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Introduction

This thesis is devoted to the study of two different problems arising from the numeri-

cal simulation of physical phenomena. However, the motivation, the method followed

and the goals pursued are the same. As I hope to have exhaustively demonstrated

in the following pages, my belief is that variational techniques can be the appro-

priate bridge between theory and experiment, between mathematical modeling and

numerical simulation.

Molecular dynamics is a typical field in which all these ingredients are mixed:

simulations of atomic and molecular trajectories are performed, through a suitable

model of the interatomic forces and following a suitable algorithm, capable to resolve

a large number of degrees of freedom. The aim is to obtain results comparable to

observations in order to validate the whole strategy and then to use it as a speculative

tool.

Wetting phenomena are at a first glance easier, at least because they are closer

to our daily experience. Notwithstanding this (or maybe exactly for this reason)

many problems remain open and interesting from the research and the industrial

point of view.

Dealing with both fields, I worked with the purpose of finding the mathematical

answer to the physical problem, through the means of variational techniques that

constituted my original background. However, it is necessary to work on both banks

in order to build a bridge and therefore my education during the PhD course touched

physics, programming, modeling, mathematical and numerical analysis. As a result

of this strategy, I cannot say to have explored completely any of these field, but I

can surely affirm to have connected the two sides with a solid and useful path. A

path that can obviously be further improved, as I will try to explain in the “perspec-

tives” sections of this thesis, but it is already considered interesting, as it has been

highlighted by the comments received from the reviewers of the submitted papers.
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Introduction

The studies concerning molecular dynamics are the results of a collaboration

with Prof. F. Cardin and Dr. D. Passerone started during the preparation of my

degree thesis. We focused on the rare events problem: we looked for a strategy

to simulate the jump of a many-body system between two (local) minima of its

potential energy. The difficulties of such a situation are essentially the large number

of degrees of freedom and the very long time that an ab-initio simulation would

require before describing the jump. Any classical approach, consisting in a smart

integration of the equation of motion, fails because of the combination of these two

factors and the subsequent lost of accuracy.

An answer to this problem is theoretically known: a variational principle with

fixed end points can predict the existence of reactive trajectories. However this

kind of solution hides new problems concerning the numerical strategy to make the

functional involved stationary, since low order formulations (i.e. not containing se-

cond order derivatives, too expensive from the computational point of view) exhibits

mechanical solutions almost only as saddle points.

Hence our objective was a variational formulation with an high stability, in order

to be able to handle large systems for long times, and a strategy (something more

than a simple algorithm) to make possible a numerical treatment of interesting

systems.

We did something more. The functional we adapted to the problem is Tonelli

functional which moreover allows for a strong conservation of the imposed total

energy of the system during the simulations and it divides easily the search for

the geometric localization of the path from its time parametrization: only a linear

reparametrization will be needed.

The mechanism is very similar to what the most known Maupertuis functional

does. The geometric trajectory is found considering a reference time parametriza-

tion, say from 0 to 1, and -once obtained it- the real physical timing is derived

through a specific relation. But while the reparametrization of Maupertuis func-

tional is nonlinear and it diverges for zero-velocity points, Tonelli formulation is

much more stable and simple. The functional reads:

Th(q(·)) =
∫ 1

0
K(q̇(τ)) dτ ·

∫ 1

0
(h− V (q(τ))) dτ (1)

and the factor ω for the linear transformation of time is given by:

ω2 :=

∫ 1
0 (h− V (q(τ))) dτ∫ 1

0 K(q̇(τ)) dτ
. (2)
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Introduction

In the above formulas V is the potential energy, the key ingredient coming from the

mathematical modeling of the problem, K is the kinetic energy and h is the imposed

value for the total energy. The class of admissible trajectories q(·) will be specified

in chapter §1 starting from the request of fixed end points belonging to the basins

of attraction of the two minima of the potential selected.

The announced strategy for the stationarization of this functional involves ano-

ther variational technique, an exact finite dimensional reduction, and an algorithm

to couple the two tools. The reduction is performed in Fourier coordinates, a non

optimal choice on which we are planning part of our future work. The idea is to divide

the low frequencies, which will be the unknowns for the saddle point algorithm, from

the high ones. These frequencies will be obtained through an iterative contractive

map, whose convergence is rigorously proved if the coordinate of the cut in the series

satisfies a precise inequality. The result is a consistent decrease of the number of

the degrees of freedom for the problem, without loosing accuracy of the description

(an error estimate will be proved) but only at the cost of some fixed-point iteration.

Several examples and numerical tests complete the exposition of this work, cla-

rifying once more the details of the whole strategy and of each component. A

comparison between Maupertuis and Tonelli functionals is performed on a simple

double well potential and on the standard benchmark constituted by Mueller po-

tential. The finite reduction is first applied to an harmonic oscillator in order to

explain the meaning of the condition for the cut in the Fourier series. Then the

algorithm governing the coupling of the reduction with Tonelli functional is step by

step illustrated on a small cluster of 4 atoms. Finally the isomerization of a 38-atom

Lennard-Jones is considered and resolved with the proposed strategy showing a first

proof of its capabilities. The results just described are contained in paper [A].

I want to remark once more the spirit of this research: finding an answer to a

precise question arising in a physical context through a mathematical, variational

technique. We reached the goal and at the same time we opened further questions.

Our work from now will consists in widening the possibilities of the strategy and

in going deeper in the understanding of the problem. The choice of the Fourier

representation for example, although necessary for the technique, is far from be-

ing numerically convenient with respect to splines or simply cartesian coordinates.

Moreover an a priori guess on the existence of reactive trajectories at given energies

would be very useful. Finally we are investigating the possibility of widening the

system treatable with these techniques or equivalently the possibility to modify the
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Introduction

algorithms.

Chapter §2, §3 and §4 collect the studies about wetting phenomena on rough

surfaces. The physical question here is the development of an efficient numerical

method to simulate the contact of a liquid drop with a possibly textured solid surface.

The method should be tested against experimental observation and it should become

a predictive tool useful for applications and further theoretical researches. Moreover

the model behind the physics of a drop is a simplified version of those governing

the shape of a biological vesicle, the archetype of a cell membrane. Therefore the

techniques and the expertise derived in this work could become the starting point

of new researches in this equivalently or even more interesting field.

I worked on this topic under the supervision of Prof. A. DeSimone. The results

obtained are contained in the two papers [B], [C]. The first one describes the results

for the 2D case and it was written also in collaboration with Prof. F. Alouges. The

second one concerns 3D simulations and was written more autonomously. However,

the initial collaboration with Eng. C. De Vittoria (regarding the framework of the 3D

code and the solution of many programming problems) is gratefully acknowledged.

We started looking at the drawbacks of the existing solutions of the problem.

The geometric formulation of the wetting problem allows for an analytic solution

in the simplest situations (a water drop in air is spherical; if it is deposited on a

homogeneous solid surface, it becomes a spherical cap with a characteristic contact

angle). However such an achievement is no longer reachable if gravity enters or if

the solid is not smooth. Even a numeric treatment of these equations would be

excessively expensive and unnecessarily complicated, when possible. Leaving the

concept of a mathematical surface as a boundary between water and air, other

models appear. The diffuse interface model is our choice: the transition is confined

in a narrow region and consequently the equations governing the system simplify

and contain no singularity in case of new interfaces creation (or their destruction).

We pursued a rigorous mathematical treatment of these models, including a

particular attention to the contact of the drop with the solid, which is the true

innovation contained in our work from the pure mathematical point of view. Once

more the construction is based on variational techniques: a Γ−convergence result to

establish the link between the phase field model and the geometric one. Moreover

also the algorithm employed to solve the equilibrium equations involves the gradient

flow of the energy functional related to the solid-drop system.
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Introduction

The wetting problem is a sort of iso-perimetric problem in which we want to

minimize the energy coming from the surfaces (essentially the contacts of the liquid

L with the solid S and with air V ) at a fixed drop volume. In the physical notation

the capillary energy reads:

E(ω, t) = σSL|ΣSL|+ σLV |ΣLV |+ σSV |ΣSV |+
∫

ω
U(x, t) dVx, (3)

where the last term represents the effect of a body force like gravity and the coef-

ficients σ are the surface tensions relative to the interfaces. The time dependency

t accounts for evolution situations such as the one occurring in tilted plate experi-

ments, where the solid surface on which a heavy drop rests is inclined. In this context

we will consider only quasistatic evolutions.

within the phase field formulation a phase function φ will take the value 1 in the

region occupied by the liquid and the value 0 where vapour is present. The transition

layer has a width depending on a small parameter ε. In the limit as this value goes

to zero, the original wetting problem is recovered by means of Γ−convergence. The

solid appears as a boundary condition (both Dirichlet and Neumann conditions

were studied) allowing for an easy treatment of complex geometries. The energy

functional becomes:

Eε(φ, t) =
∫

Ω
ε|∇φ|2 +

1
ε
W (φ) + φU(x, t) dVx, (4)

where W is a double well potential penalizing values of φ far from the liquid or the

vapour phases.

Notwithstanding the simplicity of the model, the numerical simulations following

this strategy (through a suitable algorithm whose main feature is the conservation

of the volume of the drop) are able to capture significant features of real experiments

and to reproduce analytic solutions, when available. For example the hysteresis of

the contact angle can be correctly simulated and checked against the known solution

in the case of an horizontal solid and against experiments in the case of an inclined

plane.

The simulation of a solid surface textured with rows of pillars is much more

interesting. Even in the 2D case the simulated water drops deposited on such surfaces

exhibit metastability properties similar to those known from experiments. Obviously

3D simulations are more striking, although more demanding.

The basic algorithm written for the two dimensional simulations cannot handle

the 3D case, because of the dramatic growth in the number of degrees of freedom.
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This forced us to implement a multigrid strategy on a parallel computing platform.

This is not a pure programming problem, because the computing resources cannot be

unlimited. Moreover the goal was to increase the resolution of the simulations near

the interfaces (especially on the solid surface). The result is an adaptive mesh re-

finement scheme involving a non trivial triquadratic interpolation at the boundaries

between coarse and fine grids and a reediting of the gradient flow algorithm.

The results of this approach are directly comparable to observations. The si-

mulations of drops on an inclined plane are quantitatively in good agreement with

published experimental data. While the numerical version of the evaporating drop

on a sparse grid of pillars gives a rather precise replication of what M. Callies and

D. Quéré realized in their laboratory.

References:

[A] Turco A., Passerone D., Cardin F.: Tonelli principle: finite reduction and

fixed energy molecular dynamics trajectories. MMS, to appear (2008)

[B] A. Turco, F. Alouges, A. DeSimone: Wetting on rough surfaces and contact

angle hysteresis: numerical experiments based on a phase field model. Preprint Sissa

91/2007/M

[C] A. Turco: Adaptive Mesh Refinement applied to the Phase Field simulation

of Wetting Phenomena. Preprint Sissa 58/2008/M
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Chapter 1

MOLECULAR DYNAMICS

1.1 The rare events problem

Molecular dynamics can be seen as the intermediate step between theoretical physics

and experimental observations: it is the numerical simulation of the dynamics of

atoms and molecules. A molecular dynamics experiment is good if the model go-

verning it is physically correct and, at the same time, if the numerical scheme is

robust enough: the results must be comparable to observations.

In this chapter we will focus on a problem that is much more delicate regarding

the second issue, because the aim is to study a so called rare event : the transition of

a system between two (meta)-stable configurations. These events are rare because,

looking at the potential energy landscape, the probability of a transition decreases

exponentially with the height of the separation barrier. Moreover in a system with

many degrees of freedom the equipartition of the energy is another obstacle to over-

come in order to catch the right ensemble which allows for the jump.

The challenge is not only speculative. Rare events are the building block of every

chemical reaction and for example, enlarging the system, of the protein folding. The

understanding of a process with this level of complexity is probably the main goal

in the field and the starting point of a very wide range of applications, mainly but

not only in medicine.

The improvement achieved in the algorithms behind the numerical simulations

of these phenomena will be discussed in details. But first, we would like to frame

this problem in the wider context of path sampling. It will be shown how to com-

pute a single reactive trajectory with given extremal configurations, starting from

a variational principle. Why could it be important in a world governed by fluc-
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1.2. CLASSICAL ANSWERS

tuations and thermodynamics? As pointed out in previous studies (see, e.g., Bai

and Elber [6] and references therein) two-point boundary algorithms applied to a

description where all microscopic degrees of freedom are considered explicitly can

become exceedingly expensive when the total time of the path becomes too large.

Nevertheless, Bai and Elber point out that short time trajectories can become sta-

tistically important if one focuses on the transitional part of a reactive path from

a reactant to a product. If the process is not diffusive, the very transition process

is rather short, and a sampling limited to the transition part of the path can give

information on the transient timescale of the process. It is in this kind of processes

that two-point boundary algorithms can play their role.

The steps leading from a single trajectory to a complete sampling will not be

treated. Instead we will present the result of a joint work with prof. Franco Cardin

(univ. Padova) and dr. Daniele Passerone (EMPA, Zurich) [54]. We propose a new

method for obtaining accurate trajectories at a fixed energy, a feature that could be

used for subsequent extensions of sampling strategies. The first direct application

could be envisioned in the microcanonical sampling with a modified Boltzmann

criterion in order to enhance the sampling of important energy regions with low

density of states (Wang-Landau method [56]). Another extension could be the field

of extended Lagrangians (for example for systems in contact with a thermostat),

where an extended conserved quantity (total “energy”) can be defined for the whole

system (e.g., solute + solvent + thermostat), and a controlled sampling as a function

of this quantity could be introduced.

1.2 Classical answers

The problem can be briefly but precisely exposed in these terms: we consider a set

of N particles interacting through a given potential V and we look for a physical

path joining the basins of attraction of two of its (local) minima. The main sources

of complexity are hidden in N and V : on the one hand all the modeling work is

condensed in the choice of the degrees of freedom of the system and of the associated

potential energy. On the other hand, simulating a realistic system implies a very

rough and complicated potential energy landscape in a high dimensional phase space.

However, if -as we do- a classical approach is preferred over a quantistic one, the

form of the equations we want to solve is very simple, they are the Newton equation

of motion (here we put all the masses equal to 1 for simplicity, or equivalently we

2



1.2. CLASSICAL ANSWERS

can consider them incorporated in the definition of V ):

d2q

dt2
(t) = −∇V (q(t)), (1.1)

where q(·) is the 3N dimensional position vector.

The standard integration algorithm in Molecular Dynamics is the Verlet one:

q(t + ∆t) = q(t) + ∆t · q̇(t)− ∆t2

2
∇V (q(t)) (1.2)

q̇(t + ∆t) = q̇(t)− ∆t

2

(
∇V (q(t)) +∇V (q(t + ∆t))

)
. (1.3)

This scheme is very accurate for times comparable to the duration of the transition,

it is a second order scheme both in the position and in the velocity (there are

several versions of the Verlet algorithm, the one above is the velocity Verlet that

indeed guarantees the precision of the description of q̇). As a consequence we cannot

employ it for an ab-initio sampling of the phase space hoping to observe a rare event:

the trajectory would spend too much time in the basin of the minimum where it

started. Nevertheless one can test any computed path against a Verlet one obtaining

a validation of its accuracy: the idea is to use a variational principle that prescribes

the extremal configuration of the trajectory and to check the results obtained with

the Verlet path having the same initial position and an initial velocity equal to the

computed one.

Standard variational principles are commonly used in MD, even if the Verlet

algorithm remains the benchmark tool. Hamilton principle is in general the first

choice, but the main drawback of its usual discretizations is the low accuracy in

the conservation of first integrals of the trajectory, like the total energy. Passerone,

Ceccarelli and Parrinello [43] proposed a modified functional designed ad hoc to

overcome this problem: they added a penalty functional avoiding large deviations

from the desired value of the energy. The new functional is (we follow the notation

of the cited paper, notice that the letter θ is not a parameter):

Sθ = γ

∫ τ

0
L(q, q̇, t) dt + µ

∫ τ

0
(K + V − E)2 dt, (1.4)

where L is the Lagrangian of the system, K is the kinetic energy and E is the

desired value of the total energy. A fine tuning of the parameters γ and µ and an

efficient stationarization algorithm could bring to interesting results, as they showed,

including accurate predictions of the total time of the transition τ , but at an high

computational cost and sometimes using extra numerical tools. Indeed the hope

3



1.3. TONELLI FUNCTIONAL

of transforming a stationarization problem into a minimization one exploiting the

positive definiteness of the second integral was unattained as we showed in [51].

