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To Chiara.

Senza di te un albero
non sarebbe più un albero.
Nulla senza di te
sarebbe quello che è. (G.C.)

Image on the cover: Piano Phase, Steve Reich, 1967. A 12-note, even-semiquaver melody of five different

modal pitches is set up in unison with itself on two pianos; the lead player gradually speeds up very slightly

until he has moved one semiquaver ahead and continues this process of phasing until both instruments are

back in unison.
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CHAPTER 1

Introduction

The aim of this thesis is to present a new approach to explain the transitions from regular
to irregular motions for dynamical systems as travels on Riemann surfaces. Particularly, we
introduce a new and simple Hamiltonian dynamical system, interpretable as a many-body
problem in the plane, providing an example of this mechanism [1] [2] [3]. We focus on the
three body case, showing that it is solvable, in the sense that we can explicitly write the
solutions in terms of the independent (real) time variable and we prove that there exist
open domains of initial conditions, having full dimensionality in the phase space, such that
all trajectories emerging from them are completely periodic of a basic period T ; studying
the analytical structure of the solutions of an auxiliary problem which evolves with respect
to a complex time variable, we prove that there are also other completely periodic solutions,
but with periods which are integer multiples of T ; nevertheless we prove that there are
non-periodic and irregular solutions and that this model exhibits sensitive dependance on
the initial conditions.

The starting point of our discussion will be the theory of integrable systems, particularly
the classical models that are amenable to exact treatments. We will mainly deal with
the (usual) concept of Liouville integrability: a Hamiltonian system, characterized by the
Hamiltonian function H(q, p) with (q, p) ∈ R2N , is defined as completely integrable if there
exist N first integrals I1 = H, I2, ..., IN which are functionally independent, which Poisson-
commute and which generate complete flows. Indeed, in this case, the motion is confined
to the submanifold M in phase space determined by the level sets of I1, I2, ..., IN :

M = {(q, p) ∈ R2N s/t Ij(q, p) = cj ∀ j}.
Then a canonical transformation (qi, pi) 7→ (Ji, φi) to action-angle variables exists such
that

H(q, p) = H̃(J),

where H̃ is the new Hamiltonian function in terms of the action variables J = (J1, ..., JN ).
If the manifold M is compact, then it is diffeomorphic to a torus,

M ' TN = {φ1, ..., φN mod 2 π}
and the evolution in the action-angle variables is trivial:

Ji = J0
i , φi = φ0

i + ωi t, ∀ i ,

where J0
i , φ0

i and ωi are constants. If the frequencies ω1, ..., ωN are independent in the
field of rationals Q, then the trajectories fill densely the torus and the motion is called
quasi-periodic.

9



10 CHAPTER 1. INTRODUCTION

In the context of the investigation of dynamical systems, recently a simple trick has
been introduced [4]. In essence, it merely amounts to a change of independent variable, in
particular from the real independent variable t (“time”) to an appropriate complex variable
τ (and is generally associated with a corresponding, rather trivial, change of dependent
variables, amounting essential to multiplication by a common prefactor). It associates,
to any dynamical system belonging to a quite large class (characterized by the complex
independent variable τ), a related system characterized by a (real) “deformation parameter”
ω having the dimension (and significance) of a (circular) frequency.

Our philosophy is to consider the ω-deformed system, whose evolution takes place in
the real time t, as the “physical” model, and the undeformed system as an “auxiliary”
model that, as we will see, plays an essential role to understand the time evolution of
the physical system. When the deformation parameter vanishes, ω = 0, the ω-deformed
system coincides with the original system, but for ω > 0 the two systems differ, and, most
importantly, the physical system is isochronous.

We define isochronous a system that features an open set of initial data, having full
dimensionality in its phase space, such that all the solutions emerging out of it remain
in it and are completely periodic with the same period T . The boundary of this region
is generally characterized by special initial data that yield motions leading in finite time
to singularities: for instance if the physical system under consideration is interpretable as
a many-body problem with interparticle forces singular at zero separation, typically these
special motions feature particle collisions.

Remarkably this simple approach allows to identify many interesting models (a list of
recent publications in which this phenomenology is explored and/or exploited can be read
in [5] and at the beginning of Subsection 1.2 – note however that in several of the cited
papers the isochronicity phenomenon constitutes only a minor aspect of the results being
reported).

An interesting question is what happens for initial data located outside of the region
yielding isochronous motions with the basic period. There may be other open phase space
regions characterized by motions that are again completely periodic, but with periods that
are integer multiples of the basic period. And also other open phase space regions where the
generic motions are aperiodic, either ordered (for instance, characterized in configuration
space by limit cycles) or disordered, this latter characterization being justified not only be-
cause these motions do not display any simple pattern, but because they feature a sensitive
dependence on their initial data. This entire phenomenology is naturally interpretable in
terms of travel on a certain (circular) path on the Riemann surfaces defined by the solu-
tions of the auxiliary model, considered as functions of its independent (complex ) variable
τ . This mechanism, including the possible onset of some kind of deterministic chaos, has
been discussed in [6] and [7], where we analyzed two many-body problems in the plane via
numerical and analytical techniques (see Section 1.2), and the main purpose of the results
reported in this thesis, and in other papers to follow, is to make further progress in the
understanding of this phenomenology.

To this end we introduce and discuss a neat Hamiltonian system, somewhat analogous
but simpler than the well-known many-body model considered in [6]. Remarkably, the
general solution of this problem can be obtained via quadratures all of which can be per-
formed in terms of elementary functions; yet this model is adequate to display and analyze
in remarkable detail and rigorously the rich phenomenology outlined above (and this is the
main difference with previous works, for example [6] or [7], in which this phenomenology
was studied in a more qualitative way). In particular, as regards the regime characterized
by motions that are completely periodic, but with periods which are integer multiples of
the basic period T , exact formulas giving these periods – which depend sensitively on the
initial data, and may be arbitrarily large – are obtained, even though they are far from
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trivial (as demonstrated, for instance, by their dependence, for certain values of the cou-
pling constants featured by the model, on the coefficients of arbitrarily large order of the
simple-continued-fraction expansion of a certain ratio of the coupling constants). Likewise,
in the aperiodic regime, it turns out to be possible to describe to a remarkable extent the
motion and in particular to clarify how the trajectories are influenced by the initial data.

As we will show in Subsection 1.3, the investigation of the relation between the integra-
bility of differential equations and the analyticity properties of their solutions goes back to
such eminent mathematicians as Carl Jacobi, Sophia Kowalewskaya, Henri Poincaré, Paul
Painlevé and his school: the main idea at the base of their results in this sense could be
rephrased saying that, to have integrability, the only movable singularities should be poles
if we consider the evolution of the independent variable t in the complex t-plane. In this
context, Martin Kruskal proposed a new approach, a brief rendition of which might be
the statement that, to have integrability, movable branch points are also allowed, provided
they are not dense in the complex t-plane. The results presented in this thesis, constitute
progress along this line of thinking.

In the next Section 1.1 we will describe some useful background notions to introduce
the reader in the context of our line of research. In Section 1.2 we will present the main
findings of the two already cited papers [6] and [7], where the Calogero-Moser respectively
the Goldfish model are analyzed. In Section 1.3 we discuss some results concerning the
relation between the integrability of a dynamical system and the analyticity properties of
its solutions; we moreover report two beautiful rigorous theorems by Ziglin and Yoshida.
Finally, in Section 1.4 we introduce the new many-body problem, that will be the object
of this thesis in the remaining three chapters. This thesis is structured so that, to have
a global idea of the main results, it is possible to read just Chapter 1 and Chapter 4.
In Chapters 2 and 3 we reported all the proofs and the discussion (through a quite new
algebraic-geometric-combinatorial approach) of the Riemann surface Γ associated to the
nondifferential equation in terms of which we write the solution of the three-body problem
introduced at the end of the present chapter.

The results presented in Subsections 1.2.1 and 1.2.2 are published in [6] respectively [7].
The results reported in Subsections 1.4 and 4.1 are published in [1]. The results reported
in Chapter 2 and Chapter 3 constitute the main part of the paper in preparation [2]. The
results reported in Section 4.2 are part of the paper in preparation [3].

1.1 Two important ingredients

In this section we present two ingredients that were of great importance in the research
presented in this thesis.

The first one, the notion of monodromy group associated to a certain Riemann surface,
will be fundamental in proving most of the results reported in Chapter 3 and, as we will
see, is one of the main instruments we use to explain transitions from regular to irregular
motions for dynamical systems.

The second one, the so-called trick, was one of the fundamental ideas used to construct
(whenever they were new) and to study the many-body problems presented in this work
and many others, particularly the Aristotelian model that we will introduce in Section 1.4
and that we will analyze in detail in the next three chapters. Via the trick, we arrive to
prove many results, like the isochronicity (for certain initial conditions) of the models to
which it is applicable.
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1.1.1 Riemann surfaces and monodromy groups

In this section we briefly describe the idea of Riemann surface and of monodromy group.
As it will be clear in the next sections, these concepts play a fundamental role in the
work presented in this thesis. We begin with two examples to illustrate the concept of
monodromy group. The first example is given by the following second order ODE

τ2 ζ ′′(τ) +
1

6
τ ζ ′(τ) +

1

6
ζ = 0 , (1.1)

in which the apices indicate differentiation with respect to τ . For this equation, we write
the following ordered basis of the solution space

B1 =
{

τ
1
2 , τ

1
3

}

. (1.2)

Both elements of the basis B1 have a branch point in the origin of the complex τ -plane,
respectively a branch point of order 1 and a branch point of order 2. We can continue the
two function τ 1/2 and τ1/3 analytically in the complex τ -plane around 0. If we do this along
any positively oriented (i.e. anticlockwise) single closed path γ that includes the origin,
then, after a complete loop, B1 becomes

B̃1 =
{

−τ
1
2 , e

2 π i
3 τ

1
3

}

. (1.3)

The effects of the path γ on B1 can be represented by left multiplication with the following
(2× 2) matrix

g1 =

(

−1 0

0 e
2 π i
3

)

, B̃1 = g1 · B1 . (1.4)

Each closed path γ around the origin in the complex τ -plane gives rise to a matrix rep-
resenting the change of basis from B1. Such a matrix equals gn

1 , where n is the winding
number of the path γ around 0 (i.e. the number of times γ effectively loops around the
origin, counting positively the complete anticlockwise loops and negatively the complete
clockwise loops around the origin). All matrices that are obtained in this way form a group,
which is generated by g1. This group is known as the monodromy group of equation (1.1).
Notice that g6

1 = g, so equation (1.1) has a finite monodromy group of order 6.
The second example is given by the following second order ODE, similar to the previous

equation (1.1):
τ2 ζ ′′(z)− τ ζ ′(τ) + ζ = 0 , (1.5)

Also in this case we can write an ordered basis of the solution space

B2 = {z , z log(τ)} . (1.6)

The solution τ log(τ) is not algebraic. As before, we can consider the analytical continuation
of the basis B2 along any positively oriented closed path γ in the complex τ -plane around
the origin. Such a path transforms the basis B2 into

B̃2 = {τ , τ log(τ) + 2π i k τ} , (1.7)

where k ∈ Z is the winding number of γ. Like before, the effects of the path γ on B2 can
be represented by left multiplication with the following (2× 2) matrix

g2 =

(

1 2π i k
0 1

)

, B̃2 = g2 · B2 , k ∈ Z . (1.8)

In this case, the monodromy group of equation (1.5) is infinite.
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To be more rigorous, first of all we need to introduce the idea of Riemann surface. Fol-
lowing [8], we define a Riemann surface Γ as a one-complex-dimensional connected complex
analytic manifold.

A curve on Γ means a continuous map c of the closed interval I = [0, 1] into Γ. The
point c(0) will be called the initial point of the curve, and c(1) will be called the terminal
point of the curve.

Suppose that P and Q are two points of Γ and c1 and c2 are two curves on Γ with
initial point P and terminal point Q. We say that c1 is homotopic to c2 (c1 ∼ c2) provided
there is a continuous map h : I × I → Γ with the following properties: h(t, 0) = c1(t),
h(t, 1) = c2(t), h(0, u) = P and h(1, u) = Q for all t and u in I = [0, 1].

Let P be now any point on Γ. We consider all closed curves (loops) on Γ which pass
through P , namely all curves on Γ with initial and terminal point P . We say that two such
curves, c1 and c2, are equivalent whenever they are homotopic.

The set of equivalence classes of closed curves through P forms a group in the following
manner: the product of the equivalence class of the curve c1 with the equivalence class
of the curve c2 is the equivalence class of the curve c1 followed by c2; the inverse of the
equivalence class of the curve t 7→ ct is the curve t 7→ c (1 − t). The group of equivalence
classes so constructed is called the fundamental group of Gamma based at P .

Let P and Q be any two points on Γ. The isomorphism between the fundamental group
of Γ based at P and the fundamental group of Γ based at Q depends only on the homotopy
class of the path from P to Q. The fundamental group of Γ, π1(Γ), is therefore defined to
be the fundamental group of Γ based at P , for any P ∈ Γ. The fundamental group π1(Γ)
is a topological invariant.

The notion of fundamental group is strictly related to the one of monodromy group.
Generally speaking, we see that for differential equations a single solution may give further
linearly independent solutions by analytic continuation. (Linear) differential equations
defined in an open, connected set M in the complex plane (which is a Riemann surface)
have a monodromy group, which is a (linear) representation of the fundamental group of M ,
summarising all the analytic continuations along loops within M (the inverse problem, of
constructing the equation, given a representation, is called the Riemann-Hilbert problem).

To explain in more precise terms in which way a monodromy group is a representation
of the fundamental group of M , we need to introduce the idea of covering manifold, [9].
The manifold M̃ is said to be a (ramified) covering manifold of the manifold M provided
there is a continuous surjective map f : M̃ → M , called covering map, with the following
property: for each P̃ ∈ M̃ there exist a local coordinate τ̃ on M̃ vanishing at P̃ , a local
coordinate τ on M vanishing at f(P̃ ) and an integer n > 0 such that f is given by τ = τ̃n

in terms of these local coordinates. Here the integer n depends only on the point P̃ ∈ M̃ .
If n > 1, P̃ is called a branch point of order n− 1. If n = 1, for all points P̃ ∈ M̃ the cover
is called smooth.

We say that f : M̃ →M is of finite degree n if all points in M have exactly n preimages
in M̃ . Be P a point in M and consider the fiber f−1(P ) over P . Denote the n points in
this fiber {P̃1, ..., P̃n}. Every loop γ in M based at P can be lifted to n paths γ̃1, ..., γ̃n,
where γ̃j is the unique lift of γ which has initial point P̃j . In other words, γ̃j(0) = P̃j

for every j. Next consider the terminal points γ̃j(1); these also lie over P and indeed
form the entire preimage set f−1(P ). Hence each is a P̃j for some j. We denote the
terminal points γ̃j(1) by P̃σ(j), where the function σ is a permutation of the integer indices
{1, 2, ..., n} which depends only on the homotopy class of the loop γ. Therefore we have
a group homomorphism ρ : π1(M, P ) → Sn, where Sn is the symmetric group of all the
permutations on n indices. The monodromy group of M is the subgroup of Sn which is the
image of π1(M) through the group homomorphism ρ defined above.

For a many-body model described by a system of differential equations defined in an
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open, connected set M in the complex plane we will build the Riemann surface Γ which is
the covering manifold of M and then we will study the monodromy group of M (sometimes,
we improperly say the monodromy group of Γ). We will see how the understanding of such
a monodromy group is deeply connected with the comprehension of the dynamical behavior
of the model itself.

1.1.2 The trick

To illustrate what the trick actually is, we begin with an example. Suppose to have the
following autonomous ordinary differential equation of the first order:

ζ ′′(τ) = −a
(

ζ ′(τ)
)2

/ζ(τ) , (1.9)

with given initial conditions ζ(0), ζ ′(0) and where a is an arbitrary complex constant. If
the independent variable τ is complex, then ζ(τ), solution of (1.9), is a complex function of
complex variable. Appended primes indicate derivation with respect to the complex “time”
variable τ .

Now we set:

z(t) = ζ(τ) , (1.10a)

τ ≡ τ(t) =
[exp(i ω t)− 1]

i ω
, (1.10b)

where ω is a real constant, whose meaning will be immediately clear. Applying the change
of variables (1.10) to equation (1.9) we get

z̈(τ)− i ωż(t) = −a (ż(τ))2 /z(τ) . (1.11)

Here and in what follows, superimposed dots indicate derivation with respect to the real
time variable t, namely the “physical time”. So, equation (1.11) represents the physical
evolutionary problem, while (1.9) is an auxiliary problem that we will use to understand
the behavior of the solutions of (1.11). Notice that equation (1.11) has the same shape of
equation (1.9), except for the additive velocity-proportional term −i ωż(t). The change of
variables (1.10) imposes the following relation between the initial conditions ζ(0), ζ ′(0) and
z(0), ż(0):

z(0) = ζ(0) , ż(0) = ζ ′(0) . (1.12)

When the real time variable t evolves for a period

T =
2 π

ω
, (1.13)

namely from t = 0 to t = T , the complex time variable τ moves counterclockwise from
τ = 0 to τ = 0 along the closed circular contour C̃ of radius 1/ω and centered in i/ω on the
complex τ -plane, see (1.10b). If the functions ζ(τ), solutions of (1.9), are holomorphic (or
just meromorphic), as functions of the complex variable τ , inside the circular contour C̃ –
or, more precisely, in the circular (closed) disk C defined by the contour C̃ – then the cor-
responding functions z(t) – namely the corresponding solutions of (1.11) – are nonsingular
and periodic (with period T ) with respect to the real time variable t.

If a 6= −1, the solution of (1.9) is

ζ(τ) = [k (1 + a)(τ − τb)]
γ , (1.14a)

with

γ =
1

1 + a
, (1.14b)
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while k and τb are constant which depend on the initial conditions ζ(0), ζ ′(0):

k = ζ ′(0) (ζ(0))a , τb = − ζ(0)

[(1 + a) ζ ′(0)]
. (1.14c)

If τb falls outside the disk C – namely, if the distance between τb and the point i/ω is
greater than 1/ω – then, for any value of the arbitrary constant a (6= −1), the function
z(t), solution of (1.11), obtained from (1.14) via (1.10),

z(t) =

{

k (1 + a)

[

exp(i ω t)− 1

i ω
− τb

]}γ

, (1.15)

is nonsingular and periodic of period T with respect to the real time variable t.
When the only singularity of ζ(τ), solution of (1.9), inside the disk C, is a rational

branch point, then the corresponding solution z(t) of (1.11) is still periodic in the real time
variable t, but with a bigger period which is an integer multiple of T . So, when τb falls
inside the disk C – namely, when the distance between τb and the point i/ω is less than
1/ω – then we have only two possibilities:

1. if a is a rational real number (6= −1), then τb is a branch point of exponent γ and the
function z(t) – corresponding solution of the equation (1.11) – is still periodic in the
real time variable t, but with a period that is an integer multiple of T (for instance,
if a = 2, then γ = 1/3 and the period will be 3 T );

2. if a is not a rational real number, then τb is not a rational branch point and, if
|1 + i ω τb| < 1, then z(t) – corresponding solution of the equation (1.11) – is not a
periodic function of the real time variable t.

Just for the sake of completeness, we discuss what happens if a = −1: in this case the
the solution of 1.9 reads as follow:

ζ(τ) = ζ(0) exp(k τ) , (1.16)

where k is the same of (1.14c) with a = −1. From (1.16) it is easy to convince oneself that,
in this case, for any value of the initial conditions, the function z(t) – solution of (1.11)
with a = −1 – is nonsingular and periodic of period T in the real time variable t.

We must stress that the analysis presented here and the applicability of the trick –
namely of a particular change of variable that permits to infer the behavior of the evolution
of the solution of a certain differential equation with respect to a real time variable t from
the properties and the analytic structure of the solution of another differential equation
as a function of a complex variable τ – are generalizable to various families of systems of
Newtonian (and Aristotelian) differential equations [5].

For instance, let us consider the family of N -body models, characterized by the following
(complex and coupled) equations of motion:

ζ ′′n = Fn(ζ) , ζn ≡ ζn(τ) , ζ ≡ (ζ1, ..., ζN ) , (1.17a)

where the N functions Fn(ζ) of the N dependent variables ζn are arbitrary functions, except
for the fact that they must satisfy the following scaling property

Fn(λ ζ) = λp+1 Fn(ζ) , (1.17b)

where p is a non-vanishing integer constant. Analogously to what we have done in the
example presented at the beginning of this section, we set:

zn(t) = exp(i Ω t) ζn(τ) , (1.18a)
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τ ≡ τ(t) =
exp(i p Ω t/2)− 1

i p Ω/2
, (1.18b)

where Ω is a real constant (p Ω plays the same role of ω in (1.10)). This change of (dependent
and independent) variables, (1.18) transforms equation (1.17a) in

z̈n(t)− i (2 + p/2) Ω żn − (1 + p/2) Ω2 zn = Fn(z) ,

zn ≡ zn(t) , z ≡ (z1, ..., zN ) . (1.19)

If the functions Fn(z) are analytic in a neighborhood of z = 0, then it is possible to
prove [5] that there exists, in a neighborhood of the equilibrium configuration z = 0, a
sphere of initial data z(0), ż(0), of non-vanishing measure in the phase space (with 4 N
real dimensions), such that all the corresponding solutions of (1.19) are completely periodic,
with period T = 2 π/|Ω| if p is even, and with period 2 T = 4 pi/|Ω| if p is odd (in this case,
the solutions are antiperiodic with period T , z(t + T ) = −z(t), because of the presence
of the prefactor exp(i Ω t) in equation (1.18a)). Indeed, the analyticity of the functions
Fn(ζ) in a neighborhood of ζ = ζ(0) ensure, through the standard (Cauchy) theorem of
existence/unicity/analyticity applied to the initial-values problem for the system (1.17),
that the solution ζ(τ), corresponding to the initial data ζ(0), ζ ′(0), is an analytic function
of the complex variable τ inside a disk D centered at τ = 0, whose (non-vanishing) radius
ρ depends on the initial data and on the functions Fn. But, if ρ > 4/|p Ω|, see [5], to any
τ -analytic solution ζ(τ) of (1.17) inside the disk D there corresponds (via (1.18)) a solution
z(t) of (1.19) periodic in t (with period T or 2 T ). The Calogero-Moser model belongs to
this family of many-body problems.

A second example of family of many-body problems to which the trick is applicable is
given by the following (complex and coupled) Newtonian equations of motion [5]:

ζ ′′n =
N
∑

l,m=1

ζ ′l ζ ′m Fnlm(ζ) , ζn ≡ ζn(τ) , ζ ≡ (ζ1, ..., ζN ) , (1.20)

with Fnlm(ζ) N3 arbitrary functions in the N dependent variables ζn. As we did for the
example reported at the beginning of this section, we introduce the following change of
variables:

z(t) = ζ(τ) , τ =
exp(i ω t)− 1

i ω
, (1.21)

where ω is a real constant (which plays the role of ω in (1.10)). One can easily verify that,
via (1.21), we can recast equations (1.20) as follows

z̈n = i ωżn +
N
∑

l,m=1

żl żm Fnlm(z) , zn ≡ zn(t) , z ≡ (z1, ..., zN ) . (1.22)

Analogously to the previous case, if the functions Fnlm(z) are analytic in a neighborhood
of z = 0, then it is possible to verify (see [5]) that there exists, in a neighborhood of the
equilibrium configuration z = ż = 0, a sphere of initial data z(0), ż(0), of non-vanishing
volume in the phase space (having 4 N real dimensions), such that all the corresponding
solutions of (1.22) are completely periodic with period T = 2π/|ω|. Indeed, like in the
previous case, the standard (Cauchy) theorem of existence/unicity/analyticity applied to
the initial values problem for the system (1.20) ensure that, if the functions Fnlm(ζ) are
analytic in a neighborhood of ζ = ζ(0), then the solution ζ(τ), corresponding to the initial
data ζ(0), ζ ′(0), is an analytic function of the complex variable τ inside a disk D centered
at τ = 0, whose non-vanishing radius ρ depends on the initial data and on the functions
Fnlm. But, if ρ > 2/|ω|, see [5], to any solution ζ(τ) of (1.20) which is analytic in τ
inside the disk D there corresponds (via (1.21)) a solution z(t) of (1.22) periodic in t, with
period T = 2π/|ω|. The so-called Goldfish model belongs to this last family of many-body
problems.
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1.2 Analysis of two many-body problems

In this section we will report the main findings concerning two many-body problems in
the plane. In the first subsection we deal with a complex generalization of the well-known
Calogero-Moser model, while in the second subsection, we treat the so-called Goldfish
model. Most of the results discussed in both cases derive from the application of the trick
presented in the previous subsection. It is worth noting that these two models are just two
examples of the great number of models to which the trick was actually applied. A list of
recent publications in which the phenomenology related to the use of the trick is explored
and/or exploited reads as follows [5] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21]
[22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41]. Both
models were studied via numerical and analytical techniques and our presentation follows
in detail the content of two articles, of which the author of this thesis is a coauthors (see
respectively [6] and [7]).

Here the trick is mainly used to derive a result of isochronicity of the solutions of the
models for certain (open) sets of initial conditions. But the numerical and theoretical study
of the implications of such a simple change of variables opened the way to the discoveries of a
rich dynamical behavior which could be qualitatively explained by describing the analytical
structure of the solutions of the corresponding models.

As we already showed in Subsection 1.1.2, the trick permits to associate to a “physical”
model, which evolves with respect to a real time variable t, an “auxiliary” model, which
evolves with respect to a complex time variable τ . In both the examples presented in
this section we stopped at the qualitative analysis of the Riemann surfaces associated
to the solutions of the “auxiliary” problem, pointing out that a complete comprehension
of the structure of such a Riemann surface would lead us to a complete comprehension
of the dynamical behavior of the “physical” problem; we moreover stressed the general
validity of this idea as a tool to explain the transition from regular to irregular motions
for many dynamical systems that manifest sensitive dependance on the initial conditions.
The findings presented in this section motivated us to construct the “simple” many-body
problem presented in Section 1.4, whose dynamical behavior is clearly explainable in terms
of the complete description of a multi-sheeted (possibly infinitely-sheeted) Riemann surface
associated to the solutions.

1.2.1 The Calogero-Moser many-body problem

In this section we analyze, in the complex domain, the dynamical system characterized by
the Newtonian equations of motion

z̈n + zn =
N
∑

m=1, m6=n

gnm(zn − zm)−3,

zn ≡ zn(t), żn ≡
dzn(t)

dt
, n = 1, . . . , N (1.23)

which obtain in the standard manner from the Hamiltonian

H(z, p) =
1

2

N
∑

n=1

(

p2
n + z2

n

)

+
1

4

N
∑

n,m=1, n6=m

gnm(zn − zm)−2, (1.24a)

provided (as we hereafter assume)
gnm = gmn. (1.24b)

Here and below N is an arbitrary positive integer (N ≥ 2), the indices n, m run from 1 to N
unless otherwise indicated, underlined quantities are N -vectors, say z ≡ (z1, . . . , zN ), and
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all quantities (namely, the N “canonical coordinates” zn, the N “canonical momenta” pn,
the N(N − 1)/2 “coupling constants” gnm) are complex, while the independent variable t
(“time”) is instead real. Of course the N complex equations of motion (1.23) can be
reformulated [1] as 2N real — and as well Hamiltonian [2] — equations of motion, by
introducing the real and imaginary parts of the coordinates zn, zn ≡ xn + iyn, or their
amplitudes and phases, zn ≡ ρn exp(iθn):

ẍn + xn =
N
∑

m=1, m6=n

r−6
nm

[

anmxnm

(

x2
nm − 3y2

nm

)

− bnmynm

(

y2
nm − 3x2

nm

)]

=

N
∑

m=1, m6=n

r−3
nm|gnm| cos(γnm − 3θnm), (1.25a)

ÿn + yn =
N
∑

m=1, m6=n

r−6
nm

[

anmynm

(

y2
nm − 3x2

nm

)

− bnmynm

(

x2
nm − 3y2

nm

)]

=
N
∑

m=1, m6=n

r−3
nm|gnm| sin(γnm − 3θnm), (1.25b)

where of course

zn = xn + iyn,

znm ≡ zn − zm = xn − xm + i(yn − ym) ≡ xnm + iynm = rnm exp(iθnm),

gnm = anm + ibnm = |gnm| exp(iγnm). (1.25c)

We shall return to the motivations for this choice to investigate the system (1.23) in the
complex domain at the end of this section.

If all the coupling constants coincide, gnm = g, the Hamiltonian system (1.23) is
a well-known completely integrable many-body model (see for instance [5] and the refer-
ences quoted there), and all its nonsingular solutions are completely periodic with period
2π, or possibly an integer multiple of 2π. (Indeed, in this integrable case the N coordi-
nates zn(t) can be identified with the N zeros of a polynomial of degree N the coefficients
of which are periodic in t with period 2π, so that the set of these N zeros is also periodic
with period 2π, and each individual zero is therefore also periodic, although possibly with
a larger period which is an integer multiple of 2π due to a possible reshuffling of the ze-
ros as the motion unfolds; in the real case with all coupling constants equal and positive,
gnm = g > 0, when the motions are confined to the real axis and no such reshuffling can
occur due to the singular and repulsive character of the two-body forces, all real solutions
are nonsingular and completely periodic with period 2π, z(t + 2π) = z(t); see for instance
[5]). Here we focus instead on the more general case with completely arbitrary coupling
constants gnm, which is generally believed not to be integrable. But even in this case — as
proven in [12] — there does exist a domain of initial data z(0), ż(0) having infinite measure
in phase space such that all the trajectories originating from it are completely periodic with
period 2π, z(t + 2π) = z(t). As pointed out in [12], this is a somewhat surprising finding,
inasmuch as it negates the expectation that, for a generic nonlinear dynamical system with
several degrees of freedom that possesses completely periodic trajectories emerging from
some specific initial data, any generic variation of these initial data destroys the complete
periodicity of the trajectories or at least changes their period.

But, as shown in [12], this fact is a rather elementary consequence of the approach based
on the “trick” introduced in Subsection 1.1.2 and rather extensively used recently to evince
analogous results (see [5], the references quoted there, as well as [30, 11, 7] and the next
subsection). This same trick can as well be exploited to investigate the remaining solutions,
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namely those not belonging to the class of completely periodic solutions with period 2π the
existence of which was proven in [12]. This was done in [6], where we also confirmed the
insight thereby gained by exhibiting numerical solutions of (1.23) performed via a computer
code created by the author of this thesis [42]. In particular we demonstrated the existence
of open domains of initial data, having nonvanishing measures in the phase space of such
data, which also yield completely periodic solutions, but with periods which are integer
multiples of 2π, and we also elucidated the mechanism that originates non-periodic and
irregular dynamics.

Why investigate the motion determined by the Newtonian equations (1.23) in the com-
plex, rather than the real, domain? A clear hint that, at least from a mathematical point
of view, this is a more natural environment to work in, comes already from the treatment
of (1.23) in the integrable case with equal coupling constants, gnm = g, since, as mentioned
above, it is then appropriate to identify the N particle positions zn ≡ zn(t) with the N
zeros of a time dependent (monic) polynomial of degree N in z, say PN (z, t) such that
PN [t, zn(t)] = 0 (see for instance [5]); and clearly the natural environment to investigate
the zeros of a polynomial is the complex plane rather than the real line. In this context,
as we anticipated in the previous section, an essential motivation to work in the complex
comes from the important role that analyticity properties play in our treatment. Moreover
motions roaming over the complex plane display a much richer dynamics than those re-
stricted to the real line, especially in the case with singular interparticle forces, because of
the possibility in the former case, but not in the latter, that particles go around each other.
And it is then natural to re-interpret the (complex ) N -body problem (1.23) as describing
the (real) motion of N particles (in the plane), by introducing a one-to-one correspondence
among the complex coordinates zn ≡ xn + iyn, see (1.25c), and the real two-vectors in
the plane ~rn ≡ (xn, yn). But this approach, that is quite convenient to identify interesting
many-body problems in the plane (see Chapter 4 of [5]), suffers in the present case from
a drawback: the resulting many-body problem in the plane is not rotation-invariant, see
(1.25) 1.

Instead of applying directly the trick to the system of ODEs (1.23), we firstly rewrite,
mainly for notational convenience, these equations of motion, (1.23), as follows:

z̈n + ω2zn =
N
∑

m=1, m6=n

gnm(zn − zm)−3, (1.26a)

and we note that the corresponding Hamiltonian reads

H(z, p) =
1

2

N
∑

n=1

(

p2
n + ω2z2

n

)

+
1

4

N
∑

n,m=1, n6=m

gnm(zn − zm)−2. (1.26b)

Here we introduce the additional constant ω, which is hereafter assumed to be positive,
ω > 0, and to which we associate the basic period

T = 2π/ω. (1.27)

In the following it will sometimes be convenient to set ω = 1 so that (1.26a) coincide with
(1.23) and the basic period becomes T = 2π, or to set instead ω = 2π so that the basic
period becomes unity, T = 1. Of course these cases are all related via a rescaling of the
dependent and independent variables, since clearly by setting

z̃(t̃) = az(t), t̃ = bt, ω̃ = ω/b, g̃nm =
(

a2/b
)2

gnm (1.28a)

1Actually, there is a simple trick to skip this problem, see [5]
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with a, b two positive rescaling constants which can be chosen at our convenience, the ODEs
(1.26a) get reformulated in a completely analogous “tilded” version,

z̃′′n + ω̃2z̃n =

N
∑

m=1, m6=n

g̃nm(z̃n − z̃m)−3, (1.28b)

where of course here the primes indicate differentiations with respect to the argument of the
function they are appended to, z̃′ ≡ dz̃(t̃)/dt̃. Note in particular that by setting b = a2 = ω
one gets ω̃ = 1, g̃nm = gnm, namely the tilded version (1.28b) reproduces essentially (1.23).

Now, the “trick”. Let us set

zn(t) = exp(−iωt)ζn(τ), (1.29a)

τ ≡ τ(t) = [exp(2iωt)− 1]/(2iω). (1.29b)

As can be readily verified, this change of (dependent and independent) variables, (1.29),
transforms (1.26a) into

ζ ′′n =
N
∑

m=1, m6=n

gnm(ζn − ζm)−3. (1.30)

Here and below appended primes denote derivatives with respect to the new independent
variable τ , while of course the dots in (1.26a) and below denote as usual derivatives with
respect to the real time t.

The change of variables (1.29) entails the following relations among the initial data,
z(0), ż(0), respectively ζ(0), ζ ′(0), for (1.26a) respectively (1.30):

zn(0) = ζn(0), (1.31a)

żn(0) = ζ ′n(0)− iωζn(0). (1.31b)

We now observe that, as the (real, “physical time”) variable t varies from 0 to T/2 =
π/ω, the (complex) variable τ travels (counterclockwise) full circle over the circular con-
tour C̃, the diameter of which, of length 1/ω = T/(2π), lies on the upper-half of the complex
τ -plane, with its lower end at the origin, τ = 0, and its upper end at τ = i/ω. Hence if the
solution ζ(τ) of (1.30) which emerges from some assigned initial data ζ(0), ζ ′(0) is holomor-
phic, as a (N -vector-valued) function of the complex variable τ , in the closed circular disk
C encircled by the circle C̃ in the complex τ -plane, then the corresponding solution z(t) of
(1.26a), related to ζ(τ) by (1.29), is completely periodic in t with period T , z(t + T ) = z(t)
(see (1.27); and note that ζ(τ), considered as function of the real variable t, is then periodic
with period T/2, but z(t) is instead antiperiodic with period T/2, z(t + T/2) = −z(t), due
to the prefactor exp(−iωt), see (1.29a)).

In [12] it was proven that there indeed exists a domain, having infinite measure in phase
space, of initial data ζ(0), ζ ′(0) such that the corresponding solutions ζ(τ) of (1.30) are
holomorphic in τ in the disk C — and this fact implies the existence of an open domain,
having as well infinite measure in phase space, of corresponding initial data z(0), ż(0)
such that the corresponding solutions z(t) of (1.26a) are completely periodic with period T ,
z(t + T ) = z(t). In [6] it was proven that the singularities of the solutions ζ(τ) of (1.30) —
considered as functions of the complex variable τ — are branch points of square-root type,
and it was possible to infer from this that, whenever the solution ζ(τ) of (1.30) has a finite

number of such branch points inside the circle C̃ — generally nested inside each other,
namely occurring on different Riemann sheets — then the corresponding solution z(t) of
(1.26a), considered as a function of the real “time” variable t, is again completely periodic,
albeit now with a period which is an integer multiple of T . We also infer that when instead
the solution ζ(τ) of (1.30) has an infinite number of such square-root branch points inside
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the circle C̃ — again, generally nested inside each other, namely occurring on different
Riemann sheets — then the corresponding solution z(t) of (1.26a), considered again as a
function of the real “time” variable t, may be not periodic at all indeed its behavior is
generally so irregular to make one thinking of a chaotic dynamics (we will be more rigorous
and explicit about this important point for what concerns the new many-body model we
introduce at the end of this chapter).

We know of course that, if a solution ζ(τ) of (1.30) is holomorphic as a function of the

complex variable τ inside the circle C̃ — and we know that such solutions do exist, in fact
in the context of the initial-value problem they emerge out of a set of initial data which has
infinite measure in the phase space of such data [12] — then the solution z(t) of (1.26a)
that corresponds to it via (1.29) is completely periodic with period T , see (1.27),

zn(t + T ) = zn(t). (1.32a)

But the transformation (1.29) actually implies an additional information, namely that in
this case z(t) is completely antiperiodic with period T/2,

zn(t + T/2) = −zn(t). (1.32b)

Let us instead assume that a branch point of a solution ζ(τ) of (1.30), occurring, say, at

τ = τb, does fall inside the circle C̃ in the complex τ -plane. Then, as we proved in [6], due
to the square-root nature of this branch point, the evolution of the solution ζ(τ) of (1.30)
as the real time variable t unfolds is obtained by following the complex time-like variable τ
as it travels (1.29) along the circular contour C̃ on a two-sheeted Riemann surface. Clearly
the change of variable (1.29a), (1.29b) entails then that the corresponding solution z(t) of
(1.26a) is just as well completely periodic with period T , see (1.32a), although in this case
(1.32b) does no more hold. And of course this conclusion holds provided only one branch
point of the solution ζ(τ) of (1.30) falls inside the circle C̃ in the main sheet of the Riemann

surface associated with this solution, and no other branch point occurs inside the circle C̃
in the second sheet of this Riemann surface, namely on the sheet entered through the cut
associated with the branch point occurring inside C̃ on the main sheet of the Riemann
surface (of course this Riemann surface might feature many other sheets associated with
other branch points occurring elsewhere hence not relevant to our present discussion).

Let us now continue this analysis by considering, more generally, a solution ζ(τ) of (1.30)

that possibly contains more than one branch point inside the circle C̃ in the main sheet of
its Riemann surface (that do not cancel each other) so that by travelling along the circle C̃
several additional Riemann sheets are accessed from the main sheet, and let us moreover
assume that, on these additional sheets, additional branch points possibly occur inside the
circle C̃ which give access to other sheets, and that possibly on these other sheets there be
additional branch points and so on. Let in conclusion B be the total number of additional
sheets accessed by a point travelling around and around on the circle C̃ on the Riemann
surface associated with the solution ζ(τ) of (1.30). This number B might coincide with the

total number of branch points occurring, inside the circle C̃, on this Riemann surface — on
all its sheets — or it might be smaller. Indeed, since each of these branch points is of square-
root type, each of the associated cuts — if entered into — gives access to one additional
sheet. But not all these sheets need be accessed; the total number B that are actually
accessed depends on the structure of the Riemann surface, for instance no additional sheet
at all is accessed if there is no branch point on the main sheet of the Riemann surface —
even though other branch points may be present inside the circle C̃ on other sheets of the
Riemann surface associated with the solution ζ(τ) of (1.30). (It might also be possible that
different branch points cancel each other pairwise as is the case for two branch points that
are on the same sheet inside the circle C̃ and generate a cut that starts at one of them
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and ends at the other). In any case the overall time requested for the point τ(t) travelling
on the Riemann surface to return to its point of departure (say, τ(0) = 0 on the main
sheet) is (B + 1)T/2, since a half-period T/2, see (1.29b), is required to complete a tour
around the circle C̃ on each sheet, and the number of sheets to be travelled before getting
back to the point of departure is overall B + 1 (including the main sheet). Hence in this
case, as the real time t evolves, the solution ζ(τ) of (1.30), considered as a function of t,
shall be completely periodic with period (B + 1)T/2. Hence (see (1.29)) if B is even the
corresponding solution z(t) of (1.26a) will be completely antiperiodic with the same period
(B + 1)T/2, z[t + (B + 1)T/2] = −z(t), and completely periodic with the “odd” period
(B + 1)T , z[t + (B + 1)T ] = z(t). If instead B is odd, the solution ζ(τ) of (1.30) as well
as the corresponding solution z(t) of (1.26a) will both be completely periodic in t with the
period (B + 1)T/2 (which might be “even” or “odd” — of course, as an integer multiple of
the basic period T ), z[t + (B + 1)T/2] = z(t) (so, in this case, the trajectories of z(t) will
display no symmetry, in contrast to the previous case).

In this analysis the assumption was implicitly understood that the total number B of
additional sheets accessed by travelling round and round on the circle C̃ on the Riemann
surface associated with the solution ζ(τ) of (1.30) be finite (a number B which, as we just
explained, might coincide with, or be smaller than, the total number of branch points of
that Riemann surface that are located inside the circle C̃ in the complex τ -plane); and
moreover we implicitly assumed that no branch point occur exactly on the circle C̃. Let us
now elaborate on these two points.

If a branch point τb occurs exactly on the circle C̃ so that the cut associated with it is
actually traversed when travelling around on the circle C̃, opening the way to new sheets,
then the “physical” equations of motion (1.26a) become singular, due to a particle collision
occurring at the real time tc defined mod (T/2) (see (1.27)) by the formula

τb = [exp(2iωtc)− 1]/(2iω). (1.33)

Indeed it is easy to check via (1.29) that the condition that tc be real coincides with the
requirement that the corresponding value of τb, as given by (1.33), fall just on the circular
contour C̃ in the complex τ -plane. The singularity is of course due to the divergence, at
the collision time t = tc, of the right-hand side of the equations of motion (1.26a); in [6] we
showed that there is however no corresponding divergence of the solution z(t), which rather
has a branch point of square root type at t = tc. But of course this entails that the speeds
of the colliding particles diverge at the collision time t = tc proportionally to |t − tc|−1/2,
and their accelerations diverge proportionally to |t− tc|−3/2.

There is no a priori guarantee that the number of branch points inside C̃ of a solu-
tion ζ(τ) of (1.30) be finite, nor that the number B of additional sheets accessed according

to the mechanism described above by moving around the circle C̃ on the Riemann surface
associated with that solution ζ(τ) of (1.30) be finite (of course B might be infinite only if

the number of branch points inside C̃ is itself infinite). Obviously in such a case (B =∞),
although the complex number τ ≡ τ(t), see (1.29b), considered as a function of the real
“time” variable t, is still periodic with period T/2, neither the solution ζ(τ) of (1.30), nor
the corresponding solution z(t) of (1.26a), will be periodic. The question that might then
be raised is whether such a solution — in particular, such a solution z(t) of the “physical”
Newtonian equations of motion (1.23) corresponding to the many-body problem character-
ized by the Hamiltonian (1.24a) — displays a “chaotic” behavior, namely, in the context
of the initial-value problem, a “sensitive dependence” on the initial data. We shall return
to this question below.

So far we have discussed the relation among the analytic structure of a solution ζ(τ)
of (1.30) and the corresponding solution z(t) of (1.26a). Let us now return to the simpler
cases considered at the very beginning of this analysis and let us consider how the transition
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from one of the two regimes described there to the other occurs in the context of the initial-
value problem for (1.26a), and correspondingly for (1.30), see (1.31). Hence let us assume
again that the initial data for (1.26a), and correspondingly for (1.30) (see (1.31)), entail
that no branch point of the corresponding solution ζ(τ) of (1.30) occurs inside the circular

contour C̃ on the main sheet of the associated Riemann surface, so that the corresponding
solution z(t) of (1.26a) satisfies both (1.32a) and (1.32b). Let us imagine then to modify
with continuity the initial data, for instance by letting them depend on an appropriate
scaling parameter. As a consequence the branch points of the solution ζ(τ) of (1.30) move,
and the Riemann surface associated to this solution ζ(τ) of (1.30) gets accordingly modified.
We are interested in a movement of the branch points which takes the closest one of them
on the main sheet of the Riemann surface from outside to inside the circle C̃. In the
process that branch point will cross the circle C̃, and the particular set of initial data that
correspond to this happening is then just a set of initial data that entails the occurrence
of a collision in the time evolution of the many-body problem (1.26a), occurring at a real
time t = tc defined by (1.33), as discussed above. After the branch point has crossed the
contour C̃ and has thereby entered inside the circular disk C, the corresponding solution
z(t) of (1.26a) is again collision-free but its periodicity properties are changed. One might
expect that the new solution continue then to satisfy (1.32a) but cease to satisfy (1.32b).
This is indeed a possibility, but it is not the only one. Indeed, since the time evolution
of the solution z(t) of (1.26a) obtains via (1.29) by following the time evolution of the
corresponding solution ζ(τ) of (1.30) as the point τ ≡ τ(t) goes round the circle C̃ on the
Riemann surface associated with that solution, the occurrence of a branch point inside the
circle C̃ on the main sheet of that Riemann surface entails that the access is now open to
a second sheet, and then possibly to other sheets if, on that second sheet, there also are
branch points inside the circle C̃. If this latter possibility does not occur, namely if on that
second sheet there are no branch points inside the circle C̃, then indeed there occurs for the
corresponding solution z(t) of (1.26a) a transition from a periodicity property characterized
by the validity of both (1.32a) and (1.32b), to one characterized by the validity of (1.32a)
but not of (1.32b). If instead there is a least one branch point in the second sheet inside
the circle C̃, then the periodicity — if any — featured after the transition by the solution
z(t) of (1.26a) depends, as discussed above, on the number B of sheets that are sequentially
accessed before returning — if ever — to the main sheet.

To simplify our presentation we have discussed above the transition process by taking as
point of departure for the analysis the basic periodic solution — that characterized by the
validity of both (1.32a) and (1.32b), the existence of which has been demonstrated in [12]—
and by discussing how a continuous modification of the initial data may cause a transition
to a different regime of periodicity, with the transition occurring in correspondence to the
special set of initial data that yields a solution characterized by a particle collision, namely
a set of initial data for which the Newtonian equations of motion become singular at a finite
real time tc (defined mod(T/2)). But it is clear that exactly the same mechanism accounts
for every transition that occurs from a solution z(t) of (1.26a) characterized by a type of
periodicity to a solution z(t) of (1.26a) characterized by a different periodicity regime —
or by a lack of periodicity.

The final point to be discussed is the question we postponed above, namely the char-
acter of the nonperiodic solutions z(t) of (1.26a) (if any), which we now understand to
be characterized, in the context of the mechanism described above, by access to an end-
less sequence of different sheets — all of them generated by branch points of square-root
type — of the Riemann surface associated with the corresponding solution ζ(τ) of (1.30).
The following two possibilities can be imagined in this connection — which of course does
not entail they are indeed both realized.

The first possibility — which we surmise to be the most likely one to be actually realized
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— is that an infinity of such relevant branch points occur quite closely to the circular contour
C̃, hence that there be some of them that occur arbitrarily close to C̃. This then entails
that the corresponding nonperiodic solutions z(t) of (1.26a) manifest a sensitive dependence
on their initial data (which we consider to be the signature of a chaotic behavior). Indeed
a modification, however small, of such initial data entails a modification of the pattern of
such branch points, which shall cause some of them to cross over from one to the other
side of the circular contour C̃. But then the two solutions z(t) of (1.26a) corresponding to
these two assignments of initial data — before and after the modification, however close
these data are to each other — will eventually evolve quite differently, since their time
evolutions are determined by access to two different sequences of sheets of the Riemann
surfaces associated with the two corresponding solutions ζ(τ) of (1.30) — two Riemann
surfaces which themselves need not be very different (to the extent one can make such
statements when comparing two objects having as complicated a structure as a Riemann
surface with an infinite number of sheets produced by an infinite number of branch points
of square-root type). So this is the mechanism whereby a complicated and non-periodic
behavior may develop for the system (1.23) — but of course not in the integrable case with
equal coupling constants (in that case, as mentioned above, the number of branch points of
the solutions ζ(τ) of (1.30) is always finite, since the N coordinates ζn(τ) are in this case the
N zeros of a polynomial of degree N the coefficients of which are polynomials in the variable
τ [5]). Note that the emergence of such a complex dynamics would not be associated with a
local exponential divergence of trajectories in phase space — it would be rather analogous
to the mechanism that causes a chaotic behavior in the case of, say, a triangular billiard
with angles which are irrational fractions of π — a complex dynamics also not due to a
local separation of trajectories in phase space, but rather to the eventual emergence of a
different pattern of reflections (indeed of any two such billiard trajectories, however close
their initial data, one shall eventually miss a reflection near a corner which the other one
does take, and from that moment their time evolutions become quite different).

A different possibility, which we consider unlikely but we cannot a priori exclude at this
stage of our analysis, is that nonperiodic solutions z(t) of (1.26a) exist which are associated
with a Riemann surface of the corresponding solutions ζ(τ) of (1.30) that, even though

it possesses an infinite number of relevant branch points inside the circular contour C̃, it
features all of them — or at least most of them, except possibly for a finite number of
them — located in a region well inside C̃, namely separated from it by an annulus of finite
thickness. Clearly in such a case two nonperiodic solutions z(t) of (1.26a) which emerge from
sufficiently close initial data separate slowly and gradually throughout their time evolution,
hence they do not display a sensitive dependence on their initial data — hence, in such a
case there would be solutions which are nonperiodic (nor, of course, multiply periodic) but
which nevertheless do not display a chaotic behavior — or, to be more precise, there would
be sets of initial data, having nonvanishing measure in the phase space of initial data, which
yield such nonperiodic (yet nonchaotic) solutions.

As an example of the dynamics generated by the model (1.26a), we display in Figure
1.2 a numerical solution of the Newtonian equations of motion (1.26a), obtained with
the numerical integration software MBS [42], with ω = 2π – hence T = 1 (see (1.27)) –
characterized by the following parameters:

N = 3; g12 = g21 = 10, g23 = g32 = 3, g31 = g13 = −10. (1.34)

The sequence of motions which appears in Figure 1.2 is characterized by sets of initial data
linked to each other by the formulas

xn(0) = λ−1x(0)
n , yn(0) = λ−1y(0)

n , (1.35a)

ẋn(0) = λẋ(0)
n − 2π(λ− λ−1)y(0)

n , ẏn(0) = λẏ(0)
n + 2π(λ− λ−1)x(0)

n , (1.35b)
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λ 0.5 1 1.2 1.5 2 2.2 2.5 3 3.5 4
Period 1 1 HSL HSL 14 14 17 17 17 17

Symmetry Yes No — — No Yes Yes Yes Yes Yes
Figure 1.2 a b — c d — — — e —

λ 4.05 4.15 4.2 4.5 5 10 18 20 30 50
Period 17 10 9 7 7 7 7 7 7 7

Symmetry Yes No No No No Yes Yes Yes Yes Yes
Figure 1.2 — f g — h — i — — —

Figure 1.1: Different values of the period in terms of λ

of course with zn ≡ xn + iyn. Here λ is a positive rescaling parameter the different values of

which identify different sets of initial data (while the data x
(0)
n , y

(0)
n , ẋ

(0)
n , ẏ

(0)
n are kept fixed).

