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Abstract 

In this thesis, through a combination of fieldwork, computational modeling, behavioral 

and neurophysiological (EEG) experimentation, we establish a neural precursor of the 

acquisition of lexical color categories. The thesis consists of 3 studies, each comprising 

a number of computational, behavioral and EEG experiments. 

The first study (Chapter 1) reports our field research on the color systems of Galician 

and Spanish, two geographically contiguous and historically related languages. Our aim 

here was to explore similarities and differences in the way speakers of these languages 

set boundaries between color categories in the green-yellow-brown and blue ranges. We 

provide preliminary evidence that regional color meanings can co-exist in neighboring 

and connected populations. 

In a series of computer simulations (Chapter 2) and laboratory experiments (Chapters 2-

3), we recreated a minimal language contact scenario, in which speakers of different 

languages, with possibly different color systems, must coordinate and communicate by 

means of basic color terms used as signals. 

In the second study (Chapter 2), participants learned during two consecutive days an 

artificial color system by playing as receivers in a signaling game with a computer. In a 

series of computer simulations, we show that the artificial color system is learnable by 

agents endowed with minimal cognition and limited memory. The stimuli consisted of 

an array of 5 Munsell colors that varied along the hue dimension from brown to green, 

with the most ambiguous color occupying the middle position in the array. At the end 

of day two, the EEG was recorded while participants were shown color-term (CT) and 

term-color (TC) stimulus sequences that were either learned, as part of the artificial color 

system, or incongruent. We found similar evoked responses to color terms in CT 

sequences and to colors in TC sequences, with larger late negative ERPs in incongruent 

than in learned trials. This EEG evidence for category-level color representations was 

supported by two independent color discrimination studies. ERP effects were largest for 

the more ambiguous colors, suggesting the strongest neural changes in the brain occur 

at the boundary of two color categories.  

The second experiment was identical to the first, with the exception that color stimuli 

were different. Here, the five colors varied in lightness within the blue hue with an 

ambiguous blue/black color as the terminal color in the array. We obtained larger late 

negative ERPs, very similar to those observed in the first experiment, in incongruent 

than in learned trials in CT sequences for the most ambiguous color in the array. Our 

results indicate that these ERP effects may reflect the effort of rewiring the native color 

categorization of participants into the artificial color system they have learned.  
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General Introduction 

 

1. Language contact and color categories 

Language contact occurs in any situation in which speakers of different 

languages interact. In some cases, new dialects may arise, combining elements 

of the two original codes as well as adding elements that were not present in 

either language before interaction.  

An example of this is the emergence of pidgin and creole languages. Pidgins 

are languages that arise when two speakers of different languages who have 

no common language try to converse. They often emerged in trade colonies 

which developed around trade forts or along trade routes (Mufwene 2002). 

They served as non-native lingua franca to speakers who used their native 

language for their day-to-day interactions. Pidgins are reduced in structures 

and specialized in functions (usually trade). The term pidgin apparently comes 

from a Chinese pronunciation of “business” (Peters 1845). When a pidgin 

language becomes the native language of the users in a community, it is 

considered a creole language. Examples of creole languages include Jamaican 

Patois, Bahamian Creole, Haitian Creole, Mauritian Creole, among others. 

Language contact also leave some of them on the verge of extinction (Lewis et 

al 2014) and some of them disappear completely (Crystal 2000). On the other 

hand, previously thought of as code-switching, adstraum or borrowing 

(Greenberg 1999), mixed languages started to be considered as a legitimate 

form of language contact (e.g. Thomason & Kaufman 1988). These are 

languages that maintain the complexity of two languages, using for example 

the grammar of one and basic vocabulary of another one (Bakker & Mous 

1994). Speakers of mixed languages are often native speakers of the two 

languages that mixed. An example of a mixed language is Media Lengua or 

Quichuañol is a mixed language that consists of Spanish vocabulary and 

Quichua grammar, most conspicuously in its morphology (Muysken 1997). 
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The presence of bilingual speakers is a crucial factor of change in a language 

spoken in a monolingual community, since the languages spoken interact and 

influence each other. A number of studies have provided evidence that 

cultural evolution is a key factor shaping linguistic regularities (Dunn 2011).   

The consequences of language contact are fascinating. One of them is the 

realization that the way of labeling and categorizing reality across different 

languages might not be equal and hence easy to translate word by word.  This 

raises the question of whether the language we speak affects how we think of 

the world.  Malt & Majid (2013) and Majid (2014) review more than a century 

of cross-linguistic research on the interaction between thought and language.  

They show many examples of how much the boundaries between one category 

and another one can vary across languages in many perceptual domains. Malt 

& Majid mention the case of body parts: even if joints create visually and 

kinesthetically salient a segmentation of the human body, humans around the 

world experience the body and its segmentation differently. For instance, 

some languages lack a word for the head, (Burenhult 2006) and some label 

arms and legs together with only a single word (Terrill 2006). Majid (2014) 

shows some examples of how sound qualities are also treated differently 

cross-linguistically (Eitan & Timmers, 2010). An English speaking music 

director would move her hand vertically to indicate a higher or lower pitch 

required but if she were to conduct an orchestra in Iran for example, she 

would probably be clearer using another strategy: speakers of languages like 

Farsi, Turkish and Zapotec describe pitches as thin or thick instead of low and 

high (Shayan 2011).  

In the visual domain, color categorization is one of the most studied. Reseach 

such as De Valois et al (1966) used microelectrodes to monitor single neurons 

to study neural representation of color. From these neurophysiology studies 

we learned that there are cells in the lateral geniculate nucleus that respond 

to either green, blue, red, yellow, black or white, and that are inhibited by the 

opposite colour. Their hypothesis was that the outputs of these cells 
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correspond to the unique hues. However, the respective wavelengths chosen 

to correspond to the most representative colors of blue, yellow and green do 

not consistently match the predictions from neurophysiology. 

Berlin and Kay (1969) argued that color naming was not linguistically 

constrained. Their work was one of the first cross-linguistic study of basic 

color terms and before that it was thought that languages split the color 

spectrum into categories without any constraint (Gleason 1961). They 

compared nearly 100 languages and analyzed what speakers thought was the 

best exemplar of each color category (focal colors). They demonstrated that in 

languages that had the same amount of color terms, focal colors tended to 

cluster reliably in relatively narrow regions of the array of all colors presented. 

However, boundaries between one and another category are drawn with low 

consistency and consensus for any language.  

Color naming universals may arise from learning and perceptual biases of 

human learners, brought out by cultural transmission (Xu et al. 2010). Models 

and simulation studies have offered a valuable parallel contribution to the 

subject. Komarova et al. (2007) provide a mathematical model in which color 

naming systems rapidly evolve in populations of communicating agents. 

Loreto et al. (2012) describe a theoretical framework where the origin of the 

color hierarchy is explained as the result of purely cultural processes 

constrained by basic properties of human vision. Although language contact 

is a widespread cultural phenomenon, its consequences for brain physiology 

and organization are poorly understood: what changes occur in the brain of 

language users when they acquire lexical meanings, specifically, when we 

categorize a continuous space such as color?  

In this work, we consider a limited artificial vocabulary of color terms as a test 

case. Fonteneau et al. (2007) first reported a neural correlate of color 

categorical perception. They found the peak latency in ERPs for a small color 

difference bridging a color-term boundary to be quicker than that for an 

equally sized color difference not bridging a color-term boundary. Other 

studies show that learning associations between artificial words and color 
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categories increases grey matter volume in V2/3 of the left visual cortex (Kwok 

et al. 2011). In an fMRI study, Bird et al (2014) presented participants with two 

colors in a successive fashion without requiring any kind of judgment of them. 

The stimuli were 4 squares, each of a different color, one of them expected to 

be named green and the three remaining blue in a naming task they conducted 

following the fMRI sessions. They had six conditions where stimuli in a block 

were either same- or different-category, and where the difference in hue 

between stimuli in a block was either absent (same condition) or “small,” 

“medium,” or “large”. They found regions of the brain that independently code 

for differences in color category and the size of the differences in hue between 

colors. The middle frontal gyrus in both hemispheres showed stronger 

activation for same- vs. different-category color differences but was invariant 

to the size of the hue differences. They did not find any color categorical 

effects in the visual cortical regions. However, there was a region of the visual 

cortex that was sensitive to the size of the hue difference.  

Roberson & Davidoff (2000) showed participants a color and then asked to 

read color terms, adding a verbal interference, or look at a multicolored dot 

pattern adding a visual interference. They were then shown 2 color chips - the 

original color and one that was 1 or 2 color chips away in an array. Finally they 

asked them which the original color was. They found that verbal interference 

only interfered in their accuracy in trials with colors of different categories 

(across-category identification). They concluded it is verbal encoding what 

causes judgments of greater perceptual distance between one and another 

color. 

On the other hand, Tan et al (2008) compared, using fMRI, “easy-to-name 

colors” to “hard-to-name” (more ambiguous) colors in Chinese. By presenting 

participants with a color discrimination task they found that perceptual 

identification of easy-to-name and hard- to-name colors activated largely 

overlapping brain areas; easy-to-name colors, however, were more related to 

activation of the left posterior temporo-parietal circuits. These are the same 

regions that also contribute to word-finding processes engaged when a color 
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is named aloud. This shows that the language processing areas of the brain 

are involved in visual perceptual decision.  

To sum up, cross-linguistic research on color categorization and brain 

research on color perception are constantly expanding subjects that need 

more meeting points. Here, we combine fieldwork and laboratory 

experimentation (using psychophysics and EEG) to investigate the neural 

changes produced by learning new color categories in a simplified model of 

language contact, in which speakers of different languages, with possibly 

different color categorizations, are forced to communicate using a common 

code, with a chance that one party will have to acquire the code of the other. 

2. Fieldwork 

We conducted field research to determine whether regional color meanings 

can co-exist in populations of language users. As part of a collaborative effort1, 

we administered two color forced choice labeling tasks to Spanish (N=20) and 

Galician (N=20) speakers. Spanish and Galician are geographically contiguous 

languages that display a certain degree of semantic diversity. The analysis of 

our labeling data shows that differences exist in how the two languages set 

boundaries between some basic colors. 

3. Laboratory experiments 

3.1. The signaling paradigm 

In the core part of the project, we study languages in contact via a variant of 

the signaling game (Lewis 1969; Skyrms 2010).  Signals carry information of 

the state of world, which can be in different states. In a signaling game, there 

is a sender and a receiver and they both want the same outcome of the game, 

so they will both cooperative to arrive to a common code. The sender knows 

something about this state and selects a signal with which she will 

communicate this information. The receiver has to choose a response and he 

will get a reinforcement that will help him interpret the association between 

                                                           
1Evolution of Semantic Systems (EoSS). Consortium based at the Max Planck Institute for 
Psycholinguistics, Nijmegen. 
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the state (unknown to him) and the signal. Eventually, this signal becomes 

more reliable and sender and receiver start to coordinate, i.e. the game arrives 

to a stable solution.  

In our studies, two players, a sender and a receiver, must converge on a 

common code to communicate efficiently. Semantic conventions, where 

signals are systematically mapped to meanings (a set of colors, i.e., a color 

category) by sender and received, emerge rapidly, typically under 20 plays 

(Blume et al. 1998). In our investigation, the sender role is played by a 

computer which sends signals to participants (receivers). 

3.2 Simulations  

We conducted a series of computer simulations of signaling games, aimed at 

determining the frequency with which each of the colors in the array should 

be presented to the sender in order for the receiver/participant to be able to 

learn color categories with the least effort.  

3.3 Experiment 1. Rewiring color categories in the hue dimension 

3.3.1 Pilot on color categorization 

A group of volunteers of mixed nationalities performed a computerized 

analogue of the naming task that was used in fieldwork, this was a forced 

choice labelling task. The purpose of this pilot was to construct arrays of 5 

colors with basic colors as extremes and ambiguous transition colors. 

Ambiguity was defined as a particular color being labeled with color term X 

and color term Y each with a frequency close to 0.5. 

3.3.2 The main experiment  

In Experiment 1, during two consecutive days, Italian speaking participants 

learned an artificial color system by playing as receivers in a signaling game 

with a computer. The stimuli consisted of an array of 5 Munsell colors that 

varied along the hue dimension from brown to green. The array was based on 

the results of the pilot study (see 3.3.1). At the end of day two, neural 

reorganization was assessed by means of EEG, showing participants color-
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term (CT) and term-color (TC) sequences that were either learned, as part of 

the artificial color system, or incongruent. We found similar evoked responses 

to color terms in CT sequences and to colors in TC sequences, with larger late 

negative ERPs in incongruent than in learned trials, and smaller early effects 

following the same pattern. This EEG evidence for category-level color 

representations was supported by two independent color discrimination 

studies. Moreover, we found that ERP effects were largest, not for the best 

exemplars of each color category, but for the more ambiguous colors, 

suggesting that the strongest neural changes in the brain occur at the 

boundaries between categories. 

3.4 Experiment 2. Rewiring color categories in the lightness dimension 

3.4.1 Pilot on color categorization: the blues 

A group of native English speakers performed the same computerized forced 

choice labeling task of Experiment 1, but this time with colors that varied in 

lightness within the blue hue. The purpose of this pilot was to construct arrays 

of 5 blue colors with a blue color in the center of the array (color 3) that was 

considered blue with a labeling frequency close to 1 by all English speakers, 

and an ambiguous blue-black color at the end of the array (color 5). Again 

here, ambiguity was defined as a particular color being labeled with color term 

X and color term Y each with a frequency close to 0.5. 

3.4.2 The main experiment  

In Experiment 2 English speaking participants took part of the study. It 

resembles Experiment 1 except the stimuli were 5 Munsell colors that varied 

along the lightness dimension within the blue hue and the most ambiguous 

color in the artificial categorization did not coincide with the most ambiguous 

color in their native categorization. We obtained larger late negative ERPs in 

incongruent than in learned trials only in CT sequences for the most 

ambiguous color in their native color categorization. These results suggest 

that ERP effects may reflect the effort of ‘translating’ the native categories into 

the new artificial categories, and this neural process of translation may require 
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more effort where the native categorization is more ambiguous. However, the 

fact that we did not see any effect in TC sequences, leaves open the question 

of how ambiguity affects the processing of colors and color terms. 



 

Chapter 1 

Color categories in the wild: A case study of Spanish and Galician 

1. Introduction 

Seized by philosophical bewilderment, we may ask ourselves what it 

would be like to be ‘inside’ someone else’s body, that is, how another person 

experiences reality. In truth, philosophers went as far as asking what it is like 

to be a different form of life, e.g., a bat (Nagel 1974). Our mind may be 

especially overwhelmed by the attempt to imagine what it is subjectively for 

an organism to have echolocation. However, it is no less challenging to try to 

picture, for example, how a dichromate perceives the world beyond the usual 

traffic lights example, or how speakers of a language see different shades of 

blue depending on whether that language has one or two words for light and 

dark blue (more on this in Chapter 3). Light is sensed by all human beings with 

the same type of retina cells, perception is mediated by the same visual cortex, 

and everyone can discriminate differences in hues with about the same 

precision. Still, boundaries between color categories can vary across speakers 

of different languages. 

 Benjamin Whorf suggested that speakers are not led by the same 

physical evidence to the same way of perceiving the world, unless their 

linguistic experiences are similar or comparable (Whorf 1956). He used the 

Hopi language to illustrate this hypothesis. This language is a case in point as 

the Hopi people have a particular way of expressing the concepts of space and 

time: events that are far from the speaker are represented as having occurred 

in the distant past, whereas events that are closer in space are conceived as 

though they occurred closer in time. Hopi verbs have no grammatical tense 

but instead they are distinguished by their aspect (e.g., the extent of the event), 

the validity the speaker intends the statement to have (whether it is a report 

of the event or it expresses expectation regarding the event) and clause-

linkage (the temporal relationship of two or more verbs) (Whorf 1956). In this 
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way, Whorf reckons, the Hopi language is framing the glasses through which 

the Hopi see and talk about their universe. 

 Returning to color terms, languages vary in the number of basic color 

words they have. Basic color terms are monolexemic (they consist of a single 

lexeme: ‘blue’ is a basic color, but ‘baby blue’ is not), they are used with 

relatively high-frequency in the language, and they are consistently agreed 

upon by speakers of the language in naming tasks. Also the application of 

these terms must not be restricted to a narrow class of objects (e.g. blond: 

human hair) and they must be psychologically salient for the speaker (this last 

one being the basis of the methodology of our study). Berlin & Kay (1969) 

showed that basic color terms form the basis of all color systems in the world. 

The number of basic color terms in a language can influence how easy it is for 

a speaker of that language to discriminate differences between colors (Kay & 

Kempton 1984). Roberson et al. (2000, 2005) studied speakers of three 

languages: English, Berinmo, a language of Papua New Guinea, and Himba. 

They found that the color stimuli that were in different color categories, 

depending on where each of the languages put the boundaries between one 

color category and the other, were remembered better, judged as being more 

different and word-color associations were learned better. Moreover, stimuli 

that straddle a category boundary are perceived as more distinct than 

equivalently spaced stimuli within a category (Kay 2006). Thus, despite 

universal tendencies in color naming across languages (Kay & Regier 2003), as 

color term boundaries vary, we may apprehend color differently depending 

on the language we speak.   

