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Chapter 1

Overview

The discovery of radio waves from extraterrestrial sources in the 1930’s and their detailed study in
the following decades started a revolution in our view of the Universe [241]. Earlier, only the slow
orbital motion and the evolution of luminous stars and planets could be observed, while after the birth
of radioastronomy much more rapid and/or violent phenomena became observable, such as collisions
among galaxies, matter emission from active galactic nuclei, very luminous and very variable quasars and
millisecond pulsars. The revolution brought about by radioastronomy has been so spectacular because
the information carried by radio waves is very different from the one carried by visible light, which only
allows to observe thermal photons produced by atomic excitation in the atmosphere of the stars. The
radio wavelengths, instead, being about seven orders of magnitude larger than the ones of visible light,
allow the observation of non thermal photons.

The difference between radio waves and visible light, though, is not nearly as dramatic as the differ-
ence between electromagnetic waves and gravitational waves. The former are oscillations of the elec-
tromagnetic field, propagating through spacetime; the latter are oscillations of the spacetime itself. The
electromagnetic waves we can detect from outside the Earth are incoherent superpositions of single emis-
sions by atoms, molecules or other charged particles and originate essentially in low-gravity regions,
since strong-gravity regions tend to be surrounded by dense matter, which absorbs most of the elec-
tromagnetic radiation. On the contrary, the most intense gravitational radiation is produced in regions
of strong gravitational fields by coherent movements of large compact masses and is not considerably
absorbed by matter; thus it carries out information from such dense regions, which would not be pos-
sible to study otherwise, not even through neutrinos (which are not absorbed, but scatter many times
before escaping the region). All these differences indicate that, if and when gravitational waves are di-
rectly detected, they would trigger an astronomical revolution much larger than the one originated by the
discovery of radio waves. We know very little about the sources that are considered to be the greatest
producers of gravitational waves. It is also likely that copious amounts of gravitational radiation reach
the Earth from unexpected or unknown sources.

In addition to starting a new epoch in our observation of the Universe, the detection of gravitational
waves will allow key tests on the fundamental laws of physics; tests that nowadays cannot be performed
in any other way. First of all, the very detection of gravitational waves would confirm directly 1 a fun-
damental prediction of general relativity (and of metric gravitational theories in general), one of the last

1There are, however, important indirect observations that strongly suggest the existence of gravitational waves and their
conformity to the waves predicted by general relativity; the first of these observations was the one on the Hulse Taylor binary
pulsar PSR

������������	
[120]; others then followed, allowing even more precise measurements [249, 227, 131] (as, e.g., in PSR

B
��
���
������

[228]). New discoveries of binary pulsars systems have occurred recently [61].
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2 CHAPTER 1. OVERVIEW

that remain to be proven observationally or experimentally. Other tests on gravitational theories would
come from the measurement of the gravitational-wave speed (predicted to be equal to the speed of light
by general relativity and by tensor-multiscalar theories, but to be different from it by other theories [252])
and the polarization, indicating the spin content of the fields mediating the gravitational interaction. Fur-
thermore, measurements of gravitational-wave signals will give direct proof of the existence of black
holes [97, 98], will give insight on early-Universe physics (through the cosmic gravitational background
radiation, whose time of last scattering dates back to much earlier than the one of the cosmic microwave
background radiation) and will give information on the nuclear equations of state at the highest densities
and on the birth and evolution of supernovæ and neutron stars (NSs, hereafter), also in connection with
� -ray bursts. For all these reasons, we strongly believe that the study and the detection of gravitational
waves is a fundamental goal of contemporary scientific research.

The first detection of gravitational radiation has been imminent since several years. . . However, with
the sensitivity of the detectors approaching the expected minimum sensitivity necessary for measuring
gravitational radiation from the most intense sources, it is of growing urgency that we become able to
accurately predict theoretically the gravitational waveforms emitted by those sources, especially the coa-
lescence of two compact objects and non-spherical gravitational collapse leading to black-hole formation
and/or to supernova explosion.

In order to improve our understanding of the above scenarios, it is important to solve the entire set of
the Einstein and relativistic-hydrodynamics equations without approximations; these sources, in fact, are
characterized by strong gravitational fields that cannot be even qualitatively (let alone a quantitatively)
studied with perturbative theories. Given the high non-linearity and complexity of these equations, the
only way to solve them is through large-scale numerical simulations, which must be performed in 3
dimensions, because of the absence of symmetries in the studied scenarios. The rapid increase in com-
puting power through parallel supercomputers and the associated advance in software technologies is, at
last, making such simulations technically possible also in the framework of general relativity.

Despite the recent efforts of several groups [102, 211, 100, 218, 88], though, such simulations are
still plagued by many difficulties, among the biggest of which there are the choice of spacetime foliations
and gauges that allow for stable and accurate numerical evolutions, the implementation of boundary
conditions well suited to the treatment of the outgoing gravitational radiation and the presence of physical
singularities on the numerical grids in the case of black holes.

However, progress on the overcoming of these obstacles is steady. We hope and believe that the work
presented in this thesis is a step that will lead to important contributions to the numerical simulations of
strong-field sources and thus to the theoretical needs of gravitational-wave astronomy. And not only.

With these goals in mind, we have written the Whisky 2 code, which solves on a 3-dimensional
Cartesian numerical grid the general-relativistic hydrodynamics equations in a generic and time-varying
curved spacetime, which is evolved with the Einstein equations. Whisky was not designed with a
specific problem in mind, but, rather, it was conceived as a virtual laboratory, a tool to perform numerical
experiments in the astrophysics of compact objects. Indeed, it has been, it is being and it will be used
for the study of a variety of astrophysically-relevant issues, such as the ones mentioned above, also by
people who originally did not participate in the writing of Whisky.

The Whisky code is the result of an ongoing and ever-growing collaboration among several Euro-
pean institutes. The original and main contributors to the writing of Whisky are, in addition to ourselves,
Ian Hawke and Pedro Montero, while other developers joined later (in particular Frank Löffler).

2A note on the origin of the name of our code. It was finally decided on February 2��� 2002 in the Red Lion pub in
Southampton, after the proposal by a Scottish friend. In Gaelic, uisge, or whisky, means water of life.
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This thesis is composed of two parts. In the first one, comprising Chapters 2, 3 and 4, we will describe
in detail the physical and mathematical framework upon which Whisky is built and we will give an out-
line of the internal workings of the code itself. In Chapter 2, among the many possible formulations of
the Einstein equations, we will describe those which represent the state of the art in general-relativistic
numerical simulations (i.e. the Nakamura Oohara Kojima formulation of the Einstein equations with
“Gamma-driver” shift conditions) and which are implemented in the code that provides the evolution
of the spacetime variables in our simulations. Chapter 3, then, will serve to illustrate the conservative
formulation of the general-relativistic hydrodynamics equations which is implemented in our code and
which permits the use of state-of-the-art numerical schemes for the evolution of hydrodynamical quan-
tities, i.e. the high-resolution shock-capturing methods. In the first part of Chapter 4, the outline of
Whisky will be given, while in the second part the validation of the code will be illustrated. The long
series of convergence tests and the comparisons with analytical and perturbative solutions and with the
results of other independent numerical codes are the necessary steps for gaining confidence in the results
produced by the code.

In the second part of this thesis, on the other hand, we will concentrate on presenting physical results
of the application of Whisky to specific problems. Chapter 5 is the first application of Whisky to a
relevant astrophysical scenario: the collapse of a uniformly-rotating unstable NS to a Kerr black hole.
We will show how accurately the code can follow the direct but modulated infall of matter up to the
formation of black-hole horizons and farther. The dynamics of the horizons will be in turn analysed
in detail, in order to produce quantitative upper limits to the energy emitted in gravitational radiation
from the collapsing object. Through the use of fixed and progressive mesh refinement, we will show that
we can now confidently extract the produced waveforms. This is the first such result in 3-dimensional
general-relativistic numerical computations and it confirms, 20 years later, the seminal work of Stark and
Piran [229] in axisymmetry.

In Chapter 6, as an intermediate step before simulating the merger of binary NS systems, but yet
investigating an important physical scenario, we will show our evolutions of head-on and near-head-on
collisions of two identical, non-spinning, cold NSs, which fall toward the centre of mass of the system.
The systematic analysis of this problem has not yet ended, but we can already report some relevant
results. We confirmed that the kinetic energy of the stars (transformed into internal energy through shock
heating, if the equation of state allows for them) is not always – i.e. not for any initial rest masses of
the stars – sufficient to avoid a prompt collapse, as was conjectured by Shapiro [207]. We find, instead,
a critical mass (which is different and higher than the critical mass for the stability against collapse of
a cold spherical star) above which, despite the presence of strong shocks, an apparent horizon forms
promptly and engulfs all the stellar material in a dynamical timescale.

In Chapter 7, finally, we will turn to binary NS coalescences. This problem is both easier and more
difficult than the binary black-hole problem. It is easier in that at early times there are no singularities
and no horizons to contend with numerically. It is more difficult in that one cannot work with the
vacuum Einstein equations, but must solve the equations of relativistic hydrodynamics in conjunction
with the field equations. The results presented in this chapter are meant to be essentially preliminary
investigations; in particular, despite having used resolutions comparable with those of other groups [149]
who claim to have reached a convergent regime, we have found that with our code convergent numerical
simulations of these systems require higher resolutions and farther numerical boundaries than the ones
presently available for uniform grids with the computational resources at our disposal. These limitations
were also experienced by [162]. As in the case of the gravitational-wave signal extraction in the collapse
evolutions reported in Chapter 5, we believe that the present limitations will be to a great degree removed



4 CHAPTER 1. OVERVIEW

by performing simulations on refined grids; such a possibility has recently become available.

Notation

Throughout this thesis we use the signature ����������������� and units in which 	�

��
�����
�� ,
unless explicitly specified. Greek indices are taken to run from 0 to 3; the Latin indices ���������������! run
from 1 to 3 and indicate spatial components; Latin indices form the first part of the alphabet and different
from the previous ones run from 1 to the dimension of the system of equations under study; Latin indices
form the second part of the alphabet and different from the previous ones are reserved to label points on
a numerical grid or for other miscellaneous purposes.

Computational resources

All the numerical computations discussed in this thesis were performed on the Albert100 cluster
at the University of Parma (Italy); some of the computations of Chapter 5 were also performed on the
Peyote cluster at the Albert Einstein Institute (Golm, Germany).



Chapter 2

Numerical relativity in vacuum spacetimes

In this chapter we discuss the general principles of numerical relativity in the absence of matter. The
treatment will be extended to non-vacuum spacetimes in the next chapter.

The Einstein equations describing the highly non-linear relation between the metric and the energy-
matter fields are

������� � ��� � ��
	 ��� � 
���
�������� (2.0.1)

where ����� is the stress-energy tensor, ����� is the Einstein tensor,
� � ��� � is the Ricci scalar,

� ������ � � � � is the Ricci tensor,

��� � � � ��� ��� ���� ����� � �� � � � �� � � ���� � � ���� � �� � (2.0.2)

is the Riemann tensor and

� �� � � �� 	 � � � � � 	 � � �!� � 	 � � �"� � 	 � ��# (2.0.3)

are the Christoffel symbols expressed in terms of the metric 	 ��� . All these objects are 4-dimensional,
that is they are defined on the 4-dimensional spacetime manifold $ .

Despite the covariant nature of the equations, the ability to perform long-term numerical simula-
tions of self-gravitating systems in general relativity strongly depends on the formulation adopted for
the Einstein equations (2.0.1) and forces the choice of appropriate coordinate charts that allow for stable
accurate simulations. Over the years, the standard approach has been mainly based upon the “3+1” for-
mulation of the field equations, which was first introduced by Arnowitt, Deser and Misner (ADM) [23].
In the following section we will give an outline of this formalism, while in Section 2.2 we will present
a more recent formulation, which is numerically better behaved, thus permitting longer evolutions, and
which is implemented in the code we use.

2.1 The Arnowitt Deser Misner “3+1” formalism

According to the ADM formalism, the spacetime manifold $ is assumed to be globally hyperbolic
and to admit a foliation by 3-dimensional spacelike hypersurfaces %'& parameterized by the parameter(*),+

: $ 
 +.- % & . The future-pointing 4-vector / orthonormal to % & is then proportional to the
gradient of

(
: /�
 �1032 (

, where 0 is chosen following the normalization /546/�
 ��� . Introducing
a coordinate basis 798;: ��<>= 
?798@:BA < �C8D:FE <>= of 4-vectors and choosing the normalization of the timelike

5



6 CHAPTER 2. NUMERICAL RELATIVITY IN VACUUM SPACETIMES

coordinate basis 4-vector 8 : A < to be 8 : A < 4�2 ( 
�� , with the other three basis 4-vectors to be spacelike
(i.e. tangent to the hypersurface: /'4 8 :FE < 
 � � � ), then the decomposition of / into the basis 798 : ��< = is

/ 
 8 : A <
0 �

�
0 � (2.1.4)

where
� 
�� E 8D:FE < is a purely spatial vector called the shift vector, since it describes how the spatial

coordinates shift when moving from a slice % & to another % &�� . The function 0 is instead called lapse and
describes the rate of advance of time along the timelike unit-vector / normal to a spacelike hypersurface
% & . Defining � ����� 	 ��� �	���
� � to be the spatial part of the 4-metric, so that � is the projector orthogonal
to / (i.e. �!4 / 
 �

) and � E
� is the 3-metric of the hypersurfaces, the line element in the 3+1 splitting
reads ����� 
�� ���10 � ��� E � E � � ( � � � � E ��� E � ( � � E
� ��� E ��� ���

(2.1.5)

Eulerian observers at rest in the slice %1& , i.e. those having the 4-velocity � parallel to / , measure the
following 3-velocity of the fluid:� E 
 ��4��

�1/�4�� 

� E��� �
0 � A 
 	 E��� �

�	� E � � � �
0 � A 


� E
0 � A ��� E 
 � E� � � E

0 � (2.1.6)

where (2.1.4) has been used and where �1/ 4 � 
�0 � A 
 �
is the Lorentz factor. Other useful expressions

we will use in the next chapter are the covariant components of (2.1.6)� E 
 � �E � �
�1/�4�� 
 �"! �E �	� � � E � � �� 


� E� (2.1.7)

and � A 
 � � 	 � A 
 � A 	 A>A � � E 	 E A 
 � A ���10 � �	� E � E � � � E � E 


 � �$# 0 � � �

0&% � �$# � E � � E
0 � E % 
 � � � E � E �50 � �

(2.1.8)

The original ADM formulation casts the Einstein equations into a first-order-in-time second-order-in-
space quasi-linear system of equations [192] and a set of elliptic equations (the constraint equations). The
dependent variables for which there is a time evolution are the 3-metric � E
� and the extrinsic curvature' E
� ��� �)(E �)*��+ ( � * � (2.1.9)

where + E denotes the covariant derivative with respect to the 3-metric � E
� . By construction, the extrinsic
curvature is symmetric and purely spatial. The extrinsic curvature describes the embedding of the 3-
dimensional spacelike hypersurfaces % & in the 4-dimensional manifold $ . The first-order evolution
equations are then given by, & � E-� 
 � � 0 ' E
� � (2.1.10), & ' E-� 
 � + E + � 0 �!0/. � E-� � '0' E-� � � ' E21 ' 1� �5��
&354 E-� � �� � E
� 476 ��8 
)9 � E
�;: �

(2.1.11)
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Here,
, & ��� & ����� , ��� is the Lie derivative1 with respect to the vector

�
,
� E
� is the Ricci tensor of the

3-metric,
' � � E
� ' E
� is the trace of the extrinsic curvature, 9 � � � � � � ��� is the total energy density

as measured by a normal observer (i.e. the projection of the stress-energy tensor on the normal to the
spatial hypersurface %;& ), 4 E
� � � E � � � � � ��� is the projection of the stress-energy tensor onto the spacelike
hypersurfaces and 4 � � E-� 4 E
� (for a more detailed discussion, see [262]). Equation (2.1.10) illustrates
the intuitive interpretation of the extrinsic curvature as the “time derivative” of the spatial metric � E
� . The
spatial metric on two different slices may still differ by a coordinate transformation, of course. In this
intuitive framework, equation (2.1.11) represents the “acceleration”, i.e. the variation of the variations of
the spatial metric.

In addition to the evolution equations, the Einstein equations also provide four constraint equations
to be satisfied on each spacelike hypersurface. The first of these is the Hamiltonian constraint equation

� � ' � � ' E
� ' E
� � ����
)9 
 � � (2.1.12)

where
�

denotes the Ricci scalar of the 3-metric. The other three constraint equations are the momentum
constraint equations + � ' E-� � � E
� + � ' �5��
 4 E 
 � � (2.1.13)

where 4 E � � � E � � � ����� is the momentum density as measured by an observer moving orthogonally to
the spacelike hypersurfaces.

The system of equations (2.1.10)–(2.1.13) is not closed; in fact, we are free to specify additional
gauge conditions to determine the coordinate system. These are usually imposed as equations on the
lapse and the shift. Different choices, though giving the same physical results, produce relevant differ-
ences in non-invariant quantities, which may determine the success or failure of numerical evolutions;
thus a choice of good gauge conditions is fundamental for numerical relativity. There are numerous well
tested gauge conditions and we will discuss some of them in Section 2.2.2.

Finally, we give here the expressions of the total mass and of the total angular momentum as mea-
sured at infinity in an asymptotically-flat spacetime

���	�	
 � �
����
 �
�������

� � E21 � � * � � 1 *�� � � � � *�� 1 ��� ��� E � (2.1.14)

��� �	��
 � E � �
��
�� E
� ( � ����� � � ' 1( � � � 1 � (2.1.15)

where
�

is a closed surface in an asymptotically-flat region and � E
� ( is the flat-space Levi-Civita tensor.

2.2 Conformal transverse traceless formulation

The first attempts to derive a stable and accurate formulation of the Einstein field equations in
numerical relativity were based on the unconstrained solution (i.e. the solution of the time-evolution
equations only, disregarding the constraint equations, except for checking the accuracy of the results)
of the 3+1 ADM formulation of the field equations, which though, despite large-scale and dedicated
collaborations [72, 2, 109], has gradually been shown to lack the stability properties necessary for

1For an arbitrary tensor �! #"�$ % % % $  '&( "�$ % % % $ (*) and an arbitrary vector + the Lie derivative is defined as,.- �  #"�$ % % % $  '&( "/$ % % % $ ( )�021�3�4 3 �  #"�$ % % % $  '&( "/$ % % % $ ( )�57689�:
; �  #"�$ % % % $ 3 $ % % % $  <&( "�$ % % % $ ( ) 4 3 1  '= �?>89�:
; �  #"�$ % % % $  '&( "�$ % % % $ 3 $ % % % $ ( )@4 ( = 1�3BA
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long-term numerical simulations. In recent years, however, a considerable effort has been invested
in extending the set of ADM equations solved, by including at some level the solution of the con-
straint equations on each spatial hypersurface [16, 202, 49] or by reformulating the ADM approach
in order to achieve long-term stability (see, e.g., [141] and references therein). Building on the expe-
rience developed with lower-dimensional formulations, Nakamura, Oohara and Kojima [173] presented
in 1987 a conformal traceless reformulation of the ADM system, which subsequent authors (see, e.g.,
[215, 41, 214, 212, 10, 100, 260, 125]) gradually showed to be robust enough to accomplish such a goal
for different classes of spacetimes including black holes and NSs (both isolated and in coalescing binary
systems). The most widespread version developed from this formalism, which we refer to here as the
NOK formulation, was given by [215, 41] and is commonly referred to as the BSSN formulation.

2.2.1 Evolution of the field equations

In order to solve the system of equations for the evolution of the field equations (2.0.1), we adopt
the above-mentioned NOK formulation [173], together with the important improvements introduced
in [215, 41]. We will outline this formalism in what follows, but more details on how this formulation is
actually implemented in Cactus can be found in [10, 9].

The conformal traceless reformulations of the ADM equations (2.1.10)–(2.1.13) make use of a con-
formal decomposition of the 3-metric and the trace-free part of the extrinsic curvature. Here we follow
the presentation of [10]. The conformal 3-metric �� E
� is defined as

�� E-� � ������� � E
� � (2.2.16)

with the conformal factor chosen to be����� 
 �
	���
 � ����� � � E-� � 	���
 �
(2.2.17)

In this way the determinant of �� E
� is unity. The trace-free part of the extrinsic curvature
' E
� , defined by� E-� � ' E
� � �� � E
� ' � (2.2.18)

is also conformally decomposed: �� E-� 
 � ����� � E
� �
(2.2.19)

The evolution equations for the conformal 3-metric �� E
� and the related conformal factor � are then
written as , &��� E
� 
 � � 0 �� E-� � (2.2.20), &�� 
 � �� 0 ' �

(2.2.21)

The evolution equation for the trace of the extrinsic curvature
'

can be found to be, & ' 
�� � E
� + E + � 0 � 0
� �� E-� �� E
� � �� ' � � �� � 9 � 4 ��� � (2.2.22)

where the Hamiltonian constraint was used to eliminate the Ricci scalar. For the evolution equation of
the trace-free extrinsic curvature �� E
� there are many possibilities. A trivial manipulation of equation
(2.1.11) yields:, & �� E
� 
 ��������� � + E + � 0 � 0 � � E
� � 4 E
� ������� � 0 � ' �� E-� � � �� E * �� *�"! � (2.2.23)
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where � � E
� � ��� refers to the trace-free part of a 3-dimensional second-rank tensor � E
� , i.e., � � E
� � ��� �
� E
� � � E
� � ((�� � . Note that, as shown in [215, 41], there are many ways to write several of the terms of
(2.2.23), especially those involving the Ricci tensor; the expression which proved more convenient for
numerical simulations consists in conformally decomposing the Ricci tensor as

� E
� 
 �� E
� � � �E-� � (2.2.24)

where the “conformal-factor” part
� �E
� is given directly by straightforward computation of the spatial

derivatives of � :

� �E
� 
 � � �+ E �+ � � � � �� E-� �+ * �+ * ��� 8 �+ E � �+ � � ��8 �� E
� �+ * � �+ * � � (2.2.25)

while the “conformal” part �� E-� can be computed in the standard way from the conformal 3-metric �� E-� . To
simplify the notation, it is convenient to define what Baumgarte et al. [41] call the “conformal connection
functions” �� E � �� � ( �� E� ( 
�� � � �� E
� � (2.2.26)

where the last equality holds if the determinant of the conformal 3-metric �� is unity (note that this may
well not be true in numerical simulations). Using the conformal connection function, the Ricci tensor
can be written as2

�� E-� 
 � �� ��)* 1 � * � 1 �� E-� � �� ( :FE � � < �� ( � �� ( �� :FE
� < ( � �� * 1 � � �� (* :FE �� � < ( 1 � �� (E21 �� (;* � ! �
Also in this case there are several different choices of how the terms involving the conformal connection
functions �� E are computed. A straightforward computation based on the Christoffel symbols could be
used (as in standard ADM formulations), but this approach leads to derivatives of the 3-metric in no
particular elliptic form. Alcubierre et al. [10] found that if the �� E are promoted to independent variables,
then the expression for the Ricci tensor retains an elliptic character, which is positive in the direction
of bringing the system a step closer to being hyperbolic. The price to pay is that in this case one must
evolve three additional quantities. This has, however, net numerical advantages, which will be discussed
below.

Following this argument of promoting the �� E to independent variables, it is straightforward to derive
their evolution equation

� & �� E 
 �1� � � � 0 �� E
� � � �� 11: � � 1 � E < � �� �� E-� � * � * �	� * � * �� E
� ! �
(2.2.27)

Here too, there are different possibilities for writing these evolution equations; as pointed out in [41] it
turns out that the above choice leads to an unstable system. Alcubierre et al. [10] found that a better
choice can be obtained by eliminating the divergence of �� E-� with the help of the momentum constraint

� & �� E 
 � � �� E
� � � 0 � � 0 � �� E� ( �� ( � � �� �� E
� � � ' � �� E-� 4 � ��� �� E
� � � � !
�1� � � � * � * �� E-� � � �� 11: � � 1 � E < � � � �� E
� � * � * ! �

(2.2.28)

With this reformulation, in addition to the evolution equations for the conformal 3-metric �� E
� (2.2.20)
and the conformal traceless extrinsic curvature variables �� E
� (2.2.23), there are evolution equations for
the conformal factor � (2.2.21) and the trace

'
of the extrinsic curvature (2.2.22). If the �� E are promoted

2We define ����� ��� as the symmetrized part of the tensor � � � .
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to the status of fundamental variables, they can be evolved with (2.2.28). We note that, although the final

first-order-in-time and second-order-in-space system for the 17 evolved variables � � � ' � �� E
� � �� E
� � �� E��
is not in any immediate sense hyperbolic, there is evidence showing that the formulation is at least
equivalent to a hyperbolic system [198, 47, 168].

In references [10, 6] the improved properties of this conformal traceless formulation of the Einstein
equations were compared to the ADM system. In particular, in [10] a number of strongly gravitating
systems were analysed numerically with convergent high-resolution shock-capturing (cf. Section 3.4)
methods with total-variation-diminishing (cf. Section 3.6) schemes using the equations described in
[103]. These included weak and strong gravitational waves, black holes, boson stars and relativistic stars.
The results showed that this treatment leaded to a numerical evolution of the various strongly gravitating
systems which did not show signs of numerical instabilities for sufficiently long times. However, it
was also found that the conformal traceless formulation requires grid resolutions higher than the ones
needed in the ADM formulation to achieve the same accuracy, when the foliation is made using the
“
'

-driver” approach discussed in [35]. Because in long-term evolutions a small error growth-rate is the
most desirable property, we have adopted the conformal traceless formulation as our standard form for
the evolution of the field equations.

In conclusion of this section, we report the expressions (2.1.14) and (2.1.15) of the total mass and of
the total angular momentum as measured in an asymptotically-flat spacetime, expressed in the variables
introduced in this formulation and transformed, using the Gauss law, in volume integrals, which are
better suited to Cartesian numerical computations [259]:

� 

��� � ��� � 3 9 � �

����
 �� E-� �� E
� � �� 8 
 ' � 6 � �
����
 �� E-� ( �� �CE ( � � � � �

����
 �� �
� 
 � � (2.2.29)

� E 
 � E
� ( � � 3 �
��
 �� � ( � � � 4 ( � �

� � 

� � ' � ( � �

����
 � � �� * 1 � ( �� * 1 6 ��� � � 
 � �
(2.2.30)

2.2.2 Gauge choices in Cactus

The code for the evolution of the Einstein equations implemented in Cactus is designed to handle
arbitrary shift and lapse conditions, which can be chosen as the most appropriate for a given spacetime
simulation. More information about the possible families of spacetime slicings which have been tested
and used with the present code can be found in [10, 11]. Here, we limit ourselves to recall details about
the specific gauges used in the evolutions reported in this thesis. In particular, we have used hyperbolic'

-driver slicing conditions of the form

� � & �&� E � E � 0�
 �
	 � 0 � 0 � � ' � ' A � � (2.2.31)

with 	 � 0 ��� �
and

' A � ' � ( 
 � � . This is a generalization of many well-known slicing conditions.
For example, setting 	

 � we recover the “harmonic” slicing condition, while, by setting 	 
�
 � 0 ,
with 
 an integer, we recover the generalized “ � � log” slicing condition [48]. In particular, all of the
simulations discussed in this thesis are done using condition (2.2.31) with 	 
 � � 0 . This choice has
been made mostly because of its computational efficiency, but we are aware that “gauge pathologies”
could develop with the “ � � log” slicings [5, 12].

As for the spatial-gauge, we use one of the “Gamma-driver” shift conditions proposed in [11] (see
also [9]), that essentially act so as to drive the �� E to be constant. In this respect, the “Gamma-driver”
shift conditions are similar to the “Gamma-freezing” condition � & �� ( 
 �

, which, in turn, is closely
related to the well-known minimal distortion shift condition [222]. The differences between these two
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conditions involve the Christoffel symbols and, while the minimal distortion condition is covariant, the
Gamma-freezing condition is not.

All of the results reported here have been obtained using the hyperbolic Gamma-driver condition,

� �& � E 
��"� & �� E ���;� & � E � (2.2.32)

where � and � are, in general, positive functions of space and time. For the hyperbolic Gamma-driver
conditions it is crucial to add a dissipation term with coefficient � to avoid strong oscillations in the shift.
Experience has shown that by tuning the value of this dissipation coefficient it is possible to almost freeze
the evolution of the system at late times. We typically choose � 
 � � 8 and � 
 � and do not vary them
in time.

2.3 Boundary conditions in Cactus

In standard 3+1 numerical simulations with spacelike hypersurfaces, the computational domain cov-
ers only a finite region of spacetime. One must therefore apply appropriate boundary conditions at the
edges of the numerical grid. This issue equally applies to the field variables and to the hydrodynamics
variables, even if the outer boundaries are usually placed in regions without matter (except for a tenuous
atmosphere, as explained in Section 4.3.4) and so their evolution is often trivial. The same boundary
condition are anyway applied to all variables.

Ideally, one would like to find a boundary condition that does not introduce numerical instabilities
and allows gravitational waves to leave the grid cleanly, with no artificial reflections. This in itself is a
very difficult problem. Firstly, there is no local boundary condition that allows waves coming from any
arbitrary direction to leave the grid without reflections. Secondly, not all of the evolved quantities behave
as waves and for those that do so this happens at spatial infinity only. Thirdly, presently available compu-
tational resources place the boundaries close to strong-field and highly-dynamical regions of spacetime,
where the field variables do not have a mathematical behaviour that can be described by simple boundary
conditions. In practice, what one looks for is a condition that remains stable and allows some “wave-
like” solutions to leave the grid without introducing large reflections at the boundaries. The amount of
artificial reflection that results typically depends on the specific form of the boundary condition and on
the direction of motion of the wave fronts as they hit the boundary [113].

The boundary conditions actually implemented in the code are the following.

� Static boundary condition. The evolved variables are simply not updated at the boundary and
maintain their initial values there. This condition is very bad at handling waves since it reflects
everything back in, but it can be very useful when studying situations that are supposed to remain
static (as are some of the systems studied below) and where a great part of the dynamics may come
from numerical truncation errors.

� Zero-order extrapolation or “flat” boundary condition. After evolving the interior, the value of
a given variable at the boundary is simply copied from the value of the inner neighbouring grid
point (along the normal direction to the boundary). This condition allows for some dynamics at
the boundaries and is better at letting waves leave the grid cleanly than the static boundaries, but it
still introduces a considerable amount of reflections.

� Sommerfeld or “radiative” boundary condition. In this case we assume that the dynamical vari-
ables behave like a constant plus an outgoing radial wave at the boundaries, that is	 � � E � ( � 
 	 A � � ����� ( � � � � (2.3.33)
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where � 

� � � ��� � ��� � and where the constant 	 A is taken to be one for diagonal metric

components and zero for everything else. The radiative condition assumes that the boundaries are
in the wave zone, where the gravitational waves behave as spherical wave fronts. This boundary
condition has been used before in [215, 41], where it was found that in practice it is very good at
letting waves leave the grid cleanly.

In practice, it is easier to implement a differential form of the radiative boundary condition than
to use (2.3.33) directly. If we consider a boundary that corresponds to a coordinate plane

� E 

constant, the condition (2.3.33) implies� E

� � & 	 �!� E 	 � � E
� � � 	 � 	 A � 
 � �

(2.3.34)

One can now use simple finite differences to implement this last condition. In our code we have
implemented condition (2.3.34) consistently to second order in both time and space.

� Robin boundary condition. This is a different type of “extrapolating” boundary condition, where
one assumes that for large � a given field behaves as

	 � � E � 
 	 A � � � � � (2.3.35)

with � constant. This condition is clearly related to the radiative condition described above, but it
contains no information about the time evolution. Just as we did with the radiative condition, we
implement the Robin condition in differential form:

� E 	 � � E
� 
 � 	 � 	 A � 
 � �

(2.3.36)

The Robin boundary condition is usually better suited for solving elliptic problems than for a use
on dynamical variables.

Most of the simulations discussed below have been performed applying the radiative boundary con-
dition (2.3.34) to all field variables.

2.4 Field excision in Cactus

We here restrict our attention to excision algorithms in vacuum simulation; the extension of exci-
sion to hydrodynamics evolutions will be reported in Section 4.3.5. Traditional techniques using sin-
gularity avoiding slicings are not able to follow dynamical evolutions of black holes because of prob-
lems associated with the stretching of the slice which typically cause simulations to crash or to be-
come extremely inaccurate on timescales far shorter than the ones needed for, e.g., the evolution of
binary-black-hole collisions. In these cases, removing the black hole interiors is crucial since those
are the regions where the spacetime singularities reside, where the largest values of the curvature are
present and where the main sources of the computational errors come from. In addition to the im-
provements achieved in the formulation of the field equations, successful long-term 3-dimensional evo-
lutions of black holes in vacuum have been obtained in the last few years using excision techniques (see,
e.g., [206, 56, 8, 128, 127, 11, 259, 134, 68, 225]), although the original idea is much older [157].

Black-hole excision was first attempted successfully by Nadëzhin et al in spherical symmetry [167]
and was later studied in more detail in [206, 22, 201, 151, 112, 199, 200, 128]. The idea is simple:
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one places a boundary inside the black hole and excises its interior from the computational domain 3.
However, although conceptually simple, black-hole excision in 3 dimensions is a complicated problem
numerically. Since no information can leave the interior of the black hole, excision cannot have any effect
on the physics outside and no “excision boundary condition” should be needed. However, achieving this
“boundary-without-a-boundary condition” [206, 112] in 3 dimensions is difficult, particularly if one uses
a formulation of the evolution equations that is not hyperbolic. In fact, numerical calculations may
violate this assumption, since disturbances, such as gauge waves, may travel at speeds larger than the
speed of light, thus leaving the physically disconnected regions. What stated above, thus, is valid only if
stable and causality-preserving boundary conditions are specified at the excision surface.

Another numerical problem in the implementation of excision is due to the fact that one has to cut
a “hole” in the computational domain that has a spherical topology and is therefore not well adapted to
the Cartesian coordinates typically used. Despite these difficulties, excision has now been implemented
also with a 3+1 approach in 3 dimensions [8, 127, 11, 259, 134, 225], obtaining long-term stable, ac-
curate evolutions of black hole spacetimes and overcoming the instabilities that typically plagued these
evolutions [21, 80, 60, 248].

The algorithm implemented in Cactus is discussed in references [8, 11] and is as follows. Once
an apparent horizon is found, either on the initial time slice or on any subsequent one, a legosphere (i.e.
a region on the Cartesian grid approximating a sphere) is excised. The boundary condition at the first
grid point inside the excision region simply consists in setting the value of each field at the excision
boundary to the value of the field one grid point out along the normal direction to the legosphere (at
edges and corners the normal direction is defined as the diagonal). This condition is perfectly consistent
with evolving a static solution, where the time derivatives are supposed to be zero. Even in a dynamical
situation, this condition is still consistent with the evolution equations since it is equivalent to calculating
the source term one grid point away. This means that our boundary condition should introduce a first-
order error, but as mentioned above, we do not expect this error to affect the solution outside the horizon.
One could in principle argue that nothing prevents gauge modes and constraint violating modes from
propagating outside the horizon, thus spoiling the second-order convergence of the exterior scheme.
Alcubierre et. al. [8, 11] have looked carefully at the convergence of this set up and have found no
evidence that error propagation outside the horizon happens in practice.

