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Preface

This Ph.D. thesis concludes a research accomplished within the Mathematical Physics
Sector of SISSA, International School for Advanced Studies of Trieste, from November
2007 to September 2010. The work has been carried out under the constant supervision
of Prof. Gianfausto Dell’Antonio and in collaboration with Gianluca Panati.

This dissertation is structured according to a fictitious tripartition.

e The first part (Chapters 1 and 2) aims at introducing the reader into the subject
and presenting in a concise but exhaustive way main results achieved and tech-
niques employed. Chapter 1 starts with Avron’s tale about the story of the quan-
tum Hall effect (QHE). These introductory pages, aimed to fix the basic physical
notions and the nomenclature of the QHE, can be skipped by the reader expert in
the field. The rest of Chapter 1 is devoted to a general and non technical exposition
of the initial motivations (open problems) that inspired this work and of the main
results achieved (solution of the problems). Therefore, Chapter 1 fixes precisely
the scope of this thesis. In Chapter 2, the “Ariadne’s thread” of our research project
is unrolled. This chapter contains the rigorous statements of our main results, as
well a consistent presentation of needful mathematical tools. Reading these first
two chapters should be enough to have a detailed knowledge about scopes and re-
sults of the thesis.

e The second part (Chapters 3, 4 and 5) contains the technical aspects, that is the
proofs of the main theorems, as well the “paraphernalia” of lemmas, proposition,
notions, needful to build the proofs. Chapter 3 and 4 are largely based on two
papers:

- (De Nittis and Panati 2010): “Effective models for conductance in magnetic
fields: derivation of Harper and Hofstadter models”. Available as preprint at
http://arxiv.org/abs/1007.4786.

- (De Nittis and Panati 2009): “The geometry emerging from the symmetries of a
quantum system”. Available as preprint at http:/arxiv.org/abs/0911.5270.

A third paper, containing a compendium of Chapter 2 and Chapter 5, is in prepa-
ration with Gianluca Panati and Frédéric Faure.

e The third part (Appendices A, B and C), containing auxiliary material, aims to
make this dissertation as much self-consistent as possible.
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In order to help the reader to “navigate” the text, each chapter has been equipped
with a small abstract which describes the content of the sections.

Trieste, Giuseppe De Nittis
October 2010
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Prologue

espite of its title, this dissertation is not supposed to be a compendium of a young
D entomologist’s research on new exotic species of colorful butterflies. The following
pages will not either tell the story of a hunter determined to catch unknown specimen
of enigmatic multicolored insects living in the forest in the heart of Africa or South
America.

The unwary reader, possibly intrigued by the title, would be somehow surprised to
realized that this work is actually a Ph.D. thesis in Mathematical Physics.

Nevertheless, this ambiguity hides some truths. Mathematical ideas fly light with
“butterfly wings” in mathematician’s mind. They are painted with the “gaudy colors”
of intuition and imagination. The mathematician spends his time “hunting for new
problems” just like the entomologist does for his preys. Tools he uses to get his “hunting
trophy” are theories, theorems, proofs and so on.

Keeping in mind this analogy, the reader may consider this thesis as the story of my
personal hunt to unveil the secrets of quantum butterflies.

Well, It is time to cry aloud: - the hunt begins! -.






Chapter 1

Introduction

On ne connait pas completement une science tant qu’on
n’en sait pas lhistoire.

(One does not know completely a science as long as one
does not know its history.)

Auguste Comte
Cours de philosophie positive, 1830-1842

Abstract

The aim of this introductory chapter is to present the scope of this thesis fixing basic
notions and terminology, as well to provide a complete, but non technical, exposition of
the main results. Section [I.1]is devoted to a historical review of the quantum Hall ef-
fect (QHE), trough main steps that lead to its “topological interpretation”. The notions
of topological quantization and topological quantum numbers are expounded using
the Dirac’s monopole as a paradigm. This first section is “borrowed” from (Avron
et al. 2003, Avron et al. 2001). Thouless et al. showed in the seminal paper (Thouless
et al. 1982) that the quantized values of the Hall conductance are topological quan-
tum numbers. The content of the paper by Thouless et al. is discussed in Section
A special attention is paid to the TKNN-equations which are Diophantine equations
for the values of the quantized conductance. TKNN-equations play a crucial réle in
this thesis. Some assertions in (Thouless et al. 1982) are lacking of rigorous justi-
fications. These “gaps” in the mathematical structure of the work of Thouless et al.
are listed in Section One of the goal of this thesis is to fill such mathematical
gaps and so Section [1.3| can be considered as our “operation plan”. In this section
we present (quite informally) the main results of this thesis. Quantum butterflies are
diagrammatic representations of the TKNN-equations. Section[I.4|contains a descrip-
tion of the main features of these charming pictures. A geometric justification of the
TKNN-equations is needed to provide quantum butterflies with a rigorous geometric
meaning. This is the main goal of this thesis.

1.1 Ante factum: phenomenology of the QHE and topologi-
cal quantum numbers

he quantum Hall effect (QHE) is the central argument of this thesis. Therefore,
it could be appropriate to start with a brief review of the phenomenology and the
theory of QHE, in order to provide the inexpert reader with basic notions and needed
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terminology. The long story of the QHE, from the first experiments up to the brilliant in-
tuition of its “topological interpretation”, has been excellently narrated by J. E. Avron in
the beautiful introductions of (Avron et al. 2003, Avron et al. 2001). Due to the complete-
ness, the synthesis and the charm of Avron’s presentations, I realized that it was quite
impossible (at least for me!) to expose in a better way the story of the QHE. Therefore, I
considered more “honest” to borrow the Avron’s tale, offering to the reader a moment of
quality literature. The reader expert in QHE is advised to skip directly to Sections (1.2
and

The beginning of the story

The story of Hall effect begins with a blunder made by J. C. Maxwell. In the first edition
of his book, A treatise on Electricity and Magnetism, discussing about the deflection of
a current by a magnetic field, Maxwell wrote: “It must be carefully remembered, that
the mechanical forccﬂ which urges a conductor carrying a current across the lines of
magnetic force, acts, not on the electric current, but on the conductor which carries it.
[...] The only force which acts on the electric currents is the electromotive force, which
must be distinguished from mechanical force [...].” (Maxwell 1873, pp. 144-145). Such
an assertion should sound odd to a modern reader, but at that time it was not so obvious
to doubt the Maxwell’s words.

In 1878, E. H. Hall, student at Johns Hopkins University, was studying the Maxwell’s
treatise for a class by H. A. Rowland and being puzzled by the above Maxwell’s remark,
he queried his teacher. Rowland’s answer was that “/...] he doubted the truth of Maxwell’s
statement and had sometime before made a hasty experiment for the purpose of detecting,
if possible, some action of the magnet on the current itself, though without success. Being
very busy with other matters however, he had no immediate intention of carrying the
investigation further.” (Hall 1879, p. 288). Figure[1.1]shows a sketch of the experimental
setup proposed by Rowland.

At first attempt, possibly because of the failure of Rowland’s experiment, Hall de-
cided to undertake a new experiment aimed at measuring the magnetoresistenc«ﬂ Nowa-
days we know that this is a much harder experiment and indeed it failed, in accordance
with Maxwell’s prevision. At this point Hall, following an intuition of Rowland, repeated
the initial experiment made by his mentor, replacing the original thick metal bar with
a thin (d < w in Figure gold leaf. The thinness of the sample should compensate
for the weakness of the available magnetic fields. The result was that the magnetic
field deflected the galvanometer needle showing that the magnetic field permanently
altered the charge distribution, contrarily to Maxwell’s prediction. The transverse po-
tential difference between the edges, Vg in Figure is called Hall voltage and the Hall
conductanceﬂ is the longitudinal current I divided by V5.

!The mechanical force which is observed acting on the conductor is known as the ponderomotive force.

2The magnetoresistence is the variation of the electrical resistance due to the magnetic field.

3Some authors use the terminology Hall conductivity instead Hall conductance. The two expressions are
both correct. Indeed in two spatial dimensions (d < w in Figure[I.I) the conductivity (microscopic quantity)
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Figure 1.1: Sketch of the experimental setup for the Hall effect. A magnetic field B normal to a thin bar
of a (conductor) sample induces a Lorentz force on a current I which flows in the xz-direction. This force
separates charges and leads to the emergence of a voltage Vg in the (transverse) y-direction. This is the

Hall voltage detected by Hall in 1878 and erroneously predicated to be zero by Maxwell.

As a consequence of the discovery of this new effect, known as (classical) Hall effect
(CHE), Hall obtained a position at Harvard. His paper (Hall 1879) was published in
1879, the year of Maxwell’s death. In the second edition of Maxwell’s book, which ap-
peared posthumously in 1881, there is a polite footnote by the editor saying: “Mr. Hall
has discovered that a steady magnetic field does slightly alter the distribution of currents
in most conductors so that the statement [...] must be regarded as only approximately
true.”

1929 traces a second remarkable year for the story of Hall effect. Since the early ex-
periments, it was clear that the magnitude, and even the sign of the Hall voltage depends
on the material properties of the conductor. Although this peculiarity made the Hall ef-
fect an important diagnostic tool for investigating the carriers of electric current, the fact
that the Hall voltage was found to be positive for some conductors and negative for oth-
ers opened a new problem. One sign is what one would expect for (free) electrons moving
under the combined action of mutually perpendicular electric and magnetic fields. The
unexpected sign, instead suggested the disconcerting idea that the charge of electrons
was wrong! This phenomenon was called the anomalous Hall effect.

R. Peierls, at that time student of W. Heisenberg, was challenged by his mentor to
solve the problem of the anomalous Hall effect. The right tool was provided by the

ou := J/Ey coincides with the conductance (macroscopic quantity) Xy := /vy since the longitudinal density
of current is j := I/w and the transverse electric field is given by Ey = Vi/w (Morandi 1988). In this sense
the quantization of the Hall conductivity is therefore a macroscopic quantum phenomenon.
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new (quantum) mechanics of which Heisenberg was one of the founding father. In fact,
Peierls was enlightened by the results of F. Bloch (also Heisenberg’s student) concerning
the quantum mechanical behavior of electrons in a periodic crystalline field. Peierls
realized that when the conduction band is only partially full, the electrons behaves as
free particles, and the Hall response is consequently normal (right). However, when
the conduction band is completely full the electrons move in the wrong way because
of diffraction through the lattice. The conductance turns out to be determined by the
missing electrons, i.e. the holes, and the anomaly is solved since the charge of a hole is
opposite (wrong) to the charge of an electron (Peierls 1985, pp. 36-38).

The third step in the story of the Hall effect begins a century after Hall’s discovery. In
1980, performing experiments at the Grenoble High Magnetic Field Laboratory (France)
on the Hall conductance of a two-dimensional gas at very low temperature, K. von Ki-
itzing discovered that the Hall conductance, as a function of the strength of the external
magnetic field, exhibited a staircase sequence of wide plateaus. Moreover the values of
the Hall resistancdz_f] turn out to be integer multiples of a basic constant (the von Klitzing
constant)

h
Rx := = = 25812.807557 £2, (1.1)

where h ~ 6.62606896 x 10734 J - s is the Planck constant and e ~ 1.602176487 x 10719 C
the elementary electron charge. Von Klitzing was awarded the Nobel prize in 1985 for
the discovery of this new effect (von Klitzing et al. 1980), today named quantum Hall
effect (QHE). The surprising precision in the (measured) quantization of the values of the
resistance during experiments of QHE has provided metrologiste a superior standard of
electrical resistance.

The most remarkable features of the QHE is that the quantization takes place with
extraordinary precision in systems that are imprecisely characterized on the microscopic
scale. Different samples have different distributions of impurities, different geometry
and different concentrations of electrons. Nevertheless, whenever their Hall conduc-
tance is quantized, the quantized values mutually agree with an astonishing precision.
How to explain the robustness of this phenomenon of quantization?

The first attempt in this direction was made in 1981 by R. Laughlin. In his paper
(Laughlin 1981), the author considered a cold two-dimensional electron gas such that
the thermal agitation can be neglected (the free particle approximation). In this regime
the time evolution of the system is recovered by the knowledge of the wavefunction of
a single electron. Laughlin suggested to interpret the QHE as the effect of a quantum
pump. He assumed that the electron gas was confined on a cylindrical surface with
a strong magnetic field applied in the normal direction as shown in Figure The
two opposite edges of the surface are connected to distinct electron reservoirs R; and
Rs>. The pump effect, which transfers charges from R; to R», is driven by a magnetic

“The Hall resistance is defined as Ry := Vii/1. According to Footnote |3} Ry is the inverse of the Hall
conductance Xy and, due to the two-dimensional geometry, it coincides also with the inverse of the Hall
conductivity. The latter is by definition the Hall resistivity py := Bu/;.
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Figure 1.2: The figure shows (in red) the quantization of the Hall resistivity pg in a GaAs-GaAlAs het-
erojunction, recorded at a temperature of 30 mK. The diagram includes (in green) also the longitudinal
component of resistivity pr,, which shows regions of zero resistance corresponding to each QHE plateau.
The horizontal axis shows the values of the magnetic field in units of tesla (T). The values of the Hall re-
sistivity are recorded on the left vertical axis in unit of von Klitzing constant (Rx = "/e?). It is apparent
the quantization of the plateaus at py = % Rk withn = 1,2,3,4,6,8,.... The right vertical axis shows the

values of the longitudinal resistivity in units of kilo-ohm (k).

flux ® through the ring which can be controlled by an external operator. Changing the
intensity of ®, an electromotive force is generated around the cylinder and, by Hall effect,
one observes a transfer of charge from one reservoir to the other. The Hamiltonian for
the system is gauge invariant under flux changes by integral multiples of the magnetic
flux quantum ¥ := hc/e (Aharonov-Bohm principle, cf. (Schwarzschild 1986)) where ¢ ~
299792458 m/s is the speed of light in vacuum. Therefore, a cycle of the pump corresponds
to a (adiabatic) change of the flux from ® to ® + ®,. A simple calculation shows that
the Hall conductance of the system (measured in units ¢°/n) is given by the number
of electrons transported between R; and R, in a cycle of the pump. Using Laughlin’s
words, “ Since, by gauge invariance, adding ®y maps the system back into itself, the
energy increase due to it results from the net transfer of n electrons [...] from one edge to
the other ” (Laughlin 1981, p. 5633). The quantization of the Hall conductance follows
as a simple consequence of the electric charge quantization.

Nevertheless, the above explanation contains a subtle gap. Admittedly, the mea-
surement of the number of electrons in a reservoir, as well as the number of electrons
transferred from R; to Ry, must be an integer accordingly to the basic principles of
quantum mechanics. However, there is no “a priori” reason why each cycle of the pump
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Figure 1.3: Schematic representation of the Laughlin’s gedanken experiment. A two dimensional surface
with a cylindrical geometry contains a cold gas of electrons. The two opposite edges of the surface are
connected to distinct electron reservoirs R; and R». A strong magnetic field B acts orthogonally to the

surface. ® denotes a time-dependent magnetic flux through the loop formed by the surface.

should transfer the same number of particlesﬂ In a quantum theory the measured Hall
conductance is the average number of particles transferred in a cycle of the pump. Since
in general this number is a fluctuating integer, then its average does not need to be
quantized.

Laughlin’s work played a fundamental réle in the development of the theory of QHE.
However, to fill the gap in his explanation, one has to explain why averages are also
quantized. The “magic tools” which quantize averages are topological quantum numbers
(Thouless 1998).

However, we are now far from the beginning of the story ... and it is time to go
beyond.

Topological quantization: the missing tool

There are two distinct mechanisms that force physical quantities to assume quantized
values. The first mechanism is the orthodox quantization, namely the quantization
emerging from the basic principles of quantum mechanics, according to the original for-

® Gauge invariance requires that, after a cycle, the pump (i.e. the electron gas without the reservoirs)
is back in its original state. Nevertheless, in a quantum theory, this does not imply that the transported
charge in different cycles must be the same. While in classical mechanics reproducing the state of a system
necessarily implies reproduction of the outcomes of a measure, the same is no longer true in the quantum
world. So the gauge invariance is not sufficient to state that the number of electrons transferred in every
cycle of the pump is constant.
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mulation given by W. Heisenberg, E. Schridinger, M. Born, etc. Essentially, the orthodox
quantization is a consequence of the fact that observables are represented by matrices,
and a measurement always yields an eigenvalue of the matrix as outcome. For instance,
the number of charged particles that one finds in an electrometer is a quantized quan-
tity since the operator “number of particles” (which can be thought as an infinite matrix)
associated to this observable possesses a spectrum (set of eigenvalues) given by the set
of integers {0,1,2,...}.

Topological quantization is a more arcane and deep form of quantization, rather dif-
ferent than the orthodox quantization. The first pioneering work, which opened the
exploration of this new paradigm for the quantization, was done by P. A. M. Dirac
(Dirac 1931) with his attempt to explain the quantization of the charge. Dirac proposed
a theory to prove that the existence of a quantum of charge naturally follows from the
first principles of quantum mechanics.

He considered a magnetic monopole (i.e. a point-like magnetic charge) whose mag-
netic field behaves as B(r) = ¢, ("/|r?) with » € R? and ¢,,, the magnetic charge of the
monopole. Due to the divergence of B to be equal to zero almost everywhere except for
the locus of the magnetic monopole at » = 0, one can locally define a vector potential A
such that B(r) = V, x A(r). Nevertheless , the vector potential cannot be defined globally
just because the divergence of the magnetic field is singular (proportional to the Dirac
delta function) at the origin. With respect to a spherical coordinate system, one has to
define a set of functions for the vector potential on the northern hemisphere, and one
for the southern hemisphere. These two vector potentials are matched at the equator,
and the change between the two functions corresponds to a gauge transformation. The
wave function of a probe charge (i.e. an electrically charged particle) that orbits along
the equator sets a phase shift A¢ as in the Aharonov-Bohm effect. A¢ is proportional to
the electric charge ¢. of the probe particle, as well as to the magnetic charge ¢,, of the
source. As the global phase e®(") of the probe charge wave function should not change
after the full trip around the equator, the extra-phase A¢ added in the wave function
has to be a multiple of 27, i.e. Z > % = C%ln = ¢.C), where C is a suitable dimensional
constant and C,, := C'¥=. This is known as the Dirac quantization condition. The possi-
ble existence of even a single magnetic monopole in the universe would imply g, = nl/c,,,
that is the quantization of the electric charge in units of C;!.

From a topological point of view, if one tries to write the vector potential for the mag-
netic monopole as a single function in the whole space one finds a singularity on a string
(called Dirac string) that starts on the monopole and goes off to infinity. The string
behaves as a thin solenoid carrying a magnetic flux. Hence, if the flux is quantized ac-
cording to the Dirac quantization condition, the singularity of the vector potential can be
removed by a gauge transformation. Since only the modulus of the wave function (rather
than its phase) and the electromagnetic fields (rather than the potentials) have direct
physical meaning, the singularity is only apparent, as it can be removed by a gauge
transform. The string is invisible to a quantum particle, and the magnetic monopole is
all that remains.
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For various theoretical and experimental reasons, Dirac’s theory is not a completely
satisfactory solution of the charge quantization problem. However, it is a paradigm of an
interesting mechanism of quantization that has a topological origin. In Dirac’s scenario
the quantization of the charge ¢, is not a consequence of the fact that the extra-phase
A¢ is associated to an operator with a discrete set of eigenvalues. In fact, ¢. and ¢,, play
the role of ordinary numerical parameters in the theory. Since the quantization of ¢,
has a topological origin, one refers to it as a topological quantum number (TQN).

A consequence of the Dirac’s theory is that every measurement of the charge ¢. yields
the same value n (in units of C,.!), and not different multiples of a basic unit. Thus, both
the single measurement and the average are quantized with same value n. This is why
topological quantum numbers are responsible for the quantization of expectation values.

The arcane has been revealed ... and now we know the way to go beyond.

1.2 Factum: topological interpretation of the QHE by Thou-
less et al.

owadays, topological quantum numbers play a prominent réle in many problems
N arising in solid-state physics (Thouless 1998). Just to mention few examples, they
appear in the contexts of adiabatic evolutions (Berry 1984, Simon 1983), macroscopic
polarization (Thouless 1983, King-Smith and Vanderbilt 1993, Resta 1992, Panati et al.
2009) and quantum pumps (Avron et al. 2004, Graf and Ortelli 2008). However, for the
purposes of this thesis we are mainly interested in the application of the topological
quantization in the context of QHE (cf. (Graf 2007) for a recent review).

B. A. Dubrovin and S. P. Novikov discovered that a two dimensional system of non-
interacting electrons in a periodic potential exhibits an interesting topology (Dubrovin
and Novikov 1980). Novikov refers he queried his colleagues at the Landau Institute
about the physical interpretation of the topological invariants he discovered, but nobody
provided him with a useful insightﬂ

Only later in 1982 D. J. Thouless, M. Kohmoto, M. P. Nightingale and M. den Nijs
(TKNN), studying independently the same model considered by Dubrovin and Novikov,
realized that the emerging topological quantum numbers are related with the Hall con-
ductance (Thouless et al. 1982).

As the work of Thouless et al. is the “starting point” for this thesis, it is worth to
go through the major ideas contained in the “TKINN-paper” (Thouless et al. 1982). The
strategy of their proof can be divided into four fundamental steps.

5The reader has to note that the paper of Dubrovin and Novikov was submitted on February 1980, two
months before the submission of the seminal paper of von Klitzing et al. (May 1980). It is not surprising
that nobody in Landau Institute was able, at that time, to recognize the link between the Novikov’s work
and the QHE.
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Quantized Hall Conductance in a Two-Dimensional Periodic Potential

D, J. Thouless, M. Kohmoto,'"’ M. P, Nightingale, and M. den Nijs
Department of Physics, Universily of Washington, Seattle, Washington 98195
(Received 30 April 1982)

The Hall conductance of a two-dimensional electron gas has been studied in a uniform
magnetic field and a periodic substrate potential 7, The Kubo formula is written in a
form that makes apparent the quantization when the Fermi energy lies in a gap. Explicit
expressions have been obtained for the Hall conductance for both large and small I/ /hew, .

PACS numbers: 72,15,Gd, 72,20, Mg, 73.90.+b

Figure 1.4: Header of the seminal paper of Thouless et al. that contains the first topological explanation
for the QHE.

(I) The analysis of the QHE requires the study of the spectral properties of the two

ID)

dimensional single particle Schrédinger operator, given (in suitable units) by

2 2
Hpgp, = % (Zail + B:L‘2> + % <lai‘2 — B$1> + VF(.Tl, 1:2),
where the potential V- is periodic with respect to I' ~ Z? and B is the strength of
an orthogonal uniform magnetic field. However, the analysis of such an operator is
a formidable task. The first intuition of Thouless et al. was that the relevant phys-
ical features of the system can be captured by simpler (effective) models in suitable
physical regimes, as the (Harper) regime of strong magnetic field (i.e. "v/B < 1)
or the (Hofstadter) regime of weak magnetic field (i.e. Vr/B > 1). In particular, in
(Thouless et al. 1982) the authors considered explicitly the Harper regime (equiv-
alently the weak periodic potential limit) which leads to study a simpler Hamil-
tonian Hy,, (Harper Hamiltonia) and its eigenvalues equation known as Harper’s
equation (cf. Figure[1.5).

The geometry of the crystalline structure and the strength of the magnetic field are
the two specifications of any apparatus for the detection of the Hall effect. Thus,
the flux of the magnetic field through the fundamental cell of the crystal lattice
(conventionally denoted by h;l) is the natural parameter in the description of the
QHE. When hp takes rational values, the system shows a Z2-symmetry, i.e. there
exists a pair of commuting unitary operators 7 and 75 such that [T}, Hgy,| = 0 for
j = 1,2. The same is true for the effective Harper Hamiltonian Hy,,. Thouless et
al. used this information to decompose the operator Hy,, in a family of Hamiltoni-
ans H (k) parametrized by the points k := (k1, k) of a two dimensional torus T? (cf.
Figure [1.6). The decomposition procedure follows by a simultaneous diagonaliza-
tion of Hyy,, together with the unitaries 7) and T, that implement the Z2-symmetry.
Any spectral projection P of Hy,, decomposes as a k-dependent family of spectral
projections P(k) of H (k). The range of P(k), denoted with ImP(k), defines a k-
dependent family of vector spaces. The collection (disjoint union) | | ImP(k) was
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(III)

Iv)

interpreted by Thouless et al. as the total space of an “emerging” vector bundle
over the base space T?2.

The third step consists in the use of the Kubo formula (linear response theory) to
compute the Hall conductance (cf. Figure [1.7). In virtue of the decomposition in-
duced by the symmetry (step II), Thouless et al. showed that Kubo formula reduces
to the following integral:
o (P) = o [ Tr(PO) 00, P(0: 00, PR diy A dk,
(27) J2

=Tr K(P)

where 057°°(P) denotes the Hall conductance associated to the spectral projection
P of the Harper Hamiltonian, « is a dimensional constant (o« = ¢*/n in usual units)
and K(P) is a curvature for the vector bundle associated to P via decomposition.
The integral of the trace of ;- K (P) (two-form) over the two-dimensional manifold
T? defines an integer C;(P) called (first) Chern number. Since it is known that the
Chern numbers are integer topological invariants (topological quantum numbers),
one has 057>°(P) € oZ for any spectral projection, that is the quantization (in
units of «) of the Hall conductance.

This is the most interesting step contained in the TKNN-paper, at least for the
purposes of this thesis. Thouless et al., on the basis of (quite obscure) theoretical
motivations, deduced the existence of a duality between the opposite regimes of
strong and weak magnetic field. In particular, they claimed that in both regimes
the Hall conductance is (up to a dimensional factor o« = €*/n) the Chern number of
a suitable vector bundle defined by a spectral projection. Assume that the effec-
tive models for the Hofstadter regime and Harper regimes have the same spectral
structure. Let P; be the spectral projection defined by the energy spectrum up to
the gap G; and denote with ¢(G;) := 0B7°(P;) (resp. s(G;) := 0579(P;)) the Hall
conductance (i.e. Chern number) in the Harper (resp. Hofstadter) regime. Accord-
ing to the content of the TKNN-paper, the integers ¢(G;) and s(G;) are related by
means of a Diophantine equation (cf. Figure|1.8)

N H(Gy) + M 5(G;) = j j=1,...,N (1.2)

where the integers M and N are fixed by the condition of rationality hp = M/n (c.f.
Section [2.5). We refer to as the system of TKNN-equations. The formula
is the manifestation of a “mysterious” geometric duality connecting the opposite
regimes of strong and weak magnetic field. It is quite surprising that very different
physical regimes are related by a so simple and elegant algebraic formula.
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The problem of evaluating this gquantum number both in the limit of a weak periodic potential (U]
remains. We have considered the potential «hw,) and in the tight-binding limit of a strong
e A — s periodic potential. In the weak-potential limit
(\ Ulx,y) =U, cos(2rx/a) +U,cos(21y /b)), (5)") the wave function can be written as a superposi-

tion of the nearly degenerate Landau functions in

the same Landau level N:

L) i .kaz
yp, = 2ads 20 XX =
k2 n=1 3=

nga . hga s +
’Y: -lga - %) exp[— xkl(x -lga - %) + 2niy (Lb"_)} (W]

where xy is the appropriate oscillator wave function. Since the term U, cos(2nx/a) is diagonal in the
Landau functions and U, cos(2my /b) ehanges the value of » by unity, the amplitudes d, satisfy the secu-
lar equation of the form

<::jjif‘:éxiaf-:iq_ak1/p)d,-l +2V* coslgbk,/b + 21ng/p)d, + V expligak,/p)d,s, =Ed,, (8 =&

with V and V' proportional to U, and U,,” and with
(dn+p=d,. This is known as Harper’s equation.®

Its spectrum has been studied in detail by Hofstad-

ter'® for the iostropic case V =V'. We have made

considerable use of his results.

Figure 1.5: In the limit of a strong magnetic field (i.e. weak periodic potential limit), relevant features of

the dynamics of the system are captured by a simple effective model known as Harper’s equation.

We consider electrons in a potential U(x,y) We take ¢ to be a rational number p/q; the be-
which is periodic inx,y with periodsa, b, and in havior for irrational values of ¢ can be deduced
a uniform magnetic induction B perpendicular to by taking an appropriate limit. We use the Landau
the plane of the electrons. The band structure of  gauge in which the vector potential has compo-
such a system depends critically on ¢ =abeB /i, nents (0, eBx). In this gauge the eigenfunctions of
which is the number of flux quanta per unit cell. | the Schrodinger equation can be chosen to satisfy
the generalized Bloch condition

Uayaple +ga,y)exp(=21ipy /b —ik,qa) =iy p, 0,y + b)exp(=ikyb) =0, .. (x ), (1)

where %, (modulo 27/aq) and k, (modulo 27/5) are good quantum numbers.! We can now define functions
Yy =Py, exp(—ikx —ik,y) which satisfy the generalized periodic boundary conditions

Upagle +qa,y)e 2" 2, O,y +B) =y (L), @)
and are eigenfunctions of a Hamiltonian )
s 1 3 2 1/ .8 3 ' ' :
¢ ﬂ&l,k2)=ﬁ(—tﬁa +f§k1) +-2;;(—sh5 -Iﬁkz-eﬂ‘x) +U,y). 3) >

The components of the W-.-looity- operator are then given by /"' times the pa.i-tial dérivatives of H with
respect to &, k.

Figure 1.6: The system exhibits a Z?-symmetry under the assumption that the flux of the magnetic
field through the fundamental cell of the crystal lattice takes rational values. This symmetry is used to

decompose the Hamiltonian of the system by means of a simultaneous diagonalization procedure.
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An alternative approach is to use the Kubo formula for a bulk two-dimensional conductor,
Because of the relation between the veloeity operator and the derivatives of H, the Kubo formula can
be written as

5 gt ©A/ok,)us OH/0k5)go = 0 /0k;)as 0H/0k))50
Af e Ep €p>Ep (€x—€p)? .
where A, is the area of the system and €,,€; are
eigenvalues of the Hamiltonian. This can be re- [
lated to the partial derivatives of the wave func-
tions u, and gives

—ie? . ou* ou ou* bu
O41= 37 2 dkfdar(akl ok, ~ ok, akl)

“

The integral over the k-space
unit cell has been converted to an integral around
the unit cell by Stokes’s theorem, For nonover-
. lapping subbands ¢ is a single-valued analytic

\function everywhere in the unit cell, which can

ie? Au  du*
=Eﬁ—h2fdk_, da’f(ﬂ*'aTj' —Eu), (5]

where the sum is over the occupied electron sub-
bands and the integrations are over the unit cells

_ only change by an »-independent phase factor ¢

when k, is changed by 27/ag or k, by 2r/b. The
integrand reduces to 36/8k;. The integral is 2/
times the change in phase around the unit cell and

in r and k space. must be an integer multiple of 4ri.

Figure 1.7: The Kubo formula is used to compute the Hall conductance. The decomposition induced by
the symmetry reduces the Kubo formula to an integral of a curvature, namely a Chern number. The latter

is an integer topological invariant

The value of s, is independent of %,
and determined by tE! Diophantine _equa.tion

=5, 41,0,
where | s| <p/2. The rth gap is of order (V/
V'}l Sy ! "

The total

Hall current carried by the rth band is quantized
according to oy =(*/h) (¢, ~t,.,). I the Fermi sur-
face is located in the rth gap of the Nth Landau
level, the total_ Hall conductance is equal to

< ou=E*/n, +N-1),

with ¢, the solution of Eq. (9).

an

O

In the opposite limit of a strong potential U the
same Eq. (8) can be obtained, where V and V' are
the tight-binding matrix elements that take an
electron from a site to its neighbors in the x and
y directions, and ¢ is replaced by 1/¢, so that
p and ¢ are interchanged.”'® The result is that
the Hall conductance oy is equal to fe?/h.” Again,

Ot is given by Eq. (9), but now s is unconstrained

and ¢ must lie between — ¢ and +%4.

Figure 1.8: The TKNN-equation (9) connects the Hall conductance (read Chern number) in the strong
magnetic field regime (t,) with the one in the weak magnetic field regime (s,). TKNN-equations are the

manifestation of a geometric duality between the two opposite regimes.
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The strategy used in (Thouless et al. 1982) can be followed for a wide class of pe-
riodic potentials. This explains why the QHE is insensitive to the fine details of the
microscopic structure of the sample used in the experiment. However, the theory of
Thouless et al. does not explain the quantization of the Hall conductance either in the
case electron-electron interaction is taken into account, or in the case of presence of dis-
order. Both factors play a réle in the real Hall effect. Much progresses have been made
in understanding this issue, (Laughlin 1983, Kunz 1987, Bellissard 1988b, Bellissard
et al. 1994, Kellendonk and Schulz-Baldes 2004, Combes et al. 2006) but this is out from
the scope of this thesis.

Finally, it is interesting to see how the theory of Thouless et al. has been experimen-
tally verified (Albrecht et al. 2001). The experimental confirmation testifies once again
the relevance of the TKNN-paper.

1.3 Overview of the results

Ithough the TKNN-paper is a milestone in the way towards a theoretical explana-
tion of the QHE, the structure of the proof contains many mathematical “gaps”. In
order to make the theory of Thouless et al. rigorous, one needs to complete some missing
“mid-steps” between each of the four steps described in Section (1.2
In this thesis we propose a rigorous “reinterpretation” of the work of Thouless et al.
Using various mathematical tools (adiabatic theory, differential geometry, non-commuta-
tive geometry, etc.), we derive a series of new and rigorous results which improve and
generalize the theory sketched in (Thouless et al. 1982). For convenience we follow the
above steps subdivision to list the main results of this thesis.

(I) SAPT-type and algebraic-type results

During the last decades, there were many works aiming to a rigorous derivation of the
effective models for the Hamiltonian Hpgy, in the limits of strong and weak magnetic
fields (Bellissard 1988a, Helffer and Sjostrand 1989b). However, all the previous deriva-
tions are based on a notion of “approximate model” which turns out to be too weak for
our purpose. As discussed in Section a rigorous procedure is needed to obtain effec-
tive models that are unitarily equivalent (in a suitable asymptotic sense) to the original
model. This is a relevant property which assures that the content of physical information
of the original Hamiltonian Hpgy, is fully preserved by the effective Hamiltonians. Space-
adiabatic perturbation theory (SAPT) provides the appropriate mathematical machinery
for a unitarily equivalent derivation of the effective models.

A self-consistent presentation of the results concerning the adiabatic derivation of
the effective Hamiltonians (“SAPT-type” results) is postponed to Section 2.1l Chapter [3]
contains the technicality concerning the derivation of the effective models by means of
the mathematical apparatus of SAPT. In particular Theorem [3.3.14| concerns the rig-
orous derivation of the Hofstadter Hamiltonian (effective model for the weak magnetic
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field limit), while the Harper Hamiltonian (effective model for the strong magnetic field
limit) is derived in Theorem The content of our SAPT-type results is summarized
in the following diagram

Hyof := p(Uo, Vo) L*(T?) =: H,y
B—0 A

|
|
thy = L2 (RQ) Hgy;, | isospectrality
|
|

/

B—oo

Y
Hyar = p(Uoo, Vo) LQ(R) =: Hoo-

In Hofstadter regime (B — 0), the original Hamiltonian Hgj,, defined on the physical
Hilbert space Hypy = L?(R?), is asymptotically unitarily equivalent to an effective op-
erator Hyyr := o(Uo, Ug) (Hofstadter-like Hamiltonian) defined on the reference Hilbert
space Ho := L?(T?). The unitary operators Uy and Vy act on Hy according to equation
(2.7), while p denotes a formal polynomial in two variables containing also negative
powers; for instance p(z,y) = 2 + 27! + y + y~!. Similarly, the asymptotically unitarily
equivalent effective model Hyy,, := p(Uso, Voo ) (Harper-like Hamiltonian) for the Harper
regime (B — o0), acts on the reference Hilbert space H., := L*(R) and it is given in terms
of a polynomial combination of the unitaries U,, and V., defined by equation (2.15).

From the above diagram some relevant consequences emerge (“algebraic-type” re-
sults). Up to a special condition on the values of the magnetic fields in the strong
and weak regimes (Assumption [2.3.6), Hofstadter-like Hamiltonians and Harper-like
Hamiltonians share the same algebraic structure, which is the structure of the Non-
Commutative Torus (NCT). This algebraic duality is analyzed in Section (Theo-
rem [2.3.7) and its main consequence is the isospectrality between Hy.r and Hy,, (arrow

< — > in the diagram).

(IT) Spectral decomposition and emerging geometry

It is well known that, if a Hamiltonian operator commutes with a family of operators
(symmetries) then their simultaneous diagonalization leads to a decomposition of the
original Hamiltonian into a family of (generally simpler) operators parametrized by a
spectral parameter (e.g. the eigenvalues of the operators that implement the symme-
tries). From a mathematical point of view, this is a sophisticated version of the spec-
tral decomposition theory by von Neumann (Maurin 1968, Dixmier 1981). The so-called
Bloch-Floquet theory (Wilcox 1978, Kuchment 1993) is one of the more fruitful applica-
tion of the above idea. In the TKNN-paper the authors used a similar “decomposition
strategy”, provided that the magnetic flux per unit cell of the lattice takes a rational
value. However, the subtle point which needs more care is the association of the spectral-
type decomposition coming from the von Neumann theory with a vector bundle structure.
Indeed, it is no obvious that a spectral-type decomposition which is based on a measure-
theoretic structure, can be related in a natural and unique way with a topological object
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like a vector bundle. Thus, the following questions arise: how does the topology (and the
geometry) of the decomposition emerge? To which extent is this topological information
independent by the specific decomposition procedure?

In Chapter [4] we provide a complete answer to these questions in a quite general
framework. We introduce the notion of physical frame (Definition 4.1.2)), i.e. a triple
{H,2, &} with H a separable Hilbert space which corresponds to the set of physical
states, A C #(H) a C*-algebra of bounded operators on H which contains the relevant
physical models, ; & C 2’ (% is the commutant ) a commutative unital C*-algebra
which describes a set of simultaneously implementable physical symmetries. Assuming
that & is a Z%algebra (i.e. it is generated by d unitaries Uy, . . ., U, according to Definition
4.1.3) with the wandering property (Definition 4.5.1), we provide a “recipe” (generalized
Bloch-Floquet transform) to realize “by hand” the von Neumann spectral decomposition
(Theorem [4.6.4). The underlying vector bundle structure is recovered at an algebraic
level and it is uniquely specified by the triple {H,%, &} (Theorem [4.7.9). The element
of the C*-algebra 2 (up to some extra conditions) are mapped in continuous sections
of the endomorphism bundle (Theorem [4.7.15) providing a unitarily equivalent bun-
dle representation for 2 (Definition [2.7.2). In Sections we apply the general theory
of Chapter [4] to Hofstadter-like and Harper-like models. The bundle decomposition of
the Hofstadter-like Hamiltonians, as well as that of the Harper-like Hamiltonians, is
established in Theorem [2.7.4]

(IIT1) Kubo-Chern equivalence

The rigorous justification of the Kubo formula is generally a hard problem. Some rigor-
ous results have been obtained in the context of QHE models (Bellissard et al. 1994, El-
gart and Schlein 2004, Bouclet et al. 2005). However, for a rigorous justification of re-
sults in the TKNN-paper, one has to derive the Kubo formula and prove the equivalence
between transverse conductance and Chern numbers in the Hofstadter regime, as well
as in the Harper regime. This is still an open problem, out of the scope of this thesis. In
the following part of this thesis we assume the pragmatic position that: Chern numbers
associated to spectral projections of a Hamiltonian are, by definition, the values of the
transverse conductance (Kubo-Chern equivalence).

(IV) Geometric duality and generalized TKNN-equations

The TKNN-paper contains no prove of the remarkable TKNN-equations. Nevertheless,
according to the interpretation of the authors, the TKNN-equations establish a (alge-
braic) duality between Chern numbers of different vector bundles. Although in the
last decades many works have been aimed to a rigorous derivation of TKNN-equations
(Stireda 1982, MacDonald 1984, Dana et al. 1985, Avron and Yaffe 1986), none of these
results consider to look at the integers s, and ¢, (cf. Figure as Chern numbers of
suitable vector bundles. One of the main result of this thesis is the realization of a
purely geometric proof of the TKNN-equations.
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If a Hamiltonians admits a bundle decomposition, then its spectral projections (into
the gaps) define vector subbundles (Lemmal[2.7.3). The isospectrality between Hofstadter-
like and Harper-like Hamiltonians implies a one-to-one correspondence between the
spectral projections of Hyor and Hy,,. Let % (P) (resp. % (P)) be the vector bundle
associated with the spectral (gap) projection P of the Hofstadter-like (resp. Harper-like)
Hamiltonian Hys (resp. Hyop). We prove (Theorem that there exists an isomor-
phism of vector bundles between %, (P) and .Z,,(P) established by the formula

[l (P) =~ f34(P)© I

where f; : T? — T2, j = 1,2, are suitable continuous maps, f;%4(P) denotes the pull-
back vector bundle of .Z;(P) (4 = 0,00) via f; and . is a suitable line bundle which
introduces an extra-twist. The above formula is a manifestation of a deep geometric du-
ality which relates the opposite regimes of strong and weak magnetic field. The TKINN-
equations are a straightforward consequence of such a geometric duality (Corollary
2.8.2). Non-ommutative geometry provide the appropriate “language” to explain the ge-
ometric meaning of TKNN-equations and to generalize them to the case of an irrational
magnetic flux (Section [2.9).

In particular, the set of results presented above fills the mathematical gaps contained
in TKNN-paper. From this point of view, one of the merits of this thesis is that it endows
the powerful theory of Thouless et al. with the mathematical exactness it deserves.

1.4 Why quantum butterflies?

he Hofstadter butterfly or (black and white) quantum butterfly (Figure [1.9) is a
fractal-type diagram showing the collection of the energy spectra of a family of

bounded operators hy, parametrized by 6 € R (universal Hofstadter operators, équation
(2.29)).

Figure was firstly described by D. Hofstadter in 1976, in his Ph.D. thesis under
the supervision of G. Wannier (Hofstadter 1976). Hofstadter was fascinated by M. Az-
bel’s suggestion that under certain circumstances the energy spectrum of such quantum
systems can be a fractal set. Indeed, the self-similar character of the Hofstadter butter-
fly turned out to be closely related to the fractal nature of its spectrum (for irrational
values of the parameter 0).

The importance of the Figure for this thesis is due to the fact that the spectrum
of hy describes the spectrum of both the Hofstadter Hamiltonian and the Harper Hamil-
tonian. In the first case the parameter 6 is proportional to B, while in the latter to 1/s.
Therefore in both limits 6 plays the role of a small (adiabatic) parameter. The exact
relation between by, the Hofstadter Hamiltonian and the Harper Hamiltonian, as well
the the meaning of 0, are clarified in Chapter [2] (in particular in Sections [2.1]and [2.3).
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0 1/3 1/2 2/3 1 6

Figure 1.9: The (black and white) quantum butterfly is the collection of spectra of a one-parameter family
of bounded operators ho with 6 € [0,1]. If§ = M/~ (rational condition) then the set o(hy) (vertical axis) is
made up by N energy bands (black segments) if N is odd (e.g. 6 = /3 or 2/3) and by N — 1 if N is even (e.g.
0 = 1/2). In the latter case the two central segments touch at 0. For 0 € R\ Q the spectrum is of Cantor type

and has zero Lebesgue measure (hence it is not possible to visualize it).

Interestingly, the history of the model that gives rise to the Hofstadter butterfly goes
back to R. Peierls who proposed it as a thesis problem to P. G. Harper. Nevertheless,
neither Peierls nor Hofstadter considered this model in relation with the Hall effect.
Instead, they were interested in its intriguing quantum mechanical spectral features.

In order to understand the structure of the “black-butterfly” (i.e. the black part of
Figure we summarize the main results concerning the dependence of the spectrum
o(hg) on the parameter 6.
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(BH-1) For any 6 € R, ||by|| < 4 which implies o(hg) C [—4,4].

(BH-2) For any # € R the spectrum is symmetric with respect to the zero energy, i.e.

a(hg) = o(—he).

(BH-3) Since o(hp+n) = o(bp) for any integer n € Z, one has that it is sufficient to study
the spectrum for 6 € [0,1]. Furthermore, the equality o(h_g) = o(hy) also implies
isospectrality between hy and h;_» and then the symmetry of Figure with re-
spect to 6 = 1/2.

(BH-4) Assume 6§ € Q with § = M/N, M € Z, N € N\ {0} and M and N coprime. The
spectrum o(ha/y) is made up by N (resp. N — 1) energy bands if N is odd (resp.
even). Note that in the case of a even NV the central gap is “closed” (that is empty).

The “open” (that is non-empty) gaps between two consecutive energy bands have
width larger than 8 (von Mouche 1989, Choi et al. 1990).

(BH-5) If 6 € R\ Q then o(hy) is of Cantor-type (c.f. Definition|2.4.1) and has zero Lebesgue
measure.

(BH-6) Let 0 and ¢’ be such that |6 — 6’| < C. For any € € o(hy) there exists a ¢ € o(hy)
such that |e — €| < 61/2|0 — ¢'| (Avron et al. 1990).

We provide a justification of (BH-1), (BH-2) and (BH-3) at the end of Section [2.3]

Property (BH-5) has been, for a long time, a conjecture known as Ten Martini Prob-
lem[] (TMP). The proof was established only recently by A. Avila and S. Jitomirskaya
(Avila and Jitomirskaya 2009). For a review on the history of the “long way” to the
solution of TMP we refer to (Last 2005, Section 3).

From (BH-4) and (BH-5), it follows that the butterfly (i.e. the black part) in Figure
has zero Lebesgue measure as subset of the rectangle [0,1] x [—4,4]. This suggests
that all the information is encoded in the gap structure (i.e. the white part).

Point (BH-6) states that the spectrum has a Holder continuous dependence of order
1/2 on the parameter 0. In particular, this implies that for every gap in the spectrum
of hy of length ¢ and for any ¢’ such that 12,/2|0 — ¢’| < ¢, there is a corresponding gap
in the spectrum of hy of length bigger than ¢ — 12,/2|6 — 6'|. In other words, the gap
structure of the Hofstadter’s butterfly is locally continuous, i.e. any point in the plane
(0,0) of Figure which is in a gap has an open neighborhood entirely contained in a
gap zone. This means that the gap structure of Figure [1.9|is made up by “open islands”
containing no spectral points.

" The proof of the Ten Martini Problem (TMP) establishes the topological structure of the spectrum of g
when 6 € R\ Q. However, a stronger version of this conjecture, the Strong Ten Martini Problem (STMP),
is still open. The question is to prove that all the gaps prescribed by the Gap Labelling Theory (GLT) are
“open” (i.e. non-empty). The interested reader can find in (Shubin 1994, Section 5) a complete explanation
of the relations between GLT, TMP and STMP (and also Super-Strong Ten Martini Problem (SSTMP), a
very strong version of the problem still unsolved). For GLT the reader can refer to the review (Simon 1982,
and references therein).
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Finally, when b, is rational, it follows from the theory of periodic Schrodinger op-
erators that o(hy) is purely absolutely-continuous. Otherwise, when § € R\ Q, o(hy) is
supported on an uncountable set of zero Lebesgue measure, i.e. it is singular-continuous.

Figure gives a complete description of the structure of the energy spectrum of by
but it does not provide more detailed spectral information such as the degree of degen-
eracy of the eigenspaces (i.e. the density of the states). Such information turns out to be
necessary in the analysis of the QHE.

The colored quantum butterflies (Figure[1.10), are due to J. E. Avron and D. Osadchy
(Avron 2004, Osadchy and Avron 2001) and interpreted by the authors as “thermody-
namic” phase diagram for the Hall conductance (c.f. Section [2.5). Colors represent the
quantized values of the Hall conductance. Warm colors (like red) correspond to posi-
tive values for the Hall conductance, while cold colors (like blue) correspond to negative
values. White means zero Hall conductance.

Diagram (A) in Figure describes the situation in the regime of weak magnetic
field (Hofstadter regime). In this case, the external magnetic field acts as a perturbation
of the band spectrum structure of the periodic Bloch Hamiltonian which describes the
interaction with the crystal. The effect of this perturbation is the creation of new gaps.
When the Fermi energy is placed in one of these gaps the Hall conductance is an integer
which can be coded by a color. In this way any gap is associated to a color as showed
in diagram (A). In this regime the colored butterfly repeats periodically on the #-axis,
with unit period. The white horizontal margins which flank the colored butterflies in (A)
mean that the Hall conductance vanishes if the energy band associated to the crystalline
structure is either empty or completely full. This is what Peierls expected, that is -
insulators should have vanishing Hall conductance! -

Diagram (B) in Figure describes the situation in the regime of strong magnetic
field (Harper regime). In this case, the periodic potential due to the crystalline structure
acts as a perturbation of the Landau Hamiltonian. It is well known that the spectrum
of the Landau Hamiltonian is a collection of equally spaced infinitely degenerate points,
known as Landau levels. The weak periodic potential splits each of the Landau levels
creating new gaps. Diagram (B) describes the Hall conductance when the Fermi energy
sits within the gaps. Note that, contrary to the weak field regime, the color coding of
diagram (B) is not periodic with respect to 6. Moreover each butterfly in (A) exhibits
inversion symmetry, while butterflies in (B) do not have such a symmetry.

Apparent differences between diagrams (A) and (B) in Figure [1.10] suggest that the
regimes of weak and strong magnetic field give rise to very different physical scenarios.

Colored quantum butterflies play a relevant role for this thesis. The reason is that
the color-coding of the butterflies has been computed by Avron using the Diophantine
TKNN-equations. In other words Figure is simply a graphic representation of the
duality which relates the opposite regimes of weak and strong magnetic field.

The TKNN-equations are the foundation of the arcane beauty of the colored quantum
butterflies. A purely geometric derivation of the TKNN-equations is needed to “capture”
these “flashy exotic mathematical insects”.
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Figure 1.10: [Our elaboration of pictures in (Avron 2004)]. The colored quantum butterflies are graphic
representations of the TKNN-equations. Diagram (A) is the “phase diagram” for the QHE in the regime
of a weak magnetic field (Hofstadter regime). Colors represent different values of the “thermodynamic
function” Hall conductance. The parameter on the horizontal axis is proportional to the strength of the
magnetic field (0 «« B). Diagram (B) shows the same phase diagram for the strong magnetic field regime
(Harper regime). In this case the parameter on the horizontal axis is proportional to the inverse of the
strength of the magnetic field (¢ « 1/B). Butterfly in (A) repeats periodically in 6 while butterfly in (B)

changes colors at any unit step in 6.



Chapter 2

Results and techniques

Pour connaitre la rose, quelqu’un emploie la géométrie et
un autre emploie le papillon.

(To know the rose, someone uses the geometry and another
uses the butterfly.)

Paul Claudel
L’Oiseau noir dans le soleil levant, 1927

Abstract

The present chapter aims to expose the main results of this thesis in a rigorous way.
We introduce the principal notions and techniques which are indispensable for a self-
consistent technical presentation of the arguments developed in this work. The first
part of this thesis (adiabatic-part) concerns a series of results coming from the ap-
plication of the space-adiabatic perturbation theory (SAPT) (c.f. Chapter ). These
results are presented in the first two sections of this chapter. Section is devoted
to introduce the Hofstadter-like and Harper-like Hamiltonians which are the effective
models for the QHE in the limit of weak magnetic field (Hofstadter regime) or strong
magnetic field (Harper regime), respectively. Section [2.2]aims to explain the relevance
of SAPT for the purposes of this work. In Sections[2.3|and we present the algebraic
results of this thesis (algebraic-part). The notion of Non-Commutative Torus (NCT)
is used to prove the isospectrality between Hofstadter-like and Harper-like Hamiltoni-
ans (algebraic duality), as well as to provide a description of the structure of the spec-
trum of such models in terms of “abstract” spectral projections. Section contains
a description of the relation between the TKNN-equations and the colored quantum
butterflies. In Section we justify the difference in the coloring of the two butter-
flies as a consequence of the absence of a unitary equivalence between Hofstadter and
Harper Hamiltonians. The last three sections of this chapter aim to describe the ge-
ometric results of this thesis (geometric-part). In Section [2.7|we discuss the relation
between “abstract” spectral projections and vector bundles. Section is devoted to
derive TKNN-equations from a geometric duality between the vector bundles associ-
ated to spectral projections of the Hofstadter and Harper Hamiltonians. In Section
B.9lwe present a “non-commutative” generalized version of the TKNN-equations. Open
problems and possible generalizations are listed in Section

2.1 Physical background and relevant regimes for the QHE

S

chrodinger operators with periodic potential and magnetic field have been fascinating
physicists and mathematicians for the last decades. Due to the competition between
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the crystal length scale and the magnetic length scale, these operators reveal striking
features as fractal spectra (Geyler et al. 2000) or quantization of the Hall conductance
(Thouless et al. 1982, Avron et al. 1983, Bellissard et al. 1994, Kellendonk et al. 2002).
The colored quantum butterflies (c.f. Figure summarize these features in pictorial
diagrams.

The mathematical model commonly used for the quantum Hall effect (QHE) (Morandi
1988, Graf 2007) is the two-dimensional Bloch-Landau Hamiltonian

L (. lq|B
Hgp, = o <—mvr — g 50

2
el/\r) + Vr (1), 2.1)

acting in the Hilbert space Hypy = L*(R?,d%r), r = (r1,r2) € R% Here c is the speed of
light, h := 27h is the Planck constant, m is the mass and ¢ the charge (positive if ¢, = 1
or negative if ,, = —1) of the charge carrier, B is the strength of the external uniform
time-independent magnetic field, e; = (0,0, 1) is a unit vector orthogonal to the sample,
and Vr is a periodic potential which describes the interaction of the carrier with the ionic
cores of the crystal. For the sake of a simpler notation, in this introduction we assume
that the periodicity lattice I is simply Z2.

While extremely interesting, a direct analysis of the fine properties of the operator
Hgy, is a formidable task. Thus the need to study simpler effective models which capture
the main features of in suitable physical regimes, as for example in the limit of weak
(resp. strong) magnetic field. The relevant dimensionless parameter appearing in the
problem is hp := ®0/zop x 1/B, where ®( = h¢/ec is the magnetic flux quantum, ®p = QrB
is the flux of the external magnetic field through the unit cell of the periodicity lattice I
(whose area is Qr) and Z = ldl/c is the magnitude of the charge ¢ of the carrier in units of
e (the positron charge). It is also useful to introduce the reduced constant #ip := h5/2r.

