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Introduction 

 

Neurodegenerative diseases are likely to be the neurological disorders with the highest 

incidence in affecting the world population in the next years. Among these diseases, 

prion diseases are undoubtedly of prominent biological and pathological interest 

(Prusiner, 2001). Prion diseases are also called Transmissible Spongiform 

Encephalopathies, or TSEs, and they can arise with sporadic, genetic or infective 

etiology. The latter characteristic so far discriminates prion diseases from other 

neurodegenerative diseases, like Alzheimer‘s disease or Parkinson‘s disease.  

Prion diseases include bovine spongiform encephalopathy (or BSE) of cattle, scrapie of 

sheep, chronic wasting disease (or CWD) of deer, moose and elk, and Kuru, 

Creutzfeldt-Jakob disease (or CJD), fatal familial insomnia (or FFI) and Gerstmann, 

Sträussler and Scheinker syndrome (or GSS) in humans. (Table 1, from (Aguzzi et al., 

2004)) 

 

 

Prion diseases affect primarily the nervous system. The clinical features of TSEs vary 

dramatically according to the different form of prion diseases affecting the individual 

(Collins et al., 2004). These differences regard the etiology (whether sporadic, genetic 

 
Table 1.  Spectrum of prion diseases of humans and animals (from Aguzzi et al., 2004) 
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or infective), the incidence of the disease, the region of the brain mainly affected by the 

deposition of replicating prions, the clinical symptoms manifested by the affected 

individual, the time-course of the disease (Prusiner, 1992, Prusiner and DeArmond, 

1994). However, they all share common pathological traits and are characterized by a 

widespread spongiform neurodegeneration (which results in the ―spongy‖, vacuolated 

appearance of the brain), neuronal loss and diffuse astrocytic gliosis (Figure 1) (Masters 

and Richardson, 1978). All prion diseases are fatal, progressive and without cure at 

present. 

 

 

Prion concept 

The term ―prion‖ was coined in 1982 (Prusiner, 1982) to highlight the solely 

proteinaceous property of the causative, infective agent of these diseases. Indeed, the 

resistance to inactivation of the scrapie agent to by the most widely diffused methods 

against viral particles (such as ionizing radiation, UV exposure, formalin and heat 

 

Figure 1. Neuropathological features of transmissible spongiform encephalopathies.  

Histological and immunohistochemical analysis of frontal cortex samples from the brain of a patient 

who died of non-cerebral causes (upper row) and of a patient suffering from CJD (lower row). Brain 

sections were stained with hematoxylin-eosin (H-E, left panels), with antibodies against glial fibrillary 

acidic protein (GFAP, middle panels) and with antibodies against the prion protein (PrP, right panels). 

Neuronal loss and prominent spongiosis are visible in the H-E stain. Strong proliferation of reactive 

astrocytes (gliosis) and perivacuolar prion protein deposits are detectable in the GFAP and PrP 

immunostains of the CJD brain samples (from Aguzzi et al., 2001).  
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treatment) (Alper et al., 1966, Alper et al., 1967) and, on the contrary, the reduction of 

the infectivity of inoculated brain extracts only after proteolytic treatments, led  Stanley 

B. Prusiner to formulate the ―protein-only hypothesis‖ (Prusiner, 1982). According to 

his hypothesis, the infective particle responsible for scrapie disease is primarily 

composed of a protein which is capable of transmitting infection and replicating without 

the need of nucleic acids. This protein was identified as a protein of about 27-30 kDa 

(PrP
Sc

) and is the only molecule that co-purifies with infectivity after protease digestion 

of brain extracts of ill hamsters (Bolton et al., 1982). The subsequent sequencing of the 

prion protein (PrP) allowed the identification of an endogenous cellular gene (in mice 

Prnp), whose translated product was called the cellular PrP, or PrP
C
 (Oesch et al., 

1985). This finding showed that the PrP is encoded by a chromosomal gene, and not by 

a nucleic acid in the infectious scrapie prion particle. In humans this gene (PRNP) is on 

chromosome 20, and in mice maps on chromosome 2. According to the protein-only 

hypothesis, prions are formed by a posttranslational conformational remodeling event in 

which PrP
C
 is converted into the disease-associated infectious form (PrP

Sc
). The cellular 

form and the scrapie form of the PrP show peculiar different biochemical 

characteristics: PrP
C
 has a high -helix content (40% of the protein) and relatively little 

-sheet (3% of the protein), while on the contrary PrP
Sc

 contains 30% -helix and 45% 

of -sheet (Caughey et al., 1991; Gasset et al., 1993). Two main models of conversion 

of PrP
C
 into PrP

Sc
 have been postulated: the ―template-assisted‖ model and the 

―nucleation‖ model (Figure 2) (Aguzzi et al., 2001).  
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According to the template-assisted model (or refolding model) (Figure 2a), a high 

energy barrier is preventing the conversion from PrP
C
 to PrP

Sc
, therefore the need of an 

exogenously introduced PrP
Sc

 molecule is necessary for the replication to start: PrP
Sc

 

interacts with and converts an endogenous molecule of PrP
C
 into a newly formed, -

sheet rich PrP
Sc

 isoform. The newly formed PrP
Sc

 molecule, in turn, can convert other 

endogenous PrP
C
 molecules. According to the nucleation model (or polymerization 

model) (Figure 2b), PrP
C
 and PrP

Sc
 are in a reversible thermodynamic equilibrium, 

which strongly favours the cellular (PrP
C
) conformation. Only when several molecules 

of PrP
Sc

 are aggregated (into oligomeric or fibril-like seeds), the replication can start. In 

this case, the seed recruits other monomeric PrP
Sc

 molecules and stabilizes them. The 

 
Figure 2.  The 'protein-only' hypothesis and two popular models for the conformational 

conversion of PrP
C
 into PrP

Sc
 (from Aguzzi et al., 2001). 

a. The 'refolding' or template-assistance model postulates an interaction between exogenously 

introduced PrP
Sc

 and endogenous PrP
C
, which is induced to transform itself into further PrP

Sc
. A 

high-energy barrier might prevent spontaneous conversion of PrP
C
 into PrP

Sc
. b.  The 'seeding' or 

nucleation–polymerization model proposes that PrP
C
 and PrP

Sc
 are in a reversible thermodynamic 

equilibrium. Only if several monomeric PrP
Sc

 molecules are mounted into a highly ordered seed can 

further monomeric PrP
Sc

 be recruited and eventually aggregate to amyloid. Within such a crystal-like 

seed, PrP
Sc

 becomes stabilized. Fragmentation of PrP
Sc

 aggregates increases the number of nuclei, 

which can recruit further PrP
Sc

 and thus results in apparent replication of the agent. In sporadic prion 

disease, fluctuations in local PrP
C
 concentration might — exceedingly rarely — trigger spontaneous 

seeding and self-propagating prion replication. 
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fragmentation of the aggregates increases the number of seeds that can actively recruit 

new PrP
Sc

 molecules, thus accelerating the replication process, the prion accumulation, 

and finally giving rise to the disease. These two models are not to be considered 

mutually exclusive, and indeed the different etiology of prion diseases (infective, 

sporadic or genetical) can be fitted in both the models. In inherited prion diseases, 

genetic mutation of the PRNP gene may destabilize the tertiary structure of PrP
C
 

promoting the spontaneous conversion to PrP
Sc

, or these mutations can lower the energy 

barrier from PrP
C
 to PrP

Sc
, thus facilitating and accelerating PrP

Sc
 aggregation. In 

infective disease, the ingestion of an already preformed PrP
Sc

 aggregate can directly 

convert endogenous PrP
C
 molecules, or act as an already preformed PrP

Sc
-aggregate and 

recruit PrP
Sc

 molecules. In sporadic TSEs, biochemical modifications (whose 

characteristics are at present unknown) of PrP
C
, or other environmental aspects, can 

perturb PrP
C
 tertiary structure and then favour the conversion into PrP

Sc
. However, if 

and what biochemical and environmental mechanisms are at the basis of sporadic TSEs 

is yet to be clarified (Prusiner, 1991, 1994). 

 

 

 

How do prions exert their neurotoxic effects? 

Once PrP
Sc

 is formed, replicating and accumulating in the body and in the brain of the 

individual affected (Fig. 3) (Soto and Satani, 2010), the cellular pathological 

mechanisms by which prion exert their neurotoxic effects are still under debate. 
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The disease-causing PrP
Sc

 induces cell death both in vitro e in vivo, for which microglial 

activation and glial reactivity appear to be instrumental (Collins et al., 2004). Thus, in 

this perspective, prion diseases are believed to be a gain-of-(toxic)-function 

consequence of the formation of PrP
Sc

. However, mice devoid of PrP are resistant to 

scrapie upon prion inoculation (Büeler et al., 1993), and this finding seems in favour of 

a loss-of-function mechanism. Indeed, further studies show that accumulation of PrP
Sc

 

within PrP
C
-expressing tissue grafted into the brains of Prnp

0/0
 mice does not damage 

the neighboring PrP
C
-null tissue (Brandner et al., 1996), and the accumulation of PrP

Sc
 

in glial cells around PrP
C
-null neurons does not induce cell death in the knockout 

 

Figure 3. Multiple neurodegenerative pathways are implicated in TSEs. The conversion of the 

natively folded PrP
C
 to PrP

Sc
 triggers disease. The structure of PrP

C
 corresponds to the experimentally 

determined tridimensional conformation of the protein by nuclear magnetic resonance and the 

structure of PrP
Sc

 corresponds to a model based on low resolution techniques. Abnormalities in the 

brain of infected individuals include the accumulation of PrP
Sc

 deposits, synaptic damage and 

dendrite loss, spongiform degeneration, brain inflammation and neuronal death. PrP
Sc

 deposition was 

determined after immunohistochemical staining with anti-PrP antibodies (black arrowheads). 

Dendrites were labeled by Golgi–silver staining to illustrate the substantial decrease on dendrites and 

synaptic connections in prion-infected animals. Spongiform degeneration was evaluated after 

hematoxylin and eosin staining. Astrogliosis (brain inflammation) was detected by 

immunohistochemical staining of reactive astrocytes with an anti-GFAP (glial fibrillary acidic 

protein) antibody. Apoptosis was detected by staining with caspase-3 antibody (red indicated by 

white arrowheads) and DAPI (4′,6-diamidino-2-phenylindole, blue) staining of nucleus. For each 

stain, images from prion-infected animals (upper) and controls (lower) are shown (from Soto and 

Satani 2010). 
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neurons, also arguing against a direct toxic effect of PrP
Sc

 per se (Mallucci et al., 2002, 

2003; Mallucci and Collinge, 2004). However, the lack of striking phenotypes and the 

absence of neurodegeneration and spongiform changes in the brain of mice ablated for 

PrP (Büeler et al., 1992), also after postnatal depletion (Mallucci et al., 2002), is 

controversial with a loss-of-function mechanism. Thus, the mechanisms responsible for 

prion diseases are not probably to be linked to the direct loss of the cellular PrP per se, 

but to the perturbation of the neurochemical systems that are associated to PrP
C
 

expression and functions. However, the physiological function(s) of PrP
C
 is (are) still 

unknown, and a lot of controversies surrounding the several proposed functions of PrP
C
 

are still under debate. 

 

 

 

PrP
C
  

The cellular form of the PrP, PrP
C
, is a host-encoded protein. In humans, PrP

C
 is a 253 

amino acids protein, which has a molecular weight of 35-36 kDa. It has two 

hexapeptides and repeated octapeptides at the N-terminus, a disulphide bond, and it is 

anchored at extracellular part of the cell membrane through a glycosylphosphatidyl 

inositol (GPI) anchor (Figure 4) (Chesebro and Caughey, 1993; Caughey and Baron, 

2006).  
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The preprotein PrP
C
 is produced as a precursor protein of ~230 amino acids containing 

two signals peptides. The ~22 amino acids peptide at the N-terminus targets the protein 

to the endoplasmic reticulum (ER), while the ~23 amino acid sequence at the C-

terminus is essential for the addition of the GPI moiety. Following the removal of the 

signal peptides, most of mammalian PrP
C
 is exported to the cell surface as a mature 

protein of 208-209 amino acids (Stahl et al., 1987). PrP
C
 contains two moieties of 

roughly the same length, an NH2-terminal flexible region,  and a COOH-terminal 

globular domain of about another 100 amino acids. The globular domain of human PrP
C
 

is arranged in three -helices corresponding to amino acids 144–154, 173–194, and 

200–228, interspersed with an antiparallel β-pleated sheet formed by β-strands at 

residues 128–131 and 161–164. A single disulfide bond is found between cysteine 

residues 179 and 214. The N-terminal domain contains the repeated octapeptides, 

termed OR, preceded and followed by two positively charged charge clusters, CC1 

(amino acids 23–27) and CC2 (amino acids 95–110). 

 

Figure 4. Mature form of the cellular prion protein, PrP
C
. PrP

C
 is a GPI-anchored membrane 

protein, with a flexible, random coil N-terminus and a globular C-terminal domain. The N-terminal 

domain of PrP
C
 contains octapeptide repeats (in light blue), which can bind divalent cations such as 

copper ions. The C-terminal domain of PrP
C
 contains three alpha-helices (in pink) and an antiparallel 

β-pleated sheet formed by two β-strands (in yellow). PrP
C
 can be found non-, mono-, or 

diglycosylated forms (from Caughey and Baron, 2006).  
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The N- and C- domains are linked by a hydrophobic stretch of amino acids [amino acids 

111–134, also termed hydrophobic core (HC)] (Figure 5) (Zahn et al., 2000; Aguzzi and 

Calella, 2009).  

 

 

 

The octapeptide repeats can coordinate Cu
2+

 ions in cooperative fashion with high 

affinity, and display weaker binding properties towards other divalent cations, such as 

Zn
2+

, Fe
2+

, Mn
2+

 and Ni
2+

 (Stöckel et al., 1998). 

The protein PrP
C
 is found in un-, mono-, or di-glycosylated forms, corresponding to the 

variable occupancy of residues Asn-181 and Asn-197 in human PrP
C
 and Asn-180 and 

Asn-196 in mice (Haraguchi et al., 1989). 

 

 

 

PrP
C
  subcellular localization and trafficking 

 

PrP
C
  and membrane localization 

During its normal life cycle almost all PrP
C
 is anchored to the cell surface by a GPI-

anchor (Taylor and Hooper, 2006). Similarly to other GPI-anchored proteins, PrP
C
 

 

Figure 5. Outline of the primary structure of the cellular prion protein including 

posttranslational modifications. A secretory signal peptide resides at the extreme NH2 terminus. 

CC1 and CC2 define the charged clusters. OR indicates the octapeptide repeat, and four are present. 

HC defines the hydrophobic core. MA denotes the membrane anchor region. S-S indicates the single 

disulfide bridge, and the glycosylation sites are designated as CHO. The numbers describe the 

position of the respective amino acids (from Aguzzi and Calella, 2009). 
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molecules are found attached to low-density, detergent-insoluble membrane domains 

(DRMs or lipid rafts), rich in cholesterol and sphingolipids (Naslavsky et al., 1997; 

Taylor and Hooper, 2006). 

The association with DRMs appears to control the distribution of mature PrP
C
 among 

very distinct regions of the plasma membrane, as shown by the extensive redistribution 

of PrP
C
 at the surface of cultured neurons upon cholesterol or sphingolipid depletion 

(Taraboulos et al., 1995; Galvan et al., 2005). However, controversial findings have 

been reported as both of the nature of PrP
C
-containing rafts as well as of the distribution 

of PrP
C
 between raft and non-raft membrane domains. 

 

 

PrP
C
  trafficking  

PrP
C
 is translocated to the endoplasmic reticulum (ER) due to the presence of an N-

terminal signal peptide that is then cleaved into the ER lumen. The GPI anchor is also 

added in the ER, after removal of a C-terminal peptide signal. The core GPI anchor 

added to the immature PrP
C
 is then processed (Stahl et al., 1987). Association of PrP

C
 to 

lipid rafts starts early within the ER, and the maturation of the protein proceeds along 

the ER-Golgi-plasma membrane pathway accompanied by association with distinct 

membrane rafts (Sarnataro et al., 2004; Campana et al., 2005). 
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Results of cholesterol depletion also suggested that raft association is required for 

correct folding of PrP
C
 (Sarnataro et al., 2004), as well as for the export of the protein to 

the Golgi apparatus and for proper glycosylation (Sarnataro et al., 2004; Campana et al., 

2005).  

The glycosylation patterns of PrP
C
 may also affect protein trafficking and biophysical 

features (Cancellotti et al., 2005).  

The mechanism of PrP
C
 internalization is still controversial because both raft/caveolae 

or caveolae-like (Vey et al., 1996; Kaneko et al., 1997; Marella et al., 2002; Peters et al., 

2003) as well as clathrin-dependent endocytosis may be operative (Shyng et al., 1994; 

Taylor et al., 2005) (Figure 6).  

  

 

 

 

 

Figure 6. Pathways of PrP
C
 internalization. At the plasma membrane, PrP

C
 can be constitutively 

internalized and its endocytosis can be increased by extracellular copper ions (not shown). The main 

pathway of PrP
C
 internalization in neuronal cells seems to depend on clathrin-mediated endocytosis 

(i). Caveolin-related endocytosis and trafficking have been implicated in PrP
C
 transport in Chinese 

hamster ovary and glial cells (ii). Rab5-positive endosomes and recycling endosomes involving Rab4 

have also been implicated in the endocytic transport of PrP
C
. Finally, non-clathrin and non-caveolin 

but raft-dependent endocytosis has been proposed to participate in the internalization and conversion 

of prion protein (iii). (from Campana et al., 2005) 
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PrP
C
  expression pattern 

 

The protein PrP
C
 is highly abundant in the developing and in the mature nervous 

system, where it is expressed in neuronal and glial cells. Its expression content varies 

among distinct brain regions, among differing cell types, and among neurons with 

distinct neurochemical phenotypes (Linden et al., 2008). However, some controversial 

findings are reported, regarding the cellular localization: cell body, axonal, dendritic, 

synaptic compartment. Moreover, as for the latter, conflicting results were reported as to 

whether PrP
C
 resides in either or both pre- and postsynaptic components (see for 

reference (Linden et al., 2008)). Finally, some discrepancies between the correlation 

level of PrP mRNA and PrP
C
 protein were reported (Ford et al., 2002). Multiple 

technical and biological reasons may account for these controversial findings, like the 

usage of different monoclonal or polyclonal antibody, the different experimental tissue 

fixation, the continuous trafficking and turnover of PrP
C
, the degree of surface exposure 

of PrP
C
, to species differences, or to technical artefacts.  