  

 If Whorf is right - or only ‘half right’ (Regier & Kay 2009) - then the 

language we speak influences our perception of color locally, i.e., at the 

boundary between two color categories. Here, the research agenda can be led 

down parallel paths, which correspond to the two main questions of this 

thesis. Consider two geographically contiguous and historically related 

languages, such as Galician and Spanish. The cultural divide between speakers 

of Galician and Spanish is nearly as small as a divide can be between speakers 
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of different languages. In spite of that, would these two languages set color 

boundaries differently? In other words, are different color vocabularies 

enough to support different color categorizations, or are ‘deeper’ cultural 

differences necessary? This is the first question raised in this thesis, and the 

focus of the present chapter. If such a purely vocabulary-driven effect on color 

categorization were to be found ‘in the field’, our next step would be to 

reproduce it in the laboratory. The second key question of the thesis, and the 

focus on Chapters 2 and 3, is: can learning of new color categories be induced 

simply through the acquisition of a new color vocabulary? 

 

2. Methods 

As part of the collaborative project Evolution of Semantic Systems 

(EoSS) that studies 50 Indo-European languages, we conducted field research 

to study how color categories vary in two geographically contiguous and 

historically related languages: Spanish and Galician. The aim of the EoSS 

project is to investigate how meanings vary over space and change over time, 

using a phylogenetic approach. It focuses on extensional semantics, i.e., how 

similar, or different are the referential ranges of words across languages.  

 The methods used here come from “Evolution of semantic systems 

procedures manual” (Majid et al 2011). There was a total of 6 tasks: the Color 

Blindness (Waggoner 2002), a test that evaluates the participants’ color vision; 

Color Naming, in which participants were presented with a series of colors 

and were asked to name the colors they saw (Majid & Levinson 2007); A Focal 

Color task for which they were asked to point to the best example of colors in 

a list of color terms elicited in a pre-test (Majid 2008); a Spatial Relations 

Naming task, where the participant had to describe the relation between the 

figure and ground of a series of pictures, each one containing an orange figure 

object against a black ground object (adapted from Bowerman & Pederson 

1992); a Body Part Naming task, in which the participant had to name a body 

part marked by a red dot (Jordan, Dunn & Majid 2009) and a Container Naming 

task, for which the participant had to name a container in a series of 

photographs of household containers (Ameel, Storms, Malt & Sloman 2005).  
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For the purpose of this study, here we focus on the first 3 tests: Color 

blindness, Color naming and focal colors.  

 

2.1. Participants 

Twenty native speakers of Spanish (14 females, mean age 24) and 

twenty native speakers of Galician (10 females, mean age 17) took part in the 

experiment after giving written informed consent. All participants' color 

vision was tested with a color blindness test (Waggoner 2002). All participants 

were trichromats. A biographical questionnaire was administered at the end 

of the session, developed by Dunn, Majid, & Jordan (2010) for the EoSS project.  

This questionnaire contained questions about their country of origin, the 

languages they spoke, their education level, and handedness (Oldfield, 1971). 

 

2.2. Materials 

2.2.1 Color blindness test 

The test consisted of a booklet with 9 plates. There was one 

demonstration plate in order to explain the task. Six plates tested for the red-

green color vision deficiencies. One of the plate tested for the type and degree 

of red-green defect and an additional plate tested for blue-yellow color 

deficiency. The materials were developed by Waggoner (2002).  

2.2.2 Naming Task 

The task was constructed using the Munsell (1912) color system. In this 

three-dimensional model, each color contains three attributes: hue, value and 

chroma. It is set up as a numerical scale with visually uniform steps for each 

of the three color attributes and each color has a logical and visual 

relationship to all other colors.  

Hue defines pure color in terms of green, red, etc. and mixtures 

of two pure colors like red-yellow (orange), or yellow-green. It is dependent on 

its dominant wavelength. Chroma is the perceived strength of a surface color, 

the degree of visual difference from a neutral grey of the same lightness. It 
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has also been defined as "colorfulness" of an object relative to the brightness 

of a white object with the same illumination: colors of low chroma can be 

called “weak” and those of high chroma are highly saturated, strong or vivid. 

Value indicates the lightness of a color. The scale of value ranges from 0 for 

pure black to 10 for pure white. Black, white and the greys between them are 

called “neutral colors”. These colors have no hue. The stimuli consisted of 84 

standardized Munsell colors, sampled with 20 equally spaced hues, 4 degrees 

of brightness, all maximum saturation, plus 4 achromatic colors. The colors 

were organized in a fixed random order. Saturation varied such that colors 

were generally at the maximal possible chroma for that point in the color 

space. This task was based on materials developed by Majid & Levinson (2007). 

 

2.2.3 Focal colors task 

 

The stimuli were the same 84 Munsell colors used in the naming task 

but here they were organized in a two dimensional array according to hue and 

lightness. Each color was identified by a letter according to the four levels of 

lightness (A-D) and a number that referred to the hue (1–20). The colors were 

shown as circles against a grey background within a rectangular plate. 

Participants were asked to verbalize the coordinates of the best example of 

each of the 10 basic colors terms the experimenter read out loud. To this end, 

we preliminarily constructed a list of basic color terms, using one of the 

attributes of the definition of “basic colors”, the psychological saliency to the 

informant, as a criterion. It is important to point out that if we had chosen a 

different set of criteria, we could have obtained different results. This list was 

taken from the responses to a free-listing task of 20 subjects (10 Spanish 

speakers and 10 Galician speakers) that did not take part in the main study. 

Participants were asked to list all of the colors they could think of, in the order 

they came to their mind, as quickly as possible, in a total of two minutes of 

time. Color terms were then ranked by how frequently they appear and their 

position in each list across participants. This task was based on materials 

developed by Majid (2008). 
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2.3 Procedure 

We administered the two color naming tasks to speakers of Spanish at 

the Universitat Politècnica de Catalunya in Barcelona, Spain, and Galician at 

the IES nº1 de Ordes secondary school. Both testing rooms were quiet and 

there were good daylight lighting conditions, which were consistent across 

participants and between the two places. The entire session was recorded on 

an audio-recorder and then transcribed (see below).  

The instructions for the tasks and questionnaire were translated into 

both languages from English. These translations were then back translated 

into English by a person who was not familiar with the study and corrected if 

necessary, to allow for a better cross-linguistic comparability. Before the tasks 

started, participants were given an overview of the project, and were given the 

opportunity to ask questions regarding the study. 

 

2.3.1 Naming task 

Participants were presented with each color individually on individual 

numbered plates and they were asked to name each color with the first term 

that occurred to them. In each trial, the experimenter asked in the 

participant's native language (Galician or Spanish): “What color is this?” 

Participants’ responses were audiotaped and later transcribed. If the 

participant gave a long description (e.g. “egg yolk or mustard yellow”, 

“strawberry red with more quantity of magenta”) they were asked to say it in 

another, possibly shorter, way. If at this point they did not offer a more 

concise answer, the experimenter proceeded to the next color.  

2.3.2 Focal colors 

The goal was to elicit the best exemplars for the basic color terms in the 

language. The instructions were the following: “Here are the same colors you 

labeled in the previous task. They are all laid out for you. Now, I will give you 

a color word and I want you to point to the best example of that color”.  
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2.3.3 Color blindness test 

 

Participants’ color vision was evaluated by a color blindness test 

(Waggoner 2002) to exclude a possible color vision impairment. All 

participants were tested after the forced choice labeling task and the Focal 

Colors task.  

Participants were asked to name the numbers on the plates that were 

held about 50 cm from the participant, directly facing them. The participant 

had 3 seconds to identify each plate. Hesitation was taken as an indication of 

color deficiency.  

2.4 Data analysis 

Our main objective with this analysis was to understand how much 

similarity there was between color representations across Galician and 

Spanish.  In particular we wanted to detect possible category-boundary 

differences between the two languages. An example of a category-boundary 

difference would be a particular Munsell color (or a small set thereof) that is 

labeled by speakers of one language using color term X (say, ‘green’), and by 

speakers of the other language using color term Y (e.g., ‘yellow’). Other types 

of boundary differences include cases in which, in one language, a particular 

Munsell color lies across two categories, and is accordingly labeled with 

approximately equal frequency as an X or a Y, whereas in the other language 

it is reliably labeled as either an X or Y. As can be seen, our analysis focuses 

on single colors: the use of a limited sample of colors in a forced choice 

labeling study makes it difficult to trace boundaries across categories using 

multiple colors; moreover, as will become clear in Chapters 2 and 3, our 

methodology for laboratory research (whose aim is to investigate color-

boundary effects in the brain) requires the identification of small sets of colors 

for which clear boundary effects are found. 
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2.4.1 Naming task 

The data was transcribed verbatim from the audio recordings. The full 

responses of the participants (e.g. greenish blue, light brown) and the main 

response (‘blue’ for greenish blue, ‘brown’ for light brown) were written down 

in the answer sheets. To analyze our data we only considered the main 

response (‘blue’ in ‘greenish blue’) as the main response and we used only this 

term for statistics, and not the rest of the response (‘greenish’). In order to 

analyze if Galician and Spanish speakers used the same color terms to name 

the same Munsell colors, for each of the color terms that were part of the basic 

colors list, we counted the number of times each Munsell color was given that 

name, in each of the two language groups separately (e.g. which Munsell colors 

were given the name ‘azul’ and how many Galician speakers used that term 

for each of the colors). Then we computed the difference in the amount of 

times a certain color name was given to each Munsell color between the two 

languages, and the amount of different color names each Munsell color was 

given in each language. Some color terms are not shared by both languages 

(e.g. the Galician term ‘vermello’ is translated as ‘rojo’ (red) in Spanish, 

‘amarelo’ is ‘amarillo’ (yellow), etc.) and some are (‘verde’, ’azul’, ’negro’, etc.). 

In the cases where the term used was not one that is shared by both languages, 

we compared this term to the equal term in the other language (e.g. Munsell 

colors named with the term “vermello” by Galician speakers were compared 

to Munsell colors named “rojo” by Spanish speakers) Furthermore, some 

Galician speakers also used some color terms in Spanish instead of the 

Galician term (borrowing) in some trials (due to contamination of Spanish on 

the Galician language (“blanco” instead of “branco”, “amarillo” instead of 

“amarelo”, “naranja” instead of “laranxa”). In some cases, terms  

To be included in our analysis, a Munsell color C had to meet three 

criteria: (1) C should be named using the same color term at least twice in at 

least one language (this shows a certain level of agreement among 

participants); (2) That color term should have at least a 30% difference in 

count between the two languages, i.e., at least 6 out of the 20 participants 

should name C using that specific color term in one of the languages and not 
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in the other one (we take this difference as a significant one between the 

languages); (3) No more than 4 names should be used for that Munsell color 

in either language (if a color is named with more terms, it suggests us that 

instead of showing a difference between languages, it shows this is a very 

ambiguous color for one of both languages). Our prediction was that if one 

color was found for which only 2 color terms are used, it is very likely that 

that color is at the boundary between 2 colors. We ran t-tests on all the 

Munsell colors that met the criteria to study whether and how the labeling 

patterns for each color differ from one language to another, i.e. if speakers 

put the boundaries between one color category and another one in a 

different point of the color spectrum. We also calculated for each language 

how frequently speakers used each color term for each Munsell color. If a 

Munsell color is named with the same term with a high frequency across 

speakers of the same language and with the cognate color word across 

languages, we can say it is a color that is prototypical for that color term 

across languages. If the term is used for a specific color with a high 

frequency only in one of the languages, we consider that Munsell color to be 

prototypical for that color term in that language. If instead a Munsell color 

was named with several different terms, we can say that color is ambiguous 

and we would expect speakers not to agree easily on the correct name for 

that color. This information allowed us to build the stimuli for the 

experiments we will explain in the next chapters. 

We used Hamming distances, the proportion of positions at which two 

aligned sequences differ, and we estimated the variability between, within and 

across groups. We wanted to further measure the similarity of Galician and 

Spanish speakers’ color space (Pinheiro, Seillier-Moiseiwitsch & Sen 1998) and 

to check if the colors which to the speakers represent a certain color term is 

the same across languages. We analyzed the color terms “azul”, 

“amarillo/amarelo” and “verde”. For each language we replaced all the 

subjects’ responses “azul”, to the number 1 and converted all other responses 

to 0.  If we consider the list of Munsell colors with the responses 0 or 1 a 

vector space, a Hamming distance analysis allows us to see what is the number 



Chapter 1. Color categories in the wild: A case study of Spanish and Galician 

24 
 

of entries in the vector for one person or language group that would need to 

be changed in order to make it identical to the vector of the other person or 

language, or, the minimum number of substitutions required to change a color 

categorization of a speaker into another of another speaker. We ran t-tests to 

explore how consistent the responses used for each Munsell color were within 

the group (internal similarity) and how similar/different the Galician and 

Spanish speakers groups were in labeling the colors (cross similarity). We run 

the same procedure for terms “amarillo/amarelo” and “verde”. In this way we 

had vectors of 0s and 1s as responses instead of the color terms.  

2.4.2 Focal colors 

The subjects were then asked to point to the best examples 

corresponding to 10 color terms. We then said the letter and number out loud 

and the responses were transcribed verbatim from the audio recordings. If the 

participant gave two different responses or hesitated, they were asked to 

confirm their response. If he/she said there was no match, we asked them to 

choose the closest matching color. 

 

3. Results 

When comparing the number of Spanish speakers and Galician speakers 

that named each Munsell color with each color term (or the cognate), two 

Munsell colors showed to be different in Spanish and Galician (Fig. 1).The 

Munsell color 5G 8/6 (t(19)=-3.559, p=0.0021)  was one. It was named “azul” 

(blue) by 40 per cent of the Spanish speakers and by none of the Galician 

speakers, and it was named “verde” by 60% of the Spanish speakers and by 

100% of the Galician speakers.  The Munsell color 10Y 6/10 (t(31.204)=-2.6261, 

p-value=0.01327), which was named “verde” by 90% Spanish speakers and  by 

55% Galician speakers, and it was called “amarillo” (Spanish for yellow) or 

“amarelo” (Galician for yellow) by 5% Spanish speakers and by 35% Galician 

speakers (t(26.603)=2.4936, p-value=0.01917). It is important to point out that 

6 Galician speaking participants also used the Spanish color term “amarillo” 

instead of “amarelo” to name the yellow Munsell colors. 
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Figure 1. A) Munsell colors 5G 8/6 and 10Y 6/10. Below each color, the number of participants 

(labeling frequency) who used each color term in Spanish (SPA) and Galician (GLG). B) 

Diagrams of the use of the different color terms for the Munsell colors in each of the 

languages. Circles represent color categories, which are here assumed to have mutual 

intersection zones. The colors represented here may render inaccurately the actual Munsell 

colors. 

To further explore the differences among these color terms, we 

analyzed the internal similarity of labeling patterns within each language 

group and the cross similarity between the two language groups using 

Hamming distances.  

We calculated the internal similarity of Spanish speakers using the mean 

of the Hamming distances between all pairs of vectors X and Y (where X is the 

responses of one Spanish speaker, and Y is of another). That is, we measured 

the Hamming distances between the responses “azul” (“azul” coded as 1 and 

all other possible responses coded as 0) to a certain Munsell color of one 

participant and of another, and we repeated the same procedure with all pairs 

of participants. In the end computed the mean of these distances. A low mean 
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value suggests that the group of Spanish speaking participants was internally 

consistent in their responses. The same procedure was performed on the 

Galician speakers group. We also calculated the cross similarity between 

Spanish and Galician by comparing the means of the distances of pairs of 

Spanish speakers and Galician speakers.  Finally, we compared the internal 

similarity of Spanish and Galician by means of a t-test. Afterwards we 

compared the internal similarity of Spanish to the cross similarity with 

Galician and the internal similarity of Galician to the cross similarity with 

Spanish also using t-tests.  

Spanish and Galician speakers differed in their consistency in labeling 

colors “amarillo/amarelo” (p<0.001). On the other hand, they are similarly 

consistent in how they use the word "azul" (p=0.527) and “verde” (p=0.018). 

But then there are differences across the two languages: Spanish speakers 

were similar in their usage of "azul" (p=0.0015) and “amarillo/amarelo” 

(p<0.001) to other Spanish speakers than when we compared them to Galician 

speakers, but this was not true for “verde” (p=0.341). When we analyzed 

Galician speakers, we found they were more similar to other Galician speakers 

in the way they used “azul” (p=0.0006) and “verde” (p<0.001), than when we 

compared them to Spanish speakers, but not so much for “amarillo/amarelo” 

(p=0.052).  

We found the color term “azul” to be especially interesting in the way it 

is used: the internal similarity of participant responses of Galician and Spanish 

is comparable (there is no statistical difference within each language group), 

but there are cross similarity differences in both directions (See Table 1). Thus, 

Spanish and Galician seem to use the same word "azul" for slightly different 

colors.  

Figure 2 shows a general picture of the differences/similarities between 

Spanish and Galician for colors “amarillo”/”amarelo”, “azul” and “verde”. 
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 Amarillo/Amarelo Azul Verde 

Internal similarity (IS) difference 

between SPA and GLG:  

t(19)=-9.0285 t(19)=-0.6446 t(19)=2.5926 

p < 0.001 p=0.527 p=0.018 

Cross similarity (CS):     

IS SPA/CS GLG 
t(19)=-14.6865 t(19)=-3.6989 t(19)=-0.9759 

p < 0.001 p=0.0015 p=0.341 

IS GLG/CS SPA 
t(19)=2.0673 t=-4.0936 t(19)=-6.1436 

p=0.052 p=0.0006 p < 0.001 

 

Table 1. Differences between Galician and Spanish. The internal similarity in using color 

“amarillo/amarelo” (t(19)=-9.0285, p<0.001) and “verde” (t(19)=2.5926, p=0.018) of the 

Galician speakers group was statistically different from the internal similarity of the Spanish 

speakers group. The opposite was true for "azul" (t(19)= -0.6446, p=0.527). Spanish speakers 

were more similar in their usage of "azul" (t(19)=-3.6989, p=0.0015) and “amarillo/amarelo” 

(t(19)=-14.6865, p<0.001) within their group than when compared to Galician speakers, but 

not of “verde” (t(19)= -0.9759, p=0.341). Galician speakers were more similar in their usage of 

“azul” (t(19)=-4.0936, p=0.0006) and “verde”  (t(19)= -6.1436, p<0.001) within their group than 

when compared to Spanish speakers but not so much in their usage of “amarillo/amarelo” 

(t(19)= 2.0673, p=0.052).  
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Usage of the word “amarillo/amarelo” 

Galician

 

Spanish

 

Figure 2. Array of colors used in the focal colors task. Only the Munsell colors for which the 

word “azul”/”verde”/”amarillo/amarelo” (both terms were merged as one in the case of 

Galician) was used in each of the languages are shown. Each color was identified by a letter 

according to the four levels of lightness (A-D) and a number that referred to the hue (1–20). 

