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Introduction

In recent years the development of experimental techniques suitable for the
investigation of the behaviour of biomolecules in vitro, techniques such as
Nuclear Magnetic Resonance, Circular Dichroism, Infrared Spectroscopy and
Small Angle Scattering among the others, helped to understand the proper-
ties of biomolecules of vital importance for the higher evolved organisms.

Processes such the activation of transcription of the genetic code, and
other regulatory mechanisms performed within the cell, need very specific
and accurate description of the three-dimensional structures of the involved
protein complexes, in order to assess the basic physicochemical mechanisms
implicated in them.

Although important advances have been made in the field of structure
prediction from the sequence, mainly using the tools of bioinformatics, still
we miss a first principle theoretical understanding of the key mechanisms
that form the basis for the folding process of even the simplest proteins, like
the small single-domain globular ones, because of the sheer complexity of
the problem — the huge number of degrees of freedom associated with the
protein atoms and the surrounding water molecules, as well as the history
dependence implicit in an evolutionary process.

On the other hand a great variety of effective potentials for folding exist,
which exploit a huge number of empirical parameters, especially when they
prove to be successful: it may be difficult to extract the common physical
principles underlying the different approaches. This problem can be more
easily addressed by means of simple coarse-grained models, but the question
is then whether the modeling is realistic enough in order to tackle the issue
at hand. Throughout this work we will pursue a qualitative description
of several properties of small globular proteins. Our aim is to show that
a unified framework, based on a coarse-grained modeling of the common
physicochemical properties of globular proteins can be used to understand
the mechanism of binding and folding adopted throughout the evolution by
the intrinsically unstructured proteins (IUPs).

IUPs are a family of proteins recently discovered, deeply related to the
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regulatory mechanisms of the living cells [1, 2, 3, 4, 5, 6, 7]: they are biolog-
ical molecules which under physiological conditions do not exhibit extensive
structural order in solution, but often display local and limited residual struc-
ture [1].

A key feature of IUPs is their high conformational flexibility, that allows
them to interact with different molecular partners and adopt relatively rigid
conformations in the presence of natural ligands, thus undergoing a loss of
conformational entropy upon binding. Furthermore, the conformation in the
bound state is determined not so much by the amino acid sequence but by
the structure of the interacting partner.

On the other hand, it is well known that the sequence of amino acids
comprising a protein encodes its native state structure. It has been recently
shown [8; 9] that considerations of symmetry and geometry determine the
limited menu of folded conformations that a protein can choose from for its
native state structure. Such studies provide compelling support for the idea
that protein native state structures reside in a physical state of matter in
which the free energy landscape is sculpted by considerations of geometry
and symmetry.

According to this framework, protein structures belong to a novel phase
of matter associated with the marginally compact phase of short tubes with
a thickness specially self-tuned to be comparable to the range of attractive
interactions promoting the compaction.

This phase is a finite size effect and exists only for relatively short tubes:
the proximity to a phase transition provides a simple explanation for the flex-
ibility of native state structures. The marginally compact phase is stabilized
by the interplay of the hydrophobic effect and hydrogen bond formation [8, 9].
The structures that one finds in it are modular in construction being made
up of two principal building blocks, helices and planar sheets: the degener-
acy is greatly reduced so that the number of the resulting energy minima is
relatively small.

We will show that the interactions between the IUP and its partner play
a role analogous to a design process, in which the geometric properties of
the pattern of interactions result in the IUP adopting one of the best-fit
structures from the menu predetermined at the homopolymeric level by ge-
ometrical considerations [8, 9]. In order to emphasize this point, we did not
introduce any sequence heterogeneity in our modeling of IUPs except for the
interaction with the target geometry, which may be tuned in order to fit a
target fold.

It is important to note that for a TUP, the sequence heterogeneity, and
more specifically the presence of polar residues, leads to no intrinsic ordering.
The case considered here is much simpler — we have just one kind of amino
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acid, the ground state in the absence of any target geometry is ordered,
namely a single helix. This results in a slightly more complex free energy
landscape with several other competitive local minima. The target fold we
wish to observe upon binding to a specific partner is chosen from among
those minima.

Monte Carlo simulations have been performed within a cubic box of side
50.0 A on a homopolymeric chain of 24 amino acids. The partner of the IUP
is represented in a simple coarse-grained framework through three carefully
chosen contact points lying on the inner part of the box bottom face which
each has a special affinity to a specific amino acid of the [UP, mimicking a
molecular recognition mechanism in the crudest way.

Also, the bottom wall serves to capture the steric hindrance of the lig-
and /substrate partner and the associated loss of conformational entropy in-
duced upon the IUP.

We present the results of simulations run for different instances of binding
patterns, chosen to get the IUP folded onto a three stranded (-sheet, a zinc-
finger-like conformation, a two-helix bundle and a —a— 3 kind of secondary
structure respectively, through different levels of contact bias between the
polymer and the substrate.

After this brief outline on the topics of disordered proteins, we are left
with the areweness that the relationship of the three-dimensional structure
of a protein to the function needs then a reassessment [10]. The behaviour of
disordered proteins proves that there is no need, for a biomolecule, to have a
permanently folded structure to perform a specific task. On the contrary, the
structure adopted may vary from case to case, depending on the molecular
binding partner.

Nonetheless, it is evident that ITUPs get structured before they accomplish
their job: knowing the structure will still be a key point for the understand-
ing of the related function, once we know the particular partners involved.
Keeping in mind this revised version of the “structure-function paradigm”,
we will present a simple coarse-grained model that tries to infer near equi-
librium functional motions of proteins, from the knowledge of their native
state.

Effective beta carbon atoms are taken into account besides C“s for all
residues but glycines in the coarse-graining procedure, without leading to an
increase in the degrees of freedom (3Gaussian Model). Normalized covariance
matrix and deformation along slowest modes with collective character are
analyzed, pointing out anti-correlations between functionally relevant sites
for the proteins under study.

In particular we underline the functional motions of an extended tunnel-
cavity system running inside the protein matrix, which provide a pathway
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for small ligands binding with the iron in the heme group.

We give a rough estimate of the order of magnitude of the relaxation times
of the slowest two overdamped modes and compare results with previous
studies on proteins.

The plan of this thesis is as follows: in the next chapter (chapter 1)
we review the main properties of globular proteins, in particular focusing
on the state of the art of protein folding and design. Then we describe in
detail the simple model for folding adopted throughout the present work
(chapter 2). Chapter 3 shows the further modeling introduced to handle the
specific subject of disordered proteins, with full explanation of all parameters
used and with some possible interpretation of the results obtained.

In the last chapter of this work (chapter 4) we present a study on the
near equilibrium dynamics of two small proteins in the family of truncated
hemoglobins, developed under the framework of a Gaussian network ap-
proach.



Chapter 1

Proteins and Disorder

Proteins are heteropolymer chain molecules, built by the assembly of the
twenty amino acids occurring in nature through the chemically stable peptide
bond: the number of amino acids that build a protein can vary from few tens
to several hundreds. Proteins belong to the group of biopolymers, which
includes also nucleic acids (DNA, RNA) and polysaccharides: while the latter
have evolved in order to perform a particular task — mainly information and
energy storage respectively — proteins can potentially cover an unlimited
number of different functions in the living world.

In fact they control and affect most biological functions in living organ-
isms: apart from catalyzing almost all biochemical reactions, they are re-
sponsible for the transport and store of a variety of elements ranging from
macromolecules to electrons, for the transmission of information between
specific cells and organs, for the passage of molecules across cell membranes,
for the regulation of the activity of the immune system in complex organism
and for the genetic expression.

Protein activity depends on the complex relationship between the se-
quence of amino acids forming the polypeptide chain and the associated
three-dimensional structure, that is stable against slight variations of envi-
ronmental conditions.

When the protein is synthesized it is not yet biologically active, since
it has to fold itself into a unique and specific three-dimensional structure.
The stability of the polymeric chain in this functional conformation, known
as the native state of the protein, is guaranteed by the interplay of several
concurring factors: hydrogen bonds and disulphide bridges, hydrophobic and
steric effects, electrostatics.

Under normal physiological conditions (i.e. aqueous solvent, near neutral
pH, temperature between 290 and 310 Kelvin) a small protein folds sponta-
neously in its native state, as it was showed by Anfinsen [11] in the late *50s.

9
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In addition Anfinsen’s experiment proved that the sequence entirely deter-
mined the stable spatial structure of the protein, which do not rely on any
special biological machinery, except for large proteins and their assemblies,
since they need the help of special proteins, called chaperonins, in order to
fold. This holds for globular proteins, while disordered ones behave quite
differently, as we will see in more detail the following sections.

The pioneering work of Anfinsen naturally led to the formulation of the
following questions: how is a specific three-dimensional structure encoded in
the amino acidic sequence and which are the sequences compatible with a
given native state.

These two simple but extremely important issues are known respectively
as the protein folding problem and the inverse protein folding problem, also
known as protein design: they are just different formulations of the same
issue, that is the relationship between amino acid sequences and native states.
Although several advances have been made in these fields in the last four
decades of study, the physical principles underlying the folding process are
currently matter of discussion.

The understanding of such principles would be of great importance for
medicine, since it would greatly enhance the design of novel proteins with
the desired biological function, the design of new and more effective drugs,
the prediction of the function of a protein from the knowledge of the bare
sequence, which is by far easier to get rather than solving the whole three-
dimensional structure. The database of sequences [12] is already huge, hun-
dred times larger than the database of solved three-dimensional structures [13]:
the number of known sequences approximately doubles every year, since they
are obtained by biochemical methods - either directly by the protein itself or
indirectly by the corresponding gene on DNA.

On the other hand determining the structure requires a long process:
most of them are in fact obtained through x-ray crystallography, while the
smaller ones via nuclear magnetic resonance (NMR). In general the latter
gives structures at a lower resolution than the first one, which can provide
native structures at a resolution lower than 2.0 A.

In order to study a structure with x-ray the crystallization of the protein
is needed, which is usually difficult to achieve. Moreover, proteins packed in
a crystal may show a slightly different structure than the one that might be
observed in solution, due to crystal packing.

In principle one could explore proteins behaviour by numerically inte-
grating the equation of motion for each degree of freedom, using interaction
energies obtained experimentally and including all the details of the inter-
action between the protein and the surrounding solvent: big clusters can
currently simulate several tens of nanoseconds of real time classical dynam-



1.1 Protein structure 11

ics with time steps appropriate to describe harmonic motions of covalently
bonded atoms.

This time scale is still too small in comparison to the typical time required
for a protein to fold, which starts from the range of milliseconds up to several
seconds for bigger proteins. Furthermore, the use of force fields by classical
molecular dynamics is an approximation to the real quantum behaviour of
biomolecules.

Another difficulty, which affects mostly coarse-grained models of biomolec-
ular processes, is related to the existence of a huge number of local energy
minima, even in the neighborhood of the native state. The latter is believed
to be the absolute minimum of the free energy landscape, still the great
number of locally stable states prevents the simulation to sample rapidly the
conformational space.

These limitations encountered when facing the protein folding problem,
usually lead to replace atomistic models with coarse-grained ones, where
amino acids are represented in simplified ways, averaging over suitably chosen
degrees of freedom.

In the remainder of the present chapter we wish to present an overview of
the experimental results and the theoretical interpretation which lie at the
basis of the work presented within this thesis.

1.1 Protein structure

Proteins are macromolecules composed of up to several thousands atoms
without apparent symmetries or regularities. Describing such large objects
at the atomic level is a quite discouraging task: since 1958, when the first
protein structure has been determined by x-ray crystallography, a number
of recurrent structures and motifs have been discovered. In some cases the
description of protein properties by these motifs is helpful and simplifies
concepts. Nonetheless, depending on the type of study to be performed, a
resolution at the atomic level may be necessary.

At the lowest level of this hierarchy, there are the 20 amino acids, whose
covalent structure is the base for the structure of proteins. Amino acids are
bound together to form a linear chain, through the peptide bond, which con-
stitutes the backbone of the structure. Though the polymeric chain is flexible
and can adopt, in principle, many different conformations, the interactions
among the different regions of the chain are such that only one conformation
— called native — will be adopted by the protein under physiological condi-
tions (temperature, pressure, pH). The order of amino acids placed along
the chain is of fundamental importance, since changing it may dramatically
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change the interactions, destabilizing the native conformation.

The sequence — the order according to which the amino acids are placed
along the protein backbone — is the first level of complexity. It can be in fact
represented by a one-dimensional string, where each letter is associated to
one of the twenty types of amino acids (see table 1.1).

The primary structure apparently does not contain much information,
but one has to associate the structure of every amino acid to each letter in
the sequence. By doing so a polymeric chain is obtained, which can assume
in principle many different conformations, compatible with steric constraints.
One needs to know amino acids structures and how they bind together to form
the peptide chain in order to understand which conformations are allowed
and which are not.

The a carbon atom is bonded to the aminic and carboxylic groups (NHy
and COOH, respectively), the chemical group R — usually called side chain
— and a hydrogen atom (fig. 1.1).

Figure 1.1: Schematic chemical structure of an amino-acid.

Apart from proline, whose carbon atom in the carboxylic group is bonded
to the side chain itself, the other amino acids differ only in the nature of the
side chain’s group. The number of atoms forming the side chain can vary
from one — in glycine is just one hydrogen atom — to a maximum of eighteen
for tryptophan and arginine.

Side chains are formed by different combination of carbon and hydrogen
atoms, as well as oxygen and nitrogen for some amino acids. In cysteine and
methionine a sulfur atom is present: it is responsible for the stabilization of
three-dimensional structures through a disulfide bridge.

While the residue part of an amino acid characterizes the chemical proper-
ties of the molecule, the aminic and the carboxylic groups have an important
role to connect amino acids in a polymeric chain.
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Residue Frequency
alanine ALA A 8.3
arginine ARG R 5.7
asparagine ASN N 4.4
aspartic acid  ASP D 5.3
cysteine cYs C 1.7
glutamine GLN Q 4.0
glutamic acid GLU E 6.2
glycine GLY G 7.2
histidine HIS H 2.2
isoleucine ILE 1 5.2
leucine LEU L 9.0
lysine LYS K 5.7
methionine MET M 2.4
phenylalanine PHE F 3.9
proline PRO P 5.1
serine SER S 6.9
threonine THR T 5.8
tryptophan TRP W 1.3
tyrosine TYR Y 3.2
valine VAL V 6.6

Table 1.1: List of the twenty amino acids with their frequency in proteins,
taken from [14]: amino acids can be identified by a three-letter or a one-letter
code, shown in the second and third column respectively.
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When two amino acids are hydrolyzed, the aminic group and the car-
boxylic group of different amino acids form a covalent bond, shown in fig. 1.2.
After an amino acid has lost a water molecule it is called residue.

123 .52
| Peptide bond

trans-Peptide group

Figure 1.2: Schematic chemical structure of a peptide bond between two
residues.

The bond between the carbon and the nitrogen is called peptide bond
and, since it is a partial double-bond, rotations along this axis are forbidden
(except rotations of 180°).

On the other hand, rotations are allowed along the single bonds between
C® and N and between the two carbon atoms, as far as steric clashes do
not occur: rotations along these axes are represented by two torsional angles
called ¢ and 1, respectively (fig. 1.3). Since bonds between nearest neigh-
bouring atoms are not aligned, these rotations cause a conformational change
in the polypeptide chain.

The dihedral angles ¢ and v can assume all the values within the range
[—7, 7]: some values are in fact more likely than others. In particular, some
values are never allowed due to steric reasons, since they would correspond
to an overlap of atoms of the side-chain with atoms of the backbone. The
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permitted values of ¢ and v were first determined by Ramachandran and col-
laborators [15], using hard-sphere models of the atoms and fixed geometries
of the bonds. The permitted values of ¢ and ¢ are usually indicated on a two-
dimensional map of the [¢1)| plane, known as a Ramachandran plot 1.4(a).
Since the size of the residue strongly depends on the amino acid type, Ra-
machandran plots are amino acid specific. In particular, glycine, which has
the smallest residue, has a Ramachandran plot with several allowed regions,
indicating a flexibility uncommon to other amino acids.

(psi)

Figure 1.3: Protein flexibility is due to the presence of single bonds along
the main chain between the nitrogen and « carbon atoms (¢) and between
the two carbon atoms (1)).

The allowed regions of the Ramachandran plots are not equally likely in
real proteins. A statistical analysis of protein structures shows that some re-
gions of the [¢1)] plane are more populated than others. The most populated
region corresponds to angles around (-60°,50°). Several consecutive amino
acids with such values of the dihedral angles take part to a helical structure
that is called a-helix and it is a motif quite recurrent in proteins. Each turn
in the helix is formed on average by 3.6 amino acids, the ¢-th amino acid
being in spatial contact with the (i+3)-th and with (i+4)-th one.

Another recurring secondary structure is the extended conformation, or (3-
strand, that is associated to the angles (-130°, 120°). Extended conformations
are frequently found associated together to form [-sheets. It is possible to
distinguish between parallel and anti-parallel sheets. In the first case if the
i-th and j-th amino acids are in contact then (i+1)-th and (j+1)-th will be
still in contact. In the second case it will be true for the (i41)-th and (j-1)-th
ones.
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Secondary structures are assembled together to form more complex struc-
tures by turns and loops. In the first case, an amino acid, usually glycine
since it is the smallest residue, makes a tight turn which changes completely
the direction of the backbone. In loops the change of direction is more grad-
ual, being distributed over several amino acids. Finally, random coils are
protein regions without a definite shape.

Such an assembly of secondary motifs is called tertiary structure. This is
the functional three-dimensional configuration of the protein, whose stability
and compactness is due to different types of interactions between amino acids
far apart on the chain, briefly listed at the beginning of this chapter.

Secondary structures contain information on the conformation of the pro-
tein and can be represented by a one-dimensional string, using the following
convention: H for a a-helix, S for a bend or loop, T for a turn and R for a
random coil [16, 17]. Secondary structures are generally highlighted by the
cartoon scheme of visualization (fig. 1.4(b)).

+psi . Left
handed
alpha-helix

0
-psi Right handed
alpha-helix
-180 Y
-180 - phi 0 + phi 180

(a) Ramachandran plot of a tripeptide,
showing sterically forbidden areas for all
amino acids except glycine (white), and
allowed ones (colour). The use of van der
Waals radii smaller by 0.1 A allows more
conformations and lets a new distinct area
available.

(b) Cartoon representation of an ATP

binding domain (pdb id: 1B0U) with
secondary structures highlighted: helices,
strands (arrows) and random coils and
loops (thin tubes).
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1.2 Solving protein structures

One of the most important challenges in understanding biological reactions
occurring in higher organisms is the determination of the structure of the
molecules participating to the reaction. This is especially true for proteins,
whose structure has been selected by evolution for a specific biological task.
In some cases, it is just the geometrical shape that contains important infor-
mation on the function, especially when a cavity in the structure is comple-
mentary to the geometrical shape of another macromolecule ligand (docking).
In other cases the geometrical shape can give only generic indications where
the binding site is located, and only detailed electrostatic calculations can
solve the docking problem.

While the structure is important to understand the function of the pro-
tein, its experimental determination is difficult and expensive. By contrast,
it is very easy to determine the sequence of amino acids by experimental mea-
surements (sequencing) or by translating the associated gene. The number
of sequences that have been determined up to now is almost hundred times
larger than the number of structures, and the number of sequences that will
be acquired per day grows rapidly. It follows that one of the most important
research field in bioinformatics and biophysics is the prediction of the struc-
ture of already known sequences. In principle this problem can be solved by
following the dynamics of the protein embedded in the solvent (which has a
fundamental role in driving the folding of the protein) on a computer and
finding the lowest free energy conformation. However, the complexity of the
atomic structure of a protein and the time scale on which the folding occurs,
make this approach unfeasible.

