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Introduction

String Theory appeared in the late 60’s as a tentative description to the strong interaction.
This was so because string scattering amplitudes agreed with the ones found in meson
scattering experiments at that time. As time passed, QCD had proved itself to be the right
framework to study this problem, and the interest in String Theory faded. Moreover, it
had some undesirable features for a theory of hadrons: more space-time dimensions were
required and its spectrum presented other massless excitations than the spin-1 gluon. This
last “drawback” has become later the reason for the theory’s revival, since among these
massless excitations there was a spin-2 particle and the only consistent interactions of
massless spin-2 particles are gravitational interactions. String Theory thus contains in itself
general relativity and, due to that, was proposed as an unified theory of the fundamental
forces of nature.

Much progress had been achieved then. The inclusion of fermions in the theory led
to what is called Superstring Theory, where supersymmetry is crucial for its consistency.
Later, anomaly cancellation left us with only five consistent superstring theories in ten
space-time dimensions, they were dubbed Type I, Type IIA, Type IIB, Heterotic SO(32)
and Heterotic Eg x Fg. Using some of these theories plus the concept of compactification,
we can construct models with features very similar to the ones of the standard model, albeit
a complete agreement has not been found yet.

A major breakthrough occurred about a decade ago with the discovery of nonperturba-
tive objects called Dp-branes. They are extended p-dimensional objects in space-time where
open strings end, and its dynamics is given by the dynamics of the open strings attached
to it. It was also shown that they are solitonic solutions to ten-dimension supergravity
equations of motion, being charged under the RR p + 1-forms present in the closed string
spectrum, what makes them stable objects. For example, in Type IIA/IIB theories there
are odd/even forms and consequently just even/odd dimensional branes are stable. On the
contrary, the branes with wrong dimensionality do not have any RR form to couple to and
so are unstable. The same occurs with the D-brane anti-D-brane system since it breaks
supersymmetry completely.

Although D-branes were discovered in the context of superstring theory, they also exist
in the bosonic one. This is reasonable, since they are hyperplanes where the ends of open
strings are constrained to move. In this case, however, they are not stable, due to the
nonexistence of RR forms in the spectrum. This instability (like the ones pointed out in
the previous paragraph) is connected with the existence of the tachyon, thereby signalling
that we are expanding the theory around the wrong vacuum. It is sensible to think that,
once we compute the tachyon potential, it is going to present a minimum where no tachyons



exist and, equivalently, no open string perturbative degrees of freedom are present. Quan-
titatively, it means that the difference between the value of the potential at the maximum
and at the minimum should equal the tension of the brane. To compute the potential, and
consequently the true vacuum, requires a second quantized version of the theory, which is
known as String Field Theory. There are two kinds of string field theory (not considering
supersymmetry): Open and Closed String Field Theory. Open String Field Theory (OSFT)
is the ool to be used if we want to study the open string tachyon.

The basic component of string field theory is the string field, which is composed of an
infinite number of space-time fields. Using the string field, we are able to construct an action
for the theory, a very important ingredient for studying the tachyon potential. As usual, if
we are dealing with static solutions, the action is nothing but the negative of the potential.
Hence, by working with string fields whose components are space-time independent, we get
the potential just by computing the action. As it is impossible to work with an infinite
number of fields, we should truncate the string field at some level and then compute the
potential. These computations showed with great accuracy the forementioned conjecture
that the difference between the maximum and the minimum of the potential equals the
brane tension. However, no solution to the equation of motion was known at that time?,
leading people to the construction of what is called Vacuum String Field Theory (VSFT).

The idea behind VSFT was to expand the theory around the minimum of the potential
and, after doing field redefinitions, conjecture that the kinetic operator can be written in
terms of only ghost operators. As a consequence, the equation of motion factorizes in ghost
and matter parts. The matter part of the equation of motion becomes very simple, and
its*solutions are just projectors with respect to the product of string fields. Many static
solutions to this equation have been found, for example, the sliver and the lump. The sliver
solution represents the space filling D25-brane and the lump describes lower dimensional
branes. One fact in support of this is that the ratio of their energies equals the ratio of the
cotresponding D-brane tensions.

“As we have just said, static solutions to the equation of motion have been found and
it"would be very interesting if we could find time-dependent solutions in VSFT, as these
would interpolate between the perturbative and the nonperturbative vacua, describing in
this way the decay of the brane. In this thesis, we will focus on our results concerning
these time-dependent solutions. We will also discuss other general results we obtained in
the framework of VSFT.

This thesis is divided as foliows. In chapter 1, we give a brief review of SFT, focusing on
OSFT and the construction of VSFT. We also give some outline about the recently found
solution to the OSFT equation of motion.

Chapter 2 deals with the construction of time-dependent solutions in VSFT. We start by
reviewing how to construct static classical solutions and then we turn to the time-dependent
ones. We construct these solutions both in a trivial and in a E-field background. We show
that these solutions really interpolate between the two vacua and we point out some points
of resemblance between our solution and Sen’s rolling tachyon solution. In the case of an
E-field background, after the decay we find a flat profile in the transverse direction to the
brane and this ought to be interpreted as fundamental strings, which are polarized by the

A solution to OSFT equation of motion was found at the end of last year by Schnabl [4]



eletric field and thereby hampered from decaying. We conclude the chapter by presenting
some solutions in VSFT that are supposed to describe these fundamental strings.

In chapter 3, we exit from the main subject of this thesis and we show some results
concerning integrability properties in Light-Cone Open String Field Theory. We show that
the three strings vertex coefficients in light—cone open string field theory satisfy the Hirota
equations for the dispersionless Toda lattice hierarchy. We also show that Hirota equations
allow us to calculate the correlators of an associated quantum system where the Neumann
coefficients represent the two-point functions. We consider next the three strings vertex
coefficients of the light—cone string field theory on a maximally supersymmetric pp-wave
background. Using the previous results we are able to show that these Neumann coeflicients
satisfy the Hirota equations for the full Toda lattice hierarchy at least up to second order
in the string mass p.

In chapter 4, we show that a family of 1/2-BPS states of N = 4 SYM is in corre-
spondence with a family of classical solutions of VSFT with a B-field playing the role of
the inverse Planck constant. We establish this correspondence by relating the Wigner dis-
tributions of the N fermion systems representing such states to low energy space profiles
of systems of VSFT D-branes. In this context the Pauli exclusion principle appears as a
consequence of the VSFT projector equation. The family of 1/2-BPS states maps through
coarse—graining to droplet LLM supergravity solutions. We also discuss the possible mean-
ing of the corresponding coarse graining in the VSFT side.

Clearly, one should go into the realm of Superstring Field Theory in order to describe
nature. Hence, in chapter 5, we make a brief review about Superstring Field Theory, describ-
ing some attempts to construct it and their respective failures. Firstly, we describe Witten’s
formulation that is an extension of the bosonic theory with insertions of picture changing
operators, which introduce divergences in the theory already at the classical level. More-
over, the tachyon potential computed within this framework does not possess a minimum,
contradicting Sen’s conjectures. Secondly, we present an improved version of Witten’s the-
ory that uses a two-step picture changing operator, thereby solving the two forementioned
problems. However, it presents other drawbacks like the possibility of different theories
off-shell and non-physical states being also a solution to the equation of motion.

We finish with chapter 6, where we present some conclusions and open problems.

In the appendices, we give some technical details needed in the analysis we make within
the body of the thesis.



Chapter 1

String Field Theory

The need to study nonperturbative aspects of String Theory has led to the formulation of
a new framework called String Field Theory (SFT). One of these aspects is related to the
existence of a tachyonic mode in the spectrum of the open string, indicating we are not
expanding the theory around the true vacuum (minimum of the potential). It is necessary,
therefore, to compute the effective tachyon potential and to find its minimum.

A tachyon potential is an off-shell concept, implying that the first-quantized version
of String Theory is not adequate for studying this problem, since it is an on-shell theory.
We must formulate a second-quantized theory of open strings if we want to analyze this
question.

“In this chapter, we describe the theory originally formulated by Witten [1], and analyze
soine aspects thereof. We focus on the points that will be important when we come to the
discussion of our results.

11 Open String Field Theory (OSFT)

1.%1.1 Some Basics

Witten proposed, as a candidate for string field theory, a formalism based on a non-
commutative generalization of a gauge theory. He starts with a very simple action:

5=~-21-/\1:*qu - g/\p*xpw, (1.1)

where g is interpreted as the open string coupling constant. The string field ¥ takes values
in a graded algebra .4 with which is associated a star product:

wi A® A — A, (1.2)

under which the degree is additive (Gu«d = Gy + Gg). There is also a BRST operator of
degree one

Q:A— A (Gouw =1+ Gy) (1.3)

and an integration operation



: A— C. (1.4)
/

As one can notice, this structure looks like the one of p-forms, where Q plays the role
of the exterior derivative, = the role of the wedge product, and the integral the role of the
integration of a p-form on a manifold.

String Field Theory is defined by these elements and the following group of axioms:

QW = 0, YIeuL
/Q\I/ = 0, VU e
QI x®) = (QU)x®+ (~1)C¥T*(QD), VI, e A (1.5)

/\1;*@ - (—1)%%/@*\1}, YT, B € A;
(©%T)+Z = Bx(T+EZ), VI,8,E€ A

Once these are satisfied, one can show the action (1.1) is invariant under the following
gauge transformation:

U =QA+g(¥xA—AxT), (1.6)

for any gauge parameter A € 4 with degree 0.

If g is taken to vanish, the equation of motion and gauge transformations become Q¥ = 0
and 0¥ = QA, respectively. Hence, when g = 0 the SFT describes exactly the free bosonic
string. The reason for introducing the extra g piece in the action was to find a simple
interaction term which was consistent with the perturbative expansion of open bosonic
string theory.

One question we could ask ourselves is: Why is this structure suitable for open string
field theory? The most natural way to imagine the interaction of two oriented! open strings
U and V is to say they interact by joining their end points, forming a new string U-V (which
we might think as product between U and V). It is understood that U-V is obtained by
gluing them together if the end of U is the beginning of V, and zero otherwise. This product
is non-commutative because U-V is non-zero but V-U is (the final point of U coincides with
the initial point of V, but the opposite is not true). This gives us a hint why the structure
underlying open string field theory is supposedly non-commutative.

Witten argued that the above axioms are all satisfied if .A is taken to be the space of
string fields A = ¥[z(0);c(0),b(c)], which can be described as functionals of the matter,
ghost and antighost fields describing the theory of an open string (0 <o < 7)in 26
dimensions. This string field can be formally written as a sum over open string Fock space
states with coefficients given by an infinite family of space-time fields

V[z(0); c(0),b(0)] = /d‘?ﬁp [6(p)c1]0;p) + Ap(p)el ar|0ip) + .. ] (1.7)

1The same can be done for unoriented open strings by just keeping states which are invariant under the
twist operation.



However, there is a drawback in the previous definition for the interaction of open strings:
it leads to non-associativity. If we work with parametrized strings, we must ask what is
the parametrization of U-V after the gluing. The bad point is that there is no choice which
preserves associativity. It is necessary, therefore, to modify this definition. One option is to
single out the string midpoint, in this way the string will now have a left and a right part.
We consider now a new product in which we join the right part of the first string with the
left part of the second. This product factorizes into separate matter and ghost parts. In
the matter sector (We will just show the matter sector, the ghost sector of the theory is
defined in a similar fashion.), it is given by:

(T @)[z(0)] = / H dy(7) dz(m - 7) 6l (r) — y(m — 7)]¥[z(1)]@[y(7)],
z(r) = 2(r) for 0<7< 323 (1.8)
y(r) = =z(r) for T <r<m.

Now, we need a definition of the integration operation. From the axioms, we see it ought
to obey cyclicity. The only way to do so is to define the integration of a string field as the
gluing of its left and right parts. More precisely:

Ju=[ T @sto) TT o)~ str - )iatr) (1.9)

0<o<m O<T< z

These definitions for the product and the integral, despite being very precise, lead to
very awkward computations. Yet it is possible to cast the structure described above in
a more generic framework, which can be used to write more general string field theory
actions, including those whose interactions are not delta-function overlaps. In this language
the action takes the form:

1

1
(@)_—;{ (®,Qp®) + <I>,<1>*<I>)J. (1.10)

3
The string field @ is a state in the total matter plus ghost conformal field theory and {.,.)
is a bilinear inner product on the state space of the conformal field theory. This action can
be related to the action (1.1) by making ® = ¢g¥ and (4, B) = [ Ax B. The operator Qp
and the inner product satisfy the following identities:

Q%A = O

Qs(AxB) = (QpA)*B+(-1)"A*(QpB);

(@A, B) = —(-1)"(4,Q5B); (L.11)
(4,B) = (-1)*%(B,A);

(A,BxC) = (A%B,C);

Ax(BxC) = (AxB)xC.



From these identities, we are able to determine the degree, which is identified with the
ghost number in the case of bosonic open strings, of the string field. Using the above
properties we get

(®,Qp®) = (-1)20+9(Qpd,8) = (Qpd,®) = —(—1)%(2,Qp%), (1.12)

telling us the ghost number of ® must be odd if we want a non-zero kinetic term. We know
that the zero-momentum tachyon state is tc1]|0). Since the tachyon is the first state in the
expansion of the string field in the Fock basis and it has ghost number one, we deduce that
® has also ghost number one.

Now, one can show that the action (1.10) is invariant under the following gauge trans-
formation:

§® = QA+ dxA—Axd, (1.13)

with A any ghost number zero state.

Before proceeding to more practical issues, it is worth mentioning two additional facts
about OSFT. The first is the existence of a twist operation, which reverses the parametriza-
tion of the open string. It is represented in OSFT by an operator () that satisfies the
following properties:

Q(QsA) = QpB(QA);
(24,0B) = (4A,B); (1.14)
QA*B) = (=1)ABTQ(B)xQ(A4).

These properties imply the twist invariance of the action: S(Q®) = S(®).
The second fact is that the star algebra may have an identity Z, which is to satisfy

T+A=AxT=A, (1.15)

for any state A. This shows Z has ghost number zero and implies it is a twist odd string
field. The last property can be seen from:

QA = QT % A) = (~1)%4+1(QA) » (QT) = —(QA) * (QI). (1.16)

The equality just holds if 2T = —Z. Moreover, the identity string field must be annihilated
by any derivation D of the star algebra:

DA=D(ITxA)=(DI)*xA+IxDA=DIxA+ DA, (1.17)

imposing DT = (.

Now, it is time we define how to compute the kinetic and the interaction terms appearing
in the action. Our approach to this issue will be the conformal one, which is based on the
premise that conformal field theory computations are usually more economical.

We start by defining in a precise way how to compute the kinetic term appearing in the
action (1.10):

10



(4, B) = (bpz(4)|B),

where bpz is the BPZ conjugation?.
The next step is to give a definion for the interaction term?:

(4,B,C) = (f1004(0), f2 0 O5(0), f3 0 Oc(0)), (1.18)

where Oy4, Op and O¢ are the vertex operators associated with the states A, B and C, and
the correlator is computed on the disk or in the conformally equivalent upper-half plane.
The conformal transforms are specified by the functions f; as we explain in the following.

Consider three copies of the complex plane. The worldsheets of the three interacting
strings are represented as unit half-disks in each one of these complex planes, with local
coordinates &;, i = 1,2,3. In these coordinates, the boundaries |¢;| = 1 in the respective
upper half-disks are the strings, and the & = i is the string midpoint (Fig. 1.1). We define
the interaction of the three strings by gluing the three half-disks to form a single disk. This
should be done in a way such that the midpoint of each string is mapped to a common
interaction point in the disk, also the left half of the first string is to be glued with the
right half of the second string, and so on. The functions [i, therefore, must map each upper
half-disk to a 120° wedge of the unit disk. The following functions

AE) = & (—~—1”51)§,

1-1i&
_ (1+i&)3
e (1“2'52) ’ (1.19)

map the three upper half-disks to three wedges with punctures at egg‘z, 1, and e respec-
tively (Fig. 1.2).

We could now map this interacting disk back to the upper half-plane if we want. This
is done by composing the previous functions with the map h~(z) = _Zf?r-—% that takes the
unit disk to the upper half-plane with the three punctures on the real axis (Fig. 1.3), that
is

frerane ) = k1o fi(&) (1.20)

*We recall that a primary field ¢(z) = Zn# Z—fﬁg of conformal dimension h transforms under BPZ
conjugation as:

bpz(gn) = (—1)"*"g_,.

3This is Jjust another way of writing the interacting term in the action:

(4,B,C)=(A,B*C).

11
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Figure 1.2: The gluing of the three interacting strings

Qe
DR

Figure 1.3: Representation of the cubic vertez as the upper half-plane with 3 punctures on the real

azis.
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1.1.2  An Analytic Solution

For a long time, an analytic solution to the equation of motion QU +Tx¥ = () coming from
the action (1.1) has been searched without success. The main importance of finding this
solution is to study tachyon condensation, especially by verifying whether Sen’s conjectures
are right. After identifying the open string tachyon with the instability of the D-brane
where the open string ends, Sen made the following three conjectures|2, 3

e The difference between the values of the tachyon potential at the maximum and at
the minimum should equal the tension of the D-brane.

e There are lump solutions with the correct tension so as to describe lower dimensional
D-branes.

e There are no physical open string excitations around the minimum, as the brane
decayed. Thus, the cohomology of the BRST-like kinetic operator is trivial there.

Due to the lack of analytic solutions in OSFT, these conjectures have been verified just
numerically. But the situation changed at the end of last year when Schnabl finally found a
solution. To find the solution, he used a class of states, called wedge states with insertion,
which have a very simple multiplication rule under the *-product. He also chose a more
appropriate gauge that simplifies the process of obtaining the solution. Now, we briefly
review how he obtained the solution and the proof of Sen’s first and third conjectures. For
a much more detailed exposition, see [4,5,6,7, 8]

We first define a class of states called surface states. A surface state is defined as

{(flg) = (fo0(0)), Vg (1.21)

where f(€) is a conformal map from the worldsheet coordinates to the upper-half plane.
As we can see, there is a one-to-one correspondence between surface states and conformal
maps f(£). In the operator formalism, these states are written as

(f1=(|Uy, Us = exp [Z ann} (1.22)

n=0

where L, are the usual virasoro generators. The operator Uy is such that

Fod(&) = [F'OVs(f(6)) = Urg(e)UF? (1.23)

Indeed, one can easily see that

(fl9) = (0]Usd(¢ = 0)|0) = (0]U¢(¢ = 0)UF*|0)
= (0f 0 ¢(£ = 0)|0) = (f 0 $(0)). (1.24)

The problem now is how to find Un given f, or the other way around. One can show that

they are related by the Julia equation v(€)0 f(€) = v(f(€)), where v(€) = T vpentl. If
v(§) is known, it is possible to find f (€), but the inverse problem is very hard and just a
few examples are known.

13



There are special surface states called wedge states, which have a great importance in
SFT. They are denoted by |n), for a real n > 1, and are defined by the conformal map

(&) = ~7;—tan (%arctan{) (1.25)

They obey a very simple multiplication rule

|m) % |n) = |m+n—1) (1.26)

and will play an extremely important role in Schnabl’s solution. One can see that the
SL(2,R) vacuum is the state |2) and the identity string field is the state |1).

Schnabl’s strategy was to work in another coordinate than the £ one. He did so because
he realized that in the z = foo(€) = arctang coordinate the star product becomes quite
simple. The upper half of the unit disk is mapped to a semi-infinite strip with a width
of /2, and the left and right halves of the open string are mapped to semi-infinite lines
parallel to the imaginary axis (Fig. 1.4). The right half of one string and the left half of the
other string are glued together in Witten's star product so that star products of states in the
Fock space can be obtained simply by a translation in the z coordinate. For example, Fig.
1.5 represents the gluing of three string fields |1), |W2) and |T3) (|P:) = Vi(&i = 0)]0)),
where they are inserted at P, = 0, P = 2 and P3 =, respectively.

=

70N T4

Figure 1.4: The z = arctan{ map.

The next step was to try to find a solution that can be written in terms of wedge states,
since they obey a very nice multiplication rule under the star product. If we use the Siegel
gauge, the equation of motion we have to solve is

b
U+ 2 (T*T)=0. (1.27)
Ly
The problem is that the action of —g% on wedge states leaves the family of wedge states. The

solution to this problem comes as follows. If we use the zero modes of the b field and of the
energy momentum tensor in the z coordinate

14
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Figure 1.5: The gluing of three strings in the z coordinate.

)k+1

d
30 = f% 2 b(z j{%(l + €2) arctant b)) = bo-i-z 152 = —iz b (1.28)

dz . 2(=1)k+1
Lo = — 2 T(z) =j[2m(1+£ ) arctané T'(§) = Lo +Z T Lz,zc

27

and choose as a new gauge By = 0, equation (1.27) can be rewritten as

+ @(\If* T) =0. (1.29)
Lo
The difference now is that %% has a very simple action on wedge states
Bg t dm
7o) = -5} /2 Ty, (1.30)

making it a bit easier to solve the equation (1.29). Using Ly level truncation, Schnabl could
solve the equation recursively level by level and found that the solution can be written as

N
) d
U= A}EI}DO l:E E‘q{"’bn - ¢N:' , (1.31)
n=0
where
2 L
Y = ;clfO) * |n) * By'c1|0) (1.32)
1 1
BL = 5 (b1 +b-1) + ~(Bo+ Bl). (1.33)
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To compute the derivative of ¢, we need the fact that the wedge state |n) can also be
written as

In) = e~Fokf|g) (1.34)
1 1
KL = 5L+ L) + —(Lo+ Lh).
From this, it is easy to see that
- d
Yn = 7t = 1{0) x KT'|n) x By 1 0). (1.35)

Plugging (1.31) in the equation of motion, one can prove, after a very laborious computation,
that it is really a solution.

To prove Sen’s first conjecture, we should compute the string field theory action for the
above solution. By doing so, Schnabl showed that

V@) = 5 [ esm+ e = - (1.36)

which is exactly minus the tension of the D25-brane.

The proof of Sen’s third conjecture is not so direct. First, we expand the action around
the solution ¥ and, due to that, the kinetic operator Qp gets modified to (), which can be
written in terms of @p and ¥ as

QA=QA+ TV xA—-AxT. (1.37)

The task is then to prove that this kinetic operator around the nonperturbative vacuum
has trivial cohomology, and proving so is equivalent to finding a state A such that QA = T.
This can be seen as follows:

- First, suppose that @ has trivial cohomology. Then take QZ = QI+ VY *I -Zx¥ =
QBT = 0. Since T is @-closed and @ has no cohomology, it must be exact, that is,
7 =QA.

- Now suppose that there exists a state A such that QA = Z. For any Q-closed state A
we have

QA*A) = (QA)*x A+ (-1)* A% (QA) =Tx A= A. (1.38)
As any Q-closed state is also Q-exact, @ has trivial cohomology.

Thus, one must find a solution to the equation

QA=QpA+TUxA+AxT =T. (1.39)
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Schnabl, using some previous results concerning this equation in the Siegel gauge, found
the state A to be

2
A=Bog_ IB{:/ dnin), (1.40)
EO 2 1

thereby proving Sen’s conjecture.

1.2 Vacuum String Field Theory (VSFT)

In principle, it is straightforward to analyze the structure of the tachyon vacuum. We just
need to follow three basic steps:

e Find the classical solution ® that represents the nonperturbative vacuum;
e Expand the action around this solution, setting ® = &y + V;

e Analyze the spectrum of ¥ using the resulting kinetic term.

Nonetheless, this prescription was hard to carry out because there had been no known closed
form for ®¢ before Schnabl found it last year. This fact led Rastelli, Sen and Zwiebach to
formulate, some years ago, what is called Vacuum String Field Theory (VSFT)[9]. Their
reasoning in constructing this theory was the following: since shifting the string field by a
classical solution does not change the interacting term, they guessed the form of the new
kinetic term after the shift and then checked whether the new action satisfies some consis-
tency conditions. First, this action should be invariant under a gauge transformation like
the original SFT action. Second, the new kinetic operator must have vanishing cohomol-
ogy, implying the absence of open string degrees of freedom. Third, the action must have
cléssical solutions representing the original D-brane configuration, as well as lump solutions
réfiresenting lower dimensional D-branes.
Let ®¢ be a classical solution of the equation of motion

QB0 + Pox o =0, (1.41)
representing the tachyon vacuum. If we shift the string field ® = ®o+®, the action becomes
1 1
2 3
where S(®o) is a constant that is equal to the tension of the D-brane. The kinetic operator
Q is given as:

S5(®p + @) = S(®) — ng [ (®,Q8) + =(d, é*@] , (1.42)

QP = Qpd + @D + &« By, (1.43)

Since neither the inner product nor the star product have changed, all the relations of OSFT
and the properties of the kinetic operator are still valid. Again, this new action is invariant
under the gauge transformation 6® = QA+ +x A — A + ®.
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Their argument follows by saying we can propose field redefinitions which leave the
interaction term invariant and, at the same time, simplify the operator Q. They propose a
transformation of the kind:

d=ef0 (1.44)

where K is a ghost number zero operator. It is also required that

K(AxB) = (KA)«B+ Ax(KB);
(KA,B) = —(A,KB) (1.45)

so that the form of the cubic term is unchanged. The action finally takes the form

1|1 : 1
where
Q = e FQeX. (1.47)

Gauge invariance can be shown to hold once

Q% = 0
Q(AxB) = (QA)*B+(-1)*Ax(QB); (1.48)
(QA,B) = —(-1)*(4,9B),

which are true due to the previous relations.
As a closed form for ®; was not known, a Q operator had to be postulated. Nor only
should Q satisfy relations (1.48), but also the following requisites:

¢ It must have ghost number one;
e It must have vanishing cohomology;

e It must be universal, that is, it must be written without any reference to the brane
boundary conformal field theory.

These requirements are satisfied if Q is constructed purely from ghost operators, and Rastelli
et.al. construct operators of the form

Q = i anCn;

n=0

Cn = Cp + ("1)nC—n7 (149)

where the a,,’s are constant coefficients. These operators are ghost number one and univer-
sal, as they are constructed just with ghosts oscillators. They also have trivial cohomology
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for the following reason: for each n, there is an operator B, = $(bp + (=1)"b_,) that
satisfies {Cn, B,} = 1. Hence, when Cn,7 = 0, we have

P = {Cna Bn}w = Cn(an)a (1-50)

proving that v is C, trivial. This shows that each C, has vanishing cohomology, and so
does Q.

Finally, in another paper [10], Rastelli et.al. propose a canonical choice for the ghost
kinetic operator

Q= Liel) ~ =) =co+ 3 (-1)"Can (5
n=1

that is supported by level expansion computations in the Siegel gauge. We will not dis-
cuss the details here since they are rather technical and not needed in the forthcoming
discussions.
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Chapter 2

Time-Dependent Solutions in
VSFT

As discussed previously, String Field Theory is the natural framework where to study some
nonperturbative aspects of String Theory, for example, to compute the tachyon potential
and to find its minimum. An interesting question, related to the previous one, is to find
time-dependent solutions which interpolate between the perturbative and nonperturbative
vacua, describing thereby the decay of the space-filling D25-brane.

In this chapter, we present our results concerning these time-dependent solutions and
discuss some of their properties, showing they exhibit the correct behavior in time and
making a parallel with Sen’s rolling tachyon solution.

