high density δ(x) > δc, where we are

now calling δc the linear critic density contrast given in Eq.(3.23). It is reasonable to assume

that those regions with a density contrast above the linear critical one at the turnaround

point, will eventually condense out as bound objects. Although the dynamics of that region

is non-linear, the process of condensation is unlikely to change the mass contained in that

region significantly. Therefore if we can estimate the mean number of regions with δ(x) > δc

in a Gaussian random field, we will be able to determine F (M).

The fraction of bound objects with mass greater than M will be in a Gaussian

random field

F (M) =
1√
2π

1

σ(M, t)

∫

∞

δc

exp

[

− δ2

2σ2(M, t)

]

. (3.31)

Therefore the Mass Function f(M) is given by ∂F/∂M and the comoving number density

N(M, t) is found by dividing f(M) by M/ρ̄

N(M)dM =

√

2

π

ρ̄

M

δc
σ2

dσ

dM
exp

(

− δ2c
2σ2

)

dM (3.32)

where it has been multiplied by a factor of 2, as outlined in the seminal paper by Press

& Schechter (1976; P&S). Infact the integral of f(M) over M gives 1/2, instead of 1, due

possibly to the fact that after filtering on a scale R there will be non-zero probability that



62 Chapter 3: Evolution of Dark Matter and Baryons: where SMBH fit in

those points which have δ < δc will have δ > δc when the density field is filtered with a

radius R1 > R (”cloud-in-cloud” problem). Such a problem is a weak point in the P&S

formalism and it has been shown that surprisingly, using a sharp k-space filter, the factor

of 2 gives the right correction to the mass function, but such a factor is not valid for other

filters.

A more refined theoretical approach to calculate the number density of collapsed

objects at any redshift has been carried out by Bond et al. (1991). Given a power spec-

trum and the correspondent field of density perturbations one can filter on a very large R.

The corresponding resolution will be S ≡ σ2(R). While lowering the filtering radius, the

overdensity δ of the chosen point will determine a random walk δ(S). At every step ∆S the

increment ∆δ will be uncorrelated from the previous ones, i.e. δ(S) will be a Markovian

random walk. Now consider an absorbing barrier δc(z) = δc/D(z), i.e. when the δ(S) over-

passes δc(z), the object collapses and therefore is removed from the random walk. Such a

behavior for the probability of upcrossing at any given step can be described with a diffu-

sion equation from which, after integrating on all trajectories the P&S mass function can

be recovered (this is called ”excursion set formalism”).

Bond et al. (1991) however used a spherical collapse model to determine the

barrier height B; in this case the critical overdensity δc(z) required for collapse at z is

independent of the mass m of the collapsed region, so it is independent of σ(m) therefore

since ν ≡ δc(z)/σ, then B(ν) must be the same constant for all ν, i.e. B(ν) = δc(z).

Sheth & Tormen (2002; S&T) have refined this calculation to take into account ellipsoidal

collapse. An ellipsoidal perturbation is determined by three parameters, eigenvalues of the

deformation tensor: the ellipticity e, the prolateness p < e, and the density contrast δe(e, p).

Regions having a given value of δ/σ will have an ellipticity e = (δ/σ)/
√

5 (Sheth, Mo &

Tormen 2001). Therefore to collapse and form a bound object at z, the initial overdensity of

such a region must have been δe(e, z) ∼ δc(z), which defines a relation between the absorbing

barrier and the ellipticity of the object and therefore its mass. Such a connection provides

a ”moving barrier” which ones integrated hields the following mass function (S&T):

N(M, z) = A
ρ̄

M

√

2a

π

δc(z)

σ2

[

1 +

(

σ2

aδ2c (z)

)p]

exp

[

−aδc(z)
2

2σ2

]

(3.33)
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where A = 0.3222, a = 0.707 and p = 0.3. Eq. (3.33) has proved to give a very good fit to

high resolution N -body simulations up to redshift z = 10 and masses M ∼ 1013M� at these

redshifts (Springel et al. 2005). In this thesis we will always use Eq. (3.33) to describe the

mass statistics of DM halos at any redshift.

3.3.4 Structure of a Dark Matter Halo

A universal mass density profile of DM halos was introduced as a result of high N -

body simulations performed by Navarro, Frenk & White (1997). These authors found that

the density profile can be fitted by a simple formula with only one fitting parameter. This

profile (Eq. (3.34)) steepens from r−1 near the center of the halo to r−3 at large distances,

while it has the slope of an isothermal, r−2, in the central parts around the knee

ρ(r) =
4ρs

(

r
rs

)(

1 + r
rs

) (3.34)

where rs is a scale radius and ρs is the density at this radius. Such a profile has been

confirmed in numerical simulations by various groups (e.g. Bullock et al. 1999). However

such a profile is just an ”initial condition”. Recent numerical simulations (Navarro et al.

2004) have however shown considerable scatter in the value of the slope d log ρ/d log r ∼ −1

in the very inner regions. Observationally, spiral galaxies from rotation curve analysis are

better fitted in the central regions by a halo core-profile, of the type given by, e.g., Burkert

& Salucci (2000), i.e. it is now believed that the profile is not so steep at the center but it

rather has a core. The reason for the origin of the core, from an original power-law, as the

one shown in simulations, is not yet well understood but, as it will be further discussed in

Section 2.4, the DM profile in Eq. (3.34) seems to be preserved during mergers and modified

only by the infall of the baryons in the inner regions.

From now on we will call Mvir, the mass of a halo which has virialized at a given

redhsift zvir. The proper size of the halo, in this case, is often defined so that the mean

density within the halo radius Rvir is a factor ∆vir, given in Eq. (3.24), times the mean

density of the Universe ρ̄ at the redshift z in consideration. The halo mass is then

Mvir =
4π

3
ρ̄∆virR

3
vir , (3.35)
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where virial radius is

Rvir = 31

(

Mvir

1012M�

)1/3 ( Ωm

Ωm(z)

∆vir

18π

)−1/3 (1 + z

7

)−1

Mpc , (3.36)

and the virial velocity, i.e. the circular velocity of the virialized halo Vvir, is

Vvir = 375

(

Mvir

1012M�

)1/3 ( Ωm

Ωm(z)

∆vir

18π

)1/6 (1 + z

7

)1/2

km s−1 , (3.37)

being Ωm(z) ≡ Ωz.

Defining the concentration parameter as c = Rvir/rs and the function A(x) =

ln(1 + x) − x/(1 + x) it is straightforward to find

M(s)

Mvir
=
A(cs)

A(c)
(3.38)

where M(s) is the mass enclosed within s = R/Rvir. Bullock et al. (2001) have found in

high-resolution N -body simulations that the c parameter scales with mass and redshift (a

dependence that we have taken into account in this thesis in modeling DM halos) as

c =
9+4.5
−3.2

1 + z

(

Mvir

1013h−1M�

)−0.13

. (3.39)

The scatter the authors find around the mean relation is ∆(log cvir) = 0.18 at a given mass.

Following Lokas & Mamon (2001) the 1-D velocity dispersion profile can be found on solving

the Jeans equation
1

ρ

d

dr
(ρ σ2

r ) +
2

r
(σ2

r − σ2
θ) = − d

dr
Φ , (3.40)

supplemented by the boundary condition σ(r) → 0 for s → ∞. For isotropic orbits with

equal tangential (σθ) and radial (σr) dispersions, the result is

σ2(r)

v2
v

=
1

2
c2 g(c) s (1 + cs)2

[

π2 − ln(cs) − 1

cs
− 1

(1 + cs)2
− 6

1 + cs
+

(

1 − 4

cs
+

+
1

c2 s2
− 2

1 + c s

)

ln(1 + cs) + 3 ln2(1 + cs) + 6Li2(−cs)
]

(3.41)

in terms of the special function (the dilogarithm)

Li2(x) =

∫ 0

x
dt

ln(1 − t)

t
. (3.42)
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Figure 3.2: Radial velocity dispersion profiles (in units of the circular velocity at the virial
radius). Figure taken from Lokas & Mamon (2001)
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Eq. (3.41) is reported in Fig. 3.2 in which we can check that the ratio of the dispersion and

virial velocities is about 0.55− 0.6 at the virial radius. Such findings will be developed and

discussed in Section 2.4 and Chapter 7.

As a last point we report also the potential energy associated with the NFW mass

distribution

W (s) = − 1

Rvir

∫ s

0

GM(s)

s

dM(s)

ds
ds = −W∞

[

1 − 1

(1 + cs)2
− 2 ln(1 + cs)

1 + cs

]

. (3.43)

We will use Eq. (3.43) in Chapters 7 and 8, modified to include baryons.

3.3.5 Halo Formation Rates

The derivative of the P&S mass function is

RPS(M, t) =
dNPS(M, t)

dt
=

[

δc(t)

σ2(M)
− 1

δc(t)

] [

−dδc(t)
dt

]

NPS(M, t) . (3.44)

The above expression is positive only for σ(M) < δc(t) since dδc(t)/dt < 0 (in fact ˙δc(t) =

δc0/Ḋ ∝ −α tα−1, with α > 0). This implies that RPS(M, t) is negative for low-mass

objects for almost all realistic power spectra and window functions. The r.h.s of Eq. 3.44

becomes negative for M < Mc(t), where we remind the critical mass Mc(t) is the mass for

which σ(M, t) = δc(t). RPS(M, t) however must not be interpreted as the formation rate

of bound objects. Rather it corresponds to the net rate of change in the number density.

Infact RPS(M, t) consists of a linear combination of the formation rate Rform(M, t) at

which objects of a given mass M are formed by mergers of smaller mass objects, and

the destruction rate Rdestr(M, t) at which they are destroyed and/or incorporated in more

massive systems:

RPS(M, t) ≡ Rform(M, t) −Rdestr(M, t). (3.45)

Merging is one of the most fundamental physical processes for the formation and

destruction of halos and formation rates are a fundamental tool for studying galaxy evo-

lution as we will discuss below. Moreover it has to be noted that, once halos merge, not

always they lose their identity (see Section 2.3.7): especially in unequal-mass mergers, if

the smallest ones are massive/concentrated enough, and/or the halo in which they infall is

not so concentrated, they could survive stripping and dynamical friction.
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A simple analytical treatment of how to calculate the formation rates has been

outlined by Sasaki (1994) who has considered the destruction rate proportional to the P&S

mass function Rdestr = Φ(M, t)NPS(M, t) where Φ(M, t) is the efficiency of destruction

rate. Supposing such efficiency to have no characteristic mass scale Φ(M, t) = Φ(t) one can

write

Φ(t) = −RPS(M, t)

NPS(M, t)
=

1

D

dD

dt

[

1 − δ2c
σ(M)2D2(t)

]

(3.46)

which in the limit M → 0, i.e. σ(M) → ∞, if monotonically decreasing with mass, leads to

Rform(M, t) =
1

D

dD

dt
NPS(M, t)

δ2c
σ2(M)D2(t)

. (3.47)

From the above formalism, the probability p(t1, t2) that an object which exists at

t1 remains at t2 without merging is given by

p(t1, t2) = exp

[

−
∫ t2

t1

Φ(t′)dt′
]

=
D(t1)

D(t2)
(t2 > t1) (3.48)

and the formation epoch tf distribution F (M ; tf , t) of bound objects with mass M at t is

given by F (M ; tf , t) = RPS(M, t) · p(tf , t).

Bond et al. (1991), and further Lacey & Cole (1993), Kitayama & Suto (1996)

developed more refined analytical methods to treat the process of formation rate and curing

the ”cloud-in-cloud” problem. Their results are strictly justified only when one adopts the

sharp k-space filtering, i.e. the spherical top-hat filtering in k-space, and when σ(M) is a

monotonically decreasing function of M . The conditional probability that a point resides

in an object of mass M1 ∼ M1 + dM1 at time t1 provided that it becomes part of a larger

object of mass M2(> M1) at later time t2(> t1) is

P1(M1, t1|M2, t2) =
1√
2π

δc1 − δc2
(σ2

1 − σ2
2)

(3/2)

∣

∣

∣

∣

dσ2
1

dM1

∣

∣

∣

∣

exp

[

−(δc1 − δc2)
2

2(σ2
1 − σ2

2)

]

dM1 (3.49)

where σi ≡ σ(Mi) and δci ≡ δc(ti). Eq. (3.50), and the corresponding inverse conditional

probability P2(M2, t2|M1, t1), readily yield instantaneous transition rates from a certain

mass to another. Therefore if one weights the number of halos of mass M at a time t with

the probability in Eq. (3.49) of having actually formed the objects from smaller subunits of
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Figure 3.3: Formation Epochs in the Extended Press & Schecther theory in the ΛCDM
cosmology; tha various curves are, from top to bottom, for M = 109, 1011, 1013, 1015M�

mass Mf < M , one can set the formation rates as

Rform(M, t;Mf ) =

∫ Mf

0
dM1

dP1(M1 →M ; t)

dt
NPS(M, t) =

=

√

2

π

1
√

σ(Mf )2 − σ(M)2

[

−dδc(t)
dt

]

NPS(M, t) . (3.50)

An object of mass M at the time t could have been formed by the merging of smaller objects

of mass from 0 Mf , at a time t− dt. The mass Mf is usually set to M/n, with n = 2 (see

Lacey & Cole 1993), but we have verified that our results are so not sensitive to the exact

value of n, as long as 1 < n < 5. The survival probability that an object of mass M at time

t1 remains, without destruction, to have mass less than 2M at a later time t2(> t1) is then

Psurv(M, t1, t2) =

∫ 2M

M
P2(M2, t2|M, t1)dM2. (3.51)

In Fig. 3.3 we show the formation rates for different masses. It is readily seen the hierarchical

behavior for which big masses are formed later than smaller ones. What reported above, in

particular in Eq. (3.50) for the formation of bound objects, is known as the Extended Press &

Schecther theory (EPS) and is extensively used when comparing results of simulations with

theory and in Galaxy formation Semi-Analytical Modeling (SAM), to estimate the number
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of baryonic cores formed trough the cosmic epochs. However these methods, EPS and

Sasaki’s rates, seem to fail in reproducing the results of simulations (see also Benson et al.

2005), being the absolute difference in the rates up to a factor of 2 to 10 varying depending

on mass and redshift (Lacey & Cole 1994; Taffoni et al. 2002; Springel et al. 2005). To

highlight the problem in Fig. 3.4 we show some results by Taffoni et al. (2003). These

authors compare the number of progenitors for a given halo of mass M0 at z = 0 computed

from simulations (using the code PINOCCHIO) and the EPS theory. It is straightforward

to see the mismatch, up to factor of 10, between the numerical and the analytical results.

As commented in Section 2.3.3 the S&T mass function (Eq. (3.33)) is a very good fit to

numerical simulations (Springel et al. 2005) and therefore it is expected that its variation

with time could better reproduce the rate of production of virialized objects at any epoch

(zvir ≤ 10).

In particular, as shown in Fig. 3.5, the total and the positive terms of the S&T

mass function derivative coincide for z ≥ 1.5 and halo masses 1012.5÷1013M�, which implies

that the negative term is negligible in these ranges. In this thesis we have then followed

the assumption, used by Granato et al. (2004), that the complete statistics of halos in the

range ∼ 1012 ÷ 2 × 1013M�, which could harbor a galaxy (see Section 2.4), is given by the

positive term of the derivative of the S&T mass function that for a mass Mvir at time tvir

reads as

d2NST

dtvir dMvir
=

[

a δc(tvir)

σ2(Mvir)
+

2 p

δc(tvir)

σ2 p(Mvir)

σ2 p(M) + ap δ2 p
c (tvir)

]

∣

∣

∣

∣

dδc
dtvir

∣

∣

∣

∣

NST(Mvir, tvir) . (3.52)

However, as discussed above, the positive term may not completely represent the

formation rates of DM halos: it is still missing a complete Extended S&T theory which

would need the definition of the survival probabilities (as those in Eq. (3.51) for the P&S

mass function), through a ”moving barrier” approach (Section 3.3.3). A very first attempt,

not yet confirmed, has been pursued by Mahmood & Rajesh (2005) who have implemented

a moving barrier model for computing the DM rates using the S&T mass function. Such a

method, though analytical, it has to be still numerically solved, with a high computational

cost. Anyway their final result is that the Extended S&T rates, computed from the survival

probabilities, are comparable to the positive term of the S&T mass function derivative



70 Chapter 3: Evolution of Dark Matter and Baryons: where SMBH fit in

Figure 3.4: Conditional mass functions in the ΛCDM case for parent halos identified at
z = 0. The points represent the simulation data while the solid lines are the prediction of
PINOCCHIO; the dashed lines are the analytical predictions of the EPS. Figure taken from
Taffoni et al. (2002)
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Figure 3.5: Derivative of the S&T mass function. Solid line: only positive term; dashed
line: total derivative. From bottom to top the three set of lines are for Mvir = 1013M�,
Mvir = 1012M� and Mvir = 1011M�

(within a factor of 2) in the range of redshift and masses taken into account in this thesis

(see their Fig. 11). The most interesting result of this discussion is that the S&T rates

seem to be much more accurate than the usual implemented EPS theory, in fitting numerical

rates of formation of bound objects as obtained from numerical simulations. Especially at

high redshift the number density predicted by the S&T theory for halos of about 1013M�,

(which are the halos harboring the powerful high redshift QSO; see Chapter 6) is up to

a factor of 10 higher of the EPS rates, but however still more consistent with numerical

simulations (Taffoni et al. 2002; see Fig. 3.4). In Fig. 3.6 we show the comparison for

the rates computed with S&T and EPS theories for various halo masses as a function of

redshift.

3.3.6 The Merger Tree

Given a DM halo at any redshift z = z0 it is possible to build the distribution

of the number of progenitors of that halo at any redshift z > z0. This is very useful for

building the halo main progenitor accretion history, i.e. at any time we can probe the mass
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Figure 3.6: Formation Rates in the ΛCDM cosmology. Solid line: computed using the S&T
mass function; dashed line: EPS rates. From bottom to top the three set of lines are for
Mvir = 1013M�, Mvir = 1012M� and Mvir = 1011M�

of the most massive ”clump” which concurs in building up the final halo mass. In this

section we show our results in building a merger tree following the prescriptions by Lacey

& Cole (1993). The strongest limitation of this approach is that the statistics is based on

the EPS formalism, which we have shown (Section 3.3.5) not to be fully consistent with

numerical simulations.

According to EPS, following Eq.( 3.50) the fraction of mass in a halo of mass M0

at redshift z0, which at an earlier time was in smaller progenitors of mass in the range

M ÷M + dM is

f(M,M0)dM =
1√
2π

D

S3/2
exp

(

−D
2

2S

)

dσ2

dM
dM , (3.53)

whereD is the growth factor (Section 3.2) and S ≡ σ2(M)−σ2(z0). Integrating this function

over the range 0 < M < M0 gives unity: all the mass of M0 was in smaller subclumps at

an earlier epoch.

Taking the limit z → z0 and multiplying by the factor M0/M to convert from

mass weighting to number weighting, Eq.( 3.53) gives the number of progenitors dN/dM

the more massive halo fragments into when one takes a small step δz back in time. Having
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specified the mass resolution Mres, one can then compute the mean number of fragments

in the range Mres < M < M0/2

Np =

∫ M0/2

Mres

dN

dM
dM , (3.54)

and the fraction of the accreted mass

Fa =

∫ Mres

0

dN

dM

M

M0
dM . (3.55)

Following a random normal sequence of numbers below unity (for details see e.g. Volonteri

et al. 2003) at any time step the halo mass is fragmented into two smaller subunits out of

which also the accreted mass Fa is removed (this technique prevents the formation of too

many massive objects at high redshifts as compared to those predicted by the EPS itself,

see Lacey & Cole 1993). The merger hierarchy is built up by repeating the same splitting

procedure on each subclump at successive time steps. Our results are shown in Fig. 3.7.

In Fig. 3.9 we show the main progenitor accretion histories for a halo masses of

1013M�, 1013M� at z = 0. It is interesting to notice that the growth is different: the cluster

reaches 1/10 of the mass at z ∼ 1, while the 1013M� halo has gained already 40% of its

mass at that time. Moreover it has to be pointed out that if one neglects the accreted mass

in Eq. (3.55), as in the original version of Lacey & Cole (1993) at each timestep backwards

in time, the growth of the smaller halo is even smoother at low redshift. The average growth

of the total mass of the DM halo as described by the merger tree, is in very good agreement

with the findings by Zhao et al. (2003b) (compare Figs. 3.9 and 3.10).

These authors find that, in high-resolution N -body simulations developed in a

ΛCDM cosmology, the build-up of dark halos generally consists of two phases: a first phase

of fast accretion, where the halo mass increases with time much faster than the expansion

rate of the Universe and the circular velocity, i.e. its potential well, increases rapidly with

time, and a second phase of slow accretion, during which the mass grows at the most linearly

with time or by factors of a few while the circular velocity stays almost constant.

The inner properties of the halo, such as rs, increase rapidly during the fast ac-

cretion and stay almost constant or vary slightly in the second phase. It is interesting to

notice from Fig. 3.10 that, in particular, even if the mass of the total halo increases with
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Figure 3.7: Mean number of progenitors with mass M for a z0 = 0, M0 = 1011M� parent
halo at different redshifts as labelled. Dashed lines are the predictions of the EPS theory;
histograms show the results for the merger tree (mean of 100 realizations), M > Mres =
10−3 ·M0. Performed by A. Lapi & F.S.

Figure 3.8: Main progenitor halo merger history for a 1015M� DM halo. The thick solid
line is the average on 100 realizations. Performed by A. Lapi & F.S.
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Figure 3.9: Main progenitor halo merger history for a 1013M� DM halo. The thick solid
line is the average on 100 realizations. Performed by A. Lapi & F.S.

time, the inner mass within rs, Ms, does not vary significantly, implying that the mass is

added in the outer regions (see also Section 3.3.7).

Moreover Wechsler et al. (2002) find c to be intimately linked with the time

dependent mass accretion rate onto the halo and in the fast accretion phase, with high

mass infall rates, the concentration parameter is related to the background density while

stays approximately constant during the slow accretion phase.

3.3.7 Statistics and distribution of Subhalos

During the hierarchical assembly of DM halos the inner regions of early virialized

objects often survive accretion onto a larger system, thus giving rise to a population of

subhalos. This substructure population evolves in number and mass as it is subjected to

the forces that try to dissolve it. Depending on their orbits and their masses these subhalos

therefore either merge, are disrupted or survive to the present day.

Such issue is important to fully describe, in a statistical sense, the non-linear

distribution of mass in the Universe (galaxies are thought to reside at the centers of DM

halos and subhalos). According to P&S theory when a region collapses, all its substructure

is supposed to be erased at once, while in realistic cases the erasure of substructures is
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Figure 3.10: Top: mass accretion histories (i.e. the change of the mass of the main pro-
genitor with the scale factor) for five high-resolution halos. Mh defines the total halo mass
while Ms just the mass within rs. Bottom: the evolution of halo circular velocity Vh and
inner circular velocity Vs. (Figures taken from Zhao et al. 2003b)
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connected to the two-body interaction of already collapsed clumps.

To tackle the problem of how structures evolve, within a hierarchical scenario of

DM halos, it has to be taken into account that in unequal mass merger, the smaller halo is

dragged inside the bigger halo and its further dynamical evolution is controlled by dynamical

friction. The orbital decay time caused by dynamical friction is simply dR/dt = −R/tdf ,

on the time-scale

tdf =
1

2

[

∂ lnM(R)

∂ lnR
+ 1

]−1 V 3
circ(R)

4πG2(lnΛ)Mρ(R)g[Vcirc(R)/
√

2σr]
(3.56)

where lnΛ = 8, σr(x) = f(x)V 2
max, with f(x) a function of the normalized radius (see

Oguri & Lee 2004), and g(ξ) = erf(ξ) − (2/
√
π)ξ exp(−ξ2). Since the dynamical friction

is also proportional to the radius R, the decayed radius Rf of the subhalo during the

infalling from an initial radius Ri within the time-interval ∆t in the host halo is estimated

as Rf = Ri

[

1 − ∆t
tdf

]

and the corresponding stripped mass is mf = mif [rt(mi)], where f is

a function (Oguri & Lee 2004) of the tidal radius rt, which is approximately the radius at

which gravity balances the tidal force. Beyond this radius the mass mi will be completely

disrupted. This force causes an orbital decay and makes the subhalo more susceptible to

strong tidal forces. It is still uncertain from numerical simulations the actual fraction of

matter which is stripped away.

Various groups have arrived to similar conclusions exploiting numerical and ana-

lytical techniques (see van den Bosch et al. 2005):

• more massive halos have a larger mass fraction of substructures

• the halo-to-halo scatter is large

• the abundance of subhalos per unit parent halo mass is independent of parent halo

mass

• the subhalo mass fraction is larger at higher redshifts.

The number of subhalos of mass m for a given parent halo of mass M can be

written in the form (Vale & Ostriker 2004)

N(m,M)dm = A

(

m

xβM

)−α

exp

(

− m

xβM

)

dm

xβM
. (3.57)
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Figure 3.11: Comparison of the subhalo Mass Distribution for a parent halo of mass Mhalo =
1013M�: the solid line has been computed following van den Bosch et al. (2005); the dashed
line has been computed from Vale & Ostriker (2004).

In Fig. 3.11 we compare the estimates by van den Bosch et al. (2005) and Vale & Os-

triker (2004). Their results are very similar. Similar are also the finding, from theoretical

modelling, by Oguri & Lee (2004). In this thesis we have used Vale & Ostriker (2004).

In particular van den Bosch et al. (2005),from a detailed study of merging histories,

claim that there could be some increase in the number density of subhalos at higher redshift

by a factor of 2 to 3 at z ∼ 5 (see Fig. 3.12).

Lots of numerical effort has been spent in understanding the spatial distribution

of subhalos, useful to compare with redshift-dependent clustering of galaxies. Yano et

al. (1996) have shown that the problem of statistics and spatial distribution of halos can

be obtained in a straightforward manner recomputing the P&S mass function setting the

variance, which is the Anti-Fourier transform of the two-point correlation function, as

σc(r)
2 =< δM2

(r0)δM1
(r0 + r) >=

V

2π3

∫ kc(M2)

0
|δk|2

sin kr

kr
4πk2dk. (3.58)

In this picture the halo mass function can be written as (Oguri & Lee 2004)

N(mi|Ri;M, z, zi) =

√

2

π

M

mi

∣

∣

∣

∣

∂σ(mi)

∂mi

∣

∣

∣

∣

∣

∣

∣

∣

∂β

∂σ(mi)

∣

∣

∣

∣

e−β2/2dmi (3.59)
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Figure 3.12: Subhalo Mass Distribution for a parent halo of mass Mhalo = 1013M� at
various z following van den Bosch et al. (2005): the solid line corresponds to z = 0; the
dashed line to z = 2; the dot-dashed line to z = 5.

where β(r) ≡ ν1c−ε(r)ν2c√
1−ε(r)2

. Eq. (3.59) gives the number of subhalos of given mass mi formed

at redshift zi hosted in a halo of mass M at redshift z located at an orbital radius Ri from

the center of the host halo. Assuming then all the bound objects within or near (up to, say,

10 times) the radius of the host halo and on average distributed according to the parent

halo density profile one can analytically compute the number of subhalos at each radii in

the parent halo.

Following Oguri & Lee (2004), we evolve a system composed of a parent halo (with

fixed mass in time) of mass M = 1015M� and subhalos of mass m for ∼ 0.5 Gyr at redshift

z ∼ 1. As it can be seem in Fig. 3.13 most of subhalos are confined in the outermost regions

of the host halo. Then one can suppose that after virialization, i.e. at the end of the fast

accretion phase, the rest of the mass is accreted almost in the outer regions of the halo,

close to or even outer Rvir.
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Figure 3.13: Subhalo spatial distribution in a parent halo of mass Mhalo = 1015M� at z ∼ 1
after evolving the system for ∼ 0.5 Gyr following Oguri & Lee (2004).

3.4 Galaxy Evolution

3.4.1 Observational properties of Galaxies

Evidence for Dark Matter

Rotation curves of spiral galaxies, i.e. the rotation velocities Vrot as a function of

the galactocentric radii r, are one of the traditional tools for detecting DM around galaxies.

Such measures are performed via the analysis of the spectra of different gaseous tracers,

emitting in the optical (Hα, [NII] lines) and in the radio regime (HI, CO lines).

In the case of a point mass one would expect the rotation velocities to decrease as

r−1/2 (the Keplerian decline) since V 2
rot = GM(< r)/r and M(< r) is constant. However

the observed rotation curves of spiral curves of spiral galaxies have a wide range of shapes

(Persic, Salucci & Stel 1996), but in no case the Keplerian decline is observed and the

rotation velocity either increases until the last measured point, or it stays approximately

flat once the maximum is reached, or it decreases, but always more slowly than the Keplerian

decline. This implies that there must be a component of invisible matter that accounts for

this kinematics, and its importance increases with increasing radius.
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Gravitational lensing provides a powerful tool to probe the mass of galaxies: it

allows to measure the mass inside the Einstein ring (in Chapter 8 we will compare our

statistical studies of the Mvir/Mstar ratio with lensing determinations of halo masses). For

instance Treu & Koopmamns 2002, using also stellar kinematics and mass-to-light ratio

constraints, determined that the baryon fraction inside the Einstein ring of PG+1115+080

(corresponding to 1.2 effective radii) is about 65%.

The motion of satellite galaxies around the Milky way and other galaxies show that

the actual mass of galaxies is much larger than the luminous one (e.g. Prada et al. 2003).

Dark halos are found to extend out to a few hundreds of kpc and the velocity dispersion of

the satellites is weakly dependent on luminosity.

Elliptical galaxies can also give an indication of the existence of DM and can be

used to test the predictions of cold DM (e.g. Borriello et al. 2003). However, due to

the lack of a simple tracer, the situation is more complicated. Different ways to trace the

potential as a function of radius have been proposed; the stellar kinematics (e.g. Baes &

Dejonghe 2002), the kinematics of planetary nebulae, the kinematics of neutral hydrogen

(when present), and the X-ray emitting gas all lead to the conclusion that a substantial

amount of DM is present in all galaxies.

All these pieces of observational evidence, combined with the WMAP findings

on CMB experiments, are showing that DM exists, dominates the matter content of the

Universe and it is mostly clustered around single or grouped galaxies.

Galactic Dichotomy

Galaxies are present in two big families, which reflect distinct morphological, chem-

ical and evolutionary features. Following Kauffmann et al. (2003), Heckman et al. (2004)

and Dekel & Birnboim (2005), we can sum up all the observational pieces of evidence on

this subject as follows (see Fig. 3.14). There is a gap at u − r ∼ 2, where galaxies are

divided into a blue and red sequence. The former are on average younger, less massive

and disky (late-type galaxies), while the latter are more massive older and boxy, spheroidal

(early-type galaxies). Blue, Late-type galaxies dominate the mass function below the knee,

L?, of the Schechter function while red, early-type galaxies take over above L? (see Chapter

4). A transition, though with large scatter, seems to occur in the galaxy structural scaling
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relations around Mcrit ∼ 3 · 1010M� (Fig. 3.14), in particular the mean effective brightness

falls below Mcrit. Local (z < 0.3) AGN activity (based on OIII), with high accretion rates

and high star formation, peaks near Mcrit with some AGN activity in less massive, younger

galaxies, and it is associated with SMBH masses ≤ 108M� (see also Fig. 3.14). Radio-

loud AGN dominate, uncorrelated with OIII luminosity and star formation, in larger halos

hosting ∼ 108 − 109M� SMBH (Best et al. 2005).

The Granato et al. model deals only with Ellipticals and bulges of spirals therefore

spheroidal galaxies are the main target of this thesis. If the galaxy has virtually no disk

it is called Elliptical, defined with the symbol En, in which the ratio of the major to the

minor axis is given by b/a = 1 − n/10. The spheroid brightness profile has a rapid falloff

(Sersic profile), given by

I(R) = Ie exp

(

s

[

(

R

Re

)1/n

− 1

])

(3.60)

where Re is the half-light radius, s is a constant and n is an integer, for n = 4 we recover

the well-known de Vaucouleurs profile. The standard procedure for the analysis of light

distribution of an elliptical is to determine curves of constant intensity (isophotes). The

intensity profile can then be fitted in the form

I(θ) = I0 +
∑

(an cosnθ + bn sinnθ) . (3.61)

If an < 0 then the E-galaxy is boxy because the isophotes are somewhat rectangular, show

usually flat cores in the central brightness profile and are in general more luminous. On the

other side, those with an > 0, are disky, less luminous and with power-law profiles.

There is a remarkable correlation between colors and luminosities of Ellipticals,

brighter galaxies being redder. This is called the color-magnitude (CM) relation, with a

small scatter. The tightness of the CM relation has been confirmed up to z ∼ 1 (e.g.

Stanford et al. 1998). Such a relation is considered to be a relation between the luminosity

and the mean metallicity of the stellar population, the metallicity increasing with luminosity.

Positive values of the elemental ratio [α/Fe], in particular Mg, have been found, increasing

with galactic mass (e.g. Terlevich & Forbes 2002; see Fig. 3.19). Of the same type are

the relations found between line-indices and luminosity or dispersion velocity. Bernardi
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Figure 3.14: Top panel: Surface mass density as a function of stellar mass; Middle panel:
Surface mass density distributions of the host galaxies of AGN for early (red) and late
(blue) galaxies; the number on the corner is the percentage of E-galaxies. Bottom panel:
The Dn distribution for the host galaxies of weak AGN (upper panel) and strong AGN
(lower panel). (Figure taken from Kauffmann et al. 2003).
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et al. (2003) demonstrated that cluster, group and field early-type galaxies follow almost

identical Mg2 − σ relations, the slight zero-point off-sets could be ascribed to almost ∼ 1

Gyr difference in the stellar populations of field and cluster galaxies. Another important

property of colors and line-indices in Ellipticals is their radial variation. Colors get bluer

at large r, metallicity indices become fainter, while Balmer lines become stronger. The

modest shift with increasing z found in the zero-point of the FP, Mg2−σ and CM relations

of ellipticals hase led to the conclusion that most of their stars formed at z ≥ 2 ÷ 3, in a

relatively short burst. Moreover the fact that in early-type galaxies the present rate of SNI,

with a long-lived progenitors, is about 10 times higher than the rates of SNII, implies that

E-galaxies must be inactive today further supporting a scenario in which for Ellipticals an

early, intense star formation phase was followed by a longer, passive evolution stage.

High-redshift Galaxies

Galaxies are found at all redshifts up to ∼ 6, but at different epochs they can

appear in different morphologies and/or aspect due to their intrinsic evolution. As reviewed

by Calzetti & Giavalisco (2000) the Lyman-break technique has highlighted the presence

of a substantial number of star-forming galaxies (LBG) at z > 3. Their spectra are very

similar to those of local UV-bright starbursts, with just more intense interstellar absorption

lines due to the distance. Their Star Formation Rates (SFR) are about 10 M�yr−1kpc−2,

about 5-10 times larger than those measured in local starbursts. Supposing an average

starformation timescale of a few 108 yr, by z = 3 these systems have formed ≥ 1010M� or a

large fraction of the stellar mass of an L? galaxy. Shimasaku et al. (2005; see Fig. 3.16, upper

panel) have collected all the available secure data on the UV evolution of LBG galaxies.

It seems that the comoving number of LBG already at z ∼ 3 is comparable with the local

number density of galaxies with L ≤ L?. Moreover Clustering analysis of z ∼ 3−5 LBG has

shown that DM halos hosting bright LBG have a total mass of 1012M� (e.g. Giavalisco &

Dickinson 2001) and their luminous density peaks at z ∼ 3 (see Fig. 7 in Shimasaku et al.

2005). All these data are reconciled if LBG are hosted in a one-to-one correspondence with

halos of mass ∼ 1012M� with which LBG share similar density evolution (see Fig. 3.6).
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Increasing evidence suggests that LBG may account for ∼ 50% of the star forma-

tion at z ≥ 2, with the rest provided by the FIR-bright SCUBA sources. The advent of

large-format submm/mm cameras, SCUBA (Holland et al. 1999) and MAMBO (Kreysa et

al. 1998), revealed the presence of a significant population of dust-enshrouded galaxies at

high redshifts. Several hundred of these sources have been collected up to now (e.g. Scott

et al. 2002). SCUBA sources appear similar to the local Ultra Luminous InfraRed Galaxies

(ULIRG) undergoing a period of massive star formation at rates 102 ÷ 103 M� yr−1. Their

number density is similar to the local early-type galaxy population, in particular the very

luminous Ellipticals, above (1 ÷ 2)L?. Moreover SCUBA galaxies reside in massive halos,

according to lensing (e.g. McKay et al. 2002) and statistical arguments (e.g. Wyithe

& Padmanabhan 2005), with mass ≥ 1013M� (see also Chapter 8). Interestingly Greve

et al. (2004) have shown from CO emission of radio-detected submillimeter galaxies with

known redshifts, in the range 1 < z < 3.5, that such objects could be the result of merging

of gaseous substructures. In fact they present a total mean molecular gas mass of about

〈M(H2)〉 = (3.0±1.6) ·1010M� within ∼ 2 kpc. This is approximately 4 times greater than

the most luminous local ultraluminous infrared galaxy but comparable with radio galaxies

and QSO. The measured star formation is very high ≥ 700M� yr−1. Exploiting the FIR-CO

correlation the estimated median dynamical mass is 〈Mdyn〉 ∼ 1011M� within 4 kpc.

The rest-frame near-IR luminosity is a good tracer of the galaxy stellar mass, in

particular the K-band (2.2 µm; see also Chapter 4). K-band surveys allow to select galaxies

according to their mass up to z ∼ 1.5 (λrest ∼ 0.9µm). At higher redshift, the K-band starts

to sample the rest-frame optical and UV regions and space-based observations at λobs > 2µm

are needed to cover the rest-frame near-infrared (e.g. SIRTIF). Several surveys in this band

have been carried out in these years (ELAIS, GOODS, etc...see Cimatti 2004 for a review).