For the example shown in Figure 1.2 we choose the following values of the parameters x
(0)
n ,

y
(0)
n , ẋ

(0)
n , ẏ

(0)
n characterizing the initial data via (1.35):

x
(0)
1 = 1, y

(0)
1 = 0, ẋ

(0)
1 = 0, ẏ

(0)
1 = 2,

x
(0)
2 = 0, y

(0)
2 = 1, ẋ

(0)
2 = 4, 2̇

(0)
1 = 0,

x
(0)
3 = 0.5, y

(0)
3 = 0.5, ẋ

(0)
3 = −0.5, ẏ

(0)
3 = 1. (1.36)

Notice that the trajectories of particle 1, 2 respectively 3 are shown in red, green, respec-
tively blue. In the following table we indicate, for different values of λ, the corresponding
observed periods of the numerical simulation and (in the last row) the corresponding im-
ages in Figure 1.2. When the numerical simulation seems to be non-periodic (suggesting an
irregular, potentially chaotic, dynamics) we use the acronym HSL, which stands for “Hic
Sunt Leones”.

The results reported in this subsection provide an additional explicit instance of a
phenomenon whose rather general scope has been already advertized via a number of other
examples, treated elsewhere in more or less complete detail [12, 5, 30, 11].

An analogous treatment to that given here will be presented in the next subsection, in
the context of the “generalized goldfish model” [4, 43, 5], which is somewhat richer inas-
much as it features branch points the nature of which depends on the values of the coupling
constants (in contrast to the case treated herein, where all relevant branch points are of
square-root type), and has moreover the advantage that its treatment in the CN context
is directly interpretable as a genuine (i.e., rotation-invariant) real many-body problem in
the plane. On the other hand the class of many-body problems with inverse-cube inter-
particle potentials, as considered herein, have been (especially, of course, in the integrable
version with equal coupling constants) much studied over the last quarter century, while
the “goldfish” model has not yet quite acquired a comparable “classical” status.
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Figure 1.2: A numerical example of the dynamics of the Calogero-Moser model.
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1.2.2 The Goldfish many-body problem

In this subsection, we describe the N -body problem in the plane characterized by the
following Newtonian equations of motion2:

~̈rn = ωk̂ ∧ ~̇rn + 2

N
∑

m=1; m6=n

(rnm)−2(αnm + α′
nmk̂∧)

×
[

~̇rn(~̇rm · ~rnm) + ~̇rm(~̇rn · ~rnm)− ~rnm(~̇rn · ~̇rm)
]

. (1.37a)

Here and below the subscripted indices run from 1 to N (unless otherwise indicated), the
number of moving particles N is a positive integer, the N two-vectors ~rn ≡ ~rn (t) identify
the positions of the moving point-particles in a plane which for notational convenience we
imagine immersed in ordinary three-dimensional space, so that ~rn ≡ (xn, yn, 0); k̂ is the
unit three-vector orthogonal to that plane, k̂ ≡ (0, 0, 1), so that k̂ ∧ ~rn ≡ (−yn, xn, 0);

~rnm ≡ ~rn − ~rm, r2
nm = r2

n + r2
m − 2~rn · ~rm ; (1.37b)

superimposed dots denote of course time derivatives; ω is a real – indeed, without loss of
generality, positive – constant, ω > 0, which sets the time scale, and to which we associate
the period

T = 2π/ω (1.38)

and αnm and α′
nm are real “coupling constants”. Note that this N -body model in the plane

is invariant under both translations and rotations; it is Hamiltonian; it features one-body
and two-body velocity-dependent forces; when the latter are missing – namely, when all
the two-body coupling constants αnm, α′

nm vanish,

αnm = α′
nm = 0, (1.39a)

it represents the physical situation of N electrically charged particles moving in a plane
under the influence of a constant magnetic field orthogonal to that plane (“cyclotron”). In
such a case of course every particle moves uniformly, with the same period T , see (1.38),
on a circular trajectory the center ~cn and radius ρn of which are determined by the initial
data (position and velocity) of each particle:

~rn (t) = ~cn + ~ρn sin (ωt)− k̂ ∧ ~ρn cos (ωt) , (1.39b)

~cn = ~rn (0) + k̂ ∧ ~ρn, ~ρn = ~̇rn (0) /ω. (1.39c)

Let us begin by tersely reviewing the findings reported in [29, 5]. First of all we note
that it is convenient to identify the physical plane in which the motion takes place with the
complex plane, via the relation

~rn ≡ (xn, yn, 0) ⇔ zn ≡ xn + iyn, (1.40)

whereby the real Newtonian equations of motion in the plane (1.37) become the following
equations determining the motion of the N points zn ≡ zn (t) in the complex z-plane:

z̈n = iωżn + 2

N
∑

m=1; m6=n

anmżnżm/ (zn − zm) , (1.41a)

2The rich phenomenology featured by the solutions of this many-body problem in the plane led us to
refer to it, at least colloquially among us, as a “goldfish”, thereby extending to this model the terminology
that was initially suggested for its integrable variant [43].
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with

anm = αnm + iα′
nm. (1.41b)

Hereafter we always use this avatar, (1.41), of the equations of motion (1.37), and we
moreover exploit the following key observation [29, 5, 4, 44, 7], the trick already introduced
in the previous sections: via the change of (independent) variable

z (t) = ζ (τ) , τ = [exp (iωt)− 1] / (iω) , (1.42)

the system (1.41) becomes

ζ ′′n = 2
N
∑

m=1; m6=n

anmζ ′nζ ′m/ (ζn − ζm) . (1.43)

Here and below the underlined notation indicates an N -vector, say z ≡ (z1, . . . , zN ), ζ ≡
(ζ1, . . . , ζN ) and so on, and the primes denote of course differentiations with respect to the
independent variable τ . Note that the constant ω has completely disappeared from (1.43);
nor does it feature in the relations among the initial data for (1.41) and (1.43), which read
simply

z (0) = ζ (0) , ż (0) = ζ ′ (0) . (1.44)

This of course entails that, to obtain the solution z (t) of (1.41) corresponding to a
given set of initial data z (0), ż (0), one can solve (1.43) with the same set of initial data,
see (1.44), thereby determine ζ (τ), and then use (1.42) to obtain z (t) (hence as well, via
(1.40), the solution of the initial-value problem for (1.37)). This possibility – to infer the
behavior of the evolution in the real time variable t of the solutions z (t) of (1.41) (namely
as well of the solutions of the physical many-body problem in the plane (1.37) ) from the
properties of the solutions ζ (τ) of (1.43) as functions of the complex variable τ – is one of
the main tools of our investigation. Indeed, when the real time variable t evolves over one
period T – say, from t = 0 to t = T – the complex time-like variable τ goes from τ = 0 back
to τ = 0 by traveling counter-clock-wise – see (1.42) – on the circular contour C̃ centered in
the complex τ -plane at i/ω and having radius 1/ω. Hence whenever all the functions ζn (τ)
– obtained as solutions of (1.43) – are holomorphic, as functions of the complex variable τ ,
inside that circular contour C̃ – or, more precisely, in the (closed) circular disk C defined by
that contour C̃ – the corresponding functions zn (t) – namely the corresponding solutions
of (1.41) – are nonsingular and completely periodic in the real time variable t, with period
T , see (1.38). (This also entails that, if the only singularities of a solution ζ (τ) of (1.43)
inside the disk C are a finite number of rational branch points, then the corresponding
solution z (t) of (1.41) is again completely periodic in the real time t, albeit possibly with a
larger period which is then an entire multiple of T ).

Now we note that all solutions ζ (τ) of (1.43), corresponding to arbitrary initial data
ζ (0), ζ ′ (0) (with the only restriction that these data be nonsingular, namely |ζ ′n (0)| <∞
and ζn (0) 6= ζm (0), see the right-hand side of (1.43)), yield solutions ζ (τ) which are
holomorphic in the neighborhood of τ = 0, as implied by the standard theorem [45] which
guarantees the existence, uniqueness and analyticity of the solutions of analytic ODEs, in
a sufficiently small circular disk D centered in the complex τ -plane at the origin, τ = 0,
where the initial data defining the solution are given. The size of this disk D is determined
by the location of the singularity of ζ (τ) closest to the origin, and the structure of the
right-hand side of (1.43) clearly entails that a lower estimate of this distance – namely of
the radius ρ of D – reads as follows:

ρ > Rζ̃/ζ̃ ′ (1.45a)



1.2. ANALYSIS OF TWO MANY-BODY PROBLEMS 29

with R a positive constant (dependent on the values of the coupling constants anm but not
on the initial data) and ζ̃ respectively ζ̃ ′ providing lower respectively upper estimates of
the moduli of ζn (0)− ζm (0) respectively ζ ′n (0), say

ζ̃ = min
n,m=1,...,N ; n6=m

|ζn (0)− ζm (0)| , (1.45b)

ζ̃ ′ = max
n=1,...,N

∣

∣ζ ′n (0)
∣

∣ (1.45c)

(for a derivation of this formula, including an explicit expression for R, see Appendix A of
[7]). Let us now assume the initial data, see (1.44), to entail (via (1.45)) that ρ > 2/ω.
Then the disk D includes the disk C, and this entails that the solutions ζ (τ) of (1.43)
are holomorphic functions of the complex variable τ in the (closed) disk C, hence (see
(1.42)) the corresponding solutions z (t) of (1.41) are completely periodic functions of the
real variable t, with period T , see (1.38).

This observation, together with the lower estimate (1.45) of ρ, imply the existence of
a set, of nonvanishing (in fact, infinite) measure in phase space, of initial data z (0), ż (0)
which yield completely periodic solutions of (1.41) (hence as well of (1.37)). But before
formulating this in the guise of the following Proposition 2, let us interject the following
obvious

Remark 1. If z (t) is the solution of (1.41) corresponding to initial data z (0), ż (0), then
z̃ (t) = cz (bt) is the solution of the equations of motion that obtain from (1.41) by replacing
in it ω with ω̃ = bω, and of course the corresponding initial data read z̃ (0) = cz (0),
˙̃z (0) = bcż (0). Here b, c are of course arbitrary (nonvanishing!) rescaling constants.

Let us now formulate Proposition 2

Proposition 2. Let z (t) be the solution of (1.41) with

ω = bω̄, (1.46a)

corresponding to the assigned initial data

z (0) = cu, ż (0) = µv, [with un 6= um if n 6= m] , (1.46b)

where the positive numbers b, c, µ play the role of scaling parameters (as we shall immedi-
ately see). Then the solution z (t) is completely periodic with period T , see (1.38),

z (t + T ) = z (t) , (1.47)

provided one of the following conditions hold:
(i) for given anm, ω, z (0) and v, the scaling number µ, hence as well the initial velocities

żn (0), are sufficiently small: 0 ≤ µ ≤ µc, where µc is a positive number, µc > 0, whose
value depends on the given quantities;

(ii) for given anm, ω, ż (0) and u, the scaling number c is sufficiently large, c > cc

(hence the initial positions of the N particles in the plane are sufficiently well separated),
with cc a positive number, cc > 0, whose value depends on the given quantities;

(iii) for given anm, ω̄, z (0) and ż (0), the scaling number b, hence as well the circular
frequency ω = bω̄, is sufficiently large, b > bc, where bc is a positive number, bc > 0, whose
value depends on the given quantities.

Remark 3. The first two formulations (items (i) and (ii)) of Proposition 2 refer to the
same equations of motion, with modified (rescaled) initial conditions; the third formulation
(item (iii)) refers to different equations of motion (due to the change via rescaling of the
constant ω) with the same initial conditions. But in fact these 3 formulations are completely
equivalent, see Remark 1.
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Before proceeding in reviewing this model, we report two additional remarks:

Remark 4. Suppose to be in the case – to which attention will be hereafter restricted – in
which the (possibly complex) coupling constants anm depend symmetrically on their two
indices:

anm = amn. (1.48)

Then the equations of motion (1.41) are Hamiltonian, being derivable in the standard
manner from the Hamiltonian

H
(

z, p
)

=
N
∑

n=1







iωzn/c + exp (cpn)
N
∏

m=1; m6=n

[zn − zm]−anm







(1.49)

(and let us recall that this entails that the “physical” equations of motion (1.37) are as
well Hamiltonian [5]). Note the presence, in this expression of the Hamiltonian function
H(z, p), of the arbitrary (nonvanishing) constant c, which does not feature in the equations
of motion (1.41). Also note that H(z, p), in contrast to the equations of motion (1.41), is
not quite invariant under translations (zn → z̃n = zn + z0), although the only effect of such
a translation on H(z, p) is addition of a constant.

Moreover, as clearly implied by the equations of motion (1.41) with (1.48), the center
of mass,

Z (t) = N−1
N
∑

n=1

zn (t) , (1.50)

moves periodically (with period T , see (1.38)) on a circular trajectory (in the complex
z-plane):

Z (t) = Z (0) + Ż (0) [exp (iωt)− 1] / (iω) . (1.51)

Remark 5. The third and last fact we like to recall is that, if all the coupling constants
in (1.41) are unity,

anm = 1, (1.52)

then the equations of motion (1.41) are integrable indeed solvable [5, 46], the solution of
the corresponding initial-value problem being given by the following neat prescription: the
N coordinates zn (t) which constitute the solution z (t) of the equations of motion (1.41)
corresponding to the initial data z (0), ż (0) are the N roots of the following algebraic
equation in the variable z:

N
∑

m=1

żm (0) / [z − zm (0)] = iω/ [exp (iωt)− 1] . (1.53)

Note that, after elimination of all denominators, this is a polynomial equation of degree N
for the variable z, with all coefficients of the polynomial periodic in t with period T ,
see (1.38). Hence the set z (t) of its N zeros is as well periodic with period T . It is therefore
clear that, in this special solvable case, see (1.52), all nonsingular solutions of (1.41) are
completely periodic, with a period that is either T or an integer multiple of T (we will
discuss in more detail this interesting case in Subsection 1.2.2.1).

As we just saw, Proposition 2 entails that the equations of motion (1.41) (as well as the
equivalent “physical” equations of motion (1.37)) possess a lot of nonsingular and completely
periodic solutions. This finding was validated [7] by simulations performed via the computer
program created by the author of this thesis to solve numerically the equations of motion
(1.41). The comprehension of many results discussed in this thesis began with the effort to
understand certain remarkable features of these numerical simulations – in particular the
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existence, in the cases characterized by real and rational values of the coupling constants
anm in (1.41), of additional sets of initial data, also of nonvanishing measure in phase
space, yielding nonsingular and completely periodic solutions with periods which are integer
multiples of T , see (1.38) – via a mechanism, at which we already hinted in the previous
sections, associated with rational branch points of the solutions ζ (τ), which is indeed
also responsible in the solvable case (with anm = 1) to yield completely periodic solutions
with such larger periods (integer multiples of T ). The findings reported here also suggest
the existence of other integrable – but presumably not solvable – cases of the many-body
problem (1.37), as well as of nonintegrable cases for which however integrable behaviors,
such as those associated with completely periodic motions, emerge from sectors of initial
data having nonvanishing measure in phase space; and they display as well a mechanism for
the transition from regular to irregular motions (for other regions of phase space, of course
only in the nonintegrable cases) characterized by a sensitive dependence on the initial data
which seems to be not associated with any local exponential divergence of trajectories over
time – in analogy to the type of chaotic behavior that ensues when a particle moves freely
(except for the reflections on the borders) inside, say, a triangular plane billiard whose
angles are irrational fractions of π.

1.2.2.1 Unitary coupling constants

In this subsection we analyze the periodicity of the solutions of (1.41) in the case of unitary
coupling constants, namely when all aij = 1. The results reported herein essentially refer
to [47].

As it is carefully described by F. Calogero in his book [5], one technique to construct
solvable many-body problems is to look at the evolution of the zeros of a polynomial
whose coefficients evolve in a known manner. A very simple (linear) evolution rule for the
coefficients generally produces a complicated (nonlinear) evolution for the zeros by virtue of
the highly nonlinear relation between the zeros and the coefficients of a polynomial. More
precisely consider the following monic polynomial of degree N with τ -dependent coefficients

P (ζ, τ) = ζN +
N
∑

j=1

cj(τ) ζN−j =
N
∏

i=1

[ζ − ζi(τ)]. (1.54)

For instance, if P (ζ, τ) is made to satisfy Pττ = 0, the zeros and coefficients evolve according
to

c′′i = 0 , (1.55)

ζ ′′i = 2
N
∑

j=1
j 6=i

ζ ′iζ
′
j

ζi − ζj
. (1.56)

We can thus see that the evolution in τ of the coefficients is trivial, while the evolution of
the zeros is governed precisely by the equations (1.43) with all coupling constants aij equal
to one. It is worth to note that the equations (1.56) have also been analyzed independently
by Prosen in the context of quantum chaos and random gaussian polynomials [48] and are a
particular case of a larger class of integrable systems derived by Ruisjenaars and Schneider
[49].

As we observed in Remark 5 in this case the explicit solution {z1(t), . . . , zN (t)} of (1.41)
corresponding to the initial data {zi(0), żi(0)} can be obtained by solving the following
polynomial equation in z

N
∑

i=1

żi(0)

z − zi(0)
=

iω

exp(iωt)− 1
. (1.57)
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Yet the best way to understand the periodicity is to realize that zi(t) = ζi(τ) are the zeros
of a polynomial whose coefficients cj(τ) are periodic functions of t (since they are linear
functions of τ , and τ is a periodic function of t). After one period, the coefficients of the
polynomial go back to their previous values, the set of zeros is periodic with period T , but
the zeros might have exchanged their position. More specifically,

{z1(t + T ), z2(t + T ), . . . , zN (t + T )} = {zπ(1)(t), zπ(2)(t), . . . , zπ(N)(t)}, (1.58)

where π ∈ SN is an element of the symmetric group of N elements. Every permutation
π ∈ SN can be decomposed as a product of disjoint cycles, each cycle containing the
particles that are exchanging their positions. The period of the solution corresponds to the
order of the permutation, i.e. the least integer q such that πq = id. For fixed N the period
of the solution of (1.56) is therefore given by

{

lcm (λ1, . . . , λs) : λ1 + · · ·+ λs = N
}

(1.59)

for some partition λ ≡ {λ1, . . . , λs} of N . The maximum of this quantity,

G(N) = max
λ`N
{lcm (λ)} , (1.60)

over all partitions of N is sometimes called the Landau function [50] in the literature. As
an example all partitions of N = 7 can be found in Table 1.3 below, where it is clear that
G(7) = 12. For a certain particle number N , we denote by T (N) the set of all possible

Figure 1.3: Orders of a permutation of 7 elements

Partition lcm Partition lcm

{7} 7 {1, 1, 1, 4} 4
{1, 6} 6 {1, 1, 2, 3} 6
{2, 5} 10 {1, 2, 2, 2} 2
{3, 4} 12 {1, 1, 1, 1, 3} 3
{1, 1, 5} 5 {1, 1, 1, 2, 2} 2
{1, 2, 4} 4 {1, 1, 1, 1, 1, 2} 2
{1, 3, 3} 3 {1, 1, 1, 1, 1, 1, 1} 1
{2, 2, 3} 6

periods 3, which clearly includes all numbers from 1 to N . The first few values of T (N)
have been collected in Table 1.4. These are all the possible periods for a fixed N , but which

Figure 1.4: Possible periods for the first few N

N T (N) N T (N)

1 1 7 1-7, 10, 12
2 1-2 8 1-8, 10, 12, 15
3 1-3 9 1-9, 10, 12, 14, 15, 20
4 1-4 10 1-10, 12, 14, 15, 20, 21, 30
5 1-5, 6 11 1-11, 12, 14, 15, 18, 20, 21, 24, 28, 30
6 1-6 12 1-12, 14, 15, 18, 20, 21, 24, 28, 30, 35, 42, 60

of these periods is actually exhibited by the system depends on the choice of initial data

3Of course we are assuming here that ω = 2π so that the fundamental period T is unity.
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{zi(0), żi(0)} and in general it is not easy to predict a priori. We turn then to the following

Question: Do initial data {zi(0), żi(0)} exist such that the solution {z1(t), . . . , zN (t)} of
the system (1.41) with aij = 1 has every possible period in T (N)?

In [47] we argue that this is indeed the case. To this purpose we first show that (1.56)
admits a period N solution. Indeed, by inserting the following ansatz into (1.56)

ζj (τ) = A + Bj (τ − τb)
Γ , j = 1, . . . , N, (1.61)

it can be seen [44, 5] that the system admits the similarity solution (1.61) provided that

Γ = 1/N, Bj = B e2πi j
N , j = 1, . . . , N. (1.62)

This special similarity solution corresponds to placing all particles on the vertices of a
regular N -gon and the only singularity occurs at τ = τb where all particles collide simulta-
neously. If the branch point τb sits outside the circle C in the complex τ -plane with centre
at i/ω and radius 1/ω then the period of this solution is one (see Figure 1.2.2.1a) as we
showed in the previous setion. On the contrary, if the initial conditions are such that τb sits
inside C, then the solution has period N (see Figure 1.2.2.1b) as it will visit the N -sheeted
Riemann surface associated to the N -th root. In this motion the j-th particle takes the
position of the (j + 1)-th particle after every fundamental period. Note from (1.61), (1.62)
and (1.44) that, given initial data {zi(0), z

′
i(0)}, the branch point occurs at

τb = − zi(0)

Nz′i(0)
(1.63)

so that it is always possible to choose initial data such that τb falls inside the circle C and
the corresponding solution has period N .
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Figure 1.5: A few different periodic motions for N = 7

The next step comes by noting that, when two groups of particles are very far apart,
their motions can be analyzed independently of each other. Without loss of generality, we
assume that the first i = 1, . . . , M particles belong to the first group while the rest belong
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to the second group. The equations of motions are

ζ ′′i = 2
M
∑

j=1
j 6=i

ζ ′iζ
′
j

ζi − ζj
+ 2

N
∑

j=M+1
j 6=i

ζ ′iζ
′
j

ζi − ζj
, i = 1, . . . , M , (1.64)

ζ ′′i = 2
N
∑

j=M+1
j 6=i

ζ ′iζ
′
j

ζi − ζj
+ 2

M
∑

j=1
j 6=i

ζ ′iζ
′
j

ζi − ζj
, i = M + 1, . . . , N . (1.65)

If generic initial conditions are chosen (i.e. such that no collisions occur at finite time),
the velocities are bounded for all time from 0 to G(N)T , say max |ζ ′i(τ)| < K. Now we
choose the initial position of the particles such that the two groups are a distance D apart
:

ζi(0) = wi, i = 1, . . . , M, (1.66)

ζi(0) = D + wi, i = M + 1, . . . , N, (1.67)

with |D| � |wi|. It is clear that in the limit of D going to infinity the second terms in
(1.64) and (1.65) become negligible with respect to the first terms, and the system effectively
decouples. The period of the system for these initial conditions is clearly the least common
multiple of the periods of the two subgroups. If we keep in mind that a system of N
particles has a period N solution, the above argument can be applied iteratively to show
that initial conditions exist such that every single period in T (N) is realized.

So the maximal period of the periodic solutions of (1.41) when all the coupling constants
are equal to 1 is given by the Landau function G(N) defined in (1.60). We conclude this
section discussing some properties of G(N) and we give its asymptotic behavior for large
N . The first few values of G(N) together with the corresponding prime factors are shown
in Table 1.6 (Grantham [51] has computed G(N) up to N = 500 000). From the first few
values it is already possible to observe the unruly behavior of G(N).

Figure 1.6: First few values of G(N)

N G(N) Prime factors of G(N) N G(N) Prime factors of G(N) N G(N) Prime factors of G(N)
1 1 1 11 30 2 · 3 · 5 21 420 22 · 3 · 5 · 7
2 2 2 12 60 22 · 3 · 5 22 420 22 · 3 · 5 · 7
3 3 3 13 60 22 · 3 · 5 23 840 23 · 3 · 5 · 7
4 4 22 14 84 22 · 3 · 7 24 840 23 · 3 · 5 · 7
5 6 2 · 3 15 105 3 · 5 · 7 25 1260 22 · 32 · 5 · 7
6 6 2 · 3 16 140 22 · 5 · 7 26 1260 22 · 32 · 5 · 7
7 12 22 · 3 17 210 2 · 3 · 5 · 7 27 1540 22 · 5 · 7 · 11
8 15 3 · 5 18 210 2 · 3 · 5 · 7 28 2310 2 · 3 · 5 · 7 · 11
9 20 22 · 5 19 420 22 · 3 · 5 · 7 29 2520 23 · 32 · 5 · 7
10 30 2 · 3 · 5 20 420 22 · 3 · 5 · 7 30 4620 22 · 3 · 5 · 7 · 11

No explicit expression of G(N) as a function of N is known, yet results on the asymptotic
behaviour of G(N) for large N are known as far back as the early 1900s. This asymptotic
behaviour (see Figure 1.7) is given by

log G(N) = (N log N)1/2 +
N1/2 log log N

2 (log N)1/2
+ O

(
√

N

log N

)

. (1.68)

The first term of this formula was proved by Landau in his Handbuch [50], while the subse-
quent terms of the asymptotic behaviour were proved later by Shah [52]. Since then there
has been a number of papers devoted to the study of this function (see, for instance,[53]).
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Figure 1.7: The functions log G(N) and
√

N log N for N up to 301

1.2.2.2 Generic coupling constants: the two-body case

In the following subsections, we will shortly analyze the case with arbitrary coupling con-
stants.

We will start treating the two-body problem. This is of interest in itself, but even more
so for the insight it provides, not only for the two-body case but as well for the N -body
case, on the nature of the singularities of the solutions ζ (t) of (1.43) as functions of the
complex variable τ , hence on the periodicity of the corresponding solutions z (t) of the
“physical” equations of motion (1.41).

For N = 2 the equations of motion (1.43) are consistent with the assignment (corre-
sponding to the standard separation of the center of mass and relative motions)

ζ1 (τ) + ζ2 (τ) = ζ1 (0) + ζ2 (0) + V τ, (1.69a)

ζ1 (τ)− ζ2 (τ) = ζ (τ) , (1.69b)

namely

ζ1 (τ) = [ζ1 (0) + ζ2 (0) + V τ + ζ (τ)] /2, (1.69c)

ζ2 (τ) = [ζ1 (0) + ζ2 (0) + V τ − ζ (τ)] /2, (1.69d)

where (see (1.50), (1.44) and (1.69a))

V = ζ ′1 (0) + ζ ′2 (0) = ζ ′1 (τ) + ζ ′2 (τ) = 2Ż (0) (1.70)

is a (generally complex) constant and the difference ζ (τ) satisfies the second-order ODE

ζ ′′ = a
[

V 2 −
(

ζ ′
)2
]

/ζ. (1.71)

Here and throughout this section a = a12 = a21 is the relevant “coupling constant”, and
primes denote of course differentiations with respect to τ .

This ODE is easily integrated once (after multiplying it by the factor 2ζ ′/[V 2 − (ζ ′)2]),
and one gets thereby

(

ζ ′
)2

= V 2 + Bζ−2a, (1.72a)
(

ζ ′
)2

= V 2
[

1 + (ζ/L)−2a
]

, (1.72b)
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with B = −4ζ ′1 (0) ζ ′2 (0) [ζ (0)]2a – or, when V 6= 0, equivalently but notationally more

conveniently, L =
(

B/V 2
)1/(2a)

= ζ (0)
{

[ζ ′ (0) /V ]2 − 1
}1/(2a)

– a (generally complex)

integration constant.
In the special case V = 0 the first-order ODE (1.72a) can be easily integrated once

more, and one obtains thereby [7] the solution of (1.71) in closed form: for a 6= −1,

ζ (τ) = c (τ − τb)
γ (1.73)

with
γ = 1/ (1 + a) ; (1.74)

for a = −1,
ζ (τ) = c exp (βτ) . (1.75)

Here c, τb and β are arbitrary (complex) constants, and it is easily seen that τb respectively
β are related to the initial data by the relations

τb = − (1 + a)−a ζ (0) /ζ ′ (0) (1.76)

respectively
β = ζ ′ (0) /ζ (0) . (1.77)

For V 6= 0 the ODE (1.72) can of course be generally integrated by a further quadrature,
but the corresponding formula in terms of the hypergeometric function F (A, B; C; Z) [54],

ζF
(

1/2,−1/ (2a) ; 1− 1/ (2a) ; [ζ/L]−2a
)

= V (τ − τb) , (1.78)

is not particularly enlightening, except in the few special cases in which the hypergeometric
function reduces to elementary functions.

For a = −1, one easily finds

ζ (τ) = L sinh [(V/L) (τ − τ0)] , (1.79)

with τ0 a (complex) constant (related of course to the initial data: ζ(0)=−L sinh[(V/L)τ0]).
Hence in this case ζ (τ) is an entire function of τ , and via (1.42) this entails that all solutions
of the Newtonian equations of motion (1.41) (with N = 2) are in this case nonsingular and
completely periodic with period T , see (1.38) (as entailed by (1.69) with (1.75,1.77) or
(1.79)).

In [7], we presented an analysis of the emergence of periodic motions in the two-body
problem (1.41) for an arbitrary value of the coupling constant a. The conclusions of such
an analysis depend essentially on the nature, and location, of the branch points featured
by the solutions of the first-order ODE (1.72) (with V 6= 0; the V = 0 case is completely
illuminated by the explicit solution (1.73,1.76) with (1.74), hence our treatment below refers
exclusively to the V 6= 0 case).

Three cases must be distinguished, depending on the value of the real part of the
coupling constant a.

Case (i):
Re (a) > 0. (1.80a)

In this case the branch point at, say, τ = τb, is characterized by the exponents γ and
1− γ, see (1.74), with the behavior of ζ (τ) for τ ≈ τb given by the formula

ζ(τ) = Lγ−γ [(V/L)(τ − τb)]
γ

×
{

1 +
∞
∑

l=1

l
∑

k=0

gkl[(V/L)(τ − τb)]
kγ [(V/L)(τ − τb)]

2l(1−γ)

}

(1.80b)
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(for a justification of this formula, including the significance of the coefficients gkl,
see formulas (B.20) with (B.2) in Appendix B of [7]). Note that this formula entails
ζ (τb) = 0 (as well as |ζ ′ (τb)| = ∞, since (1.74) and (1.80a) entail 0 < Re (γ) <
1), namely this singularity is associated with a “collision” of the two particles (see
(1.69b)), which both move with infinite speed when they collide. This singularity is
analogous to that which obtains in the V = 0 case, see (1.73).

Case (ii):
−1 < Re (a) < 0. (1.81a)

In this case the branch point at, say, τ = τb, is characterized by the exponent

β = −2a, (1.81b)

with the behavior of ζ (τ) for τ ≈ τb given by the formula

ζ (τ) = ±V (τ − τb)

{

1 +
∞
∑

l=1

gl [± (V/L) (τ − τb)]
lβ

}

. (1.81c)

This singularity, however, is generally not of the same type as that which obtains
in the V = 0 case, see (1.73) (except for those values of a such that γ = (1 + a)−1

and β = −2a differ by an integer). In both cases (V = 0, see (1.73) with (1.74)
and (1.81a); V 6= 0, see (1.81)) ζ (τb) = 0, namely this singularity is again associated
with a “collision” of the two particles (see (1.69b)); however, in the V = 0 case
|ζ ′ (τb)| = ∞, while in the V 6= 0 case ζ ′ (τb) = ±V and this entails (see (1.69)) that
either ζ ′1 (τ) or ζ ′2 (τ) vanishes at τ = τb so that

ζ ′1 (τb) ζ ′2 (τb) = 0. (1.81d)

Case (iii):
Re (a) < −1. (1.82)

In this case both behaviors, (1.80b) respectively (1.81c), are possible, so both type of
branch points, characterized by the exponents γ = (1 + a)−1 respectively β = −2a,
may be present: but the first type of branch point, characterized by the exponent
γ (which obtains now for all values of V ) corresponds now to the phenomenon of
“escape to infinity” (|ζ (τb)| = |ζ ′ (τb)| = ∞), while the second type of branch point,
characterized by the exponent β (which obtains only if V does not vanish, V 6= 0)
corresponds to the phenomenon of “two-body collision” (ζ (τb) = 0, with ζ ′ (τb) = ±V
entailing (1.81d)).

1.2.2.3 Generic coupling constants: the N-body case

In this subsection we investigate the branch point structure in the complex τ -plane of the
solutions ζ (τ) of the equations of motion (1.43), since the nature and location of these
branch points determine the behavior of the solutions z (t) of the equations of motion
(1.41), namely of the Newtonian equations of motion (1.37), as functions of the real time
variable t. Let us re-emphasize that it is indeed the structure of the Riemann surface
associated with the solution ζ (τ) of the equations of motion (1.43) that determines whether
the corresponding solution z (t) of the “physical” equations of motion (1.41) namely (1.37)
does or does not become singular as function of the real time variable t, and if it is not
singular throughout time whether or not it is completely periodic, and if it is periodic then
with what period (whether T , see (1.38), or an integer multiple of T ). The rule to evince
these conclusions is quite simple, see (1.42): to obtain z (t) as function of the real variable



38 CHAPTER 1. INTRODUCTION

t one must follow the corresponding solution ζ (τ) (namely, that characterized by the same
initial data, see (1.44)) as the complex “time-like” variable τ travels, on the Riemann
surface associated with that solution ζ (τ), round and round counterclockwise along the

circular contour C̃ centered at i/ω and of radius 1/ω.

The implications of this analysis have already been discussed in the preceding subsection
in the context of the two-body problem. The situation in the N -body case is somewhat
analogous. Indeed the structure of the evolution equations (1.43) entails that the same two
mechanisms discussed in the two-body case are generically responsible for the emergence
of singularities, at some complex values τb, of the solutions of these equations of motion,
(1.43), for an arbitrary number N of particles: namely, singularities arise either from the
“collision” of two particles, characterized by the relation ζ1 (τb) = ζ2 (τb) (with |ζ1 (τb)| =
|ζ2 (τb)| < ∞, where we assign, without loss of generality, the labels 1 and 2 to the two
“colliding” particles), or from the simultaneous “escape to infinity” of two or more (say, M)
particles, characterized by the relation |ζ1 (τb)| = |ζ2 (τb)| = · · · = |ζM (τb)| = ∞ (where,
without loss of generality, we assumed the M “particles” ζn (τ) that escape to infinity as
τ → τb to be labelled by the first M indices, n = 1, . . . , M). Note that here we use again
inverted commas around the word “collision” and “escape to infinity” to underline that
only in the special cases in which, via the transformation (1.42), to the value τb there
corresponds a real value tc (namely, τb = [exp (iωtc)− 1] / (iω) with tc real ; see (1.42)), the
“collision”, or the “escape to infinity”, corresponds indeed to a real event for the physical
problem (1.41) namely (1.37).

The statement we just made is not meant to exclude the possibility that “collisions”
involving simultaneously more than two particles occur and cause correspondingly a sin-
gularity: indeed the exact solutions (with M > 2) presented in Subsection 1.2.2.1 provide
examples of solutions characterized by such phenomena. But it stands to reason – and it is
confirmed by our analysis, see [7] – that M -particle “collisions” with M > 2 are not generic,
namely they are not associated to solutions emerging from the assignment of generic initial
data: indeed for a generic solution of the equations of motion (1.43) the complex equation
ζ1 (τb) = ζ2 (τb) generally has at least one complex solution τb (and more likely many such
solutions, indeed quite possibly an infinity of them), while one should not expect the M −1
complex equations ζ1 (τb) = ζ2 (τb) = · · · = ζM (τb), with M > 2, to possess any solution
at all (although, as we showed in [7], there are of course special solutions ζ (τ) of (1.43)
for which such multiple equations do possess solutions). Let us then understand the type
of singularity associated to these two types of “events”. To this end the discussion of the
preceding section is helpful (especially to guess at the nature of the singularity associated
with such “events”), but a new treatment in the N -body context is nevertheless necessary.

“Two-body collisions”. We analyze firstly the singularities associated with “two-
body collisions”. For notational convenience let us assume, without loss of generality, that
the two particles involved in the two-body event – which happens at τ = τb – carry the
labels 1 and 2, and let us call a the coupling constant associated with this particle pair,

a = a12 = a21. (1.83)

Let us firstly assume that

Re (a) > 0, (1.84a)

so that the real part of the branch-point exponent γ = 1/ (1 + a), (see (1.74), satisfies the
restriction

0 < Re (γ) < 1. (1.84b)

It can then be shown (see Appendix C of [7]) that in the neighborhood of a “two-body
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collision” occurring at τ = τb the solution ζ (τ) of (1.43) features the following behavior:

ζs (τ) = b + (−1)s−1 c (τ − τb)
γ + v (τ − τb)

+
∞
∑

k=1

∞
∑

l,m=0; l+m≥1

g
(s)
klm (τ − τb)

k+lγ+m(1−γ) , s = 1, 2, (1.85a)

ζn (τ) = bn + vn (τ − τb)

+
∞
∑

k=1

∞
∑

l=δk1

∞
∑

m=0

g
(n)
klm (τ − τb)

k+lγ+m(1−γ) , n = 3, . . . , N. (1.85b)

In these formulas the 2N (complex) constants b, c, v, τb and bn, vn (with n = 3, . . . , N) are
arbitrary, except for the inequalities

b 6= bn, bn 6= bm, n, m = 3, . . . , N, (1.85c)

while the coefficients of the sums are determined in terms of these constants (see Appendix
C of [7]). Clearly these formulas, (1.85), entail ζ1 (τb) = ζ2 (τb) = b 6= ζn (τb) = bn 6=
ζm (τb) = bm for n 6= m, 3 ≤ n, m ≤ N with |ζ1 (τb)| = |ζ2 (τb)| = |b| < ∞ but (see (1.85a)
and (1.84b)) |ζ ′1 (τb)| = |ζ ′2 (τb)| = ∞, while |ζn (τb)| = |bn| < ∞ and (see (1.85b) and
(1.84b)) |ζ ′n (τb)| = |vn| < ∞, n = 3, . . . , N . This confirms that the corresponding event is
to be interpreted as a “collision” of the two particles 1 and 2, with both colliding particles
moving infinitely fast at the collision time τ = τb. What interests us most is the nature of
the corresponding singularity: a branch point characterized by the exponents γ and 1− γ,
see (1.74). And the fact that such a singularity is associated with an expression of the
solution ζ (τ) of (1.43) that features, see (1.85), the maximal number, 2N , of arbitrary
constants, demonstrates the generic character of such singularities, which are therefore
likely to be featured by the solutions ζ (τ) corresponding to a generic set of initial data.

Likewise, if the inequality (1.84a) is reversed,

Re (a) < 0, (1.86a)

let us introduce the number β
β = −2a (1.86b)

so that (see (1.86a))
Re (β) > 0. (1.86c)

It can be shown that in the neighborhood of a “two-body collision” the behavior of the
solutions ζ (τ) is characterized, rather than by (1.85), by the following expressions:

ζ1 (τ) = b + c (τ − τb)
1+β +

∞
∑

k,l=1; k+l≥3

g
(1)
kl (τ − τb)

k+lβ , (1.87a)

ζ2 (τ) = b + v2 (τ − τb)− c (τ − τb)
1+β +

∞
∑

k=1

∞
∑

l=2δk1

g
(2)
kl (τ − τb)

k+lβ , (1.87b)

ζn (τ) = bn + vn (τ − τb) +
∞
∑

k=2

∞
∑

l=0

g
(n)
kl (τ − τb)

k+lβ , n = 3, . . . , N, (1.87c)

In these formulas the 2N (complex) constants b, c, v2, τb and bn, vn (with n = 3, . . . , N)
are arbitrary (except, again, for the inequalities (1.85c)), while the coefficients of the sums
are determined in terms of these constants (see Appendix C of [7]). Clearly these formulas
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(see (1.87) and (1.85c)) entail again ζ1 (τb) = ζ2 (τb) = b 6= ζn (τb) = bn 6= ζm (τb) = bm

for n 6= m, 3 ≤ n, m ≤ N with |ζ1 (τb)| = |ζ2 (τb)| < ∞, but now (see (1.87a) with (1.86c)
and (1.87b)) ζ ′1 (τb) = 0, ζ ′2 (τb) = v2 (so that ζ ′1 (τb) ζ ′1 (τb) = 0; see the right-hand side
of (1.43)), while of course again |ζn (τb)| = |bn| <∞ and (see (1.84b)) |ζ ′n (τb)| = |vn| <∞
for n = 3, . . . , N . Hence the corresponding event is again to be interpreted as a “collision”
of the two particles 1 and 2, but now with particle 1 having zero velocity at the time of
the collision, in contrast to particle 2 which moves with velocity v2 (note the notational
distinction thereby introduced among the two colliding particles); while for our purposes
the interpretation of these formulas, (1.87a,b,c), is that the nature of the corresponding
singularity is a branch point characterized by the exponent β, see (1.86b). And again
the fact that such a singularity is associated with an expression of the solution ζn (τ)
of (1.43) that features, see (1.87a,b,c), the maximal number, 2N , of arbitrary constants,
demonstrates the generic character of such singularities, which are therefore likely to be
featured by the solutions ζ (τ) corresponding to a generic set of initial data.

“Many-body collisions”. The singularities associated with “collisions” involving
more than two particles can be discussed in an analogous manner (also taking advantage
of the results of Subsection 1.2.2.2), but in view of their lack of genericity we forsake their
treatment here, and we rather proceed to discuss the singularities associated with “escapes
to infinity”.

This phenomenon can only occur if, for some group of the interacting particles, which
without loss of generality is hereafter assumed to be formed by the M particles with labels
from 1 to M (where 2 ≤M ≤ N), the quantity A,

A = (2/M)
M
∑

n,m=1; n>m

anm, (1.8a)

has real part less than negative unity,

Re (A) < −1, (1.8b)

so that the corresponding quantity Γ,

Γ = (1 + A)−1 , (1.9a)

has negative real part,
Re (Γ) < 0. (1.9b)

The quantities anm appearing in the right-hand side of (1.8a) are of course the coupling
constants that characterize the two-body interactions acting among the particles belonging
to this group of M particles, see (1.43) or (1.41); and there may of course be, for a given
N -body problem, several subgroups of particles such that the corresponding quantity Γ,
defined according to the above prescription, has negative real part, see (1.9b). Let us
assume for simplicity that there is just one such group. It is then easily seen that the
dominant term at τ ≈ τb of the solution ζ (τ) representing the “escape to infinity” of the M
coordinates ζn (τ), n = 1, . . . , M , reads

ζn (τ) ≈ cn (τ − τb)
Γ , n = 1, . . . , M, (1.10a)

ζn (τ) = bn, n = M + 1, . . . , N. (1.10b)

In these formulas the N (complex) constants bn are arbitrary, while the coefficients cn,
n = 1, . . . , M are determined (up to a common rescaling factor) in terms of the coupling
constants anm with n, m = 1, . . . , M by the following relation

A = −2

M
∑

m=1;m6=n

anm cm

(cn − cm)
, n = 1, 2, ..., M.
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with (1.8a). Clearly these formulas (see (1.10) and (1.8b)) entail |ζn (τb)| = |ζ ′n (τb)| = ∞
for n = 1, . . . , M and ζn (τb) = bn for n = M + 1, . . . , N . Hence the corresponding “event”
at τ = τb is indeed to be interpreted as the “escape to infinity” of the M particles with
(conveniently chosen) labels from 1 to M .

1.2.2.4 Generic coupling constants: dynamical behavior

The behaviors of the corresponding solutions, z (t), of the “physical” equations of motion
(1.41) depends on the locations of the branch points τb in the complex τ -plane, which of
course depend themselves on the initial data (and on the coupling constants aij). (Note
that the analysis reported in the last two subsections is local, namely it applies in the
neighborhood of each branch point; nothing excludes that there be several, or possibly an
infinity, of them). If none of these branch points is located inside the disk C (centered in the
complex τ -plane at τ = i/ω and of radius 1/ω) nor on its boundary C̃, then the solutions
zn (t) are nonsingular and completely periodic with period T , see (1.38). If instead one
branch point, say at τ = τb, falls inside the disk C, then the motion is again nonsingular but
generally not periodic, unless the branch point exponent is (real and) rational, in which case
the motion may again be nonsingular and completely periodic (see below for a justification
of the conditional), but with a larger period T̃ = qT , where q is the (positive) integer in
the denominator of the rational exponent characterizing the branch point, γ respectively
Γ, see (1.74) respectively (1.9a), which depends of course on the two-body, respectively
on the many-body, “coupling constant” a, respectively A, of the corresponding colliding
particles, (indeed a necessary and sufficient condition for the branch point exponent to be
rational is that a – or A – be theirselves rational). And if τb falls just on the boundary
of C, namely on the circular contour C̃, then at a finite real time tc defined mod (T ) by
the formula τb = [exp (iωtc)− 1] / (iω) the “physical” equations of motion (1.41) become
generally singular, either because the two particles collide, or because they escape to infinity.

If more than one branch point occurs inside the disk C the analysis must be adjusted
accordingly; of course the outcome is critically affected not only by the presence of such
branch points, but as well by which sheets they are located on, namely it depends on the
overall structure of the Riemann surface associated with ζ (τ), the key element being always
the path travelled on that surface by the complex point τ = [exp (iωt)− 1] / (iω) as the
real variable t (“time”) evolves onward from the initial moment t = 0.

The general idea is to fix attention on the solution of (1.43) (rather than (1.41)) cor-
responding to the same initial data (see (1.44)). This defines the solution ζn (τ) (with
n = 1, 2, since we are now restricting attention to the two-body case; but we will see in the
next section that essentially the same reasoning applies in the N -body case), to which is
generally associated a multi-sheeted Riemann surface in the complex τ -plane. The behavior
of the solution of the “physical” equations of motion (1.41) as a function of the, of course
real, time t is then obtained by traveling on that Riemann surface following the circular
contour C̃ defined by (1.42). Depending on the structure of the Riemann surface, this may
entail a motion that is nonsingular and completely periodic (with period T , see (1.38), or
with a period which is an integer multiple of T ), that is singular (if a branch point happens
to sit just on the contour C̃), or that is nonsingular but not periodic. Two mechanisms
may give rise to the latter outcome (no periodicity): (i) the nature of the branch points,
if they are characterized by an exponent that is not a real rational number (whether this
is going or not to happen is immediately predictable, since it depends on whether the cou-
pling constant a is or is not itself a real rational number, see (1.74) and (1.81b)); (ii) even
if the coupling constant is a real rational number, so that each branch point yields only a
finite number of sheets, there still may be an infinite number of sheets due to an infinity
of branch points (of course not all of them occurring necessarily on the same sheet, but
possibly in a nested fashion), and it may then happen that by travelling along the contour
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C̃ an endless sequence of new sheets is accessed (a necessary condition for this to happen
is that the Riemann surface feature an infinity of branch points inside the contour C̃ – of
course, on different sheets). Of course both mechanisms could be at work simultaneously.

Clearly the completely periodic motions correspond to an integrable behavior of the
system; and whatever the value of the coupling constant a, there always exist at least a set
(having nonvanishing, indeed infinite, measure in phase space) of initial data which yield
such a behavior (nonsingular and completely periodic motions with period T , see (1.38)).
As for the motions which are instead not periodic, one may well ask which kind of complex
(or even chaotic) dynamics they display. The irregular behavior mainly manifests itself as
“sensitive dependence on initial conditions”, a phenomenon due to whether it is infinite
respectively finite the number of branch points which, by falling just inside or just outside
the circular contour C̃, determine the (infinite) number of sheets that are accessed by a
path following that contour C̃ on the Riemann surface associated with the solution ζ (τ)
of (1.43). Indeed, if that number of branch point is finite, two sets of initial data that
are sufficiently close to each other (in phase space) yield two Riemann surfaces which are
sufficiently similar to each other so that, throughout the two motions corresponding to the
two sets of initial data, the same sequence of sheets is travelled. But if that number of
branch points is infinite, then even two solutions ζ (τ) of (1.43) that are initially very close
will be associated with two Riemann surfaces in which one relevant branch points falls in
one case inside, and in the other outside, the circular contour C̃, hence, by travelling on
C̃, after that point has been passed the corresponding trajectories of the physical problem
(1.41) (or, equivalently, (1.37)) become different, because from that moment a different
sequence of sheets is accessed of the two Riemann surfaces associated with the corresponding
solutions ζ (τ) of the evolution equations (1.43). This is then to be interpreted as the cause
of the numerically observed complex dynamics. We suppose that, for the kind of chaotic
motions we are dealing with, there is no local exponential divergence of trajectories; the
mechanism that causes the onset of complex dynamics in this case is rather analogous to
that which characterizes the nonperiodic free motion of a point in, say, a triangular plane
billiard with angles which are irrational fractions of π (then any two trajectories, however
close they initially are – and for however long they remain close – eventually become
topologically different because one of the two misses a reflection that the other one takes,
and from that moment onwards their evolutions become quite different).

As an example of the dynamics generated by the model (1.41), we display in Figure
1.10 a numerical solution of the Newtonian equations of motion (1.41), obtained with
the numerical integration software MBS [42], with ω = 2π – hence T = 1, see (1.38) –
characterized by the following parameters:

N = 3; a12 = a21 = aRG = 1, a13 = a31 = aRB = 2,

a23 = a32 = aGB = 3, (1.11)

where R, G and B refers to the color code used to label the three particles in the numerical
simulations. The sequence of motions which appears in Figure 1.10 is characterized by sets
of initial data linked to each other by the formulas

zn (0) = z(0)
n , żn (0) = µż(0)

n . (1.12)

of course with zn ≡ xn + iyn. Here λ is a positive rescaling parameter the different values of

which identify different sets of initial data (while the data x
(0)
n , y

(0)
n , ẋ

(0)
n , ẏ

(0)
n are kept fixed).

For the example shown in Figure 1.10 we choose the following values of the parameters x
(0)
n ,
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µ 0.5 0.780 0.781 1 1.213 1.214 1.219 1.220 1.241
Period 1 1 6 6 6 49 49 50 50

Figure 1.10 a b c – d e – – –

µ 1.242 1.25 1.293 1.294 1.295 1.400 1.401 1.41 1.442
Period 51 51 51 57 58 58 59 59 59

Figure 1.10 – f – g – – – h –

µ 1.443 1.721 1.722 1.8 1.944 1.945 2.053 2.054 2.1
Period 65 65 66 66 66 68 68 71 71

Figure 1.10 – – – i – – – – j

λ 2.108 2.109 2.164 2.165 2.17 2.171 2.172 2.2 2.5
Period 71 72 72 74 74 74 HSL HSL HSL

Figure 1.10 – – – – k – – m –

Figure 1.8: Different values of the period in terms of λ

Period Change 1 → 6 6 → 49 49 → 50 50 → 51 51 → 57
Colliding Particles R–B R–G R–G R–G R–G

Collision Time 0.48 3.54 24.72 20.59 43.75

Period Change 57 → 58 58 → 59 59 → 65 65 → 66 66 → 68
Colliding Particles R–G R–G R–G R–G R–B

Collision Time 31.49 27.37 8.35 44.25 54.41

Period Change 68 → 71 71 → 72 72 → 74 74 → HSL
Colliding Particles G–B R–G R–B R–G

Collision Time 56.26 5.63 13.75 24.905

Figure 1.9: Observed period jumps

y
(0)
n , ẋ

(0)
n , ẏ

(0)
n characterizing the initial data via (1.12):

x
(0)
1 = 0, y

(0)
1 = 0, ẋ

(0)
1 = −1, ẏ

(0)
1 = 1;

x
(0)
2 = 0, y

(0)
2 = 1, ẋ

(0)
2 = 1, ẏ

(0)
2 = 0;

x
(0)
3 = −1, y

(0)
3 = 0, ẋ

(0)
3 = −0.5, ẏ

(0)
3 = −0.5. (1.13)

Notice that the trajectories of particle 1, 2 respectively 3 are shown in red, green, respec-
tively blue. In the following tables we summarize, for different values of λ, the corresponding
observed periods of the numerical simulation and the corresponding images in Figure 1.10;
each period change and which of the three particles are involved in the corresponding col-
lision (in this case we have the following values for the exponent γ: γRG = 1/2, γBR = 1/3
and γGB = 1/4). When the numerical simulation seems to be non-periodic (suggesting an
irregular, potentially chaotic, dynamics) we use the acronym HSL, which stands for “Hic
Sunt Leones”.

