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Abstract

This thesis is devoted to the study of tests of General Relativity which could be performed
using astrophysical observations of stars or compact objects. The thesis consists of two
parts.
In the first one, I have investigated how the future gravitational wave observations by
the space-based detector LISA will permit mapping the spacetime of the supermassive
black holes which are thought to reside in galactic centres. In particular, I have analysed
the dynamics of a stellar black hole orbiting around a supermassive black hole and have
investigated under which conditions the gravitational wave signal emitted by such a sys-
tem can allow one to detect the presence of an accretion torus around the supermassive
black hole. I have also studied the motion of a stellar black hole in the very strong field
region of a nearly extreme supermassive black hole: contrary to our expectations and to
suggestions present in the literature, we have found that although the motion presents
peculiar characteristics, the emitted gravitational waves do not retain an observable im-
print of the almost maximal rotation of the supermassive black hole. Also, I considered
black hole binaries with arbitrary masses and spins. Although the coalescence of such
systems can be studied only with numerical simulations, I have derived a compact ana-
lytic formula for the spin of the final remnant. This formula is in agreement with all the
numerical simulations available to date.
In the second part, I have investigated the viability of two phenomenological theories
of gravity alternative to General Relativity: f(R) gravity in the Palatini variational for-
malism and Gauss-Bonnet gravity. While these two theories have been introduced to
explain the cosmological acceleration without introducing Dark Energy, little attention
has been paid to whether they are consistent with other astrophysical data. To partially
fill this gap, I have studied non-vacuum static spherically symmetric solutions in Palatini
f(R) gravity, showing that for widely-used equations of state they all present a curvature
singularity at the surface and giving some insight on the physical reason behind the on-
set of this singularity, and I have derived the parameterised post-Newtonian expansion
of Gauss-Bonnet gravity, showing that it passes all of the solar system tests. Finally, I
briefly present some work in progress aiming at testing modified gravity theories using
gravitational wave observations, and discuss future research prospects.
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Preface

The first problem that I faced when I started to write this thesis, which presents the re-
search that I conducted in SISSA between November 2004 and October 2008, was the
choice of the title. When I arrived in Trieste, I was a (wanna-be) cosmologist. I wanted
to know where the Universe is coming from and why, where it is going, how it will end.
A bit ingenuous perhaps, but this is why we all have become astrophysicists in the first
place.
Of course, I soon got the confirmation that I was not good enough to answer these
questions... But I did not lose heart, and I remembered Galileo: “Io stimo più il trovar
un vero, benché di cosa leggiera, che ’l disputar lungamente delle massime questioni
senza conseguir verità nissuna”1. Perhaps I could do something useful anyway, maybe
just a tiny piece in our understanding of the Universe, but it would be my own one.
That was the moment when I became interested in something more “down to Earth” like
gravitational waves. Something so “trivial” that they must exist, otherwise we will have
to rewrite gravity books and the whole history of the Universe...
That is how the main branch of my PhD research, which was about sources of gravi-
tational waves for the future space-based detector LISA, started off. But one nice day I
moved to an office close to Thomas Sotiriou’s, who soon re-infected me with his conta-
gious enthusiasm for deep questions. That was the start of the second branch of my PhD
work, the one about testing phenomenological theories of gravity which can “explain”
the cosmological acceleration without introducing Dark Energy but modifying General
Relativity.
I think that the only connection between these two lines of research is that they were
both concernedwith exploring gravity on the lengthscale of stars, stellar-mass black holes
or supermassive black holes. In spite of this loose connection, there is a major difference
between the two approaches. The one about gravitational wave sources for LISA assumes
that General Relativity is the correct theory of gravity and works out some consequences
of this assumption, which might be observable by gravitational wave detectors. How-
ever, this is no more than a consistency test of the theory. In order to really understand

1“I hold in higher esteem to find a truth, even a small one, rather than disputing endlessly about big
questions without obtaining any results”.

xv



xvi Preface

whether General Relativity is the correct theory of gravity, we should compare its predic-
tions with those of other gravity theories: this is indeed the issue which I tried to address
in the second branch of my research.

Essentially because of this major conceptual difference, I have decided to keep the
two parts of which this thesis is made somewhat distinct. In the first part, after a brief
overview of the LISAmission (chapter 1), I have considered the future observations of the
gravitational waves emitted by stellar-mass black holes orbiting around the supermas-
sive black holes which are thought to reside in galactic centres, and examined whether
these observations can permit mapping the spacetime of the supermassive black holes.
In particular, in chapter 2 I have examined the mechanisms which can affect the dynam-
ics of the stellar-mass black hole, focusing in particular on the dynamical friction exerted
by matter which could be present around the supermassive black hole. In chapter 3, I
have applied the results of chapter 2 to the study of the inspiral of a stellar-mass black
hole into a supermassive black hole surrounded by a thick accretion disk (i.e., a torus),
and I have investigated under which conditions the gravitational wave signal emitted by
such a system can allow one to detect the presence of the disk. In chapter 4, instead, I
have considered the purely gravitational effect of a very compact torus surrounding the
supermassive black hole, examining its effect on the orbit of the stellar-mass black hole
and analysing whether LISA observations of these systems could provide evidence of the
presence of such a torus. In chapter 5, I have studied the motion of a stellar-mass black
hole in the very strong field region of a nearly extreme supermassive black hole: contrary
to my expectations and to some suggestions present in the literature, I have found that
although the motion presents peculiar characteristics, the emitted gravitational waves
do not retain any peculiar imprint of the almost maximal rotation of the supermassive
black hole. In chapter 6, I finally considered black hole binaries with arbitrary masses
and spins. Although the coalescence of such systems can be studied only with numerical
simulations, I have derived a compact analytic formula for the spin of the final remnant:
this formula is in agreement with all of the numerical simulations available to date.

In the second part of this thesis, I have investigated the viability of two phenomenolog-
ical theories of gravity alternative to General Relativity: Gauss-Bonnet gravity and f(R)
gravity in the Palatini variational formalism. While these two theories have been intro-
duced to explain the cosmological acceleration without introducing Dark Energy, little
attention has been paid to whether they are consistent with other astrophysical data. To
partially fill this gap, after a brief introduction on the motivation for modified theories
of gravity (chapter 7), I have studied non-vacuum static spherically symmetric solutions
in Palatini f(R) gravity, showing that for widely-used equations of state they all present
a curvature singularity at the surface, and giving some insight on the physical reason
behind the onset of this singularity (chapter 8). In chapter 9, I have then derived the pa-
rameterised post-Newtonian expansion of Gauss-Bonnet gravity, showing that it passes
all of the solar system tests. Finally, in a concluding section I briefly present some work
in progress aiming at testing modified gravity theories using gravitational wave obser-
vations, and I stress how this line of research, which I will pursue in the coming future,
offers a potential way of connecting the two lines of research which this thesis is about.



xvii

Writing this thesis and developing the work behind it would have been impossible
without the help of a number of people. First, I would like to thank my PhD advisors,
Luciano Rezzolla and John Miller, for their constant help, patience and encouragement
during these years. Special thanks to John for his relentless correction of my English.
Particular thanks to my collaborators Thomas Sotiriou, Scott Hughes, David Petroff
and Marcus Ansorg for their hard work on our common projects. It has really been a
great pleasure for me to collaborate with them. I am also very grateful to Leor Barack and
Monica Colpi, my thesis examiners, for reviewing this manuscript and for their useful
suggestions and comments.
SISSA has provided an ideal environment for conducting my research over the last
four years: I would like to thank all of the Astrophysics and Astroparticle Sectors for
contributing to that. Very special thanks to Michael Cook, Christiane Frigerio-Martins,
Kostas Glampedakis (and his Romanian lady...:-)), Luca Naso, Christoph Rahmede, An-
drew Schurer, Thomas Sotiriou and Marcos Valdes, for all the fun we had together, the
pizzas and the bets, the football games and the hangovers. I’ll keep your faces locked in
my heart.
But most of all, I would like to thank Elena and my family for all the strength and
serenity that they gave to me in troubles, for their unfaltering faith in me, for their tender
love. Without them, I would have never become the person I am.

Trieste, 24 October 2008 Enrico Barausse



xviii Preface



Notation

• Unless stated otherwise, I use units in which G = c = 1;

• I adopt the signature (−, +, +, +) for the metric and denote the spatial indices
(from 1 to 3) by Latin letters and the space-time indices (from 0 to 3) with Greek
letters;

• I adopt the definition of the Riemann tensor used in Ref. [1]:

Rα
βγδ = ∂γΓα

βδ − ∂δΓ
α
βγ + Γσ

βδΓ
α
γσ − Γσ

βγΓα
δσ ;

• ηµν is the Minkowski metric;

• I denote covariant derivatives as ∇µ or ;µ.

• I denote the determinant of the metric gµν as g.
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Chapter 1
LISA: a tool to explore General
Relativity

Education is an admirable thing, but
it is well to remember from time to
time that nothing that is worth
knowing can be taught.

O. Wilde

1.1 The mission

The Laser Interferometer Space Antenna (LISA) [2] is a space mission planned jointly by
ESA and NASA (although the NASA involvement in the mission is being currently re-
discussed after the priorities in the “Beyond Einstein” program have been redefined [3]).
Its purpose consists in detecting gravitational waves in the low-frequency band (from
10−5 Hz to 1 Hz), being therefore complementary to ground-based interferometers (such
as LIGO [4], Virgo [5], GEO600 [6], Tama300 [7]), which, due to seismic noise, are de-
signed to explore higher frequencies (from 10 Hz to 104 Hz).

The launch of LISA is expected to happen around 2017. The experiment setup will
include three spacecraft orbiting around the Sun approximately 20 degrees behind the
Earth, forming a nearly equatorial triangle with sides of 5 million kilometres and inclined
60 degrees to the Earth’s ecliptic plane (see Fig. 1.1). Each spacecraft is equipped with
two lasers working in a “transponder mode”. Let us consider for instance spacecraft 1
(but the other two spacecraft obviously work in the sameway). Spacecraft 1 sends a beam
to spacecraft 2 and another beam to spacecraft 3. The laser in spacecraft 2 (spacecraft 3)
is phase-locked to the incoming beam and returns a high-power beam to spacecraft 1,
where this returning beam can be compared to the corresponding local beam. The phase

1
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Figure 1.1: A schematic view of the LISA constellation. Credit: Max Planck Institute for Gravitational
Physics (Albert Einstein Institute)/Einstein Online.

Figure 1.2: The annual motion of the LISA constellation: the orange line represents the orbit of one space-
craft. From http://lisa.nasa.gov/

http://lisa.nasa.gov/
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difference between the beam returned by spacecraft 2 and the corresponding local beam
is then subtracted from the phase difference between the beam returned from spacecraft
3 and the corresponding local beam. Therefore, each LISA arm will work in practice like
the arm of a Michelson-Morley interferometer, with the laser phase-lock working as the
mirror (the use of lasers in transponder mode instead of mirrors ensures that the beam is
sufficiently strong when returning to the emitting spacecraft). LISA will therefore work
as a three-arm interferometer, but it is clear that only two of them will be independent.
Note that the presence of two independent arms will allow LISA to measure not only the
amplitude of gravitational waves, but also their polarisation.

For the experiment to work, it is crucial that the distances between the spacecraft are
known with an accuracy ranging from 30 to 800 meters (depending on the frequency of
the gravitational wave signal) [8] during the mission lifetime (which will probably be
of the order of 1-5 years), in spite of these distances being as large as 5 million kilome-
tres. The existence of orbits particularly suitable for this purpose was first discovered by
Vincent and Bender [9] (see also references [10] for further discussion). The key point is
that each spacecraft moves along an inclined and eccentric orbit (see Fig. 1.2, in which
the orbit of a single spacecraft is denoted by an orange line): it is possible to show that
with an appropriate choice of the orbital parameters, the spacecraft maintain their dis-
tances constant to linear order in the orbital eccentricities. The changes in the distance
due to effects which are of higher order in the eccentricity cause only low-frequency dis-
turbances, which do not compromise the experiment. Note also that the LISA formation
changes orientation over one year (see again Fig. 1.2): this makes it possible to measure
the position of a source of gravitational waves in the sky.

Moreover, the laser emitters have to move exactly along free-fall orbits, in spite of
possible disturbances such as magnetic fields, solar wind, etc., in order to abate the high-
frequency noise, which would jeopardize the experiment. To this purpose, the optical
bench of each spacecraft is equipped with a proof mass, which is protected from distur-
bances thanks to careful design and which is allowed to free-fall. A housing around each
mass senses its position relative to the spacecraft, which can adjust its position thanks to
a system of thrusters.

1.2 Gravitational waves: basic concepts

Gravitational waves are spacetime perturbations which have the characteristic of prop-
agating as waves (as opposed for instance to a Newtonian potential, which does not
propagate because it satisfies the Poisson equation). As an example, let us briefly recall
gravitational waves in a flat background. Let us write the metric as theMinkowski metric
ηµν plus a small perturbation hµν , and assume that the stress-energy tensor of matter, Tµν ,
is also small (i.e. of the same order as hµν). Linearising the Einstein equations, one easily
gets equations for hµν . What we are interested in, however, is the transverse and traceless
(“TT”) part of the spatial perturbation hij , which we denote by hTT

ij . This TT perturba-
tion, which is what we call a gravitational wave, can be shown to be gauge invariant and
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satisfies the gauge conditions

δki∂kh
TT
ij = 0 , (1.1)

δijhTT
ij = 0 , (1.2)

where δij is the Kronecker delta. It is also possible to get an explicit expression for the TT
perturbation in terms of the full spatial perturbation hij :

hTT
ij = P k

i P l
jhkl −

1

2
P klhklPij , (1.3)

where Latin indices are raised and lowered using the Kronecker delta and P is the pro-
jection operator

Pij ≡ δij − ∂i∂j∇−2 , (1.4)

(∂i ≡ ∂/∂xi and ∇−2 is the inverse of the Laplacian operator∇2 ≡ δij∂i∂j
1).

Using the TT gauge conditions (1.1) and the linearised Einstein equations, it is easy to
see that hTT

ij satisfies the wave equation

¤hTT
ij = −16πTTT

ij , (1.5)

where ¤ = ηµν∂µ∂µ and TTT
ij is the TT part of the stress-energy tensor (this gauge invari-

ant quantity is defined in the same way as hTT
ij ).

A solution to this equation, at distances sufficiently far from the source, which is as-
sumed to be located around the origin, and under the hypothesis that the internal mo-
tions of the matter source are slow, can be written in terms of the quadrupole moment
Qij(t) =

∫
T00(t, x)xixjd3x:

hTT
ij (t, x) = 2P k

i P l
j

Q̈kl(t − |x|)
|x| − P kl Q̈kl(t − |x|)

|x| Pij , (1.6)

where an overdot denotes a derivative with respect to time.2

Far away from the source and in a limited spatial region, the spherical gravitational
wave (1.6) can be approximated with a plane wave. Assuming that the propagation di-
rection is n = ez (propagation along the z-axis; ek, with k = x, y, z, denotes unit vectors
in the axis directions), the plane gravitational wave tensor can be written as

hTT = h+(t − z)e+ + h×(t − z)e× , (1.7)

1The inverse of the Laplacian is well-defined for functions that go to zero sufficiently fast at infinity.
2In order to derive eq. (1.6), one has to use the conservation of the stress-energy tensor with respect to
the background (Minkowski) metric, ∂νT µν = 0. Because ∂νT µν = 0 is equivalent to the geodesic
equation of the background spacetime, eq. (1.6) is not, rigorously speaking, valid for a source moving
under the effect of gravity (e.g. a binary system of stars). Nevertheless, it turns out that eq. (1.6) is a good
approximation even in that case, if the source motion is Newtonian (cf. refs. [1, 11]) or, in some cases,
even in the strong-gravity regime [12].
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where the polarisation tensors e+ and e× are defined as

e+ ≡ ex ⊗ ex − ey ⊗ ey , (1.8)

e× ≡ ex ⊗ ey + ey ⊗ ex . (1.9)

(1.10)

The gravitational wave is said to be linearly polarised along the direction identified by the
polarisation angle λ in the (x, y)-plane if h+(t − z) = h(t − z) cos 2λ and h×(t − z) =
h(t − z) sin 2λ (i.e., h+ and h× oscillate in phase or in phase opposition, but can have
different amplitudes), whereas the polarisation is circular if h+(t − z) = h(t − z) and
h×(t− z) = ±ih(t− z) (i.e., h+ and h× oscillate with a phase difference of ±π/2, but with
the same amplitude). If neither of these conditions is satisfied, the polarisation is elliptical.

The polarisation of the gravitational wave depends on the inclination of the sourcewith
respect to the line of sight to the observer. This can be easily understood by applying the
quadrupole formula (1.6) to the case of a binary system in circular motion with masses
m1 andm2 and separation R. If R ≫ m ≡ m1 +m2, the motion of the system is governed
by Newtonian gravity and the revolution frequency is Ω = (m/R3)1/2. Using then eq.
(1.6), in a region sufficiently small so as to be able to approximate the gravitational wave
with a plane one, we have

h+ =
2m1m2

rR
(1 + cos2 θ) cos[2Ω(t − r) + 2∆φ] ,

h× = −4m1m2

rR
cos θ sin[2Ω(t − r) + 2∆φ] , (1.11)

where θ is the angle between the orbital angular momentum of the binary and the direc-
tion to the observer, while the phase ∆φ depends on the position of the masses at t = 0
and on the orientation of the axes of the observer’s frame. Note that in order to derive eq.
(1.11) we have used the fact that the projection operator P defined in eq. (1.4) reduces to
Pij = δij − ninj for a plane wave with propagation direction n. Clearly, the gravitational
wave is circularly polarised if the observer sees the source “face-on” (i.e., θ = 0, π), while
it is linearly polarised if the observer is located “edge-on” (i.e., θ = π/2).

1.3 The LISA sensitivity function

The way in which LISA will detect a gravitational wave signal is based on the shift of
the laser frequency ν induced by the passage of the wave. This shift has been calculated
by Estabrook and Wahlquist [13], basically by solving the null geodesic equation. In
particular, if the unit vectors n and σ are the propagation directions respectively of the
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gravitational wave and of the laser, one can define

cos θ ≡ σ · n , (1.12)

Ψ(t) ≡
hTT

ij σiσj

sin2 θ
, (1.13)

and the frequency-shift at the detector is

∆ν

ν
=

1

2
(1 + cos θ)Ψ(t) − cos θ Ψ(t + τ(1 − cos θ)/2) − 1

2
(1 − cos θ)Ψ(t + τ) , (1.14)

where τ is the laser travel time between the end masses of interferometer. The direction
σ will vary as the interferometer orbits around the Sun with period Torb. When calcu-
lating the interferometer response to a gravitational wave with period TGW , assuming σ

constant introduces a relative error (TGW/Torb)
2 ≪ 1 in the power spectra [14].

However, the quantity which will be read by the laser interferometer tracking system
is not the frequency-shift but the phase-shift (“the number of fringes”)

∆Φ =

∫ t

0
∆ν(t′)dt′ . (1.15)

The aim of a detector is to measure the phase-shift produced by a gravitational wave
signal, in the presence of competing noise. It is this noise which determines the sensitivity
of the detector.

In order to introduce the LISA sensitivity function, let us first briefly recall the concept
of a power spectrum. If we consider a signal h(t), this is related to its Fourier transform
by

h(t) =
√

T

∫ +∞

−∞
h̃(f)ei2πftdf , (1.16)

where T is the sampling time and where the normalisation factor
√

T is introduced to
keep the power spectrum roughly independent of time. In fact, if h̃(f) does not change
significantly over a frequency bin of width 1/T , the variance of h(t) over the time T can
be easily calculated to be

〈h2〉T =

∫ t=T

t=0

∫ f=+∞

f=−∞

∫ f ′=+∞

f ′=−∞
h̃(f)h̃∗(f ′) exp(i2π(f − f ′)t)df ′dfdt

=

∫ f=+∞

f=−∞

∫ ∆f=+∞

∆f=−∞

[
h̃(f)h̃∗(f + ∆f) exp(−iπ∆fT )

sin(π∆fT )

π∆f

]
d∆fdf

≈
∫ ∞

−∞
|h̃(f)|2df ×

∫ +∞

−∞
exp(−iπ∆fT )

sin(π∆fT )

π∆f
d∆f

≈
∫ ∞

0
|h̃(f)|2df , (1.17)
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where the normalisation factor cancels out. As such, defining the power spectrum Sh(f)
by means of

〈h2〉T ≡
∫ ∞

0
Sh(f)df , (1.18)

one obtains
Sh(f) = |h̃(f)|2 . (1.19)

The sensitivity function of a detector is basically the power spectrum of the noise. The
main source of experimental noise for LISA is given by the laser frequency fluctuations,
but this noise can be eliminated by considering suitable combinations of the phase-shifts
produced in each of the two independent LISA arms. This is known as “Time Delay
Interferometry” (TDI) [15] and amounts to considering, rather than simply the differ-
ence between the phase shifts z1(t) and z2(t) produced in the two arms, the combination
X(t) = z1(t) − z2(t) − z1(t − 2τ2) + z2(t − 2τ1) (τ1 and τ2 being the laser travel times
in the two arms). The cancellation of the laser frequency fluctuations in the quantity
X(t) is exact if τ1 and τ2 are known exactly, but in practice they only need to be known
well enough to make the effect of laser frequency fluctuations negligible with respect to
the other sources of noise. More precisely, as we have already mentioned, it turns out
that the accuracy with which the arm lengths (and therefore the travel times) need to be
known is between 30 and 800 meters depending on the frequency of the gravitational
wave signal [8].

Other sources of noise, which cannot be eliminated using TDI techniques, are the ac-
celeration noise from the proof masses (due to external forces), the laser shot noise (due
to the quantum nature of the laser photons),the thermal noise in the receiver electron-
ics, the laser pointing errors, etc. [14]. Besides these sources of experimental noise, the
LISA sensitivity is also affected by the astrophysical noise, i.e. the sources of gravitational
waves which are not resolvable by the instrument and which therefore cause a “confu-
sion” noise. These unresolved sources, as we will see in the next section, are mostly
unresolvable white-dwarf binaries and they cause a decrease in the LISA sensitivity at
frequencies smaller than ∼ 2mHz [16].

Let us now consider a linearly polarised3 gravitational wave with amplitude h(t). The
amplitude reconstructed from the detector output, s(t), will be the sum of the true am-
plitude h(t) plus the noise n(t) due to the sources mentioned above:

s(t) = h(t) + n(t) . (1.20)

We define the LISA sensitivity function as

hn(f) ≡
√

Sn(f) , (1.21)

where Sn(f) is the noise power spectrum. A plot of hn, produced with the online gener-

3This is not restrictive because a gravitational wave can always be decomposed into two linearly polarised
waves [cf. eq. (1.7)].
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Figure 1.3: The LISA sensitivity function hn(f), with and without astrophysical noise. Produced with
the online generator [14].

ator [14], is shown in Fig. 1.3.

To understand the meaning of hn, let us consider a monochromatic signal h(t) =
ℜ[A exp(2πif0t)], sampled for a long period T . Using eqs. (1.16) and (1.19), it is easy
to check that the power spectrum of the signal goes to zero for f 6= f0 if the sampling
time is large, while Sh(f0) = |h̃(f0)|2 ≈ A2T . As such, in order to understand if a peri-
odic signal is large or small with respect to the noise, its amplitude A has to be compared
to hn/

√
T rather than simply to hn [14]. Hence, a long sampling time T can significantly

enhance the signal-to-noise ratio (SNR).

Similarly, for a burst signal with characteristic pulsewidth τ , i.e. h(t) = A exp[−t2/(2τ2)],
if T & τ one has

h̃(f) ≈ A√
T

∫ +∞

−∞
exp[−t2/(2τ2)] exp(−2πift)dt =

Aτ√
T

√
2π exp(−2f2π2τ2) . (1.22)

From this equation, it follows that the power spectrum of the burst signal is largest when
the sampling time T is not much larger than the pulse width τ . In this optimal condition
(τ ∼ T ), eq. (1.22) gives that the maximum of h̃ isA

√
τ . Therefore, in order to understand
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if a burst signal is detectable, one has to compare its amplitude Awith hn/
√

τ [14].

Finally, if one considers a stochastic background h of gravitational waves, one has to
compare directly the root spectral density

√
Sh(f) with hn [14]. The reason is, of course,

that both the noise and the stochastic background are (at least approximately) Gaussian
random processes and are therefore uniquely identified by their power spectra.

As we will see in the next section, LISA sources usually present small SNRs (with the
exception of supermassive black hole mergers, which usually have higher SNRs), but
they are very numerous. As such, one needs a way of extracting one particular signal
from the “choir” of all the possible signals. This is done by the so called matched-filtering
technique, which basically consists of cross-correlating the incoming gravitational wave
with a bank of theoretical templates representing the expected signal as a function of the
source parameters. This will not only allow one to detect the source, but also to extract
its properties. However, it should be mentioned that matched-filtering poses serious
challenges both in building the templates and in accessing them, because the number of
templates that need to be built increases exponentially with the number of parameters
involved in the source description (see ref. [17] for a detailed discussion).

We recall that if a signal s(t) is the sum of a gravitational wave h(t) and of some noise
n(t)which we assume to be Gaussian, the SNR for a template ĥ(t) is given by [18]

S

N
[ĥ] =

∫
ĥ(t)w(t − τ) s(τ) dτdt

rms
[∫

ĥ(t)w(t − τ)n(τ) dτdt
] (1.23)

where w(t) is a filter function introduced to suppress the frequencies of the signal at
which the noise is too large and “rms” denotes the root mean square over the sampling
time. It can be shown, in particular, that the SNR is maximised if w(t) is the Wiener
optimal filter (i.e. if the Fourier transform of the functionw(t) is given by w̃(f) = 1/Sn(f),
with Sn(f) being the power spectrum of the noise). If the noise is Gaussian and there
is no gravitational wave signal, S/N [ĥ] is clearly a random variable with a Gaussian
distribution and a standard deviation of 1. Conversely if S/N [ĥ] is so large that it cannot
be given by noise alone, a gravitational wave with a shape similar to ĥ has been identified
with high confidence.

Eq. (1.23) can be put in a more useful form by defining internal product “( , )” be-
tween two signals h1 and h2:

(h1, h2) ≡ 2

∫ ∞

0

h̃∗
1(f)h̃2(f) + h̃1(f)h̃∗

2(f)

Sn(f)
df . (1.24)

With this definition, it is easy to write

S

N
[ĥ] =

(ĥ, s)

rms(ĥ, n)
=

(ĥ, s)

(ĥ, ĥ)1/2
≈ (ĥ, h)

(ĥ, ĥ)1/2
. (1.25)

Note that in order to go from the second to the third expression we have used the fact
that for a Gaussian field the ensemble average (“〈 〉”) coincides with the time average
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(“〈 〉T ”) if the sampling time is sufficiently long (this characteristic of Gaussian random
fields is known as “ergodicity”: see for instance ref. [19], paragraph 6.5). Moreover, we
have used the identity 〈(g, n)(n, k)〉T = 〈(g, n)(n, k)〉 = (g, k), which immediately follows
from the fact that for a Gaussian field n the different Fourier modes are independent:

〈ñ(f)ñ(f ′)〉 =
1

2T
Sn(f)δ(f + f ′) (1.26)

(the unusual factor 1/T on the right-hand side is due to our Fourier transform definition,
eq. (1.16)). In order to go instead from the third to the fourth expression of eq. (1.25),
we have decomposed s = h + n and used the fact that (ĥ, n) averages to zero over long
sampling times.

From eq. (1.25) it is eventually clear that the SNR is maximum if ĥ = h, in which case

S

N
[h] = (h, h)1/2 . (1.27)

1.4 Sources of gravitational waves for LISA

The simplest sources of gravitational waves are binary systems of compact objects. We
have already seen [eq. (1.11)] that a system of two masses m1 and m2 in circular New-
tonian motion with separation R emits gravitational waves at a frequency which is the
double of the orbital frequency Ω/(2π) = (m/R3)1/2/(2π) (m = m1 + m2). Expressing
fGW = Ω/π in Hz, one gets

fGW =
6 × 104

m̃R̃3/2
Hz , (1.28)

where R̃ = R/m and m̃ = m/M⊙. Therefore, in order for the signal to fall within the
LISA band (10−5 − 1 Hz) one needs to have either m̃ ∼ 105 − 107 and R̃ ∼ 1 − 100, or a
lower m̃ and a higher separation (for instance, m̃ ∼ 1 and R̃ ∼ 103 − 106).

The first case corresponds to a very compact binary system in which at least one com-
ponent is a supermassive black hole (SMBH).4 The other component can be either another
SMBH (in which case one has an SMBH binary) or by a stellar mass black hole or compact
object (in which case one has an extreme mass-ratio inspiral, EMRI). Let us note that both
in the case of an SMBH binary and in the case of an EMRI, the dimensionless separation
R̃ needs to be of order 1 − 100. This means that both SMBH mergers and EMRIs are
strong gravity sources and need General Relativity (GR) to be described correctly. This
also clarifies why in the case of EMRIs the smaller object must be a compact star or a
black hole: in the strong field region of the SMBH the tidal forces become so large as to
disrupt ordinary stars.

The second case considered above corresponds instead to a binary system of compact
stars (mostly white-dwarf binaries). In this case the separation, expressed in gravitational

4As we will see in sections 1.4.2 and 1.4.3, galaxy formation models predict that a considerable number of
these sources will be detected by LISA.
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radii, is much larger than in the case of SMBH mergers or EMRIs, implying that for de-
scribing these sources one does not need full GR because a post-Newtonian expansion is
sufficient. However, one should consider that a separation R̃ ∼ 103 − 106 is not much
larger than the stellar radii (which are∼ 102−103M⊙ for white dwarfs), so these binaries
are actually very compact.

One could also consider binary systems in which at least one of the components is
an intermediate mass black hole (IMBH) i.e., one with mass ∼ 102 − 104M⊙: one could
have a binary system of IMBHs, or a system composed of one IMBH and a stellar mass
black hole or an SMBH (in both cases, the system would be an intermediate mass-ratio
inspiral, IMRI). Nevertheless, too little is presently known about these objects to draw
any sound conclusions about their event rate for LISA and even about their very existence
(see however ref. [20] for intermediate mass black holes as possible sources for LISA).

In the next subsectionswewill examine the sources outlined above, referring the reader
to ref. [21] and references therein for more details.

1.4.1 Compact stellar binaries

It is possible to show that the gravitational waves emitted by a binary system carry en-
ergy and angular momentum. As a result of this loss of energy and angular momentum,
the orbital parameters of the system evolve secularly. The situation is particularly sim-
ple for a binary on a circular orbit, as in this case the orbit remains circular [22] and the
emission of gravitational waves simply decreases the separation between the two com-
ponents, consequently increasing the revolution frequency. Since the gravitational wave
frequency is twice the revolution frequency, this increases too. In particular, in the qua-
drupole approximation one has [22, 23]

ḟGW =
48

5π
µm2/3(2πfGW)11/3 (1.29)

where µ = m1m2/m is the reduced mass. Specialising for simplicity to equal masses
(µ = m/4), we have

ḟGW = 9.2 × 10−18Hz/s × m̃5/3

(
fGW

1 mHz

)11/3

. (1.30)

Using this formula it is easy to check that the frequency of a stellar compact binary barely
changes over the LISA mission lifetime (which will probably be between 1 and 5 years).
In particular, since ḟGWTmission is much less than the binwidth 1/Tmission, except at the
high end of the band (fGW & 0.01Hz), these sources are practically monochromatic as far
as LISA is concerned.5 These sources are therefore quite simple and play an important

5Here and in what follows, we use the term “monochromatic” to refer to sources whose frequencies keep
constant during the mission’s lifetime, as opposed to “chirping” sources, whose frequencies vary signifi-
cantly over that timescale. It is understood that what we call “monochromatic” sources generally contain
more than one frequency, due to the presence of higher order harmonics.
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role for LISA, as each galaxy (including theMilkyWay) contains millions of them (mostly
white dwarf binaries) [24]. Most of these sources will not be resolvable and will give
origin, at frequencies fGW . 2 mHz, to the astrophysical noise that we have mentioned
in the previous section and that we have plotted in Fig. 1.3. However, between 5000 and
10000 Galactic binaries are expected to be individually resolvable with LISA, and a few
of them have been directly identified using X-ray and optical observations and should be
detectable by LISA: these are known as guaranteed sources or verification binaries.

1.4.2 Supermassive black hole binaries and mergers

Applying eq. (1.29) to an SMBH binary, it is easy to see that this class of sources is not
monochromatic, because the frequency rapidly moves across the LISA band in times
comparable with the LISA lifetime. As such, SMBH binaries are chirping sources, and
their evolution can be initially described by means of a post-Newtonian expansion [25].
However, as the SMBH separation gets smaller and smaller, the post-Newtonian expan-
sion breaks down and one needs to solve the full Einstein equations to follow the evo-
lution accurately. A lot of work has been done in this direction in the last ten years,
and today several groups around the world can follow numerically the last stages of the
inspiral of two spinning SMBHs, their coalescence and the ring-down of the final rem-
nant, producing accurate waveforms that will be suitable for LISA data analysis [26]. (It
should be noted that the ring-down of the final black hole produced by the merger could
in principle be described by means of semi-analytic techniques, although the matching of
the ring-down waveforms with the numerical waveforms describing the merger is prob-
lematic [25].) In Fig. 1.4 we show an example of binary SMBH waveform in which the
inspiral (“chirp”) phase, the merger and the ring-down are clearly visible. This figure
uses the data of ref. [27] and shows the gravitational-wave signal h(t) at the detector for
a system of two equal-mass Schwarzschild black holes with masses of 106M⊙, distance of
1 Mpc, inclination θ = 0 degrees with respect to the observer (i.e. the system is observed
face-on and the signal is therefore circularly polarised).

SMBH binaries are expected to form when two galaxies, and the dark matter halos
which host them, merge. Within the presently favoured scenario for the cosmological
evolution, there is a wide consensus that galaxies indeed form hierarchically, i.e. through
repeated mergers [28]. Since it is nowadays accepted that most galactic nuclei host an
SMBH [29], when the two parent halos merge the two SMBHs sink towards the centre
of the newly-born galaxy by dynamical friction and there they form a binary [30]. The
binary then continues to harden through “slingshot” interactions [31], in which stars in-
tersecting the binary are ejected at velocities comparable to the binary orbital velocity,
thus increasing the binding energy of the binary. However, the binary will soon eject all
the intersecting stars, thus making the slingshot hardening inefficient. This will cause the
binary to stall at a separation of ∼ 1 pc, unless other mechanisms intervene to make the
binary decay to a separation of ∼ 0.01 pc, where gravitational wave emission becomes
sufficiently strong so as to be able to drive the evolution of the binary until the merger in
a time shorter than the Hubble time. Since there is not, at present, a generally accepted
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Figure 1.4: The gravitational wave signal h(t) at the detector for a system of two equal-mass Schwarz-

schild black holes with masses of 106M⊙, distance of 1 Mpc, inclination θ = 0 degrees with
respect to the observer (i.e. the system is observed face-on and the signal is therefore circularly
polarised). This figure uses the data of ref. [27].

scenario to overcome the stalling of the binary evolution at ∼ 1 pc, this bottleneck is gen-
erally referred as “the final parsec problem” [32]. Provided that this problem is somehow
solved in nature6, the expected number of SMBH binary and merger events during the
LISA lifetime ranges from ∼ 1 to ∼ 1000 [33]. The SNR of these events is expected to be
very large (SNR∼ 100 − 1000) and will permit detecting them up to very high redshifts
(even z ∼ 10 and beyond, if SMBHs are already present) and measuring the masses and
spins of the SMBHs involved with an accuracy of ∼ 1% [34].

1.4.3 Extreme mass-ratio inspirals

From eq. (1.29), it is clear that EMRIs cannot be considered monochromatic sources over
the LISA lifetime. Actually, the orbit of the satellite (a stellar mass black hole or a com-

6It is generally accepted that this is the case, as uncoalesced binaries would result in slingshot ejection
of SMBHs when additional SMBHs were brought in by successive mergers, thus resulting in off-centre
SMBHs which are not observed [32].
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pact object) is indistinguishable from (i.e., it keeps in phase with) a geodesic of the central
SMBH only over a timescale of days or at most weeks (this time is known as the dephasing
time [35]). After this time, the loss of energy and angular momentum through gravita-
tional waves (“radiation reaction”) becomes important and makes the satellite inspiral
down to the central SMBH in 104 − 105 revolutions. From a more general viewpoint,
these deviations from geodetic motion are due to the force arising from the interaction
of the satellite with the gravitational field produced by itself.7 This force, usually called
self-force, contains the effect of the losses of energy and angular momentum via gravita-
tional waves (in its dissipative part: see ref. [36]) and also additional conservative effects
(see ref. [37]). However, the self-force is hard to compute because the gravitational po-
tential produced by the satellite diverges as 1/r when one approaches the satellite, and
a regularization procedure is therefore needed to perform practical calculations (see refs.
[38, 39] for a review).

Even on timescales shorter than the dephasing time, though, EMRI orbits can be quite
complicated. Kerr geodesics can indeed be characterised by three frequencies: ωφ de-
scribing the revolutionmotion, ωr describing radial oscillations and ωθ describing poloidal
oscillation.8 These three frequencies are equal in the Newtonian regime, but in the strong
field region of the SMBH one has ωr < ωθ ≤ ωφ (note that ωθ = ωφ only if the SMBH is
Schwarzschild, because in that case the geodetic motion is planar). As a result of this mis-
match, the orbit can be rather involved: for instance, if ωr ≪ ωφ the satellite can “whirl”
many times close to the SMBH before “zooming” out to the apoastron [40]. If one can
build a model for the secular evolution of these three frequencies9 and if this model is
suitable for tracking the inspiral until the final plunge into the SMBH (i.e., as we were
mentioning above, for 104 − 105 revolutions), it should be possible to map the spacetime
geometry with high precision, measuring the SMBH spin and mass with an accuracy of
10−4 [43] and possibly testing its Kerr nature. However, it should be noted that EMRIs
are expected to have lower SNR than SMBH binaries and mergers, and for this reason
they will be detectable only at redshifts z . 1.

EMRIs can be formed in galactic nuclei either by direct or indirect capture of compact
objects by the central SMBH, and these two scenarios produce EMRIs with very differ-
ent eccentricities. Direct capture happens when compact objects moving on wide orbits
in the galactic nucleus are scattered by star-star interactions to an orbit inspiralling into
the SMBH under the effect of gravitational wave emission [45]. The semi-major axis of
these orbits must be sufficiently small so as to make gravitational wave emission domi-
nant over two-body relaxation (i.e., star-star interaction) [46]. In fact, if the time needed

7Actually, the satellite can be thought of as moving along a geodesic of a spacetime the metric of which is
given by the background metric (i.e., the Kerr metric due to the central SMBH) plus the metric pertur-
bations (suitably regularized because otherwise they would be divergent at the position of the satellite)
produced by the satellite itself.

8In the case of equatiorial or circular orbits, it is still possible to define ωθ and ωr by taking the limit of small
oscillations.

9This can be done either by considering only the effect of radiation reaction [41] or, better, the full self-force
(see ref. [42] for the self-force driven evolution of circular orbits around non-spinning SMBHs).
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for gravitational waves to drive the compact object down to the SMBH (i.e., the inspi-
ral timescale) is large with respect to the timescale of two-body relaxation (i.e., the time
needed for star-star interactions to change the energy or the angular momentum of the
compact object by an amount of order unity), the captured compact object will start in-
spiralling under the effect of gravitational waves, but before reaching the SMBH it will
most likely be scattered into the horizon on a plunging orbit or back to the outer region
of the galactic nucleus. Conversely, if the semi-major axis of the orbit is smaller than
aGW ∼ a few 0.01 pc, it is possible to show that the inspiral timescale is small with re-
spect to the two-body relaxation timescale and the compact object will give origin to an
EMRI. Numerical simulations show that the eccentricity distribution of the EMRIs pro-
duced in this manner is skewed towards high eccentricities [46]. This is easy to under-
stand because the inspiral timescale has a strong dependence on the orbital eccentricity
e: tinspiral ∝ (1− e2)7/2 at high eccentricities [22]. As such, highly eccentric orbits inspiral
faster under the effect of gravitational wave emission (this makes sense because if the
semi-major axis is large, only orbits with high eccentricity will get sufficiently close to
the SMBH so as to emit gravitational waves) and are therefore less likely to be scattered
by other stars. Let us note that the fact that direct capture gives origin to high eccentric-
ity EMRIs is intuitive, because the SMBH horizon radius is of order 106M⊙ ∼ 5 × 10−8

pc, which is tiny with respect to the size of the galactic nucleus (∼ 1 − 10 pc) and to the
star-star average separation in the galactic nucleus (∼ 0.01 pc [44]). In other words, the
space surrounding the SMBH is almost empty and the SMBH will only be able to capture
compact stars which happen to pass very close to it on very eccentric orbits.

As we have already mentioned, however, two body-relaxation not only determines the
semi-major axis aGW under which gravitational wave emission becomes the dominant
mechanism affecting the orbital evolution, but also plays another important role in direct
capture rates, because it continously scatters new stars into orbits with semi-major axis
smaller than aGW , thus giving rise to new EMRI events. This process is known as loss cone
replenishment [45] and is clearly crucial for event rate calculations. For this reason, any
process which changes the relaxation time will have an important effect on EMRI direct
capture rates. This is indeed the case of resonant relaxation [48]. The idea behind this
mechanism is simple. Star interactions are not random, as is assumed when calculating
the standard two-body relaxation timescale, because the relaxation timescale is much
larger than the orbital periods of the stars. As such, the gravitational interaction between
stars is periodic on timescales shorter than the relaxation time (which is∼ 1Gyr in galactic
nuclei). On a timescale larger than the orbital period and shorter than the relaxation time
one can then imagine to “smooth” the mass of each star over its orbit. In other words,
one can represent each star by a wire whose mass is the stellar mass, whose shape is the
shape of the orbit and whose linear mass density is inversely proportional to the local
velocity of the star. Resonant relaxation consists indeed in the gravitational interaction
of these wires, which exert mutual torques leading to a decrease of the relaxation time.
However, it is not currently known whether this will lead to an increase or a decrease of
the EMRI direct capture rate. State-of-the-art simulations seem to suggest that this rate
should increase and should be between 1 and 1000 events during LISA’s lifetime [17].
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However, if resonant relaxation should be larger than assumed in these simulations, the
event rate would decrease, settling eventually to zero [49].
Another process which affects EMRI direct capture is mass segregation [50]. While the
details of this mechanism are quite technical (a rigorous treatment requires solving the
Fokker-Planck equation for the stellar distribution function in the presence of two-body
relaxation and different star species), the bottom line is easy to understand. When stars
interact gravitationally, they tend to have the same kinetic energy (equipartition of energy).
Although equipartition is never reached in a star cluster, this tendency causes the most
massive stars to sink to the centre, where velocities are smaller10. This phenomenon is
called mass segregation and plays an important role for direct capture of EMRIs. For
instance, stellar black holes are more massive than neutron stars or white dwarfs and
they are therefore more numerous near the SMBH: this makes stellar-mass black-hole
EMRIs more frequent than compact-star EMRIs.
Other astrophysical processes that could produce EMRIs are the so-called “indirect
capture processes”. These include stellar formation in gaseous self-gravitating accretion
disks [51] and tidal disruption of binaries by the SMBH (a binary may be scattered on a
very eccentric orbit passing close to the SMBH: as a result of tidal forces, one star is ejected
at very high velocity, while the other star gets tightly bound to the SMBH) [52]. The event
rates of these processes are very uncertain, but they could be comparable with that of the
direct capture process. Moreover, and differently from the case of direct capture EMRIs,
these scenarios produce EMRIs with small eccentricities, thus giving the possibility of
obtaining information about galactic dynamics using only the EMRI eccentricity distri-
bution observed by LISA.

10For instance, in a self-gravitating Newtonian sphere with constant density, the velocity increase linearly
with the distance from the centre
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Karma police
arrest this man
he talks in maths
he buzzes like a fridge
he’s like a detuned radio

Radiohead (Karma Police)

I will now introduce some technical tools that I will need in chapter 3 to study EMRIs
in a system consisting of a central SMBH and a thick accretion disk. In particular, in this
chapter I will study one of the most important effects that influence the motion of a body
through a fluid, that is dynamical friction, focussing on the case in which the body moves
at relativistic velocities through a collisional fluid.

2.1 An introduction to dynamical friction

The mechanism of dynamical friction (DF), which arises because of the gravitational in-
teraction between a massive perturber moving in a medium and its own gravitationally-
induced wake, was first studied in collisionless systems by ref. [53], and has had wide-
spread applications in astrophysics (e.g., stars moving in clusters or galaxies, globular
clusters in galaxies, galaxies in galaxy clusters, etc.: see ref. [54] section 7.1, and refer-
ences therein). In particular, the Newtonian dynamical friction drag acting on a perturber
of gravitational massM moving with velocity vM in a collisionless system of “particles”
with gravitational mass m and isotropic velocity distribution f(vm) ≡ dN/(d3xd3vm) is
given [53] by

F DF = −16π2M(M + m)
m

∫ vM

0 f(vm)v2
mdvm

v3
M

vM lnΛ (2.1)
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where Λ ≈ bmaxv
2
typ/(M + m), bmax and vtyp being respectively the maximum impact

parameter and the typical velocity of the particles with respect to the perturber (see also
ref. [54] section 7.1 for a derivation). The intuitive reason for the presence of this drag is
the fact that the particles are attracted by the perturber, which in the meantime moves:
the particles therefore build up a slight density enhancement behind it (the wake). It is
the gravitational attraction of the wake that pulls the perturber back. Note that in the
case of a perturber moving through a collisionless fluid, dynamical friction is essentially
the only drag force acting on the perturber, besides that due to capture of particles by the
perturber and that due to gravitational-wave emission (which is usually subdominant
because it appears at 2.5 post-Newtonian order: see ref. [55], and also ref. [56] and
references therein).

Eq. (2.1) was improved by including post-Newtonian corrections in ref. [57], and was
generalised to relativistic velocities, although only in the weak scattering limit, in ref.
[58]. The case of a collimated flow of collisionless particles of gravitational mass m mov-
ing at relativistic speed and impacting on a perturber of gravitational mass M was in-
stead worked out in ref. [59] [eq. (B17)], where it was found that in the rest frame of the
perturber the 3-momentum change is given by

(
dp

dt

)

DF

= −4πmn∞M2γ2(1 + v2)2

v2
ln

(
bmax

bmin

)
v

v
, (2.2)

where n∞ is the number density of particles in the flow far away from the perturber and
before deflection, v and γ = (1 − v2)−1/2 are the velocity and the Lorentz factor of the
perturber relative to the flow, and bmin is the size of the perturber or the capture impact
parameter bmin ≈ 2M(1 + v2)/v2 if this is a black hole.

Dynamical friction acts also in collisional fluids, together with the two other effects
mentioned above for collisionless systems (i.e., gravitational-wave emission and accre-
tion onto the perturber) and ordinary viscous forces, which are not present if the per-
turber is a black hole but instead act if the perturber is a star1. However, unlike in the
collisionless case, it presents different features depending on the Mach number of the
perturber. The correct behaviour in the supersonic case has long been recognised by sev-
eral authors: the steady state Newtonian drag on a perturber M moving on a straight
line with velocity v relative to a homogeneous fluid with rest-mass density ρ0 and sound
speed cs = v/M (M > 1) was found in ref. [62] and in ref. [63] to be

F DF = −4πM2ρ0

v2
ln

[
bmax

bmin

M
(M2 − 1)1/2

]
v

v
, (2.3)

where the maximum impact parameter bmax is the Jeans length (or the size of the medium

1The drag due to ordinary viscosity is given, for non-relativistic velocities and in the laminar regime, by
Stokes’ law: F Stokes = −6πη av, a being the radius of the perturber and η the viscosity coefficient. For
instance, in a thin accretion disc [60] one has η = αρ0csH , where ρ0 and cs are the rest-mass density and
the sound velocity in the disc,H is its height and α ∼ 0.1− 0.4 [61]. Note that this drag can be calculated
independently of the dynamical friction effects considered in this chapter.



2.1. An introduction to dynamical friction 19

if this is smaller than the Jeans length). Note that the dynamical friction drag given by
eq. (2.3) is comparable to the drag due to Bondi accretion onto the perturber: the latter
is in fact given by F Bondi = −vṀ , where Ṁ = 4λπM2ρ0/(v2 + c2

s)
3/2 [64, 65], λ being a

parameter of order unity.

Eq. (2.3) was confirmed by ref. [66] with a finite-time analysis and was generalised to
the relativistic case in ref. [59], where it was found that eq. (2.2) remains valid also in
the collisional supersonic case if the rest-mass densitymn∞ is replaced by p + ρ, p and ρ
being the pressure and energy-density of the fluid. The physical reason for the presence
of a non-zero drag in the supersonic case is the fact that sound waves can propagate
only downwind, inside the Mach cone, producing a non-symmetric pattern of density
perturbations, which gives rise to a drag by gravitational interaction.

The subsonic case proved instead to be more elusive. Because sound waves can propa-
gate both downwind and upwind, the drag is expected to be lower than in the supersonic
case. In particular, ref. [62] in the Newtonian case and ref. [59] in the relativistic one ar-
gued that the drag should be exactly zero for subsonic motion in a homogeneous fluid,
because of the upwind-downwind symmetry of the stationary solution for the density
perturbations excited by the perturber. However, although a zero drag can be a useful
approximation inmany cases, this result does not rigorously hold if one performs a finite-
time analysis [66]. In fact, if the perturber is formed at t = 0 and moves at non-relativistic
subsonic speed on a straight line in a homogeneous fluid, the density perturbations are
given by the stationary solution found by ref. [62] only inside a sphere of radius cst
centred on the initial position of the perturber, and are instead exactly zero (because of
causality) outside. The upwind-downwind symmetry of the stationary solution is there-
fore broken and the perturber experiences a finite drag, which reads [66]

F DF = −4πM2ρ0

v2

[
1

2
ln

(
1 + M
1 −M

)
−M

]
v

v
(2.4)

as long as (cs + v)t is smaller than the size of the medium. This result was confirmed by
numerical simulations [67] and was extended to the case of a perturber moving at non-
relativistic speed on a circular orbit in a homogeneous medium by ref. [68]. In particular,
ref. [68] found that in the subsonic case the perturber experiences a tangential drag,
given roughly by eq. (2.4), and a drag in the radial direction (towards the centre of the
orbit), whose contribution to the orbital decay is however subdominant with respect to
the tangential drag. Similarly, in the supersonic case the tangential drag is roughly given
by eq. (2.3) with bmax equal to the orbital radius, while a radial drag is present but again
remains subdominant with respect to the tangential one.

The purpose of this chapter is to generalise to the relativistic case the finite-time drag
found by ref. [66] and by ref. [68]. While a Newtonian treatment of dynamical friction is
satisfactory in many astrophysical scenarios, relativistic expressions are needed in order
to study the interaction of solar-mass compact objects or black holes with the gaseous
matter (e.g., an accretion disc) which could be present in the vicinity of an SMBH, where
orbital velocities close to that of light are reached. As we have already seen in chapter 1,
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these systems are known as extreme mass-ratio inspirals (EMRIs) and are expected to be
among the most interesting sources of gravitational waves for LISA, and considerable ef-
fort has been spent trying to understand whether different kinds of accretion disc, when
present, can produce an observable signature in the emitted gravitational-wave signal. In
a series of papers Karas, Subr and Vokrouhlicky considered the interaction between stel-
lar satellites and thin disks [69, 70, 71, 72]. In ref. [72], in particular, Subr and Karas found
that the effect of the star-disk interaction on EMRIs dominates over radiation reaction
for thin disks, both for non-equatorial orbits crossing the disk only twice per revolution
and for equatorial orbits embedded in the disk. The only exceptions to these conclusions
come if the satellite is very compact (a neutron star or a black hole) or the disk has a low
density (e.g., in the region close to the SMBH if the flow becomes advection-dominated).
These results agree with those found by Narayan [73], who focused on Advection Dom-
inated Accretions Flows (ADAFs), which were believed to describe accretion onto “nor-
mal” galactic nuclei (i.e., ones much dimmer than AGNs)2. Overall, he found that for
compact objects and white dwarfs the effect of the hydrodynamic drag is negligible with
respect to radiation reaction, whereas it is not negligible for main sequence and giant
stars. More recently, Levin [51] has proposed a scenario in which massive stars form
in a thin accretion disk in an AGN, ultimately producing stellar-mass black holes em-
bedded in the disk. The small black holes are then dragged towards the (non-rotating)
SMBH, but if this is accreting at a rate comparable to the Eddington limit, the drag from
the accreting gas will not significantly affect the final part of the inspiral (i.e., at radii
smaller than 10 Schwarzschild radii). Finally, Chakrabarti [76, 77], studied instead the or-
bital evolution of a black hole satellite on a circular equatorial orbit embedded in a disk
with a non-Keplerian distribution of angular momentum, and found that the exchange
of angular momentum between the disk and the satellite can lead to significant orbital
modifications.
Although we do not expect our results to change significantly the picture outlined
above for ADAFs or ADIOS’s, whose density is too low to make the effect of the hy-
drodynamic drag, and of dynamical friction in particular, comparable to the effects of
gravitational-wave emission even if one includes relativistic corrections, we think that
our relativistic corrections could play amore important role, under certain circumstances,
for black holes or compact objects moving in higher density environments (Active Galac-
tic Nuclei, quasars, Seyfert galaxies, etc.). In the next chapter, we will apply our results
to the case of an accretion flow with a toroidal structure.
While our results rigorously apply only to a non self-gravitating fluid in either a flat
background spacetime (in the case of straight-line motion) or the weak field region of a
curved spacetime (in the case of circular motion), and additional work may be needed
in order to evaluate the effect of a curved background, we argue that such an approxi-
mation is suitable at least for a preliminary study of dynamical friction effects on EMRIs
(chapter 3). Indeed, for many purposes a similar approximation is adequate to study

2Accretion onto “normal” galactic nuclei is now believed to be better described by Advection Dominated
Inflow Outflow Solutions (ADIOS) [75]. However, this is not expected to change significantly Narayan’s
results since ADIOS’s, like ADAFs, have very low densities in the vicinity of the SMBH.
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gravitational-wave emission by EMRIs around a Kerr SMBH: the flat-spacetime quadru-
pole formula, combined with geodesic motion for the solar-mass satellite, gives results
which are in surprisingly good agreement with rigorously computed waveforms [12].

Our analysis closely follows that of refs. [66] and [68], and we find that their results
still hold for relativistic velocities provided that the rest-mass density appearing in the
Newtonian formulae is replaced by p + ρ (p and ρ being the pressure and energy-density
of the fluid), and amultiplicative factor is included: γ2(1+v2)2 in the straight-line motion
case and for the tangential component of the drag in the circular motion case; γ3(1 + v2)2

for the radial component of the drag in the circular motion case.

2.2 Equations and variables

Let us consider a perturber with gravitational mass M , formed at t = 0 and moving in
a perfect fluid at rest at the initial position of the perturber3 and having energy density
ρ and pressure p there. We write the metric as a Minkowski background plus some per-
turbations produced by the presence of the fluid and the perturber: the general form of
such a metric is known to be [11, 78, 79, 80]

ds̃2 = g̃µνdxµdxν = − (1 + 2φ) dt2 + 2ωidxidt (2.5)

+ [δij(1 − 2ψ) + χij ] dxidxj , χi
i = 0 , (2.6)

where the 3-vector ωi can be decomposed into a gradient and a divergence-free part,

ωi = ∂iω
‖ + ω⊥

i , ∂iω⊥
i = 0 , (2.7)

while the traceless 3-tensor χij can be split in a gradient part, a divergence-free vector
part and a (gauge invariant) transverse pure-tensor part,

χij = Dijχ
‖ + ∂(iχ

⊥
j) + χ⊤

ij , Dij ≡ ∂i∂j −
1

3
δij∇2 ,

∂iχ⊥
i = ∂iχ⊤

ij = χ⊤i
i = 0 , (2.8)

where ∇2 = δij∂i∂j . Note that Latin indices are raised and lowered with the Kronecker
delta δij . Similarly, the stress-energy tensor can be written as

Tµνdxµdxν = Tttdt2 + 2(∂iS
‖ + S⊥

i )dtdxi (2.9)

+

[
T

3
δij + DijΣ

‖ + ∂(iΣ
⊥
j) + Σ⊤

ij

]
dxidxj , (2.10)

where
∂iS⊥

i = ∂iΣ⊥
i = ∂iΣ⊤

ij = Σ⊤i
i = 0 . (2.11)

3Note that this condition can always be satisfied by performing a suitable boost.
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Note that the decompositions outlined in eqs. (2.5) and (2.9) are defined unambiguously
if the perturbations go to zero sufficiently fast as r → ∞ so as to make the Laplacian op-
erator∇2 invertible. As an example, let us consider the case of eq. (2.9). First, calculating
∂iT0i and using eq. (2.11) one immediately obtains

S‖ = ∇−2(∂iT0i) , (2.12)

S⊥
i = T0i − ∂iS

‖ , (2.13)

where ∇−2 denotes the inverse of the Laplacian ∇2. Summing over the spatial indices
trivially gives

T = δijTij , (2.14)

and calculating ∂i∂jTij and ∂jTij using eq. (2.11) one easily obtains

Σ‖ = ∇−2

[
3

2
∇−2

(
∂i∂jTij

)
− 1

2
T

]
, (2.15)

Σ⊥
i = 2∇−2

(
∂jTij −

1

3
∂iT

)
− 4

3
∂iΣ

‖ . (2.16)

Inserting eqs. (2.14), (2.15) and (2.16) into eq. (2.9), one can finally derive an explicit ex-
pression for the gauge invariant transverse traceless perturbation Σ⊤

ij . Similar considera-
tions apply to the decomposition (2.5) of the metric.

Deviations of the metric away from a flat background are due to the presence of the
fluid, which causes perturbations of dimensionless order . ε1 = O(L/λJ)2 [L being
the characteristic size of the medium and λJ = cs/(4π(p + ρ))1/2 being a generalised
Jeans length], and due to the presence of the perturber, which is expected to cause per-
turbations of order ε2 = M/r, where r is the distance from the perturber. Note that the
perturbations of the first kind are small if the fluid is not self-gravitating (i.e. if L ≪ λJ ),
while those of the second kind in principle diverge if we consider a point-like perturber.
In order to retain the validity of the perturbative expansion, we therefore have to intro-
duce a cutoff rmin, which is taken to be the size of the star acting as the perturber or,
in the case where the perturber is instead a black hole, the “capture” impact parameter
rmin ≈ 2M(1 + v2)/v2 (i.e., the impact parameter for which a test-particle is deflected by
an angle ∼ 1 by the black hole). This ensures that ε2 is small and can be treated as an ex-
pansion parameter. The gravitational field produced by the perturber on scales smaller
than the cutoff gives rise, when coupled to the fluid, to accretion onto the perturber. This
gives additional contributions to the drag, but these effects can easily be calculated sepa-
rately: see for instance ref. [59] [eq. (2.40)] for the drag-force due to accretion onto a black
hole. As we have already mentioned in sec. 1.4.3, when acting directly on the perturber,
the gravitational field produced by the perturber itself gives rise instead to the so-called
self-force (see ref. [38, 39] for a review), the dissipative part of which accounts for the
energy and angular momentum lost through gravitational waves.

In order to exploit as much as possible the calculations done in the Newtonian case in
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refs. [66] and [68], let us choose the so-called Poisson gauge [81], defined by the condi-
tions ∂iω

i = ∂iχ
ij = 0. In this gauge the perturbed metric is

ds̃2 = − (1 + 2φ) dt2 + 2ω⊥
i dxidt +

[
δij(1 − 2ψ) + χ⊤

ij

]
dxidxj , (2.17)

and the linearised Einstein equations give

∇2ψ = 4πTtt , (2.18)

∂tψ = 4πS‖ , (2.19)

∇2ω⊥
i = −16πS⊥

i , (2.20)

∇2φ = 4π(Ttt + T ) − 3∂2
t ψ , (2.21)

ψ − φ = 8πΣ‖ , (2.22)

∂tω
⊥
i = −8πΣ⊥

i , (2.23)

¤χ⊤
ij = −16πΣ⊤

ij , (2.24)

where ¤ = ηµν∂ν∂µ. In particular, from the linearised Einstein equations one gets the
following relations between the matter fields:

∇2S‖ = ∂tTtt , (2.25)

∇2Σ‖ =
1

2
(3∂tS

‖ − T ) , (2.26)

∇2Σ⊥
i = 2∂tS

⊥
i , (2.27)

which can also be derived directly from the conservation (to first order) of the stress-
energy tensor with respect to the background metric, ∂µTµν = 0.

