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Overview

Relativistic hydrodynamics represents one of the most powerful tools by means of which it
is possible to unveil the physical mechanisms behind the past history of our Universe and
behind many of the high energy astrophysics phenomena observed nowadays. This Thesis
is focussed on the formalism and techniques of relativistic hydrodynamics of compressible
single and multicomponent fluids both in the case when they are considered as ideal gases
and when viscous effects are not neglected.

The work contained here has a two-fold aspect and the layout of the Thesis is
organized so as to reflect this double structure. General results that we have derived from
investigations on the theoretical framework of relativistic hydrodynamics of discontinuous
flows, have then been implemented for specific cosmological and astrophysical applications
to the study of the hydrodynamics of the cosmological quark-hadron phase transition and
the definition of a new set of relativistic non-stationary hydrodynamical equations for an
accreting slim disk model. As a result, while Chapters 1, 2 and 3 are focussed on the
analysis of general topics of relativistic hydrodynamics of compressible fluids, Chapters
4, 5 and 6 deal with the more specific study of relativistic hydrodynamics of a first
order cosmological quark—hadron phase transition and benefit from the general tools and
mathematical techniques introduced and discussed in the previous chapters. Chapter 7
presents an application of relativistic hydrodynamics to another astrophysical problem:
that of slim disk accretion.

Chapter 1 is partly devoted to a general introduction to relativistic shock fronts and
reaction fronts (Sections 1.1-1.2.2) and partly devoted to the very important subject of
hydrodynamic stability of discontinuity surfaces (Sections 1.3-1.3.3). There, we discuss
the delicate problem of the causal structure and determinacy of relativistic detonations
and deflagrations and show, after rather lengthy algebra, the linear stability properties

of relativistic detonations and deflagrations. The importance of our calculations should

vii



viii Overview

be considered in view of some recent less rigorous stability analysis of cosmological det-
onations appeared in the literature and whose results we have here corrected. We warn
the reader that Subsections 1.3.2 and 1.3.3 are heavily technical and the details in them
could be skipped without serious consequences for understanding the rest of the Thesis.

Chapter 2 is dedicated to a general discussion of self similar solutions for spherical
deflagrations. There, we first introduce the importance of spherical self similar solutions
for the dynamics of “bubbles” and “drops” during cosmological first order phase tran-
sitions and subsequently derive analytic similarity solutions for bubble growth and drop
evaporation. The latter, in particular, are original and some aspects of them are presented
in this Thesis for the first time. Apart from the importance related to the generality of
the assumptions under which they are derived, the concepts and solutions of this chapter
will be encountered in Chapter 6 during the presentation of numerical computations of
hadron bubble growth and quark drop evaporation.

In Chapter 3 we introduce the concepts of multicomponent hydrodynamics and con-
centrate, in particular, on the problem of the long range energy and momentum transfer
between a standard fluid (meant as a collection of relativistic particles with short inter-
action scale length) and a radiation fluid (meant as a collection of relativistic particles
with much longer interaction scale length). This is a relativistic radiative transfer prob-
lem that we here solve by rewriting the radiative transfer equation in terms of Projected
Symmetric Trace Free tensors. The mathematical apparatus developed in this chapter is
general and while it is implemented here for numerical computations of the quark—hadron
transition, other applications of it in astrophysical contexts have been produced by other
authors.

Chapter 4 starts the part of this Thesis which is dedicated to the application of the
theoretical tools developed in the previous chapters to the specific study of the hydro-
dynamics of the cosmological quark-hadron phase transition. In this chapter, therefore,
we discuss a number of different issues regarding the physics of cosmological phase tran-
sitions and aimed at providing the necessary physical background for the study of the
quark-hadron transition. Apart from a general introduction to the thermodynamics of
first order phase transitions, we discuss arguments in support of the hypothesis that the
phase interface should move as a weak deflagration front and present suitable equations
of state for the quark-gluon plasma and the hadron plasma. We conclude the chapter

with a discussion of the debated and fundamental issue of bubble nucleation and present
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a schematic description of the various stages of the transition.

Chapter 5 is entirely focussed on the hydrodynamics of the quark—hadron transition
and is dedicated to the derivation of a new complete set of relativistic equations describing
the hydrodynamics of a multicomponent fluid in a spherical flow. In particular, the
mathematical apparatus developed in this chapter allows for a consistent treatment of: a)
the long range energy and momentum transfer between a standard fluid and a radiation
fluid; b) the dynamics of a superposed fluid component of baryon number carriers which
is collisionless and subject to diffusion only; ¢) the dynamics of a discontinuity surface
moving as a weak deflagration front; d) general relativistic junction conditions across the
discontinuity surface for the metric, the energy and the momentum of each of the three
fluid components; e) a characteristic form of the relevant hydrodynamical equations along
the several different characteristic directions present. As a result, Chapter 5 embodies all
of the concepts and tools presented in this Thesis, which will find a concrete application
in the numerical computations discussed in the subsequent chapter.

In Chapter 6, in fact, after a brief discussion of the numerical strategies that have
been introduced in order to solve the hydrodynamical equations, we present results ob-
tained from hydrodynamical calculations of different stages of the cosmological quark—
hadron phase transition. In particular, four distinct numerical codes have been con-
structed and implemented for studying respectively : ¢) bubble dynamics and long range
energy and momentum transfer during the growth of an isolated spherical hadron bubble;
i1) the evaporation of a quark drop at the end of the transition and the stability of the
analytic solution for a self similar evaporating system; 7i7) drop dynamics and radiation
decoupling during the final stages of the evaporation of a cosmological quark drop; iv)
baryon number segregation produced during the very final stages of the transition by evap-
orating quark drops. These numerical computations cover a wide range of the different
stages of the transition and provide a new consistent and sometimes unexpected picture
of the physical properties of hadron bubble growth and quark drop evaporation. Apart
from the intrinsic interest of knowing how the transition might have proceeded, the re-
sults of our computations have also a cosmological significance and the role played by the
inhomogeneities produced at the end of the transition for the subsequent nucleosynthesis
is also discussed in this chapter.

Finally, Chapter 7 marks the end of the Thesis and represents a “variazione sul

tema” of relativistic hydrodynamics. There, we discuss the problem of relativistic viscous
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flows in the different physical and geometrical scenario of axisymmetric slim disk accretion
onto a rotating black-hole. In particular, we extend previous Newtonian and relativistic
slim disk models and derive an original set of non-stationary relativistic hydrodynamical
equations for this problem. This new set of equations, which could unveil many of the
properties of slim disk models when implemented in a numerical computation, could also
set the basis for a more realistic study of relativistic magnetohydrodynamic flows onto
black-holes, behind which most probably lie the physical mechanisms for the formation

of the extragalactic jets.

Symbols and Conventions

In view of our application to a problem involving input from particle physics,
we use in the first six chapters of this Thesis a system of units in which
¢ = h =k, = 1. This also has the advantage that the gravitational source
terms are clearly identified because of retention of the constant G in the equa-
tions. Chapter 7, on the other hand, is related to a relativistic astrophysical
problem and there we use units in which ¢ = G = 1. We use a space-like
signature (—, +, +, +). Greek indices are taken to run from 0 to 3 and Latin
indices from 1 to 3. Covariant derivatives in the four-dimensional spacetime
are denoted with a semicolon “;”, while covariant derivatives on space-like

three-dimensional hypersurfaces are denoted with “||”. Partial derivatives are

either indicated with a comma or with the standard “0” notation.

All of the figures in this Thesis (with the only exception of Figure
4.2) are original and either extracted from papers published by the

author or presented here for the first time.



Chapter 1

Relativistic Shock Waves and
Reaction Fronts

1.1 Introduction to Discontinuity Surfaces

The concept of discontinuity surfaces appears naturally within the framework of com-
pressible fluids hydrodynamics and expresses the fact that the quantities describing a
compressible fluid (i.e. velocity, temperature, pressure, density) do not need to be contin-
uous everywhere in the flow when viewed on a suitably large scale. We here refer to as a
fluid a continuum collection of particles so numerous that the dynamics of individual par-
ticles cannot be followed. However, this continuum can be described in terms of quantities
averaged over representative “elements” of the continuum which are large enough so as to
contain a relevant number of particles and small enough so as to guarantee homogeneity
within the element!.

We should underline that the concept of “discontinuity” both in the mathematical
and in the pictorial representation of this type of phenomena is an just artifact of the
scale of the fluid description. From a microscopical point of view, the relevant physical
variables across these discontinuity surfaces are certainly continuous although they expe-
rience very large gradients over extremely short length scales. Within these regions, they
are subject to complex irreversible thermodynamical processes caused by dissipation and
heat conduction. However, outside those regions, the flow is much more regular and is
usually governed by the standard laws of adiabatic reversible hydrodynamics.

This fortunate circumstance allows then the introduction of fictitious infinitesimal
surfaces across which the fluid variables are assumed to be discontinuous (i.e. the dis-

!Note that the above definition effectively refers to a simple fluid, i.e. to a collection of identical
particles or of particles of the same species. Such a definition can be extended if the fluid is composed of
particles of different species (Section 3.1).
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continuity surfaces). As a result, the mathematical description of these phenomena is
greatly simplified and the overall approximation of this approach is extremely good when
the shock front has a constant width which is much smaller than the typical length scale
for the variation of the flow variables and when the thermal and the viscous time scales
are much smaller than the one set by the motion of the front. In general, discontinuity
surfaces can be distinguished in contact surfaces, which are surfaces separating two parts
of a medium without any fluid flow through the surface, and in shock fronts and reaction
fronts®* which are discontinuity surfaces that are crossed by a fluid flow.

A consistent hydrodynamical description of the flow changes across a shock or re-
action front can be performed after imposing the conservation of baryon number, energy
and momentum across the front, or equivalently, after requiring that “what goes into
the shock front must come out”. The above conditions are often called jump or junction
conditions and allow to express quantities on one side of the shock front in terms of the
same quantities on the other side. The general relativistic treatment of the junction con-
ditions across a discontinuity surface needs particular care in the case of a phase interface
which has intrinsic physical properties (e.g. surface energy density or surface tension). In
this case, the shock front can no longer be considered as a fictitious mathematical sur-
face and its influence on the local curvature of spacetime needs to be taken into account.
Subsection 5.2.2 discusses how this can be done by using the Gauss-Codazzi equations.

In the following we review the main aspects of the relativistic theory of hydrody-
namical shocks which was first developed by Taub [159] and then subsequently extended
by Lichnerowicz [93, 94, 95]. Most of the arguments discussed here will be used in the
next section, in which the properties of reaction fronts are presented.

It is important to stress that the standard analysis of relativistic shocks with no
intrinsic physical properties is valid in curved spacetimes as well as flat. Indeed, this is the
case for any theory with a metric in whose local Lorentz frames the nongravitational laws
of physics assume their standard special relativistic form (equivalence principle, Thorne
[163], Steinhardt [153]). This is equivalent to saying that in a curved spacetime one can
choose an event P on the shock front worldline and then introduce in its neighbourhood a
local Lorentz frame (the rest frame of the shock). This frame can always be chosen so that
i) the shock is momentarily at rest, ii) there are no three-velocity components tangent to
the front (hereafter we shall refer to the three-velocity vectors simply as velocities) and
iii) the shock is taken to be at rest on the (y, z) plane.

2A comment on terminology is needed. Here we follow the convention of Courant and Friedrichs and
denote with “shock wave” the flow region comprising the discontinuity surface (which we also refer to as
“front”) and its downstream flow. A similar convention will be assumed with the terms “compression
wave” and “rarefaction wave”. Other authors, however, (e.g. Landau and Lifshitz) call “shock wave” the
discontinuity surface itself, so that “wave” and “front” become equivalent terms for them.



1. Relativistic Shock Waves and Reaction Fronts 3

In this comoving reference frame, we can think of the front as a planar discontinuity
surface which divides the three-space into a region 1 and a region 2 and which is crossed
by positive velocities from left to right when the front is left propagating in the inertial
frame (see Figure 1.1). This allows then to define as ahead or upstream or ”1” the region
from which the fluid moves to reach the shock front and as behind or downstream or ”2”
the region in which the fluid moves after having passed across the shock.

| —
P, V1)
Vo
"unshocked”
N
— 1 @, v

Figure 1.1 Spatial configuration of a left propagating shock wave

Consider now the fluids on either side of the front to be ideal and described by the
standard stress energy tensor of a relativistic perfect fluid

T = (e + p)uu’ + pg*” (1.1)
where u® = (1, ¥) is the fluid four-velocity and v = (1 — v*v7 §;;) Y2, with v* = da'/dt.
Here e is the energy density, p is the pressure and ¢®? is the metric tensor. Referring to

the shock configuration shown in Figure 1.1 and using the stress energy tensor (1.1), we
can express the laws of conservation of energy and momentum respectively as

=17, TP =157, (1.2)
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with the lower indices indicating quantities on the two sides of the shock. Equations (1.2)
need to be supplemented with the continuity equation of baryon number density

(nu®);a =0, (1.3)

where n is the number density of baryons. Defining the enthalpy density on either side of
the front as wy = ey, + pg, (with k =1, 2), we can write the following junction conditions
across a relativistic shock® (see Subsection 5.2.2 for the general relativistic form of the
junction conditions).

wyivr = weavs (1.4)
Wi+ = waYav; + o (1.5)
j =N17Y1VU1 = TN97Yals . (]_6)

Besides equations (1.4)—(1.6), a further condition is needed in order to eliminate
unphysical solutions and this condition is strictly related to the complex irreversible pro-
cesses that take place in the small region of the shock front and basically excludes as
physically realistic those shocks which do not produce an entropy increase. In other
words, the values of the specific entropy on either side of a physical shock have to satisfy
the inequality

S9 > 8§71 (17)

where s, 5 is the specific entropy on either side of the front.

It is now convenient to introduce the chemical potentials on either side of the front
e = (Oex/Ong)s = [(e + p)/n]x and rewrite the conservation of momentum (1.5) and the
continuity equation (1.6) as the single expression

2 P2 — D1

_ 2 1.8
J paVo — 1V (18)

where Vi, = 1/ny are the specific volumes on either side of the front. Similarly, by using
the continuity equation (1.6), we can rewrite the conservation of energy (1.4) as

Hiy1 = H272 - (1.9)

3Unless specified, all the velocities are meant to be referred to the front rest frame.
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Multiplying (1.8) by (u1V1 + p2V3), and combining it with the new form of the continuity
equations

nv = jVi, Yovg = jVa , (1-10)

we obtain

(p272v2)? — (py1v1)® = (p1 — p2) (Vi + p2Va) - (1.11)

Subtracting then (1.9) from (1.11) we finally obtain the equation for the Taub Adiabat

15 — pi = (p2 — p1) (Vi + p2Va) (1.12)

which represents the relativistic generalization of the classical Hugoniot Adiabat.*

Equations (1.8), (1.10) and (1.12) are also called Taub’s junction conditions for
shock waves and represent the relativistic generalization of the corresponding Rankine—
Hugoniot junction conditions for classical shocks (Courant and Friedrichs [35], Landau and
Lifshitz [90]) . The Newtonian limit of these equations is readily taken by substituting
the generalized volume pV with its classical equivalent V' and by setting equal to one the
Lorentz gamma factor in the relativistic current j = nyv.

The study of the Taub adiabat in a (p, uV') plane represents a very useful tool for
extracting information on the variation of the relevant hydrodynamical quantities across
a shock front. Once the state of the fluid ahead of the front “1” is assigned in terms of a
pressure p; and of a generalized volume p1 V7, the condition (1.11) constraints the possible
states of the fluid behind “2” to lie on the adiabat.

Another important curve in the (p, uV') plane is represented by the Poisson Adiabat
(or “constant entropy curve”) which is a solution of (1.7) when the equality holds. It is
possible to show (Thorne [163]) that the Poisson adiabat through “1” is here tangent to
the Taub adiabat at point “1” and that the two curves have the same second derivative
there. In this way, the Poisson adiabat selects the “physical” branch of the Taub adiabat
as the one that always lies above the constant entropy curve (see Figure 1.2).

4We recall that the Hugoniot adiabat is a curve on a (p, V) plane in terms of which all of the properties
of a classical shock can be derived.
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----- Poisson Adiabat
Taub Adiabat
\
- \
o \
Q \
\
A\
\
1 o
1 HV/I(uVv),

Figure 1.2 Schematic representation of the Taub Adiabat and of the Poisson
Adiabat on a (p, ,uV) plane.

The condition on the entropy increase (1.7) establishes that the state “2” of the fluid
behind the shock wave must be above the state “1” on the (p, uV') plane, or equivalently,
that for a physical shock:

P2 > p1, (113)
Mo >, (1.14)
Vo < V. (1.15)

Since equation (1.8) expresses the fact that j* is the slope of the chord connecting “1”
with “2”7, one can make use of the condition (1.15) to deduce a further condition for the
occurrence of a physical shock, i.e.

Vo < V1 . (116)

Further important information that can be extracted from the study of the Taub
adiabat is given by the magnitudes of the flow velocities on either side of the shock as
compared to the local sound speeds. Using the first law of thermodynamics in the form
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de = (%) dn+nTds ,

and rewriting it as

d (9> — Vdp +Tds ,
n

it is possible to see that the tangent to the Poisson adiabat is given by

(1.17)

(1.18)

(1.19)

where ¢, = (Op/de)}/? is the local sound speed. Equation (1.19) allows then to interpret

the slope of the Taub adiabat at any given point as proportional to the local sound speed
and to the fluid’s specific volume. Using (1.19) together with the condition (1.16), it is
easy to show that the flow entering a shock front is always supersonic and, similarly, that

the flow out of a physical shock is necessarily subsonic, i.e.

v

v cs1 (o tangent at “17) |

ve < ¢g (o tangent at “27) .

(1.20)
(1.21)

These inequalities can be readily verified by looking at the schematic representation of
the fluid velocities at the different states on the Taub adiabat presented in Figure 1.3.
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p/pl

0 (el Vy)

1 HV/I(uVv),

Figure 1.3 Schematic representation of the Taub Adiabat and of the magnitude
of the fluid velocities at the states “1” and “2”. The tangents to the adiabat
at “1” and “2” are proportional to the local sound speeds, while the slope of
the chord between the two states is proportional to the fluid velocities ahead
of and behind the front.

After a manipulation of the junction conditions (1.4)—(1.5), we can write relations
expressing the fluid velocities on either side of the front in terms of the physical state
there, i.e.

s (p—p)(ea+m)

oo (e2 —er)(er +p2) (1.22)
s (p2—p1)(er +p2)

. (ea —ei)(ea+p1) (1.23)

and from their combination we can have information about the velocity jump across the
front in terms of the relative velocity

. . . 1/2
Vrel = 1 o - (p2 pl)(€2 61) 5 (124)

1 —vyv9 (e2 + p1)(e1 + p2)

and of the velocities ratio and product
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et vy = 2701 (1.25)
vg €1+ P2 €y — €1
In the case of a relativistic fluid,” py = e;/3, ¢, = 1/4/3 and (1.25) then become
362 + 61) 1
v =|-—") V9, v = — . 1.26
! (361 + e9 2 ! 3’02 ( )

It is instructive to consider the expressions that equations (1.25) and (1.26) assume
in the limiting situations of weak and strong shocks. In the first case, es ~ e; and from
(1.26) it is possible to deduce that

V1 — Cg1 = Cs Vg — Ceo = Cy (1.27)

and, in agreement with our common sense, this is equivalent to saying that an asymptoti-

cally weak shock wave tends to resemble a sound wave. On the other hand, in the case of

strong shocks es — oo (i.e. the state “2” moves upwards on the Taub adiabat) and then
1

v — 1, 02—>§<052:cs. (1.28)

Note that in this latter case vy/csy — 1/4/3.

1.2 Relativistic Reaction Fronts

In the classical theory of reaction fronts (Courant and Friedrichs [35], Landau and Lif-
shitz [90], Buckmaster and Ludford [26], Fickett and Davis [46], Friedrichs [47]), these
discontinuities in the flow are described as moving surfaces by means of which a suitable
fluid mixture undergoes a chemical transformation with liberation of heat. As a result of
the transformation, the fluid behind the reaction front can be either compressed and de-
celerated or decompressed and accelerated. The study of the microphysics in the narrow
region where the reaction processes take place is extremely complicated and an exhaus-
tive theory of it within the context of relativistic reaction fronts has not been reached yet.

5Here and in the following we will consider as relativistic a fluid whose internal energy is much larger
than its rest mass energy. In this case, a one-parameter equation of state can be used and a precise
relation between pressure and energy density can be established. Such a relativistic fluid is different from
one which is said to be “relativistic” because it has bulk motions close to the speed of light, but for which
a two-parameter equation of state needs to be used.
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Nevertheless, just as for shock waves, a satisfactory hydrodynamical description of reac-
tion fronts can be achieved when these are treated as discontinuity surfaces of infinitesimal
and constant width across which rapid changes in the fluid variables occur. Once again
this approximation is certainly good if the front has a thickness which is much smaller
than the typical length scale for the variation of the flow variables and if the thermal
and the viscous time scales are much smaller than the one set by the motion of the front
(we shall assume that these requirements are always met within the scenarios discussed
in this work). In this respect, reaction fronts are very similar to shock fronts and can be
essentially described by means of the same mathematical theory (Courant and Friedrichs
[35], Landau and Lifshitz [90], Fickett and Davis [46], Friedrichs [47], Buckmaster and
Ludford [26], Zeldovich et al. [172]).

The main difference between shock fronts and reaction fronts is to be found in the
fact that the fluids on either side of a reaction front are chemically and physically different.
We have seen (Section 1.1) that as a fluid goes across a shock front it can be compressed
and decelerated so as to change its state. However, the irreversible processes occurring
across the front do not produce a change in its chemical and physical properties and the
same equation of state will hold on either side of the shock. This is not the case for a
reaction front, for which the irreversible processes taking place at the front do produce
a radical change in the chemical and physical properties of the fluid. As a result, fluid
elements on either side of a reaction front are described by different equations of state, each
accounting for the different internal binding energies (as in the case of a nonrelativistic
fluid) or for the different number of degrees of freedom or vacuum energies (as in the case
of a relativistic fluid).

Given this difference, the analysis of reaction fronts proceeds in close analogy to the
analysis of shock fronts and the relevant differences can be easily pointed out by means
of the Reaction or Transition or Detonation/Deflagration Adiabat and which represents
equivalent of the Taub adiabat (1.12) for a relativistic reaction front. It is now convenient
to introduce the compression coefficient (Danielewicz and Ruuskaneen [39], Bonometto
and Pantano [24])

2,2
= 2o (1.29)
Wa7Y5 V2
by means of which the reaction adiabat can be written as
wexr —wy; — (P2 —p1)(x+1)=0. (1.30)

Physical solutions of (1.30) need to satisfy the conservation of momentum in the
new form
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1303 = (x/ws)(p2 — p1)/(z — 1) (1.31)

and are given respectively by

P < P2 and v, < v (z < 1), (1.32)

or

P> Do and ve > v (v > 1). (1.33)

Inequalities (1.32) and (1.33) distinguish the reaction adiabat into two different
branches which are called Detonation Branch and Deflagration Branch respectively (see
Figure 1.4).

Transition adiabat

————— Taub adiabat

-------------------- _ deflagration branch

strong

Figure 1.4 Reaction adiabat for the state “1” and the distinction between
the Detonation and the Deflagration Branches. Weak, Strong and Chapman-
Jouguet (C-J) processes are also pointed out, with the latter being marked by
heavy dots.
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The part of the reaction adiabat between the two branches is indicated with a dotted line
and refers to a non a physical region since there ps > py, uaVo > p1Vy and therefore j is
imaginary [cf. equation (1.8)].

Making use of Figure 1.4 and of the relations (1.8) and (1.19), it is possible to
realize that in a detonation the reaction front always moves at a supersonic speed relative
to the medium ahead. On the other hand, the reaction front always moves at a subsonic
speed relative to the medium ahead in the case of a deflagration. Deflagrations (and
detonations) can be further classified as weak or strong according to whether the velocity
of the medium behind is subsonic (supersonic) or supersonic (subsonic) .

An additional and special class of reaction fronts is the one for which the velocity of
the fluid behind the front is exactly equal to the local sound speed. These fronts are called
Chapman-Jouguet deflagrations or detonations, and represent a specifically interesting
class of phenomena. (The classification of the various reaction fronts is summarized in
Table I). The following sections are devoted to a brief review of the main properties of
detonation and deflagration fronts.

DETONATIONS DEFLAGRATIONS

(v1 > v2, P1 < p2) (v1 < w2, p1 > P2)
Weak V1 > Cg1, Vg > Ceo V1 < Cg1, Vo < Cgo
Chapman—Jouguet | v; > ¢4, Vg = Cg9 V1 < Cg1, Vg = Cgo
Strong V1 > Cg1, Vo < Cgo v1 < Cg1, Vg > Ceo

Table I The various combinations of the fluid velocities for the different types
of reaction front. The velocities are referred to the front rest frame, with v
being the fluid velocity ahead of the front and vg the fluid velocity behind the
front. Similarly ¢g; and cgo are the sound speeds on either side of the front
(see also Figures 1.1 and 1.4).

6 A useful mnemonic rule is to remember that weak reaction fronts are those for which the velocities
ahead and behind the front are both either subsonic or supersonic. The opposite holds for strong reaction
fronts.
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1.2.1 Detonations

As mentioned in the previous section, detonation fronts propagate supersonically relative
to their medium ahead. As a consequence, no causal influence from the front is possible
on its upstream region of the flow which cannot be perturbed (see also Subsection 1.3.1
for an extended discussion of the causal structure of reaction fronts). When unperturbed
fluid at rest is crossed by a detonation front, it is compressed, heated and set into motion.
In general, the motion immediately behind the front is characterized by a flow region in
which the fluid is smoothly decompressed and decelerated (see Figure 1.5).

rarefaction wave (r)

rarefaction wave (h)

detonation front

Figure 1.5 Schematic spacetime diagram of a 14+1 dimensional flow across a
detonation wave. The heavy line curve traces the worldline of the detonation
front, while the dotted lines represent the heading (h) and rear (r) fronts of
the rarefaction wave. Note that within this treatment the head of the rar-
efaction wave and the detonation front are coincident and are here represented
as distinguished for clarity only. The continuous arrowed line represents the
worldline of a fiducial fluid element, while ¢t and z are fiducial time and space
coordinates.

This flow region is called rarefaction wave and is limited by a supersonic leading
front and by a rear edge or “tail” of the rarefaction wave (this moves at the local sound
speed in the case where the velocity is zero at the downstream boundary of the flow)”.

"Here we will always be using boundary conditions which set the velocity to zero (in a suitable reference
frame) at both ends of the calculational domain.
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The rear edge of the rarefaction wave behaves as a weak discontinuity and represents the
locus of points at which the fluid variables and their first derivatives are continuous, but
have discontinuous higher order derivatives.

As shown in Table I, detonations can be distinguished according to the magnitude of
the fluid velocity behind the detonation front (measured in the rest frame of the front) as
compared with the local sound speed. In this sense, they are defined as weak, strong and
Chapman-Jouguet those detonations having respectively supersonic, subsonic, and sonic
downstream flows. It is worth mentioning here that a formal similarity exists between
detonations and another class of reaction fronts called condensation discontinuities. Clas-
sically, these are discontinuity surfaces across which a supersaturated vapour undergoes a
phase transformation becoming a condensed vapour (e.g. fog). It is relevant to underline
that condensation discontinuities are distinct phenomena and do not simply result from
the compression of a fluid across a shock wave. In general, in fact, the compression of a
fluid element across a shock wave produces a local increase of the temperature larger than
the local increase of the degree of supersaturation. This is the reason for which only those
fluids with large heat capacities are able to undergo this type of phase transformation.
Similar to detonation fronts, condensation discontinuities are exothermic processes and
their formal description closely resembles the one of detonations with which they share
many of their properties (Landau and Lifshitz [90], Thompson and Kim [161], Thompson
et al. [162]). Condensation discontinuities have not been very fully investigated up to
now but they have been mentioned in connection with the cosmological first order phase
transitions (Applegate and Hogan [6], Laine [85]) which we will be discussing in the later
chapters of this Thesis.

Important features of detonations can be deduced by counting the number of “un-
knowns” which are typical of the hydrodynamical solution of a detonation wave. In
general, we need to calculate the energy densities and the velocities on each side of the
discontinuity surface and the velocity at which this front moves relative to some coordi-
nate system. In the case of a detonation, these represent five unknowns (i.e. ey, vy, e,
ve and vge) and can be balanced by the two equations expressing the conservation of
energy and momentum. Boundary conditions (depending on the specific geometry of the
front) will usually allow to specify the velocity and the state of the unreacted fluid, thus
reducing to one the number of unknowns.

However, there is a special class of detonations whose hydrodynamical solution is
completely determined only in terms of the boundary conditions and of the energy—
momentum conservation. This is the case of the Chapman-Jouguet detonations, for which
the velocity out of the front equals the local sound speed. Chapman-Jouguet detonations
represent a particularly relevant class of reaction fronts, for which it can be shown that
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the fluid velocity ahead of the front and the entropy of the fluid behind the front are at
a minimum (Chapman-Jouguet detonations are then the slowest of all possible detona-
tions). Moreover, the entropy jump across a Chapman-Jouguet detonation front is at a
maximum.

The peculiar nature of Chapman-Jouguet detonations is underlined in the
“Chapman-Jouguet hypothesis”, according to which detonations in chemical combustion
should occur only under the form of Chapman-Jouguet detonations and a proof of this for
an ideal self similar detonation can be found in Courant and Friedrichs [35] or in Landau
and Lifshitz [90]. Although in nature detonations in chemical combustion often appear
accompanied by nonlinear effects (such as transverse shock waves or turbulence: Fickett
and Davis [46]), it seems that the hypothesis is generally verified to a good approximation,
with detonation fronts which although complicated, propagate at a constant velocity close
to the theoretical Chapman-Jouguet value (Lewis and von Elbe [98], Williams [169], Lee
[97]).

It should be underlined that although weak detonations in chemical combustion
satisfy the conservation laws, they cannot be realized in practice®. A simple proof of this
can come from considering a detonation front as a region of finite width across which
the reaction takes place and whose forward layer is represented by a shock front moving
into the unreacted fluid (Landau and Lifshitz [90])°. In this case, the evolution of the
hydrodynamical quantities across the reaction front can be followed by using a shock
adiabat through a point a representing the unreacted fluid and a transition adiabat as
shown in Figure 1.6.

When the fluid moves across the shock wave, it is heated and compressed and
effectively moves on the chord ab from point a to point b. The physical conditions have
therefore been created for the reaction to take place and as this proceeds the fluid state
moves downwards from point b along the chord ba. In doing this, the heat of the reaction is
released, the fluid expands and its pressure decreases until the whole heat of the reaction
has been evolved. The final physical state will then correspond to the point ¢ on the
transition adiabat which is representative of a strong detonation '°. If the reaction involves

8Reaction fronts have been recently considered for studying the hydrodynamics of the phase interface
during cosmological first order phase transitions and this will be further discussed in Chapter 2 and 4.
However, because of the differences between chemical combustion and phase transitions, neither the
validity of the Chapman-Jouguet hypothesis nor the arguments about weak detonations can be extended
to the context of cosmological phase transitions (Laine [85], Kurki-Suonio and Laine [82]).

9Courant and Friedrichs [35] have also suggested the mathematical equivalence between a detonation
and a deflagration initiated by a shock front. In this sense, a strong detonation would be equivalent to a
shock front followed by a weak deflagration and a weak detonation would be equivalent to a shock front
followed by a strong deflagration.

10We are here assuming that diffusion and viscosity may be neglected in the reaction zone, so that the
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chemical combustion, then the condition on the entropy increase across the detonation
front does not allow the lower point d (that would correspond to a weak detonation) to
be reached, thus excluding weak detonations.

Figure 1.6 Schematic diagrams showing the impossibility of weak detonations
in chemical burning. The dashed line hyperbola is the shock adiabat through
the point @, while the continuous line hyperbola is the transition adiabat.

In Subsection 1.3.2, we shall prove that strong and Chapman-Jouguet detonations
are evolutionary and linearly stable to corrugations of the detonation front. However, we
shall also give a brief proof that, in general, boundary conditions do not allow for strong
detonations to be produced in practice. From this and the above arguments about weak
detonations in chemical combustion, an indirect proof of the Chapman-Jouguet hypothesis
can be deduced.

1.2.2 Deflagrations

Deflagration waves (or slow combustion waves) have been extensively investigated within
the classical theory of combustion and laminar flames. Quite differently from detonations,
deflagration fronts move subsonically relative to their medium ahead and this is then

mass and momentum transfer can take place only by means of fluid flow. This, in turn, establishes that
the motion of the physical state has to take place along a constant j (i.e. slope) curve.
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equivalent to have, in the rest frame of the front, the velocity of the fluid behind the front
being larger than that ahead of it. Being a subsonic front, the deflagration does perturb
the fluid ahead of it by means of a precompression wave which travels in the unreacted
medium ahead of the deflagration front. At the leading edge of the precompression wave
there is a shock front at least in principle (it may have essentially vanishing amplitude in
practice) which moves supersonically relative to the medium ahead of it and has the effect
of accelerating, compressing and heating the fluid before it is swept by the deflagration
front. TIts role is therefore that of establishing suitable hydrodynamical and chemical
conditions under which the reaction or combustion can take place (the same role is played
by the supersonic reaction front itself in a detonation). It is worth underlining that
the fluid undergoes a chemical or physical transformation only when it is swept by the
deflagration front and that there is no chemical difference between the fluids on the two
sides of the precompression shock front.

t t
rarefaction wave (r)
deflagration front
deflagration front
-7 g prECOmpr on shock -7 g pra:ompr on shock
e front N front
X X
standard deflagration supersonic deflagration

Figure 1.7 Schematic spacetime diagrams of 14+1 dimensional flows across
deflagration waves. The left diagram refers to a standard (subsonic) deflagra-
tion, while the right one to a supersonic deflagration. The heavy line curves
trace the worldline of the deflagration fronts, while the long-dashed lines are
the worldlines of the precompression shock front. The dotted line in the right
diagram represents the rear (r) front of the rarefaction wave. The continuous
arrowed lines represent the worldlines fiducial fluid elements, while ¢ and x are
fiducial time and space coordinates.
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Relative to the front, the fluid behind the deflagration can either be at rest (as in
the case of a standard subsonic deflagration) or have a finite subsonic velocity. This is the
case for a supersonic deflagration (Kurki-Suonio and Laine [82]), for which the deflagration

' (see Figure 1.7).

front moves supersonically relative to the a fixed coordinate system

In their computations, Kurki-Suonio and Laine have considered the supersonic de-
flagration as composed of a Chapman-Jouguet deflagration followed by a rarefaction wave.
While in their models Kurki-Suonio and Laine have assumed that the downstream flow is
sonic relative to the front (i.e. v9 = ¢43), we here note that this restrictive hypothesis does
not need to be made. Indeed, it is in principle possible to construct solutions for super-
sonic deflagrations in which vy < ¢4 and vy > ¢, corresponding respectively to supersonic
weak and strong deflagrations followed by rarefaction waves. It should be noted that a
supersonic deflagration could eventually evolve into a detonation if the deflagration front
would coalesce with its precompression shock. This could happen, for instance, when the
strength of the precompression shock front increases so much that its speed would equal
that of a detonation front (Courant and Friedrichs [35]).

As for detonations, deflagrations can be further distinguished into weak, strong and
Chapman-Jouguet deflagrations according to whether the fluid velocity behind the defla-
gration front is supersonic, subsonic, or sonic respectively. The count of the unknowns
in the hydrodynamical solution of a deflagration front is somewhat more elaborate as a
consequence of the higher number of discontinuity surfaces that could be present. Nev-
ertheless, it is straightforward to show that there are ten different unknowns (i.e. e and
v ahead of the shock, e and v behind the shock, e, v1, €2, V2, Vshoer and vges) in the
case of a standard deflagration wave and twelve (i.e. the same as before plus the energy
density behind the tail of the rarefaction wave and its velocity) in the case of a super-
sonic deflagration (Kurki-Suonio [80]). The junction conditions across the discontinuity
surfaces together with the boundary and initial conditions allow to determine nine of
the unknowns for a standard deflagration and eleven of the unknowns for a supersonic
deflagration.

As a result, deflagration waves represent intrinsically underdetermined fronts and
this reflects the impossibility of defining the velocity of the detonation front from the
initial conditions and the conservation equations (Landau and Lifshitz [90]). The further
equation required in order to close the system of equations and eliminate the degeneracy in
the solution is usually defined starting from microscopic considerations about the processes
taking place at the detonation wall and effectively expresses the rate at which the reaction
takes place at the front. Because of its microscopic nature, this equation can represent a

I Note that also in this case the front moves subsonically relative to medium ahead of it, which however,
can have a considerable velocity relative to the fluid at rest.
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delicate point in the whole hydrodynamical treatment of a deflagration wave and this is
particularly true in the case in which the front is taken to mimic the dynamics of a phase
interface in a cosmological first order phase transition. The way this problem has been
solved for the cosmological quark-hadron phase transition will be discussed in detail in
Subsection 5.2.3.

A final comment should be made on strong deflagrations which, similarly to weak
detonations, cannot be realized in practice in spite of the fact that they satisfy conserva-
tion laws. There are a number of ways of proving this claim for chemical combustion. A
rigorous treatment in which the combustion front is described as a changing mixture of
the reacted and unreacted fluid can show that strong deflagrations would include regions
of negative entropy production and are therefore impossible (Courant and Friedrichs [35]).
Other proofs involve the investigation of the stability properties of a strong deflagration
(see next subsection) and show that if a strong deflagration could be momentarily pro-
duced it would be totally unstable and would then split into a similarity rarefaction wave
and into a weak deflagration (Landau and Lifshitz [90], Laine [85]). Once the impossi-
bility of strong deflagration is assessed, it is also possible to exclude weak detonations in
chemical combustion when the latter are considered as equivalent to a shock front followed
by a strong deflagration (Courant and Friedrichs [35] and see also Subsection 1.2.1).

1.3 Stability of Relativistic Reaction Fronts

An aspect which deserves great attention when studying the evolution of a thermody-
namically stable reaction front (i.e. of a front which satisfies conservation laws and can
be momentarily produced) is that of hydrodynamic stability. For this purpose, stability
analyses are carried out so as to establish whether, once the front is produced, this can
evolve in time without radically changing its properties. Stability analyses of reaction
fronts represent a large area of research both from the experimental and the theoretical
point of view and a number of important results have been established especially within a
linear regime. In the next Subsections (1.3.2, 1.3.3) we will discuss in detail some recent
linear stability analyses of relativistic detonation fronts (Rezzolla [143]) and of relativistic
deflagration fronts (Huet et al. [60])'2. In both cases the analyses have been made having
in mind an application to the motion of a phase interface during a cosmological phase
transition and comments on these applications will be made often during the discussion.

I2Note that these subsections are heavily technical and, if the reader so wishes, they can be safely
skipped without creating difficulties for reading the rest of the Thesis.
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Before going into details, a couple of comments should be made on the concept
of evolutionarity of a discontinuity surface and on the properties and the validity of a
linear stability analysis. A discontinuity surface is usually considered as evolutionary if
any infinitesimal perturbation of the initial state produces only an infinitesimal change
in the flow over a sufficiently short time interval (Landau and Lifshitz [90]). This means
that an evolutionary front can be momentarily produced and can possibly have a regular
evolution in time. However, an evolutionary front is not necessarily a stable front since it
might well develop instabilities over a long enough time scale. In order to verify that an
evolutionary front is also hydrodynamically stable a rigorous stability analysis is necessary.
It is important to stress that the ultimate onset of the instabilities cannot be fully assessed
within a linear analysis, since it might also be that the instability modes possibly found
could be controlled by intervening nonlinear effects which would limit the energy transfer
into the unstable modes and counteract their growth. However, in the case of reaction
fronts, a necessary and sufficient condition for the validity of the above arguments is that
a mutual causal connection should be maintained between the front and the upstream or
the downstream regions of the flow. In order to clarify this concept for the various cases
of deflagrations and detonations, we dedicate the next subsection to the discussion of the
causal structure of reaction fronts and introduce the concept of degree of underdeterminacy
of a discontinuity surface, which can provide a simple indication of whether the surface
can be stable or not.

1.3.1 Causal Structure and Determinacy of Reaction Fronts

The degree of underdeterminacy of a discontinuity surface (e.g. either a shock or a reaction
front) can be easily calculated by counting the number of free parameters which could
be associated with a small perturbation of the front (Landau and Lifshitz [90], Friedrichs
[47]). These are determined by the difference between the number of unknown parameters
(which in general are given by the number of sonic perturbations that can be transmit-
ted from the front, by the entropy perturbation propagated in the downstream region of
the flow and by the surface displacement) and the number of boundary conditions that
the perturbation has to satisfy (which in general are given by the conservation of baryon
number, energy and momentum). While a discontinuity with a zero degree of underde-
terminacy can be shown to be linearly stable, the opposite is not true for a discontinuity
with a finite degree of underdeterminacy. This is because the further equation necessary
to close the system of equations and determine the solution (and which usually specifies
the velocity of the front in terms of the thermodynamical variables on either side) could
or could not lead to an unstable configuration (see Subsection 1.3.3).
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Since all of the reaction fronts presented so far satisfy the same boundary conditions,
their different degree of underdeterminacy is then simply due to the different number of
perturbations that can be transmitted from the front. In order to calculate this num-
ber there are at least two efficient ways, one of which makes use of the concept of the
characteristic curves '* (Rezzolla [143]), while the other requires the calculation the of
the difference between the local fluid velocity and the perturbation velocity as seen in the
front rest frame [i.e. u; = (v1£cg1)/(1E£v1¢51) and ug = (va+¢s9) /(1 Fvacss), Landau and
Lifshitz [90], Seibert [151]]. Since the perturbations must propagate away from the front,
it follows that for all of the different classes of reaction front the following inequalities
u; < 0 and uy > 0 must hold.

We here adopt the first of the two methods and for this purpose we have represented
in Figure 1.8 the causal structure of the six types of reaction fronts which were summarized
in Table I. The figure consists of six different spacetime diagrams, (all referred to the front
rest frame), with time on the vertical axis and the space coordinate on the horizontal one.
For each diagram, the thick solid line represents the worldline of a fluid element passing
from region 1 to region 2, the thin solid and arrowed lines denote the characteristic curves
relative to the front [C} are the forward (+) and the backward (—) characteristics of the
regions ahead of the front (j = 1) and behind it (j = 2)], the dotted line shows the sound
speed in the frame of the front and the dashed line represents the worldline of the front.
The characteristic curves are drawn so to reach the front when the fluid element crosses it
and to depart from the front at the same instant; note that for simplicity we have assumed
the sound speeds to be the same on both sides of the front.

Deflagrations are represented in the left column, detonations in the right one and
the different diagrams refer respectively to AA: weak deflagration, AB: Chapman-Jouguet
deflagration, AC: strong deflagration, CC: weak detonation, CB: Chapman-Jouguet det-
onation and CA: strong detonation. (The letters A, B, C, express the fact that the fluid
element can move, relative to the front, at a speed smaller, equal or larger than the sound
speed, with the first letter referring to the medium ahead and the second one to the
medium behind.)

With this representation, the diagrams in Figure 1.8 show that when the medium
ahead of a reaction front is subsonic (e.g. as in the diagrams AA, AB and AC), the
front can always transmit a perturbation upstream in region 1 by means of the backward
characteristic C!.

13We recall that the characteristic curves can be interpreted as the directions in spacetime along
which sonic perturbations are transmitted, as well as the fluid flowlines (advective characteristics). It is
then possible to define the “region of determinacy” of an event P as the region of spacetime included
between the characteristic curves converging to the point P (see also Subsection 5.2.4 for a more extended
discussion).



