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Abstract

Within the last few years, Cosmic Microwave Background gravita-
tional lensing has become a new tool for cosmology and astrophysics. As
a new independent kind of measurement in this field, it can help to break
the degeneracy between the cosmological parameters and determining
their values with a better accuracy. This field of research is becoming
increasingly prominent and fertile in the latest years, both as a way to
investigate the evolution of the Universe at late times, and in relation to
the EucLID mission preparatory science work, aiming at mapping galaxies
on ABOUT 30% of the sky reaching a redshift of about 2.

The aim of this thesis is to characterise the lensing signal in the CMB
and to study the efficiency of lensing extraction at small angular scales
from simulated CMB maps lensed by N-body simulations, and how this
translates in constraining Dark Energy and its relevant parameters for the
expansion.

After investigating the balance between the tensor modes and lensing
in the B—mode power spectrum [[I]], the feasibility of lensing extraction
on CMB lensed N-body simulations is demonstrated [2]: the faithfulness
of the implemented pipeline is assessed and verified for upcoming exper-
imental setups and validated ranging from the degree to the arcminute
scale.
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Introduction

During the last decade, Cosmic Microwave Background (CMB) gravitational lens-
ing has become a new and promising tool for cosmology and astrophysics after
its detection with high significance by the collaborations Act® [3]] and Sp1? [4].
As a new independent kind of measurement in this field, it can help to break the
degeneracy between key cosmological parameters related in particular to the cos-
mological expansion history and determining their values with a better accuracy.
Also the PLaNck experiment, in the first cosmological data release of March 2013,
has been able to extract the lensing pattern from the temperature anisotropy maps
[5]; ground-based and balloon experiments have the instrumental capabilities to
detect a signal in the B—modes of the CMB, which are dominated by the lensing
signal at high multipoles. First detections of the lensing signal coming from the
polarised B—modes of the CMB have already been presented by the Spt [[6] and
POLARBEAR? [7] collaborations. The state of the art of the technology and analy-
sis is shortening more and more the time needed for a full characterisation of the
signal in different spectra and different angular scales.

Moreover, data collected in this framework can be combined with other probes,
e.g. the Large Scale Structure (LSS), to give further insight on the history of the
recent Universe (in the range 1 < z < 3) and the evolution of Dark Energy (DE)
during the latest evolution phases of the Universe. This latter phenomenon is
tightly related to CMB lensing, as the recent expansion history of the Universe,
characterised by an accelerated expansion given by the DE, determines the statis-
tics of structures that will arise and hence the number of gravitational lenses that
will distort the CMB spectrum during its trip from the last scattering surface to
us. In this regard, measuring this effect can give a better description of the recent
evolution history of the Universe [[8]; moreover, this phenomenon has been shown
to be capable of breaking the projection degeneracy affecting CMB anisotropies at
the linear level [[9], as it was recently confirmed in the context of lensing detec-
tion for sub-orbital T—mode* experiments [[10]. Once data from advanced LSS
surveys like Eucrip [[11]] will become available, the next step towards a deeper

! Atacama Cosmology Telescope

2South Pole Telescope

3Characterization of the POLARization of the Background Radiation

“This notation will be used throughout this work: T—mode refers to the temperature or total
intensity spectra, while E— and B—mode refer to the E and B polarisation respectively.
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8 INTRODUCTION

understanding of this signal and characterization of the recent evolution of the
Universe will be the process of cross-correlating the two signals: the structures in
the foreground, that deflect the CMB on its path to the observer, with the deflec-
tions themselves. In [2], for the first time, CMB maps lensed by N-body simulations
were targeted for the extraction and characterisation of the deflection signal.

Besides the implications for the ability to constrain the parameters of the stan-
dard ACDM® cosmology, the considered phenomenon can shed light on possible
extensions to more exotic scenarios, and in the understanding of still open crucial
questions in fundamental physics. Involving the process of clustering in the recent
Universe, the angular spectrum of lensing is heavily influenced not only by the ac-
celeration of the expansion in the redshift span 0.5 < 2 < 2, but also by its possible
deviation from a Cosmological Constant (CC) during cosmic time, or by different
assumptions on the Equation of State (EoS) of the DE component [[1]]. Various
theoretical and phenomenological models have been proposed in the recent years,
and new observational probes, either coming from specifically designed experi-
ments or from synergies between different datasets, are being planned. In the era
of high precision cosmology, exploiting the available information and improving
the accuracy of the theoretical predictions, both with analytical and computational
methods, will allow in the near future to understand the mechanism underlying
the expansion by discriminating efficiently between different theoretical models
and by characterizing the physics of the recent expansion with increasing preci-
sion.

Another physical quantity that affects the gravitational lensing of the CMB is
the mass of neutrinos which affects the matter power spectrum [12]] that gives
rise to structures which distort the CMB emission. Neutrino physics has provided
the first clear indication of particle physics beyond the Standard Model (SM), as
there is now experimental evidences for non-zero neutrino masses from the oscil-
lation between different neutrino flavors. The sum of neutrino masses is currently
bounded by cosmology to be ¥m, < 0.2 eV [[13]]; and CMB lensing can effectively
constrain this observable [[14]. Combining information from cosmology with data
coming from an experiment such as KATRIN® [[15] our current knowledge will be
improved by an order of magnitude on the sum of the masses, possibly shedding
light on the mass hierarchy of neutrinos.

The motivation of this thesis is to explore the capabilities of CMB lensing as an
independent cosmological probe, and to characterize the relevant quantities also
in relationship with other phenomena such as tensorial modes coming from infla-
tion. A deep comprehension of the features of this observable is most important in
view of cross-correlating CMB lensing measurements with those of LSS which are
responsible for the lensing itself, following the path of building synergies between
different observational probes. In view of this, a lensing extraction algorithm ap-
plied to N-body lensed CMB maps is presented, on an extended range of angular

>The acronym stands for A Cold Dark Matter. A indicates the presence of DE under the form of
a Cosmological Constant (CC) in Einstein equations, while CDM (Cold Dark Matter) means that the
particles of Dark Matter (DM) are not relativistic (and hence cold) at the moment of recombination.
®KArlsruhe TRItium Neutrino experiment
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scales, both for a standard ACDM case, and for a set of maps with a non-zero value
of the neutrino mass. This work aims to demonstrate the feasibility of CMB lensing
studies based on large scale simulations of cosmological structure formation in the
context of the upcoming large observational campaigns.

Outline of the thesis

In Chapter (1] the effect of weak lensing on the CMB is presented, along with the
relevant physical observables; in Chapter 2| possible expansions of the standard
model of cosmology are presented and discussed; in Chapter (3| forecasts of the
B—mode polarisation of the CMB as a tool for constraining simultaneously pri-
mordial tensors and an evolving DE EoS are illustrated; in Chapter |4| the process
of ray tracing through simulated N-body structures of unlensed CMB is described,
and the recovered lensing signal with the reconstructed shear maps are presented.
Finally, the conclusions and possible extensions of the work illustrated in this The-
sis are discussed.






Weak lensing of the Cosmic Microwave
Background

Experimental measurements of the CMB radiation anisotropies are one of the most
fertile research areas in cosmology since their detection, and have provided funda-
mental evidence for establishing our knowledge about the Universe, enabling the
scientific community to formulate the now standard ACDM cosmological model.
The CMB photons are an invaluable source of information about the physics of the
Early Universe and the properties of the matter perturbations which evolved from
the primordial fluctuations to constitute the structures we can observe today.

As experiments became more and more sensitive along the years, it has been
possible to detect the modifications enacted by the cosmological and astrophysi-
cal evolution of the large scale structures on the CMB photons themselves. This
class of phenomena is often referred to as secondary anisotropies, in opposition to
primary anisotropies, which were generated by the physical effects taking place at
the time of recombination.

Among the most significant of the former, stands the distortion enacted by
gravitational lensing of CMB photons by the evolving LSS on the line of sight
connecting the observer to the last scattering surface, when CMB photons started
to propagate freely. Gravitational lensing bends the trajectories of CMB photons
modifying their overall statistical properties. The polarised component is more
affected with respect to the total intensity because lensing generates a curl-like
pattern (B—modes) from the overall gradient-like pattern (E—modes) of a CMB
polarisation field even in absence of a primordial components of B—modes, to be
discussed later.

In this Chapter the relevant CMB observables and power spectra characterising
the anisotropies will be defined (in Sec. [1.1]and Sec. [1.2)); subsequently, the basics
of weak lensing will be described in Sec. and the application of this effect as
a secondary anisotropy of CMB is presented in Sec. In Sec. the state of
the art of the observations is discussed.

1.1 CMB observables

The basic observable of CMB is the intensity as a function of frequency and di-
rection fi in the sky. Since the CMB spectrum follows very carefully a black body

11



12 CHAPTER 1. WEAK LENSING OF THE COSMIC MICROWAVE BACKGROUND

radiation with a nearly constant temperature across the sky, we can describe the
intensity of the anisotropies field simply in terms of temperature fluctuations:

AT
o) = —. (1.1)

The CMB signal is distributed over the sphere of the sky; by projecting it on
the orthonormal function set over the sphere its harmonic domain representation
is obtained:

0, = f diy; (2)6(h). (1.2)

Its expansion on the spherical harmonics set will thus be
o(r, X, h) = an(ﬁ)egm(@?). (1.3)
{m

A similar approach can be applied to the polarised component of the light,
which is characterised in the following.

A homogeneous and isotropic black body distribution is unpolarised by defini-
tion. If the black body temperature varies with position and photon propagation
direction, differences in the strength of the electric and magnetic fields along dif-
ferent axes may occur. This is the case of the CMB, as the Thomson scattering
of CMB photons on electrons happening at the time of decoupling is markedly
anisotropic. If © is measured on a given direction fi, one may project the inten-
sity onto two perpendicular axes orthogonal to fi forming the polarisation plane,
defining

Q(r,x,n)=0,—-0,, U(t,x,h)=6,— 6, (1.4)

where 7 is the optical depth at the moment of recombination, X is the direc-

tion of observation, and Q, U are the Stokes parameters describing linear polarisa-

tion (the symbols |} and L represent axes rotated by 7t/4 with respect to the ones

defining Q). A third Stokes parameter, V, is needed to describe circularly polarised

radiation; however, it is not considered here as Thomson scattering produces linear
polarisation only.

Polarisation physically arises from products of the electric and magnetic fields
on the plane orthogonal to fi thus behaving as a rank 2 tensor. It is possible to show
that Q and U represent the amplitude of the decomposition of the polarisation
tensor into the Pauli matrices o, and o05:

P:QO'3+UO'1=(_QU g) (15)

It is useful to define the matrices
1 .
MiIE(O'?,:FlO'l), (1.6)
so that one can rewrite

P=(Q+iU)M, +(Q—iU)M_ (1.7)
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and analogously with what has been done for the temperature, compute the pro-
jection and the expansion on the tensorial spherical harmonics basis for the polar-
isation:

P=(Q£iU)(%, X, M, = ) | Y, (B)(Q%iU)(7, %) (1.8)

{m

where ,,Y,,,(f1) are the tensor spherical harmonics, needed to define the expan-
sion on the spherical set for a rank 2 tensor such as polarisation. In order to con-
nect this quantity, which is frame dependent, with the cosmological observables, it
is useful to define two different modes for the polarisation spin-2 field:

(Q + iU)Zm + (Q - iU)lm

w2Bem = 9
:I:ZBKm =1 £ . (19)
2
This allows us to rewrite the polarisation tensor in Eq.
P=(Q+iUM, = » (E,YEM, + B, Y My). (1.10)
{m

The combinations E;, Y" and B, Y pick up a (—1)* and (1)“*!, respectively, un-
der transformations i — —i. These parity relations coincide with those prescribed
for the angular distribution of two fields generated by the gradient of a scalar po-
tential, and the curl of a vector one, respectively, as in the case of the electric field

E and the magnetic field B. For this reason, we can consider the E and B com-
ponents to be the gradient-like and curl-like components of the polarisation field
[[16,[17] and the E, B notation is chosen for the polarised modes of CMB. It is to
be noted that in absence of any cosmological process which is parity violating, we
expect the cross-correlation signal between ©B and EB to vanish.

1.2 Temperature and polarisation power spectra

If we assume that CMB anisotropies obey a Gaussian statistics, as the density fluc-
tuations produced during inflation are expected to do, the multipole moments of
the temperature and polarisation fields are characterised completely by their an-
gular power spectrum (or the Fourier transform of the 2-point correlation function
in real space)

(@gm@zm/> - 5ell5mm/C€®®

(ElmE;m/> = 6€l’5mm’CfE

(GZmEz(/m1> = 5“’5mm’cgeE
)

(BZmBz’m/ = 6([’5mm’CfB

There is an ongoing search for deviations from Gaussianity, as a possible indi-
cation towards discriminating between different inflationary models. The current
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upper limits on deviations from the second order statistics of the CMB have been
presented by the PLanck Collaboration in [18], measuring the first order quadratic
correction to the gravitational potential to be compatible with zero within 68%
confidence level.

Although this represents a loss of information, (e.g. the phases of the coeffi-
cients are lost) such a description is convenient from the point of view of a statis-
tical description of the observables. Furthermore, if each coefficient is a Gaussian
variable with known variance, no physical information is coded into the phases of
CMB anisotropies, so that the compression is not deteriorating our overall knowl-
edge.

Performing the full linearisation of the Einstein equations, one can classify the
perturbations to a homogeneous background in scalar, vector (which represent
vortical motions in the primordial plasma and are damped by the expansion if
produced near the time of recombination) and tensor type perturbation. Fig.
provides the different contribution of these two types of primordial perturbations
to the different power spectra.

Scalar perturbations represent the main contribution to the ® power spectrum,
which encodes the angular distribution of temperature anisotropies in the sky. Its
structure reflects the physics ongoing at the moment of recombination: the peaks
represent the oscillations of the tightly coupled matter-radiation fluid on different
scales. The angular extension in spherical harmonics and the small thickness of the
last scattering surface determine a tight relation between the angular scale 6 and

0
the multipole £: 6 ~ —— degrees. The Hubble horizon at decoupling subtends

about 1° on the sky, corresponding to £ ~ 200. The odd peaks represent moments
of maximum compression, while the even ones represent the maximum expansion
of bubbles of size corresponding to that particular angular scale. This is due to the
evolution of short wavelength modes that enter the horizon before recombination:
the first peak corresponds to the mode that entered the horizon at the moment of
decoupling. It had just the time to undergo half an oscillation, and corresponds
to an overdensity region. The subsequent peaks are due to smaller scale modes
undergoing one or more oscillations. On very small scales, the oscillations are
damped: this is due to an imperfect coupling between baryons and photons on
smaller scales. Perturbations on scales smaller than the mean free path of photons
are washed out.

Scalar perturbations are able to contribute to the polarisation via a non-zero
quadrupole term present at recombination. After electrons combine with protons
to produce neutral hydrogen, the photons can travel undisturbed: their mean free
path increases progressively and every electron sees more and more anisotropic in-
coming radiation, due to both density and dipolar (velocity) perturbations present
at that time. The resulting quadrupole is proportional to the velocity field, and will
be small if the derivative of the opacity is large; it will grow only at the moment
of decoupling thanks to the drop of the opacity.

The tensor perturbations produce a signature in the E—mode signal and in ©
although its amplitude is much lower than the level of polarisation anisotropies
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induced by density perturbations in the ACDM model, especially in the case of
temperature (see again Fig. [1.1). The main contribution of E—mode power spec-
tra derives from the density perturbation quadrupole which is subjected to the
same acoustic physics of temperature perturbation and show therefore acoustic
oscillations in the power spectrum.

E—modes vary in strength in the same direction as the orientation of the po-
larisation vector, suggesting an analogy with the electric field from a point source,
which changes in intensity as one moves away from the source along the direction
of the field. On the contrary, B—modes polarisation varies in strength in a differ-
ent direction from the one of the polarisation vector; this kind of pattern on the
sky has in fact an additional azimuthal dependence which drives the pattern to
vary along a direction at 45° with respect to the polarisation vector. This peculiar
feature is directly connected to the physical origin of the B—modes.

In fact, the distinction between different kinds of perturbations is crucial in
this case, since tensor modes, corresponding to gravitational waves, represent the
transverse trace-free perturbations to the spatial metric, and constraints on infla-
tion are obtained by comparing theoretically calculated scalar and tensor metric
perturbations to measurements of these perturbations. The amplitude of the tensor
power spectrum relative to the scalar spectrum defines the tensor-to-scalar ratio
r, which is currently the main parameter used to characterise the energy scale of
inflation. The amplitude of B—modes power spectrum on large scale is in fact
directly proportional to this parameter, and a measurement of a non-zero value
of r would be a smoking-gun evidence that an inflationary mechanism occurred
in the early Universe, as since the E—modes are activated by all kinds of cosmo-
logical perturbations, the primordial B—modes can be sourced by vector-type and
tensor-type perturbations only. The other cosmological contributor to the spectra
of the B—modes is gravitational lensing of the CMB. The coexistence of these two
effects in this spectrum will be the subject of Chapter [3|and therefore it will not be
discussed in detail here.

The CMB temperature and polarisation anisotropy power spectrum is a pow-
erful mean to constrain cosmological parameters through the dependence of the
acoustic phenomenology on the sound horizon, angular diameter distance and the
gravitational potential evolution. After the detection made by CoBE in 1992 [19]]
several collaborations started to hunt the acoustic peaks to track down the com-
position of the Universe and inaugurated the era of precision cosmology from the
CMB. The state of the art for CMB measurements and constraints on cosmological
parameters is represented by the first cosmological data release coming from the
PLANCK experiment [[13]].

At the present moment, the analytical and numerical tools developed to pre-
dict the spectrum are able to detect and distinguish the influence of a huge variety
of physical effects. A complete list would be therefore very long and is beyond
the scope of the writer; in the following, the effect of the main parameters which
define the standard cosmological model without any sake of completeness is done,
remembering also that the effect of cosmological parameters is very often degener-
ate and the overall result of the variation of several quantities is more complicated
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Figure 1.1: Temperature (black), E—mode (green), B—mode (blue) and TE cross-correlation
(red) CMB power spectra from scalar perturbations (left) and tensor perturbations (right). The
B—mode spectrum induced by weak gravitational lensing is also shown in the left panel. Figure

from [120].

that what will be outlined in the following.

e Curvature ;: in an open or closed Universe, the angular diameter distance
to the last scattering surface changes with respect to the flat Universe case
where it is simply equal to 1, — . It approximately scales as (1 — 9;0'45)
[21] and is therefore larger in an open Universe. The value of the curva-
ture therefore shifts the location of the acoustic peaks and has been the first
parameter to be effectively constrained around the year 2000. See Fig.

e Dark Energy 2,: the dynamical effects of DE are late-time phenomena as at
the time of recombination its energy density was negligible. Therefore, the
only possible effect is on the free-streaming of photons on large scales which
entered the horizon just recently, which is visible through an enhancement
of power in large scale anisotropies due to a late-time integrated Sachs-Wolfe
effect. See again Fig. |1.2

e Baryon density Q,h*: the baryon density changes the sound speed and sub-
sequently the sound horizon, shifting the position of peaks. Adding baryons,
the sound speed is reduced and the compression phase is enhanced without
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Figure 1.2: Top panel: sensitivity of the temperature power spectrum to curvature (left) and DE
(right) density. Bottom panel, left: sensitivity of the temperature and polarisation power spectra
to the DM density. Bottom panel, right: sensitivity of the temperature and polarisation power
spectra to the baryon density. Figure from [20]).

increasing in the pressure, leading to an overall increased height of the odd
peaks. See again Fig. 1.2

e Matter density Q,h?: the total matter density defines the moment of equal-
ity, i.e. when energy density in the radiative component equals the one due
to matter. If the matter content is low, the equality happens closer to re-
combination and thus an additional radiative component must be taken into
account when computing inhomogeneities at recombination. This compo-
nent enhances the oscillations, therefore there are more CMB anisotropies
on small scales if the matter density is low. This can be understood as fol-
lows: since the background density is decreasing with time, the density fluc-
tuations must grow unimpeded by pressure to maintain constant potentials.
In a radiation dominated regime pressure begins to fight gravity at the first
compressional extreme of the acoustic oscillation, therefore the Newtonian
gravitational potential and spatial curvature must decay. The decay drives
the oscillations as at the moment of maximum compression, there is no grav-
itational potential neither curvature perturbation to overcome as the sound
waves turns around. When the Universe becomes matter dominated the
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gravitational potential is no longer dominated by density perturbations of
the DM which is insensitive to pressure. See again Fig.

e Optical depth to reionisation 7,,: as the first stars and galaxy form, the
hydrogen and helium, who recombined at the last scattering surface, be-
gin to ionise again interacting with the energetic photons from astrophysical
sources. Electrons are therefore free again to interact with CMB photons and
eventually to wash out the acoustic peaks. The overall effect for the temper-
ature anisotropies is a uniform decrease of the amplitude of the peaks by a
factor e *re, where 7,, is the optical depth of the Universe at the moment
of reionisation, for all the angular scales inside the horizon at that time.
Electron scattering during reionisation also generates new large-angle polar-
isation, as an effect of the presence of a quadrupole at that time, giving rise
to a bump in the power spectrum of E—modes on angular scales

(Mo —nre)
Nre = Mi
where 7, is the comoving distance to the CMB [22]]. The screening effect
of reionisation on CMB power spectrum complicates the inference of the

amplitude of the primordial fluctuations power spectrum from temperature
data alone as this effect is degenerate with 7,,.

