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Introduction

This thesis provides some new results concerning uniqueness and L' stability of solutions

to hyperbolic systems of conservation laws in one space dimension
u + f(u)y =0, z€R, t>0. (1)

Here u = u(t,z) € IR™ is the vector of the conserved quantities, and the flux function
f:Q — IR"™ is a smooth vector field defined on a domain 2 C IR™. We shall assume that
system (1) is strictly hyperbolic, i.e. that, for each u € €2, the Jacobian matrix D f(u)
has n distinct eigenvalues A\j(u) < --- < Ay(u), and that each characteristic family
is either linearly degenerate or genuinely nonlinear in the sense of Lax. Systems of
this type provide models of several nonlinear phenomena (for example in gas dynamics,
traffic flow, elastodynamics) when dissipation effects, such as viscosity, are neglected.

It is well-known that, because of the nonlinear dependence of the characteristic
speeds Ax(u) on the state variable u, solutions of the Cauchy problem for systems of
conservation laws may develop discontinuities in finite time due to gradient catastrophe,
no matter of the regularity of the initial data. Therefore, to achieve global existence
results, it is essential to work within a class of discontinuous functions, interpreting the
system of equations (1) in its distributional sense. Since, in general, weak solutions
of the Cauchy problem for (1) are not unique, an entropy criterion for admissibility is
usually added to rule out non-physical discontinuities.

The existence of global entropy weak solutions of the Cauchy problem for (1) with
small total variation was first established by Glimm in 1965, in the fundamental pa-
per [37], using a probabilistic algorithm. An alternative method for constructing solu-
tions of the Cauchy problem, as limit of a sequence of piecewise constant approximate
solutions defined by a front tracking algorithm, was introduced in the papers of Dafer-
mos [27] for scalar equations and Di Perna [32] for 2 x 2 systems, then extended by
Bressan [10] and Risebro [64] to general n x n systems. By generating more accurate
approximations, this method provides additional insight on the behaviour of solutions.
In the present work, we will take advantage of the properties of wave-front tracking ap-
proximations to estimate how solutions are affected when the initial data are changed,
and to derive some regularity conditions on the solutions to (1) that guarantee the
uniqueness of entropy admissible weak solutions of the corresponding Cauchy problem.

The well-posedness of the Cauchy problem for (1) has been studied by several authors
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[55, 40, 56, 62], starting with the pioneering work of DiPerna [33]. However, apart from
the scalar case [46, 69], a gap remained between the existence and the well-posedness
theory since, while the global existence had been obtained within a space of BV func-
tions, uniqueness and continuous dependence was established in all of these works only
for solutions satisfying additional restrictive regularity conditions.

A completely different approach, the semigroup approach, introduced by Bressan
in [11] and then developed with his collaborators in [15, 17, 18, 20, 22, 7], was the first
to provide a general uniqueness theorem within the same class of BV functions where
existence could be proven (see [14] for a resume on this activity). The basic idea involved
in this approach consists in considering the problem of constructing a whole Lipschitz
continuous semigroup of solutions to (1), compatible with the standard solutions of the
Riemann problems, rather than comparing a single pair of solutions. More precisely, a
Standard Riemann Semigroup generated by (1) is a map S : D X [0, 00| — D, defined on
a closed domain D C L', with the properties:

(i) the domain D contains all the functions @ € L' with sufficiently small total varia-

tion;
(ii) for every @ € D, and all ¢, s > 0, one has

S()’a = ’17,, StSsﬂ = St_|_5’l7,; (2)

(iii) there exists a Lipschitz constant L such that, for all u,v € D, t,s > 0, one has

|Sea — Sy < L(|t — 8| + 1@ — Bllp1) 5 (3)

(iv) if @ € D is piecewise constant, then for ¢ > 0 sufficiently small the function
u(t,-) = Siu coincides with the solution of (1) obtained by piecing together the
standard entropic solutions of the Riemann problems determined by the jumps

of 4.

It was shown in [11] that a Lipschitz continuous semigroup of solutions to (1) with the
above properties is necessarily unique (up to the domain) and each trajectory ¢
u(t,-) = Sy turns out to be a weak, entropy-admissible solution of the corresponding
Cauchy problem. Thus, once the existence of such a semigroup is established, a natural
method is available to obtain the well-posedness theory. Namely, in order to prove the

uniqueness of the solutions to a given Cauchy problem with initial data @ = u(z) € D,
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it suffices to show that every entropy weak solution u = u(t,z), that satisfies some mild
assumption either on the local boundedness of the total variation or on the oscillation,

actually coincides with the corresponding (unique) trajectory of the semigroup:
u(t,) = Sy Vit>0. (4)

A regularity condition which implies the identity (4) was introduced by Bressan and
LeFloch in [20]. This condition, called Tame Variation, controls the total variation
of an entropy weak solution u along space-like segment in the ¢-z plain, and is clearly
satisfied by solutions constructed by the Glimm scheme or by a front tracking algorithm.

In Chapter 1 we introduce a weaker regularity assumption, the so-called Tame Os-
cillation, which controls the local oscillation of u in a forward neighborhood of each
point in the ¢-z plane, and is sufficient to guarantee uniqueness of entropy weak solu-
tions. In turn, this result yields the uniqueness of weak solutions which satisfy a decay
estimate on positive waves for genuinely nonlinear systems, thus extending a classical
result proved by Oleinik [63] in the scalar case. In fact, this decay property implies both
the entropy admissibility condition and the Tame Oscillation condition.

An alternative regularity assumption sufficient to guarantee uniqueness has been
given by Bressan and Lewicka in [22]. This condition requires that the solution u =
u(t,z) has bounded variation along a suitable family of space-like curves. In all cases,
the uniqueness is established within the same class of functions where an existence

theorem can be proven.

In order to establish the L! stability estimate (3) for a semigroup of solutions gen-

erated by (1), three different approaches were proposed in the past years.

1. Comparison of solutions by homotopy and linearization. To estimate the distance
between two solutions u and v, one constructs a one parameter path y; : 6 — u9(t)
of solutions joining v with v, and then study how the L' length of ; varies in

¥ remain sufficiently regular, the length of ;

time. As long as all solutions u
can be computed integrating a suitable defined weighted norm of a generalized
tangent vector. By deriving careful a-priori estimates on the weighted norm of
these tangent vectors, one provides a bound on the length of 7, and hence on
the distance ||u(t) — v(t)||1,1- The L' stability of entropy admissible BV solutions
was obtained following this approach by Bressan and Colombo [15], in the case of

systems of two equations, and by Bressan, Crasta and Piccoli [17], in the general
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case of n X n systems with genuinely nonlinear or linearly degenerate characteristic
fields.

2. Construction of a Lyapunov type functional. It is explicitly defined a functional
® = ®(u, v) which is equivalent to the L! distance and decreases along couples
of solutions to the hyperbolic system (1). A key role in the stability analysis
of this approach is played by a new entropy functional for genuinely nonlinear
scalar equations introduced by Liu and Yang in [58]. The construction of a robust
functional with the above properties for general n x n systems was established by

Bressan, Liu and Yang in [23], and by Liu and Yang in [61].

3. Haar’s method of admissible averaging matrices. Given any two entropy solutions
u, v of (1), one considers an averaging matrizc A = A(u,v) satisfying the consistency
property

A(u,v)(v —u) = f(v) — f(u), u,v € R". (5)

The problem of proving the L stability estimate (3) is then (essentially) equivalent
to showing the uniqueness and L' stability for the linear hyperbolic system with

discontinuous coefficient
"pt + (A"p)w =0. (6)

This approach, closely related to Holmgren’s method (see [54] and the references
therein), was first pursued by Hu and LeFloch in [41] to study the continuous

dependence of solutions for systems of conservation laws.

The L!-stability results obtained in this thesis are obtained partly by using the omotopy
approach (Chapters 2, 3), and partly following the Haar’s method (Chapter 4).

In Chapter 2 we consider the problem of extending the construction of the Lipschitz
continuous semigroup of solutions developed in [8, 15, 17, 23] to domains of L functions
with possibly unbounded variation. We recall that, for scalar conservation laws, the
uniqueness and continuous dependence of L™ solutions was established by a classical
work of Kruzhkov [46]. On the other hand, in the case of n x n systems, the available
stability results apply only to domains D of functions with uniformly bounded total
variation. A counterexample by Bressan and Shen [24] of a 3 x 3 strictly hyperbolic,
quasilinear system shows that, in general, the Cauchy problem with L data may not

be well posed.
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It is thus natural to ask in which cases the construction of a continuous semigroups
of solutions can be pursued within domains of L*° functions. In Chapter 2 we show that
this can be achieved in the case of Temple class systems, i.e. systems for which rar-
efaction and shock curves coincide [40, 66], under the assumption that all characteristic
fields are genuinely nonlinear. Namely, for a large class of initial data v € L, we prove
the existence of solutions ¢t — S;u to the corresponding Cauchy problem, obtained as
limit of front-tracking approximations, which depend on # in a Lipschitz continuous way,
w.r.t. the L' norm. Using similar techniques to those developed in Chapter 1, we then
show that each semigroup trajectory u(t,-) = Syu provides the unique weak solution of
the Cauchy problem for (1), with initial data @, which satisfies an entropy condition of
Oleinik type, concerning the decay of positive waves.

The proof of the Lipschitz continuous dependence on the initial data of the trajec-
tories of the semigroup is achieved by the homotopy type approach. As in [15, 8, 7], the
basic idea consists in “differentiating” a family of front tracking approximate solutions
w.r.t. a parameter which determines the locations of the jumps, and in providing a pri-
ori bound on the norm of the resulting “shift differential”. The key stability estimate is
obtained relying on two remarkable properties of genuinely nonlinear systems of Temple

class:

a) By genuine nonlinearity and finite propagation speed, the total amount of waves
in a solution u(t,-) which can be influenced by shifting a single wave-front of u at

time ¢ = 0 remains uniformly bounded for all ¢ > 0.

b) For solutions of Temple class systems, the support of perturbations satisfies a

special localization property.

In Chapter 3 we study the well-posedness of the initial-boundary value problem

ug + f(u)y, =0, t>0, z>0,
w(0,z) = u(z), (7
u(t,0) = u(t),

for the same class of Temple systems considered in Chapter 2. Here, following [34], the

boundary condition is intended in the (weak) form

u(0+,1) € V(@a(t),  t>0, (8)
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where V(4(t)) is a time-dependent set (the set of admissible boundary values) that is
defined from the boundary data using the notion of Riemann problem, while u(0+,t)
represents the (weak) trace of u. As in the case of the Cauchy problem, also for the
mixed initial-boundary value problem the existence and well-posedness theory has been
established for scalar conservation laws within domains of L functions [45, 66, 49],
while, in the case of n x n systems, the global existence and stability results available
apply only to solutions with small total variation (see [1, 2, 3, 65] and references therein).

In order to extend these results to a class of L*° functions for n X n genuinely
nonlinear Temple systems, we apply in Chapter 3 the same technique developed in
Chapter 2 and construct a Lipschitz continuous semigroup of solutions to (7), whose
trajectories satisfy a suitable entropy condition of Oleinik type.

Having in mind applications of Temple systems to study problems of oil reservoir
simulation, multicomponent chromatography, as well as in models for traffic flows, in
the second part of Chapter 3 we focus our attention on (7) from the point of view of
control theory. Namely, following the same approach adopted by Ancona and Marson
[5, 6] for scalar conservation laws, we fix a set & C L* of boundary data regarded as
admissible controls, and, taking the initial data 4 = 0, we consider the set of attainable

profiles at a fixed time T

A(T,U) = {u(T, -) + wu is a solution to (7) with 4 =0 and 4 € Z/{} ,
and at a fixed point in space z > 0

Az, U) = {u(,i) : w is a solution to (7) with @ =0 and % € U} )

Motivated by applications to calculus of variations and problems of optimization we
establish closure and compactness in the L! topology of the attainable sets in connection

with a class of L° boundary controls.

In Chapter 4, following Hu and LeFloch [41], we investigate the L' stability issue
from the standpoint of Holmgren’s and Haar’s methods, and apply this technique to the
scalar conservation law. Extending the result obtained in [41] for piecewise constant
solutions, we establish sharp L' continuous dependence estimates for general solutions

of bounded variation. More precisely, we recover an estimate of the form

[[u(t) = v(&)llw( +/ M(r;u,v) dr <[lu(s) = v(s)|w), 0<s<t, (9)
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for any two entropy solutions of bounded variation « and v of (1), where ||.||l,) is
a weighted norm equivalent to the standard L' norm on the real line. In (9), the
positive term M (7;u,v) is determined explicitly evidentiating the contributions of all
the discontinuities and the continuous parts of the solutions, and provides a sharp bound
on the strict decrease of the L' distance. Precisely, the term M turns out to be cubic in
nature; a stronger quadratic decrease is produced where the solutions cross each other.
Observe that, with a suitable choice of the definition of the wave strengths, the weighted
norm reduces to the Liu-Yang’s functional [58]. Our approach provides a new derivation
and some generalization of this L' functional. Note that the weight is far from being
unique and we believe that this flexibility in choosing the weight may be helpful in
certain applications.

Two different strategies are pursued. On one hand, we justify passing to the limit in
an L' estimate valid for piecewise constant wave-front tracking approximations. On the
other hand, we use the technique of generalized characteristic and, following closely an
approach by Dafermos [29], we derive the sharp L' estimate directly from the equation.
This approach can be extended to n x n systems with genuinely nonlinear characteristic
fields ([39]).
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1.1 Introduction to Chapter 1

Consider a scalar conservation law in one space dimension:
ut + f(u)g = 0. (1.1)

If f is strictly convex, say f”(u) > k > 0 for every u, a well known estimate of Oleinik

[62, 67] states that
y—x

u(tay) - u(tax) < p

(1.2)

for all t > 0, z < y and every entropy-admissible solution of (1.1). Conversely, if
u = u(t, z) is a weak solution satisfying (1.2), then w is entropy-admissible. In particular,
given an initial condition

u(0,z) = u(x), (1.3)

the above decay estimate singles out a unique weak solution to the Cauchy problem,
continuously depending on the initial data % in the L! norm.

The aim of the present Chapter is to prove an analogous uniqueness theorem, valid
for BV solutions of n x n hyperbolic systems. The following standard conditions [47, 67]

will be assumed throughout:

& The function f is smooth, defined for u in a neighborhood 2 of the origin. The
system (1.1) is strictly hyperbolic. Each characteristic field is either linearly de-

generate or genuinely nonlinear.

Under these assumptions, it was proved in [15, 17] that there exists a family of entropy
weak solutions to (1.1) continuously depending on the initial data. More precisely, there
exists a closed domain D C L!(IR; IR™), constants 1y, L > 0, and a continuous semigroup

S : D x [0,00[— D with the properties:
(i) Every function @ € L' with Tot.Var.(@) < ng lies in D.
(i) For all u,v € D, t,s > 0 one has ||Syu — SS@HLI <L(t—s|+lu— ra||L1).
(iii) If w € D is piecewise constant, then for ¢ > 0 sufficiently small the function

u(t,-) = Siu coincides with the solution of (1.1), (1.3) obtained by piecing together

the standard self-similar solutions of the corresponding Riemann problems.

(iv) Each trajectory t — wu(t,-) = S;u is a weak, entropy-admissible solution of the

corresponding Cauchy problem (1.1), (1.3).
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(v) Every weak solution obtained as limit of Glimm or front tracking approximations

coincides with the corresponding trajectory of the semigroup.

An alternative, much shorter proof of this same result was recently given in [23]. The

positively invariant domain D has the form
D= cl{u € L'(IR; R"); wu is piecewise constant, V (u)+ Cp- Q(u) < 60}, (1.4)

for some constants Cp,dy > 0. Here V(u) and Q(u) denote the total strength of waves
and the wave interaction potential of u, while ¢l denotes closure in L'. On a given
domain D, the semigroup S with the above properties is unique.

Following [11], we say that a map S with the properties (i)—(iii) is a Standard
Riemann Semigroup (SRS). See [12] for a general survey. These results provide a new
method for proving the uniqueness of the solution u to a given Cauchy problem (1.1),
(1.3). Namely, it now suffices to show that u coincides with the corresponding semigroup
trajectory:

u(t,-) = Sia for all ¢ > 0. (1.5)

In turn, a convenient way to prove (1.5) is to use the error estimate [13]

[w(T) — Sru(0)|| . < L- /OT {mgﬁf e + 1) ;Sh”(t)”Ll } dt, (1.6)

valid for every Lipschitz continuous map u : [0,7'] — D. By showing that the integrand
on the right hand side of (1.6) vanishes for almost every time ¢, one can thus establish
(1.5). This approach was adopted in [20], proving the uniqueness of the entropy weak
solution u = u(t,z) which satisfies an additional regularity assumption. This addition-
al condition, called Tame Variation, controls the total variation of u along space-like
segments in the ¢-z plane.

In the first part of this Chapter we show that the Tame Variation can be replaced
by a weaker assumption, restricting the oscillation of u on a forward neighborhood of
each given point. Observing that a weak solution of (1.1) is defined up to a set of
measure zero in the t-z plane, for sake of definitness we shall henceforth consider its
right continuous version, so that

u(t,z) = yl_i)lg_u(t,y) for all (¢,z). (1.7)
This is meaningful since each map z — wu(t,z) has bounded variation. By Ai(u) <

- < Ap(u) we denote the characteristic speeds, i.e. the eigenvalues of the Jacobian
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matrix D f(u). Following [47, p. 555], we say that a shock is entropy admissible if the
characteristics of the same genuinely nonlinear family impinge on the shock line from
both sides.

For clarity, our main assumptions are listed below.

(A1) (Conservation Equations) The function u = u(t,z) is a weak solution of the
Cauchy problem (1.1), (1.3), taking values within the domain D of a Standard
Riemann Semigroup S. More precisely, u : [0, 7] — D is continuous w.r.t. the L'

distance. The initial condition (1.3) holds, together with

// (upr + f(u)pg) dzdt =0 (1.8)

for every C' function ¢ with compact support contained inside the open strip

10, T[ xIR.

(A2) (Entropy Condition) Let u have an approximate jump discontinuity at some
point (7,£) €]0,T[xIR. More precisely, let there exist states u ,u™ € Q and a
speed A € IR such that, calling

- if 2 < &4+ At —7),
Ut,r) ={ ifo <EtAt-7) (1.9)
ut ifz>&4+ At —1),
there holds
1 T+p E+p
m / ju(t, ) — U1, )| dedt = 0 (1.10)
P20+ p% Jrp Je—p
Then, for some i € {1,...,n}, one has the entropy inequality:
Ai(u™) > A > N(uh). (1.11)

(A3) (Tame Oscillation Condition) There exists constants K and A\* such that, at
every point (7,£), one has

lim sup ‘u(t,w) — u(T, E)‘ <K- ‘u(T, &+) — u('r,&—)‘ (1.12)

t—=74+, zE

and

o, ) =) a1
|z =& > N (t—7)
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By u(7,€%) we denote here the right and left limits of the map = — wu(r,z) at the
point £. They certainly exist because this map has bounded variation. Observe that
the Tame Oscillation consists of local L™ type estimates. These are much weaker than
the global BV type estimates required by the Tame Variation assumption in [20]. Yet,

(A3) suffices to guarantee uniqueness of entropy weak solutions:

Theorem 1.1.1 Let the basic assumptions (&) hold, so that the system (1.1) generates
a Standard Riemann Semigroup S : D x [0,00[+ D. Then, for every u € D, T > 0,
the Cauchy problem (1.1), (1.3) has a unique weak solution u : [0, T] — D satisfying the
assumptions (A1)—(A3). Indeed, these conditions imply the identity (1.5).

In the second part of this Chapter we show that, for genuinely nonlinear n x n
systems, the Oleinik type estimates on the decay of positive waves imply both the
Entropy Condition and the Tame Oscillation Condition stated above. This will provide
an additional uniqueness theorem for weak solutions of the Cauchy problem (1.1), (1.3).

Decay estimates were proved in [57] for approximate solutions constructed by the
Glimm scheme, and in [16] for exact solutions obtained as limit of front tracking ap-
proximations. A careful statement of these results requires some notations.

Let A(u) = Df(u) be the Jacobian matrix of f at u. Smooth solutions of (1.1)

thus satisfy the equivalent quasilinear system
ur + A(u)ug, =0. (1.14)

Call Aj(u) < -+ < Ap(u) the eigenvalues of A(u). Moreover, choose right and left

eigenvectors r;(u), l;(u), i = 1,...,n, normalized so that
1 ifi=j7,
Iril =1, (li, 75) = o (1.15)
0 ifi#j
for every i € {1,...,n} and all u in the domain of f. The assumption on the genuine

nonlinearity of the i-th characteristic family can be written as

A (u + hr; (u)) — Ai(u)

Ai-ri(u) = 1i > K . 1.1
Vi - ri(u) lim T >k >0 (1.16)
For a given state u € R" and i = 1,...,n, we denote by

o — Si(o)(u), o — Ri(o)(u)
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respectively the i-shock and the i-rarefaction curve through w, parametrized by arc-

length. Moreover, we consider the composite curve

. { Ry(0)(u) if >0, 117

Si(o)(u) if o <0.

As in [16], the definition of the Glimm interaction functional can be extended to general
BV functions. Let w : IR — IR™ have bounded variation. Then the distributional
derivative 4 = Du is a vector measure. Let z1,Z2,... be the points where u has a
jump, say Au(z,) = u(ze+) — u(ze—). Call o},...,0" the waves generated by the

corresponding Riemann problem at z,. Recalling (1.17), this means

w(zo+) = Up(ol) o 0 \Ifl(aé)(u(wa—)) . (1.18)
For i = 1,...,n we can now define u’ as the signed measure such that, for every open
interval J,
Wi(T) = / I - Du, (1.19)
J
where
li(z) = l;(u(z)) if u is continuous at x, (1.20)
li(zy) - Au(zy) = o, if u has a jump at z,. .

Observe that, for a point of jump as in (1.18), the definitions (1.19)-(1.20) simply mean
1t ({za}) = 0. In this case, (1.20) does not uniquely determine the value of I;(zq).
However, since

ol = 1i(u(za)) - Aulze) + O(1) - |Au(zy)|? (1.21)

where O is the Landau order symbol, we can choose the vector /; so that

li(za) — (u(xa))‘ = 0(1) - |Au(za)|. (1.22)
Call p*t, u*~ the positive and negative parts of the signed measure p?, so that
1—

ph= =, | = pt 4t (1.23)

The total strength of waves in u is defined as

V() =) Vi(u), Vi(u) = |W'|(R), (1.24)
=1
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Let N be the set of those indices i € {1,...,n} such that the i-th characteristic family
is genuinely nonlinear. The interaction potential of waves in u is then defined as
Qu) = > (I x1u']) {(z,v); = <y})
1<i<j<n

) (" x ) (@) z#y)}). (1.25)

ieEN

The decay estimates in [16] can be stated as follows.

Proposition 1.1.2 Let the i-th characteristic field be genuinely nonlinear. Then there
exist constants C1,6 > 0 such that, for every solution u with small total variation

obtained as limit of wave-front tracking approzimations, one has

(1) < =5+ O [QUu(s) — Qu(t)]. (1.26)

for every interval [a,b] and all t > s > 0.

Here and in the sequel, by uf' we denote the measure of positive i-waves in u(t, -).

Intuitively, (1.26) says that these positive waves can be split in two parts:

- The “old” waves, generated before time s, that have decayed throughout the in-

terval [s,t] due to genuine nonlinearity. Their density is O(1) - (¢t — s)~*.

- The “new” waves, generated after time s. Their density can be arbitrarily large,

but their total strength is controlled by the decrease in the interaction potential.

Our second main result provides a converse to Proposition 1.1.2, showing that the u-

niqueness of solutions to the Cauchy problem can also be derived from the following.

(A4) (Decay Assumption) There exist a constant x > 0 and a nonincreasing function

Z such that b
—a
i (la. b)) < — %< 4 [2(s) - 2(0). (127
K(t — )
for every interval [a,b] and alli=1,...,n,t> s> 0.

Theorem 1.1.3 Let the system (1.1) be strictly hyperbolic, with each characteristic field
genuinely nonlinear, so that it generates a Standard Riemann Semigroup S on a domain
D as in (1.4), with 9 > 0 sufficiently small. Then, for every a € D, T > 0, the Cauchy
problem (1.1), (1.8) has a unique solution u : [0, T] — D satisfying (A1) and (A4) for
some constant Kk and some nonincreasing function Z. Indeed, these conditions imply the
identity (1.5).
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Several uniqueness results for entropy weak solutions to hyperbolic systems of
conservation laws have appeared in the literature. For scalar conservation laws, the
uniqueness and stability problem was completely solved by Kruzhkov [46]. In the case
of systems, however, until recently all available theorems required additional regularity
hypotheses on the solutions. In [63, 56], a uniqueness result is proved in the class of
piecewise smooth functions, while in [33] it is shown that if a piecewise regular solu-
tion exists, then it is unique within a class of BV functions. The main result in [54]
establishes the uniqueness of solutions under a restriction on the locations of centered
rarefaction waves. For Temple class systems, stronger uniqueness theorems can be found
in [30, 40]. Relying on the semigroup approach proposed in [11], the uniqueness theorem
in [20] was the first one which could be applied within the same class of BV functions
where an existence theorem is known. The present assumptions (A3) further weaken
the regularity condition used in [20] and are clearly satisfied by the weak solutions ob-
tained as limits of the Glimm scheme [37] or front tracking approximations [12]. As
shown in [16], any limit of front tracking approximations satisfies the decay assumption

(A4), provided that all characteristic fields of the system (1.1) are genuinely nonlinear.

1.2 Preliminary results

In this section we collect some technical lemmas, for later use.

Lemma 1.2.1 Let u: [0,7] x IR — IR" be a function which satisfies the Conservation
Equations (A1), say with Tot. Var.u(t,-) < M for allt € [0,T]. Then the mapt — u(t,-)

18 Lipschitz continuous, i.e.
||U(T") _U(T,a')”L1 < L,|7'—7',| (1.28)
for some constant L' and all 7,7 € [0,T].

PROOF OF LEMMA 1.2.1. Fix any 7 > 7/ > 0 and construct a smooth approximation
to the characteristic function of the interval [7/,7]. For this purpose, take a smooth

nondecreasing function « : IR — [0, 1], such that

0 if x < -1,
a(r) =
1 ife>1,
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and define ap(z) = a(z/h). As h — 0+, ay, thus approaches the Heaviside function.

Consider any smooth function 9 = v (z) with compact support, and define
on(t,z) = [an(t — 1) — an(t — 7)]9(z).

By the assumption on u, using ¢y, in (1.8) and letting A — 0, thanks to the L' continuity

of the function ¢ — u(t,-) we obtain

/1/1(30) [u(T,z) — u(r', z)|dz + /T/I/Jw(x)f(u)dxdt =0.
It thus follows

lu(r,) — (', )| = sup / $(@)u(r, z) — u(r', z))da

vect, Iyl<t
< / Tot.Var. { f (u(t, -)) }dt
< M- Lip(f) - |7 — '],

where by Lip(f) we denote the Lipschitz constant of the function f on the domain
lul] < M. ]

Lemma 1.2.2 Letw :]a, b[+ IR" be an integrable function such that, for some measure

‘ / C w(z) dz

W, one has

< u([(la C2]), whenever a < (1 < (2 < b. (1.29)

Then ,
/ lw()| dz < p(la, b). (1.30)

PROOF OF LEMMA 1.2.2. Observe that, in (1.29), one can replace the closed interval
[¢1,¢2] with an open one. Namely,

G2 {a—¢
‘ / w(z) dz / w(z) dz
1 Cite

Next, fix any € > 0. Then there exists a piecewise constant function » such that

= lim
e—0

< u(l¢s Gl (1.31)

b
/ lw(z) —v(z)|dz <e.
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Calling a = 7y < -+ < zny = b the points of discontinuity of v, we compute

A
™
+
1
—
£
8
§

[ 6@ - w@)a

j i—1 bj i—1
<e+ Zu(]a:j_l, zj[) +/ ‘v(x) - w(a:)‘dx
J a

< 2e+ p(la, b)).