2.1 Classical Solutions to VSFT

2.1.1 The Three String Vertex
Before starting to analyze the classical solutions to VSFT equations of motion, we are going

to describe one more tool needed: the three string vertex. It is defined in the following way:

(A,B,C) = 1{4] ® 2(B| ® 3(C||V3)123, (2.1)
where A, B and C are string fields expressed in the Fock basis and

|Va)123 = / d*p1yd®p(2)d*pa) 6% (b + P2) + pa)eF10,p)123

3
1
E=3Y |5 2 mweh PVinal® + 3 N Ply Virmah + (2.2)
7,s=1 m,n>1 m>1
1
+ §ﬂuupg,)%%sp("s)) .

Summation over the Lorentz indices u,v = 0, ...,25 is understood with n the flat Lorentz
metric. The operators a,(fz)”, ai,(f)“ denote the non-zero modes matter oscillators of the r-th

string, normalized such that
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[, ) = P 6n ™, myn > 1 (2.3)

P(r) is the momentum of the r-th string and |0, p)193 = lp)) ® Ip(2)) @ |p(3)) is the tensor
product of the Fock vacuum states relative to the three strings with definite center of
mass momentum. |p()) is annihilated by the operators ag;)“ and it is an eigenstate of the

momentum operator ﬁéir) with eigenvalue pé‘r). They are normalized as

(P Ip(s)) = 6,502 (p + P'). (2.4)
To compute the coefficients V75, Vs and V{§, we take some standard correlator and

evaluate it in two different ways. By comparing the results, we are able to get an expression
for them. For example, take the correlator (A,B,C) with |4) = i6X ) (2)|0), |B) =
10X ) (w)|0) and |C) = |0). Using

. Qn
i0X(2) = S lomom] = nénm (2.5)

T

and (2.2), we get the following expression for the correlator:

ore = vmn ”
(A{B|{C|Va)128 = Gowr > pmres pperrs R (2.6)
n,m=1

the /mn comes when we write a, = y/na,. From the previous chapter (1.18), we know
that this correlator can also be computed as

(fr 00X (@) fr 00X W) = f1(2)Fa(w) i0XO(£(2))i0X ) (fa(w))
FU(2)fu(w) o
(r(2) = fo(w))®" |

where we used (i0X (2)i0X (w)) = ——. As (2.6) and (2.7) must be equal, we obtain
(

z—w)2
1 [de _, ]{ w5 W) (2.8)

Jmn )| omi” o (fo(2) = Fe(w))2

Proceeding in the same manner for [4) = P XO)0) |B) = i6x(®) (w)|0) and |4) =
e X0)0), |B) = P XO)0), we get

TS __
an"‘—

s _ 1 [dw _ log|f1(0)|7 fl(w)
=m0 - ) 29
Vs — { log(fr’(O)| ifr= S5
00 7\ log|£r(0) — £5(0)] + Llog|f£1(0)£1(0)] if r # s.

Similarly, the same can be done for the ghost part of the vertex. Yet, we will not discuss it
here since we do not need it in the forthcoming discussions.
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2.1.2 Classical Solutions

Now we posses all the instruments to compute classical solutions for VSFT equation of
motion

QU + T x¥ =0. (2.10)

Here, the fact that Q comprises just ghost degrees of freedom plays a crucial role. As
the vertex factorizes in matter and ghost parts, we can say the solution also splits into two
parts. Thus, we make the following ansatz for nonperturbative solutions

V=0,07, (2.11)

where ¥, and ¥, depend purely on ghost and matter degrees of freedom, respectively.
Then eq.(2.10) splits into
Q¥ = Vg%, ¥, (2.12)
Uy = VUpry Uy (2.13)

where x4 and xp,, refer, respectively, to the star product involving only the ghost and matter
part. The action for this type of solution becomes

S(T) = g (¥l QL) (Tl ). (214)

It is well-known how to find solutions to (2.12), but since the ghost part will not play a
role in our future discussions we will simply ignore it. We will instead focus on the matter
part, eq.(2.13). The solutions are projectors of the %, algebra, and the %, product is
defined as follows

[Ty %o Ta)s = (U1 A ¥a|V3)123. (2.15)

The Sliver and The Inverse Sliver

To represent the space-filling D25-brane, a solution to (2.13) must be translationally in-
variant and, as a consequence, all momenta can be set to zero in (2.2). In this way, the
integration over the momenta can be dropped and the only surviving part in E will be the
one involving V78, The strategy we will follow is to make an ansatz for this solution

o0
|E) = Ne'%“T'S'“WO)’ a-9.al = Z a“mTSmna',’jnW, (2.16)
m,n=1
plug it in (2.13) and find what conditions S should satisfy to fullfill the requirement the
solution is a projector of the *, algebra. This solution is called the slwer. This state
satisfies eq.(2.13) provided the matrix S satisfies the equation

21
S=v14+ w2 va-y)ls (Y‘;”) (2.17)
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where . "
S 0 v v
L= (O S) ) V= (VZI V22> ) (218)
The proof of this fact is well-known. First one expresses eq.(2.18) in terms of the twisted
matrices X = CV X, = CV!2 and X_ = CV?', together with T = CS = SC, where

Crnm = (=1)"0nm. The matrices X, X1, X_ are mutually commuting, and requiring 7" to
commute with them as well, one can show that eq.(2.17) reduces to the algebraic equation

XT? - (14+X)T+X =0 (2.19)

The sliver solution is

1
T==1+X - /I+3X)(1- X)) (2.20)

The normalization constant A is calculated to be

Se]

N = (Det(1 — V) (2.21)

The contribution of the sliver to the matter part of the action (see (2.14)) is given by

NQ
(det(1 — 52))%

ot B M
bt | bt [ =—

(2.22)

Both eq.(2.21) and (2.22) are ill-defined and need to be regularized. However, we will not
discuss this point here since it is a rather technical matter.

:~Now let us remark that there is another solution to (2.19), ie. 1/T. In fact (2.19)
is invariant under the substitution T' < 1/T. 1/T is given by the RHS of eq.(2.20) with
the — sign replaced by the + sign in front of the square root. We will call it the inverse
sliver. This solution was previously discarded, [1 1], because of the bad asymptotic behavior
of the 1/T eigenvalues. Nevertheless, it is exactly this behavior that will allow us to find
interesting time-dependent solutions.

The Lump

In order to build our time-dependent solution, we will need another kind of solution, the
lump [11]. The lump solution is engineered to represent a lower dimensional brane, therefore
it will have transverse directions along which translational invariance is broken. Accordingly,
we split the three string vertex into the tensor product of the perpendicular part and the
parallel part

Va) = V3,1) ® |V3,) (2.23)

and the exponent F as FE = E) + E.. The parallel part is the same as in the sliver case
whereas the perpendicular part is modified as follows. Following [11], we denote by z2, p2,
@ = 1,...,k the coordinates and momenta in the transverse directions and introduce the
zero mode combinations

(Mo - _1 NGOLEE ___:!'_ ~(r)a (rot — _]; ~(r)e _l_ ~(ra 9
ag 2\/5;0 z\/gm , ag 2\/5p + z\/i).:c , (2.24)
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where p(Me 2" are the zero momentum and position operators of the r—th string, and we
have introduced the parameter b as in [11]. It follows

[a(()r)a7 agS)ﬁT] — ,r’aﬁa'rs (2.25)

Denoting by |Q) the oscillator vacuum ( ag|€%) = 0), the relation between the momentum
basis and the oscillator basis is defined by

3 3
b2 b 1
{p"}h12s = (—%) exp [E ( G In28p) + Veal ) pl) - §aér)aTnaﬁagm>} 1)

r=1
(2.26)
Next we insert this equation inside | and eliminate the momenta along the perpendicular
directions by integrating them out. The overall result of this operation is that, while Vap)
is the same as in the ordinary case,

[Va1) = Koe E'|Q) (2.27)
with
273
Ko= —rr, 2.28
2 B(Voo +b/2)? (2.28)
Z Z a(T)C“TV s a/]\‘?’)BTnaﬁ (229)
'r s=1 M,N>0

where M, N denote the couple of indices {0,m} and {0,n}, respectively. The coeflicients
V73 are given in Appendix B of [11]. The new Neumann coefficients matrices y'rs satlsfy
the same relations as the V™ ones. In particular one can introduce the matrices X'rs =
CV'rs, where Cnar = (—=1)Y dnas, which turn out to commute with one another. All the
relations of Appendix A hold with primed quantities. We can therefore repeat word by
word the derivation of the sliver from eq.(2.16) through eq.(2.22). The new solution will
have the form (2.16) with S along the parallel directions and S replaced by S’ along the
perpendicular ones. In turn S’ is obtained as a solution to eq.(2.17) where all the quantities
are replaced by primed ones. This amounts to solving eq.(2.19) with primed quantities.
Hence, in the transverse directions S is replaced by S’, given by

S=CcT, T = 2X,(l + X' =/ (1+3X)(1-X")) (2.30)

In a similar way we have to adapt the normalization and energy formulas (2.21,2.22). Ex-
actly as in the sliver case, we can consider the solution with T’ replaced by 1/T". The same
considerations hold as in that case.

Before ending this section, let us make a brief comment. One could ask why the sliver
and the lump solutions describe the space-filling D25-brane and the lower dimensional
ones. First, we should expect it to be so because we are describing the theory around the
nonperturbative vacuum, and a classical solution, therefore, is to represent the perturbative
one. Second, when we compute the ratio of the energies of these solutions, the ghost
contributions cancel as they are common to all of them, and the result is the same as the
ratio of the tensions of two branes [12]. This is a further evidence that this interpretation
is to be correct.
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2.1.3 Spectroscopy and diagonal representation

In this section we summarize, for later use, some important results concerning the spec-
troscopy of the matrices previously defined. The diagonalization of the X matrix was
carried out in [13], while the same analysis for X’ was accomplished in [14] and [15]. The
eigenvalues of X = X', X, = X2 X_ = X% and T are given, respectively, by

xk _k
pri(k) = 1-26s+e? br1s+e72 §ron

2.31
1+2 coshlgﬁ ( )
t(k) = —e~ 7" (2.32)
where —oco < k < co. The generating function for the eigenvectors is
[o.e] N 1
(k) — kL . 2 1— —k arctan z 2.3
F®() ;vnﬁk< e ) (2:33)
The completeness and orthonormality equations for the eigenfunctions are as follows
o0
> vl = Nk - &)
n=1
oo vy(Lk)vr(rIf)
dk ————— = § 2.34
Lok = o (234
N(k) = %sinh%li

The spectrum of X is continuous and lies in the interval [-1/3,0). It is doubly degen-
erate except at ——%. The continuous spectrum of X’ lies in the same interval, but X’ in
addition has a discrete spectrum. To describe it we follow [15]. We consider the decompo-
sition 1

X" =1+ 7CU + o™ U'C) (2.35)

3
where o = ¢ Tt is convenient to express everything in terms of CU’ eigenvalues and
eigenvectors (see Appendix B). The discrete eigenvalues are denoted by ¢ and €. Since
CU’ is unitary they lie on the unit circle. They are more effectively represented via the
parameter 7, (B.1), which in turn is connected to the parameter b (B.3). To each value of b
there corresponds a couple of values of 7 with opposite sign (except for b = 0 which implies
n=0).

The eigenvectors corresponding to the continuous spectrum are V]E,k) (=00 < k < 00),
while the eigenvectors of the discrete spectrum are denoted by VJS,E) and V]\(,E) . They form

a complete basis. They will be normalized so that the completeness relation takes the form

o0 - -
/ dkVEVE + VEVE  vEOVO — 5y, (2.36)
—C0
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It has become familiar and very useful to expand all the relevant quantities in VSF'T' by
means of this basis. To this end we define

o k [e.e] o0
ak = Z VJS, )aN, ag = Z VJS,E)aN, a; = Z v
N=0 N=0
ay = / dk V(k) ay + Vls,ﬂag + Vls,f)ag (2.37)
—0o0
and introduce the even and odd twist combinations
ar + Cax a§+CCL5 ak—-C’ak a§—~Ca§
ep = ———, bp = ——, O = ——=) Op= = 2.38
k \/i ] \/§ k ’L\/_ m Z\/—Z- ( )
The commutation relations among them are
lew, el] =6k — ), [emell=1, lonol]=d(k=k), [ogof)=1,
(2.39)

while all the other commutators vanish. The twist properties are defined by
Car = a—g, Cag = ag.

Using these combinations the three-strings vertex can be cast in diagonal form and, for
instance, the exponent of the conventional lump state can be written

dislat = / dkt(k) (af, Cal) + 21¢ (a}, Cal)
= / dk t(k) ekek-}-okok)—i- ty (eJr Iﬁ—o};oi,) (2.40)

where t, =t =e€ =Inl, The unconventional lump (inverse lump) is obtained by replacing i,
with 1ts inverse el

In the sequel we need the behavior of the eigenvectors when b — 0 and when b — co.
Near b= 0 we have

b0, 7m0, £x1

(€) L (&) — 2
Vo) = —+0(@), V, 2.41
0 \/i (77) (77 ) ( )

The same behavior holds for the V(€ basis.
When b — co we have instead

b — oo, b ~ 4logn, E= —e%

VO(E) ~e 3 /2nlogn, Vn(ﬁ) ~ e_lzl\/?,' (2.42)

and the same for V.
These asymptotic behaviors will be used to evaluate matrix elements such as (2.50). In
this regard they are completely reliable (and, in any case, backed up by numerical evidence).
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If we consider instead the corresponding asymptotic expansions for the V(%) basis, we have
to be more careful. The point is that the expression (VO(k))z, see (B.7), would superficially
seem to vanish in the limit & — oo, but it is in fact a representation of the Dirac delta
function 6(k), see Appendix D. Therefore the result of taking the b — oo limit in an integral

containing (Vo(k))2 Is to concentrate it at the point £ = 0. This renders the generating
function (B.6) very singular and, consequently, such integrals as [ dk AL Vn&’“) f(k) must be
handled with care. As for the limit of the continuous basis when b — 0, one can see that

Vb(k) — 0, while the other eigenfunctions have a nonvanishing finite limit.

2.2 Time-Dependent Solutions

The search for time-dependent solutions has lately become one of the prominent research
topics in string theory. Particularly interesting is the search for solutions describing the
decay of D-branes. An archetype problem in open bosonic string theory is describing the
evolution from the maximum of the tachyon potential to the (local) minimum. Such a
solution known as rolling tachyon, if it exists, describes the decay of the space filling D25~
brane corresponding to the unstable perturbative vacuum to the locally stable vacuum.
That such a solution exists has been argued in many ways [16, 17, 18, 19] and, in this
section, we discuss our results thereof.

2.2.1 Time dependent solutions: dead ends

In order to appreciate the very nature of the problem of finding time-localized VSFT
solutions, let us examine first some obvious attempts and learn from their failure. The first
thing that comes to one’s mind is to start from a lump with one transverse space direction
(therefore it represents a D24-brane) and inverse-Wick-rotate it. One such solution has
been introduced above, see section 2.1.2 from eq.(2.23) through eq.(2.30). For simplicity we
denote the transverse direction coordinate, momentum and oscillators simply by z,p and
apn. The solution is written as follows:

[') = [E)as ® |A)

1
) =Nexp |5 > alShual, | 1) (2.43)
N,M>0

where |Z)95 is the usual sliver along the longitudinal 25 directions and

Vi b
013 /Aot = X)aet(1 + T (2.44)
(2mb3)12

N'=V3

In order to study the space profile of this solution in the transverse direction we contract it
with the zp—coordinate eigenstate

/2 1 2 . 1
lzo) = ‘b?eXp [_gzg - %’UIBCCO + '2‘(0%)2 |2) (2.45)
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The result is

2 N 16 -1 2 21 :E()fo 1
e e e R I

where the condensed notation means

! !
SOnSOm

e (2.47)

fo= Z Sl,)na;rw o' W'al = Z aILWrILma‘Im Wim = Spm =

n,m=1

and
s' =S4 (2.48)

After an inverse Wick-rotation zo — X, al, — ial, (2.46) becomes

2 N 11— S 21 Xofo 1
(xo|A) = \/;—m——?exp [_b—l %0 X2 + \/_1 "y a'W'a J'] (2.49)
We are interested in solutions localized in time. The second term in the exponent gives
rise to time oscillations. Only the first term can guarantee time localization. Precisely this
happens when |s’| > 1. However such a condition can never be achieved within the present
scheme in which ordinary lump solutions are utilized. In fact it is possible to show that for
such solutions |s'| < 1. Therefore with the simple-minded scheme considered so far it is
impossible to achieve time localization (in this regard our negative conclusion is similar to
[20]; as for the case b — 0, see below).
Let us see this in more detail by showing that |s’| < 1. Using the basis of the previous
section we can write

oo - -
s =S = / dk VO (e~ " y® 4 Oty &) 4 (O g=inly(©) (2.50)
—00

Using (B.7), one can see that the first term in the RHS does not contribute in the limit
b— 0 (i.e. n — 0) and using the approximants (2.41) we immediately see that the remain-
ing two terms add up to 1. Therefore when b — 0, s’ — 1. Viceversa, in the limit b — oo,
using (2.42) we see that the last two terms in the RHS of (2.50) do not contribute, while the
first term contribute exactly ~1. This can be also shown numerically or with the alternative
analytical method of Appendix C. For generic values of b we cannot calculate s’ analytically
but it is easy to evaluate it numerically and to show that it is a monotonically decreasing
function of b for 0 < b < co. This in turn implies that the quantity 1 175 is always positive
(see figure 2.1).

Our conclusion is therefore that we cannot obtain a time-localized solution by inverse-
Wick-rotating an ordinary lump solution. We will show elsewhere that also adding a con-
stant B-field does not change this negative conclusion. Some drastic change has to be made
in order to produce a localized time-dependent solution.
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Figure 2.1: The quantity g[n] =

2.2.2 A Rolling Tachyon-like Solution

It is not hard to realize that if we were to replace e~ with el in eq.(2.50) we would reverse
the conclusion at the end of the previous section. In fact, see below, we would have || > 1.
In this section we wish to exploit this possibility. In section 2.1.2 we have seen that if in
the lump solution we replace 7" by 1/T7, formally, we still have a projector. Motivated by
thls fact we define an unconventional lump, by replacing |A’) in (2.43) with

|A") = Nexp(al CT"ah)|) (2.51)
where
Tlong = — /_ dk Vi v exp ( ”'2 ‘) +(OVE vV ) eplnl  (@252)

Due to the fact that the star product is split into eigenspaces of the Neumann coefficients
X', X!, X!, the projector equation split accordingly into the continuous and discrete spec-
trum part. Therefore we are guaranteed that (2.51) is again a projector, as one can on the
other hand easily verify by direct calculation. This is the solution we propose.

Before we proceed with our analysis we would like to clarify a basic question about the
solution we have just put forward. Passing from a squeezed state solution with a matrix 7"
to another characterized by the inverse matrix 1/7" may lead in general to unacceptable
features of the state, such as divergent terms in the oscillator basis. However in the case at
hand, in which one inverts only the discrete spectrum, such unpleasant aspects disappear.
First of all the matrix 7" is well defined both in the oscillator and in the diagonal basis.

Second, such expression as 4/det(1 — ") are well-defined. This is due to the fact that, if we
are allowed to factorize the discrete and continuous spectrum contribution, the former can
be written as det(1 —7")(@) = (1 —exp|n|)2, so that the possible dangerous — sign under the
square root disappears due to the double multiplicity of the discrete eigenvalue. Third, the
energy density of the (euclidean ) solution (2.51) equals the energy density of the ordinary
lump. In fact, using the formulas of [11], the ratio between the energy densities of the two
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solutions reduces to

\/det(l + f’)/\/det(l +T7) _ \/(1 + e[77|)2/\/(1 el 053
det(1 —77)" | det(1—1T") (1—elmh2”\ (1 — e~nl)2
after factorization of the discrete and continuous parts of the spectrum.

After these important remarks it remains for us to show that this solution has the
appropriate features to represent a rolling tachyon solution. To see if this is true we have
to represent it in a more explicit way. In particular we have to extract the explicit time
dependence (better, the space dependence and then inverse-Wick-rotate it). To do so,
we have to choose a (coordinate) basis on which to project (2.51). There seem to be two
distinguished ways to make this choice. We will work them out explicitly and then discuss
them.

To start with let us define the following coordinate and momentum operator, given by
the twist even and twist odd parts of the discrete spectrum,

&y = —\j—i(e,7 —el) (2.54)
gy = \/%(on —of) (2.55)

The eigenstates of the coordinate Z; are given by
|z) = ﬁexp (—%xz — V2ielz + %ei,e;g) 1. )5 (2.56)

€U|QHe> =0

&yle) = z|z)

Correspondingly the eigenstates of the momentum g, are

ly) = J=exp (—%y2 — VZioly + %037033) |25, (2.57)
OT]IQU0> = 0
Unly) = yly)

In order to make the z,y dependence explicit we project our solution (2.51) into the
position/momentum eigenstates (2.56, 2.57). Using standard results' we get

. el — y
() = e ( S+ y2>> 1£4) (258)

The state |A.) is given by (2.51), but with only oscillators from the continuous spectrum,
as the contribution of the discrete spectrum is now contained in the prefactor at the rhs of

'Here we are assuming that the vacuum factorizes into |[Q2;.) ® |Qn,) ® |Qc) where the latter factor
represents the vacuum with respect to the continuous oscillator component.
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(2.58) . Now we perform the inverse Wick rotation x — ix, y — —iy to recover the Lorentz
signature, and obtain

X (o) 1 e —1 5 o\ i owick)
A (xy)) = me}cp <—m(x +3%) | 1AL (2.59)

It is evident that for every value of n the solution is localized in the x—time coordinate.
The extra coordinate y is related to internal twist odd degrees of freedom and can be
interpreted as a free parameter of the representation (2.59). This solution also contains the
free parameter 7 which is nothing but a re-parametrization of b, through (B.3). Therefore
it is characterized by two free parameters.

The ‘time’ x is not the ordinary time, i.e. the time coupled to the flat open string metric
and related to the string center of mass. We will see later on a possible interpretation for
x. Now, let us turn to the ordinary (open string) time, i.e. the time defined by the center
of mass of the string and analyze the corresponding time profile. Despite the fact that this
coordinate is not diagonal for the x—product we can still have complete control on the profile
along it. The center of mass position operator is given by

. { ¥
To = —=(ag — a, 2.60
The center of mass position eigenstate is

2 1 2 . 1
|zo) = \/ b P (-—gaioxo - -\/—Eza:gmo -+ iagag) |) (2.61)

Let us compute the center of mass time profile. After inverse~Wick-rotating it, it turns out
to be

[2 N 11-T¢
[A'(x0)) = (xo|A') = T —————6xD (— V°0x3+ (2.62)
+ o Thal + 2l Wial, | 1)
VB(1 +T}p) 2
3 1 . .
WTILm = Svlzm - ﬁ_—j?é;séns(l)m (2'63)

The quantities Sp, and S, can be computed in the diagonal basis

S = Ty (260
o k
= a0 (- [T uOvPen (-T) + 0O O el
S":zm = ("DnTwlzm: (2'65)

m © k k
= (=1 + o) (- [T e (<5F) 4 vOvS el
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It is evident that the leading time dependence in (2.62), for large xg, is contained in

exp (b %_—;—;:9— ) The number T}, is b(n)—dependent and can be computed via

Tion) =2 [ ak (Vo) e (-5 ) + 2049 el (266

This is the crucial quantity as far as the time profile is concerned. An analytic evaluation
of it is beyond our reach. However we will later show that

lim TOO = 1 (267)
77—»0

A numerical analysis shows that this quantity is a function monotonically increasing with
1 within such limits. This means that the quantity I +;:, is always negative (it lies in the

interval (—1,0), see figure 2.2) and so the profile is a,lways localized in the center of mass
time, except in the extreme case n — 0, which corresponds to the tensionless limit.

£ln]

Figure 2.2: The quantity f[n] = T_{_—'Tiﬂ as a function of o

This has to be compared with the usual lump solution (see previous section) for which
the corresponding quantity is always positive and takes values in the interval (0, 0o), allowing
for localized space profiles but divergent along a timelike direction.

For reasons that will become clear in the next section, we extract also the free param-
eter y dependence, by projecting onto the corresponding twist-odd eigenstate (2.57). This
operation can be done before or after the projection along the center of mass coordinate
and does not interfere with it because ¥ does not contain the zero mode. We will there-
fore consider the following representation of our solution (inverse Wick rotation is again
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understood)

1— e'nl
N S / 1zem s 2.69

2%

M+ Tl b 1+ Téo V(1 + Téo) 2

The quantities T, and Tf,, are the same as in (2.66, 2.64) since the momentum Uy is
twist-odd. Some changes occur in W}/, ,

1
1+ T3,

Srm = ()™ + (=1 ( / dhvk)v(k)exp( 7;15>

+ Vn(")Vn(,L")exp[nl) n,m even

W;le = ng— géngém (2'70)

) o)
= —((-1)"+ (—1)7")/ dk Vék) Vn(zk) exp (—%) n,m odd
0

Note that S, gets contribution only from the twist-even part of the discrete spectrum.

In conclusion (2.69) provides the solution we were looking for. It represents a solution
localized in xg, with the desired profile. It depends on two free parameters y and 7 (or b).
These are all positive features. But let us start making a closer comparison with the rolling
tachyon solution (such a comparison is made with the representation (2.69)). This can be
done by considering the limit b — oo, which can be derived from the egs.(2.42). b — oo
means 7 — oo (for simplicity from now on we take 7 positive) and

. log(27)
e —_——_—2

where dots denote higher order terms. Therefore we see that in this limit any time depen-
dence in (2.69) disappears. Moreover, anticipating a result of the following section, we also
have that W)/ — Spm. In other words, in the limit b — co we obtain a static solution
corresponding to the initial sliver. From this we understand that the parameter 1/b, for
large b, plays a role similar to Sen’s parameter A near 02. A second remark concerns the
limit y — oco. In this case the first exponential factor in the RHS of (2.69) suppresses
everything, so that the limit is the 0 state. In other words, we can consider this value of
the parameter y as identifying the (relatively) stable vacuum state.

Although the rolling tachyon naturally compares with (2.69) rather than with (2.59), it
is instructive to repeat something similar with the latter. Let us stress once more that both
(2.69) and (2.59) represent the same solution, but in different bases, in particular with two
different times: one, xp, is the open string center of mass time, the other, x is related to the
discrete spectrum. In the (2.59) case a parameter like b is missing. But this is something

2We recall that Sen’s rolling tachyon solution depends on the parameter ), which appears in the
X [, dt cosh X°(t)~deformed BCFT.
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that is simply not customary and can be easily remedied. We can in fact introduce a
parameter b, in (2.54,2.55), just replacing v/2 with /b, in those equations. Then (2.59)
would become

A (xy) =

and we could repeat the same argument as above and reach the same conclusion, except
that in this case we have to take b, — oo as well as n — co. The limit y — oo plays the
same role as in the (2.69) representation.

In the next section we will study the solution (2.51) in a regime we are more familiar
with, the low energy regime o/ — 0, and in the other extreme regime, o’ — oo, in which the
solution considerably simplifies and an analytic treatment is possible. What we would like
to see more closely is whether, for sufficiently small values of the parameters, the solution
at time 0 is close enough to the sliver configuration (2.16), whose decay the solution is
expected to describe.

2.2.3 Low energy and tensionless limits

As reviewed in appendix C, the low energy limit is obtained by performing an € — 0 limit
on the quantities that depend on the Neumann coefficients of the three strings vertex. €
is a dimensionless parameter that represents the smallness of o/, [21]. As it happens, in
all the expansions we consider, the parameters € and b only appear through the ratio €/b.
Therefore, formally, the expansions for small €/b are the same as the expansions for large b,
i.e. 7 — co. Therefore, in this section, when we consider the expansion in 1 near co we really
mean the expansion for /b small (i.e. € small and b finite). A different attitude is required
by the ‘external’ states like (2.45). There the rescaling of zg would lead to the replacement
b — be. In this case we absorb ¢ into zg and keep b finite. In conclusion, throughout the
analysis of the low energy limit, b should be considered as a finite free parameter.