1.3 Non-integrability and analyticity in complex time

The two models presented in the previous section emphasize the idea that there exists a link
between the integrability properties of a dynamical system and the analytic structure of
its solutions as functions of the independent variable (“time”, but considered as a complex
variable).
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Figure 1.10: A numerical example of the dynamics of the Goldfish model.
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This concept goes back to such eminent mathematicians as Carl Jacobi, Sophia Kowa-
lewskaya, Henri Poincaré, Paul Painlevé and his school. This notion was also discussed
several times by Martin Kruskal, whose main ideas – a synthetic if overly terse rendition of
which might be the statement that integrability is compatible with the presence of multival-
uedness but only provided this is not excessive – can be gleaned from some papers written
by himself and some of his collaborators [55], or by others who performed theoretical and
numerical investigations motivated by his ideas [56].

It is worth noting that most of the results reported in many of these works [56] have
the disadvantage that they study such physical dynamical systems directly substituting the
evolutionary real time variable with a complex time variable which must evolve on a closed
contour on the complex plane, so that one can point out the presence of branch points and
singularities. At the contrary, the advantage given by the trick is to offer the possibility
of describe the real time physical behavior of a certain model studying an auxiliary model
with respect to a complex time which evolves periodically along a closed path.

In Section 1.4 we will introduce a new (Aristotelian) model, that will be the main object
of the remaining chapters of this thesis. The main interest of this many-body problem
remains in the fact that it is possible to develop in full detail the line of investigation
traced so far: namely, we will be able to completely describe the analytic structure of the
solutions of the auxiliary model, obtained from the physical one via the trick, and to stress
the physical implications of such findings, providing a prototype of a mechanism explaining
the transition from regular to irregular motions as travel on Riemann surfaces.

1.3.1 Ziglin and Yoshida Theorems

In this subsection we present two rigorous results which emphasize the connection between
non-integrability of dynamical systems and analytic structure of their solutions (in complex
time).

The fundamental papers of Ziglin [57] gave the formulation of a very basic theorem
about nonintegrability of analytic Hamiltonian systems. The idea of Ziglin’s approach lies
in a deep connection between properties of solutions of such systems on a complex time
plane and the existence of first integral. This idea takes its origins in works of S. W.
Kovalevskaya and A. M. Lyapunov. Ziglin works found a lot of continuations and many
important applications [58], [59] and [60]. The main results concerns the existence on
an N -th single-valued integral, for analytic Hamiltonian systems of N degrees of freedom
which already possess N−1 single-valued integrals. For the sake of semplicity, we will state
Ziglin’s theorem in the case N = 2.

Theorem 6. Suppose to have an Hamiltonian dynamical system, characterized by the an-
alytic Hamiltonian with two degrees of freedom of the following form

H =
1

2

(

p2
1 + p2

2

)

+ V (q1, q2) , (1.14)

and suppose it possesses the a solution {q1(t), q2(t)} which satisfies the (straight line) rela-
tion

c1 q1(t) + c2 q2(t) = 0 (1.15)

and which is a meromorphic function of t. Now consider the normal variational equation
of that solution and assume that we know one non-resonant, diagonalizable matrix g1 of the
monodromy group of this normal variational equation. We recall that a matrix is said to be
resonant if all its eigenvalues are roots of unity.

Then, if the system possesses a second single-valued first integral other than (1.14), any
other matrix g2 of the monodromy group of the normal variational equation either commute
with g1 or permute the eigenvectors of g1.
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The details of this theorem are sufficiently complicated and to avoid to be too disper-
sive in the presentation we prefer to suggest to the interested reader to look at the cited
bibliography, see [57] and [58]. We limit ourselves to stress some fundamental implications
of Ziglin’s theorem. One may use this theorem to derive, in specific examples, that the
two matrixes g1 and g2 do not satisfy the necessary conditions of either commutation or
mutual permutation of the eigenvectors, proving in this way the non-integrability of the
corresponding Hamiltonian system.

We can write the singular expansion of the solutions q1, q2 in a neighborhood of the
straight line (1.15) and near a singularity at t = tb in the following way:

qj(t) = a
(j)
0 (t− tb)

q
(j)
0 + a

(j)
1 (t− tb)

q
(j)
1 + ... + a

(j)
k (t− tb)

q
(j)
k + .... , (1.16)

with j = 1, 2 and where a
(j)
k and q

(j)
k are constants. The q

(j)
k ’s are the so-called Kowalveskaya

exponents. Yoshida realized that the non-resonance condition on the matrices g1 and g2

mentioned in the theorem essentially implies that, while some of the exponents qj
k are

rational numbers, some others are irrational numbers. Particularly, Yoshida established, in
the case of homogeneous potentials V (q1, q2), a direct connection between the non-resonance
condition of g1, g2 and the non-rationality of the Kowalveskaya exponents.

The central result proved by Yoshida concerns autonomous systems of ODEs of the
form

d zj

d t
= Fj(z) , z ≡ (z1, z2, ..., zN ) , j = 1, ..., N . (1.17a)

where the Fj ’s are rational, homogeneous functions of the zi’s, namely:

Fj(λ
κ1 z1, λ

κ2 z2, ..., λ
κN zN ) = λκj+1 Fj(z1, z2, ..., zN ) , (1.17b)

and it can be stated as follows

Theorem 7. If any Kowalveskaya exponent of the system of ODEs (1.17) is irrational or
complex, then this system cannot have N − 1 rational, homogeneous first integrals.

1.4 The Aristotelian three-body problem

Purpose and scope of this section is to introduce and discuss a simple Hamiltonian dynami-
cal system describing the motion of 3 particles in the (complex ) plane. This 3-body problem
is the prototype of a class of models (see [6, 7, 5] and the references cited in Subsection 1.2)
that feature a transition from very simple (even isochronous) to quite complicated motions
characterized by a sensitive dependence both on the initial data and the parameters (“cou-
pling constants”) of the model. This transition can be explained as travel on Riemann
surfaces. The interest of this phenomenology – illustrating the onset in a deterministic
context of irregular motions – is underlined by its generality [5], suggesting its eventual
relevance to understand natural phenomena and experimental investigations. The novelty
of the model treated herein is that it allows a quite explicit mathematical treatment. In
this section only some of our main findings are reported. The most interesting results, all
the proofs and the conclusions are described in the following three chapters.

The model is characterized by the following equations of motion:

żn = −i ω zn +
gn+2

zn − zn+1
+

gn+1

zn − zn+2
. (1.18)

Notation: here and hereafter indices such as n, m range from 1 to 3 and are defined
mod (3); superimposed dots indicate differentiations with respect to the real independent

time variable t; the dependent variables zn ≡ zn(t) are complex, and indicate the positions
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of 3 point “particles” moving in the complex z-plane; i ≡
√
−1 is the imaginary unit; the

parameter ω is positive, and it sets the time scale via the basic period

T =
π

ω
; (1.19)

the 3 quantities gn are arbitrary coupling constants, but in this thesis we essentially restrict
consideration to the case in which they are all real and moreover satisfy the “semisymmet-
rical” restriction

g1 = g2 = g , g3 = f , (1.20)

entailing that the two particles with labels 1 and 2 are equal, while particle 3 is different.
More special cases are the “fully symmetrical”, or “integrable”, one characterized by the
equality of all 3 coupling constants,

f = g , g1 = g2 = g3 = g , (1.21)

and the “two-body” one, with only one nonvanishing coupling constant,

g1 = g2 = g = 0, g3 = f 6= 0 . (1.22a)

In this latter case clearly
z3(t) = z3(0) exp(−i ω t) (1.22b)

and the remaining two-body problem is easily solvable,

zs(t) = exp(−i ω t)

[

1

2
[z1(0) + z2(0)]

−(−)s
{1

4
[z1(0)− z2(0)]

2 + f
exp(2 i ω t)− 1

2 i ω

} 1/2
]

, s = 1, 2 . (1.22c)

The justification for labelling the fully symmetrical case (1.21) as “integrable” will be clear
from the following (or see Section 2.3.4.1 of [5]). The treatment of the more general case
with 3 different coupling constants gn is outlined in Appendix B.

Note that the equations of motion (1.18) are of “Aristotelian”, rather than “Newtonian”,
type, inasmuch as they imply that the “velocities”, rather than the “accelerations”, are
determined by the “forces”. These equations of motion are Hamiltonian, indeed they follow
in the standard manner from the Hamiltonian function

H(z, p) =
3
∑

n=1

[

−i ω zn pn + gn
pn+1 − pn+2

zn+1 − zn+2

]

. (1.23)

And they can be reformulated (see Chapter 2) as, still Hamiltonian, real (and covariant,
even rotation-invariant) equations describing the motion of three point particles in the
(real) horizontal plane.

The following qualitative analysis (confirmed by our quantitative findings, see below)
is useful to get a first idea of the nature of the motions entailed by our model. For large
values of (the modulus of) zn the “two-body forces” represented by the last two terms
in the right-hand side of (1.18) become negligible with respect to the “one-body (linear)
force” represented by the first term, hence in this regime żn ≈ −i ω zn entailing zn(t) ≈
const exp(−i ω t). One thereby infers that, when a particle strays far away from the origin
in the complex z-plane, it tends to rotate (clockwise, with period 2 T ) on a circle: hence
the first qualitative conclusion that all motions are confined. Secondly, the two-body forces
cause a singularity whenever there is a collision of two (or all three) of the particles, and
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become dominant whenever two particles get very close to each other, namely in the case
of near misses. But if the three particles move aperiodically in a confined region (near the
origin) of the complex z-plane, an infinity of near misses shall indeed occur. And since
the outcome of a near miss is generally quite different (whenever the two particles involved
in it are different) depending on which side the particles slide past each other – and this,
especially in the case of very close near misses, depends sensitively on the initial data of the
trajectories under consideration – we see here a mechanism causing a sensitive dependence
of the time evolution on its initial data. This suggests that our model (1.18), in spite of
its simplicity, might also support quite complicated motions, possibly even displaying an
“unpredictable” evolution in spite of its deterministic character. This hunch is confirmed
by the results reported in this section and in the following chapters.

To investigate the dynamics of our “physical” model (1.18) it is convenient to intro-
duce an “auxiliary” model, obtained from it via the following change of dependent and
independent variables:

zn(t) = exp (−i ω t) ζn (τ) , τ (t) =
exp(2 i ω t)− 1

2 i ω
. (1.24)

Note that initially the coordinates zn and ζn coincide:

zn(0) = ζn(0) . (1.25)

The equations of motion of the auxiliary model follow immediately from (1.18) via (1.24)
(or, even more directly, by noting that, for ω = 0, τ = t and zn(t) = ζn(τ)):

ζ ′n =
gn+2

ζn − ζn+1
+

gn+1

ζn − ζn+2
. (1.26)

Here of course the appended prime denotes differentiation with respect to the (complex )
variable τ .

The definition of τ (t) implies that as the (real) time variable t evolves onwards from
t = 0, the complex variable τ travels round and round, making a full tour (counterclockwise)
in every time interval T, on the circle C the diameter of which, of length d = 1 / ω, lies on
the imaginary axis in the complex τ -plane, with one end at the origin, τ = 0, and the other
at τ = i / ω. Hence these relations, (1.24), entail that if ζn (τ) is holomorphic as a function
of the complex variable τ in the closed disk D encircled by the circle C, the corresponding
function zn (t) is periodic in the real variable t with period 2 T (indeed antiperiodic with
period T ):

zn(t + T ) = −zn(t) , zn(t + 2 T ) = zn(t) . (1.27)

But it is easy to prove (see Section 2.4) that the solution ζn (τ) of (1.26) is holomorphic (at
least) in the circular disk D0 centered at the origin of the complex τ -plane and having the
radius

r =

(

min
n,m=1,2,3; m6=n

|ζn(0)− ζm(0)|
) 2

128 max
n=1,2,3

|gn|
. (1.28)

One may therefore conclude that our physical system (1.18) is isochronous with period 2 T,
see (1.19). Indeed an isochronous system is characterized by the property to possess one
or more open sectors of its phase space, each having of course full dimensionality, such
that all motions in each of them are completely periodic with the same fixed period (the
periods may be different in these different sectors of phase space, but must be fixed, i e.
independent of the initial data, within each of these sectors): and in our case clearly (at
least) all the motions characterized by initial data zn (0) such that

min
n,m=1,2,3; m6=n

|zn(0)− zm(0)| > 16

√

max
n=1,2,3

|gn|

2 ω
(1.29)
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are completely periodic with period 2 T , see (1.27), since this inequality, implying (via (1.25)
and (1.28)) r > d, entails that ζn(τ) is holomorphic (at least) in a disk D0 that includes,
in the complex τ -plane, the disk D.

This argument is a first demonstration of the usefulness of the “trick” (1.24), associating
the auxiliary system (1.26) to our physical system (1.18). More generally, this relationship
(1.24) allows to infer the main characteristics of the time evolution of the solutions zn (t)
of our physical system (1.18) from the analyticity properties of the corresponding solutions
ζn (τ) of the auxiliary system (1.26): indeed the evolution of zn(t) as the time t increases
from the initial value t = 0 is generally related via (1.24) to the values taken by ζn (τ) when
τ rotates (counterclockwise, with period T ) on the circle C in the complex τ -plane and
correspondingly ζn(τ) travels on the Riemann surface associated to its analytic structure
as a function of the complex variable τ . Suppose for instance that the only singularities of
ζn(τ) in the finite part of the complex τ -plane are square-root branch points, as it is indeed
the case for our model (1.18) at least for a range of values of the ratio of the coupling
constants f and g, see (1.20) and below.4 Then the isochronous regime corresponds to
initial data such that the corresponding solution ζn (τ) has no branch points inside the
circle C on the main sheet of its Riemann surface (i. e. that characterized by the initial
data). Moreover, if there is a finite (nonvanishing) number of branch points inside the
circle C on the main sheet of the Riemann surface of ζn (τ), and a finite number of branch
points inside the circle C on all the sheets that are accessed by traveling on the Riemann
surface round and round on the circle C, then clearly the corresponding solution zn(t)
is still a completely periodic function of the time t, but now its period is a finite integer
multiple jT of the basic period T, the value of j depending of course on the number of sheets
that get visited along this travel before returning to the main sheet. Hence, in particular,
whenever the total number q of (square-root) branch points of the solution ζn(τ) of the
auxiliary problem (1.26) is finite, the corresponding solution zn(t) of our physical model
(1.18) is completely periodic, although possibly with a very large period (if q is very large)
the value of which may depend, possibly quite sensitively, on the initial data. On the
other hand if the number of (square-root) branch points possessed by the generic solution
ζn(τ) is infinite, and the Riemann surface associated with the function ζn(τ) has an infinite
number of sheets (as it can happen in our case, see below), then it is possible that, as τ goes
round and round on the circle C, the corresponding value of ζn (τ) travels on this Riemann
surface without ever returning to its main sheet, entailing that the time evolution of the
corresponding function zn(t) is aperiodic, and that it depends sensitively on the initial data
inasmuch as these data characterize the positions of the branch points hence the structure
of the Riemann surface.

This terse analysis entails an important distinction among all these ( square-root) branch
points: the “active” branch-points are those located inside the circle C on sheets of the
Riemann surface accessed – when starting from the main sheet – by travelling round and
round on that circle, so that they do affect the subsequent sequence of sheets that get
visited; while the “inactive” branch points are, of course, those that fall outside the circle
C, as well as those that are located inside the circle C but on sheets of the Riemann surface
that do not get visited while travelling round and round on that circle (starting from the
main sheet) and that therefore do not influence the time-evolution of the corresponding
solution of our physical system (1.18). This distinction is of course influenced by the initial
data of the problem, that characterize the initial pattern of branch points; clearly it is

4The nature of these singularities is generally independent from the particular solution under considera-
tion and can be easily ascertained (see Chapter 2) via local analyses à la Painlev é of the generic solution of
the equations of motion (1.26), while the number and especially the locations of these singularities – which
generally affect all the 3 components ζn(τ), up to some exceptions – depend on the specific solution under
consideration and their identification requires a more detailed knowledge than can be obtained by a local
analysis à la Painlev é.
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not just a “local” characteristic of each branch point depending only on its position (for
instance, inside or outside the circle C): it depends on the overall structure of the Riemann
surface, for instance if there is no branch point on its main sheet – that containing the
point of departure of the travel round and round on the circle C – then clearly all the other
branch points are inactive, irrespective of their location.

Let us also emphasize that, whenever an active branch point is quite close to the circle
C it corresponds to a near miss involving two particles of our physical model (1.18), at
which these two particles scatter against each other almost at right angles (corresponding
to the square-root nature of the branch point). The difference between the cases in which
such a branch point falls just inside respectively just outside the circle C corresponds to a
near miss in which the two particles slide past each other on one side respectively on the
other (see figure 1.11), and this makes a substantial difference as regards the subsequent
evolution of our 3-body system (unless the two particles are equal). The closer the near
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Figure 1.11: Scattering of two bodies in the three-body problem 1.18 corresponding to a
near miss. The two outcomes originate from two sets of initial data close to each other
such that a square-root branch point τb falls on different sides of the circle C.

miss, the more significant this effect is, and the more sensitive it is on the initial data,
a tiny change of which can move the relevant branch point from one side to the other of
the circumference of the circle C and correspondingly drastically affect the outcome of the
near miss. This is the mechanism that accounts for the fact that, when the initial data
are in certain sectors of their phase space (of course quite different from that characterized
by the inequalities (1.29)), the resulting motion of the physical 3-body problem (1.18)
is aperiodic, indeed nontrivially so: in such cases (as we show below) the aperiodicity is
indeed associated with the coming into play of an infinite number of (square-root) branch
points of the corresponding solution of the auxiliary problem (1.26) and correspondingly
with an infinite number of near misses experienced by the particles throughout their time
evolution, this phenomenology being clearly characterized by a sensitive dependence on the
initial data.

This mechanism to explain the transition from regular to irregular motions – and in
particular from an isochronous regime to one featuring unpredictable aspects – was already
discussed [6, 7] in the context of certain many-body models somewhat analogous to that
studied herein, for instance see Section 1.2. But those treatments were limited to providing
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a qualitative analysis such as that presented above and to ascertaining its congruence with
numerical solutions of these models. The interest of the simpler model introduced and
discussed herein is to allow a detailed, quantitative understanding of this phenomenology.
This is based on the following explicit solution of our model (1.18), obtained via the auxiliary
problem (1.26):

zs(t) = Z exp (−i ω t)− 1

2

(

f + 8 g

6 i ω

)1/2

[1 + η exp (−2 i ω t)] 1/2 ·

·
{

[w̌ (t)] 1/2 − (−)s [12 µ− 3 w̌ (t)] 1/2
}

, s = 1, 2 , (1.30a)

z3 (t) = Z exp (−i ω t) +

(

f + 8 g

6 i ω

) 1/2

[1 + η exp (−2 i ω t)] 1/2 [w̌ (t)] 1/2 . (1.30b)

Here the function w̌(t) is defined via the relation

w̌(t) = w [ξ(t)] , (1.31)

with
ξ(t) = R [η + exp (2 i ω t)] = ξ̄ + R exp (2 i ω t) , (1.32)

and w(ξ) implicitly defined by the nondifferential equation

(w − 1)µ−1 w−µ = ξ . (1.33)

The parameter µ is defined in terms of the coupling constants g and f , see (1.20), as follows:

µ =
f + 2 g

f + 8 g
, (1.34)

and in (1.30)-(1.32) the three constants Z, R, and η (or ξ̄) are defined in terms of the 3
initial data zn(0) as follows:

Z =
z1(0) + z2(0) + z3(0)

3
, (1.35a)

R =
3 (f + 8 g)

2 i ω [2 z3(0)− z1(0)− z2(0)]
2

[

1− 1

w̌(0)

]µ−1

, (1.35b)

ξ̄ = R η , (1.35c)

η =
i ω
{

[z1(0)− z2(0)]
2 + [z2(0)− z3(0)]

2 + [z3(0)− z1(0)]
2
}

3 (f + 2 g)
− 1 , (1.35d)

w̌(0) =
2 µ [2 z3(0)− z1(0)− z2(0)]

2

[z1(0)− z2(0)]
2 + [z2(0)− z3(0)]

2 + [z3(0)− z1(0)]
2 . (1.35e)

Note that the constant Z is the initial value of the center of mass of the system, and
indeed the first term in the right-hand side of the solution (1.30) represents the motion of
the center of mass of the system: just a circular motion around the origin, with a constant
velocity entailing a period 2 T . Since the rest of the motion is independent of the behavior of
the center of mass, in the study of this model attention can be restricted without significant
loss of generality to the case when the center of mass does not move, Z = 0.

The nontrivial aspects of the motion are encoded in the time evolution of the function
w̌(t), see (1.30) and (1.31): let us emphasize in this connection that the dependent variable
w(ξ) is that solution of the nondifferential equation (1.33) uniquely identified by continuity,
as the time t unfolds, hence as the variable ξ ≡ ξ (t) goes round and round, in the complex
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ξ-plane, on the circle Ξ with center ξ̄ and radius |R| (see (1.32)), from the initial datum
assigned at t = 0,

w [ξ (0)] = w
(

ξ̄ + R
)

= w̌ (0) , (1.36)

see (1.35e). This specification of the initial value w̌(0) is relevant, because generally the
nondifferential equation (1.33) has more than a single solution, in fact possibly an infinity
of solutions, see below.

It is clear from (1.30) that the time evolution of the solution zn(t) of our model (1.18)
is mainly determined by the time evolution of the function w̌(t). Indeed,

1. The factor [η exp (−2 i ω t)− 1] 1/2 displays a quite simple time evolution, periodic
with period T if |η| < 1 and antiperiodic with period T hence periodic with period
2 T if |η| > 1.

2. If w̌(t) is periodic with period Ť , its square root [w̌(t)]1/2 , appearing in the right-
hand side of the solution formulas (1.30), is clearly as well periodic with period Ť
or antiperiodic with period Ť hence periodic with period 2 Ť depending whether the
closed trajectory of w̌(t) in the complex w̌-plane does not or does enclose the (branch)
point w̌ = 0.

3. Likewise the square root [12 µ− 3 w̌ (t)] 1/2 (see (1.30)) is also periodic with period
Ť or antiperiodic with period Ť hence periodic with period 2 Ť depending whether
the closed trajectory of w̌(t) in the complex w̌-plane does not or does enclose the
(branch) point w̌ = 4 µ (but note that a change of sign of this square root only entails
an exchange between the two equal particles 1 and 2).

4. In conclusion one sees that – provided one considers particles 1 and 2 as indistinguish-
able – then, if the time evolution of w̌(t) is periodic with period Ť , w̌(t + Ť ) = w̌(t),
the physical motion of the 3 particles zn(t) is also completely periodic either with the
same period Ť or with period 2 Ť , provided Ť is an integer multiple of T ;

5. Finally, if the motion of w̌(t) is not periodic then clearly the functions zn(t) are also
not periodic.

Hereafter we only discuss the time evolution of the function w̌(t); actually, as explained
below, in this thesis we limit our consideration to discussing the motion of a generic solution
w̃(t) = w [ξ(t)] of the nondifferential equation (1.33). Moreover, we consider only generic
solutions of (1.18), namely those characterized by initial data that exclude one of the
following special outcomes:

(a) w̌ (t) takes, at some (real) time ta, the value w̌(ta) = 4 µ entailing a pair collision of
the 2 equal particles occurring at this time, z1(ta) = z2(ta).

(b) w̌ (t) takes, at some (real ) time tb, the value w̌(tb) = µ entailing a pair collision of the
different particle with one of the 2 equal particles occurring at this time, z1(tb) = z3(tb)
or z2(tb) = z3(tb).

(c) The constant η has unit modulus, |η| = 1, i. e. η = exp(2 i ω tc) with tc real (and of
course defined mod T ) which entails a triple collision of the 3 particles occurring at
the time tc, z1(tc) = z2(tc) = z3(tc) .

(c’) w̌ (t) vanishes at some (real) time tc, w̌(tc) = 0 (but, as our notation suggests, this
case (c’) is just a subcase of (c), although this is not immediately obvious from (1.30)
but requires using also (1.32) and (1.33)).
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The initial data that give rise to solutions having one of these singularities form a set
of null measure. It can be easily seen that these singular solutions zn(t) of our physical
problem (1.18) correspond via (1.24) to special solutions ζn (τ) of our auxiliary problem
(1.26) possessing a branch point that sits exactly on the circle C in the complex τ -plane:
more precisely,

(a) a square-root branch point featured by ζ1(τ) and ζ2(τ) but not by ζ3(τ),

(b) a square-root branch point featured by all 3 functions ζn(τ),

(c) a branch point featured by all 3 functions ζn(τ) the nature of which depends on the
parameter µ.

As mentioned above, in this work we essentially confine our treatment to discussing the
time evolution of a generic root w̃(t) of the nondifferential equation (1.33) with (1.32), and
in particular to identifying for which initial data its time evolution is periodic, and in such a
case what the period is. Remarkably we find out that, for (arbitrarily) given initial data, all
these roots have at most three different periods (one of which might be infinite, signifying
an aperiodic motion), see Chapter 3; periods which we are able to determine explicitly
(although the relevant formulas have some nontrivial, even “chaotic”, aspects, in a sense
that will be more clear and explicit in the final Chapter 4). The question of identifying,
among all the roots w̃j(t) of this nondifferential equation (1.33), the “physical” one w̌(t)
i. e. the one that evolves from the initial datum (1.35e), and in particular of specifying
the character of its time evolution among the (at most 3) alternatives, see Chapter 3, was
still an open problem at the time this thesis was written and it will be reported in [2].
Let us re-emphasize that the time evolution of w̃(t) ≡ w [ξ(t)] coincides with the evolution
of a generic root w (ξ) of (1.33) as the independent variable ξ travels (making a complete
counterclockwise tour in the complex ξ-plane in every time interval T ) on the circle Ξ with
center ξ̄ and radius |R|, see (1.32), and correspondingly the dependent variable w(ξ) travels
on its Riemann surface. Note that this Riemann surface is completely defined by the single
parameter µ, see (1.34) and (1.33), while the circle Ξ is defined by the initial data of the
problem, see (1.32) with (1.35).

What therefore remains to be discussed is the analytic structure of the multivalued
function w (ξ) defined implicitly by the nondifferential equation (1.33) or, equivalently but
more directly, the time dependence of the corresponding function w̃ (t) ≡ w̃ [ξ (t)]. To begin
with, we consider the case in which the parameter µ is rational ,

µ =
p

q
, (1.37)

with p and q coprime integers and q positive, q > 0. The extension of the results to the
case of irrational µ is made subsequently; although, to avoid repetitions, we present below
some results in a manner already appropriate to include also the more general case with µ
real.

In the rational case (1.37) the nondifferential equation that determines the “dependent
variable” w̃ (t) in terms of the “independent variable” t becomes polynomial, and takes one
of the following 3 forms depending on the value of the parameter µ, see (1.37):

(w̃ − 1) p−q =
[

ξ̄ + R exp (2 i ω t)
] q

w̃ p, if µ > 1, (1.38a)
[

ξ̄ + R exp (2 i ω t)
] q

(w̃ − 1) q−p w̃ p = 1, if 0 < µ < 1, (1.38b)
[

ξ̄ + R exp (2 i ω t)
] q

(w̃ − 1) q+|p| = w̃ |p|, if µ < 0. (1.38c)

The above expressions are polynomials (in the dependent variable w̃) of degree J :

J =







p, if µ > 1;
q, if 0 < µ < 1;
q + |p|, if µ < 0.

(1.39)
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As for the boundaries of these 3 cases, let us recall that µ = 1 corresponds, via (1.34), to
g = 0, namely, see (1.20), to the trivially solvable two-body case, see (1.22), while µ = 0
respectively µ = ∞ correspond, via (1.34), to f + 2 g = 0 respectively to f + 8 g = 0 and
require a separate treatment (see 2). Clearly the third case (µ < 0) becomes identical to
the first (µ > 1) via the replacement

w̃ 7→ 1− w̃, ξ̄ 7→ −ξ̄, R 7→ −R, −p 7→ p− q, q − p 7→ p (1.40)

without modifying q; therefore in the following, without loss of generality, we often forsake
a separate discussion of this third case.

Clearly the factor
[

ξ̄ + R exp (2 i ω t)
] q

, which carries all the time dependence in these
polynomial equations, is periodic in t with period T , see (1.19) (except for the special
initial conditions entailing ξ̄ = 0 in which case this factor is instead periodic with the
shorter period T / q, see Chapter 2.

At issue is the behavior of the J roots w̃j(t) of our polynomial equation (1.38) whose
coefficients evolve in time periodically with period T . Let us indicate with W̃ (t) ≡
{w̃j(t); j = 1, ..., J} the (unordered) set of these J roots. Obviously W̃ (t) is periodic with
period T , W̃ (t + T ) = W̃ (t): after one period T the polynomial equation is unchanged,
hence the set of its J roots is as well unchanged. But that does not imply that if one
follows the time evolution of these J roots, each of them will return to its own initial value
after one period, w̃j(T ) = w̃j(0), j = 1, ..., J . This outcome will indeed obtain for the open
domain of initial data of our problem that corresponds to the basic isochronous regime, see
(1.27); but it does not happen for other initial data, in which cases for instance a generic
root, say w̃j1(t) ≡ w̃(t), may after one period land in the initial position of a different root,
say w̃(T ) = w̃j2(0), and then after one more period end up in the initial position of yet
another root, w̃(2 T ) = w̃j3(0), and so on. Eventually, of course, after a time T̃ = j̃ T which
is a finite integer multiple j̃ of the basic period T , with 1 ≤ j̃ ≤ J , the generic root w̃(t)

shall necessarily return to its initial position, w̃
(

T̃
)

= w̃ (0), entailing that its evolution as

a function of the time t is periodic with this period T̃ ,

w̃
(

t + T̃
)

≡ w̃
(

t + j̃ T
)

= w̃ (t) . (1.41)

This discussion clearly implies (via (1.30)) that, in the case now under consideration (with
a rational value of the parameter µ, see (1.37)), all solutions of our physical problem (
1.18) with (1.20) are completely periodic with a period which is either

Ť = ǰ T with 1 ≤ ǰ ≤ J (1.42)

and J defined by (1.39), or it is 2 Ť (see the discussion above following (1.36)). The
remaining, crucial question is: how does the value of the integer ǰ (which might be quite
large if J is quite large) depend on the initial data of our problem? In Chapter 3 we outline
how to calculate, for given initial data, all the possible periods of the J roots w̃j(t) of
(1.38), and in Chapter 4 we display formulas providing (at most) 3 alternative values for
these periods; as already mentioned above, the explanation of how to identify which one
of these 3 periods corresponds to that of the “physical” root w̌(t) entails a more detailed
treatment which is one of the open goal of research and it will be reported in [2].

But before doing so let us emphasize that via this discussion the time evolution of
our original 3-body problem – describing the time evolution of the three points zn(t) in the
complex z-plane – has been related to the time evolution of the J roots w̃j(t) of (1.38) in the
complex w-plane, and in particular to the way they get permuted among themselves over
the time evolution after each period T . As we will explain below, the possible complications
of the motions of our physical model (1.18) are thereby related to the mechanisms at play to
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permute these roots among themselves when one watches their time evolution at subsequent
intervals T , 2 T , 3 T and so on. And, in this context, it is significant to note that, whenever
µ is irrational, one is in fact dealing with the dynamics of an infinite number of roots.
This suggests that whenever the number J of roots is large, and even more so when µ is
irrational (entailing J =∞), the time evolution of our physical model (1.18) might be quite
complicated, perhaps calling into play the theoretical tools of statistical mechanics rather
than those of few-body dynamics (but we postpone such excursions to future publications).

As entailed by our discussion above, the issue of determining the value of the integer j̃
is tantamount to understanding the structure of the Riemann surface associated with the
function w(ξ) of the complex variable ξ defined by the nondifferential equation (1.33),
whose different sheets correspond of course to the different roots of this nondifferential
equation. In the rational case (1.37) this equation is in fact polynomial of degree J in the
dependent variable w. Specifically, what must be ascertained is the number of sheets of this
Riemann surface that are accessed by w(ξ) when the independent variable ξ travels in the
complex ξ-plane round and round on the circle Ξ, whose center ξ̄ and radius |R| depend on
the initial data of our physical problem, see (1.32) and (1.35). To this end one must gain
and use a detailed understanding of the structure of this Riemann surface. In Chapter 3 we
will see how this analysis is possible. Here we report the following basic information on the
analytic structure of the function w (ξ), referring to the general case with real µ (rational
or irrational).

The nondifferential equation (1.33) defines a J-sheeted covering of the complex ξ-plane
of genus zero (of course J =∞ if µ is irrational). The function w(ξ) defined implicitly by
this equation features square-root branch points ξb located on a circle B centered at the
origin of the complex ξ-plane:

ξb = ξ
(k)
b = rb exp (2 π i µ k) , k = 1, 2, 3, ... , (1.43a)

ξb = ξ
(k)
b = rb exp

[

i
2 π p k

q

]

, k = 1, 2, ..., q , (1.43b)

rb = (µ− 1)−1

(

µ− 1

µ

)µ

. (1.43c)

In the last, (1.43c), of these formulas it is understood for definiteness that the principal
determination is taken of the µ-th power appearing in the right-hand side. The first of
these formulas, (1.43a), shows clearly that the number of these branch points is infinite if
the parameter µ is irrational, and that they then sit densely on the circle B in the complex
ξ-plane centered at the origin and having radius |rb|, see (1.43c). Note that this entails
that the generic point on the circle B is not a branch point (just as a generic real number
is not rational); but every generic point on the circle B has, if µ is irrational, some branch
point (in fact, an infinity of branch points!) arbitrarily close to it (just as every generic real
number has an infinity of rational numbers arbitrarily close to it). It is also important to
realize that these branch points are generally on different sheets of the Riemann surface
associated with the function w (ξ): hence, they are dense if one considers the circle B in the
complex ξ-plane, but they are not dense if one considers these branch points on the Riemann
surface itself. As for the second of these formulas, (1.43b), it is instead appropriate to the
case in which the parameter µ is rational, see (1.37), in which case the branch points sit
again on the circle B in the complex ξ-plane, but there are only a finite number, q, of them
(and note that the factor p appearing in the argument of the exponential in the right-hand

side of this formula, (1.43b), is only relevant to characterize how the branch points ξ
(k)
b are

labelled via the index k). Both in the irrational and in the rational case at all these branch
points the nondifferential equation (1.33) has a double root which takes the same value
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w(ξb) = µ. Note that this entails that circling around such a branch point in the complex
ξ-plane corresponds to permuting 2 of the J roots wj(ξ) among themselves.

In addition, the function w(ξ) possesses branch points at ξ = 0 and at ξ =∞, the order
of which depends on the value of µ, and is rational if the number µ is rational.

The branch point at ξ =∞ has, if µ > 1, exponent − 1
µ (= − q

p in the rational case),

ξ ≈ ∞ , w(ξ) ≈ a ξ−1/µ ≈ 0 , aµ = − exp(−i π µ) , µ > 0 , (1.44)

while it has instead two different exponents if 0 < µ < 1:

1. the exponent − 1
µ (= − q

p in the rational case) as given by the preceding formula
(entailing w ≈ 0)

2. the exponent − 1
1−µ (= q

q−p in the rational case) as given by the following formula
(entailing w ≈ 1),

ξ ≈ ∞ , w(ξ) ≈ 1 + a ξ−1/(1−µ) ≈ 1 , aµ−1 = 1 , 0 < µ < 1 . (1.45)

The branch point at ξ = 0 is, if µ > 1, of exponent 1
µ−1 (= q

p−q in the rational case),

ξ ≈ 0 , w(ξ) ≈ 1 + a ξ1/(µ−1) ≈ 1 , aµ−1 = 1 , µ > 1 , (1.46)

(note the formal analogy of this formula with the previous one, (1.45)), and it is instead
absent if 0 < µ < 1, so that in this second case the only branch points in the finite part
of the complex ξ-plane are those of square-root type, see ( 1.43a). This is the main cause
of the difference between the results, see below, for this case (0 < µ < 1) from those for
the other two cases (µ > 1 and µ < 0), which are on the other hand essentially equivalent
among each other being related by the transformation µ 7→ 1− µ, w(ξ) 7→ 1− w (−ξ) , see
(1.33) (so that without loss of generality we often forsake an explicit discussion of the case
with µ < 0).

Note that these results entail that, in the rational case, see (1.37), making a circle
around the branch point at ξ = 0, in the p > q (i. e. µ > 1) case when this branch point is
present, causes a cyclic permutation of p−q of the p roots wj : this is particularly evident if
one imagines to travel full circle around the branch point at ξ = 0 in its immediate vicinity,
since for ξ ≈ 0 the p roots wj of ( 1.33) are clearly divided into two sets, a first set of p− q

roots, disposed equispaced on a circle of small radius (≈ |ξ|q/(p−q)) centered at w = 1 in
the complex w-plane, which then undergo a cyclic permutation among themselves, and a
second set of q roots, disposed equispaced on a circle in the complex w-plane centered at
the origin and having a large radius (≈ |ξ|−1), each of which after the operation returns
instead to its original position.

The permutation experienced by the J roots w̃j(t) due to a sequence of pairwise ex-
changes of roots – which take place whenever square-root branch points are included inside
the circle Ξ traveled by the point ξ(t) – causes a reshuffling of the roots which is nontrivial
inasmuch as it depends on how many and on which pairs of roots get sequentially exchanged
over each period, as determined by the number and identity of square-root branch points
enclosed inside the circle Ξ traveled by ξ(t) and by the detailed structure of the Riemann
surface associated with these branch points, in particular on which sheets of this Riemann
surface the relevant branch points are located. The reshuffling encompasses more roots
when a second mechanism is simultaneously at play, i. e. that producing a cyclic permu-
tation of p− q roots (especially, of course, when p− q is large) over each period, as caused
by the presence of the branch point at ξ = 0: this second mechanism exists only if µ > 1
(or µ < 0, entailing the exchange −p 7→ p− q), and provided the circle Ξ travelled by ξ(t)
does include the point ξ = 0. How we will se in the following chapters, this phenomenology
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causes the possible periods T̃ = j̃ T of the time evolution of the generic root w̃(t) to depend
on the initial data, but remarkably we will see that, for given initial data, there are (at
most) only 3 possible values of these periods, and that they can be given explicitly in terms
of the initial data and of the two numbers p and q see (1.37). Indeed we show below that
analogous results can as well be given in the case when µ is irrational, in spite of the fact
that the dependence on the initial data may then be quite sensitive.



CHAPTER 2

A Simple Three-Body Problem

In this and in the following chapter we will present a detailed analysis of the simple Hamil-
tonian three-body problem introduced in Section 1.4, discussing and proving all the results
reported therein.

In Subsection 1.1.2 we introduced a simple trick, which associates, to any dynamical
system belonging to a quite large class (characterized by the complex independent variable
τ), a related system characterized by a (real) “deformation parameter” ω > 0 having the
dimension (and significance) of a (circular) frequency. Our philosophy is to consider the
ω-deformed system, whose evolution takes place in the real time t, as the ”physical” model,
and the undeformed system as an “auxiliary” model that, as we will see, plays an essential
role to understand the time evolution of the physical system.

In the following Section 2.1 we introduce again the Aristotelian model, already presented
in Section 1.4. In Section 2.2 we describe the Hamiltonian character of our model, we ex-
hibit the constants of motion it possesses, and we also indicate some possible reformulations
of it which might appear more “physical” inasmuch as they describe motions taking place
in the real plane rather than in the complex plane: namely, the dependent variables of our
physical model can be reinterpreted to be (rather than complex numbers) real two-vectors,
the time evolution of which takes place in the horizontal plane and is determined by real
and covariant equations of motion. In Section 2.3 we discuss the equilibrium configurations
of our physical model, and the behavior of this system in the neighborhood of these solu-
tions, and we also obtain certain exact “similarity solutions” of our model and discuss their
stability. In Section 2.4 we discuss the analytic structure of the solutions of the auxiliary
model via local analysis à la Painlevé, since the analytic structure of these solutions plays
a crucial role in determining the time evolution of our physical model. Already in parts of
Sections 2.3 and 2.4, and in most of the subsequent developments, we find it convenient
to restrict attention to the “semisymmetrical” subcase of our model, characterized by the
equality of two of the three coupling constants gn (see (2.2) in the following Section 2.1). In
Section 2.5 we show how the general solution of our model can be achieved by quadratures,
and in Section 2.6 we discuss the behavior of our model based on these results, reducing
the problem of explaining the physical dynamics to understanding the structure of the Rie-
mann surface associated to a certain nondifferential equation (which becomes an algebraic
equation in case of rational coupling constants); this surface will be the main subject of the
next Chapter 3. We confined in the Appendices certain calculations (to avoid interrupting
inconveniently the flow of the presentation) as well as certain additional findings, including
a list (in Appendix C) of several special cases in which the model discussed in this thesis
can be solved in completely explicit form, and a discussion (in Appendix D) of the relation
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of the model discussed in this thesis with more classical models.

The results reported herein mainly refers to a paper in preparation [2], co-authored by
the author of this thesis in collaboration with F. Calogero, D. Gomez-Ullate and P. M.
Santini.

2.1 Presentation of the model

In this section we reintroduce the new model treated in this thesis, already presented in
1.4, and we outline some of its analyticity and periodicity properties in connection with the
theory presented in Chapter 1.

The undeformed auxiliary model on which we focus in this thesis is characterized by
the following system of three coupled nonlinear ODEs:

ζ ′n =
gn+2

ζn − ζn+1
+

gn+1

ζn − ζn+2
. (2.1)

Notation: here and hereafter indices such as n, m range from 1 to 3 and are defined
mod 3; τ is the (complex ) independent variable of this auxiliary model; the three functions

ζn ≡ ζn(τ) are the dependent variables of this auxiliary model, and we shall assume them
to be as well complex ; an appended prime always denotes differentiation with respect to the
argument of the functions they are appended to (here, of course, with respect to the complex
variable τ); and the three quantities gn are arbitrary “coupling constants” (possibly also
complex ; but in this work we restrict consideration mainly to the case with real coupling
constants; this is in particular hereafter assumed in this section). In the following we will
often focus on the “semisymmetrical case” characterized by the equality of two of the three
coupling constants, say

g1 = g2 = g , g3 = f , ϕ ≡ f

g
, (2.2)

since in this case the treatment is simpler yet still adequate to exhibit most aspects of the
phenomenology we are interested in. More special cases are the “fully symmetrical”, or
”integrable”, one characterized by the equality of all three coupling constants,

g = f , g1 = g2 = g3 = g , ϕ = 1 , (2.3)

and the “two-body” one, with only one nonvanishing coupling constant, say

g1 = g2 = g = 0 , g3 = f 6= 0 , ϕ =∞ . (2.4a)

In this latter case clearly

ζ ′3 = 0 , ζ3(τ) = ζ3(0) (2.4b)

(see (2.1)) and the remaining two-body problem is trivially solvable,

ζs(τ) =
1

2
[ζ1(0) + ζ2(0)]− (−)s

{

1

4
[ζ1(0)− ζ2(0)]

2 + f τ

}1/2

, s = 1, 2 ; (2.4c)

while the justification for labelling the fully symmetrical case (2.3) as “integrable” will be
clear from the following (or see Section 1.3.4.1 of [5]).

Before proceeding to introduce our physical model, let us note that the auxiliary sys-
tem (2.1) is invariant under translations of both the independent variable τ (indeed, it is
autonomous) and the dependent variables ζn (τ) (ζn (τ) ⇒ ζn (τ) + ζ0, ζ ′0 = 0), and it is
moreover invariant under an appropriate simultaneous rescaling of the independent and
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the dependent variables. Indeed clearly, if a triple of functions ζn(τ) satisfies the system
(2.1), the triple

ζ̃n(τ) = A + C ζn

(

τ − τ0

C2

)

, (2.5)

satisfies the same system, for any arbitrary assignment of the three (possibly complex )
constants A, C and τ0. Hence it is generally possible to obtain, via this property, the
general solution of the system (2.1) (which must indeed feature three arbitrary constants)
from a particular solution (provided this particular solution is not too special: see below).
And let us also point out that, as immediately implied by (2.1), the center of mass of the
three coordinates ζn,

Z =
ζ1(τ) + ζ2(τ) + ζ3(τ)

3
, (2.6a)

is constant (it does not depend on the independent variable τ),

Z ′ = 0 , Z(τ) = Z(0) . (2.6b)

The trick mentioned above, relating the auxiliary model to the physical model, amounts
in our present case to the introduction of the (real) independent variable t (”physical time”),
as well as the three (complex ) dependent variables zn ≡ zn(t), via the following positions:

τ =
exp(2 i ω t)− 1

2 i ω
, (2.7a)

zn(t) = exp(−i ω t) ζn(τ) . (2.7b)

We hereafter assume the constant ω to be real (for definiteness, positive, ω > 0; note that
for ω = 0 the change of variables disappears), and we associate to it the basic period T ,

T =
π

ω
. (2.8)

Note that this change of variables entails that the initial values zn(0) of the “particle
coordinates” zn(t) coincide with the initial values ζn(0) of the dependent variables of the
auxiliary model (2.1):

zn(0) = ζn(0) . (2.9)

It is easily seen that, via this change of variables, (2.7), the equations of motion (2.1)
satisfied by the quantities ζn(τ) entail the following (autonomous) equations of motion (in
the real time t) for the particle coordinates zn(t):

żn + i ω zn =
gn+2

zn − zn+1
+

gn+1

zn − zn+2
; (2.10)

here and hereafter superimposed dots indicate differentiations with respect to the time t.
So, this model (2.10) describes the “physical evolution” which we study. Note that its

equations of motion, (2.10), are of Aristotelian, rather than Newtonian, type: the “veloc-
ities” żn, rather than the ”accelerations” z̈n, of the moving particles are determined by
the “forces”. In Appendix D we discuss the connection of this model with more classical
many-body problems, characterized by Newtonian equations of motion.

As seen in Section 1.2, a fundamental aspect of our approach concerns the implications
of the formula (2.7a) relating the old and new independent variables τ and t. It clearly
entails that, as the (real, “physical”) time variable t evolves onwards, the complex variable
τ travels counterclockwise, performing a full round in every time interval T , on the circle
C, whose diameter

d =
1

ω
(2.11)
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lies on the imaginary axis in the complex τ -plane, with its lower end at the origin and
its upper end at the point i

ω . Therefore the time evolution of the (complex ) particle
coordinate zn(t) corresponds, via (2.7), to the evolution of the corresponding function
ζn(τ) of the variable τ as this complex variable travels round and round on the circle C and
correspondingly ζn(τ) travels on its Riemann surface (associated with this function ζn(τ)).
In particular if the function ζn(τ) is holomorphic in the (closed) disk D enclosed, in the
complex τ -plane, by the circle C, the corresponding function zn(t) is clearly antiperiodic
with period T hence periodic with period 2 T , see (2.7) and (2.8):

zn(t + T ) = −zn(t) , zn(t + 2 T ) = zn(t) . (2.12)

In Section 2.4 we show that, for the model (2.1), there always exists an open region
of initial data ζn(0) characterized by sufficiently large values of the moduli of all three
interparticle distances |ζn(0)− ζm(0)|, that guarantees such a property of holomorphy. This
implies the isochronous character of our model (2.10), a sufficient condition to guarantee
the complete periodicity of its solution (we recall that a system is isochronous if it features
an open set of initial data, having full dimensionality in its phase space, such that all the
solutions emerging out of it remain in it and are completely periodic with the same period,
see Subsection 1.1.2 and Section 1.2).

In the following Section 2.2 we show that the equations of motion (2.10), determining
the motions of the three points zn(t) in the complex z-plane, are Hamiltonian and can
moreover be reinterpreted as the real equations characterizing the (again Hamiltonian)
motion of three point-like particles in the horizontal plane; this justifies our considering the
zn’s as “particle coordinates”, and considering the model (2.1) as an ”auxiliary” version
of the “physical” model (2.10). It is however generally more convenient to work with the
complex numbers zn(t) and ζn(τ) rather than with the corresponding real two-vectors, and
we shall generally do so hereafter.

Let us immediately emphasize two important qualitative aspects of the dynamics of our
physical model (2.10). The “one-body force” represented by the second term, i ω zn, in the
left-hand side of the equations of motion (2.10) becomes dominant with respect to the ”two-
body forces” appearing in the right-hand side in determining the dynamics whenever the
(complex ) coordinate zn of the n-th particle becomes large (in modulus). Hence when |zn(t)|
tends to diverge, the solution zn(t) is characterized by the behavior zn(t) ≈ c exp (−i ω t),
therefore the trajectory of the n-th particle tends to rotate (clockwise, with period 2 T ) on
a (large) circle. This effect causes the motions of this model to be all confined. Secondly,
it is clear that the two-body forces (see the right-hand side of (2.10)) cause a singularity
whenever there is a collision of two (or all three) of the particles as they move in the complex
z-plane, and become dominant whenever two or three particles get very close to each other,
namely in the case of near misses. But if the three particles move aperiodically in a confined
region (near the origin) of the complex z-plane, a lot of near misses shall indeed occur.
And since the outcome of a near miss is likely to be quite different depending on which
side two particles scatter past each other – and this, especially in the case of very close
near misses, depends sensitively on the initial data of the trajectory under consideration –
we see here a mechanism complicating the motion associated with a some kind of sensitive
dependence of the motion on its initial data. This suggests that our model (2.10), in spite
of its simplicity, is likely to be rich enough to cause an interesting dynamical evolution. We
will see that this is indeed the case.

Let us conclude this section with two remarks (somewhat related to each other).

Remark 1. This system (2.10) is still invariant under translations of the independent vari-
able t (indeed, it is again autonomous) but, in contrast to (2.1), it is no more invariant
under translations of the dependent variables zn(t) nor under a simple rescaling of the
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independent variable t and of the dependent variables zn(t). Again, however, correspond-
ingly to (2.5), if the triple zn(t) satisfies this system (2.10), the following three-parameter
extension of it still satisfies the same system:

z̃n(t) = A exp (−i ω t) + C Φ(t) zn

(

t− t0 +
log [Φ(t)]

i ω

)

, (2.13a)

Φ(t) = C−1
{

1 +
(

C2 − 1
)

exp [−2 i ω (t− t0)]
}1/2

, (2.13b)

where A, C and t0 are three arbitrary (possibly complex ) constants. Hence one can again
obtain, via this formula (which might however entail an analytic continuation to complex
values of the independent variable t), the general solution of our system (2.10) from a
particular solution of it (again, provided this particular solution is not too special, see
below).