1. Relativistic Shock Waves and Reaction Fronts

4

; A e AB : i RR CB

+
[
+
[

Figure 1.8 Spacetime diagrams and characteristic representations of the various
types of reaction front (drawn as left propagating). Deflagrations are represented on
the left and detonations on the right; the six different diagrams refer respectively to:
AA: weak deflagration, AB: Chapman-Jouguet deflagration, AC: strong deflagration,
CC: weak detonation, CB: Chapman-Jouguet detonation and CA: strong detonation.
The diagrams are drawn relative to the front rest frame with time on the vertical
axis and the space coordinate on the horizontal one. The thick solid line represents
the worldline of a fluid element passing from region 1 to region 2. For each diagram,
the characteristic curves are denoted with thin solid and arrowed lines (C% , with
j =1, 2, are the forward (+) and the backward (—) characteristics relative to the
regions ahead of and behind the front respectively), the sound speed in the frame of
the front is marked with a dotted line, while the dashed line represents the worldline
of the front. (For simplicity we have assumed the sound speeds to be the same on
both sides of the front.)
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In this case, there is a mutual causal connection between the front and the medium ahead
of it and the worldline of the fluid element is within the region of determinacy of the
front. This mutual causal connection is not present when the medium ahead of the front
is supersonic (e.g. as in the diagrams CC, CB and CA) in which case the front cannot
influence the incoming flow and both the characteristic curves C} and C! are directed
towards the front.

Similarly, from Figure 1.8 it is possible to deduce the causal connection between the
front and the medium behind it, by looking at whether there is any backward characteristic
curve C? reaching the front from region 2. It is evident that this can occur only if the
downstream flow is subsonic (as in diagrams AA and CA) or sonic (as in diagrams AB and
CB); this latter case represents a limiting situation, with the mutual causal connection
being just marginal as shown by the characteristic C? being tangent to the worldline of
the front. The front has no mutual causal connection with the medium behind when
the downstream flow is supersonic (as in the diagrams AC and CC) and in this case the
characteristic curves C1 and C2 are both in the direction of the flow. This difference is
a fundamental one, establishing that there is a mutual causal connection between the
front and the medium behind only when the flow out of it is subsonic or sonic. As a
consequence, for subsonic and sonic downstream flows, the medium behind can respond
to any perturbation produced by the front and, at least in principle, it can counteract
the growth of the potential instabilities. This backreaction could then appear in the
those nonlinear effects that tend to saturate the oscillations which would be present but
would not grow unboundedly. This might be at the origin of the formation of the typical
corrugated but stable cellular flames observed in laboratory experiments (Markestein
[107], Buckmaster and Ludford [26]), which are produced by weak deflagrations.

This stabilizing mechanism cannot operate in weak detonations, since in this case
there is no mutual interaction between the front and the media either ahead of it or
behind it. We remark that this argument is simply based on the causal structure of weak
detonations and is therefore independent of the order at which a perturbation analysis is
performed. In the context of causal connection, Chapman-Jouguet detonations represent a
limiting case but do not suffer from the causality problems discussed for weak detonations.
As shown in the diagram CB of Figure 3 in fact, the front is just marginally mutually
connected with the medium behind it and this could then provide the back-reaction
required for saturating the potential perturbations produced at front.

Finally, the degree of underdeterminacy for the various reaction fronts can be sum-
marized as in Table II, which shows that while strong and Chapman-Jouguet detonations
are linearly stable, all the other types of reaction fronts could be unstable. While strong
deflagrations are assumed to be impossible because of negative entropy production (see
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Subsection 1.2.2), Table II shows that the stability of Chapman-Jouguet deflagrations,
weak deflagrations and weak detonations can be assessed only if a further condition is
specified.

DETONATIONS DEFLAGRATIONS

Weak 4—-3=1 4—-3=1
Chapman-Jouguet 3—3=0 4-3=1
Strong 3—-3=0 5—3=2

Table IT  The degree of underdeterminacy for the different types of reaction
front. The number is calculated as the difference between the number of un-
known parameters which could be associated with a small perturbation of the
front and the number of boundary conditions that the perturbation has to
satisfy.

1.3.2 Stability of Detonations

The stability of classical detonation fronts has been studied quite extensively in the one-
dimensional and linear regime (Lee and Stewart [96]) and attempts are currently being
made to extend this analysis within a weakly nonlinear theory (see Roytburd [149] for a
list of references). A more recent investigation of the stability properties of relativistic
detonation fronts in cosmological phase transitions has been made by Abney [1] who has
concentrated particularly on the case of Chapman-Jouguet detonations. The motivation
of such a study comes from realizing that while instability modes are not allowed in the
upstream flow region of a detonation front, it is not possible to exclude them in the
region behind the front, where they could also grow exponentially with time. As a result
of his analysis, Abney has reached the conclusion that Chapman-Jouguet detonations are
unstable at all wavelengths for the relevant parameter values of a cosmological first order
phase transition.

We here reconsider in more detail and removing some of the approximations which
were assumed by Abney, the analysis of the stability properties of both Chapman-Jouguet
and strong detonations, showing the incorrectness of the above results. In particular, we
find that strong detonations are both evolutionary and stable with respect to corrugations
of the front and that Chapman-Jouguet detonations are evolutionary and unconditionally
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linearly stable. This is in agreement with what expected from the study of the degree of
underdeterminacy of these fronts and discussed in the previous subsection.

The following analysis is rather elaborate and resembles in parts the one contained
in a paper by Rezzolla [143]. We first present the general perturbed hydrodynamical
equations deduced from the standard linear stability analysis of special relativistic flows
and then examine the stability of generic discontinuity fronts with respect to corruga-
tions. This can be done by requiring that the perturbed hydrodynamical equations are
compatible with the conservation of energy and momentum across a front subject to a
corrugation perturbation. The techniques implemented for this analysis are rather general
and will be here applied to Chapman-Jouguet and strong detonations whose linear stabil-
ity properties will be then established. However, minor but important modifications allow
to implement the same stability analysis to any type reaction and in the next subsection
we shall also discuss the case of deflagrations.

Consider a plane detonation front which is propagating in a Minkowski spacetime
with (¢, x, y, z) being the inertial cartesian coordinates and which is taken to be at rest
on the (y, z) plane so that there are no three-velocity components tangent to the front
(see Figure 1.1). Across this surface the fluid undergoes a transformation which can be
either a chemical reaction (as in the case of combustion) or a phase transformation (as
in the case of cosmological phase transitions). Assume moreover that fluids on either
side of the front can be described by the standard stress energy tensor of a relativistic
perfect fluid (1.1). The hydrodynamical equations can then be easily derived from the
projection of the four-divergence of the stress energy tensor along the direction defined by
the fluid four-velocity and orthogonal to it, so as to express local conservation of energy
and momentum respectively as

ueT 5 =0, (1.34)

P T, =0, (1.35)

where P,s5 = gap + Uuaup is the projection operator orthogonal to u® (i.e. Pysu® = 0).
Making use of (1.1), equations (1.34) and (1.35) in the local Lorentz frame can be written
explicitly as

ou®

op 9
o 78 = 1.
Uty + CWH 3 0, (1.36)

and
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op , 9p

“— “ — =0 1.37
T gga + gk oz OxP ’ (137)

Equations (1.36) and (1.37) represent the usual “zeroth order” hydrodynamical equations

and describe the motion of fluid elements on either side of the detonation front. Following

a’LL5

standard linear perturbation analysis, we now introduce a small perturbation in the rele-
vant hydrodynamical variables so that, at first order in the expansion, the new perturbed
(primed) variables are

p — p=p+ip, (1.38)

ua

v(1, ¥) =~(1, vy, 0, 0) — (u®) =u®+ du®, (1.39)

where v = (1 — v2)~/? and (the flow is taken to be uniform and unperturbed along the
z-axis direction),

(u®) = V(1 4+ Y0300z, vz + 700, vy, 0) . (1.40)

As a result, the perturbed expressions of equations (1.36) and (1.37) are

0 0 0 0 0
2 2 T —§ T 2—(5 z J J T op = 1.41
csw<yvatv+’yaxv+ayvy>+atp+vaxp 0, (1.41)
0 0 0 0
2 RN _— =
Y w <_8t5% + Vo 6vx> + vy 8t5p + 8z5p 0, (1.42)
0 0 0
2 _ —6p= 1.4
Y w <8t5vy +vmamdvy> + aydp 0, (1.43)

which can also be written, in a more compact form, as

B G, 9\ -~
<Cta+cxa—x+cy@ ) U=o0, (1.44)

where

Ci=| v, ~yw 0 , (1.45)



1. Relativistic Shock Waves and Reaction Fronts 27

v, Ywe: 0
C.,=1| 1 Ywv, 0 , (1.46)
0 0 Y wv,
0 0 wc
C,=(00 0 , (1.47)
10 0
and U is the state-vector for the perturbations
op
U=| duv, | . (1.48)
dvy
The most general solution of (1.44) has the form
U(t, =, y) = A(z)e @tk (1.49)
with w being a complex number, k£ a real number and
3
Al) =Y (¢Ly)e” il (1.50)
j=1

The I; are the complex eigenvalues of the secular equation (1.44), fj are the cor-
responding eigenvectors and c; are three real constant coefficients. Substituting the trial
solution (1.49) in (1.44), leads to a homogeneous system of equations whose coefficients
are in the secular matrix

D=(C,w+C,I+C,k), (1.51)

The eigenvalues [; can then be found by setting to zero the determinant of D. Doing this
we obtain the dispersion relation
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det (D) = (I, + w) [(lv, + w)? = (wo, + %2 = (1 = v2)k>c2] =0, (1.52)
which has the roots

ll =, (153)

log = 3

m_

{(ai — Nwv, + ¢,(1 —v?) [w2 + M/&] 1/2} : (1.54)

2 2
Cs 1 =

A first point to notice is that the eigenvalues /5 3 become divergent for a fluid velocity
normal to the front v, equal to the local sound speed. The presence of a singularity at
the sonic velocity represents the ”heritage” of the hyperbolic form of the hydrodynamical
equations and is a general feature of the linear stability analysis of shock waves and
reaction fronts (Anile [12], Landau and Lifshitz [90]). Nevertheless, particular care should
be taken examining these limiting cases. It is easy to realize that the singularity in the
eigenvalues [y 3 is only an apparent one and it can be avoided if one solves equation (1.52)
directly with v, = ¢,. In this case there are only two roots and the new eigenvalues (which
we denote with a bar) then are: I, =1; and

-k (1+2)
= — 2w 1.
12 9w 265 w ( 55)

Using the eigenvalue (1.55) in the downstream region of the flow solves the problem
of the singularity at the sonic velocity, but necessarily restricts the analysis to Chapman-
Jouguet detonations only. (This is the choice made by Abney.) In order to investigate
the stability properties of generic detonation fronts, it is necessary to make use of the
solutions (1.53) and (1.54) for fluid velocities near to the sound speed. For this purpose
we can write the velocity normal to the detonation front as

Uy = Cs + €, (1.56)

with € being a small positive or negative real number. The value of ¢ must in princi-
ple lie in the range 0 < € < (1 — ¢;) for the upstream region (xz < 0) and in the range
—c;s < € < (1 —¢,) for the downstream region (z > 0). Making use of (1.56), it is possi-
ble to expand both the numerators and the denominators of solutions (1.53) and (1.54)

around the sonic velocity so as to obtain the new eigenvalue expressions (marked with a
tilde)
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, (1.57)

~ 1 k22 k2 kA2
SRR P SR R e s 2 1.58
2 €(2¢5 + ¢€) {w < ta w? ) € +we l 2w? + 2w(1 — cf)] ¢ } ’ ( )

~ 1 k2c?
>~ — Lowe (-1 32 —1-— =
3 G(QCS—FE){ wes(c )+w(cs w2>6
k2 k2
s 1= s 2 1.59
R 1 R

Although approximate, these expressions are suitable for a generic value of the fluid
velocity near the interface and provide a starting point for the stability analysis of both
strong and weak detonations. It is important to notice that I, is not singular for ¢ — 0 and
that it reduces to I, at first order; for this reason a second order expansion is necessary.
This is not the case for I3 which represents the singular root of (1.54) and for which the
first order expansion is, in fact, sufficient.

Next, it is necessary to find the form of the eigenvectors fj contained in (1.50). This
requires solving the matrix equation

(W + Lve) Yw(wv, + ;) wctk L;,
(Wor 1) YPw(w+ o) 0 Lj» [ =0,
k 0 V2w(w + ljv,) Ljs
=1, 2 3 (1.60)

which leads to the following eigenvectors

L, = : (1.61)
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1

B (wv, + an)
Y2 w(w + invm) ) (1.62)

=i
3
Il

kR
V2w (w + v,

n=2 3

It is now necessary to ascertain the values of the coefficients ¢; for which the so-
lution (1.49), with eigenvalues (1.57)—(1.59) and eigenvectors (1.61)—(1.62), satisfies the
necessary boundary conditions. For this reason we have to check that, if there are time
growing instabilities, the effects of these should be limited in space and not extend to
infinity, so that

lim |U(t,z,5)]=0. (1.63)

T—300

After a few algebraic transformations, it is possible to verify that

(a) Im(w)>0 <= Im(L)<0,
(b) Im (W) >0 <= 1Im(l) <0,
(c) Im (W) >0 <= 1Im(l5)<0 for 0 <e < (1—cy)
(1.64)
and
(d) Im (w)>0 = Im(l}) <0,
(e) Im(w)>0 = Im () <0,
(f) Im (W) >0 = Im (I5) >0 for —c; <e<0.
(1.65)

In order for (1.63) to be satisfied, it is necessary that Im (I;) > 0 or that the corre-
sponding coefficients ¢; are zero for x < 0 and that Im ({;) <0 or ¢; = 0 for x > 0. For
modes with Im (w) > 0 we then have



1. Relativistic Shock Waves and Reaction Fronts 31

(a) cp=c=c3=0 forx <0,
(b) c1#0, c2#0, ¢g=0 forx>0 ande<0 (strong, C —1J),
(c) 61 #0, c2#0, ¢c3#0 forxz >0 ande>0 (weak) .
(1.66)

In other words, the conditions (1.66) signify that no perturbations can grow ahead
of the detonation front (i.e. U(t,z,y) = 0 for 2 < 0), while this is not necessarily the
case for the positive x half-plane, where growing modes are allowed to exist since only
one coefficient needs to be zero in the case of strong and Chapman-Jouguet detonations,
and none in the case of weak detonations. This latter result represents an important
difference between strong and weak detonations and will be further underlined in the
following. The condition (1.66-a) on the coefficients ¢; has its physical interpretation in
the fact that in the negative x half-plane the flow is supersonic and “entering” the front
and, as a consequence, no sonic signal (and therefore no perturbation) can be transmitted
upstream of this flow. This can also be seen making use of Figure 1.8 which shows that
the backward characteristic C! has always a positive slope in the case of detonations.

Within the theory of shock wave stability, it is known that the conditions for a shock
to be evolutionary (i.e. v; > ¢4, V9 < €5), Landau and Lifshitz [90]) are only necessary
but not sufficient to prove that it will not develop instabilities. This means that an evolu-
tionary shock could become unstable with respect to small perturbations of the disconti-
nuity surface, which would then appear as “corrugations” of the front!* (see Figure 1.9).

Corrugation stability analyses of the type presented here have been performed in
the past both for a non-relativistic shock (D’yakov [38], Kontorovich [78], Erpenbeck [44],
Landau and Lifshitz [90]) and for a relativistic Chapman-Jouguet detonation (Abney [1]).
A rather different approach for a relativistic shock wave has been proposed by Anile
and Russo [10, 12] where the intuitive definition of corrugation stability introduced by
Whitham [168] has been translated into a more rigorous form (we recall that according
to Whitham, a corrugated shock wave is stable if the shock velocity decreases where the
front in expanding and increases where it is contracting).

We next discuss the corrugation stability of relativistic strong detonation fronts
and show how these relate to the special case of Chapman-Jouguet detonations. The

4We note that it is possible, in principle, to write necessary and sufficient conditions for a shock wave
not to decay into a number of different discontinuity surfaces (Gorenstein and Zhdanov [51]). However,
these conditions do not provide information about the evolution of the shock when this is subject to
corrugations of the front.
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first step consists in establishing the correct eigenvalues to choose. Making use of the
conditions (1.64)—(1.65), together with (1.66), it is evident that it is necessary to use
the eigenvalues I, I (and the corresponding eigenvectors) in the case of strong and
Chapman-Jouguet detonations (e < 0) while all of the eigenvalues l~1, l~2, l~3 would need
to be used in the case of weak detonations (e > 0). The second step consists of requiring
that the perturbed hydrodynamical equations satisfy junction conditions at the front
expressing the conservation of energy and momentum respectively. These have already
been introduced in Section 1.1 [i.e. as equations (1.4)—(1.5)], but we present them here in
the new compact form:

+
[7221)1)1;} =0, (1.67)
+
[nywvi + p] =0, (1.68)
[v,]" =0, (1.69)
where!® [A]* = AT — A= = A; — A,. Note that these junction conditions need always

to be expressed in the front rest frame and that the latter coincides with the coordinate
frame only when the front is unperturbed.

Let us now suppose that the front is perturbed with a periodic oscillation in the
y-axis direction of the type (see Figure 1.9)

A = Age @Ry (1.70)

and let us calculate the resulting form of the perturbed junction conditions. For this
purpose it is convenient to introduce orthogonal unit three-vectors normal (n) and tan-
gent (t) to the front (see Figure 1.9) which, at the first order in the perturbation, have
components

1, 0) = (—ikA, 1, 0).  (1.71)

15 Hereafter upper indices + and — will be used to indicate quantities immediately ahead of and behind
the front.
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Figure 1.9 Schematic representation of a corrugated detonation front.
n and t are orthogonal unit three-vectors, normal and tangent respec-
tively to the discontinuity surface.

It is now necessary to evaluate the perturbed expressions for the fluid velocities on
either side of the front, as these are viewed in the front rest frame. For this purpose it is
necessary to perform a relativistic velocity transformation with respect to the detonation
velocity Uy = (0A/0t) n = (—iwA)n, so as to obtain the following expressions for the
perturbed normal and tangential velocities relative to the front

. Ugj + OUgj + 1WA - wA
’Ujl- n= ( T+ i, A , 0Vyj, O - gzvmj+5vmj+7—]2 , (1.72)
’l_))j! . L = 5ij — Z'kUIjA s (173)
j=1,2
and to which corresponds a perturbed gamma factor
wA
(S’Yj & ’7]3-ij <5'U:cj -+ 7) s (174)
J
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It is now convenient to introduce the new state vector of the perturbations near to
the front and in downstream region of the flow

dpo

Volt, y) = | v |, (1.75)
6Uy2

where, as discussed above, each component of the corresponding \71(t, y) is automati-
cally zero. Making use of (1.72)—(1.74) in (1.67)-(1.69), it is possible to write out the
perturbed junction conditions and to use the resulting system of three equations in order
to derive the components of V(¢, y). If there is a surface tension o present (as in the
case of a phase interface), it is necessary to modify the momentum balance across the
front to take account of the effect of this (Zeldovich et al. [172]). While the energy bal-
ance at the front is unaffected by a constant surface tension (Miller and Pantano [113]).
This contribution appears in the expressions for the negative = half-plane with the form
o(0%/0y* — 82 /0t?) A, where the first term is related to the surface curvature, while the
second is related to its “inertia”. Omitting here the lengthy algebra, the three components
of V(t, y) are found to be

1+ 02 . (v1 — v2) (1 — v102) Yavs 9 49
Spo — 2 )| A 1.76
P = F l iwwe 0+ o +o(w A, (1.76)
1—v2 [ (v1—v2)(1—viw) O,
5v, 2 T 2D == A 1.
Va2 . +1' v l N vy +Fol )wz " ’ (L.77)

6Uy2 = —ZkA(Ul - ’UQ) s (178)

where I'y = (1 £ ©9730v3), with O, = (dwa/dps) =14 1/c2, for a relativistic fluid (note
that for compactness we have written v; 9 = v, 49 for the zeroth order velocities). Expres-
sions (1.76)—(1.78) represent the special relativistic generalization of the equivalent expres-
sions discussed in §90 of Landau and Lifshitz [90] and reduce to these when the Newtonian
limit is taken. It is important to remark that the term (I'_ + T v3) =1+ v3(1 — ©,), in
the denominators of (1.76)—(1.77), vanishes whenever vy = ¢49, giving a singular behaviour
at the sonic velocity similar to the one seen in the Newtonian case (Landau and Lifshitz
[90]). We note that the corresponding expressions derived by Abney [1], differ from
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(1.76)—(1.77) and do not show this singular behaviour except in their Newtonian limit.
This discrepancy is due to the fact that in Abney’s treatment the transformation to the
front rest frame is a simple Galileian one and that the perturbation in the squared gamma
factor is neglected. Unfortunately, we believe that these omissions, which radically change
the nature of the solution at the sonic velocity and strongly influence the analysis, cannot
be considered satisfactory.

We have already mentioned that a singular behaviour for a velocity behind the front
equal to the local sound speed is a standard feature of the stability analysis of discontinuity
surfaces. Nevertheless, great care must be taken when discussing these limiting cases, such
as the present Chapman-Jouguet detonations. Some physical insight into the properties
of Chapman-Jouguet detonations can already be gained when looking at the perturbed
expressions for the hydrodynamical variables in terms of the perturbation A [i.e. inverting
expressions (1.76)—(1.77)]. In this case, in fact, we could conclude that the corrugations
produced on a Chapman-Jouguet detonation front by perturbations in the downstream
fluid variables, are always zero and independent of the strength of the perturbations (i.e.
independent of the magnitude of V). In other words, expressions (1.76)—(1.77) seem to
indicate that at linear order a Chapman-Jouguet detonation is unconditionally stable (an
identical conclusion will be drawn also from the study of the full dispersion relation for a
Chapman-Jouguet detonation).

At this stage it is possible to deduce the form of the dispersion relation by requiring
that the hydrodynamical perturbations present in the fluid adjacent to the phase interface
are compatible and coincide with the perturbations produced by the corrugations of the
front, i.e.

3
U(t, 07, y) = Y (¢L)e @) = Vy(t, y) . (1.79)

J=1

Writing out (1.79) explicitly results in a system of three equations with unknowns be-
ing given by the coefficients ¢;, and by the amplitude of the surface displacement A,.
Whether equations (1.79) are sufficient to determine the dispersion relation depends on
the number of nonzero coefficients c¢; or, equivalently, on the degree of underdeterminacy
of the detonation front (see Subsection 1.3.1)

In the case of a strong or Chapman-Jouguet detonation there exist three free pa-
rameters (which correspond to the unknowns ¢;, ¢, and to Ag) and the front then has
zero degree of underdeterminacy (see Table II). In this case, equation (1.79) has a solution
provided that the determinant of the matrix of coefficients vanishes, i.e.



36 1. Relativistic Shock Waves and Reaction Fronts

0 1 dpa
. (wv, + l~2) 5o
det Yaws(w + lov,) =0. (1.80)
] k
_a vy

k _ﬁwg(w + l~2vm)

After some algebra, the general form of the dispersion relation is found to be

- 1— Ty — 2vy3v2 =
Wa {,L.(Ul v2) lw:a( v1v2) (L 72“2)+w2(1_v1v2)(r+_27§)12

| + F+’U% U1 V2
2\ .27.2 2 2 2\ 7
4w [21}2(1 — v10g) — Uy (F_ + F+U2)] vak® — y5viv9k (F_ + F+v2) ZQ]

(= )

%)

+o [w2 (@2 -1- v%) -y (F_ + Fyu%) Iy + (1+ v%)kﬂ } =0,

V2

(1.81)

which provides a relation w = w(k) once the free variables vy, vq, ¢so and o /w, are specified.
On the other hand, in the case of a weak detonation there exist four free parameters
(corresponding to the unknowns ¢y, ¢y, ¢3 and Ag) and this forces the introduction of
a suitable fourth boundary condition in order to make the solution fully determined. In
this respect, weak detonations are similar to weak deflagrations and in order to be fully
determined require an equation describing the microscopic burning mechanism or, in the
case of phase transitions, the rate of transformation of the old phase into the new one.
This feature of weak detonations does not allow for a general discussion of their stability
properties and restricts the analysis to the specific situations in which the fourth boundary
condition can be expressed. For this reason, in the following we will limit ourselves to
discuss the general stability properties of Chapman-Jouguet and strong detonations only.
Recalling the definition (1.58) of I, it is possible to see that a strong detonation
naturally evolves into a Chapman-Jouguet detonation when the velocity behind the front
passes from being subsonic to being equal to the sound speed. This is the case which we
will discuss first. We set € = 0, vy = ¢, (hereafter ¢, = ¢52) and (1.81) then reduces to
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Wy {Z,(vlv—l Cs) l2w3 (1 —vicy)

2w(] — 2 12
T 4T, . + 2w(1 — vics)yacsk ]

P Gl lwz(l ) Lt ci)kQ] } ~0. (1.82)

Wa V3l
Note that the dispersion relation (1.82) does not contain the eigenvalue I, (which
is always multiplied by vanishing terms) and that, in order to avoid a singularity, the
content of the curly brackets in (1.82) has to be zero. This condition can be imposed by
requiring that
(v1 — ¢s)(1 — vycy) (w? — k%)

2 2.21.2 .
k*) |12 =0 1.83
(4 el |2t S R B 0, (1.83)

which has the four distinct roots

Wi2 = + Z")/QQJC s (184)

(1.85)

We note that it is a common experience in dealing with the solution of dispersion
relations that spurious roots can be introduced, which then need to be discarded on the
basis of physical or conceptual considerations. An example of this is the root w; which
has positive imaginary part and would lead to an exponentially growing unstable mode.
However, w; should be rejected since it does not satisfy energy boundary conditions at
short wavelengths and would lead to a “high frequency catastrophe”. It is well known, in
fact, that the surface energy associated with a perturbation of amplitude A is proportional
to 0k?A? and a cutoff wave number, above which instabilities are not allowed, is necessary
in order to avoid accumulation of infinite energies at high frequencies.

The physical mechanisms which operate this limitation depend on the specific sit-
uation under examination and can be either dissipative effects, such as a fluid viscosity,
or can be the consequence of surface tension. However, the root w; does not contain any
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contribution coming from the surface tension and this has the consequence that even an
infinitely stiff front (i.e. one with 0 — 00) would appear to be unstable at all wavelengths.
This behaviour suggests that the roots w; » cannot provide a physical description of det-
onation fronts and will be discarded here. Further evidence of the inapplicability of the
roots (1.84) comes from realizing that the term (w? 4+ v2¢2k?) in (1.83) is the consequence
of a Doppler frequency transformation relative to a medium moving at the sound speed;
with a few simple calculations it is easy to see that this term should always be different
from zero (see the Appendix A).

On the other hand, after some algebraic manipulations (the details of which are
also presented in the Appendix A), it is possible to show that the other two roots ws 4,
which are clearly dependent on o, both have negative imaginary parts and therefore lead
to stable solutions. As discussed when imposing the validity of the junction conditions
across the detonation front, this is a further and more direct proof that at first order a
Chapman-Jouguet detonation is unconditionally stable. We remark that this conclusion
is in contrast with the results presented by Abney in [1] which indicated that Chapman-
Jouguet detonations are effectively unstable at all wavelengths. As mentioned before,
the origin of this discrepancy is to be found in the approximations adopted in [1] for the
derivation of the perturbed hydrodynamical quantities behind the detonation front, which
have artificially removed the singular properties of this class of detonations and have led
to erroneous conclusions.

The situation is not very different when the more general strong detonations are
discussed. In this case, all of the expressions in the dispersion relation (1.81) need to be
expanded around the sound speed, with terms up to the second order being retained. This
is a consequence of the fact that at first order Chapman-Jouguet detonations and strong
detonations are indistinguishable and a second order expansion is therefore necessary. The
complete general dispersion relation, which results from lengthy algebraic manipulations,
is presented in the Appendix A. Here, we limit ourselves to discussing the equivalent
expression obtained by setting ¢ = 1/3
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(1.86)

As for the case of (1.82), equation (1.86) can be satisfied only if the content of the
curly brackets is set equal to zero and this results in a seventh order equation in w with
complex coefficients. [It is straightforward to check that (1.86) reduces to (1.83) when
¢ = 0.] The roots of (1.86) can only be computed numerically and for this we have imple-
mented an algorithm which makes use of a variant of Laguerre’s Method (NAG Fortran
Library CO2AFF [106]). The computations can be performed only after all the parameters
have been specified and for this purpose we have set v; = (3/2)¢s and € = —0.01. We
stress that only the solution of the complete polynomial allows one to deduce a consistent
picture of the functional dependence of the growth rate on the wavenumber k. Any anal-
ysis which studies the dispersion relation (1.86) in the approximate expressions which it
assumes in the long and short wavelength limits (as done by Abney [1]) can easily give
rise to confusing outcomes.

We present in Figure 1.10 (a) results of the numerical computations for the long
wavelength region and in Figure 1.10 (b) for the short wavelength one, with the wavenum-
ber being expressed in units of wy /0. Figure 1.10 (a) and (b) indicate that there is always
a root of (1.86) which has positive imaginary part (all of the others have either negative
or constant imaginary part).
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Figures 1.10  Perturbation growth rate Im (w) plotted as a function of the
logarithm of the real wavenumber k expressed in units of wy/o. Figure (a)
refers to the long wavelength region, while Figure (b) to the short wavelength
one. The curves have been calculated assuming v; = (3/2) ¢, ¢s = 1/4/3 and
e = — 0.01.
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The instabilities described by this root have a growth rate which is independent of o,
increases linearly with the wavenumber k£ and produces an inevitable energy divergence at
high frequencies. They clearly represent the relics of the unstable modes contained in the
root wy of the dispersion relation (1.83) and, in analogy with what deduced for Chapman-
Jouguet detonations, the results shown in Figure 1.10 refer to a physically inconsistent
solution and should be discarded.

As a result, we can conclude that strong detonations also are linearly stable to
corrugations of the front and in this they resemble Chapman-Jouguet detonations to
which they reduce for ¢ — 0. A similar result (i.e. that an evolutionary front is also stable
with respect to corrugations), has been obtained also by Anile and Russo [11, 12, 10]
in the context of the stability of shock waves. Proceeding within the theory of singular
hypersurfaces, they came to the conclusion that the linear stability conditions for planar
relativistic shock waves coincide with those obtained in the framework of corrugation
stability.

Before turning to the discussion of the stability of deflagration fronts, a comment
should be made on strong detonations and the possibility of employing them for the
growth of new phase bubbles during cosmological phase transitions. We have just proved
that strong detonations are both evolutionary and stable with respect to corrugation
instabilities, however it is possible to demonstrate that such flow configurations cannot
be realized during bubble growth as they cannot satisfy the required boundary conditions
for a self similar solution. Proofs of this have been given by Landau and Lifshitz [90] for
nonrelativistic planar and spherical fronts, by Steinhardt [153] for relativistic spherical
fronts and by Laine [85] for the case of relativistic planar fronts. The impossibility of
having this class of reaction fronts as representative of the motion of the surface of a
“bubble” can be shown also with simpler arguments. Consider a fluid element which is
immediately behind a strong detonation and which has just been transformed into the
new phase (we here make the implicit assumption that the sound speeds are constant
on either side of the front). This fluid element, which was initially at rest, has been
put into motion by the front which will be seen by the fluid element as receding at a
subsonic velocity. Symmetry and the presence of an origin for the bubble, require that
the fluid velocity behind the front becomes zero somewhere in the flow profile and this
could occur either via a rarefaction wave, or via a shock wave. However, the front edge
of the rarefaction wave or the discontinuity surface would be seen as moving at the sound
speed or faster relative the fluid element and as a consequence either one would inevitably
overtake the detonation front. As a result, neither of these two flows can be established
behind a strong detonation front which is then unable to adjust itself to the required
boundary conditions and so cannot be produced in practice as a stationary solution for
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bubble growth.

1.3.3 Stability of Deflagrations

The linear stability of classical planar deflagration fronts was first studied by Landau in
a seminal work of 1944 [89] in which he showed that, at linear order in the perturbation,
a "slow combustion front” (weak deflagration) is unstable at any wavelength. This result
was compatible with the observed irregularities in propagating planar combustion fronts
and indicated that higher order effects were probably responsible for the saturation of the
oscillations and the production of the globally stable cellular fronts. In his derivation,
Landau concentrated on a weak deflagration and made use of the hypothesis of continuity
of the pressure field across the deflagration front. This approximation allowed him to
reduce to zero the degree of underdeterminacy of the front and to obtain the solution of
the problem. Such a choice is certainly reasonable when the fluid is not relativistic and the
perturbations produced at the front are not so significant so as to alter the continuity of
the pressure across the front. However, when the fluid is relativistic, this approximation
ceases to be a good one and the problem needs to be solved taking into account the
pressure variation along with the conservation of momentum across the front (we recall
that the pressure should be seen as a flux of momentum).

A linear stability analysis of relativistic deflagration fronts would resemble closely
the one presented in the previous subsection, but with some important differences emerg-
ing because of the different causal structure between deflagrations and detonations. In
particular, it is necessary to reconsider the values of the coefficients c¢; of the solution
(1.50) that satisfy the boundary conditions (1.63). In the case of a deflagration, in fact,
the solution of the perturbed hydrodynamical equations does not extend to infinity only
if

(a) cp=0=0, c3#0 for z <0,
(b) c1#0, c2#0, =0 forx>0 ande<0 (weak, C—1J),
(c) c1#0, c2#0, c3#0 forx >0 ande>0 (strong) .
(1.87)
A first consequence of the conditions (1.87—a) is that it is no longer possible to

assume the perturbed state vector of the fluid ahead \71(t, y) to be identically zero (as
done for detonations) since there exists at least one coefficient which does not need to
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be zero. This can also be seen making use of Figure 1.8 which shows that the backward
characteristic C! has always a negative slope in the case of deflagrations. A second
consequence concerns the degree of underdeterminacy of a deflagration, which is always
larger than zero. In particular, the degree of underdeterminacy of a weak or Chapman-
Jouguet deflagration is one, since there are four different parameters (i.e. ¢3 ahead of the
front, ¢; and ¢y behind the front and Ag) that need to be specified, while it is two for a
strong deflagration since there are five different parameters (i.e. ¢3 ahead of the front, ¢y,
¢y and ¢z behind the front and Ay) which could be associated with a small perturbation
of the front (see Subsection 1.3.1).

As discussed in the previous subsection for the case of weak detonations, a finite
degree of underdeterminacy of weak and Chapman-Jouguet deflagrations prevents from a
general discussion of their stability properties and limits the analyses to those situations
for which a consistent fourth boundary condition can be expressed. Attempts of the study
of the linear stability properties of relativistic weak deflagrations as phase interfaces during
cosmological phase transitions have been carried out in the past both in the limit of small
velocities (Link [100], Kamionkowski and Freese [71], Adams et al. [7]) and in the case
of small and large velocities (Huet et al. [60]). Unfortunately the results obtained from
these analyses are often in conflict and this is due mainly to the strong dependence of the
stability properties on the form chosen for the boundary condition on the velocity of the
deflagration front (i.e. on the rate at which the transition proceeds).

We believe that further theoretical study is necessary in order to specify in a more
precise way the microphysical processes taking place at the phase interface and that before
this is done too much room to uncertainty is left in the analysis.
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1.4 Appendix A

In this Appendix, details are presented of different expressions which are discussed in
Subsection 1.3.2. In the first part of this Appendix, a rigorous proof is given of the physical
inconsistency of the the first two roots of the dispersion relation for the perturbations of
a Chapman-Jouguet detonation, while in the second part it is shown that the other two
roots do not correspond to unstable modes. Finally, the third part of the Appendix is
focussed on the presentation of the complete and generic expressions of the dispersion
relation (1.81) in the case of strong detonations.

I. Unphysical solutions: wi

We start with showing that the quantity (w? + y3c?

k%) in equation (1.83) should always
be different from zero. Because in the Newtonian case the expressions are simpler and can
be handled analytically we will give the proof in this limit of small velocities. However,
the extension of the result to the special relativistic case is rather straightforward. As
discussed in Subsection 1.3.2, the dispersion relation can be obtained once requiring that
the perturbed state vector satisfies the junction conditions for the energy and momentum.
In the limit of small velocities, we can neglect all the v Lorentz factors and the components
of the perturbed state vector can be simply written as [we here omit a common factor

exp [—i(wt + k)] and drop the indices referring to region 2]

o (w+ lvﬁﬂ)efilm ~ (w+ l“x)eﬂ‘zm

op = ~
b ey (wvy +1) l
61)93 — Clei(w/vz)x + CQe—il:v ’
W k - W k.
5 — i(w/ve )z —ilz ~ i(w/ve)z v —ilz
Uy Clvmke +C27(uwm+l)e Clvmke +02le ,
(1.88)
where [ = I, and we have used [; = —w/v,. Note that we have here exploited the possi-

bility for a different normalization of the eigenvectors ﬂl, L, and we are not restricting
the discussion to the case z = 0.

Imposing the condition (1.79) and asking for the determinant of the coefficients to
be zero is equivalent to set
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lvg) _;
0 w(w_‘_l v )e—zlm 5}7
det el(w/ve)z e~ Sv, | =0. (1.89)
4 E
U:k ez(w/vz)m _6—zl:c 5'Uy
A solution of (1.89) is clearly given by
w = —lv, =ivk, (1.90)

where we have used, from (1.54), that | = I, ~ —ik. However, the solution (1.90), which
represents the small velocity limit of the positive root of (1.84), is a spurious one and
should be discarded since it would imply that ¢; 4+ co = 0, and the corresponding solution
(1.88) would be then identically zero.

II. Unphysical solutions: ws4

Next we show that the roots of (1.83) do not produce unstable modes. For this purpose,
it is convenient to rewrite the roots ws 4 as

k2 1/2
1F <p — 1) , (1.91)

where k£, is a critical wavenumber defined as

W34 = _kc

_ Yacswa (v — cg)(1 — vicy)

V1o

ke (1.92)

Since k. is a positive real number for a detonation, the sign of the square root in (1.91)
depends on whether the wavenumber for the perturbation mode £ is larger or smaller
than the critical wavenumber. The imaginary part of ws 4 can then be

Im W34 = —k. < 0, if &> k. , (193)

or
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Im w3y = —k.

k2 1/2
1F (1_ﬁ> , if k <k, . (1.94)
It is easy to see that in both cases and irrespective of which of the two roots is chosen,
the imaginary part of the solutions of the dispersion relation is always negative, thus
establishing the stability properties of Chapman-Jouguet detonation.

I1I. General Dispersion Relation

Finally, we turn to the general expression of the dispersion relation which is deduced after
lengthy but straightforward algebraic manipulations. In the case of strong detonation
fronts and writing vy = ¢5 + €, (with € being suitably small), equation (1.81) becomes

, cs+e€ 2 (14 vic) (=22 +1) ,] ,
1- 1 — vreg)— — s G
{Z< v >{l( T E

_ 2 4 =2
r 2¢5(1 — vyc4) N [cs(3 4 ¢5) + v (2¢; — T + 1)]6
1—¢2 cs(1 — c2)?

+[cs(c§ + 142 + 1) + vy (8 — 26¢t — 72 — 4)] 2}
w

2¢2(1 —¢2)3 ‘
vt [01(3 + 2¢2) — ¢ 2 k_4 _ uik’ 2
1—¢2 2(1 — ¢2)? w o 2(1—e2)%wd
2
o w
s 1— 4\ .2 X 9 4 2 1 1— 4\ 2| &
+w2{[( cg)cs —cs(2¢; + ¢+ 1)e+( cs)e] i
22+ 1)k*  (2¢2 — 1)k? Kt 1
2 1 l{)2 ( S S 2 2 —
e+ D+ Cs “r 22 ‘ 2(1 — cg)w26 €(2¢s + ¢€) ’

(1.95)

which reduces to (1.86) when ¢ = 1/3.
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1.5 Summary

Discontinuity surfaces represent a typical aspect of compressible fluids hydrody-
namics. They are extremely narrow regions of the flow across which fluid variables
experience very high gradients. These regions are called shock fronts and reaction
fronts if a fluid flow takes place across them.

If the width of these regions is very small as compared with the typical hydrody-
namical length scales and if the time scale set by the motion of these regions is
smaller than the thermal and viscous time scales, a satisfactory physical and math-
ematical treatment of discontinuity surfaces can be achieved in terms of fictitious
infinitesimal surfaces across which conservation laws apply.

Shock fronts and reaction fronts share many properties and can be described by
means of the same mathematical formalism. The main difference between the two
classes of discontinuity surfaces is that the fluid flow across a reaction front is also
subject to a chemical and physical transformation. As a consequence, the fluid
states on either side of a reaction front are described by two different equations of
state.

The Poisson Adiabat, the Taub Adiabat and the Reaction Adiabat represent
very useful tools to discriminate the different possible hydrodynamical solutions
of the conservation laws in the case of (Newtonian and relativistic) shocks and of
reaction fronts.

The Transition adiabat, in particular, allows to distinguish a generic reaction
front into a detonation or into a deflagration. Relative to their medium ahead,
these fronts are supersonic and subsonic respectively.

Detonations (deflagrations) can be further distinguished into weak, strong and
Chapman-Jouguet detonations (deflagrations) according to whether the flow be-
hind the front is supersonic (subsonic), subsonic (supersonic) or equal to the local
sound speed as measured in the rest frame of the front.

A discontinuity surface that satisfies conservation laws is thermodynamically sta-
ble and can be momentarily produced. However, this does not guarantee that it
will not become hydrodynamically unstable.
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A simple indication of the stability properties of a discontinuity surface comes from
the calculation of its degree of underdeterminacy. This is given by the number
of underdetermined parameters that can be associated with a perturbation of the
surface.

While a discontinuity with a zero degree of underdeterminacy is linearly stable, the
opposite is not true for a discontinuity with a finite degree of underdeterminacy.

Strong and Chapman-Jouguet detonations have zero degree of underdeterminacy.
Weak detonations, weak and Chapman-Jouguet deflagrations have one degree of
underdeterminacy. Strong deflagrations have two degrees of underdeterminacy.

The degree of underdeterminacy of a reaction front can be conveniently represented
in terms of characteristic curves. Such a representation of the causal structure of
reaction fronts points out the lack of any mutual causal connection between a
weak detonation and the media on either side of the front.

Because of their peculiar causal structure, weak detonation fronts cannot counter-
act the growth of any perturbation possibly produced.

A finite degree of underdeterminacy has the consequence that it is not possible
to perform a general stability analysis unless further equations are supplemented.
The latter are generally strongly dependent on the specific problem under exam.

Contrary to recent claims, we have shown that strong detonations are both evolu-
tionary and stable with respect to corrugations of the front and that Chapman-
Jouguet detonations appear to be evolutionary and unconditionally linearly
stable. This is in agreement with indications coming from the degree of underde-
terminacy of these fronts.



Chapter 2

Relativistic Self Similar Solutions for
Spherical Deflagrations

2.1 Introduction to Self Similar Hydrodynamics

As mentioned in the previous chapter, relativistic reaction fronts have been investigated
in great detail since they could serve to describe the dynamics of the phase interface
between the new, low temperature phase and the old, high temperature phase during
cosmological first order phase transitions. This chapter is dedicated to the analysis of
the hydrodynamics of spherical weak deflagrations which could have played a particularly
important role during phase transitions in the early Universe.