Here we show in the horizontal axis the Munsell codes of the different hues. The numbers (1-

8) inside the cells represent different clusters of colors. The clusters that contain the number 

1 refer to the Munsell colors that were named with the specific color term by 100% of the 

speakers. The colors in cluster 2 were called with that color term by 95% of the speakers, 

cluster 3 by 80 - 90 % of the speakers, cluster 4 by 65-75%, cluster 5 by 50-60%, cluster 6 by 

35-45%, cluster 7 by 20-30% and cluster 8 by 5-15% of the speakers.  The dots on the grid 

represent the number of subjects who designed that color as best example of the category in 

the focal colors task. For Galician, in the focal color task the color term for which the 

participants had to point the best exemplar was “amarelo”. R, red; Y, yellow; G, green; B, blue; 

P, pink. The RGB colors presented here to depict each Munsell color are only approximate 

conversions. 
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4. Discussion 

Could a Spanish speaker consider the leaves of a tree in Autumn to be 

still green and a Galician speaker next to her say they are already yellow, about 

to fall, just because they speak different languages? Consider a group of 

tourists from different parts of the world, where different languages are 

spoken, on an island observing the ocean in a clear sky day. Would they all 

look at the horizon as the boundary between one color category and another?   

In this study we analyzed how speakers of Galician and speakers of 

Spanish labelled 84 different Munsell colors in a forced choice labeling task. 

We computed the labeling frequency of each color and the quantity of names 

each color was given in each language.  We also studied how participants of 

both languages responded to a task in which they were asked to point to the 

best examples of 10 color terms on a grid containing the same 84 colors. 

Finally, we studied the similarities within and across language groups in 

labeling the Munsell colors.  

The analysis of our labeling data revealed differences in how the two 

languages set boundaries between the categories of yellow and green (hue), 

and within the blue category (lightness). 

To sum up, contrary to Abrams & Strogatz’s (2003) conclusion that 

societies in which two languages coexist are mostly split populations that 

lived without much interchange in separate monolingual groups, our results 

show that regional color meanings can co-exist despite interactions between 

populations (Abrams & Strogatz 2003). Galician is an Indo-European language 

spoken in the northwest of Spain, in Galicia Autonomous Region. It is closely 

related to Portuguese, with which it originally formed a unique language: 

Galician-Portuguese. Due to a political division of the territory, Galician and 

Portuguese became two different languages, although they have an 85% 

mutual intelligibility (Hall 1989). Galician and Spanish now coexist in the north 

of Spain and they are spoken in two connected populations.  Even though 

spoken by the majority of the Galician population, Galician language is under 

threat from Spanish language contamination (relexification, lexical borrowing, 
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language convergence, etc.). However, the fact that regional meanings survive 

shows that there is still some degree of separation in how the two populations 

use language.  

If the Spanish speaker and the Galician speaker who are looking at the 

tree had to reach to an agreement of what color the leaves are, or if they were 

exposed for the first time to each other’s language, and the Galician had to 

explain what “azul” means for her using only signals, would there be any 

differences in the way they process these colors when they see them since 

they started categorizing them differently? Would there be any changes in 

their brains were they exposed to these colors after their learning interaction? 

The conclusions of this first study took us to further research into the effects 

of language contact in the brain.  

With the laboratory experiments we will explain in the next chapters, we 

wanted to force a change in the native color categorization of people to model 

the scenario in which two languages get in contact and thus make the language 

evolve, with the final aim of studying the brain processes underlying this 

phenomenon.   



 

Chapter 2 

Rewiring color categories in the hue dimension: An EEG study 

1. Introduction 

A botanist sails around among islands inhabited only by natives whose 

language and culture he is ignorant about. On one trip he suffers from 

poisoning by eating seafood. He knows he needs the green root of a certain 

kind of plant to get some relief and be able to resume his travelling. On the 

island where he happens to be now, that plant is rare, and he must therefore 

rely on the natives to locate a place where the plant is to be found, and where 

the soil is humid such that green roots can grow. The natives use what appears 

to be a color word: ‘duwi‘, to inform the botanist about the roots in a faraway 

area of the island. How is he to know what ‘duwi‘ means, and whether it is the 

particular shade of green he is after? 

 This story echoes the classic thought experiment by the philosopher 

Quine (1960), who argued that solutions to similar cases of ‘radical 

translation’ are ‘near miracles’. The meaning of ‘duwi’ is for the botanist 

hopelessly indeterminate, and his attempt to find green roots is fraught with 

uncertainty. A different answer was given by Lewis (1969), who showed it is 

possible for speakers to arrive at a shared meaning without prior agreements. 

If the native utter ‘duwi’ and point to a given area of the island, the botanist 

should be able to determine whether ‘duwi’ means brown or green by simply 

examining the roots there. If the procedure is iterated a number of times, the 

botanist may eventually refine his understanding of ‘duwi’, and find the roots 

he needs. For Quine communication between the botanist and the natives is 

as indeterminate as the meaning of their signals, whereas for Lewis 

communication can be fruitful so long as the parties can coordinate their 

choices, i.e., the signals the natives use to name certain colors, and the actions 

the botanist undertakes in response to the signals he receives. These are the 

basic elements of ‘signaling games’, devised by Lewis (1969) to model 

coordination among agents with common interests (Skyrms 2010). 
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 Communication games similar to signaling have been used as a basis 

for computational models of the evolution of color systems. Komarova et al. 

(2007) showed that a color category system emerges in a population of 

communicating agents endowed with minimal perceptual discrimination 

capabilities, subject to pragmatic constraints such as ‘hotspots’ (e.g., colors 

signaling ripe fruit, or fresh roots). This work was later refined by Jameson & 

Komarova (2009a, 2009b). In a more parsimonious model, embodying a 

universal color discrimination principle, but no pragmatic constraints, 

Baronchelli et al. (2010) found that a population of communicating agents is 

capable of evolving a color category system that exhibits universal properties 

similar to those of the world’s languages (Kay & Regier, 2003). Contrary to 

Quine’s ‘indeterminacy of translation’ thesis, not only is coordination among 

pairs of speakers possible (e.g., between the botanist and the natives on the 

meanings of ‘duwi’ and ‘green’), but the very same communication processes 

may lead to the emergence of fully fledged color lexicons in populations. 

 The computational models discussed above scaled up the problem of 

the emergence of shared color categories from the dyad, as in Quine or Lewis, 

to the population. Here, we wish to contribute to the current understanding 

of the same problem by moving in the opposite direction: from the dyad to 

the individual. We aim to investigate neural changes following the acquisition 

of color categories and vocabularies via communication games. We consider a 

limited portion of the color space: an ordered array of 5 colors in the green-

brown continuum (Fig. 1). We use 2 artificial color terms, i.e., the 

monosyllables ‘nu’ and ‘to’, to partition the array into 2 categories, each 

containing either 2 or 3 colors. In our experiments, we employ all 4 possible 

categorizations, i.e., ‘nu’ for colors 1-2, and ‘to’ for colors 3-5; ‘nu’ for 1-3, and 

‘to’ for 4-5; etc. Each participant learns one of these categorizations by playing 

a signaling game (Lewis 1969; Skyrms 2010) as the receiver; the sender role is 

taken by the computer. Roles are fixed at the start of a game. In recent 

computational and experimental work (Moreno & Baggio, 2014), we found that, 

in signaling games with fixed roles, in which both players are human 

volunteers, the receiver adjusts his code to that of the sender: coordination is 

achieved by unilateral agreement on the sender’s code. The present 
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experimental setup, in which the sender/computer sticks to its code 

throughout a game, and where it falls to the receiver/participant to learn that 

code over signaling rounds, is therefore not implausible as it captures a key 

property of signaling games with fixed roles: that a code is transmitted from 

the sender to the receiver.  

 

In the present study, once training in the signaling game is completed, and the 

participant has learned one of the 4 color categorizations, we assess neural 

changes using EEG. Participants are presented with visual sequences of either 

a color followed by a color term (color-term, or CT sequences), or a color term 

followed by a color (TC sequences). Each color-term and term-color pair can 

be as in the learned categorization, or incongruent with the learned color 

system. Event related brain potentials (ERPs) are obtained for the second 

stimulus in each sequence, i.e., the color term in CT sequences, and the color 

in TC sequences. 

 

 

Figure 1. A trial of the signaling game used in the behavioral training sessions. The top and 

bottom rows show what the sender/computer and the receiver/participant see on successive 

screens, respectively. Roles are fixed at the start of the game. Time flows from left to right. 

The sender/computer plays according to a fixed categorization of the 5-color array, which 

must be learned by the receiver/participant. In each trial, the sender sees one color, and sends 

the signal associated to the category the color belongs to. The receiver sees the signal, and 

must choose from the 5-color array the one that may have been seen by the sender by pressing 

one of five keys on a standard full-size keyboard. The feedback shown to the receiver 

indicates, by means of two sets of arrows and labels, the color associated to the signal (AS) 

and privately seen by the sender, and the color chosen by the receiver as a response to the 

signal (SC). Over trials, the receiver will learn what colors are associated to each signal, i.e., 

the color categorization the sender is playing by. 
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 We aim to test two hypotheses. The first concerns the 

perceptual/semantic nature of color category representations. Fonteneau & 

Davidoff (2007) reported an ERP correlate of the categorical perception of 

colors. They found the peak latency of ERPs in response to a small color 

difference bridging a color category boundary (195 ms) to be quicker than that 

for an equally-sized color difference not bridging a category boundary (214 

ms). Moreover, differences for the between-category appeared at 160–200ms 

and data from within-category deviancy showed longer ERPs (160–280ms) 

which they think is related to a more difficult discrimination due to a 

psychologically compressed color space. These early ERP effects are 

suggestive of a perceptual basis for color categories. Using a visual oddball 

task, Holmes et al. (2008) reported earlier latencies of P1 and N1 components 

for between- relative to within-category deviant stimuli, and enhanced P2 and 

P3 waves, thought to reflect post perceptual processing. In an fMRI study, 

Kwok et al. (2011) showed that learning associations between artificial color 

terms and color categories increases grey matter volume in regions V2/3 of 

the left occipital cortex. Importantly, in none of these studies is the 

communicative dimension of color category learning very prominent. 

Therefore, a possibility is that learning color categories in a communication 

game like signaling may rewire semantic rather than perceptual systems. If 

that was the case, one might expect later ERP components, for instance the 

N400 (Kutas & Hillyard, 1980), to be modulated by processing colors or color 

terms inconsistent with the learned color system. 

 A second hypothesis concerns the locus of incongruity effects in ERPs. 

One possibility is that terminal colors in the array are represented as the best 

exemplars of each color category, so that the strongest incongruity effects are 

observed there. The weakest ERP effects would be seen for the middle color 

of the array, which is the most ambiguous. Another possibility is that ERPs 

indirectly reflect learning effort, which is assumed to be higher at the 

boundary between color categories. The strongest incongruity effects should 

then be observed for the 3 intermediate colors, and terminal colors should 

show weaker ERP effects, because it would be easier to assign them to either 

category during learning.   
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Session Task   Methods Results  Tables  Figures 

 

Day 1  Colorblindness test 2.7  -  -  - 

  Labeling   2.1  3.2.1  -  - 

  SG training  2.8  3.2.2  -  2 

 

Day 2  SG training  2.8  3.2.2  -  2 

  EEG session  2.9  3.3  3  3 

 

Day 3  Colorblindness test 2.7  -  -  - 

  Labeling  2.1  3.2.1  -  - 

 

Table 1. Structure of the main study: organization of the tasks on three successive days. The 

table indicates the Methods section in which each task is described, and the Results section 

and the Tables and Figures in which results are reported. 

 

The main study was carried out in 3 sessions over 3 consecutive days. The 

structure of the main study is outlined in Table 1. On the first day, we assessed 

participants’ categorization of colors, including browns and greens, in their 

native language (Italian) by means of a forced choice labeling task. The aim 

was to determine whether the native and learned artificial color categories are 

compatible or otherwise. The first behavioral training session with signaling 

games also took place during the first day. On the second day, participants 

received further training with signaling games, on the same color categories 

they were trained on during day one, and they were then tested in a passive 

exposure task of CT and TC sequences while the EEG was being recorded. On 

the third day, the forced choice labelling task was repeated to determine 

whether learning artificial color categories affected native color categories. 

Besides, we conducted two sets of studies. The first was a series of computer 

simulations of signaling games, aimed at determining the frequency with 

which each of the colors in the array should be presented to the sender in 

order for the receiver/participant to be able to learn color categories with least 

effort. Furthermore, we administered two color discrimination tasks to an 

independent set of participants, who were also trained with signaling games 
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on one of the 4 categorizations, on two consecutive days, to determine 

whether via signaling games participants learn color categories, as opposed to 

mappings between colors and color terms. On each trial, participants saw a 

pair of colors, and had to judge whether the colors belonged to the same or a 

different category. Here the prediction is that responses should be faster for 

across-category trials compared to within-category trials (Winawer et al., 

2007). 

 

2. Methods 

Below we first report on how the 5-color array used as a stimulus set in 

the main behavioral and EEG experiments was constructed based on results 

from a forced choice labeling study (2.1). Further, we describe a series of 

computer simulations aimed at setting stimulus presentation parameters so 

as to optimize learnability of color categories in the signaling game 

(henceforth SG; 2.2). Next, the structure on three successive days (2.3; Table 

1), the participants (2.4), and the materials and methods (2.5-2.9) involved in 

the main experiments are described. Last, we present the method of two color 

discrimination experiments intended to demonstrate that SGs induce learning 

of color categories, as opposed to associations between colors and color terms 

lacking a set level representation (2.10). 

 

2.1. Constructing color stimuli: forced choice labeling study 

We conducted a forced choice labeling study to identify five colors that 

would form an ordered array with instances of two of the basic colors red, 

orange, brown, green or yellow as extremes, and transition colors in between. 

The resulting array would sample a uniform portion of color space varying 

along the hue dimension, at the boundary between two color categories. The 

array was intended to serve as a stimulus set in our behavioral and EEG 

experiments. Crucially, in our computer simulations and experiments, 

whether the middle color in the 5-color array belongs to one or to the other 

category is entirely determined by our training protocol with SGs. Therefore, 
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all 4 categorization possibilities, with each category comprising either 2 or 3 

colors, involving the 5 colors in the array and 2 artificial color terms, could be 

included in the experimental design. The aim of this forced choice labeling 

study was to identify one middle color labeled with 2 basic color terms with 

similar frequencies (ideally ~0.5), and 2 terminal colors, each labeled with a 

different basic color term with high frequency (ideally ~1). Two more 

transition colors were found by interpolating the terminal colors with the 

middle color in color space. The results of the forced choice labeling study are 

reported in section 2.5. 

 

2.1.1. Participants 

 

Sixty native speakers of Italian (N=10), Russian (N=10), English (N=10), 

Chinese (N=10), Persian (N=10), and Argentinian speakers of Spanish (N=10) 

performed the task (mean age 27.32; 29 female). Participants had normal or 

corrected-to-normal vision. Their color vision was evaluated by the Ishihara 

Colorblindness Test (2.6). 

 

2.1.2. Materials 

 

The stimuli consisted of 65 Munsell (1912) colors varying in the chroma 

dimension in the red-yellow-green range. Colors were selected using a 

standard Munsell color chart. Translation to the RGB systems was done using 

a standard conversion table. 

In all experiments we used the same hardware and software settings. 

The stimulus presentation monitor was a 22-inch LCD Samsung Syncmaster 

2233RZ with 120 Hz refresh rate (frame duration 8.33 ms). The screen 

resolution was 1680×1050 pixels, and each pixel subtended ~1.7 arcmin. The 

minimum and maximum luminances of the screen were 0.19 and 134 cd/m2. 

Luminances were measured using a Minolta LS-100 photometer. A gamma-

corrected lookup table (LUT) was used to ensure that luminance was a linear 

function of the digital representation of the image. 
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2.1.3. Procedure 

 

Participants sat in front of the computer monitor and a standard full-

size keyboard (viewing distance ~80 cm). Their heads were fixed by means of 

a chin rest. In each block, participants saw each of the 65 colors 10 times in 

random order. Each color was presented for 400 ms, followed by a mid-grey 

screen (RGB [128 128 128]) for 1750 ms. each color was shown as a square 

(size 120px × 120px) in the center of a mid-grey screen. The task consisted in 

pressing one of five keys to label the color just shown. The keys were labelled 

with either the first letter (in English, Spanish, Italian and Russian), the first 

two letters (in Persian) or the ideogram (in Chinese) of each basic color term 

in a language. The position of the labels on the keyboard was randomized and 

counterbalanced across participants. Participants had to use their index finger 

to answer and, after having pressed the key, to return with the finger to a 

marked point outside the keyboard equidistant to all five keys. 