C,,~2 (1.11)

e Spectral index of the scalar perturbations n,: this quantity represents the
steepness of the power spectrum of the primordial fluctuations

P(k)=Ak™!, (1.12)

where k represents the wavenumber of the fluctuations, and A, the ampli-
tude of the primordial power spectrum. A value of n, = 1 represents a scale
invariant power spectrum, with the perturbations equally distributed on the
different scales.

Modifying this number tilts the initial part of the temperature power spec-
trum: as it increases, more perturbations are produced at small spatial scales;
for this reason, they enter the horizon earlier, and can grow more than those
at higher scales, lowering the temperature power spectrum at very low mul-
tipoles. The converse is true if n, decreases.

e Hubble constant H,: this is the expansion rate at the present time; it is
generally referred to as a constant for its uniformity in space, as opposed
to its variation as a function of time. With respect to the aforementioned
parameters, H, is a derived parameter, i.e. it does not appear directly as
a parameter in the Boltzmann equations describing CMB physics, but it is
rather proportional to the square root of the sum of the abundances of the
different components of the Universe at the present time’

Hy> = 47Gp,. (1.13)

!Throughout this thesis, natural units # = ¢ = k; = 1 with # the reduced PLaNCK constant, ¢
the speed of light in vacuum and kj the Boltzmann constant will be used.
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where G is the gravitational constant, and p, represents the sum of the dif-
ferent contributions now (baryons and DM, DE, radiation, which is negligi-
ble today, and curvature, assumed to be zero). For this reason, the effects of
its variation on the CMB are composite, and cannot be shortly synthetised,
as a variation of H,, corresponds necessarily also to a variation of another
parameter, or combination of parameters.

1.3 Basics of weak lensing

Even before General Relativity, the deviation of light rays by the presence of a mass
had been already postulated by Newton, Laplace and Cavendish among others.
Lensing by galaxies is a major sub-discipline of gravitational lensing today. The
most accurate mass determinations of the central regions of galaxies are due to
data coming from this effect, and the cosmic telescope effect of gravitational lenses
has enabled us to study faint and distant galaxies which happen to be magnified
by galaxy clusters. The statistics of gravitational lensing events is now a new probe
for inferring cosmological parameters.

Within the framework of Einstein’s theory of gravity, the description of the
phenomenon is as follows: the path of photons is affected by the presence of
a mass, that distorts space-time in its vicinities, and bends their trajectory of a
certain angle, related to the (distribution of) mass encountered, as it can be seen
in Fig. The deflection can be computed knowing the deflecting mass (acting
as a lens) and the distance from the source and the lens between each other and
from the source and lens to the observer.

Looking closer at the subject, it is found that gravitational lensing manifests
itself through a very broad and interesting range of phenomena, e.g. the mag-
nification effect enables us to observe objects which flux would be too low to be
observed without lensing; its independence from the luminosity or composition
of the lens, being purely gravitational in origin, which enables us to study the
distribution of the total mass of the lens; the fact that the distribution and charac-
teristics of lensed objects depend on the age, the scale, and the overall geometry
of the Universe.

The propagation of light in arbitrary curved space-times is in general a compli-
cated theoretical problem. However, for almost all cases of cosmological relevance
to gravitational lensing, we can assume that the overall geometry of the Universe
is well described by the Friedmann-Lemaitre-Robertson-Walker metric

2

d52 = dt2 — Cl(f)z [m

+ rde:| , (1.14)
where k is the spatial curvature of the Universe, and that the matter inhomo-
geneities which cause the lensing are local perturbations to the overall matter
distribution.

To study the path of the light ray and compute the deflection, we can consider
the trajectory as separated in three different parts: the first one, from the source
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Apparent Position

True Position Earth

Figure 1.3: Angular deflection of a ray of light passing close to the surface of the Sun. Since the
light ray is deviated by the Sun and converges to us, the apparent positions of stars appears
further from the Sun with respect to their actual position. Figure from [23].

to the deflecting mass, where space-time is Minkowskian, the second one near the
lens, where light is deflected, and the third one from the lens to the observer, where
space-time is Minkowskian again. This approach is legitimate if the Newtonian
potential generated by the lens ® is small enough, |®| << 1, and if the peculiar
velocity of the lens is far from being relativistic, v << 1.

Assuming that the simplifications just discussed are reliable, we can describe
light propagation close to gravitational lenses in a locally Minkowskian space-time
perturbed by the gravitational potential of the lens to the first post-Newtonian
order. The effect of the curvature of space-time on the light paths can then be
expressed in terms of an effective index of refraction n, given by [24]

n=1-2&=1+2/d| (1.15)

Note that the Newtonian potential is negative if it is defined such that it ap-
proaches zero at infinity. A refractive index n < 1 implies that light travels slower

than in free vacuum. Thus, the effective speed of a ray of light in a gravitational
field will be reduced

1
V= (1+208]). (1.16)

As in the case of a ray of light through a medium with different refraction
index, light rays are deflected when they pass through a gravitational field; the
deflection is the integral along the light path of the perpendicular component of
the gradient of n to the light path

az—f?lndzzzf?@dz. (1.17)

Let us now derive the lens equation. Consider a mass concentration in a single
point, placed at redshift z;, corresponding to an angular diameter distance of D,,
which deflects the light rays coming from the source, placed at a redshift z4 corre-
sponding to an angular diameter distance D (see Fig. [1.4)). Defining the optical
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Figure 1.4: Sketch of a gravitational lensing system as described in the text. Figure from [25].

axis, indicated by the dashed line, perpendicular to the lens and source planes
and passing through the observer, we can measure the angular positions on the
lens and on the source planes with respect to this reference direction. The angle

e
between the optic axis and the true source position is 8, and the angle between

—
the optic axis and the image is 6. The (angular diameter) distances between
observer and lens, lens and source, and observer and source are D;, D;s and Dy

H

respectively. It is convenient to define the reduced deflection angle &
1 =—a. (1.18)

From Fig. [1.4 we see that
0D = D+ @D, (1.19)
and from this relation we can derive the lens equation
B=0-a(0) (1.20)

Considering an extended distribution of mass, we can define its effective lens-
ing potential, obtained by projecting the 3-D Newtonian potential on the lens plane
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and rescaling it appropriately

Dg

— D —
Y( 9)=2J - L; ®(D, 6 ,2)dz, (1.21)

0 SYL

where we must remember that the angular diameter distances depend from the
different geometry of the Universe:

K Y2sin(/Kn) K>0

_ fx(n) . K=0
DA = m where fK(T)) = n — (1.22)

IK|=Y2 sinh (4/|K|n) K <0
where 7) is the comoving distance, and f; expresses the dependency on the cur-
vature of the Universe. Computing the gradient and laplacian of this quantity we

find

— — — N

_2> DLDLS _2> —>
Ve = 2| — = Vibdz=2x(0), (1.23)
S
where k is the convergence, defined as the dimensionless surface density
(0)= = with = — (1.24)
k(0)= wi =— , .
e, " 4nG D, D;g

where 2, is called the critical surface density, a quantity which characterises the
lens system and which is a function of the angular diameter distances of lens and
source.

To study the local properties of the lens mapping we can define the Jacobian
matrix A

0B 2a,(0) o24(9)
A P S A S I P S 4 SaP Iy 1.2
A 06 (5” 20; ) ( 706,96 ’ (125

where, as indicated, A is the inverse of the magnification tensor M. A solid angle
element 53 of the source is mapped to the solid angle element of the image 562,
and so the magnification is given by

i = =det M (1.26)
562 detAa o '
. L 0%y(0) N .
Introducing the abbreviation G000 1;; for the Hessian matrix, we can write
vy

the Laplacian of 1 (that as seen in Eq. is twice the convergence) as follows

1 1
K= 5(1/)11 + ) = P Pij. (1.27)
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Figure 1.5: Illustration of the effects of convergence and shear on a circular source. Convergence
magnifies the image isotropically, and shear deforms it to an ellipse. From [23]].

Two more linear combinations of the components of 1);; are worthy of mention:

1 — —
ri=50n =) = 1(0)cos [26(0)]
Yo=Yp=Yy = Y(F) sin [243(5))] . (1.28)

With these definitions, the Jacobian can be rewritten
A = (1_K_Y1 V2 ):
—7Y2 1-x—-7,

. 10 cos (2¢p) sin (2¢)
N (I_K)( 01 )_Y( sin (2¢p) — cos (2¢) ) (1.29)

The meaning of the terms convergence and shear can be now understood more
intuitively. Convergence acting alone, meaning a diagonal Jacobian, causes an
isotropic focusing of light rays, leading to an isotropic magnification of a source,
in analogy with what happens with an ordinary magnification lens: the source is
mapped onto an image with the same shape but different size. Shear, that comes
in the off-diagonal component of the Jacobian shear, introduces anisotropy into

the lens mapping. The quantity y = [y,*+ Yzz]% represents the magnitude of
the shear and ¢ describes its orientation on the celestial sphere. In the presence
of both components, a circular image of unit radius from the source becomes an
elliptical image with major and minor axis given by (1 — k £y)7?, orilented along

the angle ¢, and magnified of a factor y = det M = JetA (=7 =1 In
Fig. the two effects can be seen graphically.
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To integrate this treatment and make it more suitable for discussing the ef-
fect of weak lensing on CMB, let us compute how this deflection influences the
observed angle 6 subtended by an object at comoving distance 7, we have to con-
sider how the comoving distances are related to angles via the angular diameter
distance remembering Eq. From Eq. we have learned that

where 0 is an infinitesimal distance along the photon trajectory.

The comoving distance that the sources appear to have moved from their actual
position due to lensing is fx(ns — n)da = fx(ng)00, where 75 is the comoving
distance to the source. Solving for 66 and integrating over the whole distance
between us and the last scattering surface to take into account all the deflections
from all the potential gradients present on the line of sight, a total deflection in
terms of the potential gradients along the line of sight can be obtained

(" fetn= ) o
d(n)—Jo dx—fK(m) Vie(xf;n0— %), (1.31)

where now the comoving distance to the source is now the comoving distance to
CMB. From here, we can define an integral potential called lensing potential from
which we can compute the displacement vector applying a transverse differential
operator V.

e _
¢(h) = —ZJ dxwé(xﬁ; Mo — X)- (1.32)
0 fK(n*)

1.4 Essentials of CMB lensing

The CMB anisotropy spectra today incorporate both the primary, originated at de-
coupling, and secondary, after decoupling, anisotropies. Weak lensing of the CMB,
which is a secondary anisotropy, is due to the LSS deflecting the CMB photons
according to the distribution of matter, or, in general, of gravitational potential
along their path from the last scattering surface to the observer. As we will see,
lensing does not generate additional power, but rather redistributes it from large
scales to smaller ones [[26]]. For this reason, lensing generated small scale power is
correlated with the large scale gradient of the CMB. This property is an important
signature for distinguishing lensing from other physical processes that give rise to
a signal at small scales. If we consider the potential ® to be Gaussian, the lensing
potential ¢ defined in Eq. is Gaussian, too, and therefore can be completely
described by its power spectrum. In order to evaluate it we can expand the lensing
potential in standard scalar spherical harmonics. Since the lensing potential is a
statistically isotropic field, we then define its angular power spectrum in the usual
way
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Figure 1.6: Top panel: Cumulative contribution of different redshifts to the power spectrum of the
lensing potential for a concordance ACDM model, in log-log and log-linear scales. Note that here

the lensing potential power spectrum is referred to as C ;/) whereas in the text the same quantity is

denoted as Cf ¢ Bottom panel: Effect of non-linear correction on lensing potential for a ACDM
model. From [26].

$(7,X,0) = D V(B)gu(7, X)
{m
(PemPin) = GpSmmCl?. (1.33)

In Fig. the behaviour of the lensing angular power spectrum in the harmonic
domain, computed according to Egs. and is shown. DM structures,
which follow closely the linear regime and with sizes of hundreds of Mpc or more,
dominate the lensing power in the range ¢ S 200. On angular scales larger than
a few hundreds, it is to be expected that the assumption of a linear and Gaus-
sian lensing potential becomes less accurate due to the non-linear evolution of
¢ at late times. This can be estimated using numerical simulations [27, 28] or
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semi-analytic models like HaroriT [29] which are expected to be accurate at few
percent level for standard ACDM cosmologies with a power law primordial power
spectra. The last scattering surface is a long way away, so the lensing potential has
contributions out to quite high redshift as show in Fig. In the low redshift Uni-
verse, potentials only contribute to the large-scale lensing, so the spectrum is only
quite weakly sensitive to late time non-linear evolution [26]]. The lensing poten-
tial power spectrum including non-linear corrections shows an increase of power
which becomes more important on small scales while the region close to the lens-
ing potential peak is weakly affected (cf. Fig. [1.6). The accuracy of the non-linear
correction effect is however limited by the precision of the model describing the
non-linear power spectrum; including non-linear corrections will not introduce a
significant level of non-Gaussianity on the lensing potential. These are reduced
by the fact that the a photon is deflected several times during its journey from
the last scattering surface and the lensing potential is effectively more Gaussian
than the gravitational potential itself. In order to calculate the effect of lensing on
CMB temperature anisotropies, we can restrain ourself for sake of simplicity to a
perturbative expansion of the CMB observable field. In the following the effect of
lensing on CMB will be outlined on temperature and then polarisation spectra.

1.4.1 Lensing of the temperature field
Lensing remaps the CMB temperature? as
TR =TH)=TH+a)=T(A+V ), (1.34)

where the symbol ~ denotes the lensed quantities. This relation can be expanded
as follows

T+ V, ¢)=

~ T(R)+ V9 (R)V,T(A) + %V“qﬁ(ﬁ)qub(ﬁ)VaVbT(ﬁ) +... (1.35)

If one expands this relation in Fourier domain assuming a flat sky approxima-
tion for the sake of simplicity, it reads [[26) (30} [31]

T(0)="T( dzelee TPl —¢ 1 dzleK

£) = ()_JW 18, =0T L)L — 1)—5 ony (£,)-

- [ J 2 ¢(ez)¢*(ez+e1—e)(ez-zl)(eﬁel—e)el} b 36
(2m)?

This expansion is not a good approximation on all scales. On intermediate ones,
order of 30° on the sky, the lensing deflection is of the same order of the angular
scales of the anisotropies which are being deflected and a perturbative expansion
in the deflection angle is not suitable for a precise estimation of the effect. Nev-
ertheless, this simple approach is useful to understand the most important effects

2From now on, the temperature field will be referred to as T in the text.
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Figure 1.7: Fractional change in the power spectrum due to lensing for a ACDM model. Figure
adapted from [126]].

on a good range of angular scales: from the presence of two different £ vectors
combined together in Eq. we understand one of the main features of CMB
lensing, i.e. the coupling of different angular scales in the resulting spectrum of
anisotropies. Lensing correlates different angular dimensions on the sky, redis-
tributing power from the large to the small scales, and smearing the peaks of the
power spectrum.

From Eq. one can deduce the lensed CMB power spectrum in the usual
way, as the lensing field from a statistical isotropic field does not break the statis-

tical isotropic properties of the CMB.

~ dZE / /N2 ¢
¢~ (1—€2R¢)CL,TT—|—J oI5 [e'e-e)]"c.Tcy?,,
1 1 [ de
¢ — 2y = | ZZpapod
where R? = (|V¢[) 477:f FLct. (1.37)

In the last equation we neglected the temperature-lensing potential correlation,
since the T¢ correlation is small on most of the angular scales and its effect on
the lensed power spectrum is also small [|32]]. At the first order in C;’ ¢ the lensed
power spectrum differs from the unlensed coefficients by a term proportional to
half of the total deflection angle power R® and by an integral term which has the
form of a convolution of the unlensed temperature spectrum with the lensing po-
tential power spectrum. This convolution effectively smooths out the main peaks
and troughs of the unlensed spectrum and cause a fractional change in the power

spectrum, shown in Fig. equal to several percent at £ ~ 1000. On small
scales, where there is little power in the unlensed CMB because of Silk damping,
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the convolution transfers power from large scales to small scales increasing the
small scales power (cfr. Fig. again).

A more exact calculation can be obtained using the curved sky approach im-
plemented in [[30, 31]]; for the scales considered in this work the flat-sky approxi-
mation is an accurate description, as it will be motivated in Chapter 4

1.4.2 Lensing of the polarisation field

The presence of a quadrupole moment at last scattering generates a polarisation
signal which will also be lensed by potential gradients along the line of sight. This
effect can be treated in a way similar to what has been done for lensing of the
temperature field, with the further complication that polarisation is not a scalar
field but a spin-2 (tensor) field. In the following, the effect of lensing on the E and
B fields defined in Sec. [1.2| will be analysed as the components of the polarisation
tensor.

Evaluating the polarisation power spectra is a similar process to the tempera-
ture case. We can first remap the polarisation spin-2 field with the usual lensing
equation and then use a perturbative expansion to evaluate the leading term con-
tributing to the power spectra:

ﬁ)ab(f1 + vld)) ~ Pab(ﬁ)'l'
1
+ V¢ (R)V P, () + Evcqs(ﬁ)vdqs(ﬁ)vcvdpa,,(ﬁ)+... (1.38)
By performing the Fourier transform of this quantity with the flat sky version of

the spin-2 spherical harmonic and then computing the power spectrum would lead
to a lensed E and B—modes polarisation power spectra

. e )

GF o~ (1-CR)GT + J G L6 =01 Gy cos”2(re 1)

. e )

CIE ~ (1—-(%R*)C]E + J Gy [£'(e—€)]*ClFCy?,, cos® 2y —1e)

CBB n dt (8 —€)]*CEEC??, sin®2 1.3
¢ ~ (27_[)2 |: ( - )] AT s (YZ’ _Yﬁ) ( . 9)

where y,, £ are the angles between fi and ¢, ¢’ respectively. The results above are
neglecting the contribution to lensing of the primordial B—modes, which are ex-
pected to be small. Despite the absence of primordially generated B—modes, lens-
ing induces a power spectrum in this component of polarisation from the unlensed
E—modes. On large scales it has an amplitude which is independent of ¢, as it can
be seen in Fig. This can be easily derived from Eq. in the limit |[€| << [€’].
Since the lensed B—modes result from a convolution of primordial E—modes in the
harmonic domain the contributions to the lensing B—modes power come from all
multipoles where there is non-zero E and lensing potential power. It is important
to note that the B—modes generated from the lensing of E—modes can potentially
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Figure 1.8: The lensed E (top solid) and lensed B (bottom solid) power spectra, compared to the
unlensed E spectrum (dotted). Figure adapted from [26]].

be a contaminant for the detection of the primordial B—modes signal generated
by the gravitational waves coming from inflation [33], 34} [1]]; this topic will be
discussed in more detail in Chapter 3| The effect of lensing on the E—modes is
similar to the effect on temperature as the convolution with the lensing potential
smooths out the acoustic peaks and troughs of the power spectrum. Since polar-
isation peaks are sharper than in the temperature case, this means that the effect
of lensing is quantitatively more important on the E polarisation spectrum. On
very small scales, the unlensed polarisation is damped, as in the temperature case,
and lensing transfers power from large to small scales, therefore in this part of the
spectrum we expect to observe the same power in both E and B polarisation (see

again Fig. [1.8).

1.5 Status of observations

As CMB lensing is a second order effect on the angular power spectrum of the
primary anisotropies, its detection has been out of reach until very recent times,
despite its relevance as a cosmological probe was already known in the scientific
community since it was first proposed in 1987 [I35]]. The first hints of a non-zero
lensing signal were found in the Wmap® data [136) [37]], which underlined evidence
of a correlation of CMB with large scale structure tracers. The first direct indication
of a preference for a lensed CMB power spectrum with respect to an unlensed one

3Wilkinson Microwave Anisotropy Probe
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Figure 1.9: The 2013 Pranck CMB temperature angular power spectrum. The error bars include
cosmic variance, whose magnitude is indicated by the green shaded area around the best fit
model. The ACDM framework provides an excellent model for most of the PLANck data. Figure
from [40].

were found in the Acsar* data [|38], but for a proper reconstruction of the lensing
power spectrum, high sensitivity small scale CMB experiments like Act [3]] and
Spt [4] have been necessary.

The lensing spectrum from the large scales on the sky has been delivered for
the first time by the PrLaNCK experiment in the first scientific data release [5];
the POLARBEAR collaboration has reported a first direct detection of CMB lensing
from polarised CMB [[7] as well as a measurement of the cross-correlation of CMB
lensing and the Cosmic Infrared Background (CIB) [139].

At the present day, not only CMB lensing has been detected both in temperature
and polarisation power spectra; a continuous effort in creating new algorithms,
searching for alternative models of gravity and galaxy formation, and developing
innovative techniques for simulating lensed maps is being carried out for a full
characterisation and cosmological exploitation of this observable.

