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Introduction

In this project we analyze the properties of attractor dynamics of a simple

autoassociative network that can be thought of as a plausible model of a

patch of cortex. We then use our model to reproduce the “cortical” adap-

tation aftereffect in the classification of emotional ambiguous faces.

In the first part, we implement an associative neural network provided with

two layer structure. The first layer works as an input station and projects

the activity to the output layer through feed-forward connections. The out-

put layer is provided with recurrent collaterals that connect the units within

the layer and make the network work as an associative memory.

The simulation is divided into a training and a testing phase. During the

training phase the network stores p patterns through the learning algorithm

based on recurrent weights modification. In the testing phase we test the

ability of the network to correctly retrieve a pattern when it’s presented

at the first iteration and it’s immediately removed. We measure the per-

formance of the network in the testing phase in term of percent of correct

decoding and we study how the performance varies with the modulations of

the strength of the contribution from recurrent collaterals during learning.

In testing phase the strength of the contribution of recurrent collaterals is

always equal to the feed forward strength to allow pattern completion.

We consider two different cases: the first whenthe synapic weights modified

through the learning process can assume positive and negative values, and

the second when positive values only. We compare network performance in

the two cases.

We also study the convergence of the network to a stable point and the abil-

ity of the network to distinguish between learnt patterns. We then study

how the introduction of a geometrically organized connectivity affects net-

work performance. We want in fact to investigate if such a simplified model

can incorporate a plausible element such as a geometrically organized con-

nectivity.

We also study the storage capacity of the system measuring how the per-

formance of the network varies when we increase the number of patterns

to be stored. We finally investigate if the learning process has an effect
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also in unlearnt patterns comparing the “convergence” of dynamical pro-

cess to a stable point when unlearnt patterns are presented before and after

learning process. In the second part we try to reproduce the psychophysical

adaptation aftereffect through our model implemented allowing positive and

negative weights and recurrent collaterals not active during learning.

We then create morphs from the learnt patterns and we present a noisy

version of them to the network that has to decide if the output activity is

closer to the first or the second pattern generators. We investigate whether

the presentation of a prime and a mask before the target stimulus (morph)

induces a shift in the curve obtained presenting the morph only. An anal-

ogous shift in perception is experimentally found when subjects, that have

to classify as emotive or neutral a face with ambiguous emotional expres-

sions, are “primed” with an emotive or a neutral face. We find that the

reproduction of the experimental results is related to the introduction of an

adaptation term in firing rate that we model through two different shapes.

We finally investigate if the shift is still present when morphs are created

from unlearnt patterns.

Away from the prime

We present a simple autoassociative neural network model of cortical adap-

tation that replicates a high level category aftereffect, similar to that

described in Webster and MacLin (1999) [1] and Webster (2004) [2]. We

replicated this aftereffect in a series of psychophysical experiments. In these

experiments, a target face image with an ambiguous emotional expression

is made to seem more or less emotional or neutral by means of a prime face

image preceding the target. The effect of the prime, in particular, is to

push the perception of the target in the opposite direction to the prime. For

example an ambiguous face with an emotional component will seem “more

emotional” if the prime is neutral. We study in our model the comparable

effect of a pattern on retrieval from a partial cue of short duration (relative

to the number of cycles needed for retrieval). We also explore which learning

conditions permit correct pattern retrieval.
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Chapter 1

A model of a cortical patch

1.1 An associative network

Autoassociative networks are able to retrieve a pattern previously stored

when a noisy or occluded version of it (partial cue) is provided as input.

This ability is due to the formation of dynamical attractors [3, 4, 5] that

capture network activity if an input is sufficiently close to one of the pat-

terns stored as attractors in the network.

We can recognize the content of a visual stimulus even when it is severely

degraded [6]; faces in particular are extremely robust, and a convincing way

to explain this is by assuming that the cortex has similar pattern completion

dynamics [10].

Our model simulates a hypothetical local network in a higher level area of

the visual system, e.g. in the inferior temporal lobe. The network includes

an input station which projects the activity to the “cortical” output layer

through sparse feed-forward (FF) connections (from 68 out of 900 input

units, per receiving units) [11]. The output layer is provided with recurrent

collateral (RC) connections (342 out of 900 output units).

