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Outline

The overwhelming majority of biological processes relies on the capability of
proteins to sustain conformational changes so to selectively recognise, bind
and process other molecules, being them proteins, nucleic acids or other
chemical compounds.

The paradigmatic tripartite characterization of proteins in terms of
sequence—structure—function has served to interpret the above-mentioned
capability as being encoded in proteins’ native structures, which is in turn
determined by the amino acidic sequence [6].

Arguably, the earliest quantitative attempts to relate proteins’ function-
ality to their structural flexibility have been prompted by the pioneering
crystallographic studies on heme proteins. In fact, the analysis of the very
first X-rays resolved structures showed [111, 45] that (i) myoglobing and
hemoglobin can assume a number of different conformations (e.g. unliganded
or bound to dioxygen ) and that (ii) the apo conformers were too compact
to possibly allow the diffusion of dioxygen towards the heme pocket, thus
implying that the molecule had to open substantially to allow dioxygen to
reach the binding site. Both observations indicated that proteins are en-
dowed with an unsuspected degree of elasticity which permits the visiting
of alternative conformers which are local minima of the free energy. It was
further suggested by Frauenfelder that these minima are hierarchically or-
ganised and separated by free energy barriers of various depth ( see e.g.
ref [46] and references therein ). This hierarchical free energy organization
is expected to reflect in a multiplicity of time scales regulating transitions
among the different biologically relevant states[56]. Most of biologically
relevant processes, occurring on time scales of the order of us to ms, are
expectedly controlled by the activation time required to cross free energy
barriers separating the various biological conformers. The conformational
changes involved by such interconversions often have a collective scale, as
suggested by the comparison of conformers of the same protein crystallised
in different conditions, typically unbound or bound to a ligand [50]. Tra-
ditionally, such interconversions are believed to be triggered or induced, by
binding[82]. Each of the “biological conformer” comprises in turn several
substates which differ by sidechain orientations, local dihedral angles, and
are hence separated by smaller free energy barriers.
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Nowadays, processes occurring on timescales of the order of us to ms
can be captured by a number of experimental methods. The interconversion
among the local substate, however, occurs on much smaller timescales, and
is hence elusive for traditional experimental techniques. A valuable comple-
ment to experimental investigations in probing such small timescales (< pus)
is represented by atomistic molecular dynamics (MD) simulations, which al-
low one to follow the detailed dynamical evolution of the systems over small
time scales that are usually in the range 1-10 ns.

In the last few years, the advancements in computational techniques
and resources, and the increased time resolution of advanced single-molecule
techniques, have allowed to almost bridge gap between the different timescales
probed by computation and experiment. By relating these two means of in-
vestigation it has been possible to achieve a multi-timescale characterization
of proteins’ conformational changes and their relevance for biological func-
tion (see e.g. ref [56] and references therein). For a growing number of
proteins and enzymes, these approaches have clarified that the molecule’s
internal dynamics is “innately” predisposed to assist the interconversion be-
tween the various functional substates even in the absence of substrates
or triggering events[56]. It has been further hypothesised that the innate
functional-oriented character of proteins’ dynamics has been evolutionar-
ily promoted as binding by selection of already fitting conformers is more
efficient that the induced-fit mechanism[89, 86, 17, 56, 1].

In this thesis we shall discuss several aspects relating proteins’ internal
flexibility to functionally-oriented conformational changes.

In the first part I shall present our investigations of the near native free
energy landscape of two globular protein, the immunoglobulin binding do-
main of protein G and E.Coli adenylate kinase. The multiminima organiza-
tion of the near-native free energy landscape is probed by means of extensive
atomistic molecular dynamics simulations (covering hundreds of ns) and the
results are interpreted in terms of simplified coarse-grained models. The
notable aspect emerging for both system is that the generalized directions
corresponding to the low-energy conformational deformations of the individ-
ual substates and of the virtual ”jumps” that connect them are remarkably
similar and reflect in an unsuspected robustness of the essential dynamical
spaces as a function of the trajectory duration. The functionally-oriented
character of these principal directions is finally discussed.

In the second part we investigate aspects regarding the connection be-
tween protein structure and internal dynamics. In particular, we first com-
pare the essential dynamics of a large number of proteins that are members
of the calcium-binding superfamily. It is found that the modes of tens of EF-
hand domains can serve as basis for classifying the calcium-binding proteins
into a limited number of groups having distinct internal dynamics. Notably,
this dynamics-based grouping is found to gather proteins belonging to the
same functional family. A generalised scheme for the comparison of essen-
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tial modes is finally applied to the case of two proteases which, despite a
partial structural similarity, differ by length, number of secondary elements
and catalytic chemistry. The sophisticated interplay between structural and
dynamical analogies are discusses in details.

Both parts contains an introduction clarifying the concepts discusses in
the following chapters.

The material presented have been the object of the following publica-
tions:

1. F. Pontiggia, G. Colombo, C. Micheletti and H. Orland,
“Anharmonicity and Self-Similarity of the Free Energy Landscape of
Protein G”,

Phys. Rev. Lett. 2007; 98:048102.

2. F. Pontiggia, A. Zen and C. Micheletti,
“Small and large scale conformational changes of adenylate kinase: a
molecular dynamics study of the subdomain motion and mechanics” ,
Biophysical Journal: In Press.

3. F. Capozzi, C. Luchinat, C. Micheletti and F. Pontiggia,
“Essential Dynamics of Helices Provide a Functional Classification of
EF-Hand Proteins”,
J. Proteome Res.; 2007; 6(11):4245.

4. V. Carnevale, F. Pontiggia and C. Micheletti,
“Structural and dynamical alignments of enzymes with partial struc-

tural similarity”,
J. Phys.: Condens. Matter 2007; 19(28):285206
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Chapter 1

Introduction

The equilibrium population of a typical protein expectedly comprises several
different conformers, through which the molecules spontaneously intercon-
verts owing to its internal dynamics [38, 57]. The presence of different
biologically-relevant substates can be inferred, for example, by the different
crystallographic conformations of the same protein free or bound to its sub-
strate, or by different arrangements of the free protein in the asymmetric
unit of the crystal [104, 103]. Variability in the various substates can range
from localized differences, such as dihedral angles isomers, to much larger
deformations, reflecting the concerted displacement of several elements of
secondary structures, possibly also involving changes in the overall tertiary
organization.

Computational approaches have proved useful for probing these changes
at various levels of structural and temporal detail [72]. It is now well estab-
lished that these motions can be efficiently captured in terms of a small num-
ber of collective coordinates [79, 78], describing and predicting the motion in
a low dimensional effective phase space. Several computational approaches
have been devised to extract these few relevant coordinates either through
“a posteriori” analysis of MD simulation data [48, 4, 20, 78] or predicting
them a priori with simplified models [123, 10, 59, 92, 8, 95, 36, 93].

A transparent way of identifying these generalized directions of motions
is through a principal component analysis of the fluctuation covariance ma-
trix obtained from molecular dynamics simulations.

The covariance matrix is defined as

Cijyw = (i = (Tiu)) - (Tjw = (1)) (1.1)
where r; , indicates the uth Cartesian coordinate of the ith atom and < - >
represents the time average over the configurations visited during the sim-
ulation. For a sufficiently long constant-temperature simulation the time
average is equivalent to the canonical average. However, for simulation of
limited duration, the visited phase space will be a portion of the avail-
able one. Currently available computational resources allow to investigate

11



12 Introduction

timescales at most of the order of ~ 100ns, which is typically at least two
order of magnitudes less than relevant biomolecular timescales. Neverthe-
less we shall discuss how specific features of the near native free energy, are
robust even over these “limited” timescales.

In calculating covariance matrices, the overall rototranslational motion
is usually eliminated. Eliminating the overall rigid-body motion of the
molecule is essential to analyse the proteins’ internal dynamics [70].

The set of eigenvectors and eigenvalues of the matrix C, corresponding
to the collective principal directions of motion and the associated fluctuation
amplitudes, can be determined solving the standard eigenvalue problem

CV =VA (1.2)

Where C'is the covariance matrix of equation 1.1, V' is the matrix whose
columns contain the eigenvectors of C' and A is the diagonal matrix of the
eigenvalues. The coordinates r; , appearing in the definition of matrix C' can
be weighted according to their masses. In this case the results of principal
component analysis (PCA) of the covariance matrices, can be straightfor-
wardly compared to results obtained from normal mode analysis (NMA), in
which the matrix C can be computed starting from the matrix of the second
derivatives of the potential energies, evaluated in the energy minimum con-
figuration. It has been shown that, when a protein’s dynamical evolution
is followed for a very limited time span (~ ps), the motion occurs within
a single energy minimum and the two approaches gives compatible results
[20, 68, 79, 78].

When the time window of observation is increased, several local energy
minima are visited and the overall motion can be efficiently described as
a composition of a diffusion within the individual minima occasionally fol-
lowed by jumps among them [68, 79, 78|. Following Kitao et al. [79] in a
model called JAM (Jumping Among Minima), the covariance matrix may
be decomposed in intra-minima and inter-minima contributions:

Cijyw = Y _wiClj Y wil{ri)r — i) — (rju)] (1.3)
l 1

(-); representing an average restricted to the sole configurations pertaining
to the substate [, whose weight wy is the fraction of the simulation time spent
in it.

On a timescale of the order of the hundreds of picoseconds, the protein
explores several minima, whose typical residence time is of the order of
~ 10 ps. The comparison of the spectral state densities computed with a
PCA within each of the energy minimum substates bore striking similarities.
Thus, within the timescale of ~ 1 ns, the system fluctuations can be captured
and described efficiently by a limited number of degrees of freedom. We will
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discuss in the next Chapters to what extent this result holds when the
simulation time is extended to hundreds of ns.

The principal component analysis can be performed both on a detailed
atomistic level, keeping into account all degrees of freedom of the system,
or within a simplified description, where for example only a single centroid
per amino acid (typically coincident with the position of the Ca atom) is
retained [4, 78].

In both cases, with a different level of details, the low energy, large scale
modes typically correspond to concerted motion of several elements of nearly
rigid secondary structures.

As a complement to the PCA analysis of MD simulations, “native cen-
tric” models have been introduced. These models, which rely on simplified
force fields, have proved useful to reproduce collective modes in proteins
[123, 10, 59, 92, 8, 95, 36, 93].

In her seminal paper, Tirion [122]showed that the low-frequency spec-
trum of globular proteins is almost insensitive to the local details of the
atomic composition of the structure and of the specific interaction between
them. Specifically, she compared the frequencies obtained from a NMA us-
ing a standard atomistic MD force field with those obtained from a simplified
force field where all heavy atoms within a certain cutoff distance R where
connected by springs of equal strength.

Her analysis started from considering a generic pairwise potential be-
tween atoms ¢ and j, V' (d;;) which is held to be a function of the interatomic
distance cZ;j = 7; — 7. It is further assumed that the potential minimum is
attained in correspondence of the atoms separation: d%.

The potential can be quadratically expanded close to the energy mini-
mum and recasted as a function of the displacements of the individual atoms

=0

from their reference positions 07; = 7 — 7}

O+ gov 1
V=T+ > Ki7j7’30 -orf, oty = 5 S ML orl or¥ (1.4)
1,5,V | ij (NS

where 0r}; = dr}’ — or’.
The coupling constant K;; represents the strength of the quadratic inter-
atomic interaction. Tirion [122]compared the results obtained using cou-
pling constants coming from a parametrized force field with those obtained
assuming all K; ; equal to the constant K for all pairs of atoms closer than
the cutoff distance R and zero otherwise. The two free parameters of the
model, the constant K and the cutoff distance R, can be tuned to optimally
reproduce the spectral density obtained with the detailed force field. The
accord on the lowest energy density of states is remarkable.

This observation can be justified in terms of the fact that the low-
frequency (low energy) excitations involve correlated displacement of entire
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groups of amino acids. The observation implies that the atomistic details
of the structure, essential for stabilizing specific minimum energy configura-
tion, do not significantly influence the large scale features of the collective
excitations.

These considerations have stimulated the further development of sim-
plified models for capturing proteins’ large scale fluctuations. In fact, the
detailed atomistic force field can be replaced by simplified quadratic inter-
actions (as in eqn. 1.4) limited to a reduced number of interaction centers,
typically the Ca ones, in place of all pairs of contacting atoms.

The viability of these models (generally referred to as Elastic Network
Models [10, 59, 8, 36, 93] ) has been largely verified a posteriori against both
general dynamical data obtained from experiments, such as the mean-square
fluctuations of each residues measured by the crystallographic Debye-Waller
factors, and also against more specific dynamical properties such as the
principal direction of motions or the covariance matrix obtained from MD
simulation [8, 93].

Arguably, the simplest framework for interpreting the simplified motion
described by this simplified coordinates, is provided by the overdamped
Langevin dynamics system [37, 66]. The resulting stochastic equations of
motion for each amino acid subject to the thermodynamic potential of eqn.
(1.4) and the surrounding medium [73, 119, 19, 59, 60] are:

WO (t) = = > MESri o, (8) + 7iu(t) (1.5)
j7V
where 7; is the effective viscous friction coefficient acting on the ¢th particle,
and 7; ,,(t) is a stochastic noise whose first and second moments satisfy the
usual fluctuation-dissipation relationships [37]

(i) ) =0, {Mmip®)nju(t') ) = 0ij 0 0(t =) 2KpT v, (1.6)

and KpT is the thermal energy. From eqns. 1.5 and 1.6 the average correla-
tions among the displacements of various pairs of residues can be calculated
[28]. For the case where the various viscous coefficients in eqn (1.5) take on
the same value, 7, one has:

!/
1 X
(0riu(t) orj(t + At)) = KpT § Uilﬁjl )\_le VAt (1.7)
l

where 7! and \; are, respectively, the I-th eigenvector and the I-th eigenvalue
of the matrix M and the prime indicates the omission from the sum of the
six eigenspaces associated to the zero eigenvalues of M (roto-translational
degrees of freedom) [93]. The eigenvectors of M represent the independent
modes of structural relaxation in the protein while the associated eigenvalues
are inversely proportional to the relaxation times. In fact one has:
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-1
i7j7u7l/ :

/
(6r5u(t) 0r5,(1)) = Cijyw = KpTY G5} — = KpTM’ (1.8)
l

1
Al

While the above Langevin scheme is highly transparent and amenable
to analytical treatment, it should be mentioned that it is not adequate to
capture a number of salient features of protein’s internal dynamics (for which
more sophistical theoretical schemes have been devised) [80, 81, 83, 97]

The proved utility of the elastic network models for describing proteins’
internal dynamics poses a number of questions that have been addressed
in the following Chapters. In particular: what light can be shed by exten-
sive MD simulations on the effective harmonic character of the near-native
free energy landscape? Can extensive MD simulations provide clues to de-
velop improved elastic network models(for example capable of accounting
for amino acid specificity?). In a number of points, these questions over-
lap with those posed by Kitao et al. in their seminal study of the JAM
model [79]. However, in that context, the near-native free-energy landscape
was probed by means of sub-ns short MD trajectories. The analysis that
is carried out here is based on the collections of MD data over hundreds of
ns, and this confers to the investigation a much broader scope and hence
qualitatively-different perspective.

We will start our investigation analyzing the evolution of a well studied
globular protein, B1 binding domain of protein G. On the timescale of ~
100 ns, the system visit a number of local free energy minima. A systematic
analysis of the essential dynamical spaces calculated within and across the
different substates encountered during the dynamical evolution, has revealed
an unexpectedly simple self-similar structure of the free energy, which re-
flects in the unexpected robustness of the system essential dynamical spaces
at all probed time-scales. By converse, the amplitudes projected along the
essential spaces depend strongly on the number of visited minima as well as
on their depth. As a result, the dynamical projections have a strong depen-
dence on the duration of the simulation, a fact that accounts for the observed
inconsistency of the covariance matrix entries calculated over time intervals
of different duration. The implications of these results for the development
and use of elastic network models are discussed.

Finally, these concepts are further developed in the context of another
widely studied enzyme, Adenylate Kinase. First, we briefly discuss the most
relevant recent experimental and computational studies that have elucidated
the major role of conformational fluctuations in the realization of the biolog-
ical function for this specific enzyme. Then we will describe how the system
exploits its innate flexibility to explore the landscape and efficiently bridge
the important conformations.

As in the previous study, irrespective of the probed time-scale, all intra-
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and inter-substate essential dynamical spaces turned out to be highly consis-
tent. Moreover, the functional relevance of this consistency is underscored
by the high overlap that the essential dynamical spaces have with the de-
formation vector connecting the known ligand-bound and free structures of
AKE.

The analysis indicates that the free enzyme can be driven through var-
ious conformational substates bridging the inactive and catalytically po-
tent states through the thermal excitation of a limited number of collective
modes.



Chapter 2

Immunoglobulin Binding
Domain of Protein G (GB1)

Our first investigation is performed on the #1 Immunoglobulin Binding Do-
main of Streptococcal Protein G [47], a protein living on the surface of the
bacterial cell. Its role is to bind the constant region of immunoglobulin thus
allowing the bacterium to elude the immune system of the host organism.

This protein domain has been the object of a large number of experimen-
tal and computational studies [87, 43, 116, 44] as, despite consisting of only
56 amino acids, it is stably folded and possesses a non-trivial o/ tertiary
organization. We have chosen this protein domain as a test case for our
free-energy investigation as its moderate length makes it amenable to ex-
tensive MD simulations. A cartoon representation of the three dimensional
structure of the protein is portrayed in Fig 2.1.

Figure 2.1: Cartoon representation of the Immunoglobulin Binding Domain
of Protein G, pdb code 1IPGB [47].

17



18 Immunoglobulin Binding Domain of Protein G (GB1)

We have followed the dynamical evolution of the system in four inde-
pendent molecular dynamics runs, covering a total time span of 0.4 us. We
analyzed the visited conformers, assessing several features of the near native
free energy landscape, described in terms of the collective motion of the Ca
atoms. We first address the viability of adopting an effective harmonic ap-
proximation to the free energy. A quadratic character of the free energy (in
terms of the principal components of the protein’s internal fluctuations) is
suggested by the effectiveness of elastic network models (ENM) in capturing
proteins large scale movements. Understanding the key aspects underlying
the supposedly quadratic character of the free energy would have several
conceptual and practical ramifications, including the possibility of leading
to improved ENM.

As a first mean for probing the viability of the harmonic approximation
we shall analyze the robustness of the covariance matrix entries calculated
over simulations of increasing duration. It is found that, as soon as the evo-
lution of the protein is followed for time spans larger than few nanoseconds,
a marked multiminima character of the principal components projections
arises, thus indicating that well separated conformational substates are vis-
ited. A detailed investigation of the free energy landscape is performed to
characterize the relatedness of ”small-scale” structural fluctuations within
the substates and the ”large-scale” ones associated to the hopping between
substates. It is found that the principal directions of the local free energy
minima and the directions connecting them are extremely robust upon ex-
tension of the exploration time. This remarkable robustness of the principal
components provide a new perspective through which validity of simplified
models can be rationalized.

2.1 Molecular Dynamics Simulation

The crystallographic structure deposited in the Protein Data Bank [15] with
pdb code 1PGB [47] was taken as the starting point of four MD runs in ex-
plicit solvent each of 100 ns. The system has been solvated in an octahedral
box containing a solvent layer of 1.2 nm. The protein has been parametrized
with GROMOS 96 (G43al) [126] force field and the solvent with the SPC
water model [13]. After energy minimization and progressive heating to
300K, the density was adjusted by a 100ps-long MD in NPT conditions by
weak coupling to a bath of constant pressure (P = 1 bar, coupling time
7=0.5 ps) [14]. Subsequently the four different 100-ns long trajectories were
started with different sets of Maxwellian (T=300 K) initial atomic veloci-
ties. The bond vibrations of all hydrogens have been constrained using the
Lincs algorithm [58] and all other system degrees of freedom have been in-
tegrated with the standard Verlet algorithm with an integration time step
of 2 fs, using the GROMACS simulation package [125]. The particle mesh
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Ewald method was used for treating electrostatics [34, 39] and temperature
was controlled with the algorithm proposed by Berendsen (coupling time
7=0.1ps) [14].

The first 10 ns of each trajectory have been removed from the analysis to
reduce the effect of correlations due to having used the same configuration
as starting structure for the four runs.