Since € was arbitrary, this proves the lemma. O

Lemma 1.2.3 Let u : [0,T] — D be Lipschitz continuous. At a given point (1,§), let
the conditions (1.9)-(1.10) hold, for some u~,u* € IR", A € IR. Then, for each \* >0

one has

1 &P
lim sup —/ ‘U(T +h, z) —=U(Tt+h, z)| dz = 0. (1.32)
P20+ h<p P Je—rp

ProOOF OF LEMMA 1.2.3. Assume, on the contrary, that there exists § > 0 and se-

quences p, — 0, |h,| < py, such that

E+ X" py
/ lu(r + b, 2) — U(r + h, )] dz > bp, (1.33)
E—Npy

for every v > 1. To fix the ideas, assume h, > 0 for all v, the other cases being entirely

similar. By the Lipschitz continuity proved in (1.28), we have

b
/ {Ju(t.2) ~ U(t,)| ~ |u(t',2) ~ U .2)| }do < 7]t~ | (1.34)

for some constant L*, for every ¢,t' > 0 and every interval [a,b]. It is not restrictive to

assume L* > 1/§. The assumption (1.10) implies

1 T+p  pEHATP
m / u(t,2) ~ Ut )| dedt =0. (1.35)
P20+ P% Jr—p Je—xvp
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However, if (1.33) holds, by (1.34) it follows

/'r-l—pu /ﬁ—i—)\* Pv
T—pv E—XNpy

u(t,x) — U(t,w)‘ dzdt

T+hy E+X py
> o e, {4802
T+hy—(6/L*)py J E=N*py
—-U(t+hy, z)| = L*|7 + hy — t|} dzdt
T+hy
> / dpy —L*(7+ hy, —t) dt
T+hy—(8/L*)py
= 8(5/L%)p; (1.36)
for all v, in contradiction with (1.35). This proves the lemma. 0
Corollary 1.2.4 Under the same assumptions of Lemma 1.2.8, the states u™,u" in
(1.9)-(1.10) satisfy
u” = u(r,&-), ut = u(r, &+). (1.37)

Indeed, taking h = 0 and letting p — 0+ in (1.32) one obtains
u (re4) o]
1 E+p E+p
< limsup ~ </ u(r,&+) — u(r,z)| dz + / |u(r,z) — ut| dx)
3 3

p—0+ P
=0.

The other identity is proved similarly.

Lemma 1.2.5 Let u be a weak solution of (1.1). Let the conditions (1.9)-(1.10) hold at
some point (1,€). Then the states u™,u’ and the speed X satisfy the Rankine-Hugoniot

equations
Au® —u™) = f(u®) = flu). (1.38)

Together with the entropy condition in (A2), Lemma 1.2.5 shows that the states
u~,uT are connected either by an admissible shock or by a contact discontinuity, prop-

agating with speed A.

PROOF OF LEMMA 1.2.5. To prove the lemma, define the function

u” ify < As,

Vi(s,y) = {

u™ if y > As.
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By (1.10) it follows

Jim, //B |u(r + ps, €+ py) = V(s,y)| dyds =0

for every bounded set B C IR?>. Moreover, (1.8) implies
// u(t + ps, &+ py)s(s,y) + f (ulr + ps, €+ py))dy(s,y) dyds =0
for all ¢ € C} and all p > 0. The two above relations imply

/ Vs + F(V)$y dyds =0,

showing that the function V itself is a solution of (1.1). Therefore the Rankine-Hugoniot
equations (1.38) must hold. O

We conclude this section by recalling two local integral estimates that characterize
the trajectories of a Standard Riemann Semigroup.

Two types of local approximate solutions for (1.1) will be considered. One is derived
from the self-similar solution of a Riemann problem, the other is obtained by “freezing”
the coefficients of the corresponding quasilinear hyperbolic system in a neighborhood of
a given point.

Let w : IR — IR™ be any BV function and fix any point £ € IR where w has a

jump. Call w = w(t, z) the unique self-similar entropy solution of the Riemann problem

w(&— ifz <0,
ot (@) =0, w0,a) = Ve (1.39)
w(é+) if z > 0.
Let )\ be an upper bound for the absolute values of all wave speeds. For ¢t > 0, define
t, z— if |z — &| < A,
Ut z) = B T8 iffe - ¢ < X (1.40)
w(zx) if |z — & > At

Observe that the function ¢ + U%(t,-) is Lipschitz continuous w.r.t. the L' distance,
and approaches w as t — 0+.
Next, call A = Df (w(€)) the Jacobian matrix of f computed at the point w(¢).
For ¢ > 0, define U’(t,z) as the solution of the linear hyperbolic Cauchy problem with
constant coefficients
Ul + AU =0, U’ (0) = w. (1.41)
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Lemma 1.2.6 Let S be a Standard Riemann Semigroup generated by the system (1.1),
with domain D as in (1.4). Then, there exists a constant Cy such that the following
holds. For every function w € D, every £ € IR and h,p > 0, with the above definitions
one has
1 E+p—hA
— ‘(Shw) (z) — Uﬁ(h,x)‘ dz
h E—p+hi
< Cj- Tot. Var.(w; 1€ —p, & U JE, f-l—p[), (1.42)

1 E4+p—hA
—/ ‘(Shw) (z) — Ub(h,w)‘ dz
h E—p+hi

2
<Ci- (Tot. Var. (w; 1€ —p, §+p[)) . (1.43)

For a proof, see [11, p. 217].

1.3 Proof of Theorem 1.1.1

As before, let X be an upper bound for all wave speeds. Let u satisfy the hypotheses
of Theorem 1.1.1. For every R, it suffices to show that u(T,-) = Sru, restricted to the
interval

Jr =[-R+ AT, R - \TY, (1.44)
for all T" > 0. In turn, this can be deduced from the error estimate

T ||u(T +h) — Shu(T)”
[(T) = Srflg s,y < I /0 {lim inf ) } dr,  (145)

h—0+

if we prove that the integrand on the right hand side of (1.45) vanishes almost ev-
erywhere. Recalling Lemma 1.2.1 and the assumption u(t,-) € D, we conclude that
u = u(t,z) is a BV function on the strip [0,7] x IR, in the sense that the distribution-
al derivatives Dyu, Dyu are Radon measures [35]. By a well known structure theorem
[35, 69], there exists a set A C]0,T[ X IR of 1-dimensional Hausdorff measure zero such
that, at every point (7,€) ¢ N , 4 either is approximately continuous or has an approxi-
mate jump discontinuity. We claim that, at every such point of discontinuity, the jump

cannot have a horizontal tangent. In other words, one can never have (1.10) in the case

U if t<T,
U(t,z) = { N . ! ut £ (1.46)
U if t>T,
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Indeed, for every positive constant ¢ (arbitrarily large), from (1.46), (1.10) and (1.28)

we deduce

1 [7tp [étep
cut —u~| = lim —2/ / [ut —u~| dedt
=0+ p* [ 13

1 [7te [pétcep
< limsup —2/ / |u(t,ac) —u(21 — t,x)‘ dzdt
p—0+ P7 Jr £

1 [THe

< lim —2/ L'-2(t—7)dt
p=0+ p% Jo

=TI

Hence [ut — u~| < L'/c for every c, against the second assumption in (1.46).

Taking the projection of N on the t-axis, we conclude that there exists a set
N C [0, T] of measure zero, containing the endpoints 0 and T', such that, at every point
(1,€) € [0,T] x IR with 7 ¢ N, the following property holds.

(P) Either u is approximately continuous at (7,&), or it has an approximate jump
discontinuity, in the sense that (1.9)-(1.10) hold for some states v~ ,u" and some
A € IR. In this second case, Corollary 1 implies u~ = u(7,£-), ut = u(r,&4+).
Moreover, by Lemma 1.2.5 the Rankine-Hugoniot equations (1.38) hold. Hence,
by (A2) the entropy condition (1.11) holds as well.

Theorem 1.1.1 will be proved by establishing the basic relation

1 [R-AT+h)
lim inf —/ lu(T + h,z) — (Spu(r)) (2)|de =0 forall T¢ N. (1.47)
h—=0+ h J pis@r+n)

Let 7 € [0,T] \\V and ¢ > 0 be given. For notational convenience, call 4 the measure of

total variation of u(r,-), so that
1 (la, B]) = Tot.Var.{u(7); ]a, b[}. (1.48)
Let & < ... < &), be the points in [-R, R] such that

p({&}) >

The boundedness of 1 on any bounded interval implies that only finitely many such

points exist. Since 7 ¢ N, for each @« = 1,..., N by the property (P) the two states
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uf = wu(r,€,£) are connected by an entropy-admissible shock, travelling with some

speed A®. Moreover, introducing the functions

- if & < &, + At — 7),
Ualt, z) = “j“r n 57 (t=7) (1.49)
ug ifx > &, + Xt —71),
one has
o € +p
lim / / — Ua(t,2)| dzdt =0 (¢=1,...,N).  (1.50)
p—0+ p — e, —
For any fixed A* > 0 (arbitrarily large), Lemma 1.2.3 implies
1 [t
lim — / ‘u(T +h,z) — Uy(T + h,:v)| dz = 0. (1.51)
h—0+ h &, —\*h
y (1.51) we can thus assume
6/ _|_)\*
Z / w(t + h,z) — Ua('r-l-h,:v)‘dxge (1.52)

for h > 0 sufficiently small. By (1.42) in Lemma 1.2.6 it follows that the semigroup

trajectory satisfies an entirely similar estimate:

Z /€,+/\* ‘Shu )( ) —Us(T + h,z)| dz

Cl.ZTot.Var.{u(T); 1€l — 2X*h, €] U €., §;+2A*h[}

<eg, (1.53)

for all A > 0 sufficiently small. Indeed, it is not restrictive to assume that \* is larger

than all wave speeds. Combining (1.52) and (1.53) we deduce

N 1 é—l A*
3 E/ [ur + hoo) — (Syu(r) (@) de < 26 forallhelo, K, (154)
gl *

a=

with A* > 0 sufficiently small.
Next, we consider all the remaining points, where u(7,-) is either continuous or has

a jump of strength < €. Choose p > 0 such that

2/) < ml_n |£a 5&*1‘3
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p(la, b)) <e  whenever b—a <2p, Ja,b[ N {&,...&v} =0. (1.55)

Such a p exists, because the total variation of u(7) is bounded and y({z}) < ¢ whenever

z ¢ {1, Ent-
We can now select a finitely many points & < ... < &pr, such that the open

intervals Iy =|€3 — p, &g + p[ satisfy:
D Ui Is 2 [-R, RIN{¢,... . &}
(ii) Every point z is contained in at most two distinct intervals Ig.
Observe that the closed intervals
I = [ = hX", €+ BN
together with the open intervals
Ipp =1 — p+ BN, €54 p— hAY]

still cover [—R, R], for h > 0 sufficiently small.
We claim that, for every 3, there exists hg > 0 such that

‘u('r + h,z) — u(r, fg)‘ < (K +2)e for all z € Igp, h € [0,hg]. (1.56)

To see this, we apply (1.13) with £ replaced by £ — p. By (1.55), there exists 6* > 0
such that

[u(r + b, 2) = u(r,€)| < Ju(r + by 8) = u(r, (€ —p)+)|

Hu(r, € -0 +) - ulr&p)|
<e+e (1.57)

forall h > 0 and = € Igj, with z < g — p + 0*. Similarly,
|u(r + h, ) —u(r,&p)| < 2¢ (1.58)

forallh > 0 and = € Ig ) with z > {g+p—¢6*. For each point (7, z) with |z —{g| < p—6*
we can now apply (1.12) and deduce

|u(7’ +h, y) — u(r, $)| < K|u(7’, z+) — u(T,:v—)| +e (1.59)
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for h > 0 and |y — z| sufficiently small. By (1.59) and (1.55), for some d; > 0 there
holds

[u(r +h, y) —u(r,ép)| < |u(r + b, y) = u(r,z)| + [u(r,2) - u(r,ép)|
< K€—I-2€, (160)

for h € [0,0;], |y — x| < 0. Covering the compact interval [{g — p + 6%, {5 + p — 6%]
with finitely many subintervals [z, — &y, ¢ + d¢], £ = 1,..., N, and choosing hg =
min{d*,d1,...,dn}, we deduce (1.56).

Next, for each 3, define U” to be the solution of the linear hyperbolic problem with
constant coefficients
U+ AU =0, U’(7) = u(r), (1.61)
where A = Df(u(T, fﬂ)). Call Ay,...\, the eigenvalues of A and let l;, 7 be the
corresponding left and right eigenvectors, normalized as in (1.15). Foreveryi=1,...,n
and every choice of (1,(2 € Igp, we now estimate the quantity

G2

E;, = (liy u(t +h,z) — U (1 + h,z)) dz.
G
Observing that (1.61) implies
<lz, Ub (T + h,x) > = <lZ, (1,2 — h;\,)> = <l~z, u(r,x — hS\i)>,

and integrating (1.1) over the domain
D; = {(t,m); telr, 7+h], G+E—7—h)X SISCQ‘I‘(t—T—h)S\i},
we obtain

Ei = /T+h <l (£ (u) = Xau) (2, C1+(t—r—h)5\i)>dt
/ < M) (b G+ (E =7 = W)A)) dt. (1.62)
in (1.6

To estimate the quantity i 2), consider the states
u'iu(t, C1+(t—r—h)5\i), u"iu(t, C2‘|'(t_7'—h);\i), a = u(T,&p).
We then have

<l~z” f(u") o f(ul) . ;\i(U” o ul)> — <l”“ Df(’l]) . (u// o u/) o ;\i(U” o u/)>
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where the matrix A* is defined by
1
A* = / [Df(su" +(1—s)u) — Df(ﬂ)] ds
0
Therefore,
(i £ = 1) =5 = )| < €=l (" =il =), (109

for some constant C' depending only on the second order derivatives of the function f.
By (1.56),
|u" — @ + v’ — i] < 2(K + 2)e. (1.64)

Using (1.63)-(1.64) in (1.62) we deduce that, for some constant Co,
G |
‘ <li, U(T—i—h,.’L‘)—Ub(T+h,$)> dz
G
T+h .
<O 6/ Tot.Var. {u(t); th@(t)}dt, (1.65)

where JZI’@ (t) = )¢+ (t—7 —Rh)XNi, Co+ (t — 7 — h)A;[. Define the positive Radon

measure j; , by setting

1 [7+h .
i (¢, Gf) = E/ Tot.Var.{u(t); J¢, ,(t)}dt,

for every open interval |¢1, (2[. Thanks to (1.65), we can apply Lemma 1.2.2 and obtain

Eg+p—A*h B
/ ‘(li, u(r+h,x)—Ul’(T+h,a:)>‘ dz
Eg—pt+A*h
< Coeh - pin(J€p — p+ Xh, &g+ p— A"h[)
T+h B
— Cye / Tot.Var.{u(t); 16— p+ X+ (t = 7 — )X,
§5+p—)\*h+(t—7—h)/~\i[} dt
h
< Cse / Tot.Var.{u(r + h'); Igp} dh'.
0

We are now ready to estimate

M &g+p—A*h
Z / |u(T+h,:v)—Ul’('r+h,:c)‘ dx
B=1 Eg—p+A*h

§gtp—A*h
Z / i, u(t + h,x) — Ub(T + h,:v))‘ dz

ﬂ 1i=1 p+)\*h



40 CHAPTER 1

eZ/ Tot.Var.{u(t); 1&5 — p+ \*t, &g+ p — A*t[}dt

T+h
=0(1) -e/ Tot.Var.{u(t); R}dt
T
< Cg & h, (1.66)

for some constant C5 and all h > 0 sufficiently small.
On the other hand, applying (1.43) with w = u(7), by (1.55) we deduce

1 [éstp—A"h
i [ |(Shu(r)) (@) = V(7 + h,)| de
&g—p+XA*h

< Cy (Tot Var.{u(r); &5 — p, &+ p[})2
< Cie - Tot.Var.{u(r); 1&5 — p, &+ p[ }. (1.67)

Indeed, it is not restrictive to assume A\* larger than all wave speeds. The two inequal-
ities (1.66) and (1.67) together yield
Eg+p—2"h
/ T+ h,z) — (Shu(T))(:v)‘ dz
&g—p+A*h

< (Cg + 2C} - Tot.Var.{u(r); R})s) (1.68)

Since the intervals I}, ,, I n cover [~ R, R], from (1.52) and (1.68) we finally obtain

1 R

E/ ‘u(r +h,z) — (Sh’U,(T))(.T)‘ dz < (1 + C3+ 20, Tot.Var.{u(T);R})s, (1.69)
-R

for every h > 0 sufficiently small. Since ¢ > 0 was arbitrary, this establishes (1.47).

Using (1.47) in (1.45), Theorem 1.1.1 is proved.

1.4 Proof of Theorem 1.1.3

We first recall a result of real analysis [44, p. 320]. Let Z : [0,T] — IR be a nonincreasing
function. Then, for every M > 0 there holds

‘Z(t)—Z(T)

2[Z(0) — Z(T)]
7 . (1.70)

-T

meas {7’ €10,77;

>Mforsomet7é7}§

From (1.70) we deduce the existence of a set N of measure zero such that, for each

T € [0, 7]\ NV, there exists a constant M (7) satisfying

|Z(t) - Z(r)| < M(r)[t—7|  forallte [0,T). (1.71)
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Recalling the structure theorem for BV functions [35, 69], we can also assume that, for
all 7 ¢ N and all £ € IR, either u is approximately continuous or it has an approximate
jump discontinuity at the point (7,&).

From now on, we fix 7 ¢ A and call M = M(7) the corresponding constant in
(1.71). We first prove that, at time 7, the Decay Assumption (A4) implies the Entropy
Condition (A2). Let ¢ be a point of jump for the function xz +— u(7, z), so that (1.9)-
(1.10) and (1.38) hold. In particular, we have

U(Ta §+) = \IJZ(O-) (U’(Ta 6_))

for some ¢ € IR and some i € {1,...,n}. Applying (1.27) with a = b = ¢, we find

o= ui({€)) < [2(t) - 2(r)] < M(r 1) (1.72)
for all 0 < ¢t < 7. Letting ¢t — 7—, we conclude ¢ < 0. Hence the entropy condition

(1.11) holds.

It now remains to prove that the Tame Oscillation Condition (A3) also holds.
Assuming that the constant g > 0 in (1.4) is sufficiently small, we can choose a unit
vector e and a constant ¢y > 0 such that

2 (e, Wilo)w)) > co (1.73)

for |u| < dp, |o] < dp. Recalling that the maps z + u(t,z) were assumed right continu-

ous, from (1.73) it follows
(e, u(t,b) — u(t,a)) Zu (Ja,b]) — co - Zut (Ja, b)) (1.74)

for all a < b and ¢ > 0. We claim that (1.12) holds with K = 2/¢y. Indeed, assume by

contradiction that there exists a point £ and sequences h,, — 0+ and z,, — & such that

|u('r+h,,,:v,,) — u(T, 5)‘ p | (1,6+) — (T,f—)‘. (1.75)

By Lemma 1.2.3 we can select sequences a, — £— and b, — &+, with ay < z, < by,
such that (by possibly taking a subsequence and relabelling)

U, = u(T + h,,,a,,,) — U(T,f—), ,4; = (T + hu,bu) - U(T,f—l-).

We can also assume that

Uy =u(7+ hy,z,) = 0
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for some 4. Set 0, = b, — a,. Applying the decay estimate (1.27) to the interval
[T — /6, T+ h,] we obtain

% dy
MT_:—h,, ([au;bu]) < m + [Z(T — \/5) — Z(T + h,,)]
< \/:_V (1.76)
Therefore,
VILIEONT-M ([av, b)) = 0. (1.77)

Using (1.74) and (1.77), and recalling that all functions z — u(t, =) are right continuous,

we now estimate

[u(r,64) = u(r,-)| > [(e, u(r,&+) - u(r,-))]

. . _|_ _ -
- Vli)nolo <e1 Uy U’u)‘
n .
> co;h;gggfui;m (Jav, b)) (1.78)
1=
Moreover,
lu(r,é+) — @] < ll)m |lut — i |
V—00
< Zhyn_l)lo:gf,u +hy ]CC,,, bu]) (1.79)
Together, (1.78) and (1.79) yield
- 1
‘U(T,£+) - u‘ < a‘u(’rag-l_) - U(T,f—)‘, (180)

which proves (1.12), since u(7, &) = u(r,£+) by the convention (1.7).

Finally, we show that the decay assumption (1.27) also implies (1.13), where \* is
any upper bound for all characteristic speeds. If the map = — u(7,z) is continuous at
x =&, then (1.13) is an easy consequence of (1.12). Now consider the other case, where
u has an approximate jump discontinuity at (7,£), so that (1.9)-(1.10) hold, for some
u”,u", \ satisfying (1.38). Assume by contradiction that exist sequences h, — 0+ and
z, = &+, with x, — & > X\*h,, such that

lim u(7 + hy, z,) =0 # u(r,&+). (1.81)

Vv—00
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Since A < A*, by (1.32) there exist sequences a,,b, — £+ with £ + Ahy, < a, < z, < by
such that

u, =u(T + hy, a,) = u(7,€+), ul = u(t + hy, by) = u(r, €4).
Repeating the same arguments in (1.78)-(1.80), we conclude
1
|ﬂ - u(7’,§+)‘ < a|u(7,§+) — u(T, £+)| =0.

This establishes the limit (1.13) in the sector where z > £ + A*(t — 7). The case
x < & — X*(t — 7) is entirely similar.

Thanks to the above analysis, for all 7 ¢ N and £ € IR, the assumptions (A2)-
(A3) hold. Therefore, we can repeat the arguments in Section 3 and establish (1.47).
By (1.45), this implies u(T') = Stu for all T' > 0, proving Theorem 1.1.3.

1.5 Concluding remarks

We conclude with a few observations on the role of the regularity assumption (A3)
toward the uniqueness of solutions of the Cauchy problem (1.1), (1.3). In our proof,
this assumption is used at one single step, namely in the estimate (1.65) of the distance
between a weak solution w and the solution U’ of an approximating linear problem.
While deriving this particular estimate, we are not relying on any entropy condition.
Therefore we need an assumption which rules out the appearance of large oscillations
immediately after time 7. For general n x n systems, it is not clear whether (A3) could
actually be deduced from (A1)-(A2), as in the scalar case.

In [20], a stronger regularity assumption was used, namely

(A5) (Tame Variation Condition) There exists a constant C' such that, for every
horizontal segment I in the ¢-z plane and every space-like segment I in the domain

of dependency of I',; one has

Tot.Var.{u; '} < C'- Tot.Var.{u; T'}. (1.82)

It is not difficult to show that (A5) implies (A3). Indeed, fix any point (7,£) and
consider sequences t, — 7+, , — &. Let A be an upper bound for all wave speeds and
define

pu = |z — €[+ Aty — 7).
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Clearly, p, — 0. Consider the horizontal segment I'), with endpoints (7, &€ —p,), (1, €+
pv), and the space-like segment I}, with endpoints (t,,z,), (7, £+ p,). Applying (1.82)
we obtain

lim sup‘u(t,,,acy) - U(Taf)|

V—0Q

< limsup{‘u(t,,,:v,,) —u(r, &+ pu)| + |U(T,€ + pv) — u(r, f)‘}

V—oQ

< (C +1) - limsup Tot.Var.{u(r); T, }

V—0oQ

<(C+1)- ‘u(T,é“—I—) - u(7,§—)|.

This yields (1.12) with K = C + 1.

To prove (1.13) with \* = A, assume 7, — &, t, — T4, with 7, > & + S\(t,, - 7).
Calling T",, the segment with endpoints (7‘, T, S\(t,, — 7')) and T, the segment with
endpoints (t,,x,), (7', T, — S\(t,, — T)), an application of (1.82) yields

lim sup ‘U(tua zy) — u(T,é+) ‘

V—00

< limsup C - Tot.Var.{u(r); T, } + limsup |u(r, z, — At, — 7)) — u(r, &+)|
v—00 vV—00

=0.

It is worth observing that Theorem 1.1.1 remains valid under assumptions somewhat
weaker than (A3). Namely, in (1.13) one can allow the positive number A\* to depend
arbitrarily on the point (7,&). Moreover, instead of (1.12), one can assume that for
almost every 7 there exists a continuous function K, = K, ({) with K,(0) = 0 such that

lim sup |u(t,w) — u(’r,ﬁ)‘ < KT(|U(T, §+) — U(Taf_)D-

t—=7+, €

This extension requires only minor modifications of the original proof.
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2.1 Introduction to Chapter 2

Consider the Cauchy problem for a strictly hyperbolic system of conservation laws in

one space dimension

ur + f(u)y =0, (2.1)
u(0,z) = u(x). (2.2)

For initial data with small total variation, the global existence of weak solutions is well
known [37]. More recently, various papers [8, 11, 15, 17, 18, 20, 22, 23, 59, 60] have
established the uniqueness and Lipschitz continuous dependence on the initial data for
entropy admissible BV solutions. We recall that, for a scalar conservation law, the
classical work of Kruzhkov [46] proved the stability of solutions of (2.1) within a domain
of L functions. On the other hand, in the case of n x n systems, the available stability
results apply only to domains D of functions with uniformly bounded total variation.
It is thus natural to ask whether the Lipschitz continuous semigroups of solutions
constructed in [8, 15, 17, 23] can be extended to domains of L functions with possibly
unbounded variation. The present Chapter provides an answer to this question in the
case of Temple class systems [40, 66]. Namely, we show that, if all characteristic fields
are genuinely nonlinear, then for a wide class of initial data # € L*° the Cauchy problem
(2.1)-(2.2) has a unique entropy weak solution, depending Lipschitz continuously on .

Any two such solutions thus satisfy

Hu(t, ) —wo(t, -)”L1 <L- Hu(O, -) — v(0, -)||Ll (2.3)
for some Lipschitz constant L independent of ¢. By a counterexample, we show that the
assumption of genuine nonlinearity cannot be dropped. Indeed, for a particular 2 x 2
Temple class system with a linearly degenerate characteristic field, the L entropic
solutions depend continuously but not Lipschitz continuously on the initial data.

The construction of the semigroup is achieved by the same technique as in [8, 15].
We consider a family of piecewise constant approximate solutions obtained by a front
tracking algorithm [8, 10], which in this case represents a natural extension of [27]. The
distance between two approximate solutions u,v is then estimated by constructing a
path of solutions connecting v with v and keeping track of how the length of this path
changes in time.

As in [8, 15], the heart of the matter is to provide a priori bounds on the norm of

a shift-differential. Let a piecewise constant initial data u(0,-) be perturbed by shifting



48 CHAPTER 2

the location of one of its jumps. Call o the strength of this jump and ¢ its shift rate.
At time ¢t > 0, the corresponding solution u(t,-) will contain jumps, say of strength
01,--.,0m, shifting at rates &,...,&,. To prove stability, one has to establish the key
estimate

m

D ol < L-lo¢] (2.4)

j=1
with a constant L independent of ¢. In general, an estimate of the form (2.4) holds only
within a class of solutions with uniformly small total variation. For genuinely nonlinear
systems of Temple class, however, we show that (2.4) can be satisfied with a constant
L independent of the total variation of u. This remarkable property is based on two

special features of such systems:

1. By genuine nonlinearity and finite propagation speed, the total amount of waves in
u(t,-) which can be influenced by shifting the wave-front ¢ remains uniformly bounded
for all t. Indeed, call Z the initial location of o and let ) be an upper bound for the
absolute values of all characteristic speeds. Then an infinitesimal shift of the position
of o can affect the values of u(t,-) only within the interval of dependency I(t) = [Z —
M, E+:\t]. On the other hand, by the decay of positive waves due to genuine nonlinearity,
the total amount of waves in u(t,-) contained in an interval [a,b] can be estimated as
O(1) - [1+ (b—a)/t]. In particular, the amount of waves contained in I(#) is uniformly
bounded.

