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Introduction

The interaction of condensed matter with the external environment occurs at sur-
faces. Usually, a solid surface modifies the electronic properties of the atoms and/or
molecules which bind to it: at the same time, the adsorbates can modify the struc-
tural and electronic properties of the surface [1]. Recently, transition metal surfaces
have attracted a wide scientific and technological interest because of their capability
of reducing the activation energy barrier for many important chemical reactions [2].
An example is the formation of water from molecular oxygen and hydrogen in the
presence of a platinum surface. In order to form an H,O molecule, Hy and O, must
first transform to atoms. The energy needed for this atomization to occur is 4.48 and
5.08 eV for Hy and O, respectively [3], so it is very improbable that the molecules
break at room temperature. The presence of the platinum surface reduces these
energy barriers. Actually, at the surface the molecules spontaneously dissociate and
the reaction occurs explosively.

Among transition metal surfaces, rhodium and platinum are two of the most
studied because they have been demonstrated to be the best catalysts for the re-
action 2CO + 2NO — 2CO, + N,. This reaction is particularly important because
it eliminates the two poisonous CO and NO gases from the combustion engines ex-
haust gas. A powdered mixture of rhodium and platinum is actually used in the
automobile’s catalytic devices.

Most transition metals have a cubic crystal geometry. The most widely studied
surfaces are those with low Miller indices, such as (111), (001), and (110). The latter
is particularly interesting in the case of the FCC transition metals (Cu, Pd, Au, Ni,
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4 INTRODUCTION

Pt, etc.), because the energy difference between the unreconstructed (1 x 1) surfaces
and the reconstructed (1 xn),n =1,2,3,5, ..., missing- or added-row ' ones is small
[4, 5]. For example, for Au, Pt, and Ir the (1 x 2) state is the more stable. Molecular
adsorption can modify the energetic balance and induce a transition from a (1 x n)
state towards a (1 xm) state, where n and m are two different missing- or added-row
reconstruction indices [6]. This is the case for rhodium, which has a (1 x 1) stable
structure, but it undergoes an added-row reconstruction upon oxygen adsorption
[6, 7, 8]. These reconstructed surfaces are meta-stable upon elimination of oxygen
by exposition to Hy or CO. To re-obtain the unreconstructed (1 x 1) surface it is

sufficient to anneal the rhodium surface above 480° K.

In order to understand the mechanism of a surface chemical reaction, a detailed
knowledge of the adsorption geometries for the atoms or the molecules involved is
required. These reactions involve the modification of the atomic electronic clouds
and therefore a quantum mechanical description of the corresponding processes is
necessary. A direct solution of the many-body Schrodinger equation for a surface is a
formidable task. A good compromise between accuracy of the results and reasonable
computational effort is given by the Density Functional Theory (DFT) within the
Local Density Approzimations (LDA) and its gradient-corrected generalizations |9,
10]. A further approximation which usually does not introduce additional significant
loss of accuracy is the pseudopotential one, where essentially one disregards the
tightly bound atomic core electrons which do not participate in the chemical bonds

among the atoms and are difficult to treat.

The development of these efficient theoretical first principles techniques along
with the availability of faster and faster computational resources has allowed, during
the past 30 years, the investigation of real systems of increasing size and complex-
ity. The reliability of DFT calculations in describing the structural and vibrational

properties of simple materials has been demonstrated by the successful and thorough

LA missing-(added-)row (1 x n) reconstruction is a surface where for every n rows one is missing

(added).
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comparison with a great deal of experimental data. Moreover, they are unbiased
from any external prejudice and therefore they are very general tools. The main
power of first principles is maybe the capability to explore physical properties that
are inaccessible to experiments, and therefore they are in a sense complementary
to them. For example one has a direct control onto the atomic positions, and can
relate the structural properties to the electronic ones, as the electronic charge trans-
fer during the formation of the chemical bonds. Also, one can calculate the forces
on the atoms to find the equilibrium configurations, or use the forces to study the
dynamical evolution of the system (see for example Ref. [11] for a discussion on
the applications of DFT). All these facts make DFT a unique technique to study all

those systems where a quantum mechanical description of the processes is necessary.

Motivated by a collaboration with an experimental group working at the Elettra
synchrotron-radiation facility in Trieste [12], we decided to apply state-of-the-art
density-functional techniques to the study of some physical and chemical properties
of the (110) and the (001) surfaces of rhodium upon carbon-monoxide and oxygen

adsorption respectively.

The adsorption of CO molecules on the (110) surface of rhodium has been studied
experimentally by means of a variety of techniques [13, 14, 15, 16, 17, 18, 19, 20, 21].
Using LEED (Low Energy Electron Diffraction), for example, one gets information
about the reciprocal surface lattice, i.e. one can determine the periodicity of the
surface. Furthermore, if the intensity of the spots in the LEED pattern is analyzed
as a function of the electrons energy (LEED I-V), it is also possible to obtain some
information on the real-space structure of the surface lattice. A LEED I-V analysis
of the adsorption of 1 monolayer (ML) of carbon monoxide on the unreconstructed
surface results in a (2 x 1)p2mg structure, with the C atom bound in the short
bridge sites along the (110) direction, and the molecular axis alternatively tilted
with respect to the surface normal, towards (001) direction [18]. The axis which
connects the center of the bridge site and the carbon atom of the molecule is also

tilted in the same fashion. The same geometry is also observed on the (110) surfaces
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of Ir, Ni, Pd, and Pt [22, 23, 24, 25]. On Ni(110) [26] and Pd(110) [27] the adsorption
sites are respectively bridge and on-top. The tilt angles of the CO molecules also
depend on the metal they are adsorbed on. In particular, the smaller is the lattice
parameter—Ni(2.48 A) < Rh(2.69 A) < Pd(2.74 A)—the larger is the metal-C
angle [18], i.e. the larger is the molecule-molecule distance because the molecules
are alternatively tilted. This fact suggests that the mechanism responsible for the
tilt is the molecule-molecule interaction. However, the same trend is not observed
for the tilt of the C-O axis, which is minimum for palladium and maximum for

rhodium.

The finite temperature properties of these systems are particularly interesting.
Using the TPD (Temperature Programmed Desorption) technique one obtains infor-
mation on the adsorption energies and one can possibly distinguish among different
species of adsorbates which bind to the surface with different energies. In Ref. [15],
the (2 x 1)p2mg LEED pattern was reported to disappear at temperatures higher
than =~ 270+ 280 °K, well below the desorption of CO from the surface, which starts
at temperature above &~ 350 + 360 °K. This fact was tentatively explained in terms

of an order-disorder phase-transition.

CO adsorption on the (110) surface of various transition metals does not change
the substrate surface ordering. On rhodium, for example, the only appreciable
effect it has on the substrate is to reduce the relaxation of the first surface layer

from ~ —10% of the clean surface to ~ +2% for the CO covered one.

If we consider the (001) surface of some transition metals, in particular rhodium
and nickel, further adsorbate-induced effects are observed. Oxygen adsorption on
Rh(001) is known to be dissociative and to saturate at half a monolayer, indepen-
dently on the adsorption temperature. At this coverage a 2 x 2 reconstruction has
been observed by LEED studies and confirmed by STM images [28]. STM (Scanning
Tunnel Microscopy) is a real space technique which allows a direct observation of
the surface. This technique is very powerful, but it can be misleading. The obtained

images do not represent the surface atoms but rather their local density of states
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Figure 0.1: (CO]OI") The two possible reconstructions compatible with LEED and STM data of
Ref. [28]. In (a) we display the ‘black’ reconstruction while in (b) the ‘white’ one.

(DOS) at the Fermi energy. If a particular atom has low DOS near the Fermi level,
then it can be “invisible”. This is what occurs, for example, for carbon, nitrogen,
and oxygen adsorbed on the (001) surface of rhodium and nickel.

On the Rh(001) surface the oxygen atoms sit in the troughs formed by four
first-layer rthodium atoms and fill the sites in a ¢(2 X 2) geometry. This geometry
may be seen as a chess-board whose ‘black’ squares are occupied by oxygen atoms,
while the ‘white’ ones are empty. Within this picture, the reconstruction observed
in Ref. [28] can be described as a clockwise and counterclockwise rotation of the
‘black’ or the ‘white’ squares, resulting in a (2 x 2)p4g symmetry (see Fig. 0.1). This
distortion preserves the shape of the ‘black’ squares, while the ‘white’ ones become
rhomboid (or vice-versa). A similar behavior is observed for nitrogen and carbon
adsorbed on the (001) surface of nickel, where the rotation angle of the squares is
much larger, and the reconstruction is therefore more evident [29, 30, 31, 32]. From
LEED and STM analysis it is not possible to decide if it is the ‘black’ or the ‘white’
squares which rotate. The oxygen atoms form a square lattice with side length /2

times the substrate side length and 45° rotated with respect to the chess-board.
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What characterizes the two reconstructions is the position of the oxygen over-layer
with respect to the substrate, which is identical in the two cases. Looking only
at the reciprocal lattice image (LEED) it is not possible to decide to which of the
two reconstructions it corresponds. Using STM is possible to see the reconstructed
substrate only if the oxygen atoms are “invisible”, otherwise only the oxygen over-
layer is imaged. Therefore not even STM is capable to distinguish between the two
possibilities. However, additional experimental data exist for C/Ni(001) (LEED I-V)
[32] and N/Ni(001) (SEXAFS) [33] which allow a more precise characterization of the
reconstruction, and in these two cases it is observed that it is the ‘black’ (occupied)
squares which rotate. In analogy with these two systems, in Ref. [28] the same type
of reconstruction was proposed also for O/Rh(001). However, even if these three
systems seem to behave in a very similar manner, there is a non-negligible difference
between O/Rh(001) and C,N/Ni(001). While nitrogen and carbon penetrate into
the substrate when adsorb on Ni(001), becoming essentially five-fold coordinated,
the same behaviour is not observed for the O/Rh(001) system, where the oxygen
atoms stay relatively far from the plane of the site. Therefore, while in the case of C
and N the surface site must enlarge in order to accommodate the adsorbed atoms,
and the enlargement results in a ‘black’ reconstruction, this is not the case in the

O/Rh(001) case, where there is no need of site enlargement at all.

In this thesis we report on a first principles investigation of some structural
and electronic properties of the (110) and (001) surfaces of rhodium upon carbon-
monoxide and oxygen adsorption respectively.

The structure and phase stability of one ML of CO molecules adsorbed on the
Rh(110) (1 x 1) surface are studied from first principles and by mapping the low-
lying energy configurations corresponding to the different distributions of tilt angles
onto an anisotropic 2D spin model. The ground-state structure of the system is
determined by means of accurate structure minimizations, and the finite temperature
properties are studied using a standard Metropolis Monte Carlo simulation on the

spin model.
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Then, we present a (ab-initio) study of the oxygen adsorption on the Rh(001)
surface. At variance with the proposal of Ref. [28] we find that it is the ‘white’
squares which rotate rather then the ‘black’ ones. The reconstruction mechanism is
explained using simple chemical concepts based on the atomic orbitals involved in
the rhodium-oxygen bond. Finally, we present some preliminary results for related

systems C, N, and O adsorbed on Ni(001).

The thesis is organized as follows. The first chapter contains a review of the
fundamental theoretical tools used in the first principles calculations. The second
chapter contains our theoretical results. Finally, we present our conclusions. Some

technical questions are discussed in the Appendices.
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Chapter 1

Theoretical tools

The calculations presented in this thesis are performed using Density Functional
Theory for the ground-state (GS) structural and electronic properties, and Metropo-
lis Monte Carlo simulations to study the finite temperature behaviour, where needed.

