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| ntroduction

In the survival of favoured individuals and races, during the constantly-rucurrent
Struggle for Existence, we see a powerful and ever-acting form of Selection. The
struggle for existence inevitably follows from the high geometrical ratio of increase
which is common to all organic beings. This high rate of increase is proved by
calculation, by the rapid increase of many animals and plants during a succession of
peculiar seasons, and when naturalized in new countries. More individuals are born
that can possibly survive. A grain in the balance may determine which individuals
shall live and which individuals shall due, which variety or species shall increase in
number, and which shall decrease, or finally become extinct.

Charles Darwin, The origin of Species [1]

In the last years, tools borrowed from statistical physics have shown to be very
helpful to understand problems arising in various fields of biology. This kind of
approach is well estabilished in some field, for example in the study of biopolimers
and proteins, and is getting more and more interesting also in other fields; ecology is
among these fields.

The fundamental problem in ecology is the understanding of the stability prop-
erties of ecosystems, i.e. collections of species in a given environment; the classic
ecological theory states that ecosystems are stable because every species has a well
defined role.

According to this view, an ecosystem reaches stability because each species evolves
to be the best competitor in its own ecological niche [2]; this is the niche assembly
point of view. The concept of niche is purposely vague: it comprehends several as-
pects of species behavior like diet, diurnal/nocturnal activity, foraging strategy, habi-
tat and so on. The whole system reaches an equilibrium when all the possible niches
are occupied. In this situation, it is very hard for an invader species to modify the
equilibrium, because it will necessarily enter in competition with other species which
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are very well specialized in their own ecological niche. Summarizing, the “classical”
perspective states that ecosystems are far from being a random collection of species:
species evolve togheter, and the whole system shows well organized patterns [3].
Ecology aims to undercover how these organization structures work.

Recently, it has been pointed out that this ’stable’ picture is not fully correct [4].
Extinctions of species and speciations (i.e. birth of new species) are very common
event in the history of life. More precisely, the stable picture may or may be not cor-
rect depending on the timescale on which we are looking at the system - evidences
from the fossil record show that there have been long periods of relative stasis, char-
acterized by sporadic extinction and speciation events, separated by periods of very
abrupt changes. This peculiar aspect of life history has been named “punctuated equi-
librium” by Gould and Eldredge [5]. Several authors pointed out [6, 7] that there is
a strong analogy with the stock market: if one looks at the assets value on the day
timescale, the oserved variations are typically small, and a stable, organized picture
may emerge; however, we know that there are famous examples of market crisis,
characterized by crashes of even well established assets. Ecosystems are thus char-
acterized by phenomena acting on very different timescales [7], and there is interac-
tions among these levels of descriptions, meaning that it can be misleading to study
the system on a given timescale and neglet phenomena occurring on different scales
(for example, studying a living ecosystem neglecting evolution). All these features
make ecosystems a paradigmatic example of complex systems, and the challenge for
statistical physics is to “scale up” the results, infering what happens on large scale
from a model of the local dynamics.

For these reasons, it is crucial to have the possibility to build up statistical models
grounded on very simple hypothesis. One of them is the neutral hypothesis. Even
Darwin admitted that a fitness advantage can be, using his words, just “a grain in
the balance”. Kimura [8] was the first to realize that it is very unlikely that a single
mutation in a molecule can bring a concrete gain of fitness for the organism. Thus,
many of the non-harmful mutations are neutral, meaning that the mutant has essen-
tially the same survival and reproduction probability as the wild type. Evolution,
thought as selection of a mutant species with higher fitness, is related to rare events,
and many observed pattern are essentially generated by random mutation processes.
The concept of neutrality was later imported by Hubbell [4] in the field of ecology.
Looking at single-trophic level species, one can assume that every individual in the
ecosystem obeys the same dynamical rule, regardless of the species it belongs to. This
assumption can be justified in some way invoking the Red Queen effect [9]: due to
the changing environment, it is very hard for a species to gain an advantage on the
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other species. Thus, every species evolves, but older species are not better adapted
than new species [10]. In some sense, a neutral theory is the opposite perspective
with respect to a niche-assembly theory: it is assumed that randomness and not niche
differentiation is responsible for the emergence of the observed patterns. Even if the
validity of the neutral approximation is still under debate [11, 12], the advantage of
neutral models is that they are enough simple to be analytically tractable; furthermore,
the predictions based on neutral models fit often very well the experimental data on
single-trophic level ecosystems [4].

As we anticipated above, all these theories and approximation can be valid or not
depending on the time (and spatial) scale on which we look at the ecosystem [7]. This
is a typical feature of complex systems and statistical mechanics has also shown to be
very useful to relate phenomena occurring on different scales.

This research work is organized as follows:

e InChap. 1, we discuss some of the statistical patterns that seem to be ubiquitous
in ecosystems. Evidences for these patterns are collected both in study of living
ecosystem and in quantitative study of the Fossil Record.

e In Chap. 2, we introduce the most important models that tried to give an ex-
planation for the observed patterns. The important concept of neutrality will be
also discussed.

e In Chap. 3, we present a stochastic neutral model of the populations in a single-
trophic level ecosystems. A continuous version of this model is analytically
solvable; we compare the analytical solution with numerical simulations and
with experimental data coming from studies of tropical forests.

e In Chap. 4, we address the problem of calculating the species lifetime distri-
bution function for the “standard” formulation of the ecological neutral theory
[4, 13]. Depending on the parameters range and on the initial condition, the
solution has several different asymptotic behaviors We study them and make a
comparison with evidences of the fossil record. In a realistic parameter range,
we obtain the correct scaling.

e In Chap. 5, we discuss the possible ecological implications of the result of
Chap. 4. In particular, we try to “scale up” the predictions of the neutral theory
on a long timescale. We predict in the same framework the lifetimes of species
and genera and the distribution of species among genera.
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Finally, we outline final conclusions and perspectives.



Chapter 1

Statistical patternsin ecological
systems

This chapter is devoted to outline some statistical patterns that seem to be ubiquitous
in ecosystems. There are basically two ways to discover these patterns:

e observation of living ecosystems
e study of collections of fossils

The studies of living systems give usually better data than fossils: quantitative
studies of the fossil record suffer from several statistical biases that will be briefly de-
scribed in the following. What is really important for our discussion is that these two
kind of observations let us know something about very different timescales. Living
systems are studied year by year, and it is very hard to find detailed data spanning
more than a decade. On the other hand, fossils give us informations about phenom-
ena occurring on a timescale on the order of a million years. As we anticipated in the
introduction, several phenomena may be very important on one timescale, and almost
negligible on the other. Among these phenomena, the most important is evolution:
for sure it is very important on the fossil timescale, while the role it plays on the year
timescale may be not so crucial. We will begin our discussion with the studies of
living systems, and talk about the fossil record in the second part of this Chapter.
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1.1 Statistical description of ecosystem: definition of
community and metacommunity

It is very hard to make a reasonable study of a complete ecosystem. The reason is
that ecosystems are composed by very different species, having different size, be-
havior, and survival strategy. Also the interaction among species can be of different
types: there can be competition, symbiosis, predator-prey relationships and so on.
Furthermore, ecosystems are not isolated systems and are subject to immigration, en-
vironmental and climate change, etc. Even from an experimental point of view, it is
sometimes convenient to restrict the observations on something simpler than the full
system.

Many choices are possible: one possibility is to study only the behavior of a small
number of species (typically 2 or 3), and considering all the remaining system as
an external perturbation. The hope is to reconstruct the behavior of all the system
starting from these simpler interactions [14]. This kind of approach can be very suc-
cessful, and helped a lot in underlining some general features of ecosystems, like
Lotka-\Volterra oscillation [15, 16] and the exclusion principle [17].

Another useful approach is to restrict to a set of species belonging to the same
trophic level. This assumption means that:

e The species compete, actually or potentially, for the same pool of resources.

e The species are similar, meaning roughly of the same size, with the same lifes-
pan, etc.

A group of species satisfying these assumptions and living in a local and confined
area (for example, an island) is defined as an ecological community. Of course, the
same kind of species may exist also on larger spatial scale, like continental scale. The
group of trophically similar species on this scale is defined as a metacommunity. The
main difference is that species belonging to the metacommunity may not compete
because of spatial separation.

There are several reasons for studying single-trophic level ecosystems. First of
all, due to the fact that species interact only in a competitive way, these systems are
simple and amenable to be studied in more depth than complete ecosystems, still
being composed by a large number of species. Moreover, due to the similarity of the
species (and of their role in the ecosystem), it is a crucial issue to understand why
some of them are very abundant, while others are less common. This issue can have
a profound importance, for example in determining the policies for the preservation
of endangered species.
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The first quantitative observations of single-trophic level ecosystems were done
on insects [18]; today, better datasets are available from extensive studies of tropical
forests [19]. We will show in the following sections several features that seem to be
independent on the particular group of species under study.

1.2 Density of individuals

One of the simplest law of an ecosystem is the one relating the number of the individ-
uals present in a given region and the area of that region. The observational result is

that a very good linear relationship holds between the number of individuals and the
area:

N = pA (1.1)
where p is the total density of individuals, regardless of the species they belong to.

This linearity is independent on the sampling method (one can choose between sam-
pling non-overlapping areas or nested areas). The common explanation for this law is
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Figure 1.1: Experimental number of trees as a function of the area sampled in Barro
Colorado Island, Panama [4].

simply that ecological communities are always saturated: that the resources available
are just enough to support the individuals present at the moment. This implies that
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the number of individuals is linear in the area simply because the amount of common
resources (light, water and so on) is linear in the area. This apparently trivial law has
important theoretical consequences. For example, many aspect of ecosystem dynam-
ics can be explained by means of evolutionary game theory [20]. In this framework,
species traits and behaviors are considered as strategy of a game, and the fitness of
the species is proportional to the payoff of that strategy in that situation: a species
with positive (negative) payoff will increase (decrease) its population. Coevolution is
the key idea behind these models: the success (or failure) of a given strategy depends
on the strategy adopted by the competing species. Eq. 1.1 tell us that a realistic game
should be zero-sum, meaning that if the total population is constant, no species can
have success and increase its population without subtracting resources to the other
species. We will see in Chap. 3 the effect of introducing this law into a stochastic
model for species populations.

1.3 The species abundance

The species abundance (¢ ) is defined as the average number of species in an ecosys-
tem having a given number of individuals N. This quantity is used to determine
how many rare species there are, with respect to abundant species, in various kind
of ecosystems. The first data were obtained by S.Corbet in 1941, an entomologist
studying the butterflies in Malaya; two years later, was published the work of Fisher,
Corbet and Williams [18], that obtained similar results with a light-trap study on the
moths at Rothamsted Experimental Station in England. The result was that the dis-
tribution was monotonic and long-tailed, with many rare and few common species.
Fisher found that the data were fitted very well by a distribution of the form:

OZN

(o) o N (1.2)
with oo < 1 being a parameter characterizing the size of the system; typically « turns
out to be very close to 1. Distribution 1.2 is known in the literature as the Fisher log
series.