2. For solutions of Temple class systems, the support of perturbations satisfies a special

localization property. Namely, let u be a solution of (1.1) and fix an interval [a,b]. For
b

i=1,...,n, call t = z%(t), t — z](t) respectively the i-characteristics originating from
the points a,b (for simplicity, in this informal discussion we are assuming that such
characteristics are unique). Now consider a slightly perturbed solution v with v(0,z) =
u(0,z) for z ¢ [a,b]. In general, at any time ¢ > 0, the two solutions u(t,-), v(t,-)
may have different values throughout the interval of dependency I(t) = [z4(t), z%(t)].

n

However, introducing the integrated functions

U(t,z) = /0 "ult,y) dy, Vitz) = /0 " o(t,y) dy,

ifU(0,-) and V (0, -) coincide outside [a, b] then the solutions u(t, -), v(¢, -) can be different
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only on a small neighborhood of the set
J(t) = [#1®), #2(0)].

This property is closely related to the representation formula for a solution of the non-
linear equation U; + f(U,) = 0 in terms of the envelopes of n families of hyperplanes
[66]. We shall repeatedly take advantage of this property in our calculations. Indeed, it
will allow us to replace an initial data 4 with a new data ¥ having uniformly bounded
variation, without affecting the values of the solution u(¢, ) in a neighborhood of a given

point.

As soon as the basic estimate (2.4) is obtained, a standard argument yields the
Lipschitz continuous dependence of front tracking approximations from the initial data.
Since the Lipschitz constant is independent of the total variation, taking limits we
obtain a semigroup of solutions defined on a domain of L functions. Using techniques
developed in [18], we then prove that each semigroup trajectory u(t,-) = Syu provides
the unique weak solution of the corresponding Cauchy problem (2.1)-(2.2) which satisfies
a suitable “entropy condition” of Oleinik type [16, 18, 40].

Concerning the existence and uniqueness of solutions to Temple class systems with
bounded initial data, some earlier results can be found in [30, 40, 66]. For some special
2 x 2 systems, the continuous dependence of solutions within a domain of L initial

data has been analyzed in [9, 24].

The Chapter is organized as follows. Section 2.2 contains basic definitions and
the statement of the main results. In Section 2.3 we describe the construction of front
tracking approximate solutions, while Sections 2.4 and 2.5 contain the basic a priori
estimates. A proof of the main theorems is given in Section 2.6, while the last section
contains a simple example showing that the Lipschitz continuous dependence may fail

if one of the characteristic fields is linearly degenerate.

2.2 Statement of the main results

Let (2.1) be a strictly hyperbolic system of conservation laws, where f : Q +— IR" is a
smooth vector field defined on some open set 2 C IR™. Call A(u) = D f(u) the Jacobian
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matrix of f and denote by Aj(u) < --+ < A,(u) its eigenvalues. The right and left
eigenvectors of A(u) will be written as r;(u), l;(u) respectively, and normalized so that
i) =1 wo @ ={ 7 25)
ri{u)| = \U) - Ti\U) = .
' ’ n 0 if i#j.
We recall that the i-th field is genuinely nonlinear if, by a suitable orientation of the
eigenvectors r;, at every point u € {2 one has DA; - r; > 0.
The system (2.1) is of Temple class if there exists a system of coordinates w =
(w1, ..., wn) consisting of Riemann invariants, and such that the level sets {u € Q; w;(u) =
constant} are hyperplanes [66]. For a Temple class system, the integral curve of the vec-

tor field r; through a point ug is the straight line described by the n — 1 equations
wj(u) = w;(uo) j # 1.

In particular, shock and rarefaction curves coincide [68].

We now consider a convex, compact set £ C 2 having the form
E = {u €Q;  wi(u) € [ai, bi i= 1,...,n}, (2.6)

and assume that, as u varies in F, a strengthened version of the strict hyperbolicity

condition holds, namely

(SH) For any given ui,...,u, € E, the characteristic speeds at these points satisfy
A(ug) < +-+ < Ap(uy). Moreover, the eigenvectors r1(u1),...,rn(u,) are

linearly independent.

Observe that the above assumption is certainly satisfied if the system is strictly hyper-
bolic and FE is contained in a small neighborhood of a given point.

By a translation of coordinates, it is not restrictive to assume that 0 € E and
(w1, ..., wy)(0) = (0,...,0). We now consider a positively invariant domain of L

functions, with possibly unbounded variation:
D={u:R— E; uwelL'}. (2.7)

Our main result is concerned with the existence of a semigroup generated by the system
(2.1) on the domain D. Throughout the following, w;(t,z) = w;(u(t,z)) denotes the

7-th Riemann coordinate of w.
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Theorem 2.2.1 Let the system (2.1) be of Temple class, let it satisfy the strict hyper-
bolicity condition (SH) and assume that all characteristic fields are genuinely nonlinear.
Then there ezist constants L,k > 0 and a continuous semigroup S : [0, +oo[xXD —

D such that
|Ss — Sev|pr < L -||@ — 9||p Vu,v € D, t > 0. (2.8)
Moreover, every trajectory t — u(t,-) = Sy is a weak solution of (2.1) and satisfies the

entropy conditions

Yy—x
Kt

wi(t,y) — w;(t, z) < forall z<y, t>0,1€{l,...,n}. (2.9)

Our second result is concerned with the uniqueness of the semigroup. It shows that
the Oleinik type estimates (2.9) on the decay of positive waves completely characterize

the trajectories of the semigroup.

Theorem 2.2.2 Let the assumptions of Theorem 2.2.1 hold. Let u : [0,T] — D be
continuous as a map with values in L', and provide a weak solution to the Cauchy
problem (2.1)-(2.2). If the entropy conditions (2.9) hold, then u coincides with the

corresponding semigroup trajectory, namely
u(t,-) = Siu Vt>0. (2.10)

Remark 2.2.3 For any fixed M, the existence of a Lipschitz semigroup on the domain
Dy = {u:Rl—)E; ue L ZTot.Var.{wi(u)} SM}. (2.11)
i

was proved in [8]. For such solutions, the decay estimates (2.9) can be proved as in [16],
while the argument in [18] would show that (2.9) implies (2.10). The key point in the
present theorems is that the Lipschitz constant L in (2.8) and the constant « in (2.8) are
both independent of M. Hence the results remain valid for arbitrary solutions within

the larger domain D.

2.3 Front tracking approximations

We begin the proof of Theorem 2.2.1 by describing a front tracking algorithm [8, 10]
which constructs piecewise constant approximate solutions of (2.1), continuously de-

pending on the initial data.
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Fix an integer ¥ > 1 and consider the discrete set of points in £ whose coordinates
are integer multiples of 277 :
E"={u€E; wi(u) €27VZ, i=1,...,n}.
Moreover, consider the domain
DY = {u :R— E”; well, u is piecewise constant} . (2.12)

On DY we now construct a semigroup S” whose trajectories are front tracking approxi-
mate solutions of (2.1). To this end, we first describe how to solve a Riemann problem

with data v~,u™ € E”. In Riemann coordinates, assume that

N - + _ (ot +
u = (wy,...,w,) ut = (w],...,w,).
Consider the intermediate states
I (ot + - - _ .+
Wo=1U", ey W= (W)W W W)y e, Wp =T (2.13)

If wj < w,; , the solution will contain a single i-shock, connecting the states w; 1, w;
and travelling with Rankine-Hugoniot speed \;(w;—1,w;). Here and in the sequel, by

Ai(u,u') we denote the i-th eigenvalue of the averaged matrix
1
Au,u’) = / A(u+ (1 —0)u') do. (2.14)
0

If wz* > w; , the exact solution of the Riemann problem would contain a centered
rarefaction wave. This is approximated by a rarefaction fan as follows. If wzf" =w,; +

pi2~Y we insert the states
wig = (wi,...,w; +2770w; ..., w;,) L=0,...,p;, (2.15)

so that w; o = wi—1, w;p, = w;. Our front tracking solution will then contain p; fronts of

the i-th family, each connecting a couple of states w; 1, w; ¢ and travelling with speed

Xi(wig1, wig)-

For a given initial data u € DY, the approximate solution u(¢,-) = S{4 is now
constructed as follows. At time ¢ = 0 we solve each of the Riemann problems determined
by the jumps in % according to the above procedure. This yields a piecewise constant

function with finitely many fronts, travelling with constant speeds. The solution is
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then prolonged up to the first time where two or more of these fronts interact. At the
interaction points, the new Riemann problems are again solved by the above procedure,
etc...

As in [8], one checks that these front tracking approximations are well defined for

all times ¢t > 0. Indeed, the following properties hold.

For each 1 = 1,...,n, the map ¢ — Tot.Var. {wZ } is non-increasing.

The total number of wave-fronts in u(t,-) does not increase in time.

Each trajectory ¢t — u(t,-) = Sy @ is a weak solution of (2.1) (because all fronts sat-

ify the Rankine-Hugoniot conditions), but may not be entropy-admissible (because

of the presence of rarefaction fronts).

As v — 00, the domains D” become dense in D. We will thus define the semigroup S
on D as a suitable limit of the flows S§”. To ensure the existence of this limit, the key
step is to prove the estimate

lim HSt u— Sy U”Ll <L-||a—-19|g (2.16)

V—00

for some constant L and any @, € D*, ;4 > 1. For this purpose, given any two initial
data @, 7, we consider a continuous path g : @ — @%, with v¢(0) = @, (1) = 5. More
precisely, our path will be a pseudopolygonal, i. e. a finite concatenation of elementary

paths, of the form
0 — u® Z Wa * X]af _,, 281> 22 = x4 + €40, 0 € [a,b] (2.17)

where 7 is the characteristic function of the set I, wy,...,wxy € IR™ are constant states
and &, is the shift rate of the jump at z,. In (2.17) it is assumed that ¢ < ... < x?v
for a < @ < b. If v is an elementary path of the form (3.6), its L! length is computed by

» N
[T :/ S |Au(za) ‘— o = |aa\ €] (b— a), (2.18)
@ a=1
where
Oa = Au(zq) = Wat1 — Wa- (2.19)

Let u?(t,-) = S¥@’ be the corresponding solutions. Since the number of wave-fronts

in these solutions is a-priori bounded and the locations of the interaction points in the
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t-x plane are determined by a linear system of equations, it is clear that, at any time
7 > 0, the corresponding path -y, : § — u?(r,) is still a pseudopolygonal. Moreover,
there exist finitely many parameter values 0 = 6y < 61 < ... < 6, = 1 such that
the wave-front configuration of u’ remains the same as 6 ranges on each of the open
intervals I; =]60;_1,0;[. In this case, the lengths of the paths vy and 7, are measured

by an expression of the form

m 0;
e =3 / 3 |aul(al)|
j=1 ej_l o

0
oz,

5| 20 (2.20)

By deriving a priori estimates on the integrand in (2.20), we will prove that ||, ||p1 <

L||yo||p1, for some constant L independent of total variation.

2.4 Estimates on front tracking solutions

Throughout this section we fix ¥ > 1 and consider a piecewise constant solution u
constructed by the front tracking algorithm, so that u(t,-) = SYu for some u € D”. We
then perturb this solution, shifting the locations z, of the jumps at rates £,. In other
words, for 8 suitably close to zero, the perturbation ua(t, -) will be a function with jumps
at the points ¥ = z, + 0¢,. As long as the wave-front configuration of the functions
u,u? is the same, the shifts & 3(t) are uniquely determined as linear functions of the shifts

€4(0). Some properties of these shift differentials are investigated in the next lemmas.

Lemma 2.4.1 Consider a bounded, open region I' in the t-x plane. Call o,, a =
1,..., N the fronts entering I and let £, be their shifts. Assume that the fronts leaving
I, say og, B = 1,...,N', are linearly independent. Then the shifts {g are uniquely

determined by the linear relation

N N’
Z §a0a = Z £pop - (2.21)
a=1 B=1

PROOF OF LEMMA 2.4.1. Let u, u’ be the original and the perturbed solution. By
possibly modifying the region I', we can assume that its boundary consists only of
horizontal or vertical segments, and that all fronts of u cross the boundary dI" within
segments parallel to the z-axis (fig. 2.1). We now integrate the conservation equation

over the region T', using the divergence theorem. Observing that u = u’ along all
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figure 2.1

vertical segments of the boundary and calling 0~ T', 1T respectively the portions of the

boundary containing incoming and outgoing fronts, we have
1
0= a/r[ua —ul, + [f(u) - f(u)), dadt
1 1
-1 / (! (t, ) — ult, 2))dz — — / W (4, 2) — u(t, z))da
0 Jo+r 0 Jo-r

N N
= =D 695+ ) ala
B=1 a=1
Since the vectors o1,...,0n are linearly independent, the coefficients {g are uniquely
determined by (2.21). O

Remark 2.4.2 According to Lemma 2.4.1, the shift rates of the outgoing fronts depend
only on the shift rates of the incoming ones, and not on the order in which these wave-
fronts interact inside I'. More precisely, one can perform the following two operations,
without changing the shift rates of the outgoing fronts:

(0O1) Switch the order in which three fronts interact (fig. 2.2, fig. 2.3).

(02) Invert the order of two fronts at time ¢ = 0, provided that both fronts have zero
shift rate (fig. 2.4).



CHAPTER 2

56

figure 2.3

figure 2.4
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T/ =

figure 2.5

This property will be repeatedly used in our future estimates. Indeed, in the calculation
of a shift rate, we can suitably alter the order of wave interactions and thus reduce the

problem to a case where the wave-front configuration is particularly simple.

Lemma 2.4.3 Assume that a front tracking solution u contains two wave-fronts of the
same k-th family, originating at distinct points and located at z () < x4 (1), t € [0,T].
Then it is possible to assign shift rates £,(0) to all fronts in u(0,-) so that £4(0) = 1
and moreover, in the corresponding solution w, all fronts xg(t) outside the strip I' =
{(t,z); t€[0,T)], zo(t) <z < z0r(t)} have zero shift rate.

In other words (fig. 2.5), the perturbation of the initial data can be chosen so that
one particular front shifts at unit rate, but the corresponding solution remains unaffected
outside the region I'.

PROOF OF LEMMA 2.4.3. The shift rates £,(0) will be chosen so that, for all ¢,z,
x
5[ e = ¥ e = dtan(uta),  @2)
Ta(t)<z
where ¢ = ¢(t,z) is a scalar function identically equal to zero outside I'. To achieve
(2.22), we proceed by induction. We denote by z1(0) < --- < zx(0) the locations of the

jumps in u(0,-). Moreover, we consider the intermediate states and the jumps

o = u(0, ) z €)zq, Tatil, Oq = Uy — Ug—1-



58 CHAPTER 2

The initial shift rates are defined by setting
(a =0 if 1<a<d, o = 1.
If o/ < a < o, assume by induction that &, 1 has already been defined, so that

Z 0888 = Ca—1Tk(Ua—1)- (2.23)
$ﬂ<$a
for some constant ¢, 1. Two cases will be considered.
CASE 1. If the jump at z, belongs to the k-th family, then the vectors o4, 7 (ua—1), 7k (Ua)

are all parallel, and any choice of the shift £, will automatically satisfy

Z 0888 = CaTk(Ua)- (2.24)
T3<Za
CASE 2. If the jump at z, belongs to the j-th family with j # &, since the system is of

Temple class we have

span {0q, T%(ta)} = span{oa, m(ua-1)}-

Hence there exists a unique shift rate £, and a constant ¢, such that

caTr(Ua) = €q0a + Ca—17k(Uaq—1)- (2.25)

Observe that, when a = o, since the front belongs to the k-th family, we can choose
the shift rate &, so that

> optg=0. (2.26)

zg<a,n
We then define £, = 0 for all @ > . This achieves (2.22) for all z, at time ¢ = 0.

We claim that (2.22) remains valid at all later times. For this purpose, it is enough
to study an arbitrary interaction between two wave-fronts, say occurring at a point
(¢,Z). We consider the case of two incoming fronts (fig. 2.6) of families ko # kg, with
ko kg # k. The other cases are similar, or easier. Call u;, U, u, respectively the
left, middle and right states before interaction, and let u!, be the middle state after
interaction. We denote by 04,05 and &4, {s the jumps and shift rates of the incoming

fronts, while o, 0, &, refer to the outgoing fronts. The inductive assumptions imply

> oy (D& (1) = arg(w) (2.27)

z4()<T
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figure 2.6
for some constant ¢;. Moreover
ark(w) + §a0a = cmrk(um), (2.28)
emTk(um) +&pop = crri(uy), (2.29)
while the conservation equations yield
000 +Ep05 = Eada +Epop. (2.30)

From (2.27)-(2.30) it is clear that

Z oy (0)&(t) + €40 + 50 = airp(w) + €aoa + Epop
z4(t)<Z

= ¢rg(ur).
It remains to show that, for some constant ¢}, one has
ark(uy) + 5oy = e (uyy,)- (2.31)
This can be easily seen by writing
ary(uy) +Epop = crri(ur) — €404 (2.32)

and observing that the vector on the left hand side belongs to span{ry(u,), Tkg (uln) }s
the vector on the right hand side lies in the plane span{ry(w;), 7%, (ul,)}, and the

intersection of these planes is the straight line spanned by r(u/,).



60 CHAPTER 2

To check that all shifts vanish outside I', consider the case where the families of
the incoming fronts are k, # k, kg = k and the front ¢ — zg(t) marks the boundary of

the region I'. In this case, the inductive assumption implies ¢, = 0. From the relation
Tk (Uy) + €400 = ¢rri(ur) = 0,

by the linear independence of the vectors r¢(ul,), ol, it follows &/, = 0 as required. This

completes the proof of Lemma, 2.4.3. O

Lemma 2.4.4 Let u be a front-tracking solution of (2.1), and consider two wave-fronts,
say t — z(t), t — y(t), defined for t € [0,T]. Then there ezxists a second front tracking

solution @ with two fronts T, § such that the following holds.

(1) £(0) = z(0), 5(0) = y(0), (T) = =(T), §(T) = y(T).
(i) @ =u in a neighborhood of the points (0,2(0)), (0,y(0)), (T,z(T)), (T,y(T)).

(iii) Tot.Var.{u(0,-)} < Cy, for some constant Cy depending only on the system (2.1)
and on the set E.

PROOF OF LEMMA 2.4.4. To fix the ideas, assume z(0) < y(0). The set IR\ {z(0), y(0)}
consists of three connected components which we call Ji, Jo, J3. Similarly, the set IR\
{z(T), y(T)} consists of three components Jj, J5, J;. Assume that u contains two wave-
fronts ¢t — 2/(t), t — 2"(t), of the same k-th family, such that 2'(0) and 2”(0) lie in the
same open set J; and moreover z'(T') and 2"(T) lie in the same Ji. We now apply
Lemma, 2.4.3, with zo = 2/, o = 2". We claim that, if the k-waves at 2'(0) and 2"(0)
have the same sign, we can choose the initial shift rates £,(0) satisfying the additional

conditions
(i) €x(0) =1, &y (t) > 0 for all ¢ € [0,T],
(i) €4(0) =0 if o/ < a < o and the front at z, is of the k-th family,
(i) Ean (t) < O for all ¢ € [0, T).

To fix the ideas, let both waves be positive. Since the choice of £,(0) is arbitrary for
waves of the k-th family, it is clear that (ii) can be satisfied. To prove (i) and (iii), we
first show that the constants c(¢,z) vanish outside the strip I' bounded by 2’,2" and

are positive inside I'. At time ¢ = 0, by construction we have ¢, > 0. Moreover, if
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ca—1 > 0 for some o/ < a < ", then also ¢, > 0. This follows from (2.25) and the
linear independence assumption (SH). Similarly, at any interaction between two fronts
in the interior of the strip I', from (2.31)-(2.32) we deduce that, if ¢;, ¢y, > 0, then
also ¢/, > 0. By induction on all finitely many interaction points, we conclude ¢ > 0
inside T'.

Calling &'(t), o' (t) respectively the shift rate of the jump at 2’(¢) and its amplitude,

from the relation
§(t)o'(t) = e(t, 2/ () +)r(ult, 2 (1) +)),

since o’ and 7, are parallel and have the same sign, recalling that ¢ > 0 inside T we
conclude &'(t) > 0. A similar argument yields that the shift of the front 2" satisfies
&"(t) <.

By (i) and (iii), we can thus construct a one-parameter family of solutions 1/ shift-
ing forward the front at z'(-) and shifting backwards the front at 2”’(-). The parameter
6 can be raised up to a value § where two k-fronts in u?(0,-) coincide. We thus obtain a
second solution u? which coincides with u outside the strip I' bounded by the fronts 2'()
and 2(-), but with a smaller number of k-fronts. This construction can be repeated as
long as the solution contains fronts of the same family and with the same sign, starting
at different points within the same set J; and ending within the same JJ’-. In a finite
number of steps, we obtain a new solution % with the property that, foreach k =1,...,n
and 4,5 = 1,2, 3, there exists at most one point z € J; where a positive k-wave origi-
nates, terminating within J]'-, and similarly for negative k-waves. Of course, this implies
that the total variation of 4 is uniformly bounded, with a bound Cy depending only on

n and on the diameter of the set E. O

Next we seek an estimate on the amount of positive k-waves in a front tracking
solution u at time 7 > 0, contained in a bounded interval [a, b]. As a preliminary, we

prove

Lemma 2.4.5 For a fized v > 1, let u(t,-) = Syu be a front tracking solution of the
system (2.1). Fort € [0,T], let z(t) < y(t) be the positions of two adjacent k-rarefaction

fronts. Then for some constant k > 0 one has

y(r) —z(1) > K7 - 277, (2.33)
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ProOF OF LEMMA 2.4.5. By Lemma 2.4.4, by possibly replacing u by another solu-
tion %, it is not restrictive to assume that Tot.Var.{u(O, )} < Cy. Observe that, by
construction, each k-rarefaction front has strength Awy = 277, Let k, € {1,...,n} be
the family of the jump at z,. Call o4 = Au(t,z4) = u(t, zo+) — u(t, zo—) the jump at
T, and let ||aa|| = |Awka| the strength of the jump, measured in Riemann coordinates.
Defining m(t) = y(t) — z(t), by the genuine nonlinearity of the k-th characteristic field

we have an estimate of the form
mt)>c-27"=C- Y. oa®)| (2.34)
z(t)<za (t)<y(?)

for some constants C1,c¢ > 0. As usual, we denote by o, the value of the jump at z,
occurring in the k,-th family. To estimate the contribution of the last term in (2.34),

following [16] we introduce the function

()= ) bk, (t2alt) - |oal®)]|

kask
where )
1 ifz < x(t)
pilt,2) = { WO it g € [o(r), y(o)
[ 0 if z > y(t)
or

.

0 if z < z(t)
gilt,z) = 2 if 3 € [a(t), y(1)]
1 if z > y(t)

\

in the cases i > k or i < k respectively. Observe that the map ¢t — ®(t) is piecewise
Lipschitz continuous, possibly with a finite number of downward jumps, occurring at
interaction times. Because of the strict separation of the characteristic speeds, outside

interactions we have

a(0) = Y [loll - Lo (t20(0)

ka#k

- Y o] -2 (2.35)

m(t)
z(t)<zo (t)<y(t)

IA

for some constant Cy > 0. Together, (2.34)-(2.35) yield

Cq

o d;(t)m(t) >c-277, (2.36)

r(t) —
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m(r) > e (C1/C2)®0O) L or 07V (2.37)

The uniform bound on the total variation implies ®(0) < C{ for some constant Cj.
Hence the lemma holds with k = ce C0C1/C2, O
Lemma 2.4.6 Consider a front tracking solution u(t,-) = S{u, with u containing N
shock fronts of the k-th family. Then, for each T > 0 and every bounded interval [a, b],
one has

2(b—a

Tot. Var.{wg(r,"); [a, b]} < ) + lwg |l + (N +1)2177 (2.38)

PrROOF OF LEMMA 2.4.6. By Lemma 2.4.5, at time 7 > 0 any two adiacent k-rarefaction
fronts of u are separated by a distance > k7 -27%. Therefore, the number of rarefaction
fronts inside any interval [a, b] is bounded by
b—a
14N+ ———.
+A KT =27V
The positive variation of wg(7,-) on [a,b], i. e. the total amount of upward jumps, thus

satisfies
b—a

KT

Pos.Var.{wy(7,"); [a, b]} < (1+N)27" + (2.39)

In turn, the total variation of wg(7,-) on [a,b] is bounded by |lwg||Le plus twice the

positive variation of wy. Hence (2.38) holds. O

2.5 Estimates on shift differentials

This section is devoted to the proof of the key estimate on shift differentials.

Lemma 2.5.1 Letu(t,-) = SYu be a front tracking solution, with u containing N shock-
s. Assume that at time t = 0 one single front is shifted, say of the k-th family, located
at T with shift rate & and amplitude 5. Calling £,(7), 04(7) the shift rates and the
amplitudes of the fronts in u(r,-), for some constant Cs depending only on the system
(1.1) and on the domain E we then have

> J€a(m)oa(r)] < Cs(1+ N27%)|¢a]. (2.40)

ProOOF OF LEMMA 2.5.1. Consider one particular front, say .=, of the j-th family, and
call § = z4+(7) its terminal point. In the first part of the proof we shall establish the
existence of constants Cy, C5, depending only on the system (2.1) and on the domain

E, such that the following properties hold.
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(P1) If z,~ is precisely the k-front starting at z, then
|£a* (T)O’a*(T)| < Csléal. (2.41)

(P2) If z,+ is a j-front, with j # k, and the backward j-characteristics ending at g
include fronts starting from both sides of Z, then (2.41) again holds.

(P3) If z, is a j-front, and the j-fronts ending at ¢ start either all at the left or all at

the right of z, one then has the sharper estimate
ar (1)| < Caléal. (2.42)

Toward a proof of (P1)—(P3) we observe that, besides the fronts starting at Z and the
ones ending at ¢, one can single out four groups of waves:

(1) the waves starting on the left of Z and ending on the left of §;

(2) the waves starting on the right of Z and ending on the right of g;

(3) the waves starting on the right of Z and ending on the left of 7;

(4) the waves starting on the left of Z and ending on the right of 3.
According to Remark 2.4.2, in our computation of the shift rate £,+(7) of the front
reaching ¢, we can assume that the sets of waves in (1) and (2) are empty. Indeed,
we can otherwise shift the locations of all these fronts of type (1) toward the left, until
they all lie outside the domain of influence of the initial point Z. Similarly, fronts of
type (2) can be shifted toward the right until they lie completely outside this domain of
influence. Having achieved this simplification, consider the situation described in (P1).

We can construct a region of the form
L={(tz); telo,7], v (t) <z <y ()}

as in fig. 2.7, choosing I' so that all k-fronts starting within [y~(0), ¥ (0)] join together
into the single k-front at §y. Again by Remark 2.4.2, we can assume that all fronts of
type (4) originate from the interval [y~ (0), Z] and exit from T' through the side y*.
Similarly, we can assume that all fronts of type (3) originate from the interval [55, 'y+(0)]
and exit from I" through the side y~.

Observe that the fronts of type (3) are those of families i < k, while the fronts of
type (3) are those of families i > k. Applying Lemma 2.4.1 to the region I', we obtain

‘o = Z £aOa + Ea ( Z £a0q - (2-43)

aeC(y™) acC(yt)
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figure 2.7

In (2.43) the two summations refer to wave-fronts leaving I' by crossing the boundary
curves 7~ and v+ respectively. Calling 4~ = u(7,y—) and u* = u(r,y+) the left and
right states across the jump at ¢, we now observe that the amplitude of each wave o,

with o € C(y™) satisfies

oo € span{ri(u”),...,me_1(u")}. (2.44)
Moreover, the amplitude of each wave o, with a € C(y*) satisfies

0o € span{rpi1(u”),...,rp(u”)}. (2.45)

Since o4+ (7) is parallel to 7 (u™), from (2.43)—(2.45) and the assumption (SH) on the

linear independence of the eigenvectors, the bound (2.41) follows.