Let us now write the stress energy tensor as Tµν = T fluid
µν + T pert

µν . The stress-energy
tensor of the fluid is

T fluid
µν = (p̃ + ρ̃)ũµũν + p̃g̃µν , (2.28)

where the perturbed metric g̃µν is given by eq. (2.17) and ρ̃, p̃ and ũµ are the perturbed
energy density, pressure and 4-velocity of the fluid:

ρ̃ = ρ + δρ , p̃ = p + δp , (2.29)

ũi = δui , ũt = −1 − φ (2.30)

(the equation for ũi comes about because the fluid is at rest at the initial position of the
perturber, while the equation for ũt follows from the normalisation condition g̃µν ũ

µũν =
−1). The stress-energy tensor of the perturber is (see for instance ref. [38])

T pert
µν (x, t) = M

ũpert
µ ũpert

ν

ũt
pert

√−g̃
δ(3)(x − x̃pert(t)) , (2.31)
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where ũµ
pert and x̃pert(t) are the perturbed 4-velocity and spatial trajectory of the per-

turber, which for mathematical purposes is considered to be a point-particle, and g̃ is the
determinant of the perturbed metric (2.17). If one expands the trajectory x̃pert and the 4-
velocity ũµ

pert of the perturber as the sum of their unperturbed values x
pert and uµ

pert plus
some perturbations due to the presence of the fluid (and therefore of order ε1) and some
perturbations due to the interaction of the perturber with its own gravitational field (and
therefore of order ε2), and notes that g̃ = −(1 + 2φ − 6ψ) = −1 + O(ε1, ε2), eq. (2.31) can
be written as

T pert
µν (x, t) = M

upert
µ upert

ν

ut
pert

δ(3)(x − xpert(t)) × [1 + O(ε1, ε2)] . (2.32)

Note that because of the presence of the factor M = rε2, the stress-energy tensor T pert
µν

is an intrinsically first order quantity, and dropping the second order terms, as we have
done earlier, we can simply write

T pert
µν (x, t) = M

upert
µ upert

ν

ut
pert

δ(3)(x − xpert(t)) . (2.33)

Perturbing the expression for the conservation of the baryon number in the fluid,

∂µ[(−g̃)1/2 ñũµ] = 0 (2.34)

(ñ = n + δn being the perturbed number density), one gets

∂t

(
δn

n

)
+ ∂iδu

i − 3∂tψ = 0 , (2.35)

whereas perturbing the Euler equation

ãµ = ũα∇̃αũµ = −(g̃µν + ũµũν)
∂ν h̃

h̃
(2.36)

[h̃ ≡ (p̃ + ρ̃)/ñ = h + δh is the perturbed specific enthalpy] one obtains

∂tδu
i + ∂iφ + ∂tω

⊥
i + c2

s∂i
δn

n
= 0 , (2.37)

where cs = (dp/dρ)1/2 is the velocity of sound and where we have used the first law of
thermodynamics (δh/h = c2

sδn/n). Combining the divergence of eq. (2.37) and the time
derivative of eq. (2.35) and finally using eq. (2.21), one gets the following wave equation
for the baryon density perturbations:

(∂2
t − c2

s∇2)
δn

n
= ∇2φ + 3∂2

t ψ = 4π(Ttt + T ) . (2.38)
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In the next sections we will solve the wave eq. (2.38) and the Einstein eqs. (2.18)-(2.24).
It is understood, however, that since these equations are linearised, the solutions that
we find “intrinsically” have a relative error O(ε1, ε2). This error is not to be confused
with those which we will introduce when solving these equations approximately. We
will explicitly keep track of the latter in the next sections, while we will re-introduce the
relative error O(ε1, ε2) due to the linearisation procedure only in the final results.

2.3 Straight-line motion

Let us first consider the case of a perturber moving along a straight line, which is taken
to be the z-axis of a Cartesian coordinate system: the unperturbed trajectory of the per-
turber is therefore xpert(t) = ypert(t) = 0, zpert(t) = vt and the unperturbed 4-velocity is
uµ

pert∂/∂xµ = γ(∂/∂t + v∂/∂z), with γ2 = 1/(1− v2). Denoting the step function byH(t),
eq. (2.38) can be rewritten as

(∂2
t − c2

s∇2)
δn

n
= 4πMγ(1 + v2)δ(x)δ(y)δ(z − vt)H(t)

+ 4π[ρ(1 + 2φ) + 3p(1 − 2ψ)] + 4π(1 + 3c2
s)(p + ρ)

δn

n
. (2.39)

Solving this equation is complicated by the presence of the terms 4π[ρ(1+2φ)+3p(1−2ψ)]
and 4π(1 + 3c2

s)(p + ρ)δn/n on the right-hand side. If these terms were not present, we
could simply solve eq. (2.39) by using the Green’s function of the flat wave operator
−∂2

t + c2
s∇2, and proceeding as in ref. [66] we would get

δn

n
(x, t) ≈ f

Mγ(1 + v2)

c2
s[(z − vt)2 + (x2 + y2)(1 −M2)]1/2

, (2.40)

whereM = v/cs is the Mach number and

f =





1 if x2 + y2 + z2 < (cst)
2

2 ifM > 1, x2 + y2 + z2 > (cst)
2,

(z − vt)/
√

x2 + y2 < −
√
M2 − 1

and z > cst/M

0 otherwise

(2.41)

Note that performing a boost to the reference frame comoving with the perturber (the
“primed” frame) this “approximate” solution becomes

δn

n
≈ f

Mγ2(1 + v2)

c2
sr

′
√

1 − M̃2 sin2 θ′
, M̃2 =

1 − c2
s

c2
s

γ2v2 , (2.42)
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where r′ and θ′ are the radius and polar angle in the primed frame i.e., r′ =
√

x′2 + y′2 + z′2

and cos θ′ = z′/r′ in terms of the Cartesian coordinates x′, y′ and z′. Eq. (2.42) agrees with
the solution found in ref. [59] [eq. (B30)], except for the different value of f (this happens
because ref. [59] considered the stationary solution instead of performing a finite-time
analysis: cf. ref. [66] for more details).

It is not difficult to see that eqs. (2.40) and (2.42) are actually approximate solutions to
eq. (2.39). Indeed, the term 4π(ρ + 3p) on the right-hand side of eq. (2.39) simply gives
rise to an error O(L/λJ)2 in the solution. This error represents the correction due to the
fact that having a fluid with constant p and ρ together with the Minkowski metric is not
a solution of the Einstein equations. When it comes to the term 8π(ρφ + 3pψ), let us note
that the gravitational potentials φ and ψ consist of a part of order O(L/λJ)2 due to the
presence of the fluid and a part of order −M/r ∼ −δn/n (r being the distance from the
perturber) due to the presence of the perturber. The first part of the potentials therefore
gives rise, when inserted into the term 8π(ρφ + 3pψ), to an error much smaller than the
errorO(L/λJ)2 coming from the term 4π(ρ+3p). The second part of the potentials, when
inserted into the term 8π(ρφ + 3pψ), gives rise instead to a Yukawa-like term similar to
the term 4π(1 + 3c2

s)(p + ρ)δn/n appearing on the right-hand side of eq. (2.39). It is not
difficult to see that these Yukawa-like terms give rise to a relative error εJ ∼ O(L/λJ). To
see this, one can simply Fourier-transform eq. (2.39) with respect to time in order to get
rid of the time derivatives. One is then left with an equation of the form

∇2

(
δn

n
(x, ω)

)
≈ S(x, ω) + (a/λ2

J − ω2/c2
s)

δn

n
(x, ω) , (2.43)

where for simplicity we have used the same symbol for δn/n and its Fourier transform
with respect to time, a is a constant and S(x, ω) is a suitably defined source function
[inspection of eq. (2.39) actually reveals that S(x, ω) ∼ exp(iωz/v)]. Using the Green’s
function of the Yukawa operator ∇2 − µ2 (µ being a constant),4

G(x) =
exp (−µ|x|)

4π|x| , (2.44)

this equation can be solved and gives

δn

n
(x, ω) = −

∫
d3x′

exp (−
√

a/λ2
J − ω2/c2

s|x − x′|)
4π|x − x′| S(x′, ω) . (2.45)

4Using spherical coordinates and the fact that ∇2(1/|x|) = −4πδ(3)(x), it is indeed easy to check that
(∇2 − µ2)G(x) = −δ(3)(x).



2.3. Straight-line motion 27

If ω/cs ≫ 1/λJ, one can series expand eq. (2.45) and get

δn

n
(x, ω) ≈ (2.46)

−
∫

d3x′
{exp [iacs|x − x′|/(2ωλ2

J)]

4π|x − x′| × exp(−iω/cs|x − x′|)S(x′, ω)
}
≈

−
∫

d3x′ exp(−iω/cs|x − x′|)S(x′, ω)

4π|x − x′| ×
(

1 +
csεJ

ωλJ

)
,

and from the last line of this equation it is clear that one gets the solution which would
have been obtained by neglecting the term a/λ2

J × δn/n in eq. (2.43), with a relative er-
ror csεJ/(ωλJ) ≪ εJ. For frequencies ω/cs ≪ 1/λJ (i.e., for wavelengths larger than the
generalised Jeans length λJ) this procedure is not applicable. However, it is clear that
for ω = 0 eq. (2.45) becomes the solution which would have been obtained by neglecting
the term a/λ2

J × δn/n in eq. (2.43), corrected by a factor ∼ (1 + εJ). Moreover, because
S(x, ω) ∼ exp(iωz/v), the integral appearing in eq. (2.45) averages out if ω ≫ v/L. There-
fore, the spectrum of δn/n extends up to ωcutoff ∼ v/L, and the effect of the frequencies
ω/cs ≪ 1/λJ on the final solution δn/n(x, t) is negligible because ωcutoff ∼ v/L ≫ 1/λJ if
the fluid is not self-gravitating.
As such, since we already know the solution of eq. (2.39) if we neglect the terms

4π[ρ(1 + 2φ) + 3p(1− 2ψ)] and 4π(1 + 3c2
s)(p + ρ)δn/n on the right-hand side [eq. (2.40)],

we can write the following approximate solution for eq. (2.39):

δn

n
(x, t) = f

Mγ(1 + v2)

c2
s[(z − vt)2 + (x2 + y2)(1 −M2)]1/2

× (1 + εJ) + O(L/λJ)2 , (2.47)

where, as explained above, the error O(L/λJ)2 comes from the term 4π(ρ + 3p) on the
right-hand side of eq. (2.39), while the error εJ comes from the terms 4π(1+3c2

s)(p+ρ)δn/n
and 8π(ρφ+3pψ). [Note that εJ(x, y, z, t) = εJ(−x, y, z, t) and εJ(x, y, z, t) = εJ(x,−y, z, t)
due to the cylindrical symmetry of the problem.] Both of these errors are negligible if
L ≪ λJ (i.e., if the fluid is not self-gravitating).
The trajectory of the perturber is governed by the geodesic equation of the physical,
perturbed spacetime (i.e., the one with metric g̃µν = ηµν + δgµν)

5. The familiar form of
this equation is

d2x̃µ
pert

dτ̃2
+ Γ̃µ

αβ

dx̃α
pert

dτ̃

dx̃β
pert

dτ̃
= 0 , (2.48)

where x̃µ
pert and τ̃ are the perturbed trajectory and proper time while the Γ̃’s are the

Christoffel symbols of the perturbed spacetime. This equation can be easily expressed in
terms of the background proper time τ ,

d2x̃µ
pert

dτ2
+ Γ̃µ

αβ

dx̃α
pert

dτ

dx̃β
pert

dτ
= −d2τ

dτ̃2

(
dτ̃

dτ

)2 dx̃µ
pert

dτ
, (2.49)

5Actually, the metric perturbation δgµν , which is produced by the fluid and by the perturber, needs to
be suitably regularized (see refs. [38, 39] for details), because the metric perturbation produced by the
perturber is clearly divergent at the perturber’s position.
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which can be also written as

d2x̃µ
pert

dτ2
+ Γ̃µ

αβ

dx̃α
pert

dτ

dx̃β
pert

dτ
=

dx̃µ
pert/dτ

√
−g̃αβ

dx̃α
pert

dτ

dx̃β
pert

dτ

d

dτ

√

−g̃αβ

dx̃α
pert

dτ

dx̃β
pert

dτ
. (2.50)

Using now g̃µν = ηµν+δgµν , eq. (2.50) can be easily rewritten, to first order [i.e., neglecting
as usual errors of order O(ε2

1, ε
2
2, ε1ε2)], as [38]

ãµ
pert =

d2x̃µ
pert

dτ2
= −1

2
(ηµν + uµ

pertu
ν
pert)(2∂ρδgνλ − ∂νδgρλ)uλ

pertu
ρ
pert . (2.51)

The metric perturbations δgµν appearing on the right-hand side of eq. (2.51) consist of
a part produced by the stress-energy of the fluid (δgF

µν) and one (suitably regularized)

produced by the perturber (δgP
µν). The latter contribution, as already mentioned, gives

rise to accretion onto the perturber and to the self-force. The drag due to accretion is easy
to calculate separately, as mentioned previously, while the self-force is in general hard to
deal with [38, 39]. However, it is well-known that the self-force is zero in a Minkowski
spacetime for geodesic (i.e., straight-line) motion in the Lorenz gauge. Since the right-hand
side of eq. (2.51) is not gauge-invariant, the self-force itself is not gauge-invariant [82].
Nevertheless, it is possible to show that at least the dissipative part of the self-force (i.e.,
the average of the self-force over a time approaching infinity) is gauge-invariant and
therefore zero also in the gauge which we are using [36].6 (Alternatively, this can be un-
derstood from the fact that a perturber moving on a straight line does not emit energy
through gravitational waves in the quadrupole approximation.) It should be noted that
the presence of the fluid does not alter these results. In fact, one can insert the decompo-
sition δgµν = δgF

µν + δgP
µν into the Einstein equations, and split them into equations for

δgF
µν and equations for δg

P
µν by including in the right-hand sides of the equations for δg

P
µν

only quantities containing the stress-energy of the perturber and δgP
µν itself. In particular

from eqs. (2.18), (2.21) and (2.24), using eq. (2.28) one gets

∇2ψP = 8πρφP + 4πT pert
tt , (2.52)

∇2ψF = 4π

[
ρ + 2ρφF + (p + ρ)

δn

n

]
, (2.53)

ψP − φP = 8πΣ
‖
pert , (2.54)

ψF − φF = 0 , (2.55)

¤χ⊤P
ij = −16π(Σ⊤ pert

ij + pχ⊤P
ij ) , (2.56)

¤χ⊤F
ij = −16πpχ⊤F

ij . (2.57)

From eq. (2.37) it follows instead that δu⊥
i = −ω⊥

i
7 and therefore S⊥ fluid

i = −(p+ρ)δu⊥
i +

6Note that this “dissipative” part of the self-force can be shown to account exactly for the deceleration due
to the loss of energy and angular momentum through gravitational waves [36].

7We are making here the simplifying but reasonable assumption that no vortical modes δu⊥

i and ω⊥

i are
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pω⊥
i = (2p + ρ)ω⊥

i , which together with eq. (2.20) gives

∇2ω⊥P
i = −16πS⊥ pert

i − 16π(2p + ρ)ω⊥P
i , (2.58)

∇2ω⊥F
i = −16π(2p + ρ)ω⊥F

i . (2.59)

From eqs. (2.52), (2.54), (2.56) and (2.58) it therefore follows that the metric perturbations
δgP

µν produced by the perturber are the same as in the absence of the fluid, except for the

presence of the terms 8πρφP, −16πpχ⊤P
ij and −16π(2p + ρ)ω⊥P

i on the right-hand sides
of eqs. (2.52), (2.56) and (2.58). Using the Green’s function of the Yukawa operator it is
easy to see that these terms produce a contribution of order O(ρ r2

min ∂δgP
µν) ∼ O(ρ M) to

the gradients ∂δgP
µν ∼ M/r2

min. To be more specific, let us consider for example the case

of ψP. Using eqs. (2.44), (2.52) and (2.54), the solution for ψP reads

ψP(x, t) = −
∫

d3x′ exp (−√
8πρ|x − x′|)

|x − x′|
[
T pert

tt (x′, t)−16πρΣ
‖
pert(x

′, t)
]
.

Taking now the derivative with respect to x and expanding the exponential, it is easy to
check that the presence of the fluid simply adds a contribution of order O(ρ r2

min ∂iψ
P)

to the gradient ∂iψ
P. It should be noted that a contribution of order O(ρ r2

min ∂δgP
µν) ∼

O(ρ M) to the gradients ∂δgP
µν corresponds to a contribution of orderO(ρ M2) to the drag:

this contribution can be interpreted, as we havementioned, as being due to accretion onto
the perturber.

We will therefore focus on the force produced by the gravitational interaction with
the fluid, which includes dynamical friction. From eqs. (2.53), (2.55), (2.57) and (2.59) it
follows that the fluid can only excite the metric perturbations φ and ψ. Using eqs. (2.44),
(2.53) and (2.55), we can easily get expressions for the gradients ∂µφF = ∂µψF evaluated
at the position of the perturber x = y = 0, z = vt, which enter eq. (2.51). In particular, the
solution for ψF is

ψF(x, t) = −
∫

d3x′ exp (−√
8πρ|x − x′|)

|x − x′|

[
ρ + (p + ρ)

δn

n
(x′, t)

]
, (2.60)

and taking the derivative with respect to x, one easily gets

∂iψ
F(x) =

∫
d3x′ xi − xi′

|x − x′|3
[
ρ + (p + ρ)

δn

n
(x′, t)

]
× (1 + εYukawa) , (2.61)

where we have introduced the error εYukawa ∼ O(ρL2) which arises when expanding the
Yukawa exponential. In particular, note that the source ρ appearing in the integral of
eq. (2.61) simply gives the gravitational force exerted by the unperturbed medium on the
perturber. This force is exactly zero if the medium is spherically symmetric with respect
to the perturber, but in general the net effect on the gradients ∂iφ

F = ∂iψ
F can be non-

excited in the system before the perturber is turned on at t = 0.
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zero and at most of order ρL, depending on the shape of the fluid configuration and on
the position of the perturber. Similarly, the term (p + ρ)δn/n appearing in eq. (2.61) can
be considered as the sum of two parts, one coming from the error O(L/λJ)2 appearing
in eq. (2.47) and the other coming from the rest of this equation. Note that the first part
is present even if the mass of the perturber goes to zero and represents the force exerted
by the density perturbations which appear because, as mentioned earlier, a fluid with
constant p and ρ together with the Minkowski metric is not a solution of the Einstein
equations. The contribution to the gradients ∂µφF = ∂µψF from this term can be as large
as ρL(L/λJ)2, and in what follows we will group it together with the contribution from
the term ρ appearing in eq. (2.61) into a correction εnot DF . O(ρL). The rest of the term
(p + ρ)δn/n gives instead the force exerted by the density perturbations produced by the
perturber i.e., dynamical friction. In particular, using eq. (2.47) in eq. (2.61) one obtains,
for the x and y gradients evaluated at the position of the perturber x = y = 0, z = vt,

∂xφF = ∂xψF = ∂yφ
F = ∂yψ

F = εnot DF , (2.62)

as expected from the cylindrical symmetry of the problem, while the t and z gradients,
evaluated at the position of the perturber x = y = 0, z = vt, are

∂zψ
F = ∂zφ

F = −∂tψ
F

v
= −∂tφ

F

v
=

(p + ρ)

∫
d3x′

δn
n

(
x′, t = z

v

)
(z − z′)

[x′2 + y′2 + (z′ − z)2]3/2
× (1 + εYukawa) + εnot DF . (2.63)

[Note that this expression for ∂tψ
F is obtained by taking the derivative of eq. (2.60) with

respect to t, transforming the derivative with respect to t acting on δn/n into a deriva-
tive with respect to z′ using eq. (2.47), integrating by parts and finally transforming the
derivative with respect to z′ into one with respect to z.] The integral in eq. (2.63) can be
evaluated using eq. (2.47) as in ref. [66], and is

∂zψ
F = ∂zφ

F = −∂tψ
F

v
= −∂tφ

F

v
=

4π(p + ρ)Mγ(1 + v2)

v2
I × [1 + O(L/λJ)] + εnot DF , (2.64)

where

I =





1
2 ln

(
1+M
1−M

)
−M ifM < 1 ,

1
2 ln

(
1 − 1

M2

)
+ ln

(
vt

rmin

)
ifM > 1

(2.65)

and we have made the assumptions that |cs − v|t exceeds the cutoff rmin and that |cs + v|t
is smaller than L.
Inserting eq. (2.62) into eq. (2.51), one immediately finds

(
ãx

pert

)
F

=
(
ãy

pert

)
F

= εnot DF , (2.66)
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while using eq. (2.64) in eq. (2.51) gives

(
ãt

pert

)
F

= − 4π(p + ρ)Mγ3(1 + v2)2

v
I × [1 + O(L/λJ) + O(M/rmin)] + εnot DF , (2.67)

(
ãz

pert

)
F

= − 4π(p + ρ)Mγ3(1 + v2)2

v2
I × [1 + O(L/λJ) + O(M/rmin)] + εnot DF , (2.68)

where I is defined by eq. (2.65). Note that we have restored the relative error O(ε1, ε2)
due to the linearisation of the equations of the previous section: this gives rise to the error
O(M/rmin) appearing in eqs. (2.67) and (2.68).

Performing a boost we can calculate the change of 3-momentum in the rest frame of
the perturber due to the gravitational interaction with the fluid, so as to compare with
the results of ref. [59]:

(
dp̃

(z)
pert

dτ

)

F

= Mγ
[(

ãz
pert

)
F
− v

(
ãt

pert

)
F

]
=

− 4π(p + ρ)M2γ2(1 + v2)2

v2
I × [1 + O(L/λJ) + O(M/rmin)] + εnot DF , (2.69)

(
dp̃

(x)
pert

dτ

)

F

=

(
dp̃

(y)
pert

dτ

)

F

= εnot DF . (2.70)

Note that the relative errorsO(L/λJ) andO(M/rmin) are negligible – the former because
the fluid is not self-gravitating and the latter because the effective cutoff radius rmin is
large compared with M – whereas εnot DF in general is not negligible. However, εnot DF

represents the standard force acting on the perturber because of the gravitational inter-
action with the fluid, and it can be computed separately if the global structure of the
system is known. In particular, εnot DF = 0 if the medium is distributed in a spherically
symmetric fashion around the perturber.

The relativistic correction factor γ2(1 + v2)2 appearing in eq. (2.69) is plotted as a func-
tion of the velocity v in Fig. 2.1. Note that, forM ≫ 1 and vt → rmax, eq. (2.69), and in
particular the correction factor, agrees with eq. (B45) of ref. [59].

2.4 Circular motion

Let us now consider the case of a perturber moving on a circular orbit of radius R with
velocity v = ΩR. Such an orbit is clearly not allowed in a Minkowski background, unless
there is an external non-gravitational force keeping the perturber on a circular trajectory.
In astrophysical scenarios we are interested instead in a perturber maintained in circu-
lar motion by gravitational forces. In this case, the background spacetime is necessarily
curved: one can think of a circular orbit around a Schwarzschild black hole with mass
MBH surrounded by a tenuous fluid at rest. However, if the perturber is sufficiently far
from the central black hole (i.e., if R ≫ MBH) one can approximately consider the met-
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Figure 2.1: The relativistic correction factors γ2(1 + v2)2, multiplying the Newtonian drag for straight-

line motion and the tangential Newtonian drag for circular motion, and γ3(1 + v2)2, multi-
plying the radial Newtonian drag for circular motion, are plotted as functions of the velocity
v of the perturber relative to the fluid. Note that velocities v ∼ 0.8 can be obtained for a
perturber orbiting around an accreting SMBH in the opposite direction with respect to the
accretion flow.

ric as given by eq. (2.17) (i.e., Minkowski plus the perturbations produced by the pres-
ence of the fluid and of the perturber) and neglect the corrections O(MBH/R) due to the
presence of the central black hole. This treatment is clearly not completely satisfactory,
because orbital velocities become relativistic only close to the central black hole [in fact,
v ∼ (MBH/R)1/2], but we argue that it may not be such a bad approximation as it might
seem.

Indeed, if one uses Fermi normal coordinates comoving with the perturber (see for
instance ref. [1]), all along the trajectory the metric can be written as Minkowski plus
perturbations produced by the fluid and the perturber, the curvature of the background
introducing just corrections of order O(r/MBH)2 (r being the spatial distance from the
perturber). Because the wake can extend out to distances of order R from the perturber
[68], it will eventually feel the curvature of the background unless R ≪ MBH. However,
the part of the wake giving the largest gravitational attraction to the perturber will be that
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closest to it, and this part will experience an approximately flat spacetime. Reasoning in
the same way, we can argue that our treatment should be approximately applicable also
to a perturber moving on a circular orbit in a fluid which is moving circularly in the same
plane as the perturber (e.g., a perturber moving inside an accretion disc), provided that
the velocity v = ΩR of the perturber is taken to be the velocity relative to the fluid.

Considering therefore a Minkowski background spacetime, one can proceed as in the
previous section, and eq. (2.38) becomes

(∂2
t − c2

s∇2)
δn

n
=

4πMγ(1 + v2)

R
δ(r − R)δ(z)δ(θ − Ωt)H(t)

+ 4π[ρ(1 + 2φ) + 3p(1 − 2ψ)] + 4π(1 + 3c2
s)(p + ρ)

δn

n
, (2.71)

where we have introduced a system of cylindrical coordinates (r, θ, z) such that the mo-
tion of the perturber takes place at z = 0, r = R. The solution to this equation is rather
complex, but has fortunately been worked out by ref. [68]. For our purposes, proceeding
as in the previous section we can simply write it as

δn

n
(x, t) =

Mγ(1 + v2)

R c2
s

D(x, t) × (1 + εJ) + O(L/λJ)2 , (2.72)

where εJ ∼ O(L/λJ) and the weight-function D(x, t), whose detailed form can be found
in ref. [68], defines the region of influence which sound waves sent off by the perturber
do not have time to leave. From the plane-symmetry of the problem, it is clear that
D(x, y, z, t) = D(x, y,−z, t) and εJ(x, y, z, t) = εJ(x, y,−z, t). Moreover, from the gradient
of eq. (2.71) it also follows that

∂tD = −Ω ∂θD . (2.73)

If we are again concernedwith the gravitational force exerted by the fluid, which includes
dynamical friction effects, rather than with the accretion drag or the self-force 8, we can
restrict our attention to the metric perturbations φF = ψF generated by the fluid, which
are again given by eq. (2.53). Using again the Green’s function of the Yukawa operator
and evaluating at the position of the perturber (r = R, θ = Ωt, z = 0) we easily get

∂zφ
F = ∂zψ

F = εnot DF (2.74)

(from the plane symmetry of the function D). For the azimuthal gradient, instead, we

8Note that, differently from the case of straight-linemotion, even the dissipative part of the self-force is now
non-zero, as can be seen from the fact that the perturber loses energy and angular momentum through
gravitational waves (cf. the quadrupole formula). Self-force calculations, as already mentioned, require
different techniques [38, 39] and can be performed separately.
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have

∂θψ
F = ∂θφ

F = −∂tψ
F

Ω
= −∂tφ

F

Ω
=

(p + ρ)

∫
d3x′

δn
n (x′, t = θ/Ω) (x − x′) · ∂θx

|x − x′|3 × (1 + εYukawa) + εnot DF =

4π(p + ρ)Mγ(1 + v2)R

v2
Iθ × [1 + O(L/λJ)] + εnot DF , (2.75)

where Iθ is given by

Iθ ≡ −M2

4π

∫
d3x̂′ D (x′, t = θ/Ω) r̂′ sin(θ′ − θ)

[1 + ẑ′2 + r̂′2 − 2r̂′ cos(θ − θ′)]3/2
(2.76)

(a hat denotes quantities scaled by the radius of the orbit: x̂′ ≡ x′/R, r̂′ = r′/R, ẑ′ =
z′/R). Similarly, for the radial gradient we obtain

∂rψ
F = ∂rφ

F =

(p + ρ)

∫
d3x′

δn
n (x′, t = θ/Ω) (x − x′) · ∂rx

|x − x′|3 × (1 + εYukawa) + εnot DF =

4π(p + ρ)Mγ(1 + v2)

v2
Ir × [1 + O(L/λJ)] + εnot DF , (2.77)

where Ir is given by

Ir ≡ −M2

4π

∫
d3x̂′D (x′, t = θ/Ω) [r̂′ cos(θ − θ′) − 1]

[1 + ẑ′2 + r̂′2 − 2r̂′ cos(θ − θ′)]3/2
. (2.78)

Note that the integrals Iθ and Ir have been calculated numerically in ref. [68]. They
are functions of the coordinate θ of the perturber, which is thought to vary in an un-
bound range to count the number of revolutions, or equivalently they can be thought of
as functions of time (t = θ/Ω). Fortunately, though, steady state values for these integrals
are reached in times comparable to the sound crossing-time R/cs or within one orbital
period: fits to the numerical results for these steady state values in the case in which
R ≫ rmin and L & (20 − 100)R are given by [68]

Ir =





M2 10 3.51M−4.22, forM < 1.1 ,

0.5 ln
[
9.33M2(M2 − 0.95)

]
,

for 1.1 ≤ M < 4.4 ,

0.3 M2, forM ≥ 4.4 ,

(2.79)
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and

Iθ =





0.7706 ln
(

1+M
1.0004−0.9185M

)
− 1.4703M,

forM < 1.0 ,

ln[330(R/rmin)(M− 0.71)5.72M−9.58],
for 1.0 ≤ M < 4.4 ,

ln[(R/rmin)/(0.11M + 1.65)],
forM ≥ 4.4 .

(2.80)

These fits are accurate to within 4% forM < 4.4 and to within 16% forM > 4.4.

Using eqs. (2.74), (2.75) and (2.77) in eq. (2.51) and transforming to cylindrical coor-
dinates, for the acceleration produced by the gravitational interaction with the fluid we
easily get

(
ãt

pert

)
F

= − 4π(p + ρ)Mγ3(1 + v2)2

v
Iθ (2.81)

× [1 + O(L/λJ) + O(M/rmin)] + εnot DF ,

(
ãθ

pert

)
F

= − 4π(p + ρ)Mγ3(1 + v2)2

R v2
Iθ (2.82)

× [1 + O(L/λJ) + O(M/rmin)] + εnot DF ,

(
ãr

pert

)
F

= − 4π(p + ρ)Mγ3(1 + v2)2

v2
Ir (2.83)

× [1 + O(L/λJ) + O(M/rmin)] + εnot DF ,

(
ãz

pert

)
F

= εnot DF . (2.84)

[The error O(M/rmin) comes about because the equations that we have solved are lin-
earised and are therefore subject to an “intrinsic” error O(ε1, ε2).]

Finally, in order to compute the change of 3-momentum due to the gravitational in-
teraction with the fluid in the rest frame of the perturber, it is sufficient to project the
4-force M(ãµ

pert)F onto a tetrad comoving with the perturber, i.e., e(t) = uµ
pert∂/∂xµ =

γ(∂/∂t + Ω∂/∂θ), e(θ) = γ(v∂/∂t + 1/r ∂/∂θ), e(r) = ∂/∂r and e(z) = ∂/∂z. Using
eqs. (2.81)–(2.84) one then easily gets

(
dp̃

(θ)
pert

dτ

)

F

= −4π(p + ρ)M2γ2(1 + v2)2

v2
Iθ

× [1 + O(L/λJ) + O(M/rmin)] + εnot DF , (2.85)
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(
dp̃

(r)
pert

dτ

)

F

= −4π(p + ρ)M2γ3(1 + v2)2

v2
Ir

× [1 + O(L/λJ) + O(M/rmin)] + εnot DF , (2.86)

(
dp̃

(z)
pert

dτ

)

F

= εnot DF . (2.87)

As in the case of straight-line motion, the relative errors O(L/λJ) and O(M/rmin) are
negligible, because the fluid is not self-gravitating and because the effective cutoff radius
rmin is large compared withM , whereas εnot DF in general is not negligible, although it is
exactly zero if the medium is spherically symmetric around the perturber. The relativistic
correction factors γ2(1+v2)2 and γ3(1+v2)2 appearing in eqs. (2.85) and (2.86) are plotted
as functions of the velocity v in Fig. 2.1.

2.5 Summary

We have studied the drag experienced by a massive body because of the gravitational in-
teraction with its own gravitationally-induced wake, when it is moving along a straight-
line or a circular orbit at relativistic speed v relative to a non self-gravitating collisional
fluid in a flat or weakly curved background spacetime. Thanks to a suitable choice of
gauge, we could exploit the Newtonian analysis of ref. [66] and of ref. [68] to simplify
our calculations. We find that their results remain valid also in the relativistic case, pro-
vided that the rest-mass density is replaced by p + ρ (p and ρ being the pressure and
energy density of the fluid) and a relativistic multiplicative factor is included. This factor
turns out to be γ2(1 + v2)2 in the straight-line motion case and for the tangential compo-
nent of the drag in the circular motion case, and γ3(1 + v2)2 for the radial component of
the drag in the circular motion case. We can note that this factor involves only kinematic
quantities and therefore amounts to a special-relativistic effect rather than to a general-
relativistic one. This is not surprising because our analysis strictly applies only to a fluid
in a flat spacetime (in the case of straight-line motion) or a weakly curved one (in the case
of circular motion).
In spite of these limitations, we have argued that our results are suitable at least for a
preliminary study of the effects of an accretion disc on EMRIs. Although our results are
not expected to change the standard conclusion that the gas accreting onto the central
SMBH does not significantly affect EMRIs in the case of “normal” Galactic Nuclei [73],
they could play a role, under certain circumstances, in the case of higher density envi-
ronments like Active Galactic Nuclei (quasars, Seyfert Galaxies, etc.). An investigation of
this scenario, in which the accretion is modelled by a thick torus, will be presented in the
next chapter.



Chapter 3
Detecting an AGN accretion torus
with LISA

We shall not cease from exploration,
and the end of all our exploring will
be to arrive where we started and
know the place for the first time.

T. S. Eliot

One of the most exciting prospects opened up by the scheduled launch of the space-
based gravitational-wave detector LISA [2] will be the possibility of mapping accurately
the spacetime of the SMBHs which are believed to reside in the centre of galaxies [29]. As
we have already stressed in chapter 1, among the best candidate sources for this detector
are the ExtremeMass Ratio Inspirals (EMRIs), i.e. stellar-mass black holes (m ≈ 1−10M⊙)
or compact objects orbiting around the SMBH and slowly inspiralling due to the loss of
energy and angular momentum via gravitational waves (radiation reaction). In order
for the signal to fall within the sensitivity band of LISA, the SMBH must have a mass
M ≈ 105 − 107M⊙, i.e., the low end of the SMBH mass function.

It is currently expected that a number of such events ranging from tens to perhaps one
thousand could be measured every year [17], but since they will have small signal-to-
noise ratios, their detection and subsequent parameter extraction will require the use of
matched-filtering techniques. These basically consist of cross-correlating the incoming
gravitational-wave signal with a bank of theoretical templates representing the expected
signal as a function of the parameters of the source.

This will not only allow one to detect the source, but also to extract its properties. For
instance, the accurate modelling of the motion of a satellite in a Kerr spacetime will allow
one to measure the spin and the mass of the SMBH. Although producing these pure-Kerr
templates has proved to be a formidable task, particularly because of the difficulty of
treating rigorously the effect of radiation reaction (see refs. [38, 39] for a detailed review),
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considerable effort has gone into trying to include the effects of a deviation from the Kerr
geometry. These attempts are motivated by the fact that possible “exotic” alternatives to
SMBHs have been proposed (e.g., boson stars [83], fermion balls [84] and gravastars [85]),
although the presence of these objects would require radically modifying the mechanism
by which galaxies are expected to form. On the other hand, non-pure Kerr templates
might allow one to really map the spacetimes of SMBHs and to test, experimentally, the
Kerr solution.
Various approaches to this problem have been considered in the literature. EMRIs in
a spacetime having arbitrary gravitational multipoles should be considered in order to
maintain full generality [86, 87, 88], but this method does not work very well in practice
and would only apply to vacuum spacetimes. For this reason, alternative approaches
have been proposed and range from EMRIs around non-rotating boson stars [89], to EM-
RIs in bumpy black-hole spacetimes [90, 91] (i.e., spacetimes that, although involving
naked singularities, are almost Schwarzschild or Kerr black holes, but have some multi-
poles with the wrong values) or in quasi-Kerr spacetimes [92, 93] (i.e., spacetimes, con-
sisting of Kerr plus a small quadrupole moment). We will review these attempts more in
detail in the next chapter.
Interestingly, however, none of these methods is suitable for taking into account the
effect of the matter which is certainly present in galactic centres. SMBHs can indeed be
surrounded by stellar disks (as in the case of the Galactic centre [94]) or, as in the case of
Active Galactic Nuclei (AGNs) [95] (in which we are most interested) by accretion disks
of gas and dust which can be even as massive as the SMBH [96]. While the gravita-
tional attraction of a disk can have important effects on EMRIs if this disk is very massive
and close to the SMBH (see the next chapter and ref. [97]), an astrophysically realistic
accretion disk can influence an EMRI only if the satellite crosses it, thus experiencing a
“hydrodynamic” drag force.
This drag consists of two parts. The first one is due to the accretion of matter onto the
satellite. This transfers energy and momentum from the disk to the satellite, giving rise
to a short-range interaction. In this chapter we will focus on the case of a satellite black
hole, the accretion onto which was studied analytically by Bondi & Hoyle [64, 65] and
subsequently confirmed through numerical calculations [59, 98, 99].1 The second part of
the drag is instead due the gravitational deflection of the material which is not accreted,
which is therefore far from the satellite, but which can nevertheless transfer momentum
to the satellite. As we have already mentioned in chapter 2, this long-range interaction
can also be thought of as arising from the gravitational pull of the satellite by its own
gravitationally-induced wake (i.e., the density perturbations that the satellite excites, by
gravitational interaction, in the medium), and is often referred to as “dynamical friction”.
This effect was first studied in a collisionless medium by Chandrasekar [53], but acts also
for a satellite moving in a collisional fluid [62, 63, 59, 66, 67, 68, 100].
As we have already stressed in chapter 2, the effect of this disk-satellite interaction

1For a satellite neutron star, instead, the accretion rate will be lower than for a satellite black hole, but we
expect our results to remain valid, at least qualitatively, also in that case, because we will see that for
most orbits the short range drag is not the main driver of the secular evolution.
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on EMRIs has been studied by different authors for a number of disk models [51, 69,
70, 71, 72, 73, 76, 77]. However, all of these studies have been been carried out within
a Newtonian or pseudo-Newtonian description of gravity (with the partial exception of
ref. [69], in which the orbits are Kerr geodesics, but the diskmodel and the hydrodynamic
drag is not relativistic). In this chapter, instead, we provide a first relativistic treatment
for satellites moving on generic orbits around a rotating SMBH surrounded by a thick
disk (i.e., a torus). We consider the torus to have constant specific angular momentum
(i.e., constant angular momentum per unit mass as seen from an observer at infinity)
and neglect its self-gravity (i.e., we consider the metric to be pure Kerr). Under these
assumptions, an analytical solution exists for this system [101, 102]. This configuration
can be proved to be marginally stable with respect to axisymmetric perturbations [103]
(i.e., if perturbed, such a torus can accrete onto the SMBH), and is expected to be a good
approximation at least for the inner parts of the accretion flow [101, 102].

We have found that for a system composed of an SMBH with massM = 106M⊙ and a
torus with massMt . M and outer radius rout = 105M , the effect of the hydrodynamic
drag on the motion of the satellite black hole is much smaller than radiation reaction at
those distances from the SMBH which can be probed with LISA (i.e., ∼ 10M for M =
106M⊙). Although these values for M , Mt and rout are plausible for AGNs, an overall
uncertainty is still present and has motivated an investigation also for different masses
and sizes of the torus. In this way we have found that the effect of the torus can be
important in the early part of the inspiral and that it could leave an observable imprint in
the gravitational waveforms detected by LISA, if the radius of the torus is decreased to
rout = 103 − 104M or, even for rout as large as 105M andMt . M , ifM = 105M⊙. In this
latter case, in fact, LISA could detect an EMRI event at distances as large as r ∼ 45M from
the SMBH, although the event needs to be sufficiently close to us because the amplitude
of the gravitational-wave signal decreases asM/r.

In addition, if non-negligible, the effect of the hydrodynamic drag would have a dis-
tinctive signature on the waveforms. Radiation reaction, in fact, always drives orbits
from the equatorial prograde configuration to the equatorial retrograde one (see ref. [104,
105, 106] and chapter 5). The hydrodynamic drag from a torus corotating with the SMBH,
on the other hand, always makes orbits evolve towards the equatorial prograde config-
uration. Should such a behaviour be observed in the data, it would provide a strong
qualitative signature of the presence of the torus. However, it is important to point out
that even for those configurations in which the hydrodynamic drag plays a major role,
this is restricted to the initial part of the inspiral detectable by LISA, whereas its effect
rapidly vanishes in the very strong-field region of the SMBH (i.e., p . 5M ). As a re-
sult, the pure-Kerr templates would provide a faithful description of the last part of the
inspiral even in these cases.

The rest of this chapter is organised as follows. In sec. 3.1 we review the equilibrium
solutions that we used for the orbiting torus. In sec. 3.2.1 we present the equations gov-
erning the interaction between the satellite black hole and the torus, while in sec. 3.2.2
we apply the adiabatic approximation to the hydrodynamic drag. Results are then dis-
cussed in sec. 3.3.1 for equatorial circular orbits and in sec. 3.3.2 for generic (inclined and
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eccentric) orbits. Finally, the conclusions are drawn in sec. 3.4.

3.1 Modelling the torus

The properties of non self-gravitating, stationary, axisymmetric and plane-symmetric
toroidal fluid configurations in Kerr spacetimes are well-known in astrophysics but are
less well known within the community working on EMRIs. Because of this, in this sec-
tion we briefly review the basic facts, referring the interested reader to refs. [101, 102, 107,
108, 109] for additional information.

Let us consider a perfect fluid with 4-velocity ufluid, which is described by the stress-
energy tensor

Tµν = (ρ + p)uµ
fluidu

ν
fluid + pgµν = ρ0huµ

fluidu
ν
fluid + pgµν ,

where p, ρ0, ρ and h ≡ (p + ρ)/ρ0 are the pressure, rest-mass density, energy density and
specific enthalpy of the fluid. In what follows we will model the fluid with a polytropic
equation of state p = κρΓ

0 = ρ0ε(Γ− 1), where ε = ρ/ρ0 − 1 is the internal energy per unit
rest-mass, and κ and Γ are the polytropic constant and index, respectively. Because we
are neglecting the self-gravity of the fluid, we can also consider g as given by the Kerr
metric in Boyer-Lindquist coordinates, which reads [1]

ds2 = −
(

1 − 2Mr

Σ

)
dt2 +

Σ

∆
dr2 + Σ dθ2

+

(
r2 + a2 +

2Ma2r

Σ
sin2 θ

)
sin2 θ dφ2 − 4Mar

Σ
sin2 θ dt dφ , (3.1)

where
Σ ≡ r2 + a2 cos2 θ, ∆ ≡ r2 − 2Mr + a2. (3.2)

The fluid is assumed to be in circular non-geodesic motion with 4-velocity

ufluid = A(r, θ)

[
∂

∂t
+ Ω(r, θ)

∂

∂φ

]
= U(r, θ) [−dt + ℓ(r, θ)dφ] , (3.3)

where the second equals sign underlines that the vector and the 1-form are each the

dual of the other. Here, Ω ≡ uφ
fluid/ut

fluid is the angular velocity, A ≡ ut
fluid is called

the redshift factor, U ≡ −ufluid
t is the energy per unit mass as measured at infinity and

ℓ ≡ −ufluid
φ /ufluid

t is the specific angular momentum as measured at infinity (i.e., the an-
gular momentum per unit energy as measured at infinity). Note that ℓ is conserved for
stationary axisymmetric flows, as can easily be shown using Euler’s equation. The spe-
cific angular momentum and the angular velocity are trivially related by

Ω = − gtφ + gttℓ

gφφ + gtφℓ
, ℓ = −gtφ + gφφΩ

gtt + gtφΩ
, (3.4)
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while the normalisation condition ufluid · ufluid = −1 gives

U =

√
̟2

gttℓ2 + 2gtφℓ + gφφ
, (3.5)

A =

√
−1

gtt + 2gtφΩ + gφφΩ2
, (3.6)

AU =
1

1 − Ωℓ
, (3.7)

where ̟2 = g2
tφ − gtt gφφ = ∆ sin2 θ. Note that in this chapter we will always consider

ℓ > 0 (torus rotating in the positive φ-direction), while we will allow the spin parameter
a of the black hole to be either positive (black hole corotating with the torus) or negative
(black hole counter-rotating with respect to the torus).

To calculate the structure of the torus, we need to use Euler’s equation, which in its
general form is

aµ
fluid = −(gµν + uµ

fluidu
ν
fluid)∂νp

p + ρ
, (3.8)

where aµ
fluid is the 4-acceleration of the fluid. In particular, if the pressure is assumed to

depend only on r and θ and if the equation of state is barotropic [i.e., if ρ = ρ(p)]2, from
eq. (3.8) one easily gets that the 4-acceleration can be expressed as the gradient of a scalar
potentialW (p):

afluid
µ = ∂µW , W (p) = −

∫ p dp′

p′ + ρ(p′)
. (3.9)

On the other hand, from the definition of the 4-acceleration (aµ
fluid = uν

fluid∇νu
µ
fluid), eqs.

(3.3), (3.6) and (3.7), and the Killing equation ∇(µξν) = 0 for ξ = ∂/∂t and ξ = ∂/∂φ, one
easily gets

afluid
µ = ∂µW = − ∂µp

p + ρ
= ∂µ lnU − Ω

1 − Ωℓ
∂µℓ . (3.10)

In particular, taking the derivative of this equation, anti-symmetrising and using the
trivial fact that ∂[µν]W = ∂[µν]ℓ = ∂[µν]U = 0, we obtain that ∂[µΩ ∂ν]ℓ = 0. This implies
∇Ω ∝ ∇ℓ and thus that ℓ and Ω have the same contour levels [i.e., Ω = Ω(ℓ)]. Using this
fact, we can then write eq. (3.10) in an integral form:

W − Wout = −
∫ p

0

dp′

p′ + ρ(p′)
= lnU − lnUout −

∫ ℓ

ℓout

Ω(ℓ′)dℓ′

1 − Ω(ℓ′)ℓ′
, (3.11)

whereWout and ℓout are the potential and specific angular momentum at the outer edge
of the torus.3

2This is of course the case for a polytropic equation of state, because ρ = p/(Γ − 1) + (p/κ)1/Γ.
3Of course,Wout and ℓout can be replaced by the values ofW and ℓ at the inner edge of the torus if this is
present.
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In the case of a torus with constant specific angular momentum [i.e., ℓ(r, θ) = constant],
eq. (3.11) provides an analytical solution, because once ℓ has been fixed the integral on
the right-hand side is zero and eq. (3.5) gives an analytical expression for U :

W − Wout = −
∫ p

0

dp′

p′ + ρ(p′)
= lnU − lnUout . (3.12)

Note that if one requires that W → 0 when r → +∞ (i.e., W = 0 for an equipotential
surface closing at infinity), this equation gives W = lnU : W > 0 then corresponds to
open equipotential surfaces, while W < 0 corresponds to closed equipotential surfaces.
Interestingly, the potential well can present a minimum and a saddle point. Because of
the plane-symmetry, these points are located in the equatorial plane, thus corresponding
to local extremes of W (r, θ = π/2), and mark two important positions: respectively, the
centre of the torus (i.e., the point where the density reaches its maximum) and its cusp
(i.e., the mass-shedding point). Noticeably, these points are located at the radii where the
specific angular momentum of the torus, ℓ, coincides with that of the geodesic circular
equatorial orbit (the “Keplerian” orbit) corotating with the torus,

ℓK(r, a) =
r2 − 2a

√
Mr + a2

(r − 2M)
√

r/M + a
. (3.13)

This immediately follows from the fact that at the extremes of the function W one has
∂µW = 0, which leads, through eq. (3.9), to aµ

fluid = 0 (in other words, at the centre and at
the cusp the pressure gradients are zero and only gravitational forces act).

In this chapter wewill indeed consider constant-ℓ tori. A detailed classification of these
models depending upon the values of ℓ and ofWout can be found in refs. [101, 102, 107].
Here we simply recall that in order to have a closed equipotential surface with a cusp,
one needs to have a value of ℓ between the specific angular momenta ℓms and ℓmb of
the marginally stable and marginally bound equatorial geodesic (i.e., “Keplerian”) orbits
corotating with the torus. This can be easily understood by noting, from eq. (3.12), that
the potential W (r, θ = π/2) is simply the effective potential describing the equatorial
motion of a test particle around a Kerr black hole. As such, ℓms and ℓmb can be calcu-
lated easily using eq. (3.13) and the formulae for the radii of the marginally stable and
marginally bound circular equatorial orbits in Kerr rotating in the positive φ-direction
(i.e., corotating with the torus):

ℓms = ℓK(rms) , ℓmb = ℓK(rmb) , (3.14)

rms/M = 3 + Z2 − sign(ã)
√

(3 − Z1)(3 + Z1 + 2Z2) , (3.15)

rmb/M = 2 − ã + 2
√

1 − ã , (3.16)

Z1 = 1 + (1 − ã2)1/3
[
(1 + ã)1/3 + (1 − ã)1/3

]
, (3.17)

Z2 =
√

3ã2 + Z2
1 , (3.18)
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where ã = a/M .

In order to select the class of solutions having a finite radial extent (i.e., having finite
inner and an outer radii) one needs also to choose a negative value for the “potential
barrier” at the inner edge of the torus,

∆W = Win − Wcusp = Wout − Wcusp ≤ 0 . (3.19)

If∆W < 0, the inner radius of the torus is larger than the radius at which the cusp occurs
(rin > rcusp), while if the potential barrier ∆W reduces to zero, the torus exactly fills its
outermost closed equipotential surface and rin = rcusp ≤ rms. Note that because of the
considerations that we have made above about the value of ℓ, for constant-ℓ tori we have
rcusp ≥ rmb (with rcusp = rmb only if ℓ = ℓmb) and rcentre ≥ rms (with rcentre = rms only
if ℓ = ℓms). If instead ∆W > 0, the fluid overflows the outermost closed equipotential
surface and mass transfer is possible at the cusp: for a polytropic equation of state, the
accretion rate can be shown to be Ṁ ∝ ∆WΓ/(Γ−1).

The integral Euler equation for constant-ℓ tori [eq. (3.12)] further simplifies if the equa-
tion of state is polytropic, because in this case

∫ p

0

dp′

p′ + ρ(p′)
= ln

h

hout
, (3.20)

where hout is the specific enthalpy at the outer edge of the torus. Since for a polytropic
equation of state the enthalpy is given by

h = 1 +
Γ

Γ − 1
κρΓ−1

0 , (3.21)

it is clear that hout = 1 (because p = ρ0 = 0 at the outer edge of the torus), and eqs. (3.12)
and (3.20) give

ρ0(r, θ) =

{
Γ − 1

Γ

[
eWout−W (r,θ) − 1

]

κ

}1/(Γ−1)

. (3.22)

Once the rest-mass distribution is known, the total rest mass of the torus is given by

Mt,0 =

∫
ρ0
√−gutd3x , (3.23)

where
√−g = Σ sin θ and d3x = dr dθ dφ is the coordinate 3-volume element, while the

mass-energy is given by

Mt =

∫
(T r

r + T φ
φ + T θ

θ − T t
t )
√−g d3x =

2π

∫

ρ0>0

(
gφφ − gttℓ

2

gφφ + 2gtφℓ + gttℓ2
ρ0h + 2P

)
×

(
r2 + a2 cos2 θ

)
sin θ drdθ . (3.24)
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Clearly, the smaller the ratio between the mass of the torus and that of the SMBH, the
better the approximation of neglecting the self-gravity of the torus.

3.2 Modelling the orbital motion

This section is dedicated to the discussion of the hydrodynamic drag on the satellite black
hole. Although the two aspects are closely inter-related, we first discuss the equations
governing the interaction between the satellite black hole and the torus and then describe
their use in the calculation of the changes of the orbital parameters within the adiabatic
approximation.

3.2.1 The hydrodynamic drag

As already mentioned, the hydrodynamic drag acting on the satellite black hole can be
written as the sum of a short-range part, due to accretion, and a long-range part, due
to the deflection of the matter which is not accreted or, equivalently, to the gravitational
interaction of the satellite with the density perturbations gravitationally induced by its
own presence:

dpµ
sat

dτ
=

dpµ

dτ

∣∣∣
accr

+
dpµ

dτ

∣∣∣
defl

, (3.25)

where τ is the proper time of the satellite.
Accretion onto a moving black hole was studied analytically in a Newtonian frame-
work by Bondi & Hoyle [64, 65], who found the rest-mass accretion rate to be

dm0

dτ
=

4πλm2ρ0

(v2 + v2
s)

3/2
, (3.26)

where m is the mass of the black hole, v and vs are respectively the velocity of the black
hole with respect to the fluid and the sound velocity, and λ is a dimensionless constant
of the order of unity, which for a fluid with polytropic equation of state and polytropic
index Γ has the value [110]

λ =

(
1

2

)(Γ+1)/[2(Γ−1)] (5 − 3Γ

4

)−(5−3Γ)/[2(Γ−1)]

. (3.27)

Subsequent numerical work [59, 98, 99] treated instead the problem of accretion in full
General Relativity, and showed that eq. (3.26), with λ given by eq. (3.27), is correct
provided that it is multiplied by a factor ∼ 5 – 25 when v and vs become relativistic (cf.
Table 3 of ref. [98]). However, because a fit for this correction factor is, to the best of
our knowledge, not yet available, and the published data is not sufficient for producing
one, we use the Bondi accretion rate [eqs. (3.26) and (3.27)], bearing in mind that it could
slightly underestimate the drag at relativistic velocities v and vs.

4 Once the accretion rate

4As we will see in section 3.3, v and vs can become relativistic only for orbits counter-rotating with respect
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is known, the short-range part of the drag is given by [59]

dpµ

dτ

∣∣∣
accr

= h
dm0

dτ
uµ

fluid , (3.28)

where we recall that h is the specific enthalpy of the fluid. Note that this equation ba-
sically follows from the conservation of the total 4-momentum of the satellite and the
fluid.

The long-range drag is instead more complicated. The gravitational interaction of a
body with the density perturbations that it excites gravitationally in the surrounding
medium was first studied by Chandrasekhar [53] in the case of a collisionless fluid, and
is also known as “dynamical friction”. Although less well recognised, dynamical friction
acts also for a body moving in a collisional medium (see refs. [62, 63, 59, 66, 67, 68, 100]
and chapter 2). In particular, a satellite moving on a circular planar orbit (e.g., a circular
orbit around a Schwarzschild black hole or a circular equatorial orbit around a Kerr black
hole) experiences a drag in the tangential direction [62, 63, 59, 66, 67] and one in the radial
direction [68]:

dpµ

dτ

∣∣∣
defl

=
dp

dτ

∣∣∣
tang

defl
σµ +

dp

dτ

∣∣∣
rad

defl
χµ , (3.29)

where σ is a unit spacelike vector orthogonal to usat and pointing in the direction of the
motion of the fluid,

σ =
ufluid − γusat√

γ2 − 1
(3.30)

(the Lorentz factor γ = −ufluid · usat encodes the relative motion of the satellite with
respect to the fluid of the torus), and

χ = − usat
r usat − σrσ + ∂/∂r

[grr − (usat
r )2/(γ2 − 1)]1/2

, (3.31)

is a unit spacelike vector, orthogonal to both usat and σ and pointing in the radial direc-
tion. In particular, the tangential and radial drags are given by [68, 100]

dp

dτ

∣∣∣
tang

defl
=

4π(p + ρ)m2γ2(1 + v2)2

v2
Itang , (3.32)

dp

dτ

∣∣∣
rad

defl
=

4π(p + ρ)m2γ3(1 + v2)2

v2
Irad , (3.33)

where Itang and Irad are complicated integrals [given by eqs. (2.76) and (2.78)]. Fits to the
numerically-computed steady-state values for these integrals are given in ref. [68] and
were reported in chapter 2 [eqs. (2.80) and (2.79)]. In the present discussion, we rewrite

the torus and very close to the SMBH. For these orbits the dominant part of the hydrodynamic drag is the
long-range one, and the relativistic correction factor to the Bondi accretion rate (which is roughly 5 − 10
for these orbits, as can be seen comparing the middle panel of Fig. 3.1 with Table 3 of ref. [98]) does not
change this conclusion.
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here the form of these fits. If we denote the radius of the circular orbit by r and we define
rmin ∼ 2m(1 + v2)/v2 to be the capture impact parameter of the satellite black-hole5 and
M = v/vs to be the Mach number, we have

Itang =





0.7706 ln
(

1+M
1.0004−0.9185M

)
− 1.4703M,

forM < 1.0 ,

ln[330(r/rmin)(M− 0.71)5.72M−9.58],
for 1.0 ≤ M < 4.4 ,

ln[(r/rmin)/(0.11M + 1.65)],
forM ≥ 4.4 ,

(3.34)

and

Irad =





M2 10 3.51M−4.22, forM < 1.1 ,

0.5 ln
[
9.33M2(M2 − 0.95)

]
,

for 1.1 ≤ M < 4.4 ,

0.3 M2, forM ≥ 4.4 .

(3.35)

As we have stressed, these fits are valid for r ≫ rmin and are accurate to within 4% for
M < 4.4 and to within 16% forM > 4.4. However, the fit for Itang does not go to zero
whenM goes to zero, while Irad goes to zero only asM2 in this limit: these behaviours
would give a non-zero radial drag and a diverging tangential drag for v → 0 [cf. eqs.
(3.32) and (3.33)]. This is clearly a spurious behaviour: dynamical frictionmust vanish for
v = 0, since in this case the pattern of the density perturbations is spherically symmetric
around the body (as there is no preferred direction). However, as we will see in sec. 3.2.2,
the effect of the radial drag vanishes if one uses the adiabatic approximation (as it is usually
done in EMRI-studies [36, 41, 111, 112]), and therefore this artifact of the fit (3.35) cannot
cause any harm in our numerical code. This is instead not the case for the tangential
drag: in order to eliminate its spurious divergence, we have approximated Itang with its
straight-line functional form at lowMach numbers. Since the dynamical friction drag for
straight-line subsonic motion is given by eq. (3.32) with Itang = 1/2 ln[(1+M)/(1−M)]−
M ≈ M3/3 + M5/5, we can assume that Itang is given, forM < 0.1, by

Itang = 0.9563

(M3

3
+

M5

5

)
, (3.36)

where the factor 0.9563 is introduced to match the above fit atM = 0.1.

Note that although eq. (3.29) is strictly valid only for circular planar motion (i.e., in
the case of a Kerr spacetime, for circular equatorial orbits), we expect it to be a good

5For a neutron star the capture parameter would be slightly larger, but but this would have only a minor
effect on the results because the drag depends only logarithmically on rmin [cf. eq. (3.34)].
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approximation also for generic orbits around a Kerr black hole. Indeed, thanks to the
choice of the unit vectors σ and χ, eq. (3.29) gives a tangential drag parallel the direction
of the flow and a drag in the radial direction perpendicular to the direction of the flow.
Both of these components are expected to be present also for generic orbits6. In particular,
the tangential drag should be given approximately by eqs. (3.32) and (3.36) if the radius
r appearing in eq. (3.34) is replaced by the semi-latus rectum p of the orbit [see eq. (3.51)
for the definition of this quantity.7] Although this prescription is not exact, the results of
ref. [68] suggest that the relevant lengthscale in the Coulomb logarithm appearing in the
second and third lines of eq. (3.34) should be one characterising the orbit, rather than the
size of the medium, as commonly assumed in most of the works on dynamical friction
predating refs. [66, 68] (see the introduction of ref. [68] and references therein for more
details about this point). Of course, this lengthscale could be different from the semi-
latus rectum of the orbit, but different choices for it would have only a slight impact on
the results because of the logarithmic dependence.

The extrapolation of the radial drag given by eqs. (3.33) and (3.35) from circular planar
to generic orbits is instead a bit more problematic, although one expects it to be a good
approximation at least for orbits with small eccentricities and small inclinations with
respect to the equatorial plane. At any rate, as we have mentioned earlier, in sec. 3.2.2
we will show that the effect of this radial drag on the orbital evolution averages to zero
when adopting the adiabatic approximation. (Note that this agrees with ref. [68], which
found that the effect of the radial drag on the orbital evolution was subdominant with
respect to that of the tangential drag.) Nevertheless, a non-zero effect may still be present
in cases in which the adiabatic approximation is not valid (i.e. if the hydrodynamic drag
acts on a timescale comparable to the orbital period), or possibly even in the adiabatic
approximation if more rigorous expressions for the radial drag should be derived in the
future.