The reason for this privileged role has to be found in the fact that deflagrations
in general and weak deflagrations in particular require minimal conditions in order to
be produced within a cosmological scenario (see Section 4.3 for a discussion of this).
As a result, the hydrodynamics of spherical weak deflagrations can be used in order to
describe the dynamics of the disconnected regions during first order phase transitions and
in particular to follow the growth of bubbles of the new phase or the evaporation of drops
of the old phase. We here will refer to as a growing bubble an expanding spherical system
having one discontinuity surface moving as a reaction front. Conversely, we will refer to
as an evaporating drop a contracting spherical system having one discontinuity surface
moving as a reaction front. The concepts and the general solutions presented here will
have a direct application in the discussion of the general relativistic hydrodynamics of the
cosmological quark—hadron phase transition which will be presented in Chapter 5.

However, before discussing in detail the general solutions for bubbles and drops, it

49
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is convenient to introduce the important and recurrently used terms of similarity and self
stmilarity.

The concept of similarity is widely used in mechanics and hydrodynamics and relies
on the possibility of modelling a physical phenomenon of interest by the study of an anal-
ogous phenomenon whose properties can be suitably rescaled. In this way, by exploiting
the properties of similarity, it is possible to perform, in reduced and inexpensive labora-
tory conditions, experiments that would otherwise require much more considerable efforts.
As in the conversion from a system of units to another one, the properties of a specific
phenomenon can then be deduced from the assigned properties of another phenomenon,
when the latter is similar to the first one (Sedov [150]).

Of course, not all phenomena can be scaled in a similar way and the definition of
some similarity criteria is therefore relevant. For this purpose, let a given phenomenon
be described by a number n of parameters some of which are dimensionless and other
dimensional physical quantities. Moreover, assume that the dimensions of the physical
quantities are expressed by means of k£ fundamental units with & < n. In the general
case then, it is evident that n — k is the maximum number of independent dimensionless
combinations out of the n parameters. In other words, all of the dimensionless properties
of the given phenomenon can be expressed in terms of the n—k independent dimensionless
combinations. It follows then, that a necessary and sufficient condition for two phenom-
ena to be similar is that the number of their independent dimensionless combinations of
parameters is the same for the two phenomena (Sedov [150]). For a relativistic system
expressed in geometrical units (i.e. in which ¢ = G = 1), for example, all dimensional
quantities can be thought of as lengths and dimensionless parameters can be thought of
as velocities.

While the condition of similarity is useful to establish a relation between two phe-
nomena, the condition of self similarity is useful to establish a relation between a phe-
nomenon and itself. Formally speaking, a solution to a mechanical or hydrodynamical
problem is said to be self similar when it can be described by no more than two quantities
with independent dimensions other than space and time. When this is the case, all of
the physical quantities representative of the problem can be rewritten as a function of a
stmilarity variable, which is usually a combination of the spatial and time coordinates. In
other words, although a self similar solution does evolve in time (i.e. it is not stationary),
it nevertheless evolves so that the solution at any instant is similar (in the sense defined
above) to the solutions at neighbouring instants (Batchelor [17]). An obvious conclusion
that can be drawn from the discussion above is that a self similar solution can be realized
in practice only in a physical system that does not possess intrinsic length or time scales
since the latter could not be expressed in terms of the similarity variable.
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There are at least two important reasons in order to look for hydrodynamical self
similar solutions. The first one is that it is in general much simpler to find an analytical
solution to a given hydrodynamical problem when the relevant equations are written in
terms of a self similar variable. The second reason is that nature seems to privilege
solutions which have self similar properties. In this sense, the search for a self similar
behaviour does not represent the search for an exotic and unrealistic solution, but rather
the search for that peculiar behaviour of the system it would “naturally” tend to assume
in the absence of length or time scales.

2.2 Self Similar Hydrodynamics of a Bubble

The classical dynamics of boiling bubbles' connected with first order phase transitions
has been widely studied and represents a valuable background for the discussion of the
growth of the low temperature phase bubbles during cosmological phase transitions. The
main results of the theory of classical bubble dynamics are contained in a number of
works (Plesset and Prosperetti [129], Plesset and Zwick [130], [131]) which represent a
further development of a fundamental paper by Rayleigh [135] published in 1917. We
will omit here a discussion of the solutions and strategies developed in order to follow
a classical boiling bubble (see Pantano [127], and Rezzolla [136] for a review), but it is
important to point out that already within a simple classical treatment, the motion of the
vapour-liquid interface can become extremely complicated when the effects of viscosity
and mass exchange are taken into account (Theofanus et al. [160], Prosperetti [134]).
In these cases, the hydrodynamical models can be simplified by making a number of
phenomenological assumptions about the efficiency of the mass transfer across the phase
interface which can then be verified by means of experimental measurements. A similar
phenomenological approach will be used also in Subsection 5.2.3 where a suitable equation
for the transformation rate across a quark—hadron phase interface will be defined.

Self similar growth of bubbles in first order cosmological transitions has been con-
sidered in literature both in the case of detonation fronts (Steinhardt [153], Gyulassy et
al. [54], Laine [85]) and deflagration fronts (Kurki-Suonio [80], Kurki-Suonio and Laine
[82], Miller and Pantano [113, 114]). For bubble expansion, self similar motion can ap-
pear only when the bubble radius is small enough so that there is no interaction between
neighbouring bubbles, but large enough so that surface tension effects are negligible. This

!Boiling bubbles are vapour bubbles (i.e. bubbles whose interiors contain only vapour of surrounding
fluid) that are nucleated in a superheated fluid. Boiling bubbles should be distinguished from cavitation
bubbles which are vapour bubbles nucleated within a cool (i.e. in a normal state) fluid.



52 2. Relativistic Self Similar Solutions for Spherical Deflagrations

is the regime we will consider here and, moreover, we assume that although the fluids are
relativistic, their selfgravity does not play any important role on the scale of the bubbles
being considered here. As a result, it is quite sufficient in order to obtain self similar
solutions to consider only the special relativistic form of the conservation equations (1.3),
(1.34) and (1.35) which can be also written in the following, geometry independent form

%(w) + % (pyv) = —%mv : (2.1)
% [(6 —|—p112) 72} 4 % [(e +p) 721)} - _% [(6 +p) 72@} ’ (2.9)
% [(6 +p) ’)/21)] + % [(61;2 _|_p) 72] - _% [(e +p) 72@2] ’ (2.3)

where v = (1—v?)""? and j = 0, 1, 2 distinguishes situations with planar, cylindri-
cal or spherical symmetry. It is now convenient to introduce a similarity variable which,
as mentioned before, can only be of the type £ = £ (r/t), with —1 < & < 1. In partic-
ular, we take £ = r/t and look for a solution in which e = e(§), p = p(§) and v = v(&).
Introducing the new variables

14+
fo= 1= (2.4)

_1+¢
z = ¢ (2.5)

equations (2.2)—(2.1) can be conveniently rewritten as

(+ N +1) SV

of f=&E=hp SV 0, (2.6)

(e+p)f +fle+p) —2le—p) + Zo(e+p)(f=1) = 0, (27
Zern +fe=p) —Hetn) + glern(f-1) = 0, (29

where the prime denotes d/dz. Using then the relations

g (2.9)
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(142 2
vo= <1+f> I, (2.10)

it is possible to rewrite equations (2.6)—(2.8) in the following self similar form in spherical
symmetry (i.e. j = 2) (Steinhardt [153], Kurki-Suonio [80], Rezzolla et al. [139])

[@%”—Dﬁ+aa1—ﬁw+oi—ﬁﬂ%gz—%%ﬂl—#xl—&o, (2.11)
2 de [&-w 1 dv
cima (a) ()i =
ldp 1 de

pdé  (e+p)d¢’ (219)

The dimensionless similarity variable £ can be viewed either as the position of a
point in the solution at a given time, or as the velocity at which a given feature (e.g. a
discontinuity surface or a reaction front) in the profile of the solution is moving. This
velocity is to be clearly distinguished from the fluid velocity v at the point described by
€. A self similar flow which is linearly expanding with time (such as the one occurring for
a growing bubble) is naturally described in terms of a positive similarity variable £ (i.e.
¢ € [0, 1]). Conversely, a self similar contracting flow (such as the one occurring for an
evaporating drop) is described in terms of negative values of £ (i.e. £ € [—1, 0]).

When solving equations (2.11)—(2.13) numerically, it is useful to notice their property
of invariance under the simultaneous transformations

§— —¢ and v— —v, (2.14)

which has the consequence that it is only necessary to solve them in one of the half-planes
¢ € [0, &+ 1] in order to know the solution in the whole interval £ € [—1, 1], In Figures
2.1 (a) and (b) we have plotted the results of numerical integration of equations (2.11)
and (2.12) for the functions v(£) and e(§).

The dashed lines in Figures 2.1 represent points for which the derivative dv/d¢ in
(2.11) becomes infinite, i.e. for which

(36" = 1)v* + 26(1 — cJu + (¢; = &%) =0, (2.15)

2We recall that for a relativistic fluid ¢, = 1/v/3 = 0.577
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which has the roots

e
14

Expression (2.16), which is also the special relativistic formula for velocity compo-

v (2.16)

sition, expresses the fact that the fluid velocity, measured relative to an observer moving
at &, equals the speed of sound. A physical solution for v cannot be extended across these
points, since it would then be double valued, and a discontinuity must be introduced. The
upper right quadrant of Figure 2.1 (a) shows the solutions of the similarity equations for
an expanding system (such as a spherically expanding hadron bubble; see Kurki-Suonio
[80], Miller and Pantano [114]). Similarly, the upper left quadrant shows the equivalent
solutions for a contracting system (such as an evaporating spherical quark drop; see Rez-
zolla et al. [139]). The lower quadrants provide the corresponding solutions for negative
values of the fluid velocity (note that these do not necessarily represent physically realistic
configurations).

The only self similar flow solution in Figures 2.1 (a) and (b) which can be taken to
extend for all ¢ is the trivial solution v = 0, e = const. Any other solution must be the
result of a “patching” of different solution curves with the joins being either via a weak
discontinuity (i.e. where the function is continuous but has a derivative of some order
which is not continuous), or via a full discontinuity (i.e. where the function itself is not
continuous). The first can apply in the case of the edge of a rarefaction or compression
wave, while the second occurs in the case of shocks or combustion fronts.

In the case of a spherical growing bubble whose surface is represented by a weak
deflagration front, the point & = 0 represents the centre of the bubble at any given
time, & = ¢, is the expanding sonic radius and determines the position of a possible weak
discontinuity and & = 1 is the edge of the future light cone. Symmetry imposes that the
solution v = 0, e = const. should be satisfied at the centre of the bubble and a similar
requirement could be made for the unperturbed fluid far away from the surface of the
bubble. As a consequence, for a non-trivial solution, at least two discontinuities should
be introduced in the interval £ € [0, 1] and junction conditions for the conservation of
energy, momentum and baryon number need to be imposed across any which are not
weak.
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Figures 2.1  Solutions of the similarity equations for the velocity v [diagram (a)] and
for the energy density e [diagram (b)]. The upper right quadrant of diagram (a) is the
relevant one for a growing bubble, while upper left diagram is the relevant one for an
evaporating drop. The points ¢ = £c¢, represent the sonic radii, while the centre of the
bubble/drop is at £ = 0 at any given time. Parts of solution curves of diagram (a) are
used in construction of the similarity solutions shown in Figure 2.4. The solutions for the
energy density have been suitably normalized to the value of the energy density at the
sonic point and correspond to solutions in the upper quadrants of diagram (a).
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As discussed at length in Subsections 1.3.1, 1.2.2 and 1.3.3, weak deflagrations are
underdetermined reaction fronts for which a further equation, usually establishing the
motion of interface in terms of the local fluid conditions, needs to be provided. Doing
this restricts the analysis to those situations for which a reasonable knowledge of the
properties of the interface exists. For a cosmological first order phase transition, there
are a number of ways of accomplishing this [e.g. either by means of energy flux across the
phase interface (Miller and Pantano [113]), or by using a parameter related to the entropy
production across the front (Ignatius et al. [61])] and they will be discussed in more detail
in Subsection 5.2.3. What is relevant for the present discussion is that it is in principle
possible to define a relation by means of which the velocity of phase interface can be
specified and, in this case, the construction of a self similar solution can be obtained after
imposing junction conditions across suitably located discontinuity surfaces. Doing this
it is then possible to obtain the whole one-parameter family of solutions for a spherical
weak deflagration, (some of which are presented in Figure 2.2) and with the parameter
being essentially set by the velocity of the interface.

The two diagrams of Figure 2.2 show schematically the velocity profiles of spherical
bubbles moving as weak deflagrations, with the heavy vertical lines (either continuous
or dashed) marking the position of the deflagration fronts. The left diagram refers to
standard subsonic deflagrations and presents two different profiles relative to a very slow
(continuous line) and to a faster growing bubble (dashed line). Within a cosmological
context, (see Section 4.3), the different subsonic deflagrations would be produced as a
consequence of a small supercooling and of a large supercooling of the high temperature
phase respectively®. Note that in the first case the precompression shock front has vanish-
ingly small amplitude and effectively behaves as a weak discontinuity moving at the local
sound speed & as seen from the coordinate frame (i.e. from the centre of the bubble).

The right diagram refers to a supersonic deflagration (continuous line) and a detona-
tion (dotted line) is shown for comparison. As mentioned in Subsection 1.2.2, supersonic
deflagrations can take place when the strength of the precompression shock front is a
rather large and in this case the deflagration solution can even smoothly merge with the
detonation one as the strength of the shock increases.

3See Section 4.3 for a definition of the degree of supercooling
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Figure 2.2  Schematic diagrams of the velocity profiles of spherical bubbles
moving as weak deflagrations. The heavy vertical lines show the position of the
deflagration fronts. The left diagram refers to a standard subsonic deflagration
and presents two different profiles relative to a very slow (continuous line)
and to a faster growing bubble (dashed line). The right diagram refers to
a supersonic deflagration (continuous line) and a detonation (dotted line) is
shown for comparison. (See also Figure 1.7 for a spacetime representation of
the flow worldlines.)

Note also the appearance of a rarefaction wave following the supersonic deflagration
front, whose tail behaves as a weak discontinuity and whose presence is necessary in order
to produce a subsonic flow behind the front. Within a cosmological context, supersonic
deflagrations and detonations require a larger degree of supercooling of the high tempera-
ture phase than the one necessary for subsonic deflagrations. It is interesting to underline
that the self similar solutions for the energy density closely resemble the ones presented
for the fluid velocity, with the only difference being given by different values of the energy
density at the centre of the drop and in the unperturbed fluid; for this reason they are
not reported here.

The existence and properties of the self similar solutions discussed so far for a
growing bubble will be extremely useful when we need to specify initial conditions for the
numerical solution of the relativistic hydrodynamical equations describing the growth of
a low temperature bubble during a first order cosmological phase transition. This will be
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one of the points discussed in Chapters 4 and 6 where we will also verify whether the self
similar solutions (which are mathematically possible) are realised in practice.

2.3 Self Similar Hydrodynamics of a Drop

The self similar solution for a contracting and evaporating drop are radically different from
the ones discussed in the previous section for an expanding bubble. The new boundary
conditions will strongly influence the properties of solutions, some of which will not be
present while others will be characterized by interesting new features. The first self similar
solutions for a relativistic evaporating drop were presented in a recent paper by Rezzolla
et al. [139, 142] and have been later confirmed also by other authors (Kurki-Suonio and
Laine [83]). Also in the case of drop contraction, we expect that self similar motion
should set in when the drop radius is reasonably smaller than the mean distance among
neighbouring drops so that one can neglect the interaction among them, but large enough
so that surface tension effects are negligible.

As mentioned in the previous section, in the case of a contracting system, we need
to consider solutions of the self similar equations (2.11) and (2.12) expressed in terms
of negative values of the similarity variable £. If we were to adopt a positive time co-
ordinate we would then be forced to describe the physical system in terms of negative
spatial dimensions. However, this uncomfortable point of view could be abandoned if we
consider time as progressing through negative values and tending to zero as the radius
of the contracting drop tends to zero. In this way, the instant ¢ = 0 would represent an
asymptotic limit in time and we can describe the dynamics of the system since t = —oc.
The point £ = 0 would then represent the centre of the drop at any given time, £ = —c;
would mark, in analogy with what seen for a bubble, the position of the contracting sonic
radius and & = —1 would finally represent the edge of the past light cone.

As for growing bubbles, self similar solutions for a contracting drop moving as a
weak deflagration can be found only after a further equation, establishing the motion of
the front, is provided. When this is done and the velocity of the deflagration front is
specified, junction conditions across the relevant discontinuity surfaces together with the
continuous solution of equations (2.11) and (2.12) provide the whole one-parameter family
of self similar solutions. Notice, however, that for an evaporating drop the deflagration
front is moving inwards and spherical symmetry together with the requirement for the
front to be subsonic, impose that the only possible state ahead of it is one with zero
velocity and constant density since the only self similar solution satisfying the condition
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v =0 at £ = 0 is the trivial one. A consequence of this is that it is no longer possible to
introduce a precompression shock ahead of the deflagration front. This is an important
novel feature and points out that there are at most two discontinuities in the self similar
solution for a contracting drop. This is quite different from what seen for the solution of
growing bubbles, where there had to be at least two discontinuities.

The impossibility of having a precompression shock for a subsonic drop is partic-
ularly evident when looking at the upper left quadrants of the diagrams in Figure 2.1.
All of the continuous solutions of (2.11) and (2.12) converge to the point & = —c¢,; with
positive first derivatives® and if the deflagration front has to be subsonic relative to the
medium ahead (i.e. located at £ > —c¢,) the only possible solution ahead of it is the trivial
one. A discontinuity corresponding to the subsonic deflagration front can be introduced
at the drop surface, and this can then be suitably joined onto the relevant self similar
solution curve for the flow behind it. In this case, (which is the physically interesting one),
the self similar solution behind the front is represented by a simple wave® in which the
fluid that was accelerated and expanded by the deflagration front is progressively slowed
down until it is eventually taken to rest at the contracting sonic radius.

Although not self evident, the solution for the medium behind a drop surface moving
as a deflagration front is effectively represented by a compression wave. This is due to
the fact that a fluid element crossing the deflagration front is strongly decompressed from
its original state, but it is subsequently progressively compressed up to the value in the
unperturbed fluid as it moves away from the front. At the sonic radius, the solution
joins (via a weak discontinuity) onto another one with zero velocity and constant energy
density, with the value of the latter coinciding with the background value of the reacted
fluid. As a result, the sonic radius can be thought of as tracing the edge of the perturbed
flow region at any given time.

The different self similar solutions for a spherical evaporating drop moving as a
deflagration are shown schematically in the different diagrams of Figure 2.3. The two
upper diagrams show the velocity and energy density profiles, while the lower left diagram
gives a spacetime representation of the worldline of a fiducial fluid element for a subsonic
(weak) deflagration. In all of the diagrams, the heavy lines show the positions of the
deflagration fronts.

4This can be easily proved by solving equation (2.11) in the low velocity limit v < 1 (Kurki-Suonio
[80]).

5A simple wave is defined as a region of the flow in which two of the three Riemann invariants are
constant and is therefore always adjacent to a flow region of constant state. Examples of simple waves
are rarefaction and compression waves (Courant and Friedrichs [35]).



60

2. Relativistic Self Similar Solutions for Spherical Deflagrations

e
_--1
r |
| |
,,,,,,,,,,,, | |
|
e !
P | |
Q | |
\ ! |
| | |
| | |
| | |
\ ! |
[ ! |
|

e
2
| |
- _ 0 _ _
& g & H
velocity profiles energy density profiles
t
X X
0
N\
N\
\
N \
N N\
N N\
N N\
_ contracting sonic AN deflagration front
" radius N
\
- \
N
\
\
\
* . precompression shock
deflagration front N front
subsonic deflagration supersonic deflagration

Figure 2.3 Schematic diagrams of the self similar solutions for a spherical evaporating drop
moving as a deflagration. The two upper diagrams show the velocity and energy density
profiles, with the continuous lines referring to a subsonic (weak) deflagration and the dashed
lines to a supersonic (strong) deflagration. Similarly, the lower diagrams give a spacetime
representation of the worldline of a fiducial fluid element for subsonic and supersonic de-
flagrations respectively. In all of the diagrams, the heavy lines show the positions of the
deflagration fronts. Note that the dashed line curves in the upper diagrams refer to the self
similar solution for a supersonic (strong) deflagration and that the self similar profiles for
the compression p would be identical to the ones shown in the upper right diagram for the
energy density.
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Note that the self similar profiles for the compression p would be qualitatively identical
to the ones shown in the upper right diagram for the energy density and for this reason
they are not reported here.

It is interesting to notice that the limitations discussed above for the presence of
a precompression shock ahead of a contracting subsonic deflagration front do not apply
when the latter is supersonic relative to the coordinate frame (i.e. located at & < —¢;). In
this case, in fact, the supersonic deflagration front can be preceded by another supersonic
but slower precompression shock front with the join between the two being given by the
continuous solutions of equations (2.11) and (2.12).

The fluid ahead of the precompression shock as well as the fluid behind the super-
sonic deflagration front would then be at rest with constant but different energy densities.
As a result, solutions for supersonic evaporating drops can be constructed out of deflagra-
tion waves. Self similar solutions for drops moving as supersonic deflagrations represent
a novel result which, to our knowledge, has never been discussed before in the literature
and that we present for the first time in this Thesis. Such solutions are shown in the
upper diagrams of Figure 2.3 where they are presented with the dashed line curves.

It is important to underline that since the fluid behind the deflagration front is at
rest relative to the coordinate frame (i.e. relative to the centre of the drop) and since the
latter is supersonic in the same frame, the fluid behind the deflagration front moves at
supersonic speed relative to the front rest frame (i.e. v = —vgey > ¢;). This means that
the solution of a supersonic deflagration drop would effectively correspond to a supersonic
strong deflagration which, however, cannot be realized in practice because of negative
entropy production.

A direct consequence of the above arguments is that it is not possible to construct
self similar solutions for drops moving as detonations. A simple way of proving this is
by recalling that a supersonic deflagration naturally evolves into a detonation when the
deflagration front “catches up” with its supersonic precompression shock front (Subsection
1.2.2). However, if this would happen in the present case of drop evaporation, then the
self similar solution would differ from a trivial one only at the detonation front which
would represent the only feature of the otherwise unphysical solution. Another way of
looking at this is that, on this picture, it would be impossible to have a discontinuity
surface behind a detonation front since it would correspond to a “decompressive shock”
which is an impossible configuration.
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Figures 2.4 Self similar curves for the velocity and the energy density profiles
of relativistic subsonic deflagrations. The solid curves represent weak defla-
gration solutions with the rightmost solid curve being a Chapman-Jouguet
deflagration. The dashed curves represent strong deflagration solutions be-
yond Chapman-Jouguet limit and are physically forbidden.
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The one-parameter family of self similar subsonic deflagration solutions is illustrated
in Figures 2.4 (a) and (b). These curves have been effectively computed for the self
similar motion of a disconnected quark drop during the cosmological quark—hadron phase
transition (see also Section 6.3). The velocity of the interface has been determined after
specifying the temperature in the hadron phase adjacent to the phase interface. This
temperature, which is also related to the degree of supercooling of the high temperature
phase, effectively ranges between 0.957, for the leftmost solid curve and 0.617, for the
rightmost solid curve (7, is the critical temperature for the transition).

Different curves are drawn for different values of the velocity of the drop surface (i.e.
of the deflagration front) relative to a coordinate system having its origin at the centre of
the drop. Solid line curves are representative of subsonic weak deflagration waves, while
dashed line curves show the solution of subsonic strong deflagrations. The rightmost
solid curve and the leftmost dashed curve correspond to adjacent but distinct values of
the velocity of the drop surface. In particular, the rightmost solid curve represents a
Chapman-Jouguet deflagration, for which the front moves at the sound speed relative to
the fluid behind (Courant and Friedrichs [35]). This marks the transition from subsonic
weak deflagrations (which are physically realistic) to subsonic strong deflagrations (which
are physically forbidden). Note that the solution for the medium behind a subsonic strong
deflagration front differs from the one behind a subsonic weak deflagration front since in
this case the medium behind the front is accelerated away, reaching a velocity approaching
the velocity of light at infinity, while the energy density decreases through a rarefaction
wave, going to zero at infinity.

The analysis of the self similar motion of an evaporating drop whose surface moves
as a deflagration front has offered a number of interesting and novel features. These are
summarized in the list below, where we also point out the main differences between the

self similar solutions for evaporating drops and the equivalent solutions for expanding
bubbles.

i) In the case of an expanding bubble, the deflagration front (either subsonic or super-
sonic relative to the centre of the bubble) is always preceded by a compression wave
fronted, in principle, by a shock. The latter could also have negligible amplitude in
the case of a very slowly growing bubble. For a contracting drop, a subsonic defla-
gration can only be preceded by a solution with zero velocity and constant energy
density.

ii) The deflagration front for a contracting drop can in principle be preceded by a pre-
compression shock front. In this case, the self similar solution would correspond to
a deflagration wave supersonic relative to the centre of the drop. In such a configu-
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ration, the downstream flow is supersonic relative to the front and the deflagration
is therefore a strong one. As discussed above, this solution would be unstable and
could not be produced physically.

The solution for the medium behind the deflagration front in an expanding bub-
ble could differ from a constant state with zero velocity only if the bubble were
expanding supersonically, in which case it would be represented by a rarefaction
wave (Kurki-Suonio and Laine [82]). The medium just behind a subsonic defla-
gration front in a contracting drop is never at rest, but rather is outflowing with
the velocity tending either to zero at the sonic point (in the case of subsonic weak
deflagrations) or to the velocity of light at infinity (in the case of the physically
forbidden subsonic strong deflagrations). The situation is different for supersonic
deflagration fronts but these too are unphysical.

iv) Boundary conditions together with the properties of the continuous solutions of the

hydrodynamical equations do not allow for the construction of a self similar solution
for a contracting drop moving as a detonation.

v) The deflagration front in an expanding bubble could move with velocities up to the

sound speed (and possibly beyond) relative to the centre of symmetry. On the
other hand, weak deflagrations represent the only class of self similar solutions for
an evaporating drop which could be realized in practice and, for these, the surface
of the drop moves very subsonically relative to the centre of symmetry (i.e. at the
surface, |£] < ¢y).

As for the case of growing bubbles, the existence and properties of the self similar

solutions for contracting drops will be used when specifying initial conditions for the

numerical solution of the full relativistic hydrodynamical equations described in Section

6.3. There we will also be able to verify the “robustness” of the self similar solution and

the physical conditions under which it will be no longer valid.
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2.4 Summary

A physical system is said to follow a self similar behaviour, when the mathe-
matical solution describing its physical state at a given instant is similar to the
solutions at neighbouring instants. In this case, the physical state of the system at
any time can be suitably rescaled from a given initial one.

Self similar solutions represent privileged solutions that a physical system naturally
tends to assume when there are no intrinsic length or time scales.

Self similar solutions for a relativistic system can be described in terms of a unique
dimensionless similarity variable.

We refer to as a growing bubble an expanding spherical system having one dis-
continuity surface moving as a reaction front. Conversely, we refer to as an evap-
orating drop a contracting spherical system having one discontinuity surface
moving as a reaction front.

Self similar solutions for bubbles and drops moving as deflagrations can be con-
structed by joining the relevant continuous solutions of the self similar hydro-
dynamical equations with suitably located discontinuity surfaces across which
junction conditions are imposed.

There are at least two discontinuity surfaces for a growing bubble and at most
two discontinuity surfaces for a contracting drop.

Both subsonic and supersonic self similar solutions can be constructed for a
growing bubble moving as a weak deflagration. In all of the solutions the
medium just ahead of the deflagration front is not at rest but is set into motion by
the precompression wave.

Only subsonic self similar solutions can be constructed for a contracting drop
moving as a weak deflagration. In all of these solutions the medium ahead of the
deflagration front is at rest. Both supersonic and subsonic self similar solutions
can be constructed for which the surface of the drop moves as a strong deflagration
and, in the former case, the front is preceded by a precompression shock. None
of these latter solutions can be realised in practice.
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Chapter 3

General Relativistic Radiation
Hydrodynamics

3.1 Introduction

All the arguments discussed so far have been based on the concept of simple fluid (see
Section 1.1 for a definition), i.e. on the possibility of treating a large collection of particles
of the same type as a continuum described by averaged quantities. It is straightforward
to extend this idea to the case of a multicomponent fluid (or flow).! The latter is to
be understood as a fluid (or flow) whose components can be distinguished according to
the different chemical properties of the constituents or according to the different types
of physical interaction among the constituents. The formal treatment of multicomponent
fluids can be rather simplified if all of the components are considered as independent. In
this case, standard hydrodynamical equations can be written for each of the components
and a multicomponent fluid with N different particle species can be effectively described
in terms of N+ 1+ 3 equations accounting respectively for the continuity of the N species,
(from which the continuity of the species mixture can be deduced) the conservation of
energy and the conservation of momentum of the mixture (Battaner [18]).

Reactive flows are usually considered as multicomponent flows either because the
fluids on both sides of the reaction front have different chemical properties, or because of
the presence of “mixed phase” regions, in which the two phases coexist . However, in the
case of relativistic fluids, as the ones relevant during cosmological phase transitions and
that are our main interest here, the leading factor in the distinction among the different

!Some authors (e.g. Oran and Boris [125]) also refer to this as to a multiphase fluid (or flow).
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species of a multicomponent fluid is not the chemical composition, but rather the typical
interaction length scale (or mean free path) of the different particles present in the fluid.
In this sense, we will consider as effectively parts of the same fluid two components having
the same interaction length scale even if they are described by two different equations of
state?.

In general (and in the most interesting situations), the different species composing
a multicomponent fluid are not independent but rather coupled by some kind of inter-
action. When this is the case, the hydrodynamical approach discussed above needs to
be modified and ”interaction” or ”coupling” terms need to be introduced. These then
account for the possibility of energy and momentum exchange among the different species
or for the possibility that a species could be transformed into another one. A general hy-
drodynamical theory of these type of flows is no longer possible and different techniques
need to be implemented in different physical situations. A simple and well known ex-
ample of the “interaction” among particles of different species within a multicomponent
fluid is offered by the interaction between radiation (i.e. meant as a fluid of photons) and
matter (i.e. meant as a fluid of massive particles) and which usually goes under the name
of radiative transfer. In this case, the two components of the fluid can exchange energy
and momentum over some relevant length scale and the results of the “coupling” can be
described by means of the equation of radiative transfer which accounts for the evolution
of the properties of the radiation field, or, in other words, of the hydrodynamics of the
radiation fluid particles.

A large literature has been produced both for classical solutions of the radiative
transfer equation (Chandrasekhar [30] and references therein) and for special relativistic
forms of it (Mihalas and Mihalas [110] and references therein). It is relevant to underline
that when expressed in a global Lorentz frame of flat spacetime, the radiative transfer
equation is identical to its standard nonrelativistic counterpart.

However, the assumptions of the classical and of the special relativistic theory of
radiative transfer are no longer adequate near to astrophysical compact objects or for
some cosmological situations in which the fluids can have relativistic bulk motions and
the effects of spacetime curvature cannot be neglected. As a consequence, a general
relativistic theory of radiation hydrodynamics is required for the study of these situations
which then needs to be coupled to the standard formulation of relativistic hydrodynamics.

Consistent treatments of relativistic radiation hydrodynamics in curved spacetimes
have only been developed fairly recently and among these, particular interest has been
focussed on the PSTF tensor formalism devised by Thorne in 1981 [165] and the covariant

2This will be the case for our treatment of the hydrodynamics of the quark-gluon and hadron plasmas
during the cosmological quark-hadron transition.
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flux-limited diffusion theory (FLDT) approach proposed by Anile and Romano [13]. Both
methods represent approximations to a problem which is too complicated to “handle” in
full detail at the present time and there has been some debate about their respective
merits. Because we are aiming to define a set of radiation hydrodynamical equations
relevant for specific applications with spherical symmetry, we will concentrate in the
following on the use of the PSTF moment formalism which presents great advantages in
this respect.

In this chapter we derive a new system of Lagrangian relativistic hydrodynamic
equations for describing general non-stationary spherical multicomponent flows in which
a transfer of energy and momentum occurs between a perfect standard fluid defined as the
fluid described by the stress energy tensor (1.1) and a generalized radiation fluid defined
as a fluid composed of effectively zero rest-mass particles having longer mean free path
than those of the standard fluid.

3.2 The PSTF Tensor Formalism

The PSTF tensor formalism is a technique for solving the general relativistic form of
the radiative transfer equation, which, as mentioned above, describes the variation of the
radiation fluid as it propagates through a standard fluid. The relativistic form of this is
straightforward and can be written as® (Thorne [165]).

AN

= 3, (3.1)
where N is the distribution function for the particles of the radiation fluid (a relativistic
invariant) and [ is a non-affine parameter measuring the proper spatial distance travelled
by a particle of the radiation fluid as seen from an observer comoving with the standard
fluid. X is a source function which accounts for the interaction between the radiation
and the standard fluid and whose actual form depends on the specific radiative processes
which are taken into examination. Note that the total derivative is taken not just in the
spacetime but rather in the phase-space since N' = N (z%, p®), where p is the photon
four-momentum, i.e.

dN 0N da° N ON dp®
dl — 0zo dl ope dl -’
The distribution function N can also be expressed in terms of a more familiar quantity

(3.2)

3Note that in his original papers Thorne adopted a slightly different convention in which ¢ = h = 1.
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in radiative transfer theory : i.e. in terms of the Specific Intensity of the radiation field
I,,, which is classically defined as the energy of the radiation field per unit time, surface,
frequency and solid angle (erg cm2 s7! Hz ! st 1). In this case, it is possible to express

3 4.3
[I/ c.g.s C c.g.s 2hl/

N =22 g - S N, (3.3)
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where h is the Planck constant, /V is the photon occupation number and

v=-p-u & — % upq (3.4)
is the frequency of a photon with four-momentum p as measured by a fiducial observer
with four-velocity u. A trivial solution of (3.1) can be obtained in the case in which ¥ = 0;
this refers to a physical situation in which there is no interaction between radiation and
the standard fluid so that the photon occupation number is conserved along each photon
trajectory.

The fundamental idea of the PSTF method consists of replacing equation (3.1)
(which is in a concise form but embodies enormous complexity) by a hierarchy of moment
equations written in terms of Projected Symmetric and Trace-Free (PSTF) tensors which
are suitably defined at each point in the projected tangent space to the fluid four-velocity
u (see Appendix B for a definition of a PSTF tensor). PSTF moments are a trivial
generalization to a four-dimensional spacetime of the “Symmetric Trace Free” (STF) ten-
sors used in three-dimensional spacetimes (Thorne [164]). The k-th frequency integrated
moment of N is then defined as

00 5(2
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0
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_ (/ dy/Iynal...nade> , (3.5)
0

where dVy, is the invariant momentum-space volume element on the light cone, € is the
solid angle in the projected tangent space to u and d6(y) is the Dirac delta function. n
is the spacelike unit four-vector orthogonal to u (i.e. u-n = 0, n-n = 1) and fixes
the direction of propagation of the radiation fluid particle as seen in the rest frame of a
fiducial observer with four-velocity u.

In a similar way, we can define the k-th frequency integrated moment of ¥ as
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In the following, we will refer to M “1-* and § “** simply as the k-th moment and the
k-th source moment respectively.

A clear physical interpretation can be given for the first three integrated moments
of the hierarchy: M (the zeroth moment) is the energy density of the radiation, M (the
first moment) is the radiative energy flux, and M*? (the second moment) is the shear
stress tensor of the radiation fluid (each quantity being measured in the local rest frame
of the standard fluid). The stress energy tensor for the radiation fluid Tgﬁ is completely
defined in terms of the first three moments and higher order moments do not enter into
this definition. The expression for it is

1
T = Mu*u’ + gMPC“B + MU + MPu® + M (3.7)

where P%% is the projection operator orthogonal to u. An appealing consequence of
the possibility of expressing the radiation stress energy tensor in terms of the first three
moments only is that, if the hierarchy is truncated at the second order, it is then possible to
derive the equations governing the hydrodynamics of the radiation fluid in a particularly
simple way by starting from the standard conservation laws of energy and momentum
[cf. equations (1.34) and (1.35)]. If, on the other hand, orders higher than the second
are retained, it is necessary to make direct use of the appropriate hierarchy of equations
derived from (3.1) and recursive equations have been derived for this purpose.

In the case of planar or spherical symmetry, the 2k + 1 independent components
of each k rank tensor depend on a single scalar variable so that the tensor formalism
reduces to a purely scalar one. In this case, defining (e;, e;, ey, eé) as the orthonormal
tetrad carried by an observer comoving with the standard fluid, expressions (3.5) and
(3.6) assume the simplified form

7'~...17_ k' 2k+ k
M = 9m o ”/ /IP (3.8)

and
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. PLICLESY
ST — (27 / / VAL, PR (u)dy 3.9
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where P* (1) is the Legendre Polynomial of order k£ and ;1 = e;-n. This great simplification
of the tensor formalism has made it possible for the method to be used for a number
of astrophysical and cosmological applications (Turolla and Nobili [167], Nobili et al.
[122, 123], Rezzolla and Miller [137, 138, 140], Miller and Rezzolla [115], Zampieri et al.
[171]).

The hierarchy of integrated scalar moment equations into which equation (3.1) is
recast has the property that, for any k, the first £ equations involve the first £+1 moments.
In order to use this scheme for making calculations, a “judicious use of the infinite PSTF
moments” is necessary (Thorne [165]). For this purpose, we need to truncate the moment
hierarchy at some finite order by introducing a closure relation which specifies the value
of the highest moment used in terms of lower ones and which is derived on the basis of
physical considerations.

In the next section we shall use the PSTF approach to derive a new set of Lagrangian
hydrodynamical equations describing the coupling between radiation and matter in the
case of a non-stationary spherically symmetric flow, with the moment equation hierarchy
being truncated at the second order.

3.3 Lagrangian Radiation Hydrodynamics for Spher-
ical Flows

We here want to define general relativistic hydrodynamical equations for the radiation
fluid and take into account the transfer of energy and momentum that could occur while
the radiation fluid is moving through the standard fluid. While an Eulerean formulation
of the hydrodynamical equations is preferable in situations with complex geometries and
no symmetries, the Lagrangian formulation has great advantages for many practical ap-
plications in computations of time dependent flows having either planar, cylindrical or
spherical symmetry. Here we will use a Lagrangian frame comoving with the standard
fluid and the spherically symmetric line element

ds® = —a®(t)dt* + b* () dp® + R*(p, 1)(d6? + sin®0 dg?) , (3.10)

where p is a comoving radial coordinate and R(u, t) is an associated Eulerean coordinate
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or “Schwarzschild circumference coordinate” (Misner and Sharp [116], May and White
[108], Misner [117], Miller and Sciama [112]).* Such a denomination for the coordinate R
comes from the fact that the proper circumference at a time ¢ of a sphere characterized
by the radial coordinate p is

[ ds = /OQW(g(,a)l/?do — 2R, 1) . (3.11)

We here describe the radiation hydrodynamics using the first two moment equations
together with a closure relation and the calculations then involve the first three moments,
together with the first two source moments. The maximum errors in the calculated values
of the radiation variables which arise when truncating at the second order, are typically of
the order of ~ 15% (Turolla and Nobili [167]). In view of the fact that, in general, other
uncertainties in the specification of the problem are of a comparable order, we regard this
level of approximation as acceptable for the present purposes. Similar degrees of accuracy
are reported for calculations using FLDT schemes (Melia and Zylstra [111], Anile and
Romano [13]).

For spherical symmetry the first three moments can be written as

M = wy, (3.12)

M = wleg, (313)

and

M =, (e?e? — %eg‘eg — 16362), (3.14)
where wq, w; and wq are the first three scalar moments

The quantities wg, w; and w, all have direct physical interpretations corresponding
to those of the related tensor moments: wy and w; are the energy density and flux of the
radiation in the fluid rest frame, while w, is the shear stress scalar of the radiation. The
scalar source moments sy and s1, defined in a similar way to wy and w;, also have direct
physical interpretations, representing respectively the transfer of energy and momentum
between the two fluids. Explicit expressions for the source functions sy and s; within a

cosmological scenario will be presented in Subsection (5.1.1).

“We here recall that the most general line element exhibiting spherical symmetry:
ds* = —a?dt* — 2afdtdp + y?du? + R*(d6? + sin®6 d¢?), can be reduced to the form (3.10) when a new
time coordinate t' is defined so that o'dt’ = adt — Sdpu.
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Having restricted ourselves to the use of the first three scalar moments and the
first two scalar source moments, it is convenient to derive the radiation hydrodynamical
equations by means of the standard conservation laws for the energy and momentum of
the radiation fluid applied to the stress energy tensor (3.7). Following this procedure, we
can write the radiation hydrodynamical equations simply as

—ua T, = 59, (3.15)
prred =2 3.16
n'y a—" r ;,3 - z Y ( * )
wy = fpwp , (3.17)

where n is a radial spacelike unit vector normal to u, i.e. n = e;.

The term f, in the closure relation (3.17) is a variable Eddington factor and indicates
the degree of anisotropy of the radiation fluid. It can take values ranging from 0 for
complete isotropy to 2/3 for complete anisotropy. A key point in the present technique
is that an expression for f, has to be supplied, constructed on the basis of physical
considerations and how this is done is, to some extent, ad hoc. In Subsection 5.1.1 we will
present the explicit form of our Eddington factor implemented for studying long range
energy and momentum transfer during the cosmological quark-hadron phase transition.
In spite of this “freedom” in the choice of the closure relation, experience has shown
that as long as its expression has the correct asymptotic behaviour in any relevant limits,
results do not normally depend sensitively on the precise form used as long as it gives a
suitably smooth join between the limits (Nobili et al. [122], Miller and Rezzolla [115]).

Making use of the stress energy tensor (3.7) and of the line element (3.10), equations
(3.15) and (3.16) can be written explicitly as (see Appendix B for details)

a 4/7b 2R 2a (a R b R
)+ G5 (G + T Jot (G (G = )= o

(3.18)

1 4 be R 3R
e (gt ), gt 2o T e (5 T = oo
W

(3.19)
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Equations (3.17)—(3.19) are our final form of the hydrodynamical equations for the radia-
tion fluid and need to be solved together with the corresponding hydrodynamical equations
for the standard fluid which will be discussed in Subsection 5.1.1.
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3.4 Appendix B

In this Appendix we give a brief review of the definition of Projected Symmetric and Trace
Free (PSTF) tensors and a sketch of the calculations leading from equations (3.15)—(3.16)
to (3.18)—(3.19).

I. PSTF Tensors

Consider a spacetime in which there exist timelike worldlines of fiducial observers with
four-velocity u. Then P = g + u ® u is the tensor which projects orthogonal to u, with
g being the metric tensor. For any k-rank tensor B®'~* we define its “projected” (i.e.
“purely spatial”) part as

(Borwa)P = por poky B (3.20)

Subsequently, from any projected k-rank tensor C'**® we can construct its “symmetric”

part as
1
g\ S ) —

(Cval ak) — Oluar) = H zﬁ:c’aw(l)aw@) An(k) (3_21)
where the summation goes over all k! permutations 7 of 1, 2, ..., k. Finally, for any
projected and symmetric k-rank tensor D*'*-* we can extract its trace and make it “trace
free” as

TF e . Qo ag)p---Bi
(Dal---ak) = z; akiP(alag | Po2i-10Q2; [)O2it1.-Qk 1...8; e (322)
1=
where [k/2] means the largest integer less or equal to k/2, we define n!! = n(n — 2)(n —

4)...(2or 1) and the coefficient ay; as
k(2k — 2i — 1)1
(k — 20)1(2k — )N (20)1

As for the more familiar expansion of a function F' in terms of multipole moments

of order (k, m)

ag; = (1)’ (3.23)

F = ZkaYkm(Ha d)) ) (324)

k.m
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[Yim (0, ¢) are the standard Spherical Harmonics of order (k, m)], we can use the 2k + 1
components of a k-rank PSTF tensor F,, .o, at an event P so as to express I’ as

= Foyayn®™...n%, (3.25)

where n is an arbitrary spacelike unit four-vector orthogonal to u at the event P. F,, .,
is then called the k-th PSTF moment of F' and can be computed by integration over the
unit sphere swept, in the projected tangent space, by the vector n, i.e.