Another classical variational principle can guarantee the conservation of the total

energy without penalization terms: it is the Maupertuis functional, tested in this

field for example in [27]. The Maupertuis functional reads:

ME(q(·)) =
∫ 1

0

√
2(E − V (q(τ))) |q̇(τ)|2 dτ. (1.5)

The final extreme of the integral is 1, because the stationary curves of this functional

represent only the support of the dynamical paths. The correct (nonlinear) time

reparametrization can be obtained with the relation

τ(t) =
∫ t

0

√
|q̇(s)|2

2(E − V )
ds. (1.6)

In the next section our proposal, which is an alternative to Maupertuis functional,

will be discussed. They shares many advantages, but Tonelli functional in our tests

shows a higher robustness. Moreover, coupled with the relative finite dimensional

technique, Tonelli functional can drop computational costs maintaining the same

order of accuracy of a traditional stationarization.

1.3 Tonelli functional

Tonelli principle [50] appears in many papers concerning the existence of periodic

solutions of Hamiltonian system. A summary of related results can be found in [5].

As far as we know, its first implementation in MD is in our work [54].

The space of admissible trajectories for this functional is:

Γq0,q1 =
{
q(·) ∈ H1((0, 1),R3N ) : q(0) = q0, q(1) = q1

}
.

The space H1 is mandatory for this technique, but at the end it is possible to recover

classical curves with well defined velocities and accelerations. For any fixed real value

h (that will be the total energy of the system. The kinetic energy is denoted by K,

the potential one by V ), Tonelli functional is

Th(q(·)) =
∫ 1

0
K(q̇(τ)) dτ ·

∫ 1

0
(h− V (q(τ))) dτ. (1.7)

The potential can be singular, as the classical Lennard-Jones one which prevents

any possible collision giving them an infinite energy, remaining on the other hand

4



1.3. TONELLI FUNCTIONAL

bounded from below. In order to perform the regularity theory on the solution of

the problem, V is required to be smooth under the desired value of the total energy.

A curve q(·) ∈ Γq0,q1 is said to be a critical curve [5] for Th(q) if for any vector

δq(·) of the local tangent space Γ0,0 = TqΓq0,q1 :

δTh(q)δq :=
d

dλ
Th(q + λδq)|λ=0 = 0 (1.8)

With this definition the following theorem can be stated.

Theorem 1.3.1. A curve q(·) ∈ Γq0,q1, such that Th(q) > 0, is critical for Th if and

only if its reparametrization q̄(·), defined by

[0, ω−1] 3 t 7→ q̄(t) := q(tω) ∈ Rn (τ = ωt), (1.9)

solves the Lagrange equations for L = K−V with total energy E = K +V = h. The

value of ω, involved in (1.9), is determined only by the knowledge of q(·) and h.

Proof: a direct computation will prove the assertion:

δTh(q)δq =
d

dλ

{∫ 1

0
K

(
q̇(τ) + λδq̇(τ)

)
dτ ·

∫ 1

0

(
h− V (q(τ) + λδq(τ))

)
dτ

}∣∣∣∣∣
λ=0

=
∫ 1

0
∇K(q̇(τ))δq̇(τ) dτ ·

∫ 1

0
(h− V (q(τ))) dτ −

−
∫ 1

0
K(q̇(τ)) dτ ·

∫ 1

0
∇V (q(τ))δq(τ) dτ

(1.10)

so the curve is critical if and only if:

ω2

∫ 1

0
∇K(q̇(τ))δq̇(τ) dτ −

∫ 1

0
∇V (q(τ))δq(τ) dτ = 0 (1.11)

where,

ω2 :=

∫ 1
0 (h− V (q(τ))) dτ∫ 1

0 K(q̇(τ)) dτ
(1.12)

This condition means that q(·) must be a solution of:

ω2 d2q

dτ2
(τ) +∇V (q(τ)) = 0 (1.13)

The above calculation actually shows only that q(·) is a weak solution of this system

of differential equations. But under the regularity assumption on the potential we

can invoke standard theorems to claim that it is also a classical C2 solution. Moreover

5



1.4. EXACT FINITE DIMENSIONAL REDUCTION

Th(q(·)) > 0, then the above ω2 is a positive real number, so by performing the linear

time reparametrization

[0, ω−1] 3 t 7→ τ(t) = ωt ∈ [0, 1]

it is clear that q̄(t) = q(ωt) solves the mechanical Lagrange equations:

d2q̄

dt2
(t) = −∇V (q̄(t)) (1.14)

Finally, recalling the conservation of energy for q̄, and denoting by E the related

total energy value,

E =
(

K(
dq̄

dt
(t)) + V (q̄(t))

)∣∣∣∣
t=τω−1

= ω2K(
dq

dτ
(τ)) + V (q(τ)),

by integration on τ : ∫ 1

0

(
E − V

)
dτ = ω2

∫ 1

0
Kdτ,

Thus the total energy E of the curve found is exactly the value h imposed from the

beginning.

1.4 Exact Finite Dimensional Reduction

Before showing the numerical results obtained with the Tonelli functional, another

variational tool is introduced and it will work together with the former, increasing

the capabilities of the algorithm. The technique is a modification of the classical

Amann-Conley-Zehnder reduction [15]. Here reduction means that we are able to

transform a problem defined over a (infinite dimensional) functional space into an

algebraic one with a finite number of unknowns. The time reparametrisation of

Tonelli functional can be incorporated in this framework. The main idea is quite

simple: knowing only the first N Fourier components of the solution (i.e. solving

system 1.26), with this reduction technique, it is possible to reconstruct exactly

the entire series. The engine of this machinery is a contractive map defined on the

queues (1.21) that gives the remaining (infinite) components of the solution as its

unique fixed point.

The choice of the (truncated) Fourier series for the discretization of the problem

may not be the optimal one, from the computational point of view. A trajectory

described in terms of cartesian coordinates at fixed time steps, and/or in terms of

splines joining them allows for more efficient numerical techniques for functional sta-

tionarization. However, the Fourier description represents for the moment the best
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1.4. EXACT FINITE DIMENSIONAL REDUCTION

compromise between theoretical needs and computational costs. Indeed, the finite

reduction technique -although it predicts exactly positions and velocities- involves

integral properties of the function describing the trajectory (originally it involved

the eigenfunctions of the differential operator employed and also recent studies [58]

highlight the advantages of a Fourier decomposition). The results of the simulations

described later in the paper are satisfactory, in our opinion. Notwithstanding this,

we are investigating deeper the problem and this will be a preferred direction in our

future work.

1.4.1 Hypothesis and preliminary considerations

The main hypothesis under which this developing theory does work, is that the po-

tential should have an uniformly bounded Hessian. From the physical point of view,

this means that we can concern with any non-linear force with the only prescription

that if it diverges, it goes to infinity at most linearly. However, the relative potential

is not necessary convex.

The value of ω appearing in (1.13) is, at the starting point, an unknown. Thus

in the study of the lagrangian L̃ = K− V
ω2 , this value will be treated as a parameter

of the problem satisfying equation (1.12) (see also (1.18) below). As before the

boundary data are specified as q(0) = q0 and q(1) = q1, but for this procedure

functions with more regularity are needed, hence the admissible space will be:

Γ′ = {q(·) ∈ H2((0, 1),R3N ) : q(0) = q0, q(1) = q1}.

A function q ∈ Γ′ is in particular a function in L2 for which a Fourier decomposition is

available. Before entering in the details, it is important to notice that the regularity

assumptions in the definition of Γ′ and the boundary data are sufficient to assure

the existence of the second derivative of q and to allow its calculation by a term by

term derivation in the Fourier series. A simple choice for the representation is:

q(t) = q0 + (q1 − q0) t +
∑

n∈N
an sin(πnt) (1.15)

This is not a traditional Fourier series, but it is a standard choice in molecular

dynamics: it appeared already in Feynman book [28] and more recently it was used

by Doll in different works, see for example [14, 22]. The convergence of this series

to the original function in the H2 norm is straightforward in Fourier analysis. The

idea is to extend any function to an odd function in (−1, 1) and then to use the

standard Fourier series on it. We recall the main features of this decomposition.
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• The function q(t) − q0 − (q1 − q0) t is, under the assumptions made, in H2
0 ;

therefore q(0) = q0 and q(1) = q1. This is due to the standard Sobolev

embedding theorem.

• −∑
π2n2an sin(πnt) converges to q̈ in L2, by Poincaré inequality. Indeed

q − qn̄ := q −
(
q0 + (q1 − q0) t +

∑
n≤n̄ an sin(πnt)

)
is a function in H2

0 which

tends to zero in L2 as n̄ goes to infinity with its first two derivatives.

• This last convergence result does not imply that q̈ is zero at the boundary, in

fact here one cannot invoke any embedding theorem and so none information

on the local behavior of the second derivative is available. The Fourier series

converges only at almost every point (with respect to the Lebesgue measure).

1.4.2 The contraction and the algebraic system

With the proposed parametrization, putting φ =
∑

n∈N an sin(πnt) in (1.15) the

equation for the modified Lagrangian system can be rewritten as:

φ̈ = −∇V (q)
ω2

(1.16)

Now the reduction procedure can start. Once fixed a number N , the space where

φ̈ lies is split in the following way: for any ψ ∈ L2((0, 1),R3N ) put

PNψ(s) :=
∑

n≤N

ψk sin(πns), QNψ(s) := ψ(s)− PNψ(s), (1.17)

obtaining L2 = PNL2 ⊕ QNL2. The finite part will be called u, while v will be

the infinite one. This is the announced separation between the initial part of the

series (up to order N) and the infinite dimensional space of the queues. When no

confusion can possibly arise, we will often call with the same name the function and

the coefficients of the Fourier series. For technical and practical reasons, that will

be immediately clarified, it is important also to keep the u component together with

the real parameter ω: the pair (ω,PNφ) ∈ R× PNL2 will be called ū. So, summing

up, the set of unknowns is

(ū, v) = (ω, u, v) ∈ R× PNL2 ×QNL2 (1.18)

For any fixed value of ū, we define the functional

G : QNL2 −→ QNL2 (1.19)

v 7−→ G(v) (1.20)
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where the n-th component of G(v) in the sine basis is defined by

[G(v)]n :=
1

(πn)2

[∇V (q0 + (q1 − q0) t + u + v)
ω2

]

n

for n > N (1.21)

Theorem 1.4.1. There exist a value N̄ such that the map G is a contraction between

Banach spaces. Therefore it admits one and only one fixed point.

Proof: for any function ψ ∈ L2((0, 1),R3N ) we can write:

‖ψ‖L2 =
(∫ 1

0
|ψ(t)|2R3N dt

) 1
2

=

(∫ 1

0

3N∑

i=1

ψ2
i (t) dt

) 1
2

(1.22)

=

(
3N∑

i=1

∫ 1

0
ψ2

i (t) dt

) 1
2

=

(
3N∑

i=1

+∞∑

n=1

∫ 1

0
a2

in sin2(πnt), dt

) 1
2

(1.23)

=
1√
2

(
3N∑

i=1

+∞∑

n=1

a2
in

) 1
2

(1.24)

where ψi(t) =
∑

n ain sin(πnt). Applying this result to the function G, the desired

inequality can be proved. In the following calculation we write φ0 = q0 + (q1 − q0)t,

C = supx∈R3N |∇2V (x)| < +∞ and we keep together the three spatial coordinates

of G avoiding heavy notations. Thus:

‖G(v2)−G(v1)‖L2 =
1√
2

(∑

n>N

| [G(v2)]n − [G(v1)]n |2
)1/2

=
1√
2

(∑

n>N

1
(πn)2

∣∣∣∣
[∇V (φ0 + u + v2)

ω2

]

n

−
[∇V (φ0 + u + v1)

ω2

]

n

∣∣∣∣
2
)1/2

≤ 1
π2(N + 1)2ω2

√
2

(∑

n>N

|[∇V (φ0 + u + v2)−∇V (φ0 + u + v1)]n|2
)1/2

≤ 1
π2(N + 1)2ω2

‖∇V (φ0 + u + v2)−∇V (φ0 + u + v1)‖L2

≤ C

π2(N + 1)2ω2
‖v2 − v1‖L2

(1.25)

If N is large enough, then α := C
π2(N+1)2ω2 < 1 and G is a contraction. By

standard arguments we can deduce now the existence of a unique fixed point: f(ū) =

G(f(ū)) ∈ QNL2. An important remark is that ū 7→ f(ū) is of class C1, as it can

proved with the implicit function theorem.
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With this function the variational problem can be translated into an algebraic

one. In fact, now now we have only to solve the following finite dimensional system,

where u =
∑

un =
∑

an sin(πnt) and 1 ≤ n ≤ N :




an =
1

(πn)2

[∇V (φ0 + u + f(ū))
ω2

]

n

ω2 =

∫ 1
0 (h− V (φ0 + u + f(ū))) dτ∫ 1

0 K
(

d
dt(φ0 + u + f(ū))(τ)

)
dτ

(1.26)

If we are able to find a solution, the corresponding mechanical curve is easily re-

covered: first, the factor (πn)2 is passed to the left hand side of each component

of (1.26)1 and of (1.21); then, we observe that −(πn)2un for 1 ≤ n ≤ N , and

−(πn)2f(ū)n for n > N , make up precisely the Fourier components of φ̈. Finally, as

desired, φ̈ = −∇V (q)
ω2 with the correct value of the parameter ω found in (1.26).

The numerical implementation of this technique requires a second cut in the

Fourier series: the components from M to infinity will not be considered. A suitable

algorithm to couple the finite reduction with Tonelli functional is the topic of section

§1.6. For the moment we want to remark that this second cut does not interfere

with the contractivity of the map G: if we call GN,M the map corresponding to

the harmonics from N + 1 to M , a simple extension of (1.25) shows that it is more

contractive than G for any choice of M [51].

1.4.3 The reduction for the harmonic oscillator

A simple example is useful to understand the role of the parameter N in the above

construction: the harmonic oscillator. The interesting point is the condition for the

contraction: the theorem says that one can always take an N large enough, but if

ω is too small, the value reached by the number of Fourier coefficient is out of any

computational purpose.

Considering the classical harmonic oscillator of equation q̈ +kq = 0, the contrac-

tion coefficient can be computed as follows: the period of an oscillation is T = 2π√
k
,

the supremum of the Hessian of the potential is C = k, hence

C =
(2π)2

T 2
(1.27)

Denoting by Tω = 1
ω the total time related to ω in Tonelli functional (1.9), we obtain

α =
4

T 2(N + 1)2ω2
=

4T 2
ω

T 2(N + 1)2
< 1 (1.28)
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so the contraction works if

N + 1 > 2
Tω

T
(1.29)

In this case this estimate is sharp: if we consider a trajectory whose time length

is less than half of a period T , the estimate tells that N = 0 is admissible and so

all the Fourier coefficients can be computed with the contraction. On the other

hand, if the time length is over T/2, at least N = 1 is needed. This coincides with

the theory of conjugate points: exactly at half of a period the first conjugate point

appears. After it the trajectory is no more a minimum for the action functional and

we cannot expect that the contraction will converge with N = 0. From this it is

possible to learn that in more complex cases we must take care about the product

ω(N + 1): for any chosen value of N , there is a largest value of the trajectory total

time ω−1 that cannot be overcome without losing the contractivity.

1.5 Performance of Tonelli principle and comparison

with Maupertuis principle

Maupertuis principleME -although it is not defined over all the configuration space-

offers directly a geometric formulation of the problem in terms of a Riemannian met-

ric and its geodesics. Unfortunately this metric becomes singular whenever V (q(τ))

approaches (from below) E. Moreover in these situations the precision of the para-

metrization decreases and this can be highlighted in any standard numerical imple-

mentation of this principle. We show this with a simple example: a one-dimensional

double well.

Both principles (Tonelli and Maupertuis) are translated into algorithms with

similar techniques as the ones described in [43]: the path is discretized and the

functional optimization is transformed into an optimization of a discretized action,

function of the internal degrees of freedom of the path (the extremes and the total

energy are kept fixed). In our case we set V (q) = 0.25×q4−0.5×q2, with two minima

at q = ±1 and a central transition state with zero potential energy. If necessary,

we also use a Monte Carlo based simulated annealing with the norm of the gradient

(see later eq. (1.33) for Tonelli’s case; the implementation for Maupertuis principle

is similar) as objective function. This procedure shows more stability with respect

to conjugate residual in the case of Maupertuis principle.

We set the fixed extremes q0 and q1 in the two basins of the potential, and

we consider as trial trajectory a linear interpolation between q0 and q1. As a first

11
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test, we notice that we can find a solution with any desired positive energy using

Tonelli principle, both starting from the linear interpolation and from a random

perturbation of a known solution (e.g., a solution that “bounces” on the walls of the

well before the transition).