Hofstadter regime, Hofstadter-like Hamiltonians, Hofstadter unitaries

We refer to the limit of weak magnetic field as Hofstadter regime. In this limit, corre-
sponding to Az — oo, one expects that the relevant features are captured by the well-
known Peierls’ substitution (Peierls 1933, Harper 1955, Hofstadter 1976), thus yielding
to consider, for each Bloch band &, = E.(k1, k2) of interest, the following effective model:
in the Hilbert spacefl] 1o := L?(T?,d?k), k being the Bloch momentum and T? the two-
dimensional torus (c.f. Convention [2.7.1)), one considers the Hamiltonian operator

1
H§f—>0 p = Ex <k — <f;13> 5 e N lvk> ©, p € Ho. (2.2)

In physicists’ words, the above Hamiltonian corresponds to replace the variables &, and
ko in &, with the symmetric operators (kinetic momenta)

_ i\ 0 g i) 9
jifl._k:1+2<h3> Oy’ o = ko 2<ﬁ3> o (2.3)

1We use the special symbol H, to point out that this is the appropriate Hilbert space to describe the
physics of the QHE in the Hofstadter regime B — 0.
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Since (formally) [#1, #5] = i(ta/n) # 0, the latter prescription is formal and (2.2) must be
defined by an appropriate variant of the Weyl quantization.

The rigorous justification of the Peierls’ substitution and the definition and the deriva-
tion of the Hamiltonian (2.2) are the content of Section

We call Hofstadter-like Hamiltonian any operator in the form (2.2). It is evident that
any effective Hamiltonian H gf_’ 0 as well the magnetic momenta .#; and .%5, depend on
the value of the magnetic field through the dimensionless adiabatic parameter ¢y(B) :=
1/2xriz. The name Hofstadter Hamiltonian is used only when the energy band has the
special form &, (ky, k2) = 2cosk; + 2 cos ky. From it follows that the explicit form of
the Hofstadter Hamiltonian is

(Hipe ) (k1 ko) = > e Mo(ky , kg — motg€0) + €% (ki + mot4e0 , ko). (2.4)
oe{+,—}

The Bloch band &, = &.(ki, k2) which defines the effective Hamiltonian (2.2) is a
smooth function &, : T?> — R and we denote by

Eclkika) = ) engm &R, (2.5)

n,meZ

its Fourier series. We introduce the Hofstadter unitaries
Up := e, Vo = e, UV = e~ (a0)yq (2.6)
which act on Hj as

. atkl .
= , ”
(Uop)(k1, ko) =€t w(ky , ko — T 1q4€0)
p € Hp. 2.7
. iko
= 4€0 5
(VUSO)(kL k2) =€ 90(](31 + T Lg€o ]{52)

Via Peierls’ substitution, one obtains that the Hofstadter-like operator A gro associated
to the energy band (2.5) can be written as

B—>O Z Enm € wrnm(Lqeo) ug'\?gb (2.8)

n,me”Z

In particular, for the Hofstadter Hamiltonian (2.4) one has the compact expression

Ho=Ug+Uy" + Vo + Vg (2.9)

Harper regime, Harper-like Hamiltonians, Harper unitaries

We use the name Harper regime for the limit of a strong magnetic field. In this limit,
corresponding to i — 0, the periodic potential can be considered a small perturbation
of the Landau Hamiltonianﬂ which provides the leading order approximation of Hg;j,.

2The Landau Hamiltonian Hy, is defined by equation when Vr = 0. In the same way one obtains
the Bloch Hamiltonian (or periodic Hamiltonian) Hg setting B = 0 in (2.1).
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To the next order of accuracy in #g, to each Landau level there corresponds an effec-
tive Hamiltonian, acting on the Hilbert spacerf] Hoo := L?*(R,dx), given (up to a suitable
rescaling of the energy) by

e L 2.10)

where the right-hand side refers to the ordinary (i,/ip)-Weyl quantization of the Z2-
periodic function Vr : R? — R. We refer to Section for a rigorous derivation of
the effective Hamiltonian (2.10).

Each effective Hamiltonian H%">° depends on the value of the magnetic field through
the dimensionless adiabatic parameter e (B) := 2whp. We call Harper-like Hamiltonian
any operator of the form (2.10), using the name Harper Hamiltonian for the special
case Vp(p,z) = 2cos(2mp) + 2 cos(2mx). From equation (2.10), it follows that the Harper
Hamiltonian acts as

(Higs, ¥)(x) = (2 — €00) + (7 + €00) + 2 cos(27x) (). (2.11)

The function Vi : R? — R which defines the effective Hamiltonian (2.10) is a smooth
function Vr : R? — R which is Z?-periodic with Fourier series denoted by

Z Un,m € z27r np+mq) (2.12)

n,meZ

The effective Hamiltonian H gf_’ * is obtained from Vr via the usual Weyl quantization
which agrees with the formal rule (p, q) — (P, Q) where

Q := multiplication by z, P= —;T(Lqeoo);x, (Q; P] = #(Lqeo@). (2.13)
We introduce the Harper unitaries
Uoo := €279, Voo 1= e27F, Uoo Voo = €127 (tacoo) P 1, (2.14)

explicitly defined by
(Uoetp) () = €7 ()
Y € Hoo. (2.15)
(Vo) () == (2 + tg€x0)

The Harper-like operator HZ> associated to the periodic function (2.12) can be written
in terms of the Harper unitaries as

HE® = 37 v elmmes) yr (2.16)

n,me”Z

In particular, the Harper Hamiltonian (2.11) reads
Hize = Uoo + U + Voo + V- (2.17)

3As in Note |1} we use the special symbol Ho. to point out that this is the appropriate Hilbert space in
the Harper regime B — oc.
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The choice of the nomenclature: an historical review

The use of operators of the form as tight binding models for electrons in a crystal
traces back to the pioneering works of R. Peierls (Peierls 1933) and P. G. Harper (Harper
1955). However, the study of the spectral properties of such operators began with the
seminal paper (Hofstadter 1976) in which D. Hofstadter described the spectrum of the
Hamiltonian producing the beautiful picture known as Hofstadter butterfly (Figure
. In view of that, we call Hofstadter Hamﬂtoniarf_f] the operator and, more
generally, Hofstadter-like Hamiltonian any operator in the form (2.2). Hofstadter-like
operators are the effective models for the regime of weak magnetic field. This justifies
the name Hofstadter regime for the limit of zero magnetic field.

The regime of strong magnetic field was originally investigated by A. Rauh (Rauh
1974, Rauh 1975). However the correct effective model, the operator (2.10), was derived
firstly (but not rigorously) by M. Wilkinson in (Wilkinson 1987). In a remarkable series
of papers (Helffer and Sjostrand 1988, Helffer and Sjostrand 1990, Helffer and Sjostrand
1989a) B. Helffer and J. Sjostrand studied the spectrum of the operator and its
relation with the spectra of a one-parameter family of one-dimensional operators on
(?(7Z) defined by

(h%u)n = Up—1 + Upt1 + 2c0s(2w0n + B)uy, {uptn € 13(2), (2.18)

where 0 € R is a fixed number (deformation parameter) and 3 € [0,27) is the param-
eter of the family. In the work of the French authors, operator is called Harper
operator (and indeed it was introduced by Harper in (Harper 1955)). However, in the
last three decades, operator has been extensively studied by many authors (see
(Last 2005, Last 1994) for an updated review) with the name of almost-Mathieu oper-
ator. To avoid confusion and make the nomenclature clear, we chose to adhere to the
most recent convention, using the name almost-Mathieu operator for (2.18). We thus de-
cided to give credits to Harper’s work by associating his name to operators of type (2.10).
Consequently we refer to the limit of strong magnetic field as Harper regime.

The first rigorous derivation of the effective models and was obtained
by J. Bellissard in an algebraic context in (Bellissard 1988a) and subsequently by B.
Helffer and J. Sjostrand in (Helffer and Sjostrand 1989b), inspired by the latter paper.
In particular, in (Helffer and Sjostrand 1989b) it is proven that HZ:"> (resp. H5;°) has,
locally on the energy axis, the same spectrum and the same density of states of Hpgy,
in the appropriate limit. However, although relevant, this property of isospectrality is
weaker than the notion of unitary equivalence.

“We insist on the fact that this nomenclature is far to be unique. For instance, the operator (up to
a Fourier transform) is called discrete magnetic Laplacian by M. A. Shubin in (Shubin 1994)
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2.2 Why is space-adiabatic perturbation theory required?

eyond the spectrum and the density of states, there are other mathematical prop-
B erties of Hpy, which reveal interesting physical features, as for example the orbital
magnetization (Gat and Avron 2003, Thonhauser et al. 2005, Ceresoli et al. 2006) or the
Hall conductance. These properties are not invariant under a loose equivalence relation
as isospectrality, then it is important to show that H 5«? > and H gf 0 are approximately
unitarily equivalent to Hgy, in the appropriate limits. This is one of the main goals of
this thesis. The problem is not purely academic, since it is not hard to produce examples
of isospectral operators which are however not unitarily equivalent and which exhibit
differences in the values of the physical observables. In particular, in Sections and
we show that Hyp . and Hp: are isospectral but not unitarily equivalent. Moreover
the TKNN-equations are a fingerprint of this lack of unitary equivalence. One concludes
that, in the study of phenomena like the conductance, it is not enough to prove that the
effective models are isospectral to the original Hamiltonians.

We thus introduce the stronger notion of unitarily effective model, referring to the
concept of almost-invariant subspace introduced by G. Nenciu (Nenciu 2002) and to the
related notion of effective Hamiltonian, which we shortly review. The common mathe-
matical background for the aforementioned notions is the space-adiabatic perturbation
theory (SAPT) developed by G. Panati, H. Spohn and S. Teufel in (Panati et al. 2003b, Pa-
nati et al. 2003a, Teufel 2003).

Let us focus on the regime of weak (resp. strong) magnetic field and define ¢ :=
27mey = 1/np (resp. €x/2r = hp) so that ¢ — 0 in the relevant limit. Let II. be an orthogonal
projection in Hppy such that, for any N € N, N < Nj there exist a constant Cy such that

|[HpL; IL]|| < CneN (2.19)

for ¢ sufficiently small. Then ImlII. is called an almost-invariant subspace (Nenciu 2002,
Teufel 2003) at accuracy Ny, since it follows by a Duhammel’s argument that

H(l - Hs) e_iSHBL Hs” <Cn 5N ‘5‘

for every s € R, N < Ny. Granted the existence of such a subspace, we call (unitarily)
effective Hamiltonian a self-adjoint operator H; acting on a Hilbert space H,.s, such
that there exists a unitary U, : ImII, — H,f such that for any N € N, N < Ny, one has

| (Tl Hp, — U- ' Heg UL ) T || < CX €V (2.20)

The estimates (2.19) and (2.20) imply that

[ (e—“ HeL =1 gis Hig UE) L] < Cf &V]s]. (2.21)

When the macroscopic time-scale ¢ = es is physically relevant, the estimate above is
simply rescaled. The triple (Hyer, Ue, Hefr) is, by definition, a unitarily effective model for
Hgr. To our purposes, it is important to notice that the asymptotic unitary equivalence
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in (2.20) assures that the topological quantities related with the spectral projections of
II. Hg, II. (K-theory, Chern numbers, ...) are equal to those of Hg, for ¢ sufficiently
small. This claim follows by observing that the topological content of a system is pre-
served by (symmetry preserving) unitary equivalences (cf. Chapter [4) and small pertur-
bation (robustness of the topological invariants).

In Chapter |3| we prove that in the limit g — oo the Hofstadter-like Hamiltonian
provides a unitarily effective model for Hgy, with accuracy Ny = 1, and we exhibit
an iterative algorithm to construct an effective model at any order of accuracy Ny € N
(Theorem [3.3.14). As for the limit iz — 0, up to a rescaling of the energy, the non-trivial
leading order (accuracy Ny = 1) for the effective Hamiltonian is given by the Haper-like
Hamiltonian (2.10). We also exhibit the effective Hamiltonian with accuracy Ny = 2,
i.e. up to errors of order O(£?) (Theorem . Moreover, due to the robustness of the
adiabatic techniques, we can generalize the simple model described by to include
other potentials, like a periodic vector potential Ar, as in (3.I). This terms produces
interesting consequences especially in the Harper regime (c.f. Section|3.4.8) and it could
play a relevant réle in the theory of orbital magnetization. This kind of generalization
is new with respect to both (Bellissard 1988a) and (Helffer and Sjostrand 1989b).

A numerical simulation of the spectrum of the Hofstadter operator Hy} . (resp. Harper
operator ;s ), as a function of the adiabatic parameter ¢y = 1/ (resp. ex = hp), leads
to a fascinating Hofstadter butterfly (Figure [1.9). This claim will be clarified at the end
of Section As discussed in Section the spectral structure of the butterfly (i.e.
the black part) has zero measure as a subset of the square and so the physically rele-
vant object is its complement, namely the gap structure (i.e. the white part). As pointed
out by J. Avron and D. Osadchy (Avron 2004, Osadchy and Avron 2001), to each open
connected white region (island) can be associated a color which codes the value of the
transverse conductance and which can be considered as a label for a thermodynamic
phase of the system. The correspondence color-gap depends on the particular regime,
therefore one has a colored quantum butterfly for the Hofstadter Hamiltonian (diagram
(A) of Figure and similarly, a colored quantum butterfly for the Harper Hamiltonian
(diagram (B) of Figure [1.9). With this language in mind and assuming the interpreta-
tion of the colors as topological quantum numbers in the spirit of (Thouless et al. 1982),
the main result of Chapter (3| can be reformulated by saying that the Hofstadter-like
and Harper-like Hamiltonians are “colour-preserving effective models” for the original
Bloch-Landau Hamiltonian Hpgy,. Thus they describe, though in a distorted and approx-
imated way, some aspects of the thermodynamics of the original system. SAPT is a
“colour-preserving” perturbation theory and for this reason a SAPT-type derivation of
the effective models is need to provide a mathematical foundation for colored quantum
butterflies.
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2.3 Algebraic duality and isospectrality

he family of the Hofstadter-like Hamiltonians and that of the Harper-like Hamil-
tonians have a common algebraic structure. To explore this algebraic analogy we
need to introduce a C*-algebraic concept, that is the Non-Commutative Torus (NCT).

Basic notions about Non-Commutative Torus

The NCT (also called rotation C*-algebra) was introduced by Connes in (Connes 1980)
as a simple example of a non-commutative manifold and in the last decades it has been
extensively studied by many authors. We refer to the comprehensive monographes (Boca
2001) and (Gracia-Bondia et al. 2001).

Due to the relevant réle that the NCT plays in this thesis, we consider appropriate to
introduce this object rigorously. Following (Boca 2001, pp. 1-2), we define the C*-algebra
of the NCT in a formal (and universal) way starting from two “abstract” elements u and
v which are unitary with respect to a formal involution x,

u=u", v=1" uo = e pu, HeR. (2.22)

Last equation in says that u and v commute up to a phase and 6 is called deforma-
tion parameter. The set £y of the finite complex linear combinations of the monomials
u"v™, n,m € Z, has the structure of a unital x-algebra with unit u® = 1 = v°. The NCT
algebra with deformation parameter 6, denoted by 2y, is the C*-algebra generated by
the closure of £y with respect the universal norm

lall := sup{[|7(a)llpz) : 7:L — B(H) is a *-representation}.

When 6 € Q then 2y is called rational NCT-algebra.

The NCT has a “universal behavior” as far as the representation theory is concerned.
Two properties are of particular relevance for our aims (Boca 2001, Remark 1.2):

- Surjective representation property: Let U and V be two unitary operators act-
ing on the Hilbert space H such that UV = e*>"VU and denote by C*(U, V) the C*-
algebra generated by them in Z(H) (the algebra of bounded operators). The map-
ping 7(u) = U, w(v) = V extends algebraically to a representation (i.e. *-morphism)
7 Ap — C*(U,V) C B(H) which is surjective.

- Universal property: If B, is a C*-algebra generated by two unitaries v’ and v’
such that u'v’ = e”?™v/y/, and if By has the surjective representation property, then
the mapping u — u’ and v — v’ extends to a *-isomorphism between 2y and By.
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REMARK 2.3.1 (Frame and isomorphisms of NCT-algebra). Even though the definition
of the algebra 2ly is subordinate to a choice of a pair of generators (u,v), the algebraic
structure of 2y is independent of such a choice. Let (v, v’) be a frame, namely any pair
of unitaries in 2, such that w'v’ = 2™ v'v/. Each frame defines an equivalent system of
generators for 2y and the universal property assures that there exists an automorphism
a € Aut(y) such that a(v') = u and a(v’) = v. This means that there is no canonical
choice for the system of generators of the NCT-algebra. Having this in mind, we will
refer to the algebra 2y assuming a “a priori” privileged choice for the generators (u, v).

Another consequence of the universal property is that the C*-algebras 2y and 2, ¢
are mutually #-isomorphic for any n € Z. Moreover, the map c¢(u) = v and ¢(v) = u
defines a relevant *x-ismorphism, called charge-conjugation, between 2y and 2A_y. One
can prove that these two mappings are the only isomorphisms between NCT-algebras
with different deformation parameters. In other words, if 0,6’ € [0,1/2] with 0 # ¢, then
2y and Ay are not x-isomorphic (Gracia-Bondia et al. 2001, Corollary 12.7 and following
comments).

When the deformation parameter is an integer N € Z then 2y is x-isomorphic to
the commutative C*-algebra C(T?) of the continuous function on the two dimensional
torus. In this sense 2y, for § ¢ 7Z, is the natural non commutative generalization of the
algebra C(T?). To prove the latter claim let 5;(z) := 2;, i = 1,2 for any z := (21, 22) € $! x
§! = T2 (coordinate functions). The Stone-Weierstrass Theorem (Reed and Simon 1973,
Theorem IV.10) implies C*(j1,72) = C(T?). If # = N € Z then u and v commute and
n(u) = g1, m(v) = 7o defines a surjective representation 7 : Ay — C(T?) (surjective
representation property). On the other hand the Gel’fand-Naimark Theorem (Bratteli
and Robinson 1987, Theorem 2.1.11A) states that 2 is x-isomorphic to C(X) — C(T?)
where X denotes the Gel’fand spectrum of 25 and the injection follows observing that
X Co(u) x o(n) C St x Sh *

The smooth NCT-algebra 25° is defined by

AP =Ca= >  anm"" : {anm} € S(Z%) (2.23)

n,mez
where S(Z?) is the space of rapidly decreasing double sequences. This means that a € A°
if for any k£ € N\ {0} one has bounded semi-norms

lallx = sup |anm| (14 |n|+ |m])k < o0. (2.24)

m,ne
25° is a dense unital x-algebra in 2y, stable under the holomorphic functional calcu-
lus, i.e. it is a Fréchet unital pre-C*-algebra (Gracia-Bondia et al. 2001, Definition 12.6).
Obviously 2 ~ C>°(T?) if 0 € Z.

Hofstadter representation

The universal property of the NCT-algebra and equation (2.6) imply that the mapping
7'[‘0(11) = Uy, WQ(U) =V, (2.25)
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defines a representation, named Hofstadter representation, of 2y on the Hilbert space
Ho. The representation

7o : ™Ag — C*(Up, Vo) C #B(Ho), 9(B) := —i4e0(B) = L

is surjective and sometime we use (with a little abuse of nomenclature) the name Hofs-
tadter C*-algebra to denote 7y(2y) = C*(Up, Vo). The representation 7y encodes the full
algebraic structure of the universal NCT-algebra, indeed

LEMMA 2.3.2. For any value of the deformation parameter 0, the Hofstadter representa-
tion is faithful, i.e. m( is a *-isomorphism between 2y and C*(Uy, Vo).

The proof of Lemma is based on the GNS construction and it is postponed to
Section The above lemma, together with smoothness of the Bloch band £, which
enters into the definition of the Hofstadter-like operators imply

COROLLARY 2.3.3. Any Hofstadter-like operator (2.2) is realized as m(0) with 0 a self-
adjoint element (i.e. 0 = 0*) in the smooth algebra A .

Harper representation

From (2.14) and the universal property of the NCT-algebra it follows that the mapping
Too (1) 1= Uso, Too(0) := Voo, (2.26)

defines a representation, named Harper representation, of the NCT-algebra on the Hilbert
space Hs.. The representation

Too : Ap — C*(Uso, Vo) € B(Hoo), 0(B) := —t4€o0(B) = —t4hp

is surjective and sometime we use (with a little abuse of nomenclature) the name Harper
C*-algebra to denote 7 (g) = C* (U, Vo). Similarly to the Hofstadter case, the repre-
sentation ., encodes the full algebraic structure of the universal NCT-algebra, indeed

LEMMA 2.3.4. For any value of the deformation parameter 0, the Harper representation
is faithful, i.e. 7 is a x-isomorphism between 2y and C*(Uso, Voo)-

The proof of Lemma [2.3.4]is postponed to Section The assumption on the regu-
larity of the periodic function Vr (c.f. Assumption [3.2.1) together with the above lemma
imply

COROLLARY 2.3.5. Any Harper-like operator (2.10) is realized as 7 (0) with ? a self-
adjoint element (i.e. 0 = %) in the smooth algebra Ay°.
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Algebraic duality and isospectrality

The algebraic structure of the NCT-algebra is common both to the Hofstadter and the
Harper regimes. Indeed, Corollary states that any Hofstadter-like Hamiltonian is
an element of m(2y) and similarly Corollary states that any Harper-like Hamilto-
nian is an element of 7, (2y), where the deformation parameters 6 and 6’ are related
to the adiabatic parameters ¢y and e, respectively. To compare the Hofstadter and
Harper representations, looking for similarities and differences, one needs to assume
6 = #'. This condition can be established in terms of the strength of the magnetic fields
which characterize the Hofstadter and Harper regimes.

ASSUMPTION 2.3.6 (Algebraic duality condition). Let By (resp. Bs) be the strength of
a weak (resp. strong) magnetic field, i.e. 0 < By < 1 < By. Let €y(B1) = /ng, be the
adiabatic parameter for the Hofstadter regime and c¢..(B2) = hp, the adiabatic parameter
for the Harper regime. The condition ey(B)) = €x(B2) = —i4 0, for some 0 € R, is called
algebraic duality condition. In terms of the strength of the magnetic fields it is equivalent
to set B1 By = (®0/z5r)?, with 0] = \/B1/B,.

Observe that the sign of # depends on the sign of the charge of the carriers. In
particular, one has § > 0 for electrons (., = —1) and 6 < 0 for holes (., = +1). In view
of that, one calls charge-conjugation transform any operation which induces the change

0 — —0 (cf. Remark [2.3.1).

If Assumption holds true, then the mutual relations between the universal
C*-algebra 2y, its Hofstadter realization my(20y) C #(Ho) and its Harper realization
Too () C B(Hoo) are summarized in the diagram below:

Ap (2.27)
2N

Too ().

Here, the double arrow “ <—— ” denotes an isomorphism of C*-algebras. Arrows A and
B express the content of Lemmas [2.3.2| and [2.3.4] respectively. The existence of arrow C
follows by composition of A and B. In summary, the previous lemmas imply the following:

THEOREM 2.3.7 (Algebraic duality). If Assumption holds true, the Hofstadter C*-
algebra C*(Uy, Vo) and the Harper C*-algebra C* (U, V) are isomorphic.

The first consequence of the above result concerns the relations between the spectra
of elements of 2y and the spectra of the related representatives via =y and n,,. Given
a a € 2y, its algebraic spectrum is defined as o(a) := C\ p(a) where p(a) := {A € C :
(a — A1)~ € Ay} denotes the resolvent set. Similarly, if A is a linear (not necessarily
bounded) operator on the Hilbert space H, then the Hilbertian spectrum is defined as
op(A) := C\ pr(A) where py(A) :={N € C : (A—Ny)" ! € B(H)}.
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COROLLARY 2.3.8 (Isospectrality). Let Assumption [2.3.6/hold true. Then for any a € 2y

oHy(m0(a)) = o(a) = or (Too(a)). (2.28)

Proof. The claim follows from two simple observations: 1) in the definition of p(a) (resp.
pr(A)) one can change 2(y with C*(a) which is the commutative C*-subalgebra generated
in Ay by a (resp. #(H) with C*(A)) (Bratteli and Robinson 1987, Proposition 2.2.7); 2)
if 7 : Ay — AB(H) is a faithful representation then C*(a) ~ C*(w(a)), which implies
p(a) = prlr(a)). .

Universal Hofstadter operator and Hofstadter butterfly

The universal Hofstadter operator is the element of the universal algebra 2y defined by
ho:=u+u"+0v+0". (2.29)

A comparison between equations (2.9), (2.17) and (2.29) shows that Hf] . = mo(bg) and
H. = moo(bg), provided that the algebraic duality condition —¢; g = 6 = —14 € holds
true. Corollary states the isospectrality of these operators, namely

ory (Hpg) = o(be) = on (HES,) if € =€ =—140. (2.30)

The spectrunﬁ of hy (when 6 takes values in [0,1]) is described by the Hofstadter but-
terfly showed in Figure and equation (2.30) proves the claim stated in Section [1.4]
concerning the isospectrality between the Hofstadter and the Harper Hmiltonians.

We are now in position to justify properties (HB-1), (HB-2) and (HB-3) listed in Sec-
tion The first follows from (2.29), indeed
Dol < [full + f[w™[| + [[o]] + [Jo*[| = 4.

Property (HB-2) follows from the fact that (—u, —v) is a frame for 2(y and the mapping
(u,0) — (—u, —v) extends to an automorphism of 2. Property (HB-3) is a consequence
of the isomorphism between 2y and 2y, and the fact that the mapping (u,v) — (v,u)
extends to an isomorphism between 2y and 2_g (cf. Remark [2.3.).

2.4 Band spectrum, gap projections and gap labeling

T Yhe main consequence of Corollaries [2.3.3| and [2.3.5|is that one can investigate the
A spectral structure of Hofstadter-lik¢ and Hanper-llke Hamiltonians by looking at
the universal representatives in the algebra 2ly. In particular, we are interested in self-
adjoint smooth elements, namely in operators 0 € 7° such that o = 9*. Two types of
spectral structures are important for the aims of this thesis.

5In order to fully appreciate the rich and elegant structure of the spectrum of s, we suggest to look at
some of its numerical drawings like Figure A nice selection of numerically computed illustrations has
been provided in (Guillement et al. 1989).
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DEFINITION 2.4.1 (Band spectrum vs. Cantor spectrum). Let 0 € 2y be a self-adjoint
element and denote with o () its spectrum. A closed interval I C R is an energy band for
0if I Co(@) and I' N (R\ () # 0 for any open interval I' O I. An open (non-empty)
interval G C R\ 0(0), delimited by two spectral points is called an (“open”=non-empty)
gap for 0. We will say that d has a band spectrum if () is a locally finite union of energy
bandﬂ while © has a Cantor spectrum if 0(0) is a closed, nowhere dense set, which has
no isolated points (Cantor structure).

An element p € 2y which is a self-adjoint idempotent, i.e. p* = p = p?, is called an
orthogonal projection. We will denote by Proj(2ly) the set of the orthogonal projections in
2y and with Proj(3°) = Proj(2p) NA° the set of smooth projections. Obviously Proj(2s)
is non-empty since the ¢rivial projections 0 and 1 are always elements of 23°. Generally,
2y has also non-trivial projectionﬂ There exists a deep relation between the structure
of the spectrum of self-adjoint elements of 2[5 and the existence of non-trivial projections.

LEMMA 2.4.2 (Spectral projection). Let 0 € %y (resp. 0 € A3°) be a self-adjoint element
and o(d) C Rits spectrum. For any A1, 2 € R\ 0(0) (with A1 < \2) there exists a spectral
projection py, »,] € Proj(2ly) (resp. pix, . € Proj(A3°)). Moreover piy, »,) = 0 (resp. = 1) if
and only if [A1, A2] N o (d) = 0 (resp. o(d) C [A1, X))

Proof. let A be a closed rectifiable path in C which intersects the real axis in \; and
A2 (see Figure . The projection p|y, ), is defined via holomorphic functional calculus
using the Riesz formula

1
= — 1—9)"tdA
p[>‘17>\2] ’L27T A()\ a) d)\
Obviously pjy, »,] € g since Ay is closed under holomorphic calculus and ppy, y,) = 0

(resp. 1) if and only if [\, A2] N 0(d) # 0 (resp. o(d) C [A1, A2]) since it depends only on
the germ of the constant function 1 on o (). Finally, 0 € 23° implies p, ,) € 2AZ° since

the smooth algebra is stable under holomorphic calculus (Gracia-Bondia et al. 2001,
Definitions 3.25 and 3.26, Proposition 3.45). |

For the purposes of this thesis we are mainly interested in the spectral structure of
self-adjoint elements in the rational NCT-algebra. We fix the following:

CONVENTION 2.4.3 (rationality condition). When 0 € Q, its representative is uniquely
fixed as 0 = M/N with M € Z, N € N\ {0} and M, N coprime, namely g.c.d(N,M) = 1.
According to this convention sign(0) := M/|m|.

In order to proceed with the analysis of the spectral structure of elements in 20y, we
need an additional structure on the NCT. Let (u, v) be a (fixed) system of generators for
2g. The linear map f: Ay — C defined on the monomials by

£ (W0™) :=6n0 dnyo (2.31)

6Since a single point is a (trivial) closed interval, the pure point spectrum fits in the definition of band
spectrum.

"This claim is no longer true if # € Z. In fact, the integrality of § implies 2, ~ C(T?) and the latter
C*-algebra has only trivial projections since T? is connected.
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extends to 2y by linearity. It is by now a known fact that f is a faithful state (c.f. Ap-
pendix on 2y with the trace property f (ab—ba) = 0 for any a, b € 2y (Boca 2001, pp.
1-5) . We refer to f as the non-commutative integral®| over 2y. In general the definition
of f is not canonical since it is subordinate to the choice of a system of generators (u, v).
It is canonical for irrational § € R\ Q since in this case there exists a unique tracial state
on 2y. In the rational case § = M/N one can prove that (Boca 2001, Corollary 1.22)

. 1 N -1
JC: PI'J(Q[M/N)H {O,N,...,N,l}. (2.32)
Moreover, the faithfulness of f implies that f (p) = 0 (resp. 1) if and only if p = 0 (resp.
1). The number Rk(p) := N § (p) is called rank or dimension of the projection p.

In the rational case § = M/n, property (2.32) entails

1 M
Ko :=inf{F (p) : 0#p € Proj(Ap)} = N >0 if 6= v (2.33)
The number X is called Kadison constant of the pair (2, f) and Ky > 0 (called Kadison
property) is the main ingredient to prove that self-adjoint elements in 2y have a band
spectrum (Gruber 2001, Theorem 7).

PROPOSITION 2.4.4 (Gap structure). Let 0 € Ay (resp. 0 € A3°) be a self-adjoint element
and assume rationality condition § = M/N.

(1) The spectrum of 0 consists of at most N intervals, hence it admits at most N +1 gaps
(counting also the unlimited top and bottom gaps).

Let {Gy,...,Gn,}, with Ny < N, be the family of “open” gaps in the spectrum of . The
labeling of the gaps is fixed in agreement with the ordering < on the family of gaps
corresponding to their order of occurrence on R, namely Gy < ... < Gn,.

(ii) To each gap is associated a gap projection P; € Proj(2y) (resp. P; € Proj(A°)) with
the convention that Py = 0 and Py, = 1.

Proof. Let [a;b] be any closed interval with a,b € R\ ¢(?) and {A1,..., A} C[a;0] \ 0(0)
such that )\0 =a < A < o< < b =: )\r+1 with [)\j,)\j+1] N O’(a) ?é . Following
Lemma one has that p, ;) = @j_ P, ,.,]- The Kadison property implies
that 1 > (pjap) = (r +1)Kp = £l which forces r < N — 1. This means that ¢(2) N [a, b]
is at most union of N disjoint energy bands for any pair a,b € R\ o(?). Point (i) follows
by observing that o(?) is a bounded set.

Now let Ny < N be the total number of disjoint energy bands in ¢(2). We label the
energy bands according to their order on R,i.e. I; < I» < ... < Iy,, as showed in Figure
Each of these intervals defines, via holomorphic calculus, a band projection p; €
Proj(2u/y), 1 < j < No. Moreover, since the energy bands are mutually non intersecting,

8When 6 € Z, then 2y ~ C(T?) and F coincides with the ordinary integration on T? with respect to the
normalized Haar measure.
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p;pr = 0 whenever j # k. The gap structure of o(2d) consists of Ny+1 “open” gaps counting
also the (unlimited) bottom gap which is the open interval from —oo to the minimum of
0(0) and the (unlimited) top gap which is the open interval from the maximum of ¢(?) to
+00. We can label the gaps by their order of occurrence on the real line, Gy < G1 < G5 <
... = Gn, with Gy the bottom gap and Gy, the top gap. To any gap it is associated the

gap projection PB; = @’_, p;. The trivial projection 0(=: Py) is associated to the bottom
gap and the trivial projection 1(=: Py, ) is associated to the top gap. |
8 aeue Br,—1:=p PN, —1
Po:=0 P1 P2 Pro—1 g P, Py, =1
YN h .- b b In-1 } In, )
bottom gap IR S gaps top gap

Figure 2.1: Band structure of the spectrum of a self-adjoint element d € 2, for a rational value § = M/n

of the deformation parameter.

The number

A (Gy) :==Rk(B;) = N f (B;), (2.34)

which coincides with the dimension of ‘B;, provide an alternative increasing labeling
for the gaps of the spectrum of ? in the spirit of the celebrated gap labelling Theorem
(Simon 1982, Bellissard 1993).

REMARK 2.4.5. (Gap structure for irrational deformation parameter) If the spectrum
of 9 € 2y is Cantor (which may happen only if # € R \ Q) then any point in ¢(?) is an
accumulation point and it is not possible to define the band projections via holomorphic
calculus. Nevertheless, we can yet define the gap projections. Since ¢(?) is bounded
we can fix —oo < Ay < mino(?) and for any A € R\ ¢(?), A > Ao we can define the
gap projection Py € Ay by means of the holomorphic functional calculus. The number
N (G) :=F (B) defines a label for the gap G > X which is independent on A. A general
result shows that that for any non-trivial projection p € Proj(%y) there exists an € Z\ {0}
such that f (p) = n6 mod Z (Boca 2001, Corollary 11.8). If € R\ Q, then n is determined
uniquely and f maps the set Proj(2y) onto the countable dense set ¢ := (Z + 6Z) N [0, 1]
(Gracia-Bondia et al. 2001, Theorem 12.6). Thus n defines uniquely a canonical label
for the element of Proj(2ly) and ¥ coincides with the maximal set of possible gap-labels
which, however, can be larger than the set of the actual “open” (i.e. non-empty) gaps
in 0(9). The strong ten Martini problem consists in proving the existence of a bijection
between ¥, and the set of the “open” gaps in the (Cantor) spectrum of a self-adjoint
element of 2y when 0 is irrational. L 2¢)
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2.5 Colored butterflies as a gap labeling

he properties of the spectrum of the universal Hofstadter operator hy have
been discussed in Section We are mainly interested in the case of rational
values of the deformation parameter. Let § = M/N according to Convention [2.4.3] In
this case the spectral structure of b,y is well known. With the notation introduced in

Section one has that:

- N odd: o(hayy) consists of N disjoint energy bands and N + 1 “open” gaps (the
maximum number of disjoint bands and non-empty gaps) ordered as Gy < G; <
G2 < ... < GN. Any energy band I; defines a non trivial projection p; such
that ¥ (p;) = my/~ with n; € {1,...,N — 1} according to (2.32). The equality
1 = Py = @j.v: o bj, the normalization, the faithfulness and the linearity of f
imply N = Z;VZI nj, namely n; = 1 for any j = 1,..., N. In other words any band
projection has dimension 1, i.e. Rk(p;) = 1 and the labeling for the gaps is
given by 4 (G;) =j,0< j < N.

- N even: o(hayy) consists of NV —1 disjoint energy bands and only N open gaps Gy <
G1 < Gy < ... < GyN_1 since the central gap is “closed”. With an argument similar
to that for the odd case one shows that, except for a single band projection which
has dimension 2, all the other N —2 band projections have dimension 1. A symmetry
argument shows that the “bigger” projection is the central one, namely px/,. The
automorphism a € Aut(2y) defined by (u,v) — (—u,—v) maps hy in —hy showing
that the spectrum of hy is symmetric with respect to a reflection around the zero
energy. Obviously o? = id. The application of « to Riesz formula shows that a(p;) =
py—jforanyj=1,..., N—1. In particular one deduces the invariance of the central
band projection, i.e. a(pns,) = pns. The final argument is the invariance of the
noncommutative integral with respect to o, namely f oa =f. This property can be
checked directly on the monomials u™v™. The final conclusion is that the labeling
of the “open” gaps is given by A4 (G;) = j,if 0 < j < N/2—1and by 4 (G;) =j +1
ifNe<j<N-1

The system of TKNN-equations (c.f. Section [1.2) proposed by Thouless et al. consists
of a family of Diophantine equations labeled by the “open” gaps in the spectrum of b .
With the notation above introduced, the TKNN-equations can be written as’]

M s(Gj) + N t(G5) = AN (Gy) 7=0,...,Ng (2.35)

with Ny = N (resp. N — 1) if N is odd (resp. even). The system is completed by the

constraint

N .
s(G)l < Vji=0,...,No. (2.36)

9The reader can check directly from Figure that the system coincides with the equations de-
rived in (Thouless et al. 1982) up to the change of notation ¢(G,) = t,, s(G,) = s, N =p, M = q.
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Assuming Convention [2.4.3} equation (2.35) is solved by a unique pair of integers s(G)
and t(G;) for each fixed gap G;. The existence of a solution is guaranteed by the assump-
tion g.c.d.(N, M) = 1, the uniqueness is a consequence of the constraint (2.36).

The integers s(G;) and t(G;) provide two different labelings for the gap G;. Figure
shows a diagrammatic representation in which the labels are coded with colors (warm
colors like red correspond to positive integers, cold colors like blue correspond to negative
integers and white means zero). The butterfly on the left codes the values of s(G;), while
the butterfly on the right codes the values of ¢(G;). An immediate consequence of (2.35)
and (2.36) is that, independently of the rational value of deformation parameter § = M/,
s(Go) = t(Gp) = 0 which explains the white (= 0) as bottom color in both butterflies, and
s(Gn,) = 0, t(Gn,) = 1 which explains the difference between the top colors.

= %
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= =
<3 <)
o
-4
5]
o~
(-
©
—
i=N
I
o
& -
Conductance
1n the gap
1 (Chern number)
0 i
0 3 1 0 0
Hofstadter regime Harper regime

Figure 2.2: [Our elaboration of pictures in (Avron 2004)]. The two diagrams showed in Figure are the
colored versions of the Hofstadter’s butterfly realized by J. E. Avron and D. Osadchy (Avron 2004, Osadchy
and Avron 2001) (cf. Section[I.4). They are known as colored quantum butterflies. The butterfly on the left
(resp. right) is a thermodynamic phase diagram for the Hall conductance in the Hofstadter (resp. Harper)
regime. Any color codes an integer number which describes the quantized values of the Hall conductance
and gives a labeling for the gaps in the spectrum of hy. To any “open” gap G is associated the gap projection
PB;. Under the Hofstadter and Harper representations my and 7, the projection ‘B; defines two distinct
vector bundles over the torus T?. The colors code the Chern numbers of these vector bundles, in accordance

with the topological interpretation of the TKNN-equations.

Let B, be the gap projection associated with the gap G, (Proposition @ It is
reasonable to consider the numbers s(G;) and ¢(G;) as quantities depending on B;.
Moreover, the physical interpretation proposed in (Thouless et al. 1982) is that s(G)
is the Hall conductance related to the energy spectrum up to the gap G; in the limit
of a weak magnetic field (Hofstadter regime), while ¢(G;) is the Hall conductance re-
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lated to the same energy spectrum but in the opposite limit of a strong magnetic field
(Harper regime). Thus, one can infer that the relation between s(G;) and ‘B, depends
on the Hofstadter representation 7y, namely s(G;) := C(m(*B;)). Similarly, one can in-
fer that t(G;) := C(7(B;)). The physical interpretation of the integers s(-) and ()
leads to consider the colored butterflies in Figure [2.2[(c.f. Section as thermodynamic
phase diagrams (Avron 2004, Osadchy and Avron 2001). In particular, the butterfly on
the left shows the various thermodynamic phases for the Hall conductance (assumed
as thermodynamic function) in the Hofstadter regime. In this case the thermodynamic
coordinates are the energy (proportional to the chemical potential) on the vertical axis
and the magnetic field (6 o B) on the horizontal axis. For a fixed value of the magnetic
field, the color associated to the gap G, codes (in unit of ¢*/r) the value of the Hall con-
ductance when the chemical potential lies in the gap G;. Similarly, the butterfly on the
right shows the various phases for the Hall conductance in the Harper regime. In this
case the thermodynamic coordinates are the energy and the inverse of the magnetic field
(0 < 1/B).

However, there is an open question from a mathematical point of view: what is the
meaning of the function C' which relates the integers s(-) and ¢(-) with the gap projec-
tions via the representations 7y and 7.,? One of the main results of this thesis is to prove
that the “function” C denotes the (first) Chern number of a suitable vector bundle asso-
ciated to the gap projection 3; and depending on the particular (Hofstadter or Harper)
representation (cf. Section [2.7). This result leads to a rigorous proof of the topological
interpretation of the TKNN-equations.

2.6 Absence of unitary equivalence

orollary [2.3.8|states that the Hofstadter-like Hamiltonian m(a) and the Harper-like

Hamiltgnian| 7 (a) associated to the same universal element a € 2, are isospec-
tral with spectrum given by o(a), provided that the duality condition (Assumption
holds true. However, the relation of isospectrality between two operators is quite weak
since it concerns only the equality of the spectra as subsets of C; this property is re-
lated only to the algebraic structure of the operator algebras and does not depend on
the representations. However, for a linear operator acting on a Hilbert space, the notion
of algebraic spectrum can be enriched by means of the underlying Hilbert space struc-
ture. As a matter of fact , the little amount of information in the algebraic spectrum
is improved by the determination of the spectral measure or by analyzing the Lebesgue
decomposition of the spectrum or computing the density of the states, etc. This informa-
tion defines the spectral type of an operator. Obviously, two operators which are merely
isospectral, can have different spectral types, while two operators which are unitarily
equivalent have the same algebraic spectrum and the same spectral type. These con-
siderations suggest the following question: under Assumption do the isospectral
operators 7y(a) and 7 (a) have the same spectral type?
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A hint to answer the above question comes from the analysis of the colored butterflies
in Section The isospectrality between the effective models HI?M and Hgar (with
0 = —1q€0 = —l4€0 according to Assumption leads to the same spectral diagram,
the black and white quantum butterfly showed in Figure However, if one looks to
finer properties like the Hall conductance, then the Hamiltonians Hfflof and Hglar produce
different colored butterflies (cf. Figure [1.10] or [2.2). Since the Hall conductance is a
“spectral quantity” (it depends on the spectral projection associated to the gap), one can
suspect that HI‘?Iof and Hfflar have different spectral type. This is not so surprising, in fact
HI‘?IOf and HI‘?Iar are effective Hamiltonians which describe opposite and very different
physical regimes. It is plausible that there exist physical quantities able to discriminate
between the two regimes.

The above considerations suggest that the operators Hfflof and Hf_)lar are not unitary
equivalent. A first, but partial, indication is given by the following result:

THEOREM 2.6.1 (Weak “no go”). Let Assumption hold true. Then there exists no
unitary map W : Ho — Heo sSuch that W Uy W1 = U and W Vo W1 = V..

Proof. We sketch an argument proposed by G. Emch in (Emch 1996). Suppose that such
a W exists. Then W implements unitarily the *-isomorphism defined by the arrow C of
diagram (2.27), i.e. W m(g) W1 = 7 (2p). Such a unitary equivalence extends to a
unitary equivalence of the related von Neumann algebras (c.f. Section Mo (™Ag) =
0(Ap)” and Moo (Ap) := 7m0 (Ay)” . However, this is impossible since M (2y) is a standard
von Neumann algebra (c.f. Section while 9. (y) is not standard (c.f. Section
and the property to be standard (or not) is preserved by unitary equivalences. W

The above “no go” result allows the Hofstadter-like Hamiltonian 7y(a) and the Harper-
like Hamiltonian 7 (a), related to the same element a € 2y, to have different spectral
types, but it does not exclude the existence of a special unitary W which intertwines
only m(a) and 7. (a) and not the full C*-algebras. To exclude the unitary equivalence
between each pair of operators we need a stronger version of the above “no go” theorem.

The main result of this thesis is to provide a geometric and generalized version of
TKNN-equations which relate some “spectral fingerprints” of my(a) and 7, (a) for any
(self-adjoint) a € 2Ay. These spectral quantities can be defined in terms of topological
invariants (TQN) of suitable geometric structures emerging from the spectral decompo-
sition of the algebras m(2y) and 7 (2y) (see Section [2.7). The difference between the
topological invariants associated to my(a) and 7 (a) it is enough to exclude the existence
of a special intertwiner W (strong “no go” result). The existence of a formula which
relates these invariants is a consequence of a deep duality between 7 (20y) and 7. (2p)
which is of geometric type. The proof of this geometric duality is the principal aim of this
thesis.
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2.7 From projections to vector bundles: the “two-fold way”

ection 2.5 ended with the assertion that there exists a relation between gap projec-
tions df the Hofstadter (resp. Harper) Hamiltonian and vector bundles. The present
section aims to explain the nature of such a relation.

Firstly, we need to introduce some notations concerning the theory of vector bundles.
For a detailed and complete exposition about this subject, we refer to (Lang 1985, Chap-
ter III) or (Gracia-Bondia et al. 2001, Chapter 2). Fundamental notions useful for the
purpose of this thesis are sketched in Appendix [C]

We use the symbol : : & — T? to denote a Hermitian vector bundle with two-
dimensional torus as base space. To simplify notation we will occasionally use only the
symbol &. The vector bundle has rank N if . =!(z) ~ CV for any z € T2. The symbol I'(&)
denotes the (finitely generated and projective) C(T?)-module of continuous sections of
the vector bundle. The endomorphism bundle (c.f. Proposition |4.7.13) associated to the
rank N vector bundle & — T? is the rank N2-vector bundle End(&) — T? with typical
fiber End(C") ~ Maty(C) and transition functions induced by the adjoint action of those
of &. The symbol I'(End(&)) denotes the corresponding C(T?)-module of sections.

CONVENTION 2.7.1 (n-dimesional torus). The manifold T"™ := $! x ... x S8 (n times) is
parametrized by the points (denoted with k) of the square [0, 27|" up to the identification of
the opposite edges. Such an identification is made explicit by the map k := (ki, ..., k) —
z(k) == (e™1,... e"*). We consider T" to be endowed with the flat metric (the product
metric of the canonical Riemannian metric on $') in such a way that the related volume
form agrees with the normalized Haar measure dz(k) := % with d"k :=dki A ... Ndky,.
Sometimes we use the short notation LP(T") instead LP(T",dz) to denote the space of the

p-summable functions with respect to dz.

The Hermitian structure on the bundle & and the existence of a volume form on T?
allows us to define a scalar product on the space of sections I'(&) as

(s;r) := /1?2 (s(2);7(2)): dz, s,r € T(E),

where (- ; -). denotes the scalar product in the fiber space :~1(z) ~ C". The completion
of I'(&) with respect to the norm ||s||;2 := /(s; s) leads to the Hilbert space L?(&) of the
L?-sections of the vector bundle &. Obviously, I'(&) ¢ L%(&) due to the compactness of
the base manifold. We denote with %(L?(&)) the C*-algebra of the bounded operators
on the Hilbert space L?(&). The fiber metric (- ; -), defines a C(T?)-valued Hermitian
structure on I'(&) through {s;7}(2) := (s(2);r(2)), for s,r € I'(E). This endows I'(&£) with
the structure of a Hilbert module over C(T?). Let Endcr2)(I'(€)) be the C*-algebra
of the adjontable operators on the C(T?)-module I'(¢) (Boca 2001, Proposition 3.1 and
Theorem 3.8). Any element in End¢12)(I'(£')) extends uniquely to a bounded operator on
L?(&) hence, with a slight abuse of notation, we can write End¢r2)(I'(&)) € B(L*(&)).
The (localization) isomorphism I'(End(&)) ~ End¢(12)(I'(€)) shows that I'(End(&)) is a
unital C*-algebra and justifies the (abuse of) notation I'(End(&)) ¢ Z(L%(&)).
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DEFINITION 2.7.2 (Bundle decompositionm ). Let A C B(H) be a C*-algebra of bounded
operators on the Hilbert space H. We say that 2 admits a bundle decomposition over X
if there exist a vector bundle & — X (with X a finite dimensional compact manifold) and
a unitary map F : H — L?*(&) such that F A F~' C T(End(&)).

The mere request of a unitary map between H and L?(&) is trivial since all separa-
ble Hilbert spaces are unitarily equivalent. Nevertheless, such a map transforms 2 in
a subalgebra of %(L?(£)). The non-trivial part of the above definition consists in the
(rather strong) request that F A F~! ¢ I'(End(&)). The unitarity of the map F assures
that spectral properties of operators in 2l are preserved after the decomposition. On the
other hand, I'(End(&)) is a geometric object and its geometry encodes features of the
original algebra 2. In other words, an algebra of operators admits a bundle decompo-
sition if it has a hidden geometric structure which emerges up to a unitary transform.
A general scenario for the appearance of an emerging geometric structure is the exis-
tence of a family of symmetries G for the algebra 2(. This point of view is developed in
Chapter 4 A triple {H,2, &} is called a physical frame (Definition 4.1.2). The content
of Theorems [4.7.9] and [4.7.15] is that (under some technical assumptions) any physical
frame with wandering property (Definition |4.5.1) induces a bundle decomposition F. In
this case we say that the bundle decomposition F is subordinate to the physical frame
{H,2,&}. If & is maximal commutative inside the commutant 2’, then the physical
frame {H,2, S} is called irreducible and we refer to the induced F as an irreducible
(subordinate) bundle decomposition.

The interpretation of the spectral properties of 2 in terms of emerging geometric
quantities is supported by the following general result.

LEMMA 2.7.3. Let A C #(H) be a C*-algebra admitting a bundle decomposition over
X with (rank N) vector bundle . : & — X. Then, any projection P € 2 defines a vector
subbundle £ (P) C &.

Proof If P ¢ 2 is a projection, then F P F~! =: P(-) € T'(End(&)) is an projection-
valued section, namely P(z) is a projection in End(:~!(z)) ~ Maty(C) for any » € X.
Since any element of I'(End(&’)) defines a bundle map (Gracia-Bondia et al. 2001, Corol-

lary 2.7), we can build the image vector bundle associated to P(-). Let Im(P), :=
{P(x)v; ve . t(z)} 7 !(x) and consider the total space

ZL(P):= | | Im(P), ~ {(x,v) e X x & : 1(v) =z, P(z)v=v} (2.37)
reX

10The space L?(&) agrees with the direct integral (c.f. Appendix [B.3) of the Hilbert spaces (=) := ¢t~ (z),
ie. L*(€) = [& M(2) dz. The unitary map F : H — L?*(&) induces a direct integral decomposition or
more simply a fiber decomposition of the Hilbert space H. Let 2 C F%(H)F ! be the set of decomposable
operators (or operator fields c.f. Appendix . If FAF ! c 2, then the C*-algebra A admits a fiber
decomposition, namely FAF 1 = fﬁ - (A) dz with 7, : A — ZB(H(z)) is a representation of 2 for any z €
T?. However, the fiber decomposition of a C*-algebra is a purely measure-theoretic notion which contains no
topological information. On the contrary, the notion of of bundle decomposition is purely topological and is
related with the definition of continuous field of C*-algebras (Dixmier 1982). Observing that I'(£) is dense
in L?(&), it follows that the notion of bundle decomposition is stronger than that of fiber decomposition.
Loosely speaking, a bundle decomposition is a continuous fiber decomposition.
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where the symbol | | denotes the disjoint union of sets labeled by X. Equation (2.37)
implies that #(P) C & and .Z(P) N+ }(x) = Im(P), and so defines the total space of a
vector subbundle ¢ : £ (P) — X provided that the function z — dim(Im(P),) = Rk(P(x))
is constant. The latter claim follows by standard arguments showing that the map = —
Rk(P(z)) is both lower and upper semicontinuous, hence locally constant (Dixmier and
Douady 1963, Section 1). If X is connected, then =z — Rk(P(z)) is constant and the
common value, denoted with Rk(P), fixes the rank of the vector subbundle &(P). The
isomorphism which appears in the right-hand side of is justified by the fact that
the map (z,v) — v defines a linear isomorphism between the fiber spaces {z} x Im(P),
and Im(P),. [

The relevance of the Definition for a geometric derivation of the TKNN-equations
(2.35) is related to the following fundamental result:

THEOREM 2.7.4 (Bundle decomposition in Hofstadter and Harper representations). Let
2y be the the rational NCT-algebra (according to Convention , mo ¢ Uy — Ho
the Hofstadter representation and T : 2n/y — Hoo the Harper representation.

(i) The operator algebra my(2r)y) C %(Ho) admits an irreducible bundle decomposi-
tion over T? with (rank N) Hermitian vector bundle & — T? (called Hofstadter vec-
tor bundle) and a unitary transform Fy : Ho — L?(&y). The decomposition is unique
(up to equivalences). The vector bundle & is trivial, hence its (first) Chern number is
zero, C1(6p) = 0. Finally, the bundle representation Fo mo (/) Fo~ ! is generated
by the endomorphism sections Uy(-) := Fy mo(u) Fo~ ' and Vo(-) := Fo mo(v) Fo !
explicitly defined (in local coordinates according to Convention ) by

Up(k) = U(e ), Vo(k) = V(e?), k= (ki kg) € R? (2.38)
where U and V are defined by (2.40).

(ii) The operator algebra moo(An/y) C %(Ho) admits an irreducible bundle decomposi-
tion over T2 with (rank N) Hermitian vector bundle &y — T? (called Harper vector
bundle) and unitary transform Fu, : Hoo — L*(Ex). The decomposition is unique
(up to equivalences). The vector bundle &, is non trivial with (first) Chern number
C1(6x) = 1. Finally, the bundle representation F. moo(™Unr/y) Foo "L is generated by
the endomorphism sections Uso(-) := Foo Moo (1) Foo L and Voo (+) i= Fuo Too(0) Foo ™"
explicitly defined by

Us(k) = UENF),  Voo(k) = V(e™?), k= (ky, ko) € R2. (2.39)

To complete definitions (2.38) and (2.39) we need to introduce the N x N complex
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matrices
0 0 0 0 0 A
0 e2™% 0 0 100 0 0
0 0 el N 01 0
U\ == A . V() =
Do : .0 Do 000
00 0 .0 00 0 0 0
0 0 0 2m(N-1) 000 10
(2.40)

with A € C. Obviously, U()\) and V()\) are unitary if and only if |\| = 1 (i.e. A € $!) and
UNV() = 2™ VIW)UL\), YN eC.