2 ! TF
Forear — Z:k' (/F o nade> . (3.26)

II. Radiation Hydrodynamical Equations

As mentioned in Section (3.3), we use the spherically symmetric line element (3.10) and
expression (3.7) for the stress energy tensor of the radiation fluid. The orthonormal tetrad
carried by an observer comoving with the standard fluid: (e, e;, e, ej) has then the
following components

o 1
€p = (a, O, O, O) s (327)
1
€2 = (0, 70, 0) , (3.28)
o 1
€9~ = (0,0, ﬁ,O) s (329)
¢g = (0 0,0, Rs1n9> (3.30)

The comoving observer’s four-velocity u and four-acceleration g are given by

1
u® = (—, 0, 0, 0) — 2 (3.31)
a

and

P (0 ab*;, 0, 0) (3.32)
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so that e§ = ¢*/g, where g = (9%g,)"/? and ua;ﬁuﬁ = ¢g“. The covariant derivative of the

radiation fluid stress energy tensor is

R

4 Iy
T 5= §<M;5u°‘uﬁ + Muuf + Mu“u%) + g/\/l’o‘ +
MO gu? + MU’ g+ M gu® + MPuy + M, (3.33)

where © = u®, is the expansion. The contraction of expression (3.33) with u, then gives

o 4 g9°
ua 1" 5 = ~M guf — ~ MO — Z—w, g
3 g
a B
+wy <g_> wPu, — wy <g_> + Mo‘ﬁ.ﬁua . (3.34)
9 /8 9 /8 ’

After some further manipulation of expression (3.34) and making use of the equality

w
ua/\/laﬂ;ﬁ = _(wa)s (eg‘egua + eq‘e@ua>

2 9
ga> gﬂ ]‘ a B a B
— U, — —(e5e% + e-e-). al s 3.35
+’LU2|:< 5 U 2(6960 6¢6¢)7ﬁu ( )

it is possible to rewrite equation (3.15) in the form (3.18). We proceed in the same way
with the derivation of equation (3.16). Bearing in mind that n,P7, = ¢', it follows from
(3.33) that

4 1 g' 1
n,PULT = Mg+ Mgt + + Mgl + w0+ MPul g+ MY (3.36)
Writing out each of the terms explicitly and using the expression

1 Wy (@ R
lﬁ [ — 2 7ﬂ’ 7”
MP 5= 7 (wa) 0 + " <_a + 3—R ) : (3.37)

equation (3.36) can finally be recast in the form (3.19).
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3.5 Summary

We define as multicomponent fluids (or flows), those fluids (or flows) whose con-
stituents can be distinguished according to their typical physical interaction.

We here define as standard fluid a fluid described by the stress energy tensor (1.1)
and as radiation fluid a fluid composed of effectively zero rest-mass particles having
mean free path longer than the one of the standard fluid particles.

A flow in which energy and momentum transfer occurs between a radiation fluid
and a standard fluid is defined as a multicomponent flow with radiative transfer.

Solutions to the problem of relativistic radiation hydrodynamics have been proposed
only very recently and among these particular interest has been focussed on the
PSTF tensor formalism.

The fundamental idea of the PSTF method consists of replacing the relativistic ra-
diative transfer equation by an infinite hierarchy of moment equations written
in terms of PSTF tensors.

The PSTF tensors become effectively scalars in the case of planar or spherical
symmetry.

The infinite hierarchy can be suitably truncated at a finite order and completed
with a closure relation defined on the basis of physical considerations.

The stress energy tensor of the radiation fluid is defined in terms of the first three
moments only and standard conservation laws then provide the radiation hydrody-
namical equations which we have here derived in a Lagrangian formulation.

A suitable closure relation for a truncated hierarchy of moment equations can be
written in terms of a variable Eddington factor which expresses at every point
the degree of anisotropy of the radiation field.

Results do not depend sensitively on the form chosen for the closure relation as long
as it has the correct asymptotic limits.
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Chapter 4

Physics of the Cosmological
Quark—Hadron Transition

4.1 A Cosmological Prelude

According to the Big Bang Model, which is the current generally accepted theoretical
picture for the birth and evolution of the Universe, the history of our Universe “started”
from a primordial spacetime singularity whose explosion and expansion produced our
present observable world.

The Big Bang model provides a general framework for describing the evolution of
the Universe and has its scientific foundations in three fundamental astronomical obser-
vations which find, in such a model, a simple and elegant explanation. These “observa-
tional evidences” are i) the redshift in the spectra of distant galaxies, i) the existence
of an isotropic cosmic microwave background radiation representative of a black-body
at temperature 2.7 K and #4) the abundance of light elements in the Universe. All of
these observations can be interpreted as indications that i) the Universe is subject to an
isotropic expansion, i) the Universe was in its past history in thermal equilibrium and at
much higher temperatures, and iii) there was a time in the past history of the Universe
at which the mean energy density dropped below the binding energy densities of light
atoms so that free electrons and ionized light nuclei were able to form stable atoms and
the Universe became transparent for photons. This is the epoch from which we receive
information when looking at the cosmic microwave background radiation and represents
the most distant epoch which could provide us with direct or indirect electromagnetic
information of the early Universe.

81
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By using Einstein’s theory of gravitation and the presently known laws of elementary
particles interactions it is possible to follow back in time the evolution of the Universe up
to its very first instants, when it had an age of 10~* s and a mean temperature of 10%? K,
corresponding to an energy scale of about 10'® GeV. This age, which is called the Planck
era, represents the actual limit of our cosmological scientific knowledge, beyond which it
is not possible to proceed without a consistent quantum theory of gravity.

A frequently encountered feature of the early Universe! cosmology is represented
by phase transitions, which mark many of the most important episodes of this history
(see Bonometto and Masiero [23] or Kolb and Turner [79] for an introduction). The
concept of phase transition within a cosmological scenario is usually associated to the loss
of a given symmetry of the fields present in the Universe. This is the case, for example,
of the inflaton field whose symmetry breaking possibly led to inflation, or of the order
parameter field in the quartic effective potential of the electroweak transition (Kolb and
Turner [79]). However, the concept of phase transition could also be introduced in order
to describe the change of the intrinsic properties of a physical system when this change
is related to modified thermodynamical conditions (this is the case for the more familiar
phase transitions of our ordinary experience).

Among cosmological phase transitions, particular interest has been raised by first
order phase transitions, for which, (in a certain range of temperatures) both the new
and the old phase can coexist within the same volume and are separated by a narrow
region called the phase interface. Such phase transitions proceed with the nucleation of
bubbles of the new phase that then grow at the expense of the old phase. An exact
description of these phenomena would require a precise knowledge of the microphysical
processes taking place at the phase interface where one phase in transformed into the
other, but such processes are usually so complicated that they are not known in detail
not even for the simple case of a vapour bubble. However, a hydrodynamical description
can be made in such a way as to circumvent the limitations posed by the ignorance of the
processes at the interface and provide a satisfactory overall picture of the different stages
of a cosmological phase transition. This is what will be discussed in detail in the following
sections of this chapter, where the concepts and the mathematical tools developed so far
will be implemented in the study of several different stages of the cosmological quark—
hadron phase transition.

According to the standard Big Bang model, in fact, a phase transition at which
the cosmological plasma of free quarks and gluons was transformed into a plasma of
light hadrons, is thought to have occurred early in the history of the Universe. The

With “early Universe” we here mean the Universe between the Planck era and that at about three
minutes after the Big Bang.
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physical conditions for this transition to take place, date it back to a few microseconds
after the Big-Bang, when the Universe had a mean density of the same order as nuclear
matter (p ~ 10" g cm™?), a temperature of the order of 100 — 200 MeV (i.e. ~ 10'? K)
and a particle horizon of the order of a solar mass (i.e. rg ~ 10° cm). The quark—
hadron transition marks the end of the exotic physics of the very early Universe and
the beginning of the era of processes and phenomena which have a direct counterpart
in the high energy experiments now being carried out with modern accelerators, where
the physical evidence of the quark-gluon plasma is sought?. It is also the last of the
early Universe phase transitions (at least within the standard picture) and so could be
relevant both as a potential filter for the relics produced by previous transitions and also
as a “best candidate” for the production of inhomogeneities which could have survived to
later epochs.

The following sections are dedicated to several distinct issues on the physics of
cosmological phase transitions and aim at providing the physical background necessary
for the study of the quark—hadron phase transition. It is not in our intentions to present
here an exhaustive discussion of the many and different physical processes involved in
the transition and that can be found in the more complete review by Bonometto and
Pantano [24]. Rather than that, we here want to introduce a number of important topics
(such as the order of the transition, the nature of the reaction front representing the
dynamics of the phase interface or the typical processes involved in the nucleation of the
low temperature bubbles) and discuss the problematics around them and the solutions
that have been proposed in order to untangle them. A final general overview of the
probable sequence of events during the transition will then complete the picture of the
physical scenario in which the cosmological quark—hadron phase transition probably took
place.

4.2 Thermodynamics and Order of the Transition

All the necessary thermodynamical information about the two phases is contained in
the thermodynamical potential Q@ = Q (T, V, A, p;, N;) (with i = 1, 2), where A is
the extension of the surface area separating the two phases, and p;, N; are the chemical
potentials and particle numbers of the species in the two phases, here indicated as 1 (quark
phase) and 2 (hadron phase). The thermodynamical potential is classically defined as

Q=-TZ, (4.1)

2For compactness hereafter we will refer to the quark-gluon plasma simply as the “quark plasma”.
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where Z is the grand partition function (Huang [59]). All of the other thermodynamical
quantities can then be expressed in terms of partial derivatives of the thermodynamical
potential (Landau and Lifshitz [91]). However, it can be sometimes more convenient to
make use of another fundamental thermodynamical quantity: the Helmholtz free energy
F=F (T, V, A, pu;, N;). F can derived from the thermodynamical potential using the
relation

1=1,2 1=1,2

where o is the surface tension of the phase interface. An infinitesimal variation of the free
energy can then be expressed as

dF = —SdT — pdV + odA+ Y pdN; , (4.3)
i=1,2

where the entropy S, pressure p, surface tension o and the chemical potentials p; are
given by the following expressions:

<8F> <8F>

S = —\ 3~ ’ p = —\ a7~ 3

or VA, pi,N; ov V,A,ui,N;
<8F> ( oF >

o =|— , = .
OA ) v, AN e ON1 (2)/ vir, AN, 3

(4.4)

The Helmholtz free energy can be used to derive information about one of the most
important quantities characterizing a phase transition and which distinguishes different
physical phenomenologies: i.e. the order of the transition. A formal definition of the order
of a phase transition can be done in terms of partial derivatives of specific thermodynam-
ical quantities evaluated at the critical temperature of the transition 7T,.. The latter is then
defined as the temperature at which, in the thermodynamical limit (i.e. in an infinitely
large system in which the temperature is changed at an infinitely slow rate), the phase
transition takes place. Under these assumptions, the first law of thermodynamics and
the definition of the entropy density of a relativistic fluid S/V = (e + p)/T allow to ex-
press the energy density in terms of the pressure and its first derivative with respect to
temperature 7', i.e. ?

3We here make the underlying assumption that the background spacetime is either in an isentropic
expansion or it is not expanding.
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dp
1)
p aT V;Azuini

T <8F>
aT V;Azu'hNi

€= —pD— V (45)

where F' = eV — T'S. At the critical temperature, the new and old phases will have the

same mean pressure’

po(Tc) = pn(Tc) s (46)

where the lower indices o and n refer to the “old” and “new” phases respectively [Ex-
pression (4.6) is sometimes used as the definition of the critical temperature 7...] We can
then define the order k of the transition according to the lowest k-th order at which the
partial derivatives

(8’“pn(Tc))VA N <8kpo(Tc) | (47)

oT* oT* )V,A,,ui,Ni

are discontinuous at the critical temperature, while all the other partial derivatives of lower
order k—1,...,1 are there continuous (Callen [27], Huang [59]). In this way, a first order
phase transition (i.e. k = 1) will be characterized by phases with the same pressure at T,
but with different first derivatives of the pressure relative to the temperature. Similarly,
in a second order phase transition the two phases will have equal pressures and continuous
first derivatives at 7., but discontinuous second order derivatives and so on (see Figure
4.1)°.

Using the fundamental relation (4.5), it is easy to realize that discontinuity in the
in the first derivatives (4.7) reflects an effective jump in the energy densities of the two
phases, whose difference quantifies the latent heat L of a first order transition

L=e,(T.) —en(T,) , (4.8)

where L > 0 in the case of an exothermic phase transition and L < 0 in the case of an
endothermic phase transition.

As mentioned in the previous section, in a first order phase transition, the metastable
and the stable phases may coexist within the same volume for some temperature range,
occupying different regions of it and being separated by means of a phase interface. This

4We are here considering that both phases have vanishingly small chemical potentials so that the
pressure is a function of the temperature only. Such an assumption is usually a good one for plasmas in
the early Universe (see also the discussion in Section 4.4).

®Note that in the classical terminology of Statistical Mechanics it is common to define as “second
order” any type of phase transition which is not of first order.
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phenomenology is different from that of a second order phase transition, in which both
the old and the new phases are coexistent but do not occupy different regions of the
initial volume (a typical example of second order phase transition is represented by a
fluid undergoing photoionization).

latent heat

Second Order Transition

Figure 4.1 Schematic representation of different behaviours of the en-
ergy density e and of the pressure p for a first order (upper diagrams)
and a second order (lower diagrams) phase transition. The diagrams are
specialized to the cosmological quark—hadron phase transition.

A further and different type of phase transition is one in which the passage from the old
to the new phase takes place by means of a full succession of intermediate stages each
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corresponding to a different but definite symmetry. Such phase transitions are called
continuous and are typical of lattice based physical systems and of crystals.

If the phase transition is first order and a “transition region” represented by the
phase interface exists, it is then interesting to evaluate the contribution of this phase
interface to the overall thermodynamics of the transition. This can be easily estimated in
the hypothesis that there is no particle function excess associated with the interface i.e.

> widNys =0, (4.9)
i=1,2
where the lower index ¥ refers to quantities evaluated at the interface®. This approxima-
tion is a particularly good one in plasmas of the early Universe, in which the photon to
baryon ratio is extremely high and (/7)) ~ 107 (Kolb and Turner [79]). In this case,
the phase interface contribution to the free energy is simply given by

F,=0A, (4.10)

which shows that the surface tension o represents a new function of state of the system
and completely accounts for the variation in the free energy of the system (at constant
temperature, volume and species composition) in terms of the variation of the surface
area of the phase interface. In particular, evaluating (4.3) at the interface and assuming
that the bulk properties of the two phases remain unaffected by a change in the surface
area (i.e. dN; = dV = 0), the change in the free energy of the phase interface is then given
by

dF, = —S,dT + odA . (4.11)

Differentiating equation (4.10) and comparing it with the equivalent expression
(4.11) we obtain the following relation between the entropy and the surface tension of
the interface

do
= —A(— 4.12
S, (dT)A, (4.12)

which shows that the surface entropy excess per unit area is a measure of the “disorder”
of the phase interface region as compared to that of the bulk of the two phases. In this
sense, if the bulk physical properties of the two phases extend unmodified up to the phase

6Note that a formal definition of the location of the phase interface can be given in terms of the
separation surface at which the excess of one of the two species equals the deficit of the other (Gibbs
[50]).
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interface, then the surface entropy is effectively negligible, i.e. S, ~ 0. Such a condition
seems to be particularly good for a classical strongly first order phase transition, in which
the particles of the unstable phase have rather strong atomic bindings.

A different physical quantity which can be associated to the phase interface is the
surface energy and this can be defined in terms of the internal energy of the interface per
unit area, i.e. 7, = U./A. Using then the fundamental thermodynamical relation

U, =F, +T8S,, (4.13)

and expressions (4.10), (4.12), we can express the surface energy as

Vs :0—T<3—;>A : (4.14)
which shows that the surface energy is coincident with the surface tension in the case the
latter is not dependent on the temperature (i.e. do/dT = 0). Rewriting expression (4.13)
as F,, = U, —T5S,, it is possible to realize the different roles played by the internal energy
and by the entropy in the minimization of the free energy. In particular, it becomes clear
that while the internal energy contribution tends to favour a sharpening of the transition
region (particles tend to reside in the energetically most favourable region of the phase
interface adjacent to the metastable phase), the entropy contribution acts in an opposite
way favouring a broadening of the transition region.

Unfortunately, it has not proved possible to determine the order of the quark—hadron
transition directly from QuantumChromoDynamics (QCD) which is a non-perturbative
theory at low energy and therefore very difficult to handle. The determination of the order
of the transition depends therefore on heavy lattice gauge calculations and these neces-
sarily rely on a number of simplifying assumptions and uncertain parameters. Because of
this, any consistent modelling of the transition is immediately confronted by a major un-
certainty concerning the order of the transition. It is relevant to note that while a second
order or a continuous cosmological quark-hadron phase transition (Fukugita and Hogan
[48], Brown et al. [25], Karsch and Laermann [76], Karsch [77]) would strongly prevent
any dynamical production of primordial inhomogeneities (Crawford and Schramm [37]),
the occurrence of these seems to be a rather natural consequence of a first order tran-
sition. Hereafter we will follow this latter scenario and investigate the hydrodynamical
evolution of a first order cosmological quark—hadron transition. We note that this picture
is favoured by recent lattice computations which include the effects of two degenerate
light up (u) and down (d) quarks and a heavier strange (s) quark (of up to 400 MeV)
(Iwasaki et al. [65, 66], Kanaya [72], Iwasaki et al. [67]) and clearly indicate the existence
of a double state signal for the quark plasma.
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4.3 Supercooling and Dynamics of the Interface

There are at least three important quantities that strongly characterize the properties of a
generic first order cosmological phase transition. These are the latent heat L, the surface
tension associated to the interface between the two phases o and the degree of supercooling
of the high temperature phase reached before the nucleation of the low temperature
bubbles. In general, in fact, for an exothermic first order phase transition in which the
old phase is progressively cooled, nothing really “happens” at the critical temperature
and the high temperature phase just moves into a metastable supercooled state. This
rather familiar behaviour is due to the fact that a certain degree of supercooling is needed
in order to overcome the energy expense of forming the interface between the two phases.
Therefore, only at a temperature somewhat lower than the critical one bubbles of the new
phase begin to nucleate. The degree of supercooling, is formally expressed in terms of the
adimensional quantity n defined as

T .
7751_%:1—73, (4.15)

c

where Tf = T¢/T, and Ty < T, represents the temperature in the bulk of the old phase
at which the transition starts to take place. (Hereafter “hats” will be used to refer to
temperatures normalized to the critical one.).

The roles played by L, ¢ and 7 in the quark—hadron transition are strongly correlated
since they all depend on the peculiar properties of the strong interaction which is poorly
know at such high temperatures. As a result, it is not simple to indicate clearly what is
the contribution that each single quantity gives to the typical properties and scales of the
phase transition. However, as a generic but not general rule, it is possible to associate
both ¢ and L to the (comoving) mean distance [, between centers of neighbouring bubbles
at the time of nucleation (see also Section 4.5), while 7 and L can be associated with the
nature of the reaction front representing the way in which the interface between the two
phases moves (Ignatius et al. [61, 62]).

Although the issue of the type of reaction front which represents the way in which
the phase interface moves within the high temperature medium is somewhat debated, def-
inite clear statements can be made with reasonable confidence. As discussed in Section
1.2, because of their “internal structure”, strong deflagrations and weak detonations are
ruled out as physically possible within the classical theory for chemical burning (Landau
and Lifshitz [90], Courant and Friedrichs [35]). We recall that the internal structure of
a detonation front could be described as consisting of a shock heating up the medium
to initiate combustion, immediately followed by the deflagration front. For a weak det-
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onation, this deflagration would be a strong one, while it would be a weak deflagration
on the case of a strong detonation. Along this line of arguments, the impossibility of
strong deflagrations implies the impossibility of weak detonations. However, the internal
structure of a phase transition front is different from that of a combustion front. Heating
by a shock does not facilitate the phase transition, and the structure of a detonation front
cannot be described as a shock followed by a deflagration. Therefore weak detonations
cannot be ruled out and strong deflagrations might also be possible in some cases (Laine
[85], Ignatius et al. [62]).

Detonation and deflagration solutions are obtained from the hydrodynamical con-
ditions of energy and momentum conservation and these solutions are then physically
realistic if they also satisfy the condition of non-negative entropy production. These con-
straints, however, do not fix the process uniquely and further conditions (usually entering
as boundary conditions) need to be specified. A convenient way of handling this intrinsic
freedom of the solutions is to analyze them as a function of the temperatures Tq+ and
Th_ adjacent to the phase interface in quark and hadron phases respectively’. Note that
according to the specific type of reaction front under examination, Tq+ and T), might well
not correspond to the temperatures in the bulk of the quark and hadron phases, i.e. to
T, and T}, respectively. In particular, the precompression wave preceding a deflagration
front will produce a local increase of the temperature of the medium ahead, so that in the
case of a deflagration: T,F > T, and T}, = T,8. On the other hand, a detonation front will
produce a local increase in temperature of the medium behind it, which then decreases
again through the rarefaction wave, so that in the case of a detonation: TqJr = T, and
T, > T,. In view of this, it is more convenient to always refer to the temperature of
the quark phase Ty at which the phase transition first takes place and bear in mind that
Ty < TqJr for a deflagration and Ty = Tq+ for a detonation. The multiplicity of reaction
front solution for a given couple of temperatures (7,7 ,7} ) is synthesized in Figure 4.2
which shows all of the relevant solutions in a (7, ,7)") diagram (Gyulassy et al. [54],
Ignatius et al. [61, 62]).

Each point in this diagram might or might not correspond to a physically realistic
solution and, for this purpose, the thick solid line is used as the locus of points for which
As = s, — s, = 0 and therefore it separates regions of the diagram where the solutions
are not physically possible (As < 0) from those where physical solutions exist (As > 0).
Solutions in Figure 4.2 might refer to a supercooled quark plasma at the interface if

"We recall that the upper indices + and — are used to indicate quantities immediately ahead of and
behind the phase interface, while lower indices ¢ and h are used to indicate quantities in the quark and
hadron phases respectively.

8Note that for a supersonic deflagration T, > Tj.
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Tq+ < 1ortoa “normal” (i.e. relative to thermodynamically a stable state) quark plasma
at the interface if 7, > 1. Similarly, solutions for 7}, < 1 will refer to a “normal” hadron
plasma at the interface, while solutions for 7, > 1 will refer to a superheated hadron
plasma at the interface. The shaded area shows a region of the diagram where no solution
of the hydrodynamical equations is possible and it separates the regions where either
only deflagrations or only detonations are allowed. The short dashed line and the dotted
line mark the loci of points where Chapman-Jouguet deflagrations and Chapman-Jouguet
detonations respectively occur, while the long dashed vertical and horizontal lines trace
the deflagration and detonation branches respectively for phase transitions occurring with
a 5% degree of supercooling.

T. =0.95 Tc

|
I
As<O |
I

As>0

Figure 4.2 Schematic representation of the allowed types of reaction front accord-
ing to the temperatures in the quark TqJr and hadron phases T} adjacent to the
phase interface. The thick solid line distinguishes regions of the diagram where the
solutions are not physically possible (As < 0) from those where physical solution
exist (As > 0). The short dashed line and the dotted line mark the loci of points
where Chapman-Jouguet deflagrations and detonations occur respectively, while the
shaded area refers to a region where no solution of the hydrodynamical equations
is possible. Regions A, B and C are representative of strong deflagrations, weak
deflagrations and weak detonations respectively. (A figure similar to this was first
presented by Gyulassy et al. [54]
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The region to the left of the short dashed line and which is indicated as A is rep-
resentative of strong deflagrations, while the region to the right of the dashed line is
indicated as B and is representative of weak deflagrations. Similarly, the region between
the shaded area and the dotted line is representative of weak detonations and is indicated
as C. At last, numbers from 1 to 4 are used to specify the position of special points in
the diagram.

In particular, point 1 marks the temperature of the quark plasma below which
deflagrations are permitted and, depending on the strength of the precompression wave,
this solution might refer to an effective supercooling of the quark plasma (i.e. to a Tf <1).
At any temperature Ty < T,7(1), weak deflagrations, Chapman-Jouguet deflagration and
strong deflagrations are in principle permitted, although the latter require a very large
degree of supercooling and a very small latent heat. Point 2, on the other hand, marks a
solution for which T,F = T} and As = 0. Since this solution refers to a weak deflagration
(for which Ty < T;7) it is certainly attained for a small but finite degree of supercooling
of the quark plasma. Point 3 refers to a weak detonation solution and therefore marks
the minimum amount of supercooling necessary to produce a detonation (we remind that
for a detonation Ty = T,;" =T,.) Note that in this case the temperature of the hadron
plasma behind the front is that of a superheated plasma but that the rarefaction wave
following the front could decompress and cool the plasma down to a stable state in the
bulk of the phase. Finally point 4 marks the degree of supercooling below which also
Chapman-Jouguet detonations are possible, although almost certainly these fronts would
tend to leave the bulk of the hadron plasma in a superheated state.

We can summarize the results discussed so far as follows:

i) For any given temperature 7y < T, at which the phase transition takes place, there
is a one-dimensional family of allowed reaction front processes; such a family is
further distinguished into a deflagration and into a detonation branch.

ii) Weak deflagrations are always included in this family and never produce a super-
heated hadron plasma.

iii) Strong Deflagrations could be produced in principle. However they are very unlikely
since they require a very large degree of supercooling and a rather small latent heat.

i) This family could also include weak detonations if Ty < T,(3) = T,(3) and possibly
Chapman-Jouguet detonations if Ty < T (4) = T,(4).

v) While weak detonations might or might not produce a stable hadron plasma,
Chapman-Jouguet detonations will most probably produce a superheated hadron
plasma.
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Which of these allowed processes actually occurs once the degree of supercooling is
fixed, effectively depends on the mechanisms internal to the front. These establish the
magnitude of the entropy jump across the reaction front and determine its propagation
speed. Too little is known about the microphysics of the QCD phase interface for a
definitive statement to be made about the nature of the interface. However, even though
some thermodynamical conditions could be suitable for the production of a weak detona-
tion (or of a strong deflagration), weak deflagrations certainly appear to require minimal
conditions (both in the degree of supercooling and in the stability of the new phase) in
order to be produced. For this reason, hereafter we will associate the hydrodynamics of
the phase interface during the cosmological quark—hadron phase transition to that of a
subsonic weak deflagration front moving within a slightly supercooled quark plasma.

4.4 Equations of State for the SIM

This section is dedicated to the definition of suitable equations of state for the two phases
(quark and hadron) of the Strongly Interacting Matter (SIM) present in the Universe at
the time of the transition. It is important to stress that our main concern here is the def-
inition of equations of state that provide a satisfactory thermodynamical and mechanical
description of the two phases but that can be easily handled in a numeric computation.
This requirement will probably limit the accuracy of the expressions derived but will not
alter the physical properties of the hydrodynamical solutions we are interested in evolving
here.

4.4.1 Quark Phase: Bag Model

QCD is our theory of the strong interaction and, as mentioned above, it is a non-
perturbative theory even at low energy and therefore very complicated to use in practice
for computations. A consequence of this is that it is necessary to resort either to phe-
nomenological models or to lattice gauge calculations in order to define an equation of
state for the quark plasma. We here follow the first approach (which is also the most
diffused within a cosmological context) and make use of the phenomenological Bag Model
first proposed at MIT in 1974 (Chodos et al. [32]).

There are two main features of the quark plasma that any phenomenological model
has to reproduce: i) the asymptotic freedom at short distances, when the strong coupling
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constant a; goes to zero and ii) confinement of quarks within hadrons for energy densities
lower than ~ 500 MeV fm™3. (Note that the energy density of nuclear matter is €,,, ~ 150
MeV fm—3.)

Both of these features are included in the bag model, whose basic idea is that
the quarks can be considered as moving freely (or with interactions treated at the level of
perturbation theory) within a region of space (the “bag”) in which the vacuum is different
from the “true” vacuum outside. The “false” vacuum makes a positive contribution +B
to the energy density inside the bag and a negative contribution —B to the pressure,
where B is referred to as the bag constant.

In the limit of zero net baryon number (i.e. g, = 0) and zero strong coupling
constant? (i.e. a; = 0) we obtain the following (bag) equations of state for the energy
density and pressure in the quark phase

o =g i PR (4.16)
¢~ % \30 ’
=9 \g5) T~ B (4.17)

where g, is the number of degrees of freedom in the quark phase and depends on the
number of quark flavours considered, e.g.

37 2 quark flavours ,
99 = {

47.5 3 quark flavours .

Insight on the form of equations (4.16) and (4.17) can be gained by looking at the deriva-
tion of the equation of state for an ideal relativistic fluid presented in the Appendix C.
Other phenomenological equations of state which are defined in terms of parameters de-
ducible from QCD lattice calculations and that have (4.16) and (4.17) as a special case,
have been proposed by Bonometto and Sokotowski [22]. Miller and Pantano [114] have
implemented such equations for their hydrodynamical computations of bubble growth
and found only minor differences with respect to results obtained using the standard bag
model equations of state.

At present it is not clear what is the exact value to take for the phenomenological bag
constant and it could also be that the constant should really be temperature dependent.
While a lower limit of B'/* > (145MeV) is set by the stability of nuclei, especially *°Fe,

91t was shown by Farhi and Jaffe [45] in the limit 7' = 0, that a strong coupling constant different
from zero can largely be absorbed in a reduction of the bag constant.
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relative to up and down (ud)-quark matter, no upper limit can be set from physical
considerations. Lattice QCD calculations typically favour a value for B'/* above 200 MeV
and hereafter we will assume B/ ~ 220 MeV, corresponding to a critical temperature
T, ~ 150 MeV.

4.4.2 Hadron Phase: Ideal Relativistic Fluid

With a level of approximation similar to the one adopted for the quark phase, we will
here treat the hadron phase as a relativistic ideal fluid of massless pointlike 7 mesons
(pions). Of course, this is not entirely correct and a number of improvements, such as
the inclusion of finite volume effects, or of repulsive interaction terms between hadrons,
or of a wider hadronic spectrum, could be in principle implemented. However, such
improvements would mainly result into more sophisticated and complicated equations of
state without providing effective novel physical behaviours (see Bonometto and Pantano
[24] for a detailed discussion).

It is worth underlining that the approximation of considering the hadron phase
as composed of a relativistic ideal fluid of pions is extremely good since pions with a
mass m, = 137 MeV are semi-relativistic at the time of the quark—hadron transition and
represent the dominant contribution to the grand partition function of the hadron phase
over the whole spectrum of hadron species. All of the other hadrons possibly present are
strongly depressed in number by a Boltzmann factor exp (—m/T'), where m is the hadron
mass. Moreover, these heavier hadrons would be non-relativistic so that they would
contribute only negligibly to the hadron pressure. A less good approximation is that of
considering pions as pointlike at the time of the transition, since their mean separation
dr =~ n;'3 = 1.7 T~" is indeed just larger than their typical size \, ~ m_' ~ T~'. Finite
volume corrections were considered by Karsch and Satz [75] for an hadron plasma of pions
only, while Bonometto [21] included the contribution of protons and neutrons in the case
in which g # 0. More sophisticated expressions retaining a wider hadronic spectrum was
then proposed by Kapusta and Olive [74] and Kapusta [73].

All of these studies have shown that the hadron phase can be handled in a more
sophisticated physical way than as a relativistic ideal pion fluid. However, they have
also derived expressions which are rather elaborate and certainly not easy to implement
in a numerical computation in which the hydrodynamics of the various stages of the
phase transition is investigated. Moreover, all of the expressions proposed do not change
significantly the mechanical and thermodynamical properties of the hadron plasma when
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this is treated as a relativistic perfect fluid. As a result we will here implement the
following standard equations of state for the hadron plasma

€y = gh<%>T s (418)
Pn = %(@)T ; (4.19)

where g, = 3 is the number of degrees of freedom of a hadron plasma of pions. A formal
derivation of equations (4.18) and (4.19) is presented in the Appendix C.

4.5 Hadron Bubble Nucleation

The typical (comoving) distance between hadron bubble nucleation sites at the beginning
of the transition [,, represents a major unsolved issue for the whole scenario of the quark—
hadron transition. This length scale is not only relevant at the time when hadron bubbles
are nucleated within the supercooled quark medium, but also represents a characteristic
length scale for subsequent stages of the transition. It is the scale at which neighbouring
hadron bubbles collide and percolate and it also determines the typical distance between
the centres of the disconnected quark regions produced by bubble coalescence. As a conse-
quence, it also represents the maximum length scale for the production of inhomogeneities
in the baryon number density distribution that could take place during the final stages of
the transition (see Subsections 5.1.2, 5.2.3 and 6.4 for further discussions of this). This
section is devoted to a discussion of the most probable mechanisms for the nucleation of
the new phase bubbles and to the estimates of [, that can be derived from them.

The nucleation of the low temperature phase bubbles represents the first “episode”
in the sequence of events of the transition and unfortunately embodies some of the major
uncertainties that are still affecting the general scenario of the quark—hadron transition.
The standard approach to the study of bubble nucleation makes use of the classical ther-
mal fluctuation theory for which bubbles of the new phase are nucleated as a consequence
of thermal fluctuations within the supercooled old phase medium (Landau and Lifshitz
[91]). This approach is also called homogeneous nucleation scenario as opposed to the
inhomogeneous nucleation scenario in which bubble nucleation is rather induced by im-
purities and that has been recently investigated again by Christiansen and Madsen [33].

According to the thermal fluctuation theory, the probability p(AF,, T') of a thermal
fluctuation producing a bubble nucleus can be expressed as
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(4.20)

p(AF,, T)=C(T)exp <— AFC) ,

T
where the pre-exponential factor depends in detail on the model by which the bubble
growth is described and AF, is the minimum work necessary to produce the smallest
possible growing bubble and is equal to the “critical” change in the Helmholtz free energy.
In the limit of vanishing chemical potentials, the change in the Helmholtz free energy when
a spherical hadron bubble of radius R is produced within a quark plasma at temperature
T is equal to the change in the thermodynamical potential i.e. :

4
AF(R, T)=F(R, T) - F(0, T) = %(pq — pp)R? + 470 R? — 879R, (4.21)

where 7 > 0 is the curvature coefficient and has been introduced as a first order term in
the expansion around R in order to take into account the contribution to the free energy
given by massless quarks and gluons'® (Mardor and Svetitsky [105]). Note that for a
hadron bubble such a contribution has a negative sign expressing the fact that the newly
nucleated bubble is favoured to grow. The radius of a critical size bubble R, is found by
putting JAF/OR equal to zero. Solutions of this equation are the two critical radii

_ g . 2(ph - pq):Y
Rt = 7) (1 + \/1 — ) , (4.22)

(Ph — pq o

one of which coincides with the standard expression for the critical bubble radius (De-
Grand and Kajantie [40]) R, = 20/(ps — p,) in the case in which no curvature term is
considered (i.e. 4 = 0). The importance of the critical radius lies in the fact it represents
the radius at which hadron bubbles are effectively nucleated. Bubbles with radius smaller
than the critical one, in fact, will be immediately forced to shrink under the effects of
surface tension, while bubbles with radius larger than the critical one will have exponen-
tially decreasing probability of being produced. Typical estimates of the critical radius
for the quark-hadron transition set it equal to R, &~ 10 —50 fm (Miller and Pantano [114],
Christiansen and Madsen [33]).

In general, the smaller radius R, _ corresponds to a local minimum in the free energy,
while the larger corresponds to a local maximum. As pointed out by Mardor and Svetitsky
[105] and subsequently discussed by Christiansen and Madsen [33], this local minimum
has some serious consequences, if it is real and not just a shortcoming of the multiple

10The calculation of the free energy (4.21) has been performed within the phenomenological bag model
(see Section 4.4).
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reflection expansion of the bag model (Balian and Bloch [14]), since it means that small
hadron bubbles show up even above the critical temperature and no supercooling of the
quark plasma is necessary. Lana and Svetitsky [88] have argued that these small radius
bubbles are unstable and would therefore disappear, but at present the situation is still
unclear and improved expressions for the free energy should be derived. Because of this
uncertainty we will neglect this root and always refer to R, ;.

A linear expansion of Ap = p;, — p, about the critical temperature gives

Ap = Ln, (4.23)

where L is the latent heat [cf. equation (4.8)], and 7 the degree of supercooling [cf. equation
(4.15)] which we assume to be very small for the cosmological quark-hadron transition.
The minimum work done AF, can then be calculated as

8t o® 3L~ 2Ly \*/?
AF.(n)=F(R..,T)— F(0,T)=— 1— <1——) . 4.24
)= () - FO.1) = 5 1= 2 (1= 22, (a.24)
By requiring AF, to be always positive we obtain the following condition on the
maximal degree of supercooling that can be reached

. 3 o2
= Ty >1——-—. 4.25
r21-515 (4.25)

The nucleation rate (i.e. the number of nucleations per unit volume and time) can

L300
=315

then be calculated combining equations (4.20) and (4.24) so as to obtain, in the limit of
small supercooling:

p(n) = C(n) exp l— Sr_o <1 L (1 - %n) 3/2)1 . (4.26)

3 L2T.p? o
Csernai and Kapusta [28, 29] have calculated the pre-exponential coefficient C'(n)
in the cosmological case (i.e. with relativistic particles and almost zero baryon number),
but without a curvature term. They obtain

16 o123
T 35/2; ZareTs/2 e
q

C(n) (4.27)
where R, = R, (with ¥ = 0), Z, ~ 0.7 fm is the thickness of the bubble surface and v
is the shear viscosity given approximately by

112,

21n o1
a?In o

~

(4.28)
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For the present purposes the contribution of C'(n) is much smaller than the one coming
from the exponential factor and it is therefore sufficient the estimate C(T) ~ T2. It
is here important to notice that the nucleation rate p(n) is equal to zero at the critical
temperature and that it increases very rapidly with 7. As a result, nearly all bubble
nucleations take place at the lowest temperature 7 achieved during the supercooling
phase.

It is sometimes more convenient to use as the free “flowing parameter” the time ¢
rather than the temperature 7'. The relation between the two can be found by solving the
Friedmann equations for a spatially flat Universe consisting of a quark plasma, of photons
and of leptons and, at the order of approximation used here, such an expression is given
by

1/4
TP ) e (4.29)
1672¢,G

where G is the gravitational constant and g, the number of degrees of freedom in the
quark phase. The nucleation rate can then be recast in the new form

p(t) =~ p(y) exp[—alt = tf)] , (4.30)

with #; being the first instant at which the temperature in the Universe was at T,
ns =n(Ty) and with « being defined as

! 2 3
1.
TCQC (ns) N 8T 02 3
C(n) 9 L ur;

™

3

o = (417G)Y/? ( [2 — 3bny + (2 — byy) (1 — 2bnf)1/2]) ,

(4.31)

where b = L¥/0? and C' = dC/dn. Because of the steepness in the nucleation rate,
expression (4.30) effectively represents a good approximation to the equivalent expression
(4.26).

If the nucleation rate is known and the temperature evolution of the Universe is
regulated by equation (4.29), it is then possible to define the mean nucleation distance I,
in terms of the total number density of nucleation sites

== ([ rwp ) (432)

where f(t) is the volume fraction of the Universe in the unaffected metastable phase at
the instant ¢ (Kajantie and Kurki-Suonio [69], Christiansen and Madsen [33]).
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There are at least two different ways of defining the functional expression for f(¢)
and none of them is completely satisfactory. A main issue concerning the derivation of
f(t) is the correct definition of what should be meant as “unaffected” region of the Uni-
verse. As discussed in Subsection 1.2.2, it is most likely that the newly nucleated bubbles
would grow as spherical weak deflagrations and in this case the solution of the hydro-
dynamical equations requires the presence of a precompression shock front preceding the
deflagration. This shock front would then move at a speed slightly above the local sound
speed and some authors suggest that it could reheat the quark plasma at the critical
temperature. This is an argument which is often found in the literature (Gyulassy et al.
[54], Bonometto and Pantano [24], Christiansen and Madsen [33]) as it provides a rather
simple scenario in which define the volume fraction f(t¢), but that is most probably wrong.
As discussed at length in Section 2.2, the magnitude of this shock can be negligibly small
in the small supercooling scenario discussed here and it would certainly be inefficient in
raising the temperature in those regions it crosses. Indeed, it is not at all clear that the
entire compression wave following the shock (and that certainly produces a temperature
increase) would be able to raise the temperature near or above the critical one. What
is usually neglected in those analyses which favour the reheating by means of the pre-
compression shock front is that the quark plasma is an ultrarelativistic fluid with a huge
energy density content and that effectively behaves as an incompressible fluid. The la-
tent heat released at the phase transformation, although large and mostly converted into
internal energy, is nevertheless only a very small contribution to the preexisting energy
density of the quark plasma.

As a result, any analytic definition of the “unaffected” region of the Universe in
terms of the propagation velocity of some kind of discontinuity front is rather dubious
unless one is ready to consider this velocity as an effectively undetermined quantity, about
which only reasonable upper and lower limits can be set, given by the sound speed and
the propagation velocity of the deflagration front respectively.

Following Guth and Tye [53] (a slightly different approach has been proposed also
by Csernai and Kapusta [28, 29]) we could describe the fraction of volume not yet swept
by one or more shock fronts as

f = e [~ [Car s wTEnvie.) (4.33)

where t. is the time corresponding to the temperature T, and V(¢,t) is the reheated
volume at time ¢ caused by a bubble nucleated at time ¢'. An approximate expression for
V(t',t) can then be
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4
V(1) ~ %vfh(t — 1y, (4.34)

with the reheating front velocity v, being constrained to lie between the limits

Udefi < Urh < Cs . (4.35)

Under these simplifying assumptions, an estimate of the mean nucleation distance
is then given by

I, ~ (167)/350 (4.36)
(6

Finally, using the following estimates for the typical values of the surface tension
and latent heat derived by lattice QCD calculations (Ignatius et al. [65], Christiansen
and Madsen [33])

g
—

O'(]ZT3
c

0.02 | L ~04B (4.37)
a critical temperature 7, = 0.68B'/4 = 150 MeV (B'/* ~ 220 MeV) and the upper limit

for the reheating front velocity, the homogeneous nucleation scenario then leads to an
estimate of the mean nucleation distance of the order of few centimeters i.e. :

220MeV\? /0.4B 5 3
w1 () (57) (aipm) o (4.38)

Larger values for [, (larger by about a factor 7) can be obtained if the curvature terms
are not, taken into account.

It is important to underline that these estimates of [, seem to prevent a possible
impact of baryon number inhomogeneity produced at the quark—hadron transition on the
subsequent cosmological nucleosynthesis, for which mean separations of the order of one
meter are necessary. A discussion of this will also be presented in the following Subsection
5.1.2.

Possible ways of avoiding this conclusion have been proposed and these mainly
involve the use of an inhomogeneous bubble nucleation scenario. This argument has been
recently revitalized by Christiansen and Madsen [33] who have underlined the fact that
classical first order phase transitions are usually triggered by the presence of impurities or
“Irregularities” rather than by thermal fluctuations. (It is possible to think, for example,
of a charged particle entering a cloud chamber, or boiling water where bubbles are formed
at the bottom of the pot.) Potential impurities for the quark—hadron transition could be
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topological defects, like magnetic monopoles, and cosmic strings, primordial black-holes
or relic fluctuations from the electroweak transition.