The protein PrP
C
 has been shown to be expressed starting from early embryonic 

development, and to be developmentally regulated (Mobley et al., 1988; Lazarini et al., 

1991; Manson et al., 1992; Salès et al., 2002; Tremblay et al., 2007). In the brain, the 

levels of the PrP expression increases during the first postnatal weeks till the completion 

of synaptogenesis, and then remain stable at plateau during adulthood, with a slight 

decrease of the level of expression in aged animals (Salès et al., 2002). In particular, its 

levels of expression are high in the olfactory bulb and in the hippocampus, which are 

regions known to have ongoing neuronal renewal also during adult life (Salès et al., 

2002).  
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PrP functions 

 

The protein PrP
C
 has been linked to several cellular processes in the nervous system. 

These processes include neuronal survival, neurite outgrowth, synapse formation, 

maintenance, and function, and maintenance of myelinated fibers (reviewed in (Aguzzi 

et al., 2008)) (Figure 7). Table 2 (from (Caughey and Baron, 2006)) summarizes all the 

cellular processes in which PrP
C
 is demonstrated to be involved. 

 

 

 

 

Figure 7. Physiological functions proposed for PrP
C
. (from Aguzzi et al., 2008) 
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I will focus on some of the proposed functions, which serve as a framework of my 

Ph.D. project and of this doctorate thesis. 

 

 

PrP
C
  and neurite outgrouth 

The analysis of the distribution of PrP
C
 during central nervous system (CNS) 

development demonstrated that Prnp gene expression is developmentally regulated, 

generally increasing during brain maturation (first postnatal weeks). Looking more in 

details, at the cellular level PrP
C
 is localized in fiber tracts early in development, then it 

shifts to synapses rich regions with aging (concomitantly with its increasing abundance 

in brain) in close spatio-temporal association with synapse formation. The appearance 

of a synaptic distribution for PrP
C
 follows and parallels the time-course of synapse 

formation in several brain stuctures (e.g., in the olfactory bulb, which contains synapses 

at birth, PrP
C
 has a terminal distribution already at P0) (Salès et al., 2002). 

 

Table 2. The cellular distribution and activities of PrP
C
 in cell types in which known or putative 

functions have been descrive (from Caughey and Baron, 2006) 
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All these findings lead to speculations about a role of PrP
C
 in axonal development and 

synaptic formation and functioning. 

Evidences for such an involvement can be found also in some in vitro studies. 

In 2001, Shmitt-Ulms and colleagues demonstrated for the first time, with cross-linking 

experiments, that PrP
C
 can interact with Neuronal Cell Adhesion Molecules (NCAMs) 

(Schmitt-Ulms et al., 2001).  

Two years later, Chen and colleagues demonstrated that the addition of PrP-Fc on 

primary cell cultures from p5-p7 mice cerebellar neurons stimulates neurite outgrowth 

(Chen et al., 2003). 

Subsequently, two different groups independently demonstrated that PrP stimulates 

neurite outgrowth by interacting with NCAMs. Santuccione and colleagues worked on 

cerebellar neurons from p5-p7 mice and demonstrated that PrP-Fc acts on their surface 

recruiting NCAMs and stimulating neurite outgrowth (Santuccione et al., 2005).  

Instead, Kanaani and colleagues, using for their experiments hippocampal neurons from 

E18 rats, demonstrated that the overnight exposure to recombinant PrP (recPrP), folded 

into an an -helical-rich conformation similar to that of PrP
C
, led to a 1.9-fold increase 

in neurons with a differentiated axon, a 13.5-fold increase in neurons with differentiated 

dendrites, a 5-fold increase in axon length and the formation of extensive neuronal 

circuitry (Kanaani et al., 2005). The formation of synaptic-like contacts was increased 

by a factor of 4.6 after the exposure to recPrP for 7 days. NCAMs are the principal 

interactors of PrP
C
 in carrying out this function. The interactions between PrP and 

NCAMs are important for their stabilization in lipid rafts that leads to the activation of 

Fyn kinase via receptor-type protein phosphatase- (RPTP).  The activation of Fyn 

stimulates neurite outgrowth (Figure 8). 



 - 20 - 

 

Axon or dendrite outgrowth was also associated with other PrP
C
-dependent activation of 

signal transduction pathways including cAMP/protein kinase A (PKA) (Chen et al., 

2003; Lopes et al., 2005), protein kinase C (PKC) (Kanaani et al., 2005), and MAP 

kinase activation (Chen et al., 2003).  

 

PrP
C
  and neuroprotection 

Neuroprotection is probably the best-supported function attributed to PrP
C
. This arises 

from several in vitro and in vivo findings mainly linked to anti-apoptotic and anti-

oxidative stress effects exerted by the presence of the protein. The Prnp
0/0

 mice display 

a higher susceptibility to stroke (McLennan et al., 2004) and to kainic acid-induced 

seizures (Rangel et al., 2007). Moreover, PrP
C
 was shown to wield neuroprotective 

function in mouse models of amyotrophic lateral sclerosis (Steinacker et al., 2010) and 

of experimental autoimmune encephalomyelitis (Tsutsui et al., 2008). Oxidative 

damage to proteins and lipids is higher in the brain lysates derived from Prnp
0/0

 

compared to their wildtype counterpart (Wong et al., 2001; Klamt et al., 2001). The 

 

Figure 8. Model of potential PrP
C
 interactions associated with axonal growth. PrP

C
 seems to be 

important for neurite (nascent axon and dendrite) growth and synapse formation in neurons. Neurite 

outgrowth is modulated by PrP
C
 interactions with NCAM and STI-1, which can lead to activation of 

intracellular signalling pathways. In the case of NCAM, this signalling pathway is mediated by 

activation of Fyn kinase, presumably through RTPTα. PrP
C
 binds HSPG, laminin and the laminin 

receptor (LR) and its precursor (LRP), which, along with NCAM, are known to mediate contacts 

between neurons, other cells and the extracellular matrix. Various adhesion and extracellular-matrix 

molecules help to guide growing neurites to their appropriate destinations. These molecules are 

presumably delivered to the growing tips (growth cones) of neurites through transport vesicles, 

perhaps as preformed complexes (from Baron and Caughey, 2006). 
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protein PrP
C
 may also exert a neuroprotective function by decreasing the rate of 

apoptosis after particular apoptotic stimuli, as for example Bax overexpression 

(Bounhar et al., 2001). Notably, PrP
C
 lacking the octarepeats could not reverse the Bax-

mediated induction of apoptosis, thus hinting at the octapeptide domain as a potential 

neurotrophic/neuroprotective domain of PrP
C
. This finding is supported by the finding 

that brain ectopic expression of Doppel (Dpl), a PrP paralog (see next chapter), triggers 

cerebellar Purkinje cells death, and that only full length PrP
C
, but not N-terminally 

truncated PrP
C
, can suppress the Dpl-mediated neurotoxicity and rescue the pathological 

phenotype (Atarashi et al., 2003).  

 

PrP knockout and transgenic mice 

Several knockout and transgenic mice lines for the Prnp gene have been created in order 

to address the crucial question of the physiological function of PrP
C
. Indeed, the first 

generation of knockout mice, namely Prnp
0/0 

(Zurich I) and Prnp
-/-

 (Edimburgh) (Büeler 

et al., 1992; Manson et al., 1994) showed normal development and no spongiform 

change or any sign of pathology later in life. Later, other three PrP
C
 knockout mice line 

were created, namely Prnp
-/-

 [Nagasaki], Rcm0, and Prnp
-/-

 [Zurich II] (Sakaguchi et 

al., 1996; Moore et al., 1999; Rossi et al., 2001), and revealed loss of Purkinje cells and 

cerebellar degeneration. This finding, in contradiction with the previous reports on the 

absence on phenotypical variations in Zurich I and Edimburgh PrP knockout mice, was 

solved by the discovery of a novel gene, Prnd, located 16kb downstream of the Prnp 

gene. The Prnd gene encodes for the protein Dpl. The protein is overexpressed in Ngsk, 

Rcm0, and Zurich II mice, but not in Zurich I or Edimburgh PrP knockout mice (Moore 

et al., 1999). The protein Dpl is usually not expressed in the brain. However, in the 

second generation of PrP knockout mice, the transgenesis procedure introduced a 

deletion in Prnp, extended to the third exon of the gene, thus provoking the deletion of 
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the splice acceptor site. This led to an exon skipping phenomenon, and in turn the 

generation of a chimeric Prnp-Prnd mRNA containing the Dpl-coding exon. Thus Dpl 

becomes controlled by the Prnp promoter and therefore highly expressed in brain. The 

ectopic expression of Dpl in the brain causes ataxia and degeneration of cerebellar 

granule and Purkinje cells, and its levels can be inversely correlated with the onset of 

disease (Moore et al., 2001). However, the reintroduction of the Prnp gene in mice 

overexpressing Dpl in the brain rescues the phenotype (Nishida et al., 1999; Moore et 

al., 2001). Thus Dpl neurotoxicity is counteracted by PrP
C
, but the mechanisms 

underlying this antagonism remain elusive. The molecular basis of Dpl-PrP
C
 

antagonism may be hypothesized only with some models. For example, PrP
C
 and Dpl 

may compete for a common ligand, the binding of this latter with Dpl triggers 

neurodegeneration. Thus, the search for specific Dpl ligands in the brain could be key 

information for the mechanisms of Dpl-mediated neurodegeneration. However, Dpl-

deficient mice are sterile (Behrens et al., 2002), suggesting that the primary 

physiological function of Dpl is related to sperm maturation. Other transgenic mice 

have been created in order to study the function of PrP
C
. Mice carrying deletion mutants 

of PrP
C
 have been created to identify possible functional domains of PrP

C
 (Figure 9). 

For example an initial report of Prnp
0/0

 mice expressing PrP
C
 lacking amino acid 

residues 32-121 or 32-134 (PrPΔ32-121 and PrPΔ32-134) revealed how the expression 

of these truncated PrPs caused severe ataxia and neuronal death limited to the granular 

layer of the cerebellum, and a widespread cerebellar leukoencephalopathy, similar to the 

one elicited by Dpl ectopic expression (Shmerling et al., 1998). The leukodystrophy, but 

not the cerebellar granule cell degeneration, can be rescued by oligodendrocyte-specific 

expression of PrP
C
. On the other hand, neuron-specific expression of PrP

C
 can partially 

rescue cerebellar granule cell degeneration but not demyelination (Radovanovic et al., 

2005). Thus white matter disease and cerebellar granule cell degeneration in these mice 
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are distinct, and the endogenous expression of PrP
C
 in both neurons and glia is required 

for complete reversion of the degenerative phenotype. Therefore, neurodegeneration 

and myelin damage may reflect two distinct pathological phenotypes elicited by 

different cellular types expressing PrP mutants. Prnp
0/0

 mice expressing PrP lacking 

amino acid residues 32-93 (PrPΔ32-93) within the octapeptide region do not display any 

pathological phenotype, thus hinting at the central domain (CD, residues 94-134) of 

PrP
C
 as a key functional domain for signal transudction. The central domain comprises 

a charge cluster (CC2, residues 95–110) and a hydrophobic core (HC, residues 112–134) 

(Figure 5, 9).  

 

 

Figure 9. Murine PrP
C
 protein and transgenic mutant PrP. Schematic drawing of full-length 

murine PrP
C
, with sequence for the signal peptide (SP) and for the GPI anchor (MA). The left column 

denotes the individual mutants described in this thesis. The right columns indicate life expectancy of 

the animals, presence of cerebellar neurodegeneration, central nervous system demyelination, 

peripheral nervous system demyelination, and references. All the mutants are to be intended as 

expressed in a Prnp
0\0

 genetic background. n.r. = not reported; ** = CNS demyelination of PrPΔ105-

125 mice was revealed in a Prnp
+\0

 genetic background, due to the neonatal lethality of the mice 

expressing the transgene in a Prnp
0\0 

genetic background.  

1 = Shmerling et al., 1998; 2 = Bremer et al., 2010; 3 = Baumann et al., 2007; 4 = Baumann et al., 

2009; 5 = Chesebro et al., 2005; 6 = Li et al., 2007 (modified from Baumann et al., 2007). 
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In order to analyze the different contributions of these two domains to the pathological 

phenotype, other Prnp transgenic mice have been created lacking the entire central 

domain (PrPΔ94-134) (Baumann et al., 2007). Mice lacking the entire central domain 

(CD), i.e. expressing PrPΔ94-134, revealed a drastic neuropathological phenotype, 

characterized by vacuolar degeneration and astrogliosis with extensive central and 

peripheral myelin degeneration, and death within 20–30 days (Baumann et al., 2007). 

However, these mice lack the extensive cerebellar granule cell degeneration found in 

mice expressing PrPΔ32-121 and PrPΔ32-134 (Shmerling et al., 1998), despite the 

similarity of the myelin damage between the transgenic mice. In such scenario, the N-

terminal octarepeat domain of PrP
C
 seems to be involved in transducing a 

neuroprotective effect on neurons (at least in the cerebellum), while the CD of PrP
C
 

seems to transduce myelin-maintenance signals. Mice lacking the region spanning the 

residues 105-125 (PrPΔ105-125) display an even more dramatic phenotype, by 

developing a severe neurodegenerative illness that becomes lethal within 1 week of 

birth (Li et al., 2007).  

Each of these pathologies can be counteracted by coexpression of wildtype PrP
C
, in a 

dose-dependent fashion according to the level of expression of the mutant PrP transgene 

and the severity of the illness elicited by the mutant PrPs (Baumann et al., 2007; Li et 

al., 2007). According to the model in Figure 10, PrP
C
 and its deletion mutants can 

compete for a common ligand, maybe a receptor that regulate signal transduction 

(Baumann et al., 2007). 

Moreover, a recent report highlights again the involvement of PrP
C
 in myelin 

homeostasis. Bremer et al. (Bremer et al., 2010) showed that Prnp
0/0

 mice display a late-

onset chronic demyelinating polyneuropathy (CDP) in their peripheral nervous system 

(PNS). Interestingly, the CDP is triggered by the specific ablation of PrP from neurons, 
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whereas PrP depletion from Scwhann cells did not elicit the disease. Accordingly, CDP 

was suppressed by PrP
C
 expression limited to neurons but not to Schwann cells. Thus, 

PrP
C
 expression by Schwann cells is not required for peripheral myelin maintenance, 

but PrP
C
 needs to be neuronal expressed to elicit its myelin-protective function. Bremer 

and colleagues showed that Prnp
0/0 

nerve fibers had thinned myelin sheaths despite 

normal axonal morphology, thus suggesting a proper Schwann cells defect rather than 

an axonal one. Their finding frames up a scenario where axonal PrP
C
 regulates in trans 

a direct molecular communication from axons to Schwann cells. Moreover, mice 

expressing mutant PrP lacking the CC2 domain (PrPΔ94-110) did not develop CDP, 

while on the contrary mice expressing mutant PrP lacking the hydrophobic core 

(PrPΔHC) (Figure 9) showed a reduced life expectancy (survival 80 ± 3.5 days), white-

matter vacuolation and astrogliosis in cerebellum, brain stem and corpus callosum, and 

showed CDP (Bremer et al., 2010). Thus, the hydrophobic core (HC), but not the charge 

cluster (CC2), of the central domain (CD) of PrP
C
 is essential for myelin maintenance. 

 

However, the demyelinating phenotype in Prnp
0/0

 mice is mild and less severe than the 

demyelination-affecting mice expressing PrP mutants lacking the central domain (CD). 

Indeed,  Prnp
0/0

 mice show only demyelination in their PNS, which is not lethal and 

does not prevent to the animal a correct development and behaviour (Büeler et al., 

1992), and clinical manifestations of the polyneuropathy are limited to reduced grip 

strength and nociception (Bremer et al., 2010). On the contrary,  Prnp
0/0

 mice 

expressing deletion mutant of the central domain of PrP, i.e. PrPΔHC, PrPΔ32-121, 

PrPΔ32-134, show a more dramatic and lethal demyelinating phenotype, with both 

central and peripheral demyelination, clinical manifestations ranging from partial hind 

limb paresis to ataxia, full tetraplegia, and reduced life expectancy of the transgenic 

animals (Figure 9) (Shmerling et al., 1998; Baumann et al., 2007; Bremer et al., 2010). 
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Also  Prnp
0/0 

mice expressing Dpl show central and peripheral demyelination (Baumann 

et al., 2009). Thus, Dpl resembles the neurotoxic ΔPrP mutants lacking the central 

domain. Indeed, the addition of the domain containing the CD region of PrP
C
 was 

shown to detoxify Dpl (Baumann et al., 2009).  

According to the scenario where full length PrP
C
 and PrP mutants compete for the same 

putative receptor, this great phenotypical difference between demyelination in  Prnp
0/0 

and PrPΔCD-expressing mice may be explained by a residual, basal activity of this 

receptor in  Prnp
0/0 

mice, whereas disruption of the CD may sequester the receptor in a 

dominant-negative state (Figure 10) (Steele et al., 2007). 

 

 

The authors suggest that the cleavage of PrP
C
 appears to be linked to its myelinotrophic 

function. PrP
C
 is subjected to regulated proteolysis in late secretory compartments 

 

Figure 10. A model showing the effects of PrP
C
 deletion mutants. (A) Schematic diagram of 

wildtype PrP
C
 and its several deletion mutants. SP, signal peptide; octapeptide repeats are indicated in 

blue; CC, charge cluster; HC, hydrophobic core; H1, H2, H3 Helix 1, 2 and 3, respectively; GFP, 

GPI-anchor addition sequence (B). PrP (purple) consists of a globular C-terminal domain (hexagon) 

and a N-terminal flexible tail (arch) encompassing the octapeptide repeats (circle). The model rests on 

the following assumptions: (1) PrP activates a hitherto unidentified receptor (PrPR) which transmits 

myelin maintenance signals (flashes); (2) in the absence of PrP, PrPR exerts some residual activity, 

either constitutively or by recruiting a surrogate ligand; (3) the activity of PrP and its mutants requires 

homo- or heterodimerization, and induces dimerization of PrPR; and (4) PrP dimers containing 

PrPΔCD or PrPΔCD trap PrPR in an inactive dominant-negative state (from Steele et al., 2007). 
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(Sunyach et al., 2007), and its proteolysis generate two distinct fragments, namely C1 

and C2. C1 is generated by α-cleavage at amino acids 110–112, whereas C2 is derived 

by β-cleavage in the octarepeat region at position 96 (Mangé et al., 2004; Watt and 

Hooper, 2005). 