3Ideally, one would like to know the position of the event horizon which marks the true causal boundary, but the global
character of its definition means that in principle one can only locate it once the whole evolution of the spacetime is known.
The apparent horizon, on the other hand, can be located on every time slice and is guaranteed to be inside the event horizon. In
practice one therefore needs to find the apparent horizon and excise a region contained inside it.



Chapter 3

Numerical relativity in non-vacuum
spacetimes

The standard view on the dynamics of fluids includes only macroscopic phenomena. A fluid is thus
considered as a set of fluid elements, i.e. of volumes of fluid that are much smaller than the typical size
of the macroscopic system they are part of, so that they can be considered point-like for all physical and
mathematical purposes. On the other hand, the linear dimensions of these fluid elements must be larger
than the collision mean free path of the particles, in order to be representative of the mean quantities of
the particles which are contained in it. The hydrodynamical quantities referring to the fluid in each point
are defined as the averages over the fluid element at that point.

The hydrodynamics equations (the baryon-number conservation, the energy conservation and the
Euler equations) form a non-linear system of hyperbolic equations that describes the motion of an ideal
fluid, i.e. a fluid whose viscosity and heat conduction are assumed to be negligible. These equations allow
for the formation of arbitrarily large and localized spatial variations of the hydrodynamical variables,
which are mathematically treated as discontinuities in the hydrodynamical variables.

From a computational point of view, discontinuities are often a serious problem, especially for finite
difference methods. However, the mathematical structure of hyperbolic equations can be exploited in
order to develop numerical methods that are very efficient in resolving discontinuities. These techniques
are known as High-Resolution Shock-Capturing (HRSC) methods and will be discussed in Section 3.4.

3.1 A summary of general-relativistic hydrodynamics

Before describing in detail the formulation and the numerical schemes upon which Whisky is
based, we summarize here briefly some alternative formulations of general-relativistic hydrodynamics.
The pioneering numerical work in general-relativistic hydrodynamics dates back to the 1-dimensional
gravitational-collapse code of May and White [156, 157]. Building on theoretical work by Misner and
Sharp [164], May and White developed a time-dependent numerical code to solve the evolution equa-
tions describing adiabatic spherical collapse in general relativity. This code was based on a Lagrangian
finite-difference scheme, in which the coordinates are co-moving with the fluid. Artificial-viscosity
terms were included in the equations to damp the spurious numerical oscillations caused by the presence
of shock waves in the flow solution. The formulation of May and White became the starting point of
a large number of numerical investigations in subsequent years. Hydrodynamics codes based on the
original formulation of May and White and on later versions of it have been used in many non-linear
simulations of supernova and NS collapse (see, e.g., [235] and references therein), as well as in perturba-

14
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tive computations of spherically-symmetric gravitational collapse within the framework of the linearized
Einstein equations [204, 205]. An interesting analysis of the above formulation in the context of gravi-
tational collapse is provided by Miller and Sciama [161]. By comparing the Newtonian and relativistic
equations, these authors showed that the net acceleration of the infalling mass shells is larger in general
relativity than in Newtonian gravity. The Lagrangian character of the formulation of May and White,
together with other theoretical considerations concerning the particular coordinate gauge, has prevented
its extension to multi-dimensional calculations. However, for 1-dimensional problems, the Lagrangian
approach adopted by May and White has considerable advantages with respect to an Eulerian approach
with spatially-fixed coordinates, most notably the lack of numerical diffusion.

The use of Eulerian coordinates in multi-dimensional numerical relativistic hydrodynamics started
with the pioneering work by Wilson [254]. Instead of the rest-mass density 9 , of the 4-velocity � �
and of the internal energy � , he introduced the basic dynamical variables

� 
 9 � A
, 4�� 
�9�� � � � A

and � 
 9�� � A , representing the relativistic density, momenta and energy respectively, and rewrote the
equations of motion as a coupled set of advection equations, in which the terms containing derivatives
(in space or time) of the pressure were treated as source terms. This formulation was then referred to as
the Wilson formulation [254, 255].

This approach, however, sidestepped an important guideline for the formulation of non-linear hy-
perbolic systems of equations, namely the preservation of their conservation form. This is a necessary
condition to guarantee correct evolution in regions of sharp entropy generation (i.e., shocks). Further-
more, some amount of numerical dissipation must be used to stabilize the solution across discontinuities.
The first attempt to solve the equations of general-relativistic hydrodynamics in the original Wilson
scheme [254] employed a combination of finite difference upwind techniques with artificial-viscosity
terms.

The Wilson formulation has been widely used in hydrodynamical codes developed by a variety of re-
search groups. Many different astrophysical scenarios were first investigated with these codes, including
axisymmetric stellar core-collapse [169, 170, 38, 229, 93], accretion onto compact objects [118, 183],
numerical cosmology [65, 20] and, more recently, the coalescence of NS binaries [256, 257, 154]. This
formalism has also been employed, in the special-relativistic limit, in numerical studies of heavy-ion
collisions [158].

The Wilson formulation showed some limitations in handling situations involving ultra-relativistic
flows (i.e. flows with Lorentz factor

��� �
), as first pointed out by Centrella and Wilson [65]. Norman

and Winkler [176] performed a comprehensive numerical assessment of such formulation by means of
special-relativistic hydrodynamical simulations. They concluded that those large errors were mainly due
to the way in which the artificial-viscosity terms were included in the numerical scheme in the Wilson
formulation. These terms, in fact, were originally only added to the pressure terms in some places,
namely at the pressure gradient in the source of the momentum equation and at the divergence of the
velocity in the source of the energy equation. However, Norman and Winkler [176] proposed to add the
artificial-viscosity terms in a relativistically consistent way, in order to consider the artificial viscosity as
a real viscosity. The consistent addition of the artificial-viscosity terms, made the relativistic equations
much more coupled than their Newtonian counterparts. As a result Norman and Winkler proposed the
use of implicit schemes as a way to describe more accurately such a coupling. Their code, which in
addition incorporated an adaptive grid, reproduced very accurate results even for ultra relativistic flows
with Lorentz factors of about 10 in 1-dimensional, flat-spacetime simulations.

Covariant (that is not restricted to spacelike foliations) conservative formulations of the general-
relativistic hydrodynamics equations for ideal fluids were first reported in [92] and, more recently,
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in [182, 180]. The form invariance of these approaches with respect to the nature of the spacetime
foliation implies that existing work on highly specialized techniques for fluid dynamics (i.e. HRSC
schemes, see Section 3.4) can be adopted straightforwardly.

Eulderink and Mellema [92] were the first to derive a covariant formulation of the general-relativistic
hydrodynamics equations. As in the formulation implemented in Whisky and discussed in Section 3.3.1,
these authors took special care of the conservative form of the system and so rewrote the system with no
derivatives of the dependent fluid variables appearing in the source terms. Additionally, this formulation
was strongly adapted to a particular numerical method based on a generalization of the Roe approximate
Riemann solver. Such solver was first applied to the non-relativistic Euler equations in [193] and has
been widely employed since in simulating compressible flows in computational fluid dynamics. It is also
one of the approximate Riemann solvers we have implemented in Whisky (cf. Section 3.5.1). Eul-
derink and Mellema computed the exact “Roe matrix” (cf. Section3.5.1) and obtained the corresponding
spectral decomposition. The performance of this general-relativistic Roe solver was tested in a num-
ber of 1-dimensional problems for which exact solutions are known, including non-relativistic shock
tubes, special-relativistic shock tubes and spherical accretion of dust and a perfect fluid onto a (static)
Schwarzschild black hole.

Another covariant formulation was derived by Papadopoulos and Font [182]. Instead of the rest-mass
density 9 , of the spatial components of the 4-velocity � E and of the internal energy � , they introduced
the basic dynamical variables

� 
 9 � A , 4 E 
 9�� � A � E ��� 	 A E and � 
 9�� � A � A ��� 	 A>A , representing
the relativistic density, momenta and energy respectively. Note that these variables differ slightly from
previous choices of the Wilson formulation. With these definitions the equations of general-relativistic
hydrodynamics take a conservation law form, the local characteristic structure of which was presented
in [182], where the formulation proved well suited for the numerical implementation of HRSC schemes.

Procedures for integrating various forms of the hydrodynamical equations on null (light-like) space-
time foliations have also been proposed, but they are much less common than those providing solutions
on spacelike hypersurfaces. They were first presented by Isaacson et al. [122]. This approach was devel-
oped for the study of smooth isentropic flows. A Lagrangian method, limited to spherical symmetry, was
developed by Miller and Motta [160]. More recently, a general lightcone-hydrodynamics formalism was
laid out by Papadopoulos and Font [182, 180] and has been applied to complex astrophysical problems
[181].

3.2 Hyperbolic partial differential equations

The homogeneous system of  partial differential equations (PDEs)

� & ��� � � � ( � � 1� � �
	�� �

�
� � � ( � �
	 � � � � � ( � 
 �

(3.2.1)

or, in matrix notation,

� &���� � � ( � ��
 � � � ( � � 	 ��� � � ( � 
 �
(3.2.2)

is said to be quasi-linear if the matrix 
 of the coefficients is a function of � only and is said to be
hyperbolic if 
 is diagonalizable with a set of real eigenvalues � 	 � � � � ��� 1 and a corresponding set of
 linearly-independent right eigenvectors � : 	 < � � � � ��� : 1 < such that


�� :�� < 
�� � � :�� < �
(3.2.3)
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Furthermore, if all the eigenvalues � � are distinct, the system is said to be strictly hyperbolic. When a
system of PDEs is written in the form

� & � �!�
	 � � � � � � 
 � � (3.2.4)

it is said to be in a conservative form. In this case it can also be written in form (3.2.2) with 
 � � � �
� � � ��� being the Jacobian of the flux vector � � � � . In a conservative system, knowledge of the state
vector ��� � � ( � at one point in spacetime allows to determine the flux for each state variable. As we
will see, this is the case for the hydrodynamics equations. It was shown by Lax and Wendroff [138] in a
theorem that, if shocks are present, converging conservative numerical methods, i.e. methods relying on a
conservative form of the equations, converge to the weak solution1 of the problem, while non conservative
methods generally do not. Furthermore, Hou and LeFloch [119] demonstrated that, in general, a non-
conservative scheme will converge to the wrong weak solution in the presence of a shock and hence they
underlined the importance of flux-conservative formulations.

In order to appreciate the importance of a conservative formulation of the hydrodynamics equations,
let us consider the prototype of a hyperbolic equation in conservation form, that is the scalar linear
advection equation in one dimension

� & � � � � ( � � �D� 	 � � � � ( � 
 � � (3.2.5)

with initial conditions at
( 
 � � � � � � � 
 � A � � � �

(3.2.6)

The solution of (3.2.5) is easily calculated and is given by� � � � ( � 
 � � � � � ( � � � (3.2.7)

for
(�� �

. As time evolves, the initial data simply propagates unchanged with speed � ��� toward the right
or the left according to the sign of � , which is called characteristic speed. The characteristic curves
of the equation are the curves in the

� � (
plane satisfying the ordinary differential equation (ODE)��� � ( � 
 � ,

� � � � 
 � A . The solution � � � � ( � is constant along a characteristic curve� � � � � ( ��� ( �� ( 
 � �	� ��
 � 
 � A � � ( �
(3.2.8)

This notation can be extended to a system of  hyperbolic PDEs like (3.2.2). Since, by definition,
hyperbolicity guarantees that a complete set of right eigenvectors � :�� < exists, if we indicate with � the
matrix whose columns are the � :�� < , then


 
�� � 	 
�� � (3.2.9)

where


 
 ������� ��� 	 ��� � � � � � ����� � �
(3.2.10)

Introducing now the characteristic variables

� ��� � 	 � � (3.2.11)

1Weak solutions are solutions of the integral form of the conservative system; they are continuous and differentiable or have
at most a finite number of discontinuities.
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system (3.2.2) becomes

� & � � 
 � 	 � 
 � �
(3.2.12)

This is called the canonical form of the system and consists of  decoupled independent linear advection
equations, each of which has solution

� � � � � ( � 
 � � � � � � � ( � � � �
(3.2.13)

The solution of the original system is found from the one of the canonical system through inversion of
(3.2.11), that is � 
�� � or, in components,

��� � � ( � 
 1�
�
�
	 � � � � � ( � � :�� < 
 1�

�
�
	 � � � � � � � ( � � � � :�� < �

(3.2.14)

From the last relation it is clear that the solution can be written as the superposition of  waves, each
propagating undistorted with a speed given by the corresponding eigenvalue.

3.3 Formulation of the equations

We now discuss how the mathematical formalism described in the previous section can be used to
derive a conservative form of the relativistic hydrodynamics equations in a curved spacetime.

3.3.1 Conservative form of the relativistic Euler equations

In a generic curved spacetime the local conservation of baryon number and of energy momentum are
expressed as + 4 � 
 � � (3.3.15)+ 4���
 � � (3.3.16)

where + 4 stands for the covariant divergence with respect to the metric 	 ��� . In the coordinate basis
798 : A < �C8 :FE < = (cf. Section 2.1), the rest-mass-current vector

�
and of the stress-energy tensor � have

components � � 
 9 � � � � ��� 
 9�� � � � � � � 	 ��� � (3.3.17)

where 9 is the rest-mass density, � � is the 4-velocity of the fluid, � is the pressure, � 
 ��� � � � � 9 is the
specific enthalpy and � is the specific internal energy. An equation of state (EoS) � 
 � � 9 � ��� closes the
system. After substituting (3.3.17) into (3.3.15)–(3.3.16), the obtained system is not in a conservative
form. However, it was shown by Banyuls et al [36] that the system (3.3.15)–(3.3.16) can be put in a
conservative form after the introduction of a suitable set of conservative variables. We start from the
conservation of baryon number (3.3.15), which is already in conservative form, but does not make use of
the conservative variables we will need in the following. To exploit this we write� 
 +�� � 9 � � # 



 � � � 9 � � # �	9 � ���� � � 
�� � � 9 � � # � �� 9 � � 	 �	� � � � 	 �
� �!� � 	 �	� �5� � 	 ��� # 


 � � � 9 � � # � �� 9 � � 	 �	� � � 	 �	� 
�� � � 9 � � # � �� 9 � � �	 � � 	 


 � � � 9 � � # �	9 � � ��

� 	 � �
�
� 	 
 ��

� 	 � �
� � � 	 9 � � # 



 ��
� 	

� � & �
�
� 	 9 � A # �!� E �

�
� 	 9 � E #
� � (3.3.18)
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where 	 � ����� � 	 ��� � . It is natural now to define the conserved variable
� 
 9 � 
 9 0 � A and to write,

using also (2.1.6) and
�
� 	 
�0

�
� ,

��
� 	 7�� &

� � � � # �!� E �
�

� � � 0 � E ��� E # � = 
 � �
(3.3.19)

Equations (3.3.16), instead, are not in conservative form and a more extended algebraic manipulation is
necessary. While it this straightforward, it is not easy to find it in the literature and for this reason we
sketch it here. First, it gives physical insight to split them into two parts, one parallel and one orthogonal
to � � : � � + � � ��� 
 � � (3.3.20)

� � � + � � �� � � ! �� � � � � � # + � � �� 
 � � (3.3.21)

where � � � � ! �� � � � � � is a projector to the space orthogonal to � � :� � � � � 
 � � � � � � � � � 
 � � � � � 
 � �
(3.3.22)

From (3.3.20),� 
 � ��+ � � ��9 � � � � � � 	 ��� # 


 � � � � � � + � � ��9 # � � 9 � � � � + � � � � � 9 � � � � + � � � � � � 	 ��� + � � 


 � � � + � � � 9 # � ��9 + � � � � � � + � � 


 � 9 � � + � � � � � � � + � 9�� 9 + � � � # � � � + � � 


 � 9 � � + � � � � + � � 9 � � # � � � + � � 
 � � + � � ��9 � � + � � � (3.3.23)

where � � + � � � 
 �
and (3.3.15) have been used. From the spatial part of (3.3.21),� 
 � �� + � � ��9 � � � � � ! �� � # 
 � �� � 9 � � + � � � � � �� ! �� + � � � (3.3.24)

since � �� � � 
 �
. The 4-acceleration � � 
 � � + � � � is orthogonal to the 4-velocity, so (3.3.24) becomes� 
 � 9�� �� � � � � �� � � � 
 ��9 � � � � � � � � � � � ! �� � � � 



 � 9 � � + � � � � � � � � � � � �!� � � �
(3.3.25)

Then, using (3.3.23), � 
 ��9 � � + � � � �	9 � � � � + � � �!� � � 


 ��9 � � � � � � � � 9 � � � �� � � � � 9 � � � � � � � � � � � 


 � � � ��9 � � � � # � � � � � � � 9 � � # � � 9 � � � �� � � � �!� � � �

(3.3.26)

From the continuity equation (3.3.15), it follows� 
 + � � 9 � � # 
 ��
� 	 � �

� 9 � � � � 	 # 


 � � � 9 � � # � ��

� 	 9 � � � � � � 	 
�� � � 9 � � # �	9 � � � ���� � (3.3.27)

so (3.3.26) becomes � 
 � � � ��9 � � � �9# � ��9 � � � � � ���� � � 9 � � � �� � � � � � � � 


 � � � ��9 � � � � � ! �� # � ��9 � � � � � ���� � ��9 � � � �� � � � � (3.3.28)
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which is formally equivalent to � 
 + � � �� 
 + � � � 9 � � � � � ! �� � � �
(3.3.29)

Now, inside the derivative of (3.3.28) we multiply and divide by
�
� 	 :� 
�� � . � � 	�

� 	 � � 9 � � � � � ! �� � � : � � 9 � � � � � ���� � ��9 � � � �� � � � �
(3.3.30)

At this point we expand the derivative of the
�
� 	 at the denominator to obtain� 
 ��

� 	 � �
� � � 	 � � 9 � � � � � ! �� � � � � �

� 	 � � 9 � � � � � ! �� � � � � ��
� 	 �

� ��9 � � � � � ���� � � 9 � � � �� � � � �
(3.3.31)

Using now the relation

� � ��
� 	 


�
	 � �

�
� 	 
�� ��

� 	 �
���� � (3.3.32)

equation (3.3.31) becomes� 
 ��
� 	 � �

� � � 	 � ��9 � � � � � ! �� � � � �
� � ��9 � � � � � ! �� � � � ���� � ��9 � � � � � ���� � � 9 � � � �� � � � 
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 ��
� 	 � �

� � � 	 � ��9 � � � � � ! �� � � � � � �� � �� � �
(3.3.33)

Finally, we split the time and space components to obtain

��
� 	 � &

� � � 	 ��9 � A � � � � ��
� 	 � E

� � � 	 � � 9 � E � � � ! E� � � ��
 � �� � �� � (3.3.34)

and substitute (2.1.6) and (2.1.7) to obtain

��
� 	

�
� & # � � 	

0 ��9 � � � � % �!� E . � � 	 # ��9 � � � � # � E � � E
0 % � ! �� � % :�� 
 � �� � �� � �

(3.3.35)

It is natural now to define the conserved variables 4 � 
 � 9 � � � � and write

��
� 	

�
� & �

�
� 4 ��# �!� E . � � 	 # 4 � # � E � � E

0 % � ! �� � % :�� 
 � �� � �� � �
(3.3.36)

Following the notation of Banyuls et al. [36], the source term at the right hand side can also be written
as

� �� � �� � 
 � ��� � � � 	 � � � � �
��� 	 � ��# �

(3.3.37)
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It is possible to get the remaining equation in conservative form analogously. The complete system, in
the conserved variables

� 
 9 � �

4 � 
 9�� � � � � �
� 
 9�� � � ��9 � � � (3.3.38)

reads

��
� 	

� � & � � � � A � � � � �!� E �
�

� � E � � � ��� 
�� � � � � (3.3.39)

where

� A � � � 
 � � ��4 � � � ��� �
� E � � � 
 � � � 0 � E ��� E ����4 � � 0 � E � � E � � � ! E� � � � 0 � E �&� E � � � � E ��� (3.3.40)

and the sources are

� � � � 

	 � � � ��� � � � 	 � � � � ���� 	 � � # � 0 � � � A � ��� 
 0 � � ��� � A� � #�
 �
(3.3.41)

Note that the source terms do not contain differential operators acting on the stress-energy tensor and that
this is important for the numerical preservation of the hyperbolicity character of the system. Also note
that in a curved spacetime the equations are not in a strictly-homogeneous conservative form, which is re-
covered only in flat spacetime. This conservative form of the relativistic Euler equations was first derived
by the group at the Universidad de Valencia [36] and therefore was named the Valencia formulation.

An important feature of the Valencia formulation is that it allows to extend to relativistic hydrody-
namics the powerful numerical methods developed in classical hydrodynamics, in particular the HRSC
methods. As explained above, such schemes are essential for a correct representation of shocks, whose
presence is expected in several astrophysical scenarios.

3.3.2 Eigenstructure of the relativistic Euler equations

As it will be shown in Section 3.5, all the approximate Riemann solvers implemented in Whisky

need some knowledge of the eigenstructure of the system to be solved, so we give here the relevant
formulas. Three (one per spatial direction) � - � Jacobian matrices


 :FE < 
 � �
�

� � E �
� �
�

� � A � 

� � E
� � A (3.3.42)

are associated with system (3.3.39). The eigenvalues of, say, 
 : 	 < are

� A 
 0 � 	 ��� 	 � ��� ��� � � ��� � ��
���� ��� � � � (3.3.43)
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and a complete set of its right eigenvectors is
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where 	 � is the local sound speed (which can be obtained from � 	 � 
�� ��� � � 9 �
with � � � � � � 9 and� ��� � � � � ), � � �� � � �� ��	 � � � , �� ��� � 9 and

� 	� �
� 	 ��� 	 �
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0
�

(3.3.45)

Similarly, the eigenvalues of 
 : � < and 
 : � < are the same as in expressions (3.3.43) with ��� � in place of�
and the corresponding right eigenvectors are the same as in (3.3.44) with the second row exchanged

with the third or fourth respectively and with the interchange
���

� or
���

� respectively. Since the
left eigenvectors are effectively used in the code (cf. Section 4.3.1) in the Roe and Marquina solvers in
order to compute the characteristic variables, we give the explicit expressions for them too [121]:
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where � 	 	 � �
��� ���#� � � ���� ,  � � 	 	 � �5� 	 � 	 and
' � � 
 � � � � � �( � � 	 * � � 	 � � .
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3.4 Godunov type methods

Any finite difference method for solving PDEs for initial-value problems will involve the discretiza-
tion of the physically continuous initial data to be evolved with the differential equations; the numerical
initial data and solution are thus discontinuous and piecewise constant. In addition to this, the non-linear
properties of the hydrodynamical equations can generally produce (see e.g. the Burger equation [114])
in a finite time non-linear waves with discontinuities even from smooth initial data [242, 143].

High-Resolution Shock-Capturing methods - based on a simple and brilliant idea by Godunov [108]
- not only can treat accurately discontinuities, but indeed they exploit them. In fact, Godunov methods
consist in setting and solving at every cell interface of the numerical grid a local Riemann problem, for
whose solution there exist several accurate and efficient methods, both exact and approximate.

The basic structure of a HRSC scheme consists in the following stages 2:

� converting the primitive variables to conserved variables;

� finding the values of these variables at cell interfaces, i.e. at the intermediate locations
��� * 	�� �

between all pairs of grid points
� �

and
� � * 	 , except for the grid points near the boundaries, which

are treated separately; there are two such extended or reconstructed values (cf. Section 3.6) at each
cell interface (one being computed from the left stencil, the other from the right stencil) and they
are used as initial data for a local Riemann problem;

� solving the local Riemann problem (cf. Section 3.5) at each cell interface; this gives the fluxes
used for the time integration;

� computing the source terms and adding them to the fluxes from the Riemann solver;

� integrating one step in time;

� applying boundary conditions;

� converting back from the evolved conserved variables to obtain the primitive variables at the up-
dated time.

It is computationally convenient to apply the above procedure as a sequence of three 1-dimensional
operations, i.e. using what is referred to as dimensional splitting and which is constructed using Taylor
series expansions of the 3-dimensional function [143]. The solution of the 3-dimensional equation

� &�� � + 4 � � � � 
 �
��� �� � (�� � 
 � � � (3.4.47)

can be approximated by the solution of a sequence of 1-dimensional equations as follows

� &�� � � � 	 ; � � � � � 
 � �� � � �� � � � 
 � � � (3.4.48)

� & � ��� � � 	�� � � � ��� � 
 � �� ��� � �� � � � 
 � � � �� � � � � (3.4.49)

2For additional material on HRSC methods the reader is also referred to [136, 242, 144].
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and

� &�� � � 	�� � � � � 
 � ���� �� � � � 
 � ��� � �� � � � �
(3.4.50)

If � 	 � � ' ( � denotes the solution operator for the
� E

direction in time increment of
' (

, then a first-order
approximation in time of ��� �� � ( � * 	 � is

��� �� � (�� * 	 � 
 � 	 � 7 � 	�� � � 	 ; � ' ( � ��� �� � ( � � � = (3.4.51)

The order of the operations does not affect the accuracy of the schemes.

3.4.1 Mathematical description of a Riemann problem

Mathematically, a Riemann problem for a general hyperbolic system like (3.2.2) is an initial-value
problem with initial conditions given by

��� � � � � 
 � ��� ��� ��� � ��	� ��� � � � � (3.4.52)

where ��� and �	� are two constant vectors representing the left (L) and right (R) state respectively.
Depending on the particular set of hyperbolic equations considered, different wave structures emerge
in the solution. In general, the discontinuity that separates the two states �
� and ��� is classified as
a shock wave if all the hydrodynamical variables ( 9 � � � � ) experience a discontinuous change and as a
contact wave if pressure and velocity are continuous while density is not. If, instead, the right and left
states are connected through a smooth transition, the connecting region is called a rarefaction wave.

The schematic evolution of a general Riemann problem for a system of equations in three independent
variables, as in the case of the 1-dimensional hydrodynamics equations, consists in four states and can
be represented as3 [152] ������
 � �

��� � �
� ��� �	� � (3.4.53)

where � denotes a shock or a rarefaction wave that propagates toward the left ��� � or the right ��� � with
respect to the initial discontinuity and � �

� and � �
� are the new hydrodynamical states that form behind

the two waves propagating in opposite directions. It can be demonstrated that the wave separating � �
�

and � �� is always a contact discontinuity [242], which we call � , and that therefore in the two states
pressure and velocity have the same values, while density differs.

A first-order Godunov method for finding the solution4 ��� � � ( � * 	 � at time
( � * 	 consists in solving

the Riemann problems set by the piecewise-constant solution at time
( � at each cell boundary. Note that

more sophisticated methods have been derived for setting the initial data for these Riemann problems.
These procedures are generally referred to as reconstruction procedures and lead to methods that are of
higher order in space. We will discuss them more in detail in Section 3.6.

3Actually, the possible types of waves present in the solution of the Riemann problem depend crucially on the closure
conditions (i.e. on the EoS) [242]. For the EoSs usually considered in astrophysical evolutions, though, only shocks, contacts
and rarefactions appear, so we will restrict our treatment these cases only.

4A note on the notation here used: � 0 ����������� represents the non-discretized solution at the point ��������� in the spacetime
continuum; � 9 0 ������� � 9 � represents the solution discretized in time, but non-discretized in space, at the time level � 9 and
the point � in the space continuum; � � 0 ����� � ����� represents the solution discretized in space, but non-discretized in time, at
the grid point � � and at the time � in the continuum; � 9� 0 ����� � ��� 9 � represents the solution discretized both in space and in
time, at the grid point � � and at time level � 9 .
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Since, as we will explain at the end of this section, the time step is chosen in such a way that
the waves coming from neighbouring Riemann problems do not interact, the solution ��� � � ( � at time( � � ( � ( � * 	 can be found exactly (even if, as we will see, in practice we use approximate Riemann
solvers, which are computationally much less expensive while sufficiently accurate) from ��� � � ( � � by
simply piecing together the Riemann solution found at each cell boundary. The approximate solution� � * 	 at time

( � * 	 is obtained by averaging in space the exact solution at time
( � * 	 :

� � * 	� 
 �' � � 	 ��� ;�� �	 ��� ;�� � ��� � � ( � * 	 � � � �
(3.4.54)

This algorithm is considerably more transparent when using the integral form of the conservation law
(3.2.4) � 	 ��� ;�� �	 ��� ;�� � ��� � � ( � * 	 � ��� 


� 	 ��� ;�� �	 ��� ;�� � ��� � � ( � � � � � � &�9 � ;
& 9 � � ��� � � � 	�� � � ( �!� � ( �

�
� & 9 � ;
& 9 � � ��� � � * 	�� � � ( �!� � ( �

which becomes

� � * 	� 
 � �� � ' (' � � � � � �� ��� �� * 	 � � � � � �� � 	 ��� �� � � � (3.4.55)

where

� � � �� ��� �� * 	 � � �' ( � &�9 * 	
&�9 � � ��� � � * 	�� � � ( �!� � ( �

(3.4.56)

As mentioned above, a condition must be satisfied for the Godunov method to be applicable: that waves
coming from a cell boundary do not influence the Riemann solution on adjacent cell boundaries between
time

( � and
( � * 	 . The condition that provides this constraint is

�
�
�
�

' (' � � � � � �� � ���� � � (3.4.57)

for all eigenvalues � � at each � �� . The largest of the � � is also referred to as CFL factor, since (3.4.57)
coincides with the CFL condition in evolution schemes that do not make use of Godunov methods.

When condition (3.4.57) is satisfied, the time average in (3.4.56) becomes trivial, since the solution��� � � * 	�� � � ( � of the Riemann problem is constant at the cell interface
� 
 � � * 	�� � over the time interval( � � ( � ( � * 	 , because no wave passes through the interface in such a time interval.

3.5 Riemann solvers

In what follows, we discuss how Riemann solvers can be used to solve accurately the hydrodynamics
equations. For simplicity we consider equations of the type (3.4.55) in one spatial dimension only. The
Riemann problem is said to be solved when the velocity, pressure and density in the new states � �

� and� �
� have been computed, as well as the positions of the waves separating the four states. The solution of

the 1-dimensional Riemann problem in relativistic hydrodynamics was discussed in the general case by
Martı́ and Müller [152] and the reader is referred to their work for further details (see also [185], for the
extension to multidimensions).
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The knowledge on the wave structure (3.4.53) is exploited in the procedure to find the exact solution
of the Riemann problem: since pressure and velocity are continuous on the contact discontinuity � , the
pressure in the � �

� � � states can be calculated by imposing the continuity of the fluid velocity across �� �� � � � � 
 � �� � � � � �
(3.5.58)

In general, (3.5.58) is a non-linear algebraic equation in the unknown pressure � �
and requires a nu-

merical solution even for simple EoSs [242]. Depending on the different wave patterns forming after
the decay of the discontinuity, a different non-linear equation will need to be solved 5. This initial “am-
biguity” in the wave pattern produced corresponds to the fact that the interval in pressure bracketing
the solution � � is not known a priori. In practice this lack of information is compensated by the use of
efficient numerical algorithms which, via a process of trial and error, determine the correct wave pattern
and then proceed to the solution of the corresponding non-linear equation [153].

Recently, Rezzolla and Zanotti [190] have shown that the relativistic expression for the relative ve-
locity between the two initial states is a function of the unknown pressure � �

and so a new procedure for
numerically solving the exact Riemann problem can be proposed in which the pressure � �

is no longer
obtained by the solution of equation (3.5.58). Rather, � �

is calculated by equating the relativistic invari-
ant expression for the relative velocity between the two initial states with the value given by the initial
conditions.

When compared to equivalent approaches, this exact Riemann solver has some advantages. Firstly,
it can remove the ambiguity mentioned above and determine the generated flow pattern by simply com-
paring the relative velocity between the two initial states with reference values built from the initial
conditions of the Riemann problem. Doing so provides immediate information about which of the non-
linear equations (one for every wave pattern) needs to be solved. Secondly, by knowing the wave pattern
the proposed approach can produce an immediate bracketing of the solution. Doing so gives improved
efficiency in the numerical root finding procedure. Finally, for one of the wave patterns (i.e. for two
rarefaction waves moving in opposite directions) this method provides the solution of the relativistic
Riemann problem in a closed analytic form.

When compared with other exact Riemann solvers the method of Rezzolla and Zanotti has also
proved to be computationally more efficient. In particular, when solving a generic hydrodynamical
problem (in which one solves for very simple Riemann problems) the approach proposed here brackets
the solution very closely and this produces substantial reduction of computational time, up to

� ���
.

3.5.1 Approximate solvers

Since the solution of the Riemann problem is needed at each cell interface, it is too costly to use exact
Riemann solvers, even when recast in an efficient form [190, 191]; so we resort to approximate Riemann
solvers. Several approximate Riemann solvers of different types have been developed along the years;
we will here summarize the ones actually implemented in Whisky: the Harten Lax van Leer Einfeldt
(HLLE) [116, 90], the Roe [193] and the Marquina [84, 83] solvers. Since they consist in providing
approximate formulae for the fluxes, they are often simply called flux formulae, instead of Riemann
solvers.

5This approach is usually referred to as an “exact” Riemann solver to distinguish it from the family of so called “ap-
proximate” Riemann solvers, where the system of equations to be solved or the wave pattern is simplified to allow different
non-iterative procedures for the solution. We will describe the approximate Riemann solvers implemented in our code in the
next section.
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The Harten Lax van Leer Einfeldt solver

In the Riemann solver proposed by Harten, Lax, van Leer [116] and later improved by Einfeldt [90],
the central region delimited by the fastest wave moving toward the left and by the fastest wave moving
toward the right [with speed � � and � � respectively; cf. (3.3.43)] is approximated by a single state

��� � ��� 
 � � � � � � � � � � � � ��� �� � � � � � (3.5.59)

thus disregarding the central contact wave. The resulting numerical flux to be used in the Godunov
scheme is

� � � ��� 
 � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � �
�

(3.5.60)

The HLLE solver is the simplest Riemann solver implemented in Whisky. It performs well at rarefac-
tions waves, but, as one should expect, it produces considerable diffusion at contact discontinuities.

The Roe solver

The Roe Riemann solver consists in approximating the non-linear system with a linearized one
and then in solving the latter exactly, as shown in Section 3.2. In this case linearized Jacobian matrix�
 � � � ��� � � has to satisfy the following conditions:

� hyperbolicity of the system: �
 must have real eigenvalues �� � � �������	� � and a complete set of
linearly independent right eigenvectors

�� :�� < ;
� consistency with the exact Jacobian:�
 � � � ��� � � 
 
 � � ���
� conservation across discontinuities and exact recognition of isolated discontinuities:�
 � ��� ���	� � 4 � �	� � ��� � 
 � � �	� � � � � ��� � �
These requirements determine the intermediate state � �	��
 
 �	�	��
 � ��� ���	� � about which to lin-

earize the original Jacobian matrix 
 . Although it is possible [91] to find such a state, it is more conve-
nient to simply approximate it as

�	���

 
 �� � ��� ���	� � �
(3.5.61)

The eigenvalues �� � and eigenvectors
�� :�� < computed for �
 � �	�	�

 � are then used in the formula [cf.