Some years later, Preston, looking at data from bird species abundance, found that
the Fisher log series didn’t fit in a satisfactory way [21]. In particular, his data were
not monotonic, but shown a maximum for species with an intermediate abundance. In
order to obtain a clearer plot, he made a log 2 binning of his data, with the prescription
that species at the edge of a bin are equally divided between the two adjacent bins
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Figure 1.2: Corbet data set and log series fit. Picture taken from [4]

(Preston plot). The obtained histogram was well fitted by a lognormal distribution
(see fig. 1.3).
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Figure 1.3: Lognormal fit to species abundance data. Picture taken from [4]

These observations raised two important questions:

e Is there any reason to assume that different ecosystems should have similar
species abundance distribution? Is there some kind of "universal’ explanation
for the distributions obtained, without taking into account the details of the
specific system? Are the Fisher log series and the lognormal two members of
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the same family of curves, meaning that it is possible to switch from one to the
other by varying some parameter?

e Are the observed distributions the necessary consequence of some dynamical
model, meaning that they emerge as stationary distributions if one imposes
some simple dynamical rule?

We will try to answer these questions in Chap. 3.

1.4 Species Area laws

Another interesting law that is widely studied in ecosystems is the relationship be-
tween the number of different species present in a given region and the area of that
region. The most accepted relationship among these quantities [22] is a power law:

S =C A (1.3)

The exponent z is in some sense a measure of the biodiversity: for example a value
z = 1 denotes an ideal infinitely diverse ecosystem, where there are always new
species as the area increases. In real ecosystems, the exponent z is always less than
one; hence, the growth of the number of species with the area is always sublinear.
Typical values for z are in the range 0.2 — 0.4, depending on the specific ecosystem.
It was pointed out [23] that this relation is caused by a self-similar distribution of the
abundance of species, meaning that the value of the exponent can be easily derived
assuming that the probability that a species living in a given area A is also present
in a similar region of area A/2, is a constant independent of A. However, the scale
invariance don’t explain the dynamical origin of species area relations. The problem
of finding a dynamical model explaining this power law behavior has been addressed
only recently: scaling behaviors similar to that of real ecosystem have been numeri-
cally observed in simple, spatially-explicit birth and death models (for example, the
voter model with speciation [24]). Despite the simplicity of these models, it is still
very hard to obtain from them an analytic expression, or estimate, for the exponent z.

1.5 The fossil record: quality of the datasets

Large collections of fossils, with their dating and the place of their retrieval, can
be sources of useful informations about the behavior on long timescales of living
systems.
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It has been estimated [25] that about 5 billions species did live in the geological
past since the appearance of life on Earth, dated about 3.5 billions years ago. One
of the most relevant events in these 3.5 billions years was the Cambrian explosion, a
period of about 25 millions years starting from 545 millions years ago, during which
multicellular life underwent an extraordinary diversification producing a multitude of
new evolutionary lineage in a relatively short time. The period of time spanning from
the Cambrian explosion until our days is called the Phanerozoic: we have little knowl-
edge of events preceding the Cambrian explosion, due to the rareness and poorness
of conservation of fossils.

The database for extinction analysis [26] is the distribution in space and time of
about 250000 Phanerozoic fossil species (that can be subdivided in about 18.000 gen-
era). Most of them are marine species, because of the better condition for deposition
and conservation with respect to land-dwelling organisms. This is not an huge sam-
ple, and suffer from several biases:

e quality of deposition can vary greatly with time. A period of poor preservation
can give the appearance of a large extinction event

e recent fossils are more available and often better conserved than older ones.
This may give the impression of greater biodiversity in the present, where this
may be not true. This is called the “pull of the recent”

e not every species and genera have been equally studied. There can be “mono-
graphic effects”, meaning that some group of species in the fossil record can
give the false impression of being very abundant, just because it was intensively
studied by some research group, or because several well-conserved fossils were
found that allowed a good and detailed classification.

e there can be several other possible sources of errors and biases: species may
seem to disappear for a period of time and then reappear again (the so called
“Lazarus effect”), the same species may have called in different ways, etc.

A lot of care were dedicated in the last years [26, 6, 27] to analyze the database
with sophisticated statistical methods, in order to eliminate every possible source of
errors and outline a list of reliable evidences. We will sketch in the following some
of these evidences.
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1.6 Biodiversity, speciation and extinctions

The fossil record allow to estimate how the overall number of species, genera and
families did vary through the Phanerozoic [27]. Looking at various classes of organ-
ism, the general trend of these graphs is a sudden growth (exponential, according to
[26]) from the beginning of the Cambrian, followed by a slower, linear growth rate.
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Figure 1.4: Variation of marine biodiversity through the Phanerozoic.

The Cambrian Explosion was related to the first appearance of multicellular life.
Multicellular organisms had many possibilities to differentiate and occupy new niches.
According to the classical ecological perspective, this period of sudden life growth
ended when all the resources were saturated. After that, the growth was slower, cor-
responding to the search of more complex equilibriums compatible with the available
resources. We anticipated in the introduction how this “static” view may be in con-
trast with the enormous amount of extinctions during the Phanerozoic: if one look at
the actual estimated biodiversity on Earth (about 10 million species) the conclusion
is that about 99.9 % of the species ever lived are now extinct.

Understanding the causes of extinctions in the framework of evolutionary theory is
not a trivial task [6]. The main reason is that evolution acts at the level of individuals
[28]. The “survival of the fittest” rule explains how a species evolve, but it is not
obvious how to deduce from this rule a mechanism for species extinctions. Darwin
[1], talking about fossils, wrote that due to the incompleteness of the fossil record,
it is impossible to find in it good arguments pro or against the evolutionary theory.
Today, evolutionary theory is widely accepted and we have more detailed data about
fossils; a careful study of these data may provide useful information to shed some
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light on the problem of species extinctions.

1.7 Mass extinctions vs. background extinctions

The fossil record shows a striking “clustering” of extinction events. During the
Phanerozoic several catastrophic events did occur. Each of the most important five
among these mass extinctions (“the Big Five”, as they are called by paleontologists)
killed more than the 70% of the species present at that age. It is a challenging task
to estimate the duration of these events, and understand what provoked them. Several
possible causes have been proposed for each of them, like the impact of a meteorite
[29], sudden variations in the environment like climate changes [30], different salt
concentration in the ocean water, abrupt changes in the seas level [31] and so on.
Despite the dramatic size of these events, they are not the only contribution to the
extinction of species, and very likely they are not even the most important one. The
great majority of species (from 90% to 95%, according to some estimates) go extinct
in events that do not show a particular clustering in time with other species extinc-
tions. These events form the so-called background extinctions. An important question
is, whether there is or not a qualitative difference between background and mass ex-
tinctions [32, 33]. It may be also that there could be extinction events of all sizes,
and that only events greater than a certain size (related to the size of the sample) are
recognized as collective events. Raup [32] tried to answer these question measuring
the typical waiting time between extinctions events greater than a given size vs. the
size of the event. Analyzing the results [33] it is hard to give an ultimate answer to
this question, due to the poor statistics. Anyway, the distribution of sizes of extinction
events seem to show a power law tail s~7, with 7 being close to —2. [34, 35] (see fig.
1.5).

1.7.1 Selectivity of extinctions

It seems quite natural from a statistical point of view to take the fossil record as a
sample of extinction events in the history of life; we already talked about the possible
errors and bias in this sample. Now, we want to consider another possible problem:
is the sample equidistributed, meaning, is it possible to consider species lifetimes
and size of extinctions, without caring about the type or the characteristic traits of
species involved? There are for example species that have survived unchanged for
hundreds of millions of years (for example, some deep-sea fishes like sharks): their
habitat didn’t change much through time and they do not seem to risk extinction. On
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the other hand, there have been several claim of selectivity in mass extinction, for
example correlation of the extinction risk with body size [36].

Despite all these considerations, it has been pointed out [6] that there are not
sufficient elements to conclude that some physical trait is strongly correlated with
the extinction risk of a species. The reason is that one can consider a lot of possible
traits: size, diet, habitat, behavior, diurnal-nocturnal activity and so on. We must
consider that we do not have an infinite sample of extinction events: just a few mass
extinctions have been extensively studied; we also know that also our knowledge of
the fossils do not allow to access an infinite database. These observations imply that
it is very likely to find traits that correlate rather well with the extinction probability,
just because there are a lot of traits, but it is hopeless to understand if it was a chance
or of really, for example, a great body size or a very localized geographical range may
expose a species at risk of extinctions.

Models of extinctions dynamics often refer to a notion of “fitness”, as a real num-
ber quantifying the ability to resist to environmental stresses [37]. One can extend
this picture with multi-traits species, having a fitness represented by a vector; each
component of the vector is the resistance to a specific kind of stress. The conclu-
sion is that, as far as we are talking about simple statistical models, it is reasonable
to consider these numbers as random number extracted from an unique probability
distribution.

1.8 The species and genera lifetimes distribution

Species lifetimes are well fitted by an exponential distribution. The common explana-
tion for this lifetime distribution is the Red Queen effect [9]: extinctions are thought
to be caused mainly by change in the environment, and change (or extinction) of other
interacting species. From this follows that a long living species gains no advantage
over a younger one, since it has to face a new environmental situation. In conclu-
sion, the probability of extinction per unit time must be independent on the age of the
species, and this implies an exponential lifetime (see fig 1.6).

When looking at genera lifetime, rather than species, there is some evidence of a
power law behavior [34]. In fig. 1.7 it is shown a typical plot of genera lifetimes. The
fitted exponent seems to be close to —2. There is not a full agreement on whether this
power law holds or not [38]. An exponential fit for the same curve is also reasonable,
but one has to include the effect of living species, which are of course not taken into
account in this case [38]. The common hypothesis [38] is that this power law is a
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Figure 1.6: Lifetimes of species belonging to the Foraminifera genera. Data taken
from [10]. The straight line is the exponential fit.

consequence of the power law of the extinction size, and that an explanation for the
distribution of extinction events size can be an explanation also for the lifetime dis-
tribution. According to this explanation, species do not display a power law lifetime
just because they have typically a shorter lifetime, and are less likely to be affected
by these mass extinction events.

We will propose in Chap. 4 and 5 a possible, simpler explanation for the emer-
gence of this power law behavior in the genera lifetime distribution.

1.9 Conclusions

In this Chapter, we sketched some empirical evidences about ecosystems, collected
by means of observations of both living and extinct (fossil) species. We purposely
stressed two important aspects:

e Itis pratically impossible to have very good statistics for this kind of systems.
Dataset are on the order of 102 — 10® experimental points for observational data
of living systems, and on the order of 10* — 10° data points for the best collec-
tion of fossils species. We mentioned also a lot of possible source of problems
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and biases. Furthermore, it is almost always impossible to vary the parame-
ters, or the external condition of the system. This implies that the comparison
of models with the data can only give qualitative information, and rarely an
ultimate proof.

We also underline the importance of the timescale. Quantitative studies of
ecosystems do not have a lot of history, it is very hard to find an ecosystem
studied for a period longer than 10 years. It was argued [4] that the commonly
accepted equilibrium view of ecosystem [2] is related to this short-term view:
it is very hard to look at large changes on this timescale, which is much shorter
than the typical lifetime of a tree! On the other hand, fossil studies allow us to
look on the opposite limit of very large timescales. It is very important to try to
build up theories which are capable of predictions on very different scales.