In the following, the current state of the art about detection and measurements
of CMB lensing will be reviewed.

1.5.1 Planck

The Pranck experiment [41]] delivered in 2013 all-sky temperature maps with
unprecedented sensitivity, setting a milestone for the status of our understanding

4Arcminute Cosmology Bolometer Array Receiver
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Figure 1.10: Top: Lensing potential power spectrum estimates based on the individual 100, 143,
and 217 GHz sky maps. The black line is for the best-fit ACDM model. MV is the Minimum
Variance estimator built using data from the aforementioned channels. Bottom: Wiener-filtered
lensing potential estimate form the PLANCK maps in Galactic coordinates. Figures from [J5]].

of the Universe. The full power spectrum from temperature is shown in Fig.
These results have a great importance not only for the cosmology, but also for
astrophysics, allowing to characterise not only the cosmological signal, but also
the foreground astrophysical emission. Given the huge amplitude of the results
yielded by the mission, the full results will not be reviewed here, focusing on the
analysis lead on gravitational lensing of the CMB; the full analysis on the allowed
values of cosmological parameters can be found in [[13].

The PrLanck dataset allowed to reconstruct from the temperature maps for the
first time not only the CMB lensing power spectrum but also the lensing potential
maps (see Fig. [I.10). The lensing power spectrum data were used in combination
with the CMB data to tighten constraints on cosmological parameters and break
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Figure 1.11: Left: Convergence power spectrum (red points) measured from AcT equatorial sky
patches. The solid line is the power spectrum from the best-fit WMar+AcT cosmological model,
which is consistent with the measured points. Figure from [3]]. Right: 2-D marginalised posterior
probability for ©2,, and ,. 10 and 20 contours are shown. Purple and blue contours consider the
combination WmaP+AcT while black are for Wmap alone. The combination Wmar+AcT, which
takes into account lensing data, favours a Universe with a non vanishing CC. Figure from [[10].

underlying degeneracies. The reconstructed lensing potential power spectrum is
found to be in good agreement with the ACDM prediction; the data show an evi-
dence for a non-zero lensing effect with a 200 confidence level [5]].

To give an example of the cosmological interest of taking the information com-
ing from CMB lensing into account, let us just note that the geometric degeneracy
between DE and spatial curvature can be broken, as for instance models of closed
Universe with low density of DE would produce an identical unlensed power spec-
trum to the ACDM case. The power spectrum of lensing, on the other hand, will
be different, thus breaking the degeneracy. This characteristic, for PLanck data, al-
lows to pose simultaneous constraints on £, = —0.00967%%0 "and Q, = 0.671%-927

—0.0082 —-0.023"°
This topic will be treated more extensively in Chapter 3]

1.5.2 ACT

The ground-based experiment AcT, located in Atacama desert, [[42] is, with Spr,
the most sensitive and highest resolution CMB temperature experiment currently
operating. Both these experiments have measured the damping tail of the CMB
spectrum up to £ of order of a few thousands, providing new insights into sec-
ondary CMB anisotropies and extragalactic point source populations that dominate
the signal at small angular scales. Act has been the first experiment to detect, at
40 confidence level, the gravitational lensing of the CMB through a measurement
of the four-point correlation function in the temperature maps [3]], as shown in

Fig. [1.11] left panel.

The high significance detection of CMB lensing potential also allowed for the
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Figure 1.12: Left: The Spt bandpowers, Wmap bandpowers, and best-fit ACDM theory spectrum
shown with dashed (CMB) and solid (CMB+foregrounds) lines The excess visible at £ Z 2300 is
due to residual foreground sources. Figure from [4]]. Right: In black, the cross correlation of the
lensing B—modes measured by Sptpol at 150 GHz with lensing B—modes inferred from CIB
fluctuations measured by HErscHEL and E—modes measured by Sptpol at 150 GHz. In green,
same as black, but using E—modes measured at 95 GHz, testing both foreground contamination
and instrumental systematics. In orange, same as black, but with B—modes obtained using the y;
procedure described in [43]]. In grey, the curl-mode null test. The dashed black curve is lensing
B—mode power spectrum in the ACDM model. Figure from [6].

first time to probe the presence of a non vanishing CC using only CMB data [[10],
see right panel of Fig.

1.5.3 SPT

As already said, Spt [[44] is a ground-based experiment located at the South Pole,
which together with ACT delivered high precision CMB maps in the small scales
region of the angular power spectrum.

Using only the power spectrum of the SpT temperature data, shown in Fig.
gravitational lensing of the CMB is detected at 50 significance [4] while the
reconstruction of the convergence power spectrum using the four-point correla-
tion function and the all-¢ technique gave a 6.30 detection of gravitational lensing
[45]. In [[46], it is further proved that adding the Spt data to the WmAP measure-
ments improves the precision of different cosmological parameters including the
possibility of breaking of the angular diameter distance degeneracy.

In 2013, a detection of gravitational lensing B—modes using first-season data
from the polarisation-sensitive receiver on the South Pole Telescope SpT-pol (the
observation strategy, calibration, and data reduction are similar to those used in
[47]) and data from the infrared background provided by the HERSCHEL experi-
ment was presented in [6]]. After constructing a template for the lensing B—mode
signal by combining E-mode polarisation measured by SpT-pol with estimates of
the lensing potential from a HERscHEL-SPIRE map of the CIB [[48]], it is compared
to the B—modes measured directly by Spt-pol, with an indication for a non-zero
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Figure 1.13: Top panel: A single estimate of the CfB power spectrum from the three POLARBEAR
patches is created using the individual patch band powers and their covariance matrices. In red,
the theoretical WmaP 9 years ACDM high-resolution CfB spectrum is shown. The uncertainty
shown for the band powers is the diagonal of the band power covariance matrix, including beam
covariance. Figure from [7]]. Bottom panel: all four combinations of the two lensing estimators
(EE, EB) applied to two different POLARBEAR maps and cross-correlated with the overlapping
HEerscHEL fields. The fiducial theory curve for the lensing-CIB cross-correlation spectrum is also
shown (solid line). Figure from [39].

correlation at 7.70 significance (see again Fig. [1.12).

1.5.4 POLARBeaR

With respect to the other experiments described up to now, whose first target is
the accurate measurement of the temperature spectrum at very small scales, the
POLARBEAR experiment [49]] was designed to specifically detect the B—modes of
CMB polarisation on both large and small angular scales, in a range 25 < { < 2500;
the experiment is placed at the South Pole as for the case of Spr.

Recently, a measurement of the B—modes polarisation power spectrum cover-
ing the angular multipole range 500 < £ < 2100 based on observations of 30° of
the sky with 3.5’ resolution at 150 GHz was presented [[7]. Including both system-
atic and statistical uncertainties, the hypothesis of no B—mode polarisation power
from gravitational lensing is rejected at 97.5% confidence, and the band powers
are found to be consistent with the standard cosmological model, see Fig.
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This measurement represents the first detection of lensing in the polarisation
spectrum, and in particular the first direct detection of the B—modes of CMB po-
larisation at small scales, and demonstrates the possibility of future exploitation
of CMB B—mode polarisation as a probe of both structure formation and the infla-
tionary epoch.

In another recent work [|39] the gravitational lensing convergence signal from
CMB polarisation data taken by the POLARBEAR experiment and cross-correlated
with CIB maps from the first data release from the HErscHEL-Atlas survey [[50]] was
presented, see again Fig. From the cross-spectra, evidence for gravitational
lensing of the CMB polarisation at a statistical significance of 4.00 and for the
presence of a lensing B—mode signal at a significance of 2.30 are obtained.

Such measurements of polarisation lensing, made via the robust cross-correlation
channel, not only reinforce auto-correlation measurements, but also represent one
of the early steps towards establishing CMB polarisation lensing as a powerful new
probe of cosmology and astrophysics.






Relevance of ACDM extensions in the
recent expansion history

Until a few decades ago, the presence of a DE component in the Universe was not
only debated, but also not accepted by the majority of the cosmological commu-
nity. By the mid-1990s, Big Bang cosmology was convincingly established, but the
Einstein-de Sitter model (a model with no curvature, and containing matter only)
was showing numerous cracks, under the combined onslaught of data from the
CMB, large scale galaxy clustering, and direct estimates of the matter density, the
expansion rate H,, and the age of the Universe; introducing a cosmological con-
stant offered a potential resolution of many of these tensions. In the late 1990s,
SuperNova (SN) surveys by two independent teams provided direct evidence for
accelerating cosmic expansion [|51), [52]], establishing the ACDM as the preferred
alternative to the Q,, = 1 scenario.

CMB evidence for a spatially flat Universe cemented the case for cosmic ac-
celeration by firmly eliminating the expansion-free alternative with ©,, < 1 and
Q, = 0. Today, the accelerating Universe is well established by multiple lines of
independent evidence from a tight web of precise cosmological measurements.

Despite the huge success of the current status of the model, for its predictive
power and the excellent agreement with observations, some crucial issues still
remain open: the nature of DE is still unknown, as well as its behaviour in time and
space. This leaves room for studying extensions of the standard CC case, in order to
seek for deviations from the standard Equation of State (EoS) w = —1, that will be
investigated in Sec. which might hint at different evolution histories of DE. In
this regard, the ultimate knowledge will be reached by exploiting fully the EucLip
data. The mission, with foreseen launch date in 2020, will use cosmological probes
to investigate the nature of DE, DM and gravity by tracking their observational
signatures on the geometry of the Universe and on the cosmic history of structure
formation. EucLip will map LSS over the redshift range 0.3 < z < 5, corresponding
to a cosmic time covering the last 10 billion years, more than 75% of the current
age of the Universe [[11]].

Another extension of standard physics which has interesting implications in
cosmology is the inquiry for understanding the characteristics of neutrinos. Mea-
surements of the CMB alone have led to a constraint on the effective number of
neutrino species of N,;; = 3.36 &+ 0.34 [13], a value 100 away from zero and
consistent with expectations. Planned and underway experiments are prepared to

37
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study the Cosmic Neutrino Background (CNB), resulting from the decoupling of
neutrinos from the rest of matter, via its influence on distance-redshift relations
and the growth of structure. Future experiments, including upcoming spectro-
scopic surveys EBOSS [53]] and Des1 [[54] and a new Stage-IV CMB polarisation
experiment CMB-S4, will be able to achieve a precision on the sum of neutrino
masses of 16 meV and on the number of neutrino species of N,y = 0.020. Such
a mass measurement will produce a high significance detection of non-zero » . m,,
whose lower bound derived from atmospheric and solar neutrino oscillation data
is about 58 meV. If neutrinos have a normal mass hierarchy, this measurement will
definitively rule out the inverted neutrino mass hierarchy, shedding light on one of
the most puzzling aspects of the Standard Model of particle physics - the origin of
mass. The role of neutrinos in the SM and in cosmology will be outlined in[2.2]

Such measurement of N, will allow for a precision test of the standard cos-
mological model prediction that N, ;= 3.046. The difference from three is due to
the small amount of entropy from electron/positron annihilation that gets trans-
ferred to the neutrinos; N, is by design equal to three in the idealised case that
all of this entropy is transferred to photons. Finding N,;; consistent with 3.046 at
a high precision level would demonstrate that we understand very well the ther-
mal conditions in the Universe just one second after the Big Bang. On the other
hand, finding N,;, significantly different from 3.046 would be a signature of new
physics.

The effects of neutrino properties on cosmology precisely appear in many ob-
servables in diverse ways, and are clearly observationally distinguishable from the
effects of other cosmological parameters. Much of the sensitivity to Y. m, will
come from measurements of the gravitational lensing of the CMB, measurements
of the Baryon Acoustic Oscillation (BAO) features [55] and broadband power spec-
trum, and measurements of weak gravitational lensing of galaxies; it is relevant to
consider different combinations of these probes, as they have completely indepen-
dent systematic errors.

In this Chapter, DE (in Sec. and the influence of neutrinos on cosmology
(in Sec. will be reviewed, with the aim of showing how these two phenom-
ena can be relevant and worthy to be considered in a view of expanding the cur-
rent knowledge of physics beyond the ACDM and the standard model of particle
physics, and how it is possible to learn more about the relevant observables by
which they are characterised using CMB lensing and other cosmological observ-
ables.

2.1 Cosmological Constant and Dark Energy

Among the solutions of Friedmann equations that are relevant for present day cos-
mology, an important role is played by the class of solutions including the presence
of a CC. According to current available cosmological data, we identify three ma-
jor components in the Universe: the baryonic matter with associated density Q,,
the total matter, with density €2,,, which includes the baryonic matter and the DM
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components, and the DE, with energy densityQ2,, which were defined in Sec.
Since from CMB we know that the Universe is very close to flatness Q;, = 0, and
the sum of all baryonic and dark matter in the Universe takes into account at most
for the 30% of the overall energy/matter, DE is nowadays the dominating compo-
nent in the Universe and accounts for the missing energy density. The DE density
is often thought to be connected to the possible existence of a CC or vacuum en-
ergy. The CC was first introduced by Einstein while looking for a static solution
of Friedmann equations. For this purpose he introduced the addition of another
geometrical component proportional to the metric to the field equations:

1
Ryv = 58 + A8y =87GT,, 2.1)

This implies that the Friedmann equations are modified as follows:

a\? 8nG k a\? 8nG k A
a a a

a 3 3 3
a 4G a 4G A
—=——Bp+p) == —=———Cp+p)+—. (2.2)
a 3 a 3 3

The modern point of view on the CC problem attempts to reach beyond the
original geometrical hypothesis of Einstein and considers the CC as the result of
the minimum energy state being at a non-zero level in Quantum Field Theory
(QFT). By moving the CC term on the right hand side of Eq. it is clear that this
“vacuum energy” component behaves like a perfect fluid with an EoS p = wp with
w = —1. Such fluid has a constant energy density, while both matter and radiation
energy density decay over time, the Q2 parameters are given by

A 30m 3py

Q — S Q =—, Q = 23
A 8nGH? ™ 8nGH2a3 " 8nGH2%a* 23)

From the above expressions in Egs. it follows that in a Universe with no
matter or radiation components, the second order derivative of the scale factor
is positive, meaning that the expansion will be accelerated. This regime is also
reached at late times, as the energy-density connected to the CC tends therefore
to dominate over matter and radiation energy density at late times, since the two
latter components decrease in density as the Universe expands.

When the Universe becomes dominated by the CC, the expansion becomes
exponentially accelerated:

a_»n At : (2.4)
—_=—_ — . .
2=3 a o exp 3

In Fig. different evolution histories of the Universe during time can be
seen depending on the combination of values of the cosmological parameters: in
particular, one can see that a flat Universe containing matter only will expand at
a decreasing rate, while a flat Universe with an energy contribution from a non-
vanishing CC starts to expand at an accelerated rate as time progresses.
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Figure 2.1: Expansion histories for different values of 2,, and Q,. From top to bottom (£2,,,, 2,) =
(0.3, 0.7), (0.3, 0.0), (1.0, 0.0), (4.0, 0.0). Figure from [56].

Being w the ratio of pressure to energy density, it is also closely connected
to the underlying physics. Despite the fact that the recent acceleration of the Uni-
verse is now a well-established phenomenon, the absence of a consensus model for
cosmic acceleration presents a challenge in trying to connect theory with observa-
tions. If cosmic acceleration is due to new gravitational physics, the motivation
for a description in terms of a constant value of w disappears; for example, this
assumption does not describe scalar field or modified gravity models.

A more general treatment than adopting a constant value of w = —1, which
provides a useful phenomenological description but does not describe a possible
evolution of the energy density during time and space, is to consider a scalar filed
rather than a constant. This scalar field, also known as quintessence, exhibits a
dynamic behaviour in time as well as spatial fluctuations, and may possibly be
coupled to Dark Matter [57]] or to the gravitational interaction [58] [59]]. For this
work, we will be concerned with the time evolution of the EoS during time, see
also Chapter[3]

By considering the continuity equation, we can compute the evolution of the
energy density if we consider a general EoS

dp 3(p + )1da:>dp_ 3p(1 4+ )1da
dt PPl a T ae ~ PV T d
1
1+ !
=p = p,exp (BJ wda’). (2.5)
a

Among many possible choices for the parametrisation of the EoS, some lead to
unrealistic behaviour, e.g. w >> —1 or w << —1 . The parametrisation [60, [61]],
often referred to as Chevallier-Polanski-Linder (CPL)

w(a) =wy+w(l—a)=wy+w, ( ) (2.6)

1+2



2.1. COSMOLOGICAL CONSTANT AND DARK ENERGY 41

avoids this problem and leads to the most commonly used description of DE, in-
volving three parameters 2, the DE density at present, w, the value of the EoS
today, and w, represents the first order expansion in terms of the scale factor.
This parametrisation does not inquire the physical nature of the variation of the
DE density over time; despite this, it is a useful phenomenological tool to study
possible deviations from a CC, in particular when considering more exotic models
predicting a departure from w = —1.

The most recent constraints on the evolution of the EoS have been presented by
the PLANCK Collaboration in [[13]]; for constraints on more exotic models, PLANCK
data have been analysed in detail in [|62].

The next step for constraining DE and matter clustering in general in the era of
precision cosmology is represented by the EucLip mission, conceived to measure
the expansion history and growth of LSS with a precision that will allow us to
distinguish time-evolving DE models from a CC, and to test the theory of gravity
on cosmological scales.

The mission will directly map the DM distribution in the Universe through weak
gravitational lensing by imaging 1.5 billion galaxies and providing near infrared
photometry. At the same time, it will carry out a spectroscopic redshift survey of 50
million galaxies over a volume 500 times larger than the Sloan Digital Sky Survey
[111].

Thanks to the information in redshift, the EucLip datasets will be exploited to
constrain the time evolution of structures, expanding our knowledge on the whole
dark sector of the Universe. The process of clustering, measured at an unprece-
dented precision, will test our knowledge of the theory of gravity, via the quanti-
fying of the growth factor y, which quantifies the efficiency with which structure
is built up in the Universe as a function of redshift. Using weak lensing and galaxy
clustering, the sensitivity on the DE parameters w,, w, are forecasted to reach
values of o,, = 0.05,0,, = 0.16, giving a final answer on the evolution of DE
l63].

2.1.1 Experimental evidences for Dark Energy

We have seen how adding a CC to the Einstein field equations determines an ac-
celerated expansion phase of the Universe as the scale factor drops significantly;
in order to establish the presence or absence of such an energy component in the
Universe, whose existence can be only inferred indirectly through its effects on
cosmological evolution, we need too find observables suitable for investigating the
matter.

Looking again at the Friedmann equations (Eqns. [2.2)), it is possible to calculate
from the first one the age of the Universe as a function of the different abundances
of the cosmological species, while the second one allows to analyse the effect of an
accelerated expansion on the luminosity distance and to compare the theoretical
calculations with observational data.

A lower limit to the age of the Universe can be placed dating the oldest known
stars, such as the low metallicity stars inside globular clusters. Studying their
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evolutionary stage, the age of Universe is constrained to be [64]
to > 13.5 &£ 2 Gyrs. (2.7)

Let us now calculate theoretically the time t, from the Big Bang (when a = 0)
to the present time; this will vary as a function of the cosmological parameters.
Considering a flat Universe composed by matter only Q,, = 1, solving the first
Friedmann equation gives

H)*> 1
(170) = = = Vada=H,dr. 2.8)
Integrating between 0 < t < t, and 0 < a < 1, and assuming H, ~ 70 km/(s Mpc)
we find

2
to= §H0_1 ~ 9.3 Gyrs. (2.9)

Therefore, if non-relativistic matter is the only component of the Universe,
the predicted age is too small to agree with the age of globular clusters. If one
considers a Universe composed only by radiation, the resulting age of the Universe
would be t, = (2H,)™! ~ 7 Gyrs. For this reason it is not possible to account for
the observed age of the Universe with matter and radiation as the only components
present in the Universe. If we now calculate the age of a flat Universe composed
by matter and with a non-vanishing CC (2, =1 —,,), we obtain

2_Hy' {\/I—Qm+1
= = n .
V2

0=
3./1-9,

If we set Q,, = 0.25 and H, ~ 70 km/(s Mpc) we obtain t, ~ 14.2 Gyrs; this

shows that a model with a matter content and a CC whose energy densities are

comparable, is in agreement with the lower age limit obtained by the observations

of globular clusters.

The cosmological evidence of the current accelerated expansion of the Universe
was made possible by accurate distance measurements of SuperNovae (SNe) [|52].
This class of exploding stars was first studied extensively during the first half of
the XX century by Zwicky and his collaborators, who first pointed out that these
luminous outbursts can be classified into different types according to their optical
spectra and their light curve. In particular, SNe classified as type Ia (SNe Ia), which
show no Hydrogen and Silicon lines in their spectra, appeared to be a physically
distinct class from the other SNe. Stellar evolution theory identifies this type of
objects as the result of the thermonuclear explosion of white dwarfs accreting mass
from a binary companion approaching the Chandrasekhar mass limit. On the other
hand, other types of SNe are generated from the core collapse of evolved massive
stars.