The investigation of the microscopic properties of matter is a very complicated

task. One has to solve the Schrodinger equation of the system,
HY = FEV. (1.1)

The systems in which we are interested in are formed by ions, say M, with charge
Z; and mass M;, and electrons, say N. In the non-relativistic approximation, the

Hamiltonian appearing in Eq. 1.1 reads:

N
H = 2; ——V2 2_: ——V2
M ZZ
B ZZ |r | Z Z (1-2)
=1 =1 171 J z<j 1<J 1]

where atomic units have been used (e? = m, = h = 1). This equation is in practice
impossible to solve and then one needs some reasonable approximations. The first
approximation which can be done is the separation of the ionic degrees of freedom
from the electronic ones. This is the so called Born-Oppenheimer (or adiabatic)

approximation. Ions are much heavier then electrons and then the electrons follow

11



12 CHAPTER 1. THEORETICAL TOOLS

adiabatically the ions movements, remaining close to their instantaneous ground-
state. In this way the ions act as external potential source for the electronic problem,
which therefore depends parametrically on the ionic positions,

(H{R} — E{R})y{r; R} = 0

N N 1

H{R} = 3(~V2) ZZ Y (13)

i=1 i=1 j= 7 J| i<j Tij
Once the electronic problem is solved (ideally for each ionic position), the dynamics
of the ions can be studied using the electronic energy E{R} as effective potential.
Usually ions are heavy enough to be treated as classical particles, which is therefore
a further reasonably approximation. However, Eq. 1.3 does not seem to be easier
to solve then Eq. 1.2 cause to the presence of the two-body term due to electron-
electron interaction which couples all the electronic degrees of freedom. Beside the
Schrédinger equation, a new formalism has been developed in the last three decades:
it is the Density functional theory [9, 10], and it overcomes the many-body difficulties

providing an alternatively exact new formalism which is much easier to handle.

1.1 Density functional theory

The original idea which started the development of DFT is due to Hohenberg and
Kohn (HK) [34]. They showed that the external potential acting on the electrons is
uniquely determined (up to a trivial additive constant) by the electron GS density
n(r) = (¥|n(r)|¥) = [dry...dr,|¥(r, 1y, ..., 1,)|% where U is the GS of the system
and n(r) is the density operator. Since n(r) determines also the number of electrons
N, and since V,,; and N fix the Hamiltonian of the system, it turns out that the
electron density completely determines the system.

The energy can be written:
Eln] = Fggln] + /Vemt(r)n(r)dr, (1.4)

with
Frr[n] = (o[n][T + Vee|¥o[n]), (1.5)
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where T and V,, are respectively the kinetic energy and the electron-electron inter-
action operators, and W,[n] is the GS of the system. Note that Fyg[n| does not
depend on the external potential and therefore it is a universal functional. Using the
variational principle HK proved a second theorem which states that the GS density
of the system is the one which minimizes E[n], and the minimum of E[n] is the
GS energy Ey. It is clear the importance of these two results, the only quantity
which is needed is the electron density, no matter how many electrons are present in
the system! The exact form of the functional F[n] is not known, however, its exis-
tence justifies the large work that is still in progress to improve the approximations
available nowadays.

One year after the publication of the HK paper Kohn and Sham (KS) invented an
indirect method to solve the problem [35]. The idea is to write the energy functional

as an “easy” part plus a “difficult” part.
F[n] = Tyln] + Eg[n] + Eg[n], (1.6)

where Ty[n] is the GS kinetic energy of an auziliary non-interacting system whose
density is the same as the one of the real system, Ey[n] is the repulsive electrostatic
energy of the classical charge distribution n(r) and E,.[n] is the exchange-correlation
(XC) energy defined through Eq. 1.6. Minimizing the total energy F[n] under the
constraints of orthonormality for the one-particle orbitals of the auxiliary system,

[ 7 (r)y;(r)dr = 6,5, one finds a set of one-particle Schrodinger equations:

[—%VQ + VKS(I‘):| Pi(r) = € P;(r), (1.7)

where the KS potential is

n(r’)

v — |

T

Vis(r) = Vear) + [

and

n(r) = Y fle—en)lti(@)]’, (1.9)
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with f(z) the Fermi-Dirac distribution and ep the Fermi energy fixed by the condi-
tion

/n(r)dr — N. (1.10)
These are the famous KS equations, they must be solved self-consistently because
Vks is a functional of the orbitals itself. To this end we may use the Conjugate Gra-
dient algorithm (see Appendix A.1) or the Davidson algorithm [36]. The latter is an
iterative technique which requires a direct diagonalization of N,,;,4 X Nppng matrices,
where Nypnq 18 the number of states in the system. Usually the computational cost
of this direct diagonalization is very small. However, when the algorithm is imple-
mented on a parallel machine also the direct diagonalization should be performed
in parallel. In Appendix A.2 we describe our implementation.

When self-consistency is achieved the electronic energy of the system is:

E = ;f(ﬁz'—@)ﬁi - % %dr + Egcln] — /Vmc(r)n(r)dr + B, (1.11)

where E™" is the ionic electrostatic repulsion term. This would be the ezact elec-
tronic GS energy of the system if we knew E,.[n]. Unfortunately the exact form of

the XC energy is not (yet) known.

1.1.1 Local Density Approximation

The most widely used approximation for the XC energy is the so called Local Density

Approzimation: the dependence on the density is of the form

ELPAR) = / n(r)ege(n(r))dr, (1.12)

and €,.(n) is taken to be the exchange and correlation energy per particle of a
uniform electron gas whose density is n(r). This has been accurately calculated
using Monte Carlo simulations [37] and parametrized in order to be displayed in an
analytic form [38].

By construction this approximation yields exact results if the density of the

system is uniform, and should not be very accurate for those systems whose density
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is highly dis-homogeneous, as for example for atoms and molecules. However, it
turns out to work better then expected for a wide range of materials. In molecules,
for example, the LDA usually overestimates the binding energies, but it yields in
general good results for equilibrium distances and vibrational frequencies.

Within this approximation, the exchange and correlation part of the KS potential
is
0Ez " [n]

dn(r)
Note that ELPA[n] # [ VEPA(r)n(r)dr.

O€ze(n)
on

VEPA(r) = = €z(n(r)) + n(r) (1.13)

1.2 Infinite (periodic) systems

Now we have a complete procedure to calculate the GS density and the GS energy
of the system. Given the Hamiltonian of the system one has to find the eigenvalues
and the eigenvectors of the KS Eq. 1.7. The number of eigenvectors needed is
proportional to the number of atoms in the system. It is clear that only systems
containing a finite number of atoms can be studied in practice. However, if the
system is a periodic solid, then the KS potential 1.8 is a periodic function of the
lattice,

VKS(F+R) = VKS(I'), (114)

for each Bravais lattice vector R. Thus, we can use the Bloch theorem to write the

general form of the solution of Eq. 1.7,

Ui(r) = Yue(r) = € uu(r), (1.15)

where k is a vector in the first Brillouin zone (BZ) of the reciprocal lattice, w,(r)

is a function with the periodicity of the Bravais lattice,
Unk(r + R) = (), (1.16)

and n is a degeneracy index which accounts for the band number [39]. For an

insulator or a semiconductor, the number of occupied bands is equal to one half the
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number of electrons in the unit cell of the crystal. Putting Eq. 1.15 in Eq. 1.7 we

have
[(—iV +k)? 4+ Vi(r) + Vee(r) + Vipr(r, k)] tni(r) = €nx Uni(r).  (1.17)

The dependence on k of the external potential is due to its possible non-locality

ikt (see for example

in the variable r, therefore we write V (1, k) = e=%TV ;. (r)e
Ref. [11] for a discussion on the implementation of DFT with non-local potentials).
To calculate the electronic properties of the system, such as the total energy and
the ionic forces, integrations in the whole BZ are needed. As a consequence one in
principle needs an infinite number of solutions of Eq. 1.17, i.e. for each k-point of the
BZ a number of eigenstates which depends on the number of electrons in the unit cell.
Of course, in practice only a finite number of solutions can be found. However, one
can check the quality of the approximation by systematically increasing the number
of k-points. If these points are badly chosen, the convergence is very slow. The
right way to produce the points had been firstly invented by Baldereschi [40] (who
proposed a scheme to use only one point!), and then improved by Chadi & Cohen [41]
and Monkhorst & Pack (MP) [42]. If the quantity to be integrated is smooth, then
a small number of special k-points is needed. In the case of metals some additional
care is needed. The integrals now have not to be done in the whole BZ anymore,
but only inside the Fermi surface. This is the same thing of doing integrals in the
whole BZ cutting the integrands at the Fermi surface and keeping them zero outside.
This fact results in a discontinuity of the function to be integrated, which therefore
is not smooth at all. For this reason a larger number of k -points is usually needed
for metals. To speed up the convergence with respect the k -points sampling, a trick
has invented by Fu & Ho [43]: one artificially smoothens the functions near the
Fermi energy and substitutes the cut across the Fermi surface with an appropriate
Fermi-Dirac like behaviour. This fact corresponds to the introduction of a fictitious
electronic temperature which introduces an error in the integrals that depends on
the electronic temperature and on the smearing function used [44]; however, it can

be easily controlled.
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Figure 1.1: (Color) Unit cell (solid line) for the 1 x 1 Rh(110) surface covered by a complete

layer of CO molecules in the 2 x 1 geometry.

1.3 Swurfaces

A surface is a solid with no periodicity in the direction of its normal, say the z-axis.
In this case all the formalism which has been described in the previous section is
no more valid. However, it is easy to recast the surface problem in such a way that
the three-dimensional periodicity is restored. In fact one can always construct a
crystal unit cell as shown in Fig. 1.1, i.e. a slab formed by a certain number of
atomic layers, plus a vacuum region. To describe the surface accurately the number
of layers in the slab must be large enough so that the central layers resemble the
bulk properties, and the vacuum region must be so thick that opposite surfaces do
not interact with each other. In other words, the slab and the vacuum thickness

must be larger than the surface states extension.

1.4 Plane-Wave Pseudopotential Method

Eq. 1.7 can be solved expanding the one-particle orbitals, u,x(r), in a complete set

of known functions. The most natural set of basis functions to describe a periodic
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system is provided by plane-waves (PW’s). This is a complete orthonormal set, easy
to handle, and does not depend on the position of the atoms in the unit cell.
The expansion in PW’s reads:

unk(r) = %:eic'rcnk(G), (1.18)

where G is a reciprocal lattice vector. Putting this expansion in Eq. 1.17 we find

S [k + GPee + Via(G—G) + Vi(G—G') +
G/
¥ Vir(k+ Gk + G ] en(G) = e c(G). (1.19)

We see that using PW’s the KS equation has a very simple form. The KS eigenvalues
have no physical meaning, but it turns out that their collection in reciprocal space

resembles very much the band structures of the solids.
The number of PW’s used in Eq. 1.19 is determined by the condition

Playing with E.,; one can systematically increase the accuracy of the expansion.
1 1
Eq. 1.20 defines a sphere in reciprocal space whose radius is E2,,/},. where Qg

is the volume of the BZ. The number of PW’s inside this sphere is then

4 3
Npw = —7TE2

1.21
3QBZ cuts ( )

which, for a fixed cutoff energy and then a fixed accuracy in the description of the
KS wave-functions, is linear in the volume of the unit cell. Given a fixed accuracy
the number of PW’s needed depends on the shape of the KS orbitals. This depends
on the details of the electronic structure which must be described. In a simple LCAO
(Linear Combination of Atomic Orbitals) scheme the ¢,x(G)’s are the Fourier com-
ponents of the atomic orbitals. Due to the localization of the core electrons and
to the rapid oscillations in the core region of the wave-functions which describe the

valence electrons, the number of PW’s needed, even for a simple calculation, is huge.
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We need approximations to avoid this problem. The first one is to disregard the
core electrons because they do not participate to the chemical properties of matter,
at least until their binding energy is much higher than the energy involved in the
chemical properties one wants to study. So one “freezes” them around the nuclei
and redefines the system as it was formed by “ions” plus “valence electrons”. We are
left with the second problem, how to deal with the oscillations in the core region of
the valence wave-functions, due to the orthogonalization to the core wave-functions.
The solution to this is the introduction of a pseudopotential (PP) which substitutes
the ionic Coulomb potential in such a way that the valence pseudo-eigenvalues are
the same as the all-electron (AE) ones and the pseudo-wave-functions coincide with
the AE ones from a fixed core radius on, and are as smooth as possible below the core
radius, with the only constraint to be normalized (norm-conserving (NC) pseudopo-
tentials). To satisfy this requirements the PP usually must be angular momentum
dependent, i.e pseudo-wave-functions corresponding to different angular momenta
are eigenfunctions of different potentials. However, the long range behaviour of these
different potentials must resemble the true one, because above the core radius the
pseudo-wave-functions are identical to the AE ones. This mean that the difference
must be confined in the core region and then the PP can be written in the following

form: [45, 46, 47]

lma:c

Vo) = Vo(r)d(r —1') + Z VI ()P, 2)0(r — '), (1.22)

where V!°¢(r) is a local, long range part and approaches the AE potential above

loc

a cutoff radius r.%¢,

and V["/(r) are the non-local short range angular momentum
dependent part, the index s refers to the atom, the superscript sl emphasizes the
semi-locality (non local in angular momentum but local in r) and P, is the projector

onto the angular momentum [,

l
P(r,t') = Y Yim(0,0)Yi (0, ), (1.23)

m=—I

whit the Y),,’s the spherical harmonics. The quality of the PP depends on its
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transferability properties, i.e. the cability to reproduce the AE results over a wide

range of electronic configurations.

