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INTRODUCTION

The variational formulation of many problems in Mathematical Physics,
Computer Vision, and Mechanical Engineering takes into account an en-
ergy functional depending on a function and a hypersurface, both a priori
unknown. Typically these functionals consist of two parts: the first one
represents the “volume” energy and is the integral of a potential, depend-
ing on the gradient of an unknown scalar or vector function u, with respect
to the Lebesgue measure in R”, n being the number of independent vari-
ables; the second one represents the “surface” energy and is the integral
with respect to the (n — 1)-dimensional Hausdorff measure in R™ of some
function computed on a hypersurface, a priori unknown, where the function
u is discontinuous. These energies account for several phenomena such as
crack growth and crack initiation in the theory of brittle fracture, interface
formation between different phases of Cahn-Hilliard fluids, surface tension
between small drops of liquid cristals, and are utilized for pattern recog-
nition in Computer Vision to determine surfaces corresponding to sudden
changes in the image.

Given a functional modelling the energy of a phenomenon, we look
for minimizers which represent the equilibrium states. When a variable of
the functional is a hypersurface such a minimum problem is called a “free
discontinuity” problem:.

This thesis deals with the variational formulation of some of the “static”
free discontinuity problems, in the light of resent research on functionals
which depend on discontinuous functions.

Let us briefly discuss some models.

Frequently in the literature some static or quasi-static phenomena in
damage or fracture mechanics are described by introducing an energy func-
tional of the form

(1) Fiw,5) = |

W(Du) dz + / d(ut,u”) dH>.

Q\S s

Here H? denotes the two-dimensional Hausdorff measure, the bounded open
subset © C R? is the reference configuration, the function u represents the
displacement, which is differentiable outside the “discontinuity surface” S,
and ut, u~ are the traces of u on the two sides of S. The latter can be
interpreted as a crack or a “plasticity” surface. The functions W and @
represent the bulk and surface energy densities respectively. We emphasize
that the surface S does not play the role of a parameter: the variable of the
problem is the pair (u, S), where u and S are connected by the fact that S
is the discontinuity surface of u.



11 Alessandra Coscia

The simplest situation consists in taking ® = C a constant; i.e., the
surface energy proportional to the surface area of the crack. A model of this
kind is found in Griffith’s theory of crack propagation [Gri]. In this case
the functional F; provides a good description of the observed phenomena
in the presence of a pre-existing crack, but does not explain the formation
of internal quasi-static cracks (see [87], [54], [81], [64], [16]). To avoid
supposing a priori the existence of small fractures, we have to consider
energy densities which actually depend on the traces of the function u on
the surface S. In the spirit of Barenblatt’s theory of crack formation we
can consider, for example, a function depending on the size of the jump
[ut —u~|:

(2) e(ut,uT) = p(lut —uT),

with ¢(t) vanishing for ¢ — 0. If this function is approximately linear
near 0 it is easy to see that the functional F; justifies the formation of
small cracks. For a discussion on mathematical models and methods for
problems in fracture mechanics we refer to [82], [66].

A model similar to (1) can be introduced for the study of an elastic-
plastic plate.

Let us consider a horizontal thin plate whose undeformed shape is a
bounded connected open subset @ C R%. The plate is submitted to bound-
ary conditions.

In the framework of linear elasticity (see [53], [80]), under appropriate
hypotheses, the deformation energy of the plate is given by an integral
functional with growth of order two, involving the Hessian matrix of the
unknown function, which represents the vertical displacement.

If we take into account also plastic behaviour without hardening (for
instance in case of a material subject to Henky’s law) the behaviour of the
plate can be modelled by introducing an energy functional of the form (see

[34])

(3) Fo(u,S) = /Q\S |D?u|? dz + H'(S) + </5r19 |(Du)* — (Du)~| dH .

Here H! denotes the one-dimensional Hausdorff measure, u represents the
vertical displacement, which is continuous on § and twice differentiable
outside the line S (interpreted as the crease line of the plate), (Du)* and
(Du)~ are the traces of the gradient Du on the two sides of S, and D%y
denotes the Hessian matrix of u. Different models for the same phenomenon
can be found in [51], [52], [90].

This functional corresponds to a linear elastic energy density on the
“clastic” set §\ S, while the energy on the “plasticity” line S takes into
account the length of the crease line and the jump of the gradient of the
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displacement. The minimum problem associated to the functional in (3) is
an example of gradient free discontinuity problem.

The study of functionals depending on a “free discontinuity line” re-
cently arose in pattern recognition in Computer Vision, as a variational
approach to the problem of reconstructing the contours of a picture given
by a camera.

On a bounded domain © C R? the image is represented by the grey
level function g € L*°(§), which measures the intensity of the light at each

point of the screen. D.Mumford and J. Shah [77], [78] suggested the study
of the problem

(4) inf { [ |Duf? dm+H1(SﬂQ)+/ w — gf? da}
(v,5) Ja\s Q\S

where S is a closed subset of Q, u € C}(2\ S), and H' denotes the one-
dimensional Hausdorff measure.

Since one expects the function g to be discontinuous along the lines
corresponding to sudden changes in the visible surfaces (e.g. edges of ob-
jects, shadows, different colours), the image segmentation problem consists
in finding a pair (u, S) such that S is a set of curves decomposing the image
into regions with relatively uniform intensity, while u is a smooth approx-
imation of ¢ on each region. The set S will be interpreted as the union of
the lines which give the schematic description of the image. For a general
treatment of this subject we refer to [83].

The Mumford-Shah model, though quite simple, is not in some situ-
ations a good approximation of the image segmentation problem, in the
sense that the qualitative behaviours of the datum ¢ and of the solution u
are too different. This happens for instance when the datum ¢ has large
gradient in a small region (the Mumford-Shah model presents the so-called
“eradient limit” effect, see [24], 4.1.5) or when some crease discontinuities
(i.e., lines along which the function is continuous but the first derivative is
discontinuous) seem meaningful in the shape of the datum (the solution u
never reconstructs them).

In order to overcome the deficiences of such a model, A. Blake and
A. Zisserman [24] suggest to modify the functional in (4), including the
second order derivatives, instead of the first order ones, and a penalty for
unit length of crease discontinuity. Following the ideas of these authors we
are led to consider as a new model for the image segmentation problem the
functional, defined for every pair of disjoint closed subsets Sg, 57 of Q and
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for every function u € C°(Q\ So) NC*(Q\ (So U S1)) as

|D?u|? dz + /Q\S lu — g|? dz

Fa(u, So, 51) = /

2\ (SeUS1)

(8)
+a H!(So) + 8 H' (S1),

where a and A are positive real numbers. We remark that this model leads
to a gradient free discontinuity problem allowing also jumps of the function
and this is not the same situation as in (3).

From the point of view of the Calculus of Variations a natural question
about the functionals in (1), (3), (4), and (5) is the possibility to apply the
so-called Direct Method, which consists in proving lower semicontinuity
and coerciveness of the functional with respect to an appropriate topol-
ogy. This latter requirement guarantees compactness of the minimizing
sequences; then, by the lower semicontinuity, each limit point of such a
sequence achieves the minimum value.

The problem here is that the known compact topologies on the family
of closed sets do not ensure the lower semicontinuity of the terms involving
the Hausdorff measure.

For problems of this kind E. De Giorgi and his school have proposed a
unified approach based on the use of a new function space, named SB V(Q)
(see [45], [6]), which allows to transform the minimum problems related to
functionals like (1), (3), (4), and (5) into the minimimization of functionals
depending only on an unknown function.

Let Q be an open set in R® and k > 1 be an integer. We recall that
a function u € L}(;R¥) is a function of bounded variation (and we write
u € BV(Q;R¥)) if its distributional derivative Du is a finite (matrix-valued)
Radon measure on . It turns out that the Lebesgue decomposition of this
measure can be written as Du = Vudz + D,u, where the density of the
absolutely continuous part of Du is denoted by Vu since it can be inter-
preted as an approximate differential for u. For a function u € B V(& Rk)
it is possible to define a set of jump points S, where u is approximately
discontinuous, and it turns out that there exists a countable sequence of
C! hypersurfaces which covers H™ !-almost all of S,. Moreover on Sy it
is well-defined a “normal” v, together with the traces u™, u™ of u on the
two sides. In addition Dsu can be decomposed into two mutually singular
measures by setting

Dou=@wr—u)® vu’Hrs_l + Cu,

where H™~! denotes the (n — 1)-dimensional Hausdorff measure, the mea-

sure (ut —u7) ® uu'Hrs—l is the jump part and Cu the so-called Cantor
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part of Du. We recall that the measure Cu is “diffuse” in the sense that
Cu(S)=0if S is a set of Hausdorff dimension (n — 1).

The fact that the functionals in (1) and (4) control only the absolutely
continuous and the jump part of the derivative, motivates the introduction,
due to E. De Giorgi and L. Ambrosio [45], of the subspace SBV(£; R*) of
the special functions of bounded variation that are characterized by the
property that Cu = 0.

On the space SBV(Q;R*) it is natural to consider functionals of the
form

(6) / F(z,u(), Vu(z)) dz + / o ut ™, ) AHL

» N

For the functionals in (6) a rather complete theory has been developed by
L. Ambrosio and A. Braides [9], [10] in the framework of partitions of sets
of finite perimeter (in this case the term involving f disappears).

In the general case L. Ambrosio proved in [7] the lower semicontinuity
when f is convex (in the last variable) and has a superlinear growth at
infinity, and ¢ is BV-elliptic and has a superlinear growth for [u*—u~| — 0
(for example if ¢ > ¢ > 0). These conditions ensure compactness separately
for the bulk and jump part of the derivative, so that the two integrals in
(6) can be dealt with separately. In [8] this result is extended to the case of
f being quasiconvex in the sense of C. B. Morrey (see [75], [74]) in the last
variable. It is well known that this hypothesis is the natural assumption in
the case of vector-valued u (see [75], [41], [1], [57]) .

How may we treat the minimum problem for the functional in (4)?

The general method proposed by E. De Giorgi consists in the follow-
ing steps: first we give a weak formulation on the space SBV({Q2) to the
minimum problem; then we look for minimizers trying to apply the Direct
Method; finally we study the regularity properties of the minimum points
in order to recover a minimizer of the initial problem.

In our case the weak formulation of the minimum problem in (4) con-
sists in the minimization over the space SBV(Q2) of the functional

(7) .7-"(u)=/Q[Vu|2 d:z:-{-/ﬂ{u—g|2 dz +H(Sy).

Using the lower semicontinuity theorem of L. Ambrosio, mentioned above,
it is easy to prove that the functional F achieves its minimum on SBV ().
Moreover, in [46] E. De Giorgi, M. Carriero, and A. Leaci have proved the
existence of a minimizer for problem (4) by showing that if u € SBV(Q) is
a minimum point for F, then (%, S;), where @ denotes the approximately
continuous representative of u, is a minimizer of (4) and H(Sz \ Sz) = 0.
Another proof of the same result is due to G. Dal Maso, J. M. Morel, and
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S. Solimini [43], with a method which is limited to the two-dimensional
case.

Let us try to apply the same general method to the functionals in (1).
We consider the weak formulation on SBV(2) by setting

(8) Gr(u) = /Q W(Vu) dz + /

S.NQ
(here for simplicity we take () =t in (2)); nevertheless these functionals
present the problem of not being lower semicontinuous on SBV(Q2).

In order to deal with the situation, where the functional is not lower
semicontinuous, the Relaxation Methods have been introduced. Let F :
X — RU {40} be a functional on a topological space (X, 7). The Re-
laxation Methods consist in defining a new functional F as the 7-lower
semicontinuous envelope of F; i.e., F is the greatest 7-lower semicontin-
uous functional less than or equal to F. If the functional F is coercive,
then also the relaxed functional satisfies the coerciveness condition; hence
it admits a minimum point. Moreover the minimum value of F equals the
infimum of F and each limit point of a minimizing sequence for F is a
minimizer for F (see [32] for a general treatment on this subject).

For the functionals in (8) we can explicitly determine the lower semicon-
tinuous envelope G; in the L!-topology, under some convexity hypotheses
on W (see Chapter 2, Theotem 2.1). More precisely for every u € BV (Q2)
we obtain that

(9) Gi(u) = /7

where |Dsu| denotes the tot
bulk energy of G1, is a functi

[ut(z) — u™(2)] dH’

W(Vu) dz +/
S.nQ

IDsu],

al variation of the measure Dyu and W, the
on, explicitly computed from W, which grows

at most linearly at infinity,

extended to the vector-value

whatever the form of W. This result can be
d case under the same hypotheses on W.

We remark that the relaxed functional G; is finite on the whole B V(Q);

this means that in general t
zone. Therefore we can not

the discontinuity set, e.g. th
solved by considering only p1

“fracture” remains confined

In order to select betweer

he minimizers may have a diffuse “fractured”
expect to have strong regularity properties of
1at it is a surface. This difficulty is classically
-oblems where the existence of solutions whose
on a surface is supposed a priori.

h all possible minimizers for G; those belonging

to SBV({), we can approximate G; by means of a sequence of functionals
obtained by perturbing the functional G; with an additional term. These

functionals are defined on B

(10) G1,e(u) =

“+00

Gi(u)+ e/

V() as

d(ut,u”) dH? u e SBV(Q)

SuNQ2

elsewhere,
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where ® is a nonnegative Lipschitz continuous function in R* with ®(v,v) >
¢ > 0 for all v.

The convergence we consider here is a variational convergence, called
I'-convergence, introduced by E. De Giorgi and T. Franzoni in 1975 [48].
Under the additional hypothesis that the approximating sequence is equi-
coercive the I'-convergence ensures convergence of the minimum values and
of the minimizers. Therefore to approximate via I'-convergence represents
a choice, among all the possible minima of the limit functional, of those
that in particular can be reached following the minimizers of the approxi-
mating functionals. We refer to the recent book by G. Dal Maso [42] for a
comprehensive introduction to the subject.

In the one-dimensional case we can study the effect of this perturba-
tion on the minimizers of G4 by examining some minimum problems with
generalized Dirichlet boundary data, and by characterizing the minimizers
for G, which can be reached following sequences of minimizers for the same
problems for Gy .. The choice criterion is determined by ®. Indeed these
minimizers are in SBV({2), they have a finite number of jumps, and they
minimize (under the same boundary conditions) a functional of the form

Y B(u(et), u(z-))

TES,

among all SBV-minimizers for G;. The function @ can be easily computed
from the function ¢ and is independent of the boundary conditions (see
Chapter 2, Sections 3 to 5). Let us remark that we are able to describe
the behaviour of such minimizers, but we cannot localize the jumps of a
minimum point.

Let us observe that the relaxation result (9) is proved under some con-
vexity hypotheses on the bulk energy. In the vector-valued case a more
general relaxation theorem can be obtained for the class of functionals de-

fined on SBV(Q; Rk) by integrals of the form

a [ AT [ gt —w) e ae
Q S.N2
using the more natural notion of quasiconvexity.
It is proved in [11] the L!-lower semicontinuity of the integral defined

on BV (Q;R) by

o, Dsu
/Qf(Vu(:c)) dm—{—/ﬂf (leul) |Dsu|

under the assumption of f being quasiconvex and with linear growth (f° is
Dgu
|Dsul

tive of the measure Dyu with respect to its total variation |[Dyu|). This

the recession function of f and denotes the Radon-Nikodym deriva-
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result has been recently generalized in [58], allowing the dependence of f
also on z and u. ‘

In the general case, when it is not possible to obtain the effective surface
energy density by simply considering the volume energy density, the relaxed
functional takes into account, both in its volume and in its surface part, the
combined effect of f and g, and it can be written on the whole BV ({; R*)
as (see Chapter 4)

(12) /ng(Vu(m))d:z+L@m(|gzzl)|Dsul.

Here the function ¢ is a quasiconvex function with linear growth (whatever
the growth conditions satisfied by f may be) characterized as the supremum
of all quasiconvex functions less than or equal to f whose recession function
is less than or equal to g on rank one matrices.

Let us consider now the minimum problem associated to the functional
in (3).

Since this minimum problem is a gradient free discontinuity problem,
for the weak formulation we need to introduce another space (different from
SBV(R)) of functions of bounded variation which allows creasing without
fracture. To this purpose let us consider the space BV?(Q) (respectively
SBV?(Q)) of the functions v € W1(Q) with first derivative in BV(Q;R")
(respectively SBV(Q;R"™)). The second derivative D?u in the sense of
distributions of a function v € BV?() is a measure admitting the Lebesgue
decomposition D*u = V(Du) dz + (D*u)s,.

On SBV?(Q) the weak formulation for (3) is obtained by setting

Galu) = /ﬂ V(D) dz + H(Spu) + /S \(Du)* — (Du)™ |dH".

DunQ

By applying the compactness and lower semicontinuity theorems [5], [7] by
L. Ambrosio we can prove that the functional G, achieves its minimum on
SBV?(Q). The study of the regularity properties of the minimizers of Go
is the object of [34].

In the one-dimensional case the functional in (3) models the energy of
a horizontal thin rod, whose undeformed shape is a bounded open interval
I = (a,b) of R, submitted to boundary conditions. The same phenomenon
can be modelled by introducing the integral energy functional

(13) Fa(u, S) = /

I\S

W' do 4+ p /5 (') — ()| deh,

where u', u" are the first and second derivatives of u, p is a positive constant
and # is the counting measure on R. The minimum problem for (13) can
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be studied using the same arguments and techniques applied to treat the
functionals in (1).

Indeed the weak formulation on SBV?(I) is obtained considering the
functional

Ga(u) = / fi? da + / ) - )

u

where i denotes the density of the absolutely continuous part of u’. This
functional is not lower semicontinuous on SBV?2(I) and we can prove (see
Chapter 3, Theorem 2.2) that the lower semicontinuous envelope of G4 in
the L'-topology is given by the functional defined for every u € BV?(Q) as

Ta(u) = /I (i) dz + plu|(T),

where |u!| denotes the total variation of the measure ). Here ¢ is the
convex and everywhere finite scalar function with linear growth at infinity
given by

() = {22 if 2] <
Y p(lz] = £) i |2] >

Since the relaxed functional Gy is finite on the whole space BV2(I), the min-
imizers could not have in general a discontinuity set of the gradient consist-
ing in a finite number of points. We can approximate, via I'-convergence,
the functional G, by means of a sequence of functionals obtained by per-
turbing the functional G4 exactly in the same way we have perturbed G; in
(10).

We can study the effect of this perturbation on the minimizers of G4 by
examining some minimum problems with generalized Dirichlet boundary
data and by characterizing the minimizers which can be reached follow-
ing sequences of minimizers for the same problems for the approximating
functionals. We obtain that these minimizers belong to SBV?(Q), they
have a finite number of crease points, and they minimize (under the same
boundary conditions) a functional of the form

oo

Y F (@), (z-),

z€S,U{a,b}

among all SBV?-minimizers for G4 (see Chapter 3, Sections 3 and 4). In
particular, in the case ® = 1 we choose the minimizer with the minimum
number of creases and we are able to localize exactly the crease point.

The notion of I'-convergence has interesting applications also to the
study of problem (4).
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The numerical treatment of the minimization problem (4) seems quite
difficult, because of the lack of convexity and regularity of the functional
at hand, mainly due to the term H!(S) (see [22], [35], [65], [67], [84], [85],
[86]). However, L. Ambrosio and V.M. Tortorelli [12], [13] have shown that
the functional F, defined in (7), is the limit, in the sense of I-convergence
with respect to the L2-topology, of an equi-coercive sequence of elliptic
functionals.

The basic idea is to introduce a new variable s in the approximating
functional F., which controls the unknown set Sy. In view of the variational
properties of I'-convergence, the minimization of F is then reduced to the
minimization of F¢, for small .

This approximation can be used to attack minimum problem (4) from
a numerical viewpoint. Indeed we can show (see Chapter 5) that, if we
discretize F. by means of piecewise linear finite elements, then the dis-
crete functionals T-converge to F and the discrete minimizers converge to
a solution of the original problem (4).

Finally, let us consider the minimization problem associated to the
functional in (5).

In the one-dimensional case the problem is completely solved in [39],
where it is proved that the minimization problem for the functional (5)
admits a solution, provided conditions

0<pf<a<l2p

are satisfied. The proof relies on a semicontinuity theorem, on a com-
pactness theorem, and on regularity arguments. The weak formulation is
obtained by setting

G(u) = /I (G2 do+a #((S) N ) + B #((Sa\ S)N 1)+ /I fu — g|? da,

where I is a bounded open interval of R and u varies over the space H*(I)
of piecewise H? functions. Here %, are the pointwise values of the first
and second derivatives of u, and (S; \ Su) is the set of crease points of u;
i.e., the set of the jump points of & which are not jump points of u.

In the one-dimensional case we can also approximate the functional
G, in the sense of I'-convergence with respect to the L'-topology, by a
sequence of elliptic functionals which do not depend on jumps or creases
(see Chapter 6). The basic idea is to introduce two new variables which
control the unkown sets S, and S; \ S, respectively.

In dimension larger than one, it is not known whether it is possible
to give a weak formulation of the minimization problem in an appropriate
generalized sense, such as the one proposed for the study of problem (4).
This is a difficult open problem and seems to require some new results
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about the characterization of functions having gradient in SBV(2,R") by
means of their one-dimensional sections (see [20]).

The content of this thesis, which is published in the papers [18], [19],
[27], [28], [29], is the result of a research activity carried on by the Au-
thor during her graduate studies at the International School for Advanced
Studies in Trieste, under the guidance of Prof. Gianni Dal Maso and in
collaboration with Dr. Giovanni Bellettini and Prof. Andrea Braides.
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CHAPTER 1:

NOTATIONS AND PRELIMINARIES

In this chapter we fix the notation and we recall some definitions and known
results concerning the spaces of functions of bounded variation, the notions of
quasiconvexity and rank one convexity, the relaxed functional, and I'-convergence.

1. Notations

The natural numbers n, k will be fixed. We denote by {e;} the canonical
basis of R¥, and with (-,-) the scalar product in R™; |- | will be the usual
euclidean norm. We shall denote by M**™ the space of k x n matrices (k
rows, n columns), and by ,Mlk X" the subset of M**™ of all matrices with
rank less than or equal to one. We shall identify M**™ with R If g e R
and b € R™ the tensor product a @ b € .Mlkx" is the matrix whose entries
are a;b; with ¢ = 1,...,k and y = 1,...,n. Conversely if a matrix { has
rank one, there are two vectors a € R* b € R" such that ¢ = a®b. If
ACRFandbeR" wewillset A®b={a®b:a€ A} C MF*"; remark
- that |a ® b| = |a| |b| (the norms are taken in the proper spaces).

Let © be a bounded open subset of R"; we shall denote with A(2)
(resp. B(§2)) the family of the open (resp. Borel) subsets of 2. We shall use
standard notations for the Sobolev and Lebesgue spaces W™?(Q; R*) and
L?(Q;R*). When k = 1 we shall drop the target space R* in the notation,
thus writing simply W™P?(§2), LP(§2), and the like.

If u is a scalar function defined on €2, we shall sometimes use the shorter
notation {u < t} for {z € Q : u(z) < t} (and similar) when no confusion is
possible.

The Lebesgue measure and the Hausdorff (n — 1)-dimensional measure
in R™ will be denoted by £, and H"™! respectively. We shall use also the
notation |E| for £,(E), the Lebesgue measure of a measurable set E C R",
and # for H°, the counting measure.

Let X be a set, and F C X; we define the characteristic function of E
as

1 ifzeF

IE(Z):
0 ifze X\E,
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and the indicator function of E as

0 ifzeFE

xe(z) =
+oo ifze X\ E.

If N > 1 is an integer and f : RY — [0,+00] is a convex function, we
define £ : RY — [0, +00], the recession function of f, by setting

sory _ 1 1(2)
- == 2 1
It is immediate to see that the limit in (1.1) exists for all z; we remark
that £ is a Borel function, which is convex and positively homogeneous
of degree one.

If N > 1 is an integer and f : RY — [0,+0oc] is a Borel function, we
shall denote by f** the greatest convex and lower semicontinuous function
less than or equal to f.

Given a vector-valued Radon measure u on §2, we adopt the notation

|| for its total variation (see [56], 2.2.5) and we indicate by lﬁl- the Radon-
I
Nikodym derivative of p with respect to its total variation. The integral on

Q of a function ¥ with respect to the measure |u| will be denoted simply

by [ |yl

Q
The symbols [¢] and ¢t will denote the integral part and the positive
part of the number ¢t € R.

2. Functions of Bounded Variation

Let n, k& > 1 be natural numbers, and € be a bounded open subset of
R"™. We say that u € L1(Q;R*) is a function of bounded variation (and we
write u € BV(Q;Rk)) if for any 7 € {1,...,k}and j € {1,...,n} thereisa
measure p! with finite total variation in § such that

(2.1) / u(i)—g‘fj— dz = —/ gdug Vg € C1(Q),
Q j Q

Z;

where C1(£2) denotes the space of C* functions with compact support in {2.
- We denote by Du the M kxn_yalued measure whose components are the
pl, and by [Dul its total variation.
BV(Q) is a Banach space, if endowed with the BV -norm

lullsy = [lulls + | Dul(2)-
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We denote by S, the complement of the Lebesgue set of u, that will
be sometimes referred to as the set of jump points of the function u; ; z.e.,
z ¢ S, if and only if

lim p'"/ |lu—z|dz =0
p—0% B,(z)

for some z € R¥. If such a z exists, it is unique, and we denote it by w(z),
the approzimate limit of u at z. For any function u € L!(£; Rk) the set Sy is
negligible and 4 is a Borel function equal to u almost everywhere. Moreover
if u € BV(Q;RF), there is a countable sequence of C! hypersurfaces I';
which covers H™ !-almost all of Sy, i.e.,

H (S A\ YT =
=1

Furthermore, for H™!-almost every z € S, it is possible to find «, b €
R* and v € S*~! such that

2.2) lim "/ u—aldz =0, lim "/ u—bldz =0,
(2.2) lim, p B;(l_)l | Jim, p B;"(:c)l |
where BY(z) = {y € By(z) : {y—z,v) > 0}. The triplet (a,bd,v) is uniquely
determined up to a change of sign of v and an interchange of ¢ and b, and
it will be denoted by (ut(z),u™(z),vu(z)). If k& = 1, the triplet (a,b,v)
can be uniquely determined by requiring that ¢ > b (; i.e., the normal v
points towards the larger value of u).

In general, for a function v € BV(§; R*), we have the Lebesgue de-
composition

(2.3) Du=D,u+Dsu=Vu-L,+ D,u,

where we denote by Vu the density of the absolutely continuous part of
Du with respect to the Lebesgue measure; the notation is motivated by
the fact that Vu can be interpreted as an approzimate differential. The
singular part of Du with respect to the Lebesgue measure can be further
decomposed into to mutually singular measures as

(2.4) Dyu=(ut —u")@vy - H" !5, + Cu,

where (ut —u”) @ vy -'H"_llsu is the Hausdorff part and Cu the Cantor
part of Du. We recall that the measure C'u is “diffuse”; ; i.e., Cu(S) =01if
S is a set of Hausdorff dimension (n — 1).
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We will say that a set E is of finite perimeter in Q if 1g € BV (S;R).
We will set *ENQ = S1, N the reduced boundary of E in Q. Remark
that |D1g|(Q) = H*"1(8*E N Q) for every E of finite perimeter in 2. It is
easy to check that this notion of perimeter coincides with the elementary
one in the smooth case, in particular when E is a polyhedron. A result of
E. De Giorgi [47] shows that if E is a set of finite perimeter in {2, then there
exists a sequence of polyhedra (Py) such that |((Px \ E)U(E\ Px))NQ| — 0,
and

(2.5) HY(O*ENQ) = 1i}£nH"—1(6Ph nQ).

This result demonstrates that the measure theoretic notion of perimeter is
a sensible extension of the elementary definition.

We recall that if u € BV(€;R), then for a.e. t € R the set {u >t} is
of finite perimeter in €2, and we have the so-called coarea formula:

+oo

(2.6) |Dul(Q) = HPYO* {u >t} N Q) dt.
We recall also the Fleming & Rishel coarea formula. Let u be a Lipschitz
function; then for every v € BV(§2) we have that

+oo
2.7) / o| V| dz = / / SaHm dt
Q —o00 *{u>t}nQ

(Vu is the a.e. gradient of the function u). Analogous formulas hold with
{u < t} instead of {u > t}. ‘

We say that u is a special function of bounded variation, and we write
w € SBV(Q;RY), if u € BV(Q;R*) and Cu = 0. The space SBV(Q;R*)
was introduced by E. De Giorgi and L. Ambrosio [45].

For the general exposition of the theory of functions of bounded vari-
ation we refer to [56], [61], [68], [91] and [92]. For an introduction to the
properties of the space SBV we refer to [45], [5], [7].

3. Relaxation

We recall the notion of relazed functional. Let F: X — RU {400} be
a functional on a metric space (X, 7). The relaxed functional F' of F, or
relazation of F, (in the 7-topology) is the greatest 7-lower semicontinuous
functional less than or equal to F; ; i.e., the greatest functional such that
F < F and F(u) < liminf, F(uy) for every sequence (up)p converging to
u in the 7-topology. We point out here only that the relaxed functional
T allows to describe the behaviour of minimizing sequences for F'; indeed
minimizing sequences for problems involving F' converge, up to a subse-
quence, to solutions for the corresponding problems for F. For a general
treatment of this subject we refer to the books by G. Buttazzo [32], and by
G. Dal Maso [42].
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4. T-convergence

Let us recall some basic definitions and results about I'-convergence
(we refer to [48], [42] for a bibliography on the subject). Let (X,7) be a
topological space, and let F} : X — [0,+00] be a sequence of functionals
on X.

If M(z) denotes the set of all open neighbourhoods of z in X, let us
define the I'-lower limit and the I'-upper limit at a point z € X respectively
by

(P-liminf Fj)(z) = sup liminf inf Fy(y)
h—o0 UeN(z) h—oco yeU
and
(T-limsup Fp)(z) = sup limsup inf Fi(y).
h—oo UeN(z) h—oo yel
The I'-upper and I'-lower limits are 7-lower semicontinuous functions.
If we have

(T- liﬂi()réth)(:B) = (I-lim sup F} )(z),

h—co

then we say that the sequence (F})n I'-converges at = and that the value
F(z) of the (T- lihminf Fi)(z) is the I'-limit of the sequence (Fy), at z. If
—00

this I-limit exists for all z € X we will say that F}, I'-converges to F'in X,
and we will write
F=T- hlim Fy.
If (X, 7) is a metric space, then we have F(z) = (I'- hlim Fp)(z) iff the

following conditions are satisfied:

a) for every sequence (z ) such that z), — = we have

F(z) < liminf Fy(zp);
h—o0

b) there exists a sequence (Z)p such that £, — z and

(4.1) F(z) = lim Fy(%).

h—o0

If the I'-limit exists, it is unique; moreover, if (X,7) is a separable
metric space, every sequence (F}), admits a I'-converging subsequence.
In the same way as above we define the I'-limits as ¢ — 0 for a family

of functionals (F;).>o. We have then that F' = I'- li%l_,_ F, iff for every se-

quence (gp,) of positive numbers converging to 0 we have F' = I'- i lirf F.,.
—r400
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The property which motivates the introduction of I'-convergence in
Calculus of Variations is the following: assume that Fj I'-converges to F
on a metric space (X, 7), and

ianh:-ianh Vh e N
X K

for a suitable compact set K C X. Then

(4.2) hETw i%f Fp = min{F(z):z € X}

and every sequence (z ) in K such that
4.3 li Fyp(zp) = L inf F
(+3) i, Filon) = B i

admits a subsequence converging to a minimizer of F.

If Fy, = F for every h € N, then the I'-limit exists and it coincides with
F, the relazation of F.

It is easy to check that we have

I-liminf Fj(z) = I-liminf Fs(z),
h—+o00 h—-4o0

and the analogous identity holds for the I'-upper limit.

5. Quasiconvexity and rank one convexity

We recall the notion of quasiconvez function (cf. e.g. C. B. Morrey
[75], [74], B. Dacorogna [40], [41]). We say that a continuous function
w0 @ M**™ — [0, +oo[ is quasiconvex if for every £ € M**" A bounded
subset of R", and u € C}(4; R*) we have the inequality

|4l (€) < /A<P(€+ Vu(z))dz.