The rate of change of the mass of the satellite with respect to the coordinate time t
follows immediately from pµ

sat psat
µ = −m2: denoting the derivative with respect to twith

an overdot, we have

ṁ = −
usat

µ

ut
sat

dpµ
sat

dτ
= −

usat
µ

ut
sat

dpµ
accr

dτ
=

h γ

ut
sat

dm0

dτ
. (3.37)

It is well-known [113] that Kerr geodesics can be labelled, up to initial conditions, by

6Note that the tangential drag is due to the backward gravitational pull exerted by the wake, while the
radial drag comes about because the wake “bends” if the satellite does not move on a straight line,
thus exerting a non-zero gravitational attraction on the satellite [68]. Therefore, it is clear that both of
these components must be present, unless the satellite moves on a straight line, in which case only the
tangential drag is present.

7Note that the tangential drag given by eqs. (3.32), (3.34) and (3.36) is approximately correct also for
straight-line motion, if r replaced in eq. (3.34) by vt – t being the time for which the satellite has been
active [66, 100] – as long as vt is smaller than the size of the medium, and by a cutoff-length of order of
the size of the medium at later times. To see this, compare eqs. (3.34) and (3.36) to the functional form of
Itang for straight-line motion [eq. (2.65)].
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three constants of motion, the dimensionless energy Ẽ and the angular momentum L̃z as
measured by an observer at infinity,

Ẽ = −usat
t , L̃z = usat

φ /M , (3.38)

and the dimensionless Carter constant [113] Q̃,

Q̃ =

(
usat

θ

M

)2

+ ã2 cos2 θ(1 − Ẽ2) + cot2 θL̃2
z (3.39)

where ã = a/M . Wewill now derive expression for the rates of change of these quantities.

To this purpose, let us first introduce the tetrad (usat, e1 = σ, e2 = χ, e3) based in
the position of the satellite and write the change in the 4-velocity due to accretion and
deflection of the flow as

δuµ
sat = δu

(t)
satu

µ
sat + δu

(i)
sate

µ
(i) , (3.40)

where δu
(t)
sat and δu

(i)
sat are the components with respect to the tetrad. In particular, per-

turbing−(u
(t)
sat)

2 +δiju
(i)
satu

(j)
sat = −1 to first order one easily gets−u

(t)
satδu

(t)
sat +δiju

(i)
satδu

(j)
sat =

0, and using then the fact that u
(i)
sat = 0 to zeroth order, one obtains δu

(t)
sat = 0. Using now

δu
(i)
sat = δp

(i)
sat/m, e(i) · usat = 0 and e(i) · e(j) = δij (i = 1, 2, 3), eq. (3.40) becomes

δuµ
sat =

(
δm0 h

m
uν

fluid σν +
δptang

defl

m

)
σµ +

δprad
defl

m
χµ

=

(
δm0 h

m
+

δptang
defl

m
√

γ2 − 1

)
(
uµ

fluid − γuµ
sat

)
+

δprad
defl

m
χµ . (3.41)

Using now eqs. (3.3), (3.38) and (3.41), we immediately obtain

˙̃E

Ẽ
=

(
ṁ0 h

m
+

ṗtang
defl

m
√

γ2 − 1

) (
U

Ẽ
− γ

)
− ṗrad

defl

mẼ
χt , (3.42)

˙̃Lz

L̃z

=

(
ṁ0 h

m
+

ṗtang
defl

m
√

γ2 − 1

)(
ℓ U

ML̃z

− γ

)
+

ṗrad
defl

mML̃z

χφ . (3.43)

In order to calculate instead the rate of change of the dimensionless Carter constant Q̃,
let us note that from eq. (3.41) it follows that the variation of uθ in a short time interval δt
due to accretion and deflection of the flow is

δusat
θ =

[
−γ

(
ṁ0 h

m
+

ṗtang
defl

m
√

γ2 − 1

)
usat

θ +
ṗrad
defl

m
χθ

]
δt . (3.44)

We can then write u̇sat
θ as the sum of a term coming from the gravitational evolution (i.e.,
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the geodesic equation) and one coming from collisions with the surrounding gas:

u̇sat
θ = Γµ

θνu
sat
µ ẋν

sat − γ

(
ṁ0 h

m
+

ṗtang
defl

m
√

γ2 − 1

)
usat

θ +
ṗrad
defl

m
χθ . (3.45)

The evolution of Q̃ therefore follows from eq. (3.39):

˙̃Q =
∂Q̃

∂θ
θ̇sat +

∂Q̃

∂usat
θ
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θνu

sat
µ ẋν

sat +
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∂Ẽ
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m
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m
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θ +
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∂usat
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m
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∂Q̃

∂Ẽ
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∂usat
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m
√

γ2 − 1

)
usat

θ +
∂Q̃

∂usat
θ

ṗrad
defl

m
χθ, (3.46)

where the partial derivatives are meant to be calculated with eq. (3.39). Note that the
first and the second term of the first line cancel out because Q̃ is conserved for geodesic
motion.

A useful alternative form for the evolution rate of Q̃ can be obtained by rewriting eq.
(3.39) using the normalisation condition usat · usat = −1:

Q̃ = ∆̃−1
[
Ẽ(r̃2 + ã2) − ãL̃

]2
− (L̃ − ãẼ)2 − r̃2 − ∆̃(usat

r )
2

, (3.47)

where r̃ = r/M and ∆̃ = ∆/M2. Proceeding as above and in particular using the fact
that

u̇sat
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rνu
sat
µ ẋν

sat − γ
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ṁ0 h
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ṗtang
defl

m
√
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r +
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m
χr (3.48)

[from eqs. (3.3) and (3.41)], one easily gets
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ṁ0 h

m
+
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m
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where the partial derivatives are now calculated with eq. (3.47). Note that for circular
orbits eq. (3.49) becomes

˙̃Q =
∂Q̃

∂Ẽ

˙̃E +
∂Q̃

∂L̃z

˙̃Lz (3.50)
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[use eq. (3.47) and the fact that usat
r = 0 for circular orbits]. This condition ensures8 that

circular orbits keep circular under the hydrodynamic drag and in the adiabatic approxi-
mation, as it happens for radiation reaction.
Finally, let us note that the rates of change of Ẽ, L̃z and Q̃ [eqs. (3.42), (3.43), (3.46)
and (3.49)] go smoothly to zero as the velocity of the satellite relative to the fluid goes
to zero. This is easy to check using the fact that, when v approaches zero, ṗtang

defl = O(v)
[cf. eqs. (3.32) and (3.36)], ṗrad

defl → 0, γ2 − 1 = O(v2), ur = O(v), uθ = O(v), ℓU −
ML̃z = O(v) and U − Ẽ = O(v2), and using the fact that χ keeps finite in this limit [in
particular, from eqs. (3.30) and (3.31) it follows χt = O(v), χφ = O(1), χθ = O(1) and
χr = O(1)]. Note that this is indeed the result that one would expect. First of all, a body
comoving with the fluid clearly does not experience any dynamical friction and the only
active mechanism is accretion. The body then accretes mass and consequently energy
and angular momentum (because the fluid carries a specific energy and a specific angular
momentum). However, the dimensionless constants of motion Ẽ, L̃z and Q̃ entering the
geodesic equation cannot change because of the weak equivalence principle. Pictorially,
one may think of a satellite comoving with a gaseous medium. Consider a sphere centred
in the satellite, with radius small enough to ensure that the gas contained in the sphere
has approximately the same velocity as the satellite. Suppose now that all the gas in this
sphere is accreted by the satellite. The velocity of the satellite will clearly be unaffected,
because of the conservation of momentum: for the weak equivalence principle this is
enough to ensure that the orbit of the satellite will be unaffected, in spite of its increased
mass.

3.2.2 The adiabatic approximation

At the heart of our approach is the calculation of the changes of the orbital parameters
experienced by Kerr geodesics as a result of the hydrodynamic drag, and their compar-
ison with the corresponding changes introduced by radiation reaction. To this purpose,
let us recall that up to initial conditions Kerr geodesics can be labelled by a set of three
parameters, the semi-latus rectum p, the eccentricity e and the inclination angle θinc. These
are just a remapping of the energy, angular momentum and Carter constant introduced
in sec. 3.2.1, and are defined as [116]

p =
2rarp

ra + rp
, e =

ra − rp

ra + rp
, θinc =

π

2
− D θmin , (3.51)

where ra and rp are the apoastron and periastron coordinate radii, θmin is the minimum
polar angle θ reached during the orbital motion and D = 1 for orbits corotating with
the SMBH whereasD = −1 for orbits counter-rotating with respect to it. Note that in the
weak-field limit p and e correspond exactly to the semi-latus rectum and eccentricity used

8Note in particular that the proof presented in ref. [114], which was concerned mainly with radiation re-
action, applies also to the case of the hydrodynamic drag. Note also that the resonance condition which
was found in ref. [114] as the only possible case that could give rise to a non-circular evolution for an
initially circular orbit is never satisfied in a Kerr spacetime [115].
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to describe orbits in Newtonian gravity, and that θinc goes from θinc = 0 for equatorial
orbits corotating with the black hole to θinc = 180 degrees for equatorial orbits counter-
rotating with respect to the black hole, passing through θinc = 90 degrees for polar orbits.

In order to fix the initial conditions of a geodesic, let us first parameterise it with the
Carter time λ, which is related to the proper time by [113]

dτ

dλ
= Σ . (3.52)

This is a very useful choice because it makes the geodesic equation separable [113]:

(
dr

dλ

)2

= Vr(r),
dt

dλ
= Vt(r, θ),

(
dθ

dλ

)2

= Vθ(θ),
dφ

dλ
= Vφ(r, θ) , (3.53)

with

Vt(r, θ)/M
2 = Ẽ

[
(r̃2 + ã2)2

∆̃
− ã2 sin2 θ

]
+ ãL̃z

(
1 − r̃2 + ã2

∆̃

)
, (3.54)

Vr(r)/M
4 =

[
Ẽ(r̃2 + ã2) − ãL̃z

]2
− ∆̃

[
r̃2 + (L̃z − ãẼ)2 + Q̃

]
, (3.55)

Vθ(θ)/M
2 = Q̃ − L̃2

z cot2 θ − ã2(1 − Ẽ2) cos2 θ, (3.56)

Vφ(r, θ)/M = L̃z csc2 θ + ãẼ

(
r̃2 + ã2

∆̃
− 1

)
− ã2L̃z

∆̃
. (3.57)

This means, in particular, that the r- and θ-motions are periodic in λ. The initial condi-
tions of the geodesic can then be characterised by the values t0 and φ0 of the coordinates
t and φwhen λ = 0, the value λr0 of the Carter time nearest to λ = 0 at which r(λr0) = rp,
and the value λθ0 of the Carter time nearest to λ = 0 at which θ(λθ0) = θmin [111].

Let us first fix the geodesic under consideration by choosing the parameters p, e and
θinc so as to obtain a bound and stable orbit (see ref. [116] for details) and by choosing
the initial conditions as described above. One could in principle use eqs. (3.42), (3.43)
and (3.46) [or (3.49)] to compute the rates of change of Ẽ, L̃z and Q̃ due to the hydrody-
namic drag as a function the Carter time λ. However, because the timescale of the orbital
evolution due to the interaction with the torus is much longer than the orbital period,

we can apply the adiabatic approximation and compute instead the averages of ˙̃E, ˙̃Lz

and ˙̃Q over times much longer than the orbital periods. This approximation is routinely
adopted when studying the effect of radiation reaction on EMRIs [36, 41, 111, 112], and
it is easy to implement when one considers instead the effect of the hydrodynamic drag.
Denoting respectively with 〈 〉t and 〈 〉λ the average over an infinite coordinate time and
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the average over an infinite Carter time, we can write [111]

〈Ψ̇〉t =
〈dΨ/dλ〉λ
〈dt/dλ〉λ

, (3.58)

where Ψ is a place-holder for either Ẽ, L̃z or Q̃.

Using now eq. (3.3) (with the assumption that the torus is symmetric with respect to
the equatorial plane) in eqs. (3.42), (3.43) and (3.46) [or (3.49)], it is easy to show that
dẼ/dλ, dL̃z/dλ and dQ̃/dλ depend, once fixed Ẽ, L̃z and Q̃, only on the r and cos2 θ of
the geodesic under consideration – i.e., r = r(λ, λr0) and cos2 θ = cos2 θ(λ, λθ0) – and on
the sign of usat

r , which we will denote by ǫr. [The dependence on this sign arises because
of the terms due to the radial drag, as the quantity usat

r appearing in the definitions of σ
and χ can be expressed in terms of r and cos2 θ using eqs. (3.52)-(3.57) only up to such a
sign.] Similarly, dt/dλ is given by the geodesic equation (3.53) and depends, once fixed
Ẽ, L̃z and Q̃, only on the r and cos2 θ of the geodesic [cf. eq. (3.54)].

Using now the fact that the r- and θ-motions are periodic when expressed in the Carter
time, we can expand the functions dẼ/dλ, dL̃z/dλ and dQ̃/dλ and dt/dλ appearing in eq.
(3.58) in a Fourier series. Noting that the oscillating terms average out, one can then write
these equations using only averages of these functions over the r- and θ-periods. More
precisely, writing the r- and θ-motions as r(λ, λr0) = r̂(λ−λr0) and θ(λ, λθ0) = θ̂(λ−λθ0)
(where we have denoted with a “hat” a fiducial geodesic having the same Ẽ, L̃z and Q̃ as
the geodesic under consideration and λr0 = λθ0 = 0), using the fact that dẼ/dλ, dL̃z/dλ
and dQ̃/dλ depend on r, cos2 θ and ǫr, and using the fact that dt/dλ depends only on r
and cos2 θ, we can easily write eq. (3.58) as [111]

〈Ψ̇〉t =
∫ Λr

0 dλr

∫ Λθ/4
0 dλθ dΨ/dλ(r̂(λr), cos2 θ̂(λθ), ǫr)∫ Λr

0 dλr

∫ Λθ/4
0 dλθ Vt(r̂(λr), cos2 θ̂(λθ))

, (3.59)

where Ψ is again a place-holder for either Ẽ, L̃z or Q̃. Note that here Λr and Λθ are the r-
and θ-periods and dẼ/dλ, dL̃z/dλ and dQ̃/dλ and dt/dλ are expressed using eqs. (3.42),
(3.43), (3.46) [or (3.49)], (3.53) and (3.54)-(3.57). Using now the definitions of σ and χ

[eqs. (3.30) and (3.31)], it is easy to check that the changes of Ẽ, L̃z and Q̃ arising from the
radial drag average out in the above equation because of the presence of the sign ǫr (in
particular χt, χφ, χθ ∝ ǫr). As a result, one can assume ṗrad

defl = 0 ab initiowhen computing
eq. (3.59) and benefit from another small simplification since, as we have already men-
tioned, dẼ/dλ, dL̃z/dλ and dQ̃/dλ would depend only on r and cos2 θ if it were not for
the radial drag, which brings in the dependence on ǫr. With this assumption, all of the
integrals appearing in (3.59) can therefore be performed over λr ∈ [0, Λr/2] rather than
over λr ∈ [0, Λr]. Finally, note also that the rates of change (3.59) do not depend on the
initial conditions λr0 and λθ0 of the geodesic.

In order to reduce eq. (3.59) to a form suitable for numerical integration, we can express
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our fiducial geodesic with the phase variables ψ and χ, defined by [41, 116, 117]

r̂(ψ) =
p

1 + e cos ψ
, (3.60)

cos θ̂(χ) = z− cos χ . (3.61)

Note that ψ and χ change by 2π during respectively an r- and a θ-period. Inserting then
these definitions into the geodesic equation (3.53) one gets [41, 116, 117]

dψ

dλ
=

p

1 − e2

√
J(ψ) , (3.62)

dχ

dλ
= M

√
β(z+ − z− cos2 χ) , (3.63)

where

J(ψ) = (1 − Ẽ2)(1 − e2) + 2

(
1 − Ẽ2 − 1 − e2

p̃

)
(1 + e cos ψ)

+ (1 + e cos ψ)2 ×
[
(1 − Ẽ2)

3 + e2

1 − e2
− 4

p̃
+

1 − e2

p̃2
(β + L̃2

z + Q̃)

]
, (3.64)

β = ã2(1 − Ẽ2) , (3.65)

z+ =
Q̃ + L̃2

z + β +
√

(Q̃ + L̃2
z + β)2 − 4βQ̃

2β
, (3.66)

with p̃ = p/M . Note that dψ/dλ and dχ/dλ, differently from dr/dλ and dθ/dλ, are non-
zero at the inversion points of the r- and θ-motions, making ψ and χ very useful for
numerical integration.

Changing the integration variables λr and λθ to ψ and χ, eq. (3.59) becomes

〈Ψ̇〉t =

∫ π

0
dψ

∫ π/2

0
dχ

dΨ/dλ|ṗrad
defl=0(r̂(ψ), cos2 θ̂(χ))(1 − e2)

p
√

J(ψ)β(z+ − z− cos2 χ)
×

×
[∫ π

0
dψ

∫ π/2

0
dχ

Vt(r̂(ψ), cos2 θ̂(χ))(1 − e2)

p
√

J(ψ)β(z+ − z− cos2 χ)

]−1

. (3.67)

Note that the two-dimensional integrals involved in these expressions can easily be com-
puted numerically (e.g., iterating Romberg’s method [118]) once the orbital parameters p,
e, θinc of the geodesic under consideration have been fixed.

3.3 Results

In this section we will consider constant-ℓ tori around Kerr SMBHs and compare their
influence on EMRIs with that of gravitational wave emission (i.e., radiation reaction) in
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the adiabatic approximation. In particular, we will compute the rates of change (3.67) of
the energy, angular momentum and Carter constant due to the hydrodynamic drag, for
circular equatorial orbits (sec. 3.3.1) and for generic (inclined and eccentric) orbits (sec.
3.3.2). Since Ẽ, L̃z and Q̃ can be expressed analytically as functions of the orbital param-
eters p, e and θinc [116], it is then easy to compute the rates of change dp/dt, de/dt and
dθinc/dt due to the hydrodynamic drag. For the same orbits, we will consider also the ra-
diation reaction, for which we will use the approximate fluxes dẼ/dt, dL̃z/dt and dQ̃/dt
of ref. [119] to compute dp/dt, de/dt and dθinc/dt. Note that these fluxes (often referred
to as “kludge” fluxes in the literature) are a good approximation to the fluxes computed
rigorously in the adiabatic approximation with the Teukolsky-Sasaki-Nakamura formal-
ism [41, 120]. In fact, since they are based on a post-Newtonian expansion corrected with
fits to fluxes computed with the Teukolsky-Sasaki-Nakamura formalism for circular or-
bits, these kludge fluxes are accurate within 3% for circular orbits and their accuracy is
expected to be within 10 − 15% also for generic orbits with p & 6M . Moreover, they are
expected to be off at most by 25− 30% even for smaller values of the semi-latus rectum p
(cf. ref. [119], Table I).
The mass of the SMBH is fixed toM = 106M⊙ while its spin parameter a ranges from

−0.998M to 0.998M (note that |a| = 0.998M is a reasonable upper limit for the spin
attainable as the result of mass accretion [121] or binary black-hole mergers [122, 123]),
and the mass of the satellite black hole is insteadm = 1M⊙. The constant-ℓ torus (which,
as we have alreadymentioned, is taken to rotate in the positive φ-direction) is assumed to
be composed of an isentropic monatomic gas (i.e., a Γ = 5/3 polytrope) and is considered
to be exactly filling its outermost closed equipotential surface (∆W = 0), so as to present
a zero accretion rate Ṁ onto the SMBH.9 Assuming ∆W = 0 and Γ = 5/3, the specific
angular momentum of the torus is then uniquely fixed by choosing the outer radius. A
reasonable outer radius for a realistic accretion disk is given by rout = 105M [96], and
this is indeed the value that we will use for most of our analysis, although we will briefly
consider also different values for rout in order to study the impact of this parameter on
the final results. The polytropic constant κ of the equation of state is finally fixed by the
requirement that Mt = 0.1M . While this could be a reasonable value for the mass of a
realistic accretion disk in AGNs [96], we will see that our results scale proportionally to
Mt, thus allowing one to extrapolate them easily to the caseMt = M , which is certainly
an astrophysically plausible value, but one for which our test-fluid approach is no longer
valid.

9While realistic thick disks are generally expected to accrete onto the SMBH, these configurations are clearly
non-stationary and cannot therefore be reproduced within our framework. However, it is easy to show
that if one cuts-off a torus solution with Ṁ > 0 at r = rcusp, the effect of the satellite-torus interaction
will be enhanced with respect to the Ṁ = 0 solution having the same mass and outer radius: the choice
Ṁ = 0 is thus useful to obtain at least a lower limit for the effect of the satellite-torus interaction on
EMRIs.



3
.3
.
R
e
su
lts

5
5

Model a Mt/M rout/M κ (CGS) ℓ/M rin/M rcentre/M ρcentre (g/cm
3) ρ0avg (g/cm

3)

A1 0.900 0.100 1.000×105 4.198×1022 2.6324500536 1.73246 3.60963 4.060×10−5 1.475×10−11

A2 -0.900 0.100 1.000×105 4.189×1022 4.7567317819 5.65700 15.58890 3.992×10−6 1.476×10−11

B1 0.998 0.100 1.000×105 4.200×1022 2.0894422310 1.09144 1.56484 1.868×10−4 1.474×10−11

B2 0.500 0.100 1.000×105 4.195×1022 3.4141929560 2.91425 7.16458 1.331×10−5 1.475×10−11

B3 0.000 0.100 1.000×105 4.192×1022 3.9999599993 4.00008 10.47174 7.355×10−6 1.475×10−11

B4 -0.500 0.100 1.000×105 4.190×1022 4.4494291313 4.94962 13.39547 5.034×10−6 1.475×10−11

B5 -0.998 0.100 1.000×105 4.188×1022 4.8269302324 5.82521 16.11218 3.796×10−6 1.476×10−11

C1 0.900 0.100 1.000×103 3.997×1020 2.6319080229 1.73318 3.60622 4.323×10−2 1.507×10−5

C2 -0.900 0.100 1.000×103 3.607×1020 4.7490561067 5.67540 15.49760 4.775×10−3 1.573×10−5

C3 0.900 0.100 1.000×104 4.170×1021 2.6324007478 1.73253 3.60932 1.295×10−3 1.479×10−8

C4 -0.900 0.100 1.000×104 4.103×1021 4.7560304461 5.65866 15.58057 1.297×10−4 1.489×10−8

C5 0.900 0.100 1.000×106 4.201×1023 2.6324549842 1.73246 3.60967 1.283×10−6 1.475×10−14

C6 -0.900 0.100 1.000×106 4.199×1023 4.7568019526 5.65683 15.58974 1.258×10−7 1.475×10−14

Table 3.1:Models analysed in this chapter: all of them haveM = 106M⊙, Γ = 5/3 and are filling exactly their outermost closed equipotential
surface (i.e., they have ∆W = 0). All the parameters are defined in sec. 3.1, except the average rest-mass density ρ0avg = Mt0/V ,
where V =

∫
ρ0>0

√−g d3x. Note that the specific angular momentum of the torus needs to be tuned with high accuracy in order to

obtain large outer radii such as those considered in these models, and for this reason we report ℓ/M with 10 decimal digits.
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We should stress, however, that our results, when expressed in terms of the dimension-
less orbital parameters p/M , e and θinc, are approximately independent of the massM of
the SMBH and of the massm of the satellite black hole (provided thatMt/M and rout/M
are maintained constant). Indeed, since the ratios between the rates of change dp/dt,
de/dt and dθinc/dt due to the hydrodynamic drag and radiation reaction are of course di-
mensionless, it is not restrictive to fixM = 1, because this simply corresponds to choosing
a system of units. Note in particular that this means that systems with differentm andM
but equal mass ratiom/M give exactly the same ratios between the rates of change dp/dt,
de/dt and dθinc/dt due to the hydrodynamic drag and radiation reaction. Moreover, these
rates of change are proportional to m (in the case of the hydrodynamic drag this can be
seen from eqs. (3.26), (3.32), (3.33), (3.42), (3.43) and (3.46), while in the case of radiation
reaction see for instance ref. [119]), so this dependence onm cancels out when taking the
ratio. The only dependence on m arises from the cutoff rmin ∼ 2m(1 + v2)/v2 appear-
ing in eq. (3.34), but this dependence clearly comes about only for supersonic velocities
and is a logarithmic one. As such, the results which we present in this chapter, although
derived in the case of m = 1M⊙ and M = 106M⊙, are also valid for m = 0.1M⊙ and
M = 105M⊙ (exactly) or for m = 1M⊙ and M = 105M⊙ (exactly for subsonic motion,
and approximately – with an error comparable with those affecting the fit (3.34) or the
kludge fluxes – for supersonic motion).

In all of our analysis we will focus on the region close to the SMBH (r . 50M ), which
contains only a small fraction of the mass of the torus (e.g., in the case of model A1 of
Table 3.1, themass contained in a radius r = 50M amounts to about 2.9×10−5Mt, and this
fraction scales approximately as r

−3/2
out when considering tori with different outer radius).

This is the region relevant for gravitational-wave experiments like LISA. In particular, an
EMRI’s signal is expected to be detectable by LISAwhen its frequency (which is twice the
orbital frequency) increases above≈ 2mHz (below this frequency, in fact, there is a strong
unresolvable foreground noise due to double white-dwarf binaries in our Galaxy [124]).
This translates into a distance from the SMBH of r ≈ 10M for M = 106M⊙, and to
r ≈ 45M forM = 105M⊙.

It should be noted, however, that the amplitude of an EMRI’s signal scales with the
distance from the SMBH: for a circular orbit of radius r, the Keplerian frequency is 2πν =
M1/2/(r3/2±aM1/2) ≈ M1/2/r3/2 and the amplitude of the signal is h ∼ (m/D)(2πνM)2/3

∼ (m/D)(M/r) [125], whereD is the distance from the observer to the source. As such, an
EMRI around a 105M⊙ SMBH will have a gravitational-wave amplitude that at r ∼ 45M
is about 10 times smaller than at r ∼ 5M . Therefore, to see the details of the waveforms at
r ∼ 45M the source must be∼ 10 times closer to us, which translates into a detection vol-
ume decreased by a factor ∼ 1000. Nevertheless, this decrease of the detection volume
may be compensated (at least partly) by the fact that the event-rate estimates consider
only EMRIs in the strong-field region of the SMBH, even when M = 105M⊙ [17]. As
such, since EMRIs in the early part of the inspiral are more numerous than those in the
strong-field region, one expects to see a number of these events larger than the naive esti-
mate given by the rate expected for strong-field EMRIs around a 105M⊙ SMBH divided
by the detection volume decrease factor ∼ 1000. Of course, the event rates could be even
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Figure 3.1: The top plot shows the absolute value of the ratio βṙ ≡ (dr/dt)hydro/(dr/dt)
GW
between

the rates of change of the orbital radius due to hydrodynamic drag and radiation reaction, for
circular bound stable orbits in the equatorial plane, as a function of the radius r. For graphical
reasons r is considered positive for orbits in the positive φ-direction (“prograde orbits” i.e.,
corotating with the torus) and negative for those in the negative φ-direction (“retrograde
orbits” i.e., counter-rotating with respect to the torus). Note that all the curves of this figure
(including those of the middle and bottom plots) are terminated at the (prograde or retrograde)
ISCO. The middle plot compares the velocity v of the satellite in the rest frame of the fluid with
the sound velocity vs, while the bottom plot shows the energy density of the torus. The curves
refer to models A1 and A2 of Table 3.1, which are labelled here with the spin parameter a of
the SMBH. Note that in all the plots the vertical axis is drawn in logarithmic scale. As such,
the vertical asymptotes appearing in these plots actually correspond to a zero value for the
quantity under consideration.



58 Chapter 3. Detecting an AGN accretion torus with LISA

larger if the satellite were a black hole with m ∼ 100M⊙, because the amplitude of the
signal is proportional to m, but too little is presently known about these objects to draw
any sound conclusions (see for instance ref. [20] for a review on intermediate mass black
holes as possible sources for LISA).

3.3.1 Circular equatorial orbits

The evolution of circular equatorial orbits is very simple in the adiabatic approxima-
tion. As mentioned in sec. 3.2.1, both the radiation reaction and the hydrodynamic
drag keep circular orbits circular and, due to the symmetry of the Kerr spacetime and
of the torus with respect to the equatorial plane, equatorial orbits will remain equatorial.
Therefore, the evolution of circular equatorial orbits under both radiation reaction and
hydrodynamic drag can be characterised with only one quantity (the rate of change of
the radius dr/dt), to which the rates of change of the energy and angular momentum,
dẼ/dt = (dẼ/dr) (dr/dt) and dL̃z/dt = (dL̃z/dr) (dr/dt), are proportional. (dQ̃/dt is in-
stead identically zero for equatorial orbits.) Moreover, one does not need to compute the
infinite-time averages (3.67), because the rates of change of Ẽ, L̃z and Q̃ due to the hy-
drodynamic drag, given by eqs. (3.42), (3.43) and (3.46) [or (3.49)], are already functions
of the orbital radius alone. [Note also that the 4-vector χ reduces to χ = −∂r/

√
grr.]

The ratio between the rates of change of the orbital radius due to hydrodynamic drag
and radiation reaction is a convenient measure of the “efficiency” of the hydrodynamic
drag. Defining this quantity simply as βṙ ≡ (dr/dt)hydro/(dr/dt)GW , we show in the top
plot of Fig. 3.1 the absolute value of βṙ as a function of the radius r of circular equa-
torial bound stable orbits. The two curves refer to models A1 and A2 of Table 3.1, and
are labelled with the spin parameter a of the SMBH. Note that in order to present all
the data in a single plot, a positive r refers to orbits rotating in the positive φ-direction
(“prograde orbits” i.e., corotating with the torus), while a negative r to orbits rotating
in the negative φ-direction (“retrograde orbits” i.e., counter-rotating with respect to the
torus). The middle plot compares the velocity v of the satellite in the rest frame of the
fluid with the sound velocity vs, while the bottom plot shows instead the energy density
ρ of the torus. Note that in all the plots the vertical axis is drawn in logarithmic scale. As
such, the vertical asymptotes appearing in Fig. 3.1 (as well as in Figs. 3.2 and 3.3, which
are in logarithmic scale too) actually correspond to a zero value for the quantity under
consideration.

Note that if the torus is corotating with the black hole, the radius of the innermost
stable circular orbit (ISCO) is always larger than the inner radius of the torus, both for
prograde and retrograde orbits. For prograde orbits, this immediately follows from the
considerations of sec. 3.1 (since our tori have ∆W = 0 and ℓms < ℓ < ℓmb, we have
rin = rcusp < rms, and rms is exactly the radius of the prograde ISCO), while for retrograde
orbits it is sufficient to note that the retrograde ISCO is located at a larger radius than
the prograde one. Bearing this in mind, it is then easy to understand why none of the
quantities plotted in Fig. 3.1 for model A1 (a = 0.9M ) goes to zero when approaching the
SMBH: although the density, the velocity of the satellite relative to the torus, the sound
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Figure 3.2: The same as the top plot of Fig. 3.1, but for models B1-B5 of Table 3.1, which are labelled here
with the spin parameter a of the SMBH.

velocity and (dr/dt)hydro are exactly zero at the inner radius of the torus, this radius is
smaller than that of the ISCO and therefore no bound stable orbits exist there.

If instead the torus is counter-rotating with respect to the black hole (i.e., a < 0), the
radius of the ISCO is larger than rin for prograde orbits (this follows again from rin =
rcusp < rms), but it is not possible to conclude that the radius of the ISCO is larger than rin

also for retrograde orbits. In fact, the ISCO counter-rotating with respect to the torus (i.e.,
the “retrograde” ISCO) is corotating with the black hole and thus lies at a radius smaller
than the “prograde” ISCO. Indeed, for model A2 (a = −0.9M ) considered in Fig. 3.1 the
retrograde ISCO is at a radius smaller than rin. As a consequence, the density, the sound
velocity and (dr/dt)hydro for model A2 go to zero when the radius of the retrograde orbits
decreases, being in fact zero at the inner edge of the torus. (Of course, the velocity of the
satellite relative to the fluid does not go to zero when the radius of the retrograde orbits
decreases, because the satellite and the torus are rotating in opposite directions.)

As can be seen in the top plot, the ratio |βṙ| is larger for the retrograde orbits than for
the prograde ones. The reason can be easily understood from the middle plot, which
shows that the retrograde motion is always supersonic. The long-range drag, which in-
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labelled here with the spin parameter a of the SMBH and the outer radius rout of the torus.

creases significantly when passing from the subsonic to the supersonic regime [cf. eq.
(3.34)], then enhances the torus-satellite interaction for the retrograde orbits. From the
middle plot one can also note that relativistic velocities (v & 0.6) are reached in the case
of retrograde orbits very close to the SMBH, thus further enhancing the hydrodynamic
drag because of the relativistic correction factor γ2(1+ v2)2 appearing in eq. (3.32). How-
ever, we should note that when v reaches its maximum value (i.e., v ∼ 0.8 for model A2)
the effect of the relativistic correction factor on the hydrodynamic drag is hindered by
the small value of the density, which goes to zero at the inner edge of the torus (cf. the
bottom plot).

As can easily be understood from the formulae reviewed in sec. 3.1, a change in the
polytropic constant κ leaves all the parameters of the torus unchanged, except the energy
density ρ, the rest mass density ρ0, the pressure p [all of which scale proportionally to
κ−1/(Γ−1)] and the total mass-energy and rest-mass,Mt andMt0 (which scale proportion-
ally to ρ). For this reason, the bottom plot of Fig. 3.1 scales linearly with the mass of the
torus (cf. the label of the vertical axis). Noting, from the formulae of sec. 3.2.1, that the
rates of change of the Ẽ, L̃z and Q̃ are proportional to the energy density ρ, the same scal-
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ing applies to the top plot. This is a very useful feature, because although the value used
for the figures of this chapter – i.e.,Mt = 0.1M – could be a plausible mass for the torus,
very little is known about these objects and larger or smaller masses may be possible.
In general, a different massMt could have important effects. For instance, extrapolating
to the case Mt = M , in which our test-fluid approximation is no longer valid, the ratio
|βṙ| would be enhanced by a factor 10, and for orbits counter-rotating with respect to
the torus with r & 40M the effects of hydrodynamic drag and radiation reaction would
become comparable.10

It is also worth pointing out that at the centre of the torus (dr/dt)hydro changes sign for
prograde orbits, being negative for r > rcentre and positive for r < rcentre. [(dr/dt)GW is
instead always negative because gravitational waves carry a positive amount of energy
away from the source.] This change of sign corresponds, in the top plot of Fig. 3.1, to the
zero value for |βṙ|. This behaviour comes about because, although the density reaches
its maximum at the centre, the motion of the fluid is exactly Keplerian (geodesic) there,
and the relative velocity of the satellite is therefore exactly zero (cf. the middle plot). This
means in particular that Ẽ = −usat

t = −ufluid
t = U , which together with eq. (3.42) and

χt = 0 gives ˙̃E = 0 and therefore ṙ = 0 for prograde orbits at r = rcentre. Moreover,
if r > rcentre the specific angular momentum of the satellite is larger than that of the
torus (cf. for instance ref. [101], Fig. 5), and therefore the satellite is slowed down by the
interaction with the fluid (i.e., ṙ < 0). On the other hand, if r < rcentre the specific angular
momentum of the satellite is smaller than that of the torus, and the satellite is speeded
up (i.e., ṙ > 0).
Fig. 3.2 shows the absolute value of βṙ as a function of the radius r of circular equatorial
bound stable orbits for models B1-B5 of Table 3.1, whose spin parameter a goes from
−0.998M to 0.998M . As it can be seen, the situation is qualitatively very similar to the
one presented in the top plot of Fig. 3.1. In particular, the effect of the hydrodynamic drag
can be comparable to that of radiation reaction, but only if we extrapolate to Mt = M
and, even in that case, only for orbits counter-rotating with respect to the torus and with
r & 40M .
We can also note that the effect of the spin a on the results is negligible, except for the
prograde orbits between the centre and the ISCO, for which |βṙ| decreases as a increases.
The reason for this can be easily understood by considering a satellite moving on a pro-
grade circular equatorial orbit between the centre and the inner edge of the torus, and by
recalling that the difference between ℓmb and ℓms represents an upper limit for the devi-
ation of the specific angular momentum of the satellite away from that of the torus (see
ref. [101], Fig. 5). Because this deviation regulates the exchange of angular momentum
between the torus and the satellite [cf. eq. (3.43), where χφ = 0 for circular orbits] and
thus the rate of change of the orbital radius, βṙ must go to zero if ℓmb − ℓms goes to zero.

10Note, however, that even values of |βṙ| less than 1 can produce features detectable by LISA, because the
dephasing time scales as ∼ |ṙGW |−1/2 [35]. For instance, if |βṙ| ≈ 0.1 the dephasing time between a
waveform with only radiation reaction included and one with also the effect of the hydrodynamic drag
is expected to be only ∼ 3 times larger than the dephasing time between waveforms with and without
radiation reaction included.
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Since it is easy to verify that ℓmb − ℓms → 0 as a → M [cf. eq. (3.14)], it is natural to find
that |βṙ| decreases as a increases.

Finally, in Fig. 3.3 we plot again |βṙ|, but for models A1-A2 and C1-C6 of Table 3.1, in
which we have considered different values for the outer radius rout of the torus, ranging
from 103M to 106M . The reason for this is that although rout ∼ 105M is a plausible
value for the outer radius, little is known about the size of astrophysical accretion disks
and larger or smaller outer radii may also be possible. As it can be seen from Fig. 3.3,
a different outer radius will have significant effects for prograde orbits with r & 20M
and retrograde orbits with r & 10M , for which the effect of the hydrodynamic drag can
become comparable to that of radiation reaction. In general, |βṙ| progressively increases
as the outer radius is decreased. This is rather simple to explain: decreasing rout while
keepingMt constant amounts to increasing the average rest-mass density and hence the
hydrodynamic drag. When considered from this point of view, the uncertainty on the
value of rout has an effect opposite to the uncertainty about the mass of the torus: a
decrease of rout (or an increase ofMt) induces an increase of |βṙ|. For circular orbits, this
overall uncertainty can be easily modelled in terms of a simple scaling of the type

βṙ(rout) ≈ βṙ|5
(

105 M

rout

)3/2

, (3.68)

where βṙ|5 is the efficiency for rout = 105 M . Note that the scaling power is not 3 as one
may naively expect. This is because βṙ is most sensitive to the changes of the rest-mass
density in the inner part of the torus and this does not scale simply as r−3

out.

3.3.2 Generic orbits

Wewill now extend the analysis of sec. 3.3.1 to bound stable generic (inclined and eccen-
tric) orbits. Although such an extension is in principle straightforward using the formu-
lae introduced in sec. 3.2.2, the space of parameters and results which one needs to ex-
amine greatly enlarges. Not only are generic orbits characterised by the three parameters
p, e, θinc defined by eq. (3.51), but one also needs to consider three quantities describing
the evolution of each single orbit in the parameter space i.e., the rates of change dp/dt,
de/dt and dθinc/dt.

To simplify our analysis, we will focus mainly on model A1 of Table 3.1, which could
be a representative example of an astrophysical torus in an AGN, and then examine how
the rates of change dp/dt, de/dt and dθinc/dt due to the hydrodynamic drag compare
to those due to radiation reaction throughout the space of parameters (p, e, θinc). The
considerations that we will draw for model A1 can, however, be extended simply to the
cases of different masses and radii for the torus. As in the case of circular orbits, in fact, a
larger (smaller) massMt for the torus when rout is held constant would simply increase
(decrease) the rates dp/dt, de/dt and dθinc/dt due to the hydrodynamic drag by a factor
Mt/(0.1M). This scaling is exact (as long as the torus is not self-gravitating) and comes
about because the rates of change of Ẽ, L̃z and Q̃ (and consequently those of p, e and θinc)
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Figure 3.4: log10 |βṗ| for inclined orbits with e = 0.1 as a function of the semi-latus rectum p and of
the inclination angle θinc. The figure refers to model A1 of Table 3.1, but a larger (smaller)
mass Mt for the torus would simply increase (decrease) the absolute ratio |βṗ| by a factor
Mt/(0.1M). The dashed line marks the edge of the torus.

are proportional to the energy density ρ ∝ Mt. Similarly, variations of rout will result in
an effect which is similar to the one discussed for Fig. 3.3 in the case of circular orbits [cf.,
eq. (3.68)], as we will see at the end of this section.

All of the results presented in this section have been computed by integrating numer-
ically eqs. (3.67) using an iterated Romberg method [118], with a typical accuracy, de-
pending on the parameters of the orbit under consideration, of 10−7–10−4 and never
worse than 4 × 10−3. 11

We start by analysing in detail orbits with eccentricity e = 0.1, and we will then study
the effect of a different eccentricity on the results. In Figs. 3.4, 3.5, 3.6 the colour-code and

11Note that the accuracy of the numerical integration is certainly adequate, because it is considerably better
than the errors affecting the fit (3.34) as well as those affecting the kludge fluxes that we use to study the
effects of radiation reaction.
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the contour levels show the base-10 logarithm of the “efficiencies” of ṗ, ė and θ̇inc, i.e.,

βṗ ≡
∣∣∣∣∣

(
dp

dt

)

hydro

/ (
dp

dt

)

GW

∣∣∣∣∣ , (3.69)

βė ≡
∣∣∣∣∣

(
de

dt

)

hydro

/ (
de

dt

)

GW

∣∣∣∣∣ , (3.70)

βθ̇inc
≡

∣∣∣∣∣

(
dθinc

dt

)

hydro

/ (
dθinc

dt

)

GW

∣∣∣∣∣ , (3.71)

as functions of p and θinc. The dashed line marks the “edge of the torus” i.e., the location
in the (p, θinc)-plane of the orbits having θinc = θinc, t(p), where θinc, t(r) is the function
giving the angle between the surface of the torus and the equatorial plane in terms of the
radius r. The blank part on the left portion of these figures refers to the region where
no bound stable orbits exist, and we will refer to the line marking the boundary of this
region as the separatrix [40]

Each figure has been obtained by computing the quantity under consideration using
eq. (3.67) for∼ 5×105 orbits irregularly distributed in the (p, θinc)-plane, and then linearly
interpolating on a grid of 1500×1500 nodes using a Delaunay triangle-basedmethod. The
gridded data obtained in this way has been used to draw the contour levels. Not surpris-
ingly, Figs. 3.4, 3.5, 3.6 show somewhat the same trend as the results presented in sec.
3.3.1 for circular equatorial orbits, with the effect of the torus becoming comparable to
that of the radiation-reaction far away from the black hole and becoming instead negli-
gible in the strong-field region of the black hole. However, these figures present also a
variety of features that we will now analyse in detail.

Fig. 3.4, for instance, shows |βṗ| and indicates that the effect of the hydrodynamic drag
is larger for orbits with high inclination, for any given semi-latus rectum p. This is simply
due to the fact that orbits with θinc > 90 degrees are retrograde with respect to the torus,
and the velocity of the satellite relative to the fluid can easily become supersonic. Indeed
this effect is visible also in the figures of sec. 3.3.1. (We recall that in those figures the
retrograde orbits are mapped to negative values of the orbital radius r.) The transition
between the subsonic and the supersonic regime is marked by the sharp bend of the
contour levels of Fig. 3.4 at θinc ∼ 40 degrees. This bend corresponds to the passage
from orbits which are always subsonic (the orbits with θinc smaller than the inclination
angle at which the bend is located) to orbits which are supersonic at least for a part of
their trajectory (the orbits with θinc larger than the inclination angle at which the bend is
located). Another small dip is barely noticeable in the contour levels at inclination angles
θinc just smaller than the edge of the torus (and smaller than 90 degrees, corresponding
therefore to prograde orbits); this feature corresponds to the transition from orbits which
are partly subsonic and partly supersonic (“below” the dip), to orbits which keep always
supersonic (“above” the dip).12 From Fig. 3.4 one can also note that |βṗ| becomes lower
12We note that in order to better understand the fine features in the contour levels, we have built an auxiliary
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Figure 3.5: The same as in Fig. 3.4, but for log10 |βė|.

than 10−8 in a narrow “strip” at p/M < 5. Indeed, (dp/dt)hydro changes sign inside
this “strip”, being positive inside the region between the “strip” and the separatrix and
negative outside, while (dp/dt)GW is always negative. This behaviour generalises that of
circular equatorial orbits, for which (dr/dt)hydro changes sign at the centre of the torus
(cf. sec. 3.3.1). Also in this case, however, the very small values of |βṗ| cannot produce an
observable imprint on the waveforms.

In a similar way, Fig. 3.5 shows the behaviour of |βė|. As can be seen, the influence
of the torus is again larger at high inclinations than at low ones, for any fixed semi-latus
rectum. Also in this case, this happens because the orbits counter-rotating with respect
to the torus can easily become supersonic. As in Fig. 3.4, we can note the presence of a
sharp bend in the contour levels at θinc ∼ 40 degrees, due to the transition from orbits
which are always subsonic to orbits which are partly supersonic, and a dip in the con-
tour levels near the edge of the torus (at inclinations θinc < 90 degrees), which is more
pronounced than in Fig. 3.4 but is again due to the transition from orbits which are only
partly subsonic to orbits which are always supersonic. Moreover, one can note the pres-

code computing the quantities (dp/dt)hydro, (de/dt)hydro and (d cos θinc/dt)hydro by direct integration of
eqs. (3.42), (3.43), (3.46) and (3.49) along numerically solved geodesics, averaging over a reasonably large
number of revolutions (∼ 30) for each geodesic. This has not only validated the results which have been
used to build the figures and which have been obtained using eqs. (3.67), but has also allowed us to
examine in detail the behaviour of the geodesics in the various regions of the parameter space (p, e, θinc),
thus helping to interpret the complicated features of the figures shown in this chapter.
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Figure 3.6: The same as in Fig. 3.4, but for log10 |βθ̇inc
|.

ence of three “valleys” where the efficiency |βė| becomes very small. One (“valley 1”)
starts at θinc ≈ 15 degrees, very close to the separatrix, and extends as far as the right
edge of the figure (p/M = 50, θinc ≈ 65 degrees) and beyond. A second valley (“valley
2”) starts at the same point as valley 1, but extends only until p/M ≈ 12 and θinc ≈ 60
degrees, where it terminates together with a third valley (“valley 3”) starting on the sep-
aratrix at θinc ≈ 30 degrees. Across these valleys, the quantity (de/dt)hydro becomes zero
and changes sign, being negative under valley 1 and in the region between the separatrix
and valleys 2 and 3, and positive in the rest of the (p, θinc)-plane. Conversely, the rate of
change of the eccentricity due to radiation reaction is always negative, with the exception
of orbits very close to the separatrix [119]; this is apparent also in Fig. 3.5, where the nar-
row “strip” corresponding to a ratio |βė| & 10−3 and running close and almost parallel to
the separatrix is due to a change in sign of (de/dt)GW . Despite this markedly different be-
haviour of (de/dt)hydro and (de/dt)GW , Fig. 3.5 shows that the effect of the hydrodynamic
drag is always much smaller than radiation reaction unless the semi-latus rectum of the
orbit is increased to p/M & 50, or the mass of the torus is increased at least by a factor 10
thus extrapolating toMt = M .13 Furthermore, while a larger semi-latus rectum increases
the efficiency βė, it also reduces the frequency and amplitude of the gravitational-wave
signal, moving it to a region of low sensitivity for LISA.

The effect of the hydrodynamic drag is somewhat stronger when considered in terms

13The test-fluid approximation of course breaks down in this limit.
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of the efficiency |βθ̇inc
|, as shown in Fig. 3.6. While the qualitative behaviour is similar

to the one discussed for the two preceding figures, it should be noted that the effect of
the torus is comparable to that of radiation reaction already for p/M ≈ 32 if θinc ≈ 60 de-
grees, and the two effects remain comparable down to p/M ≈ 20 if the mass of the torus
is increased by a factor 10 thus extrapolating to Mt = M . Moreover, while radiation
reaction produces an increase in the inclination θinc irrespective of the orbital parame-
ters [106], (dθinc/dt)hydro is always negative and thus a measurement of the evolution of
the inclination angle θinc in the early stages an EMRI could give important information
on the presence of a torus. If such a presence were to be detected, it would not prevent
high-precision tests of the Kerr nature of the SMBH being performed in the strong-field
region, where the hydrodynamic drag becomes negligible.

We should also note that the decrease of θinc due to the hydrodynamic drag is not
surprising for orbits with θinc > 90 degrees (i.e., orbits rotating in the opposite φ-direction
with respect to the fluid), because the hydrodynamic drag clearly induces the orbits to
rotate in the same φ-direction as the torus. For orbits with θinc < 90 degrees, instead,
the decrease of θinc comes directly from eq. (3.44) (we recall that the effect of the radial
drag averages out when adopting the adiabatic approximation), thus following directly
from the axis- and plane-symmetry of the system and being independent of the use of
constant specific angular momentum tori such as the ones considered in this chapter.
Indeed, since the fluid of the torus does not move in the θ-direction, eq. (3.44) states that
accretion conserves the momentum of the satellite in the θ-direction, but it also increases
its mass, thus reducing the velocity in the θ-direction. In addition, the dynamical friction
will contribute to this reduction by damping further the oscillations around the equatorial
plane.

To illustrate how the above results depend on the eccentricity, we show in Fig. 3.7 the
efficiency |βθ̇inc

| for model A1 of Table 3.1, but for different values of the eccentricity i.e.,
e = 0, 0.4, and 0.8. (Equivalent figures could be made also for |βṗ| and |βė|, but we
omit them here because they are qualitatively similar to Fig. 3.7). For each value of the
eccentricity, we have computed |βθ̇inc

| for ∼ 4 × 104 orbits, and using the same technique
employed for Figs. 3.4, 3.5, 3.6 we have drawn the contours corresponding to values of
0.01, 0.1, 1 and 10. Also in this case, a larger (smaller) massMt for the torus would simply
increase (decrease) these absolute ratios by a factorMt/(0.1M).

Clearly, many of the features in this plot have been discussed also for the previous
figures. For instance, the contour levels present sharp bends at low inclinations (i.e.,
θinc ≈ 10 − 40 degrees) for e = 0 and e = 0.4, due the transition from subsonic to partly
supersonic orbits, whereas the transition from partly supersonic to fully supersonic orbits
causes the appearance of a pronounced “kink” in the e = 0.4 contour levels, for inclina-
tions θinc < 90 degrees just above the edge of the torus. The e = 0.8 contour levels, on
the other hand, are rather smooth and are less affected by the complex changes of regime
as the satellite interacts with the torus. Most importantly, however, Fig. 3.7 suggests that
the conclusions drawn when discussing Fig. 3.6 for orbits with e = 0.1 are not altered
significantly by a change in the eccentricity. Indeed, even for large eccentricities the influ-
ence of the torus on the evolution of θinc can be comparable to that of radiation reaction
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Figure 3.7: log10 |βθ̇inc
| shown as a function of the semi-latus rectum p and of the inclination angle θinc

for inclined orbits with selected values of the eccentricity, i.e., e = 0 (solid line), e = 0.4
(dot-dashed line), e = 0.8 (dotted line). The figure refers to model A1 of Table 3.1, but a
larger (smaller) mass Mt for the torus would simply increase (decrease) |βθ̇inc

| by a factor
Mt/(0.1M). The dashed line marks the edge of the torus.

for p/M as small as 35 − 38, while the two effects are still equal at p/M ≈ 23 − 24 if the
mass of the torus is increased by a factor 10 thus extrapolating to Mt = M . As a result,
a measurement of the evolution of the inclination angle θinc even for generic eccentric
orbits could give important information on the presence of a torus around the SMBH.

This conclusion is finally confirmed by Fig. 3.8, in which we show how |βθ̇inc
| changes

if one considers different values of the outer radius of the torus while keeping its mass
fixed. More specifically, Fig. 3.8 shows the location in the (p, θinc)-plane of the circular
orbits for which |βθ̇inc

| = 1. Different curves refer to different values of the outer radius,
and in particular to models A1, C1, C3 and C5 of Table 3.1. As it is probably obvious
by now, a different mass Mt for the torus would simply make the curves of this figure
correspond to |βθ̇inc

| = Mt/(0.1M). As expected from the results of sec. 3.3.1, a modest
variation of the outer radius can easily cause the decrease of the inclination angle due to
the hydrodynamic drag to be dominant over the increase due to radiation reaction for
orbits with p/M ∼ 20 or smaller.
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Figure 3.8: Location in the (p, θinc)-plane of the circular orbits for which |βθ̇inc
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refer to different values of the outer radius and thus to models A1, C1, C3 and C5 of Table
3.1. Note that a different massMt for the torus would simply make the curves of this figure
to correspond to |βθ̇inc

| = Mt/(0.1M).

3.4 Conclusions

SMBHs are expected to be surrounded by matter, either in the form of stellar disks, as in
the case of “normal” galactic centres, or in the form of accretion disks of gas and dust,
as in the case of AGNs. In order to assess under what conditions and to what extent
the interaction with matter could modify the gravitational-wave signal from EMRIs in
AGNs, we have studied EMRIs in spacetimes containing an SMBH surrounded by a non
self-gravitating torus. For simplicity, and in order to handle the equilibrium solution
analytically, we have considered a torus with a constant distribution of specific angu-
lar momentum, using as reference dimensions and masses those for the accretion disks
expected in AGNs, but bearing in mind that these also come with rather large uncer-
tainties. We have extrapolated our results also to cases in which the mass of the torus
is comparable with that of the SMBH, although we stress that in this limit our test-fluid
approximation for the torus is no longer valid.

Overall, we have found that the effect of the hydrodynamic drag exerted by the torus
on the satellite black hole can have important effects sufficiently far from the central ob-
ject, and that these effects are qualitatively different from those of radiation reaction. In
particular, if the torus is corotating with the SMBH, the hydrodynamic drag always de-
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creases the inclination of the orbits with respect to the equatorial plane (i.e., orbits evolve
towards the equatorial prograde configuration), whereas radiation reaction always in-
creases the inclination (i.e., orbits evolve towards the equatorial retrograde configuration).
In the case of a system composed of an SMBH with mass M = 106M⊙ and a corotating
torus with mass Mt . M , the effect of the torus will be marginally observable by LISA
only if the radius of the torus is as small as rout ≈ 103−104M . However, if the SMBH has
a lower mass, EMRIs will be detectable by LISA at larger distances from the SMBH, and
the effects of a torus will be more evident. For instance, for an SMBH withM = 105M⊙

and a corotating torus with outer radius rout = 105M andmassMt = 0.1M (Mt = M ), the
inclination with respect to the equatorial plane will decrease, due to the hydrodynamic
drag, for orbits with semi-latus rectum p & 35M (p & 25M ), while the EMRI signal will
start being detectable by LISA already at a distance of≈ 50M from the SMBH.Note, how-
ever, that unless one considers the satellite being an intermediate-mass black hole with
m ∼ 100M⊙ orbiting around a 105M⊙ SMBH (a configuration which may be possible but
about which too little is yet known), considering EMRIs at such large distances from the
SMBH has the obvious drawback that the amplitude of the gravitational-wave signal will
be proportionally smaller. This will considerably reduce the detection volume, although
the decrease in the event rate could be mitigated by the fact that weak-field EMRIs are
probably more numerous than strong-field EMRIs, which are the ones accounted for in
standard calculations of event rates.

In general, we expect measurements of the evolution of the inclination angle in the
early phases of EMRIs to be a potential source of important information about the pres-
ence of thick tori which could not be detected by other techniques. Moreover, because for
any astrophysically plausible torus configurations, the effect of the hydrodynamic drag
rapidly becomes negligible in the very strong-field region of the SMBH (i.e., p . 5M ),
the presence of a torus would not prevent high-precision tests of the Kerr nature of the
SMBH being performed.

Although obtained with a simple model for the torus (i.e., with a constant specific an-
gular momentum), the important feature that distinguishes the hydrodynamic drag from
radiation reaction, namely the decrease of the inclination angle, cannot be affected by a
change of the specific angular momentum distribution (we recall that ℓ must be increas-
ing with radius for stability). Such a feature, in fact, is simply due to the conservation of
the momentum of the satellite in the θ-direction during accretion and to the dynamical
friction of the fluid: both effects force the satellite to smaller inclinations by reducing its θ-
velocity. However, the calculation of the magnitude of the hydrodynamic drag and how
it compares with radiation reaction for more general disk models is not straightforward.

Tori built with increasing distributions of specific angular momentum, in fact, would
have two substantial differences with respect to those considered here. Firstly, the sep-
aration between the specific angular momentum of the torus and the Keplerian specific
angular momentum will generally decrease for orbits corotating with the torus, thus re-
ducing the relative motion between the satellite and the fluid and consequently the hy-
drodynamic drag, whereas it will increase for orbits counter-rotating relative to the torus,
thus enhancing the hydrodynamic drag. Themagnitude of this effect depends on the pre-
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cise angular momentum distribution considered and rough estimates can be made when
assuming a power-law for the specific angular momentum, i.e., ℓ/M ∼ (r/M)α, with
α < 0.5 for the torus to have an outer radius and a cusp [107, 109]. Using the general
formulae reported in sec. 3.1, it is easy to check that for r between 20M and 50M the
relative motion decreases by ∼ 20 − 30% for α = 0.1 and by at least 95% for α = 0.4
(this significant decrease is due to the fact that for α = 0.4 the centre moves to a ra-
dius rcentre ∼ 27M , just in the middle of the radial interval which we are considering).
Conversely, in the same radial range the increase for counter-rotating orbits is of about
8 − 10% (30 − 45%), for α = 0.1 (0.4). Secondly, the density in the inner parts of the torus
will generally decrease. Using again the expressions in sec. 3.1, it is easy to check that the
density decreases by about 13% (90%) at r ∼ 20M and of about 7% (80%) at r ∼ 50M , for
α = 0.1 (0.4).

Overall, therefore, the decrease of the inclination angle due to the hydrodynamic drag
could be detectable by LISA also for non-constant ℓ tori, especially if ℓ varies slowly with
the radius or, if ℓ varies rapidly with the radius, if the EMRI is counter-rotating relative
to the torus.

Finally, let us comment on two further effects that can in principle occur in the systems
considered in this chapter. First, the motion of the satellite will be influenced by the grav-
itational attraction exerted by the torus. This is clearly a conservative effect, and cannot
therefore influence the infall of the satellite towards the SMBH,which is instead regulated
by the dissipative forces (radiation reaction and hydrodynamic drag). However, this ef-
fect can in principle cause the periastron to advance, thus introducing a phase-shift in the
gravitational waveforms. (Note that a similar advance is caused by the conservative part
of the gravitational self-force [37].) To calculate the order of magnitude of this effect, let
us consider for simplicity a thin disk of outer radius rout, massMD and constant surface
density, and a satellite of mass m located on the equatorial plane at a distance d ≪ rout

from the central SMBH, the mass of which we denote byM . The potential energy of the
satellite due to the gravitational field of the disk can be easily calculated to be, up to a
constant and to leading order,

U ≈ mMD d2

2r3
out

. (3.72)

This potential energy can be used to compute the Newtonian periastron precession of the
satellite orbit during a revolution [use for instance eq. (1) of ref. [126], chapter 3, exercise
number 3]:

δφ ≈ −3MDπd3

Mr3
out

(3.73)

for almost circular orbits. Using this equation and the well-known Newtonian formula
for the revolution period, it is easy to check that, for orbits relevant for LISA, the total
phase-shift accumulated in 1 year is≪ 2π as long as rout & 104M andM = 105 − 106M⊙.
Because LISA is not expected to detect phase lags less than 1 cycle over its lifetime14,

14This corresponds indeed to a dephasing time of the order of LISA’s lifetime.
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this periastron advance and the consequent phase-shift cannot be observed. On the other
hand, for disks or tori with rout ∼ 103M , this effect could in principle be marginally
visible by LISA (especially ifM = 105M⊙).
A second effect which could in principle affect EMRIs in the presence of a torus is the
spin of the satellite black hole, which increases due to accretion of the torus material. The
spin of the satellite couples with the orbital angularmomentum aswell as with the spin of
the SMBH, but its effect on the motion is negligible over a timescale of 1 year [127], unless
it is close to its maximal value (in which case it might be marginally observable) [127].



Chapter 4
Can LISA see the unknown
unknowns?

There are more things in heaven and
earth, Horatio, Than are dreamt of in
your philosophy.