Even though the mechanism which triggers the explosion is still uncertain, SNe
Ia appear to have homogeneous observational properties in terms of spectral fea-
tures, rate and decay times. In the effort of building a further step of the distance

(2.10)
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Figure 2.2: State of the art of luminosity distance measurements using SNe Ia in terms of
apparent magnitude (top) and residuals from the best fit cosmological model (bottom) using data
from different surveys. Thanks to the good statistics accumulated, the uncertainties on the
cosmological parameter estimations from SNe measurements are now dominated by systematic
errors. Figure from [J65]].

ladder, it has been possible to establish the correlation between the peak bright-
ness of SNe Ia and the decline rate of the luminosity after the peak [|66]], making
then the SNe Ia “standardizable” candles for distance measurements.

The measured energy flux f of the light emitted by a source having an intrin-
sic luminosity L is reduced by the expansion of the Universe which redshifts the
photon energy and of the emitted photons and delays their arrival time. Since the
expansion history of the Universe depends on the cosmological parameters it is
possible to connect distance measurements of objects which have the same intrin-
sic luminosity to the underlying cosmology. The quantity encoding the dependency
on the cosmological parameters is the luminosity distance D; = D; (z,Q,,, 25, W)
which is connected to the observed flux of a source as

L
" 4nD, %

f (2.11)

In case of a Universe dominated by a CC, the expression for the luminosity distance
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reads [21]]

14z ! vV |Qk|

Dy (2,92,,Q,,w) da. (2.12)
" Ho/1l J L a?y/Q,a73 + 9, + Qa2

For standard candles with known spectra, the measurements of D, (z) are able
to constrain the cosmological parameters. This can be done directly for low red-
shift SNe, which will be used to calibrate the observation of farther objects whose
absolute luminosity is unknown.

2.1.2 Fine tuning and coincidence problem

Despite the good agreement with data and the interest, the CC suffers a few theo-
retical problems, mainly the coincidence and fine tuning problems. The first prob-
lem arises from the fact that the energy densities of matter and CC are comparable
at present time, even if their ratio changes quickly with time:

Ll—) (2.13)

Pm

At past times in fact, matter energy density was strongly dominant with respect
to the energy density given by the CC, for example at Planck time t, = v/G =
5.3906 - 10~* s after the Big Bang, their ratio was ’p)—" ~ 107'2, Knowing from

the first Friedmann equation how the two components evolve with redshift, we
can calculate the redshift z; where the contributions of matter and CC become
equivalent:

Q0 ?
(1+2.)= (—) =z, ~0.4 (2.19)
Q,

Thus, the equivalence between the two species happened really close to the
present time from a cosmological point of view, but there is no physical mechanism
able to predict the transition from the matter to the CC dominated regime, as the
latter has a constant energy density. Therefore the value of the CC is exactly the
one needed to switch at present time from the past matter-dominated regime to
the period of CC dominance, but there is no way to explain why we are living in
such a special moment of the life of the Universe.

Another issue concerning the CC arises from its physical interpretation; this
component in fact behaves like a fluid whose energy density keeps constant as the
Universe expands. For this reason, one can think that the CC is connected with vac-
uum energy, which obeys the same property. It is possible to show that the vacuum
energy behaves like a CC, as computing the mean value of the stress-energy tensor
on the vacuum state in Minkowski space-time, we obtain an invariant symmetric
tensor, thus proportional to the metric. This applies also to curved space-times if
we neglect higher order terms, therefore

<TM’V>VC1C = pvac g,uv‘ (2'15)
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Figure 2.3: Time dependence of the densities of the major components of the Universe. Given the
observed Hubble constant, H, and energy densities in the Universe today (2, radiation, Q,,
matter, and 2, CC), the Friedmann equation is used to plot the temporal evolution of the
components of the Universe in g/cm?® (top panel), or normalised to the time-dependent critical
density p.,;, (bottom panel). Figure from [67].

The effective CC which enters the Friedmann equations is given by [/68]]
A=81Gp,, + N\o, (2.16)

where A, is a bare CC in Einstein’s field equations. We know that, as the Universe
is flat, p, = A/87G cannot exceed the critical energy density p,:

8H,>

~8-10"%h,? GeV*. 2.1
877G o b€ (2.17)

pA<pc:
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Figure 2.4: Lensed B—modes power spectra for DE models with a time-varying EoS. The curves
represents models with wy = —0.9, w, = 0.5 (solid line), wy = —0.965, w, = 0.665 (dashed
line), wy = —0.8, w, = 0.24 (dotted line). Figure from [[9]).

Hence, in order to explain the CC as a vacuum energy, we need to balance the
term 87Gp, . tuning A, in order to obtain a small, but non vanishing, value of A
today.

There is no specific reason why the two terms in Eq. should sum up to
the observed value; moreover, to this day we are unable to calculate the vacuum
energy density in QFTs like the Standard Model (SM) of particle physics. There are
no theoretical convincing arguments for expecting a particular value of p,,.. On
the other hand, if the association between the CC and the energy ground state of
vacumm occurs at the Planck scale, the latter would be of the order of magnitude of

1
the Planck energy density pp;gnck & FevR which is about 123 orders of magnitude

larger than the present critical density in This is one of the most problematic
aspects of the interpretation of DE as vacuum energy at a quantum level, and
yet among the most fascinating ones, as it is shedding light on our inaccurate
knowledge of both cosmology and QFT.

2.1.3 CMB lensing constraints on Dark Energy

The cross-correlation of the lensing potential with the lensed CMB can help con-
straining curvature and the DE model through the ISW effect. These probes are
however not very precise as they are plagued by cosmic variance uncertainties,
which is high at low ¢ multipoles. A more direct imprint of DE can be inferred
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from the lensing potential itself since it is affected by the growth function of the
LSS [9].

In particular, CMB lensing is capable of picking up the DE abundance at the
onset of acceleration, as the cross section is zero if the lens is coincident with
the observer or the source, becoming instead maximum in intermediate regions
[25]; in particular, if the source can be considered at infinity the lensing cross sec-
tion is non-zero at redshifts in the range 0.1 < z < 10, peaking at z ~ 1, rather
independently of the particular cosmological model considered, and thus most rel-
evant to study the Universe at the corresponding epoch. The sensitivity to a broad
range of redshifts also implies that CMB lensing is a unique probe of DE (or, more
generally, of clustering) at z 2 2. In Chapter [3| it will be shown how different
evolving DE models influence not only the expansion history, but also the cluster-
ing of structures and therefore affect the lensing signal, modifying its amplitude in
the B—modes of CMB (see Fig. ; for this reason, this measurement is able to
break the projection degeneracy, since it alters the position of the acoustic peaks,
together with modifying the amplitude of the B polarisation.

Using CMB and lensing potential can help constraining time dependent DE EoS,
and/or the presence of early DE [[69]. These early DE models follow from physics
where DE traces the energy density of the dominant component of the Universe, as
for example in high energy physics and string theory models (see, e.g., [70] and
references therein). The presence of a non-negligible component of DE at early
times has important impacts on the sound horizon scale, structure formation, and
secondary anisotropies and a joint CMB plus lensing analysis can become a good
probe for this kind of models as this combination is sensitive to all the effects. The
constraints can also be improved using additional external data from weak lensing
and DE optical surveys ([[71]], and references therein) or, in the future, from 21 cm
emission lines observations [|72} [73].

2.2 Neutrino cosmology and the Standard Model

The historic discovery of neutrino flavor oscillations provided one of the most im-
portant signatures for new physics beyond the SM. Namely, it implied that neutri-
nos exhibit distinct, non-zero masses and that the propagating mass eigenstates in
general are different from the flavor eigenstates produced and detected in experi-
ments. While by now solar and atmospheric oscillation experiments have provided
us with a fairly good knowledge of both neutrino mass squared differences and
mixing angles (for a recent review see [74] and references therein), they are in-
sensitive to one crucial, still outstanding input - the absolute neutrino mass scale.
So far, only upper limits exist which are derived from the experiments aiming to
measure of neutrinoless  decay Ov 33 and endpoint spectrum studies of 3 decay
as well as from cosmological measurements sensitive to neutrino masses.

In this section, the main aspects of the SM in relation to neutrinos will be
reviewed, along with the physical effects arising from the presence of neutrinos in
the cosmological framework.
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Name [l 1Q L L, L;
First electron e|-1 1 0 O
generation | e neutrino [ v, |0 1 0 O
Second muon ul-1 0 1 O
generation | y neutrino |v, | 0 0 1 O
Third tauon T|-1 0 0 1
generation | T neutrino |v. | 0 0 0 1

Table 2.1: The three generations of leptons.

2.2.1 The Standard Model

All the phenomena observed up to now in fundamental physics are described with
high accuracy by the SM of elementary particles and fundamental interactions.
With the observation of the Higgs boson of mass ~ 125 GeV by the ArLas! and Cwms?
collaborations at the Large Hadron Collider [75, [76]], the whole set of particles
foreseen in the framework of the SM has been detected, confirming its validity as
one of the most predictive theories currently at our disposal.

From the theoretical point of view the SM is a QFT based on gauge symme-
try SU(3). X SU(2); x U(1)y. This gauge group includes the symmetry groups of
strong interaction SU(3)., and of electroweak interaction SU(2); x U(1)y. The
symmetry group of electromagnetic interaction U(1),,,, appears in the SM as a
subgroup of SU(2); x U(1)y, since electromagnetic and weak interactions are uni-
fied.

In this context all matter is made out of three kinds of elementary particles: lep-
tons, quarks and gauge bosons. There are six leptons with half-integer spin, obey-
ing then to Fermi-Dirac statistics, classified according to their charge expressed
in unities of electron charge (Q) and lepton number (L). They are divided into
three families, or generations, each of them having its own lepton number (see
Tab. [2.1)). Every lepton has its antilepton, with same characteristics but opposite
sign of charge. Similarly, there are six flavours of quarks, which are fermions too,
classified according to charge, isospin (I), strangeness (S), charm (C), beauty (B),
and truth (T). The quarks belong as well to three generations (see Tab. and
like leptons the charges of antiquarks are reversed. Quarks are described by a fur-
ther quantum number, the colour C: every quark and antiquark can come in three
different colours and anticolours (red, green, blue, and their corresponding anti-
colours), for a total of 36 quarks and antiquarks and 12 leptons. Since all particles
observed come with no colour, the quarks must be confined into matter particles
in a singlet state of colour. Baryons are composed by three quarks qqq or three
antiquarks qqqg, e.g. the proton p = uud, while the mesons are bound states of a
quark and an antiquark ¢g, e.g. the pions n* = ud and 7~ = di.

A Toroidal Lhc ApparatuS
2Compact Muon Solenoid
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Name [q | Q I S C€C B T

First down |(d|-1/3 -1/2 0 O 0 O
generation up ul2/3 1/72 0 0 0 O
Second | strange|s |[-1/3 0 -1 0 O O
generation | charm | ¢ | 2/3 0 0O -1 0 O
Third bottom | b | -1/3 0O 0O 0 -1 0
generation top t | 2/3 0O 0O 0O 0 -1

Table 2.2: The three generations of quarks.

The picture is still not complete, since the mediators for the fundamental in-
teractions (excluding gravity, which is not described by the SM), bosons with spin
s =1, are still to be introduced. All interactions, electromagnetic, weak and strong,
happen with the exchange of an elementary particle (the photon y for e.m. force,
the 8 gluons g, for the strong force between quarks and the three bosons W* and
Z, for the weak force). A synthetic table can be seen in Fig.

The gauge sector of the SM is composed by the 8 gluons, and the particles 7,
W= and Z,. The main characteristics of gluons are that they are massless, neutrally
charged and carry colour charge. Gluons can be found in 8 different colour charge

states: - -
i, . rr—>bb rir+bb—-2gg
rb, rg, br, bg, g, gb, ,

g 8,87, 8 /2 N

As a consequence of having a colour charge, gluons can either interact with
quarks or self-interact; W* and Z, are massive and self-interacting, with Q(W*) =
+1 and Q(Z,) = 0, while y is massless, neutrally charged and not self-interacting.

In the standard model, the Higgs field is an SU(2) doublet, a complex scalar.
The Higgs field, through the interactions specified by its potential, induces sponta-
neous breaking of three out of the four generators of the gauge group SU(2)x U(1)
mixing with the three W* and Z bosons which now become massive. The one re-
maining degree of freedom becomes the Higgs boson - a new scalar particle.

The fermionic sector of quarks and leptons is organised in three generations that
have identical properties, differing from each other only in mass. The particles in
every generation are respectively

Ve u
(e)L,eR; (d)L,UR’dR

’VM . C
(M)L’MR’ (S)L:CR)SR
Ve ) b
(T)L’TR’ (t)L’bR’tR

and their corresponding antiparticles. The chiral operator v is introduced [|78]]

Ys =1YoY1Y2Ys3



CHAPTER 2. RELEVANCE OF ACDM EXTENSIONS IN THE RECENT EXPANSION
50 HISTORY

mass > =23 MeVic? =1.275 GeVic? =173.07 GeV/c* 0 =126 GeV/c*
charge — 2/3 u 213 C 23 t 0 0 I I
spin = 1/2 12 12 1 9 0
Higgs
up charm top gluon on
=48 MeVic? =35 MeVic? =418 GeVlc? 1]
-113 d -113 S -113 b (]
12 112 172 1 »
down strange bottom photon
0.511 MeVic* 105.7 MeVic? 1.777 GeVie® 91.2 GeVic*
-1 e -1 -1 T 0
12 12 u 12 1
electron muon tau Z boson
<2.2 eVic? <0.17 MeVic? <15.5 MeV/c*® 80.4 GeVic*

. De . Dy 7
102 € 112 v]’l 112 1

electron muon

tau
neutrino neutrino neutrino W boson

Figure 2.5: Particle content of the Standard Model of particle physics. Figure from [[77].

because weak interaction only couples to the left-handed component of particles.
The chirality, denoted by the subscripts L and R, is defined by the chiral operator
vs in the following way:

1
€, = 5(1 —¥s)e

1
er = 5(1 +7vs)e

The chiral operator is introduced because weak interaction couples only to the
left-handed component of particles.

There is no experimental reason of introducing a right-handed neutrino; there
have been experiments aimed to measure neutrino helicity from Goldhaber et al.
proving that neutrinos can only have left-handed helicity, and subsequently an-
tineutrinos can only have right-handed helicity [79]].

2.2.2 Massive neutrinos and flavor oscillation

In the framework of the SM of particle physics, right-handed neutrinos are not
required by electroweak theory and thus the left-handed chiral neutrinos are the
only fermions without right-handed partners in the theory. Accordingly, since Dirac
mass terms necessitate fields of opposite chirality, neutrinos are massless in the SM
as opposed to quarks and charged leptons.

However, experiments not only suggest that neutrinos are massive, but also
that their masses are in the (sub-) eV range and thus orders of magnitude smaller
than any other SM masses. Probably the most elegant and natural explanation
beyond the SM description is provided by the so-called see-saw mechanism [180,
81),182], 183]. In the framework of the see-saw mechanism, the SM Lagrangian is
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augmented to include three fermions which play the role of “right-handed neu-
trinos” N (with vT = (veTL,ng,vTTL )), and are singlets under the SM gauge group.
Consequently, for them, unlike for their left-handed partners, a lepton-number vi-
olating Majorana mass term is not protected by symmetries and is thus permitted.
In addition, they can have a Yukawa interaction A allowing for a Dirac mass term,
possibly generated by the standard Higgs-mechanism [|84]]

& = Loy +NiidN; + (A;N,L;H — %Ml.jNiNj +h.c.) (2.18)
where %, i,j = (1 — 3) denote the family-number indices, L; are the SU(2)
lepton doublets, H is the ordinary Higgs doublet, the Majorana mass matrix M
and the Yukawa matrix A are 3 X 3 flavor matrices. The new scale introduced by
the elements of M in Eq. is assumed to be related to some “fundamental”
physics at ultra-high energies beyond the low-energy description of the SM, e.g. to
some symmetry breaking in the framework of grand unified theories. It thus seems
natural to expect the eigenvalues of M to be much larger than those of the Dirac
mass matrix M, since it is not protected by the SM gauge symmetries. Under this
assumption, after integrating out the heavy right-handed neutrinos, one obtains
the effective Lagrangian [185]]

— 1 T -1
L= Lo+ D LM A ) (LH)(LH) + hec. (2.19)
k

which only contains observable low-energy fields. After spontaneous electroweak
symmetry breaking [184]], the Higgs field acquires a vacuum expectation value,
(H) ~ 246 GeV, which generates the following 3x3 Majorana mass matrix for light
neutrinos,

(m,);; > —(MyM ™' Mp),; with My, = vA;; (2.20)

From naturalness arguments it should be expected that the Dirac mass for each
generation of neutrinos is of the same order of magnitude as the mass of the
corresponding quark or charged fermion. Accordingly, the see-saw mechanism
naturally ascribes the relative smallness of neutrino masses to the suppression of
the Dirac mass matrix M), by the small matrix factor M} (M )~!; in addition, the
neutrinos v; with definite masses m,_ are predicted to be Majorana particles. This
implies that they possess only half of the four independent components of Dirac
particles and are their own charge conjugates

v =6/

v! (2.21)

1

with ¥ denoting the charge conjugation matrix. Importantly, the predicted Ma-
jorana nature of neutrino masses is a clear signature for the see-saw mechanism
and implies the existence of a new fundamental scale in nature A ~ v*/m, ~
10 — 10" GeV for m, ~1072 - 107! eV,

Since the neutrino mass matrix is not diagonal when expressed in terms of
the flavor eigenstates, one is led to the concept of neutrino flavor oscillations.
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Figure 2.6: The different possible neutrino mass hierarchies. Figure from [87].

In other words, the flavor eigenstates v, participating in weak interactions are
superpositions of the propagating neutrino states v; of definite mass m;

3

Vo) =D U v) (2.22)

i=1

where a = e, u, T and the 3 X 3 neutrino mixing matrix U is determined by the
condition

U'm,U = diag (m;, m,, m;) (2.23)

The most common parameterisation of the mixing matrix in components, U, is
the so called standard parametrisation [|86]]

V1 v V3
—i§
Ve €12€13 5 €13512 s S13€
1 1
Yy —Co3512 — C12513523€ C23C12 ; $12513523€ s C13823
L 1
Ve $23812 = €12513C23 —C12523€ " — S12513C23€ C13C23
x diag (1,e'®1/2, gl®13/2) (2.24)
with ¢;: = cos 0 =

ij = 1> 8;j = sin 0,5, where 0,,, 0,3, 0,5 are the three mixing angles,
0 is the Dirac phase and a,; and a5 are the Majorana phases.
In case neutrinos are Dirac particles, the Majorana phases can be eliminated by
a rephrasing of the massive neutrino fields. All of the three complex phases in the
mixing matrix generate violations of the CP symmetry.
Let us consider in the following a neutrino produced and detected with defi-
nite flavor in weak charged-current interactions after propagating a time T and a
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distance L in vacuum. The normalised neutrino state at the production point is
related to the state |v,(L, T)) at the detection point by the Schrédinger equation
as follows:

3
VoL, T = D | D UL e BTy, | fvg), (2.25)
B=e,u,v [ i=1
where E; and p;, respectively, are the energy and momentum of the massive neu-
trino v;. Consequently, at detection the state describes a superposition of different
neutrino flavors giving rise to the possibility of flavor change in vacuum with as-
sociated probability P, ., [74]

3 AmZL
* —i—2
Prmy = shva(L)P = | Uz e 2 U,
i=1
m.2.L
an?
= ZIU 2|Ug > +2Re Y U: U, U, U e, (2.26)
i>j

where Aml.zj =m?— m? and the dependence on T has been expressed in terms of
the neutrino masses and energy. Accordingly, the neutrino mass squared differ-
ences as well as the mixing matrix are the fundamental inputs which determine
neutrino oscillations. Neutrino oscillation experiments are characterised by a dif-
ferent neutrino energy E and propagation distance L.

It should be noted that the vacuum transition probability P, _,, . in Eq. gets
modified by neutrino interactions resulting from the propagation through matter.
While neutral current interactions are common to all neutrino flavors, only elec-
tron neutrinos can additionally have charged current interactions with electrons
composing the matter besides nucleons (or quarks). As a result, with respect to
the other flavors, the time development of electron neutrinos is altered by a phase
which is determined by the electron density of the medium of propagation.

It is to be noted that since the neutrino oscillations have been observed and
measured, this implies that neutrinos should have a mass, albeit very small. A huge
effort is being devoted in the particle physics community to unveil the neutrino
properties.