Let us analyze in detail what is the limit of the various quantities appearing in (2.69).
First of all we have

1— 7/
lim 20— 1 (2.73)
n—o0 1 4 T},

This follows from (2.42) and from the discussion at the end of section 2.1.3, in particular
from the property of (Vo(k))2 of approximating (k) in the limit b — co, which implies that
T4 — oo in the same limit. For the oscillating term we have
T3 1
lim —2— = lim —=———=0 (2.74)
n—oo 14+ T4, 1= +/2logn

To evaluate this limit one must evaluate T,. This in turn requires knowing the asymp-
totic expansion of the basis Vn(k) for  — oo. This is done in Appendix D. A numerical
approximation confirm the above result.

Thus, in the limit, the oscillating part completely decouples from the time dependent
part. It remains for us to consider the limit of the quadratic form W} ., (2.70). When n,m
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are odd there are no contribution from the discrete spectrum, since the contraction with
(y| has eliminated them.

Wi 1,2m—1 = 52510)—1,2m~1 (2.75)

When n,m are even we have, on the contrary, potentially dangerous terms because
there are divergent contributions arising from the discrete spectrum. The latter have to be
carefully evaluated.

2(v(§))2 2n

Wed  — oy©y© [
2n,2 2n 2(V(§)) en+o(nlogn)
= OVO 0y~ 0(—1) (2.76)

nlogn logn

We see that the potentially divergent contributions arising from the discrete spectrum ex-

actly cancel when 1 — oco. Therefore, as far as W;n om 18 concerned, we are left only with the

contribution from the continuous spectrum. Of the two pieces that contribute to szgcz)m,

see eq.(2.70) only the first survives in the limit n — oo, the second vanishes for the usual
reasons. Therefore we can conclude that

wr =5 4

= where dots denote subleading corrections of order at least 1 /logn. At this stage we can

:~do the calculation d1rectly as in Appendix D, or we can resort to an indirect argument
'(c)

by noticing that Sps approaches Snm in the same limit, because the discrete spectrum

- contribution to the latter vanishes, and then use the results of Appendix D. In both cases

=+we conclude that

W = Spm + O(e/b) (2.77)

' Going back to equation (2.69) we see that, modulo a normalization factor, we obtain
%2
im [A'(x0,7)) = N'(y)e™ [E) (278)
o —

where |Z) is the zero momentum sliver state. This result can be phrased as follows: in the
low energy limit the solution takes the form of a time—Gaussian multiplying a sliver, the
subleading terms being proportional to €/b, eq.(2.77).

'To end this section let us briefly consider the opposite limit, that is o/ — oo (tensionless
limit). As in the previous case this is formally achieved by taking the n — 0 limit in all the
quantities which are related to the Neumann coefficients, but leaving b as a free parameter.
This limit is well defined. Using the results of appendix D we get

tim L= T _ (2.79)
701 + T00

The oscillating term in (2.69) vanishes as well. This result implies that the Gaussian
representing time dependence in (2.69) is actually completely flat: time dependence has
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disappeared! We believe this to be related to the fact that all strings modes become massless
in this limit [22], so there are no modes to decay into. It is easy to see that the only non
vanishing term in the exponent of (2.69) is the quadratic part which gets contribution only
from the continuous spectrum (on the contrary of the n — co limit the discrete eigenvector
has only the O—component, while the higher components disappear like positive powers of
1/m). We remark that in the tensionless limit the center of mass time and the x time are
identified.

2.2.4 Further Comments

In the last two sections we have shown that by inverting the discrete part of the spectrum we
obtain a definite (unconventional) lump solution which, after inverse Wick-rotation, gives
rise to a time-localized state with many properties characteristic of the rolling tachyon
solution. We have left, however, some loose ends which we would like now to tie up or at
least comment upon.

The first comment concerns normalization of the states we have come across. We have
written down throughout normalization factors in quite a formal way. We have already
recalled the fact that the sliver state and the lump state have a vanishing normalization,
but we believe these problems have to be kept separated from the normalization of our
time dependent solution. As a matter of fact a normalization problem appears only for the
representation (2.69) and in the low energy limit, for the coefficient N7 in (2.78) diverges
exponentially for n — oo once all the contributions are taken into account (this problem
does not arise for the other representation (2.59)). We remark however that, as was noticed
in the discussion after eq.(2.51), the energy density of the corresponding Euclidean solution
is well-defined (once the conventional lump energy density is). Therefore the exploding
normalization can only be an artifact of the representation. It means that we have to use
the parameters of the state to regulate the normalization, although it is not clear a priori

what is the right way to do it. A possibility is to use the factor exp (1;2:2: y2) in (2.69).

Since this vanishes for y large, we can view y as a suitable function of n as n — oco. This
can settle the problem. Other possibilities are connected to dressing, [23, 24].

Another important question is the number of parameters. Our solution depends on two
parameters y and b. One may wonder why we extracted the y dependence from (2.51).
This is indeed not a choice but a constraint. Had we not done it, we would have found
a different formula (2.70) in which also the n,m odd part of S, would have taken a
contribution from the discrete spectrum (exactly as the n,m even part). However in the
odd-odd part no such cancellation (2.76) as in the even—even part occurs and we would
find badly divergent coefficients in W’. We gather that y is a genuine free parameter of the
time-dependent state. What about b? It was argued in [11] that this parameter represents
a gauge degree of freedom. This need not be in contradiction with the meaning we have
attributed to it in the previous sections. We recall that in ordinary gauge theory a singular
gauge transformation may convey some physical information. Now, looking at (2.24), the
values b = 0 and b = oo may well correspond to singular gauge transformations, and
therefore contain physical information. More generally the gauge nature of b may mean
that using a different formulation one may be able to write the solution in terms of a single
physical parameter which contains the information carried by both b and y.
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The third question we would like to address is the relation between the two representa-
tions (2.59) and (2.69). The latter is expressed in terms of the open string center of mass
xo and its interpretation is obvious. The interpretation of the former is less clear since the
'time’ x does not have a clear connection with the open string center of mass time. A rather
bold speculation is that x be connected with the closed string time. The closed string time
couples to the closed string metric, which, in correspondence with the D-brane, must de-
velop a singularity (it must be a solution of the effective low energy field theory associated
to the closed string). So the relation between the open and the closed string time should
be something like gc(dtc)? ~ go(dt,)? in the field theory limit, were 9o =1 and g, becomes
larger and larger near the origin. Something similar indeed occurs between xy and x when
n — o0. In fact the ratio between xo and the zero mode part of x decreases exponentially
with 7. We notice moreover that the normalization of the representation (2.59) does not
need any regularization. In other words x seems to be a smoother choice of time, with
respect xg.

2.3 Time-Dependent Solutions with an E-field

We have just shown that it is possible to get time localized solutions of VSFT by taking an
euclidean lump solution on a transverse direction (the euclidean time) and simply inverting
the discrete eigenvalues of the lump Neumann matrix. This solution, preserving the same
euclidean action as the conventional lump?, has the remarkable feature of being localized
in the time coordinate identified by the twist even discrete eigenvector of the Neumann
matrices and, what is more important, of being localized in the center of mass time co-

" ordinate for every value of the free parameter b. Moreover, time dependence disappears

when b — co (the solution becoming the zero momentum sliver state) and when b — 0 (the
solution becoming the 0 string field, i.e. the “stable” vacuum of VSFT). This lead us to
propose that, at least in these singular limits, the b-parameter should be related to the X
parameter of Sen’s Rolling Tachyon BCFT.4

Now, we are going to study the corresponding time-dependent solution in the presence of
a constant E—field background on a longitudinal or transverse direction. We obtain E-field
physics by first going to an euclidean signature with imaginary B-field, B = 4E, and then
inverse Wick rotating, in the same way as [25] for what concerns the effective target space
and BCFT analysis. One of the main differences with respect to the previous solution is that
when the E—field reaches its critical value E, = 5%, the (center of mass) time dependence
is lost, regardless of the b-parameter, and we get a flat non zero time profile which, along the
lines of [25], should be interpreted as a static background of fundamental strings, polarized
by the E-field. This result persists when b — 0 if we double scale appropriately £ — E,
with b — 0.

3We stress that in presence of time dependent backgrounds, one cannot anymore consider the value of
the classical action mod volume as the space averaged energy
“ Another approach in obtaining time dependent solutions in VSFT can be found in [20]
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2.3.1 Longitudinal E-field

In this section we will analyze the case of switching the E—field along a tangential direction,
i.e., along, say, the world volume of a D25—brane. As explained in [25], the presence of the
E—field does not create non commutativity as the direction in which it is turned on is at
zero momentum.

We use the double Wick rotation, that is we make space-time euclidean by sending
XO(¢) — iXP(0); then we construct an unconventional lump solution on the transverse
spatial direction XP (o) and inverse Wick rotate along it, X D(g) — —iX%0). Let o, B =
1, D be the couple of directions on which the E—field is turned on. Then E-field physics is
obtained by taking an imaginary B-field

Baﬁ = Beaﬁ = iEeaﬁ, EeR (2.80)

A localized time-dependent solution is easily given by straightforwardly changing the metric
nNap of the previous solution with the open string metric Gop

Gop = (1—(2rdE)?)bap (2.81)
1
Ga,B of
1— (2nd'E)? 6 (2:82)

Note that, contrary to the case of a real B-field, a critical value shows up for the imaginary
analytic continuation®

B.=— (2.83)

From now on all indexes (o, §) are raised/lowered with the open string metric (2.81).
We have then the following commutators

(a2, aPT] = G émm, m,n > 1 (2.84)

stating that the a®'s are canonically normalized with respect the open string metric (2.81)
We recall that, in case of a background Bgg—field, the three string vertex is deformed
to be, [26]

V) = [Va,0) ® IV3,) (2.85)

The factor |V3,,) concerns the directions with no B—field and its expression is the usual one,
[27, 28, 29, 30], on the other hand [V3 1) deals with the directions on which the B field is
turned on® .

V3,1) = / d%p(1)d®p(o)d*p(3)0%° (p(1) + P(2) + P(3)) €xP(—E') 0, phrzs (2.86)

5Tn the rest of the paper we will set o’ =1
6Note that in the case under consideration the symbols L and || do not refer to perpendicular or transverse
directions to the brane, but simply indicates directions with E-field turned on (L) or not an
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The operator in the exponent is given by, [26]

3
E = Z ( Z G ﬁa(r)m‘vrs (s)ﬂT+ZG ﬁp(r)vrs als)Bt

r,s=1 m,n>1 n>1

+ Gaﬁp & Vsl + Zp(r)é’“ﬁ ”) (2.87)
T‘<S
Note that the part giving rise to space~time non—commutativity, i.e. the last term, does
not contribute due to the zero momentum condition in the 1 spatial direction.
Let’s first consider the sliver solution at zero momentum along the 1 direction. The three
string vertex in such a direction takes the form (p! = p; = 0)

[V3(E,p=0)) = |V3(E=0,p=0))m—GEm) (2.88)
3
1
= exp |3 > Gua™t .y @ | o) (2.89)
T,§=1
This implies that the zero momentum sliver is in this case
IS(E,p=0)) = |S(E=0,p=0)m—CEmn) (2.90)
= MNexp (—%Glla” .S - a1T> |0) (2.91)
where the normalization A and the matrix S are given as usual, [11],
T = CS= ——(1 +X —/(1+3X)(1 - X)) (2.92)
N = /det(l1-X)(1+T) (2.93)

On the euclidean time direction we need the full 3 string vertex in oscillator basis. This is
given by

Va,1) = K e |) (2.94)
with
1
27h3 1)’
1 /
= Z S aP Vi epp (2.96)
rs=1M,N>0

where M, N denote the couple of indices {0, m} and {0,n}, respectively, and D is the
(euclidean) time direction. The coefficients VMN are given in Appendix B of [11]. In
order to have localization in Minkowski time, we need an explosive profile in euclidean time
(unconventional lump)

IA') = Nexp <—%GD DaTDCT'aTD> Q%) (2.97)
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where

. o0 k - ~
Tloag = — / dk VI viFlexp (J—T-lz—’) + (VEVR + VPV ) eminl (298)
oo

We get a localized time profile by projecting on the coordinates/momenta of the discrete
spectrum

B =7 (en—e}) (2.99)

. 1
where e, / o, are oscillators constructed with the twist even/odd part of the discrete
spectrum eigenvectors Vjsf), ]S,E)
1
en=>_ 51+ (1Y) Vifay (2.101)
N=0
on=> 5 (1- M) V¥ay (2.102)
N=0

The profile along these coordinates is given by (inverse Wick rotation, (z,y) — i(x,—y) is
assumed)

e]n‘ -1

K x) = o yI) = e (‘m<x2 - y2>) &) (@109

where |A.) contains only continuous spectrum contributions. This profile is localized on
the time coordinate x. Note however that there is no more reference to the E-field in the
exponent. In order to see explicitly the presence of the E—field, we need to use the usual
open string time, i.e. the center of mass.

Therefore we contract our solution with the center of mass euclidean time, z°, and then
inverse Wick rotate it, ¥ — iz°, obtaining

' - 2 N 1—ell ,
A (x0,9)) = (x0,¥IEm) =4/ 5 RN T (2.104)
e ;s
L] exp (_A($0)2+ 2iy/T=@rEP oz o+ _ 1

e < T lg,a
J1+ T V(1 + Tfp) m2

The extra coordinate y is given by the twist odd contribution of the discrete spectrum, we
need to project along it in order to have a well defined b — oo limit in the oscillator part
W as before. The oscillators @, are canonically normalized with respect the n-metric and

are given by
in = /1— (27E)%a, (2.105)

a;w:ma:n) 0
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The quantity that give rise to time localization is then

11-Tg
b1+ T,

(1-(2mE)?) (2.106)

This quantity depends on the free parameter b, as well as on the value of the F—field, through
the open string metric, used to covariantize the quadratic form in time. The matrix element
T4o is given by

Téo(n) = —2/(;00 dk (Vb(k)(b(n)))QeXp (—%) + 2(V0(§))26Xp |77[7 (2.107)

it is a monotonic increasing function of b, greater than 1: this is what ensures localization
in time as opposed to the standard lump which is suited for space localization.
The life time of the brane is thus given by

T = 11/—1- = ———1——7 AT(E=0) (2.108)
2V 24 (1 - (27E)?)3

Note that for E going to the critical value E, = 5177, the lifetime becomes infinite. In
particular we get a completely flat profile. This has to be traced back to the fact that
open strings become effectively tensionless in this limit, [31], so we correctly recover the
result that the D-brane is stable. This configuration should correspond to a background
of fundamental strings stretched along the E—field direction, with closed strings completely
decoupled.

2.3.2 Transverse E—field

In this section we study the time dynamics of a D-brane with transverse E—field. We
will do this in two steps. First we will write down coordinates and momenta operators
corresponding to the oscillators of the discrete diagonal basis and look at the profile of the
lump solution with respect to them. Next we will determine the open string time profile of
the lump solution by projecting it onto the center of mass coordinates. Since the solutions
with E-field are equivalent to euclidean solutions with imaginary B-field, before proceeding
further, we will first give a brief summary of the construction of lump solutions in VSFT
with transverse B-field.

Lump solutions with B-field

The solitonic lump solutions in VSFT in the presence of a constant transverse B-field were
determined in [32]. The % product is defined as follows

123(V3[W1)1]Wa)s =3 (T1 %y, Ty (2.109)

where the 3-string vertex V3, with a constant B-field turned on along the 24 and 25t direc-
tions (in view of the D-brane interpretation, these directions are referred to as transverse),
is :

[Va) = [V3,1) @ |Va))). (2.110)
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|Va,) corresponds to the tangential directions while [V3 1) is obtained from [26] by passing
to zero modes oscillator basis and integrating over transverse momenta, see [32]

VarbE A 1<
Vou) = ey 5o |3 2 2 o Vehavey' | 100® [ Gsahia (2111

r,s=1N,M>0

In the following we will set a, 8 = 1,2 for simplicity of notation. |Qpe) is the vacuum with
respect to the zero mode oscillators

1~ 1 O 1
a(()r)a = —i\/gp(r)a - Z—J-Ew(r)a, aor A= 5\/1_7P(T)a + 1:/—533(7”)&. (2-112)

Vop.mn are the Neumann coefficients with zero modes in a constant B-field background,
which are symmetric under simultaneous exchange of all the three pairs of indices and
cyclic in the string label indices (r,s) where 7,5 = 4 is identified with r,s = 1. Moreover
A = vDetG, Gop being the open string metric along the transverse directions (2.81). We
have also introduced the notations

A=Vio+2 a——-ﬁ]Bl (2.113
= V00 27 - A : ) )

The lump solution is given by

1
|S) = ISH) ® Nexp ~3 Z a‘j\‘}Sag,MNaﬁ}L |0) ® |Qb’9>, (2.114)
M,N>0
where A2 a2
= @—é—i@ “G))l Det(Z — X)2Det(Z + T)3, (2.115)
T et(G)4
and

X =C'vi, T=C'S, C' = (-1)énm (2.116)

In (2.114) |S))) corresponds to the longitudinal part of the lump solution and it is a zero
momentum sliver.
In order for (2.114) to satisfy the projector equation, 7 and X should satisfy the relation”

(T -1)(XT? - (T+X)T+X)=0. (2.117)

In the above formulae the @, B, N, M indices are implicit. This equation is solved by 7o,
1/7T and 1, where

1

To= 55 (1—|—X—\/(1+3X)(1-—X)) (2.118)

T = 1 gives the identity state, whereas the first and the second solutions give the lump and
the inverse lump, respectively. As stated previously, although the inverse lump solution

was discarded in earlier works [33, 11], because of the bad behavior of its eigenvalues in the

TWe limit ourselves to twist invariant projectors, but our analysis can be straightforwardly generalized
to projectors of the kind [34]
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oscillator basis, it is possible to make sense out of it by considering (2.117) as a relation
between eigenvalues relative to twist definite eigenvectors. In particular, in the diagonal
basis, the projector equation factorizes into the continuous and discrete contributions, which
separately satisfy equation (2.117). Therefore, one can just invert (for example) the discrete
eigenvalues of 7: dangerous — signs under the square root in the energy densities of the
solution are indeed avoided by counting the double multiplicity of these eigenvalues, which
is required by twist invariance. See Appendix E for the spectroscopy of X, and hence of 7.

Diagonal Coordinates and Momenta

In Appendix F, m—twist definite oscillators of the diagonal basis are introduced. Due to the
structure of Neumann coefficients it is natural to define the twist matrix as 7C, where 7 = ¢3
acts on space-time indices, see appendices E and F for details. In the following C-parity
will be always understood as 7C—parity. Now let’s define the following coordinates and
momenta operators in terms of the twist even and twist odd parts of the discrete spectrum,

(F.6)

N i - )
R, = ﬁ(e& ~el) Yo = —5(06 - ol) (2.119)
which are hermitian by definition and have the following eigenstates
1 _ix2 /3ixel +1ef of
1X;:) = _\_/__%e 3 Xi-Va e§i+2eﬁiefilﬂei> (2.120)
1 _iy2_ 'Y;-" 1.t ot
v;) = ——\/—;e 3 Y= V2iYiog, +304,0p, 1Q0,)- (2.121)
We made the assumption that the vacuum factorizes as
2
10) @ [0) = [ [T 192:()) ® |2,) ® |,) (2.122)

i=1 k

where |Q;(k)), |,) and |Q,,) are vacua with respect to the continuous, the twist even
discrete and twist odd discrete oscillators, respectively.

The explicit (X;,Y;) dependence of the lump state (2.30) can be obtained by projecting it
onto the eigenstates | X;, Y;). After re-writing (2.30) in terms of the diagonal basis oscillators
and performing the projection (see Appendix F), it follows

- 1 1 [ta(m) -1
(X'nY;'S) - 7T2[]_ +td(n1)][1 +td(n2)]e){p~2~ [W(X% +Y12)
%(Xg + Yzz)] 19)c ® [5)))- (2.123)

|S)c is given by (F.11) with only continuous spectrum oscillators and t4(7;) = e~ are the
discrete eigenvalues of 7 corresponding to the eigenvalue £(7;) of the operator C'i4.

In (2.123) the directions «, are completely mixed. As a matter of fact, it is not
apparent at this stage which of these variables (X;,Y;) contain the information about the
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center of mass time dependence of the lump. To make this clear let’s recall the non-diagonal
basis oscillators and write the coordinates and the momenta operators as
Do

X% = \/_(aN—~aN) pg = \}i(aN-I—aaT) (2.124)

In order to get the relation between these operators and the corresponding diagonal opera-
tors we have defined above, we need to re-write the diagonal basis oscillators in terms of the
non-diagonal ones. In doing so, one has to be careful about taking the complex conjugate of
the eigenstates, as we are dealing with hermitian rather then symmetric matrices. Taking
this fact into account and using some results of Appendix F, we obtain
o [ee]
o= LS VE Ve, el = = S (7 + 7]
\/5 =0 N=0

(2.125)

N,a

. (o] . co
—t & (&) T _ 1 (&) (&
o5 =75 Zzo(v}V L A T L= SO @ - TEINal,  (2126)

and similar relations for the continuous spectrum oscillators. Hence, the diagonal coordi-
nates and momenta can be written as

o0
. e
Re = V2 Vi Ko + Vi Biva (2.127)
N=0
=2 Z V2N+1P2N+1 széf\? Xin (2.128)

Now, to make the center of mass time dependence of the solution explicit, we need to
extract the zero modes from these operators. Let’s write the zero mode coordinate and
momentum operators by introducing the b parameter as

. i co VD
X5 = (e - ag") F§ = - (a§ +ag"). (2.129)
This gives )
X§ - {V&’ \/—XO + ZVE“IXZTL 251'1’ 1P22n—1 ’ (2'130)
X L 2 o |
Ve, =2 V(f“?\/;xg + }_:Vgﬁy_ Py, —iVERX2 | (2.131)
n=1 R’

Since our aim is to obtain the localization in time by making the inverse Wick rotation
on direction 1, we see that it is X¢; that contains the time coordinate, which we have to
compare with the string center of mass time (see below).
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Projection on the center of mass coordinates

In order to obtain the open string time profile of the lump solution, we need to project it
onto the center of mass coordinates of the string. The center of mass position operator is

given by )
i

Tem,a = 75(@0,11 - a(T),a) (2.132)
and its eigenstate is
[2A  _1lp ge_ 20 gotilot ot
|.XCM> = ‘;r_.b— e bzam \/BZfL'aaO +2a0,aa'0 IQQJ;)- (2133)

One can project the lump on this state to obtain the center of mass time profile.
However, for reasons that will be clear later, we will first project on the ¥; momenta
<IA> = (Yla Y2l5>>7

N exp 1 [ta(m) -1 ta(ng) — 1
A= T/ [1+ ta(n)][1 + ta(n2)] P2 [ ta(m) + 1Y ta(m) +1°°
Xexp — % [e;e;tm) - /_ dka] (k)azfﬂ(—k)tc(k)} ) ® ) @ |S).  (2.134)
Where we have used the notation
2 2
1) = [ ] 19.), 1) = [T]] 10u(k)). (2.135)
i=1 i=1 k

Taking equation (2.126) and the corresponding relations for the continuous spectrum oscil-
lators, equation (2.134) can be rewritten as

N 1 [td(nl) —1_o () —1
A) = exp— Y,
) /I talm)I + ta(na)] 2 Lta(m) +171 7 ta(ng) +1°2
- S8 - 1 AN o)
X exp 20,0 aS aoﬁ ao o Snm | [K2.0) ® |S))), (2.136)

where |Q0) = Q) ® IQC> and

ZV €D €08y k(B ()T
oo = n;) + (B)Vy* (k)Vy” (k) (2.137)

58 = ZZ I:V(U')a §+)/3t a(mi) + / dkt(k)V’ *(k )V%B(k;)J Q5= ng ;[zﬁ (2.138)

i=1 n=1

S::é%Z( VT ) + [ a0 mTe e 219
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+
with V]E,'si e being the twist even combination of the discrete eigenstates, see appendix F.
Now let’s project onto the center of mass coordinates

N 1[ta(m) =1 5, talne) =1 2]
Xeml|A) = ex ~[ Y©+ Y.
Heml) = T T ] 72 Lalm) 710 )+ 12
27
T 1s1~-1 1 s9—1 9 R <S()1:L‘1 502932)]
exp +2ivVh | T + =
T+l tes 0 [sl—i-lxlx T T T4s T T e
~ AQB
1 of 5015 530,250777, 1
Xexp[ 50n (Snm T4 st T+ 59 a 10) ®|S)) (2.140)

where

s1 = 2A[g3(n1,m2)ta(m) + g3(m2, m)ta(n2)] + A /_ " to(k)g2 (k) + ga(—k));

NN /_ " dk to(R) (G2 (k) + 6B(—H), (2.141)

t.(k) = —e~TIkl/2 ig the eigenvalue of 7 in the continuous spectrum, see Appendix E for the
definition of the remaining terms which enter in the last two equations. The inverse Wick-
rotation along direction 1 of (2.140) should give us a time-localized solution. It depends on
two parameters, b and a, which can be expressed in terms of (m1, m2), through the eigenvalues
equations (E.16) . Let’s now take a look at every term in this solution and analyze it for
different values of the such parameters.

In the Wick-rotated solution, to get time-localization, the term —3 T 1 should be nega-
tive. We cannot achieve this using the conventional lump, since in this case —1 < 57 < 1. To
correct this, as anticipated, we need to invert one or two discrete eigenvalues, (t4(m) or/and
tq(n2)). In this case one can easily show that 1 < s1 < co and we get the desired behavior.
Given the possibility of inverting one or two eigenvalues, it might seem that there is some ar-
bitrariness in our procedure. Actually there is none, since the cancellation of the potentially
divergent terms when b — oo (see below), requires the inversion of only one eigenvalue. In
addition, time localization in small b regime requires the inversion of the eigenvalue of 7
corresponding to the greater between 71 and 72 (72 in our conventlons) From now on we
will then consider a solution in which t4(ne) is inverted, i.e. tq(n2) — t7 L(ng).

Next, look at the term —2+—im2m2 Due to the (Y7, Ys| projection, it gets a contribution
only from the continuous spectrum, which is always negative and in the range (—1,0). As
a result, this second term is always negative and gives localization in the transverse space
direction.