W. Shakespeare

As we have mentioned in chapter 3, the detection of gravitational waves from EMRIs
with LISA could give the possibility of mapping with high accuracy the spacetime of
SMBHs. These spacetimes are commonly thought to be describable by the pure Kerr
solution of GR: this is the common assumption made in most work on EMRIs. Even in
chapter 3, in spite of the presence of an accretion torus, we considered the background
spacetime as given by the Kerr solution, neglecting the gravitational influence of the
torus (cf. section 3.4 for a justification of this point) and taking into account only the
hydrodynamic drag exerted by the torus on the satellite.
Nevertheless, a number of other “exotic” candidates have been proposed as alter-
natives to the central massive object. These are, for instance, gravastars [85], boson
stars [83], fermion balls [84], oscillating axion bubbles [128], etc. Clearly, while it is not
yet possible to exclude completely these possibilities, the presence of these objects at the
centres of galaxies would require a serious modification to the scenarios through which
galaxies are expected to form. At the same time, the possibility that LISA observations
could be used to determine the presence (or absence) of these objects, provides additional
scientific value to this challenging experiment.
Hereafter, we will adopt a more conservative view and assume that the central object
is indeed an SMBH. Recent observations of the near-infrared fluxes of SgrA* support this
view by setting upper limits on the mass accretion rate of the Galactic centre and show-
ing that the central massive object must have, under reasonable assumptions, an event
horizon [129]. Yet, even with this assumption, the modelling of EMRIs can in principle
suffer from the uncertainty of whether the spacetime in the vicinity of the SMBH can be

73
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accurately described in terms of a (pure) Kerr solution. Of course, as we have seen in sec-
tion 3.4, accretion disks such as those found in AGNs cannot cause deviations away from
the Kerr solution that are detectable by LISA, because these disks have an outer radius
which is very large. However, as we have mentioned, if the SMBH were surrounded by
a sufficiently compact disk or torus (i.e., with mass comparable with the mass M of the
SMBH and rout . 103M ), the gravitational effect of the matter could become detectable
by LISA. The aim of this chapter is indeed to study EMRIs in spacetimes which devi-
ate considerably from Kerr due to the presence of matter. We will consider in particular
spacetimes comprised of a rotating black hole and a torus which is sufficiently massive
so as to distort the spacetime, but so compact (i.e., close to the central SMBH) that it could
not probably be detected otherwise (for instance, by means of stellar orbits), especially
if made of some “dark” mass. While these configurations may be unlikely from an as-
trophysical point of view, we take here a phenomenological approach and investigate
whether LISA could detect the presence of such an unexpected object.

4.1 An introduction to spacetime mapping

A number of different approaches to the “spacetime-mapping” problem have been con-
sidered in the the literature: EMRIs have been studied in spacetimes which are either
approximate or exact solutions of the Einstein equations. Among the former, a mul-
tipolar expansion suitable to describe general stationary, axisymmetric, asymptotically
flat spacetimes outside a central distribution of matter has been considered [86, 87, 88].
However, this multipolar expansion is in practice a series in 1/r (r being the distance
to the central object) around a Minkowski spacetime: an accurate representation of the
strong field regime would require the inclusion of many terms. Another possibility is
the “quasi-Kerr” (i.e., Kerr plus a small quadrupole) spacetime studied by Glampedakis
and Babak [92]. This can approximately describe the spacetime outside a slowly rotat-
ing star and is not an expansion around Minkowski, thus being more promising in the
strong field limit. Among exact solutions of the Einstein equations, only spherical boson
stars [89] and “bumpy black holes” [90, 91] (i.e., objects that, although involving naked
singularities, are almost Schwarzschild or Kerr black holes, but have some multipoles
with the wrong values) have been considered.

At any rate, none of these spacetimes, neither exact nor approximate, can describe
satisfactorily the “astrophysical bumpiness” which is certainly present around SMBHs.
With this in mind, we have studied EMRIs in stationary, axisymmetric spacetimes which
are highly accurate numerical solutions of the Einstein equations and contain a rotating
black hole and a torus [130].

We used these numerical spacetimes to perform a study similar to that carried out
by Babak and Glampedakis for “quasi-Kerr” spacetimes [92]: we studied EMRIs in the
equatorial plane and computed semi-relativistic (“kludge”) waveforms, comparing them
to pure-Kerr kludge waveforms. Babak and Glampedakis, in particular, find that there
could be a “degeneracy” problem, because although gravitational waves emitted in a
quasi-Kerr spacetime by a stellar mass black hole moving on an equatorial orbit are very
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different from those emitted by the same stellar mass black hole moving along the same
orbit in a pure Kerr spacetime (having the same mass and spin as the quasi-Kerr space-
time), waveforms produced by equatorial orbits having slightly different semi-latus rec-
tum and eccentricity but the same r- and φ-frequencies turn out to be indistinguishable
with LISA’s sensitivity.1 We therefore repeated and extended their analysis. In particular,
we consider, like them, only timescales over which the emission of energy and angular
momentum through gravitational waves (“radiation reaction”) does not introduce signif-
icant deviations from geodesic motion: to this purpose, we introduce a suitable cut-off in
time. While this could be avoided in Babak’s and Glampedakis’ quasi-Kerr spacetimes
(probably eliminating the degeneracy problem: see the analysis in ref. [93]), this is actu-
ally a necessity in our case, since the effect of a torus on the loss of energy and angular
momentum due to gravitational-wave emission is completely unknown at present.

We did not try to produce tori describing the accretion disk of AGNs, but rather adopted
a more phenomenological approach. Indeed, since little is known about the strong field
region near the central massive black hole, we tried to build some “extreme” configura-
tions, i.e. configurations containing rather massive and compact tori (close to the event
horizon of the central black hole). The purpose is to understand if LISA can detect the
presence of such tori, which are so close to the horizon that they could not probably be
detected otherwise (for instance, by means of stellar orbits), especially if made of some
“dark” mass. We stress that the word “extreme” does not mean that these configurations
are extremely far from Kerr, but just that these tori are not the ones astrophysicists expect
in AGNs.

One possible objection is that it might be possible that these “extreme” configurations
are unstable (tackling the problem of stability is indeed one of the points in which the
results of ref. [130] may be improved in the future), but we do not think this should be a
major concern at this stage. Our viewpoint is that considering such extreme configura-
tions will provide a testbed to investigate the practical problems of spacetime-mapping
through EMRI-gravitational waves. In particular, these configurations will also help to
understand better the degeneracy problem pointed out by Glampedakis and Babak. As
already stressed, while in quasi-Kerr spacetimes this degeneracy disappears when drop-
ping the time cut-off and including radiation reaction [93], in our case it may still be
present due to the practical difficulties of computing radiation reaction in our spacetimes,
which force us to introduce a cut-off in time.

We will see, however, that this degeneracy in the orbital parameters appears in our
spacetimes only for (equatorial) orbits far from the black hole-torus system, whereas it
disappears in the strong field region. Nevertheless, we find another degeneracy problem,
potentially more worrisome as it involves the parameters of the black hole. Of course,
if we could replace the semi-relativistic approximation with a rigorous solution of the
linearised Einstein equations and a proper treatment of self-force or radiation reaction,

1Babak and Glampedakis actually refer to this fact as a “confusion” problem. We prefer here the term
“degeneracy” because “confusion” might remind the gravitational-wave savvy reader of the “confusion
noise” due to white dwarfs (cf. section 1.3). Of course, we use here the term “degeneracy” in the sense of
data-analysis, that is, meaning that that convenient changes of two or more parameters do not affect the
waveforms.



76 Chapter 4. Can LISA see the unknown unknowns?

this degeneracy problem may disappear as well. However, such a rigorous treatment is
very hard to obtain in generic stationary and axisymmetric spacetimes (see sec. 4.2) and,
as far as the self-force is considered, even in pure Kerr.

This chapter is organised as follows. In sec. 4.2 we showwhat the rigorous treatment of
EMRIs in non-vacuum, stationary and axisymmetric spacetimes would be, and explain
why this treatment has proved so hard that nobody has pursued it so far. In sec. 4.3
we review the non-Kerr spacetimes in which the problem of EMRIs has been considered
to date, ranging from approximate (sec. 4.3.1) to exact (sec. 4.3.2) solutions of the Ein-
stein equations, and we introduce the non-pure Kerr spacetimes that we will use instead
(sec. 4.3.3). In sec. 4.4 we review the semi-relativistic formalism used in ref. [92] to com-
pute gravitational waves and explain howwe adapted it to our purposes: in particular we
show how we integrated the geodesic equations and calculated kludge waveforms, and
(in sec. 4.4.1) explain what the overlap function and the dephasing time are. In sec. 4.5
we explain in detail how we perform a comparison between our non-pure Kerr space-
times and pure Kerr spacetimes. A summary of our results with a concluding discussion
and the prospects of future work is presented in sec. 4.5.1 and 4.5.2. Finally, in the Ap-
pendix we review the connection between kludge waveforms and the linearised Einstein
equations.

4.2 Waveforms from EMRIs in non-vacuum spacetimes

Let us consider a curved, non-vacuum spacetime with metric g and with a characteristic
lengthscaleM (for a spacetime containing an SMBH, this scale clearly coincides with the
black hole mass). The spacetime is intrinsically not a vacuum one because it contains
a fluid with a stress-energy tensor T fluid. In addition, consider the presence of a small
body, such as a black hole with massm ≪ M .2 The small body will of course perturb the
geometry of spacetime: the metric g̃ of the physical spacetime can therefore be written
as the background metric g plus some perturbations 1h of order O (m/M), 2h of order
O((m/M)2), etc.:

g̃µν = gµν + 1hµν + 2hµν + O((m/M)3) . (4.1)

Similarly, the small body will excite perturbations in the background fluid: the perturbed
stress-energy tensor of the fluid can be written as

T̃ fluid
µν = T fluid

µν + 1δT
fluid
µν + 2δT

fluid
µν + O((m/M)3) . (4.2)

In what follows, the background metric g is used to raise and lower tensor indices. For
the sake of simplicity, we will also drop the subscript 1 indicating first order quantities:
in other words, hµν ≡ 1hµν and δT fluid

µν ≡ 1δT
fluid
µν .

It is well-known that the stress-energy tensor of a small body with massm following a

2Note that in this context a small black hole can be treated as a small body despite being a singularity of
spacetime [131].
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trajectory zµ(τ̃) is given by (see for instance ref. [38])

T̃αβ
small body(x) = m

∫
P̃α

µ(x, z)P̃ β
ν(x, z)ũµũν δ(4)(x − z)

(−g̃)1/2
dτ̃ (4.3)

where P̃α
µ(x, z), τ̃ and ũµ ≡ dzµ/dτ̃ are respectively the parallel propagator from zµ to

xµ, the proper time and the 4-velocity in the physical (i.e. perturbed) spacetime. This
stress-energy tensor can then be expanded as a series inm/M :

T̃αβ
small body = Tαβ

small body + O ((m/M)2) , (4.4)

Tαβ
small body(x) = m

∫
Pα

µ(x, z)P β
ν(x, z)uµuν δ(4)(x − z)

(−g)1/2
dτ , (4.5)

where P β
ν(x, z), τ and uµ = dzµ/dτ are the parallel propagator, proper time and 4-

velocity in the background.

If the small body interacts only gravitationally with the matter contained in the space-
time, its stress-energy tensor is conserved in the physical spacetime:

∇̃βT̃αβ
small body = 0 , (4.6)

(∇̃ is the covariant derivative in the physical spacetime). This implies that the small body
follows a geodesic of the physical, perturbed spacetime (see for instance ref. [38] for a

formal proof): expanding the geodesic equations in the physical spacetime (ũν∇̃ν ũ
µ = 0)

into a series, it is possible to obtain, to first-order inm/M ,

Duµ

dτ
= −1

2

(
gµν + uµuν

)(
2∇ρhνλ −∇νhλρ

)
uλuρ + O ((m/M)2), (4.7)

where ∇ and D/dτ are the covariant derivative and the total covariant derivative in the
background.

Clearly, to zeroth order eq. (4.7) reduces to the geodesic equations in the background
spacetime, but it deviates from them at first-order. The right-hand-side of eq. (4.7) repre-
sents the so-called “self-force” and is physically due to the interaction of the small body
with its own gravitational field h; in the case of a small body orbiting around an SMBH,
this self-force is responsible for its inspiral towards the black hole.

In order to compute the right-hand side of eq. (4.7) one needs to compute the metric
perturbation h and because this perturbation is produced by the small body itself, some
of its components will be divergent at the position of the small body. A regularization
procedure to cure these divergences has been derived [131, 132] for the trace-reversed
metric perturbations

h̄µν ≡ hµν − 1

2
hα

α gµν (4.8)
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in the Lorenz gauge, which is defined as

∇µh̄µν = 0 . (4.9)

It should be noted that while this gauge allows one in principle to remove the prob-
lem of divergences and has a number of other advantages (see ref. [133] for an extensive
list), self-force calculations are extremely hard to perform in practice. Indeed, no gen-
eral inspirals have been computed so far using the regularised version of eq. (4.7), even
in Schwarzschild or Kerr spacetimes (see ref. [38, 39] for a review). However, a simpler
approach can be followed in which only the dissipative part of the self-force is taken
into account, leading to the so-called “adiabatic approximation” [36]3. Within this ap-
proximation the small body moves along a geodesic with slowly changing parameters
(in Kerr, these parameters are the energy E, the angular momentum Lz and Carter’s con-
stantQ). One of the advantages of the adiabatic approximation is that it prescribes a way
to compute the evolution of these parameters, demonstrating that their rates of change
Ė and L̇z (with the dot being the derivative with respect to the coordinate time t) corre-
spond to the energy and angular momentum carried away by gravitational waves [134].
The change in Carter’s constant Q̇, on the other hand, is harder to compute, although an
explicit formula has recently been derived [135].

The first-order metric perturbation h can be computed as a solution of the linearised
Einstein equations [136]

¤ h̄αβ + 2R α β
µ ν h̄µν + S α β

µ ν h̄µν = − 16π(δTαβ
fluid + Tαβ

small body) , (4.10)

where
Sµανβ = 2Gµ(αgβ)ν − Rµνgαβ − 2gµνGαβ , ¤ ≡ gµν∇µ∇ν (4.11)

(Rµναβ , Rµν and Gµν are the background Riemann, Ricci and Einstein tensors). Note that
self-force effects are not contained in (4.10), which is a first order equation. In fact, since
the stress-energy tensor of the small body at the lowest order, T small body, is an intrinsi-
cally first-order quantity [remember the factorm appearing in eq. (4.5)], the small body’s
contribution can be computed using a zeroth-order expression of uµ or, equivalently, by
solving the geodesic equations for the background metric. In addition to the calculation
of the small body’s contribution, a consistent solution at first-order for the EMRI prob-
lem in a curved and non-vacuum spacetime requires the solution of the fluid perturbation
δT fluid. This can be computed by imposing the conservation of the stress-energy tensor

of the fluid, ∇̃βT̃αβ
fluid = 0, which gives, to first order,

−16π∇β δTαβ
fluid = 2Gβσ∇σh̄α

β − 2Gαβ∂βh̄ − Rβσ∇γ h̄βσgγα . (4.12)

It is not difficult to realize, using eqs. (4.10) and (4.12), that the Lorenz gauge condition is

3It should be noted that it is not yet clear whether the adiabatic approximation is accurate enough to com-
pute waveforms for LISA as the conservative part of the self-force could have a secular effect as well [37].
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conserved since it satisfies a homogeneous equation

¤(∇βh̄αβ) + Rα
µ∇βh̄µβ = 0 . (4.13)

To summarise, the solution of eqs. (4.10) with the right-hand-side given by eqs. (4.12) and
the zeroth-order contribution of eq. (4.7), provides the complete and consistent solution
of the EMRI problem at first-order in m/M . Unfortunately, for situations of practical in-
terest, such as for the observations of EMRIs performed by LISA, these first-order wave-
forms would be sufficiently accurate only for a few days or weeks [35, 92], imposing, at
least in principle, the need for solution of the second-order equations.

Clearly, the solution of the second-order perturbation equations is much harder to ob-
tain as these will have a schematic generic form of the type

D[2h] = O (∇h∇h, h∇∇h) , (4.14)

where D[2h] is a differential operator acting on 2h.

One could naı̈vely try to solve this equation by imposing a gauge condition on 2h

and using the Green’s function of the D operator, but the formal solution obtained in
this way would be divergent at every point because of the divergences of the first-order
perturbation h at the small body’s position. A regularization procedure to cure these
divergences is known [137], but it has not yet been applied in practical calculations.

An alternative to the solution of the full second-order perturbation equations entails
introducing the deviations from geodesic motion in the right-hand-side of eq. (4.10). This
approach is clearly not consistent, but hopefully accurate enough if the ratio m/M and
consequently the deviations from geodesic motion are sufficiently small. This is indeed
what was done by Drasco and Hughes [41], who used the adiabatic approximation and
a simplified formula for Q̇ to compute the deviations from geodesic motion, inserting
them in the right-hand-side of the Teukolsky equation [120] and then solving for first-
order perturbations.

While very appealing, as it provides a simple way to improve upon a purely first-order
calculation, we will not follow this approach here. Rather, we will perform our calcula-
tions within a semirelativistic (“kludge”) approximation to eq. (4.10), using however as
a background spacetime a non-trivial departure from a pure-Kerr solution. The prop-
erties of this spacetime and of alternative formulations of non-Kerr spacetimes will be
discussed in detail in sec. 4.3, while a brief description of our semi-relativistic approach
will be presented in sec. 4.4.

4.3 Modelling the background spacetime

The discussion made in the previous section assumes that a background spacetime g is
known and this is traditionally assumed to be a “pure-Kerr” solution. However, this is
not the only possibility. Indeed, in order to investigate LISA’s ability to detect deviations
from Kerr, a number of attempts have been made recently to replace the Kerr metric with
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other stationary solutions representing reasonable deviations from a single rotating black
hole in vacuum. Inwhat followswewill briefly review these attempts and discuss a novel
one based on the use of highly-accurate numerical solutions of the Einstein equations for
spacetimes containing a black hole and a compact torus (see sec. 4.3.3).

4.3.1 Approximate non-Kerr spacetimes

One first attempt to go beyond a pure-Kerr model for the central massive object was sug-
gested by Ryan [86, 87, 88], who considered a general stationary, axisymmetric, asymp-
totically flat, vacuum spacetime, which can be used to describe the gravitational field
around a central distribution of matter, and its expansion in terms of the mass multipoles
Mℓ and of the currentmultipoles Sℓ [138]. If one assumes reflection symmetry, the oddM -
moments and even S-moments are identically zero [139, 140], so that the non-vanishing
moments are the mass M0 = M , the mass quadrupole M2 and the higher-order even
multipoles M4, M6, . . ., as well as the angular momentum S1 = J , the current octupole
S3 and the higher-order odd multipoles S5, S7, . . .. The metric can then be written as

ds2 = −eγ+δ dt2 + e2α (dr2 + r2 dθ2) + eγ−δ r2 sin θ2(dφ − ωdt)2 , (4.15)

where the potentials γ, δ, ω, α depend only on r and θ. Each of them can expanded in
terms of the multipole moments: for example

δ =
+∞∑

n=0

−2
M2n

r2n+1
P2n(cos θ) + (higher order terms) , (4.16)

ω =
+∞∑

n=1

− 2

2n − 1

S2n−1

r2n+1

P 1
2n−1(cos θ)

sin θ
+ (higher order terms) , (4.17)

where P2n, P 1
2n−1 are the Legendre and the associated Legendre polynomials and where

only the lowest-order 1/r-dependence of each multipole moment is shown.

The multipoles are related to the interior matter distribution and could in principle
be computed by solving the Einstein equations. In the particular case of a Kerr space-
time, all the multipole moments are trivially related to the first two, mass and angular
momentum, by the following relation:

Mℓ + iSℓ = M

(
i
J

M

)ℓ

. (4.18)

This is the celebrated “no hair” theorem: the spacetime of an (uncharged) stationary
black hole is uniquely determined by its mass and spin. Deviations from the Kerr metric
can be therefore detected by measuring the mass, spin and higher order moments of the
central massive object.

While general and very elegant, this approach has serious drawbacks in the strong-
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field region near the central massive object, which is clearly the most interesting one. In
fact, this is the region which will be mapped by LISA and where the spacetime could
be significantly different from Kerr. The origins of these drawbacks are rather apparent
when looking at eqs. (4.16)–(4.17), which give in practice an expansion in powers of 1/r
around aMinkowski spacetime. As a result, an accurate representation of the strong field
region necessarily requires the inclusion of many multipoles.

Another approach to the modelling of a non-Kerr background spacetime was recently
suggested by Babak and Glampedakis in ref. [92], and is based on the use of the Hartle-
Thorne metric [141]. This metric describes the spacetime outside slowly rotating stars,
includes as a special case the Kerr metric at orderO(a2), where a ≡ J/M2, and is accurate
up to the mass quadrupole moment. In order to isolate the quadrupolar deviation with
respect to Kerr, the Hartle-Thorne metric can be rewritten in terms of the parameter ǫ
defined as

Q = QKerr − ǫ M3 , QKerr = −J2

M
(4.19)

whereM , J andQ ≡ M2 are the mass, the angular momentum and the mass quadrupole
moment, respectively. Since for Kerr one has ǫ = 0, ǫ can be used as a lowest-order
measure of the deviation of the spacetime from a Kerr solution. The metric expressed in
this way can be further rewritten in “quasi-Boyer-Lindquist coordinates”, i.e. coordinates
reducing to Boyer-Lindquist coordinates if ǫ = 0. This procedure then leads to the “quasi-
Kerr” metric

gquasi−Kerr
µν = gKerr

µν + ǫ hµν + O(a ǫ, ǫ2) + O(δMℓ≥4, δSℓ≥3) , (4.20)

where gKerr
µν is the Kerr metric in Boyer-Lindquist coordinates, ǫhµν is the deviation from

it and δMℓ≥4, δSℓ≥3 are the deviations of the higher-order multipoles from those of a
Kerr spacetime. Stated differently, the quasi-Kerr metric consists of a Kerr solution plus a
small difference in the mass quadrupole expressed by the parameter ǫ, while neglecting
any deviations from Kerr in the higher-order multipolesM4, M6, . . ., and S3, S5, . . ., etc.

Because this approach does not involve any expansion in powers of 1/r, it can be used
in the strong-field regions as long as the central massive object is slowly rotating. Fur-
thermore, it has the great advantage of being straightforward to implement, leaving the
mass quadrupole parameter ǫ as the only adjustable one. However, it has the drawback
that it does not include any deviations in the multipoles higher than the quadrupole
with respect to the multipoles of pure Kerr, which could be important in the strong field
regime.

4.3.2 Exact non-Kerr spacetimes

A different approach to the modelling of the background consists instead of using exact
solutions of the Einstein equations: these spacetimes of course behave well in the strong
field regime, since they are not based on any series expansions.

Few attempts have been made in this direction. However, Kesden, Gair and Ka-
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mionkowski [89] considered spacetimes containing non-rotating boson stars and found
that the gravitational waves produced by EMRIs look qualitatively different from the
pure black hole case. The spherical boson stars which they consider have spacetimes
which are in fact identical to Schwarzschild spacetimes outside their surfaces, making
them indistinguishable from black holes during the initial stages of an EMRI. However,
for a black hole the event horizon prevents any observations of the inspirals after the final
plunge. Because boson stars are horizonless however, many orbits inside the interior are
expected if the small body interacts only gravitationally with the scalar field out of which
the star is made: the “smoking gun” for a boson star would therefore be that gravitational
waves from the inspiral are observed after the plunge. Gravitational waves from such an
event could not be interpreted as an inspiral into a black hole with different parameters,
because the first part of the inspiral is identical to the usual black-hole inspiral.

Another attempt was made by Collins and Hughes in ref. [90] or by Gair, Li and Man-
del in ref. [91]. The analytical “bumpy black holes” they consider are objects that are al-
most Schwarzschild or Kerr black holes, but have some multipoles with a ‘wrong’ value.
These spacetimes reduce to the usual Schwarzschild or Kerr black hole spacetimes in a
natural way, by setting the “bumpiness” of the black hole to zero, but unfortunately they
require naked singularities: although they are not expected to exist in nature, “bumpy
black holes” could be useful as “straw-men” to set up null experiments and test devia-
tions from pure Kerr using EMRIs.

4.3.3 A self-gravitating torus around a rotating black hole

Another different and novel approach to the modelling of a background, non-Kerr space-
time is also possible and will be the one adopted in this chapter. In particular, we exploit
the consistent numerical solution of the full Einstein equations describing a spacetime
with an axisymmetric black hole and a compact, self-gravitating torus of comparable
mass and spin. These solutions have been recently obtained to great accuracy by Ansorg
and Petroff [130] with a numerical code using spectral methods. In general, Ansorg and
Petroff’s codewill produce a numerical solution of the Einstein equations representing an
axisymmetric and stationary spacetime containing a rotating black hole and a constant-
density, uniformly rotating torus of adjustable mass and spin. The metric of this non-pure
Kerr spacetime in quasi-isotropic (QI) coordinates is generically given by

ds2 = −e2νdt2 + rQI

2 sin2 θB2e−2ν (dφ − ωdt)2 + e2µ
(
drQI

2 + rQI

2dθ2
)

, (4.21)

where ν, µ, B and ω are functions of the radial quasi-isotropic coordinate rQI and θ. The
procedure for obtaining these numerical solutions is described in detail in ref. [130] and
we here provide only a summary of the main ideas.

The entire spacetime outside the horizon is described by a metric in Weyl - Lewis -
Papapetrou coordinates as in eq. (4.21) or (4.15). We fix our coordinates uniquely by
stipulating that the first derivatives of the metric functions should be continuous at the
surface of the torus and by choosing the location of the horizon to be a coordinate sphere
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rQI = constant ≡ r+,QI . Specifying the boundary conditions B = 0, e2ν = 0 and ω =
constant on this sphere ensures that it is indeed a black hole horizon. We further assume
reflection symmetry with respect to the equatorial plane.

We are interested only in the metric outside of the black hole and determine it using
a multi-domain spectral method. One of the domains coincides precisely with the inte-
rior of the homogeneous, uniformly rotating perfect fluid torus, the boundary of which
must be solved for as part of the global problem. This choice is important in order to
avoid Gibbs phenomena. The vacuum region (outside the horizon) is divided up into
four subdomains with three fixed boundaries separating them. This somewhat arbitrary
choice enables us to resolve functions more accurately in the vicinities of both the torus
and the black hole according to the scale determined by each object itself. One of the four
vacuum domains extends out to infinity and is then compactified. A mapping of each
domain onto a square is chosen in such a way as to avoid steep gradients in the functions
being solved for.

The Einstein equations together with the specification of asymptotic flatness and the
aforementioned boundary conditions provide us with a complete set of equations to be
solved for. The metric functions and the function describing the boundary of the torus
are expanded in terms of a finite number of Chebyshev polynomials. By specifying phys-
ical parameters to describe a configuration and demanding that the equations be satisfied
exactly at collocation points on these five domains, we get a non-linear system of alge-
braic equations determining the coefficients in the expansion of the functions. We solve
this system using a Newton-Raphson method where an existing neighbouring solution
provides the initial guess (see ref. [130] for more details and for a discussion of how to
obtain the first “initial guess”).

Note that throughout this chapter, the masses and angular momenta of the black hole,
MBH and JBH , of the torus, MTorus and JTorus , and of the whole system, Mtot ≡ MBH +
MTorus and Jtot ≡ JBH + JTorus , are the “Komar” masses and angular momenta [142, 143].
We note that the definition of the mass of a single object in General Relativity can be
quite slippery, especially when this measure is not an asymptotic one. We also recall that
while the total Komar mass of the system coincides with the familiar “ADM” mass [144],
other definitions are possible for the single masses of the torus and the black hole. As
an example, it is possible to define the “irreducible mass” of the black hole as Mirr ≡
[A+/(16π)]1/2, where A+ is the horizon’s area [145], and then define the total mass of the
black hole asM

hole
≡ [M2

irr
+ (JBH/(2Mirr))

2]1/2 (Note that this latter definition coincides
with the Komar mass for an isolated Kerr black hole.). Similarly, the mass of the torus can
also be measured in terms of the “baryonic” mass M

baryon
=

∫
ρ ut√−g d3x (ρ being the

baryonic mass density and u the 4-velocity of the fluid of the torus). This mass is simply
a measure of the number of baryons, it does not include the gravitational binding of the
object, and thus can also be rather different from the corresponding Komar mass.

Overall, we have found that even in our non-pure Kerr spacetimes, all the definitions
of the mass of the black hole agree rather well. In particular, in the spacetimes A and
B which we will consider in sections 4.5.1-4.5.2 (cf. table 4.1) we have MBH = 0.413,
Mirr = 0.457, M

hole
= 0.468 and MBH = 0.1, Mirr = 0.1007, M

hole
= 0.1007, respectively.
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On the other hand, the Komar mass and the baryonic mass of the torus have been found
to be different with MTorus = 0.121 and M

baryon
= 0.0578 in spacetime A and MTorus =

0.007 and M
baryon

= 0.00656 in spacetime B. As mentioned above, there is no reason to
expect these two measures to be close, but it is interesting that this happens under certain
circumstances (as in spacetime B, for example). Furthermore, these differences are not
going to affect our analysis, which will never use the single mass of the torus.

4.4 The semi-relativistic approach

Although the procedure outlined in sec. 4.2 to calculate the waveforms from an EMRI in a
non-vacuum spacetime is the only mathematically correct one, it has never been applied
in practice, not even to first order. Such an approach, in fact, involves the solution of
a complicated system of 14 coupled partial differential equations [eqs. (4.10) and (4.12)]
and while this can in principle be solved, alternative solutions have traditionally been
sought in the literature. A very popular one is the “semi-relativistic” approach, which
leads to the so-called “kludge” waveforms [146, 147, 12] and which we will also adopt
hereafter.
In essence, the semi-relativistic approach consists of considering geodesic motion for
the small body (including, when possible, corrections to account at least approximately
for the effects of radiation reaction) and in calculating the emitted gravitational waves
as if the small body were moving in a Minkowski spacetime. This latter assumption
requires amapping between the real spacetime and theMinkowski spacetime: in the pure
Kerr case, this is obtained by identifying Boyer-Lindquist coordinates with the spherical
coordinates of the Minkowski spacetime. The waveforms are then computed using the
standard quadrupole, octupole or higher order formulae4. Waveforms obtained in this
way are commonly referred to as “kludge” waveforms [146, 147, 12]
A justification of this procedure in terms of the Einstein equations is given in the Ap-
pendix. However, the strongest motivation for introducing kludge waveforms is the sur-
prising agreement that they show with the accurate waveforms that can be computed in
a Kerr spacetime using the Teukolsky formalism [12]. In view of this, kludge waveforms
represent the natural first approach to model the emission from EMRIs in non-pure Kerr
spacetimes and will be used throughout this work.
As mentioned in sec. 4.2, the adiabatic approximation offers a simple way to include
radiation-reaction effects in a Kerr spacetime. More specifically, if we denote Kerr geodesics
by xµ

geod(t, E, Lz, Q), the trajectory of the small body is then corrected to be xµ(t) =

xµ
geod(t, E(t), Lz(t), Q(t)), that is, a geodesic with varying parameters. The accurate cal-

culation of the fluxes Ė, L̇z and Q̇ is rather involved [135, 41], but approximate ways to
compute them have also been suggested [104, 115, 148, 119]. Although Barack and Cut-
ler [93] have recently proposed including radiation reaction in quasi-Kerr spacetimes by

4Note that comparisons with Teukolsky-based waveforms in Kerr show that the inclusion of multipoles
higher than the octupole does not improve kludge waveforms [12]. Because of this, contributions only
up to the octupole are used here to calculate kludge waveforms.
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using post-Newtonian fluxes in which the leading-order effect of the quadrupole of the
spacetime is taken into account, it is still unclear at this stage how accurately the fluxes
for a Kerr or a quasi-Kerr spacetime could describe the non-geodesic motion of an EMRI
around our black hole-torus systems. Because of this, we have here preferred to consider
the simplest scenario and thus model the motion of the small body as a pure geodesic
with equations of motion that in the spacetime given by eq. (4.21) are

dt

dτ
= −gttǫ̃ + gtφℓ̃ , (4.22)

dφ

dτ
= −gtφǫ̃ + gφφℓ̃ , (4.23)

d2r

dτ2
= −Γr

rr

(
dr

dτ

)2

− Γr
θθ

(
dθ

dτ

)2

− 2Γr
rθ

dr

dτ

dθ

dτ

−Γr
tt

(
dt

dτ

)2

− Γr
φφ

(
dφ

dτ

)2

− 2Γr
tφ

dt

dτ

dφ

dτ
, (4.24)

d2θ

dτ2
= −Γθ

rr

(
dr

dτ

)2

− Γθ
θθ

(
dθ

dτ

)2

− 2Γθ
rθ

dr

dτ

dθ

dτ

−Γθ
tt

(
dt

dτ

)2

− Γθ
φφ

(
dφ

dτ

)2

− 2Γθ
tφ

dt

dτ

dφ

dτ
, (4.25)

where r ≡ rQI is the radial quasi-isotropic coordinate, τ is the proper time, the Γ’s are the

Christoffel symbols and ǫ̃ and ℓ̃ are the energy and angular momentum per unit mass as
measured by an observer at infinity.

The resulting geodesics can be labelled with seven parameters: four refer to the initial
position t0, φ0, r0, θ0 and the remaining three identify the initial 4-velocity. In the case,
which we will consider in this chapter, of bound stable orbits in the equatorial plane,
only five parameters would remain. However, because of stationarity and axisymmetry
it is not restrictive to fix t0 = φ0 = 0 and r0 = rp, with rp being the periastron radius.
Therefore, except for a sign to distinguish between prograde (φ̇ > 0) and retrograde (φ̇ <
0) orbits, equatorial bound stable geodesics can be characterised by only two parameters,
which we can choose to be the semi-latus rectum pQI and the eccentricity eQI , which are
related to the coordinate radii at apoastron and periastron by ra ≡ pQI/(1 − eQI) and
rp ≡ pQI/(1 + eQI).

Clearly, kludge waveforms computed from pure geodesic motion are expected to be
accurate only below the timescale over which radiation-reaction effects become apparent
and make our waveforms differ significantly from the real signal. A simple way to es-
timate this timescale exploits the concept of “overlap” between two waveforms, which
will be introduced in sec. 4.4.1.

An important comment is instead needed here about the coordinate mapping used in
calculating kludge waveforms. As already mentioned, this mapping has a straightfor-
ward realization in a Kerr spacetime, where the BL coordinates are associated with the
spherical coordinates of a Minkowski spacetime. In a similar manner, in our non-pure
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Kerr spacetimes we transform the solution of the geodesic equations from QI coordinates
to “quasi-Boyer-Lindquist” (QBL) coordinates, i.e. coordinates that reduce to BL coordi-
nates in the absence of the torus. These coordinates are then identified with the spherical
coordinates of a Minkowski spacetime as in ref. [92] and used to compute kludge wave-
forms.

Fortunately, the transformation from QI to QBL coordinates is straightforward and
involves only a change in the radial coordinate:

rQBL = rQI + M̃ +
r2
+,QI

rQI

, (4.26)

where M̃ is a parameter that reduces to the mass of the central black hole in the absence

of the torus. Clearly, this mapping suffers from an intrinsic ambiguity as the mass M̃
could be associated either with the mass of the black hole or with the total mass of the
system, or even with a combination of the two. Although all of the choices are essentially
equivalent when the torus is very light, this is not necessarily the case for some of the
configurations considered here, for which the torus has a mass comparable with that of

the black hole. Since the parameter M̃ is, at least in a Newtonian sense, the gravitational
mass experienced by the small body, we have here followed a pragmatic approach and

set M̃ = Mtot for equatorial orbits with periastron larger than the outer edge of the torus,

which we will refer to as the “external orbits”. Conversely, we have set M̃ = MBH for
what we will refer to as the “internal orbits”, that is equatorial orbits with both periastron
and apoastron between the inner edge of the torus and the horizon. This classification
is summarised schematically in Fig. 4.1, which shows the two regions into which the

spacetime has been divided and the corresponding values of M̃ . This choice is clearly an
operative ansatz, but we have checked to see that its influence on our results is indeed
negligible and a detailed discussion of this will be presented in sec. 4.5.

Finally, we note that we have not considered here orbits crossing the torus because the
non-gravitational interaction between the small body and the fluid would cause devia-
tions from geodesic motion which are not easy to model [cf. chapter 3].

4.4.1 Overlap and dephasing time

In order to compare (kludge) waveforms computed in non-pure Kerr spacetimes with
(kludge) waveforms computed in Kerr spacetimes, we follow the procedure proposed in
ref. [92] andmake use of the so-called overlap function. Its meaning can be best understood
through the more familiar concept of SNR.

As we have seen in sec. 1.3, if a signal is the sum of a gravitational wave h(t) and of
some Gaussian noise n(t), the SNR for a template ĥ(t) is given by

S

N
[ĥ] =

(ĥ, h)

(ĥ, ĥ)1/2
+

(ĥ, n)

(ĥ, ĥ)1/2
≈ (ĥ, h)

(ĥ, ĥ)1/2
, (4.27)
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Figure 4.1: Schematic classification of the two regions of the spacetime. For equatorial orbits in region I
(i.e. internal orbits) the mass and angular momentum of the Kerr spacetime coincide with the
mass and angular momentum of the black hole. For equatorial orbits in region II (i.e. external
orbits) the mass and angular momentum of the Kerr spacetime coincide with the total mass
and angular momentum of the black hole-torus system.

[cf. eq. (1.25)], where the internal product “( , )” can be defined in terms of the Fourier
transforms (which are denoted by a “tilde”):

(h1, h2) ≡ 2

∫ ∞

0

h̃∗
1(f)h̃2(f) + h̃1(f)h̃∗

2(f)

Sn(f)
df (4.28)

[Sn(f) is the spectral sensitivity of the detector].

If αmeasures the SNR for a template ĥ(t) “matching” the gravitational wave h(t) per-
fectly, i.e. S/N = (h, h)1/2 ≡ α, any “mismatch” between ĥ(t) and h(t) will degrade the
SNR ratio to S/N = αO(h, ĥ), where the overlap function O is defined as

O(h, ĥ) ≡ (h, ĥ)

(ĥ, ĥ)1/2(h, h)1/2
. (4.29)

The same logic can now be used to quantify the differences between kludgewaveforms
computed in different spacetimes. More specifically, if we label with “1” a waveform
computed in a non-pure Kerr spacetime and with “2” the closest equivalent in a Kerr
spacetime, the overlap between the two O (h1, h2) ≡ (h1, h2)/[(h1, h2)

1/2(h1, h2)
1/2] will

express how much SNR is lost by an observer matched-filtering a black hole-torus signal
with a pure Kerr template. Stated differently, O(h1, h2) = 1 if the two waveforms are
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identical, while O(h1, h2) = 0 if they are totally uncorrelated and O(h1, h2) = −1 if they
are perfectly anticorrelated.

Having introduced the concept of overlap function, we can proceed to an operative
definition of the timescale belowwhich kludge waveforms computed from pure geodesic
motion are expected to be accurate. This timescale, usually referred to as the “dephas-
ing time” τd, is defined as the time at which the overlap between two waveforms in the
Kerr spacetime, one computed considering geodesic motion and the other one including
radiation reaction effects, drops below 0.95 (this is indeed the threshold used to build
template banks [149]). Clearly, the dephasing time will be different for external and in-
ternal orbits and also in this case attention needs to be paid to the mappings between
non-pure and pure Kerr spacetimes. Following the same logic discussed in the previous
section, we calculate τd for an external equatorial orbit in our non-pure Kerr spacetime
by considering the equatorial orbit with the same semi-latus rectum and eccentricity in
the Kerr spacetime5 with massMKerr = Mtot and spin JKerr = Jtot . On the other hand, for
an internal orbit we calculate τd by considering the orbit with the same semi-latus rectum
and eccentricity in the Kerr spacetime with massMKerr = MBH and spin JKerr = JBH . As
we will explain, in this case we have also looked into the influence that this association
has on the overall results presented in sec. 4.5.

In order to compute the dephasing time, we used the approximate Kerr fluxes pro-
posed in ref. [119], which are based on post-Newtonian expansions and fits to fluxes
computed rigorously with the Teukolsky formalism.

4.5 Comparing pure and non-pure Kerr spacetimes

The set of tools introduced in the previous sections, namely: the kludge waveforms, the
numerical solution of the Einstein equations for spacetimes containing a black hole and
a torus, and the overlap function, can now be applied to determine to what extent LISA
can detect a difference between a pure and a non-pure Kerr spacetime.

Hereafter we will restrict our attention to equatorial, bound and stable orbits, choosing
the values of themass and angular momentum of the pure Kerr spacetime using the same
logic discussed in the previous sections, i.e.

MKerr = MBH = M̃
JKerr = JBH

}
internal orbits,

MKerr = Mtot = M̃
JKerr = Jtot

}
external orbits.

(4.30)

Note that for internal orbits we did try to compare our non-pure Kerr spacetimes with

pure Kerr spacetimes havingMKerr = Mtot = M̃ and JKerr = Jtot (using these values also

5The semi-latus rectum and the eccentricity are assumed to be in BL coordinates in pure Kerr and in QBL
in non-pure Kerr spacetimes.
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spacetime A spacetime B

MBH 0.413 0.100

MTorus 0.121 0.007

MBH/MTorus 3.4 14.3

JBH 9.02 × 10−2 −1.74 × 10−5

JTorus 1.17 × 10−1 2.58 × 10−3

JBH/JTorus 7.69 × 10−1 −6.74 × 10−3

JBH/M2
BH

5.28 × 10−1 −1.74 × 10−3

Jtot/M2
tot

0.728 0.224

ρ 2.637 0.198

r+ ,QI 0.179 0.050

rin ,QI 0.6064 0.9156

rout ,QI 0.6305 1.0000

ǫ 0.11 2.63

Table 4.1: Parameters of the spacetimes A and B analysed in section 4.5, in units in which 107M⊙ =
G = c = 1. r

in ,QI
and r

out ,QI
are the inner and outer edges of the torus in QI coordinates, ρ

is the baryonic mass density of the torus and the parameter ǫ provides a lowest-order measure
of the deviation of the spacetime away from a Kerr solution [cf. eq. (4.19)]. Note that ǫ is more
sensitive to the ratio between the angular momenta than to that between the masses.
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to compute the dephasing time, cf. sec. 4.4.1), but this turned out not to be a good choice6.

Once a non-pure and a pure Kerr spacetime have been built and the orbits have been
isolated according to the relations (4.30), further care needs to be paid to selecting corre-
sponding geodesics. Asmentioned in sec. 4.4, equatorial geodesics can be labelled by two
parameters, which can be chosen to be, for instance, the semi-latus rectum and the eccen-
tricity p

(Q)BL
and e

(Q)BL
, calculated in QBL coordinates for the non-pure Kerr spacetime

and in BL coordinates for the Kerr spacetime.

However, as already pointed out in ref. [92], waveforms produced by geodesics having
the same p

(Q)BL
and e

(Q)BL
are significantly different because they do not have comparable

orbital frequencies, and give overlaps O . 0.4. A similar conclusion can be drawn in the
case in which the free parameters are chosen to be the periastron radius and the (tangen-
tial) velocity measured at the periastron by a zero angular momentum observer (ZAMO):
this choice gives overlaps O ≃ 0.1 − 0.2. In view of this, any sensible comparison can be
made only with geodesics in the two spacetimes that have the same orbital frequencies
(this result was already pointed out in ref. [92]).

We recall that an equatorial geodesic in a generic stationary, axisymmetric spacetime
has an r-motion that is periodic in the coordinate time t. To see this, it is sufficient to
combine eqs. (4.22), (4.23) and the normalisation condition uµuµ = −1 for an equatorial
motion θ = π/2 so that

(dr/dt)2 = V (r, ǫ̃, ℓ̃) , (4.31)

with V (r, ǫ̃, ℓ̃) being a function of r and of the two constants of motion ǫ̃ and ℓ̃. Clearly,
eq. (4.31) has a periodic solution with a frequency that we will denote as ωr. A similar
analysis can be carried out for the motion in the φ direction, which, combining eqs. (4.22)
and (4.23) for θ = π/2, satisfies an equation of the type

dφ/dt = G(r, ǫ̃, ℓ̃) , (4.32)

where G(r) is again a function of r, ǫ̃ and ℓ̃. Integrating eq. (4.32) with φ0 = t0 = 0 leads
to

φ(t) = 〈G〉t +

∫ t

0
(G(r(t), ǫ̃, ℓ̃) − 〈G〉)dt , (4.33)

where 〈G〉 is the time average of G(r(t), ǫ̃, ℓ̃) over an r-period. The second term on the
right-hand-side of eq. (4.33) is clearly periodic in t (with zero average) so that the φ-
motion has a linearly growing term and an oscillating one. The overall frequency content
of the φmotion is therefore determined by ωφ = 〈G〉.
The orbital frequencies ωr and ωφ can therefore be used to characterise equatorial
geodesics (and hence waveforms) that are expected to be as similar as possible (i.e. have
the largest possible overlap) in the two spacetimes. In practice, given a geodesic (and
therefore a waveform) characterised by ωr and ωφ in the non-pure Kerr spacetime, we
can compare it to the waveform produced in the Kerr spacetime by the orbit which has

6i.e., for many bound stable orbits in the non-pure Kerr spacetimes that we considered, it was impossible
even to find bound stable orbits with the same semi-latus rectum and eccentricity in the Kerr spacetime.
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the same r- and φ-frequencies. Since ωr and ωφ for equatorial orbits in a Kerr spacetime
are functions of MKerr , JKerr , pBL

and e
BL
(explicit expressions for these functions, which

we will denote ω
Kerr

r and ω
Kerr

φ , are given in ref. [116]), matching the geodesics amounts
to solving the following equations in the unknowns δp and δe

ω
BH+Torus

r (p
QBL

, e
QBL

) = ω
Kerr

r (p
BL

=p
QBL

+ δp, e
BL

=e
QBL

+ δe, MKerr , JKerr) , (4.34)

ω
BH+Torus

φ (p
QBL

, e
QBL

) = ω
Kerr

φ (p
BL

=p
QBL

+ δp, e
BL

=e
QBL

+ δe, MKerr , JKerr) , (4.35)

where ω
BH+Torus

r (p
QBL

, e
QBL

) and ω
BH+Torus

φ (p
QBL

, e
QBL

) are the r- and φ-frequencies of the
equatorial orbit with semi-latus rectum p

QBL
and eccentricity e

QBL
in the non-pure Kerr

spacetime under consideration and where MKerr and JKerr follow the selection rule in
eq. (4.30) to distinguish internal and external orbits. Indeed, this is the approach which
was followed in ref. [92] and which highlighted the possibility of a degeneracy problem
in non-pure Kerr spacetimes.

An important difference with respect to the work presented in ref. [92] is that we also
considered a different way in which it is possible to identify geodesics that have the same
orbital frequencies in a Kerr and in a non-pure Kerr spacetime. We can in fact consider
the semi-latus rectum and eccentricity as fixed in (Q)BL and search for the values of the
additional mass δM and angular momentum δJ of the Kerr spacetimewhich would yield
the same r- and φ-frequencies, i.e.

ω
BH+Torus

r (p
QBL

, e
QBL

) = ω
Kerr

r (p
BL

=p
QBL

, e
BL

=e
QBL

, MKerr + δM, JKerr + δJ) , (4.36)

ω
BH+Torus

φ (p
QBL

, e
QBL

) = ω
Kerr

φ (p
BL

=p
QBL

, e
BL

=e
QBL

, MKerr + δM, JKerr + δJ) . (4.37)

Of course, a similar but distinct set of equations can also be built by considering orbits
having the same semi-latus rectum and eccentricity in QI coordinates7

ω
BH+Torus

r (p
QI

, e
QI

) = ω
Kerr

r (p
QI

, e
QI

, MKerr + δM, JKerr + δJ) , (4.38)

ω
BH+Torus

φ (p
QI

, e
QI

) = ω
Kerr

φ (p
QI

, e
QI

, MKerr + δM, JKerr + δJ) . (4.39)

To illustrate how different correlations of orbits in the two spacetimes can lead to sig-
nificantly different waveforms, we show in Fig. 4.2 some kludge waveforms for a small
body with mass m = 1M⊙ moving in the spacetime B whose parameters are listed in
Table 4.1. The geodesics have been calculated up to the dephasing time (i.e. τd ≃ 42 d)
and the figure shows a magnification of the waveforms around this time. In particular,
the black solid line shows the waveform produced by a geodesic with pQBL/Mtot = 21.237
and eQBL = 0.212 in spacetime B, while the red dot-dashed one refers to a geodesic with
the same semi-latus rectum and eccentricity (in (Q)BL coordinates) in a Kerr spacetime
withMKerr = Mtot and JKerr = Jtot . The blue dotted line and the brown circles are instead

7The transformation from BL to QI coordinates in a Kerr spacetime is given for instance in ref. [150], eq. (80):
the transformation turns out to be the inverse of eq. (4.26), with r+ QI = M(1 − a2)1/2/2 (M and a being
the mass and the spin parameters of the Kerr spacetime under consideration).
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Figure 4.2: Kludge waveforms around the dephasing time for a small body with massm = 1M⊙ moving
in the spacetimeB of Table 4.1. The black solid line shows the waveform produced by a geodesic
with given semi-latus rectum and eccentricity in spacetime B, while the red dot-dashed one
refers to a geodesic with the same semi-latus rectum and eccentricity (in (Q)BL coordinates)
in a Kerr spacetime withMKerr = Mtot and JKerr = Jtot . The blue dotted line and the brown
circles are instead the waveforms produced by an orbit with the same r- and φ-frequencies as
obtained by adjusting (δp, δe) or (δM, δJ), respectively.

the waveforms produced by an orbit with the same r- and φ-frequencies as obtained by
adjusting (δp, δe) or (δM, δJ), respectively. Clearly, fixing the same orbital parameters
p

(Q)BL
and e

(Q)BL
in the two spacetimes would be misleading and will inevitably produce

very small overlaps. On the other hand, ensuring that the orbital frequencies are the
same by adjusting δM and δJ provides waveforms that are much more similar and even
harder to distinguish over this timescale than if δp and δe are adjusted.

In the following sections we will discuss in detail the degeneracy problem when con-
sidering the two different ways in which the geodesics in the two spacetimes can be
matched. Before doing that, however, we will now briefly recall the main properties of
the numerically-generated spacetimes that we have considered here, and whose param-
eters are listed in Table 4.1. We note that because the investigation of each spacetime is
a rather lengthy and computationally expensive operation, we have restricted our atten-
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tion to two spacetimes only, but with rather different properties. More specifically, we
have considered a first spacetime (denoted as A) having a torus with mass smaller than
that of the black hole (but almost comparable to it) and slightly larger angularmomentum
(i.e. MBH & MTorus , |JBH | . |JTorus |) and a second spacetime (denoted as B) having a torus
with mass much smaller than that of the black hole but much larger angular momentum
(i.e. MBH ≫ MTorus , |JBH | ≪ |JTorus |).
We also note that spacetime A has a rather small quadrupole parameter ǫ ≃ 0.1 [cf.
eq. (4.19) for the definition] and could therefore be used to validate the perturbative re-
sults of ref. [92] which, we recall, were formulated to the lowest order in ǫ. Interestingly,
we will see that taking into account the higher-order multipoles can lead to important
qualitative differences and weaken or even cancel (for orbits very close to the torus) the
degeneracy problem found in ref. [92]. Spacetime B, on the other hand, has a consid-
erably larger value for ǫ and cannot, therefore, be described satisfactorily by the met-
ric (4.20). The spacetimes were computed to sufficiently high accuracy so as to ensure
that the numerical errors do not affect the results. More specifically, for spacetime A we
used 40 × 40 Chebyshev polynomials in the vacuum domain extending out to infinity
(domain 1 of [130]) and 28× 28 polynomials in the other 4 domains. For spacetime B we
used 31 × 27 polynomials in each of the 5 domains. Typical physical quantities, such as
mass and angular momentum, were thus accurate to about 10−6 in spacetime A and 10−7

in spacetime B. We note that these errors are orders of magnitude smaller than the ones
of O(a ǫ, ǫ2) + O(δMℓ≥4, δSℓ≥3) typically affecting the approximate metric (4.20). More-
over, the accuracy of our numerically generated spacetimes is sufficient for the present
investigation, because the dephasing it introduces is comparable with the dephasing due
to radiation reaction, as the latter scales with the mass ratiom/MBH ≈ 10−6 − 10−7. As a
result, introducing a cut-off at the dephasing time not only makes the effects of radiation
reaction negligible, but it also ensures that the numerical errors in the calculation of the
spacetimes do not affect the results. As a further check, we have varied the number of
Chebyshev polynomials and verified that the numerical errors inherent to the spacetimes
have a negligible impact on our final results.

For all of the waveforms computed in this chapter, we have considered an observer
located at φobs = 0, θobs = π/4 and have decomposed the incoming gravitational-wave
signal into the usual “plus” and “cross” polarisations (see, for instance, refs. [12, 1] for
details). Furthermore, labelling the gravitational waves computed in the two spacetimes
with 1 and 2, we calculate the overlaps for both polarisations, O(h+

1 , h+
2 ) and O(h×

1 , h×
2 ),

and in the discussion of our results we refer to the smaller of the two overlaps, i.e.
O(h1, h2) ≡ min[O(h+

1 , h+
2 ), O(h×

1 , h×
2 )]. In practice, however, the difference between

O(h+
1 , h+

2 ) and O(h×
1 , h×

2 ) for the overlaps plotted in the figures of the next sections is
typically smaller than 0.005 and in no case larger than 0.025.

Finally, we note that the results presented in the next sections refer to a small body
withm = 1M⊙ and to a sensitivity function for LISA computed using the online genera-
tor [14] with its default parameters and, in particular, no white dwarf noise. As pointed
out in ref. [92], including white-dwarf noise would only lead to a slight increase in the
dephasing time.
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4.5.1 The degeneracy problem when varying e and p

After excluding a comparison between geodesics (and hence waveforms) that have the
same semi-latus rectum and eccentricity in the pure and non-pure Kerr spacetimes be-
cause of the very small overlap that they produce, we have compared waveforms having
the same r- and φ-frequencies as obtained by changing the semi-latus rectum and eccen-
tricity while keeping MKerr and JKerr fixed [cf. eqs. (4.34) and (4.35)]. More specifically,
we already mention that the values of δp/pQBL obtained in the regions of the parameter
space (pQBL , eQBL) where the overlap between these waveforms is high (O > 0.95) are
|δp/pQBL | . 0.05 in spacetime A and |δp/pQBL | . 0.16 in spacetime B. Similarly, the val-
ues of δe obtained in the regions of the parameter space where O > 0.95 are |δe| . 0.06
in spacetime A and |δe| . 0.07 in spacetime B.
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Figure 4.3: Overlap between waveforms produced in spacetime A by external orbits and waveforms pro-
duced in a Kerr spacetime with massMKerr = Mtot and spin JKerr = Jtot . The orbits all have
the same r- and φ-frequencies as obtained by suitably changing the semi-latus rectum and the
eccentricity, with positive values of p

QBL
referring to prograde orbits, and negative ones to

retrograde orbits. The different lines mark the margins of the different relevant regions of the
(p

QBL
, e

QBL
) plane, with the blue dashed line representing the outer “edge of the torus”, the

red solid line representing the innermost stable bound orbits for a Kerr spacetime with mass
MKerr = Mtot and spin JKerr = Jtot and the black dot-dashed line delimiting the regions of
the (p

QBL
, e

QBL
) plane where bound stable orbits have been studied. A high overlap in large

regions of the parameter space indicates that a degeneracy problem is possible in this spacetime
for observational timescales below or comparable to the dephasing time, although this degen-
eracy disappears for orbits with small eccentricities and close to the innermost bound stable
orbits.
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We have computed the overlap between hBH+Torus(pQBL , eQBL) and hKerr(pBL = pQBL +
δp, eBL = eQBL + δe, MKerr , JKerr), and summarise the results of this comparison for a large
set of orbits in Figs. 4.3, 4.4 and 4.5. In particular, Fig. 4.3 shows the colour-coded overlap
between waveforms produced in spacetime A by external orbits in a (pQBL , eQBL) plane,
with positive values of pQBL referring to prograde orbits, and negative ones to retrograde
orbits. Note that no internal orbits were found in spacetime A and this is due to the fact
that in this case the torus is too close to the black hole for bound stable orbits to exist in
region I of Fig. 4.1 without plunging into the black hole. The different lines in Fig. 4.3
mark the margins of the different regions of interest in the (pQBL , eQBL) plane, with the
blue dashed line representing the outer “edge of the torus”, that is the set of points such
that pQBL/(1 + eQBL) = rout,QBL . Similarly, the red solid line represents the innermost
stable bound orbits (this line is also referred to as the “separatrix” in ref. [40]) for a Kerr
spacetime with mass MKerr = Mtot and spin JKerr = Jtot . Finally, the black dot-dashed
line delimits the regions of the (pQBL , eQBL) plane where bound stable orbits have been
studied.

We underline that these are not the only regions in which bound stable orbits exist,
but they rather represent the regions which we have investigated because of their being
more directly related to LISA observations. In practice, we exploit the fact that there is a
one-to-one correspondence between the semi-latus rectum pQBL and the eccentricity eQBL

of bound stable orbits and their QI radius and tangential velocity (measured by a ZAMO)
at periastron, rp and vφ. We therefore choose the initial radial QI position r0 of the small
body randomly in a limited range and vary its initial tangential velocity vφ with small
steps in the range of the velocities which result in energies per unit mass ǫ̃ < 1.8 After
integrating the geodesic equations (eqs. (4.22)-(4.24) with θ = π/2) over and beyond the
dephasing time, if the orbit does not intersect the torus and if r0 actually corresponds
to the periastron (and not to the apoastron) we extract the semi-latus rectum and eccen-
tricity so as to populate the (pQBL , eQBL) plane and compute the overlaps with pure-Kerr
waveforms (the orbits in the Kerr spacetime are chosen to start at their periastron as well).
Overall, a large number of bound stable orbits (i.e. & 2250) has been integrated for each
of the figures shown in this chapter. Notice that the requirement that r0 correspond to
the periastron is important because, as far as the overlaps are concerned, orbits having
the same semi-latus rectum and eccentricity but different initial positions are not equiva-
lent. We recall in fact that the overlaps are computed by putting a cutoff at the dephasing
time and if the initial positions are different, the portions of the orbits contributing to the
overlap are different.

Overall, because the waveforms agree very well with an overlap O > 0.95 for most of
the orbits which we have considered, the results in Fig. 4.3 clearly show that a degeneracy
problem similar to the one presented in ref. [92] is indeed possible in this spacetime for
observational timescales below or comparable to the dephasing time. As indicated by the

8We note that in both spacetimes A and B all of the equatorial bound stable orbits not crossing the torus
have ǫ̃ < 1 [this can be verified by computing the values of ǫ̃ for which the potential V (r, ǫ̃, ℓ̃) in eq. (4.31)
is positive]. However, bound stable orbits which cross the torus and have ǫ̃ > 1 are present in both
spacetimes.
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Figure 4.4: The same as in Fig. 4.3 but for spacetime B. Note that in this case the degeneracy problem
is less severe and indeed not present for orbits near the outer edge of the torus (i.e., with
p

QBL
/M

tot
. 30) and with eccentricities e

QBL
. 0.2.

colour-coding, the overlap has a drastic reduction only in a limited region of the param-
eter space and in particular for orbits with small eccentricity and close to the innermost
bound stable orbits. This is not surprising since in these regions the local modifications of
the spacetime due to the presence of the torus are the largest and have a more marked im-
pact on the waveforms. Interestingly, prograde orbits produce overlaps that are smaller
than those produced by retrograde orbits with comparable values of pQBL and eQBL , and
appear therefore to be better tracers of this spacetime.

It is important to underline that the presence of an albeit small region of the parameter
space in which the overlap is small, and hence the dangers of a degeneracy problem is de-
creased, represents an important difference compared to the results presented in ref. [92].
We recall that spacetime A has a rather small quadrupole parameter ǫ (cf. Table 4.1),
comparable with those used in ref. [92]. However, the small overlaps near to the inner-
most bound stable orbits indicate that taking into account the higher-order multipoles
neglected in the metric (4.20) can lead to significant differences even far away from the
black hole if a matter source is present.

Figure 4.4 summarises a set of results similar to those presented in Fig. 4.3 but for
spacetime B. More specifically, it reports the colour-coded overlap between waveforms
produced in spacetimeB by external orbits andwaveforms produced in a Kerr spacetime
with mass MKerr = Mtot and spin JKerr = Jtot . Here again, all of the orbits have the
same orbital frequencies as obtained by adjusting δp and δe. It should be noted that in
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Figure 4.5: The same as in Fig. 4.4 but for internal orbits, with the green solid line marking those orbits
whose periastron lies on the event horizon, the purple dashed line representing the inner “edge
of the torus” and finally the red crossed-solid line marking the innermost bound stable orbits
in a Kerr spacetime with mass and spinM

Kerr
= M

BH
and J

Kerr
= J

BH
. Again, the black dot-

dashed line delimits the regions of the (p
QBL

, e
QBL

) plane where bound stable orbits have been
studied, but in contrast to the case of external orbits, these regions correspond to practically
all of the bound stable orbits not crossing the torus. Note that in this case the degeneracy
problem is absent, with O . 0.2.

this case the degeneracy problem is less severe and indeed essentially absent for orbits
near to the outer edge of the torus (i.e., with pQBL/Mtot . 30) and with eccentricities
eQBL . 0.2. Finally, we report in Fig. 4.5 again results for spacetime B but this time for
internal orbits. We recall, in fact, that in this case the torus is farther away from the black
hole and thus bound stable orbits can be found in region I of Fig. 4.1. As in the previous
figures, the black dot-dashed line delimits the regions of the plane (pQBL , eQBL) where
bound stable orbits have been studied, but in contrast to the case of external orbits these
regions correspond to practically all of the bound stable orbits not crossing the torus. On
the other hand, the green solid line marks those orbits whose periastron lies on the event
horizon, the purple dashed one marks those orbits whose apoastron lies on the inner
edge of the torus and finally the red crossed-solid line indicates the innermost bound
stable orbits in a Kerr spacetime with mass and spin MKerr = MBH and JKerr = JBH .
Clearly, no degeneracy problem is present for these orbits, because the overlap is always
very small and never larger than ≃ 0.2.