In the next Chapter, we will review some of the more influent models which tried

to capture the origin of these observational patterns.



Chapter 2

Models for ecological system, neutral
theory and species extinctions

In this Chapter, we would like to outline some of the more relevant theories and
models for ecosystem dynamics. It is clearly beyond the purpose of this work to give
an exhaustive survey of all the important concepts in this field; we will sketch the
most relevant of them, focusing more on the aspects related to this research work.

2.1 Deterministic models: the Lotka-Volterraequation

One of the first mathematical models that addressed the issue of the existence of a
stable equilibrium situation of a set of interacting species is the work of Lotka [15]
and \Volterra [16] on predator-prey dynamics. They studied a system of differential
equation of the form:

& = z(a — by)
§ = y(—c+ da) 2.1)

where a, b, c and d are positive real parameters. The variable = represent the number
of preys, while y is the number of predators. This system have been widely stud-
ied, and displays some interesting features, like periodic oscillations around the fixed
point x = ¢/d, y = a/b. These oscillation have been also observed experimentally
[39].

The Lotka-Volterra equations can be generalized to a system with more than two
species, and more complicated interactions:

.i‘i = xz(bz + Z aijxj) (22)
J
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In this case, a species 7 with b; > 0 is a renewable resource, while a species with
b; > 0 needs to feed on other species to support its growth. The matrix a,; determines
the kind of interaction:

e a;; > 0and a;; < 0: species 7 feeds on species j (predator-prey or parasite
interaction)

e a;; > 0anda,;; > 0: symbiotic kind of interaction
e a;; < 0anda;; < 0: competitive interaction.

Many interesting mathematical results are known for this kind of systems [16, 40,
41, 42]. In Chapter 3 we will review some result on Lotka-Volterra systems when the
matrix a;; is antisymmetric and the number of species is very large.

2.2 Biogeography: basic concepts

A milestone in the modern study of ecology is the work done by MacArthur and
Wilson on the island biogeography [22]. Their work aimed to explain in a simple
way the fact that the number of different species coexisting in a given island has a
functional dependence from various parameters like the distance from the mainland,
the area of the island and so on. In particular, a larger island - and nearer to the
coast - commonly hosts more species than one smaller or less close to the mainland.
The theory of island biogeography states that the number of species in a given island
varies as an effect of immigration and local extinction. The basic assumption is that
the rate of arrival of new species and of local extinction (local disappearing of species)
are only functions of the number of species present at the moment in the island. In
particular, one can assume that the rate of immigration is a decreasing function of the
number of species, because of the difficulty to settle in an overcrowded environment.
On the other hand, extinction will be an increasing function of the number of species,
because if the island is very crowded, it is more likely that one of the inhabitant
species will go extinct. The conclusion is that an equilibrium holds for a number of
species that balances the two rates. Of course the shape of the two functions may be
modified, moving the equilibrium point s*, by several factors: for instance, there will
be a larger immigration rate in an island nearer to the mainland.

When the theory was presented in the 60, there was a lot of debate about its
validity. Surprisingly, the authors didn’t stress so much the most revolutionary as-
pect of the theory: in the theory of island biogeography, the equilibrium among
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Figure 2.1: Immigration and extinction rate as a function of the number of species s
present in the island, according to [22].

species is a dynamical equilibrium. Moreover, in fig. 2.2, the immigration and ex-
tinction/emigration rates are only function of the number of species, without taking
into account what kind of species they are, how much abundant are them, or any other
detail; in this framework, a species may be ’replaced’ by another with very different
habits without altering the behavior of the whole system. The view of the ecosystem
as a stable organization seems very far from this description, even if MacArthur was
a firm sustainer of the niche assembly perspective.

2.3 The concept of neutrality

The concept of neutrality was introduced in the field of molecular evolution by Kimura
[8]. According to Kimura’s theory, several pattern of molecular evolution can be ex-
plained postulating that the great majority of possible molecular mutations are neutral,
meaning that they don’t bring a relevant change in the fitness of the molecule. In other
words, the mutants perform the same function of the wild type, without any improve-
ment or loss of performance. This assumption explains, for example, the constant rate
of mutation of many phylogenetic branches. It explains also why the great majority
of molecular mutations occur far from the active site of the molecule.
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This assumption is not antievolutionistic: the key idea is that mutations that bring
an advantage are rare, and most of the time the genes perform a sort of random walk
in sequence space. It may be also that neutral mutations become advantageous due to
the changing environment.

The neutral assumption was extended, in some sense, to the field of ecology by
Hubbell [4]. The approximation consists in assuming that every individual in the
ecosystems undergoes the same dynamical rules, regardless of the species it belongs
to. The neutral hypothesis is applied at the individuals level, not necessarily at the
species level: in a neutral model, an abundant species may undergo a different dy-
namics from a rare one. The relationship with Kimura’s neutral theory is the follow-
ing: here individuals play the role of mutants of the molecule. Assuming the same
dynamics for every individuals means that we are neglecting fitness differences with
respect to “demographic stochasticity” , as far as we are considering members of the
same community. The “demographic stochasticity” is, in ecological terms, the ran-
domness associated to the birth and death process of a species. We stress the fact that
the concept of neutrality in ecology should be considered as an approximation, rather
than a proper theory. The reason is that microevolution shows direct evidences of
neutrality: for example, the rate of mutation per amminoacid seem to be almost con-
stant for many phylogenetic branches. In addition, mutations happen more commonly
far from the active site of the proteins, in places where changes are not relevant. On
the other hand, macroevolution seems to be less gradual and random, meaning that
different species can have very different behavior with respect to lifetime, speciation
rate and so on. Many authors claimed [11, 12] that there are no direct evidences of
neutrality in ecosystems. However, this assumptions may be consider a zero-order
hypothesis, and has the relevant advantage of producing ecological models tractable
from an analytical point of view. Furthermore, many predictions based on this neutral
assumption compare surprisingly well with experimental data.

It is crucial to assess completely the predictions that can be made in this frame-
work, in order to understand if this approximation is enough to understand the general
statistical behavior of an ecosystem, or if there are effects that cannot be explained
in this simple context, without taking into account explicitly the differences among
individuals, as well as the interaction among them.
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2.4 The unified neutral theory of biodiversity

In this section, we want to outline the basic ingredients and results of an implemen-
tation of the concept of ecological neutrality proposed by Hubbell [4], and studied
later from an analytical point of view [13, 43] known as unified neutral theory of
biodiversity. The ingredients are the following: let us consider a community with a
fixed number J of individuals. At each discrete time-step one individuals, chosen at
random, dies. With a given probability 1 — m, m being a parameter of the model, it
is replaced by an individuals belonging to a random species in the community, with a
probability proportional to the abundance of that species at the moment. With a prob-
ability m, there is an immigration event: the individual is replaced by another one
belonging to a species present in the metacommunity, with probability proportional
to the abundance of that species in the metacommunity. The model is based on the
assumption that species abundances in the metacommunity are distributed according
to a Fisher log series 1.2. It can be easily shown that the number of individuals of
the k-th species belonging to the community, P, ;, evolves with time according to an
effective birth and death master equation:

Pn,k (t) = dn+1,kpn+1,k (t) + dnfl,kpnfl,k(t) — (dn,k + bn,k)Pn,k (t) (23)

with the following expression for the birth and death rates:

nJ—n [k
e = (L= m) G J)
nJ—n ke
=(1-m)= 1——— 2.4

where p is the abundance of the k-th species in the metacommunity and J,, is the
total number of individuals in the metacommunity. Notice that, for n < J, both the
birth and the death rates contain a term proportional to n, plus a constant (independent
on n). It is possible to find a stationary solution for this equation satisfying detailed
balance [13]; after averaging over p, one obtains a prediction that can be compared
with the experimental species abundance distribution:

(stat) J! Lly) [T+ DU —n+7-y) 4
ZPM Pn) (J—n)'F(J—i-’y)/ P+ Tly—v) dy

(2.5)

Here, (¢,,) are the average number of species having n individuals. The compar-
ison with the data is rather good; looking at the fit, it is hard to discard either the
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Figure 2.2: Preston plot of BCI dataset. The black curve is the lognormal fit, the
green curve is the fit according to 2.5. Picture taken from [13].

lognormal distribution or the neutral solution due to the experimental errors. The
important difference between the two is that the neutral solution is based on a dynam-
ical model. It is very hard to justify a lognormal distribution in terms of dynamical
processes: often, the lognormal distribution is proposed just because it is the station-
ary distribution of multiplicative random processes, which can be used to model the
number of offspring’s as a function of the number of individuals in the previous gen-
eration. The problem with this kind of models is that they admit a lognormal solution,
but with a variance growing linear with time, which is unphysical.

We will introduce in Chap. 3 a multiplicative-like process which is bounded for
every choice of the parameters and bring to a realistic stationary distribution for the
species abundance.

2.5 Modeling the extinction dynamics

In these section, we would like to present a couple of models that have been proposed
to explain the observed patterns of extinctions. There is a lot of literature about this
subject (see [44, 35, 45] and [38] for a review) and enumerating all these proposals is
beyond the scope of this work. We just want to sketch the main results and stress that
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similar distributions can be the result of very different dynamics and assumptions.
This implies that the result of these statistical models should be analyzed with care
and compared with other evidences, in order to have results truly relevant from a
biological point of view.

25.1 Sdf-organized criticality: the Bak & Sneppen model

In the 1990s there has been a lot of interest around the idea that evolution could drive
the ecosystem into a self-organized critical state [46], meaning that a small modifica-
tion in an ecosystem at equilibrium may provoke an avalanches of extinction events
without a characteristic scale (power-law distributed). This was a simple and ap-
pealing explanation for the phenomena named “punctuated equilibrium’ by Eldredge
and Gould [5]: looking at the fossil record, it seems that evolution (and extinctions
distribution) shows an intermittent behavior, with long periods of stasis followed by
sudden bursts of activity.

The toy model proposed by Bak and Sneppen [44, 35] is a simple demonstration
of these ideas. The model is defined as follow: suppose to have a set of real variables
0 <z; <1,2=1...sdefined on a lattice (one-dimensional, in the simplest case).
The variables represent species fitness: a species ¢ with lower z; is supposed to be
more at risk of extinction under the effect of environmental stress. Nearest neighbor
of species i are supposed to be species interacting with species 7. The x; are initialized
as random variable with constant distribution between 0 and 1. At each time-step the
species 7 with lowest z; is replaced, and the variable z; is extracted again from the
same distribution. This can be thought as an extinction of species 7, and replacement
by another species, or as a mutation activity: the hypothesis is that the change strikes
the less fit species Due to the change of environmental condition, also the nearest
neighbor variable of x; are reassigned. In the large s limit, after a transient, the
system reaches a stationary state, meaning that the probability distribution of the z’s
does not change with time. This state is characterized by power law distribution of
size of extinction events and species lifetimes. In particular, the probability of having
an extinction event of size S scales as S~7, with 7 ~ 1.1 in one dimension (see fig.
2.3). This exponent depends on the dimensionality, and it is always less than the
mean-field value 7, = 1.5. It can be also shown that the lifetime have also a power
law behavior =%, with £ = 1 in all dimensions [47].
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Figure 2.3: Activity vs. time, avalanches size distribution in the Bak & Sneppen
model.