Now we would like to point out some facts about the two parameters on which our
solution depends. We pointed out that the inverse of the parameter b, for large b, may play
the role of Sen’s \ near zero. Here again we can repeat the same argument. Note however
that in taking b to infinity we should keep a vanishing, see (2.113), since we cannot overcome
the critical value |E|; = —2-17; For this reason the result of taking b — oo is insensible of the
value of the E-field, making this limit completely commutative.
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As it is justified in Appendix G, the proper way to send b to co is to take M R 1y — 00
keeping 71 < 72. In this case one can easily see that

s1 & malogning + te(ko ~ 0), 89 = to(ko = 0) (2.142)
with ko as defined in Appendix G. Note that t.(kg ~ 0) = —1. This is so because the
E-field cannot scale to infinity due to existence of critical value. Then it follows

-1 -1
lim LT~ =1, lim 27 = oo (2.143)

m,m2—o0 §1 + 1 Mim2—00 89 + 1

As justified in Appendix G.1.2, in this limit S,‘j(? ©) = 0 50 that the oscillating term in (2.140)
receives a contribution only from the discrete part. It is also pointed out that the discrete
contribution vanishes except for o = 8 = 1, which is the only non trivial contribution to
the oscillating term. Moreover, we have

AS
im
n1,M2—+00 §1 + 1

1" 1 14
= )mmlzrﬁoo 2\/log77177 (2.144)

Therefore, the oscillating term in (2.140) vanishes when b — oc.
Now let’s consider the non-zero mode terms, i.e, the last line in (2.140). In the b — oo

limit it is clear that V(E ) vanishes for & = 2 and n > 1. Therefore, the contribution of the
discrete spectrum to 528 is zero for a or B =2 and n,m > 1. However, for o = § = 1 this
is-not true and there are potentially divergent contributions from the discrete spectrum.
We are now going to show that these divergences cancel and the expression

§ A A Sl(d) Sll(d)
St = San® + 8@ — 22 (2.145)
1+ S1

is finite when b — oo.
To this end we notice that, inverting only t4(n,) but taking both 7 and 72 to infinity, the
different terms which enter in the above expression have the following behaviors

+y 71— (et
1 + 51 ~ Atgl(,',IZ)%(‘gz )’l%(gz )al’

Sab) ~ AL ) VEE M T,

Tl

St ® ~ (-1 )R T,

A + — (£t
S}l}?gd) ~ ("']-)nt‘;l('UQ)VTEEZ ),1VT§L£2 )71’ (2146)

Note that t;l(ng) = el gives a divergent contribution as 72 — oo. However, using these
results in eq.(2.145), it is easy to see that the divergent terms cancel and we are left with

S = $arl9. This, combined with the fact that for & = 2 or B =2 we have $254) = ¢,

leads us to the conclusion that 535 = §%5) L o (1). It is also verified in Appendix G that
A11(c) _ a22(c) _

Snm - Snm - Snm'
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This also shows that is not possible to invert both the discrete eigenvalues and obtain

1(d) Sll(d)

the same cancellation. Indeed, if we invert both, the term S, contains mixed terms

like [t~1 (nl)VTS‘El M Vb(ﬁl " it (772)1/},1'52 )’1V0('52 ) 11, for which we cannot find a counter term
in S’}L},gd) to cancel it. As a result we will not be able to get a regular time and space localized
solution, since these terms diverge in the limit 71,72 — oo.
After all these remarks, we can write the space-time localized solution in the b — co
limit as
Jim (Xo|A)wice = N(¥, ) lim =8V em®s) (2.147)
where |S) is the space-time independent VSFT solutlon (the sliver). Note that time depen-

dence completely disappears in this limit . A remark is in order for the quantity €(b), this
number is given by, see (2.140)

A SS9 — 1
b) = — 2.148
) = 325 (2148)
a numerical analysis shows tha’c this becomes vanishing as b — oco. One can indeed easily

check (numerically) that the 7 correction to 3283 _‘_i diverges. This in turn implies that

the loss of time dependence is accompanied by loss of transverse space dependence, giving
a resulting zero momentum state (the D25-sliver). Therefore, taking b to infinity is like
sitting at the original unstable vacuum (the D25-brane), which is the same situation as
setting Sen’s ) to zero.

Another remark we would like to make is about small b limit, which we can get by
taking 71 — 0 and keeping 7o finite. Given that the large b limit corresponds to Sen’s A
near zero (i.e it represents the unstable vacuum), it is natural to think that the small b limit
corresponds to ) near 2 (or the stable vacuum). As a matter of fact, taking this limit of
b one gets the 0 state, which is also obtained in the o — oo limit and corresponds to the
stable vacuum to which the D-brane decays. This can be seen by noting that, in this case,
V§(k) — 0, whereas V,2(k) for n > 1 have a finite nonvanishing limit. As a result s; do not
get a contribution from the continuous spectrum and sg = 0. Then, it follows

As =1 A( ) A32—1 A

81—1
bsi+1 m \|s1+1 bsp+1 m

where we have used (b~ m1), (s1 ® 1+ O(,/7,)) in the limit 7, — 0 and 7 finite. These
are results one can easily obtain from appendix G.2. For A s 0 both of these terms gives
a negative infinity in the exponent and suppress everything in front to give us the 0 state
which corresponds to the stable vacuum. However, the case A = 0 should be handled with
care. In this case, one can send A and 7; to zero, in such a way that the ratio 9-1- remains
finite. As a result the time dependence will be lost while the solution is still space localized.
One should compare this with the time-independent solution obtained when we send Sen’s
X to % and, at the same time, tune the E—field to its critical value, [25], obtaining a static

fundamental strings background.

(2.149)

2.4 Fundamental Strings in VSFT

As we argued above, it has been possible to find in VSFT an exact time-dependent solution
with the characteristics of a rolling tachyon [16]. A rolling tachyon describes in various
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languages (effective field theory, BCFT, SFT) the decay of unstable D-branes. It is by
now clear that the final product of a brane decay is formed by massive closed string states.
However, it has been shown that, in the presence of a background electric field also (macro-
scopic) fundamental strings appear as final products of a brane decay. Now, since our aim
is to be able to describe a brane decay in the framework of VSFT, we must show first of all
that such fundamental strings exist as solutions of VSFT. Showing their existence will be
the aim of this section.

2.4.1 Constructing new solutions

In this section we would like to show how qualitatively new solutions to (2.13) can be con-
structed by accretion of infinite many lumps. Let us start from a lump solution representing
a D0O-brane: it has a Gaussian profile in all space directions, the form of the string field —
let us denote it =) — will be the same as (2.20) with S replaced by S’, while the —product
will be determined by the primed three strings vertex (2.94). Let us pick one particular
space direction, say the a—th. For simplicity in the following we will drop the correspond-
ing label from the coordinate %, momenta p* and oscillators a® along this direction. Next
we need the same solution displaced by an amount s in the positive z direction (z being
the eigenvalue of £). The appropriate solution has been constructed by Rastelli, Sen and
Zwiebach, [35]:

[Eo(s)) = e7*P|=p) (2.150)

It satisfies |=5(s)) * |Zp(s)) = |=p(s)). Eq.(2.150) can be written explicitly as

IZ6(s)) = N’e—%(l"‘%ﬂ) exp (—%((1 -8 a‘L)O) exp <—-;—aT -8 aT) 1)  (2.151)

where (1 —5") -af)o = F_o((1 - Sowaly) and af - 8- at = 1%, aleSlyusal; M s
the |Zp) normalization constant. Moreover one can show that

(Eo(s)IE0(s)) = (=pl=p) (2.152)

The meaning of this solution is better understood if we make its space profile explicit
by contracting it with the coordinate eigenfunction

1
N 2 1 .’132 . 2 1 1 t 1
|£) = <;E> exp (-——b—--z%aox-i—é-aoao |2) (2.153)
The result is
1 / 2 .

2\% N —ISwleme? _aiies g gt t W ol
lEs(e) = (5) T AL I I k) (154

/) /148,

where Wy, = S),,, — —‘il/ﬁ%gﬂ. It is clear that (2.154) represents the same Gaussian profile
0

as'|Zp) = |=4(0)) shifted away from the origin by s.
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It is important to remark now that two such states |Eg(s)) and |Z5(s")) are »—orthogonal
and bpz—orthogonal provided that s # s’. For we have

1=0(5)) * |Ep(s")) = e~ |Zp(s, 8')) (2.155)

where the state |Z4(s,s')) becomes proportional to |Eg(s)) when s = s’ and need not be
explicitly written down otherwise; while

C(s,s') = _513 [(32 + 5" (%#) . + s (%) oo} (2.156)

The quantity (Tll(i}?/)>00 can be evaluated by using the basis of eigenvectors of X "and T',

13, 15, 36]:

ra-7\ _ = 2 t(k) (1 — ¢(k))
( )00 = 2 [ ak ()

1+7T T 1+ t(k)
oo el — =l
O A6 | OO\ EMAL—e")
+ (VO VOVD) e @D

The discrete spectrum part of the RHS of (2.157) is just a number. Let us concentrate

on the continuous spectrum contribution. We have t(k) = —exp(——’fy). Near k£ = 0,

Vo(k) ~ %\ / 5% and the integrand ~ —#%, therefore the integral diverges logarithmically,
a singularity we can regularize with an infrared cutoff e. Taking the signs into account we
find that the RHS of (2.157) goes like gf;glog ¢ as a function of the cutoff. Similarly one can

show that ((1111;,)2 )00 goes like —;%log ¢. Since for s # &', 82 + 2 > 9ss’, we can conclude

that C(s, s’) ~ —cloge, where c is a positive number. Therefore, when we remove the cutoff,
the factor e=C(5) vanishes, so that (2.155) becomes a x—orthogonality relation. Notice that
the above logarithmic singularities in the two pieces in the RHS of (2.157) neatly cancel
each other when s = s’ and we get the finite number

s2 ,
C(S, 5) = "‘(1 - 500)
2b

In conclusion we can write
120(5)) * |Ep(s))) = (s, ') Ep(s)) (2.158)

where 6 is the Kronecker (not the Dirac) delta function.
Similarly one can prove that

N2 6—262—(1——5'60)6:'215 [(52+312)(§%§_’)—)OQ+258,(?11—‘7‘%)00] (2159)

(Ep(s)IEo(8)) = W

We can repeat the same argument as above and conclude that

(Z6(s")IE0(s)) = d(s, ") (Eo|=0) (2.160)

50



After the above preliminaries, let us consider a sequence 81, 82, ... of distinct real num-
bers and the corresponding sequence of displaced DO-branes |Z5(sn)). Due to the property
(2.158) also the string state

o0

A) =" Z5(sn)) (2.161)

n=1

is a solution to (2.13): |A) « [A) = |A). To figure out what it represents let us study its
space profile. To this end we must sum all the profiles like (2.154) and then proceed to
a numerical evaluation. In order to get a one dimensional object, we render the sequence
51, 82,... dense, say, in the positive z—axis so that we can replace the summation with an
integral. The relevant integral is

/O ds e—0(@=9)2=iB(z—s) _ 2\\//—% <e_§«§ (1 + Erf (% + \/—o_z:c)>> (2.162)

where Erf is the error function and

o 11= Sk _ 2 S4.ah
b1+ Sy’ Vb 1+5g,

Of course (2.162) is a purely formal expression, but it becomes meaningful in the o/ — 0
limit. As usual, [21], we parametrize this limit with a dimensionless parameter € and take
€ — 0. Using the results of [36, 21], one can see that o ~ 1/¢, § ~ 1/+/€, so that 8/\/a
tends to a finite limit. Therefore, in this limit, we can disregard the first addend in the
argument of Erf. Then, up to normalization, the space profile of |A) is determined by

% (1+ Erf(vaz)) (2.163)

In the limit ¢ — O this factor tends to a step function valued 1 in the positive real z—axis
and 0 in the negative one. Of course a similar result can be obtained numerically to any
degree of accuracy by using a dense enough discrete {sn} sequence.

Another way of getting the same result is to use the recipe of [21] first on (2.154). In
this way the middle exponential disappears, while the first exponential is regularized by
hand (remember that Sy, — —1 as € — 0), so we replace S, by a parameter s and keep it
# —1. Now it is easy to sum over s,. Again we replace the summation by an integration
and see immediately that the space profile becomes the same as (2.163).

Let us stress that the derivation of the space profile in the low energy regime we have
given above is far from rigorous. This is due to the very singular nature of the lump in this
limit, first pointed out by [21]. A more satisfactory derivation will be provided in the next
section after introducing a background B-field.

In summary, the state |A) is a solution to (2.13), which represents, in the low energy
limit, a one-dimensional object with a constant profile that extends from the origin to
infinity in the z-direction. Actually the initial point could be any finite point of the z—
axis, and it is not hard to figure out how to construct a configuration that extend from
—00 to +o0o. How should we interpret these condensate of DO-branes? In the absence
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of supersymmetry it is not easy to distinguish between D-strings and F-strings (see, for
instance, [37) for a comparison), however in the last section we will provide some evidence
that the one~dimensional solutions of the type |A) can be interpreted as fundamental strings.
This kind of objects are very well-known in string theory as classical solutions, (25, 38, 39,
40, 41], see also [42, 43, 44]. For the time being let us notice that, due to (2.160),

(AL = > (Eo(sn)Zo(sm)) = Y _ (EolZ0) (2.164)
n,m=1 n=1

It follows that the energy of the solution is infinite. Such an (unnormalized) infinity is a
typical property of fundamental string solutions, see [38].

2.4.2 An improved construction

In this section we would like to justify some of the passages utilized in discussing the space
profile of the fundamental string solution in section 2.4.1. The problems in the last section
are linked to the well-known singularity of the lump space profile, [21], which arises in the
low energy limit (e — 0) and renders some of the manipulations rather slippery. The origin
of this singularity is the denominator 1 + Sfo that appears in many exponentials. Since,
when ¢ — 0, Sh, — —1 the exponentials are ill-defined because the series expansions in
1/e are. The best way to regularize them is to introduce a constant background B-field,
[26, 45, 46]. The relevant formulas can be found in [32]. For the purpose of this paper we
introduce a B-field along two space directions, say = and y (our aim is to regularize the
solution in the z direction, but, of course, there is no way to avoid involving in the process
another space direction).
Let us use the notation ¢ with a = 1,2 to denote z,y and let us denote

Gop = Ao, A=1+(2rB)? (2.165)

the open string metric. As is well-known, as far as lump solutions are concerned, there
is an isomorphism of formulas with the ordinary case by which X 8", T" are replaced,
respectively, by X, 8,7, which explicitly depend on B. One should never forget that the
latter matrices involve two space directions. We will denote by |E:30) the DO-brane solution
in the presence of the B-field.

Without writing down all the details, let us see the significant changes. Let us replace
formula (2.150) by

E0({5°})) = e P=|Zy) (2.166)

Tt satisfies [So(s)) * [Z0(s)) = |Zo(s)) and (Zo(s)|Z0(s)) = (Zo|Eo). Instead of (2.153) we
have

1
R 2A\ 2 %P 2 1
{z%}) = (7;5) exp [(— p T z—agfrcﬁ + §agTagT> Gaﬁ] |€2) (2.167)

Next we have

N _ (%r—%)% N }_ a__ L 1 — 8o B B
({5 Eo(o) = e | =3 >(1+ soo)aﬁ‘”" &)
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21 1
- \—/%(ma — 5%)(1 + 800)apSom”~ a;g] exp [—§aﬁTan,a5afjJ |0) (2.168)
where det(1 + Spp) means the determinant of the 2x2 matrix (14 8gp)ap and
v 1 6
an,aﬂ = Snm,aﬁ - SnO,a 1"_8‘ Som ﬁ (2169)
+°/ 00,45

The state we start from, i.e. |=}(s)), and the relevant space profile, are obtained by settin
0 g

s! = s and s% = 0 in the previous formulas.

Next we have an analog of (2.155) with C(s, s’) replaced by

5 / ____1_ 2 2 T(l—T) _f_s‘_l (1_7)2
C(s,s') = 5 (s*+s') 157 oo B\ 157 o1t (2.170)

Proceeding in the same way as in section 2.4.1, we can prove the analog of eq.(2.158).

By using the spectral representation worked out in [47] one can show that C picks up a

logarithmic singularity unless s = s’. In a similar way one can prove the analog of (2.160).
Now let us discuss the properties of

) =3 1Eo(sn))

n=1

in the low energy limit. We refer to (2.168) with s! = s and s2 = 0. The fundamental
difference between this formula and (2.154) is that in the low energy limit 8y o3 becomes
diagonal and takes on a value different from —1. More precisely

2a] -1 72
8 =——Gag, =— B
P T A F1T T Ttk

see [32]. Therefore the 1489 denominators in (2.168) are not dangerous any more. Similarly
one can prove that in the same limit 8¢, — 0. Moreover the e-expansions about these values
are well-defined. Therefore the space profile we are interested in is

~ expl=E(e + 6 = £ (1)) expl~ 7 0818 0008110 (2.171)
with a finite normalization factor and p = ?—ZIF—T_%A. Now one can safely integrate s and
obtain the result illustrated in section 2.4.1. 'Ilhis also shed light on how the resulting state
couples to the By, field. Indeed the length of this one dimensional objects is measured
with the open string metric (2.165), in other words the B-field couples to the string by
“stretching” it.

2.4.3 Fundamental strings

In this section we would like to discuss the properties of the A solutions we found in the
previous sections. In order to justify the claim we made that they represent fundamental
strings, we note that they are naturally attached to D-branes on both ends. These are the
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two extremal DO-branes in the s, sequence (see also below). It easy to envisage systems
in which such strings are attached to other D-branes as well. For instance let us pick |A)
as given by (2.161) with s, > 0 for all n’s. Now let us consider a D24-brane with the
only transverse direction coinciding with the z-axis and centered at z = 0. Let us call it
|Z4,). Due to the particular configuration chosen, it is easy to prove that |Ey) + |A) is
still a solution to (2.13). This is due to the fact that |Z5,) is x-orthogonal to the states
2l (sn)) for all n’s. To be even more explicit we can study the space profile of [Z54) + |A),
assuming the sequence s, to become dense in the positive z—axis. Using the previous results
it is not hard to see that the overall configuration is a Gaussian centered at z = 0 in the
x direction (the D24-brane) with an infinite prong attached to it and extending along the
positive z—-axis. The latter has a Gaussian profile in all space directions except z.

We remark that the condition s, > 0 for all n’s is important because |Z5,) + |A) is not
anymore a projector if the {s,} sequence contains 0, since |={(0)) is not *x—orthogonal to
=5,). This remark tells us that it is not possible to have solutions representing configu-
rations in which the string crosses the brane and/or is not attached to D-branes by the
endpoints: the string has to stop at a brane®.

Needless to say it is trivial to generalize the solution of the type [E5;) + |A) to lower
dimensional branes.

It is worth pointing out that it is also possible to construct string solutions of finite
length. It is enough to choose the sequence {s,} to lie between two fixed values, say a
and b in the z—axis, and then ‘condense’ the sequence between these two points. In the
low energy limit the resulting solution shows precisely a flat profile for a < z < b and a
vanishing profile outside this interval (and of course a Gaussian profile along the other space
direction). This solution is fit to represent a string stretched between two D-branes located
at z=aand z =b.

An important property for fundamental strings is the exchange property. Let us see if it
holds for our solutions in a simple example. We consider first an extension of the solution
(2.161) made of two pieces at right angles. Let us pick two space directions, z and y. We
will denote by {sZ} and {sh} a sequence of points along the positive z and y-axis. The
string state

|ATE) = +Z( NET) +Z| (£sY)) (2.172)

is a solution to (2.13). The £ label refers to the positive (negative) x and y—axis. This state
represents an infinite string stretched along the positive (negative) z and y—axis including
the origin. Now let us construct the string state

20+ > IEH(s2) + D 1Z0(—s5)) + D [Ea(sh)) + D 1Eo(=s%) (2.173)
n=1 n=1 n=1 n=1

This is still a solution to (2.13) and can be interpreted in two ways: either as |[ATT) 4+]A™7)
or as |[AT™) +|A~T), up to addition to both of [j) (a bit removed from the origin). This

8¢ should be noted that, according to section 5 of [35], one could xrtotate |Z5s) — |Zh4) so that
|Z5,4) * |Z5(0)) = 0; however this simply means that |A) has to be rotated too in a similar way into |AY in
order for the corresponding string to end on |Z54). If we do not do so, we simply obtain a string that may
cross the |Z5,) brane, but still ends on the two terminal DO-branes.
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addition costs the same amount of energy in the two cases, an amount that vanishes in the
continuous limit. Therefore the solution (2.173) represents precisely the exchange property
of fundamental strings.

So far we have considered only straight one—dimensional solutions (in terms of space
profiles), or at most solutions represented by straight lines at right angles. However this is
an unnecessary limitation. It is easy to generalize our construction to any curve in space.
For instance, let us consider two directions in space and let us denote them again z and y
(p® and pY being the relevant momentum operators). Let us construct the state

|Z0(s%, s¥)) = 7P =iV =0 (2.174)

It is evident that this represents a space-localized solution displaced from the origin by s*
in the positive x direction and s¥ in the positive y direction. Using a suitable sequence {s%}
and {s%}, and rendering it dense, we can construct any curve in the z —y plane, and, as a
consequence, write down a solution to the equation of motion corresponding to this curve
(even a closed one). The generalization to other space dimensions is straightforward.

We would like to remark that, by generalizing the above construction, one can also con-
struct higher dimensional objects. For instance one could repeat the accretion construction
by adding parallel D1-branes (that extend, say, in the y direction) along the z—axis. In this
way we end up with a membrane-like configuration (with a flat profile in the z, y-plane),
and continue in the same tune with higher dimensional configurations.

All the solutions we have considered so far are unstable. However the fundamental
string solutions are endowed with a particular property. Since they end on a D-brane,
their endpoints couple to the electromagnetic field on the brane, [38, 48, 49], and carry
the corresponding charge. When the D-brane decays there is nothing that prevents the
(fundamental) strings attached to it from decaying themselves. However in the presence of
a background E-field, the latter are excited by the coupling with the F-field and persist
(or, at least, persist longer than the other unstable ob jects). This phenomenon is described
in [25] in effective field theory and BCFT language (see also [47]).
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Chapter 3

Light-Cone SFT: Integrability
Properties

In recent years it has become more and more evident that integrability plays an important
role in string theory. This fact is conspicuous in the AdSs x S5 example of AdS/CFT duality,
where integrability features on both sides of the correspondence. Integrability plays a major
role in connection with topological strings. But there are also other less well-known cases.
One of these is represented by the integrability properties of the Neumann coefficients for the
three strings vertex of string field theory (SFT). In [50] it was shown that these Neumann
coefficients in the case of Witten's covariant open bosonic string field theory (OSFT), [1],
satisfy the Hirota equations, [51], of the dispersionless Toda lattice hierarchy [52, 53, 54].
This is to be traced back to the existence of a conformal mapping [28, 55] underlying the
three strings vertex. The conclusions of [50] were limited to covariant OSFT. What we
would like to show in this chapter is that the above integrability properties seem to be
a general characteristic of the three strings vertex. Indeed, below, we will prove that it
holds for the light—cone string field theory (LCSFT) in flat background. But, what is more
important, we will present evidence that it may also hold for a nontrivial background. We
will specifically examine the Neumann coefficients of the three strings vertex in a maximally
supersymmetric pp—wave background and expand them in terms of the ’string mass’ u. We
will show that, up to second order in this expansion, they satisfy the (correspondingly
expanded) Hirota equations for the dispersive Toda lattice hierarchy (i.e. for the full Toda
lattice hierarchy), [56]. This leads us to the conjecture that the Neumann coefficients in
this background satisfy the Hirota equations of the full Toda lattice hierarchy.

Our results do not have an immediate practical impact. And perhaps they are not
unexpected. Once the generating function of the Neumann coefficients are written in terms
of conformal mappings (see below), they are expected to satisfy some kind of integrability
condition, [55). That this is true also for the three strings vertex in the pp-wave background
may be seen as the consequence of the solvability of string theory on such background.
However, the main value of our results is that they point towards the existence of an
integrable model (of which the Hirota equations are a signal) underlying the SFT structure,
very likely a matrix model, which, once uncovered, would greatly improve our knowledge
of SFT. The fact that this is probably true also for a nontrivial background, such as the
pp-wave one, may suggest a way to approach the problem of defining SF'T on more general
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backgrounds.

3.1 The conformal maps for the light—cone SFT

In this section, we work out the conformal properties of the three strings vertex in light—
cone SFT. We introduce first the relevant Neumann coefficients and then we show that,
like in Witten’s OSFT, they can be defined in terms of conformal mappings and determine
them explicitly. We show how our formulas are related to the ones of Mandelstam, [57].
Finally we discuss the general features of these conformal mappings and describe an explicit
example.

3.1.1 Neumann coefficients for bosonic three strings vertex

In LCSFT the three superstrings vertex is determined entirely in terms of the Neumann
coeflicients of the bosonic part. Therefore, we will concentrate on the latter, which can be
written in the form

3 8 3 3
[Va) = dos | [ dp(py6(> )5 plyy)exp(~Ag) |0, p)12s (3.1)
. (r) (r)
s=1 I=1 r=1 r=1
where [ =1,...,8 label the transverse directions, o, = 2pg) and
3

Ap=3 6| > al)tvre a4 > Pl Varat + pl Vaspl (3.2)

r,s=1 m,n>1 n>1

7 2 are the non-zero

where summation over I and J is understood. The operators ay,
mode transverse oscillators of the s—th string. They satisfy

[a‘%)I? agls).]]‘] - 5mn5]J5rs
P(r) is the transverse momentum of the r—th string and 10,p)123 = |p1y) ® Ip(2)) ® Ipes)) is
the tensor product of the Fock vacua relative to the three strings. |p() is annihilated by

a,(f) and is the eigenstate of the operator ﬁ{r) with eigenvalue p{r). The vertex coefficients
Vnm are more conveniently expressed in terms of the Neumann coefficients N,,,, as follows:

VM g 08— 1
V?':z"iz, = _\/ﬁ ;fm Jf} = 6 Estu ar quT';z = \/-ﬂ-,; ;fO (33)
1 T 2 T
Vi =gelatala)y,  VE=-Zeas,  r#s. (34)

In these equations and in the sequel 7,5 = 1,2,3 modulo 3. In eq.(3.3) e denotes the
completely antisymmetric tensor with €!?* = 1 and the indices ¢, u are summed over. In
these equations the N's are related to the Mandelstam ¥ by N7$ = N7 and NI, = o, N,
with, see [57, 58],

l_‘ — Gl m -
Np, = s ™) ear™, (3.5)
m! D(—==22 m —m + 1)
NS, = e _NINE (3.6)

“arozs(m as+n ap)
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and
3 3
a = o10oQs, 0= Z ar In |ar|, Zar =0. (3.7)
r=1 r=1

The three strings vertex V75 and Vi are not exactly the same as in [58]. We have sym-
metrized them using momentum conservation.

The Neumann coefficients (3.5-3.6) are homogeneous functions of the parameters ar, so
they actually depend on a single parameter

foo= T Bl =1, BB+ D=1 (38)
B1 :ﬁ, 62:__@_%:_1,) ﬁBz”_ﬂ__]T‘_l'v (39)
—00 < B < —1, -1 ﬁ’r-}—l <0, 0< ﬂ'r+2 < 00,

o _ 18P o _ 1Al o _|B+1]

e = B+ e _|ﬁ+1|£§‘1, ees = |ﬁ|§i‘1 . (3.10)

We can organize the Neumann coefficients by means of generating functions

T = 1 T T8 o~ 1 ]‘ TS
N™(2) :=Z;5Nn, N™(z1,22) = » = N (3.11)
n=1 n,m=1 “1 “2

Our first purpose is to express these functions in terms of conformal mapping from the unit
semidisk to the complex plane, in analogy the case of covariant OSFT, [50].
We write the conformal mappings for LCSFT as follows

(fr+2(0) - fr(o))(fr+l(0) - fr+2(0))
Fr41(0) = £r(0))pr (z71) + £r(0) — fr+2(0)

with f1(0) # f2(0) # f3(0). The functions wr(271) = ¢, are solutions to the equations

fr(z™) = frea(0) = ( (3.12)

1l =
o (pr —1) = —ear =g . (3.13)

We remark that, as a consequence of (3.12-3.13), we have the following identities

oy — 2 (fr+1(0) = Fr(0))(fr42(0) = fr(0))
f(0)=e 10 — Fra2(0) !
£(0)£5(0) ot rsts. (3.14)

=€

(fr(()) - fs(o))2 Bl

By means of the conformal mappings we now define the generating functions

g o (O 1 1
N(z) = ~Fre2 1 ( p (fr(O)—fr(z‘l)+fr+1(0)—fr(0)>>’ (8.15)

YR /1 (1) 1 _ 1
N (e, z) =1n <z1_z2 (fr(())-—fT(z;l) AOEE A )) (8.16)
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1 —1
(fT("l ) — fS—(;‘Q )(f’f‘f?) - fs(()))) . T # S . (317)
(fr(0) = fs(z2 ")) (fr (21 ) = £5(0))
We notice that these definitions are very close to those in Witten’s SF'T, [50].