The results are the following.

• Overall the K20 and other recent near-IR surveys show that galaxies are characterized

by little evolution to z ∼ 1 (see Fig. 3.16), so that the observed properties can be

mimicked by a rather constant number density evolution, which is in contrast with

the ΛCDM scenario (see below).
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Figure 3.15: Curves show the cumulative number density of DM halos more massive than
1011, 1012, 1013, 1014, 1015M� from top to bottom as labeled. Points show comoving number
densities of several observed populations as labeled. (Figure adapted from Somerville 2004).

• the median redshift in the K20 survey for N(z) is zmed ∼ 0.8 and a high-z tail ex-

tended beyond z ∼ 2. Current hierarchical models do not match the observed redshift

distribution (see Fig. 3.20).

• the morphology of old EROs withKs < 20 at z ∼ 1 (morphology, spectra, luminosities,

ages, stellar masses, clustering) imply the existence of a substantial population of old

(a few Gyr), passively evolving and fully assembled massive spheroids which requires

that major episodes of massive galaxy formation occured at least at zform ∼ 2. Their

number density at z ∼ 1 is consistent with that of local E/S0 galaxies (see Fig. 3.15).

• A numerous population of star-forming, ”dusty” ERO, with disk-like and irregular

morphologies emerges at 0.7 < z < 1.7. These objects are often too faint to be

detected in submm surveys due to their inferred far-IR luminosities < 1012L�.

• ”Old” ERO seem to have much stronger clustering than ”dusty” ERO, with a comov-

ing r0 similar to that of present-day luminous ellipticals.
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The preceding discussion highlights the importance of understanding the star for-

mation history of different type of galaxies. From UV background constraints, corrected

for dust obscuration, it is possible to infer a global, average, Star Formation Rate (SFR;

see e.g. Madau et al. 1996). It can be seen that the SFR rises by 1-2 orders of magnitude

from redshift z = 0 to z ∼ 1.5 and then stays almost flat (see Chapter 5, Fig. 5.13). Such

a behavior, as it will be discussed in Chapters 5 and 6, is similar to the SMBH accretion

history, supporting the view of a co-evolution between galaxies and SMBH at all redshifts,

as local data on spheroidal galaxies seem to be supporting (Chapter 2). The amount of

stars (as discussed in Chapter 8) obtained from direct integration of the SFR is compa-

rable to the local one inferred from the galaxy LF, but still about 1/10 of the density of

baryons measured from WMAP and Nucleosynthesis data, an observational evidence which

strengthens the ”missing baryon” problem, already outlined in Fig. 3.18.

3.4.2 The co-evolution model for SuperMassive Black Holes and their

Host galaxies

Overview of Galaxy Formation Models

From what we have discussed in the previous sections baryons are thought to fall

into the DM potential wells after recombination. However the evolution of baryons in the

non-linear phase and after is still not clear.

There are mainly three scenarios for galaxy formation (see Combes 2005 for a basic

review).

• Monolithic collapse. This idea was initially suggested by Eggen, Lynden-Bell &

Sandage (1962). In a halo clouds of cold gas collapse quickly at the center in a

relatively short burst (≤ Gyr) of star formation stopped by the Supernova (SN) feed-

back. A possible disk can then be formed afterwards out of gas falling radially onto

the central clump (bulge) of already formed stars. On this basis Eggen et al. (1962)

suggested that the old stars in the Mily Way, with low metallicity ([Fe/H]) and low

orbital eccentricity e, were probably formed out of gas fallen towards the center in
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Figure 3.16: Top panel: Far-UV LF of LBG at various redshifts from different groups as
labeled. (Figure taken from Shimasaku et al. 2005). Bottom panel: Rest-frame Ks-band
LF at various redshifts as indicated. The solid line corresponds to the local K-band LF
measured on 2MASS by Kochanek et al. (2001) while the dashed line shows the evolution
of the LF at z = 1 as estimated by Drory et al. (2003). (Figure taken from Caputi et al.
2005)
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Figure 3.17: Sketch of the Hierarchical scenario: merging of two spirals and formation of a
bulge and disk.

radial orbits. In this model the gravitational potential varies slowly and e and angular

momentum L are invariants. This second phase of disk formation can have a long star

formation phase (of various Gyr).

• Hierarchical scenario. A galaxy is formed as the result of the hierarchical assembly of

DM building blocks. Gas accumulates within the extended dark halos, dissipates its

kinetic energy and settles into the equatorial plane as soon as centrifugal equilibrium

is being reached, forming fast rotating disks that subsequently turn into stars. In

the merger of two halos their stellar disks, embedded in the extended remnant halo,

lose energy and angular momentum due to dynamical friction, sink at the center and

finally merge (see Fig. 3.17). Ellipticals in this view are the result of the major merger

of two high-redshift stellar disks (Toomre & Toomre 1972). Due to violent relaxation

through strong tidal interactions, in this event the stellar systems are destroyed leading

to kinematically hot spheroidal stellar remnants (as checked in numerical simulations,

e.g. Hernquist 1992). A new disk can finally be formed in the equatorial plane of the

stellar remnant due to gas accretion.
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• Secular Evolution. The bulge component is formed slowly from the disk through the

bar action, and the disk can be replenished through continuous external gas accretion.

The system is ”open”, with slow mass growth through time, from external accretion

of gas progressively transformed into stars. In the latest disks, the exponential stellar

profile, instead of the typical R1/4 profile of spheroids, could be a result of secular

evolution of a stellar bar.

All these processes must have been at work in building galaxies, probably at different epochs

and in different manners as it will be discussed below. For what morphology concern, there

have been various attempts in the literature to consider how the two main types, disks

and spheroids, could have formed. Among all we will just remind two basic ideas for the

origin of such a dichotomy. Susa & Umemura (2000) claim that the dichotomy arises as a

consequence of the degree of self-shielding of pregalactic clouds against a UV-background.

At high redshift/masses the high rate of cooling makes efficient star-formation and the pre-

galactic clouds dissipate into a central spheroid. Later the build-up of a UV-background

makes a retarded star-formation which prefentially leads to a disk. Dekel & Birnboim (2004)

instead address the galactic bimodality to a threshold mass below which disks are built by

cold streams regulated by stellar feedback which cause prolonged starformation episodes.

Above that mass the cold streams penetrate through hot media and favor massive starbursts.

Up to now Numerical and SAM modeling of galaxy evolution has attempted to

evolve baryons in the same manner as DM halos evolve, usually following a standard scheme

of disk formation in a halo, merging between halos and their stellar disk cores, and subse-

quent formation of spheroids (basically the Hierarchical model). However several problems

have arisen through this approach. A direct way to show this is reported in Fig. 3.18

which compares the local mass/galaxy luminosity function with the DM halo mass func-

tion. Fig. 3.18 by Somerville & Primack (1999) clearly highlights the fact that the simple

hierarchical formation structures is not enough to account for the population of galaxies:

extra-physics needs to be taken into account for galaxy modeling, even if some limitations

due to the still poor resolution of Numerical simulations for studying baryonic physics does

play a significant role (e.g. Governato et al. 1996).

The most striking difficulties which a CDM model faces in reproducing the prop-
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Figure 3.18: Solid line: mass function of DM halos at z = 0 predicted by the P&S theory;
dotted line: P&S mass function rescaled in masses by the cosmological value of 0.16; dashed
line: P&S mass function rescaled by the cosmological factor plus a factor equal to 0.4. The
blue line with error bars shows the local mass function of galaxies. (Figure from Somerville
2004).

erties of galaxies are the following.

• There has been substantial mass loss: the baryons locked up in galaxies are just

about1/10 of the total ∼ 4% measured by WMAP;

• Numerical simulations have shown that the proto-galaxy which forms inside a DM

halo is smaller than observed (e.g. Navarro & White 1993). Gas cools too quickly

(’overcooling’ problem, e.g. see e.g. Maller & Dekel 2002) turning completely into

stars at the present epoch.

• Too concentrated substructures are observed in N -body simulations as compared to

the visible substructure in the local group. This is the reason why, for example,

the Tully-Fischer relation for disks, L ∝ V α
c , with α ∼ 3 ÷ 4, is well reproduced by

numerical simulations in slope but not in the zero-point (see e.g. Mo & Mao 2004).

• The number of faint galactic objects are much less than the number of low-mass halos.
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Figure 3.19: α-enhancement in Early-type galaxies compared with hierarchical predictions.
(Figure adapted from Thomas 1999).

• The baryonic mass function has an exponential fall-off instead DM halos have a power-

law distribution up to ∼ 1014M�.

• The number of high redshift galaxies predicted by hierarchical theories are much less

than the ones actually observed (see Fig. 3.20).

• It could be that the merging galaxies contain SMBH. It is not easy for the binary (or

multiple) SMBH to shrink and merge. Moreover, in the limit that no gas accretion

from the ongoing surrounding star formation is at work, there must be a very stringent

fine-tuning at work which forces the merging end-product SMBH to be tightly linked

with the stellar bulge of the resulting spheroid (see Chapter 1).

• The fast metal enrichment of high-redshift galaxies and QSO and the radial and mass

metal gradients found in early-type galaxies.

• The short visible timescales for AGN activity at high redhsift. QSO, according to

merging models (e.g. Wyithe & Loeb 2003), are activated during galaxy mergers on
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time-scales proportional to the dynamical time, i.e. τvis ≤ a few 106 yr, much shorter,

for z ≥ 3, than the e-folding time for SMBH growth (see Chapters 5 and 6)

However some progress in hierarchical models has been carried out in the last

years, which improves the match with the data, but relying on ”ad-hoc” prescriptions. For

example in Fig. 3.21 we report the result by Baugh et al. (2004) in which the authors

are able to reproduce the high-redshift number counts of submm sources and LBG in a

ΛCDM cosmology assuming a top-heavy IMF for the stars formed in bursts. However such

a prescription could cause the formation of too many massive stars which would finally end

up in BH or Supernova (SN). Thus such a prescription could indeed not produce enough

stars to account for the local galaxy LF. Menci et al. (2004) instead propose to increase

the formation of stars at high redshift through the implementation of galaxy-interactions,

added to halo-merging, which can increase star formation in the galaxy perturbing the host

potential well (see Fig. 3.20 and below).

The Antihierarchical Baryon Collapse Model

Here we present the details of the galaxy formation scenario followed in this thesis.

First of all our treatment of DM merging relies on the use of the S&T rates given

in Eq. (3.52). As discussed in the previous sections the S&T mass function provides a

better fit to numerical simulations at all scales relevant for galaxy formation up to very

high redshift. The EPS theory falls short in reproducing numerical simulations redshifts

above 3 (see Fig. 3.4). For z ≥ 1.5, most of the mass function time variation, at all masses

in the range ∼ 1012 ≤ Mvir/M� ≤ 1013.2, is controlled by the positive term in the time

derivative, being the negative one negligible (see Fig. 3.6 and Fig. 3.5). Therefore in our

model we have considered that merging rate, i.e. the rate of production of virialized halos,

is controlled by the ṅ+
S&T , within a factor of 2 of precision (see discussion in Section 3.3.5).

In any virialized halo we consider the formation of a single galaxy, a spheroid. Further

evolution involving the host DM halo will not affect the inner baryonic region (as discussed

in Section 3.3.6, see Fig. 3.10). As described in our development of the merging tree of a
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Cole et al. 2000
Menci et al. 2002
Somerville et al. 2001
Pozzetti et al. 2002

Menci et al. 
Ks<19.8

Figure 3.20: Top panel: Integral number counts at λ = 850µm data compared with hier-
archical models predictions using a hot SED for the starburst. (Figure taken from Kaviani
et al. 2004). Bottom panel: The K20 survey N(z) (Ks < 20) compared with predictions of
several hierarchical models. (Figure taken from Cimatti 2004).
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Figure 3.21: Data points: comoving number density of galaxies with visible masses ∼
6 · 1010M� as derived from CO observations of Submm Galaxies (from several groups as
labeled). Solid line: predictions from the Baugh et al. (2005) model. Dotted curve: total
baryonic matter content available in ≥ 1011M� DM halos, obtained scaling the abundance
of dark halos by 0.16. (Figure taken from Combes 2005).

1013 M� halo (see Fig. 3.9), and confirmed in numerical simulations of Zhao et al. (2003b),

the evolution of the host DM halo is fast at the beginning, while a successive rather smooth

accretion occurs, which increases the mass up to a factor of 2÷ 3 and deposits mass mostly

in the outer region (see also Fig. 3.11).

At any redshift z ≥ 1.5 for any halo which virializes, we assume the following

evolutionary scheme (see Mo & Mao 2004).

• The first step is the DM host halo virialization. The formation of a potential well is

established through a fast-accretion phase (Zhao et al. 2003b; see Section 3.3.4) of

DM clumps (i.e. a major merger) after which the halo reaches dynamical equilibrium

with a circular velocity equal to Vvir (see Fig. 3.10).

• The baryons (mostly in the form of H and He) in the infall will develop shocks and

stabilize in hydrostatic equilibrium, at the halo virial temperature (White & Rees

1978). In these first stages the baryons are expected to be on average distributed

almost like the DM component (which we suppose to follow Eq. (3.34)). However
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baryons are expected to locally condense in cold clouds, clumps, due to the high

power on small perturbation scales, and to the fact that the cooling time is very short

at high redshift. Maller & Bullock (2004) claim that several galaxy properties could

be accounted for if baryons are condensed in pressure-supported clouds during infall.

• The baryon clouds will then spiral in the parent halo, just as shown in Fig. 3.17, with

the only difference being that these clouds are mostly still in the gaseous form, instead

of being stellar disks. Such gas clouds in fact, even during the infall, do not condense

much stars: Kennicut 1998 in fact has shown that the efficiency of star formation

is just a few percent in a spiral typical rotation time which is comparable, at high

redshift, with the cloud dynamical collapse time.

• During infall the dissipation through cloud-cloud collision is negligible, as shown by

simulations (e.g. Barnes 1992), but becomes important only when such clouds have

sunk to the center of the halo. Moreover energy and angular momentum loss could

occur through dynamical friction. Due to the progressive steepness of the host halo

density profile and the mass dimension relative to the host, most of the energy is lost

in the inner regions, at R ∼ 0.1Rvir: here (Eq. 3.66) the loss of energy is comparable

to the DM binding energy.

• The loss of orbital energy of dense clouds increases the kinetic energy of the DM in

the inner region which expands (thereby reducing the halo concentration), possibly

removing the initial inner cusp in the density profile and leaving a core, i.e. the region

becomes baryon-dominated (Borriello et 2003 and see Chapter 7). Indeed El-Zant

et al. (2004) find in numerical simulations that the infalling massive clumps spiral

towards the central region and, being progressively disrupted, they tend to lose energy

causing a sensible flattening of the NFW cusp.

• The baryons which have collapsed will then ”take the place” of the inner DM particles,

with their same orbital energy. We will check in Chapter 7 that in fact baryons

collapsed, today locked up in stars, have a binding energy per unit mass comparable

to that of DM.
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• Once in the halo center the baryons will start feeding a strong starburst. Such a picture

is very well consistent with what is observed in SCUBA and Starburst galaxies, in

which the strong star formation episode is confined in a limited region of a few kpc

(Greve et al. 2005) and lasts for less than a Gyr.

• The starburst may drive a large amount of gas out of the halo, leaving just a small

fraction of the initial baryons locked up in present-day galaxies. Baryons will also

be removed from the host halo during the infall due to stripping and ongoing star

formation.

• A disk can later be formed in the equatorial plane of the already present stellar

spheroid due to gas successive infall/cooling of the previously heated gas (e.g. ”foun-

tain effect”).

Let’s now discuss the baryons evolution in a more quantitative way. Initially the baryons

reach a temperature of the order of the halo virial temperature

kTvir =
1

2
µmpV

2
vir (3.62)

with mp the proton mass and µmp the mean molecular weight.

The baryonic infall timescale is given by the dynamical time

tdyn(r) =

[

3π

32Gρ(r)

]1/2

. (3.63)

For a spherical top-hat fluctuation (see Section 3.3.1) the dynamical time is comparable

to tcoll/2, the time a spherical fluctuation takes to collapse after turnaround. The clouds,

displaced all over the halo with a NFW profile density, will spiral in and could lose energy

in favor of the background DM. The dynamical friction timescale, expressed in units of the

number and mass of clouds, is

tdynfr ∼ 0.3tcollf(ε)
Mvir

M

1

ln Mvir

M

(3.64)

being M the mass of a given cloud and f(ε) ∼ ε0.78 ∼ 0.5 (Lacey & Cole 1993), the

dependence on orbit eccentricity. Eq. (3.64) highlights the fact that the clouds in the mass

range (2 ÷ 20) ·Mvir have tdynfr ∼ tcoll/2 ∼ tdyn, therefore they will be not much affected
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by dynamical friction during their spiralling down the halo, especially the smaller ones, but

these clouds will lose energy just in the final stages of their infall when they are close to the

center of the halo.

Assuming that the energy loss of the gas cloud at radius r is deposited in a spherical

shell with radius r it can be written (Mo & Mao 2004)

ε ∝ Ė

4πr2ρ(r)

dt

dr
∝ M

r
G(r) =

M

r

¯ρ(< r)

ρ(r)

(

1 +
d ln Vc(r)

d ln r

)

, (3.65)

with ¯ρ(< r) the mean density of DM within radius r and Vc(r) = [GMvir(< r)/r]1/2. The

energy gain per unit mass by the DM at radius r is therefore

ε ∼ εorb
M

Mvir

rs
r
, (3.66)

with εorb the orbital energy per unit mass.

Such an estimate is in line with the so-called ”Dynamical Attractor-Hypothesis”

(Loeb & Peebles 2003 and Gao et al. 2004). Supposing the clouds to be on average of order

1/10 of the halo mass, the baryons which fall in the inner regions of 0.1rs, according to

Eq. (3.66), will start releasing energy, and such gravitational energy loss will be sufficient to

let the DM present in that region to expand. The clouds will then replace the DM particles

keeping the same binding energy. The system will finally act as a collisionless mixture of

stars and DM (Gao et al. 2004).

In the absence of a such an effect, the usual adiabatic contraction (in which the

product of length and velocity scales is conserved; Blumenthal et al. 1986) would tend to

make the central mass density run even steeper than the original DM profile model, leading

to problems. As outlined in Loeb & Peebles (2003), setting η = Mstar/Mvir, in the adiabatic

approximation the addition of stellar mass in a region that contains DM will produce an

increase of the inner mass and velocity Mf = (1 + η)Mi, σf = (1 + η)σi and a proportional

decrease in radius Rf = Ri/(1 + η). Such results are in contradiction with data: as it will

be shown in Chapter 7, the adiabatic model produces too small effective radii and too large

dispersion velocities to fit the spheroidal galaxies fundamental plane and local dispersion

velocity function.

Now we will describe the different physical processes taken into account in the
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Figure 3.22: Scheme of the baryonic components included in the model (boxes) and of
the corresponding mass transfer processes (arrows). (Figure adapted from Granato et al.
(2004).

model developed by Granato et al. (2004), which govern the evolution of a spheroidal

galaxy (see Fig. 3.22 for a scheme and Appendix A for a basic summary of the model).

At the moment of virialization it is assumed that Minf(tvir) = fbMvir with fb =

0.16, the universal ratio of baryons to DM. The diffuse gas in the outer regions, with

mass Minf(t), will infall on a timescale given by the maximum between the dynamical time

Eq. (3.63) (which is a lower limit as it neglects angular momentum) and the cooling time.

In fact the necessary condition for a gas cloud to cool is that its cooling time is less than the

dynamical time but even if the gas can cool, it will not fragment until it has accumulated

in a region small enough for its local density to dominate that of the background halo. The

infalling gas, initially at the equilibrium temperature in the DM potential well, is therefore

transferred to the cool star-forming phase at a rate

Ṁcold(t) =
Minf(t)

max[tcool(rvir), tdyn(rvir)]
(3.67)

There are various important processes by which gas can cool in halos (see Silk &
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Bouwens 2001 for a review).

• Compton Cooling: low-energy photons passing through a gas of non-relativistic elec-

trons scatter the electrons slowing them down in the direction of motion.

• free-free emission (Bremsstrahlung): it is dominant for high temperatures (106−107K)

(e.g. primordial gases, intracluster medium, etc...) when matter is almost entirely

ionized. The dominant cooling mechanism is due to the acceleration of electrons off

the bare H+ and He2+ nuclei.

• Recombination and collisional ionization: these processes are dominant at much lower

temperatures (104 − 105 K).

Summing up the previous physical processes it is possible to express the cooling

time as

tcool(r) =
3

2

ρgas(r)

µmp

kT

Cn2
e(r)Λ(T )

' 106

C8

( ne

1 cm−3

)−1
[

(

T

106K

)−1/2

+ 1.5

(

T

106K

)−3/2
]−1

yr , (3.68)

where the last equality holds for a H-He plasma with primordial abundances (Padmanabhan

2003). Λ(T ) is the cooling function computed by Sutherland & Dopita (1993), followed

in this thesis, which takes into account also the dependence on metal abundance, C =
〈

n2
e(r)

〉

/ 〈ne(r)〉2 is the clumping factor and µ is the mean molecular weight. The increase

of the cooling time in Eq. (3.68) due to the dilution of the hot gas as the cold gas drops out

should be taken into account. However this effect is minimum as the cold phase is always

less than 50% and can therefore be ignored.

Following Padmanabhan (2003) we can compare the dynamical and cooling times

as

R =
tcool

tdyn
≈ Mbaryons

9 · 1011M�

' R

80 kpc
. (3.69)

Eq. (3.69) shows that galaxies have a ”cooling cut-off”: it is not physically plausible to

form galaxies with mass higher than 1012M� (compare with Fig. 3.18) and with dimensions

greater than 80 kpc.
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The time derivative of the cold, star forming gas is given by

Ṁcold(t) =
Minf(t)

tc
− ψ(t) +Rψ(t) − αψ(t) , (3.70)

where ψ(t) ≡ Ṁstar is the Star Formation Rate (SFR), R is the fraction of mass returned

by evolved stars (R ≈ 0.3 for Salpeter IMF) and α is the effective efficiency for the removal

of cold gas by the stellar feedback. In Granato et al. SAM it is assumed that the cold gas

distribution still follows the DM distribution,

ψ(t) =

∫ rvir

0

1

max[tcool(r), tdyn(r)]

dMcold(r, t)

dr
dr . (3.71)

The quantity α is

α =
NSN εSN ESN

EB
, (3.72)

NSN being the number of SNe per unit mass of condensed stars, εSN ESN is the energy

per SN used to remove cold gas, and EB is the binding energy per unit gas mass within

the DM halo. We can now highlight the dependence of the SN feedback on halo mass

and virialization redshift. Following Zhao et al. (2003b) and Mo & Mao (2004), the latter

quantity can be written as

EB =
1

2
V 2

vir f(c) (1 + fcosm) , (3.73)

where f(c) ≈ 1 is a weak function of the concentration c and fcosm ∼ 0.16 − 0.18 is the

universal ratio of baryonic-to-dark matter mass in a halo (see also Chapter 8). By properly

including the dependence of Vvir on the halo mass and redshift, we get

EB ≈ 2.7 × 1014

(

1 + z

4

)0.86( Mvir

1012 M�

)2/3

cm2 s−2 . (3.74)

The effective efficiency is then well approximated by

α ≈ 1.0
( εSN

0.1

)

(

NSN

8 × 10−3

) (

1 + z

4

)−0.86 ( Mvir

1012 M�

)−2/3

, (3.75)

where we set ESN = 1051 ergs. Eq. (3.72) highlights the intuitive behavior for which SN

feedback is more powerful in less deep halo potential wells.
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As expressed in Eq.(3.70) the numerical code by Granato et al. (2004) the feedback

due to SN explosions, as also be taken into account. At any time since virialization in the

halo, a mass fraction of the cold phase is removed as

ṀSN
cold ∼ −ψ(t)εSN

NSNESN

V 2
vir

Mcold

Mgas
. (3.76)

We have also checked that SN feedback on the infalling gas,

ṀSN
inf ∼ −ψ(t)εSN

NSNESN

V 2
vir

Minf

Mgas
, (3.77)

must be negligible. Such kind of feedback in fact halts star formation too early in less mas-

sive halos producing too few stars. Moreover it significantly diminishes the iron abundance

in less massive spheroids, canceling out the α-enhancement (see discussion after Eq. (3.102)).

It is interesting to stress, following by Granato et al. (2004), that in the whole the

SFR has an inverse dependence on the host halo mass, yielding a natural anti-hierarchical

growth of spheroids, i.e. an Anti-hierarchical Baryon Collapse (ABC) trend. Such an anti-

hierarchy is on average to be intended as statistical : at high redshifts, the numerical fraction

of more massive spheroids with respect to the number at z = 0, is higher than that of lower

mass galaxies. This behavior is compatible with what observed in the galaxy luminosity

function itself, see Fig. 3.16 (lower panel), where most of the massive systems are already

in place by z ∼ 1.5. Such an evolutionary mode is also a direct consequence of the fact that

at higher redshifts most of the deepest (with higher virial velocity) DM potential wells are

already established being the Universe denser (see Chapter 7, Fig. 7.1).

The cooling time dependence on virialization redshift and halo mass is, for a pure

hydrogen plasma (see Granato et al. 2004),

tcool ' 1.6 · 1011(1 + zvir)
−5/2h1/3

(

Mvir

10.12M�

)1/3 (Mvir/Mgas

1/0.16

)1/2

C−1 yr . (3.78)

As discussed by Romano et al. (2002) and as it will be further discussed in Chapter 8, the

halo-to-star mass ratio is inversely proportional to the stellar or halo mass, Mvir/Mstar ∝
M−ζ

star, with ζ ≥ 0.3. Such a behavior is usually ascribed to SN feedback that (see also

Eq. (3.75)) is progressively more efficient in shallower potential wells. Therefore, being the

star mass proportional to the gas mass, the cooling time will be very weakly dependent on

halo mass (∝M
1/12
vir ).
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Moreover since the mean density within the virial radius is ' (100 ÷ 200) ρcrit,

the mean value of tdyn is about a factor of 10 shorter than the expansion timescale at all

redshifts, independently of halo mass. Therefore, following Eq. (3.71), the SFR will be

ψ ∝ M
3/2
vir , pointing to the fact that more massive halos, with deeper potential wells, will

create more stars and faster.

We can also get an analytical estimate of the total amount of energy injected by

the SN in a DM halo since virialization. To do this we need a rough estimate of the total

amount of stars formed in the halo. With the assumption that the star formation occurs

on a timescale tstar, we get

ψ(t) =
Mcold(t)

tstar
; (3.79)

the equation for the mass Mstar cycled through stars can be easily solved to yield

Mstar(t) =
Minf(0)

γ

[

1 − sγ

sγ − 1
exp(−t/tc) +

1

sγ − 1
exp(−sγt/tc)

]

, (3.80)

where γ = 1−R+α and tc = max[tcool(rvir), tdyn(rvir)]. In the above formula s = tc/tstar �
1, since we expect that in more central and knotty regions the cooling and dynamical times

are shorter than tc, which is estimated at the virial radius. The total starburst timescale in

Granato et al. model is set by the AGN feedback (see below and Chapter 6, Fig. 6.5).

The mass in stars at present time obtainable from Eq. (3.80) only includes the

fraction fsurv of stars survived until now M now
star = fsurvMstar(tnow). The survived fraction

depends on the IMF and on the history of star formation. As a reference, for a Salpeter

IMF after about 10 Gyr from a burst, we have fsurv ≈ 0.6. If we assume that most of the

stellar feedback derives from SN explosions, then the total energy injected into the gas is

given by

Estar = εSN ESN NSN Mstar ≈ 8 × 1058
(εSN

0.1

)

(

NSN

8 × 10−3

)

Mstar

1011 M�

erg . (3.81)

During the first stage a large amount of dust is produced by SN. According to

Nozawa et al. (2003) each SN can produce an amount of dust of about 0.5M�, depending

on progenitor metallicity and mass. In a kpc scale (see Murray et al. 2005) an optical depth

for dust τdust of order unity can be reached with about 106 SN that can be generated within

108 yr for a SN rate of 10−2/yr. For the large star formation rates of about 100−1000M�/yr,
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typical of SCUBA galaxies at z > 2 (e.g. Aretxaga et al. 2003) τdust ∼ 1 would be reached

in just 106 yr or even less (SCUBA phase).

Dwek (2004) has discussed that the dust produced by SN, essentially composed

of silicates, are substantially less opaque, by an order of magnitude, than the carbon dust

produced by Asymptotic Giant Branch (AGB) stars. The AGB dust production however

is delayed by a few 108 yr with respect to the SN one. Dwek has calculated that for a

luminous IR galaxy to become opaque through carbon dust it takes about 5 · 107 yr (which

is however still much shorter than the average timescale of the starburst in our model, about

5 × 108 yr, see Fig. 6.5). For this reason we could expect that before complete obscuration

of the galaxy, a pre-SCUBA phase could occur (very short indeed!), during which, being the

SMBH still small, the spheroid may appear as an optically bright, non-active proto-galaxy.

However a constraint on the time-length of a possible pre-SCUBA phase is given by the

AGN luminosity functions (see Chapter 6). In this thesis we have assumed however that

there is enough dust mass from SN to obscure in a relatively short time, the entire galaxy.

In Granato et al. (2004) the SED of the galaxy is computed by the code GRASIL

(Silva et al. 1998) which computes the time-dependent ultraviolet to radio galaxy SED,

given their star formation (Eq. (3.71)) and chemical enrichment (Eq. (3.102)). It has been

included (see also Silva et al. 2005) a differential extinction of stellar populations (younger

stellar generations are more affected by dust obscuration), because of the fact that stars form

in a denser than average environment, the molecular clouds (MC), and progressively get

rid of them. GRASIL takes into account the size of MC, the MC optical depth, the escape

timescale of newly born stars from MC, and the different distribution of the various dust

components. In Chapter 6 we will provide the fit to the SCUBA and K-band counts with

their dependence on redshift and we will highlight their connection with the high-redshift

AGN population.

As discussed above observational data point to a tight relation between the spheroid

and its central SMBH. Moreover these two systems seem to grow proportionally during time

as observed in the global SFR (see Chapter 5, Fig. 5.13). One mechanism which can cre-

ate a tight link between the SFR and the SMBH growth is provided by the radiation drag

(Kawakatu & Umemura 2002). This mechanism will create a low angular momentum gas
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reservoir which will settle around a seed SMBH, left over by a possible high redshift POPIII

population and/or from primordial black holes (see Chapter 1, Section 2.3). This seed will

eventually grow into a SMBH powering a kinetic wind which will remove most of the dust

and gas in the galaxy quenching star formation (QSO phase).

After the QSO shining the galaxy will proceed with an almost passive evolution

towards redder colors (ERO phase). The intermediate- and low-mass systems, with virial

masses around 1012M� instead will show up as LBG, with much less star formation, ≤
100M�yr−1, peaking at z ∼ 2 − 3, in full agreement with Fig. 3.15.

Kawakatu, Umemura & Mori (2003) have demonstrated that in the central regions

of protogalaxies the drag due to stellar radiation may result in a loss of angular momentum

of the gas at a rate that in a clumpy medium is well approximated by

d ln J

dt
' Lsph

c2Mgas
(1 − e−τ ) (3.82)

where Lsph is the global luminosity and τ is the effective optical depth of the spheroid which

can be expresses as τ = τ̄Nint, where τ̄ is the average optical depth of single clouds and

Nint is the average number of clouds intersected by a light ray over a typical galactic path.

To get an idea of the physical basis of radiation drag one can think of the simple process of

matter-photon interaction. A mass m0 traveling at the speed v0 in the laboratory frame,

after photon absorption, will decrease its speed to v, given, through the conservation laws,

bymv = m0v0, withm > m0 asm = m0+hν/c
2. The photon re-emission will be anisotropic

and boosted towards the direction of motion. Therefore after re-emission the mass will be

reduced again to the initial value m0c
2 = mc2 − hν but the final momentum has definitely

reduced to mv = m0vfin + hνv/c2. Being mv = m0v0, we have vfin = v0 − hνv/c2m0 i.e.

vfin < v0. From the last equation it is evident that radiation drag will be more effective when

more mass is present and/or the stellar radiation is more energetic. Moreover differentiating

one gets dv/dt = −(hνv)/(m0 c
2) ⇒ v(t) = v0(exp(−hνt)/(m0 c

2)) from which one can

estimate the average drag timescale.

The gas can then flow toward the center, feeding a mass reservoir around the

SMBH at a rate

Ṁinflow ' −Mgas
d ln J

dt
'
(

Lsph

c2

)

(1 − e−τ )M�yr−1 . (3.83)
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During the early evolutionary stages the luminosity is dominated by massive main-sequence

stars, M ≥ 5M� and is thus proportional to the SFR ψ(t). We then have

Ṁinflow ∝ 10−3ψ(t)(1 − e−τ )M�yr−1 , (3.84)

where the proportionality constant actually depends on the implemented IMF but in the

code is left as a free parameter (see Appendix A).

Firstly material accumulates in a circumnuclear mass reservoir. As discussed in

Chapter 2, the existence of a mass reservoir, possibly in a toroidal structure which can

obscure the active source along the line of sight, has now been empirically proved. The

material then flows towards the SMBH on a timescale depending on the viscous drag.The

reservoir will accumulate at the net rate

Ṁres = Ṁinflow − Ṁ• − Ṁfeedback , (3.85)

where we also allow SMBH feedback to remove some of the reservoir mass. However it has

to be noted that such an effect is a minor one: the AGN feedback onto the reservoir is

weighted as Ṁfeedback ∝ LhMres/Mgas, and therefore, being Mres << Mgas, it is orders of

magnitudes less intense than the feedback on the other gas components (see Eq. (3.99) and

Eq. (3.98)).

The actual accretion onto the central SMBH is given by

Ṁ• = min[λṀEdd , Ṁvisc] , (3.86)

where we allow for some super-Eddington accretion up to a factor λ ∼ a few (see Chapter

6 for more details). Following Duschl et al. (2000) and Burkert & Silk (2001), the viscosity

reads as ν = Re−1νr, where Recrit = 100−1000 is the critical Reynolds number for the onset

of turbulence (see Chapter 1). With these assumptions the viscous time can be expressed

as τvisc = τdyn
• Recrit, where τdyn

• is the dynamical time referred to the system ”SMBH

plus reservoir”, τdyn
• = (3π/32Gρs)

1/2 which is usually much shorter than all the other

relevant timescales taken into account. Therefore the SMBH growth is mostly limited to

the Eddington accretion. As most of the mass in the reservoir is ultimately accreted onto

the central BH, then we expect at the end of the accretion phase

M• ≈ 10−3Mstar (1 − e−τ ) . (3.87)
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From Eq. (3.87) we predict that the ratio M•/Mstar could present a downturn at small

halo/spheroid masses. In Granato et al. (2004) it has been assumed that the effective

optical depth depends on the cold gas metallicity and mass τ ∝ ZM
1/3
gas (see also Appendix

A). The outcomes of the numerical code yield on the average Z ∝ M 0.3
vir in the mass range

1011 ≤Mvir ≤ 3 × 1013 M�. Since Mgas ∼ fcosmMvir, one then gets

τ ∝M
2/3
vir . (3.88)

As already anticipated the Granato et al. SAM modeling includes AGN Feedback

which has major effects on galactic evolution. Recent XMM-Newton observations of bright

QSO (Pounds et al. 2003) give strong evidence for intense outflows from the nucleus, with

mass rates Ṁout ∼ 1M� yr−1 and velocity v ∼ 0.1c in the form of blue-shifted X-ray

absorbtion lines. As it will be shown in Chapter 5 almost all galaxies must have undergone

an active phase in their past and probably the most massive SMBH must have ”tilted” the

observed local correlations (see Chapters 2, 7 and 8) among spheroid, SMBH and DM halo.

AGN feedback must have also modulated, together with cooling, the exponential cut-off of

the local galaxy luminosity/mass function (see Chapter 7). As discussed by Benson et al.

(2003), the absence of superwinds would create too many ”monster galaxies”. However, as

the authors recognize, the total energy budget required to obtain a good match to the galaxy

luminosity function greatly exceeds the energy available from SN explosions (see Chapter

8). It has also been shown that the large energy injection from SMBH plays crucial roles

in the thermal outflow and dynamical blowout of baryons from group of galaxies, causing

the steepening of the LX − T relation at small temperatures, and may also play some role

in preheating scenarios for larger structures, in Clusters (see e.g. Lapi et al. 2003). The

efficiency of the kinetic energy feedback also depends on the structure and nature of the

medium in which it is deposited.

Sazonov et al. (2004) have claimed that the AGN radiative heating can effectively

perturb the ISM and in particular the runaway heating due to the QSO can heat and

evaporate large part of the cold phase. The ”hot phase” equilibrium temperature is close to

the temperature at which Compton cooling balances inverse Compton cooling, TIC ∼ 106÷7

K.
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The timescales for the gas to become ”hot” could be however long and radiation

pressure, in general, will have minor dynamical effects, and therefore it could be difficult

to understand how most of the baryons are actually removed from the DM halo. Models

of UV resonance-line acceleration for O-star winds have rather been adopted to explain

the fast (v → 0.1c) outflows in BAL QSO. In fact electron scattering has a cross section

of < σ/H >∼ 7 × 10−25x cm2 per hydrogen atom (with x the ionized fraction) while the

effective cross section through scattering in UV resonance lines (Begelman 2004) is about

seven orders of magnitude larger, therefore the impact on galaxy environment is much faster

and stronger with this kind of feedback.