Training phase

The p patterns stored in the network are generated randomly by assigning

a value derived from a common truncated exponential distribution to each
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input unit. Differently from the Hopfield model that includes one layer only,

in our model the attractors do not correspond to the generated patterns, but

to their projection through feedforward connections in the output layer.

Feedforward connections are defined at the beginning and kept fixed during

the simulation, while recurrent weights are updated according to a modified

“Hebbian” rule

δJrc
ij = krµ

i (rµ
j − 〈r〉), (1.1)

as a result of a training phase, where rµ
i and rµ

j are the pre and post synaptic

firing rate of the input pattern, 〈r〉 the activity averaged over all the units

and k the learning rate, which quantifies the strength of the learning process.

We set the value of the learning rate to k = 0.006.

In the training phase, the p patterns are presented to the network one by

one. The activity circulates in the network for 60 time steps and at each

time step every unit receives an input comprised of the contribution of FF

and RC connections plus a global inhibitory term b

hi =
∑

j

Jff
ij rinp

j + M
∑

j

Jrc
ij rout

j + b, (1.2)

where rinp
j and rout

j are the activities of the jth unit in the input and in

the output layer respectively. The response of a unit is characterized by a

threshold linear function

rout
i =

{

g(h − Tthr) h > Tthr

0 h < Tthr

. (1.3)

where g is the gain amd Tthr is the threshold. They are updated at the

end of the dynamical process (60 reverberations); then the next pattern is

presented.

Connection weights

The connections are not organized according to a geometrical structure but

they randomly defined. They are initially defined by the equation

J in
i,j = J0

i,j + Jran
i,j , (1.4)
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where J0
i,j is a constant term and J ran

i,j is a small random asymmetrical

component described by the equation

Jran
i,j = −

1

2
β log(1 −

y

α
), (1.5)

with α and β constant terms and y statistical variable uniformly distributed

between 0 and 1. The value of the weights is sincronously updated at the

end of each pattern presentation according to the equation (1.1); weight

values are then given by

Ji,j = J in
i,j + δJi,j . (1.6)

Two cases are considered: positive and negative weights and positive weights

only.

In the first case we set J 0
i,j to 0 and we let Ji,j assume positive and negative

values, corresponding, collectively to EPSPs from pyramidal cells, mediated

by synapses with modifiable efficacies, and IPSPs from inhibitory interneu-

rons.

In the second case, we consider excitatory synapses only and Ji,j is cut off

at 0 if it attains negative values. We set J 0
i,j = 1

Nrc

to avoid that the too

many synapses are set to 0 as a result of learning process.

Testing phase

In the testing phase a pattern is provided as input to the network and

removed after the first iteration; the parameter M is set to 1 to allow the

dynamics to proceed through the activity of recurrent collaterals.

The output activity at the end of 60 iterations is then compared in term

of overlap with all the patterns as they are represented in the output layer.

The representation of each pattern is obtained by projecting the activity of

each unit in the pattern to the output layer through the FF connections (i.e.

output activity after 1 iteration).

The overlap is calculated with the equation

Ov1,t =

∑

i rout
i (1)rout

i (t)
√

∑

i(r
out
i (1))2

√
∑

i(r
out
i (t))2

, (1.7)

where rout
i (1) is the activity of the ith unit in pattern representation after 1

time step, and rout
i (t) the activity of the ith unit at the end of the dynamical
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process of 60 iterations.

The pattern retrieved is defined as the one with highest overlap with the

result of the test.

1.1.1 What is the role of recurrent connections in learning?

We investigate the role of the parameter M in the training phase to see

how the activity of recurrent collaterals affects learning. During testing

phase the parameter M is set to 1 to allow the dynamicsto proceed through

the activity of recurrent collaterals We vary M between 0 (RC not active

during learning) and 1 (RC active during learning with the same average

strength as FF weights) and measure the performance of the network as

percent of correct decoding. This measure indicates whether the network is

able to correctly retrieve the input pattern when it is removed after the first

iteration.

Fig. 1.1 shows the percent of correct decoding as a function of the pa-

rameter M for posive only and positive and negative weights. In both cases

the network performance is better when recurrent collaterals are not active

during learning (M = 0), and it rapidly decreases to an asymptotic value

with increasing of RC strength. The result is in agreement with Hasselmo’s

hypothesis [7] according which recurrent connections are not strongly acti-

vated during learning, but they are widely in the retrieving phase. when

recurrent collaterals are active during learning.