Remark 2. The general solution of the equations of motion (2.10) has the structure

zn(t) = zCM (t) + žn(t) , (2.14a)

where the three functions žn(t) satisfy themselves the same equations of motion (2.10) as
well as the additional restriction

ž1(t) + ž2(t) + ž3(t) = 0 , (2.14b)

which is clearly compatible with these equations of motion, and correspondingly zCM (t) is
the center of mass of the system (2.10),

zCM (t) =
z1(t) + z2(t) + z3(t)

3
, (2.15a)

and it evolves according to the simple formula (see also (2.6b) and (2.7))

zCM (t) = zCM (0) exp (−i ω t) = Z exp (−i ω t) . (2.15b)

2.2 Hamiltonian character of the model

The equations of motion (2.10) are Hamiltonian. Consider indeed the Hamiltonian function

H(q, p; q̃, p̃) =
3
∑

n=1

[

−i ω qn pn + q̃n
pn+1 − pn+2

qn+1 − qn+2

]

. (2.16)

Here, and below as well, the underlined symbol denotes a three-vector, for instance q ≡
(q1, q2, q3). Note that this Hamiltonian only features the positive constant ω, in addition
to the canonical variables qn and q̃n, and the corresponding canonical momenta pn and p̃n;
but in fact it does not depend on the canonical momenta p̃n.

The standard Hamiltonian equations for the canonical coordinates yielded by this
Hamiltonian read as follows:

q̇n + i ω qn =
q̃n+2

qn − qn+1
+

q̃n+1

qn − qn+2
, (2.17a)

˙̃qn = 0 . (2.17b)

The second set of these Hamiltonian equations, (2.17b), merely tell us that the three
quantities q̃n are time independent, and we identify them with the three coupling constants
gn introduced above:

q̃n = gn . (2.18a)
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The Hamiltonian equations (2.17a) are those of interest to us, and via the identifications
(2.18a) and

qn(t) = zn(t) (2.18b)

they clearly reproduce the equations of motion (2.10). And of course a way to obtain
directly these equations of motion is to start from the Hamiltonian function

H(z, p) =
3
∑

n=1

[

−i ω zn pn + gn
pn+1 − pn+2

zn+1 − zn+2

]

, (2.19)

where the parameters gn are the “coupling constants” and the only canonical variables are
the three ”particle coordinates” zn ≡ zn(t) and the three canonical momenta pn ≡ pn(t).
Then the Hamiltonian equations of motion satisfied by the canonical variables zn coincide
directly with the equations (2.10) of our model, and they are supplemented by the following
equations for the canonical momenta pn,

ṗn − i ω zn =
gn+2 (pn − pn+1)

(zn − zn+1)
2 +

gn+1 (pn − pn+2)

(zn − zn+2)
2 , (2.20)

which however do not affect the time evolution of the particle coordinates zn, because the
canonical momenta pn do not appear in the equations of motion (2.10) that determine their
dynamics.

An analogous Hamiltonian structure can of course be formulated for the auxiliary prob-
lem characterized by the “equations of motion” (2.1). The Hamiltonian (in self-evident
notation) reads

h(ζ, π) =
3
∑

n=1

[

gn
πn+1 − πn+2

ζn+1 − ζn+2

]

, (2.21)

and indeed it entails the equations of motion (2.1) for the canonical coordinates ζn ≡ ζn(τ),
as well as the following equations for the corresponding canonical momenta πn ≡ πn (τ):

π′
n =

gn+2 (πn − πn+1)

(ζn − ζn+1)
2 +

gn+1 (πn − πn+2)

(ζn − ζn+2)
2 . (2.22)

We have written out this Hamiltonian structure that subtends the auxiliary problem to
emphasize the high symmetry of this Hamiltonian, (2.21), which is clearly invariant under
translations of the canonical coordinates ζn, under translations of the canonical momenta
πn, and under the simultaneous rescaling of the canonical coordinates and of the canonical
momenta, ζn → c ζn, πn → c πn. These properties entail the existence of the following three
constants of motion (in addition of course to the Hamiltonian (2.21) itself):

Z =
1

3

3
∑

n=1

ζn , Π =
3
∑

n=1

πn , S =
3
∑

n=1

πn

ζn
. (2.23)

The τ -independence of the center of mass coordinate Z was already noted in the preceding
Section 2.1, see (2.6). We anticipate here also that, in the semisymmetrical case, the
treatment of Section 2.5 entails the existence of a fifth constant of motion, which reads as
follows (note that, as Z, it does not depend on the canonical momenta πn):

K̃ = (2 ζ3 − ζ1 − ζ2)
−2

[

1− (ζ1 − ζ2)
2 + (ζ2 − ζ3)

2 + (ζ3 − ζ1)
2

2 µ (2 ζ3 − ζ1 − ζ2)
2

]µ−1

. (2.24)

The constant µ that features in this formula is defined in terms of the coupling constants
g and f , see (2.2):

µ =
f + 2 g

f + 8 g
=

ϕ + 2

ϕ + 8
, (2.25)
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whose value, as we shall see, plays an important role in determining the dynamical evolution
of our model: in particular, this evolution does largely depend on whether or not µ is a real
rational number, and if it is rational,

µ =
p

q
, (2.26)

with p and q integers (and q positive, q > 0), on whether the two natural numbers |p| and
q are large or small. A hint of the importance of the role played by µ is now provided by
the appearance of this number as an exponent in the right-hand side of (2.24), since this
exponent characterizes the multivaluedness of the dependence of the constant K̃ on the
canonical coordinates ζn.

Of course the (τ -independent) “constants of motion” we just identified for the auxil-
iary problem (2.1) provide as well (t-independent) constants of motion for the physical
problem (2.10), but, when written in terms of the particles coordinates zn ≡ zn(t) and
of the corresponding canonical momenta pn ≡ pn(t) for this problem, the expressions of
these quantities (in contrast to the expression of the Hamiltonian, see (2.19)), are no more
autonomous, since via the relations (2.7), and the corresponding relations

pn(t) = exp (i ω t) πn(τ) , (2.27)

that relate (2.20) to (2.22), they read

Z =
1

3
exp (i ω t)

3
∑

n=1

zn , Π = exp (−i ω t)
3
∑

n=1

pn , S = exp (−2 i ω t)
3
∑

n=1

pn

zn
, (2.28)

K̃ = exp (2 i ω t) (2 z3 − z1 − z2)
−2

[

1− (z1 − z2)
2 + (z2 − z3)

2 + (z3 − z1)
2

2 µ (2 z3 − z1 − z2)
2

]µ−1

.

(2.29)
Let us now note the possibility to reformulate our problem, so that rather than describ-

ing the motions of points zn ≡ zn(t) in the complex z-plane as determined by the complex
equations of motion (2.10) (recall that ω > 0), it refers to the motion of point particles
in the horizontal plane, the position of which is identified by real (Cartesian) coordinates
xn ≡ xn(t), yn ≡ yn(t). There is a standard trick to achieve this goal (see for instance [5]),
namely by setting

zn(t) = xn(t) + i yn(t) , ~rn(t) = (xn(t), yn(t), 0) . (2.30)

Note that the vectors ~rn identifying points in the horizontal plane are effectively two-
vectors, but for notational convenience we prefer to consider this plane immersed in three-
dimensional space and therefore to consider the vectors ~rn as three-vectors with vanishing
third (vertical) component. It is then convenient to also set formally

gn = [Re(sn) + i Im(sn)]2 = [Re (sn)]2 − [Im (sn)]2 + 2 iRe (sn) Im (sn) ,

~sn = (Re(sn), Im(sn), 0) , ~sn · ~sn = [Re (sn)]2 + [Im (sn)]2 , k̂ = (0, 0, 1) ,

(2.31)

whereby the equations of motion (2.10) (or rather (2.17a) with (2.18b)) read as follows:

~̇rn + ω k̂ ∧ ~rn =

r−2
n,n+1 [−~rn,n+1 (~sn+2 · ~sn+2) + 2 ~sn+2 (~sn+2 · ~rn,n+1)] +

r−2
n,n+2 [−~rn,n+2 (~sn+1 · ~sn+1) + 2 ~sn+1 (~sn+1 · ~rn,n+2)] , (2.32a)
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where we introduced the short-hand notation

~rn,m ≡ ~rn − ~rm (2.32b)

entailing
r2
n,m = r2

n + r2
m − 2~rn · ~rm . (2.32c)

The symbol ∧ denotes of course the (three-dimensional) vector product, so that, for in-
stance,

k̂ ∧ −→r n = (−yn, xn, 0) . (2.32d)

These real equations of motions, (2.32a), for the three vectors ~rn in the horizontal plane
are covariant, hence rotation-invariant, if they are supplemented with the following (trivial)
equations for the three vectors ~sn:

~̇sn = 0 , (2.32e)

and the identification (2.31) is guaranteed by prescribing it as initial condition. If instead
the vectors ~sn in (2.32a) are considered as given constant vectors to begin with, see (2.31),
then the equations of motion (2.32a) still have a covariant appearance, but the model is no
more rotation-invariant because the given vectors ~sn identify certain preferred directions
in the horizontal plane.

Note that these equations of motion, (2.32), are also Hamiltonian; the real Hamiltonian
that produces them is the real part of the Hamiltonian (2.16) with (2.30), (2.18), (2.31)
and with (in self-evident notation; but note the minus signs!)

~pn = (Re(pn),−Im(pn), 0) , ~̃pn = (Re(p̃n),−Im(p̃n), 0) , (2.33)

namely

HR(~r, ~p;~s, ~σ) =
3
∑

n=1

{

−ω (k̂ · ~rn ∧ ~pn)+

r−2
n+1,n+2 [2 (~sn · ~rn+1,n+2) (~sn · ~pn+1,n+2)− (~sn · ~sn) (~rn+1,n+2 · ~pn+1,n+2)]

}

,(2.34)

where we denote by ~σn the canonical momenta (which however do not appear in the right-
hand side) conjugated to the canonical variables ~sn, and we use of course the short-hand
notation (2.32b) and a self-evident analogous notation for the vectors ~pn,m ≡ ~pn−~pm. And
as well Hamiltonian are the equations of motion (2.32a) with the vectors ~sn assigned as
given constants, see (2.31), in which case of course only the vectors ~rn should be treated as
canonical coordinates, and the vectors ~pn as the corresponding canonical momenta, in the
expression (2.34) of the Hamiltonian.

This real Hamiltonian formulation opens the way to the study of quantal versions of
our model, but this exercise is postponed to a separate work.

2.3 Equilibrium configurations and similarity solutions

In this section we discuss, firstly, the equilibrium configurations of our model, (2.10), and
its behavior near equilibrium, and secondly, a special, explicit “similarity” solution of our
model and its stability.

The equilibrium configurations of our model (2.10),

zn(t) = z̄n , żn(t) = 0 , (2.35)

are clearly characterized by the algebraic equations

i ω z̄n =
gn+1

z̄n − z̄n+2
+

gn+2

z̄n − z̄n+1
. (2.36)
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These algebraic equations entail

z̄1 + z̄2 + z̄3 = 0 . (2.37)

It is now convenient to set

z̄n = (2 i ω)−1/2 αn , (2.38)

so that the equilibrium equations (2.36) read as follows:

αn

2
=

gn+1

αn − αn+2
+

gn+2

αn − αn+1
. (2.39)

These algebraic equations can be conveniently (see below) rewritten as follows:

αn = βn+1 (αn − αn+2) + βn+2 (αn − αn+1) , (2.40a)

via the position

βn =
2 gn

(αn−1 − αn+1)
2 . (2.40b)

We now note that, in order that the three equations (2.40a) (which are linear in the
three unknowns αn, although only apparently so, see (2.40b)) have a nonvanishing solution,
the quantities βn must cause the following determinant to vanish:

∣

∣

∣

∣

∣

∣

β2 + β3 − 1 −β3 −β2

−β3 β3 + β1 − 1 −β1

−β2 −β1 β1 + β2 − 1

∣

∣

∣

∣

∣

∣

= 0 . (2.41)

To analyze the small oscillations of our system (2.10) around its equilibrium configu-
rations we set

zn(t) = z̄n + ε wn(t) , (2.42a)

and we then get (linearizing by treating ε as a small parameter)

ẇn + i ω wn + i ω βn+1 (wn − wn+2) + βn+2 (wn − wn+1) = 0 . (2.42b)

Therefore the three exponents γ(m) characterizing the small oscillations around equilibrium
via the formula

w(m)
n (t) = exp(−i γ(m) ω t) v(m)

n , (2.42c)

that provides three independent solutions of the system of linear ODEs (2.42b), are the
three eigenvalues of the symmetrical matrix

B =





β2 + β3 + 1 −β3 −β2

−β3 β3 + β1 + 1 −β1

−β2 −β1 β1 + β2 + 1



 , (2.43)

and the three 3-vectors ~v(m) ≡ (v
(m)
1 , v

(m)
2 , v

(m)
3 ) are the corresponding eigenvectors,

3
∑

`=1

Bn` v
(m)
` = γ(m) v(m)

n . (2.44)

Hence the three exponents γ(m) are the three roots of the “secular equation” (a cubic
polynomial in γ)

∣

∣

∣

∣

∣

∣

β2 + β3 + 1− γ −β3 −β2

−β3 β3 + β1 + 1− γ −β1

−β2 −β1 β1 + β2 + 1− γ

∣

∣

∣

∣

∣

∣

= 0 . (2.45)
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Clearly these three roots are given by the following formulas:

γ(1) = 1 , γ(2) = 2 , γ(3) = 2 (β1 + β2 + β3) . (2.46)

Indeed the determinant (2.45) vanishes for γ = γ(1) = 1 (when each line sums to zero) and
for γ = γ(2) = 2 (see (2.41)), and the third solution,

γ(3) = 2 (β1 + β2 + β3) , (2.47)

is then implied by the trace condition

tr [B] = 3 + 2 (β1 + β2 + β3) = γ(1) + γ(2) + γ(3) . (2.48)

The first of these 3 solutions, γ(1) = 1, corresponds to the center of mass motion (it clearly

entails v
(1)
n = v(1), see (2.42c) and (2.43)).

In the semisymmetrical case (2.2) the equations (2.39) (or equivalently (2.40)) charac-
terizing, via (2.38), the equilibrium configurations can be solved explicitly (see Appendix
A). One finds that there are two distinct equilibrium configurations (in fact four, if one
takes account of the trivial possibility to exchange the roles of the two “equal” particles
with labels 1 and 2), the first of which reads simply

z̄3 = 0 , z̄1 = −z̄2 = z̄ , (z̄)2 =
f + 2 g

2 i ω
, (2.49)

while the second has a slightly more complicated expression (see Appendix A). Note how-
ever that, in both cases, there holds the relation

(z̄1 − z̄2)
2 + (z̄2 − z̄3)

2 + (z̄3 − z̄1)
2 =

3 (f + 2 g)

i ω
. (2.50)

Moreover, in both cases the corresponding values for the eigenvalue γ(3), see (2.47), are
easily evaluated. The first solution yields

γ(3) =
f + 8 g

f + 2 g
=

ϕ + 8

ϕ + 2
=

1

µ
=

q

p
, (2.51a)

where, for future reference, we expressed γ(3) not only in terms of the parameter µ, see
(2.25), but as well in terms of its rational expression (2.26) (whenever applicable), while
the second solution likewise yields

γ(3) =
f + 8 g

3 g
=

ϕ + 8

3
=

2

1− µ
=

2 q

q − p
. (2.51b)

Note that this implies that in the “integrable” case (2.3) (namely, for ϕ = 1), both these
formulas, (2.51a) and (2.51b), yield γ(3) = 3; but it is easily seen that in this case only
the first equilibrium configuration (2.49) actually exists. So in the ”integrable” case the
oscillations around the (only) equilibrium configuration (2.49) are the linear superposition
of three periodic motions (see (2.42c)) with respective periods 2 T , T and 2 T

3 (see (2.8)).
Also in the ”two-body” case (2.4) the second equilibrium configuration does not exist, while
the first formula, (2.51a), yields γ(3) = 1, so in this case the small oscillations around the
(only) equilibrium configuration (2.49) are the linear superposition of two periodic motions,
with periods 2 T and T (see (2.8); consistently with the explicit solution, easily obtainable
from (2.4c) via (2.7)). But let us emphasize that in the general semisymmetrical case (with
g 6= 0, f 6= g) both formulas, (2.51a) and (2.51b), yield (real but) irrational values for γ (3)

if the ratio ϕ (see (2.2)) of the coupling constants or the number µ are theirselves (real
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and) irrational, and complex values for γ(3) if the ratio ϕ or the number µ are theirselves
complex.

As can be easily verified, the equilibrium configurations (2.35) with (2.36) are merely
the special case corresponding to zCM (0) = 0, c = 0 of the following two-parameter family
of (exact) “similarity” solutions of our equations of motion (2.10):

zn(t) = zCM (t) + z̃n(t; c) , (2.52a)

z̃n(t; c) ≡ z̄n [1 + c exp (−2 i ω t)]1/2 , (2.52b)

with the center of mass coordinate zCM (t) evolving according to (2.15b). The two arbitrary
(complex ) constants featured by this solution are of course zCM (0) = Z (see (2.15b)) and
c, while the constants z̄n’s are defined as in the preceding section, see (2.36).

Clearly these (exact) solutions correspond, via the trick (2.7), the relation (2.38) (which
is clearly consistent with (2.39) and (2.36)) and the simple relation

τb =
c− 1

2 i ω
, (2.53)

to the two-parameter family

ζn(τ) = Z + αn (τ − τb)
1/2 , (2.54)

of (exact) solutions of (2.1).
These solutions, (2.52), of our physical equations of motion (2.10) are a linear combi-

nation of two components (see the Remark 2 in Section 2.1, and note the consistency of
(2.14b) with (2.37)). The first component, zCM (t), represents the motion of the center
of mass of the system and is clearly periodic with period 2 T , see (2.15b) and (2.8). The
second component, see (2.52b), which is itself a solution of the equations of motion (2.10),
is periodic with period T , see (2.8), if |c| < 1, is antiperiodic with period T (hence periodic
with period 2 T ) if |c| > 1, and becomes singular in a finite time if |c| = 1 so that, say,
c = exp(i φ) with 0 < φ < 2 π, the singularity corresponding in this case to a triple collision
of all three particles occurring at the time t = φ

2 ω .
Let us now discuss the stability of this solution, (2.52b) (note that an analogous discus-

sion of the more general solution (2.52a) would entail no significant changes). To this end
we set

zn(t) = z̃n(t; c) + ε w̃n(t) , (2.55a)

and we insert this ansatz in our equations of motion (2.10), linearizing them by treating ε
as a small parameter. We thus get

˙̃wn + i ω w̃n +
i ω [βn+1 (w̃n − w̃n+2) + βn+2 (w̃n − w̃n+1)]

1 + c exp (−2 i ω t)
= 0 , (2.55b)

having used the definition (2.40b).
Clearly the solution of this system of ODEs reads

w̃n(t) = exp (−i ω t) χn (ϑ) , (2.56a)

with

ϑ ≡ ϑ(t) = t− (2 i ω)−1 log

[

1 + c exp (−2 i ω t)

1 + c

]

(2.56b)

and the functions χn(ϑ) solutions of the linear system of first order ODEs

χ′
n + i ω [βn+1 (w̃n − w̃n+2) + βn+2 (w̃n − w̃n+1)] = 0 , (2.56c)
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where the primes denote of course differentiation with respect to ϑ. Hence (see (2.42b))
the three independent solutions of this linear system are

χ(m)
n (ϑ) = exp (i ω ϑ) w(m)

n (ϑ) , (2.56d)

with the functions w
(m)
n defined by (2.42c) (of course with t replaced by ϑ), yielding via

(2.42c) and (2.56a) with (2.56b) the following two equivalent expressions for the three
independent solutions of the linear system (2.55b):

w̃(m)
n (t) =

[

1 + c exp (−2 i ω t)

1 + c

](γ(m)−1)/2

exp(i γ(m) ω t) ṽ(m)
n , (2.57a)

w̃(m)
n (t) =

[

exp (2 i ω t) + c

1 + c

](γ(m)−1)/2

exp(i ω t) ṽ(m)
n . (2.57b)

Here the three exponents γ(m) are defined as above, see (2.46), and likewise the ”eigen-

vectors” ṽ
(m)
n coincide with those defined above up to (arbitrary) normalization constants

c(m),

ṽ(m)
n = c(m) v(m)

n . (2.57c)

Note the equivalence of the two expressions (2.57a) and (2.57b) (the motivation for writing
these two versions of the same formula will be immediately clear).

For m = 1, 2, 3 these solutions, see (2.57b), are periodic functions of the (real) time
t with period 2 T if |c| > 1. If instead |c| < 1, the solutions (see (2.57a)) with m = 1
respectively m = 2 are periodic with periods 2 T respectively T , while the solution with
m = 3 is periodic if γ(3) (and consequently µ) is real, but with the period 2 T

|γ(3)|
which is

not congruent to T if γ(3) (and consequently µ) is irrational, while it grows exponentially
with increasing time if Im

[

γ(3)
]

< 0 (implying instability of the solution (2.52) in this

case), and it instead decays exponentially if Im
[

γ(3)
]

> 0 (implying a limit cycle behavior
in configuration space, namely asymptotic approach to a solution completely periodic with
period T or 2 T depending whether the center of mass of the system is fixed at the origin or
itself moving with period 2 T ). The analysis of the behavior of our model, (2.10), when the
coupling constants are complex is however postponed to a subsequent work; in this thesis
we restrict attention to the case with real coupling constants.

2.4 Properties of the solutions of the auxiliary model

In this section we justify the assertions made in Section 2.1 about the properties of ana-
lyticity as functions of the complex variable τ of the solutions ζn(τ) of the auxiliary model
(2.1) (with arbitrary values of the 3 coupling constants gn, i. e. not restricted by the
semisymmetrical condition (2.2): except when this is explicitly specified, see below). In
particular we show first of all that, for appropriate initial data characterized by sufficiently
large values of the moduli of all three interparticle distances, namely by the condition (see
(2.9)) that the quantity

ζmin = min
n,m=1,2,3; n6=m

|ζn(0)− ζm(0)| (2.58)

be adequately large, the solutions ζn(τ) are holomorphic in a disk D0 of (arbitrarily large)
radius d0 centered at the origin, τ = 0, of the complex τ -plane (of course the ”adequately
large” value of the quantity ζmin depends on d0 and on the magnitude of the three coupling
constants gn; see (2.66) below). We moreover discuss via a local analysis à la Painlevé the



2.4. PROPERTIES OF THE SOLUTIONS OF THE AUXILIARY MODEL 71

nature of the singularities of the solutions ζn(τ) of the auxiliary model (2.1) as functions
of the complex variable τ .

To prove the first point, set

ςn(τ) = ζn(τ)− ζn(0) , (2.59a)

so that these quantities ςn(τ) vanish initially,

ςn(0) = 0 , (2.59b)

and, as a consequence of (2.1), satisfy the equations of motion

ς ′n(τ) =
gn+1

ζn(0)− ζn+2(0) + ςn(τ)− ςn+2(τ)

+
gn+2

ζn(0)− ζn+1(0) + ςn(τ)− ςn+1(τ)
. (2.59c)

A standard theorem (see, for instance, [45]) guarantees then that these quantities ςn(τ) –
hence as well the functions ζn(τ), see (2.59a) – are holomorphic in τ (at least) in a disk
D0 centered at the origin τ = 0 in the complex τ -plane, the radius d0 of which is bounded
below by the inequality

d0 >
b

4 M
(2.60)

(this formula coincides with the last equation of Section 13.21 of [45], with the assignments
m = 3 and a =∞, the first of which is justified by the fact that the system (2.59c) features
3 coupled equations, the second of which is justified by the autonomous character of the
equations of motion (2.59c)). The two positive quantities b and M in the right-hand side
of this inequality are defined as follows. The quantity b is required to guarantee that the
right-hand sides of the equations of motion (2.59c) be holomorphic (as functions of the
dependent variables ςn) provided these quantities satisfy the three inequalities

|ςn| ≤ b ; (2.61)

clearly in our case a sufficient condition to guarantee this is provided by the single restriction

b <
ζmin

2
, (2.62)

with ζmin defined by (2.58). The second quantity in the right-hand side of (2.60), M ≡M(b),
is the upper bound of the right-hand sides of (2.59c) when the quantities ςn satisfy the
inequality (2.61); but of course the inequality (2.60) holds a fortiori if we overestimate M ,
as we shall presently do. Indeed clearly the equations of motion (2.59c) with (2.61) and
(2.62) entail

M <
4 G

ζmin − 2 b
, (2.63)

with
G = max

n=1,2,3
|gn| . (2.64)

Insertion of (2.63) in (2.60) yields

d0 >
b (ζmin − 2 b)

16 G
, (2.65)

hence, setting b = ζmin
4 (to maximize the right-hand side; note the consistency of this

assignment with (2.62)),

d0 >
ζ2
min

128 G
, (2.66)
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confirming the assertion made above (that d0 can be made arbitrarily large by choosing ζmin

adequately large). Via (2.9), we can reformulate the inequality d0 > d into the inequality:

min
m,n=1,2,3; m6=n

|zn(0)− zm(0)| > 16

√

max
n=1,2,3

|gn|

2 ω
. (2.67)

2.4.1 Analysis à la Painlevé

Next, let us show, via a local analysis à la Painlevé, that the singularities as functions of
the complex variable τ of the general solutions ζn(τ) of our auxiliary model (2.1) associated
with a coincidence of two of the three components ζn are square-root branch points (recall
that a singularity at finite τ of a solution ζn(τ) of the evolution equations (2.1) may only
occur when the right-hand side of these equations diverges). Such a singularity occurs
for those values τb of the independent variable τ such that two of the three functions ζn

coincide, for instance

ζ1(τb) = ζ2(τb) 6= ζ3(τb) . (2.68)

The square-root character of these branch points is evident from the following ansatz
characterizing the behavior of the solutions of (2.1) in the neighborhood of these singular-
ities:

ζs(τ) = ζb − (−1)s α (τ − τb)
1/2 + vs (τ − τb) +

∞
∑

k=3

α(k)
s (τ − τb)

k/2 , s = 1, 2 (2.69a)

ζ3(τ) = ζ3b + v3 (τ − τb) +
∞
∑

k=3

α
(k)
3 (τ − τb)

k/2 , (2.69b)

with

α2 = g3 , v3 = − g1 + g2

ζb − ζ3b
, vs =

gs + 5gs+1

6 (ζb − ζ3b)
, s = 1, 2 , (2.69c)

and the constants α
(k)
n determinable (in principle) recursively by inserting this ansatz in

(2.1), so that, to begin with

α
(3)
3 =

2 α (g2 − g1)

3 (ζb − ζ3)
2 , (2.69d)

α(3)
s = −(−)s α

36 (ζb − ζ3)2

[

3 (gs − 7 gs+1) +
(g1 − g2)

2

g3

]

, s = 1, 2 , (2.69e)

and so on. It can be easily verified that this procedure is consistent for any assignment
of the three constants τb, ζb, and ζ3b, which remain undetermined except for the obvious
restrictions τb 6= 0, ζb 6= 0, ζ3b 6= ζb. The fact that (2.69) contains three arbitrary (complex )
constants – the maximal number of integration constants compatible with the system of
three first-order ODEs (2.1) – shows that this ansatz is indeed adequate to represent locally,
in the neighborhood of its singularities occurring at τ = τb, the general solution of (2.1).

Let us emphasize that in this analysis we considered so far the general model with
three arbitrary coupling constants gn, and we discussed the case in which the singularity is
associated with the coincidence of the two coordinates with labels 1 and 2, see (2.68). But
note that, if attention is restricted to the semisymmetrical case in which these same two

coordinates are singled out, see (2.2), then the vanishing of α
(3)
3 , see (2.69d), suggests that

the square root branch point affect the two functions ζs(τ), s = 1, 2, see (2.69a), but not
the third function ζ3 (τ), see (2.69b). This hunch is confirmed by the exact solution, see
Section 2.5.
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An analogous analysis of the behavior of the solutions of the system (2.1) near the
values of the independent variable τ where a triple coincidence of all three functions ζn

occurs (corresponding to the excluded assignment ζ3b = ζb in the above ansatz (2.69)),
indicates, somewhat surprisingly, that such a triple coincidence,

ζ1(τb) = ζ2(τb) = ζ3(τb) = Z (2.70)

(see (2.6a)), does also occur for the general solution of the system (2.1). This conclusion
is reached via a local analysis analogous to that performed above, and is then confirmed
(for the semisymmetrical case, see (2.2)) by the exact treatment of Section 2.5. Indeed the
natural extension of the above ansatz (2.69) characterizing the behavior of the solutions of
(2.1) in the neighborhood of such singularities, corresponding to a triple coincidence, see
(2.70), of the three functions ζn(τ), reads as follows:

ζn(τ) = Z + ηn (τ − τb)
(1−γ)/2 + αn (τ − τb)

1/2 + o
(

|τ − τb| 1/2
)

, (2.71a)

provide
Re (γ) < 0 . (2.71b)

Here the three constants αn are determined, as can be easily verified, just by the three non-
linear algebraic equations (2.39) that were found in the preceding section while investigating
the equilibrium configurations of our physical system (2.10), while the three constants ηn,
as well as the exponent γ, are required to satisfy the algebraic equations

(γ − 1) ηn

2
=

gn+1 (ηn − ηn+2)

(αn − αn+2)
2 +

gn+2 (ηn − ηn+1)

(αn − αn+1)
2 . (2.71c)

These algebraic equations, (2.39) and (2.71c), can be conveniently rewritten as follows:

αn = βn+1 (αn − αn+2) + βn+2 (αn − αn+1) , (2.72a)

(γ − 1) ηn = βn+1 (ηn − ηn+2) + βn+2 (ηn − ηn+1) , (2.72b)

via the introduction of the quantities βn, see (2.40b). Note that in this manner these two
sets of equations, (2.72a) and (2.72b), have a quite similar look, which should however not
mislead the reader to underestimate their basic difference: the three equations (2.72a) are
merely a convenient way to rewrite, via the definition (2.40b), the three nonlinear equations
(2.39), which determine (albeit not uniquely, see Appendix A) the three constants αn; while
the equations (2.72b) are three linear equations for the three quantities ηn, hence they can
determine these three unknowns only up to a common multiplicative constant (provided
they admit a nontrivial solution: see below).

Of course these linear equations (2.72b) admit the trivial solution ηn = 0, and it is
easily seen that there indeed is a special (exact) solution of the equations of motion (2.1)
having this property, see (2.54) with the constants αn determined by (2.39) and computed,
for the semisymmetrical model, in Appendix A. This “similarity solution” (2.54) of the
system (2.1) has been discussed in Section 2.3; but let us emphasize here that it only
provides a two-parameter (Z and τb) class of solutions of the equations of motion (2.1),
while the general solution of this system of three first-order ODEs must of course feature
three arbitrary parameters.

A general solution of the evolution equations (2.1) corresponds instead to the ansatz
(2.71a) if the linear equations (2.72b) for the three coefficients ηn admit a nonvanishing
solution, because in such a case, as mentioned above, a common scaling parameter for
these three coefficients remains as an additional (third) free parameter (besides Z and τb).
The condition for this to happen is the vanishing of the determinant of the coefficients
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of these three linear equations, (2.72b), namely again the validity of the determinantal
condition (2.45), a cubic equation for the unknown γ, which determines, as discussed in the
preceding section, the three values (2.46) of this quantity. But the first two of these values,
γ = γ(1) = 1 and γ = γ(2) = 2 (see (2.46)), are not consistent with the requirement (2.71b).
The third solution, γ = γ(3) = 2 (β1 + β2 + β3) (see (2.46)) might instead be consistent
with the requirement (2.71b), and whenever this happens the ansatz (2.71) indicates that
the general solution of the system of ODEs (2.1) does feature a “triple coincidence”, see
(2.70), and identifies the character of the corresponding branch point.

In the semisymmetrical case (2.2) the equations characterizing the equilibrium configu-
ration, (2.39) or equivalently (2.72), can be solved (see Appendix A). One finds that there
are two distinct solutions of these nonlinear equations (2.39) (in fact four, since each solu-
tion has a trivial counterpart obtained by exchanging the role of the two “equal” particles
with labels 1 and 2). The first solution yields for γ = γ(3) the value (2.51a), which is
consistent with the condition (2.71b) iff

−8 < Re (ϕ) < −2 (2.73a)

entailing
Re (µ) < 0 , (2.73b)

and it yields for the branch point exponent, see (2.71a), the value

1− γ

2
= − 3

ϕ + 2
=

µ− 1

2 µ
=

p− q

2 p
; (2.74)

while the second solution yields for γ(3) the value (2.51b), which is consistent with the
condition (2.71b) iff

Re (ϕ) < −8 (2.75a)

entailing
Re (µ) > 1 , (2.75b)

and it yields for the branch point exponent, see (2.71a), the value

1− γ

2
= −ϕ + 5

6
=

µ + 1

2 (µ− 1)
=

p + q

2 (p− q)
. (2.76)

Note that these findings imply that the branch point associated with “triple coinci-
dences” is not (only) of square-root type, being also characterized, see (2.71a), by the
exponent 1−γ

2 , the value of which depends on the ratio ϕ of the coupling constants, or
equivalently on the value of the parameter µ, see (2.74) and (2.76); however this kind of
branch point is not present if

Re(ϕ) > −2 , 0 < Re (µ) < 1 , (2.77)

since in this case neither (2.73) nor (2.75) are satisfied.
The results presented in this section are not quite rigorous, since the local analysis

of the singularities we performed above on the basis of appropriate ansätze should be
complemented by proofs that the relevant expansions converge. Moreover this analysis
provide information on the nature of the branch points, but neither on their number nor
their location. These results will be confirmed and complemented in Section 2.5, by the
analysis of the exact general solution of the equations of motion (2.1). Our motivation for
having nevertheless presented here a discussion of the character of the singularities of the
solutions of (2.1) via a local analysis à la Painlevé is because an analogous treatment may
be applicable to models which are not as explicitly solvable as that treated in this thesis
(see for instance [6] and [7]).



2.4. PROPERTIES OF THE SOLUTIONS OF THE AUXILIARY MODEL 75

2.4.2 Implications of the analysis à la Painlevé

The local analysis à la Painlevé performed in the previous subsection establishes – perhaps
not quite rigorously (but these findings are then confirmed in Section 2.6 by an investigation
of the exact solution obtained by quadratures in Section 2.5) – the nature of the branch
points of the solutions ζn(τ) of (2.1), but it does not tell us anything about their number
and their locations. We now indicate how one may conclude, on the basis of the results
mentioned above about the behavior of the solutions zn(t) of the physical problem (2.10) in
the neighborhood of its equilibrium configurations, that, at least in the case with ϕ > −2
hence 0 < µ < 1, the number of branch points is certainly infinite if the numbers ϕ and µ
are irrational. This finding is then confirmed by the exact treatment of Section 2.5 (and
it holds even if the restriction ϕ > −2 hence 0 < µ < 1 does not apply), but the line of
reasoning presented here deserves to be emphasized in view of its possible use in the context
of other problems (such as, for instance, those treated in [6] and [7]) which do not allow
making as much progress towards the solution of the corresponding equations of motion as
can be achieved (see Section 2.5) for the problem discussed in this thesis.

Let us therefore focus on the subcase with ϕ > −2 hence 0 < µ < 1, when the solutions
ζn(τ) of the auxiliary equations (2.1) only feature square-root branch points in the finite
part of the complex τ -plane (a result, let us emphasize, that, as mentioned above, can be
obtained via a local analysis à la Painlevé). This fact characterizes the structure of the Rie-
mann surfaces associated with these functions ζn(τ), since every square-root branch point
connects only two sheets of these Riemann surfaces, and thereby, via (2.7), it influences
the time evolution of the particle coordinates zn(t). Indeed if the structure of the Riemann
surface associated with the function ζn(τ) entails that by traveling on it along the circle
C one returns to the main sheet after a finite number M of turns – as it is certainly the
case if the number of square-root branch points of the function ζn(τ) which fall inside the
circle C, in all the sheets of this Riemann surface, is finite, hence the number of sheets
accessed via this travel is as well finite – then the corresponding component zn(t) of the
solution of our model ( 2.10) is necessarily periodic with a period which is a finite integer
multiple of the basic period T (specifically, with period M T if M is even, 2 M T if M is
odd, in which latter case the function zn(t) is antiperiodic with period M T hence the cor-
responding trajectory of the n-th particle is symmetrical around the origin in the complex
z-plane: see (2.7)). A nontrivial result (implied by our treatment, see Sections 2.5 and 2.6;
this result could however not be obtained via a local analysis à la Painlevé) is that, in the
semisymmetrical case, see (2.2), the number of branch points, hence the number of sheets
of the Riemann surface, is indeed finite, if the ratio ϕ of the coupling constants, hence as
well the parameter µ, see (2.25) and (2.26 ), are real and rational. Hence in this rational
case all the nonsingular solutions of our model (2.10) are completely periodic with a period
that is a (possibly quite large) integer multiple of T . But the point we wish to emphasize
at the moment is that, independently of this more specific finding, once via a local analysis
à la Painlevé it has been shown that all the branch points in the finite part of the complex
τ -plane are of square-root type, then a necessary condition in order that zn(t) might not be
periodic with a period which is a finite integer multiple of T is that the number of sheets
that get accessed by travelling along the circle C on the Riemann surface associated to the
function ζn(τ) is infinite, so that by travelling on it one never returns to the main sheet –
and clearly a necessary (but not sufficient, see below) condition for this to happen is that
the overall number of square-root branch points of the function ζn(τ) which fall inside the
circle C, in all the sheets of this Riemann surface, be itself infinite. The following argument,
based on the results of Section 2.3 reported above, implies that this is certainly the case if
the ratio ϕ of the coupling constants, hence as well the parameter µ, see (2.25), is not a
real and rational number.

This conclusion is reached via the following “reductio ad absurdum” argument. Suppose
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that the number of branch points were finite, hence that the number of sheets of the
Riemann surface associated with ζn (τ) were finite; then the corresponding solution zn(t)
would necessarily be periodic with a period that is a (possibly quite large) integer multiple
of T . But then the behavior of zn(t) in the neighborhood of its equilibrium configurations
would as well necessarily be periodic with a period that is a finite integer multiple of T .
However the findings of Section 2.3, as reported above, show that this is not necessarily
the case if the ratio ϕ of the coupling constants, hence as well the parameter µ, see (2.25),
is not a real and rational number. Hence in this case the number of branch points cannot
be finite. And let us re-emphasize that this argument requires no additional information
besides that provided on the solutions ζn (τ) of the auxiliary problem (2.1) by the local
analysis à la Painlevé as performed in Section 2.4 below and reported above, and the
information provided by the standard investigation of the behavior of the solution zn(t)
of the physical problem (2.10) in the neighborhood of its equilibrium configurations, as
performed in Section 2.3 (and Appendix A) and also reported above.

Actually the same conclusion that the number of square-root branch points of the general
solution ζn(τ) of the auxiliary model (2.1) is infinite if the ratio of the coupling constants
is irrational could be arrived at more directly (i.e., without the need to investigate the
behavior of the physical system (2.10) in the vicinity of its equilibrium configurations) via
a standard analysis à la Painlevé by including in it the treatment of the behavior of the
solution ζn (τ) around the point at infinity in the complex τ plane and by thereby noting
that this behavior corresponds to a branch point with an irrational exponent, which is of
course incompatible with the presence of only square-root branch points in the finite part
of the complex τ plane if this number were finite.

2.5 General solution by quadratures

In this section we obtain and discuss the general solutions of our models, (2.1) and (2.10).
But since the general solution of the physical model (2.10) is easily obtained via the trick
(2.7) from the general solution of the auxiliary problem (2.1), we focus to begin with on
this model.

A first constant of the motion is provided by the center-of-mass coordinate

Z =
ζ1 + ζ2 + ζ3

3
, (2.78a)

since the equations of motion (2.1) clearly entail

Z ′ = 0 (2.78b)

hence
Z(τ) = Z(0) . (2.78c)

And clearly the general solution of (2.1) reads

ζn (τ) = Z + ζ̌n (τ) , (2.79a)

with the set of 3 functions ζ̌n(τ) providing themselves a solution of (2.1), independent of
the value of Z and satisfying the (compatible) constraint

ζ̌1 (τ) + ζ̌2 (τ) + ζ̌3 (τ) = 0 . (2.79b)

(Note the consistency, via (2.7), of this observation with the 2 in Section 2.1).
It is moreover clear that the equations of motion (2.1) entail

ζ ′1 ζ1 + ζ ′2 ζ2 + ζ ′3 ζ3 = g1 + g2 + g3 , (2.80a)
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hence there also holds the relation

ζ2
1 + ζ2

2 + ζ2
3 = 2 (g1 + g2 + g3) (τ − τ0) . (2.80b)

It is now convenient to set, as in the Appendix B of [6],

ζs = Z −
(

2

3

) 1/2

ρ cos

[

θ − (−1)s 2 π

3

]

, s = 1, 2 , (2.81a)

ζ3 = Z −
(

2

3

)1/2

ρ cos(θ) . (2.81b)

Then, summing the squares of these three formulas and using the identities

cos(θ) + cos(θ +
2 π

3
) + cos(θ − 2 π

3
) = 0 , (2.82)

cos2(θ) + cos2(θ +
2 π

3
) + cos2(θ − 2 π

3
) =

3

2
, (2.83)

one easily gets
ζ 2
1 + ζ 2

2 + ζ 2
3 = 3 Z2 + ρ2 (2.84a)

or equivalently

ρ2 =
1

3

[

(ζ1 − ζ2)
2 + (ζ2 − ζ3)

2 + (ζ3 − ζ1)
2
]

, (2.84b)

hence, from (2.80b),

ρ2 = 2 (g1 + g2 + g3) (τ − τ0)− 3 Z2 = 2 (g1 + g2 + g3) (τ − τ1) , (2.84c)

τ1 = τ0 +
3 Z2

2 (g1 + g2 + g3)
(2.84d)

which also entails
ρ′ ρ = g1 + g2 + g3 . (2.84e)

Here we assume that the sum of the three coupling constants gn does not vanish, g1 + g2 +
g3 6= 0. The special case in which this sum does instead vanish is treated in Appendix B.
The expression of the constant τ1 in terms of the initial data is of course (see (2.84c))

τ1 = − ρ2(0)

2 (g1 + g2 + g3)
, (2.85a)

namely (see (2.84c))

τ1 = −ζ2
1 (0) + ζ2

2 (0) + ζ2
3 (0)− 3 Z2

2 (g1 + g2 + g3)
, (2.85b)

or equivalently

τ1 = −(ζ1 − ζ2)
2 + (ζ2 − ζ3)

2 + (ζ3 − ζ1)
2

6 (g1 + g2 + g3)
. (2.85c)

There remains to compute θ(τ), or rather

u (τ) = cos θ (τ) . (2.86)

Inserting the ansatz (2.81) in the equation of motion (2.1) with n = 3, one easily gets

ρ2 (cos θ)′
(

4 cos2 θ − 1
)

= (4 g1 + 4 g2 + g3) cos θ − 4 (g1 + g2 + g3) cos3 θ

+
√

3 (g1 − g2) sin θ . (2.87)



78 CHAPTER 2. A SIMPLE THREE-BODY PROBLEM

From now on in this section – for simplicity, and because it is sufficient for our purposes
– we restrict attention to the semisymmetrical case (2.2), so that the last equation becomes
simply, via (2.86),

ρ2 u′
(

4 u2 − 1
)

= (f + 8 g) u− 4 (f + 2 g) u3 . (2.88)

The general case without the restriction (2.2) is treated in Appendix B.
This ODE can be easily integrated via a quadrature (using (2.84c)), and this leads to

the following formula:

[u (τ)]−2 µ

[

u2 (τ)− 1

4 µ

]µ−1

= K (τ − τ1) , (2.89)

where the parameter µ is defined by (2.25) and K is an integration constant. Here we are
of course assuming that f + 8 g 6= 0 (see (2.25)); the case when this does not happen is
treated in Appendix B. (Also recall that, as promised above, we shall treat in Appendix
B the case in which the sum of the three coupling constants gn vanishes, namely when
f + 2 g = 0, which entails µ = 0, see (2.25)). As for the quantity K in (2.89), it is an
(a priori arbitrary) integration constant. It is a matter of elementary algebra to express
this constant in terms of the original dependent variables ζn (via (2.89), (2.84c), (2.86) and
(2.81)), and one thereby obtains the relation

K = 12 (f + 2 g) K̃ (2.90)

with K̃ defined by (2.24). This finding justifies the assertion that K̃ is a constant of motion,
see Section 2.2; and of course it determines the value to be assigned to the constant K in
the context of the initial-value problem. Likewise the value to be assigned, in the context
of the initial-value problem, to the constant τ1 appearing in the right-hand side of (2.89)
is given by the formula

K τ1 = − [u(0)]−2 µ

[

u2 (0)− 1

4 µ

]µ−1

, (2.91)

where (see (2.86) and (2.81b))

u(0) = −
(

3

2

)1/2 ζ3(0)− Z

ρ(0)
(2.92a)

namely (see (2.84c) and (2.6))

u(0) = − 2 ζ3(0)− ζ1(0)− ζ2(0)
[

2
{

[ζ1(0)− ζ2(0)]
2 + [ζ2(0)− ζ3(0)]

2 + [ζ3(0)− ζ1(0)]
2
}]1/2

. (2.92b)

(Of course in these formulas the initial values ζn(0) of the coordinates ζn(τ) of the auxiliary
problem (2.1) can be replaced by the initial values zn(0) of the physical problem (2.10), see
(2.9)).

Let us emphasize that we have now reduced, via (2.81) with (2.84c) and (2.86), the
solution of our problem (2.1) to the investigation of the function u(τ) of the complex variable
τ , defined for τ 6= 0 as the solution of the (nondifferential) equation (2.89) that evolves by
continuity from u(0) at τ = 0.

Before proceeding with our discussion let us pause and see how the findings obtained so
far look in the two (”integrable” and ”two-body”) special cases. In the “integrable” case
(2.3)

µ =
1

3
, (2.93a)
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(see (2.25)), so (2.89) becomes the cubic equation

u (τ)
[

u2 (τ)− 3
]

= K̃ (τ − τ1)
3/2 ; (2.93b)

and in the “two-body” case (2.4)

µ = 1 , (2.94a)

(see (2.25)), so (2.89) yields

u (τ) = [K (τ − τ1)]
−1/2 (2.94b)

entailing (see (2.4), (2.81b), (2.84c) and (2.86))

ζ3 (τ) = ζ3 (0) = Z − 2

(

f

3 K

) 1/2

, (2.94c)

consistently, of course, with (2.4b).

To proceed with our analysis an additional change of variables is now convenient. We
introduce the new (complex ) independent variable ξ by setting

ξ =
K (τ − τ1)

4 µ
, (2.95)

and the new (complex ) dependent variable w ≡ w (ξ) by setting

w (ξ) = 4 µ [u (τ)]2 . (2.96)

Thereby the expression of the solution (2.81) of our original problem (2.1) reads

ζs(τ) = Z −
(

f + 2 g

3 K

) 1/2

ξ 1/2
{

− [w (ξ)] 1/2 + (−)s [12 µ− 3 w (ξ)] 1/2
}

,

s = 1, 2 , (2.97a)

ζ3 (τ) = Z − 2

(

f + 2 g

3 K

) 1/2

[ξ w (ξ)] 1/2 , (2.97b)

while the (nondifferential) equation that determines the dependence of w (ξ) on the (com-
plex ) variable ξ reads

[w (ξ)− 1]µ−1 [w (ξ)]−µ = ξ . (2.98)

Note that this equation is independent of the initial data ; it only features the constant µ,
which only depends on the coupling constants, see (2.25).

We conclude that the solution of our physical problem (2.10) as the real time variable t
evolves onwards from t = 0 is essentially given, via (2.97) and (2.7), by the evolution of the
solution w(ξ) of this (nondifferential) equation, (2.98), as the complex variable ξ travels
round and round on the circle Ξ in the complex ξ-plane defined by the equation (see (2.95))

ξ = ξ̄ + R exp (2 i ω t) = R [exp (2 i ω t) + η] , (2.99a)

namely on the circle with center ξ̄ and radius |R|. The parameters R and ξ̄ (or η) depend on
the initial data according to the formulas (implied by (2.95), (2.7), (2.90), (2.24), (2.85c))

R =
3 (f + 8 g)

2 i ω [2 ζ3(0)− ζ1(0)− ζ2(0)]
2

[

1− 1

w0

]µ−1

, (2.99b)

ξ̄ = R η , (2.99c)



80 CHAPTER 2. A SIMPLE THREE-BODY PROBLEM

η =
i ω
{

[ζ1(0)− ζ2(0)]
2 + [ζ2(0)− ζ3(0)]

2 + [ζ3(0)− ζ1(0)]
2
}

3 (f + 2 g)
− 1 , (2.99d)

w0 =
2 µ [2 ζ3(0)− ζ1(0)− ζ2(0)]

2

[ζ1(0)− ζ2(0)]
2 + [ζ2(0)− ζ3(0)]

2 + [ζ3(0)− ζ1(0)]
2 . (2.99e)

Of course in these formulas the initial values ζn(0) of the coordinates ζn(τ) of the auxiliary
problem (2.1) can be replaced by the initial values zn(0) of the coordinates zn(t) of the
physical problem (2.10), see (2.9).

Remark 3. These formulas are of course applicable without further ado only in the generic
case when they yield nonvanishing and nondivergent values for the quantities R, η and ξ̄,
as we hereafter assume. This is not always the case, for instance for the initial data that

correspond to the (first) equilibrium configuration z1(0) = −z2(0) =
(

f+2 g
2 i ω

) 1/2
, z3(0) = 0

(see Section 2.3), clearly the parameter w0 vanishes, see (2.99e), hence R vanishes or
diverges depending whether the parameter µ is positive or negative, see (2.99b), and η
vanishes, see (2.99d).

Let us emphasize that, as the complex variable ξ travels on the circle Ξ – taking the
time T to make each round, see (2.99a) and (2.8) – the dependent variable w (ξ) travels on
the Riemann surface determined by its dependence on the complex variable ξ, as entailed
by the equation (2.98) that relates w (ξ) to its argument ξ – starting at t = 0 from ξ = ξ0,

ξ0 = ξ̄ + R = (η + 1) R , (2.100a)

ξ0 =
i ω R

{

[ζ1(0)− ζ2(0)]
2 + [ζ2(0)− ζ3(0)]

2 + [ζ3(0)− ζ1(0)]
2
}

3 (f + 2 g)
(2.100b)

(see (2.99)) and correspondingly from w(ξ0) = w0, (see (2.99e)).

Let us therefore now discuss the structure of this Riemann surface, namely the analytic
properties of the function w(ξ) defined by (2.98). There are two types of singularities,
the ”fixed” ones occurring at values of the independent variable ξ, and correspondingly
of the dependent variable w, that can be read directly from the structure of the equation
( 2.98) under investigation, and the “movable” ones (this name being given to underline
their difference from the fixed ones) occurring at values of the independent and dependent
variables, ξ and w, that cannot be directly read from the structure of the equation (2.98)
under investigation.