 

2.2. Learnability of color categories: computer simulations 

We designed an algebraic computational model of the SG modified from 

Moreno & Baggio (2014). At the start of the game, a language is created, 

consisting of color categories, grouping together the 5 colors from the array 

in subsets of 2 or 3 adjacent elements (i.e., empty or singleton categories and 

categories containing 4 or 5 colors were excluded), and a color vocabulary, 

mapping each of 2 color terms to either set of colors. In each trial (Fig. 1), a 

color is drawn from the 5-color array with a certain probability (see 2.2.2), and 

is privately shown to the sender. The sender then selects the color term 

corresponding, in the language, to the category the color belongs to. The color 

term is sent as a signal to the receiver, who chooses one of the colors that he 

believes are associated with the color term in the sender’s language. Feedback 

is provided as to whether the color as seen by the sender and the color chosen 

by the receiver in response to the color term match. The task for the receiver 

is to infer the color set (i.e., the category) assigned to each color term in the 
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language. SGs in the computational model have the same formal structure as 

in the experiments (2.8). 

 In the model, players are understood as ‘mindless’ agents with no 

capacity for piecewise remapping of colors to color terms if negative feedback 

is given, and no memory of past choices (for a computational study of 

‘memoryless’ learners in color categorization games, see Komarova et al., 

2007; for further motivation, see Moreno & Baggio, 2014). Remapping colors 

to color terms occurs as a random permutation and reassociation of elements 

from the 5-color set to the elements of the 2-term set. The receiver is endowed 

with the capacity to retain the current code if it matches with the sender’s 

language. The aim of these simulations is threefold: (1) to determine whether 

color categories are learnable despite (a) the chosen form of feedback and (b) 

players’ lack of intelligent or strategic behavior; (2) to set some performance 

benchmarks for accuracy and learning times, with which to compare human 

performance data; (3) to determine the optimal distribution of frequencies of 

colors as drawn from the 5-color set, so that learning times for the receiver 

are minimized; this frequency distribution will be used to set stimulus 

presentation parameters in the training protocol with SGs on human 

volunteers. 

 

2.2.1. Model design 

 

The model is written in MATLAB code and performs linear algebra 

operations on one set of two-column numerical matrices (mapping colors to 

terms) representing the player’s code in different trials of the game. A similar 

5-by-2 matrix represents the sender’s language, which is fixed at the beginning 

of the game. The receiver’s mapping is initialized by randomly drawing and 

pairing two elements: one from the color set, and one from the term set. 

Colors are eliminated from the color set as soon as they enter the mapping. 

Terms are removed from the term set if and only if they have been used k 

times, where k is the ratio between the number of colors and the number of 

terms in a game, rounded up to the next integer (i.e., here k=3). The use of k 

as defined here allows our model agent to attain optimal accuracy, i.e., the 



Chapter 2. Rewiring color categories along the hue dimension: An EEG study 

41 
 

average accuracy if the receiver, upon seeing the signal, chooses at random 

one of the 2 (or 3) colors given one (or the other) term. With equiprobable 

colors as drawn from the color set, optimal accuracy by random choices is 

0.40, that is, 2/5*1/2 (for the color term associated to 2 colors the chance of 

success is 1/2) plus 3/5*1/3 (for the color term associated to 3 colors the 

chance of success is 1/3). 

 Once the language and the receiver’s initial code are set, the game 

begins. A color is drawn with a certain probability (details in 2.2.2) from the 

color set, and the corresponding color term is sent to the receiver. The receiver 

picks one of the (2 or 3) colors corresponding to the color term in its initial 

mapping. If the colors are the same, positive feedback is given, and the 

receiver proceeds with its current code. If colors differ, negative feedback is 

given. The receiver adjusts its current mapping as follows: a random 

permutation of the color set is performed, and a new association with color 

terms is computed in the same way as the initial code was. By chance, after a 

finite number of trials, the receiver will learn the sender’s language. We define 

the learning point as t+s, where t is the first trial at which the receiver’s code 

de facto coincides with the sender’s, and s is the number of colors in a game. 

That is, we assume that the receiver will know he has learned the language 

after he has played with the final code in at least as many trials as there are 

colors. 

 

Color frequency (1;..;5)  DL OR OI RDL ROR ROI S 

0.20; 0.20; 0.20; 0.20; 0.20  73.75 0.4 0.4 3 7 7 17 

0.15; 0.20; 0.30; 0.20; 0.15  71.18 0.39 0.5 6 6 6 18* 

0.10; 0.20; 0.40; 0.20; 0.10  70.37 0.38 0.6 7 5 5 17 

0.05; 0.20; 0.50; 0.20; 0.05  74.29 0.38 0.7 2 4 4 10 

0.05; 0.15; 0.60; 0.15; 0.05  72.36 0.37 0.75 5 3 3 11 

0.05; 0.10; 0.70; 0.10; 0.05  72.44 0.36 0.8 4 2 2 8 

0.01; 0.09; 0.80; 0.09; 0.01  75.02 0.36 0.89 1 1 1 3 
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Table 2. Results of simulations of color categorization in signaling games with fixed roles. 

Each row is a different simulation cycle. The leftmost column shows the frequency with which 

each color is drawn from the array in each cycle (details in 2.2). Abbreviations: DL (duration 

of learning in trials); OR (optimal accuracy with random choices); OI (optimal accuracy with 

informed choices); RDL (ranking of DL values); ROR (ranking of OR values); ROI (ranking of OI 

values); S (rank sum score). The optimal parameter setting (i.e., the one with highest S) is 

marked with an asterisk (*). 

 

2.2.2. Simulation cycles 

 

The simulations were run on a laptop computer mounting a 2.9 GHz 

Intel Core i7 processor. We conducted 7 separate simulation cycles testing 

different frequency distributions on the 5-color set (Table 2). In the first cycle, 

all colors had the same probability (i.e., 0.2) of being drawn from the set. In 

each subsequent cycle, color frequencies were manipulated such that the 

middle color had increasingly higher chance, and terminal and transition 

colors had increasingly lower chance, of being drawn from the set. Each 

simulation cycle comprised 10000 games with 1000 trials per game. For each 

cycle, we computed: the duration of the learning phase in trials (DL; the time 

it takes for the player to learn the language); the optimal accuracy by random 

choices (OR; the highest accuracy the player can achieve if, upon observing a 

color term, she chooses at random among the 2 or 3 colors that may be 

associated to it, ignoring possible non-uniform frequency distributions of 

colors); the optimal accuracy by informed choices (OI; assuming that the 

receiver has access to frequency distributions on the colors: the highest 

accuracy he can attain by choosing the most probable of the 2 or 3 colors 

associated to the term he has observed). This resulted in 7 different values 

(one per cycle) of each of these three variables. Variable values were ranked 

according to three optimality criteria: (1) DL must be minimized, i.e., the 

duration of the learning phase should be as short as possible (a shorter 

learning period corresponds to a higher rank); (2) OR should be maximized, 

i.e., the optimal accuracy by random choices should be as high as possible: 

high accuracies should be attainable by selecting at random one of the colors 

associated to a given term (a higher accuracy corresponds to a higher rank); 



Chapter 2. Rewiring color categories along the hue dimension: An EEG study 

43 
 

and (3) OI must be minimized, i.e., optimal accuracy by informed choices must 

be as low as possible, as there should be no incentive to learn the frequency 

distribution of colors (a potential confound with learning color categories) and 

to use the strategy of choosing the most likely color given a term. The optimal 

parameters shorten learning periods and increase player accuracy on the 

assumption that he should have no access to the frequency distribution on 

colors as drawn from the color set, and that he should be able to play 

successfully by random choices. The optimal model parameters will be used 

to set stimulus presentation parameters in the behavioral learning protocol 

(2.8). 

 

2.2.3. Optimal color frequencies 

 

As reported in Table 2, the optimal frequency distribution over colors 

drawn from the 5-color set is: 0.15 for each of the terminal colors, 0.20 for 

each of the transition colors, and 0.30 for the middle color. This frequency 

pattern optimizes learning for the receiver, as learning time is minimized, the 

accuracy he can obtain by choosing randomly colors of the same category in 

response to each signal is maximized (i.e., he need not know the frequency 

distribution of colors), and the accuracy he would obtain with informed 

choices is minimized (i.e., there is little incentive to learn the color frequency 

distribution). This result was used to set the frequencies of colors as shown 

to the sender/computer in the SG training in the main experiment (2.8) and in 

the color discrimination studies (2.10). 

 

2.3. Structure of the main study 

The study took place during three consecutive days and were organized 

as follows (Table 1). On Day 1, participants were administered the Ishihara 

colorblindness test (2.6), followed by the forced choice labeling task (2.7) and 

by the first training session on artificial color categories with SGs (2.8). On 

Day 2, the second training session with SGs was followed by the EEG session 
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(2.9). On Day 3, the colorblindness test and the forced choice labeling task 

were repeated. 

 

2.4. Participants 

Twenty-five right handed native speakers of Italian took part in the 

study after giving written informed consent. Five volunteers were discarded 

either after EEG during Day 2 due to equipment failures or after preliminary 

data analysis because the data were contaminated by artifacts (i.e., more than 

30% of EEG segments had to be discarded). Twenty volunteers (9 females, 

mean age 23.35) were included in the final data analysis. All participants had 

normal or corrected-to-normal visual acuity. Color vision was evaluated by 

means of the Ishihara colorblindness test (2.6). Participants received 25€ for 

participating. The study was approved by the Ethics Committee of SISSA. 

 

2.5. Materials 

From the labeling data (2.1), we identified two colors that were 

prototypical for two basic color categories. These were the colors that were 

labeled using the same color word across participants, and with the cognate 

color word across languages.  In the case of Chinese, since it is not an Indo-

European language like the rest of the languages in this experiment and hence 

there are no cognate words, we used the Chinese translation-equivalent terms 

for the different labels from English. These were the terminal colors in the 

array. Further, we identified a color that was labeled with two color words with 

approximately equal frequency across languages. This was used as the middle 

color in the array. Finally, we identified two transition colors by interpolating 

the terminal and the middle colors in color space. 

 

2.5.1. Selection of terminal colors 

 

We selected all the colors labeled with each of the 5 basic color terms 

(red, orange, brown, green and yellow) with a frequency equal or higher than 

0.7, and we ran a between-subjects one-way ANOVA with the participant’s L1 
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(between-subjects: 6 levels) as the independent variable, and the frequency 

with which each color was labeled by a basic color term as the dependent 

variable. We then selected the color name-color pairs that showed no 

significant effects of L1. Munsell values, labeling frequencies and ANOVA 

statistics were (N is the frequency with which a color is labeled using the 

relevant basic color word): 7.5R 5/18 for red (N=0.825, SD=0.278; 

F(5,54)=0.611, p=0.692), 5YR 6/12 for orange (N=0.776, SD=0.34; 

F(5,54)=0.825, p=0.538), 7.5Y 7/10 for yellow (N=0.797, SD=0.33; 

F(5,54)=0.659, p=0.656), 7.5YR 3/6 for brown (N=0.8, SD=0.341; F(5,54)=0.755, 

p=0.586), and 5GY 4/8 for green (N=0.878, SD=0.242; F(5,54)=0.746, p=0.593). 

Among these, 7.5YR 3/6 (brown) and 5GY 4/8 (green) were selected as the 

terminal colors. This choice was dictated by the middle color (2.5.2), which 

was intermediate between green and brown. 

 

2.5.2. Selection of the middle color 

 

We identified a set of middle color candidates by means of the following 

criterion: the color X is labeled using the basic terms A and B on average with 

frequency F; in the ideal case, there is no other label than A and B with which 

X is labeled, and F is 0.5. Any pair of terms A and B with approximately equal 

F would suggest X lies at the boundary between the lexical categories A and B. 

A mixed ANOVA model was used, with the independent factors L1 (between-

subjects: 6 levels) and Color Terms (within-subjects: 2 levels), and as the 

dependent variable the frequency with which participants would label a 

particular color using either of the two color terms. As a potential middle 

color, we identified a Munsell color for which participants used the two names 

‘green’ and ‘brown’ with approximately equal frequency (G is the mean 

frequency by which the color is labeled with ‘green’, and B with ‘brown’): 

B=0.447, SD=0.34; G=0.38, SD=0.31 (7.5Y 4/6; L1: F(5, 106)=0.871, p=0.503; 

Name: F(1, 106)=0.597, p=0.442; L1xName: F(5, 106)=1.526, p=0.188). 

 

2.5.3. Selection of transition colors 
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Transition colors were defined as those within our stimulus set that 

interpolated in color space the terminal and middle colors chosen based on 

statistical criteria: 2.5Y 4/6 as a brown (B=0.719; SD=0.34), and 2.5GY 4/6 as 

a green (G=0.848; SD=0.28). The final 5-color array was as follows (cells show 

mean labeling frequencies): 

 

       7.5YR 3/6           2.5Y 4/6         7.5Y 4/6          2.5GY 4/6        5GY 4/8 

‘Brown‘          0.8               0.719              0.447                  -                      - 

‘Green‘          -                  -               0.38                0.848             0.878 

 

2.5.4. Artificial color terms and categorizations 

 

We used the two syllables ‘to’ and ‘nu’ as artificial basic color terms to 

be used as signals in SGs. These two syllables are phonologically unrelated to 

the basic color terms for brown (‘marrone’) and green (‘verde’) in Italian, the 

native language of participants in the main experiments. There were four 

possible categorizations of the 5-color array, arising out of the combination 

of the 2 color terms and 5 colors, allowing only sets of either 2 or 3 colors. In 

categorization 1, ‘to’ was associated to colors 1 and 2, and ‘nu’ to colors 3, 4 

and 5. In categorization 2, ‘to’ was associated to 1, 2 and 3, and ‘nu’ to 4 and 

5. In categorization 3, ‘nu’ was associated to 1 and 2, and ‘to’ to 3, 4 and 5. In 

categorization 4, ‘nu’ was associated to 1, 2 and 3, and ‘to’ with 4 and 5. An 

equal number of participants (N=5) in the main experiments was randomly 

assigned to each categorization on Day 1. 

 

2.6. Colorblindness test 

Participants’ color vision was evaluated by a computerized version of 

the Ishihara (1917) colorblindness test to exclude a possible color vision 

impairment. This was carried out on Days 1 and 3 before the forced choice 

labeling tasks in the main experiment, as well as on Day 1 preceding the forced 

choice labeling task in the two color discrimination studies (2.10). All 

participants included in the experiments passed the Ishihara test. 
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2.7. Testing native color categories: forced choice labeling task 

On Day 1, after the colorblindness test, participants performed the 

same forced choice labeling task used in the 5-color array construction study 

(2.1). The purpose of this forced choice labeling task on Day 1 was to assess 

how participants categorize the browns and greens in the 5-color array, in 

order to determine whether and how learning in the SG would change native 

color categories. The stimuli and procedure where the same as in the 

preliminary forced choice labeling study (2.1.1-2.1.2). On Day 3, we 

administered once again the forced choice labeling task to determine whether 

learning of artificial color categories via the SG led to effective acquisition, i.e., 

whether learning modified native color categories. For each participant, we 

calculated the number of repetitions (maximum 10; 2.1.3) in which each of the 

five colors in the array was labeled with ‘green’ or ‘brown’. We focused in 

particular on the middle color (7.5Y 4/6). Participants were classified as 

having either of two native color categorizations of the 5-color array, 

depending on whether the middle color was grouped with greens (N=17) or 

browns (N=3). 

 

2.8. Learning artificial color categories: the Signaling Game 

Each participant learned one of the 4 possible categorizations (2.5.4) of 

the 5-color array using the 2 artificial color terms, as follows. Participants 

played a Signaling Game (SG), identical to the SG in the computer simulations 

previously described (2.2). At the beginning of the game, participants were 

randomly assigned to one of 4 languages: the color categorizations and 

vocabularies of 2.5.4. During the game, in each trial, a color invisible to the 

player was randomly drawn from the 5-color set, according to the color 

frequency pattern: 0.15 for each of the terminal colors, 0.20 for each of the 

transition colors, and 0.30 for the middle color (see 2.2.3). The color term 

corresponding to the randomly-drawn color was shown to the player, whose 

task was to choose from the 5-color array one of the 2 or 3 colors belonging 

to the category denoted by the observed term. Feedback was given in each trial 

as to whether the random color and the color chosen by the player matched 
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or not. In this version of the SG, the computer plays as the sender, and the 

participant is the receiver, whose task is to decode the signals he receives from 

the computer, and infer the correct color categorization and color vocabulary. 

 

2.8.1. Procedure 

 

At the start of a game, the participant/player was shown both terms ‘to’ 

and ‘nu’ at the center of the screen for 300 ms, followed by the 5-color array 

with colors in random order. In each trial, the participant/player observed a 

color term (shown in capital letters with font Calibri size 48 in the middle of 

a mid-grey screen), and had to choose one of the colors associated to that term 

in the language by pressing on a full-size keyboard one of five keys, spatially 

associated to the 5-color array, which was shown on a single screen with colors 

in random order. The participant saw the array with colors, now ordered by 

hue (brown to green), as feedback, with two arrows: one pointing to the 

randomly drawn color, associated to the observed color term in the language 

(the arrow was marked with the label ‘AS’, ‘associated’), the other pointing to 

the color selected by the player as a response to the observed term (marked 

with the label ‘SC’, ‘selected’). 