In summary, the overlaps computed in the two spacetimesA andB containing a black-
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Figure 4.6: Overlap between waveforms produced in spacetime A by external orbits and waveforms pro-
duced in a Kerr spacetime with mass M

Kerr
+ δM = M

tot
+ δM and spin J

Kerr
+ δJ =

J
tot

+ δJ by orbits with the same semi-latus rectum and eccentricity [in (Q)BL coordinates]
and the same r- and φ-frequencies. Here too, the blue dashed line represents the outer “edge
of the torus”, the red solid line marks the innermost stable bound orbits for a Kerr spacetime
with mass M

Kerr
= M

tot
and spin J

Kerr
= J

tot
and the black dot-dashed line delimits the

regions of the (pQBL , eQBL) plane where bound stable orbits have been studied. An overlap
O > 0.95 is present in all of the relevant regions of the (p

QBL
, e

QBL
) plane.

hole and a torus by varying the semi-latus rectum and the eccentricity reveal that there
are regions in which the non-pure Kerr spacetimes can be “confused” with Kerr space-
times that are equivalent to them at the sensitivity of LISA. Clearly, this risk is con-
crete only for timescales over which radiation-reaction effects are negligible and it is not
present for external orbits very close to the torus or for the orbits between the torus and
the black hole, if they exist.

4.5.2 The degeneracy problem when varying M and J

Next, we consider the overlap obtained by comparing orbits having the same r- and φ-
frequencies, achieved by changing the mass and spin of the Kerr black hole while keep-
ing the semi-latus rectum and eccentricity fixed in either (Q)BL or QI coordinates [cf.
eqs. (4.36)–(4.37) and (4.38)–(4.39)]. Doing this corresponds to considering a hypotheti-
cal scenario in which it would be possible to measure, by means of independent astro-
nomical observations, the semi-latus rectum and eccentricity of the small body orbiting
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Figure 4.7: The same as in Fig. 4.6 but for spacetime B. Note that also in this case the overlap is very
high (O > 0.99) in almost all of the relevant regions of the (p

QBL
, e

QBL
) plane, with the

exception of a very small set of orbits very close to the torus, for which eqs. (4.36)–(4.37) have
no solutions (these orbits correspond to the blank regions inside the black dot-dashed line).

around the massive central black hole. In practice, and using the same compact nota-
tion introduced above, we have compared waveforms of type hBH+Torus(pQBL , eQBL) with
hKerr(pBL = pQBL , eBL = eQBL , MKerr + δM, JKerr + δJ) [i.e., with semi-latus rectum and ec-
centricity fixed in (Q)BL coordinates, and δM and δJ being solutions to eqs. (4.36)–(4.37)]
and hBH+Torus(pQI , eQI) to hKerr(pQI , eQI , MKerr + δM, JKerr + δJ) [i.e., semi-latus rectum and
eccentricity fixed in QI coordinates, δM and δJ solutions to eqs. (4.38)–(4.39)].

While formally distinct, these two approaches yield essentially the same results quite
irrespective of whether the semi-latus rectum and eccentricity are held fixed in (Q)BL or
in QI coordinates. Because of this, from here on we will discuss only results obtained
with p

(Q)BL
and e

(Q)BL
being kept fixed.

Figure 4.6 shows the overlap between waveforms produced in spacetimeA by external
orbits and waveforms produced in a Kerr spacetime with massMKerr + δM = Mtot + δM
and spin JKerr + δJ = Jtot + δJ by orbits with the same p

(Q)BL
and e

(Q)BL
and the same

orbital frequencies. As in Fig. 4.3, the different lines mark the margins of the relevant
regions of the (pQBL , eQBL) plane, with the blue dashed line representing the outer “edge
of the torus”, the red solid line representing the innermost stable bound orbits for a Kerr
spacetime with mass MKerr = Mtot and spin JKerr = Jtot and the black dot-dashed line
delimiting the regions of the (pQBL , eQBL) plane where bound stable orbits have been
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Figure 4.8: The same as in Fig. 4.7 but for internal orbits, with the green solid line marking those orbits
whose periastron lies on the event horizon, the purple dashed line representing the inner “edge
of the torus” and finally the red crossed-solid line marking the innermost bound stable orbits
in a Kerr spacetime with mass and spinM

Kerr
= M

BH
and J

Kerr
= J

BH
. Again, the black dot-

dashed line delimits the regions of the (pQBL , eQBL) plane where bound stable orbits have been
studied, but in contrast to the case of external orbits these regions correspond to practically all
of the bound stable orbits not crossing the torus. Note that in this case the degeneracy problem
is present in most of the relevant regions of the (pQBL , eQBL) plane, becoming slightly less
severe only for the largest allowed eccentricities and for a very small set of orbits, very close to
the torus, for which eqs. (4.36)–(4.37) have no solutions (these orbits correspond to the blank
regions inside the black dot-dashed line).

studied. Note the very close match between the two waveforms, with an overlap O >
0.95 in essentially all of the relevant regions of the (pQBL , eQBL) plane. This is a clear
indication that a degeneracy problem is present for LISA measurements over a timescale
below or comparable to the dephasing time.

Figures 4.7 and 4.8 provide complementary information for spacetime B, with the first
one referring to external orbits and the second one to internal orbits (the meaning of
the lines appearing in this figures is the same as in figures 4.4 and 4.5). In both cases it
is apparent that the overlap is always very large. The only exceptions are the internal
orbits with the largest allowed eccentricities, for which the overlap decreases slightly,
and a very small set of orbits very close to the torus, for which eqs. (4.36)–(4.37) have no
solutions (these orbits correspond to the blank regions inside the black dot-dashed line
in figures 4.7 and 4.8).
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Figure 4.9: Relative mass correction δM/M
Kerr

= δM/M
tot
in the regions of the (p
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) plane

where the overlap plotted in Fig. 4.7 is above 0.95. Note that far from the system δM/M
tot

approaches zero, as one would expect.

In summary, the overlap computed in the two spacetimes by varying themass and spin
of the black hole reveals that a LISA observation carried out over a timescale below or
comparable to the dephasing time would not allow an observer to distinguish between
a Kerr and a non-pure Kerr spacetime, even in the case in which the orbital parameters
of the small body, such as the the semi-latus rectum and the eccentricity, were known
through astronomical observations.

A simple explanation of why the overlap is always so large when calculated by varying
the mass and spin of the Kerr black hole is already illustrated in Fig. 4.2. This shows that
the waveform obtained in this way captures not only the proper orbital frequencies, but
also the overall “form” of the signal, which is most sensitive to the values of the semi-
latus rectum and of the eccentricity of the orbit (cf. the solid black line and the brown
circles in Fig. 4.2).

The difficulty of distinguishing a Kerr spacetime from a non-pure Kerr one can also be
expressed in terms of the massMKerr + δM and spin JKerr + δJ that would be measured
by an observer analysing a gravitational wave from a black hole-torus system with pure
Kerr templates. The corrections δM and δJ are those appearing in eqs. (4.36)–(4.37) and
have been computed in order to determine the overlaps presented in this section. If they
are small and slowly varying, it is hard to imagine a way in which the non-pure Kerr
spacetime could be distinguished from a pure Kerr one, even with the help of additional
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Figure 4.10: The same as in Fig. 4.9 but for internal orbits. In this case the deviations are computed as
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Kerr
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BH
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, e

QBL
) plane where the overlap plotted

in Fig. 4.8 is above 0.95.

astronomical observations. Conversely, if these corrections are large or rapidly varying
it is possible that additional astronomical information about the system or an analysis of
snapshots of the waveform taken at different times could be used to determine that the
source is not an isolated Kerr black hole and therefore lessen the degeneracy problem
which we find in our analysis.

A synthesis of these corrections for the determination of the mass of the black hole in
the case of spacetime B is presented in Fig. 4.9 and Fig. 4.10, with the first one showing
the relative error δM/MKerr = δM/Mtot in the regions of the (pQBL , eQBL) plane where
the overlap plotted for external orbits is above 0.95, and the second one showing the
corresponding quantity (δM/MKerr = δM/MBH) for internal orbits.

Clearly, the corrections are very small and slowly varying in almost all of the rele-
vant parameter space for external orbits, meaning that an observer could not detect the
presence of the torus using only these orbits. On the other hand, an observer could mea-
sure rather accurately the total mass of the system. Note in particular that the correction
δM/Mtot goes to zero far from the system, as one would expect.

This situation is only slightly different for internal orbits, for which the correction in-
creases to some percent: using internal orbits an observer could measure the mass of the
central black hole quite accurately. Note therefore that a combination of observations of
internal orbits (giving an estimate for MBH) and external orbits (giving an estimate for
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Figure 4.11: Variations of the spin a
Kerr

+ δa ≡ a
tot

+ δa = (J
tot

+ δJ)/(M
tot

+ δM)2 in the regions
of the (p

QBL
, e

QBL
) plane where the overlap plotted in Fig. 4.7 is above 0.95. We recall that

for external orbits in spacetime B, we have a
Kerr

= a
tot

= 0.224 (cf. Table 4.1).

Mtot) could hint at the presence of a torus around the central black hole.

Similar behaviour has also been found for spacetimeA. Because no internal bound sta-
ble orbits are present in this case, an observer could not measure the individual masses
of the black hole and the torus, whereas he could measure accurately the total mass of
the system. In fact, the corrections are always very small with |δM/MKerr | = |δM/Mtot | .

0.02; once again, the correction δM/Mtot goes to zero far from the system, as one would
expect. Note that due to the absence of internal orbits in this spacetime and to the small-
ness and slow variations of δM/Mtot , it is extremely difficult to distinguish spacetime A
from a pure Kerr spacetime.

Information complementary to that given by the mass correction δM is provided by
the spin correction δJ . In particular, for spacetime A the correction δa defined by δa ≡
(JKerr + δJ)/(MKerr + δM)2 − aKerr (with aKerr = JKerr/M

2
Kerr

= 0.728) can be readily cal-
culated to be |δa/aKerr | . 0.065, going to zero, as one would expect, far from the system.
This means that an observer could accurately measure the total spin of the black hole-
torus system although, due to the absence of internal orbits in this system and to the
slow variations of δa, a measurement of the individual spins of the torus and the black
hole or even a simple detection of the torus seems unfeasible.

Spacetime B is considered in figures 4.11-4.12, in which we report the quantity aKerr +
δa ≡ (JKerr + δJ)/(MKerr + δM)2 for external orbits (with aKerr = JKerr/M

2
Kerr

= 0.224)
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Figure 4.12: The same as in Fig. 4.11 but for internal orbits. In this case the corrections are computed as
a

Kerr
+ δa = a

BH
+ δa ≡ (J

BH
+ δJ)/(M

BH
+ δM)2 in the regions of the (p
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, e

QBL
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plane where the overlap plotted in Fig. 4.8 is above 0.95. We recall that for internal orbits
in spacetime B, we have a

Kerr
= a

BH
= −1.74 × 10−3 (cf. Table 4.1).

and internal orbits (with aKerr = JKerr/M
2
Kerr

= −1.74 × 10−3), respectively. As can be
seen, the corrections δa are, in both cases, rather large and rapidly varying: an observer
could probably distinguish this spacetime from a pure Kerr one using estimates of the
spin obtained by analysing the waveform at different times, but would have little chance
to measure the spin of the central black hole correctly and should consider orbits very far
from the system in order to achieve accurate measurements of the total spin. This was to
be expected, since spacetime B has a large ratio JTorus/JBH , which causes the quadrupole
parameter ǫ to be large (cf. Table 4.1).

Before concluding this section, it is worth commenting on how robust and generic
these results are. While we believe that they represent the first attempt to model con-
sistently the gravitational-wave emission from spacetimes that deviate considerably for
Kerr due to the presence of matter, the approach followed here has the obvious limita-
tion of neglecting radiation-reaction effects and thus of considering waveforms only over
a dephasing time which is typically of days or weeks. It is therefore possible, if not likely,
that considering waveforms over a timescale comparable with LISA’s planned lifetime
(i.e. 3–5 years) would lower the overlaps computed here and thus reduce the impact of a
degeneracy problem.

As already mentioned, a simple way to include radiation reaction would consist of
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using the adiabatic approximation and thus considering motion along a geodesic with
slowly changing parameters. In particular, approximate (“kludge”) expressions for the
fluxes Ė, L̇z and Q̇ in Kerr have been derived using post-Newtonian expansions [104,
115, 148], recently corrected using fits to the fluxes computed rigorously with the Teukol-
sky formalism [119]. Likewise, it may be possible to adopt similar strategies in non-Kerr
spacetimes. For instance, Cutler and Barack [93] recently proposed including radiation
reaction in quasi-Kerr spacetimes by using post-Newtonian fluxes in which the leading-
order effect of the quadrupole of the spacetime is taken into account, potentially elim-
inating the degeneracy problem. Nevertheless, it is still unclear at this stage whether
post-Newtonian fluxes will be a good approximation for our spacetimes, where the pa-
rameters ǫ and a can be O(1). We recall, indeed, that using post-Newtonian fluxes is
not always a good approximation even in Kerr spacetimes and that the most accurate
“kludge” fluxes for Kerr [119] are certainly based on post-Newtonian expansions, but are
also corrected using fits to rigorous Teukolsky-based fluxes.

We also note than even with the radiation-reaction included, a “degeneracy” problem
might in principle still be present, at least for equatorial orbits. In fact, requiring the
equality of the r- and φ-frequencies fixes only two of the four free parameters charac-
terising the geodesic, p, e, MKerr and JKerr , while the remaining two could be used to
obtain the equality of the time derivatives of the r- and φ-frequencies at the initial time

[ω̇
BH+Torus

r (t0) = ω̇
Kerr

r (t0), ω̇
BH+Torus

φ (t0) = ω̇
Kerr

φ (t0)], which could ensure, at least initially,
a similar evolution under radiation reaction for the two waveforms.

Besides inclusion of radiation reaction, two other approaches to improve the estimates
computed in this chapter are also worth considering. The first and most obvious one
consists of replacing the “kludge” waveforms with more rigorous waveforms, given by
solutions of eqs. (4.10) and (4.12), possibly neglecting the fluid perturbations appearing
on the right-hand-side of eq. (4.10) (this could be a rather good approximation for orbits
far enough from the torus). Doing this in practice is certainly not trivial since eqs. (4.10)
have been solved only for a Schwarzschild spacetime so far [133]. The second possible
improvement involves the extension of the present analysis to non-equatorial orbits. This
is more complicated since one cannot require the strict equality of the orbital frequencies
[in contrast to Kerr, eqs. (4.22)–(4.25) indicate that in general the r-, θ- and φ-motions are
not periodic in the time coordinate t]. However, it is possible to check that these motions
are approximately periodic, over the dephasing timescale, if the torus is not too massive,
and then the present analysis can be extended straightforwardly in terms of these almost-
periodic motions.

4.6 Summary

EMRIs are expected to be among the most important sources for LISA and, besides map-
ping accurately the spacetime around SMBHs, they might also shed light on the dis-
tribution of matter around them. We have here studied EMRIs and the corresponding
gravitational-wave emission in spacetimes that are accurate numerical solutions of the
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Einstein equations and consist of an SMBH and a compact torus with comparable mass
and spin. We underline that the tori considered here do not represent a model for the ac-
cretion disks in AGNs but, rather, are a phenomenological model for a compact source of
matter close to the SMBH. Our goal in this chapter has therefore been that of maximising
the impact of this matter on thewaveforms and investigatingwhether gravitational-wave
observations will be able to reveal its presence. This hypothetical matter source, even if it
exists, may not be detectable otherwise, being too close to the central SMBH and possibly
“dark”.

Using the semi-relativistic approach proposed in ref. [92], we have compared kludge
waveforms produced by equatorial orbits in non-pure Kerr spacetimes with waveforms
produced by equatorial orbits in Kerr spacetimes having the same mass and spin as the
non-pure Kerr spacetimes. Because they are produced by purely geodesic motion, these
waveforms are valid only over a rather short “dephasing” timescale. Overall, we find that
waveforms produced by orbits having the same semi-latus rectum and eccentricity p and
e are considerably different throughout the whole parameter space (p, e). On the other
hand, comparisons of waveforms produced by (equatorial) orbits having the same r- and
φ-frequencies, with this condition being achieved by changing the semi-latus rectum and
eccentricity of the orbits in the Kerr spacetime, produce overlaps O > 0.95 for orbits far
from the black hole-torus system, hence pointing out a degeneracy problem. This overlap
decreases rapidly as one considers orbits which are close to the torus, indicating that in
the strong-field region no degeneracy problem is present. Finally, if the equality of the r-
and φ-frequencies is obtained by changing the mass and spin of the Kerr spacetime while
maintaining fixed the semi-latus rectum and the eccentricity of the orbit, the resulting
overlaps are very high, with O > 0.99 for essentially all values of the orbital parameters
p and e, indicating a degeneracy problem that is less severe only for a few orbits very
close to the torus.

This degeneracy problem in themass and the spinmight therefore bemore serious than
the one involving the semi-latus rectum and eccentricity. Stated differently, an observer
analysing below the dephasing timescale a gravitational waveform produced by an EMRI
in a black hole-torus system would not be able to distinguish it from one produced in
a pure Kerr spacetime. This observer would therefore associate the EMRI with a Kerr
SMBH whose mass and spin would however be estimated incorrectly.

While these results represent the first attempt to model consistently the gravitational-
wave emission from spacetimes that deviate considerably for Kerr, the approach followed
here is based on four approximations, namely: i) the use of kludge waveforms in place of
ones that are consistent solutions of the Einstein equations; ii) the use of a cut-off at the
dephasing time beyond which radiation-reaction effects can no longer be ignored; iii) the
restriction to purely equatorial orbits; iv) the use of tori that are very compact and close to
the black hole. Relaxing one or more of these approximations could lead to a less serious
degeneracy problem.

Finally, we stress that another possible improvement of the present analysis would
be to use the Fisher information matrix to calculate the accuracy with which the orbital
parameters and the parameters of the black hole-torus system could be measured. More-
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over, the Fisher matrix would provide also the correlations among these parameters, thus
revealing the presence (or the absence) of a degeneracy problem. However, such an anal-
ysis is presently not realistic since the construction of the Fisher matrix involves deriva-
tives of the waveforms with respect to the parameters of the system, and these, in turn,
require the construction of a very large number of spacetimes whose numerical calcula-
tion is still too expensive.

Appendix: From the Einstein equations to the semirelativistic
approach

Although the main motivation for the semirelativistic approach which we use in this
chapter is the surprising agreement that “kludge” waveforms show in Kerr with the rig-
orous waveforms computed using the Teukolsky formalism [12], one can also try to make
sense of it using the Einstein equations.

We start by rewriting the Einstein equations in a more convenient form in which we
isolate the perturbation as [1, 56]

H̄µν ≡ ηµν − (−g̃)1/2g̃µν , (4.40)

where ηµν is the Minkowski metric. Since far from the source the spacetime reduces
to Minkowski plus a small perturbation, i.e. g = η, the first-order perturbations there
coincide with H̄ , i.e. H̄µν = h̄µν +O(m/M)2, with h̄µν being the trace-reversed potentials
defined in eq. (4.8).

If we now restrict our attention to a region of the spacetime where it is possible to
choose the harmonic gauge

∂βH̄αβ = 0 (4.41)

(this is always possible far enough from the source), the full Einstein equations give [56]

¤flatH̄
αβ = −16πταβ , (4.42)

where ¤flat ≡ ηµν∂µ∂ν is the flat-spacetime wave operator. The right-hand side is given
by the effective stress-energy pseudotensor

ταβ = (−g̃)T̃αβ + (16π)−1Λαβ , (4.43)

where Λαβ is given by

Λαβ = 16π(−g̃)tαβ
LL

+ (H̄αµ,ν H̄βν ,µ −H̄αβ ,µν H̄µν) , (4.44)
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and tαβ
LL
is the Landau-Lifshitz pseudotensor

16π(−g̃)tαβ
LL

≡ g̃λµg̃νρH̄αλ
,ν H̄βµ

,ρ +
1

2
g̃λµg̃αβH̄λν

,ρ H̄ρµ
,ν − 2g̃µν g̃

λ(αH̄β)ν
,ρ H̄ρµ

,λ

+
1

8
(2g̃αλg̃βµ − g̃αβ g̃λµ)(2g̃νρg̃στ − g̃ρσ g̃ντ )H̄

ντ
,λ H̄ρσ

,µ . (4.45)

Because of the gauge condition (4.41), the source term of eq. (4.42) satisfies the conserva-
tion law

ταβ
,β = 0 , (4.46)

which is equivalent to the equations of motion of the matter

∇̃βT̃αβ = 0 . (4.47)

Combining then eqs. (4.42) and (4.46), in the slow motion approximation one easily gets
the usual quadrupole formula (see ref. [1] for details):

H̄ ij(~x, t) =
2

r

[
d2Iij

dt′2

]

t′=t−r

, (4.48)

Iij(t′) =

∫
τ00(~x′, t′)x′ix′jd3x′ , (4.49)

where r2 ≡ ~x ·~x. Note that one can easily relax the slowmotion assumption by including
the octupole terms [151] or even all of the higher order multipoles (the formula is due to
Press [152]).

Eq. (4.48) clearly does not allow one to compute H̄ ij directly, because its right hand
side depends on H̄αβ [cf. eq. (4.43)]. The semirelativistic approximation consists indeed
of pretending that H̄ is “small”: making this assumption, one can neglect, in the expres-
sion (4.43) for the effective stress-energy tensor ταβ , the terms quadratic in H̄αβ and the
terms in which H̄αβ is multiplied by the mass m of the small body. In addition, the
semirelativistic approximation also neglects all of the terms involving the stress-energy
tensor of the fluid: with these assumptions, ταβ can be written as

τ00(~x, t) = mγ(t) δ(3)(~x − ~z(t)) , (4.50)

τ0i(~x, t) = mγ(t) żi(t) δ(3)(~x − ~z(t)) , (4.51)

τ ij(~x, t) = mγ(t)żi(t) żj(t) δ(3)(~x − ~z(t)) , (4.52)

γ ≡ (1 − δij ż
iżj)−1/2 ,

where the dot indicates a derivative with respect to the coordinate time t and the tra-
jectory zi(t) of the small body is obtained by solving the geodesic equations, which are
indeed contained in eq. (4.47). Note that eqs. (4.50)-(4.52) represent the stress-energy ten-
sor of a small body moving along the trajectory zi(t) in a Minkowski spacetime, which
constitutes exactly the assumption on which kludge waveforms are based. In particular,
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the quadrupole moment (4.49) reduces, in the slowmotion approximation, to its textbook
version Iij(t) = mzi(t)zj(t), while analogous simplifications happen for the octupole and
Press formulae (see ref. [12] for details).
Having calculated H̄ ij ≈ h̄ij , it is then a trivial task to project out the gauge invariant
transverse traceless perturbations h+ and h× at infinity (see, for instance, refs. [1, 12] for
details).
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Chapter 5
Testing the Kerr metric with nearly
horizon-skimming orbits?

Experience is simply the name we
give our mistakes.

O. Wilde

In chapters 2, 3 and 4 we have analysed in detail whether the detection of gravitational
waves from EMRIs can permit mapping the spacetime of SMBHs and allow one to de-
tect the presence of astrophysical matter around them. In this chapter we will instead
consider spacetime mapping from another point of view, because we will neglect the
presence of matter and assume the SMBH spacetime is described exactly by the Kerr so-
lution. In particular, we will perform a detailed analysis of orbital motion in the vicinity
of a nearly extremal Kerr black hole, aiming at understanding whether the almost max-
imal SMBH spin could leave a peculiar imprint on the EMRI gravitational waveforms
expected to be detected by LISA, as was conjectured by Hughes in ref. [153].

5.1 Introduction

Although the distribution of spins for observed astrophysical black holes is not very well
known at present, very rapid spin is certainly plausible, as accretion tends to spin-up
SMBHs [154]. Most models for quasi-periodic oscillations (QPOs) suggest this is indeed
the case in all low-mass x-ray binaries for which data is available [155]. On the other
hand, continuum spectral fitting of some high-mass x-ray binaries indicates that mod-
est spins (spin parameter a/M ≡ J/M2 ∼ 0.6 − 0.8) are likewise plausible [156]. The
continuum-fit technique does find an extremely high spin of a/M & 0.98 for the galac-
tic “microquasar” GRS1915+105 [157]. This argues for a wide variety of possible spins,
depending on the detailed birth and growth history of a given black hole.
In the mass range corresponding to black holes in galactic centres, measurements of
the broad iron Kα emission line in active galactic nuclei suggest that SMBHs can be very
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rapidly rotating (see ref. [158] for a recent review). For instance, in the case of MCG-6-
30-15, for which highly accurate observations are available, a has been found to be larger
than 0.987M at 90% confidence [159]. Because gravitational waves from EMRIs are ex-
pected to yield a very precise determination of the spins of SMBHs [43], it is interesting to
investigate whether EMRIs around very rapidly rotating black holes may possess pecu-
liar features which would be observable by LISA. Should such features exist, they would
provide unambiguous information about the spin of SMBHs and thus on themechanisms
leading to their formation [160].

For extremal Kerr black holes (a = M ), the existence of a special class of “circular”
orbits was pointed out long ago byWilkins [161], who named them “horizon-skimming”
orbits. (“Circular” here means that the orbits are at constant Boyer-Lindquist coordinate
radius r.) These orbits have varying inclination angle with respect to the equatorial plane
and have the same coordinate radius as the horizon, r = M . Despite this seemingly haz-
ardous location, it can be shown that all of these r = M orbits have finite separation from
one another and from the event horizon [162]. Their somewhat pathological description
is due to a singularity in the Boyer-Lindquist coordinates, which collapses a finite span
of the spacetime into r = M .

Besides being circular and “horizon-skimming”, these orbits also show peculiar be-
haviour in their relation between angular momentum and inclination. In Newtonian
gravity, a generic orbit has Lz = |L| cos ι, where ι is the inclination angle relative to the
equatorial plane (going from ι = 0 for equatorial prograde orbits to ι = π for equatorial
retrograde orbits, passing through ι = π/2 for polar orbits), and L is the orbital angular
momentum vector. As a result, ∂Lz(r, ι)/∂ι < 0, meaning that the angular momentum
in the z-direction always decreases with increasing inclination if the radius of the orbit is
kept constant. This intuitively reasonable decrease of Lz with ιwhen r is fixed is seen for
almost all black hole orbits as well. Horizon-skimming orbits, by contrast, exhibit exactly
the opposite behaviour: Lz increases with inclination angle.

Hughes, in ref. [153], asked whether the behaviour ∂Lz/∂ι > 0 could be extended to
a broader class of circular orbits than just those at the radius r = M for the spin value
a = M . It was found that this condition is indeed more general, and extended over a
range of radius from the “innermost stable circular orbit” to r ≃ 1.8M for black holes
with a > 0.9524M . Orbits that show this property have been named “nearly horizon-
skimming”. The Newtonian behaviour ∂Lz(r, ι)/∂ι < 0 is recovered for all orbits at
r & 1.8M [153].

A qualitative understanding of this behaviour comes from recalling that very close to
the black hole all physical processes become “locked” to the event horizon of the black
hole [163], with the orbital motion of point particles coupling to the rotation of the hori-
zon. This locking dominates the “Keplerian” tendency of an orbit to move more quickly
at smaller radii, forcing an orbiting particle to slow down in the innermost orbits. Lock-
ing is particularly strong for the most-bound (equatorial) orbits; the least-bound orbits
(which have the largest inclination) do not strongly lock to the black hole spin until they
have very nearly reached the innermost orbit [153]. The property ∂Lz(r, ι)/∂ι > 0 reflects
the different efficiency of nearly horizon-skimming orbits to lock with the horizon.

Hughes argued that this behaviour could have observational consequences [153]. It is
well-known that the inclination angle of an inspiralling body generally increases due to



5.1. Introduction 113

gravitational-wave emission [104, 105]. Since dLz/dt < 0 because of the positive angular
momentum carried away by the gravitational waves, and since “normal” orbits have
∂Lz/∂ι < 0, one would indeed expect dι/dt > 0. However, if during an evolution ∂Lz/∂ι
switches sign, then dι/dt might, in principle, switch sign as well: An inspiralling body
could evolve towards an equatorial orbit, signalling the presence of an “almost-extremal”
Kerr black hole [153].
It should be emphasised that this argument is not rigorous at all. In particular, one
needs to consider the joint evolution of orbital radius and inclination angle; and, one
must include the dependence of these two quantities on orbital energy as well as angular
momentum1. As such, dι/dt depends not only on dLz/dt and ∂Lz/∂ι, but also on dE/dt,
∂E/∂ι, ∂E/∂r and ∂Lz/∂r.
In this sense, the argument made in ref. [153] amounts to claiming that the contribution
coming from dLz/dt and ∂Lz/∂ι are simply the dominant ones. Using the numerical code
described in [105] to compute the fluxes dLz/dt and dE/dt, Hughes then found that a test-
particle on a circular orbit passing through the nearly horizon-skimming region of a Kerr
black hole with a = 0.998M (the value at which the black hole spin tends to be buffered
due to photon capture from thin disk accretion [121]) had its inclination angle decreased
by δι ≈ 1◦ − 2◦ [153] in the adiabatic approximation [36]. It should be noted at this point
that the rate of change of inclination angle, dι/dt, appears as the difference between two
relatively small and expensive to compute rates of change [cf. eq. (3.8) of ref. [105]]. As
such, small relative errors in those rates of change can lead to large relative errors in
dι/dt. Finally, in ref. [153] Hughes speculated that the decrease could be even larger for
eccentric orbits satisfying the condition ∂Lz/∂ι > 0, possibly leading to an observable
imprint on EMRI gravitational waveforms.
Themain purpose of this chapter is to extend the analysis in ref. [153] of nearly horizon-
skimming orbits to include the effect of orbital eccentricity, and to thereby test the spec-
ulation that there may be an observable imprint on EMRI waveforms of nearly horizon-
skimming behaviour. In doing so, we have revisited all of the calculations of ref. [153]
using a more accurate Teukolsky solver, which was coded up by Drasco and Hughes and
which serves as the engine for the analysis presented in ref. [41].
We have found that the critical spin value for circular nearly horizon-skimming or-
bits, a > 0.9524M , also delineates a family of eccentric orbits for which the condition
∂Lz(p, e, ι)/∂ι > 0 holds. (More precisely, we consider variation with respect to an angle
θinc that is easier to work with in the extreme strong field, but that is easily related to ι.)
The parameters p and e are the semi-latus rectum and eccentricity of the orbit, which have
been defined in the chapters 3 and 4 and which we will briefly recall in sec. 5.2. These
generic nearly horizon-skimming orbits all have p . 2M , deep in the extreme strong field
of the black hole.
We next study the evolution of these orbits under gravitational-wave emission in the
adiabatic approximation. We first revisited the evolution of circular, nearly horizon-

1In the general case, one must also include the dependence on the “Carter constant” Q [113], the third
integral of black hole orbits (described more carefully in sec. 5.2). For circular orbits, Q = Q(E, Lz):
knowledge of E and Lz completely determines Q.
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skimming orbits using the improved Teukolsky solver which was used for the analysis of
ref. [41]. The results of this analysis were somewhat surprising: Just as for “normal” or-
bits, we found that orbital inclination always increases during inspiral, even in the nearly
horizon-skimming regime. This is in stark contrast to the claims of ref. [153]. As noted
above, the rate of change of the inclination depends on the difference of two expensive
and difficult to compute numbers, and thus can be strongly impacted by small relative
errors in those numbers. A primary result of this chapter is thus to amend the claim of
ref. [153] that an important dynamic signature of the nearly horizon-skimming region is
a reversal in the sign of inclination angle evolution: The inclination always grows under
gravitational radiation emission.
We next extended this analysis to study the evolution of generic nearly horizon-
skimming orbits. The Teukolsky code to which we have direct access can, at this point,
only compute the radiated fluxes of energy E and angular momentum Lz ; results for the
evolution of the Carter constant Q are just now beginning to be understood [135], and
have not yet been incorporated into this code. We instead use “kludge” expressions for
dE/dt, dLz/dt, and dQ/dt which were inspired by refs. [148, 119]. These expressions are
based on post-Newtonian flux formulae, but we modify them in such a way that they fit
strong-field radiation reaction results obtained from a Teukolsky integrator; see ref. [119]
for further discussion. Our analysis indicates that, just as in the circular limit, the result
dι/dt > 0 holds for generic nearly horizon-skimming orbits. Furthermore, and contrary
to the speculation of ref. [153], we do not find a large amplification of dι/dt as orbits are
made more eccentric.
Our conclusion is that the nearly horizon-skimming regime, though an interesting cu-
riosity of strong-field orbits of nearly extremal black holes, will not imprint any peculiar
observational signature on EMRI waveforms.
The remainder of this chapter is organised as follows. In sec. 5.2, we review the proper-
ties of bound stable orbits in Kerr spacetimes, providing expressions for the constants of
motion which we will use in sec. 5.3 to generalise nearly horizon-skimming orbits to the
non-circular case. In sec. 5.4, we study the evolution of the inclination angle for circular
nearly horizon-skimming orbits using Teukolsky-based fluxes; in sec. 5.5 we do the same
for non-circular orbits and using kludge fluxes. We present and discuss our detailed con-
clusions in sec. 5.6. The fits and post-Newtonian fluxes used for the kludge fluxes are
presented in the Appendix.

5.2 Bound stable orbits in Kerr spacetimes

The line element of a Kerr spacetime, written in Boyer-Lindquist coordinates is [1]

ds2 = −
(

1 − 2Mr

Σ

)
dt2 +

Σ

∆
dr2 + Σ dθ2

+

(
r2 + a2 +

2Ma2r

Σ
sin2 θ

)
sin2 θ dφ2 − 4Mar

Σ
sin2 θ dt dφ, (5.1)
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where
Σ ≡ r2 + a2 cos2 θ, ∆ ≡ r2 − 2Mr + a2. (5.2)

Up to initial conditions, geodesics can then be labelled by four constants of motion: the
mass µ of the test particle, its energy E and angular momentum Lz as measured by an
observer at infinity and the Carter constantQ [113]. The presence of these four conserved
quantities makes the geodesic equations separable in Boyer-Lindquist coordinates. Intro-
ducing the Carter time λ, defined by

dτ

dλ
≡ Σ , (5.3)

the geodesic equations become

(
µ

dr

dλ

)2

= Vr(r), µ
dt

dλ
= Vt(r, θ),

(
µ

dθ

dλ

)2

= Vθ(θ), µ
dφ

dλ
= Vφ(r, θ) , (5.4)

with

Vt(r, θ) ≡ E

(
̟4

∆
− a2 sin2 θ

)
+ aLz

(
1 − ̟2

∆

)
, (5.5a)

Vr(r) ≡
(
E̟2 − aLz

)2 − ∆
[
µ2r2 + (Lz − aE)2 + Q

]
, (5.5b)

Vθ(θ) ≡ Q − L2
z cot2 θ − a2(µ2 − E2) cos2 θ, (5.5c)

Vφ(r, θ) ≡ Lz csc2 θ + aE

(
̟2

∆
− 1

)
− a2Lz

∆
, (5.5d)

where we have defined
̟2 ≡ r2 + a2 . (5.6)

The conserved parameters E, Lz , and Q can be remapped to other parameters that
describe the geometry of the orbit. We have found it useful to describe the orbit in terms
of an angle θmin — the minimum polar angle reached by the orbit — as well as the semi-
latus rectum p and the eccentricity e. In the weak-field limit, p and e correspond exactly
to the semi-latus rectum and eccentricity used to describe orbits in Newtonian gravity;
in the strong field, they are essentially just a convenient remapping of the apoastron and
periastron of the orbit:

rap ≡ p

1 − e
, rperi ≡

p

1 + e
. (5.7)

Finally, in much of our analysis, it is useful to refer to

z− ≡ cos2 θmin , (5.8)
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rather than to θmin directly.

To map (E, Lz, Q) to (p, e, z−), one uses eq. (5.4) to impose dr/dλ = 0 at r = rap and
r = rperi, and to impose dθ/dλ = 0 at θ = θmin. (Note that for a circular orbit, rap = rperi =
r0. In this case, one must apply the conditions dr/dλ = 0 and d2r/dλ2 = 0 at r = r0.)
Following this approach, Schmidt [116] was able to derive explicit expressions for E, Lz

and Q in terms of p, e and z−. We now briefly review Schmidt’s results.

Let us first introduce the dimensionless quantities

Ẽ ≡ E/µ , L̃z ≡ Lz/(µM) , Q̃ ≡ Q/(µM)2 , (5.9)

ã ≡ a/M , r̃ ≡ r/M , ∆̃ ≡ ∆/M2 , (5.10)

and the functions

f(r̃) ≡ r̃4 + ã2
[
r̃(r̃ + 2) + z−∆̃

]
, (5.11)

g(r̃) ≡ 2 ã r̃ , (5.12)

h(r̃) ≡ r̃(r̃ − 2) +
z−

1 − z−
∆̃ , (5.13)

d(r̃) ≡ (r̃2 + ã2z−)∆̃ . (5.14)

Let us further define the set of functions

(f1, g1, h1, d1) ≡
{

(f(r̃p), g(r̃p), h(r̃p), d(r̃p)) if e > 0 ,
(f(r̃0), g(r̃0), h(r̃0), d(r̃0)) if e = 0 ,

(5.15)

(f2, g2, h2, d2) ≡
{

(f(r̃a), g(r̃a), h(r̃a), d(r̃a)) if e > 0 ,
(f ′(r̃0), g

′(r̃0), h
′(r̃0), d

′(r̃0)) if e = 0 ,
(5.16)

and the determinants

κ ≡ d1h2 − d2h1 , (5.17)

ε ≡ d1g2 − d2g1 , (5.18)

ρ ≡ f1h2 − f2h1 , (5.19)

η ≡ f1g2 − f2g1 , (5.20)

σ ≡ g1h2 − g2h1 . (5.21)

The energy of the particle can then be written

Ẽ =

√
κρ + 2ǫσ − 2D

√
σ(σǫ2 + ρǫκ − ηκ2)

ρ2 + 4ησ
. (5.22)
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The parameterD takes the values±1. The angular momentum is a solution of the system

f1Ẽ
2 − 2g1ẼL̃z − h1L̃

2
z − d1 = 0 , (5.23)

f2Ẽ
2 − 2g2ẼL̃z − h2L̃

2
z − d2 = 0 . (5.24)

By eliminating the L̃2
z terms in these equations, one finds the solution

L̃z =
ρẼ2 − κ

2Ẽσ
(5.25)

for the angular momentum. Using dθ/dλ = 0 at θ = θmin, the Carter constant can be
written

Q̃ = z−

[
ã2(1 − Ẽ2) +

L̃2
z

1 − z−

]
. (5.26)

Additional constraints on p, e, z− are needed for the orbits to be stable. Inspection of
eq. (5.4) shows that an eccentric orbit is stable only if

∂Vr

∂r
(rperi) > 0 . (5.27)

It is marginally stable if ∂Vr/∂r = 0 at r = rperi. Similarly, the stability condition for
circular orbits is

∂2Vr

∂r2
(r0) < 0 ; (5.28)

marginally stable orbits are set by ∂2Vr/∂r2 = 0 at r = r0.

Finally, we note that one can manipulate the above solutions for the conserved orbital
quantities of bound stable orbits to rewrite the solution for L̃z as

L̃z = −g1Ẽ

h1
+

D

h1

√
g2
1Ẽ

2 + (f1Ẽ2 − d1)h1 . (5.29)

From this solution, we see that it is quite natural to refer to orbits with D = 1 as prograde
and to orbits with D = −1 as retrograde. Note also that eq. (5.29) is a more useful form
than the corresponding expression, eq. (A4), of ref. [41]. In that expression, the factor
1/h1 has been squared and moved inside the square root. This obscures the fact that h1

changes sign for very strong field orbits. Differences between eq. (5.29) and eq. (A4) of
[41] are apparent for a & 0.835, although only for orbits close to the separatrix (i.e., the
surface in the parameter space (p, e, ι) where marginally stable bound orbits lie).

5.3 Non-circular nearly horizon-skimming orbits

With explicit expressions for E, Lz and Q as functions of p, e and z−, we now examine
how to generalise the condition ∂Lz(r, ι)/∂ι > 0, which defined circular nearly horizon-
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Figure 5.1: Left panel: Inclination angles θinc for which bound stable orbits exist for a black hole with
spin a = 0.998M . The allowed range for θinc goes from θinc = 0 to the curve corresponding
to the eccentricity under consideration, θinc = θmax

inc . Right panel: Same as the left panel but
for an extremal black hole, a = M . Note that in this case θmax

inc never reaches zero.

skimming orbits in ref. [153], to encompass the non-circular case. We recall that the incli-
nation angle ι is defined as [153]

cos ι =
Lz√

Q + L2
z

. (5.30)

Such a definition is not always easy to handle in the case of eccentric orbits. In addition,
ι does not have an obvious physical interpretation (even in the circular limit), but rather
was introduced essentially to generalise (at least formally) the definition of inclination
for Schwarzschild black hole orbits. In that case, one has Q = L2

x + L2
y and therefore

Lz = |L| cos ι.

A more useful definition for the inclination angle in a Kerr spacetime was introduced
in ref. [41]:

θinc =
π

2
− D θmin , (5.31)

where θmin is the minimum reached by θ during the orbital motion. This angle is trivially
related to z− (z− = sin2 θinc) and ranges from 0 to π/2 for prograde orbits and from π/2
to π for retrograde orbits. It is a simple numerical calculation to convert between ι and
θinc; doing so shows that the differences between ι and θinc are very small, with the two
coinciding for a = 0, and with a difference that is less than 2.6◦ for a = M and circular
orbits with r = M .
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Figure 5.2: Left panel: Non-circular nearly horizon-skimming orbits for a = 0.998M . The heavy
solid line indicates the separatrix between stable and unstable orbits for equatorial orbits
(ι = θinc = 0). All orbits above and to the left of this line are unstable. The dot-dashed
line (green in the colour version) bounds the region of the (p, e)-plane where ∂Lz/∂θinc > 0
for all allowed inclination angles (“Region A”). All orbits between this line and the sep-
aratrix belong to Region A. The dotted line (red in the colour version) bounds the region
(Lz)most bound < (Lz)least bound (“Region B”). Note that B includes A. The dashed line (blue
in the colour version) bounds the region where ∂Lz/∂θinc > 0 for at least one inclination
angle (“Region C”); note that C includes B. All three of these regions are candidate generali-
sations of the notion of nearly horizon-skimming orbits. Right panel: Same as the left panel,
but for the extreme spin case, a = M . In this case the separatrix between stable and unstable
equatorial orbits is given by the line p/M = 1 + e.

Bearing all this in mind, the condition which we have adopted to generalise nearly
horizon-skimming orbits is

∂Lz(p, e, θinc)

∂θinc
> 0 . (5.32)

We have found that certain parts of this calculation, particularly the analysis of strong-
field geodesic orbits, are best done using the angle θinc; other parts are more simply done
using the angle ι, particularly the “kludge” computation of fluxes described in sec. 5.5.
(This is because the kludge fluxes are based on an extension of post-Newtonian formulae
to the strong-field regime, and these formulae use ι for inclination angle.) Accordingly,
we often switch back and forth between these two notions of inclination, and in fact
present our final results for inclination evolution using both dι/dt and dθinc/dt.

Before mapping out the region corresponding to nearly horizon-skimming orbits, it
is useful to examine stable orbits more generally in the strong field of rapidly rotating



120 Chapter 5. Testing the Kerr metric with nearly horizon-skimming orbits?

black holes. We first fix a value for a, and then discretise the parameter space (p, e, θinc).
We next identify the points in this space corresponding to bound stable geodesic orbits.
Sufficiently close to the horizon, the bound stable orbits with specified values of p and e
have an inclination angle θinc ranging from 0 (equatorial orbit) to a maximum value θmax

inc .
For given p and e, θmax

inc defines the separatrix between stable and unstable orbits.
Example separatrices are shown in Fig. 5.1 for a = 0.998M and a = M . This figure
shows the behaviour of θmax

inc as a function of the semi-latus rectum for the different values
of the eccentricity indicated by the labels. Note that for a = 0.998M the angle θmax

inc

eventually goes to zero. This is the general behaviour for a < M . On the other hand,
for an extremal black hole, a = M , θmax

inc never goes to zero. The orbits which reside at
r = M (the circular limit) are the “horizon-skimming orbits” identified by Wilkins [161];
the a = M separatrix has a similar shape even for eccentric orbits. As expected, we find
that for given semi-latus rectum and eccentricity the orbit with θinc = 0 is the one with the
lowest energy E (and hence is the most-bound orbit), whereas the orbit with θinc = θmax

inc

has the highest E (and is least bound).
Having mapped out stable orbits in (p, e, θinc) space, we then computed the partial
derivative ∂Lz(p, e, θinc)/∂θinc and identified the following three overlapping regions:

• Region A: The portion of the (p, e) plane for which ∂Lz(p, e, θinc)/∂θinc > 0 for 0 ≤
θinc ≤ θmax

inc . This region is illustrated in Fig. 5.2 as the area under the heavy solid
line and to the left of the dot-dashed line (green in the colour version).

• Region B: The portion of the (p, e) plane for which (Lz)most bound(p, e) is smaller than
(Lz)least bound(p, e). In other words,

Lz(p, e, 0) < Lz(p, e, θmax
inc ) (5.33)

in Region B. Note that Region B contains Region A. It is illustrated in Fig. 5.2 as the
area under the heavy solid line and to the left of the dotted line (red in the colour
version).

• Region C: The portion of the (p, e) plane for which ∂Lz(p, e, θinc)/∂θinc > 0 for at
least one angle θinc between 0 and θmax

inc . Region C contains Region B, and is illus-
trated in Fig. 5.2 as the area under the heavy solid line and to the left of the dashed
line (blue in the colour version).

Orbits in any of these three regions give possible generalisations of the nearly horizon-
skimming circular orbits presented in ref. [153]. Notice, as illustrated in Fig. 5.2, that
the size of these regions depends rather strongly on the spin of the black hole. All three
regions disappear altogether for a < 0.9524M (in agreement with [153]); their sizes grow
with a, reaching maximal extent for a = M . These regions never extend beyond p ≃ 2M .
As we shall see, the difference between these three regions is not terribly important for
assessing whether there is a strong signature of the nearly horizon-skimming regime on
the inspiral dynamics. In view of this, it is perhaps most useful to use Region C as our
definition, since it is the most inclusive.
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5.4 Evolution of θinc: circular orbits

To ascertain whether nearly horizon-skimming orbits can affect an EMRI in such a way
as to leave a clear imprint in the gravitational-wave signal, we have studied the time
evolution of the inclination angle θinc. For doing this, we have used the so-called adia-
batic approximation [36], in which the infalling bodymoves along a geodesic with slowly
changing parameters. The evolution of the orbital parameters is computed using the
time-averaged fluxes dE/dt, dLz/dt and dQ/dt due to gravitational-wave emission (“ra-
diation reaction”). As discussed in sec. 5.2, E, Lz and Q can be expressed in terms of p, e,
and θinc. Given rates of change ofE, Lz andQ, it is then straightforward [148] to calculate
dp/dt, de/dt, and dθinc/dt (or dι/dt).
We should note that although it is perfectlywell-behaved for all bound stable geodesics,
the adiabatic approximation breaks down in a small region of the orbital parameter space
very close to the separatrix, where the transition from an inspiral to a plunging orbit takes
place [164]. However, since this region is expected to be very small2 and its impact on
LISA waveforms rather hard to detect [164], we expect our results to be at least qualita-
tively correct also in this region of the parameter space.
Accurate calculation of dE/dt and dLz/dt in the adiabatic approximation involves solv-
ing the Teukolsky and Sasaki-Nakamura equations [120]. For generic orbits this has been
done for the first time in ref. [41]. The calculation of dQ/dt for generic orbits is more
involved. As already mentioned, a formula for dQ/dt has been derived [135], but has not
yet been implemented (at least in a code to which we have access).
On the other hand, it is well-known that a circular orbit will remain circular under
radiation reaction [115, 114, 165]. This constraint means that Teukolsky-based fluxes for
E and Lz are sufficient to compute dQ/dt. Considering this limit, the rate of change
dQ/dt can be expressed in terms of dE/dt and dL/dt as

(
dQ

dt

)

circ

= −N1(p, ι)

N5(p, ι)

(
dE

dt

)

circ

− N4(p, ι)

N5(p, ι)

(
dLz

dt

)

circ

(5.34)

where

N1(p, ι) ≡ E(p, ι) p4 + a2 E(p, ι) p2 − 2 a M (Lz(p, ι) − a E(p, ι)) p , (5.35)

N4(p, ι) ≡ (2M p − p2)Lz(p, ι) − 2 M a E(p, ι) p , (5.36)

N5(p, ι) ≡ (2M p − p2 − a2)/2 . (5.37)

(These quantities are for a circular orbit of radius p.) Using this, it is simple to compute
dθinc/dt (or dι/dt).
This procedure was followed in ref. [153], using the code presented in ref. [105], to
determine the evolution of ι; this analysis indicated that dι/dt < 0 for circular nearly
horizon-skimming orbits. As a first step to our more general analysis, we have repeated

2Its width in p/M is expected to be of the order of∆p/M ∼ (µ/M)2/5, where µ is the mass of the infalling
body [164].
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this calculation but using the improved Sasaki-Nakamura-Teukolsky code presented in
ref. [41]; we focused on the case a = 0.998M .

Rather to our surprise, we discovered that the fluxes dE/dt and dLz/dt computed with
this more accurate code indicate that dι/dt > 0 (and dθinc/dt > 0) for all circular nearly
horizon-skimming orbits — in contrast with what was found in ref. [153]. As mentioned
in the introduction, the rate of change of inclination angle appears as the difference of two
quantities. These quantities nearly cancel (and indeed cancel exactly in the limit a = 0);
as such, small relative errors in their values can lead to large relative error in the inferred
inclination evolution. Values for dE/dt, dLz/dt, dι/dt, and dθinc/dt computed using the
present code are shown in Table 5.1 in the columns with the header “Teukolsky”.

5.5 Evolution of θinc: non-circular orbits

The corrected behaviour of circular nearly horizon-skimming orbits has naturally led us
to investigate the evolution of non-circular nearly horizon-skimming orbits. Since our
code cannot be used to compute dQ/dt, we have resorted to a “kludge” approach, based
on those described in refs. [148, 119]. In particular, wemostly follow the procedure devel-
oped by Gair & Glampedakis [119], although (as described below) importantly modified.

The basic idea of the “kludge” procedure is to use the functional form of 2PN fluxes E,
Lz and Q, but to correct the circular part of these fluxes using fits to circular Teukolsky
data. As developed in ref. [119], the fluxes are

(
dE

dt

)

GG

=

(1 − e2)3/2
[
(1 − e2)−3/2

(
dE

dt

)

2PN

(p, e, ι) −
(

dE

dt

)

2PN

(p, 0, ι) +

(
dE

dt

)

fit circ

(p, ι)
]

, (5.38)

(
dLz

dt

)

GG

=

(1 − e2)3/2
[
(1 − e2)−3/2

(
dLz

dt

)

2PN

(p, e, ι) −
(

dLz

dt

)

2PN

(p, 0, ι) +

(
dLz

dt

)

fit circ

(p, ι)
]

, (5.39)

(
dQ

dt

)

GG

= (1 − e2)3/2
√

Q(p, e, ι) ×
[
(1 − e2)−3/2

(
dQ/dt√

Q

)

2PN

(p, e, ι) −
(

dQ/dt√
Q

)

2PN

(p, 0, ι) +

(
dQ/dt√

Q

)

fit circ

(p, ι)

]
. (5.40)

The post-Newtonian fluxes (dE/dt)2PN, (dLz/dt)2PN and (dQ/dt)2PN are given in the Ap-
pendix [eqs. (5.45), (5.46), and (5.47)].
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Since for circular orbits the fluxes dE/dt, dLz/dt and dQ/dt are related through eq.
(5.34), only two fits to circular Teukolsky data are needed. One possible choice is to fit
dLz/dt and dι/dt, and then use the circularity constraint to obtain3 [119]

(
dQ/dt√

Q

)

fit circ

(p, ι) = 2 tan ι

[(
dLz

dt

)

fit circ

+

√
Q(p, 0, ι)

sin2 ι

(
dι

dt

)

fit circ

]
, (5.41)

(
dE

dt

)

fit circ

(p, ι) = −N4(p, ι)

N1(p, ι)

(
dLz

dt

)

fit circ

(p, ι) − N5(p, ι)

N1(p, ι)

√
Q(p, 0, ι)

(
dQ/dt√

Q

)

fit circ

(p, ι) . (5.42)

As stressed in ref. [119], one does not expect these fluxes to work well in the strong
field, both because the post-Newtonian approximation breaks down close to the black
hole, and because the circular Teukolsky data used for the fits in ref. [119] was computed
for 3M ≤ p ≤ 30M . As a first attempt to improve their behaviour in the nearly horizon-
skimming region, we have made fits using circular Teukolsky data for orbits with M <
p ≤ 2M . In particular, for a black hole with a = 0.998M , we computed the circular
Teukolsky-based fluxes dLz/dt and dι/dt listed in Table 5.1 (columns 8 and 10). These
results were fitted with error . 0.2%, and the fits are given by eqs. (5.48) and (5.49) in the
Appendix.

Despite using strong-field Teukolsky fluxes for our fit, we found fairly poor behaviour
of these rates of change, particularly as a function of eccentricity. To compensate for this,
we introduced a kludge-type fit to correct the equatorial part of the flux, in addition to
the circular part. We fitted, as a function of p and e, Teukolsky-based fluxes for dE/dt
and dLz/dt for orbits in the equatorial plane, and then introduced the following kludge
fluxes for E and Lz :

dE

dt
(p, e, ι) =

(
dE

dt

)

GG

(p, e, ι) −
(

dE

dt

)

GG

(p, e, 0) +

(
dE

dt

)

fit eq

(p, e) (5.43)

dLz

dt
(p, e, ι) =

(
dLz

dt

)

GG

(p, e, ι) −
(

dLz

dt

)

GG

(p, e, 0) +

(
dLz

dt

)

fit eq

(p, e) . (5.44)

[Note that eq. (5.40) for dQ/dt is not modified by this procedure since dQ/dt = 0 for
equatorial orbits.] Using equatorial non-circular Teukolsky data provided by Drasco [41,
166] for a = 0.998 and M < p ≤ 2M (the ι = 0 “Teukolsky” data in Tables 5.2, 5.3
and 5.4), we found fits (with error . 1.5%); see eqs. (5.52) and (5.53). Note that the fits
for equatorial fluxes are significantly less accurate than the fits for circular fluxes. This
appears to be due to the fact that, close to the black hole, many harmonics are needed
in order for the Teukolsky-based fluxes to converge, especially for eccentric orbits (cf.
Figs. 2 and 3 of ref. [41], noting the number of radial harmonics that have significant
contribution to the flux). Truncation of these sums is probably a source of some error in

3This choice might seem more involved than fitting directly dLz/dt and dQ/dt, but, as noted by Gair &
Glampedakis, it ensures more sensible results for the evolution of the inclination angle. This generates
more physically realistic inspirals [119].
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the fluxes themselves, making it difficult to make a fit of as high quality as we could in
the circular case.

These fits were then finally used in eqs. (5.43) and (5.44) to calculate the kludge fluxes
dE/dt and dLz/dt for generic orbits. This kludge reproduces to high accuracy our fits to
the Teukolsky-based fluxes for circular orbits (e = 0) or equatorial orbits (ι = 0). Some
residual error remains because the ι = 0 limit of the circular fits does not precisely equal
the e = 0 limit of the equatorial fits.

Table 5.1 compares our kludge to Teukolsky-based fluxes for circular orbits; the two
methods agree to several digits. Tables 5.2, 5.3 and 5.4 compare our kludge to the generic
Teukolsky-based fluxes for dE/dt and dLz/dt provided by Drasco [41, 166]. In all cases,
the kludge fluxes dE/dt and dLz/dt have the correct qualitative behaviour, being nega-
tive for all of the orbital parameters under consideration (a = 0.998M , 1 < p/M ≤ 2,
0 ≤ e ≤ 0.5 and 0◦ ≤ ι ≤ 41◦). The relative difference between the kludge and Teukolsky
fluxes is always less than 25% for e = 0 and e = 0.1 (even for orbits very close to sepa-
ratrix). The accuracy remains good at larger eccentricity, although it degrades somewhat
as orbits come close to the separatrix.

Tables 5.1, 5.2, 5.3 and 5.4 also present the kludge values of dι/dt and dθinc/dt as com-
puted using eqs. (5.43) and (5.44) for dE/dt and dLz/dt, plus eq. (5.40) for dQ/dt. Al-
though certainly not the last word on inclination evolution (pending rigorous computa-
tion of dQ/dt), these rates of change probably represent a better approximation than the
results published to date in the literature. (Indeed, prior work has often used the crude
approximation dι/dt = 0 [41] to estimate dQ/dt given dE/dt and dLz/dt.)

Most significantly, we find that (dι/dt)kludge > 0 and (dθinc/dt)kludge > 0 for all of the
orbital parameters which we consider. In other words, we find that dι/dt and dθinc/dt
never change sign.

Finally, in Table 5.5 we compute the changes in θinc and ι for the inspiral with mass
ratio µ/M = 10−6. In all cases, we start at p/M = 1.9. The small body then inspirals
through the nearly horizon-skimming region until it reaches the separatrix; at this point,
the small body will fall into the large black hole in a dynamical timescale ∼ M , and
so we terminate the calculation. The evolution of circular orbits is computed using our
fits to the circular-Teukolsky fluxes of E and Lz ; for eccentric orbits we use the kludge
fluxes (5.40), (5.43) and (5.44). As this exercise demonstrates, the change in inclination
during inspiral is never larger than a few degrees. Not only is there no sign change in the
nearly horizon-skimming region, but the magnitude of the inclination change remains
very small. This leaves little room for the possibility that this class of orbits may have a
clear observational imprint on the EMRI-waveforms to be detected by LISA.

5.6 Conclusions

We have performed a detailed analysis of the orbital motion near to the horizon of near-
extremal Kerr black holes. We have demonstrated the existence of a class of orbits, which
we have named “non-circular nearly horizon-skimming orbits”, for which the angular
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momentum Lz increases with the inclination of the orbit, while keeping the semi-latus
rectum and eccentricity fixed. This behaviour, in contrast to that of Newtonian orbits,
generalises earlier results for circular orbits [153].

Furthermore, to assess whether this class of orbits can produce a unique imprint on
EMRIwaveforms (an important source for future LISA observations), we have studied, in
the adiabatic approximation, the radiative evolution of inclination angle for a small body
orbiting in the nearly horizon-skimming region. For circular orbits, we have re-examined
the analysis of ref. [153] using an improved code for computing Teukolsky-based fluxes
of the energy and angular momentum. Significantly correcting the results of ref. [153],
we found no decrease in the inclination angle of the orbit. Inclination always increases
during inspiral.

We next carried out a similar analysis for eccentric nearly horizon-skimming orbits.
In this case, we used “kludge” fluxes to evolve the constants of motion E, Lz and Q
[119]. We found that these fluxes are fairly accurate when compared with the available
Teukolsky-based fluxes, indicating that they should provide at least qualitatively correct
information regarding inclination evolution. As for circular orbits, we found that the
orbital inclination never decreases. For both circular and non-circular orbits, we found
that the magnitude of the inclination change is quite small — only a few degrees at most.

Quite generically, therefore, we found that the inclination angle of both circular and
eccentric nearly horizon-skimming orbits never decreases during the inspiral. Revising
the results obtained in ref. [153], we thus conclude that such orbits are not likely to yield
a peculiar, unique imprint on the EMRI-waveforms detectable by LISA.