(3.2.14)] for the flux across each cell interface:

��� 
��������
��
������ � 
���

 
 �� � � � ��� � � � � �	� � �
��
�
�
	 � �� � � � � �� � � �� � �� :�� < � � (3.5.62)

where here � 
�� � � � � � � since we now specialize the treatment to the specific case of the hydrodynamics
equations, which have five variables. We also recall that � �� � � 
 �� :�� < � ��� � � ��4 ��� � � are the characteristic

variables and that
�� :�� < are the left eigenvectors of the Jacobian, being the columns of the matrix

�� � 	
[cf. (3.2.9) and (3.2.11)]. The Roe solver gives a very good approximation to the Riemann solution,
except at rarefactions waves, since linear systems do not admit such waves as solution.
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The Marquina solver

The Marquina flux formula can be regarded as an improvement to the Roe solver, since it gives its
same results everywhere, except at sonic points (i.e. where the fluid velocity equals the speed of sound),
where it removes the entropy violation at rarefactions of the Roe solver. We actually use the modified
method of [14] instead of the original method. The procedure consists in computing at each cell interface
the characteristic variables � �� � � and the numerical fluxes � �� � � 
 � :�� < � ��� � � � 4 � � ��� � � � for both the
left and right states. Then the flux formula is given by

��� � ����� ��� �E * 	�� � 

��
�
�
	 � � � * � :�� <� � � � � � :�� <� � � (3.5.63)

where the � � * � � are chosen according to the sign of the eigenvalues:

� � � * 
 � �� and � � � 
 �
if both eigenvectors are positive (i.e. both waves move to the right and so

the flux has to be computed from the left state);

� � � � 
 � �� and � � * 
 �
if both eigenvectors are negative;

� while if the eigenvalues have opposite sign

� � * 
 �� � � �� ���
�	� � � � � � � � � � � � � � � � � � � � � �� # �

� � � 
 �� � � �� �
� �	� � � � � � ��� � � � � � � � �	� � � � � �� # �
(3.5.64)

In our experience, the Marquina solver has proven to be the best choice.

3.6 Reconstruction methods

The original Godunov method, as presented so far, is only first-order accurate in space. Indeed, it was
shown by Godunov in a theorem [108] that it is not possible to build monotone (i.e. that do not produce
spurious oscillations in the solution in the vicinity of large gradients) linear schemes of second or higher
order of accuracy. As a result, one has to turn to non-linear schemes. HRSC methods represent the
combination of Godunov type methods, which take advantage of the conservation form of the equations,
and of numerical techniques aimed at obtaining second-order (or higher-order) accuracy in the smooth
parts of the solution, without producing oscillations.

A way of measuring the amount of oscillations in the solution is to monitor the total variation of the
solution, defined, for a discretized function � �

at time level
( �

, as

�
� � � � � �
�
�

�
�
�
�
� � �� � � �� � 	 � �

(3.6.65)

The requirement of non-oscillation of a scheme may then be stated as the requirement that

�
� � � � * 	 � � �
� � � � � (3.6.66)

for all the variables � of the system. A numerical method satisfying this condition is called a total-
variation-diminishing (TVD) method, since the total variation is bounded by its initial value. As shown
by Toro [242], TVD methods cannot generally be extended to accuracies higher than second order. In
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order to construct higher-order methods one has to renounce to the strict TVD condition and allow for
an increase of the total variation proportional to some power of the typical step size:

�
� � � � * 	 � � �
� � � � � ���
� � ' � � ( � �

(3.6.67)

This leads to higher-order accuracy also near large-gradient regions, by allowing oscillations (that should
be small and bounded) near extrema. The resulting methods are called Essentially-Non-Oscillatory
(ENO) methods [115].

3.6.1 Total-variation-diminishing methods

In the original Godunov method, the initial data for the local Riemann problems at each time step are
assumed to be piecewise constant on each cell� � � � � � � � � � � 	�� � � � � � � * 	�� � � � �

(3.6.68)

A natural way of increasing the order of accuracy is giving a better approximation of the state at the cell
interface. The simplest reconstruction is a piecewise-linear approximation� � � � � � � � 4 � � � � � � ��� � � � 	�� � � ��� � � * 	�� � � � � (3.6.69)

where 4 � is a slope, expressed as either4 ����� ������ 

� � * 	 � � �� � * 	 � � � � � � 4 � �	� ���������� � � � � � � 	� � � � � � 	 (3.6.70)

or linear combinations of them. The upper superscripts “upwind” and “downwind” refer to the sten-
cil used for computing the slope. For grids with uniform spacing, the cell average, computed between� � � 	�� � and

� � * 	�� � , is equal to the value on the grid point � � for any choice of the slope. All the possible
choices of the slope give second-order accurate schemes, but none of them can avoid introducing oscil-
lations in large-variation regions. This problem motivates the technique of slope limiting, consisting in
choosing a reconstructing slope which is second order in slowly varying regions of the solution and only
first order (i.e. piecewise constant) in the vicinity of large-variation regions, in order to avoid numerical
oscillations. In practice, the large variation regions are defined as those where 4 ���
��������

and 4 � �����
��������

have opposite signs (extrema of the function). The numerous proposed TVD slope limiters differ in the
prescription for computing the slope in slowly varying regions. After defining � � 4 ������������ 4 � �	� ����������

,
the possible slopes can be expressed as a function of � :

4�

� ��� � 4 ������������ � 4 � ��������������
� �

(3.6.71)

In Whisky we implemented some of the most commonly used slope limiters, which we list here.

� The minmod slope limiter is

� ��� � 
 �
��
 � � � 8

� � � ! �
(3.6.72)

Stated differently, minmod consists in choosing the slope with the minimum modulus, when � � �
.

It is the most diffusive slope limiter.
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� The van Leer [246, 247] monotonized centered slope limiter is

������� 
 �
� 
 � � �

� � � �
�

� � � ! �
(3.6.73)

It consists in limiting the value of the slope in a cell following three rules: i) it must not take values
beyond the average of the neighbouring slopes; ii) it is set to zero if the average of the upwind and
downwind slopes relative to the cell is an extremum with respect to the one of the neighbouring
cells; iii) it is set to zero if the average slope and the finite-difference slope have opposite sign, that
is if sign( 4 � ) = sign( 4 � * 	 ) �
 sign( 4 � * 	�� � ), for any computation of the 4 � [cf. (3.6.70)].

� One more implemented example is the Superbee slope limiter [242]

������� 


��� �� �
� 
 � � � � � � � ��� � � � # ���

� � �
� ��� � � � � �

� �� � ��� � �
�

� � � �
(3.6.74)

For a comparison of the numerical accuracy of the TVD methods implemented in Whisky, see
Fig. 4.3, in the next chapter, which shows why our typical choice for TVD reconstruction is the Van Leer
monotized centred method. TVD reconstruction is simple and computationally the least expensive, but –
we recall – it is at most second-order accurate and drops to first-order at local extrema.

3.6.2 Essentially-non-oscillatory methods

The ENO methods have a large number of variants; in Whisky, the simplest ENO reconstruction
method of arbitrary accuracy order � is implemented, following the outline in [220]. The idea at the base
of the method is to choose a stencil including

� � ( � � � � cells (
�

cells to the left of the point
� �

where we want to reconstruct and
(

cells to its right), so that the smoothest reconstruction is achieved.
A measure of the smoothness of the function inside the stencil is made in terms of the Newton divided
differences, which for a stencil of one about point

� �
are defined as� � � � � 	 � � � � � � � � � � � 	� � � � � � 	 �� � � � � � � * 	 � � � � * 	 � � �� � * 	 � � � �

(3.6.75)

For any arbitrary stencil which considers
�

points to the left of
� �

and
(

points to its right, the Newton
divided differences are obtained through recursive relation and are� � � � � � � � � * & ��� � � � � � � * 	 � � � * & � � � � � � � � � � � * & � 	 �� � * & � � � � � �

(3.6.76)

The property of the divided differences to be a measurement of the smoothness of the function can be
appreciated from the following relation:� � � � � � � � � * & ��
 � : & * � < �  �

� ( � � ��� � (3.6.77)

where � : & * � < �  � is the � ( � � � -th derivative of � in some point  falling in the interval � � � � � � � � * & � . This
property is valid only if the function � is smooth in this stencil.
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Once the stencil is determined as the one giving the minimum Newton divided differences, a � -
polynomial interpolation gives the reconstructed value on the � -th cell interface:� � * 	�� � 
 ( � 	� � �

A 	
� � � � � � * � � � � � 	�� � 
 ( � 	� � �

A 	
�
� 	
� � � � � * � � (3.6.78)

where the coefficients

	
� �



(�1 � � * 	 � (* � A�� *��� 1 � (� � A�� � �� 1 � * ��� ��� � � �� (* � A�� *��� 1 �  ��� � (3.6.79)

are determined with the above procedure in terms of the stencil and the known data [219].
ENO methods have no tunable parameters besides the order of accuracy, which is arbitrary. In the

next chapter, we will compare this method to the other reconstruction procedures (see Fig. 4.3). We will
also see in that section that increasing the order of accuracy beyond � 
 8 does not improve significantly
the reconstruction, while requiring larger computational resources, because of the increase in the stencil
width used.

3.6.3 The piecewise parabolic method

The piecewise parabolic method (PPM) of Colella and Woodward is a composite reconstruction
method that ensures third-order accuracy 6 [70]. We will show here only a simplified treatment of the
method and give only the details of the parts implemented in Whisky. Hereafter, we specialize to the
case of an evenly-spaced grid:

' � 
 � � * 	 � � � 
 � � * 	�� � � � � � 	�� � � � . The basic idea is to construct
an interpolating parabola � �

� � in each cell
� � * 	�� � � ��� � � � 	�� � , such that its integral average coincides

with the known solution � �� at the point � and at time �
�' � � 	�� � ;�� �	�� � ;�� � � �

� � ��� 
 � �� (3.6.80)

and such that no new extrema appear in the interpolated function. The method determines the three
coefficients of the interpolating parabola by imposing (3.6.80) and that the parabola passes through the
points � � � � 	�� � � � �� � and � � � * 	�� � � � �� � , where the values � � � ��

are found by imposing: i) that they do
not fall outside the range of values given by � � and � � * 	 ; ii) that in smooth parts away of extrema

� �� * 	 
 � �� � � � * 	�� � (i.e. that the interpolating function is continuous); iii) that � �
� � is a monotone

function in each cell. The � � � ��
are the reconstructed values on cell boundaries, which will be employed

as initial data for the local Riemann problems.
The procedure to find � � � ��

consists in discretizing the indefinite integral � � � � ( � � 

	 � �  � ( � � �  
and in computing it at the point

� � * 	�� �
� � � � * 	�� � � ( � � 
 � � � � � �� ' � �

(3.6.81)

A quartic polynomial is then interpolated through the points � � � * � * 	�� � ��� � � � * � * 	�� � �!� , 
 
 � � � � � � �
and the reconstructed value follows, after some algebra, from its differentiation:� �� * 	�� ��
 � ���� �

�
�
� 	�� � ;�� � 
 �� � � �� � � �� * 	 � � �� �"! � � � ! � � * 	 � � (3.6.82)

6We try in this description to correct the several typos present in the original article.
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where ! � � � 	� � � �� * 	 � � �� � 	 � . The substitution of the above ! � � with

! 1 � � � �
�
� 
 � � ! � � � � � � � �� � � �� � 	 � � � � � �� * 	 � � �� � ��� � � 
 �"! � � � ��� � � �� * 	 � � �� � � � �� � � �� � 	 � � �� � � � � � � � � �

(3.6.83)

guarantees that � �� * 	�� � is not outside the interval determined by � ��
and � �� * 	 and also leads to a steeper

representation of discontinuities. After determining � � � �� , it is possible to express the interpolating
parabola coefficients in terms of them and of the original solution:

� �
� � 
 � �� �

� � � � �� � � �� � � � 	 � �� � �� � � �� � � �� � 
 �����
� � � �

(3.6.84)

This reconstruction may still be oscillatory near large gradients. To take care of these, Colella and
Woodward suggested to reset one or both of � � � �� , according to the following possible cases. If (case I)� �� is a local extremum, then the interpolating function is set to be constant. If � ��

falls between � �� and

� �� , but is close to one of them so that the interpolated parabola takes on a value that is outside this range,
namely, from (3.6.84), when (case II)

� � �� � � �� � 	 � �� � �� � � �� � � �� � 
 � � � �� � � �� � �� (3.6.85)

or (case III)

� � � �� � � �� � �� � � � �� � � �� � 	 � �� � �� � � �� � � �� � 
 � (3.6.86)

then either � �� or � �� is reset, so that the interpolation parabola is monotone and so that its derivative at
the opposite edge of the zone from the one where the value is being reset is zero. The expressions for � ��
and � �� in the three cases are as follows:

� � � ��� � �� 
 � �� 
 � �� �
� � � ����� � �� 
 � � �� � � � �� �
� � � ������� � �� 
 � � �� � � � �� �

The steps discussed so far are those identifying the basic PPM method. However, additional steps
were suggested in the original article to improve the reconstruction and we have implemented two of them
in Whisky. Both have to be performed before the monotonicity preservation enforcement (3.6.87). The
first modification helps in obtaining sharper profiles at contact discontinuities. First of all one has to give
rules for determining whether the cell is considered to be inside a global discontinuity. In this case then,
instead of using the previous � � � �� , the piecewise-linear distribution given by ! 1 � � � 	 is used:

� �� � � � � 	 � �� ! 1 � � � 	 � � �� � � � * 	 � �� ! 1 � � * 	 �
(3.6.87)

A cell is considered to be inside a discontinuity if i) a finite-difference approximation to the third deriva-
tive of the solution is sufficiently large, ii) a finite-difference approximation to the second derivative
changes sign across the cell, iii) the finite-difference approximation to the first and third derivative have
opposite sign (this ensures that small plateaux within a general increase or decrease are not taken as
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discontinuities) and iv) the jump is not too small. The final procedure, as conceived by Colella and
Woodward, for applying this steepening is

� �� � � �� ��� ���
� � � � � � � 	 � �� ! 1 � � � 	 ! � � �

� �� � � �� ��� ���
� � � � � � * 	 � �� ! 1 � � * 	 ! � � � (3.6.88)

where

�
� � �

�	� � � � � � 
 ��� : 	 < ���� � � � : � < ��� � � � (3.6.89)

and

�� � 

��� �� � � � � � � � * � � 8
! � �

� � ! � � ���
� ! � � � * 	 ! � � � � 	 � �
� � � * 	 � � � � 	 � � � � � 
 � � � � * 	 � � � � � � 	 � � � �� � � � � � � � � � �

(3.6.90)

where ! � � � � � � * 	 � � � � � � � � 	
� ' � � � (3.6.91)

and � , � : 	 < and � : � < are positive constant parameters. Condition iv) is enforced by the second inequality
of (3.6.90), so � is effectively a parameter specifying how big the jump has to be in order to be considered
a discontinuity. Note that ! � � � is the finite-difference approximation to the second derivative in � and
results from the finite-difference approximation to the first derivatives centered in � � 	� . So condition ii)
is effectively enforced by the first inequality of (3.6.90). The finite-difference approximation to the third
derivative is simply given by ! � � � * 	 � ! � � � � 	� ' � � (3.6.92)

so that condition i) as can be written as! � � � * 	 � ! � � � � 	� ' � � � : � < � � ' � � 
� � * 	 � � � � 	 � (3.6.93)

which is enforced by (3.6.89) (in fact, if (3.6.93) were not satisfied, �
�

would be zero and the steepening
(3.6.88) would not be applied); so � : � < is a parameter specifying how big the third derivative must be
in order that we consider it a discontinuity. Condition iii) is also contained in (3.6.89), which, apart
for constant factors and a negative sign, is the product of the above third derivative and the inverse of
the centered first derivative; such a product must be negative for �� � to be positive and so for �

�
to be

different from zero. Finally, � : 	 < is a parameter which determines a continuous transition between the
schemes (3.6.82) and (3.6.88).

In principle, this correction could be applied also to shocks, but we have followed Colella and Wood-
ward and have applied it only to contacts. Thus only 9 � � ��

may be affected by this modification and, in
addition to the above rules, we modify 9 � � ��

only if' � ! 9 � �
�
� 
 � 9 � * 	 � 9 � � 	 � � � !�� � �

�
� 
 � � � * 	 � � � � 	 � (3.6.94)
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(
'

is another positive parameter), that is when the detected discontinuity is predominantly a contact
discontinuity.

The second modification to basic PPM concerns the flattening of interpolation profiles in the neigh-
bourhood of shocks which are sufficiently strong and steep. In the original calculations, in fact, Colella
and Woodward noticed low-amplitude post-shock oscillations in the solution. They found that a flatten-
ing technique, in practice a local reduction of the order of the method, is successful in eliminating this
error. The flattening is applied to the � -th cell when

� � � * 	 � � � � 	 �
�
��
 � � � * 	 � � � � 	 � � � :BA < � (3.6.95)

where � :BA < is a positive constant, and � � � 	 � � � * 	 � � � (3.6.96)

i.e. when the cell is inside a pressure and a velocity jump consistent with the possibility of there being a
shock. Any application of the flattening procedure can be written as a modification of � � � ��

:

� � � � �� ��� � � 
 � �� ��� � 	 � � � � � � �� 	 � � (3.6.97)

where
� � 	 � � � always and 	 � 
 � far from shocks. Our implementation of the flattening procedure

consists in taking 	 � according to the pressure jump � � � * 	 � � � � 	 � � � � � * � � � � � � � across the cell, i.e.	 � 
 �
�	� � �	 � � �	 � *�� ��� � : � � � ; � � � � ; < ! � (3.6.98)

where

�	 � � �
�	� � � � � � � �	� � � ��� : � < 3 � � * 	 � � � � 	� � * � � � � � � �	� : 	 < 6 ��
 � (3.6.99)

where � : 	 < and � : � < are positive constants, determining respectively how big a pressure jump must be
for the flattening procedure to be applied and how continuously do we change from scheme (3.6.82) to
(3.6.97).

As we have presented above, PPM has seven tunable parameters; the default values of these param-
eters used in our implementation are the ones suggested by Colella and Woodward, i.e.

� 
 � � � �
� : 	 < 
 � �
� : � < 
 � � � �' 
 � � � � � � 
 � ���
� ��� � ��� � � 
 ��� � � (3.6.100)� : A < 
 � � � �
� : 	 < 
 � ��� �� : � < 
 � � �

All the presented reconstruction methods are stable in the presence of shocks. By default we use
PPM as this seems to be the best balance between accuracy and computational efficiency, as shown,
for example, in [104]. As said above (see note on page 31), however, there is no standard “correct”
formulation of this method, so it is useful to compare results with TVD methods as well. We refer to the
next chapter for a numerical comparison of the reconstruction procedures implemented in Whisky (see,
in particular, Fig. 4.3).



Chapter 4

The Whisky code

In an attempt to respond, at least in part, to the scientific needs presented in Chapter 1, we have devel-
oped Whisky, a 3-dimensional finite-differencing code, solving the general-relativistic hydrodynamics
equations in a conservative formulation (cf. Section 3.3.1) and in a generic and time-varying curved
background. The Whisky code is the result of an ongoing and ever-growing collaboration among sev-
eral European Institutes, i.e. the Albert Einstein Institute (Golm, Germany), SISSA (Trieste, Italy), the
University of Thessaloniki (Greece), the University of Valencia (Spain). These Institutes were part, in the
years 2000–2003, of a European Research and Training Network investigating sources of gravitational
waves [1]. Recent collaborations have started with the group at the Louisiana State University (Baton
Rouge, USA).

The Whisky code solves the general-relativistic hydrodynamics equations on a 3-dimensional space-
like surface (i.e. the spatial numerical grid) with Cartesian coordinates. The code has been constructed
within the framework of the Cactus Computational Toolkit (see [62] for details), originally developed
at the Albert Einstein Institute and now also at the Louisiana State University. This public domain code
provides high-level facilities such as parallelization, input/output, portability on different platforms and
several evolution schemes to solve general systems of PDEs. Clearly, special attention is dedicated to
the solution of the Einstein equations, whose matter terms in non-vacuum spacetimes are handled by the
Whisky code. While the Whisky code is entirely new, its initial development has benefitted in part from
the release of a public version of the general-relativistic-hydrodynamics code described in [103, 100] and
developed mostly by the group at the Washington University (St. Louis, USA).

The Whisky code, however, incorporates important recent developments concerning, in particular,
new numerical methods for the solution of the hydrodynamics equations. These improvements have
also been described in detail in [32, 31]; they include: i) the Piecewise Parabolic Method (PPM) (Sec-
tion 3.6.3) and the Essentially Non-Oscillatory methods (Section 3.6.2) for the cell reconstruction pro-
cedure; ii) the Harten Lax van Leer Einfeldt approximate Riemann solver (Section 3.5.1), the Marquina
flux formula (Section 3.5.1); iii) the analytic expression for the left eigenvectors (Section 3.3.2) and
the compact flux formulae [15] for the Roe Riemann solver and the Marquina flux formula; iv) the use
of a “method of lines” (MoL) approach for the implementation of high-order time-evolution schemes
(Section 4.3.1); v) the possibility to couple the general-relativistic hydrodynamics equations with a con-
formally decomposed 3-metric; vi) the excision from the numerical domain of regions surrounded by
an apparent horizon and possibly containing a singularity (Section 4.3.5). The incorporation of these
new numerical techniques in the code has led to a much improved ability to simulate relativistic stars, as
shown in Section 4.4 which is devoted to code tests.

35
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4.1 Outline of the code

While the Cactus code provides at each time step a solution of the Einstein equations (2.0.1) [10],
the Whisky code provides the time evolution of the hydrodynamics equations, expressed through the
conservation equations (3.3.39). In Section 3.4 we described the different stages required for the evolu-
tion of the hydrodynamics equations with Whisky. Now we summarize them here with reference to their
actual implementation in Whisky: i) conversion of the primitive variables to the conserved variables (cf.
Section 3.3.1); ii) reconstruction of the variables on the cell interfaces (cf. Section 3.6); iii) solution of
the Riemann problems (cf. Section 3.5); iv) computation of the source terms (cf. Section 4.3.2); v)
conversion from the evolved conserved variables to recover the primitive variables at the new time level
(cf. Section 4.3.3). We have already illustrated in detail in the previous chapter the principles behind
stages ii) and iii) and in this chapter we will discuss the practical implementation of stages iv) and v) in
Whisky. Stage i) is a trivial implementation of (3.3.38).

Stages ii) and iii) are performed on each spatial direction independently and in sequence, following
the dimensional-splitting approach discussed in Section 3.4. Before stage v), a first check is made in order
to ascertain whether each grid point is (or is going to be) located in the atmosphere (cf. Section 4.3.4)
or in an excised region (cf. Section 4.3.5); if this is true, then the variables will not be evolved at that
point. After this check, the fluxes computed by the Riemann solvers and the source terms are summed
up and used by the routine implementing the evolution by the MoL (cf. Section 4.3.1). After stage v),
the hydrodynamical variables at the points that are located in the atmosphere or in an excised region are
reset to small constant values. Finally, both physical and symmetry boundary conditions are applied.

In addition to the basic ones, we have written many other routines that perform secondary, but impor-
tant tasks, as described below. As far as initial data are concerned, we have written simple routines for the
generation of shock-tube test problems and for the construction of Tolman Oppenheimer Volkoff (TOV)
stars. The TOV initial data generator, in addition to having been extensively used for testing purposes
(cf. Section 4.4.2), was also employed in the simulations reported in Chapter 6. For other simulations of
physical interest we have used initial data produced by external codes; we have written interface routines
to transform and import these data into Cactus. In particular, for rotating NS simulations, we use the
2-dimensional numerical code RNS of Stergioulas [234], that computes accurate stationary equilibrium
solutions for axisymmetric and rapidly-rotating relativistic stars in polar coordinates; the data are then
transformed to Cartesian coordinates using standard coordinate transformations. For binary NS initial
data, instead, we use the spectral-method code LORENE by Gourgoulhon et al. [111] and then transform
the data into a Cartesian grid.

The data produced in this way satisfy the constraint equations (2.1.12)–(2.1.13). In some cases,
though, in order to suit our needs for particular initial conditions, we want to modify the hydrodynamics
part of these initial data, as, e.g., in rotating NS collapse (cf. Chapter 5), where we reduce the initial
pressure to shorten the time before collapse starts, or in TOV head-on collisions (cf. Chapter 6), where
we need two nearby stars on the grid. In these cases, we want to enforce the constraints (2.1.12)–(2.1.13)
again after performing the initial modification. For such purpose, we have implemented an initial-value
problem (IVP) solver that uses the York procedure [262] to determine initial data consistent (to the
desired accuracy) with the Hamiltonian and momentum constraint equations.

Finally, we have implemented several analysis routines to compute various interesting quantities
after each time step computation. With these analysis routines we can monitor the velocity in spherical
coordinates, the first and the second time derivatives of the trace-free quadrupole moment (following
formulae in [96]), the baryon mass (5.3.1) contained within a sphere of a chosen radius, the angular
momentum (2.1.15) and the proper distance between the maximum densities of the stars (for binary
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evolutions).
At this point, we would like to underline that our role in the writing of Whisky has concentrated on

the bulk of the code (i.e. stages i–v above), on the IVP solver, on the analysis routines for the computation
of the quadrupole moment and of the baryon mass and on some other short routines written initially only
for testing purposes (cf. Section 4.4.3); while we have not participated in the writing of the MoL solver,
of the boundary conditions routines, of the excision code (cf. Section 4.3.5) and, in general, of the part
of the Cactus code related to the evolution of the spacetime variables.

4.2 Equations of state

In order to close the system of the hydrodynamics equations (3.3.39), an EoS which relates the
pressure to the rest-mass density and to the energy density must be specified. The code has been written
to use a generic EoS, i.e. a generic subroutine returns the values of the pressure at a given grid point
whenever needed, once the values of the density and/or of the specific internal energy are provided at
that point. All of the simulations that so far have been performed, however, use either an (isentropic)
polytropic EoS

� 
 ' 9�� � (4.2.1)

� 
 9 � �
� � � � (4.2.2)

or an “ideal-fluid” EoS � 
 � � � � � 9 � �
(4.2.3)

Here, � is the energy density in the rest frame of the fluid,
'

the polytropic constant (not to be confused
with the trace of the extrinsic curvature defined earlier) and � the adiabatic exponent. In the case of the
polytropic EoS (4.2.1), � 
 � � � � � , where

�
is the polytropic index. Note also that in this case the

evolution equation for � in (3.3.39) needs not be solved, since the pressure and the energy density can be
derived directly from the rest-mass density. In the case of the ideal-fluid EoS (4.2.3), on the other hand,
non-isentropic changes can take place in the fluid and the evolution equation for � needs to be solved.
In addition to the EoSs (4.2.1) and (4.2.3), a “hybrid” EoS (suitable for core-collapse simulations, as
described in [266, 267]), has been implemented, as well as the capability of using tabulated EoSs.

4.3 Numerical methods

4.3.1 The method of lines for the time update

The reconstruction methods guarantee that a prescribed order of accuracy is retained in space. How-
ever, the need to retain a high-order accuracy also in time can complicate considerably the evolution from
one time-level to the following one. As a way to handle this efficiently, we have chosen to follow a MoL
approach [136, 242]. The MoL is a procedure to separate the space and time discretization processes.
First, the continuum equations are considered to be discretized in space only, while leaving the problem
continuous in time. This is equivalent to transforming a set of PDEs such as (3.2.4) into a set of ODEs.
Then, the resulting system of ODEs can be solved numerically with any stable solver. This method
minimizes the coupling between the spacetime and hydrodynamics solvers and allows for a transparent
implementation of different evolution schemes.
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In practice, this is achieved by integrating equations

� &�� �!� E � : E < � � � 
�� � � � (4.3.4)

over space in every computational cell defined by its position � � � � � � � � � � . Taking, as an example, inte-
gration in the

�
direction, the procedure results in the following ODE� � �� �� ( 
 � � �� � 



 �'�� . � ��� � � 
 � � � ���
� ;�� ����

� ;�� �
� � 3 � ;�� �� 3 � ;�� �� 	 � ��� � � � 	�� � � � � � �!� � � �

���
� ���

� ;�� ����
� ;�� �

� � 3 � ;�� �� 3 � ;�� �� 	 � ��� � � * 	�� � � ��� � �!� � � �
� : �
(4.3.5)

where
'�� 
 ' � '

�
'
� and

�� is, in our specific case, the spatially-integrated vector of conserved
variables, i.e.

�� � �'�� � � ��� �
�

�
��� (4.3.6)

and � 	 is the
�

component of the flux five-vector � .
MoL itself does not have a precise truncation error but, rather, it acquires the truncation order of the

time-integrator employed, provided that the discrete operator
�

is of the same order in space and at least
first-order accurate in time. Several integrators are available in our implementation of MoL, including
the second-order Iterative Crank Nicholson (ICN) solver and Runge Kutta (RK) solvers of first to fourth-
order accuracy. The second and third-order RK solvers are known to be TVD whilst the fourth-order one
is known to not be TVD [221, 110]. As the coupling between the spacetime and the hydrodynamics is
only second-order accurate, we typically use the ICN solver.

In our implementation of MoL, the right hand side operator
� � �� � is simplified by approximating the

integrals (4.3.5) with the midpoint rule� �
� 	 � � � � � 
 ��� � � � 	 � � ���� ! ��� � ��� � � � � � (4.3.7)

to get � � �� � 
 � � � � �
�
� � : 	 < � � � � 	�� � � � � � � � � : 	 < � � � * 	�� � � � � � � �

(4.3.8)

Given this simplification, the calculation of the right-hand side of (4.3.5) splits into the following stages,
as already outlined in Section 4.1:

� calculation of the source terms � � ��� � � � � � � � � �!� at all the grid points;

� reconstruction of the data � to both sides of a cell boundary (cf. Section 3.6);

� solution at cell boundaries of the Riemann problem having the values ��� $ 	 as initial data (cf.
Section 3.5);

� calculation in each coordinate direction of the inter-cell flux � 	 � � � * 	�� � � � � � � , � � � � � � � * 	�� � � � � ,� � � � � � � �
� * 	�� � � , that is the flux across the boundary between a cell (e.g. the � -th) and its closest

neighbour [e.g. the � � � � � -th];

� check on the location of atmosphere and excised regions.
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Figure 4.1: A pictorial scheme of the Whisky flowchart. The grey ovals represent the different parts of the bulk of the computation of the evolution of the matter terms,
while the white ovals represent routines outside the main Whisky cycle, which pass data to or receive data from the bulk of Whisky. The percentages reported in many of
the ovals are the percentages of the typical single-processor running time spent in the routines the oval refers to; the absence of this figure means that it would be less than
1%. The sum of all the percentages does not total 100%, beacuse of these several non-reported little-time-consuming routines. These data refer to a typical evolution with a
polytropic EoS; for the more general ideal-fluid EoS the overall running time for the otherwise-equal configuration is increased by 4%, because of the additional equation to
solve. The relative percentages of the running time spent in each part vary only slightly.
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We underline at this point that the innovation that improved most the speed of our code has been the
implementation of the analytic expression for the left eigenvectors (3.3.46), thus avoiding the compu-
tationally expensive inversion of the three � - � matrices of the right eigenvectors, that was necessary
before such analytic expressions were found [121]. We also use a compact version of the flux formula (a
variant on the methods described in [15]) to increase speed and accuracy. These implementations have
brought a 40% reduction of the computational time spent in the solution of the hydrodynamics equations;
however, in evolutions involving also the time integration of the Einstein equations, this is reduced to a
5% decrease in computational cost, because a large part of the running time is spent in the update of the
spacetime field variables.

4.3.2 Source terms

For numerical reasons, namely in order to avoid the presence of time derivatives in the source-term
computation, the implemented form of the source terms is not (3.3.41) directly, but it has been modified
as shown in the following paragraphs.

We need the expression of some of the 4-Christoffel symbols
: � < � ���� applied to the 3+1 decom-

posed variables. In order to remove time derivatives we will frequently make use of the ADM evolution
equation (2.1.10) for the 3-metric in the form

� & � E
� 
�� � � 0 ' E-� �!� :FE � � < � : 
 < � (E
� � ( ! �
(4.3.9)

As it is used in what follows, we also recall that + is the covariant derivative associated with the spatial
3-surface and we note that it is compatible with the 3-metric (cf. Section 2.1):+ E � � ( 
�� E � � ( � � : 
 < � � E * � * ( 
 �

(4.3.10)

We start from the
: � < � AA>A symbol:

: � < � AA>A 
 �� 0 � 	 ��� & � � ( � ( # � � 0 � &�0 � � � E � &"� E ��� E � E � � ( � ( # � � 0 � E � E 0 
 (4.3.11)

and we expand the derivatives as

� & � � ( � ( # 
 � & � � � ( � � � ( # 
 � � � ( � � � &"� ( �	� � � ( � & � � ( 
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and
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where we have used (4.3.9) and (4.3.10), respectively. Inserting (4.3.12) and (4.3.13), equation (4.3.11)
becomes

: � < � AA>A 
 �
0 � � & 0 � � E � E 0 � ' � ( � � � ( ! �

(4.3.14)

With the same strategy we then compute

: � < � AE A 
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and
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Other more straightforward calculations give

: � < � A>A � 
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: � < � A * � 
 : � < � �A � 	 � * 
��10 ' � * �5� * � � � � ( : 
 < � (* � � (4.3.19)

: � < � * 1 � 
 : � < � �* � 	 � 1 
 : 
 < � * 1 � � (4.3.20)

where (4.3.9) was used to derive (4.3.18) and (4.3.19). Now we have all the expressions for calculating
the source terms. The ones for the variables 4 ( are [cf. (3.3.34)]

� ����� # � 
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(4.3.21)

After expanding the derivative in (4.3.17), the coefficient of the � A>A
term in (4.3.21) becomes

: � < � A>A � 
 �� � * � 1 � � � * 1 �50 � � 0 �	� 1 � � � 1 �
(4.3.22)

The coefficient of the � A E term is
: � < � A E
� � : � < � E A � 
�� � � E 
 � * � E � � * � � E * � � � * � (4.3.23)

The coefficient of the � * 1 term is simply

: 
 < � * 1 � 
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(4.3.24)

Finally, summing (4.3.22)–(4.3.24) we find
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which is the expression implemented in the code.
The source term for � is [cf. (3.3.41)]� � 
�0 � � � A � �60 �50 � ��� : � < � A��� ! �

(4.3.26)

For clarity, again we consider separately the terms containing as a factor the different components of
� ��� . From (4.3.14) we find the coefficient of � A>A to be
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The coefficient of the term � A E is given by
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and, finally, the coefficient for � E
� is
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The final expression implemented in the code is thus� � 
�0 � � A>A � � E � � ' E
� ��� E � E 0 # �"� A E � �1� E 0 � � � � ' E
� # �5� E
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(4.3.30)

These expressions require both the metric and the extrinsic curvature. In order to calculate the
Christoffel symbols, the gauge and metric variables must be differenced; in Whisky this is currently
done through either second-order or fourth-order differencing.
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4.3.3 Conversion from conservative to primitive variables

As mentioned repeatedly above, the variables for which we solve the evolution equations are the
conserved variables (3.3.38):

� ��4 E � � . On the other hand, in order to calculate the fluxes and source
terms, the primitive variables 9 � � E � � are needed and these are also the hydrodynamical variables which
we are directly interested in. The conversion from primitive to conservative variables is given analytically
by (3.3.38), but converting in the other direction is not possible in a closed form, except in certain special
circumstances. A standard procedure to do the conversion is to write the following equation for the
pressure � ���� � 9 � � � � ��� � � � � � � � 
 � � (4.3.31)

where � is the value of the pressure to be found and �� � 9 � � � � ��� � � � � � � � is the pressure as obtained
through the EoS in terms of the updated conserved variables � and of � itself. This is done by inverting
(3.3.38) to express 9 and � in terms of the conserved variables and of the pressure only:9 


�� � � � � � � � � � � � � � � 4 � � (4.3.32)
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 � E
� 4 E 4 � �
(4.3.34)

Then (4.3.31) is solved numerically. In Whisky we use a Newton Raphson root finder, for which we
need the derivative of the function with respect to the dependent variable, i.e. the pressure. This is given
by �� � � � ���� � 9�� � � � ��� � � � � � � � � 
�� � ���� � 9 � � �

��9 � 9
� � � ���� � 9 � � �

� �
� �
� � � (4.3.35)

where

��9
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�
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and where ���� � ��9 and ���� � � � given by the EoS. Once the pressure is found, the other variables follow
simply. In the case of a polytropic EoS, instead of (4.3.31), we solve an equation for the rest mass density9 : 9 �� � � 
 � � (4.3.38)

where the pressure, the specific internal energy and the enthalpy are computed from the EoS and the
Lorentz factor is computed from the first equation in (3.3.38) as

�� 
 � � 4 �
� � � � � �

(4.3.39)

The derivative of (4.3.38) needed for the Newton Raphson solver is given by�� 9 � 9 �� � � � 

�� � 9 4 � � �

�� � � � 
 � (4.3.40)
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where
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The last expression is the one used in the code.