Let us now briefly review the results of a global analysis of recent experimental
data on the neutrino mixing parameters and the mass differences gained from
neutrino oscillation experiments. The current values obtained from the global fit
analysis of neutrino oscillations data are presented in Table

One of the key achievements of neutrino oscillation experiments is the provided
knowledge on the neutrino mass squared differences Amizj = m? — mJZ.. Solar
neutrino and reactor antineutrino experiments as well as atmospheric and long-
baseline accelerator neutrino experiments allow to interpret the oscillation data in
terms of three-neutrino mixing (see agaln So far, both the sign of Am3,, and
the absolute neutrino mass scale are not known, thus leaving undetermined which
of the following three possible neutrino mass schemes are realised in nature, see

also Fig. [2.6}
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Parameter Best fit | 10 range

Mass splittings

om*/107> eV (Normal or inverted hierarchy) | 7.54 | 7.32-7.80

Am?/1073 eV? (Normal hierarchy) 2.43 | 2.37-2.49
Am?/1073 eV? (Inverted hierarchy) 2.38 | 232-244

Mixing angles

sin® 0;,/10~! (Normal or inverted hierarchy) 3.08 | 2.91-3.25

sin” 0,5,/10~2 (Normal hierarchy) 2.34 | 2.15-2.54
sin® 0,,/1072 (Inverted hierarchy) 2.40 | 2.18-2.59
sin® 0,,/10~! (Normal hierarchy) 437 | 4.14-4.70
sin? 0,,/107! (Inverted hierarchy) 455 | 4.24-5.94

Table 2.3: Summary of present information on neutrino masses and mixing from oscillation data

from [88]]. Here 6m® = Am3,, Am* = Am3, — Am3, /2.

e Degenerate spectrum: m; ~ m, ~ mg >> |m; — m.|.
1 2 3 i J

e Normal hierarchy: m; >> m,; (Ams; > 0) in analogy to quarks and charged

leptons.

e Inverted hierarchy: m; ~ m, >> my (Am;; <0).

Since neutrino oscillation experiments are only sensitive to neutrino mass squared
differences but not to the absolute neutrino mass scale, they can only provide
lower limits, 4/ AmiTM ~ 0.05 eV and 4/ AméOL ~ 0.01 eV, where the pedices ATM
and SOL stand for bounds from atmospheric and solar experiment respectively, for
two of the neutrino masses.

Bounds on the absolute neutrino mass scale can be obtained from 3 decay and

neutrinoless double 8 decay experiments (if neutrinos are Majorana particles) as
well as from cosmological measurements, which will be reviewed in subsec. [2.2.3]

e 3 decay: The neutrino mass m,_distorts the energy spectrum of electrons

emitted in the 8 decay of a nucleus (the most sensitive choice being tri-
tium). The analysis of the electron spectrum near the end-point allows for
a robust kinematical measurement of m? = >, |U,|*m?. The most stringent
upper bound on the electron neutrino mass derived from tritium beta decay
is m, <2.0eV [89,90] at 95% confidence level. Assuming CPT-invariance,
combined with the observed oscillation frequencies, this mass bound applies
to all active neutrinos. The future experiment KaTtriN [[15] is expected im-
prove the sensitivity to by one order of magnitude down to about 0.2 eV,

Neutrinoless double 8 decay: Less direct information on the absolute neu-
trino mass scale can be inferred from neutrinoless double [ decay which
is, however, only allowed if neutrinos are Majorana particles. Thus, the
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importance of its discovery would mainly lie in the establishment of lep-
ton number violation of 2 units as well as the Majorana nature of neutrino
masses [[86]. The measured decay amplitude not only depends on the Majo-
rana effective mass m,, = ). |U,;|*m;, but also on the 0v2f nuclear matrix
elements, which are affected by sizeable theoretical uncertainties. Present
limits on the effective electron neutrino mass are |m,,| < (0.105 - 0.840)
eV [91] 92 93], |m,.| < (0.114 - 0.912) eV [91] [92] 94], |m,.| < (0.168
- 1.134) eV [|91], 95| [96]]. The controversial claim in [91]] of a 4.20 ev-
idence for 0v2f (see [97] and references therein) has been disfavoured
by the GErDA experiment after Phase I of data collection, setting an up-
per bound of |m,| < 0.2 — 0.4 eV [98]. If confirmed, the signal would
be interpreted in terms of quasi-degenerate neutrino masses of 0.1 - 0.9 eV
(>.m,, >1.2eVat20).

2.2.3 Effects of neutrinos in cosmology

Assuming that the thermal history of the Universe proceeds according to the Big
Bang theory predictions, it is possible to derive the contribution given by the pres-
ence of massive neutrinos to the overall budget of the Universe defining a density
parameter ,, [21]]

_um,

Q, =
Y 94h%eV
The fractional contribution to the mass contribution f, is then
> m

Q
=—"~0.08 v, 2.28
fy Q =y (2.28)

m, # 0, (2.27)

m

The bounds reviewed in subsec. [2.2.2] suggest that the neutrino mass is small
enough to be relativistic at the time of recombination; subsequently, the evolution
of the neutrino component will be substantially different from the baryonic and
Dark Matter components, see Fig. Neutrinos can thus contribute to the overall
pressure and lead to a smearing out of over-dense regions. At a given epoch the
neutrinos can stream freely for a comoving distance set by [[12]]

Mpc, (2.29)

142 lev) 1 0.04
M3(2)~7.7 ( )

— Mpc ~
Q2+ 2,(1+2°) PE™ fhva

h
below which neutrinos will not clump significantly. On these scales, the density
dilution of neutrinos due to the expansion of the Universe prevents the accretion
due to gravitational instability, and gravitational potential wells decay leading to a
slower structure formation rate in the intervening time scales. Structures on scales
smaller than ~ 0.1 Mpc/f, are suppressed for every epoch, while scales larger
than 100 Mpc are never affected, leading to a decrease in the power spectrum
of the matter distribution for small scales, while the structure on large scales is
essentially unmodified. It has been shown [[100] that the fractional suppression of

m,



CHAPTER 2. RELEVANCE OF ACDM EXTENSIONS IN THE RECENT EXPANSION

56 HISTORY
10°
E I I I
0.1 | neutrinos
001 ¢ i
0.001
le04 Lot iy
107

Figure 2.7: Evolution of the background energy densities in terms of the fractions ; from T =1
MeV until now, for each component of a flat Universe with h = 0.7 and current density fractions
Q4 =0.70, Q, = 0.05 and Qcpy =1 — Q4 — Qp — Q,,. The three neutrino masses are
m; = 0,m, = 0.009 eV and m5 = 0.05 eV, Figure from [99]).

the matter power spectrum P(k), with k the spatial wavenumber, is of the order of
AP(k)/P(k) ~ —10f, for scales k ~ 0.5 — 1h Mpc™!, see also Fig.

There is a number of ways to probe the role of the neutrino mass on cosmo-
logical scales which resort to a mapping of matter distribution. The most widely
used tracers are the galaxies and galaxy clusters distribution, the neutral hydrogen
mapping through Lyman—a 21 c¢m line absorption or emission processes and weak
gravitational lensing in the optical wavelength range. Each one of these probes is
subject to different systematics related, e.g., to the lack of knowledge about the
bias of galaxy distribution, effects of non-linear evolution, foreground modelling,
and many other possible contaminants of astrophysical origin.

The CMB is also sensitive to the massive neutrinos as they increase the anisotropy
on small scales because the decaying gravitational potentials enhance the photon
energy density fluctuation through an early ISW effect [102]]. Furthermore, neu-
trinos modify the sound horizon at recombination 6, and thus the position of the
acoustic peaks shifts. For light masses, the change in the sound horizon is small;
on the other hand, keeping all the other parameters fixed, defining our cosmologi-
cal model (as the sound horizon is degenerate with Q,, H, and w), the value of 6,
drops significantly with increasing mass due to the increased expansion rate at late
times, which in turn makes the last scattering surface look closer and anisotropies
shifted to larger angular scales. In Fig. [2.7]the effect on the CMB temperature spec-
trum of increasing the neutrino mass while keeping the redshift at equivalence and
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Figure 2.8: Effect of different values of f, on the matter power and comparison with linear
prediction. The ratio between matter power spectra for simulations with and without neutrinos
for four different values of the neutrino mass is shown »_.m, = 0.15, 0.3, 0.6, 1.2 eV (from left to
right, top to bottom). Different line-styles refer to different values of the redshift: z = 2 (red
dashed), z =3 (black continuous) and z = 4 (blue dotted). The predictions of linear theory are
shown as the thick curves. An estimate of the overall suppression based on the hydrodynamical
simulations is shown as a thick short green line, AP/P ~ 10.5f, . Figure from [101].

the angular distance to the last scattering surface fixed is shown: the only observed
differences are then for 2 < £ < 50 (late ISW effect due to neutrino background
evolution) and for 50 < £ < 200 (early ISW effect due to neutrino perturbations).
By looking at the modifications induced on the spectra, and considering that the
signal at low £ is heavily affected by cosmic variance, one can argue that the CMB
alone is not a very powerful tool for constraining sub-eV neutrino masses, and
should be used in combination with other datasets, e.g. measurements of the LSS
power spectrum, for instance from galaxy clustering, galaxy lensing or CMB lens-
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Figure 2.9: CMB temperature spectrum with different neutrino masses. Some of the parameters of
the AMDM model (Mixed Dark Matter, where Mixed refers to the inclusion of some hot Dark
Matter component) have been varied together with M, in order to keep fixed the redshift of

equality and the angular diameter distance to last scattering. Figure from [[99].

ing [[102]].

The effects induced by having massive rather than massless neutrinos are de-
generate with the effective number of relativistic species N, ,, which can be con-
sidered a contribution to the radiation density, as the effect would mimic the pres-
ence of a relativistic neutrino. The standard model predicts N,;; = 3.046 but
recent data from SPT [[103]] lead to an evidence of an extra dark radiation compo-
nent N,; = 3.93+0.68, which is in tension with the result coming from ACT data,
N,;; = 2.74+0.47 [104] and the standard model value, but in agreement with the
existence of a hypothetical sterile neutrino. The effect of an extra radiation compo-
nent on the CMB is a shift in the acoustic peaks due to a delayed matter-radiation
equality which modifies the sound horizon and the height of acoustic peaks and
a modified early ISW contribution. As a result, the position of the matter power
spectrum shifts at smaller scales because matter radiation-equality is shifted to
later times and modifies thus the lensing potential.

On the polarisation level, however, the difference is more important, especially
in the B—modes spectrum, as the lensing potential is sensitive to the neutrino mass
since it consists of an integral of the matter perturbation along the line of sight
and is affected by the damping in the matter power spectra. As previously argued,
increasing neutrino mass has the effect to increase the expansion rate at 2 1 and so
suppresses clustering on scales smaller than the horizon size at the non-relativistic
transition [[14},105]. The net effect for lensing is a suppression of the CMB lensing
potential and, as an estimate, by £ ~ 1000 the suppression is around 10% in power
for . m, ~ 0.66 eV [[13]]. Bounds on neutrino mass can therefore be derived using
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the lensing potential reconstructed from CMB and lensed B—modes power spectra
up to an ultimate limit of 35 meV which can be reached in the case of a cosmic
variance limited full-sky CMB polarisation survey, always keeping in mind that this
quantity is degenerate with other parameters which enter the structure formation,
and that cross-correlation of different datasets are able to lift these degeneracies
[14].

Current limits on the total neutrino mass » m, from cosmology are rather
model dependent and vary strongly with the data combination adopted. The tight-
est constraints for flat models with three families of neutrinos are of the order of
0.3 eV (95% CL; e.g., [106]]). Since Y.m, must be greater than approximately
0.06 eV in the normal hierarchy scenario and 0.1 eV in the degenerate hierarchy
scenario [[107], the allowed neutrino mass window is already quite tight and could
be closed further by current or forthcoming observations [[108], [109]]. The PLANCK
collaboration reported an upper limit on the sum of neutrino masses »_m, < 0.23
eV, and for the effective number of species the result is well consistent with what
predicted by Big Bang nucleosynthesis N,;, = 3.30 £0.27 [13].






Prospects for B-mode power spectra
measurements

After 50 years from the first detection of the CMB radiation, and subsequently the
turning of cosmology from a speculative to a quantitative and predictive discipline,
the last stand for this branch of astrophysics still lies in the relic radiation from the
Big Bang, which has been characterised from the very large superhorizon scales
down to £ ~ 4000 in total intensity, but despite the fact that a lot of efforts have
been made in the recent years, a full observation of the polarised emission from
the last scattering surface is still not available.

In the signal coming from the polarised B—modes the signature of inflation is
encoded, the highly accelerated expansion phase taking place in the first infinites-
imal fraction of the life of the Universe. This theory, first proposed around thirty
years ago in [[110], would provide, together with the description of the initial
evolutionary phase of the Universe, also the spectrum of primordial perturbation
which, following the gravitational attraction, grow into the structures we observe
today.

In Sec. the presence of both the tensor signal coming from inflation, and
the weak lensing of CMB in the B—modes was discussed. The coexistence of both
components in the same £ range, a primordial and a late-time one, might induce an
additional noise source when trying to estimate the amplitude of the inflationary
perturbations. This issue might become even more important when considering
non-standard histories of evolving DE; the case for a possible deviation from the
standard ACDM model has been made in Sec.

A number of sub-orbital experiments are planned and have been observing
selected regions of the sky and frequency spectrum, looking for arcminute and
sub-arcminute scale anisotropies in total intensity, as well as polarisation®. These
observations will target most important and yet still undetected effects, domi-
nating the curl component (B—modes) of the linear polarisation pattern in CMB
anisotropies [[16, [17]]. On arcminute angular scales, the latter are dominated by
the gravitational lensing of the anisotropies at last scattering by means of forming
cosmological structures along the line of sight, as argued in Sec. The lensing
effect coming from the power spectrum of the underlying DM distribution, and the

!seehttp://lambda.gsfc.nasa.gov/ for the list of operating or planned sub-orbital CMB
experiments.
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primordial E—modes, produce a characteristic and broad lensing peak located at
¢ ~ 100 in the B—modes power spectrum.

Gravitational lensing has been recently detected in the damping tail of the tem-
perature power spectrum by several groups, also cross-correlating the lensing with
observed structures, while for the B—modes some first measurements have been
presented by the SpT and POLARBEAR collaborations. The latest observational re-
sults have been presented in Sec. [1.5] and will not be recalled here. On the degree
angular scales on the other hand, a primordial spectrum of tensor anisotropies
or Primordial Gravitational Waves (PGWs) would produce a narrow peak, rapidly
vanishing on sub-degree angular scales, not supported by radiation pressure from
massive particles, as is instead the case for T and E—modes. On large angular
scales, corresponding to several degrees in the sky, the decay of the PGWs tail in
the B—modes can be re-amplified though re-scattering onto electrons in the epoch
of cosmic reionisation.

The two effects compete for detection, and their different origin, primordial
and linear for PGWs, late and second order for lensing, has been exploited for
designing separation techniques [|34]. Furthermore, it has been analysed in the
past how an accelerated expansion modifies the shape of the spectrum of PGWs as
a result of propagation in a different space-time [111]].

The lensing peak of B—mode anisotropies strongly depends on the history of
cosmic expansion. It has been shown [9] that its amplitude may undergo varia-
tions of order 10% if the DE is dynamical at the epoch corresponding to the onset
of acceleration, i.e. about z € [1 — 3], in which its actual amplitude is poorly con-
strained by existing measurements of the CMB or LSS. The B—mode lensing peak
as a DE probe has been investigated by several authors [|8, 9], who in particular
have shown how the lensing is capable of breaking the projection degeneracy af-
fecting CMB anisotropies at the linear level, as it was recently confirmed in the
context of lensing detection for sub-orbital T—mode experiments [|5, [10].

On the other hand, the detection thresholds for PGWs as well as the accuracy
on DE constraints from CMB observations have never been given by taking into
account the full set of degrees of freedom, represented not only by the amplitude
of PGWs, but also by those related to the expansion history, parametrised through
suitable DE models. The release of the latter degrees of freedom in the context of
experiments aiming at the detection and characterisation of B—mode anisotropies
is expected to have a direct impact in the quoted detection thresholds of PGWs.

Recently, the Pranck Collaboration published an upper limit on r < 0.11 at
95% CL, obtained from the analysis of the spectrum of the temperature data [112];
this result shall be improved with the next data release containing also polarisation
data. Moreover, the Bicep2? Collaboration claimed in [[I113]] a first detection of
the degree scale B—modes setting a tentative measurement of r = 0.270:07. This
result is currently being reviewed by the astrophysical community, in particular
concerning the residual foreground emission of polarised sources at high galactic
latitudes [114].

2Background Imaging of Cosmic Extragalactic Polarisation
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Figure 3.1: Top panel: redshift evolution of the DE component with different values of wy, w,. As
the sum wg, w, get above —1, the DE term becomes increasingly important in the past. Bottom
panel: corresponding evolution of the Hubble parameter with redshift with the same expansion

histories considered in the left panel.

In this Chapter, following the work presented in [1]], a procedure of simulta-
neous forecasting of both the tensor-to-scalar ratio r and evolving DE histories
is illustrated. This will serve as a guidance for quantifying how the cosmologi-
cal constraints on the very early Universe and on cosmic acceleration depend on
each other. For simplicity, our lensing description here is based on the effects on
the B—modes of the CMB, even if we also provide comparisons with the cases of
forecasted direct lensing measurements, which will be the subjects of Chapter [4]

The sensitivity of forthcoming B—mode probes on PGWs abundance as well
as DE dynamics is investigated, keeping in mind that all the physical degrees of
freedom shaping the B—mode power spectrum should be considered and treated
jointly. In this context in particular the interplay between satellite measurements,
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accessing large scale polarisation and extracting lensing mainly from T and E mea-
surements, and the case of sub-orbital ones, directly probing lensing B—modes, is
considered. We will take as reference two among the most important operating
B—mode probes, Esex® [[115] and POLARBEAR [[116] as well as the all-sky mea-
surements featuring the nominal capabilities from Pranck* [117].

The work will be presented as follows: in Sec. the impact of a modified
expansion history on the CMB lensing power is illustrated, proceeding in Sec. (3.2
to the description of the simulated datasets as well as the considered reference
experiments. In Sec. the obtained results are shown and discussed, while in
Sec. the conclusions are presented.

3.1 Generalised expansion histories: how lensing
affects the CMB spectra

In the context of this work, models of expansion history corresponding to a CC
and its generalisation through the equation of state w = p/p of the DE evaluated
at present are considered, as well as its first derivative in the scale factor [60,61]],
already presented in Sec. In this modelisation, the DE equation of state and
the ratio Q, of its energy density with respect to the cosmological critical density

are given by (recalling Eqns.

p= [Wo +(1— a)Wa] P > Qpp(2) =Qpgy eXP(3J dz
0

1 4+w(z)

). 6D

Such a parametrisation allows for a large set of dynamics in the cosmic accelera-
tion, and in particular an increased DE abundance at the equivalence with CDM
and the onset of acceleration. In the following we will see how the evolution of DE
with time affects the CMB lensing because of its influence on the structures gen-
erating the gravitational potential responsible for the deflection. In Fig. top
panel, one can see how the DE density evolves with time as the w,, w, parameters
vary. In order to get a glimpse on how the lensing process is modified by different
expansion histories, let us look again at Eq. and consider how this influences
the evolution with redshift of the Hubble parameter H(z), which we can see in Fig.
(bottom panel).

Gravitational lensing deflection angle is related to the lensing projected poten-
tial ¢ (see e.g. [118,[119]) through the relation

A = —i/e + 1o (3.2)

It is characterised by the lensing deflection power spectrum C%¢, which is defined
through the ensemble average

(d(a, bY!M*d(a’, b)) = 5Y' M (€ + N2V (3.3)

3E and B EXperiment

*When this work was conceived and published, the 2013 Pranck dataset had not yet been
released; for this reason, the nominal capabilities from the Scientific Programme of PLANCK we
used, rather than performing the analysis on the actual dataset.
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Figure 3.2: B—modes for CMB polarisation anisotropies with different contributions given by
primordial tensor modes only with » = 0.1 (green), by lensing only (blue), and the total for both
lensing and r = 0.1 tensor modes.

where Néaa/bb/ is the noise power spectrum, which reflects the errors in the deflec-
tion map reconstruction, and can be estimated for a given combination of lensing
extraction technique and experiment.

Following [[120]], the lensing deflection angle can be inferred by the observed
CMB anisotropies through

d(a, b)M = n® Z W (a, b)Y Mampm (3.4)

L
00'mm’

where a, b are the CMB T, E, B modes, nfb is a normalisation factor introduced to
obtain an unbiased estimator and W (a, b) is a weighting factor which leads to the
noise N%*"" on the power spectrum?®.

Let us now describe from a physical point of view the CMB lensing process and
its sensitivity to the underlying expansion history. For a full mathematical treat-
ment we refer to earlier works [[25, 30} [121]]. As the Hubble expansion rate grows
in the past with respect to ACDM, the cosmic expansion rate increases. Its value at
the epoch of structure formation will determine how efficient the process of struc-
ture formation is, and consequently the abundance of available lenses: the lower is
the Hubble rate in that epoch, the lower the friction represented by the expansion
with respect to structure formation, the higher the number of lenses will be. As
noticed by [[9]], the latter occurrence is rather sensitive to the DE abundance at the
epoch at which lensing is most effective, z € [1, 3], and rather independent of the

SWe will specify the extraction method followed here (and therefore our choice of W) in the
next Section.
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DE properties at earlier and later epochs than that, simply because by geometry,
the lensing cross section peaks about halfway between sources and observer.