This property is a well-known necessary and sufficient condition for the
lower semicontinuity of multiple integrals in Sobolev spaces (cf. Acerbi &
Fusco [1], Dacorogna [40]).

Every quasiconvex function ¢ : M**™ — [0, +oo[ is rank one conves;
i.e., it verifies

(A4 (1= 2)C0) < Ap(8) + (1= Me(C)

for every &,( € M**™ such that rank(§ — () <1, and every A € [0,1] (cf.
Dacorogna [40], [41]). A recent result by V. Sverak shows that the converse
is not true (see [89]).



CHAPTER 2:

A SINGULAR PERTURBATION APPROACH

TO VARIATIONAL PROBLEMS
IN FRACTURE MECHANICS

In this chapter we consider functionals of the form
I(u,8) = / W(Du)dz + / Pluy,u)dH" ™,
aQ\s s

with ¢(u,v) ~ |u—v| for small values of |u—v|, which are related to the variational
formulation of static or quasi-static phenomena in damage and fracture mechan-
ics. Here 2 is the reference configuration, the function u represents the displace-
ment, which is differentiable outside the “discontinuity surface” S, and uy, u_
are the traces of u on the two sides of §. The latter can be interpreted as a crack
or a plasticity surface. The functions W and ¢ represent the bulk and surface
energy densities respectively. These functionals in general are not lower semicon-
tinuous in their natural topology. Hence we may have minimizing sequences with
unbounded discontinuity surfaces, and in the limit we could obtain in general a
diffuse zone of “non-differentiability”. In order to ensure that we obtain solu-
tions whose “fracture” remains confined only on a surface at most, we propose a
singular perturbation approach. We approximate the functional I by a sequence
of functionals of the form Ic(u,S5) = fﬂ\S W(Du)dz + fs be (g, u)dH™ !, We
show that in the model case of ¢(u,v) = |u—v|, if ¢:(u,v) ~ |[u—v|+ep1(u,v) the
limits of the minimizers of I. not only minimize the corresponding problems for
I, but they also minimize a “first order” problem involving only an appropriate
“surface energy density”.
The results of this chapter are contained in [27].

Introduction

This chapter presents some results related to the variational formulation of
static or quasi-static phenomena in damage and fracture mechanics. We
shall deal with problems which can be described by introducing an integral
energy functional of the form

(0.1) I(u,S)z/ﬂ\S W'(Du)dm+/S¢(u+,u_)d'H""1.

Here H"™! denotes the (n — 1)-dimensional Hausdorff measure, Q is the
reference configuration, the function u represents the displacement, which
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is differentiable outside the “discontinuity surface” S, and uy,u—_ are the
traces of u on the two sides of S. The latter can be interpreted as a crack or
a plasticity surface. The functions W and ¢ represent the bulk and surface
energy densities respectively.

Models requiring description (0.1) are frequent in the literature. Set
aside a discussion on the form of the function W, we can find different
requirements on the surface energy density. The simplest situation consists
in taking ¢ = C a constant; i.e., surface energy is proportional to surface
~ area. A model of this kind is found in Griffith’s theory of crack propagation
[63]. It is well-known that in this case the functional I, while a good
approximation in the presence of a pre-existing crack, does not explain for
example the formation of internal quasi-static cracks (see [87], [54], [81],
[64], [16]). In order to avoid the postulation of pre-existing small fractures,
we have to consider then energy densities which depend actually on the
traces of the function u on the surface S, even though this sounds a bit
awkward from the viewpoint of the model. In the spirit of Barenblatt’s
theory of crack formation we can consider for example a function depending
on the size of the “jump” |uy — u_|:

(0.2) Bus,u-) = @(lus —u_|),

with ¢(t) vanishing for ¢+ — 0. If this function ¢ is approximately linear
near 0 it is easy to see that the functional I justifies the formation of small
cracks. For a discussion on mathematical models and methods for problems
in fracture mechanics we refer to [82] (see also [66]).

We discuss the problem from the viewpoint of the so-called direct
method of the Calculus of Variations; i.e., first of all we give to the problem
a sufficiently weak formulation, in order to have our functionals defined on
a proper space of weakly differentiable functions; then, we look for min-
imizers trying to exploit lower semicontinuity and coercivity properties.
Functionals of the form

(0.3) Li(u) = / W(Du)dz + / luy —u_|dH" 1,
a\s s

(here we take simply ¢(t) = t in (0.2)) are well defined on the space of
special functions of bounded variation (note that we consider the surface
S = S, as determined as the jump set of u and we pose I;(u) = I(u, Su)),
but they present the problem of not being lower semicontinuous in their nat-
ural topology. Hence we may detect minimizing sequences with unbounded
discontinuity surfaces, and in the limit we could obtain a diffuse zone of
non-differentiability. In particular we have in general non-existence of the
solution for minimum problems.
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In order to describe the behavior of minimizing sequences we can sub-
stitute the functional I; with its lower semicontinuous envelope I;. Mini-
mizing sequences for problems involving I3 converge then to solutions for
the corresponding problems for I;, which in general may have a diffuse
“fractured” zone. This difficulty is classically solved by considering only
problems where the existence of solutions whose “fracture” remains con-
fined on a surface is supposed a priori.

In order to avoid this postulate, we propose a singular perturbation
approach. The idea consists in approximating the functional I; with a
sequence of functionals I. in such a way that the limits of minimizers of
I. are special minimizers for T, with “fracture” confined on a surface, at
most. We propose to consider functionals of the type

(0.4) I(u) = /Q\s W(Du)dz +L¢E(u+,tt_)dﬁn_l,

which, under mild hypotheses on (¢. ), converge to I; as ¢ — 0 in a varia-
tional sense assuring the convergence of the minima and of the minimizers.
Moreover, since the functional in (0.4) may not be lower semicontinuous,
we give conditions on ¢, for the lower semicontinuity of these functionals
for every ¢ > 0, and obtain existence theorems.

The main part of this chapter (Sections 3 to 5) is devoted to the de-
scription of the effect of this perturbation in the one dimensional case, for
which an exact formalization can be obtained.

For every ¢ > 0 let us consider a function ¢, : R — R expanding as

pe(t) = [t] + et (t) + o)t

where 1 is a Lipschitz function such that (0) = 1, and the associated
functional

I(u) = /Q\S W(Du)dz + L@E(|u+ —u_|)dH".

We test the effect of the variational convergence of I, to I; by studying
the asymptotic behavior of the minimum problems with prescribed Dirichlet
boundary data. We prove that such minimizers for I, converge, up to a
subsequence, to a function which not only minimizes the corresponding
problem for I, but also minimizes a “first order” problem involving only
the jump part.

We can give a mechanical interpretation to this approximating ap-
proach. The value .(0) represents the energy necessary to create a fracture
of unit length; in addition it is possible to see that to obtain propagation
of a quasi-static fracture we have to postulate a pre-existing fracture with
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length proportional to ¢.(0). Since in our case ¢(0) = ¢, the passage to the
limit for the functionals I. as € — 0 can be interpreted as the requirement
of pre-existing infinitesimal fractures; i.e., as a postulate of the existence
of microfractures.

The plan of the chapter is as follows. In the first two sections we
consider the weak formulation on SBV({2) of the functional I introduced
in (0.3), by posing

(0.5) L(u) = /Q W(Dau)dz + /S iy — u_|dHP T,

w N

We explicitly determine the lower semicontinuous envelope I, of the func-
tional in (0.5), under some convexity hypotheses on W. More precisely for
every u € BV () we obtain that

Ti(u) = /Q W(Dou)dz + / D,

S.NN

where |D,u| denotes the total variation of the measure Dsu and W, the
bulk energy of I, is a function, explicitly calculated from W, which grows
at most linearly at infinity, whatever the form of W.

Note that the relaxed functional I; is finite on the whole BV (Q2); this
means that in general we must incur in somehow “plastic” behaviors of
the minimizers. In order to select between all possible minimizers for I
those belonging to SBV (), we propose to approximate I, by means of a
sequence of functionals defined as

/I/V(Dau)dx-l-/ de(uy,u_,v)dH* ™
Q

SuN§2
(0.6) Ie(u) = if ue SBV(Q)

+o0 elsewhere in BV (Q2),

with ¢. : R x R x S»~! — [0, +o00[. We show that for a large class of ¢.
the functionals in (0.6) I-converge to I;.

Sections 3 through 5 are devoted to the study, in the 1-dimensional
case, of the effect of this perturbation on the minimizers of I;. First,
in Section 3, we examine the Dirichlet boundary value problems for the
functional I;, giving a description of the minimizers and showing that we
may indeed obtain solutions with diffuse singular part of the derivative;
i.e. with Cu # 0. In Section 4 we give necessary and sufficient conditions
for the lower semicontinuity of the functionals in (0.6) when inf ¢. > 0 and
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¢e(u,v) > |u—v|, and we obtain some relaxation results. Finally, in Section
5 we deal with the case when we have for ¢. an expansion of the form

de(u,v) = |u —v| + ed(u,v) + o(e)|u — v|,

with ¢ Lipschitz, and ¢(u,u) > ¢ > 0 for all u. We explicitly give a
characterization of the minimizers for Dirichlet boundary value problems
for I; which can be reached following sequences of minimizers for the same
problems for I.. We show that these minimizers are indeed in SBV({2),
they have a finite number of jumps, and they minimize (under the same
boundary conditions) a functional of the form

Y, dlu(zt)u(z—)

{u(z+)#u(z-)}

among all SBV-minimizers of I;. The function ¢ can be easily computed
from the function ¢, and is independent of the boundary conditions.

1. Preliminaries

For the notation we refer to Chapter 1, Section 1.

Let 2 be a bounded open subset of R". We denote by M() the set -
of the scalar Radon measures on 2 with bounded total variation, and by
M4(§2) the space of the positive Radon measures on € with bounded total
variation.

The usual weak* topology on M(S2) is defined as the weakest topology on
M(R) for which the maps p +— [, % dp are continuous for every ¥ € C,(Q2)
(where C,(§2) denotes the space of continuous functions vanishing on the
boundary of ).

With this notation a function u € L'(f2) is a function of bounded
variation (see Chapter 1, Section 2) if for any ¢ € {1,...,n} there is a
measure y; € M(Q) such that

/ ug—gdm = —/ wdp; Y € CH(Q).
o Oz Q

We have just observed that BV (1) is a Banach space, if endowed with
the norm

lullav = l[ully + [Dul(2).

The product topology of the strong topology of L'(Q) for u, and of the
weak* topology of measures for Du will be called the weak® topology of
BV, and will be denoted by BV-w*. Recall that for every sequence (u)s
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in BV(Q) with ||ux||pv < c there exist a subsequence (un, ) and a function
u € BV(Q) such that up, — u in L}(Q) and Dup, — Du in the weak™
topology of measures. We shall denote this convergence by up, — u in
BV-w*.

We refer to Chapter 1, Sections 3,4 for the notions and techniques
related to the relaxation and I'-convergence theories, on which most of the
proofs in the chapter are based.

In this chapter we shall consider relaxations in the BV-w* topology .

The letter ¢ will denote throughout the chapter a strictly positive con-
stant, whose value may vary from line to line, independent of the parameters
of the problems each time considered.

In this chapter, we shall consider functionals F' defined on BV () for
which the estimate

(1.1) F(u) > |Du|(R2) — ¢

holds. Note that, for functionals verifying (1.1), it is equivalent to consider
sequences converging with respect to the L!(Q)-topology and with respect
to the BV-w* topology. Hence throughout the chapter we will feel free to
choose the most suited to the context among the two topologies.

2. Some Relaxation and I'-convergence Results

In this section we shall state and prove a relaxation and a I'-convergence
result concerning some functionals defined on BV. We show that these
functionals can be “reached” starting from functionals defined in SBV.

Let W : R™® — [0, 4+00] be a lower semicontinuous convex function such

that W(0) = 0, and the set
K={zeR":W(z)<|z| }
is bounded. Then we define the function W : R™ — [0, +oo[ by setting
W(z) = (W(z) Alz])™

Let us remark that, once W % +oo, it is not restrictive to suppose W (0) =

0. In fact, otherwise we could consider the function Wi(z) = W'(z +20) —
W(zo), where W(z0) = min W. Remark also that we have |z| = W(z2): it
suffices to notice that we have |z| — R < W(z) < |z|, where R > 0 is such
that Bg D K.
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Let us consider a bounded open subset 2 of R", and let us define the
functional F': BV () — [0, +oco] by setting
(2.1)

/ W(Dgu)dz —}—/ lug —u_|dH*™' if u € SBV(Q)
F(u)= 4 Ja 5.nQ
+0o0 elsewhere on BV (),

and the functional H,

(2.2) Hu) = /Q W(Dou)dz + /Q Dyul,

defined on the whole BV (£2).

Theorem 2.1. For every u € BV(Q) we have F(u) = H(u); i.e., the
functional H is the relaxation of the functional F' with respect to the L' (£2)-
topology.

Remark. Theorem 2.1 can be extended to the vector-valued case under
the same hypotheses on W. A more general relaxation theorem can be
obtained when we suppose W quasiconvex (see Chapter 4).

In order to prove Theorem 2.1 we shall need the following two results
about relaxation in BV and Wi,

Theorem 2.2. (Goffman & Serrin [62]) Let V : R™ — [0, 400 be a convex
function such that |z] — ¢ < V(z) < ¢(1 + |z|); then the relaxation of the
functional

Jo V(Dau)dz  if u € WH(Q)
E(u) =
+00 ifu € BV(Q)\ Whi(Q)
with respect to the L!-topology is given by

~E~(u):/QV(D“u)dx+/§;VOO([§:Z|)|DQUI’

for all w € BV (Q2), where lgszl is the Radon-Nikodym derivative of the

measure D, u with respect to its total variation.
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Theorem 2.3. (Buttazzo & Dal Maso [33]) Let V : R" — [0, +oo[ be a
Borel function such that |z| — ¢ < V(z) < ¢(1 + |z|); then the relaxation of
the functional

{ Jo V(Dau)dz ifu € CH(Q)
E(u) =

+o0 ifu € WH(Q)\ CHQ)

with respect to the L!-topology is given by

E(u) = / V**(Dyu)dz
Q
for all u € WH(Q).

Proof of Theorem 2.1. By Theorem 2.2 the functional H is lower semi-
continuous on BV () with respect to the L!(Q)-topology. Then the in-
equality H < F follows directly from the definition of the relaxed functional,
observing that H < F. The difficulty lies in the proof of the opposite in-
equality. Let us consider a function u € C'(2) N BV(Q). For the rest of
the proof we return to the ‘classical’ notation Du for D,u. Let us consider
the set

Q' ={ze€Q:Du(z) € K} ={z € Q: W(Du(z)) < |Du(z)|}.

Let us recall that if z € @', then |Du(z)] < R. For every ¢ > 0 we
take an open set of finite perimeter Q. C £ such that Q' \ Q.| < e (it
suffices to consider for example the set Q. = {z € Q' : dist(z,08') > n}
for n = n(e) > 0 small enough). We construct a sequence (uj) piecewise
constant on A, = Q\ Q. as follows. For every k € Z we find

E k+1
h — ——
”‘G]h’ h [
such that
1
ZHMYO u > st N A, S/ Duldx
prreesinans [ s
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(here we use the coarea formula (2.6), Chapter 1). We define then

{% on{32_1<u<32}ﬂA5,kEZ
up =

u on §)..

We can estimate then

F(up) = / W(Dgup)dz +/ lupy — up_|dH™ !
Q S

N0
= / W(Du)dz —I—/ —1—d'Hn_1 —I—/ lupy — up_|dH™
Q. 5., nA. N (8*Q.)NQ

9
< / W(Du)dz + Y %Hn-l(a*{u > P} A + S HPH(@2) N D)
2. kEZ

|Du|dz + %H”—l((a*gs) naQ)

< /Q W(Du)dz + Y

kEZ /;%<“<£#}0Ae

‘ 2
< / W(Du)dz + / |Du|dx + %H”‘l((a*ﬂe) neaN)
Qe Ae

2

—HM (970 N Q)

< [ W(Du)dz + / |Duldz + eR +
Qr \Q/

We have made use of the fact that [Du| < Ron ©'. Since up — u in L=(Q),
we obtain

!

F(u) < limhian(uh) < / W(Du)dz —l—/ |Duldz + <R

Q\Q/
for any € > 0. By the arbitrariness of ¢ we conclude that for every u €
CH{Q)N BV()
(2.3) F(u) < / W (Du)dz,
Q

where the function W is defined by setting

) W(z) ifzeK
W(z)=W(z)A|z] =

|z| otherwise.
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Since W = (W)**, by Theorem 2.3 we have that the relaxation of the
functional defined by

) = /QW(Du)dx if u € C1(Q),

+00 elsewhere on W1(Q),

with respect to the L!-topology, is given by H on WH1(Q); hence, using
(2.3), we obtain _
F(u) < H(u) uw e WHH(Q).

Finally by Theorem 2.2 this inequality is valid on the whole BV (£2). O

The functional H, defined in (2.2), can be also considered as I'-limit of
a suitable sequence of functionals, as shown in the following proposition.

Proposition 2.4. For every € > 0 let us consider a Borel function
¢ : RxR x S™ 1 R such that

(1 —ce)|t — 5| < de(s,t,v) S (1 Fce)t —s|+¢

for all (s,t,v) € R x R x S™~1, and let us define

/ W(D,u)dz + / be(ug,u,v)dH" "
Q S, N

F.(u)= ifu € SBV(Q) and H* 1(Sy) < +o0,
+o0 elsewhere on BV (Q).
Then, for every u € BV ({2), we have

r- s1_1}1’(1)’14_ Fe(u) = H(u),

where the I'-limit is considered with respect to the L*(2)-topology.

Remark 2.5. As a particular case, we can apply Proposition 2.4 to
¢<(s,t) = |t — s| for all €, deducing that we can take minimizing sequences
(up) for F with H*"!(Sy,) < 4oo for every h.

Proof of Proposition 2.4. From the inequality F.(u) > (1 — ce)F(u), it
follows that

[-liminf F, > H.
e—0+
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We have to prove then that

I-limsup F. < H.
e—0+

Let us take u € C}*(2)NBV(Q), and let us fix a sequence (g5 converging to
0. We can consider the sequence (up) constructed in the proof of Theorem
2.1; we have

@ {u>stin An)> U@ )N Q),

keZ

Suthc<

where n > 0 is a fixed positive number sufficiently small. Hence

H* (S, NQ) < D HHE {u > i} N Ay) + HPH((8*Q,) N Q)

kez
ShZ/ |Duldz 4+ ¢ < he < +o0.
kEZ {Tf'<u<k_;i:—1}nf4ﬂ

We can then define a sequence (w;) C SBV(Q) by setting wo = ug = 0,
and

Uk+1 if Wh = UL and k2€h S 1,
Wht1 =
wp, otherwise.

We have then
HP Sy, NQ) = H*(Sy, NQ) < ck < clen)” 7,

wy, — v in L}(Q), and fSw no l(wa)y — (wr)-|dH™ " < c. Hence

I-limsup F;, (u) < limsup F., (wp)
h—+400 h

<lim sup(/ W (Dgywp)dz + (1 + csh)/ |(wp)g — (wp)—|dH
h Q Suw, N

+ 6h7‘in~1(5wh N Q))

<lim sup(/ W(Dgu)dz + / (wp)g — (W)= |dH" ™ 4+ cep + c(ah)%)
3 Q,

Suw, NQ

< / W(Dgu)dz + nR.
Q
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Since this inequality holds for every n > 0, we obtain that

F—limsusth(u)S/W(Dau)d:c
h—4c0 Q

for every u € CY(Q) N BV(Q). As in the proof of Theorem 2.1, using
Theorems 2.3 and 2.2, we conclude that on BV(2)

I-limsup F, < H.

h—o0

By the arbitrariness of the sequence (c4), this inequality concludes the
proof. O

Examples 2.6. Let us fix p > 0 and zo € R", and let us consider

0 if |z—z| < p
W(z) = XB,(z0)(2) =

400 otherwise,

then we have

W (z) = dist(z, B,(z0))-
If W(z) = |2|?, then it is easy to check that

. z? if 2] < L
W(z) = 1

|z| — 7 otherwise.

3. Minimum Problems in Dimension One

In this section and the following ones we use some approximation tech-
niques in dimension 1. Many results presented below could be seen either as
particular cases of the theory of SBV-functions in arbitrary dimension (see
[7], [45]) or a specialization of the theorems about functionals defined on
measures by G. Bouchitté & G. Buttazzo [26] (see also [25]). We prefer to
include the proofs since in the one-dimensional case these can be obtained
in a simpler and straightforward way.

We shall deal with functionals defined on the space BV (I), where I

is a bounded open interval of R; without loss of generality we will take
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I =]0,1[. The space SBV (I) reduces to the set of the functions v in BV (1)
such that their measure first derivative, denoted by 4, is of the form

U = ’l‘Ladt -+ Z ak5tk,

k=1

where tx € I, ar € R, > 1o lax| < oo, and &, is the Dirac measure at t.
Note that, if we define

u(t+)a u‘(t_)
the right-hand and left-hand traces respectively of the function u at ¢, which

exist for all ¢t € I, then ar = u(tr+) — u(tp—). Moreover we can express
integration on S, as a summation; e.g.,

/ s () — u_ (£)|dfE(t) = / () — u(t—)|d#(2)
Sunrl SunIl

= > lu(tH) —ut-)l.

teS,nl

Note that (a quotient space of) the space BV (I) with the BV-w* topology
can be identified with the space M(I) of all Radon measures on I with
bounded total variation equipped with the weak® topology of measures
(for example see Lemma 1.2 in [30]). Let us remark moreover that, given
to € [0,1] and up € R, there is a 1-1 correspondence between M(I) and the
subspace {u € BV(I) : u(to+) = uo}, given by p +— u,, where

uo + p(Jto,t]) if t > to,

up(t) =
uo — p(]t, to]) otherwise.

In the sequel we will then feel free to define sometimes functions in BV ()
by simply describing their measure derivative and the value u(to+) at some
point ¢y € [0, 1] (or equivalently u(to—) at some point ¢, €]0, 1]).

Let g : R — [0, 400 be a convex function such that g(0) = 0, the set,

(3.1) J={teR:g(t)=(s() Alt)**}

is bounded, and g is strictly convex on J. Note that J = [a,b] is a closed
interval containing 0, and that

g(t) fa<t<d
(3.2) - (AR =ft)=¢gd)—-b+t ift>D

gla)+a—-1t ift<a
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We shall consider in this section the functional F' defined by

/g(zla)dt—i—/ lup —u_|d#t ifue SBV(I)
I S.nI

+0o0 elsewhere on BV(I),

F(u) =

and its relaxation (given by Theorem 2.1)

F-(u)zH(u)——-/f(zla)dt—}—/lusl u € BV(I),
I I
where the function f is given by (3.2).

We can obtain minimizing sequences for F' with a finite number of
jumps, as shown in the following proposition.

Proposition 3.1. Let us define on BV (I) the functional Fy by setting

[ i+ / e
Fo(u) = ifu€ SBV(I) and #(S,) < +oo,

+o0 ‘ otherwise.

Then we still have H = Fy; 1.e., we can take minimizing sequences for F
with a finite number of jumps.

Proof. Let (uz) C SBV(I) such that up — u in BV-w*, and H(u) =
li}l;n F(up). We can write the measure up = (ﬁh)adt—i-zzil a'i(?tga with Sp, =
Sy lal] < 4o0. Fix h € N, and let N € N be such that IZiV=h1 lat| —
S| < 71; Then there exists a function v, € SBV(I) such that

N
. . 1
Op = (Up)e + E aZ&tz, and |lup — valleo < 7
k=1

Of course, we have v, — v in BV-w*, and

li’rlnF(vh) = liixlnF(uh) = H(u).
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We can describe the behavior of the functional H by examining some
minimum problems with generalized Dirichlet boundary data. Let us fix
a € R, and consider the boundary conditions u(0) = 0 and u(1) = a. It is
well-known that these conditions are not well-posed for problems in BV (I)
(see [15]). We have instead to relaz these conditions by penalizing jumps
at t = 0,1, considering the minimum problems

(3.3) me = min{H(u) + |u(0+)| + |a —u(1-)| : w € BV(I)},

where the values u(0+4), u(1—) represent the inner traces of v in 0 and 1
respectively. We can easily describe the minimum points for problem (3.3),
as follows.

Proposition 3.2. Let us consider the minimum problem in (3.3) (recall
that J = [a,b] is given by (3.1)). Then we have

i) if @ € J then the unique minimum point is u(t) = at;
ii) if @ > b then the minimum points for (3.3) are alluw € BV (I) such that
u(0+) >0, u(l-) < a, @ € My(I), 4y > b a.e;
iii) if @ < a then the minimum points for (3.3) are all w € BV (I) such that
u(04) <0, u(l-) > a, =t € M4y(I), iy < a ae

Proof. Let us consider the case @ > 0 (the opposite case being analogous).
We want to show that if v is a minimum point for (3.3) then u € My (1),
u(0+) > 0, and u(1—) < @. This can be restated as the requirement that
w* € M4(R), where the function u* € BWo.(R) is obtained by extending
u to 0 in ]—o00,0] and to « in |1, +o0].

Let u € BV(I), and let us consider the function v € BWc(R) defined

by
v(t) = ((@")+([0,1]) A e,

where (u*)4 € M4(I) is the positive part of the measure @*. It is easy to
see that u = v iff ¢* belong to M4 (R). If u # v then we can have either
v < a a.e., or not. In the first case we have v, <1, a.e., |[0](1) < |us|(1),
and v(1—) > u(1—). This implies that u is not a minimizer. In the second
case it is easy to see that |[v| < |@| (as measures), the inequality being strict
on a non-negligible set. Again this gives that u is not a minimizer.

We can then suppose that 4* € My (R); r.e., © € M4(I), u(0+) > 0,
and u(1—) < a. Let us consider now the set £ = {t, < b}, and v € BV (I)
such that v(0+) = 0 and v = wdt + t,, where

1
1—|E| Jne

1
— 1ad ifteE.
|Ei~/Eu S 1 €

Uods ift¢gE
w(t) =



22  Alessandra Coscia

We have v* € M4 (R), [u(0+)] + |o — u(1=)| = [v(0+)] + | — v(1-)], and

H(w) - H(v) = /E f(zla)dt—IElf(l—;—l /E ot

. 1 :
=/Eh(ua)dt—|E|h(-l-E-—|/Euadt).

By the strict convexity of g we must have then @, = s < b constant a.e. on
E. The value H(u) can be computed in terms of s and |E|, as

(3.4) H(u)+ |u(0+)|+|a—u(l-)| = |E|(g(s)—g(b)+b—s)+g(b)—b+a.

Recall that we have g(s) —s > g(b) — b for s # b. If @ > b we must have
then |E| = 0, and this concludes the proof of ii). In the same way we obtain
i) when a = b.

If a < b, let us notice that we must have

S|E| +b(1 — |E|) < /aadt <a
I

(since on I\ E we have i, > b). Fixed |E| the minimizing choice is s =
b— Tl%?_l(b — a), for which

1
(85) H(w)+u(0h)] +la—u(1-)] = 9(0) = |E| (o)~ h(b= 15(b-a)

it is easy to check that we must have |E| =1, and s = a. O

Remark 3.3. By Proposition 3.2 we obtain, for all o € R:
i) mg = f(a) (it follows from the descriptions of the minimizers, and

(34), (3.5));

ii) we have
me = min{F(u) + [u(0+)| + |a —u(1-)| : v € SBV(I)}.

This is trivial if @ € J, and follows considering for example the function
u(t) = bt if & > b, and the function u(t) = at if @ < a.

The following proposition shows that we can consider the functional
H =T, as the limit of a sequence of functionals defined in SBV ().
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Proposition 3.4. For every ¢ > 0, let ¢. : R x R — [0, +oc[ be a Borel
function, satisfying

(1—ce)lt — 5] < Pe(s,t) (1 +ce)|t — 5| + ¢,

and let us define on BV (I) the functional F, by setting

/ g(ia)dt + / be(u(t), u(t—))d#(2)
I NI

u

Fe(u) = ifu € SBV(I), and #(Su) < +oo0,

+o0 otherwise.

Then we have H =T'- lim F..

e—0-+

Proof. The same proof of Proposition 2.4 holds true. Notice that if we
define

Qze(uava +1) = ¢5(U,U),
qgs(u,v,—l)k: ¢€(v’u>’

we obtain functionals of the general form considered in Proposition 2.4. [

Remark 3.5 The proof of Proposition 3.2 can be easily extended to the
case when we do not assume that the function g is strictly convex on J.
For instance, if g is linear on a subinterval [¢,d] C J, and a € [c,d], all the
functions v € WH(I) such that u(0) = 0, u(1) = a, and u(t) € [c,d] for
a.e. t € I are minimum points for (3.3).

4. Semicontinuity and Relaxation in SBV

Proposition 3.4 exhibits a singular perturbation of the functional H,
with functionals that may in many ways behave “better” than their limit.
Let us recall that by the I'-convergence, and the equi-coerciveness of the
functionals on BV, the approximation of H by the functionals F, represents
a choice among all the possible minima for the problem in (3.3), of those
that in particular can be reached following minimizing sequences for the
corresponding problems for F.. It is therefore of some interest to briefly
examine the structure (and existence theorems) of these functionals .

T Since we shall focus our attention on the behavior of the jump-part energy, we will
limit our analysis, for the sake of simplicity, to the “bulk energy” ¢ verifying the growth
condition g(z)>|z|2~c. From Section 2 it will be clear that all the results of Sections 4
and 5 continue to be true if we substitute |z|2 with any convex function » growing more

than linearly at infinity, with minor modifications in the proofs.
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We shall need some simple results about lower semicontinuity proper-
ties of functionals defined in §BV(I). We say that a function ¢ : RxR — R

is subadditive if we have

(4.1) #(a,b) < ¢(a,c) + ¢(c,b) for all a,b,c € R.

Proposition 4.1. (Lower semicontinuity in SBV(I)) Let (un) be a se-
quence in SBV (I) such that |lun|Bv < ¢, [|(4r)allz £ ¢ and #(Sur) < ¢;
then (possibly passing to a subsequence) there exists u € SBV (I) such that
up — u in BV-w*, and

(Uh)a — tq in LA(I), #(Su) < lim inf #(Sup)-
Moreover, if ¢ is subadditive and I.s.c., then

Z d(u(t+),u(t—)) < hmmf Z d(un(t+), un(t—)).

tES tesuh

Proof. Since ||us||py < ¢ we can suppose (possibly passing to a subse-
quence) that up — u in BV-w* for some u € BV (I).
On the other hand, since #(Sy,) < ¢, we can suppose that

#(Su,) = liminf #(Su,) = N € N

independent of h € N; s.e., Sy, = {t_’,’ cj=1...,N},with 0 < t8 <t <
. < t’}v < 1, and, without loss of generality, that t;‘ — t; € [0,1] for every
j=1...,N.

Let us define vy € HI(I) by setting va(0+) = up(0+) and o5 = (un)adt
(i.e., no jump part for v4). The sequence (v;) is then bounded in H(I).
Passmg possibly to a further subsequence, we can suppose then that vy, — v
weakly in H(I); in particular (Up)e = (98)e — (¥)e weakly in L°(I)

The measure @ — (9),dt must be supported by S = {t; :j =1,...,N}N
I, since the sequence (uj) converges weakly in H} . outside any neigh—
borhood of §. This shows that the Cantor part of u must be 0, and
U, = v, a.e. Moreover, we obtain that S, C S, hence #(S,) < N; t.e,
#(Sy) < lign ioréf #(Sy, ). The function u belong then to SBV (I).

Since tp — 1, and (i )adt — Uadt in the weak™® topology of measures,

we must have (i )s — Us in the weak* topology of measures. Let us recall
that we can write

(tih)s uh +) — un(t], —))5t1 .