Lamers & Cassinelli (1999) have developed a theory for stellar winds which has

been applied to AGN by Murray et al (1995). Following Murray et al. (1995) the approxi-

mate solution for the wind velocity produced by line acceleration as a function of the radius

is

v = v∞

(

1 − rf
r

)2.35
, (3.89)

where rf is the radius at which the wind is launched. The asymptotic speed is

v∞ ∼
(

γ
GM•

rf

)1/2

. (3.90)

Setting γ ' 3.5 and using the Eddington limit one gets (see Granato et al. 2004)

v∞
c

∼ 6.2 · 10−2
( rf

1016 cm

)−1/2
L

1/2
Edd,46 . (3.91)

The asymptotic speed is reached at r ≥ 40rf , setting fc as the covering factor and assuming

that the system is surrounded by a Hydrogen column density NH , from mass conservation,

one derives Ṁwind = 4πr2ρ(r)vr ∼ 4πfcmHNH40rfv∞ and finally

LK =
1

2
Ṁwindv

2
∞ ' 3.6 × 1044 fcN22L

3/2
Edd,46erg s−1 . (3.92)

The speed of a shock or sound wave propagating through a medium with a ”cloudy” phase

structure will be highest in the phase with the lowest density. The wind or hot bubble

emanating from the central AGN will tend to follow the ”path of least resistance”. To

parameterize such effects we set Lh = fh · LK , by denoting with fh the actual fraction of

the kinetic energy transferred to the diffuse gas in the galactic halos. Since studies of Broad
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Absorption Line (BAL) QSO suggest N22 ≥ 30 and fc ≥ 0.1 (see e.g. Chartas et al. 2002;

Chartas, Brandt & Gallagher 2003) and fh ≥ 0.3 (see e.g. Inoue & Sasaki 2001; Nath &

Roychowdhury 2002), their product can be assumed fh fcN22 ≈ 1.

The wind from the central SMBH will sweep up the surrounding gas into a shell,

bounded by an inner shock in which the wind velocity is thermalized and an outer shock

in which the surrounding gas is heated and compressed by the wind. These two regions are

separated by a contact discontinuity. The shell velocity depends on whether the shocked

wind gas is able to cool (”momentum-driven” flow) or not (”energy driven” flow).

Compton cooling must have been very effective in the very first stages. Fabian

(1999) has discussed that this type of momentum-driven feedback, in the initial galaxy

evolution phase, when it is enshrouded by dust, could regulate the self-feeding of the high-z

SMBH at the center of obscured protogalaxies. In particular the outward force resulting

from an AGN wind acting on a column of matter at a radius r of total mass NH4πr2mp, is

Lwind = 2v4fvm/G, being f a geometrical factor.

The dynamics of the wind in this regime will be dominated by momentum con-

servation and the shell’s equation of motion will then be d[M(R)Ṙ]/dR = 4πR2ρv2 =

Ṁoutv = LEdd/c, which integrated twice gives R2 = GLEddt
2/2fgσ

2c, neglecting integra-

tion constants for large t (King 2003). In the snowplow phase the shell will then move with

constant velocity vm = R/t ∝M•. Therefore the SMBH mass reads as

M• =
Ωbκ

Ωm2πG2
σ4 ' 1.5 × 108

( σ

200kms−1

)4
M� . (3.93)

However King (2003) reports that the Compton cooling time is of the order of

tCompton ' 105R2
kpc(c/v)

2bM−1
8 yr and that the energy-driven feedback will be dominating

just after a time tflow ∼ R/vs ∼ 8 · 106Rkpcσ200M
−1/2
8 yr, where vs is the shell velocity. It is

straightforward to check that tflow ∼ 107 yr at the most if, in the initial stages, Rkpc ∼ rf and

the SMBH seed is about 102 − 103M�. Therefore very soon the energy-driven condition for

the evolution of the wind will be dominant (the momentum-conserving AGN feedback could

still play some, minor, role in the last evolutionary stages when radiative cooling becomes

effective; Begelman & Nath 2005). Same conclusions have been reached by Wyithe & Loeb

(2003) who claim that in the first stages of the proto-galaxy evolution cooling is always
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much longer than the typical AGN timescales (107 − 108 yr). These authors moreover from

an analysis of several local data (Wyithe & Loeb 2005) argue that the energy conserving

regime is probably the most suitable physical treatment for AGN feedback.

The energy-driven limit feedback constrains the final SMBH mass. The simplest

way to show this is to impose that the host halo gravitational attraction balances the AGN

energetic output. The accretion onto the central SMBH will then be limited by (following

Silk & Rees 1998)

fwindLhtwind ≤ GMvirmbar

Rvir
, (3.94)

which implies that the SMBH mass is limited

M• ≤
2.5 · 105

fwind

( σ

200 kms−1

)5
M� , (3.95)

where fwind ∼ v/2c ∼ 5 × 10−2, twind ∼ R/σ ∼ 108 yr and mbar ∼ 0.16Mvir. A straightfor-

ward way to estimate the possible efficiency of AGN activity on the surrounding medium

is given by the particle-photon energy ratio (Lapi et al. 2003)

fwind =
Ep

Eγ
=

pp

2mp

1

pγc
=

pp

2mpc
=

mpv

2mpc
=

v

2c
∼ 0.05 . (3.96)

where the last equality derives from the observational data on BAL QSO (for which v ∼
0.1c).

The feedback relation expressed in Eq. (3.95) however produces too small SMBH

masses with respect to local estimates (see e.g. Fig. 2.1, right panel) if the activity time

scale related to the final SMBH mass is twind ≥ 108 yr. Eq. (3.95) however produces the

right SMBH masses to fit the M• − σ relation if the time associated with the final growth

of the SMBH is one order of magnitude less (see Chapters 5 and 6). In the Granato et al.

model twind is the time when the energy injected by the AGN in the Inter-Stellar Medium

(ISM) equals the binding energy of the gas

∫ twind

0
fwindLhdt = MgasV

2
vir . (3.97)

The timescale twind is about the time the protogalaxy spends in the SCUBA phase in

Granato et al. model: in fact the spheroid is obscured for nearly the whole time before the

peak of AGN activity, until when the central SMBH becomes sufficiently massive to remove
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most of the gas/dust and let the AGN shine as a luminous dust-free QSO (see Chapter

6, Fig. 6.5). We will discuss in this thesis that the time needed for the SMBH to unbind

the gas and dust in the galaxy and finally halt star formation, is of the order of the last

e-folding time of its exponential growth (see also discussion after Eq. (3.99)).

The physical model sketched in Eq. (3.97) is also in line with recent detections.

In fact this model predicts that the AGN in the SCUBA phase is optically invisible but

still detectable in less absorbed wavelengths, such as in Hard X-rays. Alexander et al.

(2005) have shown that in the deep SCUBA survey at z ≥ 1 and fluxes f850 µm ≥ 4mJy,

combined with ultra-deep X-ray observations with Chandra, the majority (≈ 70%) of the

submm sources host substantial AGN activity (LX ∼ 1042 ÷ 1044.5erg s−1) and are on

average heavily obscured (NH ≥ 1023cm−2). It is found that intense star-formation activity

(of order ∼ 1000M� yr−1) however dominates the bolometric output of these sources. Such

findings reveal also the actual presence of a delay (Monaco et al. 2000; Granato et al. 2001)

between the virialization of the host DM halo and the shining of the QSO during which the

SMBH significantly increases its mass, at variance with previous models (e.g. Wyithe &

Lobe 2003 and Chapter 6).

Moreover Borys et al. (2005) analyzed deep X-ray, optical and mid-infrared Spitzer

observations of the Chandra Deep Field North and South and GOODS of a submillimeter

galaxy sample with a median redshift of z = 2.2. They find a power-law correlation between

the estimated stellar and nuclear X-ray luminosity, implying that SMBH masses are corre-

lated to their host stellar masses. The median stellar mass they measured is about 1011M�.

From the estimated X-ray luminosity, under the assumption of Eddington limited accretion,

the SMBH masses appear to be 1-2 orders of magnitude smaller than in local galaxies of

same stellar mass. Such empirical findings are in agreement with Eq. (3.97), see Chapter 6

(Fig. 6.5). Granato et al. predict in fact that, during the initial proto-galactic evolutionary

stages, the SFR is already significantly high, while the SMBH is still growing from a small

seed. Therefore the SMBH-to-stellar mass ratio is predicted to be much smaller than the

final one, at the peak of the AGN activity.

Similarly to SN, in the Granato et al. (2004) code the AGN feedback at each
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timestep removes mass from the cold to the hot gas phase

ṀQSO
cold ∼ − Lh

V 2
vir

Mcold

Mgas
(3.98)

and from the infalling gas (following the energy conserving recipe of Eq. (3.97)

ṀQSO
inf ∼ − Lh

V 2
vir

Minf

Mgas
. (3.99)

If we assume that the BH mass is growing at around the Eddington rate, most of

the kinetic energy in winds is then emitted when the SMBH reaches its maximum mass, i.e.

EK ≈ (2/3) tef LK . The action of the AGN therefore occurs on very short timescales, the

e-folding timescale tef (see Chapter 5, Eq. (5.17)). Then, using Eq. (5.17), AGN activity

transfers to the gas a total energy amount

EAGN = fhEK ≈ 3.6× 1060 fh fcN22

(

ε

1 − ε

) (

tE
4 × 108 yr

) (

MBH

108 M�

)1.5

ergs . (3.100)

Note that the energy is super -linear with SMBH mass, i.e. more AGN energy is generated

in more massive systems, which naturally explains the exponential cut-off in the galaxy

luminosity function (see also Chapter 8).

This overall energy input discharged into the ISM can be easily compared to the

total energy gained from accretion Eacc = 1.8×1062 (ε/1−ε) (MBH/10
8 M�) ergs, to obtain

EAGN ≈ 2 × 10−2 Eacc

(

MBH

108 M�

)0.5

. (3.101)

Here we indicate with ε the radiative efficiency.

At each time step in the numerical code Granato et al. (2004), following Romano

et al. (2002), also estimate the amount of metals produced in the galaxy. The fundamental

equation of the chemical evolution is given by

dGi(t)

dt
= −Xi(t)ψ(t) +Ri(t) +

(

dGi

dt

)

inf

−
(

dGi

dt

)

reh

. (3.102)

Gi(t) = Xi(t)Mcold(t) is the cold gas mass in the form of the element i. The quantity Xi(t)

represents the abundance by mass of the element i. Ri(t) represents all the rates at which

SNI and SNII as well as single low- and intermediate-mass stars restore their processed

and unprocessed material to the ISM. The infalling term in Eq. (3.102) is the primordial



Chapter 3: Evolution of Dark Matter and Baryons: where SMBH fit in 113

chemical composition of the infalling gas while the reheating term gives the amount of cold

gas which is heated and subtracted to further stellar processing.

In the Granato et al. model the α-enhancement in early-type galaxies (see Fig. 3.19)

is a natural consequence of the more rapid spheroid formation in more massive systems.

Being the SFR proportional to the host virial mass, the spheroid and the central SMBH

grow faster, and therefore the AGN shines earlier halting the SFR earlier and preventing

the SNIa to enrich the ISM with Fe.

To end this section we point out that the adopted IMF in the code is the following

Φ(M) ∝ M−0.4 for M ≤ 1M�

∝ M−1.25 for 1M� < M ≤ 100M� . (3.103)

The choice of the IMF could slightly alter some predictions on the final chemical abundances,

however the basic results are invariant. Especially the predictions on the galaxy luminosity

function (Chapter 7) is not modified by the choice of the IMF, while the amount of the

total stars produced could be altered by at most 30% (see also Chapter 8).

3.4.3 The SMBH fueling problem: low-redshift SMBH evolution

It is believed that the angular momentum in DM halos is generated by the tidal

torque associated with the growth of density fluctuations in the linear regime. In the

Zel’dovich approximation for which the motion of particles is studied through Lagrangian

coordinates r(q, t) = a(t)x(q, t), the angular momentum of the material which makes up a

protogalaxy is written as

J = ρ̄a5

∫

VL

(x− xG) × vd3q . (3.104)

Expanding Eq. 3.104 up to the first order and then converting from an integration in the

volume to an integration on the surface we get

J = −ρ̄a5Ḋ(z)

∫

ΣL

φ(L)(q)(q − qG) × dS . (3.105)

Hence J vanishes to first order if ΣL is spherical or is an equipotential of φ. In practice

the angular momentum gain can occur due to non-symmetry. Moreover in linear theory J

increases with time proportionally to the growth factor D(z).
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At the end of the linear stage the final angular momentum of a Dark Matter halo

can be quantitatively defined with the dimensionless spin parameter

λJ =
J |E|1/2

GM5/2
(3.106)

where E and M are the total energy and mass. For random Gaussian fields this expression

has been evaluated integrating from the linear stage to the non-linear one (e.g. Bullock et

al. 2001). It is found that the average value is λJ ∼ 0.05, and recently it has been shown

(e.g. D’Onghia & Bullock 2001) that systems which have not undergone any major merger

since z = 3 have spin parameters about a factor of 2 lower on average. The value of λJ

is almost independent of the initial density fluctuation and is roughly equivalent to vφ/σ,

the ratio between the azimuthal velocity and the dispersion velocity of the system. N -body

simulations have shown that the λJ -distribution of virialized halos turned out to be well

described by a log-normal.

Assuming that the baryonic gas system in the collapsed DM halo will retain its

specific angular momentum, the exponential disk scale lenght Rd can be determined, adopt-

ing a flat rotation curve with velocity vc, as jd = 2Rdvc =
√

2λJVvirRvir. For this magnitude

of the angular momentum, the centrifugal barrier which a baryonic particle matter must

overcome to settle in the center of the protogalaxy is

Rbarr =
jmax(z)

GMb
≈ 2

(

Mb

108M�

)1/3 (1 + z

5

)−1( λJ

0.05

)2( Ωb

0.05

)−4/3

h
2/3
70 kpc . (3.107)

Compared Rbarr with the Schwarzschild radius Rg, the ratio is given by

Rbarr

Rg
≈ 108

(

1 + z

5

)−1) ( λJ

0.05

)2( Ωb

0.05

)−4/3

h
2/3
70 . (3.108)

Therefore from this kind of reasoning it is clear that it is not easy to make a galactic system

lose its angular momentum letting mass accrete in the central regions and especially in

the very central SMBH. Strong, large scale mechanisms must be invoked to destabilize the

potential field of the baryonic system.

As shown in the previous section, radiation drag could be very efficient in driving

the first stages of SMBH evolution during the massive early formation of the spheroids

at high redshifts. Other dynamical fueling processes however could be effective at lower

redshift, in groups of galaxies or disk systems.
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In the non-linear stage protogalaxies have formed as separate systems and have

moved away from each other. The interaction among galaxies will create torques which can

in principle destabilize the central potential of the host galaxy and induce star formation

and probably also accretion onto the central SMBH.

The relative loss of angular momentum ∆J/J of the gas in the host galaxy due

to an instability, for example an interaction with a companion galaxy (but equivalently the

same order-of-magnitude effect could be obtained through a bar instability), can be simply

calculated as follows. Consider a galaxy with a SMBH at its center. If M(< r) is the mass

within r around which an annulus of gas mass m of the same radius r orbits, the energy

potential distortion due to a ”fly-by” of a nearby galaxy at a distance R, with velocity V

and impact parameter b is δEp ' mµG [1/(R − r) − 1/(R + r)] ' 2mµGr/R2. The torque

will then be

T =
∂Ep

∂φ
≈ δEp

δφ
=

2mµGr

πR2
(3.109)

with δφ = π and R2 = b2 + (V t)2.

Therefore the angular momentum variation of the gaseous annulus will be

∆j =

∫ ∞

−∞

T dt ∼ 2
µGrm

V b
. (3.110)

Simulations have shown that ∆j/j could be about 30% or more (e.g. Barnes & Hernquist

1998). Such accretion episodes could be considered as minor accretion events for the SMBH,

as probably they are not determinant for its main mass growth. Such processes could just

induce some re-activation of the dormant central engine usually at sub-Eddington regimes.

The duration of the activity in this case is set by the fly-by timescale which is of the order

of the host galaxy dynamical time τ ∼ 2Rg/V ' 10−1Gyr.

Triaxial perturbations of the central potential efficiently transport gas inwards (e.g.

Shlosman et al. 1990). Bars of gas and of stars form at various radii within a given AGN

host galaxy (”bars within bars”), with each bar playing a distinct role in the funneling

of gas towards the central regions. If the potential is non-spherical the accretion in the

central region, and most probably onto the SMBH, increases by an order of magnitude. As

discussed recently by Wyse (2004) the physical condition necessary for the onset of bar-

instability in disks can be set as a pure surface density criterion. Such a value is indeed
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very close to the surface density critical value found by the SDSS team (Kauffman et al.

2003) to divide galaxies into bulge-dominated, AGN-bright and disks dominated galaxies.

A simple criterion for a disk to be unstable is that its maximum rotational velocity vM is

less than the circular velocity GM/R, or equivalently that the (Mo et al. 1998) disk to halo

mass ratio md is larger than the disk spin momentum parameter λJ ; in terms of surface

density this can be rewritten as (Wyse 2004) µ ≥ µ0 ∝ v4
m/G

2Md ∼ 108M�/kpc2. Such a

relation naturally leads to the Tully-Fischer relation in spirals.

Any perturbation in the potential promotes turbulence in the galactic structure

and possibly fueling in the central parts (the so-called ”starburst-AGN connection”). Wada

& Norman (2002) have computed numerical simulations of a gas and stellar disk evolving in

a fixed DM halo potential well. In particular they clearly show that gravitational/thermal

instabilities and SN exploding uniformly in the structure could make the ISM highly tur-

bulent and inhomogeneous causing the formation of a torus in the inner 30 pc in a few

dynamical times. The scale height of the torus will be proportional to the (SFR/M•)
1/2

and an average accretion rate of 0.3 M�/yr will feed the central SMBH.

In Chapter 6 we will present a possible scheme for SMBH evolution at low redshifts

(z ≤ 1.5) driven by re-activations induced by de-stabilizations of the host potential well.

We will show that this mechanism induces a progressive depletion of the cold gas available

for accretion onto the central SMBH naturally accounting for both the strong AGN LF

negative luminosity evolution and the very rapid drop of the Eddington limit (see Chapter

1).

Another proposed mechanism for SMBH fueling is direct capture of solar-type stars

which is possible if the angular momentum of the stars is smaller than some critical value

(Frank & Rees 1976). This value is given by Jcap ≤ lGM•/c, where l = 4 for a Schwarzschild

black hole, and for a Kerr one l > 4 for an incoming particle retrograde to the spin of the

hole, and < 4 for a direct particle. For SMBH smaller than 108M� solar-type stars with

angular momentum smaller than
√

2GM•rdisr will be tidally disrupted before they reach

the horizon at a radius rdisr = (M•/Mdisr)
−2/3Rg, the ”loss cone” of stars with sufficiently

small angular momentum is larger than that for direct capture. Consider a SMBH (Zhao

et al. 2002) embedded in an isothermal stellar cusp (ρ ∝ r−2). For an isotropic Gaussian
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velocity distribution a fraction

fcap(r) =

(

Jcap

2σstarr

)2

=
2Rgr•
r2

= 4
σ2

star

c2

(r•
r

)2
(3.111)

of the stars at radius r has sufficiently low angular momentum and will be captured within

a dynamical time (r• = GM•/c
2 is the radius of the SMBH sphere of influence). For a

singular isothermal cusp we can now write the rate at which the ”loss cone” of stars with

low angular momentum is depleted given a mass accretion rate of stars captured from radius

r. Outside r• this stars accretion is given by

Ṁcap(r) = 4πρ(r)r2σstarfcap = 8
σ5

star

Gc2

(r•
r

)2
(3.112)

which once integrated in time yields

M• ≈ 108
( σstar

200kms−1

)5
(

t0
14Gyr

)

. (3.113)

Such a process presents some weak points. It does reproduce the observed M• −σ relation,

but in the hypothesis that the ”loss cone” stays full and for a very long time which contrasts

with the presence of very massive SMBH at high z. In fact dynamical relaxation makes stars

wander in angular momentum space and fill the loss cone on a timescale tfill ∼ fcaptrelax,

where trelax = (Nstar/8 lnNstar)tdyn(r•) ∼ 10(σstar/150 kms−1)6.6 Gyr .

A very interesting improvement in these kind of models was carried out by Miralda-

Escude & Kollmeier (2005). They claim that stars after repeated crossing are finally cap-

tured by the thin accretion disk, with a higher cross section than the central SMBH itself,

and this can shorten the time required for the SMBH to grow. In this way the disk will

be continuously replenished with matter from plunging stars. This scenario can also partly

answer to the problem of matter transportation to the central regions. However such a

model predicts that much of the initial stellar mass in the central region could be depleted

soon. Therefore for producing massive SMBH a significant amount of the relic SMBH mass

must be added through gas accretion.



Chapter 4

SMBH Demography

In this Chapter the local SMBH Mass Function (MF), including the contribution

from the spheroidal components of late-type galaxies, is estimated exploiting and extend-

ing the technique outlined by Salucci et al. (1999) and later presented by Shankar et al.

(2003). In Section 4.1 we critically discuss the relationships, presented in Chapter 2, among

luminosity, mass, and velocity dispersion of the spheroidal components of galaxies (Lsph,

Msph, and σ), and M•. In Section 4.2 we present and discuss two estimates of the local

SMBH MF, derived via the velocity dispersion distribution function (VDF) and the LF,

respectively.

4.1 Correlations among SMBH mass, galaxy luminosity and

velocity dispersion

The SMBH MF can be derived coupling the statistical information on local LF

of galaxies with relationships among luminosity (or related quantities, such as stellar mass

and velocity dispersion) and the central BH mass (see e.g. Salucci et al. 1999).

Since the BH mass correlates with luminosity and velocity dispersion of the bulge

stellar population, we need separate LF for different morphological types (which have dif-

ferent bulge to total luminosity ratios), and it is convenient to use galaxy LF derived in

bands as red as possible, where the old bulge stellar populations are more prominent.

118
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4.1.1 Bulge luminosity versus black hole mass

McLure & Dunlop (2002) analyzing a sample of 72 active and 20 inactive galaxies

found that the central BH mass and the total R-band magnitude, MR, of the bulge are

strictly related. In particular, considering only inactive elliptical galaxies with accurate

measurements of BH mass, the relation, converted to H0 = 70, reads

log

(

M•

M�

)

= −0.50(±0.05)MR − 2.69(±1.04) , (4.1)

with a scatter of ∆ log(M•) = 0.33. It is worth noticing that the relationship has been

derived using B-band magnitudes, translated to R-band assuming an average color (B-

R)=1.57. A larger scatter ∆ log(M•) ' 0.45 was found by Kormendy & Gebhardt (2001),

who used a sample including also lenticular and spiral galaxies.

For galaxies observed with a spatial resolution high enough to resolve the BH

sphere of influence, Marconi & Hunt (2003) report a tight relation between the SMBH mass

and the host galaxy bulge K-band luminosity

log

(

M•

M�

)

= 1.13(±0.12)

[

log(
LK

LK�

) − 10.9

]

+ 8.21(±0.07) (4.2)

with a scatter ∆ logM• = 0.31. Translating Eq. (4.1) to the K-band using the colour

R−K = 2.6 (Kochanek et al. 2001, with K−K20 = −0.2), it is apparent that the Marconi

& Hunt (2003) relationship yields higher BH masses at fixed luminosity. Correspondingly,

the derived SMBH mass density is up to a factor of 2 higher than obtained from Eq. (4.1).

A closer analysis shows that most of the discrepancy is due to SMBH in spiral galaxies

(see Section 4.3) and can be ascribed to the uncertainty in the evaluation of their bulge

component. Since most of the local mass density is contributed by BHs in E and S0 galaxies,

we decided to exploit the relationship reported in Eq. (4.1).

As pointed out by McLure & Dunlop (2002), their MR − logM• relation is com-

patible with a linear relation between BH and spheroidal mass, Msph. Indeed, inserting the

result found by Borriello et al. (2003), Msph/LR ∝ L0.21±0.03
R , we get M• ∝M1.03±0.12

sph .
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4.1.2 Velocity dispersion versus BH mass

While the presence of a strong correlation between BH mass and velocity dispersion

of the stellar spheroid, M• − σ, is undisputed (Ferrarese & Merritt 2000; Gebhardt et al.

2000), the value of its slope is still debated. A detailed analysis of the available data by

Tremaine et al. (2002) yields

log

(

M•

80

H0

)

= 4.02(±0.32) log(σ200) + 8.13(±0.06) , (4.3)

σ200 being the line-of-sight velocity dispersion in units of 200 km s−1. The slope is in rea-

sonable agreement with the findings of Ferrarese (2002), M• ∝ σ4.58±0.52. It should also

be noted that the velocity dispersions used by Tremaine et al. (2002) refer to a slit aper-

ture 2re, while those reported by Ferrarese refer to re/8. The scatter around the mean

relationship is small, ∆ logM• = 0.3, possibly consistent with pure measurement errors.

The low mass and low velocity dispersion regime is quite difficult to investigate.

The analysis of M33 by Gebhardt et al. (2001) yields an upper limit on the BH mass

(∼ 1500M�) more than 10 times below the central value predicted by Eq. (4.3). However the

larger upper limit (∼ 3000M�) claimed by Merritt, Ferrarese & Joseph (2001) is consistent

with the steeper MBH − σ relation found by Ferrarese (2002). Filippenko & Ho’s (2003)

estimate of the mass of the central BH in the least luminous type 1 Seyfert galaxy known,

NGC 4395, (M• ' 104– 105 M�) is not inconsistent with Eq. (4.3). However it should be

also mentioned that the BH mass in this case has been estimated using indirect, rather

than dynamical arguments. The efforts to detect the so called intermediate mass BHs

(103 M� ≤ M• ≤ 106M�) in galactic centers and therefore to constrain the very low σ

(< 50 km s−1) end of the M•–σ relation have been recently reviewed by van der Marel

(2003; see also Chapter 1, end of Section 2.3 and Chapter 7).

It is worth noticing that the M•–σ relationship needs not to keep a power-law

shape down to low M• or σ values. On the contrary, in the model by Granato et al.

(2004) we have presented in Chapter 3, Section 3.4.2, for the coevolution of QSOs and their

spheroidal hosts, in the least massive bulges, the SMBH growth is increasingly slowed down

by supernova heating of the ISM as the bulge mass (hence σ) decreases. As a result, M•

is expected to fall steeply with decreasing σ, for log[σ(km s−1)] ≤ 2.1. This model also
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Figure 4.1: Galaxy luminosity function estimates converted to R-band total magnitudes as
described in the text.

predicts that the observed spread around the mean relationship is a natural one, deriving

mainly from the different virialization redshifts of host halos (see Chapter 7 for details).

4.2 The local SMBH Mass Function

The local SMBH MF can be estimated either from the local LF or from the local

velocity dispersion function (VDF) of spheroidal galaxies and galaxy bulges, through the

M•–Lsph or the M•–σ relation, respectively. Previous studies (Yu & Tremaine 2002; Aller

& Richstone 2002) have shown that the two methods may yield estimates of the local mass

density of SMBHs differing by a factor of ' 2. On the other hand Ferrarese (2002), McLure

& Dunlop (2003) and Marconi et al. (2004) found very good agreement among the results

of the two methods.

4.2.1 Local luminosity functions of spheroids and bulges

The LFs best suited for our purpose are those in red and IR bands, which are more

directly linked to the mass in old stars. Moreover, we need separate LFs for the various
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Figure 4.2: R-band luminosity function estimates for early-type galaxies. Data points from
Kochanek et al. (2001).

Figure 4.3: R-band local luminosity functions estimates for late-type galaxies.
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morphological types with different bulge to total luminosity ratios. We will use the K-band

LF by Kochanek et al. (2001), the Ks-band LF by Cole et al. (2001), the r∗ band LF

by Blanton et al. (2001, 2003), Nakamura et al. (2002), and Bernardi et al. (2003). To

compare LFs defined in different bands we must set up a common definition of the total

magnitude/luminosity and of average colours.

Since we are interested in the total luminosity of spheroidal components of galaxies,

we adopt as total magnitudes those obtained with a de Vaucouleurs profile. We have

therefore corrected by −0.2 the surface brightness limited magnitudes, K20, of the 2MASS

sample and the Petrosian magnitudes, used by Blanton et al. (2001; 2003) and by Nakamura

et al. (2002). Both magnitude systems in fact are defined for apertures which contain ∼ 80%

of the total flux for the adopted profile. For the Kron magnitudes of Cole et al. (2001), in

the Ks band, we used a brightening of −0.11, which is required to convert them to an r1/4

luminosity profile.

Magnitudes were converted to the R-band using the mean colours R −Ks = 2.51

and R− r? = −0.11 (Blanton et al. 2001). We assume an error of 0.1 mag. on colours and

include it in our estimate of the final errors on the SMBH MF.

As illustrated by Fig. 4.1, the different estimates of the LF are in very good

agreement with each other, except for that by Blanton et al. (2003), which is low at bright

magnitudes (by a factor ' 4 at MR < −24). Indeed the Schechter function adopted by the

latter authors falls below their own data points at Mr∗ − 5 log(H0/100) = −23 (cfr. their

Fig. 5). The classification by Kochanek et al. (2001) allows a clear cut distinction between

early and late type galaxies. A similar classification has also been proposed by Nakamura

et al. (2002). Figures 4.2 and 4.3 show that the agreement is quite satisfactory also for

early and late types separately, although the early-type LF by Bernardi et al. (2003) misses

objects fainter than MR ' −21 because of their velocity dispersion criterion (σ > 70 km s−1

and S/N > 10).

4.2.2 From the local luminosity function to the SMBH mass function

Based on Table 1 of Fukugita, Hogan & Peebles (1998), to obtain the LF of

the spheroidal components we adopt the average R-band bulge-to-total luminosity ratios



124 Chapter 4: SMBH Demography

Figure 4.4: Local mass function of SMBHs hosted by early-type galaxies. The dot-dashed
line shows the estimate obtained from the r∗-band LF (Nakamura et al. 2002) coupled
with the M•–Lbulge relation (see text); the dark gray area shows the estimated errors. The
dashed line and light gray area refer the MF derived using the bivariate dispersion velocity
distribution (cfr. Fig. 4.7).

Figure 4.5: Global SMBH mass function (solid line) and its uncertainties (dashed lines).
The three dots-dashed and the dot-dashed lines show the contributions from SMBHs hosted
by early- and late-type galaxies, respectively.
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f early
sph = 0.85 ± 0.05 for early-type galaxies and f late

sph = 0.30 ± 0.05 for late-type galaxies.

The SMBH mass function was then computed convolving the LF with the M•–

Lsph relation by McLure & Dunlop (2002) [see Eq. (4.1)], assuming a Gaussian distribution

around the mean with a dispersion ∆ log(M•) = 0.33+0.07
−0.05. These uncertainties encompass

most of the values quoted in the recent literature (see Sect. 2.2). The errors on the SMBH

MF include the overall uncertainties on the LF, on the bulge fractions, on the M•–Lsph

relation and its scatter. The uncertainties on the LF, including those on colours, contribute

about 70% of the error budget.

The SMBH MF in early type galaxies, shown in Fig. 4.4, has been estimated

using the LF of Nakamura et al. (2002), converted to R-band, and Eq. (4.1). The match

with the MF computed via the VDF and the M•–σ relation (see below) is very good. The

corresponding SMBH mass density amounts to ρ0
•(E) = 3.1+0.9

−0.8×105M�/Mpc3, in excellent

agreement with the findings of McLure & Dunlop (2003) and Marconi et al. (2004), and

30% higher than the estimate by Yu & Tremaine (2002) and Aller & Richstone (2002).

The MF of SMBH hosted by spiral bulges was computed in the same way, using

the LF for late-type galaxies by Nakamura et al. (2002). Their local mass density is

ρ0
•(Sp) = (1.1 ± 0.5) × 105M�/Mpc3, bringing the overall mass density to ρ0

• = (4.2 ±
1.1) × 105M�/Mpc3. The local number density of SMBHs with M• > 107M� is nSMBH '
(1.3 ± 0.25) × 10−2 Mpc−3. As illustrated by Fig. 4.5 the main contribution to the global

mass density comes from the range 2×107 < M• < 1×109M�, mostly populated by SMBH

in early-type galaxies, while less massive BHs are preferentially hosted in late type objects.

Our determination is very close to the result by Marconi et al. (2004), who used a

methodology similar to ours. As suggested by Aller & Richstone (2002) the MF can be well

represented by a four parameter function, which for our determination (per unit d logM•)

takes the form:

Φ(M•) = Φ∗

(

M•

M∗

)α+1

exp

[

−
(

M•

M∗

)β
]

, (4.4)

with Φ∗ = 7.7(±0.3) · 10−3 Mpc−3, M∗ = 6.4(±1.1) · 107 M�, α = −1.11(±0.02) and

β = 0.49(±0.02) (H0 = 70 km s−1 Mpc−1). The formula holds in the range 106 ≤M•/M� ≤
5 × 109.
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Table 4.1: Local SMBH mass densities

Method ρ0
•(10

5M�Mpc−3h2
70)

Early Type Galaxies

r∗+M• − Lbulge 3.1+0.9
−0.8

bivariate VDF + (M•–σ) 3.0+1.0
−0.6

Sheth VDF + (M•–σ) 2.8

Late Type Galaxies

r∗ + (M•–Lbulge) 1.1 ± 0.5

Figure 4.6: Velocity dispersion function. The solid line is the estimate obtained from the
Nakamura et al. (2002) LF coupled with the bivariate (luminosity, σ) distribution derived
from the SDSS data in the r∗-band; its uncertainty region is shown by the dashed lines.
The three dots-dashed line is the estimate by Sheth et al. (2003).
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Figure 4.7: Estimates of the local mass function of SMBH hosted by early type galaxies,
derived from the velocity dispersion functions in Fig. 4.6 coupled with the M•–σ relation by
Tremaine et al. (2002). The gray area represents the uncertainties on the estimate based
on the bivariate (luminosity, σ) distribution.

4.2.3 The local velocity dispersion function

The local VDF can be derived from the local galaxy LF exploiting the luminosity–

σ relation (Gonzalez et al. 2000; Sheth et al. 2003), well established for spheroidal galaxies

(Faber & Jackson 1976). The analysis of a sample of 86 nearby E and S0 galaxies, yields

(de Vaucouleurs & Olson 1982; Gonzalez et al. 2000):

MBT
= (−19.71 ± 0.08) − (7.7 ± 0.7) log σ200 + 5 log h, (4.5)

with h = H0/100 km s−1 Mpc−1. However, data for larger samples suggest a steeper relation.

Bernardi et al. (2003), using about 9000 early type galaxies selected from the Sloan Digital

Sky Survey (SDSS), found Lr∗ ∝ σ3.91, where σ refers to a re/8 aperture. The VDF of the

SDSS has been actually obtained with a fixed aperture of 1.”5 and then converted to the

re/8 aperture following the conversion suggested by Jørgensen, Franx & Kjaergaard (1995).

Estimates of the local VDF have been derived by Shimasaku (1993) and Gonzalez

et al. (2000) (see Kochanek 2001 for a comprehensive review), and more recently, by Sheth
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et al. (2003) who were the first to allow for the distribution (assumed Gaussian with a

luminosity dependent width) of data points around the best fit relationship.

To make a fuller exploitation of the data by Bernardi et al. (2003) we have used

them to derive the bivariate distribution pij = p(Li, σj), yielding the fraction of objects

in the r∗-luminosity bin centered at Li and in velocity dispersion bin centered at σj. The

9000 objects in the samples, covering an absolute magnitude range −18 ≤Mr∗ ≤ −27 and

a velocity dispersion range 1.8 ≤ log(σ) ≤ 2.7 (σ in km/s), have been subdivided in bins of

width 0.05 both in Mr∗ (19 bins) and in log(σ) (170 bins). The VDF is then estimated as:

n(σj) =
∑

i

pijni, (4.6)

ni = n(Li) being the r∗-band LF for early type galaxies by Nakamura et al. (2002; Fig. 4.2).

The resulting VDF is shown in Fig. 4.6 with its errors, computed using the formula for the

propagation of errors in a multivariate function with independent random errors in each

variable. The uncertainties are bigger towards the two extremes, where the number of

sampled objects decreases, and smaller around the knee of the function. We have checked

that our results are independent of the bin size.

Using the K-band LF (Kochanek et al. 2001) converted to the r∗-band adopting a

colour K − r∗ = −2.73, appropriate for early-type galaxies (Blanton et al. 2001; Kochanek

et al. 2001) we find differences in the VDF of at most 0.15 dex. From Fig. 4.6 it is apparent

that our estimate is very close to that by Sheth et al. (2003), apart for the more rapid

decline at low velocity dispersions, due to the selection criteria adopted by Bernardi et al.

(2003), as noted above.

It is interesting to show, following Sheth et al. (2003), that there is no well defined

”Faber-Jackson” relation. The exponent in the relation L ∝ σα, depends on how the

correlation is computed (see Fig. 4.8). Computing the L − σ relation as Li =
∑

k pik σk,

yields L ∝ σ4, while computing the σ − L relation as σj =
∑

k pkjLk, yields L ∝ σ2.8. As

it will be discussed in Chapter 8 to convert the VDF to a LF and viceversa, the bisector

correlation is needed, i.e. L ∝ σ3. Therefore in our view, there is no physical meaning for

the ”slope” of the Faber-Jackson relation, however, as discussed in Chapter 7, the locus of

the data points on the L− σ plane constraints the efficiency of AGN and SN feedbacks.
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Figure 4.8: The Faber Jackson relation. Upper panel: computed at fixed luminosity bin.
Bottom panel: computed at fixed log σ bin.
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The contribution from late type galaxy bulges to the VDF is rather difficult to

assess. In fact, the bulge-to-disk mass ratios depend more on morphology than on luminosity

and on rotational velocity. Although for a given morphological type a correlation between

the bulge velocity dispersion and the maximum rotational velocity may be expected, the use

of the Tully-Fisher relation (among luminosity and rotation velocity) to infer the velocity

dispersion is rather unsafe (see discussions of Sheth et al. 2003 and Ferrarese 2002).

4.2.4 From the VDF to the SMBH MF

In order to get an estimate of the local mass function of SMBHs, the local VDF

for early-type galaxies can be convolved with the M•–σ relation of Tremaine et al. (2002).