2.2 Consistency Analysis of Covariance and Effec-
tive Coupling Matrices

To ascertain the degree of robustness of the covariance matrices of the Ca
displacements we compare their corresponding elements computed over un-
correlated fragments of trajectory (also of different duration). Prior to cal-
culating the covariance matrix entries, the conformers (“frames”) collected
during the dynamical evolution have been aligned to optimally remove the
rigid body motion of the molecule [70]. The energy-minimized starting con-
figuration was taken as the initial reference structure for the alignment.
The average structure of the aligned frames was next taken as reference for
a second alignment round. This iterative procedure converges very rapidly
and leads to the maximal removal of rigid-body motions in the system (in
the sense that it minimizes the overall fluctuation ascribed to the protein
internal dynamics). The covariance matrix is finally computed (see eqn.
1.1).

In Fig. 2.2 we show the comparison between covariance matrices built
from frames taken from an interval of duration At = 1 ns, extracted at the
end of two distinct trajectories, so to exclude as much as possible intrin-
sic correlation. In panel (a) of the figure, the reduced covariance matrix
elements are represented:

Cij = Z Cij,aa (2.1)

From the analysis of the accord between reduced covariance matrices
(invariant under rototranslations of the proteins) it is evident that there is a
fair degree of correlation, but the dispersion of the data pairs is substantial:
the linear correlation coefficient over the ~ 1500 distinct entries (w
where N=56 is the number of protein residues) is 0.65. Also, it is interesting
to notice that the “cloud” of Fig. 2.2 does not appear to be oriented along
the y = z line. Indeed, there is roughly a factor 4 in the breadth of the
covariance matrix spanned by the two runs. This is indicative that the width
of the visited minima is only roughly similar, despite the equal simulation
time.

The dispersion of the points increases substantially if we consider the
comparison of full covariance matrices entries (2.2b), taking into account
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also the directionality of the fluctuations. The correlation over the ~ 14000
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Figure 2.2: Scatter plot of the covariance matrices relative to the last ns of
2 different trajectories. In panel a are shown the ~ 1500 distinct entries of
the reduced covariance matrices while the scatter plot of panel b is referred
to the ~ 14000 entries of the full covariance matrices.

If we analyse the covariance matrices calculated over progressively longer
time spans, the degree of correlation degrades very rapidly.

The poor consistency of the covariance matrices is expected to be re-
flected in a similar lack of robustness of the effective coupling matrices M,
(see eqn. 1.8) obtained by pseudo inversion of the covariance matrices.

To verify this we have systematically compared pairs of M matrices from
the different runs and/or for increasing At. Their similarity is measured by
means of the Kendall’s correlation coefficient (7) computed over the ~ 14000
corresponding entries [112]. Using the Kendall’s 7 has the advantage of re-
ducing the influence of data outliers. More importantly, it provides a robust
measure of data association with no prior assumption of the parametric de-
pendence of the examined data sets. As visible in the figure 2.3, extending
the duration of the trajectory, be it 1 or 16 ns, by four or more times leads
to a substantial deviation of corresponding entries of M (with 7 ~ 0.30).
Consistently, halving each trajectory and considering the correlation among
the two halves gives values of 7 between 0.17 and 0.25. The consistency of
M matrices of different trajectories is, furthermore, much poorer and almost
independent on the compared time spans. In fact, pairwise comparisons of
different runs over the first ns or over the entire 90-ns duration trajectories
yield values of 7 in the [0.05- 0.15] range.

These values indicate a substantial degree of heterogeneity in correspond-
ing matrix entries and hence point to the impossibility of having a robust
definition of M (even over hundreds of ns) to be used e.g. as phenomeno-
logical parametrization of elastic network models.



2.3 Simple Robust Features of the Coupling Matrices 21

_ Il
' 0.75
1 106
1 1045
1 1103
1 t10.1E
. .1 Yo
1 2 4 8 16326490
At (ns)

Figure 2.3: Color-coded plot of the Kendall’s correlation coefficient, T,
between corresponding elements of the coupling matrices, M, calculated over
the first At and At’ ns of the first trajectory. Matrix elements along the
diagonal or pertaining to consecutive C,’s were omitted in the calculation
of 7.

2.3 Simple Robust Features of the Coupling Ma-
trices

Despite the fact that no asymptotic value appears to be reached by M (or C)
entries, the latter display some general property that appears to be rather
robust against the increase of simulation time span, At.

We begin by considering an effective free energy quadratic in the dis-
placement of C,, atoms

1
~ B ]
F g > M org ort (2.2)
i7j7a?/6
Notice that the strength of the coupling between the pair 4, j of amino acids
is aptly given by (see eqn 1.4):

Kij==) Mj*=-% Cj'°, (2:3)
« «

where the sign convention is chosen so that positive [negative] entries
correspond to attractive [repulsive] interactions. We have used this relation-
ship to compute the strength of the harmonic pairwise couplings between
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all amino acids.

Below we plot the histogram of values of the couplings, Kj;, for pairs of
consecutive Cy’s (bonded interactions), see Fig 2.4a, and for pairs of non-
consecutive C\,’s with a native distance smaller than 7.5 A, see Fig 2.4b.

Consecutive Alpha Carbons Non Consecutive Alpha Carbons
I T I T I T I T I T I T T I T I T I T

100 200 300 400 500 600 -100 -50 0 50 100 b
a) Effective Coupling Constant for Interaction Effective Coupling Constant for Interaction )

Figure 2.4: Histogram of effective couplings for (a) consecutive Car and (b)
contacting but not consecutive Ca

100

Trajectory Segment 2

-100
-100 0 100
Trajectory Segment 1

Figure 2.5: Scatter plot of the Kj; of pairs of not consecutive Ca with

native distance below 7.5 A obtained from 1ns of simulation in independent
trajectories.

The results shown in Fig 2.4 indicate that the effective coupling for amino
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acids that are consecutive in sequence is about two orders of magnitude
larger than the strength of contacting, but non-consecutive residues. The
enhanced interaction couplings in Fig 2.4a reflect the fact that the virtual
bond connecting consecutive C,’s undergoes fluctuations that are very lim-
ited. This is consistent with what already observed in previous studies in the
contest of Hessian analysis[60]. A second interesting feature is that the dis-
tribution in panel (b) covers also negative values (“repulsive” interactions).
They are however outweighted by the positive ones, as the system would oth-
erwise be unstable. The distribution is nevertheless very different from the
idealised one commonly employed in elastic network models, which consists
of a sharp peak reflecting the uniform strength of all harmonic couplings
between contacting amino acids.

A natural question that emerges is whether the disperse character of the
distribution in Fig 2.4 reflects any sequence-specific properties of the system.
In fact, one may expect that different types of amino acids may be associated
with different interaction strengths. While we cannot rule out that specific
pairs of amino acids may interact with definite strength (or sign) [102], a
further analysis indicates that no such information can be easily extracted
from the data in Fig. 2.4.

To ascertain this, we have computed the effective amino acid couplings
using MD data from Ins-long intervals from two distinct simulation. Cor-
responding entries are plotted one against the other in Fig. 2.5. The figure
strikingly exhibits a lack of correlation between the two data sets. On one
hand, this fact points at the impracticality of using an MD-based analysis
to develop “phenomenological” (sequence-specific) elastic network models.
On the other hand it stimulates the further investigation of why, despite the
apparent lack of robustness of the covariance matrix entries (and hence of
the individual a.a. pairwise couplings) the essential dynamical spaces ob-
served in MD trajectories are usually in good accord with those predicted
by simplified ENM approaches.

2.4 Anharmonic Character of the Low Energy Modes

The lack of robustness of M matrices upon increase of the simulated time
At is presumably rooted in a complex character of the underlying free en-
ergy. We will dissect the structure of the free energy by analyzing explicitly
principal directions of motion and their corresponding amplitudes. For a sys-
tem governed by a purely quadratic free energy, the equilibrium fluctuations
around the average structure have a Gaussian probability distribution along
any of the eigenvectors of M. The width of the Gaussian is largest for the
lowest energy mode which, corresponding to the direction of least curvature
of F', mostly accounts for the system fluctuations in thermal equilibrium. A
valuable insight into the effective free energy landscape described by C(At)
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is hence obtained by considering the distribution of the projections along
the lowest energy mode of the conformational fluctuations in trajectories of
increasing duration. Typical results are shown in Fig. 2.6.

It can be noticed that, in accord with what established in previous studies
(see e.g. [4]), for At ~ 1 ns, the distributions have a unimodal character with
a fair degree of Gaussianity, while as time spans increases the multi-modal
character of the distributions becomes evident.
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Figure 2.6: Normalised distribution of the projection along the first slow
mode of the conformational fluctuations encountered in intervals of increas-
ing length from one of the trajectories.

A natural and useful quantifier for assessing the progressive deviation from
Gaussianity of the distribution for increasing At is the normalized kurtosis
k= ((z%) — 3(2%)?)/(2*) (z being the projection). For Gaussian distribu-
tions the normalized kurtosis is 0. An analysis on the distributions of our
projections shows that the initially low kurtosis value (x =~ 0.15 for At < 1
ns) progressively increases with At and attains values of k &~ 1 for At ~ 10
ns.

The considerations of the non-Gaussian character of the principal com-
ponents projections can be extended to the fluctuations of the individual
amino acids. We have considered the distributions of the trajectories of
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each C, atom projected onto its own principal directions of motion. The
deviations from gaussianity for these distributions are particularly marked
in specific protein regions, for example for residues 30—40. Figure 2.7 shows
a typical behavior for one of these distribution. It can be seen that the
corresponding C, atom takes on two different positions.

10 ns 40ns 90 ns

=05 oo 05 -05 oo 05

a) nm b) m

Figure 2.7: Normalised distribution of the projection along the first mode
for one of the most mobile residues.

2.5 Progressive Softening of the Underlying Effec-
tive Potential

The analysis has shown that the width of the visited configurational space
increases progressively with the simulation time and leads to an increasing
anharmonic character of the explored free energy surface.

An interesting counterpart of this property is that the eigenvalue of M
associated to the lowest energy mode is a decreasing function of At. This can
be interpreted as a progressive weakening of the strength of the quadratic
free-energy well upon widening of the explored phase space. This trend can
be illustrated by means of a simple, but transparent, dynamical variational
approach. More precisely, for a fixed simulated time span, we shall consider
the projection of a trajectory along its slowest mode ¥ having components
{¥1, Vs, ...} and attempt to describe its time-varying amplitude with a de-
terministic harmonic modulations of the amino acids displacements.

If we indicate with (7;) the average position of the ith centroid, the model
dynamics (indicated with the superscript m) is therefore governed by the
Hamiltonian:

A o L2 -
H™ = E(Zvi (7 — (7)) > |wl? =1 (2.4)
i i
The corresponding Newton’s equations of motion are:

Mty = = = U Z)\vj (= (7)) (2.5)
v J
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We consider for simplicity the effective mass of all centroids equivalent,

m; = m, and define % = w?, so that Newton’s equation read:
F =y Wt (T (7)) (2.6)
J
We now introduce the auxiliary variable: y™ = > . 4; - /™. Using the

condition of normalization of the eigenvector ¥ we obtain from the equations
of motion:

m

jm = -ty - 7) (2.7)

where 7 = ), ¥ - (73) . The equation 2.7 readily gives:

y"(t) =7y — Acos(wt + ¢) (2.8)

Returning to the original variables {7;} we obtain #™(t) = (y™(t) +

(2

D;t)v; subject to the condition ), D;v; = 0. We propose a solution like

F(t) = C; — A cos(wt + ¢) (2.9)

)

subject to the initial conditions C; = 7 + A#; cos(¢), so that the oscillators
coordinates coincide with those of the real system at ¢ = 0 (indicated with
70).

We now introduce a criterion of optimality to fix the free parameters w,
A and ¢. They are chosen so to minimize the time-averaged total square

deviation of the model trajectory from the real one:
O 7™ @) = m)1?) (2.10)
i

We have adopted this scheme to model the dynamics of several intervals

of various duration taken from the recorded trajectories. As visible in Fig.
2.8, for time spans of up to fractions of a ns the oscillator is able to account
satisfactorily for the evolution of the true trajectory (manifestly overdamped
over At > 0.5 ns).
The plot of Fig. 2.9, presents the trend of the average optimal frequency
w, as a function of the length of the time interval. It can be perceived how
rapidly the curvature of the effective quadratic free energy decreases as a
function of At. The softening reflects the complexity and anharmonicity of
the free energy landscape which, as confirmed by the multimodal character
of the distributions of Fig. 2.6, is constituted by broad minima of varying
depth which are progressively explored as the dynamics advances.

The analysis conducted in this and the preceding sections has highlighted
the progressive erosion of the harmonic character of the free-energy as the
phase space visited by MD trajectories is enlarged. In the next section we
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Figure 2.8: Time evolution of the projection along the 1st eigenvector and
of the variational deterministic oscillator for intervals of different duration.

shall discuss how, despite the substantial degree of anharmonicity the near-
native free energy possesses a remarkable self-similar organization (which
can profitably exploited in the context of simplified, coarse-grained models).

2.6 Effective Dimension of the Visited Landscape

As already mentioned, in ref. [79] Kitao et al. discuss the idea of separating
in the calculation of covariance, the contribution due to the diffusion within
the local energy minima visited, from the jumping among them. This is
done by considering the covariance matrix as made of contributions from
fluctuations within each of the various minima and the structural displace-
ments of the various minima from the reference (time-averaged) structure.
The expression of equation 1.3 can be recasted as

C=> w{C'+ > wn wi |di k) (d1ml} (2.11)
z

k,m
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Figure 2.9: Average value of the variational oscillator frequency as a func-
tion of the interval duration, At.

where w; is the weight of the [th cluster, that is the fraction of time spent
by the system in it, C? is the covariance matrix of the Ith cluster, and dym
is the distance vector of the representative (average) structures of clusters [
and m.

We shall specifically characterize the salient minima performing a cluster
analysis of the structures generated in all four trajectories and considered
the 10 most populated sets. As a measure of structural similarity of any
two conformers we consider the root mean square deviation (RMSD) of
corresponding Ca atoms after an optimal structural superposition. The dis-
tribution of all pairwise RMSD distances of 40000 configurations, recorded
once every 10 ps from the cumulated trajectories is portrayed in fig 2.10.
The double peak character of the distribution is an indication of natural
groups present in the sample. The location of the left-most peak provides
an estimate of the typical intra-group pairwise distance while the second
can give a measure of the expected inter cluster separation[96]. We have
thus performed a cluster analysis by grouping structures closer than 1.5 A
RMSD. To identify the groups and the corresponding representatives, we
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first count the number of neighbors of each structure, within the selected
cutoff distance. The configuration having the largest number of neighbors
defines the most populated cluster. The procedure is iterated over the re-
maining conformations[35, 96]. In the analysis we will consider the 10 most
populated groups. Each cluster, containing conformations at less than 1.5 A
RMSD from the representative, gathers configurations from time-intervals
of very different length, from 1 to tens of ns, originating from one to three of
the four trajectories. By carrying out a structural covariance analysis (with
the time average of eqn. 1.1 being replaced with an average over cluster
members) we identified the 10 principal components describing the largest
conformational changes in each cluster.

| ! | ! | ! | !
0 1 2 3 4 5 6

RMSD [ A]

Figure 2.10: Distribution of RMSD of 40000 conformations extracted from
the 4 trajectories.

The sets of the most relevant (typically the top ten eigenvectors are
considered) principal directions corresponding to the largest eigenvectors of
different covariance matrices are compared to assess their common overall
orientation.

We shall indicate two such sets of essential dynamical spaces as {v} =
{V1, Vs, ...,010} and {w} = {W, W, ..., W10}. Their common orientation, in-
duced by the superposition of the corresponding reference structures, will
also be assumed. The consistency of {v} and {w} was quantified, as cus-
tomary, via the root mean square inner product, (RMSIP) [3]:

10
1
— _ 7 a7t )2
RMSIP = 10 g 1(1), w;)? (2.12)
)=

which ranges from 0, for complete orthogonality of the {v} and {w} spaces,
to 1 in case of their perfect coincidence.
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Figure 2.11: (a) Histogram of the RMSIP values calculated for the prin-
cipal components of all pairs of top structural clusters. (b) Histogram of
the norm of the projection of all pairwise distance vectors between cluster
representatives along the top 10 principal components of the largest cluster.

By means of the RMSIP we finally compared the 10 principal components
of all distinct pairs of clusters. The resulting distribution of RMSIP values
indicated a very strong consistency of the sets of principal directions, see
Fig. 2.11a. Indeed, for the considered protein length, numerical results
indicate that if the set of principal components were completely unrelated,
the expected RMSIP value would be 0.24 £+ 0.02. The distribution of values
in Fig. 2.11 is sufficiently distant from this random reference value to convey
the significance of the observed consistency of the principal components of
different clusters. Strikingly, it was also found that the difference vectors,
cz;j connecting the representatives of any pair of different clusters i and j
are also well described by the principal components of any of the clusters.
For example, as shown in Fig. 2.11b, the top 10 principal components of
the largest cluster are usually sufficient to account for most of the norm of
the “virtual jumps” connecting the representatives of any two top clusters.

This observation extend and complements the considerations of Kitao
et al. [79] on the similarity of the energy minima. Not only the deep free-
energy minima corresponding to the main clusters have similar principal
components, but also the virtual “jumps” connecting their representatives
are describable in the same low-dimensional space. That being so, we can
assume a single set of top principal component can be used to expand both
intra- and inter- substate terms appearing in the decomposition of the co-
variance matrix of eqn 2.11.

According to this approximation, the principal eigenvectors of C, and
hence the slow modes of M, would coincide with #7,... ¥, and thus remain
unchanged over all time scales. On the contrary, the associated eigenvalues
would explicitly depend on the MD duration through the time-dependent
number and weight of the visited clusters.

This remarkable consistency of the principal directions is further address
comparing the essential spaces of different time intervals from the simulated
trajectories. The results are illustrated in Fig. 2.12 which portrays the
RMSIP calculated between the essential spaces of the 1st ns for trajectory
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1 with larger and larger time spans for the same and other trajectories. It
is seen that the top slowest modes are very robust against increasing At
and remain consistent even increasing the simulation time by two orders
of magnitude (from 1 to 90 ns). The statistical significance of this result
is highlighted by the difference of RMSIP ranges in Fig. 2.12 from the
aforementioned random reference value of 0.24. As a further comparison we
also considered the RMSIP value calculated over all pairs of 10 mid-ranking
eigenvectors of the last 1 ns of all four trajectories. Also this more stringent
test indicates that the RMSIP’s in Fig. 2.12 exceed the control value by at
least 4 standard deviations and hence have a high statistical significance.
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Figure 2.12: RMSIP between the top essential dynamical spaces of the 1st
ns of trajectory 1 and intervals of longer duration, At, from the same and
other trajectories.

2.7 Summary

We have shown that the near-native free-energy of GB1 possess a simple
self-similar structure reflected by the high consistency of the principal di-
rections of the various local minima and of the virtual jumps that connect
them. The analysis complements and extends previous investigations of free-
energy organization that were based on MD trajectories having durations
two order of magnitude smaller than the present analysis. This remarkable
feature reflects into the exceptional robustness of the essential dynamical
spaces (slow modes) calculated over trajectories with very different dura-
tion. However, the typical amplitudes projected along the slowest modes
depends on the number of visited minima as well as on their depth. As a
result, the dynamical projections have a strong dependence on the duration
of the simulation, a fact that accounts for the observed inconsistency of the
coupling (or covariance) matrix entries. The observed properties, besides
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elucidating general features of the free energy landscape of one particular
protein, have important practical ramifications. In particular they provide a
first perspective, for understanding the scope and viability of coarse-grained
elastic network models as well as short MD simulations. Accordingly, it is ex-
pected that the directionality of the slow modes/essential dynamical spaces
can be determined with considerable more confidence than the amplitude of
the associated dynamical projections. These considerations provide a strong
motivation for investigating the validity and transferability of the present
analysis to other protein contexts.



Chapter 3

Subdomains Motion and
Mechanics of Adenylate
Kinase

Stimulated by the previous findings, we extended the investigation of the
structure of the free energy landscape to another important enzyme, adeny-
late kinase, whose internal dynamics is known to play a major role in the
accomplishment of the biological function. For this reason this enzyme is
an optimal case study to further investigate the connection between protein
functional dynamics and intrinsic features of the free energy landscape.

Adenylate kinase (Adk) is a monomeric enzyme regulating the relative
abundance of AMP, ADP and ATP. The concentration of the three nu-
cleotides is controlled by the enzyme through the catalysis of the phosphoryl
transfer reaction:

Mg>t
ATP+ AMP < 2ADP .