A possible way out to overcome this kind of problems might be to use
simplified descriptions of proteins in which amino acids interactions and steric
constraints are described in an effective way. These models have received a
lot of interest in the community of physicists. However, because of their lack
of atomic details and their approximate description of interactions, simplified
models are still far to be successfully applied in structure prediction.

Among the methods more reliable for structure prediction, there are those
based on homology modeling. Homology modeling deals with the problem
to detect an homology, i.e. an evolutionary relationship, between the protein
under study and proteins of known structure. Usually homology is detected
by aligning and comparing the sequence of unknown structure (or target
sequence) with the sequences of proteins of known structure.

Such structures can be used as templates to make a model, to be care-
fully refined. A similar procedure has many advantages: first, it can be
automated, thus allowing many researchers to access model structures for
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proteins, whose structure has not yet experimentally determined. Then an
experimental determination could be not necessary, especially when a high
homology has been detected. Finally, it can be used on a large number of
known protein sequences: it has been estimated that it is currently possible
to model with useful accuracy significant part of approximately one third of
all known protein sequences. Furthermore, the number of proteins of known
structures is destined to increase.

The basic idea of homology modeling is that similar sequences are likely
to have similar structures: similarity above 25% can be enough to produce
a good model of the unknown structure. Usually, structures are much more
conserved than sequences by the evolution: this implies that two related
sequences can share similar structures [18]. However, deciding on the base
of sequence analysis if two structures are similar, is still a difficult task.

For these reasons and for the importance that the structure has for molec-
ular biologists, structure data have been collected in a unique big database,
called Protein Data Bank (PDB [13]). Since 1975, when PDB has been built
up, a lot of structures of macromolecules — mainly proteins — have been col-
lected: at the moment there are more than thirty thousands structures and
structure models: most of the protein structure data were obtained by X-ray
crystallography (27693) and by NMR, (4741), while only few are obtained by
theoretical modeling. Structures deposited on PDB constitute an important
source for molecular biologists and for people working in the expanding fields
of bioinformatics and biophysics.

1.3 Folding and design

In the higher organisms proteins are synthesized in the cytoplasm through
a complex mechanism of biosynthesis. Once the sequence is synthesized the
protein is not yet active. To become biological active it has to fold into a
specific three-dimensional conformation, i.e. the native state. In principle,
there are a lot of different conformations that the sequence can adopt.

Assuming three different coarse-grained conformations per amino acid,
the number of possible distinct conformations, for a protein with 100 amino
acid, which is a relatively small one, should be 3% ~ 1048,

Some of these conformations are not accessible, due to steric reasons.
Nevertheless, even taking into account this observation, the number of phys-
ical conformations is enormous and the protein should need a folding time
larger than the age of the universe, in order to find the native state by a
random exploration. This is known as the Levinthal paradox, from the name
of the first one that arose it [19].
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How can protein find their native conformation among a huge number of
conformations? A first attempt to answer this question came from Anfinsen
and coworkers [11]. Before their studies, the nature of the sequence-structure
relationship was completely unknown and it was still an open question if the
structure was written in the sequence as a physicochemical message or if
there was a biological machinery similar to enzymes regulating biosynthesis.

Anfinsen’s studies on the re-folding of ribonuclease showed clearly that
protein sequences under physiological conditions can automatically find their
native state by minimizing the free energy. In other words, proteins with their
solvent constitute a physical system that is thermodynamically stable only
in their native conformation.

This hypothesis excludes the possibility that proteins adopt their na-
tive conformation due to a complex biological machinery, since the three-
dimensional structure of a native protein in its normal physiological milieu
(solvent, pH, ionic strength, presence of other components such as metal ions
or prosthetic groups, temperature, ...) is the one in which the Gibbs free
energy of the whole system is the lowest: that is, that the native conforma-
tion is determined by the totality of interatomic interactions and hence by
the amino acid sequence, in a given environment [11].

Anfinsen’s discovery had an enormous impact on molecular biology: if
the native state of a protein is the global minimum of the free energy, then
it must be possible to predict its structure just by simulating its dynamics
using the standard laws of physics.

This is still one of the fundamental unsolved problems in biophysics. The
complexity of the problem is mainly due to the size of proteins, since large
proteins are made up by several hundreds of amino acids, i.e. by thousands
of atoms, and to the difficulty to treat the solvent accurately.

The integration of Schrodinger’s equation is possible numerically, by us-
ing supercomputers, only for time intervals of few picoseconds. Within the
framework of classical molecular dynamics instead, one can follow the dy-
namics of biomolecules, guided by approximated force fields, for much longer
times.

A striking result in this field has been obtained in 1998 by Duan and
Kollman, who were able to follow the folding of a small protein for 1 us [20].
The time necessary for the simulation was 4 months on a 256 processors
supercomputer corresponding to a total CPU time of 80 years. At the end
of the simulation they observed the presence of an intermediate state in the
folding pathways.

The result of Duan and Kollman shows that we are still far from solving
the protein folding problem by brute force, i.e. simulating the real dynamics
of proteins until the global free energy minimum is found. Most of the pro-
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teins are much longer than the one used in their simulation and they would
fold in a CPU time that is 10° to 10'? times longer. Furthermore following
biophysical processes by simulating them in full details does not necessarily
mean to understand them.

In order to understand protein folding more deeply, a lot of simplified
models have been proposed. Usually, simplified models have not, at the
moment, the aim to find the native state of a given protein sequence: they
focus rather on the dynamics and thermodynamics of such physical systems.
This is the case, for example, of the Go model [21], in which the knowledge
of the native structure is the input of the model itself.

The main idea of this model is that an energetic bias towards the native
state, without any realistic description of physical interactions, allows the
study of protein dynamics. In the simplest form, the energy of a conformation
is defined as the number of contacts in common with the native state, taken
with the negative sign: two amino acids are said to be in contact if the
distance of their C%-s is less than a given cutoff, usually taken between 6 and
8 A, and if they are not consecutive along the peptide chain.

Since the energy is well specified and the native state is by definition
the state with the lowest free energy, the only problem is how to define the
dynamics. The basic feature of this model is specificity, since the native
conformation is by definition the ground state and an ergodic dynamics will
reach always the native state. However, such model is interesting because it
allows an analysis of the folding process of a well designed sequence and of
the way dynamics is controlled by the topology of the native state.

Models for random heteropolymers can be used to study protein-like fea-
tures. Usually, models amenable to analytical calculations are too simple to
capture the sequence-structure relationship, typical of proteins.

On the other hand, models apt for numerical implementation, like the
one described in next chapter, capture some of general features of proteins
and allow a deeper study of protein folding and design. Proteins, in fact,
can be considered special heteropolymers that have evolved for fast-folding
into a unique and thermodynamically stable conformation [22]. At variance
with the Go model, such models are completely unbiased, since fast folding
and other protein-like features are expected to emerge through a suitable
sequence selection.

In fact, heteropolymers at low temperature behave differently from pro-
teins. They show a glassy dynamics and the state in which they fold depend
on the initial conditions [22]. Kinetic and energetic barriers prevent an easy
access to the ground state and the search of the global minimum is more sim-
ilar to that prospected by Levinthal [19]. This is not the case for sequences
that show protein-like features: they fold through a two-state mechanisms
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rapidly and reversibly in the native state [23].

It follows that a rigorous study of protein folding has to be preceded by a
suitable optimization of the sequence: for such a sequence physical properties,
for example the type of transition to the native state, can be compared with
real proteins.

Protein design deals with the problem to find how many and which kind
of sequences fold on a given target structure. In principle the problem can
be solved enumerating all the possible sequences and attempting to solve the
protein folding problem for each of them. Obviously, a similar strategy is not
feasible. Furthermore, as we have seen previously, the structure prediction
problem is far from a general solution even in an approximated way.

A first tentative solution to protein design was proposed, and checked
with experiments, by Hecht and coworkers [24]. Their method was based on
the assumption that the hydrophobic force is the main factor driving proteins
into their native conformation. The hydrophobic force is the propensity of
hydrophobic amino acids to cluster in buried regions, leaving polar ones ex-
posed to a polar solvent — which is water, in living organisms. By specifying
explicitly the positions of hydrophobic and polar amino acids within the se-
quence, they tried to design stable conformations without the explicit design
of specific interresidue contacts. Through the use of binary patterns they
were able to produce compact folds with high a-helical content, comparable
to a four helix bundle for a large fraction of the designed sequences [24].

This strategy is different from modern computational approaches to pro-
tein design with automated sequence selection [25], where the a major ingre-
dient is the optimization of side-chains packing [26].

In fact hydrophobic-polar patterning of sequences is not a sufficient con-
dition for a successful design, even if it is a good filter to reduce the gigantic
number of sequences. The burial of amino acids cannot be the only crite-
rion of selection, since hydrophobic-polar patterning is not even a necessary
conditions for protein design.

There are two reasons: first, hydrophobic interactions are not the only
ones, since stabilization in the native state is increased by hydrogen bonds,
polar effects between amino acids and van der Waals forces. Furthermore,
side-chains packing plays an important role in discarding otherwise energetic
favorable conformations, emphasizing the need to couple sequence design
with backbone flexibility for general protein design, as shown by the group
of Baker [26].

They developed a method for de novo designing stable folds, successfully
applied to a 93-residue «/( structure, whose topology was not present in
the Protein Data Bank [13]. As they noticed, computational design of novel
protein structures is a more rigorous test of force fields then the redesign of



22 Proteins and Disorder

naturally occurring proteins [26].

The design procedure they adopted include a search of nearby conforma-
tional space, in addition to sequence space: this is accomplished by iterating
between sequence optimization and structure prediction.

1.4 Intrinsically unstructured proteins

Disordered proteins — referred to as intrinsically unstructured proteins (IUPs)
as well — are biological molecules devoid of extensive structural order, but
often displaying signs of local and limited residual structure [1]: the word
“natively unfolded” was introduced in 1994 to describe the behaviour of tau
protein, which turned out to have the properties of a denatured molecule
in solution, without any evidence of compact folding and only a minimal
content of secondary structure elements [27].

Due to the resemblance of their structure to denatured states of globular
proteins, IUPs have long been considered to exist in a random coil confor-
mational state, although true random coils are not observed, since there is
persistence of native-like topology even in denatured proteins [28].

Further analysis on this class of proteins showed that they can be clas-
sified in two main groups [3]: the first one comprehends flexible chains, yet
compact and exhibiting properties typical of the molten globule, whereas the
biopolymers traditionally described as “random coils” are found within the
second group.

The latter are characterized by specific amino acid sequence “encoding
disorder” [4, 5] with low overall hydrophobicity and high net charge, hydro-
dynamic properties typical of a random coil in poor solvent [29] and a low
level of secondary structure.

The high conformational flexibility is essential for TUPs to accomplish
their biological function, since it may allow them to interact with differ-
ent molecular partners and adopt relatively rigid conformations in the pres-
ence of natural ligands [3]: many examples of coupled folding and binding
events have been reported recently, providing new insights into mechanisms
of molecular recognition [6].

The conformation they adopt is largely defined by their interacting part-
ner rather than their amino acid sequence, differently from the case of glob-
ular proteins [7].
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Figure 1.4: NMR structure of the complex formed between the KIX domain
(cyan) of the coactivator CBP and the kinase inducible activation domain
(pKID) of the transcription factor CREB (pink) [30].
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1.5 Folding upon binding

There are now numerous examples of proteins that are unstructured or only
partially structured under physiological conditions and yet are nevertheless
functional [6]. Such proteins are especially prevalent in eukaryotes: in many
cases, intrinsically disordered proteins adopt folded structures upon binding
to their biological targets.

It has long been axiomatic that the function of a protein is directly related
to its three-dimensional structure: recently however, it has been recognized
that numerous proteins lack intrinsic globular structure or contain long dis-
ordered segments under physiological conditions and,furthermore, that this
is their normal, functional state [10, 4, 5].

Such proteins are frequently involved in regulatory functions in the cell
and the structural disorder may be relieved upon binding of the protein to
its target molecule. The intrinsic lack of structure can confer functional
advantages, including the ability to bind, perhaps in different conformations,
to several different targets.

One speaks of folding upon binding or inducible binding, which is dif-
ferent from the so-called constitutive binding [31, 10]: the kinase inducible
activation domain of CREB, which binds to the KIX domain of the coacti-
vator CBP in the phosphorylated form (pKID, fig. 1.4), is a typical case of
the first phenomenon, schematically shown in fig. 1.5.

The free pKID domain is intrinsically unstructured, but folds on binding
to its target. The entropic penalty associated with the folding transition is
counterbalanced by the large enthalpy of binding, partly due to the comple-
mentary intermolecular hydrogen bonds formed by the phosphoserine group
of pKID.

In the unphosphorylated state, binding of KID is very weak since the
smaller enthalpy of binding cannot compensate for the entropic cost of the
folding transition. Thus, inducible binding is a consequence of the thermo-
dynamic balance that arises from the coupling of folding and binding events
(fig. 1.5).

By contrast, the transactivation domain of the c-Myb oncoprotein is
folded into a helical structure in its free state and can bind constitutively to
its target protein since both the AH and AS of association are favorable [31].

The sequential incorporation of unfolded monomers is a well-recognized
mechanism of increasing the size of macromolecular assemblies: disordered
segments appear to be very common in the proteins encoded by the various
genomes, especially those of higher eukaryotes.

A recent survey of 31 genomes indicated that disordered segments longer
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Figure 1.5: Schematic diagram showing how differences in intrinsic structural
propensities of a protein domain can determine whether binding is constitu-
tive or inducible [31].

than 50 residues are highly prevalent [4]. In the four eukaryotic genomes sur-
veyed, more than 30% of sequences are predicted to have disordered regions
of this length and, in Drosophila, a staggering 17% of proteins are predicted
to be wholly disordered.

It has long been recognized that local folding of proteins is frequently
coupled to DNA binding [6]. In some instances, mutual cooperative folding
of both the protein and DNA has been observed. Induced folding transitions
have been observed in the binding of zinc finger proteins to DNA and appear
to function to increase binding affinity or specificity. Thus, binding of the
zinc finger domain of the nuclear receptor RXR (retinoid X receptor) to DNA
leads to induced folding of the dimerization region, which is dynamically
disordered in the free protein [6].

The importance of protein folding and unfolded proteins in the cell is illus-
trated by the large variety of chaperone molecules that aid in the productive
folding of proteins, most likely by binding to unfolded or incompletely folded
states to prevent aggregation, or by unfolding misfolded forms. Part of the
function of chaperones is to bind unfolded proteins or molten globules: in
some cases, it has also been found that parts of the chaperones themselves
must be unfolded in order for the chaperone to function correctly [6].
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The folding process for any protein can be thought of as a binding reac-
tion, as it involves the binding of distant parts of the polypeptide chain as
tertiary structure is formed; however,in some cases, there is a requirement
for external factors as well, in order for folding to be successful. An example
of functionally relevant changes in the folding state of a protein concerns
the photoactive yellow protein (PYP): activation of PYP converts it from a
folded protein to a molten globule structure that is functional in signaling [6].

Various rationales for the employment of unstructured proteins in eu-
karyotic cells have been put forward in the past years: IUPs offer important
advantages in cellular signaling and regulation, with their inherent flexibility
which allows their local and global structure to be modified in response to
different molecular targets, or interacting with multiple cellular partners and
allowing fine control over binding affinity.

It may also be that the relative instability of intrinsically unstructured
proteins could impose an additional level of control in cellular signaling and
transcriptional processes, in which a response must be rapidly turned on and
just as rapidly turned off [10]. Unstructured protein domains may be less
sensitive to environmental perturbations and, therefore, may impart stability
to complex regulatory networks that might otherwise be overly sensitive to
temperature or other changes in cellular conditions [6].

One of the most compelling rationales for the participation of unstruc-
tured proteins in binding interactions in particular was provided by Shoe-
maker et al [32]: by analogy with the folding funnel mechanism of protein
folding, the authors envisage that an unstructured protein would have a
greater capture radius than a compact, folded protein with restricted confor-
mational flexibility.

They propose a fly-casting mechanism, whereby the unfolded polypeptide
binds weakly at relatively long distances and then folds as it reels in its target.
The fly-casting mechanism predicts an increased rate of binding with respect
to a fullt folded protein, which may well be important when the cellular
concentrations of a regulatory protein and its target are low, as is the case
for many signaling and transcriptional processes.

1.6 Properties of the disordered state

Disordered states of proteins can be either collapsed (molten-globule-like) or
extended: regions of proteins that are intrinsically unstructured under phys-
iological conditions differ in amino acid composition from typical globular
proteins, being characterized by amino acid compositional bias, low sequence
complexity and high predicted flexibility [5].
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Indeed, such proteins appear to occupy a unique region of charge-hydrophobicity
space [29, 3]: the first analysis of Uversky et al. [33] considered a list of 91
natively unfolded proteins, with largest number (32) among them between
50 and 100 residues long and net charge at pH 7.0 as high as +59, or as low
as —117, or close to zero.

A comparison was made against the same properties of a set of 275 pro-
tein sequences from the Swiss-Prot sequence database [12], selected among
small globular monomeric proteins of 50 to 200 amino acid residues, with no
disulfide bonds and with no known interaction either with natural ligands or
with membranes.

Data shown in fig. 1.6, which includes an enlarged set of disordered pro-
teins [33], are consistent with the conclusion that the combination of low
mean hydrophobicity and relatively high net charge represent an important
prerequisite for the absence of regular structure in proteins under physio-
logic conditions, thus leading to natively unfolded proteins: the solid line
separating the two groups of proteins represents the border between intrin-
sically unstructured and native proteins, which allows a rough estimation of
the boundary mean hydrophobicity value, (H),, below which a polypeptide
chain with a given mean net charge (R) will be most probably unfolded:

(R) 4+ 1.151
2.785 (11)

The validity of these predictions has been successfully shown for several
proteins [29]: this means that degree of compaction of a given polypeptide
chain is determined by the balance in the competition between the charge
repulsion driving unfolding and hydrophobic interactions driving folding.

By analysis of the Swiss-Prot protein database [12], the authors were able
to find 130 different, nonhomologous proteins with sequences sharing low
mean hydrophobicity and relatively high net charge which they predicted to
be natively unfolded.

Many globular proteins are unfolded by extremes of pH and substantial
evidence indicates that this is caused by charge-charge repulsion. However,
some globular proteins do not unfold under conditions of extreme pH.

It is likely that the outcome is determined by the balance in the com-
petition between the charge repulsion driving unfolding and hydrophobic
interactions driving folding. Thus, the situation is analogous to that with
natively unfolded proteins.

It is known that unfolded proteins normally have very short lifetimes
in the cell. Thus, it is most probable that natively unfolded proteins are
significantly folded in their normal cellular milieu: natively unfolded proteins
in vivo are likely to be stabilized by binding of specific targets, ligands (such

<H>b:
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Figure 1.6: Comparison of the mean net charge and the mean hydrophobicity
for the set of 275 folded and 105 natively unfolded proteins (gray circles)
analyzed by Uversky et al [33, 29].

as a variety of small molecules, substrates, cofactors, other proteins, nucleic
acids, membranes, etc.).

