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Introduction

The study of networks can be traced back to the eighteenth century with the
solution of the Konigsberg bridge problem by Euler (1735), often referred to as
the first example of a network theory application. Developments in this field have
led to the mathematical formulation of graph theory in the twentieth century with
the study of random graphs [1-4] and to the extensive studies in the framework
of social sciences [5,6].

Recent years, however, have witnessed a substantially increased interest in
network research, characterized by a shift in the focus from the study of single
node and edge properties of very small graphs by direct visualization, to the anal-
ysis of the statistical features of large-scale networks. The possibility of gathering
data on a global scale, thanks to the progress in electronics and technology in
general, has created an unprecedented opportunity to develop comprehensive ex-
planations for phenomena occurring in diverse real systems, including information
networks [7-14], technological networks [15-19], transportation systems [20-25],
biological systems [26-42], social [5, 6,43-45] and financial [46-48] systems and
many others. Despite the abstract view of real-world systems, completely ig-
noring details associated to individuals or interactions between them, network
representation still accounts for the fundamental aspect of complexity character-
izing these systems and provide a general framework to study and uncover orga-
nizational principles determining the formation and evolution of various complex
systems [49, 50].

With this purpose in mind, we have concerned the development of a class
of models to reproduce the common peculiar features displayed by natural and
artificial networks, based on optimality criteria [51].

In physics, optimality has been recognized to be a key factor in determining
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the physical behaviour of systems. For example, Snell’s law in optics can be de-
rived from Fermat’s principle and the current pattern in an electrical network
can be deduced by minimizing the dissipated energy. Moreover, it has been found
that optimal patterns in the framework of transportation networks, obtained from
the minimization of energy dissipation, closely resemble those observed in Nature
and are able to explain the emergence of scaling properties in the study of several
features [20,52]. Analogous results are obtained also in biological systems, such
as cardiovascular networks or plant vascular systems, where allometric scaling is
shown to originate from the general features of networks under the assumption of
maximum efficiency in transportation of nutrients, regardless of specific dynamical
or geometric assumptions [24,25]. Motivated by these results, we have investigated
the role of selective pressure in determining the topological features observed in
natural and artificial complex networks. Several mechanisms have been suggested
to reproduce the striking features displayed by real-world networks [53-64]. How-
ever, also the role of optimization and its interplay with dynamical mechanisms
of network growth might be crucial in the evolution of complex networks, as e.g.
it seems to occur in biological networks.

A second issue addressed in this thesis consists in the investigation of large-
scale networks through a real-space renormalization group treatment. The theory
of renormalization group approach has been recognized to be very powerful in un-
derstanding the critical behaviour of a large variety of physical systems [65-71].
Applications range from statistical physics and the broad framework of condensed
matter theory, to chemical physics, quantum field theory, and others. Few works
have made use of renormalization as a tool to study processes occurring on net-
works, such as percolation [72], or to study phase transition emerging in the Watts
and Strogatz small-world model [73]. Our work is an attempt to investigate scale-
free properties characterizing real-world complex networks, by means of renor-
malization group approach. The focus is on elucidating the most fundamental
properties, while ignoring less important details of the networks.

Finally, we have focused our attention on the study of biological networks,
in particular on a prominent example in this area, provided by protein-protein
interaction networks [26-32] (PIN) of various organisms, which can be mathe-
matically described as graphs whose nodes represent proteins and edges connect
pairs of interacting proteins. It is worth to notice that all interaction data exhibit
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a non-trivial topological structure characterized by high levels of heterogeneity.
Moreover, these properties are shared by many biological networks that appear to
have recurrent architectural principles that might point to common organizational
mechanisms. The resulting network topology is clearly interwoven with its biolog-
ical significance and analysis in this direction is thoroughly discussed. Results of
this analysis, trying to extract information encoded in the network about corre-
lations between topology and protein functionality, are of extreme importance for
the prediction of unannotated proteins. Indeed, despite the enormous progresses
in genomic biology occurred recently, the determination of the biological function
of a protein in a cell is a costly task which requires extensive biochemical anal-
ysis. A great amount of proteins for each completely sequenced genome is still
functionally uncharacterized [74]. Moreover, the concept of function itself has
radically changed, moving from the idea of individual task for each protein to a
cooperative participation in a biological activity during cell cycle [75,76]. For this
reason, the functional annotation of uncharacterized proteins represent a crucial
point in post-genomic biology, and the search for reliable methods designed for
the functional assignment is of extreme importance. Our work has focused on the
development of two distinct bioinformatics methods for the prediction of protein
functional assignments, on the basis of the network of interactions [77].

The thesis is organized as follows. In the first chapter we briefly provide an in-
troduction to the main concepts of graph theory and basic metrics used to analyze
complex networks. In the following, we review some of the most important mod-
els developed within this framework, starting with a class of static graph models
- including random graphs, generalized random graphs and small world model -
designed to reproduce the observed network structure, and then introducing a dif-
ferent approach which focus on the evolutionary dynamics leading to the observed
topological properties. Following a path which was found to be successful in ex-
plaining network features in the framework of transportation networks, we then
propose an alternative mechanism to reproduce scale-free behaviour and small
world networks observed in Nature, by the introduction of optimality criteria and
selection principles. Comparison with previous works in this area are outlined in
the discussion.

In the second chapter we present a real-space renormalization group approach
to complex networks. We investigate the critical features and scale-free properties
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of several different models, developed to describe different real-world networks,
under renormalization. We discuss the results of the topological analysis of renor-
malized networks obtained with various decimation criteria and propose other
renormalization procedures for future investigations.

In the third chapter we focus our attention on biological networks and provide
an overview of the main results obtained in the study of protein-protein interac-
tion networks by means of statistical physics methods and the theory of complex
networks. We start by reviewing the most recent and important experimental
techniques used to detect protein interactions and the specific own advantages
and drawbacks as well as the biases intrinsically present in each of them. In the
following we focus on the analysis of the yeast Saccharomyces cerevisiae protein
interaction network obtained with different experimental methods. We discuss
topological properties and the emergence of non-trivial structural organization,
far from the random paradigm. We also investigate critical features exhibited by
the networks with the renormalization group approach presented in chapter 2.
We then report on works concerning the development of biological evolutionary
models that reproduce the architecture and the peculiar features characterizing
protein interaction networks, in an attempt to explain their origin for a deeper
understanding of the structure and function of a living cell. Finally, we discuss
several results relative to the analysis of correlations between the pattern of in-
teractions and the biological function of proteins.

The fourth chapter presents two different bioinformatics methods for the pre-
diction of functional annotation of proteins for which we have few or no functional
information at all. Taking full advantage of the functional information encoded
in the connectivity pattern of the whole protein interaction network, the two
methods are able to provide functional prediction for the entire set of unclassified
proteins. We discuss the results obtained in the tests performed to assess the
statistical reliability and the robustness of function predictions provided by both
methods.

Finally, in the last section we draw our conclusions and present the main
perspectives of this study.



Chapter 1

Network Optimization

Many complex systems can be described by networks of interacting elements.
Examples, covering very different contexts, include the Internet [15-17], the World
Wide Web [10-14], phone call networks [78,79], biological systems as protein [26—
32] or metabolic networks [33-36], social networks [5, 6], networks in finance [46—
48], citation networks [7-9] and scientific collaboration networks [43-45], ecological
networks as food webs [37-39], neural networks [40-42], transportation networks
such as airplane networks [18,19], river networks [20-23], circulatory and vascular
networks [24,25] and many others.

In the last few years, a great effort has been performed in order to study
and analyze large-scale properties of real-world networks, emerging from empirical
observations. Network research has then focused the attention on the development
of a variety of techniques and models to investigate the meaning and origin of
statistical properties of networked systems.

Within this framework, we developed a model for network optimization. Our
work is an attempt to follow a track which proved to be very fruitful in under-
standing river networks. Based on physical considerations, the concept of optimal
channel networks (see paragraph 1.2.1) was shown to lead to patterns in strik-
ing accord with observational data [20,52]. Following earlier work by Solé and
collaborators [80,81], Fabrikant et al. [82], and Mathias and Gopal [83] (see para-
graph 1.2.2), we attempt here to explore some of the patterns that arise from the
considerations of optimality.

Starting from a review of general aspects and recent developments in the field
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of complex networks (section 1.1), we introduce the concept of optimality (sec-
tion 1.2), presenting successful results obtained in a related context (channel net-
works) and previous works in the framework of complex networks. In section 1.3,
we propose a class of optimal models evolved by local rules and chosen according
to global properties of the system [51]. Our focus in on elucidating the behaviour
of networks resulting from optimality criteria.

1.1 General framework: complex networks

A network is a set ot n items, called nodes or vertices or sites, connected by links or
edges; n is known as the size of the system. In the following, we will consider only
undirected networks, i.e. networks in which no direction is associated to the links;
also self-loops and multiple edges are ignored. A network can be mathematically
described by its (n x n) adjacency matriz A , where A;; = 1 only if the two nodes
v and j are connected, otherwise A;; = 0. Since the network is undirected, the
matrix A is symmetrical, i.e. A;; = Aj;; self-loops are absent, thus A;; = 0.

Here we review the main concepts and definitions used for the analysis of
complex networks, followed by a presentation of models developed.
Degree. The degree k; of a vertex i (also known as connectivity or coordination
of a node) is the number of edges connected to that vertex, or, in other words, the
number of its interacting partners. It is the most basic topological feature of a
network and can be expressed in terms of the adjacency matrix, as k; = > i Aij-
The average degree (k) is simply

_ 2
_7’L

(k) (1.1)

where [ is the total number of links; indeed each link contributes to the degree of
its two ends.

Degree distribution. An important network feature to be analyzed is the degree
distribution P(k), which represents the probability that a randomly chosen node
has degree k; thus (k) =), kP (k). Real networks display a highly heterogeneous
degree distribution, whose behaviour follows a power-law, considerably differing
from purely random networks (as those defined in the following paragraph), char-
acterized by a bell-shaped, exponentially bounded distributions. The heavy-tailed
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distribution implies that there exist a finite probability of finding a node with very
high degree, much larger than the average value (k), thus exhibiting very large
degree fluctuations. The average degree (k) does not represent a characteristic
scale for the system, so that the network is said to exhibit a scale-free behaviour
in its connectivity properties.

Clustering coefficient. It is a local measure of the interconnectedness of the
nodes, representing the probability that the neighbors of a given node are also
connected (in social networks it is the probability that a friend of my friend is
also my friend). Considering a node i, the clustering coefficient C; is defined as

2€i

G = D (1.2)

where e; is the number of links connecting neighbors of 7 out of the total number
of possible connections k;(k; —1)/2 (for peripheral nodes having k; = 1, C; is taken
equal to zero). The mean clustering coefficient ((C') or simply C in the following)
is defined as the average over all nodes in the system:

1
C=- Z C;. (1.3)
3
The number of edges e; can be expressed in terms of the adjacency matrix A:

1
e = §ZAZ-UAWAW (1.4)

v,w

revealing that C; is a measure of correlations in the adjacency matrix. Natural
and artificial networks display very high clustering coefficients, a clear deviation
from random graph behaviour.

The behaviour of C'(k) as a function of vertex degree, averaged over all nodes
with degree £, has also been investigated, in order to characterize hierarchy and
structural organization of networks [84-87]:

C(k) = n%uc)zciéki,k- (1.5)

A decreasing behaviour of C(k) with £ has been empirically observed in some
real-world networks [87-90].
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Shortest path length. The distance on a graph is defined as the minimum
number of links needed to go from one node to another in the system; if the two
nodes, ¢ and j, belong to disconnected components, their distance d;; is set to
infinity. The maximum distance between any two nodes in the network is usually
addressed as the network diameter. However, another definition involves what is
instead commonly known as the average distance or average shortest path length
L, defined as the average value of d;; over all possible pairs of nodes:

2

The property of having the average path length L considerably smaller respect

to network size n, first observed in social networks of acquaintances and then
verified in a large number of different networks, is known as the small world
effect.
Degree correlations. The simplest case of degree correlations are those between
the degrees of interacting vertices. Several different quantities can be used to
measure degree correlations in a network. For example, one could compute the
joint degree-degree distribution P(k, k'), representing the probability that a link
has, at its ends, two nodes with degrees k and k' [30]. However, because of the
poor statistics of empirical data and consequent large fluctuations in the computed
values, it is better to introduce a more coarse, but less fluctuating measure, i.e.
the average degree of the nearest neighbors of vertices with degree k [17,84]:

Fun(k) = > _K'P(K'|F) (1.7)

with P(k'|k) being the conditional probability that a vertex having degree k is
connected to a vertex with degree k'. The behaviour of k,,(k) as a function
of vertex degree k can be used to detect a property known as assortativity in
social networks, occurring when k,, is an increasing function of k. In particu-
lar, it has been shown that real-world networks can be classified in two distinct
classes [91]: one showing an assortative behaviour, in the sense that high degree
vertices tend to be connected (all social networks), and the other displaying disas-
sortative miring, implying that vertices with high degrees mostly have neighbors
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with low degrees (information networks, biological networks, technological net-
works). Random graphs show a k,, behaviour independent of k.

The measure of degree-degree correlations can be reduced to a single number,
by calculating the Pearson correlation coefficient of the degrees at either ends of
an edge [91,92]. This number should assume positive values in case of assortative
networks, while negative values for disassortative ones.

The features illustrated so far will be used to characterize the behaviour of
a generic network in a renormalization process (chapter 2), and to thoroughly
analyze and investigate the topology of a specific real-world network, the protein-
protein network (section 3.2).

1.1.1 Random graph model

The theory of random graphs was introduced by Erdos and Rényi in the early
1960’s [1-3]. According to their original formulation of the model, a random
graph is defined as a set of n distinct vertices connected by [ edges, randomly
chosen out of the n(n — 1)/2 possible pairs of nodes. There exist a total number
("("_ll)/ 2) of equivalent and equiprobable random graphs, composed by n nodes
and [ undirected links.

An alternative definition of random graph is the binomial model. Starting with
n distinct vertices, a random wiring is performed with probability p, denoted as
connection probability - each of the n(n—1)/2 possible pairs of nodes is connected
with probability p (see fig. 1.1). In this case, the number of edges is not fixed a
priori, and the probability of having [ edges is given by:

-Pn,l — pl(l _p)n(nfl)/2fl (18)

The definition of random graph in terms of the connection probability p is the one
adopted in the following.

The main properties of random graphs derive from very simple considerations.
The average degree of the Erdos-Rényi model can be easily evaluated, by noticing
that the expectation value of the number of edges is (I) = n(n — 1)p/2. Thus,
following eq. (1.1), we obtain:

2(1)

(k)rana = el (n—1)p~np for large n. (1.9)
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p= p=0.1 p=0.15

Figure 1.1: Schematic representation of a random graph model. Left: n isolated
vertices (p = 0). Center and Right: two realizations corresponding to different
values of the connection probability - respectively p = 0.1 and p = 0.15.

The degree distribution P(k) is simply obtained from the binomial process under-
lying random graph generation. In fact, the probability that a node has degree &k
is equal to the probability that it is connected to other k£ vertices of the network
(i.e. p¥), times the probability that it is not connected to the remaining n —k — 1

nodes (i.e. (1 —p)"~*~1). Hence,

Prana(k) = ( N ) PP (1 —p)n k! (1.10)
which is approximated by a Poissonian distribution in the limit of large n:

(k)
Prana(k) ~ e UC)T (1.11)
The peculiar characteristic of random graph degree distribution is the exponential
decay for large degrees, with very small degree fluctuations (see fig. 1.2).
The average clustering coefficient (C,qnq4) of the classical random graph is ex-

(Crand) = P = % (1.12)

pressed as:

since the probability that two neighbours of a given node are connected is simply
equal to the probability of two random nodes being linked, i.e. the connection
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0.10 -

=
o 005

0.00
0

Figure 1.2: Degree distribution resulting from numerical simulations of a random
graph with n = 10° nodes and connection probability p = 0.0015. The plot
compares P(k) with the expectation value of the Poisson distribution (eq. (1.11)):
deviations are small.

probability p, because of the indipendence of wiring events. The average clustering
coefficient thus decreases with network size, as n!, for fixed values of the average
degree (k).

The structure of the random graph varies with the connection probability p =
(k)/n: for p < n~! (i.e. (k) < 1) the network is composed of many disconnected
subnetworks; for p > n~! (i.e. (k) > 1) a giant connected component appears,
with size s ~ n (for a thorough discussion see [4]). For values p > n™!, we can
obtain an approximate expression for the average path length [50]:

Inn

L ~ 1.1
rand ln(k) ( 3)

Since L,4,q ~ Inn, thus slowly increasing with network size, random graphs ex-
hibit the small world behaviour observed in many real complex systems. However,
for what concerns other features, they do not closely resemble networks in the real
world. Indeed, they are characterized by a Poissonian degree distribution peaked
around the average degree and have a low clustering coefficient which tends to zero
in the limit of large network sizes, resulting inadequate for a good representation
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of real complex networks.

The random graph model can be easily generalized to incorporate arbitrary
degree distributions [93,94]; however, generalized random graphs cannot be used
to investigate the origin of such distributions.

1.1.2 Small world model

Looking at the two extremes - a regular graph on one hand, being clusterized but
having very large average distances, and a classical random graph on the other,
displaying small world effect but low clustering - Watts and Strogatz [95-97]
proposed a model, called small world model, which interpolates between the two
graphs (see fig. 1.3).

Small-world

Increasing randomness

Figure 1.3: Construction of the small world model, which interpolates between a
completely ordered graph (p = 0) and a classical random graph (p = 1), with the
constraints of fixed numbers of nodes and edges. In the picture, an ordered ring
lattice with n = 20 nodes and degree £ = 4 is shown as the starting step of the
algorithm (left, p = 0). By increasing p, an increasing number of edges is rewired,
with the emergence of short-cuts in the system. For p = 1 all edges are rewired
randomly, thus recovering a random network.

Starting from a completely ordered graph (for the sake of simplicity, a one-
dimensional model, i.e. a ring lattice, is considered) composed of n nodes each
connected to k nearest neighbors, each link of the system is randomly rewired
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according to probability p. The rewiring connects the starting node to a randomly
chosen node of the network, avoiding self-loops and duplicate connections. The
rewiring probability p is the parameter tuning the transition from ordered lattices
to random graphs.