The SDSS velocity dispersions (Bernardi et al. 2003) given for an aperture of re/8, have

been converted to 2re aperture using Eq. (16) of Tremaine et al. (2002), since the MBH −σ
relation of Tremaine et al (2002) has been estimated with velocity dispersions taken within

an aperture corresponding to 2re. We assume a Gaussian distribution of BH masses at

constant σ, with a dispersion ∆ = 0.30+0.07
−0.03 dex.

The SMBH MF estimates derived from the VDF obtained through the bivariate

probability distribution and from the VDF by Sheth et al. (2003) are shown in Fig. 4.7.

The shaded area shows the uncertainties on the former estimate, including the contributions

from errors on both the VDF and ∆. Again, the decline for M• ≤ 107M� is due to the

incompleteness of the SDSS sample at low velocity dispersions. The integrated mass density

of SMBH in early-type galaxies is ρ0
• = 2.8 × 105M�/Mpc3 or ρ0

• = 3.0+1.0
−0.6 × 105M�/Mpc3

if we use the VDF by Sheth et al. (2003) or that obtained through the bivariate probability

function, respectively. As noted above, the evaluation of the contribution of SMBHs hosted

by late-type galaxies through this method is hampered by the poor knowledge of the local

VDF for their bulges. Adopting the temptative estimate by Sheth et al. (2003) for the

late type galaxy contribution to the VDF, coupled with Eq. (4.3), with the same scatter

∆ = 0.3, we get ρ0
BH = 1.2 × 105 M�/Mpc3, nicely consistent with the estimate derived

from the LF.

Wyithe & Loeb (2003) obtained a lower estimate of the total mass density mainly

because they neglected the scatter ∆ of the MBH − σ relationship.
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4.3 More on the determination of the SMBH Mass Function

SMBH Mass Function from the M• − Pradio relation

Following Salucci et al. (1999) and Sadler (2004) we can estimate the SMBH MF using the

relation which links the SMBH mass and radio power. Franceschini, Vercellone & Fabian

(1998) found a quite tight relationship between the radio power of the galaxy and the mass

of the central SMBH

logM• = 0.376 log P1.4(WHz−1) + 0.173 (4.7)

implying that the total radio power emitted by a galaxy could be a tracer of the presence of

a SMBH and an estimator of its mass. It is however to be kept in mind that clearly radio

luminosity is not the only physical quantity linked to the SMBH mass (see also Chapter

2, Section 2.2.4), most probably also the accretion rate must be linked with the other two

variables forming a ”fundamental plane” (see e.g. Lacy et al. 2001; Merloni et al. 2003).

Later analysis by Laor (2000) and Ho (2002) found in fact a much larger scatter for the

M• − Pradio relation but using a mixture of galaxy types (including spirals). Snellen et al.

(2003) found that a large sample of nearby optically selected elliptical galaxies with stellar

velocity dispersions measured by Faber et al. (1989) follow the M• − Pradio relation.

We have verified that the Sadler et al. (1989) radio LF is in perfect agreement

with the one derived by Magliocchetti et al. (2002) from a larger sample in the 2dF survey

including Ellipticals and AGN galaxies. The space density of radio-emitting AGN is ex-

tremely close to a simple power-law of the form Φ(P ) ∝ P −0.62±0.03
1.4 over almost five decades

in luminosity from 1020.5 to 1025 WHz−1, before turning down above 1025 WHz−1.

Exploiting Eq. (4.7) and the radio LF by Sadler et al. (2002) it is in principle

possible to derive the SMBH mass function. The result is shown in Fig. 4.9, where we

have shown the match with the accreted SMBH mass function obtained from optical data.

This again suggests that the radio loudness could be linked with the most massive most

luminous AGN, mostly QSO, being probably a transient phase in their evolution. As noted

by Salucci et al. (1999) probably a more refined treatment should take into account the

core radio power instead of the total radio luminosity of the galaxy, but minor changes are

produced once also the scatter in the Ptot − Pcore relation is included (Sadler 1989).
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Figure 4.9: Diamonds: estimates of the local mass function of SMBH hosted by early type
galaxies derived from the M•–Pradio relation by Franceschini et al. (1998) at 1.4 Ghz. The
gray area represents the uncertainties on the estimate based on the M•–Lbulge relation. Also
shown the contribution to the SMBH accreted mass function from Optically selected AGN
(light gray area).

An alternative method to derive the SMBH Mass Function

It is now interesting to compare the results in this chapter with those found by other authors.

To derive the SMBH MF from the M• −Lbulge relation Yu & Tremaine (2002), followed by

Marconi et al. (2004), adopt the following relation

φbulge(M•) =
fS0

fE + fS0
φ(m− δmS0) +

fE

fE + fS0
φ(m− δmE) (4.8)

to estimate the bulge luminosity function of SO/Sa galaxies, where fi represents the fraction

of i-type of galaxy and δm is the light bulge correction. This approximation, rather uncer-

tain, provides anyway ∼ 20% less in the final SMBH mass density than what we find with our

method. This can be seen in Fig. 4.10 where we have compared the galaxy bulge luminosity

functions obtained in Section 2.3.2, with an average correction of Lsph/Ltot = 0.85 for Early

type galaxies, and the one obtained from Eq. (4.8) using fS0 = 0.21, fE = 0.11, δmS0 =

−0.3 and δmE = 0 (Fukugita, Hogan & Peebles 1998).
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Figure 4.10: Estimate of the early type spheroidal galaxy LF. Solid line: estimate using the
fraction of SO and E galaxies as given in Eq. (4.8). Dashed line: estimate using an average
bulge correction of Lsph/Ltot = 0.85.



Chapter 5

SMBH Accretion History

Soltan (1982) showed that, in the framework of the AGN paradigm, the total

accreted mass density can be inferred from the observed QSO/AGN counts. The basic

ingredients of the calculation are i) the bolometric correction kbol, ii) the effective redshift

and the corresponding K-correction, and iii) the mass to radiation conversion efficiency ε.

When more precise luminosity functions of QSO/AGN became available, Chokshi & Turner

(1992) presented a first estimate of the accreted mass density and derived constraints on

the corresponding mass function (MF).

In this Chapter we compute the total accreted mass density and mass function and,

through the comparison with the local estimate, constrain the mean accretion properties

and evolutionary trends of the SMBH population.

5.1 The accreted mass density

Following Soltan (1982) the total mass density accumulated by accretion on BHs

powering QSOs can be deduced from QSO counts, under quite simple assumptions. If ε is

the mass to radiation conversion efficiency, the bolometric luminosity is

Lbol = εṀaccc
2 (5.1)

and the mass accretion rate reads

Ṁ• = (1 − ε)Ṁacc. (5.2)

134
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The conversion of luminosities measured in a given band to bolometric luminosities requires

the knowledge of bolometric corrections kbol (see, e.g., Elvis et al 1994), which may depend

on luminosity and/or redshift. The mass accreted up to the present time by all AGNs

brighter than L can be written as

ρacc(> L) =
1 − ε

εc2

∫ zmax

0
dz
dt

dz

∫ Lmax

L
dL′kbol(L

′, z)n(L′, z)L′. (5.3)

where n(L′, z) is the comoving luminosity function. As noted by Soltan (1982), ρacc is

independent of H0 and of the QSO lifetime.

The most complete AGN surveys are those at X-ray (hard and soft), optical, and

radio wavelengths (see Chapter 2, Section 2.2.6). The latter selection is however rather

inefficient, since only ∼ 10% of AGNs are radio loud.

The meaning of Eq. (5.3) can be readily understood converting it in number counts.

In fact setting

n(S, z)dSdz = Φ(L, z)dL
dV

dz
dz (5.4)

and using the definition of luminosity distance (Eq. (3.3)) and comoving volume (Eq. (5.8),

one gets

ρacc =
1 − ε

εc2

∫ zmax

0
dz(1 + z)

∫ Smax

Smin

dS′ 4π

c
kbol S

′n(S′, z)

which clearly shows that the accreted mass density is given by the sum of all the number

counts contributions at various redshift, the result being independent of the cosmological

parameters. The factor (1 + z) is necessary since photons lose energy in the Universe

expansion but mass is conserved (unless there is energy dissipation as, for example, in

gravitational waves).

5.1.1 Mass accreted on optically selected QSOs

The 2dF survey (Boyle 2000; Croom et al. 2003), as anticipated in Chapter 2, Sec-

tion 2.2.5, has provided an accurate determination of the redshift-dependent LF of optically

selected AGNs withMB < −22.5 and z < 2.2. Croom et al. (2003) showed that the data are

consistent with PLE of the form LB(z) = LB(0)× 100.21z(5.476−z) (for a ΛCDM model with

Ωm = 0.3), peaking at zp ' 2.74 and exponentially declining at higher redshifts. Although
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Figure 5.1: Optical AGN LF at high-z. Data from the SDSS (Fan et al. 2001) and GOODS
survey (Cristiani et al. 2004). The solid line shows the Croom et al. (2003) power-law
model at z = 4.5.

the luminosity function is poorly known for z > 2.4, there is strong evidence (see Fan et al.

2001 and Osmer 2003 for a recent review), for a rapid decrease with increasing redshift of

the space density of bright QSO for z ≥ 3. More recently, very deep X-ray (Barger et al.

2003) and optical (Cristiani et al. 2004) surveys have provided strong constraints on the

space density of less luminous QSOs at high redshift. As illustrated by Fig. 5.1, the Croom

et al. (2003) power-law model provides a sufficiently accurate description also of the data

at z ≥ 4.

Inserting such model in Eq. (5.3), and integrating it up to z = 6, we get, for

kB
bol = 11.8, appropriate for LB = (Lνν)B with νB = 6.8 × 1014 Hz (Elvis et al. 1994) and

ε = 0.1:

ρopt
acc = 1.4 × 105 kbol

11.8
M�/Mpc3 . (5.5)

with objects at z ≤ 2.2 contributing ρopt
acc = 0.8 × 105M�/Mpc3. Using the Boyle et al.

(2000) LF, which is however inconsistent with high redshift data, ρopt
acc increases by 20%.

Thus the mass density accreted on BHs powering the optical QSO emission is a factor ' 3

lower than the estimated local SMBH mass density.
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Figure 5.2: Accreted mass density as a function of redshift. The solid and the dot-dashed
lines show the increase, with decreasing redshift, of the comoving accreted mass density as
inferred from the epoch-dependent hard X-ray luminosity function by Ueda et al. (2003),
with a luminosity dependent bolometric correction (see text), and from the optical lumi-
nosity function by Croom et al. (2003), respectively.

The estimate of ρopt
acc is affected by uncertainties on kB

bol and on ε. An upper limit

of kB
bol = 16 can be derived from the Elvis et al. (1994) sample. On the other hand, recent

data point to a lower bolometric correction than used in Eq. (5.5). For instance, McLure

& Dunlop (2003) find kB
bol ∼ 8, and Vestergaard (2003) finds kB

bol = 9.7 for higher redshift

QSOs. On the whole we attribute to kB
bol an uncertainty of about 30%. It is worth noticing

that no dependence of the optical bolometric correction on optical luminosity has been

reported.

The efficiency ε of conversion of accreted mass into outgoing photons can be as

high as ' 0.4 for extreme-Kerr BHs. On the other hand, no firm lower limit to ε can be

set; in extreme cases a BH can grow without radiating any photon at all. However, the

low predicted value of ρopt
acc does not necessarily imply a low value of ε, since an additional

important contribution to the local BH mass density is expected from highly absorbed hard

X-ray selected AGNs, contributing a large fraction of the X-ray background energy density,

but only marginally represented in optical surveys.
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5.1.2 Mass accreted on X-ray selected AGNs

As reviewed in Chapter 2, Section 2.2.7, most of the XRBG intensity can be

considered as “luminosity” due to accretion onto SMBH. The equation E = Mc2 can be

rewritten in terms of radiation and mass densities as

U(1 + z̄) =
ε

1 − ε
c2ρ• (5.6)

where U is the XRBG energy density. However as summarized by Gilli (2003) there is a

systematic problem with the normalization of the XRBG between 2 and 10 KeV (while the

slope has been by now established to have a photon index Γ ' 1.4). Such uncertainty in

the normalization can be up to 40 %. The lowest value is 8 given by Marshall et al. (1980)

and the highest is 11.5 by Vecchi et al. (1999), in units of keVs−1sr−1cm−2keV−1.

As already anticipated in Chapter 2, the high-energy spectrum of the XRBG has

been resolved up to 50% at the most and probably the rest of the emission is produced by

a still unveiled population of Compton-thick sources.

As shown in Chapter 2, Section 2.2.6, a comprehensive study of the redshift-

dependent hard X-ray AGN LF, including the distribution of the absorption column density

NH , has been recently carried out by Ueda et al. (2003; U03 from now on). In the following

we will refer to their LDDE model, with the additional fraction of AGN with 24 < log(NH) ≤
25 required in order to fit the XRB with the most recent normalizations (Vecchi et al. 1999;

Barcons et al 2000; Gilli 2003). The additional AGN fraction implies an increase of the

mass density by 25%.

We have firstly computed the actual contribution of the very Compton thick

sources (log(NH) = 24.5) to the XRBG and number counts in the 2−10 keV, using the U03

LF and their prescriptions for the inclusion of obscured sources. In a Friedmann Universe

the intensity of the XRBG F (E) at the energy E, produced by all the AGN in the redshift

range 0 − zmax and in the luminosity range Lmin − Lmax can be written as

F (E) =
1

4π

∫ zmax

0

1 + z

4πd2
L

dV

dz
dz

∫ Lmax(z)

Lmin(z)
f [E(1 + z)]ρ[L(z), z]dL(z) , (5.7)

where
dV

dz
= 4πd2

L

(

c

H0

)

1

(1 + z)3
√

1 + 2q0z
(5.8)
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and dL is the luminosity distance (Eq. (3.3)), H0 and q0 are the Hubble constant and decel-

eration parameter, respectively; ρ[L(z), z] is the comoving AGN X-ray luminosity function

in a given energy band E1−E2; f [E(1+z)] is the source flux at the energy E(1+z) divided

by the source flux in the energy band E1 −E2.

The number of AGN per steradian with a flux S > Slim in the energy band E1−E2

is given by

N(> Slim) =
1

4π

∫ zmax

0

dV

dz
dz

∫ Lmax

max[lmin(Slim,z),Lmin(z)]
ρ[L(z), z]dL(z) (5.9)

where

llim(Slim, z) = 4πd2
L

Slim(E1, E2)

K(z,E1, E2)
(5.10)

and K(z,E1, E2) is the K-correction term given by

K(z,E1, E2) =

∫ E2(1+z)
E1(1+z) f(E)dE
∫ E2

E1
f(E)dE

. (5.11)

The redshift distribution of the AGN in a sample with limiting flux Slim in the E1 − E2

energy band is simply given by the argument of the redshift integral in Eq. (5.9).

Our results are shown in Fig. 5.3 and Fig. 5.4 in which we show that the additive

family of very obscured Compton-thick AGN better fits the latest data on the normalization

of the XRBG spectrum and number counts.

Unfortunately the available information on the overall spectral energy distribution

of hard X-ray selected objects (and particularly of the faint ones, which are the most relevant

to estimate the low mass end of the MF) is scanty, so that estimates of the bolometric

corrections are difficult. The bolometric correction, k2−10
bol ' 32, derived by Elvis et al.

(1994), refers to optically bright quasars. Evidences for an increase of the hard X-ray to

optical luminosity ratio, LHX/Lopt with decreasing optical luminosity have been reported

by Vignali et al. (2003) and bolometric corrections, k2−10
bol ' 12 − 18, substantially smaller

than the Elvis et al. (1994) value, have been estimated at least for a few Seyfert galaxies

(Fabian 2003). Moreover, in order to match the optical LF of Boyle et al. (2000) starting

from the hard X-ray LF, U03 had to assume that L2 keV ∝ L0.7
2500A in close agreement with

the observational data by Vignali et al. (2003).
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Figure 5.3: Synthesis model to fit the XRBG spectrum using several families of obscured
AGN. Thick solid line: total computed emission without the extra family of Compton-thick
AGN. Triple dot-dashed line: total emission inserting Compton-thick AGN with log(NH) =
24.5. Thin solid line: log(NH) = 21.5, triple dot-dashed line: log(NH) = 22.5, dashed
line: log(NH) = 23.5 and dot-dashed line: log(NH) = 24.5. Crosses: re-normalized data by
Gruber et al. (1999) to fit the upper normalization of the XRBG (see Fig. 2.11).

Figure 5.4: Synthesis model to fit the XRBG number counts. Thick solid line: total num-
ber counts including extra Compton-thick AGN with log(NH) = 24.5. Thin solid line:
log(NH) = 21.5, triple dot-dashed line: log(NH) = 22.5, dashed line: log(NH) = 23.5 and
dot-dashed line: log(NH) = 24.5. Data by Brandt & Hasinger (2005).
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If the optical/UV bolometric correction is independent of luminosity, the U03

relationship between UV and X-ray luminosity implies:

k2−10
bol = 17

(

L2−10

1043erg s−1

)0.43

. (5.12)

Inserting Eq. (5.12) in Eq. (5.3), assuming ε/(1 − ε) = 0.1, and integrating over the lumi-

nosity and redshift intervals (41.5 ≤ log(L2−10keV) ≤ 46.5 and z ≤ 3) investigated by Ueda

et al. (2003), we find

ρHX
acc ' 4.1 × 105M�/Mpc3 . (5.13)

If we extrapolate the LF up to z = 6, we get a mass density larger by 15%.

As a consistency check, we have subtracted the contribution of Type 2 AGNs,

following the prescriptions given by U03, in order to get the contribution to the local mass

density of Type 1 objects only. We find:

ρType 1
acc ' 1.5 × 105M�/Mpc3 , (5.14)

in close agreement with the result obtained using the optical LF [Eq. (5.5)]. The relatively

large contribution of the optically selected AGNs to the local BH mass density (> 30%),

despite their small (< 20%) contribution to the intensity of the HXRB, reflects their lower

X-ray to optical luminosity ratio. Since ρType 1
acc ∝ [(1− ε)/ε]k2−10

bol and ρopt
acc ∝ [(1− ε)/ε]kB

bol,

from the agreement between the two estimates we can conclude that the uncertainty on

k2−10
bol is similar to that on kB

bol, i.e. ' 30%.

The mass accretion history is illustrated by Fig. 5.2 showing the increase with

decreasing redshift of the comoving accreted mass density, ρacc(z), as inferred from the

optical (dot-dashed line) and from the hard X-ray (solid line) epoch dependent comoving

luminosity function n(L, z):

ρacc(z) =
1 − ε

εc2

∫ zmax

z
dz′

dt

dz′

∫ Lmax

Lmin

dL′ kbolL
′ n(L′, z), (5.15)

where the X-ray (but not the optical) bolometric correction is a function of luminosity, as

discussed above. As shown by Fig. 5.2, most of the accretion occurs at z > 1.5 for optically

selected AGNs, and at z < 1.5 for hard X-ray selected AGNs.
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Figure 5.5: Local SMBH MF (solid line), including SMBHs hosted by both early- and
late-type galaxies, with its 1σ uncertainty (shaded area), compared with the accreted MF
(dashed line) estimated from the X-ray LF by U03, using a luminosity dependent bolo-
metric correction. Such estimate is obtained by differentiating the integral mass function
[Eq. (5.19)] with λ = L/LEdd = 1.

The close correspondence of the accreted mass density inferred from the hard X-

ray LF with the local SMBH mass density ρ• ' 4.2 ± 1.0 × 105M�/Mpc3 (see Table 4.1)

for ε/(1 − ε) = 0.1 shows that there is no much room for really “dark” accretion (i.e. for

accretion with radiative efficiency ε� 0.1), confirming the findings by Salucci et al. (1999)

and of Marconi et al. (2004), unless the luminous phases of the AGNs are characterized

by radiative efficiencies much higher than the usually adopted value. But even if ε is close

to the maximum allowed values (' 0.3–0.4; Thorne 1974) the accreted mass accounts for

≥ 25–30% of the local SMBH mass density, and one would be left with the problem of

accounting for the correlations between M• and the bulge mass or velocity dispersion which

arise naturally as a consequence of feedback associated to radiative accretion (Silk & Rees

1998; Cavaliere et al. 2002; King 2003; Granato et al. 2004; see also next Chapters).

A more explicit test of the role of accretion is obviously the comparison, presented

in the next Section, of the resulting MF with the local SMBH MF.
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Figure 5.6: Comparison of the accreted MF (dashed line) computed as in Fig. 5.5, but for λ
given by Eq. (5.24) with the local SMBH MF (solid line, with 1σ uncertainties represented
by the shaded area). The dot-dashed line shows the accreted MF of optically selected QSOs
(MB < −22.5).

Figure 5.7: Cumulative local SMBH MF (dashed line) with its 1σ uncertainties, compared
with the cumulative MF of optically selected QSOs (MB < −22.5; dot-dashed line) plus
X-ray selected Type 2 AGNs.
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Figure 5.8: Iso-χ2 contours in the ε–λ0 plane for the match between the accreted and the
local SMBH MFs. The contours are labelled with their value of ∆χ2. The projections of
the ∆χ2 = 1 and ∆χ2 = 3.84 contours on the axis corresponding to a parameter give the
68% and 95% confidence intervals, respectively, for such parameter.

5.2 The local accreted mass function

The AMF can be derived from the AGN LF once a relationship between luminosity

and BH mass is established (Chokshi & Turner 1992). Salucci et al. (1999) compared, under

plausible assumptions, the accreted MF with the local SMBH MF to infer information on

the accretion history. This point has been recently reexamined by a number of authors

(e.g. Yu & Tremaine 2002; Aller & Richstone 2002; McLure & Dunlop 2003; Yu & Lu 2004;

Marconi et al. 2004), who reached different conclusions.

Let us assume that the local SMBH mass is mostly due to radiative accretion

and that the accretion rate Ṁ• is proportional to M• (see e.g. Small & Blandford 1992;

Cavaliere & Vittorini 2002; Marconi et al. 2004), at least during the main accretion phases.

A recent analysis of SDSS quasars suggests that the two quantities are correlated (McLure

& Dunlop 2003), although with a huge scatter, at least partly due to the uncertainties in

BH mass estimates. An almost constant Ṁ•/M• is also expected, according to the physical

model of Granato et al (2004), during the fast growth of the SMBHs and up to the bright
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quasar phase.

If Ṁ•/M• is constant, the bolometric luminosity grows exponentially (as does the

BH mass):

Lbol(t) = εṀaccc
2 =

ε

1 − ε
Ṁ•c

2

=
λc2

tE
M•(ti) exp

[

(t− ti)

tef

]

, (5.16)

with e-folding time

tef =
εtE

(1 − ε)λ
, (5.17)

where λ is the average ratio L/LEdd, tE is the Eddington time and ti is the time when the

growth starts. The e-folding time equals the Salpeter time if λ = 1.

The growth stops when the SMBH reaches its maximum mass, set equal to its

present-day mass M 0
• , i.e. we neglect the mass increase during the declining phase of the

light curve (see Yu & Lu 2004). The maximum bolometric luminosity is then:

Lbol,max(M
0
• ) = λ

M0
•

tE
c2. (5.18)

Under these assumptions, the local SMBH MF is related to the epoch-dependent LF in a

given observational band by the energy balance equation:

1 − ε

εc2

∫ t0

0
dt

∫

∞

L̄
dLkbolLn(L, t) =

=

∫ ∞

M̄0
•

dM0
•n(M0

• )
[

M0
• − M̄0

•

]

, (5.19)

where L̄ = Lmax(M̄
0
• ). The local MF n(M 0

• ) is straightforwardly obtained differentiating

Eq. (5.19) with respect to M̄0
• .

Eq. (5.19) is derived from the continuity equation (see Yu & Lu 2004). The

luminosity/mass continuity equation (Small & Blandford 1995; Cavaliere & Vittorini 2002;

Murali et al 2002; Steed & Weinberg 2004) describes the evolution of the mass function

and yields hints on the relation between the local mass function of inactive SMBHs and the

past history of accretion or merging of BHs. Following Yu & Lu (2004), continuity equation

reads
∂n(L, t)

∂t
+
∂(< L̇ > n(L, t))

∂L
= S(L, t), (5.20)
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where n(L, t) is the luminosity function at time t, contributed by SMBHs of any present-day

mass M0
• , turned on at any time ti ≤ t, < L̇ > is the luminosity derivative averaged over

initial times ti and present-day mass M 0
• and S(L, t) is the source term.

If the accreted mass is most of the relic mass in local BHs, it follows that the initial

seeds have M i
• �M0

• . We want to explore the case in which most of the present day mass

of SMBHs has been accumulated in accretion episodes traced by light, hereafter denoted as

the luminous accretion case. In this framework we can assume that the seeds are ’in place’

and that the source term can be neglected in the continuity equation. Yu & Lu (2004) have

shown that for the luminous accretion case the observed AGN luminosity function n(L, t)

is related to the present day SMBH MF by

1 − ε

εc2

∫ t0

0
dt

∫

∞

L̄
dLkbolLn(L, t) =

∫

∞

0
dM0

•×

n(M0
• )

∫

∞

L̄
dLṀ•τvis(M

0
• )P (L |M 0

• ) , (5.21)

where n(M 0
• ) is the local number density of SMBHs with present day mass M 0

• . The

luminosity Lmin is the minimum luminosity required for an AGN to be included in the LF

, and the time τvis = τ(L ≥ Lmin | M0
• ) is the total visibility time τvis, i.e. the total time

spent by the SMBH in the active, visible phase with L ≥ Lmin. P (L |M 0
• )dL is the fraction

of the active, visible phase with luminosity in the range L → L + dL (Yu and Lu 2004).

M̄0
• is the present day BH mass of an AGN that had a maximum luminosity L̄. Notice that

l.h.s. of Eq. (5.21) is just the r.h.s. of Eq. (5.3). This equation represents the conservation

of mass. In the same framework, conservation in number can be written as

∫ t0

0
dt

∫ ∞

L̄
dLn(L, t) =

∫ ∞

0
dM0

•×

n(M0
• )

∫ ∞

L̄
dLτvis(M

0
• )P (L |M 0

• ) . (5.22)

In the limit of L̄ and M̄0
• vanishing, the innermost integrals in r.h.s. of Eq. (5.21) and

Eq. (5.22) will reduce to M 0
• and to τvis(M

0
• ) respectively.

If we want to exploit the luminosity and mass dependence of Eq. (5.21) and

Eq. (5.22), we have to specify the relationship between mass and luminosity during the
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luminous accretion. Following Eq. (5.1) we get

P (L |M0
• )dL =

dL/L̇
∫ Lmax

Lmin
dL/L̇

=
dL/L̇

τvis(M0
• )
. (5.23)

where the maximum bolometric luminosity is reached at some fiducial time tmax, after an

interval τvis, during which the AGN is included in the LF since Lmin ≤ L ≤ Lmax. We

remind that in Eq. (5.21) and Eq. (5.22) L̄ is the maximum luminosity reached during the

active phase by a BH of present day mass M̄0
• . Inserting Eq. (5.23) in Eq. (5.21) we then

recover Eq. (5.19) (see Yu & Lu 2004 for details).

In Fig. 5.5 the estimated AMF derived from the epoch-dependent X-ray LF by

U03, assuming Eddington limited accretion (λ = 1), is compared with the local SMBH

MF (including SMBHs hosted by both early- and late-type galaxies). Although the two

curves are rather close to each other, their shapes differ. The fact that the assumption

of Eddington limited accretion leads to an AMF exceeding the SMBH MF in some mass

range shows that it cannot be true for all epochs and/or luminosities. Indeed, as discussed

in Chapter 2, Section 2.2.1, low-z/low luminosity AGNs are known to be radiating well

below the Eddington limit (Wandel et al. 1999), as recent estimates (Chapter 2) suggest

for quasars up to z ' 2 (McLure & Dunlop 2004; Vestergaard 2004).

The match between the AMF and the local SMBH MF indeed improves signifi-

cantly (Fig. 5.6) if we adopt a redshift dependent Eddington ratio of the form:

λ(z) = λ0 if z ≥ 3

= λ0[(1 + z)/4]α if z < 3 (5.24)

with λ0 = 1 and α = 1.4. The discrepancy at M• ≥ 109 M� is only marginally significant

being slightly more than 1σ level. On the other hand, the generally higher AMF estimate

derived from the X-ray, compared to that from the optical, LF (see Fig. 5.6), reflects the

strong luminosity dependence of the fraction of Type 2 AGNs, which are represented in the

X-ray, but not in the optical, LF. X-ray surveys (see, e.g., Hasinger 2003) have shown that

the Type 2 fraction increases from ' 30% at high luminosities (L2−10 keV ≥ 1044 erg s−1) to

' 70–80% at low luminosities (L2−10 keV ≤ 3 × 1042 erg s−1), consistent with the results of

optical spectroscopic surveys of complete samples of nearby galaxies, without pre-selection
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Figure 5.9: Contributions to the local SMBH MF as a function of redshift, for several values
of M0

• .

(Huchra & Burg 1992; Ho et al. 1997). As a check, we have computed and plotted in Fig. 5.7

the cumulative accreted mass density function obtained by summing the contribution of the

optically selected QSOs to that of Type 2 X-ray selected AGNs; again, the agreement with

the local SMBH mass density function is very good. We checked that a dependence of λ on

luminosity, as suggested by Salucci et al. (1999), rather than on redshift, yields an equally

good fit.

Requiring that the AMF matches the local SMBH MF we obtain constraints on

the radiative efficiency and on the maximum value of the Eddington ratio [Eq. (5.24)].

A minimum χ2 analysis yields ε ' 0.09 (+0.04,−0.03) and λ0 ' 0.3 (+0.3,−0.1) (68%

confidence errors; see Fig. 5.8). The constraints on the parameter α ruling the evolution of

the Eddington ratio [Eq. (5.24)] are rather loose (0.3 ≤ α ≤ 3.5).

5.3 Accretion history and AGN visibility times

Replacing t0 with t in Eq. (5.19) and differentiating with respect to z and M̄0
• we

get the contributions to the n(M 0
• ) from different cosmic epochs, shown for several values
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Figure 5.10: Fraction of the final accreted mass as function of mass and redshift. Solid and
dashed lines refer to accretion evaluated exploiting Hard X-ray LF of AGN and optical LF
of QSOs respectively.

Figure 5.11: Lower and upper limits to the visibility time scales using a constant λ = 1
(panel a) and using a non-constant λ = (M•/10

10M�)0.1 (panel b). The dotted line indicates
the extrapolation of the optical AGN luminosity function to magnitudes fainter than MB =
−22.5.
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Figure 5.12: Comparison between the cumulative number of AGN and the relic SMBH
population under the hypothesis of an exponential growth light curve.

Figure 5.13: Comparison between the SMBH Accretion Rate Density computed with the
Ueda et al. (2003) HXLF and with optical LF and the data by Barger et al. (2005). Stars:
SFR divided by the factor 2 · 10−3, equal to the observed ratio M• −Msph.
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of M̄0
• in Fig. 5.9, which evidences that mass is accreted earlier and more rapidly by the

more massive BHs.

From Eq. (5.3) we can get the time dependence of the mass accumulated in BHs

with M > M̄0
•

ρacc(> M̄0
• , t) =

1 − ε

εc2

∫ t

0
dt′
∫ ∞

L̄
dLkbolLn(L, t′), (5.25)

with L̄ = λM̄0
• c

2/kboltE . In Fig. 5.10 the ratio

F =
ρacc(> M̄0

• , t)

ρacc(> M̄0
• , t0)

, (5.26)

is shown as function of mass for the Hard X-ray LF and for the optically selected QSOs. F

is independent of ε, but, due to the dependence on luminosity L̄ it depends, though weakly,

on kbol and λ. It is apparent that the accretion on X-ray selected AGN is occurring in the

redshift interval 0.5 ≤ z ≤ 2, while for optically selected QSOs most of the mass is already

in place at z ' 1.5. The mass dependence of the ratio F shows that mass is more rapidly

accumulated in more massive BHs.

The inner integral of the l.h.s. of Eq. (5.22) represents the time interval during

which a BH of present day mass M 0
• exhibit a luminosity L > L̄. In fact using Eq. (5.23)

we can write

∫ ∞

L̄
dLτvis(M

0
• )P (L |M 0

• ) =

∫ ∞

L̄

dL

L̇
= τlum(L ≥ L̄|M0

• ) . (5.27)

Therefore the average time spent by a SMBH with L ≥ L̄ reads as

〈τlum〉 =

∫ t0
0 dt

∫∞

L̄ dLΦ(L, t)
∫∞

M̄0
•
dM0

•n(M0
• )

. (5.28)

In the limit L̄→ Lmin we get 〈τlum〉 = 〈τvis〉. The equation states that 〈τlum〉 is independent

of the efficiency, as noted by Yu and Tremaine (2002), but it depends on kbol and λ. Also

it may vary with the e.m. band in which the LF has been defined, since, for instance, the

amount of absorption significantly depends on the observational wavelengths. This lower

limit, computed using the U03 LF and the best estimate of the Local MF, is very weakly

dependent on the BH mass, except at M• > 109M�, where the X-ray LF predicts a MF of

the accreted mass larger than the local MF (see Fig. 5.11).
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We have also estimated the same limit only for optically selected QSOs (Fig. 5.11;

dashed lines). The two limits are very similar for M• > 107 M�. This result depends on

the relationship between the present-day mass of a BH and the corresponding maximum

luminosity, which in turn depends on the assumption Ṁ/M• =constant.

Adopting the U03 LF, we find 〈τlum〉 ' 1.5×108 yr if we adopt a redshift-dependent

Eddington ratio [Eq. (5.24)] and ' 8 × 107 yr if we keep λ = λ0.

We stress that this is however a lower limit to the time interval τvis, spent at

L ≥ Lmin. If Ṁ/M• = const, the duration of the visible phase is simply:

τvis(M
0
• ) = tef ln

[

Lmax(M
0
• )

Lmin

]

= tef ln

[

M0
•

Mmin
•

]

, (5.29)

where Mmin
• is the BH mass when radiative accretion yields luminosity L ≥ Lmin (Fig. 5.11;

dot-dashed lines). In the case of the X-ray LF of U03, the minimum 2–10 keV luminosity

included at z ' 0.8, where the contribution to the X-ray background peaks, is log(Lmin) '
42–42.4. With the bolometric correction given by Eq. (5.12), the corresponding minimum

BH mass is:

Mmin
• =

5 × 104

λ

Lmin

1042erg s−1
M�. (5.30)

The minimum BH mass contributing to the LF of optically selected QSOs for the bolometric

correction by Elvis et al. (1994) is :

Mmin
• =

3 × 107

λ
10−0.4(22.5+Mmax

B ) M�, (5.31)

where Mmax
B ' −22.5 (Boyle et al. 2000; Croom et al. 2003).

Using Eq. (5.27) and Eq. (5.29) the number conservation expressed in Eq. (5.22)

can be written as

∫ t0

0
dt

∫ ∞

L̄
dLn(L, t)

= tef

∫ ∞

0
dM0

•n(M0
• ) ln

(

M0
•

M̄0
•

)

, (5.32)

which adds further, independent constraints on ε and λ0 (see Fig. 5.12). Using the U03

LF and assuming a 30% uncertainty on the bolometric correction for X-ray luminosities,

we find an allowed range for ε pretty similar to that following from the match between the
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AMF and the local SMBH mass function (0.06 ≤ ε ≤ 0.13) while the constraints on the

Eddington ratio are looser (0.5 ≤ λ0 ≤ 2).

To conclude the section we have also estimated the redshift dependent Accretion

Rate Density (ARD) dρ•/dz, i.e. the total mass density accreted at any time. In Fig. 5.13 we

compare the ARD with the SFR(z) ·(2 ·10−3), rescaled by the observed ratio M•−Msph. It

is straightforward to check the close link in time evolution of the stars and SMBH accretion

histories. At z ≤ 1 the ARD starts dropping more rapidly than the SFR, due to the fact

that the latter is dominated by star formation in disks at these redshifts (see also Chapter

8).

5.4 Comparison with previous works

The formalism developed in Eq. (5.21), Eq. (5.22) and Eq. (5.23) simply converts

the source-free (i.e. with negligible creation/destruction of SMBH) continuity equation into

Eq. (5.19). Small & Blandford (1985) and Marconi et al. (2004) use the mass continuity

equation written in Eq. (5.20) in terms of mass as

∂n(M, t)

∂t
+
∂(< Ṁ (M, t) > n(M, t))

∂M
= S(M, t), (5.33)

where now with M we indicate the current SMBH mass at the time t. The ”average”

accretion rate < Ṁ (M, t) > is then converted to an instantaneous accretion rate, Ṁ =

Lbol(1 − ε)/ε c2, as

< Ṁ(M, t) >=
M

t
=

M

τlum

τlum

t
= δ(M, t)Ṁ , (5.34)

where δ(M, t) is the duty cycle, in principle dependent on mass/luminosity and time.

Therefore the number of comoving AGN per luminosity bin can be set to Φ(L, t)d lnL =

δ(M, t)N(M, t)dM , here δ(M, t) indicating the fraction of active SMBH of mass M at time

t. Eq. (5.33) can then be rewritten as

n(M, t) < Ṁ (M, t) >=
λ(1 − ε)

εtE
[Φ(L, t)]

L=λ Mc2

tE

∂n(M, t)

∂t
= −c

2λ2(1 − ε)

εt2E

[

∂Φ(L, t)

∂L

]

L=λ Mc2

tE

. (5.35)
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As shown by Marconi et al. (2004) the solution is almost independent of the initial condition,

fixed at high redshift. Merloni (2004) instead follows the SMBH evolution backwards setting

the boundary at z = 0 n(M, t0)dM = n(M•)dM•, where n(M•) is the SMBH relic MF.