Mz

j=1
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If for some j € {1,...,N} we have t{l — 0, then the sequence (uh(t};—l-) -
up(th—))8, does not give any contribution to the limit measure %. The
h

same is true if t{l — 1. If instead £ € S, C 9, then there exist sequences
(th), (#71),... (t7) converging to 7, hence

u(t+) —u(t—) = li’rln Z(uh(t{j—) —up(t] -)).
=1

We can also suppose that uh(tfl—{-) — a;“, uh(t{l—) —aj forallj=1,...,m.
Remark then that af, = u(f+), a = u(f-), and af = aj,, for k =
l,...,m—1, so that

u(t+) —u(-) =Y (af —aj).
j=I

By the subadditivity of ¢, we have

p——

CB(u(t),u(f-)) < 3 #laf,af
j=l

Finally, by the lower semicontinuity of ¢, we obtain
#(af a7 ) < liminf $(un(t)+), un(t]-),
and hence

5 Bl u(t-)) < limint 3 gun(t+), ua(i-))
tES, tESup

the desired inequality. O

For more lower semicontinuity results see Theorem 3.3 by L. Ambrosio
in [7]. We refer also to [10] for a discussion on necessary and sufficient
conditions for the lower semicontinuity for functionals in dimension higher
than one.

Remark 4.2. We can consider also integrands depending on the jump,
and on one of the two traces of the function; ¢.e., of the form

(4.2) o B(u(t+) — u(t=),u(t-))
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under assumptions of lower semicontinuity, and
(4.3) 6(s +r,u) <0(s,u) +6(r,u +s),

for all 7, s,u € R. In the same way we can deal with integrands of the type
O(u(t+) — u(t—),u(t+)). It is easy to check that if we set

(44) gﬁ(SC, y) = 9(3: - Y, y))

then ¢ satisfies (4.1) iff 0 satisfies (4.3). We will sometimes prefer the
notation (4.2) to the equivalent form (4.4) since it highlights the dependence
of the function 6 on the jump.

We turn our attention now to the problem of the relaxation of func-
tionals defined in SBV (I).

The subadditive envelope sub¢ of a function ¢ : R x R — R is the
greatest subadditive function less than or equal to ¢. It is easy to check
that sub¢ € RU {—oco} is given by the formula

sub é(z,y) = inf{z H(xr,Th—1):To =Y, Tm =2z,m=1,2,...}.
. k=1

Let us recall also that, given a function ¥ : R® — R, the lower sems-
continuous envelope of 1, that we shall denote by sc™ (%)), is defined as the
greatest lower semicontinuous function less than or equal to 1. We have

s¢” (¥)(z) :min{limkinfz/)(:ck) sz — ¢}

=min{1i11€n¢($k) :zp — z and Eili?np(a:k)}.

___ Given a function ¢ : Rx R — [0, +0o[, we shall define the function
sub¢ : R x R — [0, +00[ by setting

(4.5) sub¢(z,y) = sub(sc™(¢))(=,y)

Remark that, since the values ¢(z,z) are never taken into account
in the functionals, we could set by definition ¢(z,z) = 0 for all z € R.
This position is frequent in the literature (see [7], [10], [26]), and would
affect neither the lower semicontinuity, nor the subadditivity properties of
$. Anyway, we will not make use of this convention, since we find useful to
deal whenever possible with convex or continuous functions.
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Proposition 4.3. If ¢ verifies
inf ¢ > 0, ¢(z,y) > |z —y| forallz,y€R,

then we have

i) inf(sub@) > 0 and sub ¢(z,y) > |z —y| for all z,y € R;

ii) sub ¢ is the greatest lower semicontinuous and subadditive function less
than or equal to ¢. ’

Proof. i) follows directly from the definition, as the fact that sub ¢ is
subadditive, and that inf(sc™(¢)) > 0 and sc™(¢(z,y)) > |z — y|. Let us
prove that sub ¢ is lower semicontinuous. Fixed z,y € R, and two sequences

zp — =, yp — Y, such that there exists the limit limp sub ¢(zn,yn), we have
to prove that

sub ¢(x,y) < limsub §(zh, yn).

By definition for every h € N there exist el ... zh such that

mp
.’I:g:yh—%y, x:lnh:fch—’&’?,
and
Zsc_(¢)($z,x’,§_l) < subd(zh,yn) + 5
k=1

By the condition inf(sc™(¢)) > 0 we have that the sequence (mp) is
bounded. Hence we can suppose my = m, independent of h. The condition
sc™(¢)(z,y) > |z —y| implies that all sequences (z{ ), .- ,(z ) are bounded.
Again, we can suppose then that Tt — 20,2} — 1,... ,zP — z., for some
T0,Z1,...,Zm € R. Of course, 79 = y, and =, = z. By semicontinuity we
obtain then

SC_(gﬁ)(.’I,‘k, xk—'l) < limhinf SC~(¢)($27 932—1),

and hence we get

m

Zsc"(qS)(:L‘k,fb‘k 1 Z Lim inf sc™ ($)(=k,zk—r)
k=1

k=1

< lim] “(¢)(at,at_ ) <limsub :
< timint )5 ek k) < p B oo, 1)
By definition this shows that

subg(z,y) < h’{nggé(xh,yh)'

It is easy to see from the definition that if ¢! is l.s.c. and subadditive, and
#' < ¢ then ¢* < sub ¢, and hence ii) is proved. O
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Proposition 4.4. (Relaxation in SBV(I)) Let ¢ : R X R — [0, 4+co[ be a
Borel function verifying ‘

inf¢ >0,  ¢(z,9) = |z —yl
Then the relaxation of the functional
[atiaes [ otuten), ue-nan)
Glu) = ifu € SBV(ID), and #(S.) < +oo,
400 otherwise,
with respect to the topology of L*(I), is given by
[otiade+ [ SaBou(ee), u(t-)a#n)
Gy =" ! ifu € SBV(I), and #(Sy) < +co,
+o00o otherwise,
where sub ¢ is given by (4.5).

Proof. First of all we prove that G is L* -lower Senlicontinuou_s_;_Clonsider a
sequence up — u in L1(I) such that li}in G(un) < +oo. Since subg(z,y) >

|2 — y|, we have |lua|pv < ¢, and hence up — w in BV-w*. Let us remark
that inf sub ¢ > 0, and then we have

#(Sy, NI) < G(up)/inf sub¢ < ¢ < +oo.
The hypotheses of Proposition 4.1 are then satisfled by the sequence (up).

Since ||(i4)qll2 < ¢ we can suppose (Up). — U, weakly in L2, and then,
using the convexity of ¢

/Ig(iza)dt Slimhinf/jg((zlh)a)dt.

Using proposition 4.1 we obtain thus G(u) < Ii’?ia-(uh). This shows that

the functional G is less than or equal to the relaxation of G.
We have now to show that for every u € SBV(I) we can build up a
recovery sequence (uy) such that up — u in L*(I), and

G(u) = hlir{.lo G(up).
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We can limit ourselves to the case G(u) < +0o. We can study the case of a
single jump without losing in generality. We can suppose u € SBV(I), and
s = (u(to+) — u(to—))ds

for some to € I. By the definition of sub ¢, for every h € N there exist real

numbers a?, al, ... ,a’]‘vh, and bl b0 ..., b?vh such that we have
h 1 h 1 h_h 1
|bg — u(to—)| < 72 lajy, —u(tot)| < 52 b} — aj—-1| < 7z

for every j = 1,..., Ny, and
1
p— h 1h
sub ¢(u(to+), u(to=)) + 7 2 ZO¢(aj,b.).
J:

Let us remark that the hypotheses on ¢ imply that both N and Zj'\.]—fo [a? —
bj’[ be finite. We can suppose that N = N independent of h € N. Let us

fix M € N such that Jto — 77,0 + 37[C I. For every h > MN we define
up € SBV(I) by setting

N
up(04) = w(04), and iy =wudt+ Y (af — b})(s(to_ﬁ__j),
h

j=0
where
Ua(t) it <t — o
Ug(t) + 2Mho (Bh —u(to—)) ifto— & St<to— %
wi(t) = (B —al_))h if o — ML <t <ty —

Ua(t) + M(u(to+) — ak) if to <t <o+ 37

Uq(t) if t >ty + 37

Remark that us(t) = u(t) for |to —t| > 57 for all h € N. We have then
up — w in BV-w*, and G(u) = lilrln G(up). It is clear that in the same way

we can treat the general case of more than one jump. CJ
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Remarks 4.5. (On subadditive functions and subadditive envelopes) We
consider now the special case when

¢(37t) = 99(3 - t)'

In this case it is immediate to check that ¢ is subadditive iff we have

(4.6) o(z +y) < o(z) +o(y)

for all z,y, € R. If ¢ verifies (4.6) we will again say then that it is subaddi-
tive. Similarly, we will denote by sub ¢ the subadditive envelope of ; i.e.;
the greatest function less then or equal to ¢ verifying (4.6):

subp(z) = inf{i o(zr): Zxk =z,m= 1,2,,..},
k=1 k

and in the same way

suby(z) = sub(sc™ (¢))(2).

Notice that sub ¢(s,t) = subp(s — t).

4.5.1. If  is L-Lipschitz, then so is also suby. In fact, let s, € R; for every
n > 0 there exist t1,...,tn, such that > t; = ¢, and ) ¢(t;) < subp(t)+n.
Let us define then sj = ¢; + 2%, so that we have ) s; = s, and

subi(s) < Y w(s;) <D (t;) + LIt — s| < subw(t) + LIt — s + 1.

This shows that suby(s) < sub(t) + L|t — s|. In the same way we obtain
sub(t) < suby(s) + Lt — s|.

4.5.2. If p is convex then sub¢ can be computed more easily:
subyp(z) = inf{kap(%) ck=1,2,...}.

This follows immediately by the convexity inequality kp(§) < Z§=1 o(y;),
whenever y = ), y;.

4.5.3. If ¢ is subadditive and locally bounded, than it grows less than
linearly at infinity. In fact, for every y € R we have

o) < @+ o) o),



Relazation and I'-convergence Results in BV and SBV 31

so that ¢(y) < sup{e(t) : [t| < 1}(1 + [t]) ([t] is the greatest integer less
than or equal to t).

4.5.4. It may happen that ¢(t) > 0 for every ¢t € R but there is no C' >0
such that o(t) > C(|t| — 1) (e.g. ¢(t) = log(1 + €*)). If we have ¢ > 0,
and . li_rlp. o(t) = tlir_n @(t) = 0, we must have ¢ = 0; in fact 0 < ¢(t) <

13141_1 (p(t —z)+¢(z)) =0forall t € R.
4.5.5. We say that 1 :]0, +co[— R is positively subadditive if we have
Y(a+b) < (a)+ p(b) for all a,b €]0, +o0.

Notice that if 1 is decreasing and non-negative, then it is positively sub-
additive. We remark also that if ¥ > 0 is positively subadditive, then the
map defined by o(t) = ¥(|t]|) for ¢t # 0, and ¢(0) =t (with the condition
0 <t < htlilg_*n_f ¥(t)) may not be subadditive on the whole R (but it is

if in addition % is increasing). Moreover, if ¢ : R — R is such that both
t — o(t) and t — ¢(—t) are positively subadditive, then we have

subp(t) = p(t) Ainf{p(z) + ¢(t — z) : = € R}.

Examples 4.6. 4.6.1 If we take ©(t) = 1 + ¢, it is immediate to see
that ¢ is not subadditive (for example by Remark 4.5.3 above). Since ¢ is
convex we have, by Remark 4.5.2,

Note that ¢ is not Lipschitz continuous, while sub ¢ is Lipschitz continuous
but not C!. Let us remark also that sub is asymptotic to 2|t| as t — *oo.

4.6.2. If p(t) = (2[t| — 1) V 1, then by 4.5.2 suby is even and continuous,
and in [0, +oo[ we have

1 ift<1
subp(t) = § k+2(1 — k) ﬁkst§k+%k=12“”
k fk—2<t<k k=23,..

In this case we have
1
[t] < subp(t) <[t + 5

for |t| > 5. We have sub(t) = |t| for t = £1,£2,..., subop(t) = |t[+ 3 for
:i: :i:% .., and hence sub¢ is not asymptotic to a linear function as
t — :I:oo
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4.6.3. If p(t) = |t — 1|, then by 4.5.2 we have suby(t) = min{|t — k| : k =
1,2,...}; t.e., ’

1—1 ift<1
subp(t) = {dist(t,N) ie> 1.

Notice that in this case the limit tliinoo sub(t) does not exist.

4.6.4. If p(t) = ||t|— 1|, then we have sub(t) = dist(t,Z). In fact, it is easy
to check that $(t) = dist(t,Z) is subadditive, and hence $(t) < sub(t).
Moreover sub¢(t) = 0 on Z (since subp(0) < ¢(1) + ¢(=1) = 0, and
subp(%k) < kp(£1) =0, for k = 1,2,...), and hence by 4.5.1 we have also
subp(t) < B(t).

4.6.5. A continuous subadditive function need not be uniformly continuous:
take for example

@(t) = 3 + sin(t?).
The next proposition deals with the relaxation of confined problems;
i.e., with constraints of the type
lu]]oo < M.
Proposition 4.7. (Relaxation of confined problemsin SBV(I)) Let M > 0,

and let ¢ : [-M,M]*> — [0,+oo[ be a Borel function with inf ¢ > 0. Then

the relaxation of the functional

/ g(iia)dt + / B(u(t), u(t—)) d#(2)
I NI

u

G(u) = ifue SBV(I), #(S.) < +oco and ||ulle < M,
400 otherwise

with respect to the topology of L*(I) is given by

/ g(ia)dt + / Blu(t+), u(t—))d#(t)
. I NI
G(u) = ifu € SBV(I), #(Su) < +o0, and |jullcc < M,

+00 otherwise,

where we have defined ¢ by setting

#(z,y) =inf Y sc”d(zk, Tr-1)
k=1
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where the infimum is taken over all finite sequences z1,...,z, with zo = vy,
Tm =2, |zx| <M forallk=1,...,m.

Proof. The proof is completely analogous to the proof of Proposition
4.4; it suffices to remark that if we take the sequence (up) constructed in
Proposition 4.4, and define vy = (=M )Vup A M, then this sequence verifies
—G-(u) = limh G(’Uh). D

Remark 4.8. We can consider equivalently the jump-part energy density
g given by
(s, u) = d(u +5,u).

We can then describe the relaxed functional by means of the function

0(s,u) = ¢(u + s,u) = inf Z sc (2 — Th—1,Tk—1),

k=1
for lu] £ M, |u+s| < M, where the infimum is taken over all finite sequences
T1y..,Tm With 20 = U, T =u+ s, |z < M forallk =1,...,m.

Remark 4.9. Notice that even when we have 8(s,u) = ¢(s), the function
§ depends in general on both jump and trace. We give a simple example:
consider M =1, and the function

3—|s| if|s| <2
@(s) =
‘ 1 if |s] > 2.

Notice that ¢ is not subadditive (for example ¢(0) = 3 > ¢(2)+¢(—2) = 2).
It is easy to see that

0(s,u) = p(s) /\inf{ga(:c —u)+o(ut+s—z):|z| < 1},

for every u € [-1,1], s € [-1 —u,1 — u] (see Remark 4.5.5). An easy
computation yields
G(s,u) = min{3 — |s|,4 — 2u — 5,4 + 2u + s},
and _
#(v,u) =min{3 — |v —u|,4 —u —v,4+u+v}.
In particular we have

_ 3 3 if Ju] < 1
6(0,u) = ¢(u,u) =
4—2ul if 3 < |ul <1
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5. Development by I'-convergence

We turn our attention now to the description of the effect of the singular
perturbation introduced in Proposition 3.4. We shall focus our attention on
the minima of (relaxed) Dirichlet boundary value problems. We fix a € R,
and we define (as already done for the functional H in (3.3)) the functionals

/I g(ia)dt + / (a4, (- )H)
Fi(u) = ’ if u € SBV(I), and #(S.) < +00,

+00 otherwise,

where (¢.) are as in Proposition 3.4. We recall that the function u* €
BVioc(R) is obtained by extending u to 0 in ]—o0,0] and to « in |1, +oo[.
For instance if u € SBV(I), #(Su) < +00, u(0+) # 0 and u(l—) # a we
get

Fo(u) = / g(ia)dt + /3 | elult), () 1)

+ qSE(u(O—i-), O) + ¢e(a7 u(l"'))'

It is easy to see, as in Proposition 3.4, that the I'-limit of these functionals
is simply given by

H*(u) = H(u) + [u(0+)| + |a — u(1-)| for every u € BV (I).

In Proposition 3.2 we have described the minimum points for the func-
tional H®, showing that the minimum value is given by f(a). In order to
describe the effect of the I'-convergence of F® to H®, we shall study the
behavior as € — 0, of the functionals

(51) S (F2() - f(a).

The I'-limit of these functionals —let us call it H— (if it exists) represents
some sort of first order development by I'-convergence of the functional H®.
This concept was introduced by G.Anzellotti and S.Baldo [14]; we refer to
their a for more examples and a complete introduction to the subject. It is
immediate to see that H¥(u) = +oo whenever H*(u) # f(a), and hence it
is finite only on minimizers for H*; moreover the limits of minimizers for
F2 are exactly the (minimizers for H® which are also) minimizers for Hy".
Hence this I'-limit describes precisely the effect of the introduction of FZ.

In view of the lower semicontinuity and relaxation results presented in
Section 4, we are going to make some additional hypotheses on the function
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. in order to ensure that the functionals FY are really effective: we would
like the minimizers of the approximating functionals to belong to SBV (),
and have some compactness properties. We shall suppose then that ¢.
verifies an estimate of the type

(5.2) be(z,y) > (1 — Le)|lz — y| +e.

This inequality allows us to give a lower bound for the functional Hy, and
in particular to restrict its effective domain. It is sufficient to treat the case
when in (5.2) the equality holds, as in the following proposition.

Proposition 5.1. Let us suppose that ¢.(z,y) = @(z —y), where
pe(t) = (1= Le)lt| + ¢,

for some positive constant L independent of ¢. Then a necessary and suffi-
cient condition for HY¥(u) to be finite is that

(5.3)

H%(u) = f(a), uw€SBV(I), #(Su)<+4oo and 1u,.(t)€ J forae. t.

Proof. Let us remark that the case o € J is trivial since we have a unique
minimizer, on which H{ is 0. Then we shall suppose throughout the proof
that o ¢ J; for instance let us consider the case a > b (the case o < a
being analogous).

The sufficiency of (5.3) is trivial: we can take u. = u for every ¢ > 0,
obtaining

H{ () < liminf - (F2 () — f(2) < Y201 = L (t4+) = w (=)
S,

To show that condition (5.3) is necessary let us consider, for k = 1,2.. .,
the minimum problems

m®, = min{F¥(u) : u € SBV(I), #(Su-) = k}.

In order to calculate this minimum value, as in the proof of Proposition 3.2,
we can limit our analysis to the case @, = C, a constant, and @, € M™*(I).
Since u € SBV(I) the latter condition means that all the jumps of u are
upwards. By the convexity of ¢, (when ¢ < %) we can suppose that all the
k jumps are equal; hence we have

m& = min{g(C) + kgoe(?;kg) : 0<C<al.
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The computation of this minimum problem is trivial, and we have:
(5.4) me = 9(C3) — Cek + a + e(k — L(a — CF)),

where the minimizer C% is uniquely determined, because of the strict con-
vexity of g, by the requirement that (1 — Le) belongs to the subdifferential
of g at C&. Note that b is the unique positive minimizer of the function
g(t) —t and that C converges to b as ¢ — 0.

Let us consider now a function u € BV(I) such that H(u) < +oo;
clearly uw € SBV(I). Moreover, as remarked above, u must be a minimizer
for H®. If ey, — 0, up — u in LY(J) and

( * (un) — fa)) < +oo,

then we must have
F2(up) L enc+ fla) =g(b) —b+a+exe

By (5.4) we have then, setting kp = #(Suz),

g( ehk},) \_},I»h +a+“’h(#(5 )—L(Of s},kh)_ ‘hkh

S F2 (up) < g(b) —b+a+enc

Hence we obtain

#(55) S Tlo0) ~ b= (9(Ca0,) — Ol + e+ Lo = Ciy,).
and, using the estimate

9(b) = b= (9(C5 k) = Cor,) < Len(b = CF ),

we conclude

#(Su;) S+ L(a=Coy,) S e

Now, since the sequence (uy) verifies the hypotheses of Proposition 4.1, we
have that #(S,) < 4+oo. Moreover, using again Proposition 4.1, we get
that ( F is the functional defined in (2.1))

F(u) + [u(04)] + |a — u(1-)]

< timyint] [ g(an)der [ ()= )l (04 (1))

Su, NI
<Hm FS (un) = f(a) = H(u) + [u(0+)] + | = u(1-)].

Since F(u) > H(u), we must have F(u) = H(u), and hence

/1 g(tig)dt = /1 F(ta)dt.

This condition implies that @, € J a.e.; i.e., 1, = b a.e. O



Relazation and I'-convergence Results in BV and SBV 37

Remark 5.2. If, as a particular case of Proposition 5.1, we take the “bulk
energy” ¢(t) = 2, the minimum values in (5.4) are given by

1 1 1
mo =a— 1 +e(k—L{a— 5)) - ZezLQ.
We can consider as well the functions

pe(t) = [t +e(1 = LIE)T.

The conclusions of Proposition 5.1 are still valid. Notice that in this case
the minimum values in (5.4) are given by

»

a—314e(k—Lla—3))— 162 L? if k> L{a— 1) +e&
m& =< (a—E24 % if Lo — 1)<k < Lla—1)+e&
a— i if 1 <k<Lla-—1).

Remark that for ¢ sufficiently small the second condition on k is empty.

We compute now the I'-limit of the functionals in (5.1), under the
hypothesis that . admit an asymptotic development as ¢ — 0.

Theorem 5.3. Let us suppose that ¢.(u,v) = ¢.(u — v), and that there
exists a Lipschitz function ¢ such that ¢(0) > 0 and we have

pe(t) = [t +ep(t) + (e, 1)

with |r(e,t)| < o(¢)|t]. Then for every u € BV (I) there exists the limit
.1
HXY(u)=T- ln% E(Ff(u) — f(a)).

When a € J then this limit is trivially equal to 0 if u(t) = at, and 40
otherwise.

Let us consider the case a € J. If we define i as the greatest func-
tion less than or equal to o, such that both functions (t) and B(—t) are
positively subadditive, then we have

(5.5) HY(u) = / () — ()

u
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when u € SBV(I), #(S.) < +o0, & > b, 1y = ba.e. on I, and iy € MT(I)
(respectively a < a, i, = a a.e. on I, and —ti, € M1(I)),

(5.6) H(u) =400

elsewhere in BV (I).

Remark 5.4 The function @ can be described by setting @(0) = ¢(0), and

m m
o(t) = inf{Zgo(tk) Dty > O,Ztk =t, m= 1,2,...} ift>0,
k=1 k=1

B(t) = inf{Zgo(tk) 1 <0, ti=t, m= 1,2,...} ift <0.
k=1 k=1

We can suppose, and we will, that ¢(0) = 1. Let n > 0 and M > 0 be
fixed; then, if ¢ is sufficiently small, we have (L the Lipschitz constant of
@):
i) . is increasing on ]0, M| (and decreasing on ]—M, 0[). In fact we have
fort,s >0

@e(t+s)—pe(t) = s+e(p(t+s)—¢(t)) +o(e)M > s+o(e)M —eLs > 0;

i) forallt € R
pe(t) 2 (1= (L+n)e)lt[ +¢;

i) forallt € R
pe(t) < (14 (L +ne)lt] +e.

Proof of Theorem 5.3 By Remark 5.4 (ii), we can apply Proposition 5.1
and obtain (5.6) (note that by Proposition 3.2 if u € SBV(I) is a minimum
point for H* and 1, € J a.e., then actually 4, = ba.e. ifa > b, and i, = a
a.e. if o < a). _

Let us consider the case a > b (the case @ < a being analogous). We
have to compute our [-limit for all v € SBV(I) such that u, = b a.e,
u(0+) >0, u(1-) < @, #(Su) < +o0, and u(t+) > u(t—) for every t € S.

Let us take a sequence g — 0, and up, € SBV(I) with up — u in L!(J)
such that

(5.7) lim .;;(Fg (un) - f(a)) < +oo.
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Then, it is easy to see that we have ||(%)a]l2 < ¢, #(Su,) < ¢, |lunllav < e
In the rest of the proof we shall indicate with v* the extension to

BVioc(R) of a function v € BV(I), obtained by setting v(t) =0 for t <0,

and v(t) = a for t > 1. We will also denote by S,. the set {t € [0,1] :

v*(t4) < v*(t—)}; i.e., the points where we have a downwards jump for v*.
Let £, = f;(in)adt. Remembering that

a=&+ Y |l —ui-)l - > i) —uit-)l,
t€5,s \SL. t€ST,
h h

we get, using Jensen’s inequality and the development of ¢., that
Fg,(un) — fla)

> g(€n) = (9(b) —b+a) + D |uj(t+) —ui(t-)]

tES, =
h

+en Z o(up(t+) — up(t=)) — olen)l|lurllBv
tES,‘;

> g(€n) = (9(0) = b+ &) +2 ) [ui(t+) —ui(t-)]
tes,

+en Y o(uj(t+) — uj(t-)) — olen)-

tES, *
h

Hence, recalling that ¢(t) — (g(b) — b +1t) > 0 for every ¢, by (5.7) we must
have

(5.8) > lup(t+) = wi(t-)] < e
tesy.
h

Now let £ € S,-. We can suppose that ¢ is the limit of exactly N
sequences (t1),...,(t)) with t] € Sux (see the proof of Proposition 4.1).
If some of these points, say t},... ,tﬁ" belong to Su_;v then we can define

vy, € SBV(I) as follows. We choose one of the points of the remaining
sequences, say thN , such that

u(t+) —u*(t-)
N

ui(th +) — ity =) 2
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and we set
kh . . kh - 0
of —uf =Y (uh(th+) —uh(th—))b — > (uilth+) — uh(th—))6,
i=1 =1

and vy(t) = 0 for ¢ < 0. Note that we still have vy, — v in L'(I), and that
for h sufficiently large

kn
uh(th +) —up(th =) + > _(ui(zh+) — ui(zh—)) > 0
Jj=1

by (5.8). By i) of Remark 5.4 we get that the sequence (vy) verifies, for h
sufficiently large, the inequality

N

D pe(vith+) — vi(th+))

J=kp+1

N-1
= D (i) — vkt +)

kh . .
o (uzuf D)+ S ) - u}t(ti—)))

i=1
N-
Z e(uh(th+) — uh(th+)) + pe(ui(th +) — ui(th —))-
1=k
Hence we obtain, for A sufficiently large,
Z«ps(vh(t’ﬂ vj(t+)) < Zsoe(uh th+) — uh(th+))-
J=1

Since #(Sy+) < +00, we can repeat this procedure for every t € Sy-,
obtaining a sequence (wy) such that wf € M*(I), wp — u in L'(I), and

hm——l—(Fo‘ (un) — f(a)) > hm—( * (wi) — fa)).
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We can then suppose S;; =@, and
F& (un)—f(a) 2 g(€n)—(g()=b+én)+en Y wlup(t+)—ui(t=))—olen).
tES'ur;‘l

Recalling that ¢ is continuous and @ is positively subadditive, it is easy to
see that

liminf ) @(uj(t+) —ui(t-)) > > Pu(t+) - u(t-)),

tESu-u teSw
h

and hence it is proven that for the functional H{' defined in (5.5) we have
Hy(u) < lim —( 5 (un) = f(a)-
Let us construct now a recovery sequence (up) such that
HX(u) > l1mhsup ———( * (un) — f(a)).

As in the proof of Proposition 4.4 we can consider the case of a single jump;
i.e., we can suppose that

= (a — b)6y, for some to € [0,1].

We will suppose ty # 1 (if ¢ = 1 the same proof is valid with obvious
changes). By Remark 5.4 for every h € N there exist ¢7 ... ,th €]0, 400

such that
a—b——Ztk, andztp a——b)—l—l

Let us consider M > 0 such that to + 7»7 < 1. Then for h > M we define
the sequence uj, € SBV(I) by setting ux(t) =0 for t <0,

(Un)e = b,
and
mp
_ R
- Z tk5t0+——,f,;; :
k=1

We have up — u in BV-w*, and

Fo(un) = g(b) + Y wen(th) < g(b) —b+a+en Yy o(ti) + (a —b)o(en)

k=1 k=1

<g(b) = b+ a+erp(a —b) 4 b + (o — b)o(ep).
This inequality implies that
. R
Plar = ) 2 limsup = (FE (un) = (@),

and hence the thesis (recall that H¥(u) = @(a — b)). O
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Remark 5.5. Theorem 5.3 is still valid if we consider functions of the
form

de(u,v) = |u —v| +ed(u,v) + (e, u,v),
with ¢ Lipschitz, é(u,u) > ¢, and |r(e,u,v)| < ofe)|u — v|. In this case we
have

HY(u)= [ ¢(u™(t+),u(t=))d#(?)

Su*

where the function ¢ is given by

m
&(z,y) = inf{z ATk, Th=1) 1T0 =Y, Tm = T,Z0 < T1 < ... < Ty,
k=1

m=12,....}.

for z > y, and by an analogous formula for < y. The proof is the same
except in that we have to follow the construction of Proposition 4.4 in order
to build a recovery sequence for the I'-limsup.

Examples 5.6. 5.6.1 Let % :]0,+oo[— [0, +co[ be a Lipschitz positively
subadditive function, with tlilg1+ P(t) > 0, and let @ (t) = [t| + ep(]t])

(t # 0). Then we have
H) = [ () = (D),

This remark applies to the functions ¢.(t) = |t| + &(1 — L|t|)™ considered
in Remark 5.2, and in particular to the case p. = |t| + € (p = 1), where

Hf(u) = #(Su*)

5.6.2 We can consider the functions
oe(t) = |t] + (1 - [t])°.

These functions do not verify the hypotheses of Theorem 5.3 (¢ — (1 — |¢])?
is not Lipschitz continuous). We can use then Proposition 4.4 and notice
that the I-limit will not be modified if we consider, in place of ¢, the
functions sub(y.). By Remark 4.5.2 we have (for small ¢)

1
sub (v )(t) = |t| + smin{?c-(ltl — kY k=1,2,...},
and hence

HR) = [ pllut(t4) - u (),

u
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where

1
B(t) = min{k—(t —k)?:k=1,2,...}.

5.6.3 If we take
(t) = Lyl
pel)= 04

then, as in the previous example, we have to consider
1.k |t

subpe(t) = [t] -I-Smin{-];(; - ?)2 k= 1,2,...}.

In this case it is easy to see that, since we have subp.(t) = [t| for t = k3,
the hypotheses of Theorem 5.3 and Proposition 5.1 are not verified, and
the limit functional H{ is zero on all minimum points for (3.3).

Theorem 5.7. Let us fix « € R. Let (u.) be a sequence in SBV (I) such
that

(5.9) F2(ue) <inf{FZ(v):v € BV(I)} + o(e).

Then, for every sequence () of positive numbers converging to 0, there
exist a subsequence, that we still denote by (¢4 ), and a functionu € SBV (I)
with #(Sy) < +oo, such that u., — u in BV-w*, (i, )s converges to tu,
weakly in L2(I), and

H%w) =min{H*(v):v € BV(I)} = mq,
H(u) = min{H(v) : v € BV(I)} = m,.
Moreover,

(5.10) F2 (ue,) = ma + epml + o(en).

Proof. Let us fix a sequence (&5,) of positive numbers converging to 0. By
the equicoerciveness of the sequence (F2), we can find a further subsequence
(ue, ) such that u., — u for someu € BV (I). By (4.2) and (4.3) of Chapter
1, from (5.9) it follows that v is a minimum point for H%. We can suppose
moreover that there exists the limit (possibly infinite)

. 1
hEI_foo ;(Fe,, (Uey) = Ma).
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Let us show now that u minimizes also HY; i.e., for every v € BV (I)
we have H{¥(v) > H¥(u). Proposition 5.1 shows that it suffices to prove
this inequality for all v € SBV(I) with #(S,) < 400 and H*(v) = ma.
By Theorem 5.3 and (4.1) of Chapter 1, there exists a sequence v — v in
LY(I) such that

[ 4 : 1 [0
H(v) = 11’131 - (F (vp) —mq).
Hence by (5.9) we obtain

1
[ 4 < : - o _
Hi(u) < e €h (Fei (uen) = ma)

(5.11)

L (P2 (vn) = ma) + "(5")) = H2(v).

< lim (
En Eh

h—+oc0

This inequality shows that H¥*(u) = ml. If we choose v = u in (5.11) we
obtain that

o : 1 04
Hf(u) = lim  =(F% (us,) = ma)

1.€e.

1
ml, = =(F& (uey) = ma) +o(1).