2.5.1 Movable singularities

To investigate their nature it is convenient to differentiate (2.98), obtaining thereby (using
again (2.98))

ξ w′ = −w (w − 1)

w − µ
, (2.101)

where the prime indicates of course differentiation with respect to ξ. (Note that this ODE
is implied by the nondifferential equation (2.98), while its solution reproduces the nondiffer-
ential equation (2.98) up to multiplication of its right-hand side by an arbitrary constant).
The position of the singularities, ξb, and the corresponding values of the dependent variable,
wb ≡ w(ξb), are then characterized by the vanishing of the denominator in the right-hand
side of this formula, yielding the relation

wb = µ , (2.102)
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which, combined with (2.98) (at ξ = ξb) is easily seen to yield

ξb = ξ
(k)
b = r exp (2 π i µ k) , k = 1, 2, 3, ... , (2.103a)

ξb = ξ
(k)
b = r exp

[

i
2 π p k

q

]

, k = 1, 2, ..., q , (2.103b)

r = (µ− 1)−1

(

µ− 1

µ

)µ

. (2.103c)

In the last, (2.103c), of these formulas it is understood that the principal determination is
to be taken of the µ-th power appearing in the right-hand side. The first of these formulas,
(2.103a), shows clearly that the number of these branch points is infinite if the parameter µ
is irrational, and that they then sit densely on the circle B in the complex ξ-plane centered
at the origin and having radius r, see (2.103c). Note that this entails that the generic point
on the circle B is not a branch point (just as a generic real number is not rational); but
every generic point on the circle B has some branch point (in fact, an infinity of branch
points!) arbitrarily close to it (just as every generic real number has an infinity of rational
numbers arbitrarily close to it). As for the second of this formulas, (2.103b), it is instead
appropriate to the case in which the parameter µ is rational, see (2.26), in which case the
branch points sit again on the circle B in the complex ξ-plane, but there are only a finite
number, q, of them.

Proposition 4. The singularities ξb are all square root branch points.

Proof. Set, for ξ ≈ ξb,

w(ξ) = µ + a (ξ − ξb)
β + o

(

|ξ − ξb|Re(β)
)

, (2.104a)

with the assumption (immediately verified, see below) that

0 < Re (β) < 1 . (2.104b)

It is then immediately seen that the insertion of this ansatz in ( 2.101) (is consistent and)
yields

β =
1

2
, a2 =

2 (1− µ)

ξb
= −2

(

µ

µ− 1

)µ

. (2.104c)

Note that these results confirm the treatment of Section 2.4: the square root branch
points of w (ξ) identified here, see ( 2.102), are easily seen to correspond, via (2.97), to
the pair coincidence ζ1(τb) = ζ3(τb) or ζ2(τb) = ζ3(τb); while there is an additional class of
square-root branch points which only affect ζ1(τ) and ζ2(τ), but neither ζ3(τ) nor w (ξ),
and occur at

w = 4 µ (2.105a)

due to the vanishing of the second square-root term inside the curly bracket in the right-
hand side of (2.97a), and correspond therefore to the coincidence ζ1(τb) = ζ2(τb). The
corresponding values of ξ (as implied by (2.105a) with (2.98)) are

ξ =
(4 µ− 1)µ−1

(4 µ)µ =
1

4 µ

(

1− 1

4 µ

)µ−1

(2.105b)

(we use the plural to refer to these values because of the multivaluedness of the function in
the right-hand side of this formula).
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2.5.2 Fixed singularities

Next, let us consider the “fixed” singularities, which clearly can only occur at ξ = ∞ and
at ξ = 0, with corresponding values for w.

Let us investigate firstly the nature of the singularities at ξ = ∞. Two behaviors of
w(ξ) are then possible for ξ ≈ ∞, depending on the value of (the real part of) µ. The first
is characterized by the ansatz

w(ξ) = a ξ β + o
(

|ξ|Re(β)
)

, Re(β) < 0 , (2.106a)

and its insertion in (2.98) yields

β = − 1

µ
, aµ = − exp(i π µ) , (2.106b)

which is consistent with (2.106a) iff

Re(µ) > 0 . (2.106c)

The second is characterized by the ansatz

w(ξ) = 1 + a ξ β + o
(

|ξ|Re(β)
)

, Re (β) < 0 , (2.107a)

and its insertion in (2.98) yields

β =
1

µ− 1
, aµ−1 = 1 , (2.107b)

which is consistent with (2.107a) iff

Re(µ) < 1 . (2.107c)

Then we can formulate the following

Proposition 5. There are three possibilities: if Re(µ) > 1, only the first ansatz, (2.106),
is applicable, and it characterizes the nature of the branch point of w(ξ) at ξ = ∞; if
Re(µ) < 0, only the second ansatz, ( 2.107), is applicable, and it characterizes the nature
of the branch point of w(ξ) at ξ = ∞; while if 0 < Re(µ) < 1, both ansätze, (2.106) and
(2.107), are applicable, so both types of branch points occur at ξ =∞.

Next, let us investigate the nature of the singularity at ξ = 0. It is then easily seen,
by an analogous treatment, that two behaviors are possible, as displayed by the following
ansätze: either

w(ξ) = a ξ β + o
(

|ξ|Re(β)
)

, Re(β) > 0 , (2.108a)

β = − 1

µ
, aµ = − exp (i π µ) , (2.108b)

which is applicable iff
Re(µ) < 0 ; (2.108c)

or
w(ξ) = 1 + a ξ β + o

(

|ξ|Re(β)
)

, Re(β) > 0 , (2.109a)

β =
1

µ− 1
, aµ−1 = 1 , (2.109b)

which is applicable iff
Re(µ) > 0 . (2.109c)

This analysis entails the following
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Proposition 6. The function w(ξ) features a branch point at ξ = 0 the nature of which is
characterized by the relevant exponent β, see (2.108) or (2.109b), whichever is applicable
(see (2.108c) and (2.109c)). There is no branch point at all at ξ = 0 if neither one of the
two inequalities (2.108c) and (2.109c) holds, namely if 0 < Re(µ) < 1.

2.5.3 Comparison with the findings of Section 2.4

These results confirm those reported in Section 2.4, since clearly the branch point at ξ = 0
corresponds via (2.97) to the triple coincidence (2.70). Indeed if Re(µ) < 0 the insertion
of ( 2.108a) in (2.97) yields (via (2.95))

ζs(τ) = Z +
(

−1 + (−)s i
√

3
)

C (τ − τ1)
(β+1)

2 + o
(

|τ − τ1|Re[
(β+1)

2
]
)

s = 1, 2 , (2.110a)

ζ3 (τ) = Z + 2 C (τ − τ1)
(β+1)

2 + o
(

|τ − τ1|Re[
(β+1)

2
]
)

, (2.110b)

where C is a constant. And it is then clear that the exponent β+1
2 , with β = − 1

µ (see

(2.108)), appearing in this formula, coincides with the exponent 1−γ
2 = µ−1

2 µ (see (2.74))
appearing in the ansatz (2.71a). Likewise, if Re(µ) > 1 the insertion of (2.109a) in (2.97)
yields (via (2.95))

ζs(τ) = Z + C
[

−(b + (−)s c) (τ − τ1)
1/2 − (b̃ + (−)s c̃) (τ − τ1)

β+1/2
]

+ o
[

|τ − τ1|Re(β+1/2)
]

, s = 1, 2 , (2.111a)

ζ3 (τ) = Z + 2 C
[

b (τ − τ1)
1/2 − b̃ (τ − τ1)

β+1/2
]

+ o
[

|τ − τ1|Re(β+1/2)
]

, (2.111b)

It is then again clear that the exponent β + 1
2 , with β = 1

µ−1 (see (2.109b)), appearing

in this formula, coincides with the exponent 1−γ
2 = µ+1

2 (µ−1) (see (2.76)) appearing in the

ansatz (2.71a). And the lack, predicted in Section 2.4 for the case 0 < Re(µ) < 1, of
any non-square-root branch point in the finite part of the complex τ -plane is now as well
confirmed.

2.6 Behavior of the physical model

In this section we discuss the implications of the findings obtained so far, as regards the
actual behavior of the solutions of our physical model (2.10).

We explained in the previous sections the mechanism that guarantees the isochronous
character of our physical model (2.10): there is an open domain of initial data zn(0) such
that the corresponding solutions of the auxiliary problem (2.1) are holomorphic in the
open disk D encircled by the circle C in the complex τ -plane, and via (2.7) this guarantees
the isochronous character, see (2.12), of the solutions zn(t) of our physical model (2.10)
that evolve from these initial data. We also outlined above how the presence of branch
points of ζn (τ) inside the disk D may affect the time-periodicity of the corresponding
physical coordinate zn(t). Let us now pursue a bit more this analysis here, to better
explain – albeit still qualitatively – the mechanism whereby nonisochronous solutions zn(t)
of our physical model (2.10) may emerge, either completely periodic ones but with a larger
period than that characterizing the isochronous regime, or even aperiodic ones which display
some kind of complicated behavior (possibly characterized by a sensitive dependence on the
initial data, see Chapter 4. A more detailed – as it were, quantitative – dissection of the
phenomenology of the motions of our physical model is then reported below (in this section),
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on the basis of the exact general solution of its equations of motions (2.10), as obtained
(for the semisymmetrical case) in Section 2.5 and discussed in Section 2.6 (and in [2]).

An important aspect to understand the relation – already outlined above – among the
time evolution of a solution zn(t) of the physical model (2.10) and the analytic structure of
the solution ζn (τ) that corresponds to it via (2.7), is the distinction among active and inac-
tive branch points of the function ζn(τ), a distinction we now illustrate by again referring,
to simplify the presentation here, to the case in which the branch points possessed by the
generic solution ζn (τ) in the finite part of the complex τ -plane are all of square-root type
(namely, the semisymmetrical case with 0 < µ < 1). Recall that, as implied by the relation
(2.7), the behavior of the solution zn(t) of our equations of motion (2.10) as function of
the (real) time variable t is obtained by travelling round and round along the circle C on
the Riemann surface associated with the solution ζn (τ) of the evolution equation (2.1).
This outcome is therefore influenced by the branch points of ζn (τ) that characterize this
Riemann surface. However, not all these branch points do influence the behavior of the
solution zn(t) of our model.

Definition: Let us qualify as active those branch points that do influence the time
evolution of the solution zn(t), because the cuts associated with them are actually traversed
when travelling around on the circle C and therefore do open the way to new sheets, and
instead as inactive those branch points that do not cause this effect – either because they
are outside the circle C, or because they belong to a pair of (square-root) branch points
connected by a cut that falls inside C on the same sheet of the Riemann surface (which
is therefore not traversed when travelling on the circle C; however, this phenomenon does
not happen in our case), or because they are inside C but sit on a sheet that does not
get accessed at all during the travel on the circle C (this is indeed a crucial mechanism to
account for the complications in the behavior of our model, as it will be eventually clear,
see below).

Due to the square-root character of these branch points, each of the cuts associated with
them opens the way to just one new sheet, hence the number of new sheets (besides the basic
one) visited along the entire travel equals the number A of active branch points; therefore
overall the number M of sheets visited (including the main one) along this travel on the
Riemann surface, before returning to the point of departure on the main sheet, exceeds by
one the number of active branch points, M = 1 + A, and this – since clearly a complete
round must be made on each of the sheets visited – entails that the time taken for the
entire tour before returning to the initial value on the main sheet is M T = (1 + A) T (see
(2.8)), hence this is also the periodicity (or antiperiodicity, see (2.7)) of zn(t) (as discussed
above). Note that this implies that, even in the case in which the total number of branch
points of the solution ζn (τ) is finite (as it is indeed the case, see below, when the ratio ϕ
of the coupling constants, see (2.2), hence the parameter µ, see (2.25) and (2.26), is real
and rational), hence all the (nonsingular) solutions zn(t) of our model (2.10) are completely
periodic, nevertheless if the number of branch points that fall inside the circle C is quite
large, the period of the motion can also be quite large, and moreover it may depend in a
sensitive manner on the detailed structure of the Riemann structure associated with the
corresponding solution ζn (τ), since it is this structure – as it is clear from this discussion,
and as we shall further discuss below – that determines the number A of active branch
points.

The number of branch points included inside C depends of course, via the solution
ζn(τ), on the initial data (see (2.9)) that determine this solution; hence a change in these
initial data causes a rearrangement of the branch points pattern. Since the period of the
motion generally changes whenever, as an effect of the change of the initial data, one active
branch point is added or subtracted (for instance, by entering in, or exiting from, the circle
C in the complex τ -plane), there shall be circumstances when even a minute change in the
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initial data has this effect, and might thereby entail a major change in the period of the
motion. So, even in the rational case when all nonsingular solutions zn(t) of our physical
model (2.10) are completely periodic with a period which is a finite integer multiple of
T , it may happen that there is a sensitive dependence on the initial data, inasmuch as a
minute change in such data might cause a major change in the period of the motion. This
mechanism might of course manifest itself in an even more dramatic manner if the number
of branch points, hence the number of sheets of the relevant Riemann surface, is infinite, as
it is certainly the case if the ratio ϕ of the coupling constants, see (2.2), hence the parameter
µ, see (2.25), are not rational: then a minute change in the initial data may even cause the
transition from a periodic to an aperiodic motion, or from an aperiodic motion to another
aperiodic motion which is quite different (see Chapter 4).

A natural question at this point is: what if an active branch point falls exactly on the
circle C? Then the corresponding solution of the physical problem runs into a singularity,
which, as implied by its equations of motion (2.10), corresponds necessarily to the collision
of a pair, or a triple, of particles. Is this “likely” to happen? Of course not, since the set
of initial data that yield a collision has clearly lower dimensionality than the set of all
initial data. Actually, this statement might not be quite evident, since the motions of the
three particles with coordinates zn(t) in the complex z-plane entailed by our model (2.10)
are confined for all time, hence one might well wonder whether, in the aperiodic case, the
generic solution shall eventually run – possibly after a very long time – into a particle
collision; that this is not the case is completely clear from the exact solution obtained in
Section 2.5. This is consistent with the fact that the chance to hit a point particle with a
point particle in the plane is nil. However, in the case of confined aperiodic motions there
shall occur lots of near misses, and they constitute the “physical cause” of the fact that any
two motions, however close they initially are, become eventually quite different. In terms of
the solutions ζn(τ) of the auxiliary problem (2.1), the corresponding analysis is even more
cogent: generally the functions ζn(τ) corresponding to a generic solution of the evolution
equations (2.1) feature an infinity of square-root branch points in the τ -plane (nested on
the infinite sheets of the corresponding Riemann surfaces), and clearly the probability that
any one of them (and in particular one sitting on a sheet that gets actually accessed by
travelling on the Riemann surface of ζn (τ) as τ rotates on the circle C in the complex
τ -plane) does fall exactly on the circle C is nil ; while, at least for the solutions ζn(τ) of
the auxiliary model (2.1) that correspond to initial data yielding disordered motions of
our physical model (2.10), there clearly occur – as we show below – active branch points
arbitrarily close to the circle C (corresponding via the trick (2.7) to arbitrarily close near
misses of a collision for the particles evolving according to our physical model (2.10)).

In conclusion – as suggested by the above analysis, and substantiated by the results re-
ported below – the qualitative picture of the solutions of our model (2.10), in the semisym-
metrical case with coupling constants f and g that are not congruent (so that neither their
ratio ϕ, see (2.2), nor the parameter µ, see (2.25), are rational numbers) features an open
region of initial data yielding isochronous motions with period 2 T , see (2.8), other open
regions of initial data yielding completely periodic solutions with periods that are integer
multiples of T , open regions that yield multiply periodic motions, and possibly open re-
gions yielding aperiodic motions which might be very complicated (as we shall see below,
the latter regime only occurs for values of the parameter µ which are irrational and are
outside of the interval 0 ≤ µ ≤ 1). These regions of initial data are separated by (lower
dimensional) boundaries, corresponding to initial data out of which emerge motions that
eventually run into a singularity, namely a particle collision.

The physical origin of the irregular aspect of the aperiodic motions is due to the fact
that, as the three particles move in a confined region of the plane, there are eventually
near misses of collisions in which particles pass arbitrarily close to each other; the sensitive
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dependence on the initial data is due to the fact that, however close two slightly different
sets of initial data causing two disordered motions are, eventually the two corresponding
motions shall feature a near miss (in fact, eventually, an infinity of such near misses) in
which two particles scatter past each other differently (namely, on different sides), and as
a consequence the two motions, while being analogous to each other until that moment,
become quite different thereafter (their subsequent motion being eventually characterized
by an infinity of such near misses).

The qualitative understanding provided by the above discussion of the time evolution
of our physical model (2.10) (and indeed of many other models, see for instance [6] and
[7]) entails that a more detailed, quantitative, understanding of the solutions zn(t) of this
model (in the regime we are mainly interested in, when the motions are not isochronous)
requires an understanding of the structure of the Riemann surface associated with the
corresponding solutions ζn(τ) of the auxiliary model (2.1) sufficiently detailed to allow us
to predict the sequence of different sheets of this Riemann surface that are visited when
the complex variable τ rotates on the circle C in the complex τ -plane. Such more detailed
understanding is remarkably possible – even when the corresponding motions are very
complicated – on the basis of the exact general solution of our physical model (2.10) as
obtained in Section 2.5, and it will be reported in the next chapter.

2.6.1 Solution of the physical model

The general solution of the equations of motions (2.10) reads as follows:

zs(t) = Z exp (−i ω t)− 1

2

(

f + 8 g

6 i ω

) 1/2

[1 + η exp (−2 i ω t)] 1/2 ·

·
{

[w̌ (t)] 1/2 − (−)s [12 µ− 3 w̌ (t)] 1/2
}

, s = 1, 2 , (2.112a)

z3 (t) = Z exp (−i ω t) +

(

f + 8 g

6 i ω

) 1/2

[1 + η exp (−2 i ω t)] 1/2 [w̌ (t)] 1/2 , (2.112b)

where the function w̌(t) is defined via the relation

w̌(t) = w [ξ(t)] (2.113)

with ξ(t) given by formula (2.99a) and the function w(ξ) satisfies the nondifferential equa-
tion (2.98). The three constants Z, R, and η (or ξ̄) are defined in terms of the three initial
data zn(0), see below.

Note that the formula (2.99a) implies that, as the time t evolves, the point ξ(t) travels
uniformly (counterclockwise, performing a full round in the time T , see (2.8)) on the circle
Ξ in the complex ξ -plane, the center ξ̄ and radius |R| of which are defined in terms of the
initial data by the formulas (see (2.99) with (2.9))

ξ̄ = R η , (2.114a)

η =
i ω
{

[z1(0)− z2(0)]
2 + [z2(0)− z3(0)]

2 + [z3(0)− z1(0)]
2
}

3 (f + 2 g)
− 1 , (2.114b)

R =
3 (f + 8 g)

2 i ω [2 z3(0)− z1(0)− z2(0)]
2

[

1− 1

w̌(0)

]

, (2.114c)

Z =
z1(0) + z2(0) + z3(0)

3
. (2.114d)

The dependent variable w̌(t) is correspondingly defined via (2.113) from the solution of the
nondifferential equation (2.98), and it is identified, as the time t unfolds from t = 0, hence
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as the variable ξ ≡ ξ(t) goes round and round, in the complex ξ-plane, on the circle Ξ, by
continuity from the initial datum (see (2.99e) with (2.9))

w̌(0) = w [ξ(0)] =
2 µ [2 z3(0)− z1(0)− z2(0)]

2

[z1(0)− z2(0)]
2 + [z2(0)− z3(0)]

2 + [z3(0)− z1(0)]
2 . (2.115)

This specification is necessary, since generally the nondifferential equation (2.98) has more
than a single solution, in fact possibly an infinity of solutions, see below.

Let us note first of all that these formulas, (2.112), entail that a pair collision occurs
at the time t = tc, if at that time w̌(tc) = 4 µ (entailing z1(tc) = z2(tc)) or w̌(tc) = µ
(in which case the pair collision involves the different, third particle); and likewise a triple
collision occurs at the time tc if η = exp(2 i ω tc) (note that this formula defines tc – of
course mod T – but it yields a real value for this quantity only if |η| = 1). Clearly these
collisions only occur for special (nongeneric) initial data (see also below). And it is as well
clear from these formulas, (2.112), what the effect on the overall motion is of a (small)
change of initial data – say, as some parameter δ characterizing the initial data is changed
with continuity from a small negative value to a small positive value, with the vanishing
value δ = 0 corresponding to the initial data causing the collision, and the negative and
positive (but very small) values of δ corresponding of course to near misses. Then, if the
collision is a pair collision among the two equal particles (hence it corresponds to the branch
point at w̌ = 4 µ, see the last square-root in the right-hand side of (2.112)), the trajectory
of the different, third particle is essentially unaffected by the sign of δ, while those of the
two equal particles get exchanged among each other after the near miss for positive δ with
respect to those corresponding to the near miss for negative δ. If the collision is instead
a triple collision, then the trajectories (in the center of mass system) of all three particles
are equally affected by the change of initial data from those corresponding to a near miss
with negative δ to those corresponding to a near miss with positive δ, since the difference
among these trajectories is caused – see (2.112) – by the different time evolution of the
factor

[η exp (−2 i ω t)− 1] 1/2 = exp (−i ω t) [η − exp (2 i ω t)] 1/2 (2.116)

depending on the value relative to unity of the absolute value of the parameter η (this
parameter depends of course on the initial data, and for δ = 0 its absolute value is just unity,
|η| = 1, corresponding to the occurrence of the triple collision; while the two equivalent
ways (2.116) to write this factor are indicative of its different time evolution, as function
of the real time t, depending whether |η| is larger or smaller than unity). Finally, in
the vicinity of a pair collision involving the third, different particle (which corresponds to
w̌ = µ, see (2.112)) the different behaviors of the trajectories of the third particle and that
of that one of the two equal particles which is involved in the collision (and indeed, as a
consequence, also of the remaining particle), among the cases with initial data characterized
by a positive, or instead a negative, value of δ, is due to the different evolution in these two
cases of the function w̌(t) due to the square-root branch points characterizing the function
w (ξ) where w = µ.

As entailed by this analysis based on the explicit expression, (2.112), of the solution of
our physical problem (2.10), the more complicated aspect of its time evolution is determined
by the function w̌(t); hence, for the sake of simplicity, hereafter (in this section) we focus
mainly on the time evolution of this function. In fact let us focus to begin with on the
less specifically identified function w̃(t) related by the formula w̃(t) = w [ξ(t)] with (2.99a)
to some solution of the equation (2.98), reserving the notation w̌(t) (see (2.113)) for the
“physical” one among the functions w̃(t) that enters in the right-hand side of the solution
formula (2.112) and is uniquely identified by the initial datum (2.115).

Let us consider to begin with the rational case µ = p / q, see (2.26). Then the equation
(2.98) that determines via (2.113) and (2.99a) the time evolution of w̃(t) is polynomial in
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w, and it reads

[w (ξ)− 1] p−q = ξ q [w (ξ)] p

if 0 < q < p , namely if p > p− q > 0 , µ > 1 , (2.117a)

ξ q [w (ξ)− 1] q−p [w (ξ)] p = 1

if 0 < p < q , namely if p > 0 , q − p > 0 , 0 < µ < 1 , (2.117b)

ξ q [w (ξ)− 1] |p−q| = [w (ξ)] |p|

if p < 0 < q , namely if p− q < p < 0 , µ < 0 . (2.117c)

As indicated, which one of these three polynomial equations (in the dependent variable
w ≡ w (ξ)) is relevant depends on the values of the two integers p and q > 0 (see (2.26)).
These two integers also determine the degree J of each of these three polynomial equations:
J = p > 0 for the first (case p > p − q > 0, µ > 1), J = q for the second (case p > 0,
q−p > 0, 0 < µ < 1) and J = |p−q| = q−p = q+|p| for the third (case p−q < p < 0, µ < 0).
Of course the degree J of the polynomial equation (2.117) coincides with the number of
its roots wj(ξ) , j = 1, 2, ..., J . We are eventually interested in the time-evolution of just
one of these J roots, say w̌(t) = w1 [ξ(t)] with ( 2.99a), but as indicated above it will be
useful in the following to also consider the evolution of a generic one of the J roots, say
w̃j(t) = wj [ξ(t)] (again with (2.99a); occasionally we will indicate such a root just as w̃(t)).

The function [ξ(t)]q, see (2.99a), which characterizes the time dependence of the poly-
nomial equation under consideration, see (2.117), is clearly periodic with period T , see (2.8)
(except in three special cases: if the initial data imply ξ̄ = 0, R 6= 0, when it is periodic
with period T

q ; if the initial data imply R = 0, ξ̄ 6= 0, when it becomes a (time-independent)

nonvanishing constant ; and if the initial data imply ξ̄ = R = 0, when it vanishes identi-
cally ; for simplicity we do not consider any one of these three special cases in this section).
Therefore the set of its J roots is as well periodic with the same period:

{w̃j(t + T ) ; j = 1, ..., J} = {w̃j(t) ; j = 1, ..., J} . (2.118)

But this does not necessarily imply that, if one follows with continuity the time evolution
of a specific root – and in particular that of the root w̃1(t) = w̌(t) – its evolution shall
be periodic with period T

2 : after one period the root w̌(t) can take the place of another
root, indeed its time evolution, if considered at times tk which are integer multiples of the
basic period T , tk = k T , k = 0, 1, 2, 3, ..., generally amounts to hopping from one to the
other of the “initial” J roots w̃j(0) = wj (ξ0) of the polynomial equation (2.117) evaluated
at the initial time t = 0, namely for ξ = ξ(0) = ξ0 = ξ̄ + R (see (2.99a) and (2.114)).
Hence this motion – and in particular the motion of w̌(t) as a function of the time t as
it unfolds continuously from t = 0 – is generally periodic with a period Ť that is a finite
integer multiple of the basic period T , see (2.8), Ť = ǰ T with the integer ǰ not larger than
J , 1 ≤ ǰ ≤ J . Several remarks are now appropriate.

Remark 7. This finding establishes that all the nonsingular solutions of our physical
model (2.10) are completely periodic with a period that is a finite integer multiple of the
basic period, see (2.8), whenever the ratio ϕ of the coupling constants f and g featured by
this model (in the semisymmetrical case, to which, let us recall, our consideration is now
restricted), hence as well the parameter µ, see (2.2) and (2.25), is a rational number, see
(2.26) (which is the case under present discussion).
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Remark 8. The isochronous character of our model entails that there is an open domain
of initial data zn(0) (characterized by adequately large values of all three interparticles
distances |zn(0)− zm(0)|, as explained above: see the sufficient condition (2.67)) such that
the corresponding evolution of the particle coordinates zn(t) is completely periodic, see
(2.12). To such data there corresponds a very simple periodicity of all the J roots w̃j(t),
namely w̃j(t + T ) = w̃j(t), j = 1, 2, ..., J . The periodic evolution of w̌(t) shall be moreover
characterized by the property of the closed contour which this quantity travels on, in the
complex w-plane, over each period T , to include neither the point w̌ = 0 nor the point
w̌ = 4µ, see (2.112) and (2.12).

Remark 9. The analysis we just made entails that, if the initial data are outside of the
region yielding isochronous motions, see (2.12), the time evolution of w̌(t), while certainly
periodic with a period which is a finite integer multiple of the basic period T , see (2.8),
could however feature a period Ť = ǰ T which is a quite large multiple, ǰ, of the basic
period T , if the number J (determined, as explained above, by p and q: see (2.117) and the
paragraph following this equation) is itself quite large. And if J is very large, the actual
value of the period of the time evolution of w̌(t) – which, in units of the basic period T , is
just the number ǰ of other initial roots w̃j(0) of the relevant polynomial of degree J that
w̌(t) visits, over its time evolution, at the times tk = k T , k = 1, 2, 3, ..., before returning to
its own initial value w̌(0) at t = tǰ = Ť = ǰ T – depends in a rather sensitive manner on
the initial data. Note that, under these circumstances, the time evolution of our physical
system (2.10) is largely characterized by this sequence of initial roots w̃j(0) that w̌(t) visits
over each period of its time evolution: indeed the task to solve the initial-value problem
of our physical model (2.10) corresponds then essentially to computing, for every given
initial data zn(0), the period of the corresponding time evolution of w̌(t) (hence, up to
rather simple additional adjustments, see (2.112), the period of the motion of the three
particles zn(t)) and, more specifically, to ascertaining the detailed sequence of initial roots
w̃j(0) actually visited, at the times t = tk, by w̌(t) as it moves around from one of them to
another one of them, starting from w̌(0) at t = 0 and returning to w̌(0) at t = Ť = ǰ T , an
evolution which largely characterizes, see (2.112), the trajectories traced by the coordinates
zn(t) of the three particles over each period of their motion.

2.6.2 The polynomial equation 2.98

The results we reported so far entail a close relationship among the motion, in the complex
z-plane, of the 3 particles that are the protagonists of our physical model (2.10), and the
time evolution, in the complex w-plane, of the J roots of the polynomial equation (2.117)
as ξ ≡ ξ (t) travels round and round on the circle Ξ, see (2.99a). As already indicated
above, this implies the possibility that the motion described by the coordinates zn(t) of our
three particles in the complex z-plane be quite complicated if the natural number J is very
large; it also implies that our 3-body problem (2.10) is now seen to be somehow equivalent
to a J-body problem – the time evolution in the complex w-plane of the J roots of the
polynomial equation (2.117) as ξ ≡ ξ (t) travels round and round on the circle Ξ, see (2.99a)
– naturally suggesting that for its understanding the tools of statistical mechanics might
play a role. This is particularly significant in the case, discussed below, when the ratio ϕ of
the coupling constants of our model, see (2.2), hence as well the parameter µ , see (2.25),
are irrational numbers, which corresponds (see below) to the case in which the number J
diverges – so that, in such (generic!) case the dynamics of our three-body problem (2.10)
becomes naturally connected with the dynamics of an assembly of an infinite number of
points on the complex plane.

The next discussion is aimed at providing a qualitative understanding of the motion in
the complex w-plane of the J roots w̃j(t) of the polynomial equation (2.117) with (2.99a).
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This treatment pushes the analysis a bit further than that given above; and we now return,
to simplify the presentation, to considering the case when J is finite (although this analysis
is largely applicable as well without this restriction). Let us note to begin with that clearly,
for a generic value of the independent complex variable ξ, the J roots wj ≡ wj(ξ) of the
polynomial equation (2.117) are all distinct ; but there are special values of ξ at which
two roots of the polynomial equation (2.117) coincide. These special values are of course
precisely those at which the solution w (ξ) of the polynomial equation (2.117) has a square-
root branch point: at these branch points the value of w is w = µ (as indicated by the above
discussion and proven below), and the square-root character of these branch points reflects
the fact that just two roots of the polynomial equation (2.117) coincide there – indeed the
fact (easily proven, see Section 2.6) that all the branch points of the polynomial equation
(2.117) occurring at finite values of ξ (namely, ξ 6= 0 and ξ 6= ∞) are of square-root type
(and entail w = µ) implies that for no finite values of ξ the polynomial equation (2.117)
possesses roots of higher multiplicity than two; while for ξ = 0 clearly (2.117a) has the root
w = 1 with multiplicity p−q, (2.117c) has the root w = 0 with multiplicity |p|, and (2.117b)
has no root at all ; and for ξ = ∞ clearly (2.117a) has the root w = 0 with multiplicity p,
(2.117c) has the root w = 1 with multiplicity |p− q|, and (2.117b) has the root w = 0 with
multiplicity p and the root w = 1 with multiplicity q − p.

Again, for the sake of simplicity, let us restrict the following discussion to the case when
0 < µ < 1, see (2.117b), when the branch points in the finite part of the complex ξ-plane
(including the origin, ξ = 0) are all of square-root type. Let us then start our analysis of the
time evolution of the J roots of the polynomial equation (2.117b) from the consideration
of a set of initial data inside the isochronous region (recall that the initial data affect the
time evolution of the roots w̃j (t) inasmuch as they determine the center ξ̄ and the radius
|R| of the circle Ξ in the complex ξ-plane on which ξ(t) rotates as the real time t evolves:
see (2.99a) and (2.114)). To these initial data there corresponds, for each of the J roots
w̃j(t) of the polynomial equation (2.117b), a closed trajectory that is traveled in a time T
and that starts at the value w̃j(0) and ends – for each of the roots – back at its initial value
w̃j(0) . Let us now change gradually, with continuity, the initial data, so as to eventually
exit from the isochronous regime. At some point along this process there is a specific set
of initial data that causes two roots – say, the roots w̃k(t) and w̃`(t) – of the polynomial
equation (2.117b) to coincide at some value tb (so that w̃k(tb) = w̃`(tb) = µ); and, along
this process of gradual modification of the initial data, what happens is that, just before
and just after the set of initial data that causes the two trajectories of the two roots w̃k(t)
and w̃`(t) to coincide, the initial data yield trajectories w̃k(t) and w̃`(t) that experience a
near miss at t = tb and that cause the two roots, for the data just after those causing the
collision of these two roots at t = tb, to exchange their time evolution (with respect to that
prevailing for the initial data just before those causing the collision), so that at the time
t = T the outcome entails w̃k (T ) = w̃` (0) and w̃` (T ) = w̃k (0). A further continuation
of the process of gradual change of the initial data shall eventually cause another collision
of two other roots, and a further minute additional change of the initial data transforms
that collision into a near miss, with subsequent exchange of the time evolution of the two
roots involved in that event. And this mechanism will be repeated as the process of gradual
change of the initial data is continued. It is via this mechanism that the trajectories of
the J roots yielded by a generic set of initial data yield a permutation of the roots after
one basic period T , that gets then iterated, at the times tk = k T , k = 1, 2, 3, ... – as
explained above. Note that, in the context of our physical three-body problem (2.10), the
phenomenology we just described corresponds to a collision, or to a near miss, involving
a pair of physical particles described by the complex coordinates zn(t) (and including the
different, third particle z3(t)), only when the pair collision, or near miss, among the roots
w̃j(t) involves, as one of the two protagonist roots, the fundamental root w̃1(t) ≡ w̌(t) that
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enters in the solution formula (2.112).
The discussion we just gave entails that, to get a complete understanding of the time

evolution of our main root w̌(t) one must understand the structure of the Riemann surface
associated to the solution w (ξ) of the polynomial equation (2.117) – and, more generally,
of the nondifferential equation (2.98) when µ is not a rational number – in sufficient detail
to be able to describe the sequence over time of its sheets that get visited when the inde-
pendent variable ξ rotates on the circle Ξ in the complex ξ-plane as entailed by (2.99a),
and correspondingly the dependent variable w̌(t) = w1 [ξ (t)] travels on its Riemann sur-
face, starting from its initial value w̌(0) = w̌0 (see (2.115)), taken on the main sheet of
this Riemann surface, and returning there at the time Ť = ǰ T after having visited ǰ − 1
additional sheets (this necessarily happens if µ is a rational number, see (2.26); it might,
but need not, happen if µ is irrational see below). We will see how this understanding is
possible in the next chapter.

The distinguished points characterizing the structure of this Riemann surface are of
course the branch points of the solution w (ξ) of the polynomial equation (2.117) – and,
more generally, of the nondifferential equation (2.98) when µ is not a rational number. The
positions of those of square-root type are given by the following formula (established in
Section 2.6, see (2.102) and (2.103)):

ξb = ξ
(k)
b = r exp (2 π i µ k) , k = 1, 2, 3, ... ,

r = (µ− 1)−1

(

µ− 1

µ

)µ

,

and, as already mentioned above, at all these branch points the function w(ξ) takes the
same value,

w (ξb) = µ .

These results are a direct consequence of the (nondifferential) equation (2.98). Note that
the formula (2.103) implies that these square-root branch points all reside on the circle B
centered at the origin of the complex ξ-plane and having radius |r| (incidentally, one may
assume without loss of generality that the principal determination is taken in the evaluation
of the µ-th root appearing in the right-hand side of (2.103c)). Note that, as written here, this
formula (2.103) applies generally, including the case in which the parameter µ is irrational ;
of course in the rational case, see (2.26), the number of different branch points yielded by
this formula is just q, and they are equally spaced on the circle B; while if µ is instead
irrational, there is an infinity of such square-root branch points, all of them located on the
circle B (hence in this case they are densely located on this circular contour, so that each
point on it has an infinity of branch points arbitrarily close to it; yet the generic point on
this contour in not a branch points – the situation is exactly analogous to that of the set of
rational numbers who sit densely on the real line, since every real number has an infinity
of rational numbers arbitrarily close to it; yet the generic real number is not rational).

Let us emphasize that the structure of this Riemann surface does not depend at all on
the initial data of our problem, which indeed do not feature at all in the nondifferential
equation (2.98) nor, of course, in (2.117). It is completely determined by the single param-
eter µ, which determines the number and distribution of the square-root branch points, see
(2.103), and the value of w (ξ) at the branch points, see (2.102), and in addition it fixes the
character of the additional branch points occurring at ξ = 0 and at ξ =∞: at ξ = 0 there
is no branch point at all if 0 < µ < 1, there is a branch point of order 1

µ−1 if µ > 1 (and

the corresponding value of w is w = 1) and there is a branch point of order − 1
µ if µ < 0

(and the corresponding value of w is w = 0); while at ξ = ∞ there is a branch point of
order 1

µ−1 if µ < 0 (and the corresponding value of w is w = 1), there is a branch point of

order − 1
µ if µ > 1 (and the corresponding value of w is w = 0), and there are two branch
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points if 0 < µ < 1, one of order 1
µ−1 (and the corresponding value of w is w = 1) and the

other of order − 1
µ (and the corresponding value of w is w = 0). Note that the character of

these branch points at ξ = 0 and at ξ = ∞ – in contrast to those occurring on the circle
B, see (2.103), which are all of square-root type – depends on the value of the parameter
µ: in particular, these branch points are of rational type if and only if µ is itself a rational
number.

The time evolution of the roots w̃j(t) = wj [ξ (t)] – the number J of which is finite if µ is
rational (in which case the nondifferential equation (2.98) becomes polynomial, see (2.117),
as discussed in detail above), and is instead infinite if µ is irrational – depends of course
on the initial data of our problem, inasmuch as these data determine the center and the
radius of the circle Ξ in the complex ξ-plane on which the point ξ(t) rotates as the real time
t evolves, see (2.99a) and (2.114). It is thus clear that the time evolution of these roots
depends crucially on the relative positions of the circles Ξ and B in the complex ξ-plane,
as well as on the property of the circle Ξ to include, or instead not to include, the central
point ξ = 0 of the complex ξ-plane.

Let us merely sketch the main points here:

1. in this framework a gradual change in the initial data corresponds to a gradual mod-
ification (of the center and the radius) of the circle Ξ;

2. the isochronous sector of initial data yields values of the center ξ̄ and of the radius
R of the circle Ξ small enough to guarantee that this circle be completely enclosed
by the circle B on which the branch points are located and that moreover the center
ξ = 0 of the complex ξ-plane be outside of the circle Ξ;

3. the more interesting changes in the dynamical behavior of the time evolution of the
roots w̃j(t) obtain when the circle Ξ crosses the circle B, and moreover (except if
0 < µ < 1) when it crosses the center point ξ = 0;

4. a collision of two roots w̃j(t) occurs whenever the circles Ξ crosses the circle B just at
the location of a branch point, and the corresponding branch point is categorized as
active if and only if one of the two roots involved in this collision is the physical one,
w̃1(t) = w̌(t), otherwise it must be categorized as inactive: in the active case hitting
the branch point corresponds to the occurrence of a singularity of the solution of the
equations of motion of our physical model (2.10) due a collision of the different, third
particle z3(t) with one of the two equal particles, z1(t) or z2(t), while in the inactive
case there is no corresponding singularity of the solution of the equations of motion
of our physical model (2.10);

5. likewise, if and when the value of ξ(t), while traveling on the circle Ξ and crossing the
circle B, happens to be very close to a branch point (of those sitting on the circle B;

6. and note that this certainly happens whenever µ is irrational and therefore these
branch points sit densely on B), a near miss occurs among the time evolution of two
roots w̃j(t), which, as regards the corresponding solution zn(t) of our physical model
(2.10), entails a near miss in the time evolution of z3(t) and one of the other two
particles, z1(t) or z2(t), if and only if the fundamental root w̃1(t) = w̌(t) is one of the
two roots involved in the corresponding near miss;

7. if the initial data are such that the circle Ξ goes through the point ξ = 0, this cor-
responds to a multiple collision of several (indeed, if µ is not rational, an infinity of)
roots w̃j(t) (but only if µ is outside of the closed interval 0 ≤ µ ≤ 1), and correspond-
ingly there occurs a three-body collision in the time evolution of our physical model
(2.10) if one of these roots is the physical root w̌(t);
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8. and likewise if the initial data are such that ξ(t), while traveling on the circle Ξ,
happens to be very close to the point ξ = 0, then the corresponding solution of our
physical model (2.10) experiences a triple near miss (but, of course, again only if µ is
outside of the closed interval 0 ≤ µ ≤ 1, and only if the fundamental root w̃1(t) = w̌(t)
is one of those involved in the multiple root collision).

Clearly, to achieve a full, quantitative understanding of the time evolution of our physical
problem (2.10) – namely, a solution of its initial-value problem – the following questions
should be answered, for any given set of initial data: is the motion going to be singular,
completely periodic, multiply periodic or aperiodic; if singular, what kind of particle collision
is responsible for the singularity, and when does it happen; if it is periodic, then what is its
period Ť ; and, if this period is very large, for instance Ť = ǰ T with ǰ a very large integer,
can one also provide some information on the behavior of the system at intermediate times,
say at the times tk = k T , k = 1, 2, ...ǰ − 1; and likewise, when the motion is aperiodic,
can one provide a specific prescription to compute the particle positions, if perhaps not at
every future time (which clearly would be a somewhat extreme request, especially when
the motion provides an instance of some kind of chaotic behavior: see Chapters 3 and 4),
at least at a discrete set of future times, for instance at the times tk = k T , k = 1, 2, 3, ....
The answer to some of these questions has already been given by the various explanations
provided above; answered and still-unanswered questions are all addressed in the next two
chapters.
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CHAPTER 3

The Riemann Surface

In this chapter we focus our attention on the nondifferential equation (2.98)

(w − 1)µ−1 w−µ = ξ

which defines the (multi-valued) function w ≡ w(ξ). In the previous chapter we showed
that the solutions of the three-body problem (2.10), in the semisymmetrical case (2.2), can
be written in terms of the function w̌(t) = w(ξ(t)), where the variable ξ evolves in time
following (2.99a).

In this chapter we start the analysis of the structure of the Riemann surface Γ asso-
ciated to (2.98) for a generic variable ξ, evolving on a generic (usually closed) path on
the complex ξ-plane and only after that we come back in our presentation to the geomet-
rical consequences of the physical evolution (2.99a). We will finally choose the physical
path defined by (2.99a) at the beginning of the next Chapter 4, where we study the main
implications of the findings reported in this chapter.

It turns out that the equation (2.98) describes an algebraic curve in the case of a
rational value of µ = p/q (namely, it is sufficient that both the coupling constants f and
g are rational numbers, see (2.25) and (2.26)). We will describe the case with irrational µ
(given by irrational values of f and g) taking an appropriate limit of the case with rational
µ. Moreover in the analysis we distinguish between the three basic cases µ < 0, 0 < µ < 1
and µ > 1, as implied by (2.73), (2.75), (2.77) and the analysis reported in the following
Subsection 2.4.2.

To study the structure of the Riemann surface Γ, we make use of various techniques, from
topology, to algebraic geometry, from number-theory to graph theory and combinatorics,
achieving, at least in the case with rational µ, to reconstruct and to describe a subset
of the monodromy group associated to (2.98). We also describe a remarkable example
for the (quadratic) irrational value µ = 2

3+
√

5
, in which a machinery of simple continued

fraction theory and Fibonacci’s numbers is involved and makes possible to give an explicit
asymptotic result about the periodicity of the roots of (2.98) for a certain (physical) choice
of closed ξ-paths.

In the final chapter we will see how the knowledge gained in this Chapter 3 on the
Riemann surface Γ will open the way to a more complete understanding of the physical
complex dynamics generated by the simple three-body problem described in this work.

95
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3.1 The case 0 < µ < 1

Here we study the Riemann surface Γ consisting of points (ξ, w) ∈ Γ such that:

w−µ(w − 1)µ−1 = ξ , (3.1)

where
µ ∈ Q and 0 < µ =

p

q
< 1

and p ∈ N and q ∈ N+ are coprime natural numbers. Therefore Γ is an algebraic Riemann
surface characterized by the polynomial (of degree q) equation

(w − 1)q−pwpξq = 1, 0 < p < q (3.2)

which defines the q-valued function w = w(ξ). Since, ∀ξ ∈ C, the polynomial (3.2) admits
q complex roots and each root corresponds to a sheet of the Riemann surface Γ, it follows
that Γ is a q - sheeted covering of the complex ξ plane.

3.1.1 The Riemann surface and its singularities

The Riemann surface Γ possesses the following distinguished points.

1) ξ ∼ ∞. If |ξ| >> 1, there are two different asymptotics:

w(ξ) ∼ −(−ξ)
− q

p , ξ ∼ ∞,

w(ξ) ∼ 1 + ξ
− q

q−p , ξ ∼ ∞.
(3.3)

Therefore the ∞-configuration consists of p roots lying on a small circle of radius

O(|ξ|−
q
p ) around the origin, and of (q − p) roots lying on a small circle of radius

O(|ξ|−
q

q−p ) around 1 (see Figure 3.1). From the point of view of the Riemann surface,
we see that, at ξ = ∞, the branch point (∞, 0), of order (p − 1), attaches p sheets
and the branch point (∞, 1), of order (q − p− 1), attaches (q − p) sheets.

2) In the finite part of Γ there are only q square root branch points (SRBPs):

(ξ
(j)
b , µ) ∈ Γ, j = 1, .., q, (3.4)

defined by the equation:

ξq =
(−)q−pqq

pp(q − p)q−p
. (3.5)

Therefore the SRBP configuration consists of q SRBPs lying on the circle centered at
the origin and of radius

rb =
q

q − p

(

q − p

p

)
p
q

> 0; (3.6)

here we use the positive principal determination. We find it convenient to order them
in a sequential and counterclockwise way (see Figure 3.2); a convenient choice of the

first SRBP ξ
(1)
b , clearly arbitrary at this stage, is suggested by the direct problem and

will be discussed in the following sections. Each SRBPs corresponds to the collision
of a pair of roots.

The genus of Γ is 0; this is an immediate consequence of the Hurwitz formula (see [61])

V = 2(J + G− 1), (3.7)

where V is the ramification index of the surface, J is the number of sheets and G is its
genus. In our case: J = q and V = q + (q − p− 1) + (p− 1), entailing G = 0.

Equation (3.2) exhibits several symmetries. The ones used here are:
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Figure 3.1: The basic configuration of roots, for ξ ∈ γ1, |ξ| >> 1, for the Riemann surface
q = 12, p = 5.
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Figure 3.2: The cutted ξ-plane of the Riemann surface q = 12, p = 5 is the interior of the
oriented contour γ.

1. Symmetry under a 2π/q rotation. The set of roots is left invariant by a 2πi/q rotation
in the ξ plane.

2. Symmetry along the cuts. Consider the rays γj , j = 1, .., q defined by

γj = {ξ, arg ξ = arg ξ
(j)
b , |ξ| ≥ |ξ(j)

b |}, j = 1, .., q. (3.8)

Then, if ξ ∈ γj , j = 1, .., q, two of the q roots lie on the segment (0, 1). If, in addition,
|ξ| >> 1, then one of these two roots belongs to the small circle around the origin
and the other one belongs to the small circle around 1 (see Figure 3.1). We call this
configuration the basic configuration.

3.1.2 Defining a new congruence operation

For reasons that will be clearer soon, we will introduce the ˜mod operation, which is
operatively defined by:

a ˜mod b =

{

a mod b if a mod b 6= 0
b if a mod b = 0

, (3.9)
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for all positive integers a and b. Note that ˜mod consists in a little deformation of the
usual definition of the mod operation on integers. We will use the elements of the ring
obtained as the quotient set of Z with respect to the congruence ˜mod q for any further
labelling or enumerative operation. This will avoid, for example, to use a 0 to identify the
q-th root of the algebraic equation.

3.1.3 Roots dynamics and topological properties

To understand the topological properties of the Riemann surface Γ, we first cut the ξ-

complex plane along the rays γj , j = 1, .., q, from the SRBPs ξ
(j)
b to the branch point at

∞, and we introduce the closed contour γ whose interior is such a cutted ξ-plane (see
Figure 3.2). It is worth noting that in Subsection 3.1.4 we will slightly modify the labelling
of the SRBPs, introducing a double index system. Our goal is to construct the q images
Ij , j = 1, .., q of the cutted ξ-plane, through the q roots wj(ξ), j = 1, .., q and to study
their connections.

Our strategy will be to start from the basic configuration, applicable for |ξ| >> 1, and
to map out the structure of the Riemann surface as ξ is moved in along rays and it is moved
around along circles.

Starting with ξ ∈ γj , it is natural to call wj the root lying on the segment (0, 1) and
belonging to the small circle around 1. Then wj+1, .., wj+q−p−1 are the other roots of this
circle ( ˜mod q), enumerated in sequential and counterclockwise order. Analogously, we
denote by wj+q−p the root lying on the segment (0, 1) and belonging to the small circle
around 0; and by wj+q−p+1, .., wj+q−1 the other roots of this circle( ˜mod q), enumerated in
sequential and counterclockwise order (see Figure 3.1).

Using the large ξ asymptotics (3.3) and the above basic symmetries of Γ, we infer the
following basic motions.

1) As ξ moves along the cut γj , from∞ to ξ
(j)
b , the two roots wj and wj+q−p ˜mod q, lying

on the segment (0, 1), move along it, from the small circles around 0 and 1 to the

collision point µ. In addition, being ξ
(j)
b a branch point of square root type, a 2π

rotation of ξ around it corresponds to a π rotation of these two roots around µ. All
this implies that, if ξ travels along the contour surrounding the cut γj as in Figure
3.3, then the two roots wj and wj+q−p ˜mod q involved in the collision exchange their
position (see Figure 3.4). The remaining roots are essentially not affected by this
motion, moving back and forth on lines and going back to their starting positions.
We have established the first basic motion:

ξ-motion around
the branch cut γj

⇐⇒ cyclic permutation of the two
roots {wj , wq−p+j} ˜mod q.

2) If, starting from the cut γj , ξ has a 2π/q counterclockwise rotation on a big circle, from
the cut γj to the cut γj+1, then the (q − p) roots surrounding 1 have a clockwise
rotation around 1, while the p roots surrounding 0 have a clockwise rotation around
0. When ξ reaches γj+1, two new roots belonging to the two small circles get aligned
on the segment (0, 1); they are just wj+1 and wj+1+q−p ˜mod q (see Figure 3.5).
Therefore the two sets of roots undergo cyclic permutations, which is the second basic
motion:

ξ − rotation
from γj to γj+1

⇔ cyclic permutation of the two sets
{w1, .., wq−p}, {wq−p+1, .., wq} ˜mod q.