However, to describe the average drift of the n(M, t) function in the time step δt,

the average accretion rate should be calculated at a given time t averaged over the whole

SMBH population at that time (Merloni 2004; Steed & Weinberg 2004; Yu & Lu 2004):

< Ṁ(M, t) >=

∫

∞

M n(M, t)Ṁ (M, t)dM
∫∞

M n(M, t)dM
. (5.36)

Eq. (5.34) can be considered as a sufficient approximation of Eq. (5.36) only in

special conditions, i.e. when the accretion rate does not significantly depend on mass

Ṁ(M, t) ∼ Ṁ(t). Moreover if one adopts Eq. (5.16) as the reference light curve for SMBH

growth, then the instantaneous accretion rate Ṁ (t) rises exponentially. Therefore one

expects the instantaneous accretion rate Ṁ(t) being significantly different from the accretion

rate M/t averaged over the elapsed time t, being the discrepancy even stronger within the

last e-folding times, relevant for SMBH shining, when the rise in Ṁ(t) becomes even steeper.

Moreover in this Chapter we have found a lower limit to the average visible time,

〈τlum〉 ≥ (4 − 10) × 107 yr, through the statistical comparison between AGN and SMBH

demography, a computation which is independent of the radiative efficiency. Another way

to probe the AGN luminous timescales is to use clustering analysis. Martini & Weinberg

(2001) find a visible time τlum ∼ 107 yr for a clustering length for optical QSO of r1 ∼ 10h−1

Mpc. There are several uncertainties in this method (Martini 2004), such as the presence

of a scatter between halo mass and QSO luminosity/SMBH mass (which might be present,

as it will be discussed in Chapter 6), which could produce systematic off-sets in the results.

However the latest studies on the topic have confirmed (and actually increased!),

the result by Martini & Weinberg (2001), finding an average value τlum ∼ a few 107 yr (e.g.

Porciani et al. 2004). Clustering results seem to be therefore very close to the findings of

this Chapter (cfr. Fig. 5.11).

As stated above, we find that the visible time gets longer to about τlum ∼ 108 yr

for the visible X-ray selected AGN and ongoing analysis of Chandra data on the clustering

of X-ray selected sources will probably confirm such results (see Gilli et al. 2005). The
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longer visible timescales for X-ray AGN is due to the fact that X-rays are less absorbed

and the visible objects in the hard electromagnetic bands shine longer. In Chapter 6 we’ll

get deeper into the analysis and physical meaning of the AGN visible and total timescales

exploiting the match between the S&T MF and the AGN LF.



Chapter 6

Fitting Active Galactic Nuclei

Luminosity Function

In the previous chapter we have analyzed AGN statistics to infer global properties

on the SMBH accretion history. Through the statistical match with local data, we have

been able to set lower limits on the AGN visible times which we find to be ≥ 4 × 107 yr,

the SMBH growth e-folding time. Within the framework of the Granato et al. co-evolution

model, in this chapter we work out the AGN visible duty-cycle needed to reproduce the

observed AGN statistics in the optical and Hard-Xray bands, and we discuss the physical

meaning of such timescales, comparing them with the previous results.

6.1 Previous models

Fitting AGN LF has proven a real challenge for galaxy evolution models. The

usual method followed is to set a link between the SMBH mass and the halo mass, as given

by, e.g. a feedback relation (see Chapter 3, Section 3.4.2) or a constant ratio (Haiman

& Loeb 1998). In particular Wyithe & Loeb (2003; WL hereafter) provide the feedback

constrained relation

M•(Mvir, z) = εMvir = ε0Mvir

(

Mvir

1012M�

)2/3

[ξ(z)]5/6 (1 + z)5/2 , (6.1)

156
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where the constant ε0 is fixed from the fit to the M• − σ relation, which can be recovered

from Eq. (6.1) imposing that the total energy released by the AGN overcomes the DM

potential well (see Eq. (3.95) in Chapter 3).

The comoving number of AGN/SMBH at any redshift is then provided by the DM

halo rate of formation according to the equation

Φ(L, z) =

∫ ∞

z
dz

∫ ∞

0
dL

dM•

dL

dMvir

dM•

R(Mvir, z
′)δ[L −M•f(z, z′)] . (6.2)

The δ function limits the integration to only those AGN which formed at any redshift z ′ ≥ z

that shine at z with luminosity L following the growth of the light curve f(z, z ′). Here for

R(Mvir, z) (see discussion Chapter 3, Section 3.3.5) we define the formation rate of virial

objects which host an AGN.

However, as shown e.g. by Granato et al. (2001) and WL, Eq. (6.2) can be

further simplified considering the duty-cycle for AGN activity, tvis much shorter than the

cosmological time at all redshifts z ≤ 6, as shown by statistical and clustering techniques

(Chapter 5). Thus one can write

Φ(L, z) ' tvisR(Mvir, z)
dMvir

dM•

dM•

dL
. (6.3)

WL and Mahmood et al. (2004; M04 hereafter) in particular have followed Eq. (6.3) aiming

at fitting both the AGN LF at all redshifts and the local SMBH mass function.

Haehnelt et al. (1998) have shown that an equally good fit to the high redshift

AGN LF could be gained either by using a M•−Mvir relation very similar to Eq. (6.1) with

a visible timescale of a few 107 yr, or with a simple M• ∼ 10−4Mvir proportion with a few

105 yr as duty-cycle. However, as shown in Chapter 5, any model which aims at reproducing

the overall AGN statistics at all redshifts and at the same time reproduce the local SMBH

mass function through accretion episodes, must account for a radiative efficiency of the

order ε ∼ 0.1 − 0.15, which corresponds to an e-folding time tef ∼ 4 · 107yr and a luminous

time τlum ≥ 4 · 107 yr (see Eq. 5.28). WL and M04 have however found that the best fit for

the model defined in Eq. (6.3) is obtained if one sets

tvis = 0.035tdyn = 0.035
Rvir

Vvir
= 0.035 · 1.5 · 109

[

Ωm

Ωz

∆vir(z)

18π2

]

, (6.4)
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where ∆vir(z) has been defined in Eq. (3.24) and Ωz in Eq. (3.15). The proportionality

constant is derived assuming that the cold gas of the AGN host galaxy is located in a

disk with a characteristic radius (λ/
√

2)Rvir ∼ 0.035Rvir (with λ ∼ 0.05 and supposing

conservation of angular momentum; see Chapter 3, Section 3.4.3).

However it is easy to check that for z ≥ 4, tvis ≤ 107 yr, approaching (1/10) × tef

for z = 6. Such models can hardly explain, in light of the Soltan’s argument discussed

in Chapter 5, how these high-redshift ultra-luminous AGN, being active for a so short

timescale, have been able to accumulate so much mass to become the most massive SMBH in

the Universe. Moreover Eq. (6.1) predicts too massive SMBH with respect to observations,

of the order of 1011M�, at z ∼ 6.

We compute the relic SMBH MF as implied by the AGN LF exploiting the duty

cycle in Eq. (6.4)
dn

dM•

=

∫ ∞

0

tH(z)

tvis(z)

dL

dM•

Φ(L, z)dz . (6.5)

In Fig. 6.1 we show the total AMF as given by Eq. (6.5) using the Pei (1995) LF. The result

is about a factor of 2 higher than the local estimate at the level of ∼ 108 M�, up to a factor

of 3-4 at M• ∼ 107M�. This result is a direct consequence of the short visible timescales

in Eq. (6.4), which in turn implies a low radiative efficiency and more mass accreted (see

Chapter 5, Eq. 5.17 and Eq. 5.3).

The model expressed in Eq. (6.3) is highly dependent on the type of Cosmological

model used for describing the DM halo evolution. Firstly for a fixed M• −Mvir relation,

the AGN statistics in Eq. (6.3) is fixed by the product of the number of newly formed halos

and the visible time. The result found by WL in Eq. (6.4), was obtained by using the

EPS theory for the DM rates. However after the discussion in Chapter 3 (Section 3.3.5),

the ṅ+
S&T , which provides a number of new virilized halos up to a factor of 10 higher than

the EPS, provides a better fit to N -body numerical simulations. Therefore inserting the

ṅ+
S&T in Eq. (6.3), one would find even shorter visible timescales to recover the fit to the

AGN LF. As an example in Fig. 6.2 we show that using the S&T rates the best fit to the

data at z = 4.3 is obtained using the timescale in Eq. (6.4) divided by a factor 3, which

means tvis ∼ 3× 106yr. Even shorter timescales, approaching ∼ 105 yr, would be needed at

higher redshifts. The choice of a different matter density power spectrum also has significant
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Figure 6.1: Dashed line: the predicted SMBH relic Mass Function as computed by the
model in Eq. (6.5) given the duty-cycle in Eq. (6.4). The gray area is the 1-σ uncertainty
region of the SMBH mass function computed in Chapter 4.

effects on the statistics of DM halos. WL and M04 use a simple power spectrum without

correction for baryons which instead (see Chapter 3, Eq. (3.27) and Eq. (3.28)) decreases

the number of halos in the S&T MF of about a factor from 2 to 3 at z = 4.3, and up

to a factor of 10 at z ∼ 6 at halo masses of about 1013M�, relevant for luminous AGN.

Such a property, providing a lower number of DM halos at any given redshift, allows for a

mild/strong increase of the AGN visible timescale (see Eq. (6.3)).

A similar, but minor, effect on the number density at high masses is played by the

cosmological parameter σ8, the normalization of the field mass variance (see Eq. (3.30)),

which however we have set equal to the most recent estimate from the WMAP released

data. Increasing its value, increases the number of massive halos, as σ8 provides the power

at big scales (R = 8h−1Mpc).

As reported in Granato et al. (2004) and in Chapter 3, we extend our galaxy evo-

lution code to halos with mass log(Mvir/M�) ≤ 13.2. This limit in the DM halo mass which

can host a single galaxy provides the best fit to the galaxy LF and to the dispersion velocity
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Figure 6.2: The predicted AGN optical LF at z = 4.3 following Eq. (6.3), Eq. (6.1) and
Eq. (6.4) using ṅ+

S&T . The best fit is obtained by dividing the visibility tvis by a factor of
3. Squares: data by Fan et al. (2001) and (2003), and by Kennefick et al. (1995); triangles:
data by COMBO-17 (Wolf et al. 2001); circle: data by GOODS (Cristiani et al. 2004).

function of local galaxies (see Chapter 7). Such a limit is also supported by observational

evidence from lensing (Kleinheinrich et al. 2004) and statistical analysis (see Chapter 8).

If we take into account such a cut-off and using Eq. (6.4), we find that using the

model in Eq. (6.3) the optical AGN LF at z = 3 is reproduced only at luminosities below

log(LB/L�) = 13.1 (see Fig. 6.3). To have a global fit to the data, we need to extend the

model beyond log(Mvir/M�) ≥ 13.2. At lower redshifts in particular the model presented

in Eqs. (6.3) and (6.4) is able to fit the overall AGN LF only if we allow DM halos of mass

Mvir ∼ 1014 M� to harbor AGN. However DM halos of such masses are known to usually

host group of galaxies (see Chapter 8, Figs. 8.2 and 8.3), as their long cooling times prevent

the formation of single galactic cores. To solve this problem M04 have limited the creation

of AGN in halos of mass log(Mvir/M�) ≤ 13.2 and have empirically inserted a lorentzian

tail beyond this limit. Through such a device the authors can extend the fit to the bright

tail of the AGN LF.
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Figure 6.3: AGN Luminosity Function computed at z = 3 through Eq. (6.3) and Eq. (6.4);
stars: data from Pei (1995).

In our model instead we consider a scatter of about 0.3 dex in logM• at fixed halo

mass Mvir and virialization redshift zvir which can effectively produce a gaussian tail in the

SMBH MF, and therefore in the AGN LF, beyond the limit of 2 × 1013 M�. Within the

framework of the Granato et al. model, between the spheroid and the central SMBH we

expect a negligible scatter. In fact the growth of the stellar component and of the central

BH are strictly symbiotic, double tied by the positive effect of the photon drag, proportional

to the star formation rate, favoring the inflow toward the reservoir around the central BH,

and by the negative effect of the BH growth, powering outflows (see Chapter 3 and Chapter

7, Fig. 7.6). Instead plausibly a larger dispersion between the host DM halo and the SMBH

mass could occur, due to the fact that the feedback in this case is unilateral, from the

SMBH to the surrounding DM and therefore the latter relation could be not as tight as the

former one.
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6.2 AGN LF from delayed Black Hole activity

Our target is to compute the AGN LF improving on previous assumptions and

inserting new elements regarding the physiics of baryons. In particular we assume, following

Monaco et al. (2000) and Granato et al. (2001), the peak of the AGN activity delayed by

a time interval tdelay with respect to the host DM halo virialization epoch at tvir.

Following Chapter 3, Section 3.4.2 (in particular Eqs. (3.84), (3.85) and (3.86))

the light curve built in our model is characterized by two phases (see also Figs. 6.5 and

6.6).

1. Initially the BH starts growing at tvir, from an initial seed which we suppose already

in place at the galactic center with Mseed ∼ 102 M� (Chapter 3, Section 2.3). The BH

accretes at a fraction λ = Ṁ/ṀEdd of the Eddington rate, and reaches a final mass

Mpeak (at the shining time tsh = tvir + tdelay). In this phase, the star formation is very

high (see Fig. 6.5 right panel) and therefore the consequent reservoir mass growth is

very rapid (Eq. (3.85)). The condition in Eq. (3.86) then favors an Eddington-limited

accretion, being the accretion rate high enough to sustain the pressure-supported

accretion limit (see Chapter 2, Section 2.2.1). The AGN during the main growth

phase before the peak of activity is obscured by the surrounding dust in the galaxy,

therefore it could possibly be detected only in the Hard-Xrays and the proto-galaxy

will appear as a submillimeter source (see Chapter 3). It is worth recalling that

detections of Hard-Xray AGN activity have been claimed in the majority (∼ 70%) in

the sample of SCUBA galaxies by Alexander et al. (2005).

2. After a time tdelay, when the central SMBH will be enough massive and luminous to

remove most of the gas and dust from the surroundings, the galaxy system will shine as

an optical AGN, i.e. tdelay ∼ twind (Chapter 3, Eq. (3.97)). Due to the delay, following

Eq. (6.2), the computation of the AGN LF, Φ(L, tsh), is done associating to it a lower

numeric weight of DM rates, i.e. the one at the time tvir < tsh, which in turn enables

us to increase the visibility time tvis to recover the fit. The optical AGN LF and the

bright part of the Hard-Xray AGN LF, provide constraints on the actual height of

the peak in the AGN light curve. In fact most of the luminous tail in the AGN LF is
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produced, as shown in Fig. 6.4, within a time tvis, around the peak in the Ṁ• curve.

This is also the time when most of the AGN feedback energy is transmitted to the

surrounding medium (see Chapter 3, comments before Eq. (3.100)). We expect that

tvis will depend on the wavelength in which we compute the AGN LF. In particular

it will be longer for Hard-Xray AGN, being photon-absorption less strong in these

bands. In our model, as it is clear from Figs. 6.5 and 6.6, the delay time is not much

affected by the halo mass or virialization redshift. Instead being the SMBH growth

exponential, the shorter is the Eddington ratio λ, the longer is the e-folding time (see

Eq. (5.17)), and therefore the longer is the delay. From our code we get that for

λ ∼ 3, tdelay ∼ (3−5)×108 yr, while it increases to about a Gyr for λ ∼ 1. This point

highlights the need for higher Eddington ratios at higher redshifts in order to produce

enough massive BH and luminous AGN by z ∼ 6. In our model we set λ ∼ 3 − 4 for

zvir ≥ 5 and λ ∼ 1 − 2 for lower redshifts (see Appendix A).

3. After the peak, if the SFR drops by orders of magnitude (as in the right panel of

Fig. 6.5) the subsequent infall onto the reservoir is negligible and the SMBH does

not grow significantly anymore, therefore Mrelic ∼ Mpeak. If instead the SFR is still

substantial after the AGN blowout, the SMBH can still grow by factors of a few.

Such a descendant phase could last for Gyr (cfr. Fig. 6.6, left panel). In this stage

the SMBH grows at low accretion levels, from 10−5 to, maximum 10−1M� yr−1 in

the most massive halos. However it must be noted that the AGN LF faint-end and

Hard-Xray number counts set a strong constraint on the actual descendent phase. As

it will be shown more in detail below, this second accretion phase must not be very

prolonged or at least it must occur at very radiative inefficient regimes (e.g. ADAF,

see Chapter 2) as otherwise it would create too many faint objects with respect to

observations. In the following we will only use the model shown in Fig. 6.5 which

better reproduces the data. Such a result is in line with what discussed also by Yu &

Lu (2004) through SMBH/AGN demographic comparisons.

In more detail we base our findings on the following assumptions.

• The formation rates of DM halos with mass Mvir at time tvir are given by the
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Figure 6.4: Light curve of an AGN as output of the numerical code for a Mvir = 1012 M�

at zvir = 4. The lines represent the growth of the SMBH mass (solid), of the reservoir
mass (dashed) and the light-curve (dot-dashed). The dark area, delimited by the arrow
marked as tdelay ∼ twind, represents the time when the system, obscured by dust, appears
as a SCUBA galaxy. The visibility time in the figure is about tvis ∼ 4× 107 yr. The striped
area represents an eventual descendant phase in the light curve.

positive term in the time derivative of the S&T MF (see Eq. (3.52)). We remind that we set

the cutoff parameters to the fiducial values z− ≈ 1.5, M− ≈ 1011.4 M� and M+ ≈ 1013.2 M�

therefore we force the formation rates to vanish outside these ranges in mass and redshift,

but we include a gaussian dispersion of about 0.3 dex around the mean M• −Mvir at any

redshift.

• The computation of the SMBH light curve is the output of the code by Granato

et al. (2004) and it is the result, at each instant, of Ṁ•(t) given in Eq. (3.86) as a result

of the set of differential equations exposed in Chapter 3, Section 3.4.2 and Appendix A.

However during the exponential SMBH growth before the peak, it is possible to analytically

express the AGN light curve produced by the code as in Eq. (6.6) to derive the main physical

trends. The light curve can then be modeled as

L(t) =
λM• c

2

tEdd
e(t−tvir−tdelay)/τ+ θH

(

tvir + tdelay − tvis ≤ t ≤ tvir + tdelay

)

. (6.6)

Here tEdd ≈ 4 × 108 yr is the Eddington timescale, and here we call τ+ ≈ ε tEdd/(1 − ε)λ

the e-folding time (see Chapter 5) in terms of the BH mass-energy conversion efficiency
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Figure 6.5: Left panel. Light curves as output of the numerical model. Right panel. Star
Formation rate and evolution of the several baryonic components in the galaxy. All the
curves are as labeled.

ε ≈ 0.15; in addition, the Heaviside function1 θH specifies that the AGN shines unobscured

only during the time interval tvis before the peak of its light curve (see Fig. 6.4). Eq. (6.6)

shows that if one includes obscuration in the AGN light curve, the total AGN duty-cycle,

that the model predicts to be about 0.3 ÷ 1 Gyr (see Figs. 6.4 and 6.5), reduces to the

visible time, ∼ (0.4 ÷ 1) × 108 yr, i.e. it is reduced by about 1 order of magnitude.

1Recall that the Heaviside function θH is defined by

θH(x) =

{

1, if x is true;
0, otherwise.

.
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Figure 6.6: Left panel. Light curves as output of the numerical model. Right panel. Star
Formation rate and evolution of the several baryonic components in the galaxy. All the
curves are as labeled. Slightly different parameters are used in this plot as compared to the
ones used in Fig. 6.5 in order to enhance the descendant phase.

• The computation of the AGN LF at a time t and luminosity L is computed

numerically summing up the contribution of all the sources which virialize at any time

t′ < t and have the right delay to shine at the time t with luminosity L = (ε/1− ε) ˙M•(t)c
2.

We can express such a computation analytically as

Φ(L, t) =

∫ t−tdelay+tvis

t−tdelay

dtvir

∫ M+

M−

dMvir
d2NS&T

dtvir dMvir
δD

(

L− λM• c
2

tEdd
e(t−tvir−tdelay)/τ+

)

,

where δD indicates the Dirac delta function. Following the output of our model in Fig. 6.5,

we can approximate the time delay to be almost independent of the BH mass, therefore we
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can explicitly perform the inner integration in Eq. (6.7). The result comes to

Φ(L, t) =
1

L

∫ t−tdelay+tvis

t−tdelay

dtvir

∣

∣

∣

∣

dMvir

d lnM•

∣

∣

∣

∣

M̄•

d2NS&T

dtvir dMvir
∣

∣Mvir(M̄•)
,

(6.7)

with M̄• ≡
L tEdd

λ c2
e(tvir+tdelay−t)/τ+ .

which is very similar to Eq. (6.2).

If one includes the declining phase of the AGN light curve we can generalize

Eq. (6.2) as

Φ(L, t) =
1

L

∫ t−tdelay+tvis

t−tdelay−χ τ−

dtvir

∣

∣

∣

∣

dMvir

d lnM•

∣

∣

∣

∣

M̄•

d2NS&T

dtvir dMvir
∣

∣Mvir(M̄•)
,

(6.8)

with M̄• ≡
L tEdd

λ c2

(

1 +
τ−
τ+

)[

e(t−tvir−tdelay)/τ− θH

(

t− tdelay − χ τ− ≤ tvir ≤ t− tdelay

)

+

+ e(tvir+tdelay−t)/τ+ θH

(

t− tdelay ≤ tvir ≤ t− tdelay + tvis

)

]

.

Here τ− is the characteristic timescale of the AGN light curve in the declining phase, and

we consider the AGN as dead after a time lapse χ τ−. However a close check to the overall

set of empirical data has proven that the condition τ− << tdelay must hold. The latter

result matches with the findings in Chapter 5, where a good match was found between the

AMF and relic SMBH MF, assuming a negligible accretion phase beyond the SMBH peak

of activity (cf. Eq. (5.16)).

To compare our results with the data, the bolometric AGN luminosity function

computed above has to be converted in the optical and hard X-ray bands through the

appropriate bolometric corrections. For the optical band we use LB = fB L with fB ≈
0.1. For the hard X-ray band (between 2 and 10 keV) we use LX = fX L with fX ≈
k
−1/(βX+1)
X (L/1043 erg s−1)−βX/(βX+1); here we adopt kX ≈ 17 and βX ≈ 0.43 ÷ 0.73, as

proposed by Ueda et al. (2003) and adopted in Chapter 5.

• We also compute the BH mass function as

Ψ(M•, t) =

∫ t

0
dtvir

∣

∣

∣

∣

dMvir

dM•

∣

∣

∣

∣

d2NS&T

dtvir dMvir
. (6.9)
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6.3 Results

Our model in general provides a very good fit to the optical and Hard-X AGN LF

up to the cut-off redshift zvir = 1.5. The best fit is obtained using a visibility time in the

range tvis ∼ (2 ÷ 6) × 107 yr for optical data (see Figs. 6.9, 6.10, 6.11, 6.14 and 6.16)

and (3 ÷ 8) × 107 yr for X-ray data (see Figs. 6.12, 6.15 and 6.17). For computing the

AGN LF we have used a slightly descendant Eddington ratio of the type λ = 1 for zvir ≤ 3,

λ = 1.7 for 3 ≤ zvir ≤ 5 and λ ∼ 3 − 4 for higher redshifts.

Such visibility times do not have any particular trend with redshift, they are quite

constant at the most slightly increasing at low redshift. This clearly shows that they are

not linked to any large-scale evolution (such as disk cooling as in Eq. (6.4)) but just to the

local physics of dust obscuration. It is interesting in this sense that we find a higher visible

time for Hard-X ray LF approaching ∼ 108 yr for the very faint low-redshift sources (see

Fig. 6.17). Such visibility times are in very good agreement with the findings in Chapter 5

(see Section 5.4). Moreover our model is able to reproduce the Hard-X LF data increased,

according to the prescriptions by Ueda et al. (2003), to account for the very obscured AGN

with logNH ≥ 25, which are needed to fit the more recent, higher XRBG normalization

data (see Chapters 2 and 5; dark areas in Figs. 6.12, 6.15 and 6.17) and very recently

confirmed by La Franca et al. (2005). In particular the comparison between Fig. 6.15 and

Fig. 6.17 shows that the visible time, at fixed redshift, depends on luminosity, being close

to the e-folding time, tvis ∼ 4 × 107 yr, for the high-luminosity Hard-X and optical AGN,

approaching ∼ 108 yr for the less luminous Hard-X AGN, supporting a scenario for which

the less luminous AGN are also the most obscured ones (compare Fig. 2.11). It is interesting

to notice that if in building the predicted Hard-X ray LF at zsh = 2.6, one includes the

whole theoretical AGN light-curve produced in the model (i.e. without any cut given by

the Heaviside function in Eq. (6.6)) the number of predicted AGN is at least a factor of

2 − 4 above the data especially at faint luminosities (see Fig. 6.13).

The corresponding accreted mass function in our model (see Fig. 6.7) is compatible

with the Soltan argument. We have redone the calculations as in Chapter 5, differentiat-

ing the energy balance equation in Eq. (5.19) and adopting the above Eddington ratios,
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Figure 6.7: Predicted SMBH Mass Function for zvir ≥ 1.5. Solid line: SMBH computed in
Chapter 4 with its 1-σ uncertainty region (dark region).

exploiting the Ueda et al. (2003) LF, corrected for very obscured sources (see Fig. 6.8).

The two mass functions in Figs. 6.7 and 6.8 are well in agreement, showing that the for

z ≥ 1.5 about 60% of the relic SMBH mass density (Chapter 4) is in place. This also agrees

with the estimate done by Ueda et al. (2003) on the redshift distribution of the luminosity

density of Hard-X ray selected AGN (see Chapter 2, Fig. 2.9). The rest of the mass will be

accreted at later times and it will build up the bulk of the X-ray background (see Chapter

2, Section 2.2.7 and Section 6.4).

In large galactic halos the SFR turns out to be very high at high redshift, yielding

a quick increase of the metallicity and of dust mass. The latter, as discussed in Chapter 3,

Section 3.4.2, is computed by GRASIL (Silva et al. 1998). GRASIL, following the chemical

evolution code basically described in Chapter 3, Eq. (3.102), computes the photometric

evolution of galaxies in which the effects of a dusty interstellar medium, including dust from

AGB stars, have been included. The fraction of gas is divided into two phases: the star-

forming molecular clouds and the diffuse medium. Granato et al. (2004) have calculated

the dust mass as proportional to the product of the gas mass by its metallicity, with a

coefficient determined by the condition of a gas-to-dust ratio of 110 for solar metallicity.
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Figure 6.8: Dashed line: Accreted SMBH Mass Function using Ueda et al. (2003) LF for
z ≥ 1.5 with Eddington ratios as given in the text. Solid line: SMBH computed in Chapter
4 with its 1-σ uncertainty region (dark region).

Thus most of the star formation occurs in a dusty environment, so that these galaxies are

powerful far-IR/submillimeter sources, highly obscured in the visual and near-IR bands.

In Fig. 6.19 (upper panels) we have plotted the model predictions at 850 µm against the

SCUBA counts (upper left panel). In particular for a flux density limit of 5 mJy the model

predicts a median redshift of 2.4 (upper right panel), to be compared with the zmedian = 2.4

found for the sample of Chapman et al. (2003).

During the obscured phase the total luminosity of the galaxy is dominated by

the star formation in the very first stages but a significant contribution of the AGN can

be visible especially in the most massive objects (see Fig. 6.18). Alexander et al. (2005)

have observed that a substantial fraction ≈ 75% of bright (≥ 4 mJy) SCUBA sources at

z ≥ 1 host AGN activity with LX ≥ 1042 erg s−1, being the majority of the sources ≈ 80%

heavily obscured with NH ≥ 1023 cm−2. In Fig. 6.21 we show that in our model almost

all the sources with accretion rates Ṁ• ≥ 2 × 10−3 M�yr−1, for which LX ≥ 1042 erg s−1,

make up almost all the SCUBA counts at the level of 5 mJy. Moreover we predict (see

Fig. 6.20) that the cumulative Hard-X number counts corresponding to very faint fluxes,

about 3× 10−16 erg cm−2 s−1, is only a minor fraction of the sources which make the X-ray
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background, the limit of which is N(> 3 × 10−16 erg cm−2 s−1) ∼ 4000 (see Chapter 5,

Fig. 5.4).

After the ISM has been swept out, galaxies evolve passively. The combination of

redshift and aging soon makes them extremely red. We computed the expected contribution

to the extragalactic K-band counts of spheroidal galaxies in this phase. A comparison

(Fig. 6.19; middle and lower panels) of the predicted with the observed redshift distribution

of galaxies withK ≤ 20 (Cimatti et al. 2002) shows that they fully saturate the high-redshift

tail of the distribution.

As outlined in Chapter 3, Section 3.4.1, Cimatti et al. (2002) selected a complete

sample of extremely red objects (EROs) [(Rs −K ≥ 5)] with K ≤ 19.2. More than 60% of

the objects have redshift, mostly spectroscopic. On the basis of the spectra, the sample has

been subdivided into dusty and nondusty ERO. Their data suggest that there is a significant

number of old dust-free ellipticals galaxies place at z ≥ 1. This results is confirmed by the

subsequent analysis by Pozzetti et al. (2003), who found that the bright end of the K-band

LF at z ≥ 1 is dominated by red/early-type galaxies. Our model is consistent with these

results (see Fig. 6.22).

Finally we show that this model, based on very rapid and massive bursts of star

formation, provides also spheroids with an average metallicity about solar and more, in less

than a Gyr, consistent with the high-redshift data from QSO environments (see Hamann

& Ferland 1999). The metallicity also increases with stellar mass (see Fig. 6.23) which can

solve, as shown in Romano et al. (2002) and Granato et al. (2004), the problem of the

α-enhancement in elliptical galaxies (see Chapter 3).

6.4 Low-redshift AGN Evolution

In this section we investigate a possible physical model to describe how accretion

episodes onto massive BH power AGN at z ≤ 1.5. We implement a simple analytic approach

to compute the trend and the stochastic component of the trigger to accretion.

As outlined in Chapter 3, Section 3.4.3, large-galaxy scale events, as galaxy-galaxy

interactions in groups and/or bar/disks instabilities, could effectively perturb the gravita-
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Figure 6.9: Optical AGN LF at zsh = 6. The visibility time is τvis = 4 × 107 yr. Data are
as labeled.

tional equilibrium of the gas reservoir in the host galaxy and trigger recurrent starburst

episodes and gas accretion onto SMBH. If the central SMBH is already massive, the ac-

cretion will most probably occur in a sub-Eddington regime. The gas mass m(z) in the

hosts in fact is consumed with no fresh gas imports provided by gas-mergers. So the accre-

tion becomes supply-limited and it can be easily sub-Eddington. We find that downward of

z ' 1.5 the Eddington ratios related to still emitting, most massive holes drift below unity

on average, with a widening scatter (see Fig. 6.25). We also include the later, generally

smaller events triggered in the field by interactions of gas-rich galaxies and by capture of

satellite galaxies. Thus we compute the quasar luminosity functions falling and dimming

toward z ' 0 (see Fig. 6.24).

The interactions in groups outnumber the bound mergers for z < 1.5, consume

more gas and decay faster, so speeding up the QSO evolution (see Menci et al. 2003). Direct

evidences of activity connected with clearly interacting galaxies are given by Rifatto et al.

(2001), Komossa et al. (2003), Ballo et al. (2004), and Guainazzi et al. (2005), who report

AGN hosted in both galaxies of the interacting systems ESO 202-G23, NGC 6240, Arp 299,

and ESO509-IG066, respectively. These findings complement the large, long known body

of evidence indicating that some 30% QSO and strong AGN hosts have close companions
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Figure 6.10: Optical AGN LF at zsh = 4.7. The visibility time is τvis = 4 × 107 yr. Data
are as labeled.

or show signs of ongoing interactions (see also the statistics by Bahcall et al. 1997 and

Kauffmann et al. 2003). Other “field” processes like interactions of gas-rich hosts, satellite

cannibalism and bar/disks instabilities are also significant fueling modes at low redshifts.

We let all these dynamical events, with their overall trend and their stochastic

component, to form or rekindle the BHs as they may. Any of the above mechanism acting

on the galactic potential will destabilize on average a fraction f of the cold gas mass m

in the host from its equilibrium at r ∼ kpc from the center. The amount f m funneled

to the galaxy center ends up in part into circumnuclear starbursts, and in a smaller part

trickles down onto a central BH. When the main integral governing the gas equilibrium is

the angular momentum j, the fraction f has been computed in Cavaliere & Vittorini (2000)

to read (see also Chapter 3, Section 3.4.3)

f ' |∆j
j

| (6.10)

This may attain a maximum close to 1/2, as expected from mass inflow vs. outflow. A

fraction around ∼ 1/10 of the inflow reaches the BH rather than ending into circumnuclear

starbursts, as indicated by the statistics of the energy sources that heat up the dust in

bright IR galaxies (see Franceschini, Braito & Fadda 2002). So ∆m = fm/ 10 is the mass

made available by an interaction for actual accretion, while the rest ends up into stars or
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Figure 6.11: Optical AGN LF at zsh = 3.1. The visibility time is τvis = 4 × 107 yr. Data
are from Pei (1995).

is dispersed. The process of fueling takes times of order td, the host dynamical time, and

covers a few Salpeter times.

Corresponding to larger galaxies being more resistant to gravitational distortion f

will scale as σ−1. Recurrent interactions will iteratively exhaust the initial gas mass min in

the host. We stress that the luminosity L ∝ ∆m attained in an accretion event no longer

is in a fixed relation to the current BH mass M•. This is because the accreted mass ∆m

depends on the stochastic process that increases M• at given σ.

Denoting by M the current SMBH mass at a general time t, the stochastic process

is ruled by the equation

∂tN(M,σ, t) = − α

τr
N(M,σ, t) +

α

τr

∫

d∆m p(∆m |σ)N(M − ∆m,σ, t) , (6.11)

proposed by Cavaliere & Vittorini (2002) which generalizes the continuity equation given

in Eq. 5.33. The evolutionary rate ∂tN is contributed by two terms. The first describes

the BHs which interact and thereby increase their initial mass M , so depleting the number

N(M, t) dM in the mass range (M − M + dM). The second describes the number of BHs

which start from a lower mass M − ∆m and accrete a gas amount ∆m, with probability

p(∆m,σ) (for details see Vittorini et al. 2006). The fraction α of bright galaxies which

resides in groups with membership ≥ 3 locally attains 20% (Ramella et al. 1999), while the



Chapter 6: Fitting Active Galactic Nuclei Luminosity Function 175

Figure 6.12: Hard-X AGN LF at zsh = 2.6. The visibility time is τvis = 3 × 107 yr. Dots:
data by Ueda et al. (2003); diamonds: data from Barger et al. (2005); arrow: upper limit
on AGN number density at z = 3 from Ueda et al. (2003). Gray area: Hard-X LF with its
uncertainty region from Ueda et al. (2003) including AGN with logNH ≥ 25.

timescale τr is the average time between two SMBH (re)activations. In the above equation

the number of BHs is conserved, while they are re-distributed toward larger masses.

To capture the evolutionary trends given by Eq. (6.11) it is convenient to consider

at first small accretion events with ∆m/M << 1, and to Taylor expand to second order.

So, we end up with the approximate equation

∂tN(M,σ, t) ' −α〈∆m〉
τr

∂MN(M,σ, t) +
α〈∆m2〉

2τr
∂2

MN(M,σ, t) . (6.12)

This is similar to a Fokker-Planck equation, actually one based on the probability distribu-

tion p(∆m |σ). The coefficient of the first order derivative C(M, t) ≡ 〈∆m〉 / τr represents

the average upward drift of the mass under accretion, while the coefficient of the second

derivative D(M, t) ≡ 〈∆m2〉 / 2τr plays the role of a diffusion coefficient; the averages are

computed by using the probability distribution p(∆m |σ).

The above components can be brought together to yield the LF, upon using the

formalism of the continuity equation along the L axis, as originally proposed by Cavaliere,

Morrison & Wood (1971). This takes on the form

∂tN(L, σ, t) + L̇ ∂LN(L, σ, t) = α
Nbh(σ, t) p(L |σ, t)

τr(t)
, (6.13)
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Figure 6.13: Hard-X AGN LF at zsh = 2.6. Including the whole light curve. Dots: data
by Ueda et al. (2003); diamonds: data from Barger et al. (2005); arrow: upper limit on
AGN number density at z = 3 from Ueda et al. (2003). Gray area: Hard-X LF with its
uncertainty region from Ueda et al. (2003) including AGN with logNH ≥ 25.

considering for simplicity light curves equal and monotonically decreasing on the scale τ .

The solution is given by

N(L, σ, t) =
α

L̇

∫ ∞

L
dL′ Nbh(σ, t′) p(L′ |σ, t′)

τr(t′)
; (6.14)

for numerical computations we use the specific values L̇ = −L/τ with τ ' td = 10−1 Gyr,

and α = 0.2.

Upon convolving over σ, we obtain the bolometric LF; this is converted to optical

luminosity LB on using the standard bolometric correction of 10. The results are plotted

in Fig. 6.24 where we compare them with the data of Boyle et al. 2000 and Grazian et al.

2000.

Decreasing luminosities and increasing masses produce Eddington ratios λE de-

clining on average. In fact, the luminosities of the sources when re-activated are lower due

to gas exhaustion. Fig. 6.25 illustrates our numerical results. The figure shows the complex

behavior of λE at low redshifts is very similar to what found by McLure & Dunlop (2004)

and Vestergaard (2004) (see Chapter 2, Figs. 2.2 and 2.2). The overall decline is due to

the average dimming of all luminosities, more rapid in hosts with smaller σ; these undergo

relatively faster gas consumption due to the scaling 〈f〉 ∝ σ−1 discussed above.
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Figure 6.14: Optical AGN LF at zsh = 1.9. The visibility time is τvis = 6 × 107 yr. Data
are from Croom et al. (2004).

Figure 6.15: Hard-X AGN LF at zsh = 1.5. The visibility time is τvis = 3 × 107 yr. Dots:
data from Ueda et al. (2003); diamonds: data from Barger et al. (2005). Gray area: Hard-X
LF with its uncertainty region from Ueda et al. (2003) including AGN with logNH ≥ 25.
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Figure 6.16: Optical AGN LF at zsh = 1.5. The visibility time is τvis = 3 × 107 yr. Data
are from Croom et al. (2004).

