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Abstract

In this thesis we study some issues of the nonperturbative dynamics of N = 1 super-
symmetric gauge theories. We consider SQCD with two chiral superfields in the adjoint
representation and superpotential deformations, whose flows fall into Arnold’s ADE clas-
sification of simple singularities. We study in detail the confining phase deformation of
the A, SQCD and its Seiberg dual in the classical and quantum chiral ring and find the
duality map by means of the DV method. Then we analyze the deformation of the Do
SQCD and describe its three classical branches and its cubic curve. In all the cases we
can continuously interpolate between the classical vacua by following a path in the moduli
space. We are led to the proposal that, for an M = 1 supersymmetric gauge theory with
a mass gap, the degree of its algebraic curve corresponds to the number of semiclassical

branches.
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1. INTRODUCTION

Nonabelian gauge theories describe successfully the fundamental interac-
tions, with the possible exception of gravity. The second example is the Standard
Model of electroweak interactions, which is described by a gauge theory at weak
coupling, that is under the control of perturbation theory. The other example is
the strong interaction described by QCD. This gauge theory is strongly coupled
at large distances, its degrees of freedom in the infrared are not the ones appear-
ing in the lagrangian, henceforth we cannot study its dynamics with the usual
tools of perturbation theory and we need some different techniques.

Supersymmetry is the key ingredient that allows us to delve deep into the
nonperturbative nature of strongly coupled gauge theory. The closest cousins of
real world QCD are the N’ = 1 supersymmetric gauge theories, for which we have
many kits at our disposal. Most of them where developed during the last decade
mainly due to Seiberg [1]: by virtue of holomorphy and symmetries we can tell
exact results about the low energy dynamics of these theories, in particular we can
study their vacuum structure and uncover a vast zoo of different behaviours. In
the paradigmatic case of supersymmetric QCD, Seiberg [2] was able to completely
classify all the possible phases we encounter by varying the number of flavors NV i
On the way, he discovered a generalization of the usual electric-magnetic duality
to the case of nonabelian gauge groups, which is known as Seiberg duality.

This kind of duality is not exact at all scales, but it holds at large distances
only. Consider an asymptotically free supersymmetric gauge theory, that we will
call electric, whose renormalization group flow has a fixed point at a long distance
scale, where the physics is described by a superconformal field theory. For some
range of flavors Ny inside the so called conformal window, the theory is in a
nonabelian Coulomb phase, where the infrared degrees of freedom are interacting
quarks and gluons and the potential between two external charges scales as %.
The magnetic dual is another theory which flows to the same fixed point. In
other words, the physics at the infrared point is described equivalently by both
theories and there is no experimental way to tell whether the Coulomb potential
is mediated by the interacting electric or the interacting magnetic variables. The
two sets of degrees of freedom of the dual pair might be in general very different
at the level of the microscopic lagrangian, as duality holds only for the two low
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energy effective field theories. A particular feature of Seiberg duality is that it
works not only inside the conformal window, where it was firstly discovered, but
for all ranges of flavors. Indeed, it may even happen that a very strongly coupled
electric theory has an infrared dual formulation in terms of a free magnetic theory
(thus not asymptotically free) and viceversa.

1.1. ADFE Classification and the “a” Theorem

An arena where we can study the infrared physics and Seiberg duality in a
controlled way is a generalization of SU(N.) SQCD, that we obtain by adding
two chiral superfields X and Y that transform in the adjoint representation of
the gauge group. This is in a sense the most general theory with adjoints and
fundamentals, since if we had three adjoints the theory would loose its asymp-
totic freedom and the infrared dynamics would be just a free electric phase.
Recently, Intriligator and Wecht [3] studied the possible RG flows of this the-
ory deformed by relevant operators made out of the adjoints. In particular, the
relevant superpotential deformations involving adjoints are found to be

1) Wa =0

A Wy =Try?

D Wg = TrXY?

E Wg = Try3

A, Wy, = Tr(Xn+! 4 7?2) (1.1)
D Wp,,, = Tr(X™ + XV?)

Es Wge = Tr(Y3 4 X4)

By Wg, = Tr(Y3 + Y X3)

Lg W, = Tr(Y? 4+ X5).

Each of the superpotentials in (1.1) describes a different infrared fixed point of
SQCD with two adjoints. These fixed points fall into Arnold’s ADF classification
of simple singularities [4].

Once we have the relevant superpotential deformations (1.1), we can study
the possible flows between them to have a picture of the phases of SQCD with
two adjoints. Intriligator and Wecht were interested in particular in verifying the
predictions of the conjectured a theorem. This is the four dimensional analogue of
Zamolodchikov’s two dimensional ¢ theorem [5]: there exists a “central charge,”
which roughly speaking counts the number of degrees of freedom of a quantum
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field theory and monotonically decreases along RG flows to the IR, as degrees of
freedom are integrated out. It is further conjectured [6], that an appropriate such
central charge at the RG fixed points is the coefficient “a” of Euler density, a
certain curvature—squared term of the conformal anomaly on a curved space-time
background. The conjectured a theorem is that all RG flows satisfy arp < ayy .
This central charge a exhibits a number of special features. We can compute its
exact value at the fixed points as a combination of the 't Hooft anomalies for the
superconformal R-symmetry a = TrR? — TrR, once we know the exact charges
of the fields at the fixed point [7]. This in general would be a very difficult
task, due to the fact that the gauge theory at the fixed point is usually strongly
coupled, however the exact superconformal R-symmetry has the property of
maximizing a among all the possible assignments of R—charges [8]. Therefore,
we can compute the superconformal R—charges by maximizing a and then use the
't Hooft anomalies to check the a theorem along the flows between the various
fixed points.

Since the theories (1.1) are generalizations of ordinary SQCD, one would
like to extend to them the complete analysis of the phases that Seiberg obtained
for thé la,tfer and in particular one can look for different examples of Seiberg
duality. Unfortunately, for the theory O without superpotential and also for
A\,'ﬁ,ﬁ no hint of a Seiberg dual has been found. However, we can further
simplify the dynamics by turning on additional deformations that restrict the
number of nontrivial operators, or in other words that further truncate the chiral
ring, which is the ring of gauge invariant chiral operators. It turns out that the
A, and D, theories have a phase structure very similar to that of SQCD and
a Seiberg dual description has been proposed for both fixed points. These two
theories will be the main focus of our investigation. The FE,, theories remain
somewhat misterious.

If we want to have a better understanding of the low energy dynamics of
these ADE SQCDs, we have to study their effective descriptions in the vicinity
of the IR fixed points.




1.2. The Dijkgraaf-Vafa Approach

We are interested in studying the physics of the ADE SQCDs in (1.1) not
in the superconformal but rather in the confining phase. To this aim we have
to add to (1.1) some relevant superpotential deformations such that they drive
the theory to confinement. The usual strategy then would be to use holomorphy
and symmetry to constrain the form of the low energy superpotential along the
lines of ordinary SQCD. However, due to the large number of couplings, these
methods are difficult to implement in this case. Fortunately, the Dijkgraaf-Vafa
method provides a sistematic way to address this problem [9]. In gauge theories
that confine and have a mass gap, the lightest elementary degree of freedom is
generally believed to be the glueball field. Thus it makes sense to consider the
low energy description in terms of an effective action for the glueballs, even if in
general it would be difficult to obtain such a quantity, which is nonperturbative.
In the specific example of A/ = 1 supersymmetric gauge theories, however, DV
gives a recipe to compute the effective glueball superpotential.

Relying initially on a large V. topological string duality, embedded into the
superstring, the original DV conjecture states that the effective glueball superpo-
tential of the N = 1 supersymmetric U(N,.) gauge theory with an adjoint chiral
superfield X and tree level superpotential®

W =TrV(X),
i 1.2
Vi) =3 Tk _mH1 (2
2ok r1

at finite N, is computed by the planar limit of an auxiliary matrix model, whose
action is the gauge theory tree level superpotential (1.2). This is a deformation
of the A,, theory in (1.1). Subsequently, purely field theoretical arguments were
presented in favor of the conjecture: a diagrammatic explanation regarding the
glueball as a background field was given in [10], while in the N = 2 theory softly
broken to N' = 1 an explanation in terms of the factorization of the Seiberg—
Witten curve was discussed in [11]. Then, Cachazo, Douglas, Seiberg and Witten

! These operators are usually referred to as dangerously irrelevant, meaning that
they are irrelevant at the UV fixed point when n > 3, but they become relevant as we

flow to the infrared near the A, fixed point in (1.1).
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[12] proved the conjecture by using a generalization of the Konishi anomaly [13].
They showed that certain anomalous Ward identities in the field theory, obtained
by considering holomorphic variations of the fields such as 06X = f(X,W,), are
the Schwinger-Dyson equations for the generators of the chiral ring as functions
of the glueball superfield S ~ W, ,W<<. This equations are identified with the
loop equations in the matrix model. By the method of anomaly equations we
can compute the terms in the effective superpotential that depend on the cou-
plings. To obtain the complete effective superpotential we have to add also the
Veneziano—Yankielowicz term, which is responsible for the gaugino condensation
in the low energy theory.

In our investigation we will make an extensive use of the Konishi anomaly
approach to analyze the details of the effective theory just above the mass gap.
First, we will compare the confining phase deformation of the A4,, adjoint SQCD
in (1.1) to its magnetic dual, to find the duality map at the level of the glueball
effective theory. Then, we will consider the confining phase deformation of the
Dy, y2 two—adjoint SQCD and study its curve and its phases, and describe its

classical magnetic dual.

1.8. Seiberg duality in the A, Theory

Consider a supersymmetric gauge theory with gauge group U(/V.) and Ny
flavors of quarks @/ and antiquarks @}v and a chiral superfield X in the adjoint
representation of the gauge group. As anticipated above, the magnetic dual of
the theory without a superpotential (which corresponds to the A fixed point in
(1.1)) is not known. But we can study deformations by relevant superpoten-
tial couplings like the A,, fixed point, for which a dual theory was proposed by
Kutasov, Schwimmer and Seiberg [14][15][16]. A way to simplify the dynamics,
which was studied by KSS, is to add a generic polynomial superpotential for the
adjoint (1.2), that drives the theory to a confining phase in the infrared, leaving
at low energy no dynamics but rather just a discrete set of vacua.

The magnetic dual of the theory (1.2) is a supersymmetric gauge theory with
gauge group U(N.), where N, = nN; — N,, and N; flavors of dual quarks a7
and antiquarks ¢, an adjoint chiral superfield Y and nNJ% gauge singlets (Pj)%
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J = 1,...,n, that represent the electric mesons P; = QXJ ~1Q. The magnetic
theory is defined by the tree level superpotential

Winay = —TrV(Y) + @m(P,Y)q, 1.3
g

where m(P, z) is a certain degree n — 1 polynomial, whose coefficients depend on
the gauge singlets P;. This magnetic polynomial will be the crucial quantity to
evaluate in the quantum theory. Even if classically the chiral rings and the vacua
of the two theories are very different, quantum mechanically they coincide.

The purpose of our investigation on the A,, theory is to generalize the anal-
ysis of KSS by considering the most generic electric superpotential, obtained by
adding to (1.2) a meson deformation

TeV (X) + Q m(X)}Q7, (1.4)

where in the classical chiral ring the degree of the meson polynomial m(z) is
at most n — 1. At the classical level, this electric theory presents two different
kinds of vacua. In the first vacuum, that we denote as pseudoconfining, the
fundamentals vanish and the adjoint acquires a vacuum expectation values equal
to the roots of V'(x), that drives the theory to a product of low energy U(N;)
SQCD blocks such that )., N; = N.. In the higgs vacuum, also @ and @
acquire an expectation value and the adjoint is equal to the roots of m(z).? In
this case the rank of the gauge group decreases.

Our first analysis of the duality will focus on the map between the electric
and magnetic classical vacua in both the pseudoconfining and the higgs phase.
The magnetic dual of the theory (1.4) contains, in addition to the superpotential
(1.3), a source term for the gauge singlets > 98! m; Py, where my, are the
coefficients of m(z). The magnetic vacua will depend then on the details of the

electric meson polynomial: each flavor appearing in m(z)fc turns on a higgsed
block in the magnetic adjoint (Y). In particular, we will study the magnetic
vacuum corresponding to the electric higgs phase, characterized by a nonzero
classical vev for the magnetic singlets P;. In our classical solution, as we increase

2 In presence of matter in the fundamental representation of the gauge group there
is no phase transition between higgs and confining regimes and in the quantum theory

one can continuously interpolate between them [17].
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the higgsed directions in the electric theory, thus driving it to weaker coupling,
the higgsed block in the magnetic theory decreases its rank, driving the dual
theory to stronger coupling.

We will consider then the map between the chiral rings of the two quantum
theories. Due to the presence of a large number of couplings in the tree level
action (1.4), the study of the effective superpotentials by the conventional meth-
ods of holomorphy and symmetries is more involved in this case. Therefore, we
found more convenient to analyze the quantum theory with the DV method. In
particular, we will concentrate on the operators that generate the chiral ring

1
—x)

M) = (G—5Q),  T(z)=(Tx (15)
z—X

A generalized version of the Konishi anomaly allows us to solve explicitly for these
operators as functions of the glueball superfield S and the couplings [18][19] and
we can integrate them to obtain the glueball effective superpotentials. By match-
ing first the electric mesons with the magnetic singlets and then the two effective
superpotentials, we will derive the map between the electric and magnetic chiral
operators. The low energy electric and magnetic theories will be both described
by the same hyperelliptic Riemann surface

Y2 = V'(2)% + hf(2), | (1.6)

a double-sheeted cover of the plane, where the quantum deformation f(z) is a
‘v‘-degree n — 1 polynomial. The pseudoconfining and higgs duality map will turn
out to be rather different, though. In particular, in the electric pseudoconfining
phase the magnetic anomaly equations are solved by the simple condition

m(a;)m(a;) = f(a), (1.7)

for © = 1,...,n, where a; are the roots of V’(z). This condition will ensure
also the match of the electric and magnetic chiral rings and will reproduce the
Konishi anomaly in each low energy SQCD block.

The DV method allows us to study also the rich analytic structure of the
low energy effective theory. Even if the electric and magnetic theory have the
same curve, the meromorphic functions M (z) and T'(z) living on the curve have
very different analytic structures on the two sides. We will picture their analytic
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behavior as follows. According to [19], an higgs eigenvalue in the electric theory
is seen as a pole of M(z) on the first (semiclassical) sheet of the curve. As we
will see, in the magnetic theory the corresponding M (z) will have n — 1 poles on
the first sheet. We can higgs twice the electric theory by bringing a second pole
of M(z) from the second (invisible) sheet into the first one. The magnetic theory
behaves in two different ways depending on whether we higgs different electric
flavors or several times the same flavor.> We will see that, in this latter case, the
second electric higgsing corresponds in the magnetic theory to moving one of the
n — 1 poles away from the first into the second sheet.

1.4. The Dy4o Theory and its Three Phases

Once we understood the quantum theory corresponding to the A,, series, we
can pass to the next infrared fixed point D,, 5, whose deformation presents some
interesting and unexpected features. Consider then a supersymmetric SU (V)
gauge theory with Ny flavors and two adjoint chiral superfields X and Y and
superpotential

W =TrV(X) + A\TrXY? + Qm(X)Q. (1.8)

We will find that this theory has three kind of vacua, the pseudoconfining phase,
the usual “abelian” higgs phase and a new branch that we will denote “nonabelian
higgs phase”. The pseudoconfining vacua are the irreps of the equations of motion
with vanishing fundamentals. In the one adjoint case we discussed above, we have
just one dimensional vacua.. In this case, a part from the usual one dimensional
vacua X = a;11 and Y = b;1, that we will call abelian vacua, we have also two
dimensional irreps, that we will call nonabelian vacua, in which the adjoints are
proportional to the Pauli matrices X = @;03 and Y = d;03 + ¢;01.% The higgs
vacua are the ones in which also the fundamentals acquire an expectation value.
First of all, there are the usual one dimensional higgs vacua, where X and Y
are proportional to the identity, as in the usual abelian vacua. For this reason,
we will denote this vacuum the abelian higgs branch. But there is also a new

3 At most we can higgs n — 1 color directions on the same flavor, corresponding to
the degree of the meson polynomial m(z).
% This phenomenon was first noted in [20] and then discussed in [21] in the case of

a supersymnetric gauge theory with adjoint fields and no fundamentals.
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kind of higgs vacuum, the nonabelian higgs branch, in which the adjoints are
two dimensional X = zpo3 and Y = ypo3 + 1701 and the fundamentals are
nonvanishing.

Due to the presence of fundamentals, we expect no phase transition and in
the full quantum theory the three branches will be connected by continuously
varying the couplings. We will study then the chiral ring in the quantum theory,
by means of the DV method. In order to compute the curve of the gauge theory,
we will use the matrix model loop equations discussed by Ferrari [21], that in the
gauge theory are reproduced by a set of generalized Konishi anomaly equations.
Our analysis confirms that the DV method works for theories with two adjoint
chiral superfields as well as for one adjoint theories. The gauge theory curve is

cubic
y® + a(z?)y? + b(z?)y + c(2?) = 0, (1.9)

where the coeflicients are even polynomials depending on the couplings and the
quantum deformations. This curve is the same as the curve of Ferrari’s two
matrix model with action (1.8) in the planar limit [21].

To have a clear picture of the phase structure of the quantum theory, we
will consider again the chiral operators M (z) and T'(z) defined in (1.5). One can
solve for these operators by the method of anomaly equations and find that they
are-meromorphic functions on the cubic curve (1.9), whose only singularities are
simple poles. In particular, the poles of T'(xz) have integer residue as in the one
adjoint case [19]. We will show that, by moving poles between the three sheets,
it is possible to connect continuously all the three branches. Moreover, a natural
correspondence arises between the branches and the sheets: we can characterize
each of the three branches by specifying the sheet on which M(z) is regular, or
by some combination of poles and residues of T'(x).

Finally, we consider the magnetic dual of the D, fixed point. This was
proposed by Brodie [22] in the superconformal case, but we are interested in
finding its generalization when we deform it by the confining phase superpotential
(1.8) allowing for abelian as well as and nonabelian vacua (the latter are not
present in the SCF case). The dual theory is an SU(N.) SQCD, where N, =
3nNy — N, Ny magnetic flavors, two magnetic adjoints X and Y and 3nNJ%
gauge singlets (Plj)% where 7 = 1,...,n and [ = 1,2,3, that represent the
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electric mesons P; = QXI-1y!-1Q. One finds that the magnetic tree level
superpotential is not just the analogue of (1.8), but contains an extra term

Wmag = TI‘V(X) + S\TYX};Q + gTr}A;Q + 5771()(7 Y)Q: (1'10)

corresponding to the extra coupling 5. We will find the classical duality map and
see that 3 is a function of the other couplings. Unfortunately, one cannot solve
the anomaly equations in the magnetic theory on a closed set of resolvents, due
to this extra 3 coupling, so we have to stick to the classical duality map.

1.5. The Meaning of the “Classically Invisible Sheets”

The chiral ring of the one adjoint theory (1.4) is encoded in the quantum
theory by the hyperelliptic Riemann surface (1.6). This surface is a double-cover
of the x plane, which describes the expectation values of the adjoint (X). The first
sheet is visible classically, while the second one is not accessible semiclassically.
In the quantum theory, the two sheets are connected by n branch cuts and, at
first, the meaning of this “invisible sheet” was not clear. Only when coupling the
theory to the chiral superfields in the fundamental representation it was possible
to understand the nature of the second sheet [19]. Let us see briefly why. As we
discussed above, this theory has two kinds of vacuum. In the pseudoconfining
vacuum the fundamentals vanish and the adjoint has diagonal expectation values
equal to the roots of the adjoint polynomial V’/(z). In the higgs vacuum, also Q
and @ acquire an expectation value. The gauge group is generically broken to
Hle U(N;) with >, N; = N, — L and k < n, where L is the number of higgsed
colors, and at low energy the nonabelian factors confine, leaving a U(1)* theory.
In theories with fundamentals, once we fix the number of U(1) factors, there is
no order parameter to distinguish the pseudoconfining and higgs phases in an
invariant way [17]. Thus one expects that in the full quantum theory the different
classical vacua with the same number of low energy photons can be connected
to each other. So we would use the word branch rather than phase to label the
pseudoconfining and higgs vacua.

The concept of branches only makes sense in the semiclassical limit of large
expectation values. As we discusse, the classical limit of the operators M (z) and
T'(z) characterizes the different classical vacua. In the pseudoconfining branch,
M (z) and T'(z) are regular on the first semiclassical sheet, while the higgs branch
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these generators have poles on the first sheet at the higgs eigenvalues of the ad-
joint (X). We can continuously interpolate between the two branches by moving
the poles between the two sheets through the branch cuts. Therefore, in this case
the first sheet corresponds to the pseudoconfining branch and the second sheet
to the higgs branch and the connection between classical phases, or branches,
and degree of the curve is clear.

However, more general supersymmetric gauge theories have algebraic curves
of higher degree, which give rise to branched coverings of the plane with a larger
number of sheets. It is not clear what the meaning of the “invisible sheets” is in
general.

In the following we will suggest that this correspondence between the degree
of the curve and the number of branches is a generic feature of N/ = 1 theories.
Consider a supersymmetric gauge theory with a matter content such that, once
we fix the number of low energy U(1)s, there is no order parameter to distinguish
between the various classical branches in an invariant way. This is the case of
a theory with fundamentals, for instance. Under these assumption, we propose
that®

An N =1 supersymmetric gauge theory with a mass gap is described by a degree

k d_lgebmz’c curve, where k is the number of different branches of the theory. The
) cu?fve is a k—sheeted covering of the plane, where each sheet corresponds to a
diﬁerent branch. B

=+ Our proposal is trivially verified in the case of ordinary SQCD and is true
also in the one adjoint SQCD (1.4) due to the work of Cachazo, Seiberg and
Witten [19]. If we take into account the analysis of the curve of the two adjoint
SQCD (1.8), we see that the conjectre is verified also in this new example.

5 Note that we exclude the case in which the theory has a Coulomb branch, as it

happens in the theory (1.4) for n = N. In this case in fact there is no mass gap..
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2. SEIBERG DUALITY

The dynamics of supersymmetric QCD is extremely rich and it has led to
the discovery of Seiberg duality, a generalization of the usual electric-magnetic
duality to the case of nonabelian gauge group. In this Chapter we will summarize
the basic facts about the phases of NV = 1 SQCD and show that, for some range
of flavors, it has an IR fixed point and the superconformal field theory at this
fixed point can be described by a completely different theory, that we will refer
to as the magnetic theory. In this Chapter we refer mainly to [1] and [2].

2.1. Classical SQCD

Consider an N = 1 supersymmetric gauge theory with gauge group SU(N,)
coupled to Ny flavors. The field content is given by N2 —1 gauge fields and gaug-
inos transforming in the adjoint representation of the gauge group and 2Ny N,
matter fields, in this case scalars and fermions transforming in the fundamen-
tal and antifundamental representation. We will always work in the NV = 1
superspace, let us set the notations and introduce the basic objects of the super-
symmetric action. The superspace field strength W, = D%e~V D,e", where V
is the vector superfield, is a chiral superfield that transforms in the adjoint, its
lowest component is the gaugino Wy|s—0 = Ao. The matter fields are described
by two chiral superfields Q7 and QV;;, for f, f: 1,..., Ny, that transform in the
fundamental. Their superspace expansion is QF = ¢/ + 6%y + ..., where ¥/
are the quarks and ¢f their scalar superpartners. We omitted the gauge indices.
The superspace Lagrangian of SQCD is given by

L= / d4 (Q}e‘”@f +Qe V@ f)+ / d20 (lngrWaWa + Wa(@, Q)) the,

where 7 = —2% + %’;—i is the complexified gauge coupling and the last term W,

called the superpotential, is a holomorphic function of the chiral superfields @
and ). Consider first the theory without superpotential. The global anomaly
free symmetries are the flavor symmetries and an R—-symmetry

SUNy) SUNY) U()s U()r

Ns—N,.
QF Ny 1 1 (2.1)
~ = N;—N,
Q}' 1 ' Ny —1 —L———Nf .
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If we have no superpotential, the scalar potential is just the D-term for the

squarks and the condition for a supersymmetric vacuum is

NZ-1

> (M (@17 - Q1 aY) =0, (2:2)

A=1

where a,b=1..., N, are the gauge indices and (TA)Z;“ are the gauge group gener-
ators in the fundamental representation. We used the fact that the generators of
the antifundamental are (T]‘\—‘}C)g = —(Tj{}c)‘g. Since T4 are generators of hermitian
traceless matrices, we write this as Q}anb — @};f@?c = ﬁ,—% (QT Q¢ — @ifQV?)
This equation have different solutions depending on the number of flavors and
we will briefly discuss it in the following.

The vacuum expectation values of the squarks (Qf) = (py) subject to the
condition (2.2) and up to gauge equivalence cooks up a manifold which is called
the classical moduli space of vacua. It can always be given a gauge invariant
description in terms of the space of expectation values of gauge invariant polyno-
mials in the fields subject to additional classical relations. This is because setting
the scalar potential to zero and modding out by the gauge group is equivalent to
niédding out by the complexified gauge group. In our case the solution to (2.2)

is

ax
B a
Q=0= 2 . (2.3)
G,Nf
for Ny < N, with a; arbitrary, and by
ai Eil
az as
Q - an, ) Q - aNc 3 (24)

|la;|*> — |@;|* = independent of 1,
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If Ny < N,, the gauge invariant description of the moduli space is in terms
of arbitrary expectation values of the meson superfields M J{ = Q;Qf . When

Nf > N,, it is also possible to form baryons superfields Bf1-/ve = Qfr ... QIne

and Bfl

symmetric tensor. The gauge invariant description of the classical moduli space

v =Qf - Q Fn. Where we contracted the color indices with the anti-

for Ny > N, is given in terms of the expectation values of M, B and B , subject
to the following classical constraints. Up to global symmetry transformations,
the expectation values are

aia;
asay

M = ~
aN.anN,

(2.5)

Bl""’NC = a1a2...GN,

By,.. N, =aiasz...an,

with all other components of M, B and B vanishing. Therefore, the rank of M
is at most N.. If it is less than N, either B = 0 with B having rank at most
one or B = 0 with B having rank at most one. If the rank of M is equal to IV,
both B and B have rank one and the product of their eigenvalues is the same
as the product of non-zero eigenvalues of M. The physical interpretation of the
flat directions is that the gauge group is higgsed. If B = B =0 and M has rank
k, SU(N,) is broken to SU(N, — k) with Ny — k massless flavors.

2.2. The Quantum Theory

Let us see what happens to the classical vacua of SQCD when we go to the
quantum theory. The behavior depends crucially on the number of flavors.

When Ny < N, the global symmetries (2.1) allow for the presence of a
unique nonperturbative superpotential term

A3Ne—Ny 1/(Nc—Ny)
det C;‘Q )
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where A is the dynamical scale of the SQCD. This is the Affleck-Dine-Seiberg
superpotential [23]. If N; < N, — 1, this is generated dynamically by the con-
densation of gauginos, while if Ny = N, — 1 it is generated by an instanton. The
scalar potential that we obtain by (2.6) is the well known runaway potential that
slopes to zero as (M) goes to infinity. Therefore, the classical moduli space of
vacua of SQCD with Ny < N, is completely lifted and actually the quantum
theory has no supersymmetric vacuum.

For Ny > N, the ADS superpotential (2.6) does not exist, because either
the exponential diverges, when Ny = N, or the determinant vanishes, when
Ny > N, and the vacuum degeneracy can not be lifted. The theory in this
range of flavors was solved by Seiberg in [24].

If Ny = N,, we see from (2.5) that the classical moduli space is described by
mesons and baryons subject to the constraint det M — BB = 0. This manifold is
singular at the origin where we expect an enhancement of the gauge symmetry
and the appearance of massless gluons. In the quantum theory, however, this
singularity is smoothed out and the manifold becomes det M — BB = A2Ne,
Therefore, in the quantum theory there is no enhancement of the gauge symme-
- try at the origin of moduli space. The only massless particles are the moduli, the
ﬂuctua,tlons of M, B, and B under the constraint. In the semi-classical region of
‘ large expectation values it is appropriate to think of the theory as higgsed. Near
.. the origin, it is appropriate to think of the theory as being confining. There is
a smooth transition from the region where a Higgs description is more appropri-
ate to the region where a confining description is more appropriate, due to the
presence of matter fields in the fundamental representation of the gauge group.
Since the origin is not on the moduli space, in the quantum theory we find a
spontaneous breaking of the chiral symmetries (2.1).

When Ny = N, + 1, we find that the expectation values of the mesons and
the baryon (2.5) are subject to the constraints

7 - ~
1 ~ ~
det M (——) —BsjBY =0, MLB;=MIB =o.
\M/ bi f f

In this case, the quantum dynamics does not modify the moduli space, that re-
mains the same. However, the singularity at the origin of the moduli space is
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interpreted differently. While in the classical theory the singularity is associ-
ated to the enhancement of the gauge symmetry and the appearance of massless
gluons, in the quantum theory it is given by the presence of massless mesons
and baryons, which are considered as the elementary fields of the IR description.
As a check, we can see that they satisfy the 't Hooft anomaly matching. The
dynamics of the theory is described by the effective superpotential

1

Wepr = A2ZN.—1

(MJ{B}TEF — det M) (2.7)

and, since at the origin the global symmetries are unbroken, we have confinement
without chiral symmetry breaking.

If we want to understand the quantum moduli space of theory for Ny >
N, + 2, we have to introduce its Seiberg dual.

2.8. The Conformal Window

Consider SQCD in the range of flavors %NC < Ny < 3N, in which the
theory is still asymptotically free. The exact beta function [25] is

g® 3N.— Ny+ Nsvy(g?)

B=-
1om 1= Neg (2.8)
2 Ar2 ’
. _g_Nc —1 4
- 871—2 Nc +O(g )7

where (g?) is the anomalous dimension of the fundamentals. Since there are
values of Ny and N, where the one loop beta function is negative but the two
loop contribution is positive, Banks and Zaks [26] showed that, at least for large
N, and when the theory is just barely asymptotically free, there is a non-trivial
fixed point of the RG flow in the IR. It was then argued by Seiberg [2] that such
a fixed point exists for every %Nc < Ny < 3N..

Therefore, for this range of Ny, the infrared theory is a non-trivial four
dimensional superconformal field theory. The elementary quarks and gluons are
not confined but appear as interacting massless particles. The potential between
external electric sources behaves as a Coulomb potential V ~ % and for this

R
reason Seiberg called this phase of SQCD the nonabelian Coulomb phase.
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The R-symmetry of the superconformal fixed point is not anomalous and
commutes with the flavor SU(N¢) x SU(Ny) x U(1) g symmetry. By the super-
conformal algebra, the R-symmetry determines the dimension D of the field
as D = %R and we can fix the anomalous dimensions of our gauge invari-

ant operators M = QQ to D(M) = By—fﬁ_f&— and similarly for the baryons

D(B) = D(B) = iJV—C(%fLV—Q All of the gauge invariant operators at the in-
frared fixed point should be in unitary representations of the superconformal
algebra. One of the constraints on the representations is that spinless operators
have D > 1 and the bound is saturated for free fields. For D < 1 a highest
weight representation includes a negative norm state which cannot exist in a
unitary theory. We will use these facts about SCFTs to argue the existence of
phases described by a free field theory. /

The fixed point coupling g, gets larger as the number of flavors is reduced.
For Ny < %Nc the value of D(@Q) flows below the unitarity bound D > 1.
The theory is very strongly coupled and goes over to a new phase, different
from the interacting nonabelian Coulomb phase, that we will see after describing
~ the Seiberg dual theory. Since the dimension of the meson becomes one for
Ng = %Nc, at this value M becomes a free field. This suggests that in the the
- new phase at Ny = %NC the field M, and perhaps the whole IR theory, becomes

free.

2.4. Seiberg Duality

When Ny > N, + 2, the IR description in terms of mesons and baryons
(2.5) does not work any more. The only term that is invariant under the global
symmetries, a generalization of the superpotential (2.7) for Ny = N, -1, in this
case does not have the correct dimension. Moreover, if we regard the mesons
and baryons as the infrared degrees of freedom of the theory, then the 't Hooft
anomaly matching does not hold.

The baryons in (2.5) have N. = N;— N, indices. We can see these composite
operators as bound states of N, constituents and associate to them two new chiral
superfields ¢ and g and actually introduce a new SQCD with gauge group SU(IV,)
such that g and ¢ transform in the fundamental and antifundamental. In this way

ai

we can give a dual description of the baryons as B+~ +~ = ¢4, a0 2 ...qciﬁ':.
hefm, [AL ANy fr.
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This observation can be put on firm grounds and lead to the Seiberg dual of
SQCD we are describing it in the following.

For Ny > N.+2, the IR description of SQCD is captured by another /' = 1
supersymmetric gauge theory (which we will refer to as the magnetic thery, as
opposed to the original SQCD which is the electric theory) with gauge group
SU(N.), where N, = Ny — N,. It is coupled to Ny chiral superfields of magnetic
quarks 95 and antiquarks ¢/ that transform in fundamental and antifundamental

of the magnetic gauge group. In addition, there is a gauge singlet M}Ji with N}

components which represents the electric mesons of the original description and
couples to the fundamentals through the superpotential

1 .
Wmag = EM}{quf (29)

Without the superpotential (2.9), the magnetic theory also flows to a fixed
point because $(Ny — N.) < Ny < 3(Ny — N.) for the above range of N;. This
point is in a nonabelian Coulomb phase. At this fixed point M is a free field of
dimension one and would have an additional U(1) global symmetry. By adding
the superpotential (2.9), which has dimension D = 1+ 3N,./N; < 3 at the fixed
point of the magnetic gauge theory and is thus a relevant perturbation, we drive
the theory to a new fixed point and break this unwanted U(1) symmetry. The
statement of Seiberg duality [2] is that this new fixed point is identical to that
of the original electric SQCD.