Fig. 1.1 also shows that the network performance is improved for any vaule

of M by the introduction of negative weights.

1.1.2 Attractor formation

We first check that the learning rate k is appropriate for the convergence of

the dynamical process to stable points (Fig. 1.2), measuring the Euclidean

distance between two successive time steps

DT t,t+1
µ =

√

√

√

√

N
∑

i=1

(

rµ
i (t) − rµ

i (t + 1)
)2

. (1.8)

Since the network performance decreases monotonically from M = 0 to

M = 1, we perform the next measures for the “extreme” conditions M = 0

8



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M

P
e

rc
e

n
t 

co
rr

e
ct

/1
0

0

Figure 1.1: Percent correct as a function of the parameter M that modulates

the strength of recurrent collaterals during learning, positive weights only

(bottom curve), positive and negative weights (top curve).

(RC not active during learning), and M = 1 (RC active with the same

strength as FF). Fig. 1.2 shows that with both values of M the network

converges to a stable point in time. The largest state change is from the

first (when the input is applied) to the second iteration (after input removal)

and this change is much larger when the network is trained with RC active.

However in RC active condition the convergence is quicker. Nevertheless

in the RC not active condition the oscillation around the stable point are

larger than in the RC active condition.

We then ask whether the network performance is related to the degree of

“attractor separation”. We compute the Euclidean distance between the

network activities of any pattern pair at a certain time step

DRµ,µ
′

t =

√

√

√

√

N
∑

i=1

(

rµ
i (t) − rµ

′

i (t)
)2

. (1.9)

This measure expresses how much the activities of two patterns overlap

after a fixed number of iterations. If the Euclidean distance is close to 0 the

pattern pair falls into the same basin of attraction and the network is not
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Figure 1.2: Semilogarithmic scale; Euclidean distances between two succes-

sive time steps as a function of time steps for M = 0 (left panel) and M = 1

(right panel) for the 7 patterns . The results shown are computed allowing

negative weights, but the convergence for positive weights only is qualitative

the same.
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able to distinguish between them.

Attractor separation

Fig. 1.3 shows the normalized histograms of all possible pairs of reciprocal

distances obtained at the end of the dynamics (60 iterations) in 10 indepen-

dent runs.

If M = 1 the majority of reciprocal distances goes to 0 indicating that some

of the input patterns converge to the same basin of attraction.

When M = 0 (solid lines), most of the distances are large indicating that

the dynamical process leads two distinct patterns almost always to different

basins of attraction.

In both conditions the presence of negative weights leads to a decrease in

the number of collapses and consequently to an increase in the ability of

the network to distinguish among the patterns. When M = 0 and negative

weights are allowed there is still a small number of distances close to 0, indi-

cating the presence of a few collapses into the same basin of attraction. This

imperfect pattern separation could probably be related to finite size effects,

since the number of units (900) is far away from the thermodynamic limit

in any practical sense. We increase the network size (from 900 to 1225 while

keeping the connectivity ratios (Nrc/N and Nff/N) and the load α = p/Nrc

fixed. Fig. 1.4 shows that even if the increase in network size is not large,

however there is a decrease in number of collapses, supporting then the

hypothesis of finite size effects.

1.1.3 How does learning rate affect network performance?

The learning rate k has been chosen to allow the network to converge to

stable points as a result of the dynamical process. We investigate whether

the strength of the learning process affects the network performace, and we

plot (Fig. 1.5) the percent of correct decoding as a function of learning rate

for M = 0 and for M = 1. We consider only the case where negative weights

are allowed.

For M = 0 the percent correct increases with the learning parameter k up

to an asymptotic value while for M = 1 the percent correct is always at a
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Figure 1.3: Normalized histograms of the Euclidean distances between all

possible pattern pairs obtained after a 60 time-steps dynamics in 10 inde-

pendent runs for M = 0 (solid line) and M = 1 (dashed line). Positive

weights only (left panel), Positive and negative weights (right panel)
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Figure 1.4: Comparison between the network with 900 units and a network

with 1225 units. Normalized histograms of the Euclidean distances between

all possible pattern pairs obtained after a 60 time-steps dynamics in 10

independent runs for M = 0 and with positive and negative weights. 900

units network (black dashed line), 1225 units network (red solid line)

12



poor level. There is a maximum in the percent correct for k = 0.001 but its

value is still below 50% of correct retrieval.