Moreover, for the majority of proteins listed, the existence of pronounced
ligand-induced folding has been established. Consequently, in contrast to in
vitro experiments with purified protein, natively unfolded proteins probably
have considerable structure in vivo as the result of their interaction with their
natural ligands.

The combination of low mean hydrophobicity and high net charge leads
to natively unfolded conformation. This suggests that any interaction of
natively unfolded protein with natural ligand that will affect its mean net
charge, mean hydrophobicity, or both, may change these parameters in such
a way that they will approach those typical of folded native proteins.

Unfortunately there are limited experimental data reported to confirm
these predictions, since calculating the joint mean net charge and mean hy-
drophobicity of complexes of natively unfolded proteins with their natural
ligands is rather difficult to implement.

However, evolutionary persistence of the natively unfolded proteins repre-
sents additional confirmation of their importance and raises intriguing ques-
tions on the role of protein disorder in biologic processes.

The results of the analysis summarized here are reasonable: amino acid
sequences of proteins that have been shown to have little regular structure
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under physiologic conditions differ significantly from the those of normal
globular proteins, due to the combination of low mean hydrophobicity and
relatively high net charge. High net charge leads to charge-charge repulsion,
and low hydrophobicity minimally means less driving force for a compact
structure.

It is clear that there are several ways in which such a specific sequence
can lead to lack of a normal tightly packed globular structure. For example,
in the case of a-synuclein the residues responsible are clustered mostly in the
C-terminal region, and the isolated N-terminal region is predicted to fold. In
other cases, the destabilizing residues are more uniformly distributed along
the sequence.

The fully unstructured states are especially intriguing: where SAXS data
are available, such domains appear to be highly elongated in solution and
their hydrodynamic properties resemble those of a random coil, not the com-
pact molten globule states formed during the unfolding of many globular
proteins [6]. This feature, together with the unusual amino acid composition
and distribution characteristics of intrinsically unstructured proteins may
help them to evade temporarily, at least in eukaryotic cells, the proteolytic
degradation machinery.

In summary, numerous proteins are intrinsically unfolded under physio-
logical conditions and this is leading to a new view of bio-molecular recog-
nition. No longer can binding be viewed as simply a lock and key event or
as an interaction involving rigid macromolecular surfaces. Coupled folding
and binding is seen to be common in interactions between biomolecules and
appears to provide important advantages, especially in multicellular organ-
isms.

Recent developments, both in theoretical and experimental models for
unfolded macromolecules, are leading us to a deeper understanding of the
nature of biological molecules and their interactions.
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Chapter 2

Geometric approach to protein
folding

The discovery of the structure of the DNA molecule has led to a description
of the biology in complex living organism, based on chain molecules that
store and replicate information and provide a molecular basis for natural
selection [9].

Using the RNA molecule as an intermediary, the information contained in
the genes is translated into protein molecules, which adopt a limited number
of related structures, folding into thousands of native state structures under
physiological conditions [34].

A protein molecule is large and has many atoms: in addition, the water
molecules surrounding the protein play a crucial role in its behavior. Under
the schemes of classical molecular dynamics, each protein is treated with
all the details of the sequence of amino acids, their side chain atoms, and
the water molecules. With such approaches, one can get a useful amount of
informations on the chemistry of processes in which amino acids are involved.
On the other hand, one may loose a unified way of understanding apparently
disparate phenomena related to proteins.

Yet no simple unification has been achieved in a deeper understanding
of the key principles at work in proteins. We restrict ourselves to globular
proteins which display the rich variety of native state structures. Other
interesting and important classes of proteins such as membrane proteins and
fibrous proteins are not considered here.

A different approach to understanding proteins is presented in this chap-
ter. The focus is on understanding the origin of protein structures and how
they form the basis for both functionality and natural selection. The model
points to a unification of the various aspects of all proteins based on symme-
try and geometry, which are shown to determine the limited menu of folded
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conformations that a protein can choose from for its native state structure,
highly conserved throughout natural evolution [35]. These structures are in
a marginally compact phase in the vicinity of a phase transition, and are
therefore eminently suited for biological function.

Proteins are well-designed sequences of amino acids which fit well into one
of these predetermined folds and they are prone to misfolding and aggregation
leading to the formation of amyloids, which are implicated in debilitating
human diseases such as Alzheimer and spongiform encephalopathies.

In the following sections we introduce the description of a protein as
a thick polymer chain and highlight the differences in its phase diagram
with respect to the usual string and bead model. Then a comparison of the
predictions obtained from the simple tube model against experimental data
available on protein native state structures is presented as well as a more
refined model in which the tube picture is reinforced with the geometrical
constraints that arise in the formation of hydrogen bonds.

2.1 Tube model of a thick polymer

Fluid and crystalline phases of matter can be understood from the behavior
of a simple system of hard spheres [9]. The standard way of ensuring the
self-avoidance of a system of uniform hard spheres is to consider all pairs of
spheres, and require that their centers are no closer than their diameter.

Generalizing to a one-dimensional object, one must consider a line or a
string, with space associated with each point along the line, leading to a
uniform tube of radius of cross section (thickness) A, with its axis defined
by the line.

The generalization of the hard sphere constraint to the description of the
self-avoidance of a tube of nonzero thickness is done considering all triplets
of points along the axis, and ensuring that their radii are bigger than the
thickness [36].

This prescription entails discarding pairwise interactions and working
with effective three-body interactions. One may visualize a tube as the con-
tinuum limit of a discrete chain of tethered disks or coins of fixed radius
separated from each other by a very small distance. The inherent anisotropy
associated reflects the fact that there is a special local direction at each po-
sition defined by the locations of the adjacent objects along the chain.

An alternative description of a discrete chain molecule is a string and
bead model in which the tethered objects are spheres. The key difference
between these two descriptions is the different symmetry of the tethered
objects: upon compaction of a chain of spheres, each individual sphere tends
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to surround itself isotropically with other spheres, unlike the tube situation,
in which nearby tube segments need to be placed parallel to each other.

The tube and a chain of tethered spheres exhibit quite distinct behaviors
with one exception in the presence of an attractive self-interaction favoring
compaction. The chain and the string and bead model behave similarly in
the limit of vanishing ratios of the radii of the coin and sphere to the range
of attraction, where one gets a featureless compact phase.. For a tube the
simplest situation occurs in the swollen phase, where the finite size effects
are not important, since they continue to adopt open conformations.

For a short tube, there are many more conformations that can be accom-
modated in the spherical topology than in the cylindrical topology without
any accompanying sacrifice in the attractive interaction energy. There is a
confluence of three distinct types of structures (the swollen conformations,
the semicrystalline phase which one gets for a long tube due to its inherent
anisotropy, and the featureless compact conformations), leading to quite re-
markable finite size effects: a marginally compact phase is obtained with a
reduction in the degeneracy [9].

Helices, hairpins, and sheets are ground states, with a parallel placement
of nearby tube segments. The marginally compact phase is poised in the
vicinity of a phase transition to the swollen phase.

The building blocks of protein structures are helices, hairpins, and almost
planar sheets (fig. 2.1). Short tubes, with no heterogeneity, in the marginally
compact phase form helices with the same pitch to radius ratio as in real
proteins [37] and almost planar sheets made up of zigzag strands [9)].

It is interesting to note that the helix is a very natural conformation for a
tube and occurs without any explicit introduction of hydrogen bonding. Re-
cent work on the denatured state of short amino acid sequences has suggested
that the polyproline II helix might be the preferred structure in that phase,
even though it does not entail the formation of any hydrogen bonds [9].

The tuning of the two length scales — the tube thickness (A) and the range
of the compacting interactions (R) — to be comparable to each other happens
automatically for proteins. The sizes of the amino acid side chains determine
both the tube thickness and the range of interactions: steric interactions lead
to a vast thinning of the phase space that protein structures can explore [15].

Physically, the notion of a thick chain follows directly from steric interac-
tions in a protein: one needs room around the backbone to house the amino
acid side chains without any overlap. The same side chains that determine
the tube thickness also control the range of attraction: in fact, the outer
atoms of the side chain interact through a short range interaction, screened
by water.

Rapid folding of small proteins can be understood in terms of the inherent
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Figure 2.1: Zero-temperature phase diagram of a tube in the continuum
with a self-attraction promoting compactness: the marginally compact phase
is highlighted by the dashed line, accompanied by entropy reduction, with the
choice structure being a helix with a well-defined pitch to radius ratio [37].
Other structures such as hairpins and sheets are present in the marginally
compact phase for discrete chains [9].
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anisotropy of a tube and the self-tuning of the two key length scales, the tube
thickness and the range of the attractive interactions. In the marginally
compact phase, in order to take advantage of the attractive interactions,
nearby segments of the tube have to be parallel to each other and right up
against each other: the helix and the sheet are characterized by such parallel
space filling alignment of nearby tube segments.

In proteins, such an arrangement serves to expel the water from the pro-
tein core. As shown by Pauling and co-workers [38, 39], hydrogen bonds
provide the scaffolding for both helices and sheets and place strong geomet-
rical constraints stemming from quantum chemistry.

2.2 Refined tube model for proteins

The tube model in its simplest formulation can be used to describe any chain
molecule with an effective thickness. A more refined model can be introduced
to specialize to polypeptide chains. The tube geometrical constraint, a lo-
cal bending energy penalty eg, an overall hydrophobicity ey , and effective
hydrogen bonds between C%s are the elements characteristic of the model.

The phase diagram and the associated structures for short homopolymers
— chains made up of just one type of amino acid - of length 24, resulting from
Monte Carlo simulations, are depicted in fig. 2.2.

In keeping with the behavior of the simple tube model discussed earlier,
in the vicinity of the swollen phase one finds distinct assembled tertiary
structures, quite similar to real protein structures, on making small changes
in the interaction parameters eg and ey .

The striking similarity between the observed structures and real protein
structures suggests that the model captures the essential ingredients respon-
sible for the limited menu of protein native structures. These structures are
the stable ground states in different parts of the phase diagram. Further-
more, conformations such as the § — a — § motif and the zinc-finger are
found to be competitive local minima.

The specific structure depends on the precise values of the local radius of
curvature penalty (a large penalty forbids tight turns associated with helices
resulting in an advantage for sheet formation) and the strength of the hy-
drophobic interactions (a stronger overall attraction leads to somewhat more
compact well-assembled tertiary structures). The topology of the phase di-
agram allows for the possibility of conformational switching, leading to the
conversion of an a-helix to a 3 topology on changing the hydrophobicity
parameter, in analogy with the influence of denaturants or alcohol in exper-
iments.
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Figure 2.2: Phase diagram of ground-state conformations obtained from
Monte Carlo simulations of a chain with 24 C® atoms, where er and ey,
represent the energy penalty due to the local radius of curvature and the
solvent mediated interaction energy (structures drawn using Molscript [40]
and Raster3D [41]).
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2.3 Presculpted energy landscape

The standard approach of protein physics is to assume an overall attractive
short range potential which serves to lead to a compact conformation of the
chain in its ground state. In the absence of amino acid specificity or when
one deals with a homopolymer, there is a huge number of highly degenerate
ground states comprising all maximally compact conformations with high
barriers between them (fig. 2.3).

The ground state degeneracy and the height of the barriers grow expo-
nentially with the length of the homopolymer. The role played by sequence
heterogeneity is to break the degeneracy of maximally compact conforma-
tions, leading to a unique ground state conformation which, of course, de-
pends on the amino acid sequence. Yet, for a typical random sequence, the
energy landscape is still very rugged.

A model protein moving in such a rugged landscape can be subject to
trapping in local minima and may not be able to fold rapidly, so that glassy
behavior may ensue due to such trapping.

Bryngelson and Wolynes [42] suggested that there is a principle of minimal
frustration at work for well-designed sequences, in which there is a fit between
a given sequence and its native state structure, resulting in a funnel-like
landscape [43]. This promotes rapid folding and avoids the glassy behavior:
given a sequence of amino acids, with side chains and surrounding water,
one obtains a funnel-like landscape with the minimum corresponding to its
native state structure.

The model calculations show that the large number of common attributes
of globular proteins [44] reflects a deeper underlying unity in their behavior.
A consequence of this hypothesis is that the main features of the energy
landscape of proteins result from the amino acid common features of all
proteins.

This landscape is (pre)sculpted by general considerations of geometry and
symmetry (fig. 2.3): for each of the local minima the funnel-like behavior is
achieved already at the homopolymer level in the marginally compact part
of the phase diagram (fig. 2.2).

The already mentioned self-tuning of the two key length scales to be
comparable to each other, and the interplay of the three energy scales —
hydrophobic, hydrogen bond, and bending energy — in such a way as to sta-
bilize marginally compact structures, provide the close cooperation between
energy gain and entropy loss needed for the sculpting of a funneled energy
landscape.

Recent work has shown that the rate of protein folding is not too sensitive
to large changes in the amino acid sequence, as long as the overall topology
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of the folded structure is the same [45]: a presculpted landscape greatly
facilitates the design process. Even within crude design schemes, which take
into account the hydrophobic (propensity to be buried) and polar (desire to
be exposed to the water) character of the amino acids, is sufficient to carry
out a successful design of sequences with one or the other of the structures
shown in fig. 2.2.

The matching of the hydrophobic profile of the designed sequence to the
burial profile, measured by the number of neighbours within the range of
the hydrophobic interaction, leads to the correct fold in a Monte Carlo simu-
lation. The sequence HPPHHPHHPPPPPPHHPHHPPPPP, with e = 0.3
for all residues, ey, = 0.4 for contacts between H and H, and 0 for other
contacts, has as its ground state the two-helix bundle structure (fig. 2.2, e)
whereas HPHHHPPPPHHPPHHPPPPHHHPP prefers the 8 — a —  motif
(fig. 2.2, j.k).

It is interesting to note that the § — a —  motif is only a local minimum
in the phase diagram of a homopolymer but is stabilized by the designed
sequence: many protein sequences adopt the same native state conformation,
and once a sequence has selected its native state structure, it is able to
tolerate a significant degree of mutability — except at certain key locations
— with multiple protein functionalities that can arise within the context of a
single fold [46].

There are several attractive features of the picture based on the tube-
protein hypothesis. First, protein structures lie in the vicinity of a phase
transition to the swollen phase which confers on them sensitivity, especially
in the exposed parts of the structure, to the effects of other proteins and
ligands.

The flexibility of different parts of the protein depends on the amount of
constraints placed on them from the rest of the protein. From this point of
view, it is easy to understand how loops, which are not often stabilized by
backbone hydrogen bonds, can play a key role in protein functionality.

The existence of a presculpted energy landscape with broad minima corre-
sponding to the putative native state structures, and the existence of neutral
evolution demonstrate that the design of sequences that fit a given struc-
ture is relatively easy, leading to many sequences that can fold into a given
structure.

This freedom facilitates the accomplishment of the next level task of evo-
lution through natural selection: the design of optimal sequences, which not
only fold into the desired native state structure, but also fit in the environ-
ment of other proteins.

A useful protein can interact with other proteins without being subject
to the tendency to aggregate into the amyloid form. This suggests that
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Figure 2.3: One-dimensional sketch of energy landscape. On the horizontal
axis a rough distance between different conformations in the phase space is
represented: the barriers in the plots refer to the free energy needed to travel
between two adjacent local minima.
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Figure 2.4: Contour plots of the effective free energy at high temperature
(top) and at the folding temperature (bottom) for a 24-residue long ho-
mopolymer (eyy = 0.08, eg = 0.3). The effective free energy is defined as
F(N; + N, Nw) = —InP(N; + Ny,l, Ny ), which depends on the number of
hydrogen bonds and the number of hydrophobic contacts. The hi stogram is
collected from equilibrium Monte Carlo simulations at constant temperature.
The spacing between consecutive levels in each contour plot corresponds to
a free energy difference of kg'T, The free energy minimum at higher temper-
ature corresponds to the denatured state; typical conformations from each
of the minima at the folding transition are shown.
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protein engineering studies aimed at improving enzymatic function ought to
be carried out in a two steps: the family of sequences that fold into a desired
target structure needs to be selected and a finer design needs to be carried
out in the context of the substrates and the other proteins that the target
protein interacts with.

After one obtains a presculpted energy landscape with relatively few folds,
protein might fold in a cooperative manner into native state conformation:
there is the possibility of straightforward design of optimal sequences that fit
into a desired structure in a marginally compact phase, having the flexibility
needed for biological function. How then a given sequence is able to reach
its native state conformation starting from its denatured conformation?

The denatured state is an ensemble of open conformations that the pro-
tein adopts when it is not under physiological conditions: recent work has
underscored the possibility that the number of accessible conformations is
severely reduced compared to a random chain [47], leading to biases in the
chain direction that persist over the entire length of the protein [2]. Long-
range structure, which cannot be removed by strongly denaturing conditions,
could arise predominantly from local steric hindrance.

Just as there is a one-way correspondence between a sequence and its
native state structure, there could exist a similar correspondence between
the sequence and its denatured state: the denatured state can be thought
of as an address of the native state conformation lying within its basin of
attraction.

Unlike the native state, the denatured state has a larger entropy and
comprises open conformations. Because of this, water plays a quite crucial
role in the denatured state. Both the above factors lead to local interactions
playing a more important role than nonlocal interactions in the denatured
state.

It has been shown that denaturation by at least three different agents
— truncation, urea, and acid — gives rise to essentially the same persistent
native-state like topology [2].

An interesting consequence of the type of denatured state described above
along with the existence of the presculpted landscape is the possibility of
disordered proteins [10], that are in temporally fluctuating denatured form
but which fold in the presence of distinct substrates to carry out multiple
functionalities.

In the present picture these sequences need appropriate stabilizing sub-
strates to fold and without that the protein is denatured. Given that finite
size effects are severe for proteins, the presence of different substrates — lead-
ing to different boundary conditions — would not only favor one competing
structure over the others, but also result in folding to that structure. The
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simultaneous existence of the distinct folds in the energy landscape allows
the protein to choose from among them depending on the precise nature of
the stabilizing influence.

2.4 Summary

The model described here introduces a unifying view on proteins, naturally
leading to a finite number of protein folds. This number grows with the size
of the protein, but is limited by the fact that proteins beyond a characteristic
length form either autonomous domains or amyloids [9].

The inherent anisotropy, due to the tube-like description, is able to cap-
ture some aspects of the secondary structure motifs arising in proteins. Pro-
tein structures are modular in form, being simple assemblages of helices and
strands connected by tight turns.

This unified picture leads to a single free energy landscape with two dis-
tinct classes of structures. The amyloid phase is dominated by [(-strands
linked to each other in a variety of forms whereas the native state structure
menu is an assembly of a-helices and 3 structures.

Pauling and coworkers [38, 39] considered the protein backbone and ex-
plored the structures consistent with both the backbone geometry and the
formation of hydrogen bonds, predicting that helices and sheets are the struc-
tures of choice. Ramachandran and Sasisekharan [15] stressed the role of
excluded volume and steric interactions between the adjacent amino acids in
reducing the available conformational phase space, with the two significantly
populated regions of the Ramachandran plot corresponding to the a-helix
and the 3 strand.

Even though hydrogen bonds and sterics are not related to each other,
they are both promoters of helices and sheets. The marginally compact phase
of short tubes has helices and sheets as its preferred structures: hydrogen
bonds serve to enforce the parallelism of nearby tube segments, a feature of
both helices and sheets, while sterics emphasizes the nonzero thickness of the
tube and serves to place it in the marginally compact phase.