Appendix

In this Appendix we report the expressions for the post-Newtonian fluxes and the fits to
the Teukolsky data necessary for computing the kludge fluxes introduced in sec. 5.5. In
particular the 2PN fluxes are given by [119]
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(
dQ

dt

)

2PN

= −64

5

µ2

M

(
M

p

)7/2 √
Q sin ι (1 − e2)3/2 ×

[
g9(e) − ã
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where µ is the mass of the infalling body and where the various e-dependent coefficients
are

g1(e) ≡ 1 +
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24
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12
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24
e2 +
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The fits to the circular-Teukolsky data of Table 5.1 are instead given by
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where

d̃i(x) ≡ ai
d + bi

d x−1/2 + ci
d x−1 , i = 1, . . . , 8,

h̃i(x) ≡ ai
h + bi

h x−1/2 , i = 1, 2 (5.50)

and the numerical coefficients are given by

a1
h = −278.9387 , b1

h = 84.1414 , a2
h = 8.6679 ,

b2
h = −9.2401 , A = −18.3362 , B = 24.9034 , (5.51)

and by the following table

i 1 2 3 4 5 6 7 8

ai
d 15.8363 445.4418 −2027.7797 3089.1709 −2045.2248 498.6411 −8.7220 50.8345

bi
d −55.6777 −1333.2461 5940.4831 −9103.4472 6113.1165 −1515.8506 −50.8950 −131.6422

ci
d 38.6405 1049.5637 −4513.0879 6926.3191 -4714.9633 1183.5875 251.4025 83.0834

Note that the functional form of these fits was obtained from eqs. (57) and (58) of
ref. [119] by setting ã (i.e., q in their notation) to 1. Finally, we give expressions for the fits
to the equatorial Teukolsky data of tables 5.2, 5.3 and 5.4 (data with ι = 0, columns with
header “Teukolsky”):
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g̃i(e) ≡ ai
g + bi

g e2 + ci
g e4 +di

g e6 , f̃i(e) ≡ ai
f + bi

f e2 + ci
f e4 +di

f e6 , i = 1, . . . , 5 (5.54)

where the numerical coefficients are given by the following table

i ai
g bi

g ci
g di

g ai
f bi

f ci
f di

f

1 6.4590 −2038.7301 6639.9843 227709.2187 5.4577 −3116.4034 4711.7065 214332.2907

2 -31.2215 10390.6778 −27505.7295 −1224376.5294 −26.6519 15958.6191 −16390.4868 −1147201.4687

3 57.1208 −19800.4891 39527.8397 2463977.3622 50.4374 -30579.3129 15749.9411 2296989.5466

4 -49.7051 16684.4629 −21714.7941 −2199231.9494 −46.7816 25968.8743 656.3460 −2038650.9838

5 16.4697 −5234.2077 2936.2391 734454.5696 15.6660 −8226.3892 −4903.9260 676553.2755
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(deg.) (deg.) (kludge) (Teukolsky) (kludge) (Teukolsky) (kludge) (Teukolsky) (kludge) (Teukolsky)

1.3 0 0 0 −9.108×10−2 −9.109×10−2 −2.258×10−1 −2.259×10−1 0 0 0 0
1.3 0 10.4870 11.6773 −9.328×10−2 −9.332×10−2 −2.304×10−1 −2.306×10−1 1.837×10−2 1.839×10−2 6.462×10−3 6.475×10−3

1.3 0 14.6406 16.1303 −9.588×10−2 −9.588×10−2 −2.359×10−1 −2.360×10−1 2.397×10−2 2.400×10−2 8.645×10−3 8.667×10−3

1.3 0 17.7000 19.3172 −9.875×10−2 −9.876×10−2 −2.420×10−1 −2.421×10−1 2.728×10−2 2.731×10−2 1.007×10−2 1.010×10−2

1.3 0 20.1636 21.8210 −1.019×10−1 −1.019×10−1 −2.486×10−1 −2.488×10−1 2.943×10−2 2.950×10−2 1.111×10−2 1.117×10−2

1.4 0 0 0 −8.700×10−2 −8.709×10−2 −2.311×10−1 −2.312×10−1 0 0 0 0
1.4 0 14.5992 16.0005 −9.062×10−2 −9.070×10−2 −2.386×10−1 −2.386×10−1 2.316×10−2 2.319×10−2 8.823×10−3 8.848×10−3

1.4 0 20.1756 21.7815 −9.520×10−2 −9.526×10−2 −2.482×10−1 −2.482×10−1 2.875×10−2 2.877×10−2 1.141×10−2 1.143×10−2

1.4 0 24.1503 25.7517 −1.006×10−1 −1.007×10−1 −2.595×10−1 −2.596×10−1 3.140×10−2 3.141×10−2 1.289×10−2 1.288×10−2

1.4 0 27.2489 28.7604 −1.067×10−1 −1.068×10−1 −2.725×10−1 −2.725×10−1 3.274×10−2 3.275×10−2 1.378×10−2 1.377×10−2

1.5 0 0 0 −8.009×10−2 −7.989×10−2 −2.270×10−1 −2.265×10−1 0 0 0 0
1.5 0 16.7836 18.1857 −8.401×10−2 −8.383×10−2 −2.348×10−1 −2.343×10−1 2.360×10−2 2.351×10−2 9.602×10−3 9.545×10−3

1.5 0 23.0755 24.6167 −8.917×10−2 −8.897×10−2 −2.454×10−1 −2.449×10−1 2.872×10−2 2.863×10−2 1.228×10−2 1.222×10−2

1.5 0 27.4892 28.9670 −9.537×10−2 −9.516×10−2 −2.583×10−1 −2.579×10−1 3.091×10−2 3.082×10−2 1.372×10−2 1.367×10−2

1.5 0 30.8795 32.2231 −1.025×10−1 −1.023×10−1 −2.733×10−1 −2.728×10−1 3.184×10−2 3.173×10−2 1.452×10−2 1.443×10−2

1.6 0 0 0 −7.181×10−2 −7.156×10−2 −2.168×10−1 −2.162×10−1 0 0 0 0
1.6 0 18.3669 19.7220 −7.568×10−2 −7.545×10−2 −2.242×10−1 −2.237×10−1 2.240×10−2 2.229×10−2 9.600×10−3 9.515×10−3

1.6 0 25.1720 26.6245 −8.084×10−2 −8.062×10−2 −2.346×10−1 −2.341×10−1 2.701×10−2 2.685×10−2 1.223×10−2 1.210×10−2

1.6 0 29.9014 31.2625 −8.708×10−2 −8.687×10−2 −2.474×10−1 −2.470×10−1 2.889×10−2 2.872×10−2 1.363×10−2 1.349×10−2

1.6 0 33.5053 34.7164 −9.425×10−2 −9.399×10−2 −2.622×10−1 −2.616×10−1 2.964×10−2 2.951×10−2 1.441×10−2 1.432×10−2

1.7 0 0 0 −6.332×10−2 −6.317×10−2 −2.034×10−1 −2.031×10−1 0 0 0 0
1.7 0 19.6910 20.9859 −6.702×10−2 −6.687×10−2 −2.101×10−1 −2.098×10−1 2.057×10−2 2.052×10−2 9.202×10−3 9.171×10−3

1.7 0 26.9252 28.2884 −7.197×10−2 −7.184×10−2 −2.199×10−1 −2.196×10−1 2.467×10−2 2.456×10−2 1.170×10−2 1.162×10−2

1.7 0 31.9218 33.1786 −7.794×10−2 −7.782×10−2 −2.319×10−1 −2.316×10−1 2.632×10−2 2.620×10−2 1.306×10−2 1.296×10−2

1.7 0 35.7100 36.8118 −8.475×10−2 −8.465×10−2 −2.457×10−1 −2.455×10−1 2.698×10−2 2.686×10−2 1.384×10−2 1.373×10−2

1.8 0 0 0 −5.531×10−2 −5.528×10−2 −1.888×10−1 −1.887×10−1 0 0 0 0
1.8 0 20.8804 22.1128 −5.879×10−2 −5.874×10−2 −1.948×10−1 −1.946×10−1 1.858×10−2 1.858×10−2 8.635×10−3 8.639×10−3

1.8 0 28.5007 29.7791 −6.343×10−2 −6.336×10−2 −2.036×10−1 −2.035×10−1 2.221×10−2 2.223×10−2 1.098×10−2 1.101×10−2

1.8 0 33.7400 34.9034 −6.901×10−2 −6.894×10−2 −2.146×10−1 −2.144×10−1 2.368×10−2 2.371×10−2 1.228×10−2 1.232×10−2

1.8 0 37.6985 38.7065 −7.533×10−2 −7.533×10−2 −2.271×10−1 −2.271×10−1 2.429×10−2 2.427×10−2 1.306×10−2 1.303×10−2

1.9 0 0 0 −4.809×10−2 −4.811×10−2 −1.740×10−1 −1.740×10−1 0 0 0 0
1.9 0 21.9900 23.1615 −5.132×10−2 −5.134×10−2 −1.792×10−1 −1.793×10−1 1.666×10−2 1.664×10−2 8.022×10−3 8.007×10−3

1.9 0 29.9708 31.1702 −5.562×10−2 −5.564×10−2 −1.872×10−1 −1.872×10−1 1.986×10−2 1.987×10−2 1.019×10−2 1.020×10−2

1.9 0 35.4385 36.5176 −6.078×10−2 −6.077×10−2 −1.971×10−1 −1.970×10−1 2.118×10−2 2.122×10−2 1.143×10−2 1.148×10−2

1.9 0 39.5592 40.4847 −6.659×10−2 −6.658×10−2 −2.082×10−1 −2.082×10−1 2.177×10−2 2.182×10−2 1.222×10−2 1.228×10−2

2.0 0 0 0 −4.174×10−2 −4.175×10−2 −1.598×10−1 −1.598×10−1 0 0 0 0
2.0 0 23.0471 24.1605 −4.471×10−2 −4.472×10−2 −1.643×10−1 −1.643×10−1 1.489×10−2 1.489×10−2 7.425×10−3 7.424×10−3

2.0 0 31.3715 32.4978 −4.867×10−2 −4.871×10−2 −1.713×10−1 −1.714×10−1 1.773×10−2 1.770×10−2 9.436×10−3 9.411×10−3

2.0 0 37.0583 38.0608 −5.341×10−2 −5.345×10−2 −1.801×10−1 −1.801×10−1 1.893×10−2 1.889×10−2 1.062×10−2 1.057×10−2

2.0 0 41.3358 42.1876 −5.873×10−2 −5.875×10−2 −1.900×10−1 −1.900×10−1 1.950×10−2 1.948×10−2 1.141×10−2 1.138×10−2

Table 5.1: Teukolsky-based fluxes and kludge fluxes [computed using eqs. (5.40), (5.43) and (5.44)] for circular orbits about a black hole with
a = 0.998M ; µ represents the mass of the infalling body. The Teukolsky-based fluxes have an accuracy of 10−6.
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1.3 0.1 0 0 −8.804×10−2 −8.804×10−2 −2.098×10−1 −2.098×10−1 0 0
1.4 0.1 0 0 −8.728×10−2 −8.719×10−2 −2.274×10−1 −2.275×10−1 0 0
1.4 0.1 8 8.8664 −9.110×10−2 −8.736×10−2 −2.355×10−1 −2.273×10−1 4.066×10−2 2.938×10−2

1.4 0.1 16 17.4519 −1.030×10−1 −8.958×10−2 −2.602×10−1 −2.309×10−1 7.428×10−2 5.475×10−2

1.4 0.1 24 25.5784 −1.243×10−1 −9.771×10−2 −3.037×10−1 −2.415×10−1 9.663×10−2 7.316×10−2

1.5 0.1 0 0 −8.069×10−2 −8.095×10−2 −2.255×10−1 −2.260×10−1 0 0
1.5 0.1 8 8.7910 −8.323×10−2 −8.133×10−2 −2.310×10−1 −2.264×10−1 2.996×10−2 2.070×10−2

1.5 0.1 16 17.3490 −9.121×10−2 −8.395×10−2 −2.483×10−1 −2.314×10−1 5.512×10−2 3.888×10−2

1.5 0.1 24 25.5197 −1.059×10−1 −8.980×10−2 −2.792×10−1 −2.423×10−1 7.255×10−2 5.264×10−2

1.6 0.1 0 0 −7.255×10−2 −7.281×10−2 −2.161×10−1 −2.168×10−1 0 0
1.6 0.1 8 8.7195 −7.430×10−2 −7.321×10−2 −2.201×10−1 −2.173×10−1 2.258×10−2 1.502×10−2

1.6 0.1 16 17.2437 −7.986×10−2 −7.533×10−2 −2.323×10−1 −2.212×10−1 4.179×10−2 2.839×10−2

1.6 0.1 24 25.4388 −9.025×10−2 −8.040×10−2 −2.547×10−1 −2.309×10−1 5.554×10−2 3.886×10−2

1.6 0.1 32 33.2683 −1.082×10−1 −9.435×10−2 −2.920×10−1 −2.551×10−1 6.316×10−2 4.559×10−2

1.7 0.1 0 0 −6.427×10−2 −6.440×10−2 −2.036×10−1 −2.040×10−1 0 0
1.7 0.1 8 8.6555 −6.552×10−2 −6.478×10−2 −2.065×10−1 −2.045×10−1 1.742×10−2 1.124×10−2

1.7 0.1 16 17.1454 −6.953×10−2 −6.651×10−2 −2.154×10−1 −2.075×10−1 3.240×10−2 2.134×10−2

1.7 0.1 24 25.3531 −7.707×10−2 −7.052×10−2 −2.317×10−1 −2.150×10−1 4.342×10−2 2.948×10−2

1.7 0.1 32 33.2416 −9.009×10−2 −7.959×10−2 −2.590×10−1 −2.324×10−1 4.998×10−2 3.512×10−2

1.8 0.1 0 0 −5.640×10−2 −5.640×10−2 −1.897×10−1 −1.897×10−1 0 0
1.8 0.1 8 8.5991 −5.732×10−2 −5.676×10−2 −1.918×10−1 −1.902×10−1 1.371×10−2 8.640×10−3

1.8 0.1 16 17.0562 −6.028×10−2 −5.817×10−2 −1.984×10−1 −1.925×10−1 2.562×10−2 1.647×10−2

1.8 0.1 24 25.2693 −6.588×10−2 −6.139×10−2 −2.105×10−1 −1.983×10−1 3.456×10−2 2.291×10−2

1.8 0.1 32 33.2018 −7.555×10−2 −6.849×10−2 −2.307×10−1 −2.120×10−1 4.020×10−2 2.765×10−2

1.9 0.1 0 0 −4.915×10−2 −4.911×10−2 −1.753×10−1 −1.751×10−1 0 0
1.9 0.1 8 8.5494 −4.985×10−2 −4.945×10−2 −1.768×10−1 −1.755×10−1 1.097×10−2 6.791×10−3

1.9 0.1 16 16.9760 −5.208×10−2 −5.064×10−2 −1.817×10−1 −1.774×10−1 2.055×10−2 1.298×10−2

1.9 0.1 24 25.1898 −5.633×10−2 −5.328×10−2 −1.908×10−1 −1.819×10−1 2.788×10−2 1.816×10−2

1.9 0.1 32 33.1555 −6.364×10−2 −5.870×10−2 −2.059×10−1 −1.920×10−1 3.272×10−2 2.214×10−2

2.0 0.1 0 0 −4.263×10−2 −4.264×10−2 −1.607×10−1 −1.608×10−1 0 0
2.0 0.1 8 8.5057 −4.316×10−2 −4.292×10−2 −1.619×10−1 −1.611×10−1 8.862×10−3 5.424×10−3

2.0 0.1 16 16.9042 −4.488×10−2 −4.390×10−2 −1.656×10−1 −1.625×10−1 1.666×10−2 1.039×10−2

2.0 0.1 24 25.1156 −4.815×10−2 −4.604×10−2 −1.724×10−1 −1.660×10−1 2.271×10−2 1.459×10−2

2.0 0.1 32 33.1064 −5.376×10−2 −5.031×10−2 −1.838×10−1 −1.736×10−1 2.684×10−2 1.793×10−2

2.0 0.1 40 40.8954 −6.339×10−2 −6.236×10−2 −2.027×10−1 −1.967×10−1 2.917×10−2 2.036×10−2

Table 5.2: As in Table 5.1 but for non-circular orbits; the Teukolsky-based fluxes for E and Lz have an

accuracy of 10−3. Note that the code that we use, with all of the Teukolsky-based codes that we
are aware of, does not at present have the capability to compute inclination angle evolution for
generic orbits.
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1.4 0.2 0 0 −8.636×10−2 −8.642×10−2 −2.119×10−1 −2.121×10−1 0 0
1.4 0.2 8 8.8215 −9.853×10−2 −8.240×10−2 −2.374×10−1 −2.015×10−1 1.148×10−1 9.714×10−2

1.5 0.2 0 0 −8.362×10−2 −8.349×10−2 −2.236×10−1 −2.230×10−1 0 0
1.5 0.2 8 8.7595 −9.141×10−2 −8.276×10−2 −2.410×10−1 −2.206×10−1 7.893×10−2 6.549×10−2

1.5 0.2 16 17.2957 −1.145×10−1 −8.394×10−2 −2.915×10−1 −2.215×10−1 1.466×10−1 1.230×10−1

1.5 0.2 24 25.4608 −1.524×10−1 −9.230×10−2 −3.712×10−1 −2.357×10−1 1.952×10−1 1.661×10−1

1.6 0.2 0 0 −7.596×10−2 −7.616×10−2 −2.171×10−1 −2.176×10−1 0 0
1.6 0.2 8 8.6935 −8.111×10−2 −7.641×10−2 −2.292×10−1 −2.177×10−1 5.520×10−2 4.502×10−2

1.6 0.2 16 17.1994 −9.649×10−2 −7.798×10−2 −2.647×10−1 −2.198×10−1 1.032×10−1 8.500×10−2

1.6 0.2 24 25.3891 −1.221×10−1 −8.314×10−2 −3.212×10−1 −2.288×10−1 1.388×10−1 1.160×10−1

1.7 0.2 0 0 −6.765×10−2 −6.799×10−2 −2.057×10−1 −2.068×10−1 0 0
1.7 0.2 8 8.6329 −7.116×10−2 −6.813×10−2 −2.144×10−1 −2.066×10−1 3.963×10−2 3.176×10−2

1.7 0.2 16 17.1064 −8.171×10−2 −6.995×10−2 −2.398×10−1 −2.096×10−1 7.441×10−2 6.024×10−2

1.7 0.2 24 25.3085 −9.948×10−2 −7.443×10−2 −2.806×10−1 −2.178×10−1 1.009×10−1 8.290×10−2

1.7 0.2 32 33.2037 −1.257×10−1 −8.558×10−2 −3.371×10−1 −2.366×10−1 1.175×10−1 9.806×10−2

1.8 0.2 0 0 −5.965×10−2 −5.962×10−2 −1.927×10−1 −1.926×10−1 0 0
1.8 0.2 8 8.5789 −6.211×10−2 −5.997×10−2 −1.990×10−1 −1.930×10−1 2.919×10−2 2.300×10−2

1.8 0.2 16 17.0211 −6.953×10−2 −6.147×10−2 −2.175×10−1 −1.954×10−1 5.504×10−2 4.380×10−2

1.8 0.2 24 25.2283 −8.216×10−2 −6.502×10−2 −2.474×10−1 −2.016×10−1 7.515×10−2 6.068×10−2

1.8 0.2 32 33.1656 −1.009×10−1 −7.410×10−2 −2.890×10−1 −2.190×10−1 8.839×10−2 7.258×10−2

1.9 0.2 0 0 −5.218×10−2 −5.210×10−2 −1.786×10−1 −1.783×10−1 0 0
1.9 0.2 8 8.5312 −5.394×10−2 −5.244×10−2 −1.833×10−1 −1.787×10−1 2.197×10−2 1.704×10−2

1.9 0.2 16 16.9441 −5.928×10−2 −5.373×10−2 −1.970×10−1 −1.807×10−1 4.156×10−2 3.254×10−2

1.9 0.2 24 25.1518 −6.843×10−2 −5.669×10−2 −2.192×10−1 −1.858×10−1 5.706×10−2 4.535×10−2

1.9 0.2 32 33.1207 −8.213×10−2 −6.277×10−2 −2.502×10−1 −1.966×10−1 6.767×10−2 5.475×10−2

2.0 0.2 0 0 −4.528×10−2 −4.530×10−2 −1.637×10−1 −1.638×10−1 0 0
2.0 0.2 8 8.4891 −4.657×10−2 −4.557×10−2 −1.671×10−1 −1.641×10−1 1.679×10−2 1.283×10−2

2.0 0.2 16 16.8749 −5.049×10−2 −4.664×10−2 −1.774×10−1 −1.657×10−1 3.184×10−2 2.457×10−2

2.0 0.2 24 25.0802 −5.725×10−2 −4.904×10−2 −1.941×10−1 −1.696×10−1 4.391×10−2 3.440×10−2

2.0 0.2 32 33.0730 −6.743×10−2 −5.427×10−2 −2.175×10−1 −1.793×10−1 5.243×10−2 4.184×10−2

1.5 0.3 0 0 −8.481×10−2 −8.478×10−2 −2.094×10−1 −2.094×10−1 0 0
1.5 0.3 8 8.7037 −1.006×10−1 −7.824×10−2 −2.442×10−1 −1.934×10−1 1.484×10−1 1.301×10−1

1.5 0.3 16 17.2003 −1.469×10−1 −7.811×10−2 −3.435×10−1 −1.864×10−1 2.766×10−1 2.440×10−1

1.6 0.3 0 0 −8.144×10−2 −8.123×10−2 −2.183×10−1 −2.178×10−1 0 0
1.6 0.3 8 8.6498 −9.182×10−2 −7.807×10−2 −2.426×10−1 −2.095×10−1 1.028×10−1 8.918×10−2

1.6 0.3 16 17.1246 −1.223×10−1 −8.089×10−2 −3.122×10−1 −2.144×10−1 1.928×10−1 1.683×10−1

1.6 0.3 24 25.3046 −1.716×10−1 −8.666×10−2 −4.197×10−1 −2.229×10−1 2.607×10−1 2.295×10−1

1.7 0.3 0 0 −7.362×10−2 −7.314×10−2 −2.104×10−1 −2.095×10−1 0 0
1.7 0.3 8 8.5953 −8.060×10−2 −7.224×10−2 −2.277×10−1 −2.065×10−1 7.240×10−2 6.224×10−2

1.7 0.3 16 17.0415 −1.013×10−1 −7.369×10−2 −2.774×10−1 −2.084×10−1 1.365×10−1 1.180×10−1

1.7 0.3 24 25.2339 −1.349×10−1 −7.800×10−2 −3.547×10−1 −2.153×10−1 1.861×10−1 1.622×10−1

1.8 0.3 0 0 −6.488×10−2 −6.484×10−2 −1.973×10−1 −1.972×10−1 0 0
1.8 0.3 8 8.5454 −6.970×10−2 −6.480×10−2 −2.099×10−1 −1.966×10−1 5.206×10−2 4.436×10−2

1.8 0.3 16 16.9628 −8.402×10−2 −6.671×10−2 −2.461×10−1 −1.998×10−1 9.857×10−2 8.445×10−2

1.8 0.3 24 25.1601 −1.075×10−1 −7.030×10−2 −3.026×10−1 −2.056×10−1 1.353×10−1 1.169×10−1

1.8 0.3 32 33.1047 −1.404×10−1 −8.153×10−2 −3.762×10−1 −2.255×10−1 1.600×10−1 1.394×10−1

1.9 0.3 0 0 −5.669×10−2 −5.690×10−2 −1.829×10−1 −1.832×10−1 0 0
1.9 0.3 8 8.5010 −6.010×10−2 −5.683×10−2 −1.922×10−1 −1.824×10−1 3.823×10−2 3.229×10−2

1.9 0.3 16 16.8911 −7.025×10−2 −5.818×10−2 −2.189×10−1 −1.844×10−1 7.263×10−2 6.165×10−2

1.9 0.3 24 25.0887 −8.701×10−2 −6.054×10−2 −2.609×10−1 −1.874×10−1 1.003×10−1 8.579×10−2

1.9 0.3 32 33.0624 −1.106×10−1 −6.912×10−2 −3.157×10−1 −2.034×10−1 1.195×10−1 1.032×10−1

2.0 0.3 0 0 −4.953×10−2 −4.946×10−2 −1.683×10−1 −1.683×10−1 0 0
2.0 0.3 8 8.4616 −5.199×10−2 −4.970×10−2 −1.753×10−1 −1.685×10−1 2.862×10−2 2.395×10−2

2.0 0.3 16 16.8262 −5.932×10−2 −5.079×10−2 −1.954×10−1 −1.699×10−1 5.452×10−2 4.585×10−2

2.0 0.3 24 25.0215 −7.150×10−2 −5.328×10−2 −2.269×10−1 −1.737×10−1 7.564×10−2 6.411×10−2

2.0 0.3 32 33.0172 −8.878×10−2 −6.003×10−2 −2.682×10−1 −1.864×10−1 9.077×10−2 7.771×10−2

Table 5.3: As in Table 5.2, but for additional values of the eccentricity e; the Teukolsky-based fluxes for E

and Lz have an accuracy of 10−3.
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p
M

e θinc ι dE
dt

× M2

µ2
dE
dt

× M2

µ2
dLz

dt
× M

µ2
dLz

dt
× M

µ2
dι
dt

× M
µ2

dθinc
dt

× M
µ2

(deg.) (deg.) (kludge) (Teukolsky ) (kludge) (Teukolsky) (kludge) (kludge)

1.6 0.4 0 0 −7.766×10−2 −7.772×10−2 −1.918×10−1 −1.919×10−1 0 0
1.6 0.4 8 8.5863 −9.433×10−2 −7.645×10−2 −2.297×10−1 −1.881×10−1 1.528×10−1 1.370×10−1

1.6 0.4 16 17.0151 −1.432×10−1 −7.651×10−2 −3.382×10−1 −1.837×10−1 2.873×10−1 2.584×10−1

1.7 0.4 0 0 −7.882×10−2 −7.953×10−2 −2.097×10−1 −2.115×10−1 0 0
1.7 0.4 8 8.5426 −9.002×10−2 −7.408×10−2 −2.367×10−1 −1.978×10−1 1.087×10−1 9.656×10−2

1.7 0.4 16 16.9502 −1.229×10−1 −7.682×10−2 −3.143×10−1 −2.025×10−1 2.054×10−1 1.830×10−1

1.7 0.4 24 25.1282 −1.760×10−1 −8.090×10−2 −4.336×10−1 −2.075×10−1 2.809×10−1 2.514×10−1

1.8 0.4 0 0 −7.107×10−2 −7.007×10−2 −2.013×10−1 −1.988×10−1 0 0
1.8 0.4 8 8.4989 −7.877×10−2 −7.001×10−2 −2.209×10−1 −1.981×10−1 7.788×10−2 6.879×10−2

1.8 0.4 16 16.8817 −1.015×10−1 −7.009×10−2 −2.774×10−1 −1.965×10−1 1.478×10−1 1.309×10−1

1.8 0.4 24 25.0646 −1.383×10−1 −7.314×10−2 −3.646×10−1 −2.003×10−1 2.036×10−1 1.810×10−1

1.8 0.4 32 33.0184 −1.887×10−1 −9.193×10−2 −4.755×10−1 −2.319×10−1 2.414×10−1 2.156×10−1

1.9 0.4 0 0 −6.187×10−2 −6.267×10−2 −1.861×10−1 −1.881×10−1 0 0
1.9 0.4 8 8.4591 −6.728×10−2 −6.216×10−2 −2.006×10−1 −1.861×10−1 5.666×10−2 4.980×10−2

1.9 0.4 16 16.8173 −8.328×10−2 −6.222×10−2 −2.424×10−1 −1.844×10−1 1.079×10−1 9.506×10−2

1.9 0.4 24 25.0006 −1.094×10−1 −6.486×10−2 −3.071×10−1 −1.878×10−1 1.495×10−1 1.322×10−1

1.9 0.4 32 32.9804 −1.452×10−1 −7.884×10−2 −3.896×10−1 −2.158×10−1 1.787×10−1 1.588×10−1

2.0 0.4 0 0 −5.483×10−2 −5.457×10−2 −1.735×10−1 −1.729×10−1 0 0
2.0 0.4 8 8.4235 −5.871×10−2 −5.445×10−2 −1.844×10−1 −1.720×10−1 4.222×10−2 3.686×10−2

2.0 0.4 16 16.7586 −7.020×10−2 −5.555×10−2 −2.158×10−1 −1.733×10−1 8.064×10−2 7.057×10−2

2.0 0.4 24 24.9396 −8.902×10−2 −5.844×10−2 −2.645×10−1 −1.778×10−1 1.122×10−1 9.860×10−2

2.0 0.4 32 32.9389 −1.150×10−1 −6.536×10−2 −3.267×10−1 −1.896×10−1 1.351×10−1 1.193×10−1

1.7 0.5 0 0 −7.421×10−2 −7.401×10−2 −1.815×10−1 −1.810×10−1 0 0
1.7 0.5 8 8.4736 −8.957×10−2 −7.168×10−2 −2.173×10−1 −1.750×10−1 1.379×10−1 1.256×10−1

1.7 0.5 16 16.8300 −1.347×10−1 −6.999×10−2 −3.201×10−1 −1.676×10−1 2.611×10−1 2.378×10−1

1.8 0.5 0 0 −7.589×10−2 −7.620×10−2 −1.993×10−1 −2.000×10−1 0 0
1.8 0.5 8 8.4395 −8.644×10−2 −6.929×10−2 −2.254×10−1 −1.829×10−1 1.005×10−1 9.076×10−2

1.8 0.5 16 16.7776 −1.175×10−1 −7.210×10−2 −3.004×10−1 −1.880×10−1 1.911×10−1 1.726×10−1

1.8 0.5 24 24.9413 −1.678×10−1 −7.395×10−2 −4.158×10−1 −1.881×10−1 2.638×10−1 2.385×10−1

1.9 0.5 0 0 −6.646×10−2 −6.620×10−2 −1.855×10−1 −1.849×10−1 0 0
1.9 0.5 8 8.4059 −7.386×10−2 −6.320×10−2 −2.048×10−1 −1.768×10−1 7.312×10−2 6.579×10−2

1.9 0.5 16 16.7233 −9.572×10−2 −6.551×10−2 −2.603×10−1 −1.809×10−1 1.395×10−1 1.255×10−1

1.9 0.5 24 24.8877 −1.312×10−1 −7.087×10−2 −3.461×10−1 −1.909×10−1 1.937×10−1 1.744×10−1

1.9 0.5 32 32.8741 −1.795×10−1 −8.247×10−2 −4.544×10−1 −2.091×10−1 2.320×10−1 2.092×10−1

2.0 0.5 0 0 −5.987×10−2 −5.995×10−2 −1.761×10−1 −1.763×10−1 0 0
2.0 0.5 8 8.3750 −6.516×10−2 −5.918×10−2 −1.906×10−1 −1.738×10−1 5.456×10−2 4.882×10−2

2.0 0.5 16 16.6725 −8.081×10−2 −5.817×10−2 −2.324×10−1 −1.694×10−1 1.044×10−1 9.343×10−2

2.0 0.5 24 24.8347 −1.063×10−1 −6.254×10−2 −2.970×10−1 −1.776×10−1 1.456×10−1 1.304×10−1

2.0 0.5 32 32.8378 −1.412×10−1 −6.993×10−2 −3.787×10−1 −1.893×10−1 1.756×10−1 1.576×10−1

Table 5.4: As in Tables 5.2 and 5.3, but for different values of the eccentricity e; the Teukolsky-based fluxes

for E and Lz have an accuracy of 10−3.
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e θinc ι ∆t/M ∆θinc ∆ι
(deg.) (deg.) (deg.) (deg.)

0 0 0 1.250×106 0 0
0 5 5.355510 1.217×106 1.949×10−1 4.954×10−1

0 10 10.679331 1.118×106 3.468×10−1 8.631×10−1

0 15 15.943192 9.574×105 4.236×10−1 1.019
0 20 21.125167 7.446×105 4.109×10−1 9.440×10−1

0 25 26.211779 4.981×105 3.158×10−1 6.860×10−1

0 30 31.199048 2.528×105 1.732×10−1 3.527×10−1

0 35 36.092514 6.584×104 4.636×10−2 8.806×10−2

0.1 0 0 1.228×106 0 0
0.1 5 5.351602 1.198×106 4.517×10−1 7.766×10−1

0.1 10 10.671900 1.103×106 6.900×10−1 1.236
0.1 15 15.932962 9.426×105 7.283×10−1 1.344
0.1 20 21.113129 7.315×105 6.433×10−1 1.187
0.1 25 26.199088 4.900×105 4.780×10−1 8.547×10−1

0.1 30 31.186915 2.513×105 2.730×10−1 4.585×10−1

0.1 35 36.082095 6.589×104 8.385×10−2 1.279×10−1

0.2 0 0 1.173×106 0 0
0.2 5 5.339916 1.150×106 1.204 1.598
0.2 10 10.649670 1.064×106 1.698 2.331
0.2 15 15.902348 9.043×105 1.618 2.293
0.2 20 21.077081 6.980×105 1.324 1.900
0.2 25 26.161046 4.693×105 9.545×10−1 1.351
0.2 30 31.150481 2.486×105 5.674×10−1 7.711×10−1

0.2 35 36.050712 7.562×104 2.070×10−1 2.648×10−1

0.3 0 0 1.087×106 0 0
0.3 5 5.320559 1.069×106 2.307 2.788
0.3 10 10.612831 1.001×106 3.256 4.007
0.3 15 15.851572 8.454×105 2.984 3.741
0.3 20 21.017212 6.483×105 2.375 2.998
0.3 25 26.097732 4.408×105 1.700 2.129
0.3 30 31.089639 2.493×105 1.040 1.276
0.3 35 35.997987 1.108×105 4.626×10−1 5.569×10−1

Table 5.5: Variation in the inclination angles ι and θinc, as well as the time needed to reach the separatrix,
for several inspirals through the nearly horizon-skimming regime. In all of these cases, the
mass ratio of the binary was fixed at µ/M = 10−6, the spin of the large black hole was fixed
at a = 0.998M , and the orbits were begun at p = 1.9M . The time interval ∆t is the total
accumulated time taken for the inspiralling body to reach the separatrix (at which time it rapidly
plunges into the black hole). The angles ∆θinc and ∆ι are the total integrated change in these
inclination angles that we compute. For the e = 0 cases, inspirals are computed using fits to
the circular-Teukolsky fluxes of E and Lz ; for eccentric orbits we use the kludge fluxes (5.40),
(5.43) and (5.44). Notice that∆θinc and∆ι are always positive — the inclination angle always
increases during the inspiral through the nearly horizon-skimming region. The magnitude of
this increase never exceeds a few degrees.
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Chapter 6
The final spin from the coalescence of
two black holes

L’essere eruditi e preparati ha avuto
una sua necessità... rispetto al passato
ci sono degli approcci sicuramente
più veritieri di tante fantasie.

G. Trapattoni

As we have mentioned in sec. 1.4, LISA will detect the gravitational waves emitted
by EMRIs and by SMBH binaries and mergers, and will allow one to measure with high
accuracy (10−2 − 10−4) the masses and spins of SMBHs. Because there is now a broad
consensus that galaxies form hierarchically [28], when two galaxies have merged, the
SMBHs that they host are expected to form binary systems and eventually coalesce (cf.
sec. 1.4.2). Mergers are therefore key events in the evolution of the masses and spins of
the SMBH population, although a significant contribution to this evolution also comes
from accretion onto the individual SMBHs (cf. ref. [33]). Because LISA will be able to
measure the SMBHmass and spin distribution function up to high redshifts (even z ∼ 10
and beyond, if SMBHs are already present then), it is of great importance to understand
how the spin of an SMBH which originates from a binary merger is related to the masses
and spins of the two progenitors. In this chapter we derive a formula which gives the
spin of the black hole produced by the coalescence of two black holes following a quasi-
circular inspiral. A comparison with simulations shows very accurate agreements with
all of the numerical relativity data available to date, but we also suggest a number of ways
in which our predictions can be further improved [167]. Our formula can be readily used
to study the cosmological evolution of the SMBH spin distribution function [168, 169].
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6.1 Motivation

To appreciate the spirit of our approach it can be convenient to think of the inspiral and
merger of two black holes as a mechanism which takes, as input, two black holes of ini-
tial masses M1, M2 and spin vectors S1, S2 and produces, as output, a third black hole
of mass Mfin and spin Sfin. In conditions of particular astrophysical interest, the inspi-
ral takes place through quasi-circular orbits since the eccentricity is removed quickly by
gravitational-radiation reaction [22]. Moreover, at least for nonspinning equal-mass black
holes, the final spin does not depend on the value of the eccentricity as long as it is not
too large [170]. The determination ofMfin and Sfin from the knowledge ofM1,2 and S1,2,
is of importance in several fields. In stellar astrophysics, it provides information about
the properties of isolated stellar-mass black holes produced as a result of the merger of a
black-hole binary at the end of the evolution of a binary system of massive stars. In cos-
mology, it can be used to model the distribution of masses and spins of the supermassive
black holes produced through the merger of galaxies. A-priori knowledge of the final
spin can help the detection of the gravitational waves from the ringdown after a binary
black-hole merger. What makes this a difficult problem is clear: for binaries in quasi-
circular orbits the space of initial parameters for the final spin has seven dimensions (i.e.,
the mass-ratio q ≡ M2/M1 and the six components of the spin vectors). A number of
analytical approaches have been developed over the years to determine the final spin,
either exploiting the dynamics of point-particles [171, 172] or using more sophisticated
approaches such as the effective-one-body approximation [173]. Ultimately, however,
computing afin ≡ Sfin/M

2
fin accurately requires the solution of the full Einstein equations

and thus the use of numerical-relativity simulations. Several groups have investigated
this problem over the last few years [174, 175, 176, 177, 178, 179].

While the recent possibility of obtaining accurately the final spin through numerical-
relativity calculations represents an important progress, the complete coverage of the full
parameter space just through simulations is not a viable option. As a consequence, work
has been done to derive analytic expressions for the final spin which would model the
numerical-relativity data but also exploit as much information as possible either from
perturbative studies, or from the symmetries of the system [175, 177, 178, 179, 180, 181].
In this sense, these approaches do not amount to a blind fitting of the numerical-relativity
data, but, rather, use the data to construct a physically consistent and mathematically
accurate modelling of the final spin. Despite a concentrated effort in this direction, the
analytic expressions for the final spin could, at most, cover 3 of the 7 dimensions of the
parameter space [179]. Here, we show that without additional fits and with a minimal
set of assumptions it is possible to obtain an extension to the complete parameter space
and reproduce all of the available numerical-relativity data. Our treatment is intrinsically
approximate, but we suggest how it can be further improved.
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6.2 The formula for the final spin

Analytic fitting expressions for afin have so far been built using binaries having spins that
are either aligned or antialignedwith the initial orbital angular momentum. This is because
in this case both the initial and final spins can be projected in the direction of the orbital
angular momentum and it is possible to deal simply with the (pseudo)-scalar quantities
a1, a2 and afin ranging between −1 and +1. If the black holes have equal mass but unequal
spins that are either parallel or antiparallel, then the spin of the final black hole has been
shown to be accurately described by the simple analytic fit [177]

afin(a1, a2) = p0 + p1(a1 + a2) + p2(a1 + a2)
2 . (6.1)

When seen as a power series in the initial spins, expression (6.1) suggests an interesting
physical interpretation. Its zeroth-order term can be associated with the (dimensionless)
orbital angular momentum not radiated in gravitational waves and amounting to ∼ 70%
of the final spin at most. The first-order term, on the other hand, can be seen as the
contribution from the initial spins and from the spin-orbit coupling, amounting to ∼
30% at most. Finally, the second-order term, includes the spin-spin coupling, with a
contribution to the final spin which is of ∼ 4% at most.

If the black holes have unequal mass but spins that are equal and parallel, the final spin
is instead given by the analytic fit [179]

afin(a, ν) = a + s4a
2ν + s5aν2 + t0aν + 2

√
3ν + t2ν

2 + t3ν
3 , (6.2)

where ν is the symmetric mass ratio ν ≡ M1M2/(M1 + M2)
2. Although obtained inde-

pendently in [177] and [179], expressions (6.1) and (6.2) are compatible as can be seen
by considering (6.2) for equal-mass binaries (ν = 1/4) and verifying that the following
relations hold within the computed error-bars

p0 =

√
3

2
+

t2
16

+
t3
64

, p1 =
1

2
+

s5

32
+

t0
8

, p2 =
s4

16
. (6.3)

As long as the initial spins are aligned (or antialigned) with the orbital angular mo-
mentum, expression (6.2) can be extended to unequal-spin, unequal-mass binaries through
the substitution

a → a1 + a2q
2

1 + q2
. (6.4)

To obtain this result, it is sufficient to consider (6.1) and (6.2) as polynomial expressions
in the generic quantity

ã ≡ atot
(1 + q)2

1 + q2
. (6.5)

where atot ≡ (a1 + a2q
2)/(1 + q)2 is the total dimensionless spin for generic aligned

binaries. In this way, expressions (6.1) and (6.2) are naturally compatible, since ã =
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(a1 +a2)/2 for equal-mass unequal-spin binaries, and ã = a for unequal-mass equal-spin
binaries. Furthermore, the extreme mass-ratio limit (EMRL) of expression (6.2) with the
substitution (6.4) yields the expected result: afin(a1, a2, ν = 0) = a1.

As already commented above, the predictions of expressions (6.2) and (6.4) cover 3
of the 7 dimensions of the parameter space for binaries in quasi-circular orbits; we next
show how to to cover the remaining 4 dimensions and derive an analytic expression
for the dimensionless spin vector afin of the black hole produced by the coalescence of
two generic black holes in terms of the mass ratio q and of the initial dimensionless spin
vectors a1,2. To make the problem tractable analytically, four assumptions are needed.
While some of these are very natural, others can be relaxed if additional accuracy in the
estimate of afin is necessary. It should be noted, however, that removing any of these
assumptions inevitably complicates the picture, introducing additional dimensions in
the parameter space, such as the initial separation of the binary or the radiated mass.

As a result, in the simplest and yet accurate description the required assumptions are
as follows:

(i) The mass radiated in gravitational wavesMrad can be neglected i.e.,Mfin = M ≡ M1+M2.
We note that Mrad/M = 1 − Mfin/M ≈ 5 − 7 × 10−2 for most of the binaries evolved
numerically. The same assumption was applied in the analyses of [177, 179], as well as
in [172]. Relaxing this assumption would introduce a dependence onMfin which can only
be measured through a numerical simulation.

(ii) At a sufficiently large but finite initial separation the final spin vector Sfin can be well
approximated as the sum of the two initial spin vectors and of a third vector ℓ̃

Sfin = S1 + S2 + ℓ̃ , (6.6)

Differently from refs. [171] and [172], where a definition similar to (6.6) was also intro-
duced, here we will constrain ℓ̃ by exploiting the results of numerical-relativity calcu-
lations rather than by relating it to the orbital angular momentum of a test particle at
the innermost stable circular orbit (ISCO). When viewed as expressing the conservation
of the total angular momentum, eq. (6.6) defines the vector ℓ̃ as the difference between
the orbital angular momentum when the binary is widely separated L, and the angular
momentum radiated up to the merger J rad, i.e., ℓ̃ = L − J rad.

(iii) The vector ℓ̃ is parallel to L. This assumption is correct when S1 = −S2 and q = 1
[this can be seen from the post-Newtonian (PN) equations at 2.5 order], and by equa-
torial symmetry when the spins are aligned with L or when S1 = S2 = 0 (also these
cases can be seen from the PN equations). For more general configurations one expects
that ℓ̃ will also have a component orthogonal to L as a result, for instance, of spin-orbit
or spin-spin couplings, which will produce in general a precession of ℓ̃. In practice, the
component of ℓ̃ orthogonal to L will correspond to the angular momentum J⊥

rad radi-
ated in a plane orthogonal to L, with a resulting error in the estimate of |ℓ̃| which is
∼ |J⊥

rad|2/|ℓ̃|2 ∼ |J⊥
rad|2/(2

√
3M1M2)

2.1 Although these errors are small in all the config-

1Assumption (iii) can be equivalently interpreted as enforcing that the component of the final spin Sfin in
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urations that we have analysed, they may be larger in general configurations. Measuring
J⊥

rad via numerical-relativity simulations, or estimating it via high-order PN equations,
is an obvious way to improve our approach. A similar assumption was also made in
ref. [172].

(iv) When the initial spin vectors are equal and opposite (S1 = −S2) and the masses are
equal (q = 1), the spin of the final black hole is the same as for nonspinning binaries. Stated
differently, equal-mass binaries with equal and opposite spins behave like nonspinning
binaries, at least concerning the properties of the final black hole. While this result cannot
be derived from first principles, it reflects the expectation that if the spins are the same
and opposite, their contributions to the final spin cancel exactly for equal-mass binaries.
Besides being physically reasonable, this expectation is met by all of the simulations per-
formed to date, both for spins aligned with L [177, 179] and orthogonal to L [176]. In
addition, this expectation is met by the leading-order contributions to the spin-orbit and
spin-spin point-particle Hamiltonians and spin-induced radiation flux [182, 173]. A sim-
ilar assumption is also made, although not explicitly, in ref. [172] which, for Stot = 0,
predicts ι = 0 and |afin| = Lorb(ι = 0, |afin|)/M = const. [cf. eqs. (12)–(13) in ref. [172]].

Using these assumptions we can now derive an analytic expression for the final spin.
We start by expressing the vector relation (6.6) as

afin =
1

(1 + q)2
(
a1 + a2q

2 + ℓq
)

, (6.7)

where afin = Sfin/M
2 [cf. assumption (i)], ℓ ≡ ℓ̃/(M1M2), a1,2 ≡ S1,2/M

2
1,2, and its norm

is then given by

|afin| =
1

(1 + q)2

[
|a1|2 + |a2|2q4 + 2|a2||a1|q2 cos α+

2
(
|a1| cos β + |a2|q2 cos γ

)
|ℓ|q + |ℓ|2q2

]1/2
, (6.8)

where the three (cosine) angles α, β and γ are defined by

cos α ≡ â1 · â2 , cos β ≡ â1 · ℓ̂ , cos γ ≡ â2 · ℓ̂ . (6.9)

Because a1 and S1, a2 and S2, and ℓ and L are parallel [cf. assumption (iii)], the angles
α, β and γ are also those between the initial spin vectors and the initial orbital angular
momentum, so that it is possible to replace â1,2 with Ŝ1,2 and ℓ̂with L̂ in (6.9). Note that
α, β and γ are well-defined if the initial separation of the two black holes is sufficiently
large [cf. assumption (ii)] and that the error introduced by assumption (iii) in the measure
of cos α, cos β and cos γ is also of the order of |J⊥

rad|/|ℓ̃|.
The angle θfin between the final spin vector and the initial orbital angular momentum
can be easily calculated from |afin|. Because of assumption (iii), the component of the

the orbital plane equals that of the total initial spin S1 + S2 in that plane.
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final spin in the direction of L is [cf. eq. (6.7)]

a
‖
fin ≡ afin · ℓ̂ =

|a1| cos β + |a2|q2 cos γ + |ℓ|q
(1 + q)2

, (6.10)

so that cos θfin = a
‖
fin/|afin|, and the component orthogonal to the initial orbital angular

momentum is a⊥fin = |afin| sin θfin.

In essence, therefore, our approach consists of considering the dimensionless spin vec-
tor of the final black hole as the sum of the two initial spins and of a third vector parallel
to the orbital angular momentum when the binaries were widely separated. Implicit in
the assumptions made, and in the logic of mapping an initial-state of the binary into a
final one, is the expectation that the length of this vector is an intrinsic “property” of the
binary, depending on the initial spin vectors and mass ratio, but not on the initial separa-
tion. This is indeed a consequence of assumption (ii): because the vector ℓ̃ measures the
orbital angular momentum that cannot be radiated, it can be thought of as the angular
momentum of the binary at the “effective” ISCO and, as such, it cannot be dependent on
the initial separation.

An important consequence of our assumptions is that afin for a black-hole binary is
already fully determined by the set of coefficients s4, s5, t0, t2, t3 computed to derive ex-
pression (6.2). The latter, in fact, is simply the final spin for a special set of values for the
cosine angles; since the fitting coefficients are constant, they must hold also for generic
binaries.

In view of this, all that is needed is to measure |ℓ| in terms of the fitting coefficients
computed in refs. [177, 179]. This can be done by matching expression (6.10) with (6.2)
[with the condition (6.4)] for parallel and aligned spins (α = β = γ = 0), for parallel
and antialigned spins (α = 0, β = γ = π), and for antiparallel spins which are aligned
or antialigned (α = β = π, γ = 0 or α = γ = π, β = 0). This matching is not unique,
but the degeneracy can be broken by exploiting assumption (iv) and by requiring that |ℓ|
depends linearly on cos α, cos β and cos γ. We then obtain

|ℓ| =
s4

(1 + q2)2
(
|a1|2 + |a2|2q4 + 2|a1||a2|q2 cos α

)
+

(
s5ν + t0 + 2

1 + q2

) (
|a1| cos β + |a2|q2 cos γ

)
+ 2

√
3 + t2ν + t3ν

2 . (6.11)

We now consider some limits of expressions (6.8) and (6.11). First of all, when q →
0, (6.8) and (6.11) yield the correct EMRL, i.e., |afin| = |a1|. Secondly, for equal-mass
binaries having spins that are equal and antiparallel, (6.8) and (6.11) reduce to

|afin| =
|ℓ|
4

=

√
3

2
+

t2
16

+
t3
64

= p0 ≃ 0.688 . (6.12)

This result allows us now to qualify more precisely a comment made before: because for
equal-mass black holes which are either nonspinning or have equal and opposite spins,
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ax
1 ay

1 az
1 ax

2 ay
2 az

2 ν |afin| θfin(
◦)

0.151 0.000 -0.563 0.000 0.000 0.583 0.250 0.692 2.29

0.151 0.000 0.564 0.000 0.151 0.564 0.250 0.846 3.97

0.413 0.000 0.413 0.000 0.413 0.413 0.250 0.815 7.86

Table 6.1: Initial parameters of the new misaligned AEI binaries.

the vector |ℓ| does not depend on the initial spins, expression (6.12) states that |ℓ|M2
fin/4 =

|ℓ|M2/4 = |ℓ|M1M2 is, for such systems, the orbital angular momentum at the effective
ISCO. We can take this a step further and conjecture that |ℓ|M1M2 = |ℓ̃| is the series
expansion of the dimensionless orbital angular momentum at the ISCO also for unequal-
mass binaries which are either nonspinning or have equal and opposite spins. The zeroth-
order term of this series (namely, the term 2

√
3M1M2) is exactly the one predicted from

the EMRL. We note that although numerical simulations do not reveal the presence of an
ISCO, the concept of an effective ISCO can nevertheless be useful for the construction of
gravitational-wave templates [27, 184].

Finally, we consider the case of equal, parallel and aligned/antialigned spins (|a2| =
|a1|, α = 0, β = γ = 0, π), for which expressions (6.10) and (6.11) become

afin = |a1| cos β [1 + ν(s4|a1| cos β + t0 + s5ν)] +

ν(2
√

3 + t2ν + t3ν
2) , (6.13)

where cos β = ±1 for aligned/antialigned spins. As expected, expression (6.13) coincides
with (6.2) when |a1| cos β = a and with (6.1) [through the coefficients (6.3)] when q = 1
and 2|a1| cos β = a1 + a2. Similarly, (6.10) and (6.11) reduce to (6.2) for equal, antiparallel
and aligned/antialigned spins (|a2| = |a1|, α = 0, β = 0, γ = π, or β = π, γ = 0).

The only way to assess the validity of expressions (6.8) and (6.11) is to compare their
predictions with the numerical-relativity data. This is done in Figs. 6.1 and 6.2, which
collect all of the published data, together with the three additional binaries computed
with the CCATIE code [175] and reported in Table 6.1. In these plots, the “binary order
number” is just a dummy index labelling the different configurations. The left panel of
Fig. 6.1 shows the rescaled residual, i.e., (|afin|fit − |afin|num.) × 100, for aligned binaries.
The plot shows the numerical-relativity data with circles referring to equal-mass, equal-
spin binaries from refs. [177, 178, 179, 185, 187, 188], triangles to equal-mass, unequal-
spin binaries from refs. [177, 188], and squares to unequal-mass, equal-spin binaries from
refs. [179, 185, 187, 188]. Although the data is from simulations with different truncation
errors, the residuals are all very small and with a scatter of ∼ 1%.

A more stringent test is shown in the right panel of Fig. 6.1, which refers to mis-
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Figure 6.1: Left panel: Rescaled residual for aligned binaries. The circles refer to equal-mass, equal-spin
binaries presented in refs. [177, 178, 179, 185, 187, 188], triangles to equal-mass, unequal-
spin binaries presented in ref. [177, 188], and squares to unequal-mass, equal-spin binaries
presented in refs. [179, 185, 187, 188]. Here and in the right panel the “binary order num-
ber” is just a dummy index labelling the different configurations. Right panel: The top
part reports the final spin computed for misaligned binaries. Hexagons refer to data from
ref. [174] (labelled “RIT”), squares to the data in Table 6.1 (labelled “AEI”), circles to data
from ref. [189] (labelled “FAU”), and triangles to data from ref. [183] (labelled “PSU-UTA”).

Note that these latter data points refer to the aligned component a
‖
fin since this is the only

component available from ref. [183]. The bottom part of this panel shows instead the rescaled
residuals for these misaligned binaries.

aligned binaries. In the top part, hexagons indicate the numerical values for |afin| from
ref. [174], squares the ones in Table 6.1, circles those from ref. [189] and triangles those

from ref. [183]; note that these latter data points refer to the aligned component a
‖
fin since

this is the only component available from ref. [183]. The agreement is again very good,
with errors of a few percent (see bottom part of the same panel), even if the binaries are
generic and for some the initial and final spins differ by almost 180◦ [174].

Finally, Fig. 6.2 reports the angle between the final spin vector and the initial orbital
angular momentum θfin using the same data (and convention for the symbols) as in the
right panel of Fig. 6.1. Measuring the final angle accurately is not trivial, particularly
due to the fact that the numerical evolutions start at a finite separation which does not
account for earlier evolution. The values reported in [174] (and the relative error-bars) are
shown with hexagons, while the squares refer to the binaries in Table 6.1, and have been
computed using a new approach for the calculation of the Ricci scalar on the apparent
horizon [186]. Shown with asterisks and circles are instead the values predicted for the
numerical data (as taken from refs. [174, 183, 189] and from Table 6.1) by our analytic fit
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Figure 6.2: Using the same data (and convention for the symbols) as in the right panel of Fig. 6.1, we here
report the angle between the final spin vector and the initial orbital angular momentum θfin.
Shown instead with asterisks and circles are the values predicted for the numerical data (as
taken from refs. [174, 183, 189] and from Table 6.1) by our analytic fit (asterisks) and by the
point-particle approach suggested in ref. [172] (circles).

(asterisks) and by the point-particle approach suggested in ref. [172] (circles).

Clearly, when a comparison with numerical data is possible, the estimates of our fit are
in reasonable agreement with the data and give residuals for the final angle (i.e., (θfin)fit−
(θfin)num.) which are generally smaller than those obtained with the point-particle ap-
proach of ref. [172]. However, for two of the three binaries from ref. [174] the estimates
are slightly outside the error-bars. Note that the reported angles are relative to the orbital
plane at a small initial binary-separation, and thus are likely to be underestimates as they
do not take into account the evolution from asymptotic distances; work is in progress to
clarify this. When comparison with the numerical data is not possible because θfin is not
reported (as for the data in ref. [183]), our approach and the one in ref. [172] yield very
similar estimates.

In summary: we have considered the spin vector of the black hole produced by a black-
hole binary merger as the sum of the two initial spins and of a third vector, parallel to the
initial orbital angular momentum, whose norm depends only on the initial spin vectors
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and the mass ratio, and measures the orbital angular momentum not radiated. Without
additional fits with respect to those already available to model aligned/antialigned bi-
naries, we have measured the unknown vector and derived a formula that accounts for
all of the 7 parameters describing a black-hole binary inspiralling in quasi-circular orbits.
The equations (6.8) and (6.11), encapsulate the near-zone physics to provide a conve-
nient, but also robust and accurate determination of the merger product of rather generic
black-hole binaries over a wide range of parameters.

Testing the formula against all of the available numerical data has revealed differences
between the predicted and simulated values of a few percent at most. Our approach is
intrinsically approximate and has been validated only on a small set of configurations,
but it can be improved, for instance: by reducing the χ2 of the fitting coefficients as new
simulations are carried out; by using fitting functions that are of higher-order than those
in expressions (6.1) and (6.2); by estimating J⊥

rad through PN expressions or bymeasuring
it via numerical simulations.

6.3 Appendix: Mathematical and Numerical Setup

The data of the three binaries reported in Table 6.1, as well as those of the aligned binaries
of ref. [175], were produced using the CCATIE code, a three-dimensional finite differenc-
ing code based on the Cactus Computational Toolkit [190, 191]. The current code is an
evolution of previous versions which implemented an excision method and co-rotating
coordinates [192, 193, 194]. The main features of the code, in particular the evolution
equations, remain the same. However, some modifications have been introduced in the
gauge evolution to accommodate “moving punctures” which has proven to be an effec-
tive way to evolve black hole spacetimes [195, 196]. This method simply removes any
restrictions on movement of the punctures from their initial locations, allowing them to
be advected on the grid.

In the following equations, we use Greek indices (running from 0 to 3) to denote com-
ponents of four-dimensional objects and Latin indices (running from 1 to 3) for three-
dimensional ones that are defined on space-like foliations of the space-time.

Evolution system

We evolve a conformal-traceless “3 + 1” formulation of the Einstein equations [192, 197,
198, 199], in which the spacetime is decomposed into three-dimensional spacelike slices,
described by the intrinsic metric γij , its embedding in the full spacetime, specified by
the extrinsic curvature Kij , and the gauge functions α (lapse) and βi (shift) that specify
a coordinate frame (see the next subsection for details on how gauges are treated and
ref. [200] for a general description of the 3 + 1 split). The metric therefore reads

ds2 = (γijβ
iβj − α2)dt2 + 2γijβ

idxjdt + γijdxidxj . (6.14)
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The particular system which we evolve transforms the standard ADM variables as fol-
lows. The 3-metric γij is conformally transformed via

φ =
1

12
ln det γij , γ̃ij = e−4φγij , (6.15)

and the conformal factor φ evolved as an independent variable, whereas γ̃ij is subject
to the constraint det γ̃ij = 1. The extrinsic curvature is subjected to the same conformal
transformation, and its trace trKij is evolved as an independent variable. That is, in
place ofKij we evolve:

K ≡ trKij = gijKij , Ãij = e−4φ(Kij −
1

3
γijK), (6.16)

with tr Ãij = 0. Finally, new evolution variables

Γ̃i = γ̃jkΓ̃i
jk (6.17)

are introduced, defined in terms of the Christoffel symbols of the conformal 3-metric.

The Einstein equations specify a well known set of evolution equations for the listed
variables and are given by

(∂t − Lβ) γ̃ij = −2αÃij , (6.18)

(∂t − Lβ) φ = −1

6
αK, (6.19)

(∂t − Lβ) Ãij = e−4φ[−DiDjα + αRij ]
TF + α(KÃij − 2ÃikÃ

k
j), (6.20)

(∂t − Lβ) K = −DiDiα + α(ÃijÃ
ij +

1

3
K2), (6.21)

∂tΓ̃
i = γ̃jk∂j∂kβ

i +
1

3
γ̃ij∂j∂kβ

k + βj∂jΓ̃
i − Γ̃j∂jβ

i +
2

3
Γ̃i∂jβ

j

− 2Ãij∂jα + 2α(Γ̃i
jkÃ

jk + 6Ãij∂jφ − 2

3
γ̃ij∂jK), (6.22)

where Rij is the three-dimensional Ricci tensor, Di is the covariant derivative associated
with the three metric γij and “TF” indicates the trace-free part of tensor objects. The
Einstein equations also lead to a set of physical constraint equations that are satisfied
within each spacelike slice,

H ≡ R(3) + K2 − KijK
ij = 0, (6.23)

Mi ≡ Dj(K
ij − γijK) = 0, (6.24)

which are usually referred to as the Hamiltonian and momentum constraints. Here
R(3) = Rijγ

ij is the Ricci scalar on a three-dimensional time slice. Our specific choice
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of evolution variables introduces five additional constraints,

det γ̃ij = 1, (6.25)

tr Ãij = 0, (6.26)

Γ̃i = γ̃jkΓ̃i
jk. (6.27)

Our code actively enforces the algebraic constraints (6.25) and (6.26). The remaining con-
straints, H,Mi, and (6.27), are not actively enforced, and can be used as monitors of the
accuracy of our numerical solution. See [193] for a more comprehensive discussion of the
these points.

Gauges

We specify the gauge in terms of the standard ADM lapse function, α, and shift vector,
βa [1]. We evolve the lapse according to the “1 + log” slicing condition:

∂tα − βi∂iα = −2α(K − K0), (6.28)

where K0 is the initial value of the trace of the extrinsic curvature, and equals zero for
the maximally sliced initial data which we consider here. The shift is evolved using the
hyperbolic Γ̃-driver condition [193],

∂tβ
i − βj∂jβ

i =
3

4
αBi , (6.29)

∂tB
i − βj∂jB

i = ∂tΓ̃
i − βj∂jΓ̃

i − ηBi , (6.30)

where η is a parameter which acts as a damping coefficient. The advection terms on the
right-hand-sides of these equations were not present in the original definitions of [193],
where co-moving coordinates were used, but have been added following the experience
of [201, 202], and are required for correct advection of the puncture in “moving-puncture”
evolutions.

