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Introduction

This thesis is devoted to the study of a generalized notion of quasistatic evolution for a
problem in non-associative plasticity, namely the Cam-Clay model. By the term gquasistatic
we mean that the evolution we are interested in has a so slow time scale thal the system
is assumed to be in equilibrium at each instant. Our notion is based on a viscoplastic
approximation and a time rescaling. For reasons that will be made clearer later in this
introduetion, it will be introduced for this specifie problem, but we think that the underlying
ideas can be adapted to more general contexts.

The chaice of the model we study is motivated by its considerable interest for the en-
gineering community. It gives the conceptual framework to analyse the inelastic behavior
of fine grained soils. Tts framework is small strain elasto-plasticity. The linear strain Bu is
defined as the symmetric part of the gradient of the displacement u with respect to a refer-
ence configuration 3. Moreover, the strain is additively decomposed into elastic and plastic
part, namely Fu = e+ p, where the elastic part e determines the stress o through the
linear constitutive relation o = Ce. The stress satisfies the standard equilibrium condition
—dive = f in Q, where f denotes a time dependent body force.

As it Is typical in plasticity, the stress is constrained to lie in a compact convex set ¥ (C) of
the space Mg}an of symmetric nxn matrices, whose size is controlled by a scalar parameter
¢ and whose boundary represents the yield surface, ie., the plastic How is produced only
when the stress meets 9K (€). The other two main ingredients are the evolution laws for
the plastic strain p and for the internal variable ¢. To write them explicitly, we introduce a
new internal variable z, related to ¢ by the equality ¢ = V(). The function V is assumed
to be stricily monotone and to satisfy the condition

V(2) 2 Cnin >0 forevery ze R ,

which implies that ¢ > (i > 0 and prevents the set I{¢) from shrinking to the origin.
The evolution equations are

PE Ngyla), (0.0.1)
=pr*[(pa*tro)trp], {0.0.2)

where Nyc)(a) is the normal cone o K(¢) at o, the symbol % denotes the convolution
with respect to the space variable z € £2, p1 and rhog are convolution kernels with compack
support, and tr denotes the trace of a matrix. A remarkable fact is that the evolution law
(0.0.2) does not depend on X, that is to say that the scalar parameter ¢ controlling the
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shape of the yield surface, and thus the plastic properties of the material, is not determined
by simple energetic principles but evolves according to 8 different equation. For this reason
we speak of a nonassociative nature of the problem. Moreover, equation (0.0.2) has a
nonvariational structure, unlike the other equations of the model.

In the engineering literature one assumes that =z is positive and hounded away from 0,
so that one can take Viz) =1z, and identily z wish ¢. Moreover, the convolution products
are not present in (0.0.2). We injroduce them for technical reasons, namely to recover Strong
compactness of z from weak compactness of p. However, it is not physically unreasonable to
assume that the evolution of the internal variable af a point is alfected by stresses and strains
in a small neighborhood: the convolution product introduces two characteristic length-scales
for this interaction through the size of the support of ;. and pa-

An interesting feature of this model is that, under the usual assumptions on K () (see
(1.3.2)-(1.3.5)), it exhibits both hardening and softening behavior, i.e., expansion and con-
¢raction of K(C), depending on the loading conditions. This gives rise to one of the main
technical difficulties, since allowing for a softening regime results in the lack of convexity of
the problem, which is the origin of some instabilities of the system and causes discontinuity
of the evolution with respect to time (see for instance [8] and [9], where another model of
plasticity with softening is analysed). Actually we will show in Chapter 3 that discontinuous
cplutions can appear also in our case, in the softening regime {see Remark 3.4).

A general mathematical framework for the study of evolutionary problems of this kind
s the energetic approach 0 rale-independent. problems developed by Mielke (see [31]}. By
the term rate-independent we mean & system with no intrinsic time scale, which reacts
to a strictly monotone time repammetrisatiﬂn of the data by reparametrising its solutions
exactly in the same way. Rate-independent systems occur as limit problems in ihe study
of many physical and mechanical systems where the time seales we are interested in are
much longer than t+he intrinsic ones in the system. This approach has been widely used in
the analysis of many phenomena others than elasto-plasticity, like dry friction, (racture, o
shape-memory alloys. In our setting, it would result in defining a quasistatic evolution as
a map (u(i, ) et 3, plt, ), z(t, ) satisfying at any time ¢ a suitable stability condition, &
balance between the stored and the dissipated energy (which are the “variational part” of
our model), as well as the evolution equation {0.0.2).

To be definite, in our setting the stability condition is given by the stress constraint
o(t,z) € K(¢(t,z)) forevery t€ 0, +o0) (0.0.3)

and the equilibrium equation

_div alt,x) = f{tz)- (0.0.4}

We smphasize that this is a local stability condition, not & global one (see [33] for & general
discussion), since it can be regarded as the Fuler conditions for a guitable minimum problem
involving the plastic dissipation {as in the perfectly plastic case, see [13, Theorem 3.6]) bus
equivalence with global minimality has not to he expected. Jndeed it has already been
shown for other models of plasticity with softening (see again [8] and (9]} that a quasistatic
evolution where (0.0.3)-([}.0.4) are replaced by the global minimality of the corrsponding
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energy-dissipation funetional may laed to a physically implausible description of the hehavigr
of the system in the softening regime.

Following these previous examples, as well ag general considerations about nonsmooth
rate-independent evolutionary problems (see [32] and [33]), we introduce a viscoplastic ap-
proximation of Perzyna-type (see [37, 17, 25, 36]) of the problem. Given o viscosity param-
eter £ > 0, the stress tonstraint (0.0.3) is dropped, and we consider a Yogidg, regularization
of the evolution law {0.0.1), namely

Pe(t,z) = Nf{{(,{t,m))(gf(f’tm)}f

where Nt (g, () 1= i{o— Tr(¢) (7)) and Tre(¢) is the projection onto K(C). The parameter
é has clearly the role of penalising stresses Eoing too far away from the elastic domain, sp
that we can expect to recover (0.0.3) in the limit 48 € = 0. This regularization has the
advantage of making the right-hand side Lipschitz continuous, thus existence of solutions
ue(t, ), ecft, x}, Pelt, ), z, (t,z) for the viscoplastic problem can be obtained mare easily
(still, the proof remains nontrivial, see Chapter 5, Section 9.2},

The study of the limit a5 £ = 0 of these viscoplastic approximations leads ta g suitable
notion of generalized solution for our problem, giving a meaning to the evalution also after
the first discontinnity time, We then introduce the notion of resealed viscosily evolution,
expressed in terms of & rescaled time s, related to the original time by the equality ¢ = (),
where t° is a suitable nondecreasing locally Lipschitz Function, depending on the probiem.
The intervals where t° is constant correspond to time discontinuities in the original variable
t. We will see in Chapter 5 that such an evolution may he obtained passing in the limit ag
£ = 0 a suitable time-rescaled versign of the viscoplastic approximations. Indeed, an energy
estimate (Thearem 5.4) allows us 1o prove the existence of changes of variables ¢ = 12(s),
uniformly Lipschitz with respect to s, such that the rescaled functions pe(s,2) 1= p, {t(s5),z)
are uniformly Lipschitz with respect to 5, in a suitahle function space. The same ideg has
also been used in [18, 32, 33] for rate independent dissipative problems in finite dimensiop.

The Ascoli-Argels Theorem provides the existence of a subsequence {not relabelled), such
that

E0s) = %s) and p2(s, ) — (s, ).,

the latter in a weak topology. A further argument, based on {he uniqueness of the solution
to an auxiliary variational problem, shows that

eelsi) = es, ), ul(s, V= us), 0s, ) = o%(s,").
The compactness ensured by the presence of the convolutions in the evolution law for the
internal variable allows us to prove that
22(s,x) = s, x} and C(s ) — (s, m),

uniformly witly respect to w. It is then easy to see that the [imit functions satisly the
consitutive relations, the equilibrium condition and the additive decomposition Eu(s,z) =
e%(s, x) +p(s, z) (see (4.2.11)). As for (0.0.2), it holds only in a weak form Since, in general,
the limit P°(s,) is just a measure and this requireg an ad-hoc definition for the derivative
(see Chapter 1, Section 1.4 and Chapier 5, Section 5.5).
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Condition (0.0.2) is satisfied in the limit for those values of s for which #°(s) is not
locally constant. The flow rule {0.0.1) holds in a suitable measure-theoretical sense, since
now for a.e. s, p°(s,-) can only be interpreted as a Radon measure on 0 with values in
the space of symmetric n x n matrices. The behavior of p for an arbitrary value of s is
described by the equation

p e Nigthy(a), (0.0.5)
interpreted in a measure-theoretical sense. Here the exlended normal cone Nf‘?’(‘c) is defined
Ly
Nroylo) if o e K(¢),

{Mo—mry{e)) : A= 0} ifog K(().

It has o be remarked that (0.0.5) is actually formulated in terms of a suitable representative

Nﬁ?&){g) =

# ol the stress ¢ (see Definition 4.1) whose exisience itself has to be proved. Therelore,
although (0.0.5) has the advantage of being the rigorous counterpart of (0.0.1) in our for-
mulation, in the proof of the existence Theorem 5.6 an energetic approach is preferable.
Indeed we first show (Chapter 4) that (0.0.5) can be equivalently replaced by an energy-
dissipation balance (see (4.3.1)) and a partial flow rule on the intervals where £° is constant
(see {4.3.2)), so that in the proof of Theorem 5.0 we tackle these two equalities instead of
(0.0.5). Equality (4.3.1) is similar to the energy-dissipation balance of perfect plasticity [13]
with two main differences: first, the set J, and hence the plastic dissipation, depend now
on C°(s, z); second, there is an additional dissipative term,

5
fu L (o°(s,2) - Tr;\—(qo(ﬁ,w)){cﬁ(s,m))) 1p°(s, ) drds, (0.0.6)

which accounts for viscous dissipation in those intervals where t°(s) is locally constant (the
colon denotes the scalar product between matrices). A similar term appears in [32], where
an evolution problem with nonconvex energy is studied through a viscosity approximation
and time rescaling.

The possibility of computing the amount of viscous dissipation occurring at jump times
is the main advantage of using a rescaled $ime s instead of the original time ¢. To consider
ihe behavior of the evolution in terms of the original time variable, one can indeed compose
the rescaled viscosily evolution with the left-continuous function

$° (t) := sup{s € [0, +c0) : t°(s) < t},

which has the property that £2(s® (t)) =t for every t > 0. The composite function obtained
in this way is called a wiscosily evolution: we show in Lemma 5.9 that the (unrescaled)
viscosily approximations converge to this viscosity evolution for every t, except for the
countable set of the discontinuity times. Tn Chapter G we prove that every viscosity evolution
satisfies an energy-dissipation balance and an evolution law for the internal variable, that
can be expressed in terms of integrals depending only on the original time ¢ (see Theorems
6.7 and 6.14). However, both these integral identities contain terms concentrated on the
jump times, whose value can only be determined by looking at the rescaled formulation (see
Remarks 6.8 and 6.15). Theorem 6.7 shows in addition that, in the vanishing viscosity limit,
the viscous dissipation is concentrated at the discontinuity times.
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Compared with other rate-independent evolution problems, the main theoretical diffi-
culty we have to confront here is that the total variation of the plastic strain with respect
to time can be contrelled enly in a nonreflexive Banach space, while no such a control is
available for the elastic part. Rather than developing an abstract setting including our prob-
lem, we preferred to do a complete case study for a model of considerable interest lor the
engineering community. Nevertheless, although the technical obstacles we encountered have
been solved by problem-specific techniques, we think that the main ideas can be adapted to
more general rate-independent evolution problems with nonconvex energy-dissipation terms.
In particular, the use of a vanishing viscosity approximation to understand the behavior of
the system at jump times seems to be a tool of wide applicability.

We conclude this introduction by giving a brief overview of the content of each chapter.

Chapter 1 is devoted o the basic notation and to the presentation of some abstract
mathematical tools that will be employed in our proofs. In particular, Section 1.4 introduces
anotion of “weal* -derivative” for functions of bounded variation with values in the dual of a
separable Banach space, that allows us to reconstruct the “primitive” lunction by a suitable
integration process. These results, which are taken from [11], will be useful in Chapter 6
to write the precise form of the energy-dissipation balance satisfied by a viscosity evolution
(see (6.2.10)). The main difficulty in the proofs is that, in the present context, we can
neither assume $hat the space is reflexive, nor that it satisfies the Radon-Nikedym property.
From the general Theorems 1.3 and 1.5 we also deduce the analogous result for absolutely
continuous functions Theorem 1.8, originally proved in [13, Theorem 7. 1] (actually, the part
concerning the existence of a weak * -derivative in the case of Lipschitz [unetions had already
been established in [1, Theorem 3.5}), which is useful in the rescaled formulation, since the
rescaled plastic strain p(s, ) is 1-Lipschitz continuous.

In Section 1.5 we adapt to our setting some results of approximation of Bochner integrals
with Riemann sums. This is the strategy that we will follow in the prool of (4.3.1), in
Chapter 5.

Chapter 2 presents the Cam-Clay model in its classical formulation (Section 2.2) as
well as the main mechanical assumptions we will make in order to prove wall-posedness for
our notion of weak solution. In particular, following [7], Section 2.3 introduces a notion of
generalized stress-strain duality which adapts to our context the generalized duality pro-
posed by Temam {see [52] and [53]). The new proofs that were only outlined in (7] are
lhere developed in detail. In Section 2.4 we write down the e-regularized equations, This
chapter does not contain original resuits. The simple inequality (2.5) between the plastic
dissipation functional #(p,{) and the generalized duality {o,p) taken from [48] is only a
slight modification of the analogous result [13, Proposition 2.4] for an elastic domain K
independent of (.

In Chapter 3 we start our investigation of the Cam-Clay model hy the study of the
spatially homogeneous case. Indeed, for a Dirichlet problem with no volume forces, if the
gystem is driven by a time-dependent affine boundary condition w(t, x), with the introduc-
tion of & viscous approximation the problem reduces to determine the limit behavior of the
solutions of a singularly perturbed system of OQDE's in a finite dimensional Banach space.

This Chapter, which presents the results of [14], shows that we cannot expect A cou-
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tinuous evolution and highlights the usefulness of introducing a viscous approximation and
rescaling time to understand the behavior of the system al discontinuity times. In this sim-
plified setting we do not investigate the well-posedness of the problem, which is the object
of Chapter 5, but we carry out a qualitative study of the limit behavior of the solutions
as the viscosity parameter £ goes to 0 only using diflerential equations techniques and
disregarding the variational structure of (part of) the problem. Depending on the sign of
two explicit scalar indicators & and T (see (3.1.3}-(3.1.4)), we see that the limit dynamies
presents, under quite generic assumplions, the alternation of three possible regimes: the
elastic regime, when the limit equation is just the equation of linearized elasticity; the slow
dynamics, when the stress evelves smoothly on the yield surface and plastic flow is produced;
the fast dynamies, which may happen only in the softening regime, when viscous solutions
exhibit a jump determined by a heteroclinic orbit of the auxiliary system

o(s) = ~Clo(s) — Treez(s) (0(8)))
i(s) = tr{o(s)) tr(o(8) — Tr((s1(@(3))),

which is formally obtained by a time rescaling of the system of ODE’s given by the vis-
coplastic approximation. Tt can be easily shown that, in the spatially homogeneous case,
this system is equivalent to (0.0.2) and (0.0.5) with the multiplier A appearing in the defi-
nition of extended normal cone ideniically equal to 1.

The main result Theorem 3.31 gives also an iterative procedure to construct a viscous
solution. Its proof is based on the methods developed in [47] [or another model of plasticity
with softening with an associative evolution law for the plastic sirain and the internal vari-
able. We chose not to present in this thesis the results of [47], since the model it studies (see
also [8]) has not the same interest from the point of view of the applications, and only allows
for softening. We only underline that, from a technical point of view, the limit equations
{3.3.1) and (3.4.1) are rather different from those studied in [47]. In particular, showing the
existence of the heteroclinic orbit governing the jump of the system is a harder task and
needs further hypotheses on the yield surface. Nevertheless, to show the convergence of the
viscoplastic solutions to a limit satisfying either (3.3.1) or {3.4.1) we can use some methods
developed in [47] and, actually, some technical lemmas are only suitable adaptations of the
corresponding results in [47].

Chapter 4 introduces the definition of rescaled viscosity evolution (see Definition 4.5).
The rate-independence properties of this formulation are described in Remark 4.6. As
we said above, it involves a suitable representative & of the stress which has to satisfy a
delicate integration-by-parts lormula (see (4.2.3)) and is very difficult to handle when proving
existence for such an evolution. Therefore, as a preliminary step towards the existence
proof, the chapter is devoted to showing the equivalence between this formuiation and an
“energetic” one, where the measure-theoretic version of the flow rule (0.0.1) is replaced by
the energy-dissipation balance (4.3.1) and the partial flow rule on the intervals where £° is
constant (4.3.2). This latter formulation is the one ariginally proposed in {10] and does not
require a precise representative of o. As we said, it proves to be more manageable for the
proaf of the existence Theorem 5.6. Alter proving the equivalence Theorem 4.7, in Section
4.4 we see that, at least under a strict convexity assumption on K, the precise representative
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& has an intrinsic character and can be obtained in the interior of  as limit of spherical
averages of ¢. The results of this chapter are taken from [11].

Chapter 5 tackles the prool of the existence of a rescaled viscosity evolution according
to Definition (4.5), or better to the equivalent formulation given by Theorem 4.7. The main
difficulty is to establish the energy-dissipation balance (4.3.1), which is the major part of
the proof. Comparing to earlier aitempts at modeling vanishing viscosity limits, the energy
balance is a key fact, as it guarantees that all quantities remain under control in the limit.
The proof is based on a delicate approximation of the integrals that appear in this equality,
developed in Chapter 1, Section 1.5, The main difliculty is due {o the fact thal we need two
different approximations on the set where the stress constraint {0.0.3) is satisifed and on its
complement.

Finally, in Chapter 6 we study the behavior of the evolution in terms of the original time
t, introducing the notion of viscosily evolution. Relying on the technieal results of Chapter
1, Section 1.4, we are able to write an energy balance (Theorem 6.7) and an evolution law
for the internal variable (Theorem 6.14) for a viscosity evelution. As we have already said,
both these identities describe well the behavior of a viscosity evolution at its continuity
points, while a careful description of the behavior at jumps requires the use of the rescaled
lormulation. The energy-dissipation balance (6.2.19) shows in particular that the viscous
dissipation is concentrated at the jump times.



Chapter 1

Preliminaries

1.1 Overview of the chapter

In this chapter we fix some notation and we collect some abstract results which will be
useful in the sequel. The plan of the chapter is the {ollowing: after introducing some hasic
facts about functions and measures, we turn out attention fo some properties of the integral
functional which describes the plastic dissipation in our model.

Eventually we introduce some iools about functions of bounded variation with values in
ihe dual of & separable Banach space; We will neither assume that the space is yeflexive, nor
that it hes the Radon-Nikodym properties. From these results, as & particular case, We will
also deduce the results about absolutely continuous functions contained in 13, Appendix!.
They also allow us to deduce a resutt of discrete approximation of the total plastic dissipation
on a time interval that will be useful in Chapter 3.

The rest of the chapter contains some resulis on the a.pproximation of Lebesgue infegrals
with Riemann sums which adapt to our context the well-known result of Hahn (see 122)),
and a result on continuous dependence on the data for differential equations that will be

useful in the study of the finite dimensional case, in Chapter 3.

1.2 Functions and measures

The Lebesgue measure o Y is denoted by £n, and the (n— 1)-d'1mensiona1 Hausdorf!
measure by yr-1, I X C BV is locally compact and = is a finile dimensional Hilbert
space, the space of bounded =_valued Radon measures on X is denoted by My(X:E).
When = = B, it is omitted from the potation. The space My(X,E) 1s endowed with the
norm Hplh =1 (X)), where |} € Mu(X ) is the variation of the measure i By the Riesz
Represenfation Theorem (seg, e [44, Theorem 6.19]) Mp(X E) is identified with the dual
of CY(X;E), the space of continuous functions ¢ X -+ = such that {lp| = et 18 compact
for every £ > 0. This defines the weak” topology in My(X 1 5).

The space LHXGE) of =.valued L" -integrable functions is regarded as a subspace of
M, (X;E), with the induced norm. The L norm, 1 <7 < oo is denoted by |- llp- We

1



1.3 The constraint set and its supporg function, 1. Preliminaries

adopt the convention
Follp = +oo  whenever 4 ¢ LP. (1.2.1)

The brackets {-,+) denote the duality produyet between conjugate L spaces, as wel] ag
between other pairs of spaces, according to the context,

The space of Symmetric nxn malrices i denoted by M%;N i it is endowed wigh the
euclidean scalar product £:g ;= Zij &iiniy and with the corresponding euclidean norm
| = (E:8)V2 The symmetrized tensor produyct a®b of two vectars a, beRY is the
Symmetric matrix with entries (a;b; + a;b;) /2,

For every 4 e LY BN, with 7 open in RV, let By be the MN*N _valued distribution
on I whose Components are definee by Eiu = %‘(Dj'bﬂi + Dju;). The space BD(U) of
functions wit} bounded deformation Is the space of all e LY U, R™) such that By g
My(U; MEXNY . 14 casy to see that BD(17) ig g Banach space with the norm fluf|y +jf Byl .
It is possible to prove that BD(U) is the dya) of a normed space {see [20] and (53]), and shis
defines the wea)k * topology of BD(). A Sequence u; converges {o 1 wealdy * in BD(7) if
and only if v, — 4 strongly in LY(17; RV ang Bug 5 Eu wealdy» i My(U; MNXNY oy
the general Properties of BD(I/) we refor to [52], If {7 is 5 bounded open set with Lipschitzg
boundary, for every function o e BD(U) the trace of 4 on 8U belongs to Li(arr, R¥) 1t

will always be denoted by the same symbuo] 4, Moreover, the following result holds:
v € D'(U;RY) and By LA(U; My = e HY U RN, (1.2.2)

where D/([J; RN ) is the space of R¥ -valued distributions o U. This can be obtained
&rguing as in the proof of [52, Chapter I, Proposition 1. I '

We will use boldface letters to denote funciions defined iy ay interval [a, 5] ¢ B anq with
values in g possibly infinite dimensionat Banach space v,

Throughout the paper the reference configuration () is g bounded connected open. set in
RY pn > 2, with Lipschits boundary 60 = Lvur,un, We assume that Fo and I'y are
relatively open, Iy 0 I =0, 1, @, and H'™I(N) =0,

We shall [requently yse the following closed linear subspace of 7 HOLRY)Y.

Hi (S5 RY) .= {u e HORN) . 4 = H" - on Iy}, (1.2.3)

1.3 The constraint set and jtg Support function,

Let I be a closed conves cone in MN <N [q. +00) with nonempty interior. For every
¢ €0, +00) we define the cloged tonvex set K(¢) by

Q) = {o e M2, (0.¢) € K}. (1.3.1)
When ¢ > 0 the set K(C) has lenempty interior ang
K{¢) =(K(1). (1.3.2)
We assume that e K(1) and K(1) is bounded, hence

0e K(¢) for every ¢ [0, +-00), (1.3.3)
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and
ol < Mg for every {o,.¢) € K (1.3.4)

for a suitable constant My < +00. Since K is a convex cone, (1.3.3) implies that
NG <G == K()C K((). (1.3.5)

For every closed convex set ' C M%’,‘HN let 7 M%THN —+ C be the minimal distance

projection onto C'. It follows from {1.3.2} that

TR (o) = C"TI\’(l)(%) (1.3.6)

for every ( > 0 and every o € Mﬁ,;‘,{v .

Lemma 1.1. The map (0,¢) =+ mr(¢ylo) from MN=N %[0, +o00) into MY AN salisfies the

ST S

Lipschitz estimate
\tieaylon) = T (o)l S oz = o1| 4+ 2M | — G (1.3.7)
JFUT every (0'1, (::1)! (CTQ, C‘l) 1= Ingyan X{D, +OO) .

Proof. 1t is enough to prove the estimate for (o1,G1), (2,(2) € M‘;‘L’,“,{VX[O, +o0) with 0 <
G £ (e Since Tr(gy) has Lipschitz constant 1 on MV*N  frgm (1.3.4) and (1.3.6) we

sym. 9

obtain

e (eay(era) — T o)l = ey (o2) = Fren ot + I riey (01) = Trcen o) =
<oz — a1l + \amgmlgon) — Clﬂf((l}(fl;m)\ <
< log — o1) + Mrlle — G+ Cl\ﬁ{(l)(fgm) - 7TK(1)(£‘;61)[ .

To prove (1.3.7) it is enough to show that
Gl (o) - TFKU)(ﬁUl)\ < MglGe - Gl {1.3.8)

As 0 < {4 € (o, we have

o |
Wh’(l)(ﬁm*%m\'(n(ém)) = TFJ((i)(glgﬂl-i"sﬁ;Tc"L '—Ur‘?TK(n(“,;’;Ul))) =mraygo) -

Ga

Since w1y has Lipschitz constant 1 on Mi\;’,‘nN , we obtain

1 _ Y
lrreay(Eon) = ﬂ;{(l)(adlﬂ < S“ﬁgl\ﬁrm)(zlgm)\ < My Sz5,

which gives (1.3.8). a
Tet H: M%ﬁf" %[0, +c0) be defined by
H(£, ()= sup o:&, (1.3.9)
a€K{C)

so that F (-, ¢) is the support function of K(¢). By (1.3.2) for every (€,4) € M?;f,fv %[0, +o0)
we have

H(E.C) = CH(E ). (1.3.10)
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For every ¢ & [0, +00) the function £ — & (€,¢) is convex and positively one-homogenegus
on Mﬁffnj\' - In particular, it satisfies the triangle inequality

H(6 +&,¢) < H(&, Q) + H(Ea () (1.3.11)

for every £1,6 € MYXY and every ¢ € [0,+00). From (1.3.3), (1.3.4), and (1.3.10) it
follows that

[H(€27C) _}I(Elrg)l < A’II\‘C,{Q _glf? (1313)
[H(E, C2) — HE, Co)| < Mclg))ge — €], (1.3.14)
for every £,£1,6 € M;‘;i“nN and every ¢, {1,z € [0, +00).
Given ¢ € C°()*, we define
K(Q) = {e e L=, M‘i\;,me) o) € K{¢(z)) for LM-ae z e 1}. (1.3.15)

It is obvious that when o ¢ C(@) NK(C), then o(z) € K({(z) lor every 2 € 0. Given
1EMMQUTYMYENY i will be sometimes useful to consider also the space

sym

Kuy(C)i={o € Lﬁ(Q Ul Mﬁlfn]\") ta(r) € K({(z)) for p-ae z e QU I'a}. (1.3.16)

For every closed convex set ¢ LA MN%NY et me: L2, MNNY 5 € be the

gym aym
minimal distance projection onto C. For every o € LQ{Q;Mﬁ,an) we define
d2(o,C) = |lo — me(o)|fa (1.3.17)

the L*-distance from o to C. It is easy to see that, if o € L2(q MN*N), then

&= T(C) (U‘) = 5’(.’1.) = T (g(x)) (0‘(’1,‘)) for £™-a.e. z 0. (1.3.18)

Using the theory of convex functions of measures developed in [21], we introduce the
nonnegative Radon measure & (p,¢) defined by

Hip,¢)(B) = fB H(%(2),¢(2)) dA(z), (13.19)

for any Borel set B ¢ QU To. Here A € My(QQUT)t s any measure such that p < A:
note that the homogeneity of B with respect to £ implies that the integral does not depend
on A. Similarly, we introduce the functiona) functional #: A4, {QUTy; MI*VIxCO)*+ R
defined by

Heo)= [ HE& ), cehar. (L.3.20)

In particular, if p ¢ L2 MN%NY, we have

aym

Hp,¢) = fn H(p(x), ((z)) da.

When $ is the rate of plastic strain and ¢ is the internal variable, 74(p,¢) represents the
rate of plastic dissipation.
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For every p € L2(f;MY*NY and ¢ € C*(Q)™* the symbol d,H(p,¢) denotes the subdil-

sym

ferential in L2 (Q; MY XN) of H(-,¢) at p. Using [40, Corollary 23.5.3] and {19, Proposition

SYTIL

IX.2.1] it is easy to show that
ByH(0,0) = (). (1.3.21)

As H(p,¢) is positively homogeneous with respect to p we have
8, H{p, §) € BuH(0,¢) = K(C) (1.3.22)

for every p € L2{{) Mi\Lan) and every ¢ € CO(Q)+
The following theorem shows that 7 can be also regarded as the support function of
the closed convex set K() N CY (U To; MYXN): this wili be the point of view of the next

Y

section.

Theorem 1.2. Let p € My(QQULg; MNXN), ¢ € Q)Y let K({) salisfy (1.3.1)-(1.3.4),

sym

and define Hp, () as in (1.3.20). Then

Hip, ) = sup{ r(z)dp(x): 7 € Cf (U Ty ML LY ) N KG)). (1.3.23)
uT,

Proof. The ">" inequality is trivial. To prove the converse inequality, we assume that
To = &81: this is not restrictive, because otherwise we can proceed by inner approximation
with smooth sets {}; whose boundary is contained in £ U I'y. Observe alsa that, by the
1-Lipschilz continuity of the projection, the supremum in (1.3.23) remains unchanged il we

replace CF(Q U To; MY SN NIC(C) with Ki(C), where Kiy(¢) is defined in (1.3.16).
First, we suppose that ¢{z) is constant on (I and we denocte its unique value by ¢. In
this case, the result could be deduced in an abstract framework using [21, Theorem 4] and
[52, Chapter II, Lemma 5.2], but we give a direct proof for the reader’s convenience. We fix

e > 0 and we find a continuous function ¢(x) such that

[ lg(x =) dlpi(a) < {1.3.24)

and congequently
H(P:Q:)SLH(Q $)dlp|(w) + MicCe. (1.3.25)
[$}

By the compactness of £ and standard properties of bounded Radon measures we can find

a finite family of pairwise disjoint open sets (G, )ff) such that:
BECH
acla (1.3.26)
f==]
lg(z) — gly)] <& for every 2,y € Q; N and every 1 < i < j(e); (1.3.27)
pl(8@Q: N ) =0. {1.3.28)

In particular, {1.3.27) and (1.3.13} easily yield:
1 (g(w), Q) ~ H{a{y), Ol < Micle (1.3.29)

for every =,y € (; N and every 1 <i < j{e).
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We choose 2; € @; N and we find & € K(¢) such that & :q(z;) = H{g(x;),$). Then,
we define
g e n 0
fao) =g L EES
0 lfQZEQ\UJ-‘:lQi

which is a step function satisfying £ € Kp|(¢). We then get, using the definition of £(x),
(1.3.24), (1.3.25), and {1.3.27)-(1.3.29}, that

(p.§) = Micle < [ Hate). ) dlpl(e) =

J(e) ile} _
=3 f H(a(x), ) dipl( <Z[ &gl dipl(z) + M <

/ £(z) : £(z) dlp|(z) + 2M g (e < jﬂ g(z) dp(z) + 3M e

and (1.3.23) follows immediately.
To prove the general case, we use a similar argument, taking pairwise disjoint open sets
(@YY satisfying (1.3.26), (1.3.29) and

(¢{z) = C{y)] <& forevery 2,y € Q; N and every 1 < i < j(g), (1.3.30)
which, together with (1.3.14), gives
[ (&, ¢(z)) — H(E, ((z))] < Mreit] (1.3.31)

for every z,7 € @; N and every 1 < i < j(g). We choose z; € Q; N§2. By the previous
step and (1.3.28) we can find functions r; € C§{@; N &, ME*Y) such that:

]er.-(m)dp(wz f@ HE), Cl) diple) = o

and such that 7{z) € K(¢(z;)) for every @ in Q; N Q. Puiting wi{z) = ¢y (mlz)),
where 7y (¢(z)) 18 the canonical projection on the closed convex set /C(({x)), we easily get

/Q,-nﬂ i(z) dp(z) fQ‘_n H(iE (), ((z:)) dlpl(z) - mwsml(@mﬂ),. (1.3.32)

We then define

p; ifze@in
pla) = {7 T TEIT
0 ze\UZQ

which is still continuous since the ;’s are a finite collection and the functions ¢; vanish
on the interfaces, and clearly belongs to J{{). Moreover, by (1.3.32)

()
f w(x) dp(z) = (Zf 2C(i)) dipl(2)) — & — elul (),

and (1.3.31)}, since T%('r) = 1 for |p|-a.e. x € 2, Anally yields

[t dnta) = [ HE @), 6w dinlte) - = - 21l @),
[$] Q

as required. 1
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1.4 Some tools about functions of bounded variation in

time

1t is a well-known fact for problems in elastoplasticity like the one we are going to study
in the next chapters that, since the functional A has linear growth, they have, in general,
no solution in Sobolev spaces, This is very natural from the point of view of mechanics,
due to the phenomenon of strain localization. Solutions can develop shear bands, where
ghear deformation concentrates. Seen from & macroscopic perspective, ghear bands can
be thought of as sharp discontinuities of the displacement (slip surfaces). They cannot be
resolved by Sohbolev functions, but they find a natural mashematical representation if plastic
deformations are allowed to take values in spaces of measures (see [50]).

Therefore, in our formulation, the plastic strain p will be regarded as a function from
a time interval, say [0,7}, to the space My(2U Fg;Mg,,’an )} which is neither reflexive nor
enjoys the Radon-Nikodym property (for this latter notion we vefer to [6, Chapter 3]). A
suitable weak notion of time derivative will be then needed to understand the evolution
of the gystem. The goal of this section is to introduce such a notion for a function f of
hounded variation from a time interval to the dual of a separable Banach space and to prove
the representation formula (1.4.9) for the #-variation V of f defined in (1.5.1), which turns
out to be closely related to the total amount of plastic dissipation on a time interval, as
we will see in the following. As a particular case, we will recover the analogous results for
absolutely continuous functions proved in [13, Appendix].

Throughout this section X is the dual of a separable Banach space ¥, and K is a
bounded closed convex subset of ¥ containing the origin. Let H: X — B be its support
function, defined by

H(z) = sup{z, ¥).
yek

Since K is bounded and contains the origin, there exist a positive constant Sz such that
0 < Hix) < Bullzix for every © € X . (1.4.1)

Thanks to (1.3.1)-(1.34) and Theorem 1.2, it is clear that for every fxed ¢ € COEN)*
the functional H(-,¢) introduced in (1.3.20) fulfills this description with X = My(S2U
I‘U;Mé\;an) VY = Ch{82 UFQ;M%.’;‘HN) and K := K(¢), where this one is defined in (1.3.15).

Given f:[0,7] = X and a,b € 10,7}, with a < b, the total variation of f on [a,b] is
defined by

N
Var(f;a,b) = sup{zuf(ti) — flti-)lyra=lo St S <iy=b Ng N}, (1.4.2)

i=1

while the H-variation of f on [a,b] is defined by

N
V(Frab) = sup { 3O H(F() — Fllima)) s o=l Sl S Sy = b NeN}. (143)
i=1
For every £ € [0,T], f(t+) and f(t—-) denote the left and right limits of f at £. It
is easily seen that the map 1 = F(i4) is right-continuous, as well as ¢ — f(t—) is left-
continuous. The function f is extended outside {0,T] by putting F(t) = F(0) whenever
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t =0 and f(t) = f(T) whenever ¢ > T', so that in particular £(0-) = f(0) and f(T+) =
f(T).

We now prove a theorem about a notion of weak™ Radon-Nikodym derivative for an
X-valued [unction of bounded variation with respect to the Stieltjes measure associated to
its variation.

Thearem 1.3. Let f: [0,T] = X be a function with bounded variation, and let p be the
unique Radon measure on [0,T) such that u([0,1]) = Var(£;0,) for every ¢ € [0,T] where
t = Var(f;0,1) is continuous. Then there ezists a unique (up to p-equivalence) function
vi:[0,7] = X such that for every y € Y the funclion t = (y,vp{t)) is p-integrable and

b
0 F0) = () = [ .00 dut (1.4.4)
Jor every a,b € {0,T] with a < b, such that p{{a}) = p({b}) = 0. Moreover
les(t)llx <1 (1.4.5)

for p-we te[0,7T].

Progf. Uniqueness is brivial, so we only prove the existence of such a function, Let F be the
linear span over Q of a countable dense set in V., For every y € F the function £ > {w, F(£))
has bounded variation on [0,7]. Let v be the unique Radon measure on {0, T} such that
v([0,4]) = {y, F(t)— F(Q) for every ¢ where f is continuous. Since v is absolutely continuous
with respect to u, by the Besicovitch Differentiation Theorem there exists a jr-negligible
set Ny, such that the limit

Fy e Tiy W F@ ) = F(t— b))
Dyt) = ;.1-];%1 u(lt = h,t+ 1))

exists for every ¢ & [0,7]\ Ny, the function ¢ s D(t) is p-integrableand

b
0 F0) = £@) = [ Dyt auy

for every a,b € [0, 7] with a < b, such that #{{a}) = p{{b}) = 0. We also notice that by
definition u([t — h,# + h]) > I F( 4 h+) ~ Flt — h=)|x. Let N be the unior: of the sets
Ny for y € F. Then, p(N) = 0, the derivative Di(t) exists for every y € /" and every
te [0, TN, and

(D01 < Nully (1.4.6)

Now, for t € [0, 7]\ N consider the @-linear map y € F DE(ty. This map is continuous
by (1.4.6); therefore, there exists a vector in X, which we call vr(t), such that

Di(t) = {y, vy (1)

for every y € F. Using the density of # and (1.4.6) it is easy to show that the vector v ()
it W £+ ht) = £t = ho))
. I, v - — -
() = 1
Wiz () Py ©([t = byt + k)
for every y € ¥ and every ¢ € [0, T|\ N, so that (1.4.4) follows again by the Besicovitch
Differentiation Theorem. Inequality (1.4.5) is an ohvious consequence of (1.4.6). O

(1.4.7)
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Remark 1.4. Let be an atom of i, that is a jump poink of f. Tt then easily follows from
(1.4.7) that

Flu) - 1) is

70 = 7 - e HOES Tl (149

[or every ¢ such that p({t}h) > 0.

Theorem 1.5. Let f: o, 7] — X tea left-continuous function with hounded varintion, and
let p, and vy(t) be as in Theorem 1.8. Then, the function b Hws(t)) is p -integrable

and
b
p(fab) = [ Hws) O (1.49)
for every a0 € [0,T] with a = b, such that p{eh) = p({oh) =0

Proof. We note that the function 1+ Hivs(t)) is B- _measurable, since the map 1 =
{y,wyp(t)) is p- _measurable for every ¥ & v and Hvg(t)) = supye,co(y,uf(t)), where
Ko isa countable dense subset of K.

Let us fix o and b as in the staterment of the theorem. 1f @ = fo Lty K < fy-1 &
fy=bisa subdivision of {a, b} such that p({t;}) = 0 for every i, then

<mﬂm—fm4»:[‘umqmmmnéﬂH@AmWM)

L .

for every 1 <15 N and every ¥ € K, hence
i
?ﬂﬂm—fmqnﬁf Hw (0 dild)

for every 1 <15 N . Summing over i and teking the supremum over all such subdivisions,
which equals to V(F;a, b} thanks 10 the assumption p{{a}) = p({bh)y =10 and the left-
continuity of f.we obtain

b
V(fiab) £ [ H{v (1)) du{t) . (1.4.10)

To show the converse inequality, we first observe that the function V(t} := V(f;0,1)
is left-continuous and non-decreasing. Let py be the unique Radon measure on 0,71
such that pw((0,1)) = v (t) for every © € (0,7]. This measure 15 absolutely continuous
with respect to p, a8 2 consequence of (14.1); therefore, by the Besicovitch Diferentiation
Theorem there exists & p-negligible et M such that the limit
dpy V(b)) - Vit — It
() = lim I
d nor - Rt )
exists for every t € [0, T]\ M, and

b
f %(t) du(t) = V(F;a,b)- (1.4.11)

Let ¢ € [0, T\ (N U M), where N 18 the set defined in the previous theorem. Since H i8
positively homogeneous of degree 1, we have

fllo+ h+) — Fllo — h}) Vg +h4) — Vitg— h)
;L([tg — h,to + h ,u{ tg — h,to+ h])
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forevery 1, > . Using the wealk * -lower semicontinuity of H, by ( L.4.7) and by the previous
inequality we get

Hlvr(®) < gmmm(&ﬂﬂj@i) <

1-+0+ ,u:([f — h, o + hD
. S+ ht) — p2 - h) ity
=t () < S

for p-ae. t € [, T]. We now integrate with respect to # and we obtain (1.4.9) from (1.4.10)
and (1.4.11). |

Remark 1.6. When £ is the unit ball of Y, then ¥ = Var and Hivp(t)) = v e (). T
follows from (1.4.5) and (1.4.9) that

s @iy =1 (1.4.12)
for y-ae te [0, 7.

Remark 1.7. Lot #a the diffuse part of u, that is to say
e =p =3 u({rhs,,
TEJS

where J := {7 ¢ 0.7] : p({r}) > 0}, which is at most countable. From Theorem 1.3,
Theorem 1.5, and {1.4.8) we can deduce that, if F is left-continuons and has hounded

variation
b
L 0 i) = 4,10 - ey - 2 (. fr) - £ (14.13)
¢ TEJN[a,b)
for every ¥ €Y and every 0<a<bh< T, and
b
/ Hv () dua(ty = V(£ a, VR H(F(m+) ~ £(7)) (1.4.14)
@ TEJN[a,b)

for every 0 < g < = T. The proof is indeed obvious when n{a}) = r({b}) = 0,
otherwise it can be obtained by approximation with subintervals lan, b,] of [a, 8] such that
u({e,}) = £({b:}) =0 for every n,

We now turn to the case of absolutely tontinuons functions, We recall that a function
T o, bl = X s said to be absolutely continuous if for EVery & > 0 there exists 6 > 0 guch
that 37 Il fit:) - Flsilllx < e, whenever ¢ < S1<ti<sp<ty<... =8k <1 < b oand
2i(ti~ 51) < 8. The space of these functions ig denoted by AC([0, T1; X). For the general
properties of absolutely tontinuous functions with values in reflexive Banach spaces we refer
to [4, Appendix]. Here instead, in our more general setting, we can deduce from Theorems
1.3 and 1.5 the following one, whose original proof can ha found in [13, Theorem 7.1].

Theorem 1.8, e F 0,7 = X be un absolutely continuous Junction. Then the weok® -
limit

F(t) == w-lim L8~ F() (1.4.15)

EEY 8-
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exists for a.e. t € [0,T]. Moreover, the function t s H(F(t)} is measurable and

V(fia,b) = h?{(j’(t))dt (1.4.16)

[£1

Jf()-f- cUery ., be {O,T] with a < b.

Proof. Lel p and vy as in Theorem 1.3. By the absolute continuity of f, g is absolutely
continuous with respect to the Lebesgue measure £' on {0,771, therefore p = ¢£! with
g € L}([0,71)*. By the Lebesgue Diflerentiation Theorem, for £!-a.e. ¢ € [0, T} we have

fim w(lt — h,t + k)
h—+0+ 2h

=g(?),

therelore (1.4.7) gives

| o fR) - = B)
000 =ty LI
for every y € ¥ and L'-ae. t € [0,7], and (1.4.15) follows with F{t) = v;(t)g(t}. With
this, {1.4.9) and the positive I-homogeneity of H, the proof of (1.4.16) is trivial. ]

Note that in this general situation f is only weakly* measurable, therelore it may
happen that f is not Bochner integrable. I ¢: [e, d] — [r, b] is nondecreasing and absolutely
continuous, then the function g{s) == f(w(s)) is absolutely continuous and

a{s) = Fle(s)p(s) for L1ae. s e d], {1.4.17)

where F(t) = f{¢) if the derivative (1.4.15) exists, while f(¢) == 0 otherwise (this result can
be obtained for instance by adapting [3, Theorem 4.21). It [ollows that

vd wid)
/ h{io(s))(s) ds = / hit) dt (1.4.18)
[ w{c}
for every h € L'([a, b}; X). Indeed, the derivatives with respect to d of both sides in (1.4.18)
coincide £'-a.e. by (1.4.17).

1.5 Discrete approximation of some integrals

In this section we establish some measure theoretic results concerning a discrete approx-
imation of some integrals that will prove useful in Chapter 5 to get the energy-dissipation
balance.

Given p: [0,T] = My(QUTp, MYXY) and ¢ € CO@)+, according to (1.4.3) for every
0<a<b<T we define

ke
Vip, ¢ a,b) = supz H(p(t) — p(ti-1),£), (1.5.1)

=1

where the supremum is taken over all finite families tg,t1,..., ¢ such that a = < ¢; <
~o Sty = b, If p is absolutely continuous, the weak”-derivative p is defined by (1.4.15).
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In the following Lemma we combine some elementary properties of V(p,¢;0,T) with the
representation formula (1.4.9) to get a discrete approximation of the integral

i
]ﬂ H(p(e), C) dt

Lemma 1.9. Let T > 0, let p € AC([0, T}, My(QU D'g; MEXNY), let ¢ € CNO)t, and let

sy
{tL }ocici, be o sequence of subdivisions of 10,7 satisfying

0=t <tl< - <t =T and o= max (i -4 ') = 0. (1.5.2)
1<i<h
Then ) ‘
123 ) - i
. iy iedy ey : .
i 3= ip(e) = 00,00 - [ o0 0] =0, (153)

Proof. We first show that, if p is only assumed to be left continuous in {0,77] with respect
to the norm topology in My(2 U To, MY XN}, then

ST
ix
0,7} = i th) — ot ). ) 5.4
V(p,¢;0,T) klggogmp( B = P57 ¢) (154)
To get this, by {1.5.1) it is enough to prove the inequality

V(p, G0, T)<hmmfZ’H (ti) - p(ti ), 0). (1.5.5)

Let us fix A < V(p,¢;0,T). By (1.5.1) there exist an integer h and a subdivision 0 =ty <
t1 <.+ <ty =T such that

A< Y Hp(t5) ~ plEi-1), Q) (1.5.6)

j=1
For every j and k, let (7, %) be the greatest integer i such that ti <t;. Since t; — 1 <
'ti,(]’k) < t; and 7 — 0, inequality (1.5.6), together with the left continuity of p and the
continuity of H, sives
N« Z-H l{J k - plt L'(.T'—l‘-‘f))’c)
J==1

for k large enough. By the triangle inequality (1.3.11), this implies

A< Z'H p(ti 1), ¢)

i1

for k large enough. Inequality {1.5.5), and thus (1.5.4), follow from the arbitrariness of
A <V(p,G0,t).
Now, if p is absolutely continuous, by Theorem 1.8 we have

17}
V(p, (i, b) m] H{p(E), ¢) dt (1.5.7)
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for every 0 < a < b < T. Therefore (1.5.4) gives

‘/DT H{p(t), ) dt = lim :_Zkl Hip(ty) — pty ') <) (1.5.8)
Since »
Hiplh) -~ Py 0 € [ B0
by (1.5.7), equality (1.5.3) is equivalent to {1.5.8). k O

We now turn to the case of a time-dependent function {: [0, T} — CP(Q)*, and we get
an analogous result for the integral

T
fo H(p(), C(D)) db.