 Training with SGs consisted of two sessions, one on Day 1 and one on 

Day 2. Each session lasted until the participant had reached to 60 correct 

responses. At the end of the game, the participant had to select the 

categorization he thought he had learned. He was presented with all possible 

categorizations and vocabularies on a single screen, shown as four arrays with 

the terms ‘to’ and ‘nu’ indicating the different color-term combinations, and 

he had to press a key from 1 to 4 to choose one. They were asked to confirm 

their choice in a second trial identical to the first. 
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2.9. Neural consequences of learning color categories: EEG study 

2.9.1. Stimulus presentation 

 

The last task administered on Day 2 was passive visual exposure to 

color-term and term-color sequences, which were either Learned (agreeing 

with the categories and vocabulary learned in the SG) or Incongruent 

(deviating from the learned set). The stimuli were the 5 colors and the 2 color 

terms used in the training with SGs. There were two blocks, whose order in 

each session was randomized across participants: in one block, a color term 

was shown for 300 ms (capital letters, in Calibri font size 48, in the middle of 

a mid-grey screen), followed by a color for 400 ms (shown as a square of 

120×120 pixels) in the middle of a mid-grey screen and by a fixation cross for 

1250 ms (term-color or TC sequences); in the other block, a color was shown 

for 400 ms, followed by a color term for 300 ms and by a fixation cross (color-

term, CT sequences). Each block had 200 Learned and 200 Incongruent trials. 

Across trials, all possible combinations of colors and color terms, in both CT 

and TC sequences, were used. Moreover, all colors were presented with equal 

frequency, in contrast with the non-uniform frequency distribution used in 

the SG training (2.2.3). This was effected in order to avoid that color-position 

effects (e.g., to terminal versus intermediate colors; see Introduction) were 

confounded with frequency effects. 

 

2.9.2. Data acquisition 

 

The EEG was sampled from 128 scalp locations using a BioSemi system 

with active electrodes. Instead of a ground channel, BioSemi employs two 

electrodes, a Driven Right Leg (DRL) and a Common Mode Sense (CMS) 

channels, driving the average potential close to the amplifier AD-box reference 

voltage. This analogue-to-digital reference can be considered as the virtual 

ground of the amplifier. DRL and CMS were placed at symmetric side positions 

relative to the mid-point between A1/Cz and A19/Pz. An average reference 

was used during the recordings. The sampling rate was 1024 Hz. The data 
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were high-pass filtered at 0.1 Hz and low-pass filtered at 256 Hz. All filtering 

was digital. 

 

2.9.3. Data analysis 

 

EEG data were epoched from -200 ms to 1000 ms relative to the onset 

of the second stimulus (i.e., the color term in CT sequences, and the color in 

TC sequences), and were baseline corrected using data from the −200 to 0 ms 

interval. Segments were discarded if they contained activity exceeding ±100 

μV thresholds in any channel. Eye movements in the bilateral fronto-polar 

channels C29 and C16 were identified by means of the following procedure: 

(1) EEG signals from electrodes C29 and C16 were band-pass filtered at 1-15 

Hz; (2) Hilbert analytic amplitudes of these signals were derived, resulting in 

the envelope of each signal; (3) each envelope was then normalized by 

computing z-scores for each signal; (4) a z-value per time point was computed, 

summing z-scores from the C29 and C16 channels, and normalizing the sum 

by dividing it by the root of 2 (i.e., the number of channels involved); (5) EEG 

segments exceeding the threshold resulting from step (4) were discarded. A 

similar procedure was employed to identify and discard muscle artifacts in 

any of the EEG channels, with the only difference in step (1): data were digitally 

band-pass filtered at 100-125 Hz. A digital low-pass filter at 30 Hz was applied 

to segments surviving artifact rejection. ERPs were computed by averaging 

over artefact free epochs from each condition (Learned/Incongruent), in each 

block (CT/TC), for each participant separately. The definition of Learned and 

Incongruent trials for a given participant depended on the particular color 

categorization that he/she was trained on during the SG sessions. Finally, 

grand-average ERPs were computed by further averaging over participant 

specific averages. 

 Statistical analyses of ERP effects were conducted by means of the 

following procedure (Maris and Oostenveld 2007): (1) participant specific ERP 

averages were compared between the Learned and Incongruent conditions 

from each channel and time point with dependent samples t-tests; (2) data 

from neighboring time points and channels in which p-values were smaller 
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than 0.05 were clustered together; (3) the cluster-level t-statistics was 

computed as the sum of t-values from all samples belonging to the cluster; (4) 

the cluster-level p-value was estimated using a Monte Carlo simulation: 

participant specific ERP averages across all samples in a cluster from both 

experimental conditions were collected in a single set; this new set was 

randomly partitioned into two subsets of equal size; the subsets were 

compared by means of a t-test; these steps were repeated 1000 times; a 

cluster-level p-value was computed as the proportion of partitions that 

resulted in a larger T-statistic than in the observed ERP data. 

 

2.10. Probing color categories: color discrimination studies 

An independent sample of participants performed the same 

colorblindness test, forced choice labeling task and the two training sessions 

with SGs as in the main study (2.7-2.9). These were followed by a 

same/different color discrimination task modified from Liu et al. (2010), and 

by an odd-one-out discrimination task modified from Witzel & Gegenfurtner 

(2013). 

 

2.10.1. Participants 

 

Twelve right handed native speakers of Italian (6 female, mean age 23) 

took part in the studies during two consecutive days. On Day 1, the Ishihara 

colorblindness test (2.7) was followed by the forced choice labeling task (2.8) 

and by the first training with SGs (2.9). On Day 2, the second training with SGs 

was followed by the discrimination tasks. 

 

2.10.2. Same/different discrimination task 

 

Participants were presented with a colored square (155×155 pixels) 

surrounded by a colored frame (190×190 pixels) in the center of a mid-grey 

screen, and they were asked to judge, by pressing either of two keys on a full-

size keyboard, whether the square and the frame were of the same or of a 
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different color. If the square and the frame were of the same color, this was 

considered a ‘same’ trial. If the square was of a different color than its 

surrounding frame, it was considered a ‘different’ trial. 

 In each trial, first a fixation-cross appeared for 1000 ms at the center of 

the screen, followed by a square surrounded by a frame shown for 200 ms, 

and by a blank mid-grey screen shown for 800 ms. The stimuli consisted of 

25 color-frame combinations (5×5 colors) re-used in 300 trials. Of these 300 

trials, 150 showed the inner square and the surrounding frame in the same 

color, and 150 showed them in different colors. In 50% of the different color 

trials, the colors of the square and of the frame were associated to the same 

term in the artificial color system that each participant had learned during the 

SG training (‘within category’ or WC trials). In the other 50% of the different 

color trials, stimuli were constituted by squares with their surrounding frames 

in a different color, which participants had learned to associate to different 

color terms (‘across category’ or AC trials). 

 

2.10.3. Odd-one-out discrimination task 

 

We used the spatial 4-Alternative Forced-Choice (4AFC) discrimination 

task from Krauskopf and Gegenfurtner (1992), also used by Witzel and 

Gegenfurtner (2013). In each trial, observers were shown 4 colored disks. One 

of these colors differed in chroma (i.e., in hue, but not lightness) from the 

other 3. Participants had to indicate which disk was different by pressing one 

of 4 keys corresponding to the 4 positions in space of the disks.  

 At the start of a trial, a fixation cross appeared for 1000 ms at the center 

of the screen, followed by the 4-disk stimulus shown for 500 ms against a 

mid-grey background, and by a blank mid-grey screen shown until a response 

was given. The odd disk occupied any of the 4 possible positions on the 

screen, randomized across trials. In 50% of the trials, the color of the odd disk 

was associated with the same color term as the color of the 3 other disks in 

the color categorization that the participant had learned during the SG 

training sessions (‘within category’ trials). In the other 50%, the color of the 
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odd disk was associated with a different color term than the color of the other 

3 disks during the SG training (‘across category’ trials). 

 

2.10.4 Analysis of color discrimination data 

 

Paired t-tests were conducted to assess the differences in the 

performance of the participants in the two tasks across conditions. 

Differences in reaction times and accuracy were compared between across-

category and within-category trials. Accuracy was determined by the number 

of correct trials in the last fourth part of each of the trainings (where 

coordination is expected to be present already) divided by a fourth of the total 

amount of trials the participant needed to end that training session. To 

analyze the contrast between within and across category trials, for each of the 

discrimination tasks (Same-Different and Odd One Out), we ran two-way 

ANOVAs on within- and across-category trials. For each task, 2 ANOVAs were 

run with the reaction times of subjects to the each of the two tasks and 2 

ANOVAs with the accuracies obtained by subjects in each task. This was done 

first with all 5 colors in the array as factors and then with each position as 

factors: terminal colors (colors 1 and 5 together), transition colors (colors 2 

and 4 together) and middle color (color 3). Moreover, Wilcoxon’s rank sum 

tests were conducted comparing the means of the participants' performance 

in reaction times and accuracies, for all 5 colors separately and for the 3 

positions. 
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3. Results 

3.1. Discrimination studies 

3.1.1. Learning color categories and vocabularies 

 

Seven out of twelve participants learned the artificial color system 

during the first training session with signaling games, and eleven out of twelve 

learned it during the second training. The average number of trials it took 

participants to get to 60 correct responses and finish a session was higher for 

the second training than for the first: 214 trials (SD=69.06) and 245 

(SD=134.44), respectively. Nonetheless, this difference was not significant 

(Paired t-test; t(11)=1.2881, p=0.224).  

 

3.1.2. Same/different discrimination study 

 

Reaction times in within-category (WC) (M=456.28) trials were 

significantly longer than in across-category (AC) trials (RT M=432.47) (Paired 

samples t-test, t(11)=3.1582 p=0.0091). There were no significant differences 

either between same-color trials (RT M=431.96) and WC trials (Paired t-test, 

t(11)=1.5833, p=0.141), or between same-color trials and AC trials (Paired t-

test t(11)=0.0391, p=0.969), or between different color (i.e., WC+AC trials, RT 

M=444.37) and same-color trials (Paired t-test t(11)= 0.9071, p=0.383). 

 Accuracies did not differ across conditions (AC/WC trials: paired t-test, 

t(11)=1.1747, p=0.265; AC/same-color trials: paired t-test, t(11)=0.1545, 

p=0.88; WC/same-color: paired t-test, t(11)= 1.3283, p=0.211; different/same 

trials: paired t-test, t(11)=1.1243, p=0.285). The ANOVA showed no 

interactions between the 5 colors and condition (WC/AC) for either reaction 

times (F(1,112)=0.007, p=0.934) or accuracies (F(1,112)=0.107, p=0.744). When 

comparing WC to AC for each color, Wilcoxon rank sum tests showed 

significant differences in reaction times (Table 4) for all colors (color 1: V=78, 

p=0.0004; 2: V=74, p=0.0034; 3: V=5, p=0.0049; 4: V=78, p=0.0005; 5: V=78, 

p=0.0005), while in accuracies (Table 4) for color 4 only (1: V=3, p=0.1411; 2: 

V=9, p=0.8335; 3: V=42, p=0.152; 4: V=0, p=0.009; 5: V=1, p=0.0523). When 
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using the position of the color in the array (i.e., terminal, transition or middle 

color) as a factor, the ANOVA showed no significant interactions effects of 

reaction times (F(2,60)=0.006, p=0.994) or accuracies (F(2,60)=0.012, p=0.988).  

In all tests, the Bonferroni-corrected α is 0.01. 

 

3.1.3. Odd-one-out study 

 

Reaction times in WC (RT M=527.63) trials were significantly longer than in 

AC (RT M=503.34) trials (Paired t-test, t(11)=3.6503, p=0.0038). Accuracy was 

better in WC (mean=0.97) trials than in AC (mean=0.92) trials (Paired t-test, 

t(11)=3.2387, p=0.0079). The ANOVA showed no interaction between the 5 

colors and condition for reaction times (F(1,112)= 0.144, p=0.706) or 

accuracies (F(1,112)=0.002, p=0.963). When comparing WC to AC trials for 

each color, Wilcoxon rank sum tests showed significant differences in reaction 

times for colors 1 and 4 (Table 4) (1: V=78, p=0.0005; 2: V=68, p=0.021; 3: 

V=13, p=0.0425; 4: V=78 , p=0.0005; 5: V=68, p=0.021), as well as in accuracies 

(Table 4) for colors 2 and 4 only (1: V=5 , p=0.5896; 2: V=45, p=0.009; 3: V=13, 

p=0.1522; 4: V=45, p=0.0091; 5: V=5, p=0.2932). Using the position of the color 

in the array (terminal, transition or middle) as a factor, the ANOVA showed no 

interactions of condition and position for reaction times (F(2,60)=0.175, 

p=0.840) and accuracies (F(2,60)=0.290, p=0.749). In all tests, the Bonferroni-

corrected α is 0.01.  
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Same - Different Reaction Times Accuracies 

Color/Condition WC AC WC AC 

1 446.7 (51.2) 422.5 (48.8) 0.94 (0.1) 0.94 (0.09) 

2 462.9 (53.4) 440.4 (43.7) 0.9 (0.13) 0.93 (0.09) 

3 436.7 (67.59) 457.7 (47.4) 0.89 (0.17) 0.87 (0.12) 

4 451 (53.8) 425.2 (56) 0.85 (0.16) 0.92 (0.11) 

5 459.1 (63.3) 436.3 (53.1) 0.91 (0.09) 0.95 (0.1) 

     

Odd One Out Reaction Times Accuracies 

Color/Condition WC AC WC AC 

1 499.5 (83.6) 471 (61.1) 0.98 (0.02) 0.98 (0.03) 

2 552.7 (124.7) 530.6 (140.3) 0.91 (0.1) 0.99 (0) 

3 564.9 (163.5) 542.8 (84.5) 0.94 (0.04) 0.95 (0.04) 

4 548.3 (116.7) 500 (87) 0.93 (0.08) 0.96 (0.05) 

5 505.5 (82.1) 476.9 (88.1) 0.97 (0.03) 0.98 (0.03) 

     

Table 4. Results of color discrimination experiments. Mean values (and SD) are reported. 

Abbreviations: WC (within-category condition); AC (across-category condition). 

 

3.2. Learning color categories 

3.2.1. Forced choice labeling task on Days 1 and 3 

 

On day 1, out of the 20 participants, 17 grouped the middle color in the 

array together with the greens (average probability across participants in this 

group of the color being called ‘green’, p=0.8) and 3 grouped it with the browns 

(average probability across participants in this group of the color being called 

‘brown’, p=0.7) in at least 60% of the trials in which the middle color was 

shown. On day 3, only one person changed from grouping the middle color in 

the array together with the greens (probability=0.7)  to grouping it with the 

browns (probability=1)  after having played the signaling games with a 
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categorization that did not match the one they had originally used in the first 

forced choice labeling task.  

 

3.2.2. Learning in the signaling games on Days 1 and 2 

 

All participants but one (i.e., 19) learned the artificial color system 

during the first training session with signaling games. All participants (20) 

learned after the second day. The amount of trials required to finish the task 

was significantly higher in the first day (mean number of trials=191.05) than 

in the second (160.85; paired samples t-test t(19)=4.5893, p=0.0002; Fig. 2b). 

Accuracy during training on the second day (mean=37.780) was significantly 

better than during the first (mean=32.241; paired t-test t(19)=4.0671, 

p=0.0007). Accuracies during both days differed significantly from chance 

level and from optimal accuracies by informed choices (one-sample t-tests, 

p<0.001; Fig. 2c). Accuracies during both days were not different from optimal 

accuracies by random choices, and from the accuracies obtained in the 

computer simulations (one-sample t-tests, p>0.1; Fig. 2c). 
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Figure 2. Results of the main behavioral experiments and of computer simulations. (a) Tree 

diagram illustrating the learning trajectories of participants (N=20). During the training on 

Day 1, 9 participants learned artificial color categories that were consistent with their own 

native color categories, and 11 learned artificial categories that were inconsistent with their 

own native categories. Of these 11 participants, 1 acquired the artificial color categories of 

the training set, and the remaining 10 participants maintained their native color categories. 

(b) Duration of training for participants on Day 1 (Training 1) and Day 2 (Training 2), and for 

agents in computer simulations. The ordinate shows the total number of trials to end a 

session at 60 correct trials: i.e., 60 exact matches between the color randomly drawn from the 

5-color array, and associated to the color term seen by the player, and the color chosen by the 

player in response to the color term. (c) Accuracies (percent correct trials relative to the total 

number of trials to end a session) in Training 1 and Training 2, and in computer simulations, 

are significantly above chance level (CL, 0.2, red line) but significantly below the optimal 

accuracy level with informed choices (OI, 0.5, blue line). Actual accuracies do not differ from 

the optimal accuracy level with random choices (OR, 0.39, green line). In all boxplots, the thick 

line inside the box is the median, box height is equal to the interquartile range, whiskers 

indicate adjacent values, and empty circles are outliers. 

 

3.3. EEG 

In ERPs we found no incongruency effects in either CT or TC trials that 

involved the terminal colors, i.e., the best exemplars of each category. 