The key result reached by the model is represented by the behaviour it displays
in terms of clustering coefficient and average path length, on varying the rewiring
probability p. They are both shown in fig. 1.4 as a function of the parameter
p. Starting with a k—regular network for p = 0, displaying high values of both
(C) and (L), with increasing p the average clustering coefficient remains almost
unchanged, while the average path length shows a dramatic decrease, reaching
almost the value corresponding to a random graph. This transition is due to
the emergence of short-cuts (see fig. 1.3) connecting nodes of the systems which
otherwise would be far away in the network, thus considerably decreasing the
average distance.

1 -f = A= B2LE - TR REETAZ LA = ’ T _

osl ° Clp)/CO) © ]
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Figure 1.4: Average clustering coefficient and average shortest path length, nor-
malized to corresponding values obtained for regular lattices, as a function of the
rewiring probability p. The dramatic drop in (L) is due to the emergence of short-
cuts in the system, and occurs when the clustering coefficient (C') remains almost
constant.

Therefore there is a broad region in the parameter space in which networks
with high clustering and very low typical distances (comparable to random ones)
are obtained, in agreement with the characteristics observed in real systems; such
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networks are called small world networks. However, this model still misses some
of the peculiar features emerging from empirical observations, leading to relatively
homogeneous networks characterized by a Poissonian degree distribution.

1.1.3 Dynamical models

The models discussed so far belong to the class of static models, since networks
are characterized by a fixed size n. Although they have provided a reference
theoretical framework for a long time, they do not explain the origin of all the
features encountered in natural and artificial complex networks. In this paragraph
we will examine a class of models, based on network growth, whose aim is to
capture and understand how these peculiar features emerge.

These models are based on what is now accepted as the possible explana-
tion of the emergence of scale-free degree distributions in growing networks, i.e.
the preferential attachment rule introduced by Barabési and Albert [53,54], and
related to the “rich-get-richer” idea formulated by Simon [98] in the 50’s, later
called cumulative advantage by Price [7] in his work to explain the appearance of
power-law distributions in the network of scientific citations.

The Barabdsi-Albert (BA) model is based on two main ingredients - the grow-
ing nature of networks and a preferential attachment mechanism for which con-
nections emerging from new nodes are more probably established towards more
connected nodes (“rich-get-richer” phenomenon). Starting from mg nodes, the
algorithm is as follows:

- growth: at each time step a new node enters the system;

- linear preferential attachment: the new node is connected to m (m < my)
already existing nodes (i) with a probability which is linear in their connec-
tivities (k;):

ik

The algorithm is repeated n times, resulting in a network characterized by a
power-law degree distribution P(k) ~ k=7 with exponent v = 3 (see fig. 1.5), and

Mpa(ks)

(1.14)

average degree (k) = 2m.
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Figure 1.5: Degree ditribution obtained from numerical simulations of BA model
with n = 3 -10° and different values of m and my (m = mg = 1, 3, 5, 7). The
slope of the dashed line is v = 2.9.

The model can be solved exactly in the limit of large network size n, using a
master-equation approach [53-56], thus confirming results obtained numerically.
In fig. 1.6 results for the clustering coefficient and average path length, obtained
from numerical simulations of BA model, are shown in comparison to the corre-
sponding values displayed by a random graph. Recent analytical results [99, 100]
indicate that the average path lentgh scales as

Inn

(L) ~ (1.15)

Inlnn
thus showing small world properties. However, as in random graphs, the clustering
coefficient decreases with network sizes vanishing in the limit of infinite size.
The importance of the BA model lies in its ability to reproduce networks
characterized by high heterogeneity in the degree distribution and small world
effect. However, it is not able to capture other features, such as the behaviour
displayed by the clustering coefficient, or higher order correlations (an issue which
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will be first addressed in chapter 2 and then thoroughly discussed in chapter 3 in
the framework of protein interaction networks).

10

; T T
100 £ O 3 O SF model
O random graph

O scale-free model
random graph

Figure 1.6: Left: clustering coefficient as a function of network size of BA model
with (k) = 4, compared with the clustering coefficient of a random graph, C 4.
Right: average path length as a function of network size of BA model with (k) = 4,
compared with the correpsonding values obtained in a random graph having same
size and average degree.

Several generalizations of the model have been developed [56-63] in order to
introduce more realistic mechanisms actually occurring in real processes and to
extend variability of the power-law exponent. Preferential attachments different
from linear (TI(k) ~ k%, o # 1) were shown to result in networks not characterized
by a scale-free behaviour [55,57]. In order to address the absence of correlations
between node degree and its age, as in the Internet, competition mechanisms have
been introduced to enrich the growing dynamics of preferential attachment [61-
63]. A stochastic parameter, called fitness, is associated to each node, representing
all features, besides degree, that might contribute to node growth rate. The fitness
of a node has been also introduced in another model [64] which belongs to a
different class, being not based on preferential attachment related rules. Links are
established between nodes which gain mutual advantage from the interaction, with
fitness parameter embodying the intrinsic properties of each vertex. Networks with
power-law degree distribution and connectivity correlations are obtained under
certain circumstances (details will be discussed in the following chapter).
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1.2 Optimal design

Progress in the theory of complex networks has focused on the development of the
dynamical models discussed in the previous section. Only few works investigated
the role of optimization in complex networks [80-83].

However, optimal design has been shown to play a crucial role in understanding
the properties of transportation networks encountered in different contexts, such
as branching structures in biology, whose scaling properties are obtained under the
assumption of maximal efficience in transportation [24,25], or drainage networks
of river basins, whose scaling features emerge as the outcome of a minimization
of energy dissipation [20, 52].

These results would support optimization as an alternative scenario for the
explanation of peculiar features observed in complex networks.

1.2.1 River networks

Branching river networks are striking examples of natural fractal patterns. Ex-
perimental observations have shown the emergence of power-law behaviour in the
probability distribution of several quantities describing the morphology of river
basins, over a wide range of scales, despite the great diversities in geologic, litho-
logic, vegetational, climatic and hydrologic factors [20].

Experimental data on river networks are extracted from digital terrain maps,
usually consisting of discretized elevation fileds z; on a lattice, with ¢ representing
the pixel, i.e. unit area, on the lattice [20,101]. A river network is represented
as an oriented spanning tree, in which orientation of the links corresponds to
drainage direction. A geomorphic quantity of interest is the total drainage area
a; associated to site 7, defined as:

a; = ijiaj—i-ri (116)
J

where wj; is an element of the adjacency matrix W, with w; = 1 only if j —
1, otherwise it is equal to zero, and r; represents the local injection at site i,
commonly assumed to be homogeneous.

The distribution of total drainage areas a; and of upstream lengths /; are found
to follow a power-law behaviour, with exponents in the narrow ranges [1.40, 1.46]
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and [1.67,1.85], respectively [21,22]. Moreover, scaling properties emerge when
looking to other geomorphological quantities [25].

The explanation of the dynamical origin of the fractal character of river basins
represents a fundamental task within this framework. A lattice model based on
an energy minimization principle, was shown to reproduce, despite its simplicity,
many features of natural river networks [52,102,103]. Optimal configurations,
called optimal channel networks (OCNs), are obtained by minimizing a dissipated
energy, expressed as

E = ka] (1.17)

where k; characterizes the local soil properties and v is defined by an empirical
relationship between the local topographic drop in elevation, Az;, and the flow
rate J;, which is found to be proportional to the drainage area in the case of
uniform rainfall in time and space (J; ~ a;):

Az ~a]™! (1.18)

with a numerical value of y ~ 1/2.

The shape of the cost function, i.e. its concavity or convexity, was shown
to directly impact on the topology of optimal networks [20,52,104-106], leading
to spanning, loopless structure configurations for the value of interest y ~ 1/2.
Indeed, it was proved [106] that when the exponent < of an overall cost for the
local transportation of material is smaller than 1, it is cheaper to send material
from a given site to only one of its neighbors, rather than to more than one, thus
leading to the emergence of tree structures.

OCNs have been thoroughly discussed and analyzed [104], through analytical
and numerical approaches. Results in the scaling exponents obtained for the
statistics of the global minimum were found to confirm analytical predictions,
which differ from values measured in natural river networks. Statistical exponents
characterizing local minima were instead found to be in completely agreement with
those found in Nature (see, e.g. fig. 1.7), suggesting that real rivers do not explore
the whole set of configurations during their evolution, often remaining trapped in
some metastable configurations.

It is worth to mention that OCNs have been also used to address the question
on whether a liquid material (likely water, given the current knowledge) ever
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Figure 1.7: Examples of OCN configurations minimizing energy dissipation
(eq. (1.17)). Left: local minimum showing features perfectly matching those ob-
served in Nature. Right: global minimum, displaying too regular and ordered
structure respect to irregularities observed in Nature.

flowed on Mars, by the analysis of the present martian landscape [23].

1.2.2 Complex networks

Optimization introduced in a model for network growth [82] has been suggested to
represent a possible explanation of the degree distribution observed in the Internet
topology. The simultaneous minimization of conflicting objectives, proposed by
Fabrikant et al. [82], toghether with growing mechanisms, lead to power-law degree
distributions for certain values of the parameters introduced.

Starting with a set of n points in the unit square, distributed uniformly at
random, a tree is built by the introduction, at each time step 7, of the node %
which connect to one of the already existing nodes j < ¢, chosen with an opti-
mization process. The function to be minimized is a linear combination of the
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Euclidean distance diEj between the two nodes, representing “last mile” costs, and
of a measure h; of the “centrality” of node j, representing operation costs due to
communication delays:
fiG) = adf + h; (1.19)

where the “centrality” h; might correspond to (i) the average graph distance from
other nodes; (ii) the maximum graph distance from another node; (iii) the graph
distance from a fixed centre of the tree. The parameter a tunes the relative
importance of the two objectives, and is thought as a function of the final number
n of points.

Resulting networks can be classified in three different types, according to the
behaviour of the parameter o respect to n:

(1) a star network with ¢ = 0 as its center, if « is less than a certain constant;

(2) a tree with an exponential degree distribution, if « grows at least as fast as
Vi;

(3) a tree with a power-law degree distribution, if « is in between the previous
values.

In fig. 1.8 resulting cumulative degree distributions and associated trees of size
n = 10° are shown, for values a = 4 (top) and « = 20 (bottom).

In the work by Mathias and Gopal [83], optimization has been introduced to
investigate the origin of small world networks [97]. The model proposed is an
attempt to understand the emergence of the small-world topology in networks
where the physical distance is a criterion that cannot be ignored, such as, e.g.,
neural and transportation networks. Optimal structures arising as a consequence
of a trade-off between maximal connectivity and minimal wiring are investigated.
Networks considered in the model are composed of vertices arranged symmetrically
along a ring, as in [97]. The size n of the system, as well as the number of links,
is fixed during optimization; since physical distance is taken into account, the
nodes are equally spaced on the ring and maintain their positions. The initial
configuration is a k—regular network, in analogy with [97]. The energy function
E to minimize is defined as a linear combination of the wiring cost W and the
average degree of separation between the nodes, L:

E =ML+ (1- )W (1.20)
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Figure 1.8: Cumulative degree distributions and associated trees of size n = 10°
generated for o = 4 (top) and a = 20 (bottom).

where L is the average path length, as defined in eq. (1.6), normalized to the value
L(0) obtained in a regular network with degree k, and the cost of wiring is defined
as the sum of the Euclidean distances between any pair of connected nodes:

W = Z Vi —2)2 4 (y — y;)? (1.21)

with (z;, y;) being the fixed oordinates of the vertex i on the ring lattice.

As expected, for A = 0 a regular graph with a high average path length (L ~ n)
results, since the system tries to minimize the cost of wiring edges. On the other
extrem, at A = 1 the optimization results in a near random network (L ~ Inn),
since only the characteristic path length is to be minimized. Some examples of
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optimal networks obtained for different values of A are shown in fig. 1.9, where
toghether with the ring lattice representations (left), also corresponding 2-d graphs
are reported (right).

Figure 1.9: Left: Ring lattices corresponding to values n = 100, k£ = 4, as the
parameter A is varied over the [0, 1] range: A = 0 (top), A = 0.5 (center), A =1
(bottom). Right: The same networks are displayed as 2d-graphs using a graph
generator with a spring embedder (from [83]).

Both the previous works take into account Euclidean distance between the
nodes of a spatial network, which generally does not play any relevant role in
real complex networks. In a model introduced by Solé and collaborators [80, 81],
it was shown that the minimization of a linear combination of average degree
and average graph distance, regardless of the physical distance, can lead to the
emergence of a truncated power-law in the degree distribution.

Networks considered have a fixed number of nodes n, but no constraints on
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the number of links [. Starting from a classical random graph [1,4], in which
two given nodes are connected with some probability p, the energy function to be
minimized in the optimization algorithm is defined as follows:

EQ) =AM+ (1—-X)p (1.22)

where A is the parameter controlling the relative importance of the two contribu-
tions: the network density p, defined as (k)/(n — 1) and the normalized distance
d, i.e. the average path length normalized to the maximum value D™ it can
assume in a connected network (D™ = (n + 1)/3).

As expected, the two extreme values A = 0 and A = 1 lead to, respectively,
Poissonian and completely connected networks (i.e. cliques). Varying the value
of \, three types of optimal networks are found (see fig. 1.10):

(A) an exponential-like network;
(B) a network with truncated power-law in the degree distribution;
(C) a star-like network

In fig. 1.10 it is also reported the behaviour of the degree entropy H()), defined
as:

n—1
H(\) = -) P:InP (1.23)
k=1

where Py is the fraction of nodes having degree k.

1.3 The model

Our focus here is the proposal and analysis of a class of models in which the
key selection criterion for network topology is optimality [51]. The goal is thus
to understand the topology of networks which minimize a physically motivated
cost function. Strikingly, we find a variety of distinct topologies and novel phase
transitions between them on varying the number of links per node.

Suppose that some type of information has to be communicated between pairs
of nodes of the network [107]. It is plausible that besides the average distance
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Figure 1.10: Degree entropy H(A) (averaged over 50 replicas) as a function of A
with n = 100 and p = 0.2. Optimal networks for selected values of the parameter
A are shown. A: an exponential-like network with A = 0.01. B: a network with
truncated power-law degree distribution with A = 0.08. B’: intermediate graph
between B and C. C: a star network with A = 0.5.

between any two nodes, the type of nodes encountered along the path(s) joining
them may also matter in the optimization of the dynamics of communication
taking place in the system. For example, selective pressure may operate so as
to choose certain nodes because of their high connectedness - or else to avoid
them. Associated with the type of node, is a local feature that depends only on
its degree, namely, the number of edges rooted in the node. On a global scale, we
will distinguish among structures that rewire local features at random selecting the
changes if the new structure provides a selective advantage. It is well known that
in many such optimization problems, the key factor that matters is the shape of
the cost function [20,52,104-106]. The concavity or convexity of the cost function
can be embodied by a power law form with scaling exponent « less than or greater
than 1 respectively:

Hy = Y dij(a), (1.24)

1<j
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where 7 and j are pairs of nodes of the network, and
dij(@) = min > kg (1.25)

Here P is any path connecting site ¢ to site j of the system, p is any node belonging
to such a path and k, is the degree or connectivity of node p. The weighted
distance d;;(«) is a global quantity associated with the pair ¢, j and is the minimum
of the sum of degrees ky (a local property), evaluated along the path P from i to
j, over all the paths connecting 7 and j. In the limiting case o — 0, eq. (1.25)
becomes the standard definition of distance on a network [50].

The new definition of weighted graph distance introduced in eq. (1.25) captures
the conflict between two competitive trends: (i) the avoidance of long paths so
that the system minimizes distances regardless of “traffic” to simply reduce the
graph distance between vertices; and (ii) the need to avoid heavy traffic arising
from highly connected nodes (hubs) which behave as bottlenecks along the path
from one vertex to another.

The networks minimizing the cost eq. (1.24) are searched for among the ensem-
ble containing a fixed number of nodes n, as well as the number of links (edges) [.
The optimization method used in the numerical simulations is a Metropolis scheme
at zero temperature. The goal is to obtain the statistics of all local minima which
are accessible topologies associated with the chosen dynamics [108].

The protocol of the simulation is as follows:

(i) Generation of a random initial configuration with fixed n and [. Starting
with a single node, at each time step a new vertex is added and connected to
an already existing node, extracted with uniform probability; the algorithm
is repeated until a connected tree of size n is obtained; the remaining [ —
(n — 1) links are randomly added in the system, by linking pairs of vertices
not already connected, extracted with uniform probability. This procedure
ensures the generation of a connected random network with fixed n and I.

(ii) Random rewiring. Specifically, a link connecting the sites ¢ and j is randomly
chosen and substituted with a link from ¢ to a site &k, not already connected
to 1, extracted with uniform probability among the sites of the system. This
ensures that the number of links /, as well as the size of the system n, remains
constant during the minimization.
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(iii) Connectedness control. If the graph is not connected after rewiring, step (ii)
is repeated;

(iv) Energetic control. The new value of H,(t + 1) is calculated. The new
configuration is accepted only if it is energetically favorable, i.e. only if
H,(t +1) < H,(t); otherwise the change is rejected and we return to step

(ii).

Note that the zero-temperature setting ensures feasible optimality of the emerging
network structure [104-106], a feature that is relevant for dynamical accessibility
of complex optimal structures. The minimization algorithm stops after F' consec-
utive failed changes on the network; we have chosen F' = n(n — 1), so that, on
average, each pair of vertices is allowed to change its state twice.

The resulting networks are analyzed in terms of the degree distribution P(k),
i.e. the fraction of nodes with connectivity k, the average distance between pairs
of nodes, L, and the average clustering coefficient (C), a measure of the local
interconnectivity of vertices in the system, as defined in egs. (1.2) and (1.3).

1.4 Trees

In the special case of trees, i.e. loopless structures, the path P : ¢ — j connecting
the vertices ¢ and j is unique and the weighted distance d;; assumes the form:

dij= > kg (1.26)

pEP:i—]

1.4.1 Results

Minimizing the cost function through Metropolis algorithm we obtain optimal
networks with emerging topologies all displaying a precise structural organization
or hierarchy (see e.g. fig. 1.11). They are characterized by a central node from
which almost identical branching structures depart. Let g be the generation or
level of the branching structure, with g = 0 at the central node and g = G at the
last level. Because of the symmetry encountered in optimal patterns, each node
belonging to the same generation g has the same value of connectivity k,, except
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for the last level due to finite size effects. Therefore, the cost function of eq. (1.24)
can be rewritten as a sum over the generation levels:

G
Hy =) Ngb kg (1.27)
g=0

where IV, is the number of nodes belonging to the level g, b, is the node between-
ness for level g, defined as the total number of shortest paths between any two
vertices in the network passing through a node belonging to that level, and £,
is the degree of each node at generation level g. Choosing a vertex v belonging
to the level g, we indicate with n, (k, — 1) the number of nodes contained in the
branches departing from v, except v itself; ny thus represents the number of nodes
contained in the branch starting from level g + 1 to the final generation G (see
fig. 1.11). Node betweenness b, for level g can be expressed in terms of n, and
the level connectivity kq:

by = ng (kg — 1) [n—ng(ky —1) = 1] + Uy = 1)2(/€g —2)

The first term on the right hand side of eq. (1.28) accounts for the paths connect-

no +n—1 (1.28)

ing one of the n, (k, — 1) nodes to one node belonging to the rest of the network
(whose total number is n — ny(k, — 1) — 1, with 1 accounting for the node v)
and passing through the vertex v at level g; the second term represents the num-
ber of paths passing through the given vertex and connecting nodes belonging
to the same branch departing from that vertex; finally, the last term represents
the number of paths starting from the node v to every other node in the network
(n—1).

