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Abstract

Numerical computations have been performed to study the action of
dynamical friction on globular clusters in galaxies. Over a Hubble
time, the distribution of globular clusters can be altered
significantly by the action of dynamical friction which leads to
the destruction of massive globular c¢lusters in galaxies. UWe
investigated the orbital decay rates for globular clusters in
elliptical and spiral galaxies separately and compared the two
decay rates to check whether dynamical friction is responsible for
the difference observed in the luminosity functions for globular
clusters in these types of galazies, in the sense that more
massive globular clusters are observed in ellipticals than 1in
spirals.-

Chapter one of the thesis discusses the determination of
extra-galactic distances by using globular clusters, based on the
assumption that the luminosity function of these systems 1is
invariant throughout the universe. Ye also show the evaluation of
the Hubble constant Ho’ from the distance determined to the Virgo
cluster in this way. There are no compelling reasons to expect the
luminosity function of the globular clusters to be the same in
galaxies of all types and we report recent observations of the
differences seen in the luminosity functions in elliptical and
spiral globular cluster systems. The mechanisms which might lead
to this difference are discussed and it is concluded here that
dynamical friction might be the possible mechanism for the

depletion of massive globular clusters in spiral galaxies.




Chapter two revieuws and discusses the theory and formulation
of dynamical friction in detail.

The third chapter is concerned with the finding of a suitable
numerical integrator to solve the equations of motion in oup
N-body calculations. Various algorithms were checked and tested
for efficiency, stability and accuracy, in Particular, Aarseth's
N-body code. ue finally chose a second-order predictor corrector ¢
Hybrid method ) for our restricted N-body code.

Chapter four deals with the galaxy models, initial conditions
for the particles that trace the density distributions in our
galaxies and the globular clusterpr models that go into the N-body
calculations.

In chapter five, ye discuss the numerical work for globular
clusters’ orbiting in spiral galaxies. Preliminary results show
that resonances Play an important role in the orbital evolution of
the globular cluster. The sloyw orbital decay rates we have

obtained indicated that dynamical friction is not enough to

Chapter six deals with the numerical work on globular
clusters in ellipticals. ye did not observe much decay in the
orbits for these globular clusters, compared to the decay rates of
clusters in spirals,

In chapter Seven, conclusions abouyt this work and outlines

for future work are sketched.
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CHAPTER ONE

GLOBULAR CLUSTERS AND THE HUBBLE CONSTANT

Globular clusters are among the oldest and most versatile
astronomical objects in the Universe. They are spherical and
very luminous objects containing up to more than a million stars.
Our Galaxy has a halo of more than a hundred globular clusters
and in more massive galaxies thousands of them have been
observed. The most noticeable feature of globular clusters is
the similarity displayed by them in a vast diversity of galaxies.
All their masses and radii lie within a narrow range, their
density profiles are homologous following the same law that
applies to simplest elliptical galaxies and they apparently seen
to share an unique luminosity function. Though each individual
globular cluster does show some peculiarities, notably in
metallicity etc., but once again some universal trends with the
parent galaxy mass or type can be found. The overall picture of
the observed universality and their great ages have linked the
study of globular clusters, especially their origin to Cosmology.

The formation of globular clusters with masses typically
around 106M0 inside galaxies is still an unsolved problem. It was
generally believed that globular clusters formed through
contraction after the galaxy had come into existence but because
the Jeans mass just after recombinétion is so near the observed
masses of globular clusters,vit was suggested [Peebles and Dicke
1968] that the growing condensations at the epoch of

recombination should be associated with the formation of globular



clusters. In this scenario the formation of the larger systems in
the Universe, 1like galaxies, clusters‘of galaxies and
superclusters takes place by the merging of these proto~globular
clusters, van den Bergh (1975) had pointed out however that
globular clusters do differ Systematically from one another in
certain traits which argues for a post—-galaxy formation. By
studying the various Properties exhibited by these mysterious
systems, one might have sone clues about the formation of
structure in the Universe.

Within our own Galaxy, globular clusters have played key
roles in galactic Structure, early chemical and dynamical
history, evolution of low mass and metal-poor stars, dynamics of
stellar systems and recently on the nature of certain X-Ray
sources. An excellent review on globular clusters as probes of
galactic structure and evolutionary history, their wuniform
behavior in disparate systems and their kinematical and dynamical
properties was given by Harris and Racine [Harris & Racine 1979].

The study of globular clusters in external galaxies 1is
equally enriching and a vast field now. It is beginning to shed
light upon the earliest formation and chemical enrichment
episodes during Proto—-galaxy collapse, elucidating the importance
of subsequent mergers and interactions between galaxies.

For the present studies, our interest in globular clusters
lies in the role they play as extragalactic distance indicators.
Based on the assumption that the luminosity function of globular
clusters is invariant throughout the Universe, extragalactic
distances are determined by comparing the magnitude of the peak

in the luminosity function of the globular clusters in the galaxy



whose distance has to be determined with the luminosity function
of nearby globular clusters, say those seen in the Local Group
galaxies. Using the luminosity distribution of the globular
clusters observed in five Virgo cluster galaxies and comparing
the luminosity function with the luminosity function of the Local
Group globular clusters, Hanes (1977a) determined the distance
modulus of the Virgo cluster., Using this distance to the Virgo
cluster, Hanes (1979) €valuated the value of the Hubble

constant,HO. Hy so determined relies heavily on the

There are various reasons for exXpecting the luminosity
functions to be different. The galaxies used by Hanes to study
the globular clusters in Virgo cluster were all giant
ellipticals, while the galaxies used to study the globular
clusters in the Local Group were mainly spirals. The question
that can arise is whether the luminosity function of the globular
clusters in these different types of galaxies assumed to be the
same is justified or not. Globular clusters in spiral galaxies
are subjective to disruptive events like disk passages [Fall and
Rees 1977] and these €Xperiences are not shared by their
counterparts in elliptical galaxies. The action of dynamical
friction which preferentially destroys bright, massive objects
~could also be more enhanced in spiral galaxies because of the
Presence of disks [Tremaine, Ostriker and Spitzer 1975] thus

leading to a carving away of the primordial luminosity function



into one rather dissimilar to the luminosity function observed
from globular clusters in elliptical galaxies - assuming that
these two luminosity functions were the same primordially, which
is a different, unanswered question yet again.

However, believing that the differences are small, globular
clusters were used to determine extragalactic distances and hence
the Hubble constant Hye [Hanes 1979, de vaucouleurs 1979, van
den Bergh, Pritchet and Grillmair 1985]. In this chapter, a
review of these distance determinations is presented. 1In section
I.1, the advantages and disadvantages of using globular clusters
as extragalactic distance indicators are discussed. Section I.2
gives details regarding the distance determination to the Virgo
cluster and the evaluation of Hy. 1I.3 raises the question
about having a Universal luminosity function and in I.4, the
mechanisms that could lead to different luminosity functions are
discussed.

I.1 Globular Clusters as Extra galactic Distance Indicators

Many attempts were made to extend the galactic distance scale
to greater and greater depths in the Universe. The establishment
of‘the far-field extra galactic distance scale necessitates the
measurements of the distances of galaxies whose peculiar
velocities are small compared to the rate of cosmic expansion at
that distance. This means studying galaxies at least as remote
as those in the Virgo cluster, where an estimate of the mean
recession velocity can be obtained by averaging over a large
number of the cluster members. The procedure simply 1is to

compare luminous Local Group objects with their apparently




fainter counterparts, say in Virgo cluster galaxies and thereby
obtaining the luminosity distance directly. Most distance
determinations so far however have relied on distance indicators
that were not sufficiently luminous to make this single-step
determination. Or the bright indicators that were used, such as
ScI galaxies are not found in the Local Group and therefore their
absolute calibration follows in steps from a series of distance
determinations for nearby groups, using others known indicators
like Cepheids, HII regions, brightest stars within galaxies etc,.
Good reviews on extragalactic distance determinations can be
found in Hodge (1981) and Sandage & Tammann (1976).

When the extragalactic realm was discovered, Hubble“s
approach (Hubble 1926, Hubble 1936) was generally a three-step
processes, which were:

(1) find distances to local galaxies from cepheids;

(2) use the brightest star criterion, which he calibrated in the
local galaxies, to extend the scale to more distant field

galaxies and the Virgo cluster;

(3) use the total magnitude of the galaxy, together with
luminosity calibrated in step (2), to arrive statistically
at distances for galaxies with measured redshifts.

The conclusions from Hubble“s papers which stood for many
years were the following:

The distance modulus of Virgo cluster was

W= (m - M) = 26.8
corresponding to a distance of 2.3 * lOe parsecs and the

constant of proportionality in the velocity-distance relation,



known as the Hubble constant Hy now, was

Hy = 526 Kms™!  mMpc™!

A major revision of distances occured in 1956, with the
publication of an extensive, detailed new survey of radial
velocities and magnitudes by Humason, Mayall and Sandage (1956).
The result of these new distance determinations was that the
value of HO was reduced to

Hy = 180 Kms ™! mMpc™1 .,

Sandage (1958) reviewed once again the whole Hubble distance
scheme, discovered many errors made along the way, most notably
in the identification of the brightest star in galaxies, as many
of Hubble”s identifications were HII regions or star associations
and came to the conclusion that the value of HO should be

Hy = 75 Kms~ ! Mpc™! |

It seems that without any effort on the part of the
Universe, it had expanded by a factor of roughly seven in twenty
years. Though the allowed range for Hy is considerably
narrowed and almost fixed now, it is still a hot and debatable
‘point whether Hg =50 Kms "~ 1 MPC as given by Sandage & Tammann
(1976) or Hy = 100 Kms ™1 wmpc~1 , as obtained by de
vaucouleurs (1978, 1979), each of these values obtained by the
authors in their own unique ways. To play it safe, physicists
use a mnon-countroversial value of Hy = 75 Kms~ ! Mpc™! but it
would be an important step to fix the value of the Hubble
"constant".

Globular clusters as extragalactic distance indicators have

great advantages over other indicators. The brightest globular




clusters are far more luminous than any other stellar "standard
candles” except supernovae and there is no problem in the
identification of these systems up to great distances. The
advantages of using globular clusters as extragalactic distance
indicators can be summarized as follows:

(i) They will provide a single-step determination of distances,
free of the uncértainties of the methods used to date. All that
is necessary to do here is to compare the luminosity function of
the globular clusters in the galaxy whose distance has to be
evaluated to that of the luminosity function of the globular
clusters in the known nearby galaxies.

(ii) The globular cluster distance modulus will rely only upon
pure Population II indicators. The globular clusters themselves
and RR Lyrae stars can be used to set calibrations in the sample
of globular clusters in our Galaxy. The distance scale thus
found eventually will be free of the usual methods which are
based on Population I indicators like cepheids, HII regions,
brightest supergiants and the ScI galaxies. Also, the use of
globular clusters can give an independent check on other distance
determination techniques.

(iii) The globular cluster distance scale is independent of the
effects of interstellar obscuration. This is because the
difference between the apparent magnitude, VHB , of a horizontal
branch star and the integrated magnitude, Vel , of the globular
cluster to which it belongs is independent of any intervening
absorption. Thus from two measurable quantities VHB and Vel aund

the known absolute magnitude Mv,HB of RR Lyrae stars calibrated



locally, the absolute magnitude of globular clusters can be
derived regardless of the amount of obscuration present.

In principle, globular clusters should therefore provide a
one-step distance evaluation of far-away galaxies with all the
advantages listed above. But many attempts that were made
earlier [Racine 1968, Sandage 1968] failed when it was
established that the dependence of globular properties were
unclear. However, de vaucouleurs [1977, 1978b] demonstrated
about how a population - corrected brightest globular cluster
could still be used as a distance indicator. Also the
photometric data presented by Hanes (1976b) for the globular
clusters associated with twenty bright galaxies in the Virgo
cluster established the population dependence of globular cluster
luminosity and permitted a reappraisal of their use in distance
determinations.

The fundamental assumption made in determining distances
using globular clusters is that the shape of their luminosity
function is same in galaxies of all types. Evidences for this
uniformity have been presented by Hanes (1977d) and Harris and
Racine (1979). The validity of a universal luminosity function
for globular clusters was questioned by van den Bergh [1967,
1968]. The objection raised by him was that the distribution in
color is not the same for all globular clusters in our Galaxy and
M31 which can be interpreted as an evidence that the globular
cluster sample in M31 has relatively more metal-rich clusters,
suggesting that the globular clusters in M31 are different from
our Galaxy. The metallicity parameter on which van den Bergh

based his objections was not reddenning-free (Racine 1973) and




therefore making van den Bergh”s arguments not very rigorous.
Hanes (1977d) re-examined the distribution of the colors for
globular clusters in our Galaxy, M31 and M87, the giant
elliptical in the Virgo cluster and came to the conclusion that
the colors exhibited by these globular clusters is entirely
consistent with a unique distribution. The extension of the
cluster color to a bright and massive galaxy like M87 implies
that the globular cluster colors differ very little over a factor
106 in galaxy mass. The same conclusion was also obtained by
Ables, Newell and 0°Neil (1974).

However useful globular clusters are in determining
extragalactic distances, there are various disadvantages
associated with globular clusters in distance determinations.
These can be listed as follows:

(i) The most obvious difficulty is that the globular clusters
span a wide range of absolute magnitudes, from MVAQ -0 to MVAJ—S
for example in our Galaxy, and this does not permit straight-
forward comparisons without a clearer understanding of what can
constitute a reliable benchmark - the mean magnitude or the
absolute magnitude of the brightest globular cluster in a galaxy
[Sandage 1968] or the full luminosity function [Hanes 1979] or
some other factors.

(ii) The second difficulty lies in the identification of globular
clusters in very distant galaxies. At the distance of the Virgo
cluster for example, they are unresolved. A discrimination
between the field stars and the globular clusters can become a

problem. This difficulty can however be overuled by restricting



the study of globular clusters to a relevant color range and
enhancing the constrast between globular clusters and the field
stars and thus making identifications easy. Modern techniques in
multi-color photometry are very useful in making these
identifications.

(iii) The Virgo cluster spiral galaxies are just beyond the
feasible establishment of a reliable luminosity function for
their globular clusters. Therefore the distance determination to
the Virgo cluster has to rely on the luminosity function of the
globular clusters belonging to its brightest and massive
elliptical galaxies like M87 etec. This can make the distance
obtained questionable as there is no strong proof that the
luminosity function of globular clusters in elliptical galaxies
is the same as that for spiral galaxies” globular clusters. We
feel that this assumption is the strongest disadvantage in using
globular clusters as distance indicators till the exact
dependence of the luminosity function of globular clusters on
galactic environment is known.

(iv) At distances well beyond the Virgo cluster, globular
clusters have been detected around NGC 3311 in Hydra I cluster,
with the brightest globular cluster appearing just at the limit
of telescope detection at a blue magnitude of 23,5, Globular
clusters though seen to distances up to 100 MPC, reliable
distance measurements can be obtained only if a large number of
globular clusters associated with a galaxy are observed. This
restricts distance determinations using globular clusters between

10




I.2 DISTANCE T0 THE VIRGO CLUSTER AND THE HUBBLE CONSTANT

Extragalactic distances are determined simply by comparing
the magnitude of the peak in the observed luminosity function of
extragalactic globular clusters with that of Local Group globular
clusters by making the untested assumption that the luminosity
function of globular clusters is invariant throughout the
Universe. It would be ideal to compare the entire observed
luminosity function of the globular clusters in the distant
galaxy with the luminosity function of the globular clusters in
the Local Group to get reliable distance measurements. But such
detailed comparisons are not yet possible. Except for our Galaxy,
previously studied galaxies either had too poor statistics or the
available data on the globular clusters failed to reach the peak
of the distributions.

Figure 1 shows the luminosity distributions of the globular
clusters in our Galaxy. The data is from Webbink (1985) and the
luminosity function for 148 globular clusters is shown in the
figure.

A least-squares fit to the data points for M, > < -6.0
gives a Gaussian curve characterized by (van den Bergh 1985)

<MV > == 7.11 + 0.11
and a standard disperéion of

€ = 1.35 magnitude

Harris and Racine (1979) obtained a Gaussian curve by
fitting through a sample of 93 globular clusters characterized by

M, > = -7.34 and 6~ = 1.17 magnitude

The dispersion ¢, obtained by van den Bergh is larger than

what Harris and Racine found from their sample. This might be
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Luminosity function of Galactic globular clusters (one object at

MV = ~1.7 is not plotted). Note that the luminosity function is

assymetrical with a long tail extending to faint magnitudes.




due to incompleteness of their sample. A striking feature in
figure 1 is that the luminosity distribution is non-symmetrical
with a long tail extending to faint magnitudes. This deviation
from a Gaussian is statistically significant. It seems probable
that some of the globular clusters in the faint tail of the
Galactic luminosity function are objects that have suffered major
mass loss resulting from tidal interactions with the Galaxy. To
minimize the bias introduced by this tail in the luminosity
function, wvan den Bergh neglected the faintest globular clusters
from his sample and found that the distribution was not
significantly different from a Gaussian.

Figure 2 shows the distribution of the globular clusters in
M31. The data for the globglar clusters in M31 can be found in
Crampton et al (1985), Racine and Shara (1979) and van den Bergh
(1985). The data given by Racine and Shara is only for globular
clusters in the halo of M31. Their data could be adequately

fitted by a Gaussian with

M, > = - 7.48 and & = 1.13 magnitude
Crampton et al. published studies of 505 non-stellar objects in
and near M31. van den Bergh (1985) divided this data into three
samples based on their color as following:
(a) clusters with B - V < 0.70
(b) clusters in the rage 0.70 <. B - V < 1.00
(¢c) Non-stellar objects with B - vV > 1.00

Out of these three categories, the first sample (a) was
mostly galactic open clusters. Sample (b) was globular clusters

with a mixture of o0ld or reddened open clusters and sample (c) a
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FiIGure 2

Luminosity function of clusters with 0.70 < B~V < 1.00 in M31.

The smooth curve is a Gaussian with V(max) = 17.2 and g = 1.2 mag.
i

The lower histogram shows the luminosity function of the halo of M31

derived by Racine and Shara (1979).




mixture again of reddened globular clusters and background
ellipticals. Sample (b) which is the most relevant is incomplete
due to observational effects and also not all clusters in this
sample have (B - V) color measurements.,

Considering only sample (b) van den Bergh (1985) gave a
relation to obtain the number of globular clusters in M31 by
assuming that the fraction of clusters with measured color is

only a function of V but not of B-V as;

ﬁhere F(v) is the fraction of the globular clusters of
magnitude V for which the B-V colors are available.

Figure 2 shows the plotted luminosity function for this
sample. The data is well-represented by a Gaussian with

Vmax = 17.2 and ¢~ = 1.2 magnitude

The luminosity function derived by Racine & Shara (1979) peaked

at

Viax = 16.8

This value is 0.4 magnitudes brighter than the value
obtained by van den Bergh. This difference might be due to the
incompleteness in the halo cluster sample of Racine & Shara.
Assuming a distance modulus of (m - M)v = 24.37 + 0.11 to M31 the

peak of the M31 globular cluster luminosity function is at

Assuming a symmetry about VmaX = 17.2, van den Bergh found that

the total cluster population in M31 was 276.
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These recent compilations of data by van den Bergh (1985) on the
globular clusters in the Galaxy and M31 shows that the cluster
luminosity functions in these two galaxies do not differ
significantly. In both of these Loecal Group galaxies the
globular cluster luminosity is a Gaussian curve that peaks at

M, = -=7.1 and has a disperson g =1.2 magnitudes.
Figure 3 shows the distribution function for globular clusters in
LMC+SMC and dwarf-ellipticals. Adding the dwarf ellipticals and
Magellanic clouds samples to the samples in M31 and our Galaxy,
we find that the luminosity function of globular clusters in all
these galaxies can be represented quite well by a Gaussian that
peaks at

<MV > = - 7.28 and has a dispersion a = 1.2
Table I shows the mean and the standard deviations for Gaussian

fits to the globular cluster luminosity functions in Local Group

galaxies.
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Mean absolute visual magnitude of globular clusters in Local
Group Galaxies

GALAXY M (GALAXY)* M (globular Number of Distance
v c&uster) globular modulus of

clusters the galaxy
observed assumed

The ( - 20 ) -7.34 + 0.18 103 -

galaxy

M31 - 21.1 -7.59 + 0.25 86 24.38

M33 - 18.9 -7.87 + 0.40 6 24.38

LMC - 18.5 -7.43 + 0.34 17 18.64

SMC - 16.9 -7.03 + 0.37 13 18.95

N 147, - 15.5 -6.87 + 0.34 15 24.38

185,205

Fornax - 13.6 -7.26 + 0.53 5 20.90

Average Mv = - 7.26 + 0.12

% Absolute visual magnitudes of galaxy
@ Average absolute visual magnitude of globular clusters in
galaxy

We see from this table that despite the range of a factor of
1000 in galaxy luminosities, the globular cluster luminosity
distributions are consistent with being of the same form in all
the galaxies. This seems to suggest that the globular cluster
population in galaxies was formed with the same distribution of
cluster masses, hence luminosities, in all galaxies and that this
distribution has not been modified by subsequent evolutionary
effgcts.

Hanes (1977a) used the Gaussian luminosity distribution to

15



determine the distance modulus of the Virgo cluster by comparing
the mean magnitude distribution for globular clusters in five
Virgo elliptical galaxies with the luminosity function for
globular clusters in the Galaxy and M31. The five galaxies
chosen by Hanes in the Virgo cluster together éontained 75%Z of
thetotal globular cluster population in the Virgo. M87, one of
the elliptical galaxies chosen by Hanes, alone accounted for half
of the total globular cluster population in the Virgo cluster.
Hanes used a fitting scheme to the globular cluster data of
these five galaxies in the Virgo cluster. In order to obtain a
statistically secure determination of the cluster mean apparent
magnitude, Hanes applied this fitting scheme to the sum of all
the five cluster populations. The fitting scheme of Hanes was as
follows:
A normally distributed population is represented by

= __.QL_“——— R (—” (. - ;hjL 'L]
‘ [Czﬂ‘)'/" r] T L " /2'6—

The logarithmic form of this is

l?\}, = In hl —_— W + _12‘ W — M
- ' OREETE——
(ZT‘.)/L o 2.a* o= 26

Hanes introduced a quantity S defined as

S = lr\?,-+ ™ - Const -+ ™ W\

Figure 4 shows the best fit that was determined by weighted

linear least-squares for the data comprising the sum of the
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globular cluster populations for the given elliptical galaxies in
the Virgo cluster. The magnitude G in the figure is obtained
from the color equation

G =B - (0.23 + 0.03)(B - V)
Hanes used data down to G = 22.0 only to ensure for completeness
in the sample. The dispersion adopted by Hanes was ¢ =1.10
magnitudeé.

Treating m in equation (I-3) as a variable free of random
error, the linear regression of S upon m gives the determination
of the mean apparent magnitude m of the globular cluster in the
Virgo cluster galaxies. This determination of m depends only on

the standard dispersion. This is shown in figure 5. The

[

straight line in the figure shows the correlation between m and o -

Table II gives the various estimates of the cluster mean

apparent magnitude m implied by the fits.

TABLE IT
Data set I kil
T ium of five Virge cluscer | 23.38 £ 0.05
galaxies globular clusters
Same data as above to 23.48 + 0.05
G = 22.25
NGC 4374 23.15 + 0.53
NGC 4406 23.23 + 0.08
NGC 4472 » 23.61 + 0.04
NGC 4486 (M87) ] 23.26 + 0.05
NGC 4526 23.05 + 0.15
NGC 4596 23.12 + 0.18
NGC 4647 23.35 + 0.10

17



The value of @, the mean apparent magnitude of Virgo cluster, as
seen in the above table seems to be in close accord for all the

galaxies.

Taking the calibration established for the Galactic and M3l
globular clusters to be M = 6.91 + 0.10 , o= 1.10, Hanes

obtained a distance modulus to the Virgo cluster as

+ 6-43
= - M = .
Po ('w\ >G~H> = 30 27‘:-_ .45

With data reaching one magnitude deeper than in this study,
he (Hanes 1979) derived the distance modulus to the Virgo cluster
as gy = 30.7 + 0.3.