The marginally compact phase is a finite size effect: this may explain
why proteins tend to be relatively short, at least compared to conventional
macromolecules, including DNA. While sequences and functionalities of pro-
teins evolve, the folds that they adopted, which in turn determine function,
seem to be determined by physical laws and are not subject to evolution.



Chapter 3

Binding and Folding

The mechanism through which an IUP and its protein target bind exploits
hydrogen bonding and electrostatic interactions between amino acids of the
chains. The number of interactions can be large, leading to a high negative
binding enthalpy balancing the entropy loss and allowing binding, which
becomes thermodynamically favourable [10].

The aim of the present study is to clarify the effect of the contact in-
teractions between an IUP and its target protein on the energy landscape
of the first one, biasing its ground state towards motifs out of a restricted
menu of folds, depending on the geometric properties of the pattern. The
folding upon binding, typical of the disorder-order transition of several [UPs,
is the way nature actively performs structural design for a specific biologi-
cal function to be accomplished: contact interactions between the disordered
protein and the binding partner have to be carefully selected by evolution
since a proper geometrical pattern can bias efficiently the folding towards the
desired structure.

We will try to implement a similar design, even if from a coarse-grained
perspective, by choosing a contact pattern capable to bias the folding: to per-
form our task we will use an approach to the protein folding problem simply
based on geometrical considerations. The IUP is constrained to move within
a cubic box and its partner is represented in a coarse-grained framework,
through three contact points lying on the inner part of the box bottom face:
the geometrical arrangement of the points on the surface is tuned in order to
bias the folding towards the target fold, thus trying to implement a molecular
recognition mechanism. The bottom wall of the box is exploited to simulate
the steric hindrance opposed by the protein partner to the approaching ITUP,
subject to a substantial loss of conformational entropy.

The contact pattern is defined given the coordinates of the binding cen-
ters, the radius of the contact interaction with the atoms along the homopoly-
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mer chain: the one-to-one correspondence between polymer beads and con-
tact centers switches on specific interactions, and the model system thus
becomes a heteropolymer (homopolymer with contact bias).

3.1 Methods

The model used in this study is based on the geometrical approach to protein
folding outlined in chapter 2: a coarse-grained, off-lattice, polymer model
where only alpha carbon atoms are used to describe the protein’s backbone,
placed at the bond length of 3.8 A along the chain.

The use of C* atom only to represent chain molecules is not restricting,
since it has been shown [48, 49] that one can approximately reconstruct
the locations of all the backbone atoms, and even of the side chains ones,
with just the knowledge of the C* positions, through automatic procedures
generating full protein coordinates, given the amino acid sequence.

Hydrophobicity — the entropic driving force for the binding of non polar
solutes within solvent phases containing water — is incorporated by means of
an effective pairwise attraction between hydrophobic amino acids of magni-
tude ey .

The special local direction at each amino acid along the chain, defined
by the position of the neighboring residues, is captured by employing the
tube-like description of chapter 2, which leads naturally to the emergence
of secondary motifs [37, 50]. The model penalizes sharp local turns of the
backbone by means of a bending energy penalty of magnitude eg.

The energetics and geometry of hydrogen bonds are encapsulated in the
model based on a statistical analysis of protein native structures [8, 9]. Amino
acid unspecific constraints have been found on the relative orientation of the
intrinsic, Frenet, coordinate systems associated with the C* atoms of amino
acids between which hydrogen bonds are formed. The independence of such
constraints on the types of the hydrogen bonded residues leads to a significant
simplification.

The sampling of polymer’s configurations is carried out through Monte
Carlo simulations with the Metropolis acceptance rule for commonly used
moves in stochastic chain dynamics [51], like the standard pivot and crankshaft
conformational rearrangements.

The pivot algorithm [52, 53, 54, 55] acts selecting a random bead along the
chain, excluding both extremities. Then a random direction in space is chosen
and one part of the chain is rotated, pivoting on the selected hinge, along

a gaussian distributed angle with zero mean around the direction previously
defined.
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The crankshaft move [53, 54] selects instead two beads along the polymer
and then rotates the enclosed part of the molecule along a random angle,
gaussian distributed with mean zero as before.

The first one is known to be highly efficient in decorrelating chain con-
formations for self-avoiding walks, in the case of long-range properties of
polymers [53, 52]. The second one is faster, as required to local moves.

Beside these two standard chain rearrangements we employed two other
moves: a reptation-like move in order to make the decorrelation of chain
conformations easier, and an overall translation of the chain along a randomly
chosen direction, at regular time intervals.

The reptation move was devised as a quick means for decorrelating poly-
meric chains when not bound to the effective pattern: a bead is chosen
randomly along the chain and then the shortest part of the homopolymer is
translated rigidly to match the opposite end.

This is a very simplistic scheme adapted from the slithering-snake algo-
rithm for polymer models on a lattice [56]. Although quite expensive com-
putationally, and with a high probability of rejection, it is able to rapidly
decorrelate chain configurations, at least in the phase where the polymer is
not bound to the substrate.

The overall translation of the modeled molecule is performed only to avoid
the polymer to get stuck in local regions and corners of the cubic box, thus
increasing the probability of rejection for both local and non-local moves.

The Metropolis acceptance/rejection test is employed with the usual ther-
mal weight e~/ T, where £ is the energy of the conformation and T is an ef-
fective temperature. Monte Carlo simulations performed to study the order-
disorder transition are applied to a polymeric chain constrained within a
cubic box of side 50.0 A where the polymer is able to perform the con-
formational rearrangements mentioned above (pivot, crankshaft, reptation,
translation). The walls of the box are an infinite energy barrier, needed to
confine the polymer to the vicinity of the contact pattern, thus allowing an
efficient sampling of the pattern-bound configurations.

Model’s parameters defining the ground-state fold are listed below (ta-
ble 3.1). Energy parameters of the homopolymer model [8] are kept fixed,
whereas only the new parameters taking into account the geometric and en-
ergetic properties of the contact pattern are modified.

Monte Carlo simulated annealing [57] is used to explore the ground-state
of the system, formed by the homopolymer together with a fold-specific con-
tact pattern, inside the simulation box. Simulations at constant temperature,
carried out with the Metropolis acceptance criterion, are used to study the
thermodynamic behaviour of the system. Both types of simulations, using
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Energy parameters of the homopolymer model [8] (arbitrary units)

Local hydrogen bonds (e;) -1.0
Non local hydrogen bonds (e,;) -0.7
Cooperative hydrogen bonds (e,,) -0.3
Effective hydrophobicicty (e,,) -0.08
Curvature penalty (e;) 0.3

Parameters of the model with substrate

Box side 50 A
Number of substrate points 3
Range of effective contact interaction (ry) 2.0 A
Energy of contact (ep) 3e

Table 3.1: Parameters of the model
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the above described moves, have been extensively performed on the sys-
tem. The more efficient and reliable technique of parallel tempering [58],
also called replica exchange method, has been implemented and adopted on
the homopolymer, in order to confirm thermodynamical properties obtained
under the single temperature scheme.

The reptation move has roughly 30 % acceptance rate when applied to-
gether with the pivot algorithm when the polymer is not adsorbed on the
substrate. As noticed above, even if it is computationally expensive it is able
to rapidly decorrelate chain conformations. This was confirmed in a prelimi-
nary set of tests performed on the homopolymer within the box, without any
substrate. Energy autocorrelation function were computed for simulations
carried out both with the reptation move and without it: by measuring the
corresponding correlation times, we were able to provide an estimate of the
efficiency of the reptation move.

Several frequency ratios for different moves has been tested for the re-
arrangements of the polymer configurations. It has been noticed that high
rates of pivot moves are more efficient to sample (-like conformations, the
ones when non local hydrogen bonds are predominant. On the other hand,
crankshaft moves are faster to build up helical conformations, where local hy-
drogen bonds are dominant. In fact it is known that pivot is able to quickly
decorrelate global quantities for the self-avoiding walk, whereas it is not as
efficient for local properties [53, 54].

We tried to keep sampling efficiency as well as speed during the simu-
lations: one of the best schemes to explore the space of conformations uses
pivot at 20%, reptation at 10%, crankshaft at almost 80%, with few moves
left for the random translation of the chain.

The increased efficiency obtained using large frequencies of non local
moves is reasonable for small chains, i.e. built-up by less than 64 beads. This
has been tested by numerical studies on the dynamical properties of the pivot
and the slithering snake algorithm for lattice polymer models [52, 55, 56]. It
was shown as well that the computational cost of non local rearrangements
grows more rapidly than for local ones with the growth of the size of the
system.

In order to avoid the polymer to get stuck in local regions and corners of
the cubic box, a random translation of 2.5 A is attempted on the chain with
frequency 0.1 %.

The move is accepted provided that each bead of the chain stays inside
the simulation box in the absence of the contact pattern: the space inside the
box is isotropic, and the energy does not change for overall translations of the
chain. When a substrate is present inside the box, the additional Metropolis
test on energy needs to be satisfied instead.
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In the following sections we will write “target structure” or “target fold”
to mean the particular fold from the menu of fig. 3.2 that we wish to observe,
given a set of interaction centers, which might be or not in correspondence
with selected polymer beads.

3.2 Tuning model’s parameters

In this section we list and try explain the rationale lying behind the choice
of the parameters used within the simulations.

The size of the simulation box is chosen to be 50 A. The box side has
therefore an intermediate length between the average size of a random walk
with twenty-four steps of 3.8 A, and the fully stretched polymer. Full stretch-
ing and full rearrangement for the polymer inside the box are thus allowed
during the simulation.

The presence of the simulation box does not appreciably modify the ther-
modynamical properties of the system with respect to the simulation in the
bulk. A comparison of the results for the contour plots of the effective free
energy obtained within the simulation box (fig. 3.1) with those computed in
a previous study (fig. 2.4, chapter 2) shows the consistence of the two.

Figure 3.1 shows the plot of the specific heat for the process of folding in
the absence of any substrate with the walls of side 50.0 A whose temperature
dependence was computed from several simulations at constant temperature
using the multiple histogram technique [59, 60, 61]. The sharp peak in the
plot is related to the folding to the a-helix, which is the ground state at the
values set for the effective hydrophobicity and curvature penalty.

Surface and contour plots of the effective free energy at the folding tem-
perature T = 0.192 given by the peak in the specific heat is shown on the
right 3.1(b). Histograms P (N, N},) used in the plots have been collected
from equilibrium Monte-Carlo simulations keeping the temperature constant.
The effective free energy is defined here as a function of the number of hy-
drophobic contacts N, (y axis) and of the total number of hydrogen bonds
Ny, (x axis), F' (Ny, Ni) = —In P (N, Ny). The spacing between consecutive
levels in each contour plot corresponds to a free energy difference of kT,
where T is the temperature in physical units.

The thermodynamic properties of the system obtained by the use of sev-
eral single temperature computations have been fully confirmed within the
more reliable scheme of parallel tempering, which has been implemented as
well on the same system. The replica exchange method is particularly effi-
cient especially at temperatures near the folding transition or below it.

A substrate modeled with few centres of an effective contact interaction
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(a) Specific heat versus temperature. (b) Free energy at the folding temperature.

Figure 3.1: Plot of the specific heat (3.1(a)) and plot of the effective free
energy surface with contour lines (3.1(b)), as it has been defined within the
text — of the polymer inside the simulation box at the folding temperature,
without contact interactions.
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is employed to bias the binding and subsequent folding of the polymer. The
binding partner of the ITUP is represented in a coarse-grained framework,
through few contact points lying on one of the faces of the box. The geo-
metrical arrangement of the points on the surface is tuned in order to bias
the folding towards a specific structure: we are thus trying to implement a
one-to-one correspondence between the pattern and the target fold, i.e. fold
specificity through a molecular recognition mechanism.

The number of points of the contact pattern is fixed to three. This is the
least amount of points necessary to define a plane, and the least that proved
to be capable to bias relevantly the folding towards the target structure.

In few cases even two interaction centers only were able to produce a
structure different from the a-helix. This has been observed with a two-
helix-bundle, which has never occurred in simulations without the pattern at
the chosen values of effective hydrophobicity and curvature penalty. Nonethe-
less these structures appeared only in a tiny fraction of the total number of
annealings used to test the pattern, before computing thermodynamic prop-
erties. Thus they were discarded as not relevant enough to promote the
target fold. The contact pattern is chosen to lie on the inner surface of the
simulation box: in this way we exploit the walls to simulate the steric hin-
drance opposed by the protein target to the disordered protein. Therefore a
substantial conformational entropy loss of the the IUP is induced, while the
polymer explores different configurations during the process of binding.

The contact pattern is defined given the coordinates of the binding cen-
ters, the radius of the contact interaction (r,), the contact energy associated
to each formed contact (e;) and their specific target beads along the ho-
mopolymer chain, which may be one or more. Several schemes have been
tried for the interaction between the polymer and the substrate: from totally
unbiased interactions, where every bead bound to a centre lowers the energy
of the chain, to only three target beads for each centre.

Finally, a one-to-one interaction, where only one specific bead along the
chain can bind to its partner on the substrate. Forbidding all polymer beads
to interact with every contact centres, we are actually switching on specific
interactions, and the model system thus becomes a heteropolymer — a ho-
mopolymer with contact bias.

The choice of only three points, for the substrate responsible of the in-
duced binding and subsequent folding of the polymer, avoids the trivial case
of a Go model approach: in that case all the native contacts are biased. If we

put a bias on n atoms, this requires that distances among the beads

n
2
are fixed. If n becomes comparable with the length of the chain, the number
of constraints is similar to the Go model. In the present case instead, folding
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is only loosely guided.

Following Bogner and coworkers [62] — who used a simplified model on
lattice with substrates of lower dimensionality — we select a two-dimensional
substrate defined by the set of points belonging to the interaction pattern.
This turns to be sufficient to bias the fold towards structures different from
the a-helix. Depending on the value of the binding energy per contact (ep)
the new fold is a local minimum of the free energy with respect to the a-helix,
which is often kept as the ground state from the balance between energy and
the entropic contribute at constant temperature:

AF = AU — TAS (3.1)

where U is the internal energy of the chain.

Specific interactions severely constrain the number of accessible configu-
rations of the polymer at a given temperature Thus the entropy of disordered
configurations is lowered: given the same amount of energy gain, a transition
like folding towards the target structure may occur at a higher temperature.

On the contrary, if one is not able to hinder the occurrence of antagonist
folds — like the a-helix, in the present case — then competition among several
local minima is encountered. This results in a smaller free energy difference
between the target and its closest antagonist, thus delaying the folding to
lower temperatures, if not even avoiding it at all.

Successful visit of the target structure occurs when a properly designed
substrate is present within the simulation box. On the contrary, during
the simulations without the contact pattern it happens seldom to observe
the competing folds listed in table 3.2. In fact, only the three-stranded (-
sheet is met as a local minimum during very long simulations at constant
temperature without a proper contact pattern and e,, = —0.08, e, = 0.3.

Hydrophobicity and curvature penalty partly account both for the physio-
logical conditions of the solvent (e.g.: pH, concentration of denaturants) and
to a limited extent for the chemical nature of the chain (e.g.: steric hindrance
of residues side chains). The value of effective hydrophobicity e,, is -0.08 and
the curvature penalty e, is 0.3 (arbitrary units). The corresponding native
state is an a-helix, still other local minima are present (table 3.2).

The specific values adopted have been chosen for the small difference in
energy of the different folds reported in table 3.2 and for the presence of a
broad three-stranded (3-sheet local minimum in the energy landscape, beside
the a-helical ground state [8]: the free-energy landscape is suitable to be
modified in favour of the local minimum of type 3 by a proper contact bias,
as it will be shown later.

Moreover the thermodynamic properties of the homopolymer with such
values have been deeply investigated in a previous study [8], thus allowing
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a direct check in the possible effects of the box boundary conditions on the
behaviour of the system, if any. As noticed above and previously shown in
figure 3.1(a), the presence of the restraining walls has no appreciable effects
on the thermodynamic properties of the polymer.

The specificity of the pattern towards the selected target fold depends
heavily on the radius of the interaction. Different values for r, has been tried,
ranging from 2.0 to 3.8 A, which is the distance of nearest-neighbouring a-
carbons. The latter allows folding into several structures, whereas the first
one is rather specific, though it is still sufficiently large to let the polymer
explore for a sufficiently long time the configurations in the vicinity of the
free energy minimum.

The choice fell on r, = 2.0 A: this value allows us to bias different target
beads towards the same interaction centre of the substrate. In fact, the self-
avoidance imposed on the chain does not allow two beads to lie within a
distance smaller than 4.0 A [8].

Another key parameter to be tuned is the energy of contact interactions:
most extensive simulations has been performed using twice and three times
the value of local hydrogen bond energy (e;), which is -1.00 in the model [8].

As it will be shown later, the value of the energy for contact interactions
between beads lying on the polymeric chain and atoms of the substrate has
a direct influence on the absorption temperature. Checking the temperature
dependence of the average number of contacts between the polymer and the
substrate, one can see that the adsorption corresponds to the first peak in
the plot of the specific heat function against temperature occurs, accounting
for a transition from the free polymer to the bound state.

The value e, = 3 ¢ is a strong bias needed to make the target fold
become the ground-state, when it happens to have a relatively high energy
in comparison to the a-helix. This is the case of the three-stranded (-sheet,
fig. 3.2. However, even using e, = 2 e; higher energy folds are observed as
local minima, whereas in the absence of the pattern they were not observed
during a sufficiently long simulation at constant temperature.

3.3 Substrates for binding and folding

The aim of the work discussed in this thesis relies heavily upon the design
of a geometrical pattern for the interaction points of the substrate. This
needs to be appropriately designed, in order to bias the process of binding
first, and folding afterward, of the disordered protein — here represented as
a coarse-grained polymer of twenty-four beads.

The selection of the proper pattern is done in few steps:
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ew = —0.08 e, = 0.3

Motif Energy
a-helix -23.68
two-helix-bundle -22.96
(-sheet -17.64
greek-key -19.12
(-helix -20.12
(B-barrel -19.10
g—a—p -20.64
zinc-finger -19.18

Table 3.2: Fold energy

(a) a-helix (b) Two-helix bundle

Figure 3.2: Ground states of the model system inside the simulation box
in the absence of contact interactions and in the presence of a substrate
geometrically tuned for a two-helix-bundle fold.
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e The target conformation of the polymer that is wanted to be the ground
state of the system is analyzed and three beads are selected. Selection
of the proper beads is performed by choosing the three atoms in such
a way that the rest of the polymer is left on one side of the plane that
they define.

In this way the three interaction centres may be modeled as spheres ly-
ing on one side within the simulation box. The wall of the box restrains
the configurations space accessible to the polymer, while approaching
the substrate. This accounts for the conformational entropy loss ac-
companied by the process of binding.

e Once the geometry of the substrate has been modeled, an extensive
search of the structures adopted by the homopolymer, favoured by
that pattern has been done. We employed Monte Carlo simulations,
both using annealing and constant temperature runs, during which we
allowed all the beads along the polymer to bind to every interaction
centre on the substrate.

In this way one can directly verify the entropic selectivity of the sub-
strate against the selected fold, which is not accessible with simple
geometric arguments.

e The last step is the selection of the correspondence between interac-
tion centres of the substrate and beads of the chain to accomplish the
interacting scheme of the disordered protein.

In fact the geometric properties of the substrate are not enough alone
to guarantee proper selectivity towards the desired fold, and we are
compelled to bias the interactions between only selected beads along
the chain and certain centres on the substrate.