Let us analyze eq. (3.13). First of all we notice that any solution will have a branch
that can be expanded around the value 1 as 1 + Tr+...

NTS(Zl,Zz) =In (

o0
pr = (PT(Z_l) = (Pr(m'r) =14+ T + Zakmf
k=2

= l1+x - 5r$f + %ﬁr(l =+ 3ﬁ7‘)$? - %ﬁr(l + zﬁ'r)(l + 4BT)-T$

+ 512@(1 +58.)(2+56,)(3 +56,)25 + .. . (3.18)

Using these expansions inside the definitions (3.15-3.17) one can make a direct comparison
and verify that they do generate the Neumann coefficients of Mandelstam (3.5-3.6).

It must be clarified that the three functions 1, g, 3 are not distinct. With very simple
manipulations one can see that the solutions to eqs.(3.13) with different r are related by
the following transformations:

1 1
Ory1 (Trg1) = = 1-— e
e

Therefore the three equations (3.13) give rise to a unique solution (which describes a Rie-
mann surface, see below).

The importance of these transformations should not be underestimated. The three
strings vertex represents the fusion of two strings that come together and give rise to a
third one. In Witten’s covariant OSFT this process is very symmetric: two strings evolving
from 7 = —oco come together at 7 = 0 in such a way that the right half of one string
overlap with the left half of the other; the three strings vertex describes this process which
ends with the emergence of the third string. The three strings vertex in the present case
(LCSFT), as we shall see, has a different stringy/geometric interpretation. It is however
still characterized by precise overlapping conditions that are made possible by the above
equations.

Let us analyze the gluing conditions for the mappings f,(z1) (3.12), i.e. let us see how
we can satisfy the conditions

(3.19)

Fraa(ery) = (271 (3.20)
They lead to
1
@r41 (Try1) = oo (o) (3.21)
which can easily be solved if one compares eqs. (3.21) and (3.19)
=~z (3.22)
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Equivalently, we have the following relations for the string coordinates:
Zr = —zf_’i_l . (3.23)

For later use we record that on the unit circle these conditions become
zr = €9 0. =0 O+ (3.24)

Starting from the definitions (3.15-3.17) and using (3.8), (3.12) and (3.13), one can derive
the following explicit representations

N = Zal:ln (“ﬂf) (fr<o> ~—1fr<a 1>+fr+z(0>1— fr<0>>>

I

ar 1
= In 907'(2_1) = —ﬂr+2 In <_e_z— <T°__—"E;E—T) _ 1))
— 1 e% 1
SR <_ z m) ’ (3.25)
N(z1,22) = In (Zl i P (zlgofr(zi-l) — ZpPr (22—1)>>
(B . 1
= 111(31—-22 (1—%(251) . 1—cpr(zl'1)>) ) (3.26)

_ So'r+1(z2—1)>

1
N™(21,2) = In (-"—_— +@ry1(25 ") =
‘Pr(zl 1) ' 2 (Pr(zl 1)

(1 G e = e ()
=1 (” e () )

N”(zl,zg) = NST(ZQ,Zl) (3.27)

which actually do not depend on the values of the conformal mappings (3.12) at the origin,
#-(0), as long as they are distinct, ie. f1(0) # f2(0) # f3(0). Therefore the parameters
f~(0) in (3.12) are inessential gauge parameters.

3.1.2 A comparison with the Neumann function method

Eqgs. (3.13) are related to the ones that appear in the derivation of open string tree am-
plitudes by means of the Neumann function method. At the tree level the interaction of
open strings consists of the joining of two strings by the endpoints to form a unique string
or the splitting of a string into two. These two processes can geometrically be described,
[57, 59, 60}, in terms of cutting and pasting string world-sheet strips. In turn such a ge-
ometry can be nicely represented in the complex plane by means of logarithmic conformal
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mappings. This leads to the explicit evaluation of the Neumann coefficients for the inter-
action of three strings that are precisely those introduced at the beginning of section 3.1.
For instance, a suitable logarithmic map for the r—th three-string configuration is

pr = ary1ln(z’ — 1) + ap_;lnz’ (3.28)
where 2’ takes values in the upper half plane. This can be transformed into, see [59, 60],
yr = —Frln(1+zpe¥) . (3.29)
This equation can easily be reduced to the form (3.13) if we set
or = exp(—Lry1Br1+2ur)
and make the identification
)

eoar 1

T = — = —2 P (z' = 1)5r . (3.30)

This means that our variable z in (3.13) is a ‘uniformizing’ variable for the three equa-
tions. To clarify this issue, in the next subsection, we work out an explicit example.

3.1.3 Particular case =1

Let us study in detail a particular case, specified by values of oy for which the parameter
B = 1. This case turns out to be particularly simple and can be analyzed in full detail. In
this case f; = 1,8, = 2,03 = —% and egs. (3.13) can easily be solved. For each Or We
have two branches

144/141
P = ——=, (3.31)

2

+/ —1

QDZ(Z ) = b
1+4/1-1
1 1Y’

+(~1 - -

p3(z7h <Zi 1+z2> : (3.33)

The ™) branch is the one for which the expansion for small z, is of the form ¢, = 14z, +. . ..
We can now define the corresponding conformal mappings. To specify the latter we need to
fix the values they take at the origin. We recall that these values can be arbitrary as long
as they are distinct. Therefore we choose them simply as

O =-1,  f£(00=0, f30)=1.
With this choice we get

(3.32)

() ; __li\/l-!-l/z

(+) _VI1-1/zF1

2 (1/2) - \/F—T/;:}:.?), (335)
1

() __
fs=(1/2) = 1-2(1/z++/1+ (1/2)2)2
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Each couple of functions fﬁi)(l /z) defines a Riemann surface represented by two sheets
joined through a cut. In the first case the cut runs from —1 to oo, in the second it runs
from 1 to oo and in the third between ¢ and —i. These three Riemann surfaces however are
related by the maps (3.19). _

In the B = 1 case it is rather easy to see in detail the gluing conditions that characterize
the three strings vertex. We consider three unit semidisks Si,S2 and S3 cut out in the
complex (1 = 1/z1, (o = 1/20 and (3 = 1/z3 upper half planes. Each function fr(i) maps
the semidisk into a region Dﬁi) in the image complex plane. Dgi) and Déi) have the form

of lobes, while Dgi) are the outer part of a compact bi-lobed domain in the lower (+) and

upper (-) half plane, respectively (see Figs. 3.1-3.3, where the D§+)’s are shown, the Dﬁ")’s

being the same regions reflected with respect to the real axis).

Figure 3.1: The region D§+) is contained between the curve and the real azis.

.14

Figure 3.2: The region D§+) is contained between the curve and the real azis.

These domains are glued together along the borderlines in the following way. To start
with, f1(+)(C1) = é—)(@) if (1 = —(o. This means that Sy and S, are glued together along
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Figure 3.3: The region D§+) is the portion of the lower half plane external to the curve.

the real axis with opposite orientation. The image common boundary in D](L-H and Dé‘)
stretches also along the real axis. The second overlap condition we consider is between
D§+) and D§+): f1(+)(§1) = f§+)(C3) if (3 = —1/+/{1. This means the absolute values of G
and (3 are 1, while their phases #; and 63 are related by 03 = 7 — %1-. So, while 67 runs
between 0 and 7, 63 spans the interval between 7 and 7/2. These two angular intervals
are mapped to the same curve in the target complex plane: the curved part of the lobe
boundary in D£+) and a piece of the curved boundary of D§+) . Finally f2(+) (C2) = f§+)(g‘3)
if ¢ = —1/¢2. That means the moduli of (2 and (3 are 1, while their phases 6, and 3 are
related by 62 = m — 263. So, while 6, runs between 0 and T, 63 spans the interval between
7/2 and 0. Again these two angular intervals are mapped to the same curve in the target

complex plane: the curved boundary of D:(,+) and the other piece of the curved boundary

of D§+). In a similar way one can proceed with the remaining three correspondences.

So far the discussion has been purely mathematical, without any concern for the string
process we want to describe. From the point of view of string theory the ‘physical’ branches
are the ones where the expansion for small z, is of the form or =14z, +..., i.e. the +
branches in (3.31-3.33). So we have to glue together the images of the semidisks Si, Sy, S3 by
f1(+) , 2(+) , ?f"') respectively, according to the maps (3.23), identifying the common bound-
aries. This means that we have to glue the inner part of the lobe D§+) and D§+) with D§+),
i.e. with the outer part of the bi-lobe. The result is the entire lower half plane. The process
described is the joining of the strings 1 and 2 by two endpoints to form the third string at
the interaction point ¢; = —1,(, = 1 and ¢3 = i. The picture obtained in this way allows
us to make a comparison with the three string interaction in covariant SFT. As one can
see there are remarkable differences. In particular the midpoints of the three strings never
overlap (at variance with covariant OSFT); on the contrary, the LCSFT vertex preserves
its characteristic perturbative geometry where the strings interact by the endpoints.

For completeness we write down the explicit expressions of the generating functions for
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the Neumann coefficients. In these definitions we always use the + branch of ¢,

1+4/1+1
Nl(z) = 1n————-§———~,

N%(z) = —-N'(-2), (3.37)
1 1
3 —
’J\Vf(z) = 21n(;+ 1+;§>
and
1 1 1
NY(z1,2z0) = ln( ( - )
? 2 _ 3y
(r-z) \1- /141 1-4/1+4&
N%(z1,29) = N"(-21,-2), (3.38)
1
33 _ 2 _ 2
N*(z1,22) = ln(21—zz (\/1+21 \/1+z2)>
as well as

N2(z,20) = —N'"(z1,—22),

2 ,/1—%—-«1-{-2%
N%(z1,29) = In ,
(21, 22) 1—+/1+ 7

T 1 JI+=+V1+4 :
z1,22) = In , 3.39
b 1+ /1+ 22 )

NTS(Zl,Zz) = NST(ZQ,Z]_).

Finally let us remark that, for § # 1, the conformal mappings fr may be far more
complicated than in the above example. With 3 rational they have a finite number of
branches that describe a Riemann surface. Like in the § = 1 case, only one of them will
define the correct Neumann coefficients. When f is irrational, as shown in (3.18), this
branch can always be determined, but the Riemann surface interpretation is lost.

3.2 The dTL Hirota equations

Let us introduce the flow parameters tg),tg),fg) with k = 1,2, ..,00 and the differential
operators

o0 o0}
1 0 _ 1 0
Dy(z) = E m—éﬁ’ D, (z) = E ma{ @ P 1,2,3 mod 3. (3.40)



The Hirota equations for the three decoupled copies of the dispersionless Toda lattice hier-
archies fit for the present case are (for more details, see [54] and references therein)

=08 (+yDr F -8 (7yDr F
(Zl - Zg)eDr(zl)Dr(ZZ)F = zye tg) ) =) — Z9€ t(() ) (=2) y (341)
== -8 (1 Dr (1) F =8 (r)Dr(22)F
(51 - EQ)EDT(ZI)Dr(Z2)F = 216 té ) = - 526 té ) (z2) , (342)
—12 (1= DD ER) _ S O DD (3.43)

where F' = F( {tgr), t,(:) , f,(:) }) is the 7~function (free energy) of the hierarchy. The minus sign
on the Lh.s. of eq. (3.43) can be replaced by the standard plus sign via the transformations
{th, B} = {8, (~)"E7} or {8, 57} = {()"€, ()nir)

We remark that eqs. (3.41-3.43) form three distinct sets of equations, each one being
formally the same as in Witten’s OSFT, [50]. The fact is that in the latter case these sets
of equations collapse to the same set.

Now, it is elementary to verify that the generating functions N "(z), N™(z1,29) (3.15-
3.17) of the Neumann coefficients satisfy the following equations:

. NT"(21,22)  _ —Br1BrN™(21) _ ,_~Br+1B-N7(22)
(21— z)e z1€ ze
= zle'BTNT(zl) - 226ﬁTNT(;2) (3.44)
and
—2175 (1 _ eN""'?(m,Zz)) - 67'0(&1?4'%11)+ﬁr+1ﬁrNT(zl)—ﬂr+1Nr+l(22). (3.45)

These are easily seen to reproduce the Hirota equations (3.41-3.43) provided we suitably
identify the generating functions with the second derivatives of F as follows:

Dr(21)Dr(22)F = N™ (21, 25),

Dy (21)Dy(22)F = N™+1r+1(z 5,
Dr(21)Dr(2)F = =N (21, 7,),
O Dr(2)F = Bry15, N7 (2),

i
1 1
3, O, F = 1o(— +
0 0 Qi Qry1

). (3.46)

However we remark that we can also define a consistent reduction by:

5} 0

——F=4——___F 3.47)
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This allows us to define new identifications as follows

D (z1) Dy (22)F = N (21, 22),
Dy (21)Dry1(22)F = TN (21, 22),
By Dr(2)F = Briabr V" (2),

O, Dr1(2)F = TN+ (2),

1 1
8,0, F = 1o(— +
0 0 Cp Q]

). (3.48)

The corresponding equations for the tau function are

-8 (myDr(z1)F —0 (myDr(22)F
(Zl _ z2>eDr(z1)Dr(zz)F = ze tér) T — e t‘gr) r
:Fat(r—l)D"’(zl)F ‘T“at('r—-l)DT(Zz)F
= 21 © — z9€ 0 ,

eatg-) (8tt().,~) +Dr(21)%Dr41 (ZZ))F. (349)

—z129 (1 — e=FDr(Zl)Dr+1(22)F)
These Hirota equations refer to the dispersionless hierarchy produced by the cyclic (coupled)
reduction (3.47) of the three copies of the dispersionless Toda lattice hierarchies. Our con-
jecture is that the resulting hierarchy can be related to the 3-punctures Whitham hierarchy
[61] and the dispersionless limit of the 3-component KP hierarchy.

3.3 Hirota equations for more general correlators

As we will see in the next section, in order to verify the validity of the full Hirota equations we
need to know correlators with more than two entries. The dispersionless Hirota equations for
‘n—point functions’ are obtained by differentiating n —2 times the equations (3.41,3.42) and
(3.43). These derived Hirota equations, like the original ones, do not uniquely determine
their solutions. In order to be able to write down the latter we have to provide some
additional information. In fact what we are looking for are n—point correlators that are
compatible with the Neumann coefficients of the previous section and satisfy the full Hirota
equation (see next section). Although we don’t have a proof of it, we believe these two
requirements completely determine the full series of n—point functions.

In this section we would like to concentrate on three- and four-point functions. On the
basis of what we have just said, in order to determine them we have to rely on plausibility
arguments and verify the results a posteriori. We notice first that the Neumann coefficients
for the three strings vertex can be interpreted in terms of two—point correlators of a 1D
system. For instance

(V3|1 @110y = 677 VIS, = —y/nm Nps, 677 (3.50)

Analogous relations hold for two—point functions involving zero modes. In the same way we
can of course consider correlators with more insertions. It is obvious that all the correlators
with an odd number of insertions identically vanish. We take these correlators as a model
in order to calculate three— and four—point functions of a quantum system that satisfies
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the full Hirota equations. We will see below that the correct answer is not the three—
and four—point correlators obtained by inserting one and two creation operators in (3.50),
respectively, but combinations of them. We will refer to the underlying model, based on the
two-point correlators (3.50) and satisfying the Hirota equation, as the associated quantum
system. It must be clear that we do not know yet what this system is, we simply postulate its
existence. In particular, as a working hypothesis, we assume that its three—point functions
identically vanish.

The dispersionless Hirota equations for four—point functions are obtained by differen-
tiating twice the equations (3.41,3.42) and (3.43). Of course we have the possibility of
applying Btl()r) or D,(z). Therefore from (3.41), for instance, we obtain

4
(21— 22)e PP TT D ()P = (3.51)
=]
-0 () DT(ZQ)F 4 -0 (r) Dr(zl)F 4
me % 8,1 Dr(2) [[ Dr(z)F = 2z1e % 8, Dr(21) [ [ Dr(2)F,
° i=3 0 i=3
3
(Zl_22>8Dr(z1)Dr(zz)Fatg_)HDT(Zi)F = (3,52)
i=1
-—3 T)Dr(Zz)F -0 (T)Dr(zl)F
e 0% Dr(22)Dr(25)F — zme ' &% Dy (21) Dy (23)F,
0 0
(z1 — zg)eDT(zl)Dr(‘ZZ)F@%ﬂDr(zg)Dr(zl)F = (3.53)
—8 (1) Dr(22)F —8 (1 Dr(z1)F
e W B Dy(z)F = me ® 84 Dr (1) F
0

where we have assumed that three—point correlators vanish.

After expanding the above equations in powers of z; and zg, and collecting terms of the
form z{"23 we obtain equations involving two and four derivative of F. We already know
how to identify the two—derivative terms in terms of the Neumann coefficients of LCSFT
(see previous section). The task now is to try to make the corresponding identifications for
the four-derivative ones. The solutions to egs. (3.561-3.53) are not uniquely defined (see
below). The solutions we are interested in are as follows:

1+ 5
Formnym = -3(ar)2——;—TM(N5fo+l ~ Ny,
2 I+ ﬁT T rr+1 TT rr+1 T
Fioyn oy = —(ar)mn T(n + 1) N, + 2(Nyig™ = Nilo) (Nt = Nipy |
T
Fyopyyn = —(0n)*mnl[(n+ (N — NN + (n+m) (N7 = NN
+(m+D)(Nyg ™~ NN (3.54)

ooy = =(arPmnlk{(m + n)(1 + k)N, NF + (m + D)(n + KNIV
+ (m+E)(n + )N N7
where N5 are defined in egs. (3.3). Multiplying these by the appropriate monomials of

z variables and summing, leads to the following compact expressions (which will be used
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later on):

3a? (z“l) -1
83,. D.(2)F = r—1 ©Or 7 3 55
t” =) B (1+ Br)er(z7) = Br ( )
2 - 2 2 or(z7) =1
0%, Dr(z.,; F = —3o;_ TN — ,
o zI=I1 ) ' ,1}1 1+ Br)er(zY) = B
P el -1

3
8. VI Dr(z)F = 3a2_10: ,
o 112t b e -5

VP = a2 g T 1
g T(Z’L> = - Otr—lﬁr g (1+ﬁr)90r(2i—1)—ﬂr'

Using these expressions one can easily verify that they satisfy equations (3.51), (3.52) and
(3.53).

A comment is in order concerning the results we have just written down. We have
already said that eqs. (3.55) are not unique solutions to the Hirota equations for four—point
functions. We have single them out because they are compatible with the dispersive Hirota
equations (see next section) and they will allow us to find a solution of the latter coherent
with the dispersionless Neumann coeflicients. We recall that they are also compatible with
vanishing three—point functions. As was mentioned at the beginning of this section, at
first sight it would seem that the two—point functions, three-point functions and four-point
functions (i.e. the derivatives of F' with respect to two, three and four ¢, parameters) of
our system are simply given by

(Valarzt ... alkt0). (3.56)

While this is true for two— and three—point functions, it is not quite true for the four—point
ones, as one can see by comparing (3.56) with (3.54). It is evident that the four—point
functions given by (3.56) has the right form, but must be suitably combined in order to
coincide with (3.54), which satisfy the Hirota equations. Therefore the correlators of the
associated quantum system that underlies the Neumann coefficients of LCSFT are made
of suitable combinations of the k-point functions (3.56). In conclusion: we have found a
solution to the Hirota equations for the four-point functions, which is compatible with the
Mandelstam’s three strings vertex of the LCSFT (and with its deformations up to second
order in the expansion parameter, see next section), however we do not have a proof that
this solution is unique.
A discussion of the general solution to egs. (3.51-3.53) can be found in Appendix H.

3.4 PP—wave SFT and the dispersive Hirota equations

String theory on a maximally supersymmetric pp~wave background (plane wave limit of
AdSs x 8°) [62, 63], is exactly solvable [64]. Building on this it has been recently possible
to construct the exact three strings vertex for the LCSFT on this background, i.e. to
completely specify the relevant Neumann coefficients. They depend on the ‘string mass’ p
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(determined by the five form flux of type IIB superstring theory). When u — 0 one recovers
Mandelstam’s Neumann coefficients discussed in the previous sections. In other words the
nontrivial string background deforms the Neumann coefficients. It is interesting to see
whether the Hirota equations discussed in the previous sections get deformed accordingly
in such a way as to preserve integrability. This is our guess and this is what we would like
to provide evidence for in this section.

Let us start from the expression of the p—deformed three strings vertex, [65, 66, 67, 68,
69, 70, 71, 72, 73, 74]. The bosonic part, to which we limit ourselves!, is defined by

3 co
1
ggz.z.(s” Do > aptyre ot (3.57)

r,8=1 m,n=-o0

The commutation relations are as in section 3.1.1, but it # a(_rr)f; and a%)I[(J) = 0 for
m € Z. The coefficients with negative n, m labels can be obtained from those with positive

ones?. In this paper we consider only the V2 with m,n > 0. We set

VIS = —\/maNTE (3.58)

The Neumann coefficients Nian with m,n > 1 have been calculated in an explicit way in
[73, 74]:

S
Npg, = —— e N (3.59)

mn
Qslrm + QrWsp Gl

where wr.m = y/m? + a2u? and

Wrom Wrm + Gl
NT, =4/ - "“m fin (3.60)

In these formulas

Tow g rr+1) —m
fin = e i_ ar+1)w£— F,(f) (‘;_ni) ngjlx) )<£_) (3.61)

and w, = sgn(z)/pu? + z2. The p—deformed I" functions are defined by

—yorw, X arw
ri(z) = & H( " e*ﬁ) (3.62)

Qr2 W Qe
T n=1 r,n+ rWz

'For the problems connected with the supersymmetric completion of the vertex and its prefactor see the
reviews [75, 76, 77] and references therein.

2There is a subtle point here. The expressions of A and Ap in eq.(3.2) for the three strings vertex refer
to two different bases: Ap is expressed in terms of the transverse momenta pl (momentum basis) while
Ap contains the zero mode oscillators agr)l (oscillator basis). This means that starting from (2.86) we have
passed from the former basis to the latter by explicitly integrating over the transverse momenta (see, for
instance, [11]). This operation modifies in a well-known way the vertex coefficients. However, in the present
case, it turns out that in the limit 4 - O the coefficients V°, tend to the corresponding coefficients V7%, in
(3.2) at least for m,n > 1.
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where « is the Euler—Mascheroni constant. It must be remarked that the above coefficients
are not written in the usual form, we have simplified them by dropping some intermediate
inessential factors.

Here we present some results which are going to be needed in the next sections. Ex-
panding (3.60) and (3.59) in powers of 4 up to order ©? we obtain

N, = NI, |14 = GO S
m=Np |1 Do\ g g™ ) T (3.63)
and
1
Nﬁn=Nﬁn[1+(%+“oﬁf)”+z(%+%)(%*‘%”T@)M?*"l (3.64)

where N7, and N7$, are Mandelstam’s Neumann coefficients. For reasons that will become
clear in the next section, it is convenient to rewrite these expansions in powers of A related
topas p=A— A+ ..

T a a% 2 — = j
N = Np, [1 + # + <4m2> A2 4 } =Y NN, (3.65)

j=0

o0
s _ s Qr Qg 1/a, as\2., _ s \j
NTS = NI$ [1 + (E + Tn") A+ (7n—- + —n—) N4 = ;)N;,mnx (3.66)
where the subscript j refers to the order of expansion in A.

Again, for later use, it is convenient to organize these Neumann coefficients by means
of associated generating functions

[oe]

1 .
NT(2) =Y = m* Nf ., (3.67)
m=1
s - 11 7 s
N7# (21, 22) = > h (mn) Njimnn » (3.68)
m,n=1 1 *2

for j = 0,1,2. At each order the summation can easily be carried out to give

- Wr(z—l) -1
M) = o T By )~ B (3.69)
_ O‘v% ‘Pr(z_l)((ﬁr(zal) -1)
Mo = L+ B (D) — B (.70
-1 -1
Nrsz 20) = — a wT(Zl)—l (ps(zz )"‘1 )
P = T e =B W Bpda) B
Nm(zl 22) - _ « (907‘(21_1) - 1)(()08(2;2_1) - 1)
2V darag [(1+ Br)pr(270) = Brll(1 + Bs)ps(25 ") — Bs)
aspr(z ) arps(z )
8 [[(1 B () — B [+ ez ) - ﬁslz] - @)
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We notice that in order to get these compact generating functions it is necessary to
insert the m% and (mn)? factors in (3.67) and (3.68), respectively.

3.4.1 The dispersive Hirota equations

Here, we consider the full (dispersive) Hirota equations for the Toda lattice hierarchy (see,
e.g. ref. [54] and references therein). For the sake of brevity we deal in the sequel with half of
the story, namely only with those equations that involve unbarred z variables (corresponding
to eq.(3.41))

5 (e’\(afO’D’(zl))T,\) (e—-/\Dr(zz)T)\) — 2 (e,\(atO—DT(ZZ))TQ (e“ADr(zl)TQ

= (1 —2) <e_,\<DT(z1>+Dr<z2>>TA> (ewtm) (3.73)

where A is a deformation parameter and 7» is the full tau function of the Toda lattice (KP)
hierarchy:

1 1
A =exp(?,\), ¥y = —)\EF()—{—XFl + B+ . (3.74)

In order to find a solution to (3.73) it is useful to proceed in two steps, and solve first the
Hirota equation that does not involve to derivatives (corresponding to the KP hierarchy),
that is '

(21 — 29) (e‘)‘(DT(“HDT(”))TA) (e"’\D(Z"‘)T)‘) + cycl. perms. of 1,2,3 = 0. (3.75)

Our conjecture is that these equations are obeyed by the Neumann coefficients N7S,
introduced above, provided we identify A\ with a suitable function f(u) of u. At present we
are not in the condition to prove this conjecture in a non—perturbative way. But we can
expand in powers of A and try to prove it order by order in A. We will be able to do it up
to second order in A, with the identification A\ =  + LT

Expanding (3.73) in powers of A we obtain an infinite set of equations that constrain the
correlators at the different orders of approximation. To order 0 we get the dispersionless
Hirota equation. Our task is therefore to prove that the next order equations hold.