The proof of claim (i) is postponed in Section where the Hofstadter vector bun-
dles is built “by hand”. Similarly, claim (ii) is proved in Section More generally,
the proof of Theorem [2.7.4]is based on a general technique developed in Chapter 4. The
unitary maps Fy and F, are called generalized Bloch-Floquet transforms.

The uniqueness claimed in (i) of Theorem [2.7.4] means that any other bundle repre-
sentation F, subordinate to an irreducible physical frame with wandering property is
unitarily equivalent to 7y and selects a vector bundle &; which is isomorphic to &. In
other words, for the Hofstadter representation there exists a unique bundle decomposi-
tion (up to equivalences) subordinate to an irreducible physical frame with wandering
property. The same holds true for the Harper representation. This form of uniqueness
for the bundle decomposition Fj (resp. F,) implies that the geometry of the Hofstadter
(resp. Harper) vector bundle is a fingerprint for the physics (observables + symmetries)
of the Hofstadter (resp. Harper) regime.

In the Hofstadter case (c.f. Section [5.2.1) the structure of + : & — T? is defined by
means of a system of N orthonormal sections ¢, := {¢{,...,¢) 7'}, with ¢} : R? — @} (a
suitable “ambient” vector space), subjected to periodic conditions

Co(kl + 2m, ]{22) = Co(kl, ko + 271') = Co(kla k‘Q) (2.41)

Equations allows ¢, to be a global frame of sections over the base manifold T2,
hence the resulting vector bundle is trivial, i.e. & ~ T2 x CV. The triviality of the
vector bundle implies automatically the vanishing of all the Chern classes and related
Chern numbers (Husemoller 1994, Proposition 4.1). The triviality of the vector bundle
&y implies also the triviality of endomorphism bundle End(&)) and in fact the sections
Up () and Vy(-) are globally defined, as showed by equation (2.38).

The structure of the Harper vector bundle ¢ : &, — T? is defined by a system of N
orthonormal sections ¢, := {¢%,...,¢¥~1}, with ¢4 : R? — &’ (a suitable “ambient”
vector space), subjected to covariance conditions

Coo(kl + 271', kZ) = G(kZ) ’ Cw(kla kQ)a Coo(kl’ k2 + 27T) = Coo(kl, k2) (2.42)
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where the unitary N x N matrix G(k1, k2) is defined by

0 10 ...00
0 1 0 0

Gl k)= | 0 00 ] (2.43)
: SR |
0 00 ... 01
ek2 0 0 ... 0

Equations show that ., defines a frame of sections on the base manifold T?
which is globally defined only in the ks-direction, but which is twisted by G(-) in the
ki-direction. The resulting vector bundle &, is non-trivial with (non-trivial) transition
functions defined by means of the matrix-valued function G(:) (c.f. Section[5.2.2). The
Harper vector bundle admits a curvature Ky, := _Wi]l N dki A dko, called Harper cur-
vature. It follows that the first Chern class of the Harper vector bundle is ¢ (&) =

by dk A dky which implies C1(6x) = 1.

Any abstract projection p € Proj(2y) defines a projection Py := my(p) in the Hofs-
tadter representation and a projection P, := n(p) in the Harper representation. Let
0 =M/N. Theorem assures that Py(-) := .Zomo(p).Fo ! is an orthogonal projection in
I'(End(&)) and Puo(+) := FooToo(p)-Foo " * is an orthogonal projection in I'(End(&,)). Ac-
cording to Lemma[2.7.3] Py(-) defines a vector subbundle of the Hofstadter vector bundle,
denoted by £y(p) C &, and similarly P, (-) defines a vector subbundle of the Harper vec-
tor bundle, denoted by 2. (p) C &x. Then, to any projection in (., we can associate in
two ways a vector bundle over the base manifold T?. This “two-fold way” is summarized
by the following diagram

Fo...7, m )
Py —0 Py() — s %y (p) — Co(p) (2.44)
>
p € Proj(2y) HB(H) I'(End(&)) & — T2 7
Poo Froo o T Poo() Im goo(p) ?Coo(p)

The last arrows the diagram (2.44), denoted with C4, associate the first Chern number
to vector bundles over T?. We use the short notation Cj(p) := C1(%(p)) to denote the
first Chern number of the vector bundle .Z}(p), with § = 0, co.

Which kind of relation there exists between the two vector bundles .%(p) and £ (p)
associated to the same p? Can such a relation imply any kind of dependence between
the related Chern numbers?

Our next goal is to provide an answer to these questions.
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2.8 From geometric duality to TKNN-equations

In this section we present one of the main results of this thesis which address the
question stated at the end of Section

We denote by 7 : .# — T? the determinant line bundle associated to the Harper vector
bundle : : & — T?, namely .# is the rank 1 Hermitian vector bundle with transition
functions given by the determinant of the transition functions of &,. One has that
C1(F) = C1(€x) = 1 (c.f. Appendix[C|and equation (C.9)).

THEOREM 2.8.1 (Geometric duality). Let 2wy be the rational NCT-algebra (as in Con-
vention and p € Proj(™Aayy).

(1) The vector bundles £ (p) and £~ (p) have the same rank given by the number Rk(p)
which is the dimension of p (c.f equation (2.34)).

(ii) Let f(n ) : T — T with n,m € Z, be the continuous map defined by

f(n,m) (eik17eik1) _ (eink1 ’ eimkz). (245)

Then
FivyZse(p) = fary2o(p) @ S (2.46)
where f(*mm).,%(p), f = 0, 00, denotes the pullback of the vector bundle Z;(p) induced

by the map f(, ), and ¥ is the determinant bundle of & (c.f. Appendix @

The proof of the duality relation is postponed to Section Claim (i) follows
from (ii) and Proposition [5.2.2

The geometric duality between the vector bundles .%(p) and £ (p) is the core of a
geometric derivation of the TKNN-equations.

COROLLARY 2.8.2 (Generalized TKNN-equations). Let ./ be the rational NCT-algebra
(according to Convention . Any p € Proj(uyy) defines a TKNN-equation

N Coo(p) + M Co(p) = Rk(p) (2.47)

which relates the Chern numbers Co.(p) and Cy(p).

Proof The derivation of equation (2.47) from the duality formula (2.46) is straightfor-
ward. Observing that isomorphic vector bundles have same characteristic classes, one
has

1 (Finy L)) = 1y Zo(p) @ 7).
Applying formula (C.10) to the right-hand side, one has
c1(fin1)Zoo(p)) = c1(fpr1)%0(p)) + Rk(p) 1 (), (2.48)

since the rank of .# is 1 and the rank of fe M,1)~$0 (p) coincides with the rank of .%(p)
which is Rk(p).
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To complete the proof we need to integrate over T? both sides of (2.48). From the
left-hand side one obtains

Cr(f(n1)Zoo(p)) = /T2 a1 (fin1)Zo(p)) = /T2 fin1ye1(Zos(p)) 4 NCx(p)

where equality I follows from the functoriality of the Chern class (i.e. ¢1(f*&) = f*c1(&))
and equality I7 follows from Lemma The same computation for the right-hand
side shows that Cl(f(*_le),,%o(p)) = —MCy(p). Finally, C1(¥) = C1(&x) = 1. |

If p =1, then % (1) = &, Loo(1) = &, Rk(p) = N and equation (2.47) is compatible
with the results obtained in Theorem , namely Cy(1) := C1(&) = 0 and Co (1) :=
Ci(éx) = 1.

Equation defines a geometric generalized version of the TKNN-system (2.35).
With the notation introduced in Section let B; € Proj(Qli\’}’/N) the gap projection
corresponding to the j-th gap G; (0 < j < Ny) in the spectrum of the universal Hofstadter
operator by € 257, . With the identification t(G;) == Cx(B;) and s(G;) := Cp(P;) and
using the labeling .4 (G;) := Rk(B,) defined by (2.34), then equations reduce
exactly to the system of Diophantine equations proposed by Thouless et al. in
(Thouless et al. 1982).

2.9 A “non-commutative look” to TKNN-equations

he geometric generalization of the TKNN-equations has been derived under
the assumption of rationality for the deformation parameter 6 = M/n. A natural
question is whether it is possible to give any meaning to also in the irrational case
6 € R\Q. To provide an answer we need to introduce new structures on the NCT-algebra.

Canonical derivations and universal Chern number

In view of Remark the map p.(u) = z1u, p.(v) = 220 extends to an automorphism
for any z = (21, 20) € T2 The map T? > 2 — p, € Aut(Ry) defines a strongly continuous
action of the commutative group T? on 2y. Let z(k) = (e’*1,e*2) ¢ T2, For any a in the
dense set £y one defines 0 (a) € £, j = 1,2, as

d
J k=0

It follows that d; and & 5: (i) are C-linear 2y-valued maps; (ii) satisfy the Leibniz’s
law 7 ; (ab) =7 (a) b+ a J; (b); (iii) are symmetric, 7 ; (a*) =7 ; (a)*; (iv) commute,
J1039=020d1. We refer to 31 and 2 as canonical derivations. Let (u,v) be a frame
for 2y. A simple computation shows that

J1 (uW™) :=i2mn u"e™, J o (u"0™) :=i2rm u"o™ (2.50)

which proves that 1 and J 5 are unbounded. The maximal invariant domain of defini-
tion for 01 and 7 » coincides with the smooth algebra 25°
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The universal Chern number is the map
¢, : Proj(2A°) — Z

defined by
1
€p) = = F Gl (1) 72 () 2.51)
where [071 (p); T2 (p)] :=01 (p) T2 (p)— T2 (p) T1 (p). Equation (2.51) is called Connes
formula. The integrality of ¢, is proved in (Connes 1980), but more details can be found

in (Connes 1994, Chapter III).

The relevance of the map €, for our purposes is related to the following result (c.f.

Proposition [5.2.2):

PROPOSITION 2.9.1. For any p € Proj(Ql%N) one has Cy(p) = €,(p).

Constraint for the TKNN-equations of the Hofstadter operator

The first interesting consequence of Proposition [2.9.1| concerns the bound which
completes the TKNN-system proposed in (Thouless et al. 1982). Let B; € Proj (Ql?j/N)
the gap projection corresponding to the j-th gap G; (0 < j < Np) in the spectrum of
the universal Hofstadter operator ha/y € AT - With the identification s(G;) = Co(B;),
Proposition leads to rewrite as |€,(B;)| < N/2. The latter bound has been
proved in (Choi et al. 1990, Corollary 3.4). Then, Proposition provides a purely
geometric justification for the bound and, together with Corollary[2.8.2] completes
our purpose to find a rigorous geometric derivation of the result claimed in (Thouless
et al. 1982). However, the bound |¢,(*;)| < /2 holds true only for the spectral projec-
tions of the universal Hofstadter operator. In principle, the choice of a different operator
leads to a different bound and each bound depends on the form of the related operator.

Generalization to irrational values of the deformation parameter

By means of the equality Cy = ¢,, the definition Rk(p) := N f (p) and § = M/n, one can
rewrite the TKNN-equation (2.47) in the following form

Coo(p) = F (p) — 0 Ci(p). (2.52)

Formally, equation contains only quantity defined in terms of the abstract algebra
2y, hence it has a perfect meaning for any 6 € R.

The above formula has an interesting application. Let 0y € 3° be a self-adjoint
element (not necessarily the universal Hofstadter operator hy) and 3 the gap projection
associated to the gap G C R\ 0(d9) and defined via Riesz formula according to Lemma
If = M/N, then the integers Co.(Pe) and Cy(P) defines two distinct numerical
labels for the gap G. An interesting question is whether these labels, initially defined
for rational values of 6, are stable for small perturbations of the deformation parameter
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0. A good criterion of stability is given in the following terms. Consider a family of self-
adjoint elements 0y := f(u,v) with (u,v) a frame for 2y, f € C>(T?) a fixed real smooth
functions and 0 € I, where I is an interval of R. The functional expression of dy is fixed
and it depends on ¢ only through the fundamental commutation relation between the
generators of 2y. Moreover 0y € A3° for any 6§ € I. Suppose that \q € R\ o(dg) for
any 0 € I and denote by ‘,B@G € Proj(25°) the related gap projection corresponding to
(—00,Ag]. The functions 6 — €,(P%) is constant in I (Boca 2001, Proposition 11.11).
Moreover, as a consequence of the description of the group K (2y) given in (Pimsner and
Voiculescu 1980), one deduces that

f (PBE) = m(PE) + 0€.(PE) (2.53)

(Boca 2001, p. 145), where the integer m(-) € Z is uniquely determined by the condition
0 <f (-) < 1. Since €,(P%) is constant in I, one infers that also m(B%) is constant under
small perturbations of 6. Since Cy = €, in view of Proposition and Co =f —0C, =m
(comparison between and (2.53)), it follows that the integers Cy and C., are “stable
labels” for “stable gaps”. In other words equation (2.52) is meaningful also for irrational
values of the deformation parameter provided that there exists a stable “open” gap under
small perturbation of 6.

Cohomological interpretation

A final remark concerns the link between the “non-commutative version” of the TKNN-
equation and the geometry of the NCT-algebra. Indeed equation is re-
lated to the periodic cyclic cohomology of the algebra 7° which is the Z,-graded group
PH*(A3°) := PH®(AL) @ PHY(AP) with PH*(A3°) ~ C?, § = ev,od (Connes 1994)
(c.f. Appendix for the basic definitions). Since the two independent generators of
PH®(A3°) are exactly the noncommutative trace f and the universal Chern number
¢,, it follows that the integer valued function C., is an element of the even part of the
periodic cyclic cohomology group of 2A5°.

2.10 Prospectives and open problems

s usual, the solution of a problem opens the way to new speculations and stimulating
Achallenges. This is true also for this thesis. During our investigation, we collected
interesting problems closely related with the arguments of this thesis, that we have
not had the time to examine. At the same time, we realized that some of our results
could have relevant generalizations by means of interactions with other mathematical
fields. We sketch below a short list containing the main open problems and the more
stimulating prospectives of further generalizations.

e Proof of the Kubo-Chern equivalence for the Harper and Hofstadter regimes (c.f.
Section [1.3), supposedly by means of SAPT techniques.
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e Derivation of the effective model for the Bloch-Landau Hamiltonian Hgp, with
a perturbed magnetic field B+ 6B in the limit § B — 0. This problem is related with
the non-triviality of the Bloch vector bundle in view of the absence of time-reversal
symmetry.

e Derivation of the effective models for the Harper and Hofstadter regimes taking
into account also of the effects due to disorder (random or aperiodic potential). The
first step should be the generalization of SAPT to the cases of aperiodic or random
potentials using non-commutative tools a la Bellissard (Bellissard et al. 1994).

e Generalization of the TKNN-equations to higher dimensional Harper representa-
tions (work in progress with Giovanni Landi) and possible applications to the cou-
pling of Landau bands in presence of a periodic vector potential (c.f. Section|3.4.8)
and to the study of hexagonal lattices (graphene) (Bellissard et al. 1991).






Chapter 3
Derivation of Harper and Hofstadter models

Pour bien savoir les choses, il en faut savoir le détail; et
comme il est presque infini, nos connaissances sont
toujours superficielles et imparfaites.

(To understand matters rightly we should understand
their details; and as that knowledge is almost infinite, our
knowledge is always superficial and imperfect. )

Francois de La Rochefoucauld,
Réflexions ou sentences et maximes morales, 1665-1678

Abstract

Some relevant transport properties of solids do not depend only on the spectrum of
the electronic Hamiltonian, but on finer properties preserved only by unitary equiv-
alence, the most striking example being the conductance. When interested in such
properties, and aiming to a simpler model, it is mandatory to check that the simpler
effective Hamiltonian is approximately unitarily equivalent to the original one, in the
appropriate asymptotic regime. In this chapter, we prove that the Hamiltonian for
the QHE is approximately unitarily equivalent to a Hofstadter-like (resp. Harper-like)
Hamiltonian, in the limit of weak (resp. strong) magnetic field. Section provides
a brief compendium of the SAPT “philosophy” while Section [3.2|aims to fix the math-
ematical description of the model. Section[3.3]is devoted to the adiabatic theory in the
Hofstadter regime while the Harper regime is expounded in Section Finally, in
Section |3.4.8 we show that an additional periodic magnetic potential induces in the
Harper regime a non-trivial coupling of the Landau bands.

3.1 An insight to space-adiabatic perturbation theory

he results obtained in this chapter are based on the observation that both the Hofs-

tadter and the Harper regime are space-adiabatic limits, and can be treated in the
framework of space-adiabatic perturbation theory, (SAPT) (Panati et al. 2003b, Panati
et al. 2003a), see also (Teufel 2003). As for the Hofstadter regime, the proof follows ideas
similar to the ones in (Panati et al. 2003a). Our generalization allows however to con-
sider a constant magnetic field (while in (Panati et al. 2003a) the vector potential is as-
sumed in Cp° (R%)) and to include a periodic vector potential. Moreover the proof extends
the one in (Panati et al. 2003a), in view of the use of the special symbol classes defined
in Section [3.3.4. On the contrary, from the discussion of the Harper regime g — 0
some new mathematical problems emerge. Then, although the “philosophy” of the proof
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of Theorem [3.4.8] is of SAPT-type, the technical part is new as it will be explained in
Section Notice that the regime of weak magnetic field can also be conveniently ap-
proached by using the magnetic Weyl quantization (Mantoiu and Purice 2004, Mantoiu
et al. 2005, Iftimie et al. 2007, Iftimie et al. 2009), a viewpoint which is investigated in
(De Nittis and Lein 2010).

For the sake of completeness, we summarize some salient aspects of the SAPT. We
refer to (Teufel 2003) for a complete exposition. Let H be the Hamiltonian of a generic
physical system which acts on the total (or physical) Hilbert space H,y. For the SAPT
to be applicable, three important ingredients needs:

(1) a distinction between fast and slow degrees of freedom which is mathematically
expressed by a unitary decomposition of the physical space H,,y into a product
space Hs ® Hy (or, more generally, a direct integral), the first factor being the space
of slow degrees of freedom and the second the space of fast degrees of freedom,;
Hs = L?(M) for suitable measure space M is also required;

(i1) a dimensionless adiabatic parameter ¢ < 1 that quantifies the separation of scales
between the fast and slow degrees of freedom and which measures how far are the
slow degrees of freedom to be “classical” in terms of some process of quantization;

(i1) a relevant part of the spectrum for the fast dynamics which remains separated
from the rest of the spectrum under the perturbation caused by the slow degrees
of freedom.

3.2 Description of the model

he Hamiltonian describes the dynamics of particle with mass m and charge ¢

which interacts with the ionic structure of a two dimensional crystal and with an
external orthogonal uniform magnetic field. A more general model is provided by the
operator 1 ;

Hpr, = o [—mvr - %Ap (r) — %A )] +Vr () +q @ (r) (3.1)
still called Bloch-Landau Hamiltonian and, with an abuse of notation, still denoted
with the same symbol used in (2.1). The vector-valued function A := (A;,As) is a vec-
tor potential corresponding to an (orthogonal) external magnetic field B = V, A A =
(01A2 — 02A1) e, ® is a scalar potential corresponding to a (parallel) external electric
field E = —V,® and Ar and Vr are internal periodic potentials which describe the elec-
tromagnetic interaction with the ionic cores of the crystal lattice. The external vector
potential is assumed to have the following structure

A(r)=A¢(r)+Ap(r), (3.2)

where Aj is a bounded function and Ap describes a uniform orthogonal magnetic field of
strenght B, i.e. in the symmetric gauge

B B B
AB(T):QGJ_/\T:<—2T2,2T1>, V.ANAgp=Be|, V,-Ag=0. (3.3)
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The evolution of the system is prescribed by the Schridinger equation
d
ZFL@IZJ(T‘, 8) = HBL ¢(T7 8)7 (3.4)

where s corresponds to a microscopic time-scale.

Mathematical description of the crystal structure

The periodicity of the crystal is described by a two dimensional lattice I' C R? (i.e. a
discrete subgroup of maximal dimension of the addictive group R?), thus I' ~ Z2. Let
{a,b} C R? be two generators of T, i.e.

F:{7€R2 : vy =mnia+ngb, ni,ng € Z}.

The fundamental or Voronoi cell of T'is My :={r e R? |r =1 a+1ls b, I1,ls €[0,1]} and
its area is given by Qr = |a A b|. We fix the orientation of the lattice in such a way that
Qr = (a1ba—agby) > 0. We say that a function fr : R? — C is I'-periodic if fr(r+v) = fr(r)
for all v € I" and all » € R2. The electrostatic and magnetostatic crystal potentials Vy-
and Ar are assumed to be I'-periodic according to the previous definition.

An important notion is that of dual lattice T'* which is the set of the vectors v* € R?
such that v* - v € 27Z for any v € I. Let {a*,b*} C R? be defined by the relations
a*-a=0"-b=1and a*-b=10"-a = 0; these vectors are the generators of the lattice I'*,
i.e.

r={y"e R? : 4% = my 27a* + ma 27b*, mi,mo € Z}.

The Brillouin zone
M« = {k € R?* |k =ky a* + ko b*, ki, ko € [0,27]}

is the fundamental cell of the dual lattice I'*. The explicit expressions for the dual gen-
erators {a*,b*} in terms of the basis {a,b} is

*_CJ_/\b_ 1

el Na 1
a = = — _
|a/\b[ QF

_ ‘a /\b| = Q—F(—ag,al). (35)

(ba, —=b1), b =

It follows from (3.5) that the surface of the Brillouin zone is Qr« = (27)%|a* Ab*| = 27)*/ar.
Given a I'-periodic function fr, we denote its Fourier decomposition as

fr(r)= D fOr) e = Y frym, el M2 O, (3.6)

y*el* m1,me€7Z

A Z2-periodic function f : R? — C is a function periodic with respect to an orthonormal
lattice, namely such that f(z1+1,22) = f(x1,220+ 1) = f(x1,22) for any z;, 2o € R. If one
changes the variables as x; := a* - r and z5 := b* - r one has that fp(r) := f(a*-r,b* - r) is
I-periodic in r. Every I'-periodic function can be obtained in this way.
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Assumptions on the regularity of the potentials and self-adjointness

We denote by CJ*(R?, R) the space of real-valued n-times differentiable functions (smooth
functions if n = oo) with continuous and bounded derivatives up to order n. Concerning
the internal potentials Ar and Vi we need to assume that:

ASSUMPTION 3.2.1 (Internal potentials, strong form). The I'-periodic potential V1 and
the two components of the T'-periodic vector potential Ar are functions of class CﬁO(RQ, R).

Sometime we can relax the above assumption and we can consider the weaker ver-
sion:

ASSUMPTION 3.2.2 (Internal potentials, weak form). The two components of the T'-
periodic vector potential Ar are in CL(R?* R). The I'-periodic potential Vr verifies the
condition [, \Vr(r)]? d?r < +oo.

Assumption implies that Vr is uniformly locally L? and this implies also that Vr
is infinitesimally bounded with respect to —A, (Reed and Simon 1978, Theorem XII1.96).
Concerning the external potentials A and ®, we need to assume that:

ASSUMPTION 3.2.3 (External potentials). The scalar potential ® is of class CﬁO(RQ, R).
The vector potential A consists of a linear term Ap of the form plus a bounded term
A, which is of class C{°(R?, R).

When the external potentials A and ® vanish, the Bloch-Landau Hamiltonian (3.1)
reduces to the periodic Hamiltonian (or Bloch Hamiltonian)

1

Hper = %

. q 2
v EAF(T)} V(). (3.7)

The domains of self-adjointness of Hpy, and Hyer are described in the following proposi-
tion. Its proof, together with some basic notion about the Sobolev space 3*(R?) and the
magnetic-Sobolev space 9{12\,1(}1%2), is postponed to Section

PROPOSITION 3.2.4. Let Assumptions and hold true. Then both Hgy, and
Hyer are essentially self-adjoint operators on L?(R?, d*r) with common domain of essential
self-adjointness the space of smooth functions with compact support C°(R?, C). Moreover
the domain of self-adjointness of Hyer is H?(R?) while the domain of self-adjointness of
HBL is %%A(RQ)

3.3 Space-adiabatic theory for the Hofstadter regime

3.3.1 Adiabatic parameter for weak magnetic fields

he SAPT for a Bloch electron developed in (Panati et al. 2003a) is based on the
existence of a separation between the microscopic space scale fixed by the lattice
spacing ¢ := \/Qr, and a macroscopic space scale fixed by the scale of variation of the
“slowly varying” external potentials. The existence of such a separation of scales is
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expressed by introducing a dimensionless parameter ¢ < 1 (adiabatic parameter) to
control the scale of variation of the vector potential and the scalar potential ® appearing
in (3.1), namely by setting A = A(er) and ® = ®(er). In particular the external magnetic
and electric fields are weak compared to the fields generated by the ionic cores.

It is useful to rewrite the (c-dependent) Hamiltonian (3.1) in a dimensionless form.
The microscopic unit of length being ¢, we introduce the dimensionless position vector
x := v/t and the dimensionless gradient V, = ¢V,. Moreover, since the vector poten-
tial has the dimension of a length times a magnetic field, then A(cx) := ¢/¢B A(elx) is
a dimensionless function, with B a dimensional constant which fixes the order of mag-
nitude of the magnetic field due to A. Similarly for Ar (with ¢ = 1). Factoring out the
dimensional constants one finds

2

1 1 qQr Br q|rB 1

Hgp, = —Hpp, = - | iV, — A A .
BL = z-HBL = 3 iVy = r(z) —tg p (ex)| +Vr(z)+¢(ex), (3.8)
~——
=:hp! =hp'

where & := "/mar is the natural unit of the energy fixed by the problem, Vi (z) :=
/gy Vr(¢x) and ¢(ex) := d9/g, P(elx) are both dimensionless quantities. The constant A
will play no particular role in the rest of this paper, so it is reabsorbed into the definition
of the dimensionless vector potential Ar, i.e. formally A = 1.

Comparing the dimensional Hamiltonian (3.8) with the original Hamiltonian (3.1),
or observing that the strenght of the magnetic field goes to zero (at least linearly) with
g, it is physically reasonable to estimate chp o 1. This is rigorously true in the case of a
uniform external magnetic field.

The external force due to A and ¢ are of order of ¢ and therefore have to act over a
time of order ¢! to produce a finite change, which defines the macroscopic time-scale.
The macroscopic (slow) dimensionless time-scale is fixed by ¢ := 6%8 where s is the
dimensional microscopic (fast) time-scale. With this change of scale the Schréodinger
equation (3.4) reads

d
ie—1) = H, 3.9
’LEdtw BL 1/) ( )
with Hgp, given by equation (3.8).

REMARK 3.3.1. Observe that from the definition of the dimensionless periodic potential
Ar and Vr it follows that they are periodic with respect to the transform z — x + /e
This means that Ar and Vi are periodic with respect to a “normalized” lattice whose
fundamental cell has surface 1. L 29,

3.3.2 Separation of scales: the Bloch-Floquet transform

To make explicit the presence of the linear term of the external vector potential, we
can rewrite the (3.8) as follows
2

Hyr, — % [—N — Ap (2) — Ao (ex) — 14 %eL nex| + Vi (x)+ 6 (ex), (3.10)
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where the adiabatic parameter ¢ expresses the separation between the macroscopic
length-scale, defined by the external potentials, and the microscopic length-scale, de-
fined by the internal I'-periodic potentials. The separation between slow and fast degrees
of freedom can be expressed decomposing the physical Hilbert space Hphy = L?(R?, dz)
into a product of two Hilbert spaces or, more generally, into a direct integral. To this
end, we use the Bloch-Floquet transform (Kuchment 1993). As in (Panati et al. 2003a)
we define the (modified) Bloch-Floquet transform Z of a function ¢ € S(R?) to be

(Z9)(k,0) := ) e T Ep(f + ), (k,0) € R? x R2. (3.11)
~yel'
Directly from the definition one can check the following periodicity properties:

(ZY)(k,0 +~) = (Z¢)(k,0) Vyel, (3.12)

and
(ZY)(k +~%,0) = e 07 (Z9)(k, 0) VA* el (3.13)

Equation shows that for any fixed k € R?, (Z¢)(k,-) is a I'-periodic function and
can be seen as an element of H; := L?(V,d?0) with V := R?/T a two-dimensional slant
torus (Voronoi torus). The torus V coincides with the the fundamental cell Mr endowed
with the identification of the opposite edges and d?6 denotes the (normalized) measure
induced on V by the identification with M. The Hilbert space Hy is the space of fast
degrees of freedom, corresponding to the microscopic scale. Equation (3.13) involves a
unitary representation of the group of the (dual) lattice translations I'* on the Hilbert
space Hy, namely
I 59" = 7(v") € %(Hy)

where 7(7*) is the multiplication with e®7". It will be convenient to introduce the Hilbert
space
Hy = {7/) € L120c (R2a d2ka Hf) : %Z)(k - 7*7 ) = T(’)/*) U’(k’ )} (3.14)

equipped with the inner product

o /M ((R): o)), 02k

T

where %k = % is the normalized measure. There is a natural isomorphism from
H, to L? (Mr~,d?k, Hy) given by restriction from R? to Mr-, and with inverse given by
T-covariant continuation, as suggested by (3.13). The Bloch-Floquet transform (3.11)

extends to a unitary map
Z: Hypny — Hr =~ L? (Mp«, d*k, Hy) ~ L*(Mp-, d°k) @ H;. (3.15)

The Hilbert space L?(Mr+,d?k) can be seen as the space of slow degrees of freedom and
in this sense the transform Z produces a decomposition of the physical Hilbert space
according to the existence of fast and slow degrees of freedom.

We need to discuss how differential and multiplication operators behave under Z.
Let @ = (Q1,Q2) be the multiplication by x = (z1,22) defined on its maximal domain
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and P = (P, ) = —iV, with domain the Sobolev space H!(R?), then from (3.11) it
follows:
ZP 2 =k® Ly + Lo, ® —iVe, Z2Qz =iV} (3.16)

where —iVy acts on the domain H!(V) while the domain of the differential operator iV},
is the space H, ﬂﬂ-(lloc (]R2, Hf) , namely it consists of vector-valued distributions which are
in H! (Mp+,Hs) and satisfy the §-dependent boundary condition associated with (3.13).
The central feature of the Bloch-Floquet transform is, however, that multiplication oper-
ators corresponding to I'-periodic functions like Ar or Vi are mapped into multiplication
operators corresponding to the same function, i.e.

Z Ap(z) 271 = 112, ® Ar(0) ZVp(z) 271 = L2000y © V0(0). (3.17)

Let H? := Z Hgp, Z~! be the Bloch-Floquet transform of the Bloch-Landau Hamilto-
nian (3.10). According to relations (3.16) and (3.17) one obtains from (3.10) that

1 1 2
H? = 5 |~Vo+ k= Ar(0) = Ao (ieV]) = tg5eL A (ieVD) | + Vi (0) + 6 (ieV). (3.18)
The domain of self-adjointness of HZ is ZH3(R?) C H,, i.e. the image under Z of the
second magnetic-Sobolev space.

3.3.3 The periodic Hamiltonian and the gap condition

hen £ = 0 the Bloch-Landau Hamiltonian (3.10) reduces to the periodic Hamilto-

nian
1

2
According to (3.18) the Bloch-Floquet transform maps Hyer into a fibered operator. In
other words, denoting HZ,. := Z Hyer 27, one has HZ, = [ f;r* Hyer(k) d?k where, for
each k € Mp+

Hper = = [~V — Ap (2)]* + Vr (2) . (3.19)

e (k) = % =iV + k — Ap(0)]® + Vi (6). (3.20)

The operator Hper(k) acts on Hy = L%(V,d?0) with self-adjointness domain D := H?(V)
(the second Sobolev space) independent of k£ € Mr«. Moreover it is easy to check that the
Bloch-Floquet transform induces the following property of periodicity, called T-equivariance:

Hyper([k] = v*) = 7(v*) Hper([k]) 7(v*) "' €T* vyt e I*. (3.21)

where the notation k := [k] — v* denotes the a.e.-unique decomposition of & € R? as a
sum of [k] € Mp+ and v* € T'™.

REMARK 3.3.2 (Analiticity). For any k € R?, let I(k) be the unitary operator acting on
H; as the multiplication by e~*"*. Obviously I(k) = I([k] — v*) = I([k])7(v*)"'. A simple
computation shows that

Hper(k) = I(k) Hper(0) I(k)™* (3.22)
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where the equality holds on the fixed domain of self-adjointness D = 3?(V). The 7-
equivariance property follows immediately from (3.22). Moreover from (3.22) is
evident that Hye,(k) defines an analytic family (of type A) in the sense of Kato (Reed and
Simon 1978, Chapter XII). Finally a short computation shows

(0, Hipee (k) = —i1(K) [65: Hipee 0)] T(k)~" = I(k) (~i¥o — Ar (8)), I(k)""
and (82]_ Hyper)(k) = 1p, (8, 1, Hper)(k) = 0 on the domain D. *

The spectrum of Hper, which coincides with the spectrum of H per, is given by the
union of all the spectra of Hyer(k). The following classical results hold true:

PROPOSITION 3.3.3. Let Vi and Ar satisfy Assumption then:

() for any k € R? the operator Hper(k) defined by (8:19) is self-adjoint with domain
D = H?(V) and is bounded below;

(i1) Hyper(k) has compact resolvent and its spectrum is purely discrete with eigenvalues
En(k) — +o0 as n — +oo;

(iii) let the eigenvalues be arranged in increasing order and repeated according to their
multiplicity for any k € M-, i.e. Ei1(k) < (k) < (k) < ... then &E,(k) is a
continuous I'*-periodic function of k.

The above result differs from the standard theory of periodic Schrodinger operators
just for the presence of a periodic vector potential Ar. Since we were no able to find a
suitable reference in the literature, we sketch its proof in Appendix[A.1.1]

We call &,(:) the n-th Bloch band or energy band. The corresponding normalized
eigenstates {¢,(k)},en C D are called Bloch functions and form, for any k € Mr«, an
orthonormal basis of H¢. Notice that, with this choice of the labelling, £,(-) and ¢, (-) are
continuous in k, but generally they are not smooth functions if eigenvalue crossings are
present.

We say that a family of Bloch bands {&,,(-) } ez, with Z := [, I_] NN, is isolated if

érﬂl/}:r* dist (U (&0 (k)Y U{gj(k;)}) =C,>0. (3.23)

nel Jj¢T

The existence of an isolated part of the spectrum is a necessary ingredient for an adia-
batic theory. We introduce the following:

ASSUMPTION 3.3.4 (Constant gap condition). The spectrum of Hyer admits a family of
Bloch bands {&,(-) }ner which is isolated in the sense of (3.23).

Let Pz (k) be the spectral projector of Hper(k) corresponding to the family of eigenval-
ues {&,(k)}ner, then PF := | AQ;F* Pr(k) d?k is the projector on the isolated family of Bloch
bands labeled by Z. In terms of Bloch functions (using the Dirac notation), one has that
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Pr(-) = > nerlen()){pn(-)|. However, in general, ¢, (-) are not smooth functions of k at
eigenvalue crossing, while Pz(-) is a smooth function of £ because of the gap condition.
Moreover, from the periodicity of Hper(-), one argues Pr([k] —v*) = 7(v*) Pr([k]) 7(v*) L.
In general the smoothness of Pz(-) is not enough to assure the existence of family of or-
thonormal basis for the subspaces Im Pz () which varies smoothly (or only continuously)
with respect to £ € Mp-. Then we need the following assumption.

ASSUMPTION 3.3.5 (Continuous frame). Let {&,(+) },c7 be a family of Bloch bands (|Z| =
m > 1). We assume that there exists an orthonormal basis {1 (-)}7; of ImPz(-) whose
elements are smooth and (left) T-covariant with respect to k, i.e. j(- —~*) = 7(v*)¥;(-) for
all j=1,...,mand v* € T,

Note that it is not required that v;(k) is an eigenfunction of Hyer (k). However, in the
special but important case in which the family of bands consist of a single isolated m-fold
degenerate eigenvalue, i.e. &,(k) = E.(k) for every n = 1,...,m, then the Assumption
is equivalent to the existence of an orthonormal basis consisting of smooth and
T-covariant Bloch functions.

REMARK 3.3.6 (Time-reversal symmetry breaking). As far as low dimensional models
are concerned (d < 3), Theorem 1 in (Panati 2007) assures that Assumption|3.3.5|is true
whenever the Hamiltonian Hye, is invariant with respect to the time-reversal symmetry,
which is implemented in the Schrodinger representation by the complex conjugation op-
erator. However, the term Ar # 0 in Hyer generically breaks the time reversal symmetry.
Therefore, to consider also the effects due to a periodic vector potential, we need to as-
sume the existence of a smooth family of frames. Anyway is opinion of the authors that
the result in (Panati 2007) can be extended to the case of a periodic vector potential, at
least assuming that Ar is small in a suitable sense. L 2§

Let ko be a fixed point in M- and define the projection 7 := Pr(kg). If the Assump-
tion holds true then the dimension of 7, agrees with the dimension of Pz(k) for all
k€ R?. Let { Xn};":l be an orthonormal basis for Im 7. and define a unitary map

uo(k) = o (k) + ug (k), with Gok) = > o)), (3.24)
1<5<e

which maps Im Pz(k) in Im 7. The definition of this unitary is not unique because
the freedom in the choice of the frame and of the orthogonal complement uj (k). From
the definition and the 7-covariance of ¢;(-) one has that uo(k) Pr(k) uo(k)~! = 7, and
uo([k] —~7*) = uo([k]) T(v*)~! (right T-covariance).

3.3.4 r7-equivariant and special T-equivariant symbol classes

roposition [3.3.3| shows that for any k € R?, the operator Hpye (k) defines an un-
bounded sglf-adjoint operator on the Hilbert space H; with dense domain D :=
32(V). However the domain D can be considered itself as a Hilbert space with respect
to the Sobolev norm || - ||p := ||(13, — Ag) - ||, and so Hper(k) can be seen as a bounded




66 3. Derivation of Harper and Hofstadter models

linear operator from D to Hy, i.e. as an element of the Banach space #(D,Hs). The
map R? 3> k — Hper(k) € B(D,Hy) is a special example of a operator-valued symbol.
For a summary about the theory of the Weyl quantization of vector-valued symbols, we
refer to Appendices A and B in (Teufel 2003). In what follows we will need the following
definition.

DEFINITION 3.3.7 (Hormander symbol classes). A symbol is any map F' from the (cotan-
gent) space R? x R? to the Banach space #(D,Hy), i.e. R?2 x R? 3 (k,n) — F(k,n) €
B(D,Hy). A function w : R? x R? — [0, +00) is said to be an order function if there exists
constants Cy > 0 and Ng > 0 such that

N,
w(k,n) < Co (14 [k — K12+ [ — 1) = w(k ) (3.25)

for every (k,n),(K',n') € R? x R%. A symbol F € C*®(R? x R?, B(D, Hy)) is an element of
the (Hormander) symbol class S¥(%(D, Hy)) with order function w, if for every «, 3 € N
there exists a constant C, 3 > 0 such that H(ag‘@gF)(k, Mlaom) < Capw(k,n) for every
(k,n) € R? x R2,

According to the previous definition, the vector-valued map Hye,(-) defines a Horman-
der symbol constant in the n-variables and with order function v(k,n) := 1+ |k|? (see the
proof of Proposition below). However, as showed by equation (3.21), the symbol
Hper(+) satisfies an extra condition of periodicity.

DEFINITION 3.3.8 (7-equivariant symbols). Let I'* be a two dimensional lattice (the dual
lattice defined in Section for our aims) and 7 : T — % (Hy¢) the unitary representation
defined in Section Denote by 7 := 7|, the bounded-operator EI representation of IT'*
in D. A symbol F' € S* (% (D, Hy)) is said to be T-equivariant if

F(k—~*n) =71(v") Flk,n) 7(v")™1 VA el keR”
The space of T-equivariant symbols is denoted as S¥ (% (D, Hy)).
For the purposes of this work, it is convenient to focus on special classes of symbols.
By considering the kinetic momentum functionR? x R? 5 (k,n) — r(k,n) := k — A(n) €
R?, with A fulfilling Assumption (B), one defines the minimal coupling map by

(k. n) ¥ ge(k,n) = (k(k,n),n) € R* x R2. (3.26)

DEFINITION 3.3.9 (Special 7-equivariant symbols). Let w be an order function, in the

sense of (3.25). We define

SY (B(D,Hy)) :={F =Foy, : FeS*%DH))}

!Clearly, 7(v*) acts as an invertible bounded operator on the space D, but it is no longer unitary with
respect to the Sobolev-norm defined on D.
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We refer to S (#(D, Hy)) as the class of special T-equivariant symbols. The following
result shows that special symbols can be considered as genuine 7-equivariant symbols
with respect to a modified order function. The key ingredient is the linear growth of the
kinetic momentum.

LEMMA 3.3.10. With the above notations S, (%(D,Hs)) C S¥ (B(D, Hg)) where w' =

W O Jp.

Proof. If FF € S¥(%A(D,Hs)) then also F o j, is T-equivariant, indeed x(k — ~v*,n) =
k(k,n)—v* and (Foy.)(k—v*,n) = 7(v*) (Foy.)(k,n) 7(7*)~!. Since . is a smooth function,
then also the composition F o 7, is a smooth function. Observing that (F o 3,)(k,n) =
F(k — A(n),n) it follows that

(O, (F © 3)) (K, n) = ((Ok, F) 0 3s) (K, )
2

(n; (F 0 36)) (k) = (99, F) 0 1) (kym) + Y (9 52) (k) (O, F) © i) (e, )

=1

where 0, x; are bounded functions in view of Assumption [3.2.3] From the first equation
it follows that

10k; (F © 3:) (b, m) | 2D,y < Cjo (woge)(kym)  j=1,2

for suitable positive constants C; . Similarly the second equation implies

10n; (F 0 36) (kM) | z(p1y) < [Co,j + K(Cro + C2p)](w o gi)(k,m).

where K > 0 is a bound for the functions 0, ;. By an inductive argument on the number
of the derivatives one can proof that the derivatives of F o), are bounded by the function
w’ := woy,. To complete the proof we need to show that w’ is an order function according
to Definition This follows by a simple computation using the fact that « has a
linear growth in & and 7. u

In view of Lemma all the results of Appendix B of (Teufel 2003) hold true for
symbols in S}’ (%(D, Hy)) and in particular the quantization of a symbol in S} (%(D, Hy))
preserves the T-equivariance. Moreover, the pointwise product or the Moyal product of
two symbols of order w; and ws produce a symbol of order w;w, (Teufel 2003, Proposi-
tions B.3 and B.4).

REMARK 3.3.11 (Notation). In what follows we use the short notation F'(x;n) := (F o
Jx)(k,m) to denote the special symbol F oy, € S\ (#(D, Hy)) related to the T-equivariant
symbols F' € S¥(#(D,Hs)). We emphasize on the use of the semicolon “;” instead the
comma “,” and of the symbol of the kinetic momentum x instead the Bloch-momentum
k.

0
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3.3.5 Semiclassics: quantization of equivariant symbols

s explained in Section (3.3.2] the Bloch-Floquet transform Z provides the separation

between the fast degrdes of|freedom, associated to the Hilbert space Hy = L?(V, d?0),
and the slow degrees of freedom, associated to the Hilbert L?(Mr-,d’k). A fruitful point
of view is to consider the slow degrees of freedom “classical” with respect to the “quan-
tum” fast degrees of freedom. Mathematically, this is achived by recognizing that the
Hamiltonian HZ defined in is the Weyl quantization of an operator-valued “semi-
classical” symbol over the classical phase space R? x R?. As explained rigorously in
the Appendices A and B of (Teufel 2003), the quantization procedure maps an operator-
valued symbol F : R? x R? — %(D,H;) into a linear operator Op_(F) : S(R?, D) —
S(R?, H¢), where S(R?, H) denotes the space of H-valued Schwartz functions. The quan-
tization procedure concerns only the slow degrees of freedom and at a formal level can
be identified with the prescription

k — Op, (k) := multiplication by k£ ® 1p; n+—— Op.(n) =1V @ 1p. (3.27)

Let us consider the operator-valued symbol Hj : R? x R? — 2(D, H;) defined by

2

1 1
Ho(k,n) := 5 | =iVo +k = Ar (0) — Ao(n) — tgger An| + Ve (0) + ¢(n). (3.28)

The symbol H, does not depend on ¢ and in view of Proposition [3.3.3|it defines an un-
bounded operator on Hy with domain of self-adjointness D = H?(V) for any choice of
(k,n) € R? x R2. According to the notation of Section and comparing with
(3.20) we can write

Ho(k‘, 77) = Hper (K(k’ 77)) + ¢(77) = (H¢ © ]n)(kv 77)' (3.29)

where Hy(k,n) := Hper(k) + ¢(n). As suggested by equation (3.21), Hy is a 7-equivariant
symbol. Thus the symbol Hj is 7-equivariant with respect to the kinetic momentum x.
The following result establishes the exact symbol class for H.

PROPOSITION 3.3.12. If Assumption 3.2.2|and 3.2.3|hold true then Hy € S;. (%(D;Hy))
with order function v(k,n) :== 1+ |k|%

Proof. Using the result of Lemma 3.3.10, we only need to show that H, € S(#(D, Hy)).
The later claim is easy to verify, indeed the derivative in 7 are bounded functions, the
second derivative in k is a constant and the derivatives of higher order in % are zero.
Then, we have to check only the growth of the first derivative in k. A simple computation
shows that

19k, Ho ) (k, )|, 110) = 11Ok, Hper) (B) (Lt — D0) ™" |21y

and since 0y, Hper is T-equivariant (see Remark 3.3.2), then

1Bk, H) (ks )| a0 4) = 1| Oy Hper) (K] (7)™ (L4 — D) ™| arag)-
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Observing that 7(7*) is the multiplication by e?*" in H; and by a simple computation
that (9, Hper) ((K])7(7%) "1 = 7(7*) 1 [~23" + (9, Hper) ([K])] one has

1Ok, Ho ) (ks M| (0,1 < Crlv; |+ [[(Ok; Hper) ([KD| 2(D11) < C1([E[ + C3) + C2

where C1 = 2||(13,—2¢) | z(ry)» C2 = maxpensy. || (Ok; Hper) (K] (D14 and |7} < |7 =
|k — [k]| < |k| 4+ C3 with C3 := maxyepr,.. |k|. The claim follows observing that 1 + |k| <

2(1 + |k[?). [ |

i NN \\Q
-

] g R Z ik
= -

Figure 3.1: Structure of the spectrum of Ho(k,n). The picture shows schematically a “relevant part of
the spectrum”, consisting of two energy bands {E., E.«11}, with E.4;(k,n) = E.yj(k(k,n)) + ¢(n). Notice
that we assume only a local gap condition, as stated in (3.30), while in the picture a stronger condition is

satisfied: a gap exists when projecting the relevant bands on the vertical axis.

Equation provides information about the dependence on k and 7 of the spec-
trum of Hy. The n'h eigenvalue E,, (k,7) of the operator Hy(k,n) is related to the n'? eigen-
value &, (k) of the periodic Hamiltonian Hpe (k) by the relation E,(k,n) = &£,(k(k,n)) +
#(n). The function E, : R? x R? — R is still I'*-periodic in k but only oscillating with
bounded variation in 7. Assumption for the family of Bloch bands {&,(+) },c7 imme-
diately implies that

inf dist (U {E,(k,n)}, U{Ej(k,n)}) =0y > 0. (3.30)

k Mps xR2
( 777)6 r* X nel ]%Z

This is the relevant part of the spectrum of Hy which we are interested in.
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According to the general theory (Teufel 2003, Appendices A and B), one has that

1 1 2
OpE(H()) = 5 —iVo+k — Ar(e) — Ap (Zé‘vk> — Lq§€J_ A (zer) +VF(9)+¢ (ZEVk) (3.31)

defines a linear operator from S(R?, D) in S(R?, H;) and by duality it extends to a con-
tinuous mapping Op.(Hp) : S'(R?, D) — &' (R?, Hy) (with an abuse of notation we use the
same symbol for the extended operator). The T-equivariance assures that Op_(Ho)p([k]—
v*) = 7(v*)Op.(Ho)p([k]) (Teufel 2003, Proposition B.3). Since Op_.(H,) preserves 7-
equivariance, then it can be restricted to an operator on the domain ZH3 (R?) C S'(R?, D)
which is the domain of self-adjointness of HZ, according to (3.18). To conclude that
Op. (Hy), restricted to ZH3,(R?), agrees with HZ it is enough to recall that iV}, is de-
fined as iV}, restricted to its natural domain }' (R?,D) N H, and to use the spectral
calculus. These arguments justify the following:

PROPOSITION 3.3.13. The Hamiltonian HZ, defined by (3.18), agrees on its domain of
definition with the Weyl quantization of the operator-valued symbol H, defined by (3.28).

With a little abuse of notation, we refer to this result by writing HZ = Op_(H).

3.3.6 Main result: effective dynamics for weak magnetic fields

et A. and B: be s-dependent (possibly unbounded) linear operators in H. We write
Ae = Be + Op(e™) if: for any N € N there exist a positive constant Cy such that

|Ae — Bc|| g < Cne™ (3.32)

for every £ € [0,¢p). Notice that, though the operators are unbounded, the difference is
required to be a bounded operator.

We refer to Appendices A and B of (Teufel 2003) for the basic terminology concerning
pseudodifferential operators, and in particular as for the notions of principal symbol,
asymptotic expansion, resummation, Moyal product.

THEOREM 3.3.14. Let Assumptions |3.2.2] |3.2.3] 3.3.4] and [3.3.5| be satisfied and let
{En(-) }ner (With |Z| = m) be an isolated family of energy bands for Hy satisfying con-
dition (3.30). Then:

1. Almost-invariant subspace: there exist an orthogonal projection 1. € B(H,), with
II. = Op.(7) + Op(¢*) and the symbol w(k,n) = > 22, el m;(k,n) having principal part
mo(k,n) = Pr(k — A(n)), so that

[HZ;11.] = Op(e).
In particular for any N € N there exist a C such that

(1 —T1.) e = H% TI.|| < Oy £V | (3.33)
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for € sufficiently small, t € R.

2. Effective dynamics: let Hyor = L?>(Mrp+,d*k) @ Hy, 7 as defined above and
I = p2(p.) @ mr € B(Hrer). Then there exist a unitary operator

Ues : Hr — Hyer
such that

(@) U. = Op.(u) + Op(¢>), where the symbol u = 372 elu; has principal part ug given
by with k replaced by r(k,n);

(i) II, = U 11 Ue_l;
(iii) posing K := I H,et, One has
U.TI. HP . U = Heg + Op(e™) € B(K)

with HZ e = Op,(h) and h a resummation of the formal symbol w§m 4 Hy 4 miu~"! (thus
algorithmically computable at any finite order). Moreover,

(e "sH® —U e an U TIL|| < CN &N (e + [t)). (3.34)

REMARK 3.3.15. The previous theorem and the following proof generalize straightfor-

wardly to any dimension d € N. We prefer to state it only in the case d = 2 in view of the

application to the QHE and of the comparison with the results in Section 3, the latter
being valid only for d = 2. *0

Proof of Theorem [3.3.14
Step 1. Almost-invariant subspace

The proof of the existence of the super-adiabatic projection is very close to the proof of
Proposition 1 of (Panati et al. 2003a), so we only sketch the strategy and emphasize the
main differences with respect to that proof.

First of all, one constructs a formal symbol = = Z;”;O gl m; (the Moyal projection)
such that: () 7ir =< 7; (i) #f = m; (iii) Hofr = n4H, where = denotes the asymptotic
equivalence of formal series.

The symbol 7 is constructed recursively at any order j € N starting from 7y and Hy. One
firstly show the uniqueness of = (Panati et al. 2003b, Lemma 2.3). The uniqueness allows
us to construct 7 locally, i.e. in a neighborhood of some point zy := (ko,70) € R? x R2,
From the continuity of the map & — Hpe(k) and the condition it follows that
there exists a neighborhood Uy, of ky such that for every k € U, the set {&,(k)}nez can
be enclosed by a positively-oriented circle ¥(ky) C C independent of k. Moreover it is
possible to choose X (k) in such a way that: it is symmetric with respect to the real axis;
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dist(S(ko), o(Hper(k))) = 1C, for all k € Uy,; Radius(S(ko)) < C, with C, independent of
ko; (k() — ) (k‘o) for any ’7* eI
With the notation of Section [3.3.4 we have Hy = H, o 3, with Hy(k,n) := Hper(k) + ¢(n).
Let A(ko,no) := X(ko) + ¢(no) denote the translation of the circle X (ko) by ¢(n9) € R and
pose A := Ao 7x- From the smoothness of ¢ it follows that there exists a neighborhood
U, C R? x R? of zy such that dist(A(20), o(Ho(z))) > 1C, for all z € U,,. Moreover A(z)
is symmetric with respect to the real axis, has radius bounded by C, and is I"*-periodic
in the variable k = k — A(n) (see Figure [3.1).
We proceed by using the Riesz formula, namely by posing
i

jé dX Rj(\, 2) on U,
(20)

Wj(z) = o .

where R;(}, ) denotes the j-th term in the Moyal resolvent R(),-) =3 72 ¢ IRj(A,-) (also
known as the parametrix), defined by the request that

(Ho(-) = Mp)iR(A,-) = 13, R(AE(Ho(-) —Mp) =1p  on U,

Each term R; is computed by a recursive procedure starting from Ry(),:) := (Ho(-) —
AMop)~1, as illustrated in (Gérard et al. 1991). Following (Panati et al. 2003a, equations
(30) and (31)) one obtains that

Rj()\, Z) B —Ro()\, Z) Lj()\, Z) (335)

where L; is the (j — 1)-th order obstruction for R, to be the Moyal resolvent, i.e.
(Ho(-) — Mp)t (Zs R;( ) =Ty, +& Li(-) + O, (3.36)

At the first order L; = —% { Hy, Ro}y,,,» with {-, -}, the Poisson brackets.

The technical (and crucial) part of the proof is to show that
Tj € S:;T (‘@(Hfa D)) N S;;T (%(Hf))

for all j € N, with v(k, n) := (1+]k|*). By means of the recursive construction each R; (), -)
inherits the special T-equivariance from the principal symbol Ry(), ) = ((Hy © 3.)(-) —
AMp)~!. The special periodicity in  of the domain of integration A(-) which appears in
the Riesz formula assures also the special T-equivariance of each 7;(-).

Since [[(927;)(2)[ly < 27C, supxea(z) 102 () (A, 2) ||, (b means either #(Hy) or Z(Hy; D),
a € N* is a multiindex and 92 := Oy 0p20730p1), we need only to prove that R;(),-) €
Sy (#B(Hg, D)) N SL., (B(Hy)) uniformly in A. This is the delicate point of the proof.