Harris and Racine (1979) using a similar method found the
distance modulus to the Virgo cluster to be BO = 30.9 + 0.3
which is in accord with the value obtained by Hanes. This is not
surprising since Harris and Racine actually used the same
globular cluster data as Hanes.

By this method, the distance modulus to Virgo cluster can be
taken as ko = 30.8.

The Virgo cluster distance modulus can be obtained 1in
another way by directly comparing the luminosity function of the
globular clusters in Virgo cluster with the luminosity function
of the Local Group globular clusters by making adjustments in the
magnitude scale to account for the different distances and in the
observed numbers to allow for different total populations,

Hanes (1979) used this method to obtain the distance to the
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Virgo cluster. He used an integrated luminosity function for the
globular clusters associated with the five Virgo elliptical
galaxies to compare with the integrated luminosity function of
the Local Group globular cluster populations. The data used by
Hanes for the Virgo cluster globulars extended down to a
magnitude G = 23.8 + 0.3.

Figures 5(a) - 5(d) show the luminosity functions for the
globular clusters in Virgo cluster galaxies and the Local Group
galaxies. The solid points in the figures refer to the globular
clusters sample in the Local Group and the open boxes to the
Virgo sample. The four figures show the luminosity function of
the globular clusters associated with the Local Group galaxies as
it would appear if removed to an apparent distance modulii of
30.0, 30.5, 31.0 and 31.5 magnitude respectively.

Hanes scaled the two curves so that they crossed at G = 22.0.
This point of scaling is completely arbitrary. Froﬁ the figures
it could be seen that the Virgo cluster distance modulus in the
range 30.5 - 31.0 magnitude 1is preferred over other values.
Hanes found that the residuals for a distance modulus of 30.5
magnitude appeared to be scattered randomly around zero, while
the residuals for the distance quulus 31.0 magnitude showed
persistent systematic runs. From this, Hanes suggested that a
distance modulus of 30.5 should be preferred to 31.0 magnitude.
On average, he concluded that the apparent distance modulus of
Virgo cluster galaxies should be taken as

%o = 30.7 + 0.3 magnitude

The Virgo cluster provides an useful link to determine the
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Hubble constant. Its mass lies within an order of magnitude of
the great clusters and scaling outward from it may mnot require
large corrections. Assuming that the recession velocity of the
Virgo cluster of galaxies is CZ = 1100 *+ 68 Kms/sec and that this
velocity represents the full Hubble flow, Hanes (1979) determined
the value of the Hubble constant to be

Hy = 80 + 11 Kms ™! upc™?

Figure 5(d) of Hanes shows that the globular cluster counts
around Virgo cluster galaxies have a shortfall of over a factor 3
around G = 23.7 magnitude compared to the population predicted by
scaling of the luminosity function of globular clusters in the
Local Group at a presumed distance modulus of 31.5 magnitude.
This difference is beyond the explanation range of uncertainties
both in counts and in photometric limits.

A possible explanation might be that the luminosity function
of globular clusters in the elliptical galaxies of the Virgo
cluster is different from the luminosity function of the globular
clusters associated with the Local Group. The Local Group
globular cluster sample is mainly from the spiral galaxies, our
Galaxy and M31. Though it has often been stressed and
demonstrated (Harris & Racine 1979, Hanes 1977a) that the
luminosity function of globular clusters is the same in all kinds
of galaxies, there 1is no compelling reason to believe so. It
would be ideal to compare however the luminosity function of the
globular clusters in Virgo cluster spiral galaxies with the Local
Group globular cluster function. But observations of the

globular clusters in Virgo spirals are too few to give any secure
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answers.

We have two objections to the way Hanes determined the
distance modulus to the Virgo cluster using this method:

(i) Hanes luminosity function for the globular clusters in the
Virgo cluster galaxies is incomplete. He determined the distance
modulus by comparing just the available bright tail of the
luminosity function. The weakness in such a determination is
that the fit can be shifted up or down by >0.5 magnitude.

(ii) The scaling used to match the two curves is completely
arbitrary. Hanes used G = 22.0 as the matching point for the two
functions,. The two functions can be made to match at other
values of G and the distance modulus can be different.

The first objection cannot be checked till the complete
luminosity function of the globular clusters in Virgo cluster
galaxies is known, and this means going to magnitudes fainter
than G = 22.25. The second objection can however be verified
which we did by using the same data of Hanes but making the two
luminosity curves to match at different values of G. Figures 6(a
- d) - 10 (a - d) show such fits for curves scaled vertically to
cross at G = 21.25, 21.50, 21.75, 22.00 (Hanes value) and 22.25
respectively, The conclusion from these figures can be
summarized as follows:

For the various matching points that we used, the curves
seemed to be better matched at a distance modulus of 31.0
magnitude, which is higher than what Hanes suggested. This value
is however not rigorous. The weakness in these determinations
is that the fit can be shifted up or down by more than 0.5

magnitude. More secure determinations can be obtained if the
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peak of the luminosity function of the globular clusters in Virgo
cluster galaxies is compared to the peak of the Local Group
globular clusters luminosity function. This means extending the
luminosity functipn of the globular clusters in Virgo cluster
galaxies down to much fainter magnitudes than G = 22.25 (or
B=22.2) as used by Hanes (1979). It was thought that to see the
peak in the luminosity function for the globular clusters in
Virgo cluster galaxies, one had to wait for the space telescope.
But van den Bergh, Pritchet & Grillmair (1985), taking the
advantage of the good seeing on Mauna Kea and the high quantun
efficiency of the CCD detector at the prime focus of the Canada-
France-Hawaii telescope, managed to get the luminosity function
of the globular clusters in M87 down to a magnitude of B = 25.4,
M87, the giant elliptical galaxy at the centre of the Virgo
cluster is an ideal candidate for making distance determinations
using globular clusters. It possesses a large number of globular
clusters around 2 * 10% and the luminosity function in principle,
could be obtained with high precision. The most exciting result
of van den Bergh, Pritchet & Grillmair was that the luminosity
function they determined for the globular clusters in M87
possessed a turnover at B = 25.0 + 0.3, which was 0.4 magnitude

above the limiting magnitude of their plate.

Figure 11 shows the luminosity functioﬁ for the globular
clusters in M87. From this figure it can be seen that the
globular clusters counts in M87 rises steeply from B=21, flattens
at B = 24 and turnsover at B = 25, This means that the peak of

the luminosity function of the M§7 globular cluster system has
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been reached. Now we have the possibility to compare the two
peaks of the luminosity functions of globular clusters in M87 and
Local Group galaxies and remove the uncertainties seen before in
obtaining the distance.modulus to the Virgo cluster. van den
Bergh and others determined the distance modulus to the Virgo
clusters using this latest observational data on M87 globular
clusters by making the assumption that the peak in the luminosity
function they observed for M87 globular clusters is at the same
magnitude as the peak of the luminosity function for Local Group
globular clusters.

The peak of the Local Group globular clusters Gaussian curve
is at

<Mv) = - 7.3 + 0.1

and has a dispersion

& = 1.20 + 0.05

Using the least-squares fit of a Gaussian with = 1.2 to
M87 data in the range 23 < B < 25.5, the peak obtained by van
den Bergh and others, to M87 globular cluster system was

B(max) = 25.0 + 0.3

Taking a value of <B - V) = 0.80 for the M87 globular
clusters,

V(max) = 24.2 + 0.3

which gives

M (max) = -7.3

This yields an apparent distance modulus of M87 to be

(m - M)V = 31.5 + 0.3

Taking into account interstellar reddening to be
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Eg_y = 0.01 + 0.02
in the direction of Virgo cluster and the total absorption to be
Ay = 0.09 (or Av = 0.07), the true distance modulus to M87
becomes

(m - M)° = 31.43 + 0.3

implying a distance of D = 19.3 + -2.7 MPC for the Virgo
cluster,

Taking the mean velocity of the Local Group towards the
Virgo cluster (Tammann & Sandage 1984, van den Bergh 1981) to be

Av =252 Kms ™!

and the mean velocity of the Virgo cluster relative to the
Local Group (Huchra, Davis & Latham 1984) to be

<v> = 1055 + 40 Kms™ 1 |

the cosmological Hubble flow velocity of Virgo cluster is
found to be

<v> +Av = 1304 + 64 Kms ™1
Using the relation V = HD and taking the distance D of Virgo
cluster to be 19.3 + 2.7 MPC, van den Bergh, Pritchet & Grillmair
‘(1985) obtained the value of the Hubble constant to be

Hy = 68 + 10 Kms~ ! mpc~1
Note that this value is much lower than the one determined by
Hanes (1979) and is closer to the value of Hy claimed by
Sandage & Tammann (1976).

The errors in the results derived so far by Hanes (1979),
van den Bergh, Pritchet & Grillmair (1985) does not take into
account the uncertainty resulting from the assumptionthat the
luminosity functions for the globular clusters in the Virgo

cluster galaxies has the same form as the luminosity function for
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Local Group globular clusters. Moreover, not too much weight
should be placed on the Gaussian form of the luminosity function,
since the bright end of the combined luminosity function for the

Galaxy and M31 can also be fitted by a power law

oM

b (M) « 1o )

where §CM>dﬁl is the number of globular clusters with

absolute magnitude in the range M to M +dM and the value of & =
1.2 + 0.2. For M87 and the other giant ellipticals in the Virgo
cluster, the bright end of the luminosity function can be fitted
by o = 0.8 + 0.2. A luminosity function of the form (14 ) would
not allow distances to be determined using globular clusters
since a slight shift in distance could be exactly compensated by
a change on the total number of globular clusters. An important
test of the distance to the Virgo cluster might be derived from
observations of clusters surrounding spiral galaxies in the
Virgo, whose luminosity function might be expected to match the
luminosity function of Local Group globular clusters. Spirals,
however possess cluster surface densities that are more than an
order of magnitude lower than observed in M87 field. As a
consequence, statistical and non-statistical fluctuations in the
background counts will have a huge effect on the luminosity
function. A superior spatial resolution and limiting magnitude

would therefore be required and maybe the Space Telescope will

help in a fresh attack of this problem.
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Another way to determine extragalactic distances and the
value of Hg is by using the brightest globular cluster in the

galaxy as a distance indicator. de vaucouleurs (1977) derived

distances of three nearby clusters of galaxies using the

brightest globular clusters in the brightest galaxies of these

clusters. The clusters were the Virgo, Fornax and Hydra. Using

this assumption that there exists an Universal Gaussian

luminosity function for globular clusters with mean absolute

magnitude <M, > = -7.3 and standard deviation & = l.l and also

assuming that the total number of globular clusters in a galaxy

N, is related to the absolute blue magnitude of the galaxy

MBO(Q) by

(i-5)

~0-3 [M; (&) 't'“'O]

foa h{t =

de vaucouleurs calculated the distance modulii of the three

clusters. His results are presented in Table IIIL.

TABLE III
CLUSTER VELOCITY DISTANCE HUBBLE ~“CONSTANT~
vV, (Kms ) D(MPC) Kms + MPC~
vir I (E) 1,000 (1+0.07) 12.3 (1+0.07) 81 (1+0.10)
Vir I (E+5) 1,100 (1+0.06) 12.3 (1+0.07) 89 (1+0.10)
For I (E) 1,450 (1+0.09) 17.0 (1+0.10) 85 (1+0.12)
For I (E+5) 1,450 (1+0.06) 17.0 (1+0.10) 85 (1+0.12)
Hya I (E) 3,650 (1+0.06) 40.5 (1+0.10) 91 (1+0.12)
Hya I (E+5) 3,500 (140.03) 40.5 (1+0.10) 87 (1+0.10)
7
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The distances derived to the three clusters using the
brightest globular clusters all gave a value of the Hubble
constant to be around

Hy = 86 + 9 Kms™ 1 Mpc~!

Sandage & Tammann, on the other hand, using a similar method
derived M, = 31.45 + 0.5 for the Virgo cluster galaxies. The
discrepancy in the results merely reflects the unrealiability in
using the brightest globular cluster in a galaxy as a distance
indicator,

We also know that in Magellanic clouds and other late type
galaxies, globular clusters are found which are much bluer and
younger than those found in our Galaxy and in the giant
ellipticals. Thus the concept of an universal cluster luminosity
function has to be used with care. In the next section the
validity of an universal luminosity function is considered. The
results discussed in ghis section for the distance modulus of the
Virgo cluster and the value of the Hubble constant determined

using these distances are summarized in table IV.

TABLE Iv
Source distance mod. Hubble constant Hy
Hanes (1979) 30.7 + 0.3 mag. 80+11 Kms~! mMpc~1
de vaucouleurs (1979) 30.4 + 0.3 mag. 86+9 Kms~! mpc~!
Sandage & Tammann (1979) 31.45+0.5 mag. 50.3+4.2 Kms~! mpc~l
van den Bergh, Pritchet 31.43+0.3 68 + 10 Kms~ ! mpc~!

& Grillmair (1985)

From the Table IV, we see that using globular clusters as
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distance indicators the value of Hy can be anywhere between

50 - 100 Kms~ ! wmpc~! .

I.3 An Universal luminosity function 2

———

In the last section we have seen that using globular
clusters as distance indicators depends strongly on the
assumption that the luminosity function of the globular clusters
in all types of galaxies has the same Gaussian form that peaks at
the same value <M, ) = -7.3 and has the same standard dispersion
a = 1.2, The photometric and spectroscopic data on the
globular clusters seems to demonstrate that this assumption is
not far from wrong (Hanes 1977a, Harris & Racine 1979). Hanes
(1977a) moreover argues that since the distance modulus obtained
to Virgo cluster is not significantly different from the values
obtained by other independent techniques, (de vaucouleurs 1979)
the assumption of an universal luminosity function is quite valid
as it is improbable that the intercomparison of two different
luminosity functions can give rise to a distance modulus that is
within the usual realm of discourse. The validity of an
universal luminosity function for globular clusters in galaxies
of all kinds cannot be thoroughly checked however, as the data
on globular clusters in far away galaxies is still too small to
be reliable. Till the van den Bergh, Pritchet & Grillmair”s
results were presented, the shape of the luminosity function for
globular clusters in M87 was not known completely either,

Consider figure §f again. It shows the luminosity function
of M87 globular cluster systen. The curves show that the

luminosity function is better fitted by a Gaussian having a
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dispersion & = 1.5 rather than ¢ = 1.2, which is the value
that fits the luminosity function for the Local Group globular
clusters quite well. van den Bergh et al. rejected the & = 1.2

magnitude fit at 99% confidence level.

The deviations between the two luminosity functions are in
the sense that M87 contains a longer fraction of luminous
globular clusters than the Local Group galaxies. van den Bergh
et al. tested statistically the M87 and Local Group cluster
samples using the Kolmogoroff-Smirnoff test and concluded that
there is only a 5% probability that the two samples, M87 and
Local Group, were drawn from the same parent population. We can
summarize these results of van den Bergh et al. as:

(i) The luminosity function of the M87 globulaf cluster system
differs from that of the Local Group globulars.

(ii) van den Bergh, Pritchet & Grillmair adopted too faint a
value for B(maX)AIZ.SO_i(L3 for M87 cluster system. That is,
they have overestimated the distance modulus.

(iii) The adopted distance to M31 in the Local Group 1is slightly
in error. Increasing M317s distance modulus by 0.2 magnitude
would increase the probability that M87 and}Local Group clusters
have been drawn from the same parent population to 11%.

The first of these two hypothesis seems to be the most
plausible. A definite decision must wait however till the study
of M87 globular clusters is extended to magnitude levels fainter

than B = 25.4.

The discrepancy between the two luminosity functions is that

there are more bright globular clusters in M87 than in the Local
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Group galaxies. The Local.Group globular cluster sample is drawn
mainly from the Galaxy and M31, both spirals and M87 is a giant
elliptical. The disk components in spiral galaxies may play a
major role in destroying bright, massive globular clusters [Fall
and Rees 1977, Tremaine, Ostriker and Spitzer 1976, Caputo and
Castellani, 1984], leading to a luminosity function that is
different from the luminosiﬁy function for elliptical globular
cluster systems.

We can see from figure 11 that the number of bright globular
clusters missing from the Local Group galaxies to make both the
curves to be similar 1is not much (£ 100). There must be some
mechanism to destroy these globular clusters in spiral galaxies.

In the next section, a few of the mechanisms will be considered.

I.4 Destruction of Globular Clusters

Recent observations of van den Bergh, Pritchet and Grillmair
(1985) have shown that the luminosity function for M87 globular
clusters is different from the function for Local Group globular
clusters in the sense that M87 has more bright, massive globular
clusters than the Local Group galaxies. The use of globular
clusters as distance indicators relies heavily on the assumption
that the luminosity function for these systems is invariant
throughout the Universe. There are a number of effects that
cause the luminosity function to depend on galactic environments.

By astronomical standards, globular clusters are remarkably
similar to one another. 1In particular, most of them have masses
and radii that fall within very narrow limits. Fall and Rees

(1977) considered tidal and evaporative disruption of an initial
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spectrum of galactic substructure that was assumed to span a wide
range of masses and sizes and suggested that what we see today as
globular clusters are the surrived substructures. Figure 12
shows the survival triangle for the galactic substructure. The
sides of the triangle are set by three stellar-dynamical
processes that might 1limit the present gross structural
properties of substructure. A power—law spectrum of initial sub-
structure is indicated by stippling but any spectrum that passes
through the observed globular clusters and avoids the large mass
side of the triangle will do. In the figure 12, we see that all
the globular clusters represented by open circles lie together in
a rather narrow space.

In our Galaxy, globular clusters have a mass interval from
104 Me to 2 * 106 Mo [Harris and Racine 1979]. The reasons why
there are no globular clusters found outside this range could be:
(1) Globular clusters had an initial mass function such that the
expected number of more massive (Mass > 2 * lO6 MO) and less
massive (Mass < 10% Mg) is very small, suggesting that such
globular clusters never existed.
(2) Maybe the low mass globular clusters ( < lO4 MO) are not
seen due to their low luminosity.
(3) Globular clusters outside the mass range 104 - 2 % 106 M,
might have existed but have had sufficient time to disintegrate
during the evolution of the Galaxy.

There are three main stellar-dynamical mechanisms that can
limit the positions of galactic substructures in the mass (m) vs.

radius (r) plane (figure 12). These are:
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(i) Evaporation of stars from the globular clusters (Spitzer
1975).

(ii) Shocking of clusters during passages through the galactic
disk (Ostriker, Spitzer and Cﬁevalier 1972).

(iii) Dragging of clusters into the galactic centre by dynamical
friction (Tremaine, Ostriker and Spitzer 1975; Keenan 1979).

The time scales for these processes are given approximately by
the following formulae:

Stellar evaporation (mean stellar mass = 0.3 Me)

" Y,
+ ~ Y léq‘ ( m/mg\ (r/Pc) Yeors

eV

Disk shocking

-3
+ = L x o (m/m@)(Y/Pc) Jeor

dsh

Dynamical friction (distances ~ 7 KPC)

1

tchg = % IOWs <-m/m@> yeors

When these time scales are set equal to the Hubble time scale,
l:%lOlO yr, they define a “survival triangle” in the ™M -

Im r plane, as seen in figure 12. Substructures outside the
triangle could have been destroyed by any omne of these
mechanisms. The triangle in the figure 1is shrinking and will

continue toO shrink until no clusters remain. From the figure it
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is seen that the triangle 1is not completely filled by the
observed globular clusters, especially at the large mass side.
Dynamical friction must have destroyed the massive clusters and
also it might have destroyed a few smaller ones near the galactic
centre. Fall & Rees (1977) feel that dynamical friétion might
aot have been the important mechanism in setting the maximum
masses of the surviving substructure, suggesting that the
original mass-radius relation of substructure somehow.avoided the
high-mass side of the triangle.

The difference between the luminosity functions of M87 and
Local Group globular clusters 1is in the sense that bright,
massive clusters are missing in the Local Group galaxies, while
they exist in M87. The main galaxies in the Local Group are the
Galaxy and M31, both Sb type. Dynamical friction is a process
that preferentially destroys larger systems. The disks in the
spiral galaxies might have played an important role in
contributing to total dynamical friction, while dynamical
friction is not so enhanced in elliptical galaxies.

Grillmair et al. (1986) recently published data on the
observations of globular clusters in the core region of M387,
using CCD techniques. They examined the distribution of globular
clusters in M87 down to B = 24.4 as a function of both magnitude
and projected radius and looked for any radial changes in the
luminosity function that might be indicative of mass—-dependent
evolutionary processes such as dynamical friction and tidal
disruption. If these processes exist, they produce a

distribution in globular clusters that is somewhat depleted near
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the core,

Their results are:

(i) Up to a magnitude of B = 24.4, there seems to be no
significant radial trend in the globular cluster luminosity
function in the region

20 < r < 160 arc.sec. of M87

(ii) The data suggests that the radial surface-density profile
for the globular clusters is flatter than the galaxy luminosity
profile,
(iii) Simple model calculations carried out by Grillmair et al.
have indicated that globular clusters near the core are not there
because of dynamical friction, suggesting that dynamical friction
is not very effective in M87.

In spiral galaxies dynamical friction might be more
important and can be the mechanism to destroy bright, massive
globular clusters. Caputo and Castellani (1984) found that in
our Galaxy, there are no massive globular clusters (¢ > 106 MO)
present at radii greater than 13 KPC, suggesting that all these
massive globular clusters were dragged to smaller radii by
dynamical friction.

Determination of distances to faraway galaxies using
globular clusters is based on the assumption that the luminosity
function of globular clusters has the same form in galaxies of
all types. There are effects like dynamical friction which
destroys massive, bright globular clusters thus leading to a
luminosity function that could be different in different types of
galaxies. Recent observations on the globular cluster systems

in M87 has indeed shown that the luminosity function for M8§7
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globular clusters is different in shape from the function for
Local Group globular clusters in the sense that there are more
bright globular clusters present in M87. The disks of spiral
galaxies might be responsible for enhancing mechanisms that act
preferentially on massive systems. Dynamical friction is one
such mechanism and might be responsible for the absence of
massive globular clusters in spiral galaxies. In the next
chapter, the theory of dynamical friction will be discussed in

detail.
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CHAPTER TWO

Dynamical Friction

Dynamical friction possibly plays an jmportant role in the
evolution of galaxies and of their satellite systems. Tremaine,
Ostriker & Spitzer (1975) and Tremaine (1976a) have considered
the possible formation of nucleii of galaxies by the spiralling
of globular clusters from spherical’stellar bulges, due to
dynamical friction. Ostriker and Tremaine (1975) and White
(1976a) investigated the possible luminosity and dynamical
evolution of large galaxies due to the spiralling in of smaller
companion systems and theilr eventual disolution in the larger
systems. Keenan (1979) discussed the possibility of globular
clusters around massés ~'106 Mo being removed from the disk of
our Galaxy by the action of dynamical friction.

In the 1last chapter, it was suggested that dynamical
friction might be an effective mechanism in removing bright,
maésive globular clusters in spiral galaxies, causing the
luminosity function of the globular clusters in these galaxies toO
be different from the one observed for the globular clusters in
elliptical galaxiese. A detailed, comparative study of the effect
of dynamical friction on globular clusters in spirals and
ellipticals might be the answer to really understand the
difference in juminosity functions observed for spirals and
elliptical globular clusters. Since this difference is mnot very
large, we expect the action of dynamical friction to be small but
sufficient enough in removing the massive globular clusters 1in
spirals. Analytical treatment of dynamical friction between

spiral galaxies and satellites have been carried out by Goldreich
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& Tremaine (1979), Palmer & Papaloizon (1982) and Palmer (1983).
But these works have generally been restricted to sufficiently
weak interactions so that the linear perturbation theory could be
used. Moreover, it was shown numerically [Quinn & Goédman
(1986), Byrd, Sarinen & Valtonen (1986)] that when the
interactions were strong, linear theory could not be used even
for rough estimates as it predicted wrong signs for certain
effects. For example, Byrd et al. got results opposite to Palmer
& Papaloizol”™s analytical treatment of cold disks.