4.3.4 The atmosphere

Numerical methods for the solution of the hydrodynamics equations in Lagrangian formulation
evolve portions of the fluid only, i.e. all grid points refer to values of 9 , � and � which are non zero.
In Eulerian formulation, instead, this is clearly impossible, even for the study of static configurations.
As a consequence, part of the domain will be covered by vacuum regions. This is made more serious
in general relativity, where one has to accommodate at the same time the need to resolve well objects
that are intrinsically compact and the need to place the outer boundaries at very large distances from the
compact object. As a results, over much of the domain that we evolve, the hydrodynamical variables 9
and � are, at least mathematically, supposed to be zero. However, in the vacuum limit the hydrodynamics
equations break down, the speed of sound tends to the speed of light and HRSC schemes, that – we recall
– use the characteristic structure of the equations, fail. So this region must be treated specifically.

To avoid this problem we introduce a tenuous atmosphere, i.e. a low-density and low-pressure region
surrounding the compact objects. We treat the atmosphere as a perfect fluid having a zero coordinate
velocity. This approach, was implemented also in [100, 218]. The atmosphere is first specified by the
initial data routines. Typically, the atmosphere values are set to be more than seven orders of magnitude
smaller than the evolved values. Before computing the fluxes, Whisky checks whether the conserved
variables

�
or � are below some minimum value or whether an evolution step might push them below

such a value. If this is the case, the relevant cell is not evolved and the hydrodynamical variables at that
point are set to atmosphere values. The other stage where Whisky checks about the location of the
atmosphere is in the routine that converts from conserved variables to primitive variables. This is where
the majority of the atmosphere points are usually reset. For all points, an attempt is made to convert
conserved to primitive variables. If the EoS is polytropic and if the iterative algorithm returns a negative
value of 9 , then 9 is reset to the atmosphere value, the velocities are set to zero and � , � , 4 E

and � are
reset to be consistent with 9 . If, on the other hand, the EoS is the more general type (such as an ideal-fluid
one), then we check whether the specific internal energy � is less than a specified minimum. If this is
the case then we assume we are in the atmosphere and we apply the procedure that changes from the
conserved to the primitive variables for the polytropic EoS, instead.

Note that even though the polytropic EoS gives sufficient information to calculate a consistent value
of
�

, this is not done. The reason for this is that, if the variables are set precisely to the values of the
atmosphere, then very small errors would start to move certain cells above the atmosphere values. This
would lead to waves of matter falling onto the compact object which, despite the extremely low density
(typically only an order of magnitude higher than the floor), will influence the evolution; for example, in
the case of isolated NS, this produces visible secondary overtones in the oscillations of, e.g., the central
density. Note that the atmosphere values used for the calculation of the initial data and the ones used
during the simulations need not be the same. Indeed, we typically set the initial atmosphere values to
be two orders of magnitude smaller than the evolved ones to minimize initial truncation error problems
leading to spurious low-density-matter waves across the atmosphere.
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With appropriate choices of the parameters regulating the atmosphere implementation, the evolution
of the compact objects in our simulations is not affected by the atmosphere. As an example, we anticipate
here a quantitative measure of the influence of the atmosphere during the collapse of rotating NS (cf.
Section 5.3.2); once the apparent horizon has been found and all of the stellar material has fallen inside,
the atmosphere continues to fall in. However, at the measured accretion rate, it would take an evolution
time of � � � � � to produce a net increase of � � � in the black hole mass. Clearly, these systematic
errors are well below the truncation errors even at our present highest resolutions.

4.3.5 Hydrodynamical excision

Excision boundaries are usually based on the principle that a region of spacetime that is causally
disconnected can be ignored without this affecting the solution in the remaining portion of the spacetime.
Although this is true for signals and perturbations travelling at physical speeds, numerical calculations
may violate this assumption and disturbances, such as gauge waves, may travel at larger speeds thus
leaving the physically disconnected regions.

A first naive implementation of an excision algorithm within a HRSC method could ensure that the
data used to construct the flux at the excision boundary is extrapolated from data outside the excision
region. This may appear to be a good idea since HRSC methods naturally change the stencils depending
on the data locally. In general, however, this approach is not guaranteed to reduce the total variation of
the solution (indeed, in practice, we have observed that this is not the case).

An effective solution, however, is not much more complicated and can be obtained by applying at
the excision boundary the simplest outflow boundary condition (here, by outflow we mean flow into
the excision region). In practice, we apply a zeroth-order extrapolation to all variables at the boundary,
i.e. a simple copy of the hydrodynamical variables across the excision boundary. Note that setting the
hydrodynamical fields inside the excised region to zero (this is what is done, for instance, in codes
using artificial viscosity methods [89]) would still yield an outflow boundary condition, but leads to
incorrect outflow speeds. If the reconstruction method requires more cells inside the excision region, we
force the stencil to only consider the data in the exterior and the first interior cell. Although the actual
implementation of this excision technique may depend on the reconstruction method used, the working
principle is always the same.

We have not directly participated to the implementation and testing of the excision algorithm in
Whisky; we report here the work done by our collaborators Hawke, Löffler and Nerozzi [117]. The
location of the excision boundary itself is based on the determination of the apparent horizon which,
within the Cactus code, is obtained using the fast apparent-horizon finder of Thornburg [240]. We
note that for the cubical region that is excised on a Cartesian grid to be a true trapped surface it may
have to be placed well within the horizon, as pointed out by [63]. So our excision boundary is placed
a few grid points (typically four) within a surface which is typically 0.6 times the size of the apparent
horizon. This may still not be a suitable outflow boundary on a Cartesian grid, as pointed out by [126, 63].
However, similar or larger excision regions show no problems in vacuum evolutions and since the sound-
cones are always contained within the light-cones, we expect no additional problems to arise from the
hydrodynamics.

As a summary of what we have mentioned above, we schematically report the outline of our method
for solving the hydrodynamics equations on numerical grids containing excised regions:

i) any point for which all possible reconstruction stencils are not contained within the excision region
are evolved in the normal fashion;
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ii) all points within the excision region are not evolved;

iii) for all other points (i.e. those that are not in the excised region, but that have stencils containing
at least one excised point), the stencil is modified in such a way that it does not contain excised
points, even if this operation forces us to use a non-standard stencils for the selected reconstruction
method.

The solution for the points on the excision boundary are not computed using Riemann solvers. We
know, in fact, that all the information required to compute the solution at a point of type iii) must come
from the exterior of the excised region. Therefore at the internal cell interfaces of these points we simply
calculate the fluxes from the exterior reconstruction only.

To conclude the discussion on the excision of the hydrodynamical variables, in addition to what
mentioned above, we report below how the stencil is altered when different reconstruction methods are
used.

� Slope-limited TVD reconstruction. In this case, only the reconstructions at
�

� � 	�� � (the subscript
� indicates the point on the excision boundary) are affected by the excision region. Thus set-
ting 4 � 
 �

[cf. (3.6.70)] ensures that only data outside the excision region are used, which is
consistent with the TVD reconstruction.

� ENO reconstruction. As described in Section 3.6.2, the ENO methods use a stencil of width � ,
where � is the order of accuracy. Hence the reconstruction in the cells centred between

�
� and�

� � ( * � are affected by the excision region. However, it is easy to ensure that the stencil chosen
by the ENO reconstruction does not include points from inside the excision region. In practice,
if after checking the Newton divided differences the stencil giving the smoothest solution is one
containing an excised point, this is discarded and the next smoothest stencil not containing excised
points is instead selected.

� PPM reconstruction. We have not attempted to find a consistent third-order reconstruction for
these points. Instead, we use the same reconstruction as in the TVD case. Since this provides a
second-order stable reconstruction at an outflow boundary, it does not affect the order of accuracy
in the rest of the domain.
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4.4 Numerical Tests

This section is devoted to the tests and thus to the validation of Whisky. Indeed, validation rep-
resents an important aspect of the development of any code. The reasons for this are rather simple and
are related to: i) the lack of precise knowledge of the space of solutions of the coupled system of the
Einstein and general relativistic hydrodynamics equations; ii) the likely chance that coding errors are
made in the implementation of the thousands of terms involved in the solution of such a complicated set
of coupled PDEs; iii) the complexity of the computational infrastructure needed for the use of the code
in a massively parallel environment which increases the risk of computational errors.

In addition to comparing the numerically computed solutions to available analytical solutions and to
assessing its convergence in model problems, it is also fundamental to validate the convergence prop-
erties for each physical problem under study and to confirm that they hold up to the time when the
desired physical information is extracted. We will do so in each of the following chapters, devoted to the
application of Whisky to specific physical problems.

The tests presented here1 will show both the accuracy and the convergence of our implementation of
the conservative formulation of the general-relativistic hydrodynamics equations, which are coupled to
a conformal transverse traceless formulation of the Einstein equations (cf. Chapters 2 and 3). They will
also show the ability of the code to follow stably the linear and non-linear dynamics of isolated relativistic
stars. More specifically, we will first present results of shock-tube tests and then of the linear pulsations
of spherical and rapidly rotating stars. The computed frequencies of radial and quasi-radial oscillations
will be compared with the corresponding frequencies obtained with lower-dimensional numerical codes
or with alternative techniques such as the Cowling approximation (in which the spacetime is held fixed
and only the general relativistic hydrodynamics equations are evolved) or with relativistic perturbative
methods.

We will also investigate the non-linear dynamics of stellar models that are unstable to the fundamental
radial mode of pulsation. We will show that, upon the addition of a small perturbation, the unstable
models will either collapse to a black hole or migrate to a configuration in the stable branch of equilibrium
configurations.

4.4.1 Shock-tube test

First of all, we consider a standard shock-tube test, setting as initial data a global Riemann problem.
In order to test the 3-dimensional capabilities of our code, we have set the initial discontinuity for the
Riemann problem to be orthogonal to the main diagonal of the cubic grid. More precisely the initial data
consist of a left and right state with values9�� 
 ��� � � 
�� � � � � - � � � � � � � 
 �9 � 
 � � � � � 
�� � � � � � � � � 
 �

(4.4.42)

An ideal-fluid EoS with � 
 � � � was used for the evolution. In Fig. 4.2 we show the solution at a given
time together with the exact solution. The agreement of the two sets of curves is remarkable, especially
if one bears in mind that the initial discontinuity does not propagate along a coordinate direction.

Since the shock-tube test is the most fundamental test and easiest to interpret, we also use it to assess
the accuracy of the different numerical methods we have implemented. In particular, in Fig. 4.3, we show
the comparison of the solution for the density obtained with different TVD reconstruction methods for

1Some of the most representative of these tests and results have also been reported in [32, 31].
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Figure 4.2: Solution of a Riemann problem set on the main diagonal of a cubic grid. The figure shows the comparison of the
hydrodynamical variables evolved by Whisky, indicated with symbols, with the exact solution. The numerical simulation was
obtained with the van Leer reconstruction method and the Roe solver, on a grid with

��
�� � points.

the same problem as in Fig. 4.2. We use the density in order to make such a comparison because in the
shock-tube test with the initial data (4.4.42) the evolution of the density is the most difficult to reproduce
accurately, since with the typical resolution of 3-dimensional calculations the region included between
the shock and the contact discontinuity is covered only by a small number of points. From the upper
panels of the figure, it is possible to note that the minmod slope limiter is the one which produces the
most diffusive evolution, both near the contact discontinuity and in the top part of the rarefaction wave.
The van Leer reconstruction, instead, produces accurate results even at this medium resolution. The
central panels of Fig. 4.3 show a comparison among different orders of accuracy for the ENO method;
we note that using an ENO order of accuracy higher than four produces only small improvements in the
reconstruction, while increasing considerably the computational resources required, because of the wider
stencil. The lower panels show a comparison among our best TVD method (i.e. the van Leer one), the
ENO method of fourth order and the PPM method with default values of the parameters. We note that,
while ENO and PPM give similar results, they are clearly better than TVD reconstruction. As already
mentioned in Section 3.6, we typically choose the PPM reconstruction, because it is the best compromise
between accuracy and computational efficiency.

4.4.2 Tolman Oppenheimer Volkoff stars and rotating stars

Next, we consider the evolution of stable relativistic polytropic spherical stars. Since these represent
static solutions, no evolution is expected, at least in the absence of any truncation error. Yet, as shown in
Fig. 4.4 which refers to a stable TOV star with rest mass � A 
 � � 8 � � and polytropic exponent � 
 �

,
both a small periodic oscillation and a small secular increase of the stellar central density are detected
during the numerical evolution of the equations. Both effects have, however, a single explanation and
at least one of them faithfully reproduces physical process. Since the initial data contains also a small
truncation error, this is responsible for triggering quasi-radial oscillations which appear as periodic vari-
ations in the central density. As the resolution is increased, the truncation error is reduced and so is the
amplitude of the oscillation. The secular growth, on the other hand, is a purely numerical problem, which
also shows up as a growing violation of the constraint equations. As for the oscillations, also the secular
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Figure 4.3: Solution of the same Riemann problem as in Fig 4.2, but for the rest-mass density only. The figure shows the
comparison of the exact solution for the density with the solution evolved by Whisky with different reconstruction methods,
indicated with symbols. The right panels are magnifications of the corresponding left panels. The upper panels show a compar-
ison among the TVD methods; the central panels show a comparison among the ENO method with different orders of accuracy;
the lower panels show a comparison among our best TVD method (i.e. the van Leer one), the ENO method of fourth order and
the PPM. All these numerical simulations were obtained with the Roe solver, on a grid with ������� points.
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Figure 4.4: Central rest-mass density, normalized to the initial value, in a stable TOV star with rest mass ����� � A 
 ��� and
polytropic exponent ��� �

. Different lines refer to different resolutions and all were obtained with a PPM reconstruction and
the Marquina flux formula.
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Figure 4.5: Central rest-mass density, normalized to the initial value, in a stable TOV star with rest mass � � � � A 
 � � and
polytropic exponent ��� �

, evolved with the Marquina flux formula on a grid with
	�
 � points. The figure shows the comparison

between the PPM and the van Leer reconstruction methods.

growth converges to zero with increasing resolution.

Using the initial data described above, we have compared the evolutions obtained with a PPM and a
TVD reconstruction. Fig. 4.5 shows the central density oscillations obtained with the PPM reconstruction
and those obtained with the best of the TVD methods (i.e. the van Leer slope limiter) and highlights how
the PPM reconstruction scheme has proved to be more accurate than the TVD one. Note that the PPM
reconstruction is more effective in reducing both the initial truncation error (as shown by the smaller
amplitudes in the oscillations) and the secular error (as shown by the smaller growth rate).

The convergence properties of the code are also shown in the growth of the Hamiltonian constraint
violation. Fig. 4.6 shows that almost second-order convergence is achieved. Note that the convergence
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Figure 4.6: The ��� norm of the Hamiltonian constraint violation for the same evolutions as in Fig. 4.4.

Figure 4.7: Power-spectrum density of the central mass-density evolution of an �����	��
 �
��� , ����� stable TOV star
performed on a grid with �����

�
points. The units of the vertical axis are arbitrary.

rate is not exactly second order but slightly smaller, because the reconstruction schemes are only first-
order accurate at local extrema (i.e. the centre and the surface of the star) thus increasing the overall
truncation error [7].

In order to further investigate the accuracy of our implementation of the hydrodynamics equations,
we have suppressed the spacetime evolution and solved only the hydrodynamics equations in the fixed
spacetime of the initial TOV solution. This approximation is referred to as the Cowling approximation
and is widely used in perturbative studies of oscillating stars, in which the perturbation in the background
metric (or in the gravitational potential for Newtonian studies) are neglected. In this case, in addition
to the convergence rate, we have also compared the frequency spectrum of the numerically induced
oscillation with the results obtained by an independent 2-dimensional code [104] and with perturbative
analyses.
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Figure 4.8: Power-spectrum density of the central mass-density evolution of an � � � A 
 � � , � � �
stable uniformly-

rotating star with axes ratio equal to 0.65, i.e. near the mass-shedding limit. The simulation was performed on a grid with
����� �

points. The units of the vertical axis are arbitrary.

In Fig. 4.7 we show a comparison between the two codes reporting the power-spectrum density of
the central density oscillations computed with the Whisky code and the corresponding frequencies as
obtained with perturbative techniques and with the 2-dimensional code. Clearly the agreement is very
good with an error below 1% in the fundamental frequency. The fact that the frequencies computed
with the code coincide with the physical eigenfrequencies calculated through perturbative analysis is a
convincing evidence of consistency. Stated differently, it shows that Whisky is not simply providing a
second-order solution of a set of PDEs, but it is actually providing a consistent solution of the Einstein
field equations in a non-vacuum spacetime. Furthermore, it also shows that we can use our code to study
the physical properties of normal modes of oscillation of relativistic stars; as we will discuss below, this
is of great importance in the case of rapidly rotating stars.

The last test performed in the linear regime consists in the evolution of stationary solutions of rapidly
uniformly-rotating stars, with angular velocity up to 95% of the allowed mass-shedding limit for uni-
formly rotating stars. The initial data used for these stars are the same as those used in our studies of
collapse of rotating stars, which we will discuss in Chapter 5. A number of small improvements on the
boundary and gauge conditions have allowed us to extend considerably the timescale of our evolutions
of stable rapidly rotating stars, which can now be evolved for about 10 ms, a timescale which is three
times larger than the one reported in [100]. As in previous tests, the Hamiltonian constraint shows a
convergence rate of nearly second order everywhere, except at the surface and the center of the star.

In analogy with the non-rotating case, the truncation error triggers quasi-radial oscillations in the
star. Such pulsations converge to zero with increasing resolution. Determining the frequency spectrum
of fully-relativistic and rapidly-rotating stars is an important achievement, allowing the investigation of a
parameter space which is astrophysically relevant but too difficult to treat with current perturbative tech-
niques [232]. As we show in Fig. 4.8, the fundamental frequency of the oscillations is well determined
also in this case, while its overtones are not well resolved at this resolution. Furthermore, we notice a
small but distinguishable peak between the fundamental frequency and its first overtone, which has not
been firmly interpreted and could be associated to � -mode oscillations.

Finally, we have considered tests of the non-linear dynamics of isolated spherical relativistic stars
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Figure 4.9: Normalized central mass-density evolution of an � � � � A 
 ��� , � � �
unstable TOV star performed on a grid

with
��	 � points.

(analogous tests could be carried out for rotating stars). To this purpose we have constructed TOV
solutions that are placed on the unstable branch of the equilibrium configurations (see inset of Fig. 4.9).
The truncation error in the initial data for a TOV solution is sufficient to move the model to a different
configuration and in Whisky this leads to a rapid migration toward a stable configuration of equal rest
mass but smaller central density. Such a violent expansion produces large amplitude oscillations (that
are essentially radial) in the star that are either at constant amplitude, if the polytropic EoS (4.2.1) is
used, or are damped through shock heating, if the ideal-fluid EoS (4.2.3) is used and the equation for � is
evolved in time. A summary of this dynamics is presented in Fig. 4.9, which shows the time series of the
normalized central density for a TOV solution. Note that the asymptotic central density tends to a value
corresponding to a rest mass slightly smaller than the initial one (straight dotted line). This is the energy
loss due to the internal dissipation.

Note that the migration to the stable branch is only one of the two possible evolutions of the unstable
configurations. The other is, of course, that leading to a black-hole formation, in which the star moves
to increasingly larger density configurations. This requires the addition of a small perturbation in the
pressure and will be discussed in detail in the following chapter.

4.4.3 Other tests

Several other tests on specific parts of the code were performed in the initial stages of its development
in order to check the possible presence of implementation errors. It would be uninteresting even to report
their list.

Instead, another important test has recently been performed to check the excision algorithm. It
consists in comparing the exact and numerically evolved Michel solution [159], i.e. a steady-state
spherically-symmetric solution for accretion onto a compact object, a Schwarzschild black hole in this
case. This solution has been used to validate axisymmetric hydrodynamical excision also by other groups
[182, 101]. We do not report the results of these tests here, because we were not directly involved with
them, although they were obtained by using the code we have developed. We just point out that also
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these tests were very successful [117]. We also wish to underline that, instead, we directly performed all
the other tests, both those here reported and those not reported.

4.5 Further code development

Several people are constantly working on further development and improvement of Whisky. New
analysis tools are frequently added and the existing ones are refined. In addition to these, far-reaching
development is also under way; this involves the extension of the code to incorporate the evolution
of magnetic fields (magneto-hydrodynamics) and of non-ideal fluids, with the inclusion of physically-
realistic processes such as radiation transport and viscosity. The possibility to use tabulated EoSs has
been recently implemented, even though it is not yet computationally efficient.



Chapter 5

Collapse of uniformly-rotating neutron
stars

After outlining the structure of the implementation of our code and after illustrating the physical and
numerical theory upon which it is based, we now come to the first extended application of Whisky in
the study of a physical problem. In the present chapter we report the application of Whisky to the study
of gravitational collapse of rotating NS models.

5.1 Description of the problem and previous work

The numerical investigation of gravitational collapse of rotating stellar configurations leading to
black-hole formation is a long standing problem in numerical relativity. However, it is through numerical
simulations in general relativity that one can hope to improve our knowledge of fundamental aspects of
Einstein’s theory such as the cosmic-censorship hypothesis and black-hole no-hair theorems, along with
that of current open issues in relativistic-astrophysics research, such as the mechanism responsible for
� -ray bursts. Furthermore, numerical simulations of stellar gravitational collapse to black holes provide
a unique mean of computing the gravitational waveforms emitted in such events, believed to be among
the most important sources of detectable gravitational radiation.

However, the modelling of black-hole spacetimes with collapsing matter sources in multidimensions
is one of the most formidable efforts of numerical relativity. This is due, on one hand, to the inher-
ent difficulties and complexities of the system of equations which is to be integrated, the Einstein field
equations coupled to the general-relativistic hydrodynamics equations, and, on the other hand, to the
immense computational resources needed to integrate the equations in the case of 3-dimensional evolu-
tions. In addition to the practical difficulties encountered in the accurate treatment of the hydrodynamics
involved in the gravitational collapse of a rotating NS to a black hole, the precise numerical computation
of the gravitational radiation emitted in the process is particularly challenging as the energy released in
gravitational waves is much smaller than the total rest-mass energy of the system.

The presence of rotation in the collapsing stellar models requires multidimensional investigations,
either in axisymmetry or in full 3 dimensions. The numerical investigations of black-hole formation (be-
yond spherical symmetry) started in the early 1980’s with the pioneering work of Nakamura [174]. He
adopted the (2+1)+1 formulation of the Einstein equations in cylindrical coordinates and introduced reg-
ularity conditions to avoid divergences at coordinate singularities. Nakamura used a “hypergeometric”
slicing condition which prevents the grid points from reaching the singularity when a black hole forms.
The simulations could track the evolution of the collapse of a � � � � “core” of a massive star with dif-
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ferent amounts of rotational energy, up to the formation of a rotating black hole. However, the numerical
scheme employed was not accurate enough to compute the emitted gravitational radiation. In subsequent
works, Nakamura [171] (see also [173]) considered a configuration consisting of a NS with an accreting
envelope, which was thought to mimic mass fall-back in a supernova explosion. Rotation and infall ve-
locity were added to such a configuration, simulating an evolution dependent on the prescribed rotation
rates and rotation laws.

Later on, in a series of articles [38, 229, 230, 231], Bardeen, Stark and Piran studied the collapse of
rotating relativistic polytropes to black holes, succeeding in computing the associated gravitational radi-
ation. The gravitational-field and hydrodynamics equations were formulated using the

� � � formalism in
two spatial dimensions, using the radial gauge and a mixture of singularity-avoiding polar and maximal
slicings. The initial model was a spherically-symmetric relativistic polytrope of mass � in equilibrium.
The gravitational collapse was induced by lowering the pressure in the initial model by a prescribed (and
very large: 60-99%) fraction and by simultaneously adding an angular-momentum distribution approx-
imating rigid-body rotation. Their simulations showed that Kerr black-hole formation occurs only for
angular momenta less than a critical value. Furthermore, the energy

' � carried away through gravita-
tional waves from the collapse to a Kerr black hole was found to be

' � � ��	 � � � - � � ��� , the shape of
the waveforms being nearly independent of the details of the collapse (cf. Fig. 5.18).

The axisymmetric codes employed in the aforementioned works adopted curvilinear coordinate sys-
tems which may lead to long-term numerical instabilities at coordinate singularities. These coordinate
problems are not actually serious in 2-dimensional simulations, but they have deterred researchers from
building 3-dimensional codes in spherical coordinates. Recently, a general-purpose method (called “car-
toon”), has been proposed to enforce axisymmetry in numerical codes based on Cartesian coordinates
and which does not suffer from stability problems at coordinate singularities [7]. It should be noted,
however, that the stability properties of the cartoon method are not fully understood yet, as discussed
by [105]. Using this method, Shibata [211] investigated the effects of rotation on the criterion for prompt
adiabatic collapse of rigidly and differentially-rotating polytropes to a black hole, finding that the crite-
rion for black-hole formation depends strongly on the amount of angular momentum, but only weakly
on its (initial) distribution. The effects of shock heating when using a non-isentropic EoS are important
in preventing prompt collapse to black holes in the case of large rotation rates.

More recently, Shibata [212, 213] has performed axisymmetric simulations of the collapse of rotating
supramassive NSs to black holes for a wide range of polytropic EoSs and with an improved implemen-
tation of the hydrodynamics solver (based on approximate Riemann solvers) with respect to the original
implementation used in [211]. Parameterizing the “stiffness” of the EoS through the polytropic index�

, the final state of the collapse is a Kerr black hole without any noticeable disc formation, when the
polytropic index

�
is in the range

� � � � � � �
. Based on the specific angular-momentum distribution

in the initial star, Shibata has estimated an upper limit to the mass of a possible disc as being less than
� � � 
 of the initial stellar mass [213]. Unfortunately, such small masses cannot currently be confirmed
with the presently-available resolutions in 3-dimensional simulations on uniform grids.

3-dimensional, fully-relativistic simulations of the collapse of supramassive uniformly-rotating NSs
to rotating black holes were presented in [214]. The simulations focused on

� 
 � polytropes and
showed no evidence of massive disc formation or outflows. These results are in agreement with those
obtained in axisymmetry [212, 213] and with the new simulations reported by [89] (both in axisymmetry
and in 3 dimensions) which show that for a rapidly-rotating polytrope with � � � � � � ���

( � being the
angular momentum) all the mass falls promptly into the black hole, with no disc being formed. Hence,
all existing simulations agree that massive disc formation from the collapse of NSs, if at all possible,
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Figure 5.1: Gravitational mass shown as a function of the central energy density for equilibrium models constructed with
the polytropic EoS, for � � �

and polytropic constant ��� � � � ���
. The solid, dashed and dotted lines correspond to the

sequence of non-rotating models, the sequence of models rotating at the mass-shedding limit and the sequence of models
that are at the onset of the secular instability to axisymmetric perturbations. Also shown are the secularly (open circles) and
dynamically-unstable (filled circles) initial models used in the collapse simulations.

requires differential rotation, at least for a polytropic EoS with � � � � �
.

Here, we present the results of new, fully-3-dimensional simulations of gravitational collapse of
uniformly-rotating NSs, both secularly and dynamically unstable, which we model as relativistic poly-
tropes. The angular velocities of our sample of initial models range from slow rotation to the mass-
shedding limit. For the first time in such 3-dimensional simulations, we have detected the event horizon
of the forming black hole and showed that it can be used to achieve a more accurate determination of
the black-hole mass and spin than it would be otherwise possible using the area of the apparent horizon.
We have also considered several other approaches to measure the properties of the newly-formed Kerr
black hole, including the recently proposed isolated and dynamical horizon frameworks. A comparison
among the different methods has indicated that the dynamical horizon approach is simple to implement
and yields estimates which are accurate and more robust than those of the equivalent methods. Also
for the first time in 3-dimensional simulations, we have reliably computed the gravitational waveforms
produced during the collapse and we have found a remarkable agreement both with the waveforms calcu-
lated by Stark and Piran [229] in axisymmetry and with the frequencies calculated in perturbation theory
for NS and black-hole oscillations.

5.2 Initial stellar models

Given equilibrium models of gravitational mass � and central energy density � � along a sequence
of fixed angular momentum or fixed rest mass, the Friedman, Ipser and Sorkin criterion ��� � � � � 
 �
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[106] can be used to locate the exact onset of the secular instability to axisymmetric collapse. The onset
of the dynamical instability to collapse is located near that of the secular instability, but at somewhat
larger central energy densities. Unfortunately, no simple criterion exists to determine this location, but
the expectation mentioned above has been confirmed by the simulations performed here and by those dis-
cussed in [214]. Note that in the absence of viscosity or strong magnetic fields, the star is not constrained
to rotate uniformly after the onset of the secular instability and could develop differential rotation. In a
realistic NS, however, viscosity or intense magnetic fields are likely to enforce a uniform rotation and
cause the star to collapse soon after it passes the secular-instability limit.

The initial data for our simulations are constructed using the 2-dimensional numerical code of Ster-
gioulas [234], that computes accurate stationary equilibrium solutions for axisymmetric and rapidly-
rotating relativistic stars in polar coordinates. The data are then transformed to Cartesian coordinates
using standard coordinate transformations. The same initial data routines have been used in previous
3-dimensional simulations [10, 100, 233] and details on the accuracy of the code can be found in [232].
Our calculations are starting from initially-axisymmetric stellar models but are performed in full 3 di-
mensions to allow for departures from the initial axial symmetry.

For simplicity, we have focused on initial models constructed with the polytropic EoS (4.2.1), choos-
ing � 
 �

and polytropic constant
'���� 
 � � �

to produce stellar models that are, at least qualitatively,
representative of what is expected from observations of NSs. More specifically, we have selected four
models located on the line defining the onset of the secular instability and having polar-to-equatorial axes
ratio of roughly 0.95, 0.85, 0.75 and 0.65 (these models are indicated as S1–S4, respectively, in Fig.5.1).
Four additional models were defined by increasing the central energy density of the secularly unstable
models by � � , keeping the same axis ratio. These models (indicated as D1–D4 in Fig.5.1) were expected
and have been found to be dynamically unstable.

Fig. 5.1 shows the gravitational mass as a function of the central energy density for equilibrium mod-
els constructed with the chosen polytropic EoS. The solid, dashed and dotted lines correspond respec-
tively to the sequence of non-rotating models, the sequence of models rotating at the mass-shedding limit
and the sequence of models that are at the onset of the secular instability to axisymmetric perturbations.
Furthermore, the secularly and dynamically-unstable initial models used in the collapse simulations are
shown as open and filled circles, respectively.

Table 5.1 summarizes the main equilibrium properties of the initial models. The circumferential
equatorial radius is denoted as

���
, while

�
is the angular velocity with respect to an inertial observer

at infinity, and �
� � � � is the ratio of the polar to equatorial coordinate radii. The height of the corotating

innermost stable circular orbit (ISCO) is defined as � * 
 � * � � �
, where

� *
is the circumferential

radius for a corotating ISCO observer. Note that in those models for which a value of � * is not reported,
all circular geodesic orbits outside the stellar surface are stable. Other quantities shown are the central
rest-mass density 9 � , the angular momentum � and the ratio of rotational kinetic energy to gravitational
binding energy � � � � � .

5.3 Dynamics of the matter

All the simulations reported in this and the next section have been computed using a uniformly-
spaced computational grid for which symmetry conditions are imposed across the equatorial plane. Sev-
eral different spatial resolutions have been used to check convergence and improve the accuracy of the
results, with the finest resolution having been obtained using

� � � � - �;8 8 cells. While the precise num-
bers depend on the resolution used and on the model simulated, as a general rule we have used � � ���
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Table 5.1: Equilibrium properties of the initial stellar models. The different columns refer respectively to: the central rest-
mass density ��� , the ratio of the polar to equatorial coordinate radii � ��� ��� , the gravitational mass � , the circumferential
equatorial radius � � , the angular velocity 	 , the ratio 
 � � � where 
 is the angular momentum, the ratio of rotational kinetic
energy to gravitational binding energy � ��� 
�� and the “height” of the corotating ISCO � � . All models have been computed
with a polytropic EoS with � � � � � � �

and ��� �
.

Model 9��� �
� � � � � � � ��� � � � � � � � � � � � *

S1 3.154 0.95 1.666 7.82 1.69 0.207 1.16 1.18
S2 3.066 0.85 1.729 8.30 2.83 0.363 3.53 0.51
S3 3.013 0.75 1.798 8.90 3.49 0.470 5.82 0.04
S4 2.995 0.65 1.863 9.76 3.88 0.545 7.72 –

D1 3.280 0.95 1.665 7.74 1.73 0.206 1.16 1.26
D2 3.189 0.85 1.728 8.21 2.88 0.362 3.52 0.58
D3 3.134 0.75 1.797 8.80 3.55 0.468 5.79 0.10
D4 3.116 0.65 1.861 9.65 3.95 0.543 7.67 –

� - � � � 
� - � � � �
of the grid points in the

�
direction to cover the star in the case D1 and � � � � of the grid points in

the
�

direction to cover the star in D4. As a result, the outer boundary is set at �

� � �
times the stellar

equatorial radius for D1 and at � � � 8 times the stellar equatorial radius for D4.