3.4.2 Order u approximation
Expanding (3.75) to first order in A and identifying A with u we find

(21 = 22)ePrE @R D51V D, (20) Fy + cycl. perms. of 1,2,3=0 (3.76)

while, expanding (3.73), we get

=8 (ryDr(22)Fo
Btér>Dt(z1)F1 -+ Z9€ to Btg)DT (Zz)Fl

= (21 — 20)ePr @D D (VD (25)F. (3.77)

—-3t(,.) Dr (Zl )F()
—Zz1€ Y
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In deriving these equations we have used the information that all third order derivatives of
Fy (three—point functions) vanish (see previous section). It is easy to see that if we make
the following identifications:

Dy(z1)Dr(22)F1 = NT" (21, 22) (3.78)
with Dy(21)Dy(22)Fp as in (3.46), eq.(3.76) is satisfied. If in addition we identify
0,2 Dr(2) 1 = Br+18: N1 (2), (3.79)

with 0, Dr (2)Fp as in (3.46), the more general eq.(3.77) is satisfied as well.
0

3.4.3 Order p? approximation
Expanding (3.75) to order )2 and identifying A with p + % p? + ... we find
1
(1 — 20)eD"ENPr R0 (D (21) Dy () Fa + 5 (Dr(21) Dr(z2) F1)°
1 1 1
+ gDr(zl)DT(zg)SFo + ZDT(z1)21),«(z,«2)21:’0 + gDr(zl)?’Dr(zg)Fo) (3.80)
+ cycl.perms.of1,2,3=0
while expanding (3.73) to the same order we get

—8 (7 Dr(21)Fo 1 1
ze o ("‘at(()r)Dr(Zl)FZ + 5(3tgr>Dr(21)F1)2 + Zafg)Dr(zl)zFo

1 1 —0 (ryDr(22)Fo
_.-éatgr)Dr(zl)3F0 --8:’((3,)D,~(z1)Fo> — zge fo (—atér)Dr(zﬁFg

6
000D (22) FL)? 4288, Dr(22)2Fo = =0, Dr(22)°Fo — =%, Dr(2)
D) té’f‘ T 1 4 tér) T 6 t(()"' T 6 tgr) r\%2}40
1
(21— )P @R (D, (0)D, () o+ 5 (DD ()P
1 3 1 2 2 1 3
+6DT(21)DT(22) Fo+ ZDT(Zl) DT(ZQ) Fp+ éDr(zl) DT(ZQ)FO . (3.81)

In deriving this equation we have used once again the information that all odd order deriva-
tives of Fy and F; vanish. Eq.(3.81) is satisfied provided we make the following identifica-
tions:

D, (z1)Dr(22)F2 = Ny (21, 22) (3.82)
with four-derivatives as defined in (3.55). If, in addition, we identify

8,1 D (2)Fs = BrnBrNG(2) (383

the more general equation (3.81) is satisfied.
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Taking into account egs. (3.46), (3.78-3.79) and (3.82-3.83) it is plausible to expect
that the following universal identification is valid in general:

Dr(21)Dr(22) Fy = NJ7 (21, 22), 0,0 Dr(2)Fy = Bry15: N5 (2) (3.84)

for j=0,1,2,3,... Nevertheless, in this case one may have to modify the definitions (67-68) of
the generating functions for j > 2.

As a final remark, we point out the four-point functions we have found are not the
unique solutions to the Hirota equations for four-point functions. The one that we have
found however are likely to be the unique solution that are consistent with the two-point
functions of order 0, 1 and 2 in the p expansion (although we have not been able to exclude
other solutions). This question is intertwined with two related problems: on the one hand

the question of defining in terms of matter oscillators aff) the 1D associated quantum
system whose two-point correlators are given by (Vg}a%) Taﬁf”!O) and underlies the LCSFT
three strings vertex; on the other hand defining an integrable system, very likely a matrix
model, where all these correlators can explicitly be calculated. A successful search of such
an integrable model is also likely to lead us to a natural explanation of why the somewhat
mysterious factors m?% and (nm)’ need to be inserted in the generating functions (3.67-3.68)

in order to square matters.
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Chapter 4

1/2-BPS states in VSFT

The essence of this chapter is the observation that there is a remarkable correspondence
between states one meets in the framework of the AdS/CFT duality, and solutions of vac-
wum string field theory (VSFT). The correspondence is simply sketched and is far from
exhaustive (mainly because we do not know enough about supersymmetric VSFT), but it
is very suggestive and, if confirmed, it could lead to very interesting consequences. Roughly
speaking it goes as follows. In the framework of type IIB superstring theory, AdS/CFT du-
ality establishes a correspondence between N = 4 superconformal U(N) gauge field theory
on the boundary of AdSs and supergravity on the background AdSs x 55. In the strongest
formulation the correspondence is between the two theories as a whole. Here we will limit
our consideration to a class of 1/2-BPS states which can be formulated as composite of the
U(N) gauge theory scalars. In general they can be cast in the form of Schur polynomials,
and thus they are in one to one correspondence with Young diagrams, represented (in the
case of giant gravitons [78], for instance) by columns of maximal size (number of boxes)
N. On the supergravity side they correspond to 1 /2 BPS states that are solutions to the
supergravity equations of motion. The latter represent localized states in the AdS geometry
that wrap around S® cycles of G5: they are stabilized by their angular momentum J in S5,
with the condition J < N. There are other significant 1/2-BPS states with mass ~ N2, the
superstars [79]. They correspond to Young diagrams represented by approximate triangles.
On the supergravity side these are singular 1 /2-BPS states with a naked singularity, which
are regarded as solutions on the verge of developing a black-hole horizon due to the quan-
tum corrections. Giant gravitons and superstars are two examples of a zoo of new entities
that can be constructed in similar ways.

An interesting question is the following one: what is the precise relation between a state
in gauge field theory and the corresponding supergravity solution? More precisely, how
does the geometry that characterize the latter arise from the former (which, at first sight, is
a totally ungeometrical object)? The answer seems t0 be coarse-graining: geometry arises
from averaging details of the quantum states in the gauge theory side.

The argument brought forth by [80, 81, 82] goes as follows. One remarkable aspect of the
above gauge field theory states is that they can be represented also in terms of N fermionic
oscillators in a harmonic potential. The correspondence can be once again established
via Young diagrams: quantum systems with the same Young diagram describe the same
quantum state. This lends itself to a very interesting development: to quantum systems of
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this type we can associate in a one-to—one way Wigner distribution functions. In general, to
a point-like system in a (g, p) phase space we can associate a Wigner distribution function
W (g, p). This is nothing but the bosonization of the original fermion system, but W(g,p) is
also very close to a probability distribution in phase space. In this way we can associate a,
Wigner distribution to any state, such as the vacuum, “black rings”, superstars, etc. Now,
it so happens that these Wigner distributions are characterized in the large N limit by
(coarse-grained) profiles that can be matched to the corresponding geometry (droplets) of
the 1/2 BPS supergravity solutions.

With the above premise, the point we want to make is that the Wigner distributions for
the above introduced states naturally appear in VSFT. More precisely, the same profiles
appear as low energy space profiles of VSFT solutions. This correspondence leads us to
a related subject: open—closed string duality as seen from the SFT point of view. A.Sen
has recently conjectured, [83], that open string theory might be able to describe all the
closed string physics, at least in a background where D-branes are present. In this sense
VSFT should be a privileged vantage point: the tachyon condensation vacuum physics can
only represent closed string theory and thus VSFT should be able to describe closed string
theory in the sense of [83]. The existence of the D-brane solutions mentioned above is
a confirmation of this. However these D-brane solutions are expressed as squeezed (or
related) states. At most, in the presence of a background B-field, we can produce a space
profile thereof. However it has not been known so far how to associate a corresponding
geometry. The correspondence between space profiles and Wigner distributions may be the
clue: by interpreting a space profile as a Wigner distribution, we can reconstruct s half-BPS
state and as a consequence arrive at some definite geometry, which is the coarse—grained
averaging over the corresponding fermion systems.

4.1 Half-BPS solutions

In the field theory side of the AdS/CFT correspondence, half~BPS multiplets of N = 4
Yang-Mills theory fall into representations (0, 1, 0) of the SO(6) R-symmetry group. Highest
weight states can be constructed as gauge invariant polynomials of a complex scalar field
X. The conformal dimension of the latter is A = 1 and the U(1) R~charge J = 1, where
U(1) € SO(6). A highest weight therefore satisfies A = J. Basically such states are
constructed out of multiple traces of X. The most general state of this type of charge n
takes the form

(br(XM))F (tr(X2))e2 | (br(XTe)) ke (4.1)

where the integers I;, k; form a partition of n: 3% _; l;k; = n. A basis for these states is
given by the degree n Schur polynomials of the group U(N). These in turn correspond
to Young tableaux of maximal column length N. Therefore we can classify these highest
weight states (chiral primaries) by means of Young diagrams [84, 85, 86].

It can be shown that they can be represented in another useful way. In fact their
correlators can be related, by using the canonical approach, by correlators of a suitable
(time-dependent) matrix model with a quadratic potential [84, 87]. The matrix model can
be solved also in another way, by diagonalizing it and producing in this way a Vandermonde
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determinant Jacobian factor [86]. The latter can be lifted to the exponential giving rise to a
repulsive potential among the eigenvalues. The result is that we can interpret the eigenvalues
)i as a system of N fermionic oscillators with Hamiltonian H = Zi AI)\Z- + % The energy
levels of this system are given by E; = n; + %, where n; are nonnegative integers. The
corresponding wavefunctions are given in terms of Slater determinants

H™(\) H™(A) ... H™(\y)
2 Hr2(\) H™(X) ... H™(\y)

U(A1, Ae,-- -5 An) ~ €~ 2i 7 Det : : : (4.2)
HnN(Al) HnN(AQ) HnN()\N)

where H,, are the Hermite polynomials for a single harmonic oscillator. The ground state
W, corresponds to ny = 0,m = 1,...ny = N — 1. Therefore the generic excited state can
be represented by means of a Young diagram with rows (r1,72,...,7n), With 1y =n; —i+1
not all vanishing natural numbers in decreasing order. The energy of the state above the
Fermi sea is E = J = >_; i, which is the total number of boxes in the Young diagram (for
the relation to Fermi systems, see [18, 86, 88, 89, 90, 91]).

Let us list a few states which will be considered in the sequel by means of their Young
diagram representation. A giant graviton is represented by a single column Young diagram,
whose maximum length is of course N. A giant graviton, [78, 92, 93] is a half-BPS state
which can be described as a D3-brane wrapping around an S2 cycles in the S5 factor of
AdSs x S°. Stability is guaranteed by the spinning of the brane around an axis in S5,
The angular momentum has an upper bound J < N, which is a manifestation of the
stringy exclusion principle. Since A = J, the representation by means of a Young tableau
incorporates in a simple way the exclusion principle.

A dual giant graviton, i.e. a D3-brane wrapping around an 53 cycle in AdSs, is repre-
sented by a one-row Young diagram of arbitrary length (no bound here). A black ring is
represented by a large rectangular diagram of size NV (see below). A superstar is represented
by a large triangular diagram of size ~ N. It represents a stack of giant gravitons located
at the origin of AdSs. From the supergravity viewpoint, it is a singular solution in that it
has a naked singularity. It is conjectured that due to string corrections it may actually be
completely regular solution.

In the last two cases the energy of the states is proportional to the area of the Young
tableau and therefore ~ N2. Following in particular [81], these are the states we will be
mostly interested in in the following and we will consider them in the large N limit. In [81]
a limit shape was introduced for the corresponding Young tableaux in the continuous limit.
This is a function y(z), where = runs from left to right along the rows and y from bottom
to top along the columns. The origin is set at the leftmost bottom box of the tableau. For
instance, for the superstar ensemble we have A = NN./2 and y(z) = %*cc, where N, is the
number of columns. '

4.1.1 1/2-BPS states as supergravity solutions

In [94] a beautiful characterization of 1/2-BPS states in type IIB supergravity was found.
Regular 1/2-BPS solutions with a geometry invariant under SO(4) x SO(4) x R correspond
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to the following ansatz

i

ds? ~h72(dt + Vida')? + h?(dy® + da’ dz’) + y ePdQ2 + ye~Cd02
h™% = 2ycoshG
yoVi = €0z,  y(OiV; — Vi) = €; B,z

z = -;—tcth (4.3)

II

where 7,7 = 1,2 and €;; is the antisymmetric symbol. There are also N units of 5—form
flux, with

Fis) = Fupdz* Ada” A dQs + Fydz* A de? A d3

where p,v =0, ...,3 refer to ¢,z',2% y. As for the ansatz for F and F, see [94]. The full
solution is determined in terms of a single function z, which must satisfy the equation

8:6; z + yd, <%—Z> =0 (4.4)

One can solve this equation by remarking its analogy with the Laplace equation for an
electrostatic potential. Regular solutions can exist only if at the boundary y = 0 the func-
tion 2(0, z1,z2) takes the values :{:%. Therefore regular solutions correspond to boundary
functions z(0, z1,z2) that are locally constant in the z1, T2 plane. The region of this plane
where z = —1/2 are called droplets and denoted by D. Following [81] we reintroduce in
the game 7% and make the identification % « 27r£§, noticing that z;,zs have the unusual
dimension of a length square.

* The area of the droplet must equal N:

‘ d%z

N = 3 (4.5)

~while the conformal dimension of the state corresponding to the droplet D is

A fzzw%w%_z(/@)z (46)
p2rth 2 R 2 \Up 27h

In conclusion, the information about the solution is encoded in the droplet. For instance,
if the droplet is a disk of radius ro we recover the AdS5 x S° solution; if the droplet is the
upper half plane one gets the plane wave solution. In general if the droplet is compact the
solution is asymptotically AdSsx S°. It is useful to introduce the new notation u(0;z1,29) =
% — 2(0; 21, z2); u is the characteristic function of the droplet, since it equals 1 inside the
droplet and 0 outside. Solutions with such (sharp) characteristic functions are regular since
the boundary conditions are satisfied. Solutions characterized by a function u which is
not exactly 1 or 0, are singular [95, 96] (for a connection with quantum Hall effect, see
[97, 98, 99]). This is the case of the superstar solution [79].
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4.1.2 The Wigner distribution

It is clearly of utmost importance to establish a dictionary between the 1 /2-BPS states
introduced at the beginning of this section starting from N = 4 SYM and the droplet
solutions. This is tantamount to finding a recipe to recognize the geometry emerging from
a given gauge field theory state. The clue is the free fermion representation introduced
above: any state represented by a Young diagram can be interpreted as a system of N
fermions with energies above the Fermi sea. To this end it is useful to rewrite the formulas
(4.5) and (4.6) in the more general form

Pz 1 22 + 22 d’z 2

A = %-z——h——u((),ml,xz) 5 (/ o hu(O wl,m2)> (4.7)
d2

N = /'2“7r—“’u(0 561,.’122), (48)

where the integration extends over the whole z1,zy plane. These formulas suggest that
u be identified with the semiclassical limit of the quantum one-particle (g,p) phase-space
distributions of the free dual fermions after the identification (z1,z2) + (g,p). A phase-
space distribution may be understood as an attempt of assigning a probability distribution
to the phase—space points. It is a heuristic concept and there is no unique prescription for
it. The most well-known distribution is the Wigner one [100]:

1 oo R .
W(g,p) = gy / dy(q — ylplg + y)ePv/h (4.9)
—00

where j is the density matrix. In the case of a pure state 1, (d'pld") = ¥(d)v*(¢"),
therefore

W(g,p) = W) (g+ y)v(g — y)e*rv/P (4.10)

1
ok
In general p will take the form of
= _ (@)

feF

F being a given family of pure states. We will consider family of pure states representing
excited states of N (fermionic) harmonic oscillators f, = rn +n — 1, with n = 1, ey N
(where we have dropped ). In this case F will be a subset of the natural numbers and

br, = Alfa) Hy, (a/VE)ETT /2P

where A(n) is a normalization constant and H, are, as above, the Hermite polynomials.
Using a well-known integration formula for Hermite polynomials one gets, [100],

1 —(a+?)/n i ¢ +p*
)= Wrn(ap) =53¢ > (DL (25 (411)

fn€F fn€F

Thinking of W as a probability distribution is certainly a heuristic and approximate concept,
because it may be negative (see the considerations in [81], where an improved always positive
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distribution is introduced, the Husimi distribution). However we will not need it in the
following, because we will compare Wigner distributions with space profiles of VSFT (which
are not probability distributions either).

Here we are interested in Wigner distributions because they represent a precise recipe
to bosonize associated fermion systems: from the fermion system we easily get the Wigner
distribution and from the latter we can reconstruct the former, [89, 101]. In the following
we will use Wigner distributions in this sense, and will be concerned specifically with dis-
tributions relative to ensembles, in which /V is supposed to be very large. The semiclassical
limit will correspond to # — 0 keeping AN finite. We will use such distributions to make
a comparison with the u droplet distributions, [81], and with space profiles in VSFT (for
coarse-graining, see also [102, 103, 104]).

Let us consider a few significant cases. The first concerns the Fermi sea. The relevant
distribution is

N-1
2mAWrs = 21h Y Wa(g, p) (4.12)
n=0
By using a well-known identity for Laguerre polynomials one formally obtains 1 when the
summation extends to infinity with fixed . This would not correspond to AdSs x S°.
However a numerical analysis shows that the limit & — 0 with AN fixed reproduces the
finite disk characteristic of the latter solution (see, for instance, [105]).

The second example involves the Young diagram corresponding to a giant graviton. It

hasr, =0, n < k and r, = 1 for kK <n < N. The distribution is

k—2 N
omhWgg = 2k <Z + Z) Wa(g, p) (4.13)

n=0 n=k

It is evident that in the large /N limit with k fixed, this distribution will be indistinguishable
from the Fermi sea one.

The third example is the case corresponding to a rectangular Young diagram of row
length K. It represents N fermions all excited above the sea by the same amount K. There
is no a priori relation between N and K, but we are interested in the limit of large N and
K such that RK as well as iilN are finite. The Wigner distribution is

N+K-1
2 FiWreet = 2mh Z W +n—-1(q,p) (4.14)
n=K
Setting u(0,z1,x2) = 27AW et this identifies a characteristic function which is (approxi-
mately) 1 in the ring AK < i‘{—ﬁ < R(N + K) and 0 outside, in the large N and K limit.
This corresponds to the 1/2-BPS called “black ring” in [94]. It has conformal dimension
A = NK ~ N2, since K must be some rational multiple of N.
The last example concerns Young diagrams which are approximately triangular with
A = NN,/2 and so correspond to superstar ensembles. In this case we have f,, = (n—1)d,,
with 4, an integer ~ -J}(f + 1. For illustrative purposes let us set 6, = § = %ﬂ + 1. Then

N-1
27"'hvvtriangle = 27h Z WnJ(Qap) = 26-2{1 Z(—l)n6Ln5(4H/h) (415)

n=0 n=0
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where H = (q? + p?)/2. The result of the analysis in [81] is that in the large N limit

1
2mAW Sangle = 5T oscillations at scale AH =
Therefore identifying once again 2rAWg, . with u(0;z1,22) we get approximately
u(0, 21, z9) = 1/6 within a finite radius disk. This corresponds to a fractionally filled droplet
and represents the superstar solution, which is singular. It is also an explicit example of
the relations
1
0:72) = ~ = g(E 4.16

u(0ir?) = 19— = o(B) (4.16)
which was conjectured and verified in various examples in [81]. The function g(E) is called
grayscale distribution and encodes the effective behavior of coarse-grained semiclassical
observables in a given quantum state.

4.2 Building 1/2-BPS States in VSFT

We are looking for solutions that mimic the behavior of the half-BPS states discussed in the
previous section. As it turns out they must be superpositions of matter projectors (stacks
of VSFT D-branes). The latter have the following characteristics: they must cover the
ordinary 4D Minkowski space (parallel directions), be, in the low energy limit (¢/ — 0),
delta—function like in 16 directions and have some width in the remaining 6 directions (these
22 directions will be referred to as the transversal ones). Out of the latter two will have a
special status, in that a constant B-field will be switched on along them. We can imagine
that all the internal dimensions are compactified on tori, but this is not strictly necessary
for our argument.

It is possible to construct a full family of such solutions which are - and bpz—orthonormal.
This goes as follows, [30, 32]. First we introduce two ‘vectors’ £ = {€nq} and ¢ = {(nal,
which are chosen to satisfy the conditions

,01£ = 07 P2§ = Ea and plC = 01 PZC = Cv (417)
where p1, p2 are the half-string projectors [35, 106]. Moreover we define the matrix 7 as

T o= {Taﬂ} = < é _(_)1 > . Next we set

x = (a'7€) (a'CC) = (e 7P Enp) (0% ChnrCase) (4.18)

Finally we introduce the Laguerre polynomials L, (z), of the generic variable z, and define
the sequence of states

[An) = (=K)"La( % ) IS.0) (4.19)

where, for simplicity, we have written down the tensorial factor involving the the y1,ys
directions only and understood the other directions. As part of the definition of [A,) we
require the two following conditions to be satisfied

1 T
fTT]I — _T2C =1, STTII _.__ng =K (4.20)
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where £ is a real number. To guarantee Hermiticity for |A,), we require

¢=7¢" (4.21)

The states |A,) satisfy the remarkable properties
[An) * [Am) = 0nm|An) (4.22)
<AnlAm> = 5n,m<A0lA0> (4.23)

Therefore each A, as well as any combination of A, with unit coefficients, are lump solution.

So far we have set o/ = 1. It is easy to insert back /. In order to evaluate the low
energy profile of [A,) we first contract it with the eigenstate of the position operators with
eigenvalues y*: (y|An), and then take the limit o/ — 0, [21, 32]. The leading term in the
o/ expansion turns out to be

2 2
wihe) = 217 L (%) < 712) + 0 (v@) (4.24)
where p? = y®yB5,5 and |Z) is the sliver solution.

The projectors we need in the following have this o/ — 0 limit in the y® directions; as
for the remaining directions, they have the form of the sliver in the parallel directions and,
finally, they become delta-like functions multiplied by the sliver in the remaining transverse
directions, i.e. they are localized at the origin of the latter. This can be easily seen by taking
the limit & — 0 in the case n = 0 in (4.24)!.

4.3 A correspondence

Looking at egs.(4.12,4.14,4.15) of subsection 4.1.2, one immediately notices that they can
be seen (up to an overall normalization constant) as the low energy limit space profiles
of combinations of the string states A, introduced in the previous section, with unit co-
efficients. Since combinations of A, with unit coefficients are solutions to the equation of
motion of VSFT, we can see the above Wigner distributions as the low energy profile of
VSFT solutions (up to the common |[E) factor). It is therefore tantalizing to make the
following association

Wigner distribution for an N fermion system « VSFT solution

For this to work we must require the correspondence? % < 6 and that the coordinates 1, X9
be identified with y1, y2. This is what we suggest and would like to motivate in this section.
The previous correspondence can be read in two directions. First: one can say that to any
1/2-BPS state to which we can associate a Wigner distribution of the type (4.9), there
corresponds a VSFT solution given by a combination

We)= > |Ag),  26W(g,p)|E) = (y|Wr) (4.25)
fn€F

1One could easily construct projectors that are ‘fat’ also along other transverse directions, but we will

not need them in the sequel.
%It should be recalled that on the SUGRA side we have three parameters, o',gs and N. With the first
two one forms the combination A = 27g,a’?. On the VSFT side we have also three parameters o, 0 and N.
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where (p, g) is identified with (y1,y2) and the latter are the eigenvalues of |y). Vice versa:
to any VSFT solution of the type (4.25) we can associate a Wigner distribution W(g,p)
according to (4.9). In this way we can associate to |W) a Young tableau and therefore a
1/2-BPS state in the A/ = 4 superconformal field theory (before taking the large IV limit)
and we can associate a geometry (after taking it®). The latter point of view is probably
the most interesting one. It implies that we may be able to associate a geometry to a given
VSFT solution, therefore we are in the condition to answer some of the questions posed by
open—closed string duality. Here we see how geometry emerges from a VSFT solution which
is entirely expressed in terms of open string creation operators.

In the following we would like to list some arguments in support of our proposal.

1) With the above association we connect a microstate corresponding to a geometry,
which is a supergravity solution, to a string state which is a solution of the VSFT equation
of motion. The correspondence (4.25) is one-to—one* (before the large N limit).

2) The droplet geometry lives in a (z1,z2) plane which lies in the internal (compactified)
dimensions. In the same way the plane (y1,¥2) stays in the compactified part of the bosonic
target space. As pointed out above, we identify the two planes. One could phrase it by
saying that the two space coordinates z1, 2, which had been replaced by two phase-space
coordinates g,p in the intermediate argument, have returned to their natural role via the
identification with y1, ya. '

3) The correspondence (4.25) tells us how the Pauli principle gets incorporated into a
bosonic setting. The numbers f, in the LHS of (4.25) correspond to the fermion energy
levels in the original fermion system. Therefore, due to the Pauli exclusion principle, each
fn can appear only once in the family F. Therefore in the summation each |Ay,) appears
only once. This guarantees that |WW) is a VSFT solution®. On the other hand any VSFT
solution that can be written in the form >_; -~ |Ay,) tells us that the numbers f, € F can
be interpreted as energy levels of a fermionic harmonic oscillator system, since each appears
only once. This is the way the D-brane solutions of VSFT manifest their fermionic nature.

4) The VSFT solution corresponding to the Fermi sea (4.12) is represented by a stack
of N (unstable) VSFT D-branes. The giant graviton solution (4.13) is represented by a
D-brane missing from the stack. The superstar solution (4.15) is represented by a stack of
such missing (unstable) D-branes. This is in keeping with the interpretation of superstars
as stack of giant gravitons, [79]. (It is worth remarking at this point that all the VSFT
solutions we consider in this paper are composite of VSFT D-branes and there is no direct
identification between single VSFT D-branes and single D3-branes in superstring theory.)

5) There is an algebra isomorphism between Wigner distributions of the type (4.9) and
VSFT solutions like |W), an isomorphism that was pointed out in [32, 45, 46]. It is a well-
known fact that any classical function f(g,p) in a (g,p) phase space can be mapped to a
quantum operator O # via the Weyl transform, and that the product for quantum operators
Ofég is mapped into the Moyal product f * g for functions. Under this correspondence
the (z1,72) < (g, p) plane becomes noncommutative. It is a well-known fact that, under
this correspondence the classical Wigner distributions like (4.12,4.14,4.15) are mapped into

3In the process of taking the large N limit one smears out many details, so that multiple states are
mapped to the same geometry

4See on this point the remark at the end of subsection 4.3.1

SIf |A) is some +projector, n|A) is a +—projector if and only if n =0, 1.
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projectors of the Moyal star algebra:
2mRW) * (2nAW) = 2mAW. (4.26)

Actually these distributions turn out to coincide with families of the so—called GMS solitons,
[107, 108]. Let us recall the relevant construction. Define the harmonic oscillator a =

(4 +1p)/+/(20) and its hermitian conjugate a': [a,a!] = 1. The normalized harmonic
aT)”

oscillator eigenstates are: |n) = “52-10). Now, via the Weyl correspondence, we can map

any rank one projector [n)(n| to a classmal function of the coordinates z1, zo.

2

) ] (o, 22) = 21" L (- )7 (427

where 72 = z? + z2. Each of these solutions, by construction, satisfy v, * ¢, = 1¥,,. These
are referred to as GMS solitons [107]. In the previous section we have shown that the low
energy limit of (y|An) factorizes into the product of the sliver state and (y1,y2). This
means that the VSFT star product factorizes into Witten’s star product and the Moyal =
product, [45, 46]. More precisely we can formalize the following isomorphism

lAn> — P, — ¢n(yla'92) (4 28)
[An) x [An) = PoPy = tpx '

where * denotes the Moyal product.

This remark should not be underestimated. Let us consider 27AW and suppose it is
.. such that we can ignore its derivatives with respect to p and ¢q. Then eq. (4.26) becomes
. (2mrAW)? = 2wAW, which is the equation of a characteristic function (it can only be either
- Oor1). Thisis indeed what happens in the case of the vacuum and the black ring solutions,
. see [81, 82]. It is not the case of the superstar distribution because in that case we cannot
- ignore derivatives. But this remark suggests that the property of being Moyal projectors is
# basic for Wigner distributions to represent 1/2-BPS states. The string state |W) ‘inherits’
- this property, it is the ‘continuation’ of the space profile to the whole string theory. In this
sense it is natural that |IW) be a string field theory solution.