Repeating q times the above two motions with respect to the other cuts, in sequential
order, the point ξ draws the whole closed contour γ. Correspondingly, due to the above
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Figure 3.3: The contour surrounding the cut γ1.

w
w

w

w

w
w

w

w

w

w

w 2
3

4

5

6

7

8

9

10

11

12

0 1w
1µ

Figure 3.4: Exchange of a pair of roots. As ξ travels on the contour surrounding the cut γj ,
as in Figure 3.3, wj and wj+q−p interchange their positions, while the other (q − p) roots
are essentially not affected by this motion.
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Figure 3.5: Cyclic permutation of the two groups of roots. If ξ ∈ γj , the roots wj and
wj+q−p are aligned on the segment (0, 1); after a 2π/q counterclockwise rotation of ξ on a
big circle, the two groups of roots {wj , .., wj+q−p−1} and {wj+q−p−1, .., wj+q−1} undergo a
clockwise rotation. When ξ reaches γj+1, then the roots wj+1 and wj+1+q−p get aligned on
the segment (0, 1).
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cutted w − plane

10 AC B

D E Fµ

Figure 3.6: As ξ draws the closed contour γ in Figure 3.2, each root draws a closed contour
around the cut (0, 1) in the w-plane. Therefore the image of the cutted ξ plane is the w
plane cutted along the segment [0, 1]).

basic motions and symmetries, each root wj draws the closed contour in Figure 3.6 around
the cut [0, 1] of the w-plane, with the following details, which can be easily understood
comparing Figure 3.2 and Figure 3.6.

i) As ξ moves on γ through the points A, B and C, around the cut γj , wj moves along
the cut [0, 1] through the homologous points, exchanging its position with the root
wj+q−p ˜mod q.

ii) As ξ moves on γ from C to D, the relevant part of the motion of wj consists in a
clockwise rotation around 0, from C to D.

iii) As ξ moves on γ through the points D, E and F , around the cut γj−q+p, ˜mod q,
wj moves along the cut [0, 1] through the homologous points, exchanging its position
with the root wj−q+p ˜mod q.

iv) As ξ completes the contour γ, moving from F to the starting point A, also wj completes
its closed contour around [0, 1], and the relevant part of this motion consists in a
clockwise rotation around 0, from F to A.

From the above considerations we finally infer the following

Topological properties of Γ. The Riemann surface Γ is a q - sheeted covering of the ξ

- plane of genus 0. In the finite part of Γ there are q square root branch points: (ξ
(j)
b , µ) ∈

Γ, j = 1, .., q; the j-th branch point connects the sheets Fj and Fj+q−p, and each sheet

Fj contains just the two square root branch points (ξ
(j)
b , µ) and (ξ

(j−q+p)
b , µ) (see Figure

3.7). The compactification of Γ is achieved at ξ = ∞, where the branch point (∞, 1), of
order (q − p − 1), connects the first (q − p) sheets, and where the branch point (∞, 0), of
order p− 1, connects the remaining p sheets. As ξ turns in a counterclockwise way around
(∞, 1), the connected sheets are visited in the order: Fj ,Fj+p,Fj+2p, ..; as ξ turns in a
counterclockwise way around (∞, 0) instead, the connected sheets are visited in the order:
Fj ,Fj+q−p,Fj+2(q−p), ... All the above indices are defined ˜mod q.

As an illustrative example, the Riemann surface q = 12, p = 5 is drawn in Figure 3.8.

3.1.4 Branch points enumeration

Starting from the results obtained in the previous paragraphs, in what follows we will de-
scribe an algebro-combinatoric method to predict the period of a single root of the algebraic
equation (3.2) as ξ moves periodically along a closed path on the branched ξ-plane. For this
purpose, we need to introduce a change in the labelling of the branch points with respect
to what we described previously.
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Figure 3.7: The table summarizing the connection rules of the Riemann surface. The sheets

Fj is connected with the sheet Fj+q−p ˜mod q at the SRBP ξ
(j)
b . The sheets Fj is connected

with the sheet Fj−q+p ˜mod q at the SRBP ξ
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Figure 3.8: The topological properties of Γ for q = 12 and p = 5.
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Figure 3.9: Branch points double indexes (p = 5, q = 12)

In what follows, to label the branch points, we will use a double index. To start the
enumeration, pick arbitrarily one of the q square root branch points. Then, beginning from
the chosen one, apply a double index to each branch point, so that the first indexes are
the consecutive natural numbers (anti-clockwise), while the second ones are the consecutive
natural numbers ˜mod q, starting from q−p+1 (anti-clockwise). In this way, we reconstruct
the connections between the sheets of the Riemann surface as described in Subsection 3.1.3:
each label gives the two sheets which are connected by the corresponding branch point (for
instance, look at the situation in Figure 3.9, where p = 5 and q = 12).

3.1.5 Graph Theory and Monodromy Group

Now that we have a labelling system for the SRBPs and the connection rules for the sheets
of the Riemann surface, we can use some graph theory to describe the monodromy group
associated to the w-roots system. Summarizing, the monodromy group is the group of
transformations which acts on a certain systems of roots of an algebraic equation when the
independent variable (ξ in our case) moves, for an integer number of times, along a closed
path on the corresponding Riemann Surface (in such a way that it includes a certain - finite
or infinite - number of branch points). If the system of roots is composed by q roots, the
monodromy group is a subgroup of the permutation group Sq.

Since in our physical problem ξ can move only on a circular path (the circle Ξ), you can
easily convince yourselves that such path can make inclusion only of consecutive (adjacent)
branch points on B (the circle where the SRBPs lie). So, for our purposes, it is convenient
to study only the cases in which the ξ-path (i.e. the path along which ξ moves) includes
consecutive branch points.

To each (mutual) disposition of the ξ-path and B, the circle of the SRBPs, we can
associate a planar graph. To construct it, just trace q nodes corresponding to the q sheets
of the Riemann Surface on a regular polygon. Now, label these nodes, starting from an
arbitrarily chosen one (anti-clockwise). The first node will receive the number 1: l1 = 1,
where lj is the label of the j-th node of the graph. The labels of the following nodes (anti-
clockwise) will be given by the following rule: lj+1 = (lj + q − p) ˜mod q, j = 1, ..., q − 1,
where ˜mod is the operation introduced in Subsection 3.1.2 (see Figure 3.10). The reason
for such a weird labelling of the nodes is justified by the fact that in this way the edges of
the graph will be traced more easily.
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Figure 3.10: Nodes labelling (p = 5, q = 12).

If the ξ-path will include, among the others, the branch point labelled {h, (h + q −
p) ˜mod q}, with h = 1, ..., q, we will connect with an edge the nodes labelled respectively h
and (h+q−p) ˜mod q in the graph. For example, in Figure 3.11, you can see all the possible
graph that one can obtain including an increasing number of consecutive branch points
inside the ξ-path (up to q−1 branch points), starting from the branch point {1, (q−p+1)},
when p = 5 and q = 12.

Note that the highest degree of connection is obtained when exactly q − 1 branch points
are included inside the ξ-path. In fact, from the general theory described in the previous
sections, we already know that, an inclusion of exactly q SRBPs inside the ξ-path is equiv-
alent to the inclusion of the branch point at infinity, so the period of the zeros will be q− p
or p (see (3.3)). Furthermore, in this case, the first q − p roots have period q − p and the
last p roots have period p.

From now on, we will concentrate only on the case of the inclusion of consecutive square
root branch points inside the ξ-path, starting from the branch point {1, (q − p + 1)}, with
a maximum of q − 1 branch points included.

How to interpret the graphs? We will call line a path on the graph made of connected
edges. If, for a certain situation of branch points inclusion, on the corresponding graph
the j-th node is contained in a line which connects exactly b nodes, the period of the
corresponding j-th w-root of the algebraic equation (3.2), wj(ξ), while ξ moves along the
closed path, will be exactly b. We define degree of connection of the j-th node as the
number of nodes connected by the line passing through the j-th node. If the j-th node is
unconnected (i.e. it is touched by no edge), the period of wj(ξ) will be 1.

So, for a certain situation of branch points inclusion, we are interested in measuring the
lengths of the lines in the corresponding graph. For such a graph with q nodes (considered
at the moment without labels), the set of all the lengths of these lines corresponds to an
element of Sq/ ∼, where the equivalence relation ∼ is introduced identifying two elements
of Sq if they have the same lengths of the corresponding decompositions in cycles.

For instance, look at the first image on the right column of Figure 3.11. In this situation,
it is clear that w7 has period 1; w2, w3, w4, w5, w9, w10, w11 and w12 have period 2;
w1, w6 and w8 have period 3. Precisely, this situation corresponds to the permutation
(1, 6, 8)(2, 9)(3, 10)(4, 11)(5, 12)(7), namely a permutation with 1 cycle of length 3, 4 cycles
of length 2 and 1 cycle of length 1 (it is sometimes useful to describe this in terms of integer
partitions of q: 12 = 3 + 2 + 2 + 2 + 2 + 1). So, our graph is in correspondence with all the
permutations in Sq that can be written as 1 cycle of length 3, 4 cycles of length 2 and 1
cycle of length 1. The permutation (1, 6, 8)(2, 9)(3, 10)(4, 11)(5, 12)(7) is an element of the
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Figure 3.11: Consecutive branch points inclusions (p = 5, q = 12).
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Figure 3.12: Ferrer diagram corresponding to the inclusion of 6 consecutive branch points
(p = 5, q = 12).

monodromy group. If we do not limit ourselves to consider consecutive inclusions of branch
points inside the ξ-path, with this technique we can build the complete monodromy group.

Through this link with the permutation group, we can give a more synthetic description
of a graph using Ferrer diagrams, namely Young tableaux without numbers. In our case, a
Ferrer diagram is a disposition of q blank boxes in rows and columns, such that the number
of boxes in each column is equal to the length of the single cycle of the corresponding
permutation and the number of columns is the number of cycles in which the permutation
is decomposed (for instance, to the situation illustrated by the first image on the right
column of Figure 3.11, there corresponds the Ferrer diagram contained in Figure 3.12).

Since the lines in the graph represent the various cycles of the corresponding permuta-
tion and the heights of the boxes in the columns of a Ferrer diagram represent the lengths
of the lines in the corresponding graph, we thereby reduced the problem of knowing the
period of a root of the equation (3.2), while ξ moves along a closed path, to the measure
of one of the columns of an appropriate Ferrer diagram.

3.1.6 The bumping rule

In the previous Section we showed that, for fixed p and q, a particular Ferrer diagram
corresponds to each situation of inclusion of branch points inside a ξ-path. We reduced the
problem of knowing the period of the w-roots to finding the degree of connection of the
single nodes of a certain graph; from this we reduced once more the problem to knowing
the length of the columns of the corresponding Ferrer diagram.

The next step will be to understand how to recursively build such Ferrer diagrams. To
do this we introduce a bumping rule for the boxes which compose the diagram itself. Once
p and q are fixed, such a rule will describe how a Ferrer diagram associated to the inclusion
of b branch points inside the ξ-path will change after the introduction of one more branch
point, namely, when the ξ-path includes b + 1 branch points.

First of all, we need two sequences:

qk = pk−1 , q0 = q (3.10)

pk = qk−1 mod pk−1 , p0 = q − p , (3.11)

with 0 ≤ k ≤ k̄, for a certain fixed number k̄ such that

qk̄ = 1 ; (3.12)

notice that k̄ always exists due to the decreasing nature of the sequence {qk}. We need also
an auxiliary recursive sequence, written as a combination of the previous two,

bk = bk−1 + qk−1 − pk−1 , b0 = 0 . (3.13)

Notice that the use of two different sequences in (3.10) is completely redundant, and one
can easily reduce these formulas to expressions which involve the use of only one of them.
We will come back on this point later, but at the moment we will keep this formulation for
the sake of simplicity. Let us just notice two facts:

1) the b-sequence (3.13) divides the discrete segment [1, q−1] into k̄ parts of length qk−pk;
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2) inserting the first of the (3.10) in the recursion (3.13) and using this last relation recur-
sively, one gets

b0 = 0 , bk = bk−1 + qk−1 − qk = bk−2 + qk−2 − qk−1 + qk−1 − qk

= bk−2 + qk−2 − qk = ... = bk−h + qk−h − qk

= b0 + q0 − qk = q − qk . (3.14)

Now, let us fix a ξ-path which includes b branch points starting from the one labelled
{1, (q − p + 1)}. If we modify the ξ-path in such a way that it includes the next adjacent
branch point,{b + 1, (b + 1 + q − p) ˜mod q}, we must modify also the graph corresponding
to the previous situation, adding a new edge between the two nodes (b+1) and (b+1+ q−
p) ˜mod q. If 0 ≤ b < b1−1 = q−p−1, then each new edge added to the graph will evidently
connect a single unconnected node to a line composed by a certain number of edges (at
least, to an other single unconnected node). When b = b1−1, it is impossible to trace a new
edge connecting two unconnected nodes or a single node to a line: the insertion of a new
edge in a graph at this point will cause the connection of two lines, producing a new longer
line in the graph. To understand how to go on with this picture, imagine to build a new
auxiliary graph in the following way: associate to our graph a new one, for any line of the
first graph you have a weighted node in the second one, with weights equal to the lengths
of the lines. We can now proceed increasing the value of b, namely with b1 ≤ b < b2 − 1,
using the new described graph analogously to what we have done in the case 0 ≤ b < b1−1,
with the only difference that the length of a line in this new graph is not just the number of
nodes touched by the line, but the sum of all the weights of the nodes touched by the line. If
b1 ≤ b < b2−1, then each new edge added to the new auxiliary graph will evidently connect
a single unconnected weighted node to a weighted line composed by a certain number of
edges (at least, to another single unconnected weighted node). If b = b2−1, it is impossible
to trace a new edge connecting two unconnected weighted nodes or a single weighted node
to a weighted line: the insertion of a new edge in the new graph at this point will cause the
connection of two weighted lines, producing a new longer line in the auxiliary graph. To
proceed, we must build a new auxiliary graph, in the same way described before. And so
on, building a new auxiliary graph every time we arrive to include exactly bk branch points
inside the ξ-path, until we reach b = q − 1. The number of consecutive branch points we
must move to pass from a situation of bk branch points included in the ξ-path to a situation
of bk+1 branch points included in the ξ-path is qk−pk. In this language qk is the number of
weighted nodes of the graph on which we work when bk ≤ b < bk+1, while pk is the number
of weighted nodes of the new auxiliary graph we will build when exactly bk+1 branch points
will be included.

The use of Ferrer diagrams strongly simplifies this picture. First of all we need two
technical definitions (actually, the second one will not be used immediately).

1) The height of a column in a Ferrer diagram is the number of boxes which lies in the
column.

2) For each k between 0 and k̄ we have a Ferrer diagram with only two possible heights for
the columns: these Ferrer diagrams will have totally qk columns, pk tallest columns,
all composed by the same number of boxes, and qk−pk equal columns with height less
or equal the height of the previous ones. Each of these diagrams corresponds to the
inclusion of exactly bk branch points. A k-level Ferrer diagram is a Ferrer diagram
with exactly qk columns.

When b = bk, the heights of the columns of the corresponding Ferrer diagram represent
the values of the weights of the nodes of the corresponding weighted graph (a graph with
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weighted nodes). When bk < b < bk+1, the heights of the columns of the corresponding
Ferrer diagrams represent the lengths of the weighted lines in the corresponding weighted
graphs. When b = bk, we will observe only two kinds of weights, since in the (k − 1)-th
auxiliary graph we connected in pairs all the nodes, with the exception of the last one
of them, which remained unconnected. The latter will be the first one appearing in a
connection at the moment of the inclusion of one more branch point inside the ξ-path. In
terms of Ferrer diagrams, this means that, sorting the columns of the diagram in decreasing
order of height from left to right, we must move each time the shortest column on the right
under the tallest available column on the left. Accordingly to what we said at the end of
the previous paragraph, qk is the number of columns in a Ferrer diagram when b = bk,
while pk is the number of columns that the Ferrer diagram will have when b = bk+1. So, for
each value of k, we can move the short columns on the right only under the first pk tallest
column on the left; for each k, we must move globally qk − pk columns.

All the above considerations lead to the following proposition.
The bumping rule. The Ferrer diagram, corresponding to the inclusion of b consecutive
branch points inside the ξ-path, can be obtained from the Ferrer diagram, corresponding
to the inclusion of b− 1 consecutive branch points inside the ξ-path, moving its whole last
right column to a lower position, in order to increase the height of one of the first columns
(while the total amount of boxes still remains the same): such column is the first available
one from the left before the pj-th column, where j refers to the element of the sequence
(3.13) which satisfies the relation bj ≤ b < bj+1. If all the first pj columns are occupied,
the process starts again moving the last column on the right under the first column on the
left.

It is worth stressing here again that we are focalizing only on the case in which we are
including consecutive branch points, and the first branch point included in the ξ-path is
the branch point {1, (q − p + 1)}, with a maximum of q − 1 branch points included.

Let us see some graphical examples to understand how the bumping rule works. We
pass from a k-level Ferrer diagram to a (k +1)-level Ferrer diagram once we have moved all
the shortest columns under the tallest ones. The bumping rule says how to pass, including
consecutively branch point after branch point, from one configuration to another.

See for instance the next table and Figure 3.14a where are displayed the values for the
quantities b, number of consecutive branch points included in the ξ-path, bk, qk, pk and the
corresponding Ferrer diagrams.

b k b− bk qk pk b k b− bk qk pk

0 0 0 12 7 6 1 1

1 0 1 7 2 0 5 2

2 0 2 8 2 1

3 0 3 9 2 2

4 0 4 10 3 0 2 1

5 1 0 7 5 11 4 0 1 0

In Figure 3.13, you can see two usual bumping situations, comparing a wrong bumping
(on the left) and the correct one (on the right) for two choices of p and q.

We can describe by a recursive rule also the height of the two kinds of columns of

the k-level Ferrer-diagram. Denote by T
(1)
k and T

(2)
k respectively the height of the first pk

columns and the height of the last qk − pk columns. We have that:











T
(1)
k pk + T

(2)
k (qk − pk) = q0 , T

(1)
0 = 1

T
(1)
k+1 = T

(1)
k + T

(2)
k

(⌊

qk

pk

⌋

+ 1
)

, T
(2)
0 = 1 ,

(3.15)
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Wrong bumping Correct bumping

Inclusion of the 3-rd branch point when p = 5 and q = 7

Inclusion of the 6-th branch point when p = 5 and q = 12

Figure 3.13: Wrong bumpings vs Correct bumpings

where bxc is the floor of the number x. Indeed, the first of the (3.15) is a sort of conservation
rule for the number of boxes in a Ferrer-diagram at each level k. The second of the (3.15)
comes directly from the bumping rule: at each level, the height of the first column is the
sum of the height it had at the previous level plus the height of the last column multiplied a
certain number of times, proportional to the number of operations needed to move between
the two considered levels.

Although the relations (3.15) are enough to determine the two quantities T (1) and T (2),
it will be better to put them in a different form:















T
(1)
k+1 = T

(1)
k + T

(2)
k

(⌊

qk

pk

⌋

+ 1
)

, T
(1)
0 = 1 ,

T
(2)
k+1 = T

(1)
k + T

(2)
k

(⌊

qk

pk

⌋)

, T
(2)
0 = 1 ;

(3.16)

as you can see, these relations are almost identical to the (3.15) (indeed, it is possible to
obtain the ones from the others), except for the fact that the (3.16) are two-steps-recursive
relations. Via these last formulas, the link between the Ferrer-diagrams and the continued-
fraction expansion of the number 1

1−µ that we are going to present in the next section will
be more clear .

3.1.7 Link with the Continued Fractions Theory

Let us remind some basic notions about simple continued fractions. Be x a non-negative
real number. We associate to the real number x an integer sequence {ak} such that:

x = a0 +
1

a1 + 1
a2+ 1

a3+...

. (3.17)

We say that 〈a0, a1, a2, ...〉 is the simple continued fraction of x with ak positive integers
∀ k > 0 (as usual, for the sake of simplicity, we will often avoid repeating the adjective
simple when we will refer to simple continued fractions). The elements ak of the continued
fraction expansion are called partial quotients.

The integer sequence {ak} is finite if and only if the corresponding number x is a rational
number. The number of elements in the sequence is called the length of the continued
fraction.

If a number h exists such that starting from the element ah, the sequence {ak} becomes
periodic, we say that the sequence of the partial quotients is periodic and we mark the
periodic terms with a bar when we write explicitly the continued fraction:

〈a0, a1, ..., ah−1, ah, ah+1, ..., aN−1, aN 〉 =
〈a0, a1, ..., ah−1, ah, ah+1, ..., aN−1, aN , ah, ah+1, ..., aN−1, aN , ah, ...〉 . (3.18)
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Figure 3.14: Ferrer diagrams for consecutive branch points inclusions (p = 5, q = 12): a)
non-numbered Ferrer diagrams; b) numbered Ferrer diagrams.
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The integer sequence {ak} is periodic if and only if the corresponding number x is an
irrational quadratic number (namely the sum of a rational number plus the square root of
a rational number).

The partial quotients can be recursively calculated introducing the auxiliary sequence
of the remainders rk:







rk = 1
rk−1−brk−1c

, r0 = x ;

ak = brkc .

(3.19)

The rational number cn ≡ cn(x) obtained truncating the continued fraction of x at the
n-th term is called the n-th convergent of the continued fraction:

cn =
Pn

Qn
= 〈a0, a1, ..., an〉 = a0 +

1

a1 + 1
...+ 1

an

. (3.20)

The numerator Pn and the denominator Qn of the n-th convergent cn incur in the following
second-order recurrence relations:

Pn = anPn−1 + Pn−2, P−2 = 0, P−1 = 1;
Qn = anQn−1 + Qn−2, Q−2 = 1, Q−1 = 0.

(3.21)

Now we have enough results to rephrase the quantities introduced in the previous sec-
tions in the language of the continued fractions. First of all, let us eliminate from the
q-sequence the dependence on the p-sequence in formula (3.10):

qn = qn−2 mod qn−1, q0 = q, q1 = q − p ; (3.22)

since, if x and y are positive natural numbers,

x− (x mod y)

y
=

⌊

x

y

⌋

,

by definition of floor function, we can reshuffle formula (3.22) in the following way:

qn

qn−1
=

qn−2

qn−1
−
⌊

qn−2

qn−1

⌋

, q0 = q, q1 = q − p . (3.23)

Now, let us set

rk =
qk

qk+1
with 0 ≤ k ≤ k̄ . (3.24)

Using relation (3.23), we recover formula (3.19) for the quantity rk,

rk =
1

rk−1 − brk−1c
with r0 =

q0

q1
=

q

q − p
=

1

1− µ
. (3.25)

Finally, we discover that the q-sequence, which gives the number of column in the Ferrer
diagrams, can be calculated inverting formula (3.24),

qk =
qk−1

rk−1
= q





k−1
∏

j=0

1

rj



 , q0 = q, r0 =
1

1− µ
, 0 ≤ k ≤ k̄ , (3.26)

where the rk are the terms of the sequence of the remainders (see(3.25)) of the continued
fraction expansion of the number 1

1−µ , with partial quotients

ak = brkc =

⌊

qk

pk

⌋

(3.27)
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and length k̄. The p-sequence can be calculated using the relation:

pk = qk+1, 0 ≤ k ≤ k̄ . (3.28)

Furthermore, we can give a more convenient rephrase of the heights of the columns in

the Ferrer diagrams (3.16), T
(1)
k and T

(2)
k , using the language of the continued fractions. In

fact, subtracting the two recursions (3.16) one gets

T
(1)
k+1 = T

(2)
k+1 + T

(2)
k ; (3.29)

the insertion of this last formula in the second of the (3.16) yields, via (3.27), a 3-terms

linear recursion for T
(2)
k :

T
(2)
k+1 = ak T

(2)
k + T

(2)
k−1 . (3.30)

A comparison of this last recursion relation with the (3.21) and an analogous comparison
of the starting conditions entail:

T
(2)
k = Pk−1 , (3.31)

where Pk is the numerator of the k-th convergent of the continued fraction expansion of
1

1−µ . Then (3.29) and (3.31) imply

T
(1)
k = Pk−1 + Pk−2 . (3.32)

Now we have a nice rephrasing of all the quantities implied in the description of the
Ferrer diagrams (number of them corresponding to the inclusions of consecutive branch
points, number of columns and number of boxes in the columns) in terms of the continued
fraction expansion of the (rational) number 1

1−µ .
We conclude this section showing a more convenient way of writing the fundamental

b-sequence (3.13). Combining (3.24), (3.25) and (3.27), one gets:

qk = qk−2 − ak−2qk−1 , q0 = q , q1 = q − p ; (3.33)

comparing this last relation with the recursions (3.21) via the following ansatz:

qk = (−1)k (αPk−2 + βQk−2) , k ≥ 0 , (3.34)

one gets for the two integer constants α and β

α = (p− q) , β = q ; (3.35)

the insertion of (3.34) and (3.35) in (3.14) entails

bk = q − qk = q − (−1)k [(p− q) Pk−2 + q Qk−2] , k ≥ 0 . (3.36)

3.1.8 Following a single zero

Now that we have a simple description of the Ferrer diagrams in terms of the continued
fraction expansion of 1

1−µ and the two main ingredients for a period formula, the heights

T (1) and T (2), we still miss an important step. Our final goal is to fix one of the q w-
roots of the algebraic equation (3.2) using the enumeration depicted in Subsection 3.1.3
and to predict the period of such root when the variable ξ moves along a closed path which
includes b consecutive branch points on the ξ-plane starting from the branch point labelled
{1, q − p + 1}. To achieve this result we must put numbers inside the Ferrer diagrams
boxes, in such a way that, if we fix a single column, all the roots labelled with the numbers
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appearing in the chosen column have the same period, equal to the height of the column
itself.

For instance, look at Figure 3.14b when b = 8. We can read this image, inferring that
the 1 − st, 3 − rd, 6 − th, 8 − th and 10 − th roots have period 5; the 2 − nd, 7 − th and
9− th roots have period 3; the 4− th, 5− th, 11− th and 12− th roots have period 2.

The consideration presented in the previous sections yields that, if we apply the bumping
rule starting from the first numbered Ferrer diagram (which has all the boxes on a line and
numerated from left to right in the natural order, 1, 2, ..., q), then for any b ≥ 0 we get the
right enumeration inside the Ferrer diagrams boxes.

Generally, we must identify, for a k-level Ferrer diagram, in which column a certain
numbered box lies (starting the counting of the columns from the left); namely, to identify
which column a certain root corresponds to in a k-level Ferrer diagram. It is worth stressing
that, at the moment, we are not trying to make such an identification for a generic Ferrer
diagram. What we will show is that, once we made this operation for a k-level Ferrer
diagram, we will be able to perform the same operation, with some little adjustment, for a
generic Ferrer diagram.

Let us introduce the following symbol:

lh(s) = lh−1(s) ˜mod ph−1 , l0(s) = s , ∀ s ε {1, 2, ..., q} , (3.37)

where ˜mod is the modulus operation we introduced in (3.9). At the k-th step, this
symbol gives exactly the column in which the box with the number s lies in the k-level
Ferrer diagram. Indeed, at the k-th step we have a Ferrer diagram with qk columns: at the
following step, the last qk−pk columns from the left orderly move over the first pk columns.
As usually, the ˜mod operation avoid the presence of 0-labelled boxes. In this way, we can
use this symbol to solve the problem of identifying the height of the column corresponding
to a certain root in a k-level Ferrer diagram, i.e. after the inclusion of bk branch points in
the ξ-circle (see (3.13)).

3.1.9 The period formula for 0 < µ < 1 and µ ∈ Q

It is left to understand the behavior of the column heights for all the Ferrer diagrams, and
not only for the diagrams corresponding to the k-levels. Let us fix a k-level Ferrer diagram
and suppose that there are b branch points included in the ξ-circle with bh ≤ b < bh+1.
Suppose to be interested in the period of the s-th root. At each inclusion of a consecutive
branch point, some of the columns are moved.

Case 1: If lh(s) > b−bh +ph then we have that the column we are interested in has height

T
(2)
h and it has not been moved with respect to the position it occupied when exactly

bh branch points where included in the ξ-circle.

Case 2: If lh(s) ≤ b− bh + ph then we must consider two subcases:

• If lh(s) ≤ ph then the height of the column we are interested in was T
(1)
h when

the number of branch points included in the ξ-circle was exactly bh; if in the
ξ-circle there are b > bh branch points (but b < bh+1), some of the last (qh− ph)

columns, with height T
(2)
h , have been moved. The number of such columns moved

under the T
(1)
h tall column lh(s) depends whether lh(s) ˜mod ph is smaller than

(b− bh) ˜mod ph or not. If lh(s) ˜mod ph < (b− bh) ˜mod ph then the number of

T
(2)
h tall columns moved under the column lh(s) is (b b−bh−1

ph
c). If lh(s) ˜mod ph ≥

(b− bh) ˜mod ph then one more T
(2)
h tall column moved under the column lh(s),

so their total number is (b b−bh−1
ph
c+ 1).
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• If lh(s) > ph then the height of the column we are interested in was T
(2)
h when

the number of branch points included in the ξ-circle was exactly bh. If in the
ξ-circle there are b > bh branch points (but b < bh+1), some of the last qh − ph

columns, with height T
(2)
h , have been moved; the column lh(s) has been moved

under the T
(1)
h tall column lh(s) ˜mod ph and, like in the previous subcase, the

total number of T
(2)
h tall columns moved under the column lh(s) ˜mod ph depends

whether lh(s) ˜mod ph is smaller than (b− bh) ˜mod ph or not. If lh(s) ˜mod ph <

(b− bh) ˜mod ph then the number of T
(2)
h tall columns moved under the column

lh(s) ˜mod ph is (b b−bh−1
ph
c). If lh(s) ˜mod ph ≥ (b − bh) ˜mod ph then one more

T
(2)
h tall column moved under the column lh(s) ˜mod ph, so their total number

is (b b−bh−1
ph
c+ 1).

From the above considerations, we finally infer the following

Theorem 1. Be 0 < µ < 1 and µ ∈ Q. Be the roots of the algebraic equation (3.2) labelled
following the description of Subsection 3.1.3. Let T (s, b) be the period of the s-th root of
the algebraic equation (3.2) when ξ moves along a closed path on the ξ-plane, including b
consecutive adjacent branch points starting from the branch point with label {1, q − p + 1}.
Let h be the integer for which we have 0 ≤ bh ≤ b < bh+1 ≤ q − 1 and lh(s) the symbol

(3.37). Be T
(1)
h and T

(2)
h the quantities described by the recursions (3.16). Then we have

the following period formula:

T (s, b) =















































T
(1)
h +

(⌊

b−bh−1
ph

⌋)

T
(2)
h if lh(s) ≤ b− bh + ph and

(b− bh) ˜mod ph < lh(s) ˜mod ph

T
(1)
h +

(⌊

b−bh−1
ph

⌋

+ 1
)

T
(2)
h if lh(s) ≤ b− bh + ph and

(b− bh) ˜mod ph ≥ lh(s) ˜mod ph

T
(2)
h if lh(s) > b− bh + ph .

(3.38)

Making use of what we have see about simple continued fractions in Subsection 3.1.7, we
can rephrase the previous formula in the following way

T (s, b) =

������������ �����������

Ph−2 + ��� b−bh−1
q−bh+1 � + 1 � Ph−1 if lh(s) ≤ b + q − (bh + bh+1) and

(b − bh) ˜mod (q − bh+1) < lh(s) ˜mod (q − bh+1)

Ph−2 + ��� b−bh−1
q−bh+1 � + 2 � Ph−1 if lh(s) ≤ b + q − (bh + bh+1) and

(b − bh) ˜mod (q − bh+1) ≥ lh(s) ˜mod (q − bh+1)

Ph−1 if lh(s) > b + q − (bh + bh+1) .

(3.39)

This formula tells that, for any situation of consecutive branch points inclusion, generically
we have only three possible periods for the roots of the algebraic equation (3.2). The sum of
the first and the third of the (3.39) gives always the second. There are some cases in which
the roots have only two possible periods, whenever b takes the following special values:

b = bh + n (q − bh+1) , 0 ≤ n ≤ ah − 1 , n ∈ N ; (3.40)

indeed, in these cases, the condition on the first of the (3.39) fails since, for the (3.9),
(b− bh) ˜mod (q − bh+1) = q − bh+1 and 1 ≤ lh(s) ˜mod (q − bh+1) ≤ q − bh+1, so it cannot
be that (b− bh) ˜mod (q − bh+1) < lh(s) ˜mod (q − bh+1) for any value of s.

For instance, in the following table you can compare the values of T (s, b) when p = 5
and q = 12 for 1 ≤ s ≤ q and 0 ≤ b ≤ q.
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T (s, b) 1 2 3 4 5 6 7 8 9 10 11 12

b = 0 1 1 1 1 1 1 1 1 1 1 1 1
b = 1 2 1 1 1 1 1 1 2 1 1 1 1
b = 2 2 2 1 1 1 1 1 2 2 1 1 1
b = 3 2 2 2 1 1 1 1 2 2 2 1 1
b = 4 2 2 2 2 1 1 1 2 2 2 2 1
b = 5 2 2 2 2 2 1 1 2 2 2 2 2
b = 6 3 2 2 2 2 3 1 3 2 2 2 2
b = 7 3 3 2 2 2 3 3 3 3 2 2 2
b = 8 5 3 5 2 2 5 3 5 3 5 2 2
b = 9 5 5 5 5 2 5 5 5 5 5 5 2
b = 10 7 5 7 5 7 7 5 7 5 7 5 7
b = 11 12 12 12 12 12 12 12 12 12 12 12 12
b = 12 7 7 7 7 7 7 7 5 5 5 5 5

Values of T (s, b) when p = 5 and q = 12.

3.1.10 The irrational case: µ /∈ Q

We can treat the case in which µ is an irrational number as a limit of the case in which
µ is a rational number. When µ is irrational, the number of roots of the equation (3.1)
diverges, as q, number of branch points on the ξ-plane, approaches infinity. So we must
analyze the previous formulas in the limit:

p, q →∞ with 0 < µ =
p

q
< 1 . (3.41)

namely in the limit in which the integers p and q diverge with their ratio µ fixed.
If µ is an irrational number, it follows that the Riemann surface Γ (3.1) becomes an

∞-sheeted covering of the complex ξ plane. Like in Subsection (3.1.1), we can analyze its
behavior for large |ξ| and its branch points:

1) ξ ∼ ∞. If |ξ| >> 1, there are two different asymptotics:

w(ξ) ∼ −(−ξ)
− 1

µ , ξ ∼ ∞,

w(ξ) ∼ 1 + ξ
− 1

1−µ , ξ ∼ ∞.
(3.42)

2) In the finite part, we have an infinite number of SRBPs densely distributed on the circle
centered at the origin of the ξ-plane and of radius

rb =
1

1− µ

(

1− µ

µ

)µ

> 0 . (3.43)

Again, each of the infinite SRBPs corresponds to the collision of a pair of roots.

In the limit (3.41), the continued fraction of 1
1−µ has length k̄ that tends to infinity:

k̄ →∞. The first step is to normalize the q-sequence (3.22), introducing the new sequence

{ρk} ∼
{

qk

q

}

:

ρk =
ρk−1

rk−1
, ρ0 = 1 , ρ1 = 1− µ , (3.44)

where rk is the sequence of the (irrational) remainders of the continued fraction of 1
1−µ

(see (3.25)). In the limit (3.41), the ρ-sequence becomes a strictly decreasing sequence of
irrational numbers such that ρk → 0 for k →∞.
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B
Ξ

0φ

Figure 3.15: The definition of the angle φ

Finally, to obtain the proper continuous variable which replaces the discrete index b,
we focalize our attention to the physical situation in which the ξ-path is a circle. Let be B
the circle on which the SRBPs lie and Ξ the circle along which the ξ variable periodically
moves. We define the variable ν, which is 0 if Ξ does not contain any arc of B and 1 if Ξ
does contain the whole circle B. If B and Ξ intersect, select the arc of the B circle which
is contained inside the evolutionary circle Ξ and denote by ν the corresponding angle φ,
normalized by 2π (see Figure 3.15). Since

ν =
φ

2π
=

b

q
, (3.45)

this is the proper continuous variable that replace b in the case µ is an irrational number.
The next step will be to normalize the fundamental b-sequence (3.36), introducing the

new sequence {νk} ∼
{

bk

q

}

:

νk = 1− ρk , ν0 = 0 , k ∈ N ; (3.46)

in the limit (3.41), we have that νk → 1 for k →∞. We can rephrase νk with the language
of continued fraction. From (3.36), in the limit (3.41) we have:

νk = 1− (−1)k [(µ− 1) Pk−2 + Qk−2] , k ∈ N . (3.47)

We are finally ready to enunciate the period formula in the case in which µ is an
irrational number.

Theorem 2. Be 0 < µ < 1 and µ /∈ Q. Let T (ν) be the period of one of the roots of the
algebraic equation (3.1) when ξ moves along a circular path Ξ on the ξ-plane, intersecting
the SRBPs circle B in such a way that 0 ≤ ν < 1 (see (3.45)). Let h be the integer such
that 0 ≤ νh ≤ ν < νh+1 < 1. Be Pk the numerator of the k-th convergent of the continued
fraction expansion of 1

1−µ (see (3.21)). If ν = 0, then T (ν) = 1. Otherwise, we have that
T (ν) must have one of the following three values:

T (ν) =































Ph−2 +
(⌊

ν−νh

1−νh+1

⌋

+ 1
)

Ph−1

Ph−2 +
(⌊

ν−νh

1−νh+1

⌋

+ 2
)

Ph−1

Ph−1 .

(3.48)

If ν = 1, namely if the evolutionary circle Ξ contains entirely the SRBP circle B, then the
dynamics goes back simple, because the evolutionary curve effectively surrounds only the
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irrational branch point at infinity. The time evolution of the generic root of (3.1) in this
case is quasiperiodic, involving a (nonlinear) superposition of two periodic evolutions with
noncongruent periods, 1 and 1

µ or 1 and 1
1−µ , as can be easily understood observing the

exponents of the asymptotics (3.42).

Notice that, like before, the sum of the first and the third in the previous formula (3.48)
always gives the second. We must stress that in this case there are no labels for the roots,
so we cannot assign the three periods to the roots in terms of their labels as we did in the
rational case. For the moment, we will limit our discussion affirming that the period of a
single root must be one of those three displayed in the previous theorem.

For ν = 0 we know that the period T (ν) is equal to 1. Since 1 is the accumulation
point of the sequence {νk}, if ν is close to 1 (i.e. if the evolutionary circle Ξ contains
almost completely the SRBP circle B), a small change in the time trajectory results in a
drastic change of period. In fact, T (ν) approaches infinity as ν → 1 and the values of T (ν)
depends on the partial quotients ak of the continued fraction expansion of 1

1−µ ; such partial
quotients are well-known to be almost chaotic and unpredictable in their sequence for a
generic irrational number (for almost all the irrational number, except for the quadratic
irrationals).

It is difficult to describe the behavior of T (ν) as ν → 1 for a generic µ, since, as we
said before, T (ν) depends on the partial quotients ak of the continued fraction expansion
of 1

1−µ , whose behavior is known to be chaotic for a generic irrational number. In the next
subsection we will see how to produce a convenient (and amazing) example in which it will
be possible to show explicitly the asymptotic behavior of T (ν) for ν ∼ 1.

3.1.11 A remarkable example

In this final section, we will display the special example with the following (conveniently
chosen) quadratic irrational value of µ in the interval 0 < µ < 1:

µ =
2

3 +
√

5
=

1

1 + ϕ
, (3.49)

such that
1

1− µ
= ϕ =

1 +
√

5

2
, (3.50)

where of course ϕ is the golden ratio, namely the positive solution of the second degree
equation

ϕ2 − ϕ− 1 = 0 . (3.51)

From the theory summarized in Subsection 3.1.7, since ϕ is a quadratic irrational num-
ber, we know that its continued fraction expansion is periodic. Furthermore, it has the nice
property that all its infinite partial quotients (3.27) are equal to 1:

ϕ = 1 +
1

1 + 1
1+ 1

1+ 1
...

, ak = 1 ∀ k ≥ 0 . (3.52)

So, in this particular case, relation (3.25) becomes:

rk =
1

rk−1 − 1
with r0 = ϕ , k ≥ 1 . (3.53)

Combining this last relation with (3.44) one gets:

ρk+1 = ρk−1 − ρk with ρ0 = 1 , ρ1 =
1

ϕ
= ϕ− 1 , k ≥ 1 (3.54)
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and from this, using (3.46),

νk+1 = νk−1 − νk + 1 with ν0 = 0 , ν1 = 1− 1

ϕ
, k ≥ 1 . (3.55)

Solving this last relation with respect to k, one gets

νk = 1− ϕ−k , k ≥ 0 . (3.56)

More surprisingly, (3.52) implies, via (3.21), the following relation for the numerators
of the convergents:

Pk = Pk−1 + Pk−2 , P−2 = 0 , P−1 = 1 , k ≥ 0 , (3.57)

which is exactly the recurrence relation for the Fibonacci’s numbers. Using Binet formula,
we have:

Pk =
1√
5

[

ϕk+2 − (−ϕ)−(k+2)
]

, k ≥ −2 . (3.58)

Making use of formula (3.56), we can explicitly invert the inequality νk ≤ ν < νk+1,
finding, for a fixed value of ν in the interval 0 < ν < 1, the integer number k such that
νk ≤ ν < νk+1:

k ≡ k(ν) =











−
⌊

log(1−ν)
log(ϕ)

⌋

− 1 , if 0 < ν < 1 ;

0 , if ν = 0 .

(3.59)

Since, by definition of floor function,

x− 1 < bxc ≤ x , ∀x ∈ R and x ≥ 0

for the argument of the floor function in formula (3.48), via (3.59), we get:

0 <
ν − νk(ν)

1− νk(ν)+1
< ϕ− 1 < 1 ; (3.60)

so the floor function in formula (3.48) is always 0 and the root period T (ν) has one of the
following values:

T (ν) = {Pk+1, Pk, Pk−1} with 0 ≤ νk ≤ ν < νk+1 < 1 , (3.61)

namely three consecutive Fibonacci’s numbers. From relation (3.57), via (3.59), we have,
for 0 < ν < 1,

1√
5

[

ϕ

1− ν
− 1− ν

ϕ

]

< Pk(ν) <
1√
5

[

ϕ

1− ν
+

1− ν

ϕ

]

(3.62)

From the above relations (3.62) and (3.60), and from the period formula (3.48), we
obtain the following lower and upper bounds for the period values in terms of ν in the
interval 0 < ν < 1:

ν (2− ν)√
5 (1− ν)

≤ T (ν) <
7 +
√

5 + (
√

5− 3) ν (2− ν)

2
√

5 (1− ν)
. (3.63)

These inequalities entail that the integer T (ν) diverges proportionally to (1 − ν)−1 as
ν → 1. Imposing the upper bound in (3.63) equal to 8 and solving with respect to ν, one
can determine that for 0 < ν < 0.761987..., namely for an inclusion of almost three fourths
of the B circle inside the Ξ circle, the period will be surely lower than 8.
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Figure 3.16: T (ν) vs ν. In red, green and blue respectively the three different values of
T (ν), while the black continuous lines are the lower and upper bounds in (3.63).

In the following table, one can compare the first values of the quantities showed in this
section: for each value of k, the values of ν(k), the lower and the upper bounds (3.63) and
the three possible values of the period T (ν) are given.

k ν(k) lowerbound T (ν(k)) upperbound

0 0 0.000 1 2.06525
1 0.381966 0.447214 2, 1 3.17082
2 0.618034 1.000 3, 2, 1 5.02492
3 0.763932 1.78885 5, 3, 2 8.06525
4 0.854102 3.000 8, 5, 3 13.0095
5 0.909830 4.91935 13, 8, 5 21.0249
6 0.944272 8.000 21, 13, 8 34.0036
7 0.965558 12.9692 34, 21, 13 55.0095
8 0.978714 21.000 55, 34, 21 89.0014
9 0.986844 33.9882 89, 55, 34 144.004
10 0.991869 55.000 144, 89, 55 233.001
11 0.994975 88.9955 233, 144, 89 377.001
12 0.996894 144.000 377, 233, 144 610.001
13 0.998081 232.998 610, 377, 233 987.001
14 0.998814 377.000 987, 610, 377 1597.001
15 0.999267 609.999 1597, 987, 610 2584.001

3.2 The case µ > 1

Here we study the Riemann surface Γ consisting of points (ξ, w) ∈ Γ such that:

w−µ(w − 1)µ−1 = ξ , (3.64)

where

µ =
p

q
> 1 ,

and p ∈ N and q ∈ N+ are coprime natural numbers. Therefore Γ is an algebraic Riemann
surface characterized by the polynomial (of degree p) equation

(w − 1)q−p = wpξq, 0 < q < p (3.65)
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which now defines the p-valued function w = w(ξ). Since, ∀ξ ∈ C, the polynomial (3.65)
admits p complex roots and each root corresponds to a sheet of the Riemann surface Γ, it
follows that Γ is a p-sheeted covering of the complex ξ plane.

3.2.1 The Riemann surface and its singularities

The Riemann surface Γ possesses the following distinguished points.

1) ξ =∞. If |ξ| >> 1, we have the asymptotics:

w(ξ) ∼ −(−ξ)
− q

p , ξ ∼ ∞. (3.66)

Therefore the ∞-configuration consists of all the p roots lying on a small circle of

radius O(|ξ|−
q
p ) centered at the origin (see Figure 3.17), and a counterclockwise 2π

- rotation of ξ on a big circle implies a clockwise rotation of each root around the
origin of the angle (2πq/p). From the point of view of the Riemann surface Γ, the
branch point (∞, 0), of order (p− 1), attaches all the p sheets.

2) ξ = 0. If |ξ| << 1, we have two different asymptotics:

w(ξ) ∼ 1 + (1)
1

p−q ξ
q

p−q , ξ ∼ 0,

w(ξ) = 1
1
q

ξ + O(ξ−2), ξ ∼ 0.
(3.67)

Therefore the 0-configuration consists of (p− q) roots lying on a small circle of radius

O(|ξ|
q

p−q ) around 1, and of q roots lying on a big circle of radius O(|ξ|−1) around
the origin. A counterclockwise 2π-rotation of ξ on a small circle around the origin
implies that the (p−q) roots surrounding 1 undergo a cyclic permutation ruled by the
first of the (3.67), while the remaining q roots at ∞ undergo a 2π-clockwise rotation,
going back to their initial positions. From the point of view of Γ, we see that the
branch point (0, 1) attaches (p− q) sheets, while w(ξ) has a simple pole in each of the
remaining q sheets.

3) The remaining singularities in the finite part of the complex ξ plane are q square root
branch points (SRBPs):

(ξ
(j)
b , µ) ∈ Γ, j = 1, .., q, (3.68)

defined by the equation:

ξq =
qq(p− q)p−q

pp
. (3.69)

Therefore the SRBP-configuration consists of q SRBPs lying on the circle centered at
the origin and of radius

rb =
q

p− q

(

p− q

p

)
p
q

> 0; (3.70)

here we use the positive principal determination. We remark that at least one of
the branch points is positive. Also here we find it convenient to order them in a
sequential and counterclockwise way (see Figure 3.18); a convenient choice of the first

SRBP ξ
(1)
b , clearly arbitrary at this stage, is suggested by the direct problem and will

be discussed later. Each SRBPs corresponds to the collision of a pair of roots.

The genus of Γ is 0; this is an immediate consequence of the Hurwitz formula (see [61]):
V = 2(J + G − 1), where V is the ramification index of the surface, J is the number of
sheets and G is its genus. In our case J = p and V = q + (p − 1) + (p − q − 1), implying
G = 0.

Equation (3.65) exhibits several symmetries. The ones used here are:
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Figure 3.17: The ∞-configuration of the Riemann surface for p = 8 and q = 5: for ξ >> 1,
the p roots wj , j = 1, ..., p lie on a small circle centered at the origin and of radius O(ξ−(q/p)).

As ξ travels along the cut γ1 (see Figure 3.18), from∞ to ξ
(1)
b , the complex conjugate roots

w1 and w6 abandon the∞-configuration and collide at µ. After fixing w1, the enumeration
of the other roots (sheets) is sequential and counterclockwise.
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Figure 3.18: The cutted ξ-plane for the Riemann surface q = 5, p = 8.
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1. Symmetry with respect to a 2π/q rotation. The set of roots is left invariant by a 2πi/q
rotation in the ξ plane.

2. Reality symmetry. If ξ ∈ R, the roots are either real or in complex conjugate pairs.

3.2.2 Roots dynamics and topological properties

To trivialize the monodromy of the roots we cut the complex ξ-plane as follows. We
consider, as in the case 0 < µ < 1, the cuts γj , j = 1, ..., q, defined by

γj = {ξ , arg(ξ) = arg(ξ
(j)
b ) , |ξ| ≥ |ξ(j)

b |} , j = 1, ..., q , (3.71)

corresponding to the square root branch points ξ
(j)
b , j = 1, ..., q, together with the cut γ̃

connecting the branch points 0 and ∞ (see Figure 3.18).
A convenient enumeration of the roots is a consequence of the following fact. As ξ

travels along the cut γj , from ∞ to ξ
(j)
b , two complex conjugate roots abandon the small

circle around the origin (the ∞-configuration) and collide at the point µ, orthogonally to
the real axis (see Fig.2). Let us denote by wj the root of this pair characterized by a positive
imaginary part and let us enumerate all the other roots of the∞-configuration sequentially,
in a counterclockwise way, ˜mod p (see Figure 3.17). As we shall see below, with respects
to our cutted plane, the first q roots (sheets) of this sequence: {w1, .., wq} ({F1, ..,Fq}) and
the remaining (p − q) roots (sheets): {wq+1, .., wp} ({Fq+1, ..,Fp}) turn out to have quite
different dynamical (topological) properties. We will call them, respectively, roots (sheets)
of type q and roots (sheets) of type (p− q).

Using the large ξ asymptotics (3.66) and the above basic symmetries of Γ, we infer the
following basic motions.

1) Since ξ
(j)
b is a branch point of square root type, from the above considerations it follows

that, as ξ moves around the cut γj as in Figure 3.19, the two roots wj and wϕ(j),
j = 1, .., q, exchange their positions (see Figure 3.20), where

ϕ(j) = j + q − (p− q)

⌊

j − 1

p− q

⌋

, j = 1, .., q, (3.72)

while the remaining roots have a trivial monodromy. We have established the first
basic motion:

ξ −motion around
the branch cut γj

⇔ cyclic permutation of the
two roots {wj , wϕ(j)}.

We remark that wj belongs to the first set of q roots, while wϕ(j) belongs to the
complementary set of (p− q) roots.

2) If ξ moves from γj to γj+1 on a big circle, from the asymptotics (3.66) it follows that the
∞-configuration of p roots exhibits a clockwise rotation of the angle 2π/p (see Figure
3.21). Therefore all the roots undergo a cyclic permutation, which is the second basic
motion:

ξ − rotation
from γj to γj+1

⇔ cyclic permutation of all
the roots {w1, .., wp}.