2.5.2 The Newman modd

As we said, the idea of a self-organized critical ecosystem is very appealing from a
physical point of view, because it implies that the power law behaviors are endoge-
nous. In this class of models, there is no need to know the entity or the origin of
the perturbation which causes the extinctions: the avalanche size is uniquely deter-
mined by the internal, critical dynamics of the ecosystem. Anyway, one could obtain
a critical behavior in a simpler way by assuming that major external stresses are the
cause for large extinction events. Among the models that outline this point of view,
we present in this subsection the Newman model [37]. Also in the Newman model
we have a given number of species 7 = 1...s represented by a single real number
0 < z; < 1 characterizing their fitness. However, in this model one can suppose
that the species are independent, thus there is no lattice structure. The fitness vari-
able have the same meaning as in the Bak-Sneppen model and are again initialized
with an uniform distribution between 0 and 1. At each time-step, a small fraction
v of the species mutate, and their fitness is extracted again from the same distribu-
tion. Then, a stress n is chosen randomly from a given stress probability distribution
p(n). All the species having a fitness lower than n become extinct, and are replaced
by new species having fitness again chosen uniformly at random between 0 and 1.
Also this noninteracting model displays power-law distribution of extinction events
and species lifetimes, for quite different choices of the stress probability distribution
function (Gaussian, exponential, Lorentzian). The predicted exponent values are very
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realistic for the avalanches (7 = 2 for a Gaussian stress and it is close to 2 with other
choices of the distribution), but are further for the observed value for the lifetimes
(k = —1 for a Gaussian stress).

2.5.3 Discussion

We presented in this section two apparently similar coarse grained models for evolu-
tion and extinctions. These models have indeed a very different biological meaning,
but both show scale free lifetimes and extinction size distribution. We saw that the
two models predict quite different numerical value of the critical exponents. Statisti-
cal physics, and in particular the theory of critical phenomena, suggest that the critical
behaviors should be independent on the details of the models. If this is true also in our
case, a direct comparison with the observed exponent should be an argument against
the Bak and Sneppen mechanism [35].

Of course, common wisdom suggests not to take too seriously the concept of uni-
versality when one deals with complex systems. The reason is that often models for
complex systems are really abstract with respect to reality: while it is reasonable to
assume that the Ising model is a simplified version of the Hamiltonian for a ferro-
magnet, and should belong to the same universality class, it is very hard to make a
similar claim for a model of evolution. In this context, the numerical value of an
exponent can be just considered as an useful hint to understand the underlying dy-
namical mechanism, and not as an ultimate benchmark. For example, models based
on self-organized critical dynamics, but with a more realistic topology of the inter-
actions seem to predict a value of the exponent more close to the reality [48]. On
the other hand, “exogenous” models can often predict realistic exponents with sim-
pler assumptions (in the case of the Newman model, it it sufficient to assume that the
stress distribution in Gaussian).

The real behavior is clearly a result of the interplay between both exogenous (envi-
ronmental shocks) and endogenous (avalanches of extinctions) factors. Furthermore,
it is very hard to determine a stress p.d.f., and even the definition of “fitness” as the
ability to resist to stresses is questionable. A reasonable conclusion may be that the
distribution of large events is determined mostly by the presence of exogenous fac-
tors, rather than by large-scale avalanches. This is coherent with several studies of
environmental phenomena [29, 31], which are surely capable to cause large scale ex-
tinction events. Extinction avalanches are still an important phenomenon, but it is not
clear how much they have been crucial in the history of life.

A more subtle problem is that all of these models neglect completely the popula-



28 Models for ecological system, neutral theory and species extinctions

tion size. Species are treated as a whole: shocks, both endogenous and exogenous, are
supposed to affect the entire population. On the other hand, we know experimentally
[6] that an abundant species has, in general, more chance to survive an environmental
stress than a rare one, especially if the species has a great geographical range. Extinc-
tions are more likely to affect species which are already small in number, and confined
in a small geographical range. MacArthur and Wilson [22] were fully aware of this
fact: they introduced the concept of Minimum Viable Population (MVP), which is a
threshold value of the population size depending on the species. It is widely believed
[49] that a species with population above its MVP is virtually immune from the risk
of going extinct.

We will show in Chap. 4 and 5 how demographic stochasticity alone can explain
some of the observed patterns.

2.6 Conclusions

In this Chapter, we introduced and discussed some basic ideas and theory that influ-
enced the modern ecology and palaeontology. We stressed the fact that it is preferable
to have an individual-based model, instead of considering the species as a whole. We
also underline how the organization in ecosystem can be somehow neglected when
one look on long timescales, and how the observed patterns can emerge from simple
stochastic models. All these ideas are the basic ingredients for our work, that will be
the subject of the following Chapters.



Chapter 3

A stochastic process for the neutral
theory

In this Chapter, we propose a stochastic model for the dynamics of competing species
in an ecological community [50]. The neutral assumption allows us to obtain a simple
model and calculate analytically a stationary solution. This solution is compared with
simulations and from observational data from tropical forests.

3.1 Introduction of the model

A milestone in the study of multiplicative stochastic process is the work done by
Kesten [51]. Kesten studied equations of the form:

X1 = M Xp + by (3.1)

where X () is the variable belonging to a proper vector space and both A and b are
random independent variables. He found that, depending on the mean value of A and
on the boundary conditions, one retrieves a lognormal or a power-law regime. Multi-
plicative random processes have been widely studied [52, 53] and several models for
distributions commonly found in economic and natural systems based on this kind
of processes have been proposed [54, 55]. In the economic models, essentially, the
random variable )\, represents the income of a given asset at time ¢, while b, is a sort
of “welfare term”, a random contribution given by the society and independent on the
value of the asset.

When (\) < 1; Kesten show that the stationary solution has an asymptotic power
law tail z—1 + «. The parameter « can be obtained as a solution of the transcendental
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equation:
(A" =1 (3.2)

It can be show that (apart from the trivial solution & = 0), the solution is always
a > 1. On the other hand, while size distributions of firms and assets often seem to
display =2 power law tail, ecological system are characterized by longer tails (for
example, Fisher’s 1/z with a cutoff [18]). Our goal is to propose a multiplicative
stochastic model, based on simple hypothesis, which can lead to a stationary solution
comparable to the species abundance of real ecosystems.

According to MacArthur and Wilson theory of island biogeography [22], the num-
ber of species in a community approaches a dynamical equilibrium between immigra-
tion, speciation and extinction. We assume that we can neglect the fluctuations around
this equilibrium value: in our model, when a species go extinct, it is immediately re-
placed by another one, thus the total number of species, s, is kept fixed.

We also assume that the net effect of the competitive interaction between species
in the community is just to keep also the total number of individuals in the community
fixed: the resources available are enough to support just IV individuals across all the
species; we saw in the first chapter that also this hypothesis is well confirmed by
experimental data [21, 22]. At the end of section 111, we will show that relaxing these
constraints does lead to similar conclusions in the large N limit.

We introduce the s variables z¢, representing the population of the i-th specie at
(discrete) time ¢, with the condition:

ZS: Tt=N vt
i=1

Let P()) be the probability that an individual in the community has A offspring during
one time step. Here, we make use of a neutral approximation: we assume that we can
consider the same distribution P(\) for all individuals, regardless of the species. The
population of the i-th species evolves according to the following equation:

Y
ALt b
ottt = N k= M (3.3)

LS (AL )
where [ | means the integer part. \We are assuming that the existence of species with
a non integer number of individuals is not too drastic. This might lead to round-
off problems only for rare species. At each time step (generation) we just sum the
number of offspring of every individual belonging to that species, and then add a
small quantity b. This quantity becomes relevant only for small z;, and this describes
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the behavior of species near their extinction threshold. We are assuming that the
net effect of extinctions, immigration pressure and speciation can be modeled in a
simple way with the introduction of this term, whose effect is to force the z;’s to
be greater than zero. Indeed, for b = 0, our system admits an absorbing state with
only one z; equal to N and the others equal to 0, the so-called monodominance [4].
Notice that species are only coupled through the denominator, that simply preserves
the normalization condition.

The number of individual of each species will be typically large, so we apply the
central limit theorem to the sum of random variables in this equation, obtaining the
following model:

TSR Azt + oy /Tl + b

Z i (X:c§ + 0\/:7;-6; + b)

where )\ and o are the mean value and the r.m.s.d. of the distribution P()), and the
&’s are uncorrelated Gaussian variables with zero mean and unit variance.

In our model the number of individuals of different species can be thought as
following a multiplicative process rather similar to a Kesten process (except that for
the square root). The coupling is a consequence of the constrain that keeps fixed the
number of individuals in the community and that is enforced in equation (1) by the
factor N and by the denominator.

(3.4)

3.2 The continuum limit

In order to obtain an analytically tractable equation, we achieve the continuous time
limit of this model, by introducing the time interval dt in the following way:

A — 1+ Mdt
b — bdt (3.5
o — odt

By means of this substitution, our model becomes:

trdt ot + dt(\at + o\/2El +b)
Tt =
1+ —‘]i\f ) ;:1()\333- + 0y /x5EL 4 D)

Expanding the denominator and using the fact that Zj z; = N, we get the Langevin
equation:

(3.6)
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g = fi(x) + aZ Bij(2)&; (3.7)

where:

Filw) = b(1 — 2 ;)

N
Z;

Bij(z) = (35 — 77)v/% (3.8)

The Fokker-Planck equation [56] associated to this Langevin equation is :
Pla,t) =0, | ~fiP(@1) + DY 9(g;i(@)P(z, 1)) (3.9)

=1 j
with D = Z and:
T
9i(z) = gji(z) = BuBjr = (655 — )% (3.10)
k

We search for a solution of this equation satisfying detailed balance (i.e. P'f; =
D>, 0;(gi; P*")). Defining the marginalized probability distribution function:

po) = [ [[dnP*@) (3.11)
0 i
we can easily obtain an equation for p(z).
2
b (1 — %) p(z) = D% [(x — %) p(m)] (3.12)

This equation can be easily solved, giving:

b
N b=5 (3.13)

Notice that this distribution correctly shows the monodominance behavior §(0) or
§(N) in the limit 8 — 0. Finally, if we fix z = 22, in the limit for N — co we obtain:

p(z) oc 2771 (1 - =

pz) = We

In fig. 3.1 we plot simulation of the stationary p.d.f. for various value of the
parameter 3, and check the validity of (3.14).

—uo (3.14)
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Figure 3.1: simulation of marginalized stationary p.d.f. for various values of the
diffusion coefficient D, compared with theoretical curves. For all curves b = 1,
A =15 = 100,N = 10° Curves are binned linearly with binning size 6z = 10%.
Notice that as D increases the curve approaches the Fisher log series.