1.4.1 Separable (Kleinman & Bylander) pseudopotentials

The computational cost for the application of the KS Hamiltonian in reciprocal
space is proportional to N]Zw for each state. A particularly convenient form for the
ionic PP has been introduced by Kleinman & Bylander [48]. If the PP is expressed
in this form, the computational cost for each Hgg|t)) operation scales as N, X Ny
(Nat << Npy). The construction of the PP is done in the following way. Consider
the Schrodinger equation for the atom, let 1); be an eigenvector, i = {¢;lm} is an

index for the three atomic quantum numbers, we have
(T + VAE — &) [1) = 0. (1.24)

Now we chose a cutoff radius r§,, and generate a smooth local potential V!¢ in such
a way that it is equal to the AE potential VAF at an above rf,, (usually, V¢ is one
of the [ angular momentum conponents of the PP). The next step is the construction
of a pseudo-wave-function ¢; in such a way that it matches the AE one at and above
a different cutoff radius rf, dependent on the [ angular momentum, and that it has
the same norm of the AE one: (¢;|¢:)r = (¢;|¢i) r, where R = max{rj, ., ri}, for all
the angular momenta which are included, and the notation ( | Yz = [ is meant.

Now we define the local wave-function
i) = (6 — T = V™)), (1.25)

which vanishes at and above R, where V¢ = V4¥ and ¢; = v;, and we construct a
“truly non-local” part for the PP in the following way:

|xi) (il
<Xi|¢i> ’

so that the PP is non-local both in the angular momentum component and in the

vt = (1.26)

radial coordinate 7:

lmam
Vi, r') = V()o@ —1') + Y V()P ). (1.27)
=0
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This form for the PP’s must be used with some care. Due to the non-locality in the
r variable, it is no more guaranteed that the eigenvectors of the atomic Hamiltonian
can be ordered in term of increasing number of their nodes. This fact sometimes
leads the appearance to unphysical states (ghosts), whose energy levels are near or
even below those of the true states [49]. This problem can be usually solved with a

suitable choice of the local part of the PP.

1.4.2 TUltra-Soft (Vanderbilt) pseudopotentials

The requirement of norm conservation for the pseudo-wave-functions can be a limit-
ing factor for numerical calculations when also the valence electrons are very local-
ized around their nuclei. This is a particular serious problem for first row elements,
like carbon and more so for nitrogen, oxygen, and for transition metals, where the d-
electrons are as localized as shallow core states but have an extraction energy which
is comparable to valence energies, and for this reason cannot be excluded from the
calculation. If this is the case the utilization of NC pseudopotentials requires huge
PW’s basis sets to achieve an acceptable accuracy. In a work published in 1990
Vanderbilt [50] showed that, introducing a generalized formalism, the norm conser-
vation constraint can be removed. In this way one can construct much smoother
pseudo-wave-functions, with the only constraint of matching the AE ones at and
above a fixed core radius (see Fig. 1.2). The price to pay for having so smooth
pseudo-wave-functions is the introduction of a new generalized formalism. Due to
the fact that the pseudo-wave-functions are no more normalized, the charge density

has to be restored by adding an “augmentation” part.
n(r) = Z |¢nk(r)|2 + naug(r)7 (1'28)
n,k
and the KS equation has the new generalized form:

Hgs|oi) = €S|, (1.29)

where S is a non-local overlap operator.
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Figure 1.2: All-electron (solid) and Ultra-Soft pseudo (dashed) radial wave-functions of the 3d

orbital of nickel. r. = 1.75 a.u.

1.5 Forces

The knowledge of the forces among the atoms is a fundamental ingredient when-
ever one is interested in optimizing geometric structures, or studying the dynamical
evolution of the system.

Ionic forces are the energy derivative with respect to the ions displacements.
Using the Hellmann-Feynmann theorem [51], it is possible to obtain the forces with-
out energy calculations for other ionic configurations that the actual one. This is a
general result which applies for the energy derivative with respect to an arbitrary
parameter A, from which the external potential depends. In the case of forces, A is
the collection of the ionic positions. The energy derivative with respect to A can be

written as

OF av

5 - n)\a—)\a

which only requires the knowledge of the “actual” density. Therefore, with only one

(1.30)

self-consistent calculation, one has the total energy and the forces on the atoms.



Chapter 2

Results

In this chapter we present our results for carbon-monoxide adsorption on the (110)
of rhodium and for oxygen adsorption on its (001) surface.

In the first case, we have studied the structure and the phase stability of one
mono-layer (ML) of carbon-monoxide adsorbates on Rh(110). We have determined
the most stable surface configuration and we have studied the finite temperature
properties of the system, finding a critical temperature where an order-disorder
transition occurs for the CO over-layer, agreement with the experimental findings
[15].

In the second case, we have studied the oxygen adsorption on the Rh(001) sur-
face and the peculiar ‘clock’ reconstruction it induces on the substrate [28]. The
experimental data are not complete enough to determine uniquely the geometry
of the reconstruction, and, in analogy with two similar systems, C/Ni(001) and
N/Ni(001), where additional experimental data allow a more precise characteriza-
tion of the reconstruction [29, 30, 31, 32], the same kind of behaviour of Rh(001)
upon oxygen adsorption has been proposed. We show that this is not the case.
Finally we present some preliminary results we have obtained on the related sys-
tems C/Ni(001), N/Ni(001), and O/Ni(001). In particular, we have found a ‘clock’
reconstruction for the C/Ni(001) and the N/Ni(001) systems which is in agreement
with the experiments but it is different from the one we have found for O/Rh(001).

23
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As a preliminary study we have determined the structural and electronic prop-
erties of rhodium bulk, as well as those of the isolated oxygen molecule, Oy, and
carbon-monoxide, CO. We have found very good agreement with experimental data,
this fact indicates the quality of our approximations (the LDA and the PP approx-

imation).

2.1 Rhodium bulk

Rhodium has the face-centered cubic crystal structure. In order to determine the
equilibrium lattice constant ag and the bulk modulus By, we have fitted to the
Murnaghan’s equation of state the calculated energies as a function of the unit cell

volume:

E(V) =

BL—1
VoBfo lB(’Jl— ] <%> i + %1 + const, (2.1)
where B is the derivative of By with respect to the pressure and Vy = a3/4 is the
equilibrium volume.

We have used the same Ultra-soft psudopotential of Ref. [52]. This PP has been
constructed by relaxing the norm conservation constraint only for the d channel,
while the s and p channels are constructed in the usual norm-conserving scheme.
The core radii are respectively 1.6, 2.53 and 2.53 a.u. for the 4d, 5s and 5p states.
The [ = 1 component of the PP has been assumed as the local part of the PP. With
this prescription the isolated pseudo-atom is ghost free. We have used PW’s up to
a maximum kinetic energy of 30 Ry; BZ integrations have been done using 10 MP
k-points in the IBZ and a smearing function of order 1 with a width of o = 0.03
Ry, as in Ref. [53].

The resulting lattice constant is ag = 3.81 A and the bulk modulus is By = 3.17
Mbar, to be compared with the experimental values, ag = 3.803 A and B, =
2.69 Mbar [54]. The comparatively poor agreement between the calculated and the

experimental bulk modulus is not due to the PP approximation, as it is also in

all-electron calculations. In Fig. 2.1, we display the total density of states (DOS)
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and its projection onto the atomic wave-functions (PDOS). !
The DOS is practically indistinguishable from the sum of the atomic PDOS’s,
thus indicating that the basis of the atomic wave-functions is almost complete for

the solid.

Projected DOS (states/eV)

Figure 2.1: Total density of states and its projections onto the atomic wave-functions.

2.2 Molecular oxygen and carbon-monoxide

The oxygen PP is the same as in Ref. [55], with the | = 2 component taken as local
reference, and cutoff radii respectively 1.0, 1.3 and 1.3 a.u. for the local potential

and the 2s and 2p states respectively. The carbon PP has locality [ = 2 and cutoff

!The projected DOS onto the atomic wave-function ¢2¢ is:
m(B) = [ di(undof)PaEG) - B) (22)

where 9y is the solid wave-function at wave-vector k .
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(a) Rh(110) (b) Rh(001)

Figure 2.2: Top view of the two rhodium surfaces investigated, the 1 x 1 unit cell is emphasized.

radii respectively 1.0, 1.1 and 1.1 a.u. for the local potential and the 2s and 2p
states.
For the O, molecule we have found converged values for the equilibrium distance

! using the same

Ry = 1.22 A and for the vibrational frequency vy = 1650 cm™
cutoff energy we used for rhodium bulk. The corresponding experimental values are
Ry=1.21 A and vy = 1580 cm!.

The equilibrium distance of the CO molecule is Ry = 1.13 A and the vibrational
frequency is vy = 2075 ecm~!. To be compared with the experimental values Ry =

1.13 A and vy = 2170 cm™! [3].

2.3 Clean Rh(110) and Rh(001) surfaces

The isolated surfaces are modeled by periodically repeated super-cells (see Fig. 1.1

and Fig. 2.2). We have used the same super-cells for both the clean and the CO/O-
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covered surfaces [56]. For the clean (110) surface we have used 7 atomic layers plus
a vacuum region corresponding to &~ 9 layers (=~ 12.5 A). For the Rh(001) clean
surface we have used 5 atomic layers plus a vacuum region corresponding to =~ 6
layers (= 11 A). We have used the same Gaussian-smearing function as in the bulk
calculations with (8,4,2) and (12,12,2) MP meshes for the (110) and the (001)
surfaces respectively, resulting in 8 and 21 special k-points in the 1 x 1 surface IBZ.
Convergence tests performed with a value of o twice as small and a correspondingly
finer mesh of special points, has been resulted in no significant changes in total
energies and equilibrium geometries. The latter are found by allowing all the atoms
in the slab to relax until the force acting on each of them is smaller than 0.5 X

10-*Ry /aq.

The stable structure of the Rh(110) clean surface is unreconstructed. However,
if prepared in a convenient way with oxygen adsorption, it may also present—upon
thermal desorption—meta-stable (1 x n), (n = 2,3,4,5), missing- or added-row
structures which revert to the unreconstructed one at temperatures above 480 °K
[6, 7, 8]. An analysis of LEED data suggests that the top interlayer spacing is reduced
by 6.9 + 1.0% relative to the bulk interlayer spacing, while the second interlayer
spacing would expand by 1.9 £ 1.0% [57]. Our ab-initio data indicate a relaxation
of —9% and of +3.5% in the first and second interlayer spacings respectively, in
good agreement with experiments. Our calculated values for the surface energy,
o, and work function, ¢, are reported in Table 2.1. A special care must be payed
when estimating the latter. The XC potential goes to zero in the vacuum region
much slower than the Hartree potential. The dependence of the former on the
charge density is of the type V,,. n(r)1/3, while the latter has a dependence of
the type Vi o< n(r). In the vacuum region the wave-functions go exponentially to
zero with the distance from the surface, the decay characteristic length is inversely
proportional to the work-function. This results in a decay characteristic length for
the XC potential which is three times larger than that of the Hartree potential.

However, at infinite distance from the surface they are both zero, therefore it is
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d12/d0 d23/d0 ¢ g d12/d0 d23/d0 ¢ g
unit % % (eV) (eV/at) % % (eV) (eV/at)
Rh(110) Rh(001)
LDA -9 +3.5 5.1 2.0 —-3.8 0 2.5 1.36
Expt. —7¢ +2¢ 5.1° —-1.2+1.6° 0° 5.0% 1.27¢

@ From Ref. [57], ° From Ref. [58] ¢ From Ref. [59], ¢ From Ref. [60], ¢ From Ref. [61].

Table 2.1: Structural data for the clean Rh(110) and Rh(001) surfaces. do is the bulk lattice
spacing, di» the distance between the first and the second layer, ds3 the distance between the

second and the third layer, ¢ is the work function, and o is the surface energy.

convenient to evaluate the vacuum level by simply neglecting the XC contributions
(see Fig. 2.3).