Hence we obtain (5.10). U



CHAPTER 3:

ON THE BENDING OF A ROD:
A SINGULAR PERTURBATION APPROACH

A simple one-dimensional model for an elasto-plastic bar parametrized on a
bounded open interval I is given by an energy of the form

G(u) = / o(u(2)) da,

where ¢ is a convex function with linear growth at infinity. Dirichlet boundary
value problems for the functional G in general admit no solutions. Hence we may
have minimizing sequences with unbounded number of discontinuities of the first
derivative and in the limit we could obtain a diffuse zone of discontinuity for the
first derivative.

In order to assure that we obtain solutions whose first derivative’s disconti-
nuity set is a finite number of points, we combine a relaxation argument and a
singular perturbation method similar to the one described in Chapter 2. This pro-
cess leads to approximate the functional G by suitable simpler integrals. We prove
that the limits of the minimizers of the approximating functionals are piecewise
C? functions minimizing G, which are characterized as minimizers also of another
functional involving only an appropriate energy density, which can be explicitly
computed, on the discontinuity set of the first derivative. We are able not only to
describe the qualitative behaviour of such limit functions, but we can also localize
exactly their first derivative’s discontinuity points.

The results of this chapter are contained in [29].

Introduction

The variational formulation for problems modelling elasto-plastic bars or
plates involves functionals depending on the second derivative of the dis-
placement, with linear-growth integrands. In general, minimum problems
for such integrals do not possess a classical solution; a “relaxed” solution
must be searched for in the framework of functions with Radon measure
second derivatives, or with bounded Hessian ([51], [52], [90], [34]).

A simple one-dimensional model for an elasto-plastic bar parametrized
on the interval (0,1) is given by the energy

i " 22 if jz] <2
Q(u)=/0 p(u’(z))de,  (z) = {4(|z|—1) if u>2.
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It is easy to check that for some boundary conditions on u and u' the
minimum problem for the functional G

min{g(u) : u(0) = uo, u(l) =1u1, u'(0) =&, u'(1)= 51}

admits no solution over the space C?(0,1) of twice differentiable functions
on (0,1). “Weak” solutions can be obtained by relaxing both the functional
and the boundary value conditions in the space BV2(0,1) of the functions
u € W11(0,1) whose second derivative is a Radon measure with finite total
variation on (0,1). On this space the relaxed energy takes the form

H(u) = / o(ii(2)) dz + 4ju"|(0,1),

where u" = i dz + u" is the Lebesgue decomposition of v in its absolutely
continuous and singular parts, and |u!/| denotes the total variation of the
measure u'. The direct methods of the calculus of variations apply to such
a functional, but in general the solution to a minimum problem involving
‘H will not be unique and we cannot expect discontinuities of the derivative
only on a finite number of points (the minimizers may have a diffuse singular
part).

In this chapter we propose a singular perturbation criterion for a choice
among minimizers for H. First, we shall show that problems involving G
and H are in a sense equivalent to minimum problems for a functional of
the form

1
Flu) = / @) de+a S ) —u(a-)l,
0 w(zH)#u! (=)
defined on functions u € W11(0,1) which are piecewise C?; then we shall
perturb the functional F with an additional term by setting

Fe(u) = F(u) + 4 > ey(u(@+),u'(a-).
uw'(z4)#u/(z~)
We prove that there exist minimizers for F, under very mild conditions on
1, and that they converge to particular minimum points of H, which are
characterized as minimizers of a second functional, of the form

Z _J(u'(x-l—),u'(:n—)),

u'(z+)#u'(z—)

among piecewise C? minimizers of H. The function 1 can be explicitly
computed and does not depend on the boundary values of the problem.
The choice criterion is determined by . In the special case when ¢ = 1 we
still have ¢ = 1, and the singular perturbation approach gives exactly the
unique piecewise C? minimizer of H with minimum number of discontinuity
of the first derivative.
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1. Preliminaries

For the notation we refer to Chapter 1, Section 1.

Let I = (a,b) be a bounded open interval of R; in this chapter we
shall use the notation dz for the Lebesgue measure, and # for the counting
measure. We denote by M(I) the set of the scalar Radon measures on I
with bounded total variation.

The usual weak* topology on M(I) is defined as the weakest topology
on M(I) for which the maps y — [; % du are continuous for every ¢ € C(I)
such that ¥(a) = ¢(b) = 0.

With this notation a function u € L!(I) is a function of bounded vari-
ation (see Chapter 1, Section 2) if there is a measure p € M(I) such that

/ugo'dx = —/Lpd,u Vo € CL(I).
I I

We have just observed that BV (I) is a Banach space, if endowed with
the BV norm
[ullav = [lulls + | Dul().

The product topology of the strong topology of L(I) for u, and of the
weak* topology of measures for u’ will be called the weak* topology of BV,
and will be denoted by BV-w*. Recall that for every sequence (uy); in
BV(I) with ||un||pv < ¢ there exist a subsequence (u, )r and a function
u € BV(I) such that u, — uin L'(I), and wj, — u'in the weak* topology
of measures. We shall denote this convergence by up, — v in BV-w*.

Let v € BV(I); in the one-dimensional case, if we denote by S, the
complement of the Lebesgue set of u, we can observe that S, is at most a
sequence of points. Furthermore the function u admits right-hand and left-
hand traces u(z+),u(z—) at every z € I in an approximate sense, which
means that

1 [7 A
1im+ - / lu(t) — u(z—)|dt =0, lim —/ |u(t) — u(z+)|dt = 0.
PJz—p z

Since for every z € S, we have u(z—) # u(z+), it is clear why the set S,
is sometimes referred to as the set of jump points of the function w.

We say that a function u € L(I) belongs to BV?*(I) if its second
derivative v in the sense of distribution is a Radon measure with finite total
variation. Theorem 1.8 of [70] and [69] section 6.1.7 imply that u € BV?*(I)
if and only if u € WHI(I) and u' € BV(I); the measure v’ admits the
Lebesgue decomposition u” = 4 dz + ul).

It is easy to see that BV?(I) is a Banach space endowed with the norm

lullsys = / fulde + / '|de + [u"|(I).
I I
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Notice that if u € BV?(I), then @ is continuous on the closure of I, hence we
can take a continuous representative of u and speak about the value u(z) at
every = € [a, b]. Moreover the first derivative u’ has approximate right-hand
and left-hand traces u'(z+),u'(z—) at every z € [a,b] (only the right-hand
one at a and the left-hand one at b) and we have u'(z+) # u'(z—) at most
for a sequence of points called crease points of u, whose set is denoted by
Sur.

We consider in BV2(I) the weak* topology BV?2-w* defined as the
product topology of the strong topology in W+(I) for u and of the weak”
topology of measures for u”. Recall that every sequence in BV?*(I) with
llun|lBy: < ¢ admits a subsequence converging in BV?-w* to a function
u € BV?2(I).

We refer to Chapter 1 (Sections 3 and 4) for the notions and techniques
related to the relaxation and I'-convergence theories, on which most of the
proofs in the chapter are based. In this chapter we shall consider relaxations
in the BV? — w* topology.

The letter ¢ will denote throughout the chapter a strictly positive con-
stant, whose value may vary from line to line, independent from the pa-
rameters of the problems each time considered.

Remark 1.1. In this chapter, we shall consider functionals F' defined on
BV?2(I) for which the estimate

(1.1) Plu) > [u"|(I) - c

holds. Note that, for functionals verifying (1.1), it is equivalent to consider
sequences converging with respect to the L'(I)-topology and with respect
to the BV2-w* topology (this follows from the fact that in dimension one
we can easily prove on the space BV?({2) an interpolation inequality for the
first derivative). Hence throughout the chapter we will feel free to choose
the most suited to the context between the two topologies.

2. Some relaxation, semicontinuity, and I'-convergence results

Let I = (a,b) be a bounded open interval of R; let us consider the
functional G : BV?(I) — [0, +c0] defined as

/Igo(u”(a:)) dz if u e C*(I)

+o0 otherwise on BV?(I),

(2.1) G(u) =

with ¢ given by

2 if 2] <2
2.2 2)=17% o o
22) #(2) {4p(lzl—p) it -] > 2p,



Relazation and T-convergence Results in BV and SBV 49

where p is a positive constant. As pointed out in the introduction the
functional G models the energy of an elasto-plastic bar parametrized on the
interval I.

We consider the functional G on the space BV?(I) since it is not coer-
cive on the Sobolev space W?2(I) with respect to any appropriate topology.

In the space BV?(I) the functional G is not lower semicontinuous. To
describe the behaviour of minimizing sequences for G we can substitute the
functional G with its relaxation G. Let us consider on the whole BV?(I)
the following functional

(2.3) () = [ i) dz +4p 1D

As an application of the semicontinuity result of [62], or as a particular case
of Theorem 4.4 of [4], we obtain the following theorem.

Theorem 2.1. For every u € BV?(I) we have G(u) = H(u); ; i.e., the
functional H is the relaxation of the functional G with respect to the L*(I)-
topology.

The aim of this chapter is to single out among the BV?(I)-solutions
of some minimum problems with generalized Dirichlet boundary data re-
lated to the functional H, exactly those “phisically sound”; in this case we
would have a solution with one or more creases rather than with a “diffuse”
singular second derivative. This can be done by combining a relaxation ar-
gument and a singular perturbation method similar to the one described in
Chapter 2.

First we shall observe that in place of the functional G we can consider
an appropriate functional (see (2.4) below) that can be perturbed in a
suitable way. To this purpose, let us denote by SBV?(I) the space of the
functions u € BV?(I) such that u' € SBV(I). We define a new functional
F on BV?*(I) by setting

(2.4)
[l dsvsp Y led) - wam)
Flu) = I €S, NI
if w € SBV2(I) and #(Sw N I) < 400
400 otherwise.

Theorem 2.2. The functional F is not lower semicontinuous on BV?(I)
with respect to the L'(I)-topology and its relaxation is given by H.
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Proof. Since we have just observed that the functional H is L!-lower
semicontinuous on BV2(I) it is clear that H < F. To prove the opposite
inequality let us consider a function u € C2(I) N BV?(I). We follow the
proof of Theorem 2.1 in Chapter 2. We can construct a sequence (ux)n, by
approximating u' by piecewise constant functions on the open set

A={zel:2*<4plz|},

in the following way. First, we consider the function v = u’ € C*(I)NBV (1)
and we construct, as in Chapter 2, Th. 2.1, a sequence (vp), converging to
v in L%®(I). Then we define us(z) = [, va(t) dt; clearly up € BV?*(I) and
up — u in L°(I). In addition, with the same calculation as in Chapter 2,
Th. 2.1, we obtain that

fwngﬁm%@rw+4pﬁmm%www=£¢w%mwu

for every u € C* N BV?(I), where

N -2 if |z2] <2p
#(2) = {4p|z] if |2| > 2p.

Finally, by applying successively the relaxation theorems [62] and [33] we
can prove that

ﬁ@ﬁﬁ@WWﬁ%®=£MWMMa

on WH1(I) (here (¢)** denotes the greatest convex function less than or
equal to ) and extend this inequality on the whole BV (I). U

Theorem 2.2 shows that, in order to study the behaviour of minimizing
sequences, functionals G and F are equivalent.

The functional H, defined in (2.3), can be also considered as the I'-limit
of a suitable sequence of functionals obtained perturbing the functional F
with an additional term. More precisely the following proposition holds.

Proposition 2.3. For every ¢ > 0 let us consider a Borel function
Ye : R X R — R such that
(2.5) —ell —nl S e(€,m) <e(l€ —nl+1)

for every (€,7m) € R?, and let us define

Fu)+ Y, de(w(a+),v/(z-))

2.6) Fulu)= =€Swnl
(2.6) Fe(u) ifu € SBV*(I) and #(Sw NI) < 400

+o0 elsewhere on BV%(I).
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Then, for every u € BV?*(I), we have
(I- lim o)) = H(w),

where the I-limit is considered with respect to the L*(I)-topology.

Proof. From the inequality Fo(u) > (1 — €)F(u), it follows that
' — lim iglffs > H.

To prove that
I' - limsupF. <H

e—+0
it suffices to adapt the proof of Proposition 2.4 in Chapter 2. Let us take
w € C2(I) N BV?(I), and let us fix a sequence (e )r converging to 0. If we -
consider the sequence (uj), constructed in the proof of Theorem 2.2, we
obtain that
#(Su; NI) < he< +oo.

By defining the sequence (wp); exactly as in Chapter 2, Prop. 2.4, with
the same calculation we obtain that

(¢~ limsup £ ) < [ (@) o
h—+o0 I

for every u € C2(I) N BV?(I) (¢ is defined in the proof of Theorem 2.2).
As in the proof of Theorem 2.2, using [62] and [33], we conclude that on
BV?2(I)
I' —limsup F,, <H.
h—-oo

By the arbitrariness of the sequence (¢p)s, the proof is complete. O

We want to study the lower semicontinuity of the functionals F.. Let
us suppose that the functions . are of the form

(2.7) Ye(&,m) = e(&,m),
where 9 is a Lipschitz continuous function such that
(2.8) B(E,6) Z e >0

for every ¢ € R. In addition suppose that for a fixed o > 0 the function
(€,1) > ey (&,m) +4]€ — n| is subadditive; ; i.e., for every {,n € R we have

(2.9) Yo (€,7) + 4l — | < theo(&,C) 4+ Peo (C,m) + 416 — (| +4[¢ — ]

for any ¢ € R. Note that if ., verifies (2.9) then every . does for 0 <
€ < gg-
In these hypotheses we are able to prove the following proposition.
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Proposition 2.4. Let ¢ : R x R — [0,400[ be a Lipschitz continuous
function verifying (2.8), and for every € > 0 let 1. be defined by (2.7). If
for some ey > 0 the function ., satisfies (2.9), then for every 0 < € < €¢ the
functional F. is lower semicontinuous in the L'(I)-topology on BV?*(I).

Proof. We follow the line of the first part of the proof of Proposition
4.4 in Chapter 2. Let us consider a sequence up — u in L!(I) such that
limp— 4 oo Fe(un) < +o00. Then we have that |uj |(I) < ¢, which implies that
(up)n is bounded in BV?(I). Indeed, using the interpolation inequality we
can bound the L'-norm of the first derivative u), by the sum of the L'-norm
of up, and of the total variation on I of the measure uj up to a positive
constant depending only on the length of the interval I. Hence u; — u in
BV? — w*. In addition #(Sy; NI) < ¢ < 400 and [[iiz]]2 < ¢. Therefore
we can apply Prop. 4.1 of Chapter 2 to the sequence (u},)r and conclude
that F.(u) < limp Fe(un).

3. Minimum Problems

We can describe the behaviour of the functionals H and (F:).>o0 by
examining some minimum problems with generalized Dirichlet boundary
data. Without loss of generality we will deal with problems on the interval
I = (0,1) and we will fix p = 1 (see Remark 3.10 for the general case).
Let us fix (vg, v1,£0,&1) € R* and consider the boundary conditions u(0) =
v, u(1) = v1,u'(0—) = &, and u'(1+) = ;. Since boundary conditions on
u' are not preserved under passage to the limit in BV? — w* the boundary
conditions must be “relaxed”; the corresponding minimum problem for H
is given by

61 mnogé) = min{ [ eli@)ds + 4010},

where the minimum is taken among all functions v € BV?(0,1) such that
u(0) = vg,u(1) = v1, and the function u* € BV} (R) is obtained by ex-
tending u to z + (&z +vg) in | — 00,0] and to z — [{12 + (v — &1)] in
[1,+0c0[. For the minimum problems related to the functionals (F.). we
can prove the following theorem.

Theorem 3.1. In the hypotheses of Proposition 2.4, for every 0 < € < &g
and every choice of real numbers vg, v1, &, &1 there exists u € SBV?2(0,1)
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with #(Su N (0,1)) < +oo verifying the minimum value

me(vo,v1,&0,&1) = min { /01 |ii(z)|* dz+
S el @) - @Y @+ @) @) @) @)

IES(u-o )I

(3.2)

where the minimum is taken among all functions u € SBV?(0,1) such that
#(Su N(0,1)) < 400, u(0) = vo, and u(1) = v;.

Proof. Let usfix 0 < € < g¢; by Proposition 2.4 the functional we minimize
in (3.2) is lower semicontinuous in the L!-topology. We have to prove that
this functional is coercive. To this purpose let us fix a positive number ¢
and let us consider a sequence (uy ), in the sublevel set of the functional
corresponding to t. As in the proof of Proposition 2.4 we obtain that
|u|(I) € c and this implies that the sequence (u)s is bounded in SBV(I)
(here we make use not only of the interpolation inequality, but also of the
fact that the boundary conditions guarantees that the sequence (up)n is
bounded in L*(I)). Moreover we have that #(S,. NI) < c. Therefore
by Prop. 4.1 of Chapter 2, up to a subsequence we have that v, — u in
SBV? — w*, where u is a function in SBV?(I) such that #(S N(0,1)) <
+00, u(0) = vo, and u(1) = v;. U

The aim of this section is to describe the minimizers for problem (3.1)
and the behaviour as ¢ — 0 of the minimizers of (3.2). First we reduce (3.2)
to a sequence of simpler minimum problems which do not depend on ¢.

Up to a translation and a rotation (i.e., addition of an affine function)
it is not restrictive to suppose that at = = 0 we have the conditions u(0) =
(u*)'(0—) = 0, so that problem (3.2) is equivalent to the minimum problem

1
m€(07vl - (UO + 60)70751 - ‘50) = min { / |u(m)|2 dz+
0

S [ ) - @Y @ + el ), (Y @)

.’EES(ut )I

where the minimum is taken among all functions v € SBV?(0,1) such
that #(Sy N (0,1)) < 400, u(0) = 0,u(l) = vy — (vo + &) (recall that
(u*Y(0~) = 0 and (u*Y(1+) = & — o).

In order to simplify the calculations, let us consider the case ¢ =1
(see Section 4 for a discussion on the general case); since now the minimum
problem depends only on the boundary data at the point z = 1, for every
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choice of (v,¢) € R? we have to study
me(v,§) = min{ /0 li(z)|? dz+
43 1@ (@) = @) @=)] + e (S},

IES(‘“:)I

(3.3)

where the minimum is taken among all functions u € SBV?%(0,1) such
that #(Sw N (0,1)) < 400, u(0) = 0,u(1) = v (the extension of u gives
(u*)'(0—) = 0 and (u*)'(14+) = £). We consider then for every n € N the
problem

(3.4) M(n,v,§) :inf{/ |i(2)|? de+4 Z I(u*)'(m—t—)—(u*)'(w—)[}.,
0 TES(yxy

where the minimum is taken among the same functions as in (3.3) with the
additional condition #(S(y+)') = n, so that (3.3) becomes

me(v,€) = min {M(n,v,€) +en}.
nEN

Let us consider the minimum problem (3.4); the following proposition con-
cerns the case n = 0 (no creases).

Proposition 3.2. We have that the minimum value
(3.5) M(0,v,£) = 4(3v? — 3v€ + £%)
and it is achieved at the function u(z) = (—2v + £)2® + (3v — &) 22.

1
Proof. In the case n = 0 we have to minimize / [u"(z)|? dz over
0

the Sobolev space H%(0,1) with the boundary conditions u(0) = w'(0) =
0,u(1) = v, and u'(1) = €. It is well known that the minimizer of such
a problem is unique and that it is the only function verifying at the same
time the Euler Equation

(3.6) /0 u"(z) " (z)dz =0 Vo eC(I)

and the boundary conditions. As a consequence of (3.6) u satisfies the
equation u!¥ = 0 in the sense of distributions, which implies that u is a
polynomial with degree less than or equal to 3. Therefore the minimizer is
u(z) = (—2v + £)z® + (3v — ¢)2? and the corresponding minimum value is
given by

1
M(0,v,¢) = / 16(—2v + &)z + 2(3v — £)|? dz = 4(£% — 3vt + 3v?). [
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Now we turn our attention to the case of a single crease (n = 1).
Proposition 3.3. Ifn =1 in (3.4), then

M(1,v,€) = 4 inf {3w® — 3wn +7* + | =]

37 wn€Rn#E0S s <1}

Proof. Let u € SBV?(0,1) be such that #(S(y+)/) = 1; this means that
(u*)' =i dz + (8 with 0 <@g < 1and ¢ #0.
Let us consider the function
ue(w) = u(z) = ((z — z0)™;

since u!! = 1 dz + (83, — 6z, = U dx (here §, denotes the Dirac measure at
z), we deduce that u, € H?(0,1). Moreover we have that u,(0) = u,(0) =
0,u.(1) =v—((1—2o), and uy(l) =& - (.

Since we are interested in the computation of M(1,v,§), we can sup-
pose that the function u, realizes the minimum M(0,v — {(1 — 2q),& — ().
Therefore, using Proposition 3.2, we deduce that

M(1,v,€) = 4 inf {3@ — (1= 20))* = 3(v — C(1 = z0))(E = ¢)
+(E- 0P+l

where the infimum is taken for ( € R\ {0}. By posing n = { — ( and
w = v — ((1 — 2¢), we obtain (3.7). Indeed the condition 0 < zo < 1

becomes 0 < v-w < 1. O
£—1n
With simple calculations we can specify the values of M(1,v,¢).

Proposition 3.4. Let us suppose that v > 0 and { € R. Then the
following assertions hold.

(i) Ifv>1and £ > v+ 1, then
M(17U7£) = 4(6 - 1)7

the minimum is reached by the function

u($)=$2+(§—2)(m—§—é-_—21> ,
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—v—1 -1
whose crease point is Ty = f_v—z =12 5"
(ii) If v > 0 and £ < min{0, (3v — 1)/2}, then
M(1,v,6) = 3v® + 6v — 4£ — 1;

the minimum is reached by the function

1 1

u(z) = —5(1) +1)z% + 5(3'0 +1)22.

The crease point is at g = 1.
1
(iii) If v > 3 and 0 < ¢ < min{v + 1,3v — 1}, then

M(1,v,€) = 3(€ — v)> — 26 +6v— 1;

the minimum is reached by the function
1 1
u(z) = 5(5 —v—1)z% 427 + 5(30-—{— 1)z.

The crease point is at ¢ = 0.
-1 1
(iv) IfOSvSlandmax{3U ,30—1}S§§3v+
is not reached and

2 2
M(1,v,€) = 4(v? — 3vE 4+ €%) = M(0,v,¢).
(v) If0<v <1and¢> 3L then
M(1,v,€) = 3v® — 6v +4£ — 1

The minimum is reached by the function

, then the infimum

u(z) = %(1 _ o) + %(30 ~ 1),

The crease point is at the point o = 1.

Remark 3.5. The case v < 0 is solved by a symmetry argument. Indeed
the minimum problem we consider is symmetric with respect to the origin
in the plane of the boundary value system (v,£). For instance if v < —1
and £ < v — 1, then we have

A/[(la v, f) = 4(_6 - 1)

v+1

and if v < 0 and ¢ > max{0, §—3—}, then

M(1,v,8) = 3v? —6v + 46 — 1.
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Let us consider now the case n > 2 (two or more creases). Let T :
SBV2 (R) — [0,+00] be the functional we minimize in problem (3.4); ;
i.e., .

)= [ fiE)Pde+s 3 (o) vl
0 z€S,,N[0,1]

and let us denote by S(v, €) the space of the functions u € SBV;2 (R) such
that u(0) = u'(0—) = 0,u(1) = v, and u'(1+) = £.

Proposition 3.6. Let us fix n > 2 and (v,§) € R%. Let us consider a
function u € SBV?(0,1) such that u(0) =0, u(1) = v, and F#(Scu=y) = n,
where u* denotes the extension of u associated to (v,{) in such a way
that u* € S(v,€). Then there exists a function U € S(v,§) such that
#(Suy) = 2, Syr = {0,1}, and Z(u*) = Z(U) > 0.

Proof. Let us consider a function u satisfying the hypotheses of the propo-
sition. Then we have that

(u*)" = i dz + Z Ck bz
k=1

with (x # 0 and z € [0,1] for every k = 1,...,n. Let us define the function
ug € SBVZ.(R) as

uq(z) = u*(z) — Z(L(m —z)*t.
k=1
We have that u” = ii dz, hence u, € H*(0,1). Our aim is to substitute all

crease points of u with two crease points at £ = 0,1. This can be done by
defining a new function U € SBV{Z_(R) as

U(z) = ua(z) + (O (1 —zi))e™ + (Y Graw)(z — DY
k=1 k=1
Indeed we have that U(0) = U'(0~) = 0,U(1) = ua(1) + > =y (Ce(1 —

z1)) = v, and U'(14) = uh (1) + 3 ro (Ce(l—z1)) + > kmq (Crzr) = ug (1) +
> heq Gk = €. Moreover

U" =i de+ () (1 = 2k))8o + (Y (e,
k=1 k=1
hence #(Sy+) = 2 and Sy = {0,1}. Finally we have that

(3.8)  T(u)—Z(U) =4 Gl =Y Gl =zl = | ) Cral) 2 0.
k=1 k=1

k=1
It is easy to see that in all possible cases the last inequality in (3.8) is
satisfied and this concludes the proof. O
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Proposition 3.6 implies that for every (v,§) € R? we have

M(n,v,€) > M(2,v,§) Vn > 2;
furthermore it follows also that in the computation of M(2,v,£) we can
consider only functions v € SBV?%(0,1) such that u(0) = 0,u(1) = v, and
Su+y = {0,1}. For these functions we have that

(u*)" = 'U, d(l) + C(So + 7](51,

with ¢,n # 0. Let us consider the function

Ug(z) = u*(z) — et —n(z — 1)F;
since u!" = i dz, we deduce that u, € H?*(0,1). Moreover we have that
u,(0) = u/(0) = 0,uq(l) = v —(, and uy(1l) = € — ( —n. Therefore we

can suppose that u, realizes the minimum M(0,v — (,§ — ( —n). Using
Proposition 3.2 we deduce that

M(2,0,€) =4 inf {3(v — () = 3(v = O)(§ — ¢ —m)+
(€= ¢ =0+ [¢I+Inl},

where the infimum is taken for ¢,n € R\ {0}. Finally, if we change variables
by setting w = v — ¢ and A = £ — ( — n, we obtain that

(3.9) M(2,v,6) =4 inf {3w? —3wA+ N +jv—w|+[{ —v—-A+wl|},
where the infimum is taken for w € R\ {v}, A € R\ {£}.
The following proposition concerns the values of M(n,v,£) for any

n > 2.

Proposition 3.7. Let us suppose that v > 0 and £ € R. Then the
following assertions hold.

1
(i) va>§and§<v—%, then

1
]V[(?.,’U,f) = 4(20 - ‘5 - g) < m;iérzlﬂ/[(n7v7€);
the minimum in M(2,v,£) is reached by the function

2 1
u(z) = —gm?’ + 2%+ (v — §)x+
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(ii) Ifv>1 and § > v+ 1, then
Min,v,€) = M(2,0,€) = 4(6 — 1) = M(1,v,£);
the minimum in M(2,v,€) is reached by the function
u(z) = 2% + (v - 1)z,

while the minimum in M(n,v, £) is reached on all functions of the form
u(z) =2 + (O (u(z —zp)™)
k=1

with (x > 0,z € [0,1] for every k = 1,...,k, D 5y e = £ =2, and
Yor=1 k(I —ap)=v -1

(iii) In all other cases, for every n > 2 we have
M(n,v,£) = M(1,v,§),
but the minimum is not reached on functions with more than one crease.

We can summarize our results in the following theorem (see also fig.1).

Theorem 3.8. Let (v,€) € R?: then the following assertions hold.
(i) If k

1 1

v > 3 and £ < v — 3

1 1
(symmetrically if v < —3 and £ > v+ 5),

then the minimum value of the functional T over S(v,¢) is achieved
only on functions with two crease points and the minimum point is

unique.
() 1 Jv—1
-1<v< 3 and € < 5
(symmetrically if — % <v<1land¢ 3’0;— 1),
or if

%<v_<_1andv——%—§§<3v-—1

1 1
(symmetrically if —1<wv < ~3 and3v+1<é<v+ §)’
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or if 1
v>1andv—§§§_<_v+l

1
(symmetrically ifv< —landv—-1< €< v+ g),

then the minimum value of the functional T over S(v, €) is achieved only
on functions with one crease point and the minimum point is unique.

(i) If

3v 3v+1

1

-1
} <€ <min{3v+1,

—1<v <1 and max{3v -1, 5

then the minimum value of the functional I over §(v,¢§) is achieved
only on C? functions and the minimum point is unique.
(iv) If
v>landé>v+1

(symmetrically if v < —1 and { < v — 1),

then the minimum value of the functional T over S(v,€) is achieved on one
or more functions with n crease points, for any n € N.

Fig. 1. The minimizers of the functional T over S(v,§)
in the plane of the boundary value system (v, &)
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The rhomb with vertex A = (1,2),B = (1/3,0),4' = (-1,-2),B' =
(—1/3,0) is identified as the set of boundary value system (v, &) such that
the (unbent) solutions u to M(0,v,¢) verifies ||u" || < 2, that is

F = [ ey = [ WP .

In particular the point A corresponds to the solution u(z) = z?, with
2

u'(z) = 2, and the point B to the solution u(z) = §m3 + 22, with u''(z) =

—4z + 2.

Remark 3.9. Theorem 3.8 provides also a description of the minimizers
for the corresponding boundary value problems for the functional H (see
(3.1)). More precisely we have uniqueness of the solution in B V?2(0,1) in
the regions where we have uniqueness of the functional 7 on S(v, ), while
in the region {(v,€) € R* : v > 1, > v+ 1} (resp. {(v,€) € R? :v <
—1,¢ < v —1}) the minimizers are all the functions of the form

uLxr :$2 ’
(2) = 2® + / u((0, 1)) dt,

where p is any positive (resp. negative) Borel measure on [0,1] such that

/Oy([O,t])dt:v—l and p([0,1]) = £ — 2.

n
In particular, when g is of the form ZC" 8 with ¢ > 0 (resp. (r < 0)
k=1

fork=1,...,n, zx € [0,1], ch(l —zr)=v—1, and ZQ = ¢ — 2, the
k=1 k=1
minimizers are of the form

u(z) = z* + Z Cr(z — zp)t.
k=1

Remark 3.10.  Let us fix an open bounded interval I = (0,a) and a
positive constant p. Let us consider the problem

o) wnt{ [fi@Fdrap Y 1Y) -6l

IES(u* )I
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where the infimum is taken among all functions u € SBV?(I) such that
#(Sw NI) < 400, u(0) = 0, and u(a) = v (the function u* € SBVZ (R) is
obtained by extending u to £ +— 0 in ] — 00, 0] and to z — [{(z — a) + v] on
[a, +o0).

We can easily describe, with a graph similar to that of fig. 1, the
solutions to problem (3.9), where the point A is replaced by (pa?,2pa),
the point B by (3pa?,0), and the slopes of the lines passing through these
two points are still 1. Let us remark that we can not simply rescale the
functional; indeed, if the infimum in (3.9) is a minimum, then it is achieved

on the function U(z) = azu(f-), where the function u is the minimizer of
a

the functional Z on S(v/a?,£/a). The general case of an interval I = (a, )
can be reduced to (3.9) by a simple translation, since the problem depends
only on the interval length.

4. The Main Result

Proposition 2.3 exhibits a singular perturbation of the functional H
with a sequence of equi-coercive functionals. Therefore to approximate H
by the functionals F, via I'-convergence represents a choice among all the
possible minimizers for problem (3.1), of those that in particular can be
reached following minimizing sequences for the corresponding problems for
Fe.

We say that a function @ : ]0,+oo[ — R is positively subadditive if we
have

D(a + b) < ®(a) + ®(b) for all a,b € ]0,+oo].
Given a function ¥ : R — R, we denote by 9 the greatest lower semicontin-
uous function less than or equal to % such that both functions t(t), ¥(—t)
are positively subadditive. We refer to Chapter 2, Section 4 for remarks
and examples about positively subadditive functions.