3.2.1 Grancanonical approach

Instead of having a system of stochastic differential equation, it is possible to take
into account the interaction of a species with the ecosystem in an averaged way. Let
us consider the Langevin equation:

#(t) = b+ A\x — vz + DV/x€ (3.15)

where the parameter  takes into account the effect of competition. In order to have
normalizable solutions, we have to require that v > A. When this condition holds,
it is straightforward to show that the stationary p.d.f. satisfying detailed balance is
the same as (3.14), with u = —(\ — )/D. Notice that in this case, the detailed
balance solution is exact; Eq. 3.15 can be considered as a grancanonical version of
our model: in this case, we do not fix the number of individuals, and take into account
the finite resource via the parameter -, which may be thought as a Lagrange multiplier
corresponding to the constraint of finite total population N. It is remarkable that, in
the large NV limit, the solution of model 3.14 and the solution of eg. 3.15 are the same:
the same stationary distribution can be achieved without fixing neither the number of
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species, nor of individuals.

3.3 Connection with the neutral theory of biodiversity

An interesting question is if there is some relationship between our model and the
neutral theory of biodiversity [4], as formulated by Volkov et al.[13] (see also [43]).
More precisely, one could ask if our model arises from the continuum limit of a master
equation similar to the one proposed for the neutral theory. Let us write the master
equation for the generic birth and death process:

—(d(z) + b(z))P(x) (3.16)

for z > 1 (we set d(1) = 0 to avoid that a species disappears without being replaced
by another one [13]). Equation (3.16) can be converted in a Fokker-Planck equation
assuming that z is a continuous variable and that b(x), d(z) and P(z) are smooth
enough that we can expand them in Taylor series. Thus, for example:

dlz+1)P(z+1)—d(z)P(z) =
- 2wyl + 2 L@ P@) +
= ax X xz 9 6.1‘2 X X e
It can be shown [56] that only the first two terms in this Taylor series do not vanish.

Thus, we can derive from Eq.(3.16) the following F-P equation:

P(z) = —a%J(x) (3.17)

with:

—J(z) = [d(z) — b(z)]P(z) +
10
P P
+5 5. [(d(@) +b(@) Pa)] +
J(z) has the meaning of a probability current and we can write the general form of the
stationary solution satisfying detailed balance as a function of d(z) and b(z) setting

J(z)=0:
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_ () *d(2’) — (')
)= e |- i .

One can easily check that our stationary p.d.f. (3.14) is recovered, provided the fol-
lowing particular choice of the birth and death coefficients:

_l+p

d(x) x+b

b(z) = > 5 Po+b (3.19)

This choice [13] implies that there is balance between immigration and emigration
in each species. The more general case, in which this equilibrium does not holds, is
treated in [57].

3.4 Comparison with experimental data

Among the most reliable data on single-trophic species distribution of species abun-
dance are tropical forest census [19]. In order to make a coarse graining, a Preston
plot is used: data are collected via a logarithmic binning in base 2, and species at the
edge between two consecutive binning are equally divided between them. Since we
have a continuous probability density, we compared the histogram with the integral
over the bins of the distribution with the experimental data, and made a least-square
fit of the parameters 5 and u, plus the normalization. We found a good agreement
of our predicted curve with the histogram; in fig. 3.2 it is shown the comparison be-
tween our solution and the lognormal. Notice that the two distributions have the same
number of fitted parameter. It would be interesting to compare our distribution with
data collected form other kind of ecosystems, and to try to clarify the dependence
of our free parameter 5 from ecological quantities like the immigration pressure, the
speciation rate and the extinction threshold.

3.5 The Kernen’s biological ensemble
It is remarkable that our distribution is the same found in studies made by Kerner in

the ’50 [40, 41] (see also [14] for a review) on the invariant measure in a system of
Lotka-\Volterra equations [15, 16] with purely asymmetric couplings.
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Figure 3.2: Fit of tree species abundance data taken from different tropical forests,
plotted via a Preston binning, with our model. On the z-axis, it is shown the log 2 of
the number of individuals. Picture courtesy of 1.Volkov.
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Let us briefly describe his results: we consider a system of s > 1 species, whose
populations are denoted by real variables x;,7 = 1...s. These variables depend on
time and evolve according to a system of Lotka Volterra equations:

T = @ (ei + %Z aijxj) (3.20)
Y
where ¢; is the growth (or decay, if negative) rate of species 7 in absence of inter-
action, and — are \Volterra’s “equivalent numbers”[16], and are defined such as the
ratio of mcrease of species ¢ and j should be 3;/5;. We impose also that the ma-
trix a;; is antisymmetric: a;; = —ay ;. This implies that the interaction are purely of
the predator-prey type, and there is no competition or symbiosis among the species.
Lotka-\Volterra dynamical system are widely studied from a mathematical point of
view [42]; among the results, it can be shown that stable coexistence of s species im-
plies the presence of an interior fixed point in ", Since we are interested in finding
a stationary solution, we suppose that this fixed point x exists:

6+ ayZ=0 Vi (3.21)
J

and make the change of variable y; = log(x;/z;). The dynamical equation for the y;
writes:
51% = Z CLjZ'Q_?j (eyj — ].) (322)
J
It follows that the quantity:

{yz Z ﬁz-Tz t— yz (3.23)

is a constant of the motion (indeed, Volterra firstly recognized the presence of this
conserved quantity [16]). Notice also that the function G is a sum of terms G;, de-
pending only on the i-th variable. The system of equation can be now written in the
form:

(Z%J v;) v} wi= Bag (3.24)

These equations are reminiscent of the Hamilton equation, with the function G play-
ing the role of the Hamiltonian. Since this is the only evident constant of the motion,
one can proceed like in statistical mechanics assuming the microcanonical hypothe-
sis, considering all possible copies of the system compatible with the informations we
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have about it, and giving to all of them equal probabilities, assuming total ignorance
about the system, beyond this constant of the motion. This hypothesis implies the
following form for the stationary measure:

p = pod(G — Go) (3.25)

where ¢ is the Dirac delta, py is a normalization factor and G is the initial value of
the function G. Even if the system is not Hamiltonian, the microcanonical hypothesis
allows to obtain results very similar to that of statistical mechanics. For example, it
can be demonstrated an analogous of the equipartition theorem: let us show that the
ensemble-average of the functions:

oG T T

T.) = (yp——) = T [ = — 1) log= .
< 7") <y7" 83/,) /dl) BiZ; <[f‘ ) og p (3.26)
are independent on the index r. We use the fact that the measure dp can be expressed
as the differential of the surface of constant GG, divided by the gradient of G:

as

dp= ——
P~ va

(3.27)

Since the gradient of G is orthogonal to the surface of constant G, it follows that:

oG dS

oA = N -yr dS 3.28
Tayval Y 520

n being the unit vector normal to the surface and y, the vector with components
(0,0,...v,,0,0,...). Finally we can compute the average:

<m=N/Www=N/Vym:Nm (3.29)
S 14

Here we used Gauss divergence theorem; 7, is the volume enclosed by the surface
Go. The final expression is independent of r; this complete our proof.

This result is somewhat an analogous of the equipartition theorem in classical
statistical mechanics; further, it allows us to introduce a canonical ensemble, by con-
sidering a small subset of all the species in contact with a larger environment that
acts as a thermal bath. It is straightforward to show that this construction correspond
essentially to fix the value of the function 7', instead of fixing the value of G. In this
ensemble, every z;, rescaled at his fixed point, is distributed in the same way. Of
course, the distribution turns out to be similar to the Maxwell-Boltzmann:

p(ys) o< exp (=Gi(y:)/T) (3.30)
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with the parameter T playing the role of a temperature. Surprisingly, if we write
explictily the form of the distribution p(y) and make again the change of variable
y — x, we recover the same class of distributions found in 3.14:

1 T 1 T
p(z) o — eXp {% [% —log (%)]} o o exp <—%%) (3.31)

3.6 Conclusions

The model we introduce admits a family of stationary p.d.f. depending on the param-
eter 5. This parameter fully determines the shape of the distribution: for 5 << 1 one
recovers the Fisher log series, while for /3 large, one obtains a bell-shaped distribu-
tion, similar to a log-normal. As we already pointed out, both these distributions are
well known in the population biology literature as possible candidate to be the ‘right’
distributions found in nature. Within this model, there is no need to make any distinc-
tion between ecological communities and metacommunities: both species abundance
distribution can be fitted by the resulting stationary distribution, just by varying the
range of the parameter .

Let us also comment about similar aspects and differences between this process
and the one proposed by Kesten [51] Indeed, also the Kesten process admits two
different regimes, one lognormal and one with a power law tail. The main differences
is that in our case the multiplicative random process is applied to the square root of
the variables, rather than to the variable itself. As a consequence, in the Kesten case,
the exponent of the power law tail of the stationary distribution is always greater than
two, while the small 3 regime of our system is characterized by a power law tail
over many decades, with an exponent that is always less than 1: the cutoff due to
the conserved number of individuals ensures the normalization of these long-tailed
distributions. In some sense, ecological systems are less “coherent” than economic
systems: the longer tail is due to the fact that randomness act differently on each
individuals. In the original model, as proposed in eq. 3.3, one retrieve the Kesten
process if the same ) is extracted at each time step for every individuals belonging to
the same species.

We also mentioned the fact that our distribution (eq. 3.14) has been already
discovered in a completely different framework: the study of antisymmetric Lotka-
\olterra systems with a large number of degrees of freedom. While we started from
a stochastic model, and considered only competition, in that studies, the system is
completely deterministic and the interactions are only of prey-predator type. It would
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be very interesting to discovery if the solution is the same by chance, or if this distri-
bution can be thought as a solution of a more general model, with even more general
assumptions on the dynamics and on the kind of interaction among species.



Chapter 4

A neutral model for extinctions
dynamics

In this Chapter, we address the problem of calculating the lifetime probability dis-
tribution function according to the neutral theory of biodiversity [58]. We will show
that the equation for the lifetimes has various critical regimes, depending on the pa-
rameters, and on the choice of the initial condition; we will provide an analytical
solution and study all of these regimes. The central result of this Chapter is that, in
a realistic parameter range, the solution shows (at criticality) a =2 power law tail, as
it was observed in the fossil record analysis. We will devote the next Chapter to the
consequences of this result.

4.1 Formulation of the problem

We already underline in Chap. 2 that, according to the neutral theory of biodiversity
[4, 13], the probability of having a species with a given number n of individuals
evolves with time according to a birth and death master equation:
P,(t) = 6" VP, 1 (t) + d™I P, 1 (t) — (d™ + b™) P, (1) (4.1)

where 5™ and d™ are birth and death coefficients of the form:

b™ = by + byn

d™ = dy + din (4.2)
The parameters b, and d; represent the reproduction and death rate per individuals,

while by and d, are introduced to take into account several frequency dependent ef-
fects in an averaged way; among these effects are immigration, emigration and niches
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assembly. In the classical formulation [13], by = d,, but one can also consider the
more general case by # dy [57]. In order to study the lifetimes distribution, we erect
an absorbing barrier for n = 0, imposing 6© = d(® = 0. The initial condition is that
the new species at time ¢ = 0 has just one individuals:

Making these assumptions, Py (t) represents the probability of being already extinct
at time ¢. From this follows that the lifetime probability distribution function is the

time derivative of Py (¢):
d

p(t) = %Po(t) (4.4)
Our goal is to find a general solution for p(¢).

From a physical point of view, the problem translates in the study of an exit time
problem for a stochastic process involving two different kind of dynamics: a random
walk dynamics (the b, and d, terms) and a dynamics typical of simple branching
process (the b, and d; terms).