Bremer and colleagues (Bremer et al., 2010) evidence an association between the 

presence of CDP and lack of the C1 fragment in sciatic nerves. Indeed, all transgenic 

mice showing CDP lack C1 fragment, whereas all PrP mutants, in which the CDP was 

rescued, produce abundant C1. This suggests that alpha-cleavage is important for PrP
C
 

function on myelin physiology. The alpha-cleavage activity seems to be dependent on 

the size of the central region of PrP, rather than on the sequence specificity (Oliveira-

Martins et al., 2010). 

Interestingly, mice expressing the toxic mutant PrPΔ94-134 but lacking the GPI anchor 

(namely, PrPΔCDs) do not display any sign of pathology irrespectively of the presence 

or absence of wt PrP
C
 (Baumann et al., 2009). Moreover, the expression of this 

transgene failed to influence the survival of mice expressing PrPΔ94-134 mice 

irrespectively of the presence or absence of full length PrP
C
. This suggests that proper 

anchoring of PrP
C
 and of PrP mutants to lipid rafts is necessary for exerting their 

beneficial and/or toxic functions. This is in agreement, in turn, with the discovery that 

mice expressing anchorless PrP
C
 accumulate prions, protease-resistant PrP and amyloid 

plaques when infected with scrapie, but they develop only minimal subtle pathologies 

(Chesebro et al., 2005). Prion replication and neurotoxicity thus appear to be two 

distinct phenomena, the first requiring the coexpression and interaction of PrP
Sc

 with 

PrP
C
, the latter requiring the correct GPI-anchoring of PrP

C
 to the cell membrane. Thus 

both for PrP mutants and for prion diseases, GPI-anchored PrPs are necessary for 

transducing the neurotoxic effect. Notably, also mice expressing anchorless PrP show 

the same CDP as  Prnp
0/0 

mice (Bremer et al., 2010), thus suggesting that proper 
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expression and anchoring of PrP
C
 to lipid rafts is also necessary for PrP

C
 to elicit its 

myelin-protective function. Thus, GPI membrane anchoring is necessary for both 

beneficial and deleterious effects elicited by PrP
C
 and its variants, including the 

neurodegenerative effect of PrP
Sc

. Anchorless PrP is not physiologically processed and 

thus it does not give rise to C1 and C2 fragment (Bremer et al., 2010), thus enforcing 

the hypothesis of the cleaved fragments of PrP
C
 as the bioactive species for myelin 

maintenance. 

 

In summary, a preponderant role for PrP
C
 in neuroprotection and myelin maintenance is 

described, yet with some peculiarities: 

 Neuroprotection and myelin maintenance are probably two distinct phenomena, 

the former requiring neuronal expression of PrP
C
, the latter requiring oligodendrocytes-

specific full length PrP
C
 expression in the CNS, while axonal-specific full length PrP

C
 

expression in the PNS (Radovanovic et al., 2005; Bremer et al., 2010). 

 The N-terminal domain seems to mediate the neuroprotective function of PrP
C
 

(Baumann et al., 2009). 

 Mutants of PrP lacking the CD are highly myelinotoxic, with deleterious effects 

both on the CNS and in the PNS (Baumann et al., 2007; Bremer et al., 2010). This 

myelinotoxic effect can be counteracted by concomitant expression of full-length PrP
C
. 

 Proper GPI-anchoring of PrP
C
 and of PrP mutants is necessary for the 

transduction both of the physiological and of the pathological effects of the different 

PrPs, including also PrP
Sc

 elicited neurotoxicity (Chesebro et al., 2005; Baumann et al., 

2009). 

 Specific cell types (neurons, oligodendrocytes, astrocytes, Schwann cells) 

expression of full length PrP
C
, anchorless PrP or PrP deletion mutants can differently 
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influence neurodegeneration and/or myelin damage (Radovanovic et al., 2005; Race et 

al., 2009; Bremer et al., 2010). 

The GPI anchor localizes PrP
C
 to the outer part of the cellular membrane, and enriches 

PrP
C
 in the lipid rafts. Lipid rafts thus appear as the key functional site for PrP

C
 

physiological function, and also for triggering the neurodegenerative effect of PrP
Sc

 - 

PrP
C
 interaction. 

 

PrP
C
  and Alzheimer’s disease 

Alzheimer disease (AD) is the most common form of dementia, affecting at present 

more than 37 million people worldwide (Mount and Downton, 2006; Burns and Iliffe, 

2009). The neurodegenerative disorder AD is characterized pathologically by the 

formation of senile plaques composed of amyloid-β (Aβ) peptides and distinctive 

neurofibrillary tangles composed of hyperphosphorylated Tau (Haass and Selkoe, 

2007). The peptides Aβ are derived from the amyloidogenic-processing pathway of the 

amyloid precursor protein (APP) (Figure 11) (Aguzzi and O'Connor, 2010).  
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Several neuropathological similarities and genetic links between AD and prion diseases 

have been reported. The coexistence of AD pathology in CJD has been reported 

(Hainfellner et al., 1998) and PrP
C
 has been shown to colocalise with Aβ peptides in 

plaques (Voigtländer et al., 2001). These composite PrP-Aβ plaques were shown to be 

present in most CJD patients with associated AD-type pathology (Del Bo et al., 2006) 

and it has been proposed that PrP
C
 may promote Aβ plaque formation (Schwarze-Eicker 

et al., 2005). A genetic correlation between PrP
C
 and AD has also been reported. A 

systematic meta-analysis of AD genetic association studies revealed that the gene 

encoding PrP
C
, PRNP, is a potential AD susceptibility gene (Bertram et al., 2007) and 

the Met/Val 129 polymorphism in PRNP has been reported to be a risk factor for early-

onset AD (Dermaut et al., 2003). More recently, other reports strongly suggest a direct 

link between prion biology and AD.  

 

Figure 11. APP processing and amyloid-β formation. Amyloid precursor protein (APP) undergoes 

a series of proteolytic cleavages in neurons to form the amyloid-β (Aβ) peptides that are associated 

with senile plaques in AD. In the amyloidogenic pathway (a), internalized APP is initially cleaved at 

its amino terminus by endocytic β-secretase (β) to form secreted APPsβ and C99. C99 then becomes a 

substrate for intramembraneous cleavage by the γ-secretase complex, leading to the release of Aβ40 (or 

Aβ42 at low frequency) and the APP intracellular domain (AICD), which may regulate gene 

expression. In a competing, non-amyloidogenic pathway (b), α-secretase cleaves cell surface APP to 

liberate secreted APPsα and C83. C83 is then cleaved by γ-secretase to form the soluble p3 peptide 

and the AICD. The majority of Aβ and N-terminal APP cleavage fragments are eliminated from the 

neuron by the secretory pathway (from Aguzzi and O'Connor, 2010). 
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Vincent et al. (Vincent et al., 2009) reported a link between PrP
C
 expression and 

regulation by the presenilins, the catalytic subunits of the γ-secretase complex. The 

authors of this study determined that the amyloid intracellular domain (AICD), resulting 

from the γ-secretase cleavage of APP (Figure 11), plays a role in the regulation of PrP
C
 

expression. AICD, in association with Tip60 and Fe65, translocates to the nucleus and 

acts as a transcription factor to regulate p53 expression. The protein p53 was shown to 

regulate PrP
C
 at the transcriptional level by interacting with its promoter, resulting in 

changes in PrP
C
 mRNA and protein expression. 

More recently, the group of Strittmatter (Laurén et al., 2009) proposed that PrP
C
 acts as 

receptor for Aβ42 oligomers, which are the Aβ specie mainly responsible for neuronal 

dysfunction and degeneration (Walsh et al., 2002; Lesné et al., 2006; Selkoe, 2008). The 

authors state that soluble Aβ42 oligomers reduce long-term potentiation (LTP) in 

wildtype mice but not in  Prnp
0/0

 mice, indicating that PrP
C
 is required to mediate one of 

the toxic effects of Aβ. This study concluded that there is a direct interaction between 

PrP
C
 and Aβ42 oligomers and that this interaction affects synaptic plasticity. This 

suggests, therefore, that PrP
C
 mediates a toxic effect of the Aβ42 oligomers and thereby 

plays an important role in the neurodegeneration associated with AD (Kellett and 

Hooper, 2009). However, Strittmatter group‘s findings are now under contention as 

other researchers in repeating some of the reported experiments had conflicting results, 

and thus challenge Strittmatter‘s conclusions (Balducci et al., 2010; Calella et al., 2010; 

Kessels et al., 2010). 

In 2007, Parkin et al. (Parkin et al., 2007) reported that PrP
C
 decreased the 

amyloidogenic processing of APP thereby decreasing Aβ levels. This effect of PrP
C
 on 

the lowering of Aβ levels was elicited by a direct inhibition of PrP
C
 on the rate-limiting 

enzyme in the production of Aβ, the β-secretase BACE1 (Vassar, 2004). In fact, PrP
C
 

depletion by siRNA in a murine neuroblastoma (N2a) cell line or PrP
C
 absence in  
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Prnp
0/0

 mice resulted in increased Aβ levels. Aβ levels were significantly increased also 

in the brains of scrapie-infected mice, thus showing that during prion diseases the 

inhibitory effect of PrP
C
 on the β-cleavage of APP may be lost. Moreover, this study 

shows how the interaction between PrP
C
 and BACE1 requires the correct localisation of 

PrP
C
 to cholesterol-rich lipid rafts, where BACE1 cleavage of APP preferentially occurs 

(Ehehalt et al., 2003; Cordy et al., 2003). 

Moreover, the authors found that the charged cluster, the CC1 region at the extreme N-

terminus of mature PrP
C
 possibly through interactions with glycosaminoglycans is 

critical for the interaction with and inhibition of BACE1 (Parkin et al., 2007). Thus, 

PrP
C
 has a crucial effect in suppressing the production of the Aβ peptide, and further 

studies are required to determine whether PrP
C
 could play a functional role in 

preventing AD.  

 

Despite being a fascinating point of investigation for AD, PrP
C
 interaction with BACE1 

could also be interesting for myelin physiology. I have previously described how the 

role of PrP
C
 in myelin homeostasis appears to be complex, with distinct influences in 

CNS and PNS myelin development and maintenance. Myelination and myelin 

maintenance are different physiological processes which require distinct axonal 

molecular signals acting on glial cells and supporting them at different developmental 

stages. One of the most studied molecular signals is mediated by neuregulin-1 (NRG1) 

(Newbern and Birchmeier, 2010). The protein NRG1 is a trophic factor containing an 

epidermal growth factor (EGF)-like domain that signals through the binding of ErbB 

receptor tyrosine kinases (Mei and Xiong, 2008). The best-defined function of NRG1 is 

the control of myelination in the PNS, where NRG1 is essential for neuronal and glial 

survival (Garratt et al., 2000b; Jessen e Mirsky, 2005; Nave e Salzer, 2006). On the 

other hand, NRG1 role in the myelination of the CNS has not yet been established and, 
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despite in vitro data, NRG signaling seems to be dispensable for CNS myelination in 

vivo, at least during postnatal stages (Brinkmann et al., 2008). This suggests that NRG1 

may function differently in the PNS and CNS. 

The protein NRG1 is synthesized as a membrane-anchored protein, which undergoes 

proteolytic cleavage that releases mature (EGF)-like domain-containing NRG1 

ectodomain. This cleavage is catalyzed by different membrane proteases, including 

members of the ADAM proteases family, like ADAM17/TACE (Loeb et al., 1998; 

Montero et al., 2007) and ADAM19 (Yokozeki et al., 2007), and by BACE1 (Willem et 

al., 2006; Hu et al., 2006). The BACE1 knockout mice show a deficit in NRG1 

processing in their nervous system, and display a peripheral neuropathy similar to that 

observed in mice lacking NRG1/ErbB signaling (Garratt et al., 2000b; Michailov et al., 

2004; Taveggia et al., 2005). Thus, the physiological BACE1-mediated processing of 

NRG1 seems to be a key trophic instruction for the normal development and 

maintenance of myelin physiology, at least in the peripheral nervous system. As PrP
C
 

interacts and regulates BACE1 activity (Parkin et al., 2007), a potential influence of 

PrP
C
 on BACE1-mediated NRG1 cleavage is intriguing. Indeed, Bremer and colleagues 

(Bremer et al., 2010) reported no PrP
C
 influence on NRG1 processing in sciatic nerves 

from P11 and P35 mice. 
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Aim of the thesis 

 

Despite years of intense research, the physiological functions of the cellular PrP, PrP
C
, 

are still unknown. The protein PrP
C
 has been shown to be involved in several cellular 

and physiological processes (Aguzzi et al., 2008). Indeed, the involvement of PrP
C
 on 

these several physiological functions seems to be time- and tissue- dependent. The early 

embryonic expression of PrP
C
 (Manson et al., 1992) and its functional role for neuritic 

outgrowth (Santuccione et al., 2005; Kanaani et al., 2005) are suggestive of a 

developmental function for the PrP. On the contrary, its role for myelin maintenance 

seems to be physiologically required only in adult and aged animals, and not for the 

early phases of myelination. Myelin in the PNS is affected by the lack of PrP or by 

expression of PrP deletion mutants. On the contrary, myelin homeostasis in the CNS is 

not affected by the lack of PrP
C
 but it is severely compromised by the expression of 

some PrP deletion mutants (Radovanovic et al., 2005; Baumann et al., 2007, 2009; 

Bremer et al., 2010). Therefore, PrP
C
 seems to fulfil different functions between CNS 

and PNS at different time point during the life of the animal. During my Ph.D. studies I 

focused on some of the biological problems concerning PrP
C
 functions at different 

developmental stages, from embryonic to aged animals. 

At first, I undertook a spatio-temporal analysis of PrP
C
 expression and distribution 

during embryonic and early postnatal development in the brain of the mouse, by in situ 

hybridization and immunofluorescence techniques, to identify brain region and 

structures expressing PrP
C
 during the first developmental stages of the animal. 

Then I focused on potential transcriptional effect mediated by PrP
C
 expression or 

absence. I took advantage of microarray platform to analyze the gene expression profile 
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in the hippocampus of newborn and adult wildtype and  Prnp
0/0 

mice in order to unravel 

differentially regulated genetic pathways during development.   

Finally, I investigated both in the CNS and in the PNS the potential influence of PrP
C
 on 

neuregulin cleavage to shed new light on the possible mechanisms linking PrP
C
 to 

myelin homeostasis. 

 



 - 36 - 

Materials and methods 

 

Animals 

All experiments were carried out in accordance with European regulations [European 

Community Council Directive, November 24, 1986 (86/609/EEC)], and were approved 

by the local authority veterinary service. For microarray and realtime RT-PCR 

experiments, inbred FVB/N Prnp
+/+

 and FVB Prnp
0/0

 mice were used in these 

experiments. The FVB Prnp
0/0

 mice were obtained by backcrossing the original Prnp
0/0

 

mice (Büeler et al., 1992) to FVB/N inbred mice for more than 20 generations.  

For immunofluorescence, in situ hybridization, western blotting experiments, C57/B6 

wildtype, mixed B6/129 wildtype, B6/129 Prnp
0/0 

(Büeler et al., 1992), FVB wildtype 

and FVB Prnp
0/0 

(Lledo et al., 1996) mice were used. 

 

Immunohistochemistry 

Embryonic and newborn animals were sacrificed and brains immediately collected and 

washed several times in cold PBS 1x glucose 0.6% w/v. Then brains were fixed by 

complete immersion in freshly prepared PBS 1x paraformaldehyde (PFA) 4% with very 

gentle shaking over night at 4°C. The day after, the samples were washed in PBS 1x and 

cryopreserved by complete immersion in PBS 1x sucrose 30% with gentle shaking 

overnight at 4°C. Then brains were washed several times in PBS 1x to remove excess of 

glucose, included in OCT and stored at -80°C. Two-weeks old and older animals were 

deeply anesthetized, then perfused with PBS 1x and PBS 1x PFA 4%. After perfusion, 

animals were decapitated and brains were collected, fixed and cryopreserved as 

previously described. 
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10 micrometer thick sections were cut with a cryostat and mounted onto Superfrost Plus 

coated slides (Menzel-Gläser). Slides were thawed at room temperature (RT), then 

washed with TBS + Triton X-100 0.3% (TBS+T). Sections then were blocked with 

blocking solution: TBS+T + Normal Goat Serum (NGS) 10% and Bovine Serum 

Albumine (BSA) 5% for 1h at RT Then slides were incubated with primary antibodies 

diluted in blocking solution for 2h at RT with gentle shaking. After washing, 

appropriate secondaries antibodies diluted in blocking solution were added for 1h at RT 

with gentle shaking. Slides then were extensively washed with TBS+T, mounted with 

Vectashield and analyzed under Leica fluorescence microscope. All data are 

representative of at least three independent experiments. 

 

 Antibodies 

Recombinant anti-PrP
C
 humanized (HuM) Fab D18 was purchased from InPro 

Biotechnology (South San Francisco, CA; ABR-0D18) and used to a final concentration 

of 1 μg/mL. HuM-D18 is a recombinant Fab with human constant moiety, first raised by 

immunizing Prnp
0/0

 mice against the protease-resistant core of Syrian hamster (SHa) 

PrP
Sc

 (Peretz et al., 1997). It showed high affinity for the region spanning the residues 

133–152 incorporated in the first alpha-helix of PrP
C
 (Williamson et al., 1998), and 

proved to have a large accessibility to its specific epitope and to bind the largest fraction 

of the cell surface PrP
C
 population, as revealed by cross-competition experiments 

(Leclerc et al., 2003). Moreover, it was able to inhibit prion propagation and clear cell 

cultures of prion infectivity (Peretz et al., 2001). 

Anti-neurofilament 200 antibody was purchased from Sigma (St. Louis, MO; N-4142) 

and used at dilution 1:800. This antibody is developed in rabbit using purified 

neurofilament 200 from bovine spinal cord as the immunogen. It localizes only the 200-

kDa neurofilament polypeptide in immunoblotting from mouse brain homogenate. 
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 In situ hybridization 

Twenty-μm-thick cryosections were cut and collected on slides (Menzel-Gläser 

SuperFrost Plus) and then stored at -80°C. Sections were dried at RT for 2 hours and 

fixed in 4% PFA in PBS 1x at room temperature for 10 min, washed in PBS 1x, treated 

with 18 mg/mL Proteinase K (Roche, Nutley, NJ) at 30°C for 15 min, washed in glycine 

4 mg/mL, PBS 1x, and fixed once more in 4% PFA for 10 min, washed, incubated in 

0.1 M thriethanolamine pH 8.0 with acetic anhydride (0.03%), and washed again. Slides 

were then dried at RT and hybridized overnight at 55°C with 1.5 μg/mL digoxigenin 

(DIG)-labeled probe in hybridization solution: 50% formamide, salts 10x pH 7.2 (NaCl 

3M, Tris HCl 0.1M, NaH2PO4 0.1M, 2% Ficoll 400 (Sigma), 2% polyvinyl pyrrolidone 

(Sigma)), DTT 2M (Sigma) in 10 mM sodium acetate pH 5.2, polyadenilic acid (Sigma) 

10 mg/mL, ribonucleic acid (Sigma) 9.2 mg/mL, transfer type x–SA (Sigma) 7 mg/mL, 

10% dextran sulfate (Sigma). 