The differences in structural arrangement between the free E. Coli adeny-
late kinase (AKE) and the enzyme complexed with an inhibitor mimicking
both ATP and AMP are illustrated in Fig.3.1 [104, 103]. By comparing the
two portrayed crystal structures it is apparent that the formation of the
ternary complex stabilizes the enzyme in a form where the mobile Lid and
AMP-binding subdomains (highlighted in Fig. 3.1) close over the remainder
core region. This rearrangement of the two mobile subdomains is necessary
for the accommodation of the nucleotides in an optimal catalytic geome-
try and the resulting closed enzyme conformation provides a solvent-free
environment for the phosphoryl transfer.

The conformational change sustained by adenylate kinase upon complex-
ation with ATP and AMP, and its reopening upon unbinding of the pro-
cessed nucleotides represents the rate-limiting step in the reaction turnover
[75]. A large number of experimental studies have consequently been de-
voted to elucidating the functional implications of Adk structural elasticity

33
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[104, 103, 117, 115, 113, 54, 128, 75, 114, 57, 55]. In particular, recent in-
vestigations based on a wide range of techniques, have provided converging
evidence for the fact that, even in the absence of the bound nucleotides,
the free enzyme is capable of interconverting between the open and closed
forms [57, 55]. These investigations have lead to formulating the hypoth-
esis that evolutionary pressure has endowed Adk, and arguably other en-
zymes [12, 38], with the innate ability to interconvert between the open and
catalytically-potent forms [1, 57].

These observations have stimulated the present numerical study of the
dynamical evolution of the free (apo) AKE molecule in solution. By means
of two MD simulations started from the available crystal structures we have
characterized, over various time scales, the conformational fluctuations sus-
tained by the enzyme and analyzed the extent to which they indicate the
suggested innate predisposition to connect the open and closed forms.

Several previous computational investigations of the flexibility of AdK
exist and include both mesoscopic and atomistic approaches. Coarse grained
models have, for instance, been applied to model the pathways connecting
the open and closed forms of the enzyme[100, 91, 30]. Atomistic simu-
lations have instead been used to probe the free energy landscape in the
neighborhood of several known enzyme conformers, as in the recent investi-
gations by Lou et al.[90], Arora et al. [7] and Henzler-Wildman et al. [57].
In the first study [90], an advanced sampling technique was used to show
that the enzyme populated conformations compatible with the holo-form
geometry, as probed by FRET experiments. [117]. Arora et al. [7] further
showed that the free energy landscape along a pre-assigned reaction coordi-
nate connecting the open-closed forms of AKE is approximately flat for the
apo-form while, upon ligand binding, it changes favoring the closed state.
Finally, in the study of ref. [57], carried out on Adk extracted from hyper-
thermophile Aquifex Aeolicus, a variety of experimental and computational
probes provided converging evidence for the existence of several metastable
configurations bridging open and closed states.

In the present study, we have analyzed the recorded trajectories with a
series of specifically-developed tools. Prompted by the previously discussed
results of our study of GB1, we first assess the level of structural heterogene-
ity of the visited conformational phase space, identifying local metastable
substates. The internal dynamics within the substates and the discontinu-
ous jumps across them are analyzed in detail in order to elucidate the what
relationship, if any, exists between (i) the directions of largest structural
variability within the substates, (ii) the difference vectors that connect the
substate representatives and (iii) the functional conformational change as-
sociated to the deformation vector bridging the available apo/holo crystal
structures. These questions are at the heart of the ”multiscale” spirit of the
present analysis aimed at characterizing the connection between the system
conformational fluctuations at the smallest scale (within the substates) and
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at the largest, functional one, embodied by the open/close conformational
change.

AN,

v
?.
7

\}

| : ,. ’ 4 s
\n)./ﬁ« A

L2
<
¢

1 20 40 60 80 100 120 140 160 180 200 214

Figure 3.1: Cartoon representation [67] of crystallographic structures of
E.Coli adenylate kinase in: (a) the open apo form and (b) the closed holo
form. The PDB codes for the two structures are 4ake and lake, respectively
[104, 103]. The flexible Lid (amino acids 114-164) and AMP-binding (amino
acids 31-60) domains are colored in gray and black, respectively. The suc-
cession of secondary elements is shown in the bottom panel. Helices are
indicated as gray boxes while 8-strands are shown as black arrows.

3.1 Molecular Dynamics Simulation

The atomistic molecular dynamics evolution of E. Coli adenylate kinase,
AKE, was followed starting from two distinct initial structures, correspond-
ing to the open and closed form of the enzyme. More precisely, the initial
conformation of the first simulation was the free (apo form) enzyme from
the 4akeA PDB crystal structure. The second simulation followed, instead,
the evolution of the free closed form of the enzyme obtained by removing
the Ap5A inhibitor from the lakeA PDB structure file. In the following, for
simplicity, we shall refer to the two simulations as the “open” and “closed”
trajectories. The nomenclature is only meant to remind of the starting con-
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figuration as, in fact, for both trajectories a partial interconversion to the
complementary (open or closed) state is observed.

Each system was parametrized with OPLSS-(AA)/L force field [69, 71]
and was energy minimized after solvation by 17694 simple point charge
(SPC) water molecules in a cubic box. Periodic boundary conditions were
applied and the overall charge neutrality was ensured by the presence of
four Na+ cations. The system was gradually heated up to 300 K. The
temperature was next adjusted, along with the system density, in a 500-ps
long MD simulation at constant temperature (300K) and pressure (1 bar).
The coupling times to the Nose-Hoover thermostat [106, 65] and Berendsen
barostat [14] were 0.2 ps and 0.5 ps, respectively. After equilibration, the
barostat was removed and the system dynamics was followed in the NVT
ensemble with a cubic simulation box of side | =8.35 nm for 52-ns. The
dynamics was integrated with the GROMACS software (version 3.3.1)[125]
with an integration time-step of 1fs. Constraints on bond lengths were en-
forced with the Lincs algorithm[58] and water internal degrees of freedom
were controlled with the Settle algorithms[99]. Long-range electrostatic in-
teraction was treated with the particle mesh Ewald method (PME)[34, 39].
The initial 2ns of each trajectory were not considered for analysis, which
was instead performed on the subsequent 50-ns long production runs. The
sampling time for the structural data (atomic coordinates of the enzyme and
water) was equal to 0.5 ps for a total of 10° frames.

In the following we will present a detailed analysis of the MD results for
AKE. We shall primarily focus on the 50-ns long simulation started from
the crystallographic structure (PDB:4ake) of the open free enzyme. The
resulting salient properties will be compared with the second simulation
started from a closed, again ligand-free, configuration (prepared starting
from the structure in PDB:1ake).

3.2 Structural fluctuations and a phenomenologi-
cal model for mechanical strain

The recorded trajectories were first analyzed to assess the level of overall
conformational heterogeneity encountered during the time evolution. The
structural differences between the two starting crystal structures reflect the
different orientation of the Lid and AMP-binding subdomains (correspond-
ing to residues 114 to 164 and 31 to 60, respectively). The remainder Core
region, consisting of 133 amino acids, presents minor differences in the two
crystal structures (1.61 A RMSD). The RMSD of the full C,, trace of lake
and 4ake is 8.14 A (see Fig 3.1 ).

The overall mobility of individual amino acids in each trajectory was
characterized by means of the root mean square fluctuation (RMSF) profile
of their a-carbon atoms. The RMSF of the ith C,, whose instantaneous co-
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ordinate at time ¢ is indicated by 7;(t), is given by {|Z;|?) where the brackets
denote the time average and Z;(t) = 7;(t) — (7;) is the instantaneous dis-
placement from its time-averaged (reference) position. The average was
taken after removing the rigid-body motions of the enzyme. Following ref.
[57] each recorded frame was oriented so to align the rigid core (for definition
of the domains see caption of Fig. 3.1) against the core of the open crystal
structure.

Fig.3.2 shows the RMSF of each amino acid calculated for the entire
50ns-long open trajectory after removing the rigid-body motions of the Core
region. The structural deviations are accumulated in correspondence of the
Lid and AMP-binding regions. The core is, by converse, very stable as its
amino acids have root-mean-square fluctuations (RMSFs) of less than 2 A.
The rigidity of this region is consistent with NMR and Xray studies, as well
as with previous topology-based characterizations of the protein’s elasticity
[100, 101, 91, 127, 30]. Analogous results emerge from the analysis of the
fluctuations in the closed simulation.

AMP-bd Lid

RMSF [A]

0 Il Il Il Il
0 50 100 150 200

residue number

Figure 3.2: Root mean square fluctuations of the C,, atoms observed in the
50-ns long “open” trajectory. The fluctuations have been calculated after
an optimal structural superposition of the C, trace of the Core region of
the enzyme.

The rearrangements experienced by the two mobile subdomains are aptly
summarized by the time evolution of two independent geometric parameters
which discriminate between the open and closed configurations of the Lid
and AMP-binding regions, respectively. The degree of bending of the Lid
towards the core was measured by the angle formed by two virtual bonds
connecting the C,’s of amino acids (152,162) and (162,173), see Fig. 3.3a,
and its time evolution is shown in Fig. 3.3c. The arrangement of the AMP-
binding subdomain relative to the core was captured by the distance between
the C,’s of amino acids 55 and 169, as illustrated in Fig. 3.3b. The time
evolution of this second parameter, which was previously considered also in
FRET experiments and computational studies for AKE [117, 90], is shown
in panel d of Fig. 3.3. By comparison with the initial structure, during
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the second half of the simulation, the Lid is bent towards the core and the
Lid-Core geometric parameter frequently takes on values that are compatible
with the closed (holo) form (dashed reference line in panel ¢). The AMP-bd-
Core distance, instead, fluctuates within a fairly constant range throughout
the trajectory, see panel d.

Consistently with previous reports on the approximately-independent
motion of the two subdomains on the ns-scale [57], also from the present
analysis no significant correlation emerges among the two time evolutions
of panels ¢ and d of Fig. 3.3. In fact, the Kendall correlation coefficient of
the data set constituted by 100 pairs at equal times of the two geometric
parameters (i.e. sampled at 0.5 ns) was equal to 7 =0.065. The probability
to observe a Kendall’s 7 having modulus smaller or equal to 0.065 in random
sets of 100 elements is equal to 67% [112].

To characterize with finer detail the structural fluctuations of AKE we
investigated how extensive, as a function of time, are the changes to the
local structural environment of each amino acid (represented by the C,
atoms). In particular we quantify the changes to the set of distances be-
tween one amino acid and the one in close proximity (within 7.5 A). The
distortions of the contact network of the ¢th amino acid is quantified with
the “geometric strain” parameter, g;, providing a measure of how much its
instantaneous distances with neighboring amino acids differ with respect to
the time-average:

qi(t) = Zf((dij>) (dij(t) — (dij))? (3.1)

where d;; is the distance of the C, atoms of amino acids ¢ and j and f =
(d) = 3(1 — tanh(d — dey)) is a sigmoidal function weighting the average
spatial proximity of the two amino acids. Its point of inflection is set at the
cutoff distance d. = 7.5A.

By analyzing the time evolution of the geometric strain profile it is possi-
ble to identify those regions of the enzyme that undergo a rigid-like motion.
The geometrical distances for any pair of amino acids within such regions
would be highly conserved in time, regardless of the amplitude of the mo-
tion of the region with respect to a fixed reference frame. Consequently, by
cross-referencing the RMSF and the geometric strain analysis it is possible
to identify a posteriori the amino acids (if any) that act as hinges for the
articulated motion for AKE. The time evolution of the geometric strain pro-
file g; is shown in the bottom panel of Fig 3.4, along with the profile of the
cumulative strain of the full protein chain (top panel of the same figure).

Fig. 3.4 illustrates two notable features of adenylate kinase dynamics
which are hereafter discussed in detail. First, the geometric strain is mostly
concentrated on specific regions of the protein chain and, secondly, the pat-
terns of geometric strain evolve discontinuously in time.
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Figure 3.3: To discriminate between open (black) and closed (white) con-
formations of the Lid and AMP-binding subdomains two independent geo-
metric parameters are introduced. (a) The Lid orientation is captured by
the angle between the virtual bonds formed by the C,’s of amino acids
152,162,173. (b) The AMP-bd arrangement is captured by the distance be-
tween Cgo’s of Ala55 and Vall69, which attains the value of 12 A for the
closed conformation. The time series of the Lid and AMP-bd geometric
parameters during the open trajectory are shown in panels (c¢) and (d), re-
spectively. Open [closed] conformations of the AMP-bd and Lid subdomains
are associated to values of the parameters greater [smaller] than 12 A and
116 degrees (dashed line in panel c), respectively. The lack of correlation of
the time series in panels (c) and (d) suggest the independent motion of the
two subdomains.
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Figure 3.4: (a) Time evolution of the geometric strain (see eqn.3.1) summed
over all amino acids. The strain of each individual amino acid is shown in
panel b.

Six sets of amino acids,labeled a—f, are associates with significant strain:
namely group (a): amino acids 8 to 15 ; (b): 28 to 35; (c): 53 to 60 ; (d):
123 to 130 ; (e): 135 to 137 ; (f): 153 to 158. In particular, group (d)
correspond to the Lid-Core interface, while sets (b) and (c) to the AMP-
Core one; these groups of residues hence act as primary hinges for the motion
of the two mobile subdomains. It is worth noticing that a further region of
high geometric strain (group e) is found in the middle of the Lid subdomain,
indicating an articulated motion of the latter around this joint.

We now turn to the observation that the build-up/release of geometric
deformations of these regions is discontinuous in time. For example, at t=9
ns there is a rapid increase of the geometric strain in correspondence of all
above-mentioned groups which persists up to t=19 ns. At this time another
coordinated change of these regions is observed.

These facts indicate that the system evolution proceeds by visiting dis-
tinct conformational substates through which the systems hops with rapid
”transitions” signaled by discontinuities in the geometric strain profiles.
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3.3 Structural clustering

This conclusion is supported by the analysis of the density plot in Fig 3.5a
which provides the RMSD between each pair of conformations sampled from
the open trajectory. The block character of the matrix suggests that distinct
conformational groups are explored during the dynamical evolution. Con-
sistently with this qualitative observation, the analysis of the distribution
of the pairwise distances [96] suggests that the system populates confor-
mational basins where the internal structural heterogeneity is about 2.5 A
RMSD while the RMSD of conformations in different basins is mostly in the
range [4-7 A] (see Fig 3.6 ). As a quantitative method to identify the con-
formational basins visited by the trajectory we have applied and compared
results of two structural clustering schemes.

First the standard K-medoids clustering scheme [74] was used to parti-
tion each trajectory in structurally-homogeneous groups. The input of this
algorithm consists of the pairwise RMSD distances between all pairs of the
10% recorded structures (one every 50 ps). The returned output consists
of the grouping of the structures in a pre-assigned number of non-empty
clusters, K. A representative conformation for each cluster is also provided.
The clusters and their representatives are identified by minimizing the dis-
similarity score obtained by summing the RMSD of each structure from its
cluster representative. The method is commonly implemented in an iterative
fashion through the following steps: (i) the members of the K clusters are
first assigned randomly; (ii) the cluster representatives are next identified
by picking in each cluster the element with smallest total distance from the
other cluster members; (iii) the clusters are finally redefined by assigning
each data-set member to the closest representative. Steps (ii) and (iii) are
repeated until the dissimilarity score does not decrease anymore. To avoid
trapping in local minima of the dissimilarity score, the method is repeatedly
applied for several initial random groupings.

We emphasize that the clustering returned by standard K-medoids scheme
described above is based solely on the input of the RMSD distance of any
pair of structures (aligned over the core region) and hence does not consider
their succession in time along the trajectory.

The clustering was performed by varying K from 2 to 15. Values of K
larger than 6 resulted in a noticeable “intermittent” assignment to different
clusters of structures contained in time intervals smaller than 0.5 ns. This
effect was taken as indicating an excessively fine subdivision of the confor-
mational substates. For values of K < 6, instead, each cluster comprised
structures covering, with only sporadic outliers, continuous time intervals of
duration not smaller than 2 ns.

Accounting for the time order of the structures is essential for parti-
tioning the recorded trajectories in a succession of progressively-visited sub-
states. The K-medoids scheme was accordingly modified to ensure that each
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Figure 3.5: (a) Density plot of the pairwise RMSD of 1000 time-equispaced
conformations from the open trajectory (time labels are shown on both
axes). Solid black lines are used to separate the substates identified with the
structural clustering procedure. The structures representing the substates
are shown in panel (b) and are colored according to the time subdivision
(clustering) shown at the bottom.
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Figure 3.6: Distribution of RMSD distances of each pair of conformers of
the simulation started from the open crystallographic structure (circles).
The data are well fitted by a sum of three gaussian functions (solid line).
The three gaussian are shown as dashed lines. The lowest peak (~ 2.5 A)
provides a measure of the tipical intra-basin distance of the structures, while
the broader background distribution is a measure of the distances between
structures belonging to distinct substates.

cluster gathered structures spanning an uninterrupted time interval of the
simulation. The introduction of the “time continuity” constraint simplifies
the definition of the cluster members, which are unambiguously specified by
introducing K — 1 time subdivisions of the trajectory.

The minimization of the dissimilarity score subject to the “time con-
tinuity” constraint is performed within a greedy stochastic minimization
scheme. Given the K —1 time-subdivisions (initially equispaced), the repre-
sentative of each cluster is defined as in step (ii) of the standard K-medoids
scheme and the resulting dissimilarity score is computed. At variance with
step (iii) of the original method, a new clustering is proposed by randomly
re-assigning one or more of the K — 1 subdivisions and ensuring that no
two subdivisions coincide as empty-clusters would result. The new clus-
ter representatives are found and the new dissimilarity score is calculated.
The proposed clustering is kept if it leads to a decrease of the dissimilarity
score, otherwise the previous one is retained and a new partitioning is pro-
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posed. The procedure is iterated until convergence of the dissimilarity score
(10% iterations were typically sufficient to reach convergence for partitioning
1000 structures in K=10 clusters, requiring a few minutes of computation
on present-day personal computers.)

The partitioning obtained with the two methods have been compared
(see Fig 3.7 ), and a good consistency was obtained using K = 8 non-
overlapping intervals. The emerging consensus time subdivision, shown in
Fig.3.5a, was consequently used to identify the most prominent conforma-
tional substates explored by the trajectory.
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Figure 3.7: Partitioning of the trajectory started from the open conforma-
tion in different conformational basins (frames belonging to different clus-
ters are represented as lines of different colors). The grouping has been
performed with the standard K-medoids algorithm with several values of K
(here we show only results for K=5,6,7), and with a modified version of the
algorithm that requires the elements of each group to span an uninterrupted
time interval (lower panel).

The typical RMSD of structures belonging to the same cluster was equal
to 1.9 A while structures belonging to different substates differed from 3 A
up to 12 A RMSD (after alignment of the core region). The representatives
of the clusters are shown in Fig.3.5b. The figure conveys the large variabil-
ity of conformations encountered; nonetheless the average structure of the
whole trajectory is at only 2.2 A RMSD from the starting crystallographic
conformation.
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The trajectory started from the closed structure presented qualitative
parallels with the above described results. In particular, as can be perceived
from Fig 3.8, also the “closed trajectory” visits about 8 substates, charac-
terized by residence times of the order of 5-10 ns. However, due to its more
compact arrangement, the structural fluctuations of the closed enzyme are
smaller than for the open form. This reverberates in a smaller global mean
square fluctuation (i.e. summed over all C,’s), which is 2838 and 908 A?
for the open and closed trajectory, respectively. Also the RMSD distances
between the substate representatives are smaller, typically about 3 A.

Original —
K-medoids 7
K=5
0 50
Original 5
K-medoids
K=6 4
0 50
Original
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K=7

0 50

Intervals
K-medoids
K=8
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Figure 3.8: Partitioning of the trajectory started from the closed conforma-
tion in different conformational basins (frames belonging to different clus-
ters are represented as lines of different colors). The grouping has been
performed with the standard K-medoids algorithm with several values of K
(her we show only results for K=5,6,7), and with a modified version of the
algorithm that requires the element of each group to span an uninterrupted
time interval (lower panel).

Though the ensembles of conformations explored by the two simulations
do not strictly overlap, it is noteworthy to notice that the RMSD between
pairs of structures in the two trajectories can be as low as 2.5 A.
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3.4 Intra- and Inter-Substate Fluctuations

Recalling the results obtained for GB1 domain of protein G, we wish to
analyze in details the structure of the various conformational substates.

We will in particular first assess the relative extent to which structural
fluctuations within the substates and across them impact on the breadth of
visited conformational space.