The hydrodynamics equations have been solved employing the Marquina flux formula and the PPM
reconstruction. The “ � � log” slicing condition and the “Gamma-driver” shift conditions [11] have been
used. The time update of all the equations has been performed using the ICN evolution scheme. Finally,
both polytropic and ideal-fluid EoSs have been used, although no significant difference has been found in
the dynamics between the two cases. This is most probably related to the small � � � �

of the uniformly-
rotating initial models considered here. This implies a relatively rapid collapse and as a result we do not
see any shocks form (see below for a more complete discussion). Hereafter, we will restrict our attention
to a polytropic EoS only.

Given an initial stellar model which is dynamically unstable, simple round-off errors would be suffi-
cient to produce an evolution leading either to the gravitational collapse to a black hole or to the migration
to the stable branch of the equilibrium configurations [100] (cf. Section 4.4.2). In general, however, leav-
ing the onset of the dynamical instability to the cumulative effect of the numerical truncation error is not
a good idea, since this produces instability-growth times that are dependent on the grid-resolution used.

For this reason, we induce the collapse by slightly reducing the pressure in the initial configura-
tion. This is done uniformly throughout the star by using a polytropic constant for the evolution

'
that is smaller than the one used to calculate the initial data

' ���
. The accuracy of the code is such

that only very small perturbations are sufficient to produce the collapse and we have usually adopted
� ' ��� � ' � � ' ����� � �

.

After imposing the pressure reduction, the Hamiltonian and momentum constraints are solved with
the York procedure [262] to enforce that the constraint violation is at the truncation-error level. We name
this procedure as the solution of the initial-value problem (IVP), which ensures that second-order con-
vergence holds from the start of the simulations, as shown in Fig. 5.2 for the � � norm of the Hamiltonian
constraint. Note that a strict second-order convergence is lost when the excision is introduced: although
the code remains convergent at a lower rate, while the norm of the Hamiltonian constraint starts to grow
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Figure 5.2: � � norm of the Hamiltonian constraint violation for the initial model D1 shown as a function of time. The
different lines refer to different grid resolutions, but in all cases the IVP was solved after the pressure was uniformly decreased
to trigger the collapse.

exponentially (this is not shown in Fig. 5.2). We are presently investigating the origin of the deterioration
of the convergence rate at the time of excision, although this is somewhat unavoidable when excising a
spherical region in a Cartesian rectangular grid in the course of the evolution.

If, on the other hand, the IVP is not solved after the pressure change, the constraints violation in-
creases twice as fast and converges to second order only after an initial period of about

� � � �

� � � � ms.
To assess the validity of our procedure to trigger the collapse, we also perform the pressure change after
the evolution has started and without solving the IVP. In this case, and after the system has recovered
from the perturbation, the violation of the constraints is only a few percent different from the case in
which the IVP is solved. Furthermore, other dynamical features of the collapse, such as the instant at
which the apparent horizon is first formed (see Section 5.4 for a detailed discussion), do not vary by more
than 1%.

The dynamics resulting from the collapse of models S1–S4 and D1–D4 are extremely similar and no
qualitative differences have been detected. However, as one would expect, models D1–D4 collapse more
rapidly to a black hole (the formation of the apparent horizon appears about 5% earlier in coordinate
time), are computationally less expensive and therefore better suited for a detailed investigation. As a
result, in what follows we will restrict our discussion to the collapse of the dynamically-unstable models
and distinguish the dynamics of case D1, in Section 5.3.1, from that of model D4, in Section 5.3.2.

5.3.1 Slowly-rotating stellar models

We start by discussing the dynamics of the matter by looking at the evolution of the initial stellar
model D1 which is slowly-rotating (thus almost spherical, with �

� � � � 
 � ��� � ) and has the largest central
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Figure 5.3: Collapse sequence for the slowly-rotating model D1. Different panels refer to different snapshots during the
collapse and show the isocontours of the rest-mass density and the velocity field in the ������� � plane (left column) and in the
������� � plane (right column), respectively. The isobaric surfaces are logarithmically spaced and a reference length for the vector
field is shown in the lower right panel for a velocity of

� A ��� .
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Figure 5.4: Magnified view of the final stages of the collapse of models D1. The representative spherical region where the
singularity has formed is excised from the computational domain and is shown as a shaded area. Also shown with a thick
dashed line is the coordinate location of the apparent horizon. Note that because of rotation this surface is not a 2-sphere,
although the departures are not significant and cannot be appreciated from the Figure (cf. Fig. 5.17 for a clearer view).

density (cf. Fig. 5.1 and Table 5.1). We show in Figs. 5.3–5.4 some representative snapshots of the
evolution of this initial model. The different panels of Fig. 5.3, in particular, refer to the initial and
intermediate stages of the collapse and show the isocontours of the rest-mass density and the velocity
field in the � � � � � plane (left column) and in the � � � � � plane (right column), respectively. The isobaric
surfaces are logarithmically spaced starting from 9 
 � � � - � � � � and going up to 9 
 � � � - � � � 
 at the
stellar interior. The velocity vector field is expressed in units of 	 and the length for a velocity of

� � � 	
is shown in the lower right panel. The units on both axes refer to coordinate lengths. This sequence has
been obtained with a grid of

� � � � - �;8 8 zones but the data for the velocity field has been down-sampled
to produce clearer figures and restricted to a single octant in the � � � � � plane to provide a magnified view.

During the collapse of model D1 spherical symmetry is almost preserved; as the star increases its
compactness and the matter is compressed to larger pressures, the velocity field acquires a radial com-
ponent (which was zero initially) that grows to relativistic values. This is clearly shown in the panels
at
( 
 � � 8 �

ms and
( 
 � � � 8 ms, which indicate that the star roughly preserves the ratio of its polar

�
�

and equatorial � � radii (see also Fig. 5.7), while radial velocities in excess of �

� � � � 	 can be eas-
ily reached. The behaviour of the angular velocity during this collapse will be analysed in more detail
in Section 5.3.3, but we can here anticipate that it does not show appreciable departures from a profile
which is uniform inside the star.

Soon after
( 
 � � � 8 ms, (i.e. at

( 
 � � � 8�� � � 
 � � � � � � � in the high-resolution run), an apparent
horizon is found and when this has grown to a sufficiently large area, the portion of the computational
domain containing the singularity is excised. The use of an excised region and the removal of the sin-
gularity from the computational domain has proven essential for extending the calculations significantly
past this point in time. Fig. 5.4 shows a magnified view of the final stages of the collapse of model D1.
Indicated as a shaded area is the excised region of the computational domain, which is an approximation
of a sphere on the uniform Cartesian grid, i.e. a legosphere.

Also shown with a thick dashed line is the coordinate location of the apparent horizon and it should be
remarked that, because of rotation, this surface is not a coordinate 2-sphere, although the departures are
not significant and cannot be appreciated in Fig. 5.4 (see Sect. 5.4 and Table 5.2 for details). Interestingly,
at
( 
 � � � � ms, the time which Fig. 5.4 refers to, most of the matter has already fallen within the apparent



62 CHAPTER 5. COLLAPSE OF UNIFORMLY-ROTATING NEUTRON STARS

horizon and the oblate shape that the stellar matter has assumed at this stage is a first effect of the
centrifugal corrections which will become more evident when discussing the collapse of rapidly-rotating
models in Section 5.3.2.

The numerical calculations were carried out up to
(�� � ��� � � � � � � � � , thus using an excised

region in a dynamical spacetime for more than
� � % of the total computing time. By this point, all the

stellar matter has collapsed well within the event horizon and the Hamiltonian constraint violation has
become very large.

Overall, confirming what was already discussed by several authors in the past, the gravitational col-
lapse of the slowly-rotating stellar model D1 takes place in an almost spherical manner and we have
found no evidence of shock formation which could prevent the prompt collapse to a black hole, nor ap-
preciable deviations from axisymmetry (cf. left panel of Fig. 5.4). It is possible, although not likely, that
these qualitative features may be altered when a realistic EoS is used, since in this case shocks may ap-
pear, whose heating could stall or prevent the prompt collapse to a black hole. However, more dramatic
changes are expected to appear if the initial configurations are chosen to have larger initial angular mo-
menta and in particular when � � � ��� � [212, 89]. A first anticipation of the important corrections that
centrifugal effects could produce is presented in the following Section, where we examine the dynamics
of a rapidly-rotating stellar model.

5.3.2 Rapidly-rotating stellar models

We next consider the dynamics of the matter during the collapse of model D4 which, being rapidly
rotating, is already rather flattened initially (i.e. �

� � � � 
 � � � � ) and has the largest � � � �
among the

dynamically-unstable models (cf. Fig. 5.1 and Table 5.1).

As for the slowly-rotating star D1, we show in Figs. 5.5– 5.6 some representative snapshots of the
evolution of this rapidly-rotating model. The data has been computed using the same resolution of� � � � - �;8 8 zones and the isocontour levels shown for the rest-mass density are the same used in Fig. 5.3–
5.4. It is apparent from the panels of Fig. 5.5 referring to

( 
 �
, that model D4 is considerably more

oblate than D1, as one would expect for a star rotating at almost the mass-shedding limit.

Note, in particular, how the dynamics is very similar to the one discussed for model D1 up to a time(
�

� � 8 �
ms. However, as the collapse proceeds, significant differences between the two models start to

emerge and in the case of model D4 the large angular velocity of the progenitor stellar model produces
significant deviations from a spherical infall. Indeed, the parts of the star around the rotation axis that
are experiencing smaller centrifugal forces collapse more promptly and, as a result, the configuration
increases its oblateness.

This is illustrated in Fig. 5.7, which shows the time evolution of the ratio of the polar and equatorial
proper radii for all models in Table 5.1 (note that these ratios should not be confused with those in
Table 5.1 that refer, instead, to coordinate radii). Each curve in Fig. 5.7 extends until all the matter along
the � -axis has fallen inside the apparent horizon of the newly-formed black hole. Clearly, in all cases
the oblateness increases as the collapse proceeds and this is much more evident for those stellar models
that are rapidly rotating initially. In particular, for the most rapidly-rotating models D4 and S4, the ratio
between polar and equatorial proper radii becomes as small as 0.45 at the time when the matter on the
rotation axis gets below the apparent horizon.

At about
( 
 � � � 8 ms (i.e. at

( 
 � � � 8 � � � 
 � � � ��� � � in the high-resolution run), the collapse of
model D4 produces an apparent horizon. Soon after this, the central regions of the computational domain
are excised, preventing the code from crashing and thus allowing for an extended time evolution. The
dynamics of the matter at this stage is shown in the lower panels of Fig. 5.5, which refer to

( 
 � � � �
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Figure 5.5: Collapse sequence for the rapidly-rotating model D4. The conventions used in these panels are the same as
in Fig. 5.3, which can be used for a comparison with the collapse of a slowly-rotating model. Note that the representative
spherical region where the singularity has formed is excised from the computational domain and is indicated as a shaded area.
Also shown with a thick dashed line is the coordinate location of the apparent horizon.
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Figure 5.6: Magnified view of the final stages of the collapse of models D4. Note that the representative spherical region
where the singularity has formed is excised from the computational domain and this is indicated as a shaded area. Also shown
with a thick dashed line is the coordinate location of the apparent horizon. Note that because of the rapid rotation, this surface
has significant departures from a 2-sphere (cf. Fig. 5.17 for a clearer view).

Figure 5.7: Ratio of the proper polar radius to the proper equatorial radius for all the initial models. Each curve ends at the
time when, for each simulation, all the matter along the � -axis has fallen below the apparent horizon.

ms and where both the location of the apparent horizon (thick dashed line) and of the effective excised
region (shaded area) are shown. By this time the star has flattened considerably, all the matter near the
rotation axis has fallen inside the apparent horizon, but a disc of low-density matter has formed near the
equatorial plane and is orbiting at very high velocities

� � � � 	 . This behaviour is the consequence of the
large initial angular momentum of the collapsing matter and the appearance of an effective centrifugal
barrier preventing a purely radial infall of matter far from the rotational axis. Note, in fact, that the radial
velocity at the equator does not increase significantly at the stellar surface between

(�� � � 8 �
and

(�� � � � �
ms, but that it actually slightly decreases (cf. the � � � � � planes in the middle and lower panels of Fig. 5.5).
This is the opposite of what happens for the radial velocity of the fluid elements in the stellar interior on
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Figure 5.8: Rest-mass density of model D4 normalized to the initial value at the stellar centre. The profiles are measured
along the � -axis on the equatorial plane and refer to different times (see main text for details). Line 5, shown as dotted,
corresponds to the time when the apparent horizon is first found. The inset shows a magnified view of the final stages of the
evolution using a logarithmic scale and also the location of the excised region as it grows in time.

the equatorial plane: it grows also in this time interval. A more detailed discussion of this behaviour will
be made in Sect. 5.4.4.

Note that the disc formed outside the apparent horizon is not dynamically stable and, in fact, it
rapidly accretes onto the newly-formed black hole. This is shown in Fig. 5.6, which offers a magnified
view at a later time

( 
 � ��� �
ms. At this stage the disc is considerably flattened but also has large radial

inward velocities which induce it to accrete rapidly onto the black hole. Note that as the area of the
apparent horizon increases, so does the excised region, which is allowed to grow accordingly. This can
be appreciated by comparing the shaded areas in the lower panels of Fig. 5.5 (referring to

( 
 � � � � ms)
with the corresponding ones in Fig. 5.6 (referring to

( 
 � ��� �
ms).

By a time
( 
 � � � � ms, essentially all (i.e. more than

� � ��� �
) of the residual stellar matter has fallen

within the trapped surface of the apparent horizon and the black hole thus formed approaches the Kerr
solution (see Section 5.4). Note that a simple kinematic explanation can be given for the instability of
the disc formed during this oblate collapse and comes from relating the position of the outer edge of the
disc when it first forms, with the location of the ISCO of the newly-formed Kerr black hole. Measuring
accurately the mass and spin of the black hole reveals, in fact, that the ISCO is located at

� 
 � � � � � km,
which is always larger than the outer edge of the disc (cf. lower panels of Fig. 5.5). Such behaviour is not
surprising since we are here dealing with initial models with a moderate � � � �

, that collapse essentially
in a dynamical timescale. As a result, simple point-like particle motion in stationary spacetimes is a
sufficient approximation to the dynamics.

A more quantitative description of the rest-mass density evolution is presented in Fig. 5.8, where
different lines show the profiles of the rest-mass density along the

�
-axis on the equatorial plane. The
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Figure 5.9: Evolution of the mass fraction versus time during the collapse of model D1. The rest mass is measured within
2-spheres of coordinate radii � � � � A � � � A 
 and

� A 	 times the initial stellar equatorial circumferential radius � � (cf. Table 5.1).
Marked with filled dots on the different lines are the times at which the apparent horizon is first found (the data refers to a
simulation with

��	 ��� 
 � grid zones). The inset shows, on a logarithmic scale, the evolution of the normalized rest mass
outside the apparent horizon.

values are normalized to the initial value at the stellar centre, with different labels referring to different
times and in particular to

( 
 � � �
(dashed line),

� � � � � � � 8 � � � � 8 � � � � � 8 � � � � � � � � � � � � ��� 8 � � ��� �
and

� � � �
ms,

respectively. Line 5, furthermore, is shown as dotted and refers to the time when the apparent horizon
is first formed. After this time, the excised region is cut from the computational domain as shown in the
inset of Fig. 5.8, which illustrates the final stages of the evolution. Note that as the matter falls into the
black hole, the apparent horizon increases its radius and thus the location of the excised region moves
outside. This is clearly shown in the inset. Note also that the rest-mass density does not drop to zero
outside the stellar matter but is levelled off to the uniform value of the atmosphere, whose rest-mass
density is seven orders of magnitude smaller than the initial central density. It should be remarked that
such a tenuous atmosphere has no dynamical impact and does not produce any increase of the mass of
the black hole that can be appreciated in our simulations. With such rest-mass densities, in fact, it would
take a time � � � � � to produce a net increase of � � � in the black-hole mass. Clearly, these systematic
errors are well below the truncation errors, even at the highest resolutions.

The simulation ends at
( 
 � ��� � � � � � � � � , when the rest-mass density is everywhere at the

atmosphere level and the violations of the Hamiltonian constraint are large. By this time the evolution
has been carried for more than

� � � of the total time using a singularity excising region. Also in this
case, we do not find evidence of shock formation nor of significant deviations from axisymmetry.

As mentioned in Section 5.1, all simulations to-date agree that no massive and stable discs form for
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Figure 5.10: Evolution of the mass fraction versus time during the collapse of model D4. The rest mass is measured within
2-spheres of coordinate radii � � � � A � � � A 
 and

� A 	 times the initial stellar equatorial circumferential radius � � (cf. Table 5.1).
Marked with filled dots on the different lines are the times at which the apparent horizon is first found (the data refers to a
simulation with

��	 � � 
 � grid zones). The inset shows, on a logarithmic scale, the evolution of the normalized rest mass
outside the apparent horizon. Note that this is appreciably non-zero for a rather long time for this model D4.

initial models of NSs that are uniformly rotating and when a polytropic EoS with � � � � �
is used.

Our results corroborate this view and in turn imply that the collapse of a rapidly-rotating old and cold NS
cannot lead to the formation of the central engine believed to operate in a � -ray burst, namely a rotating
black hole surrounded by a centrifugally-supported, self-gravitating torus. Relativistic simulations with
more appropriate initial data, accounting in particular for the extended envelope of the massive progenitor
star which is essential in the so-called collapsar model of � -ray bursts [258], will be necessary to shed
light on the mechanism responsible for such events.

Convincing evidence has recently emerged [89] that a massive disc can be produced if the stellar
models are initially rotating differentially and with initial total angular momenta � � � � � � , as it may
happen for young and hot NSs. In this case, the massive disc could emit intense gravitational radiation
either through its oscillations [263] or as a result of the fragmentation produced by non-axisymmetric
instabilities [89]. We are presently investigating this possibility and the results of our investigation will
be reported in a forthcoming paper.

5.3.3 Disc formation and differential rotation

We now discuss in more detail two interesting properties of the matter dynamics in both slowly and
rapidly-rotating models: the evolution of the rest mass outside the apparent horizon and the development
of differential rotation during the collapse. In order to monitor the changes of the rest-mass distribution
during the collapse we define the rest mass within a 2-sphere of coordinate radius � E � � �

as (see, for
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instance, [209])

� � ��� E � 

� � ��� � � 960 � A � � � 
�� � � (5.3.1)

where
� 
 � �

is the 3-dimensional coordinate volume element. Shown in Fig. 5.9 and 5.10 is the evolution
of the rest masses measured within several representative 2-spheres for models D1 and D4, respectively.
Different lines refer to different coordinate radii for the 2-spheres (i.e. � E 
 � � � � � � 8 and

� � � � � , where� �
is the initial equatorial circumferential radius) and are normalized to the total rest mass within the

computational domain � � , shown as a solid line. Marked instead with filled dots are the values of
� � ��� E � at the times when the apparent horizon is first found; for simplicity, the data shown in Figs. 5.9
and 5.10 refer to a simulation with

� � � - 8 � grid zones, but for this quantities higher resolutions have
just the effect of shifting the time at which the apparent horizon is first found.

As mentioned before, the excised region is not introduced immediately after the apparent horizon has
been found, but only when this has grown to a sufficiently large size to allow for the excision technique
to be implemented. When this happens, the inner part of the computational domain is removed and the
integrals (5.3.1) are no longer meaningful. As a result, all the curves in Figs. 5.9 and 5.10 are truncated
at the time when the excision region is first introduced, which occurs at

( 
 � ��� �
ms and

( 
 � ��� �
ms for

models D1 and D4, respectively.

A rapid comparison between Fig. 5.9 and 5.10 is sufficient to identify the differences in the rest-
mass evolution in slowly and rapidly-rotating models. Firstly, the rest-mass distribution is very different
already initially, being more uniform in D1 and more centrally concentrated in D4, as can be appreciated
by comparing � � at � E 
 � � 8 � � and

� � � � � . Secondly, the rest-mass infall is much faster for the slowly-
rotating model D1, while it is more progressive for model D4, as shown by the change in the fractional
mass ratio at � E 
 � � 8 � � . Finally, the amount of matter outside � E 
 � � 8 � � at the time when the apparent
horizon is found, and which is very close to the amount of matter outside the apparent horizon, is different
in the two cases, being essentially zero for model D1 and a few percent for model D4. A clearer view of
this is presented in the two insets of Figs. 5.9 and 5.10, which show, on a logarithmic scale, the evolution
of the normalized rest masses outside the apparent horizons, i.e. � � ��� � � ��� � � � � , since these first form
and as they grow in time. It is interesting to note the different behaviour in this case with a rapid decrease
when the rotation rate is small and a much slower one in the case of a rapidly-rotating progenitor (note
that the two insets cover the same timescale although they refer to a different time interval).

Two additional comments are worth making. The first one is that � � effectively includes also the
rest mass in the atmosphere but this is always

� � � ��� of the total rest mass. The second one is that
� � in Figs. 5.9 and 5.10 does not simply refer to the initial value of the total rest mass but is effectively
computed at each step and appears constant in time because of the ability of the code to preserve rest
mass. A closer look at the solid curve in Figs. 5.9 and 5.10 reveals, in fact, that � � varies over time to
less than one part in � � � .

An interesting question to ask at this stage is whether these uniformly-rotating models will develop
any degree of differential rotation as the collapse proceeds. Part of the interest in this comes from the fact
that NSs are thought to rotate differentially, at least during the initial stages of their life. This is expected
to hold both when the NS is produced through a stellar core collapse, in which case the differential
rotation may be present already in the stellar progenitor and is then amplified during collapse [82], and
when the NS is the end-result of a binary merger of NSs [218]. However, as the NS cools and grows
older, dissipative viscous effects or the coupling with non-turbulent magnetic fields are expected to bring
the star into uniform rotation (see [208, 73, 147] for a detailed description of this process). It is therefore
interesting to investigate whether a degree of differential rotation will be produced also during the final
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Figure 5.11: Evolution of the averaged angular velocity
� 	�� (upper panel) and of the averaged angular momentum per unit

mass
� ������� (lower panel). Both quantities are measured at the stellar equator, are normalized to the initial value at the stellar

surface and refer to both models D1 (upper parts) and D4 (lower parts).
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collapse of a uniformly-rotating star to a Kerr black hole. To answer this question we have monitored
both the averaged angular velocity � ��� , defined as

� ��� � ��
�� � �� & �

�
�
�
� 	 � ��� � � �

� �� & �
�
�
�
� � � ��� � �

�	
� (5.3.2)

and the corresponding averaged angular momentum per unit mass � � � � � , which is a conserved quantity
along the path lines of fluid elements in an axisymmetric (but not necessarily stationary) spacetime [37].
Note that � � � � & 
 0 � � � � � and the average over the two different directions is here used to compensate
the small errors that are produced in the evaluation of these quantities near the axes.

We note that our measure of the differential rotation will depend on the specific slicing chosen.
However, for the simulations reported here, the lengthscale of variation of the lapse function at any given
time is always larger than the stellar radius at that time, ensuring that the events on the same time slice
are also close in proper time. A useful measure of the differential rotation that develops during collapse
is the departure from unity of the ratio of the values of

�
at the centre and at the surface of the star on

the equatorial plane and it is instructive to compare how this varies in the dynamics of the two models
D1 and D4, which have been evolved using the same slicing.

The time evolution of � ��� and � � � � � is presented in the two panels of Fig. 5.11, whose lower parts
refer to model D4 and the upper ones to model D1. Both quantities are shown normalized to their
initial value at the stellar surface. Let us concentrate on the slowly-rotating model first. The different
lines refer to three representative times which are

( 
 � � �
(shown as dashed),

( 
 � � 8�� and
� � � � ms,

respectively. Initially, the angular velocity is, by construction, uniform throughout the star (upper panel)
and the corresponding specific angular momentum grows linearly with the distance from the stellar centre
(lower panel). As the collapse proceeds and the stellar size decreases, the angular velocity is expected
to increase while the angular momentum per unit mass remains constant. This is indeed what happens
for model D1, whose specific angular momentum is conserved with an overall error at the stellar surface
which is always less than � ��� and which decreases with resolution. A similar behaviour is observed
also much later in the simulation, when the apparent horizon has been found and the singularity has been
excised. Overall, the angular velocity in the collapsing model D1 grows like

� � ( ��
�� � �� , where � � � � �
and therefore less than it would do in the case of the collapse of a Newtonian, uniform density star (i.e.� 
 �

); which is a result of relativistic and rotational effects (see [74]).

A comparison of the lower parts of the two panels in Fig. 5.11 is sufficient to realize that the evolution
of the angular velocity is rather different for a rapidly-rotating stellar model. The different lines in this
case refer to

( 
 � � � � � � 8 � and
� � � � ms, respectively, and it is apparent that a non-negligible degree

of differential rotation develops as the collapse proceeds, with a difference of a factor �

�
between

the angular velocity of the inner and outer parts of the collapsing matter as the apparent horizon first
appears. Clearly, this differential rotation is produced very rapidly and will persist only for a very short
time before the star is enclosed in a trapped surface.

It is difficult to establish, at this stage, whether the differential rotation generated in this way could
produce a phenomenology observable in some astrophysical context and more detailed investigations,
in particular of the coupling of this differential rotation with magnetic fields [189, 226], are necessary.
Finally, it is worth remarking that while differential rotation develops for model D4 but not for D1, the
specific angular momentum is conserved to the same accuracy in both models.
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5.4 Dynamics of the horizons

In order to investigate the formation of a black hole in our simulations, we have used horizon finders
available through the Cactus framework, which compute both the apparent horizon and the event
horizon. The apparent horizon, which is defined as the outermost closed surface on which all outgoing
photons normal to the surface have zero expansion, is calculated at every time step and its location is used
to set up the excised region inside the horizon. In contrast, the event horizon, which is an expanding null
surface composed of photons which will eventually find themselves trapped, is computed a posteriori,
once the simulation is finished, by reconstructing the full spacetime from the 3-dimensional data each
simulation produces. In stationary black-hole systems, where no mass-energy falls into the black hole,
the apparent and event horizons coincide, but generally (in dynamical spacetimes) the apparent horizon
lies inside the event horizon. We have here used the fast solver of Thornburg [240] to locate the apparent
horizon at every time step and the level-set finder of Diener [81] to locate the event horizon after the
simulation has been completed and the data produced is post-processed.

In all the considered cases, we have found that the event horizon rapidly grows to its asymptotic value
after formation. With a temporal gap of � � � � after the formation of the event horizon, the apparent
horizon appears and then it rapidly approaches the event horizon, always remaining within it. With the
exception of the initial gap, the horizon proper areas as extracted from the apparent and event horizon
are very close (see e.g., Fig. 5.17).

5.4.1 Measuring the event-horizon mass

We measure the mass of the newly-formed black hole to estimate the amount of energy that is emitted
as gravitational radiation during the collapse. In particular, we do a simple energy accounting, comparing
the mass of the black hole with the ADM mass of the spacetime computed by the initial data solver on
a compactified grid extending to spatial infinity [234]. This value is slightly different (1% in the worst
case) from the one which is instead computed on the finite domain of our computational grid at the
initial time and after the constraints are solved. The difference between the two values can be used to
define an “error bar” for our measure of the black-hole mass and hence of the energy in gravitational
waves (cf. Fig. 5.16). Two notes are worth making about this error before we go on to discuss how the
black hole is actually measured. Firstly, the difference between the two masses represents the truncation
error produced by the finite size of the computational domain and is conceptually distinct from the
truncation error introduced by the finite differencing. While the first is assumed to be constant in time,
the second in general grows with time (especially after the excision is made) and is monitored through the
calculation of the constraint equations. Secondly, this error bar sets a global lower limit on the accuracy
of our measure of asymptotic quantities and therefore on the energy lost to gravitational waves during the
collapse. No reliable measure of this lost energy can be made below the error bar even if the constraint
equations are solved to a larger precision (this will be discussed in more detail in Sect. 5.4.3).

The first and simplest method of approximating the black-hole mass is to note that, for a Kerr (or
Schwarzschild) black hole, the mass can be found directly in terms of the event-horizon geometry as

� 
�� eq8 
 � (5.4.3)

where � eq � 	 ���A �
	 �"� � � is the proper equatorial circumference. Provided there is a natural choice of

equatorial plane, it is expected that, as the black hole settles down to Kerr, � eq will tend to the correct
value. However, as numerical errors build up at late times it may be impossible to reach this asymptotic
regime with sufficient accuracy.
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Figure 5.12: Convergence of the measure of the black-hole mass as the resolution is increased. The curves refer to estimates
using the event-horizon equatorial circumference [i.e. equation (5.4.3)] and have been obtained using

����� � � ��
�
 and
��� � � � � 	

zones, respectively. Shown in the small inset are the results for model D1, while those for model D4 are in the main panel.

The estimate of � coming from the use of (5.4.3) is presented in Fig. 5.12, which shows the time
evolution of the event-horizon equatorial circumference. The two lines refer to two different resolutions
(
� � � � - �;8 8 and � � � � - � � zones, respectively) and should be compared with the value of the ADM mass
��� � � (indicated with a short-long dashed line) and with the error bars as deduced from the initial data.
Shown in the small inset are the results for model D1, while those for model D4 are in the main panel.

Note that if a measure of the event horizon is not available, equation (5.4.3) could be computed using
the equatorial circumference of the apparent horizon (this is what was done, for instance, in [89]). Doing
so would yield results that are similar to those shown in Fig. 5.12, although with a slightly larger deviation
from ��� � � . This is because we have found the apparent horizon to systematically underestimate the
equatorial circumference. In particular, in the high-resolution run for model D4, the differences between
the apparent and event-horizon equatorial circumferences are

� � �
.

Clearly, as the equatorial circumference grows, the agreement with the expected ADM mass improves
as it does with the use of higher spatial resolution. However, equally evident is that the errors grow as the
collapse proceeds and this is due, in part, to the loss of strict second-order convergence at later times, but
also to the way the event horizon is found. The level-set approach of [81], in fact, needs initial guesses for
the null surface, which converge exponentially to the correct event-horizon surface for decreasing times,
hence introduces a systematic error in the calculation of the event horizon at late times. This is shown
in Fig. 5.13, which presents the evolution of the event-horizon mass � 
 �

�
�
� 8 
 for models D1 and

D4. Different lines refer to the different initial guesses and are numbered “0”, “1” and “2”, respectively
(note that for the curves shown in Fig. 5.12 the initial guesses “0” and “1” were used for cases D4 and
D1, respectively).
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Figure 5.13: Evolution of the event-horizon mass � ��� � � � 
�� for models D1 and D4. Different lines refer to the different
initial guesses for the null surface and are numbered 0, 1 and 2. Note that they converge exponentially to the correct event-
horizon surface for decreasing times.

5.4.2 Measuring the angular momentum of the black hole

A major difficulty in an accurate measurement of � lies in the calculation of its non-irreducible part,
i.e. in the part that is proportional to the black-hole angular momentum � . We now discuss a number
of different ways to calculate � from the present simulations; these measurements will then be used to
obtain alternative estimates of � in Section 5.4.3.

Measuring � from the horizon distortion

In a series of papers studying the dynamics of distorted black-hole spacetimes, it was shown that the
horizon geometry provides a useful measure of the black-hole properties both in vacuum [17, 19, 18, 59]
and when the black holes are accreting matter axisymmetrically [57]. In particular, the idea is to look
at the distortion of the horizon using the ratio of polar and equatorial proper circumferences, �

�
�

� pol � � eq. For a perturbed Kerr black hole this is expected to oscillate around the asymptotic Kerr value
with the form of a quasi-normal mode (QNM). By fitting to this mode we extract an estimate of the
angular-momentum parameter � � �����

�
from the relation [58]

����	�
�




��� ����� � � � � � � � � � � � � � (5.4.4)

where we have indicated with �����
�

the black-hole mass as measured from expression (5.4.4), which co-
incides with � only if the spacetime has become axisymmetric and stationary. The fit through expression
(5.4.4) is expected to be accurate to �

� � � � [58].
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Figure 5.14: Fitting the oblateness of the event horizon to QNMs of a Kerr black hole. The fit is shown with the solid line,
while the open circles represent the computed values of � 3 . The estimate for � 3 of a Kerr black hole having the fitted value of
� � ����� 3 is shown with a dashed line.
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The fit itself depends on an initial guess for � � � ���
�

and we start from a Schwarzschild black hole
and iterate till the desired convergence is reached. This measure is not gauge invariant, although equa-
tion (5.4.4) is independent of the spatial coordinates up to the definition of the circumferential planes, but
works adequately with the gauges used here. The fit is best performed shortly after black-hole formation
as the oscillations are rapidly damped. This minimizes numerical errors but in those cases where matter
continues to be accreted, it may lead to inaccurate estimates of the angular momentum.

Examples of the fitting procedure are shown in Fig. 5.14, in which the fit is shown as a solid line,
while the open circles represent the computed values of �

�
; these are slightly noisy as a result of the

interpolation needed by the level-set approach to find points on the horizon 2-surface [81]. The estimate
for �

�
of a Kerr black hole having the fitted value of � � � ���

�
is shown as a dashed line. Note that the

values of � � � ���
�

 � � � � and � � � ���

�

 � � � 8 are very close to the total � � � �

of the initial stellar
models, i.e. 0.2064 and 0.5433 (Table 5.2). This demonstrates that, to within numerical accuracy, the
complete angular momentum of the spacetime ends up in the black hole.

Table 5.2: Estimates of the black-hole angular momentum through the oblateness of the event horizon 
 � � � . The oscilla-
tions in the oblateness of the event horizon, in fact, can be fitted to the normal modes of a Kerr black hole. Note that for each
model the measured angular momentum is remarkably close to that of the initial spacetime � 
 � � � � �	�	
 . Also reported are the
initial ADM mass, the value of the equatorial circumference as obtained through the fit � � 3 ��� � , and the corresponding value
obtained through the estimated spin parameter � � 3 ��������� .

Model � ADM ��� � ��� �ADM ��� � � � � � � � �

�
� � � � �

�
�	� 
 ���

D1 1.6653 0.2064 0.21 0.99 0.9916
D2 1.7281 0.3625 0.36 0.97 0.9734
D3 1.7966 0.4685 0.47 0.95 0.9544
D4 1.8606 0.5433 0.54 0.94 0.9372

Using expression (5.4.4) to estimate the angular momentum � introduces an error, if the black hole
has not yet settled to a Kerr solution. Having this in mind, however, it is possible to estimate the angular
momentum as � 
 3 �� ���

� 6 ���	� � � � 3 �� ���
� 6 � � �

(5.4.5)

Measuring � with the dynamical-horizon framework

A second method of approximating � and hence measuring � is to use the isolated and dynamical-
horizon frameworks of Ashtekar and collaborators [25, 24, 26, 27, 85]. This assumes the existence of an
axisymmetric Killing vector field intrinsic to a marginally-trapped surface such as an apparent horizon.
In the case where the marginally trapped surface evolves smoothly so that, for instance, there is a smooth
worldtube of apparent horizons, this gives an unambiguous definition of the spin of the black hole and
hence of its total mass. If there is an energy flux across the horizon, the isolated-horizon framework
needs to be extended to the dynamical-horizon formalism [27, 28].