After hybridization, slides were washed in 5x SSC – β-mercaptoethanol at RT for 30 

min. Then they were washed in 50% formamide-1x SSC – β-mercaptoethanol at 65°C 

for 30 min, several times in the NTE solution (5M NaCl, 1M Tris-HCl pH 8.0, 0.5 M 

EDTA pH 8.0) at RT, then in 2x SSC and 0.2x SSC. Slides were put in a humidified 

chamber with buffer B1 (1M Tris-HCl pH 7.5, 5 M NaCl), blocked in HI-FBS (heat-

inactivated fetal bovine serum)-B1 (10÷90) for 60 min. Each slide was treated with 

1:1,000 anti-DIG (Roche) in HI-FBS-B1, covered with a parafilm coverslip, and 

incubated overnight at 4°C. 

Chromogenic-stained slides were washed several times with buffer B1 and with buffer 

B2 (0.1 M Tris-HCl pH 7.5, 0.1 M NaCl, 50 mM MgCl2 pH 9.5) and stained with NBT 

3.5 μL (Roche)-BCIP 3.5 μL (Roche) in 4 mL B2. After 10 min the reaction was 

observed under the microscope and stopped when the transcript signal level was 
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detectable. Slides were then washed several times in buffer B1, then in PBS 1x. Slides 

were mounted with one 20 μL drop of PBS 1x 30% glycerol solution and a glass 

coverslip, sealed with enamel, and stored at 4°C. 

 

Microarray analysis 

Hippocampi from postnatal day 4.5 (P4.5) and 3-month-old males were investigated. 

For each developmental stage, hippocampi of 3 or 4 animals were dissected 

immediately after animal sacrifice and promptly processed for RNA extraction and 

purification.  

Total RNA from each pair of hippocampi was extracted using the TRIzol reagent 

(Invitrogen) following the manufacturer's instructions, and purified using the RNeasy 

mini kit (Qiagen). The quality of total RNA was assessed using a bioanalyzer (Agilent 

2100; Agilent Technologies) and RNA was quantified using an ND-1000 Nanodrop 

spectrophotometer. Ten μg of each total RNA sample were labeled according to the 

standard one-cycle amplification and labeling protocol developed by Affymetrix (Santa 

Clara, CA). Labeled cRNA was hybridized on Affymetrix GeneChip Mouse Genome 

430A 2.0 Arrays, containing 22,690 probesets corresponding to approximately 14,000 

well-characterized mouse genes. Hybridized arrays were stained, washed (GeneChip 

Fluidics Station 450) and scanned (GeneChip Scanner 3000 7G). Cell intensity values 

and probe detection calls were computed using the Affymetrix GeneChip Operating 

Software (GCOS). Further data processing was performed in the R computing 

environment (http://www.r-project.org/) version 2.8.0 with BioConductor packages 

(http://www.bioconductor.org/).  

Robust Multi-Array Average (RMA) normalization was applied (Irizarry et al., 2003). 

Data were then filtered based on Affymetrix detection call and probeset intensity, so 

http://www.r-project.org/
http://www.bioconductor.org/


 - 40 - 

that only probesets that had a present call and intensity value >100 in at least one of the 

arrays were retained.  

Statistical analysis was performed with limma (Smyth, 2004). P-values were adjusted 

for multiple testing using Benjamini and Hochberg‘s method to control the false 

discovery rate (Hochberg and Benjamini, 1990). Genes with adjusted P values below 

0.05 were considered differentially expressed. Data were analyzed through the use of 

Ingenuity Pathways Analysis (Ingenuity Systems®, www.ingenuity.com) and DAVID 

Bioinformatics Resources (Dennis et al., 2003; Huang et al., 2009). For Alzheimer‘s 

disease (AD)-related genetic analysis, we took advantage of GeneCards® GeneALaCart 

Beta software (http://www.genecards.org/). Microarray data are deposited in the GEO 

database with Accession Number GSE21718. 

 

Quantitative real-time RT-PCR 

Total RNA was extracted as described above and purified using the RNeasy mini kit 

(Qiagen). Single strand cDNA was obtained from 1 μg of purified RNA using the 

iSCRIPT™ cDNA Synthesis Kit (Bio-Rad) according to manufacturer's instructions. 

Quantitative RT-PCR was performed using SYBR-Green PCR Master Mix (Applied 

Biosystem) and an iCycler IQ Real Time PCR System (Bio-Rad). Expression of the 

gene of interest was normalized to house-keeping gene β-actin, and the initial amount of 

the template of each sample was determined as relative expression versus β-actin 

sample chosen as reference. The relative expression of each sample was calculated by 

the formula 2 exp
-ΔΔCt 

(User Bulletin 2 of the ABI Prism 7700 Sequence Detection 

System). β-actin expression is not modified under the present experimental conditions 

(data not shown). 

 

http://www.ingenuity.com/
http://www.genecards.org/
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Western Blotting 

Mouse hippocampi and sciatic nerves were dissected and immediately frozen in ice-cold 

lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 0.5% CHAPS, 10% 

glycerol) containing proteases inhibitors (Inhibitor complete mini, Roche Diagnostics 

Corp., Mannheim, Germany) and stored at -80°C or immediately homogenized. 

Hippocampal samples were further cleared by centrifugation at +4°C, 2000 g, 10 min. 

For sciatic nerves of P15 and P30 wildtype and Prnp
0/0 

mice, nerves from 2 animals 

were pooled together in each sample, while for older mice each sample included sciatic 

nerves from a single animal. Total protein content was determined by the bicinchoninic 

acid (BCA) assay (Pierce), and the same amount of proteins for each sample (50 μg) 

was separated either on gradient SDS-PAGE gels (NuPAGE® Novex 4-12%, 

Invitrogen) or on 8% homemade SDS-PAGE gels, and transferred to PVDF membrane.  

 

Antibodies 

We used the following primary antibodies: for total Tau, Tau-5 antibody (Pharmingen, 

BD Biosciences, California, USA); for phospho-Tau, AD2 antibody (Bio-Rad, 

California, USA); NRG1 C-Terminal epitope, C-20 (sc-348, Santa Cruz 

Biotechnology); NRG1 N-terminal epitope, H-210 (sc-28916, Santa Cruz 

Biotechnology); NRG3, H-70 (sc-67002, Santa Cruz Biotechnology); Anti-PrP antibody 

HRP-conjugated Fab D13 (Williamson et al., 1998); anti total non-phosphorylated Fyn, 

phosphorylated Fyn and phosphorylated ERK kinases [Src Family Antibody #2109, 

phospho-Src Family (Tyr416) antibody #2101, and phospho-p44/42 Map Kinase 

(Thr202/Tyr204) Ab #9101, Cell Signaling Technology]. The appropriate horseradish 

peroxidase-coupled secondary antibodies (Pierce, Rockford, USA) were used.  
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Cell Culture 

N2a and N2a-CL3 cells, stably transfected with and overexpressing full-length mouse 

PrP
C
, were cultured as previously described (Ghaemmaghami et al., 2010). Briefly, all 

cell lines were maintained in Modified Eagle's Medium (MEM) supplemented with 10% 

v/v fetal bovine serum, 1% penicillin-streptomycin, and 1% GlutaMAX (Invitrogen) at 

37°C in a humidified atmosphere with 5% CO2.  

 

Preparation of cytosolic extracts and conditioned medium 

proteins 

Cells were grown almost to confluency in 10-cm diameter tissue culture plates 

(Corning). Cells were then washed with PBS (3X), and maintained in serum-depleted 

MEM for 40h. Conditioned medium was then removed, spun at 10000g, 10 min, 4ºC to 

remove cell debris, and then precipitated with 5 volumes of cold acetone. Samples were 

incubated at least 2 hours at -20ºC, and then spun at 5000g, 20 min, 4ºC. Protein pellets 

were then air dried and resuspended in Laemmli buffer.  

The cell layer remaining in the plate after the incubation period in serum-free MEM was 

washed with PBS (3X) and lysed with 500 μL of cold lysis buffer (10 mm Tris-HCl, pH 

8.0, 150 mm NaCl, 0.5% sodium deoxycholate, 0.5% Nonidet P-40). Cell lysates were 

then centrifuged at 10000g, 5 min, 4ºC to remove cell debris. The supernatant was 

collected and the total protein concentration was measured by using the bicinchoninic 

acid assay (Pierce). The conditioned medium and cell lysates were normalized for total 

protein based on the cell lysate protein concentrations, boiled for 5 min, electrophoresed 

on gradient SDS-PAGE gels (NuPAGE® Novex 4-12%, Invitrogen) and transferred to 

PVDF membrane. 



 - 43 - 

Results 

 

Prnp gene expression detected throughout the developmental 

mouse brain 

To investigate Prnp gene expression, PrP-encoding mRNA expression was analyzed in 

several regions of the mouse brain during pre- and postnatal development. In situ 

hybridizations were performed on 20-μm-thick coronal cryosections of mouse brains. 

Prnp gene expression in the brain was analyzed in 14.5- and 16.5-day-old embryos 

(E14.5, E16.5), in 1- (P1) and 7- (P7) day-old mice, and in adult mice. As negative 

control, sections from  Prnp
0/0

 mice were hybridized with the PrP riboprobes (data not 

shown). 

Between E14.5 and E16.5 noticeable labeling was detected in brain regions known to 

have a highly active cellular proliferation, such as the ventricular zone (VZ) of the 

neocortex of the lateral ventricles (Figure 12 A, B) and the neuroepithelia of the third 

ventricle (IIIv) (Figure 12 I–L). In addition, Prnp signal was detected underneath the 

marginal zone (MZ) in the superficial cortical plate (CP), where newborn neurons were. 

At P1 the signal spanned the entire CP (Figure 12 C, D), whereas at P7 it was mainly 

restricted to the superficial CP, where the youngest neurons were (Figure 12 E, F). At 

P7 it was possible to observe a decrease of the signal in the subventricular/ependymal 

zone (SVZ/E) and in the subplate zone (SP), while it increased in the outer layers of the 

cortex (layers 6-2) (Figure 12 E, F). 

At P7 it was possible to observe strong Prnp gene expression in other brain areas, such 

as the CA1 and the DG fields of the hippocampus (Figure 13). Moreover, during 

postnatal development and in the adult the expression pattern of PrP mRNA was 

constantly detectable in the olfactory bulbs.  
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Figure 12. Prnp shows a patterned developmental expression in mouse brain. A, B: In situ 

hybridization of E14.5 brain coronal section. A: No positive cell was detected in the neocortex area 

using negative sense probe. B: Positive antisense probe shows that Prnp was detected in the 

ventricular zone (VZ). In addition, Prnp signal seems to be underneath the marginal zone (MZ) and in 

the superficial cortical plate (CP). Less intense signal was detected in the subventricular zone (SVZ) 

and in the subplate zone (SP). C, D: In situ hybridization of P1 brain coronal section. The antisense 

probe (D) shows signal for Prnp spanning the entire CP (layer 6-2). Negative control sense probe 

shows specificity of the signal in (C). E, F: Expression pattern of Prnp gene in the cortex layers of P7 

postnatal stage. The positive signal of Prnp (F) is mainly concentrated to the superficial CP, whereas 

it progressively decreases in the subventricular/ependymal zone (SVZ/E) and in the subplate zone 

(SP). No signal was detected with the negative probe (E). G, H: Immunohistochemical staining of 

E14.5 mouse brain shows no expression of the mature PrP
C
 in the neocortex. PrP

C
 (in H) and nuclei 

(blue, in G) were stained, and no PrP
C
 immunoreactivity was detected. I, J: The expression of Prnp 

was detected in the neuroepithelia of the third ventricle (IIIv) at E14.5 using antisense probe (J), 

whereas no signal was detected using negative sense probe (I). Scale bars = 100 μm in G,H; 25 μm in 

I,J. 
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Hybridization signals were found in the mitral cells layer (Mi), along the wall of the 

olfactory bulb ventricle, and in the glomerular layer (GL) at P7 (Figure 14 A, B); this 

expression pattern remained constant until adult life (data not shown). These results are 

in agreement with previous descriptions (Le Pichon and Firestein, 2008). As expected, a 

signal was also detected in the frontal cortex. 

 

By E16.5, intense expression was also found in nonneuronal tissue, such as the choroid 

plexus (ChP) of the ventricles, both at the mRNA and protein level (Figure 14  C–F). 

Specifically, PrP
C
 immunoreactivity was detected in the apical surface of the epithelial 

cells, on the side facing the ventricle (Figure 14 F). 

 

 

 

 

 

Figure 13. Expression of Prnp in the postnatal hippocampus. A–D: In situ hybridization of P7 

hippocampal coronal section. A, B: Prnp signal was detected in the CA1 and in the DG cells in the 

hippocampus (B); no signal was detected with the control probe (A). C, D: Higher magnification of 

the CA1 pyramidal cells, indicating a clear perinuclear staining of Prnp expression (D). No signal was 

detected when using the negative sense probe (C). Scale bars = 50 μm. 
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Dynamics of PrP
C
  expression in the developmental mouse 

brain 

The overall distribution of PrP
C
 in the developmental mouse brain was also examined 

by immunohistochemistry technique. The dynamics of PrP
C
 expression during prenatal 

and postnatal development were examined in coronal and longitudinal brain sections of 

E14.5, E18.5, P1, P4, P7, P9, and adult mice. The hippocampus was the region with the 

earliest and highest PrP
C
 immunoreactivity. Starting from E18.5 to adult life the 

hippocampus was labeled by Fab D18 in all parenchyma, with a net increase in PrP
C
 

 

Figure 14. Prnp is expressed in the olfactory bulb and in the choroid plexus during development 

and in adult life. A: At P7 the expression of Prnp is widespread in the olfactory bulb, with an 

increased expression in mitral cells layer (Mi) and in the glomerular layer (GL). B: Higher 

magnification of the different layers. C–F: PrP is expressed also by the choroid plexus. C–E: 

Epithelial cells of the choroid plexus show an intense Prnp signal starting at E16.5 (D) until adult life 

(E). No signal is detected using the control probe (C). F: At P7 PrP
C
 is detected in the epithelial cells 

of the choroid plexus, specifically at the apical surface of the cells toward the ventricle. 
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immunoreactivity in the stratum lacunosum moleculare (str l m) (Figure 15 A, B). This 

layer of the hippocampus contains a high number of synapses from hippocampal 

internal interneurons and from external inputs, such as the enthorinal cortex (Deng et 

al., 2006a). Strong PrP
C
 immunoreactivity was also observed in the fimbria (Fi) of the 

hippocampus (Fig. 15 C–L). In this structure, PrP
C
-immunoreactivity was first observed 

at E18.5 and progressively increased during development (Figure 15 E–H). Next to the 

fimbria of the hippocampus, the stria terminalis (St) also showed a high level of PrP
C
 

immunoreactivity (Figure 15 C–L), and paralleled the developmental expression of PrP
C
 

of the fimbria (Figure 15 E–H). The stria terminalis is the main nervous output of the 

amygdala up to thalamic nuclei (Lee and Davis, 1997). The immunostaining clearly 

highlighted that PrP
C
 expression in these white matter fiber bundles is very high and 

well defined (Figure 15 I–L). The thalamus was another region showing basal PrP
C
 

expression during neurodevelopment (Figure 16). Within the thalamus the fornix, the 

anatomical continuation of the hippocampal fimbria, showed an intense and definite 

PrP
C
-immunoreactivity (Figure 16 A). The specificity of PrP

C
 expression for particular 

brain white matter tracts could be appreciated by the complete lack of PrP
C
 staining of 

the mammillothalamic tract (Figure 16 A–C). Moreover, the fasciculus retroflexus (Fr) 

specifically showed a high staining for the mature protein during development (Figure 

16 D–H). As for the fimbria of the hippocampus and the stria terminalis, PrP
C
 

immunoreactivity was first observed at E18.5 and progressively increased during 

development both for the fornix (Figure 16 I–M) and for the fasciculus retroflexus 

(Figure 16 N–P). 

However, we did not observe any dramatic alterations in the size or in the morphology 

of any of these structures in Prnp
0/0

 animals. 
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Figure 15. PrP
C
 expression in the hippocampus during development. A, B: At P7 PrP

C
 (in red; A) 

is detected throughout the hippocampus, and in particular at high levels in the stratum lacunosum-

molecolare (str l m), a synapse-dense region. No signal for PrP
C
 is yet detected in the cortex. A 

merged image is shown in B (PrP
C
, in red; neurofilament, in green; nuclei signals in blue). C–H: PrP

C
 

is specifically and highly expressed by the fimbria of the hippocampus and the stria terminalis at P7 

(C, D). The fimbria of the hippocampus (Fi) and the stria terminalis (St) express high level of PrP
C
 

also at embryonic stages (E18.5), and progressively increase the level of expression during postnatal 

development: P1 (F), P4 (G), and P7 (H). I, J: Higher magnification of longitudinal (I) and coronal (J) 

section of the fimbria of the hippocampus and the stria terminalis, highlighting the net boundaries of 

PrP
C
-expression between other brain regions and these structures. Scale bars = 50 μm. 
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Figure 16. Thalamic expression of PrP
C
 during development. Immunohistochemical staining for 

PrP
C
 (in red; A, C, D–G, I–N) and neurofilament (in green; B, C). A merged image is shown in (C). 

A–C: At P7 PrP
C
 is detected in the thalamus, with abundant and specific expression in fornix (A). The 

specificity of PrP
C
 expression by this structure is highlighted by the counterstaining of neurofilaments, 

which labels both the mammillothalamic tract and the fornix (B). Only the fornix shows colocalization 

of PrP
C
 and neurofilament signals (in yellow; C). D–H: P7: PrP

C
 expression is detected also 

specifically in the fasciculus retroflexus (or habenulointerpeduncular tract). The fasciculus retroflexus 

expresses PrP
C
 all along its length, with clear boundaries, highlighted by coronal (D–F) or 

longitudinal (G) PrP
C
 staining. Counterstaining of nuclei (in blue; H) underlines the low number of 

nuclei in this white matter structure. I–N: Developmental PrP
C
 expression by the fornix and the 

fasciculus retroflexus (Fr). Both these structures show a progressively increasing level of expression 

of the protein during development, starting from E18.5 (fornix and Fr, respectively; I, L), to P1 

(respectively, J, M), until P7 (respectively, K, N). Scale bars = 50 μm. 
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Microarray analysis of gene expression during development 

in Prnp
+/+

 and Prnp
0/0

 mice 

The Prnp
0/0

 mice used in our study revealed no overt phenotype (Büeler et al., 1992; 

Manson et al., 1994), thus PrP
C
 proved not to be essential for the normal development 

and survival of the animal. However, phenomena of developmental plasticity and 

genetic compensation may mask the phenotype of PrP
C
 deficient mice (Steele et al., 

2007). In order to analyze the potential influence of PrP
C
 on the CNS gene expression 

profile during neuronal postnatal development, a microarray analysis was performed 

with cDNA transcribed from total RNA obtained from hippocampi of Prnp
+/+

 and 

Prnp
0/0

 mice. I focused this analysis on the hippocampus, in the perspective that the 

deficiency of PrP
C
, such as in Prnp

0/0
 animals, may be more detrimental in brain regions 

requiring high levels of expression of the protein during development (i.e., the 

hippocampus), rather than in regions with a lower physiological expression. 