The two.theories have different gauge groups and different numbers of in-
teracting particles. Nevertheless, they describe the same fixed point. In other
words, there is no experimental way to determine whether the Coulomb potential
between external sources is mediated by the interacting electric or the interacting
magnetic variables. The scale x in (2.9) is needed for the following reason. In the
electric description M ]{f = @;Qf has dimension two at the UV fixed point and

acquires anomalous dimension D(M) = E’)J\[—fj\}f]XE at the IR fixed point. In the

magnetic description, M, is an elementary field of dimension one at the UV

Nf—N.
fo

at the IR fixed point. In order to relate M., to M of the electric description in

fixed point which flows to the same operator with dimension D(M,,4,) = 3

the UV, a coupling ¢ must be introduced with the relation M = pM,,,,. Below
we will write all the expressions in terms of M and p rather than in terms of
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Mnag- However, since duality strictly speaking is defined at the IR fixed point,
where the deformation (2.9) is marginal, this is an auxiliary scale.

The magnetic theory has a dynamical scale A which is related to the scale
A of the electric theory by

A3NC——NfK3(Nf“Nc)_Nf — <_1)Nf_NCMNf’ (210)

where 1 is the dimensionful scale explained above. The factor (—1)"7=e is fixed
by consistency of the dual of the dual theory. We will see very often this relation,
and its generalization to theories with adjoint chiral superfields. This relation of
the scales has several consequences. First of all, it is consistent with all possible
flows we can trigger by turning on relevant operators or expectation values, as
we will briefly discuss below. Moreover, it ensures that Seiberg duality is a
strong—weak coupling duality, since as the dynamical electric scale A increases,
the magnetic scale A decreases, and viceversa. Differentiating the action with
respect to log A relates the field strengths of the electric and the magnetic theories
as W2 = —Wg, which we will refer to as the glueballs in the following. We will
encounter very often this crucial relation is the course of our study of more
complicated Seiberg dual pairs. The minus sign in this expression is common
in electric magnetic duality, which maps E? — B2 = —(E2 — B2). In our case
it shows that the gaugino bilinear in the electric and the magnetic theories are
~ related by A\ = —A\.

. The electric and magnetic theories have different gauge symmetries. This is

“ possible because gauge symmetries really have to do with a redundant description

of the physics rather than with symmetry. On the other hand, global symmetries
are physical and should be the same in the electric and magnetic theories. Indeed,
the magnetic theory has the same anomaly free global SU(Ny) x SU(N f) X
U(1)g x U(1)g as the electric theory, with the singlet M transforming as Q7 Q ; 7
and the magnetic quarks transforming as

SUWN;) SUNY) U()s  U(L)r

N, N
a7 Ny 1 N;—N. N; (2.11)
~ N N,
¢’ 1 Ny TN;=-N. Ny

This symmetry is anomaly free in the magnetic theory and it is preserved by the
superpotential (2.9). Furthermore, the magnetic spectrum with these charges
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satisfies the 'tHooft anomaly matching conditions, which is the first nontrivial
check of the duality.

In order for the dual theory to describe the same physics as the electric
theory, there must be a mapping of all gauge invariant primary operators of the
electric theory to those of the dual theory. For example, the electric mesons
M JJ; =Qf @ i and the singlets M j; of the magnetic theory are identified in the in-
frared. All such mappings must be compatible with the global symmetry charges
discussed above. Another set of gauge invariant operators of the electric the-
ory are the baryons Bft-/ve = Qfr...Qfve and Efl_..ch = @f] "'@ch. As
we discussed above, in the magnetic theory we can similarly form the baryons
bfy.fn, = 4fr " Qfg, and b1 Fre = fo_l . -~§fﬁc, where N, = Ny — Nc. At the
fixed point, these operators are in one to one correspondence via the mapping

Bit-iNe — C611...ichl...chbjl...ch’

~': < = it et = ot N';l';ﬁ
le...ch Cezl...chjl...yﬁcb €y

(2.12)

with ¢ = y/—(—p)Ne=Ns A3Ne=Ns_ Note that these mappings respect the global
symmetries discussed above. The normalization constant can be fixed by the
symmetries and by flowing to the cases Ny < N+ 1.

2.5. Matching the Deformations

This duality is defined at the IR fixed point we have discussed. However,
it must continue to hold along whatever flat directions or if we deform the dual
theories by corresponding relevant operators. In other words, duality must hold
along the flows from this fixed point. We will consider two kinds of flow of the
electric theory.

Let us higgs the electric theory by giving an expectation value to the first {
colors of electric quarks. Correspondingly, the electric meson M = @Q acquires
an expectation value such that rank M = [. The electric theory flows to an
SU(N,—1) SQCD with Ny —[ massless flavors. On the magnetic side, when the
gauge singlet, which corresponds to the electric meson, gets such an expectation
value, the corresponding [ magnetic quarks in (2.9) a mass. Thus we can integrate
them out and see that the magnetic theory flows to a theory with SU(N, — Ny)
gauge group, but just Ny —1[ light flavors, as expected from duality. Note that by
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higgsing the electric theory we go to weaker coupling, while in the magnetic the-
ory, as we integrate out massive fundamentals, we go towards stronger coupling.
This is therefore in agreement with our intuition about strong-weak coupling
duality and actually one can check this on the scale matching relation (2.10),
which is preserved along this flow.

Suppose instead we deform the electric theory by turning on a mass term
We = mél Q! for one flavor. Then, the magnetic superpotential is deformed to

1.
Winag = ;qu +mM;. (2.13)

The F-term equations for the singlet then fixes the expectation value of the
magnetic quarks to (¢'¢1) = —pm. But this means that one flavor is higgsed
and the magnetic theory flows to an SU(Ny — N, — 1) gauge theory with Ny —1
flavors, which is exactly what we expect from duality. In fact, one can check that
the scale matching relation (2.10) is again preserved along this flow.

Let us add a brief comment about the meaning of Seiberg duality. We defined
it as the infrared equivalence of two different UV theories. That is to say that the
electric and magnetic theories are in the same universality class. This fact has
been shown by Argyres, Plesser and Seiberg [27] by considering N/ = 2 SQCD
and showing that by turning on a mass term for the adjoint chiral superfield,
which breaks supersymmetry to A/ = 1, and tuning the mass parameter, one can
flow either to the electric or to the magnetic UV fixed point theories. Since there
caii:\;be no phase transition as one continuously adjusts a relevant parameter in a
supersymmetric theory, one can then argue that the dual pairs are in the same
universality class. This argument, in principle, holds both for the F—terms, that
we discussed above, as well as for the D-term, i.e. the Kahler potential.

2.6. Free Magnetic Phase

Finally, by using duality we can describe what happens to SQCD in the case
N.+2< Ny < %Nc. We saw above that the mesons and baryons, that for N ;=
N + 1 were the correct IR degrees of freedom, when we increase the number of
flavors do not satisfy the 't Hooft anomaly matching any more. Now we can solve
this puzzle by considering the Seiberg dual theory. In the magnetic description,
the situation is clear: since 3(INy — N,) < Ny, the magnetic SU(N; — N.) gauge
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theory is not asymptotically free when Ny < %Nc and thus weakly coupled at
large distances, while the magnetic superpotential (2.9) is irrelevant. Therefore,
the low energy spectrum of the theory consists of the SU(N; — N,) gauge fields
and the fields M, ¢, and ¢ in the dual magnetic Lagrangian. These magnetic
massless states are composites of the elementary electric degrees of freedom,
which are strongly coupled. The massless composite gauge fields exhibit a gauge
invariance which is not visible in the underlying electric description. Because
there are massless magnetically charged fields, the theory is in a nonabelian free
magnetic phase. On the other hand, when Ny > 3N, the electric theory looses
asymptotic freedom and the theory is in a nonabelian free electric phase. So, we
completed the list of the possible phases of SQCD:

Ny < N no vacuum
Ne <Ny < N.+2 free nlsm of M,B,E
N +2< Ny < %Nc free magnetic (2.14)
%Nc < Ny <3N, nonabelian Coulomb phase
Ny > 3N, free electric.
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3. ADE SUPERPOTENTIALS

After the discovery by Seiberg [2] in '94, there have been many generaliza-
tions of the AV = 1 nonabelian duality, extending the proposal to theories with
different gauge groups [1] as well as with different matter content. Among the
tons of dual pairs that appeared in the literature, we will concentrate to the
case of SU(N.) SQCD with chiral superfields in the adjoint representation of the
gauge group. The reason is that in the case of supersymmetric gauge theories
with adjoints, there are some special techniques available to study a subsector of
the quantum theory, the chiral ring, which go under the name of the Dijkgraaf—
Vafa method. In this Chapter we summarize the classification of the RG flows
in SQCD with two adjoints (and some of their Seiberg duals, the ones we know).
We will follow the detailed classification by Intriligator and Wecht [3]. In this
way we give a picture of the different phases these theories undergo and we will
be able to list them in tables such as the one for SQCD (2.14). We do not con-
sider more than two adjoints because, already with three adjoints, the theory
looses its asymptotic freedom and thus we do not expect any nice fixed point to
be there in the IR. This exhausts the possible flows of an A/ = 1 supersymmetric
gauge theory with fundamental and adjoint matter and adjoint deformations.®

Let us consider an SU(N,.) supersymmetric gauge theory with Ny flavors
@}- and Qf and two chiral superfields X and Y transforming in the adjoint
representation of the gauge group. For all Ny in the asymptotically free range
Ny < N, the theory flows to an IR fixed point 6, which is described by an
interacting N = 1 superconformal field theory. By means of the a—maximization
[8], we can compute the exact R—charges of the fields at the fixed point and find
their anomalous dimensions D = %R. In this way, it is possible to classify all
the relevant deformations of the O fixed point and the corresponding flows. In
particular, we focus on the operators which involve only the two adjoints X and
Y. It turns out that the relevant deformations of the O fixed point are just the
following three

o e,

A -~ =

D W = TeXY? (3:1)
~ D

12 Ws = TrY?3.

® For a classification of the meson deformations see [28].
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Let us take a closer look at these new fixed points.

A theory. The A fixed point is reached via integrating out one adjoint
chiral superfield Y and flowing to an SU(N,) theory with one adjoint X and Ny
light flavors. This theory has received a lot of attention in the past. However,
until very recently there was no way to solve for the exact R—charges and anoma-
lous dimensions of the theory without superpotential and therefore to classify the
relevant deformations that involve only the adjoint field. Kutasov and collabo-
rators [29], by means of the a-maximization technique [8], where able to do the
job. Let us define the parameter

Ne
T = —.
Ny
For any given n there exists an x4, such that
R(X™) <2, for z>uzy4,.

In the range of flavors z > z,, then the operator TrX"*! is a relevant deformation
of the A infrared fixed point and it triggers the flow to another fixed point, that
we call A\n and analyze below.

D theory. The D SCFT is the endpoint of the flow from O with the
superpotential W = TrXY?2. This and the E fixed point, that we discuss below,
where studied by [3]. The only relevant operators are of the form TrX"*!. By
means of the a—maximization, they found that for any given n there exists an
Zp,,, such that

R(X™1) <2, for z>zp,,.

In the range of flavors z > zp_,, then the operator TrX™*! is a relevant de-
formation of the D infrared fixed point and it triggers the flow to another fixed
point, that we call ﬁn_|_2 and analyze below.

E theory. The E SCFT is the endpoint of the flow from O with the
superpotential W = TrY3. We would like to classify all the possible lows from
this fixed point by adding relevant deformations to the superpotential. First,
any quadratic AW superpotential is relevant. The possibilities, and where they
drive the E SCFTs, are

AW =TrY?: E—\Z,
AW =TrX?: E — Ay, (3.2)

AW =TrXY : E — SQCD.
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At the level of cubic AW, the only independent, relevant possibility is
AW =TeX?Y : E— Dy, (3.3)

Deforming TrY™® by AW = TrX?3 is equivalent to (3.3) via a change of variables,
and TrXY? is eliminated by the F chiral ring relation. The operator TrX2Y is
always relevant, however, we do not expect that it ever wins out over the original
WE = TrY? term; both are important in determining the eventual RG fixed
point. Finally, we have the higher powers AW. These are only relevant if z is
sufficiently large, and the independent possibilities for W = W5+ AW are:

E— Ee: Wg, =Te(Y2+ X%  if z>axp ~ 255
E—Er: Wp, =Te(Y3+YX%) if o>z, ~4.12 (3.4)
E— Eg: Wg, =Te(Y3+ X%  if z>a5 ~T728

The values of zp, zp, , and zp, are obtained by studying with the a max-
imization the R-charge of the corresponding deformation, AWg, = TrX%,
AWpg, = TrY X3, and AWg, = TrX®, at the E RG fixed point, and seeing
when R(AW) just drops below R =2. If x > T, ., 50 these AW drive E to new
SCFTs, which we call Eg, E7, and Eg and will analyze below.

3.1. A,: SQCD with One Adjoint and its Dual

Let us generalize the Seiberg duality of Chapter 2 by adding an adjoint chiral
superfield. Consider a supersymmetric gauge theory with gauge group U(N,) and
Ny flavors of quarks Q7 and antiquarks Q? and a chiral superfield X in the adjoint
representation of the gauge group, following Kutasov, Schwimmer and Seiberg
(KSS) [14][15][16]. The magnetic dual of the theory A without a superpotential is
not known. But we can study deformations by relevant superpotential couplings,
for which we know the dual theory. In particular, we know the Seiberg dual of
the A, fixed point. A way to simplify the dynamics, which was studied by KSS,
is to add a generic polynomial superpotential for the adjoint”

We =TrV(X),
_ - Uk k41 (3.5)

7 These operators are usually referred to as dangerously irrelevant, meaning that
they are irrelevant at the UV fixed point when n > 3, but they become relevant as we
flow to the infrared.
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that drives the theory from the fixed point A,, to a confining phase in the infrared,
leaving at low energy no dynamics but rather just a discrete set of vacua. The
classical vacua of this theory satisfy the equations of motion V’(X) = 0. Using
the transformation in the complexified gauge group we can diagonalize the adjoint
field X, then the eigenvalues of the adjoint are the roots a; of the degree n poly-
nomial V’(z). The vacuum of this theory is then given by X = diag(ay,...,a,)
where each a; appears with multiplicity N;. The low energy gauge group is thus
II,U(NV;). At low energy we can integrate out the massive adjoint X and the
theory flows into a product of decoupled U(NV;) SQCD theories, which we will
refer to as Seiberg blocks and we have just discussed.

The magnetic dual of the theory (3.5) is a supersymmetric gauge theory
with gauge group U(N.), where N. = nNs — N, and N; flavors of dual quarks
aF and antiquarks 7, an adjoint chiral superfield X and n gauge singlets (P; )?,
Jj =1,...,n, that transform in the (Nf, N¢) of the flavor symmetry group and

represent the electric mesons
P =QXx77Q.

The n singlets P; are the straightforward generalization of the one magnetic
singlet we found in the dual of SQCD. The way duality is to be understood is
the following. First, we let the theory without superpotential low to its IR fixed
point. Then, we turn on the following magnetic superpotential

Winag = =TtV (X) + Gn(P, X)g, (3.6)
where m(P, z) is a certain degree n — 1 polynomial, whose coefficients depend on
the gauge singlets P;. Relying on the a-—maximization, Kutasov and collaborators
[29] found that the leading term in the magnetic superpotential TrX"*!, that
corresponds to the A, electric IR fixed point, is such that its R—charge

R(X™1) <2, for Z>7a,

where z = %f is the magnetic version of z = N./Ny.
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At this point, we can completely classify the phases of SQCD with one
adjoint at the A, fixed point. The phases of the electric and magnetic theories
can be summarized as

<1 free electric
1<z <y, A electric
Ta, <z <n-—2za, A, conformal window (3.7)
n—z4, <z<n-—1 A magnetic
n—1<z free magnetic.

For x < 1 the electric theory is not asymptotically free, so it flows to a free
theory in the IR. In this case, we should use the free-electric description. To
see the analogous free-magnetic phase of the magnetic dual, we can use the dual
variable z. The magnetic theory is asymptotically free if £ > 1. When the
magnetic theory is not asymptotically free, i.e. o < 1 and thus z > n — 1, the
magnetic theory becomes free in the IR. In this case, we should definitely use
the magnetic description. Within the range 1 < z < n — 1, where both electric
and magnetic theories are asymptotically free, we still have three possibilities. If
1 <z < x4, the TrX™"! on the electric side is irrelevant, and the electric theory
flows back to the A SCFT. In this case the electric description is again definitely
better, since it is easier to see the enhanced symmetries associated with the
fact that TrX™t1 is irrelevant. Likewise, in the magnetic theory, the TrX"+!
superpotentlal is irrelevant if z < Z4, and the magnetic theory then flows to
a magnetlc version of the A SCFT. In this case, the magnetic description is
deﬁmtely better, since it’s easier there to see the enhanced symmetries associated
with the fact that part of Wi, is irrelevant. Finally, there is a “conformal
window,” where TrX™*! is relevant on the electric side, = > x4, and TrXn+l
is relevant on the magnetic side, T > Z4_. In the conformal window, both the
electric and the magnetic theories flow to the same A,, SCFT. Either the electric
or the magnetic description is a useful description in the conformal window.
Let us give a few details on the duality map. Even if classically the vacua of
the two theories are very different, quantum mechanically they coincide and we
will consider them below. KSS proposed that the dynamically generated scales
A of the electric theory and A of the magnetic theory obey the matching relation

Ach—NfAQNc-Nf f, (3-8)

9N, ,—2N
= pu“ i,

which is very similar to the corresponding scale matching of SQCD (2.10) we dis-

cussed above, and they checked the matching against various higgs and massive
flows.
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8.2. Dyio SQCD with Two Adjoints and its Dual

We can carry on an analysis of the D, o fixed point analogously to the
one for the A, theory. Consider a supersymmetric gauge theory with gauge
group U(N.) and N; flavors of quarks @/ and antiquarks Q}v and two chiral
superfields X and Y in the adjoint representation of the gauge group. The
magnetic dual of the theory D without a superpotential is not known. But we
can study deformations by relevant superpotential couplings, for which we know
the dual theory. In particular, we know the Seiberg dual of the D,, 5 fixed point.
Consider then the SCFT with superpotential

We, =t, TrX™ ! 4 A TrXY?, (3.9)

The magnetic dual of (3.9) was proposed by Brodie [22]. It is a supersym-
metric gauge theory with gauge group U(NV,), where N, = 3nN; — N, and N ¥
flavors of dual quarks a5 and antiquarks ¢/, two adjoint chiral superfields X and
Y and 3n gauge singlets (Plj)? j=1,...,n, [ = 1,2,3, transforming in the

Ny, Ny) of the flavor symmetry group, that represent the electric mesons
VERAN
P; = QXY Q,

The way duality is to be understood is the following. First, we let the theory
without superpotential flow to its IR fixed point. Then, we turn on the following
magnetic superpotential

Winag = —ta TrX™ ™ — ATYXY? + gin(P, X, Y)q, (3.10)

where m(P,z,y) is a certain degree m — 1 polynomial in z and quadratic in
y, whose coefficients depend on the gauge singlets Fj;. Relying on the a-
maximization, Intriligator and Wecht [3] found that the operator TrX"™*+! that
corresponds to the Dy, electric IR fixed point, is such that its R—charge

R(X™') <2, for T>7%p

n+2?
- Nc
where T = N
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At this point, we can completely classify the phases of SQCD with two
adjoints at the D,, 5 fixed point. The phases of the electric and magnetic theories
can be summarized as

z<1 fr/ge electric
I<z<zp,,, D electric
TD,n <T<3N—ZTp,,, Dpyo conformal window (3.11)
3n—zp, , <z <3n-1 D magnetic
n—1<z free magnetic.

For z < 1 the electric theory is not asymptotically free, so it flows to a free theory
in the IR. In this case, we should definitely use the free-electric description.
To see the analogous free-magnetic phase of the magnetic dual, it’s useful to
introduce a dual variable to z, z = %}f = 3n — x. The magnetic theory is
asymptotically free if z > 1. When the magnetic theory is not asymptotically
free, i.e. £ <1 and thus x > 3n — 1, the magnetic theory becomes free in the IR.
In this case, we should definitely use the magnetic descrption. Within the range
1 <z < 3n—1, where both electric and magnetic theories are asymptotically free,
we still have three possibilities. If 1 <z < 2™  the TrX™*" on the electric side

is irrelevant, and the electric theory flows back to the D SCFT. In this case the
electric description is again definitely better, since it is easier to see the enhanced
symmetries associated with the fact that TrX™*! is irrelevant. Likewise, in the
magnetic theory, the Tr X+l superpotential is irrelevant if z < zp,,, and the
magnetic theory then flows to a magnetic version of the D SCFT. In this case,
the.magnetic description is definitely better, since it’s easier there to see the
enhanced symmetries associated with the fact that part of Wp,e, is irrelevant.
where TrX ™11 is relevant on the electric

)

Finally, there is a “conformal window,’
side, * > zp,,,, and TrX™! is relevant on the magnetic side, T > Zp,,,. In
the conformal window, both the electric and the magnetic theories flow to the
same D,y o SCFT. Either the electric or the magnetic description is a useful
description in the conformal window.

Brodie [22] proposed that the dynamically generated scales A of the electric
theory and A of the magnetic theory obey the matching relation

ANe—Ns AN.—~N; _ t7—13Nf AT3kNs ANy (3.12)

where 1 is an auxiliary scale appearing in m. This is very similar to the corre-
sponding scale matching of the KSS theory (3.8) we discussed above.
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3.8. E, Theories: No Seiberg Dual!

The flows of the Eg, Iy and FEg SCFTs (3.4) have been analyzed in [3]
in connection with the a theorem. Unfortunately, the magnetic dual of neither
of these theories is known. Since the chiral ring is not truncated, it contains
an infinite number of operators and therefore it is impossible to identify which
field content and deformations to include in a magnetic description of these fixed
points. Nobody even knows if the dual theory exists. However, by studying the
flows from the E,, fixed points, it has been argued that, in the quantum theory,
some mechanism should be responsible for the truncation of the chiral ring [3].
Therefore, even if the classical theory does not seem to be a suitable scenario
to find the Seiberg dual, it might be that in the quantum theory a Seiberg dual
might actually exists.
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4. A, THEORY: THE CHIRAL RING AND THE GENERALIZED
KONISHI ANOMALY

A powerful tool to study the nonperturbative low energy physics of N =1
supersymmetric gauge theories is the Dijkgraaf-Vafa method [9]. It applies to
theories that confine and exhibit a mass gap. Assuming that the elementary
degree of freedom just above the mass gap is the glueball superfield, this tech-
nique computes the effective superpotential as a function of the glueball and the
couplings, by solving an auxiliary zero dimensional matrix model. After inte-
grating out the glueball, then, we recover the usual low energy superpotential
that describes the vacuum structure of the gauge theory. Although the original
derivation of the DV conjecture relies on string theory arguments, a purely field
theoretical explanation has been proposed subsequently by Cachazo, Douglas,
Seiberg and Witten [12]. This field theory approach is based on the Konishi
anomaly and its generalization and in this Chapter we will outline its basic in-
gredients.

We will describe this method focussing on the adjoint SQCD, which is the
electric side of the A,, fixed point we discussed in Section 8.1. We will closely
follow the original setup of [12][19] and the review [30]. We will describe the
classical vacua and the chiral ring of the theory, explaining in particular a subtle
issue in the nilpotence of the perturbative and exact glueball operator [31]. We
will discuss the meaning of the nonperturbative glueball superpotential and then
explain the generalization of the Konishi anomaly that leads to the Schwinger—
Dyson equations for the generators of the chiral ring. We will see how these
anomaly equations give rise to a hyperelliptic Riemann surface which encodes the
vacuum structure of the theory. In the one adjoint case the curve is hyperelliptic,
but this is not a generic feature. In the two adjoint case, for instance, we will see
that the curve is cubic. We will show then how the different classical phases are
all connected in the quantum theory [19]. This is not unexpected since there is
no phase transition between semiclassical confining and higgs phases in a theory

with fu_ndamentals.
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4.1. The Classical Vacua

We will consider an N = 1 supersymmetric gauge theory with U(N.) gauge
group. The matter content consists of Ny flavors of quarks Q7 and antiquarks
Q;; and a chiral superfield X in the adjoint representation of the gauge group.
We will at first let the theory flow to its infrared superconformal fixed point A.
Then we will turn on the generic tree level superpotential

We =TV (X) + Qm(X)}Q7,

Vi(z) = i 2%,
=1

R ES -
m(2)f =3 ma)]et T,
k=1

(4.1)

which corresponds to a deformation of the A, fixed point. It is convenient to
parameterize the adjoint polynomial as V'(2) = t, [, (z — a;) in terms of its
roots. We denote the roots of the meson polynomial m(z) as zx, for k =1,...,1.
We are assuming here for simplicity that the meson matrix is diagonal in the
flavor indices. The degree of m(z) is [ < n — 1, since higher mesons are trivial in
the classical chiral ring.

This theory exhibits two kinds of classically distinct vacua, that we will call
pseudoconfining and higgs vacua. The pseudoconfining vacua are characterized
by vanishing expectation values for the fundamentals

ax
X =
an (4.2)

sza Qf:()a

where each a; has multiplicity IV; such that ZZ N; = N.. The reason why these
are called “pseudoconfining” rather than “confining” vacua is that, due to the
presence of fields in the fundamental representation of the gauge group, there is
no phase transition between these vacua and the higgs ones and in the quantum
theory they are continuously connected. At low energy the theory consists of
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a set of decoupled U(N;) SQCD with N; flavors, while the adjoint has been
integrated out.® The rank of the gauge group does not decrease along this flow.

The Higgs vacua are characterized by a nonvanishing expectation value for
the fundamentals. We consider the simple case of m(z) = m; +msyz, whose only
root is 1 = —m1/msy and we have

3|
X = “
(4.3)

Qnp

QNf :(51707“-70% QNf:(hl70a"'7O)7

where each a; is a root of V’(z) and has multiplicity N; such that >, | N; =
N;—1. One can work out the most general higgs phase solution of the equations
of motion [19], but we just need this simple case. The adjoint equations of motion

set hlhl —-V’(l‘l)/mg

4.2. The Chiral Ring

~ We introduce here the chiral ring of the theory, following [12]. Chiral op-
erators are operators that are annihilated by the supersymmetries Qg of one
chlrahty The product of two chiral operators is also chiral. Chiral operators
are usually considered modulo operators of the form {Qg,...}. The equivalence
classes can be multiplied, and form a ring called the chiral ring. A superfield
whose lowest component is a chiral operator is called a chiral superfield.
Chiral operators are independent of the position, up to Q% commutators. If

{Qa,O(z)} = 0, then
3—2;0(@ = [P*,0(z)] = {Q%,[Q%, O(=)]}. (4.4)

This implies that the expectation value of a product of chiral operators is inde-
pendent of each of their positions: 0,(O(z1)--- O(z,)) = 0. Thus we can write
(IT; 0% (z)) = (I1; OF) without specifying the positions z. Using this invariance,

8 If we allow for double roots in V'(z) we end up with adjoint SQCD with a cubic
tree level superpotential for the low energy adjoint superfield. For simplicity we will

consider superpotential with only single roots, though.
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we can take a correlation function of chiral operators at distinct points, and sep-
arate the points by an arbitrarily large distance. Cluster decomposition then
implies that the correlation function factorizes

(O1 (21)0% (z3) ... O () = (O )(OF) .. (O, (4.5)

There are no contact terms in the expectation value of a product of
chiral fields, because as we have just seen a correlation function such as
(O (21)O%(z5) . ..) is entirely independent of the positions z; and so in par-
ticular does not have delta functions. A correlation function of chiral operators
together with the upper component of a chiral superfield can have contact terms.
In the theory considered here, with an adjoint superfield X, we can form gauge-
invariant chiral superfields TrX* for positive integer k. These are all non-trivial
chiral fields. The gauge field strength W, is likewise chiral, and though it is not
gauge-invariant, it can be used to form gauge-invariant chiral superfields such as
Tr X*W,, TrX* W, X'Wp, etc. Setting k = [ = 0, we get, in particular, chiral
superfields constructed from vector multiplets only.

There is, however, a very simple fact that drastically simplifies the classifi-
cation of chiral operators. If O is any adjoint-valued chiral superfield, we have®

[Q% DasO} = [Wa, O}, (4.6)

using the Jacobi identity and definition of W, plus the assumption that O
(anti)commutes with Q%. Taking O = X, it suffices to consider only opera-
tors TrX"W,Wp. Moreover, taking O = Wy in the same identity, we learn
that

{de [Daéu Wﬁ]} - {WOH Wﬁ}v (4'7)

so in the chiral ring we can make the substitution W,Wg — —W3W,. So in any
string of W’s, say W, ...W,,, we can assume antisymmetry in ay,...,as. As
the a; only take two values, we can assume s < 2.

If we consider the chiral ring of just pure super Yang Mills, the only nontrivial
invariant is the glueball superfield

1

5= 3272

TrW,We. (4.8)

% Daa = Dm’% is the bosonic covariant derivative.
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In spite of the fact that S oc D?*tr(We™V (Dye")), the glueball superfield is not
chirally exact because Dy Tr(W e~V (Dye)) is not gauge invariant.

If we have also chiral superfields in the fundamental and antifundamental
representations of the gauge group @ and @, as in our SQCD case, then we
have additional operators in the chiral ring. Since W,Q = V2V ,Q, inserting
this operator inside gauge invariant quantities gives a vanishing chiral operator.
So, the operators W,Q and Wa@ are not in the chiral ring. A complete list of
single-trace chiral operators in adjoint SQCD is

X%, TrX*W,, TeX*Ww,we, QX*Q. (4.9)

Our main attention will be on computing the vacuum expectation value of the
following chiral operators, which are the generators of the chiral ring

R(z) = “3217r2 <ﬁzfiw_;(a>’
Mi(z) = <Qf—z——_1—XQf>,
T(z) = <T"z~1x>’

we(z) = Zl;; <’_[Yzli‘m/°3(> :

Since we consider just supersymmetric vacua, we set to zero w, and do not

(4.10)

consider it in the following. We will see that some anomaly equations constrain
these expectation values and fix them exactly in the chiral ring of the quantum
theory.
The operators (4.9) are not completely independent, though, and are subject
to relations. The first kind of relation stems from the fact that X is an N, x N,
matrix. Therefore, TrX* with k& > N, can be expressed as a polynomial in
w = TrX! with [ < N,
TrX* = Py(uy, ..., un,) (4.11)

The general story is that to every classical relation corresponds a quantum rela-
tion, but the quantum relations may be different.!® A second kind of relations

10 The classical relations (4.11) are modified by instantons for k > 2N..
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follows from the presence of a tree level superpotential W (X), as in our A,
SQCD. The equation of motion of dxW(X) = D2X' shows that in the chiral
ring OxW(X) = 0 in the chiral ring. In a gauge theory, we want to consider
gauge-invariant chiral operators; classically, for any k, TrX*9xW (X) vanishes
in the chiral ring. This is a nontrivial relation among the generators. We will
discuss in detail how this classical relation is modified by the Konishi anomaly
and its generalizations.

4.8. Nilpotence of the Glueball

We now turn to discuss interesting relations which are satisfied by the glue-
L. TrW2. We discuss the pure gauge N = 1 theory with

T 3272

gauge group SU(N.). The operator S is subtle because it is a bosonic opera-

ball operator S =

tor which is constructed out of fermionic operators. Since the gauge group has
N2 — 1 generators, the Lorentz index « in W, take two different values, and S

is bilinear in W, it follows from Fermi statistics that in perturbation theory we
find

(SN )pere = 0, (4.12)
so in particular S is nilpotent. Soon we will argue that this relation receives
quantum corrections. It is important that (4.12) is true for any S which is
constructed out of fermionic W,,. The latter does not have to satisfy the equations
of motion.

If we are interested in the chiral ring, we can derive a more powerful result.
Consider an SU(2) gauge theory. For any SU(2) generators A, B,C, D we have
the identity

Tr ABCD = % (TtABTtCD + TtDATBC — TrACTrBD) (4.13)

Hence, allowing for Fermi statistics (which imply TrW;W; = TrWyW, = 0), we
have
TeWy Wi WoWa = (TeWyWa)?. - (4.14)

The left hand side is non-chiral, as we have seen above, and the right hand side
is a multiple of S2, so we found that S? = 0 perturbatively in the chiral ring of
SU(2). One can generalize this to SU(N,) [12] and find

(SNc)pert = {QdaXd}, (4.15)
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for some X%, and therefore in the chiral ring SVe = 0 at all orders in perturbation
theory.