First of all, from the definition of A(zy) it follows that

IRo(A, 2) | areg) = [dist(A, o(Ho(2)))] ™" < /e,
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uniformly in \. Let o € N*, with |¢| = 1. One observes that 97 Ry()\, 2) = —Ro(\, 2) N7 (), 2)
with N2 (A, z) := 0% Hp(z) Ro(\, z). From the relation

PINE = NE¥o — NON?

and an inductive argument, it follows the chain rule

8?R0 = RO ZWQL._BM‘NEI NN Nf‘a‘

where 1,..., 8 € N4, |af := a1 + ... + ay, W8, = E1 is a suitable sign function and
the sum runs over all the combinations of multiindices such that 3; + ... + 8 = a with
the convention N? = 1. The chain rule implies that Ry € S} (%(H;)) provided that

||N3||%(Hf) = Hé?jHo ROH%(Hf) < Ca uniformly in \.

The latter condition is true since |[(07 Ho)(k,n) Ro(A k,n)llzm) < (9 0 gx)(k,m), for a
suitable g(k,n), '*-periodic in k and bounded in 7n; the latter claim can be checked as in
Proposition (3.3.12

Similarly, to prove that Ry € Sy, (Z(H¢, D)) we need to show that

| Ro N prep) = (L, — Ag) Ro N rep) < Ca v'(7)

uniformly in \. Since N_' is bounded on ; it is sufficient to show that || (17,—A¢) Ro(A; 2) ||z, <
C7, v'(z). Observe that || (1y,—Ag) Ro (A, [£]=7*5 1)l 21 = (13— 20)T(v*) ' Ro(A, [K]; 1) | ar4y)-
The commutation relation

—Do7(v) " =7(v) T (7P a2y Ve — Ag)
and the straightforward bound
(17?129 - Vo = Ag) (Tpte — Do) " Hlpry < C(L+ 7' P) < C'(1+ |w(k,m) )

imply
[(Lrg; — Ag)Ro(A, 2) | ) < Cop v (2) (Mg, — Dg) Ro(N, [K]; 1) || sp(rey)

with v’ := v o j.. Finally observe that
(L3, = Do) Ro(A, [K]sm) || ) < C([)sm) < C”. (3.37)

The first inequality above follows by an expansion on the Fourier basis, for fixed [x]
and 7; the second follows from the fact that [x] takes values on a compact set and the
explicit dependence on 7 is through the bounded function ¢. The bound implies
that Ry € S, (#B(Hg, D)) N S}, (%(Hs)) uniformly in A.

To prove that R; € S;;T (%(Hy)), we observe that for any o € N one has

8‘;Rj(>\, Z) = Ro()\, 2) Mza;j()\, Z)

where M7, is a linear combination of terms which are product of N ? and 9% L; with
18], 16] < |a|. Thus, it is sufficient to prove that L, € S;;T (B(Hy)) for every j € N. The
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latter claim is proved by induction on j € N. Referring to (3.35), one has trivially that
Ly € S} (#(Hy)). Lj1 is a linear combination of products of N (with 0 < |af < j +1)
and M Z’B ; (with |B] +i=j+ 1 and 0 < i < j). Then the induction hypothesis on L; for all
i=1,...,jimplies that L;,, isin S (Z(Hy)).

Finally observing that |02 R;| z.p) < [IMZ;l|lz0) |1 Roll#(x;,p) and using the fact
that Ry € S2., (B(Hy, D)) it follows that R; € SY. (#(Hg, D)) N Sy, (%(Hy)) uniformly in
A, for all j € N.

As explained in Section (3.3.4] we can apply the result of Proposition B.4 in (Teufel
2003) to special T-equivariant symbols obtaining Hyfir € SE?T(%(Hf)). However the 7-
equivariance of Hyfir and its derivatives implies that the norms are bounded in z, hence
Hotm € S} (%(Hy)) which implies by adjointness also 7t Hy € S, (%(Hy)). By construc-
tion [HZ; Op_(7)] = Op.(Hotim — ntHo) = Op(c>) where the remainder is bounded in the
norm of B(H.).

The operator Op_(7) is only approximately a projection, since Op_(7)? = Op_(rtr) =
Op.(m) + Op(e>). We obtain the super-adiabatic projection II. by using the trick in
(Nenciu and Sordoni 2004). Indeed, one notices that, for ¢ sufficiently small, the spec-
trum of Op,(7) does not contain e.g. the points {1/2} and {3/2}. Thus, the formula

i

1L (Op, () — )~ (3.38)

T o |z—1|=1/2
yields an orthogonal projector such that II. = Op_(7) + Oy(c™).
Finally, equation (3.33) follows by observing that [HZ;II.] = Oy(¢>°) implies

e =17 T1.] = Op(e™|¢])

as proved in (Teufel 2003, Corollary 3.3).

Step 2. Construction of the intertwining unitary

The construction of the intertwining unitary follows as in the proof of Proposition 2 of
(Panati et al. 2003a). Firstly one constructs a formal symbol u =< Z?‘;O eJu; such that: (i)
ultu = uffu’ = lyy,; (1) ufriul = .

The existence of such a symbol follows from a recursive procedure starting from u
and using the expansion of 7 =< Z;’;O eJ7; obtained above. However, the symbol u which
comes out of this procedure is not unique.

Since ug is right t-covariant (c.f. end of Section 3.3.3) in x, then one can prove by
induction that the same is also true for all the symbols «; and hence for the full symbol w.
Finally, since uy € S'(%(H)) one deduces by induction also u; € S*(%(Hy)) for all j € N.
The quantization of this symbol is an element of Z(H., H,ef) satisfying the following
properties:

(1) Ops(u)OpE(u)T =1y . + Op(e™),

ref

(if) Op, (u)fOPp, (u) = Ly, + Op(),
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(iii) Op.(u)1.0p,(u)! = I, + Oy(£>).

Nevertheless Op_(u) can be modified by an Oy(¢*>°) term using the same technique of
Lemma 3.3 (Step II) in (Panati et al. 2003b) to obtain the true unitary U..

Step 3. Effective dynamics

The last step of the proof is identical to the corresponding part of (Panati et al. 2003a,
Proposition 3).

3.3.7 Hofstadter-like Hamiltonians

e now focus on the special case of a single isolated energy band E,, i.e. m = 1, and
we comment on the relation between the effective Hamiltonian, the celebrated
Peierls’ substitution and Hofstadter-like Hamiltonians (c.f. Sections[2.1] and [2.3).

In this special case, mo(k) = [1x(k)) (1 (k)| and ug(k) = |x) (¥«(k)| + ug where 1. (k) is
the eigenvector of Hper(k) corresponding to the eigenvalue €, (k). Let h € S'(%(Hy)) be a
resummation of the formal symbol ufrt Hofirfu"'. A straightforward computation yields

ho = o w0 Ho mo ug = 1) (W] [94) (8] Ho [t0) (W] [1h2) (x| = Bx .

Since 7, is one-dimensional, hy can be regarded as a scalar-valued symbol with explicit
expression

By considering the quantization of the latter, the effective one-band Hamiltonian reads
Op.(ho) = Ei(k,ieVy) = & (k — A(ieVy)) + ¢(ie V). (3.39)

The latter formula corresponds to the momentum-space reformulation of the well-known
Peierls’ substitution (Peierls 1933, Asheroft and Mermin 1976).

To illustrate this point, we specialize to the case of a uniform external magnetic field
and zero external electric field, setting ¢ = 0 and Ay = 0 in (3.28). The leading order
contribution to the dynamics in the almost invariant subspace is therefore given by a
bounded operator, acting on the reference Hilbert space L?(Mr-,d?k), defined as the
quantization (in the sense of Section [3.3.5) of the function &, o j,. : (k,n) — &E.(k — A(n)),
defined on T x R,

Loosely speaking, the above procedure corresponds to the following “substitution
rule”: one may think to quantize the smooth function &, : T¢ — R by formally replacing
the variables (k1, ko) with the operators (77, %) defined by

H =y + ;(Lqe)a‘zz, H = kg — ;(qu);ﬁ, (3.40)
regarded as unbounded operators acting on L?(Mr+,d?k). To make this procedure rig-

orous, one can expand &, in its Fourier series, i.e. (k) = > Cn,m €27 (natmb)k and

n,mez
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define the Peierls quantization of £, as the operator obtained by the same series expan-
sion with the phases e?27("a+mb)k peplaced by the unitary operators e27(na+mb)-#" (the
series is norm-convergent, in view of the regularity of £,). This fixes uniquely the pre-
scription for the quantization.

To streamline the notation, one introduces new coordinates &; := 27 (a - k) and &, :=
27(b - k) such that the function &, £.(&1,&) = E.(k(€)) becomes (27Z)2-periodic. The
change of variables induces a unitary map from L?(Mp-2, d?k) to L?(T?, d%¢) which inter-
twines the operators with the operators (recall ¢ = 27/ny)

lg 0 e lq i
JA —§1+z7r< )352 Ty =& —im <hB> o, (3.41)

so that 27 (a - #") — 1 and 27 (b - #") — Hs.
Let ' : T? — C be sufficiently regular that its Fourier series

F(£1,&) = Z frm ei(né1+mé2)

n,me”

is uniformly-convergent. We define the Peierls quantization of F' as

~ _ Z fnmez(n)ﬁ/l—l-m%)

n,mez

Let Uy = €1 and V, = e"*2 (Hofstadter unitaries), acting on Hy := L?(T?, d%¢) as

(Uot) (&1, &) = 19 (&1,& — migen), (Vo) (&1, &) = €24 (& + migeo, &) . (3.42)

where ¢)(B) := 1/nz We regard as the definition of the two unitaries, so there is
no need to specify the domain of definition of the generators (3.41). Thus the Peierls
quantization of the function F' defines a bounded operator on H, given, in terms of the
Hofstadter unitaries, by

+oo
ﬁ _ Z fn . emnm(Lqeo) un m (3.43)

n,m—=—oo

where the fundamental commutation relation UgV, = e 27(a€) VU, has been used.
Formula (3.43) defines a Hofstadter-like Hamiltonian with deformation parameter —4¢
(c.f. Section|2.1). Summarizing, we draw the following

CONCLUSION 3.3.16. Under the assumption of Theorem m for every Vr € L2 (R?,d%r),
in the Hofstadter regime (hg — o), the dynamics generated by the Hamiltonian Hgy,
in the subspace related to a single isolated Bloch band, is approximated up to an error
of order ¢y = /np (and up to a unitary transform) by the dynamics generated on the ref-
erence Hilbert space Hy := L*(T?,d?*¢) by a Hofstadter-like Hamiltonian, i.e. by a power
series in the Hofstadter unitaries Uy and Vo defined by (3.42).
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3.4 Space-adiabatic theory for the Harper regime

3.4.1 Adiabatic parameter for strong magnetic fields

e now consider the case of a strong external magnetic field. Since we are interested
.". " in the limit B — +oco we set Ag = 0 and & = 0 in the Hamiltonian (3.1). By
exploiting the gauge freedom, we choose

V,-Ar =0, / Ar(r) d*r =0, (3.44)
Mrp

this choice being always possible (Sobolev 1997). Let us denote by Q, = (Q.,,@r,) the
multiplication operators by r; and r, and with P, = (P,,,F,,) = —ihV,. Taking into
account conditions (3.44) and Ay = 0, ¢ = 0, the Hamiltonian (3.1) is rewritten as

_ 1 a8, \’ B, N\ _
Hpp = o [ (Pt 5, Qn ) + (P =3 Qn ) |+ V(@) + W@)) (3.45)
where ,
V(@) = V(@) + 5 Ar(Q))? (3.46)
and
o =L By |49 _ 4B
W(@Qr, Pr) = =——(Ar)1(Qr) | Pri + 5 Qra | = ——(Ar)2(Qr) | Pro = 5 Qri| (347

with (Ar); and (Ar)z the I'-periodic components of the vector potential Ar. The first of
(3.44) assures that W is a symmetric operator.

REMARK 3.4.1. Observe that H}; := Hgy, — W corresponds to a Bloch-Landau Hamilto-
nian without I'-periodic vector potential and with a “modified” I'-periodic scalar potential
Vr. Then, the presence of a I'-periodic vector potential Ar can be described through a
non-periodic “perturbation” W of the Bloch-Landau Hamiltonian HY; . Obviously Ar = 0
implies Vr = Vp and W = 0. L 20

It is useful to define two new pairs of canonical dimensionless operators:

1, ) 1, 52
Kl _—%b 'QT Lqﬁa'Pr Gl::§b 'QT‘_Lan'PT
(fast) (slow) (3.48)
Kyim S a-Q—1,00-P L "
2 250, r th r G2':§a 'QT—FLq% - P,

where ¢ := /hp = \/®0/27rz35 according to the notation introduced in Section Since
62 « 1/B, the limit of strong magnetic field corresponds to 6 — 0. We consider § as the
adiabatic parameter in the Harper regime. A direct computation shows that

[K1; Ko] =ity 1y [G1; Ga) =ity 6% 1y [Kj;Gel =0, j,k=12. (3.49)

phy’ phy’
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These new variables are important for three reasons:

(a) they make evident a separation of scales between the slow degrees of freedom
related to the the dynamics induced by the periodic potential and the fast degrees
of freedom related to the cyclotron motion induced by the external magnetic field.
Indeed, for Vi = 0, the fast variables (K1, K3) (the kinetic momenta) describe the
kinetic energy of the cyclotron motion, while the slow variables (G1,G2) correspond
semiclassically to the center of the cyclotron orbit and are conserved quantities.

(b) The new variables are dimensionless. According to the notation used in Section
let Hgy, := !/5HpL, be the dimensionless Bloch-Landau Hamiltonian with
&o = */mar the natural unit of energy.

(c) The use of the new variables simplifies the expression of the I'-periodic functions
appearing in Hgp,. Indeed, a* - Q, = G5 + 0 Ko and b* - ), = G1 — § K1, hence if fr
is any I'-periodic function one has

fr(@r) = f(G2+ 0 Ko, Gy — 0 K7) (3.50)
where f is the Z?-periodic function related to fr.

In terms of the new variables (3.48), the Hamiltonian Hg, reads

1 1
HBL = 57 E(Kl,KQ) +V (GQ + ) KQ,Gl -9 Kl) + 5 W(Kl,G17K27G2> (351)
where )
E(K, Ka) = 5o [|a?Ka? + b K1% — a - b {K1; K2} (3.52)
I

is a quadratic function of the operators K; and K> ({-;-} denotes the anticommutator),
V is the Z2-periodic function related to the I'-periodic function 1/5,Vr and W denotes the
function 1/6yW with respect the new canonical pairs, namely

W(Kl,Gl,KQ,GQ) = f1 (G2 +6 Ko,G1 — 9 Kl) Ki— fo (GQ +0 Ko,G1 — 0 Kl) Ko (3.53)

where f; and f, are the Z?-periodic dimensionless functions

ZQr ZQr

fil@® -r,b* 1) =27 (a* - Ap)(r) and fa(a® -7, 0" - 1) = 271’?(6* - Ar)(r).
0 0

An easy computation shows that the first gauge condition of (3.44) is equivalent to

f1 0 f2 B
871'1(1;1’562) + 67@(371,372) =0. (3.54)

Obviously W is a symmetric operator, since W is symmetric.
The problem has a natural time-scale which is fixed by the cyclotron frequency w, =
%. With respect to the (fast) ultramicroscopic time-scale T := wcs, equation (3.4) be-

comes
10

52 or
Thus the physically relevant Hamiltonian is

HYp := 0% Hpy, = (K1, K2) + 6 W(K1,G1, Ko, G) + 6>V (Go + 6 Ko,Gy — 6 K1) . (3.56)

¥ = Hyei, # =

= e (3.55)
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3.4.2 Separation of scales: the von Neumann unitary

he commutation relations show that (K, K2) and (G;,G2) are two pairs

of canonical conjugate operators. The Stone-von Neumann uniqueness Theorem
(Bratteli and Robinson 1997, Corollary 5.2.15) assures the existence of a unitary map 'W
(called von Neumann unitary)

W : Hphy—Hw = Hs @ Hy = L*(R, dzs) ® L*(R, dxy) (3.57)
such that
WG W™ = Qs = multiplication by z, WGW™! = P, = —uq52% (3.58)

WK W~ = Q¢ = multiplication by z, WEW ™ = Pr= —i, —.
)
Ie

The explicit construction of the von Neumann unitary W is described in Appendix
Let X; := G, + (—1)/6 K; with j = 1,2. From (3:58) and (3:59) it follows that

(3.59)

X =WX W =Qs—6Q X :=WXW =P +6 P (3.60)

Since X; and X, commute, one can use the spectral calculus to define any measurable
function of X; and X». For any f € L>°(R?, d%z) one defines

J(X1,Xa) = /R2 f(z1,22) dEY dEQ)

where dEU) is the projection-valued measure corresponding to X ;. In view of the uni-
tarity of WV, and observing that dIF’ 0) .= WIEGWW-! is the projection-valued measure of
X, one obtains that

WIXL X)W = | fan,az) diy, V) dEL, P = (X, X5).
R
So the effect of the conjugation through W on a function f of the operators X; and X,
formally amounts to replace the operators X; with X J’ inside f.
In view of the above remark, one can easily rewrite HgL, making explicit the réle of
the fast and slow variables, obtaining

HY = WH W™ =13, ® E(Qp, Pr) +6 W(Qg, Qs, Pp, Ps) + 0> V (Ps + 6 Pr, Qs — 6 Qy)

(3.61)
where, according to (3.53),

W(Q%, Qs, Pr, Ps) = f1 (Ps +0 Pr,Qs — 6 Q) Qr— fo(Ps +0 Pr,Qs —0 Q) Pr.  (3.62)
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3.4.3 Relevant part of the spectrum: the Landau bands

he existence of a separation between fast and slow degrees of freedom and the de-

composition of the physical Hilbert space Hpy into the product space Hy = Hs @ Hy
are the first two ingredients to develop the SAPT. According to the general scheme, we
“replace” the canonical operators corresponding to the slow degrees of freedom with clas-
sical variables which will be re-quantized “a posteriori”. Mathematically, we show that
the Hamiltonian A" acting in H, is the Weyl quantization of the operator-valued func-
tion (symbol) Hy,

Hs(ps, xs) == E(Qg, Pp) + 6 W(Qg, s, Pryps) +6% V (ps + 6 Pr, s — 6 Q) . (3.63)

=Ws(ps,zs) =Vis(ps,s)

The quantization is defined (formally) by the rules
Tg — Op&(xs) =Qs ® ]al Ps — Op&(ps) =F® ]le-

For every (ps,zs) € R?, equation defines an unbounded operator Hs(ps,zs) which
acts in the Hilbert space H;. To make the quantization procedure rigorous, as explained
in Appendix A of (Panati et al. 2003b), we need to consider H; as function from R? into
some Banach space which is also a domain of self-adjointness for H;(ps,zs). We take
care of this details in the Section [3.4.4l

To complete the list of ingredients needed for the SAPT, we need to analize the spec-
trum of the principal part of the symbol as (ps, rs) varies in R2. The principal part
of the symbol, denoted by Hy(ps, xs), is given by when § = 0, so it reads:

1
Ho(ps, zs) := Z(Qx, Pr) = 20r [|a*Pf + [b]°Qf* —a- b {Qg Pr}] . (3.64)

Since the principal symbol is constant on the phase space, i.e. Hy(ps,zs) = = for all
(ps, zs) € R?, we are reduced to compute the spectrum of =. As well-known (see Remark
3.4.2] below), the spectrum of = is pure point with o(Z) = {\, := (n + 1/2) : n € N}. We
refer to the eigenvalue )\, as the n-th Landau level.

The spectrum of the symbol Hj consists of a collection of constant functions o, : R? —
R, n € N, 0,(ps, xs) = A, which we call Landau bands. The band o, is separated by the
rest of the spectrum by a constant gap. In the gap condition (analogous to (3.23)) one
can choose Cy = 1. Therefore, each finite family of contiguous Landau bands defines a
relevant part of the spectrun appropriate to develop the SAPT.

REMARK 3.4.2 (Domain of self-adjointness). We describe explicitly the domain of self-
adjointness of Hy(ps,zs). Mimicking the standard theory of Landau levels, one intro-
duces operators

1

a = \}595; [(a1 + iaz) Py — (b1 + ib2) Q] = 7 [Za Py — 2 Q] (3.65)
of = a0 = i) P~ (01— 2)Q] = = o P 2 Qi (3.66)
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Figure 3.2: Structure of the spectrum of Hy. The picture shows a “relevant part of the spectrum” consist-

ing of two Landau bands of constant energy \. and ..

where 2z, := }(a1 — iap) and 2, := 3(b; — iby). It is easy to check that
= 1 ty— = 1 ot
aa' = :(Qf, Pf) + lq i]lH” a'a—= :(Qf, Pf) — g 5]17—(“ [CL, a ] =g ]le. (367)

Without loss of generality, we suppose that ., = 1. Let vy be the ground state defined
by ai)y = 0. A simple computation shows that ig(zf) = Ce_(ﬂ_m)m?, where C' > 0 is
a normalization constant, and « € R, 8 > 0 are related to the geometry of the lattice
I' by a := ab/2jq>2 and [ := Qr/2/a/2. Since 1) is a fast decreasing smooth function, the
vectors 1, = (n!)"2(at)™py, with n = 0,1,..., are well defined. From the algebraic
relations it follows straightforwardly that: (i) avy,, = \/ni,_1; (ii) the family of
vectors {¢,, }nen 18 an orthonormal basis for Hy called the generalized Hermite basis; (iii)
Ethn, = Antbp; (iv) the spectrum of = is pure point with ¢(Z) = {\, : n € N}.

Let £ C H; be the set of the finite linear combinations of the elements of the basis
{4, }nen. The unbounded operators a, af and = are well defined on £ and on this domain
al acts as the adjoint of a and = is symmetric. Both a and af are closable and we will
denote their closure by the same symbols. The operator = is essentially selfadjoint on
the domain £ (the deficiency indices are both zero) and so its domain of selfadjointness
F := D(E) is the closure of £ with respect to the graph norm |[¢[2 = [[¢[3, + [IZ¢[3,.
The graph norm is equivalent to the more simple regularized norm

[¥ll7 == E¢ 3,
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The domain F has the structure of an Hilbert space with Hermitian structure pro-
vided by the regularized scalar product (v; ¢)r = (E¢; Z¢)n,. L 20

3.4.4 Symbol class and asymptotic expansion

n this section, we firstly identify the Banach space in which the symbol H; defined by

takes values and, secondarily, we explain in which sense Hj is a “semiclassical
symbol” in a suitable Hérmander symbol class. The main results are contained in Propo-
sition[3.4.3] Readers who are not interested in technical details can jump directly to the
next section. For the definitions of the Hérmander classes S*(%(Hy)) and S*(%(F; Hy))
we refer to Section

PROPOSITION 3.4.3. Assume that Assumption hold true. Then for any (ps,zs) € R?
the operator Hs(ps,xs) is essentially self-adjoint on the dense domain L C Hy consisting
of finite linear combinations of generalized Hermite functions, and its domain of self-

adjointness is the domain F on which the operator Hy = Z is self-adjoint. Finally, Hy is
in the Hormander class S'(%(F; Hy)).

In particular, H;(ps, zs) is a bounded operator from the Hilbert space F to the Hilbert
space H;y for all (ps,zs) € R2. The proof of the Proposition follows from the Kato-
Rellich Theorem showing that for any (ps, zs) € R? the operator Hs(ps, s) differs from Hy
by a relatively bounded perturbation. The latter claim will be proved in Lemmas [3.4.4
and below.

In view of Assumption , Vr e Cp°(R?,R) so its Fourier series

\71’*(1”) _ § : Wnm ei27rn a*~rei27rm b*-r
n,me”L

converges uniformly and
“+o0o

Yo Iml* 0| fwpm| < Ca
for all o € N? (Walker 1988, Theorem 3.6).
Let V be the Z?-periodic function related to 1/&Vr, as in Section In view of
(3.50) one has

v +oo . .
Wg—F(Xl, X)WL = V(P + 0P, Qs —0F) = Y @ 27(n34mQ) gi2mdnbr—mQ)
0 n,m=—oo

(3.68)

with v, y, = 1/&wy, m and where we used the fact that fast and slow variables commute
and [Qs; Ps] = 5%[Qy; Pf]. The operator (3.68) can be seen as the Weyl quantization of the
operator-valued symbol

400
Vs(ps, ws) := Z Uy €27 (MPsHMTS) Qi2TO(MP—mQy) (3.69)

n,m=—00
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with quantization rule

OP5 <ei27r(nps+mxs)) _ eiQTr(nPs—i-sz) ® ]le. (370)

LEMMA 3.4.4. Let Assumption hold true. Then Vs € SY(#(Hy)) N SY(B(F; Hy)). In
particular Vs(ps, zs) is a bounded self-adjoint operator on Hy for all (ps, zs) € R2.

Proof. It is sufficient to show that Vs € S'(%(H;)) since
10Vl a0 = 100°Vs) 27z < 210Vl sy

in view of |27 () = 2. Let o := (a1, a2) € N?, then

a1 9o || - ai az (27-‘-)|0“
1052052V (ps, 25) || 3y < (2T Y0 101™ m]* onm| < c Co
n,m-—+—oo 0

for all (ps, zs) € R?, as a consequence of the unitarity of e?2™(*/1—mQr) The self-adjointness

follows by observing that {v, ,,,} are the Fourier coefficients of a real function. [ |

Assumption(3.2.1|/implies that the I'-periodic functions a* - Ar and b*- Ar are elements
of C’ff’(RQ,R). By the same arguments above, one proves that the operators f;(Fs +
0P, Qs — 6P%), j = 1,2, appearing in (3.62), are the Weyl quantization of the operator-
valued functions

f( pS7«Ts — Z f j) ei2m (nps+mas) z’27r6(nPf—me) j=1,2 (3.71)

n,m=—0oo

according to (3.70). The coefficients - 2 ,(132,1 are the Fourier coefficients of a* - Ar if
j = 1and of b*-Arif j = 2. Thus, equatlon 3.62) shows that the operator W (Qy, Qs, P, Ps)
coincides with the Weyl quantization of the operator-valued symbol

Ws(ps, ) = [ (ps, w5) Qe+ 137 (ps, ws) P, (3.72)
defined, initially, on the dense domain L.

LEMMA 3.4.5. Let Assumption - hold true. Then f e SY(B(Hp)) N SH(B(F; Hy)),

for j = 1,2. For any (ps,rs) € R?, the bounded operators f5 (ps, xg) are self-adjoint while
Ws(ps, xs) is symmetric on the dense domain L and infinitesimally bounded with respect
to Z. Finally W5 € SY(B(F; Hp)).

Proof. Asin the first part of the proof of Lemma one proves that f (S(j ) e gt (B(He))N
S1(%(F; Hr)) and its self-adjointness. The operator Ws(ps, 7s) is a linear combination of
Qr and P, which are densely defined on £, multiplied by bounded operators. Using
one checks by a direct computation that W;s(ps, zs) acts as a symmetric operator on L.
Since Qr and P; are infinitesimally bounded with respect to =, then the same holds true
for Ws(ps, zs), (ps, s) € R2. The last claim follows by observing that

10° (£ X0l pray = 1O F) XeE g < I X preg) 10°F ey

with j = 1,2 and X¢ = Qf or P;. Since || X¢E || 43, < C and f(gj) € SY(%(Hy)), the claim
is proved. u
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Lemmas|3.4.4]and [3.4.5| together with the fact that Hy = = is clearly in S*(%(F; Hy))
imply the last part of Proposition|3.4.3

3.4.5 Semiclassics: the O(¢*)-approximated symbol

In this section we consider the asymptotic expansion for the symbol Hs in the param-
eter . The Fourier expansion (3.69) for V5 and the similar expression for Wy, namely

+o0o
Ws(ps, ws) = Y e2m(mpstmas) gi2md(nfi=mQy) [f;l})n Qs+ [, Pf], (3.73)

n,m=—00

suggest a way to expand the symbol H; in powers of . By inserting the expansion
e2m0lnm — Z+°° ’2”,5 Inm?, with I, ,, == nP; — mQy, in (3.69) and (3.73) and by exchang-
ing the order of the series one obtains the formal expansions

pS75Us Z(S] j+2 ps;xs) ps;xs ng j+1 pS7fL's) (3.74)
where
(i27r)j = 127 (nps+maxs) J
‘/j+2(ps,l‘s) = ]' Z e s s In,m Un,m (3.75)
and
W ( . ) L (i27l')j f ei27r(nps+mxs |:f(1) Qs + f(2) i| (3.76)
j+1\Ps; Tg) 1= ! . f .

In view of (3.54), one easily shows that the operators W; are (formally) symmetric.

The justification of the formal expansions above requires some cautions: (i) we need
to specify the domains of definitions of the unbounded operators In,mj and consequently
the domains of definitions of V; and Wj; (ii) we need to justify the exchange of the order
of the series in the equations (3.69) and (3.73).

As for (i), one notices that

Lim = Onm a4+ T @, Qi = % (3.77)
For all (n,m) € Z? the operators I,, ,,, are essentially self-adjoint on the invariant dense
domain £ (their deficiency indices are both zero). The powers I,, ,,,/ are also well defined
and essentially self-adjoint on £, as consequence of the Nelson Theorem (Reed and Simon
1975, Theorem X.39) since the set {1, } ,cy of the generalized Hermite functions is a total
set of analytic vectors for every I,, ,, (Reed and Simon 1975, Example 2, Section X.6). The
domain of self-adjointness for I, ,,” is the closure of £ with respect the corresponding
graph norm.
The operator V(ps, zs) defined by equation (3.75) is an homogeneous polynomial of
degree j — 2 in a and af. It is symmetric (hence closable) and essentially self-adjoint on
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the invariant dense domain £. Analogously, the operators

Zaf?&}r)n + befz?r)n

My = Do [£5 Qe+ £20 B = Lo [gnm 0+ T 01| g =

(3.78)

which appear in the right-hand side of equation (3.76)), are essentially self-adjoint on £

since the set of the generalized Hermite functions provides a total set of analytic vectors.
Thus we answered to point (i).

Since the generalized Hermite functions are a total set of analytic vectors for any
I, m, then the series Zjﬁg “2;7!5)] Immj 1) converges in norm for every ¢ € L. From this
observation, the fact that the series of coefficients vy, ,, f,(llfn and f,(f)n are absolutely
convergent and that )y end P;leave invariant the domain £, one argues that for all ¢ € £
the double series which defines Vj(ps, z5)Y and Ws(ps, zs)1) are absolutely convergent,
hence the order of the sums can be exchanged. Thus the series appearing on the right-
hand side of agrees with V5 and W; respectively on the dense domain £. By a
density argument, the equality in holds true on the full domain of definition of Vj
(which is H;) and W respectively.

In view of the above, we write the “semiclassical expansion” of the symbol Hj as:

+o0
Hs(ps,z5) = E+ Z & Hj(ps, s), Hj(ps, zs) := Wj(ps, Ts) + Vj(ps, Ts) (3.79)
j=1
with V1 =0.

Proposition shows that the natural domain for the full symbol H;(ps, zs) is the
domain F of self-adjointness of =. However, if we want to truncate the series at
the j-th order, we must be careful in the determination of the domain of definition of the
single terms and to control the remainder. Every term in the expansion (3.79) is essen-
tially self-adjoint on £. However, the j-th order term H; is the sum of two homogeneous
polynomials in Q¢ and P (or equivalently in a and af), W; of degree j and V; of degree
Jj — 2. Since W; = 0 if Ar = 0, one obtains

Js if Ar #0
deg H, =
o8 {j—z if Ap = 0

where deg H; means the degree of H; as a polynomial in Q¢ and F. If deg H; > 2 then
the operator H; is not bounded by the principal symbol =, and in this sense it cannot
be considered as a “small perturbation” in the sense of Kato. Moreover, some other
problems appear (see Remark [3.4.9). In order to avoid these problems, we truncate the
expansion (3.79) up to the polynomial term of degree 2, i.e. up to order §2 if Ar = 0 and
up to order 6% if Ar # 0.

Hereafter let § be the indicator function of the periodic vector potential, defined as

= 0, if Ap #0
] 1, ifAp =0.



86 3. Derivation of Harper and Hofstadter models

Let ﬁE(Ps, Ts) = E+ 25(:11-%) 5jHj(pS7 rs), namely

—+00

~ . 1
Hy(ps,ws) =2 407 ) vy 27petmae) <11Hf + 02006y + 2(¢27r)2521n,m2> (3.80)
n,m=—oo
HY(ps,as) =Z+6 ) ePm Pt (M) 4 5(i2mM,) 4+ v ag)] (3.81)
n,m=—00

We call I;TE the approximated symbol up to order 6219, As a consequence of the Kato-
Rellich theorem we have the following result:

PROPOSITION 3.4.6. Under Assumption there exists a constant &y such that for
every § < &y and for every (ps,xzs) € R? the operator Hg(ps,xs) (both for y = 0 or 1) is
self-adjoint on the domain F and bounded from below. Moreover Hg € SY(B(F; Hy)).

Proof. As proved in Lemma a and af are infinitesimally bounded with respect to
=. This fact and Assumption [3.2.1, which assures the fast decay of the coefficients v, ,,
and g, », (see (3.78)), imply that the operators

+00 oo
Z Unum ei27r(nps+mxs) (ﬂHf + i2775]n,m) 7 Z ei27r(nps+m:vs) [Mg,m + 5Un,m]17-[f]
n,m=—00 n,m=—00

are infinitesimally bounded with respect to = and are elements of S'(%(F;H;)).
The operators I,,,,> and M, ,, are only bounded (and not infinitesimally bounded)

with respect to =. First of all it is easy to check that ||cL’12@ZJ||Hf < 3||E¢||x, for every ¢ € F,
where af means a or af. Then, for every ¢ € F,
4

2 2 d
V¥, < lamml® (1020l + s 0720l + a0l <2755

(n® +m?)? ||ZI3,

(3.82)
where we used the inequality (o + 3 +7)? < 3(a® + 82 ++?), the identity {a;a’} = 2= and
the bound |a, ,, |> < */2(n? — m?) with d? := max{|a|, |b|}. Assumption [3.2.1|assures that
the operator 54272 :ﬁzfoo Vp g €27 (PstmEs) [ 2 wwhich appears in (3.80), is bounded
by Z by a constant §*C, with C oc Y % vnm(n? +m?), and is in S*(#(F; Hy)). The
claim for H 3 follows from the Kato-Rellich theorem fixing &, := C -1,

The claim for ﬁg follows in the same way proving an inequality of the type
for M) . = cpma® + %cﬁz + 2R(dp,m) = + 143 (dn,m) Where ¢ m = i mGnm and dp o, =
an.mgn,m- Observe that the series of coefficients g, ,,, decays rapidly, then also the serie
cn,m and d,, ,, have a fast decay and in particular are bounded. This implies that in the
inequality of type we can find a global constant which does not depend on n and

m. [ |

It is useful to have explicit expressions of the first terms H;, in terms of a and a'.

From equations (3.79), (3.80) and (3.81), using the Fourier expansion of the derivatives
of Vand g := 1/v2 (24 f1 + 2f2), it is easy to check the following:
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- Case 1: Ar = 0 - In this situation

H} =2+ 6%Hy + 6°Hs + 6*Hy

with
Ha(ps, ws) = V(ps, xs) 1oy, (3.83)
Hy(ps, xs) = —\}5 [DZ(V) a+ Dz(V) a*} (3.84)
Hylps, ) = 1 [|D2(V) 22+ DA(V) o® 4+ D) o (3.85)

where D, is the differential operator defined by D, := (Zaa%s — zba%s> and D is obtained

by replacing z, and z, with Z, and Zz,. Since V is real, Dz(V) = D.(V), which shows
that Hs is symmetric. The explicit expression of the second order differential operator
|D.|2:= D, o Dz is

|D.|? = er <|a|2 5:53 —2a-b 82;98 + [b)? ;;9 (3.86)
For a square lattice | D.|* coincides with the Laplacian 92 + 92..
- Case 2: Ar # 0 - In this situation
HY ==+ 6H, + 6°H,
with
Hi(ps, xs) = g(ps, 7s) 6 + G(ps, ws) af (3.87)
Hy(pe,2s) = V Ly, — V2D.(9) E — \2 [D.(9) o + D=(g) o] (3.88)

In the computation of (3.88) we used the first of the gauge conditions (3.44) which assures

that
A a0k (R 0RO
DZ(g) B \@QF [|a‘ Oz Fah <a$s Ops ’b| Ops

is a real function. From the definition of ¢, f; and f5 it follows that

gla® -7 b*-r)= w\fZQZ)ﬁ [(Ar)1 — i(Ar)2] (), (3.89)

namely ¢ is the dimensionless Z2-periodic function related to the I'-periodic function
(Ar)1 —i(Ar)2, up to a multiplicative constant.
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3.4.6 Main result: effective dynamics for strong magnetic fields

e need a preliminary estimates on the remainder. The difference %g = Hs — f[g
W is a self-adjoint element of S*(%(F;Hy)), which we call the remainder symbol. To
develop the SAPT for the Harper regime we need to estimate the order of the remainder
symbol. The next result shows essentially that

Hs(ps; xs) = ﬁg(p87ms) + 0(52(h+1))7 Ty Hs(ps, ¥s) Tr = Ty ﬁg(p57xs) Tr + (’)(52(%‘1)"‘1),
(3.90)
where .
=1

is the projection on the subspace spanned by the finite family of generalized Hermite
functions {1, }/",. In other words, the error done by replacing the true symbol H; with
the approximated symbol flg (which has order 2(f + 1) in 6) is of the same order of the
approximated symbol, so in this sense fIE is not a good approximation for Hs. On the
other side, what we need to develop the SAPT is to control the operator m. Hs 7, which
is well approximated by 7, ﬁg 7y up to an error of order 2(f + 1) + 1 in 9.

PROPOSITION 3.4.7. Let Assumption hold true. Then R has order O(52(D),
i. e. there exist a constant C such that || R} (ps, 2s)|| (., < C52EHV for all (ps,zs) € R
Moreover |’ Tl ary) = |7 %E;H@(Hf) < OOV for all (ps, x5) € R, ie. R 7, 7 R
and [R; .| are B(Hy)-valued symbols of order O (52D +1),

Proof (Case f = 1) The explicit expression of the remainder symbol is

“+o00

. . 1
R (ps, 25) = 67 Z Uy €27 (NP5 M) [em‘”mm - <11Hf + 0270 Ly g + 2(1’2%)252[”77”2)} .
n,m=—00

(3.92)

and from (3:92) it follows that [|9%(ps, zs)l| (D) < 52X p e o0 [Vnm| An.m With

. 1
’ [el%ﬂmm - (]le + 8276 Ly + 2(2'277)2521,%,712)] E—lw‘
Apm i=  sup M (3.93)
wer\ {0} 11740

since ||¢||7 := ||Z4||», and F = =~ 'H;. The operators I, ,, are essentially self-adjoint

on £ and we denote their closure with the same symbol. Since the operators In,m2 are
positive, we can consider the resolvent operators R, ,,, := (Inm? + 13,)"'. Let suppose
that

< €(0), (3.94)
#(Hr)

G (8) = |

. 1
|:e127r§fn,m _ <]1Hf + 8208 Ly m + 2(i2ﬂ)2521n7m2>:| Rynm

for all n,m € Z, with sup; ((d) < +o00. Then equation (3.93) would imply

An,m < ((9) H(In,m2 + ]le) EilH%(Hf) :
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Noticing that I m? = onm? 62+ 2 ai +2|apm|? = and observing that ||= 201 = 2,
|a?Z7 | g2 = 1 and laf*=1| #(Hp) = 2V'2, one deduces from inequality (3.94) that

+o0
19R5 (s, 25| 2(D10) < C ( > loml(Inl+ Im\)2> §2¢(8) < C282((d)

n,m=—00

for suitable positive constants C; and Cs.
It remains to prove the inequality (3.94) and the estimate on ((J). By spectral calcu-
lus one has that ¢, () = supico(s,, ) 1Z6(t)] < supyer |Z5(t)] =: ((6) where

A 1
ei2mot _ <1 + 278t — 2(2m$t)2>

4252
Zy(t) = 470 (27dt)2 + 47252

After some manipulations and the change of variable 7 := 276t one has that

1 ‘ 6( T )‘2< 74 + 472 cos(7) — 87 sin(7) — 8cos(7) + 8 <G

4z 218 4

Thus ¢(6) = 47%6* sup, g Gs(7) < 47*C36%, hence ||R(ps, s)|| 5(px,) < C6*. This con-
cludes the first part of the proof.

Gs(1) :

T

Since |Rjmell ) < Doimy 1R5|10k,) Yk, ||| 2240 then it is enough to show that for any
Hermite vector ¢, the inequality ||93§]¢x) (Vk|ll 52 < Crd® holds true. Observing that
1935 1k ) (il vy = 98530k 174;, ome deduces

im 52 1 : - i2m (nps+maxs) <« (i27r)j5j_3 j
%l_r% Hm6|¢k><wk|”%‘(7—lf) = (%1_1)1(1) Z: Un,m€ Z: Tln,m g
n,m=—00 j=3 Hy
4, 32 3 32
S 5773 > vnml Hnm®Grlln < SWSC'HGT Vel = 5 v/ (k +3)! 0" =: Gy,
n,m=—00
where C' := :7‘;’0:_00 |Un,m] \an,m|3 is finite in view of Assumption

This shows that for all 6 € [0,d) (for a suitable d; > 0) the norm [|9R}|vw) (Vrl z(x)
is bounded by Cy6° and so it follows that | Rjm|| ) < mC® with C := max; __;n{Ch,}.
Finally ||m:R/| 2y = |(Rsm) T2y = [R5l mr1y)-

(Case f = 0) The proof proceeds as in the previous case. Divide the remainder symbol
in two terms R} = RY + R? where:

400
9‘{8(})5’ gjs) =9 Z ei27r(nps+ma:s) (ei27r(5[n,m _ ]le _ i2775[n,m) Mg,m

n,m=-—o00
+00
m(l](psﬂﬂs) — 52 Z Vnum esz(nps—i-mzs) <8127T6[n,m _ ]le) )
n,m=—00
The control of R is easy, indeed ||R|| 5(p3,) < 2[R7 5024y < 4C6% where C:= 31> |vnml.

Moreover (with the same technique used for the case j = 1), one can check that for any
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Hermite vector v, the function ¢1(0) := J%Hm(f(ps,xs)zbkﬂm is bounded by a constant

Ci > 0 in a suitable interval [0, &y). This assures that [|R? 7;[| (3, is of order O(5°).

To control R) we need to estimate 3, , := || (€7 mm — Ly — i2w8 1 ) MY 27| 240 -
Let R}, ,, be the resolvent (I,, ,,+ils,)~'. It is easy to check that || (L, m+ily,) M, . 271 ()
is bounded by a linear expression in |n| and |m|. Indeed, as proved in Proposition
both M.}, and M, , are bounded by Z. Finally, by means of spectral calculus

| (e?2m0lnm — 13y — i2706 1y, 1 ) R;L’mHgg(Hf) is bounded by the maximum in 7 of the function
F6 (7.) — 47.‘.252 7227 sin 7'2—2 cos T+2 .

-
The last part follows observing that M., is a linear combinations of a and al and
so they act splitting a Hermite vector v, as Cﬁ7m1/1k—1 + dﬁmwkﬂ where, for a fixed

k, the coefficients depend on fy(f)n To conclude the proof it is sufficient to notice that
to(8) := 3z || (e™™Imm — 1y — i2w8 1 ) Yi|| 3, is bounded by a constant C; > 0 in a suit-
able interval [0, o). |

We are now in position to derive the adiabatically decoupled effective dynamics We
recall that the Weyl quantization of the symbol H; is the Hamiltonian (3.61), namely
Op;s(H;s) = HY. As for the approximated symbol H’, we pose H := Ops(H?). Both HY
and H' are bounded operators from L%(R, dzs) ® F to Hy := L*(R, dxs) ® Hy.

THEOREM 3.4.8. Let Assumption be satisfied. Let {0, () }ner, with T = {n,...,n+
m — 1}, be a family of Landau bands for = and let m := ) 1 |n) (Y| be the spectral
projector of Hy = Z corresponding to the set {0, (ps, xs) }nez. Then:

1. Almost-invariant subspace: there exists an orthogonal projection Hg € B(Hw), with
IT; = Op;(7) + Op(6%), 7(ps, s) < Y32 8/ 7;(ps, zs), and mo(ps, ¥s) = 7 , such that

[H5 0] = 00(0%), [HYTI] = Op(6E- D). (3.95)

2. Effective dynamics: let 11, := 1y, ® 7 € B(Hyw) and K := Im I, ~ L?(R, dxs) @ C™.
Then there exists a unitary operator Ug € #B(Hw) such that

iU g = Op;(u) + O(6°), where the symbol u =< 322, §u;j has principal part ug = Ly
i) I, = U I U2

(iii) Let h'in S'(%(Hy)) be a resummation of the formal symbol uﬁwﬁflgﬁwﬁﬂ and define
the effective Hamiltonian by H’; := Opgs(h?). Since [H%;IIy] = 0, Ho is a bounded
operator on K. Then

USTIL Y T US T = Hip + 062D+ € (k). (3.96)

2’. Effective dynamics for a single Landau band when Ar = 0: Consider a single
Landau band 0.(-) = M., so that 7y = |,)(1«|. Then, up to the order §*, one has that

A
Hi = My, + 6% V(B Qs) + 61 T Y (P, Qs) + O (5°) (3.97)
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where V (Ps, Qs) := Op; (V) is the Weyl quantization of the Z>*-periodic function V (ps, xs)
related to the T'-periodic potential V1, while Y (Ps, Qs) := Ops(|D,|?(V)) is the Weyl quan-
tization of the function |D,|?(V)(ps, zs) defined through the differential operator (3.86).

The derivation of the effective dynamics when Ar # 0 will be considered in Section

3.4.8

Proof of Theorem 3.4.8
Step 1. Almost-invariant subspace

As explained in the first part of proof of the Theorem [3.3.14] one constructs a formal
symbol 7 (the Moyal projection) such that: (i) w7 = m; (ii) 7' = ; (iii) Hgﬁw = wjog. Such
a symbol 7 = Z;io §97; is constructed recursively order by order starting from mp = 7,

and flg and it is unique (Panati et al. 2003b, Lemma 2.3). The recursive relations are

T, 1= 7'('7]3 + 70D (3.98)

n

where the diagonal part is 72 := 7:G 7y + (13, — )Gy (134, — ) With

n

n—1 n—1 n—1
(Z 5]@-) f (Z 5%-) - (Z 5]@)] : (3.99)
j=0 j=0 3=0 n

The off-diagonal part is defined by the implicit relation [Hy; 70P] = — F;, where

n—1 n—1
Hi (Z 5j7fj+5”7r713) - (Z 5j7fj+5”7n9) ﬁﬁg} : (3.100)

j=0 j=0

G, =

F, =

The uniqueness allows us to construct = only locally and this local construction is
explained in the second part of Lemma 2.3 in (Panati et al. 2003b). In our case we
can choose a (pg, z5)-independent positively oriented complex circle A C C, symmetric
with respect to the real axis, which encloses the family of (constant) spectral bands
{on() = An}ner and such that dist(A,o(Hy)) > 3 (see Figure [3.2). For all A € A we
construct recursively the Moyal resolvent (or parametrix) R'();-) = > 720 5 Rq(A; -) of
flg, following the same technique explained during the proof of Theorem The
approximants of the symbol 7 are related to the approximants of the Moyal resolvent by

the usual Riesz formula 7;(2) := i $y dX RE-()\; z) where z := (ps,rs) € R%. Some care

is required to show (iii) since, by construction, ﬁgﬂﬂ takes values in %(Hy) while ﬂﬁﬁg
takes values in #(F). To solve this problem one can use the same argument proposed in
Lemma 7 of (Panati et al. 2003a).

The technical and new part of the proof consist in showing that = € S'(%(H;)) N
SY(%(Hg, F)). The Riesz formula implies ||(997;)(2)[l, < 27 supyea \\8§‘R§()\;z)]\b for all
a € N? (b means either %(Hy) or B(Hys; F) and 0% = 0p1052) since A does not depend
on z. Then we need only to show that RE-()\; ) € SYB(Hy)) N SYPB(Hy, F)). The choice
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of A assures HRO()\ 2\ amy = H(E Aa) M2 < 2. Moreover 8‘1]%h ()\ z) = 0 for all
a # 0 and this implies that Ro € SYB(Hy)) umformly in A. Since HRO()\, 2)| B(He,7) =
I2(Z — M) Ml z(3,) < oo one concludes that Ro € S1(%(Hg, F)) uniformly in .

By means of equation (3.35)), one has RE. = —ROLE. where LE- is the j-th order obstruc-
tion for RE) to be the Moyal resolvent. In view of this recursive relation, the proof of
Rg- € SY(%(Hy)) for all j € N is reduced to show that LE- € SY(%(Hy)) for all j € N.

The first order obstruction, computed by means of (3.36), is

L{(xs2) = 07 [(ALE) ~ My #RY 0 2) — Ty = Ha(2) RE(A2) = {55 RS )

Since = and RE) do not depend on z € R? it follows that Lﬁ =H 1RB. The operator H; is
linear in a and af (with all its derivative) if § = 0 or H; = 0 if § = 1. In both cases H;
(with its derivatives) is infinitesimally bounded with respect to = (Lemma [A.1.2). This
shows that L} € S1(%(Hy)) (but not in S*(Z(Hy, F)) if f = 0).

We proceed by induction assuming that LE. € SY(PB(Hy)) for all j < m € N. The (m+1)-
th order obstruction Lfn 41 can be computed by means of equation (3.36) and the Moyal
formula for the expansion of # (Teufel 2003, equation (A.9)). After some manipulations,
one gets

1 (_1)|a\+1 a1 Qo s . a1 9oz 7l .
Vonis9) = 3 e (ROHR) O05) (J2o520) (o)
a1 tas+r+l=m

0<I<m, 0<r<2(5+1)

Since H, R} € 5'(#(Hy)) uniformly in X (c.f. Remark|[3.4.9) then LEﬂH € SY(%(Hy)), and
this concludes the inductive argument.

Finally to prove RE € SY(PB(Hy, F)), observe that H(‘)?Rg | aeHe7) = |12 RE) (GSLE)H(@(HIO) <
CallZ R 0y < +oo for all j,a € N.

REMARK 3.4.9. It clearly emerges from the proof that the order 62(**1 is the best ap-
proximation which can be obtained with this technique. The obstruction is the condition
HJBEJ € SY(%(Hy)), which can be satisfied by the resolvent R = (2 — (1g)~! only for
0<r<2(5+1). 0

Proposition A.9 of (Teufel 2003) assures that flgﬁw € S'(%(H;)) and, by adjoint-
ness, also TrﬁHg € S'(%(Hy)). By construction [H* Ops(r)] = Op(;([HE;w]ﬁ) = 0y(6%)
where [HE, ]ﬁ Hujjw - WﬁHh = O(0*) denotes the Moyal commutator. Observing

that [Hjs; )y [H + 9%57 Ty = [%g, 7]y + O(6*°) and since Proposition implies
(R )y = [mh ) + O(82EFDHY) = O(§2E+D+1) it follows [Hg; 7]y = 0(52<h+1>+1) which

implies after the quantization [H"; Opg(7)] = Op(52E+D+1),

The last step is to obtain the true projection Hg (the super-adiabatic projection) from
Ops(m) by means of the formula (3.38). Since Hg — Ops(m) = Op(6°°), one recovers the
estimates (3.95).
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Step 2. Construction of the intertwining unitary

The construction of the intertwining unitary follows as in the proof of Theorem 3.1 of
(Panati et al. 2003b). Firstly one constructs a formal symbol u =< Z;’;O §u; such that: (i)
uMu = uut = 1yy,; (1) ufirtul = .

The existence of such a symbol follows from a recursive procedure starting from
uo (which can be fixed to be 14, in our specific case) and using the expansion of 7 =
Y720 07m; obtained above. However, the symbol u which comes out of this procedure is
not unique. The recursive relations are

Uy, 1= ay + by, with an = —%An, by, = [my; By (3.101)
where
n—1 . n—1 ' f
A= [ [ Dy | 4D duy | — 1 (3.102)
§=0 §=0
and

f
n—1 n—1
B, = (Z S+ 5”%) ot (Z &+ 5"an) — Ty (3.103)

j=0 7=0
n

Since vy = 1y, € S'(%#(Hy)), then it follows by induction that u; € S'(%(H;y)) for all
jeN.

The quantization of v is an element of Z(Hy, ) but it is not a true unitary. Neverthe-
less Ops(u) can be modified by an Oy(6°°) term using the same technique of Lemma 3.3
(Step II) in (Panati et al. 2003b) to obtain the true unitary U g.

Step 3. Effective dynamics

~ -1 —
By construction [HZy; IT,] = Ops([h%; mly) = [UE Hg HE Hg Ug ; IT;] = 0 since I, = UE Hg UE g
Moreover equation (3.96) follows observing that U(E Hg mv Hg U §_1 —H gff coincides with
the quantization of ufrtRirtu! which is a symbol of order O(52(#+1)+1),

Step 4. The case of a single Landau band when Ar =0

We need to expand the Moyal product h*=! = unttH} rtu! = mpput H ultm, + O(6%°) up
to the order §*. To compute the various terms of the expansion h*=! = >0 §h; it is
useful to define y; := [uﬁﬁgﬁuﬂj, so that h; = m.x;m. Observing that

m—1 m—1
ugHy — (Z & Xj) fu = (uﬁﬁéﬁu* -y ¥ xj) b+ O(5%) = 6™y + O™ D)

J=0 J=0

one obtains the useful formula

—_

m—

Xm = [ufH} — [ D67 x; | tu| . (3.104)
=0
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At the zeroth order one finds hy = mg ug Hy ug 7o = Tr =Ty = Ay 7y Since ug = 1y, and
7o = mr. Its quantization is the operator Op;(hg) = M. 13, acting on K = L%(R, dus).

As for the first order (m = 1), x1 = w1 Ho + uwoH1 — xou1 + [uwofHol1 — [xofuol1 = [u1; E]
since yg = uoHougl = E and H; = 0. Then h; = mpfuy; Elmy = A(mpurmy — mpugmy) = 0,
hence Opg(h1) = 0.