The results show that over a broad range of k values the network perfor-

mance is not significantly affected by the change of learning strength. So

the network performance is stable to variation in the learning parameter k.
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Figure 1.5: Percent correct as a function of the learning rate for M = 0

(blue line) and M = 1 (red line); Positive and negative weights are allowed.

Geometrically organized connectivity

In the model implemented as above the synaptic connections are defined

randomly, without any geometrical structure. We investigate how the per-

formance of the network and the number of collapses for M = 0 and M = 1

are modified by the introduction of a geometrically organized connectivity,

where the synaptic connections are defined as a function of the reciprocal

distance between the units. Fig. 1.6 shows that the network performance

has the same qualitative shape as in the random connectivity case, but the

percent correct is always lower. We also observe that the number of collapses

is higher both for M = 0 and M = 1 even if the difference is not large.

Out model is then too rough and simplified to allow the introduction of a

plausible element such as a geometrical structure that assigns higher prob-
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ability to closer units.
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Figure 1.6: Left panel; Percent correct as a function of the parameter M

for a geometrically organized connectivity (σ = 6) (solid line), and for a

random connectivity (σ = inf); right panel: normalized histograms of the

Euclidean distances between all possible pattern pairs for M = 0 (green

line) and M = 1 (blue line) for a geometrically organized connectivity (solid

lines), and for a random cpnnectivity (dashed lines); Positive and negative

weights are allowed.

1.2 Storage capacity

We investigate how percent correct changes as a function of the number

of patterns. This measure address the question of the storage capacity,

(αc = p/Nrc) the maximum number of patterns that can be stored and cor-

rectly retrieved by the network.

Fig. ?? shows that percent correct decreases almost linearly increasing the

number of patterns and that there is not a sharp transition for any critical

number of patterns as it happends with the Hopfield model. However the

introduction of threshold linear units was shown to induce a smoother be-

haviour in the network performance [8].
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The presentation of a larger number of patterns than the ones indicated by

the storage capacity (e.g. p = 20, Fig. 1.8) does not prevent the convergence

to stable points (figure not shown) but increases the number of collapses from

∼ 5% to ∼ 18%, where we arbitrarily indicates with “collapses” reciprocal

distances smaller the 5.
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Figure 1.7: Percent correct as a function of the number of patterns.

1.3 Convergence before and after attractor forma-

tion

We investigate what is the effect of learning process in unlearnt patterns in

RC not active condition and when negative weights are allowed.

We find that network performance is poor (figure not shown), but that

all unleanrt patterns converge to a stable point (Fig. 1.9b), even if the

convergence is slower than for learnt patterns.

The convergence to a stable point is a consequence of learning process since

before weights update the state continue to chenge during dynamical process

and it does not reach a stable point (Fig. 1.9a). The effect of learning process

then is make the network converge to a stable point, no matter whether or

not the input pattern is stored in the network.
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Figure 1.8: Normalized histograms of all possible reciprocal distance for 7

(dashed line) and 20 (solid line) patterns.

10 20 30 40 50
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Time steps

Co
nv

er
ge

nc
e

10 20 30 40 50

10
1

Time steps

Co
nv

er
ge

nc
e

Figure 1.9: Semilogarithmic scale; Euclidean distances between two succes-

sive time steps as a function of time steps for 7 unlearnt patterns before

(left panel) and after (right panel) learning process . The results shown are

computed allowing negative weights, and for M = 0.
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Chapter 2

Adaptation aftereffect

2.1 Experimental adaptation aftereffect

We now want to investigate whether the model implemented as above (in the

RC not active condition) is able to reproduce the adaptation aftereffect. We

first recapitulate the experimental study [9]. Nicola et al have demonstrated

a robust adaptation effect with face stimuli, where subjects were asked to

classify face images as either neutral, or emotional.

2.1.1 Experimental procedure

12 subjects classified 12 sets (28 morph strengths) of morphs. Prior to

classification trials, subjects were familiarized with the set of adaptors (i.e.

the primes). For a given morph set the adaptor was either the emotive

extreme, or the neutral extreme of the morph set, and the direction of

adaptation for each morph set was counter balanced across subjects. On

each trial they saw a prime (the adaptor for 22 ms or 500 ms duration),

followed by a mask of 50 ms. After 250 ms subjects were asked to classify a

target face (of the same identity), as neutral or as the appropriate emotion.