To this purpose, the analysis was performed at two different developmental stages: in 

newborn animals (day 4 of postnatal development) and in adult mice (3-month-old 

mice). Prnp
+/+

 wildtype mice used were inbred FVB/N mice, whereas Prnp
0/0

 mice used 

were created by backcrossing the original Zurich I mice (Büeler et al., 1992), which 

were created in a mixed C57Bl6/129 genetic background, to recipient inbred FVB/N 

mice, thus raising the concern of the transcriptome comparison between mixed genetic 

backgrounds. Despite the several generations of backcrossing process, it cannot be ruled 

out that possible genetic differences highlighted by microarray analysis between Prnp
+/+

 

and Prnp
0/0

 mice may be due to the presence of residual C57Bl6/129 alleles, rather than 

to a direct influence of PrP
C
 presence or absence on the mouse transcriptome. Indeed, 

although the backcrossing breeding system leads to extensive replacement of unwanted 

donor strain alleles (C57Bl6/129 in this case) by desired recipient strain genes (FVB/N 
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in this case), the final congenic strain may still harbour residual genetic contamination 

of donor strain origin (Krinke, 2000). This genetic contamination may be revealed by 

very senstitve techniques, such as microarray analysis, and potentially be misinterpreted 

as differences owed to the differentially expressed PrP
C
. In order to minimize, at our 

best, this potential genetic bias, the analysis was performed in two different steps:  

 First, by comparing separately the transcriptome profiles of Prnp
+/+

 adult and 

newborn animals, and of Prnp
0/0

 adult and newborn animals. This allowed the 

comparison of the transcriptomes of animals whose genome variability (Prnp
+/+

 adult 

compared to Prnp
+/+

 newborn, and Prnp
0/0

 adult compared to Prnp
0/0

 newborn) may be 

considered as much fixed as possible. However, other potentially interfering phenomena 

of genetic drift or variability (i.e., mutations, or residual heterozigosity) cannot be ruled 

out. This comparison allowed to trace a dynamic frame of gene regulation, from young 

to adult animals, independently both for Prnp
+/+

 and Prnp
0/0

 mice. These patterns of 

expression could be subdivided into two main categories: genes that were up-regulated 

(―UP‖) during neuronal development (from newborn to adult animals), and genes that 

were down-regulated (―DOWN‖) during the same developmental stage. 

 Then the comparison was made between the two differential dynamic frames of 

Prnp
+/+

 and Prnp
0/0

 mice. Comparing these two differential dynamic patterns of 

expression allowed to identify genes that were commonly co-regulated (up- or down-

regulated) both in Prnp
+/+

 and in Prnp
0/0

 mice during development, and genes that 

showed a differential and unique developmental regulation either in Prnp
+/+

 mice or in 

Prnp
0/0

 mice (Figure 17).   
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To this aim, the following procedure was applied. 

Given the large extent of differential expression when comparing the two 

developmental stages in both genetic backgrounds, and based on the scarce 

phenotypical variation between Prnp
+/+

 and Prnp
0/0

 mice, this analysis aimed at 

establishing proper conditions able to identify genes and pathways whose dynamic 

behavior (induction or repression during hippocampal development) is altered following 

PrP
C
 deficiency. Therefore, a fold-change threshold was set, considering only 

differentially expressed genes whose transcript levels differed at least 1.5 times between 

newborn and adult mice, whether they were up- or down-regulated. Then, the following 

four gene lists were drawn:  

1. Genes uniquely up-regulated in Prnp
+/+

 mice during development (―UP IN WT‖) 

2. Genes uniquely up-regulated in Prnp
0/0

 mice during development (―UP IN KO‖) 

3. Genes uniquely down-regulated in Prnp
+/+

 mice during development (―DOWN IN 

WT‖) 

 

Figure 17. Venn diagrams with gene lists of wildtype (WT) and Prnp
0/0

 mice. Venn diagram A  

(up-regulated genes in WT adults vs WT newborn [I] are compared with up-regulated genes in KO 

adults vs KO newborn [II]), and Venn diagram B (down-regulated genes in WT adults vs WT 

newborn [III] are compared with down-regulated genes in KO adults vs KO newborn [IV]) show the 

effect of PrP
C
 expression or deficiency during hippocampal development. The numbers in the space of 

overlapping circles represent the number of transcripts that show a dynamic developmental expression 

profile common both to WT and to Prnp
0/0

 mice. 
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4. Genes uniquely down-regulated in Prnp
0/0

 mice during development (―DOWN IN 

KO‖) 

Finally, the four gene lists above were filtered by excluding genes whose level of 

induction or repression during hippocampal development was too similar between 

Prnp
+/+

 and Prnp
0/0

 mice, i.e. the fold changes above was required to differ by at least 

10%. 

 

The comparison analysis of the different samples revealed that 344 genes were 

significantly and uniquely up-regulated in Prnp
+/+

 mice, 307 genes were uniquely up-

regulated in Prnp
0/0

 mice, 300 genes were uniquely down-regulated in Prnp
+/+

 mice, and 

385 genes were uniquely down-regulated in Prnp
0/0

 mice (Figure 17).  

 

Biological pathways regulated by PrP during hippocampal 

development 

To assess the functional role of the above genes, we applied Ingenuity
TM

 Pathways 

Analysis (IPA) (Ingenuity Systems®, www.ingenuity.com), and DAVID 

Bioinformatics Resources. For AD-related genetic analysis, we took advantage of 

GeneCards® GeneALaCart Beta software (http://www.genecards.org/). Detailed below 

are the results of such functional analyses. The tables of reference in the following 

sections are combined and listed in the ―Appendix‖ section of this thesis. 

 

1) Genes that are up-regulated during hippocampal development in Prnp
+/+

 mice. 

Among the genes that are uniquely up-regulated in Prnp
+/+

 mice (UP IN WT gene list), 

the vast majority are related to cell signaling events via second messengers. In 

particular, the most represented pathways are cAMP mediated signaling, retinoic acid 

http://www.ingenuity.com/
http://www.genecards.org/
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receptor (RAR) activation, NRF2-mediated oxidative stress response and calcium 

signaling (Table 3). These findings show that among the common developmentally-

regulated genes, PrP
C
 can specifically influence the expression of genes involved in 

signal transduction. PrP
C
 has indeed shown to be involved in cell signaling events 

(Mouillet-Richard et al., 2000) through the activation of different enzymes and 

amplification of the signal. 

Moreover, genes belonging to the Ras/Rab family and protein kinases are up-regulated 

in Prnp
+/+

 mice (Table 4). The former are small GTPases that mediate signal 

transduction via GTP-binding, whereas the latter are kinases involved in signal 

transduction through phosphorylation of different substrates.  

 

In adult life, PrP
C
 is shown to have a mainly synaptic localization (Fournier et al., 1995; 

Herms et al., 1999; Moya et al., 2000a), and to be involved in synaptic transmission 

(Collinge et al., 1994; Carleton et al., 2001; Curtis et al., 2003). Thus, I also looked at 

the gene expression of transcripts belonging to the synaptic compartment, and was able 

to identify several genes involved in synaptic transmission that were up-regulated in 

Prnp
+/+

 mice, among which ionic channels and ionic transporters (Table 5). These genes 

affect the transmembrane potential of the neuronal membrane, and also affect some 

synaptic properties, such as long-term potentiation. The positive regulation of these 

genes mediated by PrP
C
 during development is suggestive of a potential role for PrP

C
 in 

mediating the correct structuring and functioning of neuronal connections during CNS 

development. 

 

Since PrP
C
 undergoes conformational changes that cause prion disease, I was also 

interested in identifying the biological correlation between PrP
C
 expression and the 

genes, so-called chaperones, involved in protein folding and unfolding. The performed 
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analyses revealed that a cluster of genes involved in chaperone-mediated protein folding 

is up-regulated in Prnp
+/+

 mice (Table 6). This finding is particularly intriguing as it 

may establish a direct correlation between PrP
C
 expression and chaperone genes 

expression. 

Another important factor in the biology of prion disease is the clearance of prion 

aggregates from the cellular membrane; in general the ubiquitin-proteasomal system 

(UPS) is a key point for this function in all major protein-aggregation 

neurodegenerative diseases (Moore et al., 2003; Lim and Tan, 2007; Upadhya and 

Hegde, 2007; Whatley et al., 2008). The microarray analysis revealed an up-regulation 

of genes involved in the ubiquitin-proteasomal system in Prnp
+/+

 mice (Table 7), and a 

concomitant down-regulation of genes involved in the ubiquitin-proteasomal system in 

Prnp
0/0

 mice (see Table 19). This finding points at PrP
C
 as a positive regulator of the 

ubiquitin-proteasomal system, and may shed additional light on the central role of PrP
C
 

in the biology of prion disease and other neurodegenerative disorders. 

 

2) Genes that are up-regulated during hippocampal development in Prnp
0/0

 mice.  

In general, among the genes that are uniquely up-regulated in Prnp
0/0

 mice (UP IN KO 

gene list), I could find an up-regulation of cytosolic signaling pathway genes (Table 8) 

and of genes related to cell death signaling, in particular neuronal cell death (Table 9). 

This finding may explain the increased susceptibility of Prnp
0/0

 mice to neuronal 

damage, such as ischemic brain injury (McLennan et al., 2004), serum deprivation (Kim 

et al., 2004), seizures (Walz et al., 1999) and oxidative stress (Brown et al., 1997b; 

White et al., 1999). Up-regulation of genes involved in neuronal cell death can make 

neurons more susceptible to toxic stimuli from the external environment. 
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Genes that are uniquely regulated in Prnp
0/0

 mice during development are the most 

intriguing. In fact, an up-regulation of genes involved in neuregulin signaling is found 

in these mice (Table 10). Neuregulins are members of the epidermal growth factor 

family, and are ligands for the ErbB receptors (Falls, 2003; Birchmeier, 2009). Binding 

of neuregulins to ErbB receptors stimulate the dimerization of the receptors, their 

autophosphorylation and in turn the activation of intracellular signaling cascades 

involved in development, maintenance and repair of the nervous system (Holbro and 

Hynes, 2004). Indeed, both PrP
C
 and neuregulins can trigger intracellular signaling 

cascades mediated by kinases such as Src kinases. In Prnp
0/0

 mice the up-regulation of 

genes belonging to signaling pathways involved in neuronal development and function 

may suggest a potential role for PrP
C
 in controlling the expression of neurodevelopment 

signaling pathways, such as the neuregulin one. 

 

The Prnp
0/0

 mice have been reported to carry defects in synaptic plasticity (Colling et 

al., 1996; Herms et al., 2001; Carleton et al., 2001; Mallucci et al., 2002), thus this 

analysis focused also on genes related to synaptic activity, and it was possible to 

identify genes affecting this process (Table 11); in particular, a voltage-gated chloride 

channel-related gene group was found to be up-regulated in Prnp
0/0

 mice (Table 12) 

compared to their wildtype counterpart. Thus PrP
C
 can act not only as direct modulator 

of synaptic events, but also in an indirect way by modulating the expression of other 

synaptic and membrane components. 

 

Since PrP
C
 interacts with adhesion molecules and can mediate cell-cell adhesion, I 

searched for up-regulated genes involved in cell-to-cell interaction, and indeed detected 

genes involved in cell adhesion (Table 13). Moreover, up-regulated genes involved in 

neurite outgrowth, axon guidance and lamellipodia formation were found (Table 13). 
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In Prnp
0/0

 mice, developmentally up-regulated genes related to calcium homeostasis 

were also detected (Table 14).  

 

3) Genes that are down-regulated during hippocampal development in Prnp
+/+

 

mice. This category (DOWN IN WT gene list) represents genes that are uniquely down-

regulated during neuronal development in Prnp
+/+

 mice, but do not display the same 

dynamic changes in Prnp
0/0

 mice. Bioinformatics analysis detected weak functional 

clusterization among the different members belonging to this gene list. These findings 

hint at PrP
C
 as a positive gene expression regulator, rather than a negative regulator 

during neuronal development. Indeed, genes belonging to the metabolism of 

carbohydrate and of small molecules (such as nucleotides) were identified as a 

functional cluster by bioinformatics analysis (Table 15). Interestingly, genes belonging 

to the Notch signaling pathway (Notch4, Dll3, Mnfg and Rbpj) were down-regulated 

during hippocampal development in wildtype mice. Notch signaling is an evolutionarily 

conserved mechanism for cell-cell interaction, is involved in cell fate choices (Talora et 

al., 2008), and recent findings report a strict correlation between prion-mediated 

neurodegeneration and Notch1 increased expression and signaling (Ishikura et al., 2005; 

Spilman et al., 2008). Thus, this finding suggests that a physiological expression of PrP
C
 

seems to reduce Notch-related signaling pathway genes expression, whereas in prion 

diseases, or in Prnp
0/0

 mice, where a lack of PrP
C
 function can occur, the genetic 

expression of these genes is stimulated.  

 

4) Genes that are down-regulated during hippocampal development in Prnp
0/0

 

mice. This genes group (DOWN IN KO gene list) contains transcripts down-regulated 

exclusively in Prnp
0/0

 mice during neuronal development, whereas not in Prnp
+/+

 mice. 

PrP
C
 deficiency negatively influences the regulation of genes involved in embryonic 
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development and differentiation, and nervous system development and function (Table 

16). PrP
C
 possesses an embryonic and postnatal pattern of expression which is 

developmentally regulated  (Mobley et al., 1988; Lazarini et al., 1991; Manson et al., 

1992; Salès et al., 2002; Tremblay et al., 2007), and potentially acts as a neurotrophic 

factor during CNS development. The lack of PrP
C
, as in Prnp

0/0
 mice, may in turn be a 

regulatory step for the expression of other genes involved in CNS development. 

Considering that PrP
C
 is a protein anchored to the cell membrane and is known to 

interact with different cell adhesion molecules (Rieger et al., 1997; Graner et al., 2000; 

Gauczynski et al., 2001; Schmitt-Ulms et al., 2001), a possible involvement of PrP
C
 

expression on the regulation of expression of other cell membrane adhesion proteins is 

of interest. Indeed, a correlation between the lack of PrP
C
 and the down-regulation of 

cadherins could be found (Table 17). Cadherins are adhesion molecules playing an 

important role in calcium-mediated cell adhesion (Nelson, 2008). Interestingly, a recent 

work (Málaga-Trillo et al., 2009) shows how PrP
C
 can regulate embryonic cell adhesion 

during gastrulation, as well as E-cadherin function by modulating its processing or its 

transport to the cell membrane, possibly via the activation of fyn-mediated signaling. 

Thus, it would be tempting to affirm that PrP
C
 acts as an adhesion and signaling protein, 

and that these properties also influence the function and the expression of other 

adhesion molecules. 

PrP
C
 is able to bind divalent ions such as copper and zinc (Brown et al., 1997a; Walter 

et al., 2007). Therefore a possible correlation between PrP
C
 expression and the 

regulation of other genes involved in ion homeostasis was considered in this analysis. A 

large cluster (Table 18) of functionally-related genes involved in transition metal ion 

binding was found. This finding shows how the expression of PrP
C
 may in turn 

influence the expression of genes involved in metal ion homeostasis. 
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Another functional cluster of genes down-regulated in Prnp
0/0

 during development is 

related to the ubiquitin system (Table 19). Ubiquitination occurs when a moiety of 

ubiquitin is attached to a protein, most prominently for proteasomal degradation. 

Increasing evidence suggests a role for the ubiquitin-proteasome system (UPS) in prion 

disease. Both WT PrP
C
 and disease-associated PrP isoforms accumulate in cells after 

proteasome inhibition leading to increased cell death, and abnormal beta-sheet-rich PrP 

isoforms have been shown to inhibit the catalytic activity of the proteasome (reviewed 

in (Deriziotis and Tabrizi, 2008)). The finding that Prnp
0/0

 mice show a 

developmentally deregulated UPS pathway points at PrP
C
 as a potential regulator of this 

system. Indeed, the loss of PrP
C
 function when converted to PrP

Sc
, or its lack in Prnp

0/0
 

mice, can alter the expression of genes involved in the UPS, and thus alter the correct 

physiological expression and function of this system. 

 

Comparative analysis of adult Prnp
+/+

 and adult Prnp
0/0

 mice. A recent study 

(Rangel et al., 2007) reports a microarray analysis on the comparison of hippocampal 

RNA among wildtype, Prnp
0/0

 and PrP
C
-overexpressing adult mice. Then, an analysis to 

identify genes that are differentially expressed in adult Prnp
0/0

 mice, by comparing them 

with adult Prnp
+/+

 specimens, was carried out. 83 significantly up-regulated genes and 

62 significantly down-regulated genes were identified (Table 20).  

In the up-regulated genes group an enrichment in genes related to cell-cell adhesion 

(like lymphocyte antigen 6 complex locus A, junction adhesion molecule 3, lymphocyte 

antigen 6 complex, locus C2; lymphocyte antigen 6 complex locus C1, CD14 antigen); 

in the down-regulated genes group we identified an enrichment in genes related to metal 

ion binding (like tripartite motif-containing 39; RNA binding motif protein 26; zinc 

finger CCCH type containing 11A; mitogen-activated protein kinase kinase kinase 7 

interacting protein 2) and to protein kinase activity (like Rho-associated coiled-coil 
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containing protein kinase 1; cell division cycle 7 S. cerevisiae; conserved helix-loop-

helix ubiquitous kinase; protein kinase, cGMP-dependent, type I 1) could be 

highlighted. These final results differed from those reported in the cited paper. It cannot 

be ruled out that this may be due to dissimilar experimental procedures, to variations in 

the age of the animals, or to the different genetic background of the animals used in the 

two studies (FVB/N in this study, C57Bl/6 in their study). 