At the second order (m = 2), one obtains after some manipulations xo = Hs + us = —
Zug — x1uy which implies he = m Homp — mpx1uimy. We need to compute u;. Using
equations (3.101), (3.102) and (3.103) one obtains that —2a; := [ugfue’ — 13|, = 0 and
by := [my; B1] with By = [upfmfug* —m]1 = m1 since a; = 0. To compute 7, we use equations
(3.99), and (3.100). Since G| = [mfim — 7|1 = 0 it follows that 7P = 0. In the case
of a single energy band in the relevant part of the spectrum, the implicit relation which

defines 790 can be solved, obtaining the useful equation

7P = e F (2 — Mllgg) Y (Mg, — 70) — (g — 700) (2 — MuTlgg,) "L Fye (3.105)

Since F} = [ﬁgﬁﬂ'r—ﬂrﬁﬁg]l = Hym—mHy = 0, being H; = 0, it follows B; = m = 790 =0
and consecutively u; = by = 0. Then hy = 7 Hym = V 71p, according to (3.83), and its
quantization defines on K the operator Op;(h2) = V (Ps, Xs).

Considering at the third order (m = 3) and using u; = 0, one obtains after
some computations y3 = H3 +u3 = — Zu3 — x1 ue which implies h3 = 7 Hs 7y — 7y X1 U2 Ty

Thus we need to compute uy. Since u; = 0, it follows —2ay = [uoﬁuoT — 1y 2 = 0,
BQ = [uoﬁrrﬁuoT — TI'r]Q = 79 and bg = [7Tr;7r2]. Since ™ = 0, one has that G2 = [Wrﬁﬂr —
Tr]a = 0 which implies 72 = 0. To compute 9P we need F» = [flgﬁﬂr — Wrﬁﬁ(}]g =
[Ho;my] = [1y,;m] = 0, where Hy = V 1y, has been used. Then By, = my = 7r2OD =0

and consequently uy, = by = 0. Therefore h3 = m.Hsmy, and equation (3.84) implies that
meH3m = 0 in view of meam = (¢|alt,)m = 0 and similarly for af. Then Op;(hs) = 0.

To compute the fourth order, we do not need to compute u3 and 73. Indeed, by com-
puting at the fourth order (m = 4) one finds x4 = Hy+us E—Zug+ug Hy — x3u; =
Hy+uys 2 —Zuy since H; = u; = us = 0. Then hy = 7 Hymy = ’\2—*|DZ(V)|2 mr, according to
equation (3.85), and its quantization yields Op;(hs) = %Y (Ps, Qs).

REMARK 3.4.10. In the derivation of the effective dynamics, one realizes that 7 = 7, +
0O(8%) and u = 13, + O(6°). To find a non trivial correction we need to compute the third
order. Let us = a3 + b3 and w3 = W? + 7T30D. Since u; = us = 0 then —2a3 = 0. Moreover
bs = [my; B3] with B3 = 73 since a3 = 0. Since m; = m2 = 0 one has that G5 = 0 which
implies 70 = 0. To compute 9P we need Fy = [ﬁgﬁﬂr - Wrﬁﬁél]g = [Hj3; ] since Hy and
its derivatives commute with . Now mpms (L, — 1) = meF5(2 — Allpy) L1y — 1) =
—mH3(ZE — A\lyy,) (19, — ) which implies

mg =P = — (g, — ) (B — Mullpg) " Hamy — meH3 (2 — Allgg,) " (g, — )

ug = by = (Lpg, — 1) (Z — Mllpgy) " Hamy — 1 H3(Z — Mllgy) " (Ly, — ).

To give an explicit representation of 7 = 7w + 8373 + O(6*) and u = 1y, + F3ug + O(64)

we denote with Hﬁg) C 'H; the three-dimensional vector space spanned by the three



3.4. Space-adiabatic theory for the Harper regime 95

i
Hermite vectors .1, ¥« and ¢,_1. Using the decomposition Hy = Hf’) @ HS’) and

setting {¢,+1, ¥, ¥«_1} as canonical basis of Hf) ~ C? one has that

0 wx 0 0 —-wx O
m3=| we 0 —Ox | @O, us=| we 0 —Jx | @O, (3.106)
0 —u« O 0 s 0

where w,(ps, zs) = 7WDZ(V)(pS,:pS) and g (ps, zs) := v2n.D,(V)(ps, xs) according
to the notation of (3.84). 0

3.4.7 Harper-like Hamiltonians

he first term in (3.97) is a multiple of the identity, and therefore does not contribute

to the dynamics as far as the expectation values of the observables are concerned.

The leading term, providing a non-trivial contribution to the dynamics at the original

microscopic time scale s « 627, is the bounded operator V (P, Qs) acting on the refer-

ence Hilbert space L?(RR, dzs). This operator is the Weyl quantization of the Z2-periodic

smooth function V' defined on the classical phase space R2. Hereafter we write =5 = z to
simplify the notation.

The quantization procedure can be reformulated by introducing the unitary opera-

tors Uy := e ?™? and V., := e 2" (Harper unitaries), acting on H,, := L*(R,dz) as

(Uooth) (z) = €™ 1p(x), (Vooth)(z) = ¥z — 1g€s0) (3.107)
where €., B := hpg = 2762.

For any Z?-periodic function

+oo
)= Y fumer2r0roe)

n,m=—00

whose Fourier series is uniformly convergent, the hz-Weyl quantization of F' is given by
the formula
+oo
F(Uso, Vo) = D frme mmlacse) yr (3.108)
where the fundamental commutation relation U, V., = e #27(ta¢e) V_ 1, has been used.
Formula (3.108) defines a Harper-like Hamiltonian with deformation parameter —¢; €
(c.f. Sections [2.1] and [2.3).

In analogy with Section we summarize the discussion in the following conclu-
sion.

CONCLUSION 3.4.11. Under the assumptions of Theorem for every Vr € Cp° (R2,R),
in the Harper regime (hg — 0), the dynamics generated by the Hamiltonian Hgy, (2.1) re-
stricted to the spectral subspace corresponding to a Landau level \, is approximated up
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to an error of order ¢, := hp (and up to a unitary transform and an energy rescaling)
by the dynamics generated on the reference Hilbert space H, := L*(R,dz) by a Harper-
like Hamiltonian, i.e. by a power series in the Harper unitaries Uy and V.., defined by

(3.1077).

3.4.8 Coupling of Landau bands in a periodic magnetic potential

ccording to Theorem [3.4.8] the first non-trivial term which describes the effective

dynamics in the almost invariant subspace related to a single Landau band ), is
of order 62 = hp. An important ingredient in the proof is that Ar = 0 implies H; = 0.
Moreover, the second non-trivial correction appears at order §*  hp? although Hs # 0.
Indeed, the correction at order 63 vanishes since Hs, defined by (3.84), is linear in a and
al, hence (¢.|Hs3|y,) = 0. This observation suggests that for a family of Landau bands
which contains two contiguous bands {\,, \.;1} one has, in general, a second non-trivial
correction of order §° hB% for the effective dynamics. Indeed, in this case one has
myHsmy # 0 since (1, |Hs|1411) is generally non zero. Nevertheless, also in this case, the
first non-trivial correction is of order §2.

Is there any mechanism to produce a non-trivial correction in the effective dynamics
with leading order ¢ hB% ? An affirmative answer requires H; # 0, and the latter
condition is satisfied if we include in the Hamiltonian Hgj, the effect of a I'-periodic
vector potential Ar (i.e. i = 0). Since in this situation H; is linear in a and af, to obtain
a non-trivial effect we need to consider a spectral subspace which contains at least two
contiguous Landau bands.

Our goal is to derive the (non-trivial) leading order for the effective Hamiltonian in
this framework. According to the notation of Theorem we need to expand the
Moyal product h*=0 = utnt HOmtu' = mptut Hultm, + O(5°) up to the first order . The
symbols 7 = 7w + O(d) and u = 13, + O(6) are derived as in the general construction
showed in the proof of Theorem [3.4.8f Now K :=Im II, ~ L?(R, dxs) ® C2.

Expanding at zero order one finds hy = 7o ug Hou, Yo = mEm = 7 2 = Em, and its
quantization is the operator on K defined by

[ (et D) 1y 0 B sy, 0
Ops(ho) = ( 0 (ne+ D1, ) (ne + D)1 + 0 —Lliy, (3.109)

2

As for the next order, from equation it follows x1 = Hy + uy Ho — Houy (we use
Xo = Hp) which implies hy = mpx 17 = 7y Hy 71p+ 7y [u1; Z] 7. To conclude the computation
we need u; and 7. Using the recursive formulas (3.98), (3.99), (3.100), (3.101), (3.102)
and (3:103), one obtains —2ay := [ugfup’ — Iy], =0, by := [me; B1] and By = [upffiup* —
my]1 = 1 since a; = 0. Observing that G = [mfimy, — m]1 = 0, it follows that w? =0 and so
uyp = [myp; m1] = [y W?D] which implies muym = 0. Finally 7 [u; Z)my = mp[ug; mpEme|my = 0
and so hy = mpHme. According to the quantization of h; is an operator which acts
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on K as

O Q(PS7QS)
Op;(h1) = vy + 1 (3.110)

9(PS7 QS)T O
where the operator G(Ps, Qs) is defined on L?(R, dzs) as the Weyl quantization of the Z>2-

periodic function g defined by equation (3.89). Summarizing, we obtained the following
result:

THEOREM 3.4.12 (Effective Hamiltonian with a periodic magnetic potential). Under
the assumptions of Theorem in the case Ar # 0 the dynamics in the spectral sub-
space related to a family of two contiguous Landau bands {o.+j(-) = A\4; | 7 = 0,1}
is approximated by the effective Hamiltonian H gff = Op(;(h(hzo)) on the reference space
K = L*(R, dzs) ® C? which is given, up to errors of order &%, by

ﬁﬂﬁs 0 9(P85QS>
Hp = (n + 1) + Vny + 1 +0,(6%),  (3.111)
d 9(P37QS)T _Nﬁ]l}(s

according to the notation introduced in (3.109) and (3.110).

Equation shows that g(ps, 7s) = g1(ps, Ts) — ig2(ps, zs) where the function g; and
g2 are related to the component (Ar); and (Ar)2 of the I'-periodic vector potential by the
relation g;(a* -7, b*-r) = wﬁg—f(Ap)j(r), Jj =1,2. Let §;(Ps, Qs) be the Weyl quantization
of g;. By introducing the Pauli matrices

0 1 0 —i 1 0
01—<10>, UZ_(@' O)’ O'L—<O_1> (3.112)

one can rewrite the effective Hamiltonian (3.111) in the form

2
1
Hly = ((n* + Dle2 + 2aL> ® Ly +0vVne +1 Y 05 @ G5(Ps, Qs) + Op (%) . (3.113)

J=1

Clearly, the operator §;(Ps, ()s) are Harper-like Hamiltonians and can be represented
as a power series of the Harper unitaries U, and V., of type (3.108). In this case the
coefficients in the expansion are (up to a multiplicative constant) the Fourier coefficients
of the components (Ar); of the I'-periodic vector potential.

The determination of the spectrum of H gff can be reduced to the (generally simpler)
problem of the computation of the spectrum of GG'.

PROPOSITION 3.4.13. Let H gf?l be the first order approximation of the effective Hamil-
tonian (3.111) (or (3.113)). Then

o(H%EY) = (e + 1)+ S, US_,  Si:={EV/1/1+02(n. +1) X : Aea(39")}

where 7(G5") = 0(357) U {0} if {0} € 0(579) \ 0(G5") and 7(SG") = 0(GG") otherwise.
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Proof. We give only a sketch of the proof. The term (n, + 1)1k shifts the spectrum by a
constant value (n.+1), then we can consider only the spectrum of B := H, gf?l —(ns+1)1g.
A simple computation shows that

1 2 T
2 _ sla, OV FIS ) 1. o 9" 0
oo ( 0V +TGH 3l Saterrn Uy gig

4
which implies that o(B?) = {1/a + 6%(n. + )X : X € 0(35") U (57G)}. The operators
GG', G'G and B are bounded and self-adjoint. To show that ¢(55") \ {0} = ¢(579) \ {0},
let A € o(3G") with A # 0 and {¢n}nen C Hs \ Ker(G') be a sequence of non zero
vectors such that [(GG" — N lln. — 0 (Weyl’s criterion), then ||(STG — A)GTohy, |3, <
15122 1(SST — Anllz, — 0. This implies that ¢(55") U o(5tS) = 7(557). Now let
ex(N) = /11 + 62(ne + 1) A with A € 7(G5") and {1, }nen a sequence of generalized
eigenvectors for G5 relative to A. Then U\ = (12 + e )b, 6v/ns + 1GT4,) € He ® C2 is
a sequence of generalized eigenvectors for B relative to . |




Chapter 4
Bloch-Floquet transform and emerging geometry

Diviser chacune des difficultés que jexaminerais, en
autant de parcelles qu’il se pourrait, et qu’il serait requis
pour les mieux résoudre.

(Divide each difficulty into as many parts as is feasible
and necessary to resolve it.)

René Descartes
Discours de la méthode, 1637

Abstract

We investigate the relation between the symmetries of a quantum system and its topo-
logical quantum numbers, in a general C*-algebraic framework. We prove that, un-
der suitable assumptions on the symmetry algebra, there exists a generalization of the
Bloch-Floquet transform which induces a direct-integral decomposition of the alge-
bra of observables. Such generalized transform selects uniquely the set of “continuous
sections” in the direct integral, thus yielding a Hilbert bundle. The proof is construc-
tive and yields an explicit description of the fibers. The emerging geometric structure
provides some topological invariants of the quantum system. In greater detail, the
content of the paper is the following: Section provides the the basic notions of
physical frame and G-algebra; Section contains some simple guiding examples;
Section and are devoted to review the von Neumann’s complete spectral the-
orem and the Maurin’s nuclear spectral theorem; Section concerns the notion of
wandering property for a commutative C*-algebra generated by a finite family of op-
erators; Section provides a formula which generalizes Bloch-Floquet transform to
the case of a Z"N -algebra which satisfies the wandering property; Sectionis devoted
to show how a non trivial topology (and geometry) emerges in a canonical and essen-
tially unique way from the decomposition induced by the generalized Bloch-Floquet
transform.

4.1 Motivation for a “topological” decomposition

opological quantum numbers play a prominent réle in solid-state physics (Thouless
1998) A typical way to compute a topological quantum number in presence of sym-
metries is to fibrate the C*-algebra of physical observables, and the Hilbert space where
it is represented, with respect to the action of an abelian symmetry group. The proto-
typical example is provided by periodic systems and the usual Bloch-Floquet transform.
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EXAMPLE 4.1.1 (Periodic systems, intro). The electron dynamics in a periodic crystal is
generated by

1
Hper 1= =5 A+ V1 (4.1)

defined on a suitable domain (of essential self-adjointness) in the “physical” Hilbert
space Hppy 1= L?(R%, d%). The periodicity of the crystal is described by the lattice

d

[:={yeR? :7:an7j, n; € 2} ~ 7°
j=1

where {v,...,74} is a linear basis of RZ. The potential Vt is I'-periodic, i.e. Vi( - — ) =
Vr( - ) for all ¥ € T. The Z%symmetry is implemented by the translation operators
{Th, ..., T4}, (T39)(x) := ¢(x — ;). One defines the Bloch-Floquet transformE] (Kuchment
1993), initially for v € S(R?) (Schwartz space), by posing

(UgrV) (K, 0) := Ze—iV'k(@?f¢)(9), (k,0) € R? x RY, 4.2)
vyel

where v =) ;n;7;- Definition (4.2) extends to a unitary operator
o
Unp < Hyny — / H(k) dk (4.3)
B

where d’k := dk/(2r)¢, B ~ T is the fundamental cell of the dual lattice I'* or Brillouin
zone and
H(k) = {p € LE (R, d%) : (0 +7) = e*p(0) VyeT}.

In this representation, the Fermi projector P, = E(_ ,)(Hper) is a decomposable oper-
ator, in the sense that Ugp P, Upp~! = flée P(k)dk. Thus, under the assumption that
lies in a spectral gap, the Fermi projector defines (canonically) a complex vector bundle
over B, whose fiber at k € B is ImP(k) C H(k) (called Bloch bundle in (Panati 2007)).
Some geometric properties of this vector bundle are physically measurable: for example,
for d = 2, the Chern number corresponds to the transverse conductance (measured in
suitable units). As far as the time-reversal symmetric Hamiltonian is concerned,
such Chern number is zero; however, the generalization of this procedure to the case of
magnetic translations is relevant in the understanding of the QHE. <>

This chapter addresses the following questions:

(Q-I) to which extent is it possible to generalize the Bloch-Floquet transform? how gen-
eral is the decomposition procedure outlined above?

(Q-II) how does the topology (geometry) of the decomposition emerge? is there an explicit
procedure to construct such geometric structure?

We point on the fact that the Bloch-Floquet transform Ugr defined by equation differs from its
modified version Z (sometime called Zack transform) defined in Section by equation (3.11). The com-
parison between Ugr and Z is discussed in (Panati 2007).
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(Q-IIT) to which extent is this topological information unique? More precisely, does it de-
pend on the Hilbert space representation of the algebra of observables?

As for question (Q-III), we observe that the datum of a C*-algebra and a symme-
try group does not characterize the topological information. For instance the Hofstadter
and Harper representation of the NCT-algebra, although isomorphic (Section[2.3) are not
unitarily equivalent (Section [2.6). Both representations can be fibered with respect to a
Z2-symmetry, but the corresponding Chern numbers are different (Section . This ob-
servation leads naturally to investigate the last question above, which can be rephrased
as: under which conditions two isomorphic representations of a C*-algebra induce the
same topological invariants? The long-term goal is to understand how and under which
conditions the symmetries of a physical system are related to observable effects whose
origin is geometric (e.g. topological quantum numbers).

Our stage is a general framework: H is a separable Hilbert space which corresponds
to the physical states; 2 C #(H) is a C*-algebra of bounded operators on H which
contains the relevant physical models (the self-adjoint elements of 2 can be thought of
as Hamiltonians); the commutant 2l (the set of all the elements in Z(H) which commute
with 20) can be thought of as the set of all the physical symmetries with respect to the
physics described by 2(; any commutative unital C*-algebra & C 2’ describes a set of
simultaneously implementable physical symmetries.

DEFINITION 4.1.2 (Physical frame). A physical frame is a triple {H,2, S} where H is
a separable Hilbert space, A C ZA(H) is a C*-algebra and & C A’ is a commutative
unital C*-algebra. The physical frame {H,2, S} is called irreducible if & is maximal
commutative (c.f Appendix [B.I). Two physical frames {H1,2%1,61} and {Ha, s, So}
are said (unitarily) equivalent if there exists a unitary map U : H1 — Ho such that
Ay = UQllUfl and Gy = UGlUfl.

We focus on triples {H, 2, &} whose C*-algebra G describes symmetries with an in-
trinsic group structure. In these cases & is related to a representation of the group in H,
as stated in the following definition.

DEFINITION 4.1.3 (G-algebra). Let G be a topological group and G > g — U, € % (H) a
strongly continuous unitary representation of G in the group % (H) of the unitary opera-
tors on 'H. The representation is faithful if U, = 1 implies g = e (e is the identity of the
group) and is algebraically compatible if the operators {U, : g € G} are linearly indepen-
dent in #(H). Let &(G) be the unital C*-algebra generated algebraically by {U, : g € G}
and closed with respect to the operator norm of %(H). When the representation of G is
faithful and algebraically compatible we say that S(G) is a G-algebra in H.

Questions analogous to (Q-I) have been often investigated in the literature, the von
Neumann’s and Maurin’s theorems being the cornerstones in the field (see the short
review in Sections and [4.4). Topological questions analogous to (Q-II) have been par-
tially investigated in (Godement 1951). Our goal is however slightly different: we aim to
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obtain an explicit description of the decomposition and a computable recipe to describe
the induced geometry. The price to pay is, of course, to assume stronger hypotheses than
the mentioned theorems.

Our explicit answer to question (Q-I) consist of a generalization of the Bloch-Floquet
transform, see Section with a completely satisfactory answer under the (admittedly
strong) hypothesis that & is a Z%algebra satisfying the wandering property (Theorem
[4.6.4). Questions (Q-II) and (Q-III), which are (partially) new with respect to the clas-
sical literature, are addressed in Section |4.7, in particular by Theorem Loosely
speaking, the answer is that a physical frame, with & a Z%-algebra satisfying the wan-
dering property, induces canonically a geometric structure (Hilbert bundle), and that
equivalent physical frames induce isomorphic Hilbert bundles. Notice that it is crucial
that the unitary equivalence intertwines the symmetry algebras.

The previous questions are not purely academic. The technique we develop in this
work is the key to prove a geometric duality between the Harper and the Hofstadter
models (Theorem [2.8.1), which allows a rigorous proof of the celebrated TKNN formula

(Corollary [2.8.2).

4.2 Some guiding examples

A simple prototypical example: symmetries induced by a finite group

t is well known that every finite commutative group is isomorphic to a product group

F =7y, X ... xZpy, where Z,. :={[0],...,[p; — 1]} is the cyclic group of order p; € N.
For every t = (t1,...,ty) € F, with ' := J[/L,{0,...,p; — 1}, let g == ([ta], ..., [tn])
be any element in IF. The set of indices IF coincides with the dual group of IF. The
order of the group is equal to the order of its dual, |F| = \IAF| =pi...pn. LetU : F —
% (H) be a faithful and algebraically compatible unitary representation on a separable
Hilbert space H. In particular Uy := Uy o,..[0)) - --»U~N = Uo,[0),..,n])) 18 @ minimal
family of generators for the IF-algebra G(IF). Using a multiindex notation we can write
Uy, = U ... U]tVN =: U! for all g; € . The condition U]’?j = 1 implies that if U; has an
eigenvalue then it should be a root of the unity of order p;, i.e. a suitable integer power
of z; := expi(27/p;). Some relevant questions arise in a natural way: is it possible to
compute algorithmically the eigenvalues and the eigenspaces of the generators U;? Is it
possible to diagonalize simultaneously the C*-algebra G(IF) and to compute its Gel'fand
spectrum (the set of the simultaneous eigenvalues)? The answers to these questions are
implicit in the following formula:

;27T i2m
t = |]F| Z —itn Ugn = DN Z(e_zpltl)nl . (e NtN)nN Ulnl U;\L[N (44)

gnEJF nelF
Forallt € I equation (4.4) defines an orthogonal projection; indeed it is immediate to

check that: (i) PJr =P (the adjoint produces a permutation of the indices in the sum);
(ii)) PPy = ;¢ P; (since 20<n<p7-—1 zitimi = = pj d¢;,0); (iii) from the property of algebralc
compatibility it follows that P, # 0 for all ¢t € F; (iv) g =P =10 U;P, = 2 t P
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forall j = 1,...,N. We will refer to P; as the ¢t-th Bloch-Floquet projection. The family
of the projections {F;}, i Induces an orthogonal decomposition of the Hilbert space H
labeled by the set IF. Let H(t) := Im(P,), then the map

Us
" =5 P (4.5)
tel?
defined by (Usm)p)(t) := Pip =: ¢(t) is called (discrete) Bloch-Floquet transform. The

transform Ugp is unitary since |¢||7, = >, 5 | Pioll7,. Every Hilbert space H(t) is
a space of simultaneous eigenvectors for the C*-algebra G(IF), and the corresponding
eigenvalues are generated as functions of z?, - J?}’. In particular the Gel'fand spec-
trum of G(IF') (which coincides with the joint spectrum of the generating family Uy, ..., Uy)
is (homeomorphic to) the dual group F. Finally thg transform Ug ) maps the Hilbert
space H into a “fibered” space over the discrete set I'. The Hilbert structure is obtained
“gluing” the fiber spaces H(¢) by the counting measure defined on IF (direct integral, Ap-
pendix . The canonical projection P, ¢ H(?) Z, I endows the fibered space with the
structure of vector bundle (with 0-dimensional base). <>

Two examples of physical frame

n the rest of this work we will generalize the previous decomposition to cases in which

the C*-algebra of the symmetries is more complicated than the one generated by a fi-
nite group. However, this simple example encodes already many relevant aspects which
appear in the general cases.

EXAMPLE 4.2.1 (Periodic systems, part one). Let H,.. be the operator defined by .
The Gel’fand-Naimark Theorem (c.f. Appendix shows that there exists a isomor-
phism between the commutative C*-algebra Cy(o(Hper)) and a commutative non-unital
C*-algebra 2 (Hper) of bounded operators in . The elements of 2y(Hper) are the opera-
tors f(Hper) € #(H), for f € Co(o(Hper)), obtained via the spectral theorem. Let 2A(Hper)
be the multiplier algebra of Ay(Hper) in #(H). This is a unital commutative C*-algebra
which contains 2 (Hper) (as an essential ideal), its Gel’fand spectrum is the (Stone-Cech)
compactification of o(Hper) and the Gel’fand isomorphism maps 2(Hper) into the unital
C*-algebra of the continuous and bounded functions on o(Hyer) denoted by Cy (o (Hper))
(c.f. Section for details). We assume that 2A(Hper) is the C*-algebra of physical mod-
els.

Let {T1,...,Ty} be the translation operators corresponding to {vi,...,74}, defined in
Example Since [T}; T;] = 0 for any 4, j, it follows that the unital C*-algebra Gr
generated by the translations, their adjoints and the identity operator is commutative.
Moreover, since [Hper; 7] = 0 it follows that &7 C 2A(Hper)'. Then the translations Sr
are simultaneously implementable physical symmetries for the physics described by the
Hamiltonian (4.1). Thus {Hny, A(Hper), S} is a physical frame. It is a convenient model
to study the properties of an electron in a periodic medium. <>
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EXAMPLE 4.2.2 (Mathieu-like Hamiltonians, part one). Let T := R/(27x7Z) be the one-
dimensional torus. In the Hilbert space Hy; := L?(T, ds) consider the Fourier orthonor-
mal basis {e, },cz defined by e,(s) := (27r)_%em5. Let v and v be the unitary operators
defined, for any g € Hy, by

(ug)(s) := g(s + 2m0), (vg)(s) := e g(s), uv = e py, (4.6)

with # € R the deformation parameter. The commutation relation in shows that
the unitaries v and v define a representation (called Mathieu representation) of the the
NCT-algebra 2y on the Hilbert space Hy (c.f. Section . We denote with Qlf\,[ = v (Ap)
the unital C*-subalgebra of #(Hy) generated by u := my(u) and v := my(v). With an
innocent abuse of nomenclature, we refer to QlaM as the Mathieu C*-algebra and we call
Mathieu-like operator any element in Qllg\,[. This name is due to the fact that the universal
Hofstadter operator hy € 2y defined by equation is mapped by my in the almost-
Mathieu operator

(hb9)(s) := g(s — 2m0) + g(s + 270) + 2 cos(s)g(s). 4.7

The action of © and v on the elements of the Fourier basis is given explicitly by ue, =
e?™n¢, and ve, = e,y for all n € Z and a simple computation shows that equation
coincides with equation (with 3 = 0) up to a Fourier transform. The Mathieu
representation my; is faithful only when 6 ¢ Q.

We focus now on the commutant Q[IBVII . Let h € #(Hwm) be a bounded operator such
that [h;u] = 0 = [h;v] and let he, = >, c7 Pnm €m, hnm € C, be the action of h on the
basis vectors. The relation [h;v] = 0 implies hy41,m+1 = hnm and the relation [h;u] = 0
implies e2"("=™)0, . = h,, ., for all n,m € Z. If § ¢ Q then e??"("~™)8 -£ 1 unless n = m,
hence h,,,, = 0if n # m and the condition A, ,41 = hy, implies that b = o1 with
ap € C. This shows that in the irrational case § ¢ Q the commutant of the Mathieu
C*-algebra is trivial.

To have a non trivial commutant we need to assume that 0 := r/q with p, ¢ non zero
integers such that ged(q, p) = 1. In this case the condition h € Qli{f/ implies that h,, ,, # 0
if and only if m—n = kq for some k € Z, moreover h,, ,,1rq = ho kg =: h) foralln € Z. Let w
be the unitary operator defined on the orthonormal basis by we,, := e,4, namely w = v9.
The relations for the commutant imply that h € Qlif/lq, if and only if b = 3, A} w”.
Then in the rational case the commutant of the Mathieu C*-algebra is the von Neumann
algebra generated in #(Hy;) as the strong closure of the family of finite polynomials in w.
We denote by Gf\,[ := C*(w) the unital commutative C*-algebra generated by w. Observe
that it does not depend on p. The triple {Hy, Q(;{[p, G4} is an example of physical frame.
4>

4.3 The complete spectral theorem by von Neumann

he complete spectral theorem is a useful generalization of the usual spectral decom-
position of a normal operator on a Hilbert space. It shows that symmetries reduce
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the description of the full algebra 2 to a family of simpler representations. The main tool
used in the theorem is the notion of the direct integral of Hilbert spaces (c.f. Appendix
[B.3). The “spectral” content of the theorem amounts to the characterization of the base
space for the decomposition (the “set of labels”) and of the measure which glues together
the spaces so that the Hilbert space structure is preserved. These information emerges
essentially from the Gel’fand theory (c.f. Appendix[B.2). The definitions of decomposable
and continuously diagonal operator are reviewed in Appendix

THEOREM 4.3.1 (von Neumann’s complete spectral theorem). Let {H,A, S} be a phys-
ical frame and y the basic measure carried by the spectrum X of & (c.f Appendix [B.2).
Then there exist

a) a direct integral $) := f)? H(z) du(z) with H(z) # {0} for all x € X,
b) a unitary map Fs : H — $, called G-Fourier transfornﬂ
such that:

(i) the unitary map Fes intertwines the Gel’fand isomorphism C(X) > f Wz, Ay e 6
and the canonical isomorphism of C(X) onto the continuously diagonal operators
C(9), i.e. the following diagram commutes

feld(X)

ST T

63 Ay M;(-) € C(9)

Fs...Fs -1

(i) the unitary conjugation Fg. .. ]-'él maps the elements of A in decomposable opera-
tors on $); more precisely there is a measurable family x — 7, of representations of
A on H(x) such that Fe A Fs~ ' = [ () du(z);

(iii) the representations m, are irreducible if and only if the physical frame {H,2, S} is
irreducible.

REMARK 4.3.2. For a complete proof of the above theorem one can see (Maurin 1968,
Theorem 25, Chapter I and Theorem 2, Chapter V) or (Dixmier 1981, Theorem 1, Part
II Chapter 6). For our purposes it is interesting to recall how the fiber Hilbert spaces
H(x) are constructed. For ¢, ¢ € H let iy , = hy,, 11 the relation which links the spectral
measure /i, , With the basic measure . For p-almost every x € X the value of the
Radon-Nikodym derivative h,, , in = defines a semi-definite sesquilinear form on %, i.e.
(Y;0)z == hyp(x). Let Z, := {p € H : hyy(x) = 0}. Then the quotient space H/Z,
is a pre-Hilbert space and H'(z) is defined to be the its completion. By construction
H'(x) # {0} for p-almost every x € X. Let N C X be the u- negligible set on which H'(z)
is trivial or not well defined. Then § := [ H(z) du(z) with H(z) := H'(z) if z € X \ N
and H(z) := H if x € N where H is an arbitrary non trivial Hilbert space. L 24,

2 According to the terminology used in (Maurin 1968).
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The previous theorem provides only a partial answer to our motivating questions.
Firstly, it provides only a partial answer to question (Q-I), since no explicit and com-
putable “recipe” to construct the fiber Hilbert spaces is given. More importantly, Theo-
rem [4.3.1| concerns a measure-theoretic decomposition of the Hilbert space, but it does
not select a topological structure, yielding no answer to question (Q-II). In more geomet-
ric terms, the elements of [ ? H(z) du(r) can be regarded as L2-sections of a fibration
over X, while the topological structure is encoded by the (still not defined) space of con-
tinuous sections. We will show in Section that the Bloch-Floquet transform provides
a natural choice of a subspace of [ )? H(z) du(x) which can be interpreted as the subspace
of continuous sections, thus yielding a topological structure.

Given the triple {H,2, &}, the direct integral decomposition invoked in the state-
ment of Theorem is essentially unique in measure-theoretic sense. The space X
is unique up to homeomorphism: it agrees with the spectrum of C($)) in such a way
that the canonical isomorphism of C'(X) onto C(£)) may be identified with the Gel'fand
isomorphism. As for the uniqueness of the direct integral decomposition, the following
result holds true (Dixmier 1981, Theorem 3, Part II Chapter 6).

THEOREM 4.3.3 (Uniqueness). With the notation of Theorem let v be a positive
measure with support X, []..x K(z) a field of non-zero Hilbert spaces over X endowed
with a measurable structure, R = f)? K(z) dv(z), C(R) the commutative unital C*-
algebra of continuously diagonal operators on £ and C(X) — C(R) the canonical isomor-
phism. Let W be a unitary map from H onto R transforming Ay € & into M}() € C(R)
forall f € C(X), i.e. such that the first diagram commutes.

. M) e ) f/f?
s--Fo s /|

&> Af/ 7 \f € C(X) H iW(~)
w.wt / %5{%

Then, 1 and v are equivalent measures (so one can assume that u = v up to a rescaling
isomorphism). Moreover there exists a decomposable unitary W (-) from $) onto & such
that W (z) : H(z) — K(x) is a unitary operator p-almost everywhere and YW = W (-) o Fg,
i.e. the second diagram commutes.

COROLLARY 4.3.4 (Unitary equivalent triples). Let {H1,21, S} and {Ha, U2, S2} be two
equivalent physical frames and U the unitary map which intertwines between them. Let
91 and $2 denote the direct integral decomposition of the two triples and let Fs, and Fg,
be the two G-Fourier transforms. Then W (-) := Fe,oU o Fg, ! is a decomposable unitary
operator from $1 to 2, so that W (x) : Hi(x) — Ha(z) is a unitary map for p-almost every
x e X.
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4.4 The nuclear spectral theorem by Maurin

he complete spectral theorem by von Neumann shows that any physical frame

{H,A, S} admits a representation in which the Hilbert space is decomposed (in
a measure-theoretically unique way) in a direct integral Fg : H — [ )6? H(z) du(x), the
elements of G are simultaneously diagonalized and the C*-algebra 2( is decomposed on
the fibers. In this sense the map Fg|, restricted to the point z € X generalizes the
role of the projection (4.4). The contribution of Maurin is a characterization of the fiber
spaces H(xz) as common generalized eigenspaces for &.

A key ingredient of the Maurin’s theorem is the notion of (nuclear) Gel’fand triple.
The latter is a triple {®, H, ®*} with H a separable Hilbert space, ® C H a norm-dense
subspace such that ® has a topology for which it is a nuclear space and the inclusion map
1 : P—H is continuous, and ®* is the topological dual of ®. Identifying H with its dual
space H*, one gets an antilinear injection +* : H—®*. The duality pairing between ® and
®* is compatible with the scalar product on H, namely (¢*(¢1),¢2) = (¥1,12)x Whenever
1 € H and ¢y € . Hereafter we write (i1, 12) for (¢*(¢1),19). If A is a bounded operator
on H such that Af leaves invariant ® and Af : ® — & is continuous with respect to the
nuclear topology of ®, one defines A : & — ®* by posing <A n; @) = (n; At o) for all
n € ® and ¢ € ®. Then A is continuous and is an extension of A, defined on H, to ®*.
References about the theory of Gel'fand triples can be found in (de la Madrid 2005).

Assume the notation of Theorem[4.3.1] Let {{i(-) : k € N} be a fundamental family of
orthonormal measurable vector fields (see Appendix [B.3) for the direct integral §) defined
by the &-Fourier transform Fs. Any square integrable vector field ¢(-) can be written
in a unique way as ¢(-) = Yoy Pk(*) & () where &y, € L?(X, dp) for all k € N. Equipped
with this notation, the scalar product in $ reads

For any ¢ € H let ¢(-) := Fsp be the square integrable vector field obtained from ¢ by
the &-Fourier transform. Denote with A; € & the operator associated with f € C(X)
through the Gel'fand isomorphism. One checks that

(FaAre)y (@) = (@(@); f@)p(@), = f(@) Grla)  k=12,....dmH(2).  (48)

Suppose that {®,H,d*} is a Gel'fand triple for the space H. If ¢ € ® then the map
Q> ¢ — gp(x) == (§(x); p(x)), € Cis linear; moreover it is possible to show that it is
continuous with respect to the nuclear topology of ®, for an appropriate choice of ®. This
means that there exists 7, (z) € ®* such that

(e (2); ) = Pr(@) = (Gr(2)ip(@), k=1,2,... dim H(z). (4.9)

Suppose that Ay : & — @ is continuous with respect to the nuclear topology for every
f € C(X). Then from equations (4.8) and (4.9) one has that the extended operator
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flf : ®* — &* namely <flf ;) == (n; A? o) for all n € ®* and ¢ € P, satisfies

(Ap mi(2); ) = (m(2); A7 @) = () Gi() = (f(@)m(a);)  k=1,2,...,dim H(x)
(4.10)
for all ¢ € ®. Hence,
Ap np(z) = f(z) me(z)  in @*.

In this sense 7, () is a generalized eigenvector for Ay. These claims are made precise in
the following statement.

THEOREM 4.4.1 (Maurin’s nuclear spectral theorem). With the notation and the as-
sumptions of Theorem let {®,H,®*} be a nuclear Gel’fand triple for the space H
such that ® is G-invariant, i.e. each A € G is a continuous linear map A : ® — ®. Then:

(i) for all x € X the &-Fourier transform Fg|, : ® — H(x) such that ® > ¢ — ¢(z) €
H(z) is continuous with respect to the nuclear topology for p-almost every x € X;

(ii) there is a family of linear functionals {np(z) : k = 1,2,...,dim H(x)} C ®* such
that equations (4.9) and (4.10) hold true for u-almost all x € X;

(iii) with the identification n(x) < &i(x) the Hilbert space H(x) is (isomorphic to) a
vector subspace of ®*; with this identification the Fgs-Fourier transform is defined
on the dense set ® by

dim H(x)
f
3¢k 3 ((a)ie) mla) € @ (4.11)
k=1

and the scalar product in H(x) is formally defined by posing (ni(x);1;(x))z = Ok j;

(iv) under the identification in (iii) the spaces H(x) become the generalized common
eigenspaces of the operators in G in the sense that if Ay € & then Af ne(x) =
f(x) ni(z) for u-almost every x € X and all k =1,2,...,dim H(x).

For a proof we refer to (Maurin 1968, Chapter II). The identification at point (iii) of
the Theorem depends on the choice of a fundamental family of orthonormal mea-
surable vector fields {{;(-) : k € N} for the direct integral $), which is clearly not unique.
If{¢x(-) : k € N}isasecond fundamental family of orthonormal measurable vector fields
for 9, then there exists a decomposable unitary map W (-) such that W (z)&(x) = (i (x)
for y-almost every z € X and every k € N. The composition U := Fs~! o W(.) o Fg is
a unitary isomorphism of the Hilbert space { which induces a linear isomorphism be-
tween the Gel'fand triples {®,H, ®*} and {V, H, U*} where ¥ := U®. One checks that ¥
is a nuclear space in H with respect to the topology induced from ® by the map U (i.e.
defined by the family of seminorms p/, := p, o U~!). U*, the topological dual of V¥, is Ud*,
in view of the continuity of U=! : ¥ — &. The isomorphism of the Gel’fand triples is
compatible with the direct integral decomposition. Indeed if ¥4 (x) < (i (z) is the identi-
fication between the new orthonormal basis {(;(z) : £k =1,2,...,dim H(z)} of H(z) and
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a family of linear functionals {V;(z) : k= 1,2,...,dim H(z)} C ¥* then equation (4.9)
implies that for any ¢ € ¥

(W) ) = (Ge(2); (7)), = (&(@); W () (@), = (m(2);: U ) = (U mi(z); 0).
(4.12)

PROPOSITION 4.4.2. Up to a canonical identification of isomorphic Gel’fand triples the
realization of the fiber spaces H(x) as generalized common eigenspaces is canonical
in the sense that it does not depend on the choice of a fundamental family of orthonormal
measurable fields.

From Proposition and Corollary and it follows that:

COROLLARY 4.4.3. Up to a canonical identification of isomorphic Gel’fand triples the
realization (4.11) of the fiber spaces H(x) as generalized common eigenspaces is preserved
by a unitary transform of the triple {H,, S}.

Theorem [4.4.1| assumes the existence of a G-invariant nuclear space and the related
Gel’fand triple. If G is generated by a countable family, such nuclear space does exist
and there is an algorithmic procedure to construct it (Maurin 1968, Chapter II, Theorem
6).

THEOREM 4.4.4 (Existence of the nuclear space). Let {A;, A, ...} a countable family of
commuting bounded normal operators on the separable Hilbert space H which generate
(together with their adjoints and the identity) the commutative C*-algebra S. Then there
exists a countable S-cyclic system {in,1s,...} which generates a nuclear space ® C H
such that: a) ® is dense in H; b) the embedding 1+ : ® — H is continuous; c) the maps
AT : @ — © are continuous for all j,m € N.

REMARK 4.4.5. We recall that a countable (or finite) family {v, 12, ...} of orthonormal
vectors in H is a S-cyclic system for S if the set {ATbA‘%k : k€N, a,bec Ng }is dense
in ‘H, where Ng° is the space of N—valued sequences which are definitely zero (i.e. a, =0
for any n € N\ I with |I| < +00) and A® := AT A5 ... A} for some integer N.

Any C*-algebra & (not necessarily commutative) has many G-cyclic systems. Indeed
one can start from any normalized vector y; € H to build the closed subspace H; spanned
by the action of & on ;. If H; # H one can choose a second normalized vector )5 in the
orthogonal complement of H; to build the closed subspace Hs. Since H is separable, this
procedure produces a countable (or finite) family {1, 19, ...} suchthat H = Hi®H2D. . ..
Obviously this construction is not unique. The nuclear space ® claimed in Theorem 4.4.4
depends on the choice of a G-cyclic system and generically many inequivalent choices are
possible. 0

4.5 The wandering property

Q n interesting and generally unsolved problem is the construction of the invariant
subspaces of an operator or of a family of operators. Let & be a C*-algebra contained
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in B(H). If y» € H then the subspace G[¢)] generated by the action of S on the vector 1) is
an invariant subspace for the C*-algebra. The existence of a particular decomposition of
the Hilbert space in invariant subspaces depends on the nature of the C*-algebra. The
problem is reasonably simple to solve for the C*-algebras which satisfy the wandering
property.

DEFINITION 4.5.1 (wandering property). Let & be a commutative unital C*-algebra
generated by the countable family {A,, As, ...} of commuting bounded normal operators
and their adjoints (with the convention A? := 1) in a separable Hilbert space H. We
will say that G has the wandering property if there exists a (at most) countable family
{1,19,...} C H of orthonormal vectors which is S-cyclic (according to Remark
and such that

b
(r; AT A% )1y = | A%k |3, Orn Oap YV h k€N, Va,be N, (4.13)

where A® := A*AS? .. AR, i is the usual Kronecker delta and 0,y is the Kronecker
delta for the multiindices a and b.

Let Hy := &[¢x] be the Hilbert subspace generated by the action of S on the vector
Y. If & has the wandering property then the Hilbert space decomposes as H = @,y Hx
and each H; is a G-invariant subspace. We will refer to H; as a wandering subspace
and to {¢1,19, ...} as the wandering system. In these subspaces each operator A; acts as
a unilateral weighted shift and this justifies the use of the adjective “wandering” (Nagy
and Foias 1970, Chapter 1, Sections 1 and 2). The wandering property implies many
interesting consequences.

PROPOSITION 4.5.2. Let & be a commutative unital C*-algebra generated by the (at
most) countable family {A;, As, ...} of commuting bounded normal operators and their
adjoints in a separable Hilbert space H. Suppose that S has the wandering property with
respect to the family of vectors {i1,1», ...}, then:

(i) the generators can not be selfadjoint, and A # 1 for every n € N\ {0};
(i) every generator which is unitary has no eigenvectors;
(iii) if & is generated by N unitary operators then & is a Z"-algebra.

Proof. To prove (i) observe that the condition A; = A} implies that A1, = 0 for all v,
in the system and the &-cyclicity imposes A; = 0. As for the second claim, by setting
b=0and h = k in equation one sees that A% = 1 implies a = 0.

To prove (ii) observe that if {U, A;, As,...} is a set of commuting generators for &
with U unitary, then each vector ¢ € H can be written as ¢ = > ., U"x, where
Xn = D _keN,aczN Oka A%y, Clearly Up = 37 ., U"xn-1 and equation implies
that [|o[|3, = > .cz lxnll?- If Up = Ap, with A € $!, then a comparison between the
components provides x,_1 = Axn, 1.e. xn = A "xg for all n € Z. This contradicts the
convergence of the series expressing the norm of .
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To prove (iii) observe that the map Z" 3 a := (a1, ...,an) —» Ut = U ... UN € % (H)
is a unitary representation of Z" on H which is also (strongly) continuous since Z"
is discrete. To show that the representation is algebraically compatible, suppose that
Y aczn aqU® = 0; then from equation (4.13) it follows that 0 = (UbYy; Y oaczn aU%p)y =
ay, for all b € ZV | and this concludes the proof. |

Proposition|4.5.2|shows that the wandering property forces a commutative C*-algebra
generated by a finite number of unitary operators to be a ZV-algebra. This is exactly
what happens in the cases in which we are mostly interested

EXAMPLE 4.5.3 (Periodic systems, part two). The commutative unital C*-algebra G
defined in Example is generated by a unitary faithful representation of Z¢ on Hohy>
given by Z% > m — T™ € % (Hyny) where m := (mq,...,my) and T™ = T7" ... T
The C*-algebra &1 has the wandering property. Indeed let Qy := {z = Z?Zl 5

—12 < z; < 12, j =1,...,d} the fundamental unit cell of the lattice I' and Q,, :=
Qo + m its translated by the lattice vector m := Z?Zl m;v;. Let {¢r}ren C L2(R?) be a
family of functions with support in Q; providing an orthonormal basis of L?(Qy) up to the
natural inclusion L?(Qy) < Hphy. This system is Sp-cyclic since Hyhy = 6D,,c74 L*(9Om)-
Moreover, it is wandering under the action of & since the intersection QyN Q,, has zero
measure for every m # 0. The cardinality of the wandering system is X,. Proposition
assures that 7 is a Z%-algebra. Moreover, as a consequence of Proposition [4.5.7]
below, the Gel'fand spectrum of G is homeomorphic to the d-dimensional torus T and
the normalized basic measure is the Haar measure dz on T<. <>

EXAMPLE 4.5.4 (Mathieu-like Hamiltonians, part two). The unital commutative C*-
algebra &{; C #(Hy) defined in Example is generated by a unitary faithful repre-
sentation of the group Z on the Hilbert space Hy. Indeed, the map Z > k +— w* € % (Hy)
is an injective group homomorphism. The set of vectors {ey,...,e,—1} C Hy shows that
the C*-algebra &}, has the wandering property. In this case the cardinality of the wan-
dering system is ¢. Proposition assures that &}, is a Z-algebra. Moreover, Propo-
sition below will show that the Gel’fand spectrum of &§; is homeomorphic to the
1-dimensional torus T and the normalized basic measure on the spectrum coincide with
the Haar measure dz on T. The first claim agrees with the fact that the Gel’fand spec-
trum of &} coincides with the (Hilbert space) spectrum of w, the generator of the C*-
algebra, and o(w) = T. The claim about the basic measure agrees with the fact that
the vector ¢ is cyclic for the commutant of G; (which is the von Neumann algebra gen-
erated by 91;{["). Indeed, a general result (c.f. Appendix assures that the spectral
measure /ic, ., provides the basic measure. To determine i, ., let F(w) := >, apwk
be any element of G};. From the definition of spectral measure it follows

2r
F(2) dpieg o (2) = 3 ok / e dfi oo (D). (4.14)
kez 0

0 = (eoi Fw)eo) = |

T

where the measure [ic, ., is related to yi, ., by the change of variables 2(¢) := e (c.f.
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Convention [2.7.1). Equation (4.14) implies that /i, ., agrees with d¢/2x on C(T'), namely
the basic measure /i, ¢, is the normalized Haar measure. <>

It is easy to provide examples of commutative unital C*-algebras which have the
wandering property but which are generated by a family of non unitary or non invertible
operators.

EXAMPLE 4.5.5. With the notation of Example let w be the operator defined on the
Fourier basis {e, }nez of Hy by W e, = wyy,) x4 Wwhere [n] means n modulo ¢ and wy,) € C.
The operator w is a bilateral weighted shift completely characterized by the fundamental

weights wo, ..., w,—1. The adjoint of w is defined by @' e,, = Wip—gq) €n—q = Wiy €n—q and
an easy computation shows that w is normal, indeed w'w e, = ww' e, = |w[n]|2en. If
lw;)| # 1 for some j = 0,...,qg — 1 then w is not unitary. However, the commutative

unital C*-algebra @51‘{4 generated by w has the wandering property with respect to the
finite system of vectors {eg,...,e4—1}. <>

EXAMPLE 4.5.6. Let Hoy := Hy © Hu, eg) =e, ® 0and 6512) =0 @ e, where
{en}nez is the Fourier basis of Hy; according to the notations of Example[4.2.2] Obviously
{eg), e,(f)}nez is a basis for HI(VIQ). The operators w® := w @ 0 and w? := 0 ® w are not
invertible, are normal and commute. Let &3, be the commutative C*-algebra generated

by w®), w®?), It is immediate to check that G4y has the wandering property with respect

to the finite system of vectors {67(11), 67(7,2)}71:07.__7(1_1. <>

In the relevant cases of commutative unital C*-algebras generated by a finite set
of unitary operators the wandering property provides a useful characterization of the
Gel'fand spectrum and the basic measure. We firstly introduce some notation and termi-
nology. Let G be a discrete group and ¢!(G) be the set of sequences ¢ = {c,},c¢ such that
lleller = 32 eq legl < +o0. Equipped with the convolution product (c * d)g := 37 chdg—n
and involution ¢/ := {¢_,},cc , /' (G) becomes a unital Banach *-algebra called the group
algebra G. The latter is not a C*-algebra since the norm || - |[,» does not verify the C*-
condition |[c x ¢*||;» = ||c|Z . In general there exist several inequivalent ways to complete
/}(G) to a C*-algebra by introducing suitable C*-norms. Two of these C*-extensions are
of particular interest. The first is obtained as the completion of /! (G) with respect to the
universal enveloping norm

lcllu := sup{||7(c)||l5x : m:£(G) — B(H) is a * —representation}.

The resulting abstract C*-algebra, denoted by C*(G), is called the group C*-algebra of
G (or enveloping C*-algebra).

The second relevant extension is obtained by means of the concrete representation of
the elements ¢!(G) as (convolution) multiplicative operators on the Hilbert space ¢(G).
In other words, for any ¢ = {{;},cc € ¢*(G) and ¢ = {¢;}sec € ¢*(G) one defines the
representation 7, : £}(G) — Z({%(G)) as

7['7"(6)5 =cx§ = {E Ch&g—h} .
geG

heG
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The representation 7., known as left regular representation, is injective. The norm
lellr := llmr(¢) || #(e2(c)) defines a new C*-norm on ¢'(G), called reduced norm, and a new
C*-extension denoted by C(G) and called reduced group C*-algebra. Since || - ||, < || - ||l
it follows that C’(G) is *-isomorphic to a quotient C*-algebra of C*(G). Nevertheless,
if the group G is abelian, one has the relevant characterization C}(G) = C*(G) ~ C (@)
where G denotes the dual (or character) group of G. For more details the reader can

refer to (Dixmier 1982, Chapter 13) or (Davidson 1996, Chapter VII).

PROPOSITION 4.5.7. Let H be a separable Hilbert space and & C A(H) a unital commu-
tative C*-algebra generated by a finite family {Uy,...,Un} of unitary operators. Assume
the wandering property. Then:

(i) the Gel’fand spectrum of & is homeomorphic to the N-dimensional torus TV;
(i) the basic measure of & is the normalized Haar measure dz on TV,

Proof. We use the short notation U® = Uj* ... Uy" for any a = (a1,...,an) € ZN.

To prove (i) one notices that the map F : ((ZV) — %(H), defined by F(c) :=
> aczn Ca U, is a x-representation of ¢*(Z") into %(H). As in the proof of Proposition
one exploits the wandering property to see that for any ¢ € (1(ZV), 3 c,U% = 0
implies ¢ = 0. Thus F is a faithful representation. Moreover | F'(c)|z) < [[c[|, for all
c € /1(C). Finally, the unital x-algebra £1(Z") := F(¢*(Z")) C %#(H) is dense in & (with
respect to the operator norm), since it does contain the polynomials in Uy, ..., Uy, which
are a dense subset of &.

In view of the fact that Z" is abelian, to prove (i) it is sufficient to show that & ~
C*(ZN). Since ¢! (Z") and £'(Z") are isomorphic Banach x-algebras, and £!(Z") is dense
in &, the latter claims follows if one proves that |c|, = |[F(c)| #@x) for any ¢ € (*(ZV).
Let {4 }ren be the wandering system of vectors for &. The wandering property assures
that the closed subspace &[] =: H; C H is isometrically isomorphic to ¢2(Z"), with
unitary isomorphism given by Hy 3> . v &U% — {&a}aezn € €2(ZY). Then, due
to the mutual orthogonality of the spaces Hj, there exists a unitary map R : H —
@Dy 2(ZY) which extends all the isomorphisms above. A simple computation shows
that RF(c)R™ = @,y mr(c) for any ¢ € ¢1(ZV). Since R is isometric, it follows that
IF () z3) = | @ren 7r(0)ll@, o 2 = I7r(c)]l2, which is exactly the definition of the norm
el

To prove (ii) let yu;, := py, 4, be the spectral measure defined by the vector of the
wandering system ;. The Gel'fand isomorphism identifies the generator U; € & with
zj € C(TN). It follows that for every a € Z" one has

2 2
5a,o=(¢k;U“¢k)=/TN 2 dpug(2) ::/0 /0 28N () dik(t),  (4.15)

where the measure Ji, is related to y, by the change of variables z(¢) := e’ (c.f. Con-
vention [2.7.1). Equation (4.15) shows that for any & € N the spectral measure ji;, agrees
with dz(t) := dtr..din/(2m)N.
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Let Af be the element of & whose image via the Gel'fand isomorphism is the function
f € C(TY). Then

(U5 AU = 6, (s A ;U / F(2) 60 22 dz.

So the spectral measure iy, pay, is related to the Haar measure dz by the function
Sk 2°70. Let @ == Yoy aenn ok U be any vector in H. Notice that, in view of the
wandering property, one has a;, € (2(N) ® (2(Z"). Then a direct computation shows
k)
that jig.5(2) = hy(2) dz, where hy o (2) = ¥ [FS (2)]? with B (2 ) 1= Saany Qo
Since F¥) € L2(TV) , one has [F2 € LY(TV). Let hlD(2) = s Fék)(z)\Q. Since
(M+1) (M) (M M
hew' ' 2 hpp > 0and [pyhy ( ) dz = 3320 D genn lakal? < H@HH for all M, one
concludes by the monotone convergence theorem that h, , € L*(TV). |

Not every commutative C*-algebra generated by a faithful unitary representation of
ZN has a wandering system. In this situation, even if the spectrum is still a torus, the
basic measure can be inequivalent to the Haar measure.