In general, the same success is obtained also with Maupertuis principle, with

some important exceptions. We will indeed focus on the particular cases where the

total energy is very close to the barrier. All our simulations are performed with 200

intermediate slices.

In fig. 1.1 the solution of Tonelli principle (top panel, above) and the one of

Maupertuis principle (top panel, below) are showed for a total energy of E = 0.1,

using a starting path already close to the solution. The solutions on this panel

correspond to a total time of τ = 6.67. This total time is correct for such energy, as

verified separately (using Hamilton principle).

The only difference between the two subpanels can be seen in the region where

kinetic energy is small. Whereas Tonelli principle describes the whole potential

profile around the maximum in an accurate manner, the time dilation inherent to

the geometric trajectory leads to a poor sampling of the region around the barrier

in the Maupertuis case.

If the total energy is decreased, and we start already close to the solution, both

principles behave more or less in the same correct manner. When E ' 10−4, the

precision of Maupertuis principle is better than the one on Tonelli’s: in this par-

ticular case, the resulting trajectories from Tonelli principle correspond to a total

energy smaller than the prescribed value. We found empirically that the error on

the total energy for the Tonelli functional is of the order of ∆E ' 8× 10−5. We are

presently investigating the numeric origin of this systematic error.

A more serious problem is represented by the fact that Maupertuis funcional

has a delicate behavior (due to the presence of the square root of the difference

E − V ) in the proximity of the barrier. An example starting from a linear trial

path randomized with an amplitude ∆x = 0.2 is showed here. The optimization

with Tonelli principle leads to a correct trajectory with the prescribed energy of

E = 0.01, whereas Maupertuis principle suffers from the fact that the time intervals

are derived point by point in the path from the ratio between geometric kinetic

energy and square root of energy difference
√

E − V (q). Since the geometric kinetic

energy is calculated by finite difference on a noisy trajectory, the fluctuations in the

path are going out of control: the result of the failed optimization of the path is

12
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shown in fig. 1.1, bottom panel. This failure calls for more suitable algorithms based

on a multi-scale calculation of the kinetic energy; this is not needed in the case of

Tonelli principle. An additional problem in the Maupertuis functional is represented

by the timestep dilatations in the vicinity of the barrier. Such time dilatations are

inversely proportional to
√

E − V (q).
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Figure 1.1: Comparison between Tonelli and Maupertuis functional in finding trajectories at total energies

close to the barrier. Top panel: energies obtained from Tonelli functional, starting from good or randomized

guesses, at E = 0.1 (above) and Maupertuis functional, starting from good or randomized guesses; bottom

panel: failed Maupertuis optimization (dotted line) and Tonelli optimization (continuous line), starting from

a randomized guess (dashed line), at E = 0.01. In this case, the coordinate as a function of path slice is

shown. The total time is the correct value of τ = 5.59 for the optimized Tonelli path and a exceedingly large

value of τ = 74 for the Maupertuis path which did not reach convergence in this case.
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1.5.1 Mueller potential

We test the Tonelli functional with the widely known two-dimensional Mueller po-

tential [40]. It is a popular test case for reaction path methods; its analytic form can

be found for example in eq. 4 in Bai and Elber paper [6], and it has three minima

and two main transition states.

In their paper, Bai and Elber noticed that for each total energy or total time,

several different paths are possible, and that not all the energies are available for

paths with a given total time.

Using Tonelli principle we show that it is possible to obtain different paths with

the same energy, joining the same endpoints; moreover, we underline a difficulty

of energy-based variational principles: it is not granted that local optimizers can

find solutions with a requested energy. Instead, a given path basin can contain

trajectories with other energies, that can be still found using Tonelli principle with

another prescribed total energy.

To illustrate the first point, we first generated a relatively high energy trajectory

(E = −11.5) using a Verlet algorithm with a timestep ∆t = 0.003. Using this

trajectory as starting point, we run a simulated annealing procedure using as target

function the sum of squared residual errors on Tonelli’s equations of motion. We

use 150 intermediate slices, for a total of 300 degrees of freedom.

Depending on the simulated annealing protocol, the algorithm ends close to the

original path or in another basin of attraction. A refinement using the conjugate

residual method [46] leads in both cases to a solution of Tonelli principle. But as it

can be seen from figure 1.2, the two solutions are different, although with the same

energy.

The same exercise repeated with Maupertuis principle succeeds in finding again

the original Verlet path, but not in reaching another basin of attraction and a

different trajectory with the same energy.

The second attempt was to obtain a completely new path starting only from the

knowledge of the extremes. First of all, we generated a trial path by interpolation

of the linear interpolation between the two main minima. Starting from the straight

path, we run a simulated annealing procedure using as target function the sum of

squared residual errors on Tonelli equations of motion.

We set at total energy a value E = −40, just above the position of the main

transition state. We divide our path in 50 slices, for a total of 100 degrees of freedom.

After the simulated annealing procedure, we use a conjugate residual method in order
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Figure 1.2: Two trajectories in the Mueller potentials, one obtained with Verlet integration (crosses), the

other one (points) obtained from the former with Tonelli principle and simulated annealing. Both trajectories

have an energy E = −11.5, and the same extremes.
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Figure 1.3: Trajectory in the Mueller potential (crosses) obtained from the linear interpolation (points),

using Tonelli principle and the simulated annealing algorithm followed by a conjugate residual refinement.

The trajectory has a total energy of E = −28.

to refine the solution. We observe that with the prescribed value of the energy, we

cannot find a solution close to the outcome of the simulated annealing. Conversely,

15



1.6. AN ALGORITHM FOR THE CONTRACTION

if the conjugate residual is applied to the same starting point, but using Tonelli

principle with a energy larger than a certain threshold (E > −28 in this case), the

local optimization algorithm is able to find a solution of Tonelli principle, shown in

the figure for the limiting case E = −28.

As a check, we apply Hamilton principle to the optimized trajectory, using a fixed

total time , and we obtain the trajectory outlined in figure 1.3, which has a conserved

energy of E = −28. The optimization using Maupertuis principle could not lead in

this case to a solution of the problem, due to the already sketched difficulties related

with the term (E − V ) in the denominator of the gradient of the functional.

1.6 An algorithm for the contraction

The advantages of the Tonelli functional can be amplified with the announced cou-

pling with the reduction technique. An adequate algorithm is needed, because the

relation between ū and f(ū) is only implicit in the theory explained above. Our

proposal can be schematized as follows:

• set q0 and q1, the initial and final points of the trajectory;

• find an initial path π0 connecting q0 and q1. This can be a linear interpola-

tion, or an approximation to a minimum energy path with a few intermediate

images; the latter approach gives a reasonable estimate of the maximum value

of the potential energy Vmax;

• discretize π0 into M slices;

• set the total energy E at a value larger than Vmax;

• extract the finite reduction threshold N from the contraction condition (1.25)

this condition requires an estimate of the supremum of the Hessian in the

potential;

• start iteration: expand the path π0 in Fourier series, and keep the first N

harmonics. This generates the finite dimensional system (1.26), that can be

solved using iterative methods like the conjugate residual [46]. In the first step,

set the harmonics N +1 to M to zero, corresponding to setting f(u) = 0 in eq.

(1.26). Only a few steps of conjugate residual are performed, this generates a

new path u1 =
∑N

1 an sin(πnt);
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• u1 is inserted into (1.21), which is a contraction if N was carefully chosen.

That leads to a set v1, which can be referred to as the Fourier components

N + 1 to M of the trajectory;

• the new path π1 is found as π1 = u1 + v1;

• in (1.26), set u = u1, f(u) = v1; the second equation in the system also

provides the total time of the path;

• check whether the threshold N still leads to a contraction using the estimate

(1.25);

• iterate the procedure until convergence.

1.6.1 Error estimates

A test of the quality of a generic trajectory computed with this algorithm can be

performed as follows. The first step is to compute the error made by considering

the truncated contraction, say fN,M (ū) = GN,M (fN,M (ū)), with respect to the real

one. We denote α the contractive constant in (1.25):

‖fN,M (ū)− f(ū)‖ = ‖GN,M (fN,M (ū))−G(f(ū))‖
≤ ‖GN,M (fN,M (ū))−GN,M (f(ū))‖+ ‖GN,M (f(ū))−G(f(ū))‖
≤ α‖fN,M (ū)− f(ū)‖+ ‖GN,M (f(ū))−G(f(ū))‖

(1.30)

Hence:

‖fN,M (ū)− f(ū)‖ ≤ 1
1− α

‖GN,M (f(ū))−G(f(ū))‖

=
1

1− α
‖QMG(f(ū))‖ =

1
1− α

‖QMf(ū)‖
(1.31)

With this information, calling q the real trajectory, q̃ a curve with M Fourier

components (that is stationary for the M -discretized Tonelli functional) and q̄ a

curve obtained with our procedure we obtain:

‖q − q̄‖ = ‖q − q̃ + q̃ − q̄‖ ≤ 2− α

1− α
‖q − q̃‖ (1.32)

This means that we can obtain an error with the same order of magnitude of the tra-

ditional stationarization, but following a more efficient and quicker path. Numerical

evidence of this are presented in the next section.

17



1.6. AN ALGORITHM FOR THE CONTRACTION

1.6.2 Oscillations of a 4-atom Lennard-Jones cluster

Here we will present a simple system on which we tested the algorithm. At the same

time we take advantage of this to explain in details the implementation. The system

is a concrete one (a cluster of four atoms interacting through a Lennard-Jones poten-

tial), but it is not interesting for its features: we do not want to overlap difficulties

arising from the algorithm with the intrinsic problems of a more complicated (and

interesting) system, that will be discussed later.

The trajectory we want to reproduce is a short oscillation of four atoms (that

could model a small argon cluster). The path of a classical Verlet simulation (in the

initial value representation) is drawn in figure 1.4 (for one coordinate), and the total

time is τ = 2 in Lennard-Jones units.
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Figure 1.4: The coordinate x of atom 1 (final solution, randomized, after the first u-iteration)

In order to test the contraction strategy, we set the two extremes of this trajec-

tory, and we perturb the trajectory. That is, we change the trajectory randomly

keeping the extremes fixed. Not only, but we also apply a randomization to the

u and v components. The trajectory after randomization is shown (for the same

coordinate as before) in figure 1.4. Larger randomizations in such a small total time

could be hard to recover. A datum not present in the picture is that, after the

randomization, the total time has increased to τ = 12 in Lennard-Jones units.

Now we set an N to divide the u components and the v components. In this

case as an illustration we use N = 30. First of all, we apply an algorithm to the u

components, for lowering a bit the potential energy. This is done by inverting the
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sign of the potential energy. Then we set the total energy to the -4.49 value of the

original trajectory. We apply the equations of Tonelli for the u for 10 iterations. We

obtained a set of u that, together with the set of v coming from the randomization,

give the trajectory in figure 1.4. Here the total time is 4 times the correct one.

Then we apply the contraction to the v. This contraction is applied in presence

of a u that is not yet the correct solution. Nevertheless, we must obtain a fixed

point.
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Figure 1.5: The coordinate x of atom 1 (final solution and after 20 cycles of u-optimization/contraction)

The interesting thing is that already after this first iteration, the error on the

highest harmonics has decreased considerably.

We repeat the same procedure of optimization for u and the contraction, iter-

atively, and we succeed in optimizing the trajectory. After 3 cycles of (30 cycles

of u optimization + contraction) we reach the energies (potential and total), and

the error on the highest harmonics plotted on figure 1.6 and 1.7. At that point the

situation has improved, and even more after twenty of such cycles. The whole series

of cycles take less than 3 minutes on a normal laptop: it is a small system indeed.

The final result is shown in figures 1.5 (for the x coordinate of atom 1) and 1.7 (for

total and potential energies).

The trajectory is very close to the correct one. The error on the trajectory (the

norm of the errors on Newton equations along the path) has decreased by several

orders of magnitude throughout the procedure. The total energy, computed from

derivation of the Fourier series, average to the value requested by Tonelli principle,

by construction. The oscillations are due to the kinetic energy, since very small

displacements in the coordinates can produce large oscillations in the kinetic energy.
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Figure 1.6: Potential and total energy for the total trajectory after 3 and 20 cycles of finite reduction,

compared with the exact solution.
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Figure 1.7: Error on the higher harmonics for the x coordinate of atom 1, after randomization, 3 cycles,

and 20 cycles of finite reduction.

1.6.3 The isomerization of a 38-atom Lennard-Jones cluster

A far more demanding case is the isomerization of a 38 atom Lennard-Jones (LJ)

cluster. This system is a traditional benchmark both for algorithms aiming at mi-

nima localization in a potential energy surface (PES) and for methods for extracting

statistical quantities using path sampling. The PES of this system has moreover a

double funnel structure, which can be seen as a ”toy model” for the protein folding

scenario. Recently, Bai and Elber have developed a novel strategy for sampling very
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short dynamical paths [6]. In that paper, they discuss the importance of short time

trajectories in the frame of path sampling. As discussed in section §1.1, an algorithm

that allows to obtain trajectories at a given energy could also be of importance in a

sampling procedure including the total energy as external parameter. In the Wang-

Landau method [56], for example, where the sampling is enhanced in energy regions

that are infrequently visited in a traditional Monte-Carlo method. Bai and Elber
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Figure 1.8: The convergence of the squared residual R2 for the path at E = −110 during the finite

reduction iteration. Starting from the final value obtained from simulated annealing for the 32 slice path,

the residual rapidly decreases and slowly reached the value R2 = 0.2 · 10−5 (see inset).

consider different test cases for their algorithms. For systems with few degrees

of freedom (like the Mueller potential) they show in their paper the efficiency of

a particular refining procedure based upon the knowledge of the Hessian matrix

(Kaczmark iterations). This procedure, however, has a sizeable computational cost,

and as soon as a larger system is concerned, the authors do not apply it there. Bai

and Elber are able to find reactive trajectories (although with a limited number of

intermediate points) for a fascinating and realistic system: they apply their method

to the fast transitions between a face-centered cubic and an icosahedral structure in

a solid cluster made by Argon atoms. This system can be modeled by a pairwise

Lennard-Jones potential, with parameters σ = ε = 1. The authors use a standard

algorithm, a simulated annealing procedure and obtain trajectories with different

total times (and 32 slices), starting from a linear interpolation between the two

absolute minima of the potential energy surface (fcc and icosahedral).
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Figure 1.9: Potential and total energies for the paths at fixed total energies Ef = −110 and Ef = −150,

after finite reduction with M = 320 total number of harmonics.

Our most demanding test is inspired from this numerical experiment (with some

modifications in the optimization protocol). First of all, our starting point is an

approximation to the minimum energy path (MEP), obtained by applying Tonelli

principle with a “total energy” which is lower than all the potential energies of

the system (it is a computational artifact to obtain a trajectory with inverted sign

potential, see the discussion in [30]). The energy of the two minima is -174 (LJ

units), whereas the transition state is at about -158. By comparison, the lowest

energy path between the two basins, obtained with eigenvector following by Doye

and coworkers [24], has an height of -169.7. Here, we are only interested in a good

starting point for our procedure. Starting from this low energy path, we adopt a

simulated annealing procedure as in [6] using as target function the sum on the

squared residual R2 of the equations of motion:

R2 =
M−1∑

l=1

(
ql+1 + ql−1 − 2ql + m−1∆2 ∂V

∂ql

)2

(1.33)

(with obvious extension to the multidimensional case) where M is the number of

time slices and ∆ = Tω/M . In order to find two different paths we run two different

simulated annealing protocols, setting the total energy to Ef = −150 and to Ef =

−110, respectively. At each Metropolis step we recalculate the total time Tω using

eq. (1.12). During the minimization of the residuals, the average total energy
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Figure 1.10: Comparison between the orientational order parameters [24] for the coarse trajectory

obtained after annealing (32 slices at Ef = −150) and the subsequent finite reduction with iterations at the

same energy.

remains fixed at Ef , as it can be easily derived from the form of Tonelli functional.

After simulated annealing, our 32 slices trajectories has a residual of 0.01 and 0.004,

respectively. The total energy is well conserved in both cases, and the total time is

τ = 2.4 and τ = 1.5 in the two cases.

Exploiting the finite reduction procedure, we increase the number of slices. We

start from a linear interpolation of the 32 slices, and we get a path with 320 slices.

With the goal of setting a threshold for the reduction procedure (N in eq. (1.17)),

we estimate the factor C in eq. (1.25). In order to avoid divergences in the second

derivatives, we modify the LJ potential in unphysical regions, i.e. for r < 0.85 we

flatten the potential toward a constant value. We verify that our trajectories never

visit such regions of the PES where the rij < 0.9 for any pair of atoms (i, j). With

this choice of the potential, eq. (1.25) gives an estimate N = 27. This is only

an upper limit above which any contraction will be stable. Indeed, we verify that

already for N = 21 the map is contractive. This allows us to solve iteratively the

Fourier problem for the first 20 harmonics, and to treat the harmonics from N + 1

to M = 320 as a contraction.