For the Rh(001) surface we find that—in agreement with other ab-initio calcu-
lations [62, 63, 64]—the first layer relaxes inward by 3.8%, while the second layer
is practically unrelaxed. The value of the first-layer relaxation reported in the ex-
perimental literature is anomalously small (the first interlayer spacing is practically
equal to its bulk value within error bars). Recently, Cho and Scheffler [64] pointed
out that a proper account of the vibrational contribution to the surface free energy
may result in a reduction of the inward relaxation of the first layer, thus bring-
ing theoretical predictions in better agreement with experiments. No attempts of

estimating these vibrational effects have been done in the present work.

2.4 The structure and phase stability of CO on
Rh(110)

The study of the carbon-monoxide adsorption on the transition metal surfaces
is of fundamental importance in order to understand the physics of the reaction
2C0O + 2NO — 2CO5 + Ny. CO does not dissociate upon adsorption on the surface,
while NO dissociates. The first product of the right hand side of the reaction is
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Figure 2.3: Planar average of the total potential energy (full line) and total potential energy
without XC (dotted line) as function of the one dimensional coordinate orthogonal to the surface.
The potential energy without XC converges more rapidly to the vacuum level with respect to the

slab vacuum thickness.

realized when the adsorbed CO’s recombine with the adsorbed oxygen atoms which
come from the NO dissociations. It is therefore important to know which are the
CO adsorption sites, how CO binds to the surface and how its interaction with the

adsorbed O atoms is (possibly) mediated by the surface.

The work contained here is aimed at the identification of the ground-state con-
figuration of one ML of CO molecules adsorbed onto the Rh(110) surface. Moreover,
we have studied the finite temperature properties of this system and we have found
that there is an order-disorder transition for the CO over-layer. Our findings are in

good agreement with experimental data [15, 18].
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4 s

Long-bridge On-top; E = 0.35 eV
!
Short-bridge; E = 0 Threefold 1; E=0.5 eV Threefold 2; E =0.2 eV

Figure 2.4: (Color) The six different explored adsorption sites.

2.4.1 Structural analysis

For the CO-Rh(110) system, LEED I-V data indicate that the molecules are bound
in the short bridge site between two first layer rhodium atoms in the (110) direction
with the molecular axis tilted by 24 + 4 degrees from the surface normal, forming a
(2x1)p2mg structure [18]. In principles there are many different ways to arrange the
CO molecules so as to obtain the same LEED pattern. However, a careful analysis
of the LEED intensity allows one to assign which is the most probable adsorption
site among those compatible with the surface ordering. From this point of view
this experimental technique give essentially the same informations one is able to
find out from an ab-initio calculation where, using the energetics, it is possible to
compare different atomic configurations which correspond to different local minima
(or saddle-points) for the total energy. The absolute minimum is somewhere, but
it is not always directly accessible. We concentrate our attention on six possible

adsorption sites (see Fig. 2.4):

e Fourfold site, in the center of a rectangle formed by four first-layer atoms;
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dia/do oY § d(C-0) d(Rh-C) AE
unit % degrees degrees A A meV /mol
Expt.” +34+2° 244+ 4 13+4 1.134+0.09 1.97+0.09
2x1 +2.8 17+ 2 134+2 1.17 2.02 0.0
1x1 +2.8 <10 <10 1.17 2.02 33.5
1x2 +2.8 <5 <5 1.17 2.02 33.5
22 +2.4 1342 11+£2 1.17 2.02 13.5
2 x 2 +2.4 1342 1142 1.17 2.02 21.5
4x1 +3.7 16 £+ 2 1342 1.17 2.02 17.0
4 x1 +3.6 16 £+ 2 12+ 2 1.17 2.02 17.0

@ From Ref. [18], ® From Ref. [65]

Table 2.2: Structural data for seven different surface structures (see Fig. 2.5). di» is the distance
between the first and the second rhodium layers, do the bulk interlayer distance, a and § are
respectively the angles between the surface normal with the C-O and the Rh-C axis, d(C — O) and
d(Rh — C) are the C-O and the Rh-C distances AFE is the energy difference per molecule between
the (n x m) and the (2 x 1) structures. The theoretical error is estimated to be & 2 meV. The

experimental values refer to the (2 x 1) structure.

e Long bridge site, formed by two first-layer atoms in the (001) direction;
e On-top site, in which the CO molecule is located on top the first-layer atoms;
e Short-bridge site, formed by two first-layer atoms in the (110) direction ;

e Flirst threefold site, formed by two first-layer atoms in the (110) direction and

one second-layer atom;

e Second threefold site, formed by two second-layer atoms in the (110) direction

and one first-layer atom.

The Fourfold and the Long-bridge sites are saddle-points. The nearest local minima

are, respectively, the Short-bridge and the First threefold sites.
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In agreement with the outcome of the LEED analysis, we find that the Short-
bridge site is the most stable. The relative energies of the other three sites with
respect to the Short bridge—assuming a (1 x 1) structure in all cases—are: 0.5 eV
(First threefold), 0.2 eV (Second threefold) and 0.35 eV (On top). We find that the
angle between the surface normal and the CO molecular axis is a = 17 + 2 degrees,
and that the angle between the Rh-C bond and the surface normal is § = 13 £+ 2
degrees; the Rh-C bond length is 2.02 A and the C-O distance is 1.17 A. The
rhodium substrate presents an outward relaxation of the first layer of 2.8% with
respect to the bulk interlayer spacing. These results are summarized in Table 2.2
together with similar ones obtained for six other different surface geometries (See

Fig. 2.5).

From Table 2.2 we see that the (1x1) and (1x2) geometries are degenerate within
our error bar which we estimate to be £1 meV /molecule, and that the uncertainty
on the corresponding tilt angle is very large. This behavior can be understood by
a simple qualitative model of the surface energetics which also accounts for the
observed ordering of the structures. In order to disentangle the relative importance
of the adsorbate-substrate and adsorbate-adsorbate interactions, we have modeled
the former by a (2 x 2) super-cell in which a single CO molecule is constrained
to sit at the same short-bridge site which would be preferred at full coverage. We
observe that the dependence of the adsorption energy on « is very weak up to
a ~ 10°, and that it becomes very steep above this angle. The same behaviour
is also observed for the § angle. When the coverage increases, the dipole-dipole
interaction becomes important and accounts qualitatively for the energy ordering
of the structures displayed in Fig. 2.5. In the (2 x 1) structure, nearest-neighbor
molecules are tilted by opposite angles around the axis joining them (the (110)
direction), while next-nearest-neighbor molecules are tilted by a same angle about
the (001) axis which joins them. The dipole-dipole interaction favors both these
arrangements of angles. The (2 x 2) geometry is similar to the previous one as

regards the nearest-neighbor interactions, whereas it is unfavored regarding next-
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nearest-neighbor interactions. The next higher energies are those of the (4 x 1) and
(4x1') structures which are almost degenerate because they have the same number of
unlike tilt angles along the (110) row. The next structure is the (2 x 2') one, which is
characterized by an alternating arrangements of energetically favored and disfavored
rows and columns of CO molecules. Finally, in the (1 x 1) and (1 x 2) structures, the
nearest-neighbor molecules are tilted by a same angle and the corresponding dipolar
interaction is therefore independent of «; it is only the weaker next-nearest-neighbor
interaction which depends on «, more so for the (1 x 2) structure for which the sign
of the dipole-dipole interaction energy is the same as that of the adsorbate-substrate
interaction, while the two interactions tend to cancel for the other structure. In both
cases, this behavior results in a very weak dependence of the energy upon «, and in
an energy degeneracy of the two structures, within our error bars.

We have also calculated the adsorption energy of the CO molecules defined as

Fu = Ejg, ™ = Ejay — Foa (2:3)

slab>

where EXI-CO s the total energy of the CO covered surface, ER is the total
energy of the clean Rh(110) surface, and ER%"C is the total energy of the CO,
all the calculations being done using the same slab geometry and the same set of
k-points. The calculated adsorption energy is of 2.78 eV /molecule, which has to be
compared to the experimental value 1.1 eV /molecule [13]. This large discrepancy is a
common feature of the LDA, which is well known to overestimate absolute binding
energies, whereas equilibrium geometries and energy differences among them are

usually predicted with a much higher accuracy (of the order of a few percents).

2.4.2 Finite-temperature properties

To study the finite temperature properties of a system one should know its partition
function Q(f) = ¥, e PFi, where 8 = 1/KpT, Kp is the Boltzmann constant, T is
the temperature, F; is the energy of the i-th configuration and the sum extents over

all the possible configurations. This is usually a prohibitively costly task, since the
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number of configurations, even for simple systems, is huge. However, we see from the
form of the partition function that—at least in the low temperature limit—only the
low-lying energy configurations give an appreciable contribution, being exponentially
less and less important as their energy is higher and higher. Moreover, the partition
function does not depend on the system from which it comes from. Taking advantage
from this fact one can “map” the original system onto a much simpler one (a model),
provided this new system has a similar partition function to the real one, at least
for the temperature range one is interested in. Then, one is allowed to study the
finite temperature properties of the model and to extend them to the real system.
From Table 2.2 we see that the energy necessary to tilt the angle of a molecule is of
the order of 10+-30 meV, whereas the energy difference between different adsorption
sites is typically ten times as large. This fact indicates that—for temperatures up to
a few hundreds °K—the relevant configurations which determine thermal equilibrium
are all characterized by the molecules staying at their favorite adsorption sites (short
bridge), while differing by their tilt-angle distributions only. Because of this we
characterize each configuration by a set of tilt angles, {¥;, p;}, where ¥J;, is the
azimuthal angle of the i-th molecule with respect to the (110) direction, and ¢; is its
polar angle with respect to (110) (see Fig. 2.6). We find that the energy differences
among configurations can be accurately modeled by dipolar like molecule-molecule
interactions up to third-nearest neighbors and by an interaction of each molecule

with the substrate of the form:
BV, ¢) = cos’p (a2192 + a4194) + sin%p (62192 + 6404) . (2.4)
The Hamiltonian of this dipole model is:

1
H = 52( Y Au(diy - digsy — 3(diy - migs) (digs - ivsy) +

ij  8,6'=+1
+ Ay(dij - dijs = 3(di - i) (dijvs - 1i1s)) +
+ Aa(dij - divyjrs — 3(diy - ity jus) (dits jrs - Miverjrs) + Bij ), (2.5)
where the sum extents over all the surface sites, d, ; is a normalized vector (versor)

Rij—Riys j1s

which defines the direction of the molecule in the site R, ;, n;yy j15 = R Ry s
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100

Figure 2.6: (Color) The CO molecule.

is the versor which connects the two surface lattice positions R, ;, and R4 ;45 and
B, j = B(9;, ;). Interactions up to third nearest neighbors are taken into account.
The Hamiltonian is fully specified once we know the value of the seven parameters
{ag, as, by, by, Ay, Ay, As}. To determine these parameters the energies calculated for
the structures in Fig. 2.5 are not enough. This can be easily realized noting that
these structures do not contain any information about configurations with ¢ # +7.
Thus, eight additional structures in the 1x 1 configuration have been calculated, four
of them for ¢ = 0 and different values of ¥, which correspond to the molecule tilted
along the (110) direction, the other four for ¢ = %, corresponding to configurations

where the molecules are tilted along the (100) direction.

In order to calculate the energy landscape as a function of the tilt angle 9 a
constrained minimization is needed. One has to relax all the degrees of freedom but
the tilt angle 9, which has a fixed value. In Appendix B it is explained how we have
proceeded. Essentially, an extra term is added to the forces in order to keep zero

the “force component” which would change .
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Figure 2.7: Energy difference (eV) from the 2 x 1 ground-state structure as a function of the tilt
angle ¥ of the molecule in the (100) direction (¢ = 7/2) and in the (110) direction (¢ = 0). Values

calculated for the 1 x 1 geometry.

In Fig. 2.7 we report the calculated energies as a function of ¥ for two possible
directions, ¢ = 0 and ¢ = 7/2. The dependence on 9 is much steeper in the (110)
direction (¢ = 0), denoting the “preference” of the molecules to be rather tilted
along the (100) direction (¢ = 7/2). Fitting the dipole energy 2.5 with these eight

values plus those of Table 2.2 we found the following best values for the parameters:
Ay = 167eV; A, =-03eV; Ay =—-0.64eV;

and

a, = —1.75 eV/radQ; a, = 3.7 eV/rad4;
by = 35.8eV/rad’; b= 16.2eV/rad.