One-to-one correspondence between an atom on the polymer and a cen-
tre on the substrate is an interaction of the type used by Go models.
This is the most specific kind of interaction one can adopt in such a sim-
plified scheme, and this actually provides an efficient way of designing
specific folds on a substrate.

In order to observe the different folds, with different relative frequencies
than in the simulation without the fold-specific contact pattern, one has to
carefully design the geometric properties of the pattern, which should suit
the geometric arrangements of the target beads on the target structure.

At the same time one can also perform a negative design, in the case of
biased interactions with specific target beads, by hampering the folding into
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the a-helix, exploiting the geometric specificity of the addressed structure.
Let d;; and df; be the native distances of polymer target beads ¢ and j in the
desired fold and in the a-helix. Then a necessary condition to be satisfied in
order to hinder the fold into an a-helix is

‘dij — d?]‘ > 271 (32)

This criterion may account for the energetic selectivity of the pattern:
the desired fold will be the ground state of the free-energy landscape at zero
temperature. This is not sufficient, in general, to avoid the a-helical fold,
which is quite ubiquitous and difficult to hamper. Often the formation of
only one contact between the polymer and the pattern is enough to bias the
folding towards an a-helix.

The entropy contribute of the single helical configurations to the free
energy landscape is crucial. This is out of reach from the tuning of the
geometrical placement of interaction centres. In those cases, the steric hin-
drance due to the box walls needs to be fully exploited, by carefully choosing
the identity of the target beads on the polymer to be associated with the
interaction centres on the substrate.

The different folds listed in table 3.2 are ground states in the energy
landscape of the homopolymer, for suitable values of the effective parameters
ew and e,.. Only the three-stranded [-sheet is a local minimum for the
particular values selected in this study.

Interaction of the homopolymer in the box with several fold-specific pat-
terns have been performed, in order to test the efficiency of the number of
contact points and the geometric specificity of the chosen pattern towards
the selected structure. Some of those substrates are shown in table 3.3. The
relevant coordinates are only the ones on the plane xy: the height z is fixed,
because all the interaction centres belonging to the substrate lie on one inner
surface of the simulation box; the centre of the simulation box is the origin
of the reference system.

Pictures showing the typical kind of folded structure obtained using the
same values of e,, and e, and the different type of substrates listed in table 3.3
are shown in the following pages (drawn using VMD [63], Molscript [40] and
Raster3D [41]).

3.4 Unbiased interactions with the substrate

Introducing suitable contact interactions, we managed to observe the folding
into several structures of the list of table 3.2, even without any specific bias.
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Target fold Coordinates Target bead Geometry
-10.00 7.81 8 ©
(-sheet 8.65 0.00 18 L
19.05 0.00 0 © O
0.00 0.00 20 o
two-helix-bundle ~ 10.90 0.00 1 UL. o
-3.07 5.28 24
-1.16 0.00 15 ®
zinc-finger 11.99 0.00 19 O e o
0.00 5.15 24
-4.93 0.00 12 O
b—a—0 4.93 0.00 21 L
0.00 8.00 18 ©0

Table 3.3: Different substrates for polymer binding and folding, with z and
y axes shown in colour.
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C ¢
o

(a) Three stranded (3-sheet (b) Greek-key motif

Figure 3.3: Ground state (3.3(a)) and local minimum (3.3(b)) in the effective
free-energy landscape of the system with the substrate designed for the three-
stranded [3-sheet.

(a) Zinc-finger (b) B-helix

Figure 3.4: Competing minima in the effective free-energy landscape of the
system with the substrate for the zinc-finger.
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(a) Two helix bundle b)yf—a-p

Figure 3.5: Ground states of the system with the substrates designed for the
two helix bundle and the 8 — a — 3 folds respectively, shown in table 3.3.

Nevertheless the a-helix is always the resulting ground state structure in the
case of totally unbiased interactions.

We show the results obtained with several simulations performed using
the Monte Carlo simulated annealing technique on the polymer system with
the substrate modeled for the zinc-finger (table 3.3).

Pictures 3.6 show that different kinds of folds are in fact compatible with
the particular geometry that had been chosen to bind the [-hairpin of the
zinc-finger type conformation 3.6, thus leading to several possibilities for the
process of binding to the substrate.

The binding pattern — which models the partner of the disordered protein
— is shown using transparent spheres, whose radius is equal to the range
of their interaction with the corresponding amino acids of the ITUP. The
structures corresponding to the various local minima have been drawn using

Molscript [40], VMD [63] and Raster3D [41].

If we turn to the system with the substrate designed for the target fold of
type 0 —a — (3 as listed in table 3.3, and we perform a thermodynamic anal-
ysis by means of a long simulation with the technique of parallel tempering,
we are left with a result similar to the previous one. Completely unbiased
interactions between the substrate and the polymer let the a-helix fit the
geometry of the pattern, exploiting the three contacts to gain a considerable
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(a) E = -3268  (b)E=-26.72(2,21,16) (¢) E = -3116
(11,20,10) (13,21,12)

Figure 3.6: Local minima explored with several simulated annealings of the
system with the substrate designed for the zinc-finger as of table 3.3: the
ground state is the a-helix (identity of polymer beads bound to the substrate
points — in the same ordering as of table 3.3 are reported within parenthesis).
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(a) Plot of the specific heat vs. (b) Contour plot of the effective free-energy for the
temperature for the processes of system with the substrate for 3 — o — 0 at tem-
adsorption to the substrate and perature T = 0.18, represented as a function of the
folding. number of hydrogen bonds (N) and the number of

effective hydrophobic contacts (V).

Figure 3.7: Specific heat and contour plot of effective free energy for the
polymer in the presence of the substrate designed for the fold f — a — (8
slightly above the folding temperature.
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amount of energy and thus win the competition among local minima. The
specific heat plot of the system shows two peaks. The one at higher tem-
perature corresponds to the processes of binding, that is adsorption of the
polymer to the substrate; the second one marks the folding transition into
the ground state, which is the a-helix in this case.

3.5 Enhancing specificity of effective contacts

Totally unbiased interactions, between the polymeric chain and the substrate
mimicking the partner of the modeled interaction typical of disordered pro-
teins, leave too much freedom to the molecule. It may adopt in this way
several competing configurations. Then we make one step further, in order
to reduce the space of bound configurations.

100

Figure 3.8: Contour plot of the effective free energy for the system interacting
with the substrate of the zinc finger at a temperature below the folding, with
partially unbiased interactions.

In order to model a more specific kind of interaction between the disor-
dered protein and its functional partner, we proceed with the selection of
a subset of atoms along the polymer. These ones will let the polymer gain
energy upon binding.

This is actually more adherent to the biological event of binding and
folding occurring in known cases of mutual influence between unstructured
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proteins and their partners. Specificity is a key ingredient of the way the pro-
cess occurs, realized through electrostatic interactions and hydrogen bonding.
It can be accomplished only between selected atoms and residues: between
charged and polar residues, which turn out to be more abundant in unstruc-
tured proteins (see chapter 1). In this way the homopolymer model becomes
a heteropolymer one.

100
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-10
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Figure 3.9: Contour plots of the effective free energy vs. energy and rmsd
against 0 — a — ( (left) and vs. the number of hydrogen bonds and effec-
tive hydrophobic contacts for the substrate of the two helix bundle partially
unbiased.

The number of elements within the subset of the polymer’s beads is chosen
to be equal to the number of contact centres on the substrate, although
this can be varied arbitrarily. This choice has been made just for simpli-
city, keeping in mind the purpose to go further to very specific one-to-one
interactions.

The contour plot of figure 3.8 plots the free energy as a function of the
total number of hydrogen bonds (Nj) and the number of effective hydropho-
bic contacts (NNV,), in the case of the substrate designed for the zinc-finger.
There is an evident decrease in the number of local minima, with respect to
the case of the totally unbiased interactions, shown in the previous section.

This is of course what one expects: by specifying the correspondence
between the interaction centres of the substrate and the beads of the polymer
chain, one drastically reduces the entropy of some configurations, which turn
out to be depleted from the sampling. At the same time the target fold takes
advantage of the diminished entropy of some antagonist fold, thus increasing
its stability.

In some cases, the partially unbiased scheme adopted — three selected
beads along the chain being capable of a gain in energy by their binding to
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the substrate — is already a good approximation to the design problem faced
throughout this work. However the variables chosen to show the free energy
plot of figure 3.8 are sometimes misleading, since they may hide several types
of conformations, within the same local minimum of the free energy surface.

In fact, several different configurations may fit a similar number of hydro-
gen bonds an hydrophobic contacts: a deeper investigation on the variety of
structures hidden within a free energy contour plot like the one of figure 3.8
is thus needed.

This has been done by computing the root mean square deviation (RMSD)
of the configurations visited during the simulations against some reference
structures. In general two folds are enough. They were selected carefully for
each pattern geometry: the first choice is of course the target fold that we
wish to obtain through the folding, the second one an antagonist structure.

The RMSD has been calculated using the algorithm of Kabsch [64, 65],
which is by far the most used when referring only to the backbone. In the
present case, the level of coarse-graining applied makes easy the comparison
of the three-dimensional structures by letting the RMSD become a good
measure for the resemblance of two conformations.

As model system to treat, we discuss the results of the simulations per-
formed under the parallel tempering scheme for the pattern geometrically
arranged for a two helix bundle. We do not keep now the bias of polymer’s
atoms towards a specific interaction centre of the substrate, leaving the pos-
sibility of a global reshuffling of the three contacts listed in table 3.3.

The contour plots of figure 3.9 show the effective free energy as a function
of the energy and the RMSD against the structure of the § — o — (§ (plot
on the left): this is one of the antagonist folds of the two helix bundle, that
were encountered using this substrate. On the right side, the effective free
energy is plotted in the space of the total number of hydrogen bonds and the
number of effective hydrophobic contacts, as usual.

The left plot reveals a wealth of local minima which is not captured by
the standard plot used until now, showing several different structures visited
during the simulation at temperature T = 0.17, which lies below the peak of
the specific heat for that system, found at T = 0.173.

The striking result one can see from figure 3.9 is that folding occurs
favouring the  — a — (8 conformation despite the two helix bundle, without a
one-to-one bias of the effective interaction. This is due to the higher entropy
of the § — a — § in comparison to the two helices, as one can immediately
guess by looking at the energies of the two structures in table 3.2.

The target fold turns out to be the ground state at zero temperature, and
the free-energy landscape has been depleted by the several competing local
minima typical of the rugged landscape of the homopolymer with unbiased



3.6 One-to-one interactions 63

interactions with a three-beads substrate.

Unfortunately, the number of allowed configurations, compatible with the
reduced volume of the conformational space visited by the polymer during
a relatively long MC simulation !, is still enough to produce a low folding
temperature, compared to the one observed in the polymer free to move in
the bulk without any contact bias.

We are thus left with a first preliminary conclusion to this problem of
design, performed through effective interactions, mimicking partner recogni-
tion and binding of the intrinsically unstructured proteins modeled insofar.
Specific bias on the interactions occurring among polymer’s and partner’s
atoms is not strictly necessary to select only a subset of the presculpted folds
of the homopolymer. Still, in order to obtain folding to the specific target,
a strict bias is nonetheless essential, to prevent antagonist element from pre-
vailing, due to entropic reasons which cannot be easily controlled, at least
within such a simplistic scheme.

3.6 One-to-one interactions

Given the difficulties of the simple scheme adopted here, explained in the pre-
vious section, we introduce here a higher degree of specificity in the effective
interaction between the polymer and the substrate.

This has been accomplished by letting each interaction centre of the pat-
tern biasing the binding of one and only one atom of the homopolymer. Thus
we have a precise correspondence between the polymer and the pattern, ruled
not only by the geometry of the substrate, but by a sequence encoded by the
substrate’s centres as well.

If we ask ourselves to what extent is this bias realistic — as far as our
aim is to model the biology of binding and folding of IUPs — we have to
keep in mind that neglecting sequence is a lack of the present scheme. This
severely limits the capability of predicting the real behaviour of the molecule,
as already experienced with the unbiased and the relatively unbiased patterns
used until now.

On the contrary, it is well known [4, 1] that the sequence of the disor-
dered proteins encodes “disorder” to some extent, for instance with a relative
abundance of charged and polar residues with respect to the average of known
globular proteins [29]. This could be a major feature when the unstructured
protein approaches a molecular partner by binding to specific sites, guided
by chemical affinity.

' Nopoves =~ 102 sweeps. A “sweep” is an amount of elementary Monte Carlo moves
equal to polymer’s length.
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Figure 3.10: Two helix bundle substrate fitting the target structure in the ef-
fective free-energy versus hydrogen bonds and effective hydrophobic contacts
at 95 % of the folding temperature (left) and slightly above it (left).
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Figure 3.11: Specific heat and contour plot of effective free energy for the
two-helix bundle at 98 % of the folding temperature: the root mean square
deviation (RMSD) against one representative fold chosen for the two helix
bundle and one for the (3-helix, among those visited during the simulation
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By inspection on the case of the system with the substrate for the two
helix bundle 3.11, now using the specific bias shown in table 3.3, we were able
to suppress the occurrence of antagonist folds of type  — a — 3. Moreover,
the folding to the target occurs at a temperature higher than in the case
shown in the previous section, where the interaction was not yet so specific.

Now that we put the one-to-one bias for the interaction between poly-
mer and substrate, the relative entropy of the two-helix-bundle is increased,
gaining it from the absence of the former antagonist: the peak in the specific
heat related to folding is now at T = 0.178.
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Figure 3.12: Comparison of the temperature dependence of the specific heat
for the process of binding and folding of the homopolymer in the presence
of the pattern designed for the three-stranded [-sheet and the zinc-finger.
The vertical line marks the folding transition temperature of the chain in the
absence of the substrate.

Plots of the specific heat as a function of temperature (Fig. 3.11(a)) show
two peaks unlike the single peak observed in the absence of the binding.
The higher temperature peak is associated with the adsorption transition of
the polymer chain to the bottom wall containing the binding pattern while
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that at the lower temperature marks the folding transition into the target
structure.

100

i
40 =7
20
0
(a) Free energy landscape of the three- (b) Free energy landscape of the zinc-
stranded (3-sheet at the folding transition finger at the folding transition (Tjc =
(T = 0.218). 0.182).

Figure 3.13: Effective free energy as a function of the total number of hydro-
gen bonds and hydrophobic contacts.

Also in the case of the zinc-finger and the three-stranded (-sheet, the plot
of the specific heat shows the same behaviour (3.12). The relative positions
of the peaks in the different cases can be understood as follows. Different
binding patterns have different entropies for the disordered adsorbed state
which is populated at intermediate temperatures. This entropy is lower for
the three-stranded (3-sheet (the residues selected for the specific interaction
with the pattern are more spread out along the chain than in the zinc-finger
and the conformational freedom is more restricted as a result) so that the
adsorption (folding) transition ought to take place at a temperature lower
(higher) than for the case of the zinc-finger on ignoring the free energy dif-
ference between the two folded states and assuming that the average energy
of the disordered state is not affected by the nature of the pattern.

In the two different free energy landscapes of fig. 3.13 the logarithm of
the normalized histograms is plotted as a function of the total number of
hydrogen bonds (Nyp;) and of the effective hydrophobic contact (N, ). Data
points have been collected from equilibrium Monte Carlo simulations at the
temperatures characteristic of the folding transitions for the two systems:
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Figure 3.14: Contour plot of the effective free energy at temperature T = 0.2
for the three different cases; no pattern (left), three stranded (3-sheet pattern
(center), zinc-finger pattern (right).

T} =0.218, T2 = 0.182.

The relatively big difference in the two folding temperatures arises from
the manifestly different behaviour of the adsorbed phase. This is due, of
course, to the difference in the geometrical arrangement of the substrate
adopted. The reasons for the differences in the effective free energy landscape
experienced by the polymer may be investigated further by the analysis of the
landscape at a temperature intermediate between the two mentioned above.

Fig. 3.15 underscores the role of the binding pattern in shaping the energy
landscape of the IUP. Contour plots of the effective free energy as a function
of the total number of hydrogen bonds and the total number of hydrophobic
contacts are compared at the same temperature, T = 0.2, for three different
cases. No binding pattern is present on the left, then the three-stranded
(-sheet pattern is in the centre, and the zinc-finger pattern on the right.

In the first case the chosen temperature is slightly above the folding tran-
sition (see Fig. 3.12). Note that even in the absence of the binding pattern
the TUP is kept confined within the cubic box, and the denatured disordered
state is the most populated one.

The ground state (single a-helix) is populated as well, and the three-
stranded (3-sheet conformation appears as a competitive local minimum as
it is the case for a completely free chain [8].

In the three-stranded case, T = 0.2 is quite below the folding transition
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Figure 3.15: Contour plot of the effective free energy at the folding tem-
perature for the system with the substrates designed for the three-stranded
[-sheet (left) and for the zinc-finger (right). The RMSD of the latter is
computed against one of the antagonist structures resembling a [-helix.

temperature so that only the free energy minimum corresponding to the
three-stranded [-sheet target conformation is populated. The single helix
conformation is entirely absent, because it is incompatible with the chosen
binding pattern.

The free energy of the two different low temperature ordered states, the
three-stranded conformation in the presence of the pattern and single helix in
its absence, is similar. The folding transition temperature is increased in the
presence of the pattern, since the entropy of the disordered state is reduced
by adsorption to the binding substrate with respect to the bulk case, whereas
the intra-chain energy of the disordered state is not significantly influenced
by the presence of the pattern. We also found a competing conformation
similar to a greek-key motif (fig. 3.3(b)), which fits equally well the contact
pattern. However, the three-stranded target fold is the global free energy
minimum at the folding temperature.

In the case of the zinc finger the situation is more complex. The free
energy of the ordered target state, the zinc-finger like conformation, is lower
than that of a single helix or a three-stranded conformation. In fact, the
zinc-finger is not populated in the absence of the pattern, and the folding
transition temperature (T% = 0.182) is relatively well below T = 0.2.

As a consequence, at the latter temperature the denatured disordered
state is mostly populated. Note that the properties of this state are not

-10
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affected by the presence of the pattern for the coordinates used in the contour
plot.

Again, the single helix conformation is not compatible with the binding
pattern. The energy landscape might be more complex also because the
binding pattern could be less specific for the zinc-finger than for other kind
structures chosen among the fold menu of the homopolymer model: other
pre-sculpted minima different from zinc-finger are observed and compete en-
tropically with it.

At intermediate temperatures such as T = 0.2, a ($-helix like conformation
is actually the only one competing with the denatured state, as it is shown
in the contour plot. At the transition temperature the target zinc-finger
conformation is observed, along with a similar conformation in which the
helix is detached from the hairpin (data not shown).

One would then expect that the introduction of heterogeneity in the
model would serve to increase the specificity of the binding pattern towards
the target conformation.
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Chapter 4

Gaussian models for protein
function

Several studies in the past decades have shown the validity of the normal
modes approach to extract useful information on the large-scale functional
movements of proteins near their native state conformation [66, 67, 68, 69,
70].

Molecular dynamics simulations of biomolecules performed using detailed
all atoms potentials provides a wealth of information on chemical reactions,
but part of the insight resides in the time scale of the large amplitude, con-
certed displacements of atoms [71]. However, some aspects of these motions
can be obtained within simple coarse-grained approaches and to a limited
extent from the analysis of the Hessian matrix: in fact, it has been shown
that low-frequency motions provide the major part of the norm for those
global motions, whereas the fastest ones account for spatially localized fluc-
tuations [72, 73].