The optimization of the first N harmonics is performed using conjugated residual

method [43, 46], that is however tailored for sparse matrices, therefore not suited for
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a Fourier component optimization, thus affecting the efficiency of this step. After

5 steps of conjugate residual, the contraction procedure is started, and the fastest

harmonics obtained from eq. (1.21) with a very fast iterative self consistent proce-

dure.

Successive iterations of this procedure brings the total energy to an almost perfect

conservation and the residual R2 on the equations of motion to a value of R ' 10−5

within a few steps (fig. 1.8). Since the conjugate residual is not an efficient procedure

in this case, further improvement of the residual are rather slow (inset of fig. 1.8)

and we reach the value R2 = 0.2 · 10−5 in about 1000 iterations. To give an idea

about efficiency, a single iteration of reduction with N = 25 and M = 320 has the

cost of 10 Monte Carlo sweeps with 32 slices in the former annealing procedure (one

sweep corresponds to an attempted move for each coordinate along the trajectory,

i.e. 31× 114 energy and force evaluations)..

Figure 1.9 shows the potential and total energies of the final trajectories at

Ef = −110 and Ef = −150. In figure 1.10 we show instead the fourfold and sixfold

order parameter [24] along the path, for the first solution (Ef = −150) compared

with the ones on the 32 slices path after the simulated annealing.

In order to improve further the residual R2, we have to check periodically the

assigned total energy, and to adjust it by a quantity within one percent. This

behavior is probably due to the errors in the discretization and to the different

definitions of the kinetic energies in the cartesian and in the Fourier representation.

As a final check, we set as initial values the coordinates at halfway along the

paths, and integrate back and forth the equations of motion using the Verlet algo-

rithm. For both cases (Ef = −150 and Ef = −110) the initial and the final basin

are reached, obtaining a root mean square deviation of the Verlet trajectory from

the optimized path of 0.06/atom/slice.

1.7 Conclusions and perspectives

Two are the main results of the work done. First of all, Tonelli principle has been

introduced and applied, for the first time to our knowledge, to realistic systems with

several degrees of freedom. Maupertuis principle has many interesting features,

because it provides a Riemannian metric and it allows for a local adaptivity of the

time reparametrization. Otherwise Tonelli, with its stability properties and easy

implementation, is an interesting alternative. We believe that the new introduced

24



1.7. CONCLUSIONS AND PERSPECTIVES

functional leads to a cleaner strategy because standard algorithms can be used even

in situations where ME shows problems. In future works it would be worth to

exploit its application to complex problems.

Moreover, a well defined reduction strategy has been presented which allows

the successive inclusion of faster harmonics in the path. In this scheme the tail

of the Fourier series is treated as a computationally convenient contraction. The

procedure has been applied to examples of increasing complexity, including a 38

atom Lennard-Jones cluster, for which two trajectories discretized into 320 time

slices, and two different preassigned total energies were found.

The biggest improvement in the algorithms should concern the optimization of

the slow harmonics, since the present conjugate residual method does not appear

to be efficient in Fourier representation. This problem is the first we would like to

solve in future refinements of the technique.

It is clear that the initial value representation of molecular dynamics, although

plagued by the well-known chaotic behavior [42], is computationally extremely con-

venient, and remains therefore the cornerstone of popular strategies such as path

sampling [10]. However, the combination of Tonelli principle together with the finite

reduction should help in bridging the gap between initial value and two-point bound-

ary representations in the field of rare events, not to mention the fact that the latter

representations allows to obtain a detailed dynamical trajectory, at a given energy

(even just above a barrier), joining two fixed points in the configuration space.
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Chapter 2

WETTING: physical scenario

and mathematical models

2.1 The geometric approach

We start the description of wetting phenomena with the derivation of the shape

equations for a liquid drop deposited on a solid surface. We suppose it subjected

to surface tensions and gravitational field (or a more general body force). The

solid surface is first considered smooth. In a second step we will consider the case

of a continuous but not smooth solid. The model is variational, following [29] we

construct the total energy of the system and the desired equations are the Euler-

Lagrange conditions granting that the energy is stationary. This is the so called

geometric approach to the problem, because the interface between the liquid and

the surrounding fluid (usually air) is represented by a 2D surface. Therefore it is

correctly described in terms of differential geometry. In the next section we recall the

main basic notions about the theory of embedded real surfaces in order to establish

notations and to facilitate the reading of the sequel.

2.1.1 Preliminars

A surface is a subset of R3 defined by its peculiar properties; more precisely S ⊆ R3

is a regular surface [18] if for any point p ∈ S there exist a neighborhood V ⊂ R3

and a map x : U → V ∩ S, where U ⊂ R2 such that:

• x(u, v) ∈ C∞,

• x is an homeomorphism,
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• for all q ∈ U , dxq : R2 → R3 is one-to-one.

Other definitions are possible. A parametrized surface is a differentiable map x :

U ⊂ R2 → R3, the set x(U) is called the trace of x and the surface is said to

be regular if dxq is one-to-one for any q ∈ U . Another possibility is to call a

surface a two dimensional manifold, where a C∞ manifold is a pair (M,F). Here

M is a second countable locally Euclidean space and F is a differentiable structure:

F = {(Uα, φα), α ∈ I}, ⋃
α∈I Uα = M, φα ◦ φ−1

β ∈ C∞ with the condition that the

collection has to be maximal. However, working with the first definition, the concept

of change of parameters is naturally introduced.

Theorem 2.1.1. Let p ∈ S and let x : U ⊂ R2 → S and y : V ⊂ R2 → S be

two parameterizations of S such that p ∈ x(U) ∩ y(V ) = W . Then the function

h = x−1 ◦ y : y−1(W ) → x−1(W ) is a diffeomorphism and it is called a change of

parameters.

Proof: clearly h is an homeomorphism, now let r ∈ y−1(W ) and q = h(r).

Without loss of generality the map x can be thought as satisfying ∂(x,y)
∂(u,v)(q) 6= 0.

Define F : U × R → R3 as F (u, v, t) = (x(u, v), y(u, v), z(u, v) + t), where here

and before the functions x, y, z are the components of the map x. The function F is

differentiable, F|U×{0} = x and the assumption guarantees that |dFq| = ∂(x,y)
∂(u,v)(q) 6= 0.

The implicit function theorem states the existence of a neighborhood M 3 x(q)

where F−1 is defined as a C∞ function. By continuity of y there exists r ∈ N ⊂ V

with y(N) ⊂ M and h|N = F−1 ◦ y|N . Thus h is a diffeomorphism at r.

A function f : V ⊂ S → R is differentiable at p if ∃x : U ⊂ R2 → S, p ∈ x(U)

such that f ◦x is differentiable at x−1(p). If f is differentiable in a parametrization,

then it is so in any other, by the theorem just proved: f ◦ y = f ◦ x ◦ h.

The tangent space to S at p coincides for all the possible parameterizations with

dxq(R2). The canonical basis is 〈xu,xv〉, where xu = ∂x
∂u and xv = ∂x

∂v .

The differential of φ : V ⊂ S1 → S2 at p is the linear map dφp : TpS1 →
Tφ(p)S2 defined as: dφp(w) = β′(0) where w = α′(0), α : (−ε, ε) → V , α(0) = p,

β = φ ◦ α. If α(t) := (u(t), v(t)) and φ(u, v) := (φ1(u, v), φ2(u, v)), then β(t) =
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(φ1(u(t), v(t)), φ2(u(t), v(t)) and:

β′(0) = dφp(w) =




∂φ1

∂u

∂φ1

∂v

∂φ2

∂u

∂φ2

∂v







u′(0)

v′(0)


 . (2.1)

The first fundamental form is a quadratic form Ip(w) = 〈w,w〉, where w ∈ TpS

and 〈·, ·〉 is the inner product in R3. More precisely every TpS inherits the interior

product of R3 and a good notation is 〈·, ·〉p recalling that it lives in TpS.

In terms of the basis of TpS the form becomes:

Ip(w) = Ip(α′(0)) = 〈α′(0), α′(0)〉p =

= 〈xuu′ + xvv
′,xuu′ + xvv

′〉p =

= 〈xu,xu〉p(u′)2 + 2〈xu,xv〉pu′v′ + 〈xv,xv〉p(v′)2

= E(u′)2 + 2Fu′v′ + G(v′)2

(2.2)

Introducing a change of parameters, the first fundamental form does not change its

value and also maintains its structure, obviously with the coefficients relative to the

new basis. The first fundamental form Ip enters in measurement on the surface, for

example:

s(t) =
∫ t

0

√
I(α′(τ)) dτ (2.3)

is the arc length of a parametrized curve α(·) and

cosφ =
〈xu,xv〉
|xu||xv| =

F√
EG

(2.4)

gives the angle between the coordinate curves.

The area of a bounded region R ⊂ S is given by

A(R) =
∫∫

Q
|xu ∧ xv| dudv, (2.5)

where Q = x−1(R). It is useful to notice that |xu ∧xv|2 + 〈xu,xv〉2 = |xu|2|xv|2 and

hence:

|xu ∧ xv| =
√

EG− F 2. (2.6)

The unit normal vector at p is N = xu∧xv
|xu∧xv |(p). And the map N : S → S2,

p 7→ N(p) is called the Gauss map. This map is differentiable dNp : TpS → TN(p)S2.
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Notice that these planes are parallel, therefore dNp can be seen as a map on TpS:

dNp(w) = d
dt(N ◦ α(t))|t=0, with α(0) = p, α′(0) = w.

The second fundamental form is a quadratic form given by IIp(v) = −〈dNp(v), v〉,
where v ∈ TpS. Given a regular curve C on S passing through p, the normal curva-

ture of C is kn = k cos θ; where k is the curvature of C at p, cos θ = 〈n, N〉, n is the

normal vector to C, N is the normal vector to S at p.

Choosing a suitable basis it is possible to write dNp(ei) = kiei for i = 1, 2.

The principal curvatures are defined at p as the eigenvalues of this quadratic form.

The maximum value of normal curvature will be denoted as k1 and the minimum k2.

The determinant of dNp is the Gaussian curvature K at p. The negative of half

of the trace of dNp is the mean curvature H. By the invariance properties of these

functions, they can be computed easily as K = k1k2 and H = (k1 +k2)/2. However,

another useful formula for the mean curvature is:

2H =
Eg − 2Ff + Ge

EG− F 2
, (2.7)

where e = −〈xu, Nu〉, 2f = (〈xu, Nv〉+ 〈xv, Nu〉), and g = −〈xv, Nv〉.

2.1.2 Shape equations

We present here the derivation for Laplace (2.9) and Young (2.10) laws elaborated

originally by Gauss and rewrote by Finn in [29], where it is possible to find also

some historical notes.

The system under consideration is a three-phase system in which an incompres-

sible liquid, a gas and a solid coexist (the case of two immiscible fluids and a solid

can be treated in the same way). The unknown surface dividing the two fluids is

called S. The position of the solid is supposed to be fixed and its surface can be

split into S∗, the wetted part, and Ŝ∗, the part in contact with gas.

The total energy of the system is the sum of four terms:

E = σS − σβS∗ +
∫

Uρ dx + σλV (2.8)

The first term is the surface energy related to the liquid-air interface (here S stands

for the area of S. The same applies to S∗). The meaning of this term is that liquid

particles must feel an attraction among them in order to maintain the separation of
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the two fluids. The force is proportional to the surface area and the coefficient σ is

the surface tension, whose dimension is that of a force per unit length. The second

term is similar to the first, but it describes the interactions of the fluids with the solid.

Since the sum of the wet and dry part is constant (for any movement of the liquid),

various parametrization of this term are possible: here we prefer this formulation

in which σ can be factorized out, later we will use the classical identification of the

surface tensions related to the three possible interfaces σSL, σSV , σLV .

The third term represents the gravitational energy. The function U is a potential

energy per unit mass depending on the position inside the drop. The density ρ can

be taken equal to zero outside the liquid and therefore the domain of integration

can be restricted to a volume containing any possible variation of the surface S.

Finally, the last term is related to the requested volume constraint: it is imposed

through a Lagrange multiplier λ to be determined (the factor σ is included here only

for simplicity).

Theorem 2.1.2. The conditions for the capillary energy (2.8) to be stationary,

under suitable variation of S, are:

2H = λ +
1
σ

Uρ, (2.9)

where H is the mean curvature of the surface S, and

cos γ = β, (2.10)

in which γ is the contact angle, the angle between the liquid and the solid, measured

on a normal plane starting from inside the drop.

Proof: the admissible variations are normal variations (far from the liquid-solid

contact line), but we require the preservation of the contact between S and the solid

surface. More precisely, the varied surface in local coordinates will be:

S(ε) = x(α, β) + ε [ξN + ηT] + O(ε2). (2.11)

The parametrization x(α, β) refers to the unvaried surface, that will be denoted

as S0. The variation vector, briefly denoted with εζ when needed, is composed of

a normal and a tangential part. The vector N is the unit normal on S, directed

outside the drop. The vector T, tangent to S, is defined only in a neighborhood of

the contact line Σ between the liquid and the solid. This strip will be called Σδ to

denote its width. The vector T is needed in order to assure the contact of the varied
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surface with the solid, and therefore it has to be orthogonal to Σ, for the points

living on it, and directed towards the solid.

The values of ξ and η are arbitrary, but they must satisfies three conditions. The

variation must be small and controlled by ε, thus it is necessary that ξ2 +η2 ≤ 1. As

we said before the tangential part is limited on a strip, hence supp η ⊂ Σδ. Finally,

the direction allowed on the solid is the tangential one, so ξN+ηT must be tangent

to S∗ on Σ. Under these assumptions it can be proved that an O(ε2) term is enough

to maintain the boundary of S on the solid surface.

Recalling formula (2.5) for the area of a surface, the derivative of the varied area

can be computed:

Ṡ :=
∂S
∂ε

∣∣∣∣
ε=0

=
∫

E0〈xβ, ζβ〉 − F0(〈xα, ζβ〉+ 〈xβ, ζα〉) + G0〈xα, ζα〉
W0

dαdβ, (2.12)

where W0 =
√

E0G0 − F 2
0 . Further uninteresting manipulations of the right hand

side (including an integration by parts, the usage of formula (2.7) and the identity

4x = 2HN, [36]) leads to the simplification:

Ṡ = −2
∫

S
ξHdS +

∮

Σ
η ds (2.13)

For the corresponding calculation regarding S∗, an important role is played by

the unit exterior normal to Σ in the tangent plane of S∗, say ν. Since 〈N, ν〉 = sin γ

and 〈T, ν〉 = cos γ, the result is:

Ṡ∗ =
∮

Σ
〈(ξN + ηT), ν〉 ds =

∮

Σ
(ξ sin γ + η cos γ) ds (2.14)

The variation for the volume and gravitational terms are obtained considering

the fact that the changes in volume due to T are negligible with respect to those

related to N. More precisely:

V(ε)− V0 = ε

∫

S\Σδ

ξ dS + O(ε2) + Vδ, (2.15)

where Vδ is the change in volume related to the movement under εζ of Σδ. The

condition on the variation gives the estimate Vδ < Cε(ε + δ)|Σ|. Similarly one can

obtain ∫

V(ε)
Uρ dx−

∫

V0

Uρdx = ε

∫

S\Σδ

ξUρ dS + O(ε2) + Wδ, (2.16)

with the bound Wδ < CMε(ε + δ)|Σ|. Here M is the maximum value of |V ρ| in a

suitable tubular domain around Σδ. Dividing by ε, taking the limit as ε goes to zero
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and adding the previous terms, the first variation of the energy is obtained:

Ė =
∫

S
ξ

(
−2H +

1
σ

Uρ + λ

)
dS +

∮

Σ
[−βξ sin γ + η(1− β cos γ)] ds (2.17)

Consider now a variation with η ≡ 0, ξ positive and with support shrinking to a

point of S: the energy is stationary if and only if the first integral is zero regardless

of ξ, exactly like in (2.9). If now we choose ξ = τ sin γ and η = τ cos γ, a similar

argument proves the second part of the theorem.

2.1.3 Condition at a corner

We consider now the situation of a corner in the solid surface. For simplicity we

treat only the case of two half planes joined by their generating line. The symmetries

of this choice imply that locally the situation is equivalent to a 2D formulation.