If the relation S™Ve = {Q4, X} were an exact quantum statement, it would
follow that in any supersymmetric vacuum, (S™V¢) = 0, and hence by factoriza-
tion and cluster decomposition, also (S) = 0. But maybe it can receive some
quantum corrections. In perturbation theory, because of R-symmetry and di-
mensional analysis, there are no possible quantum corrections to this relation.
Nonperturbatively, the instanton factor A3Me has the same chiral properties as
SNe in fact instantons lead to an expectation value

(8Ne) = A3Ne, : (4.16)
and therefore, they do indeed modify the classical operator relation to
SNe = A3Ne 1 {Q4, X4} (4.17)

where in the chiral ring we can set the last term to zero. Equation (4.17) is an
exact operator relation in the theory. It is true in all correlation functions with
all-operators. Also, since it is an operator equation, it is satisfied in all the vacua
of the theory. The relation S ¢ = 0, which we recall is an exact relation, not just
a statement in the chiral ring, must also receive instanton corrections so as to be
compatible with (4.17). To be consistent with the existence of a supersymmetric
vacuum in which ($¥e) = A3Ne | as well as with the classical limit in which SVe" =
0, the corrected equation must be of the form (SNe — A3Ne)P(SNe A3Ne) = 0,
where P is a homogeneous polynomial of degree N.—1 with a non-zero coefficient
of (SNe)Ne—1 We will argue that the exact quantum relation is [31]

(SNe — A3NYMe = g, (4.18)

There are two ways to calculate the gluino condensate (SNe) = A3Ne. One
is based on the weak—coupling instanton calculations, giving the above result,
whereas with the strong—coupling instanton calculations the right hand side of
(4.16) is replaced by 2[(N, — 1)!(3N, — 1)]71/Ne A3Ne However, it turns out that
cluster decomposition does not hold in the strong coupling computations [32].
Furthermore, it has been observed that on R3 x S the results do not depend on
the radius of S!, so that one ends up with R* in the infinite radius limit, or more
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precisely R? x f{, where R = R U {oo} is the one point compactification of R.
Consider then nonperturbative configurations of ' = 1 supersymmetric gauge
theory on R3 x R rather than R*. This essentially avoids possible infrared
divergences due to the fact that the calculations are performed by choosing a
perturbative vacuum which is different from the true one [33]. This one-point
compactification can be seen as a way to impose boundary conditions on nonper-
turbative configurations rather than a change of topology of the space where the
gauge theory lives. This is of interest for the definition of the gluino condensate.
We also note that the point splitting is a quantum operation which leads to a
modification of the classical operator definition. Let us go back to the analysis
of the chiral ring. The above discussion shows that we can use instanton results
in order to define

Op =8N — lim (S(z1)...S(zn,)) = SNe — A3De, (4.19)

vij

Note that the X® in (4.15) and (4.17) can differ only by a chiral operator: di-
mensional analysis and R-symmetry forbid the existence of terms {Q,,6X%}

that vanish as A — 0. The correction from SQQ to SNe concerns a redefinition
of the glueball superfield and not {Q,, X}, that is

SNe = gNe _ A3Ne, (4.20)

Therefore, the basic observation is that it is the N.—~th power of the glueball
superfield that gets quantum corrections. For these reasons we used the notation
O, in (4.19) instead of S’i\l’ c. However, since Sg * = 0 was derived as an identity,
and since, as we said, {Q,, X%} does not receive quantum corrections, it follows
by (4.12) and (4.15) that {Q,, X%} = 0. On the other hand, being O =
{Q4, X4} we have O = 0, that is Eq.(4.18).

The emerging structure is reminiscent of the property of forms in a (N.—1)-
dimensional space. To realize the similarity let us define w = {Q,, X%}, where
w is a one-form on a (N, — 1)—dimensional space. Then

{Qu, X¥3Ne = Ale w =0, (4.21)
leading to an interesting unexpected structure.

44



4.4. The Effective Glueball Superpotential

We will be interested in computing the effective superpotential of our theory
in the confining phase. Let us consider then the Wilsonian action. If S, denotes
the (bare) action at a scale po, then S), (for p < o) denotes the action describing
the same physics but where the degrees of freedom with momenta between 1 and
to have been integrated out. We can be more precise if we restrict our attention
to the Wilsonian superpotential because any non-holomorphic dependence on
the couplings must be regarded as a (now properly IR regularized) D-term. The
Wilsonian superpotential Wey; is thus a holomorphic quantity in both fields and
coupling constants and it is not perturbatively renormalized. Thus we write:

Weff = Wtree + Wnpa (422}

where Wye. is the tree level superpotential and W,, a nonperturbative con-
tribution. In the case where interacting massless fields are absent, the Wilso-
nian and the 1PI effective superpotentials coincide. Furthermore, the pertur-
bative non-renormalization of the superpotential can also be proven using holo-
morphy and the symmetries of the theory. Notice that one can always write
Wiree = Y 9rZr(®;) for the gauge invariant quantities Z,.(®;). The question
now is what is the form of W,,. One would expect that it depends the scale A,
the couplings g, and the invariants Z,(®;). But, in fact, W, is independent of
the couplings g,. This fact is referred to as the “linearity principle” because it
implies that the full superpotential is linear in the couplings. Having established
that Whp = Wpp(Z,, A) it is sometimes possible to completely fix the functional
dependence up to some numerical constant by dimensional analysis and symme-
try considerations, as in the case of the ADS superpotential of SQCD. Clearly,
we can integrate out the field Z; at low energy (where the superpotential piece
dominates) by solving

0
—Werr =0,
EYA i
which is just a Legendre transform
0
= ——Wq,.
T= "5z,

Solving this equation for Z; in terms of g; and the other variables and substitut-
ing back one obtains W, where now the dependence on g; will be complicated
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because we have integrated out its partner. Thus we can think of g; and Z; as
forming a canonical pair. One could integrate out all the composite fields Z, to
give Wy solely in terms of the couplings g, and the scale A. This is the low
energy superpotential.

The Legendre transform is clearly invertible and as long as we are only
interested in F-terms we do not lose any information integrating out a field and,
in fact, we can integrate it back in by reversing the procedure:

(Zy) = E%Weff. (4.23)
This equation will be relevant later in a slightly different way: if we happen
to know the vacuum expectation value of Z, in some other way, (4.23) can be
used to determine Weyy. This is the way we will compute our effective glueball
superpotential.
We can also introduce a canonical conjugate for A. We can use the pertur-
batively exact definition of the holomorphic scale to rewrite the gauge kinetic
term as a tree level plus one loop contribution to the Wilsonian superpotential:

(1)

— o = Blog(A/u)S

167m,Tﬂ/V W4 = Blog(A/w)S,
where S is the glueball superfield (4.8) and § is the coefficient of the one-loop
beta function, in the case of our adjoint SQCD 3 = 2N,. The linearity principle
still applies in this case. While S does not appear in the original superpotential
one can “integrate it in” by solving for A: '

(S) = %A%Weﬁ. (4.24)
Even without matter fields there is a superpotential for S: the so—called
Veneziano-Yankielowicz (VY) superpotential [34]. Consider, as an example, pure
SU(N) SYM theory for which § = 3N. By the assumption of confinement and
a mass gap, we expect that all degrees of freedom are massive and thus the
effective superpotential at low energy can only be a constant. Dimensional anal-
ysis shows that W = aA® for some numerical constant a. Using (4.24) yields
(S) = (a/N)A3. From an explicit instanton computation we know that

(S) = A3, . (4.25)



The computation of the exact numerical coefficient is a subtle issue. To derive
the correct result (4.25) one needs to perform a computation at weak coupling
[32]. We can now express the nonperturbative superpotential as a function of S

as S
Wip = ~NSlog = + NS.
7

Sometimes one also writes in a mixed notation

A
Wesr = Whnp + 3NSlog o NS (1 — log %) = Wyy, (4.26)

usually referred to as the VY superpotential. The advantage of this notation is
that upon minimizing Wyy with respect to S one recovers (4.25). Thus in the
following we will consider W,y as dependent on S although its “natural” vari-
able should be A. Generically, all glueball fields S will be massive. However, the
glueball mass scale A is understood as the lowest scale in the theory, assuming
the existence of a mass gap. Therefore, it makes sense to use as effective super-
potential Wess as a function of the glueballs. We can always recover the low
energy nonperturbative superpotential, that describes the physics of the discrete
vacua, by just integrating out the glueball.

4.5. The Generalized Konishi Anomaly

“The tool we need for computing the effective glueball superpotential, and in
general for analyzing the theory just above the mass gap, is the Konishi anomaly.
We will describe this method in the case of adjoint SQCD with superpotential
(4.1). The Konishi anomaly [13] is an anomaly for the current

J=TrXTenV X, (4.27)

which generates the infinitesimal rescaling of the chiral field, 6 X = eX. Heread V
means the adjoint representation, (adV X)*; = [V, X]}. It can be computed by
any of the standard techniques: point splitting, Pauli-Villars regularization (since
our model is non-chiral), anomalous variation of the functional measure (at one
loop) or simply by computing Feynman diagrams. The result is a superfield gen-
eralization of the familiar U(1) x SU(INN)? mixed chiral anomaly for the fermionic
component of X; in the theory with zero superpotential,

- h .
D*J = 35,5 Mt (ad Wy)(ad W) (4.28)
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where the trace is taken in the adjoint representation. When a tree level superpo-
tential is present, the transformation 6 X = X is not a symmetry of the theory,
so we have to add the classical variation. Evaluating this trace and adding the
classical term present in the theory with superpotential, we obtain

OW (X) N

+ R TrW W —

I
DR =Tx 5% 1677

s TEWL T (4.29)
One way to see why this combination of traces appears here is to check that the
diagonal U(1) subgroup of the gauge group decouples.

We now take the expectation value of this equation. Since the divergence
D?J is a Q%commutator, it must have zero expectation value in a supersym-
metric vacuum. Furthermore, we can use (4.5) and (TrW,) = 0 to see that the
last term is zero. Thus, we infer that

W)\ .. N o
<TrX~——8~)—(——~> = 2N (AW W )-.

In general, this anomaly receives higher loop contributions, which are renor-
malization scheme dependent and somewhat complicated. However, one can
see without detailed computation that these contributions can all be written
as non-chiral local functionals [12]. Furthermore the correction must vanish for
gr = 0, so inverse powers of the couplings cannot appear. One might expect
nonperturbative corrections, involving the dynamical scale A. However, such
corrections can be excluded by considering the algebra of chiral transformations
X =3 e, X™, a partial Virasoro algebra, showing that it can undergo no
quantum corrections, and using this algebra to constrain the anomalies, along the
lines of the Wess-Zumino consistency condition for anomalies [35]. This implies
that, for purposes of computing the chiral ring and effective superpotential, the
result (4.29) is exact.

Readers familiar with matrix models will notice the close similarity between
the Konishi anomaly and the L Virasoro constraint of the one bosonic matrix
model. Indeed, the similarity is not a coincidence as the matrix model L con-
straint has a very parallel origin: it is a Ward identity for the matrix variation
O6M = eM. In the matrix model, one derives further useful constraints from

48



the variation 6M = eM™ 1. This similarity suggests that we consider the most
general variation in the chiral ring

5X = £(@) (4.30)

for a general holomorphic function f of all chiral superfields {®} = { X, Q, Q, Wat.
Let us compute
D*(J;) = D*(TrXTe®@V £(®)). (4.31)

Let us first do this at zeroth order in the couplings gx (except that we assume a
mass term); we will then argue that holomorphy precludes corrections depending
on these couplings.

At zero coupling, the one loop contributions to (4.31) come from graphs
involving XT and a single X in f(®). In any one of these graphs, the other
appearances of X and W, in f are simply spectators. In other words, given

Aij,lcl = D2 (X,L]Ljeadekl),
the generalized anomaly at one loop is

DA (1exteraV f(@) = Y- AL, (4.52)
ijkl

The computation of A;;x; is the same as the computation of (4.28), with the
only difference being that we do not take the trace. Thus

h

Aidkt = gopa |

Won [Waa elk]]ij

where ey, is the basis matrix with the single non-zero entry (ejx)i; = 6:10-
Substituting this in (4.32) and adding the classical variation, we obtain the

final result

_ OW (X A 0
D*Jy = Trf(®) a)(( ) + 3o > [Wa, [Wa, a)g;-” (4.33)
1,5 Jt

Finally, one can show that this result cannot receive other perturbative (or
nonperturbative) corrections in the coupling, by holomorphy and symmetry, just
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as for the standard Konishi anomaly [13]. Taking expectation values, we obtain

the Ward identities
oW\ h o Of(P)
(@35 ) =5 <Z (e [ 55 H>U>' 439

4.6. The Hyperelliptic Curve

By making use of the Konishi anomaly (4.34) we now compute the exact
vacuum expectation values of the operators in (4.10). By solving for the first
operator R(z) we find the N' = 1 curve of the gauge theory. The variation

1 W Wwe
27

gives the anomaly equation
h(R(z) R(z)) = (Tr (V/(X)R(2))) -

Since expectation values of products of gauge invariant chiral operators factorize,
as expressed in (4.5), we get A(R(2))2 = (Tr (V/(X)R(z))). Thus, both sides have
been expressed purely in terms of the vacuum expectation values (TrW, W< X*),
allowing us to write a closed equation for R(z).

If we introduce

f(2) = —4 <TrWaWC” Vie) - VX )> ,

z—X

which is a degree n — 1 polynomial f(z) = fo + ... + fn_12™ "%, then we rewrite
our equation in the form

RR(2)? = V/()R(2) + 211- £(2) (4.36)

We can use a Laurent series notation to rexpress (4.36) by noting that

1 V(XYW W«
3272 Tr z—@

= [V'(2)R(2)]-
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where the notation [F'(z)]— means to drop the non-negative powers in a Laurent

expansion in z, i.e.
[Zk] _ 25 for k <0
- 0 fork>0 "

Using this notation, we can write the Ward identity as
hR(2)* = [V'(z)R(2)]-, (4.37)

and f(z) = —4[V'(2)R(2)],- In other words, the role of f(z) in (4.36) is just to
cancel the polynomial part of the right hand side.!
The solution to (4.36) is

2hR(z) = V'(2) — V/V'(2)2 + hf(2). (4.38)

This solution is parameterized by the n coefficients in f(z). We see that R(z)
has cuts in the complex 2z plane. In the semiclassical approximation of small f,
each cut A; is naturally associated with a zero a; of V/(2). If we set i = 0 in
the anomaly equation (4.36) and keep the expectation values of TtW, WX as
nonvanishing parameters, we get the semiclassical expression for the resolvent

__f)
4V'(z)

R(z)|aq = . (4.39)
Therefore, classically the resolvent lives on the z plane and has poles at the vacua
a; in (4.2).

Quantum mechanically, it is natural to analytically continue z through the
cuts to a second sheet. The double-sheeted complex plane is a hyperelliptic

11 Note that (4.36) and (4.37) are the standard loop equations for the one bosonic ma-
trix model. If the resolvent of the matrix field M is defined by Ru(z) = ﬁ’;v\”l <Trz_1M >,

then it obeys precisely the above Ward identities. One can actually prove a precise re-

lation between gauge theory expectation values (...)q.: and matrix model expectation

(), = 5 ()
_ ‘I‘r = — Tr .
3272 < z—@ g.t. N z2—M/mm.

values (.. .)m.m.,
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Riemann surface 3. Define y(z) = V'(z) —2R(z) and write (4.38) as an equation
for a Riemann surface 3
v =V'(2)® + hf(2). (4.40)

This genus n — 1 Riemann surface was introduced in [36]. We can naturally
understand ¥ as a double cover of the complex z—plane branched at the roots
of W'(2)? + hf(z) = t2][;=,(z — al)(z — a]). There are n branch cuts; as

above we denote as A; a contour that circles around the i** cut. In the weak
+

coupling limit, each pair of branch points a;" comes from the splitting of the
classical pole at a;. Most of the functions we will consider have singularities
at infinity; if the points on ¥ with z = oo are removed, the n cycles A; with
© = 1,...,n are independent. Instead of parameterizing > by the coefficients in

f, we alternatively parameterize it by the variables
S; = j[ R(z)dz i=1,..,n. (4.41)
A;

The convention for the contour integrals is that we always understand a factor
of —21? in the measure dz.

The branch of the square root in (4.38) is chosen such that for large z in the
first sheet we recover the semiclassical answer

fiz) _ 5

Be) >~y =%

+O(1/2%). (4.42)

A simple contour deformation argument shows that S =), S;. It is easy to see
that the asymptotic limit in the second sheet is

R(z) =V'(2) + O(1/z) = t,z™ + O(z"1). (4.43)

Let us identify the variables .S; in (4.41) with the glueballs in each low energy
SQCD block in (4.2). First of all, in the semiclassical limit, the definition (4.41)
gives what we want. In the classical limit, to evaluate the integral, we set X to its

vacuum value (4.2). X is a diagonal matrix with diagonal entries A1, Ao, . .. S AN
(which are equal to the a; with multiplicity N;). If M is any matrix and My,
z,y =1,..., N are the matrix elements of M in this basis, then
1 My
TeM = —_— 4.44
z—X ; Z— Ag ( )
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S0

1 1 1 M
— ¢ dTrM =5 — % o N My =Ty MP,. (44
omi fu, T AT X ;zm fé T AEE:C_ = (4.45)

Here A; € A; means that A\, is inside the contour A;, and P; is the projector
onto eigenspaces of X corresponding to eigenvalues that are inside this contour.
In the classical limit, P; is just the projector onto the subspace in which X = a;.
Hence the above definitions amount in the classical limit to

1

S = 3272

Tr W, WP, (4.46)

The formula (4.45) is still valid in perturbation theory around the classical
limit, except that the projection matrix P; might undergo perturbative quantum
fluctuations. Although the projection matrix P; can fluctuate in perturbation
theory, the dimension of the space onto which it projects cannot fluctuate, since
perturbation theory only moves eigenvalues by a bounded amount. Since the S;
have no quantum corrections, they are functions only of the low energy gauge
fields and not of the t;. In the following, we will differentiate W, ; with respect
to the couplings at “fixed gauge field background”; this can be done simply
by keeping S; fixed. We can describe this intuitively by saying that modulo
{Qs, 1}, the fluctuations in P; are pure gauge fluctuations, roughly since there
are no invariant data associated with the choice of an N;-dimensional subspace

in U(N).

4.7. The Complete Solution

We solve now for the other generators M (z) and T'(z) in (4.10). We consider
the theory with superpotential (4.1) with a meson deformation m(z) diagonal in
the flavors and of degree [. The variation

1

f
T x9

5Q7 =

gives the anomaly equation

[(M(z)m(z))f] — RR(2)8% (4.47)
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and the polynomials [Mm], depend on the classical vacuum we choose.

In the pseudoconfining vacuum (4.2), the fundamentals vanish and classically
M (z)e = 0. So we choose [Mm] such that M is regular on the first sheet also
in the quantum theory

l

o BRG) 1 hR(z)
M(z) =75 ; T (4.48)

where z; are the roots of m(z). With such a solution we find on the first sheet
fmi M(z) =0.

In the Higgs vacua (4.3) we have in general nonvanishing fundamentals. Let
us introduce the notation that r; = 1 if the corresponding z; appears (X), while
r; = 0 otherwise. A set of {r;} for i = 1...,l, where deg m(z) = [, completely
specifies the classical phase of the gauge theory. If we have L higgs eigenvalues
Z1,...,2r in the (X), then Zi:l r; = L and M(z). is given by

L

MEa=-Y A2, (4.49)

i=1 m(z;)

and the gauge symmetry breaking is U(N) — [, U(NV;) such that 37 | N; +
L = N. Then we have to chose [Mm]y such that (4.49) is reproduced in the
classical limit. The solution corresponding to this generic case is

R(z) {2 riV'(z5) + (1 — 2r)BR(z;) 1

m(z) zZ— I m'(z;)’

M(z)=h (4.50)

=1

where r; = 1 if the corresponding z; appears in the classical (X) while r; = 0
if the corresponding z; is not present. Note that M(z) has a singularity with

residue r;(2RR(x;) — V’ (331));)-17%}—5 at z; on the first sheet and a singularity with
residue (r; — 1)(2AR(z;) — V' (mz))ﬁ%{lj at z; on the second sheet. In particular,

the singularities are on the second sheet if r; = 0 and on the first sheet if r; = 1.
In the classical limit of zero R(z), this expression coincides with our classical
answer (4.49) on the first sheet if r; = 1.

Let us solve now for T'(z) in (4.10). The variation

1

5X:z—X’

(4.51)
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gives the anomalous Ward identity
WV (2)T'(2)]_ +tr[m/(2) M (2)]_ = 2RR(2)T(2), (4.52)

where the trace is over flavor indices. Note that in this case we have a contribution
from the fundamentals by m’(z). In particular, the solution for T'(z) depends on
(4.50). If we take the generic phase in which L colors are higgsed out of the total
[ roots of m(z), just as in (4.50), then we find the generic solution as

l L

1 _ y(z:) c(z)
=2 ) " L BRG- v 453

where

V'(z) — V’(X) 1V (2) — V(%)
= (Ir — 4.54
c(z) < o 3 ; . (4.54)

is a polynomial of degree n — 1.
For large z, the first term in (4.54) behaves as Nt,2""! since (Trl) = N.
The second term behaves as —%Ltnz”‘l. This is enough to determine the large

z behavior of T'(z),

N L i
T(2) = { ~ +O(z)  in the first sheet (4.55)

=N 4 O(%) in the second sheet .

For the pseudo-confining vacua, we expect T'(z) to be regular at the points z; on
the first sheet. This indeed follows from (4.53), as y(z;)/y(z) — 1 for z — z;.
On the second sheet, since y(z;)/y(z) — —1 for z — z;, T(z) has a pole, T'(2) ~
1/(z — z;) for z — z;. Finally, ¢(z) can be determined by the requirements

7§ T(z)dz = N; . (4.56)
Aq

The N; is the rank of the i—th low energy U(NV;) SQCD, N; = TrP; in the
notations of (4.45). By analogous considerations as the ones for the glueballs .S;,
this integer corresponds to its classical value, since the rank of the projector P;
cannot change.
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4.8. Interpolating Between the Pseucodonfining and the Higgs Phase

Consider varying the parameters in m(z) with fixed V(X) and fixed S;.
The Riemann surface ¥ is unchanged but the zeros z; of m(z) change. Let
us start with M and 7' being regular on the first sheet, corresponding to the
pseudoconfining vacuum (4.2). Then M and T have poles at z; on the second
sheet. Let us move then one of the higgs poles, say x1, through one of the cuts,
say A; from the second to the first sheet. After this, our solutions for M and T
have poles at =1, but now on the first sheet. This process has a simple physical
interpretation. We started semiclassically with (X) whose eigenvalues, as shown
in (4.2), are approximately equal to the roots a; of V’; this corresponds to having
all r; = 0. In a semiclassical limit, the cut A; is near a;. When xz; passes through
the cut, it is near a; and the solution (4.2) is near the solution (4.3) that describes
the Higgs branch. At this stage, the strong quantum dynamics are important
and a semiclassical treatment is not precise enough. Passing z; through the cut
and taking it to be again large (or at least far away from all cuts), we may find
ourselves in a Higgs branch with r; = 1. On this branch, M and T are expected
to have poles on the first sheet. Thus, in a process in which z; moves through
one of the cuts, a branch with r; = 0 is continuously transformed into a branch
with r; = 1.

96



5. A, AND ITS DUAL: THE QUANTUM THEORY

In this Chapter we will generalize the analysis of KSS [16] about Seiberg
duality in one-adjoint SQCD with a deformation of the A,, superpotential. We
summarized this duality in Chapter 4. This Chapter is based on [37]. Here we
consider the most generic electric superpotential, obtained by adding to (3.5) a

meson deformation )
TrV (X) + Qpm(X)] Q7 (5.1)

where in the classical chiral ring the degree of the meson polynomial m(z) is at
most n — 1. Let us recall the classical vacua that we analyzed in Section 4.1.
This electric theory presents two different kinds of vacua. In the first vacuum,
that we denote as pseudoconfining, the fundamentals vanish and the adjoint
acquires a vacuum expectation that drives the theory to a product of low energy
U(N;) SQCD blocks such that >, N; = N.. The other vacuum is called
the higgs vacuum and is characterized by a nonvanishing classical vev for the
fundamentals.!? In this case the rank of the gauge group decreases. If we higgs
L colors, then the low energy theory is still a product of U(N;) SQCD blocks,
but now Y -, N; = N, — L.

Our first analysis of the duality will focus on the map between the electric
and magnetic classical vacua in both the pseudoconfining and the higgs phase.
The magnetic dual of the theory (5.1) contains, in addition to the superpotential
(3.10), a source term for the gauge singlets 2e=glm+1 my Py, where my are the
coefficients of m(z). The magnetic vacua will depend then ‘on the details of the

electric meson polynomial: each flavor appearing in m(z)fa turns on a higgsed
block in the magnetic adjoint (Y). In particular, we will study the magnetic
vacuum corresponding to the electric higgs phase, characterized by a nonzero
classical vev for the magnetic singlets P;. In our classical solution, as we increase
the higgsed directions in the electric theory, thus driving it to weaker coupling,
the higgsed block in the magnetic theory decreases its rank, driving the dual
theory to stronger coupling.

2 Tn presence of matter in the fundamental representation of the gauge group there
is no phase transition between higgs and confining regimes and in the quantum theory

one can continuously interpolate between them.
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We will consider then the map between the chiral rings of the two quan-
tum theories. Due to the presence of a large number of couplings in the tree
level action (5.1), the study of the effective superpotentials by the conventional
methods of holomorphy and symmetries is more involved in this case. Therefore,
we found more convenient to analyze the quantum theory with the DV method,
along the lines discussed above for SQCD. In particular, we will concentrate on
the operators that generate the chiral ring

1
z—X>'

M) = (@~ 5@, T()= (T

We will follow the method of the Konishi anomaly, discussed in Section 4.5, to
solve explicitly for these operators as functions of the glueball superfield S and the
couplings [18][19] and then we will integrate them to obtain the glueball effective
superpotentials. By matching first the electric mesons with the magnetic singlets
and then the two effective superpotentials, we will derive the relation between
the two gauge groups N, = nN 7 — N, as well as the scale matching (3.8) and the
map between the electric and magnetic chiral ring operators. The low energy
electric and magnetic theories will be both described by the same hyperelliptic
Riemann surface y? = V' (2)? + f(2), a double-sheeted cover of the plane, where
the quantum deformation f(z) is a degree n—1 polynomial. The pseudoconfining
and higgs duality map will turn out to be rather different, though. In particular,
in the electric pseudoconfining phase the magnetic anomaly equations are solved
by the simple condition

m(ai)m(a;) = f(ai), (5.2)

for « = 1,...,n, where a; are the roots of V'(z) and m(z) is the magnetic poly-
nomial (3.10). This condition will ensure also the match of the electric and
magnetic chiral rings and will reproduce the Konishi anomaly in each low energy
SQCD block.

The DV method allows us to study also the rich analytic structure of the
low energy effective theory. Even if the electric and magnetic theory have the
same curve, the meromorphic functions M(z) and 7T'(z) living on the curve have
very different analytic structures on the two sides. We will picture their analytic
behavior as follows. As we discussed in Chapter 4, according to [19], an higgs
eigenvalue in the electric theory is seen as a pole of M(z) on the first (semiclassi-
cal) sheet of the curve. As we will see, in the magnetic theory the corresponding
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M (z) will have n — 1 poles on the first sheet. We can higgs twice the electric
theory by bringing a second pole of M (z) from the second (invisible) sheet into
the first one. The magnetic theory behaves in two different ways depending on
whether we higgs different electric flavors or several times the same flavor.!® We
will see that, in this latter case, the second electric higgsing corresponds in the
magnetic theory to moving one of the n — 1 poles away from the first into the
second sheet.

Our main concern will be to compare electric and magnetic results at every
stage of the computation. For this reason, we will tackle separately the two
electric pseudoconfining and higgs vacua and in each of them we will match first
the classical and then the quantum theories.

In section 1 we will sketch the idea of how to use the Konishi anomaly to
study Seiberg duality. We do this in the example of SQCD.

In section 2 we will consider the electric pseudoconfining vacuum in pres-
ence of the generic deformation (5.1). We will find the corresponding classical
magnetic solution and see that this is only valid for a small number of massive
electric flavors, due to the presence of instanton effects in the broken magnetic
gauge group. We will then study the quantum chiral rings of the dual pair by

pefpotential is just a mass term, and we will show that in this case duality works
exéctly offshell. For a generic meson polynomial, instead, the solution (5.2) that
we found is not exact offshell, but still it reproduces the usual Konishi anomaly
in the low energy SQCD blocks and we believe it to hold onshell.

We will consider then the electric higgs phase in section 3 and follow the same
steps of the previous section, first the classical and then the quantum analysis,
gaining in this way a complete picture of duality in the different vacua. Even if
the solution of the quantum theory in this case will be implicit, we will be able
to sketch the analytic behavior of the magnetic resolvents when moving the poles
between the two sheets in the electric theory.

In section 4 we will consider the case of cubic tree level superpotential to see
how duality works in a specific example and finally, in section 5, we will speculate
about some questions raised by our analysis.

13 At most we can higgs n — 1 color directions on the same flavor, corresponding to

the degree of the meson polynomial m(z).
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In the appendices we postponed some details of our computation of the
effective superpotential of section 2, which is different from the one in [19]. In
the last appendix we show a classical magnetic solution that generalizes the ones

in section 3 for the higgs phase.

5.1. Seiberg Duality in SQCD Revisited

Before addressing Seiberg duality in our favourite A,, theory, let us see how
these Konishi anomaly equations work in the prototypical example of electric—
magnetic duality, namely Seiberg duality in SQCD with U(N,) gauge group and
Ny flavors of quarks @/ and antiquarks Qf~ [2], that we discussed at length in
Chapter 2. If we want to apply DV, the theory has to be massive and we need

a tree level mass term
Wtree = meQf- (53)

Even if classically the mesons vanish, at the quantum level their expectation
value is set by the Konishi anomaly to (Q;Q7) = NS/m, where S is the glue-
ball superfield [13]. The effective glueball superpotential is recovered by inte-
grating this exact expectation value with respect to the corresponding coupling.
We have to add also possible coupling independent terms, that in this case are
the Veneziano—Yankielowicz superpotential N.S(1 —log S) and the one-loop ex-
act renormalization of the gauge field (3N, — N;)Slog A, obtaining the glueball
effective superpotential

NfA3Nc_Nf
UG — ) . (5.4)

Wess =S (log N, + N,
The magnetic dual of this theory is a supersymmetric gauge theory with U (N,)
gauge group, Ny flavors of magnetic quarks ¢ and antiquarks §/ and N J% gauge
singlets P}’i, that represent the electric mesons. The classical magnetic superpo-

tential corresponding to (5.3) is W tree = iPQq +mtrP. In the magnetic theory
we have two basic equations to solve. The first is the singlet equation of motion,
which completely fix the magnetic mesons to (gg) = —pm. Since the singlets
are not coupled to the gauge fields, their equations of motion are exact in the
chiral ring of the quantum theory. Then we have the Konishi anomaly, that sets
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(P) = —5/m. The effective glueball superpotential is then computed as in the

electric case and we get

o 3 GNf—NcA3N.~N¢
Weps =5 <log EALE

+ (N, — N,)) : (5.5)

To find the duality map, we first match the electric mesons with the magnetic
singlets, since they are directly related by a Legendre transform, and we see that
S = —§ and m = . Then we match the effective glueball superpotential and
find the relation between the gauge groups N, = N ; — N as well as the scale
matching relation A3Ne=Ns ASNe—N; — (—)Ns=Ne Ny

However, the DV method is not really necessary in this case.'* We can
easily obtain the onshell expectation values of chiral operators by studying the
nonperturbative low energy superpotentials of electric and magnetic theories,
without ever introducing the glueball superfield. On the other hand, we can
also integrate in the glueball superfield to obtain directly the glueball effective
superpotential. On the electric side, the low energy theory is just pure U (V)
SYM, whose nonperturbative superpotential is Wy, = NC(A?(%)N%, which is
responsible for gaugino condensation. One first matches the low energy scale
A?ﬁ; = m™r ASNe—Ns and then just integrate in the glueball to obtain directly
(5.4). On the other side, in the magnetic theory the singlet equations of motion
force all the flavors to be higgsed, thus the low energy theory is pure SYM with
gauge group U(N, — N +), whose low energy superpotential is the same as the
electric one but with the appropriate magnetic quantities instead. By matching
the magnetic scales Afgg e~ Ns)
glueball we obtain (5.5).

= A3Ne=Ny /(Ga\Vs and again integrating in the

5.2. The Electric Pseudoconfining Phase

In this section we will see how electric-magnetic duality works in the electric
pseudoconfining phase. Our notations will be as follows. In the classical analysis,
we will always use the electric couplings to describe the magnetic theory, assum-
ing that we know the duality map. In the analysis of the quantum theory, we

.14 The matrix model approach to Seiberg duaiity has been first used in [38].
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will overline the magnetic couplings to avoid possible confusion and then derive
the duality map.

The Classical Vacua

The Electric Theory

Let us set the stage for our calculations. We will consider an N/ = 1 supersym-
metric gauge theory with U(N.) gauge group, that we will call electric. The
matter content consists of Ny flavors of quarks Q/ and antiquarks Q~ and a
chiral superfield X in the adjoint representation of the gauge group. We will at
first let the theory flow to its infrared superconformal fixed point. Then we will
turn on the generic tree level superpotential

Wea =TrV(X) + @ m(X) 10,

V'(z) = i ti2t,
=1

+1 _~

m(2)f =3 (my)f2A,

k=1
which is irrelevant in the UV but becomes relevant in the infrared. It will be
useful to parameterize the adjoint polynomial as V'(z) = ¢, [[—;(z — a;) in
terms of its roots. We denote the roots of the meson polynomial m(z) as zy, for

(5.6)

k=1,...,1. The degree of m(z) is I < n — 1, since higher mesons are trivial in
the classical chiral ring, that contains the following operators
eX?,  QXI7Q, (5.7)

for j = 1,...,n, as well as operators of the kind TrW,X? and TtW, ,W>X7.
However, W,Qf and Q fWa are not in the chiral ring. Also, since the gauge
group is U(N) rather than SU(N) we do not include “baryonic operators”. Our
main attention will be focused on the following chiral operators, that generate
the chiral ring

R(z) = “3217r2 zfi”;( ’
Ml(z) = Qf-z—f—j(:Qf,
) (5.8)
T(z) = Trm—,
we(z) = iTr Wav.