To this purpose we first analyzed the intra- and inter-substates contri-
butions to the global mean square fluctuation (MSF) of the molecule (i.e.
the sum of the mean squared displacements of each C,).

The decomposition of eqn. 2.11 of the covariance matrix in contribution
arising from the structural fluctuations within the substates and across them
can be rewritten as

Cij = CHre+ e (3.2)
ciptre = N " wCl; (3.3)
l

cipter = wil{rih — ()]l — (r)] (3.4)
l

where, analogously to 2.11, [ is an index referring to the substates, w; is the
weight of the [th substate, that is the fraction of simulation time spent by
the system in it, (); denotes the average taken over the conformations of the
lth substate, and ng = ([ri — (ra)i][r; — (rj)1])1 is the covariance matrix of
the [th substate itself.

It may be anticipated that the relative interplay of the intra- and inter-
substates fluctuations depends on the duration of the simulations (which e.g.
affects the number of visited substates). We have accordingly computed the
intra- and inter-substates contributions to the MSF, for increasing duration
of the trajectory, that is at each of the time subdivisions indicated at the
bottom of panel b in Fig.3.5 . The global MSF calculated at all stages of
the trajectory is also reported in Fig. 3.9a.

Over the 50-ns long trajectory, the fraction of global MSF accounted
for by the 7 inter-substates hops is 70 %. The result is striking as the
inter-substates contribution is computed merely on the basis of the eight
structures which represent the visited substates and their representation
weight (i.e. the time-intervals duration).

Finally, besides indicating that the jumps across substates represent a
key aspect of the equilibrium dynamics of the system, the increasing trend
of the global MSF in Fig. 3.9 indicates that the progressive broadening of
the visited configuration space is still ongoing after 50 ns. This aspect is
consistent with the experimental indication that an exhaustive exploration
of the available structural space of the apo form of AKE occurs over time
scales that largely exceed the one covered by the simulation [128, 55, 57].
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Figure 3.9: (a)

Time evolution of the total mean square fluctuation of the

enzyme and of its intra- and inter-substates contributions. The other panels
portray the evolution of the scalar product (in modulus) between the first
intra- and inter-substates essential modes and: the principal mode of the
entire trajectory (panel b) and the normalised apo/holo difference vector
(panel c).

3.5 Robustness of the Lowest Energy Modes

The intra/inter substate decomposition discussed above stimulates the inves-
tigation of which relationship, if any, exist among the generalized coordinates
which correspond to the essential dynamical spaces calculated separately for
each of the 8 substates as well as the different vectors between the represen-
tative structures of the clusters. In the analysis of GB1 it was found that a
common limited set of directions can be used to describe both the principal
components within the various substates separately, and the direction of the
“jumps” among them. Being able to extend similar considerations also in
the case of Adenylate Kinase, would be extremely appealing in that it would
shed light on the functional-oriented character of the internal dynamics. To
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address this issue we have first calculated the RMSIP between the essential
dynamical spaces of the 28 distinct possible pairs of substates. The average
RMSIP was equal to 0.83 with a dispersion of 0.03. The value indicates a
very high degree of consistency of the fluctuations within the various clus-
ters. Such consistency remarkably extends also to the inter-cluster structural
fluctuations. A stringent verification of this point is given in Fig. 3.9b which
shows, as a function of time, the modulus of the scalar product between the
first principal component of the intra- and inter-substates matrix, and the
first principal component of the covariance of the entire trajectory. Despite
considering only one space, the principal direction of the intra-cluster co-
variance matrix computed with as few as 2 substates is already well aligned
with the one of the total trajectory (scalar product equal to about 0.9). The
quality of the accord does not deteriorate as more and more substates are
visited.

The consistency of the directionality of the structural fluctuations within
and across the substates appears remarkable in consideration of the increas-
ing breadth and diversity of the visited conformational space (see Fig. 3.9a).

The above considerations further prompt the conclusion that a limited
set of collective coordinates, indicated by the consensus of the inter/intra-
cluster essential dynamics, would be adequate to describe the salient con-
formational fluctuations over a range of time scale wide enough to capture
the (sub-ns) dynamics within substates and the transitions across them (oc-
curring at the multi-ns level).

This expectation is verified and illustrated in Fig. 3.10 which shows the
highly consistent RMSIP between the essential dynamical spaces of pairs of
intervals of 0.5 ns or 5ns from the trajectory (that is with time-subdivisions
covering a wide temporal range and unrelated to the substates partitioning).

We have devised a test to establish the extent to which the RMSIP of two
spaces is likely to have arisen by a mere consistency of “unspecific” dynami-
cal features, such as the overall mobility of amino acids. In fact, to a certain
extent, the mean square fluctuation of amino acids in a protein correlates
with the local density (the higher the density the lower the mobility) [53].
On the basis of this observation it could be anticipated that certain regions
of AKE are more or less mobile than others. This poses the question of
whether a given RMSIP value simply reflects the consistency of the salient
aspects of the local density profile of two intervals of the trajectory.

A specific test was devised for addressing this issue. It consists of com-
puting the distribution of RMSIP values that arise when the essential dy-
namical spaces of {v} and {w} are modified so to (i) preserve the normalized
mean-square fluctuation profiles of each mode while (ii) retaining the or-
thonormal relationships within the new sets {v'} and {w'} and (iii) ensuring
the orthogonality of {v'} and {w’} with the zero-energy modes associated
to translations and rotations of the system.

The algorithm used for this purpose is described hereafter. For each
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amino acid we performed a random reorientation of its three-dimensional
displacement appearing in all modes of each set (i.e. the randomization
is carried separately for {v} and {w}). It is important to stress that the
rotation differs from site to site but the same rotation is applied to the
displacements of one particular site (amino acid) in all 10 modes.

This random reorientation procedure realizes requirements (i) and (ii).
In fact, it preserves the normalized mean-square fluctuation profiles of each
mode and the randomized modes are still orthonormal. However, the new
modes, in general, will have non-zero overlap with the six zero-energy modes
associated to the rigid-body motions of the system. From a practical point
of view, the orthogonality condition can be enforced in an approximate way
by retaining, out of a large number of randomly-generated sets of modes
the ones where each mode had a projection smaller than 0.05 on the six-
dimensional linear space of the zero-energy modes.

In this way, the RMSIP value of two original sets of modes, {v} and {w},
can be compared against the distribution of RMSIP values of randomized
sets that, mode by mode, still possess the same RMSF profile. This ref-
erence distribution therefore provides an indication of how much the mere
specification of the normalized RMSF profiles of all the modes, constrains
the possible RMSIP values.

In fact, the distribution of RMSIP values that would follow from speci-
fying only the MSF profiles of each mode is provided in Fig.3.10 and covers
a region of values much lower that those observed here, confirming the sta-
tistical significance of the observed RMSIP values.

3.6 Functional Oriented Character of Low Energy
Modes

A naturally emerging question is whether the observed degree of consistency
is functionally oriented, i.e. related to the prominent structural rearrange-
ment between the open and closed forms of the enzyme. To establish this
property, and in analogy with the analysis of Fig.3.9b, we have computed, as
a function of time, the fraction of the norm of the difference vector between
the apo-holo crystal structures projected onto the first essential eigenvector
of the intra and inter-substate covariance matrices. The results are plot-
ted in Fig.3.9¢ and indicate that the fraction of captured norm is about
0.8 throughout the trajectory, supporting the functional relevance of the
molecules’ internal dynamics.

Fig.3.9¢ reveals the interesting aspect that the inter-substate hops are
typically better aligned along the apo/holo conformational changes than the
intra cluster principal directions. Over the entire 50ns-long trajectory, 82%
of the open/closed conformational change is already captured by the the
first low-energy mode while considering the top ten modes captures 96%
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Figure 3.10: (a) Density plot of the RMSIP between essential dynamical
spaces (EDS) of 0.5-ns long intervals of the open trajectory (time labels on
the abscissas) against themselves, lower triangle, and against the EDS of
bns-long intervals, upper triangle. (b) The distribution of RMSIP values
from the lower triangle of the matrix (pairs of 0.5ns-long intervals) is shown
with a solid curve. The dashed curve shows the distribution of RMSIP values
obtained by randomizing (in a way which preserves the mobility profiles of
the amino acids) the original EDS.
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of the norm. The fact that the conformational changes within and across
the substates occur mostly along the direction bridging the open and closed
conformers is illustrated in the scatter plots of Fig. 3.11. In panel a the sub-
states visited by the open trajectory are represented, with different colors,
in the space of the three lowest-energy modes. The trajectory started from
the closed structure is also shown for comparison. For clarity, two bidimen-
sional projections of the scatter plot are provided in panel b. The discrete
character of the clouds associated to each substates is readily perceivable, as
wells as their preferential elongation along the apo/holo difference vectors.
This anisotropy is particularly apparent for the trajectory as a whole.

It is important to notice that, despite the good orientation of the princi-
pal dynamical directions along the apo/holo change, the succession of visited
substates does not proceed in a directed manner in that no constant progres-
sion for e.g. the open to the closed conformation is seen. As a consequence
of the non-directed character of the dynamics it is expected that the full in-
terconversion occurs over much longer timescales than those accessed here,
consistently with experimental indications [55].

3.7 Consensus Dynamical Space

As a final stage of our analysis we proceeded to identifying the consensus set
of collective modes that best capture the common structural fluctuations of
AKE encountered in the two 50ns-long trajectories. The essential dynamics
analysis applied to the two merged trajectories is not adequate to this pur-
pose as it is not designed to extract the dynamical features that are shared
by the two separate trajectories.

Expression (5.4) provides an average measure of accord of two essential
dynamical spaces, as the top 10 eigenvectors of C' are treated on equal footing
(degeneracy). This implies that the same value of RMSIP may be attained
with different detailed levels of accord of two spaces.

To characterize with a finer resolution the consistency of two sets of
modes we introduce a variational scheme that identifies their maximally-
consistent (or inconsistent) subspaces. The scheme, explained in detail in
the Appendix A, is used to redefine two new bases {v'} = {0}, 1, ..., 7}
and {w'} = {},dh, ..., W)} for the same linear spaces described by v and
w. The redefined bases, {v'} and {w'}, possess two notable properties: (i)
a basis vector of one set is orthogonal to all basis elements of the other set
except the one with the same index and (ii) the index provides a natural or-
dering of the basis vectors in terms of decreasing mutual consistency. Notice
that the RMSIP of the new basis vectors is the same of the original one.

The method provides an optimal redefinition of the basis vectors in the
two sets of modes which are returned in order of decreasing mutual con-
sistency. We stress that the new bases span the same linear spaces of the
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Figure 3.11: (a) Representation of the “open” and “closed” dynamical tra-
jectories in the space of the three lowest-energy modes of the open trajectory.
Each point represents an MD configuration and its co-ordinates are obtained
by projecting the instantaneous deformation vector from the average struc-
ture of the open trajectory onto the three modes. White points are used
to represent the closed trajectory, while different colors are used to distin-
guish the substates of the “open” trajectory. The open and closed crystal
structures are represented as large spheres. Two bi-dimensional projections
(mode 1 vs. mode 2 and mode 1 vs. mode 3) of the three-dimensional
scatter plot are provided in panel (b)

original sets so that the original RMSIP, equal to 0.786, is unaltered by the
redefinition.
It was found that the 10 lowest-energy modes of the two trajectories
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share, with almost perfect overlap, a three-dimensional subspace. In fact,
the scalar products of the fist, second and third pair of redefined modes have
scalar products equal to 0.972, 0.951 and 0.925, respectively.

a)

Figure 3.12: The three consensus low-energy modes of the open and closed
trajectories are shown respectively with black, gray and white arrows super-
posed to the average structure of the (a) open and (b) closed trajectories.

For each trajectory, this three-dimensional consensus space is sufficient
to account for more than (i) 57% of the total mean square fluctuations, (ii)
50 % of the intra-substate MSF and (iii) 60 % of the inter-substate MSF. It
also captures (iv) 77 % of the norm of the apo/holo difference vector.

The consensus modes thus constitute an extremely limited set of gener-
alized coordinates that account for the system internal dynamics over a wide
range of time scales (encompassing both intra and inter-substates fluctua-
tions) and indicates their relatedness to the major functional conformational
change between the open and closed structures.

From a practical point of view the findings also suggest the use of the
consensus collective modes as natural candidates for profiling the free energy
of the system in terms of a reduced number of generalized variables.
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3.8 Summary

The predisposition of adenylate kinase to undergo major, functionally-oriented,
conformational changes was investigated through extensive molecular dy-
namics simulations of the free enzyme. Available crystal structures of AKE
were taken as starting points for two MD simulations covering a total time-
span of 100ns. The analysis of the data collected over this previously-
unaccessed MD time-scale has exposed interesting functionally-oriented char-
acteristics of the internal dynamics of the enzyme and of the organization
of its free energy landscape.

During the free dynamical evolution, the enzyme populates distinct con-
formational substates with residence times of 5-10 ns. The ensemble of
different conformers is structurally heterogeneous (with inter-substates dif-
ferences up to 12 A RMSD), reflecting the pronounced mobility of the AMP-
binding and Lid subdomains.

We have carried out a covariance analysis of structural fluctuations
recorded over a temporal range wide enough to cover both the collective
small scale fluctuations within the substates and the larger-scale ones as-
sociated to inter-substate transitions. Strikingly, irrespective of the probed
time-scale, all intra- and inter-substate essential dynamical spaces turned
out to be highly consistent. The functional relevance of this consistency,
which does not originate from unspecific properties of overall amino acid
mobility, is underscored by the high overlap that the essential dynamical
spaces have with the deformation vector connecting the available apo/holo
crystal structures.

The analysis indicates that the free enzyme can be driven through var-
ious conformational substates bridging the inactive and catalytically po-
tent states through the thermal excitation of a limited number of collective
modes. These results extend our consideration on GBI, elucidating a func-
tionally oriented nature of the self-similar organization of the free energy
landscape.

This observation supports recent suggestion of Aden et al.[1] that functionally-
oriented conformational fluctuations are innate properties of the free (apo)
Adk. In fact, the consistency of the salient features of the enzyme’s internal
dynamics within and across substates leads to speculate about the fact that
these property may have been promoted by evolutionary pressure.
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As anticipated, for an increasing number of proteins end enzymes it
has been shown, by means of both experiments and computation, that the
internal dynamics influences and assists the biological functionality. For
the two specific proteins considered in the previous chapters, namely Im-
munoglobulin binding domain of protein G and Adenylate Kinase, it has
been shown that they are endowed with an “innate” ability to sustain spe-
cific (and arguably functionally-oriented) large-scale movements. The most
vivid indication of this dynamical predisposition is conveyed by the fact that
a low-dimensional space of collective variables is sufficient to account for the
essential spaces of the discrete visited substates and of the difference vec-
tors between them. The innate functionally-oriented movements, which can
nowadays be probed by single molecules techniques, are aptly captured also
by simplified coarse-grained models (elastic networks) which are oblivious
to the detailed chemical composition of the protein as they are based on a
simplified representation of a protein’s native state. This provides a direct
indication that salient features of proteins’ internal dynamics reflect funda-
mental properties of proteins’ structural architecture such as the secondary
and tertiary organization.

The elucidation of the link between proteins structure and their func-
tional large scale movements can be viewed as a facet of the traditional
tripartite organization of proteins’ characterization in terms of: sequence
— structure — function [18, 33, 41, 88]. A number of key questions con-
cerning the second step of this ladder emerge naturally after considering the
well-characterized connection between sequence and structure [49, 77, 85,
121, 110, 51]. Arguably, the best-known general result regards the fact that
proteins whose similarity in chemical composition is above 30% adopt the
same fold [6, 32, 107]. For such homologous proteins, the common amino
acids (identified by sequence alignment), are expected to be highly super-
imposable by a suitable roto-translation of the molecules. The availability
of structural alignment algorithms [62, 64] have added notable elements to
the picture by demonstrating that the same fold can be adopted by pro-
teins with unrelated chemical composition. Typically this is interpreted in
terms of convergent evolution of proteins structure [29, 85, 5]. The ob-
servations prompt analogous questions concerning the connection between
structure and functionally oriented dynamics. Namely: to what extent does
structural relatedness reverberate in related concerted movements? Can
analogous patterns of concerted movements be sustained by proteins with
substantially different overall architecture?

These questions are at the heart of the ongoing effort to establish a
general scheme for aligning proteins according to dynamics-based criteria
([26, 22, 25, 130]). The mentioned issues have provided the motivation for
two investigations that fall within the scope of the present thesis and are
the object of the following two chapters.

We have first considered the connection between structure and dynam-
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ics in a superfamily of calcium binding proteins, called EF-hand proteins
[105, 16]. Proteins belonging to this superfamily share a common structural
motif, the so called EF-hand domain, composed by four helices arranged in a
particular tertiary way. This is the most common motif for binding calcium
and its internal structural rearrangement upon calcium binding is responsi-
ble for triggering the calcium signaling cascade [105]. Members of the super-
family, though having in common the EF-Hand domain, are spread across
several different functional families and differ for the overall tertiary and
quaternary organization . Notably, even the details of the internal arrange-
ment of the local motif are subject to a certain degree of variability. These
facts have stimulated a number of previous investigations, aimed at clarify-
ing the connection between the structural variability of the domain and the
functional role of the protein the domain belongs to [105, 129, 16, 9, 52].
However the presence of different functional families does not to reflect in
a clear way in any naturally emerging groups where detailed characteriza-
tion of the structural variability is attempted [9]. Nevertheless, the specific
internal arrangement and flexibility of the EF-hand domains, which is cru-
cial for biological functionality, is expected to be different across the various
biological families [105, 21].

We have addressed these aspects by performing an analysis of the es-
sential dynamics in the space of the generalized coordinates of the angles
among the four helices constituting the EF-hand domains for a data-set of
more than 150 domains.

The use of this set of generalized coordinates, common to all proteins
of the EF-hand superfamily, and already used in structural classification
studies [9], has allowed us to compare in a well-defined way their internal
dynamics. We have investigated the relation between structural and dy-
namical similarity, and established a connection between the dynamical and
functional grouping. Interesting correlations emerges between the essen-
tial dynamics of the domains and their functional family classification while
only a loose relationship exists between the degree of structural and dy-
namical similarity. The non-simple connection between local structural and
dynamical correspondence is presumably ascribable both to the detailed lo-
cal structural differences of the domains and to the influence of the different
global arrangements of the proteins.

This stimulated a more general question regarding how a structural cor-
respondence among the regions of two proteins reverberates on the accord of
their essential motions. Partial structural alignment methods allow to high-
light significant local correspondences also in proteins having different global
organization[61, 63, 64]. The identification of a common super-imposable
core can be due either to sequence homology or to convergent evolution of
the structures. In both cases the problem of how the evolutive selection of
a specific part of sequence reverberates in specific structural arrangement
of that part of the structure is not trivial as the folding process usually in-
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volves the protein as a whole. Analogously, as the spatial correspondence
highlighted by structural alignment pertains only to a common structural
core ( the remaining part of the two proteins can differ both for length and
spatial arrangement ) it is not obvious what degree of dynamical accord
should be expected over the common core. In fact, the motion of these
super-imposable core regions will be influenced also by the remaining part
of the molecule. As described in the case of EF-proteins, this reflects in
a non-simple connection between local structural similarity and dynamical
consistency.

Besides the case of the EF-Hand domains, the above questions are inves-
tigated also for two members of the protease superfamily[11], carboxypep-
tidase A[76] and pyroglutamyl peptidase[120]. Though the overall archi-
tecture of the two biomolecules is analogous, the differences in length and
number of secondary elements is sufficiently large to require the use of a
non-subjective and quantitative scheme to detect and quantify the dynami-
cal correspondences. Moreover the comparison of their large scale dynamics
is of particular interest given that the two enzymes rely on different catalytic
chemistries and belong to different protease clans[11]. Hence, the possibility
to establish a consistency in their large scale fluctuation dynamics provides
valuable insight into general aspects of the enzymes’s structural modulations
that accompany the proteolysis reaction.
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Chapter 4

EF-Hand Superfamily - A
Playground for
Dynamics-Based Comparison

In this chapter we shall report on the internal dynamics of members of a su-
perfamily of proteins primarily involved in the calcium signaling pathways.
Calcium is known to be a universal regulator of many cellular processes,
from duplication to apoptosis [40, 23, 24]. It interacts with a large number
of proteins having different biological function. Yet the repertoire of con-
figurations of calcium binding sites is limited [105, 16]. In fact calcium’s
regulatory role relies on the transduction of the signals carried out by a
number of calcium binding proteins. Most of the latter share a common
building block, the EF-Hand motif, composed by two helices connected by a
short linker. The name of the motif originates from the classification of the
structural elements in parvalbumin, where it was first discovered [84]. Par-
valbumin is composed by three such motifs, and in particular the geometry
of the last two helices in the chain, helices E and F, whose reciprocal ar-
rangement recall the position of forefinger and thumb in our hand (Fig. 4.1),
was taken as a reference for representing this kind of motifs. The peculiar
arrangement of the helices was later discovered to be highly recurrent, and is
arguably the most common pattern coordinating and binding calcium. For
example, more than 270 entries of the human genome database correspond
to EF-hand sequences [21].