Lemma 1.10. Let T > 0, let {ti}oci<i, be o sequence of subdivisions of [0,T] satisfying
(1.5.2), and consider p € AC([0,7, My (QUI; MYXNYY and ¢ € CO([0, T7; Co(D)*t). Then

spym
Tim Yl - o ) - [ 0. =0, (15Y)

lim Z
k—+00

H(p) - pU.00) - [ GO =0 (1510)

Proof. Since &~ C(t) is continuous, for every ¢ > 0 there exists 8(z) > 0 such that
IC(H) = Ct)]|loo < € for every t/, ¢ € [0,T] with |t/ — 2] < d(e). (1.5.11)

Let us fix ¢ > 0 and a subdivision 0 =g <ty < <lp =T such that £; — t;—1 < d(g)
for every j = 1,...,h. By Lemma 1.9 we have

i £},
: iy i1y o)) — 0 g _ 9
Jim > () = (7€) = [, HOO.Clh)) | =0 (1.5.12)
for every 7 =1,...,0.

I tj_y <t} < ty, by (1.5.2) for every #i-1 <t < #i we have [t — t;1] < d(z) and

|t —t;] < 8(g) for k sufficiently large. Therefore (1.3.14), (1.3.20), and (1.5.11) give

(p, C(0) — Hp, C(t—1)) < Mgellplh and  [H(p.¢(1) — Hp, ¢{ty))] < Mucelplly

for every p € M(2 UL, MY NY and every ti:"l <t< Li Since p is absolutely continuocus,

ST

this implies, thanks to Theorem 1.8, that
[Hp(E) — P, CET) - Hp(t) — p(E7), ¢t <

< Melp(th) - Pt < M [ 1Bt
ST
£, i .
| [ p.cona - [ MO0 | < Mice /
it 8" t

4
1—1
k

Ip()ladt
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Therelore

(1) =P €7 = [ G0, c(o) o] <

£

M) = plt), <) - [ w0, cai] +2aace [ oo,

i-1
£y

T
i1 i—1 dt 2M AVl
(#) - (), ¢ - / ML), S0 ] < 2t [ 1o0)

Equality (1.5.9) follows now from the arbitrariness of ¢ > 0. The prool of (1.5.10} is
similar. O

We now prove two lemmas concerning the approximation of Lebesgue integrals by Rie-
mann sums. The first one, in the weaker form (1.5.14) is well-known (sce [22]). For the
application we have in mind we need the stronger result (1.5.13), which is related to the
Saks-Henstocl lemma (see [45] and [24]) used in the theory of Henstock-Kurzweil integral
(see, e.g., [30]). We present here an elementary proof in the framework of Lebesgue integra-
tion, based on Fubini's theorem, taken from [16, page 63].

Lemma 1.11. Let T > 0, let X be a Banach space, and let - [,7T] = X be o Bochner
tntegrable function. Then there exists a sequence (ti)ogi<i, of subdivisions of the interval
(0,7 satisfying (1.5.2) such that

klin;aZ/ lab(t) — (") dt =0 = Jim Z] llab(t) — b (ti)|| e . (1.5.13)

i=1

In particular we have
hm Zz,f){f‘ N - / () dt = Jim Z"/’ (E — 7Y, (1.5.14)
Jim ; (k) — {67 - 6871 =0, (1.5.15)

where the limits in (1.5.14) are in the strong topology of X .

Proof. We extend 4 to 0 outside [0,T]. Set, for every m > 1 and every i & Zy Th =
For every s € [0,1] we have

A ||w (5475 — (t)] dt =

icZ ' +T1ln—

—Z] (s + i) — (s + 74, — 7| dr

ieZ
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Observe that there are at most m(T' -+ 1) -+ 2 non-zero elements in the above sums, namely
those satisfying i € g := {i € Z : —m < i < mT + 1}. Integrating in the variable s we
then get

N
/[) [Z/ EIT{’J{S + Tm) (f)il df;] ds <

1
iET +T|‘1|

2 f / s+ ) = lo+ 7 = )l ds] dr = (15.16)

_,Zf f (s} = (s — )| ds] dr

i€fm =
Since the translations are continuous, for every £ > 0 we can find § > 0 such that
00
] Ip(s) — w(s — Tl ds < & (15.47)
-G

for 0 < v < §. Thus, (1.5.17) and (1.5.16) imply that

,-,3‘?2&/ Zf ||¢ (s+70) — (1) dt] ds = 0.

ien et

It follows that, along a suitable subsequence my, — +oo, we have

Tany, _
Jim Zf (s + 7, ) — 2 (t) dt] ds = 0 (1.5.18)
+rat
for £'-a.e. s € [0,1]. Let us fix s € [0,1] such that (1.5.18) holds. Let px be the largest
integer 7 such that s+7’};h; < 0, and let oy, be the smallest infeger 4 such that S+Tfnk >T,
and let iy = o — gg. For i =1,...,4 — 1 we define ti =3 +1"’k‘”, and we set t?c =0
and t}¥ := T'. It is clear that (1.5.2) is satisfied. moreover

Z/ 1) — w0 dt =

i=1
=gy 1 "”k )
_ j s i ) — () i = (15.19)
imprg2 et

a T
- / les) ~ B e+ [ 1(T) = w0l e,
i Joy,

where oy == 5+ T,Qn‘ifi and by 1= 5+ ToE" 1 Since all integers hetween g + 2 and oy, — 1

belong to T, , the first term in the right-hand side of (1.5.19) tends to 0 by (1.5.18). The
second term is estimated by

vl s+1’,",’.kk+l
[t —wionas [ s+ - w0,

+Tm
which also tends to 0 by (1.5.18). As T'—b;; is infinitesimal by the choice of oy, the absolute
continuity of the integral vields that also the third term goes to 0. This proves (1.5.13).
Equality (1.5.15) follows from (1.5.13) by the triangle inequality. ]
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For our purposes, we will need an ad-hoc refinement of the previous lemma. To be
definite, we consider a measurable subset B of [0,7]. In a simplified situation, say if B is
a subinterval or a finite union of subintervals, it is not difficult to prove that, in order to
approximate the Bochner integral of + over B, we can take the sequence of Riemann sums
satisfying (1.5.13) and consider only the contributions of the indexes i such that ti,_l (=¥ E]
and U}, € B. The next lemma shows that is is true for an arbitrary measurable set B. The
reason for this technical point will be clear in Chapter 5, Section 5.6. Roughly speaking this
lemma is tailored to a situation where, when proving an inequality involving integral terms
[or a system whose solutions can show different types of dynamics, one may need different
types of approximations on the set of times where a certain regime is followed and on its
camplementary set.

Lemma 1.12. Let T > 0, let X be a Banach space, let 9: 0, 7] =+ X be au Bochner
integrable function, let A be a measurable set in [0,7] such thot ¥ = 0 on A, let B ==
[0, TI\ A, and let (ti)ggisu be a sequence of subdivisions of [0,T] satisfying (1.5.2) and
(1.5.13), and hence (1.5.14). Let us define

If={i:1<i<iy, tit €A, th e A}, (1.5.20}
IF={i:1<i<q, ty' € B, ti, € B}, (1.5.21)
JT=lic1<i <y, tit e A, € BY, (1.5.22)
J,-‘:!""::-“*{z:lg'.',gzk, tlleB, th g A}, {1.5.23)

Jit = Ji-uadt. (1.5.24)

Then

nm§j¢f1fyﬁ*h—/'w = I S - 67, (16.25)

k—o0

icll ierf
Jim ZJ (il -+ ||w(ti.}i|)(f::; —4i7) =0, (1.5.26)
i€
Z/ b (6)] dt = (1.5.27)
Ef"‘UJ“‘

where the limils in (1.5.25) are in the strong topology of X .

Proof. By (1.5.13) we have

Jim Zf I(0) = (i) dt = 0 = Jim Z/ (k) — 4p(ei)|| dt,  (1.5.28)

161
Jim 3 f ) == 0= tim 3 ] () - il de, (1529)
1(_—',.]"”‘ zEJ -
"
Jim 3 f le@ldi=0 = lim f lbOldt.  (15.30)
Eerfugd- zeff‘uf*‘“f

Equality (1.5.27) follows from (1.5.30). Applying the triangle inequality we obtain {1.5.26)
from {1.5.27) and (1.5.29). On the other hand, taking into account (1.5.20)-(1.5.23), we
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have

Zw EU( — i) Z P - 1) Z YT~ 47, (1.5.31)

ierf igd

and the last sum tends to 0 by (1.5.26). Therefore, the first equality in (1.5.25) follows [rom
{1.5.14) and (1.5.31). The proof of the other equality is similar. O

Remark 1.13. Let 7", A, and B be as in Lernma 1.12, and let (¢} )(]<l<u he a sequence
of subdivisions of {0, T] satisfying (1.5.2) and

iy t}, ik ot
. _ AT T - #i )
khm ;/t,jl Ng(t)—1p(t; )dt=0 klg&;/ﬁid [1p(t) — 1g(t.dt, (1.5.32)

where 1g denotes the characteristic function of B, defined by 1g(t) =1 lor { € & and
15(t) = 0 for t ¢ B. It follows from Lemma 1.12, applied to X = R and 9(t) = 15{l),
that

lim Z(ti.ml,i,‘l)—[)w lim SoociBn D, (1.5.33)

[
ieJt 1eI Audg

Remark 1.14. Let T, A, and B be as in Lemma 1.12. If in addition ¢: [0,T] — X
is bounded and A is a relatively open set in [0, T], then, given (#i)o<ici, a sequence of
subdivisions of [0, T satisfying (1.5.2), (1.5.13), and (1.5.32), it is not restrictive to assume
that (Li_], t";‘,) C A for every i € Jé“.

Indeed, if not, we can construct another subdivision satisying (1.5.2), (1.5.13), (1.5.32),
and our additional request, proceeding as lollows. For every ie Jkl_ let t“% be the
supremum of the connected component of A containing f,}; , and for every i € J,j_“ let
ti=% be the infimum of the connected component of A containing g M1 <d <y
and i ¢ Ji, we set {~% := #. Then we consider the subdivision (f})ogi<s, defined by
fh = tii/g, which clearly satisfies (1.5.2). Defining Ji* by (1.5.24), with # instead of ¢}, by
construction (5;':"1, Ei:) C A for every i € J{.

To see that ( 13), and (1.5.32) are satisfied, let A4 be an upper bound of |jz(t}{ on
[0,7). Since ti~% = tk for i ¢ J¢ and [|9p(t) —p (5 D) < ([w(E) — ()] +2M for every
i € Jit and every s € [0,T], we have

if i h

> (]tii b (2} — (8| dt-l-/‘w 2 () — (M| dt,) <

i=}1
< Z/ () — (i W dt+2M D (8~ ti71).

i

Since the right-hand side tends to 0 by (1.5.13) and (1.5.33), we obtain the first equality in
(1.5.13) for #i. A similar argument proves the other equality, as well as (1.5.32).
1.6 Continuous dependence on a parameter

A particular situation will occur in Chapter 3, where, due fo a suitable choice of the
data, our problem will reduce to determine the limit behavior of the solutions of a singularly
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perturbed system of ODE’s in a finite dimensional Banach space. In this perspective, the
lollowing result about continuous dependence on a parameter, whose original proof can be
found in {27} {see also [26]), will be useful .

Theorem 1.15. Let f. and fo be Carathéodory functions defined on [a, b] xR™ with values
in B™, let ., tp € la,b], and let 2., 2g € BR™. Assume that there ezist two constants
L>0 and M > 0 such that

1fe(tyxa) — fe(t,21)| £ L|za — 2], (1.6.1}
|felt, )] < M, (1.6.2)

for every € > 0, every ¢t € [0,b], and every z, =1, 50 € R™. Let y.(t) and yolt} be the
solutions of the Cauchy problems

e (t} = felt, u(2)) . wo(t) = folt, u(t)), (1.6.3)
Ih:(ts) =T, 'Us(tl)) =Ip.
Ift. =4y, T = 20, and for every x € R™
t t
f Je(s,x)ds — f Jo{s,z)ds uniformly for t € [a,b], (1.6.4)

then y(t) —+ ya(t) uniformly for ¢ € [a,b].

Proof. 1t is easy to deduce from (1.6.4) that (1.6.1) and (1.6.2) hold also for £ = 0, therefore
yoit) is well defined on the whole [a,b]. Moreover it is not restrictive to take ty = a. Let
x(s) be a finite linear combination of characteristic functions of subintervals of [a, ). Then
(1.6.4) implies that

t t
f fe(s,m(8)) ds — / fo(s,x(8))ds  uniformly for t € [g, 8],
a a
By uniform approximation, using (1.6.1) it is not difficult to prove that
t ot
/ JFe(s,va(8)) ds — / fols,va(s)) ds uniformly for ¢ € [a, 4] . (1.6.5)

So, let e := supyepq ) |j: fels, yg(S))dS—f; fo(s, yals)) ds|. For every ¢ € [a,b], by {1.6.1)
and {1.6.3) we have

t t
lye(t) — wo(t)l = |z — 0 +f fe(8,9e(s)) ds —j fo(s,ma(s)) ds} <
¢
< lae — ol +Lf |ye(s) — wo(s)| ds + R, ,
therefore the Gronwall inequality gives

e () = po(t}] < e~ |z, — @} + Re)

for every ¢ € [a,b], and the conclusion easily follows. |
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In the following corollary inequalities (1.6.1) and {1.6.2) are satisfied only in the intervals

[t<, ], and the conclusion is slightly wealker.

Corollary 1.16. Lel fo and fo be Curalhéodory functions defined on [o, )] <xB™ with values
in B™, let £ — a, and let z., zg € B™. Assume that therve exislt two constants L > 0
and M > 0 such that (1.6.1) and (1.6.2) hold for every € > 0, every £ € [t:, 1], and every
T, Ty, w2 € B™. Let y.(t) and yo(t) be the solutions of the Cauchy problems (1.6.3). If

Ty =+ o, und for every x € R™ and every n > 0

. o
/ fe(8, 1) ds — fls,z)ds uniformly for t € [a 7,0,

a+n a1
then,
e lve(t) —mo (@) — 0
Proaof. Deline
A P CEo N T

Jelte,z)  otherwise

and let z(t) the solutions of the Cauchy probiems

Ze{t) = ge(t, 2(1))

{te) =T, .

sl

It is not diHicult to see that previous theorem may be applied with g.{¢,z)} in place of f.;
then z.(t) = yolt) uniformly for ¢ € [a,b]; conclusion follows as, lor every # > 0, when
¢ sufficiently small, z.(t} = y.(¢t) in {a + n,b] by the uniqueness of solutions to Cauchy
problems, O
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Chapter 2

The problem and the

mechanical assumptions

2.1 Overview of the chapter

The goal of this section is to introduce the Cam-Clay mede! in plasticy, to fix a convenient
notation for the development of the study we will carry out in the next chapters and to discuss
the main mechanical assumptions that we do in order to investigate the well-posedness of the
problem. In the final section, we introduce the vanishing viscosity approximation which is
the first tool we will use in order to give a suitable notion of generalized solution in Chapter
5, and we write down the £-regularized equations.

2.2 The Cam-Clay model

Cam-Clay plasticity is a well established model for the description of the mechanics of
fine grained soils [41, 42, 43, 46]. The framework is small strain elasto-plasticity, where the
linear strain Fu is defined as the symmetric part of the gradient of the displacement wu
with respect to a reference configuration Q. Moreover, the strain is additively decomposed
into elastic and plastic part, namely Fu = e+ p, where the elastic part e determines the
stress o through the linear constitutive relation o == Ce, where T is the isoiropic elasticity
tensor (see (2.3.2)). The stress satisBes the standard equilibrium condition —dive = f in
1, where div is the divergence operator with respect to the space variable z and f denoies
a time dependent body force.

In its classical formulation Cam-Clay plasticity rests on three main ingredients. The first
one is a set of admissible stresses K((), a compact convex set in the space of symmetric
nxn matrices, whose size depends on a scalar internal variable . The boundary OK(¢)
identifies the yield surface, while stresses in the interior of K(() cause no plastic low. In

the typical applications, 8K (¢) are homothetic ellipsoids passing through the origin in the
NxN

sym

space M . The technical assumptions on J7(¢) are those in the previous chapter, namely

(1.3.1)-(1.3.4). The other two main ingredients are the evolution laws for the plastic strain p

21
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and for the internal variable . To write them explicitly, we introduce a new internal variable
z, related to ¢ by the equality { = V(z), where V: R — {0, o0} is a globally Lipschilz
nondecreasing function such that ¥{z) > ¢, for every z € R and a suitable constant {, > 0
(see (2.3.37)-(2.3.38)). Denoting the normal cone to K(() at o by Ng(c)(a), the equations

summarising the model are
{a) constitutive equations: o(t,z) = Ce(t,z} and ((t, x) = V(z(t,x)),
(b) additive decompasition: Eu(t, z) = e(t, z} + p(t, x},
(c¢) equilibrium condition : —div o(t, 2} = f(t,z),
(d) stress constraint: o(t,z) € K(¢(t, =),
(e} fow rule: p{t,z) € Ngcqaylot,x)),

(f) evolution law for the internal variable: i(t,z) = py * [(pg * tra(t, ) brp(t, )](z),

accompanied by suitable boundary conditions. Here p; and pa are smooth convolution
kernel with unitary mass (see {2.3.39)). The nonassociative nature of the problem is due to
the fact that the evolution law (f) does not depend on K. Due to (1.3.5), if 2({,z) > 0 the
set K{C(t,z)) expands leading to a hardening response. On the contrary, if 2(t,z) <0 the
set K{C(t,z)) shrinks leading to a soltening response.

The ahove formulation contains two differences with respect to the classical one, where
V(z) = z and the convolution kernel is not present in the evolution law for the internal
variable. The main reagon for introducing the convolution is technical: it ensures that a
very weak convergence of o and p implies strong convergence of the corresponding z. From
the point of view of mechanics, the convolution gives a nonlocal character to the evolution
law for the internal variable: it implies that the size of the yield surface at a point =z is
affected hy pressure and volumetric plastic strain rate in a small neighborhood of @, which
is not physically implausible. However, we anticipate that in the analysis of the spatially
homogeneous case {Chapter 3) one can prove that z is positive and bounded away from 0,
so that one can take V{z) = z, and identify z with ¢, as it is typical in the engineering
literature, Therefore, since the convoluiion kernels have unitary mass, in the case where z
is indepedendent of = {Chapter 3} we recover the classical formulation.

2.3 Mechanical preliminaries

The reference configuration. Throughout the paper the reference configuration 2 is a
bounded connected open set in BY | n > 2, with Lipschitz boundary 80 = TyUT UN. We
assume that I’y and I'; are relatively open, T My = @, 'y 5 @, and H" H{N) = 0.

On Ty we will prescribe a Dirichlel boundary condition. This will he done by assigning
a function w € HY2(9Q; RN), or, equivalently, a function w € FH{;RY), whose trace on
T (also denoted by w) is the prescribed boundary value. The set Ty will be the part of
the boundary on which the traction is prescribed.
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Stress and strain. For a given displacement v € BD(1) and a boundary datum w €
HYO;BY), the elustic and plastic strains e € LA(Q;MY%N) and p € My(Q U To; MY XN)

satisfy the weak kinematic admissibility condition

Fu=e-+pinfl,

(2.3.1)
p=(w—-u)OrH*on Ty,

where » is the outer unit normal to 92, and the right-hand side of the second formula in
(2.3.1) denotes the measure in AJb(FQ;Mé\;};:N) with density (w—w)@v e LY(Ty; Mg’,:‘n{'\r)
with respect to H""!. As usual equality between measures on a set means that they agree

on every Borel subset. The stress o & L2(0; MY *N) is defined by

sy

o= Ce, (2.3.2)

where C is the elasticily tensor, considered as a symmetric positive definite linear operator
C: M:;\{',;jfv — M{‘L;;’V We assume that C is isotropic, so that we have C€ = 2uf + A(tr€)[,
where A and p are the Lamé constants. In ferms of the canonical decompasition of a

symmetric matrix in its spherical and deviatoric part we can write
CE& = 2pfp + w(tré}], (2.3.3)

where the constant p > 0 is the shear modulus, the constant & > 0 is called modulus of
compression, and £p denotes the projection of £ onto the space of trace-free symmetric

matrices. Let Q: MI¥N — [0,4+00) be the quadratic form associated with €, defined by

Q(E) == $CE: £

It turns out that there exist two constants ag and Ag, with 0 < ag € Ba < +oc, such
that

aglél* < Q(€) < Aglel (2.3.4)
for every € € MN*N . These inequalities imply
ICe| < 28plel. (2.3.5)

The stored elastic energy Q : L*(Q;ME*N) — R is given by

0fe) = [ Qletw)de = hio.e).

N¥uN

tum ) with respect to weak

1t is well known that Q is lower semicontinuous on L*({{2; M
convergence.

Stress-strain duality and plastic dissipation. If ¢ ¢ LQ(Q;MgﬁlN) and dive €
L2 (S RY), then we can define a distribution [ov] on 98 hy

{[ov),)on = (diva, Yo + (o, By)a (2.3.6)

for every ¥ &€ H*(Q; BY). It turns out that [ov] € H-'/2(30BRY) (see, e.g., [52, Chapter I,
Theorem 1.2]). If, in addition, ¢ € L=(Q;MN*N) and dive € L*(S;BY), then (2.3.6)

sy
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holds for v € WI(Q;BY). By Gagliardo’s extension result {20, Theorem 1.IT], it is easy
to see that in this case [ov] € L*(0; RY) and that

[opv] = [ov] weally* in L>=(80; RV}, (2.3.7)

whenever o — o weakly” in LW(Q;Mé\;ﬁfV) and divey —~ dive weakly in L™(Q; RV},

We shall denote with L(£2) the space
() = {o e L™, Mgfn‘v) cdive € LP(O; RV} . (2.3.8)

Obviously, when o € CU; MY M) N E(0) we have

Sy

[ov] = ov on Ty, (2.3.9)

where the right-hand side is the pointwise product between the matrix o{z) and the normal
vector #(x} at each z € I'g.

The space TIr,(€2) of admissible plastic strains is defined as the set of all p € M(QU
FD;M;";,an) for which there exist v € BD(Q), w € HY(RY), and e € LE(Q,M;’\LﬁV)
satisfying (2.3.1).

According to [7, Section 3], given p € I, (Q) and ¢ € £(82), we can define the distri-
bution [o:p] on @ by setting, for every ¢ € C2°(92),

{[o:p],p) = —{ou,dive) — (o, u 0 V) — (0, pe) (2.3.10)
where w € BD(Q), w € HY{QLRBRY), e € Lz(Q;Mi\L"mN) are as in (2.3.1). We extend the

delinition of [o:p] by setting
[o:p] == [ov] - {w—w) H""! onTy, (2.3.11)

so that fo:p]LTo € My(Tg). Actually, we have [o:p] € Mp(2UTp) as we discuss in the
next proposition, among the other properties of the distribution [o: p].

Proposition 2.1. The definition of {o:p| does not depend on the functions v, w, e salis-
fying {2.3.1). Moreover [o:p| is a bounded Radon measure on QUTy and, if we define the
duality product

{g,p) == [z p|(QQU Ty}, (2.3.12)

we have that
(o, p}| < llolleollpl1- (2.3.13)

Proof. By (2.3.11) it is easy to see that [o:p]LTq is independent of u, w, e satisfying
(2.3.1}, so that we have only to check that the right-hand side of (2.3.10) is independent of
the choice of » € BD(Q) and e € L*(QMN%N) such that Eu = e+ p in §2. To do that

Sy
we first observe that for every ¢ € C1(Q1) and u € BD() we obviously have wu € BD(f)
and

E(pu) = pFu+u@ V. (2.3.14)

Then we take w1, us € BD(S) and ey, ex € L (S MY XN such that Euy — ey = Bus —

sYm

es = p in . It follows that E{u, — up) € LAE;MY%N), so that by (1.2.2) we get

sYm
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uy — g € HY(;RY). Therefore, for every ¢ € C(Q) we have p(u; — us) € HL (O, RY),
so that (2.3.6) and (2.3.14) give

{@luy — ua), dive) + (o, (u1 — u2) ©@ Vi) + (7, 9(e; — €3)) =0

for every o € C(Q), as required.
We now show that [o:p] is a bounded Radon measure on 2. To do that, we observe that
by a standard approximation result (see, e.g., [52, Chapter I, Theorem 3.2]) there exists a
sequence v, € C({;BY) such that
ve =+ u in LY RY),
Ev = (BEu) L9 weakly® in M (0; ]ElN), (2.3.15)
1Evilin — | Eulls,
and therefore, by the Sobolev embedding Theorem in BD,
v —+ . weakly in L7 (£ 2Y). {2.3.16)
We set pi = Euvp — e, so that pp € L*(Q; ML %), Moreover, by (2.3.10), (2.3.15) and
(2.3.16) we get

{lo spelooy = {lo:pl, @), (2.3.17)
el =+ ol 0 {2.3.18)

as I goes to +-oc, where {|pl1.q is the norm of the measure pL. Q. Now (2.3.6) gives
{o, B(pup)) = —{pvg, dive)
so that by (2.3.10) and the chain rule we have that

([U :pk]n ‘P) == (lpD’,pk)

in the usual sense of the L* duality and we get the estimate
g

[{le ik 2] < Nlollocllpiella oo llco -

From this, (2.3.17), and {2.3.18) the claim follows as well as the estimate

[{le:pl. 2} < el lIplhallelles - (2.3.19)

By (2.3.11) we then deduce that [o:p] € Mp(2Ug).

By (2.3.1), the restriction of p to Fy can be identified with an element of the space
LY(I'o; BYY. If we assume that o € C(0) N 2(R), from (2.3.1), (2.3.9), and {2.3.11) we
easily deduce

e :pllivre < llofslipllir, (2.3.20)

where || - [l1,r, denotes the norm of L}(Tq; RY). We claim that (2.3.20) holds for every
o € £(£2). Indeed, we can always find oy, € C(0) with |jog]ce < [leleo such that o — o

weakly* in L(Q; MY *N) and dive, — dive weakly in L7(§;RY). This follows from
[13, Lemma 2.3}, which is a particular case of Lemma 2.4 that we will prove later. With this
fact, the claim fellows from (2.3.7) and (2.3.11). Then, (2.3.13) follows from (2.3.19) and

(2.3.20). O
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Other properties of the measure [o:p| are collected in the next remark.

Remark 2.2. We claim that
{[o:p], ) = (w0, p) (2.3.21)
for every o € CO(;MI%N) N 5(Q) and every € C°(Q), where the duality used in

sym
the right-hand side is the standard duality between continuous functions and measures.

Fquivalently, for every o € CO(TLMNZN) N £(9) and every p € T, (€2) we have

SYT

loipl=0o:p on QUTg, {2.3.22)

where the right-hand side denotes the measure defined by
(o:p)(B) := / ordp=3" / os; dpss (2.3.23)
JB B

for every Borel set B C 2 UTy. Indeed, using {2.3.13) and an approximation argument,
it suffices to prove the claim for ¢ € CYQ;MY%Y). Take u, e, and w as in (2.3.1}. By
(2.3.9) and (2.3.11), equality (2.3.22} is trivial on any Borel subset of T'p, so that it only
remains to check that (2.3.21) holds for every ¢ € Cg°(€). Using (2.3.1) and (2.3.14) we
get

(g, p) = (g, E(pu)) — (o, u© V) — (o, 0e) .

Since wu = 0 on ) the Green's formula in BD(Q) gives (o, E(pu)) = (—dive, pu) so
that (2.3.21} follows from (2.3.10).
If o, — o weakly* in Lw(Q;M%ﬁN), div o) — div ¢ weakly in L*(Q;RY), from

(2.3.7), (2.3.10), {2.3.11) and (2.3.13} we immediately deduce that

(fox:plp) = {[o:p], @) (2.3.24)

for every ¢ € C°(10).

Fix o € £{02) and consider a sequence oy € C*(Q) with §ou)le < loile such that o —
¢ weakly™ in LW(Q;MEQN) and divey — dive weakly in L*(§;RY), whose existence
is guaranteed by [13, Lemma 2.3]. Denoting with p, and ps, respectively, the absolutely
continuous and the singular part of p with respect to £" we get from (2.3.22) that the

Lebesgue decomposition of [o:p] on QU is
[k :pl =0k pa+0pPs - (2.3.25)

Now it is easily seen, as the functions ¢y are equibounded in aLI{¥h Mj;\;;‘” ) that, when k&
goes to oo, the sequence oy :p, weakly* converge (up to a subsequence) to a measure p
which is still singular with respect to £™. Using (2.3.24) and taking the limit in (2.3.25),
we then obtain

lo:pl=0:pat+p

on UT,. By the uniqueness of the Lebesgue decomposition, this entails that the absolutely
continuous part [or:pl, of [o:p] with respect to L satisfies

friple=0:ps on Q. (2.3.26)
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We also get that u coincides exactly with the singular part {g:p]s of [o:p] with respect to
L%, and we have the estimate

[lo:p)s| < |loficalps| on 2UTG. (2.3.27)
The following proposition provides a useful integralion-by-parts lormula.
Proposition 2.3. Lel v € BD(Q), w € HY(LBRY), e € LQ(Q;MQ;;!N), p e M(QUu

Fo; MN=NY satisfy (2.3.1). Let o € LO(Q,MNXNY | fe LM (G, RY), and g € L®(I'; RY).

sy sym

Assume that —dive = f in §, and that [ov]=g on T'1. Then
(lo2 ) + {0, = Bu) + {0, (u = w)© V) = (f, ol — W) + (g (= whhr, (23.28)
Jor every w € CY(Q). Moreover
(o8} + {o ~ Bu) = {f,u~ whe + 9,0 — wir,. (23.29)

Proof. We can assume that ¢ € C°°(11), otherwise we can proceed by approximation ex-
ploiting [13, Lemma 2.3], (2.3.24), and (2.3.7). Let v :=u —w € BD(Q} and & = ¢ — Fw,
By (2.3.22) we have

(o 1], ) = (o, Pla + (o, pir,
where the dualities in the right-hand side are the standard dualities between a continuous
funciion and a measure. Now, using (2.3.1), (2.3.9). (2.3.14), and the Green's formula in
BD(£) we get

(o, pia = {go, Bv — &)a = (@, E(pv))a — (0,0 @ Vi) — (o, pé) =

) (2.3.30)
= (o], gvhan + (F, 00} = (5,00 V) — (0, 03)
On the other hand, by (2.3.1) we have
(wo, pire = —{lov], v)r, - (2.3.31)

Since {ov] = g on Ty, summing (2.3.30) and (2.3.31) we obtain (2.3.28). Taking p =1 in

£, we get (2.3.29). O
The following closed linear subspace of L*(Q;MN%¥) will be used in our proofs:
o() = {o € LA MEAN) i dive=0in &, [ov] = 0on Ty} (2.3.32)

By the weak definition of the divergence and by the symmetry of o, it is easy to see that
Loy = {Ep:p & H%O(Q;RN)}J*. By taking the orihogonal complements, this implies
that

So(* = {Eg : p € HE (R}, (2.3.33)

NxN
ST

inequalities. A different proof can be obtained by using the version of De Rham's theorem
proved in [35] (see also {52, Chapter 2, Proposition 1.1}) and {1.2.2).

Here and henceforth the closed convex cone K C Mi‘;ﬁ;\r %[0, 00} with nonempty inte-
rior and the closed convex set K({) C M;‘};Z‘HN parametrised by ¢ > 0 satify {1.3.1}-{1.3.4).

since the latter space is closed in L2 (0 M ) as a consequence of Poincaré’s and Korn's
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For p € My (QUTo; MY %N) and ¢ € CO(Q)F the measure H(p, () and the functional H(p,¢)
are those defined by (1.3.19), and (1.3.20), respectively.

Following the lines of [7, Proposition 3.3] and [48, Proposition 3.2] we want to investigate
the connections between the measure H(p,¢) and the measure [¢:p] when ¢ € L(f2) sat-
isfies the stress constraint for £L™-a.e. o € 2. To do this, we need this preliminary lemma,

which is an ad-hoc refinement of [13, Lemma 2.3]. We shall denote with By~.n the closed

NN
sym -

unitary ball of the space M

Lemma 2.4. Let U be a bounded open set in RY with the segment property, let ¢ € C(U),
and let K(C) be asin (1.3.2). Let o € LT(U;MNXNY, 1 < r < o0, with div o € L7 (U;RY)

S

and o(2) € K{(¢(x)) for L*-a.e. z € U. Then there exists a sequence oy, € C%(U; Mi\;ﬁfv)
such that oy ~+ o strongly in L"(U;MBNUTHN), div oy — div ¢ strongly in L™(U;BY), and
for every € > 0 there evists ko, only depending on e, such that op(x) € K{{(z)) +EBM‘;\L>‘<’;V

forevery x €U .

Proof. Since U is bounded and has the segment property, there exists a finite open cover
(), i=1,...,m, of 8U and a corresponding sequence of nonzero vectors y; such that,
il e e UNU; for some ¢, then z+ty; € U for 0 <t <1, Weset Up:=U and 1 :=0.
Fori=0,...,m and k=1,2,... the open set U} := {z € U; : z + (1/k)y; € U} contains
UnU;. We define o (2) :== o(a + (1/k)y;) for every x € U}. By the uniform continuity of
¢, it is clear that for every £ > 0, when k is sufficiently large o} (z) € K{{{z))+ £ %
for every i =0,...,m and L"-a.e. z € Ul. Let (V;}, i=10,...,m, be an open cover of U
such that Vi ¢ U; for every . Since UNV; C UL, for every i and & we can find a mollifier
yi of class C°(RY) such that the convolution of + ] is well defined in a neighbourhood
of TNV, and

i . . 1 . ; . . i 1
loi x4 —oillwnve < £ and  ldiv og * )~ div oy lrpav, < 7 (2.3.34)

We can clearly assume that the mollifiers 4, are supported in a ball of center 0 and
radius Ry with By — 0 when &k — +oco. By the uniform continuity of ¢, for every £ > 0
there exists ko(g) independent of @ such that

o} (y) € K(¢{z)) + eByprsw

aym

for every z in the neighbourhood of T/ N'V; where the convelution of + ¥} is well defined,
and every y € Bz, f). As K({(z)) + €Byuxw is closed and convex, for every & = ky we
have

ol * () € K({(x)) + e By (2.3.35)

Ay
for every x in a neighbourhood of U NV;.
Let (), i=0,...,m, be a G partition of unity for U subordinate to (Vi) and let

m
oy = Z wi{of, *1}) .
£l

Then o is of class C° in a neighbourhood of U7. Moreover, by (2.3.35), for every £ > 0
and every k > kg(g) we get op(z) € K(¢(z)) + &Byxn lor every x in a neighbourhood
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of U. Since ol — ¢ strongly in L*(U N Vi MYAN) and div o), — div o strongly in

LU NV RY), from (2.3.34) and from the identity

m

div g = Z(cpi div g+ a Vi)

i=0
we finally deduce that oy ~+ o strongly in L"(U; Mﬁ.\;ﬁlﬂ') and div o), — div o strongly in

LM (U RY). ]
We are ready to prove the required inequality.
Propasition 2.5. Let ¢ € CYUQ)* and p € I, (Q). Then
H{p,()=[a:p] on QUT, (2.3.36)
Jor every o € T(Q) N K(Q).

Proaf. We can assume that T'g = 90 this is not restrictive, because otherwise we can
praceed by inner approximation with smooth sets £2; whase boundary is contained in QUL .
Let ¢ € C(Q), ¢ > 0. We fix £ > 0; considering the sequence @, defined as in the previous
lemma (we omit to relabel subsequences), for every k € N, for every = € 1, we get that
there exists (r, € K({(z)) such that |on(z) — x| < &, and so, by the Cauchy-Schwarz
inequality:

or(x) : (p/|pl)(x) < H{p/|pl(z),C(x)) + &

moreover, we can clearly assume that for every L e N

lorllee < 2MrllCloo s
where My is given by (1.3.4). Then we get, by (2.3.23) and the previous inequalities:

(-1l = [ ete) onle): o) dpl(o) <

< [ ole) 1L @), Co) dpl(o) + ¢ [ sw)lpl(@) =

Ja ol
= (H(p, ), ¢} +6/_ w(z) dlp|(z) .
0

By (2.3.24),
jor:p] = lo:p] weakly* in M, (S MY N

SYL

when k goes to +oo, therelore we obfain

(o) < (H(p, Q) +e jﬂ () dlpl()

and we get (2.3.36) in the limit when ¢ goes to 0. |

The internal variables. In addition to the plastic variable p, there are two internal vari-
ables z € CO(T}) and ¢ € C°(Q}+. They are linked by the equality

¢ = V(z), (2.3.37)
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where V: B — (0,+o0) is a globally Lipschitz nondecreasing function. We assume that
there exists a constant ¢, > 0 such that

V(z) 2 Gn foreveryzeR. (2.3.38)

The evolution law for the internal variable is nonlocal and involves convolutions. We fix
two kernels p; and pp in CL{RY)* with the property that

f pil) da = 1 (2.3.39)
BN
for i = 1,2. For p € M,{NUI) and i = 1,2, the convolution p; % i is defined for every
z e by

(iwle) = [ il = v)duto). (2.3.40)

Qulg

It is clear that p; 1 € CY(Q)) and that

lpi % plloo < Hlpillcc ey and [V (pi* pdlloo < §Vpillcollpsll - (2.3.41)
hence the linear map p — p; & is continuous from My (Q U To) to CH{).
The data of the problem. We assume that the body force f(t), the surface force g{t),
and the preseribed boundory displecement w(t) satisfy the following assumptions:
F € HL ([0, +00); LM% RY)),
g € H} ([0, +o0); L=(T; BYY), (2.3.42)
w € HE ([0, +oo); HH (4 BV)).
For every t € [0,+00) the tolal load L{t) € BID{Q)" applied at time ¢ is defined by
(L(tY,u) = {(Ff(t),uv)a + {g(t}ujr, forevery u € BO}Q). (2.3.43)

Under our assumptions L belongs to H} ([0, +o0); BD(R)') and its time derivative is given
by
(L(),u) = (F{£),u)q + (§(t),w)r, for every u € BD(Q). {2.3.44)

Throughout the paper we will assume also the following uniform safe-load condition:
there exist a function x € HL ([0, +oo); L2(Q MY XN} and a constant r¢ > 0 such that

agm
—divy(t) = £(t) in Q and [x(t)r] = g{t) on Ty for every ¢ € [0, +o0), (2.3.45)
B(x(t,x),m0) C K{((r) for every t € [0, +o0} and L%-a.e. = € £, (2.3.46)
x(t) € Lo (S MEENY for Ll-ae. § € [0,4+0c), (2.3.47)

t |%(#)|le belongs to L}, ([0, 4+0oc)), (2.3.48)

where x(t,z) denotes the value of x(t) at @ € Q, and B(s,r) denotes the open ball in

NxN
Msym

general lower semicontinuous, therefore assumption (2.3.48) only involves the finiteness of

with centre o and radius r. It is easy to see that the function ¢ — fx(t}||s is in

the integral. By (1.3.5) inclusion (2.3.46) implies

H(E ) 2 x(t, @) 1 £+ rol€] (2.3.49)
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for L"-a.e. z € Q and every (£,{) € MY XN x{¢,, +00).

sym
We will make use of the lollowing infinite-dimensional generalization of {2.3.49}, which

improves (2.3.36) for a function x € L®(0;MY*N) with divy € L*(f;RY) satisfying in
addition (2.3.46).

Proposition 2.6. Define () as in (2.3.8). Let rp > 0, ¢ € COQ)Y* and p € T, (9).
Let x € 2() be ¢ function such that

B(x{z),ro) C K(¢(z)) (2.3.50)

for L -g.e. x € §). Then
Hip, ¢) — (x.p) = rollpl1, (2.3.51)

where the duality (y,p) is defined by (2.3.12).

Proof. By standard arguments in measure theory, given ¢ > 0 we can find 7 € CJ{Q U
To; MY XN A 0% (0), with ||7||eo < o, such that

sym =

mwm+ssf Tidp. (2.3.52)
QU

By (2.3.50), 7+ x € K(¢) N (). Therefore, by (2.3.22), (2.3.36) and (2.3.52), we get

rollplls +2 sf ridp= (4 x0) - (0P < HPC) - (g

Quly

which concludes the proof by the arbitrariness of €. d
About the initial data, we assume that

wy € BD(S), eo€ LY (GMEEN), poe My(QUTo;MAEY) e C@)  (2353)

sym

and we define
oy = Cey and (o= V(z). (2.3.54)

Moreover we suppose that the following compatibility conditions are satisfied:
Weak kinematic admissibility:
Eug=ey+py infl,
po = (w(0) —~ up) O vH*™ ! in Tq;
Equilibrium condition:
—diveog = f(0) in Q; [oor} =g(0) onTy. (2.3.56)

Stress conslraind:
oo € K{n). (2.3.57)
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2.4 The vanishing viscosity approach

To deal with the instabilities of the softening regime, we introduce a viscoplastic approx-
imetion of Perzyna-type (see [37, 17, 25, 30]} of our problem. Given a viscosity parameter
e > 0, the corresponding viscoplastic evolubion u. (¢, 2), e(t, x), p:(t, ), 2.0t 2}, o(t, 2),
Ce{t, ) satisfies conditions {a), (b), (c), and ([) of Section 2.2; condition (d) is dropped,
while (e) is replaced by

(e) regularized fow rule: pe(t, @) = Njr e (1 0y (0 (21 2)),

where Nf(o,¢) = —}__—(o — mrioy(e)) and wiey is the projection onto (¢}, The well-
posecdness of these equations is nontrivial and will be investigated in Chapter &, Section 5.2.
The underlying idea is that, since the functional resulting from the variational formulation
of our problem can have muitiple wells, a quasistatic evolution driven by global minimizers
could prescribe abrupt jumps from one well to another one, so that is preferable to foliow
a path composed of local minimizers. Among them, a good selection criterion has proved
to be choosing the ones that are ohtained as a Hmit of viscoplastic evelutions when the
regularizing parameter £ tends to 0(see [32] for a general discussion).

To prepare our treatment of the viscoplastic approximation, for every € > 0 we introduce
the function H,.: MY*N %[0, +00) — R defined as

Ay
Ho(£,Q) = H(,0) + 56, (2.4.1)
and the corresponding integral functional He: L2 MY XN} xCU ()T — R defined by

mm@=memqmm.

Is subdifferential &,#H. with respect to p satisfies the equality

OpHe(p, C) = HH(p, () +ep (2.4.2)
for every (p,¢) € LA MIEXNYxCO)*.
The convex conjugate H,: M‘;‘L"mN %[0, +oc) — R of H, with respect to £ is defined by
H (o, C) = sup {o:{—H(EQ)}.
geMNn”

Since the convex conjugate H* of H with respect to & satisfles H*(o,{}) =0 for ¢ € K(()
and H*{0,¢) = +oo for o ¢ K (see [40, Theorem 13.2]), using [40, Theorem 16.4] one can
prove that

Hi(g,()= %|o‘ - ﬂ'K(,’-)(cr)|2 ; {2.4.3)

This implies that H? is differentiable with respect to o, and that its gradient is given by
ao'-l:-{:(ga (:) = Nf{(ﬂ', C) = %(U - ﬂ'K(C)(U}) . (244}

Note that N%(c,¢) is Lipschitz continuous on MY XN x [0, 4-00) by Lemma 1.1
Let Hp: LA MY N)xC(Q)* — R be the convex conjugate of H. with respect to p,
and let NE: L2, MNN)x COQ)* — LA MY XN be defined by

Sy Y

NE(,0) = (o — 7y (0)) (2.4.5)
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It follows from (1.3.18) that
n=Ng{o,() &= pla)= Ni(o(z), () for LTae v e, {2.4.6)

so that ME: LMY NyxCOQ)*F — L2(Q; MY *N) is Lipschits continuous. By a general

a3 sy

property of integral functionals (see, e.g., [19, Proposition IX.2.1]) we have
Helor0) = | Hilo@).ole)) da,
/0

so that, by the Dominated Convergence Theorem and by (2.4.6), its gradient d,H: (o, ()
with respect to o satisfies

oMz (o, C) = Ng(a. Q). (2.4.7)
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Chapter 3

The spatially homogeneous case

3.1 Overview of the chapter

Our investigation of the Cam-Clay model starts by studying the spatially homogeneous
case in dimension N, with no volume forces. This simplified setting is the object of this
chapter, where we do not investigate the well-posedness of the problem, which is instead
carried out in Chapter 5. A similar study was dene in [12] for a particular loading program
and for a very special yield surface. Here we extend the results of that paper to a very
general class of loading paths and yield surfaces, subject only to minor resirictions.

Ta be definite, we assume that the system is driven by a time-dependent affine boundary
condition w(t, r}, whose symmetrized spatial gradient Ew(¢, z) is independent of the space
variable = and is denoted by £{t). In this situation, one can look for spatially homogeneous
solutions, assuming that the displacement wu{t,z) coincides with w(t,x) and the unknowns,
independent of z, are the elastic part e(#) and the plastic part p{t) appearing in the additive
decomposition of the strain Eu(i,z) = e{t) -+ p(t), as well as the scalar internal variable
z(1), which describes the time evolving yieid surface.

In this particular case the evolution laws for p(2) and z{t) result in the system

e(t) + p(t) = &(1), a(t) = Ce(t) € I(=()),
p(t) € Ngzpp(e(t)), {3.1.1)

Notice that, differently from the formulation of the problem presented in Chapter 2, there
is no need of introducing & dual internal variable ¢, since we are able to prove that z(¢) is
beunded away from zero at fnite times (this follows from (3.3.4) and (3.4.9)}. Throughout
this chapter, we shall assume that tr(o) < 0 for every ¢ € K{z), which reflects the compres-
sive conditions typical of soil mechanics. Therelore, by the second equation in {3.1.1), the
hardening or softening behavour is determined only by the sign of tr(p). We also premit,
that due to mathematical reasons, we shall impose some additional restrictions on f{(z) (see
(3.2.10)-(3.2.11)). The main result of the chapter in its full generality needs these assump-
tions, but maost partial results can be proved without them. This is why in the statements
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we will avoid these additional restrictions whenaver if is possible.
With the notation of the previous chapter, the vanishing viscosity approximation reads
in this case as
(1) + pe(t} = &(1), oe(f) = Cec(t),

Pe(t) = Nz, (oel8)) (3.1:2
(1) = (e (8)) 13 (4)

A viscosity solution {e(t), p(t), o(¢), 2(t)) to (3.1.1) is defined as a left continuous map which,
for almost every time t, is the pointwise limit of a sequence (e:(t), pe{t), o=(t), z:(¢)) of
solutions of (3.1.2).