Using this values we have a mean square error between fitted and calculated energies
of 1.5 meV /molecule, with a maximum error of 3 meV. The error in the equilibrium
value of the ¥ angle is of the order of a few degrees. Now, noting that the b’s are
one order of magnitude larger then the a’s, we make a further approximation and

assume that all the molecules are frozen in the positions corresponding to ¢ = +7.
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Mapping onto a 2D Ising model

These two values of the ¢ angle can be conveniently labelled by an Ising variable,
o = sign(y). Much in the same spirit of the cluster expansion of the energy landscape
of an alloy [66], the energy of each tilt-angle configuration can be expressed in terms
of polynomials in the ¢’s. ? Because of symmetry, odd-power polynomials are absent
from the cluster expansion. Restricting ourselves to second-order polynomials (spin-
pair interactions) and neglecting all the couplings beyond next-nearest-neighbors,

the cluster expansion of the surface energy reads:

1
E[{O’}] = §Zai:j (Jx Z 0i+46.,5 + Jy Z 04,5+6 + JQ Z Ui—l—(i,j—i—é’) . (26)

i, o==1 o==+1 5,0'=+1

It is straightforward to see that:

E2><1 = Jy — Jm - 2J2, E1><1 == Jm+Jy+2J2,
Eivo = S — Jy - 2<]2; Eovy = 2J5— Jy - J:c; (27)
Eypa = By = Jy; Eovy = 0,

where the subscripts refer to the structures of Fig. 2.5.

Esy1 is the ground-state energy which we take as the reference energy. The (4x1)
and (4 x 1) structures are degenerate within the present model, and their energy
difference provides therefore an estimate of the strength of longer-range or many-
spin interactions which have been neglected. Out Eqs. 2.7, one can extract four
independent energy differences, which are linear functions of the three parameters
Jy, Jy, and Jy. By disregarding one of these equations in turn, one obtains 4
different linear systems for the .J’s which provide estimates for these parameters,
which coincide within &~ 1 meV. The average of the four set of parameters so

obtained is:

J, = 136meV, J, = —34meV, J, = 1.7meV. (2.8)

2We associate to each given distribution of Ising variables, {o;}, an energy defined as the

minimum with respect to the ©¥’s of the energy calculated at fixed ¢’s: E[{o}] = mingyy E[{J,07}].
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Figure 2.8: Fourier transform of the correlation function as a function of the temperature (°K)

for the 2D spin model and specific heat for the spin and the dipole models (see text).

Note the large difference between the absolute values of J, and .J,, which is due
to a stronger coupling in the ‘ziz-zag’ (110) direction, where the distance between

neighboring molecules is smaller by a factor v/2 than in the orthogonal direction.

Monte Carlo simulations

The thermal properties of our system are obtained by standard Metropolis Monte
Carlo simulations of the above Ising model [67]. To this end, we have used a 32 x 32
square lattices with periodic boundary conditions. The simulations have been done
starting at a high temperature (7' > 650°K) and cooling down the system with
small temperature steps (&~ 2°K). The order parameter of the transition between
the (2 x 1) ordered phase and the disordered phase where the tilt angles are dis-
tributed at random, is the Fourier coefficient of the spin-spin correlation function,
M(q) = + X, €9%(0,00), at wave-vector q = (,0), M = M(m,0). The order-

disorder transition temperature, 7%, is estimated looking at the maximum of the

specific heat C. We have not attempted any finite-size scaling, but we have verified



40 CHAPTER 2. RESULTS

that the location of the transition temperature is rather insensitive to the choice
of the size of the system, by making a few simulations for a 64 x 64 system. In
Fig. 2.8 we show the behavior of the specific heat, C, and the order parameter, M,
as functions of temperature. Also shown in Fig. 2.8, it is a comparison between the
specific heats as calculated from the simulations of the Ising model and from an
independent simulation performed for the dipole model described in section 2.4.2.
The Ising critical temperature is T!* = 280°K, while for the dipole model it is
T4 = 340°K. The statistical error on these temperatures is of a few degrees only.
Based on this figures and on a rough estimate of the dependence of the transition
temperatures upon the value of the parameters of the two models, we conclude that
an order-disorder (2 x 1) — (1 x 1) transition occurs at a critical temperature of
T, =~ 300°K with an error bar smaller than 100°K.

After cooling down the system, when the temperature reached ~ 50°K, well
below the formation of the ordered structure, we heated up the system using the
same temperature steps. For every size of the simulation lattice we observed no
hysteresis. This fact is an indication of the second-order character of the transition.
The experimental characterization of the order of the transition is not trivial, since
it is necessary to heat the sample well above the critical temperature. However,
the CO desorption temperature is near the order-disorder transition temperature,
therefore it is not easy to heat up the system above T, without losing some molecules.
In this case, after freezing again the sample below the critical temperature, there is

no guarantee that the system is the same as it was before the heating.

2.5 The reconstruction of Rh(001) upon O ad-

sorption

As surfaces can modify the electronic properties of the atoms and/or the molecules
which adsorb on them, in the same way the adsorbates can modify the structure and

the chemical properties of the substrate they adsorb on. This is what happens, for
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Figure 2.9: (Color) The c(2 x 2) structure (a) and its representation as a chess-board (b).

example, on the (001) surface of rhodium upon oxygen adsorption. In this case in
fact the surface undergoes a reconstruction which is induced by a saturated oxygen
over-layer [28]. A similar reconstruction is observed for the systems C/Ni(001) and
N/Ni(001) [29, 30, 31, 32].

The adsorption of oxygen on Rh(001) is dissociative and the atoms fill the four-

fold substrate sites in a ¢(2 x 2) geometry, the resulting saturation coverage is © = %
ML. This geometry may be seen as a chess-board whose ‘black’ squares are occu-
pied by oxygen atoms, while the ‘white’ ones are empty (see Fig. 2.9). Within this
picture, the reconstruction observed in Ref. [28] can be described as a rotation of

the ‘black’ or the ‘white’ squares, resulting in a (2 x 2)p4g symmetry.

There are two possible reconstructions of the substrate which are compatible
with the experimental STM and LEED data [28]. the first one is a clockwise and
counterclockwise rotation of the ‘black’ (filled) squares (Fig. 2.10a) and the second
is a rotation of the ‘white’ (empty) squares (Fig. 2.10b). However, in analogy with
the C/Ni(001) and the N/Ni(001) systems, where additional LEED I-V [32] and

SEXAFS [33] data allow a more precise characterization of the reconstruction, in
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Figure 2.10: (Color) The two possible reconstructions compatible with LEED and STM data
of Ref. [28].

Ref. [28], a ‘black’ reconstruction is proposed also for the O/Rh(001) system.

As a preliminary study of oxygen adsorption, we have performed a couple of
simple ab-initio molecular dynamics simulations of a Oy molecule impinging onto
the surface. The integration of the equation of motion has been done using the
Verlet algorithm [68] with a time step of 50 a.u., corresponding to ~ 1.2 femto-
seconds (see Appendix C). We have tried two possible initial conditions for the
molecule, in both of which the axis of the molecule is parallel to the surface. In the
first case the projection of the center of the molecule on the surface falls on top of a
surface atom, while in the other it falls on a bridge site (see Fig. 2.11). The initial
velocity of the molecule is orthogonal to the surface and its modulus corresponds to
a temperature of 300°K, while the surface is initially at zero temperature. The initial
distance of the molecule from the surface is &~ 6 atomic units and it is essentially
in the vacuum. When the molecule arrives at the surface it breaks the molecular
bond and then it dissociates. In Fig. 2.12 we display the Born-Oppenheimer (BO)
potential energy, the total energy (i.e. the BO potential energy plus the ionic kinetic

energy) and the O—O distance as functions of time. The total energy is essentially
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Figure 2.11: (Color) A few snapshots of two simple molecular dynamics simulations, corre-
sponding to two different starting trajectories for the impinging molecule. In the last one it is

evident the dissociation of the molecule.
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Figure 2.12: a) and b) BO ionic potential (full lines) and total energy (dashed lines); ¢) and d)

0—-0 distance, as function of time, for the two trajectories of Fig. 2.11.
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a constant, and this is a test on the goodness of our simulations. A detailed study of
the modification of the dissociation barrier induced by the surface and of the kinetics
of the dissociation is beyond the scope of this work. For the time being, we content
ourselves with the qualitative agreement between this simulation and experimental
findings, and we pass to a detailed study of the equilibrium adsorption sites and of

the adsorption-induced reconstruction of the surface.

2.5.1 Structural properties

In Fig. 2.13 we display the three possible surface sites investigated in this work.
In Table 2.3 we summarize the results of our calculations for © = % We see that
the on-top and the bridge sites have an energy which is respectively 1.5 and 0.3
eV /atom higher than that of the hollow site, which is therefore the predicted stable
adsorption site. The work function is larger at coverage © = % than for the clean
surface, indicating that electrons tend to transfer from the substrate to the oxygen

layer, thus increasing the surface dipole.

(a) clean (b) hollow (c) on-top (d) bridge

Figure 2.13: (Color) Sketch of the various O adsorption sites of the Rh(001) surfaces considered
in this work. Small dark circles: O atoms. Large lighter circles: first-layer Rh atoms. Large darker
circles: second-layer Rh atoms. The arrows indicate how the substrate atoms move after the

distortion, ¢ is the amount of the shift.

The hollow site on the undistorted Rh(001) surface is a saddle point. If we reduce

the symmetry of the system and we artificially distort the substrate as indicated in
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6 /do do1 di2/do ¢ E— Enoliow
unit % A % (eV) (eV/atom)
Top 1.81 +3 7.5 +1.5
Bridge 1.33 +0.5 6.8 +0.3
Hollow 1.02 +0.5 6.2 0.0
Symmetric clock ~ 4 1.02 +0.5 6.2 —0.003
Asymmetric clock ~ 11 0.98+1.06 +0.5=+0.1 6.1 —0.030
Expt. ~ 10° 0.95+0.04* —0.5+1.0°

@ From Ref. [28], ° From Ref. [69].

Table 2.3: Structural data for the three oxygenated structures investigated (see Fig. 2.13). The
coverage is © = % dy is the bulk lattice spacing, dp; is the distance between the oxygen atoms and
the first rhodium layer, dy» the distance between the first and the second layer. For the distorted
structure the two given numbers refer to the two inequivalent first layer rhodium atoms (see Fig.
2.14). ¢ is the amplitude of the movement of the first-layer rhodium atoms upon distortion (see

Fig. 2.13(b)), ¢ is the work function.

Fig. 2.10a, we find that this is an unstable configuration and the forces acting
on the atoms restore the more symmetric ¢(2 x 2) structure. If instead we distort
the substrate as indicated in Fig. 2.10b, we find that the slab relaxes so as to
accommodate the distortion which brings two rhodium atoms at opposite corners
of a ‘black’ square closer to the center occupied by an oxygen atom. We call this
structure a ‘symmetric clock’ reconstruction. However, we find that this tendency
can be further enhanced by lowering the symmetry of the surface and allowing the O
atoms to get off the center of the rhombii formed by the four neighboring Rh atoms:
this results in an ‘asymmetric clock’” reconstruction. This structure is displayed in
Fig. 2.14. The substrate reconstruction is the same as the previous one, but in
this case the oxygens do not stay in the middle of the bridge but move away in the
orthogonal direction, becoming essentially threefold coordinated. The atomic rows
of the first Rh layer are no longer equivalent to each other: every second row is made

of atoms which have 2 oxygen neighbors, while the others have only 1 neighbor. As
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Figure 2.14: (Color) The oxygenated Rh(001) surface after a simulated annealing run. The unit
cell is indicated with the thick line. The thin line indicates the rhombus and its shorter diagonal,
the bridge. The oxygen atoms are alternatively shifted orthogonally with respect to the bridge.
The brighter atoms of the first surface layer are ~ 0.08 A higher then the others.

a consequence the first rthodium layer results to be buckled, the 2-fold coordinated
rows leaning ~ 0.08 A outwards. The stability of this minimum has been checked
by a simulated annealing procedure.