47 z—X
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We will set to zero in the following w, (2) since its duality properties are auto-
matic and does not constrain the other results.

This theory exhibits two kinds of classically distinct vacua, that we will call
pseudoconfining and higgs vacua. In this section we will be concerned only with
the former and leave the analysis of the higgs vacuum to the section 5.3. The
pseudoconfining vacua are characterized by vanishing expectation values for the

fundamentals
a1
X =

an (5.9)

| QF =0, Q=0
where each a; has multiplicity NV; such that Zz N; = N.. The reason why these
are called “pseudoconfining” rather than “confining” vacua is that, due to the
presence of fields in the fundamental representation of the gauge group, there is
no phase transition between these vacua and the higgs ones and in the quantum
theory they are continuously connected. At low energy the theory consists of
a set of decoupled U(N;) SQCD with Ny flavors, while the adjoint has been
integrated out.'® The rank of the gauge group does not decrease along this flow.

The Magnetic Theory

The magnetic theory corresponding to (5.6) is ag‘ain an N = 1 supersymmetric
gauge theory with gauge group U(N.) and Ny flavors of dual quarks qr and
antiquarks cjf~.16 We also add a chiral superfield Y in the adjoint and N7 gauge
singlets (Pj)jzv, for 7 = 1,...,n. We first let this theory flow to its interacting
superconformal fixed point, then we add the following superpotential

1+1
Winag = = TrV(Y) + gm(P,Y) g+ Y _ m; P,

=t (5.10)

n k
~ 1 z Z i
m(z) —_——2 tk: szk J’
K k=1 j=1

15 1f we allow for double roots in V'(2) we end up with adjoint SQCD with a cubic

tree level superpotential for the low energy adjoint superfield. For simplicity we will
consider superpotential with only single roots, though.

16 Note that g’ is in the fundamental representation of the flavor symmetry group,

while g¢ is in the antifundamental.
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where we suppressed the flavor indices and V(z) and the my’s are the electric
ones in (5.6).
We introduced the degree n — 1 polynomial m(P, z), which can be conve-

niently cast in the form'”

oy 1 VI(§) —V'(2)
m(z) = e jéd( - P(¢), (5.11)

where A is a contour that sorrounds all the roots of V’(z). We introduced also

a meromorphic function that collects for the gauge singlets
P(z) =Pz +...+ Pz ", (5.12)

and note that the last term in the superpotential (5.10) can be rewritten as

]{ m(z)P(z). (5.13)
A

Moreover, by inverting (5.11) we find that the general expression for the singlets
is fixed by m(z) to

P(z) = 12 [gi((’zﬂ R (5.14)

meaning that we take the Laurent expansion up to O(z7™). The equations of

motion for the singlets are

DY = —ptmy,  j=1,...0,
"~ (5.15)
Zti(jYi"jq:O, j=1l+1,...,n.

=3

Therefore, the classical chiral ring of this theory does not contain the mesons

GY771q, which are in fact replaced by the n singlets P;. We already see here

17 We will always understand a factor ﬁ in the measure of the contour integrals.
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that the analysis of the chiral ring in this theory will be slightly different than
the usual electric one. We will be still interested in the following chiral operators

- 1 W, W
R(z) = “327r2Tr z—Y "’
-7 ;01
W () — 5.16
7 (2) = ¢ —ar, (5.16)
~ 1
T = .
(2) Tr—

We already set to zero the magnetic w, generator analogous to the one in (5.8).

Now we want to look at the magnetic vacuum corresponding to the pseudo-
confining electric one in (5.9). This phase is characterized by a vanishing classical
expectation value for the gauge singlets P;, since they represent to the electric
mesons. We have to satisfy the singlet equations of motion (5.15), as well as the

adjoint ones V'(Y) = 0. Consider at first the simple case in which only the last

flavor appears in the electric meson superpotential (5.6), i.e. m(z)§ = m(z)%}c .

Correspondingly, the right hand side of the singlet equations of motion (5.15)
has nonvanishing entries only along these flavor directions. Let us denote

2\ w¥T
blzz(_”““ ) , (5.17)

In

which has the dimension of a mass, and introduce the following bra-ket notation

1) 1% =67,

where a ket corresponds to a field in the fundamental representation of the gauge
group and a bra to a field in the antifundamental. We introduce also the shift
operator acting on the first n entries

R - — I'I/‘_].> 7::27...7'"4, 5.18
an) {0 otherwise. ( )

In this notations, the classical expectation value for the adjoint can be rep-
resented in block diagonal form

Y = diag(Y,, Yay, - -, Ya,), (5.19)
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where
YNf :|1)<’UNf| + b1 R,

n—1
t k1 (5.20)
ow,) == Tbi *lk).
k=1 "
The first n x n block (5.20) reads
LR
too
N tnzFli 0 501
Yi, = | o (5.21)
—tpe O 0 b
0

The blocks Y,,,...,Y,, in (5.19) correspond to the electric pseudoconfining
eigenvalues and are given by

Y,, = diag(ai, - - ., a:). (5.22)

Each Y,, block has rank N, =N § — N; — 1. Note that this is different from the
usual relation N; = Nj — N, that we have in each low energy Seiberg block when
the meson polynomial m(z) is switched off. We can check that with this solution
the correct magnetic rank is reproduced. Since ) . N; = N, we have

> (Nj—N;—1)+n=nN; - Ne = N.. (5.23)

i=1

The magnetic quarks are all vanishing except the last flavor

|q™7) =bi1),

SL (5.24)
m; )
=50 1 -
lav;) - oy |n+ i),

whose vevs are along the first n color directions, in order to sandwich the first
block Yy, in the adjoint and satisfy the singlet equations of motion. Note that,
in the simplest case in which V'(z) = t,z" and m(z)? = m%; , this solution

reduces to the usual KSS solution [15][16]. We can also write down the classical
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expressions for the generators (5.16) for this particular solution. The resolvent
R(z) vanishes while

Ma(2)y) = = 1° ;?,((z)),

(5.25)

N d. VvV 1 N;
Te(z) 4,V -+ >

n
dz z — z —a;’

i=1

where m(z) is the electric meson polynomial. Moreover, at large z we find Ty ~
N./z since >_; N; = N. —n. In the electric pseudoconfining phase, the magnetic
singlets vanish classically, thus we find that in the classical chiral ring m(z) = 0.
The low energy theory described by (5.20) can be studied in two steps,
following the KSS procedure. First, the n x n block (5.21) higgses the theory
down to
U(Nc) - U(Nc - n),

and. note that N, —n = n(Ny — 1) — N, as expected from the electric theory,
where we integrated out the last massive flavor. At this stage, c_’jiv U qj‘\‘,f, Yo
Yifora=n+1,...,Noand m =2,...,n, s =1,...,n — 1 conspire to join n
massive vector superfields in the fundamental representation of the low energy
gauge group U(N, — n) with mass squared b?. But then as we decompose the
adjoint we find that the higgsed flavor gets replaced by a new flavor Y*, Y. for
a=n+1,...,N,, so the number of flavors does not decrease here. Secondly, the
superpotential for the adjoint generates a mass term for this new flavor. Only

the leading term TrY"*! contributes

ty
n—+1

TrY ™ = ¢, Y (Y NGYP =t by Y Y (5.26)

The number of flavors effectively decreases by one unit also in the magnetic
theory. The singlets (Pj)ﬁvf and (Pj)fvf , ¢t =1,...,Ns become also massive.
Now we can set the massive fields to the solution of their equations of motion and
integrate them out. The effective superpotential at a scale below b; is TrV (Y) +
gm(Y')q, where the hatted fields transform in the representation of the low energy
gauge group U(N, —n) and we are left with N; — 1 flavors. The matching of the
scales goes as follows
mip? < 2(N.—n)—(Njy—1)

~2]\7C—Nf o
ANC:Nf - t% Aﬁcwn,Nf—l . (527)
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We can use the relation between the scales (3.8) and the electric scale matching
and find
AN —(N;—1) 7 2(Ne—n)—(N; —1) p2\
e—(Ny— emn)=(Ny=1) _
ANenv=1 A 0N, = (t—?,) - (5.28)
n

If we keep flowing to energies below the a; of (5.22) we will find the usual product
of the magnetic theories dual to each electric SQCD block.

This solution can be generalized to the case in which the electric meson
polynomial has nonvanishing entries on different flavors. If also the one but last
flavor appears in the electric superpotential, i.e. m(z)fc = m(z)%; + p(z)]]g; j

-

f_i = [’, then the new flavor contributes an

with deg m(z)%f = [ and degp(z)%
additional n x n higgsed block

Y = diag(Yn,, Yo, 1, Yas, - - Yan ), (5.29)

where the first block is always (5.20) and the second block is similar but with
the substitution by — b]. For what concerns the magnetic quarks, in addition to
(5.24) also the one but last flavor is higgsed as follows

g™ 1) =ty In +1),

Lo 5.30
lan;—1) ‘—“z 1;p;i-(b'l)z|2n—!— 1—1). (5:30)

=1

The magnetic gauge group is now higgsed down to U(N, — 2n) and in each low
energy Seiberg block we have the correspondence N; = Ny — N; — 2.

This classical analysis can be pushed further until we hit the following bound
on the number of massless quarks

Ny > e, (5.31)
n

Suppose in fact that in the meson polynomial m(z) there appear Ny — IN./n
flavors so that we saturate the bound (5.31). Then the magnetic gauge group
would be completely higgsed and we will see no low energy SQCD blocks. The
solution to this problem is that as the magnetic gauge group is completely hig-
gsed, a new superpotential is triggered by instantons in the broken gauge group
and the singlet equations of motion get modified.
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The Electric Stability Bound and Magnetic Instantons

Let us briefly describe the stability bound on the electric theory [15]. We
have seen that a superpotential (5.6) drives the theory to a product of low energy
decoupled SQCD, breaking the gauge group down to [}, U(;). Consider each
U(N;) SQCD block separately: it is well known that this gauge theory admits a
stable vacuum iff the number of flavors is larger than the number of colors [23],
i.e. Ny > N; Vi. Therefore the original theory admits a stable vacuum iff the
bound (5.31) is satisfied.!®

When we completely break the magnetic gauge group, the weak coupling
analysis we carried out is no longer valid due to the presence of instantons. A
well known example is SU(N.) SQCD with Ny = N+ 2 flavors and its magnetic
dual with gauge group SU(Ny — N.) = SU(2) [2]. If we add a mass term for the
last electric flavor, the magnetic gauge group gets completely higgsed, so that
instantons in the broken SU(2) generate a superpotential term. By passing to
the electric variables, one can see that the sum of the magnetic tree level and
instanton superpotentials reproduces the usual nonperturbative superpotential
of SQCD with Nj = N, + 1. |

We would like to generalize this issue to our case of adjoint SQCD and check
whether we can generate an instanton term in the magnetic superpotential when
approaching the stability bound. We consider the case in which N, = n + 1,
i.e. we have Ny = N./n + 1+ 1/n flavors. At this point, we are just above the
bound (5.31) and our classical analysis still makes sense. We further specialize
to n = 2 and take the electric deformation to be just toTrX3.1® Note that we do
not include a mass term for the adjoint. We further add a mass term for the last

flavor. Our electric superpotential reads

to

Wel: 3

TrX® +mQn, QM. (5.32)

18 The theory is always stable if all the flavors are massive, which is the case we will
consider when solving the quantum theory.

19 We consider the N, = n+ 1 rather than the N, = n case because in the latter the
magnetic deformation TrY™*! is trivial in the classical chiral ring and the analysis of

the instantons is more involved due the presence of additional flat directions.
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The magnetic theory is a U(3) gauge theory defined by the superpotential
ta 3, 12 - . Ny
Wmag = —ng‘I'Y -+ —/,L_z(Mlqu -+ quq) -+ m(Ml)Nf . (533)

The classical solution (5.20) still applies and the magnetic gauge group is hig-
gsed down to U(1). Since the low energy dynamics is abelian, we may expect
instanton effects in the broken gauge group. One can perform a standard analysis
of the zero modes in the instanton ’t Hooft vertex A2Ne—N; /\zﬁcwf,ﬁ %Dévf wé\[ s

where 15 denotes the second component of the chiral superfield ®. By using the

)

interactions in the tree level action, such as the scalar—fermion—gaugino D—term
vertex as well as the superpotential couplings in (5.33), one can read out from
this vertex the following contribution to the superpotential

tZNf +3
2

m— (AS=N1)2 det My (Mycof Ms), (5.34)

Winst = 4Ny
where cof M = M~ det M and the hatted fields transform in the SU(N; —1) low
energy flavor symmetry group [39]. Note that this is the contribution by a two—
instanton. As explained in [40], this is due to the absence of the mass coupling
for the adjoint, that would have been an overall factor in the one-instanton term.

We see that, when hitting the bound (5.31), the classical solution (5.20) is no
longer valid, due to the presence of the instanton term that couples the singlets.

We can also translate this superpotential to the electric variables by using the

scale matching relation (3.8) and the electric low energy scale A;

mA2Ne=Ny obtaining the electric superpotential

det Mg (Ml COsz)
thf (A2Ne—Ny)2 ’

Wnonpe'rt = (535)

In this expression we dropped the hats and the subscript on the scale. It is to be
understood as the superpotential of a theory with IV, colors and Ny = (N.+1)/2
flavors. The magnetic instanton superpotential is seen on the electric side as a
nonperturbative superpotential arising from strong coupling effects [39], in a very
similar way to ordinary SQCD with Ny = N, + 1 flavors.

The Chiral Ring
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In this section we will find the chiral ring of the quantum theory by solving
the generalized Konishi anomaly equations [12][19]. In appendix A we quote the
results we need about DV to set the notations, while for a basic review and a
guide to the vast literature we refer to [30]. As a first step, we will consider the
case in which the meson superpotential is just a mass term for all the flavors, with
no Yukawa-type interactions between quarks and adjoint. While the solution of
the electric theory is standard, the anomaly equations in the magnetic theory
are somewhat different, due to the presence of the gauge singlets. This massive
case is useful to illustrate the general procedure without worrying about the rich
analytic structure of the generators of the chiral ring, that we will encounter

later.
The Electric Theory

We will focus on the case in which the electric meson superpotential is just a

mass term )
W = Tr V(X) + Q pmi Q7 (5.36)

where m is a diagonal matrix. If the second derivatives of V(z) at the saddle
points are nonvanishing, all the fields will be massive and it makes sense to use the
effective action as a function of the glueball superfield S. We will be interested
in the chiral operators (5.8).

* The solution of the anomaly equation for the resolvent R(z) gives

2R(2) = V'(2) = VV'(2)* + f(2), (5.37)

where f(z) is a n — 1 degree polynomial f(z) = f1 + ... + fn2""!. This defines
the curve of the electric theory to be the hyperelliptic Riemann surface 1? =
V(2)* + f(2)-

Since the meson polynomial m(z) is just constant, the anomaly equation for
the matrix M(z) reduces to the following simple form [M (z)m]_ = R(z), where
-we suppressed flavor indices. The solution is

M(z) = R(z)m™t, (5.38)

M being a diagonal matrix.
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The anomaly equation for T'(z) is
()T )] + [ ()M (2)]- =0, (5.39)

but since m(z) = const the last term drops. The solution is

T(z) = l2) (5.40)

VVI(2)2 + f(2)

where ¢(z) is another n — 1 degree polynomial ¢(z) = ¢ + ... + ¢,2" !, Since m

is not z-dependent, in the electric theory the fundamentals do not influence the
solution for T' .

The parameters f;, c; are related to the glueballs .S; of the low energy SQCD
blocks and the ranks N, of their gauge groups as follows

S; = ?{n R(z)dz, a1
N; = jlii T(z)dz,

where A; is classically a contour around a;. At the quantum level, each stationary
point a; opens up into a branch cut for R(z) and the contour A; actually encircles
the two branch points. One can get exact formulae for the total glueball S =
>, S; and the rank of the high energy gauge group N, = ), N; by looking at
the 1/z terms in (5.37) and (5.40), since choosing a contour A around all the
branch points is equivalent to closing it around oo. In this way we can fix the
first coefficient of the polynomials ¢(z) and f(z)

fn C'IL
g =2 N. = 42
jtn7 (o4 t (5 )

We calculate now the relevant relations in the chiral ring. We can extract
from (5.38) the mesons operators by

QXI7Q = § M), (5.43)
A
where the contour A encircles all the branch points of the resolvent R(z), ob-
taining
pxria- s »
TV (a) |
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for j = 1,...,n, coming from the negative power expansion of the first term in
the semiclassical expansion of the resolvent

_f(®) f(2)?
R(z) = i T O (V,(Z)3> : (5.45)

In particular we find the usual Konishi anomaly

N;S

QrQf = (5.46)

where we used (5.42). Higher meson operators receive additional contributions
from the semiclassical expansion. The single trace of the adjoint X can be
obtained as the coeflicients of inverse powers of z in the expansion of T'(z) at
large =

TrX7 = }5 2 T(2)dz, (5.47)
A

where A circles all the the branch points of the resolvent R(z). Expanding T'(z)
we get

T(z) = 552) 2t%”2£12+... (5.48)

and we can extract the chiral operators

X = C(CLZ) O (5.49)

for j=1,...,n+1. Clearly the equation V’(X) = 0 is obeyed in the chiral ring,
but relations obtained by multiplying it with X get quantum corrections.

The Magnetic Theory

The magnetic theory corresponding to (5.36) has a tree level superpotential
Winag = TrV (V) + @ m(V)a; + mite(Py). (5.50)

Note that the quantities appearing in (5.50) are the magnetic ones, as explained
at the beginning of this section. In particular we have that

z)——fv( ~ B, (5.51)




and, inverting this, we find the gauge singlets

P(z) = —p? [—?—%} N (5.52)

We are ready to use now the anomaly equations. The form of R(z), which is
independent on the fundamentals, will be the same as for the electric theory

2R(2) = V'(2) — /V (2)? + f(2), (5.53)

where the quantum deformation f(z) is a degree n — 1 polynomial. Since we
will see that the quantum deformations on both sides are equivalent under the
offshell duality map, we will conclude that the magnetic theory has the same
curve of the electric one.

In addition to the usual anomaly equations, that we encountered in the
electric theory, there are new ones following from variations of the gauge singlets
P’s. Since P is not coupled to the gauge fields, these are just its equations of
motion. For the special case we are studying, after rearranging the equations,
(5.15) reduce to

:t—ngyn_lq = 7’71;1,2,

. 5.54
Ggyi—lg=0, j=1,.n—1. (5.54)

On the other hand, the role of the electric meson polynomial is played now by
m(z). The anomaly equation for the meson generator is then

[M(2)m(z)]- = R(z). (5.55)
Its generic solution is
M(z) = R(z)m Y (2) + r(z)m 1(2), (5.56)

in our case all the matrices being diagonal. The crucial piece of information
about the magnetic theory is the quantum expression of m(z), which contains
the gauge singlets and fixes the analytic properties of the meson generator. The
way in which (5.56) is supposed to be used is the following
1. We fix the polynomial r(z) such that there are no additional singularities in
(5.56) arriving from the zeroes of m(z).
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2. We fix the polynomial m(z) imposing that the mesons X7 1q extracted
from (5.56) fulfill the singlet equations of motion (5.54). In this way we fix
also P(z).

The unique solution to these requirements is

r(z) =0, (5.57)
and 7( )
m(z) = i (5.58)

Since 7m(z) is proportional to f(z) and the the resolvent R(z) vanishes at the
zeroes of f(z), we see that m~(2) does not give additional singularities in (5.56).
The analytic structure of M (z) in this case turns out to be very simple, while

P(z) = Zi% [ g ,(2)} R (5.59)

the singlets are

where the expansion in inverse powers of z is understood to stop at z=™. Com-
paring with (5.44) we see that the matching

P, = 0x971Q, | (5.60)

for 7 = 1,...,n, is implied for a sign choice which will be discussed later. Of
course we could go backwards and requiring (5.60) prove the form of the Kutasov
kernel V_’(_Cé__:_;_/ﬁ which determines the form of the fundamental magnetic su-
perpotential. We can extract the expectation values of the magnetic singlets out
of (5.59)

1 = f(a;)al ™t " @S
P = — LNt — 2 .
J 47 ; V”(di) Z_Zl m (5 61)

where we used the definition of the glueballs in (5.41).
We can now calculate T(z). Its anomaly equation is

[§(2)T(2)] - + tr[/ (2) M (2)] - = 0. (5.62)

The solution here, as opposed to (5.40), depends also on the fundamentals

T(z) = -gj-(%[—m'(z)z\z(z) +2(2)] (5.63)
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with ' (2), M (z) given by (5.59) and (5.56). Since ¢(z) is a polynomial of degree
n — 1, while 7m/(z)M(z) starts with 272, the contribution of the fundamentals
will start only from the power 27"2. Recalling that 7 is a diagonal matrix, we

expand (5.63) at large z

~ &(2) Cnfo a1 F(2)

T - = — = s = ) 564
G =Ty~ e YV uE e (5.64)
and the chiral ring is
L alE(a)
TrY7 = -t 5.65
V=2 iy (5.65)
for j = 0,...,n. The first operator which will receive a contribution from the

last two terms in (5.64) will be TrY™+! which in the magnetic theory becomes?°

N —f— \=nt1 SO &
é(az)a™™t  2N.S S(n—1)

Try ™! = L o — Ny 5.66
LVie tn Mn (569

We would like to stress again a basic property of the solution (5.58). Since

it is proportional to f(z), the meson generator M(z) and also T(z) have a very
simple analytic structure in both sheets, as opposed to the generic cases we will
solve below. Because of this fact, we will be able to see that the electric-magnetic

duality map here works exactly offshell.
The Effective Actions

Once that we have solved the chiral ring, we can determine the superpo-
tential part of the low energy effective action by integrating the derivatives with
respect to the parameters appearing in the lagrangian, which are the expectation
values of the chiral operators we just computed above. This offshell effective ac-

tion will be valid at energies above the glueball mass, that sets the scale of mass
gap.
The Electric Theory

20 We used the fact that § f'/f = # zeroes of f.

76



The electric couplings are m and ¢1,...,t,. It is covenient to use as independent
parameters t,, and tAj = f—i for j =1,...,n—1. The parameters %\J are homogenous
polynomials in a;. The derivatives of the effective action are

OWess 1 L trnc( az)aﬁl
L — ¢, - TrXx7*t) = — , 5.67
ot; 7+ 1< 741 ; 4V (a;) ( )

forj=1,...,n—1and

OWeys 1 1 O cag)al™? 1 2N.S
= TrX"Hl) = — M :
Otn, ni ! ) n+14 aVi(a)  n+1 ty (5.68)
- oW, N¢S
£y = OWeps Dy
(@r@7) = —— b (5.69)

Since we are looking for the offshell effective action, these equations are supposed
to be integrated at fixed S;, IV;. Now observe that (5.69) and the second term
in (5.68) satisfy the integrability condition by themselves. Therefore we can
integrate them separately and there is a solution W, sy without them. The general
effective action we obtain by (5.67), (5.68) and (5.69) is

Wepsr =Wess + i]\ff logtn + NySlogm + [t;, m — independent terms] (5.70)

Let us consider the coupling independent terms. There are two contribu-
tions, the first is the one-loop exact renormalization of the gauge field kinetic
term (2N.—Ny)Slog A, that contains the dynamically generated scale A through
the running gauge coupling constant. Then we have a Veneziano—Yankielowicz
type superpotential bS(log S — 1). One can fix the numerical coefficient b by re-
quiring that the effective action is U(1)g invariant. Since the R—current and the
dilatation current lie in the same AV = 1 supermultiplet, this is the same as fixing
them by dimensional analysis. By the usual localization trick, we promote the
couplings to background chiral superfields so that we can assign them a charge.
The dimensions A of the various fields are

A
S 3
t; 2—7 (5.71)
m 1

APNe=Ni 9N, — N;




so that we find b = —2N./(n + 1). Since W,y is invariant by itself we get the
effective superpotential

2N,
Achwat’r72+l me QNC

5 +
Si‘ll‘r% n+1

Weff = Weff + Slog

S, (5.72)

We will now turn to the evaluation of the term W,s. It is most convenient
to parameterize the degree n — 1 polynomial ¢(z) in the following way

=V'(2) i hs (5.73)

where N, = >, h;. The n coefficients h; are fixed by the contour integral

=1, 7oy (579

so that classically we have just h; = N;. Using this parametrization we can
rewrite the relevant part of (5.67) and (5.68) as

aWef Lo Z hial (5.75)

In particular, we see that TrX7 = > h,—af for 5 = 1,...,n, while TrX™*! con-
tains in addition the last term in (5.49). The coefficients h; depend on t;, S; and
N, as we can see from (5.74). It is convenient to use in place of the glueballs S;
the new variable

v =3 logS. (5.76)
and n — 1 independent ratios of glueballs, e.g. -S'—l_ Sg;l. Introduce now the
following functions

d; = h; — e¥ /y dy'e™? Oh: (5.77)
—oo oy’

We claim that integrating (5.75) we find
n
Wers =Y diV(a;). (5.78)
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In the Appendix B we prove, up to an assumption of integrability, that indeed
differentiating (5.78) one recovers (5.75).
Putting everything together, the effective superpotential of the electric the-

ory is
2N.—N 2 N
- A2Ne=Nyynilm, Ny 9N,
%% :§ d;V{(a;) + S1 S. 5.79
e/ i=1 (a ) Og Si]ii + n -+ 1 ( )

The Magnetic Theory

We can follow again the same procedure of integrating the expectation values with
respect to the parameters, but now we have a new coupling 1 and the derivative
with respect to ¢; gets a contribution also from the magnetic fundamentals and

singlets
OWers _ 1 1 d
Try I+t 4 — qu ‘g 5.80
for 7 =1,...,n. Then we have
oW oW,
2 eff _ = OWerr
o2 m(trPy), o = (trPy), (5.81)

where we used the fact that the expectation values of gauge invariant chiral
operators factorize and the singlet equations of motion (5.15), which are exact
in the quantum theory. We can substitute the expectatlon values (5.61), (5.65),
and (5.66) into (5.80), obtaining

(‘3” eff zn: C _2)0,‘7—'—1 5%‘ 2(Nc —_I—Nf)g (5 82)
0t V (@) n+ 1 tn ’ '
z=1
for j =1,...,n and into (5.81)
oW, oW S
2 eff eff
= —N¢S, =—N;—. 5.83
op2 ! om I (5.:83)

The first term in (5.82) is analogous to the corresponding electric one in (5.67).
We assume, as in that case, that it satisfies the integrability condition by itself and
integrate it to obtain Weys. This is formally equal to (5.78) but with magnetic
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quantities instead. On the other hand, also (5.83) and the second term in (5.82)
satisfy the integrability condition, so that we find
Werp = Weff+w5’ log t,—2N;S log u— NS log m+[t;,m, p—indep. terms]

(5.84)
Then we need to add the magnetic one-loop renormalization of the gauge
fields (2N, — N;)S log A and the Veneziano—Yankielowicz type superpotential
bS(log S — 1). Again we fix the coefficient b requiring U(1)g invariance, as we
did for the electric case, and get b = 2(nNy — N.)/(n + 1). Putting everything
together we obtain the magnetic effective action

2Ne+Np)  oan;— N

o n o AZN Nj‘t n+1 S n+1 2(an — NC) =
Wesr = Zd V(a;) + Slog T A — ] S.
i=1

(5.85)
The Offshell Duality Map

At this point we will look for the duality map between the electric and
magnetic operators in the chiral ring. As we discussed in the introduction, in
this case the duality holds exactly offshell. First we will consider the match of
the meson operators and then the effective actions.

The gauge singlets equations of motion (5.15) are exact in the chiral ring of
the magnetic quantum theory. They tell us that the magnetic meson operators
gYi—lq are trivial. They are replaced by the gauge singlets, which represent
the electric mesons through a Legendre transform, as it is clear from the ex-
pression of m(z) in the magnetic tree level superpotential (5.10). Therefore we
should match directly the electric mesons with the corresponding magnetic gauge
singlets through the relation

P = QX77'Q, (5.86)

independently on the other relations between the gauge groups. Comparing the
two expressions (5.61) and (5.44)

X7~

n
S o iy
m

=1
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for j =1,...,n, we get the relations
S'L' = —Si, m = ’ﬁl, (587)

while the roots of the electric and magnetic polynomials for the adjoint coincide
a; = @;, l.e. the electric polynomial V'(z) and the magnetic one V'(z) are
identified up to a minus sign. Let us recall the definition (5.41) of the glueballs

in terms of the resolvent

G = f(as)
T T Yl N
4V”(ai)

which holds both for the electric and magnetic theories with the respective quan-

tities. The relation (5.87) then fixes the the duality map as
f(2)=f(z), V'(2)=-V'(2). (5.88)

"This last relation, in particular, tells us that electric and magnetic theories have

the same curve

v* =V'(2)% + f(2). (5.89)

Now let us consider the electric and the magnetic effective actions (5.79)
and (5.85). By comparing their second and third terms we get again the match
between the glueballs and the mass terms (5.87) and ¢, = —i,, which fixes the
ambiguity in the sign choice of (5.88), together with the scale matching relation

A2ZNe=Nj {2Ne=Ny _ 4~2Ng 2N; (5.90)

and the usual relation between the electric and magnetic gauge groups N, =
nNg—N.. The scale matching (5.90) is consistent with the fact that log A2Ne—Ns
and log A2Ve=Ns are the sources for the respective electric and magnetic total
glueballs and that we found S = —S. Let us analyze in more detail the relation
between the gauge groups. The rank of the electric and magnetic gauge groups
fixes the pole at infinity of T'(z)

N, = 7{1 T(2), (5.91)
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where A is the large contour, and analogously for the magnetic theory. The
matching N, = nNy — N, translates into the following relation

- V'(z) jg
T(z) =N — — ¢ T(z). 5.92
$ 1@ =0 G- 1) 65:92)
We evaluate the contour integrals by expanding (5.40) and (5.63) at large z and
get

e(z) = c(z) — NgV"(2). (5.93)

By the definition (5.74) of the coefficients h; we find that h; = N §— h; or
equivalently d; = N 5 — d;, which fixes the map between the operators

TrY? = —TrX? + Ny Y al, (5.94)

=1

for j = 1,...,n, in agreement with the KSS results [16]. The match between
the electric and magnetic W,s; using the relation d;, =N § — d; shows that the
magnetic effective superpotential contains an additional Y-independent term,
which in this case is just N¢ ), V(a;).

The classical limit of the coefficients h; is IV;, the rank of each low energy
SQCD block. Thus we recover the usual matching relation N; = N;—N;, which is
somewhat different from the one we found in our classical analysis of (5.23), which
anyway was only valid in the case where the number of massive electric quarks
is less than Ny — N,/n, because of the stability bound. The higgsed blocks in
the magnetic adjoint we found in (5.19) and (5.29), that were responsible for the
singularities in (5.25), are an artifact of the classical theory. When we pass to the
full quantum theory, in this pseudoconfining case all the classical singularities of
M (z) are smoothed out, and this is the reason why we get back the usual Seiberg
duality map N; = Ny — N; for the rank of the gauge groups of the low energy
SQCD blocks.

The Generic Pseudoconfining Case

In Section 5.2 we saw that, in the case of massive quarks without Yukawa
couplings, duality works offshell, that is at the level of the dynamical effective
actions. We will consider in this section the most generic pseudoconfining case,
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where in addition to the mass terms for the quarks we allow for a generic z—
dependent meson polynomial. As a consequence, the analytic properties of the
various resolvents in the quantum chiral ring get more involved and in the end the
match between electric and magnetic quantities will not hold anymore exactly
offshell, but we expect it to hold only onshell. We will not compute the effective
action, as we did above, but we will match the electric mesons with the magnetic
singlets and find a map that reproduces the Konishi anomaly in each low energy
SQCD block as a classical equation in the magnetic theory.

The Electric Theory

Let us consider the electric theory with a generic yet diagonal meson polynomial

Wa =TtV (X) + Q/m(x)1Q;,

. b . (5.95)
m(z)}c = Z mizz"15}c
i=1

We denote the roots of m(z) as z, for k = 1,...,l. The degree of the polynomial
m(z) is at most n—1 and its constant term m; must be nonzero for all the flavors
in order for the theory to be massive. The classical pseudoconfining vacuum is
(5.9), while the generators (5.8) of the classical chiral ring all vanish except

Tz =3 (5.96)

z—a;
i=1 ¢

This phase is characterized by a vanishing classical expection value for the fun-
damentals. ‘

Let us consider the generalized Konishi anomaly equations. The resolvent
R(z) is still given by (5.37). The story is different for M (z), the generator of the
mesons. When solving its anomaly equation, we have to cancel the additional
singularities coming from the zeroes of m(z). We have to specify the boundary
conditions coming from our choice of the vacuum. In this pseudoconfining case,
M ((z) is regular in the first sheet (up to the residue at infinity). Implementing
these boundary conditions we find

l
M(z) = 22 g~ Rla) 1 (5.97)

m) oz
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Let us extract the expectation value of the mesons. We can evaluate (5.43) by

expanding semiclassically the resolvent in powers of f(z)/V’(z)? as in (5.45) and
find

Sxiig— 3 4 J(@) 5.98
QX = =2 aviay T (5.98)
where we showed only the leading approximation. Here we see the crucial dif-
ference between the purely massive case (5.44) and this general case. There, we
took the semiclassical expansion and then we opened up the contour A to the
big circle, throwing away all the higher terms in the expansion. Here, we cannot
open up the contour A after taking the semiclassical expansion, because in this
process we would hit the additional poles at the zeroes of m(z) for each term
in the expansion. Due to the richer analytic structure, we are forced to keep in
(5.98) all the semiclassical expansion. We will see that a duality map exists at
the first order in this expansion.