We want to study in detail the limif behavior as € goes to 0 of the solutions of (3.1.2).
This is done using only diflerential equations techniques and disregarding the variational
structure of {part of) the problem. We will see that the limit dynamics presents, for a
generic choice of the initial data — some degenerate cases have indeed to be excluded - the

alternation of three possible regimes:

a) Elastic regime. This sittation occurs in a time interval [ly,ta] when the plastic
part, and thus the internal variable, do not evolve, while the stress is completely
determined by the prescribed boundary displacement through the relation o(t) =
C(E(t) — £(t1)}, for every t € {t1,%2]; a necessary condition for this behavior to oceur
is clearly (C{&(¢) — £(t1)), 2(t1)) € K for every & € [i1,1a].

b} Slow dynamics, In this situation the stress evolves smoothly on the yield surface and
the limit equation (3.3.1), called the equation of the slow dynamics, takes into account
the production of plastic low. The evolution can be studied using the standard time
t; during this regime both hardening and softening behavior can occur.

¢} Fast dynamics. In the softening regime, a singuiar behavior can occur, which requires
the use of a fust time 5 := %t. The corresponding limit equation (3.4.1) is called the
equation of the fast dynamics. We will see that, at a jump time t, the right limit
(o(t+), z(t+)) of the solution is given by the asymptotic value for 5 — +oo of the
heteroclinic solution of the equation of the fast dynamics (3.4.1) issuing from the point
{a{t—), z(#-)) at 5 = —co.

As in the associative case, studied in [47] and in [8, Section 7], the alternation of these
three regimes is determined by the sign of two scalar indicators; the first one, depending
explicitly on time and on the state of the system, will be called the elastic-inelusiic indicator.
It is given by

Blt, 0,2) = vie(sy o) - CE(1) (3.1.3)

for every (t,0,z) € [0,-+oo] x A, Here vr(-y(o) denotes the outward unit normal to J(z)
at . The second one, only depending on the state of the system, will be called the slow-fast
indicalor; its explicit expression is given by

U{o, z) = —vg) (o) - Crgzy(a) — w[d V(o)) (3.1.4)
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for every {o,z} € 8K . Roughly speaking, at times where the stress meets the yield sur-
face, positiveness of the indicator @ does not allow the system to evolve according to the
linearized elasticity equation without breaking the siress constraint, thus plastic flow has to
be produced. The choice hetween slow and fast dynamics depends on the sign of ¥: if if
is negative, the evolution is smooth, while if it is positive, the solution has a jump. Since
the quadratic form associated to the tensor C is positive definite and taking into account
(3.2.8), comparing (3.1.4) with (3.1.1) one sees that a necessary condition for ¥ to he pos-
itive, hence to have a jump, is that the internal variable is decreasing in a neighborhood of
the jump time. From a mechanical point of view, this means that the instabilities leading
to a discontinuous evolution of the system are typical of the softening regime while the
hardening regime is more regular.

The main result of the chapter is Theorem 3.31. It gives an iterative procedure to con-
stract explicitly a viscous solution, upon the verification of some nondegeneracy hypotheses

at each step. If these hypotheses are satisfied, the viscous solution is also unique.

3.2 Preliminary results

We consider a closed convex cone KX C MY x{0,--oc) with nonempty interior and a
family of closed convex set K(z) € MIXN, parametrised by z > 0 (throughout the chapter

the internal variables = and ( are indeed identified}, satifying (1.3.1)-(1.3.4). We observe
that, for every z > 0, we obviously have

o € AI(z) = (0,z) € K. (3.2.1)

We will assume that K(1) is of class C*. For every o € 0K (z), we will denote the oubward
unit normal to K(z) at g by vyy{o), while v (o, 2) will denote the outward unit normal

to K al (@, z). We shall also assume that
tr{o} < 0 for every o € K(1); (3.2.2)

this reflects the compressive conditions typical of soil mechanics. We define, for every (o, 2} €
MY %N 5 (1, 400), the function

sy
pla,z) = o — mx (o)l (3.2.3)

it is a Lipschitz function, moreover it is C* for every (o, 2) € [MEEN x (0,400)]\ K. As
an elementary consequence of {1.3.6), we have the following relation:

olo, 2} = zp{Z,1) for every (o, 2) € MY XN % (0, 4o0). (3.2.4)

Sy
The next proposition collects some elementary properties which will be useful in what follows.

Proposition 3.1. Let I be o closed convex cone in MY %N x([0,+c0), and let K(z) be as
in (1.3.1). Asswme that K(1) is bounded and of cluss C° and that 0 € AK(1). Then, for
every z > 0 and every o € MYXN\ int K(z), we have

v (TR () (0)) = vy (mr (20))- (3.2.5)
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Moreover, Jor every (o,z) € K

- =1 _ _(zu. —_ U 2.6
vic(o, ) :2+EU_UI\,(=)(U))|2("’yh(:)(a}! o vg (o). (3.2.6)

For every (o, z) € [MYXN x {0, +00)] \ K, we have

Sy
Vole, z) = Lz vy (Tr) (), —7r=)(0)  vr) (TR () (3.2.7)

Proof. To prove (3.2.5) it suffices to consider the case when o ¢ K(z), which is equivalent
to say that £ ¢ K(1). We then have, applying (£.3.6) and (3.2.4), that

o — Ti=)(e)
oz, 2)

= Z(%%‘;(ll))(%)l = VI\’(I)(WK(l)(%U)}:

V(o) ==

which proves (3.2.5).
For what concerns (3.2.7), it is well known that, for every (7, z) € [MQL;‘"N x {0, +c0)|\ I,
Ve 86, z) = vie(2)(Tie(z) (o)) so only the last component of the gradient has to be calculated.

Together with (3.2.4) this implies that

%Q{m z) = z%{z 9(% 1)] = %(9(07 z)—o- VK(1)(7FK(1)(%))),

hence we get (3.2.7) by (3.2.5) and the equality

olo, 2} — 0 - v () (TR () (7)) = 7o) - v TR o))

This also implies (3.2.6); indeed, by the C? regularity of the boundary, for every fixed
(#,%) € OK we may locally define an oriented distance funetion r from 8K, which is a C'-
extension of g to the interior of K. Then, locally we have that K = {(o, z}|r{e, 2) < 0}.
It follows that the outward unit normal to I at (&, %) must be parailel to Vr(&, 2}, which
by eontinuity is obtained by extending the right-hand side of {3.2.7} to 81, and this proves
(3.2.6). rl

Another useful property, which will be used in what follows, comes directly Irom the
characterization of the minimal distance projection and {rom the fact that 0 € K{z) for
every z; we have indeed that, for every (o, 2) € MY XN x (0,4c0)] \ K

symn
Tr o) Vi (Trn (o) = 0. (3.2.8)

We shall often decompaose o € Mﬁ,,"rfv in its spherical and deviatoric part through the
relation

a=m#+'y (3.2.9)

where z € R and y € ngN are uniquely determined; here as usual Mg *N denotes the
space of trace-lree symmetric matrices of order N. Notice that Nz = tr(s); in particular,
for every o € K'(1), we shall have x < 0. Similarly, n(t) and ~(¢) will denote the spherical
and the deviatoric part, respectively, of the function £(¢) mentioned in the introduction.
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For mathematical reasons, we shall make some additional hypotheses on the set K(1),
even if most of the results we are going to prove do not need them. Precisely, we shall
suppose that there exist a constant & > 0 and two not identically zero functions g and
k., defined on a bounded convex domain I of elass €%, satifying g = h = 0 on dD and
g,k € C*(D) N C(D} such that, decomposing ¢ € Mj};:‘nN as in (3.2.9), we have

K1) = {og e M¥*N|g(y) < 2 +a < h(y)} (3.2.10)

sYym
We shali also suppose that
g%, I? are concave (3.2.11)

In terms of g and h, we can relormulate our basic assumptions on (1} as follows.
Convexity of the demain K(1) is easily equivalent to the lact that g is convex and h is
concave; as they do not identically vanish on I and they are zero on the boundary, this
implies that

gly) <0 and A{y) > 0forevery y € D.

Regularity of 9K(1) implies, that, for every w € 80

li = i (y)| = -+00. 212
IHJEEEDIVg(y)I yﬂ_ﬁgwlw(y}l +00 (3.2.12)

Moreover, both (1.3.3) and {3.2.2) are satisfied, provided we have

axn=~an = {. 2.
%ﬂgh RO =a {3.2.13)

An example of set satisfying alt these assumptions is, for instance, any ellipsoid of the form

E+1P+) B=1,
i=1

S,
I

— 1 and w; are the components of y with respect to an orthonormal

where 'm = W

hasis of ngN. We then have the following Proposition. We omit the simple prool, which
can be found in [14, Proposition 2.3 and Remark 2.4

Proposition 3.2. Assume thet (1.3.1)-(1.3.4), (3.2.2), end (3.2.10)-(3.2.11) are satisfied.
Then, there exists a constani F > 0 such that, for every o € 8K (1)

[tr(vpe iy (o)) € Fla+ al, (3.2.14)
where x i3 defined as in (3.2.9). Moreover
tl'(UK(l)(U)) =0 z=—a, (3.2.158)

and
tr{vry(o)) > 0=z +a >0 (3.2.16)

Let us fix £ € ([0, +-00); MY =N For every £ > 0 system (3.1.2) is equivalent to

sym

séo(t) = £€(t) — Ceult) + mic o) (Cee (1))
£2.(£) = tr(Cee (£)) tr(Ceelt) — mc (e, () (Tec (1))

(3.2.17)
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Lemma 3.3. For every ¢ > 0 and for every initial condition e-{0) = ep and z:(0) =z >0
system (3.2.17) has a unique solution defined for every t € [0,-+-00). Moreover the solution
(ee,2e) of (3.2.17) with initial condition e.(0) = eg and z:(0) = zp > 0 salisfies z(t) > 0
Jor every t € [0,4+00).

Prooj. As the right-hand sides are locally Lipschitz with respect to e and z by Lemma 1.1,
to get global existence it is enough to prove that for every T > 0 there is a constant My > 0
such that |e.{t)] < Mype and |2(t)] £ My, for every ¢ € [0,T]. Since 0 € K(() for every
C € R by (1.3.3), by (2.3.4) we have [Ce.({) — (= (1)) (Ces(1))] < [Cee(t)] < 20glec{¢)| and
|7 5z (1)) (e (8))] < [Ceelf)] < 28g(ec(t)| for every ¢ € [0, 4+cc). Therefore, given T > 0,
from the first equation in (3.2.17) we have

lec(t)] < Ar + / lec(s)lds  for every t € [0,7].

with Ag = leg| + jn |£(s)| ds. Tt follows from the Gronwall inequality that
lec(8)| < Apexp(T Bg/e)  forevery t € [0,71].

Then the second equation in (3.2.17) allows easily to obtain a constant Mz, > 0 such that
lz(8)} € My for every t € [0,7].

To prove the second part of the statement, we argue by contradiction. Let 7" be the first
time such that z.(T)} = 0 and suppose by contradiction that T < +oc0. Fix t < T such
that T— i < m— , where M is given by (1.3.4) and let {p < T be a maximum point
for z.(t) in [{,T]. We shall have, by (3.2.17) and (1.3.4)

T
0=ezA(to) + Ef 2(8)ds =
t
o )

= g2 (t) + [tr{Cec(s))? ~ tr(Cec(s5)) tr{mp (=, (s)) (Cec ()] ds =

ta

T
> caelio) = [ r(Ceelo))frtmsce o (Cels))] ds 2

tg

T
> 2, (to) — Mo My f ze(s)ds >
iy

> ze(to)|e — (T' — to) My e Mi] 2 §2:(ta),
a contradiction. (
Introducing the dual variable o, the system becomes
ebo(t) = eCE(L) + Clmpe(, ) (0 (1) — 0:(t)],
£2e(t) = tr(oe () tr(oe () — mres, (1) (e (2))) -

Since we want to consider a system which is initially in the elastic regime, for every £ > 0

{3.2.18)

we will consider an initial condition satisfying (g, z0) € intR; in particular, we shall have
zp > 0. For every ¢ the solution of {3.2.18) is trivially given by

(o(t), 2(t)) = (o0 + C{E(2) - £(0)), 20) (3.2.19)
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for ¢ small; actually, this formula gives the solution in the time interval [0,], where
ty =1inl{t > 0: (og -+ C(E{E) ~ £(0)), z0) € R} (3.2.20}

In terms of the function p defined by (3.2.3}, for every ¢ such that p(e:(1), (1)) > 0,
equations (3.2.18) become

CE(1) = Ge(8) = Lo(oe(t), 2:(0)) C v, (ep (o= (), = (1)),

. . (3.2.21)

Ze(t) = 2o(oe(t), 2:(2)) tr(oe (1)) tr(vre(z. ) (TR (= (0)) (O (1))

Given the solution of (3.2.18) with the prescribed initial data we define
0:(t) == p(oc(t), z:(2)); (3.2.22)

notice that p.(¢) is Lipschitz continuous, thus differentiable, for almaost every f; in particular
it is differentiable for every ¢ such that g.(f) > 0, and we have, by a direct compuiation,
taking into account (3.2.21) and (3.2.7), that

i Al
—(%Egs(t} = O, o (t), 2 (1)) + g—'é(—f—l\lf(cs(t), 2¢(t))  whenever g.{t) > 0, (3.2.23)
where
B(t,0,2): = vy (Tr (o)  CE(E), (3.2.24)
Yo, 2): = —UK(:)("’TI((:}(U)) : CVK(:)(WK(:)(U)) -
tr{a} tr(vr () (Tr({0))
- (; ) [Treg=)(0) - Vi) (Frez) ()] (3.2.25)
The function @ is defined on [0, 400} x {[MY <N x (0,400)] \ int K} and is continuous,
while ¥ is defined on [MJ3N %(0,+00)] \ int K and is of class C'. Tn what follows, it

is often convenient to consider extensions of & and ¥ to [0, 400} x MY % (0,400) and
Mﬁ:,f,;’v *(0,+oc) of class C¥ and 7, respectively. Notice that the partial derivatives of ¥
at each poini of K do not depend on the exiension.

We will sometimes refer to ® as to the elastic-inelastic indicator, while ¥ will be called
slow-fast indicaior, for reasons that will become clear in the lollowing. Even if, for math-
ematical reasons, the two indicators are defined on the whole space, we will also see that

what only matters are the values they attain on the yield surface.

Remark 3.4. By positive definiteness of C and by (3.2.8)} it is immediate to deduce that,
for every (o, 2) such that tr{e) tr(vg () (Tr({0})) = 0, the indicator W is strictly negative;
as we are going to see in what follows, this reflects the fact that, as long as we are in the
hardening regime, the evolution does not present discontinuities.

In general, it is easy to verify, taking into account (2.3.3) and (1.3.4), that the following
bounds on ¥ hold: from above, we have, for every (g, z) & M XN 5{0, +00)} \ int K,

W(o, 2} < —min{k, 2p} + MV N|tr(o)], (3.2.26)

while from below
I{g, z) > — max{x, 2u} — MV N{ir{c)| (3.2.27)
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where &, 2z are defined by (2.3.3) and My is as in (1.3.4); clearly we may assume that any
extension of ¥ we will consider preserves these bounds in the whole space. Notice that, by
(3.2.26) and (1.3.4), if z is sufficiently close to 0, and (o, z) € K, then the indicator W is
strietly negative uniformly in o; according to what we shall see in the following sections,

this means that when the internal variable is sufficiently small the evolution is continuous.

NxN

In what follows we shall define, for every o € M..",

Mo) 1= max{x, 2u} + MV N|tr(o))]. (3.2.28)

3.3 Continuous evolution

3.3.1 The equation of the slow dynamics

In this section we study in detail the equation
. Bt T (E),za(t 2y
alt) = HbalealD ey o) (oalt) + CTEW),

b ; (3.3.1)
Galt) = — Sl =l (o (1) (Vi (o) (O (D),

defined on the open submanifold 8K N {¥(o,z) # 0} \ {(0,0)}. This will be called the
equation of the slow dynamics: observe that this is a well-defined equation, since, for every
t € 10, 4+-00), the vector feld
— : P(t.o.z) —bite.z} '
xilo, z) = (CE() + Tro 5 Crr (o) poay (o) (Vi) (7))

is a tangent vector feld to 9K N{¥ (s, z) £ 0} \ {{0,0)}; indeed, by (3.2.0), it suffices to
show that x:{0, 2) - (2 v (z){0), =0 - Vr(=y{o)) == 0, which follows by a direct computation,
recalling {3.2.24), and (3.2.25}.

Remark 3.5. Let (o(¢), z(t)) be a solution of (3.3.1) and define e(t), p(t} through the
constitutive relations in (3.1.1); we have that p{t) = w%%)ﬂumzm)(a(t)), thus the
flow rule in (3.1.1) is satisfied as long as _%%JD > 0; that is, in our case, as long as
& does not become negative along the trajectory. We will see indeed $hat equation (3.3.1)
appears in the limit of (3.2.18) when the slow-fast indicator ¥ is negative.

Viceversa, let (o{£), z{#)) be a C' function with values on AK satislying {3.1.1) in a

certain interval of time; if we suppose ¥(c(t), z(t)) 5% 0, the flow rule and the condition

0=wr((e(t) 2(£)} - (o), 2(1))

with the help of (3.2.6), easily imply that {(o(t), z(t)) satisfies (3.3.1} and that it must be
_Bltelz0) 5

Wi (t),z())

We endow equation (3.3.1) with initial data (o7,21) € 8K at a time #; > 0, with
z; > 0 and ¥(oy, 71) # 0. We may thus apply all standard results about local existence and
uniqueness and the existence of a maximal interval where solutions to (3.3.1) are defined.
So, let {f;,?a} be the maximal interval ol existence for the Cauchy problem associated to
(3.3.1) with datum (zy,2;). As said in {3.2.9), we denote the spherical and the deviatoric
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pars of ag(t) with xg(#) and g4 (f), and the spherical and the deviatoric part of £(#) with
nit) and ~(t). Using the identity tr{Co) = e Ntr{e), from (3.3.1) we obtain

kzg(t) = 2o (8) (5 N(£) — (1)) (3.3.2)
The next Propasition shows an useful consequence of this equation.

Proposition 3.6. Assume (1.3.1)-(1.3.4), (2.3.3), and (3.2.2). Let &, ¥ be as in (3.2.24),
and (3.2.25), respectively. Let (o4(t}, 25(2)) be the unique solution lo the Cauchy problem
essociated fo (3.3.1) with Cauchy date (ry,21) € K at o téme £ > 0, with 2 > 0 and
Uiz, 2z1) # 0, and let [f, 1) be its mazimal interval of evisience. If 12 < +oo, there exists

o positive constant M such that

|t ()] < M for every t € [t1,12) (3.3.3)
Proof. By (1.3.4), it suflices to show that z4(t) is bounded. Let L > 0 such that |n(t)| < L
lor every t € [{1,fa]: by (3.3.2), and (1.3.4) we have, for every ¢ € {1, £2)

H'(zsl(t} - zsl(il)) == f‘:/l 555(5) ds ==

I t
S / wat()ia(s) ds + N | i(s)zals)ds <

4
< a3 () + fr.LN.MK/ zq1{5) ds

5 "

and the conclusion {ollows by Gronwall’s inequality. O

By the use of (3.3.2) we are also able to show that z,{¢) cannot vanish at £ = #,.

Proposition 3.7. Assume (1.3.1)-(1.34), (2.3.3), and (3.2.2). Lel ©, ¥ be as in (3.2.24),
and (3.2.25), respectively. Let (o4(t), 2a(t)} be the unique solution to the Cauchy prollem
associaled to {3.3.1) with Cauchy data (¢1,z1) € 8K at a time ©1 > 0, with 21 > 0 and
T(ay,z1) £ 0, and let [f1,t2) be its mavimal interval of ezistence. If ta < +o0, then

ligg%lﬂlf‘ z,(t) > 0. (3.3.4)

Proof. Suppose by contradiction that liLm %nf z4(t) = 0; we first show that this liminf is a
—+la
limit. Let L > 0 such that |{t)} < L for every ¢ € (¢1,%2), and Afx as in {1.3.4), and let

¢ = limsup z4(t); if we suppose ¢ > 0, we may fix £ < ta such that
t—rla

1) LNMg{t: — &) < &;
2) z4(t) < 2 for every t >

3) zsf(f) =

rales
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We shall then have, by (3.3.2), (1.3.4), and the previous assurmptions, that, for every ¢ > £

t
Zq(s)ds =

kst (t) = iz (D) + /
- r-r,zsg(f) — ‘/E xa{s)isi(s) ds + vV /t:J](S)’qu(S) ds 2
2 5 + HaBd) ~ k(0] - [ (o)l (s)l ds 2

> H

i

"
- %33?;1 (t) — if.NLJ\fIK] za{s)ds >
i

— LaZ(t) - k&,

4

> K

ey

So, let ¢, a sequence converging to tg realizing the liminf, by (1.3.4) we shall get that
lir4r_1 zsi(tn) = 0. As t, > 1 for n sufficiently large, we shall have
n—--00

K2g(ln) 2 & mgi(tn)v

ln
b=

which in the limit yields § < 0, a contradiction. We thus have that lim;.., z(t) = 0,
which immediately implies, by (1.3.4), that tllgl zy{t) = 0. We now fix ¥ < a2 such that

LNMr(la —1) < %; as zu(t) > 0 in (t1,f2) and tl_l_}l’Itl zgi{t) == 0, there exists a maximum

point #3 for zg(#) in [f,£2). Repeating the previous estimates, we shail have, for every
&> i3, that

Kzg(t) = Kza(ls) — %mgz(t} — eNLMza(ta)(ta ~ Z) = f\.% — %.’L‘g (),

al

which in the Hmit as ¢ -3 £ gives z4(¢5) < 0, a contradiction. ]

By the previous resulis, we now may show that the solutions (3.3.1) are globally defined
unless the slow-fast indicator vanishes along the trajectory. In the proof we use the following
elementary Lemma about differential equations, which can be found in [23, Chapter 1,
Lemma 3.1]; we state it for the reader’s convenience.

Lemma 3.8. Let E be a subset of R x R™, let f: E = B" o continuous function, and let
u(t) a solulion of the ODE w(t) = f(t,v(t})) on ar interval [a,d) or (6, a] where |§] < +oo.
If there exisls o sequence t converging to & such that w{iy) — @ € B™ and f(t,v) is
bounded on the inlersection of £ with an open neighborhood pf the point (8,4), then

tl:_t_r}} u(t) =2

Proposition 3.9. Assume (1.3.1)-(1.3.4}, (2.3.3), end (3.2.2); let @, T be os in (3.2.24),
and (3.2.25), respectively. Let (g.(f), 24 () be the unique solution fo the Cruchy problem
associaied to (3.3.1) with Cauchy dote (o1, z1) € 0K at e time ty > 0, with =y > 0 and
sueh thal Wey, z1) # 0, and let [t1,:) be its mazimal interval of existence. If to < 400,
then

Lim T{og(t), za(t)) =10 (3.3.5)

1=ty
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Proof. Suppose by contradiction that there exists a sequence ¢ — to such that

Jim Wloarfte), za (b)) # 0. (3.3.6)
By Proposition 3.6, we may assume that (o (t), zs(te)} tends to a finite limit {gq, 20) as
I~ +-00; by Proposition 3.7 we have that zo > (. By continuity of ¥, (3.3.6) implies that
U (og, za) £ 0; it follows now from Lemma 3.8 that

Jim (0 (1), zar(8)) = (o3, 2);

we may then solve the Cauchy problem associated to (3.3.1) with data (o2, z0) atb time o,

contradicting the maximality of [t1,1s). O

In the next Proposition, we use Lemina 3.8 to prove that, if ¥ vanishes at time #; < oo,
then (og(t), 251 (1)) have a limit at £ = ia; the proof is obtained by observing that in this case
zg(t) must be monotone in a neighborhood of ¢y, We also need the additional hypothesis
that the elastic-inelastic indicator is not vanishing at t=, that is to say

1itm3£1f [B(t, osi{t), za{E))] > O. (3.3.7)
]
Proposition 3.10. Assume (1.3.1)-(1.3.4}, (2.3.3), and (3.2.2); let &, ¥ be as in (3.2.24),
and (3.2.28), respectively. Let {(g.(t), za{t)) be the unigue solution to the Couchy prollem
associated to (3.3.1) with Cauchy date (o1, 21) et a lime t1 > O, with 21 > 0 and such thot
U({ay, 1) 3£ 0, and let [ty,t2) be its mazimal interval of existence. If t2 < -+oo, and (3.3.7)
holds, then there exists

lim {(ea{t), 2s1(t)) 1= (o2, 22) € OK. (3.3.8}

t—tiy
Praof. By Proposition 3.9 we have lim,_,,- ¥(ax{t), 25(t)} = 0; as seen in Remark 3.4, this
implies that
liminf z,(t) < 0 and Bminftr(vg e, @) (ga(t))) > O

=iy a—riy,
il not, in both cases we may find a sequence £, converging to ¢z along which

limsup ©(aa(tn), za{tn)) < —min{x, 2} < 0,

2y 0o

a contradiction. By (3.3.1), {3.3.5), and (3.3.7) we easily get that there exists a lefi neighbor-
hood of £y, denoted with {f,t2), where Z,(f) # 0; thus z,(¢) is invertible in this interval,
with inverse t(z), and converges to a limit z3, which is finite by Proposition 3.6. We now
suppose, for instance, that z4(t) is strictly decreasing, the proof in the ofher case being
completely analogous. We put £ := zg(f) and we express o in function of z; by (3.3.1), we
then get that

= 1 Aoy Tloa (=),
—0u(2) = s e Cvre (@a(2) - CXEamreacia) (3.3.9)
for every z € (22, ); here we have put: y(z) = £(¢(z)). So, as
i inf {t0(0.0() tr{vic(sy (0 (2)] > 0
-3z

by the previous discussion, and taking into account (1.3.4) and (3.3.7}, |l ()] remains
uniformby bounded in this interval. The conclusion follows. O
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Remark 3.11. If the inequalities ®(tq,01,21) > 0 and ¥(ay, =) < 0 are satisfied, we will
see in the next subsection that the solutions of (3.2.18) uniformly converge to the sclution
of (3.3.1) in a right neighborhood of t;. In general, [f1,f2) may not be the maximal interval
of convergence, as positivity of ® may fail before of 3. We will show that this convergence

holds on [¢1,f2) whenever
D, aq(t), zalt)) > 0 for every t < i3, (3.3.10)

Assume this inequality, as well as {3.3.7), suppose that {3 < +o00, and let (g2, z2) be as
in (3.3.8); then
‘I’(O’g, .—.’:2) =0. (3.3.11)

Let us prove that
—Cuscqayy(on) <o {3.3.12)

tr{mz) brl{bgezyy (02)) 77 =

V‘I"{Cl’g, 22) - (

Indeerl, as seen in Proposition 3.10 zg(¢) is strictly decreasing in a left neighborhood of #s,
with inverse t(z). If we define ay{z) = og{i(z)), we shall then have that ¥(oy(z),z) <0
in a right neighborhood of zy, which yields

Hm di‘I’(Usz(Z), 2} L0

Z—tEa z

a direct computation involving {3.3.9} and (3.3.11) gives us condition (3.3.12).

We claim that the vector (mg%?;—f;?m—iz”,

that, by (3.2.6), it suffices to show that

1) is tangent to 0K at (o2, z2). To prove

Tz (‘75)
(et U - (F2 i) (02) —0a - Vig(ea) (92)) = 0.

zal(@a,22)
tr(oa) bt gegy (o2)) 7
by (3.3.11). Thus the lefi-hand side of (3.3.12} is a tangeniial derivative and depends only

on the values ¥ attains on 8K .

Recalling (3.2.25), the left-hand side is equal to and the conclusion follows

Due to the presence of the forcing term CE(t), the sign of Z,(t) may change, causing
the alternance of hardening and softening regime; we end this subsection by presenting
a simple condition that prevents this phenomenon. To be definite, we consider the case
where the spherical part of £(¢) is constant, as in [12]. Observe that here we are assuming
(3.2.10)-(3.2.11), in order to apply Proposition 3.2.

Proposition 3.12. Assume that (1.3.1)-(1.3.4), (3.2.2), (2.3.3), and (3.2.10)-(3.2.11) are
satisfied; let @, ¥ be as in (3.2.24), and (3.2.25), respectively. Let {ou(t), z.(f)) the
unigue solution to (3.3.1) with Couchy duta (o1,z1) at a time ¢ > 0, with z; > 0 and
Wy, 21) < 0, and let [t1,t2) be its maximal intervel of evistence. Let £ € [tr,t2) such that

D(t, ou(t), za(l)) > 0 for every t € [t1,1) (3.3.13)

and suppose that 17(t) = 0 for every t € [t1,1]. If there exists T € (t1,£) such thut 2 (f) =0,
then z4(t) =0 for every t € [tl,ﬂ.
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Proof. As t < -toc, by the same arguments as in Proposition 3.6 and Proposition 3.7, we
may assume that Z = inf;. 5 2a(t) > 0 and that |ze{¢)] is bounded by a finite constant
M. By (3.3.1) we have that

. Dlt,op{thzs .
(1) = VN m (v (a0, (3.3.10)

while (3.3.2} reduces to
Kl (t) = _Tsl(f)q‘al(t) (33]5)

By (3.3.14), (3.3.13), (3.2.5), and (3.2.13), we have that
dai(t) = 0 <= z5(t) + azar(t) =0, (3.3.16)

where a > 0 is as in (3.2.10). Let us prove that z4(t) # 0 for every t € (t1,1]; indeed, by
(3.2.2), which is equivalent to (3.2.13), il the value 0 is assumed, it is a maximum value for
x4 (t), thus, if for some t € (tl,ﬂ we have x4 (f) = 0, it must be also &g (f) = 0, but this is
excluded by (3.3.16), as zx4(t) > 0.

Suppose that there exists I € (¢3,£) such that 2,(E) = 0; as zy(f) # 0, by (3.3.15) we
must have @4(f) = 0, that is to say z,(f) +aza(f) = 0. Let f(#) == z{) +az4(t); under
our hypotheses, hy {3.3.14) and (3.3.15) there exists a positive constant 1 such that

)] < Wtr{vgez, @y (oa(®))] for every ¢ € [ty d];
(3.2.5) and (3.2.15) imply that
l6r (Vg (e (Tat ()] € S lmar(t) + 2 za(t)],
where F' > 0 is as in (3.2.14). We conclude that
|f(B] € WEIF)] for every t € [t,1];
as f(I) = 0, CGronwall’s inequality implies that f(#) = 0 for every { € [t;,4], which in its
turn entails that d,(t) = 0 for every £ € [t1,1], and conclusion follows by (3.3.15). [

3.3.2 Convergence to the slow dynamics

In this subsection we examine how to recover equation {3.3.1) from {3.2.18) in the limit
as £ pgoes to 0, under suitable hypotheses on the sign of the indicators @ and ¥: the
arguments used here are reminiscent of {47, Section 3], where another model ol plasticity
with softening in the spatially homogenoceus case was considered.

Throughout this part of the chapter, ¢ denotes a time such that there exist a left con-
tinuous function ¢+ (a(t}, z(t)) defined on [0,7) with values in MY%N x [0, +00) and an
clement (#,2) of MN*N x [0, +-00) satisfying the following properties:

sym.
(oe(t), z:(2)) = (o(D), 2(£)) for ae. t € [0,E), (3.3.17)
there exists £, — £ such that {o.(£), z.{)) — (6, 3), (3.3.18)
(5,2) € 0K and 2>0, (3.3.19)
O(t, 7,2) > 0. {3.3.20)
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For instance, we can take { =ty defined by (3.2.20), il {; < +oc and, setting

(o1,21) == (o0 + ClE(t1) — £(0)), 20). (3.3.21)

we have

<I’(t1,a1,z;) > 0 (3322)

notice that in general we have ®(t1,01,21) > 0, as the solution was in K at all previ-
ous times, thus we are only excluding the degenerate case when equality holds. The case
®(t1,01,21) = 0 will be discussed in the next subsection.

Lemma 3.13. Assume (1.3.1)-(1.3.4), (2.3.3), and (3.2.2). Let @ be as in (3.2.24). Lel
£ > 0 satisfy (3.3.17)-(3.3.20), and let te be as in {3.3.18); then, for cvery t* > t, the set
{p-(t) > 0} N [ic,t*] is nonemply, when £ is sufficiently small.

Proof. Assume on the contrary that along a suitable subsequence, that we shall not relabel,
one has p.(t) = 0 for every t € [fe,*]; we then get

(0=(t), 2:(1)) = (oelfe) + CER) ~ &(fe)), z:(te)) € K (3.3.23)

for every t € [f.,#*]. In the limit we obtain that (& + C(£(t) — £({)), %) € K for every ¢ €
i, £*]; by (3.3.19) we easily deduce that it must be ®(f, 5, £} <0, contradicting (3.3.20). O

Remark 3.14. Notice that il £ = t;, the statement of the Lemma holds with #, = .

We fix an open neighborhood U; := (f — &, {4+ &) x Bs(5, 2), where Bs(5, 2) denotes the
open ball of radius § > 0 centered at (&, ), in a way that there exists a positive constant
2 > {1 such that

®(t,0,2) > 9w >0  forevery (t,0,2) € Us. (3.3.24)

We may clearly assume that § < %l where & and g are defined by (2.3.3) and

My is as in (1.3.4}, in a way that, lor every (o, z) € Bjs(4, 2), the following holds:

b
e

(o

Ao o3, (3.3.25)
where AMo) is defined as in (3.2.28). We defize
a; = inf{t € (F, 1 4+ 8) ¢ (0:(t), 2(t)) € OB;5{5,2)}, (3.3.26)

where . is given by (3.3.18). The following lemma shows that, thanks to (3.3.24), the
[unction gg( ) becomes greater than a [ixed positive constant after a time t. converging to
{ as g -~ 0, while the motion is still in Bj(5, £}; we shall see that this implies a transition
to the inelastic regime.

Lemma 3.15. Assume (1.3.1)-(1.3.4), (2.3.3), and (3.2.2). Let ® be as in (3.2.24). Let
P> 0 sotisfy (3.3.17)-(3.3.20), let L. be as in (3.3.18), and let &, e, and 2, be as in

(3.3.24) and (3.3.26). Let £ > 0 and pge(t) be as in (3.2.22). Define
= inf{t € (fe, f +6) 1 Loe(t) 2 5} (3.3.27)

Then:
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o) be~F-— 0 os e 0F;

b) te < a. for & sufficiently small;

&) Lou(t) 2 5855 Jor every 1 € [Le, el
Proof. Concerning part a) and part b) of the statement, we may clearly suppose that . > f;.
Let s. :=t. Aa.. We firsi claim that, for small €, in (i, s.) one has p.(t) > 0.

Indeed, we first observe that if the set {ge(¢) > 0} N [fe, sc] is empty along a suitable
subsequence (unrelabelled), then clearly s. = a., and (3.3.23} holds for every ¢ € [i.,t*]; we
then easily get that liminf a, > £, and this contradicts Lemma 3.13. Then, for £ sufficiently
small, the set {g.(t) > 0} N [ic, 5] has positive measure. Now, observe that g.(t) = 0 a.e.
in {g:(t) =0} [ia, e}, while in the set {g.(¢) > 0} N [fs, ] one has

o:(t) = % (3.3.28)
by (3.2.23), {3.3.24), (3.2.27), and {3.3.25). Then, by the fundamental theorem of calculus
and by Lemma 3.13, we get

w)= [ a0dz B ) > 0] >0
{ge (1)>0}0([L, 1]
for every 7 € [i., s:], which proves our claim, Therefore {g.(t) > 0} N {i.,s.] = (I, s:] s0
shat the previous estimate and the definition of s, vield
E':ET-?ET) > 0e(5e) = %2‘(35 - 'EE):
which implies, by (3.3.18), that
se—f—=0 ase— 07, (3.3.29)

Now suppose, by contradiciion, that s. = a. as £ —+ 0 along a suitable sequence. Then
s —te = 0 as £ = 07 and

sup 10:(t) < g3
t€llg g}

by the definition of a., (3.2.21), and (3.3.18), this implies

Sv0() = |(@e(ac), 2efa0)) = (oelde), 2 (i)
< ((@elae) = 02,00 + 100, 2e(a) — 2 )
< [Tl ol (3.3.30)
< (T (@) + 5+ 1) [ e ariel [ éwra
< €1+ 1e(@)] 5+ o(1)) gy (0e 1) + IC) [ ena

a contradiction, since the right-hand side tends to 0 as € — 0. This proves part a) and part
b) of the statement.

Observe now that (3.3.28) yields g-(1.} > % . Thus, if c) is false, let t! be the first time
in (fc,a-) such that p.(t!) = ﬁET)’ then gq(t1) < 0. Repeating the proof of (3.3.28) we
find g.(t!) = 2 > 0, a contradiction. O
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Remark 3.16. Notice that if # = ¢;, the statement of the Lemma holds with £, = t.

We now [ocus on the case where the slow-fast indicator is negative at (&, 2). As in [47],
this allows us to show that, in a neighborhood of £, the function % g=(t) remains uniformly
bounded. This is the key ingredient to prove that the limit evolution is continuous.

For a suitable choice of § in the definition of the neighborhood Us satisfying (3.3.24},
we may assume that there exists a positive constant v, such that

(o, 2) £ -7 for every (o, 2) € Bs(&,2). (3.3.31)

We now state an auxiliary lemma, analogous to {47, Lemma 3.6}, which will be used also in
Section 3.4. Notice that in the statement of the lemma we make no assumpiion on the sign
of the indicator @.

Lemma 3.17. Assume (1.3.1)-(1.3.4), (2.3.3), and (3.2.2); lel U be as in (3.2.25}). Lei
£>0, (6,2) € K, and let £, be a sequence such that

te+tase— 0",
(Us(fe)w ze(ts)) = (0,2) ws e — ot
Suppose that there exist two constants n > 0, v > 0 such that, for every (o, 2} satisfying

(o, 2} — {&,2)| <7, one has
T(a, z) < —7.
Let
b= inf{t € (o Ebm): (0:(0), 2(0) € OB,(3, ).

Then there exist L > 0 and o sequence 5, which may be taken equal to 1, whenever

lim sup %1 < +-0a, such that
£l

o) & -1 as £ = 0F,

b) (e{3:), 2:(5:)) = (F,%) as - OF,

c) 2elt) % Jor every t € [5.,67],

& -

d) liminfd? >+ C(a,n,7%),
e=0

where C{a, 7,7} := min{7, L[(1+,Y)|C'|’_;’_|tr(a)|+n]}.

Proof. Choose L such that [CE(t)| < L for every ¢ € [f — 5, <4 7). Observe that, from
{3.2.23) and the hypotheses, we get

o:(t) < —vgﬁw A+ L for a.e. t € {t,b]]; (3.3.32)

indeed the inequality holds true also in the set {g.(¢) = 0}, as 9. () == 0 almost everywhere
in this set. Notice also that it is everywhere satisfied when p.{t) > 0.

Let M = limsup %2; we may assume, up to a subsequence, that this limsup is actually
£-+0

a limit. II M < +-co, we may always assume, suitably enlarging the constant L, that
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M < £ 1f M = +oc, fix 9 > 0 and define s7 := inf{t € [E., 0] 2 < L£2}; then (3.3.32)
vields
o:(t) < =0 [or every t € [E, s7]; (3.3.33)
integraling, we get
(s = t)? < oe(le) — 2e(s]) - (3.3.34)
As p.(I.) — 0, we conclude that s? — { as & — 0. From this fact and (3.3.34), we also
get that lim...g g.(s¥) = 0, hence, integrating (3.3.32), we obtain

.52’
lim / 0:(3) 4o _ g, (3.3.35)
i

e—0 f1, £
We can then argue as in (3.3.30), and for every ¢ € [i., s7] we have

loe(t) — O’E(Es)! + |Ce{t) ~ CE([S)I <

K

<01+ @)+ +o(0) [ 2l ds+ 1] [ ] ds.

e

From this and (3.3.35) we get

lim sup |og(f) — ox (F)] + G (t) — ()| = 0.

e <t<sl
In particular we have s < b7, when ¢ is sufficiently small.

So we put 3 := sf when M == +oc, while we put & = f, otherwise; up to suitably
enlarging the constant L, we have, for every =, g—‘—(sif—l < % and g:{3;) < 0. Now, il ¢} is
false, let s! be the first time in (., b7) such that g.(s]) = %; then g.{2}) > 0. On the
other hand (3.3.32) yields ¢.(t!) < —L + L = 0, a contradiction.

It remains to prove only part d) of the statement. We can suppose b7 < {17, otherwise
the result is trivial. Again we can argue as in (3.3.30), and we have the estimate

7= (o(b]) — 0e(8e), () — Ge(5e)] £

W, o
<(Cl+ @ +a) [ L ds+ie) [ s,

Se

which implies, by part c} of the statement,
0 < [(1+MIC| + [br(@)] + n] 2 (0] - 32) 5
since &, — t as £ -+ 0%, this concludes the prool. O

We are now ready to prove the main result of this section.

Theorem 3.18. Assume (1.3.1)-{1.3.4}, (2.3.3), and (3.2.2), and define @, and ¥ as in
(3.2.24), and (3.2.25), respectively. Let { > 0 salisfy (3.3.17)-(3.3.20), let &, be as in
(3.3.18), und suppose that (3.3.31) holds. Let (o4(5), 201(8)) be the unigue solution to the
equation of the slow dynamics (3.3.1) with Couchy datum (6,%) at £, and let to > £ be as
in (3.3.5). Let £ <t and suppose that there exists a constant s > 0 such that

B(s,a(8), 2.1(5)) = 74 for every s € [f, L. (3.3.36)

Then {oe,z.) converges uniformly to (o4, 24) as € = 0% on compact subsels of (i,1.
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Proof. Let &, ~a, 1, fe, and o, be given by (3.3.24), (3.3.31), (3.3.18}, and (3.3.26),

respectively. We put t* = lim [i)gfas, and we apply Lemma 3.17 with { = {, f, = i, and
£t

b = a.; we have that £* > £, and, by part ¢) of the Lemma, we may assume that there exists

U =
a nonnegative function w(t) such thas, for every n > 0, %ﬂ w*-converges in Lo ((E4n, %))
to w(t).

We write equation (3.2.18) in the form

CE() — o{t) = wilt,o(t), =(t))
3(1) = wi(t,o(t), (1)),

where
Wi (L, o), 2()) == 28 n (a(2), 2(2)) (3.3.37)
wi(t, o (t), 2(0)) = £lha(o (1), 2(2); (3.3.38)

here hi(o, z) and ha(c, 2) denote two C! [unctions coineiding with Crpe(zy(7x(s){e)), and
br(o (Vs (Tieqzy (o))}, respectively, in Bs(F, 2) \ int . Corollary 1.16 now provides the
uniform convergence of the solutions of (3.2.18) to the solution of the problem

CE(t) — 6 (1) = wit)(o(2), 2(8))

(3.3.39)
3(t) = w(t)ha(o(t), 2(1)),

with the required Cauchy data, on the compact subintervals of (&, t*].

Now, Lemma 3.17, part c), implies that (o(t), z(t)) € K for every ¢t € {{,t*], while
Lemma 3.15 entails that, for every £ € {£,¢%], the points (o:(t), z.(t)) do not belong to K
when ¢ is sufficiently small; this proves that (a(t), 2(t)) € 8K for every ¢ € (£,¢*]. Thus, for
every ¢ € {i,t*], the functions hq(a(f), 2(t}) and ha(c(t), z(t)) coincide with Cupe(zy{a) and
tr(a)tr{vg (o)), respectively. Since (o(t),z(t)) € 8, we must have, for every t € (i, t*]

0= vie{(a(t), 2(8))) - (&}, 2(2));

this in turn, recalling (3.2.6), is equivalent to
0= (zrr({0), -0 vg(y{e) - {a(t), 2(0)).
Then (3.3.39), (3.2.24), and (3.2.25) imply that
0 =w(t)P(a(t), z(1)) + ®(t, (1), =(t)). (3.3.40)

Therefore (3.3.39) coincides with (3.3.1). We conclude that the solutions of (3.2.18) converge
uniformly on compact subintervals of (£,{*] to the solution of the equation (3.3.1} with
Cauchy data (7, %) at f, and by uniqueness, the limit is exactly (g.(t}, za1{#)).

Now, let t7 the maximal time such that (o, z:) converges uniformly to (o, zs) as
£ — 0 on compact subintervals of (f,1%); to conclude the proof, we have to show that
t¥ > I. Let us argue by contradiction, supposing th < I. Define{a?, z1) := (gu(t?), zt(t1))
and observe that, by the hypotheses, there exist two constants 5 > 0 and v > 0 such that,
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for every (4,0,2) € [T —n, iT 47} x B,(a%, 21, one has ¥{o, 2) < — and D{t,0,2z) > 7. We

define ¢(3,v) as the infimum in Bn(ot,z%) of Clo, Z,7v), where the latter is the constant
defined in Lemma 3.17. Now we may fix ¢f — § < <l <t < th o<+ e(3:7)
in a way that (osI(tI),s.gg(t{}) & By(of,z!) and we shall have that for every (2,0, z) €

[t} ~ 3,8t + 2] % Ba(ou(t), zalt]),
U{g,z) < —y and @(t,o0,2)>7. (3.3.41)

By Lemma 3.17, applied with f=t.= !;I , we have that there exists L > 0 such that for €
suffciently small QE-E@ < ~‘f;— for every £ € {fg, tg] By Lemma 3.13, applied with i=l = tf ,

b3
and a, = bF we get that

o (t) . R t 1 ;
= 2 Beall) for every £ € (i3, 3], (3.3.42)

when ¢ is sufficiently small; here Ao) is defined by (3.2.28). We repeat the arguments
of the previous step of the proof, and we also notice that we are in position to apply
Theorem 1.15 in place of Corollary 1.16, to get that the solutions of (3.2.18) converges
uniformly in the interval [c‘,;,t;} to the solution of the problem (3.3.1) with Cauchy data
(cr{tg), :(Lg)) = (g (t;), zs;(t;)), that is, by uniqueness, to (os(t), z«t(t}). This contradicts
the maximality of £f. O

Remark 3.19. A slight adaptation of the proof, faking into account Remark 3.16, easily
shows that in the particular case { = t; the conclusion of the Theorem holds on the whole
closed interval [ty,1].

The previous thearem shows that, if one has
@t ou(t), z(8)) = 0 for every £ <+ < fa, (3.3.43)

then (o, z.) converges uniformly to (@s, 2.} 88 € = 0% on compact subintervals of (£, 1),
On the contrary, if
D, o (D), za(D) = 0 (3.3.44)

for some § < f < ta, then the elastic behavior may re-appear starting from the point
(7,3) = (oq(D), za{f)) € 8K, as we are going to discuss in the next subsection.

in the last section of the chapter we will consider the case when (3.3.43) holds, and
ta < 4o0o; we will show that a transition from the slow to the last dynamics occurs at time
to when (3.3.7) and (3.3.12) hold with strict inequality.

3.3.3 Elastic regime

Another possibility for a continuous evolution is having an elastic regime, where the
internal variable is constant and the stress evolves trivially following the linearized elasticity
equalion, without production of plastic flow. It is obvious that this situation occurs if we a
priori know that at a certain time the stress is in the interior of the elastic domain. Here
instead we focus on the case where the stress is on the yield surface, after a previous branch
of elastic regime, or after following the slow dynamics equations, or after a jump along
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the fast dynamics trajectory (this situation will be discussed in the next section). As the
discussion of the previous subsection has clarified, negaliveness of the indicator ¥ leads to a
continuous evolution, while positiveness of the indicator & is responsible for the production
of plastic flow. Throughout this subsection, while keeping the hypothesis on ¥ we will deal
with the case ® < 0. I the strict inequality holds, it is really easy to prove that the system
is switching to the elastic regime, while if ® = 0 we need to add some suitable assumptions
to prove this result. However, also this case is really interesting because it is what happens
for instance when (3.3.44) holds.