However, the middle and transition colors did show clear ERP effects. We 

found a dissociation between CT and TC sequences, with the strongest effects 

for CT at the middle color, and the strongest effect for TC at transition colors 

(Fig. 3). Both effects are negative-going ERP waves that appear around 550-580 

ms from stimulus onset and last until the end of the epoch (Table 3). These 

effects are accompanied by earlier and smaller clusters which fail to reach 

statistical significance (Table 3). We tested whether the average amplitude of 

ERP effects across all channels for each given color depends on the frequency 

with which that color was presented in the training sessions, and we found no 

correlation (CT: r=-.53, p=0.3615; TC: r=-0.79, p=0.1114)  
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Term-Color 
(TC) 

Early clusters Late clusters 

Latency S Tsum P-value Latency S Tsum P-value 

 
Terminal 

colors 
 

 -   -   -   -   -   -   -   -  

Transition 
colors 

 
134-296 ms 1276 -3222 0.129 550-1000 ms 13045 -34791 <0.001 

Middle 
color 

 -   -   -  
 -  

 -   -   -   -  

         

Color Term 
(CT) 

Early clusters Late clusters 

Latency S Tsum P-value Latency S Tsum P-value 

 
Terminal 

colors 
 

 -   -   -   -   -   -   -   -  

Transition 
colors 

 
 -   -   -   -   -   -   -   -  

Middle 
color 

237-337 ms 665 1810 0.177 580-1000 ms 1963 -5010 0.039 
 

  

        

         

Table 3. Results of cluster-based permutation statistics of ERP data comparing between 

Incongruent and Learned association trials in Term-Color and Color-Term blocks. The table 

shows the latency of clusters, cluster size (S) in number of adjacent time-channel samples, 

the sum of T-statistics (Tsum) in each cluster, and Monte Carlo p-values. Marked empty cells 

(-) indicate absence of clusters. 
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Figure 3. Event related brain potentials (ERPs) evoked by the color term presented after the 

middle color in CT sequences (left), and by transition colors presented after the color term in 

TC sequences (right). The onset of the eliciting stimulus (i.e., the color term in CT sequences, 

or the color in TC sequences) is at 0 ms. Negative amplitude values are plotted upwards. 

Single-channel ERP plots show grand-average (N=20) waveforms from Learned (black) and 

Incongruent (red) trial s from the vertex channel A1/Cz. Dark grey bars in the lower portion 

of each plot represent the highest ranked cluster of adjacent time points at which statistically 

significant effects were found (Table 3). Topographic maps display grand-average (N=20) 

differences between Incogruent and Learned trials in the time window of the highest ranked 

cluster. 
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4. Discussion 

The aim of this study was to investigate the cortical plastic changes 

produced by the acquisition of new color categories and color terms. Our 

results suggest there may be a common neural substrate for color categories, 

shared by representations of colors and color terms. Moreover, regardless of 

whether a color or a color term is processed, the underlying representation 

seems to be of a high-level/semantic kind (late ERP clusters) and only to a 

lesser extent of a low-level/perceptual kind (early ERP clusters). Thus, our 

results stand in contrast with Fonteneau & Davidoff (2007), Holmes et al. 

(2008), and Kwok et al. (2011), whose findings pointed instead to a primarily 

perceptual basis of color categories. A possibility here is that the way in which 

a novel color system is learned, whether in a linguistic or communicative 

setting as in the present experiments, or by individual associative learning as 

in the previous studies, may determine what cognitive systems are recruited 

to represent and process stimuli belonging to each color category. This 

hypothesis is not itself a variant of the Sapir-Whorf hypothesis (i.e., that non-

linguistic cognitive differences co-vary with structural differences between 

language systems, and that the latter tends to determine the former; Kay & 

Kempton 1984), but rather highlights one of its preconditions: that cognitive 

effects at category boundaries can be produced by learning (artificial) 

languages. 

Importantly, the effect we found in incongruent trials, is not 

confounded with either consistency or inconsistency between these newly 

learned categories and native color categories: half of the participants in our 

sample learned categories that were consistent with their native color system, 

and half of them learned an artificial color system that was inconsistent with 

their native categorization. However, the incongruency effect was significant 

at the sample level. 

We calculated and obtained optimal frequencies of presentation of the 

colors by means of a series of computer simulations, and this enabled us to 

minimize the possibility of participants learning the probabilities of 

presentation of each color, another potential confound to studying the 
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mappings between colors and terms. Moreover, we found no correlation 

between the mean amplitude of the ERP effect across all channels for a given 

color and the frequency of appearance of the color in the signaling game. 

Finally, we randomized the order of the colors in the array to insure that 

participants were not just learning positions in space or an abstract order of 

cells in the array. 

 

4.1. An N400 effect to color category incongruencies?  

The polarity and topographical distribution of the ERP effects found in 

this study are similar to those of N400 effects (Kutas & Hillyard, 1980). 

However, the latency in our study is delayed. This phenomenon is in line with 

previous work. Aparicio (2012) presented trilinguals with unrelated non-

cognate words in the 3 languages they spoke, using a semantic categorization 

task: words in L1 elicited earlier N400 peak amplitudes than L2 and L3 words. 

Any natural or artificial semantic system that is added to one’s L1 may 

therefore elicit N400 effects whose onset and peak latencies are delayed. 

Moreover, N400 effects are elicited by all content bearing stimuli, including 

words and pictures (Nigam et al., 1992). Hence, the similarity between the 

negative ERPs evoked by colors and color terms in this study may provide 

another reason to consider them as N400 effects.  

 

4.2. Category ambiguity and ERP effects  

Possibly the most striking result to emerge from our study is that 

incongruency effects in ERP are strongest not at terminal colors, i.e., for the 

best exemplars of each color category, but at the intermediate colors, i.e., at 

the boundary between categories. This appears to be inconsistent with a 

neural model in which the best exemplars (or prototypes) of each category are 

approximately equidistant from the boundaries, and occupy approximately 

the ‘center’ of a category. When presented with a color term, an observer 

would activate a representation of the prototype as a prediction for the 

upcoming color stimulus. So, the farther the color stimulus from the 

prediction, the stronger the ERP effect (possibly reflecting prediction error), 

as in predictive coding models of neural processing (Friston 2010). ERP effects 
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should therefore be largest at the opposite terminal, e.g., at the terminal 

brown, if the color term for green is presented. Overall, this should result in a 

U-shaped distribution of ERP effects over the 5-color array. The fact that a 

different pattern was observed suggests a different neural explanation must 

be sought. A hypothesis is that ERPs do not reflect prediction errors, or 

possibly distance of deviants from the center of a category, but learning effort. 

Terminal colors can be effortlessly assigned to either color category, first 

because they do not pose any special discrimination problems relative to the 

other colors in the array, and second because they are unambiguous members 

of either category also in the L1 of participants (see our forced choice labeling 

data). In contrast, transition and middle colors may belong to one or two color 

categories in the native language of participants, and the artificial color 

system they are trained on may not follow that pattern. Furthermore, middle 

colors, and to a lesser extent transition colors, are likely to be lexically 

ambiguous (see our forced choice labeling data), and therefore constitute a 

boundary, rather than occupying a category-internal position just past a 

boundary. Consequently, imposing a category boundary between colors may 

be a relatively demanding rewiring process for neural circuits, which would 

respond with stronger signals to stimuli that are incongruent with the 

outcome of such plastic changes at the boundary. However, this account does 

not explain the fact that ERP effects were stronger at the middle color in CT 

sequences, whereas they were stronger at transition colors in TC sequences, 

and is in fact consistent also with a reversed pattern of effects, or patterns in 

which only middle or only transition colors are the loci of the strongest ERP 

effects in both sequence types. Boundary effects were only partly seen in the 

present color discrimination studies. Statistical analyses show that only for 

the transition color 4 in both discrimination tasks, and for colors 2 and 4 in 

the Odd One Out task, was accuracy significantly better in across-category 

trials than in within-category trials. Although our data provide preliminary 

evidence in that direction, further research is necessary to establish how 

exactly ERP and discrimination effects depend on the presence of a boundary 

between categories. 

 



Chapter 2. Rewiring color categories along the hue dimension: An EEG study 

65 
 

4.3 Languages selection for the construction of the array 

Although in order to build our stimuli we tested speakers of 6 different 

languages, it is important to point out that apart from Chinese, they were all 

languages of the same family (Indo-European). This makes the language 

sample not representative of different language families. Since languages from 

a same family will tend to categorize the colors in a similar way, we cannot be 

sure of whether using a truly representative sample of languages would have 

resulted in a different effect. 

 

5. Conclusion 

Consider again the fictional scenario described in the Introduction to 

this paper. Signaling theory predicts that the botanist and the natives will 

coordinate on the meaning of the signal ‘duwi’. In this case coordination is 

unilateral as the botanist will learn the range of shades of green (or a subset 

thereof) the natives call ‘duwi’. Similar situations, in which translation is 

required, but must start from an initial state of seemingly irreducible 

indeterminacy, are common in human interactions. Second language 

acquisition is a case in point, but language contact also involves the 

construction of a (possibly temporary) parallel semantic system to allow some 

degree of communication among individuals belonging to different 

populations.  

Signaling games appear to be a suitable laboratory model of such 

situations. We used signaling games to train participants to an artificial color 

system featuring 5 colors and 2 color terms, and we tried to pinpoint the 

neural consequences of the learning process using EEG. Our results indeed 

suggest that ERP responses track learning effort and are strongest at the 

boundary between categories.  



 

Chapter 3 

Rewiring color categories in the lightness dimension: An EEG study 

1. Introduction 

In Chapter 1, we described a study in which people from two 

populations that are part of the same geographical region but speak different 

languages, Galician and Spanish, are asked to name colors varying along the 

lightness and hue dimensions. The results showed differences in how 

speakers of these two languages categorize color space, in particular how they 

set the boundaries between the yellows and greens in the hue dimension, and 

within the color blue in the lightness dimension. This led us to the conclusion 

that different regional color meanings can co-exist even if two populations 

share geographical space and interact frequently. 

In our previous experiment (see Chapter 2) we re-created, through the 

use of signaling games, the situation in which two languages interact and, 

starting from a point of an apparently irreducible indeterminacy, a receiver 

begins to find meaning and make use of new terms presented by a sender, i.e., 

a speaker of a different language, with a potentially different semantics for 

color terms. We used a color space limited by a prototypical (see Chapter 2, 

2.5) brown color and by a prototypical green color. The intermediate colors 

varied in the hue dimension, from brown to green. In this study we want to 

validate and extend the results of the previous one, in another dimension of 

color space (lightness). To this end, we constructed a color array with Munsell 

colors that are all considered ‘blue’ by English speakers.  

Several research groups have studied differences across languages in 

how people categorize and name colors that corresponds to the term ‘blue’ in 

English. These are briefly reviewed below. Languages like English or German 

use only one basic color term, to refer to the blue color space. The basic color 

terms are monolexemic terms that are used with relatively high-frequency in 

the language and are consistently agreed upon by speakers of a certain 

language in forced choice labeling tasks, Terms like “salmon pink”, 
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“turquoise”, “lime green”, etc. are not used with much consensus among 

English speakers or very consistently, so they are considered non-basic colors. 

Also, applications must not be restricted to a narrow class of objects (e.g. 

blond: human hair) and the colors have to be psychologically salient for the 

informants. However, languages like Korean, Japanese, Greek, and Russian, 

have two basic blues. These languages were studied in Athanasopoulos et al., 

(2010) using a color oddball detection task , in Thierry et al., (2009) with a 

shape oddball detection task  Roberson et al. (2009) with a same-different 

judgment task,  and Winawer et al. (2007) with a color matching task. For these 

languages these studies found higher accuracies and/or faster reaction times 

when the stimuli being presented belonged to different linguistic categories 

than if the colors were from the same category, compared to languages which 

have only one term for the blues. 

Gonzales Perilli et al (in prep) studied the case of the blues in Spanish 

spoken in Spain and Spanish spoken in Uruguay (‘Rioplatense Spanish’). In 

Spain ‘azul celeste’ (light blue) is a subcategory of the color blue whereas in 

Uruguay, as well as in Argentina, Chile and Paraguay, ‘celeste’ is a basic color 

term (i.e. azul and celeste are independent color categories). When tested in 

discrimination tasks containing items from the categories azul and celeste, 

participants from Uruguay performed better in across-category trials 

(Winawer et al., 2007).  This effect that was not found in the Spanish 

participants, who performed roughly equally in both within and across 

category trials.   

One possible explanation for the effect in Rioplatense Spanish may be 

language contact. The color ‘celeste’ as a basic color term could have been 

borrowed by Rioplatense Spanish from Italian due to the high rate of Italian 

immigration in the southern South American countries during the World Wars. 

Paramei & Menegaz (2013), when comparing Italian to English found that 

Italian speakers, monolingual and bilingual, make use of three color terms to 

name the blue area: celeste, azzurro and blu. The Italian prototypical ‘blu’ was 

found to be darker than the English prototypical ’blue’. When they tested 

Italian-English bilinguals the location of bilinguals’ ‘blu’ deviated from that of 

Italian monolinguals: it shifted towards the English ‘blue’ (Athanasopoulos, 
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2009) which was related to the bilinguals’ proficiency in English and duration 

of immersion in the English speaking country.  

With this experiment we try to model a situation in which a speaker of 

a language that has a single term for the color blue (e.g. English) learns a 

language, like the ones mentioned before, which partitions the blue color 

space into two different categories using two terms, different from what 

occurs in their native language, as described below. 

 

1.2. Constructing the color space 

In our previous experiment (see Chapter 2) we found that incongruency 

effects in ERPs when participants saw color terms preceded or followed by 

colors were stronger at the middle and transition colors, i.e. at the boundary 

between categories, and not at terminal colors, i.e. at the best exemplars of 

each color category. One of our hypotheses was that middle colors are likely 

to be lexically ambiguous (see Chapter 2, 2.1), and therefore constitute 

themselves a boundary, rather than occupying a category-internal position 

just past a boundary. Imposing a category boundary between colors may be a 

relatively demanding rewiring process for neural circuits, and this effort 

might explain the lager ERP effect seen in the middle and transition colors. To 

further test this hypothesis, we wanted to try to produce a similar ERP 

boundary effect at the terminal colors of the array, using an ambiguous color 

as an extreme (terminal color) of the arrays instead, and more prototypical 

colors in the rest of the array. Color 5 lays within the blue hue (the boundaries 

of this category were determined based on the results of a forced choice 

labeling study with English speaking participants; details below) but the It is 

ambiguous, i.e., close to the boundary with other categories (in this case, color 

5 is close to black). In the new task, participants are forced to partition a 

uniform portion of color space in their native language, that is, the blue space, 

into subcategories, using two artificial terms (pseudo-words). 
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2. Methods 

We will first explain how we constructed and used a 5-color array as a 

stimulus set in the main behavioral and EEG experiments using the results 

from a forced choice labeling study we conducted (2.1). Afterwards, the 

structure of the main experiment on two successive days (2.2; Table 1), the 

participants (2.3), and the materials and methods (3.4) involved in the main 

experiments are described.  

 

2.1. Constructing color stimuli: forced choice labeling study 

We conducted a forced choice labeling study to identify five colors that 

would form an ordered array with a light blue and a dark blue as extremes, 

and transition colors in between. The resulting array would sample a 

homogenous portion of color space varying along the lightness dimension in 

the natural category ‘blue’ for English speakers. The array was intended to 

serve as a stimulus set in the behavioral and second EEG experiment. Again in 

this experiment, whether the middle color in the 5-color array belongs to one 

or to the other artificial category is entirely determined by our training 

protocol with signaling games (SGs). Therefore, all 4 artificial categorization 

possibilities, with each category comprising either 2 or 3 colors, involving the 

5 colors in the array and 2 artificial color terms, could be included in the 

experimental design. The aim of this forced choice labeling study was to 

identify 5 colors in the blue hue labeled by participants as ‘blue’ with a 

frequency close to 1, and ‘light blue’ or ‘dark blue’ with a frequency greater 

than 0.7 each.  Then an array is built from the lighter dark blues or the darker 

dark blues with 5 colors differing in lightness, arranged in linear lightness 

order (from lighter to darker). If an array of 5 ‘light blue’ colors was used, the 

first color in the array should be labeled with the basic terms ‘blue’ and ‘white’ 

with equal frequency (ideally ~0.5), and the fifth color should be labeled ‘blue’ 

with a frequency greater than 0.7 and with the non-basic terms ‘light blue’ and 

‘dark blue’ with equal frequency too. If instead a ‘dark blue’ array was used, 

the first color in the array should be labeled ‘blue’ with a frequency greater 

than 0.7 and with the non-basic terms ‘light blue’ and ‘dark blue’ with equal 
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frequency, and the fifth color should be labeled ‘blue’ and ‘black’ also with 

equal frequency. Two more transition colors were found by interpolating the 

terminal colors with the middle color in color space. The results of the forced 

choice labeling study are reported in section 2.4. 

 

2.1.1. Participants 

 

Fourteen native speakers of English performed the task (mean age 28, 

46; 9 female). Participants had normal or corrected-to-normal vision. Their 

color vision was evaluated by the Ishihara Colorblindness Test (2.5.). 

 

2.1.2. Materials 

 

The stimuli consisted of 42 Munsell (1912) colors varying in the 

lightness dimension in the blue hue range. Colors were selected using a 

standard Munsell color chart. Translation to the RGB systems was done using 

a standard conversion table. 

In all experiments we used the same hardware and software settings. 

The stimulus presentation monitor was a 22-inch LCD Samsung Syncmaster 

2233RZ with 120 Hz refresh rate (frame duration 8.33 ms). The screen 

resolution was 1680×1050 pixels, and each pixel subtended ~1.7 arcmin. The 

minimum and maximum luminances of the screen were 0.19 and 134 cd/m2. 

Luminances were measured using a Minolta LS-100 photometer. A gamma-

corrected lookup table (LUT) was used to ensure that luminance was a linear 

function of the digital representation of the image. 