In practice, our approach to the dynamical horizon framework has been through the use of a code
by Schnetter which implements the algorithm of [85] to calculate the horizon quantities. The advantage
of the dynamical horizon framework is that it gives a measure of mass and angular momentum which is
accurately computed locally, without a global reconstruction of the spacetime. One possible disadvantage
is that the horizon itself is required to be (close to) axisymmetric; so in case it deviates largely from axial
symmetry, no information can be found. However, because arbitrarily-large distortions are allowed as
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Figure 5.15: Comparison of the different measures of the angular momentum for the cases D1 (upper panel) and D4 (lower
panel). The estimate using the fit to the circumference ratio (see upper panel of Fig. 5.14) is also shown. The dynamical horizon
spin measurement is considerably more accurate at late times as the event-horizon surfaces will diverge exponentially at this
point. Shown with the horizontal short-long dashed lines are the values of � 
 � � � � �	�	
 in the two cases as measured from the
initial data (see main text for details).
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long as they are axisymmetric, we have not encountered problems in applying the dynamical-horizon
framework to the horizons found in our simulations.

Measuring � from the angular velocity of the event horizon

A third method for computing � only applies if an event horizon is found and if its angular velocity
has been measured. In a Kerr background, in fact, the generators of the event horizon rotate with a
constant angular velocity �"��� 	 & � � 	 � � 
 � 	 & & � 	 �"� . In this case the generator velocity can be directly
related to the angular-momentum parameter as

�� 
 �
� � 
 � � � �


 3 � � � � �8 
 6 � 	�� � �
(5.4.6)

As with the previous approximations, expression (5.4.6) is strictly valid only for a Kerr black hole and
will therefore contain a systematic error which, however, decays rapidly as the black-hole perturbations
are damped. On the other hand, the event-horizon generator velocities have the considerable advantage
that everything is measured instantaneously and the values of � are valid whether or not the background
is an isolated Kerr black hole. The disadvantage, though, is that, as mentioned above, the numerical
event-horizon surfaces become systematically less accurate at late times (cf. Fig. 5.13).

Comparison of angular-momentum measurements

A detailed comparison of the three different methods for measuring the angular momentum of the
black hole is shown in Fig. 5.15. The measurement of angular momentum using the angular velocity of
the generators is shown as solid lines. Both for slowly (upper panel) and rapidly (lower panel) rotating
stellar models, the event horizon has zero area (and thus zero angular momentum) when it is first formed.
However, as the rotating matter collapses, the event-horizon area and angular momentum grow, the black
hole is spun up and, to numerical accuracy, the total angular momentum of the spacetime is contained
within the black hole (cf. Fig. 5.14). At late times, the estimate using the generator velocities of the event
horizon drifts away, probably due to a combination of gauge effects and the systematic errors in the trial
guesses for the null surfaces.

In the case of the slowly-rotating model D1, in particular, the estimate from the dynamical horizon
finder is perfectly stable (cf. dashed line in the upper panel of Fig. 5.15), indicating that an approximately
stationary Kerr black hole has been formed by the time the simulation is terminated. In the case of the
rapidly-rotating model D4, however, this is no longer the case as matter continues to accrete also at later
times, when the errors have also increased considerably. As a result, the measure of the spin through the
dynamical horizon finder is less accurate and does not seem to have stabilized by the time the simulation
ends (cf. dashed line in the lower panel of Fig. 5.15). This may indicate that the final black hole has not
settled down to a Kerr black hole on the timescales considered here.

5.4.3 Black-hole mass from the Christodoulou formula

It was shown by Christodoulou that, in the axisymmetric and stationary spacetime of a Kerr black
hole, the square of the black hole mass � is given by [69]

� � 
�� �
����� � 8 
!� �� 


�
����
 � 8 
!� �� � (5.4.7)

where � ����� is the irreducible mass,
�

is the event-horizon proper area, and � is the black-hole angular
momentum. As the black hole approaches a stationary state at late times, the apparent and event horizons
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will tend to coincide and in that case the mass of the black hole is very well approximated by the above
formula.

We have applied the above formula, using the various methods for measuring the angular momentum� . In particular, using the method for obtaining � from the distortion of the event horizon, through
equation (5.4.5), the black-hole mass is given by

� � 
 ���
 3 � ��� �
�

6 � �
� � � � � 3 ����	�

� 6 � �� �
(5.4.8)

If, on the other hand, � is found from the angular velocity � of the event horizon, then it is possible to
use (5.4.6) in (5.4.7) and obtain

� � 
 �
����
 ��8 � � � �

(5.4.9)

In the framework of dynamical horizons, expression (5.4.7) holds for any axisymmetric isolated or dy-
namical horizon, independently of whether it is stationary.

Fig. 5.16 collects the four different ways of measuring the black-hole mass for the collapse of models
D1 and D4. The different lines refer to the different approaches we have outlined above. In addition, we
display the irreducible mass � ��� � . The upper panel of Fig. 5.16, in particular, shows the results of the
different measures for the slowly-rotating model D1. Because in this case all the matter rapidly collapses
into the black hole, the different estimates of the total mass agree very well. However, already in this
slowly-rotating case the irreducible mass of the apparent horizon is noticeably lower. The upper panel
also shows that while the different methods provide comparable estimates, only the one corresponding
to equation (5.4.3) (i.e. the solid line) falls for some time within the error bar provided by the initial
estimate of ��� � � (this is particularly evident in the inset). Because when this happens the norms of the
Hamiltonian constraint have not yet started to grow exponentially and the largest value of the constraint
violation is about an order of magnitude smaller (i.e. the � 	 norm of the Hamiltonian constraint is

� 8 ��� - � � ��� at
( 
 � � � � ms) we can use the error bar in � � � � to place an upper bound of

� � � � � ADM

to the energy lost through the emission of gravitational radiation in this case. This method of ours
for estimating the energy loss in gravitational waves is rough, but it was the only one available for
3-dimensional simulations until recently. Actually, it has been the first method ever used to produce
such estimates. As we will show in Section 5.5, the true bound we can now compute through better-
suited techniques is considerably lower, even lower than the value found by Stark and Piran [229] in
2-dimensional simulations.

The lower panel of Fig. 5.16, on the other hand, shows the results of the different mass measures for
the rapidly-rotating model D4. In this case, the contribution from the spin energy is considerably larger
and noticeable differences appear among the different approaches. Since all seem to have systematic
errors, this makes it less trivial to establish which method is to prefer. On one hand, those methods using
information from the event-horizon equatorial circumference or that fit the perturbations of the event
horizon [i.e. equations (5.4.3) and (5.4.8)] seem to provide accurate estimates at earlier times but suffer of
the overall inaccuracy at later stages, when the initial guesses for the null surface are distinct. It is indeed
at these early times that these measurements are within the error bar provided by the initial estimate of
��� � � . On the other hand, those methods that measure the angular velocity of the null generators [i.e.
equation (5.4.9)] or that use the dynamical horizon framework, produce reasonably accurate estimates,
that converge with resolution, that monotonically grow in time and that are within the error bar of the
initial estimate of � � � � . Furthermore, in the case of the dynamical horizon framework, this is not only
physically expected, given that a small but non-zero fraction of the matter continues to accrete nearly
until the end of the simulation, but it is also guaranteed analytically.
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Figure 5.16: Comparison of the five different approaches used in the measure of the total black-hole mass for the collapse
of models D1 and D4. Different lines refer to the different methods discussed in the main text. The upper panel (model D1),
shows that the different methods are overall comparable when the rotation is slow, but that differences are already present (this
is as shown in the inset). The lower panel (model D4) shows that the different measures can be considerably different when the
rotation is large.
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Because of these differences in the measures of � and because the black hole does not have time
to settle down to a constant total mass, the upper bound on the energy emission is more conservative
than in the D1 case. In particular, taking again as a reference the time when the estimate relative to
equation (5.4.3) is within the error bar (i.e. at

( 
 � ��� �
ms) and the largest value of the constraint

violation is about an order of magnitude smaller (i.e. the � 	 norm of the Hamiltonian constraint is
� � � � - � � � 
 ) and is not yet growing exponentially, we place an upper bound of � � � ADM on the
energy lost through gravitational radiation. Once again, the comments on the goodness of this result we
have made above for the D1 case apply.

One obvious and expected result is that the irreducible mass in the collapse of model D4 (the dot-
dashed line in the lower panel of Fig. 5.16) deviates by a large amount from the actual black-hole mass,
since it does not include the rotational energy of the black hole.

Finally, we will make a comment on the different methods used for measuring the mass and spin
of a black hole in a numerical simulation. Although the direct comparison of many different methods
employed here have provided valuable information on the dynamics of the system, we have found the
dynamical horizon framework to be simple to implement, accurate and not particularly affected by the
errors from which equivalent approaches seem to suffer, as shown in our Figs. 5.16 and 5.15. As a result,
we recommend its use as a standard tool in numerical relativity simulations.

5.4.4 Reconstructing the global spacetime

All the results presented and discussed in the previous sections of this chapter describe only a small
portion of the spacetime which has been solved during the collapse. In addition to this, it is interesting
and instructive to collect all these pieces of information into a global description of the spacetime and
look for those features which mark the difference between the collapse of slowly and rapidly-rotating
stellar models. As we discuss below, these features emerge in a very transparent way within a global
view of the spacetime.

To construct this view, we use the worldlines of the most representative surfaces during the collapse,
namely those of the equatorial stellar surface, of the apparent horizon and of the event horizon. For all of
them we need to use properly defined quantities and, in particular, circumferential radii. The results of
this spacetime reconstruction are shown in Fig. 5.17, whose upper and lower panels refer to the collapse
of models D1 and D4, respectively. The different lines indicate the worldlines of the circumferential
radius of the stellar surface (dotted line), as well as of the apparent horizon (dashed line) and of the event
horizon (solid line). Note that for the horizons we show both the equatorial and the polar circumferential
radii, with the latter being always smaller than the former. For the stellar surface, on the other hand,
we show the equatorial circumferential radius only. This is because the calculation of the stellar polar
circumferential radius requires a line integral along the stellar surface on a given polar slice. Along this
contour one must use a line element which is suitably fitted to the stellar surface and diagonalized (see
[59] for a detailed discussion). In the case of model D4, however, this is difficult to compute at late times,
when the disc is formed and the line integral becomes inaccurate.

Note that in both panels of Fig. 5.17 the event horizon grows from an essentially zero size to its
asymptotic value. In contrast, the apparent horizon grows from an initially non-zero size and, as it
should, is always contained within the event horizon. At late times, the worldlines merge to the precision
at which we can compute them. A rapid look at the two panels of Fig. 5.17 is sufficient to appreciate the
different properties in the dynamics of the collapse of slowly and rapidly-rotating models.

Firstly, in the case of model D1, the differences between the equatorial and polar circumferential
radii of the two trapped surfaces are very small and emerge only in the inset that offers a magnified view
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Figure 5.17: Evolution of the most relevant surfaces during the collapse for the D1 and D4 cases. Solid, dashed and dotted
lines represent the worldlines of the circumferential radii of the event horizon, of the apparent horizon and of the stellar surface,
respectively. Note that for the horizons we plot both the equatorial and the polar circumferential radii, while only the equatorial
circumferential radius is shown for the stellar surface. Shown in the insets are the magnified views of the worldlines during the
final stages of the collapse.
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of the worldlines during the final stages of the collapse. This is not the case for model D4, for which the
differences are much more evident and can be appreciated also in the main panel. Of course, this is what
one expects given that the ratio of these two quantities depends on � � � and is � � for a slowly-rotating
black hole (cf. Table 5.2).

Secondly, the worldlines of the stellar equatorial circumferential radius are very different in the two
cases. In the slowly-rotating model D1, in particular, the star collapses smoothly and the worldline always
has negative slope, thus reaching progressively smaller radii as the evolution proceeds (cf. upper panel
of Fig. 5.17). By time

( � � � � �
ms, the stellar equatorial circumferential radius has shrunk below the

corresponding value of the event horizon. In the case of the rapidly-rotating model D4, on the other hand,
this is no longer true and after an initial phase which is similar to the one described for D1, the worldline
does not reach smaller radii. Rather, the stellar surface slows its inward motion and, at around

(
�

� � �
ms, the stellar equatorial circumferential radius does not vary appreciably. Indeed, the lower panel of
Fig. 5.17 shows that at this stage the stellar surface moves to slightly larger radii. This behaviour marks
the phase in which a flattened configuration has been produced and the material at the outer edge of the
disc experiences a pressure hang-up (cf. the middle and lower panels of Fig. 5.5). This is due to fact that
the more rapid infall of matter along the polar axis produces a bounce and an expansion on the equatorial
plane at this time. As the collapse proceeds, however, also this material will not be able to sustain its
orbital motion and, after

(
�

� ���
ms, the worldline moves to smaller radii again. By a time

( � � ���
ms, the stellar equatorial circumferential radius has shrunk below the corresponding value of the event
horizon.

5.5 Gravitational waveforms

5.5.1 Previous work

The fact that on this specific topic, i.e. the extraction of gravitational waveforms from collapsing ro-
tating stars, only one work is available in the literature and that it dates back to 20 years ago is indicative
of the difficulty of the problem. Stark and Piran [229] in 1985 used their axisymmetric fully-general-
relativistic code to evolve rotating axisymmetric configurations and to compute directly the gravitational-
radiation emission produced by their collapse to a black hole. As already mentioned in Section 5.1, they
presented results for the collapse of an initial configuration consisting of spherically-symmetric poly-
tropic (with exponent � 
 �

) stars which underwent collapse after the pressure was reduced of a factor
ranging from 0.01 to 0.4. The stars were also given an angular-momentum distribution approximat-
ing rigid-body rotation, with different configurations having different initial total angular momentum � ,
which was measured in terms of the parameter � 
 � � � �

. They found that, while the nature of the
collapse depended on the parameter � , the form of the wave instead remained the same over the entire
range of the values of � , even if the amplitude of the wave increased with � . A figure from reference
[229] reporting the waveforms extracted at a distance of � � � from the origin for different values of �from an evolution with a pressure depletion of 99% is reproduced in Fig. 5.18. In the next section, we
will compare this figure with the one produced by Whisky.

As mentioned in Section 5.1, there have been studies of the collapse of rotating NS to Kerr black
holes in 3 dimensions after the seminal work of Stark and Piran (e.g [214, 212, 213, 89]). Despite
the great improvements on the evolution of the hydrodynamics and of the spacetime achieved in these
numerical computations, none of these, however, has addressed the problem of waveform extraction.
The reason for this is at least twofold: firstly, the gravitational signal is intrinsically small (we recall that,
following Stark and Piran and also our upper limits discussed in Section 5.4.3, the energy carried away
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Figure 5.18: Gravitational waveforms for a collapse to a black hole of stars of various angular momenta � evolved after an
initial pressure depletion of 99% with the axisymmetric code of Stark and Piran. This figure is taken from [229].

by the gravitational waves is
' � � � � � � � � � ); secondly, the necessity of performing wave extraction

at large distances from the collapsing object would require, for uniform grids, computational resources
exceeding the current available ones. As we will illustrate in the next section, we have succeeded in
solving both these problems by evolving on grids with several levels of refinement.

5.5.2 Our results

The use of numerical grids with uniform spacing and the present computational resources have ini-
tially forced us to place the outer boundary of our computational domain in the near zone, i.e. in regions
of the spacetime where the gravitational waves have not yet reached their asymptotic form, which in-
stead happens in what is usually referred to as the wave zone. Under these constraints, the information
on the gravitational waveforms that we extract through perturbative techniques [197, 188] does not pro-
vide interesting information besides the obvious change in the quadrupole moment of the background
spacetime.

Several different methods are possible for the extraction of the gravitational-radiation content in nu-
merical spacetimes: we have adopted a gauge-invariant approach in which the spacetime is matched with
the non-spherical perturbations of a Schwarzschild black hole (see refs. [13, 197, 64] for applications to
Cartesian coordinates grids). In practice, a set of “observers” is placed on 2-spheres of fixed coordinate
radius, where they extract the gauge-invariant, even

� : 
�<� 1 and odd-parity � : � <� 1 metric perturbations [165].
Here � �! are the indices of the angular decomposition and we usually compute modes up to � 
 �
with  
 �

; modes with  �
 �
are essentially zero because of the high degree of axisymmetry in the

collapse. Validations of this approach in vacuum spacetimes can be found in refs. [64, 188, 34], while its
use with matter sources has been reported in [100].
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Figure 5.19: Gravitational wave extraction at short distances: waveforms of the even-parity metric perturbation as functions
of retarded time (shown both in ms and solar-mass units) for model D4 evolved on a uniform grid. Different lines refer to
different extraction distances.
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Using the even and odd-parity perturbations �
*

� 1 and ���� 1
�
*

� 1 �
� � � � � ���
� � � � ��� � : 
�<� 1 � ���� 1 �

� � � � � ���
� � � � ��� � : � <� 1 � (5.5.10)

we report in Fig. 5.19 the extracted signal at coordinate radii 1.6, 2.6 and 3.6 times the initial coordinate
stellar equatorial radius

� � , or, equivalently, at distances � � � � , � � � 8 � , � � � � � . This are clearly not far
out enough to be in the wave zone. Indeed, we see (upper panel) that the waveforms for the � 
 �

mode
compared at the same retarded time do not overlap, as they should if they were computed in the wave
zone, since the invariance under a retarded-time scaling is a property of the solutions of a wave equation.
The overlapping for the � 
 8 mode waves (lower panel) seems better. The higher frequency waves,
in fact, are easier to compute, because they have a wavelength which is smaller than the typical linear
dimension of the computational domain (for the � 
 �

mode the wavelength is comparable to the linear
dimension of the computational domain), so that they are less influenced by the secular changes of the
metric. However, also in this case there clearly are secular variations of the waveforms that are probably
related to the dynamics of the gravitational field in the near zone. We also note that the amplitude of the
��
 8 mode is much smaller (one or two orders of magnitude) than that of the � 
 �

mode, so one has to
look primarily at the latter mode to ascertain whether wave extraction has been performed successfully.

Recent progress has been made in the use of progressive fixed mesh refinement techniques [203] to
move the outer boundary far from the source. This has two important advantages: firstly it reduces the
influence of inaccurate boundary conditions at the outer boundaries of the domain; secondly it allows
for the wave zone to be included in the computational domain and thus for the extraction of important
information about the gravitational wave emission produced during the collapse. Interesting preliminary
results on these recent investigations have become available while writing this thesis. In particular,
we have performed simulations of the above model D4 on a grid initially composed by four levels of
refinement (see Fig. 5.20), which becomes further refined in the course of the evolution; at the end of
the simulation seven refined levels are present on the grid (see Fig. 5.21, where the lower panel shows
a magnification of the innermost levels of the upper panel). The innermost and highest resolution level
always covers the whole star (or the whole horizon), so that the evolution of matter is as accurate as
the one obtained in the preceding sections. The outermost levels, on the other hand, allow to extend
the computational outer boundary to distances as large as ��� � � . Note, however, that we do not extract
waves at such large distances, but, rather, at about � � � from the origin (this is similar to what Stark and
Piran did in [229]). There are two different reasons for this; the first one is rather trivial and is due to
the fact that only very little of the gravitational waves has reached the outer boundary by the time the
simulation is terminated, The second reason is that the amplitude of the wave is progressively reduced as
it propagates toward the outer boundary, making the extraction increasingly more difficult.

The upper panel of Fig. 5.22 shows the waveform for the � 
 �
mode (with the offset produced by

the stellar quadrupole removed) computed on the multilevel grid at different and larger distances with
respect to Fig. 5.19, that is at

� � � � � , � � � � � , � � � � � and � � � 8 � � , or
� � � � � , 8 � � � � , 8 � � 8 � and � � � � � ,

respectively. It is now evident that the wave extraction has been performed in the wave zone, since
the waveforms compared at retarded times overlap very well. A similar overlapping is observed (but
not shown here) among the � 
08 mode waves. The lower panel of Fig. 5.22 shows the � 
 8 mode
waveform extracted at a distance � � � � � and the inset offers a comparison at this distance between the
� 
 �

and � 
08 mode waveforms; it is again clear that the quadrupolar is the dominant mode of the
gravitational radiation. It is now interesting to compare Fig. 5.22 with Fig. 5.18, where we should select
a line between the dashed and the dotted ones, since the parameter � in our model D4 has the value
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Figure 5.20: Refined grids at the initial time: 2-dimensional slices orthogonal to one of the axes of the initial refined grid
used for the evolutions described in the text. Four levels are present and the finest one contains the entire star. The lower panel
shows a magnification of the upper panel.
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Figure 5.21: Refined grids at the final time: 2-dimensional slices orthogonal to one of the axes of the final refined grid used
for the evolutions described in the text. Seven levels are present and the finest one contains the entire apparent horizon (no
matter is left outside the horizon at this time). The lower panel shows a magnification of the upper panel.
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Figure 5.22: Gravitational wave extraction in the wave zone: gravitational waveforms as functions of retarded time (shown
both in ms and solar mass units) for model D4 evolved on a multilevel grid, as specified in the text. Different lines refer to
different extraction distances. The inset of the lower panel displays a comparison between the

�
� �

and
�
� 
 modes.
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� 
 � � � 8 . The comparison shows clearly that the forms of the two waves and their periods are very
similar.

Another indication that the waveforms in Fig. 5.22 are an accurate description of the gravitational
radiation produced by the collapse comes by analysing their power-spectrum densities. The collapse, in
fact, can be viewed as the rapid transition between the spacetime of the initial equilibrium star and the
spacetime of the produced rotating black hole. It is natural to expect, therefore, that the waveforms pro-
duced in this process will reflect the basic properties of both spacetimes and in particular the fundamental
frequencies of oscillation. As a result, we expect the frequencies of the extracted waveforms to be similar
both to the � -mode oscillation frequencies of typical NSs [129] and to those of the QNMs of black holes.
The � -modes are pure spacetime oscillations (i.e. they do not involve fluid perturbations at first order)
and have the highest frequencies and the shortest damping times among all NS oscillation modes. For
polytropic stars with a given index, their frequencies vary only of a few percent with the compactness
of the star. They are the most similar to black-hole QNMs and are thought to be an important source of
gravitational radiation during the central phase of NS collapse [130].

A comparison of the typical frequencies associated to the waveforms in Fig. 5.22 and the expected
ones is presented in Fig. 5.23 and shows that the largest peak of the power-spectrum densities indeed
falls in the small region included between the known frequencies of the corresponding QNM of a
Schwarzschild black hole of the same mass1 (marked by a dashed vertical line in the figure) and the
known frequencies of � -modes of a typical NS (dotted line) with the same mass and same polytropic
EoS. In the upper panel of Fig. 5.23, we compare with the frequency of the family of � -modes named����� -modes [130] and we notice that the peak is located nearer to the frequency of the ����� -mode than to
the frequency of the QNM of the black hole. In the lower panel, instead, the power-spectrum density for
the ��
 8 mode is shown. Here, instead, we compare with the frequency of another family of � -modes
named � 	 -modes [142] and we notice that in this case the interval between the QNM frequency and
the � -mode frequency is much smaller and that the peak frequency is nearer to the former frequency.
The very good agreement shown in this figure is a convincing evidence that the waveforms presented in
Fig. 5.22 do represent the gravitational waves produced in the collapse of a rotating NS to a Kerr black
hole.

Using the extracted gauge-invariant quantities it is also possible to calculate the transverse traceless
gravitational wave amplitudes in the two polarizations � * and � � as

� * � � � � 
 �� �
�

� � 1 3 �
*

� 1 � �
� &
�
�
� �� 1 � ( � ��� ( � 6 � � � � 1 � (5.5.11)

where � � � � 1
is the � � spin-weighted spherical harmonic. Because of the small amplitude of higher-

order modes, the transverse traceless wave amplitudes can be simply expressed as � * � � * � �
*� A � �

*� A �
and � �

� � � � ���
 A � � �� A � , where � �
 A � � �� A . Their waveforms are shown in Fig. 5.24 for the detector
placed at distance

� � � � � and for two different inclination angles. Note that the amplitudes in the cross
polarization are about one order of magnitude smaller than those in the plus polarization, with the max-
imum amplitudes in a ratio � � � � � � ��� � � � � * � � ��� � � � � � . This is because the odd-parity perturbations,
which are zero in a nonrotating axisymmetric spacetime, appear here only as a result of the coupling,
induced by the rotation, with the even-parity perturbations.

A precise comparison of the amplitudes in Fig. 5.24 with the corresponding ones calculated in [229]
is made difficult by the differences in the choice of initial data and, in particular, by the impossibility

1The frequencies of the QNMs of Kerr black holes for angular-momentum parameters � not near unity (i.e. as in our case)
differ only of a few percent from the frequencies relative to a Schwarzschild black hole of the same mass. In Fig. 5.23, anyway,
we show the frequency of the Kerr QNM [139].
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Figure 5.23: Power-spectrum density of the waveforms reported in Fig. 5.22. The units on the y-axis are arbitrary. The
dashed vertical lines indicate the frequency of the QNM of a black hole with the same mass, while the dotted vertical line
indicates those of the � -modes of a NS.
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Figure 5.24: Transverse traceless gravitational-wave amplitudes extracted by the detector located at
��� A � � and for two

different inclination angles.

of reaching � � � � � 8 when modelling consistently stationary polytropes in uniform rotation. However,
when interpolating the results in [229] for the relevant values of � , we find a very good agreement
in the form of the waves, but also that our estimates are about one order of magnitude smaller, with
� � � * � � ��� � � � � � � � � .

Considering the sensitivity of VIRGO and only the burst signal, we can set an upper limit for the
characteristic amplitude produced in the collapse of a rapidly and uniformly-rotating polytropic star at
10 kpc that is � � 
 � ��� � - � � � � � � � � � � � at a characteristic frequency 	 � 
 � � � Hz. In the case of
LIGO I, instead, we obtain � � 
 � � 8�� - � � � � � � � � � � � at 	 � 
 � � � Hz. In both cases, the signal-to-
noise ratio is 4 � � �

� � � � , but this can grow to be � 8 in the case of LIGO II. These ratios could be
increased considerably if the black hole ringing following the initial burst could be detected. Computing
the emitted power as � �� ( 
 �� � 
 � � � 1 # �

�
�
�

� �
*

� 1� (
�
�
�
�

�
�

�
� ���� 1 �

�
� % � (5.5.12)

the total energy lost to gravitational radiation is
' � � 	 � � � � � ( ��� ( � ��� ( � 
�� � 8�� - � � � � � � � � � � . This is

about two orders of magnitude smaller than the estimate made in [229] for a star with � 
 � � � 8 , but closer
to the very small energy losses computed recently in the collapse of rotating stellar cores [166]. The
origin of the quantitative difference with the results in [229] could be due to the different specification of
the initial data.

5.6 Conclusion

As a first astrophysical problem for our novel code, we have here focused on the collapse of rapidly-
rotating relativistic stars to Kerr black holes. The stars are assumed to be in uniform rotation and dy-
namically unstable to axisymmetric perturbations. Overall, our results show that the dynamics of the
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collapsing matter is strongly influenced by the initial amount of angular momentum in the progenitor
NS, which, when sufficiently high, leads to the formation of an unstable flattened object. While the
collapse of slowly-rotating initial models proceeds with the matter remaining nearly uniformly-rotating,
the dynamics is shown to be very different in the case of initial models rotating near the mass-shedding
limit. Strong differential rotation develops, in fact, during the collapse, which is delayed due to a pres-
sure hang-up. Although the stars become highly flattened during collapse, attaining a disc-like shape,
the collapse cannot be halted because the specific angular momentum is not sufficient for a stable disc to
form. Instead, the matter in the disc spirals toward the black hole and angular momentum is transferred
inward to produce a spinning black hole.

All the simulations performed for realistic initial data and a polytropic or ideal-fluid EoS show no ev-
idence of shock formation preventing a prompt collapse to a black hole. It should be remarked, however,
that both these conclusions (absence of shocks and of matter on stable orbits outside the black hole) may
change if other non-isentropic EoSs are used or if the initial stellar models are rotating differentially.

Several different approaches have been employed to compute the mass and angular momentum of the
newly-formed Kerr black hole. Besides more traditional methods involving the measure of the geomet-
rical properties of the apparent and event horizons, we have fitted the oscillations of the perturbed Kerr
black hole to specific QNMs obtained by linear perturbation theory. In addition, we have also considered
the recently proposed isolated and dynamical-horizon frameworks, finding it to be simple to implement
and yielding estimates which are accurate and more robust than those of the equivalent methods. This
variety of approaches has allowed for the determination of both the mass and angular momentum of the
black hole with an accuracy unprecedented for a 3-dimensional simulation. These measures, in turn,
have allowed us to set upper limits on the energy and angular momentum that could be lost during the
collapse in the form of gravitational radiation.

Our recent simulations on multilevel grids are giving the first reliable results about gravitational
wave extraction in 3 dimensions, 20 years after the milestone work of [229] in axisymmetry. We have
been able to place the outer boundaries of the grid far enough so that the computation of the wave signals
performed at different distances gives consistent results. We have found that the dominant radiation mode
is the ��
 �

mode, the amplitude of the ��
 8 mode being at least one order of magnitude smaller. From
the analysis of the power-spectrum density of the signal, we assessed that our computed gravitational
waves have a frequency lying in the interval delimited by the frequencies of the QNMs of the black hole
and by those of the � -modes of the NS with mass equal to the one used in our simulation. All these
results are in agreement with [229], while the our computation of the energy emitted in gravitational
waves gives values that are two orders of magnitude smaller than those of [229]. This is probably due to
the different specification of the initial data.

Finally, all the techniques discussed here are now being applied to the study of the collapse of
differentially-rotating stars, governed by more realistic and non-isentropic EoSs. Preliminary results
in the simulations of the collapse of differentially-rotating stars indicate, as expected, that, if the ini-
tial configuration has � � � � � � , its collapse leads to the formation of strong shocks and long-lasting
torii. In particular, we have found that double, essentially axisymmetric shocks appear around the central
object and that they produce two torii which do not collapse on a dynamical timescale, because of the
excess of angular momentum. The formation of single massive discs orbiting around a central object
was also found by [212, 213, 89], who, however, did not report the formation of the second disc nor the
occurrence of the strong shocks. Both these new results (about gravitational waveforms from the collapse
of uniformly-rotating initial models and about the collapse of differentially-rotating initial models) will
be soon separately submitted for publication.



Chapter 6

Head-on collisions of neutron stars

6.1 Description of the problem and previous work

As a further intermediate step before studying the merger of binary NS systems, but yet investigating
an important physical scenario, we have simulated head-on and near-head-on collisions of two identical,
non-spinning, cold NSs which fall toward the centre of mass of the system from rest at infinity or with
other initial velocities. In our simulations we have modelled the stars either with a polytropic or with
an ideal-fluid EoS. We have used stars that may or may not have a combined rest mass exceeding the
hydrostatical-equilibrium mass limit for an isolated, non-rotating, spherical star governed by the same
cold EoS.

From the purely numerical point of view, these simulations are another severe test for the shock-
capturing capability of our code, since, as expected, these configurations evolve with very strong shocks,
in which the Lorentz factor becomes also � � �

. However, this is more than a numerical test. It has been
argued in [124] that head-on and near-head-on collisions of NSs could have a significant event rate and
could be a candidate for a sub-class of short � -ray bursts. The results of prompt collapse reported in
[163, 94] (and confirmed here) could have implications on the observation of such processes, since the
prompt formation of the horizon may cut the causal connection of the shock-heated matter from outside
observers. Furthermore, these results have important implications also for the detection of gravitational-
wave signals and will serve to study in more detail the physics related to the final coalescence of NSs in
binary systems.

This specific problem received a particular attention in 1998, when Shapiro [207] produced a simpli-
fied, but analytical model of the head-on collision of two equal-mass NSs, based on the hypothesis that
the process evolves through a sequence of quasi-equilibrium configurations. As a result of his analysis,
he concluded that a large fraction of the stellar kinetic energy would be converted into thermal energy be-
cause of the strong shocks, thus preventing the prompt collapse of the merged object to a black hole, even
if the total mass of the system exceeded the maximum allowed mass for a single equilibrium NS with the
same EoS. The collapse could be delayed also by fragmentation, mass shedding or angular-momentum
hang-up. The collapse will then eventually happen, only when the thermal pressure has decreased by a
substantial amount through neutrino-cooling processes. This equilibrium state will last many dynamical
timescales (of the order of milliseconds), because the thermal neutrinos, which eventually carry off the
thermal energy, leak out slowly (the neutrino-diffusion timescale is � 10 sec). Shapiro pointed out that
off-axis collisions are also of interest, since, while shock heating will be less important in this case, the
angular momentum acquired by the remnant may supplement the reduced thermal pressure to prevent
sudden collapse.
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The above conclusions are usually referred to as the Shapiro conjecture. A numerical approach in
full general relativity is required even for deciding between these qualitatively different outcomes, as
also Shapiro [207] states. Miller et al. [163] were the first to investigate this conjecture systematically.
Firstly, they criticized the validity of the major assumption of the conjecture, namely that the collision
process of heavier NSs can be approximated by a quasi-equilibrium process. It could happen in fact that
the coalesced object collapses before it can thermalize (thus involving a non-constant effective polytropic
constant, for which the conjecture hypothesis does not allow) or that the collision process is so dynamic
that, even though a stable equilibrium state exists, it is not attained in the collapse. However, they also
pointed out that whether the collapse is delayed or prompt in head-on collision can depend on the initial
NS configuration and that fully-relativistic simulations are necessary to demonstrate either process.

In their investigations, Miller et al. carried out simulations of two TOV stars with rest mass � A 

� � 8 � � and a polytropic EoS with exponent � 
 �

and constant
' 
 � � ��� - � � � � � � � � 	 � � . We recall

that the maximum allowed stable rest mass for these values of
'

and � is � � 8�� � � . At the initial time
the stars are placed at a proper distance � A 
 8 8 km (they do not say exactly what this distance refers to;
we assume here that it is the distance between the maximum densities of the two stars) and are given an
initial uniform velocity � A 
 � � A � � A (i.e. the Newtonian infall velocity from infinity) along the axis
on which the stars lie. They then use the York procedure [262] for determining a solution of the initial
data satisfying the constraints and evolve it using as a slicing condition either “maximal” or “1+log” (and
finding similar results). Their results show that an apparent horizon forms promptly, confining the whole
shock into a region causally disconnected from the exterior. Less than � � of the mass is left outside the
apparent horizon at the time when the apparent horizon first meets the shock front. They repeated the
simulation increasing the initial velocity by � ��� , which generates more shock heating, and confirmed
that their results are insensitive to such a difference in the initial velocity. Finally, they evolved a similar
configuration, but with stars of

� � � � � and showed that in this case the apparent horizon does not form
within the time of the simulation, instead there is a bounce in the central density of the merged object.