To be definite, ¢ denotes a time such that there exist a left continuous function ¢ —
((£), 2(t)) defined on [0,f) with values in MY*N x [0,+00) and an element (&%) of
MYV % {0, +-0c) satisfying the following properties:

e
(o:(t), 2(2)) = (a(t),2(t)) for ae. t€[0,), (3.3.45)
there exists 7, — ¥ such that (o.(f,), z.(&)) = (5, 2), (3.3.46)
(7,2} €@K and 23>0, (3.3.47)
®(,5,%) <0 and ¥(7F,2) < 0. (3.3.48)

Denoting with (o (2;7), 20:(¢; 7)) the unique solution of (3.3.1) issuing from (7, 2) at time
{, we will also assume that there exists a sequence t, — f such that

Otn, oat(tnit), za(tn; 1)) < 0 (3.3.49)

and that there exists 7 > 0 such that, for every {t, 5,0, 2) € {I,T+n) % (0,7) x (B,(5, 5))ndK
satisfying ®(f,a,2} <0,

(e +CE(E+5)—€E@),2) eint K, {3.3.50)

It is obvious that if the strict inequality holds in {3.3.48), (3.3.49) and (3.3.50) are trivially
satisfied. About the meaning of these two additional conditions, we observe that, according
to the discussion in Remark 3.5, (3.3.49) has the role of preventing the system from following
the slow dynamics equation, while {3.3.50) is a suitable enforeement of the trivial necessary
condition for having an elastic regime while keeping the stress constraint.

Remark 3.20. When £ is at least C? regular and &(f,&,3) = 0 the inequality
CE(D) - vie()(8) + CED) - [Voviez)(3)]| CEE) < 0 (3.3.51)

implies both (3.3.49}) and (3.3.50). It follows from the definition of @, from (3.3.44), and
from (3.2.6), that the vector C£(7) is tangent to 8 (z) at &, hence CE(D) (Vo (3)] CEF)
is exactly the second fundamental form of K (2} at &, applied to the tangent vector CE(T).
We omit the prool of (3.3.51), which is based on elementary facts in differential geometry;

the interested reader may refer to [14, Remark 3.19] and [47, Remark 3.12].

The next theorem shows that the hypotheses we made actually guarantee that the system
ig going to follow the elastic regime in a right neighborhood of F.
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Theorem 3.21. Assume (1.3.1)~(1.34}, (2.3.3), and (3.2.2), and define @ and W os in
(3.2.24), and (3.2.25), respectively. Lef I and (5,C) satisfy (3.3.45)—(3.3.48), and assume
that (3.3.49) and (3.3.50) hold. Let

(aalt), za()) 1= (7 + C(EH) = £(0), %)

and
== gup{t > E1(cals) 2o1(5)) € int K for every § e (5,1}

Then (og,2e) COMVETYE uniformly to (oets Zq) @S E—F 0t on compact subsets of I, 7).

Pronf. Observe that, if 3.3.50 holds, 7 is strictly larger than i and T — £ = 1, where 7 is
given by 3.3.50. As in Theorem 3.18 we denote with ko, 2) and halo, 2) denote two C}
functions coinciding with Cu;((:)(w;((:)(a)), and 1‘,r(J)tr(uK(:){wK(:)(a))), respectively, in
Bota(d,2)\ int X Since ¥{a, £) < 0, wecan apply Lemma 3.17 as in the proof of Theorem
3.18 to get that there there exists ¥ >0 such that the solutions of (3.2.18) converge, UpP to
a subsequence, to a funciion (o(f), 2() with values on IV solving the problem

Cé(t) — o(t) = w(bha (o (t), 24)

(3.3.52)
5(t) = w(hala(t), (1),

with the Cauchy data (5,6), for some suitable nonnegative bounded function w(t), on the
compact subintervals of (£,T+4]; thus we may fx & < 7 such that (o(t), 2{t)) € B, (7,2}
¢or every ¢ € [l E+d}- BY (3.3.48) we can clearly assume that

T{o(t), z(t) <0 (3.3.53)

far every ¢ € [£,1+ 8]

Now, we first prove that the open seb Aine == {t & (Li+ 8) : (sft),¢(2)) € int K}
must be nonempty. If not, (o(t),2{t)) € JK for every t € [f,T + 8], Then we can prove
exactly as in Theorem 5.18 that (3.3.40) is satisfied for every f & it t+ 85 by uniqueness,
this implies (o), 2(t) = {crsg(t;f),zsa(t;f)), but then (3.3.49) and (3.3.53) contradicts the
nonnegativeness of w(t). Tt id easily seen, as (s, Ze) COTVETER uniformly to (g,2) on the

compact subintervals of (F,t+ 0] that
w(t) =0 forevery t€ Aint - (3.3.54)

We now show that Aje 18 connected. Indeed, let ie Apy and let (i,,12) the connected
component containing i In (f,19), we have, by (3.3.54), that (o(t),z(1)) = (a(t1) +
CE(t) — (), z({1))- Notice that, as (0(51),3(51)) ¢ 8K by maximality, we have that
Q’(fl,cr(f1), C(t)) €0, if not the trajectory gots outside of K. Then, 3.4.50 implies that
fy = 1-+48, thus proving that Ay is connected, that is Ame = (i;,1+08). Now, L >, for
every t € [[,f1] we must have (a(t).z({t})) € JIC. In this case, again (3.3.40), (3.3.53) and
(3.3.49) give us a contradiction. Thus the statement of the theorem is proved in (f,t+4j;
as, for every t <7, (oer(t} z(1)) € int I, 1t is easily seen that the maximal interval such
that the theorem holds is 7). O
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The statements of Theorems 3.18 ang 3.21 can be efficiently joined together in the next
one. Here we have in mind the case where, at a certain time t the stress reaches a point
of the yield surface where the indicator ¥ is negative, so that the evolution is continuons,
and we assume that ¢ is strictly Positive, since the case D <0 is covered by the previous
Theorem. Then, in a right neighborhood of 7 » either the evolutinn follows the slow dynatnics,
or a continuous combination between the slow dynamics and {he elastic regime. Tg prepare
the statement, we introduce s0me notation,

Definition 3.22. For every (4,2) € 8K satisfying (s, £)#£ 0, and every £> 0 we define
{og1, za}{t; 5, 5, ) as the unique solution to (3.3.1) starting from the point {6, 2) at time £,
and 7797 ag the Supremun of the maximal open interval of existence for (o, za)(t; 6, 3, f).

Theorem 3.23. Assume (1.3.1)-(1.3.4), (2.3.3), and (3.22), and define & ang T as in
(3.2.24), and (3.2.25), respectively. Let { > 0 apd (6.2) € 0K be as in Theorem 3.18 and
define (oq1, 250)(t; 7, 2, £), and L% > & as in Definition 2.29. Let

ti=inf{t € ({, L") @, (o5t 230)(1; 6, 3, t)) <0},
Assume that (3.3.49) and (3.3.50) hold at (6,2) = (0u(@), zu(D). Let
(Uel(t): Zel(t)) = (& + C('S(tJ - S{F))! z)

and
7= sup{t > i |(ou(s), zel(s)) € int K for every s € (f,¢)).

Then (o, z,) converyes uniformly on compact subsets of (£, 7) to the funclion (o,2) defined
by
(0'5[., ng)(t; a

a(t}), z(t)) = '
(7(t), 2( ) (crg;{t),zcl(t)) Jort <o ¢

(3.3.55)
Proof. Since ¢ » 0, and % are fxed and there is no risk of anihiguity, throughout the proof
we will write (g, (t), za(t)) in Dlace of (Tt 251) (1 4,2,1). Let # he the maximal time such
that (o, 2.} converges uniformly to (o,z) on compact subintervals of (£,7); we have to
show that # = By Theorem 4.18, it follows that + > Asin Theorem 3.21, it is easy to
see that # =+ when + > %, therefore we have anly io exclude 7 =,

In this case, there exist two constants > 0 and Y > 0 such that, for every (o,z) &
B,(5,2), one has U(o, 2) < —v. We define (3,7) as the infimum ig B‘_r)i (5, %) of C{a, #.7),
where the latter is the constant defined in Lemma 3.17. Now we may fix { — F<h <<
P<ty<f+ o{4,7) in a way that (ga(t), za(f))) € B1(7,2) and we shall have that for
every (a,z) € By (7s1(t1), 2 (7)),

’ (o, 2) < —.

By Lemma 3.17, applied with § = te=1F + we have that there exists L > ) such that for €
sufﬁcientfy small -E‘b_i)« < % for every ¢ ¢ [f._g,fa], thus we may assume g—‘E(t—} w” -converges in
Lo°((f2,13)) to some nonnegative finction w(t). By (3.3.37), (3.3.38), and Theorem 1.15 the
sequence (o., z,} converges uniformly in [£2, 2] to & continuous functioy (7,%). Theorem
3.18 gives (5,3) = (951, za1) in (t2, %), while Theorem 3.21 gives (6,%) = (o, Zat) in [{,1),
thus (&, 2) = (o, z) in [Iy,13]. This contradicts the maximality of 7, when # = §. O
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3.4 Softening with discontinuities

3.4.1 The equation of the fast dynamics

“The poal of this section is & qualitative study of the equation

orls) = Tl enlor()) = oy(s))

(3.4.1)
55(s) = wrlos(s)) tr(oy(s) = ?ffc(:f(s})(af(-‘:‘)));

this is called ihe fast dynamics equation and appears, as We shall see, as limit of a rescaled
version ol {3.2.18) near & discontinuity point of a viscosity solution.

Under suitable conditions, we shall see the viscosity solution will jump between the two
endpoints of & heteroclinic orbit of (3.4.1), whose existence, together with other properties,
is the object of this subsection.

In order to prove the main theorem of this subsection, we need a preliminary lemma,
showing that the internal variable is constant along the unique solution of (3.4.1), with an

initial condition (7,2 satisfying
(7, ) ¢ I and tI’(i‘JK(g) (7\”1((_.—_)(5'))) =0 (3.4.?.)

We preliminarly observe that taking an initial condition outside K easily implies that we
can never reach K in finite time, 88 the set K 1s made of critical points of the autonomous
equation (3.4.1). Through the decomposition (3.2.9) we identify M%’,‘,{V with B = ngN :
in particular @ 7(s) is identified with the pair (z 7(8), ys(s)) of its spherical and deviatoric
parks. Introducing the function 2 defined by (3.2.3), which is positive by the previous

remark, we may rewrite equation (3.4.1) in the form
gp{s) = VN olzr(s) yrlsh 51(-‘3)}tl’(vrc(:;(s))(?ch(:f(s))(mf(S),yf(S)))),
jpls) = 24 oz (s),upts) 2r(s)) ﬂ?q:f(m(ch(z,(s))(mf(S), MGIE {34.3)
ip(s) = SNz (s) olas(s) yp(s), =) 1"1\’(:;(5)}('771\’(:_;(5))(371'(5)1'Uf(s})))°
flere + and p are defined in (2.3.3) and nﬁ(:f (5))(7r;((:f(5))(mf(3),y;(s))) is the deviatoric
part of V}((:;(s))(ﬁ:\'(;j(s))(fﬂf(s),!U (s))-

Lemma 3.24. Let (7,2) € [M%’an % (0, +oa)] \ I satisfying (3.4.2), and let 7 and §
the spherical and the devidtoric part of @, respectively. Then, for every t € ., the unique
solution to equation (3.4.3) with Cauchy dota (z (0}, 05 (0),2 H{0) = (#,7,2) 18 giver by

)

(8]

(o p(8) ysis) 778D = (& y(s)

where y(s) solves the equation
U(S) = d?‘”’ Q(i:ﬂ y(s)ﬂ E)NE(E)(TTK(E}(:E? g)) (344‘)

with Cauchy condition y(0) =¥~
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FProof. Let ¥(s) be the unique solution o (3.4.4) with Cauchy condition y(0) = 7. Then,
for every ¢ =

S“ D
(z, y(s')) = (-'L—': - 2!1/ (%, y(s), 5)”1;’{5) (Trft’(s) (2,5)) ds ) =
a

= (%27 - 2un2 (e 2.7 | o). 505) =
a

= ((‘ia .’7) _2#1}}((5)(7(]((5)(5! ﬂ)) ‘/us g(:I',y(s),.?) ds) ’

Therefora Tz (% y(s')) = Tk(2)(%,§), provided (T, y(s"), £} ¢ K this allows us {0 check
that (Z,y(s), £) solves (3.4.3), at least for smal) Is|. The conclusion for every s follows, as
solutions to (3.4.3) can never reach I in finjte fime, 0

Now we are ahle to prove the existence of g heteroclinice orbit of (3.4.1) starting from 5
point (5,3) € 95c under suitahle hypotheses on ihe slow-fast indicator ¥,

Theorem 3.35, Assume thet (1.3.1)-(1.3.4), (2.3.3), (3.2.2), and (3.2.10)—(3.2‘11) are sif-
15fied. et D, ¥ be a5 in (3.2.24) ang (3.2.25), respectively. Let (6,2 e oK and suppogse

that
(5,2 >0 (3.4.5)
ar
T(6,2)=0 ang v\rr(a,s)-(;,—(;)ﬁt%%%ﬁ, 1) <o, (3.4.6)

Then equation (3.4.1) has o unique solution (Gr(s), 2¢(8)) (up to t*.ime—tmnslatz’ons) Satisfy-
ing

Hm (Gy(s), 24(s)) = (@, 2). (3.4.7)
Moreover, the tirnit
(700, 200) = lim_(31(s), 21(s)) (3.4.8)

F=3400

erists and salisfies the Jollowing conditions

(oo, Zw) € OK, Zoo > (), (3.4.9)
Poy,, Z) <0, (3.4.10)
tr(oe) < 0, tl‘(”}((;m)(o'm)} >0, (3.4.11)

Proof. We first observe that, hy (3.2.2), (3.2.8), and by (3.2.25), both (3.4.5) and (3.4.6)
imply that

tr{d) < p, br(vre2)(5)) > 0. (3.4.19)

Moreover, due to onr regularity assumptions on We may assume that in a suitably smal)
neighborhood of (6,2) an oriented distance function » from OK is well defined; this is 5
C extension of the function @, defined hy (3.2.3), to the interior of K. In view of the same
assumptions, we Mmay also locally define a minimal distanee projection onto Of(z), denoted
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by a(z), which obviously coincides with g (., outside of A'{z). For all these reasons, the
Cauchy problem

—Cryio(z))
tr(a(z)) tr(vic(z) (Tar (=) (e(2)))) (3.4.13)

a{Z) =&

o'(z) =

is well delined and admits a unique solution, which shall be denoted by &(z). For z suffi-
ciently close to £ we then have that tr{g(z)) < 0 and tr(v)(Tor(y{o(z})) > 0; moreover
for = < 2, sufficiently close to Z we can prove that (&(z),z) ¢ K. Indeed, as v{5,2) =0, il
suffices to show that in a left open neighborhood of 2 one has

tr(a(z),2) <0, (3.4.14)

By a direct computation, similar to that in (3.2.7), exploiting {3.4.13) and (3.2.25) we get:

i'r'(&(g) 2) = T(o(z), 2)
dz ’ tr(a(z)) tr(vg =y (mar) (6(2))))

Then (3.4.5) implies that ;ﬁ%r(&(s), 2z} < 0 for z = %, thus (3.4.14) follows; if {3.4.6} holds,
deriving W(&(=), ), we get that

(3.4.15)

Lp(5(2),2) = 0 and Lrr(a(3), 2) > O,

which in its turn jmplies {3.4.14). We thus may fix Z < 2 such that, lor every z € [, 3},
the following three hold

e(é(z),z) >0, (3.4.16)
te(5(z)) < 0, (3.4.17)
tr(ve oy (e (6(2)))) > (3.4.18)

we may indeed replace mpp with wx as (6(z),z) € K. Now, let Z;(s) the unique solution
to the autonomous Cauchy problem

zp(s) = tr(G(zp{s})) tr(a {2y (8)) — mrci=, () (5{z£(5))})
zp(0) = &

by {3.4.16)-(3.4.18), we have that tr(6(z)) tr{d(z) — 7= (6(2)) < 0, for every z € (£, 2),
with equality in z = 3; the theory of autonomous equations implies that Z;(s) is defined

for every s <0 and satisfies
. lim 2;(s) = z, Z¢(s) < 0 for every £ € 0;
-

it now suflices to put &(s) :== &(Zs(s)), to get a solution to (3.4.1} satifying (3.4.7).

To prove uniqueness, let (o(s), z{s)) a solution to {3.4.1) satisfying (3.4.7); (3.4.12)
implies that there exists § € B such that, for every s < §, one has 2{s) < 0. Then z(s) is
invertible in (~o0,f) with inverse s(z). If we pul e(z) := o(s(z)), it is easy to see that o(z)
solves (3.4.13), thus coincides with &(z); the theory of autonomous equation now implies
that {(o(s), z(s)) and (&¢(s), 2;(s)) may only differ by a time translation, thus the first part
of the statement is proven.
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Now, let (—o0,8) the maximal interval of definition for (&7(s), Zr(s)); observe that, as
orbits can never reach K in finite time, (6,(s), 2;(s)) also solves (3.4.3). We split &,(s) in
its spherical part &{s) and in its deviatoric part §;{s) as in (3.2.9), and we observe that,
by (3.4.3), the following equality holds:

Kép(s) = —&;(s)ds(s). (3.4.19)

Moreover, (3.4.12) implies that there exist § < 5 such that & f{s) < O for every s < §.
Let us prove that .'.f:}f(S) < O for every s < &. Indeed, if there exisis s < 5 such that
fcf(sl) =0, by (3.4.3), as o{&7(s1), ¥r(51), 27{51) > 0, it must be

tr{vpe(z, s (@7 (51))) = 0

by Lemma 3.24, this implies &;(s) = &(s1) for all s, a contradiction. In particular there
exists
zg = lim &;(8) < & < 0, {3.4.20)
s—+5

where # is the spherical part of . Now (3.4.19) implies that :f'f(s) <QOforevery s < S. In
particular there exists zg := lim Z;(s) < 2.
b

We now show that zg is greater than zero. Indeed, by (3.4.3), the fact that & (8} <
Q) for every s < 8 is equivalent to the inequality

tr(vpc (s, (o)) (Trcez () (B (8), G (s1))) > O for every s < 5, (3.4.21)
and also, as p(&(s), #7(s), £r(s)) > 0, to the inequality
(s, o) (67(8)) < tx(G7(s)) = VN f{s) for every s < . (3.4.22)
By (3.2.5) and (3.2.16), (3.4.21) is equivalent to
br(macz, (@7 (8))) + 0V NEp(s) > 0,
where a is the positive constant defined by (3.2.10); thus, by (3.4.22) we conclude that
Zy(s)+azf(s) > 0 for every s < § {3.4.23)

which in the limit gives zg > Isz[ > 0, as claimed.

We now show that {6;(s), £;(s)) is bounded, which in particular implies that S = +-co.
Clearly, it suffices to prove that §;(s) is bounded. We have, by (3.4.1), the negativeness of
Es(s) and (3.4.22), that

LU = g (5) - (s) =

=2 i (s} (msecz ;(e))(Uf )—Gf 5)) =
=216 7(8) - (Treez, o (Gr(8)) — 65(s)) ~
- 245 dp(8) tr{mr e ) (67 (5)) — G7(8)) <
< 2p87(5) - {Mieqz (o (67(8)) — G r{8)) S 0,

as a consequence of (3.2.8); this proves that i§;(s)|* is decreasing, thus §(s) is bounded.
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Thus § = +oo and zg is the limit of Z;{s} at +09, which shall be denoted with Zeq
from now on; by the previous discussion, we also have that ze = 0, as required by (3.4.9).
Now we prove that &7(s) has a limit at +oo. To do that, we observe that Z7{s} is strictly

decreasing, thus globally invertible; we thus express & in function of 5 and we have to show
that there exists lim &(z). We already know that &(z) is bounded and that its derivative

satishes T .
—Cuy((6(2))

F'z)=—r — 3.4.24
) b6 (=) V(e (TR (= (5(=)1) ( )
{hug the claim will follow once we get that

lim inf t:r(uh—{:)(m\—(:)(ér(::)))} > 0. (3.4.25)

2 Zoa

Suppose thai (3.4.25) is [alse; frst, observe that in this case the liminf must be & limit,
as a consequence of the boundedness of &(z) and of Lemma 3.8. Therefore we will have,
exploiting (3.2.25),

lim ®{(&(z),2) = —2p. (3.4.26)

It e

Moreover, observe that by (3.2.5) and (3.2.15),

im (v (e (G2 =0 & AT Lirtme N o gz) = 0, (3.4.27)

on the other hand, clearly limz—=. tr(v ()T ;\-(:)(a(z)))} = 0 implies that

lim [ir(me (o (@) — VNE()] = 0, (3.4.28)

thus combining (3.4.27) and (3.4.28), we get that

lim £(z) = —02ce. (3.4.29)

T+ Zoa

Now, by (3.2.5), (3.2.15), (3.2.16), and (3.4.22), we have that

e (BN € (EEGEER 4 az]| <
< _]_Itr(mc(:)}ircr(z))) taz) < _{;[i(:) +az). (3.4.30)

P K

By {(3.4.24), & z) = =% this fact, together with (3.4.29) and (3.4.30), yields that
)

az

lir(rry(mrealai o 1 8

lim sup + a). (3.4.31)

T loo

-

Zoo Zoo OFoa

o -

Since (3.4.18) gives

d AN ] e T(5(z).z)
A (6(2),2) = TEET s e FE (3.4.32)

recalling that tr(u;{(:}(m{{:)(&(z)))) ~ 0 for all z > Zeo, WE conclude by (3.4.26), (3.4.29),
and (3.4.31), that

T R AP F- T A 1 Bytgee
léﬂ;gt (= ~oo)d_~,9(o'(~)a~') = TH (rdaze) > 0.

This finally implies that
lim p(&(z),2) = —00,

Z—Zpc
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contradicting the nonnegativeness of 0.
We thus have that there exists
Oog i= zl_iglm a(z}),
tltug the proof of (3.4.8) is concluded. It is obvious that (00,220} € 8K as it must be
a critical point of (3.4.1), thus (3.4.9) is proved, Concerning (3.4.11), it immediately fol-
lows from (3.4.25) and (3.4.20). Finally, as o(a(z),z) > 0 for =z > 200, We nmust have
d’—ig(&(z),z) 20 for ==z observing that tr{o..) tl‘(L’K{:m)(Gm)) <0 by (3.4.11), from
{3.4.32) we immediately get (3.4.10). O

Remark 3.28. It ig easy to show that, if an orbit of the system (3.4.1) has (6,2) as an
a-limit point, then (6, 2) is indeed its unique a-limit point; indeed, by the same arguments
used in the proof of the previous theorem we can show that in this case z(s) is strictly
decreasing in a, neighborhood of —oo, thus it has 5 ag a Hinit; the rest of the proof follows
from (3.4.24), and Lemma 3.8,

We end up this analysis of equation (3.4.1) by remarking that there are some cases where
we can improve (3.4.10), that is showing that ¥(o,, Zeo) < 0. We omit the details of the
following example, which can be found in [14, Example 4.4].

Example 3.27. We suppose that for every z € {0, +00), K (z) is an ellipsoid of the form
Kiz):={o¢c M“;\Lf‘n‘v (x4 2)% + l%"li = 2%}, {3.4.33)

where » and y are as in (3.2.9). Natice that K(1) satisfies (3.2.10)-(3.2,11) with a = 1.
Suppose that, if & and #oare as in (2.3.3) and b as in (3.4.33) the following condition holds:

b

KN > 28 (3.4.34)

ko

Let {#(z), z) be the heteroclinic trajectory joining the points (@, %) and (Toos 2oe) whose
existence is guaranteed by the previous theorem. Then, if (3.4.34) holds, by [14, Example
4.4 one has

U (0oe, Zoe) < 0.

3.4.2  Convergence to the fast dynamics

We want now to investigate how equation (3.4.1) governs the jump of our viscosity
solution when it reaches g point on the yield surface where the elastic-inelastic indicator
I8 strictly positive (which means that we are in the inelastic regime), while the slow-fast
indicator satisfies (3.4.5), or (3.4.6); we will see how a rescaled version of the solution
tonverges to a heteroclinic solution of the auxiliary system (3.4.1), whose asymptotic values
at s = +eo give the asymptotic values of the viscosity solution before and after the jump
time. Both the cases where (3.4.5) and {3.4.6) hold will be treated simultancously,

Throughout this part of the chapter, { denotes a time such that there exist a left con-

tinuous function # -y (o(t), 2(t}) defined on [0,£) with values in MEXN x [0, +00) and an
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element (&,3) of M=V « {0, +00) satisfying the foltowing properties:

sym
(o(t), z:(1)) — (0(s),2{t)) forae te [0,4), (3.4.35)
(a(2),2(1)) = (6,2) ast-si-, {3.4.36)
(6,2) € K and 3> 0, (3.4.37)
W (5, 2) satisfies (3.4.5) or {3.4.6), {3.4.38)
b(f,5,2) > 0. (3.4.39)

For instance, we can take { = t1 defined by (3.2.20), if (3.3.22} holds and Uy, ) > 0,
or { =ty defined by (3.3.5), provided that (3.4.6) holds for (6,2) = (02,23) defined in
Proposition 3.10. Tn the latter case we have W(gs,20) = 0 and in general, by Remark 3.11,

we have the weal inequality
- ~Crpeieyy(oa) i
V\IJ'(D“Qy~'~2) ' (tr(m)“(pm=2)((,u))y 1) S 0:

thus, assuming (3.4.6), we are exclading the degenerate case when equality holds.
By (3.4.35) and (3.4.36) we also may fix a sequence f, — £ such that

(oe (), ze(te)) (¢,2) (3.4.40)

indeed, hy (3.4.39), and Lemma 3.15 we can find another sequence, still denoted by 7.,
which preserves (3.4.40), and satisfies in addition, for every e > o,

oloe(le), 2 (F)) > ce, (3.4.41)

where ¢ is a positive constant independent of ¢,

We finally recall, as we have already dicussed in Remark 3.4 and in Propesition 3.10,
that in the case { = 5 the internal variable = is strictly decreasing in a left neighborhood
of ta, thus discontinuities can appear only in the softening regime.

We start by fixing an open neighborhood Uy, = (- §,, i+ b1) x Bs, (6,8) of (£, 5, £),in
a way that (3.3.24) holds. If {3.4.5) holds, we may assume for a suitable choice of §; there
exists a positive constant 71 such that

Vo, z) >y for every (o,z) € B, (&, 2); (3.4.42)

if instead (3.4.6) holds, we may assume that there exists a positive constant 74 such that

—Cupeo (W\'z (UJ) y
Vo, z) - (tr(a)tl‘{'jn')(.-){?r(x,(:)(ﬂ))’ 1) € - (3.4.43)

for every (o,2) € B, (6,3) \int I,
We now define the exit time from s, (6, £)

bl = inf{t e (fe,t. + 81) : (oe(t), z(t)} € 8B;, (6, ) (3.4.44)

by the previous assumptions for small & we will trivially have {, < bl. We then fix a
positive decreasing sequence g N, 0, starting from 6, and consequently we define, for
every k€ N,

b¥ :=sup{t € (i,,b) : (oe(t), 2(1)) € B, (5, 5)}. (3.4.45)
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Next lemma, which will be crucial in the remainder of the section, shows that the exit
times b¥ tend to £ when g goes to 0 and that the difference b} — b is of order & for fixed

Lemma 3.28. Assume (1.3.1)-(1.34), (2.3.3), end (3.2.2), and let ©, T be us in (3.2.24),
and (3.2.25), respectively. Let i> 0 satisfy (3.4.35)-(3.4.39). Let bl be given by (3.4.44)
and bE be given for every LeN, k>1 by (3.4.45). Then, for every k € N:

) b — 1 as e—0F;
pE bk
b) SUPenp — 5 = S Gk < OO

where ¢y is a constant depending on k. Moreover, for every k€ N, there exists a constent

my such that

oo (bE), 2 (BE)) > M. (3.4.46)

Proof. As we already observed in the proof of Theorem .95, both (3.4.5) and (3.4.6) imply
tr(6) < 0; by (3.2.26) this means that

~ _ min{s, 2}
tI’(O’) < MpvN

where My is as in (1.3.4) and ,2p as in (2.3.3). Provided we have chosen & suitably
small, we may clearly assume throughout the proof that

tr{o.(t)) < —%l for every ¢ € (fe, BL); (3.4.47)

Concerning part a) of the statement, it clearly suffices to show this is true for bl. As
f. — t this will be proved once we getb:

lim sup (b — ) = 0. (3.4.48)
g-+0F
By Lemma 3.15 we have that p(t) > 0 for every L € {£e,b%), hence (3.2.23) holds.

First we prove the lemma assuming that (3.4.5) holds, which implies on its turn (3.4.42).
With this condition, with the help of (3.3.24) and (3.2.23), we get that pe(t) = miee(t);
dividing by g<(t), we get

T
£

> for every ¢ € (£, b2). (3.4.49)

Integrating (3.4.49) between i. and b, using (3.4.41) and (3.4.44) we [nally get the in-
equality

. 5
bl — . < —log(=>)
! cE

which implies (3.4.48). Concerning part b), we fix & € N; applying (3.4.49) and neplecting
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the negative term p.(f.), we get
8 +o(l}) = [(Jf(bg)a zs(bé)) - (Us(fs)r -‘Ts(fe))l

< (e (bE) = oe(fe), D)+ (0, & (bF)—, ze (Fe))|

-hf hf
- |/ els)dsl | [ sels)ds

[a' B
= CE(s) = ae(s)|ds +|C )d (s)d
< [ 1cés) - auto ‘f+"/ 5| ;“A;' (Bds  (3.4.50)
< (Cl+ @)l +8) [ Eds il [ el ds
fe Ji,
b} BE
< (el @) +8) [ adsyds (i [ el ds
[ te
f}f R
< E(C+ (@) + d1)ee (b5) +IC] | [E(s)]ds.
tE

From this and part a) of the statemens, we get (3.4.46). Then, integrating (3.4.49) between
b¥ and bl we get that for £ small enough

b,],——b ge(bl) 1 [
£ N 5 Jog( gz(bf)} = IIOg(Tn?)’

and the conclusion then follows.
Assume instead (3.4.6), which implies (3.4.43). As (3.4.6) implies tr(vp ;) (F)) > 0 we
may assume

tr(¥ ez, () (Tr;\»(,_.s(t))(og(t))) >0 [or every t € (tr, b;)

By this, facts, {3.2.21) and ({3.4.47) we then easily get the existence of a positive constant
C such that

Qs(t)
£

() £ -C for every t € (tg, bL). (3.4.51)

In particular, for fixed & > 0, the function #.(¢) never vanishes in the preseribed interval,

We also immediately get, as z.(t) < 3+ 6; for every t € (£.,b]) that there exists a positive
constant R independent of & such that:

/ Q‘é )it < R. (3.4.59)

Dillerentiating the function ¥ along the trajectories, we get

L0 (o(8), (1)) = V(e (1), 2(0) - (52 (1), 26(0)) =
= V(0. (), (1)) - (CE(2), 0) +
5 (VT (op(t), (1)) - (— HEEED g
= V(o (1), % (1)) - (CEW), 0) +

L., ~Crriz an (Frecanla= (1)} .
+ 3 (VT (o {t), 2 (1)) - (t,r(rrz(t}):ri(uff—t():s(,;c{ﬁ;iii“))(n'g(t))} )5
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this equality, together with (3.4.51)) and {3.4.43), implies that there exist two positive
constants L and K such that
d

EE‘I’{UE(L),ZE(t)} > RQETU') — LIC|IE@)] for every t € (I, b). {3.4.53)

We denote with M the supremum of |€(t)| in (£ —dy, & +01), and we fix 0 < 5 < ﬁ;ﬁ@,
where 72 is the constant given by (3.3.24}. For £ small enough, by the definition of fe, we
shall have

‘I’(Us(‘s)zzsffe)) 2 1.

We then define:

a1 : oe(t) 72
il .= inf{e (£, b)) : EE > E}

4
]

(2= inf{t € (I, b1} : T(o(t), 2:(t)} < =20}

Now, let I, := £L A £2 A bL; exploiting (3.2.23), the same argument used to prove (3.3.29)

shows that & — # when e goes to 0. Moreover £, < bl; to get this, it sufices show that

sup (oe(t), z{8)) — (6,2} = O {3.4.54)
teffe,te]

ag £ goes to 0, and this can be proved proceeding exactly as in the proof of (3.3.30), since

Q‘T(t) is equibounded in the time interval [f.,%].

Next we show that for small & one has £, < {2, which in his turn implies . = #!, so0
{1 — f when £ goes to 0 and

(o (fh), 2. (11)) > —29. (3.4.55)
Suppose by contradiction that along some infinitesimal subsequence t. = {2, that is to say
U(oe(te), 2z (f)) = —2n. Then, integrating (3.4.53)), since the function g.(¢) is positive we
got

—n = W(oe(f2), 2 (8)) — U(oe(fe), ze(fe)) 2 —LIC] [ NHOIE:

which in the Hmit gives, by absolute continuity of the integral, that —g > 0, a contradiction.

So (3.4.55) holds, and QL(E@ = -’{% Actually, we have

ee(t) > T2

. p for every £ € (£2,01). (3.4.56)

Also this can be proved by contradiction. We observe that g.(f1) > —Btya >0, by
and (3.3.24). If (3.4.56) is false, let £ be the first time in (£L,bL) such that g (£
then g.(i?) < 0. But, by (3.4.53), for every t € (£, 3} we shall have £¥(o.(t),z.(1)) = 0,
hence, by (3.4.55),

U{o(t), z(t) > =2  for every ¢ € (£}, 2);

by this, (3.3.24), and (3.2.23) we infer that g.(f}) > 72 — 2 > 0, which is a contradiction.
Then, by (3.4.56) and (3.4.52), for € sufficiently small we conclude that

va (b} — 1) < dpR; (3.4.57)
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as {L — . — 0, we get that limsup,_,o7e(B} —{:) < dnf, and by the arbitrariness of 7,
(3.4.48) lollows, so part a) of the statement is proved.

Concerning part b), we fix k € I, & > 1. By the definition of b and i, we shall have,
for any t € [bF,bl], that

8k + 0(1) = {06 (), Ce (1) = (o), = (L)) 5

it follows, proceeding as in (3.4.50), that there exists a positive constant W such that
’ 2:(8) b
8 +o{l) < W(f e ds+/: £{s)| ds). (3.4.58)
i i

This in turn implies, by (3.4.53) and the fundamental theorem of ealculus that, up to
redefining the constant W,

a8
8 +o(1) < W[®(oo (), G (1)) — V(oo(le), 2. (1)) + [ I€(s)| ds} . (3.4.59)

By the definition of ., T(z.{i), C(f:)) = o(1); the absolute continuity of the integral and

pary a) of the statement now yield that, lor € small enough,

&
(o (1), (1)) 2 57

for every t € [bY, bl]. Substituting in (3.2.23), this gives

. By, Qa(t) ko2l ,
o:(t) = W = for every t € [0, 0,], (3.4.60)

and we conclude that, for £ small enough

bl — bk 2w oe(bL) W 81
£ < —1lo £y < —log(——r=)
e =, ol Qe(b,{f)) T 0k (Qe(b.’;))

It then follows that part b) of the statement is immediate, once we get (3.4.46). To get
a lower bound for g, (b%) we ohserve that a fortiori {3.4.60) holds, with 84+ in place of &,
for any t € [bE+1, 6], Since clearly

Op — Op41 < ](crg(bi"), zE(bi") - (Us(bgﬂ)v%(b}sc“)ga

proceeding as in (3.4.58), we obtain that there exists a positive constant W such that

b D
- i [ el8) Y
5 = ey < T (./.bg-n st [ K6 ds) (3.4.61)

Applying (3.4.60), with d;41 in place of §;, and the fundamental theorem of calculus, and
neglecting the negative term —p.(b5+1), we get, up to redefining the constant W, that for

£ small enough

Oy
: PTL —
0:(b5) = (0 Srp1) o M,

and conclusion then follows. i
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We are now ready to prove the main result of this section. Notice that in the statement
of the Theorem we are arbitrarily selecting one of the infinitely many solutions of (3.4.1)
satisfying (3.4.7), which can differ by a time translation.

Theorem 3.29. Assume that (1.3.1)-(1.3.4), (2.3.3), (3.2.2), and (3.2.10}-(3.2.11) are sal-
isfied. Let ®, W be as in (3.2.24), and (3.2.25), respectively. Let i>0, (6,3) € OK, such
that {3.4.5) or (3.4.6) hold. Assume that ®({, 5,5} > 0. Let (o;(s),z¢(s) be ¢ fired solution
of the problem:

or(s) = Clmpe(z, (o) (@5 (s} — ar(s))

zp(s) = tr(op(s)) trlof(s) — Tz, (en) (04 (5))) (3.4.62}

im_(a5(s),27() = (3,)

Then there exists bl — & such that, if we define (51(s), 21(s)) == (0c (bl +&5), 2 (b2 +e5)) for
every s € R, (61(s), 21(s)) converges uniformly on compact subsels of B to (oy(s), 25(s)).
Proof. This proof is reminiscent of [55, Lemma 4.3]. Fix §; > 0 as in (3.3.24) and let b}
be given by (3.4.44). We may clearly assume that §; < |(5, 2) — (0w, 200 )| Where (0o, Zoo)
satisfies (3.4.8). We also define x.(s) := £(b} + es).

First of all, we prove that there exists a sequence ¢, such that

(oe(b) — ece +e8), 2 (b] ~ ecc + €5)) = (op(5), zf(5)) {3.4.63)

as ¢ goes to 0. To simplify notation, in this part of the proof we write (o)(s),z!(s)} in
place of (a‘E (b} + £5), 2.(bl + £5)). Fix a sequence £; — 0. We start by observing that the

function (o} (s),~: (s)) solves the problem

62, (8) = Clmxizy (o)) (02, (5)) — 02, (5)) + €C xe, (),
&, (sy = tr{oy, () tr(ad (5) — maecey, (o (o2, (D)), (3.4.64)
(02,(0), 21, (0) = (o, (b, ), ze (bg,)),

in the interval [— b—IJ-L, u] As (og; (bl 1) ze,(b:.)) belongs to the compact set 9By, (6, 2)
we may assume, possﬂ)l_;r passing to a 'iubsequence that (Jgj(béj), E:‘(b}J)) converges to
(61,51} € 9B, (7, 2) as j = +oo. Notice that (d1,%1) has a strictly positive distance from
K s a consequence of (3.4.46). Therefore, Lemma 3.28 and the Continuous Dependence

1

Theorem imply that (créi (s), z;,(s)) converges uniformly on compact subsets of R, as j —

400, to the solution (a?(s), z!(s)) of the problem

! (s) = Clmg(zaplo’ (s)) — o'{s)),
H(s) = tr(o'(s ))tl‘(fI (5) = i1y (1 (8))), (3.4.65)
(a7(0), 21{0)) = (1, 21).
‘We now show that
S_I}I_nm(crl{s), 2H{s)) = (&, 3). (3.4.66)

Actually, recalling Remark 3.26, it suffices to show that there exist s, — +o0 such that

k_liTm(”l(“s’“)’ 2-s5:)) = (8, 3). (3.4.67)
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bl bk
To do that, we take &; and b* as in Lemma 3.28, and we define .5'511',"‘ == —EJE—j—’-; by

Lemma 3.28 and a diagunal argumment, we may suppose, eventually passing to a subsequence,

that for every & € N there exists

5, = lim S’
J—‘} o0
We define { S}, 27, (s)) = {oe; (bEJ +£55), 2¢; (bifj +-£;8)); by repeating the above arguments

we may suppoae that for every &k € W there exists {dy, %) € 0By, (d,%) \ K such that
(aé"},(s), z;‘j(s)) converges, as j — 4o, uniformly on compact subsets of i, to the solution
(0" (s), z*(s)) of the problem

=k

atis

) = Clrp(arey (@5(s)) — o*(s)),
) = tr(o*{5)) tr{c*(s) — Tpe(zriay (65(5))), (3.4.68)
(a"(0), 25(0)) = (%, 2k).

Moreover, equality {cr ( "), L (.5’1 £)) = (Jej(bé),zgj(béj)) implies that

(0" (s1), 2 (1)) = (&1, 21)

for every k&, hence by the uniqueness of solutions for Cauchy problems we get

{
(s
i

(% (s), 2%(8)) = (o1(s — 1), 2* (s — s1)). (3.4.69)
It follows that
(o (~sk), 2" (—sk)) = (6%, 2x)- (3.4.70)
As §; — 0, we have that (6, 2,) — (7, 2) as & goes to oo, hence
im (ol(—s), 2 {—s1)) = (6, 3); (3.4.71)
k400

since (&, 2) is an equilibrium point for equation (3.4.1), necessarily sx — -+oo as k — +00;
50, (3.4.67) is proved, By Theorem (3.25), there exists a constant ¢ € R such that

(o(s),2'{s)) = (o7 (s +¢), 27 (s + )
By (3.4.65), we have that ¢ belongs to the set
Ci={seR:(cp(s), z;(s)) € IB;s, (5, £)} (3.4.72)

which easily turns out to be compact, thanks to (3.4.7) and the assumption & < |(6,2) —
{To0s 2o0)| -

So far we have proved that for every g; — 0 there exists a subsequence g5, and a
constant ¢ € C', possibly depending on =y, , such that

(0c;, (b1, +25,8), 26 (07, +5,8)) = (o7 (s + ), 5p(s + ),

which is o say

(oe;, (b}

5 +&5,(5 =), zz(b;jh + e (s —c))) = (os(s), 25 (s)) .
From this {3.4.63) easily follows; moreover, we can take ¢, € C for every ¢, so that, setting
bl = bl — ec., by compactness of C' we have b! — £ when £ goes to 0, therefore again

(3.4.63) gives immediately the conclusion. O



3.5 Statement of the main result 3. The spatially homogeneous case

3.5 Statement of the main result

We collect the results of the previous sections in the next theorem, which gives a pro-
cedure to construct a viscosity solution to our evolution problem under quite general as-
sumptions; in fact, if these assumptions are satisfied at every step of the construction, the
viscosity solution is also unique. The theorem will determine a possibly infinite sequence of
times tp < #; < --- < #; < ... such that in each interval (#;_1,£;] the solution, denoted here
by {gi—1,2i—1} is continuous and satisfles either the slow dynamics, or the elastic regime,
or a combination of the two, A jump may occur at timne ¢; il the value (o;-1(f:), zi—1(t:))
satisfies (3.4.5) or (3.4.6). In this case the new starting point (¢7, =) for the solution in
the interval (I;, £;41] 15 determined by taking the limit as s — +o0 of the solution of the
fast dynamics originating from (o;_3{¥:), zi—1(t:)) at 8 = —co. To prepare the technical
statement of the theorem it is convenieni to introduce some notation.
Definition 3.30. For every (4, %) € 0K satisfying (5, 2) # 0, and every T > ( we define
(7st,20){; 8,2, T) as the unique solution to (3.3.1) starting from the point (&, 2) ab time
T. For every (5, 2) € &I we define {0y, z:1)(1;6,2, 1) = (& + T(E(t) — £(T)), ). For every
(7, 2) € AK satisfying (3.4.5) or (3.4.6) we define (oy, zf){s;6, £) as the unique solution to
(3.4.1) having {3, £) as an a-Hmit point.

To simplify our notation, in the statement of the theorem we also put

0K = {(o,z) € 8K : (o, z) satisly (3.4.5) or (3.4.6) }.

Theorem 3.31. Lel (oy,z0) € nt K, let {5 = 0, t; as in (3.2.20), and (op(t), z0(l)) =
(oo + C{E(t) — £(0)), za). For every i > 1 with t; < oo define

(oF. =) (gim1yzim1)(t) if W{oi—1(t:), 2i-1(2:)) <0,

ol 2] ) = .

' Sliin (or,zp) (8501 {t: ) zima (t2)) if (gi-1(t:), zim1 (8:)) € OKp.

If W(ot,zM) <0, let £; be the mawimal time of existence for {(ost, zs1) (4o, 25, 1:), and

Eo=ind{t >t : B, (os, 200) (t 07, 25, 4:)) <0}
Ifi;=1;, put t;pq :=1;, and
(@0, 5() = a2 lioF 5, 1)

Jor every t; <t < tiy; if instead & > &, put (55, %) = (oa, 2a) (07, 25, 6),

tiay = sup{t > & |(oa, 2a) (8 51, 31, 1) € inb K for every s € (I, 1)},
and
(got za}(tiof 25 8) forti <t <1,
(Gets za) (1384, 50, 1) Jor I S U< b,
Define (o(t), (1)) = o1 Loy 1) (@im1(t), 2i-1(8)) . Assume that

(g(t), 2:(8)) =

Do (t:), 2(L:) >0 for everyi > 1, (3.5.1)
(3.3.49) and (3.3.50) hold at &; for every i with t; <1; < t; (3.5.2)
lim 1nf ®(t,o(t),z(8)) >0  for every i with t;41 =& < +oo. (3.5.3)

i—}f
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Define e(t) and p(t) through the comsitutive relations in (3.1.1}, and pul T" = sup;t;. Then
(e(8), p(t), o{t), 2(t)) is the unique viscosily solution of (3.1.1) in {0,T).

Prosf. The result lollows [rom Theorems 3.18, 3.21, 3.23, and 3.29. O

Remark 3.32. Notice that assumption (3.5.3) ensures that whenever ;11 = f; < +oo we
can extend by continuity (o, zs) in %41 thanks to Proposition 3.10, hence at every step
the left limit {a(t;), 2(¢;)) is well-defined. Notice that the siatement of the theorem covers
also the case when #; = §;, which is likely to happen for instance after a jump. Concerning
the other assumptions in the theorem, observe that by construction and Theorem 3.25, we
always have at least the weak inequality W (0'1+,.3j—) < 0. By construction we also have
Do (t;), 2(t;)) = 0 for every 4, since at time {; either we reach the yield surface from the
interior of the elastic domain, or we were following the slow dynamics with postive & at
previous times. Similarly, the weak inequality in {3.5.3) is always true whenever t;41 = f;.
Thus our construction works at least for the nondegenerate cases where equality is exciuded
while a higher-order analysis is needed in the remaining situations to get insight of the limit

behavior of the viscous approximations.
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Chapter 4

Rescaled viscosity evolution

4.1 Overview of the chapter

The study of the spatially homogeneous case in the previous chapter has higlighted that,
for many initial data, we cannot expect in general that an evolution satifying the equations
(a)-(f) of Chapter 2, Section 2.2 is smooth in time. This is due to the nonconvexity of the
problem, since the model allows for a solftening regime. Moreover, we have seen that a way
to cateh the behavior of the system at jump times is the introduction of & time rescaling and
the use of a fast time s, which moves while the original time is frozen. Following this idea
(also used in {18, 32, 33| lor rate independent dissipative problems in finite dimension), in
this chapter we introduce a notion of generalized solution io give a meaning to the evoluiion
after the first discontinuity time. The idea, which will be developed in the next chapter, is
to consider a viscoplastic approximation of Perzyna-type as in Chapter 2, Section 2.4 and to
take the Hmit as the viscosity parameter tends to 0 of a suitable time-rescaled version of the
solutions. The properties of this limit give rise to the notion of a rescaled viscosity evolution,
which is expressed in terms of a rescaled time s, related to the original time by the equality
{ = {°(s), where t° is a nondecreasing locally Lipschitz function. The intervals where {° is
constant correspond to time discontinuities in the original variable t. The advantage in this
approach is that all these functions will be continuous with respect ie s, while continuify
cannob be expected wish respect to the the original time 2.