The minimal functional unit, called EF-hand domain, is constituted by
a pair of these EF-hand motifs connected by a short linker and packed face
to face (Fig. 4.2) [52]. Each EF-hand domain is capable of binding two
calcium ions through specific interactions with conserved amino acids and
backbone carbonyl groups of the two loops. In spite of sharing virtually the
same structural topology and architecture [109], EF-hand domains display a
multiplicity of arrangements of the four helices, in three main architectures:
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Figure 4.1: The EF-hand motif is constituted by two helices connected by a
12 or 14 amino acid long interhelical loop whose highly conserved residues
are arranged in an optimal geometry for coordinating one calcium ion. The
geometry of the helix-loop-helix arrangement resembles our hand’s thumb
and forefinger.

antiparallel bundle, orthogonal bundle and chair bundle. Their cartoon
representations are shown in Figure 4.3, adapted from ref [9]. The variability
of the internal arrangement is believed to be crucial for the diversification
of the signal transduction. In fact, upon calcium binding, EF-hand domains
undergo different degrees of conformational changes, related to the variety
of different functions of the proteins they belong to. The differences in the
dynamical response are in turn expected to reflect specific elastic properties
of the domain [105, 129, 16, 9, 52].

The large conformational diversity and variety of responses to calcium
binding of EF-hand domains has posed major difficulties for their grouping
and classification in terms of structural features. Recent advances in simpli-
fying the structural representation of EF-hand domains have been made by
Babini et al. [9], who recently proposed a description of the domains based
on the six angles formed by the 4 helices. It was found that only two linear
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Figure 4.2: (a) A schematic representation of the EF-hand domain. It is
composed by two helix-loop-helix motifs, connected by a linker. The loops
of the two EF-hand motifs individuates the two binding sites for calcium.
Panel (b) portrays a typical three dimensional arrangement of the domain.

combinations of the angles suffice to capture most of the observed struc-
tural variations, and thus provide a concise and quantitative framework for
representing the structural diversity. Yet, owing to the almost continuous
repertoire of structures, no simple unsupervised criterion emerged for par-
titioning the proteins in neatly-separated groups corresponding to the func-
tional families. Following the definition ref [9], we will consider EF-Hand
domains grouped in “functional families” according to the specific protein
family they belong to, the specific terminus of location, and the metal ion
or ligand binding state. In figure 4.3, adapted from ref [9], protein domains
are represented as points whose coordinates are the position on the first
2 principal components of the six inter-helix angles, hereafter indicated as
PC1 and PC2. The domains are colored according to the functional family
of appartenence by a knowledge-based assignment.

In collaboration with F. Capozzi and C. Luchinat, two of the authors of
the study of ref [9], we have undertaken an investigation of the unifying traits
within the EF-hand superfamily by examining and comparing the directions
of the concerted interhelical movements that the different EF-hand domains
can sustain upon thermal excitation. The fact that the domain is shared
among such a large number of proteins, sets a natural spatial reference frame
for comparing the internal fluctuation and represents an obvious starting
point for our investigations of relations between structural and dynamical
features.

To characterize the large-scale helical movements in distinct EF-hand do-
mains we followed a strategy articulated over three main steps: (i) creation
of a database of viable EF-hand domains selected among all non-redundant
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Figure 4.3: EF-hand domains are represented as points in the first 2 principal
components of the six inter helix angles. Points are colored according to their
functional family. Three idealized structures representing extreme arrange-
ments of the helices are depicted as schematic cartoons. Figure adapted
from ref [9]

available structures; (ii) use of suitable mesoscopic models for systematic
identification of the essential dynamics of each selected EF- hand domains;
(iii) detection of statistically significant similarities of the concerted inter-
helical movements in distinct EF-hand domains and discussion of the con-
nection with the structural similarities.

4.1 Selection of the Dataset for the Analysis

We have considered a selection of 308 EF-hand domains analyzed in the
structural comparative study by Babini et al. [9]. This dataset was originally
compiled from a comprehensive set of X-ray or NMR resolved structures
ensuring the widest representation of the different biological families and
the various possible structural/chemical contexts of EF-hand domains. The
dataset included both apo and holo forms, both N-terminal and C-terminal
domains, and each of them both in the presence or absence of bound ligands.
This database was sieved for this study to remove entries (i) with incomplete
or ambiguous (alternate locations for CA atoms) structural information or
containing non-standard amino acids, (ii) where any of the EF-hand domain
helices was too short to reliably determine its axial orientation (see below)
for the purposes of the present calculations or (iii) where the number of
heavy atoms was too large (greater than 2000) for an efficient numerical
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calculation of the model interhelical dynamics. Accordingly, we did not
consider PDB entries with missing residues or with helices spanning less
than six amino acids (helices defined according to ref. [9]). This selection
procedure singled out 185 EF- hand domains.

4.2 Essential Dynamics in the Interhelical Angle
Space

To describe essential dynamics of proteins belonging to the selected dataset,
we will make use of an elastic network model akin the one of Tirion [122],
discussed in the introduction to Part 1. Details of both the internal struc-
tural arrangement of the domain and of the interaction with the rest of the
protein and the bound metal ion are expected to influence the internal dy-
namics of the EF-hand domains. For this reason, to compute the essential
dynamics of the domains, we have specifically devised a scheme keeping into
account both aspects. We have decided to maintain an atomistic descrip-
tion of the systems and to include into the model also other regions of the
protein (if present), not limiting to the truncated domain. For technical
reasons related to computational efficiency, we restrict our considerations to
the full protein chain comprising the EF-hand domain of interest. Therefore
we discarded the interaction with the other chains in multimeric proteins.
Accordingly, our model free energy will gather contributions from the pair-
wise interactions among all heavy atoms, within a cutoff distance of 5A
belonging to the chain containing the EF-Hand domain. All pairwise inter-
action are controlled by the same coupling constant, except those involving
calcium atoms, that are enhanced by a factor of 5. This aims at capturing
in a simplified manner the strong electrostatic interactions between calcium
and the protein atoms coordinating it.

It is worth to specify that, as expected for this kind of models, the pre-
cise value of the harmonic coupling constant does not particularly affect the
low energy modes. For example, upon changing the enhancement factor of
the interaction between protein heavy atoms and metal ions from 2 to 5, the
eigenvalues of the interaction matrix associated to the slowest mode of pro-
tein 1qlk change by only 3%. The change approaches 5% if the enhancement
factor is set to 20 or more.

The adopted elastic network model combines the reliability in capturing
direction of the concerted low-energy protein internal motions [122, 10, 59,
8, 94, 42|, with the advantage of being computationally less intensive than
molecular dynamics simulations. This makes it a suitable tool for investi-
gating the internal dynamics of a large number of proteins. The traditional
description of the slow modes in the space of atomic displacements is not
immediately suited for comparing global movements in different EF-hand
domains. Owing to the differences in length, domain organization, cofactors
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etc. it is not possible, nor desirable, to establish a pervasive one-to-one cor-
respondence of the displacements of all heavy atoms in different proteins.
A natural way to circumvent this difficulty is to consider the large-scale
movements of the four helices composing the domains as described by the
fluctuation of the six angles formed by the helices axes. In fact, the space
of the angle among the helices provides a well-defined common framework
for dynamical comparison. Moreover, the fact that this set of generalized
degrees of freedom has already been used for structural characterizations
of these proteins, allows us to investigate in a precise manner the connec-
tion between structural arrangement and dynamical behavior, comparing
structural and dynamical similarities.

Starting from the description of the free energy as quadratic in the dis-
placement of the atomic coordinates x; o, = 07; 4, We need to extract infor-
mation on the lowest energy direction of motion in the space of the angles
among the helices composing the EF-Hand domain.

4.2.1 Thermodynamical Integration

Before addressing the specific problem, we recall a general result concerning
dimensional reduction and Gaussian integrals, already discussed and used
in the contest of proteins in several studies [20, 60, 98]. We start assuming
the free energy to be quadratic in the set of system coordinates 7. Let
us consider a reduced set of coordinates ¢ obtained by a linear orthogonal
transformation of a subset &1 of the original coordinates while the orthogonal
subset To has been eliminated by thermodynamical integration. It can be
easily shown that a quadratic character of the free energy is maintained for
the coordinate 7.

More precisely, suppose that the original degrees of freedom & can be
subdivided in two independent sets ¥7; and 5, and suppose that the free
energy of the system in the original degrees of freedom & can be expressed
as

F(#) =& Fi = (fl,@)T< V]’;;T g > ( % > (4.1)

where F'; is the matrix that governs the interaction between coordinates

71, Fo between 7o and W is the matrix containing the coupling between

71 and @3. The free energy expressed as a function of a set of coordinates

i/ obtained from an orthogonal transformation A of the coordinates 1, can
be expressed as

F(ij=Ad) =7 Fyg=3" (Fy - Wi F,'W,)j (4.2)

where we have indicated F, = AF;A~! and W, = WA~! (See Ap-
pendix B for further details).
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The low energy modes of the system within this new set of coordinates
1/ are obtained identifying the eigenvectors corresponding to the lowest part
of the spectrum of the matrix effective interaction matrix f‘y, that contains
the contribution due to the presence of the integrated coordinates Zs.

4.2.2 Interhelical-angles Dynamics

In our case, the original degrees of freedom controlling the quadratic free-
energy of the protein containing the EF-hand domain of interest are the
displacements of the heavy atoms from their equilibrium positions. The
reduced degrees of freedom are, instead, the deviations from the average of
the six interhelical angles formed by any distinct pair of the four EF-hand
helical axes.

To project the high-dimensional free-energy in the space of angles among
the helices, we need first to build an orthogonal transformation to a set of
coordinates including the displacements of the interhelical angles, and then
performing a thermodynamic integration over all other degrees of freedom.

As first step we have calculated the orientation of the axes of the four
helices. A helix axis is taken as the normalized distance vector between the
residues at the end and those at the beginning of the helix. A robust and
simple scheme is to express the axis as a weighted linear combination of the
position of the Ca in the helix :

_ > Vz;f;
=it (4.3)
15 vi7i?

where [ labels the index of the helix and ¢ runs over the index of Ca’s
belonging to the " helix. A natural choice for the weights is given by
setting v/ = +1[—1] for the 4 residues of the C [N] helical terminus, and
zero otherwise.

Despite the simplicity of definition 4.3, the interhelical-angles are typ-
ically in accord within 5% with those observed with more sophisticated
method such as the one used in the structural study of Babini et al [9]. A
further motivation for adopting definition 4.3 is that it straightforwardly
lends to calculating the deviation of the angles upon perturbative displace-
ments of the atoms coordinates. This allows a simple derivation for the
transformation matrix A of eqn 4.2.

We shall denote with 6;,,, = arccos(@;-d,,) the angle formed by the [th and
mth helices. The relative orientation of the four helices will be summarised
with the vector §having components: 0= {012,013, 614, 023,024,034 }.

To calculate how the angle between two helical axes depends perturba-
tively on the displacements of the atoms coordinates we use an expansion
to the first order of the arccosine and obtain.
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It should be noted that a nonlinear relationship exists between the six
interhelical angles:

A? + D*E® +2ADE — BC =0 (4.7)
where
A = cosbi3cosbi4 — cos b cos a3 cos iy — cos b1 cos B3 cos Oag + cos O3 cos O
B = (0052 019 — 2 cos 613 cos B3 cos B9 + cos? 013 + cos? Oo3 — 1)
C = (0052 619 — 2cos A14 cos Bay cos Byg + cos? 14 + cos? By — 1)
D = cos’fp—1
E = cosbsy

This reflects at a perturbative level in a linear relationship among the
six angular deviations (a consequence of the three-dimensional embedding
of the four helical axis). This prevents from adopting a simple orthogonal
transformation involving all six equations 4.4.

However we need to maintain the description in terms of six angles, both
for consistency with previously published results on the structural charac-
terization of the domains, and because there is no natural way of select-
ing 5 independent angles out of the six. We need to include explicitly the
constraint accounting for the relationship among them. This difficulty is
overcome by (i) calculating the reduced free-energy in terms of 5 of the 6
displacement of the angles, and (ii) then extending it to the six-dimensional
parameter space by adding a very large free-energy penalty for deviations
not satisfying the linearised constraint of equation 4.7.

We will thus retain 5 of the 6 relationship expressed by the equations
4.4. We complement the set of relations including additional linear rela-
tionships among the coordinate displacements. These relationships can be
conveniently chosen among the identity relationship among heavy atoms dis-
placements. 3N-5 such relationships must be used, making sure that not all
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equalities involving Ca atoms defining helical axes are used. The complete
3N set of relations provides a linear transformation from the starting set of
coordinates & to a new set of coordinates Y = AZ whose first 5 coordinates
are the displacement of 5 of the 6 interhelical angles. We then operate an
integration on all but the first 5 (angular) degree of freedom. By doing so
it is obtained a free-energy that is quadratic in terms of the displacements
of 5 of the 6 interhelical angles.

As mentioned above the most convenient way to recover the information
in the sixth dimension is to embed the 5 dimensional space described by
the matrix Fy in the more natural six-dimensional interhelical angle space,
enforcing numerically the constraint among displacement of the angles, due
to the relationship among the helices axis. The five lowest energy modes
in this six dimensional interhelical angle space represents the modes of re-
laxations in decreasing order of amplitude of fluctuations. They span the
vectorial space orthogonal to the constraint of eqn 4.7.

To summarize, starting from computing the interaction matrix in the
space of the Cartesian coordinates of all atoms, after applying a linear trans-
formation plus an integration of degrees of freedom we obtain a description
of the independent relaxation modes in the space of the six angles between
the helices, including the relationship between the angle variation as a con-
straint enforced in the calculation of the essential modes. The sixth mode,
representing the geometrical constraint among the angles displacement, does
not contribute to the angle fluctuations.

The previous equation allows one to express the fluctuations in thermal
equilibrium of any pair of angles in terms of the corresponding element of
the inverse of Fy:

< 00:00; > Fy ! (4.8)

Also in this case the independent modes of decay of thermal excitations
are provided by the six eigenvectors of the Fy matrix, v,...,0 (with asso-
ciated eigenvalues,\1,...\g). As a consequence of 4.8 the fluctuations along
each of the six principal directions will be proportional to the inverse of
the corresponding eigenvalues. This fact is conveniently exploited to estab-
lish the relative contribution, w;, of the ith slow mode to the overall square
fluctuation dynamics:

At
wi= =g 3 (4.9)
> i=17
Due to the progressive decrease of the weight of the slow modes with
their ranking, our results and discussion will be restricted to the top two

slow modes which are indeed sufficient to account for most of the angular
fluctuations.
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4.2.3 Application to the Dataset

For each member of the comprehensive structural selection of 185 EF-hand
domains, we identified the concerted interhelical angular low energy modes
that occur in thermal equilibrium and established their relative contribution
to the overall angular fluctuation dynamics. In particular, for each consid-
ered EF-hand domain we calculated the fraction of angular fluctuation dy-
namics captured by the first slow mode alone and by the combination of the
first and second slow modes. The distribution of such fractional dynamical
contributions over the whole dataset is shown in Figure 4.4. It is seen that
the first mode alone (Figure 4.4a) is typically sufficient to cover 38% of the
total angular fluctuations. As illustrated by Figure 4.4b, the inclusion of
the second mode raises the fraction of captured angular fluctuations whose
average is w = 0.671 with dispersion o,, = 0.055. Lower fractional values of
the total fluctuation reflect a rather flat free energy landscape where it is
hence difficult to have a clear-cut ranking of the different essential dynam-
ical spaces. To avoid these ambiguous situations we omitted from further
analysis the proteins in the leftmost tail of the distribution of Figure 4.4b.
More precisely, we discarded the 31 entries whose weight of the first two
modes was smaller than @ — g,,. In the following we shall thus exclusively
consider the 154 proteins that result from this filtering of the original data
set.

The complete dataset of the analyzed domains, along with the correspond-
ing information on definition of the helices and the fraction of fluctuation
captured by the first two modes has been deposited as Supplementary In-
formation to Journal of Proteome Research and is available through the
website http://pubs.acs.org/journals/jprobs/index.html
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Figure 4.4: Normalized distribution of the fraction of angular fluctuations
captured by the first mode (a) and by the first plus second modes (b).
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4.3 Comparison of interhelical angles and their
fluctuation dynamics in different proteins.

Two different notions of distances will be used to compare the reference
(crystallographic or NMR) interhelical angles and their slow modes in all
distinct pairs of proteins (distinguished by the superscript a or b). The
structural (static) distance used to capture the similar relative orientation
of the four EF-hand domain helical axes is naturally defined as the Euclidian
distance in the space of angular vectors:

d*'" e (a, b) = (4.10)

The RMSIP introduced introduced in Chapter 2 (see eqn 5.4) has been
used to define the (non-euclidean) “dynamical distance” between two sets
of essential angular modes :

1< .
AW (a,b) =1 — EZW-%@P (4.11)
=1

where we indicate with 7, | Ujb ] the ith [jth] slowest mode of protein a [b].

As in the cases discussed in the previous chapters we have complemented
the pairwise distances in dynamical space with a control on the likelihood
that they could have arisen by chance (i.e. in the absence of any significant
correlation between the slow modes of two proteins). This was accomplished
by comparing the observed distance values against a control distance distri-
bution expected for sets of orthonormalized vectors randomly picked in the
six-dimensional space. More precisely, we generate random basis sets for the
six-dimensional space by repeatedly applying the Graham-Schmidt orthog-
onalization procedure to a succession of unit vector uniformly picked on the
six dimensional unit sphere following the procedure outlined in Allen and
Tildesley [2]. The resulting distribution of d;ilyn(a, b) values thus provided
the required statistical reference. It should be noted that other criteria for
choosing the reference distribution could be adopted, possibly also account-
ing for the non-linear relationship that ties the six interhelical angles. The
one adopted here was chosen for its transparency and simplicity of applica-
tion.

Our first aim is to establish the existence of statistically-significant analo-
gies of angular fluctuations in distinct EF-hand domains and, if so, cluster
the dataset into groups with similar dynamics. We hence started by mea-
suring the dynamical distances of the first slow mode for all distinct pairs of
proteins. The resulting distribution of 11781 pairwise distances is shown in
Figure 4.5a. The distribution shows an increase for distance values smaller
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than 0.1. This distribution should be compared with the reference distri-
bution of distance values expected from random choices of the slow modes
(dotted curve in Figure 4.5a). It is immediately apparent that the experi-
mental distribution has only a small overlap with the random distribution,
thus indicating the existence of statistically significant correlations among
the slowest angular modes of distinct EF-hand domains. The experimental
distribution, however, lacks the bimodal signature that should accompany a
clear clustering of the domains in distinct groups of comparable population
and diameter”. In the latter case, in fact, the cumulative distribution should
present a peak at small distances arising from intra-cluster pairwise com-
parisons, and one at larger distances corresponding to the most probable
inter-cluster distance.

Distribution of distances d,;%" Distribution of distances d,®"
T 17 T 17 T 717

Figure 4.5: Normalized distributions of the dynamical distance dﬁyn(a, b)
for n=1 (a) and n=2 (b) (solid lines), compared with the random reference
distributions (dotted line).

Conversely, a bimodal character is clearly visible when the angular dy-
namical distance is calculated over both the first and second slow mode (n =
2 in Equation 4.11), see Figure 4.5b. Again, the increase at d2’" (a, b) values
smaller than 0.1, which measures the dynamical consistency (radius) within
the dominant clusters, has a good statistical significance, as it does not
appreciably overlap with the reference distribution. The good consistency
of the fluctuation dynamics within the clusters is further accompanied by
the separation of the dominant clusters, denoted by the peak at d‘,ilyn ~ 0.3
(which captures the typical dynamical distance of members of distinct dom-
inant clusters). In conclusion, the distribution obtained including two slow
modes indeed indicates the existence of dynamical clusters.