In this chapter, the general principles of dynamical
friction are reviewed. Section II.l1 gives the Chandrasekhar”s
formula for dynamical friction. Section II.2 discusses the
applications of ‘this formula and in II.3, the validity of
Chandrasekhar”s formula is discussed. In section II.4, dynamical
friction in spherical systems is reviewed. In section II.5, the

numerical work on dynamical friction is reviewed.

I1.1 The theory of dynamical friction

A massive object passing through a collisionless medium
induces a wake of accreted matter. The gravitational field of
this wake produces an effective deceleration on the object known
as dynamical friction.

Chandrasekhar (1943) derived the force of dynamical friction
for a point mass moving through a homogeneous background of
particles with an isotropic Maxwellian velocity distribution, by
simply adding the exchange of momentum for the wvarious

encounters. He showed that the dynamical friction or the drag
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force on a test object of mass m through an

s moving at speed v,
infinite homogeneous medium of stars with a Gaussian velocity

distribution with one-dimensional dispersion ¢ is

dVs = - 4T G m ¢ (2 V) Cq)(x)_xcpl(x):}‘n/\ (21)
dt Vo *

where 5’64%) is the total density of the background stars with

speeds less than Vg

X = 2. Vs
V= T
¢ = error function
and A FMQ*/P where Ppax and Ppip are the maximum and
min )

minimum impact parameters respectively.

Dynamical friction is a second order effect in mg, since the
force on my is YW:'. Chandrasekhar”s formula (eqn. -1 )
neglects the self-gravity of the background medium i.e., it
considers only the interaction of the stars with the test object

and not with one another.

The maximum impact parameter, is usually taken to be

pmax >

the scale size of the background field of stars and the minimum

impact parameter to be F = Maxr (Y‘s, G‘W\s) where r  is the
M;‘h \l’-

size of the test object. s

The exact wvalue of f\:Fwnx is however not well-defined.

P amin
Chandrasekhar (1943) had showed that if all the background
particles could be treated as point masses, then Ppip should be
taken as G\WB , Where <v2 > is the rums velocity of the
2N*2
background. White (1976 b) derived the minimum impact parameter

for extended objects that could be applied to globular clusters.
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Consider an encounter between a cluster and a field star with
impact parameter p and relative velocity at infinity v. The
deflecting force on the star perpendicular to its initial

direction of motion to first order is given by

FJ_ = GmM P (22
ra

where G is the Gravitational constant
ris the distance of the star from the cluster centre
m is the mass of the star
M{(r) is the cluster mass contained within radius r.
Integrating the force (2.2) along a straight undeflected
path, the total change in velocity of the star perpendicular to

its initial direction of motiomn is obtained as

0
AV, = L& P M(r) dv (2-3)
L v J T = .\l= :

As a result of the encounter the star is deflected through

an angle,

o0
e M) dr C2-4)
esYoT AR TN b
P v

where Y is the measure of deflection (Chandrasekhar 1943 a).

Following Chandrasekhar’s treatment exactly, we obtain

'mam Z
lo Pwoux -V | p? [ M e ]ap (=5
a’e P oonin M A le’L" P ) -

Here M, is the total mass of the globular cluster.

If Mt is assumed to be the mass contained within some tidal
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radius T then the integral in eqn.(2.5 ) can be evaluated over

the range r, { P and equation ( 28 ) reduces to

pmax
e

Ve sy
5 = 1 p3 [ f M(e)dv ] a¥f (2:¢)
Méz . T11:Y3;PE>”L .
[o]

This treatment requires that cos ¢ should be small for all

lo%e (_f_‘i

Pwﬁﬁ

encounters at typical field star velocities and this means, Grfiﬁea/ a\

PV
must be small for all P. Therfore this does not hold good for an
object with high central condensation or small extent. For
compact objects, Chandrasekhar’s F’ . = Gians is sufficient.

s %
FAY

White (1976 a) evaluated Ppip for a series of King”s models and

found that the values of Ppinp Were always close to 1/5 of the

tidal radius. White”s results are shown in Table V.

TABLE V

R Poin/Tt B '
6.05 0.27
9.08 0.24
27 .40 0.17
55.80 0.16
107.00 0.17
181.00 0.19
432,00 0.21
1740.00 0.21

Here ¢ = rt/rC measures the central condensation of the

cluster model and P /r, was calculated from equation (2-£).

min

Tremaine, Ostriker and Spitzer (1975) in their calculations
to determine dynamical friction on a globular cluster spiralling
into the centre of the galaxy (they chose M31) chose the minimum

impact parameter to be Pmin = F (core radius of the cluster).

core

This means that their evolution of the orbital rates are large by
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a factor of nearly 2.

As /\ = Pmaxlpmin enters logarithmically in the formula for
dynamical friction (equation 2.1), it 1is often not treated
rigorously [Tremaine 1976, Keenan 19791, so the orbital rates

determined are always Wrong by a fator of two or motre.

I1.2 Applications of the Chandrasekhar’s formula

Equation (2:1) was applied to study the evolution of cD
galaxies 1in rich clusters [Ostriker & Tremaine (1975), White
(1976b)], the formation of galactic nuclei (Tremaine, Ostriker &
Spitzer (1975)) and to study the orbital decay and eventual
merger of satellite galaxies with parent galaxies [Tremaine
(1976a), White (1978) & Lin & Tremaine (1983)]. It seems that
the dynamical friction formula of Chandrasekhar gives a reliable
rough estimate of the rate of orbital decay, though doubts were
raised by White (1983), in his numerical calculations. The
frequency of mergers of satellite galaxies 1is relatively small
unless the central galaxies have extended massive halos. If the
halo mass distribution is an isothermal sphere with one-

dimensional velocity dispersion s , the density at radius T is

given by
2
fCT) = 6 C;J})
2MGre™

A satellite in a circular orbit then has a speed given by

N¢ = J3. & (2-2)

From equation (2-1), the evolution of the satellite’s orbital
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radius Y, <can be calculated by

s
T (e) = () — 0-605 Gmgt  In A (2.9)
< [}
or A _i
> € ms loo Km,s—')‘n}\]
g (£) = {:Y‘s (o) — (B2 ree) ( /‘0'03"‘) s S ) g0 km
lo He
(210}

where m, is the mass of the satellite.
Let us suppose that the number of density of satellites
initially 1is n(r). Then the flux through a given radius 1is
proportional to $Ln(w) dwz;t which is proportional to r*n(r).
If the number density n(w),gy:Q, a depletion of massive
satellite galaxies at small radii for ¥ 2] and an over abundance
of bright close satellites for Y« | is expected. Peebles (1980)
gives Y o 1.8 . From the above hypothesis, therefore, a depletion
is expected. The amount of depletion can however be uncertain
because tidal stripping may reduce the mass of the satellite m

S

and thus ls%i , as the satellite spirals in. Ostriker and
Turner (1979) point out that depletion may also be masked by
brightening of spiralling galaxies due to tidal shocks which
induce star formation. Observations of depletion [Ostriker &
Turner (1979) & White & Valdes (1980)] are not very clear amnd do
not give an evidence for or against the rapid decay rate and
short lifetimes of nearby satellites predicted by the dynamical
friction formula [equation (2-1)] if massive halos are present.
Tremaine (1980) gave a rough estimate of how much mass a
typical galaxy can accrete in the form of small satellites. The

number density of galaxies of mass m_ at separation r from a

S

given galaxy is (Peebles 1980)
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Y

n (e, mg)dmg = no(“"s)‘:‘\ms("%) 2
L heve nO C”W\S ) dms s the -Ft'e.{d Aens:'i&

Y o % r, = 3k Mec

Equation ( 2.1t ) is valid for << ¥, . The field density,
m;ﬂﬁﬁan be obtained from Schechter”™s (1976) luminosity function

assuming that M/L is a constant, as

Ne(m,)dm, = ﬂ*(_\f_n_s_ Yxe"i’ (_ w:*> dmg (2

M* M*

where

n® = 6.0k’ Mec?
mx  _ et ox e W ML) Mg

X - - 25

Using equation (2.9) to determine r(o) for r(t) = 0, a typical

galaxy accretes o)
) -3
chc = f'noCm5> 2%) C\M_s L <Plho> v dv
"'*—""’* ™M
™m
o o
or 06 -26

-

' 1.6
Moaee - Ll X|08[(H°{;) In A ( ‘_9_?__?-_“.?_5-:‘)] <H1L> H@ h

where

-f\ - Ho/ - -1
- loo kwms MPe

Taking

= Iyokme | M N6 peyl  hRl 4w 2
L
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which are reasonable values, the mass accreted by a galaxy is

then

2.04)

¥ b x lo H C

Mace ~ ©

which is comparable to the mass of the Large Magellanic cloud.
The mass accreted by a galaxy (equation 2.i4 ) is almost 10%

the total mass of the disk in our Galaxy. If these estimates are

correct then most spiral galaxies must have absorbed several

satellites in 1010

years.
Tremaine (1976a) estimated the decay rate of the orbit of

Large Magellanic cloud due to the halo of our Galaxy by applying

Chandrasekhar”™s formula (equation 2.} ). He assumed the mass

distribution of the Galaxy to be spherical leading to a density

distribution,

2
= o Y 2 Yaax

where V., is a constant circular velocity in the outer parts of
the Galaxy and ,
T oax => an adjustable outer radius of the Galaxy, beyond
which the Galactic mass density is assumed to vanish.
The present mass and distance to LMC are M =15 X‘Omﬁa D= Bxpe
LMe ’

The parameters for the orbits of the LMC used by Tremaine are

given in the Table VI below.

by




TABLE VI

Parameters gg'model orbits 2£ LMC

r®2%X (KPC) 200 200 30 30
vC (Kms™ ! ) 950 Kms 200 250 200
(local rotational

velocity)

Time at which
LMC is disrupted 2 * 109 2.1 % 107 2.6 * 109 3.6 % 107
(yr)

Figure 13 shows the plot for the radial component. The LMC orbit
evolves considerably over 1010 years in all models.

According to the results of Tremaine, the orbit of the LMC
decayed considerably in 1010 years and finally will be tidally
disrupted by the Galaxy.

The acecretion of LMC and such similar satellites would
suggest that the luminosity of the Galaxy will change
significantly in time. For example, the luminosity of LMC is
MB = -18.2 [de vaucouleurs & Freeman (1972)]; PQB(GALAKY)Jv -19-%F .

The accretion of LMC causes a change in the luminosity of

the galaxy AJ‘B = —0.24 within approximately 37(\03 yearss 1f

this value was typical in the past, then

AHB )
._’-——-O\t ~ - 0 0% mag-/ (Osjeo\ys

These rough estimates predict that galaxies may increase in
juminosity by accretion of satellites due toO dynamical friction
at a rate exceeding -0.05 magnitude/109 years. The frequency Of

such mergers however is quite small, wunless galaxies have
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extended halos, which they do [Faber and Gallagher (1979)]. This
eating of small satellites by larger systems does has
cosmological implications, which will not be considered here.

The sinking rate of a globular cluster due to the halo alone
of a galaxy can be calculated as following. Suppose a globular
cluster at radius rg;, is moving in a circular orbit with velocity

V‘ in an isothermal halo distribution with one—-dimensional

velocity dispersion ¢~ and density at r given by

2
o
f(f) - 6~ ( 218 )
2T Gy ™
The deceleration rate of the globular cluster wusing

Chandrasekhar”s formula [equation 2.1] 1is

dve L~ 4Tem, o7 In A (2 16)
dt Vg™ 2 Gy ™
dVs ~  — GmglnA (2-1%)

Then the rate of evolution of the orbital radius rg of the

globular cluster due to the dynamical friction of the halo is

Aa;) ~ = Vg GmgIn (. 1%)
_—C—k—g halo 2_5—'-2'3'
43 ~ — 0:3 &™Mg  |aN Cz-13)
dt ) halo —q:§7

Taking typical halo parameters, mass of the halo My = 101l Mg»

extent of the halo Ry = 20 KPC, the sinking rate of a globular

cluster of mass of m, = 106 Mo in a circular orbit atradius 20
KPC 1is
~4
ATS ~ — |5 x lo k.Pc./ <2'2.c)
At jear
halo
Here4N:: ElH where T, =100 pc, is the tital radius of the
6:5 % %
.h

Lb



globular cluster given by King (1962).

In 10lo years, the globular cluster sinks from an initial
radius of 20 KPC to 19.4 KPC only, which is negligible.
However, to check for the total dynamical friction on a cluster
moving in a galaxy it is necessary to combine the friction due to
all components of a galaxy, for example; the disk, spheroid and
halo components in a spiral galaxy. The results of the sinking
rate depend on the galaxy model used because dynamical friction
is directly proportional to the density of background stars.
Realistic models of the galaxy are absolutely necessary to get
correct values of dynamical friction.

The dynamical friction on a globular cluster due to the disk
of our Galaxy has been computed by Keenan (1979). Using
Chandrasekhar”™s formula for dynamical friction, Keenan found that
globular clusters in the mass range 10° - lO6 M, are removed by
the disk provided that the globular clusters are close to the
disk (R 4 KPC) and their 2 peculiar motion is not too large.
He found that dynamical friction due to the disk acts first to
reduce the pecular motion of the object to zero (relative to
circular motion) and then to cause it to spiral in towards the
centre along with galactic plane.

The Galaxy model chosen by him was that of Innanen”s
(Innanen 1973).: This model consists of nine spheroids developed
to fit the observed kinematical and stellar distribution of the
Galaxy. Four of these spheroids represent the disk, four the halo
and one, the nuclear bulge. The halo component is not modelled

quite well and this makes this model uncertain. However, Keemnan
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was interested studying only the effect of dynamical friction due
to the disk, as he found that the dynamical friction due to the
halo is negligible unless the cluster has a mass Z'lo?lﬂo .
Figures 14 show the decay times to circularity for non-planar
orbits. The total decay time for a cluster is the decay time to
circularity plus the time for the cluster to spiral towards the
nucleus to ¥ ¢ L kpe . From the figures, it can be inferred
that a globular cluster of mass ~ ':l.xlos Mg will have its
orbit circularized in L 6 * 102 years if its maximum & amplitude
is < 1 KPC, In 1010 years, objects ofmass > 3.5 * 105 M, and
initial z amplitude { 1 KPC have their orbits circularized. The
dotted contours in the figures represent those initial orbital
parameters such that the globular cluster decays to r 2 KPC in

a time 1010

years. All orbits with initial parameters to the
left of this line decay to r < 2 KPC in less than 1010 years.
This means that massive clusters can be removed within the 1life
time of the Galaxy. ‘

For a cluster inside the disk, its velocity v with respect
to the disk material is very small, though it is not absolutely
zero because of asymmetric drift V_ 4, of the spheroid. Figure I5

indicates the sensitivity of dynamical friction to the velocity

dispersion ¢ and the asymmetrical drift Va.ae

When the cluster is in a near circular orbit, its velocity V
is close N;‘VQA for that particular spheroid. This corresponds
to X <1 [ x = JA ¥V ]« In the figure 15 it can be seen

Jz &

how sensitive dynamical friction is to the exact values of N and & -

Because the dynamical properties of the Galaxy are not known
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exactly, except perhaps the rotation curve, the estimates of the
decay times for circular orbits are quite uncertain.

The results from Keenan’s work can be summarized as follows:
(1) Globular clusters of masses ) 4 * 10° M, whose orbits are

confined to the disk will be absorbed in 6 1010

years.
(2) Dynamical friction acts first to reduce the peculiar motion
of the cluster to zero and then cause it to spiral in towards the
centre of the galaxy.

Chandrasekhar”s formula [equation 2.1 ] has been widely
applied to get sinking rates of satellites in galaxies. The
results obtained however are not exact because of the various

approximations used in the computations. 1In the next section,

the validity of Chandrasekhar’s formula will be discussed.

I1.3 The validity of the Chandrasekhar”s formula

Chandrasekhar”s dynamical friction formula (equation 2-1) is
simple and appealing and as was seen to give reasonable estimates
of the decay rates in various cases. However, the formula is mnot
rigorous and it becomes too difficult to generalize it from an
infinite homogeneous background system to a finite inhomogeneous
system, which galaxies generally are, or simply to a spherical
system. The main problems associated with the Chandrasekhar’s
formula for dynamical friction can be listed as follows:

(1) The exact value of N=1p_ _ /p ;, 1s not well-defined.

The value of pj i, can be given quite accurately as was see€en
before, but the choice of p, ,, = size of the background system 1is
only a device to remove a divergence in the formula (equation

2:1) for an infinite homogeneous system. The logarithmic dependence
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on poa*, the paximum impact parameter suggests that most of the

contribution tO the deceleration comes from encounters with large
impact parameters, for which an infinite

homogeneous model of the galaxy is a poor approximation.

(2) Equation (2.1) shows that the deceleration is proportional
to the 1ocal density j’ . If the satellite orbits just outside
the galaxy then equation (2-\) predicts that there should be no
drag since feo . But numerical N-body experiments (Lin &
Tremaine 1983) have shown otherwise.

(3) 1t is mnot possible tO generalize equation (9.4 ) to 2
spherical system. Dynamical friction apparently violates
Poisson’s theorem 1in celestial mechanics, which states that in an
N-body system there will be 1O gsecular energy changes in first or

second order perturbation theory. GClose encounters with % = Gimg

-—
Vv
cannot be treated by perturbation theory but these contribute

only a fraction N:Gﬁfcg‘of the total drag force. Equation (21)
shows that the force on the satellite 1is MS% oL qu_ , SO
dynamical friction 1s a second-order perturbation. Therefore,
the drag given by equation (21) cannot be reconciled with the
Poisson’s theorem.

(4) Equation (21) neglects the self-gravity of the background
medium. It considers only the interaction of the stars with the
satellite, and not with one another. Kalnajs (1972) computed
dynamical friction in a galaxy model consisting of a uniformly
rotating sheet of stars. This is the only analytical model 1in
which the collective effects due tO the self-gravity of the stars

are included. Kalnajs found that the collective modify the stars

response in such a way that there is no dynamical friction, at
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least in linear theory.

The difficulties associated with Chandrasekhaf’s formula can
be seen from the following simplified example.

Consider a star in a galaxy which is initially on a circular
orbit in the plane of the satellite orbit. Suppose that the
satellite is on a circular orbit with radius r . The angular

speed of the star { is given by
1/
1 du] = (221
T dy 4

where u(r) is the potential of the central galaxy and r is the
radius of the star.
The potential from the satellite is written as a series of terms

of the form (Tremaine 1980)

ey

@S = CPMC;() Cosm (8- S t) (2-22)

where Jg=J1C§>is the angular velocity of the satellite
i) is an integer
) azimuthal angle in the orbital plane.
The equations of motion of the star due to a single term in the

perturbing potential then are

A:Z‘Y/dkz - Iz/f 3 = “-g-:_i — d b cosm (6- Nk) (2:23)
Ar
dr/dt = W¢MgfmmC@— Nk ) ( 2-24)

where J = {Ld¢/ is the angular momentum.
dt
Suppose the perturber is turned on at time t = 0 then the

solutions of equations (2-23 ) and ( 2-24) to first order in @ re
{:dd)ml + 28¢,, / ]
de H (-0 /
3 ‘Z.— L(\%-\ns)

%c.os CmCao-0de + me, | — cosi cosvn + M (No=Ag Y Gink t Sinme
Ko

N, o)
+ 28, .. (Yo Cos m&, (1 — Cos kg &) (2-25)




where (?%)eo) are the initial co-ordinates of the star at t=0

Sy = $LC¥p) » angular speed at t=0

¥ = epicyclic frequency given by kl-_-_ [A-‘"u + 3-'—-‘5_\}_-'.1
° e Y 3¢
o
and
Y, = - Cfbmn >§L Cos [ m(Np-NDt + fmgo]..cosmeoz (226
L - flg

From the solution it is seen that there is no secular torque on
the star to first order. Calculations carried to second order
show the same result. Furthermore, there is no increase in the

star’s energy since

é.e.. = \Q‘s é_s:.
d& dt

by Jacobi”s integral. Consequéntly, there is no drag on the
satellite analogous to dynamical frictiom which is also a second
order effect in the perturbing potential. This was also the
conclusion reached by Kalnajs (1972).

The resolutions to the proSIems (1) - (4) are all related.
First, consider only close encounters. That is, in the Chandra-

J P'm«:n( = ZFMM

For these encounters the approximation of an infinite homogeneous

sekhar”s formula [equation (2.1)]

background is valid since the impact parameter is less than the
scale size of the system and the given star is unlikely to have
more than one close encounter. This restriction decreases the
drag force in equation (21 ) by only In AN . A lower limit,
therefore can be obtained to the drag force using Chandrasekhar’s

formula by putting Ja AN ~ V.

Second, from equations ( 2-25) and (2-26) it can be seen that
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the first order perturbations r; and J; diverge at

2. 2
ko = wm? C Jla-—\DSB [Lindblad resonance]

and JL = JL

< [co-rotation resonance]
Therefore, the perturbances near these resonances are large.

Moreover, it is seen that the second order torque d32 has

pE—

d€

periodic terms of long period near these resonances.
Consider the Lindblad resonance at K = *ﬂ(Aﬂo—Jk) . The

second-order torque near due to divergent long-period terms is

ds2 - - & S+ 2md 4, G om0 adJE (2008)
x 2
4 G, T K= (- 0
where ¥ is the resonance radius defined by
L.

K = (N - Ng )
The torque on a given star grows o & until it drops out of
resonance at ~ Il . As time goes on the number of stars in
resonance decreases as 1/t but each star feels a torque ot .
Thus the total torque is independent of time. The more general
form of equation ( 2°2%) can be found in Lynden-Bell & Kalnajs
(1972), who also recognized the existence of secular torques at
resonances., Equation ( 2-23 ) eventually fails because the
perturbations on the stars which are still in resonance become
non—linear. However the evolution of the satellite orbit will
bring fresh stars into resonance so that a secular torque
continues to be present always . In a real galaxy, with eccentric
and complicated orbits for the satellite and stars, the resonance

structure is more complicated than a single Lindblad resonance.

However, it can be seen that near-resonant stars in a galaxy can
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exert secular torques on a satellite.
These torques are analogous for spherical or axisymmetric
systems of the drag force given by Chandrasekhar’s dynamical

friction formula for infinite homogeneous systems. To sece this,

.

consider a resonance with azimuthal wave no. wn e~ t <« Then ¢ NCKWg
W j;-
where m, =mass of the satellite
r = orbital radius of the satellite

The epicyclic frequency K is set to JL - The number of field
stars in an interval d&is given by N ~ f«-’"db/\n.
where f is the mean density of the galaxy.

Considering equation ( 2-2%) and integrating it over A,
Ehy L 2. 2%
L/ét ~ G f/lnzf‘ C J

is obtained. Chandrasekhar”s formula equation (2.1) gives the

same result: drl/d ~ "W\s > dV
B de
2 2. -,
o GL mszgY ~ G\.’Y\ﬁ.s f C2'2'3>
v * 0wty
In principle, the exact frictional force on a satellite in a
given orbit in an axisymmetric galaxy can be computed. The
resolutions of the problem (1) - (4) can be summarized as
follows:

(1) The divergence in the drag formula from an infinite
homogeneous background arises because the discrete resonances in
a finite system have been replaced by a continuumn. Putting Pnax
= size of the system gives approximate results but for a rigorous
result, one has to sum the secular perturbations from all near-
resonant stars.

(2) Drag force s can occur even if the satellite orbits outside

the galaxy, so long as it has resonances which lie within the
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the galaxy, so long as it has resonances which lie within the
galaxy.

(3) In a galaxy with 10ll - 10l2 stars, there are always stars
which are close to resonance that their perturbations have
periods which exceed the evolution time of the system. These
secular terms can produce decelerations despite the Poisson
theorem.