The distribution of lenses, following the power spectrum of density pertur-
bations, as well as the geometrical properties mentioned above, determine the
efficiency of CMB lensing to peak on arcminute angular scales, corresponding to
structures from a few to about 102 comoving Mpc. Being a non-linear effect, lens-
ing redistributes primordial anisotropy power of single multipoles at last scattering
on a finite interval of scales. The net effect on T and E is a smearing of acoustic
peaks and the dominance in the damping tail region, corresponding to multipoles
of £ Z 1000, where primordial anisotropies die out because of diffusion damping,
and the only power comes from larger scales because of lensing.

As already discussed previously, for B—modes the effect is rather different. In
Fig. the various contributions to B—modes are shown, coming from PGWs on
degree and super-degree angular scales, and from lensing on arcminute ones. The
latter effect arises because a fraction of E—modes is transferred to B because of
the deflection itself. The sensitivity of this process to the underlying DE properties
is described in Fig. where the T and B spectra are shown for various cases.
The geometric shift in T is due to the change in comoving distance to the last
scattering, given by the generalisation of Eq.

L 3 3 74zt ] 712
D, =H, dz | Q,(1+2)° +Qpgee’lo™ 1+ (3.5)
0

where H,, is the Hubble parameter, Q2,, is the matter abundance today relative
to the critical density and the contributions from radiation and curvature are ne-
glected. Clearly, the same value of D; can be obtained with various combinations
of parameters, including DE, creating the so called projection degeneracy, already
addressed in [[9]. The lensing, for B—modes in particular, shown in the right panel,
is capable of breaking it, because of its sensitivity to the DE abundance at the epoch
in which its cross section is non-zero. Indeed, looking again at Fig. we see
that the DE density at the epoch we are considering follows an opposite behaviour
with respect to the curves represented in Fig. [3.3} the lower the curve, the higher
the value of the expansion rate at the relevant epoch for lensing leading to an in-
creasing suppression of the power, the higher the DE density, as already discussed
above.

It is already well known [|34] that the gravitational lensing signal constitutes a
fundamental contaminant in the PGWs spectrum. The latter is parametrised by the
ratio between the tensor and scalar power in the primordial perturbation power
spectra, r. As for scalars, the power spectrum of PGWs is also characterised by a
spectral index. We work here in the hypothesis of single field inflationary models,
which relate the tensor spectral index to r, without introducing any additional
parameter; a discussion on parameter estimation without this assumption may be
found in [[122] 123]].

The aim of this analysis is trying to infer how a simultaneous constraint can
be affected by the presence of both signals in data, and in particular to determine
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Figure 3.3: Top panel: Variation of the T—mode spectrum with different values of w. Bottom
panel: Variation of the B—mode spectrum with different values of w.

the degradation, if any, of the constraint on r as the background expansion is
allowed to vary according to a CPL parametrisation. As we have seen, this heavily
affects the lensing peak of the CMB: for a better quantification of this point, it
is shown in Fig. how the ratio of the two contributions at the peak of the
PGWs power, corresponding to £ ~ 100, can vary macroscopically because of the
variation in the DE dynamics, reaching 50%. It is clear that it is necessary to study
the parameter space represented by r, w,, w, jointly, in order to understand the
constraining power based on data on CMB B—modes.
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Figure 3.4: Ratio between the primordial B—modes (r = 0.05) and lensing generated B—modes
at £ = 100 with different expansion histories with wy, fixed to -1.

3.2 Simulated data and analysis

In order to obtain a forecast for different parameters using nominal instrumental
performances, a Fisher matrix approach is often adopted for estimating covari-
ances. However, this approach is rigorously valid only if the likelihood shape of
parameters is Gaussian. In this case, as it will be shown, the shape of the likelihood
for r deviates substantially from a Gaussian; in order to avoid inaccuracies, as it
was pointed out in recent works [124]] such a simplification is here avoided. An-
other reason for doing so is that different datasets are considered here, described
later in this Section, and it cannot be assumed that no degeneracies will arise from
this combination. For these reasons, our approach consists in computing the full
likelihood shapes by using a Markov chains approach. We exploited extensively
the publicly available software package cosmomc® for Markov Chain Monte Carlo
(MCMC) analysis of CMB datasets [[125]].

We create simulated CMB datasets for T, E and B—modes, adopting the speci-
fications of PLanck [41]], EBex [[115]] and POLARBEAR [[116] experiments. In Table
the relevant parameters adopted are listed. The fiducial model for the stan-
dard cosmological parameters is the best fit from the WMmAP seven years analysis
[[126]], concerning flat ACDM parametrising the abundances of CDM and baryons
plus leptons (h%Q,, h%Q,, respectively), 100 - 0, (we had defined 0, as the ratio of
the sound horizon to the angular diameter distance), the optical depth 7T of cos-
mological reionisation, the spectral index n, and amplitude A, of the primordial
power spectrum of density perturbations, the parameters for evolving DE w,, w,,.
In the considered case the effects that a generalised expansion history has on the

®http://cosmologist.info
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cases of a null as well as a positive detection of r are addressed. In Table|3.1|the
values used to compute the simulated spectra are shown.

h%Q, h’Q, |100-6, | = n, A, wo | w,
0.02258 | 0.1109 | 1.0388 | 0.087 | 0.963 | 2.43-107° | -1 | O

Table 3.1: Set of cosmological parameters and adopted values for the cases r = 0 and r = 0.05 of
simulated data.

Therefore, two different fiducial models were adopted concerning the ampli-

tude of PGWs, corresponding to their absence (r = 0) and to r = 0.05. The latter
case corresponds to a detectable value also in a more realistic case in which data
analysis includes foreground cleaning and power spectrum estimation is chained
to the MCMCs [[127, [128]].
Using these sets we compute the fiducial power spectra Cei withi =TT, TE,EE, BB,
in order to compare them with the theoretical models generated by exploring the
parameter space. In this work we make use of the cosmomc package for that. We
add a noise bias to these fiducial spectra, consistently with the mentioned instru-
mental specifications.

For each frequency channel which is listed in Table the detector noise
considered is w™! = (00)?, where 6 is the FWHM (Full-Width at Half-Maximum)
of the instrumental beam if one assumes a Gaussian and circular profile and o is
the sensitivity on the temperature measurement. To each of the C, coefficients the
added contribution from the noise is given by

N, = w e /6, (3.6)

where £, is given by £, = v/8In2/6. The MCMCs were conducted by adopting
a convergence diagnostic based on the Gelman and Rubin statistics [[129]. We
sample six cosmological parameters (Q,h?, Q.h?, 7, n,, A,), the w, and w, DE pa-
rameters, and r adopting flat priors. We make use of priors coming from different
probes in the cosmomc package, specifically BAO [55] [130], SNe Ia data [[131]],
results from the HST” [[132].

In order to calibrate the pipeline, a ACDM model with r = 0, varying both
the DE parameters w,, w, or keeping them fixed to a CC through the MCMCs is
first analysed, considering for simplicity the combination of PLANCK and one sub-
orbital experiment (POLARBEAR). The results in the (£2,,2,,) plane are shown in
Fig. (top panel), showing the 1 and 20 contours for the case of a CC (green)
and dynamical DE (blue). The decrease in constraining power due to the extra
degrees of freedom is evident, although the shape of the contour regions is rather
stable. The given interpretation is that the introduction of new degrees of freedom
affects the precision on the measurement of the two parameters considered. On
the other hand, the distance to last scattering is degenerate between cosmological

"Hubble Space Telescope
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abundances and expansion history, resulting in a geometric degeneracy for the
non-lensed pure CMB dataset. The datasets forecasted here contain both CMB
lensing measurements, as well as external data on the recent expansion history;
we see here how this procedure eliminates such degeneracies. The residual effect
is represented by a loss of precision due to the higher dimension of the parameter
space, accounting now for a dynamical DE. We further investigate this point in the
bottom panel of Fig. where the results in presence (green) or absence (blue)
of the SNe Ia measurements are shown, confirming the substantial relevance of
external measurements of the expansion history at low redshift, as anticipated in
earlier works [8]].

Experiment Channel FWHM AT/T

PLANCK 70 14 4.7
100 9.5 2.5
143 7.1 2.2
217 5.0 4.8
fsky =0.85
EBEX 150 8 0.33
250 8 0.33
410 8’ 0.33
fsky = 0.01
POLARBEAR 90 6.7’ 0.41
150 4.0 0.62
220 2.7 2.93
fsky =0.03
CMmBPoOL 70 12 0.148
100 8.4 0.151
150 5.6’ 0.177
fsky =0.85

Table 3.2: Pranck, EBEX, POLARBEAR and CMmBPoL performance specifications. Channel frequency
is given in GHz, beam FWHM in arcminutes, and the sensitivity for T per pixel in uK/K. The
polarisation sensitivity for both E and B—modes is v2AT/T.

It is interesting to compare the present case in which lensing B—modes are
probed directly by CMB sub-orbital experiments with the case in which the lens-
ing is extracted from all sky CMB anisotropy maps as expected by adopting the
nominal performance of operating (PLANCK) and proposed post-PLANCK polarisa-
tion dedicated CMB satellites ( CmBPoL and Prism [[133] [134]]); the latter cases
will give us an estimate of the improvement in the constraining power on w,, w,
as a function of the satellite instrumental specifications. A similar approach has
already been applied to the T spectrum by the SPT collaboration in [[45]]; the case
for this analysis is different since the focus is set on the B—modes. We create sim-
ulated datasets for PLanck and CmBPoL, adopting nominal performances as in the
previous case, but adding the forecasted lensing potential measurements.
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Figure 3.5: Test analysis with r = 0, evolving DE. Top panel: 1 and 20 contours Q,,, — Q,
diagram. In blue the combination POLARBEAR + PraNnck with dynamical DE, in green
POLARBEAR + Pranck, with ACDM. Bottom panel: 1 and 20 contours for w, — w,. In blue the
results obtained when SNe Ia are not included, in green when SNe Ia data were considered.

Our aim is to quantify, in these cases, the efficiency on the determination of
the expansion parameters w, and w,, and how they scale with satellite instrumen-
tal capabilities, reaching the cosmic variance limit also for polarisation as in the
cases of planned post-PLanck satellite CMB experiments; therefore we keep r =0
fixed and let the CPL parameters vary. The lensing extraction method presented
in [[120] is used, in which the authors construct the weighting factor W of Eq.
as a function of CMB power spectra C,;,, with ab =TT, TE, EE, EB, TB. The
BB spectrum is excluded because the adopted method is only valid when the lens-
ing contribution is negligible compared to the primary anisotropies; this assump-
tion fails for B—modes, which are not considered in this analysis, by modifying
cosmomc according with [[135]]. This aspect, as well as the instrumental sensitiv-
ity, implies that lensing measurements in this case come mainly from sub-degree T
and E anisotropy data. We study the constraining power on CPL parameters from
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PLANcK data in three cases: first, when lensing measurements are used, second,
without lensing, but with the inclusion of the priors introduced above (BAO, HST,
SNe Ia), and finally using both. We performed this analysis also on a CmBPoL-like
experiment using the specifications in [[133]]; the major uncertainty on the data
from such an experiment will be due to cosmic variance. Results are presented in

Table [3.31

PraNCK | CMB+lensing extraction | CMB+-priors | CMB+lensing extraction+priors

A(wg) 0.5 0.2 0.2
A(w,) 1.1 0.6 0.6
CMmBPoOL | CMB+lensing extraction | CMB+-priors | CMB+lensing extraction+priors
A(wg) 0.4 0.159 0.150
Alw,) 1.0 0.57 0.497

Table 3.3: 10 uncertainties on CPL parameters w,, w, for PLanck and for a CMBPoL specifications
when using lensing extraction, when using external priors and when combining both, in the case
r=0.

Let us focus first on the comparison between CMB satellite lensing measure-
ments and the case in which the lensing is probed through the lensing dominated
part of the B—mode spectrum. As it can be seen comparing with the contours in
Figure the relevance of lensing measurements is comparable in the two cases;
moreover, it is found that the priors have a comparable relevance. We conclude
that satellite lensing measurements using T and E, and sub-orbital ones directly
accessing lensing B—modes, have a comparable capability for constraining the ex-
pansion history. Both cases are relevant to study, as the impact of non-idealisations
including systematics as well as removal of foreground emissions may produce dif-
ferent outcomes [[135] [136]].

Let us now discuss the differences between the case of PLaNCK, which is a cos-
mic variance limited experiment for total intensity, with respect to the enhanced
capability of planned post-PLANCK satellites, approaching the same limit for polari-
sation as well. As the results show, the improvement in the instrumental specifica-
tion does cause an enhancement of the constraining capability corresponding to a
factor 20% for w, and 10% for w,; when priors are considered, the results improve
by a factor of about 6% for w, and 15% for w,. We conclude that the improvement
is sensible but does not change the order of magnitude of the forecasted precision,
and we argue that this is consistent with the fact that PLaNcK is cosmic variance
limited in total intensity, which is the dominant part of the CMB anisotropy signal.
In the following we focus on the capability of constraining the expansion param-
eters using the B-modes, in order to study if new degeneracies arise when the
relative amplitude between PGWs (through variations of r) and the lensing spec-
trum (as traced by lensing B—modes) vary at the same time.
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3.3 Results

The recovery of the primordial tensor to scalar ratio is addressed here, performed
while varying the cosmological expansion history. As we already pointed out,
we consider two cases, for a null (r = 0) and positive (r = 0.05) detection. In
both cases, the fiducial DE model is ACDM, and the generalised expansion his-
tory is parametrised by w, and w,. In order to verify the relevance of sub-orbital
probes, probing the lensing peak in the B—mode spectrum, we consider the case of
pure satellite CMB data separately from the one with joint satellite and sub-orbital
probes.

The results on r as 20 upper limits and 1o statistical uncertainties in the null
and positive detection cases respectively, as well as the corresponding constrains
on CPL parameters are shown in Table In the case with a non-vanishing fidu-
cial value of r, a change in the MCMC recovered value of r is present when the
theoretical model or the experimental configuration are changed. In order to ad-
dress the reason of the differences in the recovered mean value of r we computed
the Gelman and Rubin indicator for the chains we performed, finding that the dif-
ferences we see can be ascribed to fluctuations in the MCMC procedure (see e.g.
[137] for a more specific discussion on this topic). Nevertheless, note that, as ex-
pected, the results obtained by adopting the nominal specifications of PLANCK are
in agreement with [[138]] for ACDM. A first result concerns the quantification of
precision loss of the recovery on r when a generalised expansion rate is consid-
ered, and when only satellite CMB data are considered.

This corresponds roughly to 10% for the null and about 5% for positive detec-
tions of r. The interpretation is related to the extra degrees of freedom considered,
while as in the previous Sections, the lensing component of simulated spectra, as
well as the priors on the expansion history from external probes, help reducing
geometric degeneracies, leaving room only for an increase in the statistical error
of the various measurements, which are quantified here. It is interesting now to
look at the case when all the CMB probes are considered, verifying that the preci-
sion loss in this case falls below a detectable level. This result is uniquely related
to the enhanced sensitivity of sub-orbital probes, allowing for a deeper study of
the lensed component of CMB spectra, and in particular on the lensing peak in
B—modes. Concerning the CPL parameters (w,, w,), it is possible to see in Table
how the constraints do not degrade switching from the r = 0 to the r = 0.05
simulated dataset. This shows, as previously stated, that there are no detectable
degeneracies between r and CPL parameters in our considered datasets.

Moreover we can also notice how constraints on (w,, w,) do not improve much
if we use sub-orbital experiments alongside satellite data to get better CMB sensi-
tivity; this highlights the fact that the used priors, most of all the SNe Ia data, are
crucial to constrain DE quantities.

These limits have been derived from one-dimensional contours, which are
shown in Fig. reporting the null detection case only, for simplicity, for r
and the DE parameters, and restricting to the case of DE models with w > —1; it
can be noticed how considering the whole CMB datasets yields an improvement
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Experiments, fiducial | r=0 | r =0.05
Pranck with priors, ACDM r <0.029 r =0.057 £0.022
Pranck with priors, CPL r <0.031 r =0.059 +£0.023
all experiments, ACDM r <0.025 r =0.057 +£0.020
all experiments, CPL r <0.025 r =0.056 £ 0.020
Pranck with priors, CPL | wo=-1.14+0.2 | wy=-1.14+0.2
all experiments, CPL | wy =-1.1+£0.2 | wy,=-1.1£0.2
Pranck with priors, CPL | w, =0.3+0.6 w,=0.3£0.6
all experiments, CPL | w, =0.3+0.6 w,=0.2£0.6

Table 3.4: 20 upper limits and 1o uncertainties for the measurements of r for the null and
positive detection cases, and 1o uncertainties for the measurements of the CPL parameters w,, w,
for the different expansion models and dataset combinations.

on the detection of r, reflecting Table while almost no difference is noticeable
between the cases of dynamical DE or A. Looking at the first panel in Fig. one
can in particular appreciate how the shape in the likelihood for r is non-Gaussian,
justifying our choice of going through a MCMC analysis rather than relying on a
Fisher matrix approach. For DE parameters, we notice no particular improvement
in considering the case of all CMB or pure satellite datasets alongside SNe Ia, BAO
and HST data. The same holds when looking at two-dimensional contours, shown
in Fig. in the (r,w,), (r,w,) and (w,,w,) planes, for the null (blue) and pos-
itive (red) detection cases: in none of the three panels a significant improvement
in DE parameter recovery is shown, even allowing for cosmologies with w < —1.
We also notice that no degeneracies among these parameters are detectable with
the datasets we consider. The figures also quantify the precision achievable on
DE parameters, being comparable and of the order of a few ten percents, for both
parameters and both fiducial models.

Finally, we show other relevant two-dimensional contour plots for the case of
null detection (Fig. and for the r = 0.05 fiducial value (Fig. [3.9), highlighting
how with the data considered here it is not possible to detect any degeneracy be-
tween the primordial tensorial mode parameter r and other cosmological param-
eters. Despite this remarkable result, we stress that our results concern a nominal
performance of the various datasets, and in particular do not consider foreground
cleaning or other systematic effects, which were pointed out as possible sources of
bias for r in previous works [[127, 128, [139].

3.4 Concluding remarks

The PGWs and lensing power constitute the dominant effects for the B—mode
polarisation in the anisotropies of the CMB. While the former is dominated by the
physics of the early Universe, parametrised through the primordial tensor-to-scalar
ratio r, the latter is instead due to structure formation, and thus influenced by the
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Figure 3.6: One-dimensional contours for r, w, and w, respectively, in the case of null detection
for r; all plots show differences when using satellite, or all CMB datasets; the plot for r also

includes the ACDM cases.

expansion rate at the epoch of the onset of cosmic acceleration. This, in turn, is
dependent on the underlying dynamics of DE. Despite both signals being present in
the CMB B—modes, their joint measurement in terms of parameter estimation was
never considered, and the results presented constitute a first step in this direction.

To begin, the lensing relevance for constraining our parametrisation of the
expansion history is addressed, assuming no PGWs. We find comparable results
when the lensing is extracted from T and E data and when the lensing is more
directly inspected through lensing B—modes, by forthcoming satellite and sub-
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Figure 3.7: Top panel: 1 and 20 contours w, — r diagram for the combination of all considered
datasets. In blue, the upper limit on the simulated data with fiducial value r = 0. In red, the case
of simulated data with fiducial value r = 0.05. Middle panel: 1 and 20 contours w, — r diagram.

In blue, the upper limit on the simulated data with fiducial value r = 0. In red, the case of
simulated data with fiducial value r = 0.05. Bottom panel: 1 and 20 contours w, — w, diagram.
In blue, the constraints on the simulated data with fiducial value r = 0. In red, the case of
simulated data with fiducial value r = 0.05.

orbital data, respectively, both for a Pranck-like experiment and for a CmBPOL-
like experiment. Focusing on the latter case, in which the two processes directly
compete for detection in B—modes, we quantify the constraining power on the
abundance of PGWs which is expected from combined forthcoming satellite and
sub-orbital experiments probing CMB polarisation in cosmologies with generalised
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Figure 3.8: Results from the analysis on the r = 0 fiducial value simulated dataset. In all plots,
blue contours represent pure satellite CMB data, while the red ones include sub-orbital ones as
well. From left to right, from top to bottom. 1. 1 — 20 contours for r —w,. 2. 1 — 20 contours for
r —wg. 3. 1 —20 contours for r — n, for dynamical DE. 4. 1 — 20 contours for wy — w,,.

expansion histories, parametrised through the present and first redshift derivative
of the DE equation of state, w, and w,, respectively. We find that in the case of
pure satellite measurements, corresponding to the PLANCK nominal performance,
the constraining power on PGWs power is weakened by the inclusion of the extra
degrees of freedom, resulting in an increase of about 10% of the upper limits on
r in fiducial models with no PGWs, as well as a comparable increase in the error
bars in models with non-zero tensor power.