 

2.1.3. Procedure 

 

Participants sat in front of the computer monitor and a standard full-

size keyboard (viewing distance ~80 cm). Their heads were fixed by means of 

a chin rest. In each block, participants saw each of the 42 colors 10 times in 

random order. Each color was presented for 400 ms, followed by a mid-grey 

screen (RGB [128 128 128]) for 1750 ms. Each color was shown as a square 
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(size 120px × 120px) in the center of a mid-grey screen. There were two forced 

choice labeling tasks: forced choice labeling task 1 consisted in pressing one 

of 4 keys to label the color just shown. The keys were labelled ‘W’ for white, 

‘G’ for grey, ‘BLU’ for blue and ‘BLA’ for black. In forced choice labeling task 

2, they pressed one of 2 keys labelled ‘LB’ for light blue and ‘DB’ for dark blue. 

Forced choice labeling task 1 was followed by forced choice labeling task 2 for 

all the participants. The position of the labels on the keyboard was 

randomized and counterbalanced across participants. Participants had to use 

their index finger to answer and, after having pressed the key, to return with 

the finger to a marked point outside the keyboard equidistant to all keys. 

 

2.2. Structure of the main study 

The study took place during two consecutive days and were organized 

as follows (Table 1). On Day 1, participants were administered the Ishihara 

colorblindness test (3.5.), followed by the forced choice labeling task 1 and 2 

(2.6.) and by the first training session on artificial color categories with SGs 

(2.8.). On Day 2, the second training session with SGs was followed by the 

discrimination tasks (Same Different task and Odd One Out task) and finally 

the EEG session (2.9).  

 

 

Session  Task         Methods    Results        Tables       Figures 

Day 1  Colorblindness test 2.5  -  -  - 

  Labeling   2.6  3.1  -  - 

  SG training  2.8  3.2  -  1 

Day 2  SG training  2.8  3.2  -  1 

  Discrimination tasks: 2.10  3.3  3 

  Same/Different 2.10.1  3.3.1  

  Odd one out  2.10.2  3.3.2 

  EEG session  2.9  3.4  2  3 
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Table 1. Structure of the main study: organization of the tasks on two successive days. The 

table indicates the Methods section in which each task is described, and the Results section 

and the Tables and Figures in which results are reported. 

 

2.3. Participants 

28 native English speaking students from The University of Auckland 

participated in this study and received a NZD 20 voucher for their 

participation. 9 were excluded: 4 participants left the experiment after the 

first day, 2 due to a technical problem with the EEG, 2 due to an error in the 

configuration of the task and 1 because she consumed psychoactive 

substances the day before. Data from the remaining 19 participants were 

analyzed (M= 21.22 years, S.D.=3.42 years, 10 women). All participants 

reported normal or corrected-to-normal vision and they were right handed. 

Color vision was evaluated by means of the Ishihara colorblindness test 

(3.5.).Participants provided written informed consent and all research was 

approved by The University of Auckland Human Participants Ethics 

Committee. 

 

2.4. Materials 

From the forced choice labeling data (2.1.), we identified a color that 

was called light blue and dark blue with equal frequency across participants. 

We decided to use this as the first color in the 5 color array, and constructed 

it with 5 colors considered as ‘dark blue’ by the group of English speaking 

participants of our forced choice labeling study. We also identified another 

color which was labeled ‘dark blue’ and ‘black’ with a frequency of 0.5 each. 

This was selected as the fifth color in the array. Finally, we identified three 

transition colors by interpolating the terminal colors in color space. 

 

2.4.1. Selection of terminal colors 

 

For each participant, we calculated the number of repetitions (maximum 

10) in which each of the five colors in the array was labeled with ‘white’, ‘grey’, 
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‘blue’ or ‘black’ in forced choice labeling task 1 and ‘light blue’ or ‘dark blue’ 

in forced choice labeling task 2. 

Since we wanted to form a uniform color space, we needed to use colors 

in the blue hue that differ in lightness but this difference had to be minimal: 

just enough to be perceived as a different color. For this reason we decided to 

build an array of either light or dark blue colors.  

If we used dark blue colors, the criterion for the selection of the first 

color in the array was the following: for color X to be the first of the 5 colors, 

it has to be labeled using the basic term ‘blue’ on average with a frequency F 

of approximately 1 and with the non-basic terms ‘light blue’ and ‘dark blue’ 

on average with equal frequency (ideally F=0.5). If ‘light blue’ and ‘dark blue’ 

had approximately equal F it would suggest X lies at the boundary between 

the lexical categories ‘light blue’ and ‘dark blue’. For color Y to be the fifth of 

the 5 colors, it has to be labeled using the basic terms ‘blue’ and ‘black’ or 

‘grey’ on average with a frequency F of approximately 0.5.  

On the other hand if we used the light blue colors, for color X to be the 

first one in the array, it has to be labeled using the basic terms ‘blue’ and 

‘white’ with a frequency F of approximately 0.5. This would suggest that X lies 

at the boundary between the lexical categories ‘blue’ and ‘white’ or ‘grey’. For 

color Y to be the fifth of the 5 colors, it has to be labeled ‘blue’ on average 

with a frequency F of approximately 1 and with ‘light blue’ and ‘dark blue’ on 

average with equal frequency (ideally F=0.5).  

As potential colors, we identified two Munsell color that met these 

criteria inside the dark blues category: for color 1 in the array, Munsell color 

5PB5/12 (B is the mean frequency by which the color is labeled ‘blue’, LB is the 

mean frequency by which the color is labeled with ‘light blue’, DB with ‘dark 

blue’): B= 0.84, SD=0.28; LB= 0.01, SD=0.38, DB= 0.9,SD=0.30. For color 5 in 

the array, Munsell color 5PB1/4: Blue= 0.56, SD= 0.32; Grey= 0.21, SD=0.38, 

Black= 0.19, SD= 0.26.  
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2.4.2. Selection of the middle and transition colors 

 

Transition colors were defined as those within our stimulus set that 

interpolated in color space the terminal and middle colors chosen based on 

statistical criteria: 5PB4/10 as a lighter dark blue (frequency with which 

participants called it ‘dark blue’=0.57; SD= 0.31.), 5PB3/8 as middle dark blue 

(‘dark blue’=0.81 SD=0.29) and 5PB2/6 as a darker dark blue (‘dark blue’=0.93; 

SD= 0.07). The final 5-color array was as follows (cells show mean forced 

choice labeling frequencies): 

 

       5PB 5/12  5PB 4/10 5PB 3/8 5PB 1/4 2.5PB 2/6 

‘light blue‘    0.51              0.37           0.13          0.11                      - 

‘dark blue‘    0.4             0.58          0.83           0.86                   0.92 

‘grey’  0.09       0.08   0.12    0.14        0.20 

‘black’    -       0.02      -       -      0.19 

 

  

2.4.4. Artificial color terms and categorizations 

 

We used the two syllables ‘to’ and ‘nu’ as artificial basic color terms to 

be used as signals in SGs. There were four possible categorizations of the 5-

color array, arising out of the combination of the 2 color terms and 5 colors, 

allowing only sets of either 2 or 3 colors. In categorization 1, ‘to’ was 

associated to colors 1 and 2, and ‘nu’ to colors 3, 4 and 5. In categorization 2, 

‘to’ was associated to 1, 2 and 3, and ‘nu’ to 4 and 5. In categorization 3, ‘nu’ 

was associated to 1 and 2, and ‘to’ to 3, 4 and 5. In categorization 4, ‘nu’ was 

associated to 1, 2 and 3, and ‘to’ with 4 and 5. Five participants were randomly 

assigned to categorization 1, six to categorization 2, four to categorization 3 

and five to categorization 4 on Day 1 (the number of participants assigned to 

each was equal before discarding participants from the original 28 volunteers 

group).  
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2.5 Colorblindness test 

Participants’ color vision was evaluated by a computerized version of 

the Ishihara (1917) colorblindness test to exclude a possible color vision 

impairment. This was carried out on Day 1 before the forced choice labeling 

tasks. All participants included in the experiments passed the Ishihara test. 

 

2.6 Testing native color categories: forced choice labeling task 

On Day 1, after the colorblindness test, participants performed the 

same forced choice labeling task used in Experiment 1 (see Chapter 2) but this 

time with the 5 colors array of blues. The purpose of this forced choice 

labeling task on Day 1 was to assess how participants categorize the blues in 

the 5-color array, in order to determine whether and how learning in the SG 

would change native color categories. The stimuli and procedure where the 

same as in the preliminary forced choice labeling study (2.1.). For each 

participant, we calculated the number of repetitions (maximum 10; 2.1.3.) in 

which each of the five colors in the array was labeled with ‘white’, ‘grey’, ‘blue’ 

or ‘black’ in forced choice labeling task 1 and ‘light blue’ or ‘dark blue’ in 

forced choice labeling task 2. We focused in particular on the middle color 

(5PB 3/8). Participants were classified as having either of two native color 

categorizations of the 5-color array, depending on whether the middle color 

was grouped with the ‘light blues’ (N=2) or the ‘dark blues’ (N=17). 

 

2.7. Optimal color frequencies 

The optimal frequency distribution over colors drawn from the 5-color 

set is: 0.15 for each of the terminal colors, 0.20 for each of the transition 

colors, and 0.30 for the middle color. This frequency pattern optimizes 

learning for the receiver, as learning time is minimized, the accuracy he can 

obtain by choosing randomly colors of the same category in response to each 

signal is maximized (i.e., he need not know the frequency distribution of 

colors), and the accuracy he would obtain with informed choices is minimized 
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(i.e., there is little incentive to learn the color frequency distribution). This 

result was used to set the frequencies of colors as shown to the 

sender/computer in the SG training in the main experiment (2.8.) and in the 

color discrimination studies (2.10). 

 

2.8. Learning artificial color categories: the Signaling Game 

Each participant learned one of the 4 possible categorizations (2.4.4.) of 

the 5-color array using the 2 artificial color terms, as follows. Participants 

played a Signaling Game (SG), identical to the SG in the computer simulations 

previously described (Chapter 2, 2.2). At the beginning of the game, 

participants were randomly assigned to one of 4 languages: the color 

categorizations and vocabularies of 2.4.4. During the game, in each trial, a 

color invisible to the player was randomly drawn from the 5-color set, 

according to the color frequency pattern: 0.15 for each of the terminal colors, 

0.20 for each of the transition colors, and 0.30 for the middle color (see 2.7.). 

The color term corresponding to the randomly-drawn color was shown to the 

player, whose task was to choose from the 5-color array one of the 2 or 3 

colors belonging to the category denoted by the observed term. Feedback was 

given in each trial as to whether the random color and the color chosen by the 

player matched or not. The computer played as the sender, and the participant 

is the receiver, whose task is to decode the signals he receives from the 

computer, and infer the correct color categorization and color vocabulary. 

 

2.8.1. Procedure 

 

Participants were seated in a darkened booth. Stimuli were presented 

on a 21- inch LCD monitor (60 Hz refresh rate) using Presentation® software 

(Version 0.70). The monitor was positioned at 57 cm from the participant.  

At the start of a game, the participant/player was shown both terms ‘to’ 

and ‘nu’ at the center of the screen for 300 ms, followed by the 5-color array 

with colors in random order. In each trial, the participant/player observed a 

color term (shown in capital letters with font Calibri size 48 in the middle of 
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a mid-grey screen), and had to choose one of the colors associated to that term 

in the language by pressing on a full-size keyboard one of five keys, spatially 

associated to the 5-color array, which was shown on a single screen with colors 

in random order. The participant saw the array with colors, now ordered by 

lightness (light blue to dark blue), as feedback, with two arrows: one pointing 

to the randomly drawn color, associated to the observed color term in the 

language (the arrow was marked with the label ‘AS’, ‘associated’), the other 

pointing to the color selected by the player as a response to the observed term 

(marked with the label ‘CH’, ‘chosen’). 

Training with SGs consisted of two sessions, one on Day 1 and one on 

Day 2. Each session lasted until the participant had reached to 60 correct 

responses. At the end of the game, the participant had to select the 

categorization he thought he had learned. He was presented with all possible 

categorizations and vocabularies on a single screen, shown as four arrays with 

the terms ‘to’ and ‘nu’ indicating the different color-term combinations, and 

he had to press a key from 1 to 4 to choose one. They were asked to confirm 

their choice in a second trial identical to the first (Fig.1). 

 

Figure 1. A trial of the signaling game used in the behavioral training sessions. The top and 

bottom rows show what the sender/computer and the receiver/participant see on successive 

screens, respectively. Roles are fixed at the start of the game. Time flows from left to right. 

The sender/computer plays according to a fixed categorization of the 5-color array, which 

must be learned by the receiver/participant. In each trial, the sender sees one color, and sends 

the signal associated to the category the color belongs to. The receiver sees the signal, and 

must choose from the 5-color array the one that may have been seen by the sender by pressing 

one of five keys on a standard full-size keyboard. The feedback shown to the receiver 
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indicates, by means of two sets of arrows and labels, the color associated to the signal (AS) 

and privately seen by the sender, and the color chosen by the receiver as a response to the 

signal (CH). Over trials, the receiver will learn what colors are associated to each signal, i.e., 

the color categorization the sender is playing by.   

 

2.9. Neural consequences of learning color categories: EEG study 

2.9.1. Stimulus presentation 

 

The last task administered on Day 2 was passive visual exposure to 

color-term and term-color sequences, which were either Learned (agreeing 

with the categories and vocabulary learned in the SG) or Incongruent 

(deviating from the learned set). The stimuli were the 5 colors and the 2 color 

terms used in the training with SGs. There were two blocks, whose order in 

each session was randomized across participants: in one block, a color term 

was shown for 300 ms (capital letters, in Calibri font size 48, in the middle of 

a mid-grey screen), followed by a color for 400 ms (shown as a square of 

120×120 pixels) in the middle of a mid-grey screen and by a fixation cross for 

1250 ms (term-color or TC sequences); in the other block, a color was shown 

for 400 ms, followed by a color term for 300 ms and by a fixation cross (color-

term, CT sequences). Each block had 200 Learned and 200 Incongruent trials. 

Across trials, all possible combinations of colors and color terms, in both CT 

and TC sequences, were used. Moreover, all colors were presented with equal 

frequency, in contrast with the non-uniform frequency distribution used in 

the SG training (2.8.). This was effected in order to avoid that color-position 

effects (e.g., to terminal versus intermediate colors; see Chapter 2) were 

confounded with frequency effects. 

 

2.9.2. Data acquisition 

 

The electroencephalogram (EEG) was recorded using a 128-channel 

Geodesic Sensor Net and NetAmps 300 amplifier (Electrical Geodesics Inc., 

EGI). It was digitized at 1000 Hz and acquired referenced to the vertex 

electrode. Individual sensor impedance was kept below 40 kΩ and measured 
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both prior to and halfway through the experiment. Offline, the data was 

analyzed using EEGLab toolbox (Delorme & Makeig, 2004) and Fieldtrip 

(Oostenveld et al, 2011) for Matlab (The MathWorks Inc., Natick, 

Massachusetts).  Data were re-referenced to the average. The data were 

segmented into 1200 ms segments, from 200 ms before stimulus presentation 

to 1000 ms after. The sampling rate was 1024 Hz. All filtering was digital. 

2.9.3. Data analysis 

 

EEG data were epoched from -200 ms to 1000 ms relative to the onset 

of the second stimulus (i.e., the color term in CT sequences, and the color in 

TC sequences), and were baseline corrected using data from the −200 to 0 ms 

interval. Segments were discarded if they contained activity exceeding ±100 

μV thresholds in any channel. Eye blinks in the bilateral fronto-polar channels 

E8, E25, E127 and E126 were identified using a blink detection function by 

means of the following procedure: the function finds artifacts that are shaped 

like a typical blink, which is represented by a Chebyshev function.  To find 

this shape, the function computes the covariance between a segment (window) 

of the epoch and the Chebyshev function.  The larger the covariance, the more 

evidence there is that a large blink-shaped voltage deflection is present in that 

window.  We specified a Blink Width of 400 ms and a Test Period of -200 to 

1000 ms.  The function first computes the covariance between a 400-ms wide 

Chebyshev function and the EOG waveform from -200 to +400 ms and 

continues this process for successive 400-ms windows.  It then compares the 

largest of these covariance values to the threshold, and the epoch is marked 

for rejection if the largest covariance exceeds the threshold. 

ERPs were computed by averaging over artifact free epochs from each 

condition (Learned/Incongruent), in each block (CT/TC), for each participant 

separately. The definition of Learned and Incongruent trials for a given 

participant depended on the particular color categorization that he/she was 

trained on during the SG sessions. Finally, grand-average ERPs were computed 

by further averaging over participant specific averages. 
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Statistical analyses of ERP effects were conducted by means of the 

following procedure (Maris and Oostenveld 2007): (1) participant specific ERP 

averages were compared between the Learned and Incongruent conditions 

from each channel and time point with dependent samples t-tests; (2) data 

from neighboring time points and channels in which p-values were smaller 

than 0.05 were clustered together; (3) the cluster-level t-statistics was 

computed as the sum of t-values from all samples belonging to the cluster; (4) 

the cluster-level p-value was estimated using a Monte Carlo simulation: 

participant specific ERP averages across all samples in a cluster from both 

experimental conditions were collected in a single set; this new set was 

randomly partitioned into two subsets of equal size; the subsets were 

compared by means of a t-test; these steps were repeated 1000 times; a 

cluster-level p-value was computed as the proportion of partitions that 

resulted in a larger T-statistic than in the observed ERP data. 

 

2.10. Probing color categories: color discrimination studies 

After the second day of training, participants performed a 

same/different color discrimination task modified from Liu et al. (2010), and 

an odd-one-out discrimination task modified from Witzel & Gegenfurtner 

(2013). 