We now establish (P3), first in the case (fig. 2.8) where no j-wave ending at §
crosses the k-wave starting at Z. Consider a curve v running slightly to the right of
the maximal backward j-front ending at §. By Remark 2.4.2, after performing the
operations (O1)-(02) a number of times, we can consider an equivalent configuration

with the following properties:

No front crosses v from left to right. There exists some index ¢ < j such that only
fronts of families ¢ < £ can cross v from right to left. Moreover, no i-front with ¢ < £
terminates at time 7 inside the half line [")’(T), 00 [, i. e. all these fronts cross -y before

time 7.
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figure 2.8

Applying Lemma 2.4.1 to the region on the right of v we obtain
Z £a0a + Z fa( ) ( ) - 66' (2'46)
a€eC(y) Ta(T)>7(T)

Here the first summation extends to all fronts crossing the curve 7. As before, call ™~
and u* the left and right states across the jump at 3. Observing that the two sums on

the right hand side of (2.46) are contained in

span{ri(u®),...,re—1(u")}, span{re(u®),...,r(u™)}, (2.47)

using the assumption (SH) we conclude

Z gaaa < C4|55| (2.48)

a€C(v)
We now apply again Lemma 2.4.1 to the region on the left of v. Observing that the
only incoming fronts which carry a nonzero shift rate are those crossing -y from right to

left, and that the only outgoing j-front is the one ending at 7, we obtain

Z 5a0a+§a* O'a* Z €a0aq- (2.49)

Ta(T)<F a€C(y)

Recalling the normalization at (2.5), we observe that (2.49) implies

|bar (T)oar (1) = Li(u™) - Y baoa (2.50)

a€C(y)
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On the other hand,

L) Y €aoa =0, (2.51)
aeC(v)
Together, (2.50)-(2.51) imply
|¢ar (T)oa (7)] < C'lj(uh) = Li(w)|| D €aoa| < Csloa-(1)]|5]. (2.52)
aeC(y)

Hence, in this case, (2.42) holds.

We now prove (P3) in the case where k > j and all j-waves running into g cross
the k-wave starting from z, as in figure 2.9. In this case, we construct a curve 7y slightly
to the left of the minimal backward j-front ending at §. Observe that every wave-front
crossing vy from left to right must be of a family ¢ > j. Moreover, by Remark 2.4.2,
we can assume that no wave crosses «y from right to left. Applying Lemma 2.4.1 to the
region on the left of v we obtain

Y aoa =5 (2.53)

a€C()
We now apply again Lemma 2.4.1 to the region on the right of -y, observing that set of
outgoing fronts, crossing the line ¢ = 7, contains the j-front at § plus other fronts on

the right of 7, of families 7 > j. Together with (2.58), this yields

£ar ()00 (1) + D €ada= Y &alr)oa(r) =E5. (2.54)

Ta(T)>7 aeC(y)
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t=1| y
XaD f=*
t=0
X
figure 2.10a figure 2.10b
By (2.54),
|§a* (T)oa* (7-)‘ = lj(u+) : Z £a0a- (2'55)
aeC(y)

Observing that
Li(u™) - Z £a0a =0,
a€C(v)

we again have an estimate of the form (2.52), hence (P3) holds.

We finally consider the situation described in (P2), where there exist j-waves
starting both on the left and on the right of £ which join into a single front ending
at g, (fig. 2.10a). According to Remark 2.4.2, we can simplify our computations by
suitably changing the order of wave-front interactions. In particular, we can perform
our estimate in terms of an equivalent wave-front configuration (fig. 2.10b), where the
j-fronts ending at ¢ and starting to the left of Z join together in a single front z, at a
time 7* < 7, and all j-fronts ending at § and starting to the right of Z join together in

a single front z,» at time 7%. 1n to the fronts z,, ., we obtain
ingle f a i *. Applying (P3) to the f als Tty btai
|§a/(7*)\ < Csléa], \Eau(f*)\ < Csléa|. (2.56)

The final interaction of these two j-fronts determines a single front of strength o, =

o + 04r. Using Lemma 2.4.1, we compute

|fa* (T)0a (T)| = |£a’(7-*)o'a’ (7%) + &ar (T*)Ua”('r*)‘
< Cl ' (‘ga’ (T*)‘ + |§a”(’r*)|)
< C'Cs|éa|. (2.57)

This establishes (P2).
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We now complete the proof of Lemma 2.5.1. Let X be an upper bound for the
absolute values of all characteristic speeds. If the only front shifted at time ¢ = 0 is the
one at Z, it follows that at a fixed time 7 > 0 the only fronts with nonzero shift rate can
be the ones located inside the interval [Z — A7, Z 4+ A7]. Recalling the estimate (2.38)
on the total variation, using the properties (P1)—(P3) we thus have

IN

3" €a(T)oa(T)| < nCiléa| + C5|€a] - Tot.Var.{u(r); [z — A1, z+ Ar]}

< G3(1 + N27")|éa|,
for a suitable constant Cj. O

Remark 2.5.2 For the front tracking solution u considered in Lemma 2.5.1, assume
that all fronts in u(0,-) are shifted. More precisely, let £,(0) be the shift rate of the
front located at z,(0), having amplitude 0,(0). Call £g(7) the corresponding shift rate
of the front of u(7,-) located at zg(7). Observing that the shift differential

(£1(0), ... n(0) = (&1(7),. .. Enn(T))

is a linear mapping, from (2.40) it easily follows

D s()as(r)] < Cs(1+ N277) - > |€a(0)04 (0)]. (2.58)
B a

2.6 Proof of the theorems

To construct the semigroup described in Theorem 2.2.1, we recall that, for every M > 0,
by [8] there exists a Lipschitz semigroup S of solutions of (2.1) defined on the domain
Dy defined at (2.11). Moreover, trajectories of this semigroup are the unique limits of
front tracking approximations:
Siu = Vli_}nolo Sy u,

for every @ € Dy, @y, € Dy NDY, 4, — @4 in L'. We need to show that the Lipschitz
constant of this semigroup on Dj; does not depend on M. For this purpose, consider
any two piecewise constant initial data, say u,v € D*. We can now construct a pseu-

? connecting @ with o with the following properties. The

dopolygonal path v9 : 0 — @
L! length of v satisfies

ol < Cslla — | - (2.59)
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Moreover, all functions @’ lie in D* and have a uniformly bounded number of shocks,
say < N.

Calling 7, : 0 — u? = S;u?, we claim that the length of -, remains a bounded
multiple of the length of vy. Indeed, for every v > u, consider the path v/ : 6 — uf =
SYu?. Writing the length of this path in the form (2.20) and using Lemma 2.5.1 we

obtain
oxY(r)
A —Z / > [auira)| 5 | oo
J 1 B
<Z/ C3(1+ N2 Z\Au (0,2%) 0250)| 4y
3 a0
< C3(1+N27%) - |1l - (2.60)

Letting v — oo we obtain (2.8) for all 4,7 € D*. The semigroup S can thus be extended
by continuity to the whole domain D, preserving the property (2.8). Every semigroup
trajectory is thus a limit of front tracking approximations, hence it provides a solution
of the system (2.1).

Concerning the entropy condition (2.9), fix an interval [a, b] and an initial condition
u. We can now approximate the solution u(t,-) = Syu with a sequence of front tracking
solutions u,(t,-) = S{u,, choosing initial data @, having a number of shocks N, < v.
By (2.39), the total number of positive wave-fronts in u, (7, ) = S¥@, on a given interval
[a, b] satisfies

b—a

Pos.Var.{w}(7,"); [a, b]} < (1+N,)27" + ot (2.61)

where w¥ = wg(u,) is the k-th Riemann coordinate of u,. Letting v — oo in (2.61) we
k g

obtain

Pos.Var.{wy (u(r,")); [a, b}< (2.62)

KT
Hence (2.9) holds. This completes the proof of Theorem 2.2.1.

Remark 2.6.1 In general the semigroup S; constructed as above will not be Lipschitz
continuous w. 1. t. time. Indeed, the map t — S;ii from [0, o[ to L'(IR) may not be

Lipschitz continuous at time ¢ = 0 if u has unbounded total variation.

We now give a proof of Theorem 2.2.2. Fix any R > 0 and let A be an upper
bound for the absolute values of all characteristic speeds. Let u be a weak solution of

(2.1) satifying the decay estimate (2.9). For every § > 0 the restriction of u(t,-) to



2.7. A COUNTEREXAMPLE 71

the intervals I(t) = [-R+ A, R — Mt], t € [§, R/A] has uniformly bounded variation.

Therefore, the uniqueness theorem in [18] yields

u(t, ) = Si_su(d) restricted to I(t). (2.63)

[ utt) - @) ds = [ |(Sesul®) (@) = (S 0 53) ()] o
() 1(t)
< L-||u(é,-) — S5t - (2.64)

Letting § — 0 we conclude that the left hand side of (2.64) must be zero. Since R was
arbitrary, this proves (2.10).

2.7 A counterexample

The following example shows that the Lipschitz continuous dependence on the initial
data may not hold if one drops the assumption of genuine nonlinearity of all characteristic
fields.

Consider the 2 x 2 system

uy
+(—2—) =0,
(u1)s <1+ul+uQ)w

U2
— ] =0 2.65
i+ () =0 (2.5

where w1, us > 0. Here, the first characteristic field is genuinely nonlinear, the second
is linearly degenerate. In terms of the Riemann coordinates wy = uj + ug, wo = ug/uq,

this system takes the form

wy
:O’
(w)e + <1+w1>w

(w2)s + 1+wy

Fix some coordinate values 0 < w] < wj, 0 < wy < wy. We now consider an initial
data @(z) = (@1(z), wa(z)) whose Riemann coordinates are defined as follows. Given

three points a < b < c on the real line, we take

wy ifz <c,
w () =

w ifz>ec
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figure 2.11

Moreover we set

wa(z) = wy if z¢/a,b]

and let wy oscillate countably many times between the two values wy, ,'w; as x ranges
inside [a, b], so that its total variation is infinite.

The corresponding solution u = u(t, z) will thus contain a 1-shock, travelling with
speed A{, and countably many 2-contact discontinuities, travelling with speeds A5, A;’

respectively before and after the interaction with the shock. An explicit computation

yields
wi /(1 +w) —w; /(1 +w, ~ 1
AL = 1 /( 12 17/( 1)’ Ay = — >\ = - (2.67)
w] —w; 1+w1 1+'w1

Now consider a perturbed initial condition, obtained by shifting the 1-shock from ¢ to
c+0, and fix a time ¢ > 0 large enough so that waves of different families will have crossed
each other (fig. 2.11). Then u(t,-) contains a 1-shock located at a point ¢ = ¢+ A1t and
a family of 2-waves located within an interval [a’, '], while the corresponding perturbed
solution 1% (¢, -) will contain a 1-shock located at ¢’ + @ and a family of 2-waves, located
within the interval [a’ + £0, b' + £6]. Here the shift rate is computed by

Y

§= A # 0. (2.68)

Observing that

oo~ al, = [au()],
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1 o
lim sup —/ |wg(t,z) —wy(t, z)| dz
9—0 6 —o0

1 o
:limsup—/ ‘wg(t,:v—w) —wg(t,x)‘ dz
0—0 o —00

= f . TOt.Va.I'-{UJQ(ta )} = 00,

it is clear that the map @ — S;@ is not Lipschitz continuous w. r. t. the L' distance.
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3.1. INTRODUCTION TO CHAPTER 3 7

3.1 Introduction to Chapter 3

We consider the initial-boundary value problem for a strictly hyperbolic system of con-

servation laws in one space dimension,

ut + f(u)g =0, (3.1)
u(0, z) = u(x), (3.2)
u(t,0) = a(t), (3-3)

on the domain Q = {(¢,z) € R?>:t>0,z > 0}. Here f : U — IR™ is a smooth vector
field defined on some open set U C IR™. The problem (3.1)-(3.3) is usually not well-
posed when the boundary data are required to be assumed in the (strong) sense (3.3),
even when (3.1) is a linear system (see [45]). In fact, different notions of the boundary
condition have been considered in the literature, see [1, 65] for definition and references.

Here, following [34, 42], we will deal with the (weak) form
f(u(0+,1) € F(V(a(t)), for a.e. t>0, (3.4)

where V(a(t)) C U is a time-dipendent set (the set of admissible boundary values) that is
defined from the boundary data using the notion of Riemann problem, while f(u(0+,t))
represents the (weak) trace of f(u) at the boundary =z = 0.

Most of the study on the boundary condition for (3.1) has been restricted to the
scalar equation. We recall that, for scalar conservation laws, the existence and con-
tinuous dependence on the initial and boundary data of global solutions to the mixed
problem (3.1)-(3.3) was proved within domains of L* functions [45, 49, 66]. On the
other hand, in the case of n X n systems global existence and stability of entropy weak
solutions has been established only for data with small total variation (see [1, 2, 3, 65]
and references therein).

Here, having in mind to study the initial-boundary value problem from the point
of view of control theory (where it is natural to regard the boundary data as varying
into a prescribed set of L™ controls with possibly unbounded variation), we extend the
existence and the stability results in [43, 49] to the case of Temple class systems with
genuinely nonlinear characteristic fields.

We rely on the stability result obtained in Chapter 2 for the Cauchy problem for

Temple class systems with L initial data, and we apply the same technique to construct
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a Lipshitz continuous semigroup of solutions to (3.1)-(3.3), whose trajectories satisfy a
suitable entropy condition of Oleinik type.

In the case of scalar equations, the problem with integrable (possibly unbounded)
boundary data has been studied from the point of view of control by [5, 6], relying on an
explicit representation formula for the solution derived by LeFloch in [49]. A contractive
property was also established. On the same line, we fix a set f C L>°(IR") of boundary
data regarded as admissible controls, and, taking the initial data @ = 0, we consider the

set of attainable profiles at a fixed time T
A(T,U) = {u(T, -); w is a solution to (3.1)-(3.3) with 2 =0 and @ € Z/I} ,
and at a fixed point in space T > 0
A@JOi{Myﬂ;uEathmuM&D{m)mmﬂzﬂmﬁ&EU}

Motivated by applications to calculus of variations and problems of optimization we
establish closure and compactness in the L! topology of the attainable sets in connection

with a class of L* boundary controls.

3.2 Preliminaries and statement of the main results

Let f : U — IR™ be the flux function of the strictly hyperbolic system (3.1), and denote
by A1(u) < --- < A\p(u) the eigenvalues of the Jacobian matrix D f(u). Throughout the

paper we shall assume that, for some fixed index p € {1,...,n}, there holds
An—p(u) <0 < Ap—pt1(u) for every w e U. (3.5)

Moreover, by possibly considering a sufficiently small restriction of the domain U, we
may assume that f is invertible and that all characteristic speeds have a uniform upper
bound

AN(w) <X Vuel.

Choose right and left eigenvectors r;(u), l;(u), i = 1,...,n, of D f(u) normalized so that

1ifi=j,
0if i # j.

We assume that each i-th characteristic field r; is genuinely nonlinear in the sense of

‘Ti(u)‘ =1, li(u) - rj(u) = { (3.6)

Lax, i.e. that, by choosing a suitable orientation of the eigenvectors r;(u), at every point
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u € Q one has DA; - r;(u) > 0. Moreover, the system (3.1) is of Temple class according
with the following

Definition 3.2.1 A system of conservation laws is of Temple class if there exists a
system of coordinates w = (w1, ..., wy,) consisting of Riemann invariants, and such that

the level sets {u € Q; w;(u) = constant} are hyperplanes (see [66]).

For a Temple class system, the integral curve of the vector field r; through a point

ug is the straight line described by the n — 1 linear equations
wj(u) = w;(uo) j # 1. (3.7

In particular, shock and rarefaction curves coincide. Throughout the paper, we will
often write w;(t, ) = w;(u(t,z)) to denote the i-th Riemann coordinate of a solution
u = u(t,z) to (3.1).

We introduce next a boundary condition that is formulated in terms of the weak
trace of f(u) at the the boundary z = 0, and is related to the notion of Riemann
problem in the same spirit of [9]. To this purpose, letting u(t,z) = W (£ = z/t; ur,ur),
ur, ur € U, denote the self-similar solution of the Riemann problem for (3.1) with
initial data

ur, if ¢ <0,
u(0,z) =

up if z > 0,

for any given boundary state & € U, we define the set of admissible states at the boundary
V(i) :== {W (0+; @, ug) ; ug € U}. (3.8)

Definition 3.2.2 A function u : Q — IR™ is an entropy weak solution of (3.1)-(3.8) if

(i) u is a weak solution to (3.1) and satisfies the initial condition (3.2) in the sense
that, for every C' function ¢ with compact support contained in the set {(t,z) €
IR?; z > 0}, there holds

+oo  pdoo +oo
/ / (ult, 2) - e(t, ) + £ (ult, 7)) - ba (8, 2))d dit + / () - $(0, z)dz = 0.
0 0 0
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(i) the fluz f(u) admits a weak trace at the boundary z = 0, i.e. there exists a
measurable function ¥ : IR — IR™ such that

¢ t
lim /0 flu(s,z)) ds :/0 U(s) ds t >0, (3.9)

z—0t

and the boundary condition (3.3) is satisfied in the following sense

U(t) € f(V(al(t))) for a.e. t>0. (3.10)

(7ii) u satisfies the following entropy conditions. For any 0 < z < y, and t > 0, there
holds

y—x

wilt,) — wilt,2) <

if ie{l,...,n—p} (3.11)

2x Kt
if ie{n—p+1,...,n} (3.12)

o % + _

for some constant C > 0 depending only on the system (8.1) (here [a]t =

max{a, 0} denotes the positive part of a € IR).

Remark 3.2.3 The set of admissible flux values at the boundary f (V(ﬂ)) can be ex-

pressed in Riemann coordinates as

Fv(@) = {f(u) L wi(u) = w;(@) V j:n—p+1,...,n}. (3.13)

Hence, by the invertibiliy of the smooth map f, the above boundary condition (3.10) is

equivalent to the existence of a measurable map ¢ : IR* +— IR"™ such that
flp(t) = ¥(¢) for a.e. t>0, (3.14)

and that satisfies the set of equalities

w; (¢(t)) = w; (i(t)) j=n—p+1,...,n. (3.15)

This means that the boundary condition (3.10) guarantees that, at almost every time
t the solution to the Riemann problem for (3.1), having initial data with left state
ul = @(t) and right state u® = ¢(t) contains only waves with negative speeds and, in

particular, its restriction to the region Q takes costant value ¢(t).
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We now consider a convex, compact set K C U having the form
K= {u eU; wi(u) € [a;, b i = 1,...,n}, (3.16)

and assume that, as u varies in K, a strengthened version of the strict hyperbolicity

condition holds, namely

(SH) For any given wui,...,u, € K, the characteristic speeds at these points satisfy
A (u1)< --+< Ap(uyn). Moreover, the eigenvectors ri(uy),. .., (uy,) are linearly

independent.

Observe that the above assumption is certainly satisfied if the system is strictly hyper-
bolic and K is contained in a small neighborhood of a given point. By a translation of

coordinates, it is not restrictive to assume that 0 € K and (w1, ..., wy)(0) = (0,...,0).

Due to the presence of the boundary data, the flow map u(0,-) — u(¢,-) is not
time homogeneus. To recast the problem in a semigroup framework, it is convenient
to incorporate the boundary data % in the domain of the semigroup. More precisely,
consider the positively invariant domain of L*° functions, with possibly unbounded
variations,

D= {p: (@) ; a,aeLl(R+,K)}. (3.17)
We define
Tot.Var.(p) = Tot.Var.(a) + Tot.Var.(a) (3.18)

and we introduce the distance
d(p1,P2) = [[tr — Usllpr + |G — Ge|pa- (3.19)
With the above notation, we construct a semigroup S acting on D, in the sense that

S:R*"xDw D

(3.20)
t , P Stpa

where, if p = (@,4), Sip = (Etp, 721]) Here 7; is the translation operator, i.e.
(T¢@)(s) = (¢t + s), while the evolution operator E : IRT x D+ L!(IR*, K) is such that
Eip = u(t,-), u being the solution to (3.1)-(3.3).

Our main result is concerned with the existence of a semigroup generated by the

system (3.1) on the domain D.
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Theorem 3.2.4 Let (3.1) be a system of Temple class with all characteristic fields gen-
uinely nonlinear, and assume that the strict hyperbolicity condition (SH) holds. Then,
there exist a continuous semigroup S of the form (3.20) and some constant C > 0
depending only the system (3.1) so that, for every fited T > 0, 6 > 0, and for all
(u,v),(a,v) € D, letting L = L(5,T) = C(1 + log(T'/6)), one has

|, @) — By, )| s op < L+ (I8 = ols + 1£@ - F@) ) (3.21)

for allt € [0, T]. Moreover, the map t — Eip yields an entropy weak solution (in the
sense of Definition 3.2.2) to the initial-boundary value problem (3.1)-(3.3).

Remark 3.2.5 As in the case of the Cauchy problem [19], the map ¢t — E;p constructed
as above may not be Lipschitz continuous at time ¢t = 0 w.r.t. the L! distance if p has
unbounded total variation. Moreover, the evolution operator p — E;p will not be, in

general, Lipschitz continuous w.r.t. the topology of L!(IR", K).

Theorem 3.2.6 Let (3.1) be a system of Temple class satisfying the same assumptions
as in Theorem 8.2.4. Let u = u(t,z) be an entropy weak solution to the mized problem
(3.1)-(3.3) on the region Q2. Assume that the maps t — u(t,-), ¢ — u(-,x), are contin-
uous on the domains {t € R : t >0}, {x € R : z >0}, w.r.t. the L' topology, and
that the map (t,z) — (u(t,-), u(-,z)) takes values in the domain D defined in (3.17).

Then, u coincides with the corresponding semigroup trajectory, namely

u(t, ) = Ey(a,a) vV t>0. (3.22)

3.3 Outline of the proof

We describe here the basic steps in the proof of Theorem 3.2.4. The technical estimates
involved in the proof will be then worked out in the remaining sections. As in [19] we
shall first construct a sequence of flow maps S” whose trajectories are front tracking
approximate solutions [8, 10] of (3.1) in the region 2, depending Lipschitz continuously
on the initial and boundary data. Next, for any fixed M > 0, we shall prove the
convergence of such a sequence of flow maps to a Lipschitz continuous semigroup of

solutions, defined on the domain

Dnm = {p € D; Tot.Var.{p} < M} (3.23)
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Finally, we will show that the Lipschitz constant of this semigroup is indeed independent
on the bound on the total variation M.

We describe now a front-tacking algorithm which represents a natural extension of
[18]. Fix an integer v > 1 and consider the discrete set of points in K whose coordinates

are integer multiples of 27":
K = {u € K; wiu) €2V, i= ln}
Moreover, consider the domain

DY = {p = (u,u’) : RT — K" x K"; u, v’ € L', u, u' are piecewise constant}.
(3.24)
On DY we now construct a semigroup S” whose trajectories are front tracking approxi-
mate solutions of (3.1). To this end, we first describe how to solve a Riemann problem

with data u~,u"T € KY. In Riemann coordinates, assume that

wu™) =w = (w,...,w,)  wu)=w" = (w],...,w)
Consider the intermediate states
wo=1u_, e, wi:u(wf,...,w?,w;i_l,...,w;), e wp =u".

(3.25)
If w;L < w; , the solution will contain a single i-shock, connecting the states w; 1, w;
and travelling with Rankine-Hugoniot speed A;(w;_1,w;). Here and in the sequel, by

Ai(u,u') we denote the i-th eigenvalue of the averaged matrix
1
A(u,u') = / Df(0u+ (1 —0)u')do. (3.26)
0

If wlf" > w; , the exact solution of the Riemann problem would contain a centered
rarefaction wave. This is approximated by a rarefaction fan as follows. If w” = w; +

p;2~"Y we insert the states
wi,ez(wf’,...,wi_+2_V£,wi_+l,...,w;) L=0,...,p;, (3_27)

so that w; o = wj—1, w;p, = w;. Our front tracking solution will then contain p; fronts of

the i-th family, each connecting a couple of states w; ¢ 1, w; ¢ and travelling with speed

Ai(wie—1, wig).
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For a given data p = (ua, %) € D”, the approximate solution u(t,-) = E}p is now
constructed as follows. At time ¢ = 0 we solve each of the Riemann problems determined
by the jumps in % according to the above procedure. At the origin, construct the solution
to the Riemann problem with data ur, = %(0+), ur = @(0+), and take its restriction to
the domain €2, for small times. This yields a piecewise constant function with finitely
many fronts, travelling with constant speeds. The solution is then prolonged up to the

first time where one of the following situations occurs:

a) two or more fronts interact;
b) one or more discontinuities hit the boundary;

c¢) the boundary condition % has a jump.

Observe that it is not restrictive to assume that only one discontinuity hits the boundary
and only one of the previous situations can occour at any given time. At the interaction
points, the new Riemann problems are again solved by the above procedure, etc. .. Here,
by interaction point, with a slight abuse of notations, we mean a point where one of the
events a), b) or c) takes place. Note that in case b) no new wave appears, i.e. waves
exiting the boundary are produced only by the jumps of .

As in [8] and Chapter 2, one checks that these front tracking approximations are

well defined for all times ¢ > 0. Indeed, the following properties hold.

- For each i = 1,...,n, the total variation of u(t, -), measured w.r.t. the Riemann co-
ordinates, coincides with the total strength of waves in w;(t, -) and is non-increasing

in time.

- The number of wave-fronts in u(¢,-) is non-increasing at each interaction. Hence,

the total number of wave-fronts in (¢, -) remains finite.