The definition of rescaled viscosity evolution that we give in this chapter is different
from the original one contained in [10, Definition 4.1]. Following the ideas of [11, Sections
3 and 4], in the definition we will replace the energy-dissipation balance and the partial
fiow rule of [10, Definition 4.1] with a measure-theoretical formulation of the fow rule (e) of
Chapter 2. The motivation for this approach is that the structure of this definition really
resembles the classical formulation of the problem, and the equations satisfed by a rescaled
viscosity evolution are the rigorous counterpari of the classical ones. However, there is
also a disadvantage, since condition (ev3”)® of Definition 4.5 is formulated in terms of a
suitable representative &°(s) of the stress o®(s), which has to satisfy the integration by
parts formula {4.2.3). The existence iiself of this representative is not a priori guarantesd
and is part of the proof. Nevertheless, in the last section of the chapter we will show that
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this representative has an intrinsic character. Indeed, if we assume strict convexity of K(1)
it can be obtained in ¢ as the limit of averages of the stress &°(s}.

The goal of this chapter is to show that the two definitions are indeed equivalent. The
proof will also give us the possibility to introduce some tools that will be used in the next
chapter to prove the existence of a rescaled viscosity evolution. In this perspective, it should
aiso be noticed that, since [10, Definition 4.1] replaces a differential inclusion with an energy
equality, it also requires less a priori information about the time regularity of the involved
functions. This is why the existence theorem that will be proved in Chapter 5 will rely on
proving the energy-dissipation balance (4.3.1) instead than directly {ev3")".

For all the notation and the assumptions on the model we refer to Chapters 1 and 2.

4.2 Quasistatic evolution

The definition of rescaled viscosity evolution that we are going to give in this section
involves a suitable representative of the stress o, that we now define. In the definition
the measure [o:p} is the one defined by (2.3.10}-(2.3.11). Notice that we are not a priori
claiming that such a representative exists for any given admissible stress. We recall that,
as in Chapter 2, the space IIp,(Q) of admissible plastic strains is defined as the set of
all p e My(QUTp;MYXN) for which there exist uw € BD(Q), w € H'(S;RY), and ¢ €
LA MY %N satistying (2.3.1).

Definition 4.1. Let p € Iy, (92) and ¢ € CHTN)*. Let ¢ & LA MY M) be such that
dive € L*(;BY) and [ov] € Lo°(T; RY). Let

L+ |p|  ifoeK((),
Lo if o ¢ K(C).

We say that a function & € L3 (QUTo; MY XN) is a precise representative of o with respect

topand € if 6 =0 L£L"-a.e on 2, and
o e K(Q) =& e Ku((), (4.2.1)
D
UEK(C)=>[U:@]=(U:;);L on QUTo, (4.2.2)

where K,(¢) i5 defined by (1.3.16), and f} is the Radon-Nikodym derivaiive of p with
respect to .

Remark 4.2. Observe that {1.3.4) assures that ¢ belongs to L"C’(Q;Mé\;i‘nN), and thus to
space L(1) defined by (2.3.8), whenever o € X((}, so that [¢:p] makes sense. Clearly one
can take @ = o as a precise representative whenever o ¢ X(¢). The choice to contemplate
this obvious case in Definition 4.1 will be useful to write condition {ev3”)° in a more compact
way.

Using Propesition 2.3, we can easily prove that condition (4.2.2) is equivaleni to the
following integration by parts formula: for every v € (1) we have

(o, p) = — {6 ple = Ew)) ~ (&, (u~ w) © Vig) +

+ (f! (P{U - w)) -+ (g, zp(u —_ w))l“l , (‘1.2.3)
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where [ = —dive, g:=[ov], u € BD(Q), we H(GRY), and e € LA MY <N satisfy
(2.3.1), and the duality product in the left-hand side is the standard duality hetween a

bounded measurable function and a bounded measure.
Throughout the chapter we will assume that

u®: [0,+00) — BD(f)) is weakly™ continuous,
e®: [0, +o0) = LA MYXN)  is weakly continuous,
p%: [0, 4+00) = My(QU g MESN) s 1-Lipsehitz, (4.2.4)

2% [0, +00) — CYQ)* s locally Lipschitz,
t°: [0, 400} = [0,+00) is nondecreasing, surjective, and locally Lipschitz.

As usual, we set
o°(s) ;== Ce%(s) and (°(s) = V(z°(s)) for every s € [0, +00). (4.2.5)

Since now p°(sy € My(QUTo; MY} (see [50] for some examples showing that we cannot

expect p°(s) € L2(Q; MY %NY) | the derivative of p® with respect to s can be defined only

sy

in the weak* sense given by Theorem 1.8, namely

e 5 {w*-topology af My{2UTy; MN*NY) . (4.2.6)

sym
We define
B® = {s € [0, +o0) : o°(s) &€ K(¢°(s))} and A°:= [0, +o0) \ B”. {4.2.7)

Remark 4.3. The continuity properties of & and ¢° imply that A® is open. Indeed, by
convexity, for every ¢ € CO(Q)* the function o v da(e, K(()) is weakly lower semicontin-
wous in L2{§LMNXN), From (1.3.7), we deduce that

sYm

|d2(e, K($1)) = da{o, K(C)) < 2MieliCr — Galle

for every o € L2 (Q; MY 5N) and every 1, € CO()* . It follows that (g, ) = da(o, K(¢))
is lower semicontimious with respect to the weak topology in L?'(Q;Mf;\;f,;v) and to the
strong topology of C°(0). Since o° = Ce® and since e” is continuous for the weak topology
of LA(MYXN) and ¢° is continuous for the strong topology of CO(R) by (5.4.44), it

follows that s — da(o®(s), K{¢°(s))) is lower semicontinuous on [0, +c0). Thereflore the set
A% is open.

The data of the problem f, g, and w appear only through the composite functions
F(°(s)), g(t°(s)), and w{t®(s)}. We will frequently use the shorthands Fo(s), g°(s), and
w®(s) in place of £(t°(s)), g{t°(s)), and w(t>(s)). The displacement u®(s), the elastic and
plastic strain e°(s) and p°(s), and the boundary displacement w®(s) are related by the
kinematic condition (2.3.1), which reads in this case as

Eu®(s)=e(s)+p°(s) 1nQ1,
P(s) = (w(t%(s)) — w(s)) @K™ in T,

while the stress o°(s) has to satisfy the equilibrium condition

—dive®(s) = f(s) infl, [e®(s)v] =g°(s) onTy.
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It follows from these two conditions and (2.3.42) that for every s such that o°(s) €
Lo MEZN) we can define the measure [o°(s): p°(s)] and the duality (o°(s), p°(s)) as

aym

in (2.3.10)~(2.3.11}, and ({2.3,12), respectively. If in addition we suppose
e®: [0,+00) - L2(9; M‘;\;i‘,fv) is strongly continuous and £'-a.e. differentiable, (4.2.8)

the stress o°(s) can be put in duality with the rate of plastic strain p°(s) at £'-ae.
s € [0, 400) such that o°(s) € L=( Mé‘{,ﬁ;’v ), as the next remark highlights.

Remark 4.4. Let s € {0,-+00) be such that the derivatives 6°(s), p°(s), and w°(s) exist.
We claim that [or every such s, the measure p°(s) € IIr, (£2), so that for every x € () we
can define the measure [x:p°(s)] and the duality (x,p%(s)) according to (2.3.10)-(2.3.11),
and (2.3.12), respectively. Together with (1.3.4}, this implies in particular that the duality
(g°(s), °(s)) and the measure [¢°(s):p°(s)] are correctly defined for £!-ae. s € [0, +o0)
such that e°(s) € K(¢%(s)).

To prove the claim, we notice that, if s € [0,+e) has the required properties, the

difference quotients
1
h

NN
aym

E(u®(s + ) — u®(s))

canverge weakly* in My (Q; M ) to é°%(s) + p°(s); moreover, using {2.3.1) and the esti-
mate proved in [52, Proposition 2.4 and Remark 2.5|, taking also into account the continuity
of the trace operator from H*{RY} into L(9RN), we can prove that there exists a

constant ' such that
1 o
E”u"(s +h)—ut(s): <
1 o ] l [=] a l [s] a
< (7P + ) = Pl + (s B) = w(s)ls 4+ | Bu(s + ) = w(s))).

‘Therefore the difference quotients of w® are bounded in BD(Q), thus converge weakly*
in BD({1}, up to a subsequence, to a function ©°(s). We can easily prove, arguing
for instance as in [13, Lemma 2.1], that (4°(s), &°(s), p°(s), w°(s}) satisfy (2.3.1), hence
p°(5) € I, (£2), as required. It also follows that the limit @°(s) is uniquely determined by
(€%(s), °(s), w°(s)} and hence does not depend on the chosen subsequence.

Finally, to give the definition of rescaled viscosity evolution we need a suitable extension
of the notion of normal cone. Indeed, The classical Prandtl-Reuss Bow rule is usually
formulated in terms of a differential inclusion involving the normal cone Ne(£) to a convex
set C at some point £ € C. In convex analysis, the normal cone is extended hy setting
Ne(€) = @ whenever £ ¢ C. Fur our purposes we find it convenient to consider a different
extension. Given a Hilbert space X and a convex closed subset ¢ of X, for every £ € X
we define the extended normal cone NFH(€) to € at £ in the following way:

i Nel€) ifeeC,
NEF = 4.2,
FO = Memnote) A2 0) ego, (4.2.9)

where 7o denotes the minimal distance projection. Unlike the normal cone of convex
analysis, N&* is not a monotene operator. However, the multi-valued map £+ NFHE)
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has closed graph, that is, if & -+ £ and v; &€ NE*(E;) for every j, then any limit point v
of v; belongs to Ng"{¢). The simple verification is lelt to the reader.

We are now finally ready to define our notion of generalized solution. Notice that, here
and henceforih, among the hypotheses on the data of the problem, we are in particular
assuming that the uniform sale-load condition (2.3.45)-(2.3.48) is satisfied.

Definition 4.5. Assume thai f, g and w satisfy (2.3.42)-{2.3.48), and let ug, eo, Pu, 20
be as in {2.3.53)-(2.3.57). Consider (u e° p° 2% (°) satisfying (4.2.4), define o°, ¢ and
P° asin (4.2.5)-(4.2.6), let A° and B° be as in (4.2.7) and set

i if s € A°,
p{s) = (4.2.10)
LP+1p°(s)i ifs € B°.

We say that (u® e® p° 2°1°) is a rescaled wiscosity evolution with data f, g, and w and
initial condition {wug, o, Pa. 20,0} if €° satisfies (4.2.8) and the following conditions hold:

(ev0)® Initial condition: {u®(0),e°(0), p°(0), 2°(0), t°(0)) = (w0, eq, Po, 20, 0) .
(evl)® Weak kinematic admissibility: for every s € {0, +o0)

Bu(s) = e°(s) -+ p°(s) infl,

p(s) = (wlis(s) - w(s) ovH inTo. R
(ev2¥ Equilibrium condition: [or every s & [0, +00)
~dive(s) = F(*(s)) n 8, [°(s)v] = g(t°(s)) onTy. (4.2.12)
(ev3"® Partial stress constraint:
(s} 2 K((°(8)) [or every s € [0,-+o0) \ U°, (4.2.13)
where
U°:= {s € (0, +c0) : t° is constant in a neighbourhood of s}. (4.2.14)

(ev3”)° Flow rule: for L£'-a.e. 5 € {0,+00) we have p°(s) < p(s) and there exists a precise
representative &°(s) of o°(s) with respect to $°(s) and ¢°(s) such that

P°(s) " i
p,((s) € N ween (7)), (4.2.15)
where Ky (¢°(s)) and Nfcifm(qo(s)} are defined by {1.3.16), and {4.2.9) respectively.

(evd)® BEuolution law for the internal variable: for £1-a.e. s € [0,+00) the strong CO(R)-limit

2%(s) = s- lim 2(s +h) —2°(s)

4.2.16)
h—=0 h (1 16)

exists, and

2°(s) = p1 % ((pa* tra°(s)) trp*(s)} in Q for Llae s € (0,+00); (4.2.17)
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moreover, if we define
w(s) ;= w(t®(s)} and x°(s) := x(t°(s)), (4.2.18)
where x is given by (2.3.45)-(2.3.48), we have that
15 (8) e + 1EwW(s)]l2 < 1. (4.2.19)

Notice that, il (4.2.8) and (4.2.11} hold, by Remark 4.4 we have that p°(s} € Ty, (Q) for
L'-ae. s e [0,+00), therefore it makes sense to speak of & precise representative according
to Definition 4.1.

Remark 4.6. If (u° e° p° 2°1°) is a rescaled viscosity evolution with data ¥, g, and w,
then (ueyp, e%op, pPop, 2%, 1ot%y) is a rescaled viscosity evolution with data fogp,
gow, and wop for every Gt bijective increasing function : [0, +o0} — [0, +o0).

We shall frequently use the inclusion
Ac e (4.2.20)

which trivially follows from (4.2.13) and (4.2.7),

4.3 Equivalent formulation in energetic form

The goal of this section is to stale and prove the main theorem of the chapter, showing
that Definition 4.5 is indeed equivalent to another one, where the measure theoretical for-
mulation of the flow rule {4.2.15) is replaced by the energy-dissipation halance (4.3.1) and
the partial flow rule (4.3.2), which accounts for the behavior of the system at jump times.
This formulation, which shares some features with the so-called energetic formulation for
rate-independent processes (for this notion we refer to [31]), does not require the additional
information (4.2.8) on the regularity in time of the stress o®(s) and is the one that we will
use in the next chapter to prove the existence of an evolution satisfying Definition 4.5. We
now state the announced result.

Theorem 4.7. Assume that f, g and w satisfy (2.3.42)-(2.3.48), that wg, ey, pu, and
zp are as in (2.3.53}-(2.3.57), and that (4.2.19) holds. Let u°, e°, p°, z°, and ° satisfy

(4.24). Let o®, ¢°, and p° be defined as in (4.2.5)-(4.2.6), and lel A® and B° as in (4.2.7).
Then the following condilions are equivalent:

o) (u® e p° =° 1% is u rescaled viscosify evolubion with data F, g, ond w, and initial
condition (up, €, po, 20, 0), according lo Definition 4.5;

(b} conditions (ev0)?, (evl)®, (ev2)®, (evd’)°, (evd)® of Definition 4.5 are sulisfied, as well

s the following two properties:
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Fnergy-dissipation balance: for every S € [0, +o0)
5 2
Q(e”(5) - Q(Go)"?'fn H(ﬁ"(é‘)sCD(S))dH/D [5%(8) ]2 d2(o®(s), K((%(s))) ds =
8

= [ (1o°) Bt — (L), w(t6)) F)ds = (@3.)

o

5
—L@wmm&mmw®+wmw»ww»wumwx

where da is defined in (1.3.17), end L(t) in (2.3.43).

Partial flow-rule: for L'-ge. s € [0,4o00) with o°(s) ¢ K(C°(s)) we have
P°(s) € LA(Q,M;’\L;,;V) and

{a°(s) — micgeoay (@%(8)L P(s)} = 1B (s)ll2 da(o®(s), K(CP(s))) . (4.3.2)

Remark 4.8. Forevery ¢ € (%) the function s — H(p°(s), () is measurable on [0, +oc0)
by Theorem 1.8. Approximating s =+ ¢°(s) by piecewise constant functions, we find that

5 = H{p°(s),¢°(s)) is measurable on [0, +oc), so the first integral in {4.3.1) makes sense.

NxN

Let @; be a dense sequence in the unit ball of LE(Q;MSym ), composed of continuous

functions with compact support. Singe, taking into account (1.2.1),
[5°(s)liz = sup{wi, B°(s)),
1

the function s =+ ||P°(s)llz is measurable, so the second integral in (4.3.1} makes sensa,
It easily follows from (4.3.2) that there exists a measurable function A: A® —+ [0, +o0)
such that

P°(s) = A(s) (0°(5) ~ mr(eoge) (0°(5)) (4.3.3)

for £'-a.e. 5 € A°. This justifies the choice of the name flow-rule for condition (4.3.2).

Remark 4.9. Notice that the energy-dissipation balance, together with (2.3.42) and (4.2.4},
implies that the function s =+ Q{e®(s)) is continuous. As the quadratic form Q is coer-
cive, the weak continuity of s ~+ e®(s) from [0,-+00) t0 L2(Q;MNN) implies the strong
continuity. Together with the Lipschitz continuity of s =+ p°(s), this gives that also u® is
continuous from {0, +o0) to BD(Q) with respect to the norm topology.

We also observe that for every s, sz € [0, +oc) we have

52
X°(s2) ~ X°(s1) = / °(s) ds, (4.3.4)

W8]
where the last term is a Bochner integral in the Banach space L*{Q;MN*N). Since || - [|c

is convex and lower semicontinuous in L*($; M%), the Jensen inequality and (4.2.19)
imply that
lix®(s2) = x°(s1) o0 < |52 — 1], (4.3.5)

However we remark that (4.3.4) and (4.3.5) do not imply the time differentiability of x®
with respect the L°° norm.
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Before starting the proof of the theorem, we first notice that the energy-dissipation
balance (4.3.1) can be expressed in terms of the function x that appears in the safe load
condition {2.3.45)-(2.3.48). This will be useful in the proof of Theorem 4.7, and also Lo get
the existence of a rescaled viscosity evolution in the next chapter.

Proposition 4.10. Let f, g, and w be as in (2.3.42). Assume that u°, e°, p°, z°, und
t° satisfy (4.2.4), (4.2.11), and (4.2.12), and that the safe load condition {2.3.45}-(2.3.48)
holds, For every s € [0, +00) let us define

w®(s) = w(t*(s}) and x°(s) = x{°(s)). (4.3.6)

Then (4.3.1) iz equivalent to

.8
Qe(S)) ~ Qea) + [ (HE(e),C*(a) + G (a) p7(s)) s -
5
= GCS). 1SN + (c0m0) + [ )l o) K ds = (031

S g
fu (°(s) — x°(5), Ew(s)) ds f (5°(s), €%(5)) ds + (x°(5), (8)) — (x(0), ea)

where {x°(s),p°(s)) and (x°(s),p%(s)} are defined uccording to (2.3.12) for every s €
[0,+cc}.

Proof. For every s € [0,400) we put L°(s) := L(°(s)). Since L° € H}, ([0, -+cc); BD(S1)')
and w® € HE ([0, +00); HY(LRY)), the scalar function s -+ (L°(s),w°(s)) belongs to
H} _([0,+00)) and its derivative is given by s — (L°(s), w(s)} + (L°(s), w°(s)). Therefore
we have

s 8
- [ (L(s), w(s)) ds / (£2(8), u%(s)) ds + (L(S), u*(8)) — (L°(0), o) =

(4.3.8)
f (E%(5), w(s) — w(s) ds + (L°(8), u(S) - w?(S) — (£°(0), uo — w(0)).
By (2.3.44), for £!-a.e. s € [0, +0o0) we have
(L°(s), w(s) — u(s)) = (F° (s}, w(s) — u(s)) + {g°(s), w™(s) — u(s))r, - (4.3.9)

By (2.3.47) x°(s) € L=®{; MYV}, while (2.3.45) gives —divx°(s) = F(s) in Q and
X°(s)v] = §°(s) on Ty for L'-ae. s € [0,-+oc). Therefore we can apply the integration-

by-parts formula (2.3.29), which together with (4.3.9) gives
(£°(s), w™(s) — u*(s)) = —(%"(s),p°(5)) — {X(s), €°(s)) + (X°(s), Bw®(5))  (4.3.10)

for £'-a.e. s € [0, --0c). This proves that s = (Xx°(s), p°(s)) is measurable; by (2.3.48) and
by (2.3.13), we deduce that s — (X°(s}), p°(s)) belongs to L1, ([0, +o0)).

Similarly we prove

(L°(s), u®(s) — w(s)) = (x°(s), p°(s)) + {x°(s), €%(s)) — (x°(s), Ew(s)) (4.3.11)
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for every s € [0, +00). By (4.3.8), (4.3.10), and (4.3.11) we have

5 5
_./0 (L"(S}ﬂbr’(S))dS‘/U (L(s), u®(s)) ds + (LYS), u®(85)) — (L°(0), uo) =
5

5 5
- / (%), p¥(s)) ds — / (5°(5), €%(s)) ds — j (x°(s), Bw(s)) ds +

0

+ (X°(8), p°(9)) = (x{0), o) + (x°(5), €°(5)} — (x(0), e0)-
Therefore (4.3.1) is equivalent to (4.3.7). il

The proof of Theorem 4.7 needs some preliminary work, where we use some tools that
will also be employed in the remainder of the thesis. A Arst point is to deduce from (4.3.1)
some suitable estimates allowing us to improve the time regularity of the stress. In this
perspective, taking into account the previous proposition, it will be useful to study some
properties of the function s — (x°(s), p*{s)), where the duality, thanks to (2.3.45)-(2.3.46) is
correctly defined according to (2.3.12). They are collected in the next lemma, where we also
prove (4.3.13) and (4.3.14} that need the a-priori information on the time diflerentiability
of o°.

Lemma 4.11. Assume thal u®, e, p°, z°, and {° satisfy (4.2.4), (4.2.11}, and (4.2.12),
and that the safe load condition (2.3.45)-(2.3.48) holds. Define x° as in (4.3.6). Then, for
every 5 € [0,+oa) the functions s — (x°(s),p°(s")) and s — (x°(s"),p°(s)) ere ylobally
Lipschitz continuous with Lipschitz constants |poll + 8 and My, respectively. Therefore
s+ (x°(5). p°(s5)) is locally Lipschitz continuous. Moreover, for £L1-a.e. s € [0,+400),

;f-'g(x"(s),p%s')) = (x°(5), P°(s)) - (4.3.12)

If in addition e° is differenticble with respect to the sirong topelogy of LE(Q;M%’,‘”N) for
L' u.e. s € [0,+oa), then

%(x“(S’),p%s)) = (x°(s"), p°(s)) (4.3.13)
D106, p7(6)) = (06116 + (°(6), 79) (4.3.14)

Jor L' -o.e. s € [0, +cc).

Proof. Let us fix s’ € [0,+00). The integration-by-parts formula (2.3.29), together with
{2.3.45)-(2.3.47), gives

{x°(s), p°(s')) = (x°(s), Bw®(s') — e°(s")} +
+ (F°(s), u(s") — w(s")} + {g°(3), u®(s') — w(s' ),

(4.3.15)

for every s,8' & [0,8]. In view of the differentiability properties of x°, f° and g° given
by (4.2.19) and (2.3.42), this implies that s — {x°(s), p°(s')) is absclutely continuous, as
well as (4.3.12). By (4.2.19) and {2.3.13) we also get that |(X°(s), p°(s')| < (llpolls + &),
therefore the global Lipschitz continuity of s — (x°(s), p°(s")} follows.
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The Lipschitz continuity of s ++ {x°(s"), p°(s)) and the estimate of the Lipschitz constant
are an immediate consequence of the 1-Lipschitz continuity of p°, together with (2.3.13)
and {2.3.46). To prove (4.3.13), we preliminarly observe that at each s € [0, +o0) such that
e°(s) is differentiable, by Remark 4.4 the measure [x°(s"):p%(s}], as well as the duality
{x(s"), p°(8)), are correctly defined according to (2.3.10)-(2.3.11), and (2.3.12), respectively.
By Proposition 2.3, for a.e. s € [0, +00) and every 4 € C1(02), with 4 = 0 in a neighborhoad
of 80\ Ty, we have

{[x*(s"): P(8)] ) = = (hx"(s"), €°(s) — Bw®(s)) —
— (x°(s"), (2°(5) — w®(s)) © V) + (F7(s"), 1p(2°(s) ~ w*(s))) -

Now, if e° is differentiable at s, the right-hand side is clearly the limit of the corresponding

(4.3.16)

difference quotients, Therefore (4.3.16) and the analogous formula for the difference quo-
tienss, which can be deduced again from Proposition 2.3, imply that at £1-a.e. s € [0, +-c0),
the derivative of the function s — ([x°(s'):p°(s)], %) eqnals to {[x°(s'}:p°(s)], %), hence
for every 0 < 87 < 83 < +00

(s 5(s2) — (sl ) = [

51

sa

(x°(s'): °(s)], ) ds. (4.3.17)

We then consider a sequence ¥, € C®(Q), with 0 < 4 € 1in & and ¥4 = 0 ina
neighborheod of 0\ 'y, such that ¥,(z) — 1 for every = € 8UTo. We now apply (4.3.17)
to 1. Since (2.3.13)} implies that the integrands in the right-hand side are uniformly
bounded, we can apply the Dominated Convergence Theorem and we finally get
&1
O, p(sa) — o)) = [ (), 27(6)) ds (13.18)
St
for every 00 < 51 < 32 < 400,
To prove (4.3.14} we first observe that, by a direct computation and using (4.3.18) and
(4.3.13), for every s and h we have

%((x:'(s + k), (s + k) — (x°(), p°(s))) =
1 s+h
=% f ({x°(s + ), 2°(7)) + (X°(7), p°(s))) dr .

Now, using (4.2.4), (4.3.5), and (2.3.13), we easily gel that

1
h

Similarly, using also (4.2.19), we can prove thai

s+l
f (x°(s+ 1) —x°(7), p°(T)ydr < h.

1

-
h ~/s (X°(r)p°(s) = p*()) dr < 0,

Tt follows that
F (s + h), po(s + h)) — (x°(s), p°(s))) =

vs4-h
[ (6wt + e, de + R,

where the remainder term %) goes to 0 when A tends to 0. Therefore, (4.3.14} follows
from the Lebesgue differentiation Theorem. 0
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We first want to prove that conditions (b) in the statement of Theorem 4.7 are sufficient
for the existence of a rescaled viscosity evolution. To this end, we want to use (4.3.1} and
(1.3.2) to deduce (4.2.8). We need two different strategies depending on whether (4.2.13)
is satisfed or not. First, we deal with the case when the stress constraint is satisfied. The
key estimate confained in the next theorem will help us to prove differentiability of o° in
the set B°. In the proof of the theorem, we will make use of the following Gronwall-type
inequality, whose proof can he found in [15, Lemma 7.3].

Lemma 4.12. Let ¢: [0, 7] = [0, +oc| be a bounded measurable function, let v: [0,T] -
[0, +ool be an inteyrable function, and x{8) a positive nondecrensing function. Suppose that

()% < l[; #(s) {s) ds + (/; (s) ds)g +x(t) (4.3.19)

for every t € [0,T]. Then

[N RVL)

o) < o f w(s) ds + /x( (4.3.20)

Jor every t € [0,T].

Theorem 4.13. Lel 5§ > 0, ond cssume lhat {u® e® p°, z°1°) sutisfy the hypotheses of
Thearem. 4.7. Define a®, {°, and p° as in (4.2.5) and {4.2.6). Let A® and B° be as in
(4.2.7). Assume that condition (b) of Theorem 4.7 holds. Then there exists Lg > 0 such
that

[le(52) — &®{s1)||a < Lg(sy — 51) (4.3.21}

for every 0 < 5y < 50 < 5 with 57 € B°®.

Proof. We fix 0 < 5 < 52 < § with 51 € B°. Denoting with V{(p° (°(s1);51,59) the
total variation of p° on [s1, s2] with respect to the functional (-, {) introduced in (1.3.20),

Theorem 1.8 implies that
sa
V(p°,C°(S1);51,Sz)=f H(p°(s), ¢ (s1)) ds. (4.3.22)
e

As ¢° is locally Lipschitz continuous, using the estimate (1.3.14), together with (4.3.22), we
get that there exits a positive constant Mg such that

H(p°(s2) — p°(51), (1) f H(p%(s), ¢°(s)) ds + Mg(sa — 51)°. (4.3.23)
Taking into account the energy-dissipation balance (4.3.7), we get the inequality

Qe(s2)) — Qle(s1)) + H(p®(s2) — p°(51), ¢ (51)) / {X°(s), p°(s)) ds <

</ (o°(s) = x°(s), Euo™(s)) ds = [ sgw(s), e%(s)) ds + (x°(s2), P°(s2)) - (4.3.24)

— {x°(51), 2°(51)) + {X°(52), €%(52)) — {x°(51), €°(51)} + M (52 — 51)° .
Since a°(s1) € K{¢°(s1)) and ¢%(s;) € C%(Q), by Proposition 2.5 we get

{0°(s1), p°(s2} = p°(51)} < H(P°(52) — P°(s1). (" (51)) (4.3.25)
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where the duality is defined according to {2.3.12). As o®(s1} ~ x°(s1)} belongs o the space
£o() defined by (2.3.32), by the integration by parts formula proved in Proposition 2.3
and (4.3.25) we get

(°(s1) — x"(51), €%(51) ~ €%(52)) =

= (%(s1) — x°(51), P°(52} — P°(51)) — {&°(51) ~ x°(s1), Ew®(s2) — Ew®(s1) <
(4.3.26)
< H(p®(s2) — p°(51),¢°(51)) — (X°(s1), P°(s52) ~ P(s1)) —

_f“ (o°(s1) — x°(s1), BEw®(s}) ds .

a1

By o direct computation, and using (4.3.12), we have

((32), B (52)) — (1), P(51)) = (X (31 ), D°(52)~p(s1)) = /'52<x°(s),p°(sm ds, (1.3.27)

while the similar equality

&n

(b, €(o2)) = (o), s0))— 0 on) eoa)—eo0)) = [ (R, (o) s (4.328)
s
is straighforward.
Summing (4.3.24) and (4.3.26), by the use of {4.3.27) and (4.3.28) we obtain that

Q(e’(s2)} ~ Qe(51)) + (0%(s1),€%(51) — €(s2)) <

< fsﬂ le®(s) — a*(s1)ll2li Ew®(s))ll2 + f"" (x°(s1) — x°(8), Ew"(s))) ds + (4.3.29)

1 1

+ fﬁz(i’,"(S), e°(s2) — e°(s)) ds+]52(5c°(5),p°(32) — p*(s)) ds + Ms(s2 — 51)7.

1 81
The inequality
82
/ (X°(5),p°(s2) — P°(5)) ds < (52 ~ 51} (4.3.30)

ar

eagily follows from (2.3.13), the 1-Lipschitz continuity of p° and (4.2.19). The latter also
implies that there exists a positive constant, stili denoted by Mg, such that

f N (x°(s1) — x°(s), Bw°(s))) ds < Ms(s2 — s1)". (4.3.31)

a1
Moreover, we easily have that

E 5

qu (X°(s), e°(s2) — e(s)) ds < j 1%*(s)ll2lle®(s) — e*(s1)ll2 ds +

s1 LT

le®(sz) — e%(s1)llz f () 2 ds. (4.3.32)

Now the left-hand side of (4.3.29) equals {o°(sz) — o°(s1), €°(s2) — €%(51)}, as a direct

computation shows. Talking into account the coerciveness and the continuity of the quadratic



4. Rescaled viscosity evolution

form ¢, from(4.3.30), {(4.3.31), and (4.3.32), we obtain that there exists a constant Bg such
that, for every s, ¢ (s1,5]:

%102 = 0™(61)iB < B ([ o(s) - osn) (B eyy s 4 () ds

81

+lo?(ss) — HD(SI)!,E/SH IIx°(s) |2 ds + (82 — 31)2) .

Let 4(s) be given by | Ew®(s))(lq + I1%°(s)la. By the Previous estimate and the Cauchy
inequality the exists a constant C's such that

lo(s2) ~ o°(s1) I3 <

Cs{ / " o(5) = o)l (s s - ([ wds) 4 (52 - 5, ?).

L3

(4.3.21) now follows immediately by applying Lemma 4.12 with B(s) and x(s) given by
flo°(s) — a(s1}fl2 and (5~ 51)%, respectively, taking into account that ¥(s) is bounded by
(4.2.19). .|

The differentiability of g° ag an L2 valued function for £1-g.e. 4 € B* lollows now from
the following abstract result. It deals with differentiation of a function v from an interval to
a reflexive Banach space, which satisfies the Lipschitz condition lv(sz) - v(s1}{| € L{ss —5y)
when one of the points 81, ss belongs to a fixed closed set,

Theorem 4.14. Let § > 0, let A be an open subset of (0,5), and let B = 0,81\ A. Let
X be ¢ reflerive Bunach space, let L > 0, and vu: [0,8] = X be a function such that

lo(s2) ~ v(s1)il < L(sy — o) (4.3.33)
for every 0 < 5, < 82 <5 with sy € B. Then for £'-qe sy e B there exisis

B(s0) = s- lim M%ﬂ@, (4.3.34)

t—+0)

where the limit s taken @n the strong tapology of X .
Proof. Let ©: [0, 8] — X he the function defined by U(s)=wv(s) if s £, and

. S—a bh—s
(s} 1= b—av(b)+b—a

v(a)

if s €4 and (a,b) is the connected tomponent of A containing s. It [ollows easily from
(4.3.33) that & satisfies the Lipschitz estimate

I9(s2) = B(s1)]| < L(sy — 51) (4.3.35)

for every 0 < 5, « s2 £ 8. Tt follows from the general theory of absolutely continuonus
functions with values in reflexive Banach spaces (see, e.g., [4, Appendix]) that for £1 -a.e.
so € [0, 8] there exists the limit

N . . U(sp+ h) - ’5(80)
Ols0) 1= o Jim =07 DR0)

: (4.3.36)

85
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On the other hand, by the Lebesgue Differentiation Theorem for £)!-a.e. 50 € B we have

1 s —
lim Mn_i@ =0.
R0 h

(4.3.37)

Let us fx sy satisfying (4.3.36) and (4.3.37). We want t0 prove that (4.3.34) holds. TFisrt
of all we observe that, by (4.3.37), so cannot be an endpoint of a connecied component of
A. For every h with so -+ he[0,8] we define 7y, in the following way. If 5o + h € B, then
o = Iy if 8o+ he Aand (an,bn) 8 the connected component of A containing sg -+, we
set mp = h — Su- Note that so+ 7 € B, < h, and 7 has the same sign as h.

Let us prove that

m—+0 as h— 0. (4.3.38)

If h > 0 this is obvious, gince 0 < mn < A by construction. To prove that m, —» 0 as
h — 0, we assume by contradiction that 7, —* 17 < 0 for some sequence hg =+ 0. By
construction the interval {5+, 50 4-h;) is contained in A. Tt follows that {so+7), sg) C AL
This contradicts the fact that sp is not an endpoint of a connected component of A, and
conclndes the proof of {4.3.38).

Isy+heAand h> 0, then

h—mn =L ((an, 50+ R)) = LHAN (so— hyso+ 1))

where the last inequality follows from the inclusion (an, so + h) © A and the inequality
50 < op. By (4.3.37), this implies that

. Th
I —=1. 4.3.39
h-gg*" h ( 3.3 )

On the other hand, if so + he A and h <0, then (sp + Mn, S0+ h) C A, thus
0<h—umn=% El(Aﬂ {30 — Tn. S0 + 1))
By (4.3.37) and (4.3.38), we conclude that
Th

lim - =1. (4.3.40)

As sg+nn € B, (4.3.36) implies that

w(sg + 1) — v(s0) .

(8p) 1= 5~ }lll_rﬂ] - (4.3.41)
To prove (4.3.35), it is enough to show that
v(sg + ) — v(s0) _ v(se 4+ mn) — v(so) (4.3.42)

h Tth
tends to 0. We write (4.3.42) as In and I, where

- v(sg + h) — v{sp) 3 v(so +1n) — wv(sp)
T h h '

T, = w(so+mn) = viso) _ w{sot+m) = v(so)
Lo WS T
fr Tth
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As sp+ny € B and g, < h, by (4.3.33) we have

I} < Lh—;ﬂ -0, (4.3.43)
where the convergence to 0 lellows from {4.3.39) and (4.3.40). As for the second term, we
have

1 = (r,ih - pyletsotm) — vl (4.3.44)

3 T
where the convergence to 0 fellows from (4.3.39), (4.3.40), and (4.3.41). From {4.3.43) and
(4.3.44) we deduce that (4.3.42) tends to 0, and this concludes the proof. O

We turn to the case when s € A°, that is when (4.2.13) is not satisfied. Assuming (4.3.2)
and strong continuity of o®, we are able to prove that in the set 4°, p° is L®-valued up to
constant measure and Lipschitz continuous in the L? topology. This enaldes us to deduce
the Lipschitz continuity of o in 4°. Since A® is open, this implies that &° is differentiable
with respect to time for £'-a.e. s € A°. This is the object of the following three lemmas.
We premit that absolute continuity of p°® could also be deduced from the < inequality in
(4.3.1), as we will be forced to do in the next chapter. Here we prefer a different statement
sinee, in the present form, Lemma 4.15 proves useful for both the implications of Theorem
4.7.

Lemma 4.15. Assume that {u® e® p°, z°t°) satisfy the hypotheses of Theorem 4.7, and
conditions (ev0)°, (evl)®, (ev2)®, (ev3’), (evd)° of Definition 4.5. Define 6°, ¢°, and p° as
in (4.2.5) and (4.2.6). Let A° and B° be as in (4.2.7). Let (a,b) be u connected component
of A%, end let ¢ € (a,b). If (4.3.2) holds and 5 = €°(s) is strongly continuous as a
Junetion from [0,5] to L3 Mi\ffi;”) then p° — p°(e) € Lipioe({a, b); LE(EY M%?HN)). In
pariicular, for L'-u.e. 5 € (a,b), p°(s) is the strong limit in L2(Q; M‘;\:;‘HN), as h — 0, of
the difference quotient +(p°(s+h) —p°(s)), and p° € L2 ((a,b); L2 (0 T MINNY) . Moreover,
for every 31,81 € {a,b), we have

]

Plon) = plor) € LAQMIEY) and pe) —p(sn) = [ iF(s)ds,  (4349)

1

where the last term is o Bochner integral in L2(0: M%EIN
Proof. By (1.3.2) for £'-a.e. s € (a,b) we have $°(s) € L?(Q); M‘;\;an) and there exists a
measurable function A: A® —+ [0, +-0c) such that

D(s) = As}(e(s) ~ micqeoqsy (a(s)) (4.3.46)

for Ll-ae. s € (a,b).

We now show that A(s) is locally bounded in (a,b). To this aim, we ix o < 51 < 52 < b.
Observe that by our hypotheses the function s = °(s) — m(goray (0°(s)) is continuous also
with respect to the L'(£; Mg;‘,{v ) norm topology, therelore there exists 7 > 0 such that
le{s) = Tigesy (e®(s))h 2 J} for every s € {51, s2]. Since {|p°(s)]ly <1 for £Ll-ae. s, we
get from {4.3.46) that A(s} < 1 ; for Ll-ae. s € [s1,50]. It then follows, again using (4.3.46)

that there exits (s, s2) such that

[2°(s)f2 < Cls1,580) (4.3.47)
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for L'-ae s € {51, 59].
This [act and the measurability of s — (@, p°(s)} for every ¢ € CH(QMIN) im-

Ay

ply that s — {1,p°(s)) is measurable for every ¥ € L*({}; MN%NY hence p°: [a1,] —

sym

LAQ;ME%N) is weakly measurable. By Pettis Theorem it is also strongly measurable, so

that (4.3.47) implies that #° € L{2.((a,b); L Mi{,ﬁ;\’ ). For every ¢ € CH{Q M%fn"‘r),
the function s — (i, p°(s)) is measurable and bounded, hence, for every s1,52 € {a,b), we

have

(%)~ w0 = [ ol ds = [ " pe(s) ds)

81
where the last equality [ollows from the [act that the Bochner integral of p° in the last
term is well defined in L2{(Q;MN*N). By the arbitrariness of i, this proves (4.3.45). The

inclusion p° — p°(e) € Lipac((a, b); L2 (Y M‘;\;’,‘HN)) foliows now from (4.3.45), as well as the
statement about the difference quotients, thanks to the Differentiation Theorem for Bochner

integrals, [

Lemma 4.16. Assume that (u° e® p° 2°1°) saiisfy the hypotheses of Theorem 4.7 and
conditions (ev0)°, (evl)®, {ev2)®, and (ev3d’)® of Definition 4.5. Let (a,b) be as in Lemma
4.15 und assume that (4.3.45) holds. Then, for every a < s1 < sz <b,

u(s0) —u’(s1) € H}“(Q;RN) . (4.3.48}
where HE (G RN) s defined by (1.2.3).
Proof. Let us fix a < s < 852 < b. From the weak kinematic admissibility (4.2.11), we have

Eu®(s3) — Eu®(s1) = e%(s2) — e°(31) 4+ psa) — p°(s1) in 2, (4.3.49)
P°(s2) — p°(s1) = ((w°(s2) — w°(s1)) — (u°(s) — w(s1))) @vH™™ ! in Tq.(4.3.50)

As the measure p°(s3) — p°(s;} belongs to L*(; M‘;\;an), it does not charge I'g, so that
the left-hand side of (4.3.50) is 0; since w®(s) is constant in (a,b) by (4.2.20), we get
u®(sg) — u°(s1) = 0 H" !-ae. on T. Moreover, the right-hand side of (4.3.49) belongs to
LMY <N) | By (1.2.2) we have u®(s2) — u%(s;) € H (S RY). m|

sym

Lemma 4.17. Under the assumplions of Lemma 4.16, the function e belongs lo the space
Acluc((ﬂa b) (ﬂ. MNKN)} and

Sym

aglle®(s)ll2 < Ballp(s)lla (4.3.51)

for LY-a.e. s € (a,b). In porticular, under the assumplions of Lemma 4.15, the funclion
e° belongs to Lipy,,((a, b); L*(Q; MY X))

sy

Proof. Let us ix a < $; < 82 < b. By (4.2.20) and by (4.2.12) we have that o®(sq) - o®(s1)
belongs to the set Tg(Q) defined by (2.3.32), so that from (2.3.33), (4.3.48), and (4.3.49),
we get

(o°(s2) — 0%(51), €%(s2) — €°(51)) = {&°(s2) — &1}, P°(51) — P°(s2)} 5 (4.3.52)

by {2.3.4) this yields 2ag|e®(sz) — e°(s1}|lz € 28qllp°(s1) — p°(s2)ll2, and the conclusion
follows from (4.3.45). O
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As a second step towards the proof of Theorem 4.7 we use the previous resulis to prove
that condition (1) in the statement of Theorem 4.7 implies o weak formulation of the flow
rule

P°(s, %) € Nieopsay(0°(s,2))
for almost all s such that ¢°(s) € K{¢°(s)). This wealk formulation is a measure-theoretical
counterpart of the so-called maximal dissipation principle (see [28]).
Theorem 4.18. Let {u® e°, p° 2°,t°) be a rescaled viscosity evolution with date f, g, and
w satisfying (2.3.42)-(2.3.48) end initiol condition (uq, €, po, 20,0) as in (2.3.53)-(2.3.57),
and define o, ¢°, and p° as in {4.2.5) and (4.2.6). Let A° und B® as in {(4.2.7). Then,
for L' g.e. s € B°

H(B(5), ¢°(8)) = (o°(s), P°(s)) , (4.3.83)

where the duality in the right-hand side s defined according to (2.3.12).
Proof. As ¢°(s) exists for £'-a.e. s &€ B® by Theorems 4.13 and 4.14, applying Remark 4.4

we obtain that {&°(s), p°(s)) is well-defined at £'-a.e. s € B°. Moreover, by Proposition

2.5, we have the inequality
(o°(s), p°(s)) < H(P(s),C°(s)). (4.3.54)
To prove the converse inequality, we first observe that, for every s > 0 such that the
derivatives %°(s) and &°(s) exist, the function s = (x°(s), €°(s)) is trivially differentiable

and

%<XD(5LED(S)) = (%°(s), €(s)) + (x(s), €%(s)) (4.3.55)

By (4.3.7), [or every s € [0,+00) and h > 0 we have the energy inequality
s+h
Qe(s+ 1) — Qe+ [ (B C(m) + (), 271 ) o —
s+t
— (s B )+ e ) £ [ {0%(n) = X7, () dr -

a-+h
- / (x°(7), e%(r)) dr + (x°(s + 1), e°(s + h)) — {x°(s), €°(s)) .

Dividing by h and taking the limit as i tends to 0, by (4.3.14}, (4.3.55), and the Lebesgue
Differentiation Theorem, we get

(o°(s) — X°(s), &°(s)) + H(B(), C°(5)) — (X"(s). B°(s}) < (0°(5) — X"(s), Bw(s)} (4.3.56)

for £3-a.e. 5 € [0, +0c). As o°(s) — x°(s) belongs to the set Zy(f2) defined by (2.3.32), the
integration by parts formula given by Proposition 2.3 implies that, when s € B®, {4.3.56) is
equivalent to

{o°(s),p°(s)) = H(D(5).7(s)),
as required. O
Remarlk 4.19. As a technical poini, notice that Theorem 4.18 could not be proved directly

after Theorem 4.14 as it may seem at a first glance, since the use of (4.3.14} requires the
time differentiability of €° for £'-a.e. s € {0,+o0), and not only in B°.
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We are ready to prove one implication in Theorem 4.7,

Proof of Theorem {.7: part one. Assume (b). Then (4.2.8) follows from Remarlk 4.9, The-
orems 4.13, 4.14 and Lemma 4.17. It remains to show that (ev3”}°. Using Definition
4.1 and {4.2.9) it is easy io see that (4.3.2) is equivalent to (ev3’)® when s € A° with
a°(s) = o°(s), therefore we have only to deal with the case s € B°. By Proposition 2.5,
the measure H{p%(s),("(s)) — [o°(s) : 2°(5)], which is correctly defined for £!-a.c. s € B°
thanks to Remarlk 4.4, is a nonnegative measure on 2UT"y . Therefore equality (4.3.53) implies
that

H(p(5),¢(8)) = [o°(5): p(s)] on QU Yy (4.3.57)
for Ll-ae. s € B°.

Let us fix s € B° such that p°(s} exists and (4.3.57} holds. Let F(s) € © and F(s) C
f1U Ty be two disjoint Borel sets such that E{s) U F(s) = QUTy and p,{s}{(E(s)) =
LM{F(s)) =0, where g (s} denotes the singular part of z2(s) with respect to the Lebesgue
measure. By {2.3.26) and (2.3.27} we have that

[o°(s) : p°(s)] = &*(s) : 5 (s) on E(s), (4.3.58)

where p;(s) denotes the absolutely continuous part of p°(s) with respect to the Lebesgue
measure. We define

(s, z) = o°(s, ) for £™a.e. 2 € E(s), (4.3.59}
5°(s, ) == aoﬂ(i ((SS)) (), (s, g,-)) for p,(s)ae v F(s),  (4.3.60)

where dgH(E.(°(s,z)) denotes the element of J:H{€,("(s,z)) with minimum norm. Ob-
serve that by the definition of u(s), for p(s)-a.e. € F(s) we have

sy, _ PAs)

us) @ = e
Therelore, thanks to the continuity of & — (°(s, 2), [48, Lemma 3.16] yields that for £'-a.e.
s € B° the function &°(s) belongs to L33, (22U FD;M%';‘RN). It is obvious that ¢°(s,z) =
o°(s,z) for L"-a.e. x € ).