Theorem 4.1. Let v : RxR — [0, +o0o[ be a Lipschitz continuous function
verifying (2.8), and for every € > 0 let .(§,n) = e¥({,n). Let us consider
the functionals F. as defined in (2.6), and let us suppose that the functions
1. satisfies the hypotheses of Proposition 2.4. Let us fix an interval I =
(a,b) and (v1,vq,61,&) € RY. For every € > 0 small enough, let u. be the
solution to the problem

b
me=min{ [f@F sty Y w4 - @) (o)

IES(H# )I

Y () (@), W) (=) }

:I:ES(un y
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where the minimum is taken among all functions v € SBV?*(a,b) such that
#(SwN(a,b)) < +00, u(a) = vy, and u(b) = vz. Then, up to a subsequence,
(u.). converges weakly in BV?*(a,b) to a function u € SBV?(a,b), (te)e
converges to ii weakly in L*(a,b), (u.); converges to uy weakly in the sense
of measures, and u verifies the minimum

m =int { /abwwczwwp @Y () — () @)

TES(ury
b
—min { [ pli(e) de + o)1 8D

where the infimum and the minimum are taken over the same class above.

If
(A1) E2— &> v —vi—E(b—a)+ p(b— a)(2 = (b= @) > 2p(b — )
or symmetrically if

b2 — 61 <2 — 1 — Ea(b— ) — p(b — )2 — (b= @)) < ~2p(b — a),

then u is characterized by minimizing also

> B (@), () (2-)

xGS(u* )l

among all functions u € SBV?(a,b) which verify the minimum value m. In
all other cases the minimum point verifying m belongs to SBV?(a,b) and
it is unique.

Proof. To prove the theorem it suffices to repeat the same arguments of
Section 5 of Chapter 2, using the results of Section 3. 0

Remark 4.2. In the region (4.1) the minimizers u € SBV?(a,b) of the
functional H take the form

u(z) =pa® + (& —2pa)z +pa® —Gratvi+ Y Ci(z —ai)*
k=1
with .
>0, Y Ge=b—&—2p(b~a)

k=1
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ZCk(l —z) =vy — vy — &1(b—a) — p(b— a)’,
k=1

If we suppose that ¥(¢,n) = ¢(|¢ — n|) the singular perturbation approach
selects between these minimizers those minimizing also the functional

pz( <N}
k=1

Example 4.3. In the particular case when ¢ = 1, we obtain i =1 and we
select exactly the unique minimizer of H with minimum number of crease
points; t.e.,

u(e) = p2 + (61— 2pa)z +pa® — Era+ vy
t (62— =200 - a)x— )+ v~ fa(b—a) = p(b — a)?)

Examples 4.4. 4.4.1. If we take ¥({,n) = ¢(|¢ —n]), where (t) = 14 %,
then we can compute 9 obtaining that :

%(¢,n) = min{k + =—— K 77| : ke N\ {0}}.

4.4.2 We can consider also non symmetric functions . For instance let us
take ¥((,n) = ¢(¢ — n), where ¢(t) = |t — 1|, which gives

- _J1=(¢=n) if(-n<1
(Gn) = {dist(C—n,N) if¢—n>1.

4.4.3 We can allow the dependence of ¢ also on the variable z, by consid-
ering functions of the form ¥ (z,(,n). Such functions can be useful to treat
the case of inhomogeneous materials.



CHAPTER 4:

THE INTERACTION BETWEEN

BULK ENERGY AND SURFACE ENERGY
IN MULTIPLE INTEGRALS

In this chapter we study some integral functionals defined on SBV(Q;Rk), the

space of vector-valued special functions with bounded variation on the open set
Q C R™, of the form

F(u) = /Qf(Vu(a:))da: +/5 ] g((ut —u7) @) dH

On f we suppose only that it is finite at one point, and on g we assume that it
is positively 1-homogeneous, and that it is locally bounded on the sets R* ® v,
where {v1,...,v,} C S*! is a basis of R". We prove that the lower semicontin-
uous envelope of F in the L!(Q;R*)-topology is finite and with linear growth on
the whole BV(Q;R*), and that it admits the integral representation

T(u) = / o(Va(z))de + / o (B Daul

A formula for ¢ is given, which takes into account the interaction between the
bulk energy density f and the surface energy density g.
The results of this chapter are contained in [BC2].

Introduction

Many problems in Mathematical Physics, Computer Vision, and Mechani-
cal Engineering take into account surface energies on some “free boundary”
or “free discontinuity” set. These energies account for several phenomena
such as crack growth and crack initiation in the theory of brittle fracture,
interface formation between different phases of Cahn-Hilliard fluids, surface
tension between small drops of liquid crystals, and are utilized for pattern
recognition in computer vision to determine surfaces corresponding to sud-
den changes in the image (e.g. the edges of the objects, shadows, different
colours).

We are interested in a variational formulation for some of the static free
discontinuity problems, in the light of recent research on functionals which
depend on discontinuous functions. From the point of view of the calculus
of variations, a rather complete theory has been developed by L. Ambrosio
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& A. Braides [9], [10] in absence of a “volume” counterpart of the surface
energy, in the framework of partitions of sets of finite perimeter. When we
allow the presence of a bulk energy, it is natural to take into account spaces
of functions of bounded variation. We recall that if 2 is an open set in R",
a function u belongs to BV (€;R¥) if it is an integrable function, and its
distributional derivative Du is a finite (matrix-valued) Radon measure on (2.
It turns out that the Lebesgue decomposition of this measure can be written
as Du = Vudz + D,u, where the density of the absolutely continuous part
of Du is denoted by Vu since it can be interpreted as an approximate
differential for u. For a function v € BV(Q;RF) it is possible moreover
to define a set of jump points S, where u is approximately discontinuous,
and on which it is well-defined a “normal” v, together with the traces u™,
u~ of u on the two sides. Recently, E. De Giorgi & L. Ambrosio [45]
have introduced the subspace SBV(Q; Rk) of special functions of bounded
variation, that are characterized by the property that the singular part of

Du can be written as
(0.1) Dyu=(ut —u")®@v, H* s,

(H™!}s, denotes the restriction to S, of the (n —1)-dimensional Hausdorft
measure). Remark that in general D,u contains also a diffuse “Cantor”
part. On the space SBV(; RF) it is natural to consider functionals of the
form

(0.2) Af(m,u(a:),Vu(m)) dz +/S = g(z,ut,u™ v, ) dH" L.

These integrals model many of the problems so far considered in the
literature, and provide a good functional setting for problems that had been
before considered only under additional un-natural hypotheses, imposed to
obtain a priori smoothness on S,.

A natural question for the functionals above is the possibility of appli-
cation of the so-called Direct Method of the Calculus of Variations, that is
summarized in the equation

lower semicontinuity + compactness = existence of minimizers,

and hence the study of necessary and sufficient conditions for their lower
semicontinuity in suitable topologies. A general lower semicontinuity result
it is not yet available. Partial results are due to L. Ambrosio [7], which
ensure the lower semicontinuity when f is convez (in the last variable)
and has a superlinear growth at infinity, and ¢ is BV-elliptic and has a
superlinear growth for |ut — u~| — 0 (for example if ¢ > ¢ > 0). These
conditions guarantee compactness separately for the bulk and jump part of
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the derivative, so that the two integrals in (0.2) can be dealt with separately.
Nevertheless, in the case of vector-valued u (see for instance [75}, [40], [1],
[57]) it is well-known that the natural assumption on f is the quasiconvezity
in the sense of C. B. Morrey (see [75], [74]). If M**™ denotes the space of
k x n matrices, we recall that a continuous function f : M kxn [0, +o0]
is said to be quasiconvez if for every £ € M¥*™ A bounded subset of R",
and v € C1(A4; R¥) we have the inequality

|A[f(£) < /A F(€ + Vo(z)) da.

In this framework, an interesting result, due to L. Ambrosio & G. Dal Maso
[11], is the L!-lower semicontinuity of the integral defined on BV (£; R*) by

sU

(0.3) /Q F(Vu(z))dz + /Q fw(g )|D8u|,

l

under the assumption of f being quasiconvez and with linear growth (f°° is

iID)sul denotes the Radon-Nikodym deriva-
sU

tive of the measure Dyu with respect to its total variation |D,u|). This
result has been recently generalized by I. Fonseca & S. Miiller [58], allow-
ing the dependence of f also on z and u. Considering the restriction of the
functional (0.3) to SBV(£;R*), we have

st

the recession function of f and

(0-4) g(ut,u,v) = f2((u —uT) ® ).

Condition (0.4) is satisfied in some models, but in general it is not possible
to obtain the effective surface energy density by simply considering the
volume energy density. No lower semicontinuity results on SBV (£; Rk) are
known so far under the assumption of f being quasiconvez.

Purpose of this work is to give a relazation and integral representa-
tion result on the special yet meaningful class of functionals defined on

SBV(Q;R*) by integrals of the form
(0.5) F(u) = / f(Vu(z))dz + / g((uF —u7) @ uvy)dH .
Q 5.9

The lower semicontinuous envelope in the L!-topology of the functional F,
. i.e., the greatest L!-lower semicontinuous functional less than or equal to
F, is defined by relaxation as

F(u) = inf{limhian(uh) : (up) in SBV(;R"),up — uin LY, R},
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Under the only hypotheses (besides the necessary measurability conditions)

f: M¥*™ — [0, +o0] finite at one point, say at 0,
g : M**™ [0, +00] positively 1-homogeneous

and locally bounded in n independent directions of R",

we prove that F can be represented as an integral on the whole BV (€2; R).
In this case, the relaxation of F' takes into account, both in its volume and
in its surface part, of the combined effects of f and g, and it can be written

on the whole BV (Q;R¥) as

(0.6) -F(u)z/Qc,o(Vu(:c))dw+/S;Lp°°(!gzzl)|Dsu|.

The function ¢ is a quasiconvex function with linear growth (whatever the
growth conditions satisfied by f may be), and it satisfies the formula

(&) = sup{y(€) : ¥ quasiconvex, ¥ < f on M**™,

(0.7) P (w) < g(w) if rank(w) < 1}.

The chapter is divided as follows. Section 1 is devoted to the statement
of our main result, Theorem 2.1. In the second section we recall some
relaxation results in BV and Sobolev spaces. In Section 3 we prove the
main theorem in several steps. The first one is to establish that under
the very weak hypotheses on f and g the relaxation F is of linear growth,
and indeed finite, on the whole BV(Q;R"). Then we prove by a measure
theoretic approach, and localization technique, that the study of the relaxed
functional at a fixed u can be reduced to the study of a regular Borel
measure on {). This fact allows us to use some integral representation
arguments by G.Buttazzo & G. Dal Maso [33] and to write the restriction
of F to W'! as an integral. The final step is to use the lower semicontinuity
results by L. Ambrosio & G. Dal Maso [11] in order to obtain upper and
lower bounds for F on the whole BV (Q; R¥); the use of formula (0.7) shows
that these bounds coincide, and gives (0.6). Let us remark that in the scalar
case (; t.e., when k = 1) this result can be obtained, together with a simpler
formula for ¢, using a direct construction of the “recovery sequences” for
F(u) (see Chapter 2, Theorem 2.1); this approach is not possible in the
vector-valued case. Finally in Section 4 we specialize formula (0.7) to some
particular f and ¢, and we provide some applications of our result.
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1. The Main Relaxation and Integral Representation Result

We refer to Chapter 1 for the notation, the properties of the functions
of bounded variation, the notions of quasiconvexity, of rank one convexity,
and of relaxed functional. The letter ¢ will denote throughout the chapter a
strictly positive constant, whose value may vary from line to line, and which
is independent of the parameters of the problems each time considered.

The main result of this chapter is to characterize the relaxation in the
L!-topology of some functionals defined in SB V(4 RY).

Theorem 1.1. Let f : M¥*™ — [0,+o00] be a positive Borel function
such that f(0) # 4oo, and let g : M{*™ — [0,+00] be a positively 1-
homogeneous Borel function. On the function g we suppose moreover that
there exist n linearly independent vectors vy, ...,v, in S®~! such that g is
locally bounded on R¥ @ vm forallm=1,...,n.

Let Q) be a bounded open subset of R", and let us define the functional
F : BV(Q;RF) — [0, 400] by setting

[ivu@nas s [ gt —u)@m) e
Q , S, NN
Fu) = - ifue SBV(Q;RF)
o0 | ifue BV(QRY)\ SBV(QRY),

Then the lower semicontinuous envelope of F in the L*(Q; R¥)-topology is
given by

— Dsu
1.1 Flu =/ Vu(z dac—}—/ < 2 Dgu
(11) W= | o(Vu@)de+ | o= (001D
for every u € BV(Q;Rk), where the function ¢ : M**™ — [0, +oo is given

by

p(€) = sup{t(¢) : ¥ quasiconvex, $ < f on M™X",

(1.2) .
»p>®(w) < g(w) if rank(w) < 1},

and satisfies 0 < (€) < (1 + |€]) for all € € M*F*™.
Remark 1.2. Let us suppose that, in addition, the function f is convex

and the function ¢ is rank one convex on R* ®@ v for every v € S®71, which
means that

gRa@v+(1-A)p®v) < Ag(a®@v)+ (1= A)g(b @),
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for every a,b € RF, X € [0,1], and v € S™™!. Such a property is satisfied,
for instance, if g is (the restriction to M{*™ of) a quasiconvex function.

The functional F' is convex on SBV(Q;R*); it is straightforward to
check that its relaxation F' must be convex too, and hence also the integrand
©. Then we have the formula

©(€) = sup{¥(€£) : ¥ convex, ¥ < f on M**" 4*° < g on MF*"}.

As a corollary to Theorem 1.1, in the scalar case (; i.e., k = 1) we get
the following result, which generalizes the relaxation Theorem 2.1 of [27]
(see Chapter 2, Theorem 2.1), where a simpler formula for ¢ is obtained
using a direct construction of the “recovery sequences” for F(u) (see also

[25]).

Corollary 1.3. Let k¥ = 1. Under the hypotheses of Theorem 1.1 the
function ¢ verifies the formula

e(2) = (fF A(F(0) +9)) " (2)

for all z € R™ (h** denotes the greatest convex and lower semicontinuous
function less than or equal to h).

Proof. Let ¥ be a convex function such that ¥ < f and ¥ < ¢g on
R"™. In particular we have (0) < f(0) and it is easy to check then that
¥ < f(0) + g. Recalling Remark 1.2 we conclude that

¢(z) = sup{tp(2) : ¥ convex, ¥ < f A(f(0)+9)}
= (F A (f(0) +9)) 7 (2)- O

For additional remarks and examples, see Section 4.

2. Preliminary Results on Relaxation

In order to prove Theorem 1.1 we shall make use of some relaxation
results. The first one deals with functionals defined on Sobolev spaces.

Theorem 2.1. (G. Buttazzo & G. Dal Maso [33] Theorem 1.1 and [32]
Theorem 4.3.2) Let  C R™ be an open set, and F : WH1(Q; RF) x A(Q) —
[0, +-00[ be a functional satisfying for every u,v € W1(; R¥) and for every
A e A(Q):

(i) (linear growth condition) |F(u, A)| < ¢(|A| + [, |[Vu(z)| dz);

(ii) (locality) F(u,A) = F(v, A) whenever u = v on A;
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(iii) (semicontinuity) F(-, A) is Wl_sequentially lower semicontinuous;

(iv) (translation invariance) F(u+b, A) = F(u, A) for every constant vector
b e R;

(v) F(u,-) is the restriction to A(Q) of a regular Borel measure.

Then there exists a Carathéodory function v : © x M**™ — [0,+o0],
quasiconvex in the second variable for a.e. z € Q, such that the integral
representation

F(u,A) = / ¥(z, Vu(z)) dz
A
holds for every u € Wh(Q; R¥) and for every A € A(Q).

The second result we recall is a lower semicontinuity and relaxation the-
orem for quasiconvex integrals on the space of vector-valued BV -functions.

Theorem 2.2. (L. Ambrosio & G. Dal Maso [11] Theorem 4.1) Let ¢ :
M¥*™ [0, +00[ be a quasiconvex function satisfying

(2.1) 0 < o(é) <e(14€]) for every £ € M**™,

and let us define on BV (Q; R¥) the functional F by setting

(2.2) f(u):/Q(,Q(Vu(a:))dw—l—/gtpoo(‘g:zo | Dsul.

Then F is L1(; R¥)-lower semicontinuous on BV ($; R*), and we have

(23) F=F + le»l(Q;Rk);

: i.e., F' coincides with the relaxation of its restriction to the Sobolev space

WHL(Q; RY).

Remark that in order to have a good definition of F in (2.2) (and of
F in (1.1)) we have to extend the notion of »*°(£) to a quasiconvex ¢.
This quantity is well-defined by (2.1) if the rank of £ is less than or equal
to one since quasiconvex functions are convex in rank one directions. In
general the limit in (2.1) does not exist for all { € MF*™ (cf. Miller [76]).

sU

| Dsul
is of rank 1 |Dyul-a.e., and hence every quantity is well-defined in (2.2) and

(1.1).

Nevertheless, a recent result by G. Alberti [3] ensures that the matrix
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3. Proof of the Main Result

We start by giving an upper bound for the functional F. We shall
consider the functional G > F defined by

[ru@yds+ [ ot - w)@mane

Q SunN§2

G(u) = if u € SBV (4 RF) and H*"1(5, N Q) < 400
+o0 elsewhere in BV (Q; RF).

Obviously an upper bound for G will do as well.

Proposition 3.1. We have G(u) < ¢(1 + |Du|(R)) for all functions u €
BV (; RF).

Proof. We first prove the proposition under the additional hypothesis
(3.1) ¢ locally bounded on rank one matrices.

We define then the constant M < +oco by setting

(3.2) M =sup{g(a®v) : a€S*, vest .

We shall deal first with the scalar case (k = 1), and then extend the proof
to the case of vector-valued u.

Step 1: k = 1. In this case ¢ is defined on the whole R" = R ® R". Let us
consider a function u € BV(2)NC! (), and let us fix h € N; by the coarea
formula (2.6), Chapter 1 we have

|Du|(Q)=Z/j U @ u > 1) N Q) dt.

JEZ Y K

Hence, by the mean value theorem, for every j € Z we can find s;-’ €

]'}7—1, J _;; L [ such that
1 it
THN (0 u > sh) n0) < / H10" {u > £} N Q) dt,
P
h
so that
1 n— *
(3.3) > =H Yo" {u > st} N Q) < |Dul(Q).

JEZ
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Let us construct now the sequence (uy) in SBV(Q2) by setting

(3.4) up(z) = % on {s;-‘_l <u< s;‘}

It is clear that for every h € N we have Vuy(z) = 0 for a.e. z € Q,

Sy, N = U 9" {u > s;-'}ﬂQ,
JEZ

and

1
Duy = Dyup = Z El/’]‘ H 1|5‘{u>s;'}nﬂa
JEZ

where V’]; is defined by
D1{1L>8;.1} = V;lHn“IIB‘{u>s;'}'

Hence we obtain

f(uh) = Lf(VUh(x)) dx +/ g((u'}i’ _ U;) ® VUh)dHn—l

Su, NK

= forel+y [ o(vf) dr
jez ‘{u>sh}ﬂQ
(3.5)

< A+ 3 M HTH O u > 55} 9)
JEZ
< £(0)|Q + M|Du|(2).

We have made use here of (3.2), (3.3), and of the positive homogeneity of
g. Remark also that for every h

H (S, Q) = Y H'H(0"{u > s}} N Q) < h|Du|(Q) < +oo,
JEZ

hence G(up) = F(un).
Since up — u in L°(£), by the definition of G we conclude that

G(u) < lim inf G(ur) < f(0)|Q] + M | Du|(52).
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For a general u € BV(Q) it suffices to recall that there exists a sequence
(vi) in C=(2) N BV (Q) (for example obtained by convolution from u; see
[61]) such that vj, — u in L!(Q) and

| Du|(9) = lim [Dva|(Q) = lim / Von| da.
h b Jo

By the lower semicontinuity of G we obtain then

G(u) < liminf G(vx) < Hm(f(0)|02] + M | D (%))
= £(0)I2] + M | Du|().

Step 2: k > 2. In this case we can proceed “componentwise”. Let us fix
a function u = (u(y),...,uw)) € CI(Q;RI") N BV (Q, Rk). Proceeding as
in Step 1, for every h € N, j € Z, and every ¢ = 1,...,k we can find
J+1

ih J
e ]—IZ’ - [ such that
1 . i
_EH"_I(@*{UU) > 52" NQ) < / H* (0" {uy >t} N Q).
L
h

We can therefore define the function up € SBV (§2; Rk) by setting

J ik ih
(3.6) uh(i)(w) = E on {Sj—l < U (i) < SJ- }

By (3.6) we have that
il 1
j n—1
Duh f— -Dsuh = Z Z 'l‘z‘eg ® V;?,hH Ia* {u(;)>3§'h}ﬂﬂ?
1=1 j€Z

where l/g, »(z) is defined by

D1 = V{1hH"_1

{u(;)>s§'h} la“‘{u(;)>8;'h}'

We can proceed now as in Step 1 and obtain

G(u) < liminf G(un) < F(0)IQ] + VE M| Du|(Q).

The same inequality holds on the whole BV (£2; ]Rk) by approximation.



Relazation and T'-convergence Results in BV and SBV 75

Step 3: the case of g not locally bounded. Under the general hypotheses of
Theorem 1.1 the function ¢ 1s not necessarily locally bounded on M; kxn

but it is on the subspaces R* ® vm for m = 1,...,n. We have to modlfy
the proof of the previous steps in order to have jump part densities of the
form a ® vpm. It suffices to consider for every i, h, and j a polyhedron P oh

with

J+1 i, J
{U(,') > ——"—h } C Pj h C {U(i) > —I;},
and such that
n— 1 n— * i, 1 -5
H*HOPP N Q) S HP TN (0 {u > sy 1N Q) + =2 lil

It is clear that each of these polyhedra can be approximated by polyhedra
each of whose faces is orthogonal to one of the vectors vy, ..., vy, increasing
the surface area by at most a constant factor dependmg on thls basis. We
can suppose then that each of the faces of P is orthogonal to some vy,
and that

n— 1, n— * i,h 1.y
H* 1 OPP" NQ) < e(HM (8 {u@w > s )N Q) + 2 1.
We can then define us € SBV(€;R¥) by setting
up(y(T) = % on P;th \P;’h,
and conclude the proof as in Step 2, taking now
(3.7) M=sup{g(a@vm):a€c S, m=1,...,n}
0

Remark. If we take some extra care in Step 2 of the previous proposition,
we can obtain approximating sequences which jump only in the coordinate
directions of the target space R* (; s.e. o thelr jump part densities have the

form e; ® b). It suffices to choose the s " so that
H (0 {ugy > s 3N 0 {u@y > s HNQ) =0

for every m,j € Z and for every 1,1 € {1,...,k} with z # L.
Taking into account the construction of Step 3 of the previous propo-
sition we can obtain jump part densities of the form

—€; Q@ Vm.

h

Hence the conclusion of Proposition 3.1 still holds true under the only
hypothesis of g to be finite on the set

{e;@vm : i=1,...,k, m=1,...,n}.
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We localize the functional G by defining for every open subset AofQ

(3.8) G(u,A) = /Af(Vu(x)) dz +/ g(ut —u”) @vy)dH™ !

SunA
if u e SBV(Q;RF) and H*1(S, N Q) < +00, and by setting
G(u,A) = 4+00  elsewhere on BV (;RM).
In the same way we define
G(u,4) = inf{liminf G(u,4) : up ~uin L'(A),us € BV(Q;RF)}.
Localizing the proof of Proposition 3.1 we get the linear growth condition
(3.9) [Gu, 4)| < c(}4] + |Dul(4))
for every u € BV(Q;R*) and every 4 € A(Q).

Proposition 3.2.  For every u € BV(Q;R*) the set function G(u,-) is
(the restriction to the family of the open subsets of § of) a regular Borel
measure on ).

Proof. Step 1: G(u,-) is regular; ; i.e., for every open set A C Q, we have
(3.10) G(u,A) = sup{G(u,4’) : A’ open, A" CC A}.

We shall first consider the case of g locally bounded; ; i.e., there exists a
constant M, defined as in (3.2), such that

g(a®@v) < M|al.

Let us remark that G(u,-) is an increasing set function; ; i.e., Glu, A" <
G(u, A) if A’ C A, hence the inequality “>” in (3.10) is trivial. Let us prove
now the opposite inequality. Fixed K a compact subset of A, let us define
§ = 3dist (04, K), di(z) = dist(z, ),

Bt)={z € A : dx(z) <t} t €]0, 6],

and B = B(§) ={z € A : dx(z) < §}.
Let us choose two sequences of functions (up), (v ) in SBV(€; R¥) such
that up — w in L}(B), vs — u in L}(A\ K), and

—g—(uv B) = h;ln g(uhv B)

G(u, A\ K) = limG(v, A\ K).
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Since we have H"71(Sy, NQ)+H""1(Sy, NQ) < 400, then for every h the
set of t €]0, é[ that do not verify

(3.11) H Sy, NO*B(t)) + H* (S, NO*B(t)) =0

is at most countable (in fact, the set of ¢ for which this quantity is larger
than + is finite). In the same way we have that

(3.12) |Dun|(8*B(t)) + |Dux|(3* B(t)) = 0

except for at most a countable set of ¢ €]0, é[.
We can apply Fleming & Rishel coarea formula (2.7), Chapter 1 to the
integral

/ |lup — vp|dz = / lup — va||Vdi| da
B\K B\K

6
- / / lin(2) — B (2)| A" (z) dt
0 * B(t)

(recall that the a.e. gradient Vdg of the Lipschitz function dx has unit
length a.e.). By the mean value theorem for every h we can choose t), €]0,6[
such that (3.11) and (3.12) hold, B(ts) is a set of finite perimeter, and

(3.13) / lip — op| dH* ! < l/ lup — vy| de.
9% B(th) 6 JB\K

We can define the sequence (wy) in L!'(A4) by setting
up In B(th)
wp =
vp InA \ B(th).
Note that for every h we have w, € SBV(; R*) and
Vwy = Vup 1g(1,) + Vurla\B(1,);

moreover the Hausdorff part of the measure Dwy, is given by

(uf —ug) ®vuy, - H* s, nBn+ (VF —05) @ vu, - H" s, A(a\B())

+ (Gn — 1) ® voe B(1) - H" o7 B(ta)

where vg- g(1,) denotes the normal to 0*B(t;) pointing inwards B(tx).
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We obtain then

Gwn, A) < G(un, B) + G(vn, A\ K) + M/ ot — wa~| dHP!
8% B(th)
= G(up,B) + G(vn, A\ K)+ M iy — Op|dH™ !
a‘B(t,.)

< g(uh,B)+g(vh,A\K)+M%/ |lup — vi| dz. (3.14)
B\K

Since wy, — u in L1(A), and (up —vp) — 0in L}(B\ K), we have, by taking
the limit as h — 400,

G(u, A) < lin}linfg(wh,A) <G(u,B)+G(u, A\ K).

By (3.9) we get then
G(u,A) < G(u,B) + c(|JA\ K| + | Du|(A\ K)).

Since the last term in this inequality can be taken arbitrarily small and
B CC A, we obtain the desired inequality in (3.10).

We can remove now the hypothesis of local boundedness of ¢, assuming
the only hypotheses of Theorem 1.1. Remark that the only place where we
made use of the local boundedness of g is inequality (3.14). We choose now
a closed polyhedron P with faces orthogonal to the directions vy,...,v,
such that ' C P CC A. Let us consider, in place of the usual distance, the
new distance dist”(z,y) = sup,, |{z—y, vm)|, and dp(z) = min{dist”(z,y) :
y € P}. With this new definition of the distance we can proceed as above
with P instead of K, remarking that the sets B(t) are all polyhedra with
faces orthogonal to the directions v4,...,v,. It is clear that we take into
account only of the values of g on the sets R* ® vm, m = 1,...,n, and

therefore we obtain (3.14) with M defined as in (3.7).
Step 2: G(u,-) is a subadditive set function; ; i.e., we have
G(u, A1 U Az) < G(u, A1) + G(u, Az)

for every pair of open subsets A;, Az of §2.
By the regularity of G(u,-) (Step 1), it is sufficient to prove that

—g('LL,A) < —g_(u,Al) +§(u, Az)

for every open set A CC A; U A,. This inequality can be proved by arguing
as in Step 1, choosing K = A\ 4,, and

1
B={zeA : dist(s, k) < Fdist(K, 4\ 4)}.



Relazation and I'-convergence Results in BV and SBV 79

Moreover it is clear that G(u,-) is additive on disjoint sets; ; i.e.,
Glu, A1 U A3) = G(u, A1) + G(u, Az2)
ifA1NAy,=0.

Step 8: G(u,-) is the restriction to the open subsets of Q of a regular Borel
measure. It suflices to remark that the set function G(u,-) verifies:

(a) G(u,-) is a positive and increasing set function defined on A(Q);

(b) G(u,-) is regular (Step 1);

(¢) G(u,-) is subadditive, and it is additive on disjoint sets (Step 2),

and apply Theorem 5.6 by E. De Giorgi & G. Letta [50]. U]

Proposition 3.3. There exists a quasiconvex function ¢ : M*** —
[0, +o00[ such that we have

(3.15) ?(u,A)z/Agb(Vu(:c))d:c

for every A € A(Q) and u € WH1(§; Rk). The function v verifies

(3.16) 0 < 9(€) <c(1+[¢])

for every £ € M**™,

Proof. We want to apply Theorem 2.1, which ensures the representation
(3.17) G(u, A) = / Y(z, Vu(z))dz
A

for a suitable quasiconvex Carathéodory function % :  x M*¥*" — [0, +co].
Let us check the hypotheses of Theorem 2.1. We have already proved con-
ditions (i) and (v) (see (3.9) and Proposition 3.2). Property (ii) follows
from the definition of G, while (iii) is verified since G(-, A) is L!-lower semi-
continuous. Finally, it is easy to check that G verifies G(u+ 2z, A) = G(u, 4)
for every u € BV (Q,; Rk), A € A(Q), and for every constant vector z € R*,
and so does G. Hence we obtain the representation formula (3.17) for every
uw e WH1(Q;R").

In order to prove that ¢ does not depend on z, we observe that, by the
definition of G and 5, if we compute G on the linear function ug(z) = €z,
we obtain

P(z,§)de = [ P(z,§{)d
By B,
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on any pair of congruent balls By, By C §2. This equality implies that
¥(z, &) = ¥(y,€) at every pair of Lebesgue points of the function (-, ¢). If
we choose a dense sequence (£3) in M¥*™ using the continuity of ¥(z,-)
we get the existence of a set N C Q with |N| = 0, and such that

P(z,8) = P(y,€)

for every £ € M**™ and for every z,y € 2 \ N. Hence it is not restrictive
to suppose

P(z,€) = p(6),
obtaining (3.15). The inequalities in (3.16) follow from the integral repre-
sentation (3.15), using estimate (3.9) and the positivity of §. U

Proposition 3.4. The function ¢ in Proposition 3.3 verifies

(3.18) P(€) < f(€)  for every € € MFXT,
(3.19) PX(a®v) < gla®v) for every a € RF,v € S™71.

Proof. Inequality (3.18) follows for example from

[Q]4(€) = (€=, Q) < G(£z, Q) = |2 f(£)-
As for (3.19), let us fix a € RF and v € S*"!. For every ¢t > 0 we can
consider the linear function
uy(z) = ta(z,v),

so that we have Du; = ta ® v. We can approximate u; in L'(£; Rk) with a
sequence (ul) in SBV (;R") defined by

ub(@) = ytalh(z, )

which has jumps of size % in the direction a, along hyperplanes orthogonal

to v at a regular distance % Let now Q, be any open cube contained in

with an edge parallel to v. Tt is easy to see then that we have
1 -
G(u, Qu) = FO)IQu] +9(7 ta® ) H™ (S NQu)
< £(0)lQu] +tg(a®v)|Qy]

(note that we use here only the positive homogeneity of ¢). Hence we obtain
Y(ta®v) =Qu| 7" G(ur, Q) < |Qu| 7" liminf G(ug, Q) < f(0)+tg(a®v).
Dividing by t, and letting t — 400 we obtain
i
p¥(a@v) = lim Ya®y) g [0 +t9(a®Y)

+o0 t T t—+oo t

that is, the inequality in (3.19). ]

= g(a® V)a
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Proof of Theorem 1.1. We can now prove Theorem 1.1. By the definition
of 7, and by (2.3), for every u € BV (Q;R") we have

?(u) < _g—(u) < (?‘*‘ wa,x(Q;R"))(u)

= [ #(Tu(e)de + Lo=( lD %Dl

Let now ¢ be the function defined by formula (1.2). By Proposition 3.4 we
have that ¥ < ¢, hence

(3.20) ?(u)ﬁAw(Vu(m))d$+L¢w(|gs ]>|D ul.