The basic idea behind the inhomogeneous bubble nucleation scenario is that the
impurity tends to lower the energetic cost of creating a phase interface and therefore a
bubble. As a consequence, bubbles nucleated by means of impurities would appear with
a smaller degree of supercooling and their number density would then be set only by the
number density of the primordial impurities and not follow the probability distribution
(4.30). If one then makes the (very) strong assumption that the spherical shock produced
by the newly nucleated bubbles are able to reheat the Universe and prevent any further
nucleation, it becomes then clear that it is in principle possible to tune the impurity num-
ber density so as to obtain a first and unique generation of hadron bubbles nucleated at
the desired separation scale. (In such a scenario thermal fluctuations may well never act
so as to nucleate bubbles if the reheating is sufficiently rapid). However, as mentioned
above, we doubt that the precompression shock front emitted by weak deflagrations pro-
duced at even smaller degrees of supercooling could be able to reheat the Universe and we
therefore regard the present version of the inhomogeneous nucleation scenario as rather
unlikely.

4.6 A General Overview

Following on from the physical scenario of the cosmological quark—hadron transition de-
scribed in the previous sections, we here illustrate and comment about the most acknowl-
edged stages of the transition. We underline that the sequence of such stages is reasonable
within the framework in which the positive latent heat is large as compared with the sur-
face tension and the transition takes place with a small degree of supercooling.

We first present a schematic sequence of “events” during the transition and then
comment extensively on each of them.

1. Supercooling of the quark plasma.
2. Nucleation of bubbles of the hadron plasma.

3. Initial rapid growth of hadron bubbles as weak deflagrations; a very small spherical
precompression wave is sent out in the quark phase from each hadron bubble.

4. Attainment of a self similar growth for the disconnected hadron bubbles.

5. Local coupling on the bubble length scale between standard fluid particles (i.e.
having strong interactions) and radiation fluid particles (i.e. having weak and elec-
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tromagnetic interactions). This coupling could occur also for a radiation fluid of
neutrinos if disconnected hadron bubbles still persist at a scale of ~ 1 cm.

6. Interaction of the compression waves preceding the deflagration fronts of different
bubbles and reheating of both phases near to the critical temperature.

7. Slow growth of the hadron bubbles paced by the expansion of the Universe. Different
bubbles percolate into more extended structures.

8. Coalescence of percolated hadron bubbles into bigger hadron regions so as to mini-
mize surface energy. Production of disconnected quark plasma regions.

9. Slow contraction of the disconnected regions of quark plasma which tend to become
spherical.

10. Breaking of local coupling between standard fluid particles and radiation fluid par-
ticles on the length scale of the disconnected quark regions . A similar process
would have happened also with a fluid of neutrinos if disconnected quark drops
were produced at a scale of ~ 1 cm.

11. Final evaporation of quark drops.

After the nucleation period, the Universe is essentially populated by hadron bubbles
with dimensions near the critical radius. Each bubble then starts to expand (the new,
low temperature phase is thermodynamically favoured) and its surface accelerates until it
reaches a steady state velocity corresponding to self similar growth for a weak deflagration
front, whose solution has been presented in Section 2.2 [see diagram (a) of Figure 4.3]. The
self similar growth is first broken when the dimensions of the hadron bubbles R, become
comparable with the mean free path of the radiation fluid particles A!'. At this stage,
the long range energy momentum transfer between the standard fluid and the radiation
fluid is most effective and the hadron bubbles, which were previously transparent to the
radiation, start to couple with it (see also Section 6.2).

It is worth underlining that at least in principle the process of coupling between
the standard fluid and the radiation fluid could take place at two different length scales
A. The smaller of these is the one set by the electromagnetic interaction and is relevant
for a radiation fluid composed of photons, electrons/positrons (e*), muons and their
antiparticles (%), etc., for which A\ ~ 10* fm.

"Tn principle, the mean free path of the radiation fluid particles could be different in the two phases,
so that it would be necessary to refer to A\, and A,. However the uncertainty on this length scales is such
that treating A, &= A, ~ A is a reasonable approximation.
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Figures 4.3 Schematic pictorial representation of the different stages of the phase

transition with the quark plasma being indicated with the shaded regions. Diagram

(a) shows a picture of the nucleation stage when the surviving hadron bubbles with

critical radius R, have typical comoving separation [,, within the surrounding quark

plasma. Diagram (b) shows a subsequent stage when hadron bubbles meet and start

percolating, while diagram (c) shows the following stage at which hadron bubble

coalescence produces disconnected quark regions. Under the effects of surface tension,

these regions tend to become spherical and lead to the formation of evaporating quark

drops within the surrounding hadron plasma, which are shown in diagram (d). For all

of the diagrams, the typical dimension of the disconnected quark or hadron regions

R is compared with the mean interaction length scale for the radiation fluid .
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The other larger length scale is set by the weak interaction and is relevant
for a radiation fluid composed of neutrinos and antineutrinos only and for which
A~ 10" fm ~ 1 cm. Whether the second radiative transfer can ever take place depends
on the mean bubble separation distance at the time of nucleation as well as on the mean
velocity of the bubble surface and, at the moment, these two quantities are not known
enough to give a definitive answer.

After the hadron bubbles have grown of by about one order of magnitude past the
typical radiation interaction length scale, the coupling is practically complete and the
hydrodynamical solution can again recover a self similar behaviour. This newly attained
similarity solution is definitively broken when the spherical compression waves preceding
the deflagration fronts of neighbouring bubbles start to interact. Of course, this occurs
well before the bubble surfaces themselves come into contact. As discussed in Section
4.3, the predicted amplitude of the precompression shock fronts is negligibly small for
the case of spherical bubbles and small supercooling (Miller and Pantano [114], Ignatius
et al. [62], Miller and Rezzolla [115], Kurki-Suonio and Laine [83]) and it is therefore
rather erroneous and misleading to associate strong physical processes to the interaction
of the these fronts. However, independently of whether there are significant shocks or not,
the kinetic energy of the ordered motion in the compression wave will be progressively
converted into internal energy, once adjacent bubbles have started to interact, and the
temperatures of both phases will be raised near to the critical temperature 7,.. At this
stage, bubble surfaces may start to oscillate (with decaying amplitude oscillations) as a
consequence of the collision with neighbouring bubbles and the new temperature phase
might even be superheated as a result of the volume decrease produced by the oscillations
(Kurki-Suonio and Laine [84]). What is certainly more likely is that after the collision,
the hadron bubbles grow much more slowly, on a time scale which is essentially set by
the expansion of the Universe leading to cooling which allows for continuation of the
transition [see diagram (b) of Figure 4.3].

When the surfaces of adjacent bubbles meet, they coalesce to form larger bubbles
thus minimizing the total surface energy. This coalescence then gives rise to disconnected
quark regions which proceed to evaporate, tending to become spherical under the action
of surface tension [see diagram (c) of Figure 4.3].

The hydrodynamical evolution of isolated evaporating quark drops has been inves-
tigated in detail in Section 2.3 and can be essentially summarized as consisting of a self
similar stage followed by one in which long range energy and momentum transfer takes
place and then a final decay which may be dominated by surface tension effects and be-
come increasingly rapid. During the first stage, quark drops evaporate converting quarks
into hadrons at the rate necessary to keep the internal compression constant and uniform.
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In a very pictorial description, each quark drop can be viewed as behaving like a shrinking
“leaky balloon” which is ejecting material at the rate necessary to avoid producing any
compression.

When the quark drops reach dimensions comparable with the mean free path for the
particles of the radiation fluid, the process of entropy extraction breaks the self similarity
of the evaporation. Also in the case of quark drops, the decoupling could take place at two
different scales, with the larger being set by the neutrinos and antineutrinos mean free
path. However, it is not currently clear whether spherically isolated quark drops would
have been present at that scale. The very final stages of the drop evaporation (for R, < 102
fm) may be dominated by the surface tension ¢ which would tend to “squeeze” the small
quark drops and could give rise to an increasingly rapid evaporation and a consequent
increase of both the compression and the baryon number density. Recent lattice gauge
calculations seem to indicate rather small values for the surface tension coefficient (e.g.
o9 = 0/T? ~ 0.01 — 0.02) and, if this is correct, surface tension would then play only a
minor role for the increase of baryon number density. The transition finally ends when
the last quark drop has shrunk to zero dimensions and the Universe is totally filled with
the new hadron phase [see diagram (d) of Figure 4.3].

There are a number of very interesting aspects of the above mentioned “events”
which could be investigated by using the tools and the formalism of relativistic hydro-
dynamics of compressible flows. In particular, it is interesting to follow in detail the
processes of long range energy and momentum transfer that take place between the stan-
dard fluid and the radiation fluid both during hadron bubble growth and during quark
drop evaporation. Also, important information could be extracted by the knowledge of the
hydrodynamical behaviour of the baryon number carriers, whose spatial distribution at
the end of the transition could have had a strong influence on the subsequent cosmological
nucleosynthesis.

All of these aspects have, in fact, been investigated by Rezzolla et al. [115, 139, 140,
145] and they will all be presented in the next chapters in which we first introduce the
mathematical formalism and the original set of equations derived for the hydrodynami-
cal solution (Chapter 5.1) and subsequently present results obtained from the numerical
solution of those equations (Chapter 6).
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4.7 Appendix C

Equations of state for a relativistic ideal fluid are found in almost all works concerned with
the physics of plasmas in the early Universe and the derivation of such equations is rather
straightforward although it is not easy to find in the literature. In this Appendix we will
not present new equations nor an original derivation of equations, but rather spend few
lines to rederive the standard equations of state for a relativistic ideal fluid.

Consider an ideal fluid as a large collection of identical particles and let p be the four-
momentum associated to the i-th particle of such collection, where

P°Po = —pi + pip’ = —m? (4.39)

and where pg is the total energy of the ¢-th particle and m; its rest mass. We can then
define f;(z;, p;, t) to be the distribution function of the i-th particle in the phase-space
where it has spatial coordinates z; and p; as spatial components of its four-momentum
at the time £. In the presence of a diagonal metric, the stress energy tensor of the fluid
can then be written as

dVy

po’

T8 = Z/papﬁfi(xj,pj,t) (4.40)

where dV,, = dp® dpY dp® is the volume element in the momentum space and where the
sum is made over the whole number of particles of the fluid. Expression (4.40) should be
compared with the more familiar expression of the stress energy tensor of a perfect fluid
(1.1) which we report here for convenience

T°% = (e + p)uu’ + pg®” . (1.1)

We can now write explicitly the different diagonal components of (4.40) as

7% = Z/pofi dV, = n(po) =€, (4.41)

where n is the particle number density, the symbols ( ) express quantities averaged over
the whole collection of particles and where the last equality in (4.41) comes from the
comparison with (1.1). Similarly, we can calculate the spatial trace of (4.40) as

=y [ (u) fidVy = 3p, (1.42)

Do

which leads, in the case of relativistic particles (i.e. for which m; < pq), to
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T2 [pofi dvy =e=3p, (4.43)

thus showing the standard relation p = e/3 between pressure and energy density of a
relativistic fluid. We can now specialize our analysis to a Bose or to a Fermi distribution
function

1
ot = o= F1

where p = p’p; and the =+ signs refer to a Bose and to a Fermi distribution respectively.

(4.44)

We can then evaluate the energy density e and number density n as

= arT | R
et oy exp(—z) F1 T
00 1
= 4 T3/ —— d’z.
. ol exp(—z) F 1 ¢
(4.45)
Integration of (4.45) then leads to the general expressions
ans(T) = gosl35) T (4.46)
NG
() = gy l—;) T, (4.47)
where ((3) ~ 1.202 and
7
gy = Nb s gf = ng s (448)
! ! 3

with IV, and Ny being the bosonic and fermionic numbers of degrees of freedom.
As a result, for a mixture of relativistic bosons and fermions the energy density and
the number density are respectively given by

7T2

o(T) = g<30>T4 — (N,,+ ng) (g)qﬂ, (4.50)

nT) = ¢ [@] T3 — (Nb+§ f) l%] T3 (4.51)

2 4
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4.8 Summary

e According to the Big Bang model, our present Universe originated from a spacetime
singularity and subsequently expanded and cooled.

e During its early evolution the Universe experienced a sequence of phase transitions
signalling the loss of a given symmetry in the fields present or a change of the
thermodynamical properties of the primordial plasma.

e The quark—hadron phase transition is the last in this sequence and probably took
place at about 10~° s after the Big Bang, when the mean temperature of the Universe
was T, ~ 150 MeV.

e Being the last of the cosmological phase transitions, the quark—hadron transition
might have produced relics that played an important role in the subsequent cos-
mological evolution.

e [t is not currently known what is the order of transition, but a number of interesting
features would emerge if it was first order as suggested by some recent lattice gauge
calculations.

e We here consider the case of the quark—hadron phase transition being of first order,
i.e. with both phases coexisting at the same temperature and being separated by a
phase interface. The latter will be hydrodynamically described as a relativistic
reaction front.

e A certain amount of supercooling is usually necessary to overcome the energy cost
of producing a phase interface in a first order phase transition. A small but finite
degree of supercooling most probably is necessary also in a cosmological context
and according to the amount of supercooling reached, a number of different types
of reaction fronts are possible.

e Weak deflagration fronts require minimal conditions (both in degree of supercool-
ing and in the stability of the new phase) and are therefore adopted for describing
the dynamics of the phase interface.

e [t isimportant to stress that the strength of the precompression shock preceding
the deflagration front in the solution of a growing bubble is negligibly small if the
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supercooling is small. As a result, such a shock is not able to reheat those regions
which it crosses to the critical temperature.

Hadron bubbles can be nucleated either by means of thermal fluctuations (homo-
geneous nucleation scenario) or by means of impurities (inhomogeneous nucleation
scenario).

The nucleation mechanism basically determines the typical separation between
nucleation sites and this, in turn, represents the most important scale of the
transition, marking the length at which relics could have been produced. The larger
this (subhorizon) scale, the stronger its cosmological impact.

Homogeneous nucleation theory yields values for the bubble distance at nucleation
which are typically smaller then the ones derived using a recent inhomogeneous
nucleation theory. However, the latter requires a reheating of the old phase by
means of the precompression shocks. Because of the weakness of these shocks, we
regard the present version of the inhomogeneous scenario as unlikely.

During the final stages of the phase transition, quark plasma regions become dis-
connected and evaporate while becoming spherical under the action of surface
tension.

The evaporation of single isolated quark drops represents a very interesting hy-
drodynamical configuration during which the simultaneous effects of radiation
decoupling and baryon flux suppression at the phase interface might lead to
interesting consequences for the subsequent cosmological evolution.



Chapter 5

Relativistic Hydrodynamics of the
Quark—Hadron Transition

5.1 General Relativistic Multicomponent Hydrody-
namics

This chapter is dedicated to the derivation of an original and complete set of general
relativistic equations describing the hydrodynamics of a multicomponent fluid in a spher-
ical flow. In particular, we will here define a new set of equations for a three-component
relativistic perfect fluid which consistently accounts for:

a) the long range energy and momentum transfer between a standard fluid and a
radiation fluid (see Section 3.1);

b) the dynamics of a superposed fluid component which is collisionless and subject to
diffusion only;

¢) the dynamics of a discontinuity surface moving as a weak deflagration front;

d) general relativistic junction conditions across the discontinuity surface for the metric,
the energy and the momentum of each of the three fluid components;

e) a characteristic form of the relevant hydrodynamical equations along the several
different characteristic directions present.

111
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The most direct application of the mathematical “apparatus” which we present
here is within a cosmological scenario in general and for the quark—hadron transition
in particular. However, it is important to stress that all of the equations derived here
are general and could therefore be applied to any other context in which a relativistic
multicomponent spherical flow takes place. Indeed, this is what has been done recently
by Zampieri et al. [171] who have applied some of the above mentioned equations to the
study of spherical accretion onto a black-hole.

Each of the following subsections is devoted to one of the specific issues listed above,
but before going into the details of the various different derivations, it is worth to spend
a few lines about the importance of a general relativistic approach for the hydrodynamics
of the cosmological quark-hadron transition. It has been sometimes argued that General
Relativity represents an unnecessary complication for the study of bubbles and drops in
the early Universe, for which a special relativistic treatment could be sufficient. At this
regard, we believe that at least two counter-arguments could be made. A first comment
we would like to make is that the gravitational source terms appearing in set of hydro-
dynamical equations as a consequence of the general relativistic approach, introduce only
a very minor additional complication. In other words, for spherical symmetry, a general
relativistic calculation is only marginally more complicated than a special relativistic one.
A second comment is that writing equations in a fully general relativistic form has great
advantages when these equations need to be computed in an expanding background as it
is the case for a cosmological phase transition. In this case, in fact, the form of the equa-
tions is totally compatible with a Friedmann-Robertson-Walker (FRW) solution, which is
“automatically” recovered at large scales.

5.1.1 Two-Component Spherical Flows

In the first studies of the hydrodynamics of the cosmological quark-hadron phase transi-
tion (Miller and Pantano [113, 114], Ignatius et al. [61]) attention has been focussed on
studying the growth of a single hadronic bubble during the initial stages of the transition
where it makes sense to consider the material in each phase as a perfect fluid composed
only of the strongly interacting matter (i.e. standard fluid). While the transition involves
only these particles in a direct way, an important role is also played by other particles
present, which can interact with them through the electromagnetic and weak interac-
tions: primarily photons, electrons, muons and their antiparticles (electromagnetic and
weak interactions) and neutrinos and antineutrinos (weak interaction only). All of these
have mean free paths long compared with that of the strongly interacting matter and
can provide a mechanism for long range transport of energy and momentum through the
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strongly interacting fluid. Since the leptons concerned are essentially massless, both they
and the photons can be treated as components of a generalized radiation fluid and the
problem is then one of relativistic radiative transfer (Chapter 3).

During hadron bubble growth (or during quark drop evaporation), the effect of this
transport is significant only when the radius R, of the bubble (or of the drop) becomes
roughly comparable with the mean free path ) of the particles concerned (A ~ 10* fm for
the electromagnetic interaction and A ~ 1 c¢m for the weak interaction). When R, < A,
the bubble (or the drop) is essentially transparent to the radiation, which can then be
ignored, while when R, > A the coupling is essentially complete on relevant length
scales so that the radiation and strongly interacting matter move together as a single
fluid. Clearly, the process of coupling (or of decoupling) can, in principle, occur twice
during the bubble growth (or drop evaporation), but because the behaviour is similar in
each case, we will discuss here only the one occurring between the strongly interacting
and electromagnetically interacting particles. Identical considerations apply also for the
coupling (or decoupling) with the neutrinos, the only difference, apart from the scale,
being the different number of degrees of freedom into which the energy liberated by the
transition is channeled.

In the following we will derive general relativistic equations accounting for the hy-
drodynamics of a two-component fluid composed of the standard fluids (representing the
strongly interacting matter in the hadron and quark phases) and of the radiation fluid
(representing weakly and electromagnetically interacting matter). Since we are interested
in describing the motion of a bubble or of a drop over a number of orders of magnitude
in its radius and since the underlying symmetry is a spherical one, we will make use of a
Lagrangian description and adopt the same spherically symmetric line element presented
in Section 3.3, which we here report for convenience

ds® = —a*(t)dt* + b’ (p)dp’® + R*(p, t)(d6* + sin®0 d¢?) . (3.10)
We recall that R(p, t) is the radial Eulerean coordinate and that p is the comoving
radial coordinate, whose scale needs to be fixed by means of a supplementary equation.

A convenient way of doing this involves the definition of the proper volume V contained
within the spherical shell marked by p at an initial time t;, i.e.

Vo = /” ArboR2 dyi (5.1)
0

so that the infinitesimal volume between two spherical shells with radial separation Ap
(e.g. the volume of a fluid element) is given by
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AVy = Ao REA 1 . (5.2)

The coordinate gauge freedom allows us to define (at some initial time ;)

from which the definition for by follows, i.e.

1
 AnR?
At any later instant, the proper volume will not be necessarily the same but it will

bo (5.4)

rather follow the compressions and the rarefactions of the underlying medium. As a result,
the general expression for the proper volume at any subsequent instant will be

AV (t) = 4nbR*(t) Ay, (5.5)
and the adimensional quantity
AV
= — 5.6

will then measure the variation in the proper volume of a fluid element. Because of
its definition (5.6), p is usually called the relative compression factor. For a classical
standard fluid composed of non-relativistic particles, it is common practice to take u as
representing conserved rest mass Ap = pgAVy with p representing the familiar rest mass
density [cf. equation (7.11)]. (At later times, one then has p = pyAVy/AV but all of
the other equations presented below are formally unchanged.) Using expressions (5.3),
(5.5) and (5.6) we can finally obtain the fundamental relation fixing the expression for
the metric coefficient b at a general time ¢

1
W) = 1t

The derivation of the hydrodynamical equations for the combined fluids (i.e. stan-

(5.7)

dard fluid and radiation fluids) is rather straightforward and we can start from solving
Einstein field equations

1
Rag — §ga5R = 87TGTaﬁ, (58)

with 7% = T§B+T§ﬁ being the total stress energy tensor, sum of the one for the radiation
fluid (subscript R) and of that for the standard fluids (subscript F') which we here treat
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as perfect. The four independent equations which follow from (5.8) can be used to write,
in a more familiar form for hydrodynamics, the conservation equations for energy and
momentum of the combined fluids and the continuity equation for the standard fluids, i.e.

—uo T, =0, (5.9)
n,PLT =0, (5.10)
(pu®),a =0. (5.11)

After some algebra, whose relevant steps are shown in the Appendix D, it is possible
to write the following set of hydrodynamical equations

uy = —a[% <1%251> + 47TGR<p + %wo + wg) + Cj%—]\;[] , (5.12)
er=wpy — asg , (5.13)
(pR?), _ _a<u’# - 47erRw1> | (5.14)

pR? R,
(aw) , _ wpu—eut bs, ’ (5.15)

aw pw

M, = 4rR*R, (e + wp + %un) : (5.16)
I= (1 +u? — wTM>1/2 = %R,M : (5.17)
R,=au. (5.18)

Here u is the radial component of fluid four velocity in the associated Schwarzschild
(Eulerean) frame, I is the general relativistic analogue of the Lorentz factor, and w is the
specific enthalpy

(e +p)
-

(5.19)

w =
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M is a “generalized mass function”, corresponding to the standard gravitational mass
in the case of a classical standard fluid composed of non-relativistic particles without
radiation and can also be calculated using the alternative evolution equation

1 r
M’t = —47TR2R’t <p + g’wo + —w; + ’U)2> . (520)
u

Equations (5.12)—(5.16) show that the interaction between the standard fluids and
the radiation fluid enters through the source functions sy and s; and through the radiation
contributions to the gravitational terms via the radiation energy density wg, energy flux w,
and anisotropy wsy. The latter quantities are calculated by considering local conservation
of energy and momentum of the radiation fluid alone [i.e. equations (3.15) and (3.16)]
and satisfy the following hydrodynamical equations for the radiation fluid and which have
been derived in Section 3.3

4/b 2R 2 R b R
bt g5 (T o (5 T e (5= T = o

(3.18)

1 4 b, R 3R
(wl),t+%<§wo+w2> +%wo+2<f+ R’t>w1+%<%+ R’“>w2:a31,
sH

(3.19)

Wo = waO s (317)

with (3.17) being the closure relation. For the two scalar source moments, we here use
the following expressions

1

So = X(G — ’U)o) + (SU)SO s (521)
w

51 = —71 : (5.22)

where ) is the effective mean free path of the radiation particles as they move through
the standard fluid, (so),,.
form depends on the specific problem, and ¢ is the energy density for radiation in thermal

is a term expressing the contribution due to scatterings, whose

equilibrium with the standard fluid. Assuming that it follows a black-body law, € can be
written as [cf. equation (4.18)]
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€E=4g, <%> 1, (5.23)

with 7', being the temperature of the standard fluid. (Note that different expressions for
the source functions should be used in scenarios different from the cosmological one in
which we are interested here.) g, is the number of degrees of freedom of the radiation
fluid and has contributions coming essentially from photons, electrons (and positrons) and
muons (and antimuons). A rapid calculation yields the following value for the degrees of
freedom of the radiation fluid

gr = Gyt Gext + gut

7
— 1x 2 +i] 2 x 24+ 2 x2|=9 (5.24)
N~~~ ~~ 8 | ~~ N~~~ ~~ N~~~
Y helicity et,ut  spin e, pu~ spin

and 7/8 x 3 x 2 =15.25 (= g,) supplementary degrees of freedom need to be added if the
contribution of neutrinos should also be taken into account.

Obtaining a suitable expression for (sg).. within a cosmological scenario is less

sc
straightforward. While detailed derivations have been made for simpler astrophysical
applications (Nobili et al. [122, 123]), the lack of precise knowledge about the numerous
and complex interaction processes possible in the present case has led us to express (so)q,.

by the simple absorption and emission term

(0)se = e = wo) . (5.25)
where a5 is an adjustable coefficient ranging between zero and one, with the latter value
being the most reasonable within a cosmological context. Fortunately, the results of
the numerical calculations turn out not to depend sensitively on the value chosen and a
discussion of this will be given in Sections 6.2 and 6.3.3.

As mentioned in Section 3.3, the quantity f, appearing in the closure relation (3.17)
is the Eddington factor and gives a measure of the degree of anisotropy of the radiation
fluid. In particular, it can take values ranging from 0, for complete isotropy (which could
be caused by the medium being extremely optically thick), to 2/3 for complete anisotropy
(which might arise when the medium is very optically thin). The expression used for it
has to be arrived at on the basis of physical considerations and has to have a correct
asymptotic behaviour in any relevant limits. We are here interested in studying the long



118 5. Relativistic Hydrodynamics of the Quark—Hadron Transition

range energy and momentum transfer taking place during hadron bubble growth and
during quark drop evaporation. In either case, as initial conditions, both the bubble
and the drop are assumed to be immersed within a uniform and isotropic surrounding

!, The radiation field interacts with the surrounding medium on suitably large

medium
scales and is in thermal equilibrium with it, so that it initially shares the properties of
uniformity and isotropy, i.e. wy is constant everywhere and w; and wsy are zero. The
initial situation for a quark drop is however slightly more complicated than for a much
smaller hadron bubble. The dimensions of the disconnected quark regions are, in fact,
typically larger than the mean free path of the radiation fluid particles and a thermal
equilibrium (at a slightly higher temperature, the quark plasma temperature) is present
also over those regions. As a result, while still being uniform and locally isotropic in both
phases, the radiation fluid is not at the same temperature everywhere (as it is the case
for bubble growth) but rather follows the two different temperatures of the quark and
hadron plasmas respectively.

When the hadron bubble starts to expand (or during the very final stages of the
quark drop evaporation, when its dimensions are much smaller than \), the radiation
quantities deviate from their uniform initial values (or uniform final values in the case
of the drop) primarily as a result of the Doppler effect arising from the motion of the
standard fluid rest frames with respect to that of the radiation field (which is remaining
uniform in its own frame). These Doppler corrections can be calculated analytically and
the details of this derivation are presented in the Appendix D. Solely on the basis of
this consideration, one finds that the optically thin regime for the radiation fluid can be
described in terms of the Eddington factor

Y- N (5.26)

T 9(1+4u?/3) "
On the other hand, as the hadron bubble grows up to dimensions comparable with A (or
when the quark drop contracts down to dimensions smaller than \), there is progressive
coupling (or decoupling, in the case of the quark drop) between the radiation and the
standard fluids on the relevant length scales and this interaction then tends in the direction
of making the radiation more isotropic (or more anisotropic in the case of the drop) as seen
from the standard fluids. To account for this effect in the expression for the Eddington
factor, we can multiply the Doppler term in (5.26) by a correction term which has the
effect of producing the right behaviour in the optically thick regime and gives a physically

!This surrounding medium will be the quark plasma in the case of hadron bubble growth and the
hadron plasma in the case of quark drop evaporation.
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plausible join with the optically thin limit?. The final form of our Eddington factor is

then
_ 8u?/9 A
27 (1 + 4u?/3) <A + R) ' (5:27)

It is worth remarking that it is common experience that results of the numerical

computations do not depend sensitively on the form chosen for the Eddington factor as
long as the correct asymptotic behaviours are preserved and a regular join is made between
them. (Nobili et al. [122]). This is something which needs to be checked in any particular
application but provided that the outcome of such a check is satisfactory, it is reasonable
to proceed with confidence.

The set of hydrodynamical equations (5.7), (5.12)-(5.18) and (3.18)—(3.17) is not
complete but needs to be supplemented by equations of state, relating the energy density
e, the pressure p and temperature T of both phases of the standard fluids. For this
purpose we will make use of the equations of state for the strongly interacting matter
(4.16)—(4.19) presented in Section 4.4. In this way, the basic set of equations is finally
complete and can be used for describing the transfer of energy and momentum between a
standard fluid and a radiation fluid in a general non-stationary relativistic two-component
spherical flow.

5.1.2 Diffusion of Baryon Number

If the cosmological quark—hadron phase transition was of first order with small super-
cooling then it almost certainly produced inhomogeneities of some kind in the spatial
distribution of baryon number. These inhomogeneities could have had a relevant influ-
ence on the subsequent nucleosynthesis if they were produced on large enough scales, had
sufficiently large amplitude and contained a significant fraction of the baryon number
present in the Universe (Witten [170], Alcock et al. [8, 9], Fuller et al. [49], Kurki-Suonio
[81], Bonometto and Pantano [24], Ignatius et al. [61]).

Many authors in the past years have calculated the possible consequences of baryon
number inhomogeneities for the subsequent evolution of the Universe, focussing particu-
larly on the scenarios for inhomogeneous nucleosynthesis (Malaney and Mathews [101],
Fuller et al. [68]). However, in all of these studies it was necessary to introduce suitably
chosen parameters in order to compensate for lack of knowledge about the spatial distribu-

2Tt should be noted that while the optically thin regime corresponds with the initial stages of the
bubble growth and the optically thick regime corresponds with the final stages of the growth, exactly the
opposite is true for the evaporation of the quark drop.



120 5. Relativistic Hydrodynamics of the Quark—Hadron Transition

tion and amplitude of the baryon number peaks which might have been left behind at the
end of the quark—hadron transition. There are various origins for this lack of knowledge
which we will now discuss briefly. A first and major unresolved issue concerns the typical
distance between nucleation sites at the beginning of the transition /,,. A discussion of
this has already been given in Section 4.5 and we will not comment further here, but just
recall that [, also represents the maximum length scale for the production of peaks in
the baryon number density at the end of the transition. Independently of the scale over
which baryon number fluctuations are produced, the study of baryon number segregation
is complicated by the presence of various mechanisms, some acting in opposite directions,
which could contribute to the scale of the fluctuations.

When there is chemical equilibrium between the two phases, baryon number density
is already “naturally” higher in the quark phase than in the hadron phase. This difference
can be further increased as a result of various other processes which probably act together.
One of these is suppression of baryon number flow across the phase interface (Applegate
and Hogan [6], Fuller et al. [49], Kurki-Suonio [81]). Simple statistical considerations
suggest that baryon number cannot be carried entirely together with the hydrodynamical
flow when this moves from the quark to the hadron phase. A phenomenological explana-
tion for this can be found in the fact that it is generally more difficult to find in a volume
of 1 fm? and in a time of 102 sec the right triplet of up and down quarks necessary
to form a color singlet nucleon (either a baryon or an antibaryon) than it is to find the
doublet of quarks necessary to form the lightest hadrons (e.g. pions).

Another mechanism which could affect the variations in baryon number density
during the final stages of the transition, is long range energy and momentum transfer by
means of particles having long mean free path. This process, which has been investigated
by Rezzolla and Miller [140] and will be discussed in detail in Subsection 6.3.3, involves
the standard fluids of strongly interacting particles and the radiation fluid of particles
having only electromagnetic and weak interactions.

Besides the baryon number segregating mechanisms mentioned above, there is also
another competing process which needs to be taken into account. The formation of local-
ized regions of high baryon number density is counteracted by baryon number diffusion
which occurs whenever a deviation from homogeneity is produced and is effective both
during the quark-hadron transition and after it.

While, from the above discussion, the formation of peaks in baryon number density
appears to be a rather inevitable consequence of a first order quark—hadron transition,
a number of quantitative aspects of this picture still remain to be fully investigated.
For this reason, and before the microphysics of baryon number flow across the phase
interface or of baryon number diffusion is known in more detail, we here discuss how the
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problem of baryon number segregation and diffusion can be handled within the relativistic
multicomponent framework developed so far.

The basic idea is of considering baryon number carriers as the constituents of an
additional distinct collisionless “fluid” whose evolution can be followed in terms of a con-
tinuity equation for baryon number carriers, of a diffusion equation and of the underlying
hydrodynamics of the standard and radiation fluids. Pictorially, baryon number carriers
could be thought of as small grains advected by the bulk flow. They do not provide a
pressure nor an energy contribution (just like for dust grains) but (unlike dust grains) they
are subject to intrinsic motions following a diffusive law. Before illustrating the details
of the new set of equations by means of which baryon number carriers will be followed
during some relevant stages of the quark—hadron transition, it could be relevant to review
the various stages of the transition during which baryon number segregation can either
be favoured or impeded.

First, we note that even in the absence of specific mechanisms for the segregation,
there is a “natural” tendency for the baryon number density to be higher in the quark
phase than in the hadron phase since baryon number is carried by almost massless quarks
in the quark phase, whereas in the hadron phase it is carried by heavy nucleons whose
number density is suppressed by an exponential factor. An estimate for the contrast in
baryon number density resulting from this can easily be calculated for stages at which
global chemical equilibrium is near to holding. The chemical potentials in the two phases
can then be set equal (i.e. yuf = pl = ;) signifying that, if the phase interface were not
in motion, equal fluxes of baryon number would cross it in both directions.

Because of the complexity of QCD and of the spectrum of hadronic species present
in the low temperature (hadron) phase, it is necessary to make approximations if we want
to obtain simple analytical expressions for the baryon number density in the two phases.
Using the phenomenological bag model for the quark phase (see Subsection 4.4.1), it is
possible to approximate the baryon number density in the quark phase as

N.N
nd o~ — (ﬂ) T3, (5.28)

where N, and N are, respectively, the number of colours (three) and the number of quark
flavours (which we will take here to be two). On a similar level of approximation, we can
consider the pion contribution to the grand partition function of the hadron phase as
being the dominant one coming from the whole spectrum of hadron species, neglect finite
volume effects and the repulsive interaction between hadrons and describe the hadron
phase as being essentially a gas of relativistic massless particles (see Subsection 4.4.2).
As a result we obtain a simple and compact expression for the baryon number density in
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the hadron phase as

s T T
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where m is the nucleon mass.
With all of these assumptions, the contrast in baryon number density between the
two phases is given by

RN

T 3/2
) emT 10 for T =T, =150 MeV, (5.30)
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Similar estimates of the baryon number contrast have been found also from more detailed
analyses of the baryon number density in the two phases (Goyal et al. [52]).

It is important to stress that when the hypothesis of global chemical equilibrium
is valid, equation (5.30) holds between any two generic points in the two phases. It is
reasonable to assume that global chemical equilibrium holds when the velocity of the
phase interface is much smaller than the diffusion velocity of baryon number and the
length scales of the disconnected hadron or quark regions are much smaller than the
baryon number diffusion length scale during the transition. This is the case, for example,
soon after bubble nucleation, when most of the bubbles present have radii around the
critical value.

As described in Section 4.6, after nucleation hadron bubbles start to expand and
their surfaces accelerate until reaching a steady state velocity corresponding to a self
similar solution (see Section 2.2). The expansion produces a deviation away from chemical
equilibrium and the baryon number density can be increased in the vicinity of the interface
(Kurki-Suonio [81]), piling up mostly on the quark side but also to some extent in the
hadron phase as a result of the increased flux coming from the quark medium. The
situation in the bulk of the two phases is not significantly modified, however. Diffusion
tends to impede the accumulation of baryon number and, when the self similar growth
stage is reached for the hydrodynamic variables, the baryon number density attains a
stationary profile. (Note that the intrinsic length scale set by the diffusion coefficient
prevents the baryon number density following a self similar solution.) Most of the excess
baryon number on the quark side of the interface is then within a layer of thickness ry
with the value of the baryon number density there being joined to the background value
in the bulk of the quark phase via a decaying profile. A rough estimate for r, is given by
D

~ — 5.31
Ta ?)f 3 ( )
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where D is the baryon number diffusion coefficient and vy is the steady state velocity of
the front as measured from the centre of the bubble.

As the numerical computations will show in Section 6.2, the self similar growth is
first broken by the coupling between the radiation fluid and the standard fluids when
the bubble has reached dimensions of the order of \; after the coupling, however, the
similarity solution for bubble growth is restored and it ultimately ceases when the spherical
compression waves preceding the deflagration fronts of neighbouring bubbles start to
interact. At this stage, the temperature of the quark phase is raised again near to the
critical temperature and the bubbles grow much more slowly, on a time scale which is
essentially set by the expansion of the Universe whose cooling allows for the transition to
continue. In this slow growth stage, global chemical equilibrium can be restored and the
baryon number which has accumulated near to the phase interface can be redistributed
into the bulk of the two phases. When the surfaces of adjacent bubbles meet, they coalesce
to form larger bubbles thus minimizing the total surface energy. This coalescence gives
rise to disconnected quark regions which then proceed to evaporate, tending to become
spherical under the action of surface tension. The subsequent hydrodynamical evolution
of isolated evaporating quark drops can be essentially summarized as consisting of a self
similar stage followed by one in which long range energy and momentum transfer takes
place and then a final decay which may be dominated by surface tension effects.

During the first stage, quark drops evaporate converting quarks into hadrons at
the rate necessary to keep the internal compression constant and uniform (see Section
2.3). If baryon number were entirely carried along with the hydrodynamical flow and
no suppression of baryon number flux occurred at the interface, then this stage of the
evaporation would not produce any increases in the baryon number density. If, however,
there s some flux suppression, this stage will still consist of a self similar evolution for
all of the hydrodynamical variables apart from the baryon number which will accumulate
ahead of the interface with diffusion to either side of it in a way similar to that discussed
above for a growing hadron bubble. When the quark drop reaches dimensions comparable
with the mean free path for the particles of the radiation fluid, the decoupling between
the two fluids breaks the self similarity of the evaporation and, as we will see in detail in
Section 6.3.3, this will produce a remarkable effect on the baryon number density in both
phases. At last, the very final stages of the drop evaporation may be dominated by the
surface tension o (if this is large enough) giving rise to an increasingly rapid evaporation
and a consequent increase the baryon number density in the quark phase.

We can now turn to the definition of the formal apparatus that will allow us to
describe, together with the standard fluid and the radiation fluids, an additional “baryon
number fluid”. In particular, we need to introduce equations to describe the hydrody-
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namics of a fluid which has a suppressed flow at the phase interface and which diffuses
relative to the standard fluids. The effects of this diffusion can be included by introducing
a diffusive flux four-vector q into the baryon number continuity equation which becomes

(npu® +4¢%), , =0, (5.32)

where ny is the baryon number density, u is still the four velocity of the standard fluid. In
the frame comoving with the standard fluid, u® = (1/a, 0, 0, 0) and q has only a spatial
component [i.e. u,¢® =0 and ¢* = (0, ¢*, 0, 0)]. Using the property
/—aqVe
o = WV o (5.33)
e
where g is the determinant of the metric tensor and the metric relations (3.10), (5.17),
we can rewrite (5.32) as

R la(nb) (anb> 8(uR2)] _ aR? O(bI') O(Dny) 0 [RQ d(Dny)
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(see Appendix D for details) where the radial component of the diffusive flux is written
as

1 8(Dnb) . _i 8(Dnb)
@r? op o OR

In the Newtonian limit, I' = @ = 1 and equation (5.34) reduces to the standard La-

¢ (5.35)

grangian diffusion equation in spherical coordinates. (Note that here, 9/0t is a Lagrangian
time derivative for a location comoving with the standard fluid.). A rough estimate for
the value of the diffusion coefficient D (which we take to be constant in time, uniform in
space and the same in both phases) can be deduced with rather simple arguments if we
rule out the possibility of the diffusion being turbulent (Alcock et al. [9] and which seems
likely to be correct as discussed by Jedamzik et al. [68]). In this case, baryon number
diffusion can be described as a simple Brownian motion of baryon number carriers hav-
ing a mean free path of the order ;.. 2 7o' (Kurki-Suonio [81]) giving a microscopic
diffusion coefficient D ~ 107! — 10 fm.

The diffusive flux (5.35) correctly describes baryon number diffusion in the bulk
of the two phases, but it is not adequate at the interface, where the diffusive flux is
accompanied by a much larger flux related to the hydrodynamical flow ®, of elements of
the quark gluon plasma as it is converted to the hadron phase. As mentioned earlier, this
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flux could be subject to suppression processes at the interface but no exact expression is
yet available for this. We therefore proceed here by defining a phenomenological expression
for the net baryon number flux across the interface @, in terms of the hydrodynamical flux
®, and a suitable “filter factor” F' which expresses the ratio between the baryon number
passing across the phase interface and the total baryon number incident on it.

In principle, F' could be expressed in terms of the probability of finding (from all of
the quarks and antiquarks present) three quarks of the right types within a volume of 1

9

fm? and in a time of 107%® s, in terms of the “transparency” of the phase interface to the
passage of a baryon number carrier from the quark phase to the hadron phase ¥, and
of the corresponding probability ¥;_,, that a baryon hitting the phase boundary from
the hadron phase is absorbed (Fuller et al. [49]). Moreover, referring to a situation in
which chemical equilibrium holds, it would be possible to express ,_,;, in terms of ¥;_,,
and this would restrict the uncertainty to this latter quantity only. (Although convenient,
this approach requires that the baryon transmission probability does not vary significantly
when the equilibrium is broken.)

Unfortunately, no reliable value for the baryon transmission probability ¥,_,, is
known at present and, worse than this, different approaches to the study of the rates of
elementary processes taking place at the phase interface seem to result in quite different
estimates of it (see Fuller et al. [49], Sumiyoshi et al. [155] and Bonometto and Pantano
[24] for further references). In view of this uncertainty, we will treat the filter factor as
essentially a free parameter, adopting the reference value F' ~ 107! as estimated from
the expressions presented by Fuller et al. [49] for T, = 150 MeV and %;,_,, ~ 10~%. (The
value F' = 1 corresponds to the case where the baryon number flow crosses the phase
interface unimpeded and clearly represents an upper limit.)

The flux of elements of the standard fluids across the interface can be evaluated
by projecting the flux four-vector along the unit spacelike four-vector n normal to the
timelike hypersurface describing the time evolution of the interface, i.e.

¢, = pung, . (5.36)

Neglecting diffusive contributions to the baryon number flux across the interface, we
obtain that the net baryon number flux across the phase interface is then

q q
O, =F (%) o,=F <@> utng | (5.37)

q Pq

In the next section we will give an extended presentation of the problems related with the
solution of the hydrodynamical equations at the interface and there we also calculate the
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components of the unit four-vectors u and n which will provide us with explicit expressions
for (5.36) and (5.37).

Coupling the parabolic diffusion equation (5.34) together with the hyperbolic hy-
drodynamical equations (5.7), (5.12)-(5.18), (3.18)—(3.17) and (4.16)—(4.19) presented so
far, provides us with a complete and consistent set of equations which allows for the hy-
drodynamical description of a relativistic multicomponent fluid such as the one present
during the cosmological quark—hadron transition. However, this is not enough yet since
all of the above equations cannot be integrated across the whole flow region, but need
a special treatment in the vicinity of the phase interface as this moves within the flow
domain.

Expression (5.37) represents a first example of how an hydrodynamical quantity
which is suitably defined in the bulk of the flow [e.g. the diffusive flux of baryon number
(5.35)], requires a special treatment at the phase interface. This is a very important
concept that we are going to discuss extensively in the next subsections, where we will
introduce the problems introduced by a phase interface treated as a discontinuity surface
and present the solutions for such problems.