From Fig. 2.14 it is evident that the oxygen sub-lattice is in a ‘zig-zag’ arrange-
ment which is not observed in the experiments. However, there are two equivalent
threefold sites per cell for each oxygen atom, one on each side of the bridge. Ne-
glecting the interactions between different adsorption sites, each of them is there-
fore two-fold degenerate. This fact implies that at high temperature the oxygen
sub-lattice would be disordered. At low temperature it could be ordered, but with
our small cell only one (ordered) configuration is possible. From STM images no
ordered oxygen ad-layer is detected. This fact has two consequences: the first one is
that the temperature at which the STM measurements have been performed (room
temperature) is higher than the critical one; the second consequence is that the

frequency of oxygen barrier crossing is much larger than the scanning frequency of
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Figure 2.15: The oxygen adsorption energy as a function of coverage.

the STM. This is compatible with our estimates of the barrier height (~ 30 meV, as
obtained by comparing the energies of the ‘symmetric clock’ and the ‘asymmetric
clock’ structures) which is of the order of the room temperature.

In Fig. 2.15 we display the adsorption energy, E,4 as a function of coverage, O,

defined as:

Faa(©) = 0(6) ~ o(0) — O Fo, (2.9)

where o(©) is the surface energy of the oxygen-covered system, and FEq, is the
energy of the isolated O5 molecule, estimated using local spin density approximation
(LSDA) for the exchange and correlation energy. Coverage © = 1 is realized filling
all the square sites, © = 0.75, and © = 0.25 filling respectively 3 and 1 of the 4
possible square sites in a 2 x 2 substrate super-cell. The minimum energy corresponds
to a coverage in the range % < © < 1. In this range, however, the curve is very flat
and the variation of the adsorption energy (< 0.1 eV) is smaller than the expected
accuracy of the terms which enter its definition. All we can safely predict is that the
stable coverage state lies somewhere in between © = % and © = 1. The value of the

most stable coverage is determined by a trade-off between the adsorption energy of
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an isolated oxygen molecule, which tends to favor a high coverage, and the oxygen-
oxygen repulsion which becomes more effective when the average O — O distance
becomes smaller than some typical screening length, and which tends instead to

favor a low coverage.

In the following we discuss the mechanism of the ‘clock’ reconstruction of the
O/Rh(001) system in terms of simple chemical concepts based onto the atomic or-
bitals involved in the oxygen-surface bond. Our discussion is limited to the ‘symmet-
ric clock’ reconstruction, but we believe that our conclusions are of general validity
and also apply to the more stable ‘asymmetric clock’ reconstruction. In Fig. 2.16

3 of the clean and of

we display the surface-projected densities of states (SDOS)
the oxygen-covered Rh(001) surface, along with their decompositions into various
atomic-like contributions. The SDOS of the clean surface is almost entirely entirely
determined by its d-like component (see Fig. 2.16a) and it is very similar to its bulk
counterpart, which is broader because of the larger coordination number in the bulk
with respect to the surface. In the bulk FCC structure the three d,,, d,, and d,, are
degenerate, and so are ds,2 ,2 and d,2_,2. This degeneracy is partially lifted at the
surface. For the (001) surface, the d,, and d,, orbitals are still equivalent by sym-
metry and, hence, degenerate. The position of the oxygen atomic p-level is about
3.1 eV below the Fermi energy of the oxygen-covered surface. Inspection of Fig.
2.16d shows that the O,, = O,, level gives rise to a bonding and an anti-bonding
main peaks, respectively below (—5.8 eV) and above (+1 eV) the Fermi level. Upon
oxygen adsorption, first-layer Rh atoms become locally inequivalent according to
whether the neighboring oxygen atoms are aligned along the = or y directions (see
Fig. 2.16e). PDOS plotted in Fig. 2.16d refers to those Rh atoms which have
O neighbors aligned along the y direction (the PDOS of the other Rh atoms can
be obtained by simply exchanging x with y). It is also easy to recognize that the

same bonding and anti-bonding features occur in the d,, band whose atomic orbitals

3We define the surface-projected densities of states as the sum over all the surface PDOS’s

defined in Eq. 2.2.
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Figure 2.16: (Color) a) SDOS of the clean Rh(001) surface; b) SDOS of the oxygen covered
Rh(001) surface; ¢) Projection of the SDOS onto the d,. = d,. first-layer rhodium orbitals for
the clean surface; d) Projection of the SDOS onto the p, = p, oxygen orbitals and of d,, and d,,
first-layer rhodium orbitals for oxygenated, unreconstructed, surface; e) Sketch of the (2 x 2)p4g,
clock, reconstruction. The amplitude of the deformation is exaggerated for clarity; f) Differences

between the O,— and Rhy—projected density of states in the reconstructed and unreconstructed

structures.
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have lobes oriented towards the adsorbed oxygen, while the d,, band remains similar
to that of the clean surface (see Fig. 2.16¢) because in that direction the surface
sites are empty. The O, orbitals make bonds with the d,, orbitals of the Rh atoms
along the z direction, while the O, orbitals hybridize with the d,. orbitals of the Rh
atoms along the y direction.The (2 x 2)p4g reconstruction shortens and strengthens
the O—Rh bonds along one direction, while lengthening them in the perpendicular
direction, as illustrated in Fig. 2.16e. The amplitude of the distortion (§/dy see
Fig. 2.13) depends rather sensitively on the lattice parameter: using our calculated
lattice parameter, we estimate the distortion to be ~ 4%; if we use a lattice param-
eter 1% larger, the amplitude of the distortion also is increased, reaching a value
~ 6%. The opposite occurs if the lattice parameter is reduced. The tendency of the
system to strengthen two of the four rhodium bonds at the expenses of the other two
results in a net lowering of the surface energy of ~ 3 meV/atom, thus stabilizing the
(2 x 2)pdg structure. In the ‘asymmetric clock’ more stable structure the amount
of the distortion is ~ 11% (using our calculated lattice parameter) and the surface
energy gain is ~ 30 meV /atom. This shows that the reconstruction occurs because
the optimal O—Rh bond-length is shorter than that realized in the ideal geometry.
The ‘chemical’ contribution to the energy lowering which determines the distortion
is illustrated in Fig. 2.16f which shows the differences between the Rh, and O,
PDOS after and before the reconstruction. In both cases, we notice that electronic

states are pushed towards lower energies.

2.5.2 Related systems: C/Ni(001), N/Ni(001), O/Ni(001)

As it was mentioned in the introduction, a reconstruction similar to the one described
in the previous section is observed for nitrogen and carbon adsorbed on the (001)
surface of nickel. In that case, however, the rotation angle of the squares is much
larger and the ‘clock’ reconstruction is more evident [29, 30, 31, 32, 33]. Moreover,
the additional LEED I-V data for C/Ni(001) [32] and SEXAFS data for N/Ni(001)

[33] allow a more precise identification of the reconstruction which is reported to
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Configuration 3d A(3d) 4s A(4s) 4p A(4p)
[Ar]3d®4524p° —0.67163 0.0 —0.43114 0.0 —0.09863 0.0
[Ar]3d®4s'4p! -0.81217 3.7  —0.52244  —0.5 —0.16628 0.0
[Ar]3d"4s%4p! —1.20891 83 —0.60788  —2.7  —0.20263 4.9
[Ar]3d®4s'4p° —1.34216 3.1 —0.99314 1.2 —0.57324 1.6
[Ar]3d"45%4p° —1.78628 26.0 —1.12276 4.1 —0.65965 124
[Ar]3d®45°4p° —2.10990 2.2  —1.60533 4.6 —1.10670 7.3

Table 2.4: Transferability of the nickel pseudopotential. All electron 3d, 4s, and 4p eigenvalues
are given in Rydbergs, the differences A in mRydbergs.

be of type ‘black’ (i.e. it is the squares occupied by one adsorbed atom which
rotate). Oxygen adsorption does not induce any ‘clock’ reconstruction on Ni(001).
In this case the only effect that has been observed is a buckling reconstruction in the
second nickel layer, which are not all coplanar but shifted ‘up’ or ‘down’ according
to whether the fourfold site lying above is empty or filled [70, 71].

In the following we report on some preliminary results we have obtained for the

C/Ni(001), N/Ni(001), and O/Ni(001) systems.

Nickel

The nickel pseudopotential has been constructed treating the d channel in the ultra-
soft scheme, while the s and the p channels are norm-conserving. The core radii
are respectively 1.76, 1.22 and 1.77 a.u. for the 3d, 4s and 4p states. The reference
configuration is the 3d®4s524p° and the local part of the PP has been chosen to be
the [ = 1 component, which avoids the appearance of ghost states. The value of the
core radii has been chosen in order to minimize the mean square difference among
the AE and the PP eigenvalues for six different configurations (see Table 2.4).
Nickel bulk has the FCC crystal structure. To calculate the equilibrium lattice
constant ay and the bulk modulus By, we have fitted to the Murnaghan’s equation

of state (Eq. 2.1) the calculated energies as a function of the unit cell volume.
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We have used PW’s up to a maximum kinetic energy of 30 Ry and we have found
converged structural properties using 10 MP k-points in the IBZ and a smearing
function of order 1 with a width of 0 = 0.03 Ry. The calculated lattice constant
is ap = 3.44 A and the bulk modulus is By = 2.4 Mbar, to be compared with
the experimental values, ap = 3.52 A and By = 1.73 Mbar [54]. Nickel bulk is
magnetic with a magnetic moment of 0.59 up/atom [72]. An explicit account of the
spin polarization at the LSDA level did not result in any meaningful changes of the
structural properties calculated within the LDA. The magnetism is expected to be
more important at the surface, because the surface density of states is narrower then
the bulk one. However, at least for the carbon and the nitrogen covered surfaces, we
have found that the Ni-d-SDOS is shifted towards lower energies with respect to the
bulk d-PDOS (see Fig. 2.17) thus resulting in a lower DOS at the Fermi level. We
argue that magnetic effects should not be very important and therefore they have

been neglected altogether in the present investigation.

3.5
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Figure 2.17: d-projected density of states of nickel for the bulk, the clean surface, and the

carbon-covered surface.



o4 CHAPTER 2. RESULTS

Results

In order to find the stable surface structure of the C/Ni(001), N/Ni(001) and
O/Ni(001) systems we have performed simulated annealing runs of the surfaces
at half monolayer of coverage. For the carbon and nitrogen covered surface we have
found a surface reconstruction where it is the filled squares which rotate (‘black’ re-
construction see Fig. 2.10a), at variance to what we have found for the oxygenated
Rh(001) surface, and in agreement with the experimental findings [32, 33]. In the
case of carbon we have found the reconstruction even with a direct relaxation of
the slab, while for the nitrogen covered surface the system remains trapped in a
meta-stable unreconstructed structure and an annealing is necessary to overcome
the energy barrier and reach the most stable reconstructed one. At variance with
the rhodium case where the oxygen distance from the surface is not appreciably
different in the distorted and undistorted case, on the nickel surface we have found
that the carbon and the nitrogen atoms are almost coplanar with the substrate ones,

in agreement with Refs. [30, 31].

For the O/Ni(001) system we have not found any reconstruction at all, and also
this fact is in agreement with the experimental data [69]. The behaviour of the
oxygen on the two surfaces is consistent with our interpretation for the O/Rh(001)
reconstruction. The nickel lattice parameter in fact is quite smaller then the rhodium

one, and therefore the nickel site is already “small enough” for the oxygen ad-atoms.

The behaviour of the two surfaces (Ni(001) and Rh(001)) is apparently very sim-
ilar (they have the same STM images and LEED patterns) but they are different as
regards the chemical bonds they form with carbon, nitrogen, and oxygen adsorbates,
which induce on Ni(001) and Rh(001) respectively two different reconstructions. The
mechanism proposed for the rhodium reconstruction cannot be transferred to the

case of nickel, where the ad-atom sites remain squares after the reconstruction.

In Table 2.5 we report a summary of the main structural properties of these four

systems investigated.
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Expt. Theory Expt. Theory Expt. Theory Theory
Reconstruction d/do do1 AE
unit % A eV /atom
C:Ni a a ~ 40" =27 0.1+0.1° 0.17 0.20
N:Ni a a ~30° =24 0.11 4+ 0.06° 0.10 0.08
O:Ni none none 0.77 4+ 0.044 0.73
O:Rh 7 b ~ 10 ~11 0.95+0.04° 0.98 +1.06 0.03

b From Ref. [32], ® From Ref. [30], ¢ From Ref. [31], ¢ From Ref. [69], ¢ From Ref. [70].

Table 2.5: Summary of the structural data for the four systems investigated. For the reconstruc-
tion type see Fig. 2.10. dy is the bulk lattice spacing, dy; is the distance between the adsorbate
atoms and the first metal layer, in the case of O:Rh the two numbers are the distances of the
oxygen from the ‘bright’ and the ‘dark’ first layer rhodium rows (see Fig. 2.14). d» is the distance
between the first and the second layer, § is the amplitude of the movement of the first-layer metal
atoms upon distortion and AE is the energy difference per atom between the symmetric ¢(2 x 2)

structures and the reconstructed ones.