We will show the behavior in the two simple limiting cases, then we will provide

an analytic solution for the general case.

4.2 Exit time distribution for random walk and for
branching processes

In this section we will analyze two limit cases of the problem. The first limit case is
dy = by = 0. In this case, the number of individuals belonging to a species evolves
according to a random walk. Then we will consider the other case by = dy = 0, that
can be mapped in a Galton-Watson process in continuous time.

42.1 Caseb; = d; = 0: therandom walk

In the case b; = d; = 0, the number of individuals belonging to a given species
performs a simple random walk. Random walks processes have a lot of application
in physics and, more recently, have been proposed as a possible model for some time
series extracted from the fossil record [6, 59]. The problem of exit-times distribution
for a random walk process has been widely studied in the literature (see, for example,
[60]). The easiest way to obtain the lifetime distribution is to take the continuum limit
of eg. 4.1 and then work with the resulting diffusion equation. We show in Appendix
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A an alternative way to obtain the lifetime distribution for the one-dimensional ran-
dom walk problem, without achieving the continuum limit; the strategy utilized there
can be used also to study more complicated models.

422 Caseby = dy = 0: the Galton-Watson Process

The problem with by = dy = 0 has a very long history: the first formulation was
presented by Galton and Watson in 1874 [61]:

Let po, p1, p2, - - - be the respective probabilities thataman has 0, 1,2, . ..
sons, let each son have the same probability for sons of his own, and
so on. What is the probability that the male line is extinct after r
generation, and more generally what is the probability for any given
number of descendants in the male line in any given generation?

The Galton-Watson process was the first simple example of branching process[62],
and was generalized in a lot of ways. It is easy to recognize that the case by = dy = 0
of our equation is simply a continuous time version of the Galton-Watson process,
where d; is the probability of dying per unit time per individuals, and b, is the proba-
bility of having a son per unit time per individuals.

This limiting case is interesting from an ecological point of view because the
do and b, terms happen to be small when one looks on a very large scale (like on
continental scale). If one allows transitions 0 — 1, for example including speciation
in an explicit way, the resulting stationary distribution is the celebrated Fisher log
series [18]:

P(n) = N— (4.5)

where N is a normalization constant and o« = 3—1 In this case, the birth and death

equation can be analytically solved in time: by introducing the characteristic function

o0

G(z,t) =Y Po(t)z" (4.6)

n=0
the birth and death equation can be transformed in a first-order p.d.e. for the function
G(z,t):
0:G(z,t) = (br* — 1+ (b + 1)1)0,G(z, 1) 4.7)
This equation can be integrated using, for example, the characteristic method; notice
that, by rescaling the time, we can set d; = 1 without loss of generality. Calling
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b, = b and taking as initial condition G(z, 0) = z, the complete solution is:

(1—x) — (1 — bx)elt=b)

= 4.
G t) = T = (= bl (4.8)
from which we can obtain:
1— e(l*b)t

Po(t) = G(0,¢) = Py (4.9)

The lifetime p.d.f. is proportional to the time derivative of G(0, ¢):
B = 8,G0,4) = (" " 4.10
p()—t(a)—me (4.10)

This distribution has an exponential-like shape when d; — b, is not too small. On the
other hand, when b, approaches d;, the distribution has a power law behavior with
1

exponent —2, with a cutoff of the order ¢* = =. Using the language of critical

phenomena, it can be show that p(t) obeys a scaling law of the form:
) (4.11)

with f(z) = [z/(1 — e ®)]?e *

From this distribution one can also calculate the expected lifetime for a species
that is chosen at random in the ecosystem, instead of a species just born. We imagine
that, via some speciation mechanism, an extinct species is immediately replaced by
another one; in this case one can set as initial conditions the characteristic function
associated to the Fisher log series (again, we set d; = 1):

_ log(1 — =xb)

Gla,0) = T = (4.12)

is it possible to solve again the problem and compute the lifetime probability distri-
bution function. The result is:

el _ (1-b)t
¢ ¢ ] (4.13)

1
t) = 1
G0, 1) log(1 — b) °8 [ b— e(l-b)

In this case, one can easily show that the critical exponent for the lifetimes p.d.f is
—1.
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4.3 The general case: crossover and solution

Now, we would like to answer the question, what kind of critical behavior there is
when all the coefficients are different from zero and by — dy, by — dy. One may
argue that, typically, species living for longer time should have larger population.
In the large population limit, the by and d, term can be neglected with respect to b,
and d;. So, we expect the =2 regime to occur later, i.e. for larger times, that the t 2
regime. Numerical simulations suggests that in the critical case by — dg and by — d;,
the crossover time is proportional to the ratio by /b;.
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Figure 4.1: numerical sample of the lifetime probability distribution function with
parameters d; = 1, b; = 1 — 1075, by = dy = 10. Notice the crossover between the
two regimes.

In the Appendix B, we show how is it possible to calculate analytically the dis-
tribution for any choice of the parameters; now, we consider the solution in the case
by = dy and by = dy. Notice that, by a time rescaling, we can alway fix one of the
two parameters; we make the choice d; = by = 1 and by = dy = r. In this case, we
show in the Appendix that go(s), which is the Laplace transform with respect to time
of the probability of being extinct Py(t), has the following expression:

0 dy —sy(1 _ 1yr
fl Y e y(l y) 1

= 4.14
[y e 1Ly 3,106 N(s.7) @19

sgo(s) — 1=
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where we have defined:

> dy 1
N(s,r :/ —e (1 --) (4.15)
(s,7) o ( y)
We want to analyze the small s behavior of this quantity, first at fixed r, then taking
r — oo and then the limit s — 0. In this way, we would like to recover the two

regimes and guess the scaling of the crossover time ¢*.

4.3.1 Asymptotic scaling at fi xed r

For fixed » and s — 0, the leading contribution to the integral comes from values
of y > 1. This implies that we can estimate the integral just by approximating the
term in parenthesis with 1. The exponential e~ essentially fix an upper cutoff on the
integral. Essentially, we can approximate in this limit the function N (s, r) with the
following expression:

s d
N(s,r) = s (4.16)
1 Y
In this case, it is very easy to deduce the small-s behavior of N (s, r):
lim N(s,7) ~ log s (4.17)
s—0
This implies the following small-s behavior for gq(s):
1
go(s) ~ M log s (4.18)

Recalling the definition of gq(s), by means of the Tauberian theorem [52] we can

conclude that for large t:

Py(t) ~ 1 — % (4.19)

The lifetimes are proportional to the time derivative of P,(¢), and thus have a =2
power law tail. This is a rigorous proof that the exponent is the same, regardless of
the value of .

4.3.2 Asymptotic scaling at larger

In order to analyze the power law regime for times smaller than the crossover time
t*, we perform the limit » — oo, then we let s go to zero. To obtain the asymptotic
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behavior in this case, we exponentiate the term in parenthesis:

N(s,r)= [~ %y exp [—Sy + rlog(1l — %)] =

= floo%yexp[—sy—i—kg—z—...} (4.20)

We make the substitution z = /y:

o
N(s,r) = / R G Ve 2 (4.21)
\/E xZ
Due to the order of the limits, we can consider the factor y/rs being very large. We
can consider just the first term of the expansion of the logarithm. The behavior of the
integral can be evaluated with the saddle point method: the maximum of the argument
of the exponential occurs at z* = 1. We perform a second-order Taylor expansion
around this maximum:
[e9) R s
N(s,r) ~ e_‘/ﬁ/ e WS eV V2 (4.22)
VE (rs)
Performing the Gaussian integral, we can study the asymptotic behavior of go(s) in

this case:
1 —

1
~ O,log N(s,7) Vit &
Again, due to the order of the limits, we can neglect the second term in the denomi-
nator, obtaining finally:

sgo(s) — 1 (4.23)

S00(s) — 1~ —V5 o Polt) ~1— — (4.24)

Vit
where, also in this case, we made use of the Tauberian theorem. In this limit, we
recover as expected the random walk behavior; we can also make an estimate of
the scaling of the cutoff with r: the approximations made are all valid when /7s is a
large number. From this fact, we can argue that the crossover time should be inversely

proportional to 7. More precisely, go(s) must obey a scaling law of the form:
1 t
t)=—=f1- 4.25
o=/ () (4.29
where the function f(x) should grow like y/z for small value of the argument (i.e.

when z < 1) and approach a constant when x becomes large. In the figure we show
the validity of this scaling law collapsing lifetime curves for different values of r.
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4.4 Conclusions

In this section we have shown the analytical solution for the species lifetime distribu-
tion in a neutral model. Strikingly, this distribution has the correct critical behavior,
meaning that in the limit b, — d; shows a power law tail with exponent —2, as it
is observed in some analysis from the fossil record. This exponent, in our model,
is a simple consequence of the branching structure of the process, that reduces to a
Galton-Watson process in the limit by = do = 0. It is interesting that such a sim-
ple model shows at least 4 different regimes for the lifetimes, one exponential, and
the other characterized by a power law with exponent —2, —3/2 and —1, depending
essentially on the and on what kind of initial distribution is taken.

From a biological point of view, the main result is that the —2 exponent does
not change in the general case by, dy # 0: loosely speaking, the reason is that these
coefficients are relevant for small population sizes, and small population sizes are
related to short timescales. Despite this heuristic argument , the result is not trivial:
it is known [63] that there are stochastic models related to this one that exhibit a
dynamical phase transition in the lifetime exponent, in the sense that the lifetimes are
distributed according to a power law, and the exponent vary in a continuous way by
varying any of the parameters.

The robustness of this exponent against small-scale modification of the dynamics
is a good hint that we are on the right way to understand the mechanism underlying
the power-law behavior of genera lifetimes, , but before making biological claims, we
have to consider a number of questions:

e Neutral theory deals with single-trophic level, living system on timescale of the
order of years. Is it possible to “scale up” the theory, and deduce properties
of the systems on the fossils timescale? Can we still neglect predator-prey
interactions and fitness differences, even if we collect data from very different
species?

e It seems like the species lifetimes are distributed exponentially, the power law
is present when one looks at the genera lifetime distribution. Is it compatible
with our scenario? What is the real meaning of the coefficients b; and d;? In
other words, what drives the system near to (or away from) criticality?

In the next Chapter we will try to give an answer to all these questions.
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Chapter 5

Population dynamics on geological
timescale

In Chap.4, we calculated the species lifetime distribution in the framework of the
neutral theory of biodiversity. We also pointed out that the predictions of the model
are consistent with the observations of the fossil record; more precisely, looking at a
species from the time of its first appear to his death, one can have either an exponential
or a t=2 power law, depending on how much close to criticality the system is.

In the following, we will assess the possible consequences of our result; in partic-
ular, we will try to understand what determines the closeness to criticality of species
and genera, and, in particular, why genera display a power law behavior in the life-
times, while species don’t. In order to verify the consistency of our approach, we
calculate in the same framework another debated statistical quantity: the distribution
of species into genera.