 

AD-related genes regulated by PrP
C
 during hippocampal development and effects 

on Tau phosphorylation. Recent findings point at an involvement of the cellular PrP in 

the etiology of AD (Checler and Vincent, 2002; Laurén et al., 2009; Parkin et al., 2007; 

Spilman et al., 2008; Vincent et al., 2009). Prnp
0/0

 adult gene expression profile was 

compared to Prnp
0/0

 young animals profile, and significantly deregulated genes were 

subjected to GeneCards® GeneALaCart Beta software (http://www.genecards.org/), in 

order to identify potential regulation of AD-related gene mediated by the absence of 

PrP. 18 up-regulated genes and 12 down-regulated AD-related genes were found, 

among which Ch25h, S100a9, Kcnip3, Grin2b, Cdk5r1, Cdk5, Psen1 and Sod2 to be up-

regulated, whereas genes such as Gsk3β to be down-regulated in Prnp
0/0

 mice (Table 

21). Bioinformatics analysis revealed how the amyloid processing pathway comprises 

part of the most-known AD-related genes, and in particular genes affecting tau 

phosphorylation (Figure 18).  

 

http://www.genecards.org/
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Hyperphosphorylated tau protein is the main component of the paired helical filaments 

(PHF), the structural constituents of neurofibrillary tangles in AD (Bretteville and 

Planel, 2008). An explanation of the biological mechanisms through which tau becomes 

abnormally phosphorylated in AD is still missing (Hanger et al., 2009), and the 

relationship between amyloid deposition and neurofibrillary tangle formation is a 

central issue in the pathogenesis of AD. Due to the differences in the expression levels 

of genes affecting tau phosphorylation between wildtype and Prnp
0/0

 mice (Figure 18), 

we next investigated whether the levels of total-tau and phosphorylated-tau were 

affected in our animal models at the different experimental ages (Figure 19). Total tau 

protein is known to decrease from young to adult animals (Charrière-Bertrand and 

Nunez, 1992). Accordingly, we could highlight a similar decrease in the total expression 

of tau proteins, from newborn to adult animals, both in wildtype and in Prnp
0/0

 

hippocampus (Figure 19 A). However, while the levels of phosphorylated tau were 

similar in adult wildtype and in adult Prnp
0/0

 mice, the levels of phosphorylated tau 

 

Figure 18. Tau phosphorylation genes affected by PrP
C
 expression during hippocampal 

development. Genes affecting APP processing and Tau phosphorylation (in pink and grey) are found 

to be differentially regulated by PrP
C
 expression during hippocampal development. Adapted from 

Ingenuity Pathways Analysis (Ingenuity Systems®, www.ingenuity.com). 
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were significantly higher in newborn Prnp
0/0

 mice if compared to newborn wildtype 

animals (Figure 19 B, 19 C).  

 

 

Besides being highly phosphorylated in AD brain, tau is also highly phosphorylated in 

normal developing brain, in the window of age of neurite outgrowth (Kenessey and 

Yen, 1993; Yu et al., 2009), probably for its function in keeping a high dynamics of 

microtubule assembly-disassembly during brain development. These results indicate 

that PrP
C
 negatively influences the phosphorylation levels of tau during the first 

 

Figure 19. Tau phosphorylation levels in young and adult, wildtype and Prnp
0/0

 mice. 

The levels of total Tau protein and its phosphorylated form were analyzed in wildtype and Prnp
0/0

 

mice. (A) Total Tau protein in young (P4.5) and adult (3 months), wildtype (Wt) and Prnp
0/0

 (PrP 

KO) mice (n=3 for each genotype and age). The quantification of the western blot revealed the same 

trend of decreasing levels of total tau protein from young to adult animals, both for wildtype and 

Prnp
0/0

 mice. (B) Phosphorylated form of Tau protein in young and adult, wildtype and Prnp
0/0

 mice 

(n=3 for each genotype and age). The quantification revealed a decreasing level of phospho-tau 

protein from young to adult animals, yet in PrP KO young animals (P4.5) a higher level of the 

phosphorylated form of the protein was found, compared to their wildtype littermates. (C) The levels 

of phosphorylated tau were significantly (p = 0.028) higher in newborn Prnp
0/0

 mice if compared to 

newborn wildtype animals. The levels of phosphorylated-tau protein were normalized on the levels of 

total-tau protein. Values presented: mean ± SD of three animals. 
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postnatal brain development, while it has no effect on tau phosphorylation in adult 

brain, when phosphorylation of tau is physiologically at a steady-state. This finding may 

in part shed new light on the developmental functions linked to PrP
C
. Moreover, an 

involvement of PrP
C
 on the regulation of tau phosphorylation could imply a novel 

correlation between AD and prion biology. 

 

Confirmation of microarray data 

For validation of the results obtained by microarray analysis, real-time RT-PCR was 

carried out on the original RNA samples. Changes in gene expression levels of the 

selected transcripts were normalized to the gene expression of beta-Actin.  

Among the selected transcripts, however, we could confirm by real-time RT-PCR only 

some of them (Figure 20). Most of the genes whose expression is negatively influenced 

by the deficiency of PrP
C
 are involved in embryonic development and differentiation, 

and nervous system development and function (Table 16). One example is Tbx18, a 

gene affecting limb development (Kraus et al., 2001). Downregulation during postnatal 

development was observed for Prnp
0/0

 mice, while for wildtype mice our microarray 

analysis did not reveal any statistical change. This different gene regulation was 

confirmed by real-time RT-PCR (Figure 20 A). 

An unpregulation, in wildtype mice, of the adenylate cyclase 8 gene (adcy8) as 

observed by our microarray study was confirmed by real-time RT-PCR: while there is 

an increase in adcy8 gene expression levels during post-natal development in wildtype 

mice, in Prnp
0/0

 mice we could not detect any significant variation in gene expression 

level between newborn and adult animals (Figure 20 B). The same trend of regulation, 

identified by our microarray anaylsis, for the ionotropic glutamate receptor subunit 

NMDA2B (grin2b) was confirmed by real-time RT-PCR (Figure 20 C).  
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However, for other genes like cdh8 and ppig, we could not confirm our microarray data 

by real-time RT-PCR (Figure 20 D, E). This discrepancy between the microarray and 

the real-time RT-PCR results could be explained by the relatively low differences of the 

fold change ratios between wildtype and Prnp
0/0

 mice. Moreover, genes like pank3, 

rbm5 and usp48 show different trends of regulation after microarray and real-time RT-

PCR analysis (Figure 20 F, G and H): pank3 gene was found to be downregulated in 

adult wildtype mice compared to young wildtype mice by microarray analysis (DOWN 

IN KO gene list), whereas real-time RT-PCR showed the opposite trend, i.e. an increase 

in the gene expression level during postnatal development, although without reaching 

significance (Figure 20 F); rbm5 gene was found to be downregulated in adult wildtype 

 

Figure 20. Analyses of gene expression of selected candidate genes by real-time RT-PCR. 

Expression levels of individual transcripts. Shown are the results from RT-PCR analysis of young 

(P4.5) and adult (3 months), wildtype (Wt, in grey) and Prnp
0/0

 (PrP KO, in black) mice. Values 

presented: mean of fold changes ± SD of three animals. A: tbx18; B: adcy8; C: grin2b; D: cdh8; E: 

ppig; F: pank3; G: rbm5; H: usp48. Statistical significance was determined by using Student‘s t-test 

analysis; * = p ≤ 0.05. n.s. = not statistically significant. 
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mice compared to young wildtype mice by microarray analysis (DOWN IN KO gene 

list), whereas by real-time RT-PCR analysis we could find a significant increase in the 

gene expression level (Figure 20 G); finally, usp48 gene was found to be downregulated 

in adult Prnp
0/0

 mice compared to young Prnp
0/0

 mice by microarray analysis while its 

level of expression in adult wildtype mice compared to young wildtype did not 

significantly change (DOWN IN KO gene list), whereas by real-time RT-PCR we could 

identify a significant increase in the gene expression level during wildtype postnatal 

development, and no significant change during postnatal development in Prnp
0/0

 mice 

(Figure 20 H). 

Generally, our real-time RT-PCR data for these selected genes support the stability of 

the transcriptome in the hippocampus of Prnp
0/0

 mice, and point at possible influences 

due to the deficiency of PrP
C
 in cellular mechanisms other than gene transcription 

modification. Moreover, as Prnp
0/0

 mice show no gross phenotypical differences in 

physiological conditions, but reveal stronger phenotypes in stressful or challenging 

conditions (Criado et al., 2005; Sánchez-Alavez et al., 2007; Sanchez-Alavez et al., 

2008; Lobão-Soares et al., 2008), we could also argue that in physiological conditions 

PrP
C
 is in a resting/silent state, and that only in a challenging environment PrP

C
 actual 

function can be switched on. Thus, it would be interesting to perform new gene 

expression studies in such conditions, in order to unveil possible influences of PrP
C
 on 

the cellular transcriptome.  
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NRG1 processing is developmentally regulated in the sciatic 

nerves. 

Recently, mice lacking the PrP (Prnp
0/0

 mice) were shown to manifest a late-onset 

chronic demyelinating polyneuropathy (Bremer et al., 2010). Interestingly, this 

phenotype was evident only in the PNS of aged Prnp
0/0 

mice. This suggests an essential 

role for PrP
C
 in peripheral myelin maintenance during aging of the individual. The 

protein NRG1 is one of the major axonal cues acting as myelination-promoting factor 

during PNS development (Garratt et al., 2000a; Jessen e Mirsky, 2005; Nave e Salzer, 

2006; Newbern e Birchmeier, 2010). Alteration in the processing of NRG1 has been 

linked to deficit in correct myelination mechanisms (Willem et al., 2006; Hu et al., 

2006), thus showing that the resulting cleaved fragments, rather than the full length 

protein itself, are the active key instruction for a physiological myelination process. In 

order to analyze the processing of NRG1 during PNS development and maturation, a 

time-course analysis of NRG1 expression was performed in total protein extracts from 

mouse sciatic nerves at different ages (postnatal days P15, P30, P90 and P120) (Figure 

21 A). During this time course, the levels of full length NRG1 (NRG1-FL) significantly 

decreases with age, while the levels of the cleaved C-terminal fragment of NRG1 

(NRG1-CTF) significantly increases up to stage P90, reaching then a steady-state level 

(Figure 21 B). Similar results were obtained with the anti NRG1 - N-terminal fragment 

antibody (data not shown). This finding suggests that active processing of NRG1 is 

taking place and increasing during postnatal development and, once the PNS reaches 

full maturation, NRG1 is subjected to a stable and continuous cleavage during 

adulthood. 
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NRG1 cleavage is altered in the PNS of aged, but not young, 

Prnp
0/0 

mice. 

In order to verify whether the cleavage of NRG1 could be defective in Prnp
0/0 

mice, the 

levels of NRG1-FL and NRG1-CTF in the sciatic nerves of wildtype mice and of their 

Prnp
0/0 

littermates at different ages were compared. According to the authors of this 

work (Bremer et al., 2010), no significant difference in the levels of NRG1-FL and 

NRG1-CTF could be detected during early postnatal development, at P15 (Figure 22 A) 

 

Figure 21. The processing of NRG1 is developmentally regulated in the sciatic nerve. (A) Sciatic 

nerves were excised from mice at different developmental stage (n = 4, for each age) and protein 

extract (50 µg/lane) was analyzed for NRG1 content. We used an anti-NRG1 - C-terminal antibody, 

by which we can recognize full length NRG1 and the NRG1 - C-terminal fragments after cleavage 

(NRG1-CTFs). (B) Quantification of the western blot; values of NRG1 full length and of NRG1 - C-

terminal fragment were normalized on beta-tubulin levels, and expressed as percentage of total 

neuregulin protein. Values are expressed as mean ± SD; * = p ≤ 0.05; n.s. = not statistically 

significant. 
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and at P30 (Figure 22 B). However, by increasing the age of the animals under 

investigation, a decreasing level of NRG1-CTF at 5 months of age (P150) in Prnp
0/0 

mice was highlighted, yet not reaching statistical significance (Figure 22 C). Finally, by 

analyzing 1-year-old mice sciatic nerves, a significant lower level of the NRG1-CTF in 

Prnp
0/0 

mice was detected compared to their wildtype counterpart (Figure 22 D).  

 

 

 

 

Figure 22. The proteolytic cleavage of NRG1 is affected in aged, but not young, Prnp
0/0

 mice 

sciatic nerves. Comparison between protein extracts of sciatic nerves of P15 (A), P30 (B), P150 (C), 

and P365 mice (D) from wildtype (Wt) and Prnp
0/0

 mice. (A) Western blot of sciatic nerve protein 

extracts of P15 Prnp
0/0

 (n=3) and Wt (n=5) mice using an antibody recognizing the full length (NRG-

FL) and the C-terminal fragment after cleavage (NRG-CTF) of NRG1. Quantification of the NRG-

CTF was normalized to the expression levels of beta-tubulin (right panel). (B) Western blot of sciatic 

nerve protein extracts of P30 Prnp
0/0

 (n=3) and Wt (n=3) mice using an antibody recognizing the full 

length (NRG-FL) and the C-terminal fragment after cleavage (NRG-CTF) of NRG1. Quantification of 

the NRG-CTF was normalized to the expression levels of beta-tubulin (right panel). (C) Western blot 

of sciatic nerve protein extract of P150 Prnp
0/0

 (n=3) and Wt (n=4) mice using an antibody 

recognizing the full length (NRG-FL) and the C-terminal fragment after cleavage (NRG-CTF) of 

NRG1. Quantification of the NRG-CTF was normalized to the expression levels of beta-tubulin (right 

panel). (D) Western blot of sciatic nerve protein extract of P365 Prnp
0/0

 (n=5) and Wt (n=9) mice 

using an antibody recognizing the full length (NRG-FL) and the C-terminal fragment after cleavage 

(NRG-CTF) of NRG1. Quantification of the NRG-CTF was normalized to the expression levels of 

beta-tubulin (right panel). Values are expressed as mean ± SD; n.s. = not statistically significant. 



 - 69 - 

 

Thus, during early postnatal PNS development Prnp
0/0 

and wildtype mice show no 

differences in NRG1 processing; in contrast, with aging, Prnp
0/0 

mice show a 

chronically defective processing of NRG1 protein. 

 

PrP
C
 stimulates ectodomain shedding of NRG1 in cell 

cultures. 

The lack of PrP
C
 in sciatic nerves reduces the levels of NRG1-cleaved fragments. In 

order to verify whether high levels of PrP
C
, on the contrary, could enhance NRG1 

processing, I took advantage of N2a and N2a-CL3 cell lines. N2a-CL3 cell line consists 

of N2a cells stably transfected with full-length mouse PrP
C
 (Ghaemmaghami et al., 

2010) to express higher level of PrP
C
 than normal N2a cells. The higher levels of PrP

C
 

in cell lysates of N2a-CL3 cells compared to N2a cells was confirmed (Figure 23 A). 

Then, NRG1 levels in cell lysates were searched. In N2a-CL3 cell lysates, compared to 

N2a cell lysates, there was a significant lower amount of total NRG1-FL, in contrast to 

a higher amount of the NRG1 - N-terminal fragment (NRG1-NTF) (Figure 23 A, B). I 

then checked in the CM of N2a and N2a-CL3 cells the presence of NRG1-NTF and 

could identify a significant higher amount of NRG1-NTF in the CM of N2a-CL3 cells 

compared to the CM of N2a cells (Figure 23 A, C). These results suggest that high 

levels of PrP
C
 potentiate NRG1 cleavage in intracellular compartments and that, after 

this processing, the NRG1-cleaved fragment is released in the extracellular 

environment.  
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Prnp
0/0 

mice show a defective cleavage also of NRG3. 

PrP
C
 was previously demonstrated to regulate BACE1-mediated cleavage of APP, a 

molecule that plays a central role in the pathogenesis of Alzheimer‘s disease (AD) 

(Parkin et al., 2007). As BACE1 is known to cleave other different substrates, I was 

prompted to verify whether PrP
C
 could regulate the cleavage of other BACE1 

substrates. The protein NRG3 is another member of the neuregulins family (Zhang et 

al., 1997), and was shown to share the same BACE1 cleavage site of NRG1, and to be 

directly processed by BACE1 (Hu et al., 2008). Thus, I investigated whether the levels 

of NRG3 could also change between wildtype and Prnp
0/0 

mice sciatic nerves. Similarly 

to the brains of BACE1 null mice (Hu et al., 2008), a significant accumulation of 

unprocessed full length NRG3 in the sciatic nerves of Prnp
0/0 

mice was detected, when 

compared to their wildtype counterpart (Figure 24). Thus, also NRG3 processing is 

affected in the PNS of mice lacking PrP. 
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Figure 23. The shedding of NRG1 ectodomain is enhanced by overexpression of PrP
C
 in cell 

lines.  N2a and N2a-CL3 cells stably overexpressing PrP
C
 were cultured in serum-free medium, and 

cellular extract and conditioned medium were prepared and analyzed for the levels of NRG1 using an 

antibody recognizing full length (NRG1-FL) and the N-terminal fragment on NRG1 after cleavage 

(NRG1-NTF). (A) Western blots of cell lysates and conditioned medium from N2a and N2a-CL3. We 

confirmed the overexpression of PrP
C
 in N2a-CL3 cell lysates, compared to N2a cell lysates (upper 

panel). Cell lysates of N2a-CL3 cells show a reduced level of NRG1-FL and a concomitant increased 

level of NRG1-NTF, if compared to N2a cell lysates (central panel). Conditioned media were also 

analyzed for the levels of NRG1-NTF (lower panel). (B) Quantification of NRG1-FL and NRG1-NTF 

in the cell lysates of N2a (left) and N2a-CL3 (right) cells. Values were normalized to the levels of 

beta-tubulin, and expressed as percentage of total NRG1 protein. (C) Quantification of the NRG1-

NTF in the conditioned medium of N2a (white) and N2a-CL3 (black) cells. Values are expressed as 

mean ± SD; * = p ≤ 0.05. 

 

Figure 24. Unprocessed NRG3 accumulates in the sciatic nerves of Prnp
0/0

 mice. Sciatic nerve 

protein extracts of 1-year-old wildtype (Wt) (n=9) and Prnp
0/0

 (n=5) mice were investigated for the 

levels of full length NRG3. The amount of full length NRG3 was analyzed quantitatively and 

normalized to the expression level of beta-tubulin (right panel). Values are expressed as mean ± SD; * 

= p ≤ 0.05. 
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Fyn and ERK kinases signaling pathways are not affected in 

Prnp
0/0 

mice sciatic nerves. 