EXAMPLE 4.5.8. Let R, the unitary operator on L?(R?) which implements a rotation
around the origin of the angle o, with a ¢ 27Q. Clearly RY = Ry, # 1 for every
integer N, hence the commutative unital C*-algebra R, generated by R, is a unitary
faithful representation of Z. The Gelfand spectrum of 9R,, which coincides with the
spectrum of R,, is T. Indeed, the vector ¥x(p, ) := V¢ f(p) (in polar coordinates) is an
eigenvector corresponding to the eigenvalue e’V®. The spectrum of R, is the closure of
{eNe . N ¢ 7}, which is T in view of the irrationality of . The existence of eigenvectors
excludes the existence of a wandering system (see Proposition[4.5.2). Moreover, since R,
has point spectrum it follows that the basic measure is not the Haar measure. Indeed,
the spectral measure /iy, 4, corresponding to the eigenvector vy is the Dirac measure
concentrated in {e’V} C C. <«

4.6 The generalized Bloch-Floquet transform

he aim of this section is to provide a general algorithm to construct the direct in-

tegral decomposition of a commutative C*-algebra which appears in the von Neu-
mann’s complete spectral theorem. The idea is to generalize the construction of the
Bloch-Floquet projections by a consistent reinterpretation of it. In the spirit of
Maurin’s theorem, Bloch-Floquet projections should be reinterpreted as “projectors on
an appropriate distributional space”. In this approach a relevant roéle will be played by
the wandering property. We consider a commutative unital C*-algebra & on a separable
Hilbert space H generated by the finite family {U;,Us,...,Ux} of unitary operators ad-
mitting a wandering system {¢; }reny C H. According to the results of Section[4.5, S is a
ZN -algebra with Gel'fand spectrum T and with the Haar measure dz as basic measure.
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Construction of the nuclear space

Consider the orthonormal basis {U%y}rcn aeznv, Where {14 }ren is the wandering sys-
tem, and denote by £ C H the family of all finite linear combinations of the vectors
of such basis. For every integer m > 0 denote by H,, the finite dimensional Hilbert
space generated by the finite set of vectors {U%), : 0 < k < m, 0 < |a|] < m}, where
la| :==|ai| + ...+ |an|. Obviously H,, C L. Let denote by D,, the dimension of the space
Hp- I @ =3 penaezy QkaU Yk is any element of H then the formula

Po(®)=Dm > NU%ie)*=Dm > lordl’, (4.16)
0<k<m 0<k<m
0<a| <m 0<al <m

defines a seminorm for every m > 0. From it follows that p,, < p,,1 for all m. The
countable family of seminorms {p;, } ,men provides a locally convex topology for the vector
space L. Let denote by X the pair {£, {pi } men}, i.e. the vector space £ endowed with the
locally convex topology induced by the seminorms (4.16). ¥ is a complete and metrizable
(i.e. Fréchet) space. However, for our purposes, we need a topology on £ which is strictly
stronger than the metrizable topology induced by the seminorms (4.16).

The quotient space ®,, := L/N,,, with N,;, := {¢ € £ : pn(p) = 0}, is isomorphic
to the finite dimensional vector space H.,,, hence it is nuclear and Fréchet. This follows
immediately observing that the norm p,, on ®,, coincides, up to the positive constant
\/D,,,, with the usual Hilbert norm. Obviously ®,, C ®,,,1 for all m > 0 and the topology

of ®,, agrees with the topology inherited from ®,,., indeed pm+1|<1>m = \/Dg—i:l Pm. We
define ® to be |J,,cy 1 (which is £ as a set) endowed with the strict inductive limit
topology which is the stronger topology which makes continuous all the injections ¢,, :
®,, — ®. The space ® is called a LF-space according to the definition in (Treves 1967,
Chapter 13) and it is a nuclear space since it is the strict inductive limit of nuclear
spaces (Treves 1967, Proposition 50.1). We will say that ® is the wandering nuclear
space defined by the Z"-algebra & on the wandering system {¢; }ren.

PROPOSITION 4.6.1. The wandering nuclear space ® defined by the 7" -algebra & on
the wandering system {1 }ren verifies all the properties stated in Theorem

Proof A linear map j : & — ¥, with ¥ an arbitrary locally convex topological vec-
tor space, is continuous if and only if the restriction j|g of j to ®,, is continuous for
each m > 0 (Treves 1967, Proposition 13.1). This implies that the canonical embedding
1 : & — H is continuous, since its restrictions are linear operators defined on finite di-
mensional spaces. The linear maps U¢ : ® — & for all « € NV are also continuous for the
same reason. Finally ® is norm-dense in H since as a set it is the dense domain L. |

The strict inductive limit topology which defines ® is stronger than the topology in-
duced by the seminorms which defines the Fréchet space Y. The space @ is com-
plete but not metrizable since every ®,, is closed in the topology of ®,,.1 (Treves 1967,
Theorem 13.1).
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The transform

We are now in position to define the generalized Bloch-Floquet transform Ug for the C*-
algebra G. The Gel'fand spectrum of G is TV and the Gel'fand isomorphism associates
to the generator U; the function z; € C(TY). For any ¢ € [0,27)" and for any ¢ € ¢ we
define (formally for the moment) the Bloch-Floquet transform of ¢ at point ¢ as

Us e _
5ol Usp)t) = 3 ) U (4.17)
aeZN
where z(t) := '@t NN and U® := Ut...Uy". The structure of equation (4.17)

suggests that (Usy)(t) is a common generalized eigenvector for the elements of G, indeed
a formal computation shows that

UjUsp)(t) = 2(t) D 2 (B2 ()U; Up = e (Usp)(1): (4.18)

acZN

This guess is clarified by the following result.

THEOREM 4.6.2 (Generalized Bloch-Floquet transform). Let & be a Z"-algebra in the
separable Hilbert space H with generators {Uy,...,Un} and wandering system {iy}ren,
and let ® be the corresponding nuclear space. Under these assumptions the generalized
Bloch-Floquet transform defines an injective linear map from the nuclear space
® into its topological dual ®* for every t € [0,27)N. More precisely, the transform Us|,
maps ¢ onto a subspace *(t) C ®* which is a common generalized eigenspace for the
commutative C*-algebra &, i.e. U; (Usp)(t) = ei (Usyp)(t) in ®*. The map Us|, : ® —
®*(t) C ®* is a continuous linear isomorphism, provided ®* is endowed with the x-weak
topology.

Proof. We need to verify that the right-hand side of (4.17) is well defined as a linear

functional on ®. Any vector ¢ € ® is a finite linear comblnatlon Y= Z beN ZEQZN ary U 2T
(the complex numbers oy, are different from zero only for a finite set of the values of the

index k and the multiindex b). Let ¢ = ZheN ZCQNN Bh,c Uy, be another element in ®.

The linearity of the dual pairing between ®* and ® and the compatibility of the pairing

with the Hermitian structure of H imply

fin fin
(Us)();0) =D > Trsbre | D 2*(t) (U P4h; Uthy)ng (4.19)
keN b,cezZN aezZN

where in the right-hand side we used the orthogonality between the spaces generated
by ¥ and ¢y, if k # h. Without further conditions equation (4.19) is a finite sum in k, b, ¢
(this is simply a consequence of the fact that ¢ and ¢ are “test functions”) but it is an
infinite sum in a which generally does not converge. However, in view of the wandering
property one has that (U y; Uy )3 = Sarp.e, SO that reads

fin fin

(Use)(t); ) =D D> Arpbre 2(8)27"(1). (4.20)

keN b, cczZN
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Let Cy = ZEQZN lagp| and Cyp 1= maxgen{Cy.r} (Which is well defined since the set
contains only a finite numbers of non-zero elements). An easy computation shows that

fin fin fin
‘<(Z/{690 Z C k Z ‘ﬂk,c‘ < Ccp Z Z |ﬂk,c| .
keN ceZN keN cezZN

Let m > 0 be the smallest integer such that ¢ € ®,,. The number of the coefficients 3, .
different from zero is smaller than the dimension D,, of ®,,. Using the Cauchy-Schwarz
inequality one has

fin fin 2

{(Ues)(t); 6)| < Cov/Din | YD 1Brel® | = Cp pm(9). (4.21)

keN ceNN

The inequality shows that the linear map (Usy)(t) : & — C is continuous when
it is restricted to each finite dimensional space ®,,. Since ¢ is endowed with the strict
inductive limit topology, this is enough to assure that (Usy)(t) is a continuous linear
functional on ®. So, in view of (£.21)), (Usp)(t) € ®* for all t € [0,27)" and for all ¢ € ®.

The linearity of the map Ug|, : & — ®* is immediate and from equation (4.20) it
follows that (Usp)(t) = 0 (as functional) implies that oy, = 0 for all £ and b, hence
¢ = 0. This prove the injectivity. To prove the continuity of the map Ug|, : ¢ — ®*, in
view of the strict inductive topology on ®, we need only to check the continuity of the
maps Ug|, : , — O* for all m > 0. Since P, is a finite dimensional vector space with
norm p,,, it is sufficient to prove that the norm-convergence of the sequence ¢, — 0 in
®,, implies the x-weak convergence (Ugy,)(t) — 01in ®* ie. [{((Uspn)(t); ¢)| — 0 for all
¢ € ®. As inequality suggests, it is enough to show that C, — 0. This is true
since v, := ok jpj<m a,(:g Ubyy, — 0 in ®,, implies a,(gb) — 0.

Finally, since the map U~% = (U?)" is continuous on ® for all a € Z" then (U ay: oF —
®* defines a continuous map which extends the operator U® originally defined on H. In
this context the equation (4.18) is meaningful and shows that ®*(¢) := Ug|, () C ®*isa
space of common generalized eigenvectors for the elements of G. |

The decomposition

The wandering system {1 }rcn generates under the Bloch-Floquet transform a special
family of elements of ®*, denoted as

CF(t) = Uer) () = Y 27 °(t) U, VEkeN. (4.22)

acZN

The injectivity of the map Z/IG implies that the functionals {¢*(#)}ien are linearly
independent for every t. If ¢ = Z BeN ngZN agy U by is any element in ® then a simple
computation shows that

fin fin

Usp)(t) =Y Y arp Y 27 %(t) Uy = Zh, ¢k (t) (4.23)

keNpezZN aeNN keN
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where [, (t) := Z?gzN akp 2°(t). The equalities in should be interpreted in the
sense of “distributions”, i.e. elements of ®*. The functions f,) : TV — C, for all k €
N, are finite linear combination of continuous functions, hence continuous. Equation
shows that any subspace ®*(¢) is generated by finite linear combinations of the
functionals (4.22). For every ¢t € [0,27)" we denote by K(t) the space of the elements
of the form >, ar ¢¥(t) with {ay}ren € 3(N). This is a Hilbert space with the inner
product induced by the isomorphism with ¢2(N). In other words the inner product is
induced by the “formal” conditions (¢*(t); ¢("(t)); := 6y All the Hilbert spaces K(t) have
the same dimension which is the cardinality of the system { }ren.

PROPOSITION 4.6.3. For all t € [0,2m)" the inclusions ®*(t) C K(t) C ®* holds true.
Moreover the generalized Bloch-Floquet transform Us|, extends to a unitary isomorphism
between the Hilbert space H C H spanned by the orthonormal system {{y}ren and the
Hilbert space K(t) C ®* spanned by the orthonormal frame ¢(t) := {(x(t) }ren-

Proof. The first inclusion ®*(t) C K(t) follows from the definition. For the second
inclusion we need to prove that w(t) = >,y ¢(t) is a continuous functional if
{ag}ken € F2(N). Let ¢ = > 0<h|e|<m Bne Uty be an element of ,,, C @ then, from the
sesquilinearity of the dual pairing and the Cauchy-Schwarz inequality it follows that

2
w(t); ) < (Z |k | \((erk)(t);@!) < llalll Y KUetr) (2); 0)I (4.24)
keN keN
where [|af|% = Y, oy |okl* < co. From equation it is clear that (Usyr)(t); ) =
0 if ¢, ¢ @, then equation (4.21) and Cy, = 1 imply [(w(t);9)| < [[fl2v/m ().
This inequality shows that w(t) is a continuous functional when it is restricted to each
subspace ®,,, and, because the strict inductive limit topology, this proves that w(¢) lies in
o*.

As for the second claim, consider wy,(t) := > gic, @k € k(t). Obviously one has that
wn(t) = Uspn)(t) € ®*(t) since vy := D g @k Vi € P. Moreover the inequality
can be used to show that (Usp,)(t) — w(t) when n — oo with respect to the x-weak
topology of ®*. This enables us to define w(t) := (Usyp)(t) for all ¢ := >, yar i €
H. The generalized Bloch-Floquet transform acts as a unitary isomorphism between H
and K(t) with respect to the Hilbert structure induced in £(¢) by the orthonormal basis

{C*(®) }ren. u

THEOREM 4.6.4 (Bloch-Floquet spectral decomposition). Let & be a Z"-algebra in the
separable Hilbert space H with generators {Uy,...,Un}, wandering system {1 }ren and
wandering nuclear space ®. The generalized Bloch-Floquet transform Us, defined on ®
by equation (4.17), induces a direct integral decomposition of the Hilbert space H which
is equivalent (in the sense of Theorem to the decomposition of the von Neumann’s
theorem Moreover, the spaces K(t) spanned in ®* by the functionals provide
an explicit realization for the family of common eigenspaces of & appearing in Maurin’s

theorem
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Proof. Proposition [4.5.7| assures that the Gel’fand spectrum of & is the N-dimensional
torus TV and the basic measure agrees with the normalized Haar measure dz. On the
field of Hilbert spaces [ [,.~ K(t) we can introduce a measurable structure by the fun-
damental family of orthonormal vector fields ¢(-) := {(x(-) }xen defined by (4.22). For all
o € ® the generalized Bloch-Floquet transform defines a square integrable vector field
Usp)(-) € &= [rv K( dz( ). Indeed equation shows that (Usp)(t) € K(t) for any
t and ||Use))|? = ZkGN | fo(t)]? is a continuous function (finite sum of continuous
functions) hence integrable on T . In particular

fin
=3 [ S o =0 | dste) = el

keN b,ceZN

s = [ IOl de(e

:lfg;;k(z)|2

In view of the density of ®, Us can be extended to an isometry from H to R.

It remains to show that Ug is surjective. Any square integrable vector field ¢(-) € 8
is uniquely characterized by its expansion on the frame ¢(-), i.e. ¢(-) = >, oy Px(*) ¢*()
where {?y(t)}ren € £2(N) for all ¢ € [0,27)". The condition

e rﬁ—/ SR da(t) < +oo

keN

shows that 3), € L?(T") for all k € N. Let 3y (t) = 3 ,czn ok p2°(t) be the Fourier expan-
sion of ¥. Since

DD el =Y Bkl 7zeny = lle()lI% < +oo

keN pezN keN

it follows that {a}ren pezy is an (2-sequences and the mapping

=Y Y w200 T =Y U (4.25)

keNpezZN keN pezZN

defines an element ¢ € H starting from the vector field ¢(-) € K. It is immediate to check
that Us maps ¢ in ¢(-), hence Ug is surjective.

If A; € G is an operator associated with the continuous function f € C(TV) via the
Gel'fand isomorphism, then UsA;Us ' p(-) = f(-)p(-), i.e. Us maps Ay € & in M;(-) €
C(R). This allows us to apply the Theorem which assures that the direct integral
£ coincides, up to a decomposable unitary transform, with the spectral decomposition of
& established in Theorem [ |

REMARK 4.6.5 (Generalized Bloch-Floquet transform and &-Fourier transform). The
generalized Bloch-Floquet transform /s can be seen as a “computable” realization of the
abstract G-Fourier transform Fs in the von Neumann’s theorem This allows us to
interchange the symbols U/s and Fg, when necessary. From Proposition and from
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general results about direct integrals (Dixmier 1981, Part II, Chapter 1, Section 8) one
obtains the following identifications:
@ @

-~ K(t) dz(t) ~ - H dz(t) ~ L*(TY H). (4.26)

1 20,
EXAMPLE 4.6.6 (Periodic systems, part three). In the case of Example the general-
ized Bloch-Floquet transform reduces to the usual one given by

Us,9)(t,0) =D 27 7(H)T7p(0) =Y e ™M e Malp(f — ),

vyel vyel

H Us .. Us -1

where v := Z?:l m;;, for all ¢ in the wandering nuclear space ® C Hppy, built according
to Proposition from any orthonormal basis of L?(Qy). The fiber spaces in the direct
integral decomposition are all unitarily equivalent to L?(Qp) hence the Hilbert space

decomposition is
Us ... Us -1

T St @ 2
/ L*(Qo) dz(t)
Td
and the dimension of any fiber is ¥y. The above equation agrees with the decomposition
(4.3). <«

EXAMPLE 4.6.7 (Mathieu-like Hamiltonians, part three). In this case the wandering
nuclear space ®y; is the set of the finite linear combinations of the Fourier basis {e, },cz
and for all g(s) = zﬁgz a,e™* in @y the Bloch-Floquet transform is

fin
(Z’{Gq g t ,19 Z e—zmt 19) _ Zan (Z ei[m9+m(q79—t)]> )

thy

meZ nez mel

The collection Cu(t) := {Gy(t, )., Gy ' (t,7)} € Py, with
Cll\cfl(tv 9) == (MGK/I er)(t, V) = etk? Z eim(qﬂ—t)’

meZ

defines a fundamental family of orthonormal fields (or frames). The fiber spaces in the
direct integral decomposition are all unitarily equivalent to C? hence the Hilbert space
decomposition is

Ueq ...Z/[Gq -1

5]
Hy —— /(quz(t).
T

The images of the generators u and v under the map Z/IGK4 . .Z/{GK{ ~1 are the two ¢ depen-
dent ¢ x ¢ matrices

1 0 ett
22
e“"q 1
u(t) == _ v(t) =
e?mqla=1) o 1 0

For every t € R the matrices u(t) and v(t) generate an irreducible representation of the
NCT-algebra 21, on the Hilbert space C? (c.f. Section [5.1.1). <>
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Equivalence of physical frames

The dimension of the vector space H in the decomposition is fixed by the cardinal-
ity of the wandering system chosen to define the Bloch-Floquet transform. Observing
that Theorem [4.3.3| assures that the direct integral decomposition is essentially unique
(in measure theoretic sense), one has the following corollary of Theorem |4.6.4

COROLLARY 4.6.8. Any two wandering systems associated with a given Z"-algebra &
have the same cardinality. Any two wandering systems for & are intertwined by a unitary
operator which commutes with S.

The above result shows that the choice of a wandering system for a ZV-algebra is
essentially unique (i.e. up to unitary equivalence).

The uniqueness of the spectral decomposition (Theorem [4.3.3) together with the iden-
tification between Generalized Bloch-Floquet transform and G-Fourier transform (Re-
mark imply that the generalized Bloch-Floquet transform (Theorem [4.6.2) and
the related direct integral decomposition (Theorem depend (up to a decomposable
unitary) only on the equivalence class of physical frames. We can use this fact to prove
the following result.

PROPOSITION 4.6.9. Let {H,A, &1} and {H,2A, &2} be two physical frames where &,
and S, are two Z%-algebras having wandering systems of the same cardinality N. Then
the two physical frames are in the same equivalence class.

Proof. We need to prove that there exists a unitary map W : H — H such that 2 =
WAW ! and Gy = W& WL Let {Uy,...,U;} and {¢1,...,9n} be the generating sys-
tem and the wandering system for &, and let {Vi,...,V;} and {{/;17 .. ,JN} be the same
for G5. Since the two wandering systems have the same cardinality N, one can define
a one-to one correspondence between the two systems by posing v; < {bvo.(j), with o any
permutation of the indexes {1,..., N}. Fixed one of this N! possible correspondences,
we define a unitary map W, on the space H which intertwines the two orthonormal ba-
sis generated by the wandering systems, namely W, (U%);) := V“Jg(j) for all a € N¢ and
j €{1,...,N}. A simple computation shows that (U; — W, ! V; W, )U%); = 0 for all a € N¢
and j € {1,..., N} which implies, in view of the completeness of the system U%;, that
U=W,1V,W,foralli=1,...,d, thus Gy = W, &; W, L.

LetUs, : H — s, = ffﬁl H(t) dz(t), i = 1,2 be the generalized Bloch-Floquet trans-
form related to the physical frame {H,2, S;}. In view of Remark Theorem [4.3.3]
assures that Ug, W, L{éll = ff?d Wy (t) dz(t) : H&, — He,. Finally, the equality

W, AW, = (WoUgh) (/j () dz(t)> (Woldg,) ™

52
U] [ W0 7@ W) de) | e,
Td

= (20)

follows from point (ii) of Theorem [4.3.1 |
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There exists a particular class of C*-algebras which plays a relevant réle for the
purpose of this thesis.

DEFINITION 4.6.10 (N-homogeneous C*-algebra (Dixmier 1982)). A C*-algebra 2 is
said N-homogeneous if all its irreducible representations are of the same finite dimension
N.

The importance of the above definition lies in the following uniqueness result

PROPOSITION 4.6.11. Let 2 be a N-homogeneous C*-algebra, © : A — HB(H) a faith-
ful representation and {H,n(2A),S;}, j = 1,2 two irreducible physical frames (Definition
with &; maximal commutative Z%-algebras in the commutant (). If &; has a
wandering system then its cardinality is N. Assuming that both &, and G5 have wan-
dering system, one has that {H,n(2), &1} and {H,n(A), S2} are in the same equivalence
class.

Proof. If G; admits a wandering system then one can define the generalized Bloch-
Floquet transform Us;, : H — $g; according to Theorem W Since R is maximal
commutative, Us, decomposes 7 (%) in a direct integral of irreducible representations
(Theorem [4.3.1). Observing that 2 and () have the same representation theory, since
7 is faithful and observing that the irreducible representations of 2 are N-dimensional
it follows that the fiber Hilbert spaces in the direct integral $s; are N-dimensional. The
first part of the claim follows by noticing that the dimension of the fiber Hilbert spaces
is equal to the cardinality of the wandering system. The second part of the claim follows
from Proposition[4.6.9 |

The above result shows that it is possible to introduce a notion of standard physical
frame (in any faithful representation) for N-homogeneous C*-algebras.

Wannier vectors from an algebraic point of view

Equation in the proof of Theorem provides a recipe to invert the unitary
map Us : H — R = ffr'é K(t) dz(t). According to Us~! maps the fundamental
vector fields ¢*(-) into the wandering vectors 1/, and it intertwines multiplication by
the exponentials 2%(-) with the unitary operators U°¢. We will say that Us~'(¢(-)) is the
Wannier vector (WV) associated to the vector field ¢(-).

We denote by § := [[,cp~v K(t) the set of all the vector fields. Let > be the set of
square integrable vector fields ¢(-) € R whose component functions ¢y (-) are of class
C>(TYN). Similarly let § be the set of square integrable vector fields which component
functions are analytic, i.e. of class C*(T%). Obviously

Us(P) CFY CFCCRCT.

By ordinary Fourier theory, one observes that if ¢(-) € §° then the sequence of co-
efficients {4 }ren aczy Which defines the component functions @y, (-) decays faster than
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any polynomial. Similarly if ¢(-) € F, then the sequence {a; o }ren 4czv has an exponen-
tial decay. In analogy with the ordinary Bloch-Floquet theory (Kuchment 1993), these
considerations suggest the name of super-polynomially localized Wannier vectors for the
elements of QOF := Us 1(F>) and exponentially localized Wannier vectors for the ele-
ments of Q% := Us ' (§¥). The above definitions are summarized by the following table.

Symbol | decay of {aj .} Name
) finite compact supported WV
98 exponential exponentially localized WV (4.27)
ag super-polynomial | super-polynomial localized WV
" ? continuous WV
H 2 generic

4.7 Emergent geometry

From a geometric viewpoint, the field of Hilbert spaces § := [[,.x H(x) can be re-
garded as a pseudo vector-bundle : : £— X, where

. |_| H(z) (4.28)
reX

is the disjoint union of the Hilbert spaces H(x). The use of the prefix “pseudo” refers to
the fact that more ingredients are needed to turn : : §— X into a vector bundle. First
of all, the map ¢ must be continuous, which requires a topology on &. As a first attempt,
assuming that H(z) C ®* for every x € X, one might consider . : &— X as a sub-bundle
of the trivial vector bundle ¢ : X x ®*—— X, equipped with the topology induced by the
inclusion, so that . : £—— X becomes a topological bundle whose fibers are Hilbert spaces.
However, nothing ensures that the Hilbert space topology defined fiberwise is compatible
with the topology of &, a necessary condition to have a meaningful topological theory.

Geometric vs. analytic viewpoint

We begin our analysis with the definition of topological fibration of Hilbert spaces. Fol-
lowing (Fell and Doran 1988, Chapter II, Section 13) we have

DEFINITION 4.7.1 (Geometric viewpoint: Hilbert bundle). A Hilbert bundle is the da-
tum of a topological Hausdorff spaces & (the total space) a compact Hausdorff space X
(the base space) and a map ¢ : £&—— X (the canonical projection) which is a continuous
open surjection such that:

a) for all x € X the fiber . =!(x) C & is a Hilbert space;

b) the application & > p— ||p|| € C is continuous;
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c) the operation + is continuous as a function on . .= {(p,s) € & x & : 1(p) = i(s)} to
&;

d) for each \ € Cthe map & > p+—— A\ p € & is continuous;

e) let 0, be the null vector in the Hilbert space .~ (x); for each x € X, the collection of
all subsets of & of the form % (O,x,c) :={pe & : «(p) € O, |p|| <c}, where Oisa
neighborhood of x and € > 0, is a basis of neighborhoods of 0, € 1™ (x) in &.

We will denote by the short symbol & the Hilbert bundle . : £— X, when the base
space X and the projection : are clarified by the context. A section of & is a function
1 : X — & such that 1 o ¢ = idy. We denote by I'(&) the set of all continuous sections
of &. As showed in (Fell and Doran 1988), from Definition 4.7.1]it follows that: (i) the
scalar multiplication C x & 3 (A\,p) — A p € & is continuous; (ii) the open sets of &,
restricted to a fiber :~!(z), generate the Hilbert space topology of :~!(z); (iii) the set
I'(€) has the structure of a (left) C'(X)-module. The definition of Hilbert bundle includes
all the requests which a “formal” fibration as needs to fulfill to be a topological
fibration with a topology compatible with the Hilbert structure of the fibers. In this
sense the Hilbert bundle is the “geometric object” of our interest.

However, the structure that emerges in a natural way from the Bloch-Floquet decom-
position (Theorem |4.6.4) is more easily understood from the analytic viewpoint. Switch-
ing the focus from the total space & to the space of sections §, the relevant notion is
that of continuous field of Hilbert spaces, according to (Dixmier 1982, Section 10.1) or
(Dixmier and Douady 1963, Section 1).

DEFINITION 4.7.2 (Analytic viewpoint: continuous field of Hilbert spaces). Let X be a
compact Hausdorff space and § := [[,.x H(x) a field of Hilbert spaces. A continuous
structure on § is the datum of a linear subspace I' C § such that:

a) for each x € X the set {o(x) : o(-) € I'} is dense in H(x);
b) for any o(-) € I' the map X > x — ||o(x)||» € R is continuous;

c) if Y(-) € § and if for each ¢ > 0 and each x¢ € X, there is some o(-) € I" such that
llo(x) —¥(x)||» < € on a neighborhood of x, then i(-) € T.

We will denote by the short symbol §r x the field of Hilbert spaces § endowed with
the continuous structure I'. The elements of I" are called continuous vector fields. The
condition b) may be replaced by the requirement that for any o(-), o(-) € T, the function
X 5 2 — (o(x);0(x)), € C is continuous. Condition c) is called locally uniform clo-
sure. Locally uniform closure is needed in order that the linear space I is stable under
multiplication by continuous functions on X. This condition implies that I" is a (left)
C(X)-module. A total set of continuous vector fields for §r x is a subset A C I" such that
A(z) :={o(z) : o(-) € A} is dense in H(x) for all z € X. The continuous field of Hilbert
spaces is said to be separable if it has a countable total set of continuous vector fields.
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The link between the notion of continuous field of Hilbert spaces and that of Hilbert
bundle is clarified by the following result.

PROPOSITION 4.7.3 (Equivalence between geometric and analytic viewpoint). Let 3r x
be a continuous field of Hilbert spaces over the compact Hausdorff space X. Let & (3r x) :=
Ll,cx H(z) be the disjoint union of the Hilbert spaces H(x) and . the canonical sur-
Jection of &(3r x) onto X. Then, there exists a unique topology T on & (Jr,x) making
L &Fr.x)—X a Hilbert bundle over X such that all the continuous vector fields in
Sr,x are continuous sections of &(§r x). Moreover, every Hilbert bundle comes from a
continuous field of Hilbert spaces.

Proof. For the details of the proof we refer to (Dixmier and Douady 1963, Section 2) or
(Fell and Doran 1988, Chapter II, Theorem 13.18). Here, we only sketch the main ideas.

We use the shorter notation 3r x = §. One has to equip the set &(3) := | |,cx H(z)
with a topology which satisfies the axioms of Definition Such a topology T is
generated by the basis of open sets whose elements are the tubular neighborhoods
%(0,0,¢) == {p € &) : up) € O, |p—o(up))]| < e} for all open sets O C X, all
continuous vector fields o(-) € I" and all positive numbers ¢ > 0. Since (% (0, 0,¢)) = O
it is clear that with respect to the topology T the map : : £(F) — X is a continuous
open surjection. The topology induced by 7 on H(x) is equivalent to the norm-topology of
H(zx). Any vector field o(-) € § can be seen as a map o : X — &(F) such that . o 0 = idy,
i.e. it is a section of &(F). It follows that o(-) € T if and only if ¢ is a continuous section.

Conversely, let + : & — X be a Hilbert bundle over the compact Hausdorff space
X and let T'(&) be the set of its continuous section. Let §(&) := [[,cx ¢ *(z) be the
field of Hilbert spaces associated to the bundle &. The compactness of X assures that
& has enough continuous sections, i.e. {o(z) : o € I'(&)} = 17(z) =: H(x) (Fell and
Doran 1988, Douady-Dal Soglio-Hérault theorem, Appendix C). For all ¢ € I'(&) the
map X > z — |lo(x)|; is continuous since it is composition of continuous functions.
Finally the family I'(&) fulfills the locally uniform closure property (Fell and Doran 1988,
Corollary 13.13, Chapter II). This proves that the set of continuous sections I'(£’) defines
a continuous structure on the field of Hilbert spaces §(&). [ |

We will say that the set &(3r x) endowed with the topology T and the canonical
surjection . defines the Hilbert bundle associated with the continuous structure I' of §.

Triviality, local triviality and vector bundle structure

A Hilbert bundle is a generalization of a (infinite dimensional) vector bundle, in the
sense that some other extra conditions are needed in order to turn it into a genuine vec-
tor bundle. For the axioms of vector bundle we refer to (Lang 1985). The most relevant
missing condition, is the local triviality property (c.f. Section [C).

Two Hilbert bundles ¢1 : &1 :— X and 15 : & :— X over the same base space X are
said to be (isometrically) isomorphic if there exists a homeomorphism © : & — & such
thata) 19000 =11,b) O, := (9|L1_1(x) is a unitary map from the Hilbert space Lfl(x) to the
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Hilbert space 157! (x). From the definition it follows that if the Hilbert bundles & and &
are isomorphic then the map I'(&1) > 0 — O oo € I'(&,) is one to one. A Hilbert bundle is
said to be trivial if it is isomorphic to the constant Hilbert bundle X x H — X where H is
a fixed Hilbert space. It is called locally trivial if for every x € X there is a neighborhood
O of x such that the reduced Hilbert bundle &|, :== {p € & : «(p) € O} = +71(0) is
isomorphic to the constant Hilbert bundle O x H — O. Two continuous fields of Hilbert
spaces §r,x and Si“/,  over the same space X are said to be (isometrically) isomorphic if
the associated Hilbert bundles &' (3r x) and & (31 x) are isomorphic. A continuous field
of Hilbert spaces 3r x is said to be trivial (resp. locally trivial) if & (3t x) is trivial (resp.
locally trivial).

PROPOSITION 4.7.4. Let 3r x be a continuous field of Hilbert spaces over the compact
Hausdorff space X and & (Fr x) the associated Hilbert bundle. Then:

(1) if v x is separable and X is second-countable (or equivalently metrizable) then the
topology defined on the total space &(Jr x) is second-countable;

(i) if dim H(x) = X for all x € X and if X is a finite dimensional manifold then the
Hilbert bundle & (3 x) is trivial;

(iii) if dim H(z) = ¢ < +oc for all x € X then the Hilbert bundle & (3r x) is a Hermitian
vector bundle with typical fiber C4.

Proof. For the proof of (i) we refer to (Fell and Doran 1988, Proposition 13.21, Chapter
II). The claim (ii) is proved in (Dixmier and Douady 1963, Theorem 5). We only sketch
the proof of (iii).

First of all, we recall that to prove that a Hilbert bundle is a vector bundle we need
to prove the local triviality and the continuity of the transition functions (Lang 1985,
Chapter III). However, if the fibers are finite dimensional then the continuity of the
transition functions follows from the existence of the local trivializations (Lang 1985,
Proposition 1, Chapter III).

Let § := [[,cx H(z) with dim H(z) = ¢ for all z € X and {o1(-),...,04(-)} C I such
that for a fixed zp € X the collection {o1(zy),...,04(x0)} is a basis for H(z(). Follow-
ing (Dixmier and Douady 1963, Section 1), we show that {o;(z),...,04(z)} is a basis
for H(z) for all = in a suitable neighborhood of zy. The function p : X x C? — [0, +00)
defined by p(z, a1, ..., 0q) :== |af || 2321 Wfiaj(x)|\x, with |a|? := ;1-:1 ]2, is continuous
(composition of continuous function). Then the function x : X — [0, +0c0) defined by
#(x) := inf|—; p(7, @) is also continuous since the unit sphere in C? is compact. More-
over r(zg) > 0. Since {o1(z),...,04(x)} are linearly independent if and only if x(z) > 0
it follows that the vectors are linearly independent in a suitable neighborhood O, of
zo. In Oy, we can use the Gram-Schmidt formula to obtain a local set of orthonor-
mal continuous vector field {5;(-),...,04(-)}. This local frame enables us to define a
map hy, 0 17 H(Ogy) — Oy X C? by hyy(p) := (u(p),c1,...,0aq) with «(p) = 2 € O, and
p = Z?Zl a;cj(z). The map h;, is an homeomorphism and for each z € O, is a lin-
ear isomorphism between H(x) and C?. The collection {O,,}.,,cx is a open covering,



4.7. Emergent geometry 127

so we can select by the compactness of X a finite covering {Os,...,0;}. The family
{(Oj, hj)}j=1,..r is a finite trivializing atlas for the vector bundle. |

Algebraic viewpoint

Roughly speaking a continuous field of Hilbert spaces is an “analytic object” while a
Hilbert bundle is a “geometric object”. There is also a third point of view which is of
algebraic nature. We introduce an “algebraic object” which encodes all the relevant
properties of the set of continuous vector fields (or continuous sections).

DEFINITION 4.7.5 (Algebraic viewpoint: Hilbert module). A (left) pre-C*-module over
a commutative unital C*-algebra A is a complex vector space g that is also a (left) A-
module with a pairing {-;-} : Qo x Qo — A satisfying, for o,0,¢ € Qo and for a € A the
following requirements:

a) {050+t ={os0} +{o5c}
b) {o;a0} = a{o; 0}

¢) {o;0}" ={o;0};

d) {o;0} >0ifo #0.

The map ||| - ||| : Qo — [0,+00) defined by |||o]|| := +/|[{o;0}]|.4 is @ norm in Qy. The
completion Q of Qo with respect to the norm ||| - ||| is called (left) C*-module or Hilbert

module over A.

PROPOSITION 4.7.6 (Equivalence between algebraic and analytic viewpoint). Let 3r x
be a continuous field of Hilbert spaces over the compact Hausdorff space X. The set of
continuous vector fields T' has the structure of a Hilbert module over C(X). Conversely
any Hilbert module over C(X) defines a continuous field of Hilbert spaces. This corre-
spondence is one-to-one.

Proof. We shortly sketch the proof, see (Dixmier and Douady 1963, Section 3) for de-
tails.

To prove the first part of the statement one observes that for all pairs of continuous
vector fields o(+), o(-) € T the pairing {-;-} : I’ x I' — C'(X) defined fiberwise by the inner
product, i.e. by posing {o; o}(z) := (0(2); o(z))., satisfies Definition [4.7.5] The norm is
defined by |||o||| := sup,cx |lo(z)|l. and I is closed with respect to this norm in view of
the property of locally uniform closure.

Conversely let 2 be a C*-module over C(X). For all z € X define a pre-Hilbert
structure on Q2 by (0;0), = {o;0}(z). The set 7, := {0 € @ : {o;0}(x) = 0} is a
linear subspace of Q2. On the quotient space 2/Z, the inner product ( ; ), is a positive
definite sesqulinear form and we denote by 7 (x) the related Hilbert space. The collection
{H(z) : + € X} defines a field of Hilbert spaces F(2) = [[,cx H(z). For all ¢ € Q the

canonical projection Q > o % o(x) > Q/Z, defines a vector field o(-) € F(Q). It is



128 4. Bloch-Floquet transform and emerging geometry

easy to check that the map Q2 > ¢ RN o(-) 2 §() is injective. We denote by I'(f2) the
image of 2 in F(2). The family I'((2) defines a continuous structure on §(2). Indeed
{o(x) : o(-) € T(Q)} = Q/I, is dense in H(z) and |o(x)||2 = {0;0}(x) is continuous.
Finally locally uniform closure of I'(Q2) follows from the closure of 2 with respect to the
norm |||o||| := sup,cx v/{0;0}(x) and the existence of a partition of the unit subordinate
to a finite cover of X (since X is compact). |

The Hilbert bundle emerging from the Bloch-Floquet decomposition

We are now in position to provide a complete answer to questions (Q-II) and (Q-III)
in Section [4.1 Before proceeding with our analysis, it is useful to summarize in the
following diagram the relations between the algebraic, the analytic and the geometric
descriptions.

Continu(%us field
0
Hilbert spaces (4.29)
ST,x
/ B\

Hilbert bundle C C(X)-module

1:8 — X Q

Dl fibers of finite dimension ¢ iE
rank-q projective

Hermitian F finitely generated

vector bundle C(X)-module

Arrows A and B summarize the content of Propositions [4.7.3] and [4.7.6] respectively, ar-
row D corresponds to point (iii) of Proposition [4.7.4] and arrow E follows by Proposi-
tion 53 in (Landi 1997). Arrow F corresponds to the remarkable Serre-Swan Theorem
(Landi 1997, Proposition 21), so arrow C can be interpreted as a generalization of the
Serre-Swan Theorem.

Coming back to our original problem, let {H,2(, &} be a physical frame with H a sep-
arable Hilbert space and & a Z"-algebra with generators {Ui,...,Ux} and wandering
system {¢y}ren. The Bloch-Floquet decomposition (Theorem ensures the exis-
tence of a unitary map Ug, which maps H into the direct integral | := fqﬁv K(t) dz(t).
Let § := [[,cr~ K(t) be the corresponding field of Hilbert spaces. The space £ is a sub-
set of § which has the structure of a Hilbert space and whose elements can be seen as
L?-sections of a “pseudo-Hilbert bundle” &(F) := | |,cyn K(t). This justifies the use of the
notation & = L?(&). To answer question (Q-II) in Section we need to know how to
select a priori a continuous structure I' C £ for the field of Hilbert spaces §. In view of
Proposition this procedure is equivalent to select a priori the family of the contin-
uous section I'(£) of the Hilbert bundle & inside the Hilbert space L?(&). We can use
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the generalized Bloch-Floquet transform to push back this problem at the level of the
original Hilbert space H and to adopt the algebraic viewpoint. With this change of per-
spective the new, but equivalent, question which we need to answer is: does the physical
frame {H, A, G} select a Hilbert module over C(T*) inside the Hilbert space H?

Generalizing an idea of (Gruber 2001), we can use the transform /s and the notion
of wandering nuclear space ® to provide a positive answer. The core of our analysis is
the following result.

PROPOSITION 4.7.7. Let G be a Z" -algebra in the separable Hilbert space H with gener-
ators {Uy,...,Un}, wandering system {1y }recny and wandering nuclear space ®. Let R be
the direct integral defined by the Bloch-Floquet transform Us : H — R Then the Bloch-
Floquet transform endowes ® with the structure of a (left) pre-C*-module over C(TV).
Let Qs be the completion of ® with respect to the C*-module norm. Then Qg is a Hilbert
module over C(TV) such that Qs C H.

Proof The set ® is a complex vector space which can be endowed with the structure of
a C(T")-module by means of the Gel’fand isomorphism. For any f € C(TV) and ¢ € ®
we define the (left) module product x by

C(TN) x &3 (f,p) — frp:=App € d (4.30)

where A; € G is the operator associated with f € C(TV). The product is well defined
since ® is G-invariant by construction. The Bloch-Floquet transform allows us also to
endow ® with a pairing {-;-} : ® x ® — C(T"). Indeed, for any pair ¢, ¢ € ® and for all
t € T™ we define a sesquilinear form

X @3 (p,¢) — {p,0}(t) := (Usp)(t); Us¢)(t)), € C. (4.31)

Moreover {¢,®}(t) is a continuous function of ¢t. Indeed ¢,¢ € ® means that ¢ and
¢ are finite linear combinations of the vectors U%y, and from equation and the
orthonormality of the fundamental vector fields ((-) it follows that {y, ¢}(¢) consists of
a finite linear combination of the exponentials e’'!, ..., e~

Endowed with the operations (4.30) and (4.31), the space ® becomes a (left) pre-C*-
module over C(T?). The Hilbert module s is defined to be the completion of ® with
respect to the norm

fin
1]l := sup [|(Use)(®)7 = sup (Z\fmt)\?) (4.32)
teTN teTN \ pen

according to the notation in the proof of Theorem Let {¢,}nen be a sequence in &
which is Cauchy with respect to the norm ||| - |||. From (4.32), the unitarity of Us and the
normalization of the Haar measure dz on TY it follows that ||¢, — @mll < ||len — @ml|,
hence {¢,, }nen is also Cauchy with respect to the norm || - ||, so the limit ¢,, — ¢ is an
element of H. [
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REMARK 4.7.8 (Wannier vectors). The proof of Proposition [4.7.7| provides more informa-
tion about the relation of Qg with respect to the relevant families of Wannier vectors.
According to table (4.27), we can prove that

¢ C Qg C O C g CH.

Indeed equation (4.32) implies the inequality sup;crn | fo,:k(t) = fonk(®)] < ||len — @mll|
which assures that f, .. — fo.x uniformly with f_., € C (T™) for all £ € N. Then the com-
ponents of (Usy)(-) with respect to the fundamental orthonormal frame ¢(-) := {¢¥(-) }ren
are continuous functions and this justifies the chain of inclusions claimed above. L 2§

Once selected the Hilbert module Q2g, we can use it to define a continuous field of
Hilbert spaces as explained in Proposition It is easy to convince themselves that
the abstract construction proposed in Proposition [4.7.6| is concretely implemented by
the generalized Bloch-Floquet transform Ug. Then, the set of vector fields I'g := Us(Qs)
defines a continuous structure on the field of Hilbert spaces § := [[,.r~ K(t) and, in view
of Proposition a Hilbert bundle over the base manifold T". This Hilbert bundle,
denote by &, is the set | |,.r~ K(t) equipped by the topology prescribed by the set of the
continuous sections I's. The structure of &5 depends only on the equivalence class of the
physical frame {H,2, S} and we refer to it as the Bloch-Floquet Hilbert bundle.

THEOREM 4.7.9 (Emerging geometric structure). Let S be a Z-algebra in the separable
Hilbert space H with generators {Uy,...,Un}, wandering system {{}rcny and wandering
nuclear space ®. Let & be the direct integral defined by the Bloch-Floquet transform
Us : H — R and Qs C H the Hilbert module over C(TY) defined in Proposition
Then:

(i) the family of vector fields Us(lg) =: I's defines a continuous structure on § =
I, cpn K(t) which realizes the correspondence stated in Proposition |.7.6}

(ii) the Bloch-Floquet Hilbert bundle . : &5 — TV, defined by I's according to Proposi-
tion depends only on the equivalence class of the physical frame {H,, &}.

Proof. To prove (i)letZ; := {p € ® : ((Usp)(t); Usy)(t)), = 0}. The space ®/Z; is a pre-
Hilbert space with respect to the scalar product induced by Us|,. The map Ug|, : ®/Z; —
K(t) is obviously isometric and so can be extended to a linear isometry from the norm-
closure of ®/7; into IC(t). The map Ug|, is also surjective, indeed /(¢) is generated by the
orthonormal basis {¢*(t)}ren and Us|, ' ¢¥(t) = ¢y € ®/Z;. Then the fiber Hilbert spaces
appearing in the proof of Proposition[4.7.6|coincide, up to a unitary equivalence, with the
fiber Hilbert spaces K(t) obtained through the Bloch-Floquet decomposition. Moreover
the Bloch-Floquet transform acts as the map defined in the proof of Proposition [4.7.6]
which sends any element of the Hilbert module ® to a continuous section of §.

To prove (ii) let {H;,2,S;} and {Hz, A2, S} be two physical frames related by a
unitary map W : H; — Ho. If &, is a ZV-algebra in H; then also G, = W&, W lisa ZN-
algebra in Hy and if {¢} }reny C Hi is a wandering system for G; then {Jk = Wbk bken C



4.7. Emergent geometry 131

'H- is a wandering system for &, (with the same cardinality). The two wandering nuclear
spaces &1 C H; and &3 C Hs are related by & = Wd,. Let Us, : Hj — 95, = 1,2 be
the two generalized Bloch-Floquet transforms defined by the two equivalent physical
frames. From the explicit expression of Us, and Us, !, and in accordance with Corollary
one argues that Us, o W oUg, ' =: W(-) is a decomposable unitary which is well
defined for all ¢. Let ¢, ¢ € ®; then

[P 0h(1) : = (Us, ) (1): Us, O)(1)), = (W (1) Us, 0) (1) W (1) U, 6)(),
= (U W) (0); Us, WD), = (e ) (1) Usad)(D)), = {5 Da()

where @ := Wy and ¢ := W¢ are elements of ®,. This equation shows that ®; and @,
have the same C(T")-module structure and so define the same abstract Hilbert mod-
ule over C(T?). The claim follows from the generalization of the Serre-Swan Theorem
summarized by arrow C in (4.29). |

REMARK 4.7.10. With a proof similar to that of point (ii) of Theorem one deduces
also that the Bloch-Floquet-Hilbert bundle & does not depend on the choice of two uni-
tarily equivalent commutative C*-algebras &; and &, inside 2(. Indeed also in this case
the abstract Hilbert module structure induced by the two Bloch-Floquet transforms Ug,
and Usg, is the same. 0

Theorem provides a complete and satisfactory answer to questions (Q-II) and
(Q-IIT) in Sectionfor the interesting case of a Z-algebras & satisfying the wandering
property. At this point, it is natural to deduce more information about the topology of
the Bloch-Floquet Hilbert bundle from the properties of the physical frame {H,2, S}. An
interesting property arises from the cardinality of the wandering system which depends
only on the physical frame (c.f. Corollary [4.6.8).

COROLLARY 4.7.11. The Hilbert bundle &s over the torus TV defined by the continuous
structure T's is trivial if the cardinality of the wandering system is No, and is a rank-q
Hermitian vector bundle if the cardinality of the wandering system is q. In the latter case
the transition functions of the vector bundle can be expressed in terms of the fundamental
orthonormal frame of sections {(-) := {(x(-) br=1,..g» With ((-) == Usr)().

Proof. The claim follows from Propositions [4.7.4] and [4.7.3] jointly with the fact that
the dimension of the fiber spaces IC(¢) is the cardinality of the wandering system as
proved in Proposition|4.6.3. In the finite dimensional case the fundamental orthonormal
frame ((-), defined by (4.22), selects locally a family of frames and so provides the local
trivializations for the vector bundle. |

Decomposition of the observables and endomorphism sections

According to Theorem |4.6.4} the Bloch-Floquet transform (4.17) provides a concrete real-
ization for the unitary map (S-Fourier transform) whose existence is claimed by the von
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Neumann’s complete spectral theorem. Let hereafter {H,2(, &} be a physical frame with
G a ZN-algebra admitting a wandering system. Point (ii) of Theorem implies that
under the Bloch-Floquet transform any O € 2 is mapped into a decomposable operator
on the direct integral fqéeN K(t) dz(t) , ie. UsOUs™ =: O(-) : t — O(t) € B(K(t)) with
O(-) weakly mesurable.

The natural question which arises is the following: there exists any topological struc-
ture in the C*-algebra 2 compatible with the Bloch-Floquet Hilbert bundle which emerges
from the Bloch-Floquet transform? To answer to this question we firstly analyze the na-
ture of the linear maps which preserve the (Hilbert module) structure of the set of the
continuous sections.

DEFINITION 4.7.12 (Hilbert module endomorphism). Let Q be a (left) Hilbert module
over the commutative unital C*-algebra A. An endomorphism of (2 is a A-linear map
O : Q — Q which is adjointable, i.e. there exists a map O : Q — Q such that {o;0p} =
{OTa; p} for all o, p € Q. We denote by End 4(R2) the set of all the endomorphisms of .

As proved in (Gracia-Bondia et al. 2001, Section 2.5) or (Landi 1997, Appendix A), if
O € End4(9), then also its adjoint OT € End4(f2) and f is an involution over End 4(Q).
Moreover, End 4(€2) endowed with the endomorphism norm

[OlEnacey = sup{[[[O()][| = [llofll < 1} (4.33)

becomes a C*-algebra (of bounded operators). For any o,p € 2 one defines the rank-1
endomorphism |o}{p| € End4(Q) by [c}{p|(<) := {p;c} o for all ¢ € Q. The adjoint of
|o}{p| is given by |p}{c|. The linear span of the rank-1 endomorphisms is a selfadjoint
two-sided ideal of End 4(2) (finite rank endomorphisms) and its (operator) norm closure
is denoted by End’(Q2). The elements of the latter are called compact endomorphisms of
Q. Since End’(Q) is an essential ideal of End4(Q), it follows that End%(Q) = End4(Q)
if and only if 1 € End’%(Q).

A remarkable result which emerges from the above theory is the characterization of
the compact endomorphisms of the C'(X) Hilbert module I'(&’) of the continuous sections
of a rank-¢ Hermitian vector bundle . : & — X.

PROPOSITION 4.7.13. Let . : & — X be a rank-q Hermitian vector bundle over the com-
pact Hausdorff space X and let T'(&) be the Hilbert module over C(X) of its continuous

sections. Then
End} ) (I'(¢)) = Ende(x)(I(€)) ~ I'(End(&)) (4.34)

where T'(End(&)) denotes the continuous sections of the endomorphism vector bundle
/' : End(&) — X. The localization isomorphism appearing in right-hand side of (4.34)
preserves the composition and the structure of C(X)-module.

Proof. The localization (right-hand) isomorphism in is a consequence of the Serre-
Swan Theorem (Gracia-Bondia et al. 2001, Theorems 2.10 and 3.8). Such a theorem
states that there exists an equivalence of categories between finite rank Hermitian vec-
tor bundles over a compact space X and Hilbert modules over C(X) which are pro-
Jjective and finitely generated. The latter are modules of the form p C(X)®, where
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C(X)®M = C(X) x ... x C(X) (M-times), p € Maty (C(X)) (M x M matrices with
entries in C'(X)) is an orthogonal projection (p?> = p = p’) and M is some positive integer
(M > q).

The I'-functor sends any (rank ¢) Hermitian vector bundle ¢ : & — X in the Hilbert
module of its continuous sections I'(&) ~ pC(X)®M (isomorphism of Hilbert modules)
and any strong bundle map (i.e. a map which induces the identity in the base space) [ :
& — & in a Hilbert module endomorphism I'(f) € Endc(x)(I'(&)) ~ Endg(x) (pC(X)®M).
Any strong bundle map f can be seen as a section of the endomorphism bundle ' :
End(&) — X. This identification defines an isomorphism (of C'(X)-modules preserving
the composition) between the set of the strong bundle maps and I'(End(&’)). The equiv-
alence of categories induced by I" implies the localization isomorphism Endq(x)(I'(€')) =~
['(End(&)). The isomorphism of C'(X)-modules (preserving the composition) (Gracia-
Bondia et al. 2001, Lemma 2.18)

Endg, ) (pC(X)®) = pMata (C(X))p

shows that the identity endomorphism is in Endoc( x(PC(X Y®M) since the C*-algebra
C(X) is unital. This implies that

End ) (pC(X)®M) = Endc ) (pC(X)®M)

since the compact endomorphisms form an essential ideal (Gracia-Bondia et al. 2001,
Proposition 3.2). |

In Proposition [4.7.7| we proved that the Gel'fand isomorphism and the Bloch-Floquet
transform equip the wandering nuclear space ® with the structure of a (left) pre-C*-
module over C(T?) by means of the (left) product « defined by and the pairing
{; } defined by (4.31). The closure of ® with respect to the module norm defines a
Hilbert module over C(T%) denoted by Qs C H. In this description what is the role
played by 24? Is it possible, at least under some condition, to interpret the elements
of 2 as endomorphism of the Hilbert module 2g? One could try to answer to these
questions by observing that for any O € %, any Ay € & and any ¢ € Qg one has that
O(f x¢) == OAyp = A;Op. The latter might be interpreted as f x O(y), implying
the C(T)-linearity of O € 2 as operator on Qg. However it may happen that Oy ¢ Qg
which implies that O can not define an endomorphism of 2s. Everything works properly
if one consider only elements in the subalgebra 2A° C 2 defined by

A0 .= {OeA : O: Qg — Ns}- (4.35)

PROPOSITION 4.7.14. Let Qg be the Hilbert module over C(T") defined by means of the
Bloch-Floquet transform according to Proposition Let 22, be the C*-subalgebra
of 2 defined by A2, = {0 € A : 0,0 € A°} (self-adjoint part of A°). Then AL, C
EndC(TN)(Qg).
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Proof. Let O € 2!, . By definition O is a linear map from Qg to itself; it is also C(T%)-
linear since O(fxp) = OArp = A;Oyp as mentioned. We need to prove that O is bounded
with respect to the endomorphism norm (4.33). From the definition of the module
norm ||| - ||| it follows that

110¢]l| = supiery [[UsOP) (B = supiery |7 (O0) Use) (D) le < 1Ol [llelll - (4.36)

where 7,(0) := Us|, O Z/{6|t*1 defines a representation of the C*-algebra 2 on the fiber
Hilbert space KC(t) and ||m(O) || %k (1)) < |0z since any C* representation decreases
the norm. Thus [|O|lgnde) < Ol 2(x), therefore O defines a continuous C(TN)-linear
map from (g to itself. To prove that O € Endgyv)(Q2¢) we must show that O is ad-
jointable, which follows from the definition of 21, . [ |

It is of particular interest to specialize the previous result to the case of a finite
wandering system.