‘We now prove that &°(s) is a precise representative &°(s) of o°(s) with respect to p%(s)
and (°(s). Since ¢°(s,z) € K((%s,2) for LM-ae. z € © when s € B, and 8oH(£,{) ©
K(€) for every £ € MYXY and ¢ € (0,-+00) by [40, Corollary 23.5.3], we get (4.2.1). Since
G%s,z) = o°(s,z) for |Ppo(s)|-a.e. = € E(s)}, using (4.3.58) we can casily deduce that

o). 0 ] 207y, PAS)
[°(s): p°(5)] = (o’ (s): L—(_ST) w(s) on E(s). (4.3.61)

By (4.3.60) and the Fuler identity, we get

sor. oy P08}, o Do(s) o T
G°%(s,2): m(.z,) = H( (5) (x), ¢ (s,m)) for p{s)-a.e x e F(s),

therefore (4.3.57) implies that
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From this and (4.3.61) we get (4.2.2}.

It only remains o prove (4.2.15). Using [40, Theorem 23.5] we can prove that, when
s & B®, condition (4.2.15) is equivalent to
p°(s)

5°(s,2) € a,,H(TZL 6

where &, denotes the subdlifferential with respect to the first variable. Since 8, is posi-

(x), (s, 1)) for pu(s)-a.e. z € QUTLg,

tively homogeneous of degree 0 and p(s) < L™ on E(s), taking into account (4.3.59) this
is equivalent to the fact that both the following inclusions are satisfied:

o°(s,x) € A, H Py (s)(x), (5, 7)) for L™-ae. z € (1, (4.3.62)

p(s)
p(s)

5°(s,z) € apH( (2), g°(s,:u)) for (s)-a.e. x € F(s), (4.3.63)

where, in (4.3.62), we also used the fact that LP(F(s)) = 0. By construction, (4.3.63) is
satisfied. Taking the absolusely continuous part in (4.3.57), we easily get that

o%(s.z) : pa{s) (@) = H(pg(s)(x), "(5,2)) (4.3.64)

for £P-ae. z € Q. At every z € 1 such thal ¢°(s,z) € K(¢°(s,x)), by the definition of
H for every € € MNAN we get that o°(s,@):£ < H{E,¢%(s,2)). Combining this inequality

sYm.

with (4.3.64) we get
a°(s, 3) : (€ — PA(s)(2)) < HE,¢%(s,2)) = H(a(s)(2), (s, )

for every £ € Mi\{}’,ﬁl"v and L£7-ae. 2 € Q. This implies (4.3.63). Therelore we have shown
that (b} == {a). The proof of the converse implication, which needs some other preliminary

lemmas, will restart afier Lemma 4.22. O

To prove the implication (a) == (b) in Theorem 4.7 we need some other preliminary
lemmas, and to fix some notation. We define

Oy (s,€°(s)) = Qe’(5)) — {x"(s),€°(5)) » (4.3.65)
7°(s) = o%(s) — x°(5) (4.3.66)

for every s € {0,4-00). It is easily seen that 7° belongs to the space Lp() defined by
(2.3.32). Tor every fixed § > 0 we set Af = AN [0,8] and Bg = B°N[0,5]. A key
peint for proving Theorem 4.7 is showing that, if (u° e® p° z°t°) is a rescaled viscosity
evolution, the function s — @y (s, e°(s)) is absolutely continuous. This is the object of the

following three lemmas,

Lemma 4.20. Let §> 0. Assume that the hypotheses of Theorem 4.7 and that conditions
(ev0)®, (evl)’, {ev2)®, and (4.2.19) of Definition 4.5 are satisfied. Then there exists a
constant Lg such that

|Ox (52, €°(32)) — Qx (51, €(51))] < Lslsa — s1 {4.3.67)

for every sy and sy in 8.
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Proof. Let 51 and sp be as in the statement of the lemma. Since 7%(5) € Zp(?) for every
%, a direct algebraic computation and Proposition 2.3 give

(52, €%(s2)) — Qe (51, €°(51)) + F{X°(52) — X°(s1), €°(57) + €%(52)) =
= §(7°(s2) + 7°(51), €%(82) — €°(s1)) =
= 3(7°(s1) + 7°(52), Ew®(s2) ~ Bw(s1)) ~ 4(r°(s;) + 7 *(s2).p%(52) — p°(s1)).

Let (s be an upper bound for {|¢°(s)fje on [0, S]; by {1.3.4) and (2.3.46), we get that
(50|00 € Mic(Cm + C3) (4.3.68)

for i = 1,2, Therefore (4.2.4) and (2.3.13) give

|3(r°(s1) + 7°(s2), 2°(52) ~ P*(51))| < Mic (G + C5)l32 — 1)
By (4.3.68) and (4.2.19)
|3(7°(51) + 7°(s2), Bw®(s) — Bw®(s1))} < L(Q) My (G + ()2 — s1f.
Denoting with Cls an upper bound for ||e(s)fj» on [0, 8], (4.3.5) yields
f%(x“’(SQ) —x°(s1),€%(s1)} + e’(sq))| < E"(Q)%Cslsz — sl
The conclusion follows easily fram the previous inequalities. O

Lemma 4.21. Lel § > 0, assume thal the hypotheses of Theorem 4.7 hold, and that
(u®, e® p°, 2°1°) is u rescaled viscosity evolution with data £, g, and w and initial condition
{u[h €0, Po, 20, ) Th'en

[ 1O (o). ) ds < oo, (1.3.59)

If we define the function g(s) by

- /:H(p"m,c"(rn /up Mz da(0°(r), €°(r)) dr + (x°(r), (7))

Jor every 5 > 0, we have that the function g is absolutely conlinuous, Moreover, if {a,b) is
& connected component of A°, then the equality

Ox (52, €°(s2)) — Qe (s1,€°(51)) = g(52) ~ g(s1) (4.3.70)
holds for every o < sy < 59 < ).

Proof. Fix o and b as in the statement. As p(s) = L™ when s € 4°, it is easily seen that,
(4.2.15) is equivalent to (4.3.2). Therefore the hypatheses of Lemma 4.15 are satisfied, hence
15°(s)[|2 is locally bounded in (a,b) and (4.3.45) holds. By Lemma 4.17 this implies that
e® is Llpsclntz continuous in [s1, 2] for every a < s; < 50 < b, It follows Lhat the function
§ = Q. (s,e%s)} is Lipschitz continuous on [51,82]. Moreover, since X° is constant on
[2, #], we have

-}O (5, €%(s}) = (7°(s), €°(s)) {4.3.71)
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for £L'-a.e. s € [s1,52]. By (4.3.45) we also get that

£(x°(5), P°(8)) = (x°(s), p"(s)) (4.3.72)

for £L'-a.e. s € [s1, 82], where in this case the right-hand side can be equivalently regarded
as the generalized duality defined by (2.3.12), or the usual scalar product of L%,

By definition of the extended normal cone, NE“("EQ{S))(J%S)) C Neeotan (Tregeoan{o®(s)),
where the latter is the usual normal cone of Convex Analysis. As p{s) = L" for every
s € {a,b), inclusion (4.2.15) and [40, Theorem 23.5] give that

Tean (0°(s)) € By H(P°(s), ¢7(s))
for £'-a.e. s € (a,b). Therefore, the Buler identity implies that
{mrcieorsn (@°(sh), B°(s)} = H{P*(s), (°(s)) {1.3.73)

for £'-a.e. s € (a,b). As we already noticed, when s € A°, (4.2.15) is equivalent to {4.3.2),
which in its turn is equivalent (4.3.3). The latier gives

1°(5)l2 d2{o®(5), {*(5)) = (e°(5) — Miereorsy (o°(5)), P°(s))
for £1-a.e. 5 € A%, so that using (4.3.73) we get
H{p(s), C°(5)) + 1B°(8)il2 d2(o®(s), {*(s)) = (°(s), p°(s)) . (4.3.74)

Recalling that Ew®(s) = 0 in A%, by an integration by parts argument uvsing (4.3.48), we
get

{@°(s), p%(s)) = (7°(s), P°(5)) + (x™(s}, P°(5)) = —(7%(5), €°(5)) + (x°(s), p°(s)} . (4.3.75)

With this, integrating (4.3.74) between s, and s» and teking into account (4.3.71) and
(4.3.72), we obtain that

Oy (52 €%(52)) — Oyelsr, €%(s1)) + ] H(s), C(s)) ds +

+ /.52 15°() ]2 da(o(5), ¢*(5)) ds = (x°(s1), P°(s2) — P°(1)),

vEy

(4.3.76)

where we used the fact that x° is constant in [a, B].

So far, (4.3.76) holds for & < s1 < s < b; by continuity of the function s — e°(s), it is
also true when a = s; and b = s3. Therefore, since o and & belong to By and taking into
account (2.3.13) and (4.3.67), we get

b
[ 1)z da(a™(s), €5 s <

a
b

< [ HBYs), CCs)) ds 4 Lg(b—a) + [x (@)l ip*(b) — P(a)]}s -

@
By the Lipschilz continuity of p° and recalling that |[p%(s)||z da(or(s), ¢°(s)) = 0 in B,
this immediately implies (4.3.69). Taking into account that s — {x°(s),p°(s)} is locally
Lipschitz continuous by Lemma 4.11, it follows that g(s), as defined in the statement, is
absolutely continuous. By {4.3.76), the proof is concluded. C
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We are now in position to prove that €, is absolutely continuous.

Lemma 4.22. Under the assumptions of Lemma 4.21, the function s — Oy (s,e°(s)} be-
longs to AC([0, S]}. Moreover

L0 (s, e%(s)) = (7°(5), €°(5)) — {X°(s), e°(s)} (4.3.77)
Jor L' -ne. 5€10,8].

Proof. The absolute continuity of @, trivially follows from Lemmas 4.20 and 4.21. Since
2° is almost everywhere diflerentiable, a direct computation gives (4.3.77). O

After these preliminary lemmas, we can now complete the prool of Theorem 4.7.

Proof of Theorem 4.7: part 2. Assume (a). When 5 € A°, it is easy to see that condition
(4.2.15) is equivalent to (4.3.2), therefore only (4.3.1) has to be proved. Fix § > {}. Since
(4.2.15) is equivalent to (4.3.63) for £!-a.e. s € BE, the Euler identity and (4.2.2} give that

H{p(s),C%{(s)} = (0°(s), °(s))

for £'-a.e. s € BS. This equality can be also written in the form

H(p°(s),(%(5)) + 16°(s) |2 dal(a™(s), C*(5)) = (o°(s), p(s)) , (4-3.78)

observing that the additional term equals 0 in BE. By (4.3.74) this equality holds true
indeed for £'-a.e. s € [0, 5], provided that the duality in the right-hand side is understood
as the generalized duality defired by (2.3.12) when s € BY and as the usual L? duality
product when s € Ag.

Integrating by parts as in Proposition 2.3 and recalling the definition of 7°, we get that

(o°(8), p°(8)) = —(7%(s}, €°(5)) + (7°(s), Bw ()} + (x°(5), P°(s)} (4.3.79)

for L'-ae. s € BY. By (4.3.75), recalling that Ew°®(s) = 0 in A%, this equality holds true
for L'-ae. s €[0,5].

Summing (4.3.77) with (4.3.78) and taking into account {4.3.79), we get

& Ox (s, €°(s)) -+ H(D(5), ¢°(5)) + [18°(5) 12 d2(o°(5), ¢°(5)) =
= (7°(s), Ew®(s}) — (x°(s), €(s)) + {x"(s}, °(s))
for Ll-ae. s € [0,5]. Using (4.3.14) we obtain
= Ox(5,€°(5)) + H(B(5), C°(5)) + (X°(5), p°(5)) + [1D°() 2 da(0°(5). ¢°(s)) =
= {1%(s), Ew’(s)) — (x°(s), e%(s)) + & (x°(5), 2°(s)}

for Ll-a.e. 5 € [0,5]. Integrating between 0 and §, by the absolute continuity of the
function s — @, (s,€°s)} and recalling the definitions of Q, and +°, we obtain {4.3.7},
which is equivalent to {4.3.1) by Proposition 4.1¢. This concludes the proof. O
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4.4 Intrinsic charachter of the precise representative

The main difficulty in Theorem 4.7 is the choice of a represeniative &°(s) that satis-
fes simultaneously the flow rule and (4.2.2). However, this representative has an intrinsic
character, provided we assume that the elastic domain is stricily convex. Indeed, if K(1)
is strictly convex, i.e.;, Afy -+ (1 — A) & is an interior point of (1) for every 0 < A < 1
and every pair of distinct points &, & &€ K(1), then, for fixed s and =z, H(E,{%(s, 1))
is dilferentiable with respect to & at all points £ # 0 (see, e.g., [40, Corollary 23.5.4 and
Theorem 25.1]) and we keep the notation 8¢H(€,(%(s,x)) for the partial gradient. Under
this hypothesis, lor £'-a.e. s € B® the representative 6°(s) of a®(s) is uniquely determined
p(s)-a.e.on QU by (4.3.G3) as

d°%(s, 1) = s, 2) for L™ae z € £2, {4.4.1)
5905 ) = 9ol {Po) (0 cors (s )me, @ 442
a(s,z) = 8511( 5] (), ¢°(s, r)) for p(s)ae z e QUTy. {4.4.2)

The following theorem shows that, under the same hypothesis, 6°(s) can be obtained
in ¢ as the limit of &3(s) as r—+ 0, where for every r > 0 and every s € [0, +o0) the

spherical averages o2(s) € C(; Mi\;ﬁ}fv ) are defined by
oo(s,x) = ___t ] a(s,y) dy {4.4.3)
T Le (B{:Er ".) n Q) B(x,r)nn ' ’ o

Theorem 4.23. Assume that K(1) is stricily conver. Let (u®, e° p° z°t%) be a rescaled
viscosity evolution with deta f, g, and w salisfying (2.3.42)~(2.3.48) and initial condition
{uq, €0, pa, 20, 0) as in (2.3.53)-{2.3.57), end define o°, ¢°, and p° as in (4.2.5) and (4.2.6).
Let &%(s) e a representative of o®(s) as in (evd' )], and let o be defined by (4.4.3). Then
o3(s) — &°(s) strongly in Ll (GMIEY) for L1-a.e. s €{0,400).

Proof. Thig proof closely follows that of [13, Theorem 6.6], which was in its turn inspired by
[2, Theorem 3.7]. Let A® and B® as in (4.2.7). We observe that o3(s) = ¢°(s) strongly in
LY, Mi‘;f,fv) for every 5. When s € A°, we have u(s) = L™ and 6°(s) = ¢°(s) u{s)-a.e,
so that the result is obvious in this case.

When s € B°, ||o%{s)|le is bounded uniformly with respect to v, so it is enough to
prove that o$(s) = &°(s) strongly in Llli:"(s)|(U? Mﬁ:j};’"} for every open set 7 CC 2.

Let us fix U. Since o2(s) —+ o°(s) strongly in L*(U;MNEXN), div op(s) — div a°(s)
strongly in L™ (U;RY), and 2(s) is bounded in LC’G(U;M{Q;‘,{V), by {2.3.24) we have

{[o2(s):p%(s)], ) = ([°(s) : H°(s)]. ) (4.4.4)

for every @ € CJ(U) and for L'-a.e. s € B°. As x++ ¢¥(s,2) is a continuous function, by
{2.3.22) we have

(o (s):p°(s)is 0} = (o (s), P7(5)) , (4.4.5)
where the duality in the righi-hand side is the standard duality between a continuous {unc-

tion and a measure. By (4.3.57), we also have H{p"(s),("(s}) = [o°(s):$°(3)] on QUT,.
Therefore the definition (1.3.19) of H{p°(s), ¢"(s)), (4.4.4), and (4.4.5} together with the
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boundedness of a2(s), imply that

opay. P(S) RECIe v reo
e H \ Il L (U 4.4.6
OB s (G ) weakdy™ in £33 (0) (4.4.6)
for £'-ae. s € B°.

Let us fix s @ B° such that (4.4.2) and (4.4.6) hold. Since o%(s) is bounded in
Lff(s)(U;MgXN), there exists a sequence r; — 0 such that o} (s) — ¢* [for some ¢” €
Lo o (U M XN) . From (4.4.6) we deduce that

(=) aYm
Lo X
.. P(s) Ps) o
o = f ,6o(s s)-a.e. on . 4.4.7
o = (5 c@) ke (4.4.7)
Let us fix £ € MI XN and € > 0. We denote the unit ball of MIZY by Bynxv. Asthe

function x += (°(5,x) is continuous, arguing as kn the proof of Lemma 2.4 for j large enough,
only depending on & and {7, we have o7, {s,2) € K(¢%s,2)) + EBM%.\'{"N for every z € U.
We then have o} (s,2):€ < H(,(%s.z)) +c§] for every z in U. As o, (s):£ = o7:€
weakly ™ in L;‘f(s)(U), Ly the arbitrariness of € we have also o*{z):€ < H(£,(%(s,z)} for
pu(s)-a.e x in U, where o*(z) denctes the value of o* at the point z. Taking (4.4.7) into

account, we get

. P°(s) 0 p(s} o
o :(g— “(S)) < HE ¢ (s)}—H(”(S),C (s)) ju(s)-a.e.on U (1.4.8)

In view of the differentiability properties of H, this implies

ot = BEH(EZ:((:}) , C“(s)) p(s)-a.e.on U.

By (4.4.2) we deduce that o* = &%(s) p(s)-a.e. on U. Since the limit does not depend on
the sequence ry, we conclude that

op(s) — &°(s) weakly” in L;T(s)(U;MgKN) )

Since p°(s) < p(s), we get

oa(s) = 6°(s)  weakly” in Life gy (U ME™Y). (4.4.9)

s}
interior of K, for £'-a.e. s € B® we deduce from {4.2.15) that &°(s,z) € 8K ({°(s,z}) for

[p°(s)}-a.e. € U/. On the other hand we easily have that ¢2(s,z) € K"(s,z) for every
g €U, where I{"(s,z) is the closed convex set defined by

Now, as |"’°"‘” (m)| > 0 for [p°(s)|-ae. z on QUTq, and Ni(€) = {0} if € is in the

K7(s,2) ::m( g K(C“{s,‘y)}).

¥& B(x,ringl

When » tends to 0, by the continuity of the function @ — ¢°(s, 2} we have that K" (s, z) —
K(¢%(s,2)) in the Hausdorlf distance, uniformly for @ € UJ. Therelore the strict convexity
of K(¢°(s,z)) and [54, Corollary 2] can be used to improve the weak ™ convergence in (4.4.9)

and to obtain strong convergence in Lllﬁ.,(s)!(U;Mi‘;an . O
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‘We are finally in position to give another equivalent definition of a rescaled viscosity
evolution under hypoiheses of strict convexity. To be definite, in the next theorem we show
that, if K(1) is strictly convex, it is enough that (4.2.15) is satisfied in © with °(s) equal
to the limit of the spherical averages, provided that a different form of the flow rule holds
at the houndary (see (4.4.11) helow).

Theorem 4.24. Assume that (1) is strictly conves. Let f, g, and w satisfy (2.3.42)-
{(2.3.48), let wp, g, po, ond zo be as in (2.3.53)-(2.3.57) and suppose that (4.2.19) holds.
Let u®, €°, p°, z°, and #° satisfy (4.2.4), let o°, ¢°, and p° be defined as in (4.2.5)-
(4.2.6), let & be defined us in {4.4.3), let A° and B® be as in (4.2.7), end let pis) be os
in (4.2.10). Then the following conditions are equivalent:

(o) (u® e®, p° z°%1°) is a rescaled viscosily evolution with date f, g, end w, and initiol

condition (uq, en, Po, 20, 0), according to Definition 4.5;

{b) the function e°: [0,+o0) —+ L3S} M‘;;:‘HN) is strongly continuous on [0,+00) and
differentiable L' -u.e. on [0, +00), conditions (ev0)®, (evl)®, (ev2)®, (ev3”)®, (evd)® of
Definition 4.5 are satisfied, for £'-a.e. s € [0,-+oc) we have that p°(s) < p(s), the
sequence ow(s) converges sirongly in LY (QMEXN) to a funclion 6°(s) as r — 0T,

and

s ]
i((s)) € NEH  (coapy(@°(8)) im L (B MGEN), (4.4.10)

[o°(8)v] - (w°(5) — ©°(s)) = (p °(s) (s )’H“i) H™ L a.e. on T ,(4.4.11)

where Jor every ¢ € CU) and every p € ﬁfff(ﬂ)

:‘Cﬁ((_f):ﬂ{aeL QMﬁ,an). o(x) € K{(¢{z)) for p-a.e. x € 0}

MNXN

SYTIL

and Ng&!

K ) according to
(:_1_ 2 9)

is the corresponding extended normal cone in Li(Q

Notice that, under the assumpiions in {b), the existence of

1°(5) = w*- Hm wis k1) - uls)
htD) h

{w* -topology of BD())

follows from Remark 4.4, The same remark assures that (4°(s), €°(s), °(s), w°(s)) satisfy
the weak kinematic admissibility condition. In particular, $°(s) = (°(s) — 1°(s)} © vH"!
on Tp, so that p(s) < H*"! on Ty. Moreover, under the same assuptions, o°(s) €

Logy (O MEY) for £1-ae. s € B®. On the other hand, when s € 4° we have u(s) = L",
so that, by the Lebesgue Differentiation Theorem, &°(s} = o°(s) € LA, MIN).

Proof of Theorem 4.24. Assume (a). Taking into account Definition 4.5 and Theorem 4.23,
in order to obtain (b} it only remains to prove (4.4.11). By Remark 4.4 we have p°(s) =
(w°(s) — 2°(s)) ® vH™ ! on Ty for £'-ae s € [0,+00). On the other hand %%(s) €
LA MYY) for Ll-ae. s € A° by (ev3”)°. We deduce that for these values of s we have

w(s) — 0°(s) =0 H"'-ae. on Ty. Since ZEL — £ — 0 #" -ae. on Ty for every
5 € A°, we obtain (4.4.11) for Ll-ae. s€ A°.
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We now consider the case s € B°. By (4.3.57), we have
H(p%(s),¢°(s)) = [o°(s) :6°(s)]  on To.
On the other hand, by Remark 4.4 and (2.3.11), we have
[o°(s) :5°(s)] = [o°(s)] - (@°(s) = (s))H" ™" on T (4.4.12)

The last two equalities imply (4.4.11).
Conversely, assume (b). Since £ < pu(s), by the Lebesgue Diflerentiation Theorem we
get 5°(s) = 0°(s) L"-ae. on Q. For L'-a.e. s € B° we extend 5°(s) to QUTy by setting

(5,2} = E)EH(—IE(E),C“(S,:E)) for p(s)-n.e. z on I'y. (4.4.13)

#(s)

As B:H(E,() C K(C) (see {40, Corollary 23.5.3]), we have o°(s,z) € K(¢°(s,2)) for p(s)-
a.e. 2 € Tg. On the other hand, for every s € B we have ¢°(s,z) € K{¢%s,x)) for L™-a.e.
x on (1. Since ¢°(s) is continuous, arguing as in the proof of Theorem 4.23 we find that
&°(s,z) € K(¢°(s,z)) for p(s)-a.e. z on £ . This gives (4.2.1).
Since (4.4.13)} is equivalent to f((:)) () € Nic(cos,m) (6°(s,2)) for p{s)-ae € To (see
[40, Theorem 23.5]), combining this with {4.4.10} we get (4.2.15),

We claim that &°(s) satisfies (4.2.2). Let us fix an open set U CC 2. Arguing as in the

proof of Theorem 4.23 we find that

(porp(s), 2°()) = {[o™(s) : p7(s)], )

for every ¢ € Co(U) and for £'-a.e. s € B°. Here the duality in the left-hand side is the
standard duality between a continuous function and a measure. It follows that

[0°(s) : p°(s)} = (ci"’(s) : ZT(SS))) uls)  on 2. (4.4.14)

To prove the same equality on [p, we first observe that {4.4.11) and (4.4.12) give

o7() 570 = 1 (%) k) sone-on T,

By (4.4.13) and the Fuler identity we have

i (I:T(S)) () =% 2 pispae on T,

so that (4.2.2) follows from (4.4.14) and the last two equalities. This concludes the proof. £



Chapter 5

Existence of a rescaled viscosity

evolution

5.1 Overview of the chapter

This chapter is devoted to proving the existence of a rescaled viscosity evolution according
to Definition 4.5. We will see that this kind of generalized solution appears in the limit, as
the viscosity parameter ¢ tends to (1, of a suitable time rescaled version of the solutions of
the viscoplastic problem considerd in Chapter 2, Section 2.4. Therefore, as a first step in
Section 5.2 we investigate the well-posedness of such a problem. We first prove (‘Theorem 5.3)
that for every function ((f, ) in a suitable function space there exists a solution w4{t, ),
et (¢, x), pa(t,z), ot{t,z) of (a), (b), (c), and {e.) (see Chapter 2, Section 2.4}, adapting &
result obtained by Suquet [50]. Then we prove the existence of a viscoplastic evolution by a
fixed point argument (Theorem 5.3).

An energy estimate (Theorem 5.4) allows us to prove the existence of change of variables
t = t2(s), uniformly Lipschitz with respect to s, such that the rescaled functions p2(s, z) :=
p=(te(8), 2} are uniformly Lipschitz with respect to s, in a suitable function space. The
Ascoli-Arzeld Theorem provides the existence of a subsequence (not relabelled}, such that

2s) =+ 1°(s) and p2(s,) = p(s, ),

the latter in a weak topalogy. A further argument, based on the uniqueness of the soluticn
to an auxiliary variational problem, shows that

L]

BE(S, ) - 60(31 ) H U.;{S, ) e ua(su ) 1 JE(S': ) - UD(S'I ) .

The compactness ensured by the presence of the convolutions in the evolution law for the

internal variable allows us to prove that
zo(g,z) = 2%(5,3) and (s, 3) — (s, 2),

uniformly with respect to x. The goal of this chapter is showing that these limit functions
satisfy all conditions in {(b) of Theorem 4.7, which are equivalent to those in Definition 4.5.
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A brief outline of the development of the long proof, which will run through three Sections,
will be given in Section 5.3, after the statement of the existence result (Theorem 5.6). The
main theoretical difficulty in the proof is that the total variation, with respect to time, of the
plastic strain can be controtled only in a nonreflexive Banach space, while no such a control
is available for the elastic part. As we are not a priori allowed to take time derivatives
of the stress for £'-a.e. s € [0,400), we need a delicate approximation argument of the
integrals that appear in the energy-dissipation balance (4.3.1). We will consider two different
approximations on the set A° defined in {4.2.7), where the stress o° is locally absolutely
continuous in time, and on its complement, where instead we have an uniform bound on the
spatial L% -norm of the stress. Then we will conclude the proof with the help of the results
of Chapter 1, Section 1.5.
For all the notation and the assumptions on the model we refer to Chapters 1 and 2.

5.2 The viscoplastic approximations

In this section, given a viscosity parameter € > 0, we study the existence of a solution
to the Perzyna-type viscoplastic evolution problem corresponding to Cam-Clay plasticity.

Definition 5.1. Let f, g, and w be as in (2.3.42), consider up € H'Y(LRY), eg €
LAGMERNY, po € LA, MIXNY, zo € C°(%}), and let € > 0. An £-viscoplastic evolution
with data f, g, and w, and initial condition (ug, €9, o, 20) is & function (uc,e., p., 2.},

with
ue € HL ([0, +00) NG RY)), e € HL, ([0, +00); L3 MJEY)),
Pe € Hipe([0, +00)i LALMEY)), 22 € Hiye (10, 400} LA(A)), (5.2.1)
z:(t) € 09 for every £ € [0, +c0),

such that, setiing

o) = Ceult) and ¢, (1) = V(zls), (5.22)
the following conditions are satisfied:
(ev0)e initial condition: (u(0),e(0), p-(0), 2:(0)} = (uq, 0, Po, 20);
(evl)e kinematic admissibility: for every t € [0, +ca)
Fu{t) = el L (8) LM-ae in 2,
'u.(s()t) = 'Eu(J(zf)—i_ 1Z‘-{izl—a.e. in Tp; (5-28)
(ev2), equilibrium condition: for every t € [0, +4c0)
—divo.(t) = f(t) inQ, fo.(t)v] =g(t) onTy. (5.2.4)
(ev3). regularized flow rule: for L'-a.e. t € [0, --00)
Pt} = Ng(oe(t), (1)) L -ne in(, (5.2.5)

where AZ is defined by (2.4.5).
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(evd), evolution law for the internal variable: for £'-ae. t € [0, +00)

Ze(t) = p1# (paxtro (1)) trp (1)) L -a.e. in 2. (5.2.6)

Remark 5.2. Let us fix t € [0,+c0} such that the derivatives p.(t) exists. Then the
following conditions are equivalent:

p-(t) = Ni(o:{i),C.(8) L"ae in 0, (5.2.7)

a:(t) € BH (P (1), €. (1)) L e in T, (5.2.8)

oc(t) —ep.(t) € BH(D.(1),¢. (1)) LMae in Q. (5.2.9)

Indeed, by (2.4.7) we have 8, M2 {o:(t), {{t)) = NE(o(3). € (), so that (7.2.7) and (5.2.8)
are equivalent by a standard property of conjugate functions (see, e.g., [19, Corollary 1.5.2)).

"The equivalence between (5.2.8) and (5.2.9) follows immediately from (2.4.2).

To prove the existence of an e-viscoplastic evolution we will use a fixed point argument.
To this end, in the next theorem we prove existence and continous dependence on the data
for a similar problem with prescribed ¢. We present here a simpler prool than the original
one, which was obtained by adapting the arguments of [50]. 'The one we give here is again
an adaptation of a result by Suquet, contained in his Ph.D. thesis [51]. We report it for the

reacler’s convenience.

Theorem 5.3. Let ¢ € C([0, +oc); LH)F) and let f, g, w, ua, en, Po, € be as in
Definition 5.1. Assume that (ug, eo,po) satisfies the kinemuotic admissibility condition af

f=1{:

Fug = ey + L™-ae inl,
o= T (5.2.10)
ug = w(0) H" '-ae inTo,

and that the safe load condition (2.3.45)-(2.3.48) holds. Then there evists o unigue function
('Ug, eg} pg) ' with

us € 7 ([0, +oc); Hl(n BEMY), ef € HL ([0, +c0); L2 MY<NY)

(5.2.11)
€ E II.!nc([Q'*'OC’) (Q M.J;\;;)r(nN)):

such that setting
ot (t) = Cef (1),

£
the following conditions are satisfied:
(evd) initial condition: (u4(0),e4(0),p4(0)) = (uo, en,po);
(ev1)s kinematic admissibility: for every t € {0, +o0)

BEut(t) =eb(t)+pt(t) L"-ae in,
ul(t) = w(t) H™'-ae inTFp;
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fevd)f equilibrium condition: for every t € [0, +o0)
—divet(t) = f(i) in€Q, [eS(t)v] = g(t) onTy. {5.2.13)
(ev3)f regulurized flow rule: for Ll-ge te]0,+)
pe(t) = NE(e8(t),¢(t) L-ae inQ, (5.2.14)
where NE is defined by (2.4.5).

Since the right-hand side of (5.2.14) belongs to CO([0, +o0), LA, MYXNY) by (1.3.7), it

Jym
follows that
pé € CL([0,+o0), LA(Q,MN <N} (5.2.15)
Moreover, for every T > O there ezists a constant Ce 7 such that
max lof (1) = o2 (Dl < Cer mae 16,(8) = Calt)le (5.2.16)
('.1 _'C2t0< ) — (o 2
max, e (t) — P22 (t}ll2 < Os,Ttg?g:}(,] 1€1(2) — C2(B)ll2 (5.2.17}

for every Gy, Cy in CO([0,+50)i L)),
Proof, Let A = C~1. If a triple (uf,ef,p¢) satisfies conditions (ev0)$-(ev3)¢, then for
Ll-ae. t€[0,+0c0)

Eul(t) — AGS(t) = NE(al(t), ¢{t)) LM-ae. in €. (5.2.18)

Let us define 7¢ € HE ([0, +o00); LA MY XN)) by

TE(E) = oS {t) — x(t). (5.2.19)

By (2.3.32), (2.3.45), and (5.2.13) we have () € Zo(Q2) for every t € [0,4oc0) and hence,
integrating by parts, for £1-a.e. ¢ € [0, +00) we obtain

(AF8(), 5) = —(NVE(x(t) + 75(1), C[1)), &) + (B (t) — Ax(t), &) (5.2.20)
for every & € Sq(£2). The initial condition for 7§ is given by
7£(0) = oo — x(0), (5.2.21)

where op := Ceg.

Conversely, assume that 7§ & H} ([0, +00); Eo{€2)) and that (5.2.20) holds for L'-
a.e. & € [0,+00). If we define o§(t} through (5.2.19), then (5.2.13) follows from (2.3.45).
Moreover, for £1-a.e. ¢ € [0,+0c), we obtain by (5.2.20) that AGS(t) + NE(o8(2), C()) —
Eo{t) are orthogonal to %o(f2) in L34 MIXN). Therefore, by (2.3.33), for L1-ae. t €
0, +00) there exists v§(t) € HE (4 RY) such that Evf(t) = Act(t) + Ne(ad(t),¢(t)) -
Ew(t) LM-ae. in . If we define

t
ué(t) = w(t) + fﬂ vi(r) dr +uo —w(0), ef{t)=Aol(t), pE(t) = Buf(l) - ef(t),
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then the triple (ué, e, p¢) satisfies conditions (ev1)é-{ev3). If, in addition, (5.2.21) holds,
then the initial condition (ev0)g is satisfied.

Since $g(€2) is a closed linear subspace of L2(©; MY %Y}, denoting with Pr, the linear
orthogonal projection onto Lg{f1), it is clear that (5.2.20) is equivalent to the generalized
ODE

ATE (1) + Pey (MEO(D) + 72(0), (1)) = P, (Buw(t) — A%(1)) (5.2.22)

in H}([0,+o0); Ta(f)). By the 1-Lipschitz continuity of Py, and {1.3.4) for every 7 &
Zo{f2) and every t € {0, +oo) we have

P2, (VE(x(t) + 7. ¢tz < HiTllz + Ix(E) iz + Micl|C(8)]l2) - {5.2.23)

Using Lemma 1.1, for every 71, 7 € Zo(§3) and every ¢ € [0, +00) we get shat

([ Peo (M (x(t) + 72, € (1)) = Pry (NE(x(0) + 71, ¢z < Ellmz — 7l (5.2.24)
Since w € H} ([0, +oo); HH{LRY) and xCHL ([0, +00); LE(Q;Mf?\;:‘nN) we easily have
Py, (Ba(t) — Ax(t)) € Lie([0, +00); To(9)) . (5.2.25)

Since A is bounded and invertibie, using (5.2.23), (5.2.24), and (5.2.25) the Cauchy-Lipschitz
Theorem gives the existence ol a unique solution 7¢ € ([0, +oco); 8o (£2)) of (5.2.20) with
initial condition (§.2.21}.

To prove estimate {5.2.16) we consider two solutions ¢y and o2 corresponding to ¢,
and ¢y in CO([0, T LA MY, SY)), respectively. Subtracting (5.2.20) corresponding to
Ty = gy —x and 7o = oa — X, taking & = o1(t) — a2(l) as test function, and using

Lemma 1.1 we ohtain

Filai®) ~ o < 2lllo(t) ~ a2 (Bl + 20k iC (1) ~ CaOll2] o1 {t) — or2(d)]f2.

J

To get (5.2.16) it is enough to apply Gronwall inequality. The other inequality (5.2.17)
follows from (ev3)¢ using (1.3.7) and (5.2.16).

The following theorem shows that the modified Aow rule (ev3); can be replaced by a
suitable stress constraint and an energy-dissipation balance.

Theorem 5.4. Let ¢ € C([0, +oo); LAH)F) and let §, g, w, up, €, po, € be as in
Definition 5.1. Assume that the safe load condition (2.3.45)-(2.3.48) holds. Let (u%,et,pg)
be a function satisfying (5.2.11), the initial condition (evld)., the kinematic admissibility
{ev1)s, and the equilibrium condition (ev2)$ of Theorem 5.3, with o&(t) := Ces(t).

Then (ut,et,pt) satisfies the regularized flow rule (ev3)S of Theorem 5.8 if and only if

the following properties are simullaneously satisfied:

(evd' B modified siress constraint: for L' -a.e. t € [0, 4+oc)

—
o
b
i
=

=

ot (t) —epl(t) € K(C(1);
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(evd" )} energy-dissipation balance: for every T >0 we have

T
Qe (7)) ~ Qeo) + [ (HUBE(, €)= b0 HE(0) ) it
T T a T
se [ WSO = [ 80— x.Bowya - [ . Syae (6220
a 40 0

+ {x(T), 4 (T)} — (x(0}, e0) -

Proof. Suppose that (u$,eS,p$) satisfies (ev3)s. By (1.3.22) we have BH(PE(L), C(E) ©
K(¢(t)). Therefore (5.2.9) implies (ev3’)¢ .

Since H{-, () is convex and positively homogeneous of degree one, the Buler relation
gives {,p) = H(p,¢) whenever o € 8,1 (p,{}. Therefore, (5.2.9) imples

H(pS (1), ¢(1)) = {o5(8) — epE(0), BE(), (5.2.28)
which is equivalent to
H(DE(), ¢(1)) +ellpE ()13 = (o (), BE(H)) - (5.2.29)
By (5.2.12) we have
(o(t), B (1)) = (b (t), Ba(t)) — (o (), et (D). (5.2.30)

Since 24 (t) — w(t) € HY (4 RY) by (5.2.12), using (2.3.45) and (5.2.13) we obtain
(o8 (t), Bud (1)) = (a$(t), Bw(h)) + (x(t), Bl (1)) — (x{t), Buw(t)) - (5.2.31)
Combining (5.2.29), {5.2.30), and (5.2.31), we deduce that
(4(), e6(8)) + HBE(D), C{1)) + el PENIE = (o $48) — x(0), Bin(2)) + (x(t), Bag (1)) -
By (5.2.12) we have

(@8 (2), €5(8)) + HBE(E), C(1)) — (x(®), BE (1)) + ellbf (D)3 =
= (o¢(t) — x(t), Bw(t)) + £{x(t), e () — {X(t). el(t)}.

The energy-dissipation balance (ev3")¢ can be obtained from (5.2.32) by integration.

(5.2.32)

Conversely, assume that {(u$,e¢,p§) satisfies conditions (ev3')¢ and (ev3”)e. By dif-
ferentiating (ev3”)¢ we obtain (5.2.32). Thanks to (5.2.30) and (5.2.31), [rom (5.2.32) we
deduce (5.2.29), which is equivalent to (5.2.28). By (ev3"s for £l-ae. t € (0,+00) we have

ob(t) — epl(t) € () = H(0, (1) . (5.2.33)

Since H(-,¢(t)) is convex and H(0,{(t)) = 0, condition (5.2.9) follows easily from (5.2.28)
and (5.2.33). (W]

Theorem 5.5. Let £, g, w, g, €, Po, € be asin Definition 5.1. Assume that {un, e, po)
satisfies the kinematic admissibility condition (5.2.10) at t = 0 and that the safe loud con-
dition (2.3.45)-(2.3.48) holds. Then there ezists un €-viscoplastic evolution with data f, g,
and w and initial condition (up, eg, Do, 30) -
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Proof. Let us fix T > 0. We will apply a fixed-point argument in C°(j0,T]; L2(Q; 1)),
where I, = [(m,+00). Given ¢ € C°([0,T]; L*(£%; 1,,)), by Theorem 5.3 we can find a
unique function (ué,eé,pt), satisfying {5.2.11) and (ev0)s-(ev3)¢. Define

ab(t) = pa +tra(t). (5.2.34)

&
As trod e C°([0,T]; L2(9)), we deduce from (2.3.41) that a8 € CO([0,7);C*(f])). By
{5.2.15) we have af tr p¢ € CO([0, TT; L2(£2)), hence (2.3.41) gives that p;»(af tr p¢) belongs
to C([0, T} CHE). Let 28 € CL{[0,T); C'(Q)) be defined by
-t
() =20 [ e (afr) wp(r) . (5.2.35)

0

It satisfies

28(0) =z and 25(t) = py % (@S{t) trpb(t)) for every ¢ € [0, 7.

=4

Let us define the aperator G: CP(J0, T); L2($}; 1)) — CO(0,T7; L2 (€4 1,,)) by
G(¢) = V(28). (5.2.36)

Tt follows from the definitions that, if ¢ is a fixed point of G, then (uf,e$,p¢,2%) is an
e-viscoplastic evolution with data F, g, and w and initial condition {uy, g, po, o) -

To find a fixed point we will apply Schauder’s theorem. In the rest of the proof € will
denote a positive constant, depending only on T', £, £, es, w, X, p1, P2, ag, and fg,
which may change from line to line. By (2.3.49) and (5.2.27) in Theorem 5.4 we have

C‘g< 'Cto
e (eI < O+ C mex llef ()

which implies

H e ¢ e < O, ’.2.
[, lez(®)llz <C (5.2.37)

Using this inequality in (5.2.27) and taking into account {2.3.49), we obtain
T R o
[ i< g, (5.2.38)

From (2.3.41), (5.2.34), and (5.2.37) it follows that

- 6o,
max ||as(f <C.

Thus, [|a{t)trps@)|ls < CYps{t)|l2, and hence, by (2.3.41),

280 € ClBEMY2 and ||V < ClIPEE)]a - (5.2.39)

Inequalities (5.2.38) and (5.2.39) imply that the norm of 2¢ in L3({0, T} HY () is
bounded by a constant independent of ¢. Therefore, the norm of 28—z in H([0, 7); H1(Q))
uniformly bounded. 1t follows that

zE —zp € CD’I/E([U, T]§H1{Q)) )
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and its norm is bounded by a constant independent of {. This implies that there exists a
closed ball B in H'(Q) such that

zg -z € 00'1/2([0, T); B} [lorevery ¢ € O[O, T); L2 L)) -

Since B is compact in L2(£), the set {z¢: ¢ € C¥({0, T); L¥(£2; 1n))} is relatively compact
in C°([0, T); L*( Im)) by the Arzela-Ascoli Theorem. Therefore the operator & defined
by (5.2.36) maps C%([0,7; L3(; I,n)) into a compact subset of CU([0, T]; L*(Q 1))

To apply Schauder’s Theorem, it is enough to show that the operator G is continuous
from C%([0,T}; L2(R; 1)) to CU([0, T); L*(Q; 1)), The continuity of the map ¢ — s
follows from {5.2.16). Then (2.3.41) and (5.2.34) imply the continuity of ¢ — a$ [from
CO([0,T); L2{; 1)) to CO([0,T]; CH{SY)). Using (2.3.41) and (5.2.17) we obtain the conti-
nuity of ¢ — py * (ab trpf) from GO0, T]; L*(2; Ln)) to C°([0,T];CH(Q2)). Then (5.2.35)
gives the continuity of ¢ ~ 2§ from C%([0,T}; L*(Q; 1)) to C([0,T]; C1(£2)). The conti-
nuity of G follows now easily from (5.2.36). |

5.3 Statement of the main result

We now state the main result of the chapter.

Theorem 5.6. Assume thal the safe load condition {2.3.45)-(2.3.48) holds. Let f, g,
and w be as in (2.3.42), and assume that vy, eg, po, 2o sebisfy {2.3.53)-(2.3.57). Then
there exists a rescaled viscosity evolution with date f, g, and w, and initiol condition

('U'Ds €0, Po, 20, O) N

The proof will be given in Sections 5.4, 5.5, and 5.6 according to the following scheme. In
Section 5.4 we introduce an intrinsic rescaling of all the e-viscoplastic evolutions through a
change of variables t = t2(s}, and prove that, up to a subsequence, these rescaled funetions,
together with 42 converge to a [unction (u®, e° p° 2° 1°) satistying (4.2.4) and conditions
(ev0)?, (evl)®, (ev2)°, and (ev3’)°. As a first step towards the proof of the energy-dissipation
balance (4.3.7), which is equivalent to (4.3.1) by Proposition 4.10, in Section 5.5 we prove
the energy inequality (5.5.1). The proof relies on the lower semicontinuity of the terms

5
(et €60 + G606 (6 ) s = (), BN + oo

)
/0 15°(3)lls dalo(s), K(C(s))) ds (5.3.1)

which is proved in Lemmas 5.10- 5.13. At the end of Section 5.5 we also prove the evolution
law for the internal variable (ev4)°. The proof of the energy-dissipation balance is completed
in Section 5.6, where we prove the energy inequality (5.6.2} through a suitable discrete
approximation of the integrals that appear in this inequality. Note that {5.6.2) is not the
opposite of (5.5.1), since the term {5.3.1) is replaced by

]A (0°(5) — Tree(on (@°(),5°(8)) dis.

o
s

This [nally allows us to deduce the partial Jow-rule (4.3.2) from (5.5.1) and (5.6.2).
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5.4 Proof of Theorem 5.6: Part one

We start with a technical iemma.

Lemma 5.7. Let we BD(Q). Then there exists a sequence vy, of Lipschitz functions from
0 into BY | with up =0 on Q, such that

up —+u  strongly in L'(Q; BY), (5.4.1)
Eup — (Fu)LO —w@uvH " LTy weakly® in My(QUTy; RY). (5.4.2)

Proaf. Tt is enough to prove the theorem in a neighbourhood of each point of 9€2: the glohal
result can be obtained through a partition of unity. Since {2 has Lipschitz boundary, we
may assume that it is the subgraph of a Lipschitz function, i.e.,

={zeRY 4 €A, a <z, <h(#)} C R:= Ax(a,b), (5.4.3)

where & ;= {%1,...,%n-1), A is an open rectangle in B*~ !, a, b€ R, a < b, and h: 4 —
(@, b) is a Lipschitz lunction. We may also assume that suppu CC R and that Ty C RNofl.

Since ©! has Lipschitz boundary, by a standard approximation resuit (see, e.g., [52,
Chapter II, Theorem 3.2]) there exists a sequence vy, € C*({;BV) such that

v -+ w in LSRN,
Eu, — (Bu)LQ  weakly” in M, (€ BY), (5.4.4)
18vel — [ Bull,

and therefore (see, e.g., [62, Chapter IT, Theorem 3.1])
v —u  in LHOQRN). {5.4.5)

Since suppw CC R, we may assume that suppv, CC R for every k.
Using the special form (5.4.3) of @, we can define a sequence of Lipschitz functions
i = [0,1] by 4;(2) == min{j(h(&) — za}, 1}. Then ¥ = 0 on the graph of ki, ¥; — 1
on 2, and Vip; — —vH" LTy weakly* in Mp(Q2U T'g; BY). Therefore for every k& we

have
v = v in LY RY),

. {5.4.6)
EQpjup) = Bug — v OuH" LTy wealdy” in M), (Q U Ty; BM).