In neuregulin canonical signaling pathways, mature cleaved NRG1 binds to and induces 

dimerization of ErbB receptors, which in turn activate auto-phosphorylation of the 

receptors themselves and the subsequent downstream activation of intracellular 

signaling pathways (Mei and Xiong, 2008). Among these, the extracellular signal-

regulated kinase (ERK) (Tansey et al., 1996; Si et al., 1996) and Fyn kinase 

(Bjarnadottir et al., 2007) pathways can be activated. Moreover, PrP
C
 was also shown to 

signal through the same signaling pathways (Mouillet-Richard et al., 2000; Toni et al., 

2006). In addition, Fyn kinase is known to regulate CNS (Umemori et al., 1994) and, 

recently, also PNS myelination (Hossain et al., 2010). Nevertheless, Bremer et al. 

(Bremer et al., 2010) could not detect any alteration of Akt and ERK kinases 

phosphorylation during PNS myelination (age P10 and P30). The convergence of these 

signaling pathways led me anyway to investigate whether there could be an aberrant 

activation of Fyn or ERK kinases in aged Prnp
0/0 

mice compared to their wildtype 

counterpart. However, no alteration of ERK or Fyn kinases activation in the sciatic 

nerves between aged wildtype and Prnp
0/0 

mice could be detected (Figure 25). This 

finding suggests that these signaling pathways are still active in aged Prnp
0/0 

mice as in 

physiologically myelinated nerves, and thus are not influenced by the lack of PrP
C
 or by 

a deficit in NRG1 processing. 
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Neuregulins processing is not altered in the CNS of Prnp
0/0 

mice. 

A correlation between the lack of PrP
C
 and a defective processing of NRG1 and NRG3 

in the PNS (sciatic nerves) of aged animals was found. In order to verify whether this 

processing was defective also in the CNS, the levels of NRG1 and NRG3 in 

hippocampal homogenate from 1-year-old wildtype and Prnp
0/0 

mice were analyzed. No 

difference was detected in the expression and processing of NRG1 and NRG3 in the 

hippocampus between wildtype and Prnp
0/0 

mice (Figure 26). Thus, the lack of PrP
C
 

influences neuregulins processing only in the PNS of aged mice, whereas in the CNS 

this influence is not effective. 

 

 

Figure 25. ERK and Fyn kinases signaling pathways are not altered in the sciatic nerves of 

Prnp
0/0

 mice. Western blot of protein extracts from sciatic nerves of 1-year-old wildtype (Wt) (n=9) 

and Prnp
0/0

 (n=5) mice. The levels of total Fyn protein, of phosphorylated Fyn and phosphorylated 

ERK proteins do not significantly change between wildtype and Prnp
0/0

 mice. 
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Figure 26. Processing of NRG1 and NRG3 is not altered in the hippocampus of Prnp
0/0

 mice. 

Hippocampal homogenates from 1-year-old wildtype (Wt) (n=3) and Prnp
0/0

 (n=3) mice were 

analyzed for the levels of NRG1 using antibody against the C-terminus of NRG1 (A), against the N-

terminus of NRG1 (B), or against full length NRG3 (C). The western blot showed no difference in 

expression or processing of both NRG1 and NRG3 between wildtype and Prnp
0/0

 mice hippocampi. 
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Discussion 

 

Almost thirty years have passed since the postulation of the ―protein-only hypothesis‖ 

by Stanley B. Prusiner. To date, the vast majority of the scientific community has 

accepted the revolutionary concept of a protein able to adopt different tertiary structures 

and transmit its conformation to other proteins. In all these years many steps have been 

taken towards a fuller understanding of the prion phenomenon and, although several 

aspects of the nature of prions are now clear, many others remain elusive. Especially, a 

clarified view of the physiological function of the cellular form of the PrP, PrP
C
, is still 

missing. 

The aim of my Ph.D. was to explore some of the biological features of PrP
C
 in the 

perspective of investigating a cellular protein whose widespread expression and 

proposed functions suggest an influence on several physiological aspects of the 

individual at different stages of development, from embryonic to aging animals. 

At first, I investigated the expression pattern of PrP
C
 in the CNS on the mouse during 

embryonic and early post natal development. I identified a restricted PrP
C
 expression in 

specific brain areas during prenatal and postnatal brain development. By in situ 

hybridization Prnp gene expression was detected at E14.5 in the VZ, which is known to 

be a proliferative brain area, in the superficial CP, underneath the MZ where newborn 

neurons are, and in the neuroepithelia of the third ventricle (Figure 12). The developing 

choroid plexus epithelium of the ventricular zone is known to contain multipotent 

neural stem cells (Tramontin et al., 2003). The MZ is the outermost layer of the cerebral 

cortex. Cells of the MZ are known to play key roles during development such as 

orchestrating the development of the cortical layers and contributing to the GABAergic 

interneurons in the cerebral cortex (Meyer et al., 1998). MZ cells have also been shown 
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to guide cortical afferents to their targets (Marin-Padilla, 1978; McConnell et al., 1989) 

and develop a transient neuronal circuit of crucial importance for setting up the mature 

circuitry among CP neurons (Friauf and Shatz, 1991; Ghosh and Shatz, 1992; Schwartz 

et al., 1998). In the neocortex of P1 mouse, Prnp gene expression was detected in the 

SVZ/E, located adjacent to the VZ along the lateral ventricle wall. Importantly, 

neurogenesis persists in this part of the brain throughout the animal‘s adult life.  

The expression pattern of Prnp in the VZ and SVZ/E suggests that the Prnp gene could 

be involved in the cellular proliferation control along development. Indeed, one report 

suggests that PrP
C
 positively regulates neuronal precursor proliferation in the SVZ/E 

during development and adult neurogenesis (Steele et al., 2006). At P1 Prnp gene is 

expressed throughout the cortical layers 6-2. At P7 the signal could still be detected in 

the cortical layers 6-2, with the strongest signal in layer 2 and progressively decreasing 

down to layer 6 (Figure 12). Premature neural cells proliferate in the ventricular side 

and migrate toward the cortical layers in the developing cerebral cortex. Neuronal 

precursors generated in the ventricular/ependymal zone migrate outwards along the glial 

processes to form the CP at the outer surface of the brain. Since the Prnp expression 

pattern during neurodevelopment seems to parallel such a time course of neuronal 

differentiation, it is possible to argue that Prnp expression could be implicated in 

neuronal proliferation and maturation: Prnp signal detected in neurons of layers 2 to 6 

at P7 could be due to the same neurons that were previously described to express PrP 

mRNA in the VZ and in the SVZ/E zones at E14.5 and at P1. However, since PrP
C
 

immunoreactivity in the cortical layers was not observed during prenatal development, 

it is possible to hypothesize that in the cortex PrP mRNA is not translated in PrP
C
, or, if 

translated, the protein is quickly degraded during this developmental stage. 

During brain early postnatal development PrP
C
 was found strongly expressed in the 

hippocampus. Differently from the cortex, in the hippocampus the expression of PrP
C
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was concomitant with the presence of Prnp mRNA (Figs. 13, 15). Indeed, among all 

brain areas the hippocampus exhibited the earliest and the highest PrP
C
 expression. 

Within hippocampus, the stratum lacunosum-moleculare (str l m) revealed the highest 

PrP
C
 expression. As this is a synapse-rich region where hippocampal interneurons 

(Bertrand and Lacaille, 2001) and afferent neuronal inputs (Deng et al., 2006b) make 

connections (Fig. 27), the relatively high expression of PrP
C
 in this region could 

possibly be necessary to the correct development of synapses and, in turn, to a correct 

synaptic activity. Several studies suggest that the synaptic compartment could be the 

critical site of functional PrP
C
 expression (Herms et al., 1999; Carleton et al., 2001), and 

that loss of PrP
C
 function, such as in Prnp

0/0
 mice, may interfere with the correct, 

physiological connections between neurons. Indeed, many of the abnormalities 

identified in Prnp
0/0

 mice are related to a hippocampal synaptic dysfunction [(Collinge 

et al., 1994; Carleton et al., 2001; Curtis et al., 2003; Maglio et al., 2004) but also see 

(Lledo et al., 1996)]. Interestingly, some reports point to central synapses as primary 

dysfunctional victims also in prion diseases, before neurodegeneration occurs (Jeffrey et 

al., 2000; Cunningham et al., 2003). 

Another phenotype of Prnp
0/0

 mice is their increased susceptibility to epileptic seizures 

(Walz et al., 1999). The core of many forms of seizures is large and synchronized bursts 

of activity originated, among all the brain structures, peculiarly in the hippocampus and 

the neocortex (McCormick and Contreras, 2001). Indeed, increasing evidence suggests 

that an altered neurodevelopment, leading to either brain malformations or injuries, may 

be involved in the generation of epilepsy (Hermann et al., 2008). The strong 

developmental regulation and expression of PrP
C
 in the hippocampus and in the 

neocortex is intriguing, as it may account for the increased susceptibility of Prnp
0/0

 mice 

to epileptic seizures. 
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The lack of PrP
C
, in fact, may alter the physiological development of these brain 

structures, and in turn provoke changes in interneuronal connections and neural network 

properties. 

Strong PrP
C
 immunoreactivity was also observed in brain structure involved in the 

regulation of the thalamolimbic system, such as the fimbria/fornix, the fasciculus 

retroflexus, and the stria terminalis (Figure 15, 16). The thalamolimbic system is 

involved in the regulation of circadian, autonomic, and hormonal functions, as well as 

stress response behaviors (Herman et al., 2003, 2005; Saper, 2006; Ulrich-Lai and 

Herman, 2009). The fimbria/fornix provides the major afferent and efferent projections 

of the hippocampus to basal forebrain (Olton et al., 1978); the fasciculus retroflexus 

connects the habenular nucleus to the interpeduncular nucleus and it is known to be 

integrated in the processing of various subsystems involved in the sleep–wake 

mechanisms (Valjakka et al., 1998); the stria terminalis is a limbic forebrain structure 

that receives heavy projections from, among other areas, the basolateral amygdala, and 

projects in turn to hypothalamic and brainstem target areas that mediate many of the 

autonomic and behavioral responses to aversive or threatening stimuli (Walker et al., 

2003) (Fig. 27). 

 



 - 79 - 

 

 

Thus, the high developmental expression of PrP
C
 in brain fiber bundles participating in 

the regulation of the thalamolimbic circuitry may reveal a potential role for PrP
C
 in the 

correct development, structuring, and functioning of this complex neural system. 

Interestingly, the lack of PrP
C
 in Prnp

0/0
 mice was proved to be responsible for 

alterations that can be related to incorrect performance of this neural system. These 

alterations include altered circadian activity rhythms and sleep activities (Tobler et al., 

1996), deficits in hippocampal-dependent spatial learning (Criado et al., 2005), altered 

stress response and neuroendocrine stress functions (Sánchez-Alavez et al., 2007), 

altered fear-induced behavior (Lobão-Soares et al., 2008), and disregulation of the 

hypothalamic-pituitary-adrenal axis, the ‗‗stress‘‘ axis (Sanchez-Alavez et al., 2008). 

Intriguingly, pathological alterations that can be related to a dysfunction of the 

thalamolimbic system have been described also in some cases of prion diseases, such as 

corticosteroid disturbance (Gayrard et al., 2000; Voigtländer et al., 2006). Moreover, 

 

Figure 27. Brain limbic system circuits expressing PrP
C
 during development. Gray lines indicate 

the neural connections (i.e., the hippocampal fimbria, the stria terminalis, and the fasciculus 

retroflexus) and the synapses-rich region (i.e., stratum lacunosum-moleculare of the hippocampus) 

expressing high levels of PrP
C
 in neurodevelopment. 
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patients suffering the genetic prion disease FFI show predominant sleep, 

neuroendocrine, and autonomic dysfunction (Montagna et al., 2003). Hence, the 

absence of PrP
C
 in Prnp

0/0
 mice, or its possibly altered physiological functioning in 

certain cases of prion diseases, gives rise to pathological alterations associated with 

incorrect neural information processing by brain structures contributing to the 

regulation of the thalamolimbic neurocircuitry. 

In summary, PrP
C
 expression was identified to be highly regulated during 

neurodevelopment, and in particular a high level of expression of PrP
C
 was detected in 

specific nerve fiber bundles involved in the thalamolimbic system regulation. The high 

developmental expression of PrP
C
 in these white matter tracts might reflect an active 

axonal transport of the PrP through these fiber bundles; indeed, PrP
C
 can be transported 

along axons (Borchelt et al., 1994; Moya et al., 2004), and in particular, in the case of 

the fimbria/fornix, PrP
C
 expression in these tracts could be due to axonal transport from 

the hippocampus. 

This strong developmental regulation and the main synaptic localization of PrP
C
 in adult 

neurons (Herms et al., 1999; Moya et al., 2000b) could implicate PrP
C
 in the correct 

structuring and functioning of specific brain circuits. The lack of PrP
C
, such as in 

Prnp
0/0

 animals, could be more detrimental for brain regions requiring high levels of 

expression of the protein during development than in regions with a lower physiological 

expression. In turn, these regions would not be able to form and/or operate properly, and 

when challenged by the proper external stimulus they would respond with a 

nonphysiological nervous output, if compared to wildtype situations. In this perspective, 

this may also be true for the aberrant function of PrP
C
 once converted into PrP

Sc
. 

Despite PrP
C
 synaptic localization (Moya et al., 2000b), in adult mice it can also be 

localized in other parts of the neurons plasma membrane, including dendritic, somatic, 

and axonal membranes (Mironov et al., 2003). These findings point to a broader 
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physiological role for PrP
C
 in adult life than simply a synaptic one. Indeed, besides 

synapse formation and function, PrP
C
 was shown to influence several cellular processes 

in the nervous system, e.g., neuronal survival, intercellular contacts, and signaling, and 

maintenance of myelin fibers (reviewed in (Aguzzi et al., 2008)). These results can 

indeed support the hypothesis for distinct temporal functions for PrP
C
 as being 

supposedly involved in circuit formation and refinement during neuronal development, 

and in other functions in adult life once the correct neuronal circuits have been formed. 

 

The Prnp
0/0

 mice revealed no overt phenotype (Büeler et al., 1992; Manson et al., 1994), 

thus PrP
C
 proved not to be essential for the normal development and survival of the 

animal. However, phenomena of developmental plasticity and genetic compensation 

may mask the phenotype of PrP
C
 deficient mice (Steele et al., 2007). A gene expression 

profile analysis was undertaken in order to analyze the potential influence of PrP
C
 on 

the CNS gene expression profile during neuronal postnatal development. To this aim 

wildtype (Prnp
+/+

) and Prnp
0/0

 mice were investigated at two different developmental 

stages: in neonatal animals (postnatal day 4.5, P4.5) and in adult animals (3 months 

old). As the hippocampus was identified as the region with the earliest and highest 

expression of PrP
C
 during neuronal development, I decided to focus my analysis on 

hippocampal mRNAs from the perspective that the deficiency of PrP
C
, such as in 

Prnp
0/0

 animals, may be more detrimental in brain regions requiring high levels of 

expression of the protein during development (i.e., the hippocampus), rather than in 

regions with a lower physiological expression. 

The absence of PrP
C
 affected several biological pathways, the most representative being 

cell signaling, cell-cell communication and transduction processes, calcium 

homeostasis, nervous system development, synaptic transmission and cell adhesion. 

However, there was only a moderate alteration of the gene expression profile between 
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wildtype and Prnp
0\0

 animals. Thus, PrP
C
 expression or absence in general does not 

bring about an extremely drastic alteration in gene expression profile, and produces 

moderately altered gene expression levels during neuronal development, leading to the 

conclusion that the lack of PrP
C
 is not compensated by a strong overexpression of 

(an)other specific gene(s) rescuing PrP
C
 function. This finding suggests that PrP

C
 

performs more than just one function in the CNS, supporting the hypothesis of a 

pleiotropic role for the protein.  

Indeed real-time RT-PCR data for some selected genes support the stability of the 

transcriptome in the hippocampus of Prnp
0/0

 mice, and point at possible influences due 

to the deficiency of PrP
C
 in cellular mechanisms other than gene transcription 

modification. Moreover, as Prnp
0/0

 mice show no gross phenotypical differences in 

physiological conditions, but reveal stronger phenotypes in stressful or challenging 

conditions (Criado et al., 2005; Sánchez-Alavez et al., 2007; Sanchez-Alavez et al., 

2008; Lobão-Soares et al., 2008), one may also argue that in physiological conditions 

PrP
C
 is in a resting/silent state, and that only in a challenging environment PrP

C
 actual 

function can be switched on. Thus, it would be interesting to perform new gene 

expression studies in such conditions, in order to unveil possible influences of PrP
C
 on 

the cellular transcriptome.  

Down-regulation of PrP
C
 during prion disease has been proven to reverse spongiosis, to 

prevent neuronal loss and to rescue early neuronal and cognitive dysfunction (Mallucci 

et al., 2003, 2007; White et al., 2008). These results are further supportive of a strategy 

against prion diseases involving a decrease in PrP
C
 expression levels, suggesting that 

the manipulation of its levels may conceivably become a useful tool in the treatment 

and clinical approach to these diseases. 

One interesting aspect that arises from this study was the effect of PrP on Tau 

phosphorylation. The levels of phosphorylated tau were similar in adult wildtype and in 
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adult Prnp
0/0

 mice, whereas the levels of phosphorylated tau were significantly higher in 

newborn Prnp
0/0

 mice if compared to newborn wildtype animals (Figure 19). Besides 

being highly phosphorylated in AD brain, tau is also highly phosphorylated in normal 

developing brain, in the window of age of neuritic outgrowth (Kenessey and Yen, 1993; 

Yu et al., 2009). This is probably occurring in order to keep a high dynamics of 

microtubule assembly-disassembly during brain development. So, PrP
C
 seems to 

negatively influence the phosphorylation levels of tau during the first postnatal brain 

development, while it has no effect on tau phosphorylation in adult brain, when 

phosphorylation of tau is physiologically at a steady-state. Future studies on other 

phosphorylation sites on Tau protein are necessary to clarify the involvement of PrP
C
 on 

the mechanisms regulating Tau phosphorylation. Nevertheless, although as a 

preliminary result, this finding may in part shed new light on the developmental 

functions linked to PrP
C
, and additionally an involvement of PrP

C
 on the regulation of 

tau phosphorylation could imply a novel correlation between AD and prion biology. 

One strong correlation between AD and prion biology is the regulation of the activity of 

the β-site of APP cleaving enzyme (β-secretase BACE1) by PrP
C
 (Parkin et al., 2007). 

In fact, PrP
C
 was shown to directly interact with and inhibit BACE1 on the processing 

of APP, thus lowering the total amount of Aβ peptide (Parkin et al., 2007). One 

common feature for both PrP
C
 and BACE1 is their involvement in myelin homeostasis. 