Suppose that, for example, the right end of S0 touches the solid exactly on the

corner (otherwise the first variation would not see the angle). Equilibrium conditions

are obtained considering unilateral variations of the liquid-air interface. The idea

is that the direction in which the triple junction point (i.e. the point were liquid,

solid and air meet; in a 3D situation it would be a line) is moved determines the

geometry of the boundary condition. Indeed two different orientation of the solid

are encountered performing the variations.

Figure 2.1: The contact angle of a drop (gray) in presence of a corner on the solid surface (black) must

be in between the values relative to the two inclinations.

For a variation directed beyond the corner, considering the setting just described

and the fact that the vector N points outside the drop, ε must be positive and the
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condition for equilibrium is: E(ε) − E0 ≥ 0 for any ε > 0. It is possible to follow

exactly the computation done in the previous section until the very last line, where

with the chosen variation the condition becomes:
∮

Σ
τ(β − cos γ) ds ≥ 0. (2.18)

Similarly, with a variation in the opposite direction, equilibrium is reached if:
∮

Σ
τ(β − cos γ̃) ds ≤ 0. (2.19)

Figure 2.1 may clarify the situation because the angles γ and γ̄ are measured on

different planes (lines in the 2D picture). The result is that there is a range of

admissible values for the contact angle of the stationary state.

2.2 The phase field model

The shape equations just derived are the basis of any research on the physics of

wetting phenomena. A rich although concise review can be found in [17]. However in

many interesting situations an analytic solution is not available and also a numerical

approximation is rather difficult. A first source of problems is the possible roughness

of the solid surface: the possibility of inducing a high contact angle (bigger than

90◦) on a water drop (hydrophobicity) is often a desired feature for a substrate.

An appropriate roughness can improve it [2, 12, 34], but at the same time it may

generate singularities. Another critical situation is the creation of new interfaces

during a dynamical process: a drop can divide in two or more smaller drops under

suitable conditions, or viceversa a merging is possible, this would contradict the

hypothesis of an embedded surface.

Dealing with these issues within the geometric approach is often impossible.

Phase field models are an attempt to overcome these difficulties.

2.2.1 Overview on the model

Phase field models and the equations governing them (for example Allen-Cahn and

Cahn-Hilliard equations) move the attention from the interfaces to the phases -as

the name itself suggests. The liquid drop will be considered as a subset of the phy-

sical domain and it will be denoted with ω. The geometry of the drop is described

using a phase function φ that takes the value 1 in the liquid phase, the value 0 in the

environmental fluid, and spans the whole [0, 1] interval in a liquid-vapor transition
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region. Thus the sharp interfaces of the (geometric) capillary model are replaced by

narrow transition layers of width ε > 0, a small parameter. The equilibrium shape

of the drop is obtained by setting up a steepest descent dynamics for φ which tends

to a state minimizing an ε-regularized version of the capillary energy. In the limit

as ε tends to 0, we recover the solution of the capillary problem, with sharp inter-

faces between the phases. The presence of the solid is modeled by imposing suitable

boundary conditions to the phase field function (both Neumann and Dirichlet con-

ditions have been implemented). The model can be easily adapted to reproduce

contact angle hysteresis, by changing the boundary conditions in order to account

for the pinning effects on the contact line due to dissipation.

We introduce some different notations with respect to the previous section, in

order to avoid confusions between the two approaches. As already said, the drop

occupies the region ω, a subset of the computational/phisical domain Ω. Another

subset of ω is considered as solid and denoted by S. The physical notation for the

interfaces is recovered: ∂Sω = ∂ω ∩ ∂S is the interface between liquid and solid, it

will be called ΣSL; ∂V ω = ∂ω \∂Sω is the liquid-vapor interface ΣLV ; ∂S \∂ω is the

solid-vapor one, ΣSV ; ρL represents the density of the fluid (we will always consider

a homogeneous fluid and we will set ρL = 1) and U(x, t) is a generic potential related

to an external force field (gravity, for example). We recall that the terms σAB(x) are

the surface energies (or surface tensions) at a point x on the AB interface. In the

case of a homogeneous solid, these are constant and the capillary energy becomes:

E(ω, t) = σSL|ΣSL|+ σLV |ΣLV |+ σSV |ΣSV |+
∫

ω
U(x, t) dVx

= (σSL − σSV )|ΣSL|+ σLV |ΣLV |+
∫

ω
U(x, t) dVx + k

(2.20)

where |A| denotes the measure of the set A and k is a constant, that does not enter

in the search for the minima of the functional and so it will be omitted. With the

exception of the term due to the volume constraint, which will be soon be introduced,

the energy in (2.20) is exactly the same as the one in (2.8).

The problem of capillarity can now be rephrased as:

Given a volume V > 0, find ω∗ = argmin
|ω|=V

{E(ω, t)} . (2.21)

Laplace equation (2.9) is not affected by the change of notation (clearly the mean

curvature now refers to ΣLV ), while it is useful to rewrite Young’s law:

cos θ = −σSL − σSV

σLV
=: cos θY . (2.22)
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A phase field formulation for the problem is obtained by considering an energy

of the type

Eε(φ, t) =
∫

Ω
ε|∇φ|2 +

1
ε
W (φ) + φU(x, t) dVx (2.23)

where φ is the phase function. The non-negative potential W (φ) vanishes only for

the values of φ representing the vapor and the liquid phases. It is tuned in order

to produce the correct interfacial surface tension values from the corresponding

interphase transition layers in the limit as ε → 0.

2.2.2 Preliminars on Γ−convergence

Γ−convergence is widely accepted as the appropriate definition of variational con-

vergence for a large class of problems. In other words, when one is interested in

the convergence of the minimizers of a family of functionals, Γ−convergence often

provides the right framework. Our phase field model shares this property, but we

exploit the result in the opposite direction: usually the limit functional is a simplifi-

cation of the “physical” ε−dependent formulation, like for example the 2D theory of

elastic shells obtained as the ε → 0 limit of the 3D elasticity of ε−thick 3D shells. In

the case of wetting, the “true” functional is the geometric one and instead we work

with the ε−approximation, with ε small but finite, which is more tractable numeri-

cally. The convergence of the minimizers as ε → 0 guarantees for the significance of

the simulations.

An exhaustive presentation of the theory of Γ−convergence is out of the scope of

this thesis, since my research was not involved with it. However, the understanding

of what follows is contingent upon the knowledge of at least the basic properties of

Γ−convergence, given below. We refer to the books of Dal Maso [20] and Braides

[11] for a complete description of the theory and of its applications.

Let X be a metric space. This hypothesis may appear very limiting and indeed

the results we will present are still true in a more general setting. However for

the purpose of this overview, this situation allows for a more direct description and

a better intuition of the mechanism behind the theory. A sequence of functionals

fj : X → R̄ is said to Γ−converge in X to f∞ :→ R̄ if for all x ∈ X:

• for every converging sequence (xj) → x the lim inf inequality is satisfied

f∞(x) ≤ lim inf
j

fj(xj); (2.24)
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• there exists a recovery sequence (x̄j) converging to x̄ for which the lim sup

inequality holds

f∞(x̄) ≥ lim sup
j

fj(x̄j); (2.25)

Other equivalent definitions are possible. We preferred the one above because

it is the most operative and it shows immediately the stability under continuous

perturbation. If (fj) Γ−converges to f∞ and if g : X → R̄ is continuous for the

considered metric, then (fj + g) converges to f∞ + g. Indeed:

f∞(x) + g(x) ≤ lim inf
j

fj(xj) + lim
j

g(xj) = lim inf
j

(fj(xj) + g(xj)), (2.26)

and if (x̄j) is a recovery sequence for (fj)

f∞(x̄) + g(x̄) = lim
j

fj(x̄j) + lim
j

g(x̄j) = lim
j

(fj(x̄j) + g(x̄j)). (2.27)

Notice that, once the lim inf inequality is proved, the recovery sequence satisfies

f∞(x̄) = limj fj(x̄j).

We want now to prove the announced property regarding the convergence of

the minima. Following [11], we achieve this result in two steps.

Theorem 2.2.1. If fj Γ−converges to f∞ in X and if K ⊂ X is a compact set,

then

inf
K

f∞ ≤ lim inf
j

inf
K

fj . (2.28)

While if U ⊂ X is open

inf
U

f∞ ≥ lim sup
j

inf
U

fj . (2.29)

Proof: Since K is compact it is possible to define a sequence (x̃j) such that

lim infj infK fj = lim infj fj(x̃j), and to extract a subsequence satisfying limk fjk
(x̃jk

) =

lim infj infK fj , while x̃jk
→ x̄ ∈ K. If the sequence (xj) is build as xj = x̃jk

for

j = jk and xj = x̄ otherwise, then:

inf
K

f∞ ≤ f∞(x̄) ≤ liminf
j

fj(xj) ≤ liminf
k

fjk
(xjk

) = lim
k

fjk
(x̃jk

) = liminf
j

inf
K

fj .

(2.30)

For any fixed value of δ > 0, there exists x ∈ U such that f∞(x) ≤ infU f∞ + δ.

Hence, given a recovery sequence (xj), one finds:

inf
U

f∞ + δ ≥ f∞(x) ≥ limsup
j

fj(xj) ≥ limsup
j

inf
U

fj . (2.31)

Since δ is arbitrary, the theorem is proved.
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Theorem 2.2.2. If the sequence (fj) is equi-mildly coercive (i.e. if there exists a

non-empty compact set K ⊂ X such that infX fj = infX fj for all j) and if f∞ is

the Γ−limit of fj, then:

∃min
X

f∞ = lim
j

inf
X

fj . (2.32)

Proof: This theorem is an extension of the previous one. Let x̄ be the same as

in the proof above, then taking U = X one obtains:

inf
X

f∞ ≤ inf
K

f∞ ≤ f∞(x̄) ≤ liminf
j

inf
K

fj

= liminf
j

inf
X

fj ≤ limsup
j

inf
X

fj ≤ inf
X

f∞
(2.33)

Under some more assumption it is possible to prove the convergence of the min-

imizers. Notwithstanding the key role of this property for our analysis, a precise

statement of this theorem is out of the purposes of this introduction. A deep dis-

cussion about it can be found in [20]. The hypothesis under which our results share

this property will be highlighted in the following sections concerning the asymptotic

behavior of the phase field functional (2.23).

2.2.3 Dirichlet boundary conditions

In [53] we considered two alternative formulations, one based on Dirichlet boundary

conditions, one based on Neumann boundary conditions. In our model the solid

surface supporting the drop is introduced through a suitable boundary condition.

We present in this section and in the following one the statements and the proofs

that support our phase field formulation.

The analysis performed rests on a slight modification of results by Baldo and

Bellettini [7] and Modica [38]. However there exists a wide mathematical literature

on this topic starting from ideas of Modica and Mortola [39]. The main new feature

is the introduction of a boundary condition at the solid through a phase value that

is not a zero of the potential.

The construction starts with the definition of:

Ēε(φ) =





Eε(φ) if φ ∈ H1(Ω,R2) and φ|∂Ω = g,

+∞ otherwise in L1;
(2.34)

Ē0(φ) =





E({φ ≡ L}) if φ ∈ BV (Ω, {V, L}),
+∞ otherwise in L1;

(2.35)
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where g is the function that gives the physically relevant Dirichlet boundary condi-

tion, to be specified later,and V , L ∈ R2 are the values corresponding to the vapor

and the liquid phase. It is possible to prove that if φ∗ε is a family of minimizers of

Ēε and if φ∗ is its limit in L1 (the existence of the limit is part of the proof), then

the first component of φ∗ is the characteristic function of a solution for the capillary

problem (2.21), while the second one is 0 everywhere.

The external force term does not depend on ε (see equation (2.23)) and it can be

treated separately. Indeed, as shown in section §2.2.2, the continuity in the desired

topology is enough for this procedure. In this case φ 7→ ∫
φU dVx is continuous for

the L1 topology if U is regular enough. The gravitational potential, for example, is

admissible.

The problem is set in Ω, a bounded subset of Rn (for n = 2, 3) with piecewise

C2 and Lipschitz boundary. It is decomposed in two parts: ∂Ω = ∂SΩ ∪ ∂V Ω (the

set ∂SΩ coincides exactly with what we called ∂S in (2.20)). For ψ = (ψ1, ψ2) ∈ R2,

the potential is W (ψ) = a2ψ2
1(1− ψ1)2 + b2ψ2

2, where:

a = 3σLV > 0, (2.36)

b =
1
2
(σSV + σSL − σLV ) > 0 (2.37)

Denote by L = (1, 0) and V = (0, 0) the only two zeros of W , as announced. In

fact, we want the phase function to assume only two values, since the solid phase is

modeled through a boundary condition. Let g : ∂Ω → R2 such that g ≡ V on ∂V Ω

and g ≡ (φS , 1) := S on ∂SΩ, where φS is the unique solution of

cos θY = −4φ3
S + 6φ2

S − 1 0 ≤ φS ≤ 1. (2.38)

Theorem 2.2.3. The functional Ē0 given by (2.34) is the Γ−limit of Ēε, given by

(2.35), as ε tends to zero in the topology of L1.

Moreover if for every ε > 0 we define φ∗ε = argmin
{
Ēε(φ) :

∫
Ω φ1 = V}

, then

the sequence (φ∗ε ) is pre-compact in L1. Every cluster point, say φ∗, belongs to

BV (Ω, {V, L}) and we have φ = argmin
{
Ē0(φ) :

∫
Ω φ1 = V}

.

Proof:

The proof uses classical arguments, but we give here some details because they

are essential in the construction of the numerical scheme presented hereafter. The

discussion entails two steps: in the first a link between our problem and that con-

sidered by Baldo and Bellettini [7] is established. After that the volume constraint

is considered and inserted in the convergence result.
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In the cited paper the Γ−limit of functional Ēε is recognized as:

Ẽ0(φ) =2d (V, L)Hn−1(∂∗{φ ≡ L} ∩ ∂∗{φ ≡ V })+

+ 2
∫

∂Ω
d(φ|∂Ω(x), g(x))dHn−1(x),

(2.39)

defined on BV (Ω, {V, L}). The symbol ∂∗A denotes the reduced boundary of the

set A and Hn−1 denotes the Hausdorff measure of dimension n− 1. The distance d

can be defined in some different but equivalent ways. The most treatable one is:

d(v1, v2) = min
{∫ +∞

−∞

{
ρ̇2 + W (ρ)

}
dt ρ(−∞) = v1, ρ(+∞) = v2

}
. (2.40)

The point is now to show that in our situation 2Ē0 = Ẽ0. In the wetting setting,

we label as “liquid” the set {φ ≡ L} and the set {φ ≡ V } “vapor”. Moreover,

considering our choice of g, the functional (2.39) becomes:

Ẽ0(φ) = 2d(V, L)|ΣLV (φ)|+ 2d(V, S)|ΣSV (φ)|+ 2d(S, L)|ΣSL(φ)|. (2.41)

Indeed the integral in (2.39) decomposes into the sum of two terms because g is

constant and φ can assume only the values V and L [7]. Then we have only to

show that equation (2.38) and the metric (2.40) give us the correct value for the

surface tensions if we chose appropriately the values of the parameters a and b in

the potential. The condition for them are:

σLV = d(L, V ) = min
∫ +∞

−∞
{ρ̇2

1 + W ((ρ1, 0))}dt

= 2
∫ 1

0

√
W ((τ, 0))dτ =

a

3
(2.42)

σSV = d(S, V ) = 2
∫ φS

0

√
W ((τ, 0))dτ + 2

∫ 1

0

√
W ((0, τ))dτ

= −2a

(
−φ2

S

2
+

φ3
S

3

)
+ b (2.43)

σSL = d(S,L) = 2
∫ 1

φS

√
W ((τ, 0))dτ + 2

∫ 1

0

√
W ((0, τ))dτ

= 2a

(
1
6
− φ2

S

2
+

φ3
S

3

)
+ b, (2.44)

and hence the requirements are b = 1
2(σSL+σSV −σLV ) and exactly equation (2.38).

Notice that the condition b > 0 can always be reached because we can add the same

quantity to σSV and σSL without changing the problem: the only physically relevant

quantity is the difference σSV −σSL. Finally, we observe that the form of W implies

40



2.2. THE PHASE FIELD MODEL

that the minimal φ2 is always the constant 0, also if this value does not match the

boundary condition. Thus from now on, we will write simply φ instead of φ1.

Having established the link with the setting of [7], the proof of the Γ-convergence

result can be easily adapted to this case. Handling the volume constraint is not a

difficult task [1, 11, 20]. The subspace {φ ∈ L1,
∫

φ1 = V} is closed in the L1

topology and, in the recovering sequence of the Γ − lim sup, we can always assume∫
φε =

∫
φ.