Dynamical trajectories of the atoms in the molecules can be decomposed
along a orthogonal set of eigenvectors of the covariance matrix [74]; thus one
is brought to interpret the functional, large amplitude motions of biological
relevance for proteins as superpositions of the principal motions of a network
of atoms.

A pioneering work developed by Tirion [75] paved the way for extremely
simplified Normal Mode Analysis (NMA): detailed harmonic potentials are
replaced by a single-parameter, spring-like potential between atoms found to
be in contact in the native configuration.

Despite the extreme simplicity of this approach, the good agreement ob-
tained with atomic mean square displacements and vibrational spectra of
molecular dynamics simulations [75] opened the possibility for further stud-
ies, within the same approach [76, 77, 78, 79, 80, 81, 82, 83]: a good level

71
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of consistency with more accurate analyses is achieved even treating pro-
teins under coarse-grained schemes, as recently shown by Gaussian Network
Models [76, 77, 78, 79, 80, 81|, simple yet useful models that explore the
collective motions of proteins, profitably adopted in a variety of biological
contexts [84, 85].

In the present study two structures recently solved [86] are addressed,
which belong to the family of truncated hemoglobins (trHbs), small heme
proteins widely distributed in bacteria, protozoa and plants, forming a dis-
tinct group within the hemoglobin super-family [87, 88, 89].

Though having a simpler structure than the traditional globin fold, they
still preserve the respiratory function, providing transport and storage of
oxygen molecules. Furthermore they have been proposed to be involved also
in other biological functions, such as protection against reactive nitrogen
species, photosynthesis or to act as terminal oxidases [90, 91, 92, 87].

The low complexity of trHbs structure, compared to normal globin folds,
might help the comprehension of the mechanisms used by these shorter
molecules to bind small ligands to the heme iron atom (e.g.: O, their main
target, and C'O, to which heme has a high affinity).

In particular, the presence of an apolar cavity system extending through-
out the protein matrix of truncated hemoglobin from Mycobacterium Tuber-
culosis and homologous structures has been recently noticed [93, 89]: this
tunnel connects the heme distal pocket to the protein surface, and may thus
allow an efficient diffusion path for oxygen and other small molecules to the
iron atom (fig.4.1).

The role of protein cavities has been deeply investigated in myoglobin (see
[94, 95, 89] and references therein), both theoretically using computer simula-
tions and experimentally suggesting pathways for ligands migration switched
by a small number of substates, which can be allosterically converted to the
stable conformations [96].

These issues are investigated here from a novel point of view, through
a simple coarse-grained scheme in the spirit of the Gaussian chain models,
with a twofold goal: understanding the mechanical processes involved in the
functional movements of these key proteins and taking advantage of this new
Gaussian framework, computationally fast and conceptually simple.

4.1 Structural characterization

The structures addressed in the present study are two truncated hemoglobins
from the ciliated protozoan Paramecium Caudatum (PtrHb, pdb id: 1dlw)
and the green unicellular alga Chlamydomonas Eugametos (CtrHb, pdb id:



4.1 Structural characterization 73

Gly35(E1)
(a) ¥ _?EeSS(CDl) (b)

Figure 4.1: Truncated hemoglobin fold from Paramecium Caudatum: helices,
coils and the main residues described in the text are labeled according to
the standard nomenclature for globins. The two-over-two helical structure
enclosing the heme group is clearly visible: (a) side view, (b) top view. Figure
drawn using Molscript [40] and Raster3d [41].

1dly), solved at 1.54 and 1.80 A resolution respectively, by Pesce et al. [86].

Similarly to the other proteins belonging to the trHb family, they display
low sequence identity with hemoglobins from vertebrate and non vertebrate.
This is smaller than 15% for PtrHb and CtrHb, due to substantial residue
deletions at either N- or C- termini and in the C and D helical region of the
globin fold [86].

More than 70% of the residues in the two structures belongs to helices,
mainly of type a (above 67% in both proteins: only the short helix C is of
type 310): this is a typical feature of the globin fold, which leads to guess
a primary role of helices in the functional motions of these proteins, as well
as in myoglobin and hemoglobin. Nonetheless several structural differences
make truncated hemoglobins fall in a distinct group in the hemoglobin su-
perfamily [89, 86].

Helices in the globin fold are traditionally indexed through capital letters
A, B, C, D, E, F, G and H, while loops between them are named accord-
ing to the nearby helices, and residues are numbered sequentially with each
unit [97].

The structures taken in consideration here reveal the so called “two over
two « helical sandwich” (fig. 4.1), in place of the classical “three over three”
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observed in the globin fold [46]: in fact helix D is absent, while N-terminal
A helix and proximal F helix are drastically reduced to only one turn.

A structure-based sequence alignment of PtrHb, CtrHb and other trun-
cated hemoglobins with sperm whale Myoglobin, reported in [86], shows the
strongly conserved residues among proteins in the trHbs family, mainly of
three types:

glycine rich motifs especially at helices termini, which enhance structural
flexibility (Gly-Gly motifs at the beginning of the AB and EF regions,
and Gly-Arg/Lys in the pre-F region [86]);

hydrophobic residues on heme distal and proximal sides, which play the
main role of shielding heme from solvent molecules, in order to prevent
iron oxidation ;

heme binding residues stabilizing the porphyrin ring in the heme pocket;

one particularly relevant is the proximal histidine, His 68, localized on
helix F.

Strongly conserved residues on the distal side responsible for the shielding
of the heme pocket from the solvent are mainly localized on helices B and E,
as well as in the CD and EF loops: hydrophobic residues Phe A12, B9, CD1,
E14 and Trp EF7, with their side chains pointing to the inner part of the
molecule; Tyr B10, Gln E7, with side chains responsible for the stabilization
of the ligand bound to heme [86, 89].

The hydrophobic residues identified in [86, 93] as the ones defining a cavity
inside the molecule, linking the solvent exposed surface of the proteins to the
heme group are positioned on the distal side. They are mainly localized on
helices A (at the opening of the tunnel on the surface), B, E (limiting the
distal side) and G.

On the proximal side of the heme pocket one finds the proximal histidine,
in a strongly conserved position within hemoglobin (Hb) and trHb families:
the imidazole ring of histidine allows it to act as either a proton donor or
acceptor at physiological pH. In hemoglobins is essential its ability to buffer
the HT ions from carbonic acid ionization in red blood cells, allowing the
molecule to exchange O, and CO, respectively at the tissues and at the
lungs [98].

It will be shown how the small « helix F, which contains the proximal
histidine F8, can play a leading role as a reference position for elucidating
the functional motions of the protein regions around the heme pocket.
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4.2 Theory

The model adopted in this study is the Beta Gaussian Model (GGM) pre-
sented in [84]. It is an extension of the Anisotropic Gaussian Model (ANM) [76,
77,78, 79, 80, 81], a single parameter model apt to describe small amplitude
fluctuations of residues around their native-state equilibrium.

Only alpha and beta carbon atoms (C®, C?) are treated: rather than the
actual CP, the latter is an effective centroid accounting for the directionality
of the side chain, built for all residues but glycines and terminal ones; its
position is determined by the coordinates of neighbouring « carbons [99, 84],
according to the following relation:

(07
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where Iy = 3 A, the vectors r¢ and r? hold the native coordinates of the a
carbon atom and of the effective § centroid which belong to the ¢th residue.
Expanding the displacement of the C? from the equilibrium to leading order
in the displacements of the C*s one gets:

(07 (07 o
20rg — or , —ory
(0% o o
|2ri — i = I'i—1|

The Hamiltonian of the system depends quadratically on the deviations
of the C* and C” from their native positions, assumed to be the energy
minimum in the configuration space (thus neglecting crystal effects on X-
ray structures): the displacements of protein’s atoms from the equilibrium
position are supposed to be small enough to justify this approximation [66,
79, 74).

The Hamiltonian includes interactions between a and (3 carbons lying
within a cut-off distance r., above which no pairwise interaction is allowed,
as well as an effective interaction accounting for the strength of the peptide
bond for nearest-neighbouring C%s:

H = HPPHe 4 Ho 4 1O 4 1 (4.3)

where

Hpevtide = 7pz:z:./\/lmﬂ (o, ) 61, 0myy
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7p is the elastic constant accounting for the relative strength of the effective
peptidic interaction between nearest-neighbouring o carbons;

Yay is the elastic constant for the contact interaction between carbon atoms
of type z and y (z,y € {a, 8});

gy is Kronecker delta to avoid double counting of the interactions between
atoms of the same type;

or? is the displacement from the native position of the carbon atom of type x
that belongs to the ith residue (p and v are the indexes of the Cartesian
components);

Mi;i(z,y) (i # j) is a (3 x 3) matrix, the off-diagonal super-element of the
hessian matrix for the interaction between atoms of type x and y which
belong to residues ¢ and j:

Ty Ty
Pig Tigw (4.5)

Mg (o) =T 5

ij
where I'}Y (i # j) is equal to 1 if the native separation of the correspond-
ing atoms lies below the cut-off radius r., 0 otherwise; rj/ = r{ —r is
the vector of native separation of atoms of type x and y that belong
to residues ¢ and j respectively. Entries of diagonal super-elements are
built according to the relation:

J#i

Since the position of the effective C? and its displacement from equilib-
rium are fully determined by « carbons coordinates ( equations (4.1) and
(4.2) ), by substitution of (4.1) and (4.2) in (4.4) one is left with an effective
hamiltonian H which depends quadratically on C* displacements from native
state [84] (the index of atom type will be therefore dropped in the following
equations for simplicity):

= 1SS Mor, ory (4.7)

ij

where v, and 7., (z,y € {«a, 5}) have been incorporated in ij, expressed
in units of the reference elastic constant ~.
Time dependent two-point correlation functions can be calculated within
a Langevin dynamics leading to equilibrium with the Boltzmann factor e=# 7 [77].
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In the overdamped regime with the viscous damping factor f, the same for

all residues [76], and white noise 7;(t) , the Langevin equation for our system
is [100]:

d ~ v
F o0 (8) 7 2 M o150 (t) = milt) (4.8)
4
One can easily get from equation (4.8) the time dependence of cross cor-
relations between couples of Cs (the so-called “reduced” cross-correlations):
kT 1 t
= LN (ay - aj) e T (4.9)

(rlt) ey (0)) = 2= 3

T = % is the reference relaxation time, corresponding to an overdamped
spring of elastic constant v in a dissipative medium of friction f; [ are non
zero eigenvalues of M and a; the corresponding eigenvectors.

Theoretical B-factors (measured in A2) are obtained from the diagonal
elements of the reduced covariance matrix (i.e. from the mean square fluctu-
ations of C%s around native-state equilibrium, after thermal equilibrium has
been reached), through the relation:

2

Equation (4.10) will be used to fit the experimental B-factors and get an

estimate of the reference elastic constant ~.

4.3 Tuning model parameters

In order to obtain reliable data for the structures under study, we compare
theoretical and experimental results using the ranking correlation between
the two data sets as a guideline to tune model parameters to their optimal
values.

ANM was applied on the structures as well as SGM: in the case of the
trHb, the theoretical temperature factors obtained with the SGM showed
a higher value of Kendall’s non parametric 7 [101](see below) against the
experimental ones (7 = 0.45 for ANM with r, = 13.0 A, 7 = 0.57 for SGM
with r, = 7.0 A, in the case of 1DLW).

ANM works very well for bigger complexes, while for smaller proteins
more details are required: the reason for the better agreement obtained by
the SGM is to be found in the presence of the (5 centroids, which considerably
increases the number of pairwise interactions and takes into account the
directionality of the side chains is in the contact map of a carbons.
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As a consequence, the SGM needs a lower and more realistic cut-off ra-
dius r. to reproduce experimental B-factors and molecular dynamics data,
in comparison to those used by ANM [80], as already remarked in a previous
study [84], even with small proteins like trHbs: hence the choice to use the
BGM in the present work.

Here in particular, the best agreement between theory and experiment
was found using a cut-off of 7.0 A.

This choice is imposed by the difference in compactness between helical
regions and coils, and it is critical in order to keep the density of effective
contact interactions at the coarse-grained level comparable to the all atoms
one.

Larger cut-offs cause contact density to be overestimated for the helical
regions, leading to smaller values of B-factors, with respect to the experiment:
the consequence is a marked difference between flexible and solvent exposed
parts of the protein, compared to the less flexible and buried parts (fig. 4.2).

A key point was the tuning of v,, the ratio between the effective peptide
bond and the cev interaction: it accounts for the relative stiffness of the cova-
lent bonds along the backbone as opposed to the weaker contact interactions
between C* pairs.

Summarizing the values for the parameters used in the calculation for
both structures, 7. = 7.0 A, 7, = 2.0, Yoo = Yas = 78 = 1.0 (the last ones
are in units of ). The value of the reference elastic constant v will be deter-
mined later, fitting the results of the model with the available experimental
data.

4.4 'Temperature factors and heme modeling

Truncated hemoglobins are heme proteins, the heme group being the active
site of the molecule: there oxygen and carbon oxide bind to the sixth coordi-
nation position of the iron atom, which lies at the center of the tetrapyrrole
ring and is bound to the imidazole ring of the proximal histidine F'8 at the fifth
coordination site (His 68, eighth residue of helix F in sperm whale myoglobin
and in vertebrate hemoglobins, where nomenclature “F8” comes from [102]).

Figure 4.2 shows the plot of the o carbon atoms B-factors of the X-ray
structure of truncated hemoglobin in Paramecium Caudatum and their cor-
responding mean square displacements derived from the SGM: most mobile
regions are loops and turns between helices, which on the contrary display
smaller fluctuations, in agreement with the results of an NMA study per-
formed on deoxymyoglobin (Mb) [103, 104].

The significance of the correlation between experimental and theoretical
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Figure 4.2: Theoretical (black) versus experimental (gray) X-ray B-factors
for a carbons in PtrHb, related through equation 4.10. Theoretical B-factors
including coarse-grained heme group are shown for comparison (dashed). He-
lical segments have been marked on residues axis. The inset shows theoretical
versus experimental B-factors for coarse-grained heme, with pdb names of
iron and carbons included in the coarse-graining.
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values is deduced from Kendall’s non parametric 7 [101]. Since one does not
know a priori the probability distribution of the experimental B-factors, a
significance for the agreement between the two data sets cannot be computed
from the value of the linear correlation coefficient. On the other hand, the
rank correlation given by 7 is independent from the distribution. Kendall’s
7 for PtrHb is 0.57 (0.52 with heme), for CtrHb is 0.37 (0.40 with heme),
and P, (7) < 1072 in all cases (P, (7) is the probability for two random
sets of data to have a value of 7 bigger than the one found between B-factors
predicted by the model and calculated from X-ray structure. The number of
residues is 116 for PtrHb and 121 for CtrHb).

The coarse-graining on the heme group includes the iron atom and nine
carbons of the porphyrin ring (whose names are reported on the x axis of
the inset in fig. 4.2), chosen in order to keep the number of contacts in
the modeled system comparable to the number of heme native contacts with
nearby residues, thus avoiding to have a loosely connected group as an artifact
of the coarse-graining procedure.

Insertion of heme brings only one relevant change to the temperature fac-
tors plot (fig. 4.2): helix F has displacements from equilibrium considerably
damped, as it was expected, being bound to the iron atom. A reduction in
the fluctuations is shown also by the loops between helices C and F, to a
lesser extent than in helix F'.

The protein part of the reduced covariance matrix obtained including
the coarse-grained heme was compared with the covariance matrix computed
without modeling the tetrapyrrole ring. The two show a Kendall’s parametric
correlation 7 ~ 0.81 over more than thirteen thousands of points, which
stands for a remarkable agreement between them: the coarse-grained heme
in fact anticorrelates with the same parts of the protein as helix F, even if
more weakly (data not shown). This is not surprising, since the iron atom
and the proximal histidine F'8 are in direct contact, so the motion of the heme
group will be strongly correlated with the one of the F helix, following the
proximal side in its deviations from native-state equilibrium; the inclusion
of few more atoms under the coarse-grained scheme adopted here do not
seem to significantly modify the correlations: further details are needed to
extract significant informations on the dynamics of heme. The mechanical
response of the protein upon binding of ligands on the iron atom is given
by the properties of the network of backbone atoms: thus a good agreement
with known behavior of globins may be achieved using gaussian models even
without considering heme groups in the coarse-graining procedure [105].

The SGM heme B-factors plot is in substantial agreement with the exper-
imental B-factors for heme (fig. 4.2, smaller plot). In fact the heme pocket is
entirely surrounded by non polar residues: one of the main purposes of the
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distal region is to screen the heme group from solvent interaction, in order
to avoid iron oxidation [102].

The results for Kendall’s ranking lie in the typical range of gaussian mod-
els [84], even with terminal residues included, and the confidence of the cor-
relation is no doubt statistically significant: still there are some regions of the
protein whose fluctuations are not well reproduced by the model, as shown
in the plot of temperature factors (fig. 4.2).

The model overestimates interactions between v and (3 carbons belonging
to secondary structures, resulting in local deviations from the density of the
all atom picture. Hence displacements of residues belonging to helical regions
are underestimated, since these are the most compact parts of the protein
and it produces deviations in the profile of B-factors, whose values depend
both on the assembly of secondary motifs [106] and on the local packing
density [107].

Furthermore, electrostatics and solvent exposure for different residues are
not taken into account by the simple approach of the model: electrostatic
interactions localized on helices may modify the magnitude of the driving
forces producing larger displacements from native state than expected.

POPS program (Parameter OPtimized Surface [108]) has been used to
calculate the solvent accessible surface area per residue for PtrHb: the most
exposed residues are the ones displaying the greatest average displacements
from the native structure, as it was expected (figg. 4.2, 4.5). These small
residues (Gly 35, the GGP region — Gly54, Gly55, Pro56 — Thr60, Gly61),
located in loops CD, EF and to the pre-F region, allow larger flexibility to the
polypeptide chain (glycines especially) and the bigger fluctuations predicted
by the model are due to their diminished connectivity as well, being the most
exposed to the solvent. This was expected, since the model totally neglects
solvent exposure.

The simplified approach used here shows a remarkably better agreement
with experiment, for buried regions, where the connectivity of atoms is
greater and the solvent plays a minor role.

4.5 Results and Discussion

In order to identify the relevant motions of the protein the reduced covari-
ance matrix plot (figure 4.3) of PtrHb modeled without the heme group is
inspected (PtrHb will be the main target of the following discussion, the
same considerations holding for CtrHb as well), normalized as follows:
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Figure 4.3: Normalized covariance matrix: trivial correlations due to con-
tacts have been put to 0 (green); diagonal elements are equal to 1 (red); anti
correlation range from 0 to the minimum value found, for Gln41l (E7) and
His68 (F'8), lower then -0.35 (blue). Helical regions have been highlighted.

Cij = <5rz . 6rj> (411)

\/(6ri - 0r;) (dr; - or;)

Normalization is generally performed in order to allow a direct compar-
ison between the cross-correlations predicted by the model and the ones
obtained in computer simulations, e.g. from molecular dynamics, provided
equilibration has been reached [109].

From the reduced normalized covariance matrix one is able to extract
non trivial informations on the collective motions of the protein under study:
these generally involve the regions of the molecule that show negative corre-
lations.

Indeed it turns out that spatially closed parts of the molecule, i.e. residues
in contact, undergo motions with positive correlation, as one would expect
for contact-driven motions.