Figure 6.17: Hard-X AGN LF at zsh = 1.5. The visibility time is τvis = 8 × 107 yr. Dots:
data by Ueda et al. (2003); diamonds: data from Barger et al. (2005). Gray area: Hard-X
LF with its uncertainty region from Ueda et al. (2003) including AGN with logNH ≥ 25.
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Figure 6.18: Estimated intrinsic X-ray luminosity between 0.5 and 8 keV (rest frame) as
a function of galactic age, due to AGN activity (dashed line) and to star formation (dot-
dashed line). The top and bottom panel are for a total halo mass of 2.5 × 1012 M� and
2.5 × 1013 M� respectively both virialized at zvir = 4. Figure produced by G. Granato.
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Figure 6.19: Upper panels. Left. Predicted 850 µm extragalactic counts compared with
SCUBA counts; data by Blain et al. (1999; open circles), Hughes et al. (1998; asterix
and open triangles), Barger et al. (1999; open squares), Eales et al. (2000; filled circles),
Chapman et al. (2002; filled triangles) and Borys et al. (2002; filled squares). Right.
Predicted differential redshift distribution of 850 µm extragalactic sources. Middle panels.
Left. Contribution of Spheroidal galaxies to the K-band number counts. The data for the
K-band counts are from Totani et al. (2001) and Cimatti et al. (2002). Right. Redshift
distribution of galaxies brighter than K=20. The thin solid histogram is from Cimatti et
al. (2002) for K20. Lower panels. K-band number counts of galaxies brighter than K=23
and 24. The thin solid histogram is from Kashokawa et al. (2003) for K23 and K24. Figure
produced by G. Granato.
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Figure 6.20: Hard-X cumulative number counts. Figure produced by G. Granato.

Figure 6.21: Number counts predicted by the model for SCUBA sources with accretion
rates greater than several thresholds. Solid line: all sources; dashed line: Ṁ• > 2.3 ×
10−3M� yr−1 ∼ logL2−10 keV = 42 erg s−1; dot-dashed line: Ṁ• > 2.3 × 10−2M� yr−1 ∼
logL2−10 keV = 43 − 44 erg s−1; triple-dot dashed line: Ṁ• > 1M� yr−1× ∼ logL2−10 keV =
46 erg s−1. Data are as in Fig. 6.19. Figure produced by G. Granato.
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Figure 6.22: Predicted K-band luminosity function of massive spheroids at z = 1.5 com-
pared with observational determination by Pozzetti et al. (2003).

Figure 6.23: Mean stellar metallicity as a function of the present-day stellar mass for three
values of zvir as labeled.
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Figure 6.24: Predicted evolution of optical AGN LF from a feedback-constrained model for
SMBH accretion. Solid curves: from bottom to top LF at z = 0.5, 1 and 2.5. Data are
from Boyle et al. (2000) at z = 0.5 (circles), from Grazian et al. (2000) at z = 1 (triangles)
and at z = 2.5 (squares).
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Figure 6.25: Evolution of the Eddington ratio at low-redshift, indicated by λE . Solid lines:
95% confidence level corresponding to σ = 400km s−1; dotted lines: same confidence levels
for σ = 100km s−1. The shaded regions corresponds to galaxies in low-density environments.



Chapter 7

The fundamental plane of E and S0

galaxies

In the previous chapters we have discussed the basic evolutionary regimes regulat-

ing SMBH and AGN. Here we further investigate the evolution of SMBH in galaxies and

DM halos. After the fast build-up of the DM potential well and rapid baryon collapse, the

subsequent mutual feedback among stars and SMBH within the DM host well, are phys-

ically traced in the local dynamic and photometric properties of spheroidal galaxies. In

this Chapter, using the Granato et al. model, we will reproduce the spheroidal Velocity

Dispersion Function (VDF, Sect. 7.1), the luminosity-velocity dispersion relation (Faber

& Jackson 1976, Sect. 7.2), the stellar luminosity-effective radius relation (Bernardi et al.

2003, Sect. 7.3), and the SMBH mass-velocity dispersion relation (Ferrarese & Merritt 2000;

Tremaine et al. 2002; Onken et al. 2004; Sect. 7.4).

7.1 The Velocity Dispersion Function

As discussed by Loeb & Peebles (2003), the VDF can provide interesting hints on

the structure formation process (we remind the line-of-sight velocity dispersion σ is referred

to Re/8). Since, given the virialization redshift, Vvir depends only on Mvir (Vvir ∝ M
1/3
vir )

the Vvir distribution function can be straightforwardly derived from the mass distribution

184



Chapter 7: The fundamental plane of E and S0 galaxies 185

Figure 7.1: Comparison of the virial velocity function of galaxies with zvir ≥ 1.5 implied by
the standard gravitational clustering scenario (solid line, upper scale), with observational
estimates of the velocity dispersion function of early-type galaxies computed in Chapter 4,
Section 4.2.3 (shaded area) and Sheth et al. (2003) (triple-dot dashed line). The crosses
show the contribution of bulges of late-type galaxies, determined by Sheth et al. (2003). The
two functions match for σ = 0.55Vvir. The dashed lines show the virial velocity functions of
galaxies for different choices of the minimum zvir: from top to bottom, zvir,min = 2, 3, 4, 5.

function of spheroidal galaxies, integrated over the virialization redshifts. Following Granato

et al. (2004), we assume that all massive halos (2.5 × 1011M� ≤ Mvir ≤ 2 × 1013M�)

virializing at z ≥ 1.5 yield spheroidal galaxies or bulges of later type galaxies. It may be

noted, in passing, that the adopted upper mass limit is close to that inferred by Kochanek

& White (2001) from the distribution of gravitational lens image separations.

As illustrated by Fig. 7.1, the derived Vvir distribution function (which depends

only on the evolution of DM halos) accurately matches the observationally determined VDF

(which may be affected by the physics of baryons, and in particular by dissipative processes)

if

σ ' 0.55Vvir . (7.1)

The best fit and the confidence intervals of the σ/Vvir ratio depend somewhat on the choice

of the upper mass limit, Msup (reference value Msup = 2 × 1013M�) and of σ8 (reference

value σ8 = 0.84), while the choice of the minimum virialization redshift (zvir,min) set at 1.5,
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does not affect appreciably the fit. For σ8 = 0.84, the 95% confidence interval, determined

utilizing the χ2 statistic with 2 degrees of freedom, is 0.53 ≤ σ/Vvir ≤ 0.60, the upper

end corresponding to the smallest value of Msup, which is constrained to be ≥ 1013 M� to

ensure consistency with the local K-band luminosity function (see Granato et al. 2004 and

Chapter 6). The data indicate a constant (independent of virial mass) ratio σ/Vvir. A weak

dependence, not steeper than σ/Vvir ∝M0.05
vir , is however allowed. The result is affected by

the choice of power spectrum used in the calculation by not more than ∆(σ/Vvir) ∼ 10%.

A linear relationship between the central velocity dispersion, σ, and the maximum

circular velocity, V max
c – which, for a concentration c ' 3 (see below), is essentially equal

to Vvir – was reported by Gerhard et al. (2001) for a sample of 21 mostly luminous,

slowly rotating elliptical galaxies, although the ratio is somewhat higher than found here:

σ = 0.66V max
c . Very interestingly Pizzella et al. (2004) find a correlation of the type

σ ∼ 0.7Vc, for a sample of 40 high surface brightness galaxies, 8 giant low surface brightness

spirals and 24 ellipticals. A weakly non-linear relationship was found by Ferrarese (2002) for

a sample of 13 spiral galaxies with rotation curves extending beyond the B = 25mag/arcsec2

isophote:

σ/200km s−1 = 0.60(V max
c /200km s−1)1.19 . (7.2)

According to Ferrarese (2002) this relation can be considered valid also in the σ range

populated by elliptical galaxies.

If the stellar velocity dispersion profile is approximately isothermal and stellar

velocities are isotropic, adopting the Navarro et al. (1997) density profile we obtain the

following relationship between Vvir and the velocity dispersion σ:

σ

Vvir
=

{c[3c2 + 4c− 2c ln(1 + c) − 2 ln(1 + c)]}1/2

√
6[1 + (1 + c) ln(1 + c)]

, (7.3)

where c, equal to the ratio of Rvir to the NFW inner radius rs, is the “concentration”.

The N-body simulations by Zhao et al. (2003b) show that halos of mass greater than

1011 h−1M� at z ≥ 3 have all a similar median concentration c ∼ 3.5. For c = 2, 3, 4,

Eq. (7.3) yields σ/Vvir = 0.49, 0.57, 0.62, respectively. Thus, the value of σ/Vvir for which

we get a match between the local VDF and the Vvir distribution function of dark halos is

remarkably close to the value expected based on simulations. This is also the value one



Chapter 7: The fundamental plane of E and S0 galaxies 187

expects if σ ∼ σvir and, following Chapter 3 (Fig. 3.2), σvir ∼ 0.55Vcirc(Rvir).

As it will be discussed in more detail below, the tight correspondence between the

VDF and the velocity distribution function of dark halos lends support to the dynamical

attractor hypothesis (see Chapter 3, Section 3.4.2; Loeb & Peebles 2003; Gao et al. 2004),

according to which the total distribution of collisionless matter (dark matter plus stars)

keeps essentially constant in the presence of merging and of dissipative settling of baryons,

with the dark matter distribution expanding to compensate for the dissipative settling

of baryons (but see Gnedin et al. 2004 for a different conclusion). The baryons which

fall within the inner regions of the host halo act as effective DM particles, with the same

energy which DM particles had in those regions before expansion, and with almost the same

dispersion velocity.

The stability of the stellar dynamics in the central regions of dark halos against

merging events subsequent to the virialization redshift is also consistent with the results

of detailed numerical simulations (see Chapter 3, Sections 3.3.4, 3.3.6 and 3.4.2; Wechsler

et al. 2002; Zhao et al. 2003b) showing that the halo circular velocity changes very little

after the end of the initial fast accretion process, during which most of the specific binding

energy is assembled, even though a large fraction of the halo mass is acquired during the

subsequent prolonged slow accretion phase.

Fig. 7.1 also shows the contributions to the VDF of different virialization redshifts

and highlights that the highest velocity portion comes from the highest virialization red-

shifts. This result is nicely consistent with the findings by Loeb & Peebles (2003) who

computed the expected cumulative comoving VDF at z = 4 for the NFW and the Moore

et al. (1999) density profile, and found it consistent with the observational determination

by Sheth et al. (2003) for velocity dispersions σ > 300 km s−1, while for lower values of σ

the predicted VDF is low compared to the observed one. Our curve for zvir ≥ 4 has a very

similar behavior; but when we allow also for spheroidal galaxies or bulges virializing at lower

redshifts we can fully account for the observed VDF. As mentioned above, the contributions

to the VDF of sources virializing at z ≤ 1.5 is small. In Fig. 7.1 it is straightforward to

check that, as outlined in Chapter 3, Section 3.4.2, the cumulative virial velocity function

(but similar behaviors can be traced in the galaxy/SMBH MF) predicts that statistically,
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Figure 7.2: Observed FJ relation (filled dots) from Bernardi et al. (2003), compared with
our predictions for different virialization redshifts zv. The curves at the bottom of the
figure represent the normalized distributions of velocity dispersions of galaxies in 4 absolute
magnitude bins 0.5 mag wide, centered at Mr∗ = −20.2, −21, −22, and −23 (from left
to right), as predicted by the ABC model. The FWHMs of the predicted distributions are
remarkably close to the observed values (FWHM ∼ 0.09; Bernardi et al. 2003)

at higher redshifts, the numerical fraction, compared to the number at zvir = 0, of the more

massive systems, i.e. those residing in deeper potential wells, is much higher compared to

the less massive ones.

7.2 The Faber - Jackson relation

Since the first measurements of velocity dispersions of early type galaxies were

made, it was recognized that they are correlated with the galaxy luminosities (Poveda

1961; Minkowski 1962). Faber & Jackson (1976) showed that LB ∝ σ4 (Faber-Jackson

relation). Bernardi et al. (2003), using a sample of ∼ 9000 early type galaxies drawn from

the Sloan Digital Sky Survey (SDSS) in the redshift range 0.01 ≤ z ≤ 0.3, found Lr∗ ∝ σ3.92,

consistent with previous studies (Forbes & Ponman 1999; Pahre et al. 1998). Their data

in u, g, i, and z bands show that the relation is roughly independent of wavelength. The

distributions of σ at fixed luminosity are approximately Gaussian.

A detailed quantitative analysis can be carried out using the ABC model to follow
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the time evolution of the baryonic component, both in the gas and stellar phase, of each halo

mass Mvir since the virialization redshift zvir. Then, the present-day luminosity in bands

from UV to radio can be computed with the spectrophotometric code GRASIL (Silva et

al. 1998) as a function of Vvir at fixed zvir. As illustrated by Fig. 7.2, the model predicts

the correct normalization, when we use the ratio σ/Vvir = 0.55 found from the analysis of

the VDF. Acceptable fits can be obtained with 0.50 ≤ σ/Vvir ≤ 0.65 (again, the confidence

interval is derived using the χ2 statistic). The model correctly predicts a slope shallower

than the classical Faber-Jackson relation, in particular we find L ∝ σ3, which, as shown

in Chapter 4 (see Fig. 4.8), is the right slope to convert the galaxy LF to the VDF and

viceversa (see Chapter 8).

The scatter in the observed relation is interpreted as an intrinsic property of el-

liptical galaxies, accounted for by different virialization epochs: galaxies with the same

spheroidal luminosity, but virializing at lower redshifts, have lower velocity dispersions.

The curves at the bottom of Fig. 7.2 show the σ distributions (arbitrary units) of galaxies

in four luminosity bins, as obtained from the Granato et al. (2004) model. Such distribu-

tions have been computed integrating over cosmic time, for each value of σ, the formation

rate of halos with present day luminosities within the considered bin; they turn out to be

roughly Gaussian, with the peak close to the σ expected from the best fit relation and

FWHM in agreement with that observed by Bernardi et al. (2003).

It is worth noting that the standard scaling of the virial parameters in the hier-

archical clustering scenario gives (Bullock et al. 2001) Mvir ∝ V 3
vir(1 + zvir)

−3/2, which,

for a roughly constant Mvir/L ratio, would imply a flatter slope than is observed in the FJ

relation. However, the slope is steepened in the ABC model which predicts a decrease of the

Mvir/Msph ratio (Msph being the mass in stars), with increasing Mvir, whose details depend

on the virialization redshift (see Fig. 5 of Granato et al. 2004). This is due to feedback

from supernovae, which is increasingly efficient with decreasing Mvir in preventing the gas

from cooling and forming stars, tempered by the feedback from active nuclei which is more

effective in the more massive objects. On average, we have, to a sufficient approximation,

Mvir/Msph ∝ M
−1/5
vir . The ABC model also predicts an essentially constant Msph/L ratio

(the observed weak luminosity dependence is attributed to the systematic changes with
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Figure 7.3: Absolute magnitude in the r∗ band versusRe. The data points are from Bernardi
et al. (2003) while the lines show our model predictions for different virialization redshifts.

luminosity of the galactic structure, see Sect. 7.3). Therefore, the Mvir–Vvir relation, for

σ/Vvir = const, translates into L ∝ σ19/6(1 + zvir)
−9/4. A steepening of the L − σ relation

is expected at low σ values, corresponding to less massive objects where the SN feedback,

yielding Mvir/Msph ∝M
−1/2
vir , dominates.

In conclusion, the normalization of the ”Faber-Jackson relation” is interpreted as

providing a quantitative measure of the effect of feedback, and primarily of the effect of the

energy injected onto the interstellar medium by supernovae. The close agreement with the

predictions of the ABC confirms the correctness of the adopted recipes.

7.3 Completing the Fundamental Plane

An additional check on the physical processes involving baryons in the ABC model

is provided by the observed L–Re relation (see e.g. Bernardi et al. 2003). The effective

radius, like the velocity dispersion, is related to the collapse and settling of the baryonic

component inside the DM potential well. On the other hand, the model does not give us

dynamical information. However, it yields the total mass in stars and dark remnants, while

observations ensure that the starlight distribution in spheroids has quite a uniform shape.

In fact the surface brightness distribution is well represented by log(I(r)) ∝ r1/n (Sersic
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1968); the classical de Vaucouleurs profile has n = 4 (de Vaucouleurs 1948).

Borriello et al. (2003), properly taking into account the light distribution, the

mass traced by light, and the dark matter, found that the effective radius can be written

as:

Re = (kσ + αDM)
GMsph

σ2
, (7.4)

where Msph is the total mass traced by light, kσ is a constant depending on the light

distribution (kσ=0.174 for the de Vaucouleurs profile) and αDM is a function of the DM

mass inside Re and of its density distribution [see Eqs. (13) and (14) of Borriello et al.

2003]. As found by Gerhard et al. (2001) for a sample of about 20 elliptical galaxies and

generalized by Borriello et al. (2003) on the basis of the narrowness of the Fundamental

Plane, the DM inside the effective radius amounts to only 10-50% of the total mass.

We have checked Eq. (7.4) following Borriello et al. 2003 and improving on it

including a generalized Sersic profile for the matter traced by light. The 1-D dispersion

velocity of the stars is governed by the hydrostatic Jeans Equation (see Chapter 3). In the

case of negligible anisotropy, the dispersion velocity reads as

σr(r)
2 =

G

ρsph(r)

∫ ∞

r

ρsph(r′)M(r′)

r′2
dr′ ≡ σr;sph(r

′)2 + σr;vir(r
′)2 (7.5)

where, being M(r′) = Msph + Mvir, we have defined the two contributions by the stellar

and halo component to the dispersion velocity. Integrating along a line of sight we get the

’observed’ dispersion velocity σP (r). The luminosity-weighted average σP within a given

circular aperture of radius, say, Re/8, is instead σ0(r). In Fig. 7.4 it is immediate to notice

that the contribution of baryons to the dispersion velocity within the effective radius is

up to 80-90%, for realistic values of the NFW (see Chapter 3, Section 3.3.4) scale factor

Rs >> Re.

Therefore the contribution of DM in the inner regions is very small, in line with our

idea of expansion of the DM after baryonic infall. Moreover, recalling our discussion on the

FP in Chapter 2 (Section 2.1.2), we find that most probably the ”tilt” of the observed FP

could only be due to some changes with luminosity of the stellar mass which is the dominant

component in these regions. In particular we recover almost the results of Borriello et al.

(2003) that kσ ∼ 0.17 (see Fig. ??). We notice however an increase, kσ ∼ 0.3, depending
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Figure 7.4: The baryonic contribution to σ0 for different Rs/Re as a function of Γvir =
Mvir/Msph. Rs is the NFW scale factor and Re is the effective radius.

on the assumed Sersic index n, in the brightness profiles of Elliptical galaxies, I(r) ∝ r1/n,

which could cause an uncertainty of a factor of 40% in the stellar mass determination.

Due to the fact that the DM amount is so tiny within Re and its distribution more

spread than the baryonic one, αDM results to be almost negligible. Therefore Eq. (7.4) can

be rearranged as follows, using the definition of Vvir (see Chapter 3, Section 3.3.4):

Re

Rvir
= (kσ + αDM)

Msph/Mvir

(σ/Vvir)2
. (7.6)

The ABC model yields the Msph/Mvir ratio and the ensuing Msph/L ratio, whose value

depends on the adopted IMF. Using the Salpeter’s IMF we get Msph/Lr ' 5M�/L�, with

very little dependence on the luminosity in the reference r∗ band.

On the other hand, systematic changes with luminosity of the galactic structure,

quantified by the Sersic index n, have been reported and found to account for the variation of

the M/L ratio with luminosity (Ciotti et al 1996; Graham et al. 2001; Trujillo et al. 2004).

As already sketched in Chapter 2, Section 2.1.2, the observed tilt β in the Msph/L ∝ Lβ,

could be explained for 70% by non-homology effects. Bernardi et al. (2003), exploiting the

large sample of early-type galaxies in the SDSS, defined an effective mass M0 ≡ 4Reσ
2/G,

and found M0/Lr = 3.5(Lr/L
?
r)

0.15, in solar units, with L?
r = 2 × 1010L�. After Eq. (7.4)

M0 = 4(kσ + αDM)Msph, so that, neglecting αDM and setting Msph/Lr ' 5M�/L�, we
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have:

kσ ' 0.174

(

Lr

L?
r

)0.15

, (7.7)

consistent with the findings of Borriello et al. (2003) based on a much smaller sample (221

nearby galaxies) but with more detailed observations. Hence:

Re

Rvir
' 0.87

(

Lr

L?
r

)0.15 Lr/Mvir

(σ/Vvir)2
. (7.8)

The ABC model gives, for each value of zvir and for an assumed IMF, Rvir and Lr as a

function of Mvir. Using the above equation we can then obtain a relationship between Lr (or

the absolute magnitude Mr∗) and Re. The results for a Salpeter IMF and σ/Vvir = 0.55, as

implied by the VDF, are compared in Fig. 7.3 with the data of Bernardi et al. (2003). The

presence of an average ∼30% of DM inside Re would imply αDM ≤ 0.02 (see Borriello et al.

2003) and would not modify the fit. The observed Mr∗–Re relation thus constitutes a test

for the Lr/Mvir ratio predicted by the ABC model, which turns out to be fully consistent

with the data.

7.4 The central black hole

The ABC model follows, for any given Mvir and zvir, the growth of the central

BH and gives its final mass. The predicted M•–Vvir relation, at fixed zvir, is immediately

translated into M•–σ using the ratio σ/Vvir = 0.55 derived from the VDF. The scatter of

data points is interpreted as reflecting the distribution of zvir (see Fig. 7.5).

The model also predicts a steepening of the relation at low σ values, due to the

combined effect of SN feedback – which is increasingly efficient with decreasing halo mass

in slowing down the gas infall onto the central BH – and of the decreased radiation drag,

due to a decrease of the optical depth (see Chapter 3, Eq. (3.80), Eq. (3.86) and Eq.

(3.85)). From an observational point of view, the behavior of the M•–σ relation in the

low BH mass and low velocity dispersion regime is still unclear, due to the dearth of data

and to the uncertainties on the M• estimates. In Fig. 7.5 we plot objects found in the

literature with estimated BH masses M• ≤ 106M�. Dynamical measurements are available

only for M33 and NGC 205, while all the other BH masses have been estimated through the
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Figure 7.5: The M• − σ relation predicted by the model for different virialization redshifts
compared with observational data. Filled circles represent nearby galaxies with dynamical
measurements of the BH mass (Tremaine et al. 2002) and the upper limits for M33 (Geb-
hardt et al. 2001) and NGC 205 (Valluri et al. 2005). Open symbols refer to galaxies with
BH masses estimated from the Hβ linewidth-luminosity-mass relation: NGC 4395 (open
diamond; Filippenko & Ho 2003), POX 52 (open circle; Barth et al. 2004) and a sample of
7 faint active nuclei drawn from the SDSS, (open squares; Greene et al. 2004).

linewidth-luminosity-mass scaling relation (Kaspi et al. 2000). Therefore the cases of M33

and NGC 205 are particularly interesting, although they are outside the range of masses to

which we applied our model up to now. For M33 (see also Chapter 4, Section 4.1.2) the upper

limit to the BH mass is M• ≤ 3000M� (Merritt et al. 2001) or M• ≤ 1500M� (Gebhardt

et al. 2001), while, for NGC 205, M• ≤ 2.2 × 104M�. Both fall below the extrapolation of

the mean fit of the M•–σ relation holding at higher σ (Ferrarese & Merritt 2000; Gebhardt

et al. 2000; Tremaine et al. 2002; Onken et al. 2004), but still fully consistent with the

extrapolation of our model. On the other hand, the BH mass estimates for the faint type

1 Seyfert nuclei in NGC 4395 (Filippenko & Ho 2003), in POX 52 (Barth et al. 2004) and

in 7 galaxies drawn from SDSS (Greene et al. 2004) are only marginally consistent with

the steepening predicted by our model. More data on the so called intermediate mass BHs

(103M� ≤ M• ≤ 106M�) in the galactic centers (see Chapter 2, Section 2.3 and van der

Marel (2003) for a review) are needed to clarify this issue. Of course we should also keep in
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Figure 7.6: Predicted M•−Msph relation for different virialization redshifts compared with
observational data from Häring & Rix (2004). Open squares are sources from their Group
1 and solid circles from their Group 2.

mind that the low BH mass portion of the diagram might just reflect the distribution of BH

seeds (see Chapter 2, Section 2.3), possibly created by merging of smaller BHs during the

fast accretion epoch, and be only weakly affected by the mass accretion which is controlled

by the effects discussed above. For example, Koushiappas et al. (2004) presented a model

yielding seed BHs with characteristic masses ∼ 105M�.

In Fig. 7.5 we show that the dispersion velocities (and the linked SMBH masses)

are imprinted at the moment of virialization of the host DM halo. A simple way to further

test this conclusion can be achieved just by comparing, following the method sketched by

Ferrarese (2002), the local statistics of SMBH (see Chapter 4) and the statistics of DM

halos with which we have reconstructed the VDF.

The starting point of her method is based on a power law fit to the observed

BH mass vs. stellar velocity dispersion relationship: M• ∝ σ4.58. The next step requires

inferences on the relationship between σ and the galaxy circular velocity Vc measured at

the outermost radius. Then the latter velocity must be linked to the present-day halo

velocity Vvir(z = 0), which eventually yields the halo mass estimate. The study was based

on objects spanning a range between 100 ≤ Vc ≤ 300 km s−1 in circular velocity and

6 ≤ log(M•/M�) ≤ 9 in BH mass. The fit to the data with a single power law yielded
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M• ∝M1.65−1.82
vir , depending on the adopted relationship between the circular velocity and

the virial velocity. Baes et al. (2003) exploiting the same method, but assuming M• ∝ σ4.02

and deriving a slightly different Vc − σ relation, claimed M• ∝ M1.3
vir . 1. The disagreement

would become even more striking if Vc/Vvir = 1.8 is assumed, as suggested by Seljak (2002).

The arguable point in the above procedure is the correlation between the velocity

dispersion of the old stellar population and the present-day characteristic velocity of the

halo at the virial radius Vvir(z = 0). In fact, as suggested by Loeb & Peebles (2003) and

shown in details in this thesis, the velocity dispersion of the old stellar population (whose

mass is related to the central BH mass) is closely linked to the potential well of the host

DM halo at high redshift, when the old stellar population formed. This conclusion is also in

agreement with the fact that only minor changes occurred in the spheroidal component of

galaxies after redshift z ∼ 1 − 1.5, as suggested also by recent studies on the Fundamental

Plane at z ≈ 1 (Treu et al. 2002; Treu & Koopmans 2004; van der Weld et al. 2004; see

Chapter 3).

Following Ferrarese (2002) we then calculate the M•−Mvir relation from the local

observed relation M• − σ. We connect σ to the virial velocity Vvir (with the assumptions

Vvir ∼ Vc) using Eq. (7.2) and finally use the redshift-dependent virial relation Vvir −Mvir

(see Chapter 3, Section 3.3.4). In particular we calibrate the last equation at redshifts

zvir ∼ 2.5, assuming that the early-type galaxies have all formed in halos which virialized

at high redshift. We get

M• = 2.6 · 107

(

Mvir

1012 M�

)1.74

M� . (7.9)

In Eq. (7.9) the dependence of SMBH mass on halo mass is a little steeper than the one

inferred at zvir = 0 (see Fig. 7.7), and, above all, the normalization is about a factor of

3-4 higher, more consistent with SMBH mass estimates obtained through local statistic

comparisons (see Chapter 8, Fig. 8.7).

We now convert the n(M•) function computed in Chapter 4 to a n(Mvir) function

using Eq. (7.9). In Fig. 7.7 one can check that the statistics of the integrated DM halos

(which we have used in Fig. 7.1 to compute the VDF), are well reproduced only using

1It is worth noticing that Ferrarese (2002) and Baes et al. (2003) both adopt Vvir ∝ (ΩM
∆vir

200
)α with

α = 1/3, following Bullock et al. (2001), while the correct value is α = 1/2.
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Figure 7.7: Comparison between the mass cumulative rates used in Fig. 7.1 to compute
the VDF and the SMBH MF (upper and lower limit) converted into a Mvir mass function.
The M• −Mvir relation is computed following Ferrarese (2002). Solid line: mass function
computed using Vvir −Mvir at z = 2.5. Dashed line: Vvir −Mvir at z = 0.

Eq. (7.7). This result shows that the spheroid population, and therefore their dispersion

velocities and potential wells, have been settled, together with their massive BH, at high

redshifts.

Another prediction of the ABC model is that the ratio of the BH mass to the mass

in stars, M•/Msph, is almost insensitive to variations of zvir. Therefore theM•–Msph relation

is expected to have a smaller intrinsic scatter (see Fig. 7.6) than the M•–σ relation. This is

because, as mentioned above, the growth of the BH mass is controlled by the star formation

rate through the radiation drag and the SN feedback, and in turn, the feedback from the

active nucleus can eventually sweep out the gas thus halting both the star formation and

the accretion on the BH. Thus the stellar and BH mass grow (and stop growing) in parallel.

The parallelism is not exact, however, since the star formation rate has a twofold effect on

the BH growth. As a result, the M•–Msph relation is not strictly linear, but bends down

at small masses, and is slightly different for different values of zvir. On the other hand,

estimates of Msph are somewhat indirect and therefore liable to larger uncertainties than

those of σ, that can be directly measured; this may translate in an observed scatter around
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the mean M•–Msph relation comparable to, or larger than that for the M•–σ relation, in

spite of the smaller intrinsic scatter.

In Fig. 7.6 we plot the M• −Msph relation for objects with reliable bulge mass

determinations from Häring & Rix (2004). The agreement between the data, suggesting

a slightly non-linear relation (M• ∝ M1.12
sph ), with our predictions is remarkably good. As

pointed out by Häring & Rix (2004), a significant fraction of the scatter (which is ≤ 0.3

dex) can be attributed to measurement errors. As mentioned in Chapter 2, Section 2.1.2,

Marconi & Hunt (2003) found that the scatter in this relation is reduced to ∼ 0.25 dex,

when Msph is estimated as a virial mass (∼ Reσ
2).

In Fig. 7.8 we report the full predictions of the ABC model in reproducing the

”Mass Fundamental Plane” for the system SMBH-Galaxy-DM. The M• − Mvir relation

presents a scatter ∆zvir ∼ 0.3, deriving for different virialization redshifts, similarly to what

is obtained in Fig. 7.5 for the M• − σ relation. It has to be noted that the scatter reported

in Chapter 6 in the relation M• −Msph relation at fixed redshift of about ∆LF ∼ 0.3 dex,

for fitting the AGN LF, has to be quadratically summed to the previous one. The resulting

scatter is however small, being ∆tot =
√

∆2
zvir + ∆2

LF = 0.4. In the Mvir −Msph relation it

has to be noted (lower panel in Fig. 7.8) that at virial masses above Mvir ∼ 1012M�, there

is an increasing steepening of the usual SN feedback behavior Mvir ∝ M
2/3
sph (e.g. Romano

et al. 2002; it will be extensively discussed in Chapter 8), due to the more powerful AGN

kinetic feedback in removing gas from the host galaxy.

The predicted M• −Mvir relation predicted by the ABC model is close in slope

and normalization, to the relation obtained by Baes et al. (2003), M• ∝ M1.3
vir , assuming

the Vvir −Mvir relation set at zvir ∼ 2.5.

The very good fits of the observed M•–σ and M• −Msph relations are additional

strong indications that the ABC model properly includes the mutual feedbacks of stars and

QSOs. It is worth noticing that the model also correctly predicts the local BH mass function

in spheroidal galaxies (see Chapters 4 and 6).

A synoptic view of the effect of feedback on the luminosity-σ relation, on the

local r∗-band luminosity function, and on the Mbullet–σ relation, based on the ABC model,

is provided by Fig. 7.9. If we switch off the supernova feedback (central panel row), we
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Figure 7.8: Orthogonal projections of the ”Mass Fundamental Plane”. In the left upper
panel the predicted M•−Msph relation with data by Häring & Rix (2004). The upper-right
and lower-left panels show the Mvir − M• and Mvir − M• relations, respectively. Open

diamonds connected with a thin solid line represent the scaling relation Mvir ∝ M
2/3
sph as

suggested by Romano et al. (2002; see also Chapter 8).

get a larger luminosity at fixed virial velocity Vvir. The increase is of ' 1 mag. for low

luminosity/mass galaxies (Mr∗ ' −20), where the stellar feedback is dominating over the

QSO feedback, and of 0.5 mag. at high luminosities (Mr∗ ' −23). Turning off the QSO

feedback (bottom panel row) goes in the same direction, but now the effect is larger for

larger galaxies. To fit the observed Faber-Jackson relation with no stellar or QSO feedback,

we have to shift by 0.1 dex the σ/Vvir ratio, but this is inconsistent with the observed VDF.

As shown by the central panel column of Fig. 7.9, the shift to higher luminosities

occurring when the feedback is switched off affects only weakly the low luminosity portion

of the luminosity function, because of its flat slope. On the other hand, the high luminosity
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tail is very sensitive to it, and particularly to the feedback from the active nuclei.

If we were to include in the model also DM halos more massive than 2 × 1013 M�

we could still fit the galaxy LF at the bright end at the price of increasing the AGN feedback

efficiency. Through this variation our model would inevitably not be able to reproduce the

Lr∗ − σ and the M• − σ relations anymore, unless a significant decrease in the ratio σ/Vvir

relation is taken into account. However this last solution would worsen the very good match

with the VDF provided in Fig. 7.1. Such considerations, together with the observational

findings in Chapter 8, reinforce our choice on the value of the upper limit in DM halo mass

in our model. As shown in Chapter 6 such findings support the need for introducing an

extra scatter in the M• −Mvir relation to fit the bright tail of the AGN LF.

On the whole, the local luminosity function of galaxy spheroids and the observed

correlations between their properties provide clear evidence that the feedback both from

supernovae and from active nuclei plays a key role in the evolution of these sources, and

yield rather stringent constraints on the parameters controlling the coupling of the energy

injected into the interstellar medium.

7.5 Some physical implications of the σ/Vvir ratio

At the virialization we consider DM to be distributed with an NFW profile

Mvir(< r)

Mvir
=

ln (1 + cs) − cs/(1 + cs)

ln(1 + c) − c/(1 + c)
, (7.10)

where s ≡ r/Rvir. Moreover we consider the baryons to be distributed as the DM

Mb(< r)

Mb
=
Mvir(< r)

Mvir
, (7.11)

and that the quantity of baryons is Mb ≈Mvir/6.

The baryonic binding energy within the DM potential well is (see Chapter 3,

Section 3.3.4)

E = −G
2

∫ R

0
dr
Mvir(< r) +Mb(< r)

r

dMb(< r)

dr
. (7.12)

Through Eq. (7.12) we can set the specific binding energy at the virialization εb ≡ E/Mb as

εb = −v
2
v

2

(

1 +
Mb

Mvir

)∫ 1

0

ds

s

Mvir(< r)

Mvir

d

ds

Mb(< r)

Mb
. (7.13)
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Figure 7.9: Effect of feedback on the Faber-Jackson relation (left panel column), on the
local r∗-band luminosity function of spheroidal galaxies (central panel column), and on the
MBH–σ relation (right panel column), according to the ABC model. The upper, central,
and lower panel rows compare with the data the ABC model predictions with feedback fully
included and switching off, in turn, the SN and the QSO feedback, respectively. Symbols are
as in Figs. 7.2 and 7.5. The observational determinations of the local luminosity function
are from Nakamura et al. (2002; open squares), and Bernardi et al. (2003; filled circles).

After infall we suppose the baryons to be distributed as they are observed today.

Following the models by Prugniel & Simien (1997) and the above findings and discussions

for the Msph/L ratio, the galactic baryons Msph can be described with very good accuracy

by a R1/n Sérsic surface brightness profile. The cumulative mass distribution is then given

by

Msph(< r)

Msph
=

∫ s
0 dxx

2−α e−b (η x)1/n

∫ 1
0 dxx

2−α e−b (η x)1/n
, (7.14)

where 1 ≤ n ≤ 10, α = 1− 1.188/2n+0.22/4n2 e b = 2n− 1/3+0.009876/n are the Sérsic

profile parameters and η ≡ Rvir/Re. Re is simply determined via the fit to the fundamental
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plane of Fig. 7.4

logRe = −0.25 (Mr? + 19 − 0.1 zvir + 0.3) (7.15)

where we have also considered the dependence on virialization redshift zvir. The specific

baryonic binding energy at the present εsph ≡ E/Msph can then be written as

εsph = −
kσ σ

2
sph

2

∫ 1

0

ds

ηs

[

Mvir

Msph

Mvir(< r)

Mvir
+
Msph(< r)

Msph

]

d

ds

Msph(< r)

Msph
, (7.16)

where the constant kσ ∼ 0.2 is given in Eq.( 7.7).

So we have considered the specific baryonic binding energies at the virialization

εb = −V 2
vir Cb and after infall (at the present) εsph = −σ2

sph Csph, in terms of the constants

Cb and Csph defined in Eq. (7.13) and Eq. (7.16). The specific energy ratio reads as

εsph

εb
=

(

σsph

Vvir

)2 Csph

Cb
. (7.17)

Substituting Eq. (7.1) in Eq. (7.17) we find

εsph ∼ 1.2 × εb , (7.18)

showing that, in line with what sketched in Chapter 3, Section 3.4.2, there is no significant

adiabatic contraction for baryons (at least for spheroids), which just collapse losing energy

in favor of DM.

Moreover their final energy is close to the that of DM in the inner regions. As

shown in Eq. (7.2) and in Chapter 3, Section 3.3.4 (see Fig. 2, thick solid line), we noticed

that the DM dispersion velocity at the virial radius and in the inner regions (at about

Re ∼ Rvir/100) is about σvir ∼ (0.5 ÷ 0.7)Vvir, implying, from Eq. (7.1), that σsph ∼
σvir(Re) ∼ σvir(Rvir) ∼ 0.55Vvir, which simply shows that the galactic baryons behave

kinematically as DM particles in the inner regions.