The external force field can be easily added at this point. From the theorem we

know that when ε goes to zero the minimizers of Ē0 are functions in BV (Ω, {V,L}).
More precisely the first component will take the value 1 in the region occupied by

the liquid and the value 0 in the vapor region. Hence, looking at (2.20) and (2.23),

we obtain ∫

Ω
φ1 U(x, t) dVx =

∫

ω
U(x, t) dVx (2.45)

as desired.

2.2.4 Neumann boundary conditions

An alternative approach to the phase field formulation can be based on Neumann-

type boundary conditions. For this purpose, we use a result of Modica [38]. We

consider, for simplicity, the situation of a region Ω ⊆ R3 whose boundary is the solid

surface S. Inside this set we want to solve the capillary problem for a prescribed

volume of liquid L. In the sequel we will not discuss explicitly the volume constraint,

which can be added later exactly as before. The formulation is based on a potential

of the type W (x) = a2x2(1− x)2 (with a > 0 to be specified later), while in [38] the

minima of the potential should be strictly positive: this limitation can be removed

by choosing appropriately the boundary term (see the functional (2.48) below).

Let σ : [0; +∞) → R+ be any continuous function and define

σ̂(x) = inf
s≥0

{
σ(s) + 2

∣∣∣∣
∫ s

x

√
W (y) dy

∣∣∣∣
}

, (2.46)

c0 =
∫ 1

0

√
W (y) dy. (2.47)

Consider the functional

EN
ε (φ) =





∫
Ω ε|Dφε|2 + 1

ε W (φε) dx +
∫
∂Ω σ(φ̃ε) dHn−1(x) if φ ∈ H1(Ω,R),

+∞ otherwise in L1.
(2.48)

41



2.3. CONTACT ANGLE HYSTERESIS: INCREMENTAL FORMULATION
FOR QUASISTATIC EVOLUTION

where φ̃ε denotes the trace of φε on the boundary. Then EN
ε Γ-converges to [38]

EN
0 (φ) = 2c0 |ΣLV |+ σ̂(1) |ΣSL|+ σ̂(0) |ΣSV | . (2.49)

The physical interpretation of the convergence result is the following. Choose, as

in [48], σ(x) := Nx, where N is a constant to be tuned in order to model the right

contact angle. The Euler-Lagrange equations for (2.48) yields the Neumann-type

boundary condition

−2ε
∂φ

∂n
= N. (2.50)

Here n is the outward unit normal vector to ∂Ω. By an appropriate choice of a and

N the correct surface tensions can be recovered. This is an easy calculation:

2c0 =
a

3
= σLV , (2.51)

σ̂(0) = 0, (2.52)

σ̂(1) = inf
s≥0

{
Ns + 2a

(
s3

3
− s2

2
+

1
6

)}
= σSL − σSV . (2.53)

The hypothesis on the sign of the function σ(·) restricts our study to values

N ≥ 0 and thus to contact angles θY ≥ π
2 . The model for acute contact angles can

be obtained by putting φ ≡ 0 in the liquid phase and φ ≡ 1 in the vapor. It is easy

to see that in the Euler-Lagrange equation this exchange produces the same results

than considering negative values of N in the usual representation. In any case, the

study of the minimum problem (2.53) gives a non-linear equation that chooses the

right value of N for the desired contact angle.

2.3 Contact angle hysteresis: incremental formulation

for quasistatic evolution

We conclude the mathematical and physical presentation of the problem with the

description of the model followed when considering time evolution problems. In

the static case considered so far, in every simple geometry, the contact angle has

unique value, the Young contact angle given by (2.22) and which depends only on

the chemistry of the three phases S,L, V . In reality, something different happens if

the system is perturbed. If the solid surface is inclined, the drop partially evaporate,

or it is inflated, the contact angle changes and hence the overall shape of the liquid-

vapor interface changes as well.
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Following [3, 25], we consider the following discrete incremental formulation for

the problem of the quasistatic evolution of a drop. Given the configuration ω∗(t) of

a drop at time t, the one at time t + δt is given by:

ω∗(t + δt) = argmin
|ω|=V(t+δt)

{E(ω, t + δt) + D(ω, ω∗(t))} (2.54)

where the dissipation D(ω1, ω2) is given by

D(ω1, ω2) = µ|∂Sω1 M ∂Sω2|. (2.55)

Here A M B = (A \B)∪ (B \A) denotes the symmetric difference of the sets A and

B and µ > 0 is a parameter giving the dissipated energy per unit variation of the

wetted area. A simple example to illustrate the meaning of this formulation can be

the case of a drop on a horizontal plane, subject to no gravity. It can be shown that,

in this case, ω∗(t) is always a spherical cap [29]. Thus energy and dissipation can

be written as:

E = (σSL − σSV )πa2 + σLV A (2.56)

D(ω1, ω2) = D(a1, a2) = µπ|a2
1 − a2

2|. (2.57)

where A = 2πRh is the area of the spherical cap of radius R and height h, while a is

the radius of the wetted area, that is the interface between the solid and the liquid.

In this situation the variations of A at fixed volume |ω| = V(t + δt) become:

δA||ω|=V(t+δt) = 2πa cos θ δa. (2.58)

Therefore, the Euler-Lagrange equation for the incremental variational problem are:

−(σSL − σSV )2πa− σLV cos θ 2πa ∈ ∂µπ|a2 − a2(t)|, (2.59)

where

∂µπ|a2 − a2(t)| =





{2πaµ} if a > a(t)

πa[−µ, µ] if a = a(t)

{−2πaµ} if a < a(t)

(2.60)

is the sub-differential of the convex function a 7→ µπ|a2 − a2(t)|. Another way to

see that is to consider left and right variation for the parameter a, exactly as in the

case of a non-smooth solid. In any case, the result is the following:

cos θ ∈





{cos θr} if a < a(t)

[cos θr, cos θa] if a = a(t)

{cos θa} if a > a(t)

(2.61)
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where

cos θa = cos θY − µ

σLV
(2.62)

defines the advancing contact angle and

cos θr = cos θY +
µ

σLV
(2.63)

defines the receding contact angle.

Thus, the incremental problem is: minimize

F (ω, t + δt) = (σSL − σSV )|∂Sω|+ σLV |∂V ω|+ µ|∂Sω M ∂Sω(t)| (2.64)

by the phase field method discussed previously. In the Dirichlet case, the numerical

scheme will try to solve:

φ∗ε (t + δt) = argmin
{

Eε(φ, t + δt), subject to
∫

Ω
φ = V(t + δt)

}
(2.65)

with

φ =





φa
S on ∂Ωa

ε

φr
S on ∂Ωr

ε

(2.66)

where φa
S and φr

S are the Dirichlet boundary conditions associated with the advan-

cing and the receding angle respectively, computed with an equation similar to that

in (2.38) and

∂Ωr
ε ' ∂Ω ∪ ∂Sω (receding contact zone), (2.67)

∂Ωa
ε ' ∂Ω \ ∂Sω (advancing contact zone). (2.68)

The appropriate Neumann boundary conditions are imposed in exactly the same

manner. The two situations differ only in the resulting shape of the contour lines

of φ in a small neighborhood of the contact line. A detailed comparison is given in

section §3.4.1.
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Chapter 3

WETTING: basic numerical

techniques and 2D simulations

3.1 Introduction to algorithms and approximations

The phase field formulation of wetting problem is more suitable for numerical si-

mulation than the geometric one because of the relative simplicity of the equations

governing it and the possibility to treat complicated solid geometries. However

an appropriate algorithm is needed to make functional (2.34) stationary and many

choices has to be made for the discretization of the problem.

The first issue is how to implement the volume constraint. We opt for a Lagrange

multiplier because of its physical meaning (recall Laplace law (2.9)). Consequently,

the Euler-Lagrange equation for the phase field model becomes (here U = 0 and

a = 1 for simplicity):





−ε4 φ +
1
ε
φ(1− φ)(1− 2φ) + λ = 0 in Ω

φ = φS on ∂SΩ

φ = 0 on ∂V Ω

(3.1)

where the value of λ has to be calculated in order to match the constraint
∫

φ = V(t).

To solve the equilibrium equation, the problem is transformed into a parabolic

PDE generated by a gradient flow [8]. Hence the system will follow an artificial

relaxation dynamics until, at convergence, it reaches the configuration solving equa-

tion (3.1). The gradient flow is introduced by setting φ = φ(τ, x), where τ is a
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fictitious time, and solving:

φτ = ε4 φ− 1
ε
φ(1− φ)(1− 2φ)− λ. (3.2)

Here the Laplacian is calculated with respect to the space derivatives, while the

subscript τ denotes a time derivative. The solution of the original equation (3.1) is

obtained in the limit limτ→+∞ φ(τ, ·). In fact, along long the flow (3.2), the energy

is decreasing in time
d

dτ
Eε = −2

∫

Ω
|φτ |2 dx ≤ 0. (3.3)

The discretization technique chosen for the first simple calculations is the one

given by finite differences. However, in the next section we will show that they can

be properly adapted to solve real 3D situations.

Different schemes for the time integration are possible: explicit, implicit and

mixed ones. As we will illustrate in section §3.2, there are no significant advantages

using complicated schemes. Therefore we present here the simplest explicit scheme

(forward Euler), considering also that only slight modifications are needed to recast

what follows in the other cases.

A splitting method is employed in order to find at each iteration the correct

value for the Lagrange multiplier associated with the volume constraint λ. Namely,

given an initial guess φ0 that satisfies the good boundary condition the scheme for

the Dirichlet case reads (the conversion for Neumann case is straightforward):

φN+ 1
2 = dτ

(
ε4 φN − 1

ε
φN (1− φN )(1− 2φN )

)
+ φN (3.4)

λN =
V − ∫

Ω φN+ 1
2∫

Ω 1
(3.5)

φN+1 = φN+ 1
2 + λN (3.6)

where V =
∫
Ω φ0. By construction,

∫
Ω φN = V stays constant during the iterations.

For the space derivatives we use instead a high order approximation nine-point

stencil that is classical in the 2-D case, but non trivial in the axisymmetric one. The

derivation can be found in [13].

3.2 Explicit, implicit or mixed algorithms

The algorithm just described (3.4-3.6) is an explicit Euler scheme. From the compu-

tational point of view (we left any consideration regarding the stability to the next
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section) it requires only simple manipulation to the matrix containing the value of

φ on the nodes.

If a faster convergence is needed (although the performance of the explicit scheme

are already satisfactory), many other possibilities are present in literature. We tested

two of them: a semi-implicit backward Euler scheme and a unbalanced first order

approximation scheme described by Shen and others in [55].

The backward Euler scheme is obtained from the explicit one simply by taking

4φN+1 instead of 4φN in (3.4). This change implies the resolution of a linear

system at each iteration of the algorithm, but since the matrix does not change (if

the physical conditions of the systems remain fixed) a single LU factorization can

return a solution at the cost of a matrix product. However summing up the costs

of the initial factorization and of the subsequent matrix products, the advantage of

this choice (a lower number of iterations to reach convergence) is lost, as the table

below shows.

Shen algorithm shares many features with the backward Euler scheme, but it

prevents oscillations and in some cases it speeds up convergence. Also for this

scheme a splitting algorithm is needed to find the correct value of λ, while φ is

calculated following the rule:

3φN+1 − 4φN + φN−1

2dτ
= ε4φN+1 − 1

ε

(
φN (1− φN )(1− 2φN )

)
+

+
s

ε

(
φN+1 − 2φN + φN−1

)
+ λN .

(3.7)

Here s is a parameter that can be chosen in the interval [1, 5]. In our tests the best

results are obtained with s = 5, as in Shen paper.

The timings obtained with these three algorithm are showed in the table below.

For the test we employed a 100× 100 grid and we calculated the computer time and

the iterations needed to transform a rectangle to the correct disk corresponding to

a 2D drop with a contact angle of 120 degrees. The number of iterations is related

to the value of dτ which cannot be too large, otherwise the algorithm would not

be stable. With a smaller grid, the implicit scheme is much more convenient, while

with a larger one the results are comparable.
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scheme τ iter to converge cpu time (seconds)

explicit 0.001 1650 1308,7

0.0011 1700 1344,3

0.0012 1450 1145,7

0.0013 1350 1068,3

implicit 0.005 1300 1506.4

0.006 1100 1276.5

0.007 1000 1158,1

shen 0.006 1300 1505

0.006 1150 1331,2

0.007 1000 1158,8

3.3 Stability considerations

The gradient flow technique shows a very stable behavior, once the parameter of the

simulations are well tuned. A few numerical experiments are enough to observe the

main features of this kind of algorithms: if ε is set too small (with respect to the

grid spacing h) the level curves of φ lose smoothness and mobility. If the volume of

the drop is too small with respect to the transition width (and hence with respect

to ε), the algorithm is not stable. And the most important limit is represented by

the fact that if a too large τ is chosen, the scheme diverge. A stability analysis of

the algorithm can explain these facts and it helped the development of the 3D code.

Therefore we include here also the results for a three dimensional simulation.

In this situation one needs to go beyond the classical Neumann stability analysis,

which can be performed only for linear equations. The best results follows from a

method explained in [35]. We will focus on the explicit scheme with a 5 points

Laplacian for the 2D case and a 7 points Laplacian for the 3D. We will omit the

λ term, because it is known that low order terms do not affect the stability of the

scheme (see, [49] for example). The algorithm can be rewritten in a compact form:

φn+1
i,j − φn

i,j

τ
= 2ε

(−4φn
i,j + φn

i+1,j + φn
i−1,j + φn

i,j+1 + φn
i,j−1

h2

)
− 1

ε
f(φn

i,j), (3.8)

where f is the derivative of our potential W (x) = Kx2(1− x)2, K is the factor that

have to match the physical parameter σLV in the Γ-convergence (we can suppose

for the moment that K = 1). Round-off and approximations will create some error

on the solution φ, the idea is to introduce them and to control their growth in order
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to get stability. More precisely we replace φi,j ∼ φi,j + ri,j . Subtracting the exact

equation from the approximated one the result is:

rn+1
i,j − rn

i,j

τ
=

2ε

h2

(
rn
i+1,j + rn

i−1,j + rn
i,j+1 + rn

i,j−1

)
+

(
− 8ε

h2
− 1

ε
f ′(φn

i,j)
)

rt
i,j (3.9)

In the last term we make another substitution that is the key point of this method:

we take a Taylor expansion of f(φ + r) ' f(φ) + f ′(φ)r, since the error has to be

small with respect to the solution. Keeping only rn+1 on the left we obtain:

rn+1
i,j =

2τε

h2

(
rn
i+1,j + rn

i−1,j + rn
i,j+1 + rn

i,j−1

)
+

(
1− 8εdτ

h2
− dτ

ε
f ′(φn

i,j)
)

rt
i,j (3.10)

At this point the analysis splits into two parts: the liquid and the vapour zone

will be considered first, and then the interface. If φ ' 0 (vapour) or φ ' 1 (liquid),

than f ′(φ) = 2K(1− 6φ + 6φ2) > 0 and f ′(φ) ' 2K. So the equation for rn+1 can

be seen as a weighted sum: since the sum of the coefficients is 1 − τ
ε f ′(φn

i,j) < 1, if

they are all positive, the following inequality holds:

rt+1
i,j ≤

(
1− τ

ε
f ′(φn

i,j)
)

max
i,j
{rn

i,j}, (3.11)

that means stability. Therefore the algorithm is stable if all the coefficients of the

sum are positive, which implies:

τ <
εh2

8ε2 + 2Kh2
(3.12)

The interface does not enter in the stability condition, unless it is too wide with

respect to the computational box. The worst possible case for the previous estimate

is a situation in which φ = 0.5 in the whole interface and hence f ′(φ) = −K.

Supposing rn
i,j = rn for all i, j and denoting with N the number of computational

nodes and M the number of nodes in the interface, we have:
∑

rn+1 =
(

N

(
1− 2Kτ

ε

)
+ 3K

τ

ε
M

)
rn. (3.13)

The stability is maintained if
∑

rn+1 <
∑

rn = Nrn and this is true if M < 2
3N .

Clearly in a normal simulation this condition is always satisfied (N = 10000, M '
4
√

N = 400).

The 3D case is very similar. The only modification is that now the coefficient

of the central point in the stencil is 6 instead of 4 (and obviously there are the

contribution of the points in the third direction). It is easy to see that now the

sufficient condition for stability is:

τ <
εh2

12ε2 + 2Kh2
(3.14)
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The accordance of this analysis with the simulation is very accurate. If, as we

usually do in the 2D case, we take ε = 0.008, h = 0.01, K = 1, the bound predicted

on the time increment is τ < 0.0011. In the computations we found that the scheme

converges also for τ = 0.0013 but this value is very close to the predicted one.

Similar results are obtained in the 3D case.