The number of nodes N,, belonging to the generation level g, and the number
of nodes ng4, contained in one of the branches departing from that level, can be
expressed in terms of level connectivities &,:

g—1
Ny = ko [[(ki—1) for g >2 (1.29)
=1
with Ny =1 and N; = kj, and

G-1 7
ng =14+ > J[ k-1 forg<G-2 (1.30)

1=g+1j=g+1
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final level G

Figure 1.11: Graph representation of a typical tree with n = 82 and a = 0.9.
Centre g = 0 and final level G are shown. The N, nodes of level g are those in
black circles. The polygon shows the n, vertices. The graph has been produced
with the Pajek software [109].

with ng =0 and ng_; = 1.

The expression of the cost function in terms of level contributions - eq. (1.27)
- toghether with the expressions for b,, N, and n4 in terms of generation con-
nectivities k, - egs. (1.28), (1.29) and (1.30) - allow us to exhaustively explore
configuration space of hierarchical trees, being those found as minima in numeri-
cal simulations. For different system sizes, we explore thoroughly all the possible
discrete values that coordination k, can assume for each generation g, compatible
with the size n, and evaluate the corresponding value of H(«). For a fixed value
of n, the optimal pattern is the one corresponding to the minimum of H(«); the
total number of generations G is automatically determined by the minimization
of the cost function. The coordination of the last two levels, G and G — 1, might
not be constant for all vertices belonging to those levels, due to finite-size effects
and discreteness of the problem.

We have studied different sizes of the system, up to values n = 700 nodes,
and investigated the role of concavity of the cost function, adopting values of
a greater and smaller than 1. In fig. 1.12 we present some samples of optimal
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patterns obtained.

N
o

=N\

Pajek

Figure 1.12: Graph representation of four optimal trees with: Top Left: a =
0.9, n = 156; Top Right: a = 4.0, n = 424; Bottom Left: o = 0.5, n = 70;
Bottom Right: o = 4.0, n = 68.

The importance of the shape of the cost function is reflected in the behaviour
displayed by optimal trees. When o < 1 (graphs on the left in fig. 1.12), the
minimization of the graph distance between any two nodes in the system dom-
inates, leading to branching structures characterized by higher connectivities in
order to decrease the total number of generations G, for fixed values of o and n,
and reduce network diameter. When a > 1, instead, the system tries to minimize
node degree, thus leading to the emergence of several linear patterns (graphs on
the right in fig. 1.12), i.e. sub-networks composed of nodes having connectivity
k = 2, which are disadvantaged and, thus, almost completely absent for o < 1.
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We are not able to go further with our investigation of optimal trees, including
e.g. the study of the degree distribution, since for the values of n analyzed we do
not obtain a range of connectivities large enough for the analysis.

However, we have shown that optimization of loopless structures leads to the
emergence of a feature commonly observed in natural and artificial complex net-
works - the hierarchical organization of network structures - which has been the
object of several recent works [84-87,110,111]. In fig. 1.13 we show, as an example,
one of the typical loopless networks we obtained from optimization, correspond-
ing to the values n = 85 and o = 0.4 (on the left), which very closely resembles
a graph representation of a telephone network (on the right), where the termi-
nals are telephone sets and a node is a switching center for routing telephone
calls [112,113].

Figure 1.13: Left: graph representation of an optimal tree corresponding to the
values n = 85 and o = 0.9. Right: graph representation of a local telephone
network (from [112]).

In the next section we will discuss topologies of generic networks, i.e. networks
with loops, resulting from the optimization of the cost function, which display the
emergence of strikingly interesting features.
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1.5 Generic networks

Taking into account more generic networks, i.e. networks with loops, we must refer
to the original expression of the weighted distance, eq. (1.25), and use Metropolis
minimization algorithm to find optimal topologies.

For each optimization, we performed 200 independent simulations to average
over initial random configurations. We have varied the size n of the system over
the following values: n = 35, 50, 70, 100, 140, 200. For each size, the different
values of the ratio r = [/n investigated are: r = 1.05, 1.1, 1.2, 1.3, 2.0, 2.3, 3.0.

1.5.1 Results

On varying r, we observe two distinct behaviors. The first occurs for values of
r ~ 1: the system displays a broad distribution of degrees for several values of
a (see P(k) in fig. (1.14), for « = 0.7). However, the behavior does not seem to
be a genuine power law because the sharp cut-off does not display the expected
dependence on the system size n. Unfortunately, the high computational cost, due
to the exponential growth of possible configurations and the nature of the global
selection process pursued, prevents us to increase further the size of the system
in order to quantify the weak dependence of the cut-off on n. As « increases,
this heterogeneous region shrinks around the value » = 1 and is vanishingly small
for a > 1. The second behavior is obtained for larger values of the ratio r — the
degree distribution obtained is strongly peaked around the average value of k, (k)
(fig. (1.15)).

A sample of network topologies are illustrated in fig. (1.16), for different values
of @ and r. On increasing the value of the ratio r, one moves from networks
characterized by the presence of some highly connected nodes together with many
peripheral sites (Top Left and Right) to networks in which almost every node has
the same degree k = (k) (Bottom Left and Right). In addition, a sharp transition
is observed in terms of the average clustering coefficient C' = (C;), as defined in
eq. (1.3).

For « > 1 (fig. 1.17 Top), the system undergoes a clear phase transition as the
value of the ratio r increases passing from a regime characterized by zero clustering
to one in which the clustering coefficient becomes different from zero. The cost



32 Network Optimization

10

10*1 L \ —f=n
__ 107 e —en=35
é == nN=50
(a 10° | n=70 \ ]

A—4A N=100 k\
i n=140 .
10 n=200
10°°
10° 10"

Figure 1.14: Degree distribution, averaged over 200 realizations, for several system
sizes (n = 35, 50, 70, 100, 140, 200) for & = 0.7 and 7 = 1.05. The system displays
a range of degrees.

P(k)

Figure 1.15: Crossover between the two distinct behaviors: the heterogeneous
regime which exhibits a range of degrees and the homogeneous one characterized
by a peaked distribution. Data are averaged over 200 realizations for o = 0.7,
n = 70 and for several values of r = [/n.
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Figure 1.16: Graph representation of four typical networks with: Top Left: o =
0.4, r = 1.05, n = 100; Top Right: o = 0.7, r = 1.05, n = 140; Bottom Left:
a = 0.5, r =2.0, n = 50; Bottom Right: a = 2.0, »r = 1.05, n = 100.

function in eq. 1.24 has two competing forces: the minimization of the graph
diameter and the minimization of node degree. When o > 1 the minimization of
node degree dominates and the system attempts to minimize the degree of each
node resulting in a peaked distribution around the mean value (k), with a non-
trivial topology characterized by zero clustering and exhibiting the presence of
long loops. (fig. 1.16 Bottom Right). When the ratio r reaches the critical value
r.(c), one obtains a non-zero clustering coefficient.

This transition also occurs for @ < 1. However, when o < 1 one obtains
an additional phase transition at r.(«), where the system passes from optimal
networks exhibiting a non-zero clustering coefficient, to ones with no clustering at
all. Indeed, when o < 1, the tendency expressed by the cost function is to decrease
the graph diameter, i.e. a measure of the mutual distance among pairs of nodes.
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Starting from very small values of r, we observe topologies characterized by the
presence of few interconnected hubs (i.e. sites with very high degree [49,107])
linked to many peripheral sites (fig. 1.16 Top Left). The clustering is different
from zero due to the mutual connnections between hubs.

The emergence of this extra phase transition underscores the importance of
the concavity (convexity) of the cost function.

The limiting case o — 0 would correspond to the minimization of the standard
graph distance, leading, in the region r ~ 1, to a single central hub connected to
n — 1 peripheral nodes, which share the remaining [ — n + 1 links. This situation
leads to non-zero clustering. The minimization of the graph distance corresponds
to a limiting case of [81] as well; however, in [81] there is no constraint on the
number of links [, so that the optimal network they find is a clique, in which each
node is connected to each other.

Increasing the ratio r does not favour adding other links among the hubs,
because their already high degrees would only increase further, thus leading to
a higher value of the cost function. Hence the system reorganizes by increasing
the number of hubs, automatically reducing their degrees and distributing the
peripheral sites among them, trying to avoid expensive triangles between hubs
in order to further decrease their connectivities. When the transition occurs, at

'(a), the network does not exhibit hubs any more, but tends to become quite

Te

homogeneous in the sense that almost every node has connectivity close to the
average value (k). Even in this regime the optimal topology is distinctly different
from the random one. In fact, it displays a peaked degree distribution around the
mean value (k) without significant clustering (fig. 1.16 Bottom Left), even though
the network is not a tree. Emerging loops have the maximum possible length in
order to reduce the energy function. Adding extra links to the network forces the
loops to become smaller, still avoiding clustering up to a second critical value of r,
re(a). Beyond this value, 'triangles’ appear leading to a mean clustering coefficient
different from zero. A similar transition occurs for @ > 1 (fig. 1.17 Bottom, inset),
when the trend that dominates is the minimization of node connectivity.

The extent of the clustering phase for r < r/(«) and o < 1 shrinks for in-
creasing values of «; the critical value r.(«) decreases as « increases, Va. From
fig. 1.14, 1.15 and fig. 1.17, one finds that several distinct topologies are obtained
for different values of o and r:



1.5 Generic networks 35

0.1 ‘
0.2
. 0.15 ®
0.08 - P o T
=L 0.05 | L
=2 0.06 [ (Y P ,
< 0 o— & L P
= 1 15 2 25 3/
O I/n K
5 0.04 -
@) e - 0=2.0,n=70 ,
0.02 + i/
-
0 'e—e . & :
1 1.5 2 2.5 3
I/n
20 ‘
®----® 0=0.35, n=70
15 { : 15
° | = 10 ®---@0=0.35, n=50
© S
@) 3
-~ g
B 8
o
@)

Figure 1.17: Mean clustering coefficient for the optimal configuration C,p; normal-
ized to the mean clustering coefficient, C,.,,4, of the random configuration. Top:
results for network size n = 70 and o = 2.0; in the inset the behaviour of the ratio
Copt/Cranap is shown, where C,4,4p represents the mean clustering of a random
graph with the same degree distribution P(k) as the optimized network. Bottom:
results for network size n = 70 and « = 0.35; in the inset (n = 50, o = 0.35) both
the critical values, r.(«) and r%(a), are shown.

- a heterogeneous regime exhibiting a broad distribution of degrees (r ~
1, @ < 1) observable both in the clustering and no clustering phase
depending on the value of «;
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- a homogeneous regime for larger values of r with clustering different
from zero (r > r.(a) Vo, and a < 1, r < rl(a) but not in the tree-like
limit) or zero clustering (o < 1, ri(a) < r < r.(a) and a > 1, r < r.(a)).

Fig. 1.17 shows that in the region @ < 1 and r ~ 1 the average clustering
coefficient of the optimal network is greater than the random one. Unfortunately,
the limited number of nodes we can deal with (because of the high computational
costs) precludes a direct comparison with large real networks. However, making
the hypothesis of an optimal mean clustering, C,,;, independent of the system size
n, we can compare the ratio Copt/Crana Obtained in our simulations with those cal-
culated for real networks having the same average degrees [49]: one obtains ratios
Creat/Crang in the range of those obtained numerically for several real networks.

Results presented have been compared to corresponding values obtained in
a classical random graph [1,4], Crang, having same size n and number of links [.
However, we have also studied system behaviour in comparison to a random graph
characterized by the same degree distribution P(k) of the optimized network [93,
94], Cranap- Both studies give similar results, as it is shown in the inset of fig. 1.17
(top).

We have also studied the characteristic path length, L, defined as the average,
over all pairs in the system, of the graph distance between pairs of nodes. As
shown in fig. 1.18, in the entire interval of o, the characteristic path length of
the optimal configuration, Ly, is comparable to or smaller than the random one,
Lyonq. Even though the small network sizes studied here do not allow us to reach
definitive conclusions, there exist a range in « and //n in which optimal networks
seem to display a small-world effect [50].

1.6 Conclusions

Optimality leads to the emergence of several distinct network structures, show-
ing hierarchical organization in loopless structures and including a heterogeneous
regime characterized by a broad distribution of degrees in the tree-like topology
limit. Besides the degree distribution, we have studied the clustering coefficient
and the average path length of the selected networks which point to the existence
of non-trivial phase transitions and to the features of the small-world effect. Our
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Figure 1.18: Characteristic path length L,,, normalized to the classical random
one Lygnd, VS. Q.

main result is that the emergence of the structural properties observed in natural
network patterns may not be necessarily due to embedded growing mechanisms
only, but may rather reflect the interplay of dynamical mechanisms with an evo-
lutionary selective process.
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Chapter 2

Network Renormalization

Renormalization Group (RG) Theory has proven to be extremely useful in the
explanation of critical and multi-critical phenomena, and in other problems in the
broad area of statistical physics and condensed matter theory, physical chemistry
and beyond (for a review, see [71]). It was originally developed for applications
to regular lattices. Here we propose a real-space renormalization group approach
to complex networks.

2.1 Coarse-graining a generic network

Renormalization group techniques have been applied to stochastically growing
networks, in order to study the critical behaviour of percolation [72], and to static
networks, such as small world networks, in order to analyze the transition from a
regular-lattice behaviour to a random-graph behaviour [73].

In the following, we investigate the critical behaviour observed in real-world
complex networks - for what concerns, e.g., degree distribution and several mea-
sures of degree-degree correlations and hierarchical organization - through the
application of real-space RG approaches. To our knowledge, no such investigation
of criticality in complex networks has yet been performed.

Our focus is on elucidating the critical features of complex networks, by an-
alyzing the robustness of these behaviours under renormalization, addressing the
problem of distinguishing between critical and only apparently critical behaviours.
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Moreover, through the application of renormalization techniques, we would like
to “simplify” complex networks, providing more simple and understandable ver-
sions of large-scale networks, hopefully resulting in a powerful method for network
visualization.

In the following sections, we introduce distinct RG techniques and the results
obtained from their application to complex networks generated with several dif-
ferent models, designed for application to different real networks. An application
to real-world networks is given in section 3.3, where protein-protein interaction
networks are analyzed.

2.2 Derivation

We consider a generic network composed of n nodes and described by the adja-
cency matrix A. The associated laplacian T is defined as
—k; ifi=g
" v zl: . { A;;  otherwise (2.1)
where 7 and j represents two vertices of the newtork, d,; is the discrete delta

function, and k; is the degree of node 1.
An energy function H can be associated to the network:

1 |
H =3 Ai(6i—9,)' = 56T ¢ (2.2)
J

which might be interpreted in at least two different ways. In the framework of
electrical networks, eq. (2.2) represents the global dissipated electrical energy of
the system, with A;;/2 being the conductance between two nodes ¢ and j, and ¢;
representing the potential at vertex ¢. In the context of vibrational networks, ¢;
represents the scalar displacement of vertex ¢ from its equilibrium position and A;;
the strength of the link connecting 7 and 7, thus leading to a mechanical interpre-
tation of H as the elastic energy associated to a deformation q;: (p1, 09, ..., Pn)
of the network.
It is worth to notice that the laplacian I' satisfies the following equation:
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having the trivial eigenmode (1,1, ...,1). In order to be able to express the energy
function H as in eq. (2.2) after renormalization, we want the constraint of eq. (2.3)
to be satisfied by renormalized network.

After the application of renormalization procedures, illustrated in the next
section, we will deal with a laplacian I'V whose elements will in general not assume
only values equal to 0 or 1 as in the initial network. Therefore, we will obtain a
weighted newtork.

As discussed in the previous chapter, the theory of complex networks usually
deal with networks characterized by binomial interactions, i.e. A;; = 0 or 1, im-
plicitly assuming that the “quality” or “strength” of each interaction is identical.
However, there exist a lot of networks in which edge weight can be unambigously
distinguished, since they are intrinsically weighted. Examples include scientific
citation networks, where the strength is represented by the number of joint publi-
cations, transportation networks such as airline networks with passenger capacity,
social networks where the strength of an interaction might be stronger or weaker,
food webs, accounting for the diversity in predator-prey interactions, the Internet
where the traffic passing through a link actually represent an important ingredi-
ent, and many others. Research attention has focused on this type of networks
only very recently [19,45,48,114-119].

Here we define some quantities of interest for the following analysis of weighted
networks, emerging after renormalization. To each node is associated a weighted
degree (also known as strength in the previously cited literature), defined as the
sum of the weights associated to the links starting from node i:

k¥ = sz’j (2.4)
J

where w;; = I';;. In analogy with standard definitions (eq. (1.3) and eq. (1.7)),
we define the weighted clustering coefficient for the node ¢ as
D1 Wig Wi

Zjl Wi W4 max(w)

v —

2

(2.5)

and the weighted average neighbors degree of the node i:

w 1 w



42 Network Renormalization

In eq. (2.5) we must divide C? by the maximum weight max(w), to correctly nor-
malize the clustering coefficient. Toghether with the weighted degree distribution
P(k"™), i.e. the probability that a randomly chosen node has weighted degree k%,
we also study the dependance of C" and k;» on the weighted degree £*. The
definitions just given differ from those found in the literature, since we are not
interested in the relation between weighted networks and underlying binomial net-
works, characterized by the standard definitions of degree, clustering coefficient,
tc., presented in the previous chapter. What we would like to investigate, in-
stead, is the critical behaviour of netwoks under coarse-graining, which forces the
appearance of weighted edges in the renormalized laplacian I".

2.3 Renormalization procedures

As a real-space renormalization technique, we adopted a decimation procedure in
which a certain set of nodes D is removed from the original set of nodes N, leaving
a remaining ensemble N' of nodes, with N = N U D. Two different kinds of
decimation procedures, explained in the following paragraph, have been explored.