For the opposite inequality we have to prove that ¢ satisfies the hypotheses
of Theorem 2.2. Inequalities 0 < ¢ < f follow immediately from the
definition of ¢. Let us prove that ¢ verifies the linear growth condition

(3.21) 0 < (&) < e(1+ED,

for every £ € M**™. It suffices to show that ¢(£) < c(1+ |£]) on MF*™ for
every quasiconvex ¢ such that ¢ < f on M¥*™ and ¢ < g on ]\/flkx”. Let
us fix such a ¢. By the rank one convexity of ¢ it follows that for every
£ e M™>" q e RF and m = 1,...,n the function t — $(£ +ta @ vm)
is convex on R and Lipschitz with constant max {g(a ® vm), 9(—a @ vm)}.
Since every £ € M**™ can be uniquely decomposed as £ = Y v _ am ® Vm,
for suitable vectors a,, € Rk, by the Lipschitz condition on ¢ we get

$(€) < ¢(0) + Z g(am ® vim) < F(0) + cMI¢],

m_

where M is defined as in (3.7). Hence ¢ verifies (3.21), and it is quasiconvex.
Finally it is easy to see that > < g on _Mlk X", Therefore we have

(3.22) /Qcp(Vu(a:))dw—{—/ng (Igs {){D u| < F(u).

Moreover, by Theorem 2.2 the left-hand side of (3.22) gives a L!-lower
semicontinuous functional on BV (€;RF), hence we obtain, by definition of
relaxation,

/ng(Vu(:v))d:B—!-/ngoo(lgs I)]D u| < F(u).

This inequality, together with (3.20), concludes the proof of Theorem 1.1.
U
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4. Additional Remarks

In this section we provide some examples and remarks for some classes
of special f and g.

Remark 4.1. (Positively 1-homogeneous functionals) If the bulk energy
density f is positively 1-homogeneous, then it is easy to see that ¢ is pos-
itively 1-homogeneous. In fact it is immediate to check that v is a quasi-
convex function such that ¥ < f on M**™ and 4> < g on .Mlk X" if and
only if for every fixed A > 0 such is the function ¢(£) = F1(A€).

Therefore we obtain the following formula for ¢:

(&) = sup{y(€) : ¥ quasiconvex and positively 1-homogeneous,
Y < f on M¥¥", % < g on M{*"},

hence (recall that 1% = 1 for 1 positively 1-homogeneous)

(&) = sup{¥ (&) : ¥ quasiconvex and positively 1-homogeneous,
¥ < fAgon MF*"}

the function g is extended to +oco on M**™ MExmy,
1

Note that the fact that ¢ is positively 1-homogeneous and quasiconvex
does not imply that ¢ is convex (cf. Miiller [76]).

Remark 4.2. (Partitions) Let us consider the case

0 iféE=0

+o00 elsewhere.

GRS

Then the functional F is finite only on functions in the space SBV (£2; Rk)
with Vu = 0 a.e. These functions can be identified with “partitions of {2
in sets of finite perimeter” (see Ambrosio & Braides [9], [10], Congedo &
Tamanini [38]). Every such function can be expressed as

(4.1) u=> ¢lg,

JEN

where ¢; € R¥, and (E;) is a partition of  in sets of finite perimeter. The
functional can be rewritten then in the form

1 n—
F(u) = Z 5/( 'E;na*Ej)an<(Cj_Ci)®Vj) dH™ L,

1,jEN
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where v; is the interior normal to E;, and 0* E; denotes the reduced bound-
ary of E;.

Since f is positively 1-homogeneous, by Remark 4.1 the relaxed func-
tional F is given by

Fw = [ wn)= [ o(Tu)de+ [ oD,

with
(&) = sup{y(£) : ¥ quasiconvex and positively 1-homogeneous,
< gon Mlk xny

(note that ¢ is positively 1-homogeneous, hence ¢ = ).

Remark that we obtain as a by-product of Theorem 1.1 (but also di-
rectly from [11]; see also I. Fonseca [57]) that if ¢ is quasiconvex then the cor-
responding functional defined on partitions is lower semicontinuous with re-
spect to the L!-convergence. Hence the integrand §(u,v,v) = g((v—u)Q@v)
is BV -elliptic (see Ambrosio & Braides [10]).

Remark 4.3. (Partitions in Polyhedral Sets) As a particular case of func-
tionals defined on partitions, we can consider a function ¢ finite and locally
bounded only for n linearly independent directions vq,...,v, in R"; ; i.e.,

g(a®v) < +00 = v = vy, for some m € {1,...,n},
Sup{ g(a®7/m) P ag Sk—l,m: 1,...,71} < +o0.

The domain of the functional F is then the set P, of all partitions of Q2 of
the form (4.1) into polyhedra whose faces are orthogonal to the directions
ViyeoeyVUp.

If for example g(£) > c|é] on M**™ (this hypothesis ensures the ex-
istence of a minimum in (4.2)), we can apply Remark 4.2 and prove the
equivalence between segmentation problems of the type

1nf Z /a g((cj— i) ®@vj)dH™!

(EiNdE; )NQ

+Z/ i —afz)|dz : u—chlg E'P}

JEN JEN

where « is a given L! function, and the corresponding minimum problems

in BV(Q;R")

(4.2) mm{ /Q (Du) +/ |u(z) — a(z)|dz : u € BV(Q,; Rk)}
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As an example, if {e;}7, is the canonical basis in R" and

g(£)={|a| ifét=a®em,m=1,...,n

+oco otherwise,

the function ¢ can be computed explicitly. Indeed, by Remarks 4.1 and 4.2
we have

n k
@(§) =97 (6) =3 4| D&

A similar representation for ¢ can be obtained for an arbitrary choice of
the basis v1,..., v, in R" instead of the canonical one.

Remark 4.4. (The two-well problem) Let A and B € MF*" be two
matrices such that rank(A — B) > 2. If we take

_ 0 1f€=AOI‘€=B1
f&) = { +00 otherwise on M**™,

and
g(a®@v)=ldl,

then the function ¢ gived by formula (1.2) is quasiconvex but not convex.
To see this, let us denote by Q¢ the quasiconvezification of (i.e., the
greatest quasiconvex function less than or equal to) the function

$(€) = min{|¢ — A, |¢ — B[}

It is already proved (see [88]) that Qi vanishes only at 4 and B. Moreover
it is clear that Q¢ < f on MF¥*™ and that (Q¢)> < g on MEX™ Tt follows
that ¢ > Qu; since p(A4) = ¢(B) = 0, we conclude that () = 0 if and

only if £ = A or £ = B, hence y is not convex.



CHAPTER 5:

DISCRETE APPROXIMATION
OF A FREE DISCONTINUITY PROBLEM

In this chapter we approximate by discrete I'-convergence a functional proposed
by Mumford-Shah for a variational approach to image segmentation. Such a
functional is first relaxed with a sequence of nonconvex functionals, which in
turn, are discretized by piecewise linear finite elements. Under a suitable relation
between the relaxation parameter ¢ and the meshsize h, the convergence of the
discrete functionals and the compactness of any sequence of discrete minimizers
are proved. The proof relies on the techniques of I'-convergence and on the
properties of the Lagrange interpolation and Clement operators.
The results of this chapter are contained in [19].

Introduction

A fundamental problem in Computer Vision is to reconstruct the contours
of a picture given by a camera [24], [83]. Given a bounded domain  C R?
the image is represented by the grey level function g € L°°(f2), which
measures the intensity of the light at each point of the screen. Since one
expects the function g to be discontinuous along the lines corresponding
to sudden changes in the visible surfaces (e.g. edges of objects, shadows,
different colours), the image segmentation problem consists in finding a pair
(u, K) such that K is a set of curves decomposing the image into regions
with relatively uniform intensity, while u is a smooth approximation of g on
each region. The set K will be interpreted as the union of the lines which
give the schematic description of the image.

Many problems in image segmentation can be solved by minimizing a
functional depending on u and K, as pointed out by S. and D. Geman [59].

D. Mumford and J. Shah [77], [78] developed this variational approach
by suggesting the study of the problem

(0.1) inf {/ |Vul? dz +H (K NQ) +/ lu — g|* dz},
(wK) Ja\K Q\K

where K is a closed subset of Q, u € CH{Q\ K), and H' denotes the one-
dimensional Hausdorff measure (see [56]).

Such problem has been studied by several authors (see, among others,
(5], [43], [44], [72]), and falls within the general n-dimensional setting of
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free discontinuity problems proposed by E. De Giorgi in the last years [44],
[45], [46]. In this context one minimizes the functional defined by

(0.2) Flu) = / (Vul? dz + H*(Sa) + / (u — g? da,
Q Q

on the class SBV(Q) of the special functions u of bounded variation in {2
[6], [45]; here S, is the jump set of v and Vu is the gradient of u in an
approximate sense. By relying on a general compactness and semicontinuity
theorem due to L. Ambrosio [5], one can show that the functional F in (0.2)
achieves its minimum on SBV(). Moreover, by studying the regularity
properties of the minimizers, E. De Giorgi, M. Carriero, and A. Leaci [46]
proved that problem (0.1) is essentially equivalent to minimize F.

The numerical treatment of (0.2) seems quite difficult, because of the
lack of convexity and regularity of the functional at hand, mainly due to
the term H"1(S,) (see [22], [35], [65], [67], [84], [85], [86]). However, L.
Ambrosio and V.M. Tortorelli [12], [13] have shown that F is the limit,
as ¢ — 0, of a sequence {F.}. (see (2.1)) of regular elliptic functionals
in the sense of I'-convergence (¢ is the relaxation parameter). The basic
idea is to introduce a new variable s in the approximating functional F,
which controls the unknown set S, (see also [55]). In view of the variational
properties of I'-convergence, the minimization of F is then reduced to the
minimization of F,, for small €. 4

In this chapter we show that if we discretize F. by means of piecewise
linear finite elements, then the discrete functionals I'-converge to F and
the discrete minimizers converge to a solution of the original problem (0.1).
More precisely, let F. » denote the discretization of F; (see (2.3)), where h
denotes the meshsize, and let R be the class of all piecewise C? submani-
folds of R™ of dimension n — 1. Using the notion of discrete I'-convergence
introduced in [21], we prove the following result:

Theorem 0.1. Let h = o(¢); then the sequence {F. 1} I'-converges in
L*(Q) to F as ¢ — 0 on the class of all functions u € SBV(£2) N L*=(Q)
such that S, € R. Moreover, under the additional hypothesis that there
exists at least a minimum point of the functional F whose jump set belongs
to R, we have that any family {uc r}. of absolute minimizers of {F¢ p}e is
relatively compact in L?(Q), and each of its limit points minimizes F.

From the numerical point of view, the fact that the convergence takes
place on the class of all functions whose jump set belongs to R is not a
restriction, since any u € SBV(2) N L*°(§2) such that S, is polygonal has
this property.

Let us briefly describe the content of this chapter.
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In Sections 1 and 2 we give some notation, and we introduce the con-
tinuous and discretized functionals.

In Section 3 we prove a lemma on the extension of SBV(Q2) functions,
which is useful in the constructive part of the proof of Theorem 0.1.

In Section 4 we prove that the functional F is less than or equal to the
I-lower limit of the sequence {F; r}. on all functions u € SBV(Q)NL>(Q).

In Section 5 we prove that the functional F is greater than or equal
to the I-upper limit of the sequence {F, r}c on the class of all functions
u € SBV(Q) N L*°(Q) such that S, € R.

Finally, in Section 6, we prove that if there exists at least a minimizer
of the functional F whose jump set belongs to R, then the minimum values
of F. i converge to the minimum value of F as ¢ — 0. Moreover any family
{ue n}e of absolute minimizers of {F; 1}, is relatively compact in L%(§),
and each of its limit points minimizes F. Thus we achieve the conclusion
of the proof of Theorem 0.1.

1. Notations

In R™ we denote by |- | the usual euclidean norm; for any 2 € R"™ and
any o > 0 we indicate by B,y(z) = {z € R" : |z — z| < ¢} the ball centered
at = with radius g. Given two sets A, B C R", we denote by A the closure
of A and by A CC B we mean that A is a compact set contained in B. For
any t > 0 we denote by (A); the tubular neighbourhood of A defined as
{z € R™ : dist(z,A) < t}. If A, B are open sets we indicate by Lip(A, B) the
space of the Lipschitz continuous functions f : A — B and by Lip(f) the
Lipschitz constant of f € Lip(A,B). If a,b are two vectors in R”™ we recall
that the tensor product a ® b is the (n X n)-matrix whose entries are a;b;
with 7,7 € {1,...,n}; we remark that |a ® b| = |al||b|, where we consider
the space of (n X n)-matrices endowed with the usual euclidean norm.

Let S C R"; we say that S € Rif S = f(C), where f : R" - R" is a
diffeomorphism of class C?, and C is a finite union of (n — 1)-dimensional
simplices (not necessarily closed) in R"™ [79] such that the intersection of
any two of these simplices is a face (not necessarily closed) of each of them.

Throughout the chapter, the letter C' will stand for a strictly positive
constant, whose value may vary from line to line and which is independent
of the parameters involved.

Let {c.}. be a sequence of real numbers depending on the continuous
parameter ¢ — 0; when we write ¢ = o(1) we mean that lim._¢c. = 0,
while by ¢. = O(1) we mean that |c.| < C for every € > 0.

If S is a compact subset of R™ we denote by lIs(z) = {z € S: |z —z| =
dist(z, S)} for any = € R".

Let © C R™ be a bounded open set. If u € W?1(Q) we indicate by
D%y the Hessian matrix of u.
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We refer to Chapter 1 for the properties of the functions of bounded
variation (see Section 2) and for the definition of I'-convergence of a se-
quence of functionals (see Section 4).

2. Position of the Problem

Let g € L®(Q); the map F : L°°(Q) — [0, +00] is defined by

/ |Vu]2dw+'Hn_1(Su)+/ lu—g|*dz if u € SBV(2) N L=(Q)
Flu)=< Ja Q
+00 elsewhere.

We add a formal extra variable s to F by setting

_ ]—'(u) fs=1
Flu,s) = {+oo elsewhere on L=(£) x L*>(9;[0,1]).

Let {kc}. be a sequence of positive numbers converging to zero as ¢ — 0

such that
. Ke
lim — = 0.
e—0 €

For any € > 0 the relaxed functional F. : L°°(€) x L>=(£;[0,1]) — [0, +o0]

reads as follows:

Fe(u,s) :/(52 + ke) |Vul* da —l—/ [SIVSIZ + —1-(1 —5)?| dz
Q Q 4e

et e
Q

if (u,s) € HY{(Q)x H'(©;[0,1]), and F. = +oco elsewhere.
The following result is proved in [12], [13].

(2.1)

Theorem 2.1. We have

- lirgl Fe=F
with respect to the L*(Q) x L*(£;(0,1])-topology. Precisely, given (u,s) €
L®(Q) x L=(Q;[0,1]), the following two properties hold:
(i) for any sequence {(uc,se)}e in H*(Q)x H'(;[0,1]) converging to (u, s)
in L*(Q)) x L*(£;(0,1]) we have

F(u,s) <lim i(1)1f Fe(ue,se);
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(i) there exists a sequence {(ue,s¢)}e in H*(Q) x H'(Q;[0,1]) converging
to (u,s) in L%(Q) x L*(Q;0,1]) such that

F(u,s) > limsup Fe(ue, se).
e—0

Moreover, if (ue, s¢) is an absolute minimizer of F, for any ¢ > 0, then the
sequence {(ue, s¢ )} is relatively compact in L2(2) x L%(£;[0,1]) and each
of its limit points minimizes F.

For technical reasons, we shall modify the functional F. as follows. Let
f) 1
M(s) = / [E[VSI“ + Zw(b)] dz Vs € H'(Q;[0,1)),
Q &

where w(t) = 1 — 2 for any ¢ € [0, 1], and set

coz/ol\/tz(i—)dt.

We define the new functional F, : L*=°(§2) x L=(£;[0,1]) — [0, +c0] as
: 5 1
Fe(u,s) = /(a + ke | Vul® da+—M(s) +/ lu —g]* da
Q 2(30 [9)

if (u,s) € H(Q)x H'(©;[0,1]) and F. = +o0 elsewhere.

1
Note that the terms /SZQVUIQ dz and / E(l — 5)? dz have been
Q Q

1
replaced by the terms / 5|Vu|? dz and / Zgw(s) dz, respectively. It is
Q

not difficult to prove that these modifications on the functional F. do not
affect the statement of Theorem 2.1.

We introduce a discretization of F, by piecewise linear finite elements.
For the sake of simplicity we shall assume that 2 is a polyhedron. Let us
denote by {Si}r>o0 a regular family of partitions of  into simplices ( [36]
p. 132), so that Q = Qj := Uses, S, for all A > 0. Let Vi(Q) € HY(Q)
indicate the linear finite element space over Sy, let V4(Q;[0,1]) = {v €
Vi(Q) : v(z) € [0,1] Yz € Q}, and let pp : C°(R) — Vi be the Lagrange
interpolation operator. By rp : L?(Q) — V4(Q) we indicate the Clement
operator (see [37]). It is well known that there exists a positive constant
n 2> 1, depending only on the space-dimension n and on the minimum of
the angles of the elements of Sy, such that if f =0 on a ball Br(z) C Q,
then r,(f) = 0 on any S € Sy, such that S C Br_,(2).

For any € > 0 let g. € C§°(Q2) approximate the function g € L*(Q2) so
that (see [31] Theorem IV.30) g. — ¢ in L?(Q) and

C

(2.2) lgellze= (o) < llgllzeecays  VGellze(ay < —-
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For any ,h > 0 set
1
M n(s) = / [e[Vs]z + Z:ph(w(s))} dz Vs € Vi(9;[0,1]).
Q £

The discretized version Fep : L®(2) x L°(Q;[0,1]) — [0,+0c] is then
defined by

(2.3) fe,h(u,s)z/s;(s + KE)|Vu|2d:1: + é—i—gME,h(s) + /S;ph((u —g.)%)dz

if (u,s) € Va(Q) x Va(9;[0,1]) and Fep = +oo elsewhere. The integrals
in (2.3) can be evaluated via the vertex quadrature rule, which is exact for
piecewise linear functions. On the other hand, the interpolation operator py
in (2.3) will introduce extra difficulties in proving the main I'-convergence

Theorem 0.1.

3. An Extension Lemma

Let us prove the following result on the extension of SBV({2) functions.

Lemma 3.1. Let Q C R” be a bounded open set with Lipschitz continuous
boundary, and let S C Q be a closed set such that SN 9 # @ and
H"1(S) < +co. Let u € L=°(Q)NH'(2\ S). Then there exist a bounded
open set Q' DD Q, a closed set S' C Q' with 5'NQ = S5NQ and H*1(S") <
+o0, a function U € L=®(Q') N HY(Q'\ S'), and a real number N 2 2
depending only on §, such that U = u on Q, and

)
(3.1) {z € Q:dist(z,S") < -ﬁ} C {z € Q:dist(z,5) < g}
for every § > 0 sufficiently small.

Proof. Let Q =] —1,1[* be the unit cube in R", Q° = {z € Q@ : zn =
0}, ={2€Q:2, <0}, QT = {2z € Q: 2z, > 0}, and denote by K :
QTUQ® —» Q- UQ° the map R(z1,...,2n-1,%n) = (21,- -+, Zn=1,—2n). As
0$) is compact and Lipschitz continuous, there exist k bounded open subsets

k
{U;}i=1,...k of R™ and k functions {hi}i=1,...,k such that 9Q C U U;, and
1=1
for every 7

h; € Lip(Q,Ti), hi! € Lip(T;,Q),
R(QT)=U;NQ = urt, Ri(Q%) = U; N 8%
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For every i € {1,...,k} let Sf = Sﬂ-U? and S; = h;o Ro h;'(S]"); then
S?' and S; are (possibly empty) closed sets. Let us define

k
' =qu(Ju)
1=1

and \
s'=su(lJ s
=1

Let us observe that ' is a bounded open set, Q' DD , and that S’ is a
closed subset of 7 with S'NQ = SNQ and H*71(S") < +o00. We claim that
there exists a finite family By, ..., B of balls in R centered at appropriate
points of S N 9Q such that SN O C U;’;l Bj and the following property
holds: for any j € {1,...,m} there exists ¢ € {1,...,k} with B; C U; and

(32) T E B] = Hs(IE),HS/\Q(III) e U;.

Property (3.2) means that for any j € {1,...,m} thereexists i € {1,...,k}
such that IIs = IIg+ and IIgn\q = IIg- on B;. In order to prove (3.2) let

us fix y € SN IQ; then y € S}t N OQ for some index 7 € {1,...,k}. We
shall distinguish two cases. If y ¢ 9U;, let L = dist(y, 9U;) > 0. The map

g(z) = max{dist(z, S), dist(z, 5" \ Q)} Ve € U;

is continuous and g(y) = 0. Therefore there exists 6 > 0 such that g(z) < L
whenever = € Bs(y). Define r = r(i,y) = min{6, £}; if z € B.(y) then
Os(z),Igna(z) € B%(a:) - B%(y) C U;. If y € OU;, there exists an
index I = I(y) € {1,...,k} such that y € Ui, hence we can repeat the
previous argument with 7 replaced by [. The claim then follows from the
compactness of S N IN.

Let us prove (3.1). For every j € {1,...,m} set B;’ = B; N§. We
first show that there exists a real number N > 2 such that for every j €
{1,...,m} we have

. N . +
(3.3) dist(z,S5) < Edlst(m,S' \Q) VzeB].

Let usfix j € {1,...,m}and z € B;L; let 7 € {1,...,k} be such that B; C
U; and property (3.2) holds. Let p € Ils(z) and p' € Ign\q(z); by (3.2) we
have that p € S;f and p' € S;”. If y = hi'(z) e QT g€ Hhi—l(sj—)(y), and
¢ € Up(p-1(st+y)(y); then we have

(3.4) dist(z,S5) = |z — p| < |2 — hi(q)] = |hi(y) — hi(¢)| < Lip(hi)ly — ql-
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Let us observe that |y — ¢| < |y — ¢/|. Indeed, using the properties of
the map R, if we consider the continuous function ¢ : @ — @ defined by
W(z) = dist(z, k71 (SFH)) — dist(z, R(h7'(S))) we have that Q° = {z € Q :
(=) = 01,Q- = (2 € Q: Y(2) > 0}, and Q* = {z € @ : ¥(2) < O}.
As y € Q%, we conclude that dist(y,h;}(S])) — dist(y, R(h;7(S]))) =
ly—q| — |y — ¢'| < 0. Now, using the fact that h;*(p') € R(hi'(S;)), from
(3.4) we deduce that

dist(z, S) < Lip(hs)ly — o'] < Lip(h)[hi™ () — b7 (p')
< Lip(h;)Lip(h{'l)Ix —p'| = q; dist(x,S'\ Q),

where a; = Lip(h;)Lip(h;"). If we choose a real number N > 2 such that
F > max{a; : i = 1,...,k}, we get (3.3). Observe that there exists a
constant # > 0 such that if T does not belong to U;??__IB?” then dist(z, 5"\
Q) > B. As a consequence, for § > 0 sufficiently small, if T € {z € Q :

dist(z,S'\ Q) < &}, then T € U;’;l B;-", so that, using (3.3),

N . N§ ¢
.—Z—dlst(l‘,sl \ Q) < Eﬁ = 5,

dist(z, 5) <

hence 7 € {z € Q : dist(z,S5) < £}. Finally, observing that $'NQ =

SNQ and N > 2, we have (3.1). In addition (3.1) allows to conclude that
S'N=5nQ. %

The function U which extends u on Q' is simply defined by U(z) = u(z)

ifz € Qand U(z) = u(h;(R(h] () ifz € (U \Q)NU; fori € {1,...,k}.

By construction we have U € L>®(2')N H(Q'\ S’) and this concludes the

proof. a

4. The Lower Inequality
In this section we prove that the I'-lower limit of the sequence F. j is

larger than or equal to the functional F on the whole L*°(Q) x L>=(£; [0, 1]).

Theorem 4.1. Let h = o(x:). Let (u,s) € L>°(Q) x L>=(£;[0,1]) and for
every € > 0 let (uc h, Se,n) € Va(Q2) x Va(R;[0,1]) be such that the sequence
{(ue,h,y Se,n)}e converges to (u,s) in L*(Q) x L*(;[0,1]). Then we have

(4.1) F(u,s) <lim iglffa,h(ug,h, Se,h)-
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Proof. We can suppose that the right hand-side of (4.1) is finite, otherwise
the result is trivial. Passing to a suitable subsequence (still denoted by
{(ue hySe,n)}e), Wwe can assume that

(4.2) lin(lJ Fen(te,h,8e,n) = lim i[l)lf}},h(ue,h, Se,h) < +o00.

Therefore, by the definition of F; ;, we have

(4.3) / [Vue sl dz < g Ve > 0,
Q €

(4.4) / Vsonl? do < g- Ve > 0.
Q

Let us split F p(uc,p, Se,n) as follows:

fe,h(us,h,-se,h) = fs(us,hyss,h)
1 1
o [ L a(lsen) —w(sen)] da

2co Q

4.5 )
(4.5) + /Q [P ((ue,h = 96)*) = (ue,n — 9)°] da

1
'——Ie,h + IIe,h~

L

= fs(ue,h,se,h) +

In view of Theorem 2.1(i), to show (4.1) it will be enough to prove that
lin}) Iep = liné II. , = 0. Using [36] Theorem 3.1.5, we have

Loal < —1; | Ipu(eten)) = wlsen)l do
— £ 3 [ nlsen) — (sl de

SES
(4.6)
< Z |1 lpa(w(se,n)) — wse,n)|lLeo(s)
SEbh
Ch?
< Z S| 1D?(w(se,0)) oo (5)-
SES,

Note that, as Vs, ; is constant on each S € Sy, we have || D*(w(se,1))|| L= (s)
= 2||Vseh ® Vsenllreo(s) = 2|Vsen|* on S. Therefore, using (4.4), we
deduce

h?.
el € 5 57 181 Vsl
S8,

;i h2 Ch2
_ o — > /|vs€h[ d»c_c /le€h|2d = o(1)

SESH

(4.7)
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as, by assumption, h = o(¢). We deduce that lin?3 I. » = 0. Hence, by (4.2),

1 . . .
we find that yP / w(se p) dz is uniformly bounded with respect to ¢; as a
€ Ja

consequence s = 1.
Let us prove that lin% II.» = 0. We have
&

Meal < [ pa((uen = 07) = (e = 92)7| do
+/n (teyp = 96)* = (e — 9)°] d = T3 + 112

Let us show that lim II(el,)l = 0. Using the linearity of the Lagrange inter-
e—0 7

polation operator we get

1 < [ o) = udal de+ [ (a2 = o2 do

(4.8) & a

+ 2/ lph(ue,hgs) - ue,hgel dz =: As,h + Bs,h + Ce,h-
Q

From [36] Theorem 3.1.5, the fact that u.; is piecewise linear, and (4.3)
we deduce that

Acn < D0 18] Ipa(d p) = uallz=(s)

SES,
(4.9) < Ch? 3 1S 1D (W2 WllL=(s) < CB* Y IS| [Vuenl®
S€ESh SeSy
2
= ChQ/ ]VuE,hIQ dz S Ch = 0(1),
Q2 Ke
using (2.2) we have
(4.10)
Ben < Y IS| lIpa(92) = g llpe=(s) < Ch > 1SHID(92)] L)
SES, SESs
SESy SES,
Ch
<Ch 3 151 IVelli=(s) < 7181 = o2),
SESH

In addition, setting ge,» = pa(g.) and noting that Ph(tenge) = Pr(Ue,nge,h)s
we have

Cen < 2/ Ipn(te hGe,h) — Ue,hGe,n| dz + 2/ |te hge,n — Ue,nge| dz
Q Q

=: 2(CL) + C2)-
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Then, using the fact that D?*(uc pgen) = Ve h @ Vgep + Ve n @ Vg p,
C . . .
the estimate |Vge n| < [[Vge|lpe(n) < g the Holder inequality, and (4.3),

we obtain

(4.11)

C) < STUS Ipn(uengen) — vengenllze=(s)
SESH

< OR? Z 1] 1D (we pge )l (s) < CR S 1S] Ve all Vgl
SGSh Ses,

Ch2
Z S| [Vues] = /|vu€,,| de
SeES,
C'h h?

(/ |Vue n)? dm)z <C = o(1).

4] N]-—-

ER

Finally, as the sequence {u¢ ,} is convergent in L%(f2), we deduce

2
c® < 3 lIpuge) = gellz=(s) / e s] de

SES,

(4.12) < Ch Z ”Vge”Lm(S)/ |ue,n| dz

SES)

/[u h[dx<——-~o(1)

From (4.8), (4.9), (4.10), (4.11), and (4.12), it follows that IE IIS,)l = 0.
Moreover, by the Holder inequality and (2.2) we have

HE?%S/ lg?—gzldw+2Llus,hl 19 — g da:s/ngZ—g?lda:

2( [ tuear dw) ( [ loe=op dm) — o(2),
Q Q

which proves that lin%) 1122,)z = 0 and concludes the proof. O
g ’

(4.13)

5. The Upper Inequality

Obviously the I'-upper limit of the sequence F; j is less than or equal
to the functional F on the set where F is not finite. Moreover the following
theorem states that this inequality holds also for every (u,s) such that
S, €ERand s=1.
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Theorem 5.1. Let h = o(k.). Let (u,s) € L°(2) x L>(Q;[0,1]); assume
that u € SBV(Q) and that S, € R. Then for every ¢ > 0 there exists
(e hySe,n) € Va(Q) x V(82 [0,1]) such that the sequence {(te,hySen)}e
converges to (u,s) in L*() x L*(©;[0,1]) and

(5.1) F(u,s) > limsup Fe n(te,h, Se,h)-
e—0

Proof. We can assume that the left-hand side of (5.1) is finite, otherwise
the result is trivial. Hence, we shall suppose s = 1 and u € SBV ()N
HY(Q\ S.). As S, € R, we remark that HP(S, \ Su) = 0.
Let us introduce some notation. We set
d(z) = dist(z, Su) Vz € Q,
’P:{xeSu:Su(sz in z},
T, = {SL € (Su)t NnQ: dlSt(ng(l),P) < t} Vvt > 0.
Note that, for any & € ((Su): \ Tt) N 2, the map IIg is single-valued for ¢
sufficiently small. For any A C §2 we define
A, =U{S eS8, :SNA#0},
AP =u{S e S,:SC A}

Let {b.}. be a sequence of positive real numbers converging to zero and
such that

be
2 im — = im — =
(52) N T

For any € > 0 let us define on {2 the function

0 ifz e (Su)b;v
se(z) = { oe(d(z)) if & € (Su)b.ter \ (Su)s.
1 if z € Q \ (Su)bs-i-e‘n'a

where o.(t) = sin(%ﬁ—ﬁ) is the solution of the problem
, 1
o (t) = SoV1- o2(t) oe(bes) =0.
Note that o.(be +em) =1, s € HY(Q;[0,1]), se — 1 in L*(Q;[0,1]), and
Lip(sc) = O(¢~!). Reasoning as in [13] Theorem 3.1 one has

) 1
lim
e—0 2¢,

Me(se) = H' 1 (Sw).-
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For any ¢ and any h we define on 2\ Tj, 4ents the functions

0 if 2 € (Su)b.+h,
st(z) =< ol(d(z)) if ¢ € [(Su)betentn \ (Su)be+r] \ Tootertn,
1 if £ € Q\ (Su)b.+emths

Where al(t) = sm(t —(befh )) for any t € [be + h,be + em + h]. Note that
sh € HY(Q\ Ty, +enth; [0 1]) and Lip(s?) = O(e~ 1) Using Mac-Shane’s Ex-
tension Theorem for Lipschitz continuous functions [56] Theorem 2.10.43,
s" can be extended on the whole 2 as a Lipschitz continuous function (still
denoted by s*) so that s® € H'(Q;[0,1]), and Lip(st) = O(e™!). In addi-
tion s — 1in L?(Q) as ¢ — 0. Reasoning again as in [13] Theorem 3.1
one has

(5.3) lim —— Mo(st) = H* 7 (Su).

e—0 2¢co

Finally, for any ¢ and any h define

Se,h = ph(s?).