A similar story carries on to the last anomaly equation (5.39), whose solution

with the classical limit (5.96) is

l
T() =3 5———1——~ -3 f’§<q’“) L2 (5.99)

=1 (z — k) 1 y(z)(z —zk)  y(2)

where

oS hi L= V(2) = V(z)
c(z)—V(z);z_ai——i; pr— (5.100)
is a degree n — 1 polynomial whose leading coefficient is ¢, /t, = N —[/2. Note
that in this case the fundamentals do contribute to T'(z). We have considered
a convenient parametrization of (5.100) similar to the one in (5.73) but now
slightly modified to take into account the more complicated analytic structure.
We still have ). h; = N.. Since the roots zj of the meson polynomial m(z) are
supposed to be very large in the semiclassical limit, we see that the definition of
the coefficients h; is still (5.74), the last term in (5.100) not contributing to the
contour integral. Now we can integrate the generator on the contour A to obtain
the expectation values. The first term in (5.99) does not contribute because the

zi’s lie outside the contour and we obtain
l n 7
a; . 25(N —1/2)
L 6 =
1 R(-Tk:) Z (a"i _ IEk)V”(CLi) -+ n-+1 tn -+ 5

=1
(5.101)

n
TrX? = Zhiaz +
i=1 k
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forj=1,...,n+1. By ... we denote higher terms in the semiclassical expansion
(5.45).

The Magnetic Theory and the Match

The magnetic theory corresponding to (5.95) has the tree level superpotential
Winag = TtV (Y) + gm(P, Y )q + ﬁ[ m(z)P(z), (5.102)

where we use the same notations as in (5.51) and m(z) corresponds to the electric
meson polynomial. This phase is characterized by a vanishing classical value of
the singlets and thus also of m(z).

Let us solve the anomaly equations. The resolvent R(z) is still given by
(5.53). The anomaly equation for the generator of the magnetic mesons is always
(5.55), whose general solution is

M(z) = R(2)m ™ (2) + r(z)m 1 (2). (5.103)

We recall that the polynomial 7(z) is fixed in order to cancel the additional
singularities coming from the zeroes of m(z). Then m(z) is fixed by imposing
that the magnetic singlet equations of motion are satisfied. Denote the roots of
the degree n — 1 polynomial m(z) as ey, for k = 1,...,n — 1. In this case our
boundary conditions are such that M(z) is regular in the first sheet at the zeroes
€k

L el =
rz) _ -3 Rler) L (5.104)
c— z—epm (ex)

Note that in the previous case (5.59) there was no need to keep the polynomial
7(z), since m(z) was. proportional to the quantum deformation f(z) of the re-
solvent. In that case, no additional singularity was present. Now the story is
quite different and to find the result we should first rewrite the singlet equa-
tions of motion in a more convenient way. First note that, just as we can usu-
ally trade the glueballs S; for the coefficients of the quantum deformation f(z)
[41], we can also trade the n singlets P, for the n coefficients of the polynomial
m(z) = > ., 271, that are a linear combination thereof

N 1 o~
==z > tPeii1 (5.105)
k=l

85




Now we cast the superpotential in a suitable form to replace the P(z) with the
m(z). Recall that the singlets are fixed by m(z) as in (5.52). By using (5.102),
the relevant part of the superpotential we need is

gm(Y)q — ,u,zj{i %@ (5.106)

Differentiating w.r.t. m; we get

q L A Bl ( )
for [ =1,...,n, that we can also write as
-1 | 7 o M(2)
M(z) — u*= =0, 5.108
$.2 i - 22| (5.108)

Note that while in the electric case the zeroes of m(z) are very large in the
semiclassical regime, in the magnetic case it turns out that the zeroes of m(z)
do lie inside the A contour, as we will see explicitly in section 6.5 for the cubic
superpotential. We can expand the resolvent semiclassically as in (5.45) and only
will the residue at the zeroes of V'(z) contribute. Remember that the singlet
equations of motion (5.108) are supposed to fix the unknown polynomial m(z).
Indeed the solution of (5.108) at the first order in the semiclassical expansion is’

4Pm(a)m(a:) = —f (@), (5.109)

for i = 1,...,n, where @; are the roots of V/(z) and the flavor indices are
suppressed (note that they are not summed over). Eq. (5.109) consists of n
conditions that account for the n unknown coeflicients m;.

Some comments are in order. The classical limit of (5.109) is well defined,
since both sides vanish (remember that classically the singlets vanish in this
phase). Now look at the meson generator M (z) in (5.103) with boundary condi-
tions (5.104). At the quantum level it is regular in the first semiclassical sheet,
while it has n — 1 poles on the second sheet. Nevertheless, when taking the clas-
sical limit, both R(z) and 7(z) vanish, but the result is a nonvanishing classical
value for M(z), that reproduces our classical understanding of the theory being
higgsed, as explained in Section 5.2. Here we see again the same issue discussed
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thereof. The singularities of M (z) on the first sheet are an artifact of the classical
theory in the pseudoconfining case: they are smoothed out in the full quantum
theory.

We can complete the analysis of the magnetic chiral ring by solving the
anomaly equation (5.62) for T(z) where 7 (z) and M(z) are given by (5.103) and
(5.109) and get

—

< = ilen) o(2) .
2 (z —ex) kL:; 24(2)(z — ex) + g(z)’ (5.110)

o

e=1

where we can choose the following parametrization for the degree n—1 polynomial

é(z)

&(z) = V(z)zz_az—~z p— V(er) (5.111)

k_
where we can fix ¢, /fn = N.,—n+1 and Zz h; = N.. By following the same
procedure as in the electric case (5.101), we can extract again the corresponding
magnetic expectation values

. S(2N,—n+1)
I = h; 57 e
IrY Z a + ZR(ek) Z (CL _ €k)V”(CL ) +0n 1 tn + ’
(5.112)
for 5 =1,...,n+ 1. By ... we denote the higher terms in the semiclassical

expansion.
Now we can check that our singlets P(z) in (5.14) match the electric mesons
(5.98)

. " & f(a, U AT
i=1 ¢ : =1 t

At the leading approximation in the electric semiclassical expansion (5.45), the
match is ensured by the condition (5.109) that solves the singlet equations of
motion, provided that the relation between electric and magnetic polynomials
and the quantum deformations is again

V'(z) == V'(2), m(z) = m(z), f(2) = f(2), ' (5.114)
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just the same we found in the massive case (5.88). Therefore electric and mag-
netic theory still have the same curve (5.89). Note that this is equivalent to the

simple relation between the glueballs

At this point we can rewrite the solution (5.109) of the magnetic theory is terms

of the electric quantities, recalling that m(z) in (5.51) reverses its sign

dpPmiag)m(as) = flas). (5.115)

The Konishi Anomaly

Consider the low energy theory described by the vacuum (5.9). It is a
product of decoupled SQCDs with Ny flavors. We can look at the physics of
each separate U (V;) SQCD by integrating the resolvents around the contour A4;,
that encircles the branch points of the resolvent appeared by the splitting of the
a; root. In particular, by (5.98) the mesons, even if classically vanishing, at the
quantum level satisfy the Konishi anomaly

= S; f(as)

(QQ): = (@)~ Im(a)V(a) (5.116)

where we dropped the higher terms in the semiclassical expansion (5.45).

We can perform a similar analysis in the magnetic theory: the electric
mesons in (5.116) correspond to the gauge singlets P;. The general expression
for the singlets is given in (5.52). The low energy magnetic theory is a product
of decoupled n Seiberg blocks, each one dual to a corresponding electric SQCD.
The relation corresponding to the Konishi anomaly (5.116) in each low energy
block is

(5.117)

and it matches the electric one due to the relations (5.109) and (5.114).
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5.8. The Electric Higgs Phase

In this section we will find the classical magnetic solution when the electric
theory is in the higgs vacuum and check its properties. Then we will solve
the chiral rings and look for the duality map. In the end we will consider the
analytic structure of the solution we found as well as its behaviour when moving
poles between the sheets. Our notations will be as follows: we will describe the
classical magnetic theory with electric couplings, while in the quantum theory
we will distinguish explicitly electric and magnetic couplings.

The Classical Vacua
The Electric Theory

To be definite we will consider the case in which only one flavor, e.g. the last
one, is higgsed. We will begin by considering the classical theory with the simple
KSS perturbation, namely the special case of (5.6) with

in n = ~
W, = mTrX 1+ moQn, XQN +miQn, QM. (5.118)

This theory does not confine in the IR. Instead, the superpotential (5.118) drives
the flow to an interacting SCFT. The higgs vacuum in the electric theory is
obtained by giving a classical expectation value to the last flavor of fundamentals

Onye = (h,0,...,0), Q&7 =(h,0,...,0), (5.119)
then the quark equations of motion fix the value of the adjoint to X =
diag(z1,0,...,0) where z; = —m;/my. The expectation value of the quarks
is fixed by the adjoint equations of motion to hh = —tnxl /mo.

As usual, we can think of the low energy theory in two stages. First, by
higgsing the quarks we decrease the number of colors from N, to N, — 1. The
quarks Qﬁ“vf, Qév 7 for « = 2,..., N, become the transverse component of a mas-

sive vector superfield of mass squared ﬁh, while the components X1, X¢ for
a=2,...,N, of the adjoint replace the last flavor, so the total number of flavors
does not decrease. Secondly, this latter new flavor acquires a mass tn:ﬂf—l by
expanding the adjoint superpotential. The low energy theory is a U(N, — 1)
gauge theory with Ny — 1 flavors. The matching of the electric scales is

oNe—N; _ (—Z1) \ 2(N.~1)—(N;-1)
Ay = g At (5.120)

89




The Magnetic Theory

The magnetic theory corresponding to (5.118) is defined by

Winag = == T+ 75 2ijy Tq+ma(Pa)y! +ma(Pr)y. (5.121)

j:

Unlike the previous pseudoconfining case, this vacuum is characterized by a non-
vanishing classical expectation value for the singlets, corresponding to the electric
higgsed quarks, that we classically match as

N ~ y N t ZBn i—1
(P! = Qn, XI71QY = —~”?21~w91 , (5.122)
for j =1...,n. In this case the classical chiral ring is more complicated, due to

the nonvanishing singlets. In addition to the usual singlet equations of motion
(5.15), we have also the quark

S Pi(Yig) =0, > (@) =0, (5.123)
=1

g=1

as well as the adjoint equations of motion. Nevertheless one can check that, in
the convenient notation of (5.19) and (5.20), the adjoint is in block diagonal form
Y = diag(Yhiggs,0, - - -,0) and the nonvanishing part of the solution is

Yhiggs :|1> ('Ul + ban—la
n—1 T j—1
lv) = — Z T1 <5;> 17), (5.124)
1g*) =bal1),  law,) = baln —1),

where by is given by (5.17). The first (n — 1) x (n — 1) block of the adjoint reads

—I by O \
——$1(££—21) 0 bz
Yhiggs = : 0o . . (5.125)
. by
—oy(B)? 0 . L0
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Let us figure the low energy theory. First, by higgsing the theory we break
the gauge symmetry as U(N,) — U(N, —n + 1) and note that N, —n + 1 =
n(Ny — 1) — (N. — 1), as expected from the electric theory. Accordingly, q~iv H
qj‘\‘,f, Ve Yefora=mn,...,N,,m=2,...,n—1and s = 1,...,n—2 conspire to
join n — 1 massive vector superfields in the fundamental of U(N, — n + 1) with
mass by. The flavor that disappears is replaced by a new flavor Y*, Y.*~! for
a=mn,..., N, so the number of flavors does not decrease. Secondly, we look for
a mass term for the new flavor coming from the superpotential

by
n—+1

TrY™™ oty (—2)by PYRYS, a=n,..., N, (5.126)

The number of flavors thus decreases by one unit also in the magnetic theory.
The matching of the magnetic scale goes as follows

2N.—Ny _ bY co(Ni—nt1)— (1)
A = e e 120

We can use the relation (3.8) between the scales and find that this solution is
consistent with the flows

o 2N Np—1
AZWe=1)=(Ny—1) 3 2(Ne—n41)—(Ny=1) _ (/,L ) . (5.128)

N.—1,N;—1 Ne—n+1,Njs—1 2
n

Generic Polynomial Deformation
We can generalize this to an arbitrary polynomial deformation

We = TrV (X) + maQn, X QY7 + myQn, QN7 (5.129)

The classical solution is the same as in (5.119) the only difference being that now
ilh - —V’(:cl)/mg.

In the magnetic theory, the corresponding solution is as in (5.124) but now
the vector |v) is replaced by

n—1 T j—1 j—1 ¢
1 —ltn-l-1 .
[v) = — E (E) <x1 + E z7 , ) 7). (5.130)
=0 "

Jj=1

Now that we have the generic adjoint polynomial V(z), we can keep on
flowing by further breaking the gauge group down to the low energy SQCD
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blocks. The electric adjoint is then X = diag(z1,a1,-..,a,), where a; are the
roots of V’(z) that appear with multiplicity N; such that >, N; = N, — 1. In
the magnetic theory we have correspondingly a bunch of diagonal blocks ¥ =
diag(Yniggs, Yasr»- - -+ Ya, ), where the first one is (5.130) and the others are as in
(5.22). In this vacuum the relation between the low energy electric and magnetic
gauge groups is

N;=N; — N, —1, (5.131)

since in the higgsed electric theory we have > .-, N; = N. — 1. We can also
compute the classical expression of the generators of the chiral ring operators in
this vacuum. The resolvent R(z) vanishes, while

v m(z)
Ma(z) == u* V'(2) = V'(z1)’
T i——Ni 4 V& Z Vi)

z—ay dz z— X1

(5.132)

i=1

Note that (5.132) gives the correct behaviour at infinity T, ~ N./z since
Z?:lNi =N,—n+1.

Let us mention that this description is agreement with the expectations from
electric magnetic duality. If we compare this solution to the pseudoconfining one
(5.20), we see that while the electric theory, being higgsed, becomes more weakly
coupled, in the magnetic theory the rank of the higgsed block in the adjoint
decreases from n to n — 1, thus making the theory more strongly coupled.

One can find a small generalization of the solution (5.124) by turning on
higher meson perturbations in the electric theory, always along the last electric
flavor direction. In Appendix C we will give more details about the solutions with
several higgsed electric colors, but now let us add just few comments. In this way
we can have more higgsed entries in the same flavor Qs = (h4,...,R;,0,...,0)
and correspondingly X = diag(z1,...,z,0,...,0), the electric theory being at
weaker coupling. The general structure of the magnetic expectation values is
that the first Y4445 block decreases its rank down to n —I. Hence, the magnetic
side looks more strongly coupled. The rank of the generic Seiberg blocks is still
N; = Ny — N; — 1 and one can check that still

> (Nf=N;—1)+n—1l=nN; — N, = N, (5.133)

=1
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since now Z?:l N; = N.—1. We can carry on this procedure until [ = n—1: one
further higgsing would get the rank of Y44, vanished. In fact [ =n — 1 is also
the maximal number of Higgs eigenvalues we can turn on on the same electric
flavor, i.e. the largest value the degree of the meson polynomial m(z) can reach,
higher mesons being trivial in the electric chiral ring. Finally, if we allow for
different electric flavors to get higgsed then in the magnetic theory we have to
add a new block analogous to Y},;44, for each higgsed flavor. We can not go on
higgsing forever, issues similar to the one that led our discussion of (5.34) arise
also in this phase.

The Chiral Ring
The Electric Theory

Let us consider the minimal case in which the electric theory admits a higgs
vacuum and we can safely apply the DV method: all flavors are massive and a
Yukawa interaction is turned on only for the last flavor. The tree level superpo-

tential is
Wiree = TiV(X) + m1Qr Q7 + maQn, XQN, (5.134)

so that the meson polynomial reads m(z)§ = mlé}c + zmﬁ}vf 5{\,f and has only
one root £; = —my/mgy. We give a classical expectation value to the last flavor
of quarks and consider the following solution to the equations of motion

X =diag(z1,a1,...,a,)

~ ~ e (5.135)
QNf :(hlaoa"'70)) Q f:(h170>"'70))

where each a; is a root of V'(z) and has multiplicity N; such that Y ., N; =
N.—1. The adjoint equations of motion set hyhy = —V’(x1)/my. In the classical
chiral ring the resolvent R(z) vanishes, while the nonvanishing generators are

1 “ N
T C = )
(2)]a z_ml-l‘;z_az_ -
B V'(z1) de 1 V'(xy) (5.136)

N
My?(2)|a = =
Nf( )e z—11 Jg, mx;(w) mg z — Ty

Let us solve the anomaly equations. The resolvent R(z) is always (5.37).
The story is different now for the generator of the mesons M(z). The boundary
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conditions in the higgs vacuum require a pole on the first sheet along the last
flavor direction. The solution along the pseudoconfining flavor directions is the
usual one

M(z)f = R()mi*6f,  (£,0) # Ny Np), (5.137)
while the solution along the last flavor direction is

M@y =2 Vi) = Ro) o (5.139)

mi1 + 2MmMo Z— I

We can integrate (5.138) on the contour A that encircles all the branch points
of the resolvent and obtain the quantum expressions for the mesons. There are

two types of mesons, the ones in the (f, f) # (N, Ny) flavor directions that are
exactly given by (5.44), and the ones in the last flavor direction that are

a] " f(ai)
+ a;ma2) V" (a;)

N, XIT1QNs = — 5.139
where the dots stand for higher terms in the semiclassical expansion of the re-
solvent (5.45).

The Magnetic Theory and its Analytic Structure

The magnetic theory corresponding to (5.134) is defined by the following tree
level superpotential

Winag = TrV (V) + q—fm(y);'Qf + mitrPy + o (Pz)%;, (5.140)

The anomaly equation for the resolvent R(z) gives the usual solution (5.53). The
equations for M (z) and the singlet equations of motion now have different bound-
ary conditions depending on the flavor directions. The first (f, ) # (N £, N¢)
flavors have the same solution (5.58) and (5.59) as in the first massive case we

considered, in which m(z) is proportional to the quantum deformation
M(2)} =R(2)m(2)""4,

]‘T(z) g (5.141)

42 (m )17

m(z)§: -
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The remaining flavor direction (f, f) = (N4, Ny) corresponds to the higgsed
electric meson. The new boundary conditions for M (z) are n—1 poles on the first
sheet and no pole on the second sheet, as opposed to the previous pseudoconfining
case (5.103) in which no pole was there on the first sheet and n—1 poles appeared
on the second sheet

n—1

_ _, .
- — 3 1
M (z)y) = R(ZJ)\, -y Vo) = Riex) -, (5.142)
! m(2)N; o z €k ™/ (ex)n,
where e for k =1,...,n — 1 are the roots of m(z).

The picture of the analytic structure of M (z) is the following. We saw that
in the pseudoconfining electric case (5.9), the magnetic solution (5.103) does not
have poles on the first sheet, but it has n — 1 poles on the second sheet. In
the electric higgs phase (5.119), the magnetic solution (5.142) gets n — 1 poles
appearing on the first sheet and no pole on the second sheet. The classical limit
of this last solution has still n — 1 poles, coming from the second term in (5.142)
and the fact that classically m is nonvanishing. In the classical limit, these poles
are very large, but in the quantum theory they move to the region near the
branch cuts, as we will check explicitly in section 5.4. Now let us move back
to the electric theory and higgs two color direction on the same electric flavor,
replacing (5.135) with

Qn, = (h1,h2,0,...,0), QN7 = (hy, ha,0,...,0). (5.143)

and X = diag(x1,22,0,...,0). The gauge group is higgsed down to U(N, — 2)
and the electric theory becomes more weakly coupled. Classically we saw in
(5.133) that the rank of the corresponding magnetic higgs block decreases by
one. Quantum mechanically this corresponds to moving one of the n — 1 poles
in (5.142) from the first to the second sheet

Ny R(z) TV'(ew)—R(ex) 1 Rle) 1
MEN, =50 "2 ama ) Goeym) O

In this way the magnetic theory becomes more strongly coupled. In the classical
limit /(z) is nonvanishing so we are left with just n — 2 poles. Note that we
can higgs at most n — 1 electric color directions on the same flavor, QNs =
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(h1,--.,hn-1,0,...,0), corresponding to the largest degree the electric meson
polynomial m(z) can have. On the magnetic side, there are at most n — 1
poles to be moved all the way to the second sheet. When we pass them all,
the corresponding meson generator looks much like (5.103), but actually it is
different. While the classical limit of (5.103) is nonzero due to the fact that m(z)
vanishes classically, in this case m(z) is always nonvanishing and therefore the
meson generator vanishes classically.

In the previous pseudoconfining case, we noted that, even if classically M (2)
has some singularities, in the quantum theory these singularities are smoothed
out and we end up with a regular expression in the first semiclassical sheet. In the
higgs case, instead, the singularities we might expect in the classical generator
do not disappear at the quantum level but are genuine poles in the quantum
expressions (5.142).

We still have to fix m(z) by requiring that the singlet equations of motion
(5.108) are satisfied. The contour A in (5.108) encircles all the branch points
of the resolvent, but now it encircles also the n — 1 poles at e;. The evaluation
of this contour integral is much more complicated than in the pseudoconfining
case (5.108), since we get additional residues at eg. Dropping higher terms in
the semiclassical expansion of the resolvent (5.45) and showing just the leading
approximation we get

i a1t f(a,) o @ (a;) ”’z_:l 2R(ex) = V'(ex) -1 _ 0, (5.145)

@)V @) V@) | e wie)

for I = 1,...,n. Again we see that (5.145) amounts to n conditions that im-
plicitely fix the unknown polynomial m(z). However, in this case it is hard to
solve these equations explicitly since the roots e appear inside the resolvent.

Now consider the matching (5.86) between the gauge singlets and the electric
mesons. The mesons in the directions (f, f) # (Ny, Ny) match as in the first
massive case, reobtaining the map

V)=V, f@)=f), mi-ml.  (5.149)

The last direction (f, f) = (Ny, Ny) gives a new condition, that we can write as

-1 Ny 2771(2)%2
%IZ Mel(z)Nf +,LL T(Z)— :0, (5147)
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for 1 =1,...,n. The electric meson generator is given by (5.138) and we replaced
the magnetic adjoint polynomial with the electric one by (5.146). The contour
A’ now is a very large contour that encircles the branch points of the resolvent
as well as the electric pole at the point x; in the first sheet. Evaluating the
contour integral at first order in the semiclassical expansion and dropping the
higher terms we find

24773 (as) \EII()GA,) e )mz = zy 1""2 QCLI/’//7ZL((1z> =0, (5.148)

=1

forl=1,...,n

Had we not allowed the contour to encircle the pole at z;, this expression
would have had an inconsistent classical limit. Let us consider in fact the classical
limit of the conditions we have found so far. This is achieved by setting to zero
the quantum deformation f(z) so that the resolvent vanishes in the first sheet.
It is more transparent to write the two classical conditions as contour integrals.
We fix the classical polynomial m;(z) by the singlet equations

fid & [“ 2 177'((2)) N Z((;) } =0, (5.149)

forl =1,...,n, where the contour encircles all the poles of the two meromorphic
functions. By picking up the residues we get

n /\

m(a;)
22 e +> e ek) =0, (5.150)

k=1

where we hatted the classical roots €. This condition is much easier to solve
than (5.145) due to the disappearance of the resolvent. Once we fix m;(z), the
classical limit of the matching condition (5.147) is satisfied

7§ e [uz mz) | VI(Z)} =0, (5.151)

Vi(z)  m(z)
for l =1,...,n, whose evaluation yields
2 Z VmC’(az) 27V (z1)my ' = 0. (5.152)
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5.4. The Cubic Superpotential

In this section we will illustrate the pseudoconfining and higgs phase compu-
tations, worked out in the previous sections, in the simplest example that allows
for a higgs phase, namely a cubic interaction for the adjoint.

The Pseudoconfining Case

Let us consider an electric tree level superpotential as in (5.134) and let us
specialize to n = 2. We take the following adjoint polynomial

V'(2) = t1z + ta2?,

Whosei roots are a; = 0 alld as = —t1/t;. We also have a meson polynomial
m(z)§ = m15§ + zm25jcvf(5f\,f. The resolvent is 2R(2) = V'(2) — /V'(2)2 + f(2)
and its quantum deformation is f(z) = fo + f12.

In the magnetic theory, all the flavor directions (f, f) # (INy, Ny) correspond
to the massive case solved in Section 5.2. In the following we will focus instead
on the last direction (f, f) = (Ny, N¢) only and suppress the flavor indices. We
will see an explicit example of the computations in Section 5.2. Let us consider
m(z) = my + Moz, whose one root we denote as e; = —my /my. The solution
(5.115) of the magnetic theory is given by the condition 4p2m(a;)m(a;) = f(a;)
for ¢ = 1,2, from which we get the 7m(z) coefficients in terms of m(z) and f(z)

o
4pcm,’
5.153
P tofo—tifi  fo (5-153)
2 4/1,2131 t2m1 - t1m2 ma ’

so that the singlet equations of motion (5.15) are satisfied. This condition also
ensures that the singlets P; extracted from (5.14) match the electric mesons
QXI1Q.

We would like to check that the root e; lies inside the contour A that encircles
the branch points of the resolvent. Consider the classical limit of this setup. In
this limit both f(z) and 7m(z) vanish, but we still have to satisfy the singlet
equations of motion. We first want to obtain the dependence of f(z) on the
total glueball and then perform the limit by sending the glueball to zero. For
this purpose we have to choose a vacuum for the electric theory and solve the
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factorization of gauge theory curve. Let us consider the phase in which the gauge
group is unbroken, which corresponds to the one—cut case, namely the electric
adjoint is X = diag(ay,...,a;). Then the curve factorizes as

V'(2)* + f(2) :tg(z~k)2(z—a+b)(z—a~—b), (5.154)

with one double root and two branch points. We already know from (5.42) that
f1 = —4t,S and we can find [42]

__h
k= & + a,
t
a .—_ﬁs + O(5?), (5.155)
S
b=y 5 (2+0(S))

We don’t need the full result, but just the leading terms in the glueball, from
which we find fo = ~2¢1.5 + O(S?). Then in the classical limit S — 0 we have

fo ot
et Os). (5.156)

The root e; of m(z) in the classical limit is

~ iy tamq —tymg
ey — —

= . 0.157
tg t1m2 - 2t2m1 ( )

In the limit of large mass m; for the electric quarks, we find &; ~ —-5%, which

is not large but lie inside the contour A that encircles the branch points of the
resolvent, as we claimed below Eq.(5.108). In particular, this classical pole is
halfway between the two roots of V'(z).

The Higgs Phase

We keep the same superpotential, but consider now the electric higgs vacuum
X = diag(z;,0,...,0) and

Qny = (h1,0,...,0), QM7 = (y,0,...,0), (5.158)
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where the gauge group is higgsed down to U (N, —1) and the electric equations of
motion set h1hy = —V'(z1)/m2. This vacuum is characterized by a nonvanishing
classical expectation value for the electric mesons
J=lyrr
= i—1 N N z; " V'(z1)
Qu, X7 71QNr = (Pj)Nﬁ = (5.159)
We want to check the prescription we outlined in Section 5.8 in the magnetic

theory. In the higgs phase the singlets P(z) as well as the magnetic polynomial
m(z) acquire a classical expectation value. From (5.159) we can read out their
classical expressions

P(z)cl - 22 (Z+£1)7
(5.160)
"——2)"(751 +taZy + zta).

Now we would like to solve the quantum theory at first order in the semi-
classical expansion. If we look at the flavor directions (f, f) # (Ny, Ny) we find
the duality map (5.146), that we can use in the following computation. In the
higgsed direction, first we have to solve the singlet equations of motion (5.145)
and then check that the matching relation (5.148) is satisfied. But this is kind of
hard, due to the presence of the resolvent in the last term of (5.145) that makes
the equations pretty much involved. However, since the solutions of (5.148) must
be solutions of (5.145) too, the best we can do is we solve the matching condition
(5.148) and then try to check that this solution satisfies the singlet equations of
motion (5.145), thus getting it the other way around.

The matching condition at first order is

-1,

i o fle) ey e | | 2R(@) = V(@) a5 60

am(a)V(a) "V (ay) g 1

=1
for I = 1,2. This can be solved easily with the result

_ Jo—4AVI(@E) V(7)) - 23(561)]
4[,1, m1

Y (5.162)

Mg = m[f(fﬁl) 4V'(z1)[V'(Z1) — 2R(Z1)]] -
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Quantum mechanically, the one root of m(z) is ey = —my/ma. If we take
the classical limit of (5.162) we obtain the expected expression (5.160) and its
classical root € = —z7 — t1/t2, by identifying m(z) = m(z). In the semiclassical
electric picture in which the higgs vev z; is large, this root gets very large, too.
This phase is very different from (5.157), where for large electric quark masses
we got small ej.

It would be very hard to check that (5.162) satisfies the singlet equations of
motion (5.145) at first order in the semiclassical expansion, due to the fact that
the resolvent should be evaluated at the root of 7 (z). But one can still easily
check that indeed the classical limit of the singlet equations

2 m(az Ll Vi(e) _ _
Z Ty T ey =% =L (5.163)

is satisfied by €; and the classical limit of (5.162).

5.5. Discussion

Let us summarize our results and suggest some further speculations. At the
classical level, we generalized the KSS solution to the case of polynomial super-
potentials, allowing for generic meson deformations, and we found the solutions
of the magnetic theory corresponding to the electric pseudoconfining and higgs
vacua. We considered then duality in the quantum theory and we used the DV
approach to solve for the chiral rings just above the mass gap: we studied the
effective glueball superpotential. We analyzed the following three cases:

1. The electric meson superpotential is a mass term for all the flavors. We saw
that electric-magnetic duality holds exactly offshell in this case.

2. The generic pseudoconfining phase, where we allow for a generic meson de-
formation, has a way richer analytic structure. We matched the electric
mesons with the magnetic singlets at first order in the semiclassical expan-
sion of the resolvent. In this way we found a condition that reproduces
the Konishi anomaly equation in the low energy SQCD blocks and their
magnetic dual. In this case duality does not hold exactly offshell.

3. In the electric higgs phase, we found the solution to the magnetic theory, at
first order in the semiclassical expansion, and showed that it is consistent
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with the classical limit. Neither in this case does duality work exactly off-

shell. Moreover, while in the pseudoconfining case the classical singularities

in M (2) are just an artifact of the classical solution and in the quantum the-
ory they disappear, in the higgs case the classical singularities are preserved
in the quantum theory.

We could draw a picture of the analytic properties of the magnetic theory as
we continuously interpolate between different higgs vacua in the electric theory
(when we move poles from the second to the first electric sheet). An interesting
extension of our analysis would be to show what happens on the magnetic side
when we smoothly pass from the pseudoconfining to the higgs phase in the electric
theory. In this way, one might shed some light on the onshell process that takes
place when a branch cut of the resolvent closes up, as recently investigated in
[43]. On the electric side this is a strong coupling phenomenon, but one should
describe it easily in the dual regime.

On the other hand, it would be interesting to use our quantum duality map
to gain insight on the meaning of the electric parameter L introduced in [19] as
the degree of the determinant of the meson polynomial B(z) = detm(z). This
parameter plays the role of an effective number of flavors and is related to the
appearence of instanton corrections to the classical chiral ring. In particular,
if the electric superpotential V(z) has degree N, + 1, when L > N, the strong
coupling analysis shows that the classical Casimirs TrX7 for j = 1,..., N, are
modified in the quantum chiral ring by terms proportional to the instanton factor.
It would be interesting to understand the corresponding phenomenon in the
magnetic theory. In our setup, L < Ny(n—1), so the condition for the appearence
of instanton corrections is related to Ny < N, on the magnetic side.

A natural generalization of our analysis would be to consider SO(N,) and
Sp(2N.) gauge groups. In particular, one could translate into a magnetic
language the map between Sp(2NN.) theory with an antisymmetric tensor and
U(2N. + 2n) with an adjoint, recently proposed in [44].

We would like to make one last remark on the theory without superpotential,
whose magnetic dual is not known. In [16] it was suggested that one might try
to obtain this theory as a certain limit of the KSS theory with superpotential
t, TrX™* 1. Since the limit of vanishing t,, is singular, it was suggested to study
the £ — oo limit instead, so that the magnetic dual might look like an U(co)
gauge theory, which is expected to behave like a string theory. The story might
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be simpler, though. Due to the recent work of Intriligator and Wecht [3], we
know that an analogue of the conformal window of SQCD exists also for the
KSS theory: it is the region in the range of Ny in which both the electric and
the magnetic deformations TrX™*! and TrY ™! are relevant [29]. Now, if we
take a sufficiently large number of flavors we can make the deformation TrX"*!
irrelevant, but still keeping the electric theory asymptotically free. Therefore,
the electric theory at the fixed point will be the theory without superpotential.
But on the magnetic side, the corresponding superpotential keeps being relevant
and we have the usual full magnetic theory. So we might not really need to take
k very large to remove the electric superpotential, hence the magnetic dual of the
theory without superpotential need not be a kind of string theory. This point
might deserve further study.

Appendiz A. Some Properties of the Effective Glueball Superpotential

In this Appendix we will consider some properties of the coefficients h; in-
troduced in (5.74) and, by using these expressions, we will prove (5.75) up to an
assumption of integrability.