In order to obtain the renormalized expression of IV associated to the network
N, in terms of I', we must integrate out the decimated sites, i.e. nodes belonging
to the set D

exp (—H') = exp< o1 ) / gdgﬁv exp(—H). (2.7)

We can rewrite the energy H as a sum of terms depending on decimated sites only
(v € D), on remaining sites only (i € N'), and of mixed terms (i € N' and v € D):

[Z $iliid; + Y dulwwtn + quz vy

,JEN v,weD

, (2.8)

thus obtaining:

exp (—H ocexp( > MU@) / []d¢o exp (Z Sulowu + Zasz <z>)

1,jEN veD v,weD
(2.9)
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Making use of the following identity

/Hdmi exp (—% Za:iVijxj + Zszv@) = const exp (Z s,-Vijlsj> (2.10)
i ij i

]
we finally obtain the result

F;'j =Ty - Z Liy (F(d))_l L (2.11)

vw
v,weD

where I'9) is the matrix I' restricted to the decimated ensemble D and (T'(9)~1
its inverse. It is easy to see that also the renormalized laplacian T satisfies
eq. (2.3). Since the field ¢ can be redefined by a multiplicative constant, also the
elements of IV can be multiplied by a positive constant, leaving unchanged the
properties of the newtork. This happens to be useful when the normalization to
the maximum value of I';; is required, as e.g. for the evaluation of the weighted
clustering coefficient (see eq. 2.5).

2.3.1 ’Minimum’ and ’threshold’ decimation

The decimated ensemble D may be determined according to different rules. The
idea is to delete nodes which, in some sense, are less important in the network.
Thus, one could think of removing nodes with smallest degree - known as dangling
ends - since they are far from being the key vertices in the network, or those
vertices having lowest betweenness (a quantity which measures the total number
of shortest paths passing through the given node), since they represent the less
visited nodes in the system.

Here we adopt a decimation procedure based on the elimination of nodes with
lowest weighted degree. In particular, we distinguish between a 'minimum’ deci-
mation in which only the nodes having minimum weighted degree, min(k¥), are
deleted and a ’threshold’ decimation which remove the ensemble of nodes having
k™ below a certain threshold. For example, the threshold might be chosen in such
a way to decimate a certain percentage of nodes with lowest weighted degrees.

Removing nodes from the network, increases the connectivity £ and results in
a renormalization of already existing weighted edges (I';; # 0 — T'j; # 0) and in
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S

3/2

1/3

Figure 2.1: Graph representation of successive renormalizations through ’mini-
mum’ decimation. Top: Nodes with weighted degree £* = 1, i.e. dangling ends,
are selected for decimation (blank circles). No renormalization of links occurs
after decimation of k¥ = 1 nodes: all links have weight equal to 1 (in the picture,
only weights w;; # 1 report their own value). Bottom: Successive decimation
involves nodes with &% = 2, i.e. nodes i, j, [, m (blank circles). Renormalization
affects already existing links (e.g. (g,r), going from w, = 1 to w, = 3/2, as
illustrated in the picture), and also creates new edges (e.g. (p,q) with w,, = 1/2
from the decimation of the node 7, and (r, s) with w,s = 1/3 from the decimation
of two nodes, [ and m). A thickness proportional to the weight has been used for
visualization.

the creation of new weighted edges (I';; =0 — I3 # 0), thus producing short-cut
connections. A simple representation of what occurs is depicted in fig. 2.1.

Decimation is then iterated many times and results obtained after each renor-
malization are compared and discussed.
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2.4 Results

We have investigated renormalization group approach applied to several networks
generated by the models presented in the previous chapter. We have studied the
topological properties of the emerging weighted networks, after several decima-
tions. Figures in this section show results obtained from a single realization of
each model. Binning of the data is necessary to plot the behaviours of the quan-
tities studied as a function of the weighted degree, since it assumes non-integer
values. It also helps us in reducing the statistical noise inevitably arising from
the consideration of a single realization. We used exponential bin length for the
variable range, since plots are in logarithmic scale.

The models under considerations result in different critical features. They all
display a power-law degree distribution, but are characterized by different be-
haviours when considering the clustering coefficient or higher degree correlations.
For comparison, we have investigated also the Erdés-Renyi model [1], since it is
not scale-free and does not display correlations between the nodes.

In the following we show the results - in terms of P(k"), C* (k") and k2, (kv) -
relative to the models:

Barabdési-Albert network (BA) [53,54], illustrated in detail in section 1.1.
In the present simulations we use the values m = mgy = 2.

“Good-get-Richer” network [64]. It introduces the concept of fitness as-
signed to each node, as a measure of the intrinsic properties of a vertex. It
does not rely on a preferential attachment rule, differing from [61, 62|, but
proposes a generalization of the Erdos-Renyi model in which the probability
of creating a connection between two vertices depends on a mutual benefit
and is expressed in terms of their fitnesses. To each node 7 is assigned a
fitness f; extracted from a probability distribution p(f). A link between
nodes ¢ and j is created with probability F'(f;, f;), dependent on the fit-
nesses of both vertices. In the following, we use an exponential distribution
of fitnesses p(f) = exp(—f) and a step function F(f;, f;) = 0(fi + f; — 2),
where z = z(n) is a given threshold; in our simulations z = 6.2. The rules
chosen lead to a scale-free degree distribution and to non-trivial correlations
resulting in power-law behaviours found in C(k) and ky, (k).
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Acquaintance network model We adopt a variant of the model for social net-
works developed in [120]. Starting with a single vertex, the algorithm con-
sists in the iteration of the following steps:

- with probability 1 —u a new node 7 enters the system and connect to an
already existing node j extracted with uniform probability; potential
edges between ¢ and neighbors of j are created;

- with probability v a potential edge, selected randomly, is converted
into an edge.

The concept of potential edge mimics in social networks the occurrence of
potential acquaintances between acquaintances of a given person. Results
presented are obtained using a probability v = 0.8.

Erdos-Renyi network (ER) [1], presented in section 1.1. Networks generated
have average value (k) = 10.

We have performed numerical simulations of these models using the parame-
ters mentioned above and network size n = 1000. Although the size considered is
relatively small, we must mention that we are not interested in the intrinsic prop-
erties of the models (and, thus, neither in the absolute values of the power-law
exponents), but in the renormalization of several network types. Future devel-
opments will investigate larger networks, in order to limit finite-size effects. The
study presented here, however, is useful for a possible application to real networks
with similar sizes, such as, e.g., protein interaction networks (see section 3.3).

For each quantity investigated, we compare results obtained with 'minimum’
and ’threshold’ decimation techniques. The threshold is chosen in such a way to
decimate at least the 50% nodes with lowest weighted degree.

We first analyze the weighted degree distribution P(k%). In fig. 2.2 we report
on the left results obtained with minimum decimation and on the right those
coming from the threshold decimation adopted. Number of decimations and cor-
responding network sizes are shown. For all models, the scale-free behaviour is
recovered after successive renormalizations. Strikingly, also the slope is conserved,
with power-law exponents within the deviations due to the fact that we are con-
sidering a single realization only. These observations are valid not only if we
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adopt minimum decimation, in which we are progressively reducing the number
of nodes, but also if we apply threshold decimation, thus abruptly changing the
size of the system (ng1 ~ 50% ng4, with d indicating the decimation).
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Figure 2.2: Results for P(k") obtained with renormalization by 'minimum’(left)
and ’threshold’ decimation (right). Top: BA network. Center: “Good-get-Richer”
network. Bottom: Acquaintance network.

Correlation properties seem to strengthen previous observations. In figs. 2.3



48 Network Renormalization

and 2.4, we report the average weighted clustering coefficient C* (k™) and the av-
erage weighted connectivity of the neighbors £ (k™), respectively, as a function
of the weighted degree k™. As expected, while BA results are almost indepen-
dent on £", the other models display non-trivial correlations between the degrees,
resulting in scale-free properties. Also for these quantities, the emerging critical
behaviour do not change after renormalization. Renormalized weighted cluster-
ing and weighted neighbor connectivity are in qualitative agreement with original
ones, and seem also to provide correct results for the slope values, thus showing
the robustness of the underlying connectivity correlations and hierarchical struc-
ture. Moreover, when the network display a lack of correlations, as in the case of
BA model, renormalization do not affect the non-critical behaviour, reproducing
almost flat average properties.

Finally, we have studied renormalization of a random graph to investigate
networks far from criticality. Renormalized Erdos-Renyi networks display results
similar to BA networks, for what concerns the absence of correlation - the flat
behaviours of C* (k™) and k2 (k") remain indeed unchanged. Also the behaviour
displayed by renormalized P(k™) is preserved, with the range of weighted degrees
shrinking due to decimation. In this case, threshold decimation only has been
used, since minimum decimation leads to the deletion of a too small set of nodes,
preventing a considerable change in the newtork size.

2.5 Discussion and perspectives

Renormalization group approach is a powerful tool in order to study and an-
alyze critical phenomena. Our results on the application of RG techniques to
complex networks suggest that it could represent an alternative way of investigat-
ing scale-free properties of real-world networks. For example, it could be useful
in distinguishing between different behaviours, since critical properties - such as
scale-free degree distribution, correlation properties and others - are preserved
after successive renormalizations, performed with different techniques. Moreover,
such properties seem to be enforced and more recognizable after renormalization,
leading to power-laws which extend over a wider range of degrees, as observed,
e.g., in the weighted clustering coefficient (fig. 2.3). On the other hand, if a net-
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Figure 2.3: Results for C* (k™) obtained with renormalization by 'minimum’(left)
and threshold’ decimation (right). Top: BA network. Center: “Good-get-Richer”
network. Bottom: Acquaintance network.

work does not possess these features, renormalization leaves the system far from
criticality.

However, this study is still at the beginning, and more work in this direction
has to be done. For example, one could investigate renormalization of networks
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Figure 2.4: Results for £ (k") obtained with renormalization by 'minimum’(left)
and ’threshold’ decimation (right). Top: BA network. Center: “Good-get-Richer”
network. Bottom: Acquaintance network.

near criticality, studying a model which displays a phase transition from a non-
critical behaviour to a critical one, depending on a parameter. Results might show
that RG is able to distinguish between a critical behaviour and an apparently
critical one.
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Figure 2.5: Results obtained with renormalization of Erdos-Renyi network
through 'minimum’ decimation. From top to bottom, results for P(k"), C* (k™)
and k¥ (k™) are shown.

Other decimation procedures can be studied, for example using weighted be-
tweenness as decimation criteria.

A second, but not less important, aspect of the application of RG to complex
networks deals with the problem of visualization. For networks of sizes up to some
hundreds of nodes, a graph representation can still be used as a meaningful tool
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for analysis of network properties. Inspection by direct observation is an excellent
method to study network structure, and it was indeed used in the first network
studies. However, dealing with the large-scale networks encountered in real-world
systems, consisting of a very large number of nodes, render direct visualization
completely useless, since resulting pictures are noisy agglomerates of nodes and
links where no structural property can be recognized. Thus, visualization of very
large networks, even with the recent progresses in computer tools, still remains
an open problem.

Renormalization applied to a complex network, since preserving its main fea-
tures, could result in a smaller and more comprehensible network, suitable for
direct meaningful visualization. This issue is still under investigation.



Chapter 3

Protein-protein Interaction
Networks

Protein-protein interactions play crucial roles in virtually every cellular process,
including DNA replication, transcription and translation, intracellular communi-
cation, cell cycle control and the workings of complex molecular motors. These
biological functions rarely depend on single components, enlighting the funda-
mental importance of complex interactions between proteins. The recent possi-
bility of collecting data on the global genomic and proteomic scale has created an
unprecedented opportunity to develop comprehensive explanations for biological
phenomena.

Global proteomic interaction data are synthetically represented as undirected
networks exhibiting features far from the random paradigm which has dominated
past effort in network theory. This evidence, along with the advances in the theory
of complex networks, has triggered an intense research activity aimed at exploiting
the evolutionary and biological significance of the resulting network topology.

Here we present a review of the results obtained in the characterization and
modeling of the yeast Saccharomyces cerevisiae protein interaction networks ob-
tained with different experimental techniques. We provide a comparative assess-
ment of the topological properties and discuss possible biases in interaction net-
works obtained with different techniques. We report on dynamical models based
on duplication mechanisms that cast the protein interaction networks in the family
of dynamically growing complex networks. Finally we discuss various results and
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analysis correlating the network topology with the biological function of proteins.

3.1 Methods

The recent availability of complete genome sequences has strengthen the need
for the development of new technologies such as high-throughput techniques to
detect protein-protein interactions on a proteome-wide scale, interactions which
were traditionally identified by small-scale experiments.

Here we will describe the current state of interaction-detection methods, mak-
ing a distinction between the experimental techniques designed to identify physical
bindings between proteins - such as yeast two-hybrid systems [26,27] and mass
spectrometry analysis of purified complexes of proteins [28,121] - and interaction
prediction methods whose purpose is to detect functional associations between
proteins, often underlying physical interactions [122,123] - correlated mRNA ex-
pression profiles [124, 125], genetic interaction-detection [126,127] and in silico
approaches, such as gene fusion [128,129], gene neighborhood [122,130] and phy-
logenetic profiles [131,132].

3.1.1 The two-hybrid system

The two-hybrid system is an experimental procedure able to detect pair-wise pro-
tein interactions. It exploits the modular properties typical of many eukaryotic
transcription factors, which can be usually decomposed in two distinct modules,
one directly binding to DNA (DB, DNA-binding domain) and the other activating
transcription (AD, transcriptional activating domain) (fig. 3.1). The first com-
ponent, DB, is able to bind to DNA even by itself, while the second module,
AD, will activate transcription only if physically associated to a binding domain.
This property is the result of a series of analysis made in the 80’s by Ma and
Ptashne [133] on transcription factors, while its use for the detection of protein
interactions was first proposed by Fields and Song [134].

As it is illustrated in fig. 3.1, in any two-hybrid experiment two proteins are
expressed as fusion proteins (hybrids) with a DNA-binding domain (DB, the bait)
and a transcriptional activating domain (AD, the prey). Fusions partners are co-
expressed in yeast nucleus where a protein-protein interaction is identified thanks
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to the activation of the reporter gene, which can be detected and measured.

Figure 3.1: Two-hybrid assay. (A) A protein of interest is expressed as fusion
protein to a transcriptional activating domain (AD). (B) A second protein of
interest is fused to a DNA-binding domain (DB). (C) If the two proteins interact,
transcription of the reporter gene is activated.

The two-hybrid system is able to identify virtually every protein-protein in-
teraction. It is an ez vivo technique which can detect even transient, unstable
or weak interaction, since the adopted strategy of the reporter gene implies a
significant amplification. Moreover, it is simple, rapid, sensitive and inexpensive,
because of the minimal requirements of a two-hybrid screen respect to, e.g., high
quantities of purified proteins needed in traditional biochemical approaches. In-
deed, it does not require any previous knowledge of the proteins to test and can
be performed once the corresponding genes are known, thus being suitable for
large-scale applications.

However, since it only detects binary interactions, it is not able to identify
cooperative binding. Moreover, some kinds of proteins, such as transcription
factors, cannot be used as fusions proteins to investigate their interactions, since



56 Protein-protein Interaction Networks

they could activate transcription even in absence of any interaction. Also the
extensive use of artificially made hybrids could represent a drawback, since it
could lead to conformational changes in the proteins considered thus preventing
transcriptional activation. This is one of the possible causes of false negative
interactions, i.e. a true protein-protein interaction which is not detected by two-
hybrid assays. This experimental procedure is also known to produce many false
positives, identifying partners in screening procedures when no protein-protein
interaction is present. Indeed, even if two proteins potentially interact into the
nucleus, where this technique takes place, it could happen that they never find
close to each other because of spatio-temporal constraints. For example, they
could be localized in different cell types or in distinct compartments of the same
cell, or even could be expressed at different times during the cell cycle. For this
reasons, interactions detected by two-hybrid assays must be critically analyzed in
order to assess their biological relevance.

3.1.2 Protein complex analysis

After the development of ultrasensitive mass spectrometric techniques for pro-
tein identification, new experimental procedures, besides two-hybrid screens, have
been used to produce large-scale results for protein-protein interactions, such as
purification of protein complexes. This procedure is made up of three main com-
ponents: isolation of the bait or target protein, affinity purification of the complex
and identification by mass spectrometry of proteins belonging to the complex. The
protein of interest is isolated and fused to an affinity tag, by using one of the two
protocols: tandem affinity purification (TAP) [28,135] or high-throughput mass-
spectrometric protein complex identification (HMS-PCI) [121]. TAP consists of
two successive affinity purifications, using two tags fused with the bait and leading
to the isolation of the target protein toghether with its associated proteins, as it
is sketched in fig. 3.2. High-throughput mass-spectrometric protein complex iden-
tification, instead, employs a one-step immuno-affinity purification with transient
overexpression of the target protein.

Comparison of results obtained through complex purification with yeast two-
hybrid data shows a very small overlap [28]. A possible explanation could rely on
the idea that cooperative binding embodied by complexes is not only the result
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Figure 3.2: TAP procedure. The tagged bait undergoes two successive affinity
purifications, leading to the isolation of its complex.

of a sum of pair-wise interactions, which completely lack any spatio-temporal
information on proteins activity. Indeed, the main difference between complex
purification methods and two-hybrid system relies in the identification of whole
complexes isolated in a single step, thus detecting cooperative interactions between
proteins which cannot result from two-hybrid screens, where the strategy adopted
is based on the bi-modular properties of transcription factors. Moreover, it is
an in vivo technique which employs only one artificially made protein (the bait),
instead of two as in two-hybrid procedure, thus minimizing possible changes in
conformational properties which could lead to steric interference. Complexes are
found in physiological settings, since interactions take place in native environment.
In order to test the validity of a complex identification, several components of the
same complex can be used as tagged baits. However, the tagging procedure might
interfere with complex formation and the purification process might loose weakly
associated components of the complex.
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3.1.3 Interaction prediction methods

Besides the physical interactions detected by the high-throughput experimental
techniques described above, a complementary insight about protein-protein inter-
actions is given by interaction prediction methods based on genomic information.
From the analysis of genome sequences, these methods are able to identify func-
tional associations between proteins (for a review, see [136]).

Prediction based on similar phylogenetic profiles look for the simultaneous
presence or absence of two proteins in the genomes of different organisms (see

fig. 3.3, top left). However, it requires complete sequencing of entire genomes,
and is not suitable for essential genes.