Numerical methods

Spatial differentiation of the evolution variables is performed via straightforward finite-
differencing using fourth-order accurate centred stencils for all but the advection terms
for each variable, which are upwinded in the direction of the shift. Vertex-centred adap-
tive mesh-refinement (AMR) is employed using nested grids [203, 204] with a 2 : 1 re-
finement for successive grid levels, and with the highest resolution concentrated in the
neighbourhood of the individual horizons. Individual apparent horizons are located ev-
ery few time steps during the evolution [205, 206].
The time steps on each grid are set by the Courant condition and thus by the spatial
grid resolution for that level, with the time evolution being carried out using fourth-order
accurate Runge-Kutta integration steps. Boundary data for finer grids are calculated with
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spatial prolongation operators employing 5th-order polynomials, and prolongation in
time employing 2nd-order polynomials. The latter allows a significant memory saving,
requiring only three time levels to be stored, with little loss of accuracy due to the long
dynamical timescale relative to the typical grid time step.

Initial data

The initial data are constructed applying the “puncture” method [207], which uses the
Bowen-York extrinsic curvature and solves the Hamiltonian constraint equation numer-
ically as in [208]. For the orbital initial data parameters we use the effective potential
method introduced in [209] and extended to spinning configurations in [210]. The ef-
fective potential method is a way of choosing the initial data parameters such that the
required physical parameters (e.g. masses and spins) are obtained to describe a binary
black-hole system on a quasi-circular orbit.

The free parameters to be chosen for the puncture initial data are: the puncture coor-
dinate locations Ci, the puncture mass parameters mi, the linear momenta pi, and the
individual spins Si. Since we are interested in quasi-circular orbits we work in the zero
momentum frame and choose p1 = −p2 to be orthogonal to C2 − C1. The physical
parameters which we want to control are: the black hole mass ratio M1/M2, the orbital
angular momentum L = C1 × p1 + C2 × p2 (see for example [150, 209, 210]) and the
dimensionless spin parameters ai = Si/M

2
i . In order to choose the input parameters that

correspond to the desired physical parameters we have to use a non-linear root finding
procedure, since the physical parameters depend non-linearly on the input parameters
and it is not possible to invert the problem analytically.

As detailed in [210], when the black-hole spins are taken as parameters, it is possi-
ble to reduce the number of independent input variables, so that at a given separation
C̄ ≡ |C2 − C1|/m1, the independent input parameters are: q̄ ≡ m1/m2 and the dimen-
sionless magnitude of the linear momentum p/m1. Using a Newton-Raphson method,
we solve for q̄ and p/m1 so that the system has a given mass ratio M1/M2 and a given
dimensionless orbital angular momentum, L/(µM) where µ = m1m2/M

2 is the reduced
mass. For such a configuration the initial data solver [208] returns a very accurate value
forMADM , which together with the accurate irreducible mass calculated by the apparent
horizon finder [205, 206] makes it possible to calculate an accurate value of the dimen-
sionless binding energy

Eb/µ = (MADM − M1 − M2)/µ. (6.31)

The quasi-circular initial data parameters are then obtained by finding the minimum in
Eb/µ for varying values of C̄ while keeping the required orbital angular momentum
L/(µM) constant.

Note that the physical mass Mi of a single puncture black hole increases when the
spin parameter is increased if the mass parameter mi is kept constant. For that reason
obtainingM1 = M2 in general requires that m1 6= m2. Even in the case where the spins
have the same magnitude but different directions, the two black holes will have different
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spin-orbit interactions leading to slightly different physical masses ifm1 = m2.



Chapter 7
Why explore alternatives to General
Relativity?

Everything popular is wrong.

O. Wilde

In the first part of this thesis, we have investigated whether future gravitational wave
observations of EMRIs will allow one to map the spacetime around SMBHs, detecting
possible deviations away from the pure Kerr solution of GR because of the presence of
astrophysical matter (chapters 2, 3 and 4). In chapters 5 and 6, instead, we have assumed
that the astrophysical matter can be neglected and we have studied some aspects of EM-
RIs (chapter 5) and of generic black-hole binaries (chapter 6) under this assumption. In
particular, this latter analysis also amounts to analysing whether gravitational wave ob-
servations of these systems will allow one to validate the predictions of GR in the case
in which the astrophysical matter can be neglected. In both cases, GR is assumed to be
correct and possible observational consequences are worked out. In this sense, the tests
that we have dealt with so far are consistency tests of GR, because they could (in principle)
rule out GR, but in this case they would not give any hints at what the correct theory of
gravity should be (see ref. [211] for more details on this point).

Nevertheless, distinguishing between competing gravity theories is becoming more
and more important in view of the discoveries made by cosmologists in the last decade.
The startling fact that 95% of the Universe seems to be made of unknown “dark com-
ponents” (Dark Matter and Dark Energy), rather than of the normal matter of which our-
selves, stars and galaxies are made, has triggered research both in Particle Physics – in
order to understand what these dark components might be (especially Dark Matter) –
and in Quantum Gravity and Superstring Theory – to understand whether at least some
of the dark components that we see (especially Dark Energy) might be due to the failure
of GR at cosmological scales.

149
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Another possible approach, which has been widely explored in the literature (see for
instance ref. [212] for a review), consists of considering phenomenologicalmodifications to
GR and checking whether they allow one to explain astrophysical and cosmological data
without the inclusion of Dark Energy (or, in few cases, also Dark Matter). Although it is
clear that the ultimate answer to the question of what is the correct theory of gravity will
need a contribution from a fundamental high-energy theory, be it Quantum Gravity or
Superstring Theory, this phenomenological approach may eventually give a direction to
the theorists, because it could allow them to understand which kinds of gravity modifi-
cations may be expected on an experimental basis and which ones give instead unaccept-
able consequences. Unfortunately, most of the work in this direction so far has involved
comparison of these theories only with cosmological observables, while the problem of
whether they could give predictions which are very different from GR with a cosmolog-
ical constant on smaller lengthscales seems to have been rather overlooked in the liter-
ature. In this thesis we try to (very partially) fill this gap by considering two popular
modified theories of gravity, namely Palatini f(R) gravity (chapter 8) and Gauss-Bonnet
gravity (chapter 9), and by working out their predictions at the solar-system scale and at
stellar scales, respectively. As we will see in one case (that of Palatini f(R) gravity), the
payoff of an investigation going beyond the cosmological level can even be that of ruling
out the theory.

Before presenting these two specific examples, in this chapter we will first summarise
very briefly themotivations for introducingmodifications to Einstein’s GR. Because these
motivations lie in the interplay between GR, Quantum Field Theory (QFT) and cosmol-
ogy, it is convenient to adopt, only in this chapter, units in which ~ = c = 1 and in which,
instead, G is not 1, but has the dimensions of a mass to the −2. In particular, in section
7.1 we briefly recall the main points of clash between GR and quantummechanics, which
reveal that GR, being a classical theory, cannot be the fundamental theory of gravity. In
section 7.2 we review instead the experimental motivation for modifying GR. Because
these motivations essentially come only from cosmology, in section 7.2.1 we introduce
the basics of the ΛCDMmodel for the expansion and contents of the Universe. Although
this model is widely accepted in the cosmological community (so much as to be referred
to as the “concordancemodel”), it presents a number of theoretical flaws, especially when
the possible nature of the so-called “Dark Energy” is analysed critically. The problems
plaguing the concept of Dark Energy, and even more that of cosmological constant, are
described in detail in sections 7.2.2 and 7.2.3 and give, in our view, compelling evidence
that gravity should not be described using standard GR on cosmological scales.

7.1 Theoretical motivations

The main reason why GR cannot be the fundamental theory of gravity is that it is in
conceptual clash with Quantum Field Theory (QFT). First of all, GR considers spacetime
as dynamical, rather than pre-determined as in special relativity or Newtonian gravity.
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This fact is often expressed by saying that GR is a diffeomorphism-invariant theory.1 As
a consequence, “time” in not well-defined because it is not fundamentally different from
“space”: both are coordinates on the spacetime manifold and can be mixed by means of
coordinate transformations. There is no distinction between time and space in GR and
both are dynamical quantities, because the spacetime structure itself is dynamical as it is
governed by the Einstein equations. Conversely, in QFT time depends on the observer
(because QFT is based on special relativity) but is not dynamical, because the underlying
spacetime is kept fixed and is described by the flat Minkowski metric. In this sense,
the concept of time in QFT resembles more the absolute Newtonian time rather than the
general-relativistic concept.

Secondly, although time is a dynamical quantity, GR is a deterministic (and in this sense
“classical”) theory. Once the initial conditions on a Cauchy hypersurface have been fixed,
the evolution of the spacetime is determined by the Einstein equations. The concept of
spacetime is a global one: it keeps track of both the past and the future, with the latter
necessarily determined by the former. This is clearly not the case in QFT due to the
Heisenberg uncertainty principle, which makes quantummechanics a probabilistic theory.

Of course, one could try to build a quantum theory of gravity using a perturbative ex-
pansion over the Minkowski background metric of QFT. In other words, one might try
to introduce deviations from the Minkowski metric, which could in principle be quan-
tised in a way similar to what is done for the matter fields (scalar fields, fermions). The
resulting semi-classical theory of gravity is useful in many contexts (e.g., to study the
Hawking radiation of a black hole, to calculate the spectrum of the cosmological pertur-
bations produced by inflation, etc.), but it will only be a low energy approximation of the
complete theory. The reason is that gravity is not perturbatively renormalisable, because
the coupling constant between gravitons andmatter is dimensional (just like in the Fermi
theory of weak interactions). This coupling constant is indeed the gravitational constant
G, which has the dimensions of a mass to the power −2. More precisely, G = 1/m2

P,
wheremP = 1.2×1019 GeV is the Planck mass. As such, on purely dimensional grounds,
ones obtains that the amplitude for a two-body gravitational scattering will be of order
G[1 + Gk2

cutoff + (Gk2
cutoff)2 + ...], which clearly blows up when the cutoff energy kcutoff

becomes comparable to the Planck massmP.

It would therefore seem that quantum corrections to GR should appear only at energies

1This does not simply mean that physics is independent from the choice of the coordinate system – these
feature is shared also by Newtonian physics, classical electromagnetism, etc. – but also that physics does
not change if one performs a “smooth” deformation of the spacetime manifold. More formally, in GR
physics is described by a differentiable manifold (the “spacetime”)M, which has topological and differ-
ential properties (i.e., one can do calculus), and a set of tensor fields T describing the geometrical and
physical content of the spacetime. Diffeomorphism invariance means that if we “deform” in a particu-
larly smooth way the manifold and we transform accordingly (through the so-called “push-forward” of
the diffeomorphism) the tensor fields, physics does not change. This invariance is very important in GR
and in some sense plays the role that invariance under time and space translations play in Newtonian
mechanics: From diffeomorphism invariance one derives immediately the conservation of the stress en-
ergy tensor – see e.g. ref. [215], section 6.3 – while, similarly, in Newtonian mechanics one obtains the
energy and momentum conservation from translation invariance.
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comparable to the Planck mass. If such an assumption is correct, classical GR can be used
to describe the evolution of the Universe back to very early times. In particular, GR
would certainly be valid at the present time in the evolution of the Universe, because its
energy density today is of the order of ρc ∼ (10−3eV)4 ≪ m4

P. This point of view has
been adopted for decades, but it leads to the surprising conclusion that the matter which
we are made of is only 5 % of the mass-energy of the Universe, while the remaining
95 % consists of “dark” components. In the next subsection we will briefly review the
cosmological observations leading to these conclusions (for a pedagogical review, see
ref. [213]; for an extensive list of references on the observational evidence, see ref. [214]).

7.2 Experimental motivations

7.2.1 A brief introduction to the ΛCDM model

Our present understanding of cosmology is based on the basic assumption that the Uni-
verse is homogeneous and isotropic on large scales (i.e., larger than 300h−1 Mpc, where
h ≈ 0.72 is the present Hubble constant expressed in kms−1Mpc−1) at a “fixed time”.
Stated in this way, this assumption is ambiguous, but it can be made rigorous by re-
quiring that the spacetime describing the Universe can be sliced in a family of spacelike
hypersurfaces that are homogeneous and isotropic (i.e., maximally symmetric). This as-
sumption is hard to test experimentally, especially as far as homogeneity is concerned
(although some interesting work has been done in this direction [216]), but reflects the
“Copernican” philosophical expectation that there is nothing special about our position
in the Universe. At any rate, accepting this basic assumption, which is known as “cos-
mological principle”, the spacetime is described by the Robertson-Walker (RW) metric

ds2 = −dt2 + a(t)2
(

dr2

1 − kr2
+ r2dθ2 + r2 sin2 θdφ2

)
, (7.1)

where k can be 0,±1 and a(t) is the expansion parameter. Inserting this metric into the
Einstein equations, in which we assume that the matter is given by a perfect fluid at rest
with respect to the coordinates (i.e., comoving with them):

Rµν − 1

2
Rgµν = 8πGTµν , (7.2)

Tµν = (p + ρ)uµuν + pgµν , uµ = δµ
t /

√−gtt = δµ
t , (7.3)

one gets the Friedmann equations

(
ȧ

a

)2

=
8πGρ

3
− k

a2
, (7.4)

ä

a
= −4πG

3
(ρ + 3p) . (7.5)
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From them, or directly from the time component of the stress-energy tensor conservation
Tµν

;ν = 0, one gets

ρ̇ + 3
ȧ

a
(ρ + p) = 0 : (7.6)

note that this equation can also be written as d(ρa3) = −p da3 and is, therefore, just the
first law of thermodynamics. Defining now the Hubble constant H(t) and the critical
density ρc(t) ,

H(t) ≡ ȧ(t)

a(t)
, ρc(t) ≡

3H(t)2

8πG
, (7.7)

from eq. (7.4) one gets

Ω − 1 =
k

a2H2
, (7.8)

where Ω ≡ ρ/ρc is called the “density parameter”. Therefore, if the density is larger,
smaller or equal to the critical density at a certain time, it is larger, smaller or equal to it
at any later or earlier time.
Let us consider now an equation of state (EOS) p = wρ (w ∈ [0, 1]) for the cosmic fluid.
This EOS includes physically relevant cases such as classical matter (w = 0) – i.e., a fluid
of non-relativistic particles2, for which p/ρ = kBT/m ≪ 1 – or radiation (w = 1/3) – i.e.,
a fluid of relativistic particles. Inserting this EOS into eq. (7.6), it is easy to find that

ρ = ρ0

(a0

a

)3(1+w)
, (7.9)

where a0 is the scale factor at the present time. Using this equation, together with eq. (7.4)
and (7.8), one gets

ȧ2 = a2
0H

2
0

[
Ω0

(a0

a

)1+3w
+ 1 − Ω0

]
, (7.10)

where the index 0 denotes again quantities evaluated at the present time. From eqs. (7.7), (7.8)
and (7.9), it is then easy to check that the density parameter evolves as

Ω−1 − 1 =
(
Ω−1

0 − 1
) (

a

a0

)1+3w

. (7.11)

Let us then note that eq. (7.10) can be integrated analytically in the “flat” case (k = 0, that
is Ω = 1): fixing the cosmic time such that for t = 0 one has a = 03 and exploiting the
empirical observation, dating back to Hubble, that the universe is expanding rather than
contracting, we have

a(t) = a0

(
t

t0

)2/[3(1+w)]

. (7.12)

2Ones with massm ≫ kBT , kB and T being the Boltzmann constant and the temperature.
3 This initial singularity (“big bang”), in which the spacetime curvature, the matter density and the matter
temperature become infinite, comes about because ä < 0 if p > −ρ/3 [cf. eq. (7.5)]. As such, if ȧ > 0 at a
certain time, there must a finite time in the past at which a = 0.
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It is also possible to show that for Ω < 1 (i.e., k = −1: “closed” universe) a(t) initially
grows from 0 (big bang) to a maximum and then decreases again to 0 (big crunch), while
for Ω > 1 (i.e., k = 1: “open” universe) it increases indefinitely (and faster than in the flat
case) after the big bang.

Let us consider again eq. (7.9): for matter that equation gives ρ ∝ a−3, while for radia-
tion one has ρ ∝ a−4. Thismeans that the energy density of radiation is diluted faster than
that of matter as the Universe expands, and at sufficiently late times the matter energy
density will be dominant over that of radiation. This is indeed what happens at redshift4

z ≈ 4000: at higher redshifts (earlier cosmic times) the universe is radiation dominated,
while at smaller redshifts (more recent times) the universe is matter dominated. Therefore,
in the matter dominated era it is possible (for some purposes) to neglect the presence of
radiation. We should note, however, that all of the equations that we have derived in
this section assume that GR is correct without any cosmological constant. Fortunately, a
cosmological constant Λ would enter the Einstein equations through a term Λgµν to be
added to the left-hand side of eq. (7.2). Moving this term to the right-hand side, it is
clear that a cosmological constant corresponds to a perfect fluid at rest with respect to the
coordinates and with density ρΛ = Λ/(8πG) and pressure pΛ = −ρΛ (i.e., w = −1). Con-
sidering therefore a universe filled with matter and governed by the Einstein equations
with a cosmological constant, eq. (7.10) becomes

ȧ2 = a2
0H

2
0

[
Ωm0

(a0

a

)
+ ΩΛ0

(a0

a

)−2
+ 1 − Ω0

]
(7.13)

(with Ω0 = ΩΛ0 + Ωm0), while eq. (7.5) becomes

ä

a
= −4πG

3
ρm +

Λ

3
. (7.14)

Of course, the energy density of the cosmological constant maintains constant during the
universe expansion, while that of matter gets diluted as a−3 because eq. (7.9) keeps valid
(as we have stressed, that equation follows from the first principle of thermodynamics).

In this simplistic view, therefore, the Universe at z ≪ 4000 (i.e., after the radiation-
matter equivalence) can be described by a model with parameters H0, ΩΛ0 (or Λ) and
Ωm0 (or Ω0 = ΩΛ0 + Ωm0).

5 Of course, other parameters would come about if we consid-
ered also the perturbations of our universe model over the homogeneous and isotropic
background [this is clearly necessary in order to study the formation of cosmic struc-
tures – galaxies, groups, clusters, etc. – and the anisotropy spectrum of the cosmic mi-
crowave background (CMB)]. In particular, an additional parameter that we should con-
sider is the fraction of matter in baryons: we will denote their density parameter with

4The redshift z(t) is defined as z(t) ≡ a0/a(t) − 1. Indeed, a photon emitted at a cosmic time t with
frequency ν0 at the present time has been redshifted to a frequency ν0 = ν/(1 + z).

5It is clear that the present value of the scale factor a0, can be set to 1 by redefining the spatial coordinates:
cf. eq. (7.1).
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Ωb0, while the density parameter of Cold
6 Dark Matter (CDM) will of course be given by

ΩCDM0 = Ωm0 − Ωb0.

The only way to determine the values of the four parameters H0, ΩΛ0, Ωm0 and Ωb0

is of course given by cosmological and astrophysical observations. Historically, the first
parameter the determination of which was attempted was the Hubble constant at the
present time H0. It is in fact possible to show that the luminosity distance dL of a source,
defined as

dL ≡
√

L

4πℓ
, (7.15)

where L is the radiated power and ℓ the power flux per unit surface measured by an
observer at the present time, depends on the redshift through

dL =





1+z

H0

√
|Ω0−1|

[∫ z
0

√
|Ω0−1|dz′

(Ωm0(1+z′)3+ΩΛ0+(Ω0−1)(1+z′)2)1/2

]
for Ω0 = 1 ,

1+z

H0

√
|Ω0−1|

sin

[∫ z
0

√
|Ω0−1|dz′

(Ωm0(1+z′)3+ΩΛ0+(Ω0−1)(1+z′)2)1/2

]
for Ω0 < 1 ,

1+z

H0

√
|Ω0−1|

sinh

[∫ z
0

√
|Ω0−1|dz′

(Ωm0(1+z′)3+ΩΛ0+(Ω0−1)(1+z′)2)1/2

]
for Ω0 > 1 .

(7.16)

Expanding in a series around z = 0, one gets

dL =
1

H0

[
z +

z2

2
(1 − q0) + O

(
z3

)]
, (7.17)

where

q0 = − ä0a0

ȧ0
2 =

Ωm0

2
− ΩΛ0 (7.18)

is the deceleration parameter. Neglecting the terms quadratic in z, eq. (7.17) is the fa-
mous Hubble law: the redshift of a galaxy is proportional to its distance from us. This
law permits measuring the Hubble constant H0, if one can observe sources for which
both the redshift and the luminosity distance are known. While the redshift of an object
can be measured directly using the emission lines present in the spectrum, the luminos-
ity distance can be derived from the observed luminosity ℓ only if one knows the in-
trinsic luminosity L [cf. eq. (7.15)]. Fortunately, there are classes of sources for which
L is constant: these sources are known as “standard candles” and, once calibrated7,

6By “cold”, it is meant that Dark Matter particles are non-relativistic (i.e., with kBT ≪ m). In the long
history of the Dark Matter paradigm, the origin of which is due to Zwicky and dates back to the 30’s (cf.
for instance ref. [217]), models with Hot (i.e., relativistic) Dark Matter were also put forward. However,
these models were abandoned because they predicted that galaxies would form very late (at z . 1, while
they are observed up to z & 6).

7For instance, by comparison with classical Cepheids, which are periodic stars with a narrow relation be-
tween period and luminosity.
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they can be used to measure or constrain the parameters entering eqs. (7.16) and (7.17).
The best-known and most important standard candles are type Ia supernovae (SNe Ia),
which form when a white dwarf explodes after overcoming the Chandrasekhar mass
limit as a consequence of accretion from a companion. Low redshift SNe Ia (together
with other standard candles) allow one to measure the Hubble constant with great pre-
cision: H0 = 72 ± 8 km s−1Mpc−1 [218]. Moreover, these sources are very luminous and
can be observed up to z > 1, thus allowing one to determine, in addition to H0, also a
linear combination of Ωm0 and ΩΛ0 [219, 220, 221]. From our approximate eq. (7.17), this
combination would be q0 = Ωm0/2−ΩΛ0, although a more rigorous analysis constrains a
slightly different combination (for instance, ref. [220] gives ΩΛ0 − 1.4Ωm0 = 0.35 ± 0.14).

Having this constraint, all that we need to determine the individual value of ΩΛ0 and
Ωm0 is a constraint on another linear combination of these quantities. Fortunately, such a
constraint is given by the measurement of the anisotropy spectrum of the temperature of
the Cosmic Microwave Background (CMB). In particular, it is possible to show that the
first peak of this spectrum gives a very precise measurement of the total density param-
eter Ω0 = Ωm0 + ΩΛ0: this quantity is found to be equal to 1 to within few percent [214].
This is in agreement with inflationary models, which predict that Ω0 should be almost
exactly 1 (flat universe). Combining this constraint with the one coming from SNe Ia, to
which it is approximately orthogonal, one gets Ωm0 ≈ 0.3 and ΩΛ0 ≈ 0.7 (cf. Fig. 7.1). We
shouldmention, though, that the anisotropy spectrum of the CMB givesmuchmore infor-
mation than that, because the shape of the spectrum depends on all of the parameters of
the ΛCDM model and a statistical analysis will therefore give constraints on all of them.
Nevertheless, the best-determined parameters (that is, the parameters the variations of
which have the most pronounced impact on the spectrum) are the already cited Ω0 and
the baryon density parameter Ωb0. Indeed, it is found that Ωb0 ≈ 0.045, in agreement
with the constraints coming from the Big Bang Nucleosynthesis model. As such, it turns
out that most of the matter which enters the evolution of the Universe (Ωm0 ≈ 0.3) is not
given by baryons but rather by CDM.

Further support to the above picture comes from measurements of Ωm0 and Ωb0 ob-
tained by means of observations of the large scale structure of the universe. These ob-
servations include, for instance, measurements of the mass-luminosity ratio for galaxies,
groups, clusters and superclusters [222], which can be converted into measurements of
the total matter density using the luminosity function of galaxies8; measurements of the
baryon fraction in clusters [223] (the baryon density can be measured using the Sunyaev-
Zeldovich effect or x-ray observations; the latter also permits calculating the total den-
sity, if one assumes hydrostatic equilibrium); measurements of the cluster abundance as
a function of redshift [224] (these constrain Ωm0, because if Ωm0 is significantly less than

8The tricky point in these measurements is of course the inclusion of CDM in the measured masses. This is
achieved with methods which are different from source to source: in disk galaxies one can measure the
rotation curves of neutral hydrogen and reconstruct the mass profile; in elliptical galaxies one can infer
the mass, for instance, from observations of hot x-ray emitting gas by assuming hydrostatic equilibrium;
x-ray measurements or approaches based on the virial theorem can finally be applied also to groups,
clusters and superclusters.
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1 the cosmic structures do not evolve between z = 1 and z = 0); measurements of the
correlation between the CMB temperature anisotropies and the distribution function of
galaxies [225] (this correlation, known as Sachs-Wolfe effect, gives a measure of Ωm0);
measurements of the distortions of the galaxy correlation function in redshift space [226]
(these distortions are due to the peculiar9 velocities of galaxies and permit measuring
Ωm0); measurements of the bispectrum of the galaxy distribution [227] (these allow one
to measure Ωm0) and of its power spectrum [228] (these give both Ωm0 and, through
the baryon acoustic oscillations, Ωb0); measurements of the peculiar velocities of galax-
ies [229] (these allow mapping of the total matter density profile); etc.

At this point, it should be clear that a ΛCDM with Ω0 ≈ 1, ΩΛ0 ≈ 0.7, Ωm0 ≈ 0.3 and
Ωb0 ≈ 0.045 is in agreement with basically all of the present cosmological observations
(the ΛCDM is indeed known also as the “concordance model”). However, this model has
an apparent drawback, namely the fact that 95% of the energy in the universe appears
to be made of dark components. While the supersymmetric extensions of the Standard
Model of particle physics predict the existence of many particles that could be the cos-
mological CDM, the situation is muchworse for the cosmological constant, as we will see
in the next two subsections.

Figure 7.1: Joint constraints from WMAP data alone and combined with large scale structure (baryon
acoustic oscillations, BAO), SNe Ia (SN) and the Hubble Space telescope constraint for the
Hubble constant (HST). Figure take from ref. [214].

9i.e., relative to an observer at rest with respect to the spatial coordinates used in eq. (7.1).
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7.2.2 The cosmological constant: the standard lore before t he 90’s

As we have already mentioned, the addition of a cosmological constant Λ is the simplest
possible modification of the Einstein equations, which become

Rµν − 1

2
R gµν + Λgµν = 8πG Tµν . (7.19)

These equations can be derived from the action

S = − 1

16πG

∫
(R − 2Λ)

√−g d4x , (7.20)

which replaces the Einstein-Hilbert action. As we have already stressed, Λgµν can be
viewed either as a geometrical term (in the absence of matter, the space-time is not
Minkowski) or, once moved to the right hand side, as a perfect fluid with

Tµν =
Λ

8πG
gµν (7.21)

[that is, with ρΛ = −pΛ = Λ/(8πG)].

However, in addition to this “geometrical” (or “bare”) cosmological constant, there are
other contributions (see ref. [230], to which we refer for the following discussion). In
order to understand what they are, let us start with the simple case of a real scalar field
φ, minimally coupled to gravity, with potential V (φ): its action is given by

Sφ =

∫
d4x

√−g

(
−1

2
∂µφ∂µφ − V (φ)

)
, (7.22)

from which the energy-momentum tensor follows:

Tµν = −2
∂Lφ

∂gµν
+ Lφgµν = ∂µφ∂νφ −

(
1

2
∂µφ∂µφ + V (φ)

)
gµν . (7.23)

Because in a neighbourhood of any fixed event x̄µ it is always possible to choose locally
inertial coordinates, we can take, neglecting terms O((x − x̄)2), gµν = ηµν in eqs. (7.22)
and (7.23). In particular, we can quantise the action (7.22) as in a flat space-time and
calculate the vacuum expectation value of Tµν , evaluated at x̄

µ.10 If the vacuum is Lorentz
invariant, we have

〈0|Tµν(x̄)|0〉 = −〈0|ρ|0〉ηµν , (7.24)

which in generic coordinates gives

〈0|Tµν |0〉 = −〈0|ρ|0〉gµν . (7.25)

10Of course the vacuum is not necessarily the state of the system: the vacuum energy is nevertheless the
additive constant up to which the energies of all other states are defined. In special relativity this constant
can be neglected, but this is not possible in GR, because an energy offset curves the space-time.
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On the other hand, in order to quantise the action (7.22) we can expand the potential
V (φ) around the value φ0 of the scalar field for which it is minimal. Neglecting the self-
interaction terms (i.e., considering φ as a free field), the vacuum expectation value is
V (φ0), if we assume the normal ordering of the creation and destruction operators: this
hypothesis, nevertheless, amounts to neglecting the zero-point energy, which, as we have
stressed, is not possible in GR. Therefore, we have

〈0|ρ|0〉 = V (φ0) +

∫ kcutoff

0

d3k

(2π)3
1

2

√
k2 + m2 ≈ V (φ0) +

k4
cutoff

16π2
, (7.26)

where the cut-off depends on the scale up to which we consider quantum field theory to
be valid.

Noting now that equation (7.25) has the same form as (7.21), it is clear that the “effec-
tive” cosmological constant (that is, the one relevant for experiments and observations)
is given by the sum of three kinds of contribution:

Λeff ∼ Λ + 8πG

(
V (φ0) +

k4
cutoff

16π2

)
. (7.27)

Of course, on the right hand sidewemust consider, instead of our toy scalar field, the vac-
uum energy densities of all of the degrees of freedom of quantum field theory: all of the
fields contribute with their own zero-point fluctuations and the scalar fields contribute
also with the minimum of their potential.

Let us now analyse what are the orders of magnitude of these different contributions.
If we assume that quantum field theory is valid up to the Planck scale (kcutoff ∼ mP), at
which quantum-gravitational effects should begin to be important, the zero-point fluc-
tuations should give a contribution of ∼ (1019GeV)4 to ρΛeff

. Taking instead as cut-off
the highest energy scale at which the standard model of particle physics has been exper-
imentally tested (∼ 100 GeV), we get, of course, a contribution of ∼ (100GeV)4.

Coming instead to the contributions from the minima of the potentials, we cannot esti-
mate their absolute magnitude, but it is clear that they change significantly during spon-
taneous symmetry breakings. For instance, in the case of the Higgs field of the standard
electroweak model (a weak isospin doublet Φ = (φa, φb), where φa and φb are complex
scalar fields) the potential is

V (Φ) = V0 + µ2Φ†Φ + λ(Φ†Φ)2 . (7.28)

Before the phase transition, µ2 and λ are positive: the minimum of the potential is there-
fore V0. After the phase transition, instead, µ

2 is negative: the potential is minimum [with
value V0 − µ4/(4λ)] for Φ†Φ = −µ2/(2λ) ≡ v2/2. Although we do not know V0, it can

be shown that v = (GF

√
2)−1/2 and mH =

√
2λv2, where GF = 1.166 · 10−5GeV−2 is the

Fermi constant andmH is the mass of the Higgs boson (unknown, but probably between
100 and 1000 GeV). We can then write the variation of the minimum value of the potential
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as

∆Vmin = −µ4

4λ
≈ −1

8
m2

Hv2 ≈ −(100 − 300GeV)4 (7.29)

(using the given limits for mH). Of course, variations of the terms “of type V (φ0)” can
happen also during the other phase transitions, which we believe the Universe has gone
through during its history.

Coming finally to the bare cosmological constant Λ, we should note that in a classical
context it is a free parameter, which could be estimated only experimentally (indeed, GR
is based on the fundamental constants G, c, Λ, with which it is not possible to build any
dimensionless combination). Anyway, we could hope that a quantum theory of gravity
will predict its value: if we use, in addition to G, c and Λ, also the Planck constant ~, the
simplest dimensionless combination that we can build is Λ(G~/c3). Since it is reasonable
to expect this to be∼ 1, we would have Λ ∼ L−2

P , where LP = (G~/c3)1/2 ≈ 1.7×10−33cm
is the Planck length: in this case, the contribution to the energy density would be ∼ m4

P.

In conclusion, the effective cosmological constant is due to the sum of several contri-
butions. The trouble is that they are different in origin and in order of magnitude and
they are much larger11 than the present critical energy density ρc 0 ∼ (10−3eV)4, which is
of course the only allowed scale for an observed cosmological constant.

It therefore appears absolutely implausible (if not ridiculous) to think that all of these
contribution could combine and give, at the present time, an effective cosmological con-
stant which should be hundreds of orders of magnitude smaller than the single contri-
butions. Indeed, until observations proved that Λ 6= 0, theorists used to think that there
should be an unknown mechanism able of constraining the sum which we have consid-
ered to be exactly zero.

7.2.3 The coincidence problem

The observational evidence that we have briefly presented in section 7.2.1 gives rise to
new problems. First of all, the cosmological constant is much smaller than the single
contributions that we have listed in the last section: this is known as “first problem of the
cosmological constant”.

Also, there is a second problem (“second problem of the cosmological constant” or
“coincidence problem”): why is ρΛ comparable to the energy density of matter at the
present time? In other words, because ρΛ has been constant at least since the last phase
transition (the quark-hadron transition, which happens at T ≈ 200 − 300MeV), whereas
ρm ∝ a−3, the very fact that we observe Λ 6= 0 at the present time marks a fine tuning
problem. Indeed, if ρΛ had been ≈ ρm much before the present time, cosmic structures
would not have formed, whereas if ρΛ ≈ ρm in the far future, todaywewould not observe
any cosmological constant. This “coincidence problem” is the most serious drawback of
the ΛCDM model. Cosmologists tried then to think of other possible explanations for
the observations of section 7.2.1. Indeed, those observations do not rule out a dark energy

11Note thatm4
P/ρc 0 ∼ 10124 and (100GeV)4/ρc 0 ∼ 1056.
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component having equation of state p = wDE ρ, with wDE not necessarily being constant
in time but being ≈ −1 at recent times.12

Among themodels implementing this possibility, wewill first address briefly the quint-
essencemodels (for a review see for instance ref. [213] and references therein), which have
often been claimed to be able to alleviate, although not solve, the coincidence problem.
In these models, dark energy is given by a scalar field (the quintessence) “rolling down a
potential”. Indeed, if we consider a uniform, real scalar field φ(t), minimally coupled to
gravity, and if its potential is flat enough at recent times, we have φ̇2 ≪ V (φ) (slow-roll
approximation) around the present time. As such,

wDE =
pφ

ρφ
=

1
2 φ̇2 − V (φ)
1
2 φ̇2 + V (φ)

≈ −1 . (7.30)

With this approach, dark energy at the present time is small because the universe is “old”
(i.e.. quintessence has rolled down almost to the minimum of the potential).
In particular, by choosing suitable shapes for the potential it is possible to get the so
called tracker solutions: in these models the energy density of quintessence is initially sub-
dominant with respect to ρrad (the radiation density) and ρm, so as to avoid interference
with primordial nucleosynthesis and structure formation, but eventually becomes com-
parable to ρm around the present time. The advantage of this is that all of the solutions
with initial conditions in a wide “basin of attraction” join this tracker. In other words, the
behaviour that we have sketched above does not depend on the initial conditions (i.e.,
this model does not require fine tuning of initial conditions, unlike the “classical” cosmo-
logical constant)13. However, one still has to understand why the present matter density
is comparable to the present energy density of quintessence : in fact, the latter depends
strongly on the parameters of the potential.
Another possibility, not excluded by observations, is wDE < −1, which would be im-
possible in, for instance, quintessence models. Indeed, in order to get this equation of
state one must introduce fields with non-standard kinetic terms (phantom fields, see ref.
[232]). In particular, it is easy to show that if wDE < −1 is constant in time, there will be a
future singularity (the so called “Big Rip” [233]) in the evolution of the universe. It could
be shown that in such a universe the coincidence problem makes no sense: there is only
a brief era in which cosmic structures exist and in which we must therefore necessarily
live (no coincidence, then), and an era of phantom energy domination in which cosmic
structures are destroyed. However, it has been demonstrated that this singularity does
not occur if wDE < −1 is not constant in time14.

12Actually, another requirement is that dark energy must not cluster on small scales, otherwise it would be
detected by the measurements of Ωm performed with the large scale structure observations (cf. section
7.2.1).

13Actually, it has been shown [221] that the SNe Ia data require d w
DE

/d z = 0.6 ± 0.5 for z = 0: in order
to have good trackers satisfying this constraint (i.e., with a large basin of attraction), one has to choose
potentials with rapidly varying curvature around the present time [231]. Of course this causes a new
“coincidence problem”.

14Of course, even if w
DE
were < −1, there is certainly no reason to think that it is constant.
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A completely different approach to the cosmological constant problem consists in us-
ing the “weak anthropic principle” [234]. In modern cosmological theories, the universe
is one realization of a stochastic process (and not necessarily the only one, as happens in
chaotic inflation or in the “superstring-inspired” landscape scenario); in other words, it
can be considered as one element of a statistical ensemble. If we suppose that the cosmo-
logical constant is different in each element of the ensemble, we can treat it as a random
variable. We could therefore wonder what its probability distribution is. Actually, as we
exist, what is relevant is not the probability that Λ is in a given interval, but the prob-
ability that it is observed and lies in the given interval. More precisely, we would like to
calculate the probability that an intelligent civilisation observes a universe with ΩΛ ≤ 0.7
at the present time.
First of all, let us note that ρΛ must be much smaller than the energy densities typical
of particle physics, otherwise galaxies would not form: we can therefore assume that the
probability density Pa priori(ρΛ) of having a certain ρΛ is approximately constant far from
these energies. We can then reasonably assume that the probability that intelligent life
develops is proportional to the fraction of baryons trapped in the galaxies [N(ρΛ)]. The
probability of having a universe with an evolved civilisationwhose astronomers measure
a cosmological constant between Λ and Λ + dΛ is therefore

dP (ρΛ) ≈ N(ρΛ)Papriori(ρΛ)dρΛ∫
N(ρΛ)Papriori(ρΛ)dρΛ

≈ N(ρΛ)dρΛ∫
N(ρΛ)dρΛ

, (7.31)

where N(ρΛ) can be calculated using galaxy formation models: one finds a probability
P (ΩΛ0 ≥ 0.7) between 5 and 12% (the result changes a bit according to the details of the
calculation). Note that these values are rather small, but not implausible.
However, nothing guarantees that anthropic considerations are useful in theoretical
physics. Let us consider an illustrative example: why does our universe have three spa-
tial dimensions? A possible answer based on the anthropic principle is that if the number
of spatial dimensions were not equal to three, the orbit of the Earth would not be closed
and its climate would be too unstable to accommodate human life. This solution is a logi-
cally acceptable answer to the original question, but it is clear that it provides no insights
for the compactification mechanism of extra dimensions, which is one of the central is-
sues in higher-dimensional theories. Thus, in this sense this approach does not contribute
to progress in theoretical physics.
A more fruitful approach, as we have already mentioned earlier in this chapter, may
consist in interpreting the data pointing to the existence of a cosmological constant as be-
ing due to the failure of GR at cosmological scales, and in phenomenologically modifying
GR to reproduce these data. In the next chapters we will examine the consequences of
some of these phenomenological gravity theories at the lengthscales of stars.



Chapter 8
Stars in Palatini f(R) gravity

È pericoloso porre in modo sbagliato
questioni sostanzialmente giuste.

I. Montanelli

8.1 Introduction

In this chapter we will focus on one specific generalisation of GR: Palatini f(R) grav-
ity [235] (see ref. [212] for a recent review of other attempts to generalise GR). As can
be found in many textbooks (see e.g. ref. [1, 236]), Einstein’s theory can be derived from
the Einstein–Hilbert action not only by means of the standard metric variation, but also
by taking independent variations with respect to the metric and the connection. In this
approach, known as the Palatini variational approach, the metric and the connection are
treated as independent quantities, and one has to vary the action with respect to both of
them in order to obtain the field equations. The Riemann tensor Rλ

µσν and the Ricci ten-

sorRµν are defined with respect to the now independent connection Γλ
µν and do not nec-

essarily coincide with the Riemann and Ricci tensors of the metric gµν . Similarly, the Ricci
scalar is defined as R = gµνRµν and depends on the independent connection Γλ

µν , rather

than on the Levi-Civita connection1 of the metric as in standard GR. If the Lagrangian
is linear in R (as in the Einstein–Hilbert action), variation with respect to the indepen-
dent connection forces it to reduce to the Levi–Civita connection of the metric, whereas
variation with respect to the metric gives the standard Einstein equations. Therefore, in
the case of the Einstein–Hilbert action the outcome of Palatini variation is standard GR.

1We recall that the Levi-Civita connection is given by the familiar Christoffel symbols Γλ
µν = gλσ(∂µgνσ +

∂νgµσ − ∂σgµν)/2.
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However, clearly Einstein’s theory is no longer recovered for a generic action

S =
1

16 π

∫
d4x

√−gf(R) + SM (gµν , ψ), (8.1)

where f(R) is a function of R,2 SM is the matter action and ψ collectively denotes the
matter fields. (We recall that we are using units in which c = G = 1). The resulting theory
is then what is known as “f(R) gravity in the Palatini formalism” or simply “Palatini
f(R) gravity”. It is easy to see that independent variation of the action (8.1) with respect
to the metric and the connection gives

F (R)Rµν − 1

2
f(R)gµν = 8π Tµν , (8.2)

∇σ[
√−gF (R)gµν ] = 0, (8.3)

where F (R) = ∂f/∂R, Tµν ≡ −2(−g)−1/2δSM/δgµν is the usual stress-energy tensor of
the matter and∇µ is the covariant derivative built with the independent connection Γλ

µν .
Note that a crucial assumption has been made in order to derive eqs. (8.2) and (8.3): the
matter action has been taken to be independent of the connection Γλ

µν [cf. eq. (8.1)].
This assumption is physically meaningful because it implies that the connection which
defines parallel transport, and therefore the covariant derivative of matter fields, is the
Levi-Civita connection of the metric. This demotes the independent connection to the
role of an auxiliary field [238, 239, 240]. Additionally, under this assumption, the Levi-
Civita connection becomes the one with respect to which the matter stress-energy tensor
is conserved [241] (which implies, in particular, that test particles follow geodesics of the
metric gµν). In order to restore the geometrical nature of the independent connection,
one has to allow it to couple to the matter. This leads to metric-affine f(R) gravity [238],
which is a different theory with enriched phenomenology [239, 240].

Specific choices for the function f(R) in the action (8.1) have been shown to lead
to models of Palatini f(R) gravity which might be able to address dark-energy prob-
lems [237]. There is now an extensive literature on the cosmological aspects of such
models and discussing their consistency with cosmological [242] and solar system con-
straints [243, 244]. In this chapter, we will focus on the less well-studied issue of finding
consistent solutions for static spherically-symmetric matter configurations when f(R) 6=
R.

In order to be able to treat the field equations analytically, we will assume a polytropic
equation of state (EOS) for the matter, i.e.

p = κρΓ
0 , Γ > 3/2 (8.4)

2As we will explain later in this chapter, there is no first principle from which one can derive the form of
f(R), the choice of which is a completely phenomenological one. Ad hoc choices which reproduce the
acceleration of the expansion of the universe usually include, in addition to a term which is linear in R, a
term proportional to 1/R [237].
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(p and ρ0 are the pressure and the rest-mass density, while κ and Γ are constants). This is
a very common and useful choice for making simplified calculations both in GR and in
Newtonian theory [245]. We will find that for a polytropic index in the range 3/2 < Γ < 2
there exist no static and spherically-symmetric regular solutions to the field equations,
because curvature singularities unavoidably arise at the surface.

Before presenting the derivation, there are four points that ought to be stressed about
this result:

1. It holds also for any EOS which can be approximated, near to the surface, by a
polytrope with 3/2 < Γ < 2.

2. It is independent of the functional form of f(R) (with the exception of some very
specific cases, including standard GR). It is therefore applicable not only to specific
models, but it reveals a generic aspect of Palatini f(R) gravity as a class of theories.

3. The singularities appearing are true curvature singularities and not coordinate sin-
gularities, i.e. the curvature invariants of the metric diverge.

4. Apart from the assumptions already listed, concerning symmetries and the EOS,
no other assumption or approximation has been used. The result therefore applies
in all regimes ranging from Newtonian weak field to strong gravity.

This result therefore casts some serious doubt on the viability of Palatini f(R) gravity.
In the next sections, after presenting the proof of the result (sec. 8.2), we will further anal-
yse the situation by considering gedanken experiments as a powerful tool to investigate
the completeness of the theory (sec. 8.3). In sec. 8.3.1, we calculate the tidal forces due
to the presence of the surface singularities, and reply to a recent criticism by Kainulainen
et al. [246] about the idealised nature of the polytropic EOS and the validity of the fluid
approximation at the lengthscales on which the singularities arise. In sec. 8.4, we then
discuss the physical and mathematical nature of the problem. This analysis reveals that
the presence of the singularities is not specifically related to the fluid description of mat-
ter, but rather is a feature of the differential structure of the equations of the theory and
would, in general, become even more acute if the fluid approximation were to be aban-
doned. In the same section we also propose ways to generalise the theory in order to
avoid these problems. In sec. 8.5 we present our conclusions.

8.2 A no-go theorem for polytropic spheres in Palatini f(R)
gravity

As we have mentioned above, in this chapter we focus on the problem of finding con-
sistent solutions for static spherically-symmetric stellar models in Palatini f(R) gravity
when f(R) 6= R. We first note that doing this is helped by the fact that Palatini f(R)
gravity retains a useful characteristic of GR: the exterior spherically symmetric solution
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is unique (Birkhoff’s theorem). To see this one must take the trace of eq. (8.2),

F (R)R − 2f(R) = 8π T, (8.5)

where T ≡ gµνTµν . For a given f(R), this is an algebraic equation in R and therefore it
can be solved to giveR as a function of T . We will not consider cases where this equation
has no roots, since those do not give viable classical gravity theories [247]. Eq. (8.5) also
implies that if T = 0, R must be constant3. If we denote the value of R when T = 0 by
R0 and insert it into eq. (8.3), this equation reduces to the covariant conservation of g

µν ,
fixing the independent connection to be the Levi-Civita one. This will be the situation in
vacuum and in this case eq. (8.2) reduces to

R̃µν − Λ(R0)gµν = 0, (8.6)

where R̃µν is now indeed the Ricci tensor of the metric and Λ(R0) = R0/4. According
to whether R0 is zero or not, which of course depends on the choice of f(R), the the-
ory reduces in vacuum to GR without or with a cosmological constant. The vacuum
spherically symmetric solution is unique in either case, being either Schwarzschild or
Schwarzschild-(anti-)de Sitter.

Having determined an exterior solution, we then need to find an interior solution
and perform a matching between the two. Recently, the generalisation of the Tolman–
Oppenheimer–Volkoff (TOV) hydrostatic equilibrium equation for Palatini f(R) gravity
has been derived [248], opening the way for finding equilibrium interior solutions. We
will consider here the matching of such interior solutions with exterior ones.

We begin by reviewing the formulas that we will need. Denoting the Ricci scalar of

gµν by R̃ ≡ gµνR̃µν and setting G̃µν = R̃µν − gµνR̃/2, the field eqs. (8.2) and (8.3) can be
rewritten as a single one

G̃µν =
8π

F
Tµν − 1

2
gµν

(
R − f

F

)
+

1

F

(
∇̃µ∇̃ν− gµν¤̃

)
F

− 3

2

1

F 2

(
(∇̃µF )(∇̃νF ) − 1

2
gµν(∇̃F )2

)
, (8.7)

where ∇̃µ is the covariant derivative with respect to the Levi-Civita connection of gµν and

¤̃ ≡ gµν∇̃µ∇̃ν . To arrive at this equation, one has to solve eq. (8.3) for Γλ
µν , insert this

into eq. (8.2) and express the resulting equation in terms only of metric quantities (for an
alternative method, see ref. [239]).

Using the static spherically symmetric ansatz

ds2 ≡ −eA(r)dt2 + eB(r)dr2 + r2dΩ2, (8.8)

3Indeed, if R0 is the root of eq. (8.5) when T = 0 [i.e., F (R0)R0 − 2f(R0) = 0], one has R(r) = R0 for any
value of the radial coordinate r.



8.2. A no-go theorem for polytropic spheres in Palatini f(R) gravity 167

in eq. (8.7), considering perfect-fluid matter with Tµν = (ρ + p)uµuν + pgµν (where ρ is
the energy density, p is the pressure and uµ is the fluid 4-velocity) and representing d/dr
with a prime, one arrives at the equations

A′ =
−1

1 + γ

(
1 − eB

r
− eB

F
8πGrp +

α

r

)
, (8.9)

B′ =
1

1 + γ

(
1 − eB

r
+

eB

F
8πGrρ +

α + β

r

)
, (8.10)

α ≡ r2

(
3

4

(
F ′

F

)2

+
2F ′

rF
+

eB

2

(
R − f

F

))
, (8.11)

β ≡ r2

(
F ′′

F
− 3

2

(
F ′

F

)2
)

, γ ≡ rF ′

2F
. (8.12)

Definingmtot(r) ≡ r(1 − e−B)/2 and using the Euler equation,

p′ = −A′

2
(p + ρ) (8.13)

one gets the generalised TOV equations [248]:

p′ = − 1

1 + γ

(ρ + p)

r(r − 2mtot)

(
mtot +

4πr3p

F
− α

2
(r − 2mtot)

)
, (8.14)

m′
tot =

1

1 + γ

(
4πr2ρ

F
+

α+β

2
− mtot

r
(α+β−γ)

)
. (8.15)

We consider here matter which can be described by a one-parameter EOS p = p(ρ). When
this is specified, one can in principle solve the above equations and derive an interior so-
lution. However, this is hard to do in practice because the equations are implicit, their
right-hand sides effectively including through F ′ and F ′′ both first and second deriva-
tives of the pressure, e.g., F ′ = d/dr [F (R(T ))] = (dF/dR) (dR/dT ) (dT/dp) p′. We there-
fore first put them in an explicit form, which allows us not only to solve them numerically,
but also to study their behaviour at the stellar surface.

Multiplying eq. (8.14) by dF/dp and using the definitions of α and γ, we get a quadratic
equation in F ′, whose solution is

F ′ =
−4rF (C − F )(r − 2mtot) + D

√
2∆

r2(3C − 4F )(r − 2mtot)
(8.16)
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where D = ±1 and where we have defined

C =
dF

dp
(p + ρ) =

dF

dρ

dρ

dp
(p + ρ), (8.17)

∆ = Fr2(r − 2mtot)
[
8F (C − F )2(r − 2mtot) (8.18)

− C(4F − 3C)
(
(16πp − FR + f)r3 + 4Fmtot

)]
.

Wewill now focus on polytropic EOSs given by p = κρ0
Γ, noting that this can be rewritten

as ρ = (p/κ)1/Γ + p/(Γ − 1), giving a direct link between p and ρ. In eq. (8.17), we have
written C in terms of dF/dρ because this is finite at the stellar surface (r = rout where
p = ρ = 0). In fact, dF/dρ = (dF/dR) (dR/dT ) (3dp/dρ − 1), where dF/dR and dR/dT
are in general finite even when T = 3p − ρ goes to zero [check for instance the R2 or 1/R
models] and dp/dρ → 0 for p → 0. Note also that while dρ/dp diverges when p → 0, the
product (p + ρ) dρ/dp goes to zero for p → 0 if Γ < 2. Therefore, for a polytrope with
Γ < 2, C = 0 at the surface.
We now match the interior solution to the exterior one. For the latter, the general
solution to eq. (8.6) is exp(−B(r)) = ℓ exp(A(r)) = 1 − 2m/r − R0r

2/12, where ℓ and
m are integration constants to be fixed by requiring continuity of the metric coefficients
across the surface and R0 is again the vacuum value of R. Using the definition ofmtot(r)
this gives, in the exterior, mtot(r) = m + r3R0/24 . Besides continuity of the metric, one
has to impose some junction conditions for A′. The exterior solution evaluated at the
surface gives

A′(rout) =
2

(
r3
outR0 − 12m

)

rout

(
R0r3

out − 12rout + 24m
) , (8.19)

whereas the value of A′(rout) for the interior solution can be calculated with eq. (8.9).
For this we need F ′(rout). Evaluating eq. (8.16) at the surface, where C = p = 0 and R,
F and f take their constant vacuum values R0, F0 and f0 = F0R0/2, we get F ′(rout) =

−(1 + D̃)F0/rout ,where D̃ = D sign[rout−2mtot(rout)]
4. Choosing D̃ = 1 implies γ = −1

at the surface [cf. eq. (8.12)] giving A′ → ∞ for r → r−out [cf. eq. (8.9)], whereas A′ keeps

finite for r → r+
out [eq. (8.19)]. Because G̃µν involvesA

′′, this infinite discontinuity leads to
the presence of Dirac deltas in the field equations. These Dirac deltas cannot be cancelled
by the derivatives of F ′ on the right-hand side, because the discontinuity of F ′ is only a
finite one, and one should therefore invoke an infinite surface density at r = rout. Since

this is unreasonable, we focus only on D̃ = −1, for which F ′(rout) = 0 when r → r−out,
making both F ′ and A′ continuous across the surface.
In order to study the behaviour ofmtot at the surface, we need first to derive an explicit
expression for F ′′. If we take the derivative of eq. (8.16), F ′′ appears on the left-hand
side and also on the right-hand side [through m′

tot, calculated from eq. (8.15) and the
definition of β, eq. (8.12)], giving a linear equation in F ′′. The solution to this equation,

4Unlike in GR, one cannot prove that rout > 2mtot(rout) from eq. (8.14), because p′ is not necessarily
positive for r < 2mtot. However, one may expect rout > 2mtot in sensible solutions.
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evaluated at the surface, is

F ′′(rout) =

(
R0r

3
out − 8mtot

)
C′

8rout(rout − 2mtot)
(8.20)

Evaluating α, β and γ at the surface using F ′ = 0 and F ′′ given by eq. (8.20), and inserting
into eq. (8.15) gives

m′
tot(rout) =

2F0R0r
2
out +

(
r3
outR0 − 8mtot

)
C′

16F0
. (8.21)

For 1 < Γ < 3/2, C′ = dC/dp p′ ∝ dC/dp (p+ρ) → 0 at the surface so that expression (8.21)
is finite and it even gives continuity ofm′

tot across the surface. However, for 3/2 < Γ < 2,
C′ → ∞ as the surface is approached, provided that dF/dR(R0) 6= 0 and dR/dT (T0) 6= 0
(note that these conditions are satisfied by generic forms of f(R), i.e.whenever anR2 term
or a term inversely proportional toR is present). Whilemtot keeps finite [as can be shown
using p ∼ (rout − r)Γ/(Γ−1), which can be derived integrating eq. (8.14) near the surface],

the divergence of m′
tot drives to infinity the Riemann tensor of the metric, R̃µνσλ, and

curvature invariants, such as R̃ or R̃µνσλR̃µνσλ, as can easily be checked
5. This singular

behaviour would cause unphysical phenomena, such as infinite tidal forces which would
destroy anything present at the surface [cf. the geodesic deviation equation]. We can
then conclude that no physically relevant solution exists for any polytropic EOS with
3/2 < Γ < 2. Of course, polytropes give only simplified models for stars and the EOS in
the outer layers is critical for the behaviour ofm′

tot at the surface in the non-GR case. One
would like to use a more accurate EOS, but while this can give regular solutions in many
cases (e.g. if p ∝ ρ0 near the surface), the existence of counter-examples is worrying for
the viability of the theory.

Setting aside the surface singularity, we next turn to the behaviour in the interior, fo-
cusing on models of neutron stars constructed using an analytical approximation to the
FPS (Friedman-Pandharipande-Skyrme) EOS [250].6 Adding positive powers of R to
the Einstein-Hilbert action produces significant effects for compact stars while adding
negative ones predominantly affects more diffuse stars. Generically, though, one would
expect terms of both types to be added if there is a deviation away from GR. Since the
1/R term commonly used in cosmology would have a negligible effect in the interior of
a neutron star, we used here f(R) = R + ǫR2. As can be seen from eq. (8.7), the metric
will be sensitive to derivatives of the matter fields, since R is a function of T . 7. This

5This seems to have been missed in ref. [249].
6Since the FPS EOS is a tabulated EOS, its low density limit is not specified. Therefore, one can always
build static spherically symmetric solutions which are not singular at the surface by imposing a suitable
low-density behaviour (e.g., assuming an isothermal outer layer for the system, which implies p ∝ ρ and
therefore Γ = 1 near the surface).

7The unusual behaviour of this class of theories has been mentioned in a different context in ref. [251] How-
ever, we disagree with the claims made there about the violation of the equivalence principle, because
they seem to be based on an ill-posed identification of the metric whose geodesics should coincide with
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can be seen in Fig. 8.1: mtot, which in GR has a smooth profile, now develops peculiar
features when dρ/dp and d2ρ/dp2 change rapidly in going from the core to the inner crust
and from the inner crust to the outer crust. If mtot were plotted against the radius, these
features would look much more abrupt, because they occur in a small range of radii close
to the surface. While mtot does not represent a real mass in the interior, such a strong
dependence of the metric on the derivatives of the matter fields is not very plausible and
could have important consequences.

We have therefore found two unappealing characteristics of Palatini f(R) gravity as
applied to stellar models, each of which arises because of the dependence of the metric
on higher order derivatives of thematter field. First: whether or not a regular solution can
be found depends crucially on the microphysics through the EOS, because EOSs which
can be approximated, near the surface, by polytropes with 3/2 < Γ < 2 are ruled out for
generic f(R). Second: even if an EOS does allow a regular solution at the surface, the
interior metric depends on the first and second derivatives of the density with respect to
the pressure, giving a problematic behaviour.

8.3 The interpretation

Gedanken experiments and incompleteness

Clearly, a polytropic EOS is too idealised to give a detailed description for a matter con-
figuration such as an astrophysical star. However, this does not at all make polytropes
physically irrelevant. On the contrary, besides being widely used in GR and in Newto-
nian theory [245], there are at least two physical matter configurations which are exactly
described by a Γ = 5/3 polytrope: a monatomic isentropic gas and a degenerate non-
relativistic electron gas. Note that this value of the polytropic index lies well within the
range 3/2 < Γ < 2, for which surface singularities have been shown to appear, and so
Palatini f(R) gravity does not allow a physical solution for these configurations (a so-
lution which is singular at the surface should be discarded as unphysical). One might,
therefore, discard Palatini f(R) gravity as a viable alternative to GR already on the ba-
sis of such gedanken experiments. Alternatively, one must at least accept that the theory,
as it stands, is incomplete, being incapable of describing configurations, such as a cloud
of monatomic gas, which are well-described even by Newtonian gravity. Note that this
means in particular that Palatini f(R) gravity does not even reproduce the Newtonian
limit in these cases!

It should be stressed that although the fluid description of matter does indeed conceal
information about the microphysics of the system, this is by no means the cause of the
problem discussed here, nor will abandoning the fluid approximation solve the problem,
as we will show in sec. 8.4. On the contrary, one naturally expects that systems such as a
monatomic isentropic gas or a degenerate electron gas should be describable by a theory
of gravity without resorting to a statistical description. In our opinion, the inability of a

free-fall trajectories.
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Figure 8.1: Profiles ofmtot (inM⊙) and other associated quantities plotted against density in the interior

of a neutron-star with central density 1015g/cm3 and p′ = 0 in the centre as required by local
flatness. We have used the FPS EOS [250] and f(R) = R + ǫR2. The dot-dashed line shows
mtot as calculated with ǫ = 0.1 and the dotted line shows the equivalent curve in GR (ǫ = 0);
the solid line shows dmtot/dr (in M⊙/km) for ǫ = 0.1 (this value is orders of magnitude
lower than solar system constraints [252]). Note the bumps in the dmtot/dr curve resulting
from rapid composition changes in the EOS (the corresponding features in themtot curve for
ǫ = 0.1 are less apparent but a noticeable dip is seen at ρ ∼ 1014g/cm3). To make evident
the influence of composition changes, we also show comparisons between the FPS EOS and a
polytrope (with Γ = 4/3 and κ = 1015 cgs): the long-dashed and short-dashed curves show
0.1 × (dρ/dp)FPS/(dρ/dp)polytrope and 0.01 × (d2ρ/dp2)FPS/(d2ρ/dp2)polytrope, respec-
tively.

theory to provide a classical treatment of macroscopic systems without a precise micro-
physical description is already a very serious shortcoming. This problem does not arise
in GR.