A.1. Properties of the h;

Consider the function V'(a;) of the couplings ¢; defined as

n
tas .
Vi) = —al®, (5.164)
j=17

where a; is solution of V’(a;) = 0. Note that we are considering the a; = a;(t;)
as functions of the couplings. Taking a derivative of V(a;) with respect to t; we

obtain
oV (a;) . af“
Ot K +1’

(5.165)

the second term in taking the derivative vanishing since it is multiplied by V'(a;).
Since (5.165) is a derivative, it fulfills the condition

9 aftl
et
ot k+1

I+1
a;

+1’

8
T (5.166)

o~
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and therefore
8 ot 5 otk
2 — 2 i
Otn_1 7 +1 Otn_rj+k

(5.167)

which is our classical integrability condition.
Now we will assume that also the effective superpotential (5.75) satisfies the

integrability condition

= . 5.168
atlatj 525_7'6?51 ( )
By using the classical integrability (5.167), we find the relation
n ; ]+1 n +1
Z Z (5.169)

Note that this relation will hold also for the d; defined in (5.77)

En: 8d1 af“ . - 6‘d1 ai‘H (5 170)
—~ Ot j+1 Ot l+1 '

Finally, let us consider a scaling argument on the coefficients h; =
hi(tk,Nl,Sj). Since

N, c(z)
N, = ;hz =Y oo (5.171)

if we rescale the glueballs S; — AS; and the couplings tx — Atx, we have corre-
spondingly that V’(z) — AV’(z) and f(z) — A?f(z), while the N; are unchanged
n (5.41). But by (5.171) also the h; are invariant under the scaling, meaning
that they are homogeneous functions of the couplings and the glueballs

n
0 0
ti— +5; h; =0, 172
;(zatiJr as) L= (5.172)
and this property carries on to the d;.

A.2. Bvaluation of Wers

ejJ
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We will prove, up to the assumption (5.168), that, in the notations of Sec-
tion 5.2, if we define

Werr = > diV(as), (5.173)

then we have .

OWesr 1 i1
- hyal 1. 5.174
ot; G +1 ; % (5.174)

Let us differentiate (5.173)

OWerf ~= d; 1 od; af a;
= Z o al® +Z e Zd > traf,  (5.175)

J/7c1

but the last term vanishes since V’(a;) = 0. Now we need to evaluate 8d;/dt;.
First note that dyd; = d; — h; where y = 3. logS;. Then by using the
homogeneity (5.172) of the d; we have that

_ 1
Z tk m By d;. (5.176)

Then we can use the integrability condition (5.170) for the second term in (5.175)

and get
° oW, oddt L od; oY
eff :Zd_ a; i 9

O L i+l ooyt

n gl n J+1

= dz L — — Ry (0.
St Seewds e
1= =1
n j+1

:Zhi x 1
i=1 J+

Appendiz B. Several Higgs Solution

In this Appendix we will generalize the higgs solution (5.124) to the case
in which more than one electric color direction is higgsed on the same electric
flavor.

B.1. Two—-Higgs case
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The Electric Theory
Consider the electric theory with superpotential

t - ~
W = —TeX ™ 4 maQ, X2QN +maQu, XQN7 + miQu, QY. (5.178)

We can get a classical vacuum in which the gauge group is higgsed as U(N,) —
U(N. — 2) by considering the following expectation values

X =diag(z1,z2,0,...,0)

. o v (5.179)
Qn, =(h1,h2,0,...,0), QY7 = (h1,hs,0,...,0),

where h;h; = —V' (z;)/m'(z;). We denoted by z1 2 the two roots of the meson
polynomial m3z2+maoz-+my. Asis well known, the roots of a quadratic algebraic
equation satisfy

Mo mq

—~(z1 + 22) = ms’ T1T2 = s (5.180)

The Magnetic Theory
The superpotential for the magnetic theory is

tn
n+1

Wmag _ Tan+1 —+ q~ﬁ’L(P, Y)q + ml(Pl)]]:,r; + mQ(Pz)%i + mg(Pg)%;

(5.181)
By (5.128), the singlets acquire the classical expectation value P; = lehlx{_l +
ﬂzhzxg"l corresponding to the electric mesons.

We expected the magnetic gauge group to break down to U(N,) — U(N, —
n+2), so that the vev for the adjoint will be a nonvanishing block of rank n — 2.
By using the property (5.180) of the roots of m(z) we can find the solution to
the singlet, fundamental and adjoint equations of motion. In the notations of

(5.20), the only nonvanishing entries in the adjoint are

Y =l1>(’02| + ban_z,

n—2 L i_ i 13/2] i—2k k
17-t ma\’ . ma\’ my

J:

. [7/2]
j JY(_ M1 :
+5even (2) ( m3> jl'j))
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while the fundamentals are |qy,) = bs|n — 2) and |§"7) = bs|1) and b3 is defined
in (5.17).

B.2. Several Higgs

The Electric Theory

Consider the electric theory with a generic meson polynomial on the last Aavor

tn +1 A N
Wel :n—l—lTan +Qme(X)Q f)
I+1 (5.183)
m(z) = Z mpzF1
k=1
The polynomial m(z) has [ roots that we denote Z1,...,x;. The following prop-

erty between the coefficients of the polynomial and its roots holds

ml+1 ki1<ko<...<k;

We can consider the following vacuum

X =diag(z1,z2,...,2,0,...,0)

~ - - - (5.185)
Qn; =(h1, b2, ... 0, 0,...,0), QN = (h1,ha,...,hy,0,...,0),
where h;h; = —V’(z;)/m/(z;). Note that each root zy can appear just once
in the adjoint expectation value. In this way we break the gauge symmetry as
U(Ne) — U(N; —1). We can higgs at most n — 1 colors on the same flavor,
corresponding to the largest degree the meson polynomial m(z) can have.

The Magnetic Theory

According to the above discussion, in the magnetic theory we will have to solve
the singlet equations of motion

VY™, =T, =1,
Mt (5.186)

@'Yign, =0, j=0,...,n—1-2,

107




where we used (5.184) to ease the notation and b;y; is defined in (5.17). The
solution for the adjoint, which generalizes (5.182), can be sketched as the nonva-
nishing block of rank n —{

Y :|l>(vll 4+ b1 R,

n—I| j—1 7
m
v — ...
o) = ];b—l-l K ml+1>

lan;) =biyaln — 1), 1gV7) = b)),

17), (5.187)

where the dots stand for an expression analogous to the one in (5.182) but more
involved. In this way we break the magnetic gauge group down to U(N.—n-+1) =

U(n(Ny —1) — (Ne —1)). Note that this solution holds only for [ <n —1, as we
saw on the electric side.
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6. Dot A NEW PHASE AND THE CUBIC CURVE

In the previous Chapter we have given a detailed analysis of the effective
description of the A,, theory and its dual in the confining phase. The next fixed
point in the ADFE classification of (3.1) is the D,,1 5 theory. Here we will present a,
detailed analysis of the chiral ring of this theory in the confining phase, classically
as well as quantum mechanically. This discussion follows [45]. We discussed in
Section 5.2 the SCFT living at the infrared fixed point, its phase diagram (3.11)
and Brodie’s magnetic dual, following [3][22]. Here we will consider an SU(N,)
rather than U(N.) gauge group and we will do this by adding two Lagrange
multipliers that enforce the tracelessness condition on the adjoints X and Y.
The tree level superpotential of the electric theory will be (1.8). The reason
why we drop the overall abelian factor is the following. If we consider the low
energy theory we flow to in the generic confining vacuum, we find a product of
semiclassically decoupled SQCDs. In the U(V.) theory the low energy spectrum
of these SQCDs contains a massless degree of freedom consisting in the overall
U(1) part of the second adjoint TrY. This field, albeit being neutral under
the gauge group, nevertheless couples to the light flavors through Yukawa type
interactions. When a massless particle is present in the low energy dynamics, we
cannot make use of the DV method any more, since it requires the presence of a
mass gap. In general, as we will see, the duality map in the SU(N,.) case is way
more complicated than the U(N,) case, since we need to impose the tracelessness
condition on the magnetic adjoints.

In this Chapter, we will at first introduce the classical theory and show that
classically there are three different phases: pseudoconfining, abelian higgs and
nonabelian higgs phases. The one—adjoint theory we discussed in the previous
Chapter has only the first two phases instead. The pseudoconfining vacua are
interesting because of the presence of one as well as two dimensional irreps of
the equations of motion, giving rise to what we will call abelian and nonabelian
pseudoconfining vacua.

In Section 6.2 we will then use the generalized Konishi anomalies to compute
some anomalous Ward identities, following [21]. At the end we will obtain the
curve of the gauge theory, that is a cubic algebraic equation, giving rise to a
three sheeted covering of the plane. This is a new feature, since the usual one-
adjoint SQCD is described by an hyperelliptic Riemann surface. We will analyze
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in detail the semiclassical expansion of the resolvents and identify their analytic
structure in terms of the branch points and the holomorphic differentials. There
are some subtleties in the definition of the glueballs for the nonabelian cuts, due
to an automorphism of the cubic curve.

We will begin the study of the phase structure of the quantum theory in
Section 6.3, where we study the meson operators. We will see that each of the
three phases is characterized by the meson generator M (x) being regular on one
of the three sheets. In this way we can associate each sheet to a different phase
and we will confirm the general idea that, if an /' = 1 SQCD has n different
classical phases, then its curve is a degree n algebraic equation, giving rise to an
n—sheeted covering of the plane.

The three phases are continuously connected in the full quantum theory, and
we will show this in Section 6.4 and 6.5 by studying the analytic behaviour of
the resolvent 7T'(z) as we vary the parameters in the bare lagrangian. In Section
6.6 we will consider the D3 case in detail.

In Section 6.7 we will confirm a prediction of the a theorem [3], that the
chiral ring of D,y for n’ even, classically untruncated, gets truncated along the
flow from an odd n, n > n/. In Section 6.8 then we discuss our proposal that
the number of sheets of the algebraic curve is equal to the number of branches of
the semiclassical theory and check it to hold in the case of SQCD with different
extra matter.

Finally, in Section 6.9 we will address the magnetic theory. We would like to
extend the duality map of the Brodie’s SCFT [22] to the generic confining phase
superpotential, by borrowing some tricks of singularity theory, along the lines
of KSS [16]. The classical duality map can be worked out, with some unusual
features. Unfortunately, the anomaly equations do not close on a finite set of
resolvents and so we cannot use the DV method to study the quantum theory
as in [37]. Only in the D3 case we can completely solve the quantum theory and
find the map between the quantum deformations.

In Section 6.10 we present some speculations and further directions.
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6.1. The Classical Theory

In this section we study the classical vacua of the theory. We have the usual
pseudoconfining vacua, with vanishing fundamentals, and we distinguish them
in abelian ones, that is one dimensional irreps of the algebra of the equations of
motion, and nonabelian ones, denoting two dimensional irreps. Then we have
the abelian higgs vacua and a new classical phase that we will call nonabelian
higgs vacuum. The theory is slightly different depending on whether n is odd or
even. In the following we will consider in detail the former case. In the latter, as
we will show, the pseudoconfining vacua are still one and two dimensional only,
but the chiral ring is not truncated. The analysis of the quantum theory goes
through for both cases with analogous treatments.

Consider an N = 1 supersymmetric SU(V,) gauge theory with matter con-
tent consisting in two chiral superfields X and Y in the adjoint representation,
Ny fundamentals Q7 and N + anti-fundamentals @? (f and ]ch are the flavor in-
dices). We let this theory flow to its IR fixed point and then we turn on the
following tree level superpotential

W =TeV(X) + ATrXY? + oTrY + TrX 4+ Q m(X)Q. (6.1)

where we suppressed flavor indices and we introduced the adjoint polynomial

n
tx
Viz)=>)_ " 1zk+1 (6.2)
k=1

and the meson deformation m(z) = m; + mg z is diagonal in the flavor indices,
while a and 3 are two Lagrange multipliers enforcing the tracelessness condi-
tion.?! It will be convenient in the following to separate the odd and even part
of the adjoint polynomial as V'(z) = —wvy(2?) — zv_(z?). The equations of
motion are .

VI(X)+AY? + maQQ =0,

(6.3)
MX,)Y}+a=0,

21 The superpotential (6.2) would be irrelevant in the UV for n > 2, however there
always exists a range of flavors Ny such that it is a relevant deformation of the IR fixed
point [3][28].
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Qm(X)=0, m(X)Q=0. (6.4)

The (6.3) are the X and Y equations of motion, while (6.4) are the equations
for the fundamentals. In addition, by varying (6.1) with respect to the Lagrange
multipliers we get the tracelessness condition Tr X = TrY = 0.

Pseudoconfining Vacua

We consider at first the pseudoconfining vacua, in which the fundamentals
vanish. We want to study the irreducible representations of the algebra defined
by the adjoint equations of motion (6.3) for (@) = (Q) = 0. The Casimirs are
X? = 2?1, Y? = y?1l. Then the first equation reads \y? = vy (z?) + Xv_(z?)
and we can outline two different cases.

i) abelian vacua
The one-dimensional representation are the solutions to

y= _“2{57
{ \y? + 21}’(93) +p8=0. (6.5)

Thus we have n + 2 vacua

ai bl

(X) = s )= by (6.6)

where the X expectation values a; are the roots of the degree n + 2 abelian

polynomial

a2

p(a) = 2[V/(x) + B + 55 =0, (6.7)
and b; = _5%5‘ Each a;, b; has multiplicity N; such that Z?ilz N; = N.. The
symmetry breaking pattern is SU(N,) — U(1)"*1 x H::lz SU(N;).
ii) nonabelian vacua
The only higher dimensional irreps are two dimensional ones, that we pa-
rameterize in terms of the Pauli matrices X = @;03 and Y = c;01 + d;o3. To

satisfy the X equation of motion, the odd part of the adjoint polynomial must

vanish, so we have 25* nonabelian vacua @; which are the roots of v_(z2) = 0.
The Y expectation values are d; = —% ~ and ¢; = \/A~1(v4(a@?) — B) — d?. The
aq .
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nonabelian vacua display a Z> symmetry that acts by reflection of the eigenval-
ues around the origin. Note also that = = 0 is not a solution. Consider the gauge
symmetry breaking in the nonabelian vacua, for simplicity consider unbroken
gauge group SU(N.) with N, even. The generic nonabelian vacuum is given by

510'3 Clo'l—l—le'g

<X) = 62‘73 ) <Y> - Co01 + d20'3

(6.8)
where each @; has multiplicity J\A/'2 such that 2 ij ]\7z = N,. In this case, unlike
the usual one-dimensional one, the vacuum decreases the rank of the gauge
group. The gauge symmetry is broken as SU(N,) — U(1)"F x HE SU(N;).

One can easily show that there are no higher dimensional irreps of the equa-
tions of motion (6.3), following [20]. One can shift X — X +aY andY — Y +bX
and get to a new algebra with X? =Y?2 = 0 and {X,Y }+c = 0. This algebra has

just one irreducible representation, which is two dimensional and corresponds to

the Fock space of a single fermionic crea‘cima—annihilatiom‘adgebra.22 The generic
gauge symmetry breaking pattern, in the pseudoconfining case, is the following

n+2 nT—l
SUN) — U@Q)z™0=1 x TT su(v:) x [[ SU@), (6.9)
i=1 =1

where N, = Z;:f N; +2 Z:—j—f N;. At energies below the vevs but above the
dynamical scale of the theory, we flow to a bunch of 2(n+ 1) low energy SQCDs
with massive fundamentals, whose number is Ny in the n+ 2 abelian sectors and
2Ny in the (n —1)/2 nonabelian sectors. At low energies, the nonabelian factors
confine and we are left with a U(1)%(™+1)~1 theory for odd n.

The Higgs Vacua

The equations of motion (6.3) allow also for higgs solutions, in which the
fundamentals acquire a vacuum expectation value. The Yukawa coupling con-
tains just terms in the dressed X-mesons. There are two different kinds of higgs

22 This argument holds irrespectively of n, so we have a finite number of vacua both

if n is odd and even.
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solutions. The first one is the usual one dimensional vacuum, that we will denote
abelian higgs, but it turns out that there are also new two dimensional solutions,
similar to (6.8), that we will denote nonabelian higgs. We consider for simplicity
the higgsing of just the last flavor.
i) abelian higgs
The usual one-dimensional higgs vacua are given by

éNf - (7:%07---70)7 QNf = (h7010)7

_ (6.10)

X = diag(z,0,...,0), Y =diag(yx,0...,0),
where x5, is a root of the meson deformation m(z), i.e. z = —m;/ms, and
Yp = -2—;’;: and the squark expectation values are fixed by the X equations

of motion to hh = ——711—2[/\7;% + V'(zx)]. This solution higgses the gauge group
SU(N,) down to SU(N, — 1).
ii) nonabelian higgs
The equations of motion (6.3) admit also two—dimensional representations
with nonvanishing fundamentals

(X) = diag(zro3,0,...0), (Y) = diag(y101 + ynos,0,...,0)

- = . (6.11)
Qn, = (h,0,...,0), QN = (h,0...,0),
where zj, is always a root of the meson deformation m(z), while
- NG+ V' (=) + ~2 =
Y = 2A$h’ Y h 4)\:1% — Y
and the quark expectation values are hh = —;%;[V’ (zn) — V'(—zp)]. This is a

new classical phase of SQCD and it higgses the gauge groups SU(N.) down to
SU(N. — 2).

D—terms

Consider the kinetic term for the adjoints
/dZQ 420 (XTea,dVX + YTeadVY) ,
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the D—term equations of motion are [X, XT] + [V, Y] = 0. The abelian vacua
(6.6), satisfy the D—term equation as usual. For the nonabelian vacua (6.8) and
(6.11), however, due to the nonvanishing commutator of the Pauli matrices, we
get the additional condition

pseudoconf. nonabelian higgs
(6.12)
Im ed* =0, Im 7,97 = 0.

Note also that, if we set to zero the Lagrange multiplier o, then the term pro-
portional to o3 in (Y) vanishes, so that the nonabelian vacuum automatically
satisfies the D—term. This would amount to consider Y transforming in the
adjoint of U(IV;), rather than SU(N;). In this way we would get rid of this
additional D-term condition, since the vev that is subject to the constraint is
proportional to . However, if we compute the low energy matter content in
the nonabelian vacua (6.8), we find that the TrY’, which is the U(1) part of the
adjoint, becomes massless in this case. Albeit being neutral under the gauge
interactions, the TrY field interacts with the other massive low energy degrees of
freedom through superpotential terms. On the other hand, we need a mass gap
in order to make sense of the glueball superpotential, so we are forced to keep
the Lagrange multiplier o and the additional constraint (6.12).

The Classical Chiral Ring

Consider the superpotential (6.1) and for simplicity drop all the lower rele-
vant operators, keeping just the leading deformations

t
W = n_ETTanH + ATrXY? + BTIr X + oTrY.

In this case the theory is superconformal and its flows have been studied in [3].
Using the equations of motion we get

tn (=)™ 4+ 1) X*Y = —2)Y3, (6.13)

so that in the n odd case the chiral ring is truncated to Y3 = Y and is generated
by the products TrX* Y=L for k = 1,...,n and j = 1,2,3, regardless of
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the ordering. Due to {X,Y} = —¢ and the cyclicity of the trace, the only
nonvanishing chiral ring operators are actually

x5t k=3,...n, Try?,
y 1 (6.14)
TrXx2ky?2, k= 1,...,5(71-— 1),

and also the dressed mesons
—QXxFlyitlQ, k=1,...,n; j=1,2,3. (6.15)

In the n even case (6.13) does not do the job, so that, apparently, the
chiral ring would not be truncated. We will consider just the n odd case in the
following and get back to this issue in Section [], where we will show that indeed,
by considering the flow from n odd to n’ even, with n’ < n, the chiral ring is
truncated also in the even case.

We will be interested in solving for the expectation values of the operators
of the chiral ring. We can collect them in four generating functions

1 W W 1
- Tr
Z(=y) 327r2< :v—Xy-Y>’
1 We 1
11
U(x’y):<T\rz—Xﬁ>’

f _/p 1 1 o

In a supersymmetric vacuum u, must be vanishing, therefore we set it to zero.

(6.16)

These loop functions (6.16) can be expanded in Laurent series of z or y, for
instance the first one is

Z(z,y) = ZI FRY (y) = Zy‘l "R (z (6.17)
where we introduced the generalized resolvents
1 W W<
X . o] k
Ry (z) = T2 <’IT p— Y > , (6.18)
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and analogously for RY (y). The leading term in the expansion (6.17) is the
usual resolvent of the one-adjoint theory. It will be useful to introduce also a
generalized glueball S = ~32$(TrWaWaY). Since all the single trace operators
of two adjoints can be extracted from R;X (), we can just solve for this operators
and do not consider Ry (y). Analogous expressions to (6.18) hold for the other

generalized resolvents

Mi(z) = <@$_1XY’“Q>, T (z) = <Tr$ nyk>. (6.19)

Let us consider the semiclassical expressions for the generators that we ob-
tain by plugging into (6.16) the solutions for (X) and (Y') and for the fundamen-
tals.

Classically, the glueball vanishes, however we can keep it as a fixed parameter
to study Z(z,y): in fact it has poles at the eigenvalues of the adjoints, whose
residues give the glueballs S; in the corresponding i—th low energy SQCD block.
By inserting vacua (6.6) and (6.8) and evaluating the trace, we get the classical

expression of the loop function

n—1

2z )—Tiz N +§ S oey+aic), (6.20)
T Ty b @y (B rag) e

’I.:l 1=

where S;, for i = 1,...,n + 2 are the glueballs for the SQCD we flow to in the
abelian vacua, (6.6), while S;, for i = 1,..., (n —1)/2 are the glueballs for the
SQCD we flow to in the nonabelian vacua (6.8). The leading term in the z

Laurent expansion gives the resolvent

E s < S
R(x):zx_ab +2xzm. (6.21)
i=1 ? i=1 t

The glueballs are the residues of the resolvent at the corresponding poles.
The meson generator depends on the phase we consider. In the pseudocon-

fining phase M (z,y) vanish, since the fundamentals vanish. In the abelian higgs
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(6.10) and nonabelian higgs phases (6.11), however, it is nonvanishing and we
can get the expression for just My(z) = M (z)

abelianhiggs nonabelianhiggs
052
M) = - L V'(zn)+ e Mz) = — 1 V/zp) = V'(—zp)
 oml(zn) T —xH T om/ () T — ’

(6.22)
where we considered just the last flavor direction, i.e. M(z) = M (gc)%}’ , according
to the classical solutions (6.10) and (6.11). The meson generator has poles at the
higgs eigenvalues, whose residue depends on the couplings and the phase.

The classical expressions for the generator U(z,y) depends on the phase,
too. In particular we can extract the expression for Tp(z) = T'(x)

n—1

n+2 2 =5
Z N; N; 1 2z
T(a:) = 7 — a + 2x E __—$2 — a’? + Tab:l: ~zn -+ T'nab———xz — $%L, (623)

where 7,5 vanishes except in the abelian higgs phase (6.10), when is equal to 1,
and 7,4, vanishes unless in the nonabelian higgs phase (6.11), when is equal to
1.

6.2. The Three—sheeted Curve

In this Section we will study the chiral ring in the quantum theory by mak-
ing use of the Konishi anomaly equations. We will first make a brief summary
of the generalized anomaly equations to set the notations. At first, one would
hope to find some closed algebraic equations for the chiral operators Z, M, U
that we introduced in (6.16). However, it is not possible to solve directly for
those generators. What one can do, instead, is to derive some equations involv-
ing those generators and then, by considering the Laurent expansion of these
equations, derive some recursion relations that magically close on the resolvents
R(z),M(z),T(z). In this Section we will concentrate on the resolvent R(z),
whose algebraic equation defines the curve of the gauge theory. On the other
hand, due to the DV correspondence, this curve provides the solution to the
planar limit of the two—matrix model, whose action is given by the gauge theory
superpotential (6.1).
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We will first study the semiclassical expansion of the resolvent and describe
its analytic structure, i.e. the branch points. Then we will work out the holo-
morphic differentials on the curve. At the end of the Section we will consider the
algebraic equations for the effective description in terms of the resolvent R(y).

It turns out that, unlikely the one-adjoint theory, for which the curve is an
hyperelliptic Riemann surface, in this two adjoint case the algebraic curve is a
cubic. The quantum theory is therefore described by a three—sheeted covering of
the complex plane. In the one-adjoint case, each of the two sheets corresponds
to a classical phase of the gauge theory: the pseudoconfining and the higgs
phase. The interpolation between the two phases is possible by continuously
move the poles of the resolvents M (x) and T'(z) through the two sheets. In our
two adjoint theory, we will see that again each of the three sheets corresponds
to a different classical phase: the pseudoconfining, the abelian higgs and the
nonabelian higgs phase. This leads to the suggestion that the degree of the
N =1 curve corresponds to the number of semiclassical phases of its gauge
theory. In the quantum theory we can interpolate between all the phases by
moving poles around the curve. It is somewhat surprising though that the curve
of the gauge theory ”knows” about the three phases even if we do not have
fundamentals, in fact the algebraic equation does not depend on the couplings
to the fundamentals.

The generalized Konishi Anomaly

We flash a summary of the generalized Konishi anomaly in order to set the
notation. We will display explicitly % to identify the semiclassical expansion.
- Given the variation 6® = ef(W,, X,Y), where Phi = X,Y, we denote the
corresponding Ward identity as

W{J(Wa, X,Y)) = (K(Weo, X,Y)). (6.24)
The Lh.s. is the anomalous variation of the measure

JTWa, X, Y) = _321%2 <Z <[Wa’ [Wa’ 8]0(1/?;;’ Y)}})ij>.

.J

The r.h.s. is the classical variation of the superpotential

aWt'r’ee
odb )

KWy, X,Y) = <Trf(Wa,X, Y)
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Note that, if we set h to zero in (6.24), we obtain the classical Ward identity,
that gives the classical expression for the resolvent.

Cubic Equation for the Resolvent

There are many variations that one can try, but only very few of them are
useful. In particular, Ferrari [21] has shown that the following three variations
can be combined to obtain the curve

1 W we
1st: = oY = — G
s 06X =0, Y 5or? 7 X

1 W,we 1

_ Y = -
T §Y =0, (6.25)
B B 1 o 1 1 1

srd: 0X =0, OV =-—so WV s —5 = %

nd: 60X =

The three variations (6.25) give the following anomalous Ward identity

S
Lst: ARi(z) =AZ — —;—;R(x),
ond:  [V'(z) + B — hR(z) + A\y°] Z(z,y) = AyR(z) + AR1(z)
1 LVi()-V(X) 1
3272 <TrWaW z—X y—Y>’
o'

$rd: Z(z,y)Z(—z,y) = MR(z) + R(~2)] — ()\y + 236) Z(z,y)

- (w—52) Z(==,v),

(6.26)
where Ry, (z) are the generalized resolvent in (6.18), Z(x,y) is the chiral operator
in (6.16), and S = — 553 (WaWeY). We want to find some recursion relations
for the resolvents Ry by expanding the loop equations (6.26) in powers of y.23
Let us introduce the degree n — 1 polynomials F(x)

Fiu(z) = — 3217# <’I‘rWaW°‘ V'(xzz ~ ;’ (X )Yk> . (6.27)

23 1In the following we will use the convention to reabsorb the Lagrange multiplier /3,
associated with the tracelessness of X, as a constant term in the adjoint polynomial
V'(z)+ B — V'(z). In particular we have vy (z?)+ 8 — vy (z?) and v (z*) unchanged.

This is unambigous, since the original V'(z) does not have a linear term.
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These are the generalization of the usual quantum deformation f(z) in the one~
adjoint hyperelliptic Riemann surface w? = V'(z)? + f(z) and their coefficients
are proportional to the glueballs, hence they vanish classically.?* By the last two

anomaly equations in (6.26) we get

ARgi2(z) = [R(z) — V'(z)] R (z) + Fi(z), (6.28)

A[Rgt2(z) + Rq+2(—$)]+% [Rgt1(z) = Rga(—2)l+h Y Ri(x)Ri(—z) =0,
e (6.29)

for k > 0. The strategy is to plug (6.28) into (6.29) and get at k = 0 an equation
for R(—z), then at kK = 2 use it to obtain the closed equation in R(z). By

introducing w = hR(z) — V' (z) we get the following cubic equation
@° 4+ a(z®)@? + b(z?)w + &(z?) = 0, (6.30)

where the coeflicients are

( OZZ

iz) =V'(z) +V'(=2) = o3,
b(z) = V'(@)V'(-z) - %[V'(m) + V'(—z)] + h[Fo(z) + Fo(—z) + %2?],

C¥2
de) =~V @V (~2) + h(FO(—x)V’(x) + Fo(2)V' (—z)

S

S2? o
+ 2|2
x

+ A[Fa(z) + Fo(—z) — h;ﬁ 5

[V(z) + V'(—2)] + F1(z) — Fi(~x)
(6.31)

Since in the coefficients there appears negative powers of xz, we have to rescale
2

the equation by multiplying by z2. Setting w = z?w we find our cubic equation

w® 4 a(z?)w? + b(z*)w + c(z?) =0, (6.32)

4 Our notations are slightly different from those of CDSW [12], i.e. f(z) = —4Fy(z).
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where the coefficients are given by

[ a(?) = 22V (2) + V/(—z)] - Z‘—/\ :
oz?
b(a?) =24V (@)V'(~2) — S5V () + V' (~2)
+ ha? [z2[F0(a:) + Fo(—z)] + ag} , (6.33)
ca?) =o*{ -V (2)V' (=) + b [ [Fo(—2)V (&) + Fo (2) V' (~2)
+ 2AFy(2?) + aFy (22)] + %g[V’(a:) + v’(-:c)]] . n2/\§2}.

We denoted by 222 F) (z2) = z[Fy (z) — Fi(—z)] and 2F,(2%) = Fy(z) + Fa(—z).
Note that the coefficient of the leading term of the first polynomial Fy(z) gives
the glueball S = Fyp—1)/tn-

Once we solved for the resolvent R(z), then by (6.26) we get

2@y =5 v'(i) —hR(@) (- 5,) B@) + Ag

w0

Note that the coefficients a, b, c are even functions of z. The curve in fact

(6.34)

is invariant under the automorphism z — —z, that will appear explicitely in the
study of its analytic structure.

There are some standard techniques to study the cubic equations. It is
convenient to shift w — w + a(z)/3 to get rid of the subleading term and cast
(6.32) to its normal form

flw,z) = w? + 3y(z*)w + 26(z?) = 0, (6.35)

where v(z?) and §(z?) are the combinations 3y = (b— %) and 26 = (c— 2 +%).
Let us introduce the discriminant of the cubic equation A(z?) = 73 + 2 and the
auxiliary function w(z) = (—8 + v/A)3. Then, as explained in Appendix A, the
general solutions to (6.32) can be expressed in the form

w® =¢idmy _o~idr Y _ 2
u 3
a
wID =y Z -5 (6.36)
w(III) e 15Ty — 6'i%7rl . 97
u 3



and recalling the definition w = z?[R(z) — V'(z)] we find the three expressions
for the resolvents

WRW(z) = V'(z) +w®(z)/2®,  i=1,II,III.

To identify the physical resolvent we need to study the asymptotic behavior of
the three solutions at large z. In particular, the physical sheet will be identified
as usual with the asymptotics R(z) ~ S/x. We can rearrange the asymptotic
expansion as a semiclassical expansion in powers of i and find that the solution
w (x) has the correct physical behavior

2 as =2 )
R(z) = :c2 olw) + 2+ Az QFQ(;C );?Fl(x iz
22V (z) + S5 2v_(x?)[22V'(z) + 5]

+O(h), (6.37)

where —2zv_(z%) = V'(z) — V/(—=z) is the odd part of the adjoint polynomial.
We will denote this sheet as the first sheet. By looking at the leading term of
(6.37) we can identify the glueball as S = Fy(,—1)/tn. The other two solutions in
(6.36) describe the second and the third sheet, which are not visible classically.
The semiclassical expansion of the resolvent R(z) on the other two sheets is

a? 2 Fy(z) + S /2 PRy () + aS/2

’hR(H)(x) =V'(z) + vl (2] h o)

g2 2E2(?) — aFi(2?) 2
| SO CO I O(hj | (6.38)
AR (@) V(o) - V(a) 4 T DS

_pae 2@ Fahi@) | OR?),

2v_(22)p(—x)

where p(z) is the polynomial (6.7), whose roots are the abelian vacua (6.6), and
v_(z?), whose roots are the nonabelian vacua (6.8), is the odd part of the adjoint
polynomial V'(z). By looking at (6.38) we get a quick preview of the structure
of the branch points of the gauge theory curve (6.32). Indeed, each pole in
the semiclassical resolvent splits up into two branch points in the full quantum
theory. If the resolvent has a pole on the same value of z on two different sheets,
in the quantum theory a branch cut will appear, connecting those same sheets.
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Therefore, the branch cuts coming from the splitting of the abelian vacua at
the roots of p(z) will connect the first and the second sheet. The branch cuts
symmetric of the former with respect to the origin, i.e. coming from the roots
of p(—x), connect the second and the third sheets. The branch cuts from the
nonabelian vacua, i.e. the roots of v_(z?), connect the first and the third sheets.

If we put & = 0 in the anomaly equations, but still keeping the glueballs as
parameters, Fy(z) # 0, we find as classical expressions for the resolvent precisely
the physical solution (6.37).

The Branch Points

Let us look at the analytic structure of the curve (6.35). The branch points
are the singular points of the curve, that is the points at which f = df = 0.
Since 9y, f = 3(w + ), one can easily find that the singular points are given by
the zeros of the discriminant A(z?) = 3 + §2, that we encountered above in
building the solution to the cubic. The ramification index 7; of each of these
branch points is such that f(w,z) together with its r; — 1 derivatives vanish at
the point. This index tells how many sheets we can reach by winding around
the branching point. The number of branch points would be deg A = 6(n + 2)
where n is the degree of V/(z) in the gauge theory. However, we can collect
out an overall z® factor in front of A. Therefore, the number of branch points
is 6(n 4+ 1). All of these branching points have ramification index r; = 2 since
82 f(w,z) = 6w never vanishes at these points.