6) Finally one should point out that there exists a solution generating technique that
allows one to produce new solutions starting from a fixed one. As an example let us consider
the partial isometries introduced in [109]. They are defined as follows

(P+)¥|An) = |Apsk) (4.29)
(P-)*|An) = |An—s) (4.30)
(4.31)

where we define A, = 0 for n < 0 (see [109] for definitions of P..)). Given a state represented
by a certain Young diagram, the operator (P,)* adds k boxes in each of the N rows, while
its inverse (P_)* removes them. Consider for instance the Fermi sea solution corresponding
to eq.(4.12) and apply to it (Py)%. According the above equations one gets the solution
corresponding to the rectangular Young diagram (4.14). We have seen that (4.14), in the
large N limit, leads to the black ring geometry. Note that the transformations that are
generated by such partial isometries are area preserving on the droplet plane (the number
of fermions is left unchanged). This points to the fact that partial isometries on the open
string side are mapped to topology changing transformations on the closed string side.
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4.3.1 Matching observables

In this section we deal with the identification of the quantities in VSFT that correspond to
two basic observables in the superconformal field theory and in the supergravity side. The
latter are given by the total five form flux, N, and by the energy, A, (4.5, 4.6). We would
like to see how these two observables are encoded in the star algebra that characterizes the
VSFT solutions.

The total flux is simply given by the bpz norm of the projector corresponding to the
given Young diagram. We have indeed, (4.22),

(Wr|Wg)

N= Thoike)

(4.32)

This is perfectly expected as the total flux is determined by the number of boundary branes
producing it. Note that, differently from the usual open string description given by the
gauge theory, this observable is not part of the definition of the theory but is part of a
classical solution (in much the same way as it happens in gravity).

In order to understand how the observable corresponding to A emerges from the star
algebra, an extension of the (4.22) is necessary. Consider the following non twist invariant
states, [30]

n! n - m-—n X

Do) = AR YT LE (D) Baa), m<m (4:33)
m! n— n— X

|Anm) = 1/71—!—(—@”1)( mme(E> 1S16), n>m (4.34)

where

X =adlr¢ Y =4dlCC (4.35)

so that x = XY, and LT "(2) = 3 1rp ( ) (=2)*/k! are the generalized Laguerre

polynomials. Note that Ay = Apy.
These states star—multiply among themselves in the followmg way

Anm * Apg = Smphng (4.36)

In VSFT they have been shown to be the vacuum states for perturbative strings stretched
between the n-th and the m-th brane, [109]

Thanks to this extended algebra we can explicitly realize the fermionic system of our
concern. To this end let’s define the following inner operators acting on the string Hilbert
space

o0
A+¢ = Z vn+1 ATL-H.,'n * (b * An,n+l

n=0
00
A_gb = E vn+1 An,n-l-l * ¢’ * ATH—LTL
n=0
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for any string state ¢. These are the (adjoint representation of) the string field oscillators
defined in [110] (at fized half string vector) and behave as the raising/lowering operators of
a harmonic oscillator

A+An = n-+1 An+1
A-——An = \/_7{ An_q

It is then natural to consider the operator
H=A, A_ (4.37)

which, up to zero point energy, is the analog of the harmonic oscillator hamiltonian.
For single brane states we have

HA,=nA,

and, more important,

_ (Aq|H|Aq)
(AolAo)

If we evaluate this operator on the stack Wr we get

N-1

(Wor H[7) |
oy =2 h 139

This is nothing but the energy of the corresponding fermion ensemble given by the Young
diagram F.

Now let us define the observable that corresponds to A, which we will denote with the
- same symbol. As in the gravity side A is defined as the difference in ‘energy’ between the
state under consideration and the ‘vacuum’ (empty AdS), at fized five form flux N , see
(4.6).

(WrlH|Wg) — (W, |H|Wx,)

A= (AolAo)

(4.39)

which gives the number of boxes of the Young Tableau. Fy = {0,1,..., N — 1} is the Fermi
sea at given N.

4.4 Discussion

The correspondence (4.25) in the previous section is based on a series of facts, which have
been listed above. The coincidence might be accidental, but we tend to believe it has a
deeper meaning. The suggestion that comes from the previous section is summarized in the
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following table:

N =4 UN) SYM
chiral primaries,
Young tableaux

)
N {fermion systems
of harmonic oscillators,
Young tableaux

)

Wigner distributions VSFT solut10n§:
Young tableaux 4= sum of *—projectors,
Young tableaux
1 |

Half BPS IIB
SUGRA solutions

«— [ Singular gravity solutions (7) |

where double-line arrows represent one—to—one correspondences, simple down arrows repre-
sent the large N limit and the question mark indicates the conjectural part of our proposed
correspondence. Let us describe it in more detail.

The fact that |W) is a VSFT solution is the strongest support of our conjectured corre-
spondence. The weak point is that we know it is a solution of bosonic VSFT but we do not
know whether it is a solution of the supersymmetric vacuum string field theory. However we
would like to notice that the 1/2-BPS states considered in [80, 81, 82] in the gauge theory
side, are all (very heavy) bosonic states. It is not unconceivable that the bosonic part of
1/2-BPS states is well described by solutions of the bosonic string theory. Unfortunately
the study of the tachyon condensation in superstring field theory has not progressed much,
see [111). From what we know nowadays it is possible that the bosonic parts of some solu-
tions of supersymmetric VSFT take a form like |W), although a complete solutions has not
yet been determined.

This raises a problem as to the interpretation of the lower right corner of the above
table. Based on the above argument, they should represent the bosonic part of supergravity
solutions. Now the Einstein equation for the latter is

AtdaAzA
R,uv ~ [.L/\1>\2)\3A4FIJ 1427324 (440)

where F' is the fiveform field strength and where we have set the dilaton to 0. The
contribution of the RHS is basic in the case of LLM solutions, as the latter do not satisfy
the pure gravity equation R,, = 0. As a consequence the solutions in the lower right corner
above are not pure gravity solutions. This is the problem we alluded to above: from a purely
bosonic theory we get, in the low energy limit, (the bosonic part of )supergravity solutions.
The most likely explanation of this surprising result lies in the type of limit we have taken
in VSFT: first o/ — 0 with @ fixed, and then § — 0 with 6N fixed. This two-step limit
selects the (bosonic part of the) droplet-like supergravity solutions. But, on the VSFT
side, there are other possible limits. For instance, one could take the same limit, but in
three steps, first o/ — 0, then § — 0 and finally N — oco. This shrinks the droplets to zero
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size and leads to singular (in the sense of delta-like) solutions, which we can identify with
(singular) pure gravity solutions. However these solutions are t0o singular to base on them
any serious discussion. So let us deal with this subject from another viewpoint.

From the above we see that the parameter 6, i.e. the B-field, plays a fundamental role
in the VSFT side limit. There is no B-field in the IIB supergravity solutions side, there is
instead a background five—form field, whose flux in suitable units equals N. Of course in
the bosonic SFT side there cannot be any such background. However we have seen that
¢ ~ 1/B is identified with % and, in the large N limit, AN is kept finite. Therefore B and the
five~form flux play a parallel role. The five—form flux supports the supergravity solution,
while B supports the corresponding VSFT solution, which otherwise would collapse to a
delta function. It looks like B is a surrogate of the five—form flux in the bosonic theory (see
the considerations about noncommutativity in [112]). One may wonder whether this remark
can be confirmed in some independent way. There actually exists a way in the gravity side,
although it is very hard to verify it analytically.

The low energy equations of motion for bosonic string theory is

Ry ~ Hy,H (4.41)

where again we have set the dilaton to 0, and H = dB. Comparing this with (4.40) we
see that the H? term might play the role of the five-form term there. There is however
an obstacle. Our VSFT solutions contain a constant B-field and if we replace a constant
B in (4.41) the H? term vanishes. Nevertheless there exists another interpretation. Let us
consider for definiteness the vacuum solution, where the droplet is a disk of finite radius
7o in the phase space. As we remarked above we can easily reproduce this solution on the
VSFT side with a constant field B = By, by taking the limit N — oo such that OoN ~ 7g.
Now, the region 7 > ry corresponds to a vanishing distribution in the large N limit. This
can be reproduced as well by taking first # — 0 and then N — oco. In other words, in
order to reproduce the vacuum solution it is not necessary to assume a constant B-field
everywhere. Unfortunately we do not know how to deal with VSFT in the presence of a
varying background B-field. But we believe it is reasonable to assume that, anyhow, well
inside the droplet the VSFT solution will be described by the solution with B = By, far
outside the droplet by a solution with very large B and in the intermediate region by some
interpolating solution. If this is correct then our overall VSFT solution will correspond to
a non constant B-field: after coarse-graining the profile will be such that the H2 term in
(4.41) mimics the five-form quadratic term in (4.40). Of course one should take care also of
the other gravity equations of motion: in order to satisfy them all a nontrivial dilaton might
be necessary and the solution is anyhow very likely to be singular. One may object that
we are here in presence of two different VSFT solutions (with constant and non constant
B-field) that correspond to the same space profile. This is true, but the profile we have
been talking is the same only in the o/ — 0 limit. We expect the o/ corrections to remove
the degeneracy between them.

In any case using bosonic string field theory to establish a correspondence with 1/2-BPS
states of an A/ = 4 YM theory can be taken, at this stage, only as a suggestion. However the
elements we have listed above are striking. So let us suppose that our conjecture is correct
at least for the class of states and solutions we are interested in. Then it is convenient to
view it in the framework of open—closed string duality. One should not forget that VSFT is
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a version of open string field theory, i.e. its language is the language of open string theory.
The correspondence we have established above is between 1 /2-BPS states of SYM theory
in 4D and full VSFT solutions. This suggests that the open string field theory we have been
considering describes in fact the physics of open strings attached to the stack of D3—branes
where the SYM is defined, that is it is the stringy completion of the latter theory. Once
again, the appropriate treatment should make use of superstring field theory. But let us
suppose that bosonic SFT is enough for the present purpose; then we must conclude that,
using tachyon condensation, we have found a way to pass from open SFT solutions to space
time geometry (via coarse—graining), which is one of the major problems in open—closed
string duality, and this with the additional bonus of the o' corrections.

We would like to add two specifications. The first concerns Chan-Paton factors one is
expected to introduce in order to represent a U(N) theory, and we have not. This is in fact
not necessary, since it was proven in [109] that VSFT contains solutions with all type of
U(N) CP factors without the need to introduce them by hand. The second concerns the
string critical dimension, which, in the bosonic case, is D=26, while the physics of SYM
theory lives in D=4. However we have seen that our VSFT solution spontaneously solve
the problem, because we can choose them translationally invariant in 4D and of finite or
zero size in the transverse dimensions, as need be.

We have just considered Wigner distributions. As pointed out in [81] there are other
proposals, for instance the Husimi distribution, which is based on a convolution of the
Wigner one. On the other hand there are many other solutions in VSFT, beside the family
based on the sliver and the Laguerre polynomials we have considered so far, for instance the
family of butterfly projectors. It would be interesting to see whether our correspondence
extends to other phase-space distributions and to other VSFT solutions.

-Concerning the future problems to be studied an interesting one relates to the possible
utilization of the full VSFT to calculate of corrections. It has been suggested that the
superstar solution may develop a horizon due to the stringy corrections. Now, a string
state like |W) contains the o’ corrections to its low energy profile. It is therefore natural to
ask whether this knowledge can be translated to the supergravity side. Related to this is
the problem of counting the microstates in order to evaluate the entropy of the ensemble,
[80, 81, 82]. To this end one should be able to count the distinct string fields corresponding
to a given low energy profile. A problem nested into this is related to gauge equivalence. The
states |Ay,) are defined in terms of a vector & (likewise for the ghost part). These infinitely
many numbers &, are irrelevant in the low energy limit. This fact is understood in the sense
that these numbers are likely to represent only gauge degrees of freedom (otherwise also
our previous claim of one-to—one correspondence would seem to need a better phrasing).
It would be interesting to find a real proof of this.
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Chapter 5

Superstring Field Theory

Bosonic string theory is not the right one to describe nature, for the obvious reason that
there are no fermions in it. One should then try to extend all the knowledge we have about
SFE'T to the realm of superstrings. As Superstring Field Theory (SSFT) is a very interesting
and important field of research, we would like to review in this chapter some developments
made, although there has not been much progress so far.

5.1 Witten’s Cubic Superstring Field Theory

Witten proposed an action for SSFT that is just an extension of the SFT one [113]. Never-
theless, the situation now is much more subtle due to the Ramond sector and the concept
of picture. We start by analyzing the Never-Schwarz sector, assuming the string field A to
have ghost number 1 and picture number -1. One can immediately see that, if we propose
the same action as the bosonic one, the cubic term vanishes since it has picture number -3
instead of -2!. To fix this problem, we will need the picture changing operator X and its
inverse Y

X(2) ={Q5,€(x)} = cOE+e?G™ + *ban + O(e*bn)

Y(z) = coge™® (5.1)
;% X(2)Y(w) = }1_1)1;10 V()X (w)=1.

We use them to define new star product and integration operations?

AxB=X(A*B), }[AE/YA, (5.2)

where X and Y are inserted at the string midpoint. The reason they are inserted at the mid-
point is that we want to preserve the symmetry of the action under the following subalgebra
of the Virasoro algebra

!We recall that in superstring theory, amplitudes on the disk must have picture charge -2 to be nonvan-
ishing.

2In this chapter, we use another convention for the star-product than in the rest of the thesis. Now the
usual star product is denoted by *.
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Kp = Lp— (=1)"L_p. (5.3)

This is so if [Ky, X] = [Kp,Y] = 0, implying that X and Y must have conformal weight 0
and are inserted at the string midpoint. We then propose the action for the Neveu-Schwarz
sector as

stz—feA*QBAJr%A*A*A). (5.4)

We have written, at least formally, an action for the NS sector, and now we turn to the
Ramond one. Since the product of two Ramond sector gauge parameters is supposed to be
in the NS sector, we consider the combined R-NS string field M = (4,%), where A is a NS
state and 1 is a Ramond state with ghost number 1 and picture -—%. We then define the
product of two string fields M; and M by

MixMy = (A1, 91)5(Ag, Pg) = (A1 % Ag + 9y * g, Ap % g + 11 * Ag), (5.5)

where * is the usual star-product, % is the product defined in (5.2) and we denote the new
product by *. We also define an integration for the combined system by

/ / (A4,9) = j{ A, (5.6)

since the integral of a Ramond string field must be zero by Lorentz invariance. Putting all
of this together, we have finally the action for the combined R-NS system

Sang = — / / (%M%QBM + %M%M%M) . (5.7)

Expanding the action in R-NS components, we have

1
SRNS=—/<%A*QBA+ §Y¢*Q3¢+%XA*A*A+QA*¢*¢), (5.8)

where we can see that, if we set 9 to zero, it correctly reproduces the action (5.4) for the
NS sector only. Also, the quadratic terms can be cast in the usual way once we choose the
gauge bgA = boyy = Boyp = 0, reproducing the correct propagators for the Neveu-Schwarz
and Ramond sector fields.

Despite being a very natural extension, Witten’s cubic SSFT presents serious problems.
The first one has to do with gauge invariance. Formally, (5.7) possesses the following gauge
invariance

§M = QpA + g(M*A — A*M), (5.9)

but, when one computes it carefully, the variation of the cubic term involves a collision of
two X’s, producing a divergence since X (2)X (w) ~ (z—w)~2. One could solve this problem
by adding counterterms to the action, but these counterterms must be infinite even in the
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classical action, since the divergence exists at tree-level. This would render the action ill-
defined unless some regularization was done. This collision problem also shows up when we
compute some amplitudes, for example, the 4-boson amplitude.

The second problem concerns the computation of the tachyon potential. At level zero,
the potential is negative and has no minimum. The reason for this lies in the fact that, at
level zero, the string field becomes

AL=0, A_=t-ce?0))0), (5.10)

where the indices +, — refer to GSO(+, —) sectors. Due to the conservation of ei™F (F
measures the world-sheet fermion number) at every string vertex, the action can include
only

Ay xQpAy, A_xQpA_, Ay xA.xA, and A, +xA_xA_. (5.11)

As A, = 0, the only term that survives is the second one, providing a purely quadratic
potential. Going higher and higher in level will not solve the problem, producing steeper
and even singular potentials. For example, at level (%, 1) and (1,2), the other fields than
the tachyon can be integrated out exactly giving the following effective potentials for the
tachyon

2 81,
Tl = 5
2 81 4
Yool = 5 - HiTe (5:12)

These problems show that Witten’s original proposal for SSFT seems to be flawed, and
some modifications might be needed. In the next section, we will describe one of these
modifications.

5.2 Modifications to Witten’s SSFT

In order to solve the problems described in the last section, a slightly different formalism
was proposed [114, 115]. Basically, it consisted in using NS string fields in the O-picture,
not in the -1-picture. It is then clear that a kinetic term like A * QgA and a cubic term
like A+ A x A are not good, since they have picture number 0 instead of -2. We need them
an operator that carries picture number -2, which we will call Y_,. We can now write the
action as

1 /1 1 1
SRNS = ——55 <§/Y_2A*QBA+§/Y_2A*A*A+'2-/Y—2X1/)*QB¢

+ / Vo X A%t w), (5.13)
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where A is the NS string field in the O-picture, 9 is the Ramond string field in the natural

—%-picture, and X is the picture changing operator of the previous section. As A and ¥
both have ghost number 1, we see from the action that Y_oX must have ghost number 0
and picture number -1, the same characteristics of the inverse picture changing operator Y.

Thus, we must have

21% Y_o(2) X (w) = }1_{2} X(2)Y_2(w) =Y (w). (5.14)

By examining carefully the question of gauge invariance and amplitudes, one can see that
just collisions of Y_5X and Y'X appear, showing that the theory now is free from collision
divergences.

We now pass to the construction of Y_o. We know that, besides (5.14), it is required to
satisfy

LolY_3) = LoY-2(0)|0) =0;
@BlY-2) = 0
|Y-2) 75 QalA).

The first condition tells us that Y_» is a Lorentz scalar and has conformal dimension 0.
The second condition says it is BRST invariant, and the third one that it is not BRST
trivial. Taking all these conditions into account, [114, 115] showed that there are only two
possibilities

Yoo(z) = -4e—2¢<2>--136-6-3%35%3)(”(2),

Yoo(z,2) = Y(2)Y(3). (5.15)

Actually, these are the only two possibilities up to BRST equivalence, thus giving the same
results for on-shell computations. However, once we go off-shell like in SSF'T, they produce
different results. For example, it was shown that two quadratic actions written in terms of
component fields take different forms, and so equations of motion. It is still unknown if the
theories arising from the various choices of Y_o are equivalent or not.

We now briefly analyze the question of the tachyon potential, and for that we deal just
with the NS sector and choose Y_3 = Y (2)Y (Z). The crucial point in this analysis is that Y
has a non-trivial kernel, and this will change the result drastically. The lowest eigenstate of
Lt is now c¢;|0) with eigenvalue -1, but this state is annihilated by Y showing why it was
not present in the -1-picture version described in the previous section since ACD =y A0,
The next state to be considered is 71 |0) with L¥* eigenvalue —3, and since

lim ¥'(2)7(0) = lim cB¢e™**(2)ne? (0) = —ce~*(0), (5.16)

it corresponds to the zero momentum tachyon in the -1-picture theory. As in the previous
case we must consider both GSO(+) and GSO(-) sectors, for example, to analyze the
potential at level (%, 1), we take
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Ay (z) = uc(z), A_(2) = te®n(2). (5.17)

For the same reason as before, the only terms in the action that contribute are the ones with
two A, ’s, two A_’s, three A,’s, and one A, and two A_’s. The result for the potential is

9 1
2 2 1o
[/(%11)(@ u) = —u’ + 16ut 415 ) (5.18)

and we can exactly integrate out the auxiliary tachyon u to get

Vi (®) = 157t — 1> (5.19)

We can see from this potential that, since the t* term is positive, it has two minima, as
expected. The effect of the auxiliary tachyon u is to make the tachyon potential to be of
the double-well form. Going higher in level will not affect the form of the potential and will
make the value of the potential at the minimum to approach -1, as it should according to
Sen’s conjecture.

We see that this modified version of Witten’s SSFT solves the two problems presented
in the previous section, that is, contact terms divergences and the absence of a minimum in
the tachyon effective potential. However, new questions arise. For example, a non-physical
field could solve the equation of motion Y_»(QpA+ A% A) = 0 if it is in the kernel of Y_,,
and we should also deal with the question of different possible choices for Y_s, as they lead
to completely different theories off-shell when we use level truncation. Perhaps they are all
equivalent once we consider the full theory.

Another approach to SSFT we would like to mention, although we will not discuss it
here in detail, was developed by Berkovits ([116] and references therein). His idea was to
embed a N'=1 critical RNS superstring into a critical A'=2 superstring, and further extend
it to have a small N'=4 superconformal symmetry by introducing additional generators.
Then, by generalizing this construction to go off-shell, he builds a Wess-Zumino-Witten-
like action instead of a Chern-Simons one like in Witten’s version. Berkovits’ formulation
is free from the problems mentioned previously, but no explicit solution has been found yet
and it is not known how to include the Ramond sector in the theory.
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Chapter 6

Conclusions

The desire to understand nonperturbative aspects of string theory has led to the develop-
ment of String Field Theory, and we devoted most of this thesis to a particular version of it
called Vacuum String Field Theory. As a result of our research, we obtained time-dependent
solutions that interpolate between the perturbative and nonperturbative vacua, describing
the process of tachyon condensation. We were also able to get solutions in VSFT which
possibly correspond to some 1/2-BPS states appearing both in N = 4 SYM and type I1IB
supergravity, shedding some light into the open/closed string duality.

In this conclusion, we would like to discuss some points that merit further scrutiny. The
first point we would like to comment concerns the relation between VSFT solutions and
the Schnabl’s one. VSFT has proved itself very useful since solutions to its equation of
motion in the matter sector were merely projectors of the star algebra, making it easier
to find solutions, the sliver and the identity being two of them. The fact that these two
states are wedge states, corresponding to n=oo and n=1 respectively, prompted Schnabl to
try, as a solution to OSFT equation of motion, a state expanded in terms of wedge states
with ghost insertions (in order to obtain a ghost number one state). A crucial ingredient
in finding the solution was to work in the conformal frame of the sliver z = arctan¢, what,
allied with a suitable choice of gauge, made the equation of motion much simpler to solve.
Further developments [117] showed that an infinite class of coordinate maps f(€) lead to
solvable equations of motion and that all these functions define projectors. This points
to the relevance of projectors in solving the equations of motion and hints some kind of
correspondence between VSFT solutions (projectors) and OSFT solutions.

Another question of great interest is translating Schnabl’s solution to the operator ap-
proach. Up to now, no proof of the solvability of the equation of motion has been given
within it (all computations have been made in the CFT approach), and we believe this
would be a very important check on the solution. However, things have proved to be not
so easy. So far, we could not find the operator form of Schnabl’s solution due to ambi-
guities in defining the ghost sector of the three string vertex properly. In this case the
ghost vertex plays an important role, as the solution is made of wedge states with ghost
insertions. Another hurdle we have been grappling with is how to deal with insertions, we
do not know precisely how to star multiply states with insertions in the operator approach.
We believe that obtaining the operator version of Schnabl’s developments will help clarify
many questions about VSFT and SFT in general.
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Once the bosonic theory is well understood, we must proceed to the superstring case,
and here not much progress has been obtained. The theories built so far present many
problems related to divergences, ambiguities, or no consistent solutions have been found
yet. Certainly, if we want to go on, we will have to solve these problems or construct a new
theory free from these drawbacks. We ought to understand better how the concept of picture
works in an off-shell theory, since using picture changing operators seems crucial in these
theories. For example, two candidates for the double-step picture changing operator give the
same theory on-shell but different ones if we are off-shell. Surely, a deeper understanding of
this question is in order if we want to build a consistent Superstring Field Theory. Moreover,
other attempts have been made like Berkovits’ formulation for SSFT, where the problems
mentioned previously have been solved. It also has the advantage that no picture changing
operators are used, yet no explicit solution has been found and it is not known how to
include the Ramond sector in the theory. As we can see, there is still a lot to be done
concerning the development of SSFT.
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Appendix A

Some Useful Relations

In this Appendix we collect some useful results and formulas involving the matrices of the
three strings vertex coeflicients.
To start with, we recall that

e (i) Vs, are symmetric under simultaneous exchange of the two couples of indices;

o (ii) they are endowed with the property of cyclicity in the r,s indices, i.e. V'™ =
yr+lstl where r,s = 4 is identified with r,s = 1.

Next, using the twist matrix C (Crpp = (—1)™6mn ), we define
X" =0V, r,s=12, (A1)

These matrices are often rewritten in the following way X! = X, X2 = X, X* = X_.
They commute with one another

[X'I‘S, X'r'sl] — 0, (Alz)

moreover

CV™ =VSC, CX™=X"C (A.3)

Next we quote some useful identities:

X+X, +X_=1
X X =X)?*-X

(X4)2+ (X)) =1~ (X)?

(X )P+ (X2 =2(X)® —3(X)*+1 (A.4)

The same relations hold if we replace X, X4, X_,T by X', X/, , X’ ,T", respectively.
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Appendix B

Diagonal representation of CU’

With reference to formula (2.35), we illustrate the spectroscopy and diagonal representation
of CU'. The matrix CU’ is hermitian, unitary and commutes with U’C. The discrete
eigenvalues £ and & are determined as follows, [15]. Let

_ _2—coshn —iy3sinhp
&= 1 — 2coshn (B.1)
and
dlogI
Fl)= w3+ 55) —w(z), (o) =TE (82)

Then the eigenvalues ¢ and € are the solutions of

RF(r) = 7 (B:3)

The eigenvectors V(E) are defined via the generating function

© () = 5)2 206 b, ™ £-1 i
FO(z) ZV -7 % { -|-2\/_§+1+10gz
. 4 1
—2i(1+ L )arctan z —4jarctan z e
+e (e 1, = 5 + 2m)} (B.4)
where ®(z,1,y) = 1/yoF1(1,y;y + 1;z), while
) -3
Vb(f) = (sinhn-c;)—ﬁ [1og§RF(n)]> (B.5)

As for the continuous spectrum, it is spanned by the variable k, —co < k < co. The
eigenvalues of CU’ are given by
2 + cosh ZF + 4v/3sinh ZF
14 2cosh —712’2

v(k) = —
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The generating function for the eigenvectors is

= 2" 2 b b
FO() =3 Vi o= VO"“)\/; h— - (%ch) - 1) ekt —logiz  (B.6)
n=1
T v(k) -1 23 - (k) _ —4iarctan z _]i —4iarctanz ,—karctan z
<2\/§y(k)—|—1+k)+2zf (z) — ®(e ,1,1+4Z_)e e
where
k 1
F(k) =91+ -—)—9(z
while

(k) b Nl

= 4+ K RF.(k) — = .
W =g 4+ (%R0 - ) } (8.7
The continuous eigenvalues of X/, X’ , X! and T” (for the conventional lump) are given

by same formulas as for the X, X, X_ and T case, eqs(2.31,2.32). As for the discrete
eigenvalues, they are given by the formulas

rs _ 1-2 5’r,s —e’ 5r+1,3 —e 6r,s+1
He 1—2coshp

te = eI (B.8)
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Appendix C

Limits of X' and T’

In this Appendix we briefly discuss the low energy and high energy limit of X’ and 7" in
the oscillator basis. The Neumann coefficients V;, (M) we use are given in Appendix B of
[11]. They explicitly depend on the b parameter. In the low energy limit the three-strings
vertex can be expanded by means of a parameter ¢ (a dimensionless parameter, in fact an
alias of ) , see [21]. This translates into an expansion for V]:,(;;) triggered by the following
re-scalings

Vi) — Vi)

Vi) — eV ) (C.1)
Voo — €Vao

For instance X' is expanded as follows to the lowest orders of approximation

o [~F+ §Viod "%\/%Ewei | (C.2)
—4/%ve) X — E£(Ive) (Vel = [Vo) (Vo]

where

el = =55, v = 20082 - )

It is interesting to remark that the parameter ¢ appears always divided by b, so that one
could just as well absorb € into 1/b and say that the expansion is in the parameter 1 /b for
large b. However to avoid confusion it is useful to keep the two parameters distinct.