Gene fusion
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Figure 3.3: Interaction prediction methods. Top left: comparison of phylogenetic
profiles. Top right: gene fusion events. Bottom: gene neighborhood conservation.

Gene fusion predicts an interaction between two proteins of a given organism,
if they are part of the same polypeptide chain in another organism [128, 129]
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(fig. 3.3, top right).

The conservation of gene neighborhood in the genomes of different organisms
(fig. 3.3, bottom) is interpreted as an indication of functional association between
the proteins encoded by the two genes considered [122,130,137]. However, this
occurs only in prokaryotic genomes, representing one of the main drawbacks of
such approach.

Correlated mRNA expression predicts functional associations between proteins
encoded by genes which show similar transcriptional responses to a change in the
cellular status [124,125]. Messenger RNA expression profiles can be measured
under very different cellular conditions, thus representing an advantage respect to
other techniques which can only take into account few settings.

A functional interaction between proteins can be detected also by synthetic
genetic interactions [126,127]: two non-essential genes show a synthetic lethal
interaction if they cause cell death when simultaneously mutated [138,139].

3.1.4 Data sets quality

Several databases have been recently compiled in order to collect and document
the incredibly vast amount of large-scale data on protein interactions produced
by high-throughput methods (for a review, see e.g. [140]). Their purpose is to
analyze protein interactions in an attempt to comprehensively characterize the
whole network of connections between proteins.

Data sets comparison should in principle take into account the different con-
ditions under which interactions are detected, since they could lead to different
results. Indeed, the intersection between different interaction data shows a sur-
prisingly small overlap [141], underlining the need for a critical evaluation of the
biological relevance of large-scale data.

The many discrepancies arising from data sets comparison could be due first
of all to specific features of experimental methods, each of them characterized
by its own advantages and drawbacks, so that results coming from one method
may not largely overlap with those obtained with another technique because of
specific restriction and different requirements. In this sense, different experimental
techniques could be complementary, thus increasing our knowledge about the
network. Secondly, these observations could be the result of low coverage of
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data sets, implying that a complete knowledge of the network of interactions has
not been reached yet. However, it is also known that results produced by high-
throughput methods are prone to mistakes. Indeed, although extensive, these
data sets contain spurious interactions (false positives) and are missing many true
interactions (false negatives) as well. For example, even referring to the same
experimental technique, yeast two-hybrid assay, one can notice the incredibly
small overlap among different datasets [142]; e.g. Ito’s data and Uetz’s data
share only a very small percentage of interactions, the intersection of the two sets
representing respectively about 4% and 14% of the total ensembles.

The assessment of the reliability of such data needs a comparison with a trusted
reference set, in order to distinguish between validated interactions and back-
ground noise. Interactions detected by small-scale experiments could act as a
benchmark, since they usually have been thoroughly investigated by multiple ex-
periments and several checks. However, small-scale data set is not suitable to
validate the majority of high-throughput data, because of the very limited num-
ber of high-confidence interactions it contains. The same problem is encountered
when considering the intersection of different large-scale data sets of protein in-
teractions. Indeed, it has been shown that connections detected by more than one
method increase their accuracy respect to others, while however decreasing their
coverage [143], resulting in a very small reference set.

For these reasons, the problem of investigating biological relevance and ac-
curacy of protein interactions still represents a crucial step in analyzing protein-
protein interaction data.

3.2 Topological analysis

Protein-protein interaction data, in the form of a list of binary interactions, is
mathematically described as a network whose nodes represent proteins, connected
by an edge if they directly interact. Only physical interactions detected by high-
throughout methods are considered here.

In the following we study the topological properties of three distinct protein
interaction networks of the yeast Saccharomyces cerevisiae obtained from different
data sets:
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network (I): a collection of binary interactions detected by two different two-
hybrid assays [26,27], composed of a total of 2831 links among 2152 proteins;

network(II): interactions obtained from protein complex detection with tandem
affinity purification techniques (TAP) [28]; it consists of 3221 interactions
involving 1361 proteins;

network(IIT): a mixed collection of interactions obtained with different exper-
imental techniques, documented at the Database of Interacting Proteins
(DIP) [144]; it is composed of 4713 proteins and 14846 interactions.

It is worth to notice that, while (I) is composed of binary interactions between
proteins directly detected by two-hybrid techniques, network (II) assigns hypo-
thetical connections between proteins belonging to the same complex. Indeed, the
topology inside a protein complex is not revealed by purification processes: not
all associated proteins will in general interact with the bait, since the interaction
could be mediated by other molecules, or interact with the bait at the same time,
since interactions could occur under different physiological conditions. Therefore,
for a direct comparison with pairwise interactions detected by other experiments,
protein complex data have been assigned hypothetical interactions following two
different models [141]: the spoke model, in which only interactions between the
bait and associated proteins occur, and the matriz model, which assigns to a given
complex all possible interactions between all proteins belonging to that complex,
thus leading to cliques (i.e. fully connected sub-networks). In network (II) we
have adopted the matrix model, since it has a higher coverage respect to the
spoke model, although displays a lower accuracy when compared to a reference
set [143].

In table 3.1 we report the size and the number of interactions of each network,
toghether with the size of the giant component, i.e. the biggest connected sub-
network. From a first topological insight, involving most basic features, we find
that the three networks considered display different global properties. The small
values of the average degree (k) of the three networks, compared to network sizes,
point out that protein networks are almost sparse graphs. However, the values
observed considerably differ one from the other, giving an indication of the differ-
ences in how well a protein is connected in each network. The average clustering
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coefficient (C) provides information about protein interconnectivity. We compare
(C') computed on each network with the corresponding average clustering coeffi-
cient of a random network with the same degree distribution [145], expressed in
terms of the first and second moment of the distribution:

((k?) = (k)"

1
<Crand> = ﬁ <k>3 (31)

The clustering coefficients for networks (I) and (II) are two orders of magnitude
larger than the corresponding random ones, thus displaying a strong tendency
to form ’triangles’. Also network (III) has a larger clustering coefficient respect
to (Chrana), although it displays a lower ratio (C)/{Crana), meaning that it is less
clustered than (I) and (II).

| [ (I) | (II) | |

# proteins 2152 1361 4713
# proteins giant component || 1679 (78%) | 1246 (91%) | 4626 (98%)
# links 2831 3221 14846
(k) 2.63 4.73 6.30
(©) 0.10 0.22 0.09
(Crand) 0.0064 0.019 0.018

Table 3.1: Average global properties of networks (I), (II) and (III).

Differences from the random paradigm emerge also in the distribution of pro-
tein degrees, P(k) (fig. 3.4), which shows a high level of heterogeneity in the
connectivity properties of the three networks. Heavy-tailed degree distributions
display a non-negligible probability of having proteins with very high degrees,
much larger than (k), thus pointing out the existence of 'hubs’, i.e. highly con-
nected nodes, which play central roles in the connections among proteins with
lower degrees.

Following Jeong et al. [29], we compare the observed P (k) to a power-law with
an exponential cut-off:

P(k) =~ (k + ko) Te k/ke. (3.2)
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(slopes of solid lines in fig. 3.4, top and bottom), in good agreement with results
of [29] concerning protein interaction data extracted from [26], and cut-offs kD ~
30 and k™ ~ 100. Interaction data derived from TAP experiments display a
degree distribution which seems to deviate from the behaviour observed in (I)
and (III), showing the presence of a ’bump’ in the distribution for intermediate
values of the degree. The solid line in fig. 3.4 (center) has a slope Y ~ 2.1,
representing the best fit to the data, using eq. 3.2.

The high level of heterogeneity, already encountered in other real-world net-
works, points out the emergence of a scale-free behaviour also in protein interac-
tion networks, with large fluctuations in protein connectivity.

A deeper analysis of the topology of protein networks involves the study of the
structural organization and of the degree correlations (see 1.1). The presence of a
hierarchical organization of network structure can be characterized quantitatively
by the clustering coefficient averaged over proteins with degree k. A non-trivial
behaviour of C(k) provides some hints on the presence of a hierarchy of proteins
in the network, each characterized by a different degree of local interconnectivity,
a fingerprint for modularity [84-89,110,111].

In fig. 3.5 (left) we report results for C(k). Network (II) exhibits a clear
heavy-tail which can be fitted to a power-law, ~ k=% while networks (I) and
(IIT) do not display a scale-free behaviour. Two-hybrid data seem to remain al-
most constant for small degrees, exhibiting a drop for larger values of k£, due to
small network size, while the behaviour displayed by C(k) for DIP data suggests
the presence of a structural organization, although it is not a clear power-law
C(k) ~ k=7¢. Results observed provide a strong and clear evidence for an inher-
ent hierarchical organization only for network (II), but suggest the presence of
a structural organization for the other networks, although characterized by weak
and non-univocal signatures.

Degree-degree correlations are investigated by measuring the average degree
of nearest neighbors of proteins with degree k, i.e. k,,(k) (fig. 3.5 on the right).
Evidence of degree correlations are observed only in (III), which exhibits a power-
law behaviour with exponent ~ 0.24, whereas (I) and (II) display kn,(k) almost
independent of k, thus displaying a lack of correlations.

Another interesting feature characterizing network architecture is the so-called
rich-club phenomenon [146,147], recently introduced as a quantitative metric to
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Figure 3.5: Average clustering coefficient C(k) (left) and average neighbors degree
knn(k) (right) as a function of protein degree. From top to bottom: networks (I),
(II) and (III). Clear power-law behaviours are observed for C(k) in (II), with
exponent ~ (.48, and for k,, (k) in (III), with exponent ~ 0.24.

take into account the interconnectivity of highly connected nodes, also known as
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rich’ nodes. It is defined as
26k>

Ng> (nk> - 1)

where ny. represents the number of proteins having degree larger or equal to &

¢(k) = (3-3)
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and er> the number of links connecting proteins which belong to this ensemble.
It thus measures the degree of interconnectedness between proteins having degree
higher than a certain value k£, and represents a relevant measure since the connec-
tivity between rich nodes can be crucial for network properties and tasks, such as
robustness and the performance of biological functions. Fig. 3.6 presents results
obtained computing ¢(k) in the three networks. Clear behaviours are observed,
with networks (I) displaying power-laws with exponents ~ 1.96, respectively, while
(IT) and (IIT) exhibit a linear dependance of the rich-club coefficient ¢ on the pro-
tein degree. The scale-free behaviour is an indication of the strong tendency of
the system towards a higher cohesiveness among proteins with larger degree.

3.3 PIN renormalization

In this section we present the application of renormalization group (RG) approach,
presented in chapter 2, to protein interaction networks. In particular, we show
results relative to yeast networks (I) and (II), obtained with the 'minimum’ deci-
mation renormalization techniques (for details, see chapter 2). Starting with the
giant component of (I) and (II), i.e. the biggest connected sub-graph of each
protein network, of size, respectively, n = 1679 and n = 1246, we decimate itera-
tively the proteins with lowest weighted degree £* and subsequently renormalize
the laplacian T, following eq. (2.11).

In fig. 3.7 we show results for both networks relative to renormalized weighted
degree distribution P(k"), weighted clustering coefficient C*(k™), and average
neighbor weighted degree £ (k"), as functions of the weighted degree k*.

Hierarchical organization properties and correlation features of renormalized
protein networks, identified by the behaviours of C* (k") and k%, (k*), confirm re-
sults already obtained in chapter 2 for abstract networks generated with different
models. The power-law behaviour displayed by C* (k") in network (II) (fig. 3.7,
center right) is recovered under successive application of the RG. The critical ex-
ponent of renormalized weighted clustering coefficient, as well as the drop observed
for large degrees in the original network, is preserved even after the decimation
of more than half of the proteins. The same occurs also for renormalized C* (k™)
in network (I) (center left), where the original behaviour, not identifiable with a
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Figure 3.7: From top to bottom: results obtained for P(k™), C*(k™), k¥ (k") with
the renormalization of network (I) (left) and (II) (right) by 'minimum’ decimation.
Number of decimations and relative network sizes are shown.

clear functional form, is preserved. The almost constant behaviours of k¥ (k¥)
observed in (I) and (II) (fig. 3.7, bottom) are preserved after renormalizations
of the networks. The fluctuations observed for large values of the degree in the
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original network (I) lead to the emergence of a clear bump in the renormalized
quantities.

A different behaviour is observed in the renormalized weighted degree distribu-
tions (fig. 3.7, top). While the original network (I) can be fitted with a power-law
with an exponential cut-off (see eq. (3.2)), leading to a critical exponent of value
~ 2.5, all the renormalized distributions P(k") corresponding to different deci-
mations show a pure power-law behavior with exponent ~ 3, even at the tenth
decimation which leaves the sytem composed of n = 479 proteins, i.e. less than
1/3 of the original size.

Also in network (II) renormalized P(k") are all characterized by the same
behaviour, which instead differs from the original one. Indeed, as already seen in
the previous section, the functional form used to fit P(k) in networks (I) and (III) -
eq. (3.2) - is not in agreement with the degree distribution of network (II), which
displays a change in its behaviour for intermediate values of k. Renormalized
P(k™) instead follow a power-law behaviour with an exponential cut-off: a best
fit of renormalized data, using eq. (3.2), yelds the same value ~ 2.5 for the critical
exponents corresponding to successive decimations.

Results show that the RG applied to protein networks preserve its features for
what concerns structural organization and connectivity correlations, but lead to
different behaviour when considering the degree distribution. This could actually
be a fingerprint of the ability of this technique to detect 'true’ critical properties
of the networks, making them clear after renormalization. Indeed, the degree
distribution is more affected by small-scale details than the other quantities in-
vestigated. Thus, the presence of spurious effects which are known to exist in the
protein interaction data sets, could result in a misleading behaviour of P(k), while
correct properties seem to emerge after a coarse-graining of less relevant details,
thus eliminating also the mistakes contained.

3.4 Modeling

The development of models able to accurately reproduce the features observed
in the topological analysis presented in the previous sections, could represent a
fundamental improvement in explaining the origin of such features. Since protein-
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protein interactions are involved in almost every biological process during cell life,
the comprehension of the underlying mechanisms at the origin of the observed
behaviours could lead to a better understanding of their role and significance in
the cell.

In the following paragraphs, we first review two classes of models which take
into account network growth as a fundamental ingredient [13,14, 53, 54,148| and
explain some of the properties of PINs, such as scale-free degree distributions.
Finally we present two more detailed models [31,32] based on specific mechanisms
of protein networks that might have driven proteome evolution.

3.4.1 Dynamical models

In chapter 1 we have already examined a class of growing networks models which
has been recently developed, aimed at capturing the origin of the heterogene-
ity typical of many artificial and natural networks and based on preferential-
attachment related rule.

The preferential attachment assumption relies on the idea that new introduced
nodes will more likely connect to existing nodes characterized by high connectivi-
ties. Indeed, this could be reasonable in some types of real networks, such as e.g.
citation networks, where a new paper will more likely cite well-known, and thus
highly citated works, considered as references for a particular topic. The actual ap-
plicability of preferential attachment as a realistic mechanism at work in network
dynamics has been supported by studies in the evolution of real networks for which
temporal data about the introduction of new nodes are available [17,149, 150].

However, there are some real networks whose mechanisms for growth and
evolution do not seem to be related to preferential attachment rule, although dis-
playing power-law degree distributions. This is the case, e.g., of biochemical in-
teraction networks [29,33-36], among which protein-protein interaction networks.
Indeed, PINs are actually known to evolve on a very long time scale - so that
a growing mechanism must be taken into account when developing models for
proteome evolution - but the idea underlying BA model, i.e. the probability of
new connections to a node dependent on its degree, does not find any reasonable
applicability in this case.

Another class of models, known as vertex copying models [13,14,148], proposes
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a different mechanism which will be later on employed by more specific models
designed for proteome evolution. Vertex copying models are based on the idea that
some of the new nodes introduced into the network will acquire connections by
copying already existing links of one node chosen randomly. They were developed
in order to explain properties and structural phenomena observed in the Web,
thus they consider directed networks.

Such mechanism of copying gives rise to an effective preferential attachment.
In [148] the authors have proven that the distribution of the incoming degree
follows a power-law with exponent v = (2 —3)/(1 — ), with v € (2, +00), where
[ represents the probability of random edge addition and (1 — ) the probability
of the copying mechanism.

The copying model has raised a new interest because of the possible applica-
tions of its processes in models for the evolutionary development of protein-protein
interaction networks.

3.4.2 Duplication-Divergence models

Genomes of most organisms contain multiple copies of genes which are struc-
turally and functionally closely related. According to a recent evolutionary the-
ory [151,152], genomes are thought to evolve through duplication of genes and
subsequent diversification, occurring for the partitioning of the common ances-
tral functions (each gene of the duplicated pair undergoes functional degenerative
mutation, while jointly retaining the entire functional annotation of the single
ancestral gene), rather than for the evolution of new functions. Genome evolution
corresponds, at a different level, to the evolution of the protein-protein interaction
network whose nodes are represented by the proteins expressed by the genes. The
process of gene duplication can be translated in the duplication of a protein shar-
ing the same interacting partners as its ancestor, while divergence mechanisms
lead to the loss or gain of interactions.

Two simple models for proteome evolution were first developed by Vazquez et
al. [31] and by Solé et al. [32] to reproduce topological and large-scaling properties
of protein-protein interaction networks. They are both based on the microscopic
processes of duplication and complementary degenerative mutations. In [31] the
algorithm for proteome evolution is as follows (see also fig. 3.8):
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e Duplication: a protein ¢ in the network is randomly chosen and duplicated,
i.e. a new protein 4’ is created with links to each neighbor j of the protein
7; an interaction between 7 and 7' is created with probability p.

e Divergence: each neighbor j is considered; one of its two connections, with
i or with 4', is chosen and removed with probability g.

Ly
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Figure 3.8: Duplication-Divergence (DD) model. Top: a node is duplicated (blank
circle, indicated by the arrow). Bottom: some of the original or duplicate edges
are removed with probability q.

The model by Solé et al. [32] takes into account also divergence due to addition of
new connections in the network. The algorithm, sketched in fig. 3.9, is as follows:

(a) Duplication: a protein ¢ in the network is randomly chosen and duplicated,
so that the replicated protein i’ share the same set of interactions as i.

(b) Mutation by deletion of links: links connecting the new protein i’ to neighbors
of i are deleted with probability §.

(c) Mutation by addition of links: new links (not previously present) connecting
the replicated protein i’ with the rest of the nodes in the network are created
with probability a.
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Figure 3.9: A model for proteome evolution: (a) duplication of a randomly chosen
protein (indicated by the arrow); (b) mutation by deletion of links emerging from
the new node (blank circle) with probability d; (c¢) mutation by addition of random
links starting from the new node, with probability a.