(4) Kalnajs” model has artificial properties that make it
unreliable to guide to the behavior of more realistic systems.
Foremost among these is the fact that since the unperturbed
stellar orbits all have the same epicyclic frequency there are no
orbits resonant with the perturber except for very special values
of the perturber”s own orbital frequency, whereas at least when
self-gravity is neglected, dynamical friction is due entirely to
resonant stars [Tremaine & Weinberg 1984].

White (1983) showed in his N-body calculations that the rate
of orbital decay is suppressed if the self-gravity of the system
is neglected. This will be discussed in the final section of
this chapter, where the numerical works done so far to study

dynamical friction in systems are reviewed.

I1.4 Dynamical Friction Formula in Spherical Systems

Chandrasekhar”s formula for dynamical friction is only
approximate and it was shown how the formula becomes difficult
when trying to geﬁeralize it to realistic systems. In this
section, a convenient expression for the torque on a satellite is
given which is applicable to spherical systems. For many

problems in galactic dynamics, the underlying stellar
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distribution is better described being spherical rather than
homogeneous. Therefore, it is worth understanding the mechanics
of spherical dynamical friction, how much it differs from
Chandrasekhar”s theory of dynamical friction and the limit in
which they agree in the context of orbital decay of satellites.
he detailed arguments for computing dynamical friction in
sphericals can be found in Tremaine & Weinberg (1984), Weinberg
(1985) and Weinberg (1986). An alternate formula for the orbital
decay of a satellite in a spherical system has also been
calculated by Palmer & Papaloizon (1985). The main difference
between the two formulae is that Tremaine & Weinberg neglect
self-gravity while Palmer & Papaloizon include self-gravity in
their theory. Both the formalisms and results will be discussed
in this section. It should be added however that these analytical
results were restricted to weak interactions where linear
perturbation theory could be used.

(i) Tremaine & Weinberg formula for drag force in spherical

systems
Consider orbits in a spherical system. For a given orbit,

the angular momentum J and energy E are constants of motion given

- ll;__
by T= (w4 + v4cin*ed ) (2-30)
Lo 2
E = =¥ TIT L ouded Cz-31)
2y

where u(r) is the unperturbed gravitational potential a spherical
galaxy modeled here as an isothermal sphere and (ﬂg%¢) are the
usual spherical co-ordinates. The energy equation (2-3} ) has
real solutions for r only when 'YPg.yv "Y‘o, where ‘YP and "r‘o\ the

periapse and apoapse satisfy
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E = 3%  _ uc (2-32)

[E———

2%

For an orbit confined to the plane, there are two characteristic
frequencies: a radial frequency and an azimuthal frequency. The

radial frequenchLland radial period t_. (time from periapse to

r
. : b Y“
periapse) are given 2131’_’ . dv (-32)
= = ¥
-tr v}’: E'y LZCE-U)—I’./*’L} *

In one radial period the star advances by an angle in the plane

of its orbit d¢ where OY= R €, and ,Q_,_ -

._—-u

l[z(e -0 ___3-1 Jl/:_

the radial action is

1
1

A set of canonical wvariables "’ [_I' I_“Is]_—_ [IT,ZY’T;_] are
hereafter used to describe the spherical system by Tremaine &
Weinberg. The conjugate co-ordinates are the angles(}%,hadkg>.

The quantities J. are constants of motion and Mﬂ are periodic
J

functions of time. The angle N‘ described the phase of a star”s

orbit in its radial oscillation and is given by Jl d[ hif)
€ 2¢ce~ud —3’,,‘2-1

The integration contour C; goes from periapse to the current
position. The integrals are line integrals which increase
monotonically along the orbit. It follows from equation (2.33)
that LA is zero at periapse and increases by 2W in one radial
period.

The second angle Wy describes the mean angular phase of the
orbit in the orbital plane. It is given by -

-q
W, = gp-i-_( lavl [2Ce -0 -ZS’-/\,] l@;:r/y—?-) (2-35)

2

where ¢ = T 5 \dG\ [ 3-‘2..__3. ]S{mlel-llz (2.-3@)

The integration contour Co starts at an ascending node, that is

S:T_[)ed.o
2
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To interpret the angle Y s an inclination B is defined,

by
T cosp (2-32)

L

Ta

Integrating ( 23 ) Sin ¢ Sin P = Cos@ (2- 3%)
The quantity Y 1is the angle from the ascending node to (r, 6,@)
measured in the orbit plane along the direction of orbital

motion. It follows from equation (2.3%) and (2-35) that in one

orbital period bw-z - by

The third angle ws » the azimuth of the ascending mode is a
constant since E is independent of 3; .
The Hamiltonian equation for a particle of unit mass in the

. e SN S A . q
unperturbed galaxy potential u(r)) H, = _‘2.._ ['{L-\-’a‘ B +7 ch?’ecp FUCH)
(233

From equations (2.3 ) - (2.34) it is seen that

.B_:Er.b = --l———-v ) BI\*) - — \Q‘L
2EJ7 S, o1 Je 3, ,
so that ! Cz 40>
(35 ) = 3, < B = 0 -0
2T nJ T T a:r% 5

defining

\n"% = 0 N BE‘ = Jlj C'Z'LH)

oI

The Hamiltonian H_ equation for a particle of unit mass in the

unperturbed galaxy potential u(r) is eqwn. (2:39) .

In terms of the new variables G:' w.\, the Hamiltonian H_ can be
LA °

written by solving equation (2.34) for E=H,. Since H, depends

only on 1;) T, the equations of motion in the new canonical

variables read
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de — 2Ho = ¢

[POE—S.

i

dt Swj (z 42)
aw:
— = S He = ‘Jlj (: I, I%.)

ct.'é: an

To obtain the perturbing potential, the satellite is assumed to

move on a circular orbit which has the azimuthal frequency given

by
T A |l 2u (243>
S — ey
Y ¥
The perturbing potential is expanded in spherical harmonics

(McMillan 1958) as

Us CZ > ) - Z Z d qu(:l‘) \/vl.ws CG} (b‘r‘ot-} C?" QQ)

N M= -

where (b*(o-\- -:_fi)-\ﬂs-t . The 1=0 term in equation (2.44) can be
omitted since it does not contribute to the torque and can be
absorbed in the galaxy potential u(r). me are independent of
time 1f it is assumed that the intrinsic structure of the
satellite does not evolve with time..

Since the motion of an unperturbed star is periodic in the
canonical co-ordinates W) , the satellite potential may be

J

expanded in a Fourier series as

=) AN
US = 3. > P CI , I 13>Cosédw+~lz_w + W, JQ{:‘
LS:D 4 ,J,?_:—GQ <€, J"-"‘&

s dy—od
where (' )\1 <: 8 R o
h (_f CI T_ I (\+§%§7 (F )

iy d, ;
;‘:f dw, Cos [a,w, - d,_@p—w,_)__( V4 lT
0

L3 =equivalent to index m in equation ( 2:4Y)
P = 1s the inclination defined in equation ( 2.33)
Since\kéggis even in b?bh’ the terms with a given 13 may be

combined with those for ~L3. Then LB goes from 0 to e instead
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KSQSHQ

- . o i ined = nl>d o [m]sod d e
of A U!nmls defined as V-lnm 0 [ l )> and Y‘MVC\'B
are rotation matrices, which satisfy the orthogonolity condition .

The total Hamiltonian H can be written as

Bo= By v Ug(x &) (2 - us)

where Uscfﬂf) is the perturbing potential (equation 2-4y)

The equations of motion become AT-J' - —OH = =

At 2w 2w, C2 )
dwy - 24 - Sy DY
e >IL; BT

To compute the torque on a single star, it is assumed that
o L) 2« |
U
Then the Hamilton”s equations (2.4t) can be solved by successive
iterations. To first diteration, the torque is computed by

iterating around the unperturbed trajectory:

5,1 = 37X , O w o= <87 (- 43D
'wa' J B:L‘Jf
where -0 -
%= —Ug= — 2. 2 ¥ L ds CI\,Iz,IQ coe (A, w, +¢sz_+4&w&)
dz=0 Ll,,vlz:'-'m - da \QS{’.B

from equation (2.44)

On the unperturbed orbit A‘ Ij and [}lmj are periodic in the initial
phases. Since the initial phases are uniformly distributed, and
vanish after averaging over the initial phases:(:@l}) = éA,kJJ‘) =0 .
On the second iteration, the torque is computed by integrating
around the first order perturbed trajectory. In order to avoid
transient effects caused by suddenly turning on the satellite,
is assumed, where the small positive parameter e Uso(’g i.e., it
is assumed that the perturbation is turned on adiabatically in

the distant past. The second order contribution is

o



: Znt * Cz. 42>
— | J .'_3._, Q[
L By I > = 5 Me = J“L“ 2T l — oy
[ Apdp —dg N in \

In equation (2.48) the torque diverges as dﬁ’JlP "JS\DS - 0 .
At this point, the orbital frequencies and the angular frequency
of the satellite are in resonance. If the resonance passes
through the orbit rapidly due to a varying \ﬂs then’Q-ﬁo and the

o X

divergent fator is written as a delta function §(x)=L1.lim *I(Xréql .
T no
It is seen that the angular momentum is exchanged only with stars

whose orbits are in resonance with the satellite”s orbit.
Integration of equation (24%) over all stars gives the total

angular momemtum transfer or the total torque: -,
A Lf .
Le b, T, S>> = o4 fdrji AJ-A,A-C:Q%KI “4“4..1,(3}5(“&.“4;@;%‘5 |
where g'ctdB: &CI!}ILD is the phase space distribution function

for a spherical galaxy.

The expression for the total torque on the satellite can be

written as: -
A :

2. .
|8 (a, +don, —dsdy

*‘\7.3

Y = =2 | ¢
L, = QT D AT | 41, o, 2 T ds .28 (%
dg=0 o, 4,z =R s
8] - 2 -
I, (z #w3)
Equation ( 2'43) is the dynamical friction formula in a spherical

system.

(ii) Palmer & Papaloizou formula for dynamical friction in a

spherical system

Tremaine & Weinberg (1984) calculated the dynamical friction
formula (equation 2:49 ) by neglecting self-gravity in their
spherical system i.e., the stars in their spherical galaxy do not
interact with one another. Palmer & Papoloizou (1985) gave an
analytical expression for the orbical decay of a satellite in a

spherical system in which self-gravity was not neglected. They
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considered the satellite to be in a circular orbit and assumed
that the tidal response could be calculated from linear theory.
A brief discussion of this analytical formula for the decay rate
obtained by Palmer & Papaloizou will be given here.

The basic equation that described the interaction is the
Vlasov equation. Choosing the origin of the co-ordinates ¥ to

be the centre of the stellar system of total mass M, we write

df = 24 + V.24 _ 2% .25 - o (2. 50)
dt ot >T T 2V
where N) i the ~le llowe Ugloc'al~3

NP N A 3 rau: t ot tonal \>g-\-g.‘~{.zqg

The gravitational potential Y can be written as

k{J @ + \‘t‘\: CZ'S‘)

[\l

where § is the potential from the stellar distribution andL—?',
P

the perturbing potential due to a satellite, considered to be a
point mass in circuiar orbit is
L_\e? - - G Hp ‘ Q}. 1y
[_Tl-i- ?_2'—-'&*)’%, Line ceoe (é-— Nt)K fo

where Mp = gatellite”s mass

and R=1s its ortibal radius
C’Y’ e)¢) are the spherical polar co-ordinates so chosen that the
orbital plane is given by =T/, and the orbital period by ZW/W.

Expnding equation (2.9 in spherical harmonics, we get

cd n \“ﬂ\‘ , A
e —Glp 5= = Cntw! @E)ﬁ SHPIIN P (o> exp [im( y-soey) (252
P R noo M=-N (4 i) ! "

where P\‘Ml are the Legendre polynomial functions.
n
considering only linear perturbations to the stellar system, we

can write the distribution function f, and the potential_é as




(2-54)

denote unperturbed values. and

where §0> P o
ﬁ\ , ai‘ denote perturbed values.
The linearized form of the Vlasov~’s equation (280 ) which governs

oW, .34, (250

the perturbations is then
25, N DU T TR 39, . 94,
ok or  wr ¥ >r 2Y 3y Y
writing
Wp = G oexp (Lupt) (256
A
£, = £, ex?(_imgb) (2'5;)
%i\ - é%‘ 13{? C\Jﬂ? Ej) C:Z‘ 585
top Si ¥ Vo35 _88,.2h -2%, .Y Moo 3¢ . v.di, (2@
S “or Y 5% € 2% de
and %ﬁis odd MV, the expression for f§g _

whereg—vﬁls even 1n%
from equation ( 2-53) after taking even and odd parts is

?Q‘—g—ﬁ. N ZC_%§3 - l,“d?du‘%°<\, Bsg - \} 3‘? Cz.fau
dt_ a’_z' a'\r\

where the operator B is given by
(v 2. 28 . =2 )
or >+ Y
The potential perturbatlﬁnf$‘ can be expressed as
b_
A ! , ! r—vf> d T
-\ \'—Z\: _I&\ t\.‘-‘F \E "I“ 2 CZ’GL
Combining equations (2+%o ) and (2%1), we get an equation for 49
2 s
— d-‘%b} = L) +s (2.62)
where
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L—('gn ) =

_\
wp Y- 29, "<°\'5°> B (4a )
ar e

and
A
S = Cwy, ¥V o 209
U >
-
The properties of :f-g depends on the spectrum of L, which can be
a,
taken to consist of discrete real eigen values o, with
associated eigenfunctions Qj ,(3=1,2,3,000000)s Assuming that

ty, >0 any function FCZ."\_Qodd in V  has the eigenfunction expansion

=1

oo
FCr,vd = iouuA W havne J(é Bq F(x, V}AZ C'z(,%)
The solution for ghis

%ﬁ = 2 b UJ Cl-éq>

where

— 1 % . )
be = —tWp oL 2 d®e (2:¢5)
‘2\ q- ~
CNJ - we ) or
The rate of change of orbital energy EO can be found now from

(ﬁg[4H exp (wa,&)] Ri[!'?_;f_ijc\g’d (

The resonant singularities are handled by using

= | _— v L3
Q«J ey PY [ @Fiwj)} s Cwi’t ‘“"3) C2-63

where P, denotes Principal value

B
o~
g
oot

G is Dirac’s function. >N+
Bquation (2.6b ) becomes dGo - - (ﬁs> 2‘(1) [%CW Wp)"' &CM 'w?
2_ Al
where T, - U oy o 5 C 6%
V- yoo= Sy d (A
s
From equation (2.6%) we see that déde is negative definite and so

dt

orbital energy is always lost.



I1.5 Numerical Works

Both the analytical treatments discussed so far have been
restricted to weak interactions where linear perturbation theory
could be used. Numerical approach is necessary when the
interactions are strong, like in the case of a satellite of mass
at least ten percent that of the disk in a prograde, inclined
orbit close to the disk. Also numerical works carried out so far
to determine the orbital decay rates of satellites in galaxies
have given some interesting results. The numerical works that
are of most interest to us ars those of Lin and Tremaine (1983),
White (1983), Quinn and Goodman (1986), Byrd, Sarrinen and
Valtonen (1986). The main results of these works will be
presented below.

Lin and Tremaine studied the orbital evolution of satellite
galaxies using a N-body code where the two-body forces between
stars in the halo of the parent gaiaxy were neglected.

They dinvestigated a system containing three types of
objects:

(1) a central galaxy described by a potential
(2) N stars of mass m which orbit the central galaxy

(3) a satellite galaxy of mass m also orbitting the central

g
galaxy.

The stars dinteract gravitationally with the central galaxy
and the satellite; the differencé from a standard N-body program
is that the stars do not interact with each other. Turning off

the star—-star attraction in this way eliminated two-body

relaxtion effects, increased numerical accuracy and computational



speed. The only sacrifice made in this type of a code is that
the self-gravity of the outsr parts of the central galaxy has
been neglected.

Lin and Tremaine constructed a galaxy with central mass M=1)
(in units with G=1) surrounded by a halo of N=450 stars with
total mass Nm= 1. The stars were initially distributed with a

phase space density f depending only on energy E = L —-L_Vi' 5
2-S Y <+
$(ed «E

The mass of the satellite taken was v@szoqand it was placed in a
circular orbit of radiusvszzﬁ, over a factor of two larger than
the halo edge. The evolution of the angular momentumn Jg of the
satellite is shown in figure 4. The angular momentum changes
slowly at first but with increasing speed as the orbit decays.
The arrow in the figure marks the point corresponding to a
circular orbit at the edge of the halo,R=\, The orbital decay is
very fast beyond this point as the satellite is within the halo
itself. These results show that strong frictional effects are
present even in a satellite orbiting well outside the radius of
most of the stars. In the second run, Lin and Tremaine began
with some initial conditions but froze the satellite into its
initial circular orbit at v =2.23 for 120 time wunits, which
correspond to 8 orbital periods of the satellite, before it
was permitted to decay. In this case the decay time for the
satellite to reach the edge) . was 138 time units after
release, whereas in the first case, the decay time was only 51
time units. Later stages of the decay are very similar in both
cases, suggesting that the system loses all memory of the

freezing, once the decay has begun. 1In figure !4, both the cases



are drawn.

The main result of Lin and Tremaine”s numerical experiment
was that they found the numerical results agreed accurately with
Chandrasekhar”s dynamical frwsction formula (equation 21 ) for a
satellite orbiting within the halo of its parent galaxy. In
particular, the formula correctly predicted the variation of the
orbital decay rate with satellite size, with satellite mass and
with the number density and mass of the stars in the halo.

Satellites orbiting outside the central galaxy are subjected
to frictional forces which are not described by the dynamical
friction formula. These depend strongly on the distribution of
mass in the outer parts of the galaxy and fall off rapidly as the
orbital radius increases.

Lin and Tremaine”s calculations were based on simple
idealized models rather than representations of real galaxies.
These lead to several shortcomings:

(1) The central point mass M was kept fixed in order to
eliminate two-body relaxation effects. This procedure strongly
affects the tidal force from the satellite near M. In particular
for 1’44'2 the satellite force in a frame attached to M 1is
when M is fixed and has a smaller value Cn’ms [' > ‘\‘%CT-I.Q/v"‘-l /Y_?
when M is free. This effect
leads to an overestimation of the frictional force [White 1983].
(2) Because each star is attracted by only point mass M and not
other stars, its velocity is lower than it would be in a more
realistic model. Hence 4(<Vv) in equation (2-1) is too high

and the resulting frictional force is artificially large.




(3) In a real galaxy, the self-gravity of the halo stars
enhances the wake formed behind an orbitting point mass and thus
increases frictiomal force. This cannot be modeled in codes
where the self-gravity is neglected.

White (1983) found in his simulations that the decay rate
of a satellite depends on the global response of the parent
galaxy. He also came to the same conclusions as Lin and Tremaine
that the decay rate becomes artificially enhanced when the centre
of the parent galaxy is fixed and is suppressed by neglecting the
self-gravity of the response. Chandrasekhar”s focal dynamical
friction formula cannot, therzfore, be a complete description of
the underlying physics, although it does predict decay rates that
are approximately correct. Lin and Tremaine”s decision to nail
down the center of their galaxy entirely altered the global
pattern of the response and in White” s calculation this
alteration greately changed the orbital decay rate. White” s
calculations also showed the response should be calculated in a
self-consistent manner if its effect on the satellite is to be
modelled correctly; neglecting self-gravity of the response lead
to an incorrect phase lap and to a much reduced torque on the
orbit. Quinn and Goodman (1986) studied the interaction of a
spiral galaxy with its system of satellites, that lead to the
orbital decay of the satellites on time scales comparable to
their orbital periods. They found that over a Hubble time, the
disk of the spiral galaxy and the distribution of the satellites
could be altered significantly by the action of dynamical

friction.
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CHAPTER THREE

N—-Body Codes

To study the effect of dynamical frictiom on globular
clusters orbiting in galaxies, a numerical approach becomes
necessarye. Analytical treatments as seen in the previous
chapter, are restricted to weak interactions so that the linear
perturbation theory could be used. Morever, numerical works have
shown that linear theory cannot be used [Quinn & Goodman 1986;
Byrd, Saarinen and Valtonen 1986] to predict even rough
estimates for decay rates as it predicts wrong signs in certain
effects. Chandrasekhar”s dynamical friction formula, which gives
approximately correct decay rates is not enough to understand the
complete underlying physics [White 1983]. Direct numerical
simulations offer the best methods to handle dynamical 1issues.
The basic necessitates to start off a numerical project ave &
good computer, a big computing budget, an efficient integrator
scheme for solving the equations of motion for the N-bodies in
the system and a set of initial conditions.

In this chapter, the formulations and numerical integration
of large system of differential equation occuring in the
gravitational problem of N-bodies is discussed. Several
integration schemes are compared to check stability, accuracy and
practicability of these methods and what seemed the most
efficient one is chosen for our numerical work. In section III.l
the formulation of the gravitational N-body problem is presented.
ITT.2 discusses the difficulties encountered in such problems.
In section III.3, the “semi-restricted N-body codes”™ are

introduced. In IIT.4 various numerical schemes to solve the
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differential equations of motion are compared and tested. IIIL.5

discusses the algorithm finally chosen by us.

I1I.1 The formulation of the N-body problem

The gravitational N-body problem has a long and
distinguished history. The case N=2 is the well-known Kepler’s
problem while N=3 is the famous three-body problem. Fhe basic
approach in a classical N-body problem is that starting with
masses, positions and velocities of N-bodies of a system at a
given time, it is possible to calculate the state of the systen
at any later time, by numerically solving the equations of motion

for the N-bodies. These equations of motion are

I\

wmye = = Gowmyg = mi(TE=25) oy e N (340)
J‘.‘- >
Cj [x; - 213

where E; and vni are the position vector and mass of the ith body
respectively and G is the gravitational constant. The dots
represent the time derivatives.

The problem therefore is to solve the N second-order
differential equations from a given set of initial conditions.
The system of equations (3.1 ) are nonlinear and strongly coupled
in the sense that successive encounters lead to nonlinear ey¥ay
propogation. It is nevertheless possible to perform accurate
integrations'of small systems by means of regularization methods
[Bettis & Szebenely 1972].

Full N-body calculations that directly dintegrate the
equations (3.1 ) have been carried out by Aarseth (1972), Ahmad &

Cohen (1973), White (1978, 1979), Roos and Norman (1979) and



Dekel, Lecar and Shaham (1980).