Since the weak® convergence is metrisable on hounded sets of M, (QUTy; BN, it follows
from (5.4.4), (5.4.5) and (5.4.6), that for every & we can select ji so thai {5.4.1) and {5.4.2)
are satisfed by wy 1= vy, vy, which vanishes on 9§ by the properties of v; and vy, O

Proof of Theorem 5.6. If we apply Lemma 5.7 to u = up — w(0) we find a sequence uf in

HY;EY) such that

uf = w(0) H* lae. in Iy, (5.4.7)
ug — ug  weakly® in BD(Q), (5.4.8)
Euf — (Eug)l @+ (w(0) — ug) © vH " 'L Ty weakly® in M(QUTp; BY). (5.4.9)
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We define p§ 1= Euf — ep. From the weak kinematic admissibility condition (2.3.35}, and
from (5.4.9), we have
p§ — po weakly™ in M,(Q U Tp; BY). (5.4.10)

By Theorem 5.5 there exists an g-viscoplastic evolution (e, €., P, 2:) with boundary
datum w and initial condition (u§, eo, p§, z0). The energy equality (5.2.27), together with
(2.3.38) and (2.3.40), implies that for every T > 0 there exists a constant Cvp, independent
of g, such that

sup [lec(f)l2 < COp and  sup |lo-(t)]la < Cr (5.4.11}
10,7 te[0,7]

{see the proof of (5.2.37)). The same equality and the same estimates, together with {5.4.11},
give also that for every T > 0 there exists a constant Adp, independent of £, such that

T
[ Mut0ll e < dim < oo (412
a

Let s2: [0, +oc) — [0, 4+00) be the absolutely continuous, increasing, and Iijective fune-
tion defined by

s2(t) = fﬂt(ElPs(T)Hl + %Moo + [ Ew(T) [z + 1) dr. (5.4.13)
It is easy to see that
gofta) —s;(t1}) > ta— s for every 0 € t1 < tg < 0. {5.4.14)
Let t2: {0, +o0) = [0,+cc) be the inverse of s2. By (5.4.14) 2 satisfies
0 < t2(s0) — £2(51) < 82~ 51 for every 0 < 8y < 83 < 00.

By the Arzela-Ascoli Theorem we may assume that ¢7 converges uniformly on compact sets
to a function ¢°: [0, +o0) —+ [0, +-0c) such that

0 < t%sa) —t°%(s1) < 53 — 5y for every 0 < 51 < 89 < +00.
We abserve that £°(0) = 0. Let us prove that
t°(s) = 400 when 5 = +o0 (5.4.15)

Indeed, by (2.3.48}, (5.4.11}, (9.4.12), and (5.4.13), for every T > 0 there exisls a constant
st, independent of e, such that s2(1") < sy. This gives 1" < t2{sr) for every £, which
implies T < ¢°(gp), and concludes the proof of (5.4.15).

Define the rescaled functions on [0, +oc) by

ul(s) = ue(tZ(s)),  ef(s) = ec(te(s)), pE(s) i=pc(2(s)), =E(s) == =z(te(s)),
Fe(s) = FU2s)),  gols) = g{i2(s)), wils):=w(LI(s)), (5.4.16)
oo(s) = oe(t2{s)),  C2(s) =G AE2(s)),  x2(s) = x(t2(s)).

Note that by (5.2.2)

oo(s) :=Cel(s) and (Z(s):=V(=Z(s)) (5.4.17)
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for every s € [0,-+cc). Since t2(s) —+ 1°(s) uniformly on compact sets, the continuity
nroperties of f, g, w, and x imply that for every s € [0, +00) we have that

Fo(s) = £o(s) strongly in L*(S4RY),  g2(s) — g°(s) strongly in L=(Ty; RY),

w?(s) — wo(s) strongly in HY(GRY),  x2(s) = x°(s) strongly in L2(RY),
(5.4.18)

where
£ € B0 400) L@ BY), g7 € Hb (0,00} IX(THRY)),
w® € Hbo([0,+00) HNZGRY)),  X° € Hipo((0, +00); L (2 M)
are defined by
Fosy = F((s)), g°(s):=g(°(s)), w(s):=w(t(s)), x°(s):=x((s)). (5.4.19)
From the definitions of s2 and 17 we obtain easily that
Ip2(s2) — P2 (s1)ll1 + lIx2(s2) = X2(50)low + 1 Bwi(s2) = Bw(s1)]la S sa— s (5.4.20)
for every 0 < 57 < s2, hence
152 (s + 156 o + I BiS(s)le < 1 for £-nuc. 5 € [0,400). (5.4.21)
Let A{ be an upper bound of ||p§|l: (see (5.4.10)}. From (5.4.20) we get
Ip2(s)lls < M+ (5.4.22)
for every s € [0,-oc). Passing to the limit in (5.4.20), we obtain
x°(s2) ~ x°(s1)lico + | Bw(s2) — Ew®(s1)l2 € 52 — 51 (5.4.23)
for every 0 < 51 < 81, hence
5%(5) 1o - | Bw(s)la <1 for Ll-ne. s € [0,+00). (5.4.24)
Tor every § > 0, let
Bs = {p € M(QUTo; M) : fiplh < M + 5}
There exists a distance dg on Bg inducing the weak* convergence such that
ds(p,q) < lp— gl for every p,q € Bg. (5.4.25)

By (5.4.20) we have that p2(s) € Bs for every s € [0, §] and every £ > 0. By (5.4.20)
and (5.4.25), the sequence p2(s) is equicontinuous on [0, §] with respect to the distance dg.
We then apply the Arzela-Ascoli Theorem for every § > 0 and we find that there exists a
subsequence, still denoted by p°, and a function p®: [0, -+oo) — Mp(S2 U P[);Mi.\;ﬁiN) such
that

po(s) — p°(s) weakly* in AM,(Q2 UT‘D;M?;‘HN) {5.4.26)
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for every s € [0,400). By lower semicontinuity we obtain from {5.4.20)
lp°(s2) ~ P(s1)ll1 S 82 — 1 (5.4.27)
for every 0 < 51 < 92, hence
l2°(s)ls €1 for Ll-ae. s € [0, +00). (5.4.28)

where the time derivative p°(s) is defined as in (4.2.6). Moreover, from (5.4.20) and {5.4.26)
we obtain that
p(se) = p°(s) weakly™ in My(Q2UTy; MAN=N {5.4.29)

sym

for every s € [0, +oc) and every se — S.
We now show that for every s € [0, -koo) there exist (s} € LH{Q;MYXN) and u°(s) €

BD(Q) such that (u®(s), e°(s), p°(s), w°(s)) satisfies the weal kinematic admissibility con-
dition {4.2.11), @(s) := C e°(s) satisfies the equilibrium condition (4.2.12), and

€2(s¢) — e°(s) weakly in L2 (0 M XN), (5.4.30)
u2(s:) — u°(s) weakly* in BD(?), (5.4.31)

for every s, = 5.

Let us fix s € [0,+00). By (5.4.11) the sequence |e2(s)fj2 is bounded uniformly with
respect to £, thus there exists a subsequence egj(s) of e2(s), possibly depending on s, and
a function e®(s) € L*(Q; MI%N) such that

SYITL

e, (s) = %(s) weakly in LAQ; MY XNy, (5.4.32)

sy

By (5.4.26) and (5.4.32), the kinematic admissibility condition {5.2.3) implies that the se-
quence 1, {s) is bounded in BD(£). Therefore, up to extracting a further subsequence, it
converges weakly* in BD{R) to a function u°(s) € BD(R) such that Eu’(s} = e°(s)+p°(s)
in 1. By considering suitable extensions and arguing as in [13, Lemma 2.1} we obtain also
that p°(s) = (w°(s) — u®(s)) ®@vH" ! in Tg. Therefore weak kinematic admissibility con-
dition (4.2.11) is satisfied.

Passing to the limit in (5.2.4) we obtain the equilibrium condition (4.2.12). This implies

Q(e*(s)) < Q(e°(s) + Byp) — (£7(s). wha — (g°(s)s w1, (5.4.33)

for every € Hp ({;R™). By strict convexity the inequality is strict, unless By =0 L™-a.e.
in Q. It remains to prove (5.4.30) and (5.4.31) for an arbitrary sequence s. — s. As in the
previous step, we see that ||e2{s.}||2 is bounded uniformly with respect to . Let e (sz)
be a subsequence of e2(s.) which converges o a function &(s) weakly in L2 R“) The
previous arguments, together with (5.4.29), show that there exists a function u(s) € BD(%2)
such that ug (se;) — i(s) weakly* in BD(Q), Bi(s) = &(s) +p°(s) in @, and p°(s) =
(w(s)—it(s)) @ vH™ ! in Tg. By difference we obtain that E(iu(s)—u’(s)) = &(s})—e°(s) in

0 and (ib(s)—u®(s)) ©v = 0 H"* '-a.e. on Tp. By (1.2.2) we have @(s)—u(s) € HY{O, R
and #(s) — u®(s) =10 on Ty.

By {5.4.33) we have Q{e®(s)) < Q(&(s)) (F°(s). it(s) —u°(s)ha— {g°(s), (s} —-u(s))r, .
Exchanging the roles of €°(s) and &(s) we obtain Q(e(s)) = Q(&(s)) — {F7(s), B(s) —
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u®(s))a — (g°(s), (s} — u®(s))r, . The strict convexity argument mentioned after (5.4.33)
vields e%s) = &(s) L£"-a.e. in Q, which in turn gives u®(s) = @{s) L£"-a.e. in . This
shows that the limit does not depend on the subsequence, and concludes the proof of (5.4.30)
and (5.4.31).

Let us prove that

€° is weakly continuous in L?(§; MA M), (5.4.34)
Let s: be a sequence converging to s. For every fixed %, we can apply (5.4.30) with
5. = s for every &, and we find &, > 0 such that du,(egk(sk),e"(sk)) < %, where d,

is a distance which metrises the weak topology on bounded subsets of LE(Q;M%';CRN ). By

(5.4.30), €2, (sx} — e®(s) weakly in L2 MIYNY | so that the previous inequality gives

sym
e®(s) — e®{s) weakly in LQ(Q;Mi\;ﬁlN ). This concludes the proof of the weak confinuity

of €°. In a similar way we can prove that u®: [0, +o0) — BD(£1) is weakly™ continuous.
Define now for every s € [0,+00)

al(s) = pa #trol(s), {5.4.35)
a’(s) == pa#tre®(s), (5.4.36}

so that, by {5.2.6) and {5.4.16),
£2(s) = py + (aZ(s) tr p2(s)) (5.4.37)

for £t-ae. s € [0,+00). Using (2.3.41) and (5.4.11), we can prove that for every § > 0
there exists a constant g, independent of £, such that
sup Jlai(s)fe <G8, sup |[Vai(s)le < C5. (5.4.38)
s€l0,5] s€[0,5]
Therefore for every s, the functions a2(s) are equicontinuous and equibounded on 0. Since
o2(s) = a®(s) weakly in L*(Q,MY<N), the sequence aZ(s) converges Lo a°(s) pointwise
in 1. It follows that
aZ(s) —+ a’(s) strongly in con) (5.4.39)
for every s € [0,+00).
By (5.4.28) and (5.4.38) we have [ja2(s) trp2(s)}: < /nCg for L'-ae s €0,5], and
hence hy (2.3.41) and (5.4.37)

122(s)le < vCElip1llee and  [[VEX(s)loo < VRCE[ VA1 ]lo0 - (5.4.40)
This implies that
122 (s2) — 22(s1)llee + [ V2E(s2) — V22{s1)lleo < Mg |52 = 51 (5.4.41)

for every sq, 82 € [0, 8], where Mg = RCS({|p1licc + 1V p1lloo)-
We can then apply the Arzela-Ascoli Theorem as in the proof of (5.4.26). This gives
a subscquence, still denoted =2, such that z2(s) — z°(s) weakly™ in Whee(Q) for every

s € {0, 4+00), which implies

z2(s) — z°(s) strongly in @) . (5.4.42)
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Using (5.4.41), we deduce that
2% — z° strongly in CY([0, 8], C°(Q)). (5.4.43)
Passing o the limit in (5.4.41), we get

12°(52) = 2°(51 loo + V2"(52) = T2*(s1)floe < M

s2 -~ 51| {5.4.44)

for every s,52 € [0,.9].
Let us fix r > n. Since WIT(D) is reflexive, it follows from (5.4.44) that the strong

WL limit o .
£°(s) = s lim s+ h) = 2%s)

lim - (5.4.45)

exists for £!-a.e. 5 € [0, 400}, and that 2° € L2 ([0, +o0); W1T(Q)). Since the embedding
of WI(Q2) into C%Q) is continuous, the limit in (5.4.45) takes place in C%(Q) and 2° €
L2 ([0, +00); C7(R2)). Moreover, from (5.4.41) and (5.4.42) we obtain that

22(s) — 2°(s) strongly in C°(Q) (5.4.46)

for every s € [0,4+00) and every 5. —+ s.
For every s € [0,+o0)} let us deline

¢*(s) =V (2%(s)) . (5.4.47)

The initial condition {ev0}® follows easily from the definitions of u°, e°, p°®, z°, and ¢°,
thanks to (5.4.8) and (5.4.10).

To prove (ev3”)® we need Lemmas 5.8 and 5.9. The proof will be continued after
lemma 5.9, O

We start with an elementary result about the convergence of inverse functions. To this
end we introduce some notation. For every ¢ € [0, +o0) we set

52 (t) := sup{s € [0, +00) : t°(s) < t}, (5.4.48)
53.(t) == nf{s € [0, +c0) : t°(s) > t}, (5.4.49)

with the convention sup @ = 0, so that s° (0) = 0. We also define the set
§%:={t€[0,+oc): sZ(t) < s5(t)} {5.4.50)
Lemma 5.8, Let s° end 55 be as in (5.4.48) and (5.4.49), respectively. Then
s2(t) < 83{t) and °(s2{8)) =t =1t°(s3.(2)) (5.4.51)

Jor every t € [0, +00), and
52 (£°(s)) < 5 < 55.(2°%(s)) (5.4.52)

Jor every s € [0, +o0). Moreover the set 8° defined by (5.4.50) is at most countable, and
the set U® introduced in (4.2.14) salisfies

Ue= | (s2(2),85.08)). (5.4.53)

te5e
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Finally
a2 (1) < lim i[l)]f 5:(4) < limsupsZ(t) < s5.(t) (5.4.54)

= =+

for every t € [0, +o0).

Froof. All assertions are well-known properties of monotone functions, except for the last
one. We only prove the first inequality in (5.4.54). If s° (¢) = 0 the inequality is obvious.
II' s2.(t) > 0 we fix 0 < s < 5°(¢). By the definition of 5°, we have 1%(s) < ¢; for £
small encugh, this implies £2(s) < 1, hence s < s2{¢). This gives s < liminf, s2(¢), and the
conclusion follows from the arbitrariness of s < 2 (¢). 0

Lemma 5.9. Let t € [0,-+c0) \ 5°, where §° is the set defined in (5.4.50). Then

ue (f) — u°(s% (1)) weakly* in BD(Q), {5.4.55)

ec(t) — e°(s2 (1)) weakly in LA(QMYEN), (5.4.56)
p(t) = p°(s2(t)) weakly™ in My(QUTo; MEZN), (5.4.57)
ze(t) = z°(5°.(t)) strongly in CY(D). {5.4.58)

Proof. Since £ ¢ S°, Lemma 5.8 gives s2{t) — % (). By (5.4.16) we have u.(f) = u2(s2(t)),
e:(t) = e2(s2(t)), p.(t) = p2(s2(t)), z(t) = 2°(s2(¢)). Therefore the conclusion follows
from (5.4.29), (5.4.30), (5.4.31), and {5.4.46). O

Proof of Theorem 5.6 (continuation). By (2.3.38), (2.3.49), (5.2.27), and ($.4.11), for every
T > 0 we have

T
/ . (t)2di — 0.
S0

This implies that a subsequence, not relabelled, satisfies

ep.{t) = 0 strongly in LE(Q;MNXN)

sym
for £*-a.e. t € [0, +0o0). This fact, together with Lemma 5.9, yields that

ae(t) —ep. (1) — o°(s° (1)) weakly in L2(Q; MV =Ny

sym

¢ () = ¢°(s° (t)) strongly in C°(Q),

for £l-ze. t € [0,4+00). Since K is convex, the inclusion o (t) — ep.(t) € K(C.(1)),
established in (5.2.26), passes to the limit and we obtain

o°(s2 (1)) € K(C*(s2(2))). (5.4.59)

By (5.4.34), (5.4.44), and the left continuity of s°, (5.4.59) holds for every t € [0, +00). A
similar proof shows that
o®(s3.(1) € K(¢(s5.(1))). (5.4.60)

Let U®° be the set defined in {4.2.14) and let s € [0, +c0) \ U°. By (5.4.52) and (5.4.53)
wa have
either §=128% (1°(s)) or s=s3(t°(s)). (5.4.61)
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The partial stress constraint (ev3’)° of Definition 4.5 follows now from (5.4.59), (5.4.60),
and (5.4.61).

It remains to prove the energy-dissipation balance (4.3.1), the partial flow-rule (4.3.2),
and the evolution law for the internal variable (ev4)®. The proof will be continued after
Remark 5.14. O

5.5 Proof of Theorem 5.6: energy inequality and evolu-

tion law

o

The goal of the first part of this section is to prove that the functions u°, e, p°, z°,
w°, o°, ¢°, and x° introduced in the previous section satisfy the energy inequality

S
Qe"(5)) — Qleo) + | (H(H(a), (e + () P s -
s
— ()N + o) + [ I da(o " KN ds S (55)

5 5
< ] (0°(s) — x°(s), Bio*(s)) ds — f (5¢°(s), €(8)) ds + (x°(S), €°(8)) — {xor €0)

for every S > 0, where xp := x(0) = x°(0). To this aim we prove four lower semicontinuity

o

vesults concerning the integrals in the left-hand side of (5.5.1) and the functions P2, oF,
¢2, and x? defined in (5.4.16).

Lemma 5.10. For every 8> 0, 9 € C%(@)*, and ¢ € CO([0, 4-00); CP(D)*) we have

5 5
[ Hewi(e), ) ds < imipe [ it s, (5:5.2)

Proof. Since the [unction s — p°(s) is wealdy” measurable from {0, 4+c0) to My U
To; MY%NY, it is possible to define pe,p € M((0, 8)x (LU Tg); MY XN by setting

S

5 S
(o e} = ]0 (o(s, ), 02(s)) ds and  {p, ) =[ (els,-),°(s)) ds

for every © € C2((0, )% (QUTo); MNXN). If » € CA((0, )% (QUTe); MYXNY, we have

sym sym

g S
(o ste) = — fﬂ (Butpls, ), p2(s)) ds — — j (Bup(s, ) p°(6)) ds = {ip, ),

by (5.4.22} and (5.4.26). Since [[p2(s}l1 £ 1 and [[p°(s)]s < 1 by (5.4.21) and (5.4.28},
by uniform approximation we obtain (g, p:) — (. p) for every ¢ € CH{(0,5)x (02U
Lo); M) de,

BYTHL

pe = weakly™ in Mp((0, 5)x(2U T'g); MV XNy, (5.5.3)

Sy

Since s —r |p°(s)| is weakly* measurable from [0, 400} to My(QUT o), we define A, AE
My((0, 8)x{QUTq)) by setting
-5
0

8
(6 Ac) = f (G5, D EE s and (5,3 i= [ (65,0, () da



5. Existence of a rescaled viscosity evolution 115

for every & € CE((0,S)x (22U Tq)). It is easy to see that . < A, and p < \. Moreover

iy gy B ) g By B

= —= x = x
2. 2] )]
Using the definition of H, see (1.3.20}, it follows that
. 5
| s, conas = [ H(p(a) 55 (5, 2), ¢(s, ) dhe(sm), (5.54)
a 4 (0,8) < {QU%) €

n S d
/ H('¢P°(3),C(S))ds=/ H(y(z )d\( x),¢(s,w)} dA(s,z).  (5.5.5)
Jo 0,8) % (QUTy) /

By {5.5.3) we can now apply Reshetnyak's lower semicontinuity Theorem [39, Theorem 2]

and we obtain

/ H(p(a) 2 (5,2), £ (s, ) A (s, ) <
(0,8) x (QUTy)

” (5.5.6)
< Hm in[’f H(p(x)——(5,2),C(5,2)) dAc(s, ).
e~ US)X(QUF{))( ( )d/\g
Inequality (5.5.2) follows now from (5.5.4), (5.5.5), and (5.5.6). d
Lemma 5.11. For every 5> 0, and every 3 € COD, we have
8 5
[ (), co(e) ds < timigt [ Hwps), ¢206)) ds. (5.5.7)
Jo £ 0

Proof. As ¢° e CO([0, +00); (1)) by (5.4.44) and (5.4.47), we can apply Lemma 5.10 and
we ohtain

f H{wp(s Nds < llm 1nf/ Hwp(s),¢"(s)) ds,

for every § > 0. Using (1.3.10), (1.3.12), (5.4.21), and the definition of H we obtain for
every s € [0, +oc)

[H(¥pe (), §%(s)) = H{p(s), () € M [¥rlleaiC2(5) = €75} )lo -

By {5.4.17), (5.4.43), and (5.4.47) |I€2(5) = ¢°(8)}|ee — O uniformly on compact sets, and
inequality (5.5.7) follows. O

Lemma 5.12. For every 8§ > 0, we have

S
| (), )+ (5619, 260 ) ds = (), 57S) + (o po) <

g

<liminf [ (H(B2s), C25)) - (c2(s), B(5)) ) ds.

e—0 Jo

(5.5.8)

Proof. We consider a sequence #, € C(f), with 0 < ¢ < 1 in € and ¥ = 0 in a
neighbourhood of Ty, such that ¢y(z) — 1 for every z € QUTy. By (2.3.49) the function
H{p(s),¢°(8)) ~ x2(s): Pz (s) is positive L™-ae. in §2 for every s € [0, +00), hence

H{vn pe(s), C7(s)) — (e x2{s), BE(s)) < H(pL(s), ¢°(s)) ~ (x2(s), BE(s)) - (5.5.9)
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Integrating by parts in time, we have

S 5
f (i x2(s), B2(5)) s = — f (e 32(s), P2(S)) ds +
G 1]

(5.5.10)
+ (1r 22(S) PE(S)) ~ {9k X0- 25D -
Performing the change of variables t = {2(s), we get
3 T.
[ . pends = [Coexopmra, (5511)

where T := t2(S). As ¥ = 0 on Ty, integrating by parts in space and using (5.2.3), we
obtain for every t € [0, T¢]

(b % (1), P (8)) = — (b X (1), ec (1) — Bw(l)) —
— (et (us () — w(t)) © Vabi) + (F (e}, v (ue(8) — w(t))) -

which, thanks to Lemma 5.9 converges fo

—{ahy, X (1), €°(s° (1)) — Bw(t)) — (e(t), (u(s2 (1)) — w(t)) © Vi) +
+ (F(), v (w2 () — w{t)) -
By (2.3.28), this expression equals to ([x(t):p°(s2 (1))}, ¥s}; as lp()]l1 is bounded by

(5.4.10) and (5.4.12), while {§X{t)|le is locally integrable by (2.3.48), the Dominated Con-
vergence Thearem yields
T

T,
iy [ G (0). () ot = /0 (e(t)  p(2 ()] ) .

E—

Let w(t) := %(¢t) il the derivative exists at t, and w{t) =0 otherwise. By (1.4.17} and
(5.4.19) we get
%°(s) = w(t°(s))°(s) for L1-a.e. 5 € [0, 5.
This equality, together with the change of variables formula (1.4.18), yields

T T
[ ey st ()] e e = [ttty plsn o) ) e =
0 0 (5.5.12)

g g
- / (B°6) P (D) e ds = /0 ([5°(s): p°(s)] ) ds

where the last equality follows from the fact that X°(s) = 0 for Ll-ae s € U° and that
s° (£°(s)) = s for Ll-a.e. s € [0, §]\U® (indeed, by (5.4.52) and (5.4.53), the only exceptions
are the points of the form s = s5(t) for ¢ € 5°). We conclude that

5 g
ti [ (o) pite) ds = [ ()60 ) . (5.5.13)

Another integration-by-parts argument, using (5.4.7}, (5.4.8), (5.4.10), and (5.4.18),
shows that

tim (1 X2(5), PES) — s x0,6)) = (X(S) 7 ()] ) — (v pol ) (5514
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By (5.5.7), {5.5.9), (5.5.13), and (5.5.14} we finally get
g
[ (340057060, €260) + (02270 ) s = ()75 ) +

+mﬂmwn«me A BE(5), €20s) — (e X3(s), B3(s)) ) ds <

£—

.5
SMWA(()CM)()mWV&

Using (1.3.12), (2.3.48), (5.4.27}, (5.4.28), and (5.4.44) we can pass to the limit as &k — oo,
applying the Dominated Convergence Theorem, and we obtain (5.5.8) . &

We recall that we are adopting convention (1.2.1) aboui LP-norms.

Lemuna 5.13. Let § > 0, and let A° be as in (4.2.7). Then
[ 1l (o 06 ds < Bt [ 1529 da(o2(6), KIEEEN) b5, (55.15)
A £ A%

where

A% = A4°N[0, 8. (5.5.16)

Proof. Since e° is continuous for the weak topology of L3((2; Mﬁﬁ;’v) by (5.4.34), and ¢° is
continuous for the strong topology of C?(Q2) by (5.4.44), by Remark 4.3 A° is open. Observe
that we can equivalently define A® as the set of times s such that dp{e®(s), K(¢®(s))) > 0.

We fix a compact set ¢ C A% and a continuous function ¥: € — [0, +00) such that
da{o®(5), K(¢C"(5))) > ¥{s) for every s € C. (5.5.17)
We claim that, for ¢ sufliciently small, we have
da{o2(s), K(£(s)) > ¢(s) for every s e C. (5.5.18)

If not, there exist g, — 0 and s, € C such that dg(agk(sk),iC(Cgk(sk))) < (sg). We
may assume that si — sg € C; now, by (5.4.30), (5.4.46), and (5.4.47), thanks to the
lower semicontinuity of da(e, K(()) proved in Remark 4.3, the previous inequality gives
da({e®(se), K(€°(30))) < #isn), which contradicts (5.5.17). This proves (5.5.18).

By a standard approximation argument from below, in order to prove {5.5.15), it suffices
to prove

J Ve vts) ds < it [ p2tei o) s, (5.5.19)

for every compact ¢ C A% and every continuous function v: C' — [0,+00). To this end, let

w; be a dense sequence in the unit ball of L*((; Mg\;an }, composed of continuous functions

with compact support. Since
15°(s}il2 = sup (e, p°(s)),
i

by the Localisation Lemma (see, e.g., [5, Lemma 2.3.2]) we have

fllp s)ll2 (s smSUPZf i, D°(8)}0(s) ds, (5.5.20)
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where the supremum is taken over all integers & and over all finite Borel partitions Cp,..., Oy
of C. For every ¢ the real-valued functions s ++ {ip;, p2(s)) ere equi-Lipschitz on [0, 8] (by
(5.4.20)) and converge to s — (p;, p°(s)) for every s (by (5.4.26)), hence the functions
s+ {5, po(s)) converge {ip;, P°(s)) weakly* in L™([0, 5]). It follows that

Z/ w1, p(8))(s) da == hm Z/ (v, Po(8))9p(s) ds <11mmf/- HD2(8)||aw(s) ds

Inequality (5.5.19) follows now from (5.5.20). O

Remark 5.14. Since da{o®(s),¢°(s)) = 0 outside of the set A%, by (5.5.15) and the
nonnegativeness of the integrands we easily get

[ 16 dao(0), o s < it [zl el N 5. (8531

We are now in a position o prove the energy inequality {5.5.1).

Proof of Theorem 5.6 (continuation). Let us fix § > 0 and define T} == $2(5). By {5.2.27)

Te
O(ee(T)) - eo+[ (. (6, €(0)) ~ (ele), B0 ) e+ & ] 2 ()13 e =
Te Tc
= f (oe(t) - x(t), Eib(t)) d f 9) dt + (e(T2), eclT2) — Crovea)

where xg = x{0). By (5.2.5) we have

T:
Ofec(1)) ~ Ofeo) + [ (Hlb(0).€10) = (x(2).Bu0)) e+
T, e
+ [ 12l daloe@, 00N di= [ toelt) - (o) Bib(e) e -
V] X 0
[ ettt 0+ T el - e

Performing the change of variable t = ¢3(s) in the left-hand side, we obtain

.8
Qex(S) = Qleo) + | (P(bE(e). C2(e)) = (xElo), £5(6) o+
T

8
+f 122 (s)llz da(ei(s), K{CE(s))) ds = f {oe(t) — x(t), Bi(t)) dt - (5.5.22)
0 0
T,
- [0 ec0) de+ ((T2) () - G
By the lower semicontinuity of @, in view of (5.4.30) we have
Qe®(5) < lile'l’lfil]lf ez (5)). (5.5.23)

By (5.4.11) and (5.4.56) we have

Te

T
fo (°(s%. (1)) — x (), Bw(t)) dt = hmfﬂ {ae(t) - x(8), B (£)) dt, (5.5.24)
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where T = t°(5). Let w(t) ;= Ep(t) if the derivative exists at t, and w(t) = 0 otherwise.
By (1.4.17) and (5.4.19) we get

Ew®(s) = w(t*(s))i%s) for Llae s e 0, 5].

This equality, together with the change of variables formula {1.4.18), yields

T T
/ (cr"(si(ﬁ)}wx(t),Etb(i)>dt=/ {T°(s2(0)) ~ x(t), w(t)) dt
o 0

S 5
=/ (cr"(si(f'”(a?)))~x°(8),EﬂJ°(S))d82f (%(s) — x°(s), Bis®(s)) ds,
+0 [§]

where the last equality follows from the fact that Ew°(s) =0 for £l-ae. s € U° and thay,
s2(1°(s)) = s for L'-ae. s € [0, S\ U° (see the proof of Lemma 5.12). Therefore, (5.5.24)

gives

W5 T
/ (@°(5) = X°(8), Ba*(s) ds = lim [ (oo () — x(0), Ev(t)) d. (5.5.25)
Jo Jo
Similarly, we prove ‘
s T
/ (%°(s), €°(s)} ds = Iim/ (X(t), ec(t)) dt . (5.5.26)
Jo e—0 0

Inequality (5.5.1) follows now from (5.4.30), (5.5.8), (5.5.21), (5.5.22), (5.5.23), (5.5.25),
and (5.5.26).

To prove the evolution law (4.2.17) we need a technical result on the convergence of p;
to $°. The proof of Theorem 5.6 will be continued after the following lemma. O

Lemma 5.15. Let § > 0 and let wertp € LY[0, 5]; CO(%; MN*NY). Assume that Yo @
strongly in L'([0, S}, CO(Th M%ﬁ;’v)) - Then s+ (1p(s), 5°(s)} is integrable on [0,5] and

5 8
[ oot s - [ o) @y ds aseo.
] )
Proof. We start by proving
5 5
/ ((s), 52(s)) ds —>/ (0(s),p%(s)) ds s e 0. (5.5.27)
a 0
By (5.4.27} we have p° € CO([0, S], M, (0 U To; MM )). Since

((s), Plst h})t — 'po(s)) = {(s),p%s)) ash—0

for £'-ae. s € [0,5], the function s s {tp(s), B°(s)) is measurable on [0, 5]. By (5.4.28)
we have |{(ip(5), 2°(9))] < flo(s))les for £1-ae. s < [0,5]. Since s — lp(s)]loo is integrable
on [0, 5], the same property holds for s s ((s), p°(s)}.

If v e CH(0, 8); COTE MY XN)Y we can write

sYym

¥ 2 ) — p(s g 5§ —h) — s
0 v a

i h
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Passing to the limit as h — 0 we obtain

G 5
] (ol b2l ds == | (@(e), BN ds. (5.5.28)
a 0

A similar formula holds for p°. Thus (5.5.27) follows from (5.4.22) and {5.4.26).
Since ||p2(s)ih <1 and Up°(s)llr <1 by (5.4.21) and (5.4.28), the same conclusion in
the case ¢ € L1([0,8]); C° (T1, MM %)) follows from the density of CL((0, 8); COHMEY YY)

sym sYm

in L1([0,5]; C°(; MYEMYY.

Sy

Now, by (5.4.21) we have

5 s 5
| [ euton it is [ telon i | < [ oets) = gt
Since the right-hand side tends to 0 as € = 0, the conclusion follows from (5.5.27). tl
We now prove the evolution law {4.2.17).

Proof of Theorem 5.6 (continuation). Let us fx § > 0. Define a2(s) and a°(s) as in
(5.4.35), and (5.4.36), respectively. We frst prove that

5 8
fo (p(s), a2(s) tr B3(s)) ds = / (o(s), a°(s) trp°(s)) ds (5.5.20)

for every w € L([0, Sl C(T)). We observe that we can write {(p(s), a2(s)trpi(s)) =
{p(s)a2(s)], po(s)) and (p(s),a’(s) trp°(s)) = {p(s)a°(s), p°(s)) - Therefore (5.5.29) fol-
lows [rom Lemma 5.15, because @ aZl — @ a°f strongly in L} ([0, 5]; v (ﬁ;Mﬁ;’J’,‘nN)) thanks
to {5.4.38) and (5.4.39). Using the equalities

((s), p1 + (a2(8) () = (o = e (s), ac(s) trpz(s))
and

(o), o1 * (a(s) tr p™(8))) = {n + p(s), a”(s) trp°(s))
where j1(z) := p1(—=), from (2.3.41) and (5.5.29) we obtain

5 S
/0 (p(s), p1 * (a2(s) trpI(s))) dls = jo (o), pr % (a(8) i p(s)) ds  (5:5.30)

for every € L1([0, 5} L (). By (5.4.37) and (5.5.30) we have

5 8
fu {io(s), 22(9)) ds — -/D {p(s), m = (a%(s) srp*(s})) ds ase =0 (5.5.31)

for every € L([0, S]; L1 (£2)). On the other hand, if ¢ € CH((0, S); L' (£2)), we have

S g
[ (p(s), 22(s)) ds = - [ ((s), 22(s)) ds
J0O 0
5

5
[ teto) e ds = - [ (@(s), 2°(s)) ds
[H]

Jo
so that (5.4.43) gives

s 5
A (cp(s),i?(s))ds—}fﬁ {ip(s), 2°(s))ds ase— 0.
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By (5.5.31) this implies

.8

.8
/ﬂ (ip(s), 2°(s)) ds = / {o(s), p1 + (a°(s) br5°(s))) ds

v

for every @ € CH{(0,9); L*(€)), and hence
2%s) = p1 * (a(s) trp°(s)) in Qfor Ll-ae s € [0,5]. (5.5.32)

This concludes the proof of (4.2.17).
The proof of Thearem 5.6 will be continued in Section 5.6 after Lemma 5.23. i}

5.6 Proof of Theorem 5.6: Conclusion

In this section f, g, w, ug, €, Po, and zp are as in Definition 4.5 and satisfy the
uniform safe-load condition (2.3.45)-(2.3.48). We assume that u®, e°, p°, 2°, % &%, and
¢° satisfy (4.2.4) and (4.2.5), together with conditions (ev0)°, {ev1)®, (ev2)®, and (ev3') of
Definition 4.5. Let us fix S > 0 and let A% be the open set defined by (4.2.7) and (5.5.16).

We also assume that

qul

[ 1 e KGN ds < oo, (561)

so that p°(s), defined by (4.2.6), belongs to L2((;MIN) for £L1-ae. s € Ag.

aYTL

The goal of this section is to prove that the functions u®, e®, p°, z°, w°, o°, ¢°, and
x° satisfy the energy inequality

5
0, (5, %(S)) — (D, c0) + ]

(M), €6 + ()P ) s
~ G + Gl + [ (08) = e (@ (o) BN ds 2 (562
5

5
= ./0 (T"(S), E'w“(s)) dg — ‘/(; (XD(S), e (S)) ds,

where v := x(0) = x°(0), and, according to the notation introduced in (4.3.65)-(4.3.G6),
o= 0° — x°, and Qy (s, e(s)) == Q(e(s)) — (x°(s), €%(5))
We start by proving that (5.6.1) implies a variant of Lemma 4.15.

Lemma 5.16. Let {a,b) be a connected component of Ag, and let ¢ € (e,b). Then p° —
polc) € ACe({a,b); LP(Q;MI*NY) . In particular, for L£loge s € (a,b), p°(s) is the

sym

strong limit in L2(Q;MNZN), as h — 0, of the difference quotient FHp°(s + h) — p°(s)},

sym

and p° € L ((a,b); L2 (Q; MY XNY) . Moreover, for every si, 82 € (a,b), we have

loc sym

p(sz) — p(ou) € HUMEEY) and p(sa) —p(e) = [ i(s)ds,

W o5q

where the last term s a Bochner integral in L*(2; M‘:‘;ﬁf\r)
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Proof. In the proof of Lemma §.13 we have seen that da(e(s), K({°(s))) is lower semi-
continuous. Therefore for every [oy,0;] C (a,b), there exists a constant +; > 0 such that
da(°(s), K(¢%(s))) = m for every s € [ag,b1]. By (5.6.1) this gives

by
/ [[2°(s)|[2 ds < 400 (5.6.3)

NN
ST

This inequality and the measurability of s — {1, p°(s)) for every » € CR(; M
ply that s — (1, p°(s)) is measurable for every ¥ € L3(Q; MNXN

apm

} im-

, hence 5% [a1,0;] =

L2(Q; MY %NY is weakly measurable. By Pettis Theorem it is also strongly measurable, so
Sy A &

that (5.6.3) implies that p° & L} ((a,b); L* (MY %N}, The rest of the proof follows by

gy
the same arguments as in Lemma 4.15. ]

Lemma 5.16 implies in particular that the assumptions of Lemmas 4.16 and 4.17 are
satisfied, so that e® € ACi.e((a, b); L2( MY %N), and (4.3.48) and {4.3.51) hold. However,
local absolute continuity of e€® is not enough for the approximation argument that we will
employ in order to prove (5.6.2). We need to recover at least strong continuity in ¢ and in b
of e®. This will be done in Lemma 5.18, using a weak L!-estimate for gradients of solutions
of the elliptic system of linearized elasticity proved in the next theorem. We preliminarly
recell that, for every measurable set B and for every measurable function f defined on B

with values in a finite dimensional Hilbert space, we define
(1Fllt 0,8 = sup tL™{|f] >t} nB). (5.6.4)

It is well-known that || f]|1,w,5 < ||F]l1,5 (Chebychev Inequality) and that || fi + fa|1w.e <
21 fill1e8 + 2| f2fl1w,s for every pair of functions fi, fo. We now state and prove the
anncunced regularity result.

Theorem 5.17. For every open set ' CC Q) there exists a constant C depending only on
Q, Q, and C such that, if p € L (Q;MNZNY and u € HL (SGRY) satisfies the equation

a7
—div{CEu) = —div{Cp) in Q, (5.6.5)
then we have the eslimate
1Vulliwa < Clpllia + llullue), (5.6.6)
where || - |[1,wer 45 defined in (5.6.4).

Proof. Tet 2 be an open set such that ' CC Q7 CcC , and et v € C(Q) be a cutofd
function with v =1 on 27 and 0 < ¢ < 1. Let p and u be as in the statement, and let
g :=Cp, and v = pu. Tt turns out that v has compact support and satisfies the equation

~div (CEv) = —div (pg) + Vi — (CEu) Vi — div (C{u© Vy) in RY. (5.6.7)
The fundamental solution of the operator —div (CEu) is given by

Gle) =ag@) I +bVg(z)® =, (6.6.8)
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where ¢ is the fundamental solution of the Laplace operator, a == m e g ".u ,and b=
M oy ,,lﬂ (see [38, Section 2.5.2] and [52, Chapter TI, formula (1.46)]). Since v has
compact support, equation (5.6.7) gives the representation

n

= > L DGt = eamt)dr+ Y] [ Gule - naveltndy -
hke=1" h=1 Y RN
—Z/ Ginle = NCET ) dy + [ PiGinla = 1)(Cw© Ve))uely) dy.

h=1" hkl"

For a.e. x & Q) it follows that

Dyjvi(z) = alz) + Blz) — v{z) + 6(x),

where

afz) = ] D;DuGinle — v)(0q)nly) dy,
hk=1

B(z) = ; /ﬂ o DiGE = 1) eV

=3[ DGule-CETI) by,

et S

n

s@)i= 30 [ DDGinle - EwE Vo) uls) dy
hh=1" mnr
The function D;1,Gyy, is homogeneous of degree —n. Using the explicit expression of
Gin given by (5.6.8) we can check that D; DGy, has mean value 0 on the boundary of each
ball around the origin. Therefore we can apply the Calderon-Zypmund estimate contained
in [49, Chapter TI, Theorem 4], obtaining

el 1,0 < Cilipllie, {5.6.0)

where the constant C) only depends on the function G, and the elasticity tensor ©.
To estimate the term ~y(z) we introduce the cartesian components ¢ of the tensor C,

defined by

{CEu)hk = Z Ch;}D!um.

i, m=1

It follows that
S e / DiGinlz — 1) Dyt (y) Dese () dy
Bk m=1

For @ € @', the function y — Gz — ) is of class C™ in Q\ Q”. Integrating by parts,
we obtain

12
-3 f D; DGl — y)um (y) Drce () dy —
\Qll

h k=1

-3 dr iy, A& = W) D) DiDiply) dy

hhlm=1
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As D; DGz ~y) and Dj ;Gin(z—y) are uniformly bounded when z € ' and y € 0\ 07,
we obtain the estimate
Moo, < Callullie, (5.6.10)

where the constant C3 depends on the function &, on the elasticity tensor €, on the pair
', 7, and on the function ¢.
In a similar, and easier, way we prove the estimates

[8llco.r < Cllpllie  and [l < Calivlia, (5.6.11)

where the constants Cs and €, depend on the function G, on the elasticity tensor C, on
the pair £, 0, and on the function ¢. Inequality (5.6.6) follows now from (5.6.9}, {5.6.10),
and (5.6.11). |

With the previous estimate, we can prove a continuity result for the stress that we will
use in the sequel.

Lemma 5.18. Let (a,b) be u connected component of A%. Then there exists an increasing

sequence s — b such that o°(s;) — a°(b} strongly in L*(Q Mﬁ’fn"\")

Proof. First, we prove that there exists an increasing sequence s — b such that
da(e®(s1), K(C (si))) — 0. (5.6.12)

If not, there exist ¢ € (a,b) and 7 > 0 such that da{e®(s), K(¢(s))) Z 1 lor every s € [e,B).
Then (4.2.5), (5.6.1), and (4.3.51) imply that

b
f l16°(s) |2 ds < -+oo.

Tt follows that o°(s) has a strong limit in L*(€; MN*NY ags 5 — b~. Since o(s) —

sym
o°(b) wealdy in L?(fY M‘;‘;ﬁf‘r as s — b~, we deduce that o°(s) — o®(b) strongly in
LA MY%N) as s — b . Since a°(b) € K((°(b)), we conclude that do(o%{s), K{¢°(5))) —

as s — b—, which contradicts our assurmption on . Thus, (5.6.12) is proved and we can ﬁ)\
such a sequence Ssg.

Now, let h < k. By Lemma 4.16 we have u°(sy) —u®(sx) € HI]a“{Q;IFéN), while o®(s)) —
o°(s;) € To{f) by (4.2.12), thanks to the inclusion A% C U° proved in (4.2.20). Then
(4.3.49) implies that

—div(CE(u(s;) — u°(s1))) = —div (C{p*(sa) — p*(s1)))-
Let us fix an open set ' CC Q. By (5.6.6) there exists a constant ¢’ such that
I E(u(sn) — u(si)llLwer < Clp°sn) = P°(si)lls + Cllu(sn) — u(sk)lin;

then (4.2.5), (4.3.49), the Lipschitz continuity of p°, and the strong continuity of w: (G, §] -+
LY, BN) entail that o®(sy) is a Cauchy sequence with respect to convergence in measure
in Q. As o°(s¢) = o°(b) weakly in L*(%; M‘;‘;ﬁf" , it follows that o°(sg) — &°(b) in
measure. We now consider the decomposition

a‘“(s;;) = WK(C”(sk))(UD(Sk)) + (O‘D(sk) — WE{q”(sk))(Un(Sk)) . (5.6.13)
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The sequence o°(sr) — Tic(gos,))(°(sx)) converges to O strongly in L3(0; M‘;\L;‘,,N) by
(5.6.12). As o®(si) ~+ o°(b) in measure, this implies that wgqeops, ) (o®(si)) — °(b)
in measure. Since wieors, ) (%(sx)} is uniformly bounded in L*2(§); M‘%an) by the Domi-

nated Convergence Theorem we have my(¢o(q, ) (@®(s1)) — a°(b) strongly in L€, M;’,‘;’,‘,;N),

therefore (5.6.13) gives o°(sy) — o°(b) strongly in LQ(Q;MQ,},‘RN), as required. O

The next five lemmas provide a discrete approximation of the integrals in (5.6.2). We
start with a result of approximation with Riemann sums for the duality {%°(s), p°(s){.

Lemma 5.19. Let {s}}ocici, be o sequence of subdivisions of [0,5] satisfying (1.5.2).
Then

lims Z (x°(sk) = x°(s57), p7(si7 1)) = f - <x°(s),p°(s)>ds{ =0, (56.14)

h—oo i1
,{ggﬂzk B - [ e ds| =0, (5615)

where all duality products are defined according lo (2.3.12) for every s € [0, 5].

Proof. As a starting point we ohserve that (4.3.12) implies
. . . Sk :
06 = X6 pls ) = [ (e polsi ) ds (5.6.16)
B

for every % and every i. Since p® is 1-Lipschitz continuous, by (2.3.13) for every % we have

/ (°(), P°(s) — PP} ds| <
L} h sl (5.6.17)
= f I Hloep™(s) = p°(s5 il ds < e / 1%°(5) oo ds .

k 8y

It follows from (5.6.16) and (5.6.17) that

o . . l s
;“XWSL)-X“(#”LP(S:. 0y~ / (?'c"(S),P"(S))dSISnk./D [15°(5) oo dis-

i—-1
ke

As the right-hand side is finite by (2.3.48), (1.5.2) gives (5.6.14). The same argument proves
(5.6.15). 0

We introduce the notation
Bg = {s€[0,5]: ¢%s) € K({°(s))} = [0, 8]\ AL (5.6.18)
Since A% is open, BY is compact.
Lemma 5.20. For every s1,s: € BE with 51 < s2 we have
3(T%(51) + 7°(s0), Bw(s2) ~ Ew(s1)) — $(x(s2) — x°(s1), €°(s2) -+ (1)) <
< Qx(s2,€%(s2)) = Qx (51, €%(s51)) + 3 H(P°(52) — p°(51),¢*(51)) +
°(s

+ 3H(P°(s2) — P°(51), € (52)} — ${x"(s2) + x°(51), p°(82) — P°(s1)) .
(5.6.19)
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Proof. Let s; and s be as in the statement of the lemma. Since 7°(s) € Ty(2) for every
s by (2.3.45) and (4.2.12), a direct algebraic computation and (2.3.28) give

Qye (52, €%(52)) — Qx(s1,€°(51)) + 3 {x°(s2) — X*(51), €%(s1) + e%(s2)) =
= 3{r°(s2) + T%s1),€%(s2) — °(s1)) =

= 1(r°(s1) + 7°(s2), Bw®(s2) — Bw®(s1)) ~ 3{7°(51) + 7(s2), p°(s2) — p(51)) -

Since o°(s;} € K(¢%(s:)) and ¢°(s;) € C*(Q) for i = 1,2, by Proposition 2.5 we obtain
(a°(s:), p°(52) — P°(51)) < H(p(52) — p°(51),¢"(5:)). Therefore

(T%(s1), p°(52) — P°(51)) < H(p(s2) — P°(51), (1)) — (X°(1), P°(52) — P (s1))
and (5.6.19) easily follows from the previous equalities. O

Lemma 5.21. Let (a,b) be a connected component of A% andlet a < 51 <s2 < b. Then

0 < Oxlom e%(52)) ~ Oxlon,elon)) + | (%), ¢°(s)) ds —
w0 (5.6.20)
- (xe(sa), p7(oa)) + (o). plon) + [ (07060 = meen (@ (2), 700 ds.