It is now possible to define a v-approximate semigroup S : IRT x DY — D" as in (3.20)
by setting, for any p = (u, @), Syp = (E{{ p, 7}1]). The uniqueness of the definition
of the approximate solution guarantees that E}, and hence Sy, satisfy the standard

semigroup properties, i.e.
Sy = Identity, Sy 08y =5/

Each trajectory ¢t — EYp is a weak solution of (3.1) (because all fronts satify the
Rankine-Hugoniot conditions), but may not be entropy-admissible (because of the pres-

ence of rarefaction fronts).
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We next proceed towards an estimate of the Lipschitz constant for E¥ following
the same technique adopted in [18]. The basic idea to estimate the distance between
two approximate solutions u, v, consists in constructing a continuous path of solutions
u? connecting u, v, and then study how the length of the path  — u?(t,) varies in
time. In particular, given any two couples of initial and boundary data p; = (u1, 41),
po2 = (@9, U2) in DY, we consider a suitable class of continuous paths (pseudopolygonals)
that connect fpy = (@1, f(u1)) with fpe = (42, f(@2)) by merely shifting the space and
time positions of the jumps in 1, ug, and in f(41), f(a2), respectively. More precisely,

a pseudopolygonal with values in

Y= {fp=(uf(u)); (uwu)eD"}
is a finite concatenation of elementary paths v : 6 — ('Ea, f (ﬂe)) of the form

@’(z) = Y=t Wa - Xja® _,, 28](%); b = xo + €l T >0,

0¢clab], (328

f(,&a(t)) = Zg:l f(aﬂ) X]tﬂ 1 te](t)a tg = t,@ + 5,30, t Z 07
with 2% | <29 ¢ | <t forall@ €a, bl and @ =1,...,n, B =1,...,7n. Here, x; is

the characteristic function of the interval I, W,, wg € K” are constant states and &,, E 8
are, respectively, the (space) shift rate of the jump in @’ at z,, and the (time) shift rate
of the jump in f(@?) at tg. A simple example of pseudopolygonal joining two couples of
initial data and boundary flux fp; = (a1, f(41)), fp2 = (42, f(d2)), is given by

0 — (1 - Xj0,01 + B2 * Xjo, 00> (@1) - X[0,00 + f (@2) - X]6,+00[ ) -

The L' length of an elementary path « of the form

[edli % :/ {Z|Au (za) ‘

8), is then computed by

;
‘B—}de

(3.29)

m o2
-3 jE
{Z\%\IﬁaHZW\IfﬂI}

where

Oa = A’ (20) = Bat1 — Wa, o5 = Ai’(tg) = f(@p11) — f(@p).  (3.30)

If we consider a pseudopolygonal 7o : 8 — (@, f(@?)), 6 € [0, 1], with values in FD”,
and let ul(t,-) = E¥(@%, 4°) be the corresponding solution, since the number of wave-

fronts in these solutions is a-priori bounded and the locations of the interaction points
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in the -z plane are determined by a linear system of equations, it follows that, at any

time ¢ > 0, the path
v 0 (Wd(t,-), Tif (@) 6 <o, 1], (3.31)

is still a pseudopolygonal. Moreover, there exist finitely many parameter values 0 =
0y < 01 < ... <6, =1 such that the wave-front configuration of ug remains the same
as 6 ranges on each of the open intervals I; =]0;_1,6;[. In this case, the length of the

path 7/ is measured by an expression of the form

m 0
Il =3 / 3 [aul(t, 42|
j=1"%

-1 «

0z, o [ < 0,000t

: t%>t}

(3.32)
The second term of the sum in (3.32) is clearly uniformly bounded in time. Thus, to
estimate the L' distance between two approximate solutions EYp;, EYpo, it will be
sufficient to provide an a-priori bound on the integrand of the first term in (3.32). In
particular, we shall first fix M > 0, and show that, for any given T, § > 0, there exists
some constant Lrs = Laq(T, 6) such that, letting 1 ((@, f(@))) = @ denote the canonical
projection on the first component of any couple fp = (@, f(u)) € FDV, there holds

[ 077 < L [1oll t [0, T], (3-33)
L1 L1

([6,40[)

for every pseudopolygonal 7y : [0, 1] — FDY joining two couples of initial data and
boundary flux in {fp; p € Dy N D"}. Introducing the seminorm

1@, F@D 5 = [l g5, 00p + 1 @]l1a (3:34)
and observing that the L' lengths of the paths 7}, 7/, satisfy
1701l < Co - d(fp1, fp2),

HE;:jpl - EgPQHLl([J,-i—oo[) < Co - |7 lls (3.35)

for some constant Cy > 0, we deduce from (3.33) a uniform Lipschitz estimates for the

flow maps E” of the type
||E7l:/p1 - EfP2HL1([5,+OOD S Lf/\A ) d(fpla fpg), te [07 T] ) (336)

for some other constant L'\, = L/,,(T, §), and any p1,p2 € Dy N DY. As v — oo,

the Lipshitz constant for EY remains uniformly bounded, while the domain D4 N DY
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become dense in Dp4. In the limit, a continuous flow map FE is obtained, defined on the
domain Dy, and satisfying the estimate (3.21).
To extend the flow map F to the whole domain D preserving the property (3.21),

by similar arguments as above we will prove the estimate

||EtP1 - Etp2||L1([5’+ooD < L. d(fpla pr)a te [07 T]7 (337)

for some constant L = L"(T, §) independent on the total variation, and for any p1, ps €
D#, i > 1. In the last part of the proof of Theorem 3.2.4, following the same technique
adopted in the above analysis we establish a Lipshitz continuous dependence in space
of the flow map f(F) of the type

1 (Eypr() = f(B2(@) [Ls iy, rypy < L dlEp1, £02), z€[0,Am], (3:38)

where A = (inf, Ay_p11(u)), and L" = L"(ry, 75) is some constant depending on
7o > 71 > 0. Relying on this property, we prove the existence of the trace of f(E;p(z))
at £ = 0. for any p € D. Finally, we show that FE;p fulfills the boundary condition
(3.15) and satisfies the entropy conditions (3.11)-(3.12).

3.4 Preliminary results

Throughout this section we fix ¥ > 1 and consider a piecewise constant solution u

constructed by the front tracking algorithm, so that
Sy (u,u) = (EY (a,u), Tya) = (u(t,-), Tra) for some (@, a) € D.

We then perturb this solution, shifting the (space) locations z, of the jumps in @ at
rates &, and the (time) locations t, of the jumps in @ at rates I (fig. 3.1). In other
words, for 6 suitably close to zero, the perturbation u°(t, -) will be a function with jumps
at the points w% = 25+ 0. In the same way, u®(-, ) will jump at points t% =tg — (9&3
with &g = &g/ Akg, Where A, is the slope of the discontinuity. As long as the wave-front
configuration of the functions u, u’ is the same, the space-shifts & 3(t) and the time-shifts

fﬁ(m) are uniquely determined as linear functions of the shifts &,, &,.

Remark 3.4.1 We denote by 0,(t) = u(t,zo+) — u(t,zo—) the strength of the jump
of u at (t,z4(t)), and by 64(z) = f(u(ta+,z)) — f(u(ta—,x)) the jump of the flux along
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figure 3.1

the vertical direction. Since approximate solutions are indeed weak solutions, by the

Rankine-Hugoniot equations we have the identity

gaaa = A—a)\kao'a = {a0a.

(e}

In the following we will use both notations, depending on which one is more convenient.

We collect here some properties of these shift differentials (see [18]).

Lemma 3.4.2 Consider a bounded, open region I' in Q. Cdll 0o, @« = 1,..., M the
fronts entering T' and let £, be their shifts. Assume that the fronts leaving T', say og,
B=1,...,M', are linearly independent. Then the shifts {g are uniquely determined by

the linear relation

M M’
D baoa = épop. (3.39)
a=1 p=1

Remark 3.4.3 According to Lemma 3.4.2 the shift rates of the outgoing fronts depend
only on the shift rates of the incoming ones, and not on the order in which these wave-
fronts interact inside I'. More precisely, one can perform the following two operations,

without changing the shift rates of the outgoing fronts:
(O1) Switch the order in which three fronts interact (fig. 3.2).

(02) Invert the order of two fronts at ¢ = 0 or at z = 0, provided that both fronts have
zero shift rate (fig. 3.3).
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figure 3.2

figure 3.3

This property will be repeatedly used in our future estimates. Indeed, in the computa-
tion of a shift rate, we can suitably alter the order of wave interactions and thus reduce

the problem to a case where the wave-front configuration is particularly simple.

Lemma 3.4.4 Assume that a front tracking solution u contains two wave-fronts of the
same k-th family, originating at distinct points and located at T4/ (t) < zon (L), t € [to, t1],
0 <ty <ty <T. Then it is possible to assign shift rates £, to all fronts in u and 4 so
that £ = 1 and moreover, in the corresponding solution u, all fronts z5(t) outside the
strip T = {(t,z) € O t e[t ], zo(t) <z < z(er(t)} have zero shift rate.

In other words, the perturbation of the initial data can be chosen so that one particular
front shifts at unit rate, but the corresponding solution remains unaffected outside the
region I' (fig. 3.4). For a proof of the lemma, proceed as in Chapter 2, noting that
it is not restrictive to assume, if necessary, that there are no waves originating from
the origin. In fact, if w(0+) = (w1,...,w,) and w(0+) = (w1,...,w,) are the data
at the origin, we can shift the jump on the ¢-axe by adding the state w* = w(0+) =

(’LT]l, e ,u";n_p,'u_Jn_p+1, ce ,U_)n).

Lemma 3.4.5 Let u be a front-tracking solution of (3.1)-(3.3), and consider two wave-
fronts, say t — z(t), t — y(t), defined for t in some subinterval of [0,T]. Call A;, By,
AF, Br the starting and the ending points respectively (they can be both on the x and on
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Xo Xg"

figure 3.4

the t aze). Then there exists a second front tracking solution v = EVp with two fronts

Z, g such that the following holds.
(i) A = A, By = By, Ap = Ap, Br = Br.
(i) v = in a neighborhood of these points.

(iii) Tot. Var.{p(())} < Cy, for some constant Cy depending only on the system (1.1)
and on the set K.

ProOOF OF LEMMA 3.4.5. To fix the ideas, assume A; = (i1, z1), Br = (s1, yr) with
zr < yr. Theset {0} x RT U[0, T] x {0} U{T} x R" \ {A;, By, Ap, Br} consists
of five connected components which we call J;, 4 = 1,...,5. Assume that u contains
two wave-fronts ¢ — 2/(t), t — 2”(t), of the same k-th family, such that z} and 2/ lie in
the same open set J; and moreover 2}, and z}, lie in the same J;. We can then proceed
as in [8], obtaining a new solution v with the property that, for each k = 1,...,n and
i,7 € {1,...,5}, there exists at most one point Z € J; where a positive k-wave originates,
terminating within J;, and similarly for negative k-waves. Of course, this implies that
the total variation of 4 is uniformly bounded, with a bound Cy depending only on n

and on the diameter of the set K. O

Due to genuine nonlinearity, the amount of positive waves in u(t,-) contained in a

bounded interval [a, b] dacays in time. We have the following result:

Lemma 3.4.6 Consider a front tracking solution u(t,-) = E} (4, ), with @, @ contain-

ing together at most M shock fronts of the k-th family. Then, for each T > 0 and every
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bounded interval [a, b], with 0 < a < b, one has

b—a)

2
Tot. Var.{wi(7,); [a, b]} < (m' + Jwg ||z + (M +1)27, (3.40)

fork=1,...,n—p,

Tot. Var.{wy(r,"); [a, b]} < %log{[(;h——i_b) — A7 —b) — 1]++1}

2a
b—a
20 e 2, ()
fork=n—p+1,...,n, for some constant C1 depending only on the system.

PROOF OF LEMMA 3.4.6. We give the proof of the statement for k € {n —p+1,...,n},
the other case being easier. By Lemma 2.4.5 in Chapter 2 at time 7 > 0 any two adiacent
k-rarefaction fronts of u are separated by a distance > (7 —ty)-27", where ¢y > 0 is the
beginning time of the rarefaction fronts. Hence the distance between rarefaction fronts
exiting the boundary grows at least linearly with the distance from the ¢ axe. Therefore,
the number of rarefaction fronts starting from the boundary and crossing any interval
[a,b] with 0 < a < b < A7 is bounded by

1+ M+ C1 log(é)
K-27V a

for some constant C; depending on the system. The positive variation of wg(7,-) on

[a, b], i. e. the total amount of upward jumps, thus satisfies

Pos.Var.{w(r,"); [a, b]} < (1+ M)27" + % log (2) (3.42)

On the contrary, if the usual decay estimate holds for the waves starting form ¢ = 0:

b—a

Pos.Var.{wi(7,-); [a, b]} < (1+ M)27" + (3.43)

In turn, the total variation of wy(7,-) on a generic interval [a, b] containing the point A7

is bounded by ||w||Le plus twice the positive variation of wy. Hence (3.40) holds. O

3.5 Estimates on shift differentials

In this section we recover the key estimate on shift differentials. We use the same

techique as in Chapter 2, and we refer to it for the details.
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Lemma 3.5.1 Let u(t,-) = Ef(u, @) be a front tracking solution, with 4, 4 containing
together M shocks. Assume that at time t = 0 (respectively on the boundary at © =0)
the fronts located at zg (tg respectively) are shifted with shift rate &g (Eg = &5/ Mk,
respectively) and amplitude og (or 63). Then there exists a constant C3 depending only
on the system (3.1) and on the domain K, such that for any § > 0, calling £,(7), 0o(T)
the shift rates and the amplitudes of the fronts in u(r,-), T € [0, T], we have

D |ea(r)oa(r)] < Cs(14+ M27)(1 4 log(T/5)) (Z |¢505] +Z |§,Baﬁ|> (3.44)

ZTa(T)>6

PROOF OF LEMMA 3.5.1. Assume first that only one front & starting at Z (or ¢) is
shifted, say of the k-th family, with shift rate £&. Consider one particular front, say
Zor, Of the j-th family, and call y = z,+(7) its terminal point. There are constants Cj,
C5, depending only on the system (3.1) and on the domain K, such that the following
properties hold.

(P1) If 2, is precisely the k-front starting at Z (¢ respectively), then

‘{a* (T)oa (T)‘ < Csléal.. (3.45)

(P2) If x4+ is a j-front, with j # k, and the backward j-characteristics ending at y
include fronts starting from both sides of Z (¢ respectively), then (3.45) again
holds.

(P3) If x4+ is a j-front, and the j-fronts ending at 7 start all at the same side of T (¢

respectively), one then has the sharper estimate

Ear (1)| < Culés). (3.46)

For a detailed proof of (P1)-(P3) we refer to Chapter 2. The same techique holds,
with minor changes. Here we limit ourselves to show the proof of (P3).

Observe that, besides the fronts starting at Z (or £) and the ones ending at ¥, one
can single out four groups of waves:

(1) the waves starting on the left of Z (respectively, after ¢) and ending on the left
of g;

(2) the waves starting on the right of Z (respectively, before t) and ending on the

right of ¥;
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figure 3.5

(3) the waves starting on the right of Z (respectively, before ) and ending on the
left of §;

(4) the waves starting on the left of Z (respectively, after ¢) and ending on the right

of 4.
According to Remark 3.4.3, in our computation of the shift rate {,~(7) of the front
reaching g, it is not restrictive not to take in account the sets of waves in (1) and (2).
Indeed, we can otherwise shift the locations of all these fronts of type (1) towards the
left, until they all lie outside the domain influenced by the shift at Z. Similarly, fronts
of type (2) can be shifted toward the right until they lie completely outside this domain
of influence.

Let’s consider the case (fig. 3.5) where no j-wave ending at y crosses the k-wave
starting at z (or ¢). Consider a curve v running slightly to the right of the minimal
backward j-front ending at . By Lemmas 3.4.2, 3.4.4, after performing the operations
(01)-(02) a number of times, we can consider an equivalent configuration with the

following properties:

No front crosses v from left to right. There exists some index £ < j such that only fronts
of families ¢+ < £ can cross vy from right to left, and we can assume that the waves of

type (1) have zero shift rate at every time in the interval [0, 7].

Applying Remark 3.4.3 to the region on the right of v we obtain

Y baoat Y &alr)oalr) =Eo. (3.47)

a€C(y) Ta(T)>v(T)
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Here the first summation extends to all fronts crossing the curve vy with non-zero shift
rate. Call u~ and u™ the left and right states across the jump at . Observing that the

two sums on the right hand side of (3.47) are contained in

span{r(ut),...,rp1(u")}, span{ry(u®),...,r(u")}, (3.48)

using the assumption (SH) on the linear independence of the eigenvectors, we conclude

Y taoa| < Culéa]. (3.49)

a€C(y)

We now apply again Remark 3.4.3 to the region on the left of v. Observing that the
only incoming fronts which carry a nonzero shift rate are those crossing - from right to

left, and that the only outgoing shifted j-front is the one ending at ¢, we obtain

Z faaa‘}'fa Z faaa (3.50)

za(T)<T a€cC(y

Recalling the normalization at (3.6), we observe that (3.50) implies

|bar ()00 ()] = L) - Y bada (3.51)
a€C(y)
On the other hand,
Lwh) Y €aoa=0 (3.52)
aeC(y)

Together, (3.51) and (3.52) imply
| (T)oas ()] < C'[l(u™) = 1i(u™)] | Y- €ava| < Csloas(7)||€5]. (3.53)

Hence, in this case, (3.46) holds.

We now prove (P3) in the case where k > j and all j-waves running into y cross
the k-wave starting from ¢, as in figure 3.6. In this case, we construct a curve +y slightly
to the left of the maximal backward j-front ending at . Observe that every wave-front
crossing 7y from left to right must be of a family ¢ > j. Moreover, we can assume that
no wave crosses <y from right to left. Applying Remark 3.4.3 to the region on the left of
v we obtain

Yo bagat Y &(r)oa(r) = . (3.54)

a€C() Ta(T)<Y(T)
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figure 3.6

Since the waves crossing v must belong to different families from the ones ending inside
the interval [0, (7)] (recall that interacting waves of the same family produce a single

wave front), (3.54) implies

Z £a0a §C5|56|- (3.55)

a€C(v)
We now apply again Remark 3.4.3 to the region on the right of -y, observing that the
set of outgoing fronts, crossing the line t = 7, contains the j-front at y plus other fronts

on the right of y, of families ¢« > 5. This yields

o (T)0a= (T) + Y &a(T)oa(r) = D &aoa. (3.56)

Ta(T)>7 acC(y)

By (3.56),
|€ar (T)oar (T)| = i)+ ) €aoa. (3.57)

Observing that
Li(u™) - Z §a0a =0,

we again have an estimate of the form (3.53), hence (P3) holds. The other cases are

similar or easier.

We now complete the proof of Lemma 3.5.1. Let A be an upper bound for the
absolute values of all characteristic speeds. If the only front shifted is located at time

t=tatz =1z, it follows that at a fixed time 7 > 0 the only fronts with nonzero
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shift rate can be the ones located inside the interval [zo, Z + A(T — £)], where zy =
max{0, Z — A(7 —)}. Recalling the estimate (3.40)-(3.41) on the total variation, using
the properties (P1)-(P3) we thus have

Z |£a(T)0a(T)| < nCs|éa| + Cyléa| - Tot.Var.{u(T) ;o [0, T+ 5\(7 — f)]}
ZTa(T)>0

< C3(1+ M277)(1 + log(7/0))[¢a]
< C3(1+ M27Y)(1 + log(T/6))|¢5|, (3.58)

for a suitable constant Cj.

Assume now that all fronts in 4, @ are shifted. More precisely, let £,(0) be the
shift rate of the front located at z4(0) (¢4 (0) respectively), having amplitude o,(0). Call
€5(T) the corresponding shift rate of the front of u(7,-) located at zg(7). Observing that
the shift differential

(£1(0), ... €m(0)) = (&1(7);- - Enar(7))

is a linear mapping, (3.44) easily follows from (3.58). 0

In order to prove that the constructed semigroup of solutions satisfies the boundary
condition, we will make use of the following result of continuous dependence along

vertical segments.

Lemma 3.5.2 Let u(t,z) = EY (@, a)(z) be a front tracking solution containing at most
M shocks. Assume that at © = 0 the fronts located at tg (whose amplitude will be
misured by the jump Gg of the fluz) are shifted with time-shift rate ég. Then there exists
some constant Cg independent on the total variation such that, for any to > t1 > 0,
denoting with £4(x), Go(x) the shift and the amplitude of the fronts in u along the
segment {(t,x); t € [t1, t2]}, 0 <z < (infu /\n,pﬂ(u))tl, we have

Y. la(@da(@)] < Co(1+ M2 ")(1+log(ta/tr)) - Y |épop],  (3.59)

ta(z)€lt1, t2] tp
PrROOF OF LEMMA 3.5.2. We give here a sketch of the proof, which is similar to
the one of Lemma 3.5.1. The estimates (P1)—(P3) can be recovered here with minor
modifications. As an example, we illustrate the case in which the particular front to
be estimated at z > 0 belongs to a family j € {1,....n — p}, so it started on the z
axe (fig. 3.7). Call 5 the time in which this front crosses the line {(¢,z); t € [t1, t2]}.
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X
figure 3.7

Assume first that only one front (0), starting at ¢ = ¢, is shifted, say of family k €
{n—p+1,...,n}. After performing the usual semplifications, we can reduce to the
situation illustrated in figure 3.7. We consider the straight line ¢ = s and a curve -y
running slightly to the left of the maximal backward j-front passing through (3,z).
Applying the divergence theorem to the region on the left of v we obtain

Z £a0a + Z fa( )Ua( ) (3.60)

acC(y) Ta (5)<v(8)

By linear independence of the vectors on the left hand side of (3.60) we have

> aoa| < ClEG(0)]. (3.61)

aeC(v)

Then we consider the region on the right of v, where we compute

Z gaaa —5‘7 Z ga Ua (362)

aeC(y) Ta(5)>z

From (3.62), by (3.6) and (3.61) we obtain

€63)| = |go(@)] = L") Y tava| < Cll(u") - Z £aro

aeC(y) aeC(y

< Clo(2)]|€5(0)],
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and we recover (P3). Here v~ and u™ denote as usual the left and right states across
the jump at (s, ).
To get the final estimates, we make use of estimates on the total variation analogous

0 (3.40)-(3.41). More precisely, for any b > a and 0 < z < (infy Ap—p41(u))a, one gets

Tot.Var.{wy (-, z); [a, b]} < Ql og (b) + lwgllpee + (M +1)21, (3.63)
fork=1,...,n—p,

Tot.Var. {wg (-, z); [a, b]} < (bm Jn lwg L + (M +1)2'7, (3.64)

for k=n—p+1,...,n, the proof being enterely analogous to the one of Lemma 3.4.6.

a

3.6 Proof of the theorems

1. Existence of the semigroup on domains of BV functions. In order to construct
the semigroup described in Theorem 3.2.4, we shall first define a Lipschitz continuous

flow map FE on every domain
Dm = {p € D; Tot.Var.{p} < M} M >0,

obtained as a limit of the approximate flow maps FEY constructed in Section 3.3 on
the domains D¥. To this end, consider any two piecewise constant couples of initial
and boundary data, say pi, p2 € Dym N DY, and construct a pseudopolygonal path
v 0 — fp? = (a%, f(@?%)) connecting fp; with fpy as described in Section 3.3. All
functions (@, @) lie in Doy N D¥ and have a uniformly bounded number of shocks,
say < M. Call uf(t,-) = EY (@, @) the corresponding solution and consider the path

10— (ul(t,), Tef (@%)). Writing the length of this path in the form (3.32), and using

Lemma 3.5.1, for any fixed T, § > 0, and for every ¢ € [0, T'], we obtain the estimate

15)
e — Z/ Y Al 27

0~ {a : 2¢>6} 09
j
< Z/ Cs(1+ M2)(1 + log(T/6))
—1 /0,

(Siauteo |+ A )25 a

< C3(1+ M27")(1 +1og(T/6)) - [0 [l - (3.65)

K

&CB
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Observing that any function in DasND” has at most 2¥ M jumps, from (3.65) we derive
(3.33) with Lypg = C3(1 + M)(1 + log(T'/6)), which, in turn, because of (3.35), clearly
implies (3.36).

Once we have established the uniform Lipshitz continuity of the maps Ef (and
hence of the approximate semigroup Sy) on the domains D N DY, since the union
Uy,>1Dam NDY is dense in Dy we will define the map E on Dy as the limit

Ei(p) = L' - lim EY(p”) p’ €Dy NDY, p* - pinLl. (3.66)

V—0o0

In order to prove that the assignment (3.66) yields a well-defined map, since any sequence
EYp” is uniformly bounded in L*°, it is sufficient to show that, for every given p € D,
and for any ¢ > 0, if p¥ € Dyq NDY is any sequence that converges to p in L', then the
sequence E{'p” |5 4oo[» is Cauchy in L'. Indeed, for any u > v, using (3.35) (possibly

with a different constant L), we obtain

1D — B0 ||t 5o < IEPY = BED” i osocy + 1P = BB o
< Ly -d(p*, p¥) + ||SE'p” — 5¢p” |5, (3.67)

where || - |5 denotes the seminorm introduced in (3.34). To estimate the second term
in (3.67), we shall use the same type of error estimate established in [14, Theorem 2.9]
for the distance between a Lipschitz continuous map and the trajectory of a Lipshitz

continuous semigroup which can be restated as follows.

Lemma 3.6.1 Let D C B, D' C B’ be subsets of two Banach spaces (B, ||-||B), (B', ||
lg'). Let S:Dx [0, T] — D be a continuous semigroup, [ : [0, T] — D be a continuous

map, and let p: D — D' be a map such that

lo(sip1) = p(85p2) | 5 < L+ {1 = 2ol + £ =51},
lo(C®) = p(C)) || < L[t =], (3.68)

for some constant L > 0. Then, for any 7 € [0, T|, one has the estimate

Hp(l“(r)) —p(STF(O))HB, < L-/OT {liminf (T + 1) ;p(s’lr(t))HB’} dt. (3.69)

h—0+

Set
D =Dy NDH, D'ﬁ{(ﬂf[ﬁ,m[, i) ; p= (g, ﬂ)GD},
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and let p = ps : D — D' be the restriction map p = (@, @) — p(p) = (& [16,+00[» ).
Observe that, if we let ' : [0, T] — Dag N DY C Dag N D* be the map I'(t) = SYp”, and
S = S*, the Lipschitz continuity of the maps S¥, S#, and the uniform bound on the
total variation of the trajectories t — EYp, p € Dy N DY, clearly imply the estimates
(3.68). Thus, we may apply Lemma 3.6.1 and, from (3.67), (3.69), we derive

HE#p“ - Eéij”Ll([(;’JrooD < LI/\A -d(p”, p¥)

t v vV _ QhQu v
+L-/ {1iminf||ss+hp 5,55 P HLI} ds.(3.70)
0

h—0+ h

v
S

With the same arguments in [8], letting q = S,
in (3.70) by

pP”, we can now estimate the integrand

1w 1y —v
7 ||Shq—5;f(l||L1 =7 ”th—E;'fQHLI <C7-27"M, (3.71)
for some constant C7 > 0. Hence, (3.70) together with (3.71) yields

HE#p“ - EEPUHLl([(;,+OO[) < Lf/\/l -d(p”, p¥) + LCYM - 2774, (3.72)

which clearly shows that Eyp”[[5 o[ i a Cauchy sequence in the L! norm and that
his limit does not depend on the choice of the sequence p”. Thus, the map in (3.66) is

well-defined on every domain D,.

2. Extension of the semigroup to domains of L*° functions. To ensure the
existence of the map F on the whole domain D of functions of possibly unbounded vari-
ation, we will prove now the estimate (3.37) for some Lipschitz constant L” independent
on the total variation. To this purpose, consider any two couples p;, p2 € D¥, and
construct as above a pseudopolygonal path v, : 6 — fp? = (@?, f(@?)) taking values in
FD*, that connects fp; with fpy and has the following property. All functions (a@?, @)
have a uniformly bounded number of jumps and hence lie in some domain Dy, M > 0.
Then, calling u(t,-) = EY(@’, @%) the corresponding v-approximate solution, since by
(3.66) we have

Ey(@’, %) = lim EY(@®, @) = lim uY(¢,-), (3.73)

vV—00 V—0oQ

in order to establish (3.37) we will show that the length of the pathy} : 0 — (ul(t,-), Tif (@?))
remains a bounded multiple of the length of g, independent on v. Indeed, for any fixed
T, 6 > 0, and for every v > p, letting M be a uniform bound on the number of shocks in

(@?,4?%), and using Lemma, 3.5.1, we obtain by the same arguments in (3.65) the estimate

171 0 % [[Lr (f6,400p < C3(1 + M277)(1 + log(T/6)) - llyollL
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which, in turn, because of (3.35), implies
1B P1 = B Poll 11 (5 oo < Co(l+ M27")(1 +10g(T/0)) - d(fpy, fp2)  (3.74)

for some other constant Cg > 0. Letting v — oo in (3.74), because of (3.73) we obtain
(3.37) for all p;, p2 € DH*. Since the domains D*, p > 1, are dense in D, relying on
(3.37) we can now extend the map F by continuity to the whole domain D setting

Ei(p) =L!'— lim E;(p") p € D*, p* > pinL'. (3.75)

HU—>00

Clearly, the map in (3.75) preserves the property (3.37), proving (3.21). Moreover, any
trajectory t — Fy(p), being the limit of front tracking approximations, provides by
standard arguments [10, 14] a weak solution to problem (3.1)-(3.2).