In a subsequent article [94], the authors studied how these results are affected by using a more
realistic EoS and considered configurations whose total rest mass was lower than the critical mass for
a cold NS with the same EoS. Using the Lattimer-Swesty EoS [137], they constructed two initial NSs
with rest mass � A 
 � � � � � . For this EoS, the critical mass is

� � � � � � � � � A . Also in this case,
they found prompt collapse to a black hole on a dynamical timescale, both for head-on and near-head-on
(impact parameter equal to half of the NS coordinate radius) collisions with Newtonian initial velocities
or with such velocities increased by 10%. As a result of their investigations, the authors proposed a
prompt-collapse conjecture: for head-on and near-head-on collisions of NSs described by a generic EoS
and infalling from rest at infinity, there exists a threshold in the rest mass of the merged object below the
critical single-star rest mass, where prompt collapse to a black hole can occur, independently from small
(10%) perturbations of the initial velocities.

6.2 Simulations of neutron-star head-on collisions with Whisky

6.2.1 Initial data

As initial data we also consider two TOV stars with the chosen EoS and rest mass � A at a proper
distance � A (measured using the position of the maximum densities of the stars) aligned with one of the
computational axes and give them a uniform velocity � A parallel to that axis. Then we use the York
procedure [262] to determine initial data consistent with the Hamiltonian and momentum constraint
equations (2.1.12) and (2.1.13). In order to determine an initial guess for applying this method, we
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Figure 6.1: Comparison of the Hamiltonian constraint violation at different resolutions for model C1. After an initial
transition stage in which we do not observe convergence, convergence is established, even if it is less than second order, as
explained in the text. The lines stop soon after the apparent-horizon formation.

choose the global metric � 	 ��� � � � 
 � � with the following prescription:

� 	 E
� � � � 
 � � 
 � 	 E
� � 	 � � 	 E
� � � � � � �
 ���
� 	 E
� � � � 
 � � 
 � 	 E
� � 	 � � 	 E
� � � � � � � ��
 ��� (6.2.1)

where the subscripts 1 and 2 refer to the different stars, so that at large distances we would recover
Minkowski spacetime. We also we multiply the two lapses and choose the shift to be zero:

� 0 � � � 
 � � 
 0 	 0 �
� � E � � � 
 � � 
 � �

(6.2.2)

Once the IVP is solved the terms in the constraints at the initial time cancel out to an accuracy of � � � � .
We have studied configurations both with a � 
 �

ideal-fluid EoS (4.2.3) and with a polytropic EoS
(4.2.1) with polytropic exponent � 
 �

and constant
' 
 � � ��� - � � � � � � � � 	 � � , in order to make

comparisons with the previous work [163]. We have also performed simulations with various initial
velocities, ranging from � A 
 �

, to the Newtonian free-fall velocities, to � A 
 � � 8�	 .
6.2.2 Evolution

The simulations have been carried out on uniform grids with resolutions ranging from
' � 
 � � 8��

km
� � � � � � ��� � to

' � 
 � � �
km

� � � � � � � � � ; with outer boundaries at a coordinate distance ranging
from 44 km

� � � � ��� � to 103 km
� � � � � � � , where � ��� � is the total rest mass of the system. In practice,

with the resolutions used, each star at the initial time was covered by 12 – 50 grid points. The results
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reported below do not change with respect to all the above numerical details, except for models which –
as we will see – are close to the critical mass. In the latter cases, the results refer to the higher-resolution
simulations.

All our evolutions of the above initial data here discussed are performed with the “1+log” slicing
condition and with a “Gamma-driver” shift evolution. In order to ensure the reliability of the results, we
first focus on the long-term convergence of the code in this specific problem. The IVP is solved with
the same precision at all resolutions and this is larger than the truncation error, so we do not expect to
see convergence on the initial data. Instead, we expect to see a transient period in which we do not see
convergence in, e.g., the violation of the Hamiltonian constraint (see the time interval between

( 
 �
and( 
 � � � ��� � in Fig. 6.1). While the simulations proceed, however, the convergence properties of the code

show up also in this specific problem. Since, with respect to the evolution of isolated stars, here we have
more points near extrema, we expect the convergence to be lower than second order and this can be seen
in Fig. 6.1. Another check of the accuracy of the code and of the reliability of its results comes from the
computation of the total rest mass � ��� � [cf. equation (5.3.1)] of the system, which is conserved within
0.2% for all the simulations discussed below.

A typical evolution of an ideal-fluid TOV head-on collision which forms promptly an apparent hori-
zon is shown in Fig. 6.2, which refers do model C7, for which we set initial velocities to be very rel-
ativistic, namely � A 
 � � 8�	 . We show snapshots of isodensity contours, of isolines of the gradient of
the density (

� + E 9 + E 9 ) and the location of the apparent horizon. The left and right panels show the
� � � � � and the � � � � � plane, respectively (only one quarter of the � � � � � plane is shown, in order to have
a magnified view). The upper panels display the initial data. Note that the deviations of each star from
spherical symmetry are very small. The total time of the simulation is 8�� � ��� � . The middle panels show
snapshots at a time in which strong shocks have formed, after the stellar collision. The matter in the
shocks has acquired relativistic velocities also in the � and � directions, orthogonally to the direction of
motion of the centre of mass of each star.

Note that the torus of matter which is ejected in the � � � � � plane after the collision then falls back
toward the � � � � � plane and will be finally engulfed in the apparent horizon, which forms at about

( 
� � � ��� � and, at this time, is significantly non-spherical. A snapshot of this event is shown in the lower
panels. In the direction along which the collision takes place, the shock is completely inside the apparent
horizon from its very appearance, while it is not so on the plane orthogonal to this direction. Before the
end of the simulation, however, all the matter has fallen inside the apparent horizon. Note also that at
this time excision has not yet started, but will soon follow.

In Fig. 6.3, instead, we show the evolution sequence for a polytropic TOV near-head-on collision, that
also forms promptly an apparent horizon. The different lines refer to the same quantities as in Fig. 6.2,
but the right panels here show the whole � � � � � plane. Note that also at

( 
 �
the stellar centres do not lie

on the
�

axis, but at a coordinate distance of 3.5 km from it. The velocities are parallel to the
�

axis and
have the Newtonian infall values. The total time of the simulation is

� � � ��� � and the middle panels show
snapshots at about half that time. The stars have started to collide and a shock front has formed. They
have acquired relativistic velocities in the � direction as well and, in the proximity of the shock front,
also in the � direction. In the lower panels, the situation at the time of the formation of the non-spherical
apparent horizon is displayed. The shock front has now extended and has taken an s-shaped form in
the � � � � � plane. Along the collision direction, the shock is completely inside the apparent horizon from
its very appearance, while it is not so on the plane orthogonal to this direction. Before the end of the
simulation, though, all the matter has crossed the apparent horizon.

We note that in the evolution shown in Fig. 6.3, as in all the other models with initial impact parameter
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Figure 6.2: Snapshots of the ����� � � plane (left column) and of ������� � plane (right column) at different times for model C7.
The thin solid lines are isocontours of rest-mass density and are logarithmically spaced; the thick solid lines in the lower panels
are isocontours of the gradient of rest-mass density and are logarithmically spaced to show the position of the shock; the very
thick solid line shows the location of the apparent horizon; the arrows represent the velocity field, which is downsampled to
allow for a clearer figure and whose reference length is shown in the legend of each panel for a velocity of

� A 
 �
. The units

on both axes refer to coordinate lengths. Differently from Fig. 6.3, here in the left panels we show only a quadrant of the total
data, in order to appreciate better the details.
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Figure 6.3: Snapshots of the ������� � plane (left column) and of ������� � plane (right column) at different times for a near-head-
on-collision model not reported in table 6.1 and with the following properties (we refer to table 6.1 for the meaning of the
symbols): ������� � � � $ � � � A ��� , � � � �

km, polytropic EoS, 1 � � � A � � � (Newtonian infall velocity),
�
� � � A � � , impact

parameter � � A 
 � . The thin solid lines are isocontours of rest-mass density and are logarithmically spaced; the thick solid lines
in the lower panels are isocontours of the gradient of rest-mass density and are logarithmically spaced to show the position of
the shock; the very thick solid line shows the location of the apparent horizon; the arrows represent the velocity field, which
is downsampled to allow for a clearer figure and whose reference length is shown in the legend of each panel for a velocity of
� A 
�� . The units on both axes refer to coordinate lengths.
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Figure 6.4: Profile of the angular velocity 	 � � � � � ( at � � � � ������� for the model described in Fig. 6.3.

different from zero (not shown in table 6.1), the object formed after the collision acquires a differential
rotation, characterized by angular velocities as high as � - � � ��� � � � � � at the peak, which is near the
shock front on the � � � � � plane in the direction perpendicular to the initial star motion. This is shown in
Fig. 6.4, which refers to the model of Fig. 6.3 at the instant preceding the apparent horizon formation.
In the specific case shown, even the addition of this small amount of angular momentum is not sufficient
to delay the collapse: the apparent horizon engulfs all the matter before the end of the simulation. Other
possible outcomes of the evolution of systems with non-zero impact parameter will be briefly described
in the next section.

The only differences among the models having a black hole as the final state (i.e. models of class
A and C, cf. table 6.1) are the time interval between the start of the simulation and the beginning
of the merger and the apparent horizon formation (see Fig. 6.5, which refers to models of class A)
and to the fraction of matter which is inside the apparent horizon at the time when it first appears.
This fraction decreases at the increase of the rest mass of the system and lies between 95% and 30%.
However, all the matter ends up inside the apparent horizon before the end of the simulation. We also
note that no qualitative differences are found between polytropic and ideal-fluid models; this is shown
in Fig. 6.6, which offers a comparison between the central rest-mass densities for models A1 and C1,
namely between a polytropic and an ideal-fluid EoS with identical initial conditions.

Larger differences can be noted, instead, in the comparison among models with different EoSs and
for which the apparent horizon does not appear during the simulation. In this case, our code could follow
many oscillations of the merged NS, as shown in Fig. 6.7, where we see the comparison between a
polytropic and an ideal-fluid model (models B2 and D5, respectively). In the figure, we note that, despite
having a slightly larger mass, the ideal-fluid model has a lower peak density with respect to the one of
the polytropic model. The same holds true for the subsequent oscillations, the reason being the larger
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Figure 6.5: Comparison between the central rest-mass densities for models A6 (dashed line), A7 (dotted line) and A8
(solid line), namely between polytropic evolutions with different initial velocities and initial positions of the stars. We note
a temporary slowing down in the increase of the central density, which we mark with the boxes. However, this does not
significantly delay the collapse. The densities are normalized to the value at � � �

. The lines end when the apparent horizon
forms and excision starts.

Figure 6.6: Comparison between the central rest-mass densities for models A1 and C1, namely between equivalent models
except for the EoS. The densities are normalized to the values at � � �

. The lines end when the apparent horizon forms and
excision starts.
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Figure 6.7: Comparison between the central rest-mass densities for models B2 and D5, namely between a polytropic and an
ideal-fluid evolution not collapsing promptly, but exhibiting several oscillations of the merged NS. The densities are normalized
to the value at � � �

. Here the time on the axis is shown in milliseconds, since the two models have (slightly) different mass.

dissipation occurring for the non-isentropic EoS.

6.3 Discussion of the results

From the results reported in table 6.1 (which includes only some of the performed simulations), we
can see that the state reached by the merged object during the simulation varies according to the initial
rest mass of the system and to the EoS, but it does not depend on the initial distance between the stars
nor on their initial velocities, except for systems whose rest mass is very close to the critical mass. We
have also performed some simulations with an impact parameter different from zero and thus with a
non-vanishing angular momentum, but we have not included them in table 6.1, because our systematic
study of these configurations is not yet concluded and we cannot present quantitative results. We have,
however, illustrated the qualitative properties of one of these configurations in Fig.6.3 and in this section
we will qualitatively compare them to the models with zero impact parameter as well.

In addition to checking the Shapiro conjecture [207] and the results found by Miller et al. [163], we
have determined the effective critical masses which discriminate between the fates of prompt collapse
and delayed collapse1 , for both the EoSs employed. In the following, we indicate the critical mass for
a spherical star with the EoSs here used with � � � A and we recall that its value in the chosen units is
� � � A 
�� � 8�� � � . We further indicate with � � � � � � � and � � � � � the effective critical masses we have found
from our simulations in the case of a polytropic and an ideal-fluid EoS, respectively.

1Actually in our present simulations we could not cover evolution times long enough to see the delayed collapse, so we have
only observed an oscillating NS.
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Table 6.1: Summary of the data for the relevant models of TOV head-on collisions. The different columns refer respectively
to: ratio of the total rest mass of the system to the critical mass � � $ � for a cold star with the same EoS (for our models
� � $ � � � A 
 	 � � ); mean proper radius of one star; type of EoS; modulus of the initial velocity of each star with respect to the
centre of mass of the system (Newt stands for Newtonian infall velocity); initial proper separation between the centres of the
stars; fate of the star at the end of the simulation, that is whether an apparent horizon (AH) forms or not.

Model
������� �

EoS �	� 
�� fate notes�
��� � (km)
A1 1.79 17 poly Newt ����� � AH
A2 1.29 16 poly 0.4c ��� � � AH
A3 1.24 16 poly 0 ��� � � AH stars in contact at � � �

A4 1.21 15 poly Newt+10% ��� � � AH
A5 1.14 16 poly Newt ����� � AH
A6 1.13 16 poly 0.4c ��� � � AH
A7 1.08 16 poly 0 ��� � � AH stars in contact at � � �

A8 1.04 16 poly Newt ��� � � AH
B1 1.02 16 poly Newt ��� � � NS
B2 0.994 16 poly Newt ��� � � NS
B3 0.992 16 poly 0 ��� � � NS stars in contact at � � �

B4 0.983 17 poly 0.4c ����� � NS
B5 0.966 16 poly Newt ��� � � NS
B6 0.100 18 poly Newt ��� � � NS
C1 1.79 17 IF Newt ����� � AH
C2 1.75 17 IF 0 ����� � AH
C3 1.35 16 IF Newt ����� � AH
C4 1.26 16 IF Newt ��� � � AH
C5 1.24 16 IF 0 ��� � � AH stars in contact at � � �

C6 1.23 16 IF Newt ��� � � AH
C7 1.23 16 IF 0.4c ����� � AH
C8 1.20 15 IF Newt ��� � � AH
D1 1.16 15 IF Newt ����� � NS
D2 1.13 16 IF Newt ����� � NS
D3 1.13 16 IF 0.4c ��� � � NS
D4 1.08 16 IF 0 ��� � � NS stars in contact at � � �

D5 1.04 16 IF Newt ��� � � NS
D6 0.100 18 IF Newt ��� � � NS

In the models with polytropic EoS, since entropy is conserved, we expect that � � � � � � �
� � � � A ,

while in the models with an ideal-fluid EoS, since entropy is not conserved, we expect that indeed some
(spatially non-uniform) transfer of kinetic energy to internal energy does increase the effective critical
mass with respect to the critical mass for a cold star, i.e. � � � � � � � � � A .

In table 6.1, we divide the models we have evolved into four classes:

� class A: the polytropic models that promptly form an apparent horizon;

� class B: the polytropic models that do not form an apparent horizon within a dynamical timescale
(and within the total time of the simulation);

� class C: the ideal-fluid models that promptly form an apparent horizon;
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� class D: the ideal-fluid models that do not form an apparent horizon within a dynamical timescale
(and within the total time of the simulation).

We now summarize the results of the simulations, first concentrating on the polytropic models, since
this was the EoS used in the arguments of Shapiro [207] and in the computations of Miller et al. [163].
All the models of class A have total rest masses larger than � � � A , while they differ in initial velocities,
initial separation and initial impact parameter. At this point, we can already state that the Shapiro con-
jecture does not hold, namely that there exist some systems of head-on collisions with polytropic EoS
that do collapse promptly to a black hole. This result is in agreement with the one found by Miller et al.
[163].

All the models of class B have an initial rest mass smaller than � � � A , except for model B1, which
is, however, very near to the critical threshold. Our experience with the apparent-horizon finder in
Cactus and Whisky (in particular in NS collapse simulations) indicates that for configurations in
which an apparent horizon forms it does not always form at all resolutions; instead, in some cases, at
lower resolutions the apparent horizon is not found. Thus, we think that model B1 would indeed form
promptly an apparent horizon, if we evolved this configuration at a higher resolution, for which we did
not have sufficient computational resources. By comparing the results for class A and B, we note that a
� � � � � � �

� � � � A , as expected.
The situation for the models of class C and D is analogous to those of models of class A and B,

respectively. However, in the case of an ideal-fluid EoS, even though we expect � � � � � to be larger than
� � � A , we have no a-priori indications of its value. Furthermore, we underline that these critical values
cannot be computed analytically or through perturbative calculations, but only with fully-dynamical
simulations. From our results, we can numerically delimit the value of the critical mass to be � � ��� � � � A �
� � � � � � � � � � � � � A .

The value of the effective critical mass for a given EoS is also strongly influenced by the impact
parameter of the near-head-on collision. In this case, in fact, the system has a non-vanishing angular
momentum which shows up in the (differential) rotation of the merged object, as discussed in the previous
section, and the rotation contributes to delaying the collapse. So, in general, the effective critical masses
in these near-head-on cases are larger than the effective critical masses for the corresponding head-on
collisions. Work is now in progress to perform a systematic study of near-head-on collisions. One of the
possible outcomes has been shown in Fig. 6.3, where an apparent horizon promptly forms despite the
presence of some amount of differential rotation in the merged object right after the collision. For similar
models but with higher angular momentum and lower masses with respect to the one of Fig. 6.3, we have
found that prompt collapse is avoided. In other models with still larger impact parameter, we have also
found that the stars scatter away from the computational grid after a collision in which however a large
fraction of the material of the two stars had temporarily merged.

6.4 Conclusion

We have performed numerous simulations of TOV head-on and near-head-on collisions and we sum-
marize here the indications that we have inferred from them. We confirm and extend the results by
[163, 94], showing that the Shapiro conjecture does not hold in all cases, but only under some more
restrictive conditions. In our experiments, the most important factors that control the promptness or the
deferment of the collapse are the EoS and the differential rotation that appears when the impact parame-
ter is non-zero. The initial velocities are instead irrelevant for the qualitative end point of the simulation,
at least in the cases of initial systems with masses far from the critical values for the total rest mass.
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We have also analysed a more realistic reformulation of the Shapiro conjecture, that can be stated as
follows:

for every EoS and for every impact parameter � , there exists an effective critical mass
� � ��� ��������� � � � � A such that for every total rest mass of the system � � � � ��� ��� �����
prompt collapse follows the collision, while for every � � � � ��� ��������� the collapse is at
least delayed, because of the increased pressure support generated by shock-heating and/or
because of the centrifugal hang-up due to (differential) rotation.

Needless to say, more work is necessary to achieve a satisfactory knowledge on this scenario. Higher
resolution simulations are required in order to improve the constrained region for the critical masses and
repeating these simulations with realistic EoSs would give more physical insight in these violent events.
These results will be presented in an upcoming article [33]. Finally, these simulations have shown that
Whisky is capable of evolving very strong shocks in highly curved spacetimes and thus that it is ready
for the more difficult problem of binary NS systems, which we will discuss in the next chapter.



Chapter 7

Toward the merger of binary neutron-star
systems

In this chapter we describe the problem of binary systems of compact stars in general relativity. After
an introduction on the relevance of the problem and a summary of the previous work, we will discuss
our setup for binary NS simulations and the first tests performed. These tests have started only very
recently (April 2004) and have proven to be satisfactory only in part. Although no definitive results have
been obtained in the short time we have investigated this project, we have felt it important enough to be
mentioned in this thesis. We are confident that, given the general tests done on Whisky (cf. Section 4.4)
and the physical results discussed in Chapter 5 and Chapter 6, this preliminary phase in the study of
the binary problem will be followed by one in which our numerical simulations will be used to study
this process in detail. Our goal is primarily the computation of the gravitational radiation emitted by the
merger, but we will be also interested in all the other aspects summarized in the following two sections.

7.1 The importance of the problem

Little is required to justify one’s efforts in the study of binary systems. The relativistic binary problem
still poses a fundamental challenge in general relativity and in theoretical and observational astrophysics,
as well as in numerical relativity. The two-body problem, in fact, is one of the outstanding unsolved
problems in classical general relativity, despite the simplicity of its formulation; furthermore, binary
systems of compact objects are considered one of the most important sources for gravitational-wave
emission and are thought to be at the origin of some of the most violent events in the Universe; finally,
the numerical difficulties involved in the simulations of such highly dynamical systems (both of black
holes and of NSs) have not yet been fully overcome by present-day numerical codes. We will summarize
some of the most popular motivations (in addition to the sheerly theoretical, academical ones) for which
so many researchers are attracted by this problem. Hereafter, we will focus on NS binaries only.

Binary NSs are known to exist and for some of the systems in our own galaxy (like the relativistic
binary radio pulsars PSR B1913+16 and PSR B1534+12) general-relativistic effects in the binary orbit
have been measured to high precision [249, 227, 131]. The coalescence and merging of two NSs in binary
orbit into a single object is the inevitable fate of close-binary evolution. The most relevant dissipation
mechanism for this systems is the emission of gravitational radiation.

For relativists, the main interest in the study of coalescing systems of compact objects arises from the
richness of general-relativistic effects that accompany these processes, the gravitational-wave emission
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in primis1. Detection of gravitational waves from NS binaries will provide a wide variety of physical in-
formation on the component stars, including their mass, spin, radius and EoS. The produced waveforms,
in fact, depend on all these characteristics of the system [3].

NS binary systems are thought to be one of the most promising sources for the detection of the grav-
itational waves, because sources of this kind which would produce gravitational signals of amplitude
large enough to be relevant for Earth-based gravitational-wave detection seem to be numerous. Recent
improved estimates2 of the extrapolation of the estimated galactic coalescence rates of NS binary sys-
tems to the local group indicates, that the most probable rates for detectable coalescences are 1 event
per 3–10 years and 10–500 events per year, for the first-generation and the advanced gravitational-wave
interferometric detectors 3, respectively [123]. These detectors are expected to be sensible to the gravi-
tational signal produced by the last stages of the inspiral of coalescing systems situated up to a distance
of hundreds of Mpc.

There are three possible characteristic gravitational-wave frequencies related to the inspiral and
merger of binary systems. The first is the frequency of the orbital motion of the stars in the last stages
of inspiral before tidal distortions become important. For typical NS binaries, the total inspiral timescale
across the detectable frequency band is approximately 15 minutes [76]. During this time the number of
cycles of gravitational waves, is approximately � � � 
 � � � � . This radiation is characterized by low
frequencies (tens of Hz to kHz) and by low amplitudes. The expectation of detecting such gravitational
waves lies in the relatively long duration of the signal and in the rather accurate knowledge of its wave-
form, which can be computed with high-order post-Newtonian calculations 4. High accuracy is essential
during these stages since the templates must cover a large number of orbits and a phase error as small as

� � � ��� could in principle prevent detection [75, 95]. The aim of the post-Newtonian analysis is to com-
pute the terms of the expansion up to the term � � � � � 	 � 	 	 � , in order to ensure that theoretical waveforms
are sufficiently free of systematic errors to be reliable as templates against which the interferometric
observational data can be compared [77] through matched-filtering techniques.

The other two characteristic frequencies are related to the gravitational waves produced during the
merger stage5 of the binaries. One frequency is associated with the fundamental oscillation modes of the

1There are also several cases in which the coalescence process of binary systems which are well approximated as Newtonian
systems is of great current interest; these include the formation of blue stragglers in globular clusters from mergers of main-
sequence-star binaries and the nuclear explosion or gravitational collapse of white-dwarf binary mergers (for other examples
and discussions, see, e.g., [30]).

2This estimate was made after the recent discovery of a new galactic NS binary population type [61].
3Two main types of gravitational-wave detectors are currently in operation or coming into operation: kilometer-size laser

interferometers (LIGO [3] in the USA, VIRGO [54] in Italy, GEO [78] in Germany and TAMA [132] in Japan) and resonant-
mass antennas [Explorer [29] in Geneva (Switzerland), Nautilus [29] in Frascati (Rome, Italy), Auriga [66] in Legnaro (Padua,
Italy), Allegro [155] in Livingstone (Louisiana, USA), Niobe [45] in Perth (Australia) and Mario Schenberg [4] in São Paulo
(Brazil)]. All these detectors can be tuned to have broader or narrower sensitivity regions and consequently lower or higher
peak sensitivities, respectively. Interferometric detectors are better suited to measure gravitational signals in the frequency
range between 1 Hz and some kHz; detection at lower frequencies is hindered by seismic noise, while at higher frequencies it
is hindered by laser shot noise. Resonant-mass detectors are usually sensible to higher frequencies, of the order of kHz.

Furthermore, although much of the current theoretical focus is directed toward terrestrial interferometric experiments, yet
another important type of detector will become operational in the future: LISA [79], the space-based five-million-kilometer-arm
interferometer that will be placed in heliocentric orbit. The relevant frequency band for LISA is

� � ��� 5 � Hz, which is situated
in a lower range with respect to terrestrial detectors.

4The post-Newtonian formalism consists in a series expansion in the parameter ��� � ����� � ��� 1 � , where ������� is the total
rest mass of the binary, � is the orbital separation and 1 is the orbital velocity. This parameter is small whenever the gravitational
field is weak and the velocity is slow. In this analytic formalism the stars are treated as point masses. For further discussion of
the post-Newtonian formalism, see [46] and references therein.

5By definition, the merger stage starts with the hydrodynamical interaction between the two NSs.
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merged massive object formed (also if only transiently) after the onset of a merger (c.f. also Section 5.5).
The other is that of the QNMs of the black hole, if it is formed in the final stage of the merger. Per-
turbation studies have revealed that the frequency 	������ of the fundamental quadrupolar QNM of the
black hole is � � ��� � � � � � � � � ��� � � kHz, where ��� � is the mass of the black hole. Note that 		�
���
depends strongly on the angular-momentum parameter of the black hole � 
 � � � �

�
� , but only when �approaches unity [140]. Numerical simulations in the frameworks of Newtonian [186], post-Newtonian

[194], semi-relativistic [177] and fully-general-relativistic gravity [217] have instead indicated that, if a
black hole is not produced promptly, the frequency of the fundamental oscillation modes of the merged
massive object is between 2 and 3 kHz, depending on the EoS and on the initial compactness �
��� � � ���
of each NS. Therefore, also these gravitational waves have a frequency that is too high to be detected by
first-generation laser-interferometric detectors. However, in contrast with the frequencies of the QNMs
of the formed black hole, these frequencies are not extremely high and they may be in the frequency
range of advanced laser-interferometric detectors or resonant-mass detectors. Alternatively, for the de-
tection of these high frequency waves, specially-designed narrow-band interferometers or resonant-mass
detectors may be built.

As mentioned before, the signal of gravitational waves reaching the detectors has to be analysed
using matched-filter techniques to extract the physical information. To apply this technique, theoretical
templates of gravitational waveforms are needed. This fact has motivated an even more intense theo-
retical effort for preparing such templates. However, at present, no unified prescription is available for
calculating gravitational waveforms over all the regimes and all the corresponding bands of detectable
frequencies from binary NS coalescences. Indeed, an important theoretical goal is the construction of a
smooth, self-consistent join between the different solutions for the different phases of the coalescence.
Existing theoretical machineries for handling the separate wave frequencies differ considerably.

The study of NS binary systems is also finalized to the understanding of the origin of some type of
� -ray bursts, because the short rise times of the bursts imply that their central sources have to be highly
relativistic objects [184]. After the observational confirmation that � -ray bursts a have cosmological
origin, it has been estimated that the central sources powering these bursts must provide a large amount
of energy ( � � � � 	 ergs) in a very short timescale, going from one millisecond to one second (at least for
a subclass of them, called short � -ray bursts). It has been suggested that the merger of NS binaries could
be a likely candidate for the powerful central source. The typical scenario is based on the assumption that
a system composed of a rotating black hole and a surrounding massive disc is formed after the merger.
If the disc had a mass

� � � � � � , it could supply the large amount of energy by neutrino processes or by
extracting the rotational energy of the black hole.

The understanding of � -ray bursts is a further motivation to investigate the final fate of binaries after
mergers. The total gravitational masses of the known galactic NS binaries systems are in a narrow range

�

� � � � � � � � � � � . The present observational evidence indicates that the masses of the two stars in the
known binaries are nearly equal and, if this is the general situation, then NSs in binary systems will not
be tidally disrupted before the merger. As a result, the mass loss from the binary systems is expected to
be small during the evolution and the mass of the merged object will be approximately equal to the initial
mass of the binary system. The maximum allowed gravitational mass for spherical NSs is in the range

� � � � � � � � � � , depending on the EoS. Even if we take into account the effect of rapid rigid rotation,
this limit is increased by 20% at most. For uniform rotation, in fact, the angular velocity, and hence the
centrifugal force which balances the gravitational force to increase the maximum mass, is limited by the
Kepler limit at the equator, above which matter there would no longer be gravitationally bound.

On the basis of these considerations, the compact objects formed just after the merger of these binary
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systems seem to be bound to collapse promptly to a black hole. However, this is not necessarily the case
if the merged object rotates differentially. With differential rotation, in fact, the core may rotate faster
than the outer envelope and may further increase the maximum mass without violating the Kepler limit at
the equator. Baumgarte et al. [42] have found that differential rotation is very effective in increasing the
maximum mass, up to over 60% even for very modest degrees of differential rotation. This suggests that
merged objects of �

� � � � � � � may be dynamically stable against gravitational collapse to a black hole.
Such differentially-rotating stars cannot maintain their state of rotation, since viscosity or magnetic fields
would bring them to rigid rotation in a sufficiently long time. These processes dissipate or redistribute
the angular momentum and so induce the eventual gravitational collapse to a black hole. These facts
indicate that, while the end product of a binary merger would almost certainly be a black hole, this state
may not be reached immediately. The final product of the merger of NS binaries is an open question
depending not only on the nuclear EoS for high density neutron matter but also on the rotational profile
of the merged object.

Another piece of information of great interest is the location of the innermost stable 6 circular orbit
(ISCO). The evolution of a binary system is expected to occur in three distinct phases: i) a slow, adiabatic
inspiral phase that is driven by gravitational-wave emission and can be approximated as a sequence of
quasi-circular orbits; ii) a brief transition phase, where the inward radial motion increases and the orbital
motion changes from slow inspiral to rapid plunge; iii) a plunge phase, terminating in the merger of the
stars. The ISCO resides within the transition phase ii). The location of the ISCO is important because the
gravitational wave quasi-periodic chirp signal of the slow binary inspiral ends at about twice the orbital
angular frequency of the ISCO, when it changes its form to a gravitational-wave signal typical of a burst
[87]. This determines the maximum frequency for the chirp signal, which is an important parameter
for building templates for gravitational-wave detectors. The measure of the ISCO frequency can also
provide direct information on the NS EoS [187].

Within the framework of Newtonian, post-Newtonian and spatially-conformally-flat approximations,
the ISCO has been determined by different methods (see, e.g., [187, 107] and references therein). Much
less is known for fully-relativistic binaries. In the approximation of quasi-equilibrium, a turning point
on a curve of the binding energy versus separation along a sequence of constant-rest-mass models marks
the onset of secular instability. This turning-point theorem [224] was applied by Friedman, Ipser and
Sorkin [106] to axisymmetric spacetimes and its applicability was extended to relativistic binary systems
by Friedman, Uryu and Shibata [107]. This result applies equally to corotational binaries 7 and to irro-
tational binaries 8. No such theorem exists, instead, for the onset of dynamical instability in full general
relativity. Locating the ISCO instability therefore requires dynamical evolution simulations of the full
set of Einstein equations for the gravitational field, coupled to those of relativistic hydrodynamics. A
first attempt at this has been made by Marronetti et al. [149].

6We refer here to dynamical instabilities.
7These are binaries in which the stellar spins are locked with the orbital rotation in such a way that the stars do not spin in a

frame rotating with the orbital velocity; for this reason, corotating binaries are also known as synchronized or locked binaries.
8For these binaries the spins of the stars and the orbital motion are not locked; instead, they are defined so as to have

vanishing vorticity.
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7.1.1 A summary of previous work

Newtonian simulations and analytical computations

For NS binaries, some aspects of coalescence can be understood by solving the Newtonian equations
of hydrodynamics while treating the gravitational radiation as a perturbation in the quadrupole approxi-
mation. Such an analysis is valid only if ��� � and � � � � � , where � and

�
are the NS mass and

radius, respectively. Newtonian treatments of the coalescence waveform come in two forms: numerical
hydrodynamical simulations and analytic studies based on triaxial ellipsoid models for the interacting
stars. The ellipsoidal treatments can handle the influence of tidal distortion and internal fluid motions
and spin, but not the final merger and coalescence [148]. Given the absence of any underlying symmetry
in the problem, numerical calculations must be done in 3 dimensions. They are also required to treat
the complicated hydrodynamical interaction with ejection of mass and shock dissipation, which usually
accompany the merger.

The first Newtonian numerical investigations on binary systems focused on the instabilities of the last
stage of the inspiral phase, leading to the merger. The final merger of two stars in close-binary systems,
in fact, takes place on a timescale comparable to the orbital period. In the case of stars with very different
masses, this may happen because mass transfer from one star to the other leads to a rapid shrinking of the
binary separation, which in turns accelerates the mass transfer rate, leading to an instability [223]. In ad-
dition to mass transfer instabilities, global hydrodynamical instabilities can drive a close-binary system
to rapid coalescence once the tidal interaction between the two stars becomes sufficiently strong. The
existence of these global instabilities for close-binary equilibrium configurations containing a compress-
ible fluid and their particular importance for NS binary systems was demonstrated by Rasio and Shapiro
[186] using numerical hydrodynamical calculations.

Instabilities in close-binary systems were also studied using analytic methods. The classical ana-
lytic work of Chandrasekar [67] for close binaries composed by NSs described as incompressible fluids
was extended to compressible fluids in the work of Lai et al. [135]. This analytic study confirmed
the existence of dynamical and secular instabilities for sufficiently close binaries containing polytropes.
Although these simplified analytic studies gave some physical insight into problem of global fluid insta-
bilities, fully-numerical calculations remain essential for establishing the stability limits of close binaries
accurately and for following the non-linear evolution of unstable systems all the way to complete coales-
cence.

Several groups have performed Newtonian calculations using different numerical methods and focus-
ing on different aspects of the problem. Nakamura and collaborators (see [172] and references therein)
were the first to perform 3-dimensional hydrodynamical calculations of binary NS coalescence, using
a traditional Eulerian finite-difference code. Rasio and Shapiro [186], instead, used smoothed particle
hydrodynamics (SPH) in Newtonian gravity and focused on determining the stability properties of initial
binary models in strict hydrostatical equilibrium and on calculating the emission of gravitational waves
from the coalescence of unstable binaries. Many of the results of [186] were later independently con-
firmed by New and Tohline [175], who used a completely different numerical method, and by Zhuge et
al. [264, 265], who also used SPH and also explored in detail the dependence of the gravitational wave
signals on the initial NS spins. Ruffert et al. [196, 194, 195] incorporated a treatment of the nuclear
physics (realistc EoSs, allowing for the study of neutrino physics) in their hydrodynamical calculations
(done using both SPH and PPM codes), motivated by cosmological models of � -ray bursts.