THEOREM 4.7.15 (Bloch-Floquet endomorphism bundle). Let {H,2, S} be a physical
frame where G is a Z"-algebra with generators {Ui,...,Unx} and wandering system
{¥1,...,9q} of finite cardinality. Then:

(i) A0, =A%

(i) Us A° Us™ C T(End(&s)) where o : & — TV is the rank q Bloch-Floquet vector
bundle defined in Corollary

Proof. To prove (i) let O € A° and observe that if Oy, = Y7 >/~ agfg UYy, then

Olhy = S0 Spepv @y U=ty Since Ouy, € Qe, then f17(t) = Y, pv af)) 22(t) is a

continuous function on TV and

q
1|0 ey ||[* = Sup;cTN; (Z |f]£h)(t)|2> < +o0.

h=1

Then Oty € Qg for all k = 1,...,q. Since OT(Uby) = U*(OTyy) € Qg for all b € ZV it
follows that also O € 2°. Point (ii) is an immediate consequence of Proposition [4.7.14]
Corollary4.7.11|and Proposition |4.7.13 [

EXAMPLE 4.7.16 (Mathieu-like Hamiltonians, part four). It is immediate to check that
both u and v preserve the wandering nuclear space ®p;, so that the full C*-algebra
Ql;éq consists of endomorphisms for the Hilbert module realized by means of the Bloch-

Floquet transform U%' Theorem (4.7.15| claims that Z/{GK4 maps Qli//f in a subalgebra of
the endomorphism bundle associated to the trivial bundle T x C? — T. The matrices u(t)
and v(t) in Example are a representation of the generators v and v as elements of
I'(End(T x CY)) ~ C(T) ® Mat,(C). <>




Chapter 5
The geometry of Hofstadter and Harper models

On se persuade mieux, pour lordinaire, par les raisons
qu’on a soi-méme trouvées, que par celles qui sont venues
dans lesprit des autres.

(People are generally better persuaded by the reasons
which they have themselves discovered than by those
which have come into the mind of others.)

Blaise Pascal
Pensées, 1670

Abstract

This final chapter aims to present the proofs of the “geometric” results of this thesis,
that is Theorem and Theorem In Section we derive the (standard)
physical frames for the Hofstadter and Harper representations. This first step shows
that the theory of the (generalized) Bloch-Floquet decomposition, developed in Chapter
can be applied successfully to systems in Hofstadter or Harper regime. Employing
the machinery of the Bloch-Floquet decomposition, we derive in Section 5.2]the bundle
decomposition of the Hofstadter (resp. Harper) representation, as well the geometric
structure of the Hofstadter (resp. Harper) vector bundle. The content of these first
two sections provides the proof of Theorem Finally, the proof of Theorem
is achieved is Section In this last section, we derive the geometric duality be-
tween vector subbundles of the Hofstadter or Harper vector bundles related to a given
“abstract” projection, according to the “two-fold way” (2.44).

5.1 Standard physical frames

5.1.1 Representation theory of the NCT-algebra
he representation theory of the NCT-algebra depends heavily on the fact that the
deformation parameter is rational or irrational.

Irrational case

The representation theory of the NCT-algebra is particularly simple when the deforma-
tion parameter is irrational (Boca 2001, Theorem 1.10):

- Simplicity and faithfulness: If 6 € R\ Q then the NCT-algebra 2, is simple,
i.e. it has no non-trivial closed two-sided ideals. This implies that any (non-trivial)
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representation 7 : Ay — HAB(H) is faithful whenever the deformation parameter is
irrational.

Rational case

The representation theory in the case of a rational deformation parameter is less simple.
First of all, in this case the NCT-algebra has finite dimensional representations. Let
6 = M/N (according to Convention [2.4.3) and define U := U(1) and V := V(1) as in (2.40),
namely

1 0 0 ... 0 0 0 .0 1
0 e2™% 0 .0 100 ...00
- M
v |00 el N v 0 1 0 5.1)
Do : .0 s e 000
0 0 0 .0 000 0 0
00 0 . er(N=D 000 ...10

A straightforward computation shows that UV = e?™VU, moreover C*(U,V) =
Maty (C) (Boca 2001, Lemma 1.8), namely U and V are a frame of generators for Mat (C).
For any z = (21,22) € T? the maps 7.(u) = 21U, 7.(v) = 22V define a surjective repre-
sentation of 2y (c.f. Section surjective representation property) which is not faithful
since UV = VV = 1. The representation theory of the NCT-algebra for rational values of
the deformation parameter is established in (Boca 2001, Theorem 1.9, Proposition 1.11):

- Irreducible representations and homogeneity: Let 6 = M/n as in Convention
Each irreducible representation of 2l.,/y is unitarily equivalent to one of the
representations 7, : 2y — Maty(C), with 2 € T2. Moreover, two irreducible
representations 7, and w,, are unitarily equivalent if and only if there exist two
N-th roots of unity w; and wy such that z;- = wjz; with j = 1,2. It follows that %,y
is a N-homogeneous C*-algebra (Definition [4.6.10).

- Faithfulness condition: A (surjective) representation 7 : %/, — C*(U,V) de-
fined by 7(u) := U, n(v) := V is faithful if and only if C*(U", V") is isomorphic to
C(T?).

Canonical bundle representation

Let 51(-), 72(-) be the generators of C(T?), i.e. 7;(z) := 2, i = 1,2, for any z = (21, 22) €
T2. Define U(-) := 71(-) ® U and V(-) := 72(-) ® V. Both U(-) and V(-) are elements in
C(T?) ® Maty(C) ~ C(T?;Maty(C)). Let T? x CV — T2 be the rank N trivial vector
bundle. The C*-algebra C(T?; Maty(C)) coincides with the family of continuous sections
of the related endomorphism bundle, i.e. C(T?;Maty(C)) = I'(End(T? x CV)).

- Canonical bundle representation: Let § = /N as in Convention The
map I1(u) = U, [I(v) = V defines a x-isomorphism between 2./, and C*(U(-), V(-)) C
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['(End(T? x C")) (Boca 2001, Corollary 1.12). We refer to II as the canonical bundle
representation.

Any p € Proj(2y) is mapped by II in a projection-valued section II(p) := P(:) €
I'(End(T? x CV)). According to Lemma [2.7.3, the orthogonal projection P(-) defines a
vector subbundle .#(p) — T? of the trivial vector bundle, whose total space is given by

= | | Im(P). ~{(z,v) e T> x CV : P(z)v=v}. (5.2)
z€T?

Even if Z(p) is a subbundle of a trivial vector bundle, its topology can be non-trivial.

PROPOSITION 5.1.1. Let § = M/N as in Convention For any p € Proj(A5,,) the
associated vector bundle 1 : £ (p) — T2 has rank Rk(p) := N f (p) and first Chern
number

Ci(L(p)) = —N &y (p)

where €, is defined by equation (2.51).

Proof. Let z — Rk(P(z)) the function which associates to any » € T? the dimension of
the orthogonal projection P(z) € Maty(C). Since the range of this map is discrete and
the domain is connected, to prove that it is constant it is enough to prove that it is locally
constant. The latter claim is proved in (Boca 2001, Corollary 1.22). Let Try be the trace
on Maty (C) and observe that

1

— TI‘N (U(Z)HV(Z)m) dz = 5n,05n,0 :JC (u"nm)

N T2
where dz = dkindk2/(27)2 is the normalized Haar measure. Since the x-morphism II is
injective, it follows that = (% [» Try) oIl Since Try(P(z)) = Rk(P(z)) = cis constant,
it follows that f (p) = & [p2dz = %

From the definition of the canonical derivations (equation (2.50)) it follows that
(5 (a)) = (270y; @ 1d)(T1(a)), aeAF,

where the derivative 9, is defined using the parametrization z(k) = (e’*1,e’*2). Then,
using (2.51) one has

&) = (55 [, Tow (P00, PU(0): 0 P di ).

The quantity in brackets in the right-hand side coincides with the (differential geomet-
ric) definition of the first Chern number of the vector bundle (5.2). [ ]

5.1.2 Standard physical frame for the Hofstadter representation

his section aims to show that the Hofstadter representation admits a natural (or
standard) physical frame (Definition [4.1.2) with a Z2-algebra of symmetries. We
start with an analysis of the structure of the Hofstadter representation.
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Faithfulness of the representation and the GNS construction

Every state on a C*-algebra induces a cyclic representation on a suitable Hilbert space.
If the state is faithful then the representation in injective. This is the content of the
GNS Theorem (Bratteli and Robinson 1987, Theorem 2.3.16). We want to build the GNS
representation of 2, relative to the faithful state f defined by (2.31). We can use f to
convert the Banach space structure of the algebra 2l into a pre-Hilbert space structure
by means of the positive defined scalar product

(a;b) :=F (a*b). (5.3)

Obviously (a; a) = 0 if and only if a = 0, since f is faithful. Each a € 2 can be identified
with a vector v, of a suitable pre-Hilbert space endowed with the scalar product induced
by (5.3). The completion of the space with respect to the norm induced by defines a
Hilbert space denoted by Hgns. Any a € 20y defines a linear operator mgns(a) acting on
on the dense subset {¢p : b € Ap} C Hens as maNs(a)¥p := Yqp. A simple computation
shows that ||rgns(a)¥sllans < |||l [|[¥s]lgns, hence mgns(a) has a bounded extension to
whole Hans. By construction the vector @ := vy is cyclic, indeed

[mans(Rg) @] := {Ya = Tans(a)w @ a € Ag}

is dense in Hgns by construction. Moreover

(w; ”GNS(C‘)W)HGNS :JC (Cl) a e Ag. (5.4)
Equation (5.4) shows that mgNs is an faithful representation since  is faithful.

Let &,.m € Hgns be the vector associated with the element e ™™ ymp™ € 2y, i.e.
Enym = Ye—innmo ynym. A straightforward computation shows that {&, ., }n mez provides
an orthonormal basis for Hgng with respect to the inner product (5.3). The action of
mgNs(u) and mgns(v) on this basis is given by

{ Tans(W) Enm = €™ &y m

, (5.5)
7TGrNS(U) émm = eimng gn,m+1-

Let {¢n.m nmez be the Fourier basis of Hy = L?(T?, d?k). From 2.7), with § = —,¢0,
it follows

Somm(kla k2) = %ei( . (5.6)

—imnf

imm6
uo Pnm = € Pn+lm 1 nki+mksa)
Vo Pnm = € Pnm+1

Then the unitary map W : Hgns — Ho defined by W&, , = ¢p m, intertwines the repre-
sentations mgng and 7, indeed

Wrgns(W)W ™ = Uy = mo(u), Wrgns(0)W ™! = Vo = mo(b).

Since mgns and 7wy are unitarily equivalent and wgng is faithful it follows that = is
faithful as claimed in Lemma
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Hofstadter von Neumann algebra

We refer to Appendix for basic notions about von Neumann algebras. Let 9t)(2(y) :=
70(2g)” be the von Neumann algebra associated to 2y in the Hofstadter representation
(named Hofstadter von Neumann algebra). The von Neumann density Theorem (Bratteli
and Robinson 1987, Theorem 2.4.11) states that M,(Ay) C HB(Hp) coincides with the
weak (equiv. strong) closure of (). The vector ¢y o = 1/2r is cyclic and separating for
Mo(Ap) and the vector state induced by ¢ extends to a faithful normal tracial state
on MNy(Ag) (Boca 2001, Lemma 1.13). According to the usual nomenclature, M (Ay) is
a standard and finite von Neumann algebra. Moreover if 6 is irrational then 9t,(2y) is
a hyperfinite factor of type II; according to the classification of Murray-von Neumann
(Boca 2001, Lemma 1.14 and Corollary 1.16).

The commutant of the Hofstadter representation

The commutant of 7 (2ly), i.e. the von Neumann algebra 7 (2ly)" = My(Ay)’, plays a spe-
cial role in this work. A straightforward computation shows that the unitary operators
Uy and Vg defined on the Fourier basis of H, by

(5.7)

zTrnG

~ ol
Uop Pnm = e’ Pn—1,m
VO Pn,m = Pn,m+1

are element of the commutant since they commute with the generators U, and V, of
70(2Ag). From (5.7) it follows that

ﬁo@o = eizﬂ-e i}oﬁo, (58)
namely ﬁo and T?O define an alternative representation of 2ly on the Hilbert space H,.

PROPOSITION 5.1.2. The commutant mo(y)" of the Hofstadter representation mo(2y) is
generated in B (Ho) as the weak (equiv. strong) closure of the polynomial algebra spanned
by the unitaries UO and \70

Proof. Let A € my(2y)’. For any vector ¢, ,, of the Fourier basis one has Ay, ,, =
S ke 0V os with {a\™}jkez € €(Z2). The conditions [A; U] = 0 = [A; Vo] imply
that

() _ geimllemt gt gl _ gmin(a=g)0 gnm), (5.9

Using the definitory equations (5.7), a straightforward computation shows

ﬁén—j) %k_m)(p ﬁ( 7) (e zwn(k—m)@wmk) — gimn(k—m)0 gimk(n—j)6 Dk (5.10)
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Solving (5.10) with respect ¢; ;, and using (5.9), one has

A'¢n,m _ Z a;’zm) (e—iwn(k—m)ﬁ e—iﬂk(n—j)@ ﬁ((]”—j) T?(()k_m)SOn,m>
J,k€EZ

- a%m) <efm(k7m)e>" (efiﬂ(nfj)O)k Qo) y=m | o,

J,k€EZ

_ (0,m—k) 77(n—j) (k—m) _ (0,—k) 775 Hk

- Z @5 _n,0 uO VO Pn,m = Z a_jo uo VO Pn,m-
§,kEZ J,k€EZ

Since the previous equation holds true for any vector ¢, ,,, of the Fourier basis, it follows

=i 0,—k
that A = Zj,keZ aj g U V'g where o), := a(_j70 ) = (05,01 AP0,k ) Ho- |

The Hofstadter physical frame

The separable Hilbert space H, and the C*-algebra m(2ly) C #(Hy) are two ingredients
for a physical frame (Definition[4.1.2). To complete the physical frame structure we need
to select a maximal commutative subalgebra inside the commutant 7((2y)’. Let 6§ = M/N
(as in Convention [2.4.3). In view of the commutation relation (5.8) it is easy to check
that &y := C* (ﬁo, \A%V ) defines a commutative C*-subalgebra of mo(Aar/y)".

LEMMA 5.1.3. The C*-algebra & is maximal commutative inside the commutant mo(An/y )"

Proof. Let A=3",, aj,kﬁé \Aﬂg be an element in 7 ()’ such that [ﬁo; Al=0= [T?év; Al.
A direct computation shows that o, # 0 only if £ € NZ, which means A € &,. |

The triple {Ho, mo(Anr/y), So} is a physical frame. We refer to it as the standard
physical frame of the Hofstadter representation (or simply Hofstadter physical frame).
It is immediate to recognize that the set {¢¢ ;};—o,.. ~n—-1 C Ho, where ¢, ,, is defined by
(5.6), is a wandering system of cardinality N for Sy. It follows that &, is Z2?-algebra
(claim (iii) in Proposition [4.5.2). We refer to {¢¢,;};—0,..n—1 as the standard wandering
system for the Hofstadter representation.

Obviously & is not the only maximal commutative C*-subalgebra of 7 ()", In-
deed let p,q be two integers such that p¢ = N, then C*(ﬁg,\?g) is another maximal
commutative C*-subalgebra of (/)" different from &y, with a wandering system
of cardinality N given by {¢; ;}i=o,..p—1j=0,..q—1. The ambiguity in the choice of the
algebra of symmetry is solved by Proposition Since 2/ is a N-homogeneous
C*-algebra and 7 is a faithful representation it follows that there exists a unique equiv-
alence class of irreducible physical frames with wandering property for the Hofstadter
representation. Therefore there is no loss of generality fixing the Hofstadter physical
frame {Ho, mo(An/y ), o} as the standard representative of this class.
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5.1.3 Standard physical frame for the Harper representation

n this section we derive the (standard) physical frame for the Harper representation.
As in the previous section, we start with an analysis of the structure of the Harper
representation.

Faithfulness of the representation and generalized eigenvectors

We start this section giving the proof of Lemma [2.3.4] which states that the Harper
representation 7, : Ay — C*(Uoo, Vo) C #(Hoo) is faithful.

The claim is certainly true when 6§ € R\ Q since in this case any representation of
2y is faithful, as explained at the beginning of Section[5.1.1] Then, we can assume that
9 = M/N (as in Convention [2.4.3). Under this hypothesis the faithfulness of ., follows if
one proves that C*(UY, VY) ~ C(T?) (c.f. Section[5.1.1).

The Gel’fand-Naimark Theorem states that C*(UY, V) ~ C(X) where the Gel’fand
spectrum X is (homeomorphic to) the joint spectrum of UL, and VY (Hérmander 1990,
Theorem 3.1.15), the latter being the set of the common generalized eigenvalues of UY,
and VY (Samoilenko 1991, Proposition 2). In view of that, we have to prove that for
any k = (k1,k2) € [0,27) x [0, 27) there exists a sequence {wj(-k)}jeN C Hoo of normalized
vectors such that

U — e 1), —0, (VY —e*2 1)y, —0, i j— +oo.

This would mean that the joint spectrum of U and VY is the full torus T2, thus it yields
C*(UY, V) ~ C(T?). To complete the proof we exhibit the generalized eigenvectors,
namely

where ;(z) := 4/ M(]gigfil)g(xjg) and o is any smooth positive function supported in (—1, 1)
which satisfies the normalization condition ||¢|3, = [; o(2)? dz = 1. The function g;
is supported in (—1/;2,1/;2) with square-norm and this is enough to show that

) |
2, =250 lgllZ, = 1.

_N
M(2j+1)

Harper von Neumann algebra

Let Moo (Ag) := 70(™Ug)” be the von Neumann algebra associated to 20y in the Harper
representation (called Harper von Neumann algebra). As usual M, (y) coincides with
the the weak (equiv. strong) closure of 7, () in B(H). Contrary to the Hofstadter
case, the von Neumann algebra 9., (2ly) is not standard (whenever 6§ # +1), indeed if
|6] < 1 then M (Ap) has a cyclic but not separating vector, while if [#] > 1 then 9t (2y)
has a separating but not cyclic vector. The obstruction for 91.,(2ly) to be a standard von
Neumann algebra is discussed by G. G. Emch in (Emch 1996) and follows as a corollary
of two general results, one by M. A. Rieffel (Rieffel 1981, Theorem 3.2) and the second
by M. Takesaki (Takesaki 1969, Theorem 3).
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The commutant of the Harper representation

The latter paper by Takesaki is of particular interest in this work since it provides an
explicit description for the commutant 7., (2y)’ = M- (2Ay)’. A simple computation shows
that the unitaries

Uso () = &5 % 9(x)
¥ € Hoo (5.11)

Voo t(z) = 9(a — 1)

are elements of the commutant 7., (2ly)’ since they commute with the generators U, and
Voo of the algebra 7, (2y). Moreover,

~ ~

UV = €5 ViU, (5.12)

namely the unitaries Uso and Vo, define a representation of 2/, on the Hilbert space
Hoo. Since Takesaki proves that M. (™Ag)" = Moo (2Ar/s) (Takesaki 1969, Theorem 3), one
has

PROPOSITION 5.1.4. The commutant 7o (2Ag)’ of the Harper representation of 2y is gen-
erated in B(Ho) as the weak (equiv. strong) closure of the polynomial algebra spanned

o~

by the unitaries U, and T7oo.

The Harper physical frame

Similarly to the Hofstadter case, the separable Hilbert space H,, and the C*-algebra
Too(Up) C B(Hoo) are two ingredients for a physical frame. To complete the structure, we
need to select a maximal commutative subalgebra inside the commutant 7, (2ly)" which
is generated by the unitaries Uso and Voo. Let 6 = M/N (according to Convention .
In view of the commutation relation (5.12), it is easy to check that S = C*(Uss, VM)
defines a commutative C*-subalgebra of m, (% )’. With the same proof of Lemmam
we have

LEMMA 5.1.5. The C*-algebra 6, is maximal commutative inside the commutant moo(An/y ).

The triple {H o, Too (2ar/y ), S0 } is a physical frame and we refer to it as the standard
physical frame of the Harper representation (or simply Harper physical frame). In order
to select a wandering system for &, we introduce the following family of vectors

N .
M lf xTr € Ij70
Xjn(T) = (5.13)

0 otherwise,
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where, for any j,n € Z, the intervals I, ,, are defined by

[jN-i—nM,(j—Fl)NﬂLnM) if M >0
Ly = (5.14)

M M
The family {x;};—o,.. . n—1 C Heo, With x; = Xxj0, is a wandering system of cardinality N
for G,.. Indeed, a simple check shows that

-1 —
R=J U L = Hoo =~ P P L(1;0). (5.15)

7=0 neZ J neL

=

Il
o

The characteristic function of each interval I;,, is obtained as x;, = ynM Xx; and the
family of vectors eizﬂ%mxxjﬁn = ﬁgoxj,n, with m € Z, provides an orthonormal basis
for L2(Ij7n). We refer to {x;}j=0,..n—1 C Hoo as the standard wandering system for the
Harper representation. It follows that &, is a Z2-algebra (claim (iii) in Proposition

4.5.2).

Obviously, as in the case of the Hofstadter representation, S, is not the only commu-
tative C*-subalgebra of 7 (2/y)'. However, as in the previous case, Proposition
the N-homogeneity of 2./ and the faithfulness of 7, assure that there is no loss of
generality fixing the standard physical frame {H,, 70 (2y), S} as the representative
of the equivalence class of the irreducible physical frames with wandering property.

5.2 Bundle decomposition of representations

5.2.1 Bundle decomposition of the Hofstadter representation

n this section we derive the bundle decomposition of the Hofstadter representation
Iaccording to Definition We use the technology developped in Chapter [4]to define
a generalized Bloch-Floquet transform F, which provides a direct integral decomposi-
tion of the algebra 7o (/). A relevant and essentially unique vector bundle structure
emerges from such a decomposition in virtue of properties of ;. The content of this
section provides the proof of claim (i) in Theorem [2.7.4

The Bloch-Floquet decomposition in the Hofstadter representation

The standard physical frame of the Hofstadter representation {Ho, 7o(%r/y), S0}, en-
dowed with the standard wandering system {¢q ;};j—o, . ~n—1 (c.f. Section deter-
mines the Hofstadter nuclear space ®, C Hy, as explained at the beginning of Section
Explicitly, the space ® consists of finite linear combinations of vectors ¢,, ,, (defined
by (5.6)) of the Fourier basis of H,.
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Equation (4.22), specialized to the standard wandering system {¢g ;};j—o,. ~—1 of the
C*-algebra &, reads

(k) := (Fowo,) (k) = Z e~ inkLg=imkz n YN ) j=0,...,N—1, (5.16)

nmez

where Fy denotes the generalized Bloch-Floquet transformE] associated to &g as in (4.17).
Obviously, has meaning in “distributional” sense. Any vector ¢; ; of the Fourier
basis defines a distribution (y; ;| (Dirac notation) such that (v; j|¢rs) = (¥ij; @rs)H, =
dir 0;s. With this notation, equation (5.16) reads

(k) = 3 eith1gimbagin(i+mNngl (o, j=0,...,N—1. (5.17)
n,mez

For any k € R?, equation defines a frame of N independent distributions {,(k) :=
{Q‘é (k)}j=o,....Nn—1 which span, inside & (distibution space) the Hilbert space H(k) ~ CN.
We can equip Ho(k) with the Hermitian structure given by the “orthonormality” of the
frame ¢, (k), i.e. by posing (¢}(k); Cg(k))k = 0;,;. It follows from Theorem m that 7
extends to a unitary map

@

Fo:Ho— [ Hol(k) dz(k). (5.18)
T2

We are now in position to exhibit the fiber representation of the algebra 7o (%) sub-
ordinate to the direct integral decomposition (5.18). Obviously (surjective representation
property, Section [2.3), it is enough to compute the generalized Bloch-Floquet transform
of the generators Uy and V. Firstly, one observe that

Up o, = Q12N ﬁal ©0,j Vo ©0,j = 0,j+1 j=0,...,N—1. (5.19)
Equipped with the notation
Uo(k) == Fo Uo Fy'|,, Vo(k) := Fo Vo Fo ], .
a simple computation shows that

. , , k) if j=0,...,N -2
Un(k Jk:e—ikleiznj% I (k), Vo (k) (1) — 0 e
o(R)G k) (k) oGO = s vy it =Nt
(5.20)
Thus, the matrices which describe the action of Uy (k) and Vy(k) on the space Hy(k) with

respect to the canonical basis fixed by the frame {,(k) are

Up(k) < U(e 1) = ey, Vo(k) « V(e*2) (5.21)

1To simplify the notation, we use the symbol F, instead Us,. The change is justified by noticing that
there is a unique equivalence class of irreducible Hofstadter physical frames (c.f. Section [5.1.2), which
allows us to replace & with 0, and by Remark [4.6.5] which allows us to replace ¢/ with 7.
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where U(-) and V(-) are defined by (2.40) and U := U(1). Matrices (5.21) provide a frame
for a representation of 20y on the Hilbert space Hg(k)

15 gy — C*(Uo(k), Vo(k)) = End(Ho(k)) ~ Maty (C).

The map Fy induces a fiber representation of 2./, which is unitarily equivalent to m,

namely
M Fo.. Fot ®
Anin —% mo(Wap) b [ wy) (Raayw) da(k).
T2

REMARK 5.2.1 (Irreducibility of the fiber representations). Let IL(¢) be the N x N unitary
matrix defined by

1 0 0 0
0 e'nt 0 0
0 0 e '~ 0
Lt):=| . . ) . , teR.
0 0 0
—i N1y
0 0 0 e N

L) UM L™ =U0), L) VO) LE) ™! = e v V(he'). (5.22)

k

23

L(—ky) V(e*2) L(—ky) ! = &'¥ V(1) = &'¥ V. (5.23)

It follows that the representation w(()k), defined by means of the generators (5.21), is
unitarily equivalent (via I.(—k»)) to the irreducible representation generated by e~**1 U
and ei% V (c.f. equation (5.1), Section . The unitary equivalence implies also the
irreducibility of w(()k) and this is in accordance with point (iii) of Theorem in view of
the irreducibility of the Hofstadter physical frame {Ho, 70 (%/x), S0} L 20

Hofstadter vector bundle

According to Theorem the standard physical frame {Ho, 7o(%a/y), G0} (c.f. Section
defines a rank N Hermitian vector bundle . : & — T? called Hofstadter vector bun-
dle. Moreover, the topology of & depends only on the equivalence class of the physical
frame {Ho, Wo(QlM/N), 60}.
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Bundle decomposition. To complete the proof of (i) in Theorem [2.7.4| we need to show
that the Bloch-Floquet transform F, induces a bundle decomposition of the C*-algebra
mo(Aar/y) over the vector bundle ¢ : & — T?, namely 7 mo(Anr/w ) 3’-'0_1 C I'(End(&)). In
view of Theorem it is enough to show that any element in 7y (/5 ) preserves the
Hilbert module €, the latter being the closure of the nuclear space ®; with respect the
module norm ||| - ||| (4.32). Equation assures that

uOICI)o—)(I)o, V01<I>0—>(I)0

are continuous linear operators, which implies that the dense subalgebra mo(£/y ) (finite
linear combinations of monomials UjV{") preserves ®y. As for equations (4.36), one can
prove that

1109l < [0l z(10) el p € o, O € mo(Lay/n)- (5.24)

The density of ®; implies that any O € mo(£1/y) extends to a bounded operator O : Qy —
Qo. Let {On}nen C mo(£ar/y) such that O, — O € mo(Anr/y) With respect to the operator
norm || - || 43, For any ¢ € Qq, inequality assures that the sequence {O,,p},en C
) converges in norm ||| - ||| to an element ¢ € Q. Inequality ||O¢||x, < |||O¢|||, which
follows from equation (4.32)), assures that » = O¢. This proves that any O € mg (/)
defines a bounded operator O : Q¢ — .

Topology. The geometric structure of the vector bundle ¢ : & — T? can be deduced from
the frame of sections ¢(-) := {¢}(:)}j=0,..n—1. It follows immediately from (5.17), that
the system of orthonormal sections satisfies the periodic conditions

Colk1, k2) = Co(k1 + 2mn, kg + 27m), (n,m) € Z%, (ki, ko) € R%,

Let Ho(k) C @ be the Hilbert space generated by the orthonormal frame ¢ (k). Clearly
Ho(k + 277) = Ho(k) ~ C» for any k € R? and v € Z?2, i.e. the Hilbert space Hy(k)
depend only on the equivalence class [k] € R?/27Z%. We use the usual identification
R2/2772 > [k] — z(k) = e”* € T? to denote Ho(z(k)) := Ho(k). The periodic conditions for
the frame (;(-) imply that the total space & := | |, .2 Ho(2) is isomorphic to the product
space T? x CV. In other words, ¢,(-) provides a global trivialization for « : & — T2,
which turns out to be trivial. The triviality of the vector bundle implies the vanishing
of the Chern classes and related Chern numbers (Husemoller 1994, Proposition 4.1). In
particular C(&p) = 0. The bundle decomposition induced by Fy and the triviality of the
Hofstadter vector bundle imply that

Fo mo(nyy) Fy ' € T(End(&)) ~ I'(End(T? x CV)) ~ C(T% Maty(C)),

namely the elements of Fo 7o (%r/y) Fy 1 are globally defined continuous functions over
T? with values in the algebra Maty (C). This is in agreement with equation (5.21).
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Uniqueness. The bundle decomposition induced by F, and the topology of ¢ : & — T2
depend uniquely on the equivalence class of the physical frame {Ho, mo(2a/y ), So} (The-
orem [4.7.9). In other words, equivalent physical frames defines unitarily equivalent
bundle decompositions over isomorphic vector bundles. As discussed at the end of Sec-
tion for the Hofstadter representation there exists a unique equivalence class of
irreducible physical frames with wandering property. This results implies the unique-
ness of the irreducible bundle decomposition induced by F, as claimed in point (i) of

Theorem

The bundle representation 7y := (... %, 1) oo has some features in common with
the canonical bundle representation IT defined in Section The mapping 7 allows
us to associate to any projection p € Proj(u/y) a vector subbundle of + : & — T2.
According to Lemma 7o(p) = Py(-) € T'(End(&)) ~ C(T?Maty(C)) defines a
vector subbundle of &, with total space

Zo(p) = {(2,v) e T2 x CV : By(2)v = v}, (5.25)

according to the notation introduced in (2.44), and projection ¢ : % (p) — T? defined by
1(z,V) = z.

PROPOSITION 5.2.2. Let § = M/N as in Convention For any p € Proj(A3°), let
L Z(p) — T? be the Hermitian vector bundle defined above. The rank of £y(p) is given
by Rk(p) := N f (p). Moreover, denoting by Cy(p) := C1(Z(p)) the first Chern number of
the vector bundle £, one has that Cy(p) = €,(p).

Proof. Let f_; ) : T? — T* be the continuous map defined by
feun(z22) = (211, 2)), (21,22) € T?.

The pullback vector bundle of #,(p) induced by f(_; ) (c.f. Appendix |C) is the vector
bundle over T? which has total space

fany Zo(p) = {(2,p) € T? x Zy(p) : fi-1,m)(2) = (D)} (5.26)

where p is any point in % (p) and ¢ is the canonical projection of .%(p) over T2. The
canonical projection of the pullback Xector bundle is defined by //(z,p) = z,Ahence i (z) =
{2} x "1 (f_1n)(=)) and the map [ : £, \Zo(p) — Z(p) defined by f(z,p) = p is
linear isomorphism between the fibers /' (z) and .~ ( f-1,n(2)) (and it is also a vector
bundle map). The identification /' (z) ~ 1 ~'(f_, x(z)) and the observation that

N feany(2) ={v e CY : Py(f1n)(2))v = v}
show, according to the notation in (5.25), that

fEan Zop) ~{(zv) eC : Rz, 2 )v = v} (5.27)
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Let p = Fj(u,v) be the expression of the abstract projection in terms of the abstract
generators of 2y. Using equation (5.21)), one has that

Po(z1 ' (k), 23 (k) = Fp(U(e™), V(e™"2)).
By using the results of Remark[5.2.1] we can write
Po(z1 ' (k), 25" (k) = L(~Nky) Fy(21(k)U, 22 (k)V) L(~Nkz) !

= IL(—Nks) P(z1(k), 22(k)) L(—Nkg)

where P(-) :=II(p) is the projection-valued section in C(T?) ® Maty(C) associated to the
abstract projection p by means of the mapping II. Since the unitary matrix L(—Nky) is
globally defined, and so define a global change of the orthonormal frame in the fibers, it
follows that

fany Zo(p) = Z(p) (5.28)
where the vector bundle .Z(p) is defined by equation (5.2).

The first consequence of the identification (5.28) is that the rank of the vector bun-
dle Fim Z(p) coincides with the rank of the vector bundle .#(p) which is Rk(p) by
Proposition The first part of the claim follows by observing that the operation of
pullback does not change the dimension of the fibers.

The second part follows from C;(Z(p)) = —N¢&,(p) proved in Proposition [5.1.1] and
Ci(Z(p)) = Cr(f £(p)) = —NC1(Z(p)) as a consequence of Lemmaw [ |

5.2.2 Bundle decomposition of the Harper representation

e derive in the present section the bundle decomposition of the Harper representa-
W tion using the technology developed in Chapter {4, We define a generalized Bloch-
Floquet transform 7., which provides a direct integral decomposition of the algebra
Too(2ar/y) and selects a unique vector bundle structure emerging from such a decompo-
sition. The content of this section provides the proof of claim (ii) in Theorem [2.7.4

The Bloch-Floquet decomposition in the Harper representation

As explained at the beginning of Section [4.6), we can use the standard physical frame
of the Harper representation {Hoo, Too (Aar/y ), &oo } and the standard wandering system
{xj}j=0,...N-1 (see Section to build the Harper nuclear space @, C H~. Explicitly
the space ®., consists of functions supported on a finite number of intervals I, ;, see
(5.14), such that inside each I,, ; C R they are polynomials in 27377 Therefore, the ele-
ments in ¢, are well defined compactly supported functions on R, which are everywhere
smooth except at the points z;,, := jM/N+nM,j=0,...,N —1,n € Z.

Equation (4.22), specialized to the standard wandering system {x;};—o,. n—_1 of the
C*-algebra G, gives

(k) = (Fooxy) (k) = > e7mhemimha qn Yy, j=1,...,N, (5.29)

nme”Z
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where F,, denotes the generalized Bloch-Floquet transform associated to S, as in (4.17)
(for the notation c.f. Note [1]in Section [5.2.1). The distributions (5.29) can be rewritten
in a more convenient form.

PROPOSITION 5.2.3. For any (ky, ko) € [0,2n)? the distributions (L, (k) € ®* act on ®o

as
—imk k1 .
; \/ E e 25[ ( +]>mM] j=1,....,N (5.30)

meZ

where 6(- — xo) acts on p € ®, as the evaluation in xo (Dirac’s delta), i.e. ((- — x);9) =

Y (o).

Proof. For any i) € &, one has

(s, VM ) = (s U Vo w)

| N M
— (signf) i / e~i2m ATy, <x+ jN+mM> de. (5.31)

Let ¢ : Ip,) — C be the function defined by

o(x) =1 <a:+j]\]§+mM>,

with Iy o defined by (5.14). The definition of ®., implies that ¢/, when restricted to any

interval I; ,,, is a finite linear combination of the exponentials e'”" 71", Then, one has

fin . N . N % N
= Z b, @2 ¢n = (signf) ’M‘/ e 2T ¢ (1) da (5.32)
0

ne”L

for any x € Iy . A comparison between (5.31) and (5.32) shows that

M
N n m . N N _ior O)nx n
T B (U, VM yj54p) = (signd) IMI/o 2 ST () A = Gsignoyn-

The above equation implies

Z eilnkl un VmM X35 w \/ Z d) (signé)n anl \/ Z ¢ 51gn0)n Z2TF‘M| (‘ v g}r)

neL nez nez
iomr LJ) M kl
™M™\ N 2 o
RS o(a)
n

where we used (5.32) whenever 5. ¢ [, i.e. k; € [0,27). In view of the definition of ¢,
one has

A M| (Mk M
§ : f'mklun VmM . — | 1 M
<n€Ze oo Yoo XJ7¢> N 1/}<N2 + N+m
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Finally, for any ¢ € ®, one has

-y Z e[y (3 ) o]

meZ

which implies (5.30). [ |

For any k € [0,27)2, equation defines a frame of N independent distributions
Coolk) := {ggo(k)}jzo ..... ~—1 which span, inside @} (distibution space) the Hilbert space
Hoo (k) ~ CN. We can equip Hoo (k) with the Hermitian structure given by (C% (k); 2o (k) =
0; ;. It follows from Theorem that 7, extends to a unitary map

@
Foo i Hoo — | Hoo(k) dz(k). (5.33)
T2

Analogously to the case of the Hofstadter representation, we can exhibit the fiber
representation of the algebra 7. (/) subordinate to the direct integral decomposition
(5.33) by computing the generalized Bloch-Floquet transform of the generators U, and
Voo Let

[M]

‘ ) ﬂ,i N 1 _ 21
0i2TT — Z a, ez2 IMlnz’ a, = ZQW((|M’9_ n]]:[)) (5.34)

ne”L

be the Fourier expansion of e?>"® restricted to the interval = € Iyo. The symbol = means
that the series converges in L?-norm. Moreover, the series converges pointwise in the
interior of Iy y. Observing that

Uso xj(x) = eZ2”Xj(x) = 922W%J612W<$_]%)Xj($) #0 if z— ]N € Ioo

and using the L?-expansion (5.34), one has

Use xj(z) = Zgﬂ M Za elQW‘M‘n z—j N)X]( ) = eiQw%j Za” ﬁgiigne)n Xj(x)- (5.35)
nez ne”
It follows that
< Z efinklefimkgﬁgo T?géM uij;¢>
nmez
— o—i2nhj Zaﬂ Z e~ k1 gmimkaq [ (Signd)L YAy ) (5.36)

LEL nme”Z

. M . . ~ ~
—=e ©2TNI <Z ay ei(signf) kl@) Z e MhgTimhaq(n YMMy gy,

LET n,me”z

In view of (5.34), one has

(Z ag ei(signﬁ)lﬂﬁ) = e*l’%klzp, in &, C Hoo

LeZ
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The arbitrariness in the choice of the test function ) € ®., in (5.36) implies
Z efinklefimkzﬁgo QZM uooXj _ ei%kl ei27r%j Z efinklefimkgﬁgo i\?géMXj
n,me”L nmeZL
where the equality is in distributional sense, i.e. as element of ®} . Equipped with the
notation
Uso (k) = Foo Uso Fi'] . Voo (k) 1= Foo Voo Fiai |,

the above equation reads

Uoo (k) (L (k) = N1 27N ¢J_(k), j=0,...,N—1. (5.37)

The second generator V., acts on the vectors of the wandering system as

(5.38)

(Voo xv-1)(@) = xo(z — M) = (VM x0)(x)

then .
. CHYk)  if j=0,...,N—2
Voo (k) (B) =9 1) o L (5.39)
e (o (k) if j=N-1.
From equations (5.37) and (5.39) one deduces the matrices which describes the action
of Uso (k) and Vo (k) on the space Hoo (k) with respect to the canonical basis fixd by the
frame {_ (k); explicitly

M

Uoo (k) < U(e!NM) = ! ¥ M1, Voo (k) < V(e'2) (5.40)
where U(-) and V(-) are defined by (2.40) and U := U(1).

The matrices (5.40) are the frame for a representation of ./, on the Hilbert space
Hoo (k)
78 Uniyy — CF(Uso (), Voo (k) = End(Hoo (k) ~ Maty (C).

The map F, induces a fiber representation of 2,//y which is unitarily equivalent to 7,
namely
Too ]—'oo...]-'o_ol ® (k)
Q[M/N i WOO(QlM/N) — T (Q[M/N) dZ(k‘)
T2

Analogously to the Hofstadter case, one can prove that the representations %) are

irreducible (c.f. Remark [5.2.1). This is in agreement with point (iii) of Theorem in
view of the irreducibility of the Harper physical frame {H o, Too (%a1/x ), S0 }-

Harper vector bundle

According to Theorem the standard physical frame {Ho, oo (Ur1/y ), G0 } (c.f. Sec-
tion defines a rank N Hermitian vector bundle ¢ : &, — T? called Harper vector
bundle. Moreover, the topology of &, depends only on the equivalence class of the phys-
ical frame {H oo, Too (2Arr/y ), Goo }-



152 5. The geometry of Hofstadter and Harper models

Bundle decomposition. To complete the proof of (ii) in Theorem [2.7.4] we need to show
that the Bloch-Floquet transform 7, induces a bundle decomposition of the C*-algebra
Too(Un/y ) OVer the vector bundle ¢ : & — T2, namely Foo Too(Anryy) Fo! C T(End(&x)).
In view of Theorem it is enough to show that the any element in 7o (2x/y) pre-
serves the Hilbert module 2, which is the closure of the nuclear space ®,, with respect
to the module norm ||| - ||| (4.32). Analogously to the Hofstadter case, the claim follows
from a density argument provided that

Uoo : oo — Noo, Voo : Qoo — Qo (5.41)

The analysis of the generator V., is simple. Indeed, equations imply Voo : @y —
&, which by density proves the second of (5.41).

The analysis of U, requires more care. Firstly we need to show that Uox; € Q
for any vector y; of the wandering system. This means that we have to prove that
|/ Uso x;j]|| < +00. In view of equation (5.35), one has

fin
11Uoo X117 = 111D an(UEED™ )|

ne”L

definition (4.32) of ||| - |||

= SUPgeopmp |l Y an € FEC (k)17
nez

. i(signf)(n'—n)k
= Supk’16[0,27r) Z Ay, Ay eZ( gnd)(n'—n)k1

n,n/€Z
ki |M]|
i(signd)2m - (n/ —n) ( 2L L
= Supkle[O,Qﬂ) E Ay, Ay € [M] (277 N ) < 400
n,n/€Z

. . +i2 . .. . )
since the series ) _, ane 2w * (5.34) converges pointwise in Iy and in particular to

e*2™ in the interior of Iy . Since UxX; € Qs for any xj, it follows that Us oo — Qoo
The density of ®., and the inequality (5.24) imply the first of (5.41).

Topology. The geometric structure of the vector bundle . : &, — T? can be deduced
from the frame of sections ¢..(-) := {¢}(-)}j=0...n_1. It follows from that the map
¢ (), which associates to any k € [0,27)? a frame of N independent elements in ®7_, can
be extended to the whole plane R? by means of the following covariance condition

N-1
Lolhr +2m, k) = > Gk, ko) ¢L(kr, ko)
=0 (5.42)

¢l (ks ko +2m) = (Lo (ky, ka);

here the N x N unitary matrix G(k) := {G;;(k)};i=0,.. n—11s defined for any k = (ki, k2) €
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R? by:
0 10 ..00
0 01 .00
Gl k)= | 0 00 (5.43)
: :r .10
0 00 .01
et 0 0 ... 0

Equations (5.42) can be rewritten in the synthetic form
Colkr + 2mn, ky + 27m) = G(K)" - Co(k1, k2),  (n,m) € Z%, (ki ko) €R®. (5.44)
Moreover, a straightforward computation shows that

Gk)N =e*2 1y = (—1)V ! (detG(k)) 1y. (5.45)

Let Hoo(k) € @7, be the Hilbert space generated by the orthonormal frame ¢ (k).
Clearly Hoo(k + 277) = Hoo(k) ~ CV for any k € R? and vy € Z?, i.e. the Hilbert space
Hoo(k) depends only on the equivalence class [k] € R?/27Z2. We use the usual identifica-
tion R? /2772 > [k] — z(k) = % € T? to denote Hoo(2(k)) := Hoo (k).

The covariance condition for the frame (. (-) do not provide a global trivializa-
tion for | |, 12> Hoo(2) as in the case of the Hofstadter representation. To build the non
trivial Harper vector bundle associated to {..(-) we identify the space | |, .2 Hoo (k) With
a subset of R? x ®*_ and we introduce the equivalence relation ~¢ , where

K =k+ 21y
(k,v) ~q (K,V) & for some ~ := (n,m) € Z>.

The equivalence relation is well posed, indeed &’ = k + 27y implies that v and v’ are in
the same space since Hoo(k + 277) = Hoo (k). This assures that the matrix G(k) = G([k])
acts as an isomorphism of the space H..([k]). The equivalence class with representative
(k,v) € |Uper2 Hoo(k) is denoted as [k, v]. Then, the total space &, of the Harper vector
bundle is defined as

The base space is the flat torus T? = R?/277Z? and the projection to the base space
L1 & — T?is 1([k,v]) = z(k), where z provides the projection z : R?> — T2. One checks
that ¢ : & — T? is a smooth complex vector bundle with typical fiber CV.
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A system of transition functions for . : &, — T? can be described by means of the

standard atlas of T? (c.f. Example and Figure Appendix . Let {Ou}a=1,...4
the open cover given by and g := {gaptapb=1,.4, With gop : Opp — % (CN), the
related system of transition functions. Equation show that the frame {_(-) is
purely periodic in ko, then it defines a frame of sections for &,, which is globally defined
in the ks-direction. This implies

913(2) =1n =g31(2) if 2€ 013, goa(2) =1n =ga2(2) if z€ Oqy, (5.46)

which means that on the overlaps O; N O3 and Oy N O4 the gluing between the sections
is trivial. The other transition functions are non trivial and take into account for the
quotient induced by ~¢. The reader can check that (c.f. Appendix [C)
1n if z€ Oyp(k1 ~m)
a = ’ with (a,b) = (1,2), (1,4), (3,2), (3,4) (5.47)
9as(2) {tw O (@) = (12, (14), (3.2), 3.4)
where ‘G denotes the transpose of G. For instance, equation (5.47) specialized to (a,b) =
(1,2) assures that the identification between the local frame C&)(lﬁ, ) = Coo(k1,-) in O
and the local frame Cg)(k‘l, ) = Coolk1 + 2m,-) in Oy (—e < k1 < €) is given by means of
the matrix G, according to (5.44) (c.f. Appendix [C). The set of the transition functions is
completed by the relations g, = gb,a*I and g5, = 1n.

The computation of the first Chern number of the Harper vector bundle needs the
choice of a connection w = {wg }4=1,.. 4 compatible with the system of transition functions

(5.46), (5.47), i.e.
Wq = dga,b ga,b_l + Gab Wb ga,b_17 a, b= 1, - ’4,

(c.f. Appendix[C). We can rewrite the above consistency equation in terms of the covari-
ance condition (5.42), namely

w(kl, kg) = dtG(k’l, kg) tG(kl, k’g)il + tG(k‘l, kg) w(kl + 2, ko + 27‘(’) t@(kl, kg)il. (5.48)

A simple computation shows that the matrix valued 1-form

k1

bog 0
k
o (B o0
wiar (b1 k2) == L dky + 1 ndky (5.49)
0 0 (5—;+(N—1)>

verifies (5.48). The connection wyy,,, defined by (5.49)), is called Harper connection. Since
WHar 18 diagonal one has that wy,, Awhgar = 0. The Harper curvature 2-form Ky, defined

according to (C.6), is

—1
2nN

KHar (K1, k2) = dwiar(k1, k2) = < ]1N> dky A dks. (5.50)
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Notice that Kpy,, is defined globally, as a consequence of the particular choice of the
Harper connection. From (C.8), using the curvature Ky,,, one obtains the (differential)
Chern class for the Harper vector bundle

) 1
c1(Ex) = iTrN (Kitor) = (53 b A e (5.51)

The integral of (5.51) over T2, provides the first Chern number for the Harper vector
bundle, namely

1 27 27
Ci(&Ey) = Eny) = ——= dk dko = 1.
1{0) /T( ) <27r>2/0 /0 2

Uniqueness. The discussion about the uniqueness of the Harper vector bundle follows
as in the case the Hofstadter representation (c.f. Section [5.2).

5.3 Geometric duality between Hofstadter and Harper rep-
resentations

In this section we provide the proof of Theorem [2.8.1] Firstly, we need to introduce the
continuous maps f(, ) : T — T?, with n, m € [, defined by

Finmy (€™, e%1) 1= (e™F1, eimh), (K1, ko) € R?. (5.52)

Let ¢ : & — T2 be the rank N Harper vector bundle relative to deformation param-
eter 0 = M/N. We can use the untwisting function f(y ;) to (partially) untwist the vector
bundle &, via pullback. The structure of

s [l — T2 (5.53)

can be determined by means of the frame of sections (5.42). By definition of pull-
back (c.f. Appendix , the fiber space (f{y | éx). = /" !(2) coincides with the fiber
space (goo)f(N,l)(Z) = L_l(f(Nyl)(Z)) which is spanned by the family of sections (oo :=
{¢%,...,¢N=1} evaluated at the point f(v,1)(2). In other words, the structure of f(*Nvl)é"oo
can be derived from the pullback of the frame (o, namely from f(*N,l)Coo = Coo © f(N,1)-
From (5.42) it follows that

fiv1yGoo(k1 +2m, k) = Coo(Nk1 + 27N, ko) = G(k1, k2)™ - (i 1)Coo (K1, k2)
(5.54)
fin1)Coo(k1, k2 4 2m) = Coo(Nk1, k2 + 2m) = f(y 1)Coo(k1, k2).

The structure of the vector bundle is obtained from by means a quotient
with respect to the equivalence relation ~g~. The procedure is similar to that used to
derive the Harper vector bundle &, from the frame of sections and produces a
system of transition functions g := {Gs}ep=1,... 4 defined by

77777

G13(2) =1y =g31(2) if 2€ 013, Gou(z) =1n = gaa(z) if z € Oy, (5.55)



156 5. The geometry of Hofstadter and Harper models

and, in view of equation (5.45)),

1 if z2¢€ Oyp(k1 ~
G )={ y 2 € Ouall ) (5.56)

FG(2)N = (1) 'detg, p(2) Iy if z € Ogp(k1 ~ 2m)

whenever (a,b) = (1,2), (1,4), (3,2), (3,4), where {gq}4=1,.. 4 denotes the set of tran-
sition functions for the Harper vector bundle &..

From (5.55) and (5.56), it follows that the vector bundle f(*N l)é”oo is (isomorphic to)
the sum of N copies of a line bundle i : .#/ — T? with system of transition functions

£:= {ga,b}a,bzl,...A given by

El’g(z) =1= Eg}l(z) if z ¢ 01,3, €274(z) =1= 54,2(2’) if z ¢ 0274, (5.57)
and
1 if 2z€O04p(k1 ~7
lap(2) = Nt , pl ~ ) (5.58)
(—1) detgayb(z) if 2 ¢ Oa7b(k‘1 ~ 27T)

when (a,b) = (1,2), (1,4), (3,2), (3,4). The transition functions and define
the determinant line bundle of & (c.f. Appendix [C), that is .# ~ det(&x) where ~
denotes the isomorphism of vector bundles over T2. The latter claim is “tautological”
when N is odd. It holds true also for even values of N since any line bundle is uniquely
classified by its first Chern class and the transition functions and determine
a unique curvature K = —%dkl A dko, independently of the value of N. Summarizing,
one has the following isomorphisms of vector bundles

* ~ ~ (T? N ith ~ ) )
f(NJ)@@OO ID...0F (T*xCY)® 7, with .7 ~ det(&%) (5.59)

N —times

Since the pullback of a trivial vector bundle is again (equivalent to) a trivial vector
bundle, one has f¢ ), )& =~ T2 x CV, where &, denotes the Hofstadter vector bundle.
Including the latter equivalence in (5.59)), one obtains the following isomorphism

Fivnbeo = b ® 7, with .7 ~ det(&). (5.60)

In order to complete the proof of Theorem [2.8.1, we have to extend the duality
to the vector subbundles of &, and &, associated to a given projection p € 2y, accord-
ing to the “two-fold way” (2.44). The Serre-Swan Theorem (Gracia-Bondia et al. 2001,
Theorem 2.10 and 3.8) provides an usefull tool to achieve our goal.

Let . : & — X be a rank N Hermitian vector bundle on the compact and connected
base manifold X. The content of the Serre-Swan Theorem is that the vector bundle &
can be obtained as vector subbundle of the trivial vector bundle X x CV' — X (for a
suitable N’ > N) by means of a projection-valued section

P2(-) € N(End(X x €V')) ~ C(N') @ Maty:(C)
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as in the proof of Lemma In other words, the Serre-Swan Theorem claims that
& ~ Z(Ps) C X x CN" where the total space is defined by

& ~ |_| Im(Ps), ~ {(z,v) € X xCV' :  Pe(z)v=v}.
zeX
The Serre-Swan Theorem implies also I'(End(&)) = Ps(-) I'(End(X x CM)) Ps(:) (Gracia-
Bondia et al. 2001, Lemma 2.18). In particular, any projection-valued section P(-) €
['(End(&)) can be written as Pg(-) P(:) Ps(-) with Im(P), C Im(Pyg), for any x € X. The
latter condition is enough to prove that Pe(-) P(-) = P(-) Pg(-). As usual, the vector
subbundle Z(P) C &, associated to the projection-valued section P(-), is described by
Z(P)~ | | Im(P), ~ {(z,v) € X xCV' : P(z)Ps(z)v=v}. (5.61)
zeX
Equation (5.61) emphasizes the fact that the twisting of the vector subbundle .Z(P) is
due to the twisting of the “environment” vector bundle &, coded by Ps(-), plus an extra
twisting coming from P(-).
Let p be an orthogonal projection in the NCT-algebra 2(,,/,. We can associate to p two
projection-valued sections

P()() = 90 7T0(p>32_1 S I‘(End(@“’o))

0 (5.62)
Pol(r) = T mo(p)ZZ' € T(End(&y))

where 7y (resp. m.) is the Hofstadter (resp. Harper) representation and 7, (resp. F..)
is the generalized Bloch-Floquet transform which induces the bundle decomposition (c.f.
Sections[5.1.2]and [5.1.3). In view of Lemma [2.7.3] one can associate to projections
two vector subbundles %(p) C & and Zx(p) C &, with total space defined by

L) =] Im@P). ~ {(z,v)eT*xC" : Py(z)v=v}
z€T?2
Loo(p) = | | Im(Px). ~ {(z,v) € T> x CV' : Py(2)Pe,.(2)v = v}
z€T?2
where N’ > N and Ps_(-) is the rank N projection in I'(End(T? x CV')) which defines
the non trivial Harper vector bundle according to the Serre-Swan Theorem. Applying
the definition of pullback bundle, one has

f(*fM,1)«=%(P) ~ {(z,v) € T x CV . Po(f(,MJ)(Z))V =v}
f(*N71)$OO(p) ~ {(z,v) € T? x CV' POO(f(N,l)(Z))P&o(f(N,l)(Z))V =v}.