4.4 Dynamics-based Grouping of Functional Fam-
ilies

The inspection of the distribution of dynamical distances for n = 2 ex-
hibits the distinctive hallmark of the presence of clusters with very similar



4.4 Dynamics-based Grouping of Functional Families 73

interhelical angle fluctuations. Of the several available clustering schemes
we adopted the standard K-medoids algorithm[74] (suitable also for non-
Euclidean metrics), already discussed briefly in Chapter 3. For a given
number of desired clusters, K, the algorithm optimizes the choice of clus-
ter representatives and cluster members so that the summed distance of
each protein from its cluster representative is the smallest possible. The
dataset clustering was initially carried out for K from 2 to 15. Inspection
of the resulting clusters and the matrix of pairwise distances of inter-cluster
and intra- cluster members revealed that a balanced subdivision could be
achieved for K = 4. Larger values of K lead to a small inter-cluster pairwise
distance compared to the natural cluster separation indicated by the over-
all distribution of pairwise distances. On the other hand, smaller values of
K yielded excessively large intracluster pairwise distances compared to the
natural cluster “radius”, again indicated by the overall distance distribution.
For the subdivision in K=4 groups sizeable populations and typical inter-
and intra-cluster distances consistent with the features of the distribution
of Figure 4.5 was obtained. The number of members in the four clusters
is respectively, 66 (CLO), 48 (CL1), 21 (CL2) and 19 (CL3). The four rep-
resentatives are: CLO: the holo-form of the rat S100B protein (1qlk-A0);
CL1: the holo-form of the C-terminal human CaM bound to a target pep-
tide (Inwd_A2); CL2: the holo-form of the N-terminal human nucleobindin
1 (1snl_A2); and CL3: the apo-form of the C-terminal small subunit of rat
calpain (1aj5_A2). The quality of the clustering can be visually appreciated
through the density plot of Figure 4.6.

The figure portrays a color-coded distance matrix of all pairs of domains,
which were re-indexed so that the first 66 entries are the members of the
first cluster, the subsequent 48 belong to the second cluster, etc. A detailed
analysis of the distances of each entry from the four cluster representatives
indicates that the dynamical similarity is high across members of the two
dominant clusters and less marked for the remaining two which, indeed,
contain some members that are close to CLO. Nevertheless, the marked
block nature of the matrix suggests that the distinct character of the clusters
should persist upon addition of EF-hand domains unrelated to the ones used
here. We have verified this expectation by repeatedly reducing the data set
by 20% (that is by leaving out 31 members) and identifying the four cluster
representatives. All members of the non-reduced set (i.e. including entries
not used for the identification of the representatives) were then assigned to
the cluster of the nearest representative. The resulting clusters were then
compared with the reference ones (CL0, CL1 etc.). On average, the random
data set reduction results in only 16 members out of 154 to be assigned
to a cluster different from the reference one. This indicates that (i) the
partitioning in four groups is not labile even when the number of removed
items compares with the combined population of the two smallest clusters
and (ii) newly-available entries unrelated to those used for clustering can be
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Figure 4.6: Density plot of pairwise dynamical distances. Proteins have
been grouped according the subdivision in four clusters (CLO,, CL3).

reliably attached to existing clusters using the criterion of minimal dynami-
cal distance to the nearest representative. The partitioning of all examined
EF-hand domains into the four CLO-CL3 clusters, along with the dynamical
distance of each member of the clusters from its representatives, is avail-
able as Supplementary Information on the website of Journal of Proteome
Research through the link http://pubs.acs.org/journals/jprobs/index.html .

4.4.1 Functional and Dynamical Groups

A significant correspondence exists between each functional family and the
dynamics of its domain. It appears that each functional family has its own
characteristic movements, describable by a pair of slow modes which are
shared by other members of the same functional family.

In Figure 4.7, the dynamical distances between domains belonging to
the 12 most populated families are reported in a color-coded matrix. Visual
inspection of this figure confirms that the dynamical distances within each
functional family are on average very small. It also appears that EF-hand
domains containing a bound peptide show a larger variability of behavior,
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Figure 4.7: Density plot of pairwise dynamical distances. Only members
of the most populated functional families have been represented. Keys to
the families: 1) calmodulin N 2Ca PO0; 2) calmodulin-N 2Ca P2; 3) Myosin
regulatory light chain C1 Mg 1 P2; 4) calmodulin C2 Ca P0; 5) calmodulin
C 2Ca P2; 6) myosin regulatory light chain C0 Ca P2; 7) myosin essential
light chain C 0Ca P2; 8) S100 N2 Ca PO0; 9) calpain small subunit C 2Ca
p0; 10) skeletal troponin C N 0Ca P0; 11) S100 N 0 Ca P0; 12) calmodulin
C 0CA PO. For further details see Table in Appendix C

consistent with the structural diversity of the EF-hand domains complexed
with various ligands. We should however recall that our model takes into
account only interactions amog atoms within the protein chain that com-
prises the EF-Hand domain. Specific considerations on the motion in the
presence of the ligands are out of the scope of the model used. The following
analysis will thus concentrate on EF-hand domains free of bound ligands.
The relative information is summarized in Table 1.

In summary: the apo-forms of the N-terminal domains, or of single-
domain proteins, are characterized by essential modes clusterized in CLO,
CL2 and CL3. CLO comprises some S100 proteins, most of the skeletal tro-
ponins C (skTpCs), the penta-EF-hand (PEF) proteins, including calpains,
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Table 4.1: Structure-dynamics clusterization of functional domains within
the EF-hand superfamily; Legend:

@ : N-term, N-terminal domain/motif pair; M-pair, middle motif pair; C-
term, C-terminal domain/motif pair

b . A: antiparallel bundle; O: orthogonal bundle; C: chair bundle

¢ : The number on the right indicates which motif is occupied by Ca within
the EF-hand pair. EPS15 has a calcium ion in either motif 1 or motif 2.

Protein Domain® APO Struct? CL 1Ca® Struct CL 2Ca Struct CL
CaM N-term 0Ca A 3 2Ca O 1
C-term 0Ca A/C 2 2Ca (@) 1
skTpC N-term 0Ca A 0/3 2Ca O 1
C-term 2Ca O 1
MELC N-term 0Ca A 3
C-term 0Ca C 2
Recoverin N-term 0Ca A 3 1Ca2 O 0
C-term 1Cal O 0
Neurocalcin D N-term 1Ca2 O 0
C-term 2Ca O 0
Neuronal CS N-term 1Ca2 A 1
C-term
cTpC N-term 1Ca2 A 0
C-term
Calcineurin B-like N-term 2Ca O 0
C-term 1Ca2 O 0 2Ca O 0
Ca Vector Prot N-term 0Ca A 2
C-term
KchiP N-term 0Ca O 0
C-term 2Ca O 1
EhCaBP N-term 2Ca A 2
C-term
Calpain Small N-term 0Ca A 0 2Ca A 0
C-term 0Ca A 3 2Ca A 3
Sorcin N-term 0Ca A 0
C-term 0Ca A 0
Grancalcin N-term 0Ca A 0
C-term 0Ca 1Cal A 0
ProgCellDeath N-term 2Ca (] 0
C-term 0Ca A 0
Calbindin D28K N-term 1Cal O 0
M-pair 2Ca (@] 1
C-term 1Cal O 0
S100 0Ca A 0/2 2Ca A 0
Calbindin D9K 0Ca A 0 2Ca A 3
Nucleobindinl 2Ca C 2
EPS15 1CA1(2) A 0

and the KChIP. The remaining S100 proteins are grouped in CL2, while
CL3 collects CaM, MELC, recoverin and one skeletal troponin C. It is ap-
parent that there is no clear relationship of the partitioning between CLO,
CL2 and CL3 with the conformational state of the domains. All domains
are in the antiparallel bundle conformation, except KChIP which has an or-
thogonal bundle conformation despite being an apo- domain. This domain
falls in CLO, together with several other domains with clear antiparallel
bundle structure. The apo-forms of the C-terminal domains fall in CLO,
CL2 and CL3. CLO comprises all PEF protein domains but calpains, CL2
comprises CaM, MELC and calcium vector proteins, and CL3 comprises
calpains (small subunit). Domains binding only one calcium ion are all clus-
tered in CLO, independently of whether they are N- or C- terminal domains
or whether the calcium ion is bound in the first or the second loop of the
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domain. Finally, the di-calcium (or holo) forms may fall into any of the
four clusters. CLO comprises neurocalcin, calcineurin B, the dimeric S100
proteins, and the N-terminal domains of the PEF calpain (small subunit)
and programmed cell death protein; CL1 hosts N- and C- terminal domains
of CaM and skeletal troponin C, and the C-terminal domains of KchIP; CL2
contains only the single EF-hand domain of nucleobindinl, and CL3 con-
tains calbindin D9k and the C-terminal domain of the PEF calpain (small
subunit).

4.4.2 Representatives Dynamics

To help appreciating the differences in essential dynamics among the four dif-
ferent clusters, we have selected the representative domain for each of them
and visualized the first essential mode (EM1) direction in the form of arrows
applied to a cilinder representing the axes of each helices (Fig. 4.8). The
same can be done for the second essential mode (EM2). Animated motion
of the first two essential modes of the representatives have been deposited as
Supplementary Information to Journal of Proteome Research and are avail-
able through the website http://pubs.acs.org/journals/jprobs/index.html
Each couple of essential modes, EM1 and EM2, characterizing the essen-
tial dynamics of each representative, is describable by looking at the effect
of the movement on the interhelical angles. For example, a parallel, con-
sensus movement of two helices has a negligible effect on their interhelical
angle (e.g., H2-H4 in EM1 of the CLO representative), while a scissor-type,
anticorrelated movement has a large effect on their interhelical angle (e.g.,
H1-H3 in EM2 of the same CLO representative). Analogously, a stationary
helix determines an intermediate effect on the interhelical angle when the
other helix of the pair is fluctuating (e.g., HI-H2 in EM2 of the CLO rep-
resentative). The slowest modes of the four cluster representatives indicate
different mobility for the four helices. For example, in CL0O, EM2 shows
much wider fluctuations for H1 and H3 than for H2 and H4. A dissimilar
behavior of helical displacements is also observed in the other three clusters.
In CL1, EM1 shows H2 and H3 more displaceable than H1 and H4, and EM2
shows H3 and H4 more displaceable than H1 and H2. In CL2, EMI1 has a
practically immobile H2, and H3 is much less moveable than H1 and H4.
The last case of asymmetry in movements of the four helices is encountered
in EM2 of CL3, where H3 is the only helix being almost immobile. The de-
scription of the slow modes of all representatives is concluded by looking at
EM1 of CLO, EM2 of CL2, and EM1 of CL3, where all helices are capable of
large movements. However, a different combination of correlated and anti-
correlated fluctuations gives origin to three distinct pairs of modes. EM1 of
CLO has scissor-type displacements, mainly for H1-H2 and for H3-H4; EM2
of CL2 has the same type of displacement mainly for H1-H3 and for H2-H4;
finally, EM1 of CL3 has a scissor-type displacement mainly for H1-H3 and
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CL1: 1nwd_A2

Figure 4.8: The four helices H1-H4 are represented as ribbons harboring
colored cylinders. From H1 to H4, they are colored in red, yellow, green
and blue, respectively. The lowest energy mode is represented as arrows
describing the direction of motion of the helix.

H3-H4.

Overall, the pairs of slow modes characteristic of each cluster are sizeably
different from one another. It is therefore surprising that domains with
analogous structure (e.g. N- and C-terminal domains of apo CaM, Table 1)
are assigned to different clusters (CL3 and CL2, respectively), and even more
surprising that domains that differ sizably in structure, such as, for example,
apo and calcium bound forms of S100 proteins (Table 1), belong to the same
cluster (CLO). In general, domains that undergo a sharp transition between
an antiparallel bundle and an orthogonal bundle structure upon calcium
binding (such as CaM-like proteins), move from either CL2 or CL3 in the
apo form to CL1 in the calcium-bound form, while domains that undergo
still sizable but more localized conformational rearrangements, such as S100
proteins, usually belong to CLO in the apo form and remain in the same
cluster in the calcium bound form.
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4.4.3 Connection among Structural and Dynamical Similar-
ities

Apparently, the dynamical clustering reflects only to a modest extent the
"structural context” of the 4 helices under consideration. We recall that
the slow modes calculations, though analyzed for the 4 helices only, are per-
formed on the whole protein chain. In summary, there is no strict correlation
of the dynamical distance between two functional domains expressed with
the dﬁyn (a,b) values, which measure the consistency of the space spanned by
the two lowest-energy modes of both proteins, with the structural distance
measured as the Euclidian distance of the six interhelical angles. The rela-
tionship between the dynamical and angular distances can be also appreci-
ated in the scatter plot of Figure 4.9, where we have reported simultaneously
both quantities for each of the 11781 distinct proteins pairs. The overall
trend of the distribution indicates a fair degree of correlation between the
interhelical dynamics and the helical spatial arrangements, but the disper-
sion is substantial. As already observed, pairs of proteins with very similar
interhelical angles can differ significantly in dynamics, and vice-versa.

The histograms flanking the scatter plot in Figure 4.9, showing the dis-
tribution of the dynamical distances and of the angular distances, prompt
further considerations. The presence of several pairs of members of different
clusters contributing to the dﬁlby"(a, b) peak at 0.3 is clearly visible (the values
attainable by dam (a,b) range from 0 to 1). The double peaked character of
the d%" (a,b) histogram in Figure 4.9 should be compared with the broader
distribution of angular distances. Although, as elucidated by previous stud-
ies, some grouping of the proteins can also be discerned in terms of angular
distances, the distinction among such groups is less pronounced than for
the dynamical features. The qualitative difference of the two histograms
emphasizes the non complementarity of the insights offered by comparison
of static and dynamic features of the interhelical angles. In particular, it
is noteworthy that, despite the almost continuous repertoire of interhelical
arrangements, it is possible to identify groups of proteins that have common
and distinctive dynamical traits. These features are conveniently illustrated
by exploiting a reduced representation for the interhelical angles based on
their first two principal components that was introduced to account con-
cisely for the observed structural diversity of EF-hand domains. Angular
movements can be represented as arrows in the 2D space of the principal
components described above. Due to the near degeneracy of the first two
slow modes we decided to define for each protein a new orthonormal base
(V1 and V2) in the space generated by its first two modes so that the first
vector of the base is the one that maximizes the scalar product with the top
mode of its cluster representative. In the plot of Figure 4.10 the interhelical
arrangements are represented as points in the principal component (PC)
space of Fig 4.3, while the segments indicate the new, optimized, basis vec-
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Figure 4.9: Scatter plot and projected histograms of structural and dynam-
ical distances for all distinct pairings of the 154 proteins.

tors directions. For clarity, V1 and V2 are represented in separate graphs.
The color code of the points and segments reflect the dynamical cluster of
appartenence, the fainter the color the higher its dynamical distance from
the cluster representative. These plots provide a vivid illustration of the
features emerging from the previous structural/dynamical analysis. In par-
ticular, members of the same dynamical cluster may occupy a fairly large
region of the PC space, and yet their intercluster dynamical consistency,
perceivable by the projected directions of V1 and V2, is very high (indeed
all members of any cluster have mutual dynamical distance typically below
0.2).

It is also apparent that, in the absence of the dynamical clues (i.e. the
segments in Figure 4.10) it would be very difficult to introduce any clear-
cut objective criterion for grouping the points, given the diffuse repertoire
of interhelical angles. The dynamical criterion, on the contrary, leads to a
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a) PC1 b) PC1

Figure 4.10: Projections of the (a) first and (b) second optimized basis vector
of the slow modes on the two-dimensional PC space. Members of the four
clusters are colored in: orange (CLO), blue (CL1), green (CL2), red (CL3).
Cluster representatives are shown with thick circles.

sharper distinction among the most populated clusters. Though the repre-
sentation of Figure 4.10 is in a reduced PC space, it can be appreciated how
pairs of proteins with very different dynamics can be close in angle space
and vice versa. From the detailed analysis of Figure 4.10 several interesting
structural /dynamical considerations can be made. First, for all members
of CL3 (colored in red) and for the large fraction of those of CLO (colored
in orange) that lie in the lower right area of the PC space (indicated by a
dashed ellipse in Figure 4.10), the two projected directions of motion are
almost parallel to one another and oriented along the direction of spreading
in the PC space of the corresponding EF-hand family members. As pointed
out before, these domains comprise mostly apo domains and di-calcium ones
that do not open up completely upon calcium binding, i.e. those mainly in
the antiparallel bundle form. This fact strongly suggests that the consider-
able structural variation observed among the individual domains along the
major axis of the ellipse in Figure 4.10 reflect a progressive distortion along
the easy directions of motion indicated by the segments. It is appealing
to observe that individual domains within this large subgroup are mostly
scattered precisely along the common easy axis thus covering the space of
easily excitable conformational changes available to the individual mem-
bers. Conversely, the directions of motion of the members of CL1 and CL2
as projected in the PC space are both different for the two modes and also
different within each cluster. CL1 and CL2 host many di-calcium domains
that are in the orthogonal or chair bundle form, i.e. those that are ready
to recognize and bind target proteins. It is conceivable that their motion is
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less predictable, being possibly also dictated by the rather broad range of
interactions that some of them (e.g. calmodulin) are able to perform. The
above considerations hint at a relationship between interhelical dynamics
and biological function.

Further considerations and the biological implications of the findings
have been made by C. Luchinat and F. Capozzi that have been our partners
in the clustering study of calcium-binding proteins. Exposition of these
details is beyon the scope of the present thesis and is covered in ref [22].

4.5 Summary

We have analysed the essential modes of motion of the four helices of 187 do-
mains members of the EF-hand protein superfamily, using a novel approach
that describes the motions directly in the six-dimensional interhelical angle
space. It is found that, for as many as 154 of them, the dynamics the two
lowest energy modes account for more than 65% of the global motions. The
formulation of the problem in interhelical angle space provides the common
framework for comparing the concerted helical movements sustained in all
possible pairs of EF-hand domains, regardless of the degree of structural sim-
ilarity. This represents a systematic quantitative attempt to elucidate the
connection between the large structural variability with EF-hand domains
and large- scale concerted movements, which typically shape the conforma-
tional changes that assist or accompany the functional activity. It is found
that the distance in dynamical space of two EF-hand domains is only loosely
related to the spatial (static) difference of the helices orientation. In partic-
ular, the analysis of the distribution of both static and dynamic distances
shows that the former is essentially a continuum, while the latter is clearly
bimodal, indicating that a ”natural” clustering of the type of motions of EF-
hand domains occurs. This dynamical grouping, which aptly complements
previous structurally-related subdivisions, appears adequately captured at
the level of four dynamical clusters. The robust nature of the dynamical
grouping, which highlights the presence of highly-corresponding interhelical
movements in otherwise different domains, hints at the functional relevance
of the observed modes.



Chapter 5

Dynamical Comparison of
Proteins with Partial
Structural Similarity

The comparative analysis of essential dynamical spaces has proved useful
in characterizing the dynamical behavior of EF-hand domains of proteins
belonging to several functional families. The interplay between structural
and dynamical similarities presents interesting aspects. In fact, while there
is a certain degree of correlation between structural and dynamical similar-
ity, it is found that domains with different structural arrangement can share
common large-scale fluctuations whereas similar structures can have differ-
ent dynamical behavior. This complexity in the relation among structure
and dynamics is contained both in the detailed differences of the domains
composition and in the effect on dynamics of the remaining part of the pro-
tein chains, whose length and structure can vary appreciably from protein
to protein.

We shall address here the connection between structural and dynamical
similarities for two members of the protease superfamily [11], carboxypepti-
dase A [76] and pyroglutamyl peptidase [120]. The overall architecture of the
two biomolecules is analogous according to the CATH classification [109];
their sequence homology is, in fact, as high as 45%. Yet, the enzymes differ
significatively by length (208 and 307 residues, respectively) and number of
secondary elements. The two proteases rely on different catalytic chemistries
and belong to different clans (clans MC and CF for carboxypeptidase A and
pyroglutamyl-peptidase, respectively). The comparison of the large scale
fluctuation dynamics of the two enzymes is therefore interesting as it can
shed light on possible general and transferable aspect of the structural mod-
ulations that accompany the proteolysis reaction. This investigation extends
and complements a recent comparative study aimed at elucidating common
dynamical features shared by members of protease superfamily [26]. Unlike
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the case of EF-hands, the two proteases under consideration do not pos-
sess detailed structural correspondences encompassing the enzymes in their
entirety. This prevents us from using an intuitive structural inspection for
identifying their common degrees of freedom to be used in the dynamical
comparison. However though differing for length and secondary content, the
two molecules are still partially superimposable. This allows us to rely to a
structural comparison algorithm to identify a structurally relevant match-
ing region. The question we wish to address is how the statistically-relevant
spatial correspondence of a common structural core reverberates in a corre-
spondence of the essential dynamics of the aligned regions.