One can identify three main blocks in the covariance plot (fig. 4.3): the
first one contains helices A, B, C, E, the loops between them and the EF
loop; the second one includes clearly the preF-loop, heme bound helix F, as
well as the first part of helix G, while the third block hosts the major part
of helix G and the C-terminal side of helix H.

Most residues in the first block, especially the ones belonging to helical
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regions A, B and E (distal side), show a remarkable anti-correlation with
residues localized at the beginning of the second block, belonging to the
proximal helix F and to helix G; in the third block the last turns of helix H
is bent at the C-terminal to allow closer contacts with heme [86].

This division in domain of motions is similar to the one found in [103]
for deoxymyoglobin, provided that one notes the effect of the bending of C-
terminal side in helix H, which implies a correlated motion with the proximal
side, as suggested by fig. 4.4, where normalized correlations between His68
(F8) and the rest of the protein are shown. Here the crucial role of small
helix F in the dynamics of the protein is underlined, since it contains the
proximal histidine, and the division of the protein in domains of motion as
described above is made more evident.
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Figure 4.4: Normalized cross correlations between the proximal histidine
F'8 and the rest of the protein (cgs;, hence the peak raising to 1.0 at j = 68):
residues displaying significant anti-correlations with His68 are labeled in the
plot. Like Phel9 (B9), they are strongly conserved throughout the trHb
family [86], being relevant to prevent solvent access to the heme pocket (E14,
EF7 [86]), to stabilize heme bound ligand (E7 [86]) and to build the gate
between the heme pocket and an apolar cavity running inside the protein
matrix (G12, H11 [93]).

The covariance minima in the plot of figure 4.4 are particularly mean-
ingful, being found between His F8 and other key residues of the protein.
Phel9 (B9), which has a bulky side chain, is responsible for the screening
of the distal cavity from the aqueous environment outside the molecule, and
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is strongly conserved among trHbs; in a position occupied by the distal his-
tidine in vertebrate Hbs we found Gln4l (E7), hydrogen bonded to Tyr20
(B10), which contribute to stabilize the heme-bound ligand [86] and form a
hydrogen bonding network in the heme pocket, which is believed to be re-
sponsible for the different ligand rebinding kinetics displayed by PtrHb and
CtrHb in comparison with Mbs and Hbs [110].

His68, taken here as a representative to deduce the motion of the whole
proximal side from the covariance and correlation plots (figg. 4.3, 4.4), anti-
correlates with hydrophobic Phe33 (CD1) as well, another strongly conserved
residue among trHbs: together with the previous three residues they line
precisely the distal cavity facing the heme group. The anti-correlation of
the distal and proximal sides is a clear sign of the concerted motion which
may allow the heme pocket to expand, thus making easier access to heme for
ligands coming from the apolar cavity that links the inner part of the protein
to the solvent [86], escaping the steric hindrance of the distal side residues.

Strong anti-correlation with the proximal histidine are displayed by Leu49
(E15), Leu85 (G12) and Ala/Vall06 (H11) as well: these residues lie at the
bottom of the distal cavity, at the interface between the tunnel running inside
the protein matrix and the heme pocket [93, 111].

The anticorrelated motion of the proximal and distal sides is made more
visible by inspection of the components of the eigenvectors corresponding to
the first two slowest overdamped modes, plotted in figure 4.5.

Residues displaying the biggest deviations from their native positions are
highlighted: they belong to loops between helices lining the heme pocket (CD
and EF loops, pre-F region), and to helices enclosing the distal and proximal
sides (helix B and E, helix F and H). These modes contribute substantially to
the opening and closing of the distal side, in agreement with previous studies
on globins [103, 104].

A detailed view of the conformations visited by the first mode is shown
in figure 4.6, where the open and closed structures of the distal cavity are
displayed, along with distal residues Tyr B10 and Gln E7.

From the covariance plot (fig. 4.3) and the component along the y axis
of the second slowest eigenvector of figure 4.5 (although small, due to the
normalization, which enhances most mobile regions like loops) one can notice
the anticorrelation of the proximal histidine with the residues identified to
line the passage leading to the heme pocket from the tunnel inside the protein
(mainly Phel9, Leu85 and Alal06, already evidenced in fig. 4.4) [93, 89, 112,
111]. The anti-correlation between the two groups of residues hints at a
possible mechanism for the passage of ligands to the heme pocket, through
the enlargement of the gate: the presence of the apolar cavity has been
proposed to contribute effectively to the fast rebinding of ligands on heme,
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Figure 4.5: Components of normalized eigenvectors for the first two slowest
modes of motion (1, top; 2, bottom; ratio of corresponding eigenvalues: 1.16),
which bring a similar contribute to the dominant opening mechanism of the
distal cavity, driven by the anticorrelated motions of the proximal (pre-F
loop, helix F, loop FG and last part of helix H) and distal sides (helix C,
CD loop and helix E especially). Residues with bulky side chains, strongly
conserved in the family of trHbs and belonging to the hydrophobic cluster
preventing solvent access to the heme pocket [86] are spatially located near
the residues with biggest components, highlighted in the plot: Phe33 (CD1),
Trp59 (EFT7), Phe48 (E14). The latter acts as gating residue in trHbN from

Mycobacterium Tuberculosis [111].
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Figure 4.6: Open (left) and closed (right) conformations of the distal cavity,
obtained by adding or subtracting the rescaled eigenvector of the first slowest
mode to the native positions of o carbons (scaling factor: 20). Most mobile
regions in the first mode are coloured in red (loops) and purple (helices).
Heme group and native structure are drawn in gray, as well as heme bound
ligand stabilizing residues Tyr B10 and Gln E7 and hinges of the distal side
opening mechanism — Pro EF3 and Gln G4 (figure drawn using VMD [63]
and Raster3d [41]).
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together with the hydrogen bonding network in the distal side, as already
pointed out [93, 110, 112, 89, 113].

Figure 4.7: Schematic representation of near equilibrium motions of groups
of residues delimiting the heme pocket, inferred from covariance analysis:
solvent accessible surfaces of residues delimiting the apolar cavity (res. 6,
12, 16, 17, 49, 53, 85, 89, lower left), and the distal cavity (proximal side:
res. 64, 68, 71, upper right; distal side: res. 19, 20, 32, 33, 41, upper left) are
shown with a 1.4 A radius probe. Ball-and-stick representation is used for
His68 and the residues labeled in figure 4.4. The cluster in the lower right
(res. 48, 51, 52, 59, 105, 109) defines a narrower cavity [112]. Figure drawn
with VMD [63], rendered with Raster3d [41].

The decay of these essential modes is compatible with a combined motion
of the main blocks similar to a pumping mechanism: according to the results
obtained in this study, the native state conformation of the two truncated
hemoglobins is such that small displacements of the atoms, due to stochastic
interactions with the solvent, produce an anti-correlated motion of the prox-
imal and distal sides, which line the heme pocket, bringing atoms back to
equilibrium positions. These movements may facilitate the diffusion of small
ligands such as Oy and C'O to heme through the protein tunnel, exploiting
its volume variations [111].



88 Gaussian models for protein function

4.6 Elasticity and time scale

An estimate of the reference elastic constant « of the model can be computed
fitting the experimental temperature factors of the X-ray structures with
the theoretical ones, obtained from the mean square displacements of C%s,
according to equation (4.10). Following the method used in [77] to fit the
data (i.e. by matching the areas of the surface enclosed by the two data sets)
and averaging the values found for the two proteins yields v = 0.20 Nm ™!,
with a tolerance of 0.05 Nm~! between averaged values (the introduction
of heme in the network of interactions leads to a decrease of the value of
the reference elastic constant, since it enhances the local connectivity of the
buried residues in the heme pocket). The order of magnitude obtained for
~ agrees with estimated values for the elastic constant of single parameter
models [75, 80, 84, 85].

The importance of friction due to the solvent in determining the rates of
functional motions of proteins, as it slows down the relaxation times of large-
scale displacements predicted by normal mode analysis, has recently been
underlined [114]: in the framework of the Langevin dynamics introduced with
equation (4.8), we estimate order of magnitude for the reference decay time
7 of the first two modes of motion previously described, through an effective
value for the friction coefficient f, chosen to be the same for all residues
for simplicity. A lower limit for f is the value computed from an all-atom
simulation in [115], whereas here whole residues are considered (although the
effective radii associated with such an estimate are bigger than the Van der
Waals radii of the atoms in the simulation, hinting at a collective character
of the simulated displacements [115], the motions predicted by the slowest
modes involve many more residues in distant parts of the protein and a
larger value for the friction may be expected). As an upper limit, the friction
relative to the whole proteins (both PtrHb and CtrHb roughly fit a cubic
box of side 3.5 nm) moving in water at physiological conditions is calculated
from Stoke’s law (see [116], chapter 3). We obtained f ~ 4 + T0pNm™'s
(similar ranges for the values of friction coefficients have been extracted from
molecular dynamics simulations [117]).

The corresponding reference relaxation time 7 in the Langevin dynam-
ics of equations 4.8 and 4.9 lies within the range 0.02 + 0.35ns, while the
relaxation time associated with eigenmode 7 will be 7, = i (where I; is
the eigenvalue relative to that eigenmode): the two slowest eigenmodes dis-
play relaxation times for the related motions approximately within the range
0.2 = 3.5ns.

This range of time scale is compatible with CO rebinding kinetics of Mbs
and Hbs, while PtrHb and CtrHb behave quite differently [110]: the expla-
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nation proposed for the different behaviour relies on the hydrogen-bonding
network formed in the distal cavity of these trHbs, which is absent in inver-
tebrate globins and is beyond the possibility of the simple model used here,
which underlines instead the common characteristics of globins and trHbs.
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Conclusions and perspectives

We have shown in this thesis that the validity of a coarse-grained model for
folding, based on simple geometrical rules for the hydrogen bonds and on the
physico-chemical properties common to globular proteins, can be extended
to the modelization of the interaction of intrinsically unstructured proteins
with a suitable partner. Such modelization is based mainly on the spatial
arrangement of the binding centers which specify the interaction pattern of
the IUP with its binding partner, emphasizing once more the role of geometry.

The successful application of the model adopted in the present work to
several aspects of protein behaviour include the ability of globular proteins
to fold reproducibly, the limited number and the simple modular nature of
native state folds, which are built of helices and almost planar sheets and
are recovered as local minima in the free energy landscape of a homopolymer
chain. The framework developed for understanding these common features of
globular proteins lends itself as well to the description of apparently disparate
phenomena such as the behaviour of intrinsically unstructured proteins, as
shown in this thesis, sequence design or amyloid formation.

This suggests how considerations of geometry and symmetry are crucial
in the protein folding problem. They lead not only to the existence of a
limited menu of native state folds but also, in the case of a intrinsically
unstructured protein, to the possibility of selecting the structure of choice
from this predetermined menu by suitably adjusting the patterns of effective
interactions mimicking the presence of the binding partner of the IUP.

Remaining within a homopolymer description of the protein chain (the
simplest possible one), we indeed have shown how a proper geometrical design
of the interaction pattern proved to be crucial in the effective selection of the
target fold, among the list of the presculpted minima predicted by the model
for a isolated hompolymer chain. Still, in few cases the lack of more spe-
cific information, that could have been encoded in a heterogeneous sequence,
prevents the chosen target fold from being the global free energy minimum.
This is due to the competition from either the ground state conformation of
single isolated chain, the a-helix, or other folds from the presculpted menu
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that are still compatible with the spatial geometry of the interaction pattern.

The introduction of sequence heterogeneity, even a two-letter one within
a simple hydrophobic-polar scheme, would probably help completing the suc-
cessful discrimination of the correct target fold by means of geometric design
procedure already employed in this thesis. This is indeed the direction of the
ongoing work; the actual three-dimensional structure of the binding partner
of a IUP is now used to model the binding sites of the substrate, and the
actual sequence of the disordered segment is modeled adding heterogeneity,
with already promising results.

In the last chapter of this thesis we presented, it has been shown how
this simple coarse-grained approach can bring insights into the functional
motions of two small proteins of the truncated hemoglobins family, PtrHb
and CtrHb, near equilibrium vibrational properties of the structures modeled
as a gaussian network of interacting o carbons and (3 centroids.

The key point in the analysis performed here is the information extracted
from the covariance matrix in its reduced form and from the two slowest
modes of fluctuation: negative correlations between residues set far apart
in the tridimensional structure are particularly useful, being non trivial and
hinting at the collective character of the motions.

This information has been used in the present work to confirm within
such a simplified approach the mechanism which is believed to facilitate small
ligands diffusion to the heme pocket and the iron atom. The cavity delimited
by several key hydrophobic residues, providing a path from the surface of the
protein to the heme pocket [86, 93, 113, 89],, is able to enlarge its volume
allowing the passage of small molecules to the distal side [110, 111], as it is
inferred from the anti-correlations between the displacements of the opposite
sides of the heme pocket.

Excitations, due to interactions between the molecule and the solvent,
produce deviations from equilibrium followed by a decay towards the native
state. The collective behaviour of the return back to equilibrium, produced
by a superposition of overdamped motions, allow the volume of the inner
cavities to vary accordingly.

Through a fit of the mean square displacements of o carbons from their
minimum energy configuration with the experimental temperature factors for
the two structures under study, a rough estimate of the order of magnitude
of time scale for functionally relevant motions has been given, in reasonable
agreement with known properties of globular proteins.

This suggests the validity of the simple gaussian approach as a means
to get a fast picture of the near-native functional motions of globular pro-
teins, yet in agreement with the results obtained using more accurate and
computationally demanding tools.



Conclusions and Perspectives 93

The description given by the simple model used here does not provide
atomic details, keeping the analysis at a coarse-grained level. Still the use of
the effective 3 centroid for each residue, along with the C*, helps in character-
izing with more adherence to reality the displacements of residues side-chains,
thus getting a closer agreement with more detailed approaches.



94

Conclusions and Perspectives




Bibliography

1]

M. Fuxreiter, I. Simon, P. Friedrich, and P. Tompa. Preformed struc-
tural elements feature in partner recognition by intrinsically unstruc-
tured proteins. J. Mol. Biol., 338:1015-1026, 2004.

D. Shortle and M. S. Ackerman. Persistence of native-like topology in
a denatured protein in 8 m urea. Science, 293:487-489, 2001.

V. N. Uversky. What does it mean to be natively unfolded? FEur. J.
Biochem., 269:2-12, 2002.

A. K. Dunker, J. D. Lawson, C. J. Brown, R. M. Williams, P. Romero,
J. S. Oh, C. J. Oldfield, A. M. Campen, C. M. Ratcliff, K. W. Hipps,
J. Ausio, M. S. Nissen, R. Reeves, C. H. Kang, C. R. Kissinger, R. W.
Bailey, M. D. Griswold, W. Chiu, E. C. Garner, and z. Obradovic.
Intrinsically disordered protein. J. Mol. Graph. Model., 19:26-59, 2001.

A. K. Dunker and Z. Obradovic. The protein trinity - linking function
and disorder. Nat. Biotechnol., 19:805-806, 2001.

H. J. Dyson and P. E. Wright. Coupling of folding and binding for
unstructured proteins. Curr. Opin. Struct. Biol., 12:54—60, 2002.

P. Tompa. Intrinsically unstructured proteins. Trends Biochem. Sci.,
27:527-533, 2002.

T. X. Hoang, A. Trovato, F. Seno, J. R. Banavar, and A. Maritan. Ge-
ometry and symmetry pre-sculpt the free energy landscape of proteins.
Proc. Natl. Acad. Sci. USA, 101:7960-7964, 2004.

J. R. Banavar, T. X. Hoang, A. Maritan, F. Seno, and A. Trovato. A

unified perspective on proteins — a physics approach. Phys. Rev. E,
70:041905, 2004.

95



96

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[18]

[19]

[20]

[21]

[22]

P. E. Wright and H. J. Dyson. Intrinsically unstructured proteins:
Re-assessing the protein structure-function paradigm. J. Mol. Biol.,

293:7960-7964, 1999.

C. B. Anfinsen. Principles that govern the folding of protein chains.
Science, 181:223-230, 1973.

Swiss-prot sequence database. http://www.expasy.org/sprot/.

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat,
H. Weissig, I. N. Shindyalov, and P. E. Bourne. The protein data
bank. Nucleic Acids Res., 28:235-242, 2000.

T. E. Creighton. Proteins: Structures and Molecular Properties. W.H.
Freeman and Company, New York, USA, 1993.

G. N. Ramachandran and V. Sasisekharan. Conformations of polypep-
tides and proteins. Adv. Protein Chem., 23:283-438, 1968.

W. Kabsch and C. Sander. Dictionary of protein secondary struc-
ture: pattern recognition of hydrogen-bonded and geometrical features.
Biopolymers, 22:2577-2637, 1983.

C. Sander and R. Schneider. Database of homology derived protein
structures and the structural meaning of sequence alignment. Proteins,
9:56-68, 1991.

C. Chothia and A. Lesk. The relation between the divergence of se-
quences and structures in proteins. EMBO J., 5:823-826, 1986.

C. Levinthal. Are there pathways to protein folding? J. Chem. Phys,
65:44-45, 1968.

Y. Duan and P. Kollman. Pathways to a protein folding intermediate

observed in a l-microsecond simulation in water solution. Science,
282:740-744, 1998.

N. Go and H. A. Scheraga. On the use of classical statistical mechanics
in the treatment of polymer chain conformations. Macromolecules,
9:535-542, 1976.

J. Bryngelson, J. Onuchic, N. D. Socci, and P. G. Wolynes. Funnels,
pathways and the energy landscape of protein folding: a synthesis.
Proteins, 21:167-195, 1995.


http://www.expasy.org/sprot/

BIBLIOGRAPHY 97

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

K. A. Dill, S. Bromberg, K. Yue, K. Fiebig, D. Yee, and P. Thomas.
Principles of protein folding: a perspective from simple exact models.
Protein Science, 4:561-602, 1995.

S. Kamtekar, J. M. Schiffer, H. J. Xiong, J. M. Babik, and M. H. Hecht.
Protein design by binary patterning of polar and nonpolar amino acids.
Science, 262:1680-1685, 1993.

B. I. Dahiyat and S. L. Mayo. De novo protein design: Fully automated
sequence selection. Science, 278:82-87, 1997.

B. Kuhlman, G. Dantas, G. C. Ireton, G. Varani, B. L. Stoddard, and
D. Baker. Design of a novel globular protein fold with atomic level
accuracy. Science, 302:1364-1368, 2003.

O. Schweers, E. Schonbrunn Hanebeck, A. Marx, and E. Mandelkow.
Structural studiesof tau protein and alzheimer paired helical filaments
show no evidence for @-structure. J. Biol. Chem., 269:24290-24297,
1994.

S. Ohnishi and D. Shortle. Observation of residual dipolar couplings
in short peptides. Proteins, 50:546-551, 2003.

V. N. Uversky. Natively unfolded proteins: A point where biology waits
for physics. Protein Sci., 11:739-756, 2002.

I. Radhakrishnan, G. C. Perez-Alvarado, D. Parker, H. J. Dyson, M. R.
Montminy, and P. E. Wright. Solution structure of the kix domain of
cbp bound to the transactivation domain of creb: a model for activator-
coactivator interactions. Cell, 91:741-752, 1997.

D. Parker, M. Rivera, T. Zor, A. Henrion-Caude, I. Radhakrishnan,
A. Kumar, L. H. Shapiro, P. E. Wright, M. Montminy, and P. K.
Brindle. Role of secondary structure in discrimination between con-
stitutive and inducible activators. Mol. Cell Biol., 19:5601-5607, 1999.