The process of mutation by addition of new links was found to have a probability
much smaller than divergence due to deletion [153]. Vazquez et al. have tested
the introduction of such mechanism in their model, without obtaining changes in
the topological properties. Anyway, in order to have a finite average connectivity
in Solé’s model, the rate of addition of new links o must be inversely proportional
to the network size, in agreement with the rates observed in [153].

Both models can be studied using a mean-field approximation. Here we fol-
low [31], since the two approaches lead to analogous results in terms of the re-
spective parameters introduced. The average degree (k)y.1 of the network with
N + 1 nodes can be expressed as:

N(k)n + 2p + (1 —2g){k)n

(ks = P

(3.4)

where 2p represents the gain in average degree due to self-interacting link and
—2q(ky) the loss corresponding to removed connections for divergence process.
In the continuum limit for large N, one obtains a differential equation whose
solution shows two distinct behaviours, depending on the rate g. For ¢ > 1/2,
a finite average connectivity is reached, i.e. (k) = koo = 2p/(2¢ — 1), while for
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q < 1/2, (k) diverges with N as N'72¢. At ¢ = ¢y = 1/2 a phase transition occurs.
Networks obtained display multifractal connectivity properties, with a scale-free
behaviour characterized by an infinite set of scaling exponents, a features that
seems to be related to local inheritance mechanisms [154].

It is straightfroward to see that the biologically motivated local rules actually
produce an effective preferential attachment, as in the copying model. Indeed,
the probability that a node of the network with degree k£ gains one more link is
given by the probability that one of its neighbors is duplicated (i.e. k/N) times
the probability of its new link not to be removed (i.e. 1 — ¢); thus, ignoring
self-interactions:

(k) ~ (1—q)k/N (3.5)

Because of degree changes due also to mutations in the duplicated links, a multi-
fractal topology is obtained.

Other relevant quantities have been investigated in [31], such as the clustering
coefficient which displays the correct behaviour, reaching a finite value for increas-
ing network size. By optimizing the values of the two rates p and ¢ in such a way
to reproduce clustering coefficient and square coefficient values of the protein-
protein interaction network of the yeast Saccharomices cerevisiae, the model is
able to reproduce other quantities, such as average degree and degree distribution
toghether with tolerance against random and selective deletion of nodes, which
are in good agreement with experimental results (fig. 3.10).

In [32], approximate values of the rates ¢ and § are found by imposing the
experimental value of the average degree of the yeast, toghether with estimations
of the ratio /6 from [153]. The degree distribution P(k) obtained for networks
of size comparable to yeast protein interaction networks (fig. 3.11) can be fitted
by a power-law with an exponential cut-off, eq. 3.2, already used by Jeong et
al. [29] to analyze the connectivity distribution of Saccharomices cerevisiae. The
fit parameters, v = 2.5+ 0.1 and k. ~ 28 are in good agreement with those found
in [29]. Other quantities, such as clustering coefficient, average path length and
size of the giant component, were quite well reproduced by the model.
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Figure 3.10: Duplication-Divergence model results. Left: Connectivity distribu-
tion of the protein interaction network (PIN) compared to DD model with opti-
mized rates. The straight line is a power-law with exponent 2.5. Right: Fraction
of nodes P(f) = N(f)/N belonging to the giant component after a fraction f

of nodes has been deleted. Comparison of DD model curves (averaged over 100
realizations) with experimental results.
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Figure 3.11: Degree distribution P(k) for the model [32], averaged over 10* real-
izations of networks with size N = 103.

3.5 Functional characterization

Complete genome sequencing has not only accelerated the pace of discovery of

new protein-protein interactions, through the development of high-throughput
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techniques like those described in section 3.1, but has also completely changed
the view of protein function in biology [75,76]. Indeed, it has led to a shift in
biomedical research, from the study and analysis of single proteins to the investi-
gation of the entire proteome. The traditional view of protein function as a task
performed by a single protein independently from the others has been substituted
by a more general context in which interactions between proteins play crucial
roles when performing their activities. Several cellular processes are the outcome
of complex interactions between proteins. Moreover, most proteins are not able
to execute their tasks if they do not interact with other proteins, and alterations
of protein interactions are shown to lead to many diseases.

The underlying network of interactions thus assumes a deeper meaning in
terms of functional relationships between proteins, representing cooperative par-
ticipation in performing functional tasks.

3.5.1 Topology/functionality correlations

In a work by von Mering et al. [143] about the quality of different protein inter-
action data sets, in terms of accuracy and coverage, it was shown that in highly
accurate data sets (compared to a reference set, see section 3.1.4) functionally
related proteins are more likely linked to each other, a feature which is usually
exploited in function prediction models (see chapter 4) to infer functional anno-
tation of unclassified proteins form classified neighbors. The authors computed
the distribution of interactions according to functional categories and represented
the results in terms of a matrix M whose generic element M (0;, 0;) represents the
fraction of links between pairs of proteins performing, respectively, functions o;
and o;. They found that the reference set adopted show considerably higher val-
ues along the matrix diagonal, thus in correspondance of shared functions between
proteins.

Here we would like to go further in the investigation about the correlations
between the pattern of interactions among proteins and their functionalities, with
the purpose of reaching a deepened understanding of biological significance of
network architecture.

Protein-protein interaction networks of the Saccharomyces cerevisiae consid-
ered are those already investigated in section 3.2 from a topological point of view,
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i.e. (I) the two-hybrid data in [26,27], (IT) the data set obtained with an exper-
iment of tandem-affinity purification (TAP) [28], (III) a heterogeneous collection
of interactions detected by different techniques, documented at the Database of
Interacting Proteins (DIP) [144]. The functional classification was extracted from
the MIPS database [155]; the finest functional classification scheme is made up
of 424 different functional classes, while the coarse-grained one contains only 18
functional categories. The number of proteins in each data set with no defined
functional classification (i.e. belonging to the categories named “classification not
yet clear-cut” and “unclassified proteins”) is, respectively: 638 out of 2152 in (I),
279 out of 1361 in (II) and 1665 out of 4713 in (III).

In order to study quantitatively the feature discussed above, i.e. the likeli-
hood of functionally related proteins to be connected, we compute the rate of
interacting protein pairs sharing at least one functional category, in all three data
sets examined. Unclassified proteins are not considered, since they lack any func-
tional annotation. Classified proteins are taken into account with the whole set
of functions performed by each of them, thus preserving multi-functionality, while
in [143] genes annotated with more than one function were manually assigned to
one category.

The values obtained adopting the coarse-grained level of functional classifica-
tion - 83% of interactions between proteins with at least one function in common
in two-hybrid data, 83% also for TAP data and 72% for the mixed data set (III) -
seem to confirm previous observations. However, the sensitive decrease observed
in the functional rate measured in (III) respect to (I) and (II) highlight the need
for caution when interpreting DIP data results, since it might indicate the presence
of a large amount of false positives.

To determine the actual significance of these results, we compare them with
the rates of shared functionalities obtained in two distinct null models, compat-
ible with the constraints embodied by the number of proteins belonging to each
functional category. The first null model (NM1) is simply obtained by performing
a functional rewiring of the network, i.e. starting from the protein interaction
networks considered we choose at random two proteins p; and p; and exchange
their annotations. Unclassified proteins are also considered in the rewiring and the
underlying network is not modified. The algorithm is repeated a certain number
of times, large enough in order to obtain a network composed of proteins which



78 Protein-protein Interaction Networks

have randomly acquired functional annotations, still preserving the composition of
each multi-functional annotation and thus the total occurrence of each functional
category.

The second null model (NM2), instead, is based on a random functional as-
signment on the empty network. Starting from the network of interactions with
no functional annotation on it, we randomly assign functions to proteins extracted
with uniform probability, following three constraints: (a) the number of proteins
belonging to each functional category must be conserved; (b) a protein cannot
be assigned the same function twice; (c) the number of unclassified proteins must
be conserved, i.e. the number of proteins with no functions at the end of the
algorithm cannot exceed the original number of unclassified proteins.

Performing 100 realizations of each null model, we obtain the average values of
the rate of interactions between proteins having at least one function in common,
toghether with their standard deviations (see table 3.2).

rate linkf common | (D) | (11) | (I11) |
exp 82.90% 82.89% 72.36%

NM1 | (60.55+0.19)% | (65.35 +0.22)% | (49.28 +0.15)%

NM2 || (60.64 & 0.20)% | (64.05 £ 0.20)% | (49.62 +0.16)%

Table 3.2: Rates of interacting protein pairs sharing at least one functional cat-
egory. Results obtained from the three networks (exp) are compared with the
values averaged over 100 realizations of the two null models - NM1 and NM2 -
described in the text.

We notice that the random rates of shared functionalities between interacting
proteins obtained in the two null models for each network, do not differ one from
the other, but are both considerably lower than the corresponding real values (exp
in table 3.2) computed on experimental data. These observations seem to be an
indication of the emergence of a correlation between physical link and functional
association in protein-protein interaction networks.

Results shown are obtained considering the whole set of classified proteins,
independent of their degrees. In order to investigate a possible dependence of
the shared functional rate on degree, we have computed the same quantity for
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low and high connectivity proteins, with the average connectivity (k) being the
separation value: with kgp.y we indicate low degrees (kspmau < (k)), while kigpge
refers to high degrees (kjrge > (k)). In table 3.3 we report results obtained
from the experimental data corresponding to the three networks of proteins - (I),
(IT) and (III) - compared with results from the null models - NM1 and NM2
- where no distinctions based on protein connectivity are considered since, in
these randomized models, functional annotation is by definition uncorrelated with

topology.

‘ rate link—f common H (I) ‘ (II) ‘ (III) ‘
link(Vk, Vk) 82.90% 82.89% 72.36%
hnk( smalls small) 8085% 8116% 6371%
link (Kiarge, Kiarge) 88.50% 85.33% 78.76%
link (Ksmaits Kiarge) 75.30% 79.70% 63.17%

NM1 || (60.5540.19)% | (65.35 £+ 0.22)% | (49.28 +0.15)%
NM2 || (60.64 +0.20)% | (64.05 + 0.20)% | (49.62 +0.16)%

Table 3.3: Comparison among the rates of interacting protein pairs sharing at
least one functional category computed on: the whole set of links (link(Vk, Vk));
link(ksmair, ksman) between proteins with small degree; link(Ki4rge, Kiarge) between
proteins with large degree; link(Ksmai, Kiarge) between proteins having respectively
small and large degree, with the average connectivity (k) being the separation

value. For comparison, we report also the values obtained with the two null
models - NM1 and NM2.

A common behaviour can be observed in all networks: the rate for functional
sharing between interacting proteins increases when considering two proteins with
large degree k40, while it is considerably lower when the connected pair is com-
posed at least by a protein with small degree k11, with the lowest value assumed
in correspondance of the type of links (ksmai, Kiarge)- We have also investigated the
role of peripheral proteins, i.e. proteins with degree £ = 1, since they could rep-
resent biases in the computation, being affected by false interactions with higher
probability respect to other proteins. We have thus computed the same quan-
tities as before without considering peripheral proteins among those with k..
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However, the trend, already observed before, is still present, even in absence of
potential biases introduced by proteins with £ = 1, thus showing a deeper corre-
lation of functional characterization with topology, which should be investigated
in the next future.

Since many proteins are annotated in multiple categories, we asked if there
exist a correlation between the number of functions performed by each protein
and its topological properties, such as, e.g., its connectivity. We investigated
the average value of the number of functions per protein, (#f), first considering
the entire set of classified proteins, then making distinctions between low and
high connectivity proteins and finally as a function of protein degree. We do not
observe significative changes in (# f) when considering only proteins with kgman
Or Kigrge in the results reported in table 3.4, except for a slight increase of (#f)
with increasing degree for (I) and (III) data sets, as it is also confirmed by the
behaviour of (#f), as a function of protein degree, observed in fig. 3.12. Despite
expected fluctuations, no deviation from the value averaged over all proteins (line
at constant value) seems to occur in TAP data considering the whole interval of
degrees. Two-hybrid and DIP data, instead, display deviations for degrees larger
than the average value.

| (#f) [ @ Im @ |
whole set of proteins 2.23 2.20 2.08
proteins with kg,qu 2.13 2.18 1.96
proteins with ki,;ge 2.43 2.22 2.32

Table 3.4: Number of functions per protein averaged over: the whole set of pro-
teins; low connectivity proteins (kspqy); high connectivity proteins (Kigrge)-

We also studied the distribution of the number of functions performed by
each protein. We compared these results with the distributions computed only
on proteins having Kgpen and Kjgrge (fig. 3.13, left) and also with those obtained
from the second null model (NM2) (fig. 3.13, right). We considered only NM2,
since it allows random changes in the number of functions (for instance a protein
might be assigned the whole set of functional categories), while NM1 preserves
multi-functionality as it is, by definition of the model, allowing only exchanges
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Figure 3.12: Average number of functions per protein, (#f), as a function of
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shown.

between proteins.

Figure 3.13(right) does not show sensitive deviations of the NM2 distribution
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respect to the experimental one. A slightly different behaviour can be observed
in fig. 3.13(left) where only small deviations seem to occur between the distribu-
tion computed on proteins with different degree, kgmanu Or Kigrge, with networks
(I) and (IIT) showing a common trend, opposite to the one displayed by network
(IT). In the first and third network, indeed, the distribution of function performed
by proteins with large degree increase its values for larger values of the number
of functions, while the opposite occurs for proteins with small degree, which en-
hance the probability of having only one function. An opposite behaviour can be
observed for what concerns network (II).

These results reveal the need to go further in our investigations about topology
and functionality correlations.
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from experimental data (exp) and from a randomized version (NM2), averaged
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Chapter 4

Protein Function Prediction

Despite the impressive progresses performed during the last years in genome
sequencing and high-throughput proteomics techniques, a great amount (about
30%) of encoded proteins per completely sequenced genome are still function-
ally uncharacterized [74], revealing the need for new methods to deduce specific
functional roles of these proteins, thus fully exploiting genome data.

Several approaches have been developed to facilitate the functional annotation
of proteins for which we have few or no functional information at all [26-28,121,
122,128-132,156-160]. In the following we present two distinct bioinformatics
methods for function prediction, applied to the protein interaction network of
the yeast Saccharomyces cerevisiae, and designed to take full advantage of the
observed correlations between the pattern of interactions among proteins and their
functionality. The two new approaches are compared with earlier network-based
methods [26,27,156-160].

4.1 Optimization models

The strategy usually underlying function prediction models based on the network
of protein interactions [26,27,156—160] relies on the assumption that the more two
proteins are close to each other in the network, the more likely their functional
annotations will be closely related. Indeed, as illustrated in the previous chapter
(see table 3.2), the percentage of protein binding pairs sharing at least one function
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is about 83% (for the coarse-grained level of MIPS functional classification [155])
in two-hybrid data, 83% for TAP data, while it decreases to 72% for DIP data
set. As already analyzed in section 3.5, these values represent a fingerprint of the
functional relevance of connections between proteins, since they are considerably
higher than the random rates obtained in two different null models considered.

This assumption has been exploited in the 'majority rule’ method [156,157]
which assigns a putative function to proteins with no defined functional character-
ization on the basis of the functional annotation of its classified binding partners.
It assigns to an unclassified protein the most common function(s) among the
ones performed by its classified neighbors, without taking into account possible
contributions coming from the unclassified ones. Therefore, the algorithm is not
exploiting the whole network, since it is completely loosing possible information
coming from those links which connect unclassified proteins. Indeed, unclassified
proteins having partners with no defined functional classification should be influ-
enced by the functional annotation assigned them by the method itself, leading
to a final functional configuration which is consistent with the rules on which the
method relies. Moreover, the approach can be applied only to a reduced number
of proteins, since a great amount of proteins with unknown function interact only
with unclassified partners.

The ’global optimization model’ [158], instead, takes into account the whole
set of interactions of each uncharacterized protein. The key point is that the func-
tional annotation for proteins with unknown functions proposed by the model is
obtained self-consistently, looking at shared functionalities between unclassified
proteins and their classified and unclassified partners. To each functional assign-
ment is associated a score which assigns the value -1 to each link between unclas-
sified proteins or between classified and unclassified proteins when they share a

EMW = — Z Jijéai,aj - Z hgl)(ai) (4.1)

1<j

common function:

where J;; = 1 only if ¢ and j are both unclassified and directly connected (i.e. first
neighbors), otherwise J;; = 0, o; is the function of protein i, J;,, is the discrete
delta function and hl(l) (0;) represents the number of classified first neighbors of
protein ¢ sharing the same function o;. Majority rule assignment refers solely
to unclassified proteins connected with at least one classified protein; therefore,
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its cost function is embodied by the second term only of the right hand side of
eq. (4.1), completely neglecting pairs of interacting proteins with no functional
annotation.

The functional assignment provided by the method is the one which minimizes
the score function introduced. Since the problem cannot be solved anymore by
taking into account each protein separately, a global optimization ought to be
performed. If an unclassified protein interacts only with classified partners, the
majority rule algorithm is recovered; if, instead, it has one or more partners with
no defined classification, the functional annotations of those partners also matter
and consistently influence its classification.

In the following sections we present two distinct computational methods for
function prediction. They have been applied to three distinct protein-protein
interaction networks of the Saccharomyces cerevisiae, obtained with different ex-
perimental techniques. The first one (I’) is the same already studied in [158],
which was obtained with a yeast two-hybrid assay [156]. It differs from protein
network (I) investigated in chapter 3 because it does not contain Ito’s “core” data
set. It is composed by a total of 2238 identified interactions among 1826 proteins,
yelding an average connectivity of 2.45 interactions per protein. Second and third
data sets are the same already presented and analyzed in chapter 3.

The functional classification considered was extracted from the MIPS database
[155], as in section 3.5; the level of functional classification adopted is the coarse-
grained one containing 18 functional categories plus 2 categories indicating pro-
teins with no defined functional classification, named “classification not yet clear-
cut” and “unclassified proteins”. The number of uncharacterized proteins is, re-
spectively: 461 out of 1826 in (I’), 279 out of 1361 in (II) and 1665 out of 4713 in
(III).