5.2 Solution at the Phase Interface

All of the equations derived and discussed in the previous sections [with the exception of
equation (5.37)], are hydrodynamical in nature, in the sense that they refer to an ideal
collection of particles considered as a continuum. As underlined above, these equations
are suitable for the description of a multicomponent relativistic fluid (as the one present
during the cosmological phase transition), however, they are not enough to describe bubble
or drop dynamics if they are taken “as they stand”. The reason for this is to be found in
the fact that, at least within our hydrodynamical framework, the dynamics of a bubble or
of a drop necessarily requires the introduction of at least one discontinuity surface across
which the integration of the hydrodynamical equations cannot be taken?.

The problems induced by the presence of a discontinuity surface within a given flow
domain have already been discussed in Chapter 1, where relativistic shock waves and

3We note that this condition does not apply for those field-theory approaches involving a continuum
order parameter to distinguish the two phases undergoing the transition. This approach, which has been
proposed by the Finnish group of the University of Helsinki (Ignatius et al. [61, 62], Kurki-Suonio and
Laine [82, 83, 84]) has some great advantages for the present case of cosmological phase transitions but
also a number of difficulties when more complicated multicomponent flows need to be considered (see
also Subsection 5.2.3).
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reaction fronts have been first introduced. In the language of general relativity, the evo-
lution of a relativistic discontinuity surface or singular surface can be described in terms
of a three-dimensional timelike hypersurface X (i.e. the worldtube of the discontinuity
surface) which divides the four-dimensional spacetime V', in which it is embedded, into
the two regions V* and V. The basic idea is then that of “cutting out” the region of
spacetime containing the hypersurface X, where junction conditions across the surface
can provide suitable solutions, and of adopting the standard techniques of continuum rel-
ativistic hydrodynamics everywhere else. The use and the form of the junction conditions
for classical and special relativistic fluids has been presented in Sections 1.1, 1.3.2 and
1.3.3, but further care needs to be paid when these junction conditions have to be ap-
plied across an interface treated as a singular hypersurface. The next two subsections will
discuss this problem, concentrating firstly on the form of the junction conditions for the
metric and secondly on the form for the energy and momentum of each of the three fluid
components (i.e. standard fluids, radiation fluid and “baryon number fluid”). The last two
subsections of this chapter are finally dedicated to two supplementary problems related
with the dynamics of the interface, namely the definition of a hadronization rate and the
derivation of a system of characteristic equations providing a correct causal framework
necessary for a numerical computation using the present approach.

5.2.1 Metric Junction Conditions

Metric junction conditions basically establish the differences between the measures of
an interval between two points on the surface worldtube as measured by two observers
located on either side of ¥. Each observer has his set of rods to measure spatial distances
and clocks to measure time intervals (May and White [108]).

Of course, both of the observers will measure the same invariant interval ds? which
can be written as [cf. expression (3.10)]

ds® = —(a")2dt* + (b7)2dp? + (R7)2dQ? = —(a*)2dt? + (07)2dp? + (RT)2d0%,  (5.38)

where upper indices =+ refer to quantities measured in the two submanifolds V* and V
and dQ? = df? + sin?0dp?. If we now adopt the following convention for square and curly
brackets for each quantity ¥ defined in the submanifolds

U]F =0 -0, (U} =0 4+ 0 | (5.39)

then expression (5.38) will assume the more compact form
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[a?dt? — b?dp? — R*dQY* =0 . (5.40)

Since 47 R? is the proper area of a spherical shell at a given time and this quantity
must be continuous across X, we can write

[ATRY)* =0, (5.41)

from which is easy to rewrite (5.40) as the two distinct equations

[R]* =0, (5.42)

[f27F = [a® = 0] =0, (5.43)

where fi5 is the value of p at the interface and i, = (dus/dt). Since RdS) represents the
“circumferential” proper length, equation (5.42) simply expresses the fact that meter rods
lying parallel to the singular surface can be brought into contact there and be directly
compared by the observers on either side. Finally, from the continuity of any R at any
time ¢, we can deduce the further metric junction condition

dR
dt

r = [au + b1, T)* = 0. (5.44)

5.2.2 Energy and Momentum Junction Conditions

The first studies on junction conditions for energy and momentum across a relativistic
discontinuity surface with associated physical properties have been presented by Israel
[63, 64] who, starting from the Gauss-Codazzi formalism (Hawking and Ellis [55], Misner
et al. [118]), developed the Singular Hypersurface Method in 1966. This method has then
found a number of cosmological applications such as the motion of a dust shell in a dust
Universe (Lake [86], Lake and Pim [87], Maeda and Sato [102, 103]) or the dynamics of
bubbles during early Universe phase transitions (Maeda [104]). The approach presented
here is a particular application of the singular hypersurface method to the scenario of
the cosmological quark—hadron phase transition (Miller and Pantano [113]) and further
developments to accommodate the method within a multicomponent fluid treatment have
been proposed by Rezzolla and Miller [137].

Let n be the unit spacelike four-vector normal to the hypersurface ¥ dividing the
four-dimensional spacetime V' into V* and V', for which
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nen® =1. (5.45)

Being embedded in a higher dimensional spacetime, the hypersurface will have an
extrinsic curvature K,z defined as?

Kop = hthg' gy (5.46)
where hos = gapg — nanp is the projection operator on ¥ and describes its three-geometry,
while n(s.0) = (78,0 + Nays)/2. We here use two different symbols for the covariant
derivative, with “” denoting the derivative with respect to g,s, while “||” denotes the

derivative with respect to h,g. From the Gauss-Codazzi equations we can write
O R+ Kop K — K? = —2G 4n°n” (5.47)

K5 = Kja = Guht'n” (5.48)

where K = K¢
Einstein tensor in V, while ® R is the Ricci scalar of the three-dimensional geometry hag-

o> 1s the trace of the extrinsic curvature, Gopg = Rap — %gaﬁR is the
An important distinction needs now to be made: if we define K5, K7, to be the extrinsic
curvatures of ¥ in the two submanifolds V* and V' ~, then the singular hypersurface will
represent the time evolution of a surface layer if Kofﬁ # K,z or of a boundary surface if
K} 5 = K5 A typical example of a surface layer is the phase interface in first order phase
transitions and, in this case, the stress energy tensor in V' has a §-function singularity on 3.
On the other hand, typical boundary surfaces are shock fronts or contact discontinuities
and these have been studied extensively by Lichnerowicz [93] and Synge [156].
Let us now introduce the following two quantities S,5 and f(aﬁ defined as

—871G (Saﬁ — %haﬁs) = [K.5)", (5.49)

O9K,5 = {Ku5} (5.50)

where G is the gravitational constant and S = S*,. (Note that S,s # 0 only on X.)
Following Israel, we interpret S,s as the stress energy tensor of the matter in the dis-
continuity surface, thus embodying the physical properties of the singular surface. As a
result, S,s can also be defined as

4We here follow the definition of Israel which differs in sign from that of Misner et al. [118]
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+e€
Sap =lim | Tuwhd'hg d (5.51)

where z is a Gaussian coordinate in the direction of n and = 0 on ¥. Making use of
the Einstein field equations

Gaﬁ = SWGTaﬁ s (58)

and of equations (5.47)—(5.50), we obtain (see Rezzolla [136] for details)

N N 1
OR+ Ky K — K = —167°G? (sagsaﬁ - 552) — 81G{T*nong}™® . (5.52)
K5 = Kjo = 47G{T" nyhyo }* (5.53)

f(agsaﬁ = [T“Bnanﬁ]i s (554)

S, 18 = ~(T" myuhal* (5.55)

Equations (5.52) and (5.53) can be regarded as the standard Hamiltonian and mo-
mentum constraints of a “3 + 1”7 formalism of General Relativity (Misner et al. [118])
considered in a fictitious spacetime V in which f(aﬁ is the mean curvature of the regular
hypersurface ¥ (Maeda [104]). On the other hand, equations (5.54) and (5.55), together
with (5.8) are sufficient to describe the evolution of the singular surface and will account
for the conservation of energy and momentum across X..

It is here convenient to make use of an orthonormal tetrad and for this purpose we
assume that our system has a planar or spherical symmetry so that two orthogonal Killing
vectors e, (with A = 2,3) exist. The tetrad is then completed if we introduce the unit

(4)
timelike four-vector v tangent to X so as to obtain the tetrad (v, n®, e?A)) (see Figure
5.1). Assuming that the matter in V' can be treated as a perfect fluid, the expressions for
the stress energy tensors in the singular surface and in the two submanifolds V* and V'~

will be

Sap = (Vg + 0)Vavs + Y5 hap (5.56)

(TeP)* = (e* +p*)uu” +p* (™))", (5.57)
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where 7., is the surface energy [cf. equation (4.14)] and & is the bidimensional tangential
pressure and it is the opposite of the more familiar surface tension (i.e. & = —o). Note
that the stress energy tensor (5.57) is representative of the standard fluids only and does
not contain contributions coming from the radiation fluid, for which a special treatment
will be presented later on.

Projecting (5.55) along each of the directions of the orthonormal tetrad (v, n, e ,,)
yields

(Vs + )1 Yo = Fjav® = [(e + p) (una) (u’vp)]* (5.58)
(s + )00 50" =0, (5.59)
(7 + 0)€r, va s’ =0, (5.60)

where all of the fluid quantities are meant to be evaluated on . Because of the symmetries
introduced, there is no acceleration on X, i.e.

and, as a consequence, (5.59) and (5.60) are trivially satisfied. The only non trivial
equation is then (5.58) which represents the energy conservation across X.
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Figure 5.1  Schematic spacetime diagram of an expanding spherical
singular surface ¥ as it evolves from a spacelike hypersurface at time ¢ to
a subsequent one at time ¢+ dt. (For convenience, one spatial dimension
has been suppressed.). n is the spacelike unit four-vector normal to the
hypersurface and v is the timelike unit four-vector tangent to it.

Using (5.61), it is possible to show that the acceleration vector in V' is not zero, but
rather expressed as

d o
Yo va;ﬁvﬁ = —n“v""K,, . (5.62)

where 7 is the proper time of an observer on X. Using (5.56) and (5.62), the left-hand
side of equation (5.54) can be rewritten as

Ko58 = [y v“” 4 Ge® eﬂ(A)]if(aﬁ

(4)

R T L o
= —%{naﬁ} + 0Kagel, € : (5.63)
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Given the spherically symmetric line element (3.10), it is simple to write the second
contraction on the right-hand-side of (5.63) as

@ (4 @
Kaﬁe(A)eﬁ =K%, + K¢¢ = (InR) on* , (5.64)

from which it is possible to rewrite equation (5.54) as

{—7—271 dv? + o(InR) 4n®

> o Jizuammwwf+mi, (5.65)

thus expressing the condition of momentum conservation across X for a spherically ex-
panding singular surface. All of the equations of the singular hypersurface method pre-
sented so far have been derived for a general spherically symmetric metric. Next, we will
specialize expressions (5.58) and (5.65) for the conservation of energy and momentum to
the specific case of the metric which we are using here.

First, we calculate the components of the unit four-vectors n and v respectively
normal and tangent to the singular surface whose time evolution is given by

F=pu— us(t) =0. (5.66)

We then obtain the following covariant components of n

= = N(—fis, 1, 0, 0), 5.67
e = V(=i ) (5.67)

N
where N is a normalization factor whose magnitude can be calculated by requiring that
the condition (5.45) is satisfied. This then yields

ab ab
N=——F———F=+— 5.68
(a2 — b2/i2)1/2 7 (5.68)
where the + signs reflect the choice between the two directions of the normal; this dif-
ference is however not relevant for the following calculations which are invariant under a
sign change of n.

Similarly, the contravariant components of v are found to be

dz® 1
=—1 =—=(1, f15, 0, 0), 5.69
| =0 0.0 (569

o

while the fluid four-velocity u has contravariant components
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1
ut = =(1,0,0,0). (5.70)

Since we are referring to a system with spherical symmetry, the intrinsic curvature
can be deduced from the line element

ds®> = —d7* + R*(1)d2? , (5.71)

by means of which all of the covariant derivatives of the three-geometry (i.e. those denoted
by ||) can be calculated. This is useful for calculating the left-hand side of equation (5.58)
which is then found to be

1
(s +0)o 5 = T V(s 7)) 4
1 d o
where h = det(h,s) = R*sin%0 and
- do
O'Hﬂvﬁ = E =0. (573)

Note that the last equality in (5.73) is not general but valid only in the case in which the
surface tension is considered as being independent of temperature and the surface energy
equals the surface tension, i.e. 7, = 0 = —a [cf. equation (4.14)].

Under these assumptions, the condition of conservation of energy for the standard
fluids across the reaction front (5.58) is finally expressed as

[(e —I—jz?)(uo‘na)(uﬁvﬁ)]jE = [(e+p)ab]* = 0. (5.74)

Next we turn to rewriting the condition of momentum conservation (5.65) for the
present case. In particular, we note that

a _ Y hilol
(InR) on® = 7 a2R+b2R

- 2t 5 =

ab ( iR, R )

and
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e =i’ = () g () +
= ha(F) %] 370
while the right-hand-side of (5.65) can also be written as
e+ p) (0 na)? + Bl = oleb?i + pa?]* 6.17)

=5
Making use of the relations (5.75) and (5.76), together with the new form of the right-

hand-side of (5.77), the final form for the conservation of momentum for the standard
fluids across the reaction front is found to be

, of? (1 d (B fu 2 . x
[ebQ,uf%—paQ]i:—T{%a( 7 >+ag+f—R(b,usu+aF)} . (5.78)

Equation (5.78) shows that the surface tension provides a two-fold contribution to the
conservation of momentum: an inertial one, expressed in terms of the acceleration of the
front and a viscous one, expressed in terms of the velocity of the front.

It should be underlined that the junction conditions for the energy and momentum
(5.74) and (5.78) have been derived in terms of the stress energy tensor of the standard
fluids (5.56) and are therefore valid for these fluids only. In general, it would be necessary
to perform the same analysis also for the radiation fluid and for the “baryon number
fluid”, with the stress energy tensor (3.7) playing a role analogous to the one played by
(5.56). However, the physical conditions at the quark-hadron transition are such that
this is not really necessary and simpler solutions can be found.

We recall that the phase interface has a width of the order of the interaction scale
length for the strong interaction, i.e. £ ~ 1 fm. On the other hand, the typical interac-
tion scale length for the radiation fluid particles is A ~ 10% fm (or A ~ 10" fm in the
case of neutrinos). Because of the large difference in these two scales, it is reasonable
to neglect any interaction of the radiation fluid particles with the interface, so that no
effective energy and momentum transfer takes place when the radiation crosses the phase
interface. In other words, the reaction front effectively behaves as a boundary surface
relative to the radiation fluid. In this case, we can consider negligible the contribution of
the radiation fluid to the stress energy tensor of the phase interface (i.e. Sgﬁ = 0), thus
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greatly simplifying equations (5.54) and (5.55) for the radiation fluid which then reduce
to

[T nangl™ =0, (5.79)

[T nahgy o= = [T nqvs]* = 0. (5.80)

Making use of the components of the four-vectors v and n, the continuity of energy
and momentum of the radiation fluid can finally be expressed respectively as

4 +
[T uqug)™ = |abjis (5 + fE> wy — (a® + b%?)wl} =0, (5.81)

1 +
[T nqvg)* = {a2 <§ + fE> + bzlli} wp — 2abﬂsw1} =0, (5.82)

where we have made use of the closure relation wy = f, wy.

Similar considerations can be used also for the “baryon number fluid”, whose net
flux across the phase interface (5.37) can now be calculated explicitly in terms of the
components (5.67) and (5.70) so as to obtain

ny ny [t
o, =F —b><1> :—F<—”> LA 5.83
' (pq g pq) ATRLf ( )

As a first approximation it is reasonable to neglect any interaction of the baryon number
carriers with the matter in the interface, so that the only junction condition for the
“baryon number fluid” across the singular surface is a continuity condition, i.e.

(@] =0, (5.84)

as anticipated in Subsection 5.1.2.

It is interesting to notice that if we treat the phase interface as a boundary surface
also for the standard fluids, we can neglect the contributions coming from the surface
tension and the surface energy and find that the junction conditions (5.74) and (5.78)
simply reduce to the relativistic Rankine-Hugoniot junction condition (May and White
[108])

[aw]* =0, (5.85)

[ebjisT — aup]® =0 . (5.86)
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A final comment should be made on the mass function M which receives a net
contribution from the surface energy, so that M+ # M~. At the time of nucleation of the
bubble, conditions are essentially Newtonian so that

[M)* = 47 R% | (5.87)

but the subsequent time evolution is given by (Rezzolla and Miller [137])

d }
E[M]i = [M;+ jsM,)*

+

1 r
= 47rR? [bF/lS {e + wp + %wl} —au {p+ <§ + fE> wo + Ewl}]

(5.88)

5.2.3 Transition Rate Equation

As discussed in detail in Section 4.3, weak deflagrations require minimal conditions in
order to be produced within cosmological scenarios and thus represent the most promising
type of reaction front by means of which to describe the dynamics of the phase interface.
However, weak deflagrations are also the physically possible reaction fronts which are
most difficult to “handle” since they are subsonic with respect to their media ahead and
behind (Section 1.2) and are intrinsically underdetermined (Subsections 1.2.2 and 1.3.3).
Both of these difficulties will be discussed in the following two subsections and we here
start with the second, i.e. with the definition of a suitable hadronization rate.

In order to completely determine a weak deflagration solution it is necessary to
provide a further equation which basically establishes the velocity at which the deflagra-
tion front moves in the unreacted medium. [More formally, the extra equation effectively
quantifies the entropy jump hidden in the inequality (1.7).] If the deflagration involves
well known physical conditions, this equation can be based on more solid grounds and be
expressed in terms of the chemical properties of the fluid undergoing the reaction (exam-
ples of classical deflagrations are given by Buckmaster and Ludford [26] and by Zeldovich
et al. [172]). However, this is not possible within a cosmological scenario and a number of
different approaches have been proposed for the electroweak transition (Dine et al. [41],
Hua Liu et al. [58], Huet et al. [60], Heckler [56], Moore and Prokopec [119]) and for
the quark—hadron transition (Applegate and Hogan [6], Bonometto and Pantano [24] and
references therein, Ignatius et al. [61]).
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Despite the large literature, the situation is still rather unclear and this is particu-
larly the case for the quark—hadron transition. Applegate and Hogan [6] proposed in 1985
that the temperature of the quark phase ahead of the interface could be considered equal
to the critical temperature during all of the transition, with some initial supercooling
being allowed for bubble nucleation. While it is likely that the temperature ahead of the
front is very close to the critical temperature during most of the transition, it is essential
to note that the dynamics of transition is entirely determined by the small deviations
away from this temperature and therefore this assumption is not at all satisfactory.

A more reasonable approach has been initially proposed by Ignatius et al. [61] and
subsequently exploited in all of the following works by the Finnish group at the University
of Helsinki (i.e. comprising Kajantie, Kurki-Suonio and Laine). The method basically
consists in solving the hydrodynamical equations of a perfect “cosmic fluid” which is
coupled with a scalar order parameter field ¢, in analogy with the reheating problem in
inflation. While the total stress energy tensor is conserved, this is not the case for the two
sub-systems: cosmic fluid and order parameter. The entropy produced at the interface
couples the behaviour of ¢ with the fluid, and the strength of this interaction is described
by a dissipative constant which, at least in principle, is calculable from the theory. At
the moment, no precise value of the dissipative constant is known, and this forces to use
a phenomenological approach in which the constant is treated as a free parameter.

A further different solution to the problem has been proposed by Miller and Pantano
[113] who adopted a more classical approach. From a physical point of view, the extra
condition for a weak deflagration can be obtained relating the energy flux coming from
the interface as derived from considerations of the transition process F,., with the effective
hydrodynamical energy flux F,. (This is just an equivalent way of determining the
entropy jump across the interface, since any other condition can be eventually related
to a condition on F,.) The simplest expression for this energy flux can then be

FT = [q)(TII) - (I)(Th)] ’ (589)

where ®(T}) represents an ideal thermal flux away from the interface (at temperature
T,) into the hadron plasma and ®(7}) is the corresponding flux from the hadron phase
toward the interface. oy (with 0 < o < 1) is an accommodation coefficient and accounts
for deviations away from the ideal situation of an interface emitting hadrons as a black-
body at temperature T}, (i.e. oy = 1). Note that this approach is analogous to the one
used for calculating the net mass transfer across a vapour-liquid interface in classical
bubble dynamics (Theofanous et al. [160]). Also in this approach, which we will adopt
hereafter, the accommodation coefficient is poorly known but is in principle calculable.
Unfortunately, the hadronization rates coming from calculations of heavy ion collisions
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are not useful for the present scenario as they are relative to quark matter being produced
in vacuum and not in a leptonic bath (Banerjee et al. [15], Miiller and Eisenberg [120]).
However, it is worth underlying that we are not interested here in the microscopic structure
of the phase interface, but rather in its dynamics during the transition and this can be
satisfactorily investigated by treating oy as a free parameter.

Using the equations of state (4.16)—(4.19) presented in Subsections 4.4.1 and 4.4.2,
we can then rewrite (5.89) as

2

= %<Z>gh(Tq —T,) - (5.90)

On the other hand, the hydrodynamical energy flux across the interface is defined in terms
of the projection of the stress energy tensor of the standard fluids in the direction normal
to the interface worldtube, i.e.

F

H

=T uyumn, . (5.91)

The extra condition for weak deflagrations is then obtained after requiring that F,, = F,
and this then finally yields

. 2
awfis T [y -
F, =+ =T (gt - T = F, . 5.92
" F R (@ — b2) 30<4>gh(q W= F (5.92)

where the + signs depend on the choice made for the unit normal to the hypersurface,
with the plus sign being relevant for hadron bubble growth and the minus sign for quark
drop evaporation.

5.2.4 Characteristic Equations

When we deal with a quasi-linear system of n partial differential equations of dependent
variables U7 (z, t), with j =1,...,n

oU’ oU’ o
aijﬁ—f’bija—x_f’ci:o: hLj=1...,n (5.93)

where

aij:az-j (t,fl?,Ul,...,Un), bij:bij (t,fl?,Ul,...,Un), Ci:Ci(t,fE,Ul,...,Un),
(5.94)
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it is sometimes more convenient to rewrite them in a characteristic form. In other words,
it is convenient to look for a linear combination of equations (5.93) such that the new
system can be written as a set of ordinary differential equations along specific directions
in the independent variable space (z, t). These directions are then called characteris-
tic directions or curves or simply “characteristics”. The initial set of partial differential
equations (5.93) will then be called hyperbolic if the characteristics are real and distinct,
parabolic if the characteristics are real and coincident and elliptic if the characteristics
are complex and conjugate (Courant and Friedrichs [35], Potter [132]). Physical problems
described by hyperbolic equations are, for example, all those involving “wave-like” dif-
ferential operators [e.g. a wave equation O¢ = {V? — (1/v2)9?/dt*}¢ = 0]. On the other
hand, “diffusion-like” differential operators [e.g. {9/0t + (D)d?/0x*}¢ = 0] are typical of
parabolic equations [cf. equation (5.34)], while problems involving the solution of “Poisson-
like” equations [e.g. V?¢ = 0] are typical examples of elliptic differential equations.

Apart from this mathematical classification, characteristic equations can have a
deep physical meaning and this is particularly evident in the case of hyperbolic systems
of equations, such as our equations (5.12), (5.13), (5.14), (5.20), (3.18) and (3.19). In the
case of a fluid, the characteristic curves coincide with the directions of propagation of sonic
disturbances as well as with the direction of the fluid flowlines or advective characteristics
(see also Subsection 1.3.1 where characteristics are used to investigate the causal structure
of reaction fronts).

Given an event P(zg, tg) in the spacetime (z, t), it is then possible to define as
domain of dependence of P(xq, to), the segment S between points A and B on the t = 0
curve (see left diagram of Figure 5.1). This then represents the Cauchy data for the event
P or, in other words, the set of possible initial conditions from which the solution at P of
the hyperbolic differential equation depends. Associated with the domain of dependence
is the domain of determinacy; this region is limited by the forward C* and backward C~
characteristics issued respectively from A and B and is so called because the solution at
each point of it is fully determined by the initial data that has been assigned to the domain
of dependence (Coulson and Jeffrey [34], Courant and Friedrichs [35]). If the Cauchy data
are assigned only to a point P(z, t) of the domain of dependence, the solution will then
be determined only at that point P(z, t), which, in turn, will influence but not determine
the solution on a larger region. It is then defined as region of influence of the event P(x, t)
the region of spacetime I included between the characteristic curves diverging from the
point P(z, t) (see right diagram of Figure 5.1).
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forward
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P(%.5)

backward
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domain of determinacy region of influence

Figure 5.1 The left diagram is a spacetime illustration of the “domain of
dependence” (indicated with a heavy line curve S) and of the “domain
of determinacy” (indicated with the light shaded area region D) of a
event P(zg, ty) to which the forward C*, the backward C~ and the
advective characteristic C® converge. Similarly, the right diagram shows
the “region of influence” (indicated with the heavy shaded area I) of
the event P(z, t), from which the characteristics are emitted. Note that
for simplicity we have drawn the characteristic curves as straight lines
although this is not necessarily true in the case of compressible media.

The relations among the mathematical concepts of the domain of determinacy and of
region of influence with the corresponding physical concepts of past and future sound (or
light) cones are rather obvious and we shall not comment on them here.

Although more complicated to implement, characteristics based approaches in hy-
drodynamics are often used either when a very high spatial resolution is desired (Dubal and
Pantano [42]), or when an exact treatment of discontinuity surfaces is necessary (McKee
and Colgate [109]). In this latter case and particularly if the discontinuities are subsonic
relative to their medium ahead, a numerical computation based on a characteristic scheme
represents the best (if not the only) possible approach since it automatically ensures a
correct causal treatment. Miller and Pantano [113] have exploited the advantages of a
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characteristic approach for studying the hydrodynamics of hadron bubble growth during
the early stages of the quark—hadron transition. Their computational strategy was to use
the continuum hydrodynamical equations for the solution in the bulk of each phase and
to track the interface continuously through the finite difference grid using a characteristic
method together with suitable junction conditions. This approach has then been extended
by Rezzolla and Miller [137] to allow for a multicomponent treatment in which long range
energy and momentum transfer could be followed and has been subsequently applied in
a number of numerical computations studying radiative transfer during hadron bubble
growth in the quark-hadron transition (Miller and Rezzolla [115], Rezzolla [144]) and the
radiation decoupling during quark drop evaporation (Rezzolla and Miller [140], Rezzolla
[145]).

In the following we sketch the basic lines of this strategy and present the derivation
of the characteristic form of the hydrodynamical equations for the standard and radiation
fluids presented in Subsection 5.1.1. Before that, however, it is worth noticing that for each
two moment equations describing the radiation hydrodynamics which are retained from
the infinite hierarchy, there are two families of corresponding characteristic curves with
associated characteristic speeds. While including a larger number of moments in general
increases accuracy, the role and relevance of the speeds associated with moments beyond
the first two is controversial. Since we are using only the first two moment equations in
the present context, these difficulties do not arise here.

In order to write the equations in a characteristic form, it is convenient to make
use of the following equalities coming from the constraint equations obtained from the
Einstein field equations (5.8) and from the conservation of momentum

u, 4rGabR
St e PR 5.95
b (J/Ruu R’/'L wl ’ ( )

b
G _Put b5t (5.96)

a pw

so that equations (5.12), (5.13), (5.14), (3.18) and (3.19) can be written respectively as

al’
— By =0 5.97
Uy + bpwp,u + 0 ; ( )

capw
br

e+ u,+ B =0, (5.98)
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pi+ bru +B,=0, (5.99)
a a /4 2a
(wo) ¢ + g(wl),u + E(g + fE>w0u,M - bp—wwlp’“ +B3=0, (5.100)

(wl)t+b< +f>( )’”_b—< +f> Wop,u + iﬁwlu,u+34:0,

(5.101)
where
1 GM r
By = a{47rGR [p—l— <§ + fE> ] + R + p—wé’l} , (5.102)
2u  47GR
Bl = |:S(] + p’LU(E - T w1>] s (5103)
2u  47GR

B, = ap(E -7 w1> : (5.104)

r 1 8 4rGaR 4
B; = 2a<——p—wsl>w1+%<——fE)wg— a <—+fE>w0w1—asg, (5.105)

R R \3 r 3
a 4 u 47rGR 3al’ a
Bi = (5 de s+ 20 = T Jun+ T fon = asio+ s,

In deriving equations (5.97)-(5.101), the relations R; = au and R, = bl have been
used and we have introduced the local sound speed in the standard fluids ¢, = (9p/de)'/2.

If we now introduce the state vector
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c
Il
B

(5.107)

Wy

wn
equations (5.97)—(5.101) can then be written in the symbolic form

ou ou
E+AE+B_O’ (5.108)
where B is the vector whose components are given by (5.102)—(5.106).

If the expression chosen for the Eddington factor f, is dependent on components of
the state vector U, it is necessary to rewrite the partial derivative of f, in (5.106) in terms
of the derivatives of the component variables. In doing this the elements of the matrix A
are obviously modified. We recall that for our specific application, the expression which
we have chosen for the Eddington factor is

_ 8u*/9 A
e = T 4u2)3) ()\ n R) ’ (5.27)

so that equation (5.101) needs to be modified so as to obtain

a /1 a /4 2a
(W) + b <§ N fE) (o) = bpw <§ + fE)wUp,u T ﬁ(l + K)ww, + By =0,
(5.109)
with
a /4 u  47GR 3al’ al’fpw
By = _p_w<§ + fE>w081 + 2a<§ TTT w1>w1 - ?waO e A {ERO ’
(5.110)

and where, for compactness, we have defined
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ng

K = . 5.111
fEu(l + 4u?/3)w, ( )
Having done this, the matrix A takes the form
0 al’ Jbpw 0 0 0
capw /bT 0 0 0 0
A= ap/bl 0 0 0 0 (5.112)
awo(4/3 + f,)/bT —2aw, /bpw 0 0 a/b
20w (1 + K)/bI'  —awo(4/3+ f,)/bpw 0 a(1/3+ f,)/b 0

Next, we introduce [;, the set of left eigenvectors of A, and );, the corresponding
eigenvalues satisfying the relations

Equation (5.113) has five distinct eigenvalues (the system is hyperbolic)

N = 0, (5.114)

Mo = i%cs, (5.115)
a |1

)\3’4 - IIZE §+fEﬂ (5116)

to which correspond the five eigenvectors

1
Iy = k<0, +—. 1,0, 0), (5.117)
ciw
CsPW

11’2 = k(:l: T, 1, 0, 0, 0) , (5118)
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22 —1—-K)(1/3+ fg)'/? 1/4
T(2 —1/3— fn) w1+f<§+fE>w°’

2fp —2/3 - K) 1 1/2
pw(c — 1/3—fE)w1’ 0, % <§+fE> ’ 1) '

1374 = k(:l:

(5.119)

where k is an arbitrary constant.

The eigenvalues (5.114)—(5.116) effectively determine the five relevant characteris-
tic directions of this physical system. While Ay and A, are rather straightforward to
interpret since they represent respectively the advective, the forward and the backward
characteristics of the standard fluids and the latter are proportional to the local sound
speed of the standard fluids,” the interpretation of the eigenvalues A3, appears to be
less obvious. However, recalling that the Eddington factor can take values in the range
0 < f, <2/3,1it is easy to realize that the eigenvalues (5.116) effectively refer to the
forward and backward characteristics of the radiation fluid, whose local sound speed can
effectively range between ¢, p = \/m in the case of an isotropic radiation fluid (i.e.
f. =0) and ¢ g = 1 in the case of free streaming radiation fluid (i.e. f, = 2/3).

The configuration of characteristic curves adjacent to the interface is shown in Figure
5.2 for evolution of the system from time level ¢ to a subsequent time level ¢ + At. The
dashed lines represent the forward and backward characteristics for the radiation fluid r,
the full narrow lines are the equivalent characteristics for the standard fluids f, the vertical
dotted line is the advective characteristic for strongly interacting matter in the quark phase
and the heavy line is the worldline of the interface. (Figure 5.2 should be compared with
diagram AA of Figure 1.8.) Note the differences introduced by the two possible directions
in which the discontinuity can move as shown in the right diagram for an outward moving
phase interface (e.g. as in the case of bubble growth) and in the left diagram for an inward
moving one (e.g. as in the case of drop evaporation). Such differences force the use of
two different schemes for the solution of the system of characteristic equations and the
use of modified algorithms for the calculation of quantities in the grid zones immediately
adjacent to the interface according to whether the interface is inward or outward moving
(see also Subsection 6.1.1). Note also that since the front is always subsonic, the domain
of dependence of the event immediately ahead of the front is not completely contained in
one phase only.

°Note that the metric coefficients a and b appearing in the eigenvalues (5.114)—(5.116) are necessary
to convert coordinate distances and time intervals into “proper distances” and “proper times” relative to
the standard fluids.
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t+At t+At

expanding front contracting front

Figure 5.2 Spacetime configuration of characteristic curves near the phase interface
drawn in the Lagrangian coordinate frame. The left diagram refers to an expanding
weak deflagration and is therefore representative of a hadron bubble, while the right
one refers to a contracting front and is representative of a quark drop. The dashed
lines represent the forward and backward characteristics for the radiation fluid r,
the full narrow lines are the equivalent characteristics for the standard fluids f, the
vertical dotted line is the advective characteristic and the heavy line is the worldline
of the interface. For simplicity we have drawn the characteristics of the same type
of fluid as having the same slope in both phases of the STM.

It is important to underline that some of the components of the eigenvectors (5.119)
of the radiation fluid could become nearly singular in the case in which the radiation fluid
is almost isotropic (i.e. f, — 0) and the standard fluid is relativistic (i.e. ¢, — 1/v/3).
The singularity is an inevitable by-product of the hyperbolic nature of the equations (cf.
discussion in Subsection 1.3.2) and is effectively related to the difference between the sound
speeds in the standard fluids (¢;) and in the radiation fluid (¢, = 1/1/3+ f,). Such a
difference is rather large when the standard fluids are non-relativistic but, unfortunately,
in the present case the standard fluids are relativistic and the difference between the
sound speeds is frequently small. This singular nature of the eigenvectors will be reflected
directly on the characteristic equations of the radiation fluid, leading to some serious
complications in numerical solution of the equations. This will be further discussed in
Subsection 6.1.2.

Once the eigenvectors are known, equation (5.108) can then be multiplied on the
left by I; so as to obtain the new symbolic expression

+ A

l.[a_U g
‘Lot " op

} L IB=0. (5.120)

in which each component involves derivatives only along the characteristic direction given
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by du/dt = \; . Writing out system (5.120) explicitly we then get the following charac-
teristic form of the equations (5.97)—(5.101)

1 GM  2Tuc,
+47rGR[p+<§+fE>w0:chw1]+ﬁi R }dt:(),

(5.121)

which are to be solved along the forward and backward characteristics of the standard
fluid dp = £ (a/b)es dt, and

A~ 1- K)(1/34 f)12 11
Yy L

r
2 g - 20

1 1/2 4

[ e s )5 e)

+[47rR<p+wo<% +fE>> + %]x

4 202 —1-K)(1/3+ f,)"* 1G  Ku(l+ 4u?/3)
X[(ﬁ”E)wﬂi 2—1/3—f, 1]?‘ A1+ R/)N)

S N R SR XA L

2¢2

+[pw(c§ — 15/3 —f) <fE a g a K>w1 * (% T fE)l/Q] %0

* [ipw(cz —i/?) — 1) <fE a g a K) (% * fE>1/2w1 a 1]Sl}dt =0

(5.122)

w1

which are to be solved along the forward and backward characteristics of the radiation
fluid du = £ (a/b)(1/3 + f,)'/?dt, and finally
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1
—dp— T =0, (5.123)

2
csw w

dp —

which is an advective equation and is to be solved along the flowlines of the standard fluid
dp = 0. Finally, R and M are calculated from advective equations

dR = audt , (5.124)

1 r
dM = —4n R*au|p + (5 + fE>w0 + —wl}dt , (5.125)
u

and the metric coefficient a is calculated from (5.15) which is a constraint equation on
the constant ¢ hypersurface (i.e. it is to be integrated along the direction dt = 0).

We conclude this subsection by summarizing the overall strategy of the solution at
the interface, in which the characteristic equations need to be solved together with the
junction conditions. In practice, the numerical solution of the hydrodynamical equation
across the phase interface involves the simultaneous calculation (i.e. on each time slice)
of the ten components of the state vectors U* (i.e. u*, p*, p*, wi, wi), of the metric
coefficients a*, of the mass function M*, of the baryon number flux ®F and of the
interface location R, (or equivalently pus) and velocity fis, giving a total number of 18
unknowns. These are then determined by using 4 equations along the backward and
forward characteristics of the standard and radiation fluids [i.e. equations (5.121) and
(5.122)], 3 equations along the advective characteristics [i.e. equations (5.123)—(5.125)], 1
equation for the net baryon flux at the interface [i.e. equation (5.83)], 2 metric junction
conditions [i.e. equations (5.43) and (5.44)], 4 energy and momentum junction conditions
[i.e. equations (5.74), (5.78), (5.81) and (5.82)], 1 continuity equation for the baryon flux
[i.e. equation (5.84], 1 evolution equation for the mass function [i.e. equation (5.88)], 1
constraint equation [i.e. equation (5.15)] and finally 1 rate equation [i.e. equation (5.92)].
For compactness, a detailed description of the sequence of computational procedures
adopted for the numerical solution at the interface will not be presented in this Thesis.
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5.3 Appendix D

In this Appendix we give a brief sketch of the calculations leading from the Einstein
field equations (5.8) and the conservation equations (5.9)—(5.11) to the hydrodynamical
equations (5.12)-(5.20). Also, we present the basic steps that allow for the derivation of
our expressions for the Eddington factor and for the initial conditions for the radiation
fluid in the case of an expanding bubble. A final comment will be dedicated to the
calculation of the relativistic diffusion equation for the baryon number (5.34) and to a
convenient finite difference form for its numeric integration.

I. The Combined Fluids

Expressions for the non-zero contravariant components of the total stress energy tensor
(TP = T}‘jﬂ + Tl‘jﬂ ) can be calculated using the expression for the stress energy tensor of
the radiation fluid (3.7) and the components (3.27)—(3.30) of the comoving tetrad. This
then gives

1
T = g(ejuwg), (5.126)
T = w—bl (5.127)
a
1 W
11 _ 0
1 w w
T2 = —( —”——2> 12
1 W w
33 _ 0 2
= R2%sin20 (p—l—?—7>, (5.130)

where it is easy to see the contributions coming from the standard fluids and the radiation
fluid respectively.

After straightforward but particularly tedious calculations it is possible to obtain
the following non-zero components of the Christoffel symbols of the metric (3.10):
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ay a, aa, b,
FOUO = PR FOUI = aﬂ ’ Fl00 = bgu g Fln = f ’
b, bb R, R
Fl10 = ? ) 11011 = ? ) 11220 = E ) F221 = fﬂ )
RR RR R R
F022 = z’t ) 11122 = bg’# ) 11330 = ft ) F331 = fﬂ )
a
cost Rsin29R7t Rsin20R, .
[ = sinf T = 2 L, = —T“ , T%, = —sinfcosh ,

(5.131)
while the relevant components of the Ricci tensor and scalar are respectively
al/a by 2b /R, 2
Roo = — —’“) —(—’) ——(—’) — R], 5.132
00 b[(b .\ TR ) TR (5.132)
2 a, b’t
R01 == E(?ﬂ}it_'— ?R’M - R,tu) s (5133)
R\? Ru>2 R(Rt> R(Ru> R (R;by R,
— > Y Rt ol il _ J - L s 1
R22<><b+aatbb#+aba b )T
(5.134)
Ry3 = sin®0 Ry, | (5.135)
and
2 bt a 4 |1 Rt 1 /R
n=3[(%),-().] 1B ),
ab[(a)t (b #+R[a al/y b\b/,

2 [/RN\? [(R,\’ 4 (R, R,
— (=] = (=) +1 L kRl (5,136
+R2l<a> <b>+ Tawr\ a b (5.136)

Using then all of these components, we obtain the following form of the four inde-
pendent Einstein equations
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(TUO) :
bR2 2 2
87G (e + wo) R*R,, + Mwl = {R <&> - <ﬂ> + 1” . (5.137)
a a b "
(")
2 2
87rG<p + 20 wg) SnGaliBy, —{R[(R’t) (ﬁ) n 1]} . (5.138)
3 b a b t
(T% =T%)

(Tol) :

b . 2 a,# b’t
S7Gwn = a2R< ARy

R, - R,w> . (5.140)
(the symbol in brackets identifies the component referred to). Equation (5.140) is a
constraint equation which, in the form

b’t 1 a,

? == —R—’# <R’#t - fR’t — 47TGabR’LU1> s (5141)
has been used frequently in the course of the calculations outlined in this Appendix.
Writing out explicitly the time derivative on the right-hand side of equation (5.138) and
making use of the (5.141), the following expression

R Rt P +bSl
I'T, = —* |4nGRaw, — —(“7)] 5.142

SRR R N (5.142)
can be obtained and this can then be further transformed, by means of equation (5.17),
so as to arrive at the form (5.12), which represents the relativistic form of the standard
Euler equation.
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Next we turn to writing out explicitly the hydrodynamic conservation equations
(5.9)—(5.10) which take the form

—uaTo‘ﬁ;ﬂ =0=s50+ (e+p)su’+ (e +p)O — psg™ue, , (5.143)
4 1 4
anjaT“B;B =0= 551 + (e + p)nju’u’ + (97 + uuf)pg (5.144)
(y/det(=g*%))
(pu);e = 0= pou® + pu® , + pu® = . (5.145)
det(—g2P)

Using the expressions I' = R, /b and u = R;/a together with (5.141), equations
(5.143)—(5.145) can be converted to the final form given in equations (5.13)-(5.15). Fi-
nally, we note that if we rewrite equations (5.10) and (5.11) as

{ﬂ
2G

2 2
<&> — <ﬂ> + 1} } = 47R*R (e + wo + Ewl) =M, (5.146)
a b M ’ r ’

and

R Rt 2 R# 2 1 F
— (=) = (=£ 1 :—4R2R< - — ):M 5.147
{wel(T) = (52) ), = mmBa (oot gt S ) =2, (147
this gives expressions (5.16) and (5.20) for the generalized mass function M and which
reduce to the familiar expressions for the standard mass function when the radiation terms
are omitted.

II. Eddington Factor and Initial Conditions for the Radiation

As mentioned in Sections 3.3 and 5.1.1, a particularly important point in the PSTF
approach is the truncation of the infinite hierarchy of moment equations by means of
a suitably defined closure relation derived on the basis of physical considerations. We
have used the closure equation (3.17) and, for our particular problem, an appropriate
expression for f, is given by equation (5.27). Here we give our justification for making
this choice and refer, in particular, to the initial conditions for the radiation fluid for
hadron bubble growth.
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A key point in choosing an expression for f, is that it should have the correct
asymptotic behaviour in the optically thin and optically thick limits. Consider the case
of a single spherical hadronic bubble which is initially nucleated at rest with a radius
small compared with the mean free path of the radiation. Under these circumstances, the
radiation field will be everywhere rather accurately uniform and isotropic (unless there
is some other perturbing influence) and since the bubble radius is very small compared
with the horizon scale, it is also a good approximation to neglect cosmological expansion.
Since wg, w; and wy are all measured with respect to the local rest frames of the stan-
dard fluid, the values which they take during the early part of the bubble expansion are
those produced by motion of the fluid rest frames with respect to the essentially uniform
radiation field.