The cold baryonic clouds in fact in our view, still mostly in gaseous form, settle

in the inner regions of the host DM halo, i.e. when they start releasing energy (being the

dynamical friction timescale of the order of the collapse timescale, see Mo & Mao 2004 and

Chapter 3). At the center the DM particles gaining energy expand and are replaced by

the baryons which will have their same original energy and dispersion velocity (dynamical

attractor model; see Chapter 3).



Chapter 8

The SMBH-Galaxy-Dark Matter

Connection

In the previous chapter we have analyzed the relations occurring among SMBH,

stars and host DM halo, as output of the Granato et al. model. Moreover we have derived

the basic features of SN and AGN feedback in setting the FP and LF of early-type galaxies

and highlighted the imprints of the rapid, non-adiabatic collapse of baryons, imprinted in

the σ − Vvir relation. In this chapter we show that the previous model-dependent results

on baryon evolution in DM halos, can be directly inferred from detail analysis of the local

data.

We derive the stellar and baryonic MF of galaxy structures from their inner kine-

matics and their luminosity function. In the following we’ll indicate Mstar, the stellar

component of a galaxy which, in the case of Ellipticals, coincides with most of its mass

Msph (being the gas component negligible). We also estimate the MF of halos hosting one

single galaxy, properly taking into account subhalos and galaxy groups and clusters. By

comparing local number density distribution of galaxy luminosity, stellar mass, velocity

dispersion and black hole mass with the MF of galaxy halos, we obtain the relationships

between these characteristic galaxy properties and the galaxy halo mass Mvir in the range

3×1010 M� ≤Mvir ≤ 3×1013 M�. All the relations involving luminosity, stellar, and central

black hole mass are well represented by a double power law, with a break at a characteristic

203
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halo mass Mbreak
vir ≈ 3 × 1011 M�, corresponding to a mass in stars Mstar ∼ 1.2 × 1010 M�,

to a r∗-band luminosity Lr ∼ 5 × 109 L� and to a black hole mass M• ∼ 9 × 106M�. Only

the velocity dispersion vs. halo mass relation is well represented by a single power law; the

velocity dispersion associated to the break mass M break
vir is σ ∼ 80 km s−1. We illustrate

how these relations bear the effects produced by SN explosions and AGN activity occurred

during the galaxy formation process. In fact, we find that the break of the power laws

occurs at a mass which marks the transition between the dominance of the stellar and the

AGN feedback. We will show that such findings are indeed very close to the outputs of the

Granato et al. model presented in the previous chapters.

8.1 The star and baryon Mass Function of galaxies

The LF is a fundamental statistics for galaxies. Its present form is the result

of physical processes involving both baryons and DM. In particular the LFs in the range

between about 0.1 to several µm probe the stellar component. In order to derive the mass

of stars and baryons associated to galaxies, one considers their LFs and then makes the very

reasonable assumption that the starlight and the photons emitted by the interstellar gas

are good tracers of the baryon distribution in galaxies. The next crucial step is to estimate

the Mass-to-Light Ratio (MLR) of the stellar and gaseous component. As it is well known,

the MLR and the fraction of gas depend on galaxy morphology.

As presented in Chapter 4, Nakamura et al. (2002) estimated the LF in the r∗-band

for early- and late-type galaxies separately. The separation has been done through light

concentrations method. These early- and late-type galaxy LFs are in reasonable agreement

with the LFs of red and blue galaxies, respectively, as derived by Baldry et al. (2004). Since

the Nakamura LF is well defined only at luminosity brighter than Mr ≤ −18, we extended

the LF at lower luminosity following the findings of Zucca et al. (1997) and Loveday (1998)

and translating their results from bJ -band to r∗-band using (bJ − r∗) ≈ 0.33, as appropriate

for star forming irregular galaxies (Fukugita et al. 1995). The resulting LF is well fitted by

Φ(Lr) dLr =
(

9.05 × 10−3x−1.14 e−0.0076 x + 4 × 10−5 x−4.03
)

dx , (8.1)

where x ≡ Lr/2.4 × 108 L�. The fit holds in the range 3 × 107 L� ≤ Lr ≤ 3 × 1011 L�.
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The MLR pertaining to the star component can be derived by studies of stellar

evolution, with uncertainties associated to poor knowledge of details of the IMF (see, e.g.,

Fukugita et 1998; Bell et al. 2003; Fukugita & Peebles 2004; Baldry et al. 2004; Panter

et al. 2004). A more observational and direct approach exploits detailed kinematical and

photometric studies of galaxies to estimate the amount of mass traced by light and the mass

of the DM component, taking advantage of their different distribution inside the galaxies.

This method has been used by Salucci & Persic (1999), who estimated the stellar and

gaseous mass as function of the B-band luminosity for late-type galaxies to yield the baryon

mass Mb ≈ 1.33MHI +Mstar. We have approximated their results as

log
Mstar

M�

= −1.6 + 1.2 log
LB

L�

, (8.2)

and

log
MHI

M�

= 0.78 + 0.87 log
LB

L�

(8.3)

for stellar and gas component, respectively. Combining these relations and the LF of late-

type, we derived the Stellar Mass Function and the Baryonic Mass Function of disk systems

(or late-type galaxies).

A similar approach can be followed for early-type galaxies. Following Chapter 7 we

use Msph = c σ2 Re/G, setting c = 2.35 and rescaling the zero point of the MLR according

to Bernardi et al. (2003; see Chapter 7), we obtain the MLR of the stellar component in

E/S0 galaxies in the r∗-band
〈

M

L

〉

star

= 4.1

〈

L

L?

〉0.15

. (8.4)

By convolving this result with the r∗-band LF of early-type galaxies of Nakamura et al.

(2002), we estimate the Galaxy Stellar Mass Function (GSMF) in E/S0 galaxies. This

mass function is a fair determination also of the Galaxy Baryonic Mass Function (GBMF),

since in early-type galaxies the gas gives a negligible contribution to the baryon mass.

The total GSMF is well fitted by a Schechter Function plus a power law term:

GSMF(Mstar) dMstar =
(

2.4 × 10−3x−1.19 e−0.42 x + 3.8 × 10−9 x−3.16
)

dx , (8.5)

where x ≡ Mstar/8.14 × 1010 M�. This fit holds over the mass range 108 M� ≤ Mstar ≤
1012 M�. In Fig. 8.1 we show our estimate of the GSMF as a solid line. The upturn at
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Figure 8.1: Solid line: the galaxy stellar mass function; Dotted line: contribution of early-
type galaxies. The shaded area represents the uncertainty of about 30% in the stellar mass
to light ratio. The inset illustrates the average fraction of gas as a function of the stellar
mass.

Mstar ≤ 3× 108 M� corresponds to the appearance of the dwarf galaxy population, i.e. the

second term at r.h.s. of the above equation mirrors the second term at r.h.s. of Eq. (8.1). In

the inset we have also displayed the gas fraction as function of the stellar mass. The GBMF

is easily computed by adding the proper gas mass to the stellar mass. Recent estimates of

the GSMF and GBMF have been produced by Bell et al. (2003) and by Baldry et al. (2004),

using SDSS and Two Micron All Sky Survey data. Their estimates are quite close, mainly

because these authors exploit very similar LFs and MLRs. We have shown the estimate

of Bell et al. (2003) as the dashed line in Fig. 8.1. The apparent difference between their

and our estimate is mainly due to the difference in the adopted MLR. Bell et al. (2003)

have derived their MLR by fitting the broad band SED with stellar population models.

As discussed by Bell et al. (2003b) and by Baldry et al. (2004), the uncertainties related

to the IMF and star formation history implies about 30% uncertainty in the MLR, to be

added to statistical uncertainties of ∼ 20%. The MLR adopted by us, based on kinematical

determinations, is a factor about 1.3 higher than that used by Bell et al. (2003) at high

luminosity, while for very low luminosity objects Lr ≤ 5 × 108 L� is about a factor of 2
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lower. At small mass the flatness of the GSMF conceals the difference in MLR, while at

large mass the almost exponential decline of the LF amplifies the discrepancy. It is worth

noticing that the determination of the MLR in low luminosity objects is hampered by many

effects related to the sporadic history of star formation, presence of dust, irregularity of

their shapes and DM predominance.

All in all both methods based on kinematical studies and on stellar population

synthesis yield GSMFs and GBMFs in reasonable agreement, and establish a sound interval

of confidence. The smooth shape over 4 order of magnitude in mass suggests that the galaxy

stellar and baryonic mass is not subject to drastic changes with changing morphological type

or halo mass. However, it should be noted that while at large mass (dominated by large

E/S0 galaxies) baryons are mostly in stars, at the low mass end (dominated by discs and

irregular galaxies) a significant fraction of baryons is in the form of diffuse gas.

After integration of the GSMF, the mass density parameter of baryons condensed

in stars associated to late-type galaxies turns out to be

ΩL
star(KIN) = (1.3 ± 0.2) × 10−3 , (8.6)

where the label KIN indicates that the stellar mass of galaxies has been estimated by using

kinematical data. The corresponding neutral gas density amounts to ∼ 20% of this value

and it is concentrated in late-type, low mass system with Mstar ≤ 5 × 109M�.

The star density parameter associated to early-type galaxies amounts to

ΩE
star(KIN) = (1.8 ± 0.3) × 10−3 . (8.7)

It is well known that in early-types the amount of cold gas is negligible. Therefore, the

overall local stellar mass density in galaxy structures, with stellar masses in the range

108M� ≤Mb ≤ 1012M� is

ΩG
star(KIN) = (3.1 ± 0.4) × 10−3 . (8.8)

This value is in good agreement with the recent estimates obtained by spectro-photometric

galaxy models (Bell et al. 2003; Fukugita 2004; Fukugita & Peebles 2004). The cold gas is

only a small fraction ≤ 8% and thus ΩG
b ≈ 1.08ΩG

star. This result confirms the well known
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conclusion that only a small fraction ≤ 10% of the cosmic baryons is today in stars and

cold gas within galaxies.

Is the baryonic matter in galaxies, as measured by the above methods, a reliable

cosmological quantity? Have stellar formation processes in galaxies really ”not used” ∼ 90%

of the available primordial baryonic content? To answer these questions it is worth to

investigate whether the density of baryons today detected in stars matches the amount

of hydrogen and helium undergone in the past to the cosmological gas-to-stars conversion

process. The density of star formation per unit time as function of redshift ρ̇∗(z) can be

estimated from observations of the associated IR and UV fluxes. However the conversion

from fluxes to ρ̇∗(z) is quite complex and requires assumptions on absorption by dust and

on the IMF (the Salpeter IMF is used as a reference). As a consequence the estimates, now

extending to z≈ 6, have large uncertainties. Denoting Y (z) = log[ρ̇∗(z)] (M�yrMpc−3),

we have approximated the available data (see for a compilation Nagamine at al 2004) as

Y (z) = −1.85 + 0.8z for 0 ≤ z ≤ 1, Y (z) = −1.05 + 0.1(z − 1) for 1 ≤ z ≤ 3 and

Y (z) = −0.85 − 0.15(z − 3) for 3 ≤ z ≤ 6. By integrating over the cosmic time and taking

into account the dark remnants using a Salpeter IMF extrapolated down to 0.15M� , we

get

ΩG
star(SFR) ≈ 3.7 × 10−3 . (8.9)

If, as suggested by a number of arguments (see e.g. Renzini 2004), a flattening of the IMF

from 2.35 to 1.35 is allowed below 0.7 − 1M�, then we get ΩG
star ≈ 3.2 × 10−3.

Since there is a general consensus on the fact that the estimated age of the bulk

of the stellar populations of spheroidal galaxies is large Tsph ≥ 8 − 9 Gyr (Bernardi et al

1998; Trager et al 2000; Terlevich & Forbes 2002), it is natural to assume that these stars

formed in large bursts at redshift z ≥ 1. On the contrary the stellar populations in discs

are younger, mirroring a slower star formation continuing down to the present time (see e.g.

Hammer et al. 2005; Heavens et al. 2004). Then, the density of the star formation rate

ρ̇∗(z) will be dominated by the contribution of disks for z ≤ 1. By integrating ρ̇∗(z) we get

that the present day density parameter in stars formed at redshift z ≤ 1 is

Ωstar(z < 1) = 1.4 × 10−3 (8.10)
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while for stars formed at z≥ 1

Ωstar(z > 1) = 2.3 × 10−3 (8.11)

The excellent agreement of the above values with ΩL
b (KIN) and ΩE

b (KIN) (see previous

section) lends additional substance to the claim that we properly weigh the baryons in

galaxies. It is worth to stress that, according to Eq. (8.8), and the assumed SFR, about

60% of the stars today in galaxies were formed at redshift ≥ 1. Moreover the total local

SMBH mass density, ∼ 4 · 105M�/Mpc3 (Chapter 4), is about 1.2 · 10−3 the amount of star

mass density accumulated until z ≥ 1, very close to the value observed in local galaxies.

The ratio of local SMBH mass density and total SFR integrated mass density, as given in

Eq. (8.9), would yield Ω•/Ω
G
star(SFR) ∼ 7 · 10−4. Such considerations, following Chapter

5 (end of Section 5.3, see Fig. 5.13), highlight the fact that the SMBH accretion history,

closely tracks the SFR of spheroidal galaxies.

By subtracting the mass density in groups and clusters ΩCls
vir ≈ 0.012 (Reiprich &

Bohringer 2002; see lower panel of Fig. 8.2), and in baryons Ωb ≤ 0.044 from the matter

density, we obtain the mass density associated with galaxies ΩG
vir ≈ 0.15, in excellent agree-

ment with the determination by Fujikawa & Peebles (2004). The average DM-to-baryon

(essentially stars) mass fraction in galaxies turns out to be around 60. This value must

be compared with the cosmological ratio Rcosm = Ωvir/Ωb ≈ 6. In fact, in rich galaxy

clusters the baryon mass, mostly in the form of diffuse gas, and the DM halo have the same

relative abundance as the “cosmic” DM to baryon ratio (see, e.g., Ettori, Tozzi & Rosati

2003). This evidences that the ratio between the DM and the baryon component in galaxies

decreases on average by a factor about 10 relative to the initial value, due to a number of

astrophysical processes occurred during the formation of these objects. In the following we

will use the cosmic fraction fcosm = 1/Rcosm.
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8.2 The Galaxy Halo Mass Function and the L, Mstar and σ

vs. halo mass relations

In order to investigate the relationship between the stellar (and baryonic) mass

and the DM halo mass in galaxies, the statistics of halos containing one single galaxy, the

Galaxy Halo Mass Function (GHMF), has to be estimated. The overall HMF as found by

numerical simulations (see, e.g., Jenkins et al. 2001; Springel et al. 2005) is well reproduced

with the Press-Schechter (1974) formula as modified by Sheth & Tormen (2002; as discussed

in Chapter 3, Sections 3.3.3 and 3.3.5). However, in order to compute the GHMF, we have

to deal with the problem of the halo occupation distribution (HOD; Peacock & Smith 2000;

Berlind et al. 2003; Magliocchetti & Porciani 2003; Kravtsov et al. 2004; Abazajian et al.

2005). Two effects are mostly relevant: (i) the presence of sub-halos, that are not accounted

for by the PS formula and (ii) the fact that a DM halo with mass Mvir ≥ 1012 ÷ 1013 M�

may host a giant galaxy with decreasing probability at increasing halo mass.

To account for effect (i) we use the results by Vale & Ostriker (2004; see their

Eqs. [1] and [3]) and we add to the HMF the subhalo mass function they have derived;

we check that this procedure does not alter substantially the overall mass density in the

galactic range. Adoption of van den Bosch et al. (2005) subhalo MF does not alter the final

results (see discussion on subhalos in Chapter 3, Section 3.3.7). To account for effect (ii) we

subtract the halo mass function of galaxy groups and clusters from the HMF. In literature

the estimates of the mass function for galaxy groups and clusters have been derived from

optical data, using the l.o.s. galaxy dispersion velocity and the virial theorem (Girardi &

Giuricin 2000; Martinez et al. 2002; Heinämäki et al. 2003; Pisani et al. 2003; see upper

panel of Fig. 8.2). The groups mass functions computed by these authors are in reasonable

agreement for Mvir ≥ 5× 1012 M�; at lower masses galaxy groups contribute less than 20%

to the overall HMF. Therefore large uncertainties in this mass range are tolerable. In this

paper we adopt as a reference the determination by Martinez et al. (2002). We stress that

a precise determination of the galaxy group and poor cluster mass function is a crucial step

toward a sound definition of the GHMF. Observational studies with the aim of increasing

statistical samples are strongly needed.
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Figure 8.2: Upper panel. Comparison among different observational estimates of galaxy
Group mass function. Bottom panel. Thick solid line: S&T mass function computed at
z = 0; black dots: data from Girardi & Giuricin (2000) of the galaxy Group mass function;
diamonds: data from Reiprich & Bohringer 2002 of the galaxy Cluster mass function;
triangles: data from Girardi & Giuricin (2000) of the galaxy Cluster mass function.

The resulting GHMF is shown in Fig. 8.3 and it is well fit in the range 11 <

logMvir/M� < 13.2 by a Schechter function

GHMF(Mvir)dMvir = θ (Mvir/M̃ )α exp[−(Mvir/M̃ )] dMvir , (8.12)

with α = −1.84, M̃ = 1.12 × 1013 M� and θ = 3.1 × 10−4. The fall off at high mass (where

early-type galaxies dominate) mirrors the increasing probability of multiple occupation of

mass halos found by Magliocchetti & Porciani (2003) at M ≥ 3 × 1013 M� (see also Zehavi

et al. 2005). Weak lensing measurements also suggest an upper galaxy mass Mmax ≤ 3 ×
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Figure 8.3: Galactic halo mass function.

1013 M� (Kochanek & White 2001). If we assume that there exists a monotonic relationship

between two specific galaxy properties q and p we can write

Φ(p)
dp

dq
dq = Ψ(q) dq , (8.13)

where Ψ(q) is the number density of galaxies with measured property between q and q+dq

and Φ(p) is the corresponding number density for the variable p. The solution is based on

a numerical scheme that imposes that the number of galaxies with q above a certain value

q̄ must be equal to the number of galaxy halos with p above a certain p̄ (see, e.g., Marinoni

& Hudson 2002; Vale & Ostriker 2004), i.e.,

∫ ∞

p̄
Φ(p)dp =

∫ ∞

q̄
Ψ(q) dq . (8.14)

In the following we will assume p ≡ Mvir and Φ(p) ≡ GHMF(Mvir), while the

variable q will be luminosity, stellar mass, velocity dispersion, and central BH mass at

turns. It is worth noticing that in this way we establish a direct link between the specific

galaxy property and the halo mass without any assumption or extrapolation concerning

the DM density profile. The result for stellar mass is plotted in Fig. 8.4a; we find that its
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Figure 8.4: Panel a. The mass in stars versus halo mass: solid line is the result from
this work; dashed line has been obtained by using the GSMF by Bell et al. (2003); the
horizontal bars represent the uncertainty associated to the GSMF as shown in Fig. 8.1.
Panel b. The r∗-band luminosity as a function of halo mass. The shaded region shows the
results of Kleinheinrich et al. (2004); arrow: limit set by observations of the galaxy NGC
4555 (O’Sullivan & Ponman 2004); diamond: result of Hoekstra et al. (2004); star: result
of Guzik & Seljak (2002); dot-dashed line: L−Mvir relation computed by Vale & Ostriker
(2004).

relationship with halo mass is well approximated by

Mstar ≈ 2.3 × 1010 M�

(Mvir/3 × 1011 M�)3.1

1 + (Mvir/3 × 1011 M�)2.2
. (8.15)

The calculations for the baryonic mass is an obvious extension. We also derive the approx-

imated behavior of the luminosity as function of halo mass (Fig. 8.4b)

Lr ≈ 1.2 × 1010 L�

(Mvir/3 × 1011 M�)2.65

1 + (Mvir/3 × 1011 M�)2.00
(8.16)

and, correspondingly, the halo mass as function of luminosity

Mvir ≈ 3 × 1011 M�

(

Lr

1.3 × 1010 L�

)0.35
[

1 +

(

Lr

1.3 × 1010 L�

)1.30
]

. (8.17)

Both stellar mass and luminosity exhibit a double power law dependence on halo mass with

a break around Mvir ∼ 3 × 1011 M�, corresponding to a luminosity Lr ∼ 6 × 109 L�. We



214 Chapter 8: The SMBH-Galaxy-Dark Matter Connection

recover the ”double power law-behavior” in mass/luminosity as discussed in Chapter 3,

Section 3.4.1, which is the clear evidence of a galactic dichotomy. It is worth reminding in

fact that the analysis of a huge sample of galaxies drawn from the SDSS shows that around

Mstar ≈ 3 × 1010 M� and Mr ∼ −20.5 there is a sort of transition in the structure and

stellar ages of galaxies (Kauffmann et al. 2003; Baldry et al. 2004; see also Chapter 3, Fig.

3.14, upper panel).

The method exploited to derive the Lr −Mvir relation is quite sensitive to un-

certainties in the LF and in the GHMF. Fortunately, in the intermediate range 109 L� ≤
Lr ≤ 1011 L� the uncertainties in the LF are small. The corresponding uncertainties in

the Lr −Mvir relation are small in the range 1011M� ≤ Mvir ≤ 1013 M�. At high mass

the results are plagued by the uncertainties in the GHMF; nevertheless the final relation

is not much affected, as it is apparent from Fig. 8.4b. Much more significant is the un-

certainty related to the LF at low mass; in fact, at Lr ≤ 3 × 108 L� the errors rapidly

increase bringing the uncertainties in the LF to a factor of about 2. In order to illustrate

the consequences on the Lr −Mvir relation, we can take as LF in Eq. (8.1) the 1σ upper

and lower boundaries given by Nakamura et al. (2003). In the former case, the slope of the

Lr −Mvir relation flattens from ∼ 2.6 to ∼ 1.9; in the latter case, an almost exponential

decay occurs. Therefore, the extrapolation of the above relationships below Lr � 109 L�

and correspondingly Mvir � 1011 M� must be taken cautiously. This emphasize the need

for observations devoted to precise determination of the LF at the low luminosity end.

As an important check, in Fig. 8.4b our estimate of the Lr vs. Mvir relation is

compared with observational evaluations of Mvir based on two different methods: (i) X-ray-

based mass model of an isolated elliptical galaxy NGC 4555 (O’Sullivan & Ponman 2004),

in which the gravitational potential is known up to about 1/8 of the virial radius (the mass

within this radius is shown as a lower limit in Fig. 8.4b); (ii) weak-lensing observations that

provide the shear field around a number of galaxies of average luminosity L, from which

it is possible to infer the projected mass density and eventually to extrapolate the virial

mass by assuming a DM profile (Guzik & Seljak 2002; Kleinheinrich et al. 2004; Hoekstra

et al. 2004). As a further check, our estimate of the ratio Mvir/Mstar is compared with

estimates derived by extending to virial radius the inner mass models of a number of giant
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ellipticals (Gerhard et al. 2001) and spirals (Persic, Salucci & Stel 1996; Salucci & Burkert

2000). We stress that these results are based on mass extrapolated to the virial radius, by

assuming a NFW profile (Navarro, Frenk & White 1996), while our estimate does not need

any assumption on DM density profile. It is apparent that these independent results are in

nice agreement with our findings.

The dependence of the luminosity on the halo mass has been investigate also by

Vale and Ostriker (2004); their result is reported in Fig. 8.4b. They exploited the 2dF

galaxy luminosity function in bJ -band estimated by Norberg et al. (2002), extrapolating it

beyond the range of magnitudes wherein it was defined. The difference in the Lr −Mvir

relation between our and their estimate is due to steeper slope of the LF adopted by them.

At high mass the flattening they found stems from their direct comparison of the galaxy

LF to the halo and subhalo number density (cf. their Eq. [9]). As these authors pointed

out, in this way the mass term refers to the mass of the entire halo hosting the group or

the cluster and not to just the galaxy halo.

It is worth deepening the comparison with the results of Guzik & Seljak (2002),

who modelled the galaxy-galaxy lensing trying to separate the central galactic contributions

from the surrounding groups and clusters. Their model applied to the SDSS data on galaxy

lensing yields Mvir/Lr ≈ 50M�/L� at the characteristic luminosity 3 × 1010 L� for early-

type galaxies, in keeping with our results. They also found a luminosity dependence Mvir ∝
L1.4±0.2. From Eq. (8.17) it is apparent that at high luminosity the slope is compatible with

their findings. However, at low mass we find that the slope significantly flattens toward a

dependence Mvir ∝ L0.35. On the other hand, one starting point of their analysis is the

assumption of a single power law relating halo mass and luminosity Mvir ∝ Lβ. Van den

Bosch et al. (2003, 2005) computed the Conditional LF of early- and late-type galaxies, a

statistics linking the distribution of galaxies to that of the DM. They concluded that the

MLR has a minimum Mvir/Lr ∼ 45− 70M�/L� at Mvir ∼ 2− 4× 1011M�. We also find a

minimum around the same position and a rapid increase of the MLR with decreasing halo

mass (cf. Eq. (8.17) and Fig. 8.5).

Marinoni & Hudson (2002) investigated the problem of the MLR of the virialized

sistems, which include galaxies, groups and clusters. By comparing the luminosity function
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Figure 8.5: Ratio of halo to stellar mass as a function of stellar mass. Solid and dashed
lines are as in Fig. 8.1. Data for giant elliptical galaxies are from Gerhard et al. (2001),
while data for spirals are from Persic, Salucci & Stel (1996) and Salucci & Burkert (2000).

of virialized systems to the ΛCDM halo mass function, they concluded that the MLR has

a broad minimum at around LB ≈ 2 × 1010 L�. The slopes at low and high luminosity

are −0.5 and +0.5, respectively. Our slope is similar at low mass, where practically all

virialized systems are galaxies and thus the comparison is meaningful.

By comparing the HMF and the LF, as we have done for local galaxies, it is

possible to infer the Mstar −Mvir relation even at substantial redshift. For the GSMF we

use the linear fit to the data by Fontana et al. (2004) at z̄ = 1.75. For the GHMF we

exploit the HMF computed at the same redshift, assuming the galaxy groups contribution

negligible at this redshift; as a consequence the shaded area in Fig. 8.4a should be taken

as an upper limit. The resulting Mstar −Mvir relation is quite close to the local one. This

clearly points to the fact that for large galaxies the relation Mstar −Mvir was already in

place at redshift z ≥ 1 in line with the theoretical modeling of the anti-hierarchical baryon

collapse scenario developed by Granato et al. (2001; 2004). Moreover it is interesting to

notice that the upper limit in the GSMF, of about ∼ 1012 M� corresponds, in our analysis,

to a halo of log(Mvir/M�) ∼ 13.3 very close to the upper limit for ”galactic” halos used in
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our code for spheroid evolution.

The VDF computed by Sheth et al. (2003), including the bulges, is defined in

the range 80 km s−1 ≤ σ ≤ 400 km s−1. On comparing the VDF and the GHMF by the

same technique presented above (cf. Eqs. (8.13]) and (8.14)), we can derive the relationship

σ −Mvir

σ ≈ 126 km s−1

(

Mvir

6.3 × 1011 M�

)b

, (8.18)

where b = 0.48 for Mvir ≤ 6.3 × 1011 and b = 0.26 for Mvir ≥ 6.3 × 1011 M�. We note

that a sufficiently accurate fit (relative errors ≤ 15% in the region of interest) is provided

by a single power law σ ∼ 117 km s−1 (Mvir/6.3 × 1011M�)1/3 ∝ Vvir, consistent with the

findings of Chapter 7.

One may note that combining the above equation with the high mass asymptote of

Eq. (8.16), we obtain a Lr−σ relation flatter than the canonical Faber-Jackson relationship.

It must be taken into account, however, that such asymptote applies to the mass region

populated by groups and clusters of galaxies; confining ourselves to galaxies, we obtain the

approximate relation Lr ∝ σ3, in good agreement with the relation obtained in Chapter 4

(see also Sheth et al. 2003 who used the bisector method).

It is straightforward to compute the fraction fb,coll of the baryon mass left in stars

or in cold gas Mb with respect to the initial mass in baryons Mb,i = fcosmMvir. Fig. 8.6

elucidates the “inefficiency” of baryons in contracting into stars and cold gas, especially

in small halo mass. An “adiabatic” and complete contraction would lead to fb,coll = 1.

Our conclusion is at variance with respect to the claim of Guzik & Seljak (2002) of a high

efficiency, up to 75%. However, the claim is based on a MLR Mvir/Lr ≈ 15M�/L� for

late-type galaxies, a factor of 3 lower than the value found for early-types. As the same

authors point out, the statistical significance of this result is marginal, due to the weak

signal of the lensing for the fainter late-type galaxy sample.

8.3 Black hole vs. halo mass

The relation between the central supermassive Black Hole (BH) and the halo mass

Mvir is fundamental, as described throughout this thesis, in the framework of theories
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Figure 8.6: Fraction of primordial gas turned into stars as a function of halo mass. Solid
and dashed lines are as in Fig. 8.1.

explaining origin and evolution of the central gravitational engine and the associated AGN

(Silk & Rees 1998; Monaco, Salucci & Danese 2000; Granato et al. 2001; Ferrarese 2002;

Granato et al. 2004). To constrain such a relation we adopt the procedure presented in

the previous Section (cf. Eqs. (8.13) and (8.14)), replacing the function Ψ(q) with the local

central BH Mass Function (computed in Chapter 4). We assume that each galactic “cusp”

hosts just one supermassive BH. Our result is shown in Fig. 8.7a, where the barred area

illustrates the errors due to the observational uncertainties on the BH mass function. The

relationship can be approximated by

M• ≈ 1.7 × 107M�

(Mvir/2.5 × 1011 M�)3.7

1 + (Mvir/2.5 × 1011 M�)2.7
. (8.19)

Similarly to the case of luminosity and mass in stars, a double power law with a break at

Mvir ∼ 3 × 1011 M� is a very good representation of our result. At the high end, the BH

mass is directly proportional to the halo mass M• ∝ Mvir, while at low mass the relation

significantly steepens M• ∝ M3.7
vir . Moreover, as anticipated in Chapter 7, the relation

M• −Mvir we find in Eq. (8.19) is about a factor of 3 higher than what found by means

of the M• − σ, σ − Vvir and Vvir −Mvir relations, if the last one is estimated at z = 0 (see
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Figure 8.7: Panel a. Supermassive BH-halo mass relation: horizontal bars represent the
error due to the uncertainty on the BH mass function. Panel b. MBH − σ relation: Solid
line is obtained by replacing the halo mass with σ in Eq. (8.19) through Eq. (8.18); data
are as in Chapter 7, Fig. 7.6.

Ferrarese 2002), meaning again that the relationship between SMBH and its halo mass was

established at high redshift.

Interestingly a very good fit to the available data (including upper limits) of the

black hole mass and velocity dispersion (see Ferrarese 2004 for a review) can be obtained

plugging the above M•−Mvir relationship into Eq. (8.18), see Fig. 8.7b. It is worth noticing

that filled circles represent objects in which the BH mass has been computed through

detailed analysis of the stellar and gas motions within the BH influence radius. By the

way these galaxies are quite nearby. The open symbols refer to active galaxies, whose BH
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Figure 8.8: Ejected baryonic mass as a function of SMBH mass.

mass has been computed through empirical relationships connecting the widths of emission

line, usually Hβ, to the BH mass with additional guesses on the radius of the Broad Line

Region. Finally in Fig. 8.8 we relate the baryonic mass lost by ellipticals, Mb,lost = Mvir ×
fcosm −Mstar, where Mstar is given in Eq. (8.15), to the mass of the SMBH. We find a

clear steepening of the relation for SMBH with mass higher than 108M�, meaning that

more massive systems have expelled more mass. Such findings are a signature in favor of a

super-linearity of the feedback output, i.e. a stronger feedback efficiency for more massive

SMBH, as theoretical models predict (Murray et al. 1995; Granato et al. 2004; see also

Chapter 3, Section 3.4).

8.4 Feedback from stars and AGN

The behavior of star and BH mass as a function of halo mass found in the previous

Section, suggests that different physical mechanisms are determining the relations below and

above Mbreak
vir ∼ 3×1011 M�. The corresponding mass in stars is Mstar ∼ 1.2×1010 M� after

Eq. (8.15), while the corresponding r∗-band luminosity is Lr ∼ 5 × 109 L� after Eq. (8.16)
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and the corresponding absolute magnitude is Mr ∼ −19.6.

The efficiency of star formation within galactic halos of different mass is the result

of several processes (see Chapter 3, Section 3.4). The most remarkable include: (i) cooling

of primordial gas within the virialized halos (White & Rees 1978) (ii) injection of large

amounts of energy into the ISM through Supernovae explosions (e.g., Dekel & Silk 1986:

White & Frenk 1991; Granato et al. 2001; Romano et al. 2002) and through the activity of

a central quasar, (Silk & Rees 1998; Granato et al. 2001, 2004; Lapi et al. 2005). All these

mechanisms have been implemented in the model of Granato et al. (2004; see Chapter 3

for details and for the following Eqs.).

So long as the star formation rate obeys Eq. (3.70), the mass in stars at the present

time t, assumed to be much longer than the cooling time tc, is given, after Eq. (3.80), by:

Mstar ∝ fsurv
fcosmMh

1 −R+ α
, (8.20)

where fsurv is the fraction of stars that survive up to now. On the other hand, the effect of

AGN feedback, that dominates for large masses, is not included in Eq. (3.70). However, the

full treatment developed by Granato et al. (2004) shows that it becomes important and stops

the star formation in a time of order of few times tc (see previous Chapters), depending on

the halo mass and virialization redshift, so that Eq. (8.20) is a useful approximation even for

large galaxies. At high mass, where the stellar feedback is less efficient α ≤ 1, the quantity

1 −R+ α is a slowly decreasing function of the halo mass. As a result Eq. (8.20) suggests

Mstar ∝Mvir, in close agreement with our analysis (cf. Eq. (8.15)) and with the numerical

results presented in Chapter 7 (Fig. 7.8). In the same mass range the effective optical depth,

which rules the flow of cold gas into the reservoir around the BH (cf. Eq. (3.84)), is large

τ ≥ 1; therefore from Eq. (3.87) we expect the BH mass to exhibit a dependence on the

halo mass very similar to that of the stellar mass, in agreement with Eq. (8.19).

Eq. (3.75) shows that at low masses Mvir ≤ 1011M� the effective SN efficiency

(α � 1) overwhelms the quantity 1 − R ≈ 0.7. Therefore Mstar ∝ Mvir/α and taking into

account that α ∝M
−2/3
vir , we get

Mstar ∝ fsurvM
5/3
vir . (8.21)
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Figure 8.9: Specific energy feedback from stars and AGNs compared to the host DM halo
binding energy, as a function of halo mass.

The limiting slope has been derived theoretically also by Dekel & Woo (2003) with similar

assumptions. On the other hand, such a slope is significantly flatter than that inferred

from data, cf. Eq. (8.15). Possible explanations are: (i) at small mass the SN efficiency

may increase with decreasing mass/luminosity; (ii) other processes are at work to remove a

significant fraction of the gas and/or to prevent star formation at small masses. However,

we recall that at very low mass and luminosity, the slope of the Mstar −Mvir relation is

uncertain due to the observational errors in the LF and a limiting slope Mstar ∝ M1.9
vir is

still permitted by the data (see § 2).

Since in the mass range Mvir ≤ 1011 M� the optical depth τ � 1 is small, from

Eqs. (3.87) and (3.88) we obtain for the BH mass

M• ∝Mstar τ ∝M
7/3
vir . (8.22)

More in general this simple model predicts that the slope of the M•−Mvir relation steepens

relative to the slope of the Mstar−Mvir relation, because of the decrease of the optical depth

with mass τ ∝M
2/3
vir , mirroring the decreasing capability of feeding the reservoir around the
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BH. Interestingly, such a steepening is also found from our analysis of observational data,

cf. Eqs. (8.15) and (8.19).

The impact of stellar and AGN feedback is further illustrated in Fig. 8.9. The DM

host binding energy per unit baryonic mass as function of halo mass (cf. Eq. (3.73)) for 0 ≤
zvir ≤ 5 is shown as the shaded area. To compute the overall energy per unit bayonic mass

injected in the gas by SN (Estar) and by AGN (EAGN ), we use Eqs. (3.81) and Eq. (3.100),

respectively, where Mstar and M• as functions of halo mass are given by the results of our

analysis (Eqs. (8.15) and (8.19), respectively). Then we divide the overall energies by the

initial baryon mass Mb,i appropriate for the halo mass. From Fig. 8.9 it is apparent that at

large mass the stellar feedback falls short with respect to the binding energy; nonetheless

the gas can be efficiently removed by the AGN feedback, which overwhelms the binding

energy. At small masses, on the other hand, it appears that the star formation rate inferred

from the present content in stars is not enough to remove the gas associated to the host

halo. This conclusion rephrases the above mentioned problem that the observedMstar−Mvir

relation exhibits a slope steeper than predicted by the simple model of stellar feedback.

The relative value of the two feedbacks depends on their efficiency in transferring

the available energy to the gas. In particular the crossing point of the stellar and AGN

feedback depends on their relative efficiency. It is interesting that with the efficiencies

reported in Fig. 8.9 the crossing point is quite close to the mass of the break of the power

laws found above Mbreak
vir ≈ 3×1011 M�. However, as discussed in Chapters 6 and 7, a more

accurate evaluation of the efficiencies can be obtained by fitting statistics of galaxies, e.g.,

LFs at low and high redshift and the Faber and Jackson relation, and those corresponding

for AGN, e.g., LFs as function of redshift and the local mass function of BHs.
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Conclusions

In this thesis we have addressed several topics regarding the evolution of the local

SMBH and spheroidal populations. Our main results and conclusions can be listed as

follows.