(5.63)

(5.64)

Any abstract projection p € 2y is realized as a suitable function of the unitaries
u and v, namely p = F,(u,v) where the meaning of Fj is in the sense of a norm limit of
a sequence of polynomials. Using the fact that the bundle representations induced by
Ty = (Fy... ﬂﬁ_l) oy (§ = 0,00) are faithful, one has

Po(-) = Fomo(Fp(u,0))F5 " = Fp(Uo(), Vo())

» (5.65)
Poo(t) = Foo Too(Fp(u,0)) 7 = Fp(Uoo(+), Vo))
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where the unitary operators U;(-) and Vy(-) are defined by (5.21) and (5.40). From (5.21),
one deduces

Uo(—Mky, ko) < U(e™Mk1), Uo(—Mky, ko) < V(e*2), (5.66)
Similarly, from (5.40) it follows that
Uoo(Nky, ko) « U(e!MF1), Voo (Nky, k) — V(e*2) (5.67)

and a comparison between (5.66) and (5.67) shows that U (f(n,1)(2)) = Uo(f(=ar,1)(2))
and Voo (f(nv,1)(2)) = Vo(f(—a,1)(2)). In view of (5.65), it follows that

Poo(fv1)(2)) = Po(f(—ar1)(2)) Vze T (5.68)

The first consequence of equation is that the projections P, (-) and Py(-) have
the same rank, which implies that the subbundles .Z,(p) and .%,(p) have the same rank
too. Point (i) of Theorem [2.8.1|follows observing that Rank(Py(z)) = Rk(p) for any z € T?
(Proposition [5.2.2).

The second consequence of comes from a comparison of the fiber spaces of
the subbundles f{y; ;)% (p) and f{ ), )% (p). From it follows that, for any fixed
z € T2, the two fiber spaces over z of f(*_ MJ).,%(p) and f(*NJ)foo(p) are deremined by the
same projection (5.68) acting on a N-dimensional complex vector space. Nevertheless
in the Hofstadter case this vector space does not depend on z and coincides with CV as
a consequence of the triviality of the Hofstadter vector bundle &;. Conversely, in the
Harper case the vector space in which the projection acts depends on z as a consequence
of the non triviality of the Harper vector bundle &, and it is defined by Pg_ (f(n 1) (z))CN
Then f{N,1)$oo(p) and f(*_ MJ).,%(p) coincide locally but fEkNJ).,%o(p) has an extra twist
induced by the rank N projection (Pg, o f(v1))(-). The latter is the projection associated
(via Serre-Swan Theorem) to the vector bundle f(*NJ)éaoo ~ (T? x CN) ® .# (c.f. equation
. This isomorphism suggests that the non triviality due to (Ps, o f(y,1))(-) can be
factorized out by means of the tensor product with the line bundle .#. Let P,(:) €
I'(End(T? x CN")), with N” > 1, be the rank one projection-valued section which defines
the line bundle .#. The equivalence between f(*NJ)éDHar and (T? x CV) ® .# allows us to
write (Ps,, o f(n,1))(-) = 1y ® Ps(-) where 1 denotes the rank N constant projection. It
follows that

(P © f(N,l))(') (Pg, o f(N,l))(') =[(Pxo f(N,l))(') @ Inn] [Ixy ® Py(-)]
= (Pxo finv1)() @ Ps(:)
= (Poo fi—m1)() @ Pr(-).

The above equation implies the the geometric duality

finyZoo(®) = flyn“o(p) @ S



Appendix A
Technicalities concerning adiabatic results

standard literature) we include a short discussion of

Since in the analysis of Chapter [3|we include a periodic vector potential Ar (as a new
ingredient with respect to the

the self-adjointness and the spectral properties of the operators Hpj, and Hyer.

A.1 Self-adjointness and domains

A.1.1 Self-adjointness of Hgy, and Hper

The second Sobolev space H?(R?) is defined to be the set of all i € L?(R?) such that
omonzp € L*(R?) in the sense of distributions for all n := (ny,ny) € N? with |n| :=
n1 + ng < 2. One can proves that H?(R?) is the closure of C2°(R?, C) with respect to the
Sobolev norm || - ||3¢2 := ||[(1 — Az) - ||z2 and has a Hilbert space structure. Similarly the
second magnetic-Sobolev space H3(R?) is defined to be the set of all ¢ € L*(R?) such
that D' DJ?¢ € L*(R?) in the sense of distributions for all n € N? with |a| < 2, where
Dy := (04, + %x2) and Dy := (0, — 2z1). One can prove that H3;(R?) is the closure of
C>*(R%,C) with respect to the magnetic-Sobolev norm || - H}% = ||(L — Aps) - || 2, where
Ay = D% + D5? is the magnetic-Laplacian. Moreover, f]-(%,l (R?) has a natural Hilbert
space structure. For further details see (Reed and Simon 1975, Section IX.6 and IX.7) or

(Lieb and Loss 2001, Chapter 7).

Proof of Proposition [3.2.4,

We prove the claim for the dimensionless operators, namely we fix all the physical con-
stants equal to 1 in and (3.7).

- Step 1. First of all we prove that Hpe, is essentially self-adjoint on C°(R?, C) and
self-adjoint on H?(R?). Notice that

1

1 1
Hper = 5 [—iV, — Ar(2)]* + Vi(z) = —§A$ +T + =Ty (A.1)

2

with T} := iAr - V, and Ty := i(V, - Ar) + |Ar|? + 2Vr. The free Hamiltonian —1/2A, is a
self-adjoint operator with domain 3(%(R?), essentially self-adjoint on C2°(R?, C) and from
Assumption it follows that 75 is infinitesimally bounded with respect to —1/2A,
(notice that Ty — 2V is bounded). The symmetric operator 77 is unbounded with domain
D(T1) D H?*(R?). Let ¢ € 3?(R?), then

[Ar)soe, w3 < Ar I [ 23 BOVE
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with ¢()) the Fourier transform of ¢(z). For every a > 0, if b = .- then A2 < (alA? + D)2
It follows that H(Ap)jamijig < Cll(alA]* + b) 12“%2 which implies that for all «’ > 0
(arbitrary small) there exists a b’ (depending on a’) such that

2 ~ ~
[(Ar); 0, 0|[ 2 < @ MNP Gl + 8 19172 = o’ [Aatpll72 + 0 [[9]1 7.

This inequality implies that T} is infinitesimally bounded with respect to —1/2A, and the
thesis follows form the Kato-Rellich Theorem (Reed and Simon 1975, Theorem X.12).
- Step 2. The Bloch-Landau Hamiltonian is

Hpgp, = % [—iV, — Ap (2) — A (@) + Vi (2) + 6 (2). (A.2)

Assumptions [3.2.2 and [3.2.3| imply that (Ar + A); € CY(R*,R), j = 1,2, and Vp + ¢ €
L? .(R?) and this assures that Hpgy, is essentially self-adjoint on C3°(R?, C) (Reed and
Simon 1975, Theorem X.34). Let A = Ay+ Ap be the decomposition of the external vector
potential with Ay smooth and bounded and Ag = %(*332, x1). By posing D :=V, —iAp,
Ay :=|DJ? and Ay, := Ar + Ag, the Hamiltonian Hpy, reads

1 1

where T := i(V, - Ap) + | Ap|? + 2(Vr + ¢). The operator T — 2% is bounded and the ob-
servation that Ay, - D is infinitesimally bounded with respect to —1/2A), is an immediate
consequence of Lemma The assumption [, [Vr(z)[* d*z < +oco implies that Vr is
uniformly locally L? and hence, infinitesimally bounded with respect to —A, (Reed and
Simon 1978, Theorem XIII.96). As proved in (Avron et al. 1978, Theorem 2.4) this is
enough to claim that Vr is aslo infinitesimally bounded with respect to —Aj;. Therefore,
by the Kato-Rellich Theorem it follows that the domain of self-adjointness of Hpgj, coin-
cides with the domain of self-adjointness of the magnetic-Laplacian, which is 9{12\4(R2).
|

A.1.2 Band spectrum of Hy,

We describe the spectral properties of the periodic Hamiltonian. The Bloch-Floquet
transform maps unitarily Hyer in err = ]% Hper(k) d?’k. Then to have information

about the spectrum of Hyr we need to study the spectra of the family of Hamiltonians

Hyer(k) = 3 [V + k= Ap(O) + Vo(6) = 5 8 + Ta(k) + 5 To(k)

where Ti (k) := i(Ar — %) - Vg and T (k) := i(Vy - Ar) + |k|? + |Ar|* + 2V are operators
acting on the Hilbert space H; := L?(V, d?0) with V := R?/T" (Voronoi torus).

Proof of Proposition
- (i) The operator —1/2A, on the Hilbert space Hy, is essentially selfadjoint on C*°(V), has

domain of self-adjointness D := 3(*(V) and its spectrum is pure point with {e?7"} .-
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a complete orthogonal system of eigenvectors. If Assumption holds true, then Ty (k)
infinitesimally bounded with respect to —1/2Ay, indeed T' — 2V is bounded and Vr is
infinitesimally bounded (Reed and Simon 1978, Theorem XIII.97). With a Fourier es-
timate similar to those in the proof of Proposition [3.2.4] one can also show that 7' (k)
is infinitesimally bounded with respect to —1/2Ay, hence the Kato-Rellich Theorem im-
plies that Hpe, (k) is essentially self-adjoint on C*°(T?) and self-adjoint on the domain D.
Moreover since —1/2Ag is bounded below then also Hpe (k) is bounded below.

- (i1) For all ¢ in the resolvent set of —1/2A the resolvent operator ro(() = (—1/2Ay —
(13,) " is compact. Since T} (k) + 375(k) is a bounded perturbation of —1/2A, it follows
that Hyer(k) has compact resolvent (Reed and Simon 1978, Theorem XIII.68) and more-
over it has a purely discrete spectrum with eigenvalues &, (k) — +oo as n — +oo (Reed
and Simon 1978, Theorem XIII.64).

- (iii) The continuity of the function &,(-) follows from the perturbation theory of dis-
crete spectrum (Reed and Simon 1978, Theorem XII.13). Indeed, as discussed in Re-
mark Hyer(+) is an analytic family (of type A) in the sense of Kato. Finally, since
Hper(k — 7v*) = 7(v*)Hper(k)7(v*)™!, with 7(v*) a unitary operator, then &,(-) are I'*-
periodic. |

A.1.3 The Landau Hamiltonian Hj,

The Landau Hamiltonian is the operator

H A —1(K2+K2)— i 2+ L) (A.3)
L e = W ) =y I\ Moy 2" oy 2" '
where K; := —iD;, with j = 1,2, are the kinetic momenta. The Landau Hamiltonian

Hy, is essentially self-adjoint on on C°(R?;C) C L?(R?) (Reed and Simon 1975, Theorem
X.34) and its domain of self-adjointness is exactly the second magnetic-Sobolev space
33 (R?) defined in Section To describe the spectrum of Hi, is helpful to introduce
another pair of operators: G; = —i0;, — %:112 and G = i0,, — %:cl. The operators
K1, K2, G1, G5 are all essentially self-adjoint on C°(R?; C) (they have deficiency indices
equal to zero) and on this domain the following commutation relations hold true

[K1; Kp] = [G; Go] = il,  [G; Ki] = 0. (A.4)

The last of implies [G;; Hy] = 0, hence the operators G and G are responsible
for the degeneration of the spectral eigenspaces of Hy,. It is a common lore to introduce
the annihilation operator a := i/v3(Ko — iK1) (its adjoint af is called creation operator)
and the degeneration operator g := i/v2(Gy — iG1). They fulfill the following (bosonic)
commutation relation

[a;0") = [g;0'] =1, [g;Hu] = [0 H] =0, [a;Hy]=a, [af;Hy]=—al. (A.5)

The last two relations follow from the equality Hy, = aa’ — 121 = afa + 1/21. De-
fine the ground state vy € L?(R?) as the normalized solution of gy = 0 = ayy, i.e.
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o(x) = Ce il The generalized Hermite function of order (n,m) is defined to be
Ynm = \/ﬁ (81)™ (a")" 1hp. We denote by £ C L?(R?) the set of the finite linear combi-
nations of the vectors v, ,, and we will call it the Hermite domain. Clearly L C S (R?)

(the Schwartz space).

LEMMA A.1.1. With the notation above:

() the set {{nm : n,m =0,1,2,...} is a complete orthonormal basis for L*(R?) and so L
is a dense domain;

(ii) the spectrum of Hj, is pure point and is given by {\, == (n+12) : n =0,1,2,...},
moreover Hy, V¥ = A\p Y m for every m = 0,1,2,... (degeneration index);

(iii) Hj, is essentially self-adjoint on L and the closure of L with respect to the magnetic-
Sobolev norm coincides with the magnetic-Sobolev space H3;(R?).

Proof. - (i) Let W : L?(R?, d?z) — L?*(R, du) ® L*(R, dv) be the unitary map which trans-
forms the conjugate pairs (K1, K3) and (G1,G2) into the canonical pairs (u,—i0,) and
(v,—i0y). The existence of such a unitary W is discussed in Appendix Obviously
a—a=12u+0d),g—g="1v2uv+ 3d,). Moreover, {bvo := Wr)y is the solution of
G0 = avy = 0, namely o (u,v) = ho(u) ® ho(v) where ho(t) := 7~1e 2" is the 0-th Her-
mite function. Then Jnm(u, v) = Wibpm)(u,v) = hy(u) ® hyp(v) which shows that the
functions {/;nm define an orthonormal basis for L?(R,du) ® L?(R, dv) since the Hermite
functions h,, are an orthonormal system for L?(R). The claim follows since W is a unitary
map.

- (i) Clearly Hyyo = (afa + 1/21)19 = 1/2¢59 and from relations it follows that
Hipnm = 7= (a")" Hy, (a7)" ¢0 = 1/2¢nm + == (") (a'a) (a")" %0 = A ¥nm. Then
the generalized Hermite functions 1, ,,, are a complete set of orthonormal eigenvectors
for Hiy,. This proves that the spectrum of Hy, is pure point.

- (iii) The operator Hjy, is essentially self-adjoint on £ since the deficiency indices are both
zero. This implies the last part of the claim. |

LEMMA A.1.2. The operators K, Ko, a and a' are infinitesimally bounded with respect
to H L-

Proof. Since K| =1/v2(a+ al) and K> = /iv2(a — al) it is enough to prove the claim for
aand af. Let ¢ := 31 ¢, 1 Yn.m € H3(R?). An easy computation shows that

n,m=0
+oo +oo

lovl7a = > lenml* n, la' )7 = > lenml* (n+1).
n,m=0 n,m=0

Sincen<n+1<2(n+3) <a(n+ %)2 + 1 holds true for any a > 0 (arbitrarily small),
then

400 1 2 +00
0l <a 3 lennl? (n45) 40 3 lewnl® = al s + bl

n,m=0 n,m=0

with b := 1 + 1 where o denotes either a or af. ]
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A.2 Canonical transform for fast and slow variables

This section is devoted to the concrete realization of the von Neumann unitary W intro-
duced (in abstract way) in Section[3.4.2] The unitary W maps the fast and slow variables,
which satisfy canonical commutation relation, into a set of canonical Schrédinger oper-
ators. In Section we derive a general version of the transform W “by hand”, as a
composition of three sequential transforms. In Section we compute the integral
kernel of 'W.

A.2.1 The transform W built “by hand”

Let Hpny := L*(R?, dr) be the initial Hilbert space, with r := (r1,72). Let Q, := (Qr,, Qy,)
where @), is the multiplication operator by r; and P, := (P, , P.,) where P, = —ih0,,,
with j = 1,2. Consider the fast and slow operators

Ko ﬁ P 1 i
1-— ﬁ QT - s Gl 5 v - Qr — % w P
(fast) N ﬁ (slow) ) ) (A.6)
Ky = ﬁ Qr_i v* - Py G2*§’LU QT—FQU - P,

with a, 8 € C and v, w,v*,w* € R? suchthat v -v* = w-w* =1, v*-w =v-w* = 0 and
lv Aw| = £2 > 0.

REMARK A.2.1. The choice v = b*, w = a*, a = /iy and 3 = /i, § defines the operators
(3.48), while the choice v = v* = (0, —1), w = w* = (—1,0), a = § = 1 defines the kinetic
momenta and the related conjugate operators introduced in Section *

Observing that [a- Q, +b- P;c-Qr +d- P = ih(a-d —b-c)ly one deduce that the
operators (A.6) verify the following canonical commutation relations (CCR)

(K1, Ko = ia*1y,  [G1,Ge] =if*1y,  [K;,Gj]=0, i,j=1,2. (A.7)

The Stone-von Neumann uniqueness theorem (Bratteli and Robinson 1997, Corollary
5.2.15) assures the existence of a unitary map W (von Neumann unitary)

W : Hpny—Hw 1= Hs @ Hg := L*(R, dzs) ® L*(R, dz) (A.8)
such that
WG W™ .= Qs = multiplication by z, WGW™! .= Py = —i3? 88 (A.9)
S
WK W™ := Q¢ = multiplication by z, WE,W ™! = P = —20[268 (A.10)
xf

In other words, (Qs, Ps) is a pair of operators which defines a Schrodinger represen-
tation on the Hilbert space Hs := L?(R, dzs) while the pair (Qy, P;) defines a Schrodinger
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representation on the Hilbert space Hy := L?(R,dxzs). Our purpose is to give an ex-
plicit construction for W. Firstly one considers the change of coordinates (ri,72) —
(k1 == %L ke := “T). The inverse transforms are defined by r1(k) = +(waki — voks)
and ro(k) = L(viky — wiki). The map J : Hpny — L*(R?,d?k) defined by (Jv)(k) :=
Y(r(k)) for any ) € Hypy is unitary since the change of coordinates is invertible and
isometric. Moreover JQ,,J ! acts on L?(R? d°k) as the multiplication by r;(k), while
TP, T =% Py, + %4 Py, where Py, := —ihdy,;, with j = 1,2. Then

{ 21 ¢ 21

IGT = LQu TRy JGI = SQutlhom, A1
1 1

TK\ T = —55 Qr, — O‘hﬁ  Po TKT7 62 £ o, - O‘f s Pu. (ML)

Let 75, : L*(R,dks) — L?*(R,d(s) be the ky-Fourier transfor of weight p, defined by
M

(Fayt)(Ca) 1= /L fy e=#2b24p(ky) dky and let 1, : L2(R,dk1) — L2(R,dC1) be the ki-
parity operator defined by (IlI2v))(¢1) := ¥(—(1) (namely by the change of coordinates
k1 +— ¢1). Let I the unitary map which identifies L?(R?, d*k) with L?(R, dk;) ® L*(R, dk»).
Let Q¢ := (Q¢,, Q¢,) whit Q¢; the multiplication operator by (; and F; := (P, I%;,) where
P, = —ihd,;, with j = 1,2. One can check that

_ 1 - _ _
'7:2#@’62}—2,; = _ﬁPCW ‘7:27MP/€2‘?2,;1 = phQc¢,, IhQr 1Ly t= —Q¢,, P 1L t= —F.
(A.13)
Fix p = 2 577, then the unltary map 7 = (Il ® Fo ) olo J : H — L3(R,d(1) ® L*(R, d(2)

acts on the operators (A.6) in the following way

4 132
TGT 'i=—C (ch —Qc) TGyT ' = 7% (Pe, — Pr,) (A.14)
1
TK\T ﬁ 5 (Q@ + Q) TKyT ™' = 7 ahﬁ (Pey + Fe) - (A.15)

Now we can consider the change of coordinates ((1,{2) — (zs, z¢) defined by

1
xsz—g(gl—gg) Clz_g(l‘s_il‘f)
Tf = B§(C1+C2) G = 2<$s+§xf>

The jacobian of this transformation is [0((1, (2)/0(xs, x¢)| = E% g =: C, then the map
(Rap) (x5, z¢) := v/C (¢ (xs, 2¢)) defines a unitary map R : L?(R?, d*¢) — L*(R?, dxs day).
With a direct computation one can check that RQC R~! acts on L?(R?, dxs dxg) as the
multiplication by (j(zs, r), while RP,R™! = (( Wap o Pf) with j = 1,2. This
shows that the unitary map W:=IToRol loL:=ToRollo(Il; ® F,)olo J is the
von Neumann unitary that verifies the relations (A.9) and (A.10).
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A.2.2 The integral kernel of W

The unitary operators 7 : Hpny — L*(R? d*k) and R : L*(R?, d*¢) — L*(R?, dxs duy) re-
lated to the change of coordinates (r1,72) — (k1,k2) and ((1,(2) — (zs, xf) can be written
as an integral operators

(o = [

R2

k) O(r) dPr,  (Rap)(zs, ap) = / R(C: s, 1) (0) ¢

R2

with distributional integral kernels

1 1
J(r1,re; k1, ko) =6 (7“1 — Z(U@kl - Uzk2)> o <7'2 + Z(wlkl - Ulk2)>

R(C1, G es, ) = VO 6 <<1+ Xx - xf>) 5 (c _ 2<$s+§xf>>

with C = z% ’g‘ The k;-parity operator II; can be written as an integral operator with
the distributional kernel §(r; + k1) while the integral kernel of the k2-Fourier transform

)
Fou, with p = —%, is 2|ﬁfﬁel2ﬂ2@k2. Then the unitary map I™' o (II; ® Fp ) o I :
L?(R?% d*k) — L%*(R?,d?(¢) as the integral distributional kernel
Ll kot G Ga) 1= 0(Gr + ) e 7
1, ~2,61,62) - = 1 1
2|8lv/m

Summarizing the total transform W : L?(R? d?r) — L?(R2,dxs dx¢) (up to the obvious
identification II) can be expressed as an integral operator

(W0 asan) = [ Wirsaw o) v0) dr

with a (total) integral distributional kernel

g 5 jwr (Ieré xf)
W (ry,ro; s, xf) ::(5<v-7’— <:cs—a:f>> e 267 o "
Varlad) o







Appendix B
Basic notions on operator algebras theory

For a comprehensive exposition of the theory of C*-algebras, von Neumann algebras
and related topics, we refer to (Bratteli and Robinson 1987, Dixmier 1982, Dixmier
1981).

B.1 (*-algebras, von Neumann algebras, states

A C*-algebra 21 is a complex algebra, closed with respect to a norm || - || and endowed with
an involution (or adjoint) . The topological structure and the *-structure are related by
the C*-property |AA*|| = ||A||? for any A € . If 2 as a unit 1 (i.e. 1A = A = Al for any
A € ), then A is called unital. If AB = BA for any A, B € 2, then 2l is said commutative.

A representation w of the C*-algebra 2 is a «-morphism 7 : 2 — %B(H), with Z(H)
the C*-algebra of bounded operators on the Hilbert space H (endowed with the operator
norm and the adjoint operation). The representation is called faithful if the map = is
injective.

A state w for a unital C*-algebra 2 is a linear map w : 2 — C which is normalized
w(1) = 1 and positive w(AA*) > 0 for any A € 2. The state w is faithful if w(AA*) = 0 if
and only if A = 0. A trace is a state such that w(AB) = w(BA) for any A, B € 2.

Let 2 € #(H) be a C*-algebra of bounded operators on the Hilbert space H. The
commutant of A is defined by

A :={TePBH) : [T;A]=0, VAecU}.

The von Neuamma algebra 9t() associated to 2 is the double commutant (i.e. the
commutant of the commutant) of 2, namely M(2A) = A" where 2" := (2')’. The algebra
M (2A) coincides with the strong (equiv. weak) closure of 2 (Bratteli and Robinson 1987,
Bicommutant Theorem 2.4.11). A vector ¢ € H is cyclic for M(A) if

(MY :={peH : ¢=Ap, AeMA)}
is dense in H. A vector ¢ € H is separating for M(A) if Ay = 0 with A € M(A) implies
A = 0. A von Neumann algebra with a cyclic and separating vector is called standard.

A commutative C*-algebra & C #(H) is said maximal commutative if there is no
other commutative C*-algebra in #(H) which contains properly &. Clearly the condition
of maximal commutativity implies the existence of a unit.
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B.2 Gel’fand theory, joint spectrum and basic measures

Let 21 be a unital C*-algebra and 24> the group of the invertible elements of 2. The
algebraic spectrum of A € A is defined to be og(A) :={A € C : (A— L) ¢ A*}. If Ay is
a non unital C*-algebra and 2 : 2y — 2 is the canonical embedding of 2, in the unital
C*-algebra 2 (Bratteli and Robinson 1987, Proposition 2.1.5) then one defines og,(A) :=
oy(2(A)) for all A € y. This shows that the notion of spectrum is strongly linked to
the existence of the unit. If 2 is unital and C*(A4) C 2 is the unital C*-subalgebra
generated algebraically by A, its adjoint AT and 1 (=: A° for definition) then og(A4) =
oc=(a)(A) (Bratteli and Robinson 1987, Proposition 2.2.7). As a consequence we have
that if 2 € #(H) is a concrete C*-algebra of operators on the Hilbert space H and A € 2
then the algebraic spectrum oy (A) agrees with the Hilbertian spectrum o(A) := {\ €
C : (A— 1) ¢ GL(H)} where GL(H) := #(H)* is the group of the invertible bounded
linear operators on the Hilbert space H.

Let & by a commutative C*-algebra. A character of S is a nonzero homomorphism
x : & — C (also called pure state). The Gel’fand spectrum of &, denoted by X (&) or
simply by X, is the set of all characters of G. The space X, endowed with the x-weak
topology (topology of the pointwise convergence on &) becomes a topological Hausdorff
space, which is compact if & is unital and only locally compact otherwise (Bratteli and
Robinson 1987, Theorem 2.1.11A). If G is separable (namely it is generated algebraically
by a countable family of commuting elements) then the x-weak topology in X is metriz-
able (Brézis 1987, Theorem II1.25) and if, in addition, & is also unital then X is com-
pact and metrizable which implies (Choquet 1966, Proposition 18.3 and Theorem 20.9)
that X is second-countable (has a countable basis of open sets), separable (has a count-
able everywhere dense subset) and complete. Summarizing, the Gel'fand spectrum of a
commutative separable unital C*-algebra has the structure of a Polish space (separable
complete metric space).

The Gel’fand-Naimark Theorem (Bratteli and Robinson 1987, Section 2.3.5), (Gracia-
Bondia et al. 2001, Section 1.2) states that there is a canonical isomorphism between
any commutative unital C*-algebra G and the commutative C*-algebra C'(X) of the con-
tinuous complex valued functions on its spectrum endowed with the norm of the uniform
convergence. The Gel’fand isomorphism C(X) > f Z, A; € 6 maps any continuous f
in the unique element A; which satisfies the relation f(z) = 2(Ay) for all z € X. Then
we can use the continuous functions on X to “label” the elements of &. If &; is a non-
unital commutative C*-algebra then the Gel’fand-Naimark Theorem proves the isomor-
phism between Gy and the commutative C*-algebra Cy(Xy) of the continuous complex
valued functions vanishing at infinity on the locally compact space X, which is the spec-
trum of &y. If 69 C #A(H) we define the multiplier algebra (or idealizer) of &, to be
6 :={B e #H) : BA/AB € &y VA € &p} (Gracia-Bondia et al. 2001, Definition
1.8 and Lemma 1.9). Obviously & is a unital C*-algebra and the commutativity of &,
implies the commutativity of &. Moreover & contains Gy as an essential ideal. The
Gel'fand spectrum X of & corresponds to the Stone-Cech compactification of the spec-
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trum X,. Since C(X) ~ C,(Xp), the Gel'fand isomorphism asserts that the multiplier
algebra & can be described as the unital commutative C*-algebra of bounded continuous
functions on the locally compact space X, (Gracia-Bondia et al. 2001, Proposition 1.10).
For every A; € G one has that og(4¢) = {f(z) : = € X} (Héormander 1990, Theorem
3.1.6) then Ay is invertible if and only if 0 < |f(z)| < ||Af||s for all z € X.

We often consider the relevant case of a finitely generated unital commutative C*-
algebra, i.e. of a G algebraically generated by a finite family {A;,..., Ay} of commuting
normal elements, their adjoints and 1 (=: A? by definition).

Let f1,..., fnv be the continuous functions which label the elements of the generating
system. The map X > z > (fi(2),..., fn(z)) € CV is a homeomorphism of the Gel’fand
spectrum X on a compact subset of CV called the joint spectrum of the generating system
{41,..., Ay} (Héormander 1990, Theorem 3.1.15). Then, when & is finitely generated,
we can identify the Gel'fand spectrum X with its homeomorphic image w(X) (the joint
spectrum) which is a compact, generally proper, subset of 0s(A;) X ... X 0s(An). When
{A41,..., AN} C #(H) a necessary and sufficient condition for A := (A1,...,Ay) to be in
w(X) is that there exists a sequence of normalized vectors {1, },cn such that ||(4; —
Aj)Un|| = 0if n — oo for all j =1,..., N (Samoilenko 1991, Proposition 2).

REMARK B.2.1 (Dual group). The Gel'fand theory has an interesting application to
abelian locally compact groups G. Usually the dual group (or character group) G is
defined to be the set of all continuous characters of G, namely the set of all the contin-
uous homomorphism of G into the group $! := {z € C : |z| = 1}. However, to endow G
with a natural topology it is useful to give an equivalent definition of dual group. Since
G is locally compact and abelian there exists a unique (up to a multiplicative constant)
invariant Haar measure on G denoted by dg. The space L'(G) becomes a commutative
Banach *-algebra, if multiplication is defined by convolution; it is called the group alge-
bra of G. If G is discrete then L!(G) is unital otherwise L' (G) has always an approximate
unit (Rudin 1962, Theorems 1.1.7 and 1.1.8). Every x € G defines a linear multiplica-
tive functional X on L'(G) by X(f) := [ f(9)x(—g) du(g) for all f € ALl(G) (the Fourier
transform). This map defines a one to one correspondence between G and the Gel'fand
spectrum of the algebra L!(G) (Rudin 1962, Theorem 1.2.2). This enables us to consider
G as the Gel'fand spectrum of L!'(G). When G is endowed with the x-weak topology
with respect to L!(G) then it becomes a Hausdorff locally compact space. Moreover G is
compact (resp. discrete) if G is discrete (resp. compact) (Rudin 1962, Theorem 1.2.5). ¢

Let X be a compact Polish space and B(X) the Borel o-algebra generated by the
topology of X. The pair { X, B(X)} is called standard Borel space. A mapping y : B(X) —
[0, 4+00] such that: u(0) = 0, u(X) < oo which is additive with respect to the union of
countable families of pairwise disjoint subsets of X is called a (finite) Borel measure. If
w(X) = 1 then we will said that p is a probability Borel measure. Any Borel measure
on a standard Borel space {X,B(X)} is regular, i.e. for all Y € B(X) one has that
uw(Y) =sup{u(K) : K CY, K compact} =inf{u(O) : Y C O, O open}.

Let N be the union of all the open sets O, C X such that ;4(O,) = 0. The closed set
X \ N is called the support of u. If 1 is a regular Borel measure then . (N) = 0 and p is
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concentrated on its support.

Let G be a unital commutative C*-algebra acting on the separable Hilbert space H
with Gel'fand spectrum X. For all pairs v, ¢ € H the mapping C(X) > f — (¢; Asp)n €
C is a continuous linear functional on C(X); hence the Riesz-Markov Theorem (Rudin
1987, Theorem 2.14) implies the existence of a unique regular (complex) Borel measure
I, With finite total variation, such that (v; Arp)y = [y f(2) duy(x) for all f € C(X).
We will refer to s, as a spectral measure. The union of the supports of the (positive)
spectral measures (., is dense, namely for every open set O C X there exists a ¢ € 'H
such that s, ,(O) > 0. A positive measure ;, on X is said to be basic for the C*-algebra
G if: for every Y C X, Y is locally p-negligible if and only if Y is locally p,, ,-negligible
for any i) € H. From the definition it follows that: (i) if there exists a basic measure p
on X, then every other basic measure is equivalent (has the same null sets) to p; (ii) for
all ¥, p € H the spectral measure 1, , is absolutely continuous with respect to 1, and
there exists a unique element hy , € L'(X) (the Radon-Nikodym derivative) such that
oy = ho ot (iii) since the union of the supports of the measures i, 4 is dense in X,
then the support of a basic measure p is the whole X (Dixmier 1981, Chapter 7, Part I).
The existence of a basic measure for a commutative C*-algebra & C #(H) is a general
fact. Indeed the existence of a basic measure is equivalent to the existence of a cyclic
vector ¢ for the commutant &’ and the basic measure can be chosen to be the spectral
measure /4, (Dixmier 1981, Chapter 7, Proposition 3, Part I). Since a vector ¢ is cyclic
for &’ if and only if it is separating for the commutative von Neumann algebra &” > &,
and since any commutative von Neumann algebra of operators on a separable Hilbert
space has a separating vector, it follows that any commutative unital C*-algebra & of
operators which acts on a separable Hilbert space has a basic measure carried on its
spectrum (Dixmier 1981, Chapter 7, Propositions 4, Part I).

B.3 Direct integral of Hilbert spaces

General references about the notion of a direct integral of Hilbert spaces can be found in
(Dixmier 1981, Part II, Chapters 1-5) or in (Maurin 1968, Chapter I, Section 6). In the
following we assume that the pair { X, B(X)} is a standard Borel space and  a (regular)
Borel measure on X. For every x € X let H(z) be a Hilbert space with scalar product
(5 )e- The set § := ] .x H(z) (Cartesian product) is called a field of Hilbert spaces
over X. A wvector field o(-) is an element of §, namely a map X > =z — ¢(z) € H(z).
A countable family {{;(-) : j € N} of vector fields is called a fundamental family of
measurable vector fields if:

a) for all i, j € N the functions X > z — (&(2);¢;(z)), € C are measurable;

b) for each x € X the set {{;(z) : j € N} spans the space H(z).

The field § has a measurable structure if it has a fundamental family of measurable
vector fields. A vector field ¢(-) € § is said to be measurable if all the functions X > z —
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(§j(z);o(x)), € C are measurable for all j € N. The set of all measurable vector fields is
a linear subspace of §. By the Gram-Schmidt orthonormalization we can always build a
fundamental family of orthonormal measurable fields (see (Dixmier 1981, Propositions
1 and 4, Part II, Chapter 1). Such a family is called a measurable field of orthonormal
frames. Two fields are said to be equivalent if they are equal p-almost everywhere on X.
The direct integral $) of the Hilbert spaces H(z) (subordinate to the measurable structure
of ¥), is the Hilbert space of the equivalence classes of measurable vector fields () € §
satisfying

IO = /X lo(@)|2 du(z) < oo. B.1)

The scalar product on $ is defined by

(1) 02( s = /X (1(2): 02(2))a dii(z) < oo. (B.2)

The Hilbert space $) is often denoted by the symbol | f H(x) du(x). It is separable if X is
separable.

Let v be a positive measure equivalent to ;. The Radon-Nikodym theorem ensures
the existence of a positive p € L' (X, p1) with - € L'(X,v) such that v = pu. Let $ be the
direct integral with respect to y, & the direct integral with respect to v and ¢(-) € . The
mapping ) € ¢(-) — ¢'(-) € R defined by ¢'(z) = \/ﬁg@(aj) for all € X is an unitary
map of §) onto K and for fixed 1 and v. This isomorphism does not depend on the choice
of the representative for p and it is called the canonical rescaling isomorphism.

A (bounded) operator field A(-) isamap X > x — A(x) € B(H(x)). It is called mea-
surable if the function X > 2 — (§;(2); A(x){;(x)), € C is measurable for all i,j € N. A
measurable operator field is called a decomposable operator in the Hilbert space §. Let
f € L*>®(X) (with respect to the measure y); then the map X > « — My (z) := f(x)1, €
PB(H(x)) (with 1, the identity in H(z)) defines a simple example of decomposable op-
erator called diagonal operator. When f € C(X), the diagonal operator M(-) is called
a continuously diagonal operator. Denote by C($)) (resp. L>°(9)) the set of the con-
tinuously diagonal operators (resp. the set of diagonal operators) on $. Suppose that
H(z) # 0 p-almost everywhere on X, then the following facts hold true (Dixmier 1981,
Part II, Chapter 2, Section 4): (i) L>°(%)) is a commutative von Neumann algebra and the
mapping L>*(X) > f — M(-) € L*($) is a (canonical) isomorphism of von Neumann
algebras; (ii) the commutant L>°(§))’ is the von Neumann algebra of decomposable oper-
ators on $; (iii) the mapping C(X) 3> f — My(-) € C($) is a (canonical) homomorphism
of C*-algebras which becomes an isomorphism if the support of 1 coincides with X; in
this case X is the Gel'fand spectrum of C($)) and p is a basic measure.

B.4 Periodic cyclic cohomology for the NCT-algebra

Let (AX)®F := AX @ ... ® A (k-times) and denote by C*(A*) := Hom((AF)®*+1); C)
the space of (k + 1)-linear functionals on 2$° with value in C. The elements of C*(A°)
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are called Hochschild k-cochains. The Hochschild differential b : C*(A°) — CFH1(A°) is
defined by

k
(bo)(ag, ..., a5, agy1) == Z (a0, -+, 0511, apr1) + (D) o(ag1ao, - .. ag).
7=0
One can check that b*> = 0. The cohomology of the complex (C*(25°),b) is called the
Hochschild cohomology of 3° and will be denoted by H*®(25°). A Hochschild k-cocyle is
a k-cochain ¢ € C*(A) such that bp = 0. A Hochschild k-coboundary is a k-cochain
¢ € C*(AX) such that ¢ = by’ for some ¢’ € CF1(AF).

A k-cochain ¢ € C*(A°) is called cyclic if p(ay,a0,...,a,-1) = (=1)*¢(ap,...,a).
Cyclic cochain form a subcomplex (C5(3°),b) C (C*(A3°),b) of the Hochschild compex
called the Connes complex. Its cohomology is called cyclic cohomology of 3° and will be
denoted by CH*(2(3°). A cocycle for the cyclic cohomology is called a cyclic cocycle.

An important tool in the cyclic cohomology is the periodic operator which is a map of
degree +2 between cyclic cocycles which is defined for all p € C* (2A5°) by

k+1
(Sgo)(ao,...,ak+2): (k‘—|—2 ZQO Clo,...,ajflajaj+1,...ak+2)
1 k+1
— ag,...,q4;—1a;,...,4;0541,...04 .
(k+2)(k+].) 1<i<yz<n+190( 0 1—1Ug 7 Bi4+1 k+2)

The map S defines the periodicity homomorphism S : C H*(23°) — CH*2(25°) (Gracia-
Bondia et al. 2001, Lemma 10.4).
The periodicity map S defines two direct systems of abelian groups. Their inductive
limits
PH®(A5°) == lim CHM(AFF), PH(A) := lim CH ! (A3°)

form a Z, graded group PH*(AL) := PH® (AF) @ PH*Y(AFL) called the periodic cyclic
cohomology of the algebra 2. It turns out that PH® (A3°) ~ PH°Y(A°) ~ C? indepen-
dently of 6.

To describe the cohomology it is enough to exhibit a cyclic cocycle in each cohomology
class. Since a cyclic 0-cocycle is a trace, C H 0(2[3") is one-dimensional with generator the
canonical trace; i.e. CH°(A°) = C[f]. With the two standard derivation d; and & one
can define two cyclic 1-cocycles ¢ and ¢ by v;(ag, a1) :=F (ap 7 a1). It turns out that
CH'(A°) = C[y1] ® Clipg]. Next there is a 2-cocycle obtained by promoting the trace
to a cyclic trilinear form (S §)(ag, a1, a2) :=f (apaiaz). However, there is another cyclic
2-cocycle that is not in the range of S and it is defined by

€1(ao,a1,a2) = —i JC (a0(6‘1 a1)<3_2 ClQ) — ag(a_g al)(ﬁl ag)).

It turns out that CH? (A%°) = C[S ] @ C[¢,]. For k > 3 the cohomology groups are stable
under repeated apphcatlon of S, i.e. C’Hk (219 ) = S(CH"2(A5°)) ~ C @ C. It follows that
PH® (A3°) is generated by [f] and [¢,], while PH°Y(A5°) is generated by [¢1] and [¢s].



Appendix C

Basic notions on vector bundles theory

n this appendix we introduce some notations concerning the theory of vector bundles.

For a detailed and complete exposition about this subject, we refer to (Lang 1985) or
(Gracia-Bondia et al. 2001) or (Greub et al. 1972). The reader expert in this field can
skip this appendix.

Vector bundle and local frames

A rank N (complex) vector bundle . : & — X is the datum of two topological spaces & (to-
tal space) and X (base space, connected and compact for our purposes) and a continuous
map ¢ (canonical projection) such that for any » € X, the set &, := .~ !(z) is a complex
vector space isomorphic to CV (fiber space) and there exists an open neighborhood O, of
x and N continuous maps ¢’ : O, — & such that 1o ¢/ = id on O, and such that the map

00 x C¥ 5 (5,9) £% vy CO(y) + ... +on-1 (V7 Uy) €8, vi=(vo,...,on-1) (C.1)

is a homeomorphism of O, x C" onto 77'(O,). The maps ¢/ are called (canonical) local
sections and the collection ¢ := {¢°,...,(V'} is called a (canonical) local frame over O,.

Local triviality and triviality

Let ; : &5 — X, j = 1,2, be two vector bundles over the same base space X. Morphisms
in the category of vector bundles over a fixed X are continuous bundle maps © : & — &
satisfying (2 0 © = 11 such that the associated fiber maps 6, : 1;*(x) — 1, *(x) are linear
for any z € X. If the morphism © is an homeomorphism between & and & such that
O, is a linear isomorphism for every x € X, then the vector bundles &, and &, are said
to be isomorphic or equivalent. A rank N vector bundle is trivial if it is equivalent to the
product bundle pr, : X x CN — X. A vector bundle is trivial if and only if it admits a
global frame ¢ defined on the whole X.

Trivializing covering and transition functions

A trivializing covering {(Oq, ¢,)}acz for the vector bundle . : & — X is the datum of an
open covering {O,}.cr for X such that each O, carries a local frame ¢, := {¢?,...,¢}.
If X is compact the trivializing covering can be chosen in such a way that 7 is finite.
If O, N O, # 0, then the continuous (matrix-valued) function g,; : O, N O, — GL(CY)
defined by g,(z) := <I>5i o ®p, |x according to (C.1), is called transition function between
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the local trivializations in O, and O,. The family g := {g, 1} »c7 satisfies the consistency
conditions

ga,a(qj) =1y VxzeO, ga,b(x) : gb,c(x) = gc,a(x) VaeO,N0,NO0,.

Suppose that ¢, (7) = G, () - {;(z) for any z € O, N O, with G, : O, N O, — GL(CY). A
simple computation shows

[y

- N-1 bt o !
' = 3 ) [ 6k o | ey —t @, v e

04|, N
ab “j
j=0 k=0 7=0

CN 5yl Loy

which implies that g, (z) = tGa,b_l(x)'

EXAMPLE C.0.1 (Standard atlas for the two dimensional torus). Since we are mainly
interested in vector bundles with T? as base manifold, we provide the description of an
atlas for the two-dimensional torus. The compact space T? = $! x $! can be covered by
four neighborhoods {O,}.-1... 4, where each O, is homeomorphic to a subset of R%. Let

Op:={z(k)=e*cT? : —e<ky<mte —e<ky<m+e}

Os ::{z(kﬁ):eike’ﬂ‘2 cm—e<k <2m4e€ —e<ky<m+e} (C.2)
O3:={z(k)=e*cT? : —e<ky<mte m—e<ky<2m+e}
Os:={z(k)=e*cT? : m—e<ky <2m+e m—e<hky<2m+e}

with € > 0 and small enough. For every chart O, we define the local coordinate system ¢,
which maps O, in the fixed open set V C [—¢, w4 €] x [—¢, 7 + €] of the plane R?; explicitly

d1(e) := (ki k), ¢o(e®) = (k1—m, k), ¢3(e®) = (ki,ko—7), ¢u(e®) = (k1—m, ko—).

Any intersection O, := O, N Oy is non empty, and is made by the union of two disjoint
set. For instance (c.f. Figure O12 = O12(k1 ~ m) U O12(k1 ~ 27), where Oy 2(ky ~ )
is the intersection around k; = 7 (mod. 27) and O 2(k1 ~ 27) is the intersection around
k1 = 0 (mod. 27). The standard atlas {Og, ¢q}a=1... 4 is smooth and endows T? with the
structure of a smooth manifold. <>

Tensor product of vector bundles

The structure of a vector bundle (up to isomorphisms) can be entirely recovered by the
set g of its transition functions (Lang 1985, Proposition 1.2). One can use this result to
define the tensor product of two vector bundles ¢1 : & — X and 15 : & — X. The latter is
the vector bundle ¢ : & ® & — X with fiber spaces (™! (z) := (& ® &), ~ 17 H(x) @ 15 ()
and transition functions given by the tensor product of the transition functions of & and
&', relative to the same trivializing cover.
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Figure C.1: Standard atlas for the two dimensional torus T2 ~ [0, 27)?.

Determinant line bundle

Let . : & — X be arank N vector bundle. The ¢-th exterior power of & is a vector bundle
T:N1E — X
with fiber over z € X given by
() = (N1E), = N1 &,

where the symbol A? denotes the ¢-th exterior power of the N dimensional vector space
& =171 (x) (Greub et al. 1972, Chapter II, Section 2.11). The rank of \?& is q!(NLiq)! for
1 < ¢ < N. One can extend the definition of the exterior power to any integer ¢ by means

of the following convetions

N&E ~ X x {0} if ¢ > N, ANE~XxC if ¢g=0.

Let g := {ga}apez be the system of transition functions of the vector bundle & sub-
ordinate to the open covering {O,}.cz. The system of transition functions of A?&, sub-
ordinate to the same cover, is given by g := {A%4}epez, Where for any € O, N Oy,
Ngap(7) € NYGL(CY) denotes the g-th exterior power of the matrix g, ,(z).

When g = N the vector bundle AV & has rank 1; it is called determinant line bundle
of & and denoted by
r:det(&) — X
The system of transition functions of det(&’), subordinate to the open covering {O, }c7,

is given by g := {det(gq4) }a.pcz, Where for any z € O, N Oy, det(gq,p)(x) € C denotes the
determinant of the matrix g, ().
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Pullback vector bundle

Let . : & — X be a Hermitian vector bundle and f : X — X a continuous function. The
pullback bundle ' : f*& — X is the vector bundle with total space

FE={(av)eX x & 1(v) = f(z)} (C.3)

and canonical projection /(z,v) = x. In other words we have the following isomorphism
between the fiber spaces: (f*&), ~ &, for all z € X. Let {(Oq, {,) }acz be a trivializing
covering for « : & — X with transition functions g := {g4}apecz. It follows from the
definition that a trivializing covering for // : f*& — X is given by {(f~1(O.), f*¢,) }acT
where f*¢, := {, o f. In other words, the local frames of the pullback vector bundle
are given by the pullback of the local frames of the original vector bundle. We remark
that a (local) frame transforms by pullback and not by pushforward as for vector fields.
The transition functions of a pullback vector bundle are given by f*g := {f*gas}abez
where f*g.p : f71(04) N f71(0p) — GL(CY) is defined by f*g.p := gap o f- Namely,
the transition functions of a pullback vector bundle are given by the pullback of the
transition functions of the original vector bundle. In particular the pullback of a trivial
vector bundle is again a trivial vector bundle.

Module of continuous sections and endomorphism bundle

Let . : & — X be a rank N vector bundle with trivializing covering {(O,,¢,)}.cz and
transition functions g := {g,}aez. The set of continuous sections is denoted by I'(&).
Notice that I'(£’) is a C (X )-module and the action of C'(X) is just the (left) multiplication
in each fiber, i.e. (f - s)(z) := f(x)s(z) for any s € I'(&) and f € C(X).

The endomorphism bundle of the vector bundle  : & — X is the rank N? vector
bundle : : End(&) — X which has as typical fiber the vector space End(C") = Maty(C)
and transition functions {Adgg}q ez given by

Aa(‘r) = Adga,b(x) : Ab(x) = ga,b(x) : Ab(w) ' g;;(a:), T e Oa N Ob>

where A, := Ao, : O, — Maty(C) and A4, := Ao, : O, — Maty(C) denote the local ex-
pressions of the continuous section A € I'(End(&)). The space I'(End(&’)) has the struc-
ture of a unital C*-algebra as showed by the (localization) isomorphism I'(End(&)) ~
Endq(x)(I'(€)), the latter being the C*-algebra of the adjontable operators on the C'(X)-
module I'(&’) (Proposition . In the case of a trivial vector bundle & = X x C", then
I'End(¢)) = C(X,Maty(C)) ~ C(X) ® Maty(C).

Hermitian structure and .2-sections

Each complex vector bundle : : & — X can be endowed (in many ways) with a Hermitian
structure. For that, one can define a positive definite sesquilinear form (-;-), on each
1™Y0,) ~ O, x CN, for O, in a trivializing open cover of X, and then glue the metric
together by using a partition of unity. Thereupon, we get a pairing {;-} : I'(&) x I'(&) —
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C(X), defined by {s;r}(x) := (s(z);7(x)), for any z € X, s,r € ['(&), which is C(X)-
sesquilinear, conjugate -symmetric and positive definite.

Assume that the base space X is a finite dimensional oriented manifold (with real
dimension n) with a Riemannian metric g. Denote with Q"(X) the exterior form bundle
of the r-forms over X. Let 1, € Q"(X) be the Riemannian volume form associated to the
metric g, i.e. (in local coordinates)

g =/ Igldz' A A da™

where dz' are the 1-forms providing an oriented basis for the cotangent bundle 7" X
and |g| is the absolute value of the determinant of the metric tensor g. The Hermitian
structure of . : & — X and the Riemannian strucure of the oriented manifold X allow to
define the notion of scalar product on the space of sections I'(&):

(s;r) == /X{s;r}(x) fg(x) s,r € I'(&). (C.4)

The completion of I'(&) with respect to the norm ||s||;2 := +/(s;s) defines the Hilbert
space L?(&) called the space of L2-sections of &.

Connections, curvatures, Chern classes

According to the general (axiomatic) definition (Husemoller 1994, definition 3.2, Chapter
17), the Chern classes of a vector bundle . : & — X are a sequence of elements of the
integer cohomology group H*(X;Z) := P ; HI(X;7Z). The j-th Chern class of &, denoted
by ¢;(&), is an element of H?/ (T?;Z). The total Chern class is defined as

&(&) =co(&) + E1(E) + Ea(E) + -+
with ¢y(&) = 1. The definition of Chern class is functorial, namely
ofre&) = fre(é)
for any continuous map f : X — X.

There are various equivalent ways to construct the Chern classes. Assuming that
X is a (Riemannian) manifold we can define the Chern classes by means of differential
geometric tools. A connection w for the Hermitian vector bundle . : & — X, subordinate
to the trivializing cover {(O,, ¢,)Yaer, is a collection {w, Yoer C Q1 (Oy; u(CV)) of local dif-
ferential 1-forms (called gauge potentials) with value in u(C") := iHery(C) (the algebra
of anti-Hermitian matrices) which satisfies the transformation rule

Wa = dga,b ga,bi1 + Jab Wh ga,bila (C5)

where g := {gas}apez are the transition functions of &. u(C") is the Lie algebra of the
group % (CV) (unitary group on CV), which is the group in which the transition functions
{9ap}taper take values. The curvature K“ associated to the connection w = {w,}acz is
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the collection {K¥},c7 C Q2(04; u(CY)) of local differential 2-forms with value in u(CY)
defined by the local structural equation

1
Kp = dw, + i[wa;wa] = dwg + wg N\ wyq. (C.6)

The de Rham-Chern classes are defined by means of the Chern-Weil homomorphism
as

c(&) :=det <]1N + i K‘”) =14c(&)+...+cen (&) (C.7)

where ¢;(&) € H(?]R (X) (the (2j)*" de Rham complex cohomology group). In particular
from equation (C.7) one deduces

c1(8) = —Try (K¥). (C.8)
2
If the base manifold X has dimension n, then ¢;(&) = 0if j > /2. Moreover, the definition
does not depend on a particular choice of the curvature K“ (Husemoller 1994,
Chapter 19). The equivalence ¢;(&) ~ ¢;(&) between the axiomatic definition and the
differential geometric definition comes from the de Rham Theorem H’(X,C) ~ H, g.R.(X )
and the coefficient morphism H/(X,Z) — H’(X,C).
Given a vector bundle ¢ : & — X, denote with det(&’) the determinant line bundle.
One can prove that (Greub et al. 1973, Chapter IX, section 9.18)

cj(det(&)) = ¢;(&). (C.9)

Let . : & — X be a rank N Hermitian vector bundle with base space of dimension 2
(as for T?). The (total) Chern character is defined by
ch(&) = N + c1(8)

where ¢1(&) denotes first Chern class of &. This definition agrees with the general one
since the base manifold has dimension two and c¢;(&)"" = 0 whenever n > 1. Let // :
&' — X be a rank N’ Hermitian vector bundle. From the general formula ch(& ® &') =
ch(&) A ch(&”) it follows the useful relation

Cl(éa®@@/)ZNlcl((oﬁ)—i-NCl(@ﬁ,). (C.10)

Chern numbers for vector bundles over T2

Let . : & — T2 be a rank N Hermitian vector bundle. The first Chern class c;(&) is
an equivalence class of closed 2-forms and any representative can be integrated over T2
(the only 2-cycle of the homology) producing the same integer number. The number

CL(&) = /T (&),

called the first Chern number of the vector bundle &, is a quantity depending only on the
topology of the vector bundle.
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The simple lemma below is useful to compute the first Chern numbers of pullback
vector bundles. Indeed the functoriality of the Chern classes implies

aife)= [

T

a(fe) = /T Fa()

where f*ci(&) denotes the pullback of a 2-form over T2.

LEMMA C.0.2. Let w € Q*(T?) be a 2-form and f : T? — T? the continuous function
defined by f(z1,22) = (27, 25") with n,m € Z. Then

ffo=nm | w.
T2 T2

Proof. The local expression of the two form w is w(z(k)) = h(k) dki A dks. The pullback
f*w, defined by f*w|, (X1,X2) = w|s,) (fo(X1), f+(X2)) for any X5, X5 € T.T? has local
expression (f*w)(z(k)) = nm h(nki, mks)dk; A dka. An integration shows that

21 21
/ ffw= nm/ dkl/ dks h(nky, mks) = nm w
T2 0 0 T2

since h is a periodic function defined on T?. |
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