Furthermore, the possibility to perform lensing extraction from satellite data
using a full sky estimator is explored and we recovered that, at least for upcoming
experiments, when combining CMB with external priors, the results yielded are
not significantly different from what obtained without lensing extraction. It is to
remember that, for the moment, the algorithm of lensing extraction implemented
in the cosmomc package only analyses the temperature spectrum, neglecting the
information coming from polarisation.

The inclusion of sub-orbital CMB experiments, capable of mapping the B—mode
power up to the angular scales which are affected by lensing, has the effect of
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Figure 3.9: Results from the analysis on the r = 0.05 fiducial value simulated dataset. In all plots,
blue contours represent pure satellite CMB data, while the red ones include sub-orbital ones as
well. From left to right, from top to bottom. 1. 1 — 20 contours for r —w0. 2. 1 — 20 contours for
r —wg. 3. 1 — 20 contours for r — n, for dynamical DE. 4. 1 — 20 contours for wy — w,,.

making such loss of constraining power vanishing below a detectable level. We in-
terpret these results as a joint effect of the CMB and external datasets: the former
are able, in particular with the data from sub-orbital probes, to access the region
of B—modes which is lensing dominated, and therefore sensitive to the DE abun-
dance at the onset of acceleration; the latter, as the case of SNe Ia and HST data,
are on the other hand strongly constraining the dynamics of cosmic expansion at
present. By inspecting the constraints on all cosmological parameters, including
those parametrising the expansion history, we also show that the chosen datasets
do not highlight new degeneracies in the parametrisation we consider.

These results indicate that the combination of satellite and sub-orbital CMB
data, with the available external data useful to inquire the late time expansion
history, can be used for constraining jointly the dynamics of the DE as well as the
primordial tensor-to-scalar ratio, with no new degeneracies or significant loss of
sensitivity in particular on r with respect to the case in which a pure CC determines
the late time cosmological expansion. The assumptions of course include the nom-
inal performance of these experiments, and no realistic data analysis consisting in
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the inclusion of foregrounds in the CMB data, as well as systematic errors have
been considered.

Possible extensions for this work would be to further investigate this phe-
nomenology in specific DE models, and considering the role of future surveys in
giving more accurate constraints on the expansion history, also considering differ-
ent approaches, e.g. delensing techniques [34, (140, [141]].

Motivated by these results, we will push the simulation of CMB lensing ex-
traction to a higher level of sophistication by implementing a lensing extraction
algorithm. Our aim is to target the small scales, and quantify the precision of the
proposed pipeline on CMB lensing realisations based on real structure from N-body
simulations, with a map-making procedure based on ray tracing.






Characterising CMB lensing simulations
for next generation surveys

In the past Chapters we have discussed the characteristics of the CMB lensing
effect on various cosmological observables, focusing in Chapter |2/ on extensions
of standard physics that might be inquired using the information coming from
this phenomenon: the time evolution of DE and the presence in our Universe of
massive neutrinos. In Chapter (3| we investigated the influence of CMB lensing
acting as a contaminant on the constraining power on primordial tensor modes,
and how ignoring the simultaneous presence of the two signals in the B—modes of
CMB can degrade our constraining ability on the inflationary parameter r. At this
point, it is relevant to discuss the capability of characterising the lensing signal
as a specific tool for increasing the overall information we can extract from a
cosmological dataset.

This is especially true in view of the next generation surveys targeting the
recent Universe: as argued in the previous Chapters, CMB lensing is able to cou-
ple different angular modes of the CMB, giving rise to a non-Gaussian, distinc-
tive signature in the recovered maps. This perturbs the original distribution of
anisotropies with a late-time contribution which carries the imprint of the evolv-
ing LSS; in this way the CMB carries not only a crucial amount of information
about the Early Universe, but also from the recent, non-linear phases of evolution,
whose expansion is dominated by the DE component. The relevant information
can be extracted with higher precision when combining data delivered by differ-
ent experiments, and/or relative to different observables; this process adds statisti-
cal significance and reduces the contamination from instrumental or astrophysical
systematics.

The next generation of data surveys will face the community with new chal-
lenges: the non-linear regime of gravitational collapse, dominating the very small
angular scales, is still not completely understood; achieving realistic simulations
even of the highly non-linear regimes of the matter power spectrum represents
a challenge we need to undertake to exploit fully the experimental data from an
experiment such as EucLip, and to combine them with high precision CMB probes.

More and more efforts are being undertaken for measuring second order ef-
fects, i.e. physical phenomena which occur after the last scattering surface, the
epoch at which CMB photons decouple from the rest of the system and the first
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order anisotropies are imprinted. In order to constrain the dark cosmological com-
ponents, and the DE in particular, the observation and characterisation of the weak
lensing of the CMB induced by forming structures along the line of sight of pho-
tons at the epoch in which the DE overcomes the CDM component is gathering
more and more attention. CMB lensing, in fact, allows us to break the degenera-
cies present in the measurements of cosmological parameters through CMB ob-
servations only [[142]] as well as providing more constraining power on the same
parameters [[118][143].

Moreover, as lensing is closely related to the underlying gravitational theory, it
can be used to test the possibility that the late-time accelerated expansion is not
given by a DE component, but rather by a modified theory of gravity [[119].

Among the possible effects on the matter power spectrum, it has been discussed
in subsec. [2.2.3|the implications for cosmology of a non-zero value for the neutrino
mass. The presence of relativistic, massive neutrinos, smears out structures below
the free streaming scale in Eq. and thus modify the structure of the lensing
potential which will deflect the CMB, giving it a distinct signature.

In this scenario, our capability of understanding the lensing signal to extreme
accuracy is most important, and a necessary condition for that is to be able to
model it appropriately and to the accuracy needed by modern cosmological obser-
vations. In the recent past, efforts were made in order to simulate lensed CMB
maps in the context of modern N-body simulations, which, once validated, have
the potential and crucial capability of enabling us to estimate the constraining
power which we will have from CMB lensing in particular on the underlying cos-
mological model [28]] and most importantly in view of cross-correlating CMB lens-
ing measurements with those of LSS which are responsible for the lensing itself,
culminating with the launch of the EucLip satellite in about one decade.

In this Chapter a progress on this line is illustrated: for the first time, the
lensing signal in simulated CMB temperature and polarisation maps using ray-
tracing through N-body simulations, in order to track the effects coming from non-
linearities, is extracted and characterised in a range of angular scales 100 < ¢ <
2000. A flat sky lensing extraction pipeline, developed and exploited in [[136], is
applied onto CMB lensed maps constructed by performing ray-tracing in the Born
approximation using the Millennium Simulations (MS) in [27, [144] and a first
step for exploiting the information encoded in the lensing spectrum in order to
constrain the underlying cosmology, in particular targeting N-body simulations of
a Universe with massive neutrinos, is discussed. The discussion will follow the
work published in [2]], along with the presentation of unpublished material.

In Sec. the details of the N-body simulations used to reconstruct the CMB
maps are introduced and discussed, also specifying the methods used to produce
the analysed maps. In Sec.[4.2] the theoretical background of CMB lensing, already
discussed in Chapter [I} and the lensing extraction methods are recalled, detailing
the formalism and the adopted procedure. Sec. contains the application of
the extraction pipeline on the CMB lensed maps obtained from the N-body simula-
tions, assuming observational errors compatible with current and upcoming CMB
surveys for a standard ACDM case; in Sec. the results of the lensing extrac-
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tion procedure applied to maps containing the effect of massive neutrinos on the
lensing effect are presented. Finally, we discuss our results in Sec. 4.5

4.1 From N-body simulations to CMB maps

In the following, the procedure of map-making with the lensing process enacted
by simulated N-body structures is described. The notation and definitions used
throughout Sec. will be used, recalling some of the key concepts to facilitate
the discussion.

Weak lensing of the CMB deflects photons coming from an original direction fi’
on the last scattering surface to a direction fi on the observed sky, and the lensed
CMB field is given by X (fi) = X (') in terms of the unlensed field X = T,Q, U. The
vector i’ is obtained from fi by moving its end on the surface of a unit sphere by
a distance |V | ¢ (11)| along a geodesic in the direction of V | ¢ (1), where V | is the
angular derivative in the direction transverse to the line-of-sight pointing along
n = (1, ¢) [30, 31, 26 [145]. Here the field ¢, and |V ¢ (71)| is assumed to be
constant between fi and fi’.

The lensed temperature and polarisation fields are given by

T(R) = T[a+Ve(a)], (4.1)
(Q+i0)(n) = (Q+iU)[a+Ve(R)].

In what follows we will consider only the small angle scattering limit, i.e. the
case where the change in the comoving separation of CMB light rays, owing to the
deflection caused by gravitational lensing from matter inhomogeneities, is small
compared to the comoving separation between the undeflected rays. In this case
it is sufficient to calculate all the relevant integrated quantities, i.e. the lensing
potential and its angular gradient, the deflection angle, along the undeflected rays.
The described limit corresponds to the Born approximation.

Under this condition, adopting conformal time and comoving coordinates [[146]],
the integral for the projected lensing potential due to scalar perturbations in the
absence of anisotropic stress reads

b p D
¢(ﬁ)=—2j dD 1*)D ® (DA, D), (4.2)
0

*

where D and D, are, respectively, the comoving angular diameter distances from
the observer to the lens and to the CMB last scattering surface, and & is the physical
peculiar gravitational potential generated by density perturbations [25] 26] 30,
147]. Let us notice that ¢ is connected to the convergence field x via V2¢ = —2k.

If the gravitational potential ¢ is Gaussian, the lensing potential is also Gaus-
sian. However, the lensed CMB is non-Gaussian, as it is a second order cosmo-
logical effect produced by matter perturbations onto CMB anisotropies, yielding
a finite correlation between different scales and thus non-Gaussianity. This is
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Figure 4.1: Sketch of the adopted stacking and randomisation process. The passage of CMB
photons through the dark matter distribution of the Universe is followed by stacking the
gravitational potential boxes of the MS, which are 500 h~! Mpc on a side (comoving). Shells of
thickness 500 A~! Mpc are filled with periodic replicas of the box. All boxes (squares) that fall
into the same shell are randomised with the same coordinate transformation (rotation and
translation), which, in turn, differs from shell to shell. Figure from [27].

expected to be most important on small scales, due to the non-linearity already
present in the underlying properties of lenses.

Here we analyse the full sky T, Q, U maps lensed by the matter distribution
of the MS and generated by [[144] via a modification of the publicly available
LensPix code! (LP), described in [126]. In its original version this code lenses the
primary CMB intensity and polarisation fields using a Gaussian realisation, in the
spherical harmonic domain, of the lensing potential power spectrum as extracted
from the publicly available Code for Anisotropies in the Microwave Background
(CAMB?). The modification used here, performed by the authors, consists in forc-
ing LP to deflect the CMB photons using the fully non-linear and non-Gaussian
lensing potential realisation obtained from MS exploiting the procedure briefly
summarised below, and presented in [[144]]; the reader is referred to this paper for
further details.

The MS is a high resolution N-body simulation for a ACDM cosmology con-
sistent with the Wwmap 1 year results [[148], carried out by the Virgo Consortium
[[149]. It uses about 10 billion collisionless particles with mass 8.6 x 10%h™'M,
in a cubic region 500h~! Mpc on a side which evolves from redshift z, = 127 to
the present, with periodic boundary conditions. The map-making procedure devel-
oped in [27] is based on ray-tracing of the CMB photons in the Born approximation
through the three-dimensional field of the MS peculiar gravitational potential. In
order to produce mock lensing potential maps that cover the past light-cone over
the full sky, the MS peculiar gravitational potential grids are stacked around the
observer located at z = 0, and the total volume around the observer up to z,

"http://cosmologist.info/lenspix/
Zhttp://camb.info/
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is divided into spherical shells, each of thickness 500h~! Mpc: all the MS boxes
falling into the same shell are translated and rotated with the same random vec-
tors generating a homogeneous coordinate transformation throughout the shell,
while randomisation changes from shell to shell. For a pictorial representation of
the process, see Fig. The peculiar gravitational potential at each point along a
ray in direction fi is interpolated from the pre-computed MS potential grids which
possess a spatial resolution of about 195h~! kpc.

Being repeated on scales larger than the box size, the resulting weak lensing
distortion lacks large scale power, which manifests itself in the lensing potential
power spectrum as an evident loss of large scale power with respect to semi-
analytic expectations, most noticeable at multipoles smaller than ¢ ~ 400. This
has been cured in [27] by augmenting large scale power (LS-adding) directly in
the angular domain, a procedure which we exploit here as well, since large scale
modes in the lensing potential field are transferred to small scales in the CMB field,
causing, e.g., the increasing of the temperature damping tail with respect to the
unlensed field.

This mode coupling effect, which produces the characteristic non-Gaussianity
of the CMB lensed field, is indeed exploited for the reconstruction of the underly-
ing matter deflecting field. Nonetheless, in this case, we are mostly interested in
studying the lensing reconstruction of the MS matter field, which corresponds to
scales £ > 400, and therefore, while still using all sky CMB lensed maps as input,
we will exploit the flat sky lensing extraction pipeline for the reconstructed lensing
potential output, as described in Sec. 4.2

For the construction of the all sky lensed CMB input maps, in [[144] the LS-
adding technique has been implemented directly into the LP code. The spherical
harmonics domain has been splitted into two multipole ranges: 2 < { < 400,
where the MS fails in reproducing the correct lensing potential power due to the
limited box size of the simulation, and £ > 400, where instead the power spectrum
is reproduced correctly. On the latter interval of multipoles, the corresponding en-
semble ¢ lmMS of lensing potential spherical harmonic coefficients produced by the
MS lens distribution has been extracted. The LP code has been modified to read
and use these MS harmonic coefficients on the corresponding range of multipoles.
On the interval 2 < £ < 400, instead, LP generates its own ensemble of spherical
harmonic coefficients ¢€#P, which are a realisation of a Gaussian random field
characterised by the CAMB semi-analytic non-linear lensing potential power spec-
trum inserted as input in the LP parameter file.

Since on multipoles 2 < ¢ < 400 the effects of non-Gaussianity from the non-
linear scales are negligible and the ¢,,, are independent, every time that we run
the MS-modified-LBE we generate a joined ensemble of <;E€m, where 4;/zm = €nL1P for

0 < ¢ <400 and qgem =¢ Z}XIS for [ > 400. This technique reproduces correctly the
non-linear and non-Gaussian effects of the MS non-linear dark matter distribution
on multipoles £ > 400, including at the same time the contribution from the large
scales at £ < 400, where the lensing potential follows mostly the linear trend.

To generate the lensed T, Q, U fields from the MS-modified-LP code, the
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method described in [26]] is adopted, using a high value of the multipole £,,,, to
maximise the accuracy. This allows running the simulation several times without
excessive consumption of CPU time and memory. We work under the assumption
that tensor modes are absent in the early Universe, so that the produced B—mode
polarisation is due only to the power transfer from the primary scalar E—modes
into the lensing induced B—modes. We choose £,,,,, = 6143 and a HEALPix? pix-
elisation parameter N;;;, = 2048, which corresponds to an angular resolution of
~ 1.72' [[150]], with 12N?,, pixels in total.

S

4.2 CMB lensing extraction

As mentioned in Sec. the flat-sky approximation is adopted here for the recon-
struction of the lensing potential. In this limit the lensing potential can be written
as [[145]

- d’L L
p(h) = J (27)243(1')6 (4.3)

where the polar and azimuthal angles have been replaced by the displacement
£. The corrections due to lensing in the Fourier moments of temperature and
polarisation fields can be expressed, at the linear order in ¢, as [30]

- dzl/ / /

5T(0) = J S WL, (4.4)
) a2

SE(L) = JW[E(E')COSZW/(—B(l’)sianpe/g}W(f’,L),

5B(L) = o [B(K’)cosZcpM + E(e’)sinzwl} w(e',L),

where the azimuthal angle difference is ¢, = ¢, — p,, L=£ — £, and
W(€,L)=—[£-L]¢(L). (4.5)

These equations show that lensing couples the gradient of the primordial CMB
modes £’ to that of the observed modes £. This is one of the key features of
lensing, as it couples modes with different multipole on the sky, giving rise to a
non-Gaussian component in the lensed fields, despite the potential generating the
deflection obeying a Gaussian statistics.

Furthermore, even if primordial B—modes are vanishing, B(£') = 0, lensing
generates B—mode anisotropies in the observed map given the leakage from the E
and T—modes.

Shttp://healpix.jpl.nasa.gov/
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Figure 4.2: Noise spectrum for different experimental specifications. For graphical purposes we
show the convergence power spectrum which is connected to the potential through C;* = ¢ 4Cf ¢
Here the prediction for the convergence spectrum using as input cosmology the estimated
cosmological parameters coming from Pranck 1 year observations (red solid line), the noise for
the minimum variance quadratic estimator for a PLanck-like experiment (green dashed line) and
the noise for the same estimator for a Prism-like experiment (blue dashed line) are plotted.

We will consider noise in the CMB maps assumed homogeneous and white,
characterised by a Gaussian beam. The power spectrum of the detector noise
is [[151]]

Co™ =02 Qi (4.6)
where 0, is the rm.s. noise per pixel and Q,;, is the solid angle subtended by

each pixel. The observed CMB temperature and polarisation fields, X € [T, E,B],
and their power spectra, C¥, are

X = X, e "+ N, (4.7)

~X,0b =X —f2g2 N
G = e+,

where Nf is the Fourier mode of the detector noise, and o, is related to the FWHM
of the telescope beam, 6, as 6 = 0, v81In2.

We exploit the quadratic estimator formalism [[152, [153] [154], built in the
context of the convergence estimators [[155, [156]], in order to extract the lensing
information from the simulated CMB maps used in the analysis.

The estimator is uniquely determined by requiring each component to be un-
biased over an ensemble average of the CMB temperature and polarisation fields
X and Y ({(/*Y(f)) = x(f1)) and the variance of the estimator to be minimal,

(REY &) = (2m)? 8°(C — )(CFF + N, (4.8)
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where the N, *XY term represents the noise contribution which is also predicted

by the est1mator, as we see below. In real space the convergence estimators are
constructed on the basis of appropriate filters of the observed fields, weighted in
the harmonic domain by their power spectra, which are given by [[156]

R dzf e crY e2l¥e 12 2
Gyy(h) = J(ZTC)Z ngbs éXl,obs{ e2ive }e 2topHien (4.9)
¢
A d?¢ ?Obs e2ive 102524005
Wy(R) = (2n)? ﬁ{ ie2i%e }e 2fopHien (4.10)

where ¢, is the azimuthal angle of the wave vector £; the two phase factors in
braces are applied when Y = E, B respectively, and are unity when Y = T. Also,
C" = C)* for Y = B. In the construction of these fields the map beam deconvo-

lution is incorporated, hence the beam factors e 307 appearing on both fields.
Given the two filtered fields in Eq. (4.9) and Eq. (4.10), the convergence esti-
mators are then given by

AXY o
REY = _7 i - f d%fi Re [ny(ﬁ)W;(fl)] o ibh (4.11)

The normalisation coefficients, A)lfy, are related to the noise power spectrum,

N;™*Y, of the estimators &% (1) by N;**" = (2A%Y /4, and can be expressed as

L d’e, G, fue,
@ = (2n )2( £y) W (4.12)
{ cos2A¢ }e—egag o—t0?
sin2A¢ ’
with £ =€, + €5, Ap = ¢, — ¢y, and (X, Y,,) = f5] ¢, , where [153]
for, = €€)C +(-£)Cp, (4.13)

FE = (-4,)Cf cos28p +(£-£,) CE,
fz o= (-8) Cec1 sin2A¢,

fe N = [([ ) Cfl +(-L,) sz} cos2A,
fEE, = (£-£,) C] sin2A¢.

On the basis of the relations above, it should be stressed that a careful estimation of
the noise contribution to lensing depends on how accurately the observed spectra
are known, as well as how much the exponential representation of the high [ cutoff
due to instrumental beam in is indeed faithful. Our code for estimating the
convergence using the quadratic estimator formalism is a direct implementation of
the above equations, Eq. (4.6)-(4.13), and was exploited in [136]. In that work,
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Experiment FWHM 0o, (uK-arcmin)
Pranck  7.18 43.1
Prism 3.2 2.43

Table 4.1: Pranck and Prism performance specifications. Beam FWHM is given in arcminutes, and
the sensitivity for T per pixel in uK-arcmin. The channels used are 143 GHz for Pranck and 160
GHz for Prism. The polarisation sensitivity for both E and B—modes is v2AT/T.

the CMB lensing signal was directly simulated on flat sky. In the present one, we
need to project a curved sky onto a flat patch, in order to proceed with the analysis.
We exploit a gnomonic projection scheme validating it in the next Section.

In Fig. the forecasted noise spectra for the minimum variance estimator in
a Pranck-like case [[117] and in a Prism-like case [[134] (for the adopted specifi-
cations see Tab. [4.1]), computed for the PLanck 1 year cosmology [13] are shown.