When the radiation is isotropic in its mean rest frame, its stress energy tensor takes
the perfect fluid form

T:ﬁ = (e, —|—pR)vavﬁ +pRgO‘B , (5.148)

where e, and p, are the radiation energy density and pressure (p, = e,/3), measured in
the mean rest frame of the radiation, and v* = dx®/dr is the four-velocity of this frame
relative to some specific observer. For purely radial motion in our metric

b2 2 2
dr? = —ds® = (1 - —’Z)antQ - Zar, (5.149)
a 8
and the non-zero components of four-velocity are
dt du v
a_ (2227 T 5.150
= () =T, (5.150)

where

1 . bji
= an v=—.
7 V1 —v? a

To find the value of /i for the radiation frame with respect to the standard fluid, we
note that since each element of the radiation fluid is remaining at a constant value of R

(5.151)

dR = R,dt + R ,,dj = audt + bI'dp = 0 (5.152)

and so

L (5.153)
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which leads to the following expressions

u 5 r?
v=—=, == 5.154
If we now write the stress energy tensor (5.148) in the frame comoving with the standard
fluid, we can compare the new expressions for the components with the ones appearing

in equation (3.7), thus obtaining the following system of equations

00 __ Wo . 4 ")/2 1 1
= =ge () 3 () (5:155)
wy, 4 v
T = a—bl = 2¢y (;u) , (5.156)
1 /w 4 v . 1 1
Ty = (5 ) = e (—“) 30 () (5.157)

The solution of this system then leads to the expressions

2

wo = %(3 + e, , (5.158)
4
wy = g’}/QUGR , (5.159)
7 2 Wo

If we now define (wy), = e, to be the radiation energy density at the bubble
nucleation time (when there is no fluid motion), equations (5.158)—(5.160) can be suitably
transformed so as to give the following expressions for the energy density, flux and shear
stress scalar of the radiation as seen from the standard fluid

4 u? N 4,
4 Tu 4
w, = —gip Y (’LU(])N ~ —gru(wo)N s (5-162)
8 u? 8 ,
Wy = 9T2 — 42 (wO)N = §u (wO)N : (5163)

The approximate forms of the expressions (5.161)—(5.163) result from noting that since
the dimensions of the bubble are small compared with the horizon scale, ['? — u? ~ 1.
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Equations (5.161) and (5.163) together with the definition (3.17), give the following
analytic expression for the variable Eddington factor during the first stages of the bubble
expansion

8u?/9

= m . (5.164)
This is the “optically thin” limit. At the other extreme, the “optically thick” limit arises
when the radius of the bubble is large compared with the radiation mean free path and
complete coupling has been attained between the radiation and the standard fluids over
length scales comparable with the radius of the bubble. When this happens, interactions
make the radiation isotropic in the local fluid rest frame so that wy, — 0 and f, — 0.
A suitable smooth join is required in between the two asymptotic limits and to do this
we have multiplied the expression in (5.164) by A/(A + R) which then gives equation
(5.27). Experiment has shown that reasonable variation in the form of the join makes an
insignificant change in the results obtained.

ITI. Baryon Diffusion

Finally, we briefly show some intermediate steps leading to equation (5.34), the relativistic
diffusion equation for baryon number. Using the standard property of four-divergences
(5.33), equation (5.32) can be written as

b 2R b
BR2 [(ny), + 1y [ + 2t ) | = —ab | R [ 22 4+ 22 ) 1+ (R . (5.165)
’ b R a b
The T component of the Einstein field equations (5.140) provides the useful relation
(5.141) and, for the present purposes, we can neglect the term containing the gravitational
constant G < 1 so as to obtain the simpler expression
b t R7 ut (l7 m a

Dt Tt G O 5.166
b "R, aR, " (5.166)

Making then use also of the identity

by By Ly

Ty T Y 5.167
b bI’ or’ ( )

and of the definition (5.35), it is then possible to rewrite equation (5.165) in the final form

(5.34).
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An attractive feature of Lagrangian schemes is that advection is treated exactly.

Exploiting this, it is convenient to use for the finite-difference representation of equation
(5.34) the simple and compact expression:

. (R)T) ) n n (R?)7 412 n
47r(nb)j_|'|_'11/2 anji/ ARJ‘LI/Q = 47T(nb)j+1/2 " It j+1/2
J+1/2 j+1/2
- W [( )j-i—l( D)j—l—l — ( )]( D)j] Ajy1)2 tj+1/2 )
j+1/2

(5.168)

where the superscripts refer to the time level at which the quantity is calculated and the

subscripts to the position in the spatial grid, AR;LH/Q =R}, — R} and

n_ [(nb)?+1/2 - (”b)?—1/2-|
((I)D)j - D[ R?+1/2_R?_1/2 J )

is the diffusive flux of baryon number at any grid zone boundary j.

(5.169)
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Summary

The relativistic hydrodynamics of the cosmological quark—hadron transition can be
described in terms of a multicomponent fluid approach in which the dynamics
of two standard fluids, a radiation fluid and a “baryon number fluid” are
followed simultaneously.

The relativistic hydrodynamical equations for the standard fluids are obtained after
coupling the Einstein field equations with conservation equations expressed
in terms of the total stress energy tensor of the standard and radiation fluids.

The dynamics of the radiation fluid and the energy and momentum exchanges
with the standard ones are followed by means of a coupled system of radiation
hydrodynamical equations written using the PSTF formalism.

The dynamics of the “baryon number fluid” is followed by means of a relativistic
diffusion equation for baryon number in spherical symmetry.

The hydrodynamical equations cannot be integrated across the phase interface
which is here treated as a discontinuity surface. This forces the use of a particular
strategy for the solution at the interface.

At the interface junction conditions for the metric functions, for the energy and
momentum of the standard fluids and of the radiation fluid as well as a conti-
nuity equation for the net baryon number flux need to be solved. The junction
conditions are derived following the Singular Hypersurface Method.

The underdeterminacy of the weak deflagration describing the motion of the
phase interface can be eliminated by specifying an extra condition. A convenient
expression for this can be derived in terms of the energy flux and the hydrody-
namical flux across the interface.

Since weak deflagrations are subsonic, it is particularly important to have a cor-
rect causal treatment. This can be accomplished by means of characteristic
scheme involving the solution of the hydrodynamical equations written as ordinary
differential equations along characteristics curves.

The characteristic curves in a fluid can be associated with the directions in
spacetime along which sonic disturbances propagate (forward and backward char-
acteristics) and with the fluid flowlines (advective characteristic).



Chapter 6

Numerical Strategies and Results

In all of the previous chapters we have presented and discussed the basic structures
and the formal details of a new general relativistic multicomponent fluid formalism in
spherical symmetry. Such a formalism allows for a consistent description of a relativistic
fluid consisting of a number of component species with different interaction scales and
interaction types. The different components can exchange energy and momentum on the
relevant length scales and could be affected by peculiar kinematical properties such as
diffusion. Special attention has also been paid to the possibility of introducing, besides
the continuum hydrodynamical equations, a careful treatment of a subsonic relativistic
discontinuity surface moving as a weak deflagration. We have finally pointed out the
relevance of such a mathematical apparatus for the study of the relativistic hydrodynamics
of the cosmological quark—hadron phase transition, in which the dynamics of bubbles and
drops and the long range energy and momentum transfer represent important features to
investigate.

In a sense, all of the previous chapters could be considered as introductory to the
present one, in which the formal and theoretical framework finds concrete applications
in the numerical computations of the hydrodynamics of the cosmological quark—hadron
transition under several physical conditions. In the following, we firstly discuss the numer-
ical strategies that have been introduced in order to solve the hydrodynamical equations
and secondly present the results obtained from such calculations and comment on their
influence on the cosmological scenario after the transition.

159
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6.1 The Basic Codes

For following the growth of an isolated spherical hadron bubble and the evaporation of an
isolated spherical quark drop, we have written a number! of hydrodynamical codes, which
represent an extended evolution of a previous relativistic code developed by Miller and
Pantano [114]. Indeed, the number of new routines and strategies introduced effectively
make the new codes rather different from the original one on which they were modelled.
The new codes have been produced over the last four years, following the logic of the
research project in which we have been involved and each new code represents a further
development of the previous ones and allows for a numerical solution either of new equa-
tions or of “almost” the same set of equations but under different physical conditions. In
particular, the different codes have been implemented for studying

i)  Bubble dynamics and long range energy and momentum transfer during the growth
of an isolated spherical hadron bubble (Rezzolla and Miller [137], Miller and Rezzolla
[115]).

i1) The evaporation of quark drops at the end of the cosmological quark-hadron transi-
tion and the stability of the analytic solutions for a self similar evaporating system
(Rezzolla et al. [139)]).

i71) Drop dynamics and radiation decoupling during the final stages of the evaporation
of a cosmological quark drop (Rezzolla and Miller [140]).

iv) Baryon number segregation produced during the very final stages of the quark—
hadron transition by evaporating quark drops (Rezzolla [145]).

All of codes make use of a composite numerical technique in which a standard
Lagrangian finite-difference method is used to solve the hydrodynamical equations in
the bulk of both phases, while a system of characteristic equations and a set of junction
conditions are solved in the grid zones adjacent to the phase interface as this moves across
the grid. In particular, we use a spherically symmetric Lagrangian grid having comoving
coordinate p and with its origin at the centre of the bubble or of the drop according to the
specific situation under investigation [cf. expression (3.10)]. The grid has variable spacing
with the width of each zone being twice that of the zone inside it, i.e.

Apjiaye = e — py = 2805 172,

!They are effectively four distinct numerical codes.
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where j, denotes the grid point at the outer edge of the grid. The only exception to
the spacing given by (6.1) is made for the two central zones which have equal width
(i.e. Apy = Aps) as necessary for the regridding routines which we will discuss in the
next subsection. This exponential arrangement of the grid spacing has a number of
advantages. Firstly, it allows to perform numerical computations of bubble expansion
or drop contraction through many orders of magnitude change in radius and with only
minimal memory expenses. Secondly, it provides a natural solution to the problem of the
acoustic disturbances produced by the subsonic deflagration front we evolve in time and
that could induce instabilities when reflected by the edge of the computational grid. With
our grid choice, in fact, the acoustic disturbances are always contained within the grid.

The numerical integration is made following a standard explicit Two-Level finite dif-
ference scheme (May and White [108], Richtmyer and Morton [147], Potter [132], Oran and
Boris [125], Miller and Pantano [114]) which is suitably modified in the grid zones adjacent
to the phase interface for implementing the characteristics based solution. This scheme
is second order accurate in the time step and makes use of a staggered grid which enables
the calculation of time-centered derivatives together with the space-centered derivative on
each time slice. In Figure 6.1 we give a schematic picture of the spacetime structure of our
computational grid. Note the presence of the two staggered grids, with the primary time
levels being indicated with horizontal solid lines and integer numbers and the intermedi-
ate and shifted time levels being indicated with dashed horizontal lines and non-integer
numbers.

As is standard for Lagrangian hydrodynamics, the different variables are evaluated
either at midzone grid points (indicated with non-integer numbers and crosses on the
spatial grids in Fig. 6.1) or at the zone boundaries (indicated with integer numbers and
circles on the spatial grids) according respectively to their extensive or intensive nature.
In this way, the thermodynamic variables e, p, p, w, wy and wy are calculated as midzone
quantities, while u, wy, R, a, ' and M are carried as zone boundary quantities. Figure 6.1
is also useful to illustrate the basic logic of the method in centering time derivatives. The
diagram, in fact, shows how a midzone quantity evaluated on the primary time level n is
evolved to the following time level n+41 by making use of the spatial derivative evaluated at
the n + 1/2 time shifted level (solid arrowed lines). Similarly, a zone boundary quantity
evaluated on the secondary time level n + 1/2 is evolved to the subsequent time level
n + 3/2 by making use of spatial derivatives evaluated at the time level n + 1 (dotted
arrowed lines).
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j-1/2 j+12
n+32 -X%---G0----%----0----X----6----2 X -
4A%
t R
¢ n+1
n+1/2 --=
* L L 4 & * n

j-1 j j+1

Figure 6.1 Schematic spacetime structure of our computational grid. Note the presence of
two staggered grids, with the primary one being indicated with horizontal solid lines and the
intermediate time-shifted one, being indicated with dashed horizontal lines. Zone boundary
and midzone grid points are shown with circles and crosses respectively, while fundamental
time levels are indicated with integer numbers on the right of the diagram and intermediate
time levels with non-integer numbers on the left. Also shown with arrows is the typical time
evolution strategy for midzone variables (continuous arrowed lines) and for zone boundary
variables (dotted arrowed lines).

On each time slice, the set of the hydrodynamical continuum equations is solved
in all of the grid zones except those adjacent to the phase interface and limited by the
grid points [js — 1, js] and [js, js + 1], with j, being the grid point closest to the phase
interface. For those grid zones, the characteristic method described in Subsection 5.2.4,
together with the set of junction conditions presented in Subsections 5.2.1 and 5.2.2 is
used, with the characteristic equations being solved according to the spacetime scheme
shown in Figure 5.2. Once the solution is known on a time slice, it is then evolved to
the following one, with the time step being set by the relativistic generalization of the
Courant condition

At = /ﬂ(%) — (ﬁ) , (6.2)

cs ) A R2pa \ cq
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where k£ < 1 is a constant coefficient to be chosen according to the specific features of

the problem under examination; in our computations £ = 0.2. The Courant condition
(6.2) is a stability condition and establishes that the computational domain of dependence

determined by (6.2) is always larger than its physical domain of dependence or, in other

words, that a sonic perturbation cannot propagate out of a grid zone in a single time step.

A detailed description of the sequence in which the different hydrodynamical quanti-

ties are integrated in space and evolved in time would require a rather extended discussion

which we cannot offer in this Thesis. We therefore limit ourselves to present in the follow-

ing list just a schematic description of the main steps involved in the numerical solution.

i)

i)

i)

iv)

v)

vi)

vi1)

wq, € and p are evolved from the time level n to the new time level n+1 for all of the
midzone grid points j+1/2, with j = 0,...,j;—2and j = j,+1,...,j,—1. Similarly,
R at the new time level is calculated at each grid point j, with j =0, ..., j, — 1
and j=js+1, ..., j,-

The mass function M is calculated on the new time level from the origin of the grid
up to the grid point j, — 1.

The characteristic equations together with the junction conditions are solved simul-
taneously in the grid zones [j; — 1, js] and [j5, js + 1], providing at the new time
level the values of the interface quantities: fi,, pus, Ry, a®, M*, <I>bi e*, pt, pt, ut,

wi and wi.

The metric coefficient a is calculated from the constraint equation on each grid point
at the new time level.

The calculation of the mass function M on the new time level is now completed
from the grid point js + 1 up to the outer edge at j,.

The new time step At is set according to the Courant condition and the fractional
increment in the last time step of the spatial gradients of e and p.

The new values of u and w; on the shifted time level n + 1/2 are evolved to the
following time level n + 3/2.

viii) The generalized Lorentz factor I' is calculated on the new time level. The new

sequence can now start again from point i).

A final comment is reserved for our treatment of possible shocks appearing in the

flow domain and about the use of artificial viscosity to handle them. In principle, our

characteristic based approach (Subsection 5.2.4) would allow for the exact treatment
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of any shock possibly produced during the numerical computation. The situation, in
this case, would be much more simple than the one discussed for weak deflagrations
and, being supersonic relative to its medium ahead, the shock front could be effectively
treated as a strong detonation, with the domain of the dependence of the state ahead
being entirely contained in the medium ahead. (see Figures 1.8 and 5.2 for the causal
structure of strong and weak deflagrations). However, in order to do this we would
need to know the position of the shock when it first forms. Rather than doing this, in
the present codes we prefer to handle possible shocks by means of an artificial viscosity
(Richtmyer and Morton [147]). The basic idea behind its introduction is rather simple
and artificial viscosity essentially amends for the fact that non-dissipative hydrodynamical
equations are inevitably inadequate to describe physical processes occurring when large
compressions in the fluid take place. It is an important feature of the non-linearity of the
hydrodynamical equations for compressible fluids that the kinetic energy associated with
acoustic disturbances is channelled into progressively higher frequency modes. A natural
limit to this process of energy concentration is set by all those “non-ideal” dissipative terms
that we here neglect and that suitably convert this kinetic energy into internal energy.
Such a conversion, however, cannot take place in the present “ideal fluid” framework, in
which the kinetic energy builds up in the highest possible wavenumber mode allowed by
the computational grid and corresponding to a wavelength of two zones. In order to avoid
this, which has the only effect of rapidly destroying the solution, an artificial viscosity can
be explicitly introduced, which is effective only on the largest wavenumber modes and
that essentially spreads the discontinuity over several zones of the computational grid.

For the present situations of relativistic fluids in a spherical Lagrangian grid we use
an artificial viscosity for the standard fluids originally proposed by May and White [108]
and here modified as

B (e/D) [(An/BY) R?) | i pa>0
QF = ’
0 if Pt S 0 ’

where k? = 2 in our computations. Note that the artificial viscosity operates only if there
is a compression and, in this case, (), is added to the pressure. In our multicomponent
fluid approach, we need to specify an artificial viscosity also for the radiation fluid which,
in analogy with the one for the standard fluids, we define as

o (1T [(AnjwoR?) (wiR2),]” it (wiR2), >0,
’ if (wR*»),<0,
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and that we could add to the Eddington factor f, every time a flux of radiation energy
takes place from a grid zone. However, experience has shown that the behaviour of the
radiation fluid never necessitates of an artificial viscosity and its evolution is always very
smooth.

6.1.1 Boundary Conditions and Regridding Techniques

The numerical solution of the hydrodynamical (hyperbolic) equations discussed so far
represents a typical initial value problem (Press et al. [133]), for which it is necessary to
define a starting solution on the initial time slice (i.e. the initial conditions) as well as
boundary conditions to be imposed at the edges of the computational grid and on each
time slice. The definition of the initial conditions could represent at times a “problem
within the problem” and it is usually strongly dependent on the type of problem under
examination (e.g. to whether we are interested in following a hadron bubble growth or a
quark drop evaporation). For this reason, initial conditions will be presented in detail in
Subsections 6.2.1 and 6.3.1 before discussing the numerical strategies and the results of
computations of bubble and drop dynamics.

On the other hand, boundary conditions are more straightforward and do not depend
sensitively on whether we are considering bubble growth or drop contraction. For this
reason, we always set at the origin of the grid and corresponding to the centre of either
the bubble or the drop (i.e. at u = 0)

u=0, wy =0, (6.3)

while, at the outer edge of the grid we impose (i.e. at 1 = ;)

=0, a=1,
wy =0, pu=0=p. (6.4)
Note that the choice of setting the metric coefficient a equal to one at the edge of the grid

is effectively equivalent to synchronize the coordinate time ¢ with the time measured by
a comoving observer at the outer edge of the grid (who is a FWR fundamentalobserver)
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In our analysis a fundamental role is played by the dynamics of a phase interface
that can either move outward or inward. It is therefore important that the computational
grid should always allow for an accurate description of both phases and through a number
of order of magnitudes in the dimensions of the disconnected phase. For this purpose,
suitable regridding procedures have been implemented so that the solution can always be
recast on a accurate enough grid every time this is necessary. Note that regridding can be
quite a delicate matter and, if the implementation is not a good one, there is a danger of
introducing instabilities into the solution, particularly if function fitting routines are used.
With our choice of grid structure, it is possible to avoid the use of any fitting algorithm
and solve the problem of the regridding in a simple and very efficient way.

Indeed, we need to implement two different regridding routines according to whether
we are studying bubble growth or drop contraction, but the basic logic is the same in the
two cases and essentially consists in maintaining constant the number of grid zones within
the bubble or the drop as required for maintaining accuracy. In particular, in the case
of bubble growth and every time that the phase interface crosses a zone boundary in the
outward direction, we merge the two central zones and relabel all of the other zones as

Jg — 7-1, with 7 =2,...,J

G

i4+3/2 = j+1/2, with j=1, ..., j,—2 (6.5)

(see upper diagram of Figure 6.2). On the other hand, in the case of drop evaporation
and every time the interface crosses a zone boundary during its inward motion, a new
zone inside the quark phase is created with the central zone being divided into two equal
parts and all of the other zones being relabelled as

i 41, with j=1,...,j,—1

G

j+1/2 = j+3/2, with j=1,...,j,—2 (6.6)

(see lower diagram of Figure 6.2). This latter strategy maintains intact the structure
of the grid (the first two central zones still have the same width, while the others are
increasingly spaced) and limits the recalculation of new quantities only to the central
zones. However, in the case of drop evaporation, this grid structure leads to the zones
immediately outside the drop surface being rather wide since the compression factor in
the hadron phase (outside the drop surface) is considerably lower than that in the quark
phase. In order to avoid a loss of accuracy due to this, suitable function fitting is carried
out in these zones and this turns out to be crucial for the success of the code.
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Outward Moving Front
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after regridding H
Inward Moving Front
o} 1 2 3
C 1 [ [ I
before regridding 91
0 1 2 3 old grid
C T 1 [ [ I
0 1 2 3 4 new grid
after regridding 91

Figure 6.2 Regridding strategies for an outward moving front (upper dia-
gram) used in the case of bubble growth and for an inward moving front (lower
diagram) implemented in the case of drop evaporation.

A final important detail to note is that for the relabelling used in the case of bubble
growth (6.5), the number of grid zones decreases of one unit every time that the regridding
routine is used, even though the spatial extension of the computational domain does not
vary. This is different from what happens in the relabelling (6.6) used for a contracting
drop. In this case, in fact, the grid would gain a new zone and, in order to keep constant
the total number of zones (and thus avoid increases in the computational time), the
outermost zone is removed every time the central zone is divided into two. Experience
has shown that the loss of information involved in this does not create any problem since
the outer edge of the grid is always very distant from the interface.

As a conclusion, the regridding schemes presented here have several advantages:
they are extremely simple to implement, they are suitable for use during changes of many
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orders of magnitude in the bubble or drop radius and they keep constant the number of
zones within the bubble or the drop, hence maintaining resolution and numerical accuracy.

6.1.2 Cancellation Errors and Solutions

The hydrodynamical equations for the radiation fluid presented in Sections 3.3, 5.1.1
and 5.2.4 are general in nature and can be applied to a variety of situations (e.g. to
spherical accretion onto black-holes, Zampieri et al. [171]). Normally, there would be no
problem in doing this but some particular difficulties have arisen when applying them to
the present case of bubble growth and drop contraction at the cosmological quark—hadron
phase transition. Here, direct use of the radiation equations in the form given above leads
to rapidly growing instabilities which destroy the solution. After a series of experiments
it was found that the difficulty originates in the very small deviation of wy and w, away
from their initial values during the early part of the evolution and in the fact that the
characteristic sound speed in the radiation fluid (1/3 + f,)/? becomes very close to the
sound speed in the standard fluids ¢, when the radiation is nearly isotropic in the rest
frame of the standard fluids (i.e. when f, — 0). These features lead to production of
cancellation errors in the solution of equations (3.18) and (3.19) and near divergences in
the characteristic form of the equations (5.122) [the expression (¢? —1/3 — f,) appears in
the denominator of several terms|. Note that the near equality of the sound speeds only
arises when the standard fluids are, themselves, relativistic (with ¢, ~ 1//3). Also, it
is a peculiarity of the situation for bubble growth that, initially, the radiation is nearly
isotropic in the rest frame of the standard fluids not because the medium is optically thick
on the scale of the bubble but, rather, because of the assumed isotropy of the Universe.

For overcoming the cancellation errors, we have introduced new radiation variables
defined as the difference between the energy density, the flux and the shear of the radiation
fluid and some reference values (indicated below by the superscript *) with the aim of
performing an analytic cancellation of large terms in the equations leaving behind smaller
“difference” terms. It turns out to be convenient to take these reference values to be those
which would be measured if the only effect were that resulting from the motion of the
fluid relative to a uniform radiation field having an energy density equal to that at the
time of nucleation of the bubble, (wq),. (These are the pure Doppler values mentioned in
Chapter 5 and calculated in the Appendix D.) Using a tilde to denote the new variables,
we have
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@ = wo— (wo) =wo— (14 §u2> (ws), . (6.7)
w; = wy— (wy)* =w; + guf(wg)]\, , (6.8)
By = ws— (ws) = wn — u2(wo), (6.9)

9

and equations (3.18) and (3.19) can then be rewritten as

- |1 /4 3u r
(’LU(])},g + awqy [ﬁ <§ + fE> (URQ)’R — RJEE] + ﬁ(wlaQRQ)’R

baz s wo)y [f (5 +0) = 302 [ k)~ 3

— aSy

4 w U M U
—ga(wo)NG [47ruR <2p —e— ?0 + 2wy — fw1> -7 <2U,R + E)]

draGR (4
— m; <§w0 + w2> wy =0 (6.10)

and

- _a W - 4 _ - 3al'w
(W), + 2w1E(uR)7R +al’ <€0 + w2> 7R +T <§w0 + w2> ap+ - 2
4 W u M 8maGRw,?
—as; + ga(wo)NFG [47rR <p+ Y tw:— ¢ w1> + R (aQR),R] -t = 0,

(6.11)

where the partial derivatives with respect to p have been replaced by the equivalent
derivatives with respect to R [i.e. 9/OR = (47 R?p/T)0/0u]. Equations (6.10) and (6.11)
are the new radiation hydrodynamical equations for the bulk of each phase; once the
“tilde” variables have been computed, the values of wq, wy, ws can be calculated from
(6.7)—(6.9). Note that in (6.10) and (6.11) the radiation variables which are multiplied
by G are not transformed according to (6.7)—(6.9). This has been done to keep the
expressions in a simpler form and because the contribution of these terms is small under
the present circumstances.
Using the new variables, the radiation characteristic equations (5.122) become
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di, + (% + £,)2dwy + BUdu + BPdp + BTdt = 0, (6.12)
where
= 2{( 1) e oo (4 - 25
+ 2(% + f)'? {% l(l +1§Z2/3) ( O)Ng <1 + gef)] + 4;—12}} . (6.13)
BP = i_i [u(l Em/g) N 321% (1 a ng> a WO)N% (1 * g“ﬂ (6.14)
and
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4 1
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(6.15)

The new form of the radiation junction conditions (5.81) and (5.82) is
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s 5+ 1, ) o~ (0 + i) + (o) fabis, (14 57) (5 + 1)

4 5 1E
+§ur(a2+b2u§)}] =0, (6.16)

1
{a2 <§ + fE> + b%'@} Wy — 2abfig 10,

+(wo) 5 {(1 + §u2>

+

1 8
a’ <§ + fE> + bQ[Lz] + gabuF/lS} =0. (6.17)

Note that the characteristic equations (6.12) no longer have terms with (¢2 — 1/3 — f,)
in the denominator but they do have terms containing the ratio w;/f, and these still
give rise to numerical instabilities. However, this can be countered by further rewriting
the equations in a form in which @;/f, only appears as the coefficient of expressions
which are small when f, — 0. The central point in our strategy consists in isolating the
group of terms which appears on the left-hand-side of the fluid characteristic equations
(5.121) (and hence tends to zero when f, — 0 and the fluid and radiation characteristics
coincide). Details of the manipulation involved are given in the Appendix E. This group
of terms can then be conveniently handled using the differences between parameter values
at the feet of the fluid and radiation characteristics. The revised form of the radiation
characteristic equations (which is the one actually implemented in the code) is

1 21w
divy + (= 24wy + BUdu — ———dp + BTdt
w1 (3+fE) U)O+ U (e+p) p—f—
c, [ 2T Wy R 4 2) 4y
D el I 14+ = bt
+r{ u l1—|—4u2/3 (wo) 5 ( ER ]Jr 3fE}X
r 1
x{dui dp+a{—(sl + ¢450) +47rGR[p+ (— +fE>’LU(]:F cswl]
PWCs pw 3
GM  2l'ucg
— + dt> =0 6.18
TR TR } } ’ (6.18)

where
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B0 = [+ 1) S (- )

i(M—1> F{QF[L (wo) . f(1+§u2)]+@}}, (6.19)

Cs 1+ 4u?/3

BT = (BU){G{47rR[p+ (é + fE> w ] }]\342} + le}

2u  4ArGRw 4 I
i #ﬂ <§Fu(w0)N - w1> +aBT (6.20)

2a
——c [50 + pw (
pw
and where BT is the same as in (6.15). Note that the last two lines of (6.18) are the
terms on the left-hand-side of the standard fluids characteristic equations (5.121).

6.2 Growth of a Hadron Bubble

This section presents the numerical techniques and the results obtained in the computa-
tion of the hydrodynamics of a spherical isolated hadron bubble during the initial stages
of the quark-hadron transition. The theoretical framework is the one discussed in the
previous chapters of this Thesis and involves the study of a multicomponent relativistic
fluid composed of a radiation fluid and of two standard fluids, one for each of the phases
of the SIM. We first discuss the initial conditions implemented on the zero time slice and
then illustrate the tests made and the results obtained.

6.2.1 Initial Conditions

Making use of the experience gained in the earlier work of Miller and Pantano [114],
the setting of initial conditions can be quite straightforward. We start with a single
supercooled hadronic bubble nucleated in mechanical and thermal equilibrium with its
surroundings at a temperature 7', slightly below the critical temperature for the transition
T.. The equilibrium is an unstable one and any perturbation (e.g. continuing expansion of
the Universe) will cause it to start growing. However, this growth is extremely slow and,



6. Numerical Strategies and Results 173

in practice, it is not easy to follow with our code as numerical noise rapidly dominates.
Our strategy is then to introduce a small artificial perturbation, decreasing the fluid
temperature inside the bubble by a small amount AT < T, — T, below its equilibrium
value, and analytically tracing the effect of this on related quantities.

We can start with evaluating the perturbed expression for the critical radius of the
bubble [cf. equation (4.22) with 4 = 0]

20 B 8apn(Ty) AT
[pn(T) —pq(TN)]QAph n(Ty) = (T (T > ’

N
The thermal perturbation is just of second order in the metric coefficient a and in the I’

AR, =

(6.21)

factor near the interface and these can then be taken as those of a locally flat spacetime
(ie. - =T, =a_ =ay =1). Next, from the rate equation (5.92), we can calculate the
velocity of the interface which, at the first order, is given by

T.) AT
fls = 4wR§a+al%T— . (6.22)
N

From (6.22) and equation (5.43), the velocity immediately ahead of the phase interface
can be calculated as

uy = [b-(Ty) = by (Tyy)]fis (6.23)

while for the whole flow region outside the hadron bubble we can impose the solenoidal
flow condition

uR? = const. = u R? (6.24)

which is exact in the case of an incompressible fluid and represents a very good approx-
imation in the present case. The condition (6.24) is applied out to the point where the
value for u given by this becomes less than that for the background Universe, which is
taken to follow the spatially flat Friedmann-Robertson-Walker solution [i.e. obtained from
(5.17) for I' ~ 1]

u= (M) (029

and which effectively expresses the Hubble expansion law. It is reasonable to take the fluid
inside the bubble as not dynamically affected by the thermal perturbation and therefore
at rest [i.e. u(R < Rs) = u_ = 0]. The initial conditions for the standard fluids can
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be finally completed by establishing the values of the compression factors on the whole
spatial grid, which, under the hypothesis of uniform compression, can be derived from
those immediately ahead of and behind the phase interface. From the junction condition
for the energy of the standard fluids (5.74) expanded at first order it is possible to write

1 1
po = p+?7[1 + 553[&(5 - 1)} : (6.26)

where

n = E“Lip) _ (5>4 . (6.27)

€+p)+ 94 \1g

Note that the condition (6.26) can be solved only after the value of p, has been fixed,;
indeed, there is freedom in this (the compression factor is just a relative measure of
compression) and we choose to set p; = 1, in line with the discussion of equation (5.6).

The last quantities to define on the zero-time slice are those relative to the radiation
fluid. However, since at this stage the radius of the bubble is small compared with A,
the radiation fluid is not significantly affected by the thermal perturbation and remains
uniform and isotropic in its own frame. The initial conditions for wg, wy, wy (measured in
the rest frames of the standard fluid) are then those calculated from the Doppler formulae
discussed earlier and presented in the Appendix D [i.e. equations (5.161)—(5.163)]. These
finally complete the definition of the initial data, whose time evolution can start in a
smooth and consistent way and will produce the solutions which will be discussed in the
next subsection.

6.2.2 Tests and Results

As usual in numerical computations, the construction of the computer code has been
followed by a series of tests to eliminate errors and verify that the strategies used were
satisfactory. One important test consisted in turning off the source functions and checking
that the computed values of the radiation variables agreed with the analytical Doppler
expressions. This revealed the problems discussed earlier. When these had been satis-
factorily solved, the source functions were then turned on again and complete runs of
the code were carried out. As the radius of the bubble increased (leading to increased
coupling between the radiation and the standard fluids on relevant length scales) care
was required as increasingly steep gradients of wy appeared in the vicinity of the interface
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prior to complete coupling. Since structure on a scale smaller than the grid spacing can
obviously not be resolved, it is necessary to be ready to switch on complete coupling in
the equations at the appropriate moment. Some experimentation was required in order
to do this in the best way. When this had been done, further tests were carried out
in order to examine the sensitivity of the results to changes in the physical parameters
and assumptions. In the following, we will first present results for a set of “standard”
parameter values and then discuss the effect of varying some of these.

In Figures 6.3 and 6.4, we show results from a run with 7, = 150 MeV, TN = (.98,
oo =1, a1 = ag = 1 and A = 10* fm. Following Witten [170], we here measure the
relative strength of the surface tension in terms of the coefficient g = 0/T?. The value
which we are taking for this is larger than currently preferred ones but we give results for
this case to allow direct comparison with those of Miller and Pantano [114].
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Figure 6.3 Energy density e and radial component of the standard fluid four-velocity
in the Eulerean frame w. Different curves are for different times during the bubble
growth; the dashed lines represent the values at the initial time. Here oy = a9 =1
and A = 10* fm. The phase interface is represented by the vertical discontinuity,
with the quark phase always being to the right of it and with the different curves
referring to different stages during the contraction.

Figure 6.3 shows the behaviour of the energy density e and of the radial component
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of the standard fluid four-velocity in the Eulerean frame u at various times during the
bubble growth, while Figure 6.4 shows the corresponding behaviour of the radiation energy
density wq and flux wy. (Note that for convenience in drawing these figures and the
following ones, the values of the variables at the centre of the bubble have been plotted
at log,,R(fm) = 0 rather than at R = 0.)

During the first part of the bubble expansion (i.e. for Ry < 10? fm), the standard
fluids variables behave in an identical way to that seen previously in the calculation with no
radiative transfer: the velocity of the interface progressively increases and a compression
wave is pushed out into the surrounding quark medium. The velocity profile in the quark
phase is approximately solenoidal (i.e. u o< 1/R?). The radiation variables at this stage
have profiles which are almost exactly the Doppler ones produced by the motion of the
fluid relative to an essentially uniform radiation field.

wo (fm 44)
w, (fm 44)

T - ~05 |- —

75— — B 7

0 2 4 6 0 2 4
log;; R (fm) log;; R (fm)

Figure 6.4 Radiation fluid energy density wg and energy flux wy. Here o = ag =1
and A\ = 10* fm.

In the calculations carried out by Miller and Pantano [114], in which radiative trans-
fer was not included, the standard fluids variables tended towards the similarity solution
for a growing bubble (cf. discussion in Section 2.2) which was effectively attained for
R, > 10° fm. In the present calculations, the coupling together of the radiation and the
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standard fluids (which can be clearly seen in the left diagram of Figure 6.4) starts to be
effective before the former similarity solution is fully reached, causing first a distortion of
the velocity profile and subsequently a decrease in the peak velocity. (If a smaller value
is used for g, both bubble nucleation and the attainment of the similarity solution occur
at smaller values of R,.) As the coupling becomes more complete on the relevant length
scales (e.g. when R, ~ 10* fm), the peak of the radiation flux profile becomes very narrow
(the main part of the flux is concentrated exactly at the interface) and when it is no longer
possible to resolve this on the grid we switch to total coupling. This involves setting to
zero the radiation flux w,, the Eddington factor f, and the source functions s, and s; in
the bulk of each phase and augmenting the number of degrees of freedom for the standard
fluids at the interface to include also those of the coupled radiation. The behaviour of
the radiation at the interface is then included together with that of the standard fluids.
Following the total coupling, the variables tend rapidly to the same similarity solution for
a growing bubble characterized, however, by smaller velocities (the front now has to push
a medium having larger “inertia”) and a smaller temperature jump across the interface.

A very important feature to underline again here? is that long range energy and
momentum transfer out of the disconnected hadron regions is absolutely negligible when
the latter have dimensions much smaller than the radiation fluid particles mean free path
A. On the other hand, the radiative transfer is also effectively irrelevant (because the
coupling is maximally efficient) when the disconnected regions are much larger than \.
Therefore, the present computations have revealed that the radiative transfer is effective
only in a rather short range in the dimensions of disconnected regions (i.e. for R; ~ \).
This feature has often been neglected in the literature and has led to models of energy
extraction via neutrino flows (Applegate and Hogan [6], and subsequent corrections by
Miller and Pantano [113], Bonometto and Pantano [24]) which seem now not to be realistic.

Next, we turn to a discussion of the effect on the results of varying the values taken
for some of the physical parameters and, in particular, we concentrate here just on the
roles played by the mean free path for the radiation particles A (whose value, we recall, has
an uncertainty of about an order of magnitude), and on the non-conservative scattering
coefficient ay appearing in the expression (5.21) for the source moment sq.

The effect produced by varying A is illustrated in Figure 6.5 (upper diagrams), which
shows the behaviour during the bubble expansion of the values of w, and u measured just
ahead of the interface and just behind it (i.e. wg, u*). The different values of A used
(which are represented with the different styles of line) are 5 x 10® fm (dotted line), 10*
fm (dashed line) and 10° fm (continuous line), proceeding from left to right.

2Gee also Subsection 5.1.1.
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Figures 6.5 — 6.6 Radiation energy density wp and standard fluids
velocity u just ahead of the phase interface and just behind it (higher
and lower curves respectively). The curves are the result of calculations
with different values of A (upper diagrams) and of the non-conservative
scattering coefficient a9 (lower diagrams). Ry is the bubble radius and
the curves are plotted so that the hadronic region is on the left of the
discontinuity tracing the phase interface.
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As one would expect, use of a larger value of A has the only effect of delaying
the coupling between the two fluids, causing it to occur when the bubble has reached a
progressively larger value of R;. Figure 6.6 (lower diagrams), on the other hand, shows
the effect of varying the coefficient for the non-conservative scatterings as. The different
values of s used are 0 (dashed line), 0.5 (dotted line) and 1 (continuous line). Also in this
case it is easy to realize that the larger values give an increased efficiency of the energy
transfer between the radiation and the standard fluids and make the total coupling occur
earlier.

These tests show that although the results can indeed be influenced by different
choices of the parameters, there is no serious qualitative change. We have also checked
on the sensitivity of the code to the form chosen for the Eddington factor f,. In our
investigation, we have modified the form given in equation (5.27) by replacing the mono-
tonic correction term A/(A+ R) with a more sophisticated expression having a maximum
whose position and the amplitude could be suitably tuned in different combinations. Pay-
ing attention to producing a smooth join between the optically thin and optically thick
limits, we have found that reasonable variations in this joining function lead to only minor
differences in the results, confirming previous experience (Nobili et al. [122, 123]).

The results of the computations presented here have a double importance. In the
first place and from a cosmological point of view, they provide us with very interesting
indications on the delicate process of long range energy and momentum transfer taking
place during hadron bubble growth. They clearly show the progressive coupling together
of the strongly interacting matter and the radiation fluid as the bubble expands. When
the complete coupling occurs, there is no dramatic effect on the bubble which simply de-
creases its expansion velocity and the eventually approaches a similarity solution. Before
these results were published, this stage of the transition was rather unclear and discus-
sions of the role of radiative transfer in the extraction of energy out the disconnected
hadron regions were often erroneous. (Examples of the misinterpretation of the effects of
radiative transfer are found in those models of energy extraction via neutrinos proposed
by Applegate and Hogan [6] and partially corrected by Miller and Pantano [113]). On
the other hand and more from an hydrodynamical point of view, these computations give
a direct proof that the elaborate and theoretical multicomponent fluid approach devel-
oped in the previous chapters, is self consistent and can lead to a rather complicated but
affordable numerical computation. This “voluminous apparatus” for studying the rela-
tivistic hydrodynamics of multicomponent fluid has also found other applications within
the quark—hadron transition and these are discussed in the following sections.
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6.3 Evaporation of a Quark Drop

The following Subsections 6.3.1-6.4 present the numerical techniques and the results ob-
tained in the computation of the hydrodynamics of a spherical isolated quark drop during
the final stages of the quark-hadron transition. While for the hydrodynamics of bubble
growth a number of works in the literature (Kurki-Suonio [81], Kajantie and Kurki-Suonio
[69], Miller and Pantano [114]) had laid the basis for such a study, the hydrodynamics of an
evaporating drop during a cosmological phase transition represented a rather unexplored
field prior to our studies, both from the theoretical and the computational point of view.
For this reason, the investigation of the final stages of the quark—hadron phase transition,
during which the disconnected quark regions evaporate, has required a thorough study
which has started with the search for analytical self similar solutions and has ended with
complete multicomponent hydrodynamical computations in which two standard fluids, a
radiation fluid and a “baryon number fluid” are simultaneously evolved in time.

The first stage of this research has already been discussed in Section 2.3, where the
self similar hydrodynamics of a drop has been presented. In Subsection 6.3.2 we present
complete hydrodynamical computations which aimed at verifying the validity of the sim-
ilarity solution for an evaporating quark drop and for which the radiation decoupling
was neglected. As a development of this, the following Subsection 6.3.3, introduces the
superposed hydrodynamics of the radiation fluid and discusses the effects it has on the
final flow properties. This series of investigations is eventually concluded in Section 6.4
with the analysis of the combined contributions of radiation decoupling and of baryon flux
suppression to the segregation of baryon number during the final stages of the transition.

6.3.1 Initial Conditions

As mentioned above, the specification of initial conditions in a time dependent calculation
can be very delicate and difficult. Sometimes, when there is no obvious physical solution,
it can be useful to extract information from the code itself by observing its response to
trial initial data. This has been the case with the present calculation, in which the initial
conditions (which have turned out to correspond to self similar solutions for an evaporating
drop), were originally “suggested” by the code itself. Before initial data based on a self
similar solution was implemented, other choices of initial data were observed to relax, after
some readjustments, to a solution having a flat density profile and zero velocity within
the quark region, and an outward velocity profile falling off roughly as 1/R? in the hadron
region. The subsequent evolution of this solution exhibited self similar features and this
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then stimulated the investigation for the similarity solution that we have presented in
detail in Section 2.33.

It is important to stress that it could happen that a self similar solution which is
mathematically possible might nevertheless not be realized in practice. In this respect,
the weak deflagration similarity solution for a contracting drop has turned out to be
strikingly “robust”. As a test, initial conditions with an inward-pointing velocity field
inside the drop and zero velocity outside, were specified on the zero-time hypersurface.
After some excursions, the solution converged towards the corresponding similarity one.
Identical results have been obtained also in the case when the solution was started with
very irregular and noisy initial conditions.

During the last stages of the transition, the reduced quark volume fraction of the
Universe is no longer able to provide the amount of energy necessary to keep the increased
hadron volume fraction at the critical temperature for the transition. As a consequence,
the temperature of the hadron phase is free to decrease and a small non-zero temperature
jump drives the following hydrodynamical evolution of the disconnected quark regions.
In view of this, at the time of commencement of our calculations we assume that all
quantities have reached a high degree of homogeneity in each phase and then the situation
is regulated by the temperature jump between the two phases. All of the variables, except
for the fluid velocity u, are therefore taken to have “step-like” profiles. Note that this is
consistent with the self similar solution for small supercooling and low interface velocity
(see Figure 2.4).