81

Proof. We first observe that x° is constant on (a,b) by the inclusion A% ¢ U® proved in
(4.2.20). By Lemma 4.11 the function s — (x°(s), p°(s)) is absolutely continuous on o, ] .
Since the function s — Qy(s,e°(s)) is lower semicontinuous, we can assume that a < s;.
Moreover Lemma 5.18 provides a sequence si — b such that @y (sy, €°(sy)) = Qx (b, e®(d)),
so that we may also assume s» < b. Therefore it is enough to prove the inequality on a
compact subinterval [s1,s2] of {a,b).

By Lemma 5.16, we can apply Lemma 4.17; with this, we get that the function s —
Q,(s,e%s))) is absolutely continuous on [s1,5a] and, since x° is constant on [s1, s3], we

have

L Q. (s,e%s))) = (r°(3), &%(s)) (5.6.21)
for a.e. 5 € |51, 82]. Similarly, by Lemma 5.16

L(x°(s), p°(s)) = (x°(5), () (5.6.22)

for a.e. s € [s1,82], where the right-hand side is the usual scalar product of L. In
view of {5.6.21) and (5.6.22), inequality (5.6.20) casily follows [rom the inequality 0 <

L9, (5,€%(5)) + H(P(5),¢°(5)) — (x°(5), D)) + (0°(8) ~ Micqee(s)) (@%(8)) (5]}, which is
equivalent to

0 < {7°(s), &°(s)) + H(#°(s), ¢ (s)) —
= {x°(3), °(5)) + {@°(5) — mergoqen (0°(8)), D°(5)) -
As 7°(5) € Bo(f1) by (2.3.45) and (4.2.12), from (2.3.33), (4.3.48), and (4.3.49} we get
(ro(s), (o ) = () = —{r(s), (s + )~ B(6))

by Lemmas 4.17 and 5.16, we conclude that (v°(s),&%(s)) = —(r°(s),p°(s)), therelore
(5.6.23) is equivalent to

(0°(s), p°(5)) < H(B"(5),¢°(5)) + (0%(8) = mie(goiany (), P7(5)) 5

(5.6.23)
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this inequality can be proved by observing that
(a°(), p™(s)) = (Ticreoran (0°(8)), P°(5)) + {o°(5) ~ miciesan (0°(5)), PO(s)) <
< H(P°(s),C7(5)) + (0°(5) — sy (@(5)), P°(5))
where the inequality foliows from the definition of #. This concludes the proof. i
Lemma 5.22. Let (sL)ocici, be a sequence of subdivisions of [0, 5] satisfying (1.5.2} and

(1.5.13), with 4 given by the following functions: a®, o1y, x°lpy, and lps, the first
three with X = LE(Q,MY*NY . Let I, IB, and J be defined by (1.5.20), (1.5.21), and

Sy

(1.5.24), with A = A% and B = B%. Then

5
Jim S (s, Bud(sh) - Ew'(si ))=/O (7o(s), Bw(s)) ds,  (5.6.24)

ielf

dm > / (")l

ierpugp”

5
im 5 (x¥(s)) - x%(5iY), e(s 1))=f0 (°(s), (s} ds (5.6.26)

.8
lim 3 (x(sk) = x°(si ) o)) = / (C(s).p°(s) ds. (5.6.27)
. Jo
Th-(i‘?ﬁ equalities continue to hold if 1‘0(8};1}, e“(si__l), and p“(si,“l) are replaced by 7°(st),
e”(s},), and p°(s.), respectively.

Proof. Equality {5.6.25) follows from (1.5.27), with v given by o®lpy, Xx°lag, and lpgs.
Now, recalling that Bw®(s) = Q for L£'-ae. s € A% by the inclusion A% ¢ U® proved in
(4.2.20), and that [|[Ew°®(s){la <1 for £L'-a.e. s € [0,5] by (5.4.24), we get

5
|3 i), But(eh) ~ Busi )~ [ (o), Bate) as] <
8]

i
5k
SZL{_J(T“(SR ) = 7°(s), Ew"(s))| ds + Z / (r%s), Fw’(s))|ds <
ielB "k ieffugg
Z/ ”‘J“ 1 1 )= 7(s}|ads + Z f (S)'jglgg(s)d.s.
il ierpugp

The first term in the right-hand side vanishes in the limit since 7° = ¢® — ¥® , o° satisfies
(1.5.13), and x° is continuous. As the second one tends to 0 by (5.6.25), equality (5.6.24)
is proved.

Since x°(s) =0 for L1-ae s € AZ C U°, and ||x°(s))lec < 1 for £'-ae. s € [0,5] by
{5.4.24), by adapting the previous argument we can prove (5.6.26). We finally observe that,
by (2.3.13) and (5.4.24),

S f ds{<M Z/ 15 (s) ds,

iefpugg ieffugg

where Af is an upper bound of ||p°(s)||; on {0, 5], and the right-hand side vanishes in the
limit as k& — oo by (5.6.25). Together with (5.6.14) and (5.6.15), this proves (5.6.27). The
last assertion of the lemma can he proved in a similar way. ]
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Lemma 5.23. Let (si)o<ici,, I, I, ond J& be us in Lemma 5.22. Assume that
si~l si) is comteined in AL for every i € J&. Then there ewists o sequence Ry — 0
1Sk 5 k

such that

3 (Qulshoet(eh)) - Qelei e (™) fH(p (o) ds -

ierpusp _
— (s PP + G P () + (5.6.28)
* L;_;,J""(S) — e (@()), B°(s)) ds) 2 =R,
where Aik_l = AL N (8], i 1?,3;;).

Proof. Define
A e IAUJA: (s sh) c A3Y and = {ie I (sl s) N Bg # @)

our assumption on Ji' implies that f;j‘ Ulf =1 uJg. By Lemma 5.21, we have

3 (@lsh. €(61) — Qs s + f (o), Cs)) ds — (e(oi), P51 +

ielp
)P + fii_lﬂxaf’(s) — meigean(o™ls n,ﬁ"(s))ds) >0

For every i € I, we define si‘% (respectively s'”ﬁ) as the supremum (respectively the
1nﬁmum) of the connected component of A% containing si 1

both si~ 5 and s‘“ belong to the set Bg. By Lemma 5.21, we have

(respectively si,). Notice that

05 37 (Oxlohelsh)) - Oulelheolr ) + [ 1), €6 s
el sk
_ (k) 7)) + i D) P ) + f (6%~ e (s))(a()mf’(s))ds)

and

n
i

05 3 (Qutsirtetsi 1) - Qo et + [ "R, () ds -
igfp fn ok
= (), P D) + TP + / .fl

{o°(8) = mre(goqn (@ (), P(s)) ds).

Therefore to prove {5.6.28) it is enough to show that there exists Ry — 0 such that

it

S (utefh i) - Outei ity + [ " HE) () ds -
i s 1
— (), PR 3)) (s T, PO (5.6.29)

b [ () = (o6, BN ds 2 <R

i-24-1 —2  q.d
where A, 77 i= AN (s}7T, 877}
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Let B be the union of the intervals {s}lfl, siyforie I, By the definition of f,f‘ each
point of By has distance from Bg less than the constant 7y introduced in (1.5.2). Since
B2 is compact, we have £Y(B;, N A%) — 0. By {5.6.1) this implies that

[ Nl s), K ds =0 (5.6.30)

By Lemma 5.20 we have

2

O, (5% el 4) — Qylsf E. (sl ) + FHP(siH) = (o), L) +
IR Y) - o), L) — Hoe(stH) + xo(s ), pole ) - R ) 2
> Lro(si ) + 7o(el ), Bu(si4) - Bu(sl ) -

el = x5 ), e ) ().

Now, recalling that Ei°(s) = 0 for L1-a.e. s € A} C U, and that ||Ew (s)ffo < 1 for
Llae s€|0,5] by (5.4.24), we get
|3ro(si ) b re(sid), Bur(si ) - Bu(el )] <

yi-
% ’J

1 - ok
< C] HE’w ( “‘3} Ewﬂ(slk_ﬁ)ﬁg < s / 4 1B§(S}d5 < Ch -/Hl 13;(5} ds,
L

. s;\:"ll
where ¢ is an upper bound of [[7°(s){lz on [0,8]. Similarly, as x°(s) == 0 for L'-a.e.
s e A% c U® and [|x°(s)fiee < 1 for Llae s€i0,5] by (54.24), using (4.3.4} and the
Jensen’s inequality as in Remark 4.9, we get
8k

(s — x5, e + @I S G [ Laglolds,

i

'Sk

where b is an upper bound of |le°(s)|l; on [0,S]. Arguing as before, by (2.3.13) and

(5.4.24), we can also prove that

l

where Cy is an upper bound of |[p°(s)|l: on [0, 5]. By this inequality and a direct compu-

tation we deduce that

(s ) = (s 8, p(s ) + P -'i)>|scaf‘sf 13 (s) ds,

4.

=

(s ) (e ) ) - (TR <
= _<X0(5i#%)=p (STW'_)) + (x5 “‘) PD(Si_%)) + Cf /g_kl lgg(s)ds.

k
Therefore, setting C := Cy + Ca+ Cly, from the previous inequalities we obtain that (5.6.29)
holds with

Re=CY fﬂlﬂu (s) ds+meAu 15%(s) ]z da(@°(s), KC(C°(s))) ds +

1EfA

i

S (rtsih) —pe(si B, st - [ e, s +
iefp 5*«“‘1&

i

D13 (i) - DL - [ HETE) ) )

i!EJ!‘,l

ok

+

(=1
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From Lemma 1.10 and from (1.5.27) and (5.6.30) we obtain Ry, — 0, concluding the proof.
O

We are finally ready to conclude the proof of Theorem 5.6.

FProof of Theorem 5.6 {conclusion). Letus fix § > 0 and let A% and B% be the sets defined
in (5.5.16) and (5.6.18). Let (si)g.z,-q,s , I;:‘, IB ., and J“" be as in Lemma 5.22. By Remark
1.14 we may assume that (si ,s};) C Ag for every i € J¢'. By Lemma 5.22 there exists a
sequence g} — 0 such that

5
| (tr706), Bam(o) -~ 57(6), o) Y s <
<33 (i) + (s, Ewl(sh) ~ Bw®(si)) ~

icif
— 3 > (®sh) — X%, e9(sim ) + €°(sh)) + ol

=78
el

By Lemma 5.20 we then deduce that

5
/ (<r°(s),Ew°(s)>—<x°(a),e°(s)>)czs <D _(Qulok (k) — Qi (7)) +

iclf
+3 21 HEL) - 2T ) 5 Y Hpsh) — po(sinY), (s +
ierf iclf
+3 D0 ) = Xk 5 (k) + B —
ielf
= 3 (k). Pk - (6,6 + o
ielf
where we replaced the term ~§{x°(s;~ '} + x°(s}.), p°(sL) = p°(si71)) with the equivalent

3071 = X7(sk) P(sk) + BTN = XP(sh) po(sh)) + (0, po(sE 1)
By (5.6.27), Lemma 1.10 provides a sequence 0% — 0 such that

5
/ ((r“(s),Em*’(s))—(f(s),e°(s}))ds < (Qxlsh €(5})) - Qi (i) +

ield
M =
+ 30 ), s+ [ tets). p o s -
IEIB SL '

= 2 (Bl (s ~ () P76 ) + b o+ o

ief®
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Adding (5.6.28), where A::_I’i = AL N (Si,”l, si), we get

5
[ (o), B - (0t s))ds<z sk e(s1)) = Qs e(s7) +

i) 51- <
*3 [ P ) ds fo °05), 57() ds —
— (S). B9 + (xormo) + 3 / )~ R N s <

ieffug

< 0x(5.¢°8) - Q0o+ [ (H(p(s),c%s)n<>z°(s),p°(s)>)rzs-

(x°(8),p°(5)) + (xO,pn)+f {o°() = micieo(sy) (@%(3)), 2°(s)) ds + o},

a
“g

with

b= oh ot Rk [ (E(6)ada(o(e), KG9 s, (5.6.31)

BnAg

where B), is the union of the intervals (si.'l, Si.) foriel f? . By the definition of f each
point of By has distance from B§ less than the constant g introduced in (1.5.2). Since
Bg is compact, we have £1(By N A%) — 0. By {5.6.1) this implies that the integral in
(5.6.31) tends to 0 as k — co. Therefore g§ — 0, and the last chain of inequalities yields
{5.6.2). Together with inequality (5.5.1), proved in Section 5.5, this gives (4.3.2) and (4.3.7).
By Proposition 4.10, the latter is equivalent to (4.3.1). By Theorem 4.7, this concludes the
proof of Theorem 5.6. 0O
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Chapter 6

Viscosity solutions

6.1 Overview of the chapter

In this chapter we consider the behavior of the evolution in terms of the original time
variable t. For this purpose, we compose the rescaled viscosity evolution whase existence is
provided by Theorem 5.6 with the left-continuous funetion

52 (t) :=sup{s € [0,+00) : 1%(s) < ¢},

which has the property that °(s°(t)) = ¢ for every ¢ > 0. The composite function chtained
in this way is called a wiscosity evolution (see Definition 6.2). Indeed it has been proved
in Lemma 5.9 that the unrescaled viscoplastic approximations considered in the previous
chapters converge to this viscosity evolution for every ¢, except for the countable set of the
discontinuity times. We prove that every viscosity evolution salisfies an energy-dissipation
balance and an evolution law for the internal variable, that can be expressed in terms of
integrals depending only on the original time ¢ (see Theorems 6.7 and 6.14). However,
both these integral identities contain terms concentrated on the jump times, whose value
can only be determined by looking at the rescaled formulation (see Remarks 6.8 and 6.15).
Theorem 6.7 shows in addition that, in the vanishing viscosity limit, the viscous dissipation
is concentrated at the discontinuity times.

From a technical poini of view, in the prools we will rely on the notion of “weak*-
derivative” for functions of bounded variation with values in the dual of a separable Banach

space introduced in Chapter 1, Section 1.4.

6.2 The energy balance in the original time
We start with a simple Remark that will be useful in some proofs of this chapter.

Remark 6.1. Consider two times s and so with the property that the open interval
(51,52) is contained in the set U® defined by (4.2.14), that is the set where #° is locally
constant. Therefore, some terms on both sides of the energy-dissipation balance (4.3.1) and

133
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of the equivalent (4.3.7) vanish, and the energy-dissipation balance simply reads as
51
Qe(s2)) - Qe (o) [ M) N ds
41

+ fsn I12°(s) 12 dalo®(s), K(G°(s))) ds = (L(t%(52)),u%(s2) ~ w’(s1)},  (6.2.1)

51

or equivalently
Olef(ea)) - Qe(o) + [ HE(6) 600 ds — (x7(s2), p(sa) = p(o1) +

+ [T I a9, KN s = (xlsa) (oa) — o)) (62

51

for every 0 < 51 < 53 < & such that (s, s2) C U°.

We now want to consider the behavior of the evolution in terms of the original time .
To this aim we introduce the notion of viscosify evolution. In the next definition, given ¢* as
in (4.2.4), the right inverse functions s° () and s (t) are defined by (5.4.48), and (5.4.49),
respectively.

Definition 6.2, Assume that f, g, and w satisfy (2.3.42)-(2.3.48), and let up, ep, po,
and zo be as in (2.3.53)-(2.3.57). We say that {u,e,p, z) is a viscosity evolution with data
f, g, and w and initial condition (o, g, Po, 20) if there exists a rescaled viscosity evolution
(u® e p°, 2°¢°) with the same data and initial condition (10, €0, Po, =0, 0} such that

ut) =u(s2 (1)), e(t)=e(s2(0), p(t)=p°(s2(), =(t)=2(s1())  (6:23)
for every t € [0, +oo)}. Moreover, we define

o(t) = Cet) = o°(s2(t)),  €(t) = V(z(t)) = ¢"(s2(£), (6.2.4)
where o° and ¢° are defined by (4.2.5).

The name viscosity evolution is justified by Lemma 5.9. By Definition 4.5, Remark 4.9
and the left-continuity of s° , all functions introduced in Definition 6.2 are left-continuous
in the norm topology of their target spaces. Since

lim s (¢+h) =55 (2) {6.2.5)

h—s Ot

for every ¢ € [0, +00), the right limits u(t+), e(t+), p(t+), and z(¢+) in the corresponding
norm topologies satisfy

u(t+) = u(s5(0), e(t+)=e(si(t)), pli+)=p°(s3(t)), =2(t+) = ="(s3(2)). (6-2.6)

Observe that p has bounded variation as a function from [0, 7] to My{QUT'e, MY <N), as
p° is Lipschitzian and s° is nondecreasing; similarly, both = and ¢ have hounded variation
as functions from [0, 7] to C%(Q). It follows from (6.2.5) that the {at most countable) set
§° defined by (5.4.50) is the jump set of the monotone function s2 . By construction all the

functions defined in (6.2.4) are continuous cutside 5°.
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Remark 6.3. Notice that & has bounded variation as a function from [0, T} to the Banach
space L*{{; MNXN). Indeed, for every 0 £ & < ta £ T, recalling that s2.(t;) € B° by

S

(4.2.13), (4.2.7), and (5.4.53), inequality (4.3.21) yields
llor(tz) — a{ta)llz € Lo (s2(ta) — sZ(t1)), (6.2.7)
which easily implies the claim as s% (t) is nondecreasing.

Given g: [0,T] — Mp{QQ U I"D,Mﬁ,fnf”), for every 0 < & < b < T ihe total variation of
g on [a,b], denoted by Var(g;a,b), is defined hy (1.4.2). Given ¢ € C°(Q)* the variation
of g on [a,b] with respect to the functional H(-,¢{) introduced in (1.3.20), denoted by
V{g,¢;u,b), is defired by (1.5.1).

Given a viscosity solution (u, e, p, z) we define x as the unique Radon measure on [0,T]
such that

p{[0,t]) = Var(p; 0, 1) {6.2.8}

for every ¢ € [0,T] where £ ++ Var(p;0,1) is continuous. The continuity properties of p
imply that p({t}) = 0 for every ¢t ¢ §°. It follows that the diffuse part py of u satisfies

pa=p—»_ u({r})é,, (6.2.9)
TES®
where &, is the unit mass at .
The goal of this section is to derive the precise form of the energy-dissipation balance in
the ¢ variable. We start with a change of variable formula.

Lemma 6.4. Lef (u,e,p, z) e o viscosity evelution with date f, g, and w, et T > 0,
and let 5= s°(T). Let pp and pg be as in {6.2.8) and (6.2.9), respectively, and define v,
as in Theorem 1.3, with X = My(QU Ty MY3NY and ¥V = CJ(QU Ty MY*N) | Then

sym Sy

t%(sg)

f {2, P°(s)} ds = f {0, vp(t)) dpalt) (6.2.10)
(1,820 U0

t7(sy)

for every w € CO{LY; Mi‘;ﬁf\r) and every 0 < 51 < 87 < 8, where the duality products

(12, D°(s)) and {p,vL(t)) are defined as the inteyrals of the funclion @ on the set 1 UT
with respect o the meesures p°(s) and vp(t), respeciively.

Proof. We first consider the case p € C{QUTy;MINN). For every 0 < iy <ita < T, by
{1.4.13) we have that

o
[ tewn@) dea®) = (op02) =) = 3 (pup(r4) = BT}
4 FESTty La)
By {6.2.3) and the Lipschiiz continuity of p°, we have

57 (1z)

(rplta) — plt1)) = f (0, 5°(s)) ds .

82 {t1)
Let 7€ §° When ts — v+, by (6.2.5), (6.2.6) and the previous equality we obtain that
s5.{T)

(eop(r) =p(r) = [ o) ds
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From the last two equalities and (5.4.53) we get

ta
[ bt duatt) = (o, B°(s)) ds. (6.211)

t1 -/(i‘i‘l(h).s‘.’.(tz))\u"

Now fix 0 < 51 < 83 < 5. By (6.2.11) we have

t%(a2) -
[ tvanduato = | (i, 57(e)) ds.
to(s1) (a2 (t°(s1)), 82 {t°(aa PNL®

By (5.4.52) and (5.4.53), if 5°(£°(s1)) < s1, then the open interval (s2{t°(s1}),51) is con-
tained in the set [/°: a similar property holds for sq. This concludes the prool when
p € CRQUT MIEY).

Let us consider now the ease ¢ € CY(R; M?;f,;”) We fix a sequence 1, € C(2), with
0 < <1in @ and ¥, = 0 in a neighbourhood of 90\ Ty, such that () = 1 Jor
every 2 € QUTYy. Since ¢y € CS(QUTo; MYXN), formula (6.2.10) holds with ¢ replaced

by k. The conclusion can be obtained by passing to the limit as k& — +oo thanks to the
Dominated Convergence Theorem. ]

In the next two lemmas we prove a change of variable formula for the integral

ORI
(U.S}\U"

We begin with the case of a function ¢ indepedent of s.

Lemma 6.5, Under the assumptions of Lemma 6.4, we have

h
[ Hwal), Qatt) = f( H((s), ¢) ds (6.2.12)

52 (a) 82 (D)NU®
for every € € OV and every 0<a <b< T,

Proof. Let K(¢) be as in (1.3.15), and let o = 6 < ¢ £ --- <ty Sty = b be
a subdivision of [a,b]. By {1.4.13) and (6.2.11}, for every 1 < 7 < N and every ¢ €
K NnCHQUTy;MNENY we have

Sy

(.00 ~pli) = [ lpwplhdua@+ 3 oplr+) - i) =

Sl TES i1, k)

(. p°(sNds+ > {o,plr+) —p(T)) <

TESTIE 1, bi)

L/(‘S?r(ci—l)lsi(tl-))\uu

<

H((s),Qds+ Y Hip(n)t —p(r),0),

~/(8‘l{f-.»~1)-5°_(fi))\U“ PESNE; - 14t:)

where in the last inequality we used the definition of H. Taking the supremum with respect
to 4, by Theorem 1.2 we get

H(plt:) — plti1), €} < j Hp(s)Qds+ S Hiplr+) —p(),Q)

(8% (tiwn is2 (B AU €S ALt .t:)
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for every 1 < < N. Summing aver i and taking the supremum Over all subdivisions, we
obfain

Vip o) < | ), Ods+ S Hp(rH) = p(1). ),

Jise (a), s NU° resora,b)

where V is defined by (1.5.1). Thanks to (1.4.14),this inequality is equivalent to

b
[ gl et < [ HE(5), ) ds (6:2.13)

J (52 (a) 82 (D)L

To get the converse inequality, let s2.(a} = s0 < 51 < ENo1 S SN T 52 (h) be a
subdivision of {s®{a), s2{b)]. Using the definition of #, by (6.2.10) we obtain

(6, 5°(51) — P(sio1)) < [ (. 5(s)) s + [ H(p(s), C) ds =

(sim1.5:NU° O

1908} .
= [ towsndua) + / H(po(s), () ds <

1951} (851,85 )00°
t7(s1) .
< [ Hlwple)C) dualt)+ ] H(H(s).0) ds
t“(.‘?,'_[) {S|_1,Si)nU“
for every 1 €1 < N and every @ € K. Taking the supremum over ¢ and using Theorem
1.2 we have
t%(a:}

Hp(t). O dpalt) + | H(p°(s), O) ds

(8i-1,8NU°

H(p*(s)) — p(5i1,) < [

Jie(si-1)
lor every 1 < i < N. By summing over 4 and taking the supremum over all subdivisions

we get thanks to Theorem 1.8
87 () b .
[ w0 s [ Hlep0,0 dualt) + / M (), ) ds
8° (a) n (2° (a),s°.(b))NU*
here we also exploited the fact that {°(s° (t)) = t for every ¢ (see (5.4.51)). This is clearly
the same as saying
b .
[ w002 | H(p(s), ) ds
@ 4 (59 ()82 (BAUT

which concludes the proof. O
We now extend the previous lemma to the time-dependent function ¢°.

Lemma 6.6. Under the assumptions of Lemma 6.4, let ¢ be defined by (6.2.4). Then we

have

T
fo H(vp(t), (1)) dpall) = f H(p(s),¢°(s)) ds- (6.2.14)

(0,800
Proof. Since t +—r ¢(1) is left-continuous and has bounded variation there exists a sequence
of left contintous piecewise constant [unctions Cult) =R+ G Lg s (), With =
Co@) for every i and every k such that

e k(t) = C(Blise — 0 (6.2.15)
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uniformly for ¢ € [0, 7] (see, for instance [34, Proposition 4.6]). Define

iy
Gl =+ ¢ s (aemy)se (ai))(3) .

i=1
By (6.2.12) we casily get
T
/) 1. e = [
1 0,9\

By (5.4.52) and {5.4.53) we have that s2(1°(s)) = 5 for Ll-ae. s e [0, 81\ I7°, which
implies both ¢}(s) = ¢, (t°(s)) and ¢°(s) = €(°(s)). Then, by (6.2.15) we conclude that

JH(D(s),Ci(s)) ds (6.2.16)

1€5(s) = ¢°(s)lloo — 0 (6.2.17)

for £'-ae. s € [0,5]\ U°. Since IB°(sHl < 1, and ||wp(t)]ly = 1 by {1.4.12), passing to
the limit in (6.2.16) we get the required equality thanks to (6.2.15) and (6.2.17), using the
Lipschitz continuity of H(&,¢) with respect to ¢ (see (1.3.14)). N

The next theorem finally gives the precise form of the energy balance in the variable ¢.

Theorem 6.7. Let (w,e,2,2) be a viscosity evolution with data Fi g, end w satisfying
(2.3.42) and initial condition (0, €0, 0, 20) as in (2.3.53)-(2.3.57), let T > 0, and define
o and ¢ asin (6.24). Let S° be defined in (5.4.50), and let A be the Radon measure on
[0, +00) defined by

A= D (Qeln) - Qe(r) + (L(r), u(r+) - u(7}}) 6. (6.2.18)

TESS

Let y1 and 1iq be as in (6.2.8) and (6.2.9), respectively, and define vy, as in Theorem 1.3,
with X = {9 ULy, MYXNY and v = Ci(Q UTo; MEXNY. Then A is a positive measure
and

T
Qe(T)) ~ Qea) + f H(wp(t), (1)) dpa(t) + A([0, T)) =
T A
=f (Em(t),a(t))dt—/ (L), (1)) dt — (6.2.19)
0 H

T
- [ GO e+ 5,0 - (20)00).

Proof. et §=3° (T} and let U° be as in {4.2.14). We start by looking at the term

8
| (#6706, o+ 1206 e o), K(¢(s)))) ds

in the energy-dissipation balance. We split this integral into two parts:

. f H(p"(s), ¢(s)) ds | (6.2.20)
{hS)\ e
5= [ e (L0 O 160 o0, KA a5 621
(9,8)n17

indeed by (4.2.13) the term 12°(s)|2 da(o®(s), K(¢®(s))) gives a contribution only in /°,
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If follows from (5.4.53) that

-'—’+(T)
= 3 [ (M )+ I da( o) ) s

resonp,T) " 52{T)

Since (s‘i(—r),si(r)) < U® for every 7 € 5°, (5.4.51) and (6.2.1) give
sim)
[o (r) ( (p {S) C 3) + Hp ”2 (jo{o- ( ) {CU(S}))) ds =

= Qe°(s% (7)) — Qe(s5(m) + (L(r), u*{s3. (7)) — w(sZ(7)]) (6.2.22)

By definition Q(e°(s2(r))) = Qle(r)) and 1°(s° (7)) = u(r). On the other hand, (6.2.6)
gives Qe(t+)) = Qe’(s5.(7)) and u’(si(r)) = u(7+). Therefore we conclude that

=3 (Qle(r) - Qe(r+) — (L(r),u(r+) —u(m)) = A(0.1)).  (6:2.23)

T&5°n{0,7}

Moreover, since the left-hand side of (6.2.22) is nonnegative, we have that
Qle(r)) — Qe(r-+) — (L(7), ulr+) —u(7)) 2 0

for every 7 € §°, hence A Is a positive measure.
By (6.2.14) and (6.2.20) we have

i
r= [ #s0,G0) i) (6.2.24)
Arguing as in (5.5.12) we have also
5 T
[ (Ew°(s),c"(s}) ds = / (Bw(t), o(t)) di. (6.2.25)
Jo )
With a similar argument we can also prove that
5 T
[ (b)), e is) ds = [ iz uar, (6.2.26)
Jo Jo
while the equality
5 ) T
L(mﬂmmm%mﬁ@¢=ﬁ<u¢wmms (6.2.27)

is simply (1.4.18) with f(f) and ¢(s) replaced by {L{t),w(l)) and t°(s), respectively.
Since, by construction, Q(e°(S)) = Q(e(T)), L(t°(S)) = L(T) and u®(S) = u(T), the
required equality follows from (4.3.1), (6.2.23), (6.2.24), (6.9.25), (6.2.26), and (6.2.27) . O

Remark 6.8. The energy-dissipation balance (6.2.19) shows in particular that the viscous
dissipation is concentrated at the jump times. Notice that the exact amount of dissipation
occurring at these times can be obtained only [rom the rescaled formulation, using the
equality
A=y (QeP(s2.(8))) — Qle(s5.(1))) + (L{E) wls3(0) — u(s2 (1)) 6
tege
which follows from (6.2.6) and (6.2.18).
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6.3 The evolution of the internal variable in the original
time

In order to write the evolution law for the internal variable in the original time #, we
first show that, given an exponent r > n, the variation of £ 1=+ z(t} - z; as a function from
[0.7] to W'(2) is controlled by the variation of ¢ ~+ p(f) as a function from 0,77 to
the Banach space M,(QUT'y). To this aim we first notice that by (5.4.44) s z°(s) — zp
is locally absolutely continuous as a function from [0,+0c) to W (R2) and, by (2.3.41),
{4.2.17), (5.4.38), and (5.4.39), given S > 0 there exists a positive canstant M3 such that

I12%(sMl1r < MEIH(3) (I (6.3.1)

for £l-a.e. s € [0,5], where || -, denotes the norm in Whm(Q). Moreover (4.2.17)
yields, in particular, that s— py » ((pz tro®(s))tr(p°(s))) is locally Bochner integrable as
& function from [0, +oc) to W' (), and consequently to CO(£)).

As in (5.4.36), we put

a’(s) == pa * tr{o®(s)).
Similarly we set

all) = pg » tr{a(t)) = a®(s° (1)), (6.3.2)

where the last equality follows From (6.2.4), We start with the following lemma which is a
refinement of Lemma 6.4,

Lemma 6.9. Under the assumptions of Lemma 6.4, let °: 0,5] = C(&y ij\;an) be
a bounded measurable function such that @(t) = °(s°(t)) has bounded variation as a

function from [0,T] to the Banach space CO(fk MN"N) Then

Sy

t%(sa)
Jo N s = [ () vpe) duatt) (6.3.3)
(41,82)\Lf°

. tn(sl)

forevery 0 < 51 < 80 < 5.

Proof. If ©°(s) does not depend on s, the result is proved in Lemma 6.4. The general case
can be obtained by approximating p(#) with piecewise constant functions, arguing as in
Lemma 6.6. O

As a consequence we get the following corollary, for every exponent r > n.

Corollary 6.10. Under the asswmptions of Lemma 6.4, let o be defined as in {6.2.4),
and let a®(s) end a(t) be as in (5.4.36) and (6.3.2). Then t v+ py * (a(t)tr(va(t))) is
ta-Bochner integrable as a function from [0,T] to W'™(Q), and consequently io CoQ),
and
- t%s2)
A”mm“*((“((m“”f prx(a()i(op(t) dpalt)  (6.3.0)

to(51)

Jorevery 0 < s <8, < 85,
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Proof. Observe that a(t) has bounded variation as a consequence of Remark 6.3. Fix
we CO() and let I be ihe identity matrix. We have that

(i, alt)tr(vp()) = fpalDT (D) (6.35)

and similarly
(0, a°(s)6x(p°(s))) = {wa™(s)[, () » (6.3.6)

where the duality product is defined as an integral on QUTp If a(t) does not depend ot ,
from (6.3.5) and Theorem 1.3, we get that ¢ — {p, a{t)tr(pp(1))) is tig-integrable in [0,T]
for every ¢ € C5(©2UTp). The same result holds when a(t) depends on £. This can be
proved by approximating a{t) with piecewise constant funciions, arguing as in Lemma 6.6,
Moreover, arguing as at the end of Lemma 6.4, we can prove that ¢ {p, a{t)tr(vp(t))) is
pg-integrable in 0, T) for every @ € ol (D))

Let pi(z) = puf—z). Since (v, p1* (a()tr(vp(t)))} = (1 * 0, a(t)ir(vp(D))), we de-
duce that # — {@.p1 * (a(t)tr(up(t)))) is pq-integrable in {0, T} for every @ € Co().
Tt follows that t ~— p1 * (a(t)t;r(up(i‘;))) is eq-weally measurable from 0,7} to Whr(§2).
By Petiis’ Theorem and by the boundedness of a(f) and wp(t), this implies that 1
Pl * (a(t)tr(up(t))) is pg-Bochner integrable from [0,7] to WH7(f2), and consequently
to C%Q). On the other hand, as it has been observed at the beginning of the seciion,
g o F (a“{s)tr(;')"(s))) is £!-Bochner integrable as a function [rom [0, 8] to CO(8).

We now fix ¢ € C%Q) and define () = (1 * p)a’(s)] and (1) == (H1 *p)alt).
Then (6.3.5) and (6.3.6) hold with ¢ replaced by f1*@. Therefore Lemma 6.9 gives

4°(s2)

[ e @mtonys= [ o (@O el
J (a1, 82\U

t9(s1)

forevery 0 < 51 < s2 £ 5. By the arbitrariness of ¢ and standard properties of the Bochner
integral, this equality is equivalent to (6.3.4). C

We are now in a position to prove the estimate for the variation of 2. For every 7 > 1t
and every 0 <a < b < +co, we define

N
Vary - {z; 0, b) =5up { S helt) -2l a=to St S Siv = b, N € N} (6.3.7)
i=}

where | - [l1,» denotes the norm in Wiy,

Theorem 6.11. Let (u,e,p,z) bea viscosity evolution with data f, g, and w satisfying
(2.3.42)-(2.3.48) and initial condition {tty, €9, Po, To) as in (2.3.53)-(2.3.57), and lel T > 0.
Let p and pg be asin (6.2.8) and (6.2.9}, respectively, and define vp as in Theorem 1.3,
with X = My(S1U PU;M;‘,'J?,IN) and Y = CH(81U T Mé“;i‘,;”) Assume that the uniform

sufe-load condition (2.3.45)-(2.3.48) holds. Let v > n and let Var(p;a, b) be defined as in
(1.4.2). Then there exists o positive constant Cr such that

Vary {z;a,0) £ Cr Var(p, a,b) (6.3.8)

for every 0 <a<bhs T.
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Proof. Let §=s°(T),ix0<a< b1 <fp 6L T, and let a%s) and a(t) be as in (5.4.36)
and (6.3.2). By the definition of =z, the Lipschitz continuity of 2%, and (4.2.17), we have

So_(tg)
lf 2%(s) d.'s” <
a°% (4} 1r

o (“c(g)tr(ﬁo(s)}) ds tr + “ /;n (£0),82 (b2 potre &) ds”l,r '
I (6.3.9)

l=(t2) = z(t2}ls,» =

g

/(.sz(n).si(tz))\U“

By Corollary 6.10, recalling {5.4.51) we get.
33
/ o (a“(s)tr(ﬁ“(s))) ds = f 1% (a(t)tr(u,,(t))) dpeg(t) .
(32 (£1),8% (ta))\ 7o by

Since a(t) is uniformly bounded in Co(1) and lea@)ll = 1 for pg-ae. ¢ (see (1.4.5)),
by standard properties of the convolution the integrand in the right-hand side is uniformly
bounded in W17 (£2), therefore

“/ p1* (anS)tr(j)D(s))) ds” < Crpal(ty, ta)) (6.3.10)
(s2.(t1 )is= (L )\U® Ir

for a suitable constant Cp.

To estimate the second integral in the right-hand side of (6.3.9), let & > 0 be the
constant in {2.3.38), and let x(t) be a function satislying the uniform safe-load condition.
Fix 7 € 5°N[ty, ta) (see (5.4.50)). Observe that by Remark 4.4 for £1-a.e. 5 ¢ [s2(7),s%(7))
the duality product (x(+), P°(s)) is correctly defined according to (2.3.12). Moreover, by
(4.2.18) and (5.4.51) we have x(7) = x°(s%.(7)). By (2.3.36) we get that

rollp™(s) 11 ds < H(p%(s), Gm) ~ (x(7), 5°(s)) ,
where rp > 0 is as in (2.3.46). With these facts, (2.3.38), (6.2.2), and (4.3.18) give

%) ) 44 (7) o . . 0
70 /si(r) 15°(s) )1 ds S/ . (’H(p (8),Cm) — (x(7), p (5») ds <

59 (r

< /8":) (H(ﬁc(s),cn(s)) _ (X(T),jb"(s))) o

s3{7)

=fQ>”ﬂ*ﬂm@-wmm%um~ﬂﬂm»s (6.3.11)

< Qe(s2(T) - Qe((s2(n))) + (x(7), e%(s3.{)) — (52 (7))) =
= %(0“’(5‘1 (7)) +o°(s5.(7)) — 2x(7), e%(s° (7)) — e’(s3.(7))).
By (2.3.45) and {4.2.12), é(a“‘(si(r))—}-o‘“(s; (T)) =2x(7) € u(Q), where Eo(81) is defined
by (2.3.32). Since Lw(s) = Ew{r} for every s € [s2.{7), s5.(7)], Proposition 2.3 vields that

2(0%(s2 (7)) + (53 (r)) — 2x(r), e(s°. (7)) - e(s5.(7)) =

{6.3.12)
= 3{@(s2(r)) + o°(s2. (7)) — 2x(7), p*(sL(7)) ~ p°(s2 (7)) .
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By (4.2.13), we have that o(s3{r)) € K(¢o(s%.(7))) and a°(s2 (7)) € K(¢(52())), there-
fore, taking into account (2.3.46)

lo(s2 (7)) + (55 (1)) = 2X(Tllee < 2Mic{Ls(l|z0lloo + ) + Gl (6.3.13)

where My is the constant in (1.3.4), Gn is given by (2.3.38), and Lg ig the Lipschitz
constant of ¢° on [0, 8]. By (2.3.13), (6.3.11), (6.3.12), and (6.3.13), we conclude that there
exist a coustant Cr, independent of £, such that

n‘u

507
j.n - 15°(s) 11 ds < Crllp°(s3.(7)) — P°(s> (Mlh = Crliplr+) ~ p(Oi, (6:3.14)

where the last equality follows from {6.2.6).
Using (5.4.53), (6.3.1), and (6.3.14) we get that, up to redefining the positive constant

Cr
' 52.(r)
H ] 2%(s) ds] < 3 f 2| ds<
(52 (t3),2 (t2))NU° Lr T e somty ) Y 52T Lr
<Cr Z |p(r-+) — (7l - (6.3.15)

TESUH[L] Ja)
Finally, putting together (6.3.9), (6.3.10), and (6.3.15), from the definitions of p and pg we
get

2(ta) - 2 < Cr{pallin )+ D lp(r+) = p(D)ls) =

réS"n[h da)

= Cr(palt) = 3 alrh) = Oruli i) = Crierety ts).

eS|t ta)

From this the conelusion easily follows. [

The proof of the following lemma could be recovered by repeating the arguments of [34,
Sections 6 and 12]; for the reader’s convenience we give here an independent proof based on
the results in Chapter 1, Section 1.4.

Lemma 6.12. Under the assumptions of Lemma 6.4, there exists a unigue Bochner -
integrable function Vz ! 0,7 — CoQ) such that

b
2(b) - z(a) = / Ve u(8) dut) (6.3.16)

for every a,b € 10,7 with @ < b, such that p{{a}) = p({b})=0.

Proof. Fix v > n, and a,b € 0, T}, with a < b, such that p({a}) = u({b}) = 0. Let A be
the unique Radon measure on [0, 7] such that A([0,2]) = Var (20, t) far every ¢ € [0,T]
where t + Var; ~{z;0,t) is continuous. By {6.3.8), A is absolutely continuous with respect
to p; in particular, we have A({e}) = A({p}} = 0. By Theorem 1.3 and the reflexivity
of WLr(£), there exists a unique weakly A-measurable function r:: 0,71 — W Leien)
satisfying

b
(y, 2(b) ~ 2(a)) = / (v (0) dA(D)
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lor every » in the dual of IfVlvT(Q); since the latter is separable, by Pettis’ Theorem v, is
A-measurable, therefore it is Bochner integrable with respect to ) by (1.4.5). It then [oliows
that

b
z(b)—z(a)=/ v2() dA(L).

By the Sobolev Imbedding Theorem and (14.5) v, € L([0,T); C°(§)). By the Radon-
Nikodym Theorem, A has a density %ﬁ(t) with respect to u; therefore the conclusion follows
with v () = uz(t)f%(t). (|

We now study the evolution law for the internal variable in the original time ¢, The first
result concerns only the continuity points of z.

Proposition 6.13. fLet (w,e,p,z) bea viscosity evolution with data F: 9, and w satisfying
(2.3.42)-(2.3.48) and nitial condition (g, e0,pn, 20) as in (2.3.53)-(2.3.57), and let T > 0.
Define o as in (6.2.4). Let B oand py be asin (6.2.8) and (6.2.9), respectively. Define v,
as in Theorem 1.3, with X = My(ftu Poi MEXNY and v = CiQu I‘D;Mﬂ‘\,:,fn‘v), and let
Ve usin Lemmo 6.12. Then

V=ult) = pr+ ((p2 % tr(o(8)))ir(vp(1))) (6.3.17)
for pa-ve te0,1).

Proof. 1t clearly suffices to show that the required equality holds for t-ae. t € [0,T)\ 5°.
Fix ¢ € [0,7]\ 5° this implies that #{{t}) = 0. We shall additionally require that the
[ollowing properties are satisfed in ¢:

B{(t — h,t+ 1))

lipg LT RETR) 3.1
oy ta(lt — h,t + h]) 1 (6.3.18)
1
lim M/ uz AT d T =M 1 t f 6.3.19
e+ #([t _ h., t+ h]) {t-—h,t-HLf i ( ) nu( ) Wl ( ) ( }

t+h
:.l_iﬂ)h m /t_) 1+ (a{rhtr(vp(T))) dialr) = py % (a(thr{pp{t))(6.3.20)

This is not restrictive, as the Besicovitch Differentiation Theorem guarantees that all these
broperties are satisfied for p-a.e. ¢ e 0,7\ §°. Notice that, by (6.3.15), the Sobolev
Imbedding Theorem, and the definitions of u and M4, we have that

3

vl
pa(lt — b, e+ A (5% (t=h),s® (t4-0))ALro

. S ) —p)s <

flr——
a(lt ~ i+ hi) TES L~ t4-h)

= b+ B)) = prallé — i, ¢+ h])
s Cr walll— b+ )

Z%(s) ris”m <

-0 (6.3.21)

when i = 0F thanks to (6.3.18). We fix a sequence hj — 0% such that p({t+ il =
u({t = hy}) =0 for every 7, Defining a°(s) and a{t) as in (5.4.36) and (6.3.2), and using
the definition of z, the Lipschitz continuity of z°, and the evolution law in the rescaled



6. Viscosity solutions

145

time s (4.2.17), by (6.3.4), (6.3.16}, (6.3.18), {6.3.19), (6.3.20), and (6.3.21) we finally get

]
zull li wult) du(t) =
veult) = dim s f[ ReTGETD
= lim L (z(t+ hy) — 2(t — 1)) =

Jrtoo fig [f—hj,f‘f“l ]

1 4 (I‘—i-hj)
= lim f 2%s)ds =
jertoo f_!d({ h_;,,f‘l‘ hJ] 88 (t=tj) ( )

1
= lim / £%(s)ds =
oo pg(ft — hy, £+ hs]) (8% (t=hy) 8% {14+ D\
1
= [im o1 * {a®{s)r(D°(s))) ds =
d=vboe (b~ by, ¢+ Rl (82 (E=hy) s {t+h; \US ( )
1 rhed-f

=0 palll =Ty b+ h51) ooy, P (a(m)tr(vp(r)) dpua(r) =
= py * (a(t)tr(vp(t))) ,

a5 required. O

We are finally in position to prove the evolution law for the internal variable in the
original time ¢.

Theorem 6.14. Let (u,e, D, z) be u viscosity evolulion with data f, g, and w satisfying
(2.3.42)~(2.3.48) and initial condition {uo, €0, po, 20) as in (2.3.53)-(2.3.57), und let T > 0.
Define & as in (6.2.4). Let S° be as in (5.4.50), and let A; be the locally bounded co(Q) -
valued Radon measure on [0, +o0) defined by

Ao =3 (2(t+) — 2(1))d,. (6.3.22)

te 5o

Let poand pg be as in (6.2.8) and (6.2.9), respectively, and let vy be as in Theorem 1.3,
Then

T
z2(T) =z + / o ((po* tr(o(8))tr(pp(t 1)) dea(t) + A([0, 7)), {6.3.23)

where the inteyral is a Bochner integral in the space (D),

Proof. Using the left continuity of ¢ — 2(¢) we deduce from (6.3.16) that

z(T) — z5 = ./[{.]T) U:,ga(t) du(t),

’

veu(t) p({th) = z(t+) — 2(t) for every t € [0, +00) .
Therefore, using the definitions of g and A. ((6.2.9) and (6.3.22)), we obtain
) *f .;4“' dﬂd ) + )\:([U: T)) .

Equality (6.3.23) follows now from (6.3.17). I



6.3 The evolution of the internal variable in the original time 6. Viscosity solutions

Remark 6.15. By (6.3.23) the value of 2(T) is uniquely determined by zqg, ¢+ o(t),
t — p(t), provided we know the behavior of z at its discontinuity points. This can be
deduced from the rescaled formulation, using the equality

A= 3 (2%(s5(8) — 2°(s2 ()6

tese

which follows from (6.2.6) and (6.3.22).
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