As a first to understand the analytic structure, we can write down the semi-
classical expansion of the discriminant

—27 A = z%v_(2?)?p(z)?p(—x)* + 28 O(R). (6.39)

Classically, we have 6(n + 1) double zeros, which come in pairs symmetric under
x — —xz. The first n — 1 of them come from the zeros of v_(z?), the odd part
of the adjoint polynomial, and correspond to the nonabelian vacua (6.8). Other
n + 2 double zeros are given by the roots of p(z) in (6.7)and correspond to the
abelian vacua (6.6). The last n + 2 double zeros are given by the roots of p(—xz)
and are the reflection of the abelian vacua (6.7) under x — —x. These last zeros
are not classical vacua and we will shortly see how they arise. Consider now
the image of z = 0. Even if A has an overall factor z°, it turns out that 8, f
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vanishes at z = 0 on the first and third sheet, but it is nonvanishing on the
second sheet, so this is actually a cusp and not a branch point. Each double zero
of the discriminant corresponds to a pole in the semiclassical expansion of the
resolvents (6.37) and (6.38).

In the quantum theory, each of these double zeros split up into two branch
point. Since they all have branching number two, each of the branch points
connect two different sheets. Now, each branch point belongs to two sheets of the
algebraic surface. Therefore, to tell which sheets are connected by which branch
point, we just need to consider the three sheets (6.36), solve the conditions

w(a) =wPD(a),  ij=11I1II, (6.40)

and identify the branch points. For instance, the points z = a that lie on
the first and second sheet satisfy w'¥)(a) = w1 (a), which gives the condition
(—8(a))¥ = €5 y(a). However, the expressions of v(a) and §(a) are very compli-
cated and involve the quantum deformations Fy(zx), so we would like to find an
easier way.

_ There is indeed a simple way to study the monodromy of the curve and
identify the branch points, by making use of the fact that in the limit /& = 0 the
cubic (6.32) factorizes into three disconnected sheets. The classical limit of the
curve (6.32) is

2
[ - %J [w? + 22V’ (z) + V' (—2)]w + *V'(2) V' (~2)] = 0, (6.41)
whose solutions we can identify as the semiclassical limits of the resolvents in
(6.37) and (6.38)
2
I IT o IIT

wy(2) = =2*V'(2), wi" (@) =35 wi(@) ==V (-2).  (6.42)
The branch points are coming from the splitting of each classical pole of the
resolvent and in the exact solutions (6.36) they satisfy (6.40), which means that
they are special points lying on two different sheets. In the classical limit, each
couple of branch points degenerates into a pole located at the corresponding
vacuum. We can solve the conditions (6.40)on the classical curve and identify
which classical pole connects which sheets: on_ the curve (6.41) the vacua are
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represented by marked points on each disconnected sheets, such that the above
conditions are satisfied. We find then

0{2

wg)w) — ’UJ(II)(G,) fo a2vl<a) + ZX _

cl

0, (6.43)

which is the condition (6.7). The branch points connecting the 1st with the 2nd
sheet come from the splitting of the abelian vacua z = a;, for i = 1,...,n+ 2,
that we showed in (6.6). We call A; the n + 2 branch cuts coming from the
splitting of the abelian vacua at a;. These branch cuts connect the 1st and 2nd
sheet. Then we have

wh(a) =wl/'(a) iff v-(a®)=0, (6.44)

so the 1st and the 3rd sheet are connected by the branch points coming from
the splitting of the nonabelian vacua z = =+a;, for ¢ = 1,...,(n — 1)/2, that we
showed in (6.8). Note that for each nonabelian vacuum corresponding to a value
of a2, we have on the 1st sheet a pole in @; and another one in —a; and each pole
splits into two branch points that connect to the 3rd sheet. We denote Zz the
branch cuts around @; and A} the branch cuts around —@;. These branch cuts
connect the 1st and 3rd sheets. Then the last condition

2

wiiP(a) = wiP(@) iff aV'(-a)+ 5 =

0, (6.45)
namely the 2nd and 3rd sheet have classical poles at © = —a;, where a; are again
the abelian vacua. In the quantum theory each pole splits into two branch points
connecting the two sheets. We will denote A} the branch cut around the pole
at —a;. These cuts connect the 2nd and 3rd sheet. Note that these cuts do not
correspond to a gauge theory vacuum and, indeed, we cannot see them on the
physical sheet.

In this way we have accounted for all the 6(n + 1) branch points. We can
summarize the monodromy structure of the curve as follows

Branch Cuts Sheets

I; I —1I]
I T o I11 (6.46)
LT I III
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point. We could have found the same results by looking at the classical expression
for the resolvents (6.37) and (6.38) and their semiclassical expansion in Appendix
A. In fact, the classical poles in the resolvents correspond precisely to the marked
points on the three disconnected sheets. In the quantum theory, each marked
point splits into two branch points. The classical discriminant (6.39) has double
zeroes corresponding to the classical marked points in (6.46). Finally, let us
point out that the automorphism z — —z of the curve (6.32) exchanges the 1st
and the 3rd sheets, while leaving the second sheet invariant. We do not discuss
the noncompact B cycles. For our purpose, in fact, we will always consider the
gauge theory in the weak coupling expansion, so the periods on compact and
noncompact cycle will never mix.

-~ 3rd
I}~~~
= ————— A P Ya v
! I 2nd
I ——
G
Ist

Fig. 1: The three sheeted curve. The cut A; comes from the splitting of
the abelian vacua at = = a;. The cuts A; and 21\; come from the splitting
of the nonabelian vacuum, at z = 4a;. The cut A} is not visible from
the physical sheet. It comes from the splitting of the pole at z = —a;.

Now we can use the Hurwitz formula to compute the genus g of the curve

20-2=-2p+ > (r;— 1),

where p is the number of sheets and the sum runs over all the branch points,
r; = 2 being the branching number of each. We find

g=3n+1)-2. (6.47)
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The Holomorphic Differentials

Let us compute a basis for the holomorphic differentials on the curve (6.32).
We use the method of divisors in the notations of [46]. Let us denote by

. P Pon
QY ...
the divisor of f, where P; is a zero of degree «; and Q; is a pole of degree ;. The

degree of the divisor is given by deg[f] = >_;a; — >_, 08;. The Riemann-Roch
theorem states the degree of a meromorphic function f is deg(f] = 0, while for a

[£]

meromorphic differential w the degree is deglw] = 2g — 2. We need to compute
the divisors of dz, z, O, F = 3(w(x)? + v(z?)) and w(z).

The differential dz vanishes at the branch points and has a double pole at
oo on each of the three sheets. If we denote by Ap the divisor corresponding to
the 6(n + 1) branch points we find

Ap
P2 p2 p2 7

oOr™ OOr1~ OQrIII

[dz] =

so that deg[dz] = 6n = 2g — 2. The function z has the following divisor

] = O10r110rr11
POOIPOOIIPOOIII ’

where O; represents the origin on each sheet.

Now let us consider 8, F. It vanishes at the branch point locus Ap, while
O F (2, ) ~groo 222 on each sheet. Thus, by Riemann—Roch, we are missing
six zeroes. If we study the asymptotics at small z we find that 0y Fy w(z) ~ z3
on the 1st and 3rd sheets while 0y Fy () ~ const on the 2nd sheet, so that

AgO303
[0 F] = [ 111 : (6.48)
P PR PG

Consider now w(z). We need to study its zeroes for small z, in order to
cancel the poles coming from (6.48). For small w we can approximate the curve
(6.32) by b(z)w + ¢(z) = 0 so that w vanishes at the roots of c(z) which are
not toots of b(z). So we expect a double zero at z = 0 and a bunch of 2n
nonvanishing other zeroes, whose corresponding divisor we denote by C3n. The
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asymptotic expansion of the solutions w(z) is w(z) ~go > on the 1st and 3rd
sheets and w(z) ~go const on the 2nd sheet so that its divisor is

2 2
_ 0707,;,Cop
- n+2 pn-+4+2 -
POOI POOIII

[w]

To build the holomorphic differentials we have to take care of the poles
coming from (6.48) at the points Oy srr, so that

dx xdx
—_—, — 4
Owl’  OuF’ (6.49)
have triple and double poles, respectively, while
2d d
zédr  wdzr (6.50)

OwF'’ Oy F’

have just single poles at O, O;r;. Therefore we have to eliminate (6.49) but we
can take a linear combination of (6.50) with vanishing residue. Therefore, a basis
for the holomorphic differentials is given by

- (e17? + cow)dx

w? +(z)
xIdx _
m—)*, j‘—’3,...,27’t+2, (651)
zFwdz
Ty 7 N> - ]-7 y I
w? + ()

We have in total 3n+1 = 3(n + 1) — 2 = g holomorphic differential as expected.
The Glueballs

In the one-adjoint theory [12], the usual way one defines the glueball S; in
the i—th low energy SQCD is by computing the period of the resolvent around
the +—th cut on the physical sheet. In our case, the generic low energy SQCDs
(6.9) come from abelian as well as nonabelian vacua and they require different
definitions. In the case of the abelian vacua (6.6), we define the glueballs as usual

S, = 7{4 B(), | (6.52)
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where the A; contour sorrounds the corresponding I; abelian cut, see Fig.1. This
definition reproduces the semiclassical result (6.21) and is the same prescription
as in [12]. On the other hand, the SQCD we flow to in the nonabelian vacuum is
described on the physical sheet by the two cuts E and f{ , which are symmetric
with respect to the origin. This phenomenon has been called ”eigenvalue en-
tanglement” in the related two—matrix model [21], where it was shown that the
eigenvalue density p(z) for such representations is symmetric, p(z) = p(—x) for
x € fz U f{ . Since the gauge theory glueball corresponds to the matrix model
filling fraction of the eigenvalues, the periods of the resolvent R(x) around the
cuts I; and _/TZ is the same. We define therefore the glueball as either period

Si = ?% R(z) = X'i R(z). (6.53)

This definition is consistent with the semiclassical resolvent (6.21), in fact we
n-1
have that the total glueball is S = ZT-";le S;+2>,2% S; and is the residue of the

resolvent at the pole at infinity. We will see below that this definition reproduces
also the Konishi anomalies in these low energy SQCDs.

We would like to find that the number of glueballs corresponds to the number
of parameters in the equation for the resolvent (6.32), which in turn is related
to the genus of the curve. Recall first what happens in the one-adjoint theory
with gauge group U(N) [12]. There, a degree n adjoint polynomial V’(z) gives
n low energy SQCD blocks with gauge group U(N;), each of which defines a
glueball S; [12]. The n glueballs S; are in one to one correspondence to the
n coefficients of the quantum deformation f,_1(z) of the N' = 1 hyperelliptic
curve y2 = V/(2)? + fn—1(z). Finally, we can fix the coefficient of the leading
term of f(z) by the residue of the resolvent at infinity, due to the overall relation
>.;S8; = S. The number of moduli of the curve is just the genus g =n — 1, and
the free parameters in f(z) actually parameterize the moduli of the curve.

Now let us look at the cubic curve (6.32) and its coefficients (6.33) and
identify the independent parameters. We have: the generalized glueball S ; the
degree n — 1 polynomial Fy(z), with n coefficients; the polynomial E, (x?), which
has (n + 1)/2 coefficients; F} (z?) which has (n — 1)/2 coefficients. However, by
making use of the first anomaly equation in Appendix A, one can show that the
coefficients of F}(z?) can be recast as combinations of coefficients of Fp(z), so
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they are not free parameters. We are left with a total of I+n+(n+1)/2 = 2(n+1)
parameters, which is precisely the number of vacua, i.e. the low energy SQCDs
in the generic vacuum (6.9). However, it might seem this is not in agreement
with the number of independent deformations of the curve, which has genus

= 3(n + 1) — 2. But recall that the coefficients (6.33) of the curve are even
functions, namely the curve has the automorphism z — —z that halves the
number of moduli: this means that the periods of R(z) around A; and A\Z are
respectively the same as those around A% and 21\; Finally, the coefficient of the
leading term of the quantum deformation Fy(z) is fixed as the sum of all the
glueballs, just as in the one-adjoint case we discussed above.

6.3. The mesons

We will solve now for the generator of the X—dressed mesons. Its classical
expression depends on which of the three classical phases we are considering: it
vanishes in the pseudoconfining phase, while it is given by (6.22) in the abelian
and nonabelian higgs phase. Our strategy is again to consider a variation of the
fundamentals and get an anomalous Ward identity.

Consider the following variation for the quarks

0Q° = fI(X,Y, Q).

The corresponding anomalous Ward identity in the chiral ring is

A @ i h Ol (XY,
(@m0 Y, Q) = g (aweyasy LECLDD),

where m(X,Y") is the most generic meson deformation containing both X— and
Y—dressed Yukawa couplings.

In our case (6.1) the meson deformation is just X—dependent, m(z) =my +
maz. Let us focus then on the X—dependent variation

1

= of
6Q7 =@ ——,

which gives the usual anomaly equation [m(z)M (z)]_ = hR(z), where we sup-

pressed flavor indices. These considerations still hold if we consider the gen-

eralized meson generators M (z) = LoV*(Q, whose anomaly equation are
(z) = Q=% : y eq
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[m(z) M (z)]- = hRi(z). The explicit solution depends on the vacuum we are
considering. We have three cases
1. pseudoconfining phase. In this case the classical meson generator vanishes
on the first sheet M (z)|q = 0, so we require that the spurious poles coming
from the zeroes of m(z) be cancelled

M(z) = h (R(f”) _ B 1 ) . (6.54)

m(z) m'(zh) T —Th

2. abelian higgs phase. This is characterized by the meson generator having a
pole at the higgs eigenvalue z;, on the first sheet, whose residue is computed
according to the first expression in (6.22). If we recall the expression of the
resolvent on the second sheet in (6.38), we see that the boundary conditions
are that the meson generator be regular on the second sheet

R(z) R(an) 1 )

m(z) m'(zn) T —Tp

M(z)="h < (6.55)
This means that we can connect the phases (6.54) and (6.55) by moving the
pole at zj, from the first to the second sheet by passing through one of the
abelian cuts A;.

3. nonabelian higgs phase. This phase is characterized by the meson generator
having a pole at xp, on the first sheet, whose residue is computed according
to the second expression in (6.22). If we recall the expression of the resolvent
on the third sheet in (6.38), we see that the boundary conditions in this case
are that the meson generator be regular on the third sheet

R(:L') B RIII(LZIh) 1 ) (656)

m(z)  m'(zh) T—zn

M(ac):h(

This means that we can connect the phases (6.55) and (6.56) by moving
the pole at zp, from the second to the third sheet by passing through one of
the cuts A} around z = —a;, where a; is one of the abelian pseudoconfining
vacua. We can connect the nonabelian higgs solution to the pseudoconfining
one by passing the pole from the third to the first sheet through one of the

nonabelian cuts A;.
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We can summarize the three phases as follows

phase M (z)
pseudoconfining  regular on 1st sheet
abelian higgs regular on 2nd sheet
nonabelian higgs regular on 3rd sheet

(6.57)

If the meson deformation only depends on the X adjoint, as in (6.1), then
we can solve for the meson generator M(z). However, we can’t find a closed
equation for the generator of the Y—dressed mesons M (y). In fact, consider

1
:B—Xy Y’

5Qf — Qf

we get the anomaly equation [m(z)M(z,y)]- = hZ(z,y), where Z(z,y) is the
chiral operator defined in (6.16), whose expression is given in Appendix A. In
the pseudoconfining phase, the mesons vanish classically, so we expect that the
residues of M (z,y) around the poles of m(z) be vanishing in the classical limit

j[ dx M (z,y) = 0,

Tk

where z, are the roots of m(z). This gives the féllowing solution to the anomaly
equation

M(z,y) =

hZ(z,y) hzz(ﬂ%,y) 1

“m(z) — m/(zp) T -z
If we expand for large z we find

M(y) __hz Z(xlmy)

' (w)

The same reasoning applies in the case the meson deformation only depends on
Y instead, i.e. we have Qm(Y )Q. Here, we can solve for the generator M (y ) but
we can’t get a nice expression for the generator M (z). Eventually, if the meson
deformation depends on both X and Y, then there is no easy way to study either
meson generators.

Konishi Anomaly
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To get the expectation values of the meson operators in each low energy
SQCD block, we just integrate the meson generator M (z) around the corre-
sponding cut. The i—th SQCD coming from the abelian vacuum (6.6) has Ny
flavors and

(@x7Q)1i= § +'MG@)

where we suppressed the flavor indices. The first meson gives the usual Konishi
anomaly equation Q;Qf = ANyS;/m(a:) + O(r*), where m(a;) is the effective
quarks mass in the i-th SQCD.

The j—th SQCD that comes from the nonabelian vacuum (6.8) gets twice as
many flavors and requires some additional considerations. We can parameterize
the 2Ny fundamentals as (@a)? and (Q®)*™f where f = 1,..., Ny is the flavor

indexanda=1,..., ]Vj is the color index and the additional index =+ is another
flavor index comes from the splitting of the color indices in the nonabelian vacuum
and the fact that the rank of the gauge group is halved in this vacuum. The
effective quark mass is different for the two type of fundamentals @t and @~
and we can easily compute it

(@ m(X)QN)s = m(@;)QF Q™ +m(-a;)Q; Q™.

We have two different kind of mesons in this SQCD, they are decoupled and their
expectation values are different. The + mesons are given by the contour integral
around the A; cut, the — mesons around the A cut

(@exiarry); = 742 Pl (FXQ)) = fg ML) (6.59)

If we recall the definition of the glueball in this vacuum (6.53), we find that the
Konishi anomaly is again satisfied in the following form

QrQ =Ng5;m(@),  Q7Q Y = Ny5;/m(=ay). (6.59)

6.4. The resolvent T'(x)

In this section we will solve for the last resolvent T'(z) = Tr;:l—X— and study
its analytic behavior. We will see that the three different classical phases of the
gauge theory, pseudoconfining, abelian higgs and nonabelian higgs, are described
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by three different configurations of the simple poles of T'(z). This phenomenon
Is analogous to what happens in the one-adjoint theory, in which the poles of
T'(z) characterize either of the two phases of the theory [19]. In that case, a
pole of T'(z) on the physical sheet signals a semiclassical higgs phase, while when
T'(zx) is regular on the physical sheet we are in a semiclassical pseudoconfining
phase. One can interpolate continuously between the two phases by moving the
pole of T'(x) between the first and the second sheet through the branch cuts. In
the present case, we will see that, again, a regular T(z) on the physical sheet
means that the theory is in the semiclassical pseudoconfining phase, while more
complicated configurations describe the two higgs phases. Once again, we can
reach all three phases by moving poles around the three sheets of the Riemann
surface.

We solve for the last generator T'(z) by using the same strategy of used for
the resolvent R(z). The variations we will use are analogous to the ones in (6.25)
but without the gluino insertions

1st: 6X =0, &Y=

1 1
r—Xy-Y’
3rd: X =0 6V =

2nd: 06X =

§Y =0, (6.60)

1 1 1
r—Xy-Y —z-X’

"The variations (6.60) give the following three anomaly equations

22z
2nd:  (V'(z) + \y? — hR(z)) U(z,y) + moM(z,y) = RT(x)Z(z,y)+

Ist: Ty(x) = —2T(a),

+ AyT(z) + AT (z) + <’ﬁv’($gz = Z(I(X) Y j Y> ’

Srd: h[Z(z,y)U(-z,y) + Z(~z,9)U(z,y)] = Iy [U(z,y) + U(~z,)]

[U(z,y) = U(~2,9)] + A[T(z) + T(~2)],
(6.61)

where the chiral operators Z(z,y), U(z,y) and M(z,y) are given in (6.16) and

a
2z

we set to zero the terms proportional to u®, w® in the supersymmetric vacuum.
Ty (z) are the generalized resolvents (6.19). The mesons contribute only through
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the second anomaly equation with the term proportional to mo. Let us introduce

the degree n — 1 polynomials

Vi(z) = VI(X) Yk> , (6.62)

cut = (e =Y

which are analogous to (6.27), but do not vanish classically. In particular, the
leading term of the first polynomial Co(z) is the rank of the unbroken gauge
group N = Coy(n—1)/tn. We consider the Laurent expansion in powers of y of the
second and third equations in (6.61) and find the recursion relations

ATyio(z) = [RR(z) — V'(2)|Ti(z) — moMy(z) + ARy (x)T (z) + Cx(z), (6.63)

AMTp2(z) + Thpa(—2z)] + '2% [Trqa1(z) — T (—2)] +

+h Z [Ry(2)Ty (—z) + Ro(—2) Ty (z)] = 0,
g+q'=k

(6.64)

for k > 0, where My(z) are the generalized meson generators in (6.19). Notice
that these recursion relations are linear in T%, whereas the recursion relations for
Ry in (6.28) and (6.29) are bilinear. Plugging (6.63) into (6.64) at k = 0 we solve
for T(—z), then at k = 2 we find a linear equation for T'(z), whose solution is

precisely
r(s) = LN,

(6.65)

It turns out that the only case in which one can solve the anomaly equations
explicitly is when m(z) is just linear in  as in (6.1). If higher Yukawa couplings
are present this procedure does not work any more. The notation is the following

N(z) =z*Co() [V'(z) — V'(=z)] = hR(z) [Co(z) + Co(~2)]

— g2 [2)\5’2(m2) + aa’l(w‘?)} ,
D(z) = [a:ZV(a:) + % — 2x2hR(x)] V'(z) —V'(—z) — 2hR(x)] — K222 R(x)?

+ ha? [Fo(z) + Fo(—z)] + has.
(6.66)
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We have used the combinations 222C; (z%) = z[Cy(z) — C1(—=)] and 2C, (z?) =
C2(z) + Co(—z). The term SN (z) depends on the meson generators

N(@) =ma(~M@)[V'(z) = V/(~2)] + A[Ma() + My ()] |
(6.67

a

+ 55 M) = Ma(~2)] + RR(2)[M (z) + M(-2))),

where My (z) are the generalized meson generators in (6.19).25 The explicit

expressions for My(x) depend on the vacuum we choose and are discussed in

Section 4. We can summarize the different phases as

h i
Mi(e) = s (Re(@) ~ B (@0)), (6.68)
where the index ¢ = 1, 2,3 labels respectively the pseudoconfining, abelian and
nonabelian higgs phases and gives the resolvent on the different sheets as in (6.37)
and (6.38). The explicit expressions for R (z) and R, (z) are given in Appendix
A by the recursion relations in term of R(z). If we plug (6.68) in (6.67) we find

p B@) — RO (1) Ra(x) ~ RY(21)

— / . ! _
ON(z) = pra— V'(z) = V'(—z)] + hA pra——
pFe(=0) = B (@) | a Ri(@) — RP (o)
T+ 2x T — T (6 69)
_2) — R _ RG '
2z T+ 2 LT
ORI
X+

Analytics of T'(z)

Once we have the explicit solution (6.65) we can study its semiclassical
expansion, its asymptotics and the analytic structure. Consider first the case in

25 The term (6.67) vanishes if the superpotential does not have Yukawa couplings
Qm(X )Q between the fundamentals and the adjoints. In our case (6.1), this coupling

is given by m2QXQ and if we set m2 to zero N (z) vanishes.
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which there is no meson deformation in (6.1) and set the term dN(z) to zero.

The semiclassical expansion of T'(z) = N(z)/D(z) on the physical sheet is

N(z) 22Co(x) ) 205 (%) + aC1(z?) Ly NS
D(z)  22V'(z)+ % _(22) [z2V'(2) + &) taz™t?

+O(K?). (6.70)

Note that the terms of O(h) have the asymptotics £~ ™2, so that they will
contribute to (TrX™+!). The higher quantum corrections O(h?) begin at £?™*3,
so they do not contribute to the expectation values of the nontrivial operators in
the chiral ring (6.14) and we can safely drop them. If we compare (6.70) to the
semiclassical expansion of the resolvent R(z) in (6.37), we see that they have the
same poles and the quantum deformations Fj are replaced by the polynomials
Cj. The large z behaviour of T'(z) is dominated by the first classical term, which
yields & ~ X The behaviour of T'(z) on the other two sheets is just inherited
from R(z), so that we just have to continue analytically the resolvent through
the other sheets and read off the expression for T'(z). The classical part of T'(x)
has poles at the same location of the semiclassical expansion of R(z), discussed
in Appendix A. If we take into account also the contribution of N (z), we find
that the resolvent T'(z) has a pole at infinity on the first and third sheets with
residue —N and N — 2 respectively,?® while it is regular at infinity on the second
sheet.

Let us find out the other poles of T'(z) on the various sheets in the three
different branches. The only singularities of T'(z) are the ones at infinity and the
simple poles at the images of the point z5. The branches enter in the expression
(6.65) of T(z) only through the meson generators in (6.67). There is a nice
pictorial way to see the three branches. Let us denote by a cross “x” a simple

pole with residue —1 and with a dot “e” a simple pole with residue 1. We can

26 The —2 comes from N (z).
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summarize the singularities in the three branches as2”

pseudoconf. abel. higgs nonab. higgs
—Th Ih —Xh ZIp —XTh Th
III sheet, e ® 0 ® 0 0
IT sheet, X ° 0 0 X °
I sheet 0 0 0 ® ° ®
(6.71)

For each branch, in the first column we collect the residues at the images of —xy,
on the three sheets and in the second column the residues at the images of zy.
Note that, just as the meson generator in (6.57), each branch is characterized by
the generator being regular on one of the three sheets. Therefore, we can label
the second sheet the abelian higgs sheet and the third one the nonabelian higgs
sheet. When the resolvents are regular on the physical sheet we are of course in
the pseudoconfining phase, as shown in Fig. 2.

Let us consider the A-periods of T, recalling the definition of the glueballs
in Section 3.3. In the one-adjoint theory [12], the A—periods of T' define the
ranks of the i—th low energy SQCD as N; = ¢ A, T'(x), but in this case we have
two different kinds of SQCDs, by the flows in the abelian and nonabelian vacua.
The A; periods define the ranks of the SQCD in the abelian vacua (6.6) as usual

| N; :]{h T(x),

while the ranks of the SQCD in the nonabelian blocks (6.8) is computed by either
periods around the nonabelian cuts

M = j’% T(w) = jé @) (6.72)

27 The appearance of a pole with residue —1 for T'(z) might seem unexpected. Con-
sider the semiclassical expansion of 77/ (z) in (6.65) on the 2nd sheet: D(z), N(z) and
0N (z) are all even functions of z as 7! (x), which is regular at infinity. The contour in-
tegral of T/ (z) on a large contour henceforth vanish. We can close the contour around
the finite singularities, which are the poles at z), and —zp and the periods around A;
and Aj. We have Z?:f (fAi +§A§) T (z) = 0 and (ﬁvh —!—f_mh) T'(z) = 0. The

residue around —zj, is thus the opposite of the residue around Th-
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3rd
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lizm===" i 2nd
I
Ce>
Q,b c:b
A;
Ist

Fig. 2: The pseudoconfining phase. The black and white dots represent
poles for T'(z) with residue respectively one and minus one. The contours
C'mb and D, enclose the images of the higgs eigenvalue —xp, while C’mb
and C,p enclose the images of zp.

With these definitions we recover the residue of T'(z) at infinity in the phys-
ical sheet as the sum of the the ranks plus the higgs poles N, Zn+2 N; +
n—1

2302 +Tab + 2Tnap, Where 7gp is 1 in the abelian higgs branch and vanishes

otherwise, while Tnap is 1 in the nonabelian higgs branch and vanishes otherwise.

6.5. Interpolating Between the Three Phases

Looking at the table (6.71), we can check that the sum of all residues of T'(z)
on the curve vanishes. Moreover, when a cross meets a dot, they annihilate and,
viceversa, from a vanishing residue we can create a pair cross—dot: X 4 e = 0.
Now we can picture the way we interpolate between the three different branches
as follows.

i) pseudoconfining < abelian higgs: Start with the pseudoconfining phase and
move the dot e from the 2nd sheet to the 1st through the cut I;. Due to
the automorphism z — —z, the other cross x in the second sheet moves
through the symmetric cut I/ from the 2nd to the 3rd sheet. Once on the

3rd sheet, the cross x annihilates with the e, being both residues of a pole
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at —zp, and we are left with the abelian higgs phase.

pseudo conf. — abel. higgs
—XTp Th —Tp Th
IIT sheet ® @ X +e =10 ®
IT sheet XTI eI 0 0
I sheet 0 0 0 ®

When passing the pole through the i~th abelian cut I;, the rank N; of the
corresponding i~th SQCD decreases by one. This is depicted in Fig.3. The
new contour in fact is A;|pew = A4; — C,p and we find

N/ = fi T(z) - fé T(z) = N; — 1. (6.73)

2

3rd

C: @C:mb
O ;. Y a W o Wy
] - —— - 1
A;
G IS
A} - C,

Fig. 3: Fig. 3: Interpolating between the pseudoconfining and the
abelian higgs phase. Start in the pseudoconfining phase in fig. 2. Then
move the pole Dgp, to the 3rd sheet through the cut I and the pole Cyp
to the Ist sheet through the cut I;. On the 3rd sheet, the contours Dy
and Cnab combine giving vanishing residue for T'(z) at —z, on the 3rd
sheet. The new period of T'(z) on the first sheet is around the contour
Ailnew = A; — Cqp and we find (6.73).

2nd

Ist

ii) pseudoconfining «> nonabelian higgs: Start with the pseudoconfining phase
and move the two dots e from the 3rd sheet to the 1st through the nonabelian
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cuts: the pole at —z, moves through fz’ and the pole at z;, moves through
T..

pseudo conf. —— nonab. higgs
—LE}/L\ :L‘h/\ —Xh Ip
I1I sheet oI/ o711 0 0
IT sheet X ° X °
I sheet 0 0 ° °

When passing the pole through the i~th nonabelian cut fi, the rank ]/\\fz of
the corresponding i—th SQCD decreases by one. The new cycles are in fact
Ailnew = Ai — Crap and Af|new = Af — C! ., and we find

N! = %A T(z) — jag T(z) = N; — 1,
Ai Cnab

or equivalently for the other period around 2;

iii) nonabelian higgs < abelian higgs: Start with the nonabelian higgs phase,
pass to the pseudoconfining phase by moving the poles from the physical
sheet to the third one and then move to the abelian higgs phase.

6.6. The Resolvent for'Y

Up to now we have considered the effective description of the gauge theory
when integrating out the adjoint superfield X. However, we can as well integrate
out the other adjoint ¥ and study the effective theory encoded in the resolvent

1 W W
BY) =55 <T* Y >

To find an algebraic equations for R(y) there are two methods [21], but we will

use the most intuitive one. Consider the anomaly equations (6.26). To solve for
R(zx) we used their Laurent expansion in ¥, but now we can use their Laurent
expansion in powers of z and find the following recursion relations

S tiRi(y) + WR(y) — AyS — A5 =0, (6.74)
=0

n k
~ ~ a -~
E tiRgir1(y) — R § SiRe—i(y) + Ay*Rey1(y) — AySka1 + ‘2“Sk: =0, (6.75)
=0 =0 -
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2k
2AyRop1(y) = 20Sapp1 + 1 ) (=1)'Ri(y)Ron—i(y) — aRo(y),  (6.76)

=0
for & > 0, where Ry(y) = — BQ;QTT—%X % are the generalized resolvents and
Sp = — 5 TWWeX®. If we combine these three equations we get a closed

degree 2" algebraic equation for R(y).

By solving the recursion relations one finds that R(y) satisfies a degree 2™
algebraic equation. The curve in the Y—effective description is thus a 2™ sheeted
covering of the plane. This might seem weird at first, since we conjectured that
each sheet of the gauge theory curve is related to a different semiclassical phase.
However, the three phases of our gauge theory are just the ones that we obtain by
coupling the fundamentals with the adjoint X , and are the ones we can study in
the X-effective description of the theory. It is likely that, when adding the most
generic meson deformation W = @m(X ,Y')Q to the superpotential, new vacua
appear corresponding to new higgs phases, that we can just tell from each other
in the effective Y description. On the X side they would be undistinguishable
from the three phases we already considered.

The massive case Ds

- We will not study the generic 2" degree curve, but we show here what
happens in the case n = 1. We will compare this case to its magnetic dual in
Section 10. and recover the usual KSS duality discussed in [37].

Consider the tree level superpotential

Wiree(X,Y) = Tr (%XZ +BX +AXY? + aY) +mQQ, (6.77)

which corresponds to the case n = 1 and V’ (z) = t1z. In this case we just have
the n + 2 = 3 abelian vacua (6.6) but no nonabelian vacua (6.8), which are only
present if n > 3. Here X is massive and we can integrate it out upon its equations
of motion, obtaining an effective superpotential U, i (Y) = ~%Tr(ﬁ +AY?)2
oIty at energies below the mass scale ¢1, whose derivative is

2

U'(y) = —4, By + M%) + o (6.78)
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In the quantum theory, we can use the anomaly equations derived in Appendix
A to find a degree 2" = 2 algebraic equation for the resolvent RY (y), which in
this case is the hyperelliptic curve

W R()? - U ) R(y) — 1) =0. (6.79)

This is the usual anomaly equation for the one matrix model [12], where U’(y)
is the effective superpotential (6.78) and the quantum deformation

8A -
Fy) = 27 (BFo + Az + Ayta S + M2 Fy), (6.80)
1

that we expressed in terms of the parameters that we used in the solution for
R(z) in (6.33).2% The solution of the anomaly equation (6.79) is

2hR(y) =U'(y) = VU (9)? + 1f (y)- (6.81)

The physical picture in this case is the following. Classically, the resolvent R(y)
has three poles located at the classical vacua y = b;, where the b;’s are given in
(6.6). These are the roots of the cubic effective polynomial U’ (y). In the quantum
theory, each pole splits into two branch points, that connect the first and the
second sheet of the hyperelliptic curve. In this case we just have two classical
phases, the pseudoconfining and the abelian higgs phase. The nonabelian higgs
phase is only present if n > 3. So we just have two sheets as in the one—adjoint
theory.