• The local mass function of SMBH can be rather accurately assessed. More in detail,

the MF of SMBH hosted in early-type galaxies can be obtained exploiting the velocity

dispersion or luminosity functions of host galaxies, coupled with the M•–σ or M•–Lsph

relationships, respectively. The results obtained in the two ways are in remarkable

agreement with small uncertainties up to M• ≥ 109 M� (cfr. Fig. 4.7). The con-

tribution from SMBH hosted by late-type galaxies is more uncertain, and is mostly

confined to the low mass end of the MF. The overall SMBH mass density amounts to

ρ0
• = (4.2±1.1)×105M�/Mpc3, with a contribution from SMBHs in late-type galaxies

of ' 25%. This value of ρ0
BH is higher than those found by Yu & Tremaine (2002),

by Aller & Richstone (2002) and by McLure & Dunlop (2004) (who have not consid-

ered the contribution from SMBH residing in late type galaxies), but is in excellent

agreement with the results by Marconi et al. (2004). The local number density of the

SMBH more massive than 106 M� is n(M0
• > 106 M�) ' 1.7 × 10−2 Mpc−3, which

corresponds to the number of bulges and spheroids with Msph > 5 × 108 M�.

• Different methods have been applied in the literature to estimate the final SMBH

mass density which give somewhat different results. Moreover also the correlations

224
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found in the literature between SMBH mass and host spheroidal galaxy properties by

different groups, present up to 30% of inconsistency, which, according to our analysis,

can be ascribed to the inclusion of some, not well-resolved, spirals bulges in the fit.

• The Soltan (1982) argument applied to the hard X-ray selected AGN, allowing for

a luminosity-dependent bolometric correction (U03; Fabian 2003), yields, for a mass

to radiation conversion efficiency ε = 0.1, an accreted mass density of ρHX
acc ' 4.1 ×

105M�/Mpc3, in close agreement with the local SMBH mass density, indicating that

most of the BH masses were accumulated by radiative accretion. Such an estimate

includes also those families of very obscured AGN (logNH ≥ 25) which are needed

to fit the high normalization of the XRBG. Optically selected QSOs account for only

' 35% of the total SMBH mass density. The dominant contribution comes from Type

2 AGN, mostly missed by optical surveys.

• Not only the mass density, but also the MF of the SMBH and of the accreted mass

match remarkably well, if we allow for a decrease of the Eddington ratio λ = L/LEdd

with redshift, as suggested by observations (McLure & Dunlop 2003; Vestergaard

2003). Optically selected, Type 1 AGNs account for the high mass tail of the AMF,

while Type 2 AGNs take over at lower masses, reflecting the strong increase with

decreasing luminosity of the Type 2 to Type 1 ratio demonstrated by hard X-ray

surveys (see, e.g., Hasinger 2003) and consistent with the outcome of spectroscopic

surveys of complete samples of nearby galaxies, without pre-selection (Huchra & Burg

1992; Ho et al. 1997).

• The average accretion history of SMBH, as traced by the Hard-X AGN LF (Fig. 5.13),

tracks the average SFR, with a proportionality constant of the order of the local one.

This strong link however breaks down at low redshifts (z ≤ 1), where SMBH growth

probably proceeds trough re-activations, at low Eddington rates, and might not be

strictly linked with the large scale star formation (possibly occurring in disks).

• The alternative possibility that most of the mass has been accumulated by “dark”

accretion (i.e. accretion undetectable by either optical or hard X-ray surveys, as in
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the case of BH coalescence), is severely constrained by the above results. In order to

make room for this possibility one has to assume that the radiative efficiency during

the visible AGN phases is at the theoretical maximum of ε ' 0.3–0.4. But even in

this case (unless the bolometric correction is far lower than currently estimated) the

contribution of radiative accretion to the local SMBH mass density is ≥ 25%, and one

is left with the problem of fine tuning the radiative and non-radiative contributions

in order not to break down the match with the local SMBH MF obtained with ra-

diative accretion alone. One would also face the problem of accounting for the tight

relationships between BH mass and mass or velocity dispersion of the spheroidal host,

naturally explained by feedback associated to radiative accretion. For these reasons

it is unlikely that the present day SMBH mass function has been built mostly through

’dark’ accretion or merging of BHs.

• If indeed the SMBH MF has to be accounted for by radiative accretion, the require-

ment that it fits with the AMF constrains the radiative efficiency and the maximum

Eddington ratio to ε ' 0.09 (+0.04,−0.03) and λ0 ' 0.3 (+0.3,−0.1) (68% confidence

errors). The condition that the mean AGN visibility timescale computed via the LF

and via the local MF are equal yields an allowed range for ε very close to the above

(0.06 ≤ ε ≤ 0.13) and looser (but consistent) constraints on λ0. It has to be noted

that the mean estimated value for the Eddington ratio is strongly biased towards low

redshifts z ≤ 1, where most of the faint, more numerous objects, are dominant.

• The analysis of the accretion history highlights that the most massive BHs (associated

to bright optical QSOs) accreted their mass faster and at higher redshifts (typically at

z > 1.5), while the lower mass BHs responsible for most of the hard X-ray background

have mostly grown at z < 1.5 (see Figs. 5.2 and 5.9). The different evolutionary

behaviour of the two AGN populations can be understood if gas accretion is regulated

by star formation and by feedback both from SN explosions and nuclear activity

(e.g. Kawakatu & Umemura 2002; Granato et al. 2004). In this framework it is

expected that the hosts of the most massive BHs have the oldest stellar populations

(e.g. Cattaneo & Bernardi 2003).
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• The mass-weighted duration of the luminous AGN phase is found to be 〈τlum〉 ' 0.5–

1.5× 108 yr. Yu & Tremaine (2002), using a similar method, got slightly lower values,

because they used in Eq. (5.28) the optical QSO LF and the local MF of SMBHs in

early-type galaxies, which, as shown in Chapter 5, is only partly accounted for by

optically selected QSOs. Yu & Lu (2004), from a detailed modelling of the luminosity

evolution of individual QSO, derived a lower limit τlum ≥ 4 × 107 yr.

• If the accretion rate per unit BH mass, Ṁ•/M•, is constant (as in the case of Eddington

limited accretion) during the main accretion phases, the visibility times increase with

BH mass [Eq. (5.29)], consistent with the finding by McLure & Dunlop (2004) that

the ratio of SMBH in their optically selected sample at z ' 2 to the corresponding

number density at the present day increases with BH mass. These authors estimate,

for the most massive BHs (M• ≥ 109.5 M�), a lower limit to τvis (lifetime in their

terminology) of 108 yr.

• Setting λ = 1 and ε/(1 − ε) = 0.1 and inserting in Eq. (5.29) the value of M̄• given

by Eq. (5.31) with MB = −22.5, we get τvis(10
9.3M�) ' 2 × 108 yr. Inserting in-

stead in Eq. (5.29) the value of M̄• given by Eq. (5.30) with log(L) = 42 we get

τvis(10
6 M�) ' 1.2×108 yr, τvis(10

8 M�) ' 3×108 yr and τvis(10
9.3 M�) ' 4.4×108 yr.

Such visibility times increase with decreasing redshift for z < 3 [Eq. (5.24)]. The

amount of time spent above the threshold for inclusion in the LF by objects reach-

ing large luminosities/masses cannot be constrained by the LF themselves since such

objects are too rare to contribute significantly to the faint end of the LF.

• On the contrary, Marconi et al. (2004) find mean “lifetimes” increasing with de-

creasing present day BH masses. For λ = 1 and ε = 0.1 they get ∼ 1.5 × 108 yr for

M0
• > 109M� and ∼ 4.5 × 108 yr for M 0

• < 108 M�. However, the latter “lifetime”

corresponds to ' 11 e-folding times, i.e. to a mass increase by a factor 4.5× 104. But

then for a large fraction of their “lifetime” low mass BHs are too faint to be included

in actual LF [cf. Eq. (5.30) and Eq. (5.31)]. Short visibility times (τvis ≤ 0.02Gyr)

are also implied by the models of QSO LFs presented by Haehnelt, Natarajan & Rees

(1998), Wyithe & Loeb (2003) and Mahmood et al. (2004).
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• As also discussed by Hosokawa (2002), in the same general framework, a model which

aims at fitting both the QSO LF and the relic SMBH mass function, must account for

substantially higher values of τvis. In fact such short visible duty-cycles overproduce

the local estimate (see Eq. (6.5) and Fig. 6.1). Also a scatter in the M•−Mvir relation

must be taken into account in such models, otherwise too massive dark halos, up to

∼ 1014 M� which host group of galaxies, would be necessary to fit the bright AGN LF

tail. Short timescales mainly follow from the assumption of immediate QSO ignition

at the virialization of the host DM halo. As shown and discussed by Monaco et al.

(2000) and Granato et al. (2001), a delay between virialization and AGN ignition is a

key ingredient to understand the QSO LF and the relationship between evolutionary

histories of QSOs and of the massive spheroidal galaxies hosting them. Granato et

al. (2004) have presented a detailed physical model quantifying such a delay which

naturally accounts for the co-evolution growth of SMBH and their host spheroidal

galaxies (see Chapter 3).

• Of primary importance is first to define ”secure” rates for describing the statistics of

DM halos which virialize at any time and that can host a galaxy. We have discussed

in Chapter 3 that the S&T mass function and positive derivative term, give the best

fits to numerical simulations (e.g. Taffoni et al. 2002, Springel et al. 2005), within a

factor of 2 of precision. Through Montecarlo and analytical methods (see Chapter 3)

we have then discussed and performed several calculations showing that any virialized

halo is built in a fast accretion phase and in the slower accretion phase mass is added

mostly in the outer regions.

• Through the use of DM statistics and the Granato et al. model we have then been able

to fit AGN LF in Hard-Xray and Optical bands within 1.5 ≤ z ≤ 6, assuming visible

duty-cycles comparable to the ones found from the statistical analysis in Chapter

5, i.e. τvis ≥ 4 × 107 ∼ tef (ε ∼ 0.15) yr, up to an order of magnitude longer than

previously found. We find a modest increase by a factor of 2÷3, in the visibility times

at redshifts below 2.5, and in particular we find that the faint, low-redshift Hard-X

AGN have visibility times within a factor of 2 higher than the bright Hard-X/optical
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AGN. This visibility time wavelength dependence is in perfect agreement with what

found from the match between the relic and AMF. To reproduce the AGN LF we have

tuned the parameters of the Granato et al. (2004) model in a way to still maintain a

good fit to the submillimeter and K-band counts.

• The total mass we accumulate in SMBH up to zvir ≥ 1.5 is about 60% the local one,

in perfect agreement with the Soltan argument. The later evolution of SMBH could

then be described by interactions of galaxies, satellite captures or bar instabilities.

All such dynamical events trigger gas inflows toward the nucleus by perturbing the

symmetry of the host gravitational potential and inducing non-conservation of the

integrals controlling the gas equilibrium like the angular momentum (see Chapter

3, Section 3.4.3). On this basis we have computed a formalism to follow the trend

and the stochastic components to the accretion events. We have computed how such

events could produce in nearly real time (i.e., within 10−1 Gyr) the shape of the QSO

luminosity functions. Over longer scales of a few Gyrs, their petering out concurs with

the exhaustion of the galactic gas reservoirs to produce strong evolution in the LF,

in fact these dynamical events no longer providing fresh gas to the host, can funnel

toward the nucleus considerable fractions of the residual gas left over by previous

events.

• We have pointed out an impressively, and unexpectedly, tight correspondence be-

tween the virial velocities, Vvir, controlled by the dynamics of dark halos, and the

stellar velocity dispersions, σ, that feel the effect of dissipative baryon loading. A

straightforward comparison of the virial velocity distribution, implied by the stan-

dard hierarchical clustering scenario in a ΛCDM cosmology, with the observed ve-

locity dispersion function of spheroidal galaxies, shows that the two functions match

very well for a constant ratio σ/Vvir ' 0.55 ÷ 0.6. For a NFW density profile, this

ratio corresponds to a concentration parameter c ' 3, noticeably close to that found

from N-body simulations (Zhao et al. 2003a) to apply to halos of mass greater than

1011 h−1M� at z ≥ 3, with no significant dependence on halo mass. Thus the matter

density profile at virialization appears to be essentially unaffected by the subsequent
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events, including mergers and the dissipative contraction of baryons.

• Such a result poses forward a basic feature of galaxy merging at high redshifts. The

baryons within DM halos fall in the form of clouds in a collapse time comparable to

their dynamical friction timescale. At the end of their infall, at around 1/10 of Rvir,

which is comparable to Re, these gaseuos clouds, start releasing energy, the DM in

those central regions expands and the baryons take the place of the DM (dynamical

attractor hypothesis; Loeb & Peebles 2003, Gao et al. 2004). At the center a strong

starburst occurs within a few kpc (compatible with observations on the spatial ex-

tension of SCUBA galaxies, Greve et al. 2005). Baryons then do not adiabatically

contract but rather lose energy and finally replace DM in the inner regions keeping its

energy and dispersion velocity (see Chapter 7, Section 7.5). Such a physical picture

explains why the baryons posses the dispersion velocity the DM has at the moment

of virialization. As a further check of these issues we shown (Fig. 7.7) that following

Ferrarese (2002) the local statistics of DM halos can be reproduced only by using the

M• −Mvir relation computing the Vvir −Mvir at z ≥ 2.

• The Vvir–σ relation is a key ingredient to connect theoretical predictions with obser-

vations. Using the above determination of the σ/Vvir ratio, we have shown that the

observed relationships between photometric and dynamical properties of spheroidal

galaxies, defining the Fundamental Plane, carry clear imprints of the feedback pro-

cesses ruling the early evolution of spheroidal galaxies. The steeper slope of the

luminosity-σ (Faber-Jackson) relation compared to the predicted Mvir–Vvir relation is

interpreted as due primarily to the heating of the interstellar medium by SN, which

increasingly hampers star-formation in smaller and smaller halos, and to winds driven

by the active nucleus, that eventually sweep out the residual interstellar gas in the

most massive nuclei. A full analysis shows that the treatment of feedback adopted in

the ABC model nicely accounts for the normalization of the Faber-Jackson relation

(see Fig. 7.2). The model implies that the observed scatter is mostly intrinsic and due

to the spread of virialization redshifts. It also predicts a moderate steepening of the

relation at low masses.
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• The effect of feedback also determines the slope of the luminosity-effective radius

relation. As discussed in Sect. 7.2, the feedback yields, approximately, Mvir ∝ M
5/6
sph .

Then, taking into account Eq. (7.6), neglecting αDM and with kσ ∝ L0.15
r , we get,

from Mvir ∝ R3
vir (for given zvir), Re ∝ L0.15

r R
8/5
vir and Lr ∝ R2

e. Weighting with

the redshift distributions appropriate for each value of Re (high-z galaxies contribute

more to low Re’s), the mean Lr–Re relationship flattens towards the observed relation

Lr ∝ R1.58
e (Bernardi et al. 2003). A further flattening is predicted at low Re values,

where the SN feedback dominates, yielding, approximately, Mvir ∝ M
2/3
sph , whence

Re ∝ L0.15
r R

5/2
vir and Lr ∝ R1.4

e . Again, the model correctly reproduces not only the

slope but also the normalization of the relation (see Fig. 7.3), implying that it also

yields the correct mass-to-light ratio. As in the case of the Faber-Jackson relation,

we expect a scatter comparable to the observed one due to the different virialization

redshifts.

• The evolution of the stellar component is tied to that of the central black hole, and

therefore the M•–σ relation is also shaped by the effect of feedback, primarily from

the active nucleus itself in the more massive systems, and from SN in smaller objects.

Again, observations are well reproduced (see Fig. 7.5), the dispersion around the best-

fit relation is expected to be largely due to the different virialization redshifts, and

a steepening of the M•–σ is expected for low BH masses, if these are mostly due to

accretion. On the other hand, according to some analyses, seed BH masses may be

∼ 105M�, and the low-σ portion of the diagram is testing more the distribution of

seed masses than the accretion history.

• We have further pointed out that the M•–Msph relationship is essentially independent

of zvir (see Fig. 7.6); its intrinsic scatter should therefore be minimum, although this

does not necessarily translate in a low observed scatter due to the large uncertainties

on the Msph estimates (compared to those on σ).

• A synoptic view of the effect of feedback on the luminosity-σ relation, on the local

r∗-band luminosity function, and on the M•–σ relation, based on the ABC model, is

provided by Fig. 7.9. If we switch off the supernova feedback (central panel row), we
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get a larger luminosity at fixed virial velocity Vvir. The increase is of ' 1 mag. for

low luminosity/mass galaxies (Mr∗ ' −20), where the stellar feedback is dominating

over the QSO feedback, and of 0.5 mag. at high luminosities (Mr∗ ' −23). Turning

off the QSO feedback (bottom panel row) goes in the same direction, but now the

effect is larger for larger galaxies. To fit the observed FJ relation with no stellar or

QSO feedback, we have to shift by 0.1 dex the σ/Vvir ratio, but this is inconsistent

with the observed VDF.

• As shown by the central panel column of Fig. 7.9, the shift to higher luminosities

occurring when the feedback is switched off affects only weakly the low luminosity

portion of the luminosity function, because of its flat slope. On the other hand, the

high luminosity tail is very sensitive to it, and particularly to the feedback from the

active nuclei.

• On the whole, the local luminosity function of galaxy spheroids and the observed

correlations between their properties provide clear evidence that the feedback both

from SN and from active nuclei has a key role in the evolution of these sources, and

yield rather stringent constraints on the parameters controlling the coupling of the

energy injected into the interstellar medium.

• Our results using M/L ratios for stars and gas derived from galaxy kinematics turn

out to be in agreement with previous analysis based on stellar population models. The

total baryonic mass density in galactic structures amounts to ΩG
b ≈ 3.4 ± 0.4 × 10−3,

of which ∼ 40% resides in late-type galaxies. This result confirms the well-known

conclusion that only a small fraction ≤ 10% of the cosmic baryons are presently in

stars and cold gas within galaxies.

• We have computed the present-day galaxy halo mass function, i.e., the number density

of halos of mass Mvir containing a single baryonic core, by adding the subhalos to the

halo mass function and by subtracting the contributions from galaxy groups and

clusters. The subtraction is a crucial step toward a sound definition of the GHMF;

we suggest that further observational studies are strongly needed in this field.
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• By equating the integrated number density of halos to the corresponding integrated

galaxy stellar mass function and r∗-band luminosity function, we have derived the

relationships of the stellar mass and the r∗-band luminosity with the halo mass. These

are found to be in good agreement withMvir/Lr ratios inferred through X-ray mapping

of the gravitational potential and through gravitational lensing. Both relations exhibit

a double-power law behavior with a break aroundM break
vir ≈ 3×1011 M�, corresponding

to Mstar ≈ 1.2 × 1010 M� and to an absolute magnitude Mr ≈ −19.6. A transition

at about the same magnitude in the properties of internal structure of galaxies have

been evidenced by Kauffmann et al. (2003). An additional interesting outcome of our

analysis is that the Mstar −Mvir relation is already set at large redshift z ≈ 1.7, in

line with the theoretical expectation of the ABC model.

• Applying the same technique to the local VDF SMBH MF, we have also computed

the σ −Mvir and M• −Mvir relationships. In the former case the fit is quite close

to a single power law σ ∝ M
1/3
vir . The latter relation is again a double power law

breaking at the same Mbreak
vir found for the Mstar −Mvir and Lr −Mvir relations. As a

further cross-check of our analysis, we plugged the M• −Mvir relation (cf. Eq. [8.19])

into the σ −Mvir relation (cf. Eq. [8.18]) and we found that the resulting M• − σ

relation is in very good agreement with the observational data including upper limits

(cf. Fig. 8.7b).

• The black hole mass associated to the break is M• ∼ 9 × 106 M� and the associated

dispersion velocity is σ ∼ 88 km s−1. The latter value is very close to the first estimate

of the critical velocity dispersion for the gas removal by SN explosions given by Dekel

& Silk (1986), who found a critical halo velocity Vcrit ∼ 120 km s−1, corresponding to

a critical velocity dispersion σcrit ∼ 80.

• These results are model-independent and can be interpreted as evidence of the feed-

back effects of SN and AGN in galactic structures. The Granato et al. co-evolution

model, which includes these feedbacks, nicely reproduces (see Chapters 6 and 7 and

discussion above) the behavior M• ∝ Mstar ∝ Mvir observed in the high mass range,

and the break of these relationships at M break
vir ≈ 3 × 1011 M�; at low mass we find
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Mstar ∝M
5/3
vir and M•/Mstar ∝Mvir, which imply stellar masses larger than observed.

This suggests that enhanced SN efficiency occurs at low masses or other processes are

at work in removing a significant fraction of the gas and/or prevent star formation

in dwarf galaxies. However, we have to caution that the uncertainties of the LF at

low luminosity are large enough to allow even a flatter slope, closer to the theoreti-

cal prediction based on SN feedback. The relationships we find are fundamental to

understand the relevance of stellar and AGN feedbacks and to quantify their relative

importance. Any galaxy formation and evolution models should eventually comply to

them. In fact, we find that the break of the power laws occurs at a mass which marks

the transition between the dominance of the stellar and the AGN feedback.

• The stellar feedback is expected to depend on the star formation history of a galaxy

and the total energy released to the gas ultimately depends on total mass of formed

stars and on the present-day galaxy luminosity. Correspondingly, for the AGN feed-

back the dependence on the accretion rate is ultimately mirrored by the dependence

of the total energy injected on the final central BH mass. The fraction of the gas

removed by the feedbacks is expected to also depend on the binding energy of the gas

itself, which is determined by the galaxy virial mass and by its density distribution.

Therefore the missing baryons and the relationships between the DM halo and stellar

spheroid with the central SMBH, are expected as a direct result of such processes as

predicted by the ABC model.
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Appendix A

Set of differential equations in the

model

Here we define the set of differential equations which have been used in the numeri-

cal code by Granato et al. (2004), to follow the evolution of the several baryonic components

in a virialized Dark Matter halo. The list of free parameters is given in Table A.

The initial baryon fraction in the halo is given by the cosmological value fb = 0.16

Minf(tvir) = fbMvir. (A.1)

The cold gas mass at any instant is computed from the infall divided by the maximum

between the cooling and the dynamical times

Ṁcold(t) =
Minf(t)

max[tcool(rvir), tdyn(rvir)]
, (A.2)

where

tdyn =

[

3π

32Gρ

]3/2

(A.3)

and

tcool =
3

2

ρgas

µmp

KT

C n2 Λ(T )
. (A.4)

We have indicated with ρ, ρgas, C = 〈n2〉/〈n〉2 and Λ(T ) the total matter density, the gas

density, the clumping factor and the cooling function respectively.
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The star formation then reads as

ψ(t) =

∫ rvir

0

1

max[tcool(r), tdyn(r)]

dMcold(r, t)

dr
dr . (A.5)

We indicate with Mgas = Mcold +Minf the total gas mass. In the code the fraction of gas

mass removed by the feedback is never re-used at successive timesteps, i.e. it is considered

that its infall and/or cooling timescales become infinite or it has been swept out of the host

halo. The feedback by SN at any instant returns to the hot phase a fraction of cold gas

equal to

ṀSN
cold ∼ −ψ(t)εSN

NSNESN

V 2
vir

Mcold

Mgas
. (A.6)

Due to radiation drag the amount of low angular momentum gas which feeds the reservoir

around the central SMBH is given by

Ṁinflow ' Ṁres = 6.8 · αSFR · 10−3ψ(t)(1 − e−τ )M�yr−1 , (A.7)

where the optical depth is

τ = τ0

(

Z

0.02

)

×
(

Mgas

1012 M�

)

×
(

1013M�

Mvir

)2/3

. (A.8)

Here Z is the average metallicity in the system. The seed central SMBH, of mass M seed
• ,

starts then accreting at a rate given by

Ṁ• = min[λṀEdd , Ṁvisc] ∼ λṀEdd , (A.9)

where the last equality generally holds during the fast initial SMBH growth, due to the

generally very short timescales of the viscous accretion. The AGN feedback acts on the

cold gas as

ṀQSO
cold ∼ − Lh

V 2
vir

Mcold

Mgas
(A.10)

and on the infall gas

ṀQSO
inf ∼ − Lh

V 2
vir

Minf

Mgas
. (A.11)

Here the kinetic luminosity of the AGN is (see Chapter 3 for details)

Lh = εAGN 1044 L
3/2
Edd,46 erg s−1 , (A.12)
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The chemical enrichment of the ISM is computed as

dGi(t)

dt
= −Xi(t)ψ(t) +Ri(t) +

(

dGi

dt

)

inf

−
(

dGi

dt

)

reh

. (A.13)

Gi(t) = Xi(t)Mcold(t) is the cold gas mass in the form of the element i. The quantity Xi(t)

represents the abundance by mass of the element i. Ri(t) takes into account the rate at

which SNI and SNII as well as single low- and intermediate-mass stars restore their processed

and unprocessed material to the ISM. The infalling term in Eq. (A.13) is the primordial

chemical composition of the infalling gas while the reheating term gives the amount of cold

gas which is heated and subtracted to further stellar processing.

Table A. Free parameters in the numerical code

εAGN 1.3

εSN 0.05

C 7

αSFR 2

1 (zvir < 3)

λ = Ṁ•/ṀEdd 1.7 (3 ≥ zvir ≥ 5)
3, 4 (zvir ≥ 5)

ε 0.15

M seed
• 102 M�

τ0 1



Appendix B

Summary of PhD Thesis

Target

The aim of this thesis is to investigate the key points concerning the evolution of

the local Super-massive Black Hole (SMBH) population and to understand the origin of the

links the SMBH have with their host spheroidal galaxies and dark matter (DM) halos. In

fact the tight correlations observed among the SMBH mass, the photometric and dynamical

properties of the host galaxy and DM halo, suggest that these systems must have co-evolved

during time building up together.

The study of the statistical mass distribution of the local SMBH population and

galaxies and their link with the overall AGN statistics are fundamental tools to get impor-

tant physical insights on the basic average features of SMBH evolution.

Any galaxy formation model must compare with such findings. For this purpose I

have worked with the semi-analytical code developed by Granato et al. (2004) to physically

model SMBH evolution in galaxies and DM halos, compare model results with empirical

derivations and make predictions. In particular, my work has been primarily to tune the

parameters and also try to arrange minor modifications, where needed, in order to cope

with the variety of the numerous empirical data the model can successfully account for.

Topics on which I have worked
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Paper 1: ”The Match Between The Local and Accreted Mass Functions”

Shankar F., Salucci P., Granato G.L., De Zotti G. & Danese L., 2004, MNRAS, 354, 1020

Part I (Chapter 4 of the thesis):

• I have started my work converting local data on the galaxy luminosity and velocity

function into a SMBH Mass Function (MF) through the use of the empirical relations

M•−Lbulge and M•−σ respectively, and exploiting also available radio data, following

Salucci et al. (1999).

• I find that the two MF derived from the M• − Lbulge and M• − σ relations are in

reasonable good agreement at variance with most previous works on the topic. I find

a SMBH mass density of about ρ• ∼ 4.2 × 105 M�/Mpc3, out of which 25% resides

in spiral bulges. Still uncertainties on the basic method through which one computes

the statistics of SMBH residing in S0 bulges and on the normalization of the empirical

relations can produce an uncertainty of about ∼ 40% in the result.

Part II (Chapter 5 of the thesis):

• I have then computed the accreted mass function (AMF) summing up the contribu-

tions of all the Hard-Xray detected AGN, including those families of very obscured

AGN which are needed to fit the most recent data on Xray Background (XRBG)

counts and energy spectrum.

• I have sown that the integrated AGN statistics, in the single shot approximation,

provides an AMF which matches, at all relevant mass scales, the local SMBH MF

if a radiative efficiency of ∼ 10 − 15% is taken into account. Such a result shows

that merging must have a minor role in building the relic SMBH population. The

statistical comparison between the local SMBH and AGN integrated population, pro-

vides, independently of the radiative efficiency, a lower limit to the visible timescale

for the AGN population of about (4 − 10) × 107 yr, higher for the faint X-ray AGN.

An estimate of the total visible timescale could be provided by the time spent by the

SMBH when its mass is above the survey sensitivity limit. Visibility AGN timescales
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are of fundamental importance and give constraints on the fact that the duty cycle of

these sources depends on wavelength and therefore is not linked with any dynamical

quantity of the system as previously claimed by various authors.

Paper II: Fitting AGN Luminosity Functions with the Anti-hierarchical Baryon Col-

lapse model

in preparation

Part I: DM halo ’creation’ rates (Chapter 3 of the thesis)

• To face the problem of modeling the actual number of SMBH which form during time

and related galaxies, I have first of all studied the actual way of assessing the rate

of ’creation’ of newly formed DM halos and there survival time as halos harboring

a single baryonic core. The statistics of newly formed DM halos at each redshift is

better represented, within a factor of two, by the positive derivative of the Sheth &

Tormen (2002; S&T) mass function. The generally used Extended Press & Schechter

(EPS) formalism underestimates by several factors the numerical simulation results

at high redshifts and masses. Analytically implementing a scale-free ’destruction’

rate, as in Sasaki (1994), applied to the total S&T mass function derivative, provides

’creation’ rates very close to the positive derivative at all relevant redshifts and masses

for galactic spheroids formation.

• According to numerical simulations, a single massive halo is usually formed, following

a first phase of rapid accretion followed by a longer phase of slow accretion. I have co-

written a code for building DM merger trees and compared the outputs with numerical

simulations. We have checked that the average accretion history of the main progenitor

is actually composed of a two phase step, the first one being faster and during which

most of the halo mass is accumulated. Such a result is rather robust and does not

much depend on the fraction of the actual accreted mass at each time step.

• I have studied the effect of using different recipes for DM creation rates, power spec-

trum and variance. All these effects must be taken seriously into account as they can
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lead to several factors of discrepancy in the final results when modeling the AGN,

SMBH, Galaxy statistics.

Part II: Fitting AGN Luminosity Functions (Chapter 6 of the thesis)

• I have worked in tuning the set of parameters of the Granato et al. (2004) model in

order to reproduce the optical and Hard-Xray AGN LF. Assuming a slightly increasing

Eddington ratio from 1 to 4 at very high redshifts in the model, and a scatter of at

most a factor of two between SMBH and DM halo masses, I was able to reproduce

the optical/Hard-X AGN LF evolution from z ∼ 6 to z ∼ 1.5. I find a good match

imposing that AGN can form only in halos with mass less than logMvir = 13.2, the

same limit used to derive the galaxy dispersion velocity function (VDF) and galaxy LF

(see below). The maximum SMBH mass I find is almost logM• ∼ 9.5, in agreement

with empirical evidence, and at variance with previous models which claimed SMBH

of the order of 1011 M� at z ∼ 6.

• Recent models claim very short visible timescales close to a few 106 yr to fit the AGN

LF at high redshifts. Moreover these models assess that such timescales are set by the

dynamical infall of gas onto a disk during the early stages of galaxy formation. Short

timescales mainly could follow from ’wrong’ estimates of the details of DM creation, as

stated above, and, equally relevant, from the assumption of immediate QSO ignition

at the virialization of the host DM halo. As shown and discussed by Monaco et al.

(2000) and Granato et al. (2001), a delay between virialization and AGN ignition is a

key ingredient to understand the QSO LF and the relationship between evolutionary

histories of QSOs and of the massive spheroidal galaxies hosting them. Granato et

al. (2004) have presented a detailed physical model quantifying such a delay and

can naturally account for the co-evolution growth of SMBH and their host spheroidal

galaxies. In this line of research I found that a significant amount of dust in the galaxy

is needed to obscure the AGN/galaxy during almost all its growth phase (the galaxy

appears as a SCUBA in this phase and the AGN could be in principle detectable in

Hard-Xray bands, as actually shown by Alexander et al. 2005). In fact if the AGN
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becomes visible only during the last 1-2 e-folding times this gives the right duty-

cycle needed to fit the AGN statistics at all relevant redshifts. Moreover the visible

times obtained in this way are comparable with those estimated through demographic

studies and, at high redshifts, they are about a factor of ten longer than previously

estimated. Such results can be physically explained by the fact that the system

galaxy/AGN becomes optically visible only during the last e-folding times when the

SMBH is enough massive to eventually unbind the residual gas, thus halting both the

star formation and the SMBH growth itself.

• I have also taken care to check, using the Granato et al. code, that the new set of

parameters used to fit the AGN LF preserves the α-enhancement. To do this I had to

tune the parameters to take care that the Star Formation timescales for smaller halos

are always longer than for larger halos. I checked that this effect does not produce

too much accretion onto the SMBH after the peak of its activity, in order not to

overproduce Hard-Xray counts. I have also checked, using the Granato et al. code,

that the statistics of SCUBA and K-band counts are preserved and found that about

60-70% of the relic SMBH mass function is produced in this new version of the model,

still in agreement with the Soltan argument.

Paper III: The Impact of Energy Feedback on AGN Evolution and SMBH Demography

(Chapter 6 of the thesis)

Vittorini V., Shankar F. & Cavaliere A., 2005, MNRAS, accepted

• I have collaborated in a project which aims at reproducing the AGN statistics evo-

lution at low redshifts. At z ≤ 1.5 ÷ 2 AGN evolution can be described within a

scenario in which SMBH can be re-activated, through bar instabilities and/or galaxy

interactions and minor merging. Not much mass is however accreted during this phase

(up to 30%) as we predict significantly decreasing Eddington ratios with redshift, in

accordance with data. In particular I have checked that the low-redshift accretion

history evolution, which can be simply described by a source-free second-order conti-
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nuity equation, can be analytically solved. I have also contributed in the development

of the n-step interaction code for describing the SMBH MF and AGN LF redshift

evolution.

Paper IV: Dynamical and photometric imprints of feedback processes on the formation

and evolution of E/S0 galaxies

Cirasuolo M., Shankar F., Granato G.L., De Zotti G. & Danese L., 2005, ApJ, 629,

816

Part I: the galaxy Velocity Distribution Function (Chapter 7 of the thesis)

• Following analytical estimates (Oguri & Lee 2004) inspired by numerical results (e.g.

Zhao et al. 2003), I have checked that the mass accreted during the slow phase

accumulates in the outer edges of the halo, close or slightly beyond the virial radius,

preserving the central parts (and relative baryonic core, if present). Such a result is

confirmed by the fact that, building the VDF out of the summation in time of the

DM ’creation’ rates, a very good fit to the Sheth et al. (2003) local VDF is provided

if a simple scaling σ/Vvir(zvir) ∼ 0.55 − 0.6 between the galaxy dispersion velocity

and the host DM halo virial velocity at the moment of virialization is assumed. Such

a relation has now been empirically confirmed (Ferrarese 2002; Pizzella et al. 2005;

Weatherley & Warren 2005) in the form σ − Vc, where the circular velocity Vc scales

almost constantly with the virial velocity. I checked that this way of reproducing

the VDF, uniquely based on the creation rates for DM halos, provides a statistical

anti-hierarchical growth of structures, in line with the predictions of the Granato et

al. (2004) model.

• I have checked that such a value of σ/Vvir implies that the energy per particle of

baryons and DM is almost the same and σ ∼ σDM. This points to a scenario of

non-adiabatic contraction of baryons in the host DM wells in which baryonic particles

behave dynamically as DM (attractor hypothesis; Loeb & Peebles 2003; Gao et al.

2004).
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Part II: the early-type fundamental plane (Chapter 7 of the thesis)

• Using the Granato et al. (2004) code and the σ/Vvir ratio determined above, I have

collaborated in reproducing all the projections and tightness of the early type galaxies

Fundamental Plane (FP), showing that, properly taking into account the SN and AGN

feedbacks, the Granato et al. model is able to reproduce the observed slopes in the FP

relations and the spheroid stellar mass function. We find that the 〈Mstar/L〉r∗ ∼ 4 with

a slight dependence on galaxy luminosity due to systematic changes with luminosity

of the galactic structure.

Paper V: New Relationships between Galaxy Properties and Host Halo Mass, and the

Role of Feedbacks in Galaxy Formation (Chapter 8 of the thesis)

Shankar F., Lapi A., Salucci P., De Zotti G. & Danese L., 2005, ApJ, submitted

• I have compared all the available empirical data on the SMBH/galaxy mass and veloc-

ity statistical distributions with the total DM ”galactic” halo mass function (GHMF),

derived adding subhalos and subtracting groups and clusters from the S&T MF at

z = 0. Through such an operation I have derived the main relationships linking

SMBH-galaxy-DM halo. Then I have collaborated in analyzing the previous relations

to derive general conclusions on the main processes governing galaxy evolution and in

particular I have compared such results with the output of the numerical model.

• The statistical match between the local stellar mass function and the GHMF, provides

the Mstar −Mvir relation, while the statistical comparison between the SMBH MF

and the GHMF provides the M• −Mvir relation. The former relation is very useful

as bypasses any hypothesis on the DM halo profile to compute the DM mass around

a galaxy. Moreover I compared the GHMF(z = 1.7) with the stellar MF by Fontana

et al. (2004) at the same redshifts, finding that the Mstar −Mvir relation has similar

slope and normalization with respect to the local one. Finally I have collaborated in

showing that the Mstar −Mvir relation can be very well fitted with a simple recipe for

galaxy evolution which includes feedback from SN and AGN, which seems to be the
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most reasonable way for solving the missing baryon problem. In fact I have actively

conducted a detailed study on the stellar and gaseous M/L ratios to find the baryons

locked up in galaxies at z = 0 to build the local baryonic MF, following Salucci &

Persic (1999). I find that on average about 10% of the initial baryons, as measured

by WMAP data, are left over in galaxies today.

• I have found that the M• −Mvir relation is consistent with a feedback constrained

relation and compatible with the output of the numerical model by Granato et al.

Furthermore I have computed that the latter relation is compatible with the one

derived by Ferrarese (2002), if one assumes that the relation Vc ∝ Vvir ∝ M
1/3
vir is set

at high redshifts.

r