The above-mentioned Newtonian hydrodynamical calculations yielded some insight into the coales-
cence process. These calculations also served as benchmarks in the weak-field, slow-velocity limit of
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general relativity for later-developed relativistic codes. However, fully-relativistic calculations are clearly
required for quantitatively reliable coalescence waveforms and to determine those qualitative features of
the final merger which can only result from strong-field effects.

Quasi-equilibrium simulations

Equilibrium circular orbits do not exist in general relativity because of the emission of gravitational
waves. However, outside the ISCO, the timescale for orbital decay by radiation is much longer than
the orbital period, so that the binary can be considered to be in quasi-equilibrium. This allows one
to neglect both gravitational waves and wave-induced deviations from a circular orbit to a very good
approximation outside the ISCO. Accordingly, the stability of quasi-circular orbits can be studied by
truncating the radiation-reaction terms in a post-Newtonian expansion of the equations of motion [146,
253]. Alternatively, one can solve a subset of the full non-linear Einstein equations numerically in the
3 + 1 formalism on time slices with a spatial 3-metric chosen to be conformally flat [256]. In the spirit of
the York-Lichnerowicz conformal decomposition, which separates radiative variables from non-radiative
ones [145, 261], such a choice is believed to effectively minimize the gravitational wave content of the
space-time. In addition, one can set the time derivatives of the metric functions equal to zero in the
comoving frame, forcing the solution to be approximately time independent in that frame.

Lombardi et al. [148] calculated post-Newtonian quasi-equilibrium configurations of NS binaries
obeying a polytropic EoS and used the second-order variation of the energy functional to identify the
ISCO along their sequences. The first calculations in full general relativity of equal-mass, polytropic
corotating NS binaries were performed by Baumgarte et al. [40]. They integrated the Einstein equations
together with the relativistic equations of hydrostatical equilibrium, obtaining numerical solutions of
the initial-value problem and approximate quasi-equilibrium evolution models for these binaries. Their
numerical method for the coupled set of non-linear elliptic equations consisted in adaptive multi-grid
integrations in 3 dimensions. Baumgarte et al. [40] used the resulting models to construct sequences of
constant rest mass at different radii, locating turning points along binding-energy equilibrium curves to
identify the ISCO and its angular velocity. They found, in agreement with Newtonian treatments, that
an ISCO exists only for polytropic indexes

� � � � � ; for softer EoSs, the stars are in contact before the
ISCO is reached. Generalizing these calculations for realistic EoSs is straightforward, but has not yet
been performed.

Subsequently, Uryu and Eriguchi [243] numerically calculated the first 3-dimensional equilibrium
solutions for irrotational equal-mass binaries with polytropic component stars in Newtonian gravity.
Constructing irrotational binaries is much more involved than constructing corotational binaries. On
the other hand, unlike what happens for binaries consisting of ordinary stars, irrotational NS binary
configurations are thought to be the most realistic configurations; it was in fact shown by Bildsten and
Cutler [43] with simple dimensional arguments that an implausibly small value of the effective viscous
time would be needed in order to reach complete synchronization just before final merging. Fully-
relativistic generalizations of the calculations by Uryu and Eriguchi were performed by several groups.
Bonazzola et al. [50, 52] reported the first relativistic results from calculations of irrotational equilibrium
sequences with constant baryon number.

Later, different groups [51, 111, 244, 150, 239, 236, 237, 238] used a multi-domain spectral method
to tackle the same problem. Marronetti et al. [150] constructed irrotational models of NS binaries
in Cartesian coordinates in the approximations that a helicoidal Killing vector exists and that the 3-
geometry is conformally flat. Similar results by Uryu et al. [244] demonstrated that, as in corotational
binaries, the maximum mass increases with decreasing separation. However, they also found that the
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increase in maximum mass is smaller for irrotational binaries than for corotational binaries. This result
is not surprising, since NSs in corotational binaries are rotating with respect to the rest frame of the
binary, which by itself increases their maximum mass (see, e.g., [71]).

While evolutionary sequences of corotational binaries end either at the ISCO or at contact, irrota-
tional sequences typically end with the formation of a cusp before they reach the ISCO [51, 244]. As
analysed by Uryu et al. [244], this cusp corresponds to an inner Lagrange point, across which the NSs
will transfer mass. Uryu et al. [244] found that only binaries with very stiff EoS ( � 
 � � � ) reach an
ISCO before they form a cusp, while binaries with softer EoSs form a cusp first. The cusp and the ISCO
occur at very similar frequencies. In general, corotational binaries have more angular momentum, since
the individual stars carry a spin angular momentum in addition to the orbital angular momentum of the
binary. Similarly, the binding energy of corotational binaries is slightly larger than the one of irrotational
binaries, because the ADM mass includes the additional spin kinetic energy of the individual stars.

“Hydro-without-hydro” simulations

As discussed above, in order to produce templates for gravitational-wave detection, it is important to
have a continuous theoretical knowledge of the gravitational-wave signal emitted from the last stages of
binary NS coalescences. On one side, it is hard to imagine that fully-general-relativistic hydrodynamical
numerical calculations will be able to follow the inspiral reliably from outside the ISCO through many
orbital periods to the onset of instability at the ISCO, followed by the plunge and the merger. Such
calculations would accumulate significant amounts of numerical error and would be computationally
prohibitive. On the other side, it is possible that other means of modeling NS binaries, in particular
post-Newtonian point-mass techniques, break down somewhere outside of the ISCO, when finite-size
and relativistic effects become important.

This leaves a gap between the regimes that post-Newtonian and fully-numerical calculations can
model. Filling this gap for the late inspiral, immediately prior to the plunge therefore requires an alter-
native, approximate approaches. Several different such approaches have been suggested [44, 55, 133,
251, 250, 86, 87, 217]. Here we will focus on the hydro-without-hydro approach adopted by Duez et
al. [86, 87]. This approach approximates the binary orbit outside of the ISCO as circular and treats
the orbital decay as a small correction. For each binary separation, the matter distribution can then be
determined independently by the quasi-equilibrium methods. The emitted gravitational radiation is then
computed by using the binary solution for the matter terms in the Einstein field equations. In particu-
lar, the gravitational fields are be evolved in the presence of these predetermined matter sources with a
relativistic evolution code using a hydro-without-hydro approach. Within this approximation, there is no
need to evolve any of the hydrodynamics equations for the source, since it is assumed that the stars move
in circular orbits and are little affected by the gravitational waves; instead, it is possible to simply rotate
the source terms on the numerical grid by an angle � obtained by the relation

� � � � ( 
 �
� ��� , where

�
� ���

is the orbital angular velocity. Repeating this calculation for members of an evolutionary sequence at dis-
crete separations � , the gravitational-wave amplitude 9 � ��� � ( � and the orbit-averaged gravitational-wave
luminosity

� � � � ( ��� � at these separations are obtained. A fitting function based on least squares can
then be used to interpolate

�
, � and

� � � � (
to any intermediate separation. The inspiral is determined

9The wave amplitude is here defined as

� � � ����� �
� 


��	 � ��� �� � � � �� � � � � (7.1.1)

where ���
	 are even-parity gauge-invariant metric perturbations.
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by computing the effective radiation reaction due to the radiation of mass-energy by gravitational waves.
The inspiral rate is thus

�
� � � ( 
 � � � � � ( � � � � � � �

��� . Solving this equation determines � as a function
of
(
, which then allows to express

� ��� � ( � in terms of
(

only and so gives the complete quasi-equilibrium
wavetrain.

Duez et al. [86] implemented such a scheme for corotational binaries, based on the quasi-equilibrium
models of Baumgarte et al. [40]. In Duez et al. [87], these results were compared with those for an ir-
rotational sequence, based on the models of Uryu et al. [245]. These simulations are only illustrative
because the position at which gravitational extraction was performed was not in the wave zone. For a
given separation, the gravitational-wave luminosity d � � d

(
is very similar for corotational and irrota-

tional models, as expected, since the gravitational-wave emission is dominated by the matter density,
which is fairly similar for the corotational and irrotational binaries, while matter current distributions
play a less important role. However, the inspiral of corotational binaries proceeds faster than that of
irrotational binaries. Duez et al. [87] also pointed out that the entire gravitational wavetrain, from the
slow inspiral to the ISCO and the subsequent plunge and merger, can be constructed by matching results
from a quasi-adiabatic approximation of the inspiral and a dynamical simulation of the coalescence.

General-relativistic simulations

Several groups have launched efforts to solve the equations of relativistic hydrodynamics together
with Einstein equations and to model the coalescence and merger of NS binaries [179, 39, 99, 100].
The first successful simulations of binary NS mergers were those of Shibata and Uryu [210, 216]. They
adopted a polytropic EoS with index

� 
 � and solved the equations of relativistic hydrodynamics with
artificial viscosity schemes and the Einstein equations in the original form studied by one of the authors
[215] (cf. Section 2.2). In a more recent work [218], these authors modified the scheme for solving the
hydrodynamics equations and adopted a conservative formalism. As gauge conditions, they used “ap-
proximate maximal slicing” to specify the lapse and “approximate minimal distortion” to determine the
shift. They also added a radial component to the shift vector to avoid grid stretching in collapse situa-
tions. As initial data, Shibata and Uryu [210, 216, 218] prepared equal-mass polytropic models of NS
binaries in quasi-equilibrium with both corotational and irrotational velocity profiles. For both velocity
profiles they prepared different models with individual stellar masses ranging from about 75% to 100%
of the maximum allowed mass of non-rotating stars in isolation. For corotating models, they adopted as
initial data models in which the inner surfaces of the stars were in contact; in these configurations the
stars were fairly close to the ISCO. Since quasi-equilibrium irrotational sequences with this polytropic
index, instead, terminate with the formation of a cusp formation for orbits that are still outside of the
ISCO, Shibata and Uryu [210, 216] considered in this case the initial data consisting in binaries possess-
ing a cusp and triggered the merger by artificially reducing the angular momentum by about 2.5% (this
last restriction was later removed in [218]).

Overall, Shibata and Uryu [210, 216, 218] found fairly similar results for corotational and irrotational
binary models. The most significant difference is that corotational binaries have more angular momentum
in the outer parts of the binary, which leads to the formation of spiral arms during the coalescence. The
spiral arms contain a few percent of the total mass and may ultimately form a disc around the central
object. Initially, in their simulations one of the largest limitation on the accuracy was represented by the
location of the outer boundaries, which, because of limited computational resources, had to be imposed
well within a wavelength ����� (where ����� 
 � � � � 	������ and 	���� is the initial orbital frequency) of the
gravitational radiation from the binary (i.e. at about ����� � � ). This means that the gravitational waves
were extracted without being in the wave zone, which necessarily introduces errors. After having gained
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access to a more powerful supercomputer, Shibata and Uryu [218] therefore repeated these calculations
on computational grids that extended to about a gravitational wavelength. Qualitatively, these improved
results are very similar to their earlier ones, although the onset of black-hole formation shifts to slightly
larger masses. As expected, the features of this simulations which were the most affected by these
improvements were the gravitational waveforms.

It should be noted that the gravitational waveforms produced during the merger depend sensitively
on the compactness of the merging NSs. For mergers containing stars which are not very compact, a
transient massive NS is formed and survives for a time much longer than the dynamical timescale. Such
massive NSs are highly non-axisymmetric, so that quasi-periodic gravitational waves associated with
non-axisymmetric deformations are emitted. These quasi-periodic gravitational waves have typical fre-
quencies of �

� � � kHz, which fall in the sensitivity region of present gravitational-wave detectors. The
ratio of the frequencies of these peaks to the frequencies of the innermost orbits seems to be insensitive
to the compactness of the stars, but to depend on the stiffness of their EoS. This indicates that its obser-
vation could constrain the stiffness of the EoS. It was also found that the luminosity of quasi-periodic
gravitational waves is fairly large, so that a massive transient NS would likely collapse to a black hole
eventually, due to the angular momentum dissipation through gravitational radiation.

For mergers of binaries containing stars with slightly larger compactness, on the other hand, a tran-
sient massive highly-non-axisymmetric object is also formed and its lifetime is fairly long, so that it is
possible to identify clearly the characteristic peaks in the power spectrum of the emitted gravitational
waves. Finally, for models with large compactness, the merged object collapses into a black hole on a
dynamical timescale and hence quasi-periodic gravitational waves are excited only on a short timescale.
Since the amplitude of the peaks in the Fourier spectra of gravitational waves associated with the non-
axisymmetric, quasi-periodic oscillations of the merged object depends on the lifetime of the transient
massive object, from observations of such amplitudes it may be possible to determine the properties of
the object formed after the merger.

While the simulations of Shibata and Uryu [216, 218] are pioneering, it would be desirable to confirm
their findings with independent simulations with other fully-general-relativistic codes. Many aspects of
the simulations could also be improved in the future. In fact, several other factors, including effects of a
realistic EoSs, magnetic fields and neutrino transport, may play an important role in the coalescence of
NS binaries. It will probably take still a long time before all these improvements can be incorporated in
fully-general-relativistic simulations.

7.2 Simulating binary neutron-star systems with Whisky

7.2.1 Initial data

As initial data for NS binary simulations we use the ones produced by the group working at the
Observatoire de Paris-Meudon [111, 239, 236, 237, 238]. These data, which we refer to also as the
Meudon data, are obtained under the simplifying assumptions of quasi-equilibrium and of conformally-
flat spatial metric, which were discussed in Section 7.1.1. These initial configurations are computed
using a multi-domain spectral-method code named LORENE, which is a free software under the GNU
General Public License; a specific routine then converts from spherical coordinates to a Cartesian grid of
the desired dimensions and shape.

It is in general useful to have initial data in a co-rotating coordinate frame (i.e. a frame rotating with
the initial orbital angular velocity of the system), since this has superior capabilities in conserving angular
momentum as compared to inertial frames. Furthermore, in such coordinates the evolved quantities
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change on the timescale of inspiral, which is much longer than the orbital timescale and therefore a more
regular evolution is obtained [88]. For these reasons and because the Meudon data are not provided in a
co-rotating frame10, we make a transformation from an inertial frame with coordinates � �( � �� � ���� �� � (barred
variables will represent quantities in the inertial frame in the remainder of this section) to a co-rotating
frame with coordinates � ( � � � � � � � and constant angular velocity

��
, which is assumed to be aligned with

the � axis. To obtain this, we apply the following relations

�
( 
 (
�
� 
 � � � � � � ( � � � �

� 
 � � ( �
�� 
 �

�
� 
 � � ( � ��� � � � � � ( �

�� 
 �
�

(7.2.2)

It is convenient to compare variables in the two frames at an instant �
( 
 ( 
 �

, at which the two frames
are aligned. At this instant, the line element transforms from

� �� � 
�� � �0 � �� E �� E ��� �( � � �
�� E � �� E � �( � �� E
� � �� E � �� �

(7.2.3)

to

� � � 
 � � �0 � �� E
� � �� E � � �� - �
� � E � � �� � ��� �� - �

� � � � ! � ( �
� � �� E
� � �� E �
�

�� - �
� � E ��� � � � ( � �� E
� � � E � � � � (7.2.4)

where
�
� has components � � � � � � � . From this equation, we see that the following transformation rules

apply at �
( 
 ( 
 �

:

0 
 �0� E 
 �� E � � �� - �
��� E

� E
� 
 �
� E
� �

(7.2.5)

Equations (7.2.5) provide the transformation rules for the initial metric data; effectively, the only change
is the addition of a new rotation term in the shift. Like � E
� , also any other spatial second-rank tensor is
not modified, e.g. � E
� 
 �� E
� and

' E-� 
 �
' E
� . At later times, vectors and tensors in the two frames will

also differ by a rotation. However, we note that at all times there will be some inertial frame, related
to � �( � �� � ���� �� � by a rotation matrix, which has axes aligned with the rotating frame and whose metric is
related to that of the rotating frame by equation (7.2.5). Using the coordinate transformations (7.2.2) we
can derive further relations frames at �

( 
 ( 
 �
, for example� A 
 �� A� E 
 �� E � � �� - �

� � E �� A� E 
 �� E� E 
 �
� E � � �� - �

� � E �
(7.2.6)

Since the inverse of a tensor is unique, the last equation of (7.2.5) implies � E
� 
 �� E
� and, equivalently,
� E-� 
 �� E
� and

' E
� 
 �
' E
�

.
In Section 2.2.1, we defined the total mass and angular momentum of an asymptotically flat spacetime

by two volume integrals (2.2.29) and (2.2.30). These integrals remain valid also in rotating frames, since
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Figure 7.1: Comparison of the profiles of the � component of the shift along the � axis for the typical simulation as reported
in the text: the solid line corresponds to the shift as set in the Meudon data; the dot-dashed line corresponds to the Meudon-data
shift plus the co-rotating shift and the dashed line corresponds to the Meudon-data shift plus the corrected co-rotating shift.
Note that i) the stellar center is at about

� � ��� , where � � is the rest mass of one of the stars; ii) the dot-dashed line extends
outside the light cylinder ( � � ��� �

); iii) the maximum of the corrected shift is shown to be around
��� � � only for graphical

purposes, In the actual simulations it is usually placed to farther distances (e.g. at
	�� � � ).

the surface integral formulae (2.1.14) and (2.1.15) from which they are derived can be obtained assuming
only that the 3-metric and extrinsic curvature are asymptotically flat [178, 53].

The transformation to the co-rotating frame is not, however, devoid of drawbacks. In fact, the trans-
formation (7.2.5) yields � 	 
 �� 	 � � � �� � 
 �� � � � � �� � 
 �� � � (7.2.7)

where we have expanded the components of
��

, namely � � � � � � � . Note that, if the outer boundary is
moved to the large distances which one would like to reach, this yields potentially large shifts, which
could lead to large deformations of the metric and make the code crash. In order to avoid this problem and
following what is done in binary black-hole simulations (where this problem shows up even at shortest
distances with respect to binary NS simulations, since the angular velocity

�
is higher), we impose a

fall-off on the shift at large distances. In particular, instead of (7.2.7) we use� 	 
 �� 	 � � �
� � � � A � � � � �� � 
 �� � � �

�
� � � � A � � ��� �� � 
 �� � � (7.2.8)

10The shift condition used in producing these data is determined through the Killing equation which is implicit in the quasi-
equilibrium assumption for binary systems.
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Figure 7.2: Comparison of the Hamiltonian constraint violation as computed along the � axis on the initial data for different
resolutions.

which has the same behaviour as (7.2.7) for distances � � � A � �
� �

, which is the location of the maximum
of the shift (see Fig. 7.1, where we show a comparison of some different possibilities for the initial shift),
while it goes asymptotically as � � � 
 for � � � A � �

� �
, mimicking the asymptotic behaviour of the frame

dragging of a rotating star.

7.2.2 Specific convergence tests with uniform grids

The simulations we discuss in this section refer to evolutions of equal-mass irrotational initial data
having the following properties:

� � � � ��� � � � � � � � ��� ��
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 � � �;8
� � ��� � � � � � � � � ��� � �
� � � � � ��� � ��� � � ��� � � � � � � � � � � �
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� � ��� � ��� � � � � � � � � 
���
 ��� � 
 �

Initially, the centers of the stars lie on the
�

axis. In Fig. 7.2 we show a slice along the
�

axis of the
Hamiltonian constraint violation as computed at the initial time at different resolutions. We recall that
the Hamiltonian constraint equation (2.1.12) does not depend on the shift, so our choices of the initial
shift do not influence this result. As expected, the convergence factor for these data is nearly two, except
near extrema.

The convergence is still globally second order also in the first stages of the evolution, namely for a
fraction of a period. This is shown in Fig. 7.3, where upper and lower panels refer to evolutions in the
inertial frame and in the co-rotating frame, respectively. While comparing the growth of the Hamiltonian
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Figure 7.3: Comparison of the time evolution of the � � norm of the Hamiltonian constraint violation in the first stages of
evolution at different resolutions. The upper panel refers to an evolution in the inertial frame, while the lower panel to an
evolution in the co-rotating frame. Time is expressed in terms of the initial orbital period � .
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Figure 7.4: Time evolution of the coordinate distance between the maximum-rest-mass-density points of the stars. Time is
expressed in terms of the initial orbital period � .

constraint violation in the two cases, we note two main differences: firstly, the evolution in the co-
rotating frame is less oscillatory and secondly the absolute values of the violation in the evolution in
the co-rotating frame are slightly smaller than those obtained in the inertial frame (cf., for example, at( � ��
 � � �

).
Over longer evolution times, however, the second-order convergence is not preserved and the be-

haviour of the fields, gauges and matter variables varies sensibly with resolution as well as with the
location of the outer boundary. We performed evolutions with resolutions ranging from

� ��� � A to� � � � A and outer boundary distances ranging from
� � � A to � � 8 � A or, equivalently, from

� � �;8 �����
to

� � � � ����� . Clearly these resolutions are not sufficient for reliable evolutions (cf., for example, [209]).
We are presently experiencing the same limitations on the convergence as those reported by Miller et al.
[162], while it is interesting to note that Marronetti et al. [149], with similar resolutions, claimed to have
been able to keep convergence for longer times and so to have been able to locate the position of the
ISCO.

One positive remark we can make at this point is that in our evolutions for the above-mentioned
initial data we can follow the orbit of the stars for more than one period, before the beginning of the
plunge, as is shown in Fig. 7.4, which reports the time evolution of the coordinate distance between
the maximum-rest-mass-density points of the stars. Comparing evolutions with the same resolution,
boundary location and initial data, except for different initial distances of the stars, ranging from 40 to
100 km, we have found similar behaviours. In Fig. 7.5 we report snapshots at different times of a typical
evolution obtained from the above initial data.

We expect that the problems discussed above will be strongly suppressed, if not completely removed,
by increasing the resolution in the regions occupied by the stars and by moving the outer boundaries
further out. As for the collapse calculation, we are going to achieve this by using grids with several
levels of refinement.
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Figure 7.5: Merger sequence for the initial data reported in the text. Different panels refer to different snapshots during
the merger and show the isocontours of the rest-mass density and the (downsampled) velocity field in the ����� � � . The isobaric
surfaces are logarithmically spaced and the length of the vector field is shown in each panel for a reference velocity. The time
of the different snapshots appears in the top-right corner of each panel and it is given in multiples of the initial orbital period � ,
while the units on both axes are expressed in km.



Chapter 8

Conclusions

Although 3-dimensional numerical relativity has been a very active research area for several years
now, there are still several technical issues to be addressed and physical problems to be investigated
in detail. Separate progress has been made so far in obtaining long-term stable evolutions of vacuum
spacetimes and of spacetimes with matter. Both of them have posed significant numerical problems be-
cause of the existence of horizons containing physical singularities, in one case, and the development of
non-linear hydrodynamical phenomena such as shocks, in the other. In black-hole vacuum spacetimes,
these problems have successfully been dealt with by using better suited formulations of the Einstein
equations and by employing excision techniques for the regions of the spacetime containing the singu-
larity. In spacetimes containing matter, on the other hand, sophisticated numerical techniques have been
employed to accurately track the dynamics of the shocks.

In writing the Whisky code, we have combined these two winning approaches: we have imple-
mented HRSC methods to solve the general-relativistic hydrodynamics equations in a curved spacetime,
which is evolved with the NOK formulation of the Einstein equations and with “Gamma-driver” shift
conditions. In addition to this, we have used excision techniques within an evolving horizon, thus fol-
lowing the dynamics of the matter as it moves around or accretes onto a black hole. We have shown that
doing so allows the numerical evolution to proceed uninhibited also from fully-regular initial conditions
of matter in equilibrium and devoid of trapped surfaces, up to a vacuum spacetime featuring an event
horizon enclosing an excised physical singularity. This new important ability in numerical-relativity
evolutions will help in a more detailed investigation of complex astrophysical systems, such as the ones
we have begun to study in this thesis.

Now in its third year of life, Whisky has reached an advanced development status and is being used
by several people, also other than the original groups of developers, to study different sorts of physical
problems. Whisky, in fact, is a code thought, built and tested to be a general tool, for dealing with gen-
eral scenarios involving high-density matter and strong-gravitational-field evolutions. Indeed, in addition
to the works presented in this thesis, Whisky is presently used to perform simulations of stellar core
collapse, rotating NS instabilities, collapse of differentially-rotating NS progenitors and efforts are being
made to include in it the possibility to use tabulated EoSs and to extend it to magneto-hydrodynamics.

As a first astrophysical problem for this novel setup, we have focused on the collapse of rapidly-
rotating relativistic stars to Kerr black holes. The stars are assumed to be in uniform rotation and dy-
namically unstable to axisymmetric perturbations. While the collapse of slowly-rotating initial models
proceeds with the matter remaining nearly uniformly rotating, the dynamics is shown to be very different
in the case of initial models rotating near the mass-shedding limit. Strong differential rotation develops,
in fact, during the collapse, which is delayed due to centrifugal hang-up of the outer layers of the star. Al-
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though the stars become highly flattened during collapse, attaining a disc-like shape, the collapse cannot
be halted because the specific angular momentum is not sufficient for a stable disc to form. Instead, the
matter in the disc spirals toward the black hole and angular momentum is transferred inwards to produce
a spinning black hole.

In addition to the difficulties associated with the appearance of singularities in a numerical simu-
lation, another special difficulty that confronts numerical relativity is the challenge of determining the
asymptotic gravitational waveform which is generated during a strong-field interaction. The asymptotic
waveform is just a small perturbation to the background metric and it must be determined in the wave
zone, far from the strong-field sources. Such a determination presents a problem of dynamic range: one
wants to measure the waveform accurately far from the sources, but one must concentrate most of the
computational resources in the vicinity of those same sources, where most of the non-linear dynamics
occurs. Moreover, to determine the outgoing asymptotic emission, one must wait for the wave train to
propagate out into the far zone, but by then, the simulation may be losing accuracy because of the growth
of singularities in the strong-field near zone. We could overcome these difficulties only by turning to
level-refined grids.

In fact, by using several progressively-added nested levels of increasing resolutions, we were – on
one side – able to have in the region occupied by the central object the high resolution needed there for
accurately following the collapse, the horizon formation and evolution and the matter accretion, while
– on the other side – we could extend the computational domain to include the wave zone. The farther
position of the outer boundaries, in addition to ensuring a smaller influence of imprecise outer boundary
conditions, have allowed us to reliably extract the gravitational waveforms produced in the collapse.
Our confidence in the reliability of these results in threefold. Firstly, we have shown that the extracted
waves are consistent, since the extraction performed at different distances from the central object well
overlap when compared at the same retarded times. Secondly, inspection of the fundamental frequencies
of these waves tells us that they fall in the small interval bracketed by the frequencies of the QNMs of
a ringing black hole and those of the � -modes of NSs; which brings convincing physical support to our
measurements. Lastly, the frequency and the shape of the waves are very similar to those computed
in axisymmetry by Stark and Piran [229]. Taking the risk of being self-celebrative, we stress one final
time that this is the first reliable extraction of gravitational waveforms from 3-dimensional fully-general-
relativistic spacetime and hydrodynamics computations of rotating NSs collapsing to black holes.

All the techniques recalled above are being applied to the study of other physically-relevant scenarios.
Studies of the collapse of differentially-rotating stars, governed by more realistic and non-isentropic
EoSs are being performed while this thesis is being written. As far as this thesis is concerned, we have
presented preliminary results about head-on collisions of NSs and of binary NS coalescences. Both
these catastrophic events are thought to be rather common in the Universe and, especially the binary
coalescence, to be one of the strongest sources of gravitational radiation detectable from Earth-based
instruments.

In the case of head-on collision, we have made a systematic (but not yet complete) analysis spanning
the parameter space defined by the total rest mass of the system, the EoS (polytropic or “ideal fluid”)
describing the NSs, their initial velocities and the initial impact parameter of the collision, while we
have limited ourselves to systems of stars of equal mass. For head-on collisions, i.e. those with zero
impact parameter, we have found that there is a critical mass for the system, above which an apparent
horizon is promptly formed, while below this threshold an (also violently) oscillating NS is formed,
which does not collapse to a black hole in a dynamical timescale or even in the time of the simulation
(several dynamical timescales). The value of this critical mass depends on the EoS chosen for describing
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the stellar material, while it is not very sensitive to the initial velocities of the stars. The value of the
critical mass for the polytropic EoS coincides with the maximum mass allowed for a stable spherical NS
with the same EoS parameters. In this case, in fact, the transfer of kinetic energy to internal energy which
may support the collapse of more massive stars cannot occur because polytropic EoSs cannot describe
shock-heating. On the contrary, shock-heating occurs for stars described with an ideal-fluid EoS and we
have found that this process increases the maximum mass below which prompt collapse is avoided by
about 20%. We have also noticed that, if the impact parameter is set to values different from zero and
so the system is given a non-zero angular momentum (i.e. in near-head-on collisions), the collapse may
also be delayed because of centrifugal hang-up. Only few simulations have been performed with this
modification and consequently we could not yet determine the amount of angular momentum necessary
to delay the collapse.

In conclusion, our work on head-on collisions implies a revision of the Shapiro conjecture, i.e. that
in head-on collisions shock-heating may – in some cases – prevent prompt collapse, and we have deter-
mined which are such more stringent limits for the conjecture. We found no case in which systems with
a total rest mass smaller than the critical mass for spherical stars with the same EoS promptly collapse
to a black hole because of dynamical compression, as was instead claimed by Evans et al. [94], who,
however, used an EoS different from ours.

In the case of binary NS mergers, we have discussed results concerning tests of the code for the spe-
cific problem. In this problem, in fact, the resolution and the position of the outer boundaries are crucial
even for obtaining qualitatively correct results, as also found by Miller et al. [162], who experienced the
same limitations on uniform grids. Marronetti et al. [149], instead, claimed to have reached a conver-
gence, even when using resolutions and outer-boundary locations similar to ours. At present, we have
not yet started simulations with level-refined grids for this specific scenario, but we are going to do so in
the near future. It has to be said, however, that our code has already shown the capability of simulating
the evolution of such systems for more than one orbit.

Writing this thesis has been pleasant and useful to better fix and sometimes reorganize many aspects
of the work we have done in these years. We are now thrilled at the huge potential we have built for
exploring and investigating complex systems in relativistic astrophysics and we are looking forward to
do this in the coming years. The Universe lies still mostly unexplored above our heads. Or, perhaps,
inside our heads.
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[56] Brandt S., Correll R., Gómez R., Huq M.F., Laguna P., Lehner L., Marronetti P., Matzner R.A., Neilsen D., Pullin J.,
Schnetter E., Shoemaker D., Winicour J. Phys. Rev. Lett., 85: 5496 (2000).
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[101] Font J.A., Ibánez J.M. Astrophys. J., 494: 297 (1998).

[102] Font J.A., Miller M., Suen W.M., Tobias M. Phys. Rev., D61: 044011 (2000).

[103] Font J.A., Miller M., Suen W.M., Tobias M. Phys. Rev., D61: 044011 (2000).

[104] Font J.A., Stergioulas N., Kokkotas K.D. Mon. Not. R. Astron. Soc., 313: 678 (2000).

[105] Frauendiener J. Phys. Rev., D66: 104027 (2002).

[106] Friedman J.L., Ipser J.R., Sorkin R.D. Astrophys. J., 325: 722 (1988).

[107] Friedman J.L., Uryu K., Shibata M. Phys. Rev., D65: 064035 (2002).

[108] Godunov S.K. Mat. Sb., 47: 271 (1959). In Russian.
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[121] Ibánez J., Aloy M., Font J., Martı́ J., Miralles J., Pons J. In E. Toro (ed.), Godunov methods: theory and applications.
Kluwer Academic/Plenum Publishers (2001).

[122] Isaacson R., Welling J., Winicour J. J. Math. Phys., 24: 1824 (1983).

[123] Kalogera V., Kim C., Lorimer D.R., Burgay M., D’Amico N., Possenti A., Manchester R.N., Lyne A.G., Joshi B.C.,
McLaughlin M.A., Kramer M., Sarkissian J.M., Camilo F. Astrophys. J., 601: L179 (2004).

[124] Katz J.I., Canel L.M. Astrophys. J., 471: 915 (1996).

[125] Kawamura M., Oohara K. Prog. Theor. Phys., 111: 589 (2004).

[126] Kidder L., Scheel M., Teukolsky S., Cook G. In Miniprogram on Colliding Black Holes: Mathematical Issues in
Numerical Relativity (2000).

[127] Kidder L.E., Scheel M.A., Teukolsky S.A. Phys. Rev., D64: 064017 (2001).

[128] Kidder L.E., Scheel M.A., Teukolsky S.A., Carlson E.D., Cook G.B. Phys. Rev., D62: 084032 (2000).

[129] Kokkotas K.D., F.Schutz B. Mon. Not. R. astr. Soc., 255: 118 (1992).

[130] Kokkotas K.D., Schmidt B.G. Living Rev. Relativity, 2: 1999 (1999).

[131] Kramer M., Lyne A., Burgay M., Possenti A., Manchester R., Camilo F., McLaughlin M., Lorimer D., D’Amico N.,
Joshi B., Reynolds J., Freire P. In R.. Stairs (ed.), Binary Pulsars. PSAP (2004).

[132] Kuroda K., et al. In I.C..F. Fidecard (ed.), Proceedings of the international conference on gravitational waves: Sources
and Detectors, p. 100.

[133] Laguna P. Phys. Rev., D60: 084012 (1999).



BIBLIOGRAPHY 127

[134] Laguna P., Shoemaker D. Class. Quantum Grav., 19: 3679 (2002).

[135] Lai D., Rasio F.A., Shapiro S.L. Astrophys. J., Suppl. Ser., 88: 205 (1993).

[136] Laney C.B. Computational Gasdynamics. Cambridge University Press (1998).

[137] Lattimer J.M., Swesty F.D. Nucl. PHys. A, 535: 331 (1991).

[138] Lax P.D., Wendroff B. Comm. Pure Appl. Math., 13: 217 (1960).

[139] Leaver E. Proc. R. Soc.London, A402: 285 (1985).

[140] Leaver E.W. Phys. Rev., D41 (1990).

[141] Lehner L. Class. Quantum Grav., 18: R25 (2001).

[142] Leins M., Nollert H.P., Soffel M.H. Phys. Rev., D 48: 3467 (1993).

[143] Leveque R.J. Numerical Methods for Conservation Laws. Birkhauser Verlag, Basel (1992).

[144] Leveque R.J. In E. Steiner O. & Gautschy A. (ed.), Computational Methods for Astrophysical Fluid Flow. Springer-
Verlag (1998).

[145] Lichnerowicz A. J. Math Pures et Appl., 23: 37 (1944).

[146] Lincoln C.W., Will C.M. Phys. Rev., D42: 1123 (1990).

[147] Liu Y.T., Shapiro S.L. Phys. Rev., D69: 044009 (2004).

[148] Lombardi J.C., Rasio F.A., Shapiro S.L. Phys. Rev., D56: 3416 (1997).

[149] Marronetti P., Duez M.D., Shapiro S.L., Baumgarte T.W. Phys. Rev. Lett., 92: 141101 (2004).

[150] Marronetti P., Mathews G.J., Wilson J.R. Phys. Rev., D60: 087301 (1999).

[151] Marsa R., Choptuik M.W. Phys. Rev., D54: 4929 (1996).
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