Working within this scenario, we first specify the drop radius R; and the temperature
of the hadron phase T}, so that the corresponding temperature in the quark phase Ty is
then calculated from the special relativistic form of the junction conditions (Pantano
[128]). The next quantity to calculate is the value of the interface velocity fi, which is
obtained from the rate equation (5.92) as*

(1+x)"2 1

f1s = —47R2p a, » : (6.28)
where
60 (e+p+4n2g,T*/90) '

3When the similarity solutions discussed in Section 2.3 are used for the quark phase, one should replace
the energy density e by (e — B) and the pressure p by (p + B) everywhere.

4Note that the different geometry for a drop has led us to use here the expression of the rate equation
(5.92) with the minus sign. This is the opposite of what was done for a hadron bubble.
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and, using the freedom in the choice of reference values for p and a, we have set
p+ = a; = 1. Rewriting the junction condition (5.74) as

(e+p)_

p_=p T, 6.30
Tle+p)s (6.30)

where £ = a_/a, and combining this with (5.43), it is possible to obtain the following

= )

whose solution provides the required value for a_ and consequently for p_. The last

equation

quantity to calculate is u_, and the expression for this follows directly from (5.44) with
Fi == 1, ie.

u_ =, by, (6.32)
a_
where, following the similarity solution, we have taken v, = 0 and also for all points inside
the quark drop [i.e. u(R < Rs) = 0]. From the similarity solutions for weak deflagrations
shown in Figure 2.4, it can be seen that the velocity profile just behind the phase interface
can be well approximated by the solenoidal flow expressed by [cf. equation (6.24]

uR? = const. = u_R?, (6.33)

and which represents an excellent approximation in the case of small supercooling. Equa-
tions (6.28)—(6.25) provide all of the data required on the zero-time hypersurface.

As discussed in Section 4.3, we expect that the degree of supercooling would be
rather small and this case is our primary interest. However, in order to gain a good overall
perspective of the situation, it is interesting to consider also what would happen if the
supercooling were greater and so we have investigated values of Ty ranging between 0.999
and the Chapman-Jouguet point (7, = 0.61). We found it convenient and satisfactory to

continue to specify the initial data as outlined above also in these cases.’

5 At this stage in the writing of his Thesis, the author has become father of Anna (Trieste, August 5th
1996, 2:40 a.m.).
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6.3.2 Computations of Self Similar Evaporation

When studying the hydrodynamics of an evaporating quark drop it can be useful to
compare this process with the evaporation of a water drop. The main difference between
the two situations is that while the first is exothermic, the second is endothermic. This
means that the water drop will continue to evaporate as long as there is an efficient
transport of heat from the inner regions to the surface where it will be lost during the
evaporation. In a similar way, it is important that during the quark drop evaporation
there should be an efficient mechanism in the hadron phase for transporting the latent
heat away from the phase interface. The geometry of the process and the complexity of
the phenomena at the deflagration front prevent any simple but accurate analysis being
possible and only a numerical simulation can give a deeper insight into the details of the
evolution. The calculations reported here were the first complete relativistic computations
of an evaporating cosmological quark drop and have modified and corrected a previous
more simplified analysis carried out by Kajantie and Kurki-Suonio [69].

We will first discuss the results obtained for the following combination of val-
ues for the free parameters in our model: we consider an initial quark drop of radius
Ry = 10° fm, surrounded by a hadron plasma at temperature T, = 0.990, to which is
associated a phase interface with surface tension parameter oy = o/T2 = 1. (We take
T. = 150 MeV.) As expected from the properties of the self similar solution, calculations
with larger values for R,  show exactly similar hydrodynamical behaviour. Also, compu-
tations performed with values closer to T, (e.g. Tj = 0.999) show only minor differences
(of the order of a few per cent) after deviation away from the similarity solution has
occurred, but are much more time consuming®. On the other hand, for greater super-
cooling, the quantitative differences can be larger (up to 50 per cent), but the underlying
hydrodynamical behaviour remains the same. We first discuss the situation for oy = 1
as this corresponds to the value used in our previous computations (Miller and Pantano
[114], Miller and Rezzolla [115]) and also allows one to see clearly the main features of
the hydrodynamical scenario. Results for lower values of o will be discussed later.

During the initial stages of the drop evaporation, the evolution of the hydrodynami-
cal variables in both phases is in very good agreement with the similarity solution. As the
evaporation proceeds and the drop reaches dimensions of the order of Ry ~ 10% fm, the
hydrodynamics starts to deviate significantly from the similarity solution (the evolution
is no longer scale-free). The surface tension starts to cause the compression inside the
shrinking drop to increase, raising the temperature jump between the two phases which
has been constant up to this stage. The value of T}; is not significantly changed by this,

6Tt is worth noticing that the supercooling at this stage of the transition does not need to be extremely
small as is the case during bubble percolation and coalescence.
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however. This deviation from the similarity solution is at the origin of a run-away mecha-
nism which amplifies the temperature difference between the two sides of the interface and
increases the quark evaporation rate. Although the area of the drop surface is reduced,
the velocity of the evaporating matter has become larger and this preserves a significant
outward flux away from the surface. As a consequence, the contraction is accelerated
and the drop experiences an increasingly rapid evaporation which ends with its complete
disappearance.

Figures 6.7 and 6.8 synthesize the results from a calculation for a drop contracting
from 10° fm to 1 fm by showing the time evolution of the energy density e of the standard
fluid radial velocity u and of the compression p.”
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Figure 6.7 Time evolution of the profile of the energy density e and of u. The
hadron phase is on the right of the vertical discontinuity. Note that the similarity
solution is preserved until to values of the drop radius of the order of 10? fm.

In this scenario then, the final stages of the evaporation are not regulated by the
expansion of the Universe, as suggested by Kajantie and Kurki-Suonio [69], but rather by

"It is important to underline that we here stop our computations at Ry ~ 1 fm because at these
length scales the whole underlying hydrodynamical approach is ceasing to be valid and our results for
the smallest radii should only be treated as indicative. In other words, it is no longer sensible to use a
fluid description for a quark drop containing only very few quarks.

6
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the run-away mechanism which allows the temperature jump across the phase interface
to increase. One way of understanding this process is by taking into account the larger
outward flow produced by a higher evaporation rate from the drop surface. This can,
in turn, increase the efficiency in the removal of the latent heat released, preventing the
temperature in the hadron phase rising above T,, while allowing the temperature in the
quark phase to grow above T.. The hydrodynamical behaviour described above has been
observed for all of the allowed values of the hadron temperature and although the use
of lower initial values for T}, (to which correspond larger temperature jumps between the
two phases) produces a more dramatic and rapid evolution for the shrinking quark drop,
all of the results obtained share the above features. A physical lower limit to the values
of Tj, is given by T, = 0.61 which corresponds to a deflagration front moving at the sound
speed with respect to the medium behind (i.e. a Chapman-Jouguet deflagration).
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Figure 6.8 Time evolution of the compression factor p. Note that during
the contraction of the drop from 10 fm to 1 fm, a depression appears in
the hadron phase.

The deviation of the hydrodynamical solution away from the self similar one can be
seen as a consequence of the existence of a surface tension . When the drop dimensions
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become comparable with the characteristic length | ~ o/(e, + p,), the drop evolution
can no longer be considered as scale-free and surface effects start to become dynamically
relevant. When o, is taken to be exactly zero, the similarity solution continues to hold
all the way down to the complete disappearance of the drop. A numerical computation
of this situation has been performed and the self similar solution was preserved with a
precision close to the sixth decimal place. If g = 0.02, as suggested by recent lattice gauge
simulations (Ignatius et al. [65], Iwasaki et al. [65], Christiansen and Madsen [33]), the
breaking of the similarity solution starts to become relevant later, for drop dimensions
R, ~ 10 fm, with the subsequent evolution following the lines described for the case
09 = 1. A main difference between these two situations is given by the magnitude of the
relative change in the hydrodynamical variables as the contraction proceeds. Bearing in
mind that the sooner the self similar solution is broken, the more the variables can grow
away from their initial values, we report in Table III the total relative change of the most
relevant quantities as calculated between the initial value (i.e. the value at the time the
computation is started) and the final value (i.e. the one obtained when R; = 1 fm), for
different values of 0. A graphical representation of the behaviour of the radial component
of the interface four-velocity in the Eulerean frame u, and of Tq,h is also given in the two
diagrams of Figure 6.9.

Q | o00=1.00 00=010 | 00=0.02 | o9 =0.00
ug 12.46 1.22 0.31 2.10 x 1073
eq 0.41 4.01x1072 [ 8.07x107%| <10°°
Pq 0.38 2.99 1072 [ 7.90x 107 | <107
Tp | —121x1073 | —1.01 x107* | <107 <107
T, 0.11 9.62 x 107 | 2.30 x 1073 | < 10°°

Table III  The relative change (AQ/Qq) of the hydrodynamical variables for
different values of the surface tension o(. The relative variation is evaluated
between the final and the initial values of the relevant variable which is shown in
the first column. Here u is the radial component of the interface four-velocity
as measured by an Eulerean observer. All variations have been calculated for
an initial T}, = 0.990.

One way of looking at the results in Table III is that of considering the self similar
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solution as a perfect balance between competing effects. As long as the similarity holds,
there is a dynamical equilibrium by means of which the evaporation flux reduces the
dimensions of the quark drop without increasing the compression or the energy density
inside it (see also Section 2.3 for a discussion of this). When the self similar solution is
broken, the balance is lost and the run-away mechanism sets in. Although these very final
stages in the life of the quark drop represent only a small fraction of its whole evolution,
they can be extremely important since a considerable change in the fluid variables might

occur then.
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Figure 6.9 Behaviour of ug and of the temperature in the two phases
Th’q for different values of the surface tension parameter oy. Note that
the deviation away from the self similar solution becomes extremely
small for smaller values of og.

A comment should be made on the results obtained for low initial values of the
hadron temperature (i.e. T, < 0.80). Although these cases probably have no cosmological
relevance, as they require a strongly supercooled quark plasma, they provide important
information about the hydrodynamics of weak deflagration fronts near the stability thresh-
old given by the Chapman-Jouguet point, at which Chapman-Jouguet deflagrations take
place. In the present scenario this occurs for an initial value T, = 0.61 and has turned
out to be the limit for the numerical solution. It is interesting to note, when looking at
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the sequence of the different solutions in the range of low T}, that the hydrodynamical
evolution becomes less stable and regular as values of Ty, closer to the Chapman-Jouguet
point are used. It is particularly interesting to note the behaviour of u , which is larger
for lower initial values of T},. In this case, the presence of oscillating modes is very clear
and these can perhaps be related to the instabilities which are known to appear from the
linear perturbation analysis of two-dimensional deflagration fronts (Landau and Lifshitz
[90], Link [100]). At the Chapman-Jouguet point, the solution is extremely unstable and
is almost immediately dominated by instability modes with very large amplitude and very
short time scale. As stated before, it was not possible to calculate any numerical solution
beyond this limit. Figure 6.10 shows the behaviour of u, for T, = 0.80 and T), = 0.61.
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Figure 6.10 Time evolution of the radial component of the interface
four-velocity in the Eulerean frame for large supercooling. This should
be compared with Fig. 8, where Tj, = 0.990.

It is important to point out that, despite the dramatic oscillatory behaviour seen for
u, at low Th, the solution for the other quantities remains comparatively smooth and reg-
ular up until the Chapman-Jouguet point, beyond which stability is lost completely. This
sort of behaviour seems to be characteristic of deflagrations and is related to phenomena
observed in laboratory experiments (Buckmaster and Ludford [26]). The complete loss of
stability past the Chapman-Jouguet point (i.e. for strong deflagrations), may be related
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to the fact that in this case the front ceases to be in mutual causal connection with the
fluid behind, relative to which, the front is supersonic.

As discussed in Subsection 5.1.2, much of the astrophysical interest in a first order
quark—hadron phase transition concerns baryon number segregation within the shrinking
quark drop and the consequent generation of inhomogeneities in the baryon number den-
sity. With the present calculations, in which we neglect the effects of long range energy
and momentum transfer, we have aimed to establish whether, by means of purely hy-
drodynamical mechanisms, the contraction could significantly aid baryon concentration.
With regard to this, a key result is the demonstration of the existence of self similar
solutions which tend to keep constant the values of the compression factor in the two
phases. If one makes the (very idealised) assumption that baryon number is carried along
exactly with the hydrodynamical flow and limits attention to material which was within
the disconnected quark regions at the time when chemical equilibrium was broken, then
the baryon number density will be found to follow the same behaviour as the compression
factor. As can be seen from Figure 6.8, no strong enhancement of the compression factor
seems to appear. For a standard quark drop of g = 1 and initial T, = 0.990, the relative
increase of the compression at the end of the contraction is Ap/p, ~ 0.38 (see Table III).
Slightly larger compressions have been found for lower values of T}, (e.g. Ap/p, =~ 0.55
for T), = 0.80), but such low values of the temperature seem unlikely to be relevant in the
cosmological situation.

Our conclusion is that hydrodynamical compression “on its own” can do little to
enhance baryon number concentration. If there is to be a concentration of the magnitude
discussed in the literature (Sumiyoshi et al. [155], Malaney and Mathews [101], Cheng
and Olinto [31]), then this must result mainly from the role of the long range energy
transfer or from suppression of the flux of baryon number across the interface. These will
be the subjects of the numerical investigations illustrated in the next two subsections.

A concluding remark could be made about recent calculations performed by Kurki-
Suonio and Laine [83] of the very final stages of the evaporation of a quark drop. Using a
general framework rather different from the one presented here and which is based on a
coupled system of hydrodynamical equations and of evolution equations for a scalar order
parameter, the Finnish group was able to reproduce the self similar solution proposed by
Rezzolla et al. [139] and the hydrodynamical behaviour described above and to follow
the evaporation down to dimensions of the quark drop below the limit of 1 fm presented
in this subsection. Although we are skeptical about the validity of a hydrodynamical
approach for infinitesimal quark drops, the results of Kurki-Suonio and Laine for the
bigger drops represent an important confirmation of the validity of our approach and of
the “robustness” of the self similar solution found.
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6.3.3 Evaporation with Radiation Decoupling

This subsection presents and discusses numerical computations aimed at following the
evaporation of a quark drop, taking into account the progressive exchange of energy and
momentum which at a certain stage will take place between the radiation fluid and the
strongly interacting fluids. For this purpose, we have here made use of the experience
and numerical codes developed for studying the related problems of radiative transfer for
a growing hadron bubble (Section 6.2) and of evaporation of a quark drop in the absence
of long range energy and momentum transfer (Subsection 6.3.2). The result of this has
produced a code which embodies the main features of the previous ones.

The specification of the initial conditions for the system of hydrodynamical equa-
tions has been guided by the existence of a self similar solution for an isolated contracting
physical system which was demonstrated in Section 2.3. In the case of an evaporating
quark drop during the cosmological quark—hadron phase transition, it is reasonable to
expect that a self similar solution will first set in after the quark drops become physi-
cally disconnected, so that the distance between the centers of two neighbouring drops is
larger than the sum of their respective “sonic radii” (see Section 2.3 for a definition). The
value of this distance is not yet established and its determination would require a detailed
hydrodynamical study of the intermediate stages of the transition, which we consider to
be the ones after the hadron bubbles have coalesced and the quark regions have started
to become disconnected. Simple geometrical considerations suggest that the mean sepa-
ration between quark regions at bubble coalescence should be of the order of the mean
separation of bubble nucleation sites [,, ~ 10 cm [cf. expression (4.38)]. Bearing in mind
the uncertainty in this, we here take a conservative view and consider a quark drop of
initial dimensions R = 10° fm, much below the above range (but still comfortably larger
than A, by which radius the similarity solution will have broken due to radiation decou-
pling from the standard fluids). Considering such a small quark drop implies restricting
our analysis to the very final stages of the transition, but it is only then that the self
similarity is expected to break down and a change in the hydrodynamical evolution is
expected to occur.

As initial conditions for the time evolution with the full hydrodynamical equations,
we again use the general form of the self similar solutions, which is determined once the
degree of supercooling in either one of the two phases has been established. All of the
models which we present here refer to a quark drop having initial temperature Tq = 0.998,
surrounded by a hadron plasma at initial temperature T, = 0.990. (Results obtained with
a smaller degree of supercooling, e.g. down to 0.1%, show only minimal overall differences
for e, p and wy, always below a few percent).

An important feature of the present simulations is the transition between total cou-
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pling of the radiation and standard fluids and their effective decoupling. While in nature
this process would take place in a rapid but gradual way, the start of it is necessarily
discontinuous when simulated by means of a numerical calculation on a grid. This is
just the consequence of the fact that, within the context of a numerical calculation, the
concept of the phase interface as a perfect discontinuity surface needs careful interpre-
tation and cannot be considered as strictly infinitesimal. In the present situation, in
which the computer code follows the drop evaporation with an increasing spatial resolu-
tion through a number of orders of magnitude in radius, the interface should be thought
of as having an effective width which is always smaller than the minimum length scale
resolvable on the grid. This means that the numerical code will treat as discontinuous
any change in the physical variables which cannot be resolved on the grid. This feature
is particularly relevant at the decoupling, because at that stage the long range energy
and momentum transfer introduces features of the flow on length scales which were not
previously resolved when the standard fluids and the radiation fluid were considered as
coupled. When the decoupling is allowed to start, the effective width of the phase inter-
face is abruptly decreased to that appropriate for the strongly interacting matter alone
and, as a consequence, changes across it which were previously discontinuous are allowed
to smooth down and assume the profiles produced by the radiative transfer.

Allowing for the decoupling to start requires particular care and for this reason it has
been necessary to introduce a free parameter Ry, referred to as the “decoupling radius”,
fixing the drop radius at which the change is made from one regime to the other. For
drop radii Ry > R, the two fluids are considered as totally coupled and moving as a single
fluid. The phase interface is taken to have a width related to the mean free path of the
radiation fluid particles and the characteristics of the radiation fluid are taken to coincide
with the ones of the standard fluids. As for bubble growth (cf. Section 6.2), the coupling is
treated by adding the number of degrees of freedom of the radiation fluid particles to the
number of degrees of freedom in the two phases of the strongly interacting matter and by
setting to zero the contribution of the source functions sy and s; and the energy flux w.
Also, the jump in wq at the interface is then calculated in terms of that for e. Conversely,
for drop radii Ry, < R, the two fluids are considered as not being totally coupled and
the calculation of the radiation fluid variables adjacent to the interface is made using the
radiation characteristics which are now distinct from those of the standard fluids. At this
stage the radiation fluid evolves separately from the standard ones and long range energy
and momentum transfer can start to take place.

It is worth pointing out that while in the above procedure the decoupling between
the two fluids starts in a discontinuous manner, the decoupling in itself is gradual and
is governed by the radiation hydrodynamic equations. The abrupt switch is certainly an
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approximation but, as discussed in next subsection, it is a rather good one and numerical
results show that the hydrodynamical evolution quickly recovers from the perturbation
introduced by the sudden decoupling.

The presentation of the results obtained from the numerical integration of the hy-
drodynamical equations for the radiation and the standard fluids is divided into two
subsections. In the first one (A), we present results for a standard set of the parameters
of the problem, while in the second one (B) we discuss the changes introduced when these
parameters are allowed to vary.

A. The Standard Parameters

As discussed above, we first consider an isolated quark drop of initial radius Ry = 10° fm,
surrounded by a hadron plasma at temperature T, = 0.990 and to which is associated a
phase interface with surface tension parameter oy = /T2 = 1. We stress that the effects
of the surface tension appear only during the very final stages of the evaporation [i.e.
for Ry < 0/(eq + pg)] when the effects of the radiative transfer are no longer important.
Large values of the surface tension make the very final stages of the evaporation occur
more rapidly than for smaller values, and a discussion of this has already been given in
the previous subsection (and by Rezzolla et al. [139]).

We consider the phase interface as a perfect black-body (i.e. @y = 1) and the non
conservative scattering contribution in the first source function as maximal (i.e. ay = 1).
The decoupling radius is related to the mean free path of the radiation fluid particles and
we here set R; = A = 10* fm.

Figure 6.11 shows the time evolution of the radial component of the Eulerean four-
velocity u and the energy density e of the standard fluids. The decoupling is allowed
to start at a drop radius of 10* fm; as can be seen from the graphs, the solution is not
particularly perturbed by the new conditions and quickly returns to a regular behaviour.
These graphs are quite similar to the ones presented in Figure 6.7 even though in this
case the self similar solution during the contraction is more weakly preserved after the
decoupling. When the drop reaches dimensions comparable with the intrinsic length scale
o/(eq+ pg) ~ 10% fm, the self similar behaviour is irreversibly lost and the evaporation
then proceeds through the accelerated stages already observed in the previous subsection.
This is related to the contribution of the surface tension which has become overwhelm-
ing and produces a compression within the quark phase with a consequent temperature
increase.

In this case also and despite the reduced dimensions of the drop surface, the increased
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temperature jump between the two phases of the strongly interacting matter is able to
preserve a considerable hydrodynamical flux away from the surface, thus allowing for an
increasingly rapid evaporation which ends with the complete disappearance of the drop®.
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Figure 6.11 Time evolution of wu, the radial component of the fluid four-velocity
in the Eulerean frame and of the energy density of the standard fluids e. The
quark phase is to the left of the vertical discontinuity. The decoupling between the
radiation fluid and the standard fluids is allowed to start at R, = 10* fm. These
diagrams should be compared with those of Figure 6.7

The two diagrams of Figure 6.12 show the time evolution of the radiation energy
density wq and of the radiation energy flux w;. Before the decoupling starts, wy obviously
follows the self similar evolution of the energy density of the standard fluids and the
energy and momentum transfer between the two types of fluid is so efficient that they
can be considered as in local thermodynamic equilibrium, giving w; = 0. The situation
changes when the drop becomes smaller then 10* fm. At this stage the decoupling starts
and this has the effect of smearing out the step in the radiation energy density which was
present before. Now the radiative transfer is able to carry away some of the energy stored
within the radiation fluid in the quark phase.

8Note that also for these computations, our results for the smallest radii should only be treated as
indicative.
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Figure 6.12 Time evolution of the radiation energy density wy and
energy flux wy. The dashed curves on the figure for wg are the result
of dominant Doppler effects at the very end of the drop evaporation.
The curves in the small diagrams show the rapid evolution of wy and w;
immediately after the decoupling has started.
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As can be seen from the magnifications in the diagrams in Figure 6.12, which show
the evolution of wy and w; immediately after the decoupling has started, this process
is quite rapid and before the drop radius has decreased by one order of magnitude, the
radiation energy density profile has flattened out, equalizing with the value at infinity. The
energy flux w; deviates from zero and becomes positive as soon as the decoupling starts
and then progressively decays as the step in the radiation energy density is smeared out.
This process is somewhat similar to the rapid release of the radiative energy contained
within an optically thick, hot but non-emitting gas sphere which suddenly starts to become
optically thin and is allowed to emit.

The dashed curves in the upper diagram of Figure 6.12 correspond to the very fi-
nal stages of the drop evaporation (i.e. for drop dimensions of the order of a few fm).
The increase in the radiation energy density which is seen there is related to the motion
of the Lagrangian observers with respect to an essentially uniform radiation field and
therefore has a pure Doppler nature [In the Appendix D we have shown that under these
circumstances wg =~ (1 + 4u?/3)(wy) , and wy ~ —(4T'u/3)(wy),]. Note that Doppler con-
tributions are always present after the decoupling and are more evident in the energy flux,
where they enter at the first order in u and are responsible for the increasing negative
flux observed for drop radii smaller than 103 fm.

Some of the most interesting effects produced by the decoupling between the ra-
diation fluid and the standard fluids regard the evolution of the compression factor p.
As discussed in the previous subsection, a key property of the self similar solution is
that of preserving the values of the compression factor in the two phases of the strongly
interacting matter, reflecting a perfect balance between the competing effects of the com-
pression which would tend to be produced by the reduction in size of the quark drop and
the evaporation processes which extract matter from it. An increase in the compression
within the quark phase is possible only when the self similar solution is broken and this
can occur either when the long range energy and momentum transfer takes place or, later
on, when the drop radius becomes comparable with the intrinsic length scale related to
the surface tension. If the decoupling between the radiation fluid and the standard fluids
is neglected, (as in Figure 6.8), the compression produced is purely hydrodynamical and
this takes place only during the very final stages of the drop evaporation. In that case,
the relative increase of p™ at the end of the contraction of a standard quark drop with
0o = 1 and initial T}, = 0.990, was computed to be of the order of 40%.

The situation changes dramatically if the radiative transfer between the standard
fluids and the radiation fluid is consistently taken into account. Figure 6.13 shows the

time evolution of the compression factor in both phases of the strongly interacting matter
(cf. Figure 6.8).
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Figure 6.13 Time evolution of standard fluids compression factor p. The curves in
the small diagram represent the values of the compression factor immediately ahead
of the phase interface (p*) and immediately behind it (p~). This Figure should
be compared with the corresponding one 6.8, calculated neglecting the radiative
transfer.

With the magnified scale it is not possible to see the initial values of the compression
factors which are the same as those in Figure 6.8, with p, = 0.253 for the hadron phase
and p, = 1.0 for the quark phase (our reference value). It is evident that as soon as the
decoupling is allowed to take place at 10* fm, the compression within the quark phase
starts to increase progressively and, at the end of evaporation, it has reached values which
are more than two orders of magnitude larger (i.e. with an increase of ~ 5 x 10 %). The
small diagram in Figure 6.13 traces the values of the compression just ahead of the phase
interface (p*) and just behind it (p7).

The explanation for this striking behaviour is related to the fact that the long range
radiative transfer is able to extract energy from within the quark phase without extracting
the strongly interacting matter. As a consequence, the relation between the compression
factor and the pressure (and hence between the compression factor and the temperature)
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is altered and the evaporation evolves in a radically non-adiabatic manner. The main
effect produced by the radiative transfer is then that of reducing the specific entropy of
the quark-gluon plasma, so that it is possible to enhance the quark compression without
significantly changing its temperature.

It is interesting that the growth in the quark compression factor continues to occur
also after the radiation energy density in the quark phase has been levelled down to the
value in the hadron phase and the outward energy flux from the quark phase has become
very small (e.g. even for R, < 10° fm). This is due to the fact that when the energy
density of the radiation fluid within the quark phase has reached the same value as in
the hadron phase, there is a local temperature difference between the radiation fluid and
the quark-gluon plasma which drives a very small but finite energy flux from the quark
plasma into the radiation fluid, where it is then redistributed very efficiently. In this way
the process of entropy extraction from the quark phase is able to operate even when the
outward radiation energy flux from the quark phase is very small.

A limit to this mechanism is, of course, introduced by the intrinsic dimensions of
the drop and by the length scale for the interactions of the particles of the radiation fluid.
If the drop is too small, it becomes effectively transparent to the radiation particles and
the entropy extraction is no longer efficient; at this stage the decoupling between the two
fluids can be considered to be complete. For the typical quark drop under consideration
here, this happens for a drop radius of about 10? fm, where the increase in the compression
factor temporarily slows down (see the small diagram in Figure 6.13). At this stage the
solution would become self similar again, but for the fact that the quark drop is now
small enough for the surface tension to take over and dominate the final stages of the
evaporation, producing the last compression enhancement. In the next subsection it
will be shown that it is possible to recover the self similar solution again after the total
decoupling has taken place if a suitable choice of the decoupling radius and of the mean
free path A is made (Figure 6.18).

A special comment should be made concerning a result which we consider to be
particularly important. As discussed before, our treatment of the long range energy and
momentum transfer between the radiation fluid and the standard fluids leads to an increase
in the compression factor of the quark phase by about two orders of magnitude. It should
be kept in mind, however, that this peak value is limited to a very small volume (of the
order of 1 fm?) and that it would be probably dispersed by the rarefaction wave formed
following the complete disappearance of the drop (see Section 6.4 for further discussions).
As a consequence, if a relic inhomogeneity from the transition is to be investigated, this
should rather concern the compression seen in the hadron phase before the disappearance
of the drop.
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Figure 6.14 Final profile of the compression factor p; the computation
has been stopped when the quark drop has a radius of 1 fm. The small
diagram shows, with a different vertical resolution, the same profile after
it has been normalized to the value of the hadron compression at infinity.

Figure 6.14 shows the final profile of the compression factor p computed when the
quark drop has reached a radius of 1 fm. It is interesting to note that besides the large peak
in the quark phase, the compression factor has been increased also in the hadron phase,
where it appears as a plateau of comparatively smaller magnitude. However, if one selects
a vertical scale with greater resolution and normalizes the values of the compression factor
to the background hadron compression (see the small diagram of Figure 6.14), it is clear
that the plateau does indeed have an intrinsic profile, with a maximum about two orders
of magnitude larger than the background value. More important, the hadron compression
extends over a much larger length scale, which coincides with the interaction length scale
of the radiation fluid particles. Figures 6.13 and 6.14 could give a misleading impression
as they seem to show that the most important effect is the compression increase in the
quark phase whereas, in fact, the relative compression increase in the hadron phase is also
substantial and is more significant in that it extends over a volume which is twelve orders
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of magnitude larger.

The compression increase in the hadron phase is not produced directly by the radi-
ation, but rather results from the fact that “over-compressed” quark fluid elements (with
decreased specific entropy) give rise to “over-compressed” hadron fluid elements after
they have undergone the phase transformation in accordance with the junction condition
(5.74). (Note that the entropy increase which naturally occurs as fluid elements cross the
phase interface is much smaller than the decrease introduced by the radiative transfer, so
that fluid elements in the hadron phase near the drop have smaller specific entropy than
those far from it). A key point to stress is that the over-compressed hadron plasma is
in pressure balance (and therefore in temperature balance) with the surrounding hadron
medium. This is a consequence of the decrease of specific entropy which took place while
the fluid elements concerned were still inside the drop. At the end of the transition a
spherical region of over-compressed hadron plasma is left behind which is in equilibrium
with the surrounding medium. This is the region where a baryon number concentration
could be produced and this would then only be dispersed by diffusion on the time scale
relevant for that. The mechanisms for the production of baryon number inhomogeneities
at the end of the transition will be discussed in more detail in Section 6.4.

B. The Parameter Space

In this section we discuss the changes introduced for the drop evaporation by variation
of the set of the parameters within the allowed parameter space. The effect of varying oy
is in line with what one would infer from the discussion in 6.3.2 and we defer presenting
results for this until the next section. We start here by commenting on the hydrodynamical
evolution of a quark drop for which the coefficient a;, which relates the hydrodynamical
flux to the thermal flux in the hadron phase, is not equal to unity as in the case of
a perfect black-body surface. In general, reducing a; has the effect of decreasing the
“transparency” of the drop surface to the phase transformation and therefore of slowing
down the drop evaporation and favouring the long range energy and momentum transfer
away from the quark phase.

Figure 6.15 shows the variation, as a function of ay, of the compression factors
immediately ahead of and behind the phase interface when the radius of the quark drop
has decreased to 1 fm (the other input parameters are left unchanged from the values
discussed in the previous subsection). While the solid curves fit points obtained by single
computations, the dashed curves are an extrapolation of these to values of «a; for which
the computations would have been exceedingly time consuming (the computational time
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tends to infinity as a; tends to zero).

logio o

Figure 6.15 Logarithms of the compression factors immediately ahead
of and behind the phase interface when the radius of the quark drop has
decreased to 1 fm, as a function of the adjustable coefficient ;. The
dashed curves extrapolate the numerical results to very small values of
a1, for which computations are not possible.

It is interesting to notice that the formation of high compressions in the quark and hadron
phases is a general feature and that the relative increase of the compression factors in the
two phases can easily be of six or seven orders of magnitude, thus giving a stronger cosmo-
logical relevance to this process. We also note that the use of values of a; less than unity
does not significantly alter the qualitative and quantitative evolution of the hydrodynam-
ical variables presented in Figures 6.11-6.14 except for the compression factor, which is
suitably rescaled while preserving the same qualitative behaviour.

Let us now consider the changes brought about by variation of the non-conservative
scattering coefficient ay in the energy source moment (5.21). As mentioned in Subsection
5.1.1, rough estimates indicate that ay &~ 1 in the present cosmological scenario, but it
is nevertheless interesting to consider situations for smaller values of «y. It is obvious
that a larger non-conservative scattering coefficient will enhance the efficiency of the
radiative transfer processes and, in turn, the formation of compressed regions of the
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strongly interacting fluids.
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Figure 6.16 Compression factor immediately ahead of the phase inter-
face for computations with different values of the adjustable coefficient
ag. The small diagram shows the equivalent curves for the compression
factor immediately behind the phase interface.

As shown in Figure 6.16, where results of computations performed with five different
values of ay are presented, the hydrodynamical evolution is not qualitatively changed and
although a value of ay = 1 maximizes the compression, a relative compression increase
(at the end of the drop evaporation) of about two orders of magnitude is present also in
the total absence of the scattering contribution.

All of the results discussed so far are from simulations in which the decoupling
between the radiation fluid and the standard fluids was allowed to start at a “decoupling
radius” Ry equal to the mean free path A of the electromagnetically interacting particles.
As mentioned in the previous subsection, the decoupling radius is a free parameter which
in principle does not represent a precise physical length scale, but rather needs to be
introduced as a consequence of having to study the decoupling between the two fluids
on a finite grid. In principle, an extremely fine grid would allow one to observe the very
gradual onset of decoupling when the drop is still rather large, corresponding to large
values of R;. In practice however, one has to choose a value of R; which is small enough
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to be compatible with a reasonable grid spacing, while still being large enough to give a
good approximation to the ideal situation which could be followed with an infinitely fine
grid. In order to determine an appropriate value, it is necessary to study the behaviour

of a suitable representative quantity in the solution as a function of the different values
of Rd.
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Figure 6.17 Compression factor immediately ahead of the phase in-
terface when the radius of the quark drop has decreased to 1 fm, as a
function of the decoupling radius R;. The vertical axis is normalized
to the value of p* obtained for Ry = A. The solid line fits points ob-
tained by single numerical simulations and the small diagram magnifies
the results for small values of the decoupling radius.

We chose the quark compression p* when R, =1 fm as a suitable representative
quantity and Figure 6.17 shows our results for the variation of this with varying R,;. The
values of p* presented in the diagram are normalized to the one obtained for Ry = A
and Ry = 1.2 X is the largest value for which a satisfactory numerical solution could be
obtained with our grid. Note the appearance of a plateau in the graph for the largest
values of R, indicating that the asymptotic solution is being reached. Values of R, larger
than the ones shown here would not lead to any further significant change in the solution.
R4y = X gives a more regular behaviour of the hydrodynamical quantities than occurs
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for larger values and so this was used for the standard run presented in the previous
subsection.

The interpretation of Figure 6.17 is straightforward: making the decoupling at
smaller values of the drop radius has the effect of reducing the time interval during which
the long range energy and momentum transfer away from the quark phase takes place.
As a consequence, the specific entropy in the quark phase is changed less, leading to a
smaller final compression. If the value of R;/\ is taken to be very small, the hydrody-
namical behaviour tends to the one observed when the decoupling is totally neglected and
ultimately coincides with the solution obtained in Subsection 6.3.2 when Ry/A = 0 (see
small diagram of Figure 6.17). This is a satisfying result and shows that the numerical
modelling has an overall physical consistency.

Another example of this coherence appears when a self similar solution can be re-
covered after decoupling between the radiation fluid and the standard fluids is complete.
This can be produced if A is artificially increased so as to be much larger than the length
scale associated with the surface tension, thus separating the two possible regimes during
which a compression can be produced.

Figure 6.18 shows the profiles of the compression factors immediately ahead of and
behind the phase interface for values of A\ = R, ranging between 10* fm (the physically
realistic value) and 107 fm. (In all simulations the quark drop has initial dimensions
R,y = 10\.) It is evident that with the standard set of parameters, (shown with the
continuous line), the two different compression growth stages join together and that self
similar evolution (represented by a constant compression factor state) cannot set in. The
situation is rather different for the (unrealistic) choice of Ry = A = 107 fm. In this case it
is possible to distinguish clearly between the initial compression growth (produced by the
relativistic radiative transfer), and the final compression enhancement (a consequence of
the accelerated evaporation driven by the surface tension) which in all of the simulations
takes place for Ry < 10%fm. The evolution between the two stages clearly follows a self
similar solution and this seems to be a further example of the widespread occurrence of
the self similar solution for an isolated contracting spherically symmetric system.
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Figure 6.18 Compression factors immediately ahead of and behind the
phase interface. Different curves refer to different values of the mean
free path of the radiation fluid particles (expressed in fm) and show that
if a large enough value is chosen, a self similar evolution is reached. All
curves are drawn for Ry = A and initial quark drop dimensions one order
of magnitude larger than .

A final comment in this subsection should be made concerning the role played by the
neutrinos in the process of long range energy and momentum transfer away from the quark
phase. Neutrinos have been neglected in the present calculations because of the much
larger length scale at which they interact ()\, &~ 10 fm). Nevertheless, on this scale they
can be considered as particles of a generalized radiation fluid and could operate a radiative
transfer process similar to the one discussed so far for the electromagnetically interacting
particles and produce a compressed hadron medium at the end of their decoupling.

In order to investigate the amplitude of this compression, we have performed a
computation in which we simulate the decoupling between a radiation fluid composed
only of neutrinos, and a standard fluid composed of strongly and electromagnetically
interacting particles. It should be noted that this is a rather speculative investigation
since it assumes the existence of isolated, spherical quark regions of dimensions at least
comparable with \,, and it is not clear whether the disconnection of quark regions happens
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at a scale large enough for this to occur. However, bearing this reservation in mind, results
of our calculations for the effects of neutrino decoupling on the compression profiles are
presented in Figure 6.19.

It is evident that entropy extraction by means of neutrinos is less effective than
for the case of the electromagnetically interacting particles and this is the result of the
different combination of the number of the degrees of freedom in the two cases (for neutri-
nos ¢, = 5.25 as compared with g, = 9 for the electromagnetically interacting particles).
Nevertheless, the decoupling produces a non negligible compression in both phases, giving
a compression in the hadron plasma which is about five times greater than the background
one.
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Figure 6.19 Compression factors immediately ahead of and behind the
phase interface. Here Ry = A\, = 103 fm.

Reduction of oy would lead to further amplification of the compression in the same
way as already discussed for the decoupling of the electromagnetically interacting parti-
cles. This result could be also relevant for considerations of the baryon number density
profile which is left behind by the quark—hadron transition and whose formation will be
discussed in the next section.
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6.4 Baryon Number Segregation at the End of the
Transition

We conclude this chapter with the presentation of numerical computations aimed at study-
ing quantitatively the segregation of baryon number at the end of the cosmological quark—
hadron transition, as discussed qualitatively in Subsection 5.1.2. For this purpose, we have
implemented here all of the formal tools developed in the previous chapters in order to fol-
low simultaneously the processes of entropy extraction by means of particles having long
mean free path and the process of baryon number flux suppression at the phase interface.
From a computational point of view, the numerical codes presented and discussed earlier
for the evaporation of a quark drop have been here modified so as to include the solution
the parabolic diffusion equation (5.34) at each time step.

As is frequently the case for numerical computations in which a diffusion equation
needs to be solved, we are here faced with the problem of performing calculations with
a mixed set of equations and avoiding excessive restrictions placed on the time step by
the von Neumann criterion for stability in solving the parabolic equation. Obeying this
criterion, which is more stringent than the usual Courant one [cf. equation (6.2)] since it
depends quadratically on the minimum grid spacing and is inversely proportional to the
diffusion coefficient (Potter [132]), allows one to perform an explicit integration of equation
(5.168) without any further constraint. However, for the present case, implementing the
von Neumann condition produced computational times for each simulation which were
not affordable. The reason for this is connected with the particular organization of our
grid which has an exponentially increasing spacing in order to facilitate following the
dynamics of the drop through several orders of magnitude change in the radius. To avoid
this problem, we have implemented a standard “flux limiter” scheme in which a control
is set on the diffusive flux in the quark phase preventing it from evacuating the baryon
number content of any grid zone within a single time step (Oran and Boris [125]). The
results obtained in this way were found to be in excellent agreement with ones from a
comparison calculation without the flux limiter and using the von Neumann condition
(but which required a computational time longer by a factor of twenty).

Another concern in the present calculations has been that of preserving as closely
as possible the overall conservation of baryon number. Clearly, results for the final distri-
bution of baryon number at the end of the transition will be worthless if the integration
of the diffusion equation (5.168) is not accurate enough and is significantly producing or
destroying baryon number. This equation has been written in a nearly conservative form
but special attention needed to be paid to the calculation of interpolated values for a
and T (for which we used function fitting procedures) and to the implementation of the



6. Numerical Strategies and Results 207

regridding procedure (see Subsection 6.1.1). Having done this, our computations preserve
the total baryon number in the grid to an accuracy of a few parts in 10® for runs of about
10° time steps.

In the following and in analogy with what was done in the previous section, we
present results from computations which have been performed evolving from initial data
given by the self similar solutions for a spherical quark drop with initial dimensions
Rso =107 fm, at an initial temperature Tq = 0.998, surrounded by a hadron plasma at
temperature T, = 0.990. The similarity solution provides suitable initial conditions for
all of the variables apart from the baryon number which does not necessarily follow the
bulk hydrodynamical flow. We decided to start with the baryon number density in each
phase being uniform and given by the expressions (5.28) and (5.29) presented in Section
5.1.2 which correspond to conditions of chemical equilibrium. This is very approximate
because global chemical equilibrium does not apply for a situation with a moving interface
such as the one which we are considering but, nevertheless, initial conditions imposed in
this way are sufficiently good to allow the solution to relax rapidly to a consistent one.

We have examined the effects on the overall solution of varying the values of impor-
tant input parameters and we will be discussing this in detail but first we concentrate on
the results obtained for a set of fiducial parameter values. This “standard” run follows
the evaporation of a quark drop with surface tension parameter oy = 0.01, filter factor
F = 0.3 [cf. equation (5.83)] and diffusion coefficient D = 1 fm [cf. equation (5.169)]°.
The decoupling radius Ry is set to be 10* fm, which corresponds to the average mean free
path of the electromagnetically interacting particles. We do not consider here a decou-
pling with neutrinos which, however, would follow a similar hydrodynamical behaviour
except for the different number of degrees of freedom involved.

The results presented here should be confronted with those for the fundamental
hydrodynamics (as discussed in the previous section) which forms the background against
which the segregation of baryon number takes place. Equivalent results to those presented
in Subsection 6.3.3 but for the present case of gy = 0.01 are summarized in Figure 6.20.
The main features of the hydrodynamical solution can then be synthesized as follows: i)
the presence of a similarity solution until the radiation decoupling starts at Ry = Ry; i)
the recovering of an “almost” self similar solution for the energy density e and the fluid
velocity u after decoupling; iii) the significant increase of the compression factor in both
phases caused by the extraction of entropy by the radiation fluid; 7v) the smoothing out
of the step in the profile of the radiation energy density when decoupling occurs.

9Note that we here adopt as our reference value for oy a much smaller number than the one discussed
in the previous subsection. This is because we prefer here to reduce the effects related to the surface
tension and adopt a value closer to the ones derived from current lattice gauge calculations.
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Time evolution of the most significant hydrodynamical

variables for a surface tension oy = 0.01. Starting from the upper left-
hand window and proceeding clockwise, the frames show: the radial
component of the fluid four-velocity in the Eulerian frame u, the energy
densities of the standard fluids e and of the radiation fluid wg and the
compression factor p. The decoupling between the radiation fluid and
the standard fluids is allowed to start at Ry = 10* fm.