3. Lipschitz continuity in space. Towards a proof of the existence of the
trace of f(u(t,z)) = f(Ep(z)) at the boundary z = 0, we shall first establish the
Lipshitz continuous dipendence in space (3.38) for the map f(F). Fix 7o > 71 > 0, and
observe that, because of (3.66), for every given p € Dy, the sequence E(” )P converges
to Eyp in L! ([O, n] X RT; K ) Hence, relying also on the continuity of the maps
T E'E’_)p, z — E()p, we deduce that

F(ELH®)(@) 1y, 7= L" — lim F(EL ) (@) 1ry, ) for all . (3.76)

V—0o0

Therefore we may proceed as in the proof of (3.37) to establish the estimate (3.38)
for any given pair of couples p1, p2 € D¥. We construct a pseudopolygonal path
o : 0 — fp? = (@, f(@)) taking values in FDH, and connecting fp; with fps, so
that all functions (@, @) have a uniformly bounded number of shocks < M, and lie in
some domain Dy, M > 0. Then, for every v > pu, calling uf(t,-) = EV(@’, @) the

corresponding v-approximate solution, we consider the pseudopolygonal path

v 0 (Tot?, f(ud(-, x))) (3.77)

with values in FD". Letting mo((u, f(@))) = f(@) denote the canonical projection
on the second component of (u, f(@)), and using Lemma 3.5.2, for every 0 < z <

(infy, Ap—p+1(u)) 71 we compute as in (3.65)

otl (
||7T2 0756 |L1 ([T1,72]) Z/ |Au |‘

bi-1 {a taE[ThTﬂ}

do
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Z/' (1 + M27)(1 + log(r2/1))

(S tontiosl| 257« £ it ol |52 o

< Cs(1+ M27")(1 +log(r2/71)) - 1ol - (3.78)

8:1:/3

Introducing the seminorm

”(ﬂaf(ﬂ))”[ﬂ,m] = ”a”Ll + Hf(ﬂ)HLl([n,n])’

and observing that the L! length of the path 7% satisfies

||f(Ez/)p1(.’E)) f(E( )p2 ”Ll (Ir1, 7)) < Cy- “'7;“[7'1,7'2]’ (379)

for some constant Cy > 0, we deduce from (3.78) the estimate

£ (Eyp1(z)) — F(EGP2®)) 11 1y 7y < Cro(L+ M27Y) (1 + log(ra/71)) - d(fp1, £p2)
(3.80)
for some other constant C1p > 0. Letting v — oo in (3.79), thanks to (3.76) we obtain
(3.38) for all p1, pa € D¥. By continuity, and relying on the density of the domains
DH, u> 1 in D, we then extend the estimate (3.38) to any pair p1, p2 in D.

4. Boundary conditions. Let u(t,z) = Sip(z), p = (4, u) € D, be the weak
solution constructed above, and consider a sequence p” = (u”, @”) € D" converging
to p in L. Call u”(¢,z) = S;p”(z) the corresponding solution. Since every p” lies in
some domain Dy, , all functions u” (¢, z) have bounded total variation and satisfy the
boundary condition (3.15)

m]_l)I(I)l+ w; (v (t,2)) = w;(a”(t)) for ae. t>0, j=n—p+1,...,n. (3.81)

Now, fix 5 > 71 > 0. By (3.38) and because of the invertibility property of the flux

function f, let C11 > 0 be some constant such that

”wj (uu(’w)) Wy (u(,x)) ||L1([T1, 72]) < Ci1-d(p”, p) - (3.82)

Then, (3.81), (3.82) together imply that, for any j = n — p + 1,...,n, the functions
wj(u(-,2)), wj(f(u(-,z))) have a strong limit as z — 0 and
T2

$l_i>n01+ : ‘wj (u(t,z)) —w;(a |dt =0, (3.83)
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thus showing that u(¢,z) fulfills the boundary condition (3.15). On the other hand, by
the decay of the total variation, also w; (f(u(-,z))), j =1,...,n—p, have a strong limit
as ¢ — 0, which completes the proof of the existence of the trace of f(u(t,z)) at x =0,
according with Definition 3.2.2.

5. Uniqueness. Concerning the entropy conditions (3.11)-(3.12), fix an interval
[a, b] and a couple of initial-boundary conditions (u,%). We can now approximate the so-
lution u(t,-) = Ei(a,a) with a sequence of front tracking solutions u”(t,-) = EY (4", d"),
choosing initial data w”, 4" having a number of shocks N, < v. By (3.40)-(3.41), the
total number of positive wave-fronts in u”(7,-) = E¥(4@”,4”) on a given interval [a,b]

satisfies
(b—a)

KT

Pos.Var.{w}(7,-); [a, b]} < + (N, +1)27, (3.84)

for k=1,...,n—p,

3. +
Pos.Var.{w,’;(T,-); [a, b]} < —log{ AT+b)2 A7 — b - 1:| + 1}
a

(b—a)

KT

+ (N, +1)207, (3.85)

for Kk =n—-p+1,...,n, where w] = wi(u”) is the k-th Riemann coordinate of u”.
Letting v — oo in (3.73)-(3.74), by the lower semicontinuity of the total variation we

obtain
Pos. Var. {w(r,); [a, B} < (b,;“) , (3.86)

fork=1,...,n—p,

Pos.Var.{wy(7,"); [a, b]} < % log { [(S\T + b)Z; [Ar —b) _1} +_|_1} +M , (3.87)

KT

fork=n—p+1,...,n. Hence (3.11)-(3.12) holds. This completes the proof of Theorem
3.2.4.

Regarding Theorem 3.2.6, let us fix any R > 0 and let X be an upper bound for the
absolute value of all characteristic speeds. Let u be a weak entropy solution according to
Definition 3.2.2 (and continuous in x=0, t=0). For every d > 0 the restriction of u(t, -)
to the intervals I(t) = [0, R — M], t € [6, R/A] has uniformly bounded total variation.

Therefore, the uniqueness theorem in Chapter 1, Theorem 1.1.3 yields

u(t,-) = Ey_g(u(8,6 +-),u(d + -, 6)) restricted to I(t),
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/ lu(t, ) — Ey(a, @) (x)|d
1)

= /I(t) |Ei—s(w(8,6 +),u(d +-,6)) (z) — Ei—s (Es(@, @) (8 + -), Es1. (1, 0) (6)) (z) |d
< L J|u(3, ) = B () || + [|f (w(@ +-,6)) = f (Bsy (@, @)(9)) || - (3.88)

Letting 6 — 0 we conclude that the left-hand side of (3.75) must be zero. Since R was

arbitrary, this proves Theorem 3.2.6.

3.7 Properties of the attainable sets

Following [5, 6] we focus the attention on the mixed initial-boundary value problem

u + f(u)e =0, (3.89)
u(0,z) =0, t,z >0, (3.90)
u(t’ 0) = '&'(t)a (3.91)

from the point of view of control theory, regarding the boundary data 4 as a control.

We shall be concerned with the basic properties of the attainable sets for (3.89)-(3.91)
A(T,U) = {u(T, -) : wu is a weak entropic solution to (3.89)-(3.91) with @ € L{} ,

A(z,U) = {u(,:i) : u is a weak entropic solution to (3.89)-(3.91) with @ € Z/{} ,

which consist of all profiles that can be attained at a fixed time T' > 0 and at a fixed
point Z > 0 by solutions of (3.89)-(3.91) with boundary data that varies inside a given
class U C L*®(IR") of admissible boundary controls. In particular, we establish the

compactness of these sets.
Theorem 3.7.1 Consider a set K of the form (3.16) and define

u={aek; w(f@)eloy, B, j=n-p+1,...,n}

for some —oo < a; < B; < +o00. Then A(T,U), T >0, and A(z,U), T > 0, are compact
subsets of L'(IR") and L'}, (IR") respectively.
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PROOF OF THEOREM 3.7.1. We will show the proof for the set A(T,U). For the set
A(z,U) the procedure is enterely similar. Let {u”},cn be a sequence of weak entropic
solutions of (3.89)-(3.91) and {@"},enr C U the corresponding boundary data.

Denote by w} the Riemann coordinates of u”. Being K bounded and by finite

propagation speed there exist C, a > 0 such that

C, ifr < a,

vt € [0, T, Vv e N. (3.92)
0, ifz > a.

|wi (¢, )| < {
Hence {w? (T,-)}ven; {w?(-,")}ven are weak* relatively compact in L®(IR"), L°°(Q)

respectively. Thus, up to a subsequence, we have
wi (T, ) = w; in L°(R™), (3.93)

w! v, in L*(Q), (3.94)

for some functions w € L®(R",R"), v € L*(Q,R"). We shall prove that u =
u(w) € A(T,U) and that there exists a subsequence of {w}(T,-)},en converging to
w; in L*(IR"). The entropy conditions (3.11)-(3.12) guarantee that, for every § > 0,
there exists Cs such that

Tot.Var.{w/ (t,-); [0, +00)} < Cj vt € [0, T7, Vv e N.

Moreover there exists a constant L = L(d,7T) such that
+o0
/ |wi (t,z) — wi (s,z)| dv < L|t — s Vt,s € [0, T, Vv e N.
)

By Helly’s Theorem for any & fixed there exists a subsequence {w;’ (t,-)}jear Which
converges to some function vs;(¢,-) in Ljc([d, +00)). But (3.94) implies that such a
function must coincide with v; and hence, by using (3.92), for every ¢ € [0, T] the
original sequence {w(t,-)},en converges to v;(t,-) in L'(IR"). In particular, from the
convergence of {w}(T,-)},en to v;(T,-) and (3.93) it follows that v;(T,:) = w;.

By the L' convergence, u = u(v) is a weak solution to (3.89) and satisfies the initial
condition in divergence form, as required by (i) in Definition 3.2.2. Also, by the lower
semicontinuity of the total variation, the decay estimates (3.11)-(3.12) are also satisfied.
Thus to complete the proof it remains to show that u is a solution of (3.89)-(3.91)

corresponding to a boundary data o € U.
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By compactness, the sequence {¥"};cx of the traces of the functions f(u") will
admit a weak limit ¥. Since by hypotheses w;(¥”) € [oj, f;] and the set {g €
R™; wi(g) € [aj, Bjl, j=n—p+1,... ,n} is convex, it follows that w;(V) € [a;, B;],
j=n—p+1,...,n Hence, since f is invertible, & = f }(¥) € U. If we now pass to

the limit as ¥ — o0 in
400 —+00 T
/ / (W (t,2) - it ) + F(u? (1, 7)) - bo(t, ) de dt + / UV (1) - (¢, 0)dt = 0,
0 0 0

with ¢ € C' with compact support contained in the set {(t,z) € R?% ¢ > 0}, we get

400 +oo T
/0 /0 (ult,2) - o(t, 2) + f (u(t, ) - bu (8, 2))da dit + /0 W(t)- $(t,0)dt = 0. (3.95)

From (3.95), by applying the divergence theorem on small rectangles approximating the

boundary, one easily gets

lim /0 Fluls,z)) ds = /0 U(s)ds T3>0 (3.96)

r—0t

This concludes the proof. O
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4.1 Introduction to Chapter 4

We are interested in the continuous dependence of entropy solutions to hyperbolic con-

servation laws

ut + f(u)z =0, u(z,t) € R,z € R, t >0, (4.1)

where the flux f : IR — IR is a smooth and convex function. After works by Liu and

Yang [58] and Dafermos [29], we aim at deriving sharp L! estimates of the form
¢
™ (8) = u” () ey +/ M(r;ul,u) dr < JulT(s) —u!(s)luw(s), 0<s<t, (42)
S

for any two entropy solutions of bounded variation u! and u!! of (4.1), where [l llw(ey s
a weighted L' norm equivalent to the standard L' norm on the real line. In (4.2), the

positive term M (7;u’, u'!)

is intended to provide a sharp bound on the strict decrease
of the L' norm. The estimate with w = 1 and M = 0 is of course well-known.

Recall that the fundamental issue of the uniqueness and continuous dependence for
hyperbolic systems of conservation laws was initiated by Bressan and his collaborators
(see [14, 17] and the references therein). A major contribution came from Liu and
Yang [58, 60] who introduced a decreasing L' functional ensuring (4.2). This research
culminated in papers by Bressan, Liu and Yang [23] and Hu and LeFloch [41], and Liu
and Yang [61].

In the present paper, we restrict attention to scalar conservation laws and, following
Hu and LeFloch [41], we investigate the stability issue from the standpoint of Holmgren’s
and Haar’s methods ([54] and the references therein). The problem under consideration

is (essentially) equivalent to showing the uniqueness and L' stability for the following

hyperbolic equation with discontinuous coefficient:
P+ (ap) =0, Y(z,t) €ER, x € R, t > 0. (4.3)

That is, for solutions with bounded variation we aim at deriving an estimate like

t
WO + [ M(rap)dr < [$O)o)  0<s<t (44)
For the application to (4.1) one should define a by
I II) fu') = fu')

a:a(u , U = W (45)

One may also consider the equation (4.3) for more general coefficients a.
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Recall that the existence and uniqueness of solutions to the Cauchy problem as-
sociated with (4.3) was established in LeFloch [50] in the class of bounded measures,
under the assumption a, < FE for some constant E. The latter holds when a is given
by (4.5) (at least when u! and u!! contain no rarefaction center on the line ¢ = 0 which
holds “generically”). See also Crasta and LeFloch [25, 26] for further existence results.

It must be observed that we restrict attention here to more regular solutions, having
bounded total variation, as this is natural in view of the application to the conservation
law (4.1). In this direction, recall that an L' stability result like (4.4) was established
by Hu and LeFloch (see [41], Section 5, and our Theorem 4.2.2 below) in the class
of piecewise Lipschitz continuous solutions, with M = 0 however. This uniqueness and
stability result was achieved under the assumption that the coefficient a does not contain
any rarefaction shock (see Section 4.2 below for the definition). In [41] the authors made

the following essential observation:

The linearized equation (4.3)-(4.5) based on two entropy

solutions of (4.1) does not exhibit rarefaction shocks. (4.6)

(This is also true for systems of conservation laws, as far as solutions with small ampli-
tude are concerned.) One of our aims here is to extend the L! stability result for (4.3)
in [41] to arbitrary solutions of bounded variation.

The present result relies also heavily on the contribution by Liu and Yang [58]
who, for approximate solutions constructed by the Glimm scheme, discovered a weighted
norm having a sharp decay of the form (4.2). Subsequently, the Liu-Yang’s functional
was extended by Dafermos ([29], Chapter 11) to arbitrary functions of bounded variation
(BV) and, using the notion of generalized characteristics, Dafermos derived precisely
an estimate of the form (4.2) valid for BV solutions.

The aim of this Chapter is to provide a new derivation and some generalization
of this L' functional. Toward the derivation of bounds like (4.2) or (4.4) we make the

following preliminary observations:

(1) The geometrical properties of the propagating discontinuities in a (Lax, fast or
slow undercompressive, rarefaction shocks, according to the terminology in [41])
play an essential role. It turns out that the (jump of the) weight w(z,t) should be
assigned precisely on each undercompressive discontinuity. On the other hand, Lax
discontinuities are very stable and do not require weight, while (in exact entropy

soutions) rarefaction shocks do not arise, according to (4.6).
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(2) Certain (invariance) properties on the coefficient a are necessary to define the

weight globally in space; see (4.15)-(4.16) in Section 4.2.
ght g y pace;

(3) The weight however is far from being unique and we believe that this flexibility in

choosing the weight may be helpful in certain applications.

The content of this Chapter is as follows.

In Section 4.2, we consider piecewise constant solutions of (4.3) and introduce a
class of weighted norms satisfying a sharp bound of the form (4.4). See Theorem 4.2.3
below. All undercompressive and Lax discontinuities contribute to the decrease of the
L! norm. For the sake of comparison, we also consider the L' norm without weight; see
Theorem 4.2.2.

In Section 4.3, we point out that the setting of Section 4.2 covers the case of the
conservation law (4.1). Passing to the limit in wave front tracking approximations, in
Theorem 4.3.5 we arrive to the sharp bound (1.2) for general BV solutions. The proof is
based on fine convergence properties established earlier by Bressan and LeFloch [21] and
on a technique of stability of nonconservative products developed by DalMaso, LeFloch,
and Murat [31] and LeFloch and Liu [53].

Next, in Sections 4.4 and 4.5 we return to the equation (4.3) studied in Section
4.2 but, now, we deal with general BV solutions. We follow closely ideas developed by
Dafermos [28, 29] for solutions of (4.1), and extend them to the linear equation (4.3).
Using generalized characteristics we establish first a maximum principle in Theorem
4.4.5. Finally, in Theorem 4.5.1 using the technique of generalized characteristics, we
establish the sharp L! stability property (4.4) directly, for general BV solutions of (4.3).
The result applies in particular to the conservation law (4.1) and allows us to recover
(4.2).

Throughout the paper, we always assume that all functions of bounded variation
under consideration are normalized to be defined everywhere as right-continuous func-

tions.

4.2 Decreasing norms for piecewise constant solutions

Given a piecewise constant function a : IR x IRy — IR, let us consider the linear

hyperbolic equation
i+ (a9), =0,  P(z,t) € R, (4.7)
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and restrict attention to piecewise constant solutions. By definition, the function a
admits a set of jump points J(a), consisting of finitely many straightlines defined on
open time intervals, together with a finite set of interaction points Z(a), consisting of
the end points of the lines in J(a). The function a is constant in each connected
component of the complement C(a) of Z(a) U J(a). At a point (z,t) € J(a) we denote
by A% = \%(z,t) the speed of the discontinuity and ay+ = ay(z,t) = a(zt,t) the left-
and right-hand traces. It is tacitly assumed that the discontinuity speeds A® remain
uniformly bounded. Finally the function is normalized to be right-continuous. A similar
notation is used for the function .

The geometrical property of the coefficient a play a central role for the analysis of

(4.7), so we recall the following terminology [41]:

Definition 4.2.1 A point (z,t) € J(a) is called a Laz discontinuity iff
a_(z,t) > \(z,t) > ay(z,1),
a slow undercompressive discontinuity iff
A(z,t) < min(a_(z,t),a(z,1)),
a fast undercompressive discontinuity iff
A (z,t) > max(a_(z,t), a4 (z,1)),
and a rarefaction-shock discontinuity iff
a_(z,t) < \%z,t) < ay(z,t).

For each ¢ > 0, we denote by L(a),S(a),F(a), and R(a) the set of points (z,t) €
J (a) corresponding to Lax, slow undercompressive, fast undercompressive, and rarefaction-

shock discontinuities, respectively.

Theorem 4.2.2 Consider a piecewise constant speed a = a(x,t). Let 1 be any piecewise

constant solution of (4.7). Then we have for all 0 < s <t

()l + / Z (2, 7)) [, 7)| dr
(z,7)EL(a
t
— [p(s)lles + / Z 2 (N (0, 7) — a_(z,7)) Wpo(z, ) dr.  (48)

5 (z,7)eR(a)
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In (4.8), the left-hand traces are chosen for definiteness only. Indeed it will be
noticed in the proof below that for all (z,7) € L(a) U R(a)

(@, 7) —a—(2,7)) - (z,7)| = =(X"(2,7) — ay.(z,7)) [$+ (2, 7)]

Observe that the Lax discontinuities contribute to the decrease of the L' norm, while the
rarefaction-shocks increase it. On the other hand, the undercompressive discontinuities
do not modify the L! norm. When a contains no rarefaction shocks (this is the case
when (4.7) is a linearized equation derived from entropy solutions of a conservation law,
as discovered in Hu and LeFloch [41]), Theorem 5.1 yields

[¥@llee < l9(s)llee,  0<s<t, (4.9)

where we neglected the favorable contribution of the Lax discontinuities appearing in
the left-hand side of (4.8). In particular, (4.9) implies that the Cauchy problem for (4.7)
admits a unique solution (in the class of piecewise constant functions at this stage),
provided a has no rarefaction-shock discontinuities.

On the other hand, it is clear that the sign of the function 1 is important for the
sake of deriving the L' stability of the solutions 1 of (4.7). For instance, if 1 has a
constant sign for all (z,t), then (4.9) holds as an equality

[Pl = [lP(s)lle,  0<s <4,

which implies that the Cauchy problem for (4.7) admits at most one solution % of a

given sign.

PROOF OF THEOREM 4.2.2. Denote by P(E) the projection of a subset E of the (z,t)-
plane on the t-axis. By definition, any piecewise Lipschitz continuous solution %) is also
Lipschitz continuous in time with values in L'(IR). So, it is enough to derive (4.8) for
all t ¢ E := P(Z(a) UZ(4)). The latter is just a finite set. The following is valid in
each open interval I such that TN E = (.

We denote by z;(t) for t € I and j = 1,---,m the discontinuity lines where the

function 9 (.,t) changes sign, with the convention that
(=1) p(z,t) >0 for z € [z;(t), zj4+1(2)]- (4.10)

Set zljj-i(t) =4 (z;(2),t), Aj(t) = A*(z;(t),), etc. Then by using that 1/ solves (4.7) we
find (for all ¢ in the interval I)

a /JR p(z, 1)) do
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m it
= %Z(—l)] /I P(z,t)dz
m ) zj41(t)
S (1) (/ &¢@Jﬁh~FM+ﬂﬂ¢ﬁdﬁ)—Aﬂﬂ¢f@ﬂ
3=1 K
m ) zj+1(t)
:=§]—nﬂ</ —&ﬁ&mﬂwaﬂﬁh+kﬂﬂﬂ¢ﬂﬂﬂ—Aﬂﬂwﬂﬂ>
j=1 z
>

(=17 ((aF (1) = A0) %7 (1) + (a5 (&) = X (1) 5 (1))-
The Rankine-Hugoniot relation associated with (4.7) reads

(aj (8) = X (®) 9] (1) = (a; (8) = ;1)) %5 (0), (4.11)

l]]e] el()le l)y (4.10)
dt ’ — ] J ] °

Consider each point z;(t) successively. If z;(¢) is a Lax discontinuity, then a; () >
Aj(t) > a4 (t) and both coefficients :}:(a;-IE (t)—X;(t)) are negative. If z;(t) is a rarefaction-
shock discontinuity, then a; () < A;(?) < a4(¢) and the coefficients :I:(aji(t) —Aj(t)) are
positive. These two cases lead us to the two sums in (4.8). Indeed one just needs to
observe the following: if (z,7) correspond to a Lax or rarefaction-shock discontinuity of
the speed a, but 9 does not change sign at (z,7) (so it is not counted in (4.12)), then

actually by the Rankine-Hugoniot relation (see (4.11)) we conclude easily that

QIJ,(iE,T) = ’Lﬁ+($, T) =0,

and so it does not matter to include the point (z,7) in the sums (4.8).
Suppose next that z;(t) is an undercompressive discontinuity. Then the two sides
of (4.11) have different sign, therefore

(a) (8) = Aj(0) %] (1) = (a7 (B) = Xi(1)) %5 (8) =0,
and the corresponding term in (4.12) vanishes. O

Our objective now is to derive an improved version of Theorem 4.2.2, based on a

weighted L' norm adapted to the equation (4.7). For piecewise constant functions, we
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set
1% (@) llwe) := /m (=, 8)| w(z,t) de, (4.13)

where w = w(z,t) > 0 is a piecewise constant and uniformly bounded function. We de-
termine this function based on the following constrain on its jumps, at each discontinuity
of the speed a,
<0 if (z,t) € S(a),
wy(x,t) —w_(x,t) = (4.14)
>0 if (z,t) € F(a).
The weight is chosen so that the left-hand trace of a slow undercompressive discontinuity
and the right-hand trace of a fast one are weighted more. This is consistent with the
immediate observation that the terms (X;(t) — a; (t)) |9 (t)] and (a;-"(t) —(t)) W]"' (t)]
have a favorable (negative) sign for slow and fast undercompressive discontinuities, re-
spectively. On the other hand, the jumps of w at Lax or rarefaction-shock discontinuities

will remain unconstrained. This choice is motivated by the two observations:

(i) Lax shocks already provide us with a good contribution in (4.8),
(ii) rarefaction shocks are the source of instability and non-uniqueness and cannot be

“fixed up”.

The constraint in (4.14) is different for slow and for fast undercompressive discon-
tinuities. To actually exhibit a (uniformly bounded) weight satisfying (4.14), we put a
restriction on how the nature of the discontinuities change in time as wave interactions
take place. (An incoming wave may be a slow undercompressive one and become a
fast one after the interaction, etc. A different constrain is placed before and after the
interaction.)

Precisely, we suppose that, to the speed a = a(z,t), we can associate on one hand
a function k : IR X IRy — IR having bounded total variation and such that J (k) C J(a)
and Z(k) C Z(a), and on the other hand a partition of the discontinuities

J(a) =T (@)U T (a), (4.15)

so that, for each (z,t) € J(a), the limits k+ = ki (z,t) determine if the wave is slow or

fast on its left or right side, as follows:

sgn kz if (z,t) € JX(a),

4.16
—sgn kg if (z,t) € T (a). (4.16)

sgn (ax(z,1) — Az, 1) = {
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Here we use sgn (y) = —1,0,1 iff y < 0,y = 0,y > 0, respectively. Therefore a disconti-
nuity (z,t) € J!(a) (for instance) is
a Lax one iff k_ <0 and k4 > 0,
a slow undercompressive one iff k_ >0 and x4 >0,
a fast undercompressive one iff k_ <0 and x4 <0,

a rarefaction-shock iff k_ > 0 and x4 < 0.

Furthermore, to measure the strength of the jumps, we introduce a piecewise con-
stant function, b = b(x,t), having the same jump points as the function a. For instance,
we could assume that there exist constants C7,Cy > 0 such that at each discontinuity

of a

Cilat(y,t) —a—(y,t)| < [b4(y,t) —b_(y,1)| < Calat(y,t) — a—(y,1)|- (4.17)
However, strictly speaking, this condition will not be used, in the present section at
least.

Based on the functions x and b and for ¢ except wave interaction times, we can set

Vi)=Y |bsly,1) —b-(y,1)],

(y.)eT (),
y<x

Vi@, t)= Y |ba(y,t) = b-(y.1), (4.18)

(:)eg (a),
y<z

so that the total variation of b(¢) on the interval (—oo,z) decomposes into
TVZ o (b(t) = V(z,t) + V! (z,¢). (4.19)

Fix some parameter m > 0. Consider now the weight-function defined for each (z,t) €
C(a) by

m+ V(oo t) = VI(z,t) + VI(z,t) if k(z,t) >0,
w(z,t) = (4.20)
m+VI(z,t)+ V(oo t) — V(z,t) if k(z,t) <O0.
It is immediate to see that indeed (4.14) holds and that with (4.17)
m < w(z,t) <m+TV(b(t) <m+CoTV(a(t)), =z€R. (4.21)

Note also that the weight depends on b and a, but not on the solution.
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Theorem 4.2.3 Consider a piecewise constant speed a = a(z,t) admitting a decom-
position (4.15)-(4.16) and satisfying the total variation estimate (4.21). Consider the
weight function w = w(z,t) defined by (4.19). Let 1 be any piecewise constant solution

of the linear hyperbolic equation (4.7). Then the weighted norm (4.13) satisfies for all
0<s<t

1@ llwe)

t
+/ > (2m+TV(b) — by (=, 7) —b,(x,7)|) la_(z,7) = Az, 7)| |9 (,7)|dr
(z,7)€L(a)

/ S () — b () o (5 7) — A7) [ ()] dr
(z,7)€S(a)UF(a)
t

oo+ [ (2mETVE) o (m) = Mo )| - (7] dr

5 (z,7)eR(a)
/ Z |b4(z,7) —b_(z,7 ||a z,T) :1:,7')‘ |Y_(x,T)|dr. (4.22)
(z,7)ER(a)

The statement (4.22) is sharper than (4.8), as all discontinuities contribute now to
the decrease of the weighted L! norm. Note that as m — oo, we recover exactly (4.8)
from (4.22).