The two bioinformatics methods developed are both based on a global opti-
mization process involving the whole network, in which an opportunely introduced
cost function, dependent on a functional assignment, is minimized through sim-
ulated annealing techniques [161,162] (see Appendix A for further details). The
predictions of both new methods, together with their robustness, have been sta-
tistically analyzed and evaluated through several tests. The introduction of new
ingredients, such as information acquired on the network of interactions, respect
to previous approaches based on protein-protein interaction data, demonstrated
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to be crucial in order to obtain higher quality results in the prediction of func-
tional annotation of uncharacterized proteins. We extend the cost function of
global optimization model (called GOM; in the following) to take into account
more throughfully the topology of the network (mixed GOM method) and the
observed correlations between the functions of interacting proteins (Maximum
Entropy Estimate (MEE) method). We discuss separately the two methods.

4.1.1 Mixed Global Optimization Model

First, we developed a generalization of GOM; from a topological point of view, fo-
cusing the attention not only on directly interacting proteins, but even on proteins
which are two edges away, i.e. second neighbors.

Analyzing the protein-protein interaction networks considered, we computed
the fraction of second neighbors pairs having at least a functional category in
common, analogous to what we have already done for binding partners. We
obtained that in (I') about 75% of proteins two edges away share at least one
function; similar results (77%) are observed in (II), while this percentage decreases
to 63% considering (I1I), following the same trend already observed in connected
proteins.

Experimental reasons support our assumption of not limiting the information
we want to extract from the network to first neighbors only. Indeed, it has been
recently demonstrated [163] that many experimental methods are not able to dis-
tinguish between a direct link connecting two proteins and an interaction mediated
by at least a third protein.

Moreover, the importance of complex patterns of interactions which might
embody functional associations could find an explanation in the framework of
the genome evolutionary theory, introduced in section 3.4 to present the specific
mechanisms thought to be responsible for proteome evolution. The processes of
duplication and divergenge occurring at the proteome level lead to a pattern of
interactions in which the products of duplicate genes consist of two functionally
related proteins, being second neighbors if they retain at least one binding partner
in common.

In a recent work by Samanta and Liang [159], the presence of topological re-
dundancies in protein-protein interaction networks has been investigated in order
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to study a possible relation between shared partnerships observed and functional
associations. It was shown that if two proteins share a significantly high number
of common interactors, respect to what one would expect if interactions would be
randomly rearranged, they display close functional associations. Analysis of such
redundancies reveals that a great amount of protein pairs sharing an unexpected
high number of common partners are not directly connected - about a 70% of the
investigated pairs - showing that close functional associations can reasonably be
found even between second neighbours.

To extract functional information also from proteins at distance 2, we introduce
a second score function, analogous to the one introduced in [158] concerning first
neighbors only. It counts the number of second neighbors pairs sharing at least a
functional category.

PCIE PRSI ST (42

1<j

where S;; # 0 only if ¢ and j are both unclassified and connected through a path
of length equal to 2 (i.e. second neighbors) and th) (0;) represents the number of
classified second neighbors of protein ¢ sharing the same function o;. We will refer
to the global optimization of eq. (4.2) as GOM; in the following.

Starting from an initial random functional assignment for unclassified proteins,
the two score functions, eq. (4.1) involving first neighbors and eq. (4.2) involving
second ones, are optimized independently using simulated annealing techniques.
Because of the frustration naturally arising in the system, the global optimiza-
tion process leads to the presence of multiple optimal solutions, characterized by
equal or very close values of their cost functions. Indeed, the system is not able
to satisfy at the same time the requests for shared functionalities for all pairs of
neighbouring proteins, due to the constraints imposed by classified proteins on
their partners with unknown function. Therefore, the resulting computational
problem is generally frustrated and the whole set of possible minimum configura-
tions has to be taken into account. In order to do that, the optimization process is
repeated 100 times, and for each unannotated protein, z, the frequency of occur-
rence, l/if , of every function, f, is reported. The functional annotation proposed
by each global optimization for each protein with no defined classification consists
of the function(s) with the highest frequency of occurrence.
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We have investigated the role of topological redundancies identified in [159],
since they are represented by pairs of proteins which have an unexpected high
number of common partners, i.e. second neighbors connected through several
paths of length 2. We analyzed the predictive capacity of GOM; in two different
cases, when the cost function assigns value -1 to each second neighbors pair (thus
ignoring multiple connections) or to each path of length 2 connecting that pair.
Results concerning GOMs, reported in the following, have been obtained using
the latter method since it was the most reliable in the tests we have performed.
Thus, S;; in eq. (4.2) differs from 0 only if proteins ¢ and j are second neighbors
and both unclassified, and measures the number of paths of length 2 connecting
the given proteins.

Each global optimization process proposes a specific functional annotation for
the whole set of unclassified proteins, corresponding to the minima of egs. (4.1)
and (4.2), respectively. The functional classification predicted by mixed GOM is
obtained by merging the results coming from the two independent score functions
used in GOM; and GOMs,.

4.1.2 Maximum Entropy Estimate Model

The second computational method for function prediction we propose depends
on the k-point correlation functions evaluated on the network. Making use of a
statistical inference criterion called maximum-entropy estimate, borrowed from
information theory [164], we are able to determine the probability distribution
consistent with the correlation functions computed on the basis of partial knowl-
edge. The study reported here is restricted to £k = 1 and £ = 2, i.e. only to
one-point and two-point correlation functions, but a straightforward extension
can be done to include also k-body interactions with £ > 2, such as for example
functional correlations with second neighbors (k = 3).

The idea leading to the development of MEE is to make full use of the infor-
mation which could be learned from the partial knowledge of functional character-
ization of the proteins belonging to the network of interactions. The interaction
Jij0o,0; Which appears in eq. (4.1) assumes values different from 0 only if two
connected proteins, 7 and 7, have at least a function in common and is justified by
the observed rates of functional sharing between interacting proteins. A possible
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generalization of this interaction might include the correlations between different
functional categories, o and o', instead of limiting only to functional interactions
between identical functions underlying a physical connection.

We first consider a homogeneous network of proteins, each of them with degree
z and characterized by a unique function in order to derive the cost function of
MEE starting from the observed functional correlations, and then generalize to our
case of an inhomogeneous network of proteins with multi-functional annotation.

The probability that two connected proteins have functions o and o’ is:

, 1
plo,0') = T Z 05,000, 0" (4.3)

<i,j>

where L is the total number of links and < 7,7 > represents the connected pair
of proteins 7 and j. Summing over ¢’, we obtain the probability for a protein to

o) =3 p(0,0) = 1= D b (14)

have function o:

(3
with N being the total number of proteins in the network. Following the maximum-
entropy estimate [164], we determine the total probability distribution pr({c}) to
find the network in the functional configuration {o} = (01,01, ...,0n), as the one
which has maximum entropy subject to the information extracted from our partial
knowledge. In other words, the probability distribution pr({c}) is obtained from
the maximization of the entropy

S=-Y pr({e)mpr({o}) (4.5)
o)

subject to the constraints:

p(0,0) =3 (o) T O Gruoboy (4.6)

{c} <4,j>
p(0) = 3 prltod) 5 D b (47)
{o} i

1= pr({o)) (43)
{o}
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With the introduction of Lagrange multipliers, A(c, 0'), A(0), u, conjugate respec-
tively to each constraint, the resulting probability distribution is of the Boltzmann
form, pr({o}) x exp(—H), with H being:

H{o}) == Mow,o;) =Y 2\(o3) + o (4.9)

<2,j> 7

which can be rewritten in terms of a single sum over all connected pairs of proteins:

H({o}) = Z Ao, 05) + 1 (4.10)

<1,j>

where

Xo,o') = Mo, ') + Ao) + Alo") (4.11)

The problem is now to determine 5\(0, 0') in terms of the observed quantities
p(o,0") and p(c). We consider a Bethe approximation following the cluster varia-
tion method (CVM) [165,166], which enables us to write an approximate expres-
sion of the entropy in terms of cluster entropies associated to clusters of proteins.
We adopt a pair approximation, which takes into account single sites and pairs
configurations of proteins and corresponds to the Bethe approximation. Thus, the
entropy of the system can be written as

_ z Z p(oi,04) Inp(o;, 05) +

<2,j> 04,0

* Z(Z — 1)) plos) Inp(os) =

:LZp o,0')Inp(o,0') +

I

(2L — sz )In p(o (4.12)

We can now minimize the free energy F' =< H > —S, using eq. (4.12), with the
following constraints

Zp(o, d)=1 (4.13)
3 plec') = plo) (4.14)
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and obtain the final expression of the cost function we were looking for:
- Z )\(O’Z’, O'j) =
<ij>

_ Z In p(O’i,Uj) — (415)

where z = 2L/N is the constant degree of the homogeneous network considered.

Going back to protein-protein interaction networks, we must face topological
problems coming from the inhomogeneity of the network and problems derived
from the multi-functionality associated to each protein. Indeed, going from a
constant degree z to a variable degree z; of protein i, the quantity defined in
eq. (4.4) does not represent anymore the probability of finding the function o
performed by a protein in the network. We have, in fact:

2 %i%ai0
Zp o,0) S (4.16)

Thus, we must be cautious in deriving the cost function in case of a variable
degree z; with the same criteria and approximations used to obtain eq. (4.15),
since eq. (4.16) has no more the meaning of a single-point probability, but is an
average weighted with the coordination of each site.

Moreover, when evaluating p(o,c) and p(o), one has to take into account
that often more than a single funtion is associated to each protein and that the
statistics necessary to get good estimate of them is not always high enough.

Several tests have been performed in order to verify the validity of possible
generalizations of egs. (4.3), (4.4) and (4.15), consistent with the general ap-
proach outlined above, to include topological inhomogeneity and multi-functional
characterization. Non-homogeneous features of our network can be simply intro-
duced in the theoretical framework by defining p(o) as it is defined by the first
equality in eq. (4.4), i.e. as ), p(o,0'), ignoring it is no more a measure of
the frequency of occurrence of function o (second equality in eq. (4.4)). Con-
cerning multi-functionality, instead, we can have limited confirms from the tests
performed, because of our partial knowledge of spatio-temporal characterization
of the functional tasks each protein performs.
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In analogy with eq. (4.3), we thus define the two-points probability as

1 1 & &
plo,0') = 7 > PF Y 8,5 5%& ” (4.17)

<%,j> J fi=1 ijl

where F; (F;) is the total number of functions performed by protein i (j), so
that each functional interaction underlying a link between proteins ¢ and j is
normalized to 1. The function p(o) is defined as

p(0) =3 pl0,0) (418)

The final expression for the cost function of MEE is:

E=— Ly Fjl Pl %) 4.19
oy Ly o) (4.19)

<i,j> FiF; fi=1fi=1 ,O(Uz') i P(Uj) K

As for the mixed GOM, a global optimization of the score function introduced
(eq. (4.19)) is performed through simulated annealing techniques starting from a
random functional assignment, in order to reach a minimum which corresponds to
the optimal functional assignment for the uncharacterized proteins. Frustration
arising during optimization process leads to several nearly equivalent minima,
which are taken into account by performing 100 minimizations and recording the
frequency of occurrence v/ of function o for protein ;. The functions having
highest frequency represent the functional prediction provided by the method.

4.2 Results

We have performed several checks in order to test the accuracy and quality of the
functional predictions provided by the two methods developed. In the following
sections, we show the results of such tests to assess the statistical reliability and
the robustness of functional predictions.

4.2.1 Statistical reliability

In order to test the predictive power of mixed GOM and MEE, a certain fraction
f of classified proteins has been set unclassified and both the methods have been
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applied to attempt to recover the correct functional annotation. The success of
a functional prediction is then evaluated with the introduction of two different
quantities, SR and SR;. The rate of successful predictions obtained depends, of
course, on the amount of available functional information on the network. The
success rate SR is an overall measure which considers as successful a prediction
that recovers at least one correct function of the test protein, as it is in [158],
regardless of the number of correct predictions and of the total number of predic-
tions. SRy, instead, is a more specific measure introduced in order to analyze the
effective predictive ability of our model, taking into account both the total number
of functions predicted (#P) and the total number of functions truly performed
by the test protein ¢ (#7'). In this way, we are able to distinguish among different
cases of successful predictions, although leading to an equal contribution in terms
of SR.
SRy is defined as the average of SRy(t) over all test proteins ¢, SRy =
(SRy(t)), where
#(PUT) - #(PNT)
#PUT)+#(PNT)

with P representing the ensemble of predicted functions for the test protein ¢, T

SR;(t)=1— (4.20)

the list of actual functions performed by ¢, P UT the total list of functions made
up of the predicted and the true ones with no repetitions, P 1T the intersection
between the two ensembles P and 7', i.e. the list of correctly predicted functions.

This new measure for the success rate has been chosen because it is able
to weight the ratio between the number of correctly predicted functions and the
total number of functions we would like to recover, penalizing proposed functional
annotations characterized by a great amount of predicted functions respect to the
true ones. The maximum value for SR;(¢) is obtained if P = T, so that SR (t) =
1, while if the method is not able to predict any of the true functions, SR;(t)
assumes its minimum value, SR;(t) = 0. Moreover, two predictions leading to
the same amount of correct results (#(P N T)), can be distinguished looking at
the number of functions predicted (#P): eq. (4.20) will penalize the prediction
with higher #P. The new measure so introduced is an improvement of both the
measures adopted in [158], i.e. the success rate SR, and adopted in [160] which is
defined as the ratio between the number of correctly predicted functions and the
total number of functions predicted, #(P NT)/#P, without taking into account
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the amount of true functions not predicted by the method.

In the following, we do not report results obtained for the function prediction
made on network (III), since it displays a trivial behaviour in all tests performed.
Indeed, after having set unclassified a certain fraction f of proteins with defined
functional role, none of the global optimizations investigated here is more able
to recover correct functions, leading, instead, to a trivial functional configuration
that assigns the same functional category to each test protein. This trivial as-
signment is actually reached for every network considered whenever the available
functional information left on the network, after having canceled test proteins
classification, is too small to be exploited in order to make predictions. This usu-
ally happens for very large values of the fraction f - we have investigated f = 0.7
in networks (I’) and (II) and the methods are still able to predict correct func-
tions, although the success rate obviously decreases. For what concerns network
(III), instead, even for very small values of the fraction f, the optimal state found
for the system almost always predicts the same function for each protein, being
unable to give significant results. This particular behaviour might find its origins
in the topology of network (III), whose features seem to differ from those of net-
works (I’) and (II), under the random deletion of protein functional classification.
We remind that the protein-protein interaction network (III) is composed of in-
teractions detected with very different experimental techniques - while (I’) and
(IT) are the result of single-type experiments - without any critical assessment of
their biological relevance and thus might be more affected by false interactions.

In fig. 4.1(top) we report the results of the rate of successful predictions ob-
tained by the model mixed GOM applied to networks (I’) (left) and (II) (right),
and compare them with those of other methods, i.e. the global optimization model
performed on first neighbors, GOM;, or on second neighbors, GOM,. Results are
shown as a function of protein degree. We first observe that GOM; and GOM,
strikingly give almost overlapping rates of success, although their functional pre-
dictions do not overlap in the whole interval of degrees, as fig. 4.1(bottom) shows.
We expect therefore to obtain some extra correct functional information coming
from predictions obtained exploiting second neighbors annotations. Indeed, this
extra functional information leads to a rate of success, for mixed GOM, which
is higher than the ones relative to independent global optimizations. Results for
(IT) show a higher accuracy in the predictions limited to low degrees, as we could
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expect by looking at the overlap between functional annotations given by GOM;
and GOM; (fig. 4.1 bottom right). Indeed, GOM; and GOM; predictions differ
only for degree values smaller than 5, so that the extra functional information
gained by mixed GOM is found only in that region.
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Figure 4.1: Top: Success rate SR of the functional predictions performed by the
mixed GOM method for a fraction f = 0.1 of classified proteins set unclassified
in networks (I’) (left) and (II) (right), compared to the success rate obtained
through the global optimization model applied to first neighbors (GOM;) or to
second neighbors (GOM,); success rate is shown as a function of the number
of interacting partners, i.e. the degree. Bottom: Overlap between the functional
annotations predicted by GOM; and GOM, in networks (I') (left) and (IT) (right),
as a function of the protein degree.

By looking only at the rate of success SR, we could wonder if the increased
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success obtained with mixed GOM by merging the functional predictions of the
two global optimizations performed separately is only a trivial result due to the
consequent increase in the average number of predicted functions for each test
protein. It could happen that we have improved only thanks to a reduction in
the risk we undertake, i.e. by increasing the set of predicted functions. For this
reason we have measured the new quantity introduced, SRy, which enables us to
better quantify the accuracy of functional prediction, as previously discussed.

Although the absolute value of the success rate so evaluated is decreased re-
spect to SR, we still observe a higher accuracy in the predictions of mixed GOM
respect to GOM; and GOM,, as fig. 4.2(top) shows, revealing the importance of
the functional information carried by second neighbors. In fig. 4.2(bottom) we
compare Sy with the probability of recovering correct functional annotation by
randomly guessing. For each test protein ¢, we computed the probability Py P,c(t)
of correctly guessing ¢ = #(P N T) functions out of #P functions extracted with
uniform probability from the total number of functions #F"

. _ Cyp, (t,P,T)
Pip, t) = S Cune (6 P, 8% (4.21)
where e 4 a7
Coretep) = (F1) (F5#1) 4

The quality of the random predictions is almost independent from protein degree
in the study of both networks, (I’) and (II), and decreases to just ~ 20% in (I’) and
~ 10% in (II), while mixed GOM give a success SR; which is almost everywhere
higher than, respectively, 60% in (I') and 55% in (II). However, the success of
predictions obtained for poorly connected nodes (degree 1) in (I’) by mixed GOM
do not considerably differ from results obtained by random prediction; this is
probably due to the presence of false interactions in the data set which may affect
proteins with low degrees more than the others. A different behavior can be
observed in (II), where mixed GOM predictions give higher quality results respect
to random predictions even for peripheral proteins, underlying differences in data
sets obtained with different experimental techniques. The rate of success obtained
with the majority rule (MR) is also reported for comparison. For both data sets,
two-hybrid and TAP data, it is somewhat lower than those obtained with global
optimization methods, as we already expected.
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Figure 4.2: Top: Success rate SRy of the functional predictions performed by the
mixed GOM model for a fraction f = 0.1 of classified proteins set unclassified
in networks (I’) (left) and (II) (right), compared to the success rate obtained
through GOM; and GOM,. SRy, as defined by eq. (4.20), represents a more
accurate measure of the rate of successful predictions respect to SR. Results are
shown as a function of protein degree. Bottom: Comparison of the predictive
accuracy of mixed GOM, applied to networks (I') (left) and (II) (right), respect
to the majority rule method (MR) and to the probability of randomly guessing
the functional annotation of a protein, in terms of the success rate SRy.