II1.2 Difficulties associated with N-body programs

The full N-body approach is entirely self-consistent and
problems in celestial mechanics, orbits of artificial satellites,
applications to stellar dynamical problems 1like simulations of
star clusters, galaxies etc., have given satisfactory results.
However, there are some basic factors which lead to difficulty in
integrating the equations (31 ) of the system. These are:

(i) The force on each body depends on the position of all other
bodies and the time needed to calculate the force increases as
the square of the number of particles being integrated. That is,
the total computational time to compute the forces goes as N(N-
1)/2 and this becomes a basic limitation in dealing with systems

having large N. A typical galaxy has e~ 1011

stars. To study
the evolution of such a system completely, 1011 number of
particles would be required. There is no computer up to now that
can handle such a program, not forgetting that the time of
computation & N2 . At present, the direct integration of
equations (3.1) are limited to systems containing N ~v 104. This
is seven orders of magnitude less than what would be required to
model a real galaxy. This leads to the assumption that in N-body
simulations of galaxies, the dynamics of a system of 10l1 1012
particles are represented by a model containing only 104
particles. Caution must be executed when undertaking simulations
with small number of particles because problems with small number

statistics may arise while attempting to derive a realistic and

smooth gravitational potential field from equation (3.1).
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(ii) A second difficulty concerning N-body calculations is the
problem caused by relaxation effects. In the equation (3.1) when
-zjkaqi.e., during a close encounter of the ith and jth bodies, the
differential equation (3'! ) become singular. These two-body
encounters cause appreciable orbital deflections and the two-body
relaxation effects become large. This results in the reduction
of the relaxation time of the system. Two-body relaxation
effects are important in N-body simulations but not in a real
galaxy. These two—-body encounters therefore lead to an
artificial evolution of the system even when it is isolated.
Therefore, the system cannot be expected to mimic real galaxy
for the timescales that are needed.
Chandrasekhar (1942) gave the two-body relaxation time

T for a homogeneous system as | = V3 (5.2_)

relow — 2. 2
characteristic encounter velocity @m NDG‘v N

relax

where v

Np = Number of density of particles

m = mass of a particle
and A =R Vl where R is the radius of the system
AL max y °
._—_-——-‘.
G ™

It is common nowadays to use the Spitzer and Hart (1971)
version of the formula evaluated half-way in mass out from the

centre of the system, which is

= \(W\S CB'S)

relax

15. 1 Gmlm"’nd n Co.-uN )

6.06n'r g3

— (3-4)
wm &''* 102. (o4 N)
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total number of stars

where N

m = mass of a star
Ry, = Half-mass radius
ng = mean stellar density interior to R,
'
Vo = b-g(égi)h'is the root mean square stellar velocity

From equations (3:2 ) or (%3)¢ we see that the relaxation time

T o N to first order, where N is the total number of

relax

particles (or stars) in the system,

The crossing time, T, . oo of the system is defined as
— - Rk
l Cvoss —_ (35>
Noa
LYY
= 1-58 R, : (36)

—_— :
(auY/=

From equations (34 ) and (36),

T . N 3.3)
rela x = ,_\_S:E_sf___—————' C
2 log, Cortin)
Tegoss ~ 6 lea.CO'LPN> (3%
N

—T}e\ax

For a simulated system of say, N e lO3 particles,

T T ~ \0¥years 22 T

velay ~ Cxes §

-9
Mubble CB ),

where Ty pple is the Hubble-time. Therefore a limited N cannot
represent a galaxy for times longer than T, ¢,/ Taross™ 108
years, compared with o~~~ 1018 years in real elliptical galaxies.

These short relaxation times have two effects: First, the

3



structure of the system changzs causing an evolution to the model
galaxies and second, relaxation imparts a (spurious) effective
viscosity (Chandrasekhar 19%42) to the galaxy. Thes viscosity
causes evolution of the sat=l1lite orbit, which may mask the
effects of the dynamical friction that we want to investigate.

From equation (3+F), we sze that the relaxation time can be
lengthened by increasing the number of particles N. This will
lead us back to the difficulty (i), for which there is no
practical solution.

The standard remedy to z2v5id two—-body relaxatioun effects is
to introduce a parameter £, czlled the softening length into the

equations (3Y). That is, the equations of motion are now written

as
. N ‘ ,
™, I.: - — G’Lm\_ Z;. "N\J C X -~ T_J) (3-]0)
S J=d
3

. R = 2.
L'FJ (l.rL"IJ‘-t"i)/z

With the introduction of €, we are no longer solving a N-body

problem. Instead of having the particles or stars in systems ¥o

interact via a l/r2 force, we have changed it to —1- force. We
Lo

(e ®)
see that by introducing & , we also avoid the singularity when 75'53%‘
White (1978) has showed that by introducing € , the relaxation
time Trelax can be increased by a factor 2. This can be seen as
follows:
In the equation ( 32 ) replace (log 0.4N) by 1log (Rmax/RminL
Here, R ., 1s the upper limit imposed on the integration over
impact parameters generally taken to be = Rp and Rm{:léSE
(White 1978). Then for a reasonable choice of & , Trelax ©20 be
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increased by a factor 2.

Instead of carrying out full N-body techniques, alternative
approaches were used, where the potential calculations were
carried out in a different way. Miller (1978) Fourier grid
technique and Van Albada & Van Gorkom (1977) Legendre Polynomial
techniques are some of them. But the problem with the Fourier
grid technique is that there is a practical limit to the extent
of the three—-d grid, which results in a coarse resolution. The
Legendre Polynomial method is 2-D, so its applicability to
realistic situations is restricted. But both the methods have
the advantage that the time’to compute the gravitational force is

directly proportional to the number of particles N.

I1I.3 The Restricted N-body code (RNB)

To model a galaxy, we need as many particles as we can and
as seen in the last section, this means that the number of force
calculations ~'N2. The total number of particles that can be
used is also limited by the available storage on the computer and
a compromise has to be made between realisitic galaxy models,
computer storage and computer budget. Lin & Tremaine (1983)
presented a novel numerical technique to study orbital decay of
satellites in galaxies which is free from most of the problems
associated with N-body programs. [Toomre and Toomre (1972) were
however the first to use this method to study small changes in
the orbit of a passing galaxy and this method was also used by
Borne (1982) with some variations for his study of interacting

binary galaxies.] The essential change in the code from the
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conventional N-body codes is that the N bodies do not attract one
another. This means two important benefits:

(1) A great saving in computational time since the task of
computing N(N-1)/2 two-body forces is avoided. As a result, more
simulations can be run with more number of particles than allowed
before for a full N~body code,

(2) Since there are no two-body interactions between the bodies,
there is no relaxation and the previously mentioned spurious
viscosity is zero. However, to avoid the singularity in equation
( 231), a softening parameter is still required.

Lin & Tremaine called codes of this type semi-restricted N-body
(RNB) programs and the idea was later on used by White (1983) and

Quinn & Goodman (1986).

For the purpose of studying dynamical friction on globular
clusters orbiting in galaxies we have also constructed a semi-
restricted N-body code (henceforth RNB). Because of the need to
explore a range of orbital parameters 1like initial radius,
inclination, masses, eccentricity etc., a code of this type is
preferable over a full N-body code since the “semirestricted
code” is fast and many simulations could be run. The serious
drawback of such a code is that the self-gravity of the System is
neglected. To study the effect of self-gravity in our cases, a

full N-body, self-consistent simulations were also ran.

The equations of motion, for a galaxy of mass M made of N
number of particles and a satellite of mass mg in the RNB code

are:
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where W'and‘ﬁ represent the positions of the particles and
satellite respectively, ¢ is the softening parameter and G the

gravitation constant. The total mass of the galaxy is

M2 Nwyg Cz.12)

From our experiments, we have found that the RNB is 100 times

faster than the full N-body code.

More details on the RNB code, the initial conditions, galaxy
models etc., will be given in the following chapters. The next
section is devoted to finding an ideal integration routine to
solve the equations of motion, both for the full N-body code
(equation 3.l86) and for the RNB code (equation 3:11).

I11T.4 Integrator schemes

Once the equations of motion are written down}to solve them
numerically, both in a full N-body program or RNB, means looking
for an integrator routine that solves these second-order
differential equations efficiently, accurately and satisfactorily
with enough speed. The most popular and widely used integrator
routine in astrophysical N-body problems is that of Aarseths”,
which is made easily available by him to all. A copy of his code
(N BODY 1) was sent to us on asking and we set it up quickly to

run a few test cases and to see if it was suitable for our
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problem.

Aarseth”™s code uses a fourth-order polynomial method for the
integration of the equations of motion in a full N-body problem.
The basic scheme, the computational algorithm and the results of
our test runs will be discussed below.

The Basic difference scheme

The equation of motion for a particle is given by

Foo= ¥ = -G 2wy (¥- %) (J+i) G.12)
’ | x¢ - Ij, 5

where m, ¥ o denote mass and position for thef%article

G -> Gravitational constant
and the summation in equation ( 2:13 ) extends over the other N-1
members.
Knowing -f , the force per unit mass (we have omitted the
particle subscripts here) at four previous time% tyy tys to, ty
with ty being the most récent, a fourth-order fitting polynomial
at time t can be written as

Fe) = F () + D' (4-%) * D5 (e-%a) (- %D

3.1
403 (t-to)( & = k) -E ) E-ED F G

DY (b —te) (£-ED)CE-ED06-8) (Ce-ky)

where 2}5 EF . Q} denote the divided differences defined
by le—|
K[ eon] = B [eontnn - 27 L60T s
to — €k (3. 15)
In equation ( 2.1% ), Ef represents F itself.
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The fourth divided difference Ql* is defined as

20, €,] = 02 [e 6] = 2% 6
4 - &3

and is evaluated at time t.

It is convenient to represent the force fitting polynomial
[equation &. I4& ] by a Taylor series which may then be integrated
twice to give the new solutions for r and i » 45 a set of six
first-order equations.

Equating terms in equatiomns ( 2] ) and its successive
derivations with an equivalent Taylor series yields the

coefficients

g / ’ ! 1 t !
F = l_)‘ “ gﬁ' -&‘-t— p_s-é-_‘-{:?_ . _1_3_”‘ € € €3
1 ! -
= 2! [j D* ~+ D3 C_“::‘+Eq_l>+.2q<'&:b-:+ Erky + & &}‘)] |
Fo = . L 2 :
@a3)
| l ' §
Fo = 3| [“3+£‘*(‘=.*L‘1*‘°3>]
o - : -
Fo = &1 0f

The countribution from Dq is only added at the end of the step.

This gives increased accuracy at little cost and no extra memory.

Computational algorithm

Given the initial conditions for Yni., I( , Ic {vr g;\fu-N R

the required Taylor series coefficients are generated cumbersomly

by the explicit differentiation of equation ( 3. I3 ); putting
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G =1, we have

Fe = -

writing V*(: - = AN
— -J "J

Taylor series derivatives
Fo = — ™ 5 X

T "J'
Yoo 3
9

N
§ ’Y“J C Ic""l':)’]
L) [lx: - x0°?

and Y‘,‘U' = l ;r{,} and denoting

by dots, we have

- 31&3“‘3*3”9'3}

SRR

:‘:Q{S ?:I.:j 2:.'5 *

?-]‘
— &5 (xy -3 (
A "!_

| 4
Tﬂjs
. . 2.
"tr,ue Ao qs(z;J- - Xy )J —
'7":.2
J
e
K
N >
=Y "";J—) + \oSCiiJ' T"J) J




The second and third derivatives in equation ( 3.l ) are readily
determined once all the current forces and the corresponding
first derivatives have been found. A softened potential, of the
form [fijl+ €1JVL can be introduced into the terms in the
denominator of equation ( R.1% ).

Initial time-steps %ti have to be allocated to each

particle. Aarseths” uses (Aarseth 1972)

Se,2> = ™M Fo (213>

le Fo

where ?. specifies a permissible relative change of force
during new step. Equation ( 313 ) is independent of mass and
has the property of preserving relative accuracy of each orbit
during close encounters by reducing the integration interval.
The integration, though begins at t=0, backward times have to be

initialized for general formulation. This initialization is done
by
gtk_ = -3k, CIL= l,z,&} C3'2-°>

Then the couversion to polynomial derivatives is obtained by

inverting equation ( 3.13 ) to order E; giving
(> 2 ( :
L Eogk, 3:21)

€7 = Eo - L Foge, =
02 o LB (entss) - L& (86, + 28, ) (86, +862 )

PO

%53 %Es
b 2 b sel- 8wty o L (Seritrse) (i)

o C%E‘;_ 1"8'[:5)%&2.?{:3 %é:.g(‘z

The choice of a fourth-order polynomial rTepresentation is a
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compromise between efficieny and programming effort, however
involving complexities of combining two force polynomials.
Aarseth uses an individual time step method to integrate the
equations of motion. The individual time-step method requires a

total of 30 variables per particle as follows: m (e,,'))?:(&)

- '
V,E, B, D', D™ D% gk, ko, & &, ;-

3

J

We ran Aarseth”s code with N=100 particles. The main results of

these test runs can be summarized as follows:

(1) The accuracy of the Aarseth”™s code 1is very good. The

)

fractional change in energy E of the system,éﬁ was less than 10~
per time step. This kind of accuracy was :ot achieved in any

of the algorithms we tested later., Our own code gave O8& w~ !-2-°/, :

e

(2) Though Aarseth”™s code is noted for its accuracy, there were

a lot of problems connected with it. The main problem being, the

code forces binary formations. We discovered that the code

actually encourages close encounters, which one wants to avoid in

an N-body calculation and the results of these close encounters

is reduction of the relaxation time of the system of the system

Yees
and ﬁiﬂ@

the binary formation. Aarseth”™s code is suitable to
study stellar systems like globular clusters, where close
encounters play a dominant role in their evolution. 1In a galaxy,
such close encounters are not present and should be avoided. We

also found out that when the code is made to run for a sufficient

number of crossing times, a spiral kind of structure begins to
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appear in the system, which started off a spherically symmetric
model initially. This spiral structure is due to numerics and
nothing to do with the real dynamics of the system. In the kind
of problem we are interested in, we want the galaxy to be stable

and not evolve}in the time scales of interest to us.

Another problem with the code was, the force calculations,
carried out as shown in the last section are too complicated -
that is'the integration routine, though extremely accurate,
cannot be easily modified. Moreover, the algorithm is too
difficult to vectorize, which is necessary if one wants to run

the simulations on super computers like the Cray.

For a model galaxy having 500 particles, our test runs
showed that to cover two crossing times, this code needed 2 hours
32 minutes of CPU time on the Gould 32/97. This showed that if
the particle number if increased, CPU times required were beyond
our budget. Also, it was not very easy to change this full N-
body code to RNB code, because of the complicated force
calculations.

So instead of using Aarseth”™s code which was ready and
available, we decided to write our own N-body code. To find an
efficient numerical integrator method, we tested various finite
difference schemes such as the Runge-kutta and predictor-
corrector methods, various hybrid methods which combined both the
schemes and finally selected a method which was appropriate for
us .

The various algorithms used for our tests are discussed
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below. These can' be found in any numerical analysis book
[Ralston & Rabinowitz] and we found that most of these methods
were simple and relatively easy to handle than the Aarseth’s
fourth-order polynomial schene.

The finite-difference schemes for solving ordinary differential

equations

The motions of the N-bodies are described by the differential

equations
dy.  _  E (3-22)
dt
and
dy - v
— - - 223
where dt C )

F.o ¥ , ¥ ttand 4or accelevration, Veloeily | position
In total, we have to solve 6N such diffeential equations. The
various finite-difference methods that could be used for

integrating numerically the above equations for step-size h are:

(1) The Runge-Kutta methods

\&l&-n &j“' N Ji_ [S' +S"‘J

Second -0vdavr
Sl = *%C&K,\jk> ‘

Runje - kvt
gz = 4\% Cfxu.+£%\, Ej+-%.§‘>

Ty




b = bt L [8 s sy

S! = ﬂ““(: Cxee, Yp D

Thivd - ovrdev
S, = 4 e Lk S '
* f ( etz \3-‘{—':“_ ) Kwnseaku'h&

Ss = 'LLF C’DCIL'P‘{A, ‘}k_g‘ 'l"'lsz}

Few = he + L (S S w2858

g\ = d"-f( Ly ‘3*_)

Sz = -k‘e C Y ¥ '-15__\" s e ¥ ]i_s‘) Fouvtr. - ovdar
Rumae - Kutra

S, = Wi C'x“_&-lik, Yo +1 %) 3

The differential equation solved in the above methods is é_}_j = ,5‘,(':(,3).5

= d
These methods have to be applied to ¥ and ¥ separately.

[Equations 2.22 and 3-23].

(2) Predictor-Corrector methods

The predictor-corrector methods we tested to solve equations (%-l?-)

and (3-%)were:

al 4
Predic tov .K\L-H

1]

Tt h Yy
Lecond — ovdey

Y, -
et = N *+ "’\gg witd- point

Predictor -Covre st

Trar = Su +b£ [V\L'\' "'r_-ul

Covvreetoy |

Ve = Nes ‘%_[Fv_+ Fen]
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Vk.-n = N+ h Fe, Hsjbv{c\ T
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I
=
4
pi
™
Z
F
+
<
F
&
[

‘vk.*l = M+ %& [L Fe + F&+\:]

AV,
qru. = i% LS

M = Vy * i FV--\-\/L
= i
"3"‘__“ - PX‘L T [ Vi + VlL'{-\-l

Table V gives the comparision of methods of the various

difference schemes used by us to solve the equations of motion.

TABLE ¥
METHOD ' LOCAL GLOBAL FUNCTION STABILITY ACCURACY
ERROR ERROR eval/step

20d §rder 0(h3) 0(h?) 2 poor 1072
Runge-Kutta
3Td order 0(n%) 0(n3) 3 poor 1072
Runge-Kutta
4R grder 0(h°>) O(h4) 4 good 1074
Runge-Kutta
204 Grder 0(h3) 0(h?) 2 good 10”1
predictor-
corrector

. 3 2 -2
Hybrid I 0(h~) 0(h*) 2 good 10
Hybrid II 0(h3) 0(h2) 2 good 1073
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To check the efficiency and accuracy of each difference scheme,
we evolved just one test particle of mass m in a central force
field. Conservation of energy and angular momentum were taken as
the tests for accuracy. For simplicity we have restricted the
motion to (X - Y) plane and in all the runs we have taken the
central galaxy mass M=1 and the gravitational constant G=1. The

equation of motion for the particle to be integrated is just

:i = —___I:_... (3' 24)
Irl?®

As a standard test, we chose an elliptical orbit which is close
to the gravitational radius (V:?_M:’-) so that the run—-times are
short, but far enough away so that l/r2 effects are not present.
The time steps were identical in all cases and derived from A+ 4
for velocity V.

A series of graphs (figuresle — 21 ) using different
differencing schemes to solve the problem [equation 3.24 ] are
presented. The method used in each is shown in the figures.
Graphs showing the energy and angular momemtum conservation in
each method are also shown. The results from these test runs can
be summarized as:

(1) A 21d grder Runge—-Kutta method is unstable. Conservation of
energy and angular momemtum using this method is poor as can be
seen from the figure 16 .

(2) A 2nd order midpoint predictor-corrector method is unstable
also [figure 1% ]. 1In this case, the conservation of energy and
angular momentum is of the order of 10“1, which indicates the
poor accuracy of this method.

(3) A 3Td order Runge-Kutta method seems better than the earlier

two schemes. The orbit [figure 18 ] of the particle looks quite
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stable and the energy and angular momentum conservation in this
case is of the order 1072,

(4) A 4th order Runge—Kutta method worked extremely well. The
orbit was extremely stable [figure 19 ] and the energy and
angular momentum conservation were of the order of 10_5

In this method however, we used a scheme that predicts ahead and
finally averages in the last step, making it a partly predictor-
corrector like scheme. In our test rumns, we decided that this
was the most stable and accurate out of all the other methods but
this has one serious drawback. It takes a longer time to run
than other schemes and since speed 1in computation was one of the
main criteria for the choice of an integrator, we decided not to
use this method. The wiggle in the graphs for energy and angular
nomentum curves is because machine precision is being reached and
showing up as noise in the last digit.

(5) The hybrid methods, schemes Hybrid I and Hybrid II both
seemed stable and the accuracy was around 10_3 in each case.
These methods are fast and in the case of Hybrid IIL, the force
calculations, the right hand side of the equation of motion is
called only once at each time step. Since the force calculations
are the longest in the code, calling it only once means a great

4th order

saving in computational time. We felt that though the
Runge-Kutta method is better in accuracy and stability by an
order of magnitude, the Hybrid methods were better suitable to
the kind of problems where a large number of particles and hence

a number of differential equations have to be solved. In both

the Hybrid methods, angular momentum 1is conserved to machine
precision.
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ITI.5 The Algorithm

The method finally chosen by us to be used in our N-body

codes, both RNB and full N-body programs was Hybrid II, but used

as follows:

- N + h FE
Vk-z-_;._ - ke Y l-&
(3. ?.S)
Tk“ = 'KK + hx V\c.«-\{:_
= Vo =+ h =% [F v -]
Vi = e kT le

The energy and angular momemtum conservation was of the order

1073 in this case and the choice of step-size was taken variable
and was determined by the maximum velocity or acceleraLion. All
the simulations were perforaed on the Gould 32/97 and each

simulation lasted around 3 hours for 5000 particles in the case

of RNB code.
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CHAPTER FOUR

GALAXY MODELS AND INITIAL CONDITIONS

We developed the "semi-restricted N-body code® (RNB) to study the
action of dynamical friction on globular clusters orbiting in
galaxies. As discussed before such codes result in great saving of
computational time. We Propose to study the evolution of the
orbits of the globular clusters in spiral and elliptical galaxies
and compare the decay of the orbits due dynamical friction in both
types of galaxies. Observations of globular clusters 1in galaxies
have shown that the luminosity function of these systems in
elliptical galaxies is not of the same form as that for the
globular clusters in spiral galaxies ( van den Bergh, Pritchet and
Grillmair 1985), assuming that the tuyo functions were of the same
form primordially. The two luminosity functions are different in
the sense that more bright, hence massive globular clusters are
seen in elliptical dalaxies than in spirals. Dynamical friction is
a mechanism that acts preferentially on massive objects leading to
their destruction. The absence of pmassive globular clusters in
spiral galaxies seem to sSuggest that dynamical friction is  more
enhanced here and therefore we should see larger decay rates for
the clusters in these galaxies than for the globular clusters in
elliptical galaxies. A numerical work where a wide range of
orbital parameters ¢ initial orbital radius, eccentricity and
cluster mass ) could be explored, helps in studying and comparing
these decay rates.

The most striking difference between elliptical and spiral
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galaxies is the presence of a disk component in the 1latter. This
extra component in spirals might be responsible for the enhanced
decay rate in the orbits of the globular clusters in these
galaxies. Over a Hubble time therefore, the disks of spirals and
the distribution of globular clusters might have altered
significantly by the action of dynamical friction, leading to a
luminosity function that is different than what is observed for
globular clusters in elliptical galaxies.

To compare the decay rates of globular clusters and to
understand the mechanism of ‘dyvnamical friction 1in spirals and
ellipticals it 1is necessary to model these galaxies as
realistically as possible. Dynamical friction is the drag force
exerted by the wake induced by the globular cluster as it moves in
the field of stars in the galaxy. Since the interaction between
the field stars and the cluster is gravitational, the force on the
globular cluster can be inferred from the spatial distribution of
the field stars. If the expectation value of +this force 1is
calculated by averaging over an ensemble, then it can be concluded
that the density of the field stars cannot be uniform if there is
to be dynamical friction. In the code, we have to compute the drag
force on the globular cluster from the perturbations it causes in
the density distribution of the galaxy in which it is orbiting.
This requires the knowledge of the complete density distribution
in the galaxy and a way to trace it as accurately as possible. We
have chosen a large number of particles to trace the density in a
given galaxy model and called these particles the ™ tracers ™.
These tracers interact gravitationally with the globular <cluster

and the back response of the perturbations caused by the «cluster
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as it moves among them determines the drag force on the globular
cluster..

The RNB code chosen to study decay rates was broken up into
three sub-systems. The first sub-system was the galaxy potential
and the form of this potential was kept fixed in space and time.
The second sub-system was the globular cluster, which was
considered to be a point mass in most of our runs except in few
cases where it is modelled as a spherical Plummer sphere. The
final sub-system were the tracers, an N number of particles
responsive to the forces imposed by the earlier two sub-systems.
The assumption made here is that these tracer particles do not
interact with one another. In doing so, we aveoid the task of
computing the N(N-1)/2 two-body forces and save computational
time.

In this chapter, the discussion these three sub~-systems will
bé given. Galaxy models and the calculation of the potentials for
spiral and elliptical galaxy models will be presented in sections
1V.1 and 1V.2 respectively. In section 1V.3 the initial conditions
for the tracer particles in spiral galaxies will be discussed.
Section 1V.4 deals with the initial conditions for the tracers in
elliptical galaxies. In section 1V.5 we discuss the Plummer models

used for the globular clusters.

1V.1 The Spiral Galaxy Model and the Potential Calculations

We have desired to model the galaxy and obtain the potential as
realistically as possible. The spiral galaxy models developed by

us were based on the model given by Caldwell and Ostriker (1981)
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for our Galaxy. The Caldwell and Ostriker model <(henceforth -0
model ) for the Galaxy consists of three components: the disk, the
spheroid and the halo. We have computed the potentials for each of
these components separately using the density distributions chosen
for them. These potential calculations will be discussed

separately for each component belowu.