To compute the essential dynamical space in the aligned regions we will
follow the methodology recently developed in our group [26].

In particular the adopted method is articulated over a few steps. First
significant partial structural correspondences between the two enzymes are
identified by means of structural alignment techniques. The aligned core
provides the sought objective reference frame for comparing the enzyme’s
dynamics. Next, the coarse-grained Beta Gaussian Model of ref [93], de-
scribed in Appendix D, is used to compute (and hence compare) the large-
scale fluctuations of the aligned amino acids. Notice that this step entails a
thermodynamic integration over the non-aligned residues. Finally, we dis-
cuss the statistical relevance of the dynamical accord and elaborate on its
biological implications.

5.1 The case at study : two Proteases

Proteases play crucial roles in the life cycle of all organisms as they affect
a wide spectrum of physiological processes such as cell growth, cell death,
blood clotting, immune defense and secretion. At a molecular level they act
as “scissors” capable of cleaving polypeptide chains, that is other proteins
and enzymes. The repertoire of known proteases covers a wide range of:

e (a) catalytic/reactive mechanisms and substrate specificity (the hy-
drolysis reaction leading to the cleavage of the peptide bond can in-
volve different catalytic residues, such as Ser, Asp, Cys, Glu and Thr
or even Zn metal ions) [11],

e (b) structural folds, as the approximately 2,000 proteases of known
structure can be assigned to as many as thirteen distinct folds [124].

This chemical and structural diversity is so significant that, prior to the
identification of common fluctuation dynamics [26], the various classes were
thought to be related only by the fact that the peptide substrate in the
binding cleft adopts an extended beta conformation [124].

The two enzymes considered here, carboxyl peptidase A [76] and pyrog-
lutamyl peptidase [120], provide an example of the differences in protease
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catalytic chemistry and, to a lesser extent, of the structural traits. A rib-
bon representation of the two enzymes is given in Fig. 5.1. According to
the MEROPS classification of proteases [11], carboxypeptidase A belongs
to the M14 family of metallo proteases, whose function in mammals is re-
lated to alimentary digestion. It acts by cleaving a single C-terminal amino
acid (particularly aromatic ones or residues with branched side chains). Its
fold is constituted by a 3 layer alpha/beta/alpha sandwich with an an-
tiparallel beta-sheet of eight strands. The active site is on the beta layer
and is composed by: a single catalytic zinc ion, tetrahedrally coordinated
by two histidines (His69 and His196), a glutamate (Glu72) and the cat-
alytic water molecule (responsible for the nucleophilic attack), Argl27 and
Glu270. His69 Arg71 and Glu72, arranged in a sequence pattern well con-
served among the family, are in a loop connecting one beta strand and one
of the helices; Argl27 is also in a loop connecting two helices, His 196 and
Glu270 are placed on adjacent strands. Another key residue, Tyr248, which
is strictly conserved within the family is located in a loop surmounting the
active site; experimental evidence has indicated its important role in sub-
strate binding and/or catalysis [31].

The second proteases is a bacterial pyrrolidone carboxyl peptidase, from
hyperthermophile, and belongs to the cysteine protease enzymatic class. Its
molecular function consists of removing one pyroglutamate residue from the
N-terminus of a peptide. As in almost all cysteine proteases, the active site
is constituted by a catalytic triad, namely a glutamate, a histidine and a
cysteine (the latter being the nucleophilic agent) [11]. Akin to carboxypep-
tidase A also the pyroglutamyl peptidase is organized as a alpha-beta-alpha
sandwich with four long parallel and two short antiparallel beta-strands sur-
rounded by three helices on one side and two on the other [118]. However, its
crystallographic quaternary organization can be very different for different
organisms: monomeric for mammals and bacteria as opposed to tetrameric
for archaea. The oligomeric state of the enzyme in solution is still a mat-
ter of debate. However, as the active site is contained completely within a
monomer we shall consider here the enzyme in its monomeric form. Inter-
estingly, the fold is very different from that of any other cysteine peptidase,
but structural similarities were detected between members of its clan and
those of clans of metallopeptidases. In fact, despite the fact that MEROPS
[11] classification scheme assigns it to a different clan from the metallo car-
boxypeptidases the core of both enzymes presents visible analogies (see Fig
5.1). Moreover, as for carboxypeptidase A, the active site is located on the
beta layer with the Glu 79 and His166 positioned on two adjacent strands
of the layer and the nucleophilic Cys142 located on a alpha-helix flanking
the beta layer.
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Figure 5.1: Cartoon representations of the two considered protease repre-
sentatives: (a) carboxypeptidase A and (b) pyroglutamyl peptidase, PDB
codes 8cpa [76] and liof [120], respectively. The bottom panel presents a
different view of the same structures. The catalytic residues are shown with
atomistic detail.

5.2 Dynamics-based comparison of the two enzymes

We shall now discuss in detail how the native structure of the two enzymes
can be exploited to gain insight into their putative functional movements and
to highlight correspondences in the dynamical behavior of the two enzymes.

We shall first describe the collective movements of the two enzymes ana-
lyzed separately. Then, by means of a structural alignment procedure (DALI
[62]) we will select two subset of the residues to be put in one-to-one cor-
respondence and we will compute the lowest energy modes regarding that
regions of the two proteins, performing a thermodynamic integration on the
not-matching residues as explained in the previous chapter. We will then
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analyse the comparison devising a measure that gives the contribution of
the single amino acids to the dynamical matching and highlighting the most
relevant consensus fluctuations.

5.2.1 Large scale movements of the single enzymes

To compute the essential modes we will make use of the Beta Gaussian
Model introduced in ref [93] and briefly discussed in Appendix D. Through
this model we have calculated separately the lowest energy modes of car-
boxypeptidase A and pyroglutamyl peptidase. The two lowest energy modes
thus identified for each enzyme are illustrated in Fig. 5.2.

For carboxypeptidase A, the modes appear mostly localized in the re-
gions delimiting the binding site. In particular they result in a contrac-
tion/elongation of the distances between the two unstructured regions (from
Ser157 to Tyrl69 and from Thr274 to Phe279) and between the top of one
helix (from Phell8 to Leul25) and the the loop from Ile244 to Gln249. It
is interesting to notice that the latter is constituted by residues involved in
enzyme/substrate interactions. The overall behavior suggests the pictorial
representation of a “breathing” motion of the binding site.

In pyroglutamyl peptidase six long loops embrace the binding pocket
(three on each side) resulting in an active site cleft flanked by two lobes.
Most of the movements entailed by the lowest energy modes are concentrated
in these regions. The concerted motion of two lobes can be aptly described
in terms of a bend (first mode) and shear (second mode) motion. It is
interesting to note that, as for carboxypeptidase A, there is a modulation
of the overall shape of the cleft.

We will address in a systematic way these apparent qualitative similari-
ties within the scheme outlined above.

5.2.2 Partial structural alignment

The first step of the dynamical comparison procedure relies on the iden-
tification of sets of amino acids in the two enzymes that can be put in
structural correspondence. For the two enzymes considered here, the con-
formational difference, though not impacting on the overall architecture, is
significant both for the secondary content and enzyme length. This is suffi-
cient to call for an automated scheme to single out the structural analogies
which, by necessity, cannot encompass the biomolecules in their entirety.
This will identify a common structural core used for comparing the fluc-
tuation dynamics. We shall then address the extent to which structural
correspondences impact on dynamical analogies and discuss the biological
implications. As already discussed both aspects are far for being a triv-
ial consequence of the partial structural matching. In fact the structural
correspondence of a subset of the two structures does not guarantee their
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Figure 5.2: The most mobile residues in the first [second]| lowest energy
mode for (a) carboxypeptidase A and (b) pyroglutamyl peptidase are shown
with green thick [black thin] arrows.

dynamical accord, as the low energy modes are significantly influenced by
the remaining part of the protein. The search for the best partial structural
match of the enzymes is aptly performed with the DALI algorithm [62]. The
algorithm is based on a scoring function (formulated in terms of the matrix
of pairwise residue distances of each enzyme) that quantifies the geometrical
consistency of any given set of corresponding residues in the two enzymes.
The best partial structural alignment is identified by a stochastic optimiza-
tion of the scoring function. Typical enzymatic DALI structural alignments
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lead to identify several corresponding blocks of consecutive residues, each
involving 10-15 amino acids. It is clear that, owing to the pervasive presence
of secondary motifs in proteins, the search of partial structural matches in
two proteins will almost always be successful. Discriminating between mean-
ingful structural alignments and “accidental” ones is therefore a key point
of the analysis which entails a statistical significance test. Indeed, for each
DALI alignment, the optimised value of the scoring function is compared
against a reference distribution of scores expected for two generic enzymes
of length equal to the assigned ones. The statistical significance of the best
DALI alignment is finally summarised in a Z-score which measures the num-
ber of standard deviations by which the optimal score exceeds the reference
one. The better the alignment, the larger the Z-score.

For pyroglutamyl peptidase and carboxypeptidase A, their DALI Z-score
was equal to 8.9, which indicates that they can be aligned with high statis-
tical confidence. The optimal partial alignment involves 151 residues out of
208 [307] for pyroglutamyl peptidase [carboxypeptidase A]. The alignment
has a simple character in that aligned blocks have the same succession in the
two enzymes (and no inversion of sequence directionality occurs). This sim-
ple organization allows to represent the alignment with the simple graphical
plot of Fig. 5.3.

D non-aligned region . helix . beta strand unstructured region Q alignment

Figure 5.3: Primary structures alignment induced by the optimal DALI
structural superposition of the two proteases. Each primary sequence is
colored with a scheme related to the secondary structure (helices in orange,
beta strands in blue and unstructured regions in yellow). Blank regions
represent non-aligned regions while alignment gaps are represented with
diagonal lines. The triangles mark the location of the catalytic triad for
pyroglutamyl peptidase and of the five residues coordinating the Zn ion for
carboxypeptidase A

As visible in the figure the first 60 residues of carboxypeptidase A are
excluded from the alignment. The first, third, fourth, fifth, eight, ninth
beta strand of pyroglutamyl peptidase matches respectively with the third,
fourth, fifth, sixth, seventh and eight of carboxypeptidase A; helices 1,
2,3,4,6 of pyroglutamyl peptidase are in correspondence with helices 2,5,6,8,9
of carboxypeptidase A; helix 5 of pyroglutamyl peptidase has a partial match
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with helix 9 of carboxypeptidase A. Also, there are non-trivial correspon-
dence between different secondary structure elements: beta strand 2 of py-
roglutamyl peptidase matches with a fragment of helices 2 and 3 of car-
boxypeptidase A, parts of beta strands 3, 5, 6 and 7 of pyroglutamyl pepti-
dase match into loops in the partner structure, as well as segments of helices
2, 4,7 and 9 of carboxypeptidase A. A view of the aligned structures is given
in Fig. 5.4.

Figure 5.4: Backbone traces of (a) carboxypeptidase A and (b) pyroglutamyl
peptidase. The matching regions are highlighted with a thick CA trace.

5.2.3 Dynamical Comparison

We are interested in calculating the concerted displacements of the sole
structurally-aligned residues, yet taking into account the dynamical influ-
ence exerted over them by the non-aligned ones. We assume that the pro-
teins are represented in the Cartesian reference frame providing the optimal
structural superposition of the DALI matching regions. For each of the two
proteins, following the procedure and the notation outlined in the previ-
ous chapter, we will identify with 7 the displacement of the coordinates
of the structurally matching residues, and with #s the remaining degrees of
freedom f the system. The effective free energy F(Z1) as a function of the
coordinates ¥ reads:

F(@) =i Fo @ = 7] (Fu, — GFLGH) 7 (5.1)
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The eigenvectors associated with the smallest eigenvalues of ].E‘gCl represent
the integrated lowest energy modes of the matching regions.

The eigenvectors of ].E‘xl, calculated separately for the two enzymes after
an optimal structural superposition of the DALI matching regions, can be
directly compared component by component. To quantify the agreement of
the integrated dynamics we applied the following heuristic procedure which
straightforwardly leads to define a novel measure of dynamical accord which
generalises the RMSIP value [3].

Indicating the effective free energy for the two proteins A and B as Fa
and Fg we introduce infinitesimal harmonic couplings between correspond-
ing residues in the two proteins. More precisely, we consider the following
effective free energy function the combined system F4.p:

T Fooa4 €l 1,4
F = (T, #T ( LA ) < e 5.2
A+B = (T1 4 T1 ) 1 Fos 1 (5.2)

where € indicates the strength of the harmonic coupling between correspond-
ing residues and 1 indicates the identity matrix. We shall be concerned with
the limit € — 0, where the harmonic coupling becomes a weak perturbation.
The coupling of eqn. (5.2) has an abstract character in that it introduces
isotropic interactions between corresponding residues without reference to
any particular notion of space proximity of residues in the two proteins. Due
to its minimalistic nature, the free energy function of eqn. (5.2) does not
have full spatial invariance properties, though it is still invariant for rota-
tions of both proteins around the common center of mass of the matching
regions (we recall that in our analysis we consider as only degrees of free-
dom of the system centroids coincident with the Ca atoms, assigning to all
residues the same mass).

The introduction of the coupling between the matching residues fa-
cilitates the detection of similar large-scale fluctuations of corresponding
residues in the two proteins. The information on the extent to which these
correlations exist is aptly conveyed by the covariance matrix obtained by
inverting the effective matrix. To leading order in € the covariance matrix

n—1 n—1 -1
Foia o FpaF s
—eF Ale,B F:vl,B

x1,

is given by

According to this expression, the degree of dynamical correlation of the dis-
placements of pairs of corresponding residues is provided by the diagonal
terms of the submatrix, (—ef‘;l{ Aﬁ‘;ll, p)- To turn this observation into a
practical procedure it is convenient to express le’ 4 and le’ B in terms of
their eigenvalues and eigenvectors. Indicating with ¢; and ; the ith eigen-
vector of the first protein and second protein, respectively (with associated
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eigenvalues \; and p;) we have
FoL =N Nn Bl = utalw
z1,A = T z1,B = Hy Wy
l l

Hence, the sum of the diagonal terms of —GF;I A]?‘;l g 1s equal to

€ Dim N Yoot ™2 In case of perfect correspondence of both
sets of ranked eigenvectors and eigenvalues, the previous quantity attains
its maximum value that is ", \;7!

This observation allows to introduce a novel normalized measure for
the agreement between two dynamical spaces, that we shall term the root
weighted square inner product, RWSIP,

1 1 1= —
Zl,m Y ,Tmfvl - Wy, |2
3 1
L X
By comparison with the familiar root mean square inner product (RMSIP)
expression,

RWSIP =

(5.3)

RMSIP = > |G- wml?/10 (5.4)
I,m=1,..,10

it can be observed that the RWSIP includes information about the eigen-
values of the effective energy matrix (i.e. the inverse eigenvalues of the
covariance matrix). Hence it provides a more stringent and comprehensive
account of the degree of accord of two dynamical spaces, and avoids the
introduction of a subjective limit to the number of essential eigenvectors to
keep.

For the two enzymes under consideration the RWSIP of the DALI aligned
region was equal to 0.875. To assess the statistical significance of this value
we have compared it with a reference distribution. The latter is aptly taken
as the distribution of RWSIP values resulting by randomly choosing the
residues in set 1, that is for arbitrary choices of the blocks of correspond-
ing residues in the two structures. Accordingly, we stochastically generated
1000 “decoy” sets of matching residues involving the same number of amino
acids (151) as the optimal DALI alignment of carboxypeptidase A and py-
roglutamyl peptidase. Also the typical size of DALI matching blocks (10-15
residues) is respected in the control alignments. For each stochastic align-
ment we carried out numerically the dynamical integration described above
and hence obtained the corresponding RWSIP value from equation (5.3).
By processing the results of the 1000 decoy alignments we calculated the
average value and dispersion of the control RWSIP distribution, (RWSIP)
and ARWSIP. These quantities were used to define the dynamical Z-score:
(RWSIPparr— (RWSIP))/ARWSIP. In analogy to the structural Z-score, it
provides a measure of how unlikely it is that the RWSIP of the DALI match-
ing regions could have arisen by chance. The value obtained for RWSIP in
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the DALI alignment was accordingly found to yield a dynamical Z-score of
8.98. The control distribution of RWSIP values is shown in Fig. 5.5.

T | T | T | T | T | T | T | T | T | T | T | T
Twsip = 0.519

o =0.0396

l0.875

I A SN RN TR AN S N S RN
0.7 0.75 0.8 0.85 0.9 0.95

0.4 0.45 0.5

Figure 5.5: Normalized probability distribution of the RWSIP values com-
puted on the 1000 randomly generated alignments. The arrow indicates the
RWSIP of the DALI alignment.

This suggest an “a posteriori” validation of the choice of the matching
set. The statistically significant structural matching provided by DALI al-
gorithm reflects in a significant overall accord of the essential dynamical
spaces of the matching region. This observation contributes to support the
functional significance of the DALI alignment and gives first indication of
the functional importance of the common dynamics. We will now address in
more detail the particular importance of the motion of some specific residues
important for catalysis, and discuss the connection of the dynamical accord
of the single residues with their spatial pairwise correspondence.

The heuristic approach followed here to derive the RWSIP measure lends
also to a transparent criterion for isolating the individual contributions of
corresponding amino acids in the protein. In fact, the weighted inner prod-
uct is WSIP ), q; where

. 1
LS i @) S —— 5.5
Z A fm (@ )/; A (5:5)

Where we have indicated with 1712 the three dimensional vector, part of
the [th eigenvector of Fm, 4, referring to the residue 7. For the two enzymes
under consideration, the non-normalised profile of ¢; is illustrated in Fig.
5.6. The profile provides a qualitative account of the dynamical importance
of the residues contributing to the dynamical accord. Values of ¢; are plotted
in Fig. 5.6 with colors reflecting the subdivision in three sets of relevance.
The high inhomogeneity of the profile complements appropriately the infor-
mation about the structural alignment where all aligned residues are treated
on equal footing.
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Figure 5.6: The three dimensional distance of the aligned residues in the
two proteins is shown in the upper panel. The ¢; profile over DALI aligned
residues (middle panel) is shown along with the primary alignment induced
by the optimal DALI superposition. The following color code was used to
partition residues according to the value of ¢;: ¢; < 0.005 (pink), 0.005 <
¢i <0.01 (green) and ¢; > 0.01 (violet).

It is interesting to compare the dynamical matching ¢; of the single
residues, with the corresponding three dimensional distance of the residues
in the two proteins. The profile of the pairwise spatial distances is portrayed
in top panel of Fig 5.6. No obvious correspondence is perceivable between
the peaks of dynamical similarities and the regions in close space proximity.
This provides a heuristic indication of the impact that non-aligned residues
have over the dynamics of the aligned ones.

We will address the biological implications of the observed dynamical ac-
cord. In Fig. 5.7 the first two relevant eigenvectors of the reduced covariance
matrix are represented as arrows (green thick and black thin respectively),
for the top 50 fluctuating residues of each structure. In each of the two
enzymes it is possible to identify two halves of the enzymes which undergo
rotatory fluctuations. The resulting shear motion may consequently produce
a mechanical stress of the bound substrate.

In the picture we highlighted Van der Waals volumes of seven residues for
each structure, representing the seven most relevant peaks in the dynamical
alignment (in violet in Fig. 5.6). It’s interesting to note that among them
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there are the most mobile residues, and some residues close to the catalytic
site that modulates the shape of the active site, in particular Tyr238 in car-
boxypeptidase A, whose role has been proved to be crucial for the substrate
binding and /or processing [31], that matches Gly138 of pyroglutamyl pepti-
dase, which is in a crucial position (it surmounts the catalytic cysteine) and
contributes to enzyme/substrate interactions [11] In particular, this Glycine
is in the exact position of the Glycine of the carboxyanion hole in serine
proteases, thus suggesting the key functional role played by this residue also
for pyroglutamyl peptidase.

5.3 Summary

We have presented a quantitative scheme through which the essential dy-
namical spaces of proteins with partial different structural arrangement can
be compared. The method relies on the detection of a partial structural
correspondences between two biomolecules. This is motivated by the neces-
sity of finding a common reference frame, whose internal dynamics could be
functionally relevant. By means of a number of techniques, partly devel-
oped specifically for this problem, the large scale concerted movements of
the structurally aligned regions have been calculated and finally compared
in terms of a novel quantitative measure. This dynamical measure lends
straightforwardly to identifying the extent to which different residues (all in
structural correspondence) contribute to the overall dynamical consistency.