3.4 2D simulations

The simulation of this section shows how rich a behavior can be captured in spite of

the simplicity of the approach. The efforts towards devising more efficient schemes

in order to make large scale simulations possible will be described in the following

chapter.

The computational grid is of 100 × 100 points regardless of the physical size of

the objects simulated. With such a grid, we can set ε = 0.008 · a where a is the

coefficient in the potential (2.36). This assures interfaces of width ' 5 grid points:

a value small enough with respect to the size of the drop, but sufficient for a good

resolution of the shape of the interface.

The value of dτ depends on the evolution scheme. For the forward Euler scheme

we set dτ = 0.001, while we can reach dτ = 0.005 for the semi-implicit scheme.

In the 2-D simulations we use a trapezoidal rule for the quadrature, while we

pass to the Cavalieri-Simpson rule in the axisymmetric cases. We follow [49] for the

condition on the symmetry axis in order to ensure a second order accuracy. The

convergence of the schemes is tested on the time gradient. We always obtain a value

for this estimator below 10−9 summing the contribution of all the computational

nodes.

A remark about the size of the simulated drops is in order. If gravity is set to

zero, the capillary problem is purely geometric and the length scale is irrelevant. In

a realistic situation gravity can never be zero, but there is a typical length on which

it acts: it is the capillary length, κ−1 :=
√

σLV /ρg (usually for water in contact with

air is of the order of some mm [17]). If the size of the drop is much smaller than

this value, then capillary forces dominate gravity. Thus, setting G = 0 means to

consider very small drops. In each case, when gravity is non zero, the length scales

for which the simulation is relevant will be specified.
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3.4.1 Contact angle hysteresis

We consider a drop on a plane and we increased and then decreased its volume in

order to observe the hysteresis of the contact angle. This simulation is performed

in order to obtain a benchmark case. Indeed the analytic solution for this problem

is known: it is a spherical cap that does not move its base until the advancing (or

the receding) contact angle is reached. Knowing this, we test our approach with an

axisymmetric formulation.

Figure 3.1: Inflating the drop causes first an increase of the contact angle with no motion of the contact

line (a). With a further volume increment the drop advances (b). If the volume is then decreased, the first

effect is only a modification of the contact angle, with fixed contact area (c).

Each time volume is added (or subtracted), we solve the gradient flow and we

compare the phase field solution with the analytic sharp interface one (see Figure 3.1-

3.2). The agreement is satisfactory: the analytic solution is always inside the contour

lines of the transition layer from 1 (liquid) to 0 (vapor). A comparison between the

two formulation proposed shows that the Neumann scheme outperforms the Dirichlet

one in simulating the hysteresis phenomenon. More precisely the differences are

visible in the receding stage in a hydrophobic situation, or during the advancing

stage in a hydrophillic case (see Figures 3.1, 3.2 and the discussion below).

The main difficulty here is the treatment of the triple junction among the three

phases (solid, liquid and vapor) in the diffuse interface setting. We overcome this

problem by defining a third zone on the solid boundary, which can be subdivided

into two parts: the semi-wet and the semi-dry zones.

We proceed as follows. On the row of computational nodes above the solid,

the transition point between values smaller or larger than 0.5 is recognized and it
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Figure 3.2: A receding drop simulated with a Dirichlet BC (a) and with a Neumann BC (b).

is projected this on the solid. The semi-wet zone (respectively semi-dry) consists

of the 2 nodes from this point towards the liquid (toward the vapor). The desired

stabilization is reached decreasing (increasing) by 15 degrees the angle that the Neu-

mann boundary condition would impose in those points. For the Dirichlet scheme

a modification of 20 degrees is needed. The situation is summarized with a graph

in Figure 3.3, where the contour lines of a drop with a Young contact angle of 120

degrees are drawn. The algorithm proceeds as described in Section §2.4: starting

from the solution at time t, we identify the three zones on the solid surface; we then

calculate the solution at time t + δt (i.e. with an increased or decreased volume)

keeping fixed the boundary conditions calculated from the previous step. For this

procedure the Neumann scheme is more precise, because the contour lines are not

bent by the solid surface. This explains the improvement passing from panel a) to

panel b) in Figure 3.2.

Figure 3.3: The determination of the different zones on a solid surface modeled by Dirichlet BC (a) and

Neumann BC (b).

52



3.4. 2D SIMULATIONS

Because of these results, the Neumann scheme will be preferred dealing with

hysteresis. The Dirichlet formulation will be used when considering non-smooth

geometries for the solid (i.e. when the normal derivative cannot be directly defined)

and dissipation effects are not the main interest.

3.4.2 Moving plates

Inspired by the striking experiments of A. Lafuma and D. Quéré [34], we consider

the case of a drop compressed between two plates.

Figure 3.4: We check the initial position of the

phase field solution with the shape given by the

integration of the geometric ODE.

Figure 3.5: Evolution of the front near the

lower plate during the compression, see the initial

modification of the contact angle.

Our results are plotted in Figure 3.4-3.5. What we could observe with these

simulation are the macroscopic effects of hysteresis. Energy minimizers are again

axisymmetric. Figure 3.4 compares the phase field solution with the solution of the

ODE arising from the sharp interface formulation.

The procedure to simulate the quasi-static movements of the plates is based

on a sort of “predictor-corrector” scheme. Starting from a stable state, we cancel

(add, respectively) a computational row at half the distance from the plates in order

to obtain a compression (decompression). The prediction stage is done by looking

for an energy minimization while keeping fixed artificially the wetted zones over

the plates. In the correction stage we release this constraint: if the equilibrium

configuration of the prediction stage has reached or even overcome the advancing

(receding) contact angle, then a new minimization is performed. Otherwise the

previous shape is accepted (see Figure 3.6). In this way we do not loose information

about the history of positions of the liquid-solid interface, that are essential to resolve

the hysteresis of the contact angle.

Figure 3.5 collects a sequence of snapshot of the evolution of the profile near
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Figure 3.6: An advancing drop: the lines starting nearer to the rotation axis (i.e. on the left) represent

the rejected configuration in which the contact zones between liquid and solid plates are artificially pinned.

the lower plate: the contour lines of the 0.5 level curve of φ at several time steps

of the simulation are plotted, superimposing them. The picture shows clearly the

initial variation of the contact angle and the subsequent advancing of the front with

a constant contact angle equal to the advancing angle.

3.4.3 Drops on an inclined plane: the 2-D case

A 2-D simulation represents a portion (of unit thickness) of a 3-D geometry invariant

in the orthogonal direction. This, admittedly artificial, scenario of a cylindrical drop

is already quite rich and interesting. In Figure 3.7 a typical situation is shown: the

Figure 3.7: A phase field representation of a drop in equilibrium on an inclined plane. Equilibrium is an

effect of the hysteresis of the contact angle.
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hysteresis of the contact angle allows for the equilibrium of a drop on an inclined

plane. In the simulations we change the inclination of the plane and we follow the

changes in shape up to the limit configuration in which the drop starts to move and

roll down. In Figures 3.8-3.11 the effect of gravity on drops of different volumes is

clearly visible. In these graphs only the contour line φ = 0.5 is drawn and the lines

coming from different inclinations of the plane are superimposed.

Figure 3.8: For d̄ = 2.2, the drop is stable up

to 90◦.
Figure 3.9: For d̄ = 3.6 the drop is stable up

to 60◦.

The simulations represent water drops in air (σLV = 73mN/m and therefore

κ−1 = 2.7mm) on a hydrophobic solid with θY = 120◦; the contact angle hysteresis

is set to ±15◦.

Like in a laboratory experiment, the initial condition for the simulation is impor-

tant: the first calculation is the drop of the desired volume in the absence of gravity

and with Young angle (dotted line in the pictures). Then gravity and dissipation

are added at the same time. As a consequence, the drop stays symmetric but has a

contact angle larger than the original one. The bigger the volume, the higher is the

gravitational effect and thus the wider the angle. The effect of this is also visible

when we incline the plane: if the size of the drop is over the capillary length, the

drops change their shape and their wet zone. With this preparation, drops move

first the advancing zone: indeed the starting angle is closer to the advancing angle

and the drops will reach it sooner.

We increase the inclination of the plane slowly in order to simulate a quasi-

static evolution of the type described in Section §2.4. At each step we increase the

angle by 3◦. In the pictures we superimpose the equilibrium configurations, as long

as they exist. This means that after the last frame the drop falls dawn, because

gravity overcomes the dissipation and the quasi-static model cannot describe what
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Figure 3.10: For d̄ = 5.8 the limit of stability

is 18◦.
Figure 3.11: For d̄ = 10.9 the drop falls already

at 3◦.

is happening next.

In order to compare our results with the results of 3D experiments, we consider

an auxiliary parameter. We introduce d̄ as the diameter of the sphere whose volume

is equal to that of our cylindrical drop. The pictures shows that for values less than

the capillary length the gravity effects are not visible. For d̄ ' κ−1 something moves,

but the detachment is not apparent. Above this critical size the drops are flattened

by gravity, they fall earlier, and with a smaller inclination of the plane.

3.4.4 Pillars

Wetting phenomena on a (microscopically) rough surface have been the object of

intense recent studies (see [17] and the references therein). Two models are used to

interpret the experimental evidence: the Cassie-Baxter and the Wenzel one.

length

height
=

5

3

Figure 3.12: In the initial configuration the

drop fills the central hole, but it can jump to the

next pillars.

length

height
= 2

Figure 3.13: By slightly decreasing the height

of the pillars the situation changes completely:

this drop is in the Wenzel state.
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In the first the main assumption is that the liquid phase sees only the top of the

asperities of the solid phase, leaving some vapor in the holes under it. The Wenzel

model is based on the opposite scenario: the liquid fills all the cavities of the solid.

This difference produces different predictions on the advancing and the receding

contact angle.

Figure 3.14: Compression induces a meta-stabile Wenzel state on a Cassie-Baxter drop.

The algorithm proposed can capture these behavior. Here we present the results

in the 2D case. In Figures 3.12 and 3.13 a drop is placed over a periodic array

of pillars. Increasing the drop volume, the liquid can fill the holes or it can jump

them. For θY = 120◦, theoretical predictions based on homogenization theory [2]

say that absolute minimizers will jump if a/b ≤ 2, where a is the width of the hole

and b its height. Our results are very close to that value. The slight disagreement is

explained by the fact that an advancing drop with a thick interface “foresees” the

contact with the next pillar.

An important remark is the following. This implementation of the method limits

us to “small” simulations. This forces us to work with drops of a size comparable to

that of the pillars and excludes from our results the analysis of the implications on
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the behavior of drops of macroscopic sizes on microscopic pillars, which in typical

applications are a few micrometer in size.

Figure 3.15: Compression between two rows of pillars. Notice the splitting of the drop.

In spite of these limitations, we can still reproduce a very rich range of interesting

physical phenomena, related to stability and metastability of capillary drops on

rough surfaces. A first interesting situation is the one described by Lafuma and

Quéré in [34]: even in a geometry where the solid roughness would produce a Cassie-

Baxter energy minimizing state, a Wenzel state can be reached by imposing an

external force. Moreover when this force is relaxed this final state is maintained,

reflecting its (meta)-stability. For large drops, gravity is a strong enough force to

produce this effect, while the technique of the squeezing plates can achieve the same

goal for any drop size. The results obtained by this second “technique” are shown

in Figures 3.14 and 3.15. In the first group of pictures the upper plate is flat, while

in the second group it is rough. Both situations allows for the transition between

the two regimes, but the final configuration is different: drops adhere stronger on

rough surfaces (if they are in a Wenzel regime [34]) and the strength of this bond
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can even allow for a splitting of the drop.

Another interesting experiment is described by Callies and Quéré in [12]. They

put a large drop on a rough surface that admits as ground state the Wenzel one.

But the small curvature of such a large drop allows to observe a metastable Cassie-

Baxter state. They let the drop evaporate and when a critical size is reached, a

sudden change in the shape is observed: due to the larger curvature of the smaller

drop, the water fills the solid roughness and a large change in the contact angle is

produced. In Figure 3.16 and 3.17 a numerical version of a very similar experiment

is shown.

Figure 3.16: With a low curvature we can ob-

serve a C-B metastable state.

Figure 3.17: Decreasing the volume and so in-

creasing the curvature, the Wenzel state is reached

59





Chapter 4

WETTING: Multigrid methods

and 3D simulations

4.1 Introduction

A 3-D simulation needs a more careful usage of available computing resources: sim-

ply adding the third direction, the basic grid passes from 104 to 106 degrees of

freedom. Moreover, as remarked above, an increase in the detail of the description

in the neighborhood of the solid surface is desirable for at least a couple of rea-

sons: a better resolution of wet and dry zone; the possibility to draw more realistic

asperities (pillars) on it. The first answer to these questions, without changing com-

pletely the approach to the problem (for example, passing to finite elements), is an

adaptive mesh refinement. The idea is to have a very fine grid only where needed

(the solid-liquid and liquid-vapour interfaces) and a hierarchy of levels of increasing

grid spacing joining that zone with the coarse underlying grid. Adaptivity, namely,

the possibility to create or to destroy computational nodes accordingly with the

evolution of the simulation is another important feature.

There is a large literature on adaptive mesh refinement and libraries of software

that helps the implementation of the method. However, each specific problem and

solution algorithm has its own peculiar features and the general ideas have to be

adapted to the specific case. A first example of this is the criterion for selecting

the zones that need to be refined: a static refinement is needed to cover the solid

surface, while a dynamic refinement will follow ΣLV , driven by the computed value

of φ. The liquid-vapour interface is characterized by the transition layer between the

two values prescribed by the potential W , and therefore we perform the refinement
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over the computational nodes where 0.05 ≤ φ ≤ 0.95. The regridding procedure, i.e.

the creation of a new hierarchy of levels according to the evolution of the simulation,

is computationally demanding and introduces errors in the simulations (it is based

on interpolation). We handle this problem by regridding with a decreasing frequency

that follows the convergence of the gradient flow (see (3.2)).

In what follows the main elements composing the multigrid environment and the

result obtained within it are presented. The construction is based on the work done

for the 2D case and the experience gained in that framework. The presentation will

focus only on the new tools, namely, the grid hierarchy, the V cycle and the Samrai

code. The precise accordance of the computed with the observed limit angle for a

drop on an inclined plane reveals already the capabilities of the proposed strategy,

but we expect satisfactory results from the developing studies on possible metastable

states of a drop deposited on a textured rough surface.

4.2 Grid hierarchy

Starting on a coarsest grid made of 100 × 100 × 100 nodes (or cells) a hierarchy

of refinement levels is built following a few basic rules in order to guarantee easy

handling. The main requirements are the following:

• the refinement ratio (the ratio between the grid spacing in two adjacent levels;

we set a ratio of 2) must be kept constant passing from one level to the next

finer one;

• levels must be correctly nested, namely, level i must share its boundary only

with level i− 1 and i + 1;

• levels must be composed by regular blocks of refined cells so that their bound-

ary results flat.

Different strategies are admissible, but at the expense of a heavier code and a much

more complicated strategy of communication between levels, which is the most del-

icate issue in a multigrid approach.

Interpolation techniques, preserving the second order accuracy of the finite dif-

ference approximation of the Laplacian across a level boundary, are described in [37]

and [57]. This is the approach followed in the present work. The Laplacian will be

described through the fluxes of the phase function φ. In each coordinate direction,
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Figure 4.1: A 2D scheme for the interpolation across a coarse-fine boundary. The values corresponding

to the positions labeled by O are obtained through quadratic interpolation applied to the values in the black

points. These new values together with those in X positions are interpolated to produce the values in *, the

ghost cells of this fine level. The arrows represents the top and bottom fluxes.

say x for simplicity, we put:
(

∂2φ

∂x2

)

i

=
(
φi+ 1

2
− φi− 1

2

)
/h, (4.1)

where h is the grid spacing, and

φi+ 1
2

=
1
h

(φi+1 − φi) (4.2)

φi− 1
2

=
1
h

(φi − φi−1) . (4.3)

Fluxes across the interfaces between boxes are computed using ghost cells. Each

box is provided with a layer of fictitious cell that will enter in the six-points stencil

of the boundary (real) cells. If the edge between two boxes belonging to the same

refinement level is considered, ghost cells are simply copies of the real adjacent cells.

Otherwise, two cases are possible: a point on the coarse or on the fine part of the

separation plane. Let us consider the first case (see fig. 4.1). The requirement is that

fluxes entering and exiting from the fine/coarse interface must balance, therefore we

obtain: (
∂2φ

∂x2

)

i

=
(
φi+ 1

2
− φ∗

i− 1
2

)
/hc, (4.4)
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where

φ∗
i− 1

2
=

1
2

(
φ f

up − φ f
down

)
(4.5)

φ f
up/down =

1
hf

(
φtriquad − φ f

)
. (4.6)

The label triquad denotes the fact that the ghost cell of the finer level are computed

through a triquadratic (i.e. quadratic in each coordinate direction) interpolation as

described in fig. 4.1.