2.5.3 Scanning tunneling microscope images

The experimental data which show the reconstruction of the Rh(001) surface upon
oxygen adsorption are based on LEED and STM observations.

In the lower panels of Fig. 2.19 we display the calculated STM images of the
oxygenated Rh(001) surface for positive and negative bias of the sample respectively,
in the upper panels the corresponding experimental ones [28].

Our images are calculated in the spirit of the Tersoff and Hamann approximation
[73]. Essentially, the intensity I of the tunneling current is proportional to the local

density of states at the Fermi energy of the sample,
oY [ (r) 6 (Bn — Er), (2.10)
nk

where ¢,k (r) is the sample wave-function, E, y its energy, E is the Fermi energy of

the sample, and r is the position of the tip. When the sample is biased, the position
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Figure 2.18: Sketch of the tunneling current for the case of negative (a) and positive (b) biased

sample.

of its Fermi level with respect to the vacuum level is shifted by the amount of the
biasing potential (see Fig. 2.18). If the bias is negative and the tip is grounded,
then the sample Fermi energy is shifted upward, the electrons flow from the filled
state of the sample into the tip and then the filled stated are imaged. If instead the
bias is positive the opposite happens, the electrons flow from the tip into the empty

states of the sample and then are these states to be imaged.

The Tersoff and Hamann approximation has been implemented as in Ref. [74].
A direct use of the self-consistent KS eigenfunctions does not allow the calculation
of images at a distance from the surface larger then one half of the thickness of the
vacuum region in the super-cell. Moreover, far from the surface the wave-functions
are not well described, since the finiteness of the cutoff energy is not able to describe
in an accurate way their exponential tails. However, the exact form of the tails of

the wave-functions in the vacuum region is known:

. sl
Unie(r) = Q2 ZaG”e*(”zﬂ"Gn‘2)“61”%"‘, (2.11)
Gy
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(c¢) Theory (d) Theory

Figure 2.19: (a) and (b) Experimental STM images of the (2 x 2)p4g phase of O on Rh(001)
(19 x 19 A2, sample bias 0.1 mV, tunneling current 3 nA). In (a) the oxygen atoms are imaged
as protrusions while in (b) as depressions [28]. (c) and (d) Calculated STM images of the same
surface at &~ 2 A from the surface. In (c) the sample bias is +13 mV and the oxygen atoms are
imaged as protrusions, in (d) the sample bias is —13 mV and the oxygen atoms are hidden, the

rhodium substrate is imaged.
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where k = h71(2m¢)%, ¢ is the work function, g, = k| + G|, G is a surface
reciprocal lattice vector and kj is the surface Bloch wave vector of the state, z
is the distance from the surface along its normal and x is the vector in the surface
plane. Far from the surface one can thus replace the KS eigenfunction with the form
2.11, once the coefficients ag are known. These can be determined by matching the

expression 2.11 with the KS wave-functions

wnk(r) = Qi% Z bG”,gzeigzzeiKG.xa G = (GH:gz); (212)
Gy.9:

at a point 2y where both the expressions 2.11 and 2.12 give a good description of the
surface wave-functions. To calculate the positive biased images, states in the window
(Ep, Ep+V) are taken into account, while for negative bias the window of states is

(Er+V, EF), the work function is correspondingly modified, ¢ — ¢—V —(E, x—EFr),

hatetate
.

in both cases.

(a) Expt. (b) Theory

Figure 2.20: (a) Experimental STM images of the (2 x 2)p4g phase of C on Ni(001) (28 x 28
A2, sample bias 10 mV, tunneling current 0.61 nA)[30]. (b) Calculated STM images of the same
surface at ~ 4 A from the surface (19 x 19 A2, sample bias —.13 V the carbon atoms are hidden,

the nickel substrate is imaged).
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In Fig. 2.19 we display the STM images as obtained from experiments [2§]
(upper panels) and from our calculations using Eq. 2.10 (lower panels). In the case
of positive bias of the sample (tunneling from the tip into the sample) only the
oxygen is imaged, and this is consistent with the form of the PDOS for the oxygen
p orbitals, which have an anti-bonding feature just above the Fermi energy (see Fig.
2.16). In the case of negative bias, instead, the oxygen is hidden and the substrate
rhodium atoms are imaged, again, this is consistent with the form of the PDOS for
oxygen and rhodium just below the Fermi energy.

Our calculated STM images are similar to the experimental ones, but at variance
with Ref. [28] we identify the oxygen position is in the center of the rhombii.

In Fig. 2.20 we display the experimental (left panel) and the calculated (right
panel) STM images for the Ni(001)-(2 x2)p4g-C surface: the images are very similar.
However, as in the case of rhodium, the adsorbate is hidden, and the carbon atoms
are in the center of the squares. For this reason, STM images are not sufficient to

identify which of the possible two reconstructions is actually present.
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Conclusions

This thesis is a contribution to the study of the elementary steps of the catalytic
reaction 2CO + 2NO — 2C0O4 + Ny, which occurs in the proximity of some transi-
tion metal surfaces, such as rhodium or platinum. We have concentrated on two
particular problems: the first one is the structure and phase stability of CO ad-
sorbates on the Rh(110) surface. We have confirmed the experimental claims of
an order-disorder transition of the CO ad-layer, occurring at a temperature just
below the desorption temperature [15]. The transition is not easily characterized
in the experiments because of the proximity between the critical and the desorp-
tion temperatures. Our study has revealed the microscopic mechanisms responsible
for the order-disorder transition, and indicated that it is second-order. The other
problem we have studied is the adsorption of oxygen on the Rh(001) surface on
which ad-atoms occupy every second cell of the surface lattice. In agreement with
experiments, we have found that the substrate undergoes a reconstruction in which
every second square cell is distorted to a thombus. We identify the squares which
distort as those occupied by an ad-atom, at variance with the current interpretation
of existing experimental STM data [28]. Our conclusions, even if in disagreement
with this interpretation, are substantiated by a simple chemical model of O-Rh re-
bonding at the surface. Furthermore, similar calculations performed for C/Ni(001)
and N/Ni(001)—where an analogous reconstruction is also observed and much bet-
ter characterized [32, 33]—are in very good agreement with experimental findings,
thus giving us further confidence in their predictive power. In spite of the analo-

gies existing between the reconstruction of O/Rh(001) and those of C/Ni(001) and
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N/Ni(001), we find that their nature is unsuspectedly rather different. The carbon
atoms penetrate into the nickel substrate even at zero temperature, and they ar-
range themselves so as to be almost coplanar with the first nickel layer; the nitrogen
atoms behave similarly but a barrier is found to exist, which gives rise to a meta-
stable equilibrium structure in which the ad-atoms do not penetrate and the surface
does not reconstruct. These facts indicate that the mechanism of the reconstruction
is related with the atomic penetration into the first surface layer: the sites which
accommodate the ad-atoms must enlarge and this results necessarily in a rhomboid
distortion of the others. In the case of the oxygen the mechanism of the reconstruc-
tion is completely different, being due to the O-Rh re-bonding, thus resulting in a
different reconstruction pattern. At the time of the writing of this thesis, further
calculations aiming at clarifying the different behaviour of C, N and O on Rh(001)
and Ni(001) are being done. Our results for O/Rh(001) point to a second problem
that is still opened. The equilibrium structure we find for this system has a lower
symmetry than the ¢(2 x 2) observed experimentally, compatibly with the existence
of an order-disorder transition below the temperature at which the STM images
have been taken (room temperature). Additional work is required to support this
suggestion.

The comprehension of the catalytic reaction described above is far to be complete.
The investigation of many related problems is still going on. A complete simulation
of the whole reaction from first principles is a difficult task. Many atoms should
be included in the system and, even more important, the characteristic times are
too large to be explored. However, using the new tools we have developed in this
thesis, such as the inclusion of molecular dynamics in our DFT-LDA code and,
particularly, constrained structure optimization, we are ready to undertake more
ambitious studies of some simple single steps of the reaction. For example the
kinetics of the NO dissociation is not yet clear, and a study of the dissociation

barriers is a problem which can be studied in the immediate future.



Appendix A

Diagonalization

A.1 Conjugate gradient diagonalization

The problem is: minimize !
1
fi = S(WilH ;)

under the constraints:

(WilSb) = 1, (lSlyw) = 0, k<.

This is equivalent to solve the Euler-Lagrange problem of minimizing

-1

i = =
2 k<j

If we consider the gradient of the expression above we have:

lg;) = H;) — €S[p) — D AwS|ew)

k<j

(il Hlhj) — € ({y] Sy — 1) = D Njrw|Slabn)-

(A.4)

but we are not able to find a simple expression for €; and Aj; in order to have

(g;1S|¢r) = 0 because (1;|S?|tx) # 0. So we use a slightly different approach: we

firstly consider only the first constraint. The problem is equivalent to the minimiza-

tion of

!The original formulation of these notes, for the problem without the overlap matrix S, is due

to Paolo Giannozzi.
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L1

fj:§

First step. For any given index j we assume a starting vector |’gb;-)> such that

Wil H) — € ({5l Slbs) = 1) (A.5)

WISl = 1. (WISl = 0, k<. (A.6)

The gradient |g7) is

l95) = Hlvg) — € Slug) (A7)
e (215 Ho)
= J A8
R ()
ensures that (g7[S|¢?) = 0. We also define:
& =l H) (4.9)

which is an approximation for the true eigenvalue €; of H. The second set of con-

straints is accounted requiring that

(9]S|vw) = 0. (A.10)

This is obtained by an explicit Gram-Shmidt orthogonalization, with the overlap

matrix S, of |g7) to [¢y), k < j

l97) = HI¥g) — e SWi) — > Alvn) (A-11)

k<j
where
Mg = (9IS |r). (A.12)
Note that Eq. A.11 is different from Eq. A.4, the last term of the right hand side is
Y k<j Mgl ) instead of g AR;S|Wy).

Now: let us consider the conjugate direction |hS) = |g9) and the normalized direction
|h5):
|h3)

wy =
"= sy

(A.13)
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By construction

(BIISIAY) = 1, (AIISIS) = 0, (h§|S|ex) = 0 . (A.14)
Consider the vector v
W1 (0) = cosOl) + Y 0RY). (A.15)
i=1
By construction,
(W;@O1S1;(0)) = 1, (W;(0)[Slvw) = 0, k<. (A.16)

We look for the value of § that minimizes

€ (0) = (U;(0)[H|v;(0)). (A17)
The solution is
0 1 aj
0; = iarctag S (A.18)
where
aj = (Pj|HIh]) + cc., b = (hj|H|h]) (A.19)
and
€+ 00— /(2 — b2 + (a?)?
¢ = -~ d \/( 32 ) (]), (A.20)

which is a new approximation for ;.
Following steps. We construct the new gradient | g?) as above and the new con-

jugate direction |h7) as in the conjugate gradient method. We define

uf) = |g7) + 7R (A.21)
n (97159} (g7 —g; 'ISlgy)
’Yj ! = n—]ls Jn—l = ]n—ljs n—lj (A22)
<9j | |gj > <9j | |9j >
By construction,
(971S[vk) = 0 — (uj|S|ew) = 0 (A.23)

but

N
B = (uplSleg) = 2y e Sley) = A o eT T ISIR T £ 0 (A29)
=1
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so that explicit orthogonalization of [¢7) to |u]) is needed (it is a consequence of

the constraint of unitary norm):
b)) = |uf) — Bilvy)- (A.25)

Then one proceeds as above, finds €} and checks if |} — e}l’l| < tol, where tol is a

small number which defines the precision of €;, one can also check if (g} |g7) < tol’,
and in this case tol’ defines the convergence of the eigenvectors.
Preconditioning
We define a (diagonal) preconditioning matrix P and auxiliary functions |y) :

ly) = P~ey). (A.26)
One has to solve the equivalent problem of minimizing

1
fi = §<yj|(PHP)|yj> (A.27)
under the constraints that
(y;(PSP)|y;) = 1, (y;|PS|e) = 0, k<. (A.28)

Again we firstly consider only the first constraint. The problem is equivalent to the

minimization of
fi = %(yﬂ(PHP)lyﬁ — &yl (PSP)ly;) — 1). (A.29)
The gradient |g;) is now given by
l9;) = (PHP)|y;) — &(PSP)ly;) (A.30)
where