(i) The Disk

The disks in late type spirals have exponential distribution of

surface density given as (Freeman 1970)

-
E:DCO) c (q4)

1

=(r)
)

where r is the radial co-ordinate and
« is the exponential scale-length.

For a =zero-thickness exponential disk in centrifugal
equilibrium, Toomre (1963) wrote down the surface density Z(r) as

the Bessel integral "

s (v) = T, Cev) k sCr) dk D)
[

where

S Cr) = 7, (e w =(uw)du CRP)
Lo}

Using the Poisson's equation, the potential of such a disk

can be found to be

&)

B(rz) = - 2m6 | To(ke)s) e (-xlzl)de G)
D
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where (r,z) are the standard cylindrical co-ordinates.

The stars that take part in the spiral structure of a galaxy
lie within a thin ellipsoid whose axis ratio is 20:1. Such a
system can be treated quite accurately with the approximation of a
thin disk, made of stars whose motion is confined to the plane.
The action of dynamical friction due to the disk alone leads to an
exchange of mass and energy between the disk and globular cluster.
To compute dynamical friction due to the disk, to understand the
processes that take place when the globular cluster is in the disk
and also knowing that the disks in spirals are not really thin, we
decided to wuse thick disks wmodels in our <calculations. The
thickness of the disk, ZD used in the code is the parameter that

appears in the Sech2 law

Pley - g et(2) s

The Sech2 law is probably not a good model for the vertical
density distribution at the outside radius of the disk (Bahcall
and Casertano 1984), but we felt that ZD is an adequate measure of
the disk's thickness. Acted upon by the differential tidal force
of the galaxy, globular clusters posses a physical limiting radius
rt,called the tidal radius beyond which the member stars of the

globular cluster are no longer bound to the parent cluster. The

typical values for r_~ 150 pc , which is lesser than the thickness

t
observed for the disks in spirals. We have <chosen the total
thickness of the disk ZD to be 1 Kpc. The disk scale-height g3
chosen by us was 0.7 Kpc (Caldwell and Ostriker 1981).

The disks used by us had a volume density given by
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where (r,z) are the standard cylindrical co-ordinates
o and {3 are the disk's scale-length and height respectively.

Since the mass and light distribution in many spirals appears
not to be truncated at the limits of the observations and the HIT
gas layers extend to large radii ( Bosma 1983), we considered our
disks to be extensive in the radial direction. We chose a cut-off
radius RD = 28 Kpc in the radial direction of the disk, which 1is
the same distance at which we chose the galaxy®s density to fall

off to zero. The mass distribution in such a disk is given by
Ry
M D) = 2Tex [ g (nE)rdrde CI
)

Using equation (44) we get

— oB ..pl-z’}]
M () = 4T 5 [l - e D(\-@-o(%)][ -e
b . -°

1
ol P
The potential of the disk <c¢an be obtained from the Poisson
equation
Ay — CI+8)
v c}gb = —u4N&af (v 2)

To solve this equation, we have used numerical techniques, one of
which was the Kulti-grid methods developed by Achi Brandt (19772
for elliptic equations. The basic ideas and the techniques of the
Multi-grid method are discussed in Appendix A.

We also used a direct numerical integrator to solve the
Poisson's equation. Following a method similar to Toomre (1963),

the potential of the disk using Fourier transforms can be written
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This expression for the potential (equation &3 ) is derived
in Appendix B. The form of this potential is similar to the one
used by Quinn and Goodman (1986) for the disks in their spiral
galaxy models.

Equation (4:3) can now be integrated numerically to
obtain the potential of the disk. To do so, we used the
Gauss-Quadrature routine of the CERN 1library. The potentials
obtained wusing both the methods, the multi-grid and the
Gauss-Quadrature, were in close accord and gave a check on the
numericél techniques employed by us. In our runs we had found that
the multi-grid method took pnly 43 second to compute the
potentials, while the Gauss-Quadrature integrator routine took 3
minutes and 41 seconds.. The wmulti-grid method is definitely
advantageous as it is very fast.

The potentials computed numerically were stored on a
grid (132*132) and were read into the RNB code directly.The
resultant forces were computed in the RNB code itself. These force
calculations will be discussed in detail in the next chapter.

The parameters used by us for the disk of our spiral
galaxy are given in Table V| . The values chosen are the standard

values for a typical Sb galaxy. (C-0 model).
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TABLE \/¢

Dimensional quantity | Symbol in the text | standard value
Disk mass M 0.78 * 10
D o

Disk scale-length a 3.5 Kpc

Disk scale-height 3 0.7 Kpc
Radial extent Rn 28 Kpc
Thickness ZD 1 Kpc

(ii) The Spheroid

The light profile in elliptical galaxies is fit fairly well by the

Hubble law ( Oemler 1976, Kormendy 1977)

f(r) = £ Cy-10)
5t [l-{-— G/»s)L] -

where P, and r_are the spheroid density and radius respectively.

Since in the solar vicinity the Population 1II tracers
follow a similar distribution ( Oort 1965), we have chosen a
similar density distribution for the spheroidal component of our

spiral galaxy. The surface density of this component is given as

y C'{‘) = iSCO)
sf [’I+'(Ph;)} -

There is evidence ( Spinrad et.al. 1978) that at large

(4 )

radii, the surface brightness of galaxies falls off somewhat

faster than given by the Hubble law but we felt that a cut-off to
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the Hubble law is unnecessary since at these large radii the mass
density in our spiral galaxy models is determined by the halo
component and not by the spheroid. The dynamical fitting procedure
thus would be quite insensitive to any outer cut-off of the
spheroid component.

The mass distribution in the spheroid is given by
RS
£

MS’P(T} = LT € Cr}wzd\/‘ (L,_ 12.)

o

Using equation (Y%-l6) into this, we get

M (vd = 4 g v y ”é{fs) - lm}C Xt J t-&@vs)”ﬂ Cy.13)
p $ S —-——1—:—@7)1 K3
v 3

The potential for this component is

B o) = - T v’ [157 (U J**@/@“‘)] (o)
Y

S

P -

2¥ ¥ V1 (o)

Equations (4 4 and (4 18) are derived in Appendix C.

G 15)

The force is then given by é
P § Ll fs 'Y‘_Sa CP{/Y‘Q) — l°2, (?/rs -+ \j H’Q’lrsj)]
C

The spheroidal component parameters used in the code are given 1in

Table V| .
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TABLE il

Dimensional quantity Symbol in the text Standard values

Spheroid mass M_ 0.81 * 10* M

Extent Rsp 10 KEpc

Scale-length rs 0. 10311 Kpc
(iii) The Halo

Accurate rotation curves are now available for a number of
galaxies, often extending well beyond the optical image of the
galaxy. The rotation velocities are found not to decline in the
outer edges of galaxies where no appreciable light is wvisible. (
Faber and Gallagher 1979, V.C Rubin et. al. 1982).

The techniques by whgch the mass of a distance object is

measured relies upon the Kepler's third law

G M FTx v <‘*~"£’3

il

where r and v are the orbital radius and velocity of a test object
respectively, which orbits a galaxy of mass M. This mass M can be
determined by studying the orbits of globular clusters, stars or
gas clouds at a distance from the center of the galaxy known as
the Holmberg radius RHcU This radius is defined as the distance
at which the surface brightness of an object reaches an apparent
magnitude of 26.7 mag/sq.arc sec. It is a convenient measure of
the optical extent of a galaxy. For a typical spiral galaxy, R

Hol

10-30 Kpc. If the luminous mass was the only constituent of a
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galaxy, then we would expect the observed velocities to drop off
as rnifz, as implied by equation (4.6). But the lack of decrease
in rotational velocities out to large radii in galaxies suggests
that the total mass interior to r, increases linearly with r and
therefore the density goes as ij) ¥} é?g . This constancy of
the rotational velocity curves is taken as an example for the ~
missing mass ™ problem in galaxies. This missing mass inferred
from the rotational curves is found to be 3-10 times more than the
luminous component. Kinematical studies on globular c¢lusters in
our Galaxy have shown that the halo of our Galaxy extends to at
least 44 Xpc (Innanen, Harris and Webbink 1983). From the orbital
dynamics of the Magellanic clouds, it was suggested that the halo
of our Galaxy should extend to atleast 70 Kpc (Lin and Lynden-Bell
1982). Theoretically, Ostriker and Peebles (1973) had suggested
that a massive halo is necessary to avoid bar-like instabilities
in the disks of spiral galaxies and that the disks wmust be
embedded in a stabilizing massive halo. Other evidences supporting
massive halos though not as compelling as the galaxy rotation
curves, comes from the studies of binary galaxies (Turner 1976;
Peterson 1979). In our model of the spiral galaxy, we chose the

halo to have a mass HH

My ~ 3.0 CGa#)
b

and a cut-off at RH = 28 Kpc. which is the same as the disk's
radial extent. This cut-off is fixed in advance for each model
rather than be treated as an adjustable parameter that 1is to be
determined from observations.

A simple form for the density distribution in the halo
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was chosen following based on the C-0 model. This 1is

{ () = fk C 418
H 2
L ()

This density at large radii r>>RH approaches the density

distribution of an isothermal sphere. The mass distribution in the

halo is given by

M, () = &5 vf" [G;B — ton”! @m):) C 4t

The potential is obtained as

! w R -ae)
@H’CV‘B = 'L&Tl-fh\r:'[l_ tawn é‘!\pk\ _,.l:- \O}C\*-LL"AJ] (u
Lv{Yh)

and the force as

- {
Bé“ (e . - qn‘fk'ﬂ‘l C“'fhél ¥ = 7 Fon [ty (42t

T ar - F ey O Ol

These expressions are derived in Appendix C.

The halo parameters used in the code are summarized in Table VIi}.

TABLE \
Dimensional quantity Symbol used in the text. Standard values
11
Halo mass H 2.34 * 10 M
H o
Extent RH 28 Kpc
Scale-length T 7.812 Kpc

101



iv.2 The Elliptical Galaxy Model and the Potential Calculations

Elliptical galaxies are the simplest type of galaxies. All that
was known until recently about these galaxies was that their
isophotes were elliptical and that their smooth luminosity can be
represented by a suitable function with jJust one or two Parameters
( Oemler 1976 ). There was also a small sample of  measured
velocity dispersions but these have shown to be systematically
high ¢ Richstone and Sargent 1972, Faber and Jackson 1976). These
heasurements in principle alloy oblate, prolate orp triaxial models
for these galaxies.

The classification schemes for gqalaxies are based on
smooth variation of properties between elliptical galaxies and the
spheroidal component of spiral galaxies. Photographs of spirals
show that both nearly oblate and prolate bulges exist.
Nevertheless, all modelling of ellipticals has been done on the
basis of assumed oblate spheroids with nearly isotropic velocity
dispersions. Observations and theory both indicate however the
need to explore alternative models.

Grillmair, Pritchet and van den Bergh (19864) have shown
that dynamical friction on globular clusters in M87, a giant
elliptical in the Virgo cluster is not important, based on the
fact that they could not find any strong radial trend in the
luminosity function of these clusters in M87. Evolutionary
processes such as dynamical friction and tidal disruption of
globular clusters produce a distribution of the globular clusters
that is somewhat depleted near the core regions of galaxies.

Grillmair, Pritchet and van den Bergh also found that 1large
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orbital eccentricities (e >0.9 ) were needed in order for these
processes to be effective in the inner regions of KM87. This again
supports the idea that dynaiical friction is not large in H87.

There is however one complication that might affect this
result regarding dynamical friction, which is that the shape of
M87 might be triaxial. This was not considered by +the above
authors. In this case, a significant number of globular clusters
would be on non-elliptical orbits that can make close approaches
to the center of M87 and therefore enhance both dynamical friction
and tidal disruptions. A detailed triaxial modelling of elliptical
galaxies might therefore be necessary, which we intent to do at a
later stage. For the present work, we used only the simplest
models for our elliptical galaxieé.

The surface brightness of ellipticals as a function of

radial distance was first given by Hubble as

= (e = 2. C 4220
C\—k- Yin}:’_

where T, is the core-radius.

The Hubble law is quite good for the inner portions of
these galaxies but overestimates the surface brightness in the
outer regions. The most widely used improvements on the Hubble's
law are

(a) de vaucouleurs (1948) law:
Vq
- _a. h% _ .23
log () = {O?Cie> 328[(’&) t (&23)

(b) Hubble law modified by an exponential cut-off (Omeler 1976) :
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s () = = exf[ — é{ﬂ)’j C4-24)
Cl‘t‘ rfvc>z.

The constraint of isotropic velocity dispersions in
elliptical galaxies has been a8 common feature of most models
(Wilson 1975). The argument made was that elliptical galaxies are
oblate spheroids whose collapse proceeded more rapidly along the
axis of rotation than in the two co-ordinates supported by
rotation. Detailed observational and theoretical studies have not
been able to support this idea. Wilson found that he c¢ould not
make galaxies flatter than E4 with radial intensity profiles which
matched those of real galaxies. 1In addition, any model with
isotropic dispersion flatter than E4 violates the Ostriker-Peebles
stability criterion ( Ostriker and Peebles 1973) and thus is
probabl& unstable to the formation of a bar-like mode. Finally it
seems difficult in the context of standard theories of galaxy
foémation to acquire more than about 1/3 of the angular momentum
these models have. (Thuan and Gott 1977; Binney and Silk 1978 and
Efsthathiou and Jones 1979). Recent observations ( Bertola and
Capaccioli 1975; Illingworth 1977: Schechter and Gunn 1979) have
indicated that the flattening observed has to be due to 4global
velocity anisotropy. We have not considered these details in the
Present work.

To model our elliptical galazxies, we have chosen the
simplest case of a spheroid to represent the complete galaxy. This

spheroid has a volume density distribution given by

f CY‘) - g;g (14.15 )
[1+Cloy-] -
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th of the total

The core radius r _was chosen to be 1/640
radial distance RG(Aarseth and Binney 192%¢% ) I The mass

distribution is given by

M ‘Cv) 2 qrrye_r: - &y« \03( Yo T l*@w_)ﬁ—) CT

e
G
The potential is given by

?‘éG,,CTX = L(rrchr_g | o? ( rlrc + v "{'Q/Vc),—) (Lp?_?—-]

)

gt = (% JES )| e
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The elliptical galaxy and the spheroidal component of the spiral

and the force by

galaxy were modelled the same way in our calculations, as it was
argued by de Vaucouleurs (1959) and Ostriker (1977) that at the
heart of every spiral galaxy sits a small elliptical galaxy,
around which the disk that dominates the 1light distribution is
assembled. Another unknown factor of elliptical galaxies
is whether they posses a halo component like the spiral galaxies.
One might anticipate an increase in M/L towards outer regions also
in elliptical galaxies but unfortunately observations are not
definite to demonstrate that elliptical galaxies have halos. In
our models, we chose not to introduce an halo component for the
ellipticals.

The parameters used for our elliptical galaxy models are

given in Table |xw
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TABLE [ ¥

Dimensional quantity Symbol used in the text Standard values

1
Mass of the galaxy Haat 4 ® 101H0
Radius RGCLL 28 Kpce
Core radius rc 0.5 Kpc
1vV.3 Initial Conditions: Spiral Galaxies

The next sub-system to be considered in the RNB code is to obtain
the positions and velocities for each of the N tracers of density
in the galaxy. For most of our runs we had chosen N = 5000
particles. This number, though very small to represent the entire
density of the galaxy with great resolution, we feel it is
sufficient without running into Demory shortage problems and other
difficulties on the computer. As mentioned earlier, these tracers
feel the forces imposed by the galaxy and the globular cluster but
do not interact with one another. That is, we are neglecting the
self-gravity of the multi-particle sub-system.

These tracer particles should follow the density
distributions we had chosen for our spiral galaxy model. They move
in the galaxy potential, which we have assumed to be fixed 1in
Space and time, and interact with the globular cluster orbiting in
the galaxy. The back response of these tracers onto the globular
cluster is the drag force which is responsible for the decay in
the orbit of the globular cluster.

As discussed earlier, our spiral galaxy model has three
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components.~- the disk, spheroid and the halo. The N tracers. are
required to trace the density distributions considered for these
three components.

Out of the total N = 5000 tracer particles, we had chosen the
number of particles to represent the disk density, ND to be 3000,
the number of spheroid tracers, NSP = 1000 and the tracers in the
halo NH = 1000. We will discuss the initial conditions, that is
the positions and velocities for each of these particles which

trace the density distribution for each c¢omponent separately

below.

(a) The Disk Density Tracers

The disk has the density distribution given bg equation (& & ). The
tracer particles in the disk should be given masses, positions and
velocities such that they represent the disk upto large radii, in
our case upto RD = 28 Kpc. The mass distribution in the disk 1is
given by equation (4-3). The tracer particles are either chosen to
have equal masses or exponential masses that wvaries with the
radius. In our runs, in order to represent the disk well at large
radii with a limited number of particles (= 3000 ), we decided
that our disk tracer particles should have masses that vary
exponentially with radius. The positions of the tracer
particles were computed in the following way.

Let
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in the equation (43 ).

Then, we have

C4.30)
Mylrd = §, K
Let the mass of the disk be

(k) My = ZMY

ladd
1]
-
-
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[
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The next step is to distribute the particles in shells of

thickness (Ar, Az}, where

br= Ry and b= Zbp
Ne Na

Here Nr and Nz are the number of shells chosen

(4-32)

in the r and z
directions respectively. In our runs, we had chosen Nr

N_ = 5.
z

= 100 and

The fraction of the disk's mass AM, in each shell is given by

oy Rl

AHDCY, TEBY 8 %1-02—)’— 27 fac c vavrpz (@33

AHD:' Ny ™M 2T T Brb % (G:34)
where n_ is the number density of the particles.

From equation (434) it follows that

'*a*'\g‘m'\'5

— - plzl .
_ fo e Mre ple (4-3%)

where equation (4y.35) follows from equation ( 4.33).

The mass of each tracer particle is then given by
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G- 23)

from equation (4 -3e).

We can write the total number of particles in the disk ND to be
: 3

ED
Ny = Ny BT dvrd G28)>
o}
which is
~ 439
Ny =  2Tn el 2 (+33)

From this equation (43%9), we can get the number density n_ as
]

Mn, = Np (4 4o)
2R &

Substituting equations (43% and (4yo) into equation (w36) we

get the mass of tracer particle to bhe

=l — \Fé:!
myo= M oeme? 2 e e F Cl-ut)
KNy
where K is given by the equation (429, Then'number of tracer

particles in each shell is given by

DN = 287 brda (4 ¢2)
27-0 2y

Knowing the number of particles to be present in each shell
and also their masses, we then choose their positions randomly in
each shell by using a random number generator provided on the

Gould 32/97. Using this, first the particles in the wvertical
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direction z, of the disk were filled r fixed and then the radial
direction of the disk was filled.

The next step is to determine the velocities for these tracer
particles in the disk. This was done as follows. Initially, all
the disk tracers were given a circular velocity such that they
were in a centrifugal equilibrium with respect to the radial force
in the disk. That is, the disk is initially considered to be cold,
a zero velocity dispersion. Toomre's (1944) local c¢riterion for
suppression of all axisymmetric instabilities requires a minimum

radial velocity dispersion,(a Gaussian distribution)} given by

I

Tia = 3306 8, (L 43)
Kdv)

where G is the Gravitational constant

and K(r), is the epicyclic frequency defined by

ke v = L 2 F(e) + 3R C 6 uy)
Lo, o Y‘

Here, F(r) is the radial force in the plane at radius r.

The epicyclic frequency, K(r) was evaluated by computing the
local radial derivative force using shells and then from equation
Y4y .

Numerically, the procedure to find the velocity of each
particle in the disk is done as follouws:

(i) The circular velocities of each particle is determined such
that they are in centrifugal equilibrium with respect to the
radial component of the force in the plane of the disk.

(ii) Superimposed on this circular velocity, each particle is
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given a velocity dispersion chosen from a Gaussian velocity
distribution, since Toomre's criterion is strictly valid only for
these type of distributions.

The next step we did was to compute the energy of each

particle. This is obtained from

2 . .
E = Lowivi - Gmimy Ct 45)
2
'Y“:j
where v, is the velocity of the ith particle and PU = 211% .
with o, and gjare the positions of the ith and jth particles

respectively.
If E € 0, then the co-ordinates (positions and velocities)
are assigned to the particle; otherwise they are rejected and new

co-ordinates are selected, subjective to the same negative energqgy

condition.

(b) The Spheroid Density Tracers

The initial positions and velocities for Nsp = 1000 tracer
particles in the spheroidal component of the spiral galaxy were
computed as follows:

The density and the mass distributions in the spheroid are

L COv) = g C 4 46
Sp

Ll-i— Crlegy "'J o
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We assume that the total mass of the spheroid Hsp is given by

where m, is the mass of each spheroid tracer particle, assumed to
be the same for all the particles.

Now suppose

2.> — ¥, (%)

k = ‘-&Tr 753 l@?, ( Tlrs + \+€IYS) \),_————-:.
L (eg)

in equation (LyP .

Then HC"‘B: gs‘}(
. 480 )
- ?%sq“w (-
from equation (44g). We therefore get
? g T Ng My CQ—‘S\)

J<

As done before for the disk tracer particles, we distribute

the spheroid tracers in shells of thickness Ar given by

br = Rep Cqﬂ 52
where n_ is the number of shells chosen (= 100 }. and R!p is the

total radius of the spheroid (See Tablewy).The mass fraction in

each shell is

5“‘9\9 Cv*,vwhv} = L;T(f(?*f)flb* @’53)



D N, = CuTS_S'Kl Ar (4 8y4)
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The number of particles in each shell having a mass AM is

then given by

AN = ON (485
sp
™y

From equations ( 48l) and (4-S4) we find

DN = 4T Ng *

.
TR Dot

The value of K in equation (4-54) is obtained from equation (4-4%9).

C4-56)

The positions of the tracer particles in each shell are
chosen randomly as before. The velocities for these tracers in the
spheroid are computed in a similar way as for the disk's tracers.
Each particle was first given a circular velocity, superimposed on
which was a velocity dispersion chosen randomly from a Gaussian
velocity distribution. The rotation in the spheroid, which is
responsible for the flattening of the spheroid was neglected in
our calculations. Each tracer particle in the spheroid was

subjected to the same negative energy condition as before.

(c) The Halo Density Tracers

The initial positions and velocities of the particles to trace the
density distribution of the halo in our spiral galazxy model  were

chosen as follows :



The density and the mass distributions chosen in the halo

were

¢ (v) = p IR (-5 %)
iy .
\+ Cr"rk)

and

The mass of the halo is given by

(1) M, = W —— N, Cu-s9)

r
i)
o
[
[}

# M
where NH = 1000, is the total number of tracers in the halo and m,

is the mass of the halo tracer particle, assumed to be the same

for all the tracers in the halo and is given by

YW = Hn
Ny

In the equation (4.5%) we put
-1
T 3 +aw :‘l) CQ'“)
— i — e
K= 4T LR [Gk> Yi.

Then we get

r\H (v) = - © <2%'GI)

As before, we distribute the halo tracers in shells of

thickness



bv = R (4-62)

_—
My
where R, is the radial extent of the halo ( = 28 Kpe) and n. is
the number of shells chosen ( = 100 ).
The mass fraction in each shell is given by
BM (v, v+dy) = GIT $ v by

M H

) = 4TS T (- 63)

S

l-x—@]m)"

The number of particles in each shell is then given by

b~y = b

WA
..[,\
which is
— b
— .6
CBﬁlH - U fk ¥ bv:d <F§ 4 )
1+ Clvk)lmk

From the equations (4§ and (4.4]) we find that

AN, = it N, v* o~ (4-65)
i [+ Qf‘lyk)'“]

where K is given by equation (41,

The positions for the particles in each shell are then chosen
randomly as before.