Now, it is immediate to see that

-1+ 0(5) OGL/3) )
T = ( ; ; c3

0(F) T+0() ©3
This is correct provided we can prove that the use of (C.2) to compute 7" makes full sense,
that is all the terms of the expansion in powers of \/g are well defined. One can actually see

that a naive expansion leads to infinite coefficients. This is a well-known problem, pointed
out for the first time in [21], which requires a regularization. A nice way to introduce a
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regulator is to switch on a constant background B field. We will not do it here, but we
quote the result: in the presence of a B field the infinities disappear, and the expansion
(C.3) makes full sense. From this we deduce in particular that

T = T + O(3) (C4)

Let us consider now another extreme expansion, that is the limit o/ — oo. In just the
same way as above, we can introduce an alias, ¢ (t >> 1) instead of €. So, in particular,

Vi) — Vi

V) ) (C.5)
Voo — tVoo

In this case X’ to the lowest orders of approximation becomes
2.1 b 2 /2b
x| Pt —5y/ T (vl (C6)
“‘32‘\/ %lllve> X — %V’lcg(l - v&%)(lve)(vel = |vo){vol)

The lowest order in this expansion is known as the tensionless limit [22]. Also here one
must be careful about the use of this expansion in calculating 7. From eq.(C.6) one finds
that

Ty =1+0(3) ©7)
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Appendix D
/ - 5/ (c) 5 (c)
The o — 0 laimat of S,, and Son

In this Appendix we discuss the limit of the unconventional lump matrix elements S/H(TCTZ and
S‘(I)sf) by means of the diagonal basis. According to (2.42), we speak interchangeably of the
b — oo limit and the n — co one. When applying the results of this Appendix in the thesis,
we understand that 1/b is replaced everywhere by ¢/b with finite b.

As a preliminary step let us prove that
im (V@) = sk
im (Vo ) = (k) (D.1)

b—oo
A rather informal way to see this is as follows. Looking at (B.7) it is easy to realize that
the limit always vanishes provided k # 0. Therefore the support of the limiting distribution
must be at £ = 0. We can therefore expand all the functions involved in k around k& = 0
and keep the leading terms. Since RF,(k) ~ 1.386... around this point, we can disregard
RF,(k) compared to b/4 in the b — oo limit. Therefore we easily find
blggo(% ) oo 71 + b2k?2
where b = b/8. Now defining € = 1/b, the limit becomes
ml
0T kIt &
according to a well-known representation of the delta function. We can also show that
(V6™)” = 8(k) + O(1/)
From now on we suppose that, in the [dk integrals , we are allowed to replace the

integrands with their 1/b expansions, and that the results we obtain are valid at least in an
asymptotic sense. This attitude is always confirmed by numerical approximations.

5(k) (D.2)

D.1 Limit of 5,9

Let us rewrite the generating function for V,%k) as follows:

(1= v(k) V™

F®) () = A k) () — 7

B(k,?) (D.3)
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where

Al — Vo(k) \/%k (?}%Fc(k’) _ %) (D.4)

1 -—21/(lc) [%F e(k) + 2%5‘%% + g,} +log(iz) —2ifM(z)  (D.5)

+ LerChPhi(e—4iarctan(z) 1.1+ _'l‘i)€-4iarctan(z)e—karcta,n(z)]
Y 44

and

B(k,z) =

From (D.3) we can derive a useful expression for V( ),

V) = A(k)\/—j{ f(k) z) G V\(/%)m \2/7; ~Sn+l) (D.6)
Since v fd fz(m).(f) and )8 = 22, dk t(k) "R e get:
5 = /_ Z dk t(k) [A<k>A<—k>v,g':>vg—k> — AWy Rk (g v(k))zien(—ic)\/iB (D.7)
= ACIYOUI (L= (1) B () 7z + (PP - P - v(k))Bmw)Bn(—k)%]
where
Bum(k) = ;/Z dziﬁf;?

Now we want to take the limit of (D.7) when b — oo. To this end we notice the following:
_ok? 2
lim A® AR = hm (V k)) 2 RE:(k) — b
b—oo b 4
_ —k? @ ([ -K\1 1
T T \N(k) ) A+ k222 \N(k)) B2~ N(k)

where z = (RF.(k) — —) When k is very large RF,(k) tends to (slowly) diverge, but the
factor t(k) in the integrand of (D.7) concentrates the integral in the small k region.

We also need:
(k)17 (k) 2
lim 20— /s (k) (w o(k) _ 1)

b—co \/E b 4
_ACRY® RE,(k) 1
Jim =t = V2R (K) ( b z)
Finally using these limits
Q9 (B
Jim S / N{ A)
+oim [ dk 4306 (1 - 2(R))(1 - V(k))Bm(k)Bn(—k)%
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while the other integrals vanish because they contain the factor ké(k). Here we have used
the fact that v(0) = 7(0) = —1 and B,,(0) is finite, for a straightforward calculation gives

B \/_jé’ log(1+2%) _ { 0 for m odd,; D.5)

ool —%@(—1)%’+1(% +1)!' for m even.
So we are left with:

lim 5 = 8 (D.9)

This is the sliver. The corrections are of order %

D.2 Limit of S

In the rest of this appendix we would like to justify eq.(2.74). The limit of .Sv’(;(,fl) can be
computed the same way as before. We have:

oo o0
Jim Sq A =lim [ dk t(k)VEVR) = lim / dk 1) VP ACRLER L 2 B o)
b—oo J_o b—oo —00 \/E
(D.10)
The last term in the RHS of course vanishes in the limit b — oo, while the ﬁrst limit diverges,

but, recalling (2.74), what we are really need to know is the limit of -—Oﬂ— Using the fact

that 1+ s  ~ 47 log  when b — oo (b =~ 4log n) and that we can erte SOm = O(c) + SOm)

(factorization into continuous and discrete parts) we have:

! d
SOS'n) ~ 2n+/2log n

(e co 3 RE. (K .
So = |k sl (VD (T - 1) ovee
o g1

Using these we get:

RE,(E) 1) 1
/ dk t(k)v$ ’“)(\/_k)é(k)( p "Z) 5E=0

and

om

1+s ~ /2logn

Hereby the conclusion (2.74) follows.
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Appendix E

Spectroscopy of the Neumann
matrices with B-field

In this appendix we present the computation of the eigenstates and eigenvalues of the
Neumann matrix X% in the presence of B-field, along the line of [15]. A similar analysis
was carried out in [118], but with no reference to the correct normalization of continuous
and discrete eigenvectors; moreover the discrete eigenvectors presented in the first of [118]
does not reproduce the known ones when B — 0. Since the discrete spectrum is of crucial
importance for our purposes we re-derive completely the whole spectroscopy taking care
of the correct normalization of continuous and discrete eigenvalues, as in [15]. To avoid
the degeneracy of the diagonal Neumann coefficient A o‘ﬂ, we consider the unitary matrices
C'U% and U%C’, which are related to X% as follows [32]

1 .
(X%) ypy = 3 (8% + C'U% + C'U%) s - (E.1)

The matrix (C'U%)nnm can be written explicitly as

1—3bK 2v/3bKa 3vVOK (W| —2v/3bKa(W)|
—2v/3bKa 1-3bK 2v/3bK a(W)| 3VbK (W]

cu SVBK|W) —2VBKa|lW) CU - 3K|W)Y(W| 2V3KaW)(W|

2v3bKalW)  3VOK|W)  —2V3Ka|W)(W| CU —3K|W)(W|

where, see [36]

A—l

W) = =v2(|e) + ilw)), K=15r3 (E2)
CU is the non-zero mode analog of C'U without B field. We recall that, [32],
C'U =Uc, (E.3)

where tilde means transposition with respect to «, 8 indices.
Our aim is to solve the eigenvalue equation
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CUlT) = £|T), o= % |, (E.4)

which splits into

(Wi} = Z=le =1+ Zlo + (€ = Lo (£3)
(Wika) = e =1+ Zlo - 22 (6 - Dox (5.6)
(U - 9l = 3ar(e — DIw) ®7)
(O - 9ih0) = Tan(e i) ©8)

We know, [13], that CU has a continuous spectrum and the solution of (E.4) depends on
whether the eigenvalue £ is in the continuous spectrum of CU or not. So we will distinguish
these two different cases and analyze each of them in detail.

E.1 Discrete spectrum

If € is not in the spectrum of CU, we can invert (CU — §) in equations (E.7) and (E.8) to
obtain

A1) = \/;1;91(5 - 1)((;?1_"5!”/) (E.9)

|Ag) = \/%92(5 - 1)(—0—0-1—_——5|W)- (E.10)

As we can see the solutions get modified w.r.t. the B = 0 case, only via possible modifi-
cations of the eigenvalue . Substitution of these solutions into equations (E.5) and (E.6)
gives

1 1 A b 2aA
\/%(5 - 1)(W|a—UTjE,W)91 - T (E -1+ Z) g1 — -\‘/—6—5(5 ~1)g2=0 (E.11)

1 1 A b 2aA
V€ DW=~ 2 (=14 2) o 2 gm0 (1

The bracket which appears here is the same as the one in [15] and is given by
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1 £+1

(chU — €|W> = Voo + 5—_—12%1?(77) (E.13)
where
F( )_¢(1+_7l_ _¢(E> g—-—-£—~—[2—cosh —1v/3sinhy].  (E.14)
W=Y\2 T o 2/’ ~1—2coshn g - '

¥(z) is the logarithmic derivative of the Euler I'-function.
Substitution of these in (E.11) and (E.12) gives us

b AE—1 b Ag—1
<%F<n) - Z) 91— gf—ggﬂgz =0, (WF(U) - Z) g2+ Eﬁgﬂgl =0. (E.15)

This system of equations will have non trivial solutions for g and g; if the determinant
of the coeflicient matrix is zero, i.e.

% =RF(n) £ aAtanhg—, (E.16)
Using equations (E.15) we can show that go = *ig;. This is a constraint on g; and go
thus we cannot split the eigenstates in the two directions, choosing one of the constants to
be zero. g; is now an overall constant, which can be chosen real and fixed by normalization
completely.
The eigenstates are then

Case-1
b . .
7= REMm+ aAtanhg-, 92 = —ig1 = —iga(m,n2) (E.17)
1
—1
&)y —
(V) = ga(ni, m2) \/%(51 - 1)0—[]1_—5—1|W) (E.18)
"i\/%(fl ~Vop=g W)
1
- —1
(E2)y — _
[V} = ga(nz,m) \/%.-(52 — 1)@1?5“4/) (E.19)
—iy/H& - Vg W)
Case-2
b . .
7= REm) - aAtanhg, g2 = ig1 = 1ga(72,M1) (E.20)
1
)
(62)y —
(V) = ga(ne, m) \/%(52 ~ )z W) (E.21)

iy/3(E2 ~ Vo W)
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1
V&Y = ga(n1,ma) \/%(51 ~ 1)
)

(E.22)
in/HE - Ve W)
Normalizing them in the following way!
chivfjva = §iJ
Vgivéj,a = §i
Vévee =g
we get, use the results of [15],
s 1 d -1
19a(m,12)[" = 575 | (1= 7(m, m2)) + r(m, m2)sinhm —— o [LogRF(m)] | (E.23)
where tanh(%) + tanh(%)
an an
— F 2 2 . .
7"(7717"72) R (m)éﬁF(nz)tanh(—'u-) + %F(nl)tanh(ﬂg) (E 24)

It is important to notice that V€ and V€1 are degenerate eigenstates of X, and the same
holds for V(€2) and V().

E.2 Continuous spectrum

If € is in the continuous spectrum of CU (£ = v(k), [15]), we cannot invert the operator
(CU —€). Thus, in this case, the solution of (E.7) and (E.8) is

1 1
|A1) = A1(k)|k) + %gl(v(k) - 1)Pmlw> (E.25)

|Ag) = Ag(K)|k) + IW). (E.26)

1
- Do
Where p is the principal value, [15]. Usmg these in (E.5) and (E.6), we get

Ak) = g1 \/%-k (?RFc(k) - 2) - %‘lk (ZEZ; . i) o (B.27)
Aalt) = g2/ 25 (RRG - 2) + A (H) = (E25)

!This is the standard way to normalized eigenvectors of hermitian matrices
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Note that in this case g; and go are completely free and we can choose them to construct
two linearly independent orthogonal vectors as follows
Case-1  go = ig1 = igc(k)

1
Vi(k) = ge(k) P(k)|k) + %(V(k) — 1)606_0_;1m|w> — iH(k, a)|k) (E.29)
iP(k)Ik) + iz (v(k) = Vogptm W) + H(k, a)lk)

Case-2  go = —ig1 = —ige(—k)

1
200\ o (] —i _
VAR = 9:(=F) | P@R)Ik) + 2 (v(k) ~ Dogp W) +ilH (ko)) |0 (B30
—iP(k)[k) — 64 (v(k) — Dpgyg W) + H(k, a) k)
where
]2, b _ V2Aa, [(v(k)—1
P(k) = \/;k (%Fc(k) 4> , H(k,a) = 73 k (u(k) n 1) . (E.31)
Imposing the continuous orthonormality condition
Vi (R)VI(K) = 676(k - k') (E.32)
we get
o\ 7 -1/2
_|4A 2 b Aa
ge(k) = [ 5 N(k) (4+k (%Fc(k) 1 tanhl—k> )} (E.33)

Sending k — —k we get the right degeneracy for X
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Appendix F

Diagonalization of the 3-string
vertex and the Lump state

We can express the oscillators a%?a, appearing in the 3-string vertex (2.111), in terms of
the oscillators of the diagonal basis as

2 } . _
Q=3 @ng +a07+ [ dkagﬂ(k)v;;g(k)) (F.1)
i=1 -
2 - . .
P = Z( STV + oDtV 4 / dicaz(’)"(k)vjﬁgg(k)) (F.2)
i=1 —o0

Using these oscillators and the fact that 7V = V (7§ = < (1) _01 )), we can rewrite

the 3-string vertex as

Vi) = Nmexp|— ZZ ( DTED + a7 4 / dkal (k)T (A))

8 i=1

B.NM

2 = o] .
x (10" )2 (Qj”vjfﬂ')ﬁ + ag”v,fff’ﬁ + / dk'a{ (kv 3P (k'))];nb,9> (F.3)
j=1 e

The twist operator 7C” acts on the eigenstates of the discrete and continuous spectra

as follows _ ) .
OV = &) 7C'V® (k) = V0D (—k), (F.4)

where V3(k) is identified with V1(k). Then (F.3) becomes

“/3 > meXp [-—ZZ( (T)f 7'3 é‘)a S)T_l_a'(r)f TS(&’L) S)'I’ +

T8 i=1

/ dkal (k)7 (=k)a (- k))] 104). (F.5)
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In order to write this in an exact diagonal form, we need to introduce oscillators with

definite T-twist parity
r T r ’or —al at — !
a, + ag, _ag, +7C ag, . CL,Ez (15z _ ag, 7C agz

:
= = , Of. —— =
Y V2 ‘ v V2

aj (k) +af,(—k) af(k)+7C'af (k)
V2 - V2

(F.6)

=—4

er(k) =

(F.7)

() = R LK) e (k) = rC'ar()
1 ¥ ¥

These oscillators have the following BPZ conjugation property

bpz 0; = —of bpz e; = —e}t , (F.8)

K3

and satisfy the commutation relations
[efwegj] = 6ij? [OE«U OZj] = 5’5]’7

lei(k), el (k)] = 650(k — k), [oi(k), o (k)] = 6;8(k — K), (F.9)

with all the other commutators vanishing. Using them into (F.5) we finally obtain

Vi) = Nmexp {——ZZ( () +urt (&) (el T + o o)

7,8 i=1

—i [ 'FS(&) _ ( ):| ( (r)t (j)T _ eg)fog)'}')
- /oo dip™ (k) (eY)T(k)egs)T(k) + OET)T(k)OES)T(k))

—i /_ : ki (k) (! ()0 ) — o ()l m)] 2%0) (F.10)

This gives the diagonal representation of the 3-string interaction vertex. The same
procedure gives the following diagonal representation of the transverse part of the Lump

A%(3 + 4a?)
V2rb3 (DetG) @

x (egezi g / dktc(k f(k)el (k) + o;f(k)o;f(k))]) 1%.6) (F.11)

1S1) = —Det(Z — X)ZDet(I—{—’T % <~—Z[td i)
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Appendix G

Asymptotic behauviors

In subsection 2.3.2, we have analyzed our solution in the large and small limits of the
parameter b. In this appendix we compute the relevant matrix elements in these asymptotic
regimes.

G.1 The b — oo Limit

From (E.16), we can write

RF(n2) — RF(m)

- G.1
= o T oRE () oanh (%) + Voo + 2RE () [oemh () (G
b RF(np)tanh(%) + RF (m )tanh() @2)
4 tanh(%-) 4 tanh(2) '
where we take, by definition, 72 > 11 > 0. There are two ways of taking b — oo
i) m2 — oo 5 my fixed
In this limit we can see that
b tanh(Z) 1 1
1~ (1 + tanh(%) log(1r2), “~ Stann(T) ~ 2 (G-3)

ii) m—oco3m— o0

We can parameterize 79 = n¥, 71 = n* and then take 1 — 00, while keeping y > z. We
then obtain
ly—x 1

(y + z)log(n), R (G4)

We will be concerned with this second regime as it is the one connected to a = 0, which
is a condition arising from the existence of the critical value for the E-field, when b — co.
In this second limit it can be easily seen that the discrete eigenvectors have the following

behavior 1
\/2—A6"”/ 2\/n:Logmma,

. £s i II: =Tk
Vog,,z - __VO&J ~ (_1)1—-—éz_e mi/2 n:Logninz,

~
~

> o
B

€l _ 81
W=

111



and

Vé’iaa - Vg’iva
Vi oy 0 Vil g - (G.5)
n vLogmmne v Logmmne

For the continuous spectrum the situation is more complicated and getting this limits is
not easy. However, it is possible to calculate the limit of (Vy®(k))?, which is enough for our

purposes. We have
2\ 11
4A b Aa
SN | 44+ K2 | RE(K) — = — . G.6
, ()( ( (k) - 2 tanh%k)ﬂ (G.6)

When b — oo this expression vanishes everywhere except at

(V3 () =

ko ~ —i—arcta,nh(2a) (G.7)

where it diverges. Expanding around ko one easily gets

4a b
ko(1 — 4a2)N (ko) (1 + (k — ko)2b?

(Vo (k) ~ A7

where k(1 — 4a?)
+  kom(l—4a
b= 64a b.
Now taking the b — oo limit one obtains
(Vo' (k))* —6(k ko).- (G-8)

Following the same procedure one can also show that

1
2,11.\2 ~
(Vi ())* % 58k + ko) (©9)
remember that
Vo2 (B)? = (Vo (k)% Vot (k)P = (Vo™ (k). (G-10)
The non zero components, Vi (k), can be expressed in terms of a generating function.
For instance, the generating function for V; (k) is given by
1 — NV
F®(2) = A1(k)f®(2) — (1= v(k)Vy (k)B(k,z) (G.11)
Vb
where

Aa
Axlk) = (k)\[ (w tanh(l;—)> ’

2 T V(k) 1 2

B(k,z) = T——v@[ Fo(k) + —= 575 Tt + log(iz) — 2if(k)(z)}
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2

T TUm

) k .
—4iarctan(z) —4iarctan(z) ,—~karctan(z)
[@(e L1+ —47:)6 e J (G.12)

where ® is the LerchPhi function and f®*) is the generating function for the spectrum of the
Neumann matrix without zero modes, [13]. Inverting this equation we can write Viy* (k) as

m ®)(z -V 1.1 m z
VA (R) = Ayt Y j‘{ 12 _ 0 (’3%‘/0 LN N 3T

With the same procedure one can also write

vm k) (2 —-v 21(k) m e, 2
Vit (k) = A1 (k)5 dzfszd) _d U%Vf’ (&) 5 pd BZ Sﬁ;l) (G.14)
with ,
, ’ 2 b Aa

. The other vectors are related to these ones as

Vo (k) = iV k), Vo2 (k) = =iV (k) (G.16)

G.1.1 Limit of §28©

‘With all these results at hand we can now calculate the continuous spectrum contribution
“to the non zero mode matrix elements in the limits under consideration. Recalling that
spectrum of the Neumann matrix without zero modes is given by

(k)
K _ Vm f¥(2)
o) = 5 P de (G.17)
we can write
o0
UE = / ks to(k)(=1)" [VAA (B) TR (k) + V2 (k) T2 ()] (G.18)
—00

as

SUO = /_ Z dl £o()(—1)™ [ A1 (k) Ay (ko — 4, (k)VE (ko) (1 - ﬁ(k»énmvig

=2 BV 0P 1 = () B ()= + (V3 1)1 = D) (1 = () B (9B ()]
+ [Aa) = 400, V5 () = V()] (G.19)
where
Bu(k) = ‘Z/z d BZ (k.2) (G.20)

Note that if the indices are separated by comma then the first index is the label of the
vector and the second is the space-time index, otherwise both are space time indices. Now
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we want to calculate each term in the above expression in the limit when b — oo. To this
end we notice the following

. ) 1, 2k2 b Aa 2
Jim Ay (k) A1 (k) =blirglo(%ll(k))2( 3 ) (%F (k) =7 m)

= 1 L AN (R I (G.21)
T 2T \2AN(k) ) 4+ k222~ \2AN(k)) k2 ~ 2AN(k) '
where z = (§RF (k) — —ﬁ%;;) The other terms are zero in the limit because, either

they contain term like (k ko)d(k — ko) in the integral or they are of order 3. Therefore,
we are left with

A © dk t.(k
lim S2H9 = lim §22) = A71S,,,, where Sppm = — —C—E——Zv,(zk) k) (G.22)
b—o0 b—oo —00 N(k)
and X X
lim 821 = Jim §12(9) = 0, (G.23)
—00 b—o0

which is the sliver in each direction with corrections of order %

G.1.2 Limit of §2°©

In this section we would like to justify that the contribution from the continuous spectrum
to Sg,ﬁ is zero in the limit. This can be computed the same way as before since we have

lim $7© — lim Z / dk to(k) V2 (k) VE (k). (G.24)

b—oo

For instance, lets calculate Sgo L)

11(c)_ . * (k)\/?k L1 2 _b__ Aa
Son = tim [ di el 5k | (50 |RE) - Y

b Aa 1
) + O(—\/Tl;) (G.25)

RF(k) — =+ ———=
e(k) 4 tanh(ZE)

We have already verified that limb_.,oo(‘/g’a(k))z ~ 26(k =+ ko). This will allow us to expand

the terms in square brackets about the points £k to get

which is given by

+ (V5" (k))?

- 2
§HE A fim [ dk to(k)ul®) [ 8(k — ko)Vb(k — ko)kom (1 da )

b0 J_oo 32a

— 4q2
+ %6(k + ko) Vb(k + ko) (—ko)m <1 3;2 )] + O(—%). (G.26)
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Due to the presence of the delta functions the terms (k= kg)+/b are both finite in the b — oo
limit. As a matter of fact, we can safely do the integrals first and take the limits later. Since
the integrals vanishes we note that

S3e ~ . (G.27)

m

Similar steps show that all the remaining terms of SO @8() are also zero.

G.2 The b — 0 Limit

As it was mentioned before this limit can be obtained by taking 171 — 0. In this limit it is
not hard to see that

o B (ns)
mm (G.28)
anh(2
ga(m,me) ~ \/;_A_ (1 ;%;Eﬂzi ) (G.29)
~1/2
9d(772,"71) ~~ \/% [2tanh(%) <51nh772 88 [Logﬂ%F(’r)g)] — l)] \/';]—1' (G.30)

One can use these results and equations (E.18) through (E.22) to write down Vf" VOE"’O‘

V‘Eua and ng: -
1 tanh (L2
Vil = V517 A e (1 - Mm> :

V2A 2RF (ns)
. 1 tanh (%)
v — vy o (1 ) G.31
0 0 b YN 2RF (1) n ( )

] ) " 5 _1/2
Vil = vl n ot [Qtanh(-z-) (smhnz o [LogRF(nz)] — 1)} Vi

—-1/2

3 1 d
1/652’2 = —1/;)'52’2 RS e Sk [2’5 h( ) (smhnza [LogRF(n2)] — 1>J vm, (G.32)

and _
V’l’fl’a = iVﬂ?l’a ~ /M,

: 1 my (.8 i/
Ve = gylne oy [2tanh —= (smh ——[LogRF - 1)] . G.33
0 = 2V s — | 2tanb() ( sinbm - LogRF ()] fm). (G.33)
The f is a regular function of 75. On the other hand
9.(k) =~ 0. (G.34)

This shows all V;® (k) are zero, whereas V% (k) are finite and b independent to the leading
order. These results are extensively used in subsection 2.3.2 to calculate quantities like s,
8o in the b — 0 limit.
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Appendix H

A discussion of four—point
functions

Using Hirota equatmns (3.51-3.53) one can easily express the four-point functions
[T, D (2)F, (r) [I2_, Dr(2)F and 8 0 12, Dr(z)F in terms of the two-point func-

tions [2_, (zl)F and 8(T)D (2)F as Well as the four-point function 83 (T)D (2)F. The

two—point functions were already identified with the corresponding generatmg functions of
the Neumann coefficients (see, egs. (3.46)), so one is left with the problem of first finding a
suitable identification for the four—point function 83 (r)D (z)F, which leads to the straight-

forward derivation of all other. It is interesting that if one additionally requires that the
four-point functions admit a factorizable form as functions of z;, then the identification
of 83 (T)D (2)F is uniquely fixed modulo three arbitrary SL(2)-group parameters ar, b, cr

and d (brcr — ardy = 1) as follows

(=) =1 arpr(21) + br
or(z71)  cror(z7h) +dr

Using this and egs. (3.51-3.53), one can derive the corresponding explicit expressions for
the remaining four—point functions

(r)D (2)F = o (H.1)

82 2 D ( )F 2 (P'r‘(z’l?-l)_l (H2)
r l | Zi = - l I T .
t’ =1 o i=1 c"‘p’"(zi l) +dr
3
So'r
8 r) D.(z; F = —d H3
t g () zl—[l c,.t,or(z 1)-&—al (F.3)
- 2 SDT(Z_I
Dp(z))F = -—d: H4
[Pt ler R (H4)
The four—point functions (3.55) are a particular case of the latter for
1 Gr 1
d == ——— b :O, = — H.5
" Ay \/§ Qp—1 ’ e \/:_3' ar ( )



Let us remark that if one rescales the parameters in egs. (H.1-H.4) as follows
1
{aT‘y bTy CT‘7 d’r} = _6- {a'T7 bT) C'r‘a d’l’} (H6>
and consider the limit ¢ — 0, then the four-point function 83 (,)D (2)F preserves its form

(H.1) with the parameters satisfying br.c, — ard, = 0, so it becomes

7 H—-1a
af(r)Dr(Z)F=£L<—~)-— r
0

e )

but all the other four—pomt functions degenerate and become equal to zero,
62(,) Hz_ Dy (z)F = O, ) IL_ Dy (z)F = Hz_ D,(z)F = 0.
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