This means that on {2 we have

» 0 if z € [(Su)be+h]h7
se,n() pr(st(@)) if 2 € [(Su)b.trentrln \ [(Su)s.+a]",
1 if € [\ (Su)be+entnl™

Observe that s. 4 — 1 in L*(Q) as € — 0 and that [(Su)s,+1])" 2 (Su)s.,
hence

(54) Q\ [(Su)b.+n]" S QN (Su)..

Let us prove that

(5.5) lim ———M w(sen) =H"(SL).

e—0 2¢g
In view of (5.3) it will be enough to show that

li}}}) |Me,h(se,n) — M(s&)| = 0.
We have

Men(sen) — Me(sh) < / | [senl? — [Vt de
Q

t i /Q (P (5e,)) = w(s8))] do = Loy + ey
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Let us prove that liné I.,» = 0. For simplicity of notation, set
£~

(Su)esn := [(Su)betemtnln \ [(Suls.+1]",
(Su)in = (Su)en \ [To,+emtr]ns
(S )5 R = (S )E R0 [Tb +é:7r+h]

As s, = s! on the complement of (S, )e,n and ||Vse,n | o (@) < [Vt L (o)
= 0(e™1), we have

Lp=c¢ / | [Vsenl? = [Vsh ] de
(Su e, h

= E/ |Vsen — ngl |Vsen+ ngld:c SC/ |Vsen — ngldr
(S )e: h (S

u)c,h

= C'/ leh(sg) - V.sf:[ dz = C(/ ]Vph(sf) - V.sg[ dz
(Su)e h ( “):,h
+/ ; |Vpn(st) — Vsh| dz) =: Acp + Be p.
(S“)c,h

Then, using well known properties of the Lagrange interpolation operator,
we obtain

eh SC Y 1SIIVDa(st) = Ve ()< Ch Y 1S] D%t ness)

SC(Su)L, SC(Su)e,n
Rk h
< C(E—2 +-)H ((Su)in) = 0('6‘),

because (D2s")(2) = (o) (d(2))|Vd(z)*+(o) (d(2))(D*d(x)) on (Su)} 1,
|Vd| = 1 almost everywhere, and [|D*d||pe((s,y1,) < C (see [60]). In
addition '

C.
B.a<C > ISHIVea(st) = Vslllie(s) < —HU((Su)zp) < Co,
SC(S.)?,

because H"((Sy)? ;) = O(¢?). This implies that lin% I, = 0.
3 & —r
Let us prove that lirr(l) II. , = 0. We have

o< o [ Ipno(sen)—loemldat o [ lo(sen) = wlsh)] do
4e S

S )s h
=: Cep+ De p-

ule,h
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Therefore, reasoning as in (4.6) and (4.7), using the estimate | Vs. p||p () <

9— we have that

€
Ch? Ch?
Cen < —— > ISIID*(w(sep))lzee(s) € — [Vsenl” de
€ SC(S ) € (Su)e,h
— uje,h
Ch?_ . Ch?
S — R (Suw)ep) = 5= = o(1).
This proves that lim._.q C = 0. Moreover
1
Dep <= Y S| lw(sen) = w(se)lz=(s)
T SC(Su)e,n
1 . h
<o D ISILip@)lsen = sellies)
Sg(Su)c,h
Ch ‘h, . Ch
<= > S| IVstllze(s) < — M ((Su)e,p) < —— = o(1).
Sg(su)c,h

Then lim. ¢ D, , = 0; as a consequence lim._o II. , = 0.
If n is the constant taking into account the quasi-locality of the Clement
operator (see Section 2), we define on 2 the functions

0 if:I:E(Su)%e__’_nh,
ul(z) = 4 (1= pl(@)u(z) if ¢ € (Suo.—nn \ (Su)se ypnr
u(z) ifzeQ\(Su)b,—nhs

where ¢* € CP(R™), 0 < ¢ <1, ¥ =1on (Su)ie ppp N, P=0on
2

Q\ (Su)b.—gh, and ||V Lo (qy < EC— The sequence {u”}. converges to u
in L?(2). For any ¢ and any h define
Ue,h = Th(u?)y

where r, denotes the Clement operator (see Section 2).
Note that, by the property of quasi-locality of rp and the definition of
Ue,p, we have

(5.6) ue p, = ri(u) on a set containing £\ (Su)s, -
Observe that u. , — v in L?(Q) as € — 0. Indeed

/ [ueph —ul® dz = / lra(u) — u|?dz + / Irn(uh) — u|?dz
Q Q\(Su)e. (Su)p. NN

< / Irn(u) — u|*dz + 2/ Ira(u?) — ulPde
Q (Su)ban

+ 2/ [ui‘ — ulzd:v =: I:-'h -+ Hs,h -+ IHs,h.
(Su)bch
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It is obvious that lim._oIII. , = 0, and by the properties of the Clement
operator we have lim._ I, = 0. In addition (see [37] Theorem 1)

II. 1, < 2/ Irn(u?) — ul|?dz < Chz/ |Vul|?dz
[(Su)oc]n [(Su)seln
< oh¥( VERPValde+ [ (e Vufe)
[(Su)seln [(Su)seln

< C(_b 3 + k%) = o(1).
Claim:

(5.7) lim |V (ra(u) —u)* dz = 0.
=0 Ja\(Su)se

Proof of the claim. Let us consider the set S,. If S, NI # @, applying
Lemma 3.1 to the bounded open set Q and to the closed set S, there exist
a bounded open set Q' DD Q, a closed set S’ C Q', a real number N > 2,
and a function U € L=®(Q) N H(Q'\ §'") such that S'NQ=5SNQ, U =u
on {) and

(58) Q\ (8)z1e 22\ (S,

for every ¢ sufficiently small.

Let € > 0 small enough; consider the restriction of U on the Lispchitz
set O, = {z € Q' : dist(z,0Q US") > % — h} and let us extend it on
the whole R™ to a function U, € H*(R™) with compact support (see [31]
Theorem IX.7) such that [|Ue|| . gy < ClIU|| L2

If 5, NON = @, then for every ¢ sufficiently small the set \ (Sy)s, has
a Lipschitz continuous boundary. In this case we consider the function u
on 2\ (S4)s,, and we extend it on the whole R to a function U, € H'(R")
having the previous properties.

Let {oc}. be a sequence of mollifiers defined by ¢.(z) = (%)"”g(fb—?—r),
and set V. = U, % p.. Then V; € C§°(R") for any € > 0.

Let us verify that

(5.9) lim IV(V. —u)]? dz =0,
OIS ln

(5.10) ( / ID*VL)E = 0(b7Y).
[Q\(Su)s]n

Observe that, in view of (5.8), if z € [2\ (Su)s. |» then 2 € [Q\(S’)%]h, so
that dist(z,S’) > 2b¢ — h, and hence B%(m) is contained in O.. Therefore



Relazation and T-convergence Results in BV and SBV 101

Ve = U*pe on [Q\ (Su)s, |n; moreover U € H*(Q\ Sy) so that V(U xp.) =
VU % g: on [\ (Su)b.]n. We then have

/ V(V, = w)? do
[Q\(Sﬂ )bc]h

= / |V(U. % 0.) = VU|? dz
[@\(Su)sc]n

—_:/ VU % 0. — VU|? dz — 0
[Q\(Su)bc]h

as € — 0. This proves (5.9).

Let 1,7 € {1,...,n}; using well known properties of the convolutions,
the Holder inequality, and Fubini-Tonelli’s Theorem, we have

/ |D;;Ve|?dz

[Q\(Su)bc]h

< / S / DU)IID; 0:(z — V)FID;e.(e — y)IF dy)da
[2\(Su)e.]n /R

<IDjedl |
[

o /Rn DU () /{Q\(S) IDjeu(e ) dody

<o) / DU () dy
([Q\(Su)bs]

h)be
N

—0(b7?) / DU Pdy=0(b72),
([2\(Su)beln) be

\(Su)s] /R" |DiUe(y)I*|Dje=(z — y)ldyde
ulbelh

which proves (5.10).
Then, using [37] Theorem 1, (5.10) and (5.9), we deduce

|V (ra(u) = u)llL2(a\(su)s,) < NV(ra(Ve) = Vo)llLzan(su)s.]n)
+ |Vra(u — Vo) = V(v = Vo)l L2qa\(sa)s.1n) S CRID*Ve|

h
+ CIV(Ve = w)llL2qavesasin = O(5) +o(1)-

L2([Q\(Su)b.]n)

As lim zh— = 0, the claim is proved. O

[ nd <
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In order to prove (5.1) we shall show that

(5.11) limsup/(sevh + Ke)|Vue p|? dz < / |Vul|? de,
e— Q Q
(5.12) lim / pa((uen — ge)?) dz = / lu — g|* dz.
e—0 Q Q
Let us prove (5.11). Using the definition of s, &, (5.4), and (5.6), we have
/ se.n|Vuep|? dz =/ Se.n|Vuen|* dz
Q O\[(Su)s, +4]"

< / Vo |? dz < / (Vo |? da
Q\[(Su)be+n]? Q\(Su)s,

= / |Vra(w))? dz.
Q\(Su)b:

Therefore, by (5.7) we deduce

limsup/ Se.n|Vuen|? do < limsup/ |Vra(u)|? dz :/ |Vul|? dz.
e—0  Jg e—0  JQ\(Su)s, Q

To conclude the proof of (5.11) we must show that

lim EE/ ]\7u£.:,h|2 dz = 0.
e—0 Q

Using the properties of the Clement operator (see [37] Theorem 1), the
definition of u”, and the fact that ||Vi!||pe () = O(b7!), we have

/{s/ |V7u5,h|2 dx = /\:5/ |V7'h(ug)|2 dz < C&:/ |Vu£’l2 dz
Q Q Q

= Cfcs(/ |Vu|? d
Q\(Su)bs—ﬂh

V(1 —Mul? dz)

(5.13)

o
((Su)bg—nh\(su)b_;_*_"h)nﬂ

< C(ke + %i) -0

as € — 0 (recall (5.2)). This concludes the proof of (5.11).
Let us prove (5.12). We have

l/Qph((us,h —9:)°) = (u—g)* dz] < /Q pr((ue,h = 92)*) = (ue,h — ge)*| da

+/ l(us,h - 95)2 - (’U, - g)2l dz =: Is,h + IIe,h~
Q
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Obviously, as ue , — u and g — ¢ in L*(Q) as ¢ — 0, we have liné I, = 0.

£ —+

Moreover, using the same notation as in (4.8) and below, we write
Iewn <Ach+Ben + QCS,Z + QC'S,Z.

As in (4.9), (4.10), (4.11), and (4.12), recalling that [, |Vucs|? de =
O(b:1) (see (5.13)), we find A.i = O(4), Bei = O(2), €} = 0(L7),
. € ’ eb;

and CEQ,Z = O(%). This concludes the proof of (5.12). Therefore, (5.1) is a
consequence of (5.5), (5.11), and (5.12). O

Observe that to show the I'-convergence of {F, r}. to F on the whole
L>(2) N SBV () one should have to prove a result of this type, which, to
our knowledge, is not known:

let w € SBV(Q)NL>(§) be such that F(u,1) < +oco. Then there exists
a sequence {(uc,s¢)}e in (L°(Q) N SBV(§2)) x L=(; [0, 1]) converging to
u in L%(Q) x L?(;][0,1]) such that for any ¢ the set S,, belongs to R and
lime—o F(ue, se) = F(u,1).

Indeed, assume that the previous result holds. By the L!-lower semi-
continuity of the I'-upper limit of the sequence {F. 1}., denoted by F", and
by the inequality F(uc,se) > F"(ue,se) proved in Theorem 5.1, it follows
that '

F'"(u,1) < limiélff"(ue,se) < limiglf}-(ue,ss) = F(u,1).

6. Convergence of Minimum Values and of Minimizers
The first result of this section is the following compactness theorem.
Theorem 6.1. Let h = o(k.). For any € > 0 let (ucp,3:,n) € Va(2) X
Vi(£2;10,1]) be a minimum point of F. . Then there exist a subsequence

{(ue hySe,n)}e and a function u € SBV(2) N L*°(Q) such that

(6.1) (e n,sen) — (u,1) in L*(Q) x L*(Q;[0,1]) as e — 0.

Proof. As (ucps,Se,r) is a minimizer of F. 4, using (2.2) we have

Fonlton, sen) < Fon(0,1) = [ﬂ pr(9?) dz < Cllpa(g?) | 1= o)

< Clg2|| 1= (o) < C.
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Then from / %(1 —s?4) dz < C it follows that se,p — 1in L*(9;[0,1))
)

as € — 0. Moreover we have the estimates

¢

B .

(6.2) / [Ve,n|? dz < <
Q

R / 'vse,h|2 dr <
KRe Q
Since (e k, Se,1) is a minimizer of F i, by a well known truncation argu-
ment we see that ||ue,p||Leo(q) < ||gellze(@) < C for any € > 0.

Using the same notation of (4.5), we have

1
fs,h(us,hy Se,h) = }—s(us,hy Ss,h) + % Is,h + IIs,h-
2¢co

By (6.2), reasoning as in the proof of Theorem 4.1 (see (4.7), (4.8), (4.9),
(4.10), (4.11), (4.12), and (4.13)) we have that 1in(1) I.n= lin%) Il , = 0 (we

remark that the equi-boundedness in L?(Q) of the sequence {uc s }e follows
from the fact that ||uep|Le(q) < C). Therefore

(63) Fs(us,hyss,h) <C Ve > 0.

As for any t € [0,1] we have t? < t and (1 —t)* < 1 —#?, we deduce that
(6.3) holds also if the functionals F are as in (2.1). Finally, assertion (6.1)
follows from Theorem 2.1 (see [12], [13]). O

Theorems 4.1 and 5.1 do not assert the I'-convergence of the sequence
{F:1}e to F on the whole SBV(Q) N L*°(Q). Nevertheless, we can prove
the following theorem concerning the convergence of the minimum values
and of the minimizers.

Theorem 6.2. Let h = o(x.). Let us assume that there exists at least
a minimizer @ of the functional F such that Sz € R. Then the minimum
values of F. j converge to the minimum value of F as ¢ — 0. Moreover any
family {(uc h,3z,1)}e Of absolute minimizers of {Fe n}e is relatively compact
in L2(Q) x L?*(9;0,1)), and each of its limit points minimizes F.

Proof. Let us prove first that

(6.4) lim(min F; ) = min F.

e—0

Observe that

(6.5) lixclliélf(minfe,h) > min F.
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Indeed, let (ue p,se,n) € Va(2) x Vi(2;[0,1]) be a minimizer of F¢ s; up
to subsequences, using Theorem 6.1 we can suppose that there exists a
function v € SBV(£2) N L*°(§) such that (6.1) holds and that the liminf in
the left hand-side of (6.5) is a limit.

Therefore, by Theorem 4.1 we get

lim i(I)lf(min Fer) = lin}) Feh(te,hySe,n) = F(u,1) > minF.

By hypothesis there exists a minimizer @ of F whose jump set Sy € R.
Then for every ¢ > 0 there exists (ve,n,0e,1) € Va(€2) x Va(£;]0,1]) such
that the sequence {(ve r,0e 1)} converges to (u,1) in L2(Q) x L2(;[0,1])
and (5.1) holds. Using (6.5) we then obtain that

min F =F(u,1) > limsup Fe 4(ve,h,0c,n)

e—0

> lim sup(min F. ;) > lim iglf(min Fen) > minF,

e—0 e

which proves (6.4).

Finally the fact that any family {(ue,n,Se,n)}e of absolute minimizers
of {F: n}e is relatively compact in L%(Q2) x L%(£; [0, 1]) follows immediately
from Theorem 6.1. If (u,s) is a limit point of such a sequence (observe that
we cannot conclude that S, € R), using Theorem 4.1 and (6.4) we have
that

F(u,s) < lim iglffs,h(us,h,seyh) = lir%(min Fer) =minF,
£ e

which implies that s = 1 and (u, 1) is a minimum point of F. O
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CHAPTER 6:

APPROXIMATION OF A FUNCTIONAL
DEPENDING ON JUMPS AND CORNERS

We consider the functional G, related to segmentation problems, defined by

b b
G(u):/ Jit)? dt+a#(5u)+ﬂ#(5a\5u)+/ lu — g|* dt,

where g € L?(a,b), u is a piecewise H? function, %, are the pointwise values of
the first and second derivatives of u, and #(Su) (resp. #(Sa \ Su.)) denotes the
number of the jump points of u (resp. corner points of u, i.e., jump points of
which are not jump points of u).

We prove that the functional G can be approximated, via De Giorgi’s T
convergence, by an equicoercive sequence of elliptic functionals which do not
depend on jumps or corners.

The results of this chapter are contained in [18].

Introduction

In this chapter we will show how to approximate, in a variational sense,
a functional recently proposed as a model of a segmentation problem in
dimension one.

Precisely, let ¢ € L*(a,b) be a given function, and let «, 3 be two real
numbers, with

(0.1) 0<B<a<2B

Let us consider the functional
b b
Gu)= [ i dt+adh(s.) + S\ S + [ =gl at,

where u varies over the space H?(a,b) of piecewise H? functions. Here 1, il
are the pointwise values of the first and second derivatives of u, and #(Su)
(resp. F(S: \ Su)) denotes the number of the jump points of u (resp. corner
points of u, i.e., jump points of & which are not jump points of ).

We prove that the functional G can be approximated, via De Giorgi’s
I'-convergence [48], [49], [42], by an equi-coercive sequence of elliptic func-
tionals which do not depend on jumps or corners. ‘
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The minimum problem
(0.2) inf{G(v) : v € H*(a,b)}

has been suggested in [24] and [84] as a variational approach to the seg-
mentation problem corresponding to the datum g. For a mathematical
treatment of problem (0.2) we refer to [39].

A segmentation problem consists in subdividing the interval ]a, [ into
appropriate subintervals, and in approximating, on each subinterval, the
function g by a smooth function. Such a problem arises when one has to
approximate a discontinuous datum g, eliminating the less relevant details
but preserving some properties of its behaviour; indeed, in this situation,
one can obtain a better approximation of g by means of piecewise smooth
functions rather than by globally smooth functions.

In the expression of the functional G the first term requires u to vary
smoothly on each connected component of ]a, b[\(Sy U Si), while the last
term forces u to be close to g. The other terms are introduced to avoid a
subdivision of ]a, b[ into too many parts.

In the one-dimensional case a segmentation problem arises in the per-
ception of speech, which requires segmenting time (the domain of the speech
signal) into intervals during which a single phoneme is being pronounced.
In dimension two, in the setting of Computer Vision, the function g, de-
fined on a plane domain (2, represents the grey level of an image given by
a camera, and the image segmentation problem consists in reconstructing
g by a function u which is smooth on appropriate regions with relatively
uniform light intensity.

A variational approach to a segmentation problem consists in minimiz-
ing a suitable energy functional, as pointed out by S. Geman and D. Geman
[59]. In the study of the image segmentation problem D. Mumford and J.
Shah [78], [77] developed this variational idea by suggesting the study of
the two-dimensional problem

(0.3) inf { |Vu|? de + HY (K) + / lu — g|* dz},
(v, K) " Jao\K Q\K

where K is a closed subset of Q, u € C}(Q\ K), and H* denotes the one
dimensional Hausdorff measure in R? [56]. The idea is to find a pair (u, K)
such that K is a set of curves decomposing {2 into appropriate regions,
and u is a smooth approximation of ¢ on each region. The set I will be
interpreted as the union of the lines giving the schematic description of the
1mage.
Problem (0.3) has been studied by many authors; we mention [44], [46],
[43], [72], [73] for some references about this subject. In particular, we point
out the n-dimensional setting proposed by E. De Giorgi [45] and developed
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in [46], [5], [6], which is based on a weak formulation of (0.3) by means of
a problem of the form

(0.4) inf F(u), where F(u)z/ |Vul|? dz+7‘in"1(5u)—l—/ lu—g|* dz.
u Q Q

Here u belongs to the space SBV(Q2) of the special bounded variation func-
tions [6], S, is the jump set of u in an approximate sense, and H™~! denotes
the (n — 1)-dimensional Hausdorff measure in R"™ [56].

L. Ambrosio and V.M. Tortorelli [12], [13] approximated F' by a se-
quence of elliptic functionals via I'-convergence. The approximating se-
quence {F.}. proposed in [13] reads as follows:

(0.5) Fo(u,s) = /(32 + )| Vul? dz + M. (s) —+—/ lu — g|?* dz,
Q Q2

where ¢ is the relaxation parameter, A, is a sequence of positive numbers
vanishing faster than ¢, v € C}(Q), s € C}(2,[0,1]), and

Meo(s) = /9[5]Vs}2+ %} da.

The main difficulties in the approximation are due to the term H"™1(S,),
representing the measure of an unknown hypersurface. The idea is to intro-
duce a new variable s, which controls the jump set S, in the following sense:
if {(ue,S¢)}e is a minimizing sequence such that lim. .o Fe(ue, s¢) < 400,
then, up to subsequences, {s.}. converges to s = 1 a.e. on , {u.}. con-
verges to some function u strongly in L'(I), and the level sets {s. < 1.}
approximate Sy, for a suitable sequence {7, }. of positive numbers converg-
ing to zero as ¢ — 0.

We point out that the choice of M. relies on a pioneering work by L.
Modica and S. Mortola [71], who suggested how to approximate functionals
of area type by means of elliptic functionals. The sequence { M.}, is indeed
the correct approximation of the term H™~1(S,), appearing in the limit F.

By the properties of I'-convergence, a sequence of minimizers of the
functionals F, converges, possibly passing to subsequences, to a minimum
point of F', as ¢ — 0. Therefore the approximation (0.5) can be used to
attack problem (0.4) from a numerical viewpoint [67], [84], [19] (see also
[17], [22] for the applications of I'-convergence to numerical analysis).

We are now in a position to explain our choice of the approximating
sequence {G.}. converging to G.

It has been proved in [39] that the minimization problem (0.2) admits
a solution. Precisely, the functional G is coercive and L*(a, b)-lower semi-
continuous on H?(a,b), provided inequalities (0.1) are satisfied. This fact
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suggests to consider the L'(a,b)-convergence as a good topology for an
approximation theorem of I'-convergence.

Following the approach of [12], [13], our first attempt was to consider
functionals of the form

b b
/ (s + )" |? dt + M(s) —i—/ lu — g|? dt.

It is not difficult to see that, with this definition, the variable s controls
the set S, U S, in the same sense explained above, and {M.}. should give
rise, in the limit, to a term of the form #(Su U Si). This is obviously
unsatisfactory and does not permit to treat the case a # 3. The main idea
is then to distinguish S, from S;, by introducing another control variable
o for the set S,. The approximating sequence {G.}. becomes then

b
G.(u,s,0) = / (s + A" 2dt + BM.(s) + (o — B)M.(0)

b b
T e / o Pt + / fu — gPdt,
a a

where u € H%(a,b), s,0 € H'(a,b),0<s<1,0<0 <1,and {Ac}e, {pe}e
are suitable sequences of positive numbers converging to zero, ase — 0 (see
(24)).

The term g, f o?|u'|? dt requires some comments (see the proof of
Lemma 3.2 (i)). Suppose that {(u,sc,0¢)} is a mlnlmlzmo sequence such
that lime_o Ge(ue, $¢,0:) < +0o0. A term of the form f o?u'|? dt would
guarantee that the level sets {o. < 7.} approximate Sy, for a suitable
sequence {7.}. of positive numbers converging to zero, but, as no integrals
involving u appear in G, thls term should vanish in the hmlt This is the
reason why we multiply f 2|u'|? dt by the factor p. which converges to
zero. However, with this choice, the level sets of 0. might not approximate
the set S,. The problem is solved by proving that, if {o.}. does not tend to
vanish near the points of S, as ¢ — 0, then the functions s. must approach
zero at least twice (see (3.20)) in a neighbourhood of S, under a suitable
choice of the rate of convergence of {u.}. (see (2.4)). At this stage, the
inequalities (0.1) between the coeflicients become crucial. Observe that this
remark shows that the two control functions s and ¢ are not completely
independent.

Then our main result reads as follows:

Theorem O0.1. The sequence {G.}. T-converges to G in L' as e —
0. Moreover, the functionals G. are equi-coercive with respect to the L-
topology.
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In view of well known properties of I'-convergence, from Theorem 0.1 it
follows that any family of absolute minimizers of G. is relatively compact
in L' and each of its limit points minimizes G.

We have considered the problem in dimension one. The extension of
our results to the n-dimensional case is a difficult open problem, and seems
to require some new results about the characterization of functions having
gradient in SBV(Q;R") by means of their one-dimensional sections (see
[20]).

Let us briefly describe the contents of the chapter.

In Section 1 we give some notation and we recall an interpolation in-
equality for the intermediate derivatives.

In Section 2 we introduce the problem.

In Section 3 we prove that the functional G is less than or equal to the
I'-lower limit of the sequence {G.}..

In Section 4 we prove that the functional G is greater than or equal to
the I-upper limit of the sequence {G.}..

Finally, in Section 5, we prove that the sequence {G. }. is equi-coercive
and this concludes the proof of Theorem 0.1.

1. Notations and Preliminaries

Let I =]a,b[ be a bounded open interval of R. Let u € L*(I); by
u' and u” we mean the first and second derivative of u in the sense of
distributions. By H!(I) (resp. H*(I)) we denote the Sobolev space of the
functions u € L2(I) such that u' is (resp. both u' and u'’ are) representable
by a square-integrable function. We denote by H*(I,[0,1]) the convex set
{s € HY(I) : s(t) € [0,1] Vt € I}. We point out an interpolation inequality
which will be useful in the sequel (see [2] Lemma 4.10).

Proposition 2.1. Let u € L*(I) be such that u" € L?(I). Then

u € H*(I) and
/lu'[2 dt <R (/ lul? dt —i—/|u"|2 dt),
1 I I

where R = 2 - 9? max{(b — a)%, (b — a)™%}.

We designate by H?(I) the space of the functions u € L*(I) such that
there exists a finite partition 29 = a < 1 < ... < Tp41 = b of I with the
property that u|j;, o[ is of class H*(z;,2i41), forany t = 0,...,n.

Let u € H*(I); as u is of class C! on each subinterval ]z;, ziy1],
the pointwise derivative ¢ is defined at all points of I except possibly at
Z1,...,Tn. Note that & = u' almost everywhere on ]z;,z;41[, and that v’
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is a measure on I including some concentrated masses at the points z;.
Note also that 1 is the absolutely continuous part of u’ with respect to the
Lebesgue measure.

Since # is absolutely continuous on ]z;,ziy1[, there exist the left and
right limits ¢~ (z;) and ¥ (z;) of 4 at each point z; of the partition, and
they are finite. Moreover, the pointwise derivative i of u is defined a.e. on
I. The function i coincides with u" a.e. on each ]z;, z;41[, hence @ € L*(I).

Let u € H%(I); we denote by S, the jump set of u, i.e,,

Su={zeI:u(z) #ut(a)},

where v~ (z) and ut(2) are the left and right limits of u at the point z. We
denote by S; the jump set of u, i.e.,

Sy ={zel:iu (z)#u ()}

2. Position of the Problem

Let ¢ € L*(I) be a given function, and let «,# be two real numbers,
with

(2.1) 0<pB<a<28

Let G : H*(I) — [0, +oo[ be the functional defined by
Glu, D)= [ il di+ as(S) + B\ S+ [ ju— ol at,
I I

where # is the counting measure on R. Observe that (S; \ Su) is the set of
the corner points of u, i.e., the jump points of % which are not jump points
of u.

The minimum problem

(2.2) inf{G(u,I):u € H*(I)}

admits a solution, provided conditions (2.1) are satisfied (see [39]). The
direct method of the Calculus of Variations for problem (2.2) is applied
with respect to the topology of L}(I) on H*(I). In addition G(:,I) is not
coercive with respect to the topology of L%(I).

Observe that, for any u € H?(I), the functional G can be rewritten as

G, I) = / [ dt + (o — B)HE(Su) + BFE(Su U Sa) + / = gl? dt.
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As explained in the introduction, our aim is to approximate G, in the sense
of T'-convergence, by a sequence of elliptic functionals. To do this, we need
some preparations.

We denote by X (I) the convex subset of (Ll(I)):" defined by H?*(I) x
H(I,[0,1]) x H*(I,[0,1]).

Let G : (L'(I))* — [0, 4o0] be the map defined by

_ G, I) ifueH*)(I), s=1, 0=1,
G(u,s,0,1) = {—{—oo elsewhere on (L!(I))3.

For any € > 0 and any function s € H1(I,[0,1]), let us define

Moo D) = [1et + 2

Note that, using Young’s inequality, it follows that

(2.3) M(s,I) 2 /1(1 _ 8)[s'| dt.

Let {Ac}e, {pe}e be two sequences of positive numbers converging to zero
such that

(2.4) lim A =0, lim °

=0.
e—0 g3 e—0 [1,

We are now in a position to introduce the approximating sequence {G.}..
For any ¢ > 0, let

Ge(u,s,0,1) = /(52 + X )|u" Pdt + M (s, I) + (o — B)M (o, I)
I

+p€/02|u't2dt+/|u—g]2dt
I I

if (u,s,0) € X(I), and set Ge(u,s,0,I) = +ooif (u,s,0) € (L} (I))*\ X(I).
We denote by G_ and G respectively the I'-lower limit and the [-upper
limit of the sequence {G.}. with respect to the topology of (L')3. For the
main properties of the I'-convergence we refer to Chapter 1, Section 4.
Observe that G_(u, s,0,-), if considered as a set function, is increasing,
ie.,

(2.5) L CL, = G_(u,s,0,I1) L G_(u,s,0,1),
and superadditive (see [42] Prop. 16.12), i.e.,

(26) [NL=0=G_(u,s,0,[1 UL)>G_(u,s,0,11)+G_(u,s,0,I3).
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3. Proof of the Lower Inequality

We begin with a Lemma whose original proof can be found in [12]. For
the sake of completeness we give here a simpler proof due to G. Dal Maso.

Lemma 3.1. Let {¢x}s be a sequence of functions of class H'(I) such
that ¢, — 0 a.e. on I as h — +oo, and suppose that

(3.1) Sllllp/ |} | dt < +oo0.
1 .

Then, there exists a subsequence, still denoted by {¢n}n, with the following
property: for any § > 0, we can find a finite set F' C I such that, if K is a
compact set contained in I \ F, then K C {t € I : |¢n(t)| < 6} for h large
enough.

Proof. For any h € N, let v, be the finite positive Radon measure on
I defined by vi(B) = [z |#}] dt for every Borel subset B of I. By (3.1),
it follows that there exist a finite positive Radon measure v on I and a
subsequence (still denoted by {v}s) such that v, — v weakly in the sense
of measures as h — 4o00. As for every r > 0 the set {t € I : v({t}) > r} is
finite, the set {t € I : v({t}) > 0} = U,en{t € T : v({t}) > £} is at most
countable, and we denote it by {t;}:cn. Hence, there exist a sequence {c;};
of real numbers and a Radon measure p on I such that

+o0 +o0
(3.2) v=p+ Zci(st" Zci < +oo0, and p({t})=0 Vtel,
i=1

=1
where §;, denotes the Dirac measure at the point ¢;. Let us fix 6 > 0. We
define the set F' as

F={tel:v({t}) 2 5}

[SVRIRS0)

as just noticed, we have that F' is a finite set.

To prove the assertion we shall argue by contradiction. Let us suppose
that there exist a compact set K C I\ F and a sequence {tx}s of points
of K such that |¢x(tr)] > 6 for any h € N. By the compactness of I,
the sequence {t;}; has a subsequence which converges to a point ¢ € K.
Let us still denote by {ts}s this subsequence. Since ¢t € I\ F, it follows
that v({#}) < £. Using (3.2) and the hypothesis that ¢, — 0 a.e. on I as
h — +oo, we can find, in each neighbourhood of £, points t1,t2 € I such
that

t1 <t <to, v({t1}) = v({t2}) =0, hliglooqsh(tl):o.
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450,

In addition, since v({}) = v(N,en)t— 5+ T+ [) = limp—yoo v(JE-
we can fix t1,t2 € I with the further property that

S
3=

v([t1,t2]) < v({t}) + g < 0.

Since v({t1}) = v({t2}) = 0 and v4 — v as h — 400, it follows that (see
[23] Th.2.1)

(3.3) hEToo vi([t1,t2]) = v([t1,t2]) < 6.