We can get the expectation values of the dressed mesons in the quantum
theory by computing the contour integrals of the meson generator M (y) =
Q-21-Q =m 1 R(y) and find

QY2Q = =, (6.82)

Sltm

go=2, ovg-=
m

28 From the algebraic equation in Appendix A we get f(y) = %()\yZS +AyS—ty §1) =
0, where S, = _3517r_2 (TrW,W*>X). By using the recursion relations in Appendix A
we can also express the parameter §1 in terms of the parameters Fy = t, S, F> that we

used in the solution for R(z) in (6.33) as 4,51 = -——J.“‘z —pBs.
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6.7. Truncation of the Chiral Ring

The classical chiral ring of the gauge theory (6.1) is very different depending
on whether n = deg V'(z) is odd or even. In the case n = odd, we showed for
V'(z) = 2™ that the independent operators are the ones in (6.14). Below we
will show that this still holds for the generic superpotential (6.1) with n odd. If
n is even, on the other hand, the trick (6.13) does not work any more and the
chiral ring is not truncated. This would mean that there are an infinite number
of independent operators in the classical chiral ring.

n odd

Let us first look at the chiral ring for odd n. A basis for the chiral operators
in the SU(N.) theory is given by

Tex2y?, =1, =L (6:83)

We show that all the other chiral operators of the kind TrX7Y? can be expressed
in terms of the basis (6.83). The classical chiral ring is characterized by the
following relations, which are the classical limit of the anomaly equations in
Appendix A we used to solve for T'(z). We have

TeXkHy = —%’]}X’“, (6.84)

TeX! (V/(X) + AY?) Y* =0, (6.85)

T\I_X2l+lyk—|—2 — _ﬁﬁx2lyk+l (6 86)
22 ’ ‘

for k,1 > 0. The chiral operators we will consider are TrX%*+1¥2 higher powers
of TrX?2ny2 TryJi23 and TrXi2n+l,

Consider the operators containing odd powers of X, we have TrX2+1y2 —
- TrX2Y = (5‘9‘;‘)2 TrX 21 s0 we relate these operators to the truncation of
the TrX7 operators and discussed it below. The crucial point that distinguish the
n odd from the n even case is that, in the former, we can use (6.86) to eliminate
TrX"Y?2 while in the latter we can not, leaving the chiral ring untruncated.
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Consider the operators TrX2'Y?2, with [ > n. The first one is
X Y? = — (b, 1 TeX™Y2 + .+ BTrXY? + A TrX YY), (6.87)

and since TrXY* = — 2 TrY®, we relate (6.87) to the truncation of higher powers
of Y, discussed below. Then we proceed analogously until

taTEX Y2 = — (tp a TeX?P Y2 4L 4 BTEX"Y? 4 ATEX YY),

and we relate the last term to TrX™ Y3 by (6.86), and then to higher powers
of X, to discuss below.
Consider higher powers of ¥

ATEY® = — (£, TeX™Y + ...+ 6 TeXY) = TrXv_ (X?)Y + Trog (X2)Y

== o (Tron (X)) 4 b TX™ 7 ot g TEX™ ).
(6.88)
Then,
ATYY* =TrXo_ (X2)Y2 + Trog (X2)Y? = —-%Im_ (XY + Trog (X2)Y?
2
_ (%) (tnTEX2 4 £y oTEX" 4 .) + Trog (X2)Y2,

(6.89)
and the last term is in the basis (6.83). Also A\TrY® = TrXv_(X?)Y? +
Truy(X2)Y?3, and the first one is related to the basis by (6.86). The last
term instead ATrX"1Y3 = —Tr X" V/(X)Y = ZTrX" ?V/(X) is related
to TrX2n—2.
Consider eventually the higher powers of X

tn TeX ™ = — (£, TeX™ + . 4+ 6T X? + ATEXY?)
- (6.90)
= — (tp1TeX™ + ...+ 1 TeX?) + STy,
Then we have t, TrX"2 = — (t,_1 TrX™ + ..+ fTrX?) — ATrX?Y? and so
on. Then t, TrX21 = — (£, TeX?" + ...+ fTeX™H) - ATrX"+'Y? and the
last one is trivial by (6.87) and (6.88).
So we can conclude that the chiral ring is truncated to (6.83) in the case of
n odd.
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The n' even case

We want to address the n’ even case by the point of view of the RG flows.
We start at the IR fixed point D of the theory with superpotential TrXY?2.
Then we have two possibilities. If we consider the flow triggered by the relevant
deformation V/(X) = ¢,, X™ with n’ = 2m, we can easily see that the chiral ring
is not truncated. But we can consider the different flow, in the bottom line

D — —_— — n' =even not truncated

N (6.91)

n =odd truncated — new n’ = even truncated

by first turning on a deformation such that V’(X ) = t, X™ with n = 2m + 1
and flow to the fixed point where the chiral ring is truncated. Then, we can
switch on another relevant deformation such that vV’ (X) = t, X™ 4+ t,, X" with
n’ = 2m < n, that triggers a flow to another fixed point corresponding to the
even case, but this fixed point is different from the untruncated one, namely here
the chiral ring, inherited by the odd case, is still truncated. We can see this
by recon51der1ng the computation above and use the superpotential V’ (X) =
X+t X ie. v_(X2) = £, X" ! and v4(X?) = t, X" . At the second
fixed point, the first coupling ¢,, can be set to one, while the coupling ¢,,» becomes
marginal, so that actually V’/(X) = X™ +#,, X™ . The crucial point here is that
if we started dlrectly with the even coupling ¢,, X™ , we could not use (6.86) to
eliminate TrX™ Y2, If we start with the odd coupling, on the contrary, we can
do the job and then, when flowing to the even case, this equation is still valid, by
just setting ¢, = 1 and keeping the marginal coupling ¢,-. Therefore, the chiral
ring for n’ even that we get by flowing down from n > n’ contains the following

operators _
Tr X7, j=2,...,n" +1,
, / (6.92)
TrX%y?, j=1,... %—

The analogous computation in the chiral ring, for the generalized glueballs
TeW2X*Y7, gives the following nontrivia) operators

TTW2X7, §=0,...,n +1,

. o (6.93)
TW2Y, TW2X%Y?, = Loy
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which are actually %n+3. The chiral ring is truncated and we have two operators
exceeding the number of vacua we would expect by sitting at the fixed point
on the first line in (6.91). This is the mechanism by which, flowing to the
n' = even theory, the chiral ring gets truncated, thus confirming the a-theorem

computations of [3].

6.8. The Classically Invisible Sheets and the Branches

We would like to draw some general lessons on the curve ¥ of the N =
1 supersymmetric gauge theory from this analysis of the different branches of
SQCD. Consider a supersymmetric gauge theory with a matter content such
that, once we fix the number of U(1)s in the low energy theory, there is no order
parameter to distinguish between the various classical vacua in an invariant way,
so we would use the word branches rather than phases. This means that, even
if the classical theory has different kinds of solution to the equations of motion,
in the quantum theory we can reach all the different semiclassical behaviors,
with the same low energy photons, by continuously moving the couplings along
their moduli space, as in the case of a theory with matter in the fundamental
representation.?® It is clear that the different branches can only make sense in
the limit of
i) large expectation values, which is the semiclassical approximation;
ii) well separated branch cuts, that is far from singular points in the moduli
space.
The observables that characterize the different branches are in the chiral
ring of the onshell theory. If we have matter in the fundamental and adjoint
representation they are the resolvents M(z) and T'(z), that we defined in (6.19).

The semiclassical branches are characterized by the analytic properties of these

29 Vacua with a different number of low energy photons, however, describe two dif-
ferent phases of the theory. In fact, as suggested in [19] and discussed in [43] for the
one adjoint theory, if the i~th low energy SQCD has N; = 1, it is not possible to further

pass any pole through the corresponding cut in the onshell theory.
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resolvents on the curve 3, that is by their poles and the respective residues.
Under these assumptions, we can formulate the following proposal:3°

An N =1 supersymmetric gauge theory with a mass gap is described by a degree
k algebraic curve, where k is the number of different branches of the theory. The
curve is a k—sheeted covering of the plane, where each sheet corresponds to a
different branch.

In this way we can explain the appearance, in the quantum theory, of the
“classically invisible sheets”, to quote [19]. Let us see how this works and focus
the attention on the meson operator M(z). In our SQCD, the mesons are dressed
by the adjoints, but with a more general matter content they would be dressed
in some other ways and the general picture would not change. Each branch is
characterized by a set of classical expectation values for the matter fields, which
are set to the solutions to the equations of motion. In our case (6.1) for instance
we have the pseudoconfining, abelian higgs and nonabelian higgs branches. Each
branch is defined by the poles and residues of M (z) on the first sheet at large
expectation values (semiclassical regime). By the generalized Konishi anomaly
equations, it follows that the generic form of M (z) in the branch A is given by

M*(z) = hg(z)R(z) + ¢* (=), (6.94)

where g(z) is a rational function of the couplings, R(z) is the gauge theory
resolvent (which defines the curve) and ¢“(z) is another rational function that
sets the boundary conditions on the meson operator, its poles and residues. Only
in the classical limit do the branches make sense, thus we are interested in just
the last term g“(z). In general, this depends on the resolvent R(p;) evaluated at
the poles p;, which are the images of the classical higgs expectation values. Since
we assumed that there is no invariant way to distinguish the branches, we can
connect all of them by changing continuously the boundary conditions (),
that is by moving the poles p; between the sheets through the branch cuts. Now,

30 We are excluding the case in which there is also a Coulomb branch, as it happens
in the one adjoint theory when n = N. In this case, for instance, the gauge group is
broken to its Cartan subalgebra, there is no mass gap and, in the limit of vanishing

superpotential, we recover the N' = 2 SQCD.
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since the resolvent R(p;) on the curve ¥ gets as many different classical limits as
the number of sheets (this is the way we identify the sheets), it turns out that,
when taking the classical limit of large poles in the first sheet, we obtain as many
different expressions as the number of sheets. Each one of them is a solution to
the equations of motion and therefore a different branch. Suppose that we have k
branches but k + 1 sheets. Then, we can continue the pole p; to that extra sheet
and compute the classical limit for M (z) on the first sheet, but this corresponds
to a new solution to the equations of motion and so we have found a new branch.
For a generic N = 1 gauge theory, this holds with the following two caveats:
— The number of sheets corresponds to the number of branches that we can
distinguish in the effective description we are using. In our case of the de-
formed D, theory (6.1), in the X effective description we can see only
three branches, but we will argue below that more branches could be iden-
tified in the Y effective description.
— If there is an order parameter that characterizes one phase in an invariant
way, then it seems plausible that the corresponding sheet be disconnected.
Let us see how our proposal works in the paradigmatic case of SQCD, where we
have now a complete picture of all the possible branches. Depending on the extra
matter content we can test our conjecture in different situations.

Ordinary SQCD: One Sheet

Consider SQCD with gauge group U(N.). We can describe the offshell curve
of this theory in a confining vacuum by adding a massive adjoint superfield X
and integrating it out. The tree level superpotential is

t ~
WSQCD = ?Zl—Ter + mQQ,

with #; > m. This theory classically has only one branch, the pseudoconfining
one, in which both X and the fundamentals vanish. The corresponding curve is

y? = t32? + 4k, S, (6.95)

where S is the glueball. This looks like a double cover of the z plane with
two branch points at a* = £24/5/t;. But it is just a fake covering and the
curve (6.95) actually describes the Riemann sphere. We have just one sheet
corresponding to the one classical branch.
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SQCD with One Adjoint: Two Sheets
Consider U(N.) SQCD with one adjoint X and a confining phase superpo-
tential
W = TrV(X) + Qm(X)Q,

where V'(z) has degree n and m(z) degree n — 1. This theory has received
a lot of attention. For n < N, it has two branches, the pseudoconfining and
the (abelian) higgs one. The curve is the well known hyperelliptic Riemann
surface y*> = V/(z)? + hf(z), where the degree n — 1 polynomial f(x) is the
quantum deformation. For n > 1, this is a genuine double-sheeted covering of
the z plane. As explained in [19], we can continuously interpolate between the
pseudoconfining and higgs branch by moving the poles of M(z) and T'(z) from
the second to the first sheet. The first sheet corresponds to the pseudoconfining
branch and the second to the higgs branch.

SQCD with Two Adjoints: Three Sheets

This is the theory (6.1) that we have discussed at length. Classically, it has
three branches: pseudoconfining (6.6)-(6.8), abelian higgs (6.10) and nonabelian
higgs branch (6.11). The curve (6.32) is a three-sheeted covering of the plane
and each sheet corresponds to a different branch, as explained in (6.71).

6.9. The Magnetic Dual

- In this Section we will consider an equivalent description of the theory (6.1)
in‘terms of magnetic degrees of freedom. We will first
A Seiberg dual description of the D, 5 SCFT theory with gauge group
SU(N,) and superpotential®!

We = t, TeX™ ! + ATr XY?2 4 Tr X, (6.96)

has been proposed for n = odd by Brodie in [22]. The magnetic theory is an
N =18U(3nNy—N,.) gauge theory with two adjoint chiral superfields X and Y,
Ny magnetic fundamentals g and g and 3n gauge singlets (P;) ?for l=1,...,n

31 This theory has no Lagrange multiplier for Y. Setting & = 0 means that the

adjoint Y gains an overall nonvanishing U(1) component TrY.
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and j = 1,2, 3, each of which transforms in the (NVy, Ny) of the flavor symmetry

group. A magnetic superpotential was proposed in the case & =0
W,, = £, Tr X" + ATr X Y2 + gm(X,Y)q + BTt X, (6.97)

where £, = —t, and A = —X\ and m(X,Y) is a polynomial that couples the
magnetic fundamentals to the gauge singlets and the adjoints. This represents
a Legendre transform between the electric and magnetic mesons. As opposed
to our theory with confining phase superpotential (6.1), the theory (6.96) with
a = 0, that Brodie considered, has just n 4 2 one-dimensional vacua and no
two-dimensional vacua is present in this case. The magnetic polynomial was

proposed in the case a = =0
E n 3 )
m(X,Y) = ;7;: DD IR’ G S (6.98)
=1 j=1

This duality was checked to hold against different flows. Now, we would like
to find the Seiberg dual of the theory (6.1), that is when generic deformations
and Lagrange multipliers are present, so that we have both abelian (6.6) and
nonabelian vacua (6.8). Let us state the results first. If the electric theory has
superpotential

Wo = TeV(X) + AT XY? + BT X + oTrY, (6.99)
then the magnetic tree level superpotential corresponding to (6.99) is

Winag = TtV (X) + ATrXY? 4+ 5TrY 2 + fTeX + aTrY +gm(X,Y)q + f(t, A,

(6.100)
where f(t;1) depends only the couplings t;,A and the magnetic polynomial
m(X,Y) will be discussed below. Note that, even if on the electric side there is
no term such as TrY 2, on the magnetic side we need the additional coupling §
which will be fixed by duality to

b Ny

5=\ .
5 &t N.
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Let us make a brief digression about the magnetic polynomial (6.98). The
rationale behind this Legendre transform term is that it must decouple the elec-
tric and magnetic mesons in different low energy SQCD blocks. Namely, let us
set the multiplier o to zero and consider the following coupling

V(X)) =~ V(X)Y(AY?+B8) - Y(A\Y2 + B)
X-X %

Tm(X,Y)g = Q7 ¢Q,  (6.101)
Let us denote by M; and m; the N }Z electric and magnetic mesons in the i—th
abelian vacuum and by M=+ = Q*Q* and MZE = QEQ* the 4N 7 mesons in
the i-th nonabelian vacuum, that we discussed in (6.59). By evaluating (6.101)
on the classical expectation values for the adjoints in the abelian and nonabelian
vacua, we see that

gn(X,Y)q = (Z miMV" (a5) — t1 (M1 + Mn+2mn+2>)

i=1
=203 V(@) (Mt M),

the magnetic polynomial completely decouples the mesons in the different dual
SQCD blocks. This superpotential term can be conveniently parameterized by a
kernel that generalizes the one-adjoint theory [16][37],

V'(2) = V/(X) whw? + B) — Y(AY? + B)
z—X w—Y

mxm:%f@m Pz, w),
L

(6.102)
where we collected the 3n gauge singlets (Pj)gvinto a single meromorphic function

P(l)(z P@)(, P3) 2) , n pW
P(zw) = — ) 4 w2()+ w3( , P<9>(z)=z—;l—. (6.103)
=1

Note however that (6.102) is only valid if we set the Lagrange multiplier o = 0.
Consider the vacua of the magnetic theory (6.100), they are very similar to
the electric ones (6.6) and (6.8). The equations of motion are

VX)+B6+AY2=0, {AX+5V}+a=0o, (6.104) .
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and their irreps are still one-dimensional vacua and two-dimensional vacua. The
n -+ 2 abelian vacua are analogous to (6.6) but with magnetic eigenvalues and
multiplicities instead, such that (6.7) is replaced by p(z) = (2 + £) [V/(z)+ 6]+
~2

a3

2 and b; = —m The (n — 1)/2 nonabelian vacua are analogous to (6.8),

but each block of the adjoint is replaced by X =a;03— -112 and Y = d;o5+ 01
and a;,d;, ¢; are fixed by (6.104).

We can use the SQCD duality relation N; = # flavors— N; in each low energy
SQCD block to check that the ranks of the gauge groups match. The electric low
energy theory we flow to in the n + 2 abelian vacua is SQCD with Ny flavors,
while in the ﬂ—;—l nonabelian vacua it is SQCD with 2Ny flavors. Therefore we

have
n—1
B n+2 B 5 n-+2
Ne=> Ni+2 Z N; = }:(Nf i) +2 Z 2N;—N;) = 3nN;—N,. (6.105)
=1 =1

Now we want to find the classical duality map. We will use the same strat-
egy as KSS [16]. Let us first try a naive map between electric and magnetic
eigenvalues a; = a; and b; = b;. Since we will stick to the electric pseudo-
confining phase, we can forget about the magnetic polynomial m(X,Y) for the
moment. We have to impose the tracelessness condition on both the electric
and magnetic adjoint vacua. On the electric side, the nonabelian vacua (6.8) are
already traceless, since they are proportional to the Pauli matrices. We are left
with the abelian vacua only TrX = Y777 Nja; = 0 and TrY = S Nyb; = 0,
Whlch fix the Lagrange multipliers 8 and «. On the magnetic side, consider

= YN, = Ny S 2b;. Since b; = —a/(2Aa;) we get the condi-
tion ZT.L"'Z L = 0, but luckily this is automatically satisfied because the linear

i=1 a;

term in the abelian polynomial (6.7) vanishes. Then we have to impose also
X = Y2 Na = Ny St a; — 25 (Ny(n—1) - Z?jl—l N;) = 0, where also
a contribution from the nonabelian magnetic vacua appear. Since a; are the
roots of (6.7) we have E"+12 a; = 5%:—1— and the tracelessness condition can not
be satisfied, unless t,_; = & = 0. This is very similar to what happens in the
one-adjoint SQCD, that was discussed in [16]. We will use the strategy outlined

there to solve for the duality map.

The Shift of the Electric and Magnetic Theory
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To find the map we follow the usual trick in singularity theory and shift both
electric and magnetic adjoints X and X. The new feature is that we need to add
the new coupling TrY2 to the magnetic side. Then we impose the tracelessness
conditions on the shifted adjoints and find that the naive map works in the shifted
variables.

Consider the electric theory. Following the KSS reasoning, we shift X as32

X =X, — B1, (6.106)
and the electric superpotential reads

Wer =TrVo(Xs) + Bs (TrXs — BN,) 4+ ATrX,Y? + oTYY — ABTrY? + 6N,
(6.107)

where
n

Vs(Xs) —Z HX;“

0 =3 (})semr
(6.108)

ﬁs :ﬂ + Zti(hB)ia

b= Z”Qu By

The shifted equations of motion are V! (X,)+8,4+AY2 = 0 and MX;—B,Y}+a =
0. We still have abelian and nonabelian vacua. If we introduce the shifted

eigenvalues X, = a,;, keeping Y unshifted, the abelian vacua are the roots of

o2

ps(as,i) = (Vi (asi) + Bs) (as,i — B)2 + ?a =0, (6.109)
fori=1,...,n+2 and b; m For the nonabelian vacua we find
instead XS = U503 + B]12 and Y = ¢;01 + d;o3 such that d; A% L If

we plug X, and Y into the X equation of motion we get two different terms
one proportional to o3 and one to the identity. We set them to zero separately

32 We do not shift ¥ since one wotuld see that duality fixes the Y shift to zero.
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and find two equations, the one proportional to o3 has (n — 1)/2 roots @ i, the
one proportional to 1l fixes ¢;, we skip the details. So, we have a nonabelian
solution also in the shifted variables. Once we found the vacua we can impose the
tracelessness condition. On the electric side this ﬁxes the Lagrange multipliers.
TrX, Zn+2 Nias i + 9BN = 0 where N = Z N,ﬂ, which fixes (s, while
Try = 32742 Nibs; = 0, which fixes a.

On the magnetic side we have to switch on the deformation §W = §TrY?2
and consider the magnetic superpotential (6.100). At the end this new coupling
will be fixed by duahty as a function of the other couplings. Let us shift the
magnetic theory as X = X B1l, the superpotential reads

Wi =TxV(X,) + B (T X, - BN,) + XTIe X, Y? + &y 6110
+ (5 — AB)TrY? + ¢N, + fs(t, A, B),

where the notation is as in (6.108) but with magnetic quantities instead and
fs(t1, A\, B is the shifted coupling dependent function. If we solve the equations
of motion we still find the abelian and nonabelian vacua. In the shifted magnetic
eigenvalues, the abelian vacua are X s = as,; and Y = b;, where

b = =
T 2X(@ss+ 2 - B)’
(@sit5-B) ~ (6.111)
e V= (Va4 B (Gt B+ o,
Pa(@as) = (V2(@s) + Bs) (@oi + 5 -

for i = 1,...,n+ 2. The shifted nonabelian vacua are X, = @503 + (B - -f\:) 1,
and Y = ;01 + d;o3 Now we impose the tracelessness condition on the magnetic

adjoints

[

7 —

) 2Ny — N;) =0.  (6.112)

i

n+2
TrX, = Z(Nf— (a“)+2(3_

N‘

> @

Il
—

Once we impose both electric and magnetic tracelessness conditions, we can
postulate the naive match of the shifted eigenvalues

Gs,i = s, (6.113)
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and we drop the dependence upon the vacua inside (6.112) by fixing the shifts

In-1
B=_3n"1
_ S ’
B=B+2.

+)\

By comparing the two abelian polynomials (6.109) and (6.111) we get the map
between the shifted couplings and Lagrange multipliers

g = —q, A= =),
BS - _B'S’ a = —q.

The map between the operators is independent of the vacua if the elec-

(6.115)

tric and magnetic superpotential match and the coupling dependent function
fs(ti, A, B) does not depend on the vacuum. We can check this last requirement
by differentiating the effective action with respect to the shifted couplings

5’fs
dg;’
that gives two relations, depending on whether [ is even or odd:

Ofs Ny = 2l+1 21 a;
= 4B3+1 —=
Bgmt ~ A1 + ZZ ’

TeXo = —Te XM 4 (14 1)

=1 i=1 k=0
(6.116)

3fs Nf = 2l+2 21 Hl a;
— B +2 S
2 + 2 +4 Z Z ’

092141 i=1 i=1 k=0

while 8f;/OX = 0 so that f, does not depend on A. By (6.116) we see that f,
does not depend on the vacua, so the operator map is independent of the vacua,
too.

The Map in the Original Couplings

By using (6.113), (6.114) and the map (6.115) we can reobtain the relation
between the eigenvalues and the couplings in the original parametrization of the
theory

(6.117)



While the abelian X eigenvalues are shifted by the duality, the nonabelian eigen-
values match exactly, as well as the Y expectation values

~
i = Gi,

. - - (6.118)

20

By imposing the tracelessness condition in the unshifted magnetic adjoint we fix
3 in terms of the other couplings of the theory
tn—1 Ny

=22t (6.119)
tn N,

In other words, if we introduce the shift A = —5/ X such that @; = a; + A, we can
write down the electric superpotential as (6.99), while the magnetic one (6.100)
reads in electric variables

Wy = —TrV (X — A) — ANTr(X — AY? — oTrY — BTrX + f(coupl.). (6.120)

Duality for Ds: the Quantum Theory

We would like to solve for the chiral ring operator (6.16) in both the electric
and magnetic side in the quantum theory and find the map between the dual
quantum deformations Fy(z). For generic superpotentials (6.99) and (6.100)
this seems impossible, since on the magnetic side the anomaly equations do not
close any more on an algebraic equation for the magnetic resolvent R(x), due to
the extra coupling TrY2. The only case in which we can solve both electric and
magnetic theory is when the adjoint polynomial is just a mass term

W, = %-TrX2 FATEXY? + BTEX + oTrY + mQQ,

We will denote this the D5 superpotential. In this case, X can be integrated out
and the effective theory is described by the resolvent R(y), that we worked out
in (6.81). So we can compare the effective Y quantum theories on both sides of
the duality and luckily get a map. This will reproduce exactly the KSS duality
in the case of a one—adjoint SQCD with superpotential (6.78) in [37], that is we

4

will see that D3 ~ A4, as expected in singularity theory.
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The dual D3 magnetic theory is
Blon e e e~
Winag = _21TrX2 FATEXY? + BTrX + GTYY + g (X, Y)q + mtr P,

where the last term corresponds to the electric mass term for the fundamentals
and the trace is over flavor indices. The magnetic polynomial in this case is
very simple and we can actually use (6.102) even if we keep a nonvanishing «
multiplier. Actually, the two adjoint polynomial m(X,Y) is equivalent to what
we get by using the effective quartic one-adjoint polynomial U(Y) in (6.78). In
fact, the X dependence drops and we are left with

v = B [ gy D) = T'(¥)
m(X,Y) = e }z{d PR (6.121)

The singlet equations of motion are

mu

qYig=—6;, R (6.122)

The anomaly equations for the resolvents X (x) and RY( ) are the same as
in ‘the electric theory, (6.32) and (6.79). We want to solve for the singlets in the
magnetlc theory, following the method in [37]. The magnetic meson generator

M (y) v satisfies the anomaly equatlon [m(y)M (y)] - RY(y). The

generlc solutlon is _
By )
my) — m(y)

The way we solve it is by first fixing 7(y) to cancel spurious singularities from the

M(y) =

(6.123)

zeros of m(y) and then solving for m(y) such that the singlet equations of motion
(6.122) are satisfied. The solution in the pseudoconfining phase is 7(y) = 0 and

~

_H fly)

— 12
A 8mpud’ (6.124)

m(y) =

where f(y) = ;\(Eﬁo + APy + MBS + Ay2Fp) is the quantum deformation of

Y and Fk are the quantum deformations of RX z), the magnetic version of
} 4 &
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(6.33). Formally it is the same expression as in (6.80), but replacing electric with
magnetic quantities.
The magnetic polynomial in terms of the singlets reads m(y) = biﬁ—l— (/_\Pl(S) +

:\y.Pl(z) + (B + Xyz)Pl(l)). We can read off the expression of the quantum expec-
tation value of the gauge singlets in terms of the quantum deformations

5 F.
p® =2 pB 2 (6.125)

L

P =_—2
miy m mity

If we match them directly to the electric mesons (6.82) we find the map duality
map in the quantum theory between the quantum deformations f’o = Fp and
F, = F, and then between the couplings, the Lagrange multipliers and the
glueballs

-\ B=-5

~

=S.

I

ty =—t1, A

) (6.126)
§=-5,

w
I

6.10. Further Directions

In this Chapter we have proposed a general explanation of the presence of
the classically “invisible” sheets in the curves of N = 1 supersymmetric gauge
theories. In general, the gauge theory curve is realized as a k—sheeted covering
of the plane. One of these sheets is visible in the classical theory, while the
remaining sheets are not accessible semiclassically bu only in the full quantum
theory. ‘A convenient method to compute this curve is by the DV prescription,
that relies on the planar limit of a related matrix model or, correspondingly, on
solving a set of anomaly equations in the gauge theory. We considered theories
with matter content such that, once we fix the number of low energy photons,
there is no order parameter to distinguish the various classical vacua, hence we
denoted the different kinds of classical solutions as branches. Our proposal is
that, under these circumstances, there is a one to one correspondence between
the number of branches and the degree of the curve.

This proposal holds trivially in the case of ordinary SQCD and has been
verified also for SQCD with one adjoint chiral superfield in [19]. In this paper,
we have worked out the classical and quantum theory of SQCD with two adjoints
and superpotential (6.1) and we have verified that the proposal works also in
this case. In particular, we have shown that this theory has three classical vacua,
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namely the pseudoconfining, the abelian higgs and the nonabelian higgs ones. We
have proven that in the quantum theory we can associate each sheet of the cubic
curve to each of these three branches by looking at the singularities of some
meromorphic functions on the curve. Moreover, we have argued that one can
interpolate continuously between all the classical vacua with the same number of
low energy U(1) factors. It would be interesting to verify our conjecture for other
gauge theories with a higher degree DV curve, in particular one can address the
following cases.

Consider a U(NN.) gauge theory with one adjoint and an additional chiral
superfield in the symmetric (or antisymmetric) representation. Its DV curve is a
cubic, as in our two adjoint SQCD, and has been computed in [47][48]. One could
couple this theory to matter in the fundamental representation and find out the
classical branches. According to our proposal, we expect to see, in addition to the
pseudoconfining vacua of [47][48], two different higgs vacua and, in the quantum
theory, we expect the three branches (with the same low energy photons) to be
connected continuously.

The second theory is a quiver SU(N,) x SU(N,) gauge theory with matter
iniythe bifundamental representation. The curve of this theory is again a cubic
[48], but it has a weird feature, namely each node of the quiver sees a particular
shéét as its own physical sheet and the leftover sheet seems mysterious. It would
be 1nterest1ng to add fundamental matter to this theory and classify its classical
bré:nches then study the quantum theory and see how we can connect the dif-
ferent branches by moving the poles between the sheets. In this way one could
clarify our proposal in the case of a quiver theory. Moreover, a Seiberg dual
theory to this quiver with fundamentals has been discussed in [49]. It would be
nice to see the dual description of the electric branches on the DV curve, which
is the same for both dual pairs, along the lines of [37].

The E-type SQCD

Finally, an extremely interesting theory where to test our proposal is SQCD
with two adjoints and E, type (according to the ADE classification of [3]) tree
level superpotential. For instance, one can consider the Fjg theory with super-
potential W = TrY? + TrX* deformed by lower dimensional operators. The
classical vacua of this theories are not known. However, by studying their flows
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in connection with the a theorem, [3] argued that there are an infinite num-
ber of irreps of the equations of motion with vanishing fundamentals (which we
called the pseudoconfining branch). First of all, it would be nice to see explicitly
whether the number of pseudoconfining vacua is actually infinite. One could find
also the higgs vacua and classify all the branches of the theory, then compute
the A = 1 curve and verify if the degree of the curve agrees with the number of
branches.

As a byproduct of this analysis, one would shed light on the following mys-
tery. The analytic structure of an N = 1 curve is such that, on the physical
sheet, the number of branch cuts are in correspondence with the classical pseu-
doconfining vacua and, in the classical limit, each branch cut shrinks to a point
corresponding to a pseudoconfining vacuum. In this case, if the number of pseu-
doconfining vacua is infinite, it is not at all clear what the curve would look like,
since we would expect an infinite number of branch cuts on the physical sheet.
Moreover, one could consider the geometric engineering of this theory theory as
a type IIB superstring theory on a certain local Calabi Yau threefold, in the
framework of [20}[21]. The classical theory is described by the resolved geometry
of a P! bundle over a particular ALF space (for a review see [50]). The classical
pseudoconfining vacua of the gauge theory should be seen in the geometry as the
compact holomorphic curves of the threefold. According to the geometric transi-
tion conjecture, in the quantum theory these holomorphic curves are replaced by
three spheres, whose volume is proportional to the gauge theory glueballs. But
if we have an infinite number of pseudoconfining vacua, as argued by [3], it is
not at all clear how to make sense of the classical geometric picture in the first
place, whether there are an infinite number of holomorphic curves in the resolved
geometry and, finally, how to perform the blow down map, if any, and compute
the deformed Calabi Yau.

Appendiz A. Solution of the Cubic Equation
Consider the cubic equation
w3 + aw® +bw + ¢ = 0. (6.127)

First get rid of the subleading term by the shift w = z — a/3, obtaining 23+
3vz +26 = 0, where we introduced 3y = b— %?- and 26 = c— 939 + %aS. Now the
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trick is to replace z with two variables under a useful constraint. Set z = u + v
and get u® + v3 + 3(u -+ v)(uv + ) + 26 = 0. If we just choose uv + v = 0 then
we get
{u3+v3+26:0,
uv + v = 0.
We solve the quadratic equation u® + 26u® — 4% = 0, obtaining w3 = —§ +
/62 + 3. The solutions for u picks up the three cubic roots of unity, 1, e

2%
ul) = (=6 + /62 + +3)3,

and e™*’s , obtaining
WD — ei%’iu(I)7

_i2m
WD — o—i% u®,

and analogous solutions for v = —2X. The solutions to (6.127) are therefore
@) —p@_ 7 8
w u MOREEY

that we can list
Cw® = (5 4+ /5T LB g
wh = +0% 4+ -
( : (=0 + /62 + %)z
D = idni_s 3 A3)% _ ik Y _a
v e'3T (=0 4+ /62 + e'3 P VAT 3 (6.128)
v

g (IID) _ —i2my \/ﬁ 1 i2r _a
wi =em (=4 /B2 +97)3 — €'t T
( (=B+ VB> +7%)"5 3

a
37
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