The halo tracer particles were assumed to be in local



virial equilibrium, giving

uil = ;' IU'} , b: 1 ee- NH Cg‘éé)

where

UJ‘ = — ZM% CL{-L"})

Yi:

J

is the potential at the position of particle j and the factor 1/2
comes from the fact that the total energies satisfy approximately

the virial theorem for the systen given by

Ny )
—2T = — Zwmu = -L T owiw) o (Gesd
I 2 e |
j »
(e J

Con

Each particle is then given a circular velocity in random
direction, giving an isothermal model and g velocity dispersion
chosen from a Gaussian velocity distribution, with the variance e

chosen in such a way that it satisfies the virial theorenm. That is

LWy

The particles in the halo are then subjected to the

negative-energy condition as before.

1V.4 Initial Conditions: Elliptical Galaxies

To our models of elliptical galaxies, we had chosen only one



component, a spheroid, to represent the entire configuration. The
tracer particles in the type galaxy are required to trace the
density distribution in this spheroid. We modelled the spheroid to

have a density distribution given by

il

fe 4 -20)
(v
5 D - C"M)Lj >

where r, is the core radius and RgaLis the radial extent of +the

galaxy (See Table I¥ ).

The mass distribution for these models is given by

Hey () = 4n§ v,* EALSE 4 log C”f/\‘c + J‘*Q’M)‘)J Gl
) ; l-‘r&[r{_ 2 .

where ng‘is the total mass of the galaxy. The masses of the

tracer particles were taken to be all equal, given by

™ = Hfjc\i C L322
N

The total number of tracer particles N here was taken to be

5000, which is the same as the total number of particles chosen to
represent the density of the spiral galaxy.

The initial positions and the wvelocities for the tracer
particles in the elliptical galaxy are chosen in the same way as
that for the tracers in the spherocidal component of the spiral

galaxy. The parameters used were given in table iy
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1v.5 The Globular Cluster HModel

The last sub-system modelled for the RNB code was the globular
cluster. In most of our runs, this was chosen to be a point mass.
In few cases however, we modelled the cluster to be a spherical

Plummer sphere with a volume density given by

N = _3® M. (4 23)

where ch is the mass of the globular cluster.

The masses chosen for the globular clusters were in the
range 5 * 105 - 5 # 10? - The orbital parameters chosen forp the
clusters will be discussed in the section containing Preliminary

results in the next chapter.
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CHAPTER FIVE

NUMERICAL WORK: SPIRAL GALAXIES

The initial <conditions and the galaxy models were
discussed in the last chapter. In this chapter, the computational
details of the problem will be presented for the case of the
spiral galaxies. Elliptical galaxies will be discussed in the next
chapter.

In section V.1 of this chapter, some details regarding the
RNB code will be presented. In section V.2, the equations of
motion will be given. The meaning of the corresponding enerqy
integral will be investigated in section V.3. Units are defined in
V.4. The 1initial phase mixing and relaxation stagqes will be
discussed in V.5. The force calculations and the numerical
integration will be presented in sections V.6 and V.7
respectively. In the final section, V.8, some preliminary results
and discussion will be given regarding the orbital evolution of

globular clusters in spiral galaxies.

V.1 The RNB Code

As discussed before, our numerical code was broken into three
sub-systems : The galaxy potential, which is kept fixed in space
and time, the globular cluster and the tracer'particles that trace
the density distribution of the galaxy. These tracer particles

respond to the forces imposed by the earlier two sub-systems but




do not interact with one another. That is, we are neglecting the
self-gravity of our galaxy. UWhite (1983) has shouwn that by
Suppressing the self-gravity of the system, the orbital decay
rates were reduced by a factor of more than two in hisg
simulations. Quinn and Goodman (198¢) had come to the same
conclusion in theip numerical work. It isg therefore Necessary to
run & full N-body simulation where the inter-tracer Particle
forces are not neglected. Since this Means an enormous increase in
the computational time, we had Planned to do this at 3 later
stage. For the Present, the RNB code was used for the simulations.

In a typical N-body code, full or the RNB type, a galaxy

11

of mass thL = 10 Mo is represented by N number of Particles,

with N limited to 107- 10% by the present day computers. The

lo 8 for N = 1000

This mass of each Particle is of the order of a dwarf
galaxy. That is, we assume that our galaxy is made up of 1000 such
dwarf galaxies, Now, in order to study the action of dynamical
friction on & globular cluster, having a mass of the order of Hcc
= 10° Mm’ orbiting in a galaxy comprised of N such Particles, each
representing, Say a star in the galaxy, we at once run into g
difficulties a5 each particle ¢ star ) is having more mass than
the globular cluster. one way to resolve this Problem is to

increase N but the problens connected by increasing N have already

been discussed in chapter three. The Problem connected with the
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the density distribution of the galaxy. The distribution of these
tracers has already been discussed in chapter four. 1In our code
then, each individuai Particle could have any mass as long as the
sum of the total masses of the tracer particles is equal to the
total mass of the galaxy. These equations of motion will be given

in the next Section.

V.2 The Equations of Motion

The orbits of the tracer pParticles are computed under the
assumption that the disk, spheroid and halo's self-gravity are not
important in determining the Fesponse of these components to the
Presence of the globular cluster. The tracer particles are
therefore made to feel an acceleration due to the mean field
formed by the three components they are part of, and the globular
cluster. The globular cluster feels an acceleration due to the
three components, but this acceleration is computed from the

distribution of the tracer particles. The Potential wells of the

total mass of the system. The equations of motion for the globular

cluster and the tracer particles are then -
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0t

- (=t

Urs —zcll*-il]s/" (5 %)

o= - 3¢c\i:u - _a__?s?\woté - B-—-% lo ™ GXMSCI‘:—IQ

oY or — 3
°% | [\__c-—rs\z*i?] h

t= 1V, ---- N

where G is the Gravitational constant

r, and m_are the position vector and mass of the cluster

L, and m, are the position vector and mass of the fh particle
respectively

€ = is the softening parameter

¢di.ak . @

sphersig 204 @ are the potentials due to the disk,

halo

spheroid and halo components of the spiral galaxy. The
calculations of these Potentials was discussed in the last
chapter. The dots in the above equations represent time
derivatives.

From the above equations of motion we see that by making
the tracer particles move in the fixed potentials of the galaxy,
we have ignored the drag forces on the tracer particles. The
changes in the tracer pParticles due to the traversing globular
cluster are reflected back on the globular cluster (equation ) as
the drag force. We see that the masses of the particles become

irrelevant in this way.

V.3 The Energy Conservation

The equations of motion ( 5.2 do not describe =& fully
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self-consistent system. The energy integral of this system 1is

given by
E Lo v L 2 owm o .
= LM, Y <+ 1 LAAT . - '
2 - z & - : “4‘¢0al ™ ;iv”l¢{;

=1 (5]

This equation is derived in Appendix D. This energy E was used to
check the accuracy of the code. The deviations from a constant
value of E however should not be confused with the physical
deviations from total energy conservations, since the equations of
motion used by us are not fully self-consistent. In the Appendix
D, we had called the energy integral as an approximate integral
since it does not represent the real energy integral of an N-body

system.

V.4 The Units

m
A dimensional system of units were chosen in the code, in which
the gravitational constant, the total disk mass MD and the disk's
exponential scale-length a were all set to unity. The table below

summarizes the choice of the units.
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TABLE X
Dimensional quantity Symbol in the text Units Physical values
Mass of the Disk M 1.0 0.78 = 10“110
Disk's Exponential o 1.0 3.5 Kpc
scale length

Gravitational constant G 1.0 6.67 * 19

In these units, the total mass of the galaxy (¢

disk+spheroid+halo ) becomes MT&AL = 5.0024, corresponding to a

mass 3,93 = 1011 MD and a cut-off radius R = 8, corresponding to

28 Kpc. The time unit in the code isg measured in terms of the

crossing time of the system given as

g 3 /s,
Ter = ] = lo time units ( 8.4)
G\H’col‘a\
The velocity units are defined as
velocity = C\H-h.hl] "o - 63923 CQE)
R

The following equations demonstrate the translation from

tal
11
2.93 * 10 Mo and R = 28 Kpc
10 time units = ~ 2 * 10°% yaars C@.g)
0.793 velocity units = A 244 Kms * C‘5°:)‘)
The softening Parameter, a8, used in the code was 1.0,
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corresponding to 3.5 Kpc. Length scales over which one wants

reliable information should be larger than this e. This softening

Procedure, the initial model of the galaxy was run) through g
mixing phase during which the mass of the globular clustep was
taken to be zZero., For a specified length of time, usually about 50
time units ¢ 5 crossing times ), the N tracer Particles gyere
allowed to move exclusively ip the gravitational field of the

galaxy ¢ @ = B

V.é The Force Calculations

In the right hand side of the equations of motion ¢ 5'2) , the

derivatives of the Potentials, the forces (éi?ﬂk, 3?%*"“4 y 28ule )
oy 3!‘_ 3y

at each time step are required. Analytical €Xpressions forp .

could be easily obtained for the spheroid and the halo as
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o [ - 1gCl) ¢ Ve

2.4.)8"1"" void =

or 5= L+ Crl"’S)l
(s4)
and (?*l )
.ooams, | Oy o = Y (T
ICL AR : Ty T EWDT T (Pl

—

The force on each Particle from the disk component is however
not available 50 straightforwardly. The axisymmetric disk
potentials computed numerically inp cylindrical co-ordinates,
discussed in the last chapter, were stored on a grid of size 132 *

132, at each grid- cell point. The radial and the vertical force

and -

“T.VYE. .+ T E: .
F )= (- T%)LCI“Tr>chj+Tr Et;j+1+ Ti[@ " Cayy o LY
z

CS-‘O

These expressions are derived in Appendix E. Since the code
uses cartesian co-ordinates, the following transformations were

made

F(P) = F}CP) Cos 8

Fy(p> = Fo(e) Sine (51
F&CP) = F.E_CP>
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~
From the figure, we sce that,
e oy 3
Cos@ = X )
v K
Sing = \nér
and therefore
- F - X
F*CP) - TCQ) r Cg-|2)

= (p) = FR.CP)° \//‘-r
b
which were the expressions used in the code.

The first step before computing equations (§.1\) and (5:02) is
however to find where and in which grid each tracer particle 1is,
in order to compute the disk force (equations (5:3) and (5-%) ) on
it, at a given time. That is, we need a search algorithm to find
the posi@ions of 5000 particles in a given grid cell. This search
algorithm has to be efficient and fast since it will be used at
every time steps. In our code, we performed the following trick
which proved to be an useful and effective search algorithm. Since
the positions of the tracer particles r, ( 1 = 1, N) and the grid
positions are known, it was possible to find the smaller radius of
the grid position by simply taking the integer part of the
particle position. Once the smaller radius is known, we know in
which grid cell the particle happens to be, because the particle
position pr would always be greater than this smaller radius of the
grid cell. This procedure is shown below.

We first compute a 2-dimensional grid on the disk on which we

store the potentials by
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Y'S,,‘.& = Yo+ (L-dx h

- 13)

> ; = f% + (:X—*) * hy
373

where Ty and 2o 8re the lower limits of our disk configuration. We
had chosen ry 0.0 and 2, T "10.0 , referring to the lower
co-ordinates in which we placed the tracepr particles. The uppernr
limits of the configuration are r. = 10.0 and Z, = 10.0. The

mesh-sizes hr and hz are given by

hy = r& - Ty

- z, -
s - £ - %o
. ™ 2
where nr = 131 and Nz = 131, are the number of grid points in p

and z respectively. The computed potentials are stored at each
grid point.

We have chosen a grid that is tuwo cell sizes more than our
actual disk confiquration ( fecall that RD = 8 in units of table
} for the following reason. In our linear interpolation formula
(equations £.9 and S.loe ), the forces need not be calculated on
the boundary of the configuration, since these boundary points do
not contribute to the interpolation.

Now suppose (rp,zp> refer to the tracer particle
Position in cylindrical co-ordinates. Then with respect to the

grid we have
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Yo = T, v QTI-Daxh,
¢X3

2o+ (S3-9 % h, (516>

) d
-o
i

where ry and z, are the same lower limits of the grid as before.
Here, II and JJ are integers, both going from 1 to 132. These

integers can be obtained from the equations (B®B) and ( SH) as

Ir = WrP - o %4 -0
he (s. 12>
TE = %P - %0 -+ \‘0
ha

Thus by computing the integers II and JJ for each particle, we can
obtain the smaller radius of the grid cell in which the particle
lies. Therefore, at a given time we know in which grid c¢ell each
tracer particle is and since the potentials at the points of this
cell are known we can compute the force on the tracer particle
which lies within this cell. The forces are given by the equations
(§9 ) and (S:l9),

Once the right hand sides of the equations of
motion are calculated, only numerical integration is left to solve

these equations. This will be discussed in the next section.

V.7 The Numerical Integration

The algorithms to solve the equations of motion have already been
discussed in chapter three. We have used the following

second-order predictor-corrector method in the code.

g




= \Y + D+ =
Vu.w/z - ke ‘Gk

-J (5. 1)
¥ 1 = 'xu *obtx [ Vi sy,
v - N + D& x ['Q\L + 'g'u_-t-l]

¥+ L By

where f, v and r refer to acceleration, velocity and the position

of the particle and At refers to the integration time step.

code and was determined by the maximum velocity orp acceleration at
each step.

An average simulation lasted for 1000 time units (.~
10°% c¢rossing times, corresponding to a Hubble time of ~ 101° Vears
), and took ,y 3 hours of CPu time on the Gould 32/97 computer.

. - A measure of the accuracy of the integration method
was the fractional ehergy change AE/E in each run, where E ig
computed as shown before (equation §.3 ), In all our runs ye have

found AE/E to be less than 2 % .

V.8 Preliminary Results and Discussion

The parameters describing our models can be divided into two
Parts: those of the Parent galaxy and the globular cluster. ye

have kept the outer radius Raﬁ_and the mass of the galaxy Ma

&l

fixed in our runs. These were R = 8 and M = 5.0 in the units
gal aal

of table ¥ . The number of tracer particles in it was also kept

fixed at N = 5000 in the simulations reported here. ye exXplored g
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range of masses, orbital radii and eccentricities for the globular
clusters in these runs. We discuss each case separately below. All
the values for the parameters chosen in the runs are defined in
the units given in table % . In all the runs, the meaning of time

is as follouws:

lo tiwe unibs = [ Ter =9 ?-xu:& Years

Case 1:

Figure 22 shows the time evolution of the 5000-tracer particle
galaxy and the globular cluster, marked in the figure as a star.
The mass chosen for the globular cluster was Mac = 1.24 % 10 % and
was placed initially at radius r = 4.0, in the plane of the disk.
The view in the time evolution Pictures is from above the disk
plane in this and =zll subéequent figures unless otherwise stated.
The orbital evolution of the this globular cluster is shown in
figure 23 .

The simulation went upto 2043 time units, corresponding to
about 205 crossing times ( 2 = 1010 years ). The orbital period
of the cluster is 22.4 time units and completed 91 orbits in
this run. The cluster which started off at an initial radius of
4.0 decayed to r = 1.7 during this pun.

The most striking feature in the figure 22 is that the orbit
of the globular cluster decayed to r = 2.9 initially in 9 orbits
and then seemed to have gained energy and anqular momentum and

moved outward to r = 3.7. After this peculiar feature the orbit of
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the cluster Seems to decay once again.
In chapter two, we have shown that the secular effects on an
object in the linear aPpProximation are caused solely by

interactions at resonances: that ig radii Pl o such that

LkCry W) « ‘M\nC"Z\,M> = Jlp

where C% is the orbital angular velocity of the object, K¢ er )

is the epicyclic frequency at the resonance and 1,m are integers.

The sign convention is that m » O and 1 > 0 or 1 « 0 according as

erﬁ > 0 orpr leﬁ < r. Co-rotation corresponds to 1 = g, The
important resonances in our case are the co-rotation 1 = 0 angd
Lindblad resonances, 1 = 1.

For our ctase, we see that for m = 2, there are tuyo inner

Lindblad resonances, at r = 2.9 and r = 0.7. At exactly rpr-= 2.9, we
See that the globular cluster moves outwards because of the linear
interactions of the particles at this resonance. We could not

check this at the other innerp resonance r = 0.7.

Case 2
P

Figure 2Lk shows the orbital evolution of g globular cluster of a
globular cluster of mpass Mo = 6-4 * 107° ( 5 % 45 M_ ) which
started off at an initial radius of I = 4.5. The sinulation lasted
only for 58 crossing times ¢ 7 * 10°% vyears ) and the clustep
had completed only 18 orbits. There was no orbital decay observed

for this cluster and also no striking features were seen in the
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orbital evolution as in the previous case. The time evolution of

the galaxy-cluster system is shown in fiqure. 25

Case 3

Figure 2{ shows the evolution of a globular cluster of mass same as
in the previous case ¢ case 2) but started off on an non-circularp
orbit at r = 2 ¢ 7 Kpc. ). This simulation completed about g2
¢rossing times, ( about 10*° vyears ) and the cluster completed 40
orbits in this run. In this simulation, the globular cluster
started moving outwards after 8 orbits, sank slowly again and at r
= 2.19, it started moving outwards again and continued to move
outwards till the run was stopped ( ~» 10° years ). The time

evolution of the system is shown in fiqure 2%.

Case 4
s

Figure 1% shows the evolution of a cluster whose mass was Mac = 7
* 1077 (5 % 10° My ) started off at an initial radius of r = 4.

(5

This cluster's mass is almost the order of a dwarf galaxy. The

orbital decay here is quite rapid as expected for massive objects.
These feuw Preliminary runs have shown that

(i) Interactions between the globular cluster and the particles is

determined mainly at resonances, More numerical simulations and

detailed analytical work needs to be done for understanding the

Processes that occur at resonances.




(ii) The decay rates obtained for the feuw cases we had run were

not rapid enough to destroy the globular clusters over a Hubble

time.
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CHAPTER SIX

NUMERICAL WORK: ELLIPTICAL GALAXIES

The same RNB code discussed before was used to study the evolution
of orbits of the globular clusters in elliptical galaxies. The
elliptical galaxy models and the initial conditions for the
particles wused to trace the density distributions in these
galaxies were already discussed in chapter four. The calculations
in the case of elliptical galaxies were relatively easy as we had
chosen a single, simple spheroidal model to mimic our galaxy.

In this chapter, section V1.1 discusses the code and section
V1.2 gives the equations of motion. V1.3 discusses the enerqgy
integral’and the units are defined in V1.4. Force calculations and
phase mixing are discussed in section V1.5. The numerical

integration is presented in V1.6 and some preliminary results of

our simulations are discussed in section Vi1.7.

V1.1 The Numerical code

In the case of the elliptical galaxies, the three sub-systems in
the code are:
(i) The potential of the spheroid which is kept fixed in space and

time. The analytical form of this potential is

3
@M = - 4Ty, tog (Tye) + JT= Glho™ (¢.1)

A

(ii) The tracer particles that follow the density distribution of



the elliptical galaxy and which have equal masses given by

YA = NG\“; (QZ )
N

The total number of the tracear particles in the system was taken
to be Ntouuz 5000, which was the same as the total number of
tracers chosen in spiral galaxy runs. The same assumption, that is
the forces between the particles being neglected was also used
here.

(iii) The globular cluster was the final sub-system. The
masses of the clusters were taken identical to the ones chosen in
spiral galaxies runs, so that s direct comparison of the action of
dynamical friction on these clusters could be made in both the
types of galaxies.

As befofe, the tracer particles were made responsive to the forces

imposed by the galaxy and the globular cluster.

vi.2 The Equations of Motion

The equations of motion for the globular cluster and the tracer

particles in the case of the elliptical galaxy simulations are
‘V\‘S - — G\ %"M (Y.S_IL'>
2. 19 3

if( - ~83Paa, . QMSCYL—Vs)

3y %\Ie Zxq z

where r_ and m_ are the position and mass of the globular cluster
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i

¢§&’is the fixed galaxzy potential

and the dots represent the time derivatives.

V1.3 The Energy Conservation

The energy integral, derived in a similar

Appendix D, is

2 |
E= Lwmors + L

L  th
r and m,L are the position and mass of the i

way

This energy E was used to check the accuracy

warned before, this enerqgy integral is only

since the equations of wmotion do not

self-consistent system.

Vi.4 The Units
S

A dimensionless system of units were

an

particle

as discussed

of the code.

approximate

in

As

Oone,

describe a fully

chosen where

Gravitational constant, G, the total mass of the galaxy H

gal

the

and

the total extent of the galaxy Rgm_were all taken to be unity.

The time and velocity units are

(3

Crossing time, Tcpr = R;“ _

and

137

'Effwsf. Uit

( &58)




velocity = G;ng\ |-0

(66>

Table X1 summarizes the units used in the code for the

case of
elliptical galaxy runs.

TABLE XKt

Dimensional quantity | Symbol used in the text | Units | Physical values

Galaxy mass

M 1.0 4.0 * 10"y

gal a’
Galaxy Radius RgdL 1.0 28 Kpc.
Gravitational Constant G

1.0 6.68 * 10°

The translation from dimensionless units to physical units for the !
case when M = 4 ¥ 1011H and R = 28 Kpc is as follows:
gal ) gal

1 time unit = 12 x 'O% J -+

|
1 velocity unit =

= 246 kwmse 6 &

Vi.4 Force Calculation and Phase Mixzing

The derivative of the potential a# l

used in equation (4.3 )
given by 3?




adjﬂmi = L}Tfe r"-?, —gt/—r-‘l_)_. - ,°a CT/W.) + J b+ Gln)q—J (L‘%)

mm—

éf Y" J!*'G\jr()l

The initial model of the galaxy, comprised of the tracer
particles is pun through a mixing phase during which the globular
cluster mass is kept zero. This is done to minimize any systematic
effects of the initialization Procedure. The phase mixing lasts
for time units = s which corresponds to 5 <c¢crossing times. After
this, the mass of the globular cluster 1is introduced into the

runs.

vVi.é The Numerical Integration

The same second-order predictor-corrector method was used here for
solving the equations of motion ( 6:3 ). The step-size chosen was
again‘a variable one and was determined by the maximunm velocity or
acceleration

The Cpu time taken for a typical elliptical galaxy simulation
was about 2 hours on the Gould 32/97.

The accuracy of the integrator was tested by the
fractional change in AE/E, where E is given by equation ({4 ). The
energy changes were less than 0.01 % in these runs. The accuracy
observed in elliptical galaxy simulations was much higher than in
spiral runs. We feel that the linear interpolation scheme used to
compute the disk forces might be the cause for this poor accuracy
in the «case of the spiral galaxy simulations. A better

interpolation scheme, such as the cubic spline might give good
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accuracies in the case of spiral runs too.

vi.7 Preliminary results and discussion

The parameters determining our models of elliptical galaxies, the
mass and radius were chosen to be, Haa1= 4 = 1011 MD and R{mL =
28 Kpc. respectively. A total of N = 5000 tracer particles were
chosen to trace the density distribution of the elliptical galaxy.
The globular c¢luster parameters, mass, orbital radius and
eccentricities were chosen to be the same as those for the spiral
galaxy cases, convertad to the units defined in table X\ . The
the values of the parameters reported in this section wuse the

system of units given 1in that table. The results of each

simulation are discussed independently below.

Case 1

Fiqure 29 shows the time evolution of a 5000-particle elliptical
galaxy and a globular cluster simulation. The globular cluster can
be seen as a star in these pictures. The mass of the globular
cluster taken in this run was HGC = 1.25 * 10_5, placed initially
at a radius of r = 0.466. The orbital evolution of the cluster 1is
shown in figure 3¢ . From the figure we see that the orbit

. 3 i0
remains almost unchanged in 2 * 10 years.

Case 2

Figure 3} shows the orbital evolution of a cluster of mass Hec =

1.25 * 10—4 placed initially on an orbit of radius rpr = 0.903,
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corresponding to 25 Kpc., which is almost at the edge of our
galaxy. ( %aL= 28 Kpc. ). From the figure, we see that there is a
slow orbital decay for this cluster. In eu 109 vears, its orbit

has changed from r = 0.903 to r = 0.83. The decay rate matches the

value predicted by Chandrasekhar's dynamical friction formula.