8.3.1 Stars and tidal forces

In this section we calculate the tidal forces arising due to the presence of the surface
singularities which we discovered in sec. 8.2. A version of this calculation for a partic-
ular restricted form of f(R) was performed by Kainulainen et al. [246], who found that
the lengthscale on which the tidal forces diverge due to the curvature singularity was
shorter than the mean free path (MFP) in that case, and concluded that the system was
not then well-described using the fluid approximation. We will now show that while
this is correct in the particular case which they considered, that is a very special one and
is not representative of the general situation. Ref. [246] considered in fact the case of a
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neutron star with f(R) = R−µ4/R (where µ2 ∼ Λ, Λ being the value of the cosmological
constant as inferred from cosmological observations). Although f(R) = R − µ4/R can
be used to obtain the accelerated expansion of the Universe without resorting to Dark
Energy or a cosmological constant, there is no basic principle from which to derive this
functional form, and in order to justify it one has to invoke phenomenological arguments
based on a series expansion of the unknown f(R) coming from a consistent high energy
theory. As such, there is no reason to exclude the presence of quadratic or cubic terms,
and indeed the observational limits on these terms coming from solar system tests are
very loose [252]. We will show that if one takes f(R) = R−µ4/R+εR2 even with ε being
orders of magnitude smaller than the maximum allowed by the solar system constraints,
the lengthscale on which the tidal forces diverge is much larger than the MFP, even in the
case of neutron stars. Incidentally, this was expected because we have already shown in
sec. 8.2 how important the effect of such a tiny ε can be in neutron star interiors. How-
ever, even if one cancels by hand all of the quadratic and cubic terms from the function
f(R), thus giving precisely f(R) = R − µ4/R, the result of ref. [246] still does not apply
for sufficiently diffuse systems, where the lengthscale on which the tidal forces diverge
is anyway much larger than the MFP.

We will now proceed to calculate in detail the tidal force experienced, because of the
curvature singularities found in sec. 8.2, by a body falling radially into a polytropic
sphere with Γ = 5/3, as soon as it crosses the surface. Our conclusions apply un-
changed also to bodies moving on different orbits, e.g. circular ones just below the sur-
face. Throughout the calculation, we use units in which M⊙ = 1 (besides, as usual,
G = c = 1). If we consider the separation vector η = ηr∂/∂r, the tidal acceleration in the
radial direction is given by the geodesic deviation equation:

a ≡ D2ηr

Dτ2
= Rr

ttr(u
t)2ηr = −1

4
eA−B(A′2 − A′B′ + 2A′′)(ut)2ηr , (8.22)

where τ is the proper time and D/Dτ is the total covariant derivative with respect to
it. Using eqs. (8.9)-(8.12) and Mathematica [253], it is easy to show that the combination
A′2 − A′B′ + 2A′′ appearing in this equation depends linearly on F ′′:

A′2 − A′B′ + 2A′′ = c0 + c1F
′′ , (8.23)

where

c0 =
{

16F 4 + 40rF ′F 3 + 52r2F ′2F 2

+ 16e2Bπr2
[
(f + 16πp − FR)r2 + 2F

]
(p + ρ)F 2

+ 24r3F ′3F − 2eB
(
2F + rF ′

)
[3(f + 12πp − 4πρ)F ′r3

− F
(
r
(
r
(
f ′ + 2RF ′

)
+ 8π

(
p + ρ + 2rp′

))
− 4F ′

)
r

+ F 2
(
R′r3 + 4

)
]F + 3r4F ′4

}
/[r2F 2

(
2F + rF ′

)2
] , (8.24)
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c1 = − 4

2F + rF ′
. (8.25)

Note that both c0 and c1 are finite at the surface, whereas F ′′ diverges, as already men-
tioned. Keeping therefore only the divergent term c1F

′′, the ratio between the accelera-
tions in the Palatini (“singular”) and GR cases is

∣∣∣∣
asing

aGR

∣∣∣∣ ≈
|c1F

′′|r2
out(rout − 2mtot)

8mtot
(8.26)

Using now the fact that R0 must be≪ 1 in our units in order to match the cosmological
accelerated expansion (one needs to have R0 = 4Λ = 12ΩΛH2

0 ∼ 10−45), eq. (8.20) gives
F ′′ ≈ −mtotC′/[rout(rout − 2mtot)] and therefore

∣∣∣∣
asing

aGR

∣∣∣∣ ≈
|c1C′|rout

8
. (8.27)

The derivative of C with respect to r can easily be calculated from the definition C ≡
dF/dp (p + ρ): using the chain rule, the Euler equation (8.13) and the fact that the trace of
the stress energy tensor for a perfect fluid is T = 3p − ρ, one has

C′ =
dC
dp

p′ = −
[
d2F

dp2
(p + ρ)2 +

dF

dp
(1 +

dρ

dp
)(p + ρ)

]
A

2

′

= −A′

2

{
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dR
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dT
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)2

(p + ρ) + (p + ρ)2×
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−d2ρ
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+

dF

dR

d2R

dT 2

(
3 − dρ
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)2

+
d2F

dR2

(
dR

dT

)2 (
3 − dρ

dp

)2
]}

. (8.28)

Remembering now that C = 0, dρ/dp(p + ρ) = 0 and dp/dρ = 0 at the surface for Γ < 2
(see sec. 8.2), one can easily rewrite the above equation keeping only the divergent terms:

C′ =
dF

dR

dR

dT

A′

2

[
(p + ρ)

(
dρ

dp

)2

+
d2ρ

dp2
(p + ρ)2

]

+ terms going to zero at the surface (8.29)

Taking Γ = 5/3 and using A′ ≈ 2mtot/[rout(rout − 2mtot)] [cf. eq. (8.19)], this equation
becomes

C′ ≈ dF

dR

dR

dT

A′

2

[
(p + ρ)

(
dρ

dp

)2

+
d2ρ

dp2
(p + ρ)2

]

≈ −8π
dF

dR

3mtot

25rout(rout − 2mtot)κ2

(p

κ

)−1/5
, (8.30)
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where, in order to pass from the first to the second line, we have used the fact that
dR/dT ≈ −8π close to the surface but at a finite distance below it, for a generic func-
tion f(R) = R − µ4/R + εR2. To see this, one can solve eq. (8.5) and obtain R =
−4πT ± (3µ4 + 16π2T 2)1/2. Choosing the positive sign in order to have a positive cosmo-
logical constant in vacuum, one has µ2 = R0/

√
3 ∼ 10−45. Then, even very close to the

surface, one has |T | ≫ µ2 and R ≈ −8πT .

Integrating the Euler equation (8.13) just below the surface one gets

p ≈
(

2

5

)5/2 [
mtot

rout(rout − 2mtot)

]5/2

(rout − r)5/2κ−3/2 (8.31)

hence

ρ ≈
(

2

5

)3/2 [
mtot

rout(rout − 2mtot)

]3/2

(rout − r)3/2κ−3/2 (8.32)

Therefore, ∣∣∣∣
asing

aGR

∣∣∣∣ ≈
3
√

5

25
√

2
π

∣∣∣∣c1
dF

dR

∣∣∣∣
√

mtot rout√
rout − 2mtot

κ−3/2

√
rout − r

(8.33)

To calculate the ratio given by eq. (8.33), let us first consider the general case f(R) =
R − µ4/R + εR2. We stress again that one generically expects the presence of the term
εR2, because there is no first principle from which to derive the functional form of f(R),
and one has to think of it as the series expansion of an unknown f(R) coming from a con-
sistent high-energy theory of gravity. As can easily be seen from eq. (8.5), the quadratic
term does not influence the vacuum value R0 of the curvature scalar, which acts as the
effective cosmological constant. Basically for this reason, the quadratic term is essentially
unconstrained by cosmological data and solar system tests only allow weak constraints
to be placed on it [252]. Taking now ε ∼ 0.1 in our units (a value several orders of mag-
nitude smaller than the upper limit coming from solar system tests [252]), just below the
surface we have dF/dR ≈ 2ε ≈ 0.2 and c1 ≈ −2/F0 ≈ −3/2 (because F ′ ∼ 0 near to the
surface). From eq. (8.33), one then obtains

∣∣∣∣
asing

aGR

∣∣∣∣ ≈ 0.2

√
mtot rout√

rout − 2mtot

κ−3/2

√
rout − r

. (8.34)

In the case of a neutron star as modelled with a polytropic EOS (κ ≈ 4, rout ≈ 10 and
mtot ≈ 1), one therefore has

∣∣∣∣
asing

aGR

∣∣∣∣ ≈ 0.02(rout − r)−1/2 , (8.35)

and the ratio |asing/aGR| is large at distances below the surface at which the fluid ap-
proximation is certainly valid. For instance, |asing/aGR| ∼ 20 for rout − r ∼ 10−6 ∼ 1.5
mm, |asing/aGR| ∼ 600 for rout − r ∼ 10−9 ∼ 1.5 µm, |asing/aGR| ∼ 2 × 104 for rout − r ∼
10−12 ∼ 1.5 nm. Note also that the ratio |asing/aGR| scales proportionally with the value of



8.4. Physical and mathematical nature of the problem 175

ε, which we have taken, as already mentioned, to be several orders of magnitude smaller
than the upper limits coming from solar system tests [252].

Let us now consider instead the case f(R) = R − µ4/R, as used in ref. [246]. First,
we need to evaluate c1. Noting that c1 → −2/F0 = −3/2 as r → rout, because F ′ =
0 at the surface (cf. sec. 8.2), we have c1 ∼ 1 just below the surface. In order to see
what happens instead at a finite distance below the surface, note first that dF/dR ≈
−2R2

0/(3R3). As already mentioned, solving eq. (8.5) and imposing that the cosmological
constant Λ = R0/4 in vacuum is positive, one gets R = −4πT + (3µ4 + 16π2T 2)1/2 ≈ 8πρ
for ρ ≫ R0. We can then write dF/dR ≈ −2/[3(8π)3]R2

0/ρ3 for ρ ≫ R0, and therefore
F ′ = (dF/dR) (dR/dT ) (dT/dρ) ρ′ ∼ ρ′ (R0/ρ)3/R0. Because R0 ∼ 10−45, it is clear rF ′ ≪
F even at finite distances below the surface. From eq. (8.25) it then follows that c1 ≈
−2/F0 = −3/2 also at finite distances below the surface.

Let us evaluate eq. (8.33) for ρ ≫ R0: using c1 ≈ −3/2 and dF/dR ≈ −2/[3(8π)3]R2
0/ρ3,

it becomes

∣∣∣∣
asing

aGR

∣∣∣∣ ≈
3π

25(8π)3

(
5

2

)5

R2
0κ

3m−4
totr

5
out(rout − 2mtot)

4(rout − r)−5. (8.36)

It is therefore clear that tidal forces become increasingly more important, even in the
particular case f(R) = R − µ4/R, for spheres with larger radius. As such, even for
this particular form of f(R), the lengthscale on which the tidal forces diverge is much
larger than the lengthscale on which the fluid approximation is valid, if one considers
less compact systems: some examples are worked out in the Appendix.

In conclusion, we have shown that the fluid approximation is still valid on the scale at
which the tidal forces diverge just below the surface of a polytropic sphere in the case of
the generic functions f(R) likely to arise in practice in a cosmological scenario. Even in
the special case considered by Kainulainen et al. [246], this continues to hold for configu-
rations which are sufficiently diffuse.

8.4 Physical and mathematical nature of the problem

8.4.1 Differential structure and cumulativity

It is clear from the above that the nature of the problem discussed here does not lie in
the fluid approximation or in the specifics of the approach followed in sec. 8.2, but is
related to intrinsic characteristics of Palatini f(R) gravity. These concern the differential
structure of the action (8.1) and the resulting field equations.

We recall that the Lagrangian of the action (8.1) is an algebraic function of R = gµνRµν

and that Rµν is constructed from the independent connection Γλ
µν . In more detail,

Rµ
νσλ = −∂λΓµ

νσ + ∂σΓµ
νλ + Γµ

ασΓα
νλ − Γµ

αλΓα
νσ , (8.37)

and contracting the first and the third index one gets (see refs. [212, 238] for further de-
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tails)
Rµν = Rλ

µλν = ∂λΓλ
µν − ∂νΓ

λ
µλ + Γλ

σλΓσ
µν − Γλ

σνΓ
σ
µλ. (8.38)

It follows from this that f(R) has no a priori dependence on derivatives of the metric.
Also, R depends only linearly on the first derivatives of the connection i.e., at least in
the case where f is linear in R (which leads to GR), there are no ∂Γ∂Γ terms (indices
suppressed) as there would usually be in a field theory! Onemight expect that allowing f
to be non-linear inRwould introduce ∂Γ∂Γ terms and solve this last problem, but wewill
see shortly that this is not the case. Note also that, since the metric has no a priori relation
with the connection, one is dealing with a field theory with two independent fields, and
so one cannot argue that having no quadratic terms in the connection is expected because
the connection already includes derivatives of the metric.

This lack of dynamics in the action is also mirrored in the field equations (8.2) and (8.3).
Variation with respect to the metric leads to eq. (8.2), which includes no derivatives of the
metric. As already mentioned, contraction of eq. (8.2) gives eq. (8.5), which algebraically
relatesR and T for a given f(R). Variationwith respect to the connection leads to eq. (8.3),
after some integration by parts to “free” the connection. For a linear function f(R), this
equation is just the definition of the Levi-Civita connection. When f(R) is non-linear,
instead, eq. (8.3) seems to include second derivatives of the connection. However, this is
misleading because R can be completely eliminated in favour of T by using eq. (8.5) and,
therefore, eq. (8.3) can be trivially solved to give the connection as a function of the metric
and the matter fields. As already mentioned, following these steps one can completely
eliminate the connection in favour of the metric and the matter fields, and turn eqs. (8.2)
and (8.3) into the single-field representation (8.7). This representation of the theory is
more convenient and more familiar for discussing the dynamics. It also highlights once
more that the metric fully describes the geometry, which is indeed pseudo-Riemannian,
and that the independent connection is just an auxiliary field [238, 239, 240].

It is also interesting to note that one could introduce an auxiliary scalar φ = F and
re-write eq. (8.7) as

G̃µν =
8π

φ
Tµν − 1

2
gµν

(
R − f

φ

)
+

1

φ

(
∇̃µ∇̃ν − gµν¤̃

)
φ

− 3

2

1

φ2

(
(∇̃µφ)(∇̃νφ) − 1

2
gµν(∇̃φ)2

)
, (8.39)

while, setting V (φ) = Rφ − f , eq. (8.5) can be re-written as

2V (φ) − φV ′(φ) = 8π T. (8.40)

Expressions (8.39) and (8.40) are the field equations of a Brans–Dicke theory with Brans-
Dicke parameter ω0 = −3/2, i.e. a theory described by the action

S =
1

16 π

∫
d4x

√−g

(
φR̃ +

3

2φ
∂µφ∂µφ − V (φ)

)
+ SM (gµν , ψ), (8.41)
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(see also refs. [239, 254, 255] for more details about the equivalence of Palatini f(R) grav-
ity and ω0 = −3/2 Brans-Dicke theory).

Returning to eq. (8.7), we note that this is a second order partial differential equation
in the metric, just as in the case of GR, but that the left hand side includes up to second
derivatives of F and consequently of T [F = F (R) and R = R(T )]. Usually, the matter
action includes derivatives of the matter fields ψ (if the equation of motion of the matter
fields is to be of second order, the matter action has to be quadratic in the first derivatives
of the matter fields). Therefore, generically one has T = T (∂ψ, ψ), implying that eq. (8.7)
includes up to third derivatives of the matter fields!

In GR and in most of the proposed alternatives to it, the field equations include only
first derivatives of the matter fields8. The higher differential order in the metric with
respect to the differential order in the matter fields guarantees that the metric comes as an
integral over thematter fields. Therefore, any discontinuities in thematter are “smoothed
out” and are not inherited by the geometry (cumulativity of gravity). We recall that in
general the metric is not allowed to become a delta function or a step function (although
the latter is allowed if no Dirac deltas are produced in the field equations, i.e. if the
metric, in spite of being discontinuous, is a solution of the field equations in the sense
of distributions: see for instance ref. [256], section 3.7). However, this is clearly not true
in Palatini f(R) gravity or in ω0 = −3/2 Brans–Dicke theory, since the differential order
of the field equations in the matter fields is actually higher than in the metric, implying
that the latter is not necessarily an integral over the matter fields, but can be algebraically
related to the matter fields and even to their derivatives. Because of this, a discontinuity
in thematter fields or in their derivatives can lead to unacceptable singularities. A similar
behaviour has been demonstrated in the post-Newtonian limit of the theory, where the
post-Newtonian metric becomes algebraically dependent on the matter density [244].

This unusual differential structure of Palatini f(R) gravity is at the root of the sur-
face singularities discovered in sec. 8.2. The polytropic description of matter was used
in sec. 8.2 only because this made it possible to find analytic solutions near the surface
and demonstrate the problem without resorting to numerical techniques. In fact, a more
detailed description of the matter would make the problem even more acute. To see
this, note that in the case of a perfect fluid one has Tµν = Tµν(ρ, p), i.e. the stress-energy
tensor does not include any derivatives, unlike the case of a microscopic description of
matter. The fluid approximation actually “smoothes out” the matter distribution with
respect to the microscopic description. This also explains why no singularities appear for
1 < Γ < 3/2: these values of Γ give a smooth passage from the interior to the exterior.
In conclusion: abandoning the fluid approximation would just increase even further the
differential order of the field equations in the matter fields and make it easier for singu-
larities to appear.

As a further confirmation that the introduction of microphysics cannot solve the prob-
lems caused by the algebraic dependence of R on T [see eq. (8.5)] or, in the equivalent

8Adopting a “macroscopic” viewpoint, the field equations do not include any derivatives of the matter
variables (e.g., density, pressure), which depend on the first derivatives of the matter fields ψ.
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action (8.41), by the algebraic dependence of φ on T [see eq. (8.40)], let us note that this
feature of Palatini f(R) gravity introduces corrections to the standard model of particle
physics already at the meV energy scale (see ref. [254] and ref. [257]). Both the calcula-
tion of ref. [254] and that of ref. [257] are performed in the Einstein frame. Although the
use of the Einstein frame has been criticised [258]9, this frame is equivalent to the Jordan
frame and both are perfectly suitable for performing calculations [254]. However, one
should remember that particles in vacuum follow geodesics of the Jordan frame metric,
so this is the metric which becomes approximately Minkowski in the laboratory refer-
ence frame. This makes the Jordan frame calculation simpler and more transparent than
the one in the Einstein frame. For this reason, and in order to highlight once again the
problems caused by the algebraic dependence of R on T , we briefly redo the calculation
of refs. [254] and [257] in the Jordan frame. Let us first consider the equivalent action
(8.41) and take the matter to be represented by a scalar fieldH (e.g., the Higgs boson), the
Lagrangian of which reads

Lm =
1

2~

(
gµν∂µH∂νH − m2

H

~2
H2

)
(8.42)

(we recall that we are using units in which G = c = 1). The vacuum of the action (8.41)
with eq. (8.42) and f(R) = R − µ4/R [which implies V (φ) = 2µ2(φ − 1)1/2] can easily be
found to be H = 0, φ = 4/3 [the solution of eq. (8.40) with T = 0] and

gµνdxµdxν = −
(

1 − 2M
Earth

r
− µ2r2

4
√

3

)
dt2

+ dr2
/ (

1 − 2M
Earth

r
− µ2r2

4
√

3

)
+ r2dΩ2 ≈ ηµνdxµdxν (8.43)

(which is indistinguishable from the Minkowski metric for the purposes of a particle
physics experiment because µ2 ∼ Λ and r ≈ R

Earth
). One can then expand the action

to second order around this vacuum (as usual the first order action is identically zero
because the field equations are satisfied to zeroth order). However, it is easy to show
that perturbing eq. (8.40) one gets δφ ∼ T/µ2 ∼ m2

HδH2/(~3µ2) at energies lower than
the Higgs mass (mH ∼ 100 − 1000 GeV): replacing this expression in the action (8.41)
perturbed to second order one immediately gets that the effective Lagrangian for the

9If the independent connection is allowed to enter the matter action, the results of refs. [254] and [257] will
of course cease to hold, as pointed out in ref. [258]. In this case, also the surface singularities that we
found in sec. 8.2 may disappear (see also sec. 8.4.2). However, such a theory would be a generalisation of
Palatini f(R) gravity [see the action (8.1)], known in the literature as metric affine f(R) gravity [238].
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Higgs scalar is

Leffective
m ∼ 1

2~

(
gµν∂µδH∂νδH − m2

H

~2
δH2

)

×
[
1 +

m2
HδH2

µ2~3
+

m2
H(∂δH)2

µ4~3

]
(8.44)

at energies k ≪ mH. At an energy k = 10−3 eV (corresponding to a lengthscale L =
~/k = 2 × 10−4 m), using the fact that µ2 ∼ Λ ∼ 1/(H−1

0 )2 (where H−1
0 = 4000 Mpc

is the Hubble radius) and δH ∼ mH (because k ≪ mH) and remembering that we are
using units in which G = c = 1, it is easy to check that the first correction is of the order
m2

HδH2/(µ2
~

3) ∼ (H−1
0 /λH)2(mH/MP)2 ≫ 1, where λH = ~/mH ∼ 2 × 10−19 − 2 × 10−18

m is the Compton length of the Higgs and MP = ~
1/2 = (~c5/G)1/2 = 1.2 × 1019 GeV

is the Planck mass.10 Similarly, the second correction is of the order m2
H(∂δH)2/(µ4

~
3) ∼

(H−1
0 /λH)2(mH/MP)2(H−1

0 /L)2 ≫ 1.
Note that replacing δφ ∼ m2

HδH2/(~3µ2) in eq. (8.41) gives also that the coupling of
matter to gravity is described by the interaction Lagrangian

Lint ∼
m2

HδH2

~3

(
δg +

∂2δg

µ2

)
∼ m2

HδH2

~3
δg

[
1 +

(
H−1

0

L

)2
]

. (8.45)

It is therefore clear that also the coupling to gravity becomes non-perturbative at micro-
scopic scales. This is, once again, a consequence of the algebraic dependence of φ on T ,
encoded in eq. (8.40), and this is in agreement with the singularities that we discuss in
this chapter.

8.4.2 Overcoming the problem

In section 8.4.1 we have traced the root of the problem: it lies in the awkward differential
structure of the field equations, in which the matter field derivatives are of higher order
than the metric derivatives. This introduces non-cumulative effects andmakes the metric
extremely sensitive to the local characteristics of the matter. With this in mind, it is not
difficult to propose a possible way out. Clearly, one would like to restore the cumulative
nature of gravity. This requires the introduction of more dynamics into the gravitational
sector of the theory. As an example of how to introduce more dynamics, let us consider a
theory described by the action:

S =
1

16 π

∫
d4x

√−g (R + aRµνRµν) + SM (gµν , ψ) , (8.46)

where a should be chosen so as to have the correct dimensions. The term RµνRµν is
quadratic in the derivatives of the connection [see eq. (8.38)]. This implies that the action

10Equivalently, one can write the first correction as a self-interaction term m4
HδH4/(µ2

~
6): restoring the

dependence onG this term becomesGm4
HδH4/(µ2

~
6). In “particle physics units” ~ = c = 1, the coupling

constant is dimensionless and is given by Gm4
H/µ2 ∼ (H−1

0 /λH)2(mH/MP)2 ≫ 1.
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(8.46), even though linear in both R and RµνRµν , is quadratic in the derivatives of the
connection andwill not lead to an algebraic equation for the connection, unlike the action
(8.1). Indeed, the field equations that one derives by varying the action (8.46) with respect
to the metric and the connection are, respectively,

R(µν) + 2aRσ
µRσν − 1

2

(
R + aRσλRσλ

)
gµν = 8π Tµν , (8.47)

∇λ

[√−g (gµν + 2aRµν)
]

= 0, (8.48)

and eq. (8.48) cannot be algebraically solved for the connection. Also, this theory cannot
be re-written as an ω0 = −3/2 Brans–Dicke theory. In summary, a theory described by
action (8.46) does not seem to be sharing the unwanted characteristic of Palatini f(R)
gravity: that after eliminating the connection, one ends up with the matter field deriva-
tives being of higher order than those of the metric. In particular, R cannot be expressed
as an algebraic function of T through the trace of eq. (8.47), as in the case of eq. (8.5), nor
can the independent connection be algebraically expressed simply in terms of the metric
and derivatives of the matter fields (therefore introducing the higher differential order in
the matter fields when it is replaced in the field equations).
Theories with higher order invariants in the action, such asRµνR

µν , have recently been
considered in the Palatini formalism in ref. [259]. Clearly, a more detailed analysis of
the dynamics of such theories is needed in order to show in a clear way whether they
exhibit the problem discussed here or other viability issues. Here we have used them
solely to demonstrate that it might be possible to overcome the issues discussed here
by generalising the action. This clarifies the following point: such shortcomings are not
generic to Palatini variation, but seem to be a specific problem of Palatini variation when
used with the specific choice of f(R) actions.

8.5 Conclusions

In this chapter, we have discovered the presence of curvature singularities at the surface
of polytropic spheres in Palatini f(R) gravity. Simple gedanken experiments lead us to
conclude that the presence of these singularities casts serious doubts on the viability of
the gravity theory. Concerning the objection, raised in ref. [246], that polytropic EOS’s
are too idealised to allow one to rule out Palatini f(R) gravity, we stress that among the
EOS’s not giving a regular static spherically symmetric solution there are perfectly phys-
ical cases such as a degenerate non-relativistic electron gas or an isentropic monatomic
gas. Regular solutions for these configurations exist even in Newtonian mechanics, and
we have argued that a theory not providing such solutions should be considered, at best,
as being incomplete and as being disfavoured for giving viable alternatives to GR. We
have also presented quantitative results for the magnitude of the tidal forces exerted just
below the surface of polytropic spheres, showing that, for generic forms of f(R), the
lengthscale on which the tidal forces diverge due to the curvature singularities is much
larger than the lengthscale at which the fluid approximation breaks down. This gener-
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alises the calculation of Kainulainen et al. [246]: while their result (that the tidal forces
only diverge at lengthscales on which the fluid approximation is not valid) is correct for
their particular choice of f(R) and for neutron stars, we find that it does not hold, even
with their choice of f(R), for more diffuse configurations and does not hold, even in the
case of neutron stars, for more plausible choices of f(R). Finally, an analysis of the differ-
ential structure of the field equations for the theory has been presented, which sheds light
on the origin of the problem, showing that the appearance of singularities is not related
to the fluid approximation. On the contrary, abandoning the fluid approximation would
make the problem even more acute. Moreover, we have shown that the same problem
should be expected for any theory which includes fields other than the metric for describ-
ing the gravitational interaction (e.g. scalar fields) which are algebraically related to mat-
ter rather than dynamically coupled. In this case one can always solve the field equations
for the extra field and insert the solution into the field equation for the metric, inducing
a dependence of the metric on higher derivatives of the matter fields. An example of
such a theory is a scalar-tensor theory with Brans-Dicke parameter ω = −3/2, which is
anyway an equivalent representation of Palatini f(R) gravity [239]. The addition of more
dynamics to the theory seems to be a potential way out of this difficulty.

Appendix

In this appendix we evaluate eq. (8.36) – which gives the ratio asing/aGR in the special
case of f(R) = R−µ4/R – in several contexts. Our calculations will show that even with
this special choice of f(R), the fluid approximation is still valid on the scale at which the
tidal forces diverge if the configuration under consideration is sufficiently diffuse. As in
section 8.3.1, we use units in which G = c = M⊙ = 1.

Let us first consider a solar type star with mass mstar ≈ 1 surrounded by a gas cloud
with mass mcloud ≈ 0.01 and radius rout ≈ 1014 km, composed of monatomic isentropic
gas. This is a perfectly physical configuration, although possibly not an astrophysically
fully realistic one (note however that rout ≈ 1014 km is approximately the outer radius of
the Oort cloud). The total mass of such a system is mtot ≈ mstar + mcloud ≈ 1, and the
polytropic constant of the cloud is κ ≈ 9 × 1012. From eq. (8.36), one gets

∣∣∣∣
asing

aGR

∣∣∣∣ ≈ 6 × 1070(rout − r)−5 , (8.49)

and the tidal force becomes comparable to that of GR at a distance below the surface
comparable to rout! Taking, for instance, a value of rout − r ≈ rout/10 ∼ 1013, the tidal
forces in Palatini f(R) gravity would be 6 orders of magnitude larger than in GR. At
this distance from the surface, the mean distance between the particles of the fluid is
ℓ ≈ 1/n1/3 ≈ (mp/ρ)1/3 ≈ 10−5 (where n = ρ/mp is the number density and mp ∼
10−57 is the mass of the proton). An upper limit for the MFP at this distance from the
surface can be calculated assuming a cross section σ ∼ (1 Å)2 ≈ 5 × 10−27, giving



182 Chapter 8. Stars in Palatini f(R) gravity

ℓMFP ∼ 1/(nσ) ∼ mp/(ρσ) ∼ 1011 ≪ rout − r 11. Also, note that the average veloc-
ity of the particles in the cloud can be evaluated from p = nkBT (kB and T being re-
spectively Boltzmann’s constant and the temperature) using eqs. (8.31) and (8.32), and is
vav ∼ {mtot(rout−r)/[rout(rout−2mtot)]}1/2. For rout−r ∼ rout/10, one has vav ∼ 4×10−8,
which is comparable with the virial velocity vvirial ∼ (mtot/r)1/2 ∼ 10−7, and so the poly-
tropic coefficient κ needed to support the cloud is plausible. In conclusion: for this con-
figuration, the lengthscale on which the tidal forces in Palatini f(R) gravity are larger
than in GR is certainly larger than the lengthscale on which the fluid approximation is
valid, whether this scale is taken to be the mean interparticle distance or the MFP.

We would argue, however, that the relevant scale is actually the interparticle distance,
because we are considering here static equilibrium configurations. A way to understand
this point is to consider how one derives the hydrodynamic equations from the Vlasov
equation (i.e., the conservation equation for the phase-space distribution f(x, v) in the
case of a collisionless fluid, that is, one with infiniteMFP; see for instance ref. [263], para-
graph 27):

∂f

∂t
+

∂f

∂xi
vi +

∂f

∂vi

F i

m
= 0 , (8.50)

where vi = dxi/dt is the velocity,m is themass of the particles and F i is the force (thought
of as dependent only on position and not on velocity). By integrating over all velocities,
one easily obtains the mass conservation equation ∂tρ+∇ · (ρv̄) = 0, where ρ = m

∫
fd3v

is the density and v̄i = m
∫

fvid3v/ρ is the average (i.e.,macroscopic) velocity. Similarly,
one can multiply eq. (8.50) by vi and integrate over all velocities. If the velocity distri-
bution is isotropic 12 one then gets the Euler equation (∂t + v̄ · ∇)v̄ = −(∇p)/ρ + F /m,
where one uses the isotropy of the velocity distribution to define the pressure as pδij =
m

∫
f(vi − v̄i)(vj − v̄j)d3v. If the phase-space distribution f is specified, the mass conser-

vation and the Euler equations are clearly a closed system of equations. Therefore, one
does not need to consider higher order moments of the Vlasov equation, and the system
under consideration is a fluid in spite of the MFP being infinite. A typical example of
this situation is, for instance, that of Dark Matter in a Friedmann-Robertson-Walker uni-
verse. Since the velocity distribution is isotropic because of the cosmological principle,

11This is an upper limit because it assumes a “geometrical” cross section for encounters between the atoms
(1 Å is approximately the size of a hydrogen atom). However, for hydrogen-hydrogen collisions in the
lab, σ(HH) ∼ 20 Å2 [260] while, for instance, hydrogen-lithium collisions have cross sections which are
about 1200 Å2 [261]. More importantly, if the fluid is (even partly) ionised, the cross section can be much
larger, because Coulomb forces are long range (in strongly coupled plasmas it is actually common to
have a MFP shorter than the interparticle distance [262]).

12Of course, onemay object that if the fluid is collisionless there is no interactionwhich canmake the velocity
distribution isotropic. However, we are interested here in showing that for equilibrium configurations
the MFP has nothing to do, from the conceptual point of view, with the lengthscale at which the fluid
approximation breaks down. Moreover, one can always think of a tiny interaction between the particles
(resulting in a huge MFP) which can make the velocity distribution isotropic in a sufficiently long time
(comparable with the mean free time). From the conceptual point of view, one can also think of shooting
a beam of collisionless particles into a box (or a potential well): the initially focused velocity distribution
will become isotropic due to the small irregularities in the walls of the box or in the gravitational field.
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Dark Matter can be treated, at the background level, as being a fluid (cf. for instance
(3.10)–(3.12) of ref. [264]). Similarly, for a gas trapped in a box, the fluid approximation
is valid on scales larger than the interparticle distance, whereas the MFP can be infinite if
the fluid is non-collisional. This is indeed the case considered in the textbook derivation
of the perfect gas law (see, for instance, Landau, Lifshitz and Pitaevskii [265], chapter 4),
where the only necessary hypothesis is the isotropy of the velocity distribution. The role
of the box is, in our case, played by the gravitational potential well.
Let us now consider a polytropic sphere with mtot ≈ 0.1 and rout ≈ 200R⊙ ≈ 108 (R⊙

being the radius of the Sun). The polytropic constant is then κ ≈ 2 × 107, and eq. (8.36)
becomes ∣∣∣∣

asing

aGR

∣∣∣∣ ≈ 105(rout − r)−5 (8.51)

At a distance of ∼ 1.5 km below the surface, therefore, tidal forces are ∼ 105 times
stronger in Palatini gravity than in GR, while the forces in the two cases become com-
parable at a distance & 15 km. Now, from eq. (8.32), at a distance rout − r ≈ 1.5 km ≈ 1
we have ρ ≈ 10−37 ∼ 108R0. Although rout − r is certainly smaller than the upper MFP
limit introduced above, at this density the mean distance between the particles of the
fluid is ℓ ≈ 1/n1/3 ≈ (mp/ρ)1/3 ≈ 10−7 ∼ 0.1mm.
The same considerations apply, althoughmarginally, for a polytropic spherewithmtot ≈

1 and rout ≈ R⊙ ≈ 5 × 105. The polytropic constant is then κ ≈ 2 × 105, and eq. (8.36)
becomes ∣∣∣∣

asing

aGR

∣∣∣∣ ≈ 10−26(rout − r)−5 , (8.52)

from which it follows that the difference between the tidal forces becomes important for
rout−r . 7×10−6 ∼ 1 cm. At this distance below the surface the density is ρ ≈ 5×10−34 ∼
1011R0, and the mean distance between the fluid particles is ℓ ≈ 1/n1/3 ≈ (mp/ρ)1/3 ≈
10−8 ∼ 0.01mm.
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Chapter 9
Testing Gauss-Bonnet gravity with
solar system experiments

Oggi anche il cretino è specializzato.

E. Flaiano

In this chapter, we derive the parameterised post-Newtonian (PPN) expansion for
gravitational theories with a scalar field coupled to the Gauss-Bonnet invariant and we
discuss the comparison of these theories with solar system experiments.

9.1 The post-Newtonian expansion

As we have seen in chapter 7, the observed late time accelerated expansion of the uni-
verse, combined with the problems that arise when trying to rationalise it with the sim-
plest of explanations, such as a cosmological constant, have triggered an increased inter-
est in finding alternatives for the nature of dark energy. Scalar fields, widely used in the
inflationary paradigm [266], constitute a familiar way of providing accelerated expan-
sion. Scalar-tensor theory is therefore an appealing candidate as an alternative theory of
gravity that can provide the desired cosmological dynamics [267]. However, there are
motivations from String theory to believe that scalar fields might not be coupled to the
Ricci scalar, as in scalar-tensor theory, but to the Gauss-Bonnet term,

G = R2 − 4RµνRµν + RµνκλRµνκλ, (9.1)

which is topologically invariant in four dimensions.
To be more precise, one expects to find two types of scalar fields in the low energy
effective action of gravity coming from heterotic String theory: moduli, φ, which are
related to the size and shape of the internal compactification manifold, and the dilaton

185
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σ, which plays the role of the string loop expansion parameter. There are reasons to
believe that moduli generally couple to curvature squared terms [268]. Moreover, since
moduli dependent higher loop contributions (such as terms cubic or higher order in the
Riemann tensor) vanish, a coupling of moduli with the Gauss-Bonnet term is particularly
interesting [268, 269]. On the other hand the dilaton usually couples to the the Ricci scalar
and consequently to matter in the Einstein frame, and there are reasons to believe that it
might evolve in such a way as to settle to a constant [270]. Under these assumptions the
effective low energy gravitational action takes the form

S =

∫
d4x

√−g

[
R

2κ2
− λ

2
∂µφ∂µφ − V (φ) + f(φ)G

]
, (9.2)

where κ2 = 8πG, λ is +1 for a canonical scalar field and −1 for a phantom field (c =
~ = 1), and where V (φ) and f(φ) are respectively the potential of the scalar field and its
coupling to the Gauss-Bonnet invariant. A straightforward generalisation of the action is
to include a kinetic term and a coupling with G for the dilaton σ. This will not concern us
here but we will discuss how we expect it to affect our results.

Remarkably, it has been shown that action (9.2) can lead to a theory of gravity with
desirable phenomenology, including inflation and accelerated expansion [271, 272]. Such
a theory seems to fit observational data related to cosmology adequately [273] and avoid
past and future singularities [269, 271]. However, a gravitational theory which can pose
a viable alternative to GR should also have the correct Newtonian and post-Newtonian
limits, since solar system tests provide stringent constraints and the most accurate mea-
surements. This is the issue that will concern us here. Note that we will not consider the
case where λ = 0 and the scalar field has no kinetic term in the action. Such actions are
dynamically equivalent to an action with a general function of G added to the Ricci scalar
and their Newtonian limit has already been considered in [274].

Let us start by reviewing the field equations that one derives from action (9.2) [271].
For the metric we have

Gµν = κ2
[
Tµν + T φ

µν + 2(∇µ∇νf(φ))R − 2gµν(¤f(φ))R

−4(∇ρ∇µf(φ))Rνρ − 4(∇ρ∇νf(φ))Rµρ + 4(¤f(φ))Rµν

+4gµν(∇ρ∇σf(φ))Rρσ − 4(∇ρ∇σf(φ))Rµρνσ

]
, (9.3)

where Gµν ≡ Rµν − 1
2Rgµν and

T φ
µν = λ

(
1

2
∂µφ∂νφ − 1

4
gµν∂

ρφ∂ρφ

)
− 1

2
gµνV (φ), (9.4)

and for the scalar field
λ¤φ − V ′(φ) + f ′(φ)G = 0, (9.5)

where A′(x) ≡ ∂A/∂x and ¤ ≡ gµν∇ν∇µ.
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Let us bring eq. (9.3) to a more suitable form for our purposes. Taking the trace of
eq. (9.3) one gets

R = κ2
[
−T − T φ + 2(¤f(φ))R − 4(∇ρ∇σf(φ))Rρσ

]
, (9.6)

where T = gµνTµν and T φ = gµνT φ
µν . Replacing eq. (9.6) back in eq. (9.3), the latter

becomes:

Rµν = κ2
[
Tµν − 1

2
gµνT +

1

2
λ∂µφ∂νφ +

1

2
gµνV (φ) + 2(∇µ∇νf(φ))R

−gµν(¤f(φ))R − 4(∇ρ∇µf(φ))Rνρ − 4(∇ρ∇νf(φ))Rµρ

+4(¤f(φ))Rµν + 2gµν(∇ρ∇σf(φ))Rρσ − 4(∇ρ∇σf(φ))Rµρνσ

]
(9.7)

Following [275] we can choose a system of coordinates in which the metric can be
perturbatively expanded around Minkowski spacetime. Therefore we write the metric
as gµν = ηµν + hµν (with hµν ≪ 1) and the scalar field as φ = φ0 + δφ (with δφ ≪ φ0),
where the value of φ0 is determined by the cosmological solution. The perturbed field
equations are

λ[¤flatδφ + (δ¤)δφ] − V ′′(φ0)δφ − 1

2
V ′′′(φ0)(δφ)2 + f ′(φ0)G =

O(δφ3, δφ(hµν)
2, hµν φ̇0, hµν φ̈0), (9.8)

R00 = κ2
{

T00 +
1

2
T − 1

2
h00T +

1

2
λ∂0δφ∂0δφ +

1

2
λ φ̇2

0 −
1

2
V (φ0) +

1

2
V ′(φ0)δφ (h00 − 1)

+ f ′(φ0)
[
2(∂0∂0δφ)R + (¤flatδφ)R − 8(∂ρ∂0δφ)R0ρ + 4(¤flatδφ)R00 − 2(∂ρ∂σδφ)Rρσ

− 4(∂ρ∂σδφ)R0ρ0σ

]}
+ O(δφ2hµν , δφ

3, φ̇0δφ, φ̈0hµν , V (φ0)h00), (9.9)

R0i = κ2T0i + O(δφhµν , δφ
2, Th0i, φ̇0δφ, φ̈0hµν , V (φ0)h0i), (9.10)

Rij = κ2

[
Tij +

1

2
δij

(
−T + V ′(φ0)δφ + V (φ0)

)]

+ O(δφhµν , δφ
2, Thij , φ̈0hµν , V (φ0)hij), (9.11)

where ¤flat denotes the d’Alembertian of flat spacetime. Notice that, as usually done
in scalar-tensor theory [276, 277], we have neglected all of the terms containing deriva-
tives of φ0 multiplying perturbed quantities (e.g. φ̇0δφ). This is due to the fact that φ0

changes on cosmological timescales and consequently one expects that it remains practi-
cally constant during local experiments. Therefore its time derivatives can be neglected
as far as solar system tests are concerned. This can easily be verified by some order-
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of-magnitude analysis. Take for instance Eq. (9.9): the terms containing a time deriva-
tive of φ0 multiplying a perturbation are O(f̈(φ0)hµν/(r2M2

p )) and O(φ̇0δφ̇/M2
p ), where

φ̇0 ∼ H0Mp and f̈ ∼ H2
0 (Mp = 1/κ is the Planck mass and H0 the present Hubble con-

stant) and h00 ∼ hij ∼ rδφ ∼ h0i/v ∼ r2δφ̇/v ∼ GM⊙/r (r is the distance from the Sun
and v =

√
GM⊙/r). On the other hand, the O(v4) post-Newtonian correction to R00 is

∼ (GM⊙)2/r4 ∼ 10−55O(f̈(φ0)hµν/(r2M2
p ), φ̇0δφ̇/M2

p ) even if r is taken as large as 1000
AU. Therefore, the corrections coming from terms containing time derivatives of φ0 mul-
tiplying perturbations are at least 55 orders of magnitude smaller than post-Newtonian
corrections, and neglecting these terms cannot affect our results in any way. A similar
treatment applies to the terms containing the potential V multiplying perturbed quanti-
ties (e.g.V (φ0)h00): in order to give a reasonable cosmology, V (φ0) should be of the same
order as the energy density of the cosmological constant and these terms cannot therefore
lead to any observable deviations at solar system scales.

We will instead adopt a different treatment required for the simple V (φ0),
1
2 φ̇2 terms

appearing in the field equations: since they need to be of the same order as the en-
ergy density of the cosmological constant, they will not lead to any observational con-
sequences (see [278] and references therein). However, for the sake of the argument we
will keep track of them: due to their small value we can treat them as O(v4) quantities
following [278] and so they will not appear in the O(v2) equations. As far as terms re-
lated to V ′(φ0) are concerned, we intend to just keep track of them for the time being and
discuss their contribution later on.

If we now expand the perturbations in themetric and the scalar field in post-Newtonian
orders, keeping in mind that the PPN expansion requires φ and h00 toO(v4), hij toO(v2)
and h0i to O(v3), we can write

δφ = 2δφ + 4δφ . . . (9.12)

h00 = 2h00 + 4h00 . . . (9.13)

hij = 2hij + . . . (9.14)

h0i = 3h0i + . . . (9.15)

where the subscript denotes the order in the velocity, i.e. quantities with a subscript 2 are
O(v2), quantities with a subscript 3 are O(v3), etc.. So, to order O(v2) this gives

λ∇2(2δφ) − V ′′(φ0)2δφ = 0 : (9.16)

where ∇2 ≡ δij∂i∂j . Note that since the metric is flat in the background G = O(v4).
We want φ to take its cosmological value at distances far away from the sources. This is
equivalent to saying that the perturbations due to the matter present in the solar system
should vanish at cosmological distances, and this can be achieved by imposing asymp-
totic flatness for the solution of eq. (9.16), i.e. 2δφ → 0 for r → ∞. This implies 2δφ = 0.

To order O(v2) for the components 00 and ij and O(v3) for the components 0i, and
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after applying the standard gauge conditions

hµ
i,µ − 1

2
hµ

µ,i = 0 , hµ
0,µ − 1

2
hµ

µ,0 =
1

2
h0

0,0 , (9.17)

the field equations for the metric take the form

−∇2(2h00) = κ2ρ , (9.18)

−∇2(2hij) = κ2ρδij , (9.19)

1

2

(
∇2(3h0i) +

1

2
(2h00,j0)

)
= κ2ρvi , (9.20)

which remarkably are exactly the same as in GR [275]. The well-known solutions are

2h00 = 2U, , (9.21)

2hij = 2Uδij , (9.22)

3h0i = −7

2
Vi −

1

2
Wi , (9.23)

where following [275] we define

U = G

∫
d3x′ ρ(x′, t)

|x − x′| , (9.24)

Vi = G

∫
d3x′ρ(x′, t)vi(x

′, t)

|x − x′| , (9.25)

Wi = G

∫
d3x′ρ(x′, t)vk(x′, t)(x − x′)k(x − x′)i

|x − x′|3 . (9.26)

We already see that the theory has no deviation from GR at order O(v3): in particular
it gives the correct Newtonian limit. It is now easy to go one step further and write down
the perturbed equations that we need toO(v4). For the scalar field, using 2δφ = 0, we get

λ∇2(4δφ) − V ′′(φ0) 4δφ + f ′(φ0) 4G = 0 , (9.27)

with

4G = (2h00,ij)(2h00,ij) − (2h00,ii)(2h00,jj) + (2hij,ij)
2 + (2hij,kl)(2hij,kl)

−(2hij,kk)(2hij,kk) − 2(2hij,kl)(2hil,jk) + (2hij,kl)(2hkl,ij) , (9.28)

where we have again applied the gauge conditions (9.17). Using eqs. (9.21) and (9.22),
eq. (9.28) becomes

4G = 8U,klU,kl − 8 (U,kk)
2 . (9.29)
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The solution of eq. (9.27) is therefore

4δφ =
f ′(φ0)

4 π

∫
d3x′ 4G(x′, t)

|x − x′| e−
√

V ′′(φ0)|x−x′| . (9.30)

The time-time component of the perturbed field equations for the metric to O(v4) is

4R00 = κ2
[
(4T00) +

1

2
(4T ) − 1

2
(2h00)(2T ) − 1

2
V ′(φ0)(4δφ) − 1

2
V (φ0) +

1

2
λφ̇2

0

]
, (9.31)

where we have already used the fact that 2δφ = 0. Note also that no contribution coming
from the coupling between φ and the curvature terms in eq. (9.3) is present in the above
equations. This should have been expected since in eq. (9.3) these terms always have the
structure of two derivatives of φ times a curvature term, and so, due to the fact that in the
background the metric is flat and φ0 is slowly varying, they can only contribute to orders
higher than O(v4).

Let us discuss the contribution of the term proportional to V ′(φ0). Using eqs. (9.30)
and (9.29) we can write this term as an integral over the sources times a dimensionless
coefficient κ2V ′(φ0)f

′(φ0). One can argue that V
′(φ) should be practically zero as far as

the post-Newtonian expansion is concerned [276, 277]. This is equivalent to saying that
the cosmological solution corresponds to a minimum of the potential. Even though such
assumptions are not exact, they are accurate enough for our purposes. Note that even
in cases where V does not have a minimum, well motivated models usually introduce
exponential forms for the potential and the coupling function, i.e. V = V0e

−aκφ and f =
f0e

bκφ where a, b and f0 are of order unity whereas V0 is as small as the energy density
of the cosmological constant in order to guarantee that the theory will fit observations
related to the late time cosmological expansion. This implies that, since κ2 ∼ 1/M2

p ,
κ2V ′(φ0)f

′(φ0) is dimensionless and of the order of the now renowned 10−123. Therefore,
we will not take the term proportional to V ′(φ0) into account for what comes next but we
will return to this discussion shortly.

We can use the solutions for 2h00 and 2hij , the gauge conditions (9.17) and the standard
post-Newtonian parametrisation for matter [275] to write eq. (9.31) as

−∇2(4h00 + 2U2 − 8Φ2) = κ2

[
2ρ

(
v2 − U +

1

2
Π − 3p

2ρ

)
− V (φ0) +

1

2
λφ̇2

0

]
, (9.32)

where Π is the specific energy density (ratio of energy density to rest-mass density) [275]
and Φ2 is defined as

Φ2 = G

∫
d3x′ρ(x′, t)U(x′, t)

|x − x′| . (9.33)

The solution to this equation is

4h00 = 2U2 + 4Φ1 + 4Φ2 + 2Φ3 + 6Φ4 +
κ2

6

(
V (φ0) −

1

2
λφ̇2

0

)
|x|2, (9.34)
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where

Φ1 = G

∫
d3x′ρ(x′, t)v(x′, t)2

|x − x′| , (9.35)

Φ3 = G

∫
d3x′ρ(x′, t)Π(x′, t)v(x′, t)2

|x − x′| , (9.36)

Φ4 = G

∫
d3x′ p(x′, t)

|x − x′| . (9.37)

Therefore the metric, expanded in post-Newtonian orders is

g00 = −1 + 2U − 2U2 + 4Φ1 + 4Φ2

+2Φ3 + 6Φ4 +
κ2

6

(
V (φ0) −

1

2
λφ̇2

0

)
|x|2, (9.38)

g0j = −7

2
Vi −

1

2
Wi, (9.39)

gij = (1 + 2U)δij , (9.40)

which, apart from the term related to V (φ0) − 1/2λφ̇2
0, is exactly the result that one ob-

tains for GR. This term corresponds to the standard correction normally arising from a
cosmological constant, and since V (φ0) − 1/2λφ̇2

0 should indeed be of the same order as
the energy density of the cosmological constant, the contribution of this term is negligi-
ble on solar system scales. Since the metric is written in the standard PPN gauge one can
read off the PPN parameters [275]. The only non-vanishing ones are γ and β, which are
equal to 1. Therefore, the theory discussed here is indistinguishable from GR at the first
post-Newtonian order.

9.2 Interpretation of the results

The calculation of the previous section implies that a gravitational theory with a scalar
field coupled to the Gauss-Bonnet invariant trivially satisfies the constraints imposed on
the post-Newtonian parameters by solar system tests. This is due to the fact that the terms
arising in the field equation for the metric from the coupling between the scalar field and
G in the action always have the structure of two derivatives of f times a curvature term.
Such terms do not contribute to the post-Newtonian expansion to O(v4). This is not the
case for other possible couplings of a scalar to a quadratic curvature term, such as φR2.
Remarkably, the characteristic structure of such terms can be traced back to the special
nature of G, i.e. to the fact that it is a topological invariant in four dimensions.
However, note that our result strongly depends on the assumption that V (φ0) and

V ′(φ0) are reasonably small so as to give a negligible contribution. This assumption stems
from the fact that V (φ0) will play the role of an effective cosmological constant if the
theory is to account for the late time accelerated expansion of the universe and should
therefore be of the relevant order of magnitude. Additionally we expect that V ′(φ0) will
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also be small enough so that its contribution can be considered negligible, based on the
fact that either the field approaches a minimum at late times, or that the potential is of
the form V = V0e

−aκφ, where a is of order unity, and therefore V ′(φ0) ∼ κV (φ0), which
seem to be true in all reasonable models.
Another important aspect to be stressed is that the value of f ′(φ0) or f ′′(φ0) should
be suitable so that the post-Newtonian expansion remains trustworthy. From eq. (9.30)
we see that non-trivial corrections will indeed be present at higher post-Newtonian or-
ders and, even though such corrections are normally small, if f ′(φ0) or f ′′(φ0) are suffi-
ciently large they can become crucial for the viability of the theory. This was first noted
in ref. [279], where the same theory, but without a potential V , was compared with so-
lar system observations, considering a nearly Schwarzschild metric as an approximation.
As mentioned before, the potential plays the role of an effective cosmological constant if
one wants a theory that leads to a late time accelerated expansion as in [271, 272]. If this
potential is not present, it is the coupling f(φ) between the scalar field and the Gauss-
Bonnet term that will have to account for this phenomenology. In this case it turns out
that f ′′(φ0) has to be of the order of the inverse of the cosmological constant, and this
is enough to make the post-Newtonian approximation break down. Fortunately, models
with a potential do not suffer from this problem, and in fact f is usually assumed to be of
the form f = f0e

bκφ where both f0 and b are of order unity. So, as predicted also in [279],
all reasonable models with a potential will pass the solar system tests.



Concluding remarks and future
prospects

My interest is in the future because I
am going to spend the rest of my life
there.

C. Kettering

In this thesis we have considered two different lines of research. In the first part, we
have focused on binary systems of black holes as possible sources of gravitational waves
for LISA. In particular, in chapters 2–4, we have investigated whether EMRIs (i.e., sys-
tems composed of an SMBH and a stellar-mass black hole) could permit detecting and
determining the properties of the astrophysical matter which could be present in galactic
nuclei. In chapter 5, we have instead analysed whether gravitational waves from EMRIs
could present any distinctive features when the SMBH is almost maximally rotating, as
had been suggested in the literature. In chapter 6 we have considered SMBH binaries and
studied how the spin of the final remnant is related to the spins of the progenitors. This
study, combined with a suitable galaxy formation framework, will hopefully allow us, in
the long term, to predict the distribution of the SMBH spins as a function of redshift [169].
In the second part of this thesis, we have instead considered gravity theories alternative
to GR, motivating their introduction (chapter 7) and testing some of them using stars
(chapter 8) and solar system tests (chapter 9).
These two lines of research have been kept separate in this thesis. As we have stressed
several times, the only link between them is that they both aim at exploring gravity at
the level of stars, black holes and compact objects. While this may seem quite a loose
connection, a much more promising way to combine these two interests of mine has oc-
curred to me during the last part of my PhD. The idea is that future gravitational-wave
observations can domore than providing astrophysical information (detecting the matter
in galactic nuclei, measuring the SMBHmasses and spins, checking whether the number
of SMBHs is that needed by galaxy formation models, etc.) or checking the predictions
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of GR about gravitational waves. Indeed, gravitational-wave detectors, and LISA in par-
ticular, could also, at least potentially, discriminate between GR and alternative gravity
theories in the strong field regime! An example of how to do this in practice is given by the
discussion below.

In a recent paper [280], Psaltis et al. have pointed out that Kerr (Kerr-de Sitter) black
hole solutions are not exclusive to GR, but are present also in several modified gravity
theories. This has raised the concern that gravitational wave observations (and in partic-
ular the detection of EMRIs with LISA) might not be able to discriminate between these
theories and GR. As we will show below, this is not really the case, and gravitational
wave experiments can in principle distinguish between Kerr black holes in GR and in
modified gravity theories.

The gravity theories considered by ref. [280] were f(R) gravity, quadratic gravity and
vector-tensor gravity. These theories are built so as to have maximally symmetric so-
lutions in vacuum (Minkowski or de Sitter), and this is achieved by imposing that the
field equations reduce to GR under the conditions R,µ = 0, Rµν = R gµν/4 and Tµν = 0.
Consequently, it had long been known that the Kerr-de Sitter solution, which satisfies
these conditions, is a solution also in these theories. However, these theories also admit
vacuum solutions different from Kerr, as mentioned also in ref. [280]. [The only excep-
tion is Palatini f(R) gravity, which reduces exactly to GR (with a cosmological constant)
in vacuum.] Astrophysical black holes form by gravitational collapse, and there is as
yet no guarantee that this will lead to a Kerr black hole in theories in which there is no
uniqueness theorem similar to that in GR. However, we set this (potentially important)
issue aside, as done in ref. [280], and show that even a Kerr black hole permits probing
deviations from GR. Indeed, the (vacuum) metric perturbations over a Kerr black hole in
the theories considered in ref. [280] behave differently from GR. Again, the exception is
Palatini f(R) gravity, since this reduces to GR in vacuum.

We use metric f(R) gravity in the metric formalism as an example. This theory is de-
scribed by the action

S =
1

16 π

∫
d4x

√−gf(R) + SM (gµν , ψ), (C1)

where f(R) is a function of R, SM is the matter action and ψ collectively denotes the
matter fields. (We recall that we are using units in which c = G = 1). This action is clearly
the same as in eq. (8.1), but now the connection is not thought of as an independent
degree of freedom, as in the Palatini variational approach, but is rather assumed to be
given by the Levi-Civita connection of the metric gµν . The field equations can then be
derived by taking variations of the action (C1) with respect to the metric, giving

f ′(R)Rµν − 1

2
f(R)gµν − (∇µ∇ν − gµν¤)f ′(R) = 8πTµν . (C2)

[with ¤ ≡ ∇ν∇ν and
′ ≡ ∂/∂R, while Tµν ≡ −2(−g)−1/2δSM/δgµν is the usual stress-

energy tensor of the matter].
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Wewill now perturb the field equations (C2) in vacuum (Tµν = 0) and over a Kerr (and
not Kerr-de Sitter) black hole, which has R = Rµν = 0, thus simplifying the calculation
considerably. Moreover, in order to have a Kerr (and not Kerr-de Sitter) solution, one
needs to have a function f(R) such that f(0)=0 [280]. We denote the metric perturbation
by hµν and use the Lorenz gauge, defined by ∇ν h̄

µν = 0, where h̄µν ≡ hµν − hgµν/2. Such
a gauge is always attainable: h̄µν transforms as

ˆ̄hµν = h̄µν −∇µξν −∇νξµ + gµν∇αξα , (C3)

and we only need to impose¤ξµ = ∇ν h̄
µν [11]. Using this gauge and perturbing eq. (C2)

with Tµν = 0 over a Kerr background, we have

¤h̄µν + 2Rµανβh̄αβ = −λ (∇µ∇ν − gµν¤)¤h̄ , (C4)

where λ ≡ f ′′(0)/f ′(0). In GR f ′(0) = 1 and f ′′(0) = 0, and thus λ = 0. Furthermore,
in GR it is possible to set h̄ = 0, although only in a globally vacuum spacetime, using
the residual freedom of the Lorenz gauge (one can perform a transformation with ξµ

satisfying ¤ξµ = 0) [11]. From eq. (C3) it follows that we need ∇µξµ + h̄/2 = 0 in order

to have ˆ̄h = 0. Taking the d’Alembertian of ∇µξµ + h̄/2, and using the trace of eq. (C4)
and ¤ξµ = R = Rµν = 0, one can show that ∇µξµ + h̄/2 satisfies the homogeneous wave
equation only if f ′′(0) = 0 (as in GR): it is then possible to choose initial data for ξµ on a
Cauchy hypersurface such that∇µξµ + h̄/2 and its derivative normal to the hypersurface
vanish, thus ensuring ∇µξµ + h̄/2 = 0 everywhere. This is not possible if f ′′(0) 6= 0, and
h̄ cannot then be set to zero (even in globally vacuum spacetimes).

Thus, eq. (C4) differs from its GR analogue. For example, over a Minkowski back-
ground, besides the propagation modes of GR, eq. (C4) also has a plane-wave solution
h̄µν ∝ (ηµν + kµkµ/m2) exp(ikαxα), where k ≡ ω(κ) ∂t + κ n (n being a unit vector in the
propagation direction) and ω(κ)2 ≡ κ2 + m2 (withm2 ≡ (3λ)−1 > 0: if λ < 0 the gravity
theory is non-viable [281]). These waves, which cannot be zeroed in the Lorenz gauge,
correspond to massive gravitons with velocity dω/dκ<1. This feature will be detectable
by LISA because modes with different wavelengths propagate at different velocities, thus
distorting the waveforms during the propagation [282]. Moreover, their polarisation dif-
fers from GR, and in principle also this feature could be used to distinguish these modes
from the standard GR ones. Note that this mode corresponds to scalar field excitations
[cf. the equivalent Brans-Dicke theory with a potential, e.g. ref. [283, 239]], and that it is
also present in a Brans-Dicke theory with no potential [284], for which it was shown to
affect the orbital evolution of binary systems [282, 284].

Stated differently: while the Kerr solution is common to many gravity theories, its per-
turbations are not. Because the gravitational waves emitted by a perturbed Kerr black
hole behave differently in these theories, their detection can be used to discriminate be-
tween them. Thus, the concerns of ref. [280] seem unjustified.

In summary: we have highlighted that a different gravity theory will in general pre-
dict emission mechanisms and propagation modes for gravitational waves different from
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those of standard GR. Moreover, in manymodified gravity theories there is no black-hole
uniqueness theorem similar to that in GR, and black holes different from Kerr will in gen-
eral be present. If these black-hole solutions were physical (i.e. if they could result from
gravitational collapse) – which in general is unclear so far and which will depend on the
particular theory under consideration – the consequences for typical LISA sources such
as SMBH binaries or EMRIs will be potentially very important.
Considering that testing gravity is among the main goals of the LISA mission [3], but
one on which little work has been done so far by the community, this line of research will
be among those that I will be pursuing in the coming future.
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