In fig. 4.3 we report results obtained with the second method introduced,
MEE;, in comparison with those already discussed. Although MEE is not able to
improve prediction quality reached by mixed GOM, fig. 4.3 shows that making use
of the correlations between functional annotations of interacting proteins leads to
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results very close to those given by GOM; and GOM, separately, which are based
on considerations of different nature. The introduction in the cost function of
information learned from the given knowledge of the protein-protein interaction
network was shown to be relevant in the prediction of functional annotations of
unclassified proteins.
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Figure 4.3: Comparison between the results obtained for networks (I') (left) and
(IT) (right) by the methods GOM;, GOM,, mixed GOM and MEE, in terms of
two different measures of the rate of success, SR (top) and SRy (bottom). Results
are shown as a function of protein degree.

Future developments will consider higher order correlations to include also
second neighbors, since we have shown they represent a source of supplementary
information. This represents a more promising strategy than the one adopted in
mixed GOM since it does not rely on some cost function with parameters assigned



4.2 Results 101

a priori. Indeed in eq. (4.1) J;; = 1 and in eq. (4.2) S; ; counts how many partners
proteins 7 and j share wheras in eq. (4.19) there are no free parameters.

Table 4.1 reports a study of the functional predictions made by GOM; and
GOM; in the same reliability test as before, analyzing their intersection and the
relative rates of success due to each method only or to both of them. Results re-
ferring to both (I’) and (II) are shown. Three cases are distinguished. (1) Totally
overlapping predictions, i.e. identical GOM; and GOM, annotations, obtained
in the 36% of the predictions made in the test for network (I') and in the 51%
for network (II) (the higher percentage obtained for network (II) is in accordance
with results obtained in the success rates). (2) Partly overlapping predictions,
i.e. annotations sharing at least one function, which represent the 37% of the
cases in network (I'), while the 26% in network (II). (3) Not overlapping predic-
tions, meaning that the two annotations do not have any function in common,
obtained in the 27% of the predictions made for network (I’) and in the 23% of
those made for network (II). For each case, we report the success rates obtained
by each method only (success GOM; and success GOM,) and those obtained when
both methods predict the correct functional annotation (success GOM; & GOM,).
A success due to both methods could imply different predictions although both
correct. This is of course the case of not overlapping predictions (where success
GOM,; & GOM, represents the 34% of the cases for (I’) and the 42% for (II)), but
could even occur with partly overlapping predictions (representing a great con-
tribute to the total success, ~ 75% for both networks), thus meaning that GOM,
gives a different and non-trivial contribution for a correct functional annotation.

4.2.2 Robustness

Dealing with experimental results which are prone to false negative and false
positive interactions (see section 3.1.4), we ought to assess the tolerance of our
approaches with respect to the background noise present in the data sets. In par-
ticular, we want to test the robustness of functional predictions against changes in
the topology of the network. To do that, we perform a second independent control
experiment, which consists of a rewiring of the network by removing existing links
with probability ¢ and consequently inserting new interactions between pairs of
proteins not already connected. We thus obtain a 'reshuffled’ network character-
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) () |

totally overlapping 36% 51%
success 79% 80%
unsuccess 21% 20%

partly overlapping 37% 26%
success GOM; 8% 9%
success GOM, 4% 1%
success GOM; & GOM, 74% 75%
unsuccess 14% 15%

not overlapping 27% 23%
success GOM; 20% 20%
success GOM, 23% 24%
success GOM; & GOM, 34% 42%
unsuccess 23% 14%

Table 4.1: Intersection of functional predictions made by GOM; and GOM, for the
reliability test in which a fraction f = 0.1 of classified proteins is set unclassified.
Results referring to both (I’) and (II) are shown.

ized by sensitive changes in the connectivity pattern but still having the same
number of links as the original. We define a degree of dissimilarity f; between the
two networks to quantify such changes: f; measures the fraction of links which
assume different positions in the two networks. In general the degree of dissimi-
larity will not have a trivial dependence on the rewiring probability ¢, because of
the possibility, in the rewiring process, that a link will connect again two proteins
which actually interact in the original network, but are no more connected since
their edge has already been removed.

Each method, mixed GOM and MEE, is applied to both the original and
scrambled network, in order to obtain the corresponding functional predictions
for the set of unclassified proteins. For every uncharacterized protein ¢, an overlap
between the functional annotations proposed by each method is evaluated:

0i(f) =Y v (0) - w7 () ]2 (4.23)

g
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where v7(f;) is the frequency of occurrence of function ¢ in the annotation of
protein 7 obtained on the basis of the scrambled network with a degree of dissim-
ilarity f; with the original one, which corresponds to f; = 0. The average overlap
O(f1)) = (©;(f1)) is analyzed respect to f;. In this section we monitor the over-
lap ©(f;) for the predictions given by GOM;, GOM; and mixed GOM, using the
original and the scrambled network, as a function of the degree of dissimilarity f;.
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Figure 4.4: Overlap averaged over all unclassified proteins between functional pre-
dictions made by GOM;, GOM, and mixed GOM, based on the original network
and on the reshuffled one, having a degree of dissimilarity f;. Top: network (I’).
Bottom: network (II).

As shown in fig. 4.4, we find that the three methods analyzed (GOM;, GOM,
and mixed GOM) display a considerably high robustness against the presence
of misplaced interactions in the dataset (for GOM; see also [158]). Indeed, for
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a dissimilarity of about 10% the three methods predict functional annotations
overlapping with the original ones for more than 85% in both networks, (I’) and
(IT). It is important to notice, however, that the rewiring of a link generally
involves 3 to 4 proteins changing their connectivity configuration, thus implying
that a 10% of dissimilarity actually means a connectivity pattern changed for
about 30 — 40% of the proteins present in the network.

The models GOM; and GOM, display different behaviours respect to network
'reshuffling’.  While for low degree of dissimilarity optimizations involving first
neighbors or second neighbors provide similar results, when f; becomes increasing
(fi > 40%) GOM; reveals to be more sensitive to the introduction of misplaced
interactions in the network, clearly showing that the extraction of functional in-
formation from second neighbors is more robust against topology perturbations.
Indeed, since in GOM; all paths of length 2 connecting pairs of proteins are
considered, a change in one link only reduces the strength of second neighbors
interaction quantified by cost function E® (see eq. (4.2)), without eliminating it,
while it completely cancels first neighbors interaction.

Comparing results referring to different networks, (I') (top) and (II) (bottom),
we observe that in both cases mixed GOM is able to obtain higher values of the
overlap function, showing a behaviour which is more robust than that of GOM.,
since it is gaining higher degree of robustness coming from GOM,. However,
different values of the overlap function reached by mixed GOM for rather large
degree of dissimilarity (O(f; = 60%) ~ 65% in (I’), while O(f, = 60%) ~ 80% in
(IT)) point out different degrees of robustness of such networks, probably due to
distinct intrinsic features of data sets resulting from different experiments.

4.3 Discussion

Comparison of the proposed models with different approaches for functional pre-
diction, other than the global optimization, reveal some important relative ad-
vantages. First of all, both our methods are able to offer a functional prediction
for the entire set of unclassified proteins in the network, while others take into
account only a fraction of it. Indeed, the statistical analysis of topological re-
dundancies made by Samanta and Liang [159] focus the attention only on those
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protein pairs sharing a significantly high number of common partners, with no
possibility of covering the entire network. An unannotated protein can eventually
be classified only if it forms associations with other proteins, i.e. only if it belongs
to the list of protein pairs showing topological redundancies.

Other approaches limit their predictions to proteins for which assignment is
mostly unambiguous, thus strongly restricting the range of applicability of the
method itself. In [160], for example, the authors choose to rule out proteins with
degree less than 3, since they are expected to be more affected by the presence
of false positive and negative interactions. Hence, such proteins are considered
for computation but no functional prediction is possible. Starting from a data
set composed of 2139 proteins, the classification tree constructed in [160] for the
functional prediction contains only 602 proteins, thus dramatically reducing the
ensemble of proteins for which a classification can be proposed. Our methods,
instead, can not only be used for functional assignment on the whole set of unclas-
sified proteins, but also show an increased rate of successful predictions (fig. 4.1),
especially for low values of the degree.

The global optimization process is able to propose multi-functional annotations
for each protein, because of the presence of multiple minima of the cost functions
due to frustration (see Methods). Although we have already shown that our
improvements reached with mixed GOM are not due to a trivial increase in the
probability of guessing the correct functions, through the introduction of a new
measure for the rate of success - SRy - in the statistical reliability tests, here we
would like to directly monitor how the number of functions predicted per protein
varies in the three methods, GOM;, GOM, and mixed GOM.

In fig. 4.5 we report the distribution of the number of functions per protein
predicted by the two global optimizations, GOM; and GOM,, and by mixed GOM,
when applied to network (I’)(top) and (II)(bottom). Each column represents the
fraction of test proteins for which a certain number of functions has been predicted
by using GOM;, GOM, and mixed GOM. Merging functional annotations leads
to an increase in the fraction of proteins having multi-functional classification
respect to GOMs. Indeed, referring to network (I'), the fraction of proteins with
a predicted classification made up of only one function (first set of columns in
the histogram) is greater in GOMs, (~ 70%) than in mixed GOM (~ 53%), which
instead tends to assign more than one function per protein respect to GOMj; - e.g.
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Figure 4.5: Distribution of the number of functions per protein predicted by the
three methods, GOM; and GOMj,, and mixed GOM. Each column in the his-
togram represents the percentage of proteins having associated a certain number
of functions by one of the methods - GOM;, GOM, and mixed GOM. Top: net-
work (I’). Bottom: network (II).

mixed GOM assigns 2 functions to ~ 35% of the proteins, while GOM; only to ~
17% (second set of columns in fig. 4.5). However, the distribution of the number of
functions per protein predicted with mixed GOM do not substantially differ from
that obtained with GOM;, showing again that merging functional classifications
improves the succes rate without a substantial increase of the number of the
predicted functions. Similar results are obtained considering network (II) (fig. 4.5,
bottom).

Instead of merging results in mixed GOM coming from two independent min-
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imizations, GOM; and GOM,, we have investigated the possibility of using a
single cost function corresponding to a linear combination of the two terms rela-
tive, respectively, to first and second neighbors contributions. In other words, we
optimized the following cost function:

E=FEY 4 \E®), (4.24)

A being the global weight of the linear combination, E) and E® the cost func-
tions of eq. (4.1) and eq. (4.2), respectively. It is not easy to guess a priori a
value of A which could opportunely take into account new bioinformatics knowl-
edge coming from second neighbors and enable us to improve the quality of our
functional predictions. Making use of some topological and energetic informations

acquired on the network, we have studied different values of the weight, among
which:

e the energy ratio of the independent optimizations, GOM; and GOM,, i.e.

EY
A = —min (4.25)
7@

mein

where F,,;, represents the energy of the optimal configuration;

e the ratio of functional rates of protein couples (of first and second neighbors)
with at least a function in common:

(2)
rate 7

A= ——, (4.26)
ratescl)

where rategcl) (rate?)) represents the observed percentage of first (second)

neighbors sharing at least one function, computed on the classified proteins
of the network; we have: A = 75%/86% in (I’), A = 77%/83% in (II) and
A =63%/72% in (III).

Results obtained do not differ from those relative to GOM; and GOM,, so that a
linear combination with a global weight does not seem to be able to distinguish
between GOM; and GOM, contributions, at least for the values investigated. One
of the two contributions seems to be negligible respect to the other; therefore,
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the cost function introduced does not capture the extra functional information
obtained by mixed GOM.

Finally, we have investigated a linear combination of E®) and E® with a
local weight in the sums of eq. (4.2) dependent on the number of first and second
neighbors, in order to locally normalize the number of interactions considered in
each energy function:

A= o = (4.27)

)

where k; represents the degree of protein ¢ and n,” the number of paths of length

2 starting from protein 7. Also in this case we are not able to improve the rate of
success already obtained by GOM; and GOM,.

A possible solution would be to optimize the parameter A in such a way to
maximize the rate of success, but it would require extremely high computational
costs.

4.4 Conclusions

We have proposed two general bioinformatics methods for predicting functional
classification of uncharacterized proteins, based on protein-protein interaction net-
works. We have applied them to the interaction maps of Saccharomyces cerevisiae
extracted from two-hybrid data [156], tandem-affinity purification data [28] and
a mixed data set collected at the Database of Interacting Proteins [144].

The first method, called mixed GOM, relies on the assumption that a func-
tional association could potentially exist not only between directly interacting
proteins but even between proteins sharing common partner(s). It is based on
two independent global optimization processes - GOM; and GOMj - respectively
involving first and second neighbors and leading to separate functional predictions
for the unclassified set of proteins. Merging predictions for each uncharacterized
protein provides the annotation proposed by mixed GOM.

The second method is based on a general theoretical approach which extracts
functional relevance underlying physical interactions between proteins from the
available information about the system. Through a statistical inference criterion -
the maximum entropy estimate - it determines an expression for the cost function
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in terms of the k-points functional correlations, computed on the classified part
of the network of interactions. In this study £ < 2. A global optimization is
performed in order to reach the minimum of the cost function, which leads to the
optimal functional assignment for proteins with no functional annotation.

Results obtained demonstrate the functional relevance of connections between
proteins and extend this result even to interactions mediated by an intermediate
protein, i.e. between second neighbors. Reliability tests have shown the robust-
ness of presented methods in dealing with data sets which are incomplete and/or
affected by misleading false interactions.






Conclusions and perspectives

In this thesis, we have presented models and theorethical tools to describe the
non-trivial features of complex networks, and focused the attention on a specific
real system - protein-protein interaction networks - to unravel underlying orga-
nizational principles and correlations with biological functions, in an attempt to
understand cell’s functional organization.

The class of models introduced relies on selection principles on the basis of
optimality criteria. Our work is complementary to existing models that either
rely on dynamical mechanisms, such as preferential attachment, or on topological
and geometrical criteria. Tree-like structures, as well as networks with loops, have
been investigated through numerical simulations and exhaustive exploration of
hierarchical tree patterns, by means of an analytical expression of the cost function
for loopless networks. In spite of its simplicity, the class of models proposed
seems to capture several features of networks in Nature. Though by no means
exhaustive, our results show that selective criteria blend chance and necessity as
dynamic origins of recurrent network patterns.

Scale-free properties of networks have been investigated with theorethical tools
usually employed to study critical phenomena, i.e. with a renormalization group
(RG) treatment. Coarse-graining of less relevant details of the networks was
found to lead to renormalized weighted networks which preserve original critical
behaviours. RG has been applied to several network models, designed to repro-
duce different types of systems, and to two distinct protein-protein interaction
networks of the yeast Saccharomyces cerevisiae, obtained from different experi-
mental methods. Although we are firmly convinced that this work is at its first
stage, results suggest that RG approach could represent a fruitful tool in the study
of critical network properties, by ’simplifying’ large-scale systems and thus uncov-
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ering ’true’ critical behaviours from apparent ones. A possible application for the
visualization of more understandable - though meaningful - networks will be the
object of future developments, as well as other renormalization techniques.

In the last part of this thesis, we have focused the attention on a real exam-
ple in the area of biological systems: protein-protein interaction networks. The
study of the architecture and the dynamics of the complex interaction between
the numerous constituents of the cell represents an extremely important issue in
post-genomic biology, since it could lead to a comprehensive explanation of the
behaviour of a cell and of the biological phenomena occurring.

Several non-trivial features were found in the investigation of three distinct
protein interaction networks of the yeast Saccharomyces cerevisiae, obtained with
different experimental techniques, regarding scale-free distributions of protein con-
nectivity, clustering hierarchy and correlations. Results for the functional rel-
evance of interactions emerged from the analysis correlating network topology
with the biological function of proteins. Such results constitute the basic strategy
of global optimization methods, developed to facilitate the functional annotation
of proteins not yet classified. With the rapid recent developments in complete
genome sequencing and the vast amount of data on protein-protein interactions
becoming available, the functional classification of still uncharacterized proteins
becomes of fundamental importance. The two bioinformatics approaches pre-
sented here are designed to take full advantage of the functional relationships
underlying the complex pattern of interactions to propose a functional annotation
for unclassified proteins, by introducing an opportune cost function which takes
into account such information encoded in the network. In particular, we have
considered a topological extension of a previous global optimization model, with
the introduction of a new parameter in the cost function taking into account the
role of second neighbors, and a second theorethical approach whose cost function
depends on the k-point functional correlations evaluated on the network. While
the first method, mixed GOM, relies on two parameters which are assigned specific
values a priori, the second one, MEE, has no free parameters, since it extracts
useful information from the given knowledge of the system, through maximum
entropy estimates. Results point out that the introduction of these new ingre-
dients are found to be crucial in the improvement of predictive ability, respect
to previous works in this area. Future developments will consider higher order
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correlations.

Nevertheless we are aware that the collection of the increasing amount of ex-
perimental data must be followed by an estimation of the reliability of different
data sets and of the coverage of distinct approaches, in order to obtain statisti-
cally significant protein-protein interaction networks and be able to develop new
promising bioinformatics methods.






Appendix A

Simulated annealing

The method we have used in the global optimization processes, performed in
mixed GOM and in MEE model, is simulated annealing [161,162], in which a
parameter 7', analogous to the temperature, is introduced and lowered during the
minimization process. More in detail, the minimization algorithm is as follows:

(i) Generation of a random initial functional configuration. To each unclassi-
fied protein ¢ an initial function o;, randomly chosen among the total number of
functions ( F' = 18 in our case), is assigned.

(#7) Random change of the functional configuration. An uncharacterized pro-
tein is randomly selected and a new associated function is extracted with uniform
probability.

(#ii) Energetic control. The change AFE in the cost function is evaluated. If
it is negative, the change is accepted and we go on to step (iv). Otherwise the
quantity exp[—AF/T] is compared to a random number p, uniformly extracted
in the interval [0, 1]:

- if exp[-AFE/T] < p, the change is accepted and we go on to step (iv);

- otherwise the change is rejected and we return to step (ii).

(iv) Updating of the new configuration. The functional configuration is up-
dated by taking into account the change in the function of the unclassified protein
extracted.
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(v) Lowering of the parameter T. In each cycle, the parameter T is decreased
by a factor R very close to 1, so that at the nth cycle we have T'(n) = R"T(0),
where T'(0) assumes a suitable chosen value.

After the initial condition is generated (step (i)), steps (ii)-(iv) are repeated
several times until the system is thermalized at temperature 7. Then, step (v) is
performed and temperature 7' is decreased; the entire algorithm, from step (ii) to
step (v), is repeated until the parameter T reaches a considerably low value.
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