2.1.2 Results

We found significant statistical aftereffects with both prime lengths (results

reported fully elsewhere).
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Figure 2.1: Experimental results obtained when subjects are asked to classify

faces with ambiguous emotional expressions (morphs) as neutral or emotive.

The probability of perceving the target stimulus as emotive is plotted against

morphing scale for neutral prime (solid line) and emotional prime (dashed

line). Adaptor length 500 ms.
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2.1.3 What is needed to reproduce the adaptation afteref-

fect?

We represented morphs by combining two of the stored patterns in differ-

ent proportions, from 0 to 100. Taking all possible pairs of patterns was

considered to adequately sample pattern space.

The testing phase

We have changed the testing phase to reproduce the experimental paradigm,

leaving the learning phase as it is. We present a noisy version of a morph to

the network that has to “decide” through a decoding algorithm if the output

activity is closer to the first or the second pattern. The experimental results

show a relative shift of the curves obtained with an emotive and a neutral

adaptor, induced by the adaptation aftereffect.

To use the same language as the experiment, “emotive” corresponds to the

first pattern in the pair of morph generators and “neutral” to the second.

In the simulations we compare the results obtained with and without an

adaptor.

In the “without adaptor” condition we present a morph to the network that

has to “classify” it as “neutral” or “emotive”.

In the “with adaptor” condition we present a prime, which we choose as the

first pattern in the pair (“emotive”); a mask,finally the morph. The mask

consists in noisy activity in the output layer which is realized through the

subtraction from the input activity to each cell of a term proportional to

the residual activity coming from the prime. The mask has then the effect

of stopping the activity coming from the prime. We found there is no shift

between the two conditions, without the addition of an adaptation factor.

Adaptation in firing rates

We then introduce adaptation in firing rates as a simple model of neural

fatigue. We implement it as the subtraction from the input activity of each

cell of a term proportional to the difference of two exponentials with different

time constants:

hin
i (t) = hi(t) − α[r1i(t) − r2i(t)], (2.1)
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with

r1i(t) = r1i(t − 1) exp(−β1) + ri(t − 1)

r2i(t) = r2i(t − 1) exp(−β2) + ri(t − 1),

where rin
i (t) is the input activity to the ith cell at time t, hi(t) is the term de-

fined in eq. (1.2) at time t, β1 and β2 are the time constants, rout
i (t−1) is the

output activity of the ith cell at time t − 1 and ri(0) = r1i(0) = r2i(0) = 0.

The input to each cell is then affected by the firing rates of all the previous

time steps. The expontential decay makes the activity of the last time step

more influential than the others.

The difference of the two exponential means that the effect of adaptation

appears only after the second iteration, taking into account that neural fa-

tigue does not appear instantaneously. It also makes the adaptation not too

strong when t is small.

The same adaptation waveform was previously used to solve the compu-

tational conflict between pattern “completion” and “prediction” [12] in an

architecture similar to ours which modeled hippocampal CA1-CA3 layers.

This choice is not the only possible one, so we try, for example to model this

term as the subtraction from the input activity of a square wave.

Results

The introduction of adaptation in the firing rates induces a shift (Fig. 2.2)

in the curves corresponding to the two different conditions (with and with-

out adaptor). We can then reproduce the adaptation aftereffect including

neural fatigue in the model described.

An analogous result is found implementing the adaptation term as the sub-

traction from the input activity of a square wave. (Fig. 2.3). The size of the

effect is the same for the two shapes; the only (minor) difference appears

at the extremes of morphing scale. Implementing the adaptation term as a

“square wave” in fact the aftereffect disappears for the extremes of morphing

scale. On the contrary if we implement it as subtraction of two exponential

decays the effect is still present for morphs close to 100% of correlation with

the prime, while there is a small reversal effect for morphs close to 0% of

correlation with the prime. This effect though is very small.
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Figure 2.2: Percent of “emotive” responses as a function of the morph scale

when the morph is presented without adaptor (solid line), and with adaptor

(and with the introduction of adaptation in the firing rate) (dashed line).
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Figure 2.3: Percent of “emotive” responses as a function of the morph scale

when the morph is presented without adaptor (solid line), with adaptor and

with adaptation modelled as subtraction from the input activity of a square

wave (dashed line).
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2.2 Adaptation to repetition

We investigate more in detail what is the effect of adaptation in firing rates.