- _ (y[(PSP)(PHP)y;)

G = PSPy (4.31)

ensures that

(g5|(PSP)ly;) = 0. (A.32)
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Now we have to care about the second set of constraints. We want that
(9;1PS|vr) = 0. (A.33)

And again this is obtained by orthogonalizing, with the overlap matrix S, |Pg;) to
|wk>7 k< ]
|Pg5) = |Pgj) — > {gjIPS[vi)len). (A.34)

k<j
Modified preconditioned algorithm

Starting from an initial guess [¢9) (where (y4|S]4f) = 0, (49|S[¢7) = 1), one

searches for new vector as:

N
17 (0)) = cos9|’gb;-l*1) + ;0|Ph?’1) (A.35)
where | >
~ Ph™
|Phj) = e (A.36)
J (PR} |S|Ph7)t/2
and |PhY) is the conjugate gradient. We define
n\ __ n n—1 n—1
|Puj> = |ng> + |Phj )s (A.37)
w1 (PgiPT2S|PgY) (Pg} — Pgj '|P7°S|Pg})
/yj - n—1|p—2 n—l\ — n—1| p—2 n—1 (A38)
<ng P S|ng ) <ng P S|ng )
with fyj_l = 0. The gradient |Pgf) is given by
|Pgj) = P*HY;) — €SPy — D Ajli) (A.39)
k<j
where
X5 = (Rl S(PPH — &SPy, - (A.40)

9T W sepryn)

|Pu}) is by construction orthogonal to [¢4) but not to [¢7):

N

B = (PujISluy) = a7 (PRSIY) = o3 Y 6P SIPR ) #0.
=1

(A.41)
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One gets the conjugate direction |Ph}) from
|Phj) = [Puj) — B}li5). (A42)

Note that only P? (or P~2) is actually used.

A.2 Parallel diagonalization

For the particular case of real symmetric matrices we have used a parallel diagonal-
ization algorithm, the parallel Jacobi method [75]. Basically, the Jacobi idea is to

systematically reduce the “norm” of the off-diagonal elements of the matrix,

I (A.43)
this is done using the rotation matrix
1 ««+ 0 -0 -0
0 c 5 0 < »p
J(pa) =] : P : (A.44)
0 —S c 0 — q
0 0 0 1
/l\
p q

which we call Jacobi rotation. ¢ and s are chosen in such a way that

T
c s App  COpg c s _ bypy O (A45)
-5 c Qgp Qgq -5 c 0 by

The matrix B = JTAJ is identical to A except for the rows and columns p and

q. It is easy to show that of f(B)* = of f(A)* — 2a,. Choosing (p,q) in all the
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possible way is what we call a sweep. One sweep is not enough to diagonalize the
matrix, since an element in the position say (p,q) set to zero by applying J(p, q) is
in general put again to a number different from zero by applying a rotation J(p', q)
for example. However, every sweep reduces the sum of the off diagonal elements of A
hence, by applying a sufficient number of sweeps, the matrix is diagonalized within
an arbitrary precision (see Ref. [75] for a discussion). This algorithm is generally
inferior as compared to other diagonalization methods, such as the QR algorithm,
but it can be solved in parallel on a ring of processors (PE’s). Moreover, if the
matrix is already almost diagonal the Jacobi algorithm can take advantage of it,

QR no.

The idea to solve the problem on a ring of PE’s is the following. Each sweep
if formed by N = n(n — 1)/2 Jacobi rotations, where n is the dimension of the
matrix. For the moment let us suppose n an even number. Among all the possible
N rotations it is always possible to chose n/2 of them which are independent, i.e.
applied to n/2 not overlapping couples of indices. We call a sub-sweep each of the
possible (n — 1) choices of n/2 independent rotations. Now, each sub-sweep can be
divided among a set of (at most) n/2 different PE’s. Moreover, each PE only needs
the housing of the columns of the matrix A corresponding to the partial part of the
sub-sweep which must be solved on it. Example: suppose n =4 and 2 PE’s. There
are 3 possible sub-sweeps,

(1,2)(3:4); (1,4)(2,3); (1,3)(2,4);

for the first sub-sweep PE 1 houses the columns (1,2) and PE 2 the columns (3,4).
PE 1 calculates J(1,2) and makes the product A.J(1,2), while PE 2 calculates J(3, 4)
and makes the product AJ(3,4). Note that PE 1 only needs columns 1 and 2 to
perform the product, while PE 2 only columns 3 and 4. Then PE 1 sends J(1,2)
to PE 2 and receives from PE 2 J(3,4). Now both PE’s can calculate JT AJ and
the first sub-sweep is completed. Before starting the second sub-sweep, column 2
is send from PE 1 to PE 2 and column 4 from PE 2 to PE 1 and the algorithm is
repeated. Finally, column 4 is send from PE 1 to PE 2 and column 3 from PE 2 to
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PE 1 and the last sub-sweep is performed. In the general case one has n columns

and p PE’s, with n/2 > p and the algorithm is implemented in the following way:

Starting configuration:

n _ n ..o 2 (p=1)n _
1 3 v 1 p—l—l > 1 p +1 n—1
n n 2n (p—1)n '
\2 4 » Ap—l—? » » + 2 n )
PE 1 PE 2 PE p

the couples that define the Jacobi rotations are the columns of the matrices above,
for example the first PE houses the first n/p columns and applies the Jacobi rotations
for the couples (1,2),(3,4),--- (% -1, %) Each PE calculates its own part of the
matrix J and sends it to all the other PE’s. Once it has in its own memory all the

matrix .J, it can compute J? A.J, concluding the sub-sweep.

Following steps:

1 3 = = 2-1|=|2+1 — - 1| =
/!
n n 2n
\2%4%---% 51<:\5+2e — 71<:
PE 1 PE 2

= (=l —- n—1
I

B L

PEp

where with the symbols (—, +-) we indicate the logical movements of the columns
within each PE, while with (=, <) we refer to physical columns exchange. After
(n—1) steps the sweep is completed and one can check the quantity of f(A) defined
above by summing the squares of the off-diagonal terms of the matrix A on each PE
and then summing the partial results. Once of f(A) is “zero” within the machine

precision the diagonalization is done. Accumulating the rotation matrices J one also
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Figure A.1: Diagonalization time (in seconds) as a function of the number of PE’s on the
Cray-T3D (diamonds) and Cray-T3E (crosses) machines for the first iteration of (a) the Rh(001)-
(2 x 2)p4g structure (122 bands) and (b) the Rh(001)-(2 x 2) structure (61 bands). The QR serial
time is also displayed for the Cray-T3D (full line) and Cray-T3E (dotted line).
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has the eigenvectors of the matrix A. The method is designed to work only for even
n, however the extension to odd n is straightforward, for example it is sufficient to
add a row and a column of zeros to A and set the element a,1,,1 equal to a big
number (BN), larger then the largest eigenvalue of A. Then, once A is diagonalized,
one simply forget about the largest eigenvalue (which is BN) and its corresponding
eigenvector.

In Fig. A.1 we report the diagonalization time as a function of the number
of PE’s on a Cray-T3D and Cray/T3E machines for the first scf iteration of two
selected problems, and a comparison with a standard serial QR diagonalization.
The method become more and more convenient as the dimension of the matrix is
larger and larger. The dimension of the matrices go from Nygng to D Npana, Where

in these case D =4, in (a) Nygna = 122 and in (b) Nygna = 61.



Appendix B
Constrained minimization

Optimizing the structure of a system under external constraints is a problem of
general interest. In section 2.3, for instance, it has been useful to find the energy of
1 ML of CO adsorbed on Rh(110) as a function of the tilt angle of the molecular axis
with respect to the surface normal. More generally, one is often interested to know
the energy of a system as a function of a collective coordinate, such as a reaction
coordinate in a chemical reaction. In all these cases the constraint is holonomic, i.e.
there is a constraint equation which reduces the number of degrees of freedom of the

system from 3 X Ny to 3 X Ny — 1,
G(x)=0, (B.1)

where x is a variable in a 3 X N,; dimensions space and describes the space config-
uration of the system, N,; is the number of atoms.

The constraint equation B.1 defines an hyper-surface in the configuration space.
Suppose that at the initial step xq the constraint equation is satisfied, i.e. G(xq) = 0,
we want to move the atoms to a new position X1, such that the energy is decreased
and the constraint equation is satisfied: F(x1) < E(xg); G(x1) = 0. One recipe to

achieve the latter result is the following:

e we move the atoms in such a way that the components of the displacements

which are orthogonal to the hyper-surface are zero.
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e we refine the move so as to satisfy exactly eq. B.1

To this end we modify the forces acting on the atoms in the following way:

F'=F + \VG, (B.2)
with
F.-VG
A= ———— B.3

where F is the “free” force and F’ is the constrained one. In this way VG - F' = 0,

i.e. the force component orthogonal to the hyper-surface is zero. Now we construct
ox=A-F, (B.4)

where A may be simply proportional to the identity matrix, or, in a smart mini-
mization scheme, it is a suitable preconditioning matrix which exploits the partial
knowledge of the Hessian accumulated during the minimization procedure. [76].
Using dx we construct xj = xo + 0x. We write xj instead of x; because in general
G(x3) # 0. This happens if the step dx is too large with respect to the curvature of
the hyper-surface. In this case we need to perform the second step of the recipe: if

the step dx is not too big we can write:
G(x1) = G(x}) + (x1 = X7) * VGlx=x; =0, (B.5)

and assuming that, in first approximation

(Xl - Xi) - CVVG|x:x’ia (B6)
we have
G(x7)
_ B.7
(6% |VG|XZX; 27 ( )
and then we construct
T T WG P Vb (B.8)

and check if G(x7*) = 0. In out case we needed to iterate the procedure at most for

a couple of times.



Appendix C
Molecular dynamics

Our implementation of molecular dynamics is based on the traditional self-consistent
scheme described in the first chapter and in the Appendix A, i.e. we bring the elec-
trons to the BO surface at each step. This technique can be very costly, since the
self-consistency required in the KS equation must be high in order to calculate good
forces. Therefore, once the KS equation is solved for a particular ionic configuration,
which is a step of the dynamical simulation, it is fundamental to have a good algo-
rithm to extrapolate the starting configuration of the next step, so that the number
of self-consistency cycles is as small as possible. In our algorithm we extrapolate
the potential. We have tried two potential extrapolation schemes. In the first one,
the new potential is calculated from an extrapolated charge density, which is simply
approximated by the charge density of the previous step plus the difference between
the atomic charge density of the new ions configuration and the old one (NOACD).

In the second case, we have used the multi-linear extrapolation

V(tn)zz;l(—l)m+1 ]\Tj V(tn-m), (C.1)

for different values of M. A comparison between the NOACD extrapolation scheme
and the Multi-linear one for various values of M is displayed in Fig. C.1. for a
system of 64 silicon atoms. The starting configuration is the bulk equilibrium one

and the starting temperature is 300°K. The time step is 135 a.u., corresponding to

I6)
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Figure C.1: (Color) Total energy (constant of motion) and potential energy as a function of

time for a molecular dynamics run of 64 silicon atoms at ~ 150°K.

3.267 femto-seconds, which is 1/20 of the optical phonon frequency. The CPU time
is not much different among the different schemes used (see Table C.1), with besides
the M = 1 case which corresponds to no extrapolation at all. What is somewhat
different is the conservation of the total energy, which is worse in the NOACD case.
This fact reflects an important technical problem. Force calculation is a particularly
delicate problem. In order to have a good accuracy it is necessary to have a highly
converged KS wave-functions. The drift in the total energy is due to the fact that
the lack in self-consistency for the KS orbitals is always in the same direction in a
dynamical simulation, this results in a sort of ‘friction’ for the system which therefore
does not conserve its total energy. It is not a real friction since the total energy drift
can be positive or negative. In the NOACD scheme the difference between the self-
consistent charge and the sum of the atomic one is left always ‘behind’, and this

fact results maybe in a higher systematic error in the lack of self-consistency.

Extrapolation algorithm NOACD M =1 M=2 M=3 M=4 M=5
CPU time/ps (hours) 32 62 39 31 32 37

Table C.1: CPU time (in hours) per pico-second on a IBM-595 machine for the same system
using different extrapolation algorithms for the starting potential. In all cases the time is about

one half of that taken when no extrapolation is performed (M = 1).
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