A. Shoemaker, J. J. Portman, and P. G. Wolynes. Speeding molecular
recognition by using the folding funnel. Proc. Natl. Acad. Sci. USA,
97:8868-8873, 2000.

V. N. Uversky, J. R. Gillespie, and A. L. Fink. Why are natively
unfolded proteins unstructured under physiologic conditions? Proteins:
Structure, Function, and Genetics, 41:415-427, 2000.



98

BIBLIOGRAPHY

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

A. M. Lesk. Introduction to Protein Architecture: The Structural Bi-
ology of Proteins. Oxford University Press, Okford, UK, 2000.

C. P. Ponting and R. R. Russell. The natural history of protein do-
mains. Annu. Rev. Biophys. Biomol. Struct., 31:45-71, 2002.

O. Gonzalez and J. H. Maddocks. Global curvature, thickness, and the
ideal shapes of knots. Proc. Natl. Acad. Sci. USA, 96:4769-4773, 1999.

A. Maritan, C. Micheletti, A. Trovato, and J. R. Banavar. Optimal
shapes of compact strings. Nature, 406:287-290, 2000.

L. Pauling, R. B. Corey, and H. R. Branson. The structure of proteins:
two hydrogen bonded helical conformations of the polypeptide chain.
P. Natl. Acad. Sci. USA, 37:205-211, 1951.

L. Pauling and R. B. Corey. Conformations of polypeptide chains with
favored orientations around single bonds: two new pleated sheets. P.
Natl. Acad. Sci. USA, 37:729-740, 1951.

P. J. Kraulis. Molscript: a program to produce both detailed and
schematic plots of protein structures. J. Appl. Cryst., 24:946-950, 1991.

E. A. Merritt and D. J. Bacon. Raster3d photorealistic molecular
graphics. Methods in Enzymology, 277:505-524, 1997.

J. D. Bryngelson and P. G. Wolynes. Spin glasses and the statistical
mechanics of protein folding. P. Natl. Acad. Sci. USA, 84:7524-7528,
1987.

K. A. Dill and H. S. Chan. From Levinthal to pathways to funnels.
Nat. Struct. Biol., 4:10-19, 1997.

J. D. Bernal. Structure of proteins. Nature, 143:663-667, 1939.

D. Perl, C. Welker, T. Schindler, K. Schroder, M. A. Marahiel,
R. Jaenicke, and F. X. Schmid. Conservation of rapid two-state folding
in mesophilic, thermophilic and hyperthermophilic cold shock proteins.
Nat. Struct. Biol., 5:229-235, 1998.

L. Holm and C. Sander. Structural alignment of globins, phycocyanins
and colicin a. FEBS Lett., 315:301-306, 1993.

R. V. Pappu, R. Srinivasan, and G. D. Rose. The flory isolated-pair
hypothesis is not valid for polypeptide chains: Implications for protein
folding. P. Natl. Acad. Sci. USA, 97:12565-12570, 2000.



BIBLIOGRAPHY 99

[48]

[49]

[50]

[51]

[52]

[53]

[54]

R. Kazmierkiewicz, A. Liwo, and H. A. Scheraga. Energy-based re-
construction of a protein backbone from its alpha-carbon trace by a
monte-carlo method. J. Comput. Chem., 23:715-723, 2002.

L. Holm and C. Sander. Database algorithm for generating protein
backbone and side-chain coordinates from a ¢ alpha trace application
to model building and detection of coordinate errors. J Mol. Biol.,
218:183-194, 1991.

J. R. Banavar, A. Flammini, D. Marenduzzo, A. Maritan, and
A. Trovato. Geometry of compact tubes and protein structures. Com-
PlexUs, 1:4, 2003.

A. D. Sokal. Monte Carlo methods for the self-avoiding walk. Nucl.
Phys. B, Suppl. 47:172-179, 1996.

N. Madras and A. D. Sokal. The pivot algorithm: a highly efficient
monte carlo algorithm for the self-avoiding random walk. J. Stat. Phys.,
50:109, 1988.

A. D. Sokal. Monte carlo methods for the self-avoiding walk. In Monte
Carlo and Molecular Dynamics Simulations in Polymer Science. Ox-
ford University Press, Oxford, UK, 1994.

J. Baschnagel, J. P. Wittmer, and H. Meyer. Monte carlo simulation of
polymers: coarse-grained models. In Computational soft matter: from
synthetic polymers to proteins, Lecture notes, volume 23 of NIC series,
pages 83-140. John von Neumann Institute for Computing, Juelich,
Germany, 2004.

T. Kennedy. A faster implementation of the pivot algorithm for self-
avoiding walks. J. Stat. Phys., 106:407-429, 2002.

L. Mattioni, J. P. Wittmer, J. Baschnagel, J.-L. Barrat, and E. Luijten.
Dynamical properties of the slithering-snake algorithm: A numerical
test of the activated-reptation hypothesis. Fur. Phys. J. E, 10:369-385,
2003.

S. Kirkpatrick, C. D. Jr. Gelatt, and M. P. Vecchi. Optimization by
simulated annealing. Science, 220:671-680, 1983.

M. C. Tesi, E. J. J. van Rensburg, E. Orlandini, and S. G. Whittington.
Monte carlo study of the interacting self-avoiding walk model in three
dimensions. J. Stat. Phys., 82:155-181, 1996.



100

BIBLIOGRAPHY

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

A. M. Ferrenberg and R. H. Swendsen. New monte carlo tecnique for
studying phase transitions. Phys. Rev. Lett., 61:2635, 1988.

A. M. Ferrenberg and R. H. Swendsen. Optimized monte carlo data
analysis. Phys. Rev. Lett., 63:1195, 1989.

A. M. Ferrenberg. Moder methods of analyzing monte carlo computer
simulations. Phys. A, 194:53-62, 1993.

T. Bogner, A. Degenhard, and F. Schmid. Molecular recognition in a
lattice model: an numeration study. Phys. Rev. Lett., 93:268108, 2004.

W. Humphrey, A. Dalke, and K. Schulten. Vmd: visual molecular
dynamics. J. Molec. Graphics, 14:33-38, 1996.

W. Kabsch. A solution for the best rotation to relate two sets of vectors.
Acta Cryst., A 32:922, 1976.

W. Kabsch. A discussion of the solution for the best rotation to relate
two sets of vectors. Acta Cryst., A 34:827-828, 1978.

T. Noguti and N. Go. Collective variable description of small-amplitude
conformational fluctuations in a globular protein. Nature, 296:776-778,
1982.

N. Go, T. Noguti, and T. Nishikawa. Dynamics of a small globular
protein in terms of low-frequency vibrational modes. Proc. Natl. Acad.
of Sci. USA, 80:3696-3700, 1983.

B. Brooks and M. Karplus. Harmonic dynamics of proteins: normal
modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc.
Natl. Acad. of Sci. USA, 80:6571-6575, 1983.

M. Levitt, C. Sander, and P. S. Stern. The normal modes of a pro-
tein: Native bovine pancreatic trypsin inhibitor. Int. J. Quant. Chem.:
Quant. Biol. Symp, 10:181-199, 1983.

M. Levitt, C. Sander, and P. S. Stern. Protein normal-mode dynam-
ics:trypsin inhibitor, crambin, ribonuclease and lysozyme. J. Mol. Biol.,
181:423-447, 1985.

S. Hayward and N. Go. Collective variable description of native protein
dynamics. Annu. Rev. of Phys. Chem., 46:223-250, 1995.



BIBLIOGRAPHY 101

[72]

73]

(78]

[79]

[81]

[32]

[83]

S. Hayward, A. Kitao, and N. G6. Harmonic and anharmonic aspects in
the dynamics of bpti: A normal mode analysis and principal component
analysis. Proteins Sci., 3:936-943, 1994.

A. Amadei, A. B. M. Linssen, and H. J. C. Berendsen. Essential dynam-
ics of proteins. Proteins: Structure, Function, and Genetics, 17:412—
425, 1993.

T. Horiuchi and N. Go. Projection of monte carlo and molecular dy-
namics trajectories onto the normal mode axes: human lysozyme. Pro-
teins: Structure, Function, and Genetics, 10:106-116, 1991.

M. Tirion. Large amplitude elastic motions in proteins from a single-
parameter. atomic-analysis. Phys. Rev. Lett., 77:1905-1908, 1996.

T. Haliloglu, I. Bahar, and B. Erman. Gaussian dynamics of folded
proteins. Phys. Rev. Lett., 79:3090-3093, 1997.

I. Bahar, A. R. Atilgan, and B. Erman. Direct evaluation of thermal

fluctuations in proteins using a single-parameter harmonic potential.
Fold. Des., 2:173-181, 1997.

I. Bahar, A. R. Atilgan, M. C. Demirel, and B. Erman. Vibrational
dynamics of folded proteins: significance of slow and fast motions in
relation to function and stability. Phys. Rev. Lett., 80:2733-2736, 1998.

P. Doruker, A. R. Atilgan, and I. Bahar. Dynamics of proteins pre-
dicted by molecular dynamics simulations and analytical approaches:
application to a-amylase inhibitor. Proteins: Structure, Function, and
Genetics, 40:512-524, 2000.

A. R. Atilgan, S. R. Durell, R. L. Jernigan, M. C. Demirel, O. Keskin,
and I. Bahar. Anisotropy of fluctuation dynamics of proteins with an
elastic network model. Biophys. J., 80:505-515, 2001.

P. Doruker, R. L. Jernigan, and I. Bahar. Dynamics of large proteins
through hierarchical levels of coarse-grained structures. J. Comput.
Chem., 23:119-127, 2001.

F. Tama and Y.-H. Sanejouand. Conformational change of proteins
arising from normal mode calculations. Protein Eng., 14:1-6, 2001.

F. Tama, M. Valle, J. Frank, and C. L. Brooks. Dynamic reorganization
of the functionally active ribosome explored by normal mode analysis



102

BIBLIOGRAPHY

[84]

[87]

[89]

[92]

and cryo-electron microscopy. Proc. Natl. Acad. Sci. USA, 100:9319—
9323, 2003.

C. Micheletti, P. Carloni, and A. Maritan. Accurate and efficient de-
scription of protein vibrational dynamics: comparing molecular dynam-
ics and gaussian models. Proteins: Structure, Function, and Bioinfor-
matics, 55:635-645, 2004.

M. Neri, M. Cascella, and C. Micheletti. Influence of conformational
fluctuations on enzymatic activity: modelling the functional motion of
beta-secretase. J. Phys. Cond. Mat., in press.

A. Pesce, M. Couture, S. Dewilde, M. Guertin, K. Yamauchi, P. As-
cenzi, L. Moens, and M. Bolognesi. A novel two-over-two a-helical

sandwich fold is characteristic of the truncated hemoglobin family. The
EMBO Journal, 19:2424-2434, 2000.

M. Couture, S. Yeh, B. A. Wittenberg, J. B. Wittenberg, Y. Ouel-
let, D. L. Rousseau, and M. Guertin. A cooperative oxygen-binding
hemoglobin from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci.
USA, 96:11223-11228, 1999.

S. Yeh, M. Couture, Y. Ouellet, M. Guertin, and D. L. Rousseau. A
cooperative oxygen-binding hemoglobin from Mycobacterium tubercu-
losis. stabilization of heme ligands by a distal tyrosine residue. Proc.
Natl. Acad. Sci. USA, 96:11223-11228, 1999.

J. B. Wittemberg, M. Bolognesi, B. A. Wittenberg, and M. Guertin.
Truncated hemoglobins: a new family of hemoglobins widely dis-

tributed in bacteria, unicellular eukaryotes, and plants. J. Biol. Chem.,
277:871-874, 2001.

M. Potts, S. V. Angeloni, R. E. Ebel, and D. Bassam. Myoglobin in a
cyanobacterium. Science, 256:1690-1691, 1992.

M. V. Thorsteinsson, D. R. Bevan, M. Potts, Y. Dou, R. F. Eich, M. S.
Hargrove, Q. H. Gibson, and J. S. Olson. A cyanobacterial hemoglobin
with unuasual ligand binding kinetics and stability properties. Bio-
chemistry, 38:2117-2126, 1992.

M. Couture, H. Chamberlan, B. St-Pierre, J. Lafontaine, and
M. Guertin. Nuclear genes enconding chloroplast hemoglobins in the

unicellular green alga Chlamydomonas Eugametos. Mol. Gen. Genet.,
243:185-197, 1994.



BIBLIOGRAPHY 103

[93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

M. Milani, A. Pesce, Y. Ouellet, P. Ascenzi, M. Guertin, and M. Bolog-
nesi. Mycobacterium tuberculosis hemoglobin n displays a protein tun-
nel suited for oy diffusion to the heme. The EMBO Journal, 20:3902—
3909, 2001.

M. Brunori and Q. H. Gibson. Cavities and packing defects in the
structural dynamics of myoglobin. EMBO Rep., 2:674-679, 2001.

F. Schotte, M. Lim, T. A. Jackson, A. V. Smirnov, J. Soman, J. S.
Olson, G. N. Phillips Jr., M. Wulff, and P. A. Anfinrud. Watching a

protein as it functions with 150-ps time-resolved x-ray crystallography.
Science, 300:1944-1947, 2001.

M. Teeter. Myoglobin cavities provide interior ligand pathway. Protein
Science, 13:313-318, 2004.

M. F. Perutz. Regulation of oxygen affinity of hemoglobin: influence
of structure of the globin on the heme iron. Annu. Rev. Biochem.,
48:327-386, 1979.

M. W. King. Biochemistry of amino acids. http://web.indstate.edu/,
2003.

B. Park and M. Levitt. Energy functions that discriminate x-ray and
near-native folds from well-constructed decoys. J. Mol. Biol., 258:367—
392, 1996.

M. Doi and S. F. Edwards. The theory of polymer dynamics. Clarendon
Press, Oxford, UK, 1986.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes: The Art of Scientific Computing. Cambridge Uni-
versity Press, Cambridge, UK, 1999.

L. Stryer. Biochemistry. W. H. Freeman and Company, New York,
NY, 1995.

Y. Seno and N. Go. Deoxymyoglobin studied by the conformational
normal mode analysis. i. dynamics of globin and the heme-globin in-
teraction. J. Mol. Biol., 216:95-109, 1990.

Y. Seno and N. Go. Deoxymyoglobin studied by the conformational
normal mode analysis. ii. the conformational change upon oxygenation.
J. Mol. Biol., 216:111-126, 1990.


http://web.indstate.edu/thcme/mwking/amino-acids.html

104

BIBLIOGRAPHY

[105]

[106]

107]

[108]

109

[110]

[111]

[112]

[113]

[114]

[115]

C. Xu, D. Tobi, and I. Bahar. Allosteric changes in protein structure
computed by a simple mechanical model: hemoglobin t < r2 transition.
J. Mol. Biol., 333:153-168, 2003.

C. Micheletti, G. Lattanzi, and A. Maritan. Elastic properties of pro-
teins: insight on the folding process and evolutionary selection of native
structures. J. Mol. Biol., 321:909-921, 2002.

B. Halle. Flexibility and packing in proteins. Proc. Natl. Acad. Sci.
USA, 99:1274-1279, 2002.

F. Fraternali and L. Cavallo. Parameter optimized surfaces (pops):
analysis of key interactions and conformational changes in the ribo-
some. Nucl. Acids Res., 30:2950-2960, 2002.

B. Hess. Convergence of sampling in protein simulations. Phys. Rev.
E, 65:31910-31919, 2002.

U. Samuni, D. Dantsker, A. Ray, J. B. Wittenberg, B. A. Wittenberg,
S. Dewilde, L. Moens, Y. Ouellet, M. Guertin, and Joel M. Fried-
man. Kinetic modulation in carbonmonoxy derivatives of truncated
hemoglobins. J. Biol. Chem., 278:27241-27250, 2003.

A. Crespo, M. A. Marti, S. G. Kalko, A. Morreale, M. Orozco, J. L.
Gelpi, F. J. Luque, and D. A. Estrin. Theoretical study of the truncated
hemoglobin hbn: exploring the molecular basis of the no detoxification
mechanism. J. Am. Chem. Soc., 127:4433-4444, 2005.

M. Milani, A. Pesce, Y. Ouellet, S. Dewilde, J. Friedman, P. Ascenzi,
M. Guertin, and M. Bolognesi. Heme-ligand tunneling in group i trun-
cated hemoglobins. J. Biol. Chem., 279:21520-21525, 2004.

M. Milani, P. Y. Savard, H. Ouellet, P. Ascenzi, M. Guertin,
and M. Bolognesi. A tyrcedl/trpg8 hydrogen bond network and a
tyrb10tyrcdl covalent link shape the heme distal site of Mycobacterium
tuberculosis hemoglobin o. Proc. Natl. Acad. Sci. USA, 100:5766-5771,
2003.

J. Ma. Usefulness and limitations of normal mode analysis in modeling
dynamics of biomolecular complexes. Structure, 13:373-380, 2005.

S. Swaminathan, T. Ichiye, W. van Gunsteren, and M. Karplus. Time
dependence of atomic fluctuations in proteins: analysis of local and
collective motions in bovine pancreatic trypsin inhibitor. Biochemistry,
21:5230-5241, 1982.



BIBLIOGRAPHY 105

[116] J. Howard. Mechanics of motor proteins and the cytoskeleton. Sinauer
Associates, Sunderland, MA, 2001.

[117] K. Hinsen, A. J. Petrescu, and S. Dellerue. Harmonicity in slow protein
dynamics. Chem. Phys., 261:25-37, 2000.



106 BIBLIOGRAPHY




Acknowledgements

I wish to thank my Supervisors — Amos, Antonio and Cristian — for their sta-
ble support during my study in the last few years, spent between Trieste and
Padova, and above all for giving me the opportunity to face such interesting
research topics. They provided a lot of useful hints to improve my work, and
have always been encouraging when difficulties arose, which seemed to be
overwhelming.

I am particularly grateful to Antonio, both for his never wearying pa-
tience while dealing with my rash surmises, at any time unshakably calm
and collected, and for his kind hospitality in Padova.

I am deeply beholden to Gianluca, who upheld my undertaking at SISSA
from the very beginning: I could rely daily on his steadfast friendship, es-
sential against the venturesome everyday issues, despite the distance.

I gratefully acknowledge the supportive attitude of all the people of the
Sector of Statistical and Biological Physics, who yielded invariably precious
and helpful encouragements, which were crucial to afford my study.

I have also strongly appreciated the kind hospitality and welcoming of
the friendly people I met during my sojourns at the Physics Department of
the University of Padova.

Finally, I would like to warmly thank all the wonderful friends I had the
good luck to meet in Trieste, to whom I am indebted more deeply than I
could ever realize, indeed beyond any chance of payback, despite any effort
of myself.

107



	Introduction
	Proteins and Disorder
	Protein structure
	Solving protein structures
	Folding and design
	Intrinsically unstructured proteins
	Folding upon binding
	Properties of the disordered state

	Geometric approach to protein folding
	Tube model of a thick polymer
	Refined tube model for proteins
	Presculpted energy landscape
	Summary

	Binding and Folding
	Methods
	Tuning model's parameters
	Substrates for binding and folding
	Unbiased interactions with the substrate
	Enhancing specificity of effective contacts
	One-to-one interactions

	Gaussian models for protein function
	Structural characterization
	Theory
	Tuning model parameters
	Temperature factors and heme modeling
	Results and Discussion
	Elasticity and time scale

	Conclusions and perspectives
	Bibliography
	Acknowledgements