By comparing the amplitude of the noise contribution between the PLanck and
Prism cases, we can conclude that the precision of the PLANCK experiment, de-
spite being extremely powerful on the already delivered temperature spectrum,
does still not allow for a detection with high signal to noise ratio at the large
scales targeted in this work, both due to the beam amplitude and to the sensitivity,
whereas in the case of a future survey with the Prism specifications the quality of
the measurement will improve significantly, permitting to obtain a highly precise
reconstruction also at very small angles. For this reason, in this work we will adopt
the Prism specifications to address the contribution coming from non-linearities.

4.3 The reconstructed lensing signal

Here the results of our lensing extraction are presented and discussed, showing
the maps of recovered shear lensing signal, and quantitative comparisons of its
power spectrum against the ACDM predictions in the interval of angular scales
which is made accessible by the present simulation setup. First, let us do a few
considerations on the noise spectra in the angular region of interest. It is known
that the noise spectra of all the possible combinations TT, TE, TB, EE, EB for the
convergence spectrum are relatively flat on large scales, just having a difference
in amplitude, but not exhibiting a particular dependence on £ (see [[120]). As al-
ready argued in the previous Sections, we are interested in lensing reconstruction
ranging from the arcminute to the degree scale, where the noise spectrum is com-
parable or lower than the signal to extract only for the T T and EB cases. Thus, the
focus of the analysis is on the latter two observables as they are most significant
for the experimental configurations examined.

We apply the flat sky lensing estimator procedure described in Sec. by
adopting a 15° patch side. The lensing extraction pipeline proceeds as follows.
From the all sky lensed maps, we extract 296 squared patches, with centres dis-
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Figure 4.3: Convergence spectrum extraction from LP simulated maps using the T T (top) and EB
estimator (bottom), side of patch side of 15° for the Prism specifications. The error bars are
estimated as the variance of the 296 patches. The dashed lines represent the noise contribution as
evaluated by the estimator, which has been subtracted from the recovered signal in order to
obtain the data points. The black line is the convergence spectrum obtained by CAMB for the
reference cosmology, the red dashed lines represent the noise contribution.

tributed following [[157]. The shear angular power spectra from each single patch
are then stacked for producing the final result. The noise contribution as predicted
by the lensing estimator is subtracted. In order to validate our simulation setup, we
perform a test run using a simulated LP map by adopting the Prism specifications
and a WmMaP 1 year fiducial set of cosmological parameters [148]. The resulting
convergence spectra as output by the lensing extraction pipeline and obtained by
subtracting the noise contribution are shown in Fig. and exhibit a complete
agreement with the theoretical prediction both for the TT and the EB case. The
zoomed regions in the 800 < ¢ < 2000 exhibit numerical instabilities which are
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Figure 4.4: Convergence spectrum extraction from N-body lensed maps using the T T (top) and
EB estimator (bottom). Notation and line style associations are the same as in Fig.

showing up at the highest multipoles. The figure also anticipates some of the fea-
tures which will be highlighted for the cases of the run on the N-body CMB lensed
maps, precisely in the shape and amplitude of the noise contributions, for the T T
and EB cases. The TT case appears to be noise dominated on all angular scales,
while the effects of the limited angular resolution are visible at the largest scales
in the EB signal, in the shape of the noise contribution, reflected by the error bar
increase in the recovered signal at £ 2 1500. The ACDM predicted power is re-
covered very accurately on all scales, reflecting the precision in the evaluation of
the noise contribution. Finally, with the adopted specifications, the polarised data
do represent a significant contribution to the recovery of the signal, with compa-
rable precision up to £ ~ 1500. It is also interesting to look at the reconstruction
precision, reaching a few percent in bins with A¢ ~ 100 in the angular multipole
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Figure 4.5: Lensed and unlensed difference maps in the temperature (top right panel) and
polarised intensity fields (top left panel) in the same patch of the CMB maps compared with the
modulus of the input (bottom right panel) and reconstructed (bottom left panel) deflection angle.

interval 1000 < £ < 2000 for T, and about 10% for EB.

Let us now turn to the study of results on the N-body lensed CMB maps. The an-
gular power spectra from the shear maps stacking are shown in Fig. where the
two panels corresponding to the result of the TT (top) and EB (bottom) estima-
tors, respectively, show the reconstructed lensing potential evaluated by stacking
the lensing spectra extracted in each of the regions considered. As expected, the
noise contributions for the two cases are the same as the LP case in Fig. The
solid lines corresponding to the the spectra after subtraction of the noise contribu-
tion show no visible departure from predictions of the weak lensing power as pre-
dicted by the ACDM cosmology, within uncertainties, for both cases, in particular
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on the angular scales which are less affected by cosmic variance, e.g. correspond-
ing to £ ~ 1000 and beyond.

The consistency between the two cases keeps validity up to the extreme angular
resolution, as it is clear by comparing the zoomed areas in Figs{4.3]and cases,
indicating that the behaviour at the largest scales is actually a numerical feature to
be attributed to the estimator rather than to the simulated CMB lensing maps. It
is to be noted that the results in Fig. are obtained from the MS-modified-LP as
defined in Sec. whereas the panels shown in have been obtained with the
standard unmodified LP version. This result, validating the whole scheme of the
simulation pipeline, constructed using N-body structures out of theoretical power
predicted semi-analytically, ray-traced and then inspected at the level of the CMB
lensing extraction precision, has the immediate consequence that the biases from
inaccuracies across the pipeline are well below the high precision performance of
next generation CMB experiments for lensing extraction.

The outlined procedure should then allow to characterise departures from
ACDM predictions within the redshift interval which is contributing significantly to
the lensing power, within the assumed instrumental accuracy. It should be noted
that this is true in particular in the small scale part, where the corrections from
mildly non-linear matter evolution, described through the Halofit* package into
CAMB, contribute and are faithfully reconstructed.

Before concluding we perform a last visual study of our results, showing how
the lensing signal is consistent in different renderings. In Fig. the four pan-
els show the modulus of the input and reconstructed deflection angle compared
with the difference between the lensed and unlensed CMB maps for T and the

polarisation amplitude P = 1/Q? + U2. A first immediate evidence is the marked
non-Gaussianity of the lensing field, e.g. in the T difference; the structures there
represent the line of sight integral of MS DM lenses acting on the background
CMB field. The same holds for the polarisation field difference, with a clear cor-
relation with the T field, as expected, as well as a finer structure in the lensing
contribution.

The bottom panels show the input and reconstructed noisy lensing potential
field, again featuring an evident correlation between input and output, despite of
the noise pattern, which is also well evident. A similar analysis, on the whole sky,
was performed by [[144]], without applying a full lensing extraction pipeline as we
do in the present work.

Before closing this Chapter, the beginning of the exploitation of the results ob-
tained so far is presented. The successful recovery of the CMB lensing pattern on
all the relevant angular scales for the adopted simulations allows us to investi-
gate its behaviour and constraining power in cosmologies which are modified with
respect to the concordance ACDM model. Here, the case of the presence in the
Universe of massive neutrinos is considered.

‘http://www.roe.ac.uk/~jap/haloes/
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Figure 4.6: Convergence spectrum extraction from N-body lensed DEMNUNI map with a ACDM
cosmology, using the TT (top) and EB estimator (bottom).

4.4 CMB lensing extraction from DEMNUni maps

In this Section the results of the application of the pipeline described in Sec. [4.2
on CMB maps obtained by lensing the unperturbed fields through the DEMNUNI1
(Dark Energy, Massive NEutrino Universe) simulations with massive neutrinos are
presented.

As it was argued in subsec. once the background cosmology is fixed
(and particularly the initial amplitude of perturbations A,), the effect of neutrinos
is to suppress the growth of structures below the free streaming length, damping
significantly the matter power spectrum. Linear predictions overestimate signifi-
cantly this observable (look again at Fig. [2.8)); for this reason, it is most important
to address simulations which include the influence of structure formation from



4.4. CMB LENSING EXTRACTION FROM DEMNUNI MAPS 95

T T
25 [ = TT estimator, FWHM= 3.2", A, = 2.4pK-arcmin

o0k ;

—05 E 1 1 I ]
100 200 500 1000 2000
Multipole, ¢

T T
25 [ = EBestimator, FWHM= 3.2", A, = 2.4pK-arcmin

;]
20 C]
. ,

,

0.0f

—05 E 1 1 1 ]
100 200 500 1000 2000
Multipole, £

Figure 4.7: Convergence spectrum extraction from N-body lensed DEMNUNI map with
Z m, = 0.17 eV on a ACDM background using the TT (top) and EB estimator (bottom).
Notation and line style associations are the same as in Fig.

different species in such a way to achieve a full understanding not only of the for-
mation of structures itself, but subsequently, also of all the observables involving
the interplay of structure formation during cosmic time.

For this reason, the same method outlined in this Chapter is currently being
applied to the DEMNUNI set of simulations [[158], [159, [160]], which is a group of
high resolution N-body simulations with a reference cosmology compatible with
PLaNCK 1 year results [13], created using the GADGET-3° code which includes CDM
and neutrino particles [101]]. It uses about 2048% DM particles with mass 8.6 x
10%h~'M,, and 2048° neutrino particles (in this case the mass depends on the
value Y m,) in a cubic region of 2h™! Gpc side which evolves from redshift z, =

Shttp://www.mpa-garching.mpg.de/gadget/
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Figure 4.8: Convergence spectrum extraction from N-body lensed DEMNUNI map with
>.m, =0.3 eV on a ACDM background using the TT (top) and EB estimator (bottom). Notation
and line style associations are the same as in Fig.

99 to the present, with periodic boundary conditions. The considered cosmologies
are a standard ACDM case, and three cases with Z m, =0.17 eV, 0.3 eV, 0.53 eV
respectively. The neutrinos are treated as a separate collisionless fluid, just like the
DM,; in this case no baryons are considered, so the hydrodynamics is not included.

All the above characteristics make sure that the formation of structures is taken
into account faithfully in the N-body realisation; the same map making procedure
explained in Sec. (the only difference being that, as the simulation box is
bigger, the LS-adding only takes place for £ < 30, and the dimension of the shell is
2h~! Gpc side), as well as the algorithm of CMB lensing extraction described in Sec.
4.2|are adopted in order to create CMB maps lensed by this set of simulations, and
to extract and characterise the resulting convergence power spectrum. The Prism
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Figure 4.9: Convergence spectrum extraction from N-body lensed DEMNUNI map with
> m, =0.53 eV on a ACDM background cosmology, using the T T (top) and EB estimator
(bottom). Notation and line style associations are the same as in Fig.

specifications in Table [4.1] are used again.

Let us now examine the results from the extraction of the lensing signal show-
ing the maps of recovered shear lensing signal, and quantitative comparisons of
its power spectrum with the predicted one in the different cases considered. Fig.
show the extracted convergence spectrum for the considered cos-
mologies (ACDM with no neutrinos, ACDM with Z m, =0.17 eV, 0.3 eV, 0.53 eV)
for the TT and EB estimators.

It can be clearly seen how the theoretical and extracted spectra change with the
presence of a non-vanishing neutrino mass, which as already underlined causes a
damping in the structure formation, ranging from C,fk ~ 1.6 x 1077 in the case
with no neutrinos, to C/* ~ 1.45 x 1077 in the case ),m, =0.53 eV at { ~ 100;



CHAPTER 4. CHARACTERISING CMB LENSING SIMULATIONS FOR NEXT
98 GENERATION SURVEYS

it is noteworthy to see that the agreement is very good on all the involved scales,
in particular in the range 100 S £ < 500, probing the robustness of the algorithm
also in case of deviations from a standard ACDM cosmology.

As for the validating runs in Sec. also here it is found that any possible
bias introduced by the pipeline are below the high precision performance of next
generation CMB experiments for lensing extraction. On large multipoles we detect
a discrepancy, especially in the case of the EB estimator; despite the fact that the
signal is being recovered within the error bars (and well below the noise level of
the experiment), we are inspecting this effect of overestimation in the DEMNUNI
set of maps; a thorough comparison with the small scale power of the original
simulations is needed, and will be addressed in a future work aiming at the full
characterisation of the studied maps, and at quantifying in detail the constraining
power of the deflection spectrum when combined with other cosmological infor-
mation.

Overall, we deem these results as encouraging, and we plan on applying the
pipeline to different N-body simulations, such as the CoDECS (Coupled Dark En-
ergy Cosmological Simulations) [[28] which simulate non-linear structures in the
context of non-standard expansion histories in the period dominated by DE.

4.5 Concluding remarks

We presented here the first extraction of lensing shear and quantitative comparison
with semi-analytical expectations of CMB lensing simulations obtained through
ray-tracing across N-body structure formation. We consider the lensed total inten-
sity and polarisation CMB maps obtained by displacing the background field with
Born approximated deflection angles evaluated from the Millennium Run simula-
tion, stacked to fill up the whole Hubble volume. The pipeline described is tested
and validated by making use of simulated realisations of CMB lensing fields where
the polarisation angle is assumed to have a Gaussian statistics and a power spec-
trum as given by semi-analytic predictions.

We adopt the specifications of future high resolution and sensitivity CMB satel-
lites, corresponding to arcminute and uK-arcminute angular resolution and sen-
sitivity, respectively. The geometry of the simulation setup, corresponding to a
N-body box size of 500h™! Mpc and a pixelisation with 1.7’ pixel size, gives us
access to angular scales covering the arcminute and reaching about a degree in
the sky. For that we use a flat sky approximated version of the lensing extraction
pipeline based on a quadratic estimator.

The extracted lensing pattern is inspected separately from total intensity and
polarisation. We discuss the lensing contribution as predicted by the lensing esti-
mator in the two cases, which turns out to be completely noise dominated for total
intensity, while the effect of limited angular resolution is evident in the polarisation
noise contribution at the small scale edge of the relevant interval.

By applying the extraction pipeline, the reconstructed weak lensing shear power
spectra are found to be featureless as in the case of the simulated maps, follow-
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ing the theoretically predicted power within the assumed uncertainties, separately
for the total intensity and polarisation based estimator. Within the assumed in-
strumental specifications, the polarisation field has comparable relevance in con-
straining the lensing signal.

The proposed method is applied to the DEMNUNI set of cosmological N-body
simulations, describing four different cosmologies with different values of the neu-
trino mass. The results are promising, in particular when considering the outlook
that can be obtained by applying the pipeline to simulations with different spec-
ifications, or with different choices of the background cosmology. Among our fu-
ture perspectives in this sense, the next step is to study CMB maps lensed by the
CoDECS set of coupled DE cosmologies simulated structures. It is interesting to
note that, in the studied case, the extracted signal follows closely the variations of
the theoretical spectrum, suggesting that the extracted signal might be used as a
constraining probe of the neutrino mass.

The performed analysis is relevant in the context of the current and planned
CMB and LSS large observational campaigns. In this context, galaxy-galaxy and
CMB lensing are predicted to be most important observables for constraining the
dark cosmological components, and the control and reliability of the correspond-
ing simulated signal possesses a crucial importance in the forecasting phase, as
well as for the interpretation of the data.

For this reason, it is important in particular for CMB lensing to gather the
different pieces of the simulations in a single pipeline and to study the results. This
work represents a first significant step in this direction, demonstrating not only
that the inaccuracies of the simulated cosmological structure, ray-tracing scheme
and lensing extraction provide no significant disturbance to the lensing recovery
on the entire interval of angular scale considered, but also that this procedure can
be upgraded by adopting more sophisticated simulations, both in terms of general
architecture of the N-body and/or ray-tracing procedure, as well as underlying
cosmologies. These aspects are indeed the subject of our future works in this
direction.






Conclusions

The physics of the evolving and expanding Universe is at present well described
by the standard ACDM model. The current sensitivity of experimental setups is
enabling us to address increasingly finer corrections of the initial perturbations
power spectra. For the CMB, these are the sources of secondary anisotropy, i.e.
modifications of the spectra happening during the path of the photons from the
last scattering surface to the observer. Among the latter, the deflection enacted
by the interaction of photons with the gravitational potential arising from matter
structures in the Universe, CMB lensing, is gathering more and more attention;
after its first detection in the high multipoles of the temperature data by various
collaborations, its constraining power is starting to increase our knowledge of the
fundamental parameters describing the energy content and expansion history of
the Universe.

In this regard, in the next years a number of datasets relevant for the full
characterisation of this effect are going to be released by various collaborations.
In the next months, PLANCK second data release, including polarisation data, is
going to be published; a number of suborbital experiments (Spt, Act, POLARBEAR,
Bicer2, EBEx...) are taking data, or planning extensions of the observational time.
In the upcoming years, this continuous flow of data is going to foster a growing
attention of the community on the potential of this observable and the implications
that a precise measurement of the lensing power spectrum from CMB can reflect
on our knowledge about cosmology and astrophysics.

Among the next generation endeavours for observing the sky, a crucial role
will be played by the EucLip satellite, which will deliver a catalogue of billions
of objects in a range 0.5 S z < 2, along with imaging and spectroscopic data.
Mapping the recent Universe on a large volume and with such a sensitivity will
allow to constrain the recent expansion history, as well as possible deviations from
General Relativity.

In this regard, it should be noted that constraints on the cosmological param-
eters can be improved not only by considering CMB lensing as a separate observ-
able, but also by taking into account the cross-correlation between CMB lensing
and galaxy angular distributions. This process enhances the contribution given to
the unperturbed CMB by the gravitational potential by relating it to the structures
enacting the deflection itself. Furthermore, cross-correlating different datasets al-
lows to identify and gain control on the different systematics, peculiar to each ex-
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periment, and lower their bias on the final results. This aspect becomes even more
important when considering the fact that cosmological and astrophysical datasets
are now increasingly dominated by systematic, rather that statistical uncertianties.

For addressing this topic, there is a need for improving the current capabilities
of understanding of the signal, in particular concerning the simulation machinery:
the more experimental specifications are improved, the more second order, and
non-linear effects come into play. A comprehension of the observables currently
in use, and the definition of new ones, is necessary down to the smallest angular
scales, demanding for more accurate, detailed simulations accounting for many
different physical effects.

In this work, the physics of CMB lensing was addressed and exploited in order
to increase our knowledge about the interplay of this observable with the inflation-
ary signal of primordial origin. Considering jointly the presence of both signals in
the B—modes of CMB datasets allows to exploit wisely all the encoded information
resulting in a simultaneous constraint of different physical phenomena, in partic-
ular in view of forthcoming sub-orbital observations at high resolution. A deep
understanding of all the phenomena in play is essential for establishing correct
results; this also represents a further indication that a further step is needed in the
current way of developing simulations. As the process of data analysis digs deeper
in data, new degenerations can arise, which may challenge our assumptions; and
this can only be taken into account with an increasing precision on jointly consid-
ering the taking place of multiple effects at all scales.

As a step towards this direction, a method for characterising CMB lensed maps
raytraced through the lensing potential of N-body simulations in a range 100 <
¢ < 2000 was here presented. This approach allows to have full control of the
underlying physics, in order to check for deviations from the standard ACDM case,
as well as to address the non-linear clustering which kicks in at small scales in
the sky. The pipeline was validated on CMB maps lensed by structures created via
stacking the MS, showing a good agreement of the results with the predictions.
This shows that the method is ready for exploitation on more sophisticated cases,
and that the hunt for the influence of non-linearities pushes towards even smaller
scales, facing us with new computational challenges.

The full exploitation of this method is already taking place: the possible appli-
cations are variegate, ranging from modified gravity, non-standard DE evolution
histories, the only limit being the choice of the cosmological model to simulate,
and hence the computational time invested in the realisation of the N-body boxes.
We presented here a first application to the DEMNUNI set of N-body simulations
considering a non-zero mass of neutrinos. The ultimate aim of this approach is
to quantify the accuracy of simulations with respect to semianalytic approaches,
and to understand the lensing signal in relation to open issues of contemporary
cosmology, and of physics in general.

The work described here is an ongoing process, and just a number of all the
possible applications have been hypothesised up to now. Possible extensions to be
considered for the near future are the full characterisation of maps with non-trivial
neutrino content and their exploitation to forecast a constraint on the neutrino
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mass, as a completion of the ongoing work; the application of the method to the
CoDECS set of N-body realisations of non-standard DE histories; the extension
of the algorithm to a faithful reconstruction of the large angular scales; and the
analysis of maps produced with more sophisticated ray-tracing machineries, going
beyond the Born approximation [[161]].

The next step is start the study of the cross-correlation signal between the CMB
maps with the structures that enact the distortion along the path of photons. It
is to remark that the CMB N-body lensing setup is particularly suitable for study-
ing the capabilities of cross-correlations. A first step would imply the creation of
"tomographic" redshift shells of lenses, followed by the generation of mock cata-
logues in order to simulate observations and associated errors. Observations are
progressing quite fast for cross-correlation studies, see e.g. [[162]].

It is certainly crucial to complement these findings with appropriate simula-
tions, in order to understand the associated constraining capabilities in given in-
strumental setups. This topic will become increasingly interesting in view of the
analysis of the EucLiD dataset: to exploit at its full potential all the cosmological
information potentially contained in the combination PrLaNck + EucLip dedicated
algorithms and pipelines will be developed; in the specific case of CMB lensing,
the preparatory work could involve the cross-correlation of the lensing signal with
the shells of structures generated in the map-making procedure or with halo cat-
alogues of the simulations itself, as well as a complete study of the systematics
involved in the two instruments.
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