5.1 What do the birth and death rates mean?

How meaningful are the prediction of a neutral model on a geological timescale? It
is well known that evolution can play an important role also on short timescales: a
famous example is the change of color of the peppered moth, Biston Betularia, in the
industrialized cities of Great Britain around 1850s. Of course, such dramatic changes
of the environment (in this case, trees becoming darker due to pollution) on these
timescales are not so common, and without them, one may think that it is unlikely that
an individuals, or a class of individuals may gain a relevant fitness advantage over the
population. This is by no means true on geological timescale: for sure evolution did
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play a fundamental role in determining the fate of species in the history of life. Is it
possible to neglect the fitness difference of individuals belonging to different species,
and obtain a simple stochastic model also on these timescale?

To answer these question, we outline an aspect of neutral theory which is often
not so considered. A strategy to test the validity of the neutral theory and obtain a
reasonable functional form of the birth and death coefficients is to measure directly
the birth and death rate as a function of the population size of the species in the
ecosystem, rather than measuring the species abundance and trying to deduce the
birth and death coefficients. Attempt to measure the birth and death coefficients in a
tropical forests have been made [19], and the result is that the measured points scatter
broadly; it is very hard to observe patterns or relevant correlation on these data.
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Figure 5.1: Measured value of b, /d,, as a function of n. Data are collected over a
several-years period in the Barro-Colorado island tropical forest. Figure courtesy of
1.\Volkov.

A first conclusion may be: the birth and death rates do not depend just on the
number of individuals, but on a large number of factors that neutral theory does not
take into account. Neutrality does not hold in nature and the whole theory has to be
rejected.
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Anyway, we saw that neutral theory can make very general and elegant predic-
tions on distributions and patterns which are hard to obtain in other ways; it would be
nice to do a kind of weak form of neutral claim, to justify the approximation without
being in contrast with the observations. A reasonable way to do this is the follow-
ing: obviously the birth and death rate do not depend on the population size only, but
depend on a very large number of factors, and many of them may be also quite im-
portant. The parameters in the neutral theory are effective parameters, meaning that
they take into account, in an averaged way, a lot of phenomena (like immigration,
niche assembly and many other) that the theory does not include in an explicit way.
In conclusion, we can express again the neutral hypothesis, saying that it is possible
to “average out” all the effects that do not depend on the population size only, by
means of an appropriate choice of the effective coefficients of the theory. If we take
this as a definition of neutrality, we can try to extend the prediction on a larger scale
and see if we obtain something meaningful.

5.2 Population dynamics on geological timescale

In Chap. 4, we saw that the b, and the d, terms play no role when one look on a
very long timescale. Thus, let us assume that the populations of our species evolve
according to a simple Galton-Watson process with birth rate per individual b; = b
and death rate d; = d. We already saw that neglecting by and d, implies that the
population of a species, with the condition that the species is still alive, admits as a
stationary distribution the Fisher log series:
1, b

(pn) x HOJ = d (5.1)
Now, let us introduce the speciation rate per individuals o: new species are introduced
in the ecosystem at a rate oV, where NV is the total population. We can also intro-
duce a genera creation rate per individuals v, a family creation rate and so on. The
underlying idea is to try to approximate the full genealogical tree of all species with a
random process of the Galton-Watson type. In some sense, our model is a hierarchic
combination of Galton-Watson processes. It is clear that the biological meaning of the
parameters become more and more abstract going up in this hierarchy: for example,
it is well known that the speciation rate is far from being constant [64] but depends
strongly on time and on the considered kind of species. Anyway, it is reasonable to
do an estimate of a “canonical” speciation rate [64]; furthermore, we must recall that
we are talking about effective parameters. Real taxonomic trees are far from being
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random trees, but we can hope that they can be roughly approximated by random
trees, as far as we are interested in calculating statistical quantities.

Now, let us impose some reasonable conditions on the parameters. First of all,
speciation are rare with respect to births of individuals belonging to the same species.
Genera creation rates are small with respect to speciation: creation of a new genera
involves strong modification of the phenotype, and this implies the overcoming of
larger evolutionary barrier. This implies that there is a hierarchy also on the order of
magnitude of these parameters:

b<o <y < ... (5.2)

Another condition we must impose is that the whole system, being composed by a
very large amount of individuals, should be almost critical:

1 b+o+v+...

d d
It is also possible to introduce these parameters without introducing in an explicit
way a speciation rate. Essentially, the parameters b and d are related to the typical
timescale of the system (i.e. the lifetime of an individual should be of the order 5),
and the typical population size, meaning that the size of the population is of the order:

« 1 b
{n) = (o — 1) log(1l — ) ‘T4 54
These two condition are enough to determine the parameters b and d in an effective
way, without any need to introduce speciation rate or any further parameter.
For simplicity, we will consider only the first two levels of this hierarchy in the
following (species and genera); the results are easily generalizable to the upper levels.
We will outline in the following two very interesting consequences of these as-

sumptions.

b+o+y+...)<1 ~1 (5.3)

5.3 First consequence: lifetime distribution of species
and genera

First of all, we can easily calculate the lifetime distribution of species, genera, or any
grouping in the hierarchy. Since individuals do not interact in this model, the number
of individuals in a genera are still distributed according to a Fisher log series:
m ’ b+o

1
— o
n d

g(n) = (5.5)



5.3 First consequence: lifetime distribution of species and genera 55

We have already calculated the lifetime probability distribution function for this
process in sec. 4.2.2. Notice that, due to the introduction of the speciation rate o, the
branching tree for the whole genera is more close to criticality than the branching tree
for species, meaning that o is more close to 1 than a.. We can deduce the same phe-
nomenon without introducing explicitly a speciation rate, simply looking at the fact
that the r.h.s of Eq. 5.4 diverges when o« — 1~. This implies that large population
sizes correspond to values of a more close to one. Fit of species abundance distribu-
tions [18] typically provide values of « around o ~ .98. Looking at lifetimes curves,
as provided by eq. 4.10, it is very hard to observe the power law regime, especially if
one consider also the experimental error. In this case, the curve is much more similar
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Figure 5.2: Plot of lifetime distribution (eq. 4.10) for a = .98 and o = .998. In the
first case is very hard to distinguish the power law regime.

to an exponential. According to our argument, genera should have an higher value of
the parameter «, thus it is possible to explain the observed power law [34, 38] without
referring to correlation on large scales.
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5.4 Second consequence: distribution of species into
genera

Within this simple model, we can also calculate the genera abundance curve, i.e. the
probability of having a genera with a number s of species. The problem of calculating
this distribution assuming reasonable hypothesis is widely debated in the literature,
from the proposal of Yule ([65], a good review with the most interesting variants of
the model can be found in [66]), to more sophisticated and modern models [67, 68].
The prediction of many of these model is that also species are distributed into genera

1000 . ————— . ————— . ————
mammals genera  +
Fisher fit -------

100 | PN E

10 N |

1 10 100 1000

Figure 5.3: Distribution of species into genera for the Mammals. The curve is a fit
according to a Fisher log series with o = 0.91, ' = 530. Data taken from [69].

according to a Fisher log series. The simpler hypothesis to obtain this conclusion is
that each species has a fixed speciation rate and extinction rates [67]. What happens
is that the dynamics followed by species is the same Galton-Watson type of dynamics
followed by individuals in our model. This distribution fit rather well with experimen-
tal data; however, it is preferable to explain these data starting from the population
dynamics, rather than taking the species as fundamental variables.
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5.4.1 Population dynamics approach

We calculated in the previous section the probability g(N) of having a genera with N
individuals and the probability f(n) of having a species with n individuals. Our goal
is to obtain from these two distributions the probability p(s) of having a genera with s
species. We require that g(V') should be proportional to the sum over all the possible
ways of arranging any number of species with any number of individuals, with the
constraint of the total number of individuals being vV, weighted with the probability
of the different configurations. The approximation is that typically the species i reach
stationarity, even if they do not live for an infinite time. This approximation should
give good results in the case of long lifetimes (rare extinction events).
The equation is:

S S

g(N) = ZP(S) Z 6(N — an) H f(ni) (5.6)

s=1 {ns} =1 =1

where {n;} = {n1,ns...n,}. Ourgoal is to calculate p(s) by means of this equation.
Let us introduce an integral representation for the Dirac delta:

g(N) = %ZP(S) Z/Oo dw exp [—iw (N - Zn)] [[rm) 7
s=1 {ns} —o0 =1 i=1

Now, we can factorize each n;:

g(N) = % /°° dw e™ N ZP(S) Z Hf(nz) exp (in;) (5.8)

- s=1 {ns} i=1

Introducing £ (w), the Fourier transform of f(n), we obtain:

o) = [ doe S p(s) [F-w)] 5.9
-0 s=1
We define now G (), the characteristic function of p(s)
G(z) =Y _p(i) ' (5.10)
i=1

By introducing the inverse Fourier transform of g(V), we finally obtain the result:

§(w) = =G |f()] (5.11)
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Making an explicit Fourier transform of the Fisher Log series, we can make the sub-
stitution: . L
A 1— e ™ 1—ade™
— i(w) = ——— 5.12
fw) = )= (5.12)

This allow us to find an explicit form for G(t):

log{1—<[1-(1-a)}
G(t) = log(1 — o)

Notice that, when 1 — « is not too small, it is possible to expand the exponential
in Eq. 5.13 to the first order, and recover again the Fisher log series. Thus, is species
are far from criticality, the distribution of species into genera has the same form as the
distribution of individuals into species. In the language of stochastic processes, the
fact that species have an exponential lifetime in this regime, implies that the process is
Markovian also at the species level: one can consider a speciation and extinction rate
per species, without worrying about the internal structure (essentially, the number of
individuals per species acts as a sort of memory). This is no more true when one looks
at higher levels in this hierarchy (for example, looking at the distribution of genera
into families and so on): genera do not have an exponential lifetime, and this implies
that the extinction rate for a genera depends on its age.

To obtain an explicit solution from Eqg. 5.13, we introduce the parameters v =
(o/ — )/’ and f = —log(1 — «). We can write the function G(¢) in this way:

(5.13)

log(c' /) + tlog(1l — a) + log (1 — ve?")

G(t) = 5.14
*) log(1 — o) (5.14)

The third term in the numerator allows the following Taylor expansion:

7 7
log (1 — ve?*) = —yef! — 762/& - ge%t - (5.15)
from which we finally obtain:
p(s) = Zw o P o) s>1 (516)
sllog(l — o) log sllog(l — o)

where Li;_g) (z) is the Polylogarithmic function.

5.5 Conclusions

In this Chapter, we underline the fact that the neutral approximation, on large timescales,
correspond essentially to consider species, genera, families and so on as random trees
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which are closer to criticality as long as one considers higher groupings in this hier-
archy. We tried to guess how this approximation can be compared with experimental
evidences, and found that all the predictions about lifetimes and abundance distribu-
tions are coherent with the empirical observations. It would be interesting to analyze
data from higher level in the hierarchy (i.e. distribution of genera into families), to
see if we are able to predict substantial deviation from the Fisher Log series.