We then compute the overlap between morph representation after 60 time

steps and the output activity resulting from the dynamical process when a

noisy version of the morph is presented to the network eq. (1.9). We plot

the average overlap as a function of morphing scale (Fig. 2.4), finding that

the overlaps are higher for the extremes, which are learnt patterns.

This result is compared with the case when the network is stimulated with

the morph, with the mask, and with the morph again. We observe (Fig. 2.4)

the the overlap is not significantly modified by the new morph presentation

for the extremes, but it symmetrically decreases toward the middle of the

scale. This result suggests that the adaptation in firing rate has a significant

effect when the network is not in an attractor state, while it has a very small

effect if the network has already reached a basin of attraction.
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Figure 2.4: The effect of repetition on the morph; solid iine, adaptation

after one repetition expressed as the overlap between the representation of

the morph and the output activity of one repetition; dashed line overlap

between the initial representation and the output activity resulting from

the second repetition.
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Do aftereffects need attractor formation?

We finally test the “with” and “without” adaptor conditions when the net-

work was presented with morphs generated by two unlearnt patterns. We

find (Fig. 2.5) that the sigmoid is not reproduced, when attractors relative

to the pattern generators are not formed, but the shift between the two

curves is still present, even if the size of the effect is smaller than in the pre-

vious case. Aftereffects do not strictly require, then, attractor formation:

they require, of course, the presence of the adaptor. Their exact shape,

though, like the shape of the nonadapted sigmoid “neurometric” curve (Fig.

2.2) does depend on the formation of attractors.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Morph "neural" to "emotive"

P
e
rc

e
n
t 
o
f 
"e

m
o
tiv

e
" 

re
sp

o
n
se

/1
0
0

Figure 2.5: Morphs generated with unlearnt patterns. Percent of “emotive”

responses as a function of the morph scale when the morph is presented

without adaptor (solid line) and with adaptor (dashed line).

2.3 Discussion

We have reproduced the adaptation aftereffect with a simple associative

network. In a simple but plausible model of the cortex, we found that

the network is able to efficiently learn the generated patterns only when

recurrent connectivity is not active in the training phase. The activation

of recurrent collaterals during learning leads to a decrease in performance
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which was stronger the larger was RC strength. The poor performance when

RC are active during learning was related to the problem of the collapse of

many pattern pairs into the same basin of attraction.

The model was able to reproduce the adaptation aftereffect only with the

introduction of adaptation in the firing rates as a representation of neural

fatigue. Our results suggest that the minimal model required to show this

kind of effect includes an explicit model of neural fatigue, although it does

not dictate its exact form.

Future work should compare the dynamics of the decay of the real aftereffect

[13] with our symplified model.

Conclusion

The results obtained implementing the model suggests that the network has

a much better performance when both positive and negative weights are

allowed and when the activity of recurrent collaterals is switched off dur-

ing learning phase. In particular the network performance monotonically

decreases with the strength of recurrent collaterals during learning. This is

related to the increase in the number of collapses into the same basin of at-

traction and to the consequent decrease in the ability to distinguish among

the patterns from the network.

We observe that the number of collapses is small when recurrent collaterals

are not active during learning, but it is still present. This problem could

be related to finize size effects since an increase in network size reduces the

number of collapses.

The learning process leads to the convergence to a stable point of the pat-

terns presented as input, no matter whether leanrt or not. We have also

found that the network performance is stable over a broad range of values

of the learning paramenter k, but that the model is too simple to obtain a

good performance with RC not active when a geometrically organized con-

nectivity is introduced.

The model implemented with RC not active during learning was able

to reproduce the experimental data on adaptation aftereffect only after the
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introduction of an adaptation term in firing rate. The choice of adaptation

term is not unique: we have in fact obtained very similar results modeling

this term as a square wave and as a difference between two exponentials.

We have observed that the adaptation aftereffect does not need attractor

formation, it just requires the presence of an adaptor. However we could

reproduce the sigmoidal shape only in presence of attractors. Finally we

have observed that the adaptation in firing rate has its major effect when

the network in not in an attractor state.
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