PROOF OF THEOREM 4.2.3. We proceed similarly as in the proof of Theorem 4.2.2.
However, z;(t) for ¢t € I (some open interval avoiding the interaction points in a or 1)

denote now all the jump points in either a or 1. We obtain as before the identity

=3 () — a7 ) [y @)]wy (&) + (& @) = X (®) [v] O] w] (1))

+sgn (of (1) = X5(0) wf (1)) () — a; ()] 1y (1)) (4.23)

where we used the Rankine-Hugoniot relation (4.11).
If z(t) is a Lax discontinuity in J7(a), then by (4.17) we have x_ < 0 and £ > 0.
So by (4.20) we find

w; =m+ V' (z;(t)-) + V' (c0) = V(z;(t)-),
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wl =m+ V(o) =V (z;j(t)+) + V' (z;(t)+),
and so
sgn (X;(t) —a; (1)) wy (t) + sgn (a] (t) — A;(1)) w) (t)

= —wj (&) — w} (1
= —2m — TV(b) + |b} (1) — b5 (1)]- (4.24)

If z;(t) is a rarefaction-shock discontinuity in J7(a), then by (4.17) we have k_ > 0
and k4 < 0. By (4.19) we find

w; = m+ V(o) = V(z;(t)-) + V! (z;(t)-),
wf = m+ V() +) + V1 (00) = VI (0)4),
and so
sgn (Aj(t) — a; () wy () + sgn (o () — Xj(1)) wf (1)

= w; (t) +w; (t)
= 2m +TV(b) + |b] () — b (t)]. (4.25)

If z(t) is a fast undercompressive discontinuity in JZ(a), then by (4.17) we have k_ < 0
and x4 < 0. By (4.19) we find

sgn (A;(t) — a7 () wy (¢) +sgn (af () — Xj(1)) w] (¢)

=wj; (t) — w;-'(t)

=m+ V' (z;(t)=) + V' (c0) = V' (z;(t)-)

—m = VI (z;(t)+) = VI(c0) + V(2 (t)+)

= —[b] (t) — b (2)]. (4.26)

Similarly for slow undercompressive discontinuities in J/(a) we obtain
sgn (X;(t) —a; (1) wy (8) +sgn (a] (8) — X;(1) wi (8) = —[bf (}) —b; (})].  (4.27)
Using (4.24)-(4.27) in (4.23) we conclude that
19 () ey
t
+/ > (2m+TVE) — by (w,7) — b (7)) o (5, 7) = A, 7)]| |9 (z,7) | dr
S

(z,7)€L(a)
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t

+ Z b4 (z,7) —b_(z,7)] ‘a,(x,T) — A(x,’r)‘ |Y_(z,7)|dr
5 (x,r)eS(a)UF(a)
= [|9(8) lw(s)
t
> (emATVE) + b (1) = b-(w, 7))o= (5, 7) = A, )| - (2,7 dr,

* (z,m)€R(a)

which is equivalent to (4.22). O

Using that R(a) is included in the set of points where 1 changes sign, it is easy to
deduce from (4.22) that:

Corollary 4.2.4 Under the assumptions and notations in Theorem 4.2.3, we have for
all0 <s<t

19O llwiey < 1) w(s)
t
+(2m+TVE)  sup \b+(x,7)—b(x,r)|/TV(¢(T))dT

(z,7)ER(a)
<7<t

and, in particular, letting m — oo

90 < W)l +2 _sup [bala,) = b-(a.7)] / TV(p(r)dr.  (4.28)
z,T)E a

s<7<¢t

Finally, in view of Corollary 4.2.4, in case the function a contains no rarefaction

shocks, we deduce that

[P llwey < N9 lws),  0<s <t

Observe that this result is achieved, based on a weight that depends on an arbitrary
function, b, and on the sole assumption that a decomposition (4.15)-(4.16) of the jumps of
a is available. However, our result in this section covers only piecewise constant solutions.
We will see in Section 4.5 that a stronger structure assumption on the coefficients a is

necessary to handle general solutions of bounded variation.

4.3 Sharp L' estimate for hyperbolic conservation laws

In this section, we apply Theorem 4.2.3 to the case that a is the averaging coefficient

(4.4) based on two entropy solutions of (4.1). First, we check that the assumptions
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required in Section 4.2 on the coefficient a do hold in this situation. Therefore Theorem
4.2.3 applies to the piecewise constant solutions defined by the wave-front tracking (also
called polygonal approximation) algorithm proposed by Dafermos in [27]. Next, we
observe that, with a suitable choice of the definition of the wave strengths, the weighted
norm in Section 4.2 reduces to Liu-Yang’s functional. Finally we rigorously justify the
passage to the limit in the estimate of Theorem 4.2.3 when the number of wave fronts
tends to infinity and exact entropy solutions of (4.1) are recovered.

Consider the nonlinear scalar conservation law:
ut + f(u)g =0, u(z,t) € R, (4.29)

where the flux f : IR — IR is a smooth function. Let 4/ and u!/’ be two bounded entropy
solutions of (4.29) having bounded total variation. Given h > 0 let us approximate the
data u!(0) and u!/(0) by piecewise constant functions u!"*(0), u!-"(0), having finitely

many jumps and such that as h — 0
ulh(0) — wf(0), u!PP(0) — u!1(0) in the L' norm, (4.30)

TV (u"P(0)) —» TV (! (0)), TV (u!l"(0)) = TV (u'1(0)). (4.31)

Applying Dafermos’ scheme [27], we can construct corresponding, piecewise con-

Lh

stant, approximate solutions u!* and w!/** having finitely many jump lines and for

t>s>0andp € [l,00]
e < @, Ol < 0, (432
and for all —co <A+ M(t—s)<B-M(t—s)

TVE- M=) (\Lh(1)) < TVE (ulh(s)),

A+M (t—s)
B-M(t—s)( ILh B(, IIh
TVA+M(t—ss) (w(t) < TVS (u " (s)). (4.33)
More precisely, the functions u/* and u!"" are exact solutions of (4.29) satisfying there-

fore the Rankine-Hugoniot relation at every jump. They contain two kinds of jump
discontinuities: Laz shocks satisfy the so-called Oleinik entropy inequalities, while rar-

efaction jumps do not, but have small strength, that is

lul P (x4, ) — ul P (z—,t)| < B, lul PP (@4, t) — u! DR (z—,1)| < h. (4.34)
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Furthermore, for a subsequence h — 0 at least, we have for each time ¢t > 0
ul () = ul (1), uw'Ph(E) = W' (t) in the L! norm.

To study the L! distance between these approximate solutions, we set

IL,h Lh
Pi=u —uv,

which is one solution of the linear hyperbolic equation

Fu!t(@,1) = f(u"(2,1)

ulbh(z,t) — ubh(z,1)

First of all, based on Theorem 4.2.2 and (4.33)-(4.34), we obtain immediately:

Pe+ (a" ), =0, a(z,t) :=

(4.35)

Theorem 4.3.1 The approzimate solutions u'® and u''"" satisfy the following L' sta-
bility estimate for all 0 < s <1t
[P () — uTP(2)]|s
t
+ > 2(aa—,7) = X (z,7)) [P (@—,7) — ul (2, 7)| dr
¥ (z,7)€L(a)
< [ (s) — ulP(s)|s

+2h (¢ = 8) |f"]lo0 (TV(T?(0)) + TV (W71 (0))). (4.36)

From the functions u! and u!! we define the function a as in (4.35). Recall that
the wave front tracking scheme converge locally uniformly (see the proof of Theorem
4.3.5 below for a the definition), so that the BV solutions «/ and u!! are endowed with

additional regularity properties. Consider for instance the function u!

. In particular,
for all but countably many times ¢ and for each z, either z is a point of continuity of
u! in the classical sense (say (x,t) € C(u!)) or else it is a point of jump in the classical
sense (say (z,t) € J(u!)) and, to the discontinuity, one can also associate a shock speed,
denoted by M\ (z,1).

From the properties shared by u! and u!!/, one deduces immediately a similar
property for the coefficient a. Excluding countably many times at most, at each point
of jump of a we can define the propagation speed A\%(z,t) of the discontinuity located

at the point (z,t). Namely, we have
oty < [ M@ @) e T,
M(z,t) if (z,t) € T(uT).

In the limit &~ — 0 we deduce from (4.36) that:
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Corollary 4.3.2 For all 0 < s <t we have

[ (t) = u' (2|1
/ Z 2 (a(z—,7) — A (2, 7)) [u (@, 7) — ul (z—, 7)| dr
(z,7)EL(a
< flu'(s) —u (3)||L1- (4.37)

We omit the proof of Corollary 4.3.2 as (4.37) is a consequence of a stronger estimate
proven in Theorem 4.3.5 below (by taking m — oo in (4.45)). Note that (4.37) is a

stronger statement than the standard L' contraction estimate

Il () = o (@) lles < Ju(s) = u”(s)|n1-

PROOF OF THEOREM 4.3.1. We apply the estimate (4.8) with 4 replaced with u/l" —

ul ", We just need to observe (see [41]) that all the rarefaction-shock discontinuities in

h I,h 1I,h

are due to rarefaction fronts in u**" or in

0 (4.34). In other words we have

a , which have small strength according

/ Z 2( Az, 7) —a_(z,7)) Y (z,7)|dr

(z,7)€R(a
< sup 2 ‘a+ x,T) — a,(x,T)‘ /t TV (¢(7))dr
(5 ‘F)ER(G) s
<2||f"||ooh/ TV (y(r))dr
<2 f" oo (t —5) (TV( "(0)) + TV (M (0))).
This establishes (4.36). |
We now want to apply Theorem 4.2.3 and control a weighted norm of u//? — /",

In this direction, our main observation is:

Lemma 4.3.3 When the function f is strictly convez, the coefficient a® satisfies all of
the assumptions (4.15)-(4.16).

PROOF OF LEMMA 4.3.3. The function a” is piecewise constant, and we can associate to

this function an obvious decomposition of the form (4.15). To establish (4.16), consider
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for instance a jump point (z,%) € J(u") N C(u'HP), together with its left- and right-

I Ih

hand traces u! and w!. Since u’" is a solution of (4.29), the corresponding speed

A = A(z,t) satisfies the Rankine-Hugoniot relation:
(Wl —ul) + fed) - ful) =0,
Thus the term in the left-hand side of (4.16) takes the form

as(ot) g = LD~ S fd) - flul)

ull —ul ul —ul
- /01 (7(0u" + (1 —0)ul) — £ (0ul + (1 - 6)ul)) dob.
Thus we obtain
at Az, t) = p (v —ul), (4.38)

L —// " p(Ou'l +(1-0)u )+(1—p)(0ui+(1—0)ui))9d0dp.

Since f is strictly convex, the coefficient is bounded away from zero. In view of (4.38),

if we now choose k(z,t) := u!lF — ulh, the desired property (4.16) holds true. O

Next, we define the weight w" = w"(z,t) associated with the function a”, by the
formula (4.20) in which we specify

kM (z,t) := ulDh — ybh, (4.39)
It follows immediately from Theorem 4.2.3 that:

Theorem 4.3.4 Suppose that the function f is strictly convex. The approximate solu-

tions constructed by Dafermos scheme satisfy the L' stability estimate for all 0 < s < t

() = " (@) ln o

/ > (2wt TV - ) — )

(z,7)EL ah)
‘ a(z—, 1) — Ah(iL‘,T)‘ |uH’h(:1:—,T) - uI’h(w—,T)|dT

[T et
(z,7)€S(a)UF(al)

II,h(

‘a (z—,7) — /\h(:v,T)‘ |u T—,T) — ’U,I’h'(.’E—,’T)|dT
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= Jlu"""(s) = u"" ()l s)
¢
+ > (2m+ TV + Pt T) - 8 o, 7))
5 (z,7)eR(ah)
‘ah(w—,T) — /\h(IE,T)‘ \uH’h(w—,T) - ul’h(x—,7)| dr, (4.40)

where a® is the averaging coefficient defined in (4.35) and \*(z,T) represents the speed
of the discontinuity located at (z,7) € J(a®).

We emphasize that (4.40) is an equality in which the contribution to the L' norm
of each type of wave appears clearly. The coefficient a” exhibits three types of waves:
the Lax and undercompressive discontinuities in a” contribute to the decay of the L'
weighted distance. The statement (4.40) quantifies sharply this effect. On the other
hand, the rarefaction-shocks appearing in the right-hand side of (4.40) increase the L'
norm.

In the rest of this section, we assume that the function b = b* is chosen to be

specifically

ul P (x4, 1) —ulh(z—,t) if (z,t) € T(uh),

(4.41)
wllh (x4, t) — uDh(z— 1) if (z,t) € T(ullh),

b (z4,t) — b (z—,t) = {

but a more general definition is possible.

Our next purpose is to pass to the limit (h — 0) in the statement established in
Theorem 4.3.4 for piecewise constant approximate solutions. We recover here a result
derived by Dafermos [29] via a different approach. Recall the notation C(u’), S(u), etc
introduced earlier. Denote by Z(u!) the countable set of interactions times. Let V(¢)
be the total variation function associated with u!(¢). Based on the functions V/(¢) and
VII(t), we then define the weight w as in (4.20) but with (4.18) replaced by the total

II

variation functions of u!(¢) and u!!(t), with & := u!! —u! and

ul (z4,t) —ul(z—,t) if (z,t) € T (u!),

(4.42)
wll(z+,t) —ull(z—,t) if (z,t) € T (u!l).

b(z+,t) —b(z—,t) = {

Furthermore, to any functions of bounded variation u,v,w in the space variable z

(the time variable being fixed) we associate the measure on IR

p= (a(u,v) — f'(w)) (v —u)dw

understood as the nonconservative product in the sense of Dal Maso, LeFloch and Murat

[31] and characterized by the following two conditions:
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(1) If B is a Borel set included in the set of continuity points of w

u(B) = [ (atw0) = ') (0 =) o, (1.43)
where the integral is defined in a classical sense;

(2) If z is a point of jump of w, then

u((e) = 3 ((aluy,vs) —alus,up) (g )
+(a(u—,v-) — a(u_,uy)) (v- — u_)> |lwy —w_| (4.44)
with uy = u(zt), ete.

Note that, if u = u! and v = u!, the two terms (a(us,v+) — a(u_,u4)) (v4 — uy) in

fact coincide.

Theorem 4.3.5 Let the function f be strictly conver and let u! and u'! be two entropy
solutions of bounded variation of the conservation law (1.1). For all 0 < s <t we have
II I
[ () = " ()l|wey
t

+ Z q|a(uI,,uI,I) —a(ui,u£)| lull — u!|dr
¥ (z,1)eL(@)nT (ul)

/ Z q‘a(ul_,un) — a(uf, 1)‘ ju'l — u!|dr

(z,7)EL(a)NT (u!T)
I I\ _ g1 1 I I I
+//(a(u,u ) — f(u ))(u u')dV*'dr

/ / a(ul,ul!) — f (uH)) (u! —u!l)ydv dr
< lut(s) = u' () ]lu(s) (4.45)

where ¢ = q(7) = 2m + TV (u! (7)) + TV (u'1(7)).

Observe that the terms in integrals in (4.45) globally contribute to the decrease of
weighted norm, as is better seen rewriting the formula as follows (VC[ and VCI I being the

continuous parts of the measures V! and V{):

lu (#) = ! () llwey

t
[ (et~ el ) — afulul) |l - | dr
¥ (zm)eL(@)NT (ul)
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t
+/ (g — [ul! —utl)) |a(uI,,uI,I) a(ull, ,I)| jull —u!|dr
(z,7)eL( a)ﬂj (ull)
t
—I—/ Z ‘a(uI_,uH) —a(uﬂ_,ul_)‘ ju't — | |ul —ul|dr
(@.7)€(S(@)UuF(a)) NI (ul)
t
_|_/ Z la(ul, ul?) — a(ull, ul?)| [ul? — ul| [ul! — ul!|dr

* (@n)e(S@uF(@) nT (i)

//|au ull I)||uH—uI|dVCIdT
//|au Wy = )| ju! — uT|dV! dr

< ' (s) = u () luw(s) (4.46)

The following estimate is a direct consequence of the definition (4.43)-(4.44):

Lemma 4.3.6 There exists a constant C > 0 such that for all functions of bounded

variation u,U,v, 0, w defined on some interval [c, (]

B B
/a (a(u,0) — f'(w) (v — u) duw /a (alis,5) — f'(@)) (& — @) dw
< C (o — ull goo (a,8) + 18 = vl oo (a,8)) TVia,p)(w). (4.47)

PrROOF OF THEOREM 4.3.5.

Step 1 : Preliminaries.

For each t > 0, the functions V/*(¢) and V1" (t) associated with the wave front
tracking approximations u/**(t) and u!-*(t) are of uniformly bounded variation as h —
0. The measures dV** and dV!’"" are also Lipschitz continuous in time (with constant
independent of h) for the weak convergence, except at interaction points. On the other
hand, interaction times in the limiting solutions are at most countable. Therefore,
extracting subsequences if necessary, the measures dV'" and dV!" converge to some

limiting (non-negative) measures, say:
dvhh(ty — davi(e)  dviIhe) — dvii(t). (4.48)
By lower semi-continuity, we have at each time ¢

avit) <dvi),  avii@) <davii(), (4.49)
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and, in particular, at each (z,t)

Vi(z,t) <Vi(z,t),  V(z,t) <Vz,1). (4.50)

VIi(400,t) = VIi(z,t) < VI(400,t) — VI(z,1),
VH (t00,t) — VIT(z,t) < VI (+00,t) — V(). (4.51)

Based on the functions V(t) and V'I(t), on the coefficient x := u!! —u! and on the
function in (4.42), we can define a weight denoted by w, along the same lines as in
(4.20). We will show that the left-hand side of (4.45) is bounded above by

[ul? () — u! () a2y
[T et ) —a(ul o) -l

(z,m)eL(a)NT (ul)

/ Z cj‘a(ul,,uy) a(uf, )| |ull —u!|dr
S

(z,7)eL(@)NT (ull)
+/ /lR(a(uI,uH) — f'(ul)) ('t —ulydVi(y, r)dr
St )
-I—/ / (a(ul,uH) - f'(uH)) (u! —u'hydV " (y, 7)dr (4.52)
s JIR

where ¢ := 2m+ V! (+00) + V!{(+00), and that (4.52) coincides with the desired upper
bound ||u’(s) — u!(s) lw(s)- The former statement is postponed to Step 5 below and we
focus now on the latter.

Fix some t > s > 0 and rewrite (4.40) in the equivalent form
R (E) = w ()l o

/ Z 2m + TV(bh)) ‘ah(:z:—,T) - /\h(%T)‘ |UH’h(33—a7') - “I’h(ﬂc—ﬂ'” dr

(z,7)EL uh)

/ S et 7) — (a7 (4.53)

(z,7)eT (ah)

(ah(x—,T) — )\h(w,T)) (uH’h(:v—,'r) — uI’h(w—,T)) dr
t
+ Yoo ) - bz, T (4.54)
* (z,m)ed " (ah)

(ah(z—,T) — )\h(:v,T)) (th(m— T) — H’h(:v—,T)) dr

= [lu" () = u""(8) () (4.55)
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/ Z 2m +TV(bh)) |ah(:v—,T) — )\h(:v,r)| jul DM (z—, 7) — ul P (z—, 7)| dr,

(z, T)ER(ah
(4.56)
or, with obvious notations,
[ (0) = @ lhony + 1+ 05 = [u"() —u" M llwny + 95 (457)
As the maximum strength of rarefaction fronts in u/"* and u//* vanishes with h (see

h

(4.34)) and rarefaction shocks in a” arise only from these rarefaction fronts (see (4.6)),

we have

Qb 50 as h — 0. (4.58)

On the other hand, we can always choose the (initial) approximations at time s in such

a way that
w(s) = w(s) (4.59)

and

IT,h Ih . II I
Jim [u2(s) — u(8)lluwn(s) = 1w (s) = w7 (8)llus(s) - (4.60)

It remains to prove that the limit of the left-hand side of (4.55) is exactly (4.52). This
will be established in the following three steps.

Step 2 : We will rely on the local uniform convergence of the front tracking

approximations (see Bressan and LeFloch [21]). For all but countably many times 7 we

have the following properties for u! (as well as for u!!):

(1) For each point of jump z of u! there exists a sequence z" — z such that for each
€ > 0 there exists § > 0 such that

lulh(z) — ul (z4)| + |u! (z) —u!(z4)] <& for all z — 2" € (0,4),
|uI’h(m) — ul(z—)| + |uI(x) — ul(z—)| <e forallz—2"e (—4,0) (4.61)

and (clearly)

|ul () —ul(z4+)| <e forall z —z € (0,6),

|ul (z) —ul(z=)| < e forall z — z € (—46,0). (4.62)
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(2) For each point of continuity z of u! and for each & > 0, there exists § > 0 such
that

|ul P (z) — ul(2)| + Jul(z) —ul(2)| <e forall z — z € (=6, 0). (4.63)

We also recall from [21] that, for all but countably many times ¢, the atomic parts of

the measures V! and V! coincide with the one of V! and V!, that is for each y € IR

Vl(y+,t) - Vl(y_at) = VI(y+a t) - Vl(y_,t)a (464)
VH(y+,t) — VI (y—,t) = VI (y+,t) — VIE(y—,1). (4.65)

Following LeFloch and Liu [53] who established the weak stability of nonconservative

products under local uniform convergence, we want to show that

Q3 (7):= /R(a(ul’h(y, ), ul My, 7)) = Wy, 7)) (@ (y, 1) = ul (y, 7)) AV (y)
+/lR(a(uI’h(y, 7),ul My, 7)) = £ (" (y, 7)) (" (y, ) — u! Ry, 7)) AV I (y)
— [ (@ )" 1) = 700 ) (0 07) = 7)) AV )
+

/]R (a(u! (y,7),u (y, 7)) = f' (! (y,7))) (Wl (y,7) — u!l(y,7)) AV (y). (4.66)

By Lebesgue dominated convergence theorem and since a uniform bound in 7 and A is
available, it will follow from (4.65) that

t t
Qb :/s Qb (1) d’r—)/s /IR(a(uI,uH) —f'(ul)) (!t —ul)dVi(y,r)dr

t
I 1Y Y (o — oD a7 (g 7) dr. (4.
+/S /R(a(u ) U ) I ))( YavVii(y,r)dr. (4.67)

Given £ > 0, select finitely many (large) jumps in u! or /!, located at y1,%2, ... yn, 50
that
Z ‘ul(aH—) - uI(m—)‘ + ‘u”(aH—) — u”(a:—)| < €. (4.68)
o#y;
ji=1,2,..., n

To each y; we associate the corresponding discontinuity point yf in u" or w!lh. To
simplify the presentation we will focus on the case where y; < y;L <yjt1 < ygl ' for all
j. The other cases can be treated similarly. In view of the local convergence property

(4.61)-(4.63) and by extracting a covering of the interval [yo, yn|, we have also

[ (@) —u' ()] + [u' (@) —u'T(2)| < 26, z € (4}, y501) C (5, 9541).  (4.69)
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In view of (4.66) we can construct functions u! and ul! that are continuous everywhere

except possibly at the points y; and such that the following conditions hold with u

replaced by either u! or u!!:

TV (ue; R\ {y1,- -, yn}) <CTV (w; R\ {y1,---,9n})
|lu —uelloo < Ce, TV (u—us;ﬂ%\ {yl,...,yn}) < Ce, (4.70)

where C is independent of ¢.

Consider the decompositions

a UI’h,uII’h _fl(uI,h,) (uII,h _uI,h) dVI,h, — / e /
/IR( ( ) ) ]Z:% (W yky) 92231 {v}}

and
n n
[ (et utty —paty ot vt =3 [ [
L j=0 (Y5 ¥5+1) j=1 {y;}
Here y} = yo = —oo and yZH = Yn+1 = +00. Thus in (4.66) we have to estimate
Qg(’T) — / ((J,('U,I’h,ull’h) _ fl(ul,h)) (ull,h o uI,h) dVI,h
R
_/ (a(uI,uII) —fl(’U,I)) (’U,II —'U,I) dVI
R
= TP+ TP (4.71)
with
n
Th = Z/ (a(ul,h’uH,h) _ fl(ul,h)) (ulTh — sy qyih
= My
3 (el )
j=1"1vi}
and
T2h .— (a(uI’uII) B f’(’u,I’h)) (uII,h o ’U,I’h) dVI,h

=07 (W] 97 41)
_Z/ (a(u”,u") = f'(u")) (W' —u')aV".

=07 (¥ :yj+1)
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First, relying on the convergence property (4.65) we have immediately

n

T = " (o ) -) () — AP (-) () - )

[ul " (yh+) — ulP(yh—))
—(a(u’ (y;=),u (y;-)) — M(y—)) (' (y;=) — o' () [v! (g4) — u' (y;-)];

so that
n
|7t < 00Dl ypE) — ol (i) + Ju () - u ().
j=1 =+

Thus, in view of the local convergence at jump points (4.61), for ~A small enough we
obtain
|| < Ce. (4.72)

Relying on the simplifying assumption y; < y;-‘ < yjt1 < y;‘ ' for all j, we can
decompose T2 as follows:

n
T = Z/ (a(ul, ulTh) — f(ul)) (@l — by gy
=07 W} ws+1)

—(CI,(’U,I,’U,II) _ f’(’U,I)) ('U,II —’U,I) dVI

_Z/ (a(ul’ull) o f'(uI)) (’U,II —’U,I) dVI

§=0 (v ’yjh]

-I—Z/ (a(ul,h’ull,h) _ f/(ul,h)) (T — by gy Lk

=0 Y Wit1:9041)

We first consider T2h,25

> /(y " { (@' (), u" () = £/ (1)) (" () = ' ()

j=0
~(a(u (), (yy+)) = £/ () (' (54) — ! (g +)) } V7 ().

Therefore, with (4.47), we obtain

T3 < € |V (y+) — Vih+)|
j



132 CHAPTER 4

+OVI(+o0) ( sup ful(y) — /() + sup Jull(y) — ul (g4
ye(y;.y] z€(y;,yh]

Since yf — y;, we have |VI (y;+) - VI (y;‘+)| — 0, therefore for h sufficiently small
T3] < Ce. (4.74)
A similar argument for TZh,3 shows that
|T55| < Ce. (4.75)
Next consider the decomposition

(a(ul,h’uII,h) _ fl(ul,h)) (ull,h o uI,h) dVI,h _ (CL(UI,’LLII) _ fl(ul)) (ull _ uI) dv[
I

= (a(ulh,uIDh) = f1ulh)) (@Dh — o Thy gy Tk — (a(u! ulT) = f1(u")) (u!T = uT) dv T
+ (a(u!,u"") = f'(u)) (W'’ —u') dvih — (a(ul,ull) — f'(ul)) (ul’ —ul) dvhh
+ (a(ul, uf) = () (i’ —ul)dV"" — (a(uf, ull) = f'(u])) (ul" —ul) V"
+ (a(ui,u?) — f'(ug)) (ugl — ug) avl — (a(uI uH) f'(uI)) (! —ul)yav?,

which, with obvious notation, yields a decomposition for TQh’1
T3 = M} + My + M3 + M. (4.76)

Using (4.47) and the local convergence property (4.68), we obtain

|MP < C Z/ ‘dVI’h| ( sup |ul? —wul|+ sup |ullt - uH\)
(¥} y5+1) (Y yj+1) (Y} yj+1)
< Ce. (4.77)

Similarly using (4.47) and (4.70) we obtain
|ME < C Z/ ‘dVI’h| ( sup |uf —ul|+ sup |u! —ugl\)
7 yi+1) (] yj+1) (v} yi+1)
< Ce. (4.78)

Dealing with M, i‘ is similar:

MP| < C Z/ ‘dVI| sup |u! —ul|+ sup |ulf —ugl\)

7 Yi+1) (¥} yi+1) (ylyi+1)

< Ce. (4.79)
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Finally to treat M? we observe that, since u! and u!! are continuous functions on
each interval (y?,yjﬂ) and since dV!" is sequence of bounded measures converging

weakly-star toward dV!, we have for all h sufficiently small
|MP| <. (4.80)
Combining (4.76)-(4.80) we get
|731| < Ce. (4.81)

Combining (4.73)-(4.75) and (4.81) we obtain
T} < Ce
and thus with (4.71)-(4.72)
|Qg (7')‘ < Ce for all h sufficiently small.
Since ¢ is arbitrary, this completes the proof of (4.66).