In the second case the ghost cells can be used directly to compute the Laplacian

for the finer level, because the triquadratic interpolation guarantees the desired

accuracy. Points on the corner of a block need particular attention, but repeating

the same procedure, simply shifting the stencil for the interpolation as shown in fig.

4.2, we obtain the right scheme.

A rigorous proof of the achievement of the desired accuracy is very difficult and

was not attempted. However the differences between this method and a simple linear

interpolation can be seen directly on the simulations: errors would accumulate on

the level interfaces and they have no possibility to be recovered (a similar problem

occurs at each regrid process, but in few iterations the scheme is able to drop them).

A sketch of the proof is revealed by the following argument [37]: our finite difference

approximation of the Laplacian implies a division by h2, and so it would drop the

accuracy of a p interpolation to hp−2 (for a quadratic interpolation it is known that

p = 3). But we are doing this process only in a set of codimension one (the interfaces)

and we gain one order of accuracy obtaining globally an error of O(hp−1). Thus

quadratic interpolation should guarantee a second order accuracy of the algorithm.

Figure 4.2: The stencil for the first interpolation is shifted in presence of a corner in the coarse-fine

boundary.
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4.3 V cycle

The core of any multigrid algorithm is the map that governs the progress of the

computation, from one level to another one. Many possibilities are described in

literature, the most extensively tested one is the so called V Cycle. It is an iterative

scheme that prescribes at each step to update first the solution on the finest level,

then to pass new information down to the coarsest keeping updating φ and finally

to come back up. Therefore there are two main situations to handle: the passage

of the information from a fine to a coarse level and the opposite one, that are the

descending and the ascending part of the ”V”. On each level l, 0 ≤ l ≤ lMAX , for

each block the procedure can be summarized as follows:

• fill the ghost cells relative to level l and to the boundary with l + 1 if it exists;

• interpolate on l − 1 (if it exists) as described above to obtain ghost cells on

the fine-coarse interface;

• compute fluxes;

• correct fluxes coming from l + 1 with the matching condition;

• update the solution on level l (see below);

A peculiarity of the proposed algorithm (3.4) is the splitting procedure adopted

to compute the Lagrange multiplier λ. The problem in a multigrid framework is how

to handle this extra computational step. Two different solutions to the problem were

found: to compute it at each level or to compute it at the end of each V cycle.

In the first case a consistency argument imposes to preserve the volume contained

in each level separately. This means that in the third step of the algorithm (3.6) the

integral of φ and the indicator function should be restricted to the considered level.

Indeed, supposing the computational domain as split into only two parts Ωf and

Ωc it is simple to show the predicted necessary condition for consistency. If φ∞ is a

solution, then −ε4φ∞ + 1
ε f(φ∞) + λ̄ = 0, where f is the derivative of the potential

term and λ̄ is the Laplace pressure. Moreover, performing another iteration of the

algorithm on φ∞, the same function should be returned. Putting φN = φ∞, the

computation on one level, say Ωc, produces:

φN+1
c =





φN − τ
(−ε4φN + 1

ε f(φN )
)

+ τλN
c = φ∞ − τ λ̄ + τλN

c in Ωc

φN = φ∞ in Ωf

(4.7)
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Clearly the requirement is that λN
c = λ̄ and the only possibility, if we want to work

only inside Ωc, is to impose:

λN
c =

∫
Ωc

(φN − φN+ 1
2 )

|Ωc| . (4.8)

Therefore the integral of φ on each level remains constant at each iteration, pre-

serving its global value. In this case a high frequency of regridding is needed at

the first steps of the gradient flow, in order to divide properly the volume in the

different levels. The advantage of keeping the evolution on each level separated from

the others is that also τ can assume different values: a faster gradient flow can be

imposed to the coarser levels, improving the convergence time.

The contrary happens in the second solution: a single value of λ is computed

at each iteration, preserving its physical meaning, at the cost of a τ governed by

the finest and slowest levels. However, we can anticipate that this procedure does

not need a high rate of regridding and it shows a better stability (a regrid involving

many levels is a delicate issue, also for the Samrai code used in this work). The idea

is to synchronize the V cycle in such a way that at the end of each loop every level

has advanced by the same (fictitious) time τ̄ . In a situation with three levels (0, 1

and 2), this means to start the V cycle with two iteration on level 2 with a time

step τ̄ /4, then a step on level 1 with τ̄ /2 and one on level 0 with τ̄ . The ascending

part will be specular to the descending, thus at the end on every level a time τ̄ is

“passed”. Now a standard splitting step can be performed producing a value of λ

common to all levels. Consistency is preserved also within this scheme as a simple

calculation similar to the previous one could show.

As already mentioned, the problem is that τ̄ /4 in this example should be an

appropriate time step for the fine level 2. If condition (3.14) is employed as a

formula to predict the value of τ for a given grid spacing h, this scheme will advance

on level 0 with a time step that is one half of the optimal one. Numerical evidence

shows that this is not a too strong drawback, compared to the error introduced by

the regridding procedures needed by the first algorithm. The simulations presented

in the following sections are obtained with this second approach.

4.4 Parallel computing platforms

The complex structure of the grid hierarchy, with its ghost and real cell, the inter-

polations and the indexing of a so large number of degrees of freedom, calls for the
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use of an existing ad hoc library. Samrai, a C++ library developed specifically for

adaptive mesh refinement was our choice. Moreover, the computational cost (time)

of even a single simulation is beyond of the capabilities of a standard computer.

Parallelization of the code on Cerbero and Mercurio1 partitions of the high perfor-

mance computing grid available at Sissa-Democritos was performed, in collaboration

with Eng. Carlo De Vittoria.

Samrai is a software library, free for research purposes, developed in the Cen-

ter for Applied Scientific Computing at Lawrence Livermore National Laboratory

[32]. The main help provided by this code is the automatic handling of patches:

a patch is a block of cells belonging to the same refinement level with rectangular

faces. Communication among patches is the basic operation performed by Samrai:

ghost cells are filled through data coming from adjacent patches and therefore the

computation can ran in a parallel way in different blocks (that will be assigned to

different processors). A load balancer is thus necessary and indeed it is provided

by the code. The algorithms governing the creation of patches are standard in the

literature on adaptive mesh refinement and refer to the original ideas of Berger and

Rigotsous [9]. Since they do not interfere with the calculations and since we did not

need to modify them, they are not described here in details.

The generation of a new refinement level can be automatic or imposed through

the input file governing all the parameters of the simulation. Samrai will nest pro-

perly the new level in the existing hierarchy. A routine for regridding is also present,

although we found it not very stable. This is another reason to prefer the second

scheme for the V cycle. Standard refinement and coarsening operation are integrated

in Samrai, while the complex triquadratic interpolation had to be programmed ex

novo.

Samrai has been installed on the high performance computing grid available at

Sissa-Democritos. A test on the scalability of the code produced the results presented

in the table below.

processors IB SHMEM GM

2 10246,50 11367,5 -

4 5531,50 5977,5 -

8 2889 - 2794,5

16 2166.5 - 2064,5

32 1369,5 - -

These values have to be compared with those relative to one single processor that
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is 20023 seconds. The columns refer to the different parallel architectures available:

InfiniBand (IB), shared memory (SHMEM) and myrinet (GM). The speedup is al-

most optimal up to 8 processors, while it decays for larger processors numbers. This

is due to the increasing of the communication effort with respect to the computation

one. Indeed with two processors the percentage of communication time during the

test is of 22.41%, while it becomes 43, 17% with 32 processors.

4.5 3D Simulations

The following subsections contain the results obtained with the algorithm just de-

scribed. The first test regards the hysteresis of the contact angle, that will be

responsible for the slip-stick behavior observed in the second one where the solid

support of the drop will be inclined. The last simulation concerns the meta-stability

states of a drop on a textured solid.

4.5.1 Hysteresis benchmark

The numerical simulation of the hysteresis of the contact angle can be tested against

the analytic solution of the corresponding geometric problem, considering also the

effects due to the quasi-static evolution we want to investigate. This constitutes a

benchmark for the proposed algorithm and guarantees for the accuracy of results

obtained in more complicated situations, where an analytic solution is no longer

available. A similar test was presented for the 2D case, the results of the 3D one

follows the same approach.

In spite of the higher resolution granted by the adaptive mesh refinement tech-

nique, the 3D simulations shows similar problems in simulating hysteresis as the 2D

ones. It seems impossible to avoid the effects of the diffuse interface model: using

two levels of refinement on the solid surface the value of ε can be reduced to 0.004.

The transition layer consequently reduced its width, but its presence still interferes

with the wet-dry division of the solid surface needed by our hysteresis model.

The stabilization trick employed in the 2D simulations is used again to achieve

the desired accuracy. Its implementation in this new situation requires only a new

strategy for tagging cells in the semi-wet or semi-dry zone: the first step consists in

selecting the part of the solid in contact with the liquid; as before the phase value

0.5 is chosen as a discriminant. The boundary of this selection is projected down on

the solid surface. A first layer of the semi-wet zone will consist of those cells whose
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boundary shares a segment with this projection and lie inside the contact line. A

second layer is constructed in the same way forming a annulus of width equal to two

cells (this procedure is performed on the refinement level enclosing the transition

layer, usually it is the second one). The cells belonging to the semi-dry zone are

selected in the same manner but on the exterior of the drop. A detail of the result

of this algorithm is presented in fig. 4.3.

Figure 4.3: A portion of an horizontal slice showing the division of the solid in the wet, semi-wet, semi-dry

and dry zone. The boundary of the refined patch is also visible.

Neumann boundary conditions are imposed and the values for the semi-wet and

semi-dry zones are exactly the ones described in section §3.4.1. The comparison

with the known analytic solution (fig. 4.4, 4.5) reveals the validity of the method

that can now be employed to the more interesting situation where gravity come into

play.
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Figure 4.4: A slice of an advancing drop and the division of the computational domain into patches.

Figure 4.5: A slice of a receding situation. The darker line represents the analytic solution.

4.5.2 Drop on an inclined plane

The situation described in this section is equivalent to of the one discussed in section

§3.4.3, but here we consider a 3D drop.

As a comparison we take the experimental data cited in a recent paper [45].

Drops of different size (from 20µl to 70µl) are deposited on an horizontal plate,

which is then inclined. The preparation of the simulation tries to follow what hap-

pens in the real experiment: we started from a spherical cap exhibiting the Young

contact angle (121◦) and then we include the gravity and the dissipation term in the

algorithm simultaneously. This decision affects the behavior of the drop during the

inclination of the solid support as fig. 4.7 clearly shows: the advancing contact angle

is reached with a smaller inclination with respect to the one needed to observe the

receding one and therefore the contact line moves mainly in the advancing direction.

In [45] the authors summarize the debate concerning the possible difference bet-

ween advancing and maximum angle (receding and minimum angle, respectively):
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Figure 4.6: A 3D view of the 0.5 contour line of a drop on a inclined plane. In the simulations the

plane remains horizontal while the direction of the gravity vector is tilted by the desired angle. Here the

inclination is 30◦

Figure 4.7: The contour lines of a drop on a plane inclined by 30◦ (an horizontal slice just above the

solid). Notice that the right part (the receding one) is almost circular, while the left one (advancing front)

is elliptic. The internal circle, included as a reference, is the trace on the plane of the analytic solution

corresponding to the same drop in absence of gravity.

the first is the angle predicted by the chemistry of the materials and the fluids in-

volved, the second is the one observed just before the drop slides and it depends

also on gravity, dissipation and mechanical equilibrium. The results of our simula-

tion can be employed to investigate deeper the problem, but a method to measure

precisely the contact angles in a diffuse interface model is needed first. This could
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be a preferred direction for our future work in the field. For the moment we impose

through the usual algorithm the values for the advancing (128◦) and the receding

angle (115◦) indicated in the paper and we compute the limit inclination.

Figure 4.8: Experimental data (black) against computational results (red). We took the background

picture from [45].

The values obtained are in good agreement with the experimental ones. In figure

4.8 we superimpose our result over a picture taken from [45]. The red dots correspond

to the first angle at which our drop cannot stick on the inclined surface. This means

that for lower angles (we tested only integer values) an equilibrium configuration

can be reached.

4.5.3 Pillars

The improvement obtained passing from a simple 2D to a 3D simulation is revealed

with this example that best exploits the capabilities of the adaptive mesh refinement

technique. We want to reproduce the experiment of Callies and Quéré [12]: a drop

over a solid surface textured with 12µm height pillars distributed in such a way that

a fakir drop would touch only 1% of their surface. A large drop radius may help the

observation of a Cassie-Baxter meta-stable state, but after evaporation of enough

liquid the stable Wenzel state is suddenly recovered. Figure 4.9 refers to the first

situation, while figures 4.10–4.11 describe the second one. The physical (dimension

and spacing) and the chemical (surface tensions) properties of the simulated pillars

are exactly the same, but only the large drop exhibits the meta-stable fakir state.

Our attempts are now focusing on the reproduction, through a quasi-static evolution,

of the whole experiment and on the analysis of any possible dependence of the critical

size for the transition with the parameters of the simulation: the surface tensions,

the width of the transition layer and the rate at which volume is decreased.
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Figure 4.9: A large drop on a meta-stable Cassie-Baxter state. The pillars height is 12µm, their basis is

a square of side 2µm. The upper surface represents only 1% of the solid surface.

Figure 4.10: A small drop on the same textured surface as fig 4.9 exhibits only the stable Wenzel state.

The size of the computational box showed in the pictures is 0.32mm and it would

allow us to simulate the final part of Callies and Quéré experiment. Three levels of

refinement are necessary to draw the pillars and to simulate the interaction of the

solid with the liquid, while we use only one subdivision for the liquid-vapour inter-

face. The total number of patches is 266 for over 40 millions of computational cells.

The computation of a single equilibrium state take almost two days of calculation

on 64 processors.
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Figure 4.11: An horizontal slice of the little Wenzel drop taken at the level of the pillars basis.

4.6 Perspectives

We want to conclude this exposition with an overview of the framework in which

our researches on wetting phenomena are included. The research group lead by

prof. DeSimone at Sissa is interested in the possible applications of the rigorous

mathematical results developed, especially in the industrial and in the biological

field. Two possible applications of the work carried on during my PhD course will

be now presented, they refers to these areas.

The code governing the 3D simulation is already fit for simulating a real surface.

The dimensions of the pillars of the last example shown recovers exactly those of

the support employed by Callies and Quéré. But it is possible to simulate also a

non regular pattern, like the one obtained by a scanning of a porous material.

The possible application is the study of a protecting coating for the surface of

buildings or of monuments. Exploiting the increasing of hydrophobicity given by the

increasing of roughness of the surface and optimizing the effects through appropriate

simulations the goal can be achieved.

The geometric model of wetting phenomena involves the curvature of the se-

paration surface between liquid and vapour. More precisely Laplace law prescribes

the value of the mean curvature H at each point of this surface with a first order
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equation. The models trying to reproduce the shape of a biological bilayer vesicle are

very similar, but they ends up with a second order equation. However the expertise

gained with the phase field models applied to the wetting problem could be the

starting point for the study of such an important problem in biology. We remark

that the rigorous proof of the convergence of the diffuse interface model to the sharp

one is still missing for this kind of problems.

In the literature there can be found several models for closed vesicles made by

two lipid layers. A complete review can be found in [47]. The simplest one is also

the most used (although it is valid only in a specific region of the phase space of

such a system) and refers to the work of Helfrich [31] who proposed the energy:

FSC =
κ

2

∫

S
(2H − C0)2 dA, (4.9)

with constrained area and volume of the vesicle. The case in which the parameter

C0 (the so called spontaneous curvature) is zero represents the well known Willmore

problem, a differential geometry problem still open for high genus surfaces [18]. The

shape equation in this case becomes:

4H + 2H(H2 −K) = 0. (4.10)

We recall that K is the Gaussian curvature and in the above equation 4 stands for

the Laplace-Beltrami operator.

Numerical studies on phase field models reproducing the equilibrium shape for

Helfrich functional exist [19] and use the functional:

W (φ) =
∫

kε

2

∣∣∣∣4φ− 1
ε2

(φ2 − 1)φ
∣∣∣∣
2

dx. (4.11)

A complete Γ−convergence proof of the asymptotic behavior of this functional

is still missing, together with a model for the interaction of the system with a solid

surface. Future work on this topic could take advantage from the results described

in this thesis.
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