Conclusions and per spectives

It was the “discovery” of the importance of the individual which lead Darwin from
typological to population thinking. It was this that made him realize that the struggle
for existence due to competition, so vividly described by Malthus, was a phenomenon

involving individuals and not species. By introducing population thinking, Darwin

produced one of the most fundamental revolution in biological thinking

Ernst Mayr, The growth of Biological Thought [28]

We briefly recall the results of this work:

e We introduced a neutral model based on a multiplicative stochastic process for
the dynamics of the number of individuals in species belonging to the same
trophic level. The result are compared with data from tropical forests, and give
a good agreement.

e In a similar framework (the neutral theory of biodiversity), we calculate in an
explicit way the distribution of species lifetime. This problem shows several
kind of critical behaviors, depending on the parameter range. We studied these
critical behaviors, as well as the scaling behavior of the solution.

e \We assess the consequence of the lifetime p.d.f. and predict the expected life-
time of species and genera and the distribution of species into genera.

The main effort of this research line is to find a simple, individual-based dynamics
which can be used as a zero-order model for the study of ecosystems. A deep study
of these simple models can bring to simple and elegant explanation of apparently
complicated, or counterintuitive, phenomena.

Let us mention a couple of example: in the model we introduced in Chap. 3,
we are assuming that the species belong to the same ecological community (see Sec.
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1.1). Looking at the solution of the model, there is no need to make a distinction
between a community, and a metacommunity: the model is able to predict the species
abundance in both cases, and the two different distribution correspond to different
regimes of the parameter 3: for small 3, one retrieve a curve similar to a Fisher log
series , which is observed in the species abundance of metacommunities [18], while
for greater values of 3, the distribution became bell-shaped, similar to the lognormal
distribution proposed as solution for the species abundance in the communities [22].

Another example is the lifetime distribution of species and genera (Chap. 4 and 5).
Here, what happens seems the opposite as the normal critical behavior from classical
statistical mechanics: essentially, in critical systems, it is possible to see deviation
from criticality at large scale, due to finite size effects. Here, the system on large scale
is closer to the critical point that the system observed on smaller scale. The theory is
able to explain this phenomenon, with simple assumptions on the parameters choice.

The advantage of population-based model is that, obviously, there is no other
characteristic scale than the individual one, which is the lowest possible scale for an
ecology model. Often, it is better to assume very simple hypothesis on this scale,
than more complicated on the species scale. Looking at an ecosystem as an ensemble
of interacting species (and not individuals) implies neglecting population dynamics;
we saw how population dynamics can be very important in determining ecological
patterns.

Due to the extreme simplicity, these model are amenable of several interesting
generalization. A very interesting generalization is the inclusion in the model of the
spatial scale. This research line seems to be very promising [24], even if itis very hard
to obtain analytical results when also space is taken into account. Another crucial
point is to include interactions in these models [70]. It is very hard to include in a
simple model both demographic stochasticity, and organization, thought as interaction
among species, without introducing too many parameters. Still, organization seems
to be important in ecosystems, and a more refined ecological theory should provide
also an explanation for food webs patterns [71, 72].



Appendix A

Asymptotic behavior of the exit times
distribution for the one-dimensional
random walk in the discrete case.

In this Appendix, we address the problem of calculating the exit times p.d.f. for a
one dimensional random walk process without achieving the continuum limit. This
problem may be thought as the simplest possible case of birth-death process, when
the transition rates are simply constant. It has been pointed out recently [73] that
for less trivial examples (like epidemics models) the approximation of studying the
Fokker-Planck equation which arises as continuum limit of the process may bring
to misleading results. It is thus useful to have analytic tools for dealing with these
problem also in the discrete case.
In this case, we consider the birth and death equation:

Po(t) =b(n — 1) Pt (t) + d(n + 1) Pasa(t) — (d(n) + b(n)) Pu(t) (A

only for n > 1. The lifetimes distribution are proportional to minus the time deriva-
tive of Y7 | P,(t) = P(t). We set as initial condition that the species has just one
individuals:

We introduce the Laplace transform with respect to time of the probabilities P,,:
Po(s) = / dt =P, (1) (A3)
0

Eqg. A.1 became:

8P, (5) = 0p1 +d(n+1)Pi1(s) +b(n — 1)P,_1(s) — [b(n) + d(n)]|Pu(s) (A.4)
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where, as usual, b(n) and d(n) are the birth and death rates as a function of the number
of individuals n. Again, let us introduce the Laplace transform with respect to time
of the characteristic function:

G(z,s) = Z 2" Py (s) (A.5)
The function G obeys to the following equation:

5G(z,5) = 2+ [(1 _ 1) d(20,) + (= — 1)b(zaz)] G(z, s)—pl(s)%d(zaz)z (A6)

z

From the knowledge of the function G, we can express the probabilities P, as a
contour integral in the complex plane by means of the Cauchy integral formula:

Pu(s) = 7{ dz G(z 9) (A7)

oj=g 21 2"t

where R is such that in the circle |z| < R there are no singularities of G(z, s). Let us
note that G(1, s) = P(s); from this one can show also the following relation:

1 —d(1)Py(s)

G(1,s) = .

(A.8)

A.1 The random walk case

Let us solve the random walk case. By means of a time rescaling, we can setd(n) = 1
and b(n) = b without loss of generality. Eq. A.6 gives:

_ z2(z=Ps)
Gz 9) = zs — (z—1)(bz — 1) (A-9)
The function G has two poles z.:
—1)2 2
Zi:b-i-l—i-si\/(b 1)2+2s(b+1)+s (A10)

2b

Since s > 0 the poles lie on the real axis, and are suchthat 0 < z_ < 1 < z,. We
construct the following path on the complex plane, avoiding all the singularities (see
fig.A.1):

dz dz dz dz
0= fFG(z, S)ﬁ = frl G(z,s)zmrl +7§2 G(z,s)ﬁ +7£|:wG(z,s)ﬁ

(A.11)
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Figure A.1: Integration contour in the complex plane.

The last integral of eq.A.11 is equal to zero due to the Jordan lemma. Calculating the
residues, we obtain:

I _ z—nz*_iﬁ)l(s) Z‘”Lﬁl(s)
Pu(s) = 2~ bz — z;) + b(zy —z)

We expect that, for b < 1, lim,,_,o, P,(s) = 0. From this follows that:

(A.12)

Pi(s) = z_(s)
Pus) = 2= a>1 (A.13)
and, by means of A.8. we finally obtain:

Bls) = 1— Pi(s) 1 —z_(s)

(A.14)
S S

Using this result, the asymptotic scaling of the lifetimes is determined by:

s b<1
linép(s) ~<¢ o oshob>1
s—>

s12 p=1

and, by means of the Tauberian theorem:

e '™ b<1
P(t) ~ < const b>1

Vi ob=1

The exit times distribution is, as usual, proportional to the time derivative of P(t).
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Appendix B

Derivation of thelifetime p. d. f. for
the neutral theory

In this Appendix we would like to show the calculation to obtain the Laplace trans-
form of the probability of being extinct at time ¢ according to the birth and death
equation 4.1:
By(t) = 6"V Py () + A" P (1) — (d™ + 0™ Py (1) (B.1)

with the birth and death coefficients being:

o™ = by + bin

d™ = dy + din (B.2)
As we said, we take as initial condition:

Our goal is to calculate p(t) o< 0;Py(t) in the general case by # do # by # dy # 0.
First of all, let us define the Laplace tranforms with respect to time of the probabilities
P,(t):
Pu(s) = / dte="P, (1) (B.4)
0
the equation for the P’s writes:
§Py(5) = 61 + 0" VP, 1 (5) +d" VP, 1 (s) — (d™ +b™)P,(s)  (B.5)

Now, we multiply the k-th equation by z* and sum all the equations; we finally obtain
an equation for G(z, s), the laplace transform with respect to time of the generating
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function G(z, ):

[b12® + dy — (by + dy)x] 0,G(z, 5) +
+é [boz? + do — (bo + do + 5)z] [G(x, 5) — go(s)] =
= sg0(s) — (B.6)
where we defined go(s) = G(0,s) = Py(s). Defining F(z,s) = G(z, s) — go(s) and

using the fact that go(s) do not depend on z, we obtain the following equation for
F(z,s):

0. F(x,8) + p(x,s)F(z,s) = q(x, s) (B.7)
where
dol  body —doby 1 s
ps) = G T T G d—bs @ b1
q(z, s) *90(s) ~ @ (B.8)

(d1 — bll‘)(l — l‘)

The solution must satisfy the conditions:

— go(s) (B.9)
(B.10)

Our strategy is to solve the equation B.7 with the initial condition B.9, then we will
impose on the solution the condition B.10 to obtain an equation for go(s). We will
also impose b; < dj; when this condition holds, one has lim; ,., Py(t) = 1, i.e.
the probability of being already extinct goes to 1 as¢t — oo. Since z = 1 is a
singular value for the equation B.7, we will regularize the solution taking as initial
value x = 1 — e and letting ¢ — 0 at the end of the calculations. The general form of
the solution is:

F(z,s) =exp [— /11 dz'p(z’, s)] E —go(s) + /:6 dz'q(z', s) exp [/11 dz"p(z", s)”

(B.11)
We will solve separately the case by = d, from the case b; < d;.
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B.1 The critical case: b; = d;

By means of a time rescaling, we fix b, = d; = 1 To make the calculation simpler,
we also set by = dy = r. Let us write again the coefficients:

S

p(%s):%—w

q(z,s) = % (B.12)

Now we perform the integral. Up to the leading order in ¢, the solution is:
e <(go(s) — 1) + 6dtsg"(s) byre=ie
F(z,s) = Ji- (B.13)

1re T
Since the denominator diverges when z — 0, in order to have F'(0, s) = 0, we have
to impose that the numerator should be equal to zero. The resulting equation for go(s)
is:

8 1 z t S
e‘?(go(s)——)+/ dtL( ) it = g (B.14)
S 1—e ( t)
Now, we can take the limite — 0:
T osgo(s)—t ., _ s
dt fe 151 — B.15
J e =0 (19

Finally, we make the substitution %_t = y and solve for gy (s); this brings to our main

result: o 4 .
JE e —y)

f1oo dy e=s¥(1 — i)r
In Chap. 4, we analyze in detail the scaling behavior of this solution.

(B.16)

sgo(s) — 1=

B.2 The sub-critical case: b; < d;

Let us fix again d; = 1 by a time rescaling. Performing the integral in eq. B.11, one
obtains:

[ piats) = [do loga’ + (22 — dy — —* ) log(1 — bya') + —>— log(1 - #')
l1—e bl 1-— bl 1-— b

(B. 17)
We use now the same strategy of the previous section. The condition F'(0,s) = 0
brings to the following equation:

x

1
/ dt (1 = byt)be/br=do=s/=b)=L(] _ p)L/(A=b1)=L(54,(5) — 1) =0 (B.18)
0
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Now, we substitute y = 1 — ¢ and solve for go(s):

B fol dy (1 _ y)do[l _ b1(1 _ y)]bO/bl_dO_s/(l_bl)_l yS/(l—bl)

T e (1 — 2\l —b(1 — o eron—do—s/i—o—T o1 B9
Jo dy (1= y)®[1 = bi(1 —y)] y

sgo(s) — 1

The integral on the r.h.s. of the equation goes to zero linearly with s, as s — 0. This
means that:

gO(S) = é - f(sa bl,bOa d()) (BZO)

and the function f goes to a constant when s — 0. This implies that the lifetime
distribution has an exponential decay.
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