Repeating these two motions with respect to the other SRBP cuts, in sequential and coun-
terclockwise order, the point ξ draws a closed contour but now, unlike the case 0 < µ < 1,
the associated monodromy of (p − q) roots will be nontrivial, since this closed ξ-contour
includes the branch point ξ = 0. More precisely, it is possible to show, using the sym-
metries 1 and 2, that the roots wj , j = 1, ..., q of the first group go back to their original
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Figure 3.19: The motion of ξ around the cut γ1.
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Figure 3.20: As ξ travels around the branch cut γ1, the the complex conjugate roots w1 and
w6 exchange their positions colliding in µ. The remaining roots have a trivial monodromy.
Riemann surface q = 5, p = 8.
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Figure 3.21: As ξ travels from the branch cut γ1 to the branch cut γ2 on a big circle,
the ∞-configuration has a 2π/p clockwise rotation, corresponding to a backward cyclic
permutation of the p roots: {w1, w2..., wp} → {w2, ..., wp, w1}. Riemann surface q = 5,
p = 8.
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0 µ

w j

Figure 3.22: As ξ travels on the closed contour surrounding all cuts, the roots of type q:
wj , j = 1, ..., q draw the closed contour represented in this figure. The exterior of such a
contour is the image of the cutted ξ-plane via the roots wj , j = 1, ..., q.

positions, drawing the closed contour in Figure 3.22, while the remaining (p − q) roots of
the complementary subset exchange their positions through a sequence of q̃ backward cyclic
permutations:

{wq+1, .., wp} → {wq+1+q̃, ..., wp, wq+1, .., wq+q̃}, (3.73)

where
q̃ = q ˜mod (p− q) . (3.74)

To trivialize this monodromy, the closed ξ-contour should also go around the cut γ̃ as in
Figure 3.18. Indeed,

3) when ξ travels around the cut γ̃, through the points A, B, C, D (see Figure 3.18), the
roots wj , j = 1, ..., q of the first subset have a trivial monodromy, while the nontrivial
motion of the remaining (p−q) roots of the complementary subset can be decomposed
as follows. As ξ moves from A to B, the (p−q) roots of the second subset go from the
∞-configuration to the 0-configuration (see Figure), in which they lie, equispaced, on
a small circle around 1. When ξ has a clockwise 2π rotation around the origin, from
B to C, they have a (2πq/(p− q)) clockwise rotation around 1, resulting in q̃ forward
cyclic permutations, which is the inverse of the transformation (3.73). This is the
third basic motion:

clockwise 2π-rotation
of ξ around 0

⇔ q̃ cyclic permutations
of the roots of type (p− q).

Since this transformation is the inverse of (3.73), when ξ moves from C to D, com-
pleting the motion around the cut γ̃, the roots of type (p − q) go back to the ∞-
configuration trivializing their monodromy.

From the above considerations, we finally infer the following
Topological properties of Γ. The Riemann surface Γ is a p-sheeted covering of the ξ-

plane of genus 0. In the finite part of Γ there are q square root branch points: (ξ
(j)
b , µ) ∈ Γ,

j = 1, ..., q; the j-th square root branch point connects the sheets Fj and Fϕ(j); the branch
point (0, 1), of order (p − q − 1), connects the (p − q) sheets Fj, j = q + 1, ..., p. The
compactification of Γ is achieved at ξ =∞, where the branch point (∞, 0), of order (p− 1),
connects all the the p sheets. As ξ turns in a counterclockwise way around the branch point
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Figure 3.23: The topological properties of Γ for q = 5 and p = 8.

(0, 1), the sheets of type (p−q) are visited in the order: Fj ,Fj+q̃,Fj+2q̃, ... ˜mod (p−q). As
ξ turns in a counterclockwise way around the branch point (∞, 0), all the sheets are visited
in the order: Fj ,Fj−q,Fj−2q, ... ˜mod p.

The Riemann surfaces q = 5, p = 8 is drawn in Figure 3.23.
Another convenient way to illustrate the topological properties of Γ is via a connection

table in which it is shown how the two subsets of sheets (roots) are connected at the square
root branch points (see Figures 3.24 and 3.25). With respect to that, we distinguish two
different situations.

i) If p > 2q, any sheet of type (p − q) is connected at most to one sheet of type q (see
Fig. 3.24). Consequently, the sheets of type q are connected among themselves only
through the branch point (0, 1). Any increase of period, can occur only when the
evolutionary circle includes the origin ξ = 0.

ii) If p < 2q, some sheet of type (p− q) is connected to more than one sheet of type q (see
Figure 3.25). Consequently, there are sheets of type q which are connected among
them-selves via that (p − q)-sheet, also when the origin ξ = 0 is not included in the
evolutionary circle. For instance, if q = 5 and p = 8, since the sheets F1, F4, of type
q, are connected via the sheet F6, of type (p− q) (see Figures 3.23 and 3.25), it will
occur an increase of the period when the evolutionary circle, containing initially the

adjacent branch points ξ
(1)
b , ξ

(5)
b , varies with continuity including also ξ

(4)
b .

3.2.3 Branch points enumeration

Analogously to what we did for the case 0 < µ < 1, starting from the results obtained
in the previous paragraphs, we will describe an algebro-combinatoric method to predict
the period of a single root of the algebraic equation (3.65) as ξ moves periodically along a
closed path on the branched ξ-plane. For this purpose, we need to introduce a change in
the labelling of the branch points with respect to what we described previously.

In what follows, to label the branch points, we will use a double index. To start the
enumeration, pick arbitrarily one of the q square root branch points. Then, beginning from
the chosen one, apply a double index to each branch point, so that the first indexes are the
consecutive natural numbers (anti-clockwise), starting from p−q+1, while the second ones
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ξb
q

sheets
(p− q)
sheets

1 F1 ←→ Fq+1

2 F2 ←→ Fq+2

· · ·
· · ·
· · ·

q − 1 Fq−1 ←→ F2 q−1

q Fq ←→ F2 q

F2 q+1

·
·
·
Fp

Figure 3.24: The connection table in the case 2q < p. On each horizontal line we indicate,
for each square root branch point, the sheets of type q and (p − q) which are connect
by it. In this case any sheet of type (p − q) is connected to at most one sheet of type
q. Consequently, the sheets of type q are connected among themselves only through the
branch point (0, 1) and an increase of the period can occur only when the evolutionary
circle includes the origin ξ = 0.

ξb
q

sheets
(p− q)
sheets

1 F1 ←→ Fq+1

2 F2 ←→ Fq+2

· · ·
· · ·
· · ·

p− q Fp−q ←→ Fp

p− q + 1 Fp−q+1 ←→ Fq+1

p− q + 2 Fp−q+2 ←→ Fq+2

· · ·
· · ·
· · ·

2(p− q) F2(p−q) ←→ Fp

ξb
q

sheets
(p− q)
sheets

2(p− q) + 1 F2(p−q)+1 ←→ Fq+1

2(p− q) + 2 F2(p−q)+2 ←→ Fq+2

· · ·
· · ·
· · ·

q̃(p− q) Fq̃(p−q) ←→ Fp

q̃(p− q) + 1 Fq̃(p−q)+1 ←→ Fq+1

q̃(p− q) + 2 Fq̃(p−q)+2 ←→ Fq+2

· · ·
· · ·
· · ·
q Fq ←→ F2q−q̃(p−q)

Figure 3.25: The connection table in the case p < 2q. On each horizontal line we indicate,
for each square root branch point, the sheets of type q and (p − q) which are connect by
it. In this case, some sheet of type (p − q) is connected to more than one sheet of type q.
Consequently, there are sheets of type q which are connected among them-selves via that
(p− q)-sheet, also when the origin ξ = 0 is not included in the evolutionary circle.
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Figure 3.26: Branch points double indexes (p = 11, q = 8)

are the consecutive natural numbers ˜mod (p − q). In this way, we somewhat reconstruct
the connections between the sheets of the Riemann surface as described in Subsection 3.2.2
with the following difference: the SRBPs, that were labelled in the previous section with
the first q natural numbers starting from 1, now have the first indexes corresponding to the
first q natural numbers starting from p − q + 1; similarly, the q-sheets, that were labelled
in the previous section with the first q natural numbers starting from 1, now have indexes
corresponding to the first q natural numbers starting from p−q+1; while the (p−q)-sheets,
that were labelled in the previous section with the (p− q) natural numbers between q + 1
and p, now have indexes corresponding to the first (p − q) natural numbers starting from
1. The reason of this shuffling is that now we can rephrase the whole system of labelling
without consequences on the root dynamics and so that the branch point with double index
{k, k ˜mod (p−q)} (with k = p−q+1, p−q, ..., p) corresponds to the connection of the k-th
q-sheet with the (p − q)-sheet labelled k ˜mod (p − q) (for instance, look at the situation
in Figure 3.26, where p = 11 and q = 8, namely in a case in which 2 q > p; notice that
we leave marked the origin, since it corresponds to a branch point that attaches (p − q)
sheets.).

3.2.4 Graph Theory and Monodromy Group

Repeating step by step the procedure illustrated in the case 0 < µ < 1, now that we have
a labelling system for the SRBPs and the connection rules for the sheets of the Riemann
surface, we can use some graph theory to describe the monodromy group associated to the
w-roots system. Actually, it is possible to infer the same results on the root-periods without
this apparatus of combinatoric techniques. Nevertheless, it will be useful to use it also in
this case, since this will prove the generality of the method and will aid to have a global
and more systematic view of the monodromy group associated with the Riemann surface
(3.64).

We remember that, since in our physical problem ξ can move only on a circular path
(the circle Ξ), you can easily convince yourselves that such path can make inclusion only
of consecutive (adjacent) branch points on B (the circle where the SRBPs lie) and of the
branch point in the origin. So, for our purposes, it is convenient to study only the cases in
which the ξ-path (i.e. the path along which ξ moves) includes consecutive branch points,
distinguishing two fundamental subcases: the case in which the origin is inside such path
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Figure 3.27: Graph construction and nodes labelling (p = 11, q = 8).

and the case in which the origin is outside such path.

To construct the planar graph corresponding to a certain (mutual) disposition of the
ξ-path and B, start with tracing (p − q) nodes, corresponding to the (p − q)-sheets of
the Riemann surface, on a regular polygon. Now, label with the first consecutive (p − q)
natural numbers these (p−q) nodes, starting from an arbitrarily chosen one (anti-clockwise).
Then, trace near to the k-th node a number of new nodes equal to the number of integers
congruous to k ˜mod (p− q) and contained in the closed interval {p− q +1, p}: these nodes
will correspond to the q-sheets of the Riemann surface. For example, look at Figure 3.27
where it is shown the graph construction and the nodes labelling system for the case p = 11
and q = 8. Near the node number 2, you can see the nodes number 5, 8 and 11, the three
numbers in the interval {4, 11} which satisfy the congruence: 5 ≡ 8 ≡ 11 ≡ 2 ˜mod 3. The
reason for such a weird labelling of the nodes is justified by the fact that in this way the
edges of the graph will be traced more easily.

If the ξ-path will include, among the others, the branch point labelled {h, h ˜mod (p−q)},
with h = p− q +1, ..., p, we will connect with an edge the nodes labelled respectively h and
h ˜mod (p− q) in the graph. Particularly, if the ξ-path will include, among the others, the
branch point in the origin, we will connect simultaneously with (p − q) edges the (p − q)
nodes disposed on the inner regular polygon vertexes, namely the nodes labelled with the
integers from 1 to (p− q), corresponding to the (p− q)-sheets. For example, in Figures 3.28
and 3.29, you can see all the possible graph that one can obtain, for p = 11 and q = 8,
including an increasing number of consecutive branch points inside the ξ-path, starting
from the branch point {(p − q + 1), 1}, when the origin is respectively not-included and
included inside the ξ-path.

Like in the case 0 < µ < 1, higher is the number of SRBPs included in the ξ-path, higher
is the degree of connection of the graph. Thou, there is a big difference between the two
subcases origin outside and origin inside the ξ-path. Let us define again a line on a graph
as a path on the graph made of connected edges. For example, in the third picture of the
right column of Figure 3.28, you can observe one unconnected node and three unconnected
lines, one touching four edges and two lines touching three edges each. In the same, in the
fifth picture on the left column of Figure 3.29, you can observe four unconnected nodes
and one complicated line touching seven nodes. What happens when the origin is included
inside the ξ-path, from the point of view of the graphs, is that there are no unconnected
lines (i.e., on the graph, it is possible to observe only one line, of variable length).

We remember that, for a certain situation of branch points inclusion, if on the corre-
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Figure 3.28: Consecutive branch points inclusions (p = 11, q = 8, origin outside).
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Figure 3.29: Consecutive branch points inclusions (p = 11, q = 8, origin inside).
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Figure 3.30: Ferrer diagram corresponding to the inclusion of 7 consecutive SRBPs but not
of the origin (p = 11, q = 8).

sponding graph the j-th node is contained in a line which connects exactly b nodes, the
period of the corresponding j-th w-root of the algebraic equation (3.65), wj(ξ), while ξ
moves along the closed path, will be exactly b. If the j-th node is unconnected (i.e. it is
touched by no edge), the period of wj(ξ) will be 1.

So, for a certain situation of branch points inclusion, we are interested in measuring the
lengths of the lines in the corresponding graph. For such a graph with p nodes (considered
at the moment without labels), the set of all the lengths of these lines corresponds to an
element of Sp/ ∼, where the equivalence relation ∼ is introduced identifying two elements
of Sp if they have the same lengths of the corresponding decompositions in cycles.

For instance, look at the third image on the right column of Figure 3.28. In this
situation, it is clear that w11 has period 1; w2, w3, w5, w6, w8 and w9 have period 3; w1,
w4, w7 and w10 have period 4. Precisely, this situation corresponds to the permutation
(1, 4, 7, 10)(2, 5, 8)(3, 6, 9)(11), namely a permutation with 1 cycle of length 1, 2 cycles of
length 3 and 1 cycle of length 4 (it is sometimes useful to describe this in terms of integer
partitions of p: 11 = 4 + 3 + 3 + 1). So, our graph is in correspondence with all the
permutations in Sp that can be written as 1 cycle of length 1, 2 cycles of length 3 and
1 cycle of length 4. The permutation (1, 4, 7, 10)(2, 5, 8)(3, 6, 9)(11) is an element of the
monodromy group. If we do not limit ourselves to consider consecutive inclusions of branch
points inside the ξ-path, with this technique we can build the complete monodromy group.

As we did in the case 0 < µ < 1, to simplify the description of such graphs we introduce
Ferrer diagrams, i.e. dispositions of p blank boxes in rows and columns, such that the
number of boxes in each column is equal to the length of the single cycle of the corresponding
permutation and the number of columns is the number of cycles in which the permutation
is decomposed (for instance, to the situation illustrated by the third image on the right
column of Figure 3.28, there corresponds the Ferrer diagram contained in Figure 3.30).

Again, in this way we thereby reduced the problem of knowing the period of a root
of the equation (3.65), while ξ moves along a closed path, to the measure of one of the
columns of an appropriate Ferrer diagram.

3.2.5 The bumping rules

In the previous Section we showed that, for fixed p and q, a particular Ferrer diagram
corresponds to each situation of inclusion of branch points inside a ξ-path. We reduced the
problem of knowing the period of the w-roots to finding the degree of connection of the
single nodes of a certain graph; from this we reduced once more the problem to knowing
the length of the columns of the corresponding Ferrer diagram.

Analogously to what we have done in the case 0 < µ < 1, we will show how to recursively
build such Ferrer diagrams. To do this we introduce a bumping rule for the boxes which
compose the diagram itself. Once p and q are fixed, such a rule will describe how a Ferrer
diagram associated to the inclusion of b SRBPs inside the ξ-path will change after the
introduction of one more branch point, namely, when the ξ-path includes b + 1 branch
points. In this case it will be not necessary to introduce any recurrence relation nor any
description in terms of k-level Ferrer diagrams, but it will be important to distinguish
between two subcases, whether the origin is outside or inside the ξ-path.
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Case 1. Origin outside the ξ-path. Suppose that the origin is not included inside a ξ-path
which includes b square root branch points starting from the one labelled {(p − q +
1), 1}. If we modify this ξ-path in such a way that it includes the next adjacent square
root branch point, {p− q + b + 1, (p− q + b + 1) ˜mod (p− q)}, and the origin remains
outside, then we must modify also the graph corresponding to the previous situation,
adding a new edge between the two nodes (p−q+b+1) and (p−q+b+1) ˜mod (p−q).
Since 0 ≤ b ≤ q, then each new edge added to the graph will evidently connect a single
unconnected node to a line composed by a certain number of edges (at least, to an
other single unconnected node). Namely, it will never happen that the addition of
one more edge will produce the connection between two lines. In terms of Ferrer
diagrams, this means that the addition of one more SRBP inside the ξ-path, in case
of exclusion of the origin, entails the movement of a single box of the diagram (it
never happens that one must move a whole column). The final number of lines in the
graph is (q − p), so, in the bumping, we must move orderly single boxes under the
first (p− q) columns. See, for instance, Figure 3.31a.

Case 2. Origin inside the ξ-path. Suppose that the origin is included inside a ξ-path which
includes b square root branch points starting from the one labelled {(p − q + 1), 1}.
Notice that, since the branch point in the origin attaches the (p − q)-sheets, in this
case the nodes of the corresponding graph in the inner regular polygon, labelled
1, 2, ..., (p − q), are all connected on a line which contains exactly (p − q) edges.
Moreover, notice that the Ferrer diagram corresponding to the inclusion of only the
origin has the first column of height (p− q), while all the other q columns of unitary
height. Like in case 1, if we modify this ξ-path in such a way that it includes the
next adjacent square root branch point, {p− q + b + 1, (p− q + b + 1) ˜mod (p− q)},
and the origin remains inside, then we must modify also the graph corresponding
to the previous situation, adding a new edge between the two nodes (p − q + b + 1)
and (p − q + b + 1) ˜mod (p − q). Each new edge added to the graph will evidently
be connected to the single line that contains all the edges of the graph. In terms of
Ferrer diagrams, this means that the addition of one more SRBP inside the ξ-path,
in case of inclusion of the origin, entails always the movement of a single box of the
diagram under the first column. See, for instance, Figure 3.32a.

All the above considerations lead to the following proposition.
The bumping rule. In the case in which the ξ-path does not include the origin, the
Ferrer diagram, corresponding to the inclusion of b consecutive square root branch points
inside the ξ-path, can be obtained from the Ferrer diagram, corresponding to the inclusion
of b − 1 consecutive square root branch points inside the ξ-path, moving its last box to a
lower position, in order to increase the height of one of the first (p− q) columns (while the
total amount of boxes still remains the same): such column is the first available one from
the left before the (p− q)-th column (included). If all the first (p− q) columns are occupied,
the process starts again moving the last box on the right under the first column on the left.

In the case in which the ξ-path does include the origin, the Ferrer diagram, corresponding
to the inclusion of b consecutive square root branch points inside the ξ-path, can be obtained
from the Ferrer diagram, corresponding to the inclusion of b − 1 consecutive square root
branch points inside the ξ-path, moving its last box under the first column, in order to
increase its height (while the total amount of boxes still remains the same). The height of
the first column is equal to (p − q) when the ξ-path includes only the branch point in the
origin.

It is worth stressing here again that we are focalizing only on the case in which we are
including consecutive square root branch points, and the first branch point included in the
ξ-path is the branch point {(p− q + 1), 1}.
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Figure 3.31: Ferrer diagrams for consecutive branch points inclusions (p = 11, q = 8, origin
outside): a) non-numbered Ferrer diagrams; b) numbered Ferrer diagrams.

3.2.6 The period formula for µ > 1 and µ ∈ Q

Our final goal is to fix one of the p w-roots of the algebraic equation (3.65) using the
enumeration depicted in Subsection 3.2.2 and to predict the period of such root when the
variable ξ moves along a closed path which includes b consecutive branch points on the
ξ-plane starting from the branch point labelled {1, q − p + 1}. To achieve this result we
must put numbers inside the Ferrer diagrams boxes, in such a way that, if we fix a single
column, all the roots labelled with the numbers appearing in the chosen column have the
same period, equal to the height of the column itself.

For instance, look at Figure 3.31b when b = 7. We can read this image, inferring that
the 1− st, 4− th, 7− th and 10− th roots have period 4; the 2− nd, 3− rd, 5− th, 6− th,
8− th and 9− th roots have period 3; the 11− th root has period 1.

Now, let us fix a Ferrer diagram and suppose that there are b square root branch points
included in the ξ-circle with 0 ≤ b ≤ q. Suppose to be interested in the period of the
s-th root. At each inclusion of a consecutive square root branch point, some of the boxes
are moved. We are interested in understanding the height of the column contains the box
labelled s. Again, we must distinguish between the two cases that depends whether the
origin is or is not inside the ξ-path.

Origin outside the ξ-path.
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Figure 3.32: Ferrer diagrams for consecutive branch points inclusions (p = 11, q = 8, origin
inside): a) non-numbered Ferrer diagrams; b) numbered Ferrer diagrams.
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Case 1: If s > b + p − q then we have that the column we are interested in has height 1
and it has not been moved with respect to the position it occupied when no square
root branch points where included in the ξ-circle.

Case 2: If s ≤ b + p− q then we must consider two subcases:

• If s ≤ p − q then s is the label of the first box of one of the s-th column. The
number of single boxes moved under the column s depends whether s is smaller
than b ˜mod (p−q) or not. If s < b ˜mod (p−q) then the number of boxes moved
under the s-th column is (b b−1

p−q c). If s ≥ b ˜mod (p− q) then one more single box

moved under the s-th column, so the final number of moved boxes is (b b−1
p−q c+1).

• If s > p− q then the column s has been moved under the column s ˜mod (p− q).
The total number of boxes moved under the column s ˜mod (p − q) depends
whether s ˜mod (p− q) is smaller than b ˜mod (p− q) or not. If s ˜mod (p− q) <
b ˜mod (p−q) then the number of boxes moved under the column s ˜mod (p−q) is
(b b−1

p−q c). If s ˜mod (p−q) ≥ b ˜mod (p−q) then one more single box moved under

the column s ˜mod (p− q), so the final number of moved boxes is (b b−1
p−q c+ 1).

Origin inside the ξ-path.

Case 1: If s > b + p − q then we have that the column we are interested in has height 1
and it has not been moved with respect to the position it occupied when no square
root branch points where included in the ξ-circle.

Case 2: If s ≤ b + p− q then s is the label of the s-th box in the first column. The height
of the first column is b + p− q.

From the above considerations, we finally infer the following

Theorem 3. Be µ > 1 and µ ∈ Q. Be the roots of the algebraic equation (3.65) labelled
following the description of Subsection 3.2.2. Let T (s, b) be the period of the s-th root of
the algebraic equation (3.65) when ξ moves along a closed path on the ξ-plane, including
b consecutive adjacent square root branch points starting from the branch point with label
{p− q + 1, 1}. If the origin is not included inside the closed path along which ξ moves, we
have the following period formula:

T (s, b) =















































⌊

b−1
p−q

⌋

+ 1 if s ≤ b + p− q

and b ˜mod (p− q) < s ˜mod (p− q)

⌊

b−1
p−q

⌋

+ 2 if s ≤ b + p− q

and b ˜mod (p− q) ≥ s ˜mod (p− q)

1 if s > b + p− q ;

(3.75)

while, if the origin is included inside the closed path along which ξ moves, we have the
following period formula:

T (s, b) =







b + p− q if s ≤ b + p− q

1 if s > b + p− q .
(3.76)
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Formula (3.75) tells that, for any situation of consecutive SRBPs inclusion with the origin
outside the ξ-path, generically we have only three possible periods for the roots of the
algebraic equation (3.65). The sum of the first and the third of the (3.75) gives always the
second. Formula (3.76) tells that, for any situation of consecutive SRBPs inclusion with
the origin inside the ξ-path, generically we have only two possible periods for the roots of
the algebraic equation (3.65).

For instance, in the following tables you can compare the values of T (s, b) when p = 11
and q = 8 for 1 ≤ s ≤ p and 0 ≤ b ≤ q.

T (s, b) 1 2 3 4 5 6 7 8 9 10 11

b = 0 1 1 1 1 1 1 1 1 1 1 1
b = 1 2 1 1 2 1 1 1 1 1 1 1
b = 2 2 2 1 2 2 1 1 1 1 1 1
b = 3 2 2 2 2 2 2 1 1 1 1 1
b = 4 3 2 2 3 2 2 3 1 1 1 1
b = 5 3 3 2 3 3 2 3 3 1 1 1
b = 6 3 3 3 3 3 3 3 3 3 1 1
b = 7 4 3 3 4 3 3 4 3 3 4 1
b = 8 4 4 3 4 4 3 4 4 3 4 4

Origin outside the ξ-path

T (s, b) 1 2 3 4 5 6 7 8 9 10 11

b = 0 3 3 3 1 1 1 1 1 1 1 1
b = 1 4 4 4 4 1 1 1 1 1 1 1
b = 2 5 5 5 5 5 1 1 1 1 1 1
b = 3 6 6 6 6 6 6 1 1 1 1 1
b = 4 7 7 7 7 7 7 7 1 1 1 1
b = 5 8 8 8 8 8 8 8 8 1 1 1
b = 6 9 9 9 9 9 9 9 9 9 1 1
b = 7 10 10 10 10 10 10 10 10 10 10 1
b = 8 11 11 11 11 11 11 11 11 11 11 11

Origin inside the ξ-path

3.2.7 The irrational case: µ /∈ Q

Like in Section 3.1, we can treat the case in which µ is an irrational number as a limit of
the case in which µ is a rational number. When µ is irrational, the number of roots of the
equation (3.64) diverges, as q, number of branch points on the ξ-plane, approaches infinity.
So we must analyze the previous formulas in the limit:

p, q →∞ with µ =
p

q
> 1 . (3.77)

namely in the limit in which the integers p and q diverge with their ratio µ fixed.
If µ is an irrational number, it follows that the Riemann surface Γ (3.64) becomes an

∞-sheeted covering of the complex ξ plane. Like in Subsection (3.2.1), we can analyze its
behavior for |ξ| >> 1, |ξ| << 1 and its branch points:

1) ξ =∞. If |ξ| >> 1, we have the asymptotics:

w(ξ) ∼ −(−ξ)
− 1

µ , ξ ∼ ∞. (3.78)
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Therefore, for |ξ| >> 1, all the (infinite) roots lie on a small circle of radius O(|ξ|−
1
µ )

centered at the origin, and a counterclockwise 2π-rotation of ξ on a big circle implies
a clockwise rotation of each root around the origin of the angle (2π/µ).

2) ξ = 0. If |ξ| << 1, we have the asymptotics:

w(ξ) ∼ 1 + ξ
1

µ−1 , ξ ∼ 0 . (3.79)

Therefore we have an infinite number of roots lying on a small circle of radius

O(|ξ|
1

µ−1 ) around 1. There still remains an infinite number of roots lying on a big
circle of radius O(|ξ|−1) around the origin in the w-plane.

3) In the finite part, we have an infinite number of SRBPs densely distributed on the circle
centered at the origin of the ξ-plane and of radius

rb =
1

µ− 1

(

µ− 1

µ

)µ

> 0 ; (3.80)

Again, each of the infinite SRBPs corresponds to the collision of a pair of roots.

Finally, to obtain the proper continuous variable which replaces the discrete index b, we
will make use of the same variable ν introduced in Section 3.1. We focalize our attention
to the physical situation in which the ξ-path is a circle. Let be B the circle on which the
SRBPs lie and Ξ the circle along which the ξ variable periodically moves. We define the
variable ν, which is 0 if Ξ does not contain any arc of B and 1 if Ξ does contain the whole
circle B. If B and Ξ intersect, select the arc of the B circle which is contained inside the
evolutionary circle Ξ and denote by ν the corresponding angle φ, normalized by 2π (see
Figure 3.15 and formula (3.45)).

We can restate the theorem in Subsection 3.2.6 as following.

Theorem 4. Be µ > 1 and µ /∈ Q. Let T (ν) be the period of one of the roots of the
algebraic equation (3.64) when ξ moves along a circular path Ξ on the ξ-plane, intersecting
the SRBPs circle B in such a way that 0 ≤ ν < 1 (see (3.45)). If the origin is not included
inside the closed path along which ξ moves and ν = 0, then T (ν) = 1. If the origin is not
included and ν > 0, then T (ν) must have one of the following three values:

T (ν) =































⌊

ν
µ−1

⌋

+ 1

⌊

ν
µ−1

⌋

+ 2

1 .

(3.81)

If the origin is included inside the closed path along which ξ moves and ν = 0, then T (ν) = 1
or the time evolution of the generic root of the equation (3.64) is quasiperiodic, involving a
(nonlinear) superposition of two noncongruent periods, 1 and 1

µ−1 . If the origin is included
inside the closed path along which ξ moves ν > 0, then T (ν) = 1 or time evolution of the
generic root of the equation (3.64) is aperiodic.

Notice that, like before, the sum of the first and the third in the previous formula (3.81)
always gives the second. It is worth noticing that, in the case of validity of formula (3.81),
if µ > 2 it happens that the floor function in (3.81) vanishes, and the only possible values
for T (ν) are 1 or 2. We must stress that in this case there are no labels for the roots, so
we cannot assign the three periods to the roots in terms of their labels as we did in the
rational case.
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3.3 The case µ < 0

Here we study the Riemann surface Γ consisting of points (ξ, w) ∈ Γ such that:

w−µ(w − 1)µ−1 = ξ , (3.82)

where
µ =

p

q
< 0 , with p < 0 < q ,

and |p| ∈ N and q ∈ N+ are coprime natural numbers. Therefore Γ is an algebraic Riemann
surface characterized by the polynomial (of degree q + |p|) equation

ξq (w − 1)q+|p| = w|p| , p < 0 < q , (3.83)

which now defines the (q + |p|)-valued function w = w(ξ). Since, ∀ξ ∈ C, the polynomial
(3.83) admits q + |p| complex roots and each root corresponds to a sheet of the Riemann
surface Γ, it follows that Γ is a p-sheeted covering of the complex ξ plane.

3.3.1 The period formula for µ < 0

Clearly, the case µ < 0 becomes identical to the case illustrated in the previous section
(µ > 1) via the following replacement

w 7→ 1− w , ξ 7→ −ξ , −p 7→ p− q , q − p 7→ p (3.84)

without modifying q. So, via this prescription (3.84), we automatically get all the results
for the case µ < 0 directly from the findings presented in the final subsections of Section
3.2.

Theorem 5. Be µ < 0 and µ ∈ Q. Be the roots of the algebraic equation (3.83) labelled
following the description of Subsection 3.2.2 (making use of the replacement (3.84)). Let
T (s, b) be the period of the s-th root of the algebraic equation (3.83) when ξ moves along
a closed path on the ξ-plane, including b consecutive adjacent square root branch points
starting from the branch point with label {|p|+1, 1}. If the origin is not included inside the
closed path along which ξ moves, we have the following period formula:

T (s, b) =















































⌊

b−1
|p|

⌋

+ 1 if s ≤ b + |p|
and b ˜mod |p| < s ˜mod |p|

⌊

b−1
|p|

⌋

+ 2 if s ≤ b + |p|
and b ˜mod |p| ≥ s ˜mod |p|

1 if s > b + |p| ;

(3.85)

while, if the origin is included inside the closed path along which ξ moves, we have the
following period formula:

T (s, b) =







b + |p| if s ≤ b + |p|

1 if s > b + |p| .
(3.86)

Formula (3.85) tells that, for any situation of consecutive SRBPs inclusion with the origin
outside the ξ-path, generically we have only three possible periods for the roots of the
algebraic equation (3.83). The sum of the first and the third of the (3.85) gives always the
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second. Formula (3.86) tells that, for any situation of consecutive SRBPs inclusion with
the origin inside the ξ-path, generically we have only two possible periods for the roots of
the algebraic equation (3.83).

Like in Section 3.1, we can treat the case in which µ is an irrational number as a limit
of the case in which µ is a rational number. When µ is irrational, the number of roots
of the equation (3.82) diverges, as q, number of branch points on the ξ-plane, approaches
infinity. So we must analyze the previous formulas in the limit:

p, q →∞ with µ =
p

q
< 0 . (3.87)

namely in the limit in which the integers p and q diverge with their ratio µ fixed.
If µ is an irrational number, it follows that the Riemann surface Γ (3.82) becomes an

∞-sheeted covering of the complex ξ-plane.
To enunciate the period formula, we need a proper continuous variable. Again, we will

make use of the same variable ν introduced in Section 3.1 (see Figure 3.15 and formula
(3.45)).

Theorem 6. Be µ < 0 and µ /∈ Q. Let T (ν) be the period of one of the roots of the
algebraic equation (3.82) when ξ moves along a circular path Ξ on the ξ-plane, intersecting
the SRBPs circle B in such a way that 0 ≤ ν < 1 (see (3.45)). If the origin is not included
inside the closed path along which ξ moves and ν = 0, then T (ν) = 1. If the origin is not
included and ν > 0, then T (ν) must have one of the following three values:

T (ν) =































⌊

ν
|µ|

⌋

+ 1

⌊

ν
|µ|

⌋

+ 2

1 .

(3.88)

If the origin is included inside the closed path along which ξ moves and ν = 0, then T (ν) = 1
or the time evolution of the generic root of the equation (3.82) is quasiperiodic, involving a
(nonlinear) superposition of two noncongruent periods, 1 and 1

|µ| . If the origin is included

inside the closed path along which ξ moves ν > 0, then T (ν) = 1 or time evolution of the
generic root of the equation (3.82) is aperiodic.

Notice that, like before, the sum of the first and the third in the previous formula (3.88)
always gives the second. It is worth noticing that, in the case of validity of formula (3.88),
if µ < −1 it happens that the floor function in (3.81) vanishes, and the only possible values
for T (ν) are 1 or 2. We must stress that in this case there are no labels for the roots, so
we cannot assign the three periods to the roots in terms of their labels as we did in the
rational case.



CHAPTER 4

Complex Dynamics

In Chapter 2 we introduced the new three-body Aristotelian model (2.10) and we showed
that the problem of understanding its physical behavior (at least in the “semisymmetri-
cal” case, see (2.2)) – characterized by a huge variety of regular and irregular motions –
was strictly connected to the problem of understanding the (branching) structure of the
Riemann surface Γ associated to the non-differential equation (2.98) in which appears the
fundamental parameter µ. In Chapter 3 we illustrated how the analysis of Γ is possible and
we reported several results about the periods of the roots of equation (2.98), in both cases
of rational and irrational µ.

In this chapter we come back to our physical problem (2.10) and we discuss the im-
plications of the findings reported in Chapter 3. We explain the transition from regular
to irregular motions (as travels on the Riemann surface Γ) and in which sense the model
treated herein displays a sensitive dependance on the initial conditions and on the param-
eters. In the final section we will discuss the generality of our findings and some remaining
open questions.

The results reported herein mainly refers to [1] and [3], both papers co-written by the
author of this thesis in collaboration with F. Calogero, D. Gomez-Ullate and P. M. Santini.

4.1 Root behavior in terms of the initial conditions

In Section 2.6 we proved that the solution of our model (2.10) in the “semisymmetrical”
case, (2.2), can be written in terms of the function w̌(t), (2.112), which is defined via the
relation

w̌(t) = w [ξ(t)] , (4.1)

with

ξ(t) = R [η + exp (2 i ω t)] = ξ̄ + R exp (2 i ω t) , (4.2)

and w(ξ) implicitly defined by the nondifferential equation

(w − 1)µ−1 w−µ = ξ . (4.3)

The parameter µ is defined in terms of the coupling constants g and f , see (2.2), while R
and ξ̄ are defined in terms of the three initial data z1(0), z2(0) and z3(0), see (2.114) and

139
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(2.115),

Z =
z1(0) + z2(0) + z3(0)

3
,

R =
3 (f + 8 g)

2 i ω [2 z3(0)− z1(0)− z2(0)]
2

[

1− 1

w̌(0)

]µ−1

,

ξ̄ = R η ,

η =
i ω
{

[z1(0)− z2(0)]
2 + [z2(0)− z3(0)]

2 + [z3(0)− z1(0)]
2
}

3 (f + 2 g)
− 1 ,

w̌(0) =
2 µ [2 z3(0)− z1(0)− z2(0)]

2

[z1(0)− z2(0)]
2 + [z2(0)− z3(0)]

2 + [z3(0)− z1(0)]
2 .

In Chapter 3 we studied the curve (4.3) with ξ moving on a generic circular closed path
on the corresponding Riemann surface. As we have seen, it results that, if µ is rational,
namely µ = p/q, the nondifferential equation (4.3) becomes polynomial (in the dependent
variable w), of finite degree J , with J = p if µ > 1, J = q if 0 < µ < 1 or J = q + |p|
if µ < 0. From the topological point of view, the nondifferential equation (4.3) defines a
J-sheeted covering of the complex ξ-plane of genus zero (of course J =∞ if µ is irrational).
The function w(ξ) defined implicitly by this equation features square-root branch points ξb

located on a circle B centered at the origin of the complex ξ-plane (see 2.103):

ξb = ξ
(k)
b = rb exp (2 π i µ k) , k = 1, 2, 3, ... ,

ξb = ξ
(k)
b = rb exp

[

i
2 π p k

q

]

, k = 1, 2, ..., q ,

rb = (µ− 1)−1

(

µ− 1

µ

)µ

.

We find out that, for ξ moving on a circular path (which includes consecutive branch points
on the Riemann surface Γ), all the J roots have at most three different periods (one of
which might be infinite).

It is worth recalling now that the question of identifying, among all the roots w̃j(t)
of this nondifferential equation (4.3), the “physical” one w̌(t), i. e. the one that evolves
from the initial datum (2.115) and in particular of specifying the character of its time
evolution among the (at most 3) alternatives, is a problem whose solution was still not
found at the time this thesis is written and that is object of further researches (see [2]).
Let us re-emphasize that the time evolution of w̃(t) ≡ w [ξ(t)] coincides with the evolution
of a generic root w (ξ) of (4.3) as the independent variable ξ travels (making a complete
counterclockwise tour in the complex ξ-plane in every time interval T = π/ω, see (2.8))
on the circle Ξ with center ξ̄ and radius |R|, see (4.2), and correspondingly the dependent
variable w(ξ) travels on its Riemann surface Γ.

In Chapter 3 we proved that eventually after a time T̃ = j̃ T which is a finite integer
multiple j̃ of the basic period T , with 1 ≤ j̃ ≤ J , the generic root w̃(t) shall necessarily

return to its initial position, w̃
(

T̃
)

= w̃ (0), entailing that its evolution as a function of

the time t is periodic with this period T̃ ,

w̃
(

t + T̃
)

≡ w̃
(

t + j̃ T
)

= w̃ (t) . (4.4)

It is clear from 2.112 that the time evolution of the solution zn(t) of our model (2.10)
is mainly determined by the time evolution of the function w̌(t).
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Clearly, ξ =
[

ξ̄ + R exp (2 i ω t)
]q

carries all the time dependence in equation 4.3. But

the factor [η exp (−2 i ω t)− 1] 1/2 displays a quite simple time evolution, periodic with
period T if |η| < 1 and antiperiodic with period T hence periodic with period 2 T if |η| > 1.

If w̌(t) is periodic with period Ť , its square root [w̌(t)] 1/2 , appearing in the right-hand side
of the solution formulas (13), is clearly as well periodic with period Ť or antiperiodic with
period Ť hence periodic with period 2 Ť depending whether the closed trajectory of w̌(t)
in the complex w̌-plane does not or does enclose the (branch) point w̌ = 0. Likewise the

square root [12 µ− 3 w̌ (t)] 1/2 (see (2.112)) is also periodic with period Ť or antiperiodic
with period Ť hence periodic with period 2 Ť depending whether the closed trajectory of
w̌(t) in the complex w̌-plane does not or does enclose the (branch) point w̌ = 4 µ (but
note that a change of sign of this square root only entails an exchange between the two
equal particles 1 and 2). In conclusion one sees that – provided one considers particles 1
and 2 as indistinguishable – then, if the time evolution of w̌(t) is periodic with period Ť ,
w̌(t + Ť ) = w̌(t), the physical motion of the 3 particles zn(t) is also completely periodic
either with the same period Ť or with period 2 Ť , provided Ť is an integer multiple of T ;
finally, if the motion of w̌(t) is not periodic then clearly the functions zn(t) are also not
periodic.

In the case of a rational value of the parameter µ, all solutions of our physical problem
(2.10) with (2.2) are completely periodic with a period which is either

Ť = ǰ T with 1 ≤ ǰ ≤ J (4.5)

or it is 2 Ť .

In this section we will try to understand, starting from the findings reported in Chapter
3 how the value of the integer ǰ (which might be quite large if J is quite large) depends on
the initial data of our problem.

4.1.1 The two circles B and Ξ

In this subsection we list all our findings concerning the time evolution of a generic root
w̃(t), when ξ moves not along a generic circular path Ξ, but along the circular path Ξ
fixed by the initial conditions, see (4.2). We refer at first mainly to the rational case but
including immediately results for the irrational case whenever it is convenient to do so in
order to shorten our presentation. The remaining information on the irrational case is
provided below (see Proposition 9).

Before starting, we recall that we define active branch points those branch points that
cause a reshuffling of roots that involves the “physical” root w̌(t), while the inactive ones
are those that do not cause a reshuffling of roots that involves the “physical” root w̌(t),
either because they cause no reshuffling at all being located outside the relevant circle (Ξ
in the complex ξ-plane in the context of the present analysis, C in the complex τ -plane in
the context of the discussion made above when the distinction among active and inactive
branch points was first introduced, see Chapter 2), or because they cause a reshuffling
which however does not involve the physical root w̌(t).

First of all it is useful to visualize the two circles B and Ξ in the complex ξ-plane (draw
them!): recall that the circle B on which the branch points sit is centered at the origin and
its radius |rb| only depends on the parameter µ see (2.103), while both the center ξ̄ and the
radius |R| of the circle Ξ traveled upon by ξ(t) see (4.2), do depend on the initial data, see
(2.114) and (2.115).

Proposition 1. If the circle Ξ is inside the circle B (i. e.
∣

∣ξ̄
∣

∣+|R| < |rb| , see (2.114),(2.115)
and (2.103)), and (a) µ is inside the interval 0 < µ < 1 or (b) µ is outside this interval
(µ > 1 or µ < 0) and moreover the circle Ξ does not include the origin ξ = 0 (i. e. |R| <

∣

∣ξ̄
∣

∣
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or equivalently |η| > 1), then j̃ = 1, i. e. the generic solution w̃(t) is periodic with period
T, w̃(t + T ) = w̃(t). This outcome applies equally if µ is rational or irrational.

Remark 2. In all the cases identified in this Proposition 1 there are no branch points at
all inside the circle Ξ: indeed the outcome detailed by this Proposition 1 applies in all the
cases in which this happens (see our discussion above), even (in the case with rational µ) if
the circles B and Ξ do cross each other marginally; and of course in all these cases all the
roots w̃j(t) are periodic with period T, and in the context of the physical problem (2.10)
the solution is characterized by the simple periodicity rule (2.12). The restriction (1.29) on
the initial data is sufficient (but of course not necessary) to guarantee that we are in this
regime.

Proposition 3. If the circle Ξ is inside the circle B (i. e.
∣

∣ξ̄
∣

∣ + |R| < |rb| ), the circle Ξ
does include the origin ξ = 0 (i. e. |R| >

∣

∣ξ̄
∣

∣ or equivalently |η| < 1), and µ is outside the
interval 0 < µ < 1 then in the rational case, see (2.26 ),

(a) j̃ = 1 or j̃ = p− q if µ > 1

(b) j̃ = 1 or j̃ = |p| if µ < 0.

In the irrational case the time evolution of the generic root w̃(t) is either periodic with the
basic period T, or quasiperiodic, involving in particular a (nonlinear) superposition of two
periodic evolutions with two noncongruent periods, specifically (a) with period T and T

µ−1 if

µ > 1, (b) with period T and T
|µ| if µ < 0.

Remark 4. In the case identified in this Proposition 3 the only branch point inside Ξ is
that at ξ = 0, which is indeed only present if µ > 1 or µ < 0. Hence in the rational case
with p > q (i. e. µ > 1), p − q roots w̃j(t) get cyclically exchanged among themselves,
entailing that the time evolution of each of them has period (p− q) T, while the remaining
q roots have period T ; with an analogous phenomenology in the µ < 0. Likewise, when µ
is irrational, the periodicity of the time evolution of the generic root w̃(t) has period T if
the branch point at ξ = 0 is inactive (i. e., it does not appear on the sheet on which w̃(0)
lives), otherwise its time evolution can be inferred by replacing ξ with ξ(t), see (4.2), in the
formula characterizing the branch point at ξ = 0, see Chapter 3. Note however that for
the special initial data such that the two circles B and Ξ are concentric (i. e., η = 0) the
quasiperiodic time evolution of w̃(t) is instead periodic (a) with period T

µ−1 if µ > 1, (b)

with period T
|µ| if µ < 0.

Proposition 5. If the circle Ξ is outside the circle B (i. e. |R| >
∣

∣ξ̄
∣

∣ + |rb| ) then in the
rational case, see (2.26),

(a) j̃ = p if µ > 1,

(b) j̃ = q − p = q + |p| if µ < 0

(c) j̃ = p or j̃ = q − p if 0 < µ < 1.

In the irrational case the time evolution of the generic root w̃(t) is quasiperiodic, involv-
ing a (nonlinear) superposition of two periodic evolutions with two noncongruent periods,
specifically

(a) with periods T and T
µ if µ > 1,

(b) with periods T and T
1−µ if µ < 0,

(c) with periods T and T
µ or T and T

1−µ if 0 < µ < 1.
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Remark 6. In all the cases encompassed in this Proposition 5 the branch points of w (ξ) in
the finite part of the complex ξ-plane are all inside the circle Ξ, hence the dynamics of the
roots w̃j(t) can be understood in terms of the branch point of w (ξ) at ξ = ∞. Therefore
in the rational case with p > q (i. e. µ > 1) all the p roots get cyclically exchanged, so
that each of them gets back to its original value after a period p T ; likewise if p < 0 (i.
e. µ < 0) all the q + |p| roots get cyclically exchanged, so that each of them gets back
to its original value after a period (q + |p|) T. In the other rational case, 0 < p < q (i. e.
0 < µ < 1), p roots gets cyclically exchanged among themselves, and the remaining q − p
roots get cyclically exchanged among themselves, so that the generic root w̃(t) has period
p T if it belongs to the first set, and (q − p) T if it belongs to the second. And the outcome
in the irrational case can as well be understood in terms of the exponent of the branch
point at ξ =∞, see Subsections 3.1.1 and 3.2.1.

The situation is less straightforward (hence more interesting) if the two circles B and
Ξ do intersect each other (i. e.

∣

∣ξ̄
∣

∣ − |R| < |rb| <
∣

∣ξ̄
∣

∣ + |R|). Then the parameter that
plays a crucial role is the number b of square-root branch points, sitting on the circle B,
that fall inside the circle Ξ. This number b is finite, 1 ≤ b ≤ q (note that the case b = 0 is
taken care of by Proposition 1) only in the rational case, to which we restrict consideration
in the following Proposition 7 (and we exclude from consideration the nongeneric case in
which the circle Ξ hits one of the branch points sitting on the circle B). Then two or three
(but no more!) different alternatives are possible for the value of the positive integer j̃, as
detailed below.

Hereafter the notation bxc denotes the floor of the real number x, namely the largest
integer number not larger than x (hence for instance b−0.3c = −1, b0c = 0).

Proposition 7. (i). If p > q (i. e. µ > 1, see (2.26)) and the origin ξ = 0 is outside the
circle Ξ (i. e. |η| > 1), then j̃ can take one of the following 3 values:

j̃ = 1 or j̃ =

⌊

b− 1

p− q

⌋

+ 1 or j̃ =

⌊

b− 1

p− q

⌋

+ 2 . (4.6)

(ii). If p > q (i. e. µ > 1, see (2.26)) and the origin ξ = 0 is inside the circle Ξ (i. e.
|η| < 1), then j̃ can take one of the following 2 values:

j̃ = 1 or j̃ = b + p− q . (4.7)

(i’). If p < 0 (i. e. µ < 0, see (2.26)) and the origin ξ = 0 is outside the circle Ξ (i. e.
|η| > 1), then j̃ can take one of the following 3 values:

j̃ = 1 or j̃ =

⌊

b− 1

|p|

⌋

+ 1 or j̃ =

⌊

b− 1

|p|

⌋

+ 2 . (4.8)

(ii’). If p < 0 (i. e. µ < 0, see (2.26)) and the origin ξ = 0 is inside the circle Ξ (i. e.
|η| < 1 ), then j̃ can take one of the following 2 values:

j̃ = 1 or j̃ = b + |p| . (4.9)

(iii). The situation is more intriguing if 0 < p < q (i. e., 0 < µ < 1, see ( 2.26)). Then
one must introduce the simple continued fraction expansion of the number

q

q − p
=

1

1− µ
= a0 +

1

a1 + 1
a2+...

. (4.10)
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The kth convergent Ck of this continued fraction expansion (4.10), and in particular its
numerator Pk and denominator Qk,

Ck =
Pk

Qk
, (4.11)

are then defined by the recursions

Pk = ak Pk−1 + Pk−2 , P−2 = 0 , P−1 = 1 , k = 0, 1, 2, . . . (4.12)

Qk = ak Qk−1 + Qk−2 , Q−2 = 1 , Q−1 = 0, k = 0, 1, 2, . . . (4.13)

Note that these formulas apply equally if µ is rational or irrational; of course depending
whether µ is rational or irrational the continued fraction expansion does or does not termi-
nate. In the rational case under present discussion we also introduce another sequence of
nonnegative integers:

bk = q − (−)k [(p− q) Pk−2 + q Qk−2] , k = 0, 1, 2, . . . (4.14)

Given b, let the integer h and the period T (b) be defined by the following formulas:

bh ≤ b < bh+1, (4.15)

T (b) = Ph−2 +
(⌊

b−bh−1
q−bh+1

⌋

+ 2
)

Ph−1. (4.16)

Then the roots of the polynomial can have only one of the following three periods j̃:

j̃ = T (b) or j̃ = T (b)− Ph−1 or j̃ = Ph−1. (4.17)

This is the generic case; there are however some cases in which the roots have only the two
periods T (b) and Ph−1. This happens of course when T (b) = 2Ph−1 and whenever b takes
the following special values:

b = bh + n(q − bh+1), 0 ≤ n ≤ ah − 1, n integer. (4.18)

Remark 8. In case (i) of Proposition 7 the mechanism that yields periods longer than unity
is the coming into play of the b square-root branch points enclosed inside the circle Ξ, which
cause a certain number of roots w̃j(t) to exchange pairwise their roles through the time
evolution. But this phenomenology only affects some roots; others remain unaffected, hence
their periods remain unity, and this explains the first entry in (4.6). The precise form of the
other entries in this formula, (4.6), requires of course a more detailed treatment, see [2]; the
outcome there depends on how many pair exchanges actually do take place, or, equivalently,
how many sheets of the Riemann surface get actually visited, and this depends in a fairly
detailed manner on the specific structure of this surface. But note that only two different
periods may emerge, differing by only one unit.

In case (ii) of Proposition 7 the second mechanism, associated with the presence of the
branch point at ξ = 0, comes additionally into play, causing the connection of all the b
sheets containing the b square-root branch points, both among themselves and with the
(p − q) sheets containing the branch point at ξ = 0. The corresponding (b + p− q) roots
get permuted among themselves through the time evolution, with the period indicated by
the second entry in (4.7) (note that whenever p is quite large and b is close to its maximal
value q−1, the resulting period is quite large). The remaining (q− b) sheets, corresponding
to the (q − b) branch points lying on the circle B outside the circle Ξ, are isolated, hence
the corresponding roots do not take part in the quadrille, so that their period remains
unity, as indicated by the first entry in (4.7).
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The cases (i’) and (ii’) of Proposition 7 require no additional discussion.