Case 3

Figure 32 shows the orbital evolution of a globular cluster of
mass Hac = 1.25 = 10_5 HO, placed initially at a radius r = 0.25.
From the figure, we see that there is no decay in the orbit of

this cluster in 1010 years.

Case 4

Figure 33 shows the orbital evolution of a globular cluster of
mass M__ = 1.25 * 10° %, placed initially at a radius r = 0.5. We
notice that there is a slow decay in the orbit to r = 0.45 in 10°
years. The sinking rate appears to be comparable to the rate
observed for a cluster of the same mass but placed almost at the

edge of the galaxy ( case 2) than at half-way as in this case.

These simulations to study the orbital decay of globular clusters
in elliptical galaxies show that

(i) The decay rates for globular clusters in these galaxies are
negligible suggesting that dynamical friction on globular clusters
in ellipticals is small. Observations of globular clusters in HM87

agrees with this result. ( 6rillmair , Pritchet and van den Bergh
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1986 ).
(ii) The larger decay rates obtained for globular clusters in
spirals having the same masses as those considered here, must be

due to the extra disk component present in those galaxies.
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CHAPTER SEVEN

Comments and Conclusions

A semi-restricted N-body (RNB) code was developed to study the
action of dynamical friction on globular clusters inm galaxies,
especially to study and compare orbital decay rates of these
clusters in elliptical and spiral galaxies. The question about the
existence of an universal luminosity function for globular
clusters , based on which extragalactic distances were determined
was the motivation behind embarking on such a problem. These
evaluated distances were used to obtain the Hubble constant, H

and the values of Ho obtained were in the range normally quoted

0'!

i.e. 50 - 100 kms ™ Mpc '.The determination of these values did
not take into account the uncertainty resulting from the
assumption that the luminosity functions for globular clusters has
the same form everywhere. €Globular <c¢lusters in spirals are
subjective to disruptive events like disk passages and moreover,
these disks of spiral galaxies may enhance the action of dynamical
friction leading to a rapid orbital decay for globular clusters in
spirals than for the globular clusters in elliptical galaxies.

The RNB we developed proved to be very useful in studying the
orbits of these clusters in both these kinds of galaxies. The main
drawback of such a code was that we had neglected the self-gravity
of our systems. The gain in computer time however 1is very large
for such a code and this makes it possible to run many

simulations. The results of our simulations can be summarized as
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(i) The orbits of the globular clusters in spiral galaxies did not
decay rapidly, indicating that dynamical friction is not vepry
effective in removing massive globular clusters over a Hubble time
and therefore account for the difference seen in the luminosity
functions for the clusters in spirals and ellipticals.

(ii) The orbital evolution of globular clusters in the spiral
galaxies proved to be complex, with the interactions between the
particles and the globular cluster occurring mainly at resonance
points. In a galaxy, the resonance structure is complicated and we
know that near-resonant particles exert torques on satellites ¢ in
our case the globular cluster ) and whether these torques are
analogs of the Chandrasekhar's drag force or give opposite
results, where the satellite gains energy and angular momentum has
to be studied carefully. In one of cur runs, we had found that the
globular cluster gains energy and angular momentum at the inner
Lindblad resonance point and begins to move outwards. Manv runs
are required to make any conclusive reports and understand the
Processes at resonances.

(iii) Elliptical galaxy simulations have shown that there is no
decay in the globular cluster orbits compared to the decay rates
seen for globular clusters in spirals. Observations of the M87
globular cluster systems ( Grillmair, Pritchet and van den Bergh
1986 ) have also shown that dynamical friction on globular
clusters is not an effective process in this giant elliptical
galaxzy.

(iv) Increasing the mass of the globular cluster by two orders of
magnitude than what we considered for the above cases, we had

obtained decay rates that were comparable to the ones predicted by
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Chandrasekhar's formula. This indicates that Chandrasekharrs
formula for dynamical friction does gives a rough estimate of the
rate of orbital decay, in circumstances such as those that
interest us here.

(v) From the fey simulations Wwe could carry out so far, it is
Possible to say that the disks in spirals play an important role
on the orbits of the globular clusters and it would be very
interesting and fruitful to do detail simulations on the
interactions between the disks and satellites of spiral galaxies.
For example, it would be interesting to check if disks slows or
halts the satellites by adding angular momentum to the orbits of
the satellites as fast as the halo component removes it. Detailed
studies of resonances would answer many of these pPoints. The RNB
code becomes useful here, as it is possible to run many

simulations with limited computing budgets.

to study the consequences of neglecting Self-gravity in our
Systems. This we pPlan to do immediately and see if there are any
changes in the results.

The results obtained so farp have indicated that dynamical
friction alone cannot reproduce the luminosity function for
globular clusters in spirals which is different from the function
Seen for elliptical globular clusters. However, we intend to run
Many more simulations before we are conclusive about this result.
Including self—gravity in the systen may enhance decay rates but
we feel that it still might not be enough to remove the massive
globular clusters in spirals and explain why ye See this

difference in luminosity functions. There is also the Possibility
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that the luminosity functions were never the same and we conclude
on the note that Space Telescope observations on globular clusters
in distant vgalaxies might be the answer to check for the
universality of globular cluster luminosity functions and give

definite answers to some of the questions raised here.
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APPENDIX A

Multi-grid techniques for solving the Poisson's equation in

cylindrical co-ordinates

The basic idea of the multi-level adaptive techniques is to wywork
not with a single grid but with a sequence of grids ¢ = levels =
of increasing fineness, each of which may be introduced, changed
in the process and constantly made to interact with one another.
The method can be understood from the following simple example :

Consider 3 differential Problem of the form
LU = F in the domain (A'l)

With the boundary condition

AU B ‘ (A-2)

where L and A are linear operaters.

Suppose there are a set of grids ¢° ¢t GM all
approximating the same domain €, with corresponding mesh-sizes h

> h1 ..... >.hM. Let the mesh-size ratio in this simple case with
uniform square grids be hKH': hK = 1 : 2. The equations C ) and ¢

) can be approximated by difference equations on each grid ¥ as

L 0% . F CA-3)

and the boundary condition as




At Chu)

1]
o9

After few iterations of any procedure, suppose we get an

approximate solution uM and we let
H - H i .
A G

and

M " (AL

7
I 4

<
z
1]

Here, the discrepancies, £ and ¢M are called residuals. Now The

exact solution of the problem we considered, UM, can be written as

g™ - wf eyt (A-%)

where VM is the correction that satisfies the equations
H M H
LV = 4 (A%

and

ANy H L (A 9)

Equations (A'?) and (A3 ) are called residual equations. To
solve these equations to a good first approximation, just
interpolation from the solutions on the coarser grids i1is not
enough because not every GM problem has a meaningful approximation
M

on a coarser grid GK. For instance, 1if the right hand side, f

fluctuates rapidly on (3M with wavelengths less than 4hM, these
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fluctuations are not visible on the coarser grids and therefore a
good approximate solution is not possible. However, there is an
effective way to damp these rapid fluctuations. This by using
suitable relaxation procedures. Relaxation reduces high frequency
components and the only modes left after few relaxation Sweeps are
the smooth ones. The result being , we are left with smooth
function VM, which can be approximated by a coarser grid function

VK, that satisfies

(vv = T* gk (A 19

Here Iz is a fine to coarse grid transfer operator. Since the
coarse grid has less points than the fine grid, it 1is much faster
to solve equation ( K:lo) than to solve equation ¢ A-3 ). Having
obtained an approximate solution vk of equation (jA-b), we can use
it to accelerate the convergence of the fine grid

uM e— un %-I: v ¥ C A

where If is a coarse to fine grid interpolation operator.

The multi-grid method can be seen in two complementary ways:
(i) The coarser grids can be seen viewed as correction grids,
accelerating convergence of a relaxation scheme on the finest grid
by efficiently liquidating smooth error components.
(ii) The finer grids can be regarded as the correction grids,
improving accuracy on coarser grids by correcting their forcing
terms. This makes it possible to manipulate accurate solutions on
coarser grids, with only few visits to pieces of finer levels.

The multi-grid method is very efficient. A discrete system of

n equations ( n points in the finest grid ) 1is solved to the

-3



desired accuracy in 0(n) computer operations.

The example discussed above outlines the basic principles
involved in multi-grid methods. Suitable relaxation, residual
transfers and interpolation schemes are to be designed according
to the problem that has to be solved.

We have used the algorithm provided by Brandt (1977) to solve
our Poisson's equation, to obtain the potential of an axisymmetric
disk in the models of our spiral galaxies.

The Poisson's equation in cylindrical co-ordinates of our

disk 1is
N - —pgl#l
L __@_,(rj_? ¥ 39 = —4T 7 edﬁe P GRS
C or oy 3%‘1 °

And the boundary conditions are

r=eo 8% -o . r—>e , ¢ =0 (812)
' oar !

Al s _ Bty

zZ= 90 2d = o ; 2\ = =, Q =0 C- )

J

ER

The discretized form of the equation ( A12) can be written as

Y [Cbm,;, - 7—4%‘,5 T d?i—‘,j] * Ld?cwj - ‘bc_\,j +

where
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-gC’ﬁi- y - _ qnfchre—o(we_ﬁl’k[

and hr and hz are the mesh-sizes in T and z respectively. For our
disk, we have hr >7 hz .

aAfter few simple manipulations, equation (a-lfy can be written

as
h%._. ’ h‘f

(16>
¥ }’i"— < ‘bg_“ )3 ——!!9‘,.__‘).)3 +_}_\:_. '{CCPC)SH +<¥C’S—D—}
2 e

This 1s the expression that will be solved in the multi-grid code.

The algorithm provided by Brandt written in cartesian
co-ordinates needed considerable modifications to solve this
equaiion. The changes involved were the following:

(1) Relaxation

The Gauss-Seidel relaxation scheme which involves point relaxation
was found not to be effective in reducing errors onn the boundary
because of the coupling of the errors. (Recall hr hz). A line
relaxation scheme had to be used where one updates the solution
simultaneously along & grid line at & time. This means ue had to
solve & tridiagonal systemn. Brandt's code was for Direchlet
boundary conditions. Neumann type boundary conditions (equations (
3 needs to Dbe tpreated separately from interior equations,
otherwise the smoothness of the errors will be destroyed ( Brandt
1977). We have treated the boundary conditions as follows:

(a) For o -

——

av
Let

ISo



L T ;) (A3
or
2 _?_i) = 2 ) G
pax - Ov PES
He write
b
G (19>
2 h,
Using an extrapolation of the form(fSee ${aure> r
-1 I 2 3
K_l = 3’(‘—3"‘;*—%3 x X X X
equation (A-13) becomes
5¢ = d)(:”_ - 3¢ L‘J| + 3¢ d;?_‘- bi‘g?ﬁ = } CA "‘2_0)
or -
zlﬁr
Now we can write equation (A.B) as
2
[5) - . . =t
;‘_241. [qji’l %qD\.,\ ‘+3¢L,L ¢L)3] - 31 j’ CA.‘I‘)
—_— 322
2h,
o . A'ZZ)
2 —1'54’5,, t 2’¢C,7—‘05¢c,3:{ = ?_,l 9 <
2% az?

hy
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which becomes

— —_— 2 N * N -
%«_S‘ [}bwﬂ—z c}jé,e_‘- q)i-':':{“ i 3 e %L""
ke

: — 20, +Ct>‘ ]
‘t [ Ebi.-\-\,z— 2¢C,z+ q)‘:“:z:) * %\‘5; [q)‘-‘""ﬁ ¢L13 £-1,3
-

(A2y4)

The final equation afterp simple algebra is

The same Procedure is done for the other boundary condition

The residuals were obtained as following.v
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L = T, T (qﬁch" * 2P ~°'S¢i)s>

-
=S iy, + 24, ~ o5 §y, 3)
4 — S— l 3
Y‘L+|Jl = 03'(\_“,, ( J L¥, 2
.
(A.zé.)
- 'S o, ta2d, — 05, 3)
\ = - Y L
Tia, e, < ot ’ :
h.
Substituting these in the equation (A'2%), we get
. : —z<-+.z-_§.—-p_-_§_\),_
LS <$L,\> = ’XCH,\ - Tf-\)i Al k’_dP‘-;L e Cb‘—ﬁ :
he- ' CA.'Z?-
by
'S < - _ , B—%.\__("‘"‘ A \)
— q%h\) - %1\ ——&-¢Qz-+g£' & 5. LMJ' =y
,'\w Y l’\ v
v~
If
New ol\d
gc’PCal = cbc'.,t - Cbc" CA‘?‘%)

New _ \A‘
q)d,\ - ¢°¢,' +%¢)5:\

Where é¢a’.1 is a swall change by which the current approximate

solution qbti, is updated during the iteration.

Now the equation (A-2}) can be written as



I

AR gcb&,l) - Cj’im -—_3__(‘)'117_ '\‘Q;L:% q)‘-';'i )+"i £+s>\+t‘4,1

{
= - %‘. + 15 (¢° 4"31 s v ¢&'3 j> T
[ % ¢ d)\ 4\ -!:; Ny Iy 2,2 b
J5», "‘"c-u,(“’?(‘—h‘]

Then the change é¢t1is

—_— v
o= N )
"E. LYC-H)\ ’ 7\—‘;‘) L)

%¢L‘,\ =

(2) Residual Transfers

In the case of cylindrical co-ordinates the Poisson's equation has

non constant coefficients. Therefore a straight injection of the

residual transfer is not enough. A full weighting of the residuals

i5 necessary. A nine-point formula of the kind

| 2 |

l, (h-21)
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Awas used. The residual transfer of the boundary conditions were
treated separately in our code too.
From the expression for the density of the disk we see that the
potential does not fall to zero as fast as we would like it to.
This means to use @ = ¢© 1is not a satisfactory solution on the
boundary of our finite grid. What is really needed are
higher-order terms of the potential and since this means solving
an integral at every grid point on the boundary line, we chose to
use the solution of the problem obtained by an alternate method ¢
direct integration ) as the values of the potential on the
boundary.

The wmulti-grid method took 43 seconds to solve for the
potentials on a grid of size 132 * 132 on the Gould 32/97

computer.




APPENDIX B

Evaluation of the Disk potential using Fourier transforms

The Poisson's equation for the axisymmetric disk in c¢ylindrical

co-ordinates is

2 —ty _glz}
FTé LBy +F0 = —amag € e (B>
aY-Z. .t- avr 6i7'
~*28 + 29 x w2 = —% w6 E e
v oy ke

Following Toomre (1963), we have written down the exponential
dens@ty in the radial direction r as
e
( B3:3)
e._o(Y‘ 3 Te Cky) & Ce) dk
0
where
Q)
k) = To (vr) we A
eC o] CB'Q)
0
4
- &¥+k1]3’L
Equation (8.2) can be now be written as
ey
2 1 |
TG ? 22 > —gl2
e __(2.. o s o = —T 4l G ¢ ‘Joék*v)S(l:)Ak
dr ™ v °
or* o
(85>
We have
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SL@: x 26 <« jé: G = 0
Tyt * v az™
o .
Lz
G dr I, Ceer)e (B6)

where 144 is the Green's function.

The disk's potential can now be written as

Griz) = -~ qng,f fék fak fd% fd, [3‘0[1((7- v‘):i J, [kg»']*

tle(a-2') = BT (g9

kK'ecew') e
k! "o"]
dlried= — UGS | de famfaf TQCKC-r—Y)lTnE ~
) Dlt‘ C% 2()—-6"3‘\
(B9

[&7‘-\- u"'} 5o °

blnr)= —UIGS, f fdk fd“ -’o["“”"’)l ):‘L”J *

l
oLt e_ e A% e Cles P> (B-‘i)

[f}+fﬁ13h' A

The next step is to find these integrals by just tedious algebra.

The main steps are outlined here. The final equation in this

appendix was the one used to compute the potentials numerically by

a Gauss-Quadrature integrator routine.

o R o
t

g}ecf‘_g ) = di' | dx A.Y‘ T Lk(f__w)] 3‘0[ \c‘o(vlj o’ e
[o(z-t- \c.'lS A b p

(le 2 [

0 0
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Q0

1 - e
('_‘PCV,-% Yz = dee _&’_ L =3

A [“1,? ] % (p) 2 =

Which is the exXpression used ¢ €quation (4-9) 3 inp chapter four
to derive the Potential of the disk numerically.
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APPENDIX C

Analvtical derivations for the Potentials and the Forces for

Spheroid and Halo components of a Spiral Galaxy

(i) The Spheroid
The expression for the density distribution of the spheroid

is

£, = &

R

[}+ @k;)lgzlz

The mass distribution is given by

Re,
Hp(ed = um 2, (" I P

Where RSP is the radial extent of the spheroid.

Putting equation ( ¢\) in this, we have

R

< n ' &v
MNepw (+) = yn ¢ X 3
Qe ! S L\{‘ CYIYS) I :S IL

Solving the integral we obtain

leo

the

(j:.l)

Ce.29

(€3



~ (e
Np )= umg o™ | 2 Q) ‘°2'§<Tlﬂ>‘" V@) 2
bt @l y"

The potential can be obtained by solving the Poissonr'sg

equation

Vb () = —uTag (x) Ces)

A particular solution of equation (£-%) which falls to Zero, as p —3eq

and also excludes a point at the origin is

ﬂ :

2

4>S Crd=  qr (.f ) vrdre o+ 4T ff(“')we\w CC'G);‘
p adll p :

-
w © ) A :
(j)sp () = J & 5> dv +¢ o dr (@-%3
T 2 31. 2 >
R G o e B N A
0 %0 ,
1. _ CC'?‘
Peo(xd = G gow™ G dw 4TS, v .__Q./f_}.

v o U{‘ @*S)L] - ¥ L(+ Q/KS’S% |

Solving the integrals, ye obtain

4} Crr) = ((rfs'fss - @Iﬂ) 4 loa,(%j; + HFQ'V,\)L) * (El'ﬁ)
sp ——<

- [+ Glo™ [T ELy

(Gl



which gives

! - c. o)
bSPCT)z o S—r-r_géig ['Q%{G{”S) + ["'er}) } C

¥

The force is then given by

C.ﬂ ) _ |03< T{Ys + mﬂ)“')] CC-H
'3@9(,("') = 4 f_s"‘_sg e
or h‘:* m

These are the equations used in chapter four.

(ii) The Halo

The density distribution forpr the spherically symmetric halo is

g, 0o = S,
Gl ) ™

The mass distribution is given by

kH
My Y=} 8,007 dv  unere 5

Y

(e

is the cut-off radius. (:¢45)

Putting equation ¢ ¢-12) in this expression we have

L
> 7 GhyT 4w (e tu)
.‘\ .

v REUM Y

Solving the integral we obtain

Hold = e
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NH (rd = 4T §*vk5[ CT/,(‘A) — -‘-Ow\—‘ Cr[m)] (‘ C1¢)

The potential is obtained by solving the Poisson's equation

T
v é G+ = -—-‘kﬁ_ngH CV‘) Ct'“)

H

The solution of equation (c¢.l{) that tends to zero when Py = 0 at

r DDR, is
2y

eQ
© ("= &_"L (=)™ dvr + (4'T§ {1y (e
— H

o Ry

Substituting equation ( C:1Z) and solving the integrals we get

5ol

n. - 2. |
(~) = "‘f“ {4, N 0 _‘ilo‘} {‘”“Q’/mﬁi €k
CT/?‘N)

L3

The force then is

~

BE_EHC*3 = —4uf 7% 6"%;— v - _Fon (?IL“)
o %]\t (] y N Gl
or v = L+ Clvk) V»\X Y )
Ce-19y

Equations ¢ ¢:1& ) and (€19 ) are the desired expressions.




APPENDIX D

The Aprproximate Enerqy Integral

The equations of motion in the RNB code are

N
Wmets = —wm, T oy (T— W) (D1

{=
’ g(_}f_g —ve)x <" Z *a

> . - - X))
wMYe = — My 2’§am — Mimg C"‘ ®-2)
. , < 1T 3[
th %\E\'B\ +4 f 2
where r_ and D are the position vector and mass of the globular
cluster,
L ﬁiare the position and mass of the i”‘particle,
iaal = §di.sk + i?ph‘row + éncﬂ.o in the case of the spiral galaxy
and

§Gm‘= §8phamud in the case of the elliptical galaxy.

Multiplying scalarly, equation (b-1) by ig and
equation (DH.2.) by 5( . Where Y¢ and ii denote the
velocities of the satellite and the iLh particle respectively, and

taking a sum over i in equation (b.2), we get

?_"5 is = — M5 Z ™M ( Xt “TX ¥e CD.B)

= {kv;-v;\-}—ﬁlgl

™
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iw‘i rt i‘i = — Zwg 34’0@ Y= g Z‘Mt (“‘\~T_ o Yi CD.qj
L

i o Z\,Y‘_.,d +¢_§ >

Adding equations (D.3) and (D4 ) we get

WMo YeFs o+ T Yoevil - S 28t . v oy Z wi Core =2
: ¥
o, ZCQ-“Y‘)‘F(‘.%S/
. -8
—  wy Zws (e -ve) . Yo (>s)

,Z\IL, _Ilkz*_{"§3,z.

It is important to note that % is a function only of the position
co-ordinates and not a function of the velocity components and
that the independent variable time t, is not explicitly present in
the expression for & . As a consequence of these properties, the

following relation will hold:

éig = atb i& (b3
A+ 2y

Therefore equation (0.{) can be written as

dt

i(‘*w‘s%"z-‘\_ 7'_2 ;e ) = Wy &%w t g Fwmy 49
- de Ak

(b-&
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o, = - Q-2

yf
[\‘T‘L—Ys +i ] =

Equation (B%) becomes

(p.3)

-

D , . _ (d 10
4 "- ™, ’”sl-l-lz_ Eowmrye — 2w, by = ™5 E Wy ¢|~S>_O )
at '

Integrating equation (b:-16), we obtain

y
. .
LMsE T LT —T g, - m S il

1

£ (b

]

which is the energy integral of the system.
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APPENDIX E

The Disk Force Calculations
T 22Lce Calculationg

The Potentials of the disk computed Numerically, either
by the multi-gpriqg method or the Gauss-Quadrature method, wgwepe
stored on g grid at the grid~positions (i,3), with i,j = 1 to
132. Th; resultant acceleration °n  each particle was then
determined by a simple linear interpolation scheme.

HS+|“‘ EINEY
In the figure, let p
be the Position of the Particle _-_'T_;:_ ~.f Q-7 .
on which the force has to be Fy ; z
computed frop the known Potentials :Té
at the grid points 1,3y, (i+1,j), X
(1,3+1) and (i+1,j+1,. 4, CHy

using simple linear interpolation. In the above €quation, F

F2 are given by ( sece the above figure )

Fos - Ty Foj + T, i)

- . T F. .
F, = Q T%) I:L-H))' t (.3 IR

where F o, F_ | F. and F are forces at
: L. Lj+d i+4,j » L+g, j+1

and
1

(e-2)

( &-3)

the



grid-points (i,j),(i,j+1),(i+1,j) and (i+1,j+1) respectively.

These are evaluated using a central difference formula from the

Potentials gas

L (e-w

—11
1]
..6_

1!

F . (b‘ - d)i+lL3

L-HJJ&-Z

21,

where hr is the mesh-size in the radial direction.

Substituting equations (¢.1, (¢€:3) and (€4 into ¢ ¢ .|

radial force equation becomes

[

-T . L +T F. .
Fv' Cpd= Q"T\.-) C\"Tl-) Ft‘,j*"T%Fc',j-H}*-'; ¢ x) R Z Leigh)

which is the eéxpression used in the code.

The vertical force FZ

on the particle is obtained in a
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similar way and is given by

*TFE
F?: CP) = C\—T%) (( —-T‘.) F“’j + TY‘ FL'):)_“J '\'T% O—Tv') FC*‘J} ; ¥ CH)J"H

(¢-6)
Here the force components are given by
Faj = pa = by

zk%

. E-?)

F‘)]*‘ - L2 Tb(’) C

zk%
= {.H))‘ (b Lal)§ Ll g

?_h%
F(-&-ljj.u - ¥(-\-\JJ"<‘1 L-H’_)

code.
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