This scheme was applied to two representatives of the protease enzy-
matic superfamily, carboxypeptidase A and pyroglutamyl peptidase. Con-
sidering these enzymes is particularly instructive as, besides having differ-
ent sequence, length and secondary content, they also rely on a different
catalytic chemistry. The first feature emerging from the partial structural
alignment is that the 151 residues taking part to the optimal superposi-
tion occupy a region within ~30 A of active site cleft. The lowest energy
modes calculated over this region are in remarkable accord across the two
proteins (despite including the dynamical influence of the regions that are
not in structural correspondence). The largest contribution to the dynami-
cal accord arises from two patches of residues that appear to be capable of
modulating the cleft of the active site. As previously elucidated for other
members of the protease enzymatic superfamily [27, 26], the findings pro-
vide a strong indication of how the biological selective pressure for efficient
cleavage of peptide substrate has promoted not only similar structural archi-
tectures in the neighborhood of the active site, but also consistent concerted
movements that putatively accompany and facilitate the substrate recogni-
tion or cleavage.
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Figure 5.7: The most mobile residues in the first [second] lowest energy mode
for the aligned residues of (a) carboxypeptidase A and (b) pyroglutamyl
peptidase are shown with green thick [black thin] arrows. The structurally-
aligned regions are shown with a thick CA trace.



Summary

In the first part of the thesis we have discussed the MD-based investiga-
tion of the near-native free energy landscape for two well-known proteins:
GB1 and adenylate kinase. By analysis of the salient internal dynamics fea-
tures collected over hundreds of ns it has been found that the near-native
free-energy possesses a self-similar structure in that principal directions of
the explored free-energy local minima and the virtual jumps that connect
them are highly consistent. This remarkable feature reflects into the excep-
tional robustness of the essential dynamical spaces of the protein. These
consensus generalised directions of internal motion, oblivious of the struc-
tural details differentiating the various substates, reflect an intrinsic protein
of the protein, arguably encoded in its structural architecture. The observed
consistency provides a very efficient means for the system to exploiting ther-
mal fluctuations to diffuse within and across the substates. The functional
relevance of the consesus essential dynamical spaces is suggested by the fact
that these “innate” essential dynamics has a very good overlap with the
difference vector connecting the available free/bound crystal structures of
adenylate kinase. The functionally-oriented character of proteins internal
dynamics, robustly encoded in their structure, leads to speculate that this
property may have been promoted by evolutionary pressure, consistently
with recent suggestions made on the basis of experimental data.

These results have lead us to investigate further how various degree of
overall or partial structural similarities in proteins reflect in the consistency
of their internal dynamics. The findings of our investigations have been
outlined in the second part of the thesis.

Specifically, we have quantitatively compared structural and dynamical
similarities of a calcium binding domain, the so called EF-Hand domain,
which is shared by a large number of proteins. We have performed an
analysis of the internal essential dynamics of the EF-hand domains for a
data-set of more than 150 domains coming from structurally- or functionally-
different proteins. Interesting correlations emerges between the essential
dynamics of the domains and their functional classification while a non-
stringent relationship exists between the degree of structural and dynamical
similarity. This second aspect is presumably ascribable both to the detailed
local structural differences of the domains and to the influence of the different
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global arrangements of the proteins.

We have finally discussed a general scheme through which the essential
dynamics of proteins with only partial structural correspondence can be
compared. In particular we have calculated and compared the large-scale
concerted movements of structurally-alignable portions of two proteins be-
longing to the protease superfamily. The two proteins, despite sharing a
common structural core, differ in length and in the overall structural ar-
rangement, and moreover belong to different clans of the superfamily, and
hence rely on different catalytic chemistry. The lowest-energy modes cal-
culated over the structurally-corresponding region are in remarkable accord
across the two proteins despite including the dynamical influence of the re-
gions that are not in structural correspondence. The consensus directions of
motion describe a modulation of the cleft of the active site of the enzymes.
The findings provide indications of the fact that these consistent concerted
movements, that putatively accompany and facilitate the substrate recogni-
tion or cleavage, may have been evolutionary selected.



Appendix A

Comparing sets of
Essential-Dynamics Spaces:
Optimal Identification of
their Consensus Subspace

Consider the vectorial spaces V and W, spanned by the top N essential dy-
namical spaces, {v1,vs,...,on} and {wy,we, ..., wy} respectively, of two
MD trajectories of the same protein, e.g. starting from different initial con-
figurations. We wish to establish if, or to what approximation, V' and W
share a common subspace. The problem amounts to find new orthonormal
basis vectors for V and W, {v],vh,..., vy} and {w],w), ... ,w)y} respec-
tively, which are ranked with decreasing mutual consistency. In principle,
this could be accomplished through an iterative procedure where the first
pair of vectors, v} (belonging to V') and w} (belonging to W), is picked so to
have the largest possible scalar product. This optimal selection procedure
is next repeated in the remaining complementary spaces of V and W and
so on. The sought pairs of vectors, v, and w, are such to make stationary
the following functional

Fvjwh) = (wilvi) — e (vjlv) — Bi (wilwy) (A1)

Coeflicients «; and 3; have been introduced to enforce normalization. Let
A; j and B; j be the two N dimensional orthogonal matrices representing the
change of basis: |v]) = z;vzl A; jlvj) and |w)) = z;vzl B; jlwj); and let a;
and b; be the rows of matrices A and B respectively. Defining the non-
symmetric N-dimensional real matrix C as C;; = (w;|vj), the functional in
equation (A.1) can be rewritten as:

fl@,b) = b;-Ca;—od-a,—Bb-b. (A.2)

99



100 Comparing sets of Essential-Dynamics Spaces

The stationary condition gives the following set of eigenvalue equations:

; (A.3)
CCT b; = \ib; (A.4)

with ¢ = 1,... N, a; and b_; are vectors with unit norm, and the coefficient
A equals 4a;5;.

It’s important to note that the two solutions are not independent. As-
suming we have a solution a; for (A.3); then it’s easy to see that b_; = \/%Cd;
is a solution for (A.4), and the scalar product of the vectors v} and w) as-
sociated to this solution is (w}[v!) = v/A;. As CTC is an NxN symmetric
matrix, we have a complete solution to the eigenproblem of equation (A.3).

Let’s consider the non-degenerate case with \; # \;Vi # j and order
the eigenvalues in descending order A\; > A9 > --- > Ay. Vectors v} and w)
are defined by the i*" solution of (A.3), as follows:

N N
i) = Aiglu) Jwl) = Bijlwy) (A.5)
i=1 j=1

and their scalar product is v/A;. Notice also that (w;|v}) = v/Aid;; in case
of no degeneration in solutions of (A.3).



Appendix B

Thermodynamical
Integration of Degrees of
Freedom in Elastic Network
Models

Let P(Z) be a probability distribution for the values of the system coordi-
nates ¥ and suppose we are interested in calculating the marginal distribu-
tion of a set of coordinates ¥ obtained as an orthogonal transformation A
of a subset Z7 of the system coordinates Z.

P(y(#1)) = /d@%. (B.1)

Let us further assume that the system thermodynamics is governed by a
free energy F that can be represented as a quadratic function of the original
coordinates T,

F(i,5) = 7R = (71, 5)7 ( RN ) ( a ) (B.2)

The blocks in the interaction matrix F have a straightforward meaning:

F, [F3] represent the internal coupling between the subset of coordinates

21 [73] while W couple coordinates between the subset 7 and x5. The

probability distribution P(Z) for the coordinates & is connected to the Free
Energy through the Boltzmann distribution:

P(¥) x exp(—%) (B.3)

Let us consider the expression for P(A~1j, %) and expand explicitly
F(A~1g,a3)
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FATY, 05) = fTAF A7 4+ T AW 55 + T WA=V 4+ 5T Foa (B.4)
The expression can be recasted as
FATYG, %) = ¢ F 7 + 25" W a5 + (/Faas) ! (\/Faa3) (B.5)

where F,, = AFA"! and W, = AW. Now, simply noting that y_TWyx_é is
equal to (\/Fg_lwgg)T(\/FQx'ﬁ), we obtain by completion of the square

F,=§ (F,—-W_F;'W,)j—(\VFy W/ ij+\/Fo13) (VFy W] ij++/Fai})
(B.6)
The Boltzmann factor can be factorized as

-1 _ _
T ®y-WIFy Wy)g (Fa WEt/Faen)T (Fa W gt /Faan)
e KpT e KpT (B.7)

When we integrate with respect to z3 to obtain P(¥) the second exponen-
tial term in the above expression is a Gaussian integral contributing only by
a multiplicative constant. Thus, apart a from multiplicative normalization
factor, P(%) reads

-1
g (F, — W]F,

KpT

P) s exp | ~( Wy)y

) (B.8)

The effective free energy described as a function of the new reduced
variables 7 is still a quadratic function of the coordinates .



Appendix C

Functional Groups of
EF-HAND Domains

Detailed information on members of functional groups reported in Fig. 4.7

Key:

Column 1: Cluster ID

Column 2: pdb code, chain index and domain

Column 3: Protein terminus, calcium state and peptide binding state

Column 4: Group ID as per indexing of the density plot of Fig. 4.7

Column 5: Protein name according to Swiss Protein database

Column 6: Complete protein name

Table C.1: Members of the 12 mostly populated functional families reported in Fig. 4.7.
Cluster ID PDB Structural Information Family ID Swiss prot Protein name

1 1cllol N 2Ca PO 1 CALM_HUMAN Calmodulin
1 lclmO1 N 2Ca PO 1 CALM_PARTE Calmodulin
1 1ggzAl N 2Ca PO 1 CALL_HUMAN Calmodulin-like
1 1j70A0 N 2Ca PO 1 CALM_HUMAN Calmodulin
1 loojAl N 2Ca PO 1 CALM_CAEEL Calmodulin
1 losa01l N 2Ca PO 1 CALM_PARTE Calmodulin
1 1rfjAl N 2Ca PO 1 CALM_SOLTU Calmodulin
2 1cffAl N 2Ca PO 1 CALM_HUMAN Calmodulin
0 1ckkA1l N 2Ca P2 2 CALM_HUMAN Calmodulin
1 lcdlAl N 2Ca P2 2 CALM_HUMAN Calmodulin
1 1g4yR1 N 2Ca P2 2 CALM_HUMAN Calmodulin
1 ligbAl N 2Ca P2 2 CALM_HUMAN Calmodulin
1 ImxeAl N 2Ca P2 2 CALM_DROME Calmodulin
1 InwdA1l N 2Ca P2 2 CALM_HUMAN Calmodulin
1 2bbmA1 N 2Ca P2 2 CALM_DROME Calmodulin
1 3cln01 N 2Ca P2 2 CALM_HUMAN Calmodulin
1 1b7tY1 N 1Mgl P2 3 MLR-AEQIR Myosin regulatory light chain
1 1kk7Y1 N 1Mgl P2 3 MLR-AEQIR Myosin regulatory light chain
1 1kk8B1 N 1Mgl P2 3 MLR-AEQIR Myosin regulatory light chain
1 lkwoB1 N 1Mgl P2 3 MLR-AEQIR Myosin regulatory light chain
1 1120B1 N 1Mgl P2 3 MLR-AEQIR Myosin regulatory light chain
1 1qviY1l N 1Mgl P2 3 MLR-AEQIR Myosin regulatory light chain
1 lwdcB1 N 1Mgl P2 3 MLR-AEQIR Myosin regulatory light chain
0 lcmg00 C 2Ca PO 4 CALM_HUMAN Calmodulin
1 1cllo2 C 2Ca PO 4 CALM_HUMAN Calmodulin
1 lclm02 C 2Ca PO 4 CALM_PARTE Calmodulin
1 lggzA2 C 2Ca PO 4 CALL_.HUMAN Calmodulin-like
1 1j7pA0 C 2Ca PO 4 CALM_HUMAN Calmodulin
1 losa02 C 2Ca PO 4 CALM_PARTE Calmodulin
1 1rfjA2 C 2Ca PO 4 CALM_SOLTU Calmodulin
1 1k90D2 C 2Ca P2 5 CALM_HUMAN Calmodulin
1 1k93D2 C 2Ca P2 5 CALM_HUMAN Calmodulin

Continued on next page
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Table C.1 — continued from previous page
Cluster ID PDB Structural Information Family ID Swiss prot Protein name

1 ImxeA2 C 2Ca P2 5 CALM_DROME Calmodulin
1 InwdA2 C 2Ca P2 5 CALM_HUMAN Calmodulin
1 1sk6D2 C 2Ca P2 5 CALM_HUMAN Calmodulin
0 1kk7Y2 C 0Ca P2 6 MLR_-AEQIR Myosin regulatory light chain
0 1120B2 C 0Ca P2 6 MLR-AEQIR Myosin regulatory light chain
0 1s5gY2 C 0Ca P2 6 MLR-AEQIR Myosin regulatory light chain
0 1sr6B2 C 0Ca P2 6 MLR-AEQIR Myosin regulatory light chain
1 1kwoB2 C 0Ca P2 6 MLR-AEQIR Myosin regulatory light chain
1 lwdcB2 C 0Ca P2 6 MLR-AEQIR Myosin regulatory light chain
2 1b7tY2 C 0Ca P2 6 MLR-AEQIR Myosin regulatory light chain
2 1dfkY2 C 0Ca P2 6 MLR-AEQIR Myosin regulatory light chain
2 1kgmB2 C 0Ca P2 6 MLR-AEQIR Myosin regulatory light chain
2 1qviY2 C 0Ca P2 6 MLR-AEQIR Myosin regulatory light chain
0 1kgqmC2 C 0Ca P2 7 MLE_AEQIR Myosin essential light chain
0 1kwoC2 C 0Ca P2 7 MLE_AEQIR Myosin essential light chain
0 1120C2 C 0Ca P2 7 MLE_AEQIR Myosin essential light chain
0 1s5gZ2 C 0Ca P2 7 MLE_AEQIR Myosin essential light chain
0 1sr6C2 C 0Ca P2 7 MLE_AEQIR Myosin essential light chain
2 1b7tZ2 C 0Ca P2 7 MLE_AEQIR Myosin essential light chain
2 1dfkZ2 C 0Ca P2 7 MLE_AEQIR Myosin essential light chain
2 1kk772 C 0Ca P2 7 MLE_AEQIR Myosin essential light chain
2 1kk8C2 C 0Ca P2 7 MLE_AEQIR Myosin essential light chain
2 lwdcC2 C 0Ca P2 7 MLE_AEQIR Myosin essential light chain
0 le8aA0 N 2Ca PO 8 S112 S100
0 1gqmAO0 N 2Ca PO 8 S112_.HUMAN S100
0 1k96A0 N 2Ca PO 8 S106_HUMAN S100
0 1k9kAO0 N 2Ca PO 8 S106_HUMAN S100
0 1mho00 N 2Ca PO 8 S10B_BOVIN S100
0 1mr8A0 N 2Ca PO 8 S108_HUMAN S100
0 1qlkAO N 2Ca PO 8 S10B_RAT S100
0 luwoAO N 2Ca PO 8 SI0B_LHUMAN S100
3 1b1gAO N 2Ca PO 8 S10D_BOVIN S100
3 lalvA2 C 2Ca PO 9 CANS_PIG Calpain small subunit
3 1dviA2 C 2Ca PO 9 CANS_RAT Calpain small subunit
3 Inx1A2 C 2Ca PO 9 CANS_PIG Calpain small subunit
3 Inx2A2 C 2Ca PO 9 CANS_PIG Calpain small subunit
0 1skt00 N 0Ca PO 10 TPCS_CHICK Troponin C skeletal
0 1tnp00 N 0Ca PO 10 TPCS_CHICK Troponin C skeletal
0 1zac00 N 0Ca PO 10 TPCS_CHICK Troponin C skeletal
0 1trf00 N 0Ca PO 10 TPCS_-MELGA Troponin C skeletal
3 4tnc01 N 0Ca PO 10 TPCS_CHICK Troponin C skeletal
0 ladpBO0O N 0Ca PO 11 S110-HUMAN S100
0 1clb00 N 0Ca PO 11 S100 monomeric S100
0 1nshAO N 0Ca PO 11 S111_RABIT S100
2 1b4cAO N 0Ca PO 11 S10B_RAT S100
2 1cfpAO N 0Ca PO 11 S10B_BOVIN S100
2 1k2h A0 N 0Ca PO 11 S10A1_RAT S100
1 1dmo02 C 0Ca PO 12 CALM_HUMAN Calmodulin
2 1cfd02 C 0Ca PO 12 CALM_HUMAN Calmodulin
2 1f71A0 C 0Ca PO 12 CALM_HUMAN Calmodulin
2 1g4yR2 C 0Ca PO 12 CALM_HUMAN Calmodulin




Appendix D

Beta Gaussian Model

The Beta Gaussian model is a simplified Elastic Network Model in which
the protein is represented by means of two-centroid per amino acid, one for
the main-chain, coinciding with the CA atom, and one for the side-chain.
Following a geometrical rule akin to the one introduced by Park and Levitt
[108] we construct the latter interaction center as a fictitious CB centroid:

QFCA(i) — FCA(Z' + 1) — FCA(i — 1)
‘2770,4(1') — FCA(Z' + 1) — FCA(i — 1)’

—

Top(i) = Toa(i) + (D.1)

where [ = 3A and 74 indicates the coordinates of the ith CA centroid.
For amino acids at the beginning/end of the peptide chain(s) or for GLY
the construction of eqn. D.1 is not applicable and hence the effective CB
centroid is taken to coincide with the CA one.

A schematic view of the coarse graining procedure is given in Figs. D.1a,
b and c.

The potential governing the interaction between the centroids is obtained
by introducing the following quadratic penalties for displacing two centroids,
7 and j from their reference positions,f? and f? to generic ones, 7; and 7:

r0 0
N [ NTREY R
V(ryy) = KZ S 14 T i (D.2)
o |7"ij|

where 77?] = (7 - f?
the distance vector change, 07; = (7 — ) — (7 — f?), w and v run over the
three Cartesian components and k is a parameter controlling the strength
of the quadratic coupling.

The quadratic form of eqn. (D.2), already discussed in Introduction
to Part T (see 1.4), is at the heart of the widely-used elastic or Gaussian
network approaches [123, 10, 59, 92, 8, 95, 36, 93|, which typically adopt
a single-centroid amino acid description. The effective free energy function

introduced in ref. [93] and used here includes, instead, pairwise contributions

) is the native distance vector of the centroids, 07; is
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Figure D.1: Pictorial representation of the coarse graining procedure: (a)
atomic representation of Adenylate Kinase (backbone highlighted as a rib-
bon); (b) the C'A trace is considered as starting point for the coarse graining
procedure; (c) simplified structural representation in terms of the C'A cen-
troids for the backbone and the C'B ones for the sidechains; (c) all pairs of
non-consecutive centroids within 7.5 A interact through an harmonic poten-
tial, schematically shown as a thin bond.

from all pairs of centroids, be they of the C'A or C'B type, whose reference
distance falls within a given interaction cutoff, as pictorially illustrated in
Fig. D.lc. Accordingly, the resulting free energy of a trial structure, I,
takes on the form:

_2ZV ﬂZC;zilC’A +ZV “CA-CA +ZV ~CA-CB +ZV ~CB— CB
1<j 1<j

(D.3)

where ¢ and j run over the residue indices, TXJ Y denotes the distance vector

of the centroids of type X and Y of residues ¢ and j, respectively, and

the prime denotes that the sum is restricted to the pairs whose reference

separation is below the cutoff distance of 7.5 A. Consistently with the spirit

elastic network models and other approaches [122], the last three terms in

eqn. D.3 have the same strength irrespective of the identity of the amino

acids. The first term, on the other hand, accounts for the protein chain

connectivity and has a double strength to reflect the geometrical constraints
of the peptide chain.

As the positions of the CB centroids depend linearly on the coordinates
of the CA ones, it is possible to analytically recast the expression (D.3)
in the following quadratic form ( akin the one discussed in Introduction
to Part I) involving simply the CA degrees of freedom, retaining the same
computational complexity of the single centroids model:
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F= % > v MY 6rj, (D.4)
1],V
where 07; = 74 — #9¢4 is the deviation of i-th CA centroid from the
reference position and M is a symmetric matrix whose linear size is three
times the number of residues in the protein. As already discussed (see
eqn 1.8), within a Langevin scheme, the independent modes of structural
relaxation in the protein corresponds to the eigenvectors of the matrix M.
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