In case (iii) of Proposition 7 (with 0 < p < q, i. e. 0 < µ < 1) there is no branch point
at ξ = 0; hence the mechanism is now absent that previously caused the connection of
all the sheets associated with the b square-root branch points sitting on the circle B inside
the circle Ξ. This implies, see [2], that each sheet of the Riemann surface contains only
two branch points, whose projections on the circle B are separated by (p− q) other branch
points. Note that this entails that two branch points which are adjacent on the circle B
in the complex ξ-plane are instead topologically far apart on the Riemann surface of the
function w(ξ), living on sheets which are not directly connected. As a consequence the
period of the time evolution of the root w̃(t) does not change, as the initial data change
causing the circle Ξ to change its position and dimension so that the number b of square-
root branch points enclosed in it increases, until some crucial square-root branch point
gets thereby included inside the circle Ξ, causing the connection of two separate groups
of connected sheets; and this mechanism occurs more and more frequently as b increases
more and more. This explained qualitatively the piecewise constant behavior of the period
as b increases, characterized by shorter and shorter steps and by bigger and bigger jumps,
see (4.16)-(4.17). The exact treatment of this mechanism, yielding (4.16)-(4.17), is rather
complicated, as indicated by the role played by the continued fraction expansion of the
number q

q−p . The details are given in [2]. Here we limit ourselves to emphasizing that,
for given initial data, the generic root w̃(t) can have only 3 possible periods, the third of
which is just the sum of the first two, see (4.17).

Let us now discuss the case in which µ is an irrational number, recalling that we are
now considering initial data (

∣

∣ξ̄
∣

∣ − |R| < |rb| <
∣

∣ξ̄
∣

∣ + |R|) such that the two circles B and
Ξ do intersect each other (the results for the other cases have been given in Propositions
1 – 5). One must then introduce the ratio ν of the length of the arc of the circle B that is
inside the circle Ξ, to the length of the entire circle B, see formula (3.45). Here we rephrase
(3.45) and ν in terms of ξ̄, R and rb, obtaining

ν =
1

π
arccos

(

|rb| 2 +
∣

∣ξ̄
∣

∣

2 − |R| 2

2
∣

∣rb ξ̄
∣

∣

)

, (4.19)

where the determination of the arccos function must be chosen so that 0 < ν < 1. The
results for the periods are then given by the following

Proposition 9. (i) If µ > 1 and the origin ξ = 0 is outside the circle Ξ (i. e. |η| > 1),
the time evolution of the generic root w̃(t) is still periodic with period T̃ = j̃ T and j̃ can
take one of the following 3 values:

j̃ = 1 or j̃ =

⌊

ν

µ− 1

⌋

+ 1 or j̃ =

⌊

ν

µ− 1

⌋

+ 2 . (4.20)

Note that the second and third entry only differ by one unit and moreover that, if µ > 2,
the floor functions vanish, hence for all values of µ larger than 2 (and |η| > 1) the only
possible values for j̃ are 1 or 2.

(ii) If µ > 1 and the origin ξ = 0 is inside the circle Ξ (i. e. |η| < 1), the time evolution
of the generic root w̃(t) is either periodic with period T or aperiodic.

(i’). If µ < 0 and the origin ξ = 0 is outside the circle Ξ (i. e. |η| > 1), the time
evolution of the generic root w̃(t) is still periodic with period T̃ = j̃ T and j̃ can take one
of the following 3 values:

j̃ = 1 or j̃ =

⌊

ν

|µ|

⌋

+ 1 or j̃ =

⌊

ν

|µ|

⌋

+ 2 . (4.21)
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Again the second and third entry only differ by one unit and moreover if |µ| > 1 the floor
functions vanish, hence we conclude that for all values of µ smaller than −1 the only possible
values for j̃ are 1 or 2.

(ii’) If µ < 0 and the origin ξ = 0 is inside the circle Ξ (i. e. |η| < 1), the time
evolution of the generic root w̃(t) is either periodic with period T or aperiodic.

(iii). The case 0 < µ < 1 is again more intriguing, and it requires again the use of the
continued fraction expansion of 1

1−µ , which however now does not terminate. We define
now in addition the (endless) sequence of real numbers

νk = 1− (−) k [(µ− 1) Pk−2 + Qk−2] , k = 0, 1, 2, ... (4.22)

(entailing ν0 = 0), and we then identify the nonnegative integer h via the inequalities

0 ≤ νh ≤ ν < νh+1 < 1 . (4.23)

Let T (ν) be defined by the following expression:

T (ν) = Ph−2 +

(⌊

ν − νh

1− νh+1

⌋

+ 2

)

Ph−1. (4.24)

Then the motion of the generic root w̃(t) is again periodic with period T̃ = j̃ T where j̃
can take one of the following 3 values:

j̃ = T (ν) or j̃ = T (ν)− Ph−1 or j̃ = Ph−1. (4.25)

Remark 10. The results for this case with irrational µ can be obtained from those for
rational µ (see Proposition 7) by taking appropriately the limit in which

(a) the integers p and q diverge with their ratio µ fixed (see (2.26)), and

(b) the number b of square-root branch points inside the circle Ξ, as well as the total
number q of square-root branch points, also diverge with their ratio fixed (recall that
all these square-root branch points sit, densely equispaced, on the circle B in the
complex ξ-plane although on different sheets of the Riemann surface of the function
w (ξ) – hence this ratio coincides with the quantity ν defined, and evaluated in terms
of the initial data, above, see (4.19)).

This also suggests obvious extensions to the present case with irrational µ of comments
contained in the Remark 8, which will not be repeated here. We therefore limit below our
remarks to aspects of the results reported in Proposition 9 having no immediate counterpart
in the comments contained in Remark 8.

In the cases (i) respectively (i’) of Proposition 9 the rules giving the period of the time
evolution of the generic root w̃(t), see (4.20) respectively (4.21), are fairly straightforward
and generally yield rather small periods, unless µ = 1 + ε respectively µ = −ε with ε an
irrational number positive but extremely small.

In cases (ii) and (ii’) of Proposition 9 the situation is quite interesting because the
time evolution of the generic root w̃(t) can be either periodic with the basic period T or
aperiodic. Note that in these cases the circle Ξ intersects the circle B that is densely filled
with square-root branch points, and moreover the branch point at ξ = 0 (which is now of
irrational exponent, see (1.46)) is inside the circle Ξ. This entails that, of the infinity of
square-root branch points located on the piece of the circle B that is inside Ξ, either none,
or all, are active. The first case obtains if the root w̃(t) under consideration is initially on
a sheet containing a branch point that does not fall inside Ξ, hence the time evolution of
this root w̃(t) ≡ w [ξ(t)] as the point ξ(t) travels round and round on the circle Ξ brings
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it back to its point of departure after a single round; equivalently, in this case the root
w̃(t) ≡ w [ξ(t)] belongs to a set of roots that does not get permuted as the point ξ(t) travels
round and round on the circle Ξ. In the second case the root w̃(t) under consideration
starts from a sheet of the Riemann surface that contains a branch point inside B, so that,
when ξ(t) travels round and round on the circle Ξ, an endless sequence of different sheets
get accessed by w̃(t) ≡ w [ξ(t)]; equivalently, such a root w̃(t) ≡ w [ξ(t)] belongs to a set
(including an infinity of roots) that does get permuted as the point ξ(t) travels round and
round on the circle Ξ, with both mechanisms – the pairwise exchange of some roots, and
the cyclic permutation of an infinite number of roots – playing a role at each round. The
identification of which sheets get thereby accessed, and in which order – namely the specific
shape of the trajectory when looked at, as it were stroboscopically, at the discrete sequence
of instants Tk = k T, k = 1, 2, 3, ...– is discussed in [2]. The extent to which this regime
yields irregular motions is discussed further below, also to illuminate the distinction in
these regimes between the time evolution entailed by our model with a given irrational
value of µ, and that of the analogous models with rational values of µ providing more and
more accurate approximations of the given irrational value of µ.

In case (iii) the time evolution is still isochronous, inasmuch as the results reported
above entail that, for any given initial data (excluding, of course, the special ones leading
to a collision; which are special in the same sense as a rational number is special in the
context of real numbers), the motion of every root w̃j(t) is periodic with one of the 3 periods
entailed by (4.25) (and note that the value of the integer j̃ provided by the third of these
3 formulas is just the sum of the 2 values for j̃ provided by the first 2 of these 3 formulas).
It is indeed clear that the initial data yielding such an outcome are included in an open set
of such data, having of course full dimensionality in the space of initial data, all yielding
the same outcome: since the periods do not change, see (4.25), if the change of the initial
data, hence the change in the ratio ν, is sufficiently tiny. However the measures of these
sets of data yielding the same outcome gets progressively smaller as the predicted periods
get larger, and moreover the corresponding predictions involve more and more terms in
the (never ending) continued fraction expansion of the irrational number 1

1−µ , see (4.10),
displaying thereby, as ν increases towards unity, a progressively more sensitive dependence
of the periodicity of our system on the initial data and moreover on the parameters (the
coupling constants, that determine the value of µ, see (2.25)) of our physical model (2.10).

In Figure 4.1, 4.2 and 4.3 we shortly and visually summarize our findings concerning the
the periodicity (if any) of the time evolution of a generic root w̃(t) of (4.3) with (4.2). The
identification of analogous, but of course more definite, results for the physical root w̌(t),
and the consequential information on the periodicity (if any) of the solution of the physical
problem (2.10) – as well as some additional information on the corresponding trajectories
of the coordinates zn(t) – are still open problems at the time this thesis is written and they
will be provided in [2].

4.2 Dependence of the solution on initial conditions

In this section we analyze the dependence of the period of the solutions zn(t) of (2.10) on
the initial data zn(0). We know from the previous section that this period depends on the
number and labels of the active branch points that fall inside the circle Ξ described by
ξ(t) in (4.2). The position of the branch points is fixed but the center ξ̄ and radius |R| of
the circle Ξ changes with the initial conditions as described by (4.2), (2.114) and (2.115).
For the time being we concentrate our analysis in the case where µ is rational, stating the
following

Proposition 11. If µ is a rational number, the system (2.10) is isochronous, i.e. for
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Ξ-circle vs B-circle µ < 0 and µ ∈ Q, µ = p
q

µ < 0 and µ /∈ Q

B

Ξ

0

B

Ξ

0

|ξ̄| + |R| < |rb| |R| > |ξ̄| + |rb|
|R| < |ξ̄|

The generic root w̃ is:

periodic with period T

see Prop.1

The generic root w̃ is:

periodic with period T

see Prop.1

B

Ξ

0

|ξ̄| + |R| < |rb|
|R| > |ξ̄|

The generic root w̃ is:

periodic with period T̃ = j̃ T

and j̃ can take one
of the following values:

j̃ = 1

or j̃ = |p|

see Prop.3

The generic root w̃ is:

periodic with period T

or quasi-periodic:
(nonlinear) superposition
of two periodic evolutions

with periods T and T
|µ|

see Prop.3

B

X

0

|R| < |ξ̄| − |rb|

The generic root w̃ is:

periodic with period T̃ = j̃ T

and j̃ = q + |p|

see Prop.5

The generic root w̃ is:

quasi-periodic:
(nonlinear) superposition
of two periodic evolutions

with periods T and T
1−µ

see Prop.5

B

Ξ

0

|ξ̄| − |R| < |rb| < |ξ̄| + |R|
|R| < |ξ̄|

The generic root w̃ is:

periodic with period T̃ = j̃ T

and j̃ can take one
of the following values:

j̃ = 1

or j̃ = 	 b−1
|p| 
 + 1

or j̃ = 	 b−1
|p| 
 + 2

see Prop.7

The generic root w̃ is:

periodic with period T̃ = j̃ T

and j̃ can take one
of the following values:

j̃ = 1

or j̃ = 	 ν
|µ| 
 + 1

or j̃ = 	 ν
|µ| 
 + 2

see Prop.9

B

Ξ

0

|ξ̄| − |R| < |rb| < |ξ̄| + |R|
|R| > |ξ̄|

The generic root w̃ is:

periodic with period T̃ = j̃ T

and j̃ can take one
of the following values:

j̃ = 1

or j̃ = b + |p|

see Prop.7

The generic root w̃ is:

periodic with period T

or aperiodic

see Prop.9

Figure 4.1: Periods, with respect to the mutual position of the Ξ-circle and the B-circle,
for rational and irrational values of µ < 0 (b is the number of consecutive SRBPs included
in Ξ; the variable ν is defined as in (3.45)).
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Ξ-circle vs B-circle 0 < µ < 1 and µ ∈ Q, µ = p
q

0 < µ < 1 and µ /∈ Q

B

Ξ

0

|ξ̄| + |R| < |rb|
|R| < |ξ̄|

B

Ξ

0

|R| > |ξ̄| + |rb|

The generic root w̃ is:

periodic with period T

see Prop.1

The generic root w̃ is:

periodic with period T

see Prop.1

B

Ξ

0

|ξ̄| + |R| < |rb|
|R| > |ξ̄|

The generic root w̃ is:

periodic with period T

see Prop.1

The generic root w̃ is:

periodic with period T

see Prop.1

B

X

0

|R| < |ξ̄| − |rb|

The generic root w̃ is:

periodic with period T̃ = j̃ T

and j̃ can take one
of the following values:

j̃ = q − p or j̃ = p

see Prop.5

The generic root w̃ is:

quasi-periodic:
(nonlinear) superposition
of two periodic evolutions

with periods T and T
µ

or with periods T and T
1−µ

see Prop.5

B

Ξ

0

B

Ξ

0

|ξ̄| − |R| < |rb| < |ξ̄| + |R|

q
q−p

= a0 + 1

a1+ 1
a2+...

Pk = ak Pk−1 + Pk−2

Qk = ak Qk−1 + Qk−2

P
−2 = 0, P

−1 = 1, Q
−2 = 1, Q

−1 = 0

bk = q − (−)k[(p − q) Pk−2 + q Qk−2]

bh ≤ b < bh+1

T (b) = Ph−2 +
b−bh−1

q−bh+1
+ 2 Ph−1

The generic root w̃ is:

periodic with period T̃ = j̃ T

and j̃ can take one
of the following values:

j̃ = T(b)

or j̃ = T(b) − Ph−1

or j̃ = Ph−1

see Prop.7

1
1−µ

= a0 + 1

a1+ 1
a2+...

Pk = ak Pk−1 + Pk−2

Qk = ak Qk−1 + Qk−2

P
−2 = 0, P

−1 = 1, Q
−2 = 1, Q

−1 = 0

νk = q − (−)k[(µ − 1) Pk−2 + Qk−2]

0 ≤ νh ≤ ν < νh+1 < 1

T (ν) = Ph−2 +
ν−νh

1−νh+1
+ 2 Ph−1

The generic root w̃ is:

periodic with period T̃ = j̃ T

and j̃ can take one
of the following values:

j̃ = T(ν)

or j̃ = T(ν) − Ph−1

or j̃ = Ph−1

see Prop.9

Figure 4.2: Periods, with respect to the mutual position of the Ξ-circle and the B-circle, for
rational and irrational values of 0 < µ < 1 (b is the number of consecutive SRBPs included
in Ξ; the variable ν is defined as in (3.45)).
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Ξ-circle vs B-circle µ > 1 and µ ∈ Q, µ = p
q

µ > 1 and µ /∈ Q

B

Ξ

0

B

Ξ

0

|ξ̄| + |R| < |rb| |R| > |ξ̄| + |rb|
|R| < |ξ̄|

The generic root w̃ is:

periodic with period T

see Prop.1

The generic root w̃ is:

periodic with period T

see Prop.1

B

Ξ

0

|ξ̄| + |R| < |rb|
|R| > |ξ̄|

The generic root w̃ is:

periodic with period T̃ = j̃ T

and j̃ can take one
of the following values:

j̃ = 1

or j̃ = p − q

see Prop.3

The generic root w̃ is:

periodic with period T

or quasi-periodic:
(nonlinear) superposition
of two periodic evolutions

with periods T and T
µ−1

see Prop.3

B

X

0

|R| < |ξ̄| − |rb|

The generic root w̃ is:

periodic with period T̃ = j̃ T

and̃j = p

see Prop.5

The generic root w̃ is:

quasi-periodic:
(nonlinear) superposition
of two periodic evolutions

with periods T and T
µ

see Prop.5

B

Ξ

0

|ξ̄| − |R| < |rb| < |ξ̄| + |R|
|R| < |ξ̄|

The generic root w̃ is:

periodic with period T̃ = j̃ T

and j̃ can take one
of the following values:

j̃ = 1

or j̃ = 	 b−1
p−q 
 + 1

or j̃ = 	 b−1
p−q 
 + 2

see Prop.7

The generic root w̃ is:

periodic with period T̃ = j̃ T

and j̃ can take one
of the following values:

j̃ = 1

or j̃ = 	 ν
µ−1 
 + 1

or j̃ = 	 ν
µ−1 
 + 2

see Prop.9

B

Ξ

0

|ξ̄| − |R| < |rb| < |ξ̄| + |R|
|R| > |ξ̄|

The generic root w̃ is:

periodic with period T̃ = j̃ T

and j̃ can take one
of the following values:

j̃ = 1

or j̃ = b + p − q

see Prop.7

The generic root w̃ is:

periodic with period T

or aperiodic

see Prop.9

Figure 4.3: Periods, with respect to the mutual position of the Ξ-circle and the B-circle,
for rational and irrational values of µ > 1 (b is the number of consecutive SRBPs included
in Ξ; the variable ν is defined as in (3.45)).
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every initial data {z1(0), z2(0), z3(0)} there is an open set S in phase space that contains
the initial data, such that all trajectories of (2.10) with initial data in S have the same
period.

Proof. It suffices to realize that the only way the period of the orbit can change is if the
circle Ξ encircles a different number of active branch points. We recall that an active branch
point is a branch point whose projection on the complex plane lies inside the circle Ξ and
it sits on a sheet that is accessed by w̌(t) as ξ(t) turns on the circle Ξ. Obviously the active
or inactive character of a branch point depends on the other branch points enclosed by Ξ
and their characterization requires a detailed knowledge of the geometry of the Riemann
surface. For µ ∈ Q the active branch points are isolated in the complex plane and since
the center and radius of the circle Ξ have a continuous dependence on the initial data
{z1(0), z20, z30}, given one point in phase space there is an open set S that contains it such
that the branch point configuration inside Ξ for every point in S is the same.

We see thus that the periodic orbits of (2.10) in the µ-rational case are stable with
respect to small changes in the initial position. The phase space is divided into a finite
number of regions of isochronicity, each of them having positive measure. The boundaries
of these regions have null measure and correspond to the the initial data for which the circle
Ξ contains an active branch point. In the three-body problem (2.10) these are the initial
data for which a collision occurs at some finite time t and therefore we will refer to these
boundaries as collision manifolds.

Proposition 12. If µ is a rational number, the collision manifolds are algebraic.

Proof. The condition that defines a collision manifold is

|ξb − ξ| = |R| , (4.26)

where ξb denotes an active branch point.
From (2.114) it is clear that both the center ξ and the radius |R| of Ξ are algebraic

functions of {z1(0), z2(0), z3(0)} and since ξb does not depend on the initial data, then the
relation (4.26) defines an algebraic manifold.

4.2.1 Sections of phase space

A convenient way of visualizing the collision manifolds and the regions of isochronicity is
to look at sections of phase space. This will be done by keeping fixed the initial positions
of two particles and letting the initial position of the third particle vary. In particular, we
have chosen the following values

z1(0) = (0, 0), (4.27a)

z2(0) = (x, y), (4.27b)

z3(0) = (1, 0), (4.27c)

and we are interested in analyzing T (x, y), the period of the orbit as a function of z2(0) =
(x, y). The calculation of the period can be explicitly performed by purely algebraic con-
siderations: as x and y change we know how the center and radius of the circle Ξ change
(see expression (4.2) with (2.114) and (2.115)). Since the position of the branch points ξb

of w(ξ) is fixed (2.103), the number and the labels of the branch points enclosed by Ξ can
be easily calculated. The final and the more complicated step is to use our knowledge of
the geometry of the Riemann surface obtained in Chapter 3 to predict the period of w̌(t)
(we stress once again that the identification, among the J roots of (4.3), of the root which
describes the physical model is still an open problem).

From this point on it will be convenient to separate the analysis for the two cases µ > 1
and 0 < µ < 1 for which the Riemann surfaces have different properties (see Chapter 3).
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4.2.1.1 Case µ > 1

We set the coupling constants of the three-body problem to the following values:

f = −12, g = 0.5, (4.28)

which imply that µ = 11/8. We also set the frequency parameter

ω = 2π,

so that the fundamental period is unity. The results of the calculation have been displayed
in Figure 4.4. A 2-dimensional section showing the regions of isochronicity can be seen in
Figures 4.4a and 4.4b (which corresponds to a zoom of the dotted square of Figure 4.4a).
These regions are defined by the intersection of a set of algebraic curves that correspond to
the collision manifolds. In the two figures below we have plotted a 1-dimensional section
of the above plots, corresponding to the x coordinate of z2(0), while the y coordinate has
been fixed to the value y = 1 in Figure 4.4c and y = 0.8 in Figure 4.4d (corresponding to
the dotted lines on the above figures). Note that period is a piecewise constant function of
x with finite jumps at the collision curves.

The following four Figures 4.4e–h show the relative position of the evolution circle
Ξ with respect to the circle of B of branch points for the different values of the initial
conditions depicted in Figure 4.4b. In Figure 4.4e note that although the circle Ξ encloses
(the projection of) one square-root branch point, this branch point is inactive, i.e. it is
lying on a higher sheet of the Riemann surface which is not accessed by the evolution, and
therefore the period of w̌(t) is one. In Figure 4.4f the circle Ξ now encircles the branch
point on the principal sheet and two other inactive ones, and therefore the period of w̌(t)
corresponding to these initial conditions is two. In Figure 4.4g we see that the inclusion
of the origin has quite a drastic effect, since the branch point at ξ = 0 attaches p − q
sheets together. The inclusion of the origin means that all the four square-root branch
points enclosed by Ξ become active and the period jumps from 2 to 7. When the origin
is included, every successive square-root branch point included by Ξ causes the period to
rise by one (this can be seen explicitly in Figure 4.4d), and for instance in Figure 4.4h the
period is 10. We shall prove below that this drastic effect of the inclusion of the origin will
give rise to a sensitive dependence of the system on the initial data when the parameter µ
is an irrational number.

4.2.1.2 Case 0 < µ < 1

In this case we have chosen an example where the coupling constants of the three-body
problem assume the following values:

f = 16, g = 7, (4.29)

entailing that µ = 5/12. As in the previous case we also set ω = 2π. The dependence
of the period of w̌(t) on the initial conditions (4.27) has been displayed in Figure 4.5. In
the first line, figures 4.5a and 4.5b show the 2D plots of T (x, y), the second being a zoom
of the first corresponding to the area marked by a dotted square. Below these figures we
show again the 1-dimensional sections that correspond to fixing the value of y to y = −1
and y = −1.3 respectively (dotted lines in Figures a and b). We see that the isochronous
character of the model is manifest in the piecewise constant behavior of the period as a
function of the initial conditions, with jumps at the values of (x, y) that correspond to a
collision curve. As stated in Proposition 12 these collision curves are algebraic and their
defining equations can be easily derived from (4.26) and (2.114). However, the expressions
are rather involved and we have chosen just to show the plots rather than performing a full
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Figure 4.4: Period of the solution as a function of the initial data for the case µ = 11/8
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analytical description. The four Figures 4.5e–h show the relative position of the evolution
circle Ξ with respect to the circle of B of branch points for the different values of the initial
conditions depicted in Figure 4.5b. In the first of them, Figure 4.5e we see that Ξ encloses
six branch points, but all of them are inactive and therefore the period of w̌(t) is one (note
that the origin is not a branch point in the case 0 < µ < 1). In Figure 4.5f only one active
branch point is enclosed giving rise to a period of T = 2. Similarly, in the other two figures
the periods are T = 3 and T = 5. Note that in this case the only singularities of the
Riemann surface in the finite complex plane are square root branch points (a finite number
of them if µ is rational). This means that each sheet is only attached to another sheet and
it is more difficult for the period to have big jumps as new branch points are included. This
is in contrast to the case µ > 1 where the origin is a branch point of order p − q. As a
matter of fact, in the case 0 < µ < 1 there is no sensitive dependence of the initial data
even if µ is irrational.

4.2.2 Sensitive dependence on initial conditions

We concentrate in this section on the case µ > 1 to prove the following

Proposition 13. If the coupling constants f and g of the dynamical system (2.10) are such
that µ is an irrational number greater than one, then the collision manifolds are dense on
an open set S in phase space.

Proof. The proof is constructive since the open set S can be explicitly computed:

S = {(z1(0), z2(0), z3(0)) s.t. rb − |R| < |ξ| < |R|} (4.30)

where rb depends only on µ and is given by (2.103), and R and ξ are given by (2.114)
and (2.115). This set S corresponds to the initial data of (2.10) such that the circle Ξ
encloses the origin ξ = 0 and has a non-trivial intersection with the circle B of square-root
branch points. When µ > 1 and the origin is included in Ξ, all the square root branch
points enclosed by Ξ are active since the branch point at the origin connects all the sheets.
But these active branch points fill densely the circle B when µ is irrational, therefore the
collision manifolds are dense in S.

Corollary 14. Under the assumptions of the previous Proposition 13, the solutions of the
dynamical system (2.10) with initial data in the open set S feature sensitive dependence on
their initial conditions.

It is fundamental to stress that the mechanism that leads to a sensitive dependence in
the model treated herein is different from the sensitive dependence with positive Lyapunov
exponents that usually appears in chaotic dynamical systems. As opposed to the charac-
teristic exponential divergence, in our system two trajectories that start very close to each
other do remain close to each other for quite some time until eventually they depart from
each other in a drastic manner. This paradigm can be understood both from the physical
and the mathematical points of view. From a physical point of view, the origin of the
departure is due to a near collision between the two different particles: in one trajectory
the particles slide past each other in one way, while in the other they scatter in the opposite
way, as depicted in Figure 4.5. The future of the two trajectories from that point on is
completely different and they become uncorrelated.

From a mathematical point of view the origin of the sensitive dependence is due to
the fact that the circle Ξ passes very close to an active square root branch point ξb. Both
trajectories w̌(t) travel on very close paths on the Riemann surface for possibly many
periods until eventually they reach the sheet on which the branch point ξb sits. Then one
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Figure 4.5: Period of the solution as a function of the initial data for the case µ = 5/12



156 CHAPTER 4. COMPLEX DYNAMICS

trajectory continues on the same branch while the other one crosses the cut and jumps to
a different branch of the Riemann surface, following different paths from that point on.

Numerical techniques of integration will have problems when integrating the equations
(2.10) with initial conditions in S under the assumptions of Proposition 13. The result
of the integration will be very close to the true trajectory for some time until the error
accumulated causes the numerical take some branch on the “wrong” side. Predicting at
which time this happens however requires to be able to identify on which sheet each branch
point lies, or otherwise speaking, which of all the branch points is the one that lies on the
principal sheet. Identifying which is the branch point that lies on the principal sheet is still
an open problem, but this determination would require infinite precision of calculus if µ
is an irrational. It seems that the near misses described above happen at a time which is
almost impossible to predict in real applications.

We have tried to illustrate this sensitive dependence in Figure 4.7. In the first column
we have plotted the map T (x, y) representing the dependence of the period of w̌(t) on the
initial positions (4.27) for a range of values of x and y that includes part of the region S
defined by (4.30). In the second column of Figure 4.7 we have plotted the period for a fixed
value of y, specifically for y = 0.7, corresponding to the dotted line in the 2D plots of the
first column. In this column we clearly appreciate that the period has a jump at the point
where the circle Ξ passes by the origin. In the third column of figure 4.7 we have plotted
the relative positions of the circles B and Ξ corresponding to a point that belongs to S. We
have chosen the point (x = 0.7, y = 0.7) which is represented by a cross in the plots of the
first column. Each of the lines corresponds to a different value of the coupling constants,
such that the parameter µ has more or less the same magnitude but its rational expression
has a larger denominator. The specific values chosen can be read from the following table:

f g µ T (0.7, 0.7)

-12 0.5 11/8 7
-12.1 0.5 37/27 23
-12.2 0.5 56/41 35
-12.35 0.5 227/167 147

Figure 4.6: Sequence of values of µ in Figure 4.7.

4.2.3 Rational approximations to irrational values of µ

Last but not least let us elaborate on the character of the aperiodic time evolution indicated
under item (ii) of Proposition 9, including the extent it is irregular and it depends sensitively
on its initial data. It is illuminating to relate this question with the finding reported under
item (ii) of Proposition 7, also in order to provide a better understanding of the relationship
among the aperiodic time evolution that can emerge when µ is irrational (see item (ii)
of Proposition 9) and the corresponding behavior – say, with the same initial data – for
a sequence of models with rational values of µ (see (2.26)) that provide better and better
approximations to that irrational value of µ; keeping in mind the qualitative difference
among the aperiodic time evolution emerging when µ is irrational , and the periodic –
indeed, even isochronous – time evolutions prevailing whenever µ is rational, albeit with
the qualifications indicated under item (ii) of Remark 8. Note that we are now discussing
the case µ > 1 (an analogous discussion in the µ < 0 case can be forsaken), with initial
data such that the two circles B and Ξ in the complex ξ-plane do intersect and moreover
the origin ξ = 0 falls inside the circle Ξ (i. e. |rb| <

∣

∣ξ̄
∣

∣+ |R| and |η| < 1).

Let us then consider a given irrational value of µ > 1 and let the rational number p
q
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Figure 4.7: Sensitive dependence of the period on initial data.
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(with p > q) provide a very good approximation to µ, which of course entails that the
positive integers p and q are both very large. Consider then the difference

∆ j̃ = ∆ b (4.31)

(see the second entry in (4.7)) between the two positive integers that characterize the two
periods of the two time evolutions of w̃(t) corresponding to two sets of initial data that
differ very little. Here clearly the quantity ∆ b is the difference between the number of
branch points that are enclosed inside the circle Ξ for these two different sets of initial
data. Since the number q of branch points on B is very large, it stands to reason that

∆ b = bO(q δ)c , (4.32)

where the quite small (positive) number δ provides a (dimensionless) measure of the dif-
ference between the two sets of initial data (see for instance (4.19), which clearly becomes
approximately applicable when q is very large). The floor symbol b c has been introduced
in the right-hand side of this formula to account for the integer character of the numbers b
hence of their difference ∆ b, while the order of magnitude symbol O ( ) indicates that the
difference ∆ b is proportional (in fact equal, given the latitude left by our definition of the
quantity δ) to the quantity q δ up to corrections which become negligibly small when δ is
very small and q is very large, but irrespective of the value of the quantity q δ itself which,
as the product of the large number q by the small number δ, is required to be neither small
nor large.

The relation
∆ j̃ = bO(q δ)c (4.33)

implied by this argument indicates that, for any given q, one can always choose (finitely
different) initial data which differ by such a tiny amount that the corresponding periods are
identical, confirming our previous statement about the isochronous character of our model
whenever the parameter µ is rational. But conversely this finding also implies that, for any
set of initial data in the sector under present consideration (i. e. that characterized by the
inequalities |η| < 1 and

∣

∣ξ̄
∣

∣+ |R| > |rb| , and by the additional specification to identify the
physical root w̌(t)), if our physical model (2.10) is characterized by an irrational value of µ,
see (2.25), and one replaces this value by a more and more accurate rational approximation
of it, see (2.26) – as it would for instance be inevitable in any numerical simulation –
corresponding to larger and larger values of p and q, then one shall have to choose the two
different assignments of initial data closer and closer to avoid a drastic change of period
– and for these very close sets of data the motion is indeed periodic with a period which
becomes larger and larger the better one approximates the actual, irrational, value of µ. We
repeat again that in any numerical simulation the accuracy of the computation, in order to
get the correct period, shall also have to increase more and more (with no limit), because of
the occurrence of closer and closer near misses through the time evolution (associated with
the coming into play of active branch points sitting on the circle B closer and closer to the
points of intersection with the circle Ξ). And finally, if one insists in treating the problem
with a truly irrational µ, then, no matter how close the initial data are, the change in
the periods becomes infinite because the difference ∆b in the number of active square-roots
branch points on the circle B included inside the circle Ξ is infinite (see (4.31)), signifying
that the motion is aperiodic, and that its evolution is indeed characterized by an infinite
number of near misses, making it truly irregular.

This phenomenology, together with that of the near misses as described above, illus-
trates rather clearly the irregular character of the motions of our physical model when the
coupling constants have appropriate values (such as to produce an irrational value of µ
outside the interval 0 < µ < 1) and the initial data are in the sector identified above. Note



4.3. OUTLOOK 159

that the Lyapunov coefficients associated with the corresponding trajectories vanish, be-
cause these coefficients – as usually defined – compare the difference (after an infinitely long
time) of two trajectories that, to begin with, differ infinitesimally ; whereas our mechanism
causing the irregular character of the motion requires, to come into play, an arbitrarily
small but finite difference among the initial data. The difference between these two no-
tions corresponds to the fact that inside the interval between two different real numbers –
however close they may be – there always is an infinity of rational numbers; while this is
not the case between two real numbers that differ only infinitesimally ! This observation
suggests that, in an applicative context, the mechanism causing a sensitive dependence on
the initial data manifested by our model may be phenomenologically relevant even when no
Lyapunov coefficient, defined in the usual manner, is positive. As already observed previ-
ously, see Chapter 1 and, for instance, [6, 7], this mechanism is in some sense analogous to
that yielding aperiodic trajectories in a triangular billiard with irrational angles; although
in that case – in contrast to ours – this outcome is mainly attributable to the essentially
singular character of the corners.

4.3 Outlook

In this thesis we have introduced and discussed a 3-body problem in the plane suitable to
illustrate a mechanism of transition from regular to irregular motions. This model is the
simplest one we managed to manufacture for this purpose. Its simplicity permitted us to
discuss in considerable detail the mathematical structure underlining this phenomenology:
this machinery cannot however be too simple since it must capture (at least some of) the
subtleties associated with the onset of an irregular behavior.

Our main motivation to undertake this research project is the hunch that this mechanism
of transition have a fairly general validity and be relevant in interesting applicative contexts.
Hence we plan to pursue this study by focussing on other cases where this mechanism is
known to play a key role, including examples (see, for instance, [6, 7] and [62]) featuring a
pattern of branch points covering densely an area of the complex plane of the independent
variable rather than being confined just to reside densely on a line as is the case in the
model treated herein; and eventually to extend the application of this approach to problems
of direct applicative interest.

In this connection the following final observation is perhaps relevant. In the present
work as well as in others (see [6, 7, 62] and in the references cited at the beginning of
Section 1.2) the main focus has been on models featuring a transition from an isochronous
to an irregular regime, and in this context much emphasis was put on the “trick” (see
Subsection 1.1.2) and in particular on the relationship it entails between the periodicity of
the (“physical”) dependent variables zn(t) as functions of the real independent variable t
(“time”) and the analyticity of other, related (“auxiliary”) dependent variables ζn (τ) as
functions of a complex independent variable τ . But our findings can also be interpreted
directly in terms of the analytic properties of the physical dependent variables zn(t) as
functions of the independent variable t considered itself as a complex variable. Then the
time evolution, which corresponded to a uniform travel round and round on the circle C in
the complex τ -plane or equivalently on the circle Ξ in the complex ξ-plane, is represented
as a uniform travel to the right along the real axis in the complex t-plane, while, via the
relations (see (2.7) and (4.2))

t = (2 i ω)−1 log (1 + 2 i ω τ) = (2 i ω)−1 log

(

ξ − ξ̄

R

)

, (4.34)

the pattern of branch points in the complex τ -plane or equivalently in the complex ξ-
plane gets mapped into a somewhat analogous pattern in the complex t-plane, repeated
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Figure 4.8: Evolutionary paths and branch points of the solutions in the complex ξ-plane
and t-plane for µ = 15/37.

periodically in the real direction with period T , see (2.8). In particular – to mention the
main features relevant to our treatment, see above – the circle B on which the square-root
branch points in the complex ξ-plane sit, gets mapped in the complex t-plane into a curve
B̂ on which sit the square-root branch points in the complex t-plane; note that this curve
B̂ (in contrast to the circle B) does now depend on the initial data. This curve is of course
repeated periodically; it is closed and contained in each vertical slab of width T (see Figure
4.8b) if the point ξ̄ is outside B , otherwise it is open , starting in one slab and ending in
the adjoining slab at a point shifted by the amount T ; and it does not or does cross (of
course twice in each period) the real axis in the complex t-plane depending whether, in
the complex ξ-plane, the two circles B and Ξ do not or do intersect each other (see Figure
4.8a).

Likewise, depending whether it is inside or outside the circle Ξ, the point ξ = 0 – which,
as entailed by our analysis, is a highly relevant branch point in the complex ξ-plane (unless
0 < µ < 1) – gets mapped into an analogous branch point located in each vertical slab above
or below the real axis in the complex t-plane; while the other branch point, at ξ = ∞ in
the complex ξ-plane, gets mapped into an analogous branch point located at infinity in the
lower half of the complex t-plane. Clearly the physical mechanism of near misses, which is
the main cause of the eventual irregularity of the motion, becomes relevant only for initial
data such that the curve B̂ crosses the real axis, thereby causing (if µ is irrational) an
infinity of square-root branch points of the functions zn(t) to occur arbitrarily close to the
real axis in the complex t-plane – branch points which are however active (namely, they
actually cause a near miss in the physical evolution) in only some (yet still an infinity)
of the infinite number of vertical slabs in which the complex t-plane gets now naturally
partitioned. The near miss implies that the two particles involved in it slide past each
other from one side or the other depending whether the corresponding branch point is just
above or just below the real axis in the complex t-plane. The sensitive dependence on the
initial data is due to the fact that any tiny change of them causes some active branch
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point in the complex t-plane which is very close to real axis to cross over from one side of
it to the other, thereby drastically changing the outcome of the corresponding near miss.

This terse discussion shows clearly that the explanation of the irregular behavior of
a dynamical system in terms of travel on a Riemann surface is by no means restricted
to isochronous systems. We found it convenient to illustrate in detail this paradigm by
focussing in this thesis on a simple isochronous model and by using firstly τ and then ξ
as independent complex variables – but, as outlined just above, our analysis can also be
done – albeit less neatly – by using directly the independent complex variable t; and the
occurrence of a kind of periodic partition of the complex t-plane into an infinite sequence
of vertical slabs – characteristic of our isochronous model – does not play an essential role
to explain the irregular character of the motion when such a phenomenology does indeed
emerge. The essential point is the possibility to reinterpret the time evolution as travel on
a Riemann surface, the structure of which is sufficiently complicated to cause an irregular
motion featuring a sensitive dependence on its initial data. The essential feature causing
such an outcome is the presence of an infinity of branch points arbitrarily close to the real
axis in the complex t-plane, the positions of which, as well as the identification of which of
them are active, depends on the initial data nontrivially. The model treated in this work
shows that such a structure can be complicated enough to cause an irregular motion, yet
amenable to a simple mathematical description yielding a rather detailed understanding
of this motion; this suggests the efficacy also in more general contexts of this paradigm to
understand (certain) irregular motions featuring a sensitive dependence on their initial data
and possibly even to predict their behavior to the extent such a paradoxical achievement
(predicting the unpredictable!) can at all be feasible.



162 CHAPTER 4. COMPLEX DYNAMICS



APPENDIX A

The Algebraic Equations (2.39)

In this appendix we solve, in the semisymmetrical case, see (2.2), the nonlinear algebraic
equations (2.39) that characterize the equilibrium configurations and we thereby compute
the “eigenvalue” γ(3), namely we obtain its two expressions (2.51a) and (2.51b).

The equations to be solved read (see (2.39))

α1 =
2g

α1 − α3
+

2f

α1 − α2
, (A.1a)

α2 =
2g

α2 − α3
− 2f

α1 − α2
, (A.1b)

α3 =
2g

α3 − α1
+

2g

α3 − α2
, (A.1c)

and they of course imply the relation

α1 + α2 + α3 = 0 . (A.2)

It is now convenient to set

S = α1 + α2 , D = α1 − α2 , (A.3a)

entailing

α1 =
S + D

2
, α2 =

S −D

2
, α3 = −S . (A.3b)

From (the sum of) (A.1a) and (A.1b) we easily get

S
(

9 S2 −D2
)

= 24 g S , (A.4)

and from this we get two types of solutions. The first solution is characterized by S = 0,
implying (see (A.3b) and (A.1a))

α3 = 0 , α1 = −α2 = α , α2 = f + 2g , (A.5)

entailing (via (2.38)) the solution (2.49) for the equilibrium configuration, as well as (via
(2.40b) with (2.2)) the expressions

β3 =
f

2 (f + 2 g)
=

ϕ

2 (ϕ + 2)
, (A.6a)

β1 = β2 =
2 g

f + 2 g
=

2

ϕ + 2
, (A.6b)
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hence, via (2.47), the first expression, (2.51a), for γ(3).
The second solution is characterized by

9 S2 −D2 = 24 g . (A.7)

We now subtract (A.1b) from (A.1a) and we thereby easily get

D2 =
−8 g D2

9 S2 −D2
+ 4 f , (A.8)

hence, via the preceding relation,

D2 = 3 f , S2 =
f + 8 g

3
. (A.9)

And via (2.40b) with (2.2) and (A.3b) this is easily seen to yield

β1 + β2 + β3 =
f + 8 g

6 g
=

ϕ + 8

6
, (A.10)

namely, via (2.47), the second expression, (2.51b), of γ(3).
Note moreover that, in both cases, one gets the relation

(α1 − α2)
2 + (α2 − α3)

2 + (α3 − α1)
2 = 6 (f + 2 g) , (A.11)

as can be easily verified from (A.5) as well as from (A.3) with (A.9).
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Solution of the ODE (2.87)

In this Appendix we explain how to integrate the ODE (2.87) in the general case when the
three coupling constants gn are all different, namely when the restriction (2.2) identifying
the semisymmetrical case does not apply, and we also provide the solution of the ODE
(2.87) in the two special cases (belonging to the semisymmetrical class characterized by the
restriction (2.2)) the treatment of which had been omitted in Section 2.5, and as well in
another special case not belonging to the semisymmetrical class.

The general case

In this subsection of Appendix B we indicate how the ODE (2.87) can be integrated in the
general case when the three coupling constants gn are all different. It is then convenient
to set

V (τ) = tan [θ (τ)] , (B.1)

so that this ODE read

V ′ V
(

V 2 − 3
)

(V 2 + 1) (A V 3 + C V 2 + A V + C − 2)
=

1

(τ − τ1)
(B.2)

with

A =

√
3 (g1 − g2)

2 (g1 + g2 + g3)
, C =

4 g1 + 4 g2 + g3

2 (g1 + g2 + g3)
. (B.3)

To integrate this ODE we set

A V 3 + C V 2 + A V + C − 2 = A (V − V1) (V − V2) (V − V3) , (B.4)

so that the three quantities Vn are the three roots of this polynomial of third degree in V.
We then decompose this rational function of V in simple fractions,

V
(

V 2 − 3
)

(V 2 + 1) (A V 3 + C V 2 + A V + C − 2)
=

5
∑

j=1

µj

V − Vj
, (B.5)

where of course

V4 = i , V5 = −i , (B.6)

and the five quantities µj are easily evaluated in terms of A, C and the 3 roots Vn.
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The integration of the ODE (B.2) is now trivial (using (B.5)), and it yields (using (B.6))
the final formula

[V (τ)− i]λ4 [V (τ) + i]λ5

3
∏

n=1

[V (τ)− Vn]λn = K (τ − τ1) , (B.7)

where K is the integration constant.

Two special subcases of the semisymmetrical case

In this subsection of Appendix B we provide the solution of the ODE (2.87) in the two
special subcases (of the semisymmetrical case) the treatment of which had been omitted in
Section 2.5, and as well in another special case not belonging to the semisymmetrical class.

If
g1 + g2 + g3 = 0 , (B.8)

ρ is constant (namely τ -independent, ρ (τ) = ρ (0), see (2.84c)). Moreover, via the restric-
tion ( 2.2) characterizing the semisymmetrical class, we get (see also (2.25))

f = −2 g, ϕ = −2 , µ = 0 . (B.9a)

Then (2.89) is replaced by

u (τ) exp
[

−2 u2 (τ)
]

= exp

[

3 f (τ − τ0)

ρ2 (0)

]

. (B.9b)

Let us also note that, if (2.2) were replaced by

g1 = −g2 = g , g3 = 0 , (B.10a)

which is also consistent with (B.8), then (2.89) with (2.86) would be replaced by

θ (τ) + sin [2 θ (τ)] =
2
√

3 g (τ0 − τ)

ρ2 (0)
. (B.10b)

Returning to the semisymmetrical case characterized by validity of the restriction (2.2)
we now consider the second case the treatment of which had been omitted in Section 2.5,
namely

f = −8 g, ϕ = −8 . (B.11a)

Note that in this case µ diverges, see (2.25). Then (2.89) is replaced by

u (τ) exp
[

u2 (τ)
]

= [K (τ − τ1)]
−1/2 . (B.11b)

Note that the two values ϕ = −2 and ϕ = −8 were already identified as special boundary
cases in the treatments of Section 2.4, see for instance (2.73a), and of Section 2.6.
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Explicitly Solvable Cases

In this section we identify several cases which are nontrivial (namely, with at least two
nonvanishing coupling constants, hence not reducible to the disjointed union of a two-
body, and a free one-body, problem), for which the solution zn(t) of our model (2.10) can
be exhibited in completely explicit form. All these cases belong to the semisymmetrical case
with coupling constants f and g that are congruent so that ϕ, see (2.2), is real and rational,
as well as µ, see (2.25) and (2.26). They correspond to special assignments of the coupling
constants that cause the (relevant) algebraic equation (2.117) to be polynomial of degree at
most four, hence explicitly solvable for w̃(t). Hence all their solutions zn(t) are completely
periodic, except for a lower dimensional set of solutions that become singular due to the
collision of two particles, or even more exceptionally, of all three particles (note that, at the
singularity, the values of the particle coordinates are finite, but their velocities diverge).
These solutions, besides their intrinsic interest as motions in the plane determined by the
equations of motion (2.10), allow to verify the findings discussed in Section 2.6, including
the structure of the Riemann surface associated with the solution w (ξ) of (2.98), which in
all these cases is a polynomial equation in w of degree at most four.

In the following table, in the first column are reported the cases in which equation
(2.98) becomes a second degree polynomial equation; in the second column are reported
the cases in which equation (2.98) becomes a third degree polynomial equation; in the third
column are reported the cases in which equation (2.98) becomes a fourth degree polynomial
equation.

2 − nd degree 3 − rd degree 4 − th degree

ϕ = −14 , µ = 2 ϕ = −20 , µ = 3
2

ϕ = −26 , µ = 4
3

ϕ = 4 , µ = 1
2

ϕ = −11 , µ = 3 ϕ = −10 , µ = 4

ϕ = −5 , µ = −1 ϕ = 10 , µ = 2
3

ϕ = 16 , µ = 3
4

ϕ = −6 , µ = −2 ϕ = 4 , µ = 1
2

ϕ = −4 , µ = −
1
2

ϕ = 0 , µ = 1
4

ϕ = 1 , µ = 1
3

(the integrable case)
ϕ = −

13
2

, µ = −3

ϕ = −
7
2

, µ = −
1
3
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APPENDIX D

Relation with More Standard
(Newtonian) Three-Body Problems

In this Appendix we indicate the relation among the three-body problems treated in this
thesis, characterized by equations of motion of Aristotelian type (“the particle velocities
are proportional to assigned external and interparticle forces”), with analogous many-body
problems characterized by equations of motion of Newtonian type (“the particle accelera-
tions are proportional to assigned external and interparticle forces”). The results reviewed
in this section are of interest inasmuch as they relate the model treated in this thesis to
other, somewhat more physical and certainly more classical, many-body problems, includ-
ing a prototypical three-body model introduced, and shown to be solvable by quadratures,
by Carl Jacobi one and a half centuries ago [63], and the one-dimensional Newtonian many-
body problem with two-body forces proportional to the inverse cube of the interparticle
distance introduced and solved over four decades ago (firstly in the quantal context [64]
and then in the classical context [65], see Section 1.2.1), which contributed to the bloom in
the investigation of integrable dynamical systems of the last few decades (see for instance
[5]).

By differentiating the equations of motion (2.1) and using them again to eliminate the
first derivatives in the right-hand sides one gets the following second-order equations of
motion of Newtonian type:

ζ ′′n = − 2 g2
n+1

(ζn − ζn+2)
3 −

2 g2
n+2

(ζn − ζn+1)
3

+
gn+1 (gn − gn+2)

(ζn − ζn+2)
2 (ζn+2 − ζn+1)

+
gn+2 (gn − gn+1)

(ζn − ζn+1)
2 (ζn+1 − ζn+2)

. (D.1)

Likewise from the equations of motion (2.10) one gets

z̈n + ω2 zn = − 2 g2
n+1

(zn − zn+2)
3 −

2 g2
n+2

(zn − zn+1)
3

+
gn+1 (gn − gn+2)

(zn − zn+2)
2 (zn+2 − zn+1)

+
gn+2 (gn − gn+1)

(zn − zn+1)
2 (zn+1 − zn+2)

.

(D.2)

Of course the solutions of the first-order equations of motion, (2.1) respectively (2.10),
satisfy as well the corresponding second-order equations of motion, (D.1) respectively (D.2
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), but they provide only a subset of the solutions of the latter. On the other hand it is
again true that the solutions of the second-order equations of motion (D.1) and (D.2) are
related via the trick (2.7).

In the integrable “equal-particle” case, see (2.3), these equations of motion simplify and
correspond respectively to the Newtonian equations of motion yielded by the two standard
N -body Hamiltonians

H
(

ζ, π
)

=
N
∑

n=1

π2
n

2
−

N
∑

m,n=1; m6=n

g2

2 (ζn − ζm) 2 , (D.3)

respectively

H
(

z, p
)

=
N
∑

n=1

p2
n + ω2 z2

n

2
−

N
∑

m,n=1; m6=n

g2

2 (ζn − ζm) 2 , (D.4)

with N = 3, the complete integrability of which is by now a classical result (even in the
N -body case with N > 3: see for instance [5]).

In fact the more general three-body Hamiltonian models

H
(

ζ, π
)

=
3
∑

n=1

[

π2
n

2
− g2

n

(ζn+1 − ζn+2)
2

]

, (D.5)

respectively

H
(

z, p
)

=
3
∑

n=1

[

p2
n + ω2 z2

n

2
− g2

n

(zn+1 − zn+2)
2

]

, (D.6)

featuring three different coupling constants gn, that yield the equations of motion

ζ ′′n = − 2 g2
n+1

(ζn − ζn+2)
3 −

2 g2
n+2

(ζn − ζn+1)
3 , (D.7)

respectively

z̈n + ω2 zn = − 2 g2
n+1

(zn − zn+2)
3 −

2 g2
n+2

(zn − zn+1)
3 , (D.8)

are also solvable by quadratures. For the equations of motion (D.7) this discovery is due
to Carl Jacobi [63]; while the solutions of the equations of motion (D.8) can be easily
obtained from those of the equations of motion (D.7) via the trick (2.7). For a detailed
discussion of these solutions, and additional indications on key contributions to the study
of this problem, the interested reader is referred to [6] and [5]. But we also plan to revisit
this problem, because we believe that additional study of these models, (D.7 ) and (D.8),
shall shed additional light on the mechanism responsible for the onset of a certain kind of
deterministic chaos, as discussed above.



Non senza fatiga si giunge al fine.
Girolamo Frescobaldi, “Toccata Nona”, 1627
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