Prnp
0/0

 mice expressing PrP deletion mutants show severe CNS and PNS demyelination 

(Radovanovic et al., 2005; Baumann et al., 2007, 2009; Bremer et al., 2010), and 

Prnp
0/0

 mice manifest a late-onset chronic demyelinating polyneuropathy (Bremer et al. 

2010). In this latter case, the demyelination was recovered by expression of axonal 

PrP
C
, and not by glial expression. This suggests an axonal trophic support, mediated by 

PrP
C
 neuronal expression, acting in trans to Schwann cells for a physiological myelin 

homeostasis. Thus, I was prompted to investigate for a neuron-specific key element that 
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could be regulated by PrP
C
. The protease BACE1 is preferentially expressed by neurons 

(Rossner et al., 2001), and, interestingly, BACE1 null mice show myelin defects in the 

CNS and the PNS (Willem et al., 2006; Hu et al., 2006). These defects were bona fide 

linked to a lack of processing of NRG1 protein, a BACE1 substrate and key regulator of 

PNS myelination (Mei and Xiong, 2008; Newbern and Birchmeier, 2010). Thus, I 

investigated whether, besides regulating BACE1 activity in the cleavage of APP (Parkin 

et al., 2007), PrP
C
 could also regulate the cleavage of other BACE1 substrates, i.e., 

neuregulins. Indeed, Prnp
0/0 

mice turned out to have a defective processing of NRG1. 

However, this defect in NRG1 processing was time- and tissue- definite. Indeed, a 

difference in NRG1 processing could be highlighted only in aged Prnp
0/0 

mice 

compared to their wildtype counterpart, whereas in young animals no difference 

between the two genotypes could be detected (Figure 22). This finding hints that during 

the first postnatal development, i.e. during the initial PNS myelination process, PrP
C
 

role for neuregulin processing is dispensable, whereas it starts to exert its effect and to 

be relevant in adult and aged animals. This is suggestive of a physiological role of PrP
C
 

for NRG1 processing during the aging of an animal. Moreover, Prnp
0/0 

mice showed 

altered NRG1 cleavage only in their PNS, whereas they did not show any difference, if 

compared to their wildtype counterpart, of NRG1 processing in the CNS (Figure 26). 

The molecule PrP
C
 thus seems to fulfill different functions between CNS and PNS, at 

least for NRG processing and, in turn, possibly for myelin homeostasis.  

In order to verify whether PrP
C
 could directly stimulate the cleavage of NRG1, I took 

advantage of N2a cells stably over-expressing full-length mouse PrP
C
, and identified an 

increase of NRG1 - N-terminal cleaved fragment both in the cell lysates and in the 

conditioned medium (Figure 23). This suggests that the cleavage of NRG1, stimulated 

by PrP
C
 expression, occurs in intracellular compartments, for example in the endosomal 

system, and then the cleaved fragment is released in the cell medium, probably through 
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a subsequent move of the cleaved fragment to the protein secretory pathway. The 

protease BACE1 is known to cleave its substrate APP in the endosomal pathway, and 

then the cleaved fragment is released in the extracellular medium via the secretory 

pathway (Koo and Squazzo, 1994; Thinakaran et al., 1996; Tomita et al., 1998; Marlow 

et al., 2003). This suggests the need of acidic compartments (i.e. endosomes and/or late 

Golgi) for BACE1 activity. This finding hints that BACE1-mediated cleavage of NRG1 

may require the same endocytosis/recycling process as for BACE1-mediated APP 

processing. 

I could also identify altered processing of NRG3 in Prnp
0/0 

mice. NRG3 is another 

member of the neuregulin family, possesses a similar structural organization to NRG1, 

and also activates ErbB receptor (Zhang et al., 1997). Like NRG1, NRG3 is also 

substrate of BACE1, and after proteolytical cleavage it was proposed to bind Schwann 

cells ErbB receptors (Hu et al., 2008). I could detect a difference in processing also for 

NRG3 only in the PNS of Prnp
0/0 

mice, and not in the CNS if compared to wildtype 

animals (Figure 24, 26). Hence, PrP
C
 can stimulate the processing of neuregulins only 

in the PNS and not in the CNS.  

I also investigated whether two intracellular signaling pathways, i.e. ERK and Fyn 

kinases, linked both to PrP
C
 and neuregulins signaling, could be altered in the sciatic 

nerves of Prnp
0/0 

mice, but no difference from their wildtype counterpart in the 

activation of these two signaling cascades could be detected (Figure 25). This suggests 

that other signaling pathways may be affected by the lack of PrP
C
 and the defective 

neuregulin processing. Further studies need to investigate other intracellular cascades 

related to both PrP
C
 and neuregulin signaling (for example, the PI3K pathway). 

 

The age-dependent effect of PrP
C
 on neuregulin processing may be associated to 

different cellular mechanisms. Lipid rafts are dynamic and highly ordered sterol- and 
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sphingolipid-enriched domains that can concentrate selected subsets of proteins and 

serve as a platform for cellular processes, including cell signaling, protein sorting and 

trafficking, and extracellular/membrane protein proteolysis (Simons and Toomre, 2000; 

Ledesma et al., 2003; Helms and Zurzolo, 2004; Hancock, 2006). Rafts are 

continuously endocytosed from cellular plasma membrane via the endocytic pathway, 

and either recycled back to the plasma membrane or returned to the Golgi apparatus 

(Puri et al., 1999; Mukherjee and Maxfield, 2000). Neuregulin (Frenzel and Falls, 

2001), PrP
C
 (Vey et al., 1996) and BACE1 (Riddell et al., 2001) are all enriched in lipid 

rafts domains. Moreover, targeting BACE1 lumenal domain to lipid rafts by the 

addition of a glycophosphatidylinositol anchor was shown to increase BACE1-mediated 

APP processing (Cordy et al., 2003). This hints at lipid rafts as functional compartment 

for BACE1 activity. Besides, PrP
C
 was shown to exert its regulation on BACE1-

mediated APP cleavage only when correctly localized to lipid rafts domain (Parkin et 

al., 2007). Although from these experiments a direct functional link between PrP
C
 and 

the regulation of BACE1 cannot be drawn, nevertheless these findings suggest that PrP
C
 

could physiologically influence also the BACE1-mediated neuregulins cleavage, and 

this occurring in an endocytosys/secretory pathway-dependent manner. Lipid rafts 

however do not maintain the same protein and lipid composition: with aging and in 

pathological condition (like in AD), the ratio between cholesterol, sphingolipid and 

phospholipid changes (Prinetti et al., 2001; Palestini et al., 2002; Martin et al., 2010). 

This in turn may affect the affinity of certain proteins for these microdomains. As a 

consequence of this, the protein composition of the lipid rafts may dramatically change, 

and this can consequently modify their properties as ―signaling scaffolds‖ during 

different cellular life stages. Hence, one may suggest that, during early postnatal 

development, the lack of PrP
C
 in lipid rafts and the specific protein/lipid composition 

may not destabilize BACE1-mediated NRGs processing, whereas by changing the 
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biochemical composition of the rafts, i.e. with adulthood and aging, the lack of PrP
C
 

could instead destabilize lipid rafts-mediated BACE1-NRGs interaction. This in turn 

could lead to the observed altered NRG processing. In this perspective, PrP
C
 may be a 

crucial key element in lipid rafts protein homeostasis, composition and in physiological 

signaling processes during lifetime, and particularly during aging.  

Moreover, the possible age-dependent influence of PrP
C
 on BACE1-mediated 

neuregulin cleavage may be also due to the opposite dynamic expression levels between 

PrP
C
 and BACE1 throughout the lifespan of the animal. Indeed, PrP

C
 levels were shown 

to increase during postnatal development then reaching a plateau of expression in 

adulthood (Salès et al., 2002), whereas BACE1 levels are high during development and 

then decrease to a low levels in adult animals (Willem et al., 2006). Thus, PrP influence 

could be minimal during early development when PrP
C
 low levels of expression overlap 

the high levels of BACE1; on the contrary, in adult animals, the minimal expression of 

BACE1 could be strongly influenced by the high levels of PrP
C
. Accordingly, in Prnp

0/0 

mice BACE1 activity may not be affected by the lack of PrP
C
 in young animals, while 

on the contrary it can be effectively altered during adulthood and aging of the animals. 

 

The mechanisms responsible for the tissue-dependent influence of PrP
C
 on neuregulin 

processing also are not clear and need further investigation. Altered NRGs processing 

was detected only in the PNS of aged Prnp
0/0 

mice, and not in their CNS. This can 

suggest that some compensatory mechanism for neuregulin processing may occur in the 

CNS, whereas it is not effective in the PNS.  

Pharmacological inhibition of BACE1 in adult mice brain was shown to induce 

significant Aβ-peptide lowering, but it was without any major effect on brain NRG1 

processing (Sankaranarayanan et al., 2008). The same study suggests differences in 

BACE1-mediated NRG1 processing only in early development in the brain, as aged (2-
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years-old) BACE1 null mice show identical full-length NRG1 and NRG-NTF levels to 

their wildtype counterpart. Therefore, BACE1 inhibition in the brain showed to have an 

effective impact on the lowering of APP processing, and no alteration on NRG1 

processing. Similarly, PrP
C
 was shown to inhibit BACE1-mediated APP processing in 

the brain (Parkin et al., 2007), whereas I could not detect any role for PrP
C
 on NRG1 

processing in the CNS of aged mice (Figure 26). These independent findings are 

suggestive of a different PrP
C
 influence on BACE1 processing activity between the 

CNS and the PNS. 

Taken together, these findings are suggestive of the occurrence of different age-

dependent and tissue-dependent cellular mechanisms for the regulation of neuregulins 

processing. Future studies on NRGs processing and cleavage are necessary to describe a 

correct spatial and dynamic frame of neuregulins processing and biological action. 

In summary, my study points at PrP
C
 as a positive regulator of NRGs processing. This 

effect was manifest as age-dependent (only in aged, but not in young mice) and tissue-

dependent (only in the PNS, but not in the CNS). The results obtained suggest that PrP
C
 

could exert different functions, during development and aging, between the CNS and 

the PNS, at least as regards neuregulin processing and possibly myelin homeostasis. In 

turn, this finding could shed new light on the etiology of the peripheral demyelinating 

neuropathy affecting aged mice null for the PrP (Bremer et al., 2010).  
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Conclusive remarks 

 

During my Ph.D. work I have focused on some biological features of the PrP. I could 

highlight a specific developmental pattern of expression of PrP
C
. I revealed regional 

differences in the expression of PrP
C
, with the earliest expression of the protein in the 

hippocampus, thalamic, and hypothalamic regions, as well as in specific white matter 

fiber tracts which are part of the thalamolimbic system. Then I have analyzed PrP
C
 

influence on hippocampal transcriptome during development, and could evidence that 

PrP
C
 does not dramatically influence the genetic expression profile. Finally I could 

show that PrP
C
 influences the cleavage of NRG1 and NRG3 in the PNS of the mouse. 

Prnp
0/0

 mice, in fact, show a defective processing of neuregulins. This effect was 

manifest as age-dependent (only in aged, but not in young mice) and tissue-dependent 

(only in the PNS, but not in the CNS), thus suggesting that PrP
C
 exerts different 

functions during development and aging, between the CNS and the PNS. This finding 

could be of interest for peripheral demyeliating diseases, especially during aging. 
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Table Legends 

 

Table 3. UP IN WT: Second messengers signaling pathway genes. Significantly up-

regulated genes during hippocampal development only in Prnp
+/+

 mice but not in 

Prnp
0/0

 mice are listed. This gene group comprises cAMP-mediated signaling pathway 

genes, RAR-activation genes, NRF2-mediated response genes and calcium signaling 

related genes. Genes are sorted in a descending order according to the difference in fold 

change values (column L) between Prnp
+/+

 developmental expression value (WT adults 

vs WT newborns, column E) and Prnp
0/0

 developmental expression value (KO adults vs 

KO newborns, column H). 

 

Table 4. UP IN WT: Second messengers signaling pathway genes (2). Up-regulated 

genes only in Prnp
+/+

 mice during hippocampal development. These genes belong to the 

Ras/Rab and protein kinases family. Genes are sorted in a descending order according to 

the difference in fold change values (column L) between Prnp
+/+

 developmental 

expression value (WT adults vs WT newborns, column E) and Prnp
0/0

 developmental 

expression value (KO adults vs KO newborns, column H). 

 

Table 5. UP IN WT: Synaptic transmission genes. Significantly up-regulated genes 

during hippocampal development only in Prnp
+/+ 

related to synaptic function, such as 

ionic transporters, ionic channels and receptor subunits. Genes are sorted in a 

descending order according to the difference in fold change values between Prnp
+/+

 

developmental expression value and Prnp
0/0

 developmental expression value. 

 

Table 6. UP IN WT: Chaperone-mediated protein folding. Significantly up-

regulated genes during hippocampal development only in Prnp
+/+ 

related to chaperone-

mediated protein folding. Genes are sorted in a descending order according to the 

difference in fold change values between Prnp
+/+

 developmental expression value and 

Prnp
0/0

 developmental expression value. 

 

Table 7. UP IN WT: Genes involved in the ubiquitin-proteasomal system. Up-

regulated genes only in Prnp
+/+

 mice during hippocampal development related to the 

ubiquitin-proteasomal system (UPS) function. Genes are sorted in a descending order 
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according to the difference in fold change values between Prnp
+/+

 developmental 

expression value and Prnp
0/0

 developmental expression value. 

 

Table 8. UP IN KO: Cytosolic signaling pathway genes. Significantly up-regulated 

genes during hippocampal development only in Prnp
0/0

 mice but not in Prnp
+/+

 mice are 

listed. This gene group comprises cytosolic signaling pathway genes such as kinases. 

Genes are sorted in a descending order according to the difference in fold change values 

between Prnp
0/0

 developmental expression value and Prnp
+/+

 developmental expression 

value. 

 

Table 9. UP IN KO: Cell death signaling genes. Significantly up-regulated genes 

during hippocampal development only in Prnp
0/0 

mice related to cell death mechanisms. 

Genes are sorted in a descending order according to the difference in fold change values 

between Prnp
0/0

 developmental expression value and Prnp
+/+

 developmental expression 

value. 

 

Table 10. UP IN KO: Neuregulin pathway genes. Up-regulated genes only in Prnp
0/0

 

mice during hippocampal development related to neuregulin signaling. Genes are sorted 

in a descending order according to the difference in fold change values between Prnp
0/0

 

developmental expression value and Prnp
+/+

 developmental expression value. 

 

Table 11. UP IN KO: Synaptic plasticity genes. Significantly up-regulated genes 

during hippocampal development only in Prnp
0/0 

mice related to synaptic plasticity 

mechanisms. Genes are sorted in a descending order according to the difference in fold 

change values between Prnp
0/0

 developmental expression value and Prnp
+/+

 

developmental expression value. 

 

Table 12. UP IN KO: Chloride channel-related genes. These genes represent 

members of potassium and chloride channel subunits that are significantly up-regulated 

during hippocampal development only in Prnp
0/0

 mice. Genes are sorted in a descending 

order according to the difference in fold change values between Prnp
0/0

 developmental 

expression value and Prnp
+/+

 developmental expression value. 
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Table 13. UP IN KO: Cell adhesion, neurite outgrowth and axon guidance genes. 

Significantly up-regulated genes during hippocampal development only in Prnp
0/0 

mice 

related to activity mediated by cell-to-cell interaction, such as cell adhesion, neurite 

outgrowth and axon guidance. Genes are sorted in a descending order according to the 

difference in fold change values between Prnp
0/0

 developmental expression value and 

Prnp
+/+

 developmental expression value. 

 

Table 14. UP IN KO: Calcium homeostasis genes. Developmentally up-regulated 

genes related to calcium homeostasis were detected in Prnp
0/0

 mice. Genes are sorted in 

a descending order according to the difference in fold change values between Prnp
0/0

 

developmental expression value and Prnp
+/+

 developmental expression value. 

 

Table 15. DOWN IN WT: Carbohydrate and small molecule metabolism genes. 

Genes belonging to the metabolism of carbohydrate and of small molecules (such as 

nucleotides) were identified as uniquely down-regulated during neuronal development 

in Prnp
+/+

 mice. Genes are sorted in a descending order according to the inverse of the 

difference in fold change values between Prnp
+/+

 developmental expression value and 

Prnp
0/0

 developmental expression value. 

 

Table 16. DOWN IN KO: Embryonic and central nervous system development. 

These genes are down-regulated exclusively in Prnp
0/0

 mice during neuronal 

development, whereas not in Prnp
+/+

 mice, and are involved in embryonic development 

and differentiation, and nervous system development and function. Genes are sorted in a 

descending order according to the inverse of the difference in fold change values 

between Prnp
0/0

 developmental expression value and Prnp
+/+

 developmental expression 

value. 

 

Table 17. DOWN IN KO: Cadherin genes. Developmentally down-regulated genes of 

cadherin family were detected in Prnp
0/0

 mice. Genes are sorted in a descending order 

according to the inverse of the difference in fold change values between Prnp
0/0

 

developmental expression value and Prnp
+/+

 developmental expression value. 

 

Table 18. DOWN IN KO: Transition metal ion binding genes. Significantly down-

regulated genes during hippocampal development only in Prnp
0/0 

mice related to 
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transition metal ion binding. Genes are sorted in a descending order according to the 

inverse of the difference in fold change values between Prnp
0/0

 developmental 

expression value and Prnp
+/+

 developmental expression value. 

 

Table 19. DOWN IN KO: Ubiquitin system genes. Significantly down-regulated 

genes during hippocampal development only in Prnp
0/0 

related to the ubiquitin system 

function. Genes are sorted in a descending order according to the inverse of the 

difference in fold change values between Prnp
0/0

 developmental expression value and 

Prnp
+/+

 developmental expression value. 

 

Table 20. Comparison between adult wildtype and adult PrP
C
-deficient mice. Adult 

Prnp
0/0

 and Prnp
+/+ 

mice gene expression profiles were compared. Listed are genes 

significantly up- or down-regulated in PrP
C
-deficient mice vs their wildtype counterpart. 

Genes are sorted according to descending fold change values. 

 

Table 21. Alzheimer’s Disease (AD)-related genes. Prnp
0/0

 adult mice were compared 

to young animals, and significantly deregulated genes were subjected to GeneCards® 

GeneALaCart Beta software (http://www.genecards.org/), in order to identify AD-

related genes. Listed are AD-related genes significantly up- or down-regulated in PrP
C
-

deficient mice during neuronal development. Genes are sorted in a descending order 

according to the difference in fold change values. 

 

http://www.genecards.org/
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