Let hy € N be such that ¢, € ]t1,%2[ for any h > ho. By the definition of
total variation, we have that, for any h > hy,

(3.4)
va([trsta]) = / 164 di

> |on(t1) — da(tn)l + [n(tn) — dr(t2)] = [n(t1) — dnltn)l-

Since, by contradiction, |¢(tr)| > 6 for any h € N, and limp .4 o0 ¢n(t1) =
0, from (3.4) it follows that

Lm vp([ts,t2]) > 1;9}5;5 |dn(t1) — dn(tn)| = 6,

h—+oco

which contradicts (3.3), and concludes the proof of the Lemma. O
The main result of this section is the following theorem.

Theorem 3.1. For any triple of functions (u,s,o) € (L*(I))* we have
(3.5) G(u,s,0,I) < G_(u,s,0,1I).
Moreover, if G_(u,s,0,I) < +oo, then u € H*(I), s=1, and o = 1.

Proof. Let (u,s,0) € (L*(I))?; we can assume that G_(u,s,0,I) < +oo,
otherwise (3.5) is trivial. By the definition of G_ there exist a sequence
{en}nr of positive numbers converging to zero as h — 400 and a sequence
{(un,sh,0n)}n of elements of (L(I))?, such that (us,ss,on) — (u,s,0) in
(LY(I))® and
lim Ge,(up,sh,0n,I)=G_(u,s,0,I),
h—+co

(sh,on) — (s,0) a.e. onlash — 4oo.
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If s (or o) is not identically 1, then, by the Fatou’s Lemma,

G (u,s,0,1) 2> hmmf

h—++c0 “h

/(sh —1)? dt+hm1nf—-—/(ah —1)% dt >
I

(/(3—1)2 dt—l—/(a—l)2 dt) lim — = +o0,

h—+oo 4ep
which contradicts the assumption that G_(u, s, o, I) is finite. Hence, we can
assume that s = 1 and 0 = 1, otherwise both G(u,s,o,I) and G_(u,s,0,I)
are equal to +oo.

The idea of the proof of Theorem 3.1 is to test inequality (3.5) sepa-
rately near the regular points of u, near the jump points of «, and near the
jump points of @. More prec1sely, the proof of the inequality G < G_ is
based on the following lemma.

Lemma 3.2. Let u € H*(I), and let w = (u,1,1). Let x € I and | € R
be such that | =1,z +I[C I and ]z —1,z+1[N(S.USy) C {z}. The following
assertions hold:

(i) if z € Sy then

G-(w,Je—o,z+0]) 2  forany €0l
(ii) if z € S3 \ Sy then
G_(w,]Jz—p,z+0) =28 for any p €]0,1[;

(iii) if z ¢ S, U Sy then

z+o z+e
G_(w,]z—p,z+0[) = / lu'"|? dt—{—/ lu—g|? dt for any o €0, 1.

T—e -e

Proof of Lemma 3.2. Let us prove (i). As ¢ € S,, we have that u ¢
HY(z — o,z + o) for any p €]0,{[. Let us fix ¢ €]0,![; we can suppose that
G_(w,]z — 9,2 + o) < +oo, otherwise the result is trivial. Recalling the
definition of G_ we have to prove that liminf._.q G.(we,]z — 0,2 + 0]) = a
for every sequence {w. = (us,sc,0¢)}e of elements of (L!(z — g,z + 0))°
converging to w in (L'(z — g,z + ¢))* such that liminf. .o Ge(we, ]z — 0,7 +
o[) < 4+oo. Let {w.}. be such a sequence. Let {en}sr be a sequence of
positive numbers converging to zero as h — 400 such that

(3.6) h_lirfoo Ge,(wh,]z—0,2+0]) = ligriiglf Ge(we,]z—0,2+0[) = H < 400,
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and
(sn,on) — (1,1) a.e. on |z — g,z + ¢,

where wj, = w,, € X(z — p,z + p), for any h.
Then (see [12], [13])

3.7 li inf t) =0.
( ) h—EEoo te]:cl—I:,,aH-g[Sh( )

Indeed, if by contradiction imsupy,_, 1 o infigjz— g,z 4 $r(t) > 0, then there
exist a positive constant ¢ and a subsequence (still denoted by {sx}n) such
that infie)z—g o4 S1(t) = ¢ for any k. Therefore we get

z+@ ) 1 z+o H
(3.8) / lup]® dt < —2-/ st|ub]? dt < —-
r—g c r—p c

Moreover, as g € L*(I) and [, [up — g|* dt < H, it follows that

(3.9) sup/ lup|? dt < 2sup(/ lup — g|* dt + / lg]? dt) < +o0,
h JI h I I

which implies, using (3.8) and Proposition 2.1, that the sequence {us}p
is bounded in H2(z — g,z + o). Whence u € H*(z — 0,2 + 0), and this
contradicts the assumption of (1).

Observe that for any r €]0, o[ we have u ¢ H'(2 — r,z + ), hence, as

in (3.7),

1 li inf  sp(t)=0  Vrel0,ol
(3.10) h—lf—}—loote]a:i-r:”,z+r[bh() r €0, o]

It follows that, for any h € N, there exists a point zj of ]z — 2,2z 4+ [ such
that

(3.11) hEI_I*_lOOSh(:L‘h) = 0.

In addition, as s, — 1 a.e. on |z — g,z + g[, for any h € N there exist points
yn, zn, of ]z — o,z + o[ such that y, < z) < 2, and

(3,12) hEr—{l:loo Sh(yh) = hEToo Sh(zh) = 1.

Repeating the arguments of [13], we have

z+o Th Zh
/ (1 — s1)|shl dtZ/ (1 — sn)|sh] dt+/ (1 —sp)|sh] dt >
T Yn

-2 Th
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sp(yn) sh(za)
/ (1-1) dt+/ (1 —1t) dt = sp(yn) — su(zn) + snzn)—

w(zn) sn(zn)

su(zh) — su(yn)? — su(zn)? B su(zp)? — Sh(fl?h)z.
2 2

L

Then, passing to the limit as A — 400 and using (3.11) and (3.12) we get

z+p
(3.13) liminf/ (1 —sp)|sy| dt > 1.

h—+4o0 z—p

Now, we must consider the sequence {0} }s. Here, we cannot exclude the
case in which limsupy, | oo infyg)z—p 24 91 (t) > 0, since the functions oy
do not tend, in general, to vanish in a neighbourhood of the points of S, as
h — +oo. We shall distinguish two cases. If imp— 4 oo infygje—rzqr On(t) =
0 for any r €]0, o], reasoning as before, we conclude that

z+o
(3.14) liminf/ (1 —op)|on’| dt > 1.

h—+oo z—0p

Using (2.3), from (3.13) and (3.14) it follows that

z+e
lim Gey(on,Jo — 0,0+ ) > Blimint [ (1= s)lsh] db+

h~—+4o00 z—p

z+o
(= Blimint [ O —owlowldi2f+(a=p)=a

Hence, recalling the definition of G_, we get (i).
We still have to consider the most delicate case, i.e., when

Joo €]0, o] such that limsup inf or(t) > 0.
h—+too tEJT—g0,z+00(

Up to a subsequence, we can suppose that there exists a constant d > 0
such that

(3.15) on(t) >d Vte€lz— g0,z + 0o, VhEN.
We shall prove that

(3.16) limsup Ge, (wh,]z — 00,2 + 00]) > 28,
h—+o0

which, in view of (2.1), (3.6), and the fact that G_ is increasing as a set
function, will conclude the proof of (i).
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To simplify the notation, let us denote gy by the symbol p. To prove
(3.16) it is enough to show that

1
(3.17) limsupGe,(wn,]z — 0,z + 0[) 2 B(2—40)  for any 6 €0, S[.

h—+4co

Let us fix 6 €]0, 1[; suppose that there exist a subsequence of {s}s, still
denoted by {si}r, and a real number 0 < r < p such that, for any h € N,
we can find zp, qn, Pr,Yn, zn points of |z — g,z + o[ with

(318) B () = lim_sa(u) = lim_sa(en) = 1,
(3.19) T—o<pp<ap<ypr<qn<zp<z+op,
(3.20) Th,qn € {t € [z — 1,z + 7] sp(t) <6}

Then, for every h € N, using (2.3) and (3.19), we have

geh(whv]m -0, T+ QD

> ﬂ/ (enls h|2 ( ) ) dt 2 ,3/ (1-— qh)lbhl dt

Th Yn
> 5[/ (1—s)lsh] dt+ [ (1= sn)lsh] dt
y4

h Th

+ /qh(l — sp)|sy| dt + /Zh(l — sp)|sy|dt]

h qh

sh(pn) sh(yn)
Zﬂ[/ (1 —t)dt +/ (1 —1t)dt

r(zr) n(zh)

sp(yn) sn(zn)
+/ (1 —1t)dt +/ (1 —t)dt].

r(qn) snign)

Passing to the limit as h — +oco and using (3.18) and (3.20), we get

hkl}_lwgfh(wh’]w—ga$+9[)>ﬁ[ (1-6)—2]=pB(2-40),
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that gives (3.17) and concludes the proof of (i).

Hence the problem reduces to find a subsequence {sp}4, a real number
0 < r < p, and, for any h € N, points Th,qn,Ph,Yh, 24 of ]z — @,z + o[ such
that conditions (3.18), (3.19), and (3.20) hold.

To simplify the notation, let

[u] = [ut(z) —u™(@)l, M =max(ji"(2)],[d" (<))

Let us show that for any n > 0 there exist a subsequence of {up}n, still
denoted by {us}s, and a real number 0 < r < &, where C is the positive

constant C' = @ +2n4 M, such that the following conditions are satisfied:

(3.21) u(e —r) —u (@) <n,  |u(z+r)—uT(@)] <,
(3.22) iz —r) —a (@) <n,  |i(z+r) =i ()] <,

(3.23) sup |un(z — 1) —u(z —r)| <7, sup |up(z +71) —u(z +r)| < n,
h h

(3.24) sup luh(z —7) — (e —r)| <1, S]ilzp [uh(z + 1) —w(z + 1) <.

Inequalities (3.21) and (3.22) are immediate; in fact, since by hypothesis
(S, U Si)Njz — o,z + o[= {2}, v and 4 are absolutely continuous on the
intervals [z — g, 2] and ],z + o].

Let us prove (3.23) and (3.24). Define ¢ = (1 — s4)%; as sp €
HY(I,[0,1]) and s, — 1 a.e. on I as h — 400, the function ¢y is of
class H'(I) for any h € N, and ¢, — 0 a.e. on I as b — +oco. In addition,
using (2.3),

(3.25) sup/ |6} | dt = sup/?(l — sp)|sh| dt < 2sup M., (sn,I) < 2H.
roJr v Jr 3

Applying Lemma 3.1 there exists a subsequence, still denoted by {Sh}h,
with the following property: for any § > 0 we can find a finite set F' C I such
that, if I{ is a compact set contained in I\ F, then K C {t € I : |¢n(t)| < 6}
for any h sufficiently large.

Let 6 > 0 be fixed and let A be an open set relatively compact in I'\ F.
Then, for every h sufficiently large we have that

sa(t)>1-V6  ViteA,
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hence

H
3.26 / ul]? dt < ———.
(3.26) AI bl 1= 5)

This, together with (3.9) and Proposition 2.1, gives that the sequence {up}n
is bounded in H?(A). Possibly passing to a subsequence, we deduce that
up — u in C1(A) as h — +oo.

As F is a finite set, and since (3.26) holds for any open set A relatively
compact in I'\ F, it follows that we can fix 7 < % in such a way that (3.23)
and (3.24) are satisfied, for a suitable subsequence {u}s.

Let n = Lgl; let {(un,sh,on)}r and r be such that conditions (3.21)-
(3.24) are satisfied for this value of 7. Note that, from (3.10), it follows
that there exists a further subsequence of {sp}s, still denoted by {sx}s,
such that the set {t €]z —r,z +r[: sx(t) < 6} is non empty, for any h € N.

Since s, — 1 a.e. on I as h — 400, we can find points ps,zp
such that p, €] — g,z — 7], 21 €lz + r,z + 9[, and Imp—j o0 Sa(pPr) =
Hmp—syoo sn(zn) = 1.

Define

zp = inf{t €le—r,a+r[: sa(t) <0}, qn =sup{t €lz—r,z+r[: su(t) <0}

Then, forany h € N, weget 2 —p < pp < zp < qn < zp < z+p, and zp, g
satisfy (3.20). It remains to construct the sequence {ys}s satisfying (3.18)
and (3.19). We begin by proving that the following further condition on
{zh}n, {qn}r holds (recall that d is the constant defined in (3.15)):

dz 2
(3.27) gn —zp > Epe, forany h €N, where F = [1]

The estimate (3.27) of the distance between zp, and ¢, together with (2.4)
and the inequality f](sh —1)? < 4Hey, will be used to construct the se-
quence {yp }». '

In order to prove (3.27) we shall estimate from below the quantity
lurn(gn) — un(zp)|. Let h € N be fixed.

If 2z, = 2z —r and ¢, = = + r, then, using (3.21) and (3.23), we get
immediately that

[u]

(3.28) Jun(an) — un(@n)] = [un(e +7) = un(e = )] > [u] — 49 = = > 0.
If 2 —r < zp orif ¢ < 2+ r, we need some more calculations to estimate
the differences |up(zp) — up(z — )| or |up(z +r) — un(qn)|.

Let

my =ap — (z —71), np = (z+71)— qn-
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If mjp > 0 (resp. np > 0), since 55 > 6 on the set lt = r,zn[Ulgn, z + 7|
(recall the definition of z, and ¢x), we have

Th H z+r H
(3.29) /I‘r luf|? dt < 77 (resp. /q luf|? dt < 72

h
If my > 0, using the first inequality in (3.29) we have

Th H
(330) b (e —P <ma [ i< T

r—r

for any t € [z — r,z3].
Analogously, if ny > 0, using the second inequality in (3.29), we have

npH

(3:31) jui @ + 1) — wh (D < T

for any t € [qn,z + 1]
Then, using the triangle inequality for the L? norm, we get

Ih Th
o) —uate ~ Dl =1 [y atl < mad([ il ant <

mid([ ==l @ ([ e -r—ite -l @i+

zTh
mh%(/ li(z — r)|? dt)?.

Hence, from (3.30), (3.24), and (3.22) we obtain

~|=

(3.32) lup(zrn) — un(z — )] < ma( +2n+ |t (z)]) £ mpC,

recalling that C' = —@—1—277—1—]\/[. Here we use also the fact that m;, < 2r <1.
Analogously, using (3.31), (3.24), and (3.22) we get

H :
(3.33) lup(z + 1) —un(gn)l < nh(g +2n + [T (2)]) < niC.
From the inequality

lup(z +7) —up(z — )]
< Jun(z +7) — un(gn)| + lun(gn) — un(zn)l + lun(zr) = ur(z — )l



Relazation and T-convergence Results in BV and SBYV 123

using (3.28), (3.32) and (3.33), it follows that

(3.34) junlgn) = wn(ea)] = 2 = (i + )

Recalling that n = [lg-l and r < %, in any case we get

]

(mh + nh)C’ <2rC <2n = %—
Hence, from (3.34), it follows that

[y]

(3.35) lur(gr) — un(zn)| > 1 for every h € N.

Then, using (3.15) and (3.35), we deduce that

qh qdh d2#= qn
H > u., / op?ul P dt > dPpe, / [uf |2 dt > — I/ uh di|* =
Th h Th

T qp — T

(12/»‘6;; 2 dZ[u]Z Hey
up(gn) — up(zp)l™ 2 .
Sy ) — o) 2 S e

Hence
d?[u]?
qgh — Th 2 16H Hep = E/Jeh for any h € N,

and (3.27) is proven.
We are now in a position to find the sequence {yx}» satisfying (3.18)

and (3.19). For any h € N, let yj € [zp + 752, qp — L2772] be such that

gh — Th _Qh“‘l‘h]}

sh(yn) = max{sp(t) : t € [zp + 1 , qh 1

Then {yn}» satisfies (3.19). Let us prove that limp_—4o sp(yr) = 1. We
argue by contradiction, and suppose that liminfs_. 4o sp(yr) < 1. Then
there exist a subsequence (still denoted by {sx(yx)}r) and a constant vy < 1
such that sy(yn) < v for any h € N. Then, by the definition of y;, we have
that sp(t) < v for any t € [zp + L2752 ¢ — L2772 ] and any h € N. We
deduce that

qn — =k 132 12 B
HZliminf/ Cn =1 s 0D sl —2)

h—+o0 i ;"’"h 4dey, h—4o0 Eh

Finally, from (3.27) we obtain

—1)2
H> =1 pfimint Hen
8 h—+4oo €p
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which contradicts the assumption on {u., }» (see (2.4)). Hence we have
proved that there exist a subsequence {s;}s and a real number 0 <r < ¢
such that, for any h € N, we can find z4, g, Ph, Yh, 23 points of |z — o,z + o
satisfying (3.18), (3.19), and (3.20), and this concludes the proof of (i).

Let us prove (ii). As z € S; \ Su, we have that v € H'(z — ¢,z + 0) \
H2(z — o,z + 0) for any o €]0,![. Then, repeating the arguments of the
beginning of the proof of (i), it follows that (3.7) and (3 13) hold. Finally
(i1) follows from (2.3).

Let us prove (iii). We closely follow [12], [13]. By assumption, u €
H*(z — o,z + o) for any p €]0,![. Let ¢ €]0,I[. We can suppose that
G_(w,]z — 0,2 + o) < +oo, otherwise the result is trivial. We have to
prove that

z+o z+o
liminf G.(we, |z — 0,2 + 0[) > / lu"|? dt + / lu — g|? dt,
e=0 z—¢ z—e

for every sequence {we = (uc, s, 0¢ )}« of elements of (L' (z—g,z+¢))* con-
verging to w in (L!(z — g,z + 0))® as ¢ — 0, such that liminfe_.o Ge(we, ]z —
0,7 + o[) < +co. Let {w.}. be such a sequence. Let {cx}sr be a sequence
of positive numbers converging to zero as h — +c0, such that

lim G.,(wh,]z — 0,z + o) = liminf Gc(we, ]z — 0,7 + o[) < +o0,
h—4o00 e—0

there exist the limits
z+o0
lim st|upl? dt, hrn / lup — g|? dt,

h—+o0 T—p

and
(un,sh,0n) > w ae onlz—o,z+ 0
where wy, = w,, € X(z — 0,2 + 0), for any h € N. Since

I+g 9 2 I+9 92
lim G.,(wh,lz—0,2+0[) > lim s:lull® dt+ lim up—ql” dt,
i G (onleme.ato) 2 m [l tim [ gl d

and, by the Fatou’s Lemma f e lu—g|® dt < llmh_,+oof gluh gl|? dt,
to prove the assertion it will be enough to show that

z+o z+p
(3.36) hlil}l / s3|uh|? dt _>_/ [u"|? dt.

—too Jz—p —-e
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Let ¢ = (1 — sp)?; using the same arguments as in the proof of (i) (see
(3.25)), there exists a subsequence, still denoted by {sn}r, with the follow-
ing property: for any fixed § > 0 we can find a finite set F' C I such that
if A is an open set relatively compact in I \ F', then

z+o
(3.37) / 2l dt > / S2ull? dt > (1— \/5)2/ Wl dt,
T A A

-e
for any h sufficiently large. Let A be an open set relatively compact in
Je—o,z+o[\F. Aslimp—4 fHQ 2|ull|?dt < 400, from (3.37), (3.9), and

Proposition 2.1, it follows that the sequence {un} is bounded in H*(A4),
hence it converges to u weakly in H*(A). Using the weak lower semiconti-
nuity of the L? norm, from (3.37) we deduce that

(3.38)
z+p
lim st|uf|?® dt > liminf/ stufPdt > (1-— \/5)2/ lu"|?
h—4o0 z—0p h—+o0 A A

Then (3.36) follows from (3.38), taking the limit first as A |z — o, z+ o[\ F,
and then as § \, 0. This concludes the proof of the Lemma. O

Conclusion of the Proof of Theorem 3.1. Let u € L*(I) such that
G_(w,I) < 400, where w = (u,1,1). Firstly, we shall prove that u € H*(I).
Let F={z¢€l:u¢ H*(2 — p,z+ o) for any p > 0} = Fy U Fy, where
Fi={zecl:u¢ H(z—p,a+p)foranyp>0}and F ={z cl:u¢€
HY(z — 0,2+ 0)\ H*(z — 0,2 + o) for any p > 0 sufficiently small}. Let us
prove that F is finite. In fact, however we choose p elements in F} and ¢
elements in Fy, using the fact that G_ is increasing and superadditive as a
set function (see (2.5) and (2.6)), and conditions (i) and (ii) of Lemma 3.2,
we obtain that

ap+ ¢ < G_(w,I) < +oo.

By definition, for any z € I\ F' there exists o > 0 such that u € H*(z —
0,z + 0). It follows that u € HZ (I'\ F). Let us show that u € H*(I'\ F).
As I\ F is a finite union of disjoint intervals, it will be enough to prove
that u is of class H? on each interval. Let |z1, z2[ be one of these intervals;
by assumption u € H?(z1 + 8,22 — §) for any 0 < 6§ < #25%. Therefore,
using condition (iii) of Lemma 3.2 and the fact that G_ i s 1nc1ea,sing, we
have that

.’22—'5 1?2—(5

400> G_(w,I) > G_(w,]z1+6,22—6[) > / lu"|? dt+/ lu—g|? dt,
z1+6 z1+6

for any 0 < § < 22571, This implies that fzz [u”|? dt + f |ul? dt < +oo.

Using Ploposmon 1, we get u € H*(z1,22). Therefore u € H*(I \ F),
and, in particular, u € H*(I).
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Let {t1,...,tn} = Su, {tat1,--stntm} = Sa \ Su, and, for any 7 =
1,...,n +m, let I, =]t; — a;,t; + ai[ be pairwise disjoint open intervals
contained in I. Let Ji,...,Jutm+1 be the open intervals composing I \
U™ T;. Then, using (2.5), (2.6), and Lemma 3.2, we get

n+m n+m-1

G_(w,1)> > G-(w, L)+ }: G—(w, Ji) >

n+m+1
aFE(Sy) + BF(Sa \ Su) + Z /J.(lu"li’ + lu—g|*) dt.

Then, letting a; \, 0 for any ¢ = 1,...,n + m, we deduce that

G (w0, 1) > adh(Su) + BE(Si \ Su) + /I i d + /I - g[? dt,

that gives (3.5), and concludes the proof of the Theorem. ]

4. Proof of the Upper Inequality

Let I =]a,b[C R be a bounded open interval. In this section we shall
prove that G(u,s,0,I) > G4 (u,s,0,I) for every (u,s,o) € (L*(I))*. To do
this, we shall assume that u € H?(I), s = 1, and ¢ = 1, since G(u, s, 0, )
is finite only on this class of functions.

Theorem 4.1. For any u € H?*(I), there exists a sequence {(ue, S¢,0¢)}«
of elements of X(I) converging to w = (u,1,1) in (L'(I))® as ¢ — 0 such
that

(4.1) lim sup G (ue, 8¢, 06, I) < G(w, I).

e—0

Proof. We closely follow the ideas of [12], [13]. For any A C R and any
r € Rt we define

(A), = {z € R:dist(z,4) < r}.

Let u € H*(I), let Sy = {t1,...,tn}, and let Sy \ Su = {tnt1,---,tntm}-
We choose three sequences of positive numbers converging to zero {7},
{ac}e, and {b.}., as follows: 5. = o(s%), a. = —2¢clogn., and b. interme-
diate between € and (\;)3 (recall that, from (2.4), lim._¢ 2 = 0).
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For any € small enough, let us define

0 iftE(SuUSﬁ)bs,
olt) = 1— ™5 iftelti—(ac+be),ti—be), i=1,...,n+m,
: 1 e ift€fti+be,titac+b),i=1,...,n+m,

1-— Ne ifte I\ (Su U SQ)QC_H,;,
0 iffG(Su)bc,
t—t;+be i
ou(t) = 1— e if t €)t; — (ae +be),ti —be], 1=1,...,n,
: 1— e 5 ifteftitbe,titac+b),i=1,...,n,
1—n. if t € I\ (Su)a.+b.-

The function s. in the set (Sy U Si)a,+b. \ (Su U Su)p, is the solution
of a Cauchy problem (see [13] Th. 3.1). For instance, on the interval
[t; + be, i + ac + bc], the function s. solves the problem

_1-y(®)

y'(t) PR y(ti +b:) =0, y(ti +be +a:) =1-n;,

]

L

for every ¢ = 1,...,n + m. The same holds for o. on the set (Sy)a.+5, \
(Su)s. -

It is easy to see that s.,o. € H(I,[0,1]) for any ¢ small enough, and
s¢ —+1,0. — 1in L*(I) as e — 0.

Let us define

{ ft) e (S,

ue(t) = ge(t) ift e (Sa\Sus.,

u(t) ifte I\ (Su USa)s, -

Here, for any t; € Sy (resp. t; € Sy), the function f. (resp. ¢.) is the
unique cubic joining the point w(¢; — b.) with the point u(t; + b.), and
having the same derivative as u at the points (¢; £ b.). To be precise, if
t; € Sy, denoting by A = u(t; +b.) +u(ti —be), B = u(ti +b.) — u(t; — be),
C = '&(ti + bs) + ”[L(t,' — bg), D = '&(ti -+ bs) — d(ti — bs), we have

. 1 3, D e 0 3 LA be
fs(t)“(4632(1—45533)“"“) +4b€(t_t’) (3 4beB)(t"t’)+2‘4D’

for any t € (Su)s,. If ti € Si\ Su, then g., defined on (S; \ Su)s,, has
exactly the same expression of f..
Clearly u. € H2(I). In addition we can prove that

(4.2) [fel =007, [f/1=00:7")  on(Suh,

(4.3) l9:0 = O(1), lgll=0(:7")  on (Si\ Sule.-
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In fact, since |t—%;| < be on (Sy)s, , one can verify that |f.(t)| < |C|+5|D]+
-312!—1?—[ = O(b. 1), for any t € (Sy)s,. Moreover, if t € (S3)s,, there exists a
constant ¢ > 0 such that.|B| < cb., hence |g-] = O(1) on (S \ Su)s.. This
proves the first equalities in (4.2) and in (4.3). The relations concerning
f! and g” can be proved analogously. In addition, since f. and g. are
uniformly bounded on (S, )s, and (Si \ Su)s. respectively, we get easily

lim| /( ORI [ lem-ur a=o

e—0 .
u u/be

This implies that ue — u in L%(I) as ¢ — 0, hence lim. o [} [ue — g|* dt =

J; lu—gl? dt.
Then to prove (4.1), it is enough to show that

(4.4) lim sup M. (s¢, I) < F£(S, U Sa),
e—0

(4.5) lim sup M, (o<, ) < F#(Su),
e—0

(4.6) lim ,uefaszlu'sl2 dt =0,
e—0 I

and

(4.7) lim /(sﬁ + ) |ul|? dt = / i) dt.

e=0Jr I

Let us prove (4.4). Recall that n = #£(S,) and n +m = ##(S, U S;). For
any ¢ sufficiently small, by the definition of s. it follows that

(n +m)(b—a)n? + be(n +m)

Melse, 1) < 4¢ 2

n+m ti+a.+b 2
1 & € e — 1 &
+> 2 [ e e =1y

ii‘l’bs 46

(n+m)(b—a)y?  be(n+m)
= + .
4e 2e

n+m 1 ti+ac+be bedti—t
T
t

i=1 i+be
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Asn. = o(sz) be = o(¢) and % bac_:;? R R P | -z,
we get
lim sup M. (s¢,I) < n +m,

e—0

that is (4.4).
Using similar arguments, one can prove.(4.5).
Let us show that
(4.8) lim [ o.2|ul|? dt :/]11|2 dt.
=01 I '

We have, using obvious notation,

/agzlu'EP dt :/ o |ul|? dt
I I\(Su)bs

_ / o2l di + / o2lgl? dt
I\(S.US3)e, (Sa\Su)se

=1, +1II..
Since . — 1 in LZ(I) as € — 0, and 0 < 0. < 1, it follows that
(4.9) lim I, = / [u'|? dt = /W dt.
e—0 I\(S.,US3) I

Moreover, using (4.3), we get II. = O(b.), and this, together with (4.9),
concludes the proof of (4.8). Then (4.6) follows immediately from (4.8).
Finally, let us show (4.7). By the definitions of s. and u., we have

ST+ ? dt = S+ dt+ . u|? dt =
£ & & £
I I\(5.US4)s, (5.US4)s,

III. +1V..
Since s — 1in L*(I) as e — 0, and 0 < s, < 1, we get
(4.10) lim II1. =/ lu"|2 dt = / lu[2 dt.
e—0 I\(S,USy) I

In addition,
Ive = As/ |f217 dt + AE/ g2 |* dt = TV + TV ®.
(Su)ve (Si\Su)s.
Using (4.2) and (4.3), we deduce that

Ae
(4.11) IVE(”_—_O(F), v® = (—).

c
=

As A, = o(b.?), passing to the limit as ¢ — 0 in (4.11), we obtain that
lim._.o IV. = 0. This, together with (4.10), gives (4.7), and concludes the
proof of the theorem. O
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5. Equi-coerciveness

Let I C R be a bounded open interval. In this section we prove the
following result.

Theorem 5.1. Let ¢ €]0,+o00o[, and let {(uc,sc,0¢)}e be a sequence of
elements of X (I) such that

(5.1) Ge(Ue,86,06,1) < c for any € > 0.

Then there exist a subsequence {(ue, , s, ,0¢, ) }» and a function u € H*(I)
such that (s, , 0., ) — (1,1) in (L*(I))?, and u, — u in LP(I) as h — o0,
for any p € [1,2].

Proof. By the definition of the functionals G., from (5.1) it follows imme-
diately that (s.,0.) — (1,1) in (L*(I))* as € — 0.

Reasoning as in the proof of Lemma 3.2, for any h € N let ¢, =
(1—s.,)?, where {e, } 1 is a suitable sequence of positive numbers converging
to zero such that s, — 1 a.e. on I as h — +oo. Then @}, is of class H'(I)
for any h, ¢, — 0 a.e. on I as h — +oo, and sup,, [;|¢}| dt < +oo (see
(3.25)).

Then, by Lemma 3.1, there exists a subsequence of {s., }1, still denoted
by {se, }r, with the following property: for any 6 > 0 we can find a finite
set F C I such that, if 4 is a relatively compact open set contained in I'\ F,
then for every t € A we have s., (t) > 1 — /6 for any h. Therefore

Jur f)?fsz" s

which implies that the sequence {u., }» is bounded in H%(4) (see (3.9)).

Let us consider an increasing sequence {Ar}r of open sets relatively
compact in I\ F with I\ F' = Uy Aj. For every k, we can find a subsequence,
still denoted by {u., }», and a function u € H?(Ay), such that u., — u
uniformly on Ay as h — +o00.

Using a diagonal argument, we construct a subsequence {u., }5 and a
function u € HZ (I \ F) such that u., — u pointwise on I'\ F' as h — +co.

Since {u., }1 is uniformly bounded in L*(I) (see (3.9)), and it converges
to u pointwise on I\ F, from the Fatou’s Lemma we get u € L*(I). In
addition, for every subset J of I we get

[l a3 [ e,
J J
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which implies that the sequence {|u.,|P}x is equi-integrable on I for every
p € [1,2]. Therefore, by the dominated convergence theorem we conclude
that the sequence {u., }» converges to u in L?(I), for every p € [1,2[.
Finally, since the sequence {(uc,,Se,,0e, )} converges to w = (u,1,1)
in (L}(I))® as h — +oo, from the hypothesis (5.1) and the definition of
I-lower limit, it follows that G_(w,I) < +oo. Using Theorem 3.1, we
conclude that u € H?(I) and the proof is complete. O
As the sequence {G.}. [-converges to the functional G, using the equi-

coerciveness proved in Theorem 5.1 we get the following theorem (see [49]
Cor.2.4, [42] Cor.7.20).

Theorem 5.2. Let I be a bounded open interval C R. For any ¢ > 0 let
us consider a minimizer w. = (ue, S, 0.) of the functional G.(-, I).

Then, there exist a sequence {e}r of positive numbers converging to
zero and a minimum point u of the functional G such that {u., }, converges
to u strongly in L*(I).
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