Step 3 : Consider now the term

O (r) = D (2 m-l—TV(bh)) la"(@—, )= (z, 7)| [u L (=, ) —ul (=, 7).
(a,m)EL(a)NT (@l h)
(4.82)

On one hand, observe that
TV (6" (7)) = TV (u""(7)) + TV (u"""(7)) — V! (+00,7) + V! (o0, 7). (4.83)

For all but countably many 7 the following holds. Extracting a subsequence if necessary
we can always assume that for each j either (y;?,T) € L(a") for all h, or else (y;?,T) ¢
L(a") for all h. Then consider the following three sets: denote by J; the set of indices
J such that (y?,’r) € L(a") and (yj,7) € L(a). Let Jo the set of indices j such that
(’y;-l,T) ¢ L(a") and (yj,7) € L(a). Finally J; is the set of indices j such that (y?,T) €
£(a") and (yj,7) ¢ £(a).

The local convergence property (4.61)-(4.62) implies

> la(u " yp=), u My =) — a(u P yh =), wh " l) | [ yr =) — ub (-
JEJ1

— > au! (y=),u (y;-)) — alu! (y5=),w' (g +)) | [u" (g =) — ' ;)] (4.84)
Jje1
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(Indeed, given € > 0, choose finitely many jump points as in (4.68) and use (4.61)-(4.62)
with ¢ replaced with ¢ |uf (z+) — ul (2+)]).

On the other hand for indices in Jy or J3 we have

D Ja(u (i =) yh =) —a (WP (=) ul P (yh0) | [u DMyl =) —ul (g =) — 0
JjEJ2UJ3
(4.85)

but

D a(u (=), w (yi=)) — a(u (y=), w" (y;+)) | [u"" (y;—) — w’ (y;=)] = 0. (4.86)
jEJ2UT3
Indeed, for each j € Jo, y; is a Lax shock but yj'-‘ is not. Extracting a subsequence
if necessary, it must be that the Lax inequalities are violated on the left or on the
right side of y;l for all h. So it must be that, assuming that it is the case on the
left side, a(u!(y;—), uT(y;—)) — a(u! (y;—), vl (y;+) > 0 while a(ul(y?—),u”(y;?—)) -
a(u! (y;-‘—), ul (y?—l—) < 0 for all h. But the latter converges toward the former by the local
uniform convergence, which proves that a(u!(y;—), ' (y;—)) —a(u! (y;—),u! (y;+) = 0.
Combining (4.82)-(4.86) yields

t
Q’f — Z q(t) ‘a(x—,T) — /\(m,T)| |uH(x,T) — uI(a:,T)| dr, (4.87)

where g := 2m + VI(+00) + VI (+00).

Step 4 : Continuity of the weighted norm.

Fix some time ¢. Recall that the weight w(¢) is defined based on the total variation
functions V! and V! and on the function u!!(t) — u!(t). The weight w”(t) is defined
based on the total variation functions V5" and V1" and on the function u!"(t) —
ulP(t). On the other hand, u!l" — ulh(t) — w!f —ul(t), VILE — VI and VDA — V1,

Therefore we have
w(z,t) = o(x,t) whenever u'’(z,t) — u'(z,t) # 0. (4.88)
Combining (4.88) and the L' convergence u!!* — ul"(t) — w!T — u!(t), we have

" (@) = u' (@)l = Jim b () — " () | 1 - (4.89)

Step 5 : The left-hand side of (4.45) is bounded above by (4.52).
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First of all, the inequality

t
/ / (a(ul,un) — f’(uI)) (u' — "y dvi(y,r)dr
0 JR

t
I 11\ _ IuI UII—’U,I v 71 Vdr .
g/o/m(a(u,u ) — () ( )dV! (y, 7)d (4.90)

is a direct consequence of (4.49) and the definition of the nonconservative product in
(4.43)-(4.44).

On the other hand, by the definition of the weighted norm and because of (4.50)-
(4.51), similarly to (4.88) we have the inequality

w(x,t) < w(z,t) whenever u'l(x,t) — u!(z,t) # 0. (4.91)

Hence, by (4.90) and (4.91) the left-hand side of (4.45) is bounded above by (4.52). This
completes the proof of Theorem 4.3.5. O

4.4 Generalized characteristics and Maximum Principle

We now return to the setting in Section 4.2 and aim at extending the analysis therein to

arbitrary functions of bounded variation. For exact solutions of the hyperbolic equation

Pi+ (a9), =0, (4.92)

we will establish a maximum principle: Any solution of (4.92) remains non-negative for
all times if it is so initially. For a more precise (local) statement, our proof will make
use of Dafermos-Filippov theory of generalized characteristics.

Our main assumption throughout this section is the following:
E
There exists a constant E such that a, < 7 (4.93)

This is nothing but a generalization of the well-known Oleinik’s entropy inequality. To
motivate (4.93), let us recall the following result.
Let f be a strictly convex function and u be an entropy solution (with bounded

variation for all times) of the conservation law
ug + f(u)z =0, u(z,t) € R. (4.94)

Then is is known that there exists a constant C = C(u) such that

C

up < - (4.95)
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Lemma 4.4.1 If u! and u!'! are two entropy solutions of the conservation law (4.94),

then the averaging speed

A (U b U] (4.96)

a=a(u',u i
satisfies our assumption (4.93), with E = sup f" (C(u!) + C(u!T)) /2.

PROOF OF LEMMA 4.4.1. Let us fix some time ¢ > (0. On each Borel set consisting of

points of continuity of both u! and u!!, the following holds:
1
Oza = am/ f(0uw' + (1 —0)ut)do

0
1
_ / £ (Oul + 1 = 0)ulT) (00,u! + (1 6) 9ul’) db
0
1

i (p Clu!)
g/o sup f (HT—i-(l—O)

C(u!) + C(u")
2t

C(UII)
t

) do

< sup f"

On the other hand, at a point z where one of u’ or w!/! is discontinuous, we have with
an obvious notation
1

1
a+—a_:/0 f’(9u1++(1—9)uf+’)d9—/0 FOul +(1-0)u")do <o,

since f’ is an increasing function and (for instance by (4.95)) both u! and u!! satisfy

I I IT II
uy <wu” and vl < wulf. O

By definition, a generalized characteristic y = y(t) associated with the coefficient

a must satisfy for almost every ¢ (in its domain of definition)

at(y(),t) <y'(t) <a (y(t),1). (4.97)

According to Filippov’s theory of differential equations [36], through each point (z,t)

there pass a maximal and a minimal generalized characteristic.

Definition 4.4.2 A generalized characteristic is said to be genuine iff for almost every
t it satisfies
y'(t) € {a-(y(t),1), a4 (y(t), 1)} (4.98)
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Proposition 4.4.3 Any minimal backward generalized characteristic is genuine and for

almost every t satisfies
y'(t) = a-(y(t),1). (4.99)

Similarly, for a mazimal backward generalized characteristic we have y'(t) = a4 (y(t),t).

PROOF OF PROPOSITION 4.4.3. Here we only rely on the following consequence of
(4.93): a4 < a_ at each discontinuity point of the function a. Geometrically, this con-
dition prevents the existence of rarefaction-shocks in a. On the other hand, rarefaction
centers (also prevented by (4.93) for ¢ > 0) could still be allowed for the present purpose.

Consider (Z,t) € (—o00,+00) x (0,00), and let y(t) := y(¢;Z,t) be the minimal
backward characteristic through (Z,t). We prove that it is genuine on its domain (s, Z].
We proceed as in [28] and assume by contradiction that there is a measurable set J, J C

(s,1] of positive Lebesgue measure, and € > 0 such that
a—(y(t),t) — y'(t) > 2e, ted (4.100)
For each t € J there exists §(¢) > 0 with the property

a+(ac,t) > a’—(y(t)at) —& ZS (y(t) - (5(t)a y(t))' (4'101)

Finally, there is a subset I C J with p*(I) > 0 (here p* denotes the outer measure) and
§ > 0 such that 6(t) > 6 for t € I.
Let 7 be a density point of I, with respect to u*. Thus there exists 7, 0 < 7 < t—7,

so that
prIN[r,7+r1]) S 2la| +¢

r 2al +2¢’

0<r<r, (4.102)

where
o :=inf{at(z,t) —a_(y(t),t): s<t <%t y(t)— 8 <z <y(t)}.

Now take a point y € (y(r) — 8, y(7)) with the property y > y(7) — 27, and consider

a forward characteristic z(-) through (y, 7). We first observe that
z(t) < y(t), t>,

since y(t) is the minimal backward characteristic through (z,t).

In addition, we have

z(t) > y(t) — 4, t>e[r, 747
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Indeed, suppose by contradiction that for some r € (0,7], z(t) > y(t) — & for t >€
[r, 7+7), but z(1 +7) =y(T +7) — 5. Then

T+7

T+T
0:z(r+r)—y(r+r)—5:y+/ Zt)dt — y(t) — / Y (t)dt + 6

T

T+T
> / (2/(t) — o/ (£))dt

= / (#'(t) — a-(y(t), t) + a-(y(¥),t) — y/'(¢))dt
IN[r,7+7]

+ / (2(t) — a— (y(t), 1) + a_(y(t), ) — ' (£))dt
[ryr+r\I

> ep*(IN[r,7+7]) +a(r—p*I N[r,7+71])) >0,

by (4.100)-(4.102), which leads to a contradiction. In the same way one obtains

0>z2(t+7)—ylr+7)=y+ /T—H Z(t)dt — yt) — /T—H ' (t)dt

>ep*(IN[r,7+7]) +a(f —p*IN[r,7+7]) — %ef >0,

which gives another contradiction. For the maximal backward characteristic the proof

is similar. 0

Proposition 4.4.4 Forward characteristics leaving from some (Z,t) are unique when

t>0.

PROOF OF PROPOSITION 4.4.4. Suppose there were two forward characteristics y(-)
and z(-) through (z,) with y(7) < z(7) for some 7 > . By (4.93) we have

2(r) =y (1) < a—(2(t),1) — a(y(t), 1) < Cy(a(7) —y(7))- (4.103)

Integrating (4.103) from £ to 7 one gets z(7) — y(7) = 0, which gives a contradiction. O

Theorem 4.4.5 Let v = 1(x,t) be a solution of (4.92) such that on some interval

(€0, Go] we have
¢($,O) Z 07 TE [505 CO] (4104)
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Let € = £(t) be any forward generalized characteristic leaving from (£9,0), and ¢ = ((¢)
be any forward generalized characteristic leaving from ((g,0).

Then we have for all t > 0
P(@,t) 20, =z € (£(1),C1). (4.105)
Note that it may happen that £(¢) = ((¢) for ¢ large enough.

PROOF OF THEOREM 4.4.5. Observe that the two characteristics cannot cross and fix
any time ¢ > 0 such that £(¢) < ((¢). Fix also any two points such that £(t) < § < z <
¢(t). Let y(t) and z(¢) be the maximal and minimal backward characteristics emanating
from g and z, respectively. These characteristics can not leave the region limited by &(t)
and ((%).

Integrating (4.92) in the domain bounded by the characteristics y(¢) and z(¢), and
using that these characteristics are genuine, so that the flux terms along the vertical

boundaries vanish identically, we arrive at

b4 z(0)
/ W@, ) do = / ¥(w,0)dz > 0. (4.106)
g y(0)

The last inequality is due to the fact that 1(.,0) > 0 and the inequalities & = £(0) <
y(0) < 2(0) < ¢(0) = (p. Since § and Z are arbitrary, we obtain (4.105). O

4.5 A sharp L! estimate for hyperbolic linear equations

Based on the maximum principle established in Section 4.4, we now derive a sharp
estimate for the weighted norm introduced in Section 4.2. We restrict attention again to
the situation where u! and u!! are two entropy solutions of the conservation law (4.94)
and a is the averaging speed given in (4.96). We define a weight by analogy with what
was done in Section 4.2 in the special case of piecewise constant solutions.

Given a solution 1 of the equation (4.92), we introduce weighted L' norm in the

following way. Set
Vi, t) =TV (u'(t),  V(z,t) =TV (u""(t)) (4.107)

and fix some parameter m > 0. Then consider the weight-function defined, for each
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t > 0 and each point of continuity = for u!(¢) and u!!(t), by

m + VI(oco,t) — VI(x,t) + VI(x,t) if ¢(z,t) >0,
w(z,t) = (4.108)
m + VI(:E,t) + VII(007 t) - VII(:Ea t)lf Qp(wa t) <O0.

It is immediate to see that
m < w(z,t) <m+TV(! () +TV(@!(t), zeR. (4.109)
Finally the weighted norm on the solutions v of (4.92) is defined by

19w = /,R ()| w(z, 1) da.

Note that the weight depends on the fixed solutions u! and u!!, but also on the solution
.

Our sharp estimate will involve the nonconservative product
pp(t) = (a = /(! (1)) p(£) AV (2)
defined for all almost every ¢ > 0 by
(1) If B is a Borel set included in the set of continuity points of u!(¢) then
pb®(B) = [ (alt) - 7'’ 0) wi) V' o), (4.110)
where the integral is defined in a classical sense;
(2) If z is a point of jump of u!(t), then

ué(t)({m}) = (a(z—,t) — M (z,t)) P(z—, 1) ‘ul(aH-,t) - uI(z—,t)|. (4.111)

Here M (z,t) is a the shock speed of the discontinuity in u located at (x,t). The measure
,uil (t) is defined similarly. Regarding the expression (4.111), it is worth noting that if
(z,t) is a point of approximate jump of u! and 4, then the jump relation for the equation
(4.92) reads

(a(z—,t) = M(z, 1)) p(z—,t) = (a(z+,t) — N (z,1)) Y(z+,1). (4.112)
In the same way we define
py () = (f'(u" (1) — a) p(t) AV ().

We now prove:
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Theorem 4.5.1 Let u! and u!! be two entropy solutions of (4.1) such that u!! — ul
admits finitely many changes of sign. Let v be any solution of bounded variation of the

hyperbolic equation (4.92) satisfying the constrain
P (u'f =) > 0. (4.113)

Then for all 0 < s <t

Oy + [ 5 (2mt V@) fa- (o) ~ M) I (o) e

< ||¢(3)||w(s) (4.114)

The assumption (4.113) is clearly satisfied with the choice ¥ = u!! — u!. Therefore

our previous result in Theorem 4.3.5 (derived via a completely different proof) can be
regarded as a corollary of Theorem 4.5.1.
It is interesting to observe that, when u!! = u!, the weight (4.108) becomes con-

stant, and therefore (4.114) reduces to the L! estimate.

b (¢ ||L1+/ 3 2m+TV )\a (@,7) = Mz, 7)| [ (2, 7)| dr

(z T)Eﬁ(a)

< ll9(s)lls-

Also, note that under the assumption (4.113) u{p(t) and ufﬁl (t) are positive except at
points (z,t) € L(a) UR(a). However, these negative terms are offset in (4.114) by the

positve terms under the first integral.

PROOF OF THEOREM 4.5.1. Fix any positive time . By assumption we have finitely
many points —o0 = yg < Y1 < ... < Yp < Ynt+1 = 400 such that, on each interval
(yi,Yit1), we have 9(t) > 0 when ¢ is odd and (t) > 0 when ¢ is even. For every
i = 1,---,n, consider the (unique by Proposition 4.4.4) forward characteristic y;(-)
associated with the coefficient a and issuing from the initial point (y;,t).

We will focus attention on some interval (y;,y;+1) with ¢ odd, say, and with —oc <
yi < yir1 < +oo. Except when specified differently, all of the characteristics to be

considered from now on are associated with the solution u!!. For definiteness we will
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first study the case that the forward characteristic xo(-) (associated with u!! and) issuing

from the point (y;,t) is located on the right-side of the curve y;, that is,
i(1) < xo(7), t<7<t+46

for some § > 0 sufficiently small.
Fix some (sufficiently small) ¢ > 0 and denote by y; < z1 < ... < zy < y;+1 the

points where u! has a jump larger or equal to ¢, that is,
ull (zr,t) — ull(z1,1) > ¢, I=1,...,N. (4.115)

For each I = 1,..., N, consider also the forward characteristic x;(-) issuing from the
point (z7,t). For definiteness, we will also assume that the forward characteristic xyy1(+)

issuing from (y;11,t) satisfies

xn+1(7) < yir1(r), t<T<t+6

for some § > 0 sufficiently small.

Next, let us select a time s > ¢t with s — ¢ so small that the following properties
hold:

(a) No intersection among the characteristics v;, X0, X1,---s XN» XN+1, Yi+1 Occurs in

the time interval [, s].

(b) For I =1,...,N, let (;(-) and &;7(-) be the minimal and the maximal backward
characteristics emanating from the point (x7(s),s). Then the total variation of

u'l(-,t) over the intervals ({;(t),zr) and (2r,&(¢)) should not exceed %.

(c) Let (o(-) be the minimal backward characteristic emanating from (y;(s),s) and
&o(-) be the maximal backward characteristic emanating from (xo(s), s). Then the
total variation of u!!(-,t) over the intervals (y;,&o(t)) and (Co(t), ;) should not

exceed ¢.

(d) Let {n+1(-) be the minimal backward characteristic emanating from the point
(xn+1(8),8) and En41(-) be the maximal backward characteristic emanating from
(yi+1(8),8). Then the total variation of u!!(-,t) over the intervals (Cyy1(t),yir1)

and (yi11,én+1(t)) should not exceed e.
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For I =0,...,N, and some integer k£ to be fixed later, consider a mesh of the form
xr(s) =% <z} < ... <2k <ahT = x11(s). (4.116)
For I =0,...,N and j = 1,...,k, consider also the maximal backward characteris-

tic 5}() emanating from the point (m},s) and identify its intercept z} = &J(t) by the

horizontal line at time £. Finally set also
0 k+1 k+1 0
W=y, Al=y, ==z, TI1=1,... N

To start the proof, we integrate the equation (4.92) satisfied by the function v, succes-
sively in each domain limited by the characteristics introduced above. Applying Green’s
theorem, we arrive at the following five formulas:

() Integrating (4.92) on the region

{(.T,T)/t <T<s, yilr) <z <X0(7‘)}

and multiplying by V! (y;,t) one gets

XO(S) s
/ B, s) VI (g5, t) do + / (Wl — ay) s (5 (r), 7) V2 (g, 8) dr
yi(s) t

+ /ts(a_ — o) ¥—(x0(7),7) VI (y;,t) dr = 0. (4.117)

(74) Integrating (4.92) on each of the regions
{(,7)/t<T<s &) <z<et(n)}

for I=0,...,N and j =1,...,k, and then multiplying by VH(zg-l-,t), one gets
2t ' s '
/' P(z,8) VH(2+,t) d —/' P(x,t) VI (2)+,t) do
] 2]
s . . .
+ [ O —anpu (o), VI dr
t

+ /t S(a_ — XYy (&7 (1), 7) VI (204, 1) dr = 0. (4.118)

(i4) Integrating (4.92) on each of the regions

{(:B,T)/t <7T<s, xi(t)<z< 5}(7’)}
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for I =0,..., N, and multiplying by V'!(z7+,t) one gets

/XI P(z,s) VI (z1+,1) dx—/ Y(z,t) V(21 +,t) dx
+ [ O = a) Gl ) VI et dr

+ /ts(a MYy (), ) VH (zr+,t)dr = 0. (4.119)
(iv) Integrating (4.92) on the regions

{(z,’r)/t <7 <8, §If(T) <z< X1+1('r)}

for I =0,..., N, and multiplying by V! (z¥+.t) one gets

k k
1 21

x1+1(s) Z141
/w D(w,8) VI (4 1) do — / W(2, ) VI (4 1) do
+ [0 = el VI et dr
+/ts(a ~Ari1) Y (xr41(7), ) VI (ZE 4+ 1) dr = 0. (4.120)
(v) Finally integrating (4.92) on the last region
{(z,7)/t<T<s, xnt1(T) <z <yiqa(r)}

and multiplying by V! (y;,1,t) one gets

yH—l( ) S
/ ( )TP(%S) VI (yi1,t) dz +/ An+41 — ag) P Oev1(7), ) VI (yig, 1) dr
XN41S t

"‘/t (a— — Y1) Y- (Wir1(7), ) VI (yiga,t) dr = 0. (4.121)

Next, summing all of the formulas (4.117)-(4.121) leads us to the general identity:

o(s)
/X b, s) VI (yi,t d$+ZZ/ P(z,s) VI(ZI+,1) do

i(5) 1=0 j=0
Yit+1(s) 2’“
+/ P(@,8) VI (yig1,t dw—ZZ/ P(x,t) VI (24, 1) da
Xn+1(5) 1=0 j=0

S [ ) - VI 00 - ),

I=0 j=1
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N s '
-3 /t WV (zp+,t) = VI +, 0] (X = a”) Y (xi(7), 7) dr
I=0

~ [0 k) = V8] O = a2 b Gxa(), )

— [V it t) = VIO v = a ) 9 G (7). ) dr

- [ = a0 vt 1) VI ity ar

- [ (e =) o0 V G 1) (4.122)

To estimate the right-hand side of (4.122), we recall that the solution u! of a scalar

conservation laws satisfies
VII(yi’ t) > VII(XO(S)a S)’ VII(Z?I‘, t) > VII(-IJ['—F’ S)a

for I =0,...,N and 5 =0,...,k. Hence, choosing the difference x%“ — x% in (4.116)
sufficiently small and since the function V/I(-,t) is nondecreasing, we conclude that the
left-hand side of (4.122) can be bounded from below, as follows:

Yit1(t)

Yi+1(s)
L.H.S. > / (z, s) V! (z,8)dx — (s — t)e — / P(z, )V (z,t)dz. (4.123)
¥i(s) yi(t)

Estimating the right-hand side of (4.122) is more involved. First note that each term
arising in the left-hand side of (4.122) is non-positive. This follows from our condition
(4.113). Indeed, consider a point (z,s) of approximate jump or approximate continuity
of u!, u'l and 4. If all of these functions are continuous, the result is trivial. Call X the
discontinuity speed. Based on the jump relation (4.112), we see that either ¢ (A—a_) =
P (A —ay) =0, or else all of the terms 9, A —a_, ¥4, and A — a4 are distinct from
Zero.

Suppose first that (z,s) is a point in the interior of the region limited by the two
curves y;(.) and y;11(.). In the latter case, since 1 > 0 in the region under consideration,
we deduce that 9_ > 0 and 94 > 0, while the terms A —a_ and A — a4 are either both
negative or both positive. Actually, in view of the sign condition (4.113), we have
ull —ul >0 and, therefore, A — ax > as follows from (4.38) (here we are dealing with
a jump of u!7).

Consider next a point of the boundary y;, for instance. So we now have ¥_ < 0 and

14 > 0, while the terms A —a_ and A — a4 opposite sign. Since no rarefaction-shock can
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arise, the discontinuity must be a Lax shock and so A —a_ <0 and A —ay > 0. Again
the corresponding term in (4.122) has a favorable sign. (Observe that the condition
(4.113) was not used in this second case.)

Then, for all I =0,...,N and j =1,...,k, let 9}() be the (maximal, for definite-
ness) backward characteristic associated with ! and issuing from the point (f}'(r), 7).
Denote also by H(zl, 7) its intercept with the horizontal line at time ¢. Setting

f!(z,t) — f(u'(O(z,7),1))
ull(z,t) — ul (8(z;7),1)

remains constant along the characteristic 9}(-), we obtain

a(z,t;7) =

and using that the solution u/

(N = a2)(E)() = N(2]) — a(z], t; 7). (4.124)

Then consider the (maximum, for definiteness) backward characteristic yf-() associated
with @ and issuing from the point (f} (1), 7). By integrating 1 along the characteristic

y}() and using the inequality (4.95), we arrive at a lower bound for v

E
HE )T > v ), (f) . t<r<s (4.125)

T

! x% in (4.116) so small that the oscillation of V!I(-) over each

Upon choosing iL“7+
interval (zI - zI ) does not exceed ¢ and recalling the standard estimates on Stieltjes

integrals we deduce from (4.122)-(4.124) that

S [ W VI 0] (0 - a0, )

I= 0] 1
>ZZ / Vi (e,t) = VH (27 0] (M (=) = @l 7)) 9 (w7 (0), ) (5) o
1= OJ 1

/t (/ (@) =, t,7)) (o, 1) AV (1) _cg> (;)EdT
1=0 j—1

- [ ([ 0o = ot )t v .0 = e — e (E)E dr.(4.126)

We now combine (4.117)-(4.122) and (4.126), divide the resulting inequality by
s —t, and let s \, t, € = 0, obtaining the following inequality:

Yit+1(t)
at / b, )V (z, 1) do
i(t)
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< [ 04 - ate.0) (.0 v 0.0

i

- Y (@) - (@) M —a ) (@, ) P (,0)

(w,t)EJ(u”)

— (u (s, t) — ull (33, 8)) N — @) (yi, t) ¥ (93, t)

— (M (yir1, 1) — 0 (yir1,)) A = ao) (gir1,8) Y (yit1, 1)

— (Y} — ay) ¥y (43, 1) VI (s 1)

—(a- = Y1) o (i1, ) VI (yiga, 1) (4.127)

The third and fourth terms in the right-hand side of (4.127) are due to the fact that
xo and xn+1 lie inside the region limited by y; and y;41.

We can next focus on the intervals (y;, y;+1) with 7 even. Based on a completely
symmetric argument and using now the weight m + V!!(co,t) — V!{(-,¢) instead of

VII(.,t), we obtain
at vit1(t) II II
G ) (m Ve t) Ve )

< /““(x ) — alz, ) (~(z, 1))V (z, 1)
Y

2

+ (u (z,1) — ul (z,1)) (A" —a ) (=9 )(x, 1)
(mt )GJ(U”)

+(u (yi t) — ul (i, ) A = @) (=9 ) (i, 1)

+(U£I(yz+1a —ull(yis1, 1)) (M = a) (—9-) (giy1,t)

(v} — ) (=) (s, ) (m + V' (00,8) = VI (3, ))
~(

a —yi1) (= )(yi+1,t)(m+V”(oo,t) —V”(ym,t)). (4.128)

By summation over 1 = 1,...,n in (4.127) for i odd and in (4.128) for i even respectively,

we obtain

o [ 0] V@) + (9] (m o+ Vo)~ Ve, 0))da

< - Z <m+VHoot)‘/\act—a (z,t)] [9p—(z,1)]
(zt)eL(a)NT (uw!T)
- Z ( II(Q: t) - uf(m t)) (/\I('Tat) - a_(a:,t)) ’lp_(.T,t)
(z,t)eT (ull)

- /R(f'(u”(y,t)) — a(y, 1)) ¥(y,t) AV, (y, 1), (4.129)
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where the superscript 4+ denotes the positive part of the functions ¢ and —1) respectively.

Consider now the case where
xo(T) < wi(7), t<r1<t44,

and
Yit1(1) < xv41(7), t<7<t+0.

Assume that there exists a time 7 > ¢ such that

xo(7) < i(7), Yi+1(7) < xn+1(7)

(otherwise the curves of the two pairs will coincide, and we can reduce to the pre-
vious case). Let now £p(-) be the maximal backward characteristic emanating from
(yi(T),T), and {n+1(-) be the minimal backward characteristic emanating from the point

(yi+1(7), 7). Since characteristics cannot cross, we have that

yi(t) < &(t), Cn1(t) < yirr(2).

Then, by finite propagation speed, there exists a time s > ¢ such that
Yi(7) <&o(7), Cvia(T) <witalr), t<7<s,

yi(s) = &o(s), CN41(8) = yita(s).

Instead of properties (c), (d), we will require that s satisfies the following;:

(c’) Let ¢o(-) be the minimal backward characteristic emanating from (xo(s),s). Then
the total variation of u/’(-,¢) over the intervals (y;,&o(t)) and (Co(t),y;) should not

exceed ¢.

(d’) Let én41(-) be the maximal backward characteristic emanating from (xnt1(s), s)-
Then the total variation of w!l(-,¢) over the intervals ((ni1(t),¥ir1) and

(Yit+1,En+1(t)) should not exceed e.

From then on we can proceed as before. Finally we write the inequality in (4.129)
exchanging the roles of u’ and u'!, and combining it with (4.128) we arrive exactly at

the desired inequality (4.114) and the proof of Theorem 4.5.1 is completed. O
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