 

2.10.1. Same/different discrimination task 

 

Participants were presented with a colored square (155×155 pixels) 

surrounded by a colored frame (190×190 pixels) in the center of a mid-grey 

screen, and they were asked to judge, by pressing either of two keys on a full-

size keyboard, whether the square and the frame were of the same or of a 

different color. If the square and the frame were of the same color, this was 

considered a ‘same’ trial. If the square was of a different color than its 

surrounding frame, it was considered a ‘different’ trial. 

In each trial, first a fixation-cross appeared for 1000 ms at the center of 

the screen, followed by a square surrounded by a frame shown for 200 ms, 
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and by a blank mid-grey screen shown for 800 ms. The stimuli consisted of 

25 color-frame combinations (5×5 colors) re-used in 300 trials. Of these 300 

trials, 150 showed the inner square and the surrounding frame in the same 

color, and 150 showed them in different colors. In 50% of the different color 

trials, the colors of the square and of the frame were associated to the same 

term in the artificial color system that each participant had learned during the 

SG training (‘within category’ or WC trials). In the other 50% of the different 

color trials, stimuli were constituted by squares with their surrounding frames 

in a different color, which participants had learned to associate to different 

color terms (‘across category’ or AC trials). 

 

2.10.2. Odd-one-out discrimination task 

 

We used the spatial 4-Alternative Forced-Choice (4AFC) discrimination 

task from Krauskopf and Gegenfurtner (1992), also used by Witzel and 

Gegenfurtner (2013). In each trial, observers were shown 4 colored disks. One 

of these colors differed in lightness from the other 3. Participants had to 

indicate which disk was different by pressing one of 4 keys corresponding to 

the 4 positions in space of the disks.  

At the start of a trial, a fixation cross appeared for 1000 ms at the center 

of the screen, followed by the 4-disk stimulus shown for 500 ms against a 

mid-grey background, and by a blank mid-grey screen shown until a response 

was given. The odd disk occupied any of the 4 possible positions on the 

screen, randomized across trials. In 50% of the trials, the color of the odd disk 

was associated with the same color term as the color of the 3 other disks in 

the color categorization that the participant had learned during the SG 

training sessions (‘within category’ trials). In the other 50%, the color of the 

odd disk was associated with a different color term than the color of the other 

3 disks during the SG training (‘across category’ trials). 
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2.10.3 Analysis of color discrimination data 

 

Paired t-tests were conducted to assess the differences in the 

performance of the participants in the two tasks across conditions. 

Differences in reaction times and accuracy were compared between across-

category and within-category trials. Accuracy was determined by the number 

of correct trials in the last forth part of each of the trainings (where 

coordination is expected to be present already) divided by a fourth of the total 

amount of trials the participant needed to end that training session. To 

analyze the contrast between within and across category trials, for each of the 

discrimination tasks (Same-Different and Odd One Out), we ran two-way 

ANOVAs on within- and across-category trials. For each task, 2 ANOVAs were 

run with the reaction times of subjects to the each of the two tasks and 2 

ANOVAs with the accuracies obtained by subjects in each task. This was done 

first with all 5 colors in the array as factors and then with each position as 

factors: terminal colors (colors 1 and 5 together), transition colors (colors 2 

and 4 together) and middle color (color 3). Moreover, Wilcoxon’s rank sum 

tests were conducted comparing the means of the participants' performance 

in reaction times and accuracies, for all 5 colors separately and for the 3 

positions. 

 

3. Results 

3.1. Forced choice labeling task  

All colors were labeled ‘blue’ with an average frequency F of 0.86 (color 

1 F= 0.99;color 2 F=0.99; color 3 F=0.96; color 4 F=0.935; color 5 F=0.425). 

When asking whether the color was dark blue or light blue (forced choice 

labeling task 2), participants were grouped according to whether they had 

categorized the middle color (color 3) into either ‘light’ or ‘dark ’. Choices had 

to be stable in at least 60% of all trials. Out of the 21 participants, 18 grouped 

the middle color together with the dark blues (average frequency across 

participants in this group of the color being called ‘dark blue’, F=0.88), 1 

grouped it with the light blues (frequency of the color being called ‘light blue’ 
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by this participant, F =0.6). Two participants labeled it ‘dark blue’ and ‘light 

blue’ with equal frequency (F =0.5). We ended up with 2 groups, one of 8 

participants who learned a system consistent with their native category, and 

the other of 11 participants who learned a categorization inconsistent with 

their native one (Fig. 2).  

Figure 2. Tree diagram illustrating the categorizations learned by participants (N=19). During 

the training on Day 1, 8 participants learned artificial color categories that were consistent 

with their own native color categories, and 11 learned artificial categories that were 

inconsistent with their own native categories. 

 

 

3.2. Learning color categories and vocabularies 

Nineteen out of twenty-one participants learned the artificial color 

system during the first training session with signaling games, and 18 chose 

the right categorization when they were asked at the end of the second 

training session. The average number of trials it took participants to get to 60 

correct responses and finish a session was higher for the first training than 

for the second: 199.62 trials (SD=109.96) and 183.52 (SD=42), respectively. 

Nonetheless, this difference was not significant (Wilcoxon rank sum tests V= 

110, p=0.8649). 

Accuracy during training on the first day of training (mean= 36.54 

SD=9.75) was similar to the accuracy level on the second training day (mean= 
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36.77 SD=6.69; paired t-test t(20)= 0.0944, p= 0.0944). Accuracies during both 

days differed significantly from chance level and from optimal accuracies by 

informed choices (one-sample t-tests, p<0.001). Accuracies during both days 

were not different from optimal accuracies by random choices, and from the 

accuracies obtained in the computer simulations (one-sample t-tests, 

p>0.2626). 

 

3.3. Discrimination studies 

3.3.1 Same/different discrimination study 

 

Reaction times in within-category (WC) (RT M=510 SD= 56.53) trials were 

longer but difference was not statistically significant than in across-category 

(AC) trials (RT M=484.79 SD=52.47) (Paired samples t-test, t(20)=  1.8858 

p= 0.074). There were no significant differences either between same-color 

trials (RT M=457.25 SD=110.49) and WC trials (Paired t-test, t(20)=1.7067, 

p=0.1034), or between same-color trials and AC (Paired t-test t(20)=0.8738, 

p=0.3926), or between different color (i.e., WC+AC trials, RT M=464.369 

SD=127.9)and same-color trials (Paired t-test t(20)= 1.3137, p=0.2038). 

Participants were more accurate in the across category trials (accuracy 

M=0.92 SD=0.014) than  in the within category trials (accuracy M=0.88 

SD=0.083)(AC/WC trials: paired t-test, t(20)= 2.1898, p=0.0406; AC/same-color 

(accuracy M=0.88 SD=0.14) trials: paired t-test, t(20)=1.19, p=0.248; WC/same-

color: paired t-test, t(20)=0.0522,p=0.9589; different/same trials: paired t-test, 

t(20)2.3154=, p=0.0313). When comparing WC to AC for each position, 

Wilcoxon rank sum tests showed statistical differences in reaction times only 

for the terminal colors (Terminal: V=44, p=0.011; Transition: V=105, p=0.733; 

Middle: V=81, p=0.2428). They also showed statistical differences in 

accuracies for the terminal and the transition colors (Terminal: V=188, 

p=0.002; Transition: V=166, p=0.0045; Middle: V=108, p=0.8077) (Table 4). The 

ANOVA showed no interactions between the position of the color and 

condition (WC/AC) for either reaction times (F(144)=0.122, p=0.885) or 

accuracies (F(144)=0.060, p=0.942).   
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When comparing WC to AC for each color, Wilcoxon rank sum tests 

showed significant differences in reaction times only (Table 3) for color 5 

(color 1: V=75, p=0.1678; 2: V=106, p=0.7593; 3: V=81, p=0.2428; 4: V=118, 

p=0.9457; 5: V=42, p=0.009016), while in accuracies (Table 3) for colors 1 and 

2 only (1: V=189.5, p=0.001688; 2: V=127, p=0.002433; 3: V=108, p=0.8077; 4: 

V=145, p=0.313; 5: V=154, p=0.06966).  The ANOVA showed no interactions 

between the 5 colors and condition (WC/AC) for either reaction times 

(F(190)=0.187, p=0.945) or accuracies (F(190)=0.105, p=0.981). 

 

In all tests, the Bonferroni-corrected α is 0.01. 

 

3.3.2. Odd-one-out study 

 

Reaction times in WC (RT M=538.33 SD=249.28) trials were longer than 

in AC (RT M=495.41 SD=180.79) trials (Paired t-test, t(104)= 2.7497, p=0.007). 

Accuracy was better in AC (mean=0.43 SD=0.13) trials than in WC (mean=0.40 

SD=0.16) trials (Paired t-test, t(104)=3.4343, p=0.0009). When comparing WC 

to AC for each position, Wilcoxon rank sum tests showed statistical 

differences in reaction times only for the terminal colors (Terminal: V=44, 

p=0.01135; Transition: V=67, p=0.0958; Middle: V=127, p=0.7079). They also 

showed statistical differences in accuracies only for the transition colors 

(Terminal: V=127, p=0.7079; Transition: V=173, p=0.001816; Middle: V=166.5, 

p=0.3979) (Table 4). The ANOVA showed no interactions between the position 

of the color and condition (WC/AC) for either reaction times (F(144)=0.967, 

p=0.383) or accuracies (F(144)=1.061, p=0.3493).  

When comparing WC to AC trials for each color, Wilcoxon rank sum 

tests showed no statistical differences in reaction times (Table 3) (1: V=48, 

p=0.01755; 2: V=67, p=0.0958; 3: V=127, p=0.7079; 4: V=76 , p=0.179; 5: V=56, 

p=0.03844) and in accuracies (Table 3) for colors 1 and 2 only (1: V=142 , 

p=0.002088; 2: V=168, p=0.003521; 3: V=116.5, p=0.3979; 4: V=134, p=0.1212; 

5: V=90, p=0.5883). The ANOVA showed no interaction between the 5 colors 

and condition, for reaction times (F(190)=01.041, p=0.387) or accuracies 

(F(190)= 0.682, p=0.60501).   
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In all tests, the Bonferroni-corrected α is 0.01. 

 

 

Same - Different Reaction Times Accuracies 

Color WC AC WC AC 

1 464.64 (143.28) 451.97 (127.88) 0.82 (0.30) 0.91 (0.2) 

2 464.95 (151.1) 464.81 (199.68) 0.82 (0.27) 0.91 (0.19) 

3 475.04 (123.45) 461.15 (136.14) 0.87 (0.24) 0.85 (0.27) 

4 461.03 (134.39) 467.87 (126.08) 0.86 (0.29) 0.89 (0.26) 

5 480.72 (124.54) 455.28 (113.65) 0.84 (0.31) 0.89 (0.22) 

     

Odd One Out Reaction Times Accuracies 

Color WC AC WC AC 

1 519.9 (231.67) 461.85 (171.99) 0.39 (0.44) 0.43 (0.47) 

2 540.72 (416.99) 471.67 (182.08) 0.38 (0.44) 0.42 (0.47) 

3 515.84 (361.34) 529.34 (236.53) 0.41 (0.45) 0.46 (0.49) 

4 556.44 (300.21) 506.19 (293.26) 0.42 (0.45) 0.42 (0.46) 

5 558.75 (233.29) 508.02 (235.49) 0.42 (0.44) 0.42 (0.46) 

     

Table 3. Results of color discrimination experiments. Mean values (and SD) are reported. 

Abbreviations: WC (within-category condition); AC (across-category condition). 
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Same Different task 

Position         Reaction times    Accuracy 

V p-value  V p-value 

Terminal 44 0.01135 188 0.002067 

Transition 105 0.7335  166 0.004537 

Middle  81 0.2428  108 0.8077 

 

Odd One Out task  

Position         Reaction times      Accuracy  

  V p-value  V p-value 

Terminal 44 0.01135 127 0.7079  

Transition 67 0.0958  173 0.001816 

Middle  127 0.7079  166.5 0.3979 

 

Table 4. Results of the Wilcoxon rank sum tests comparing WC to AC for each position. V and 

p values are reported. 

 

3.3. EEG      

 

In ERPs we found no incongruency effects in either CT or TC trials that 

involved the middle or transition colors, i.e., the best exemplars of each 

category. Instead it was one of the terminal colors, the fifth in the array, which 

showed ERP effects. The effect is a positive-going ERP wave that appears at 

500 ms from stimulus onset and lasts until end around of the epoch (Fig. 3). 

The cluster size was 15666 (number of adjacent time-channel samples); the 

sum of T-statistics in the cluster was 48555 and the Monte Carlo p-

value=0.001.  Interestingly this effect was found only in the Color – Term (CT) 

condition and not in the Term Color for color 5. We did not find any significant 

clusters for color 1, 2, 3 and 4 in either of the condition (in all clusters p>0.05).  
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Figure 3. Event related brain potentials (ERPs) evoked by the color term presented after the 

fifth color in the array in CT sequences.  The onset of the eliciting stimulus (i.e., the color 

term in CT sequences) is at 0 ms. Negative amplitude values are plotted upwards. Single-

channel ERP plots show grand-average (N=19) waveforms from Learned (black) and 

Incongruent (red) trials from the vertex channel Cz. Dark grey bars in the lower portion of the 

plot represents the highest ranked cluster of adjacent time points at which statistically 

significant effects were found. The topographic map displays grand-average (N=19) 

differences between Incogruent and Learned trials in the time window of the highest ranked 

cluster. 
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4. Discussion 

In this study we intended to further investigate the functional 

reorganization of brain circuits, observed in the previous experiment (Chapter 

2), through the acquisition of a new way of categorizing colors. This second 

experiment used an array of blue colors varying along the lightness 

dimension, whereas the first experiment used colors from the brown to green 

range, thus varying along the hue dimension. In the previous EEG study 

(Chapter 2), we found the strongest differences in ERP signals between learned 

and incongruent trials at the middle color in the array, that is, at the color that 

constitutes the category boundary in participants' native categorization of 

browns and greens. That middle color is ambiguous between two lexical 

categories, and the artificial color categorization was precisely designed to 

override that ambiguity by placing the ambiguous green-brown color into 

either the green or the brown sets. The observed ERP effects can therefore be 

taken to reflect the neural outcomes of a costly learning process, which 

consists precisely in classifying an originally ambiguous color into a sharply 

defined category. In the first experiment, however, the boundary of the native 

categories of brown and green, and the boundary of the new artificial 

categories, are very close and (in some participants) may even coincide. Here, 

we wanted to tease apart these two aspects, and produce a color array in which 

the artificial color category still sets a boundary in the middle of it, but the 

ambiguous color in the participants' original categorization lies at the 

terminal position, instead of at the middle one. If indeed ERPs reflect rewiring 

effort, then they should be largest at the terminal color in the second 

experiment. The results of this experiment confirm our predicted effect for 

terminal colors. They are moreover qualitatively in line with the results of our 

previous experiment, both in terms of latency and topographical distribution. 

Clifford et al. (2012), Özgen and Davies (2002) and Goldstone (1994) proposed 

that category learning enhances sensitivity around new category boundary 

regions. However, we did not have an effect at the color that sets the new 

category boundary. Instead, the most ambiguous color in their native category 

was the one what showed a cluster of significance.  
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The fact that we did not find any category effects in early ERP 

components but instead observed a late N400-like effect, is consistent with 

Clifford et al. (2012) and He et al. (2014), as well as with the findings presented 

in Chapter 2, suggesting that the effects of acquiring a new color 

categorization are not limited to perceptual processing alone.   

Interestingly, when analyzing color by color we found that this effect is 

only statistically significant for one of the two terminal colors (i.e. only for 

color 5) that formed the extremes of our color array. It is important to notice 

that although color 1 is not ambiguous, it was labeled with the non-basic terms 

light blue and dark blue with roughly the same frequency (≈ 0.5). As we needed 

as stimuli 5 colors with minimal perceptual differences between one color and 

the one(s) next to it, we did not use the whole range of blues, but only the 

darkest blues of the pool of Munsell colors (we also selected a possible array 

with lighter blues but after statistical analyses of the labeling frequencies, the 

dark blues resulted more suitable for our purpose). If the 5 colors array 

continued before color 1 and after color 5, to the left we would have light blue 

colors and to the right black colors. For English speakers, a light blue color 

will still be called with the basic color term “blue” because it is only a lighter 

version of the prototypical blue, but color 5 was called “blue” and “black” with 

approximately equal frequency. Therefore, color 1 could be considered 

ambiguous, but between two non-basic color categories. Color 5 stands out 

for being the only color in the array that lies between the two basic color 

categories of blue and black, and was thus the most likely candidate to trigger 

the learning-related ERP effects observed in the first experiment (Chapter 2). 

This finding highlights the neural reality of the distinction between basic and 

non-basic color categories and terms. Rewiring effort was observed in both 

experiments for colors that lie at the boundary between basic color categories. 

The results of the discrimination tasks also point to a special status of 

the terminal colors in the array. The participants’ responses to them, in 

contrast with the transition and middle colors, were faster and more accurate 

when the target and the distractors were of a different artificial category 

rather than of the same one. We believe this may also to a certain degree 

support our hypothesis that ERPs reflect learning effort of the tasks, but in a 
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different way than experiment 1. Terminal colors are ambiguous: they may 

belong to one or two color categories for English speakers. Assigning an 

artificial color term to a color that constitutes a boundary between two colors 

in the native language of the participants may be more demanding and bring 

along discrimination problems. Therefore the system could be responding 

with stronger signals when the stimuli are incongruent with these more 

difficult colors to learn, relative to the most prototypical colors like the middle 

color (color 3). Still, our data cannot answer the question of how the presence 

of a boundary between two color categories affects the ERP and discrimination 

effects.  

The effect we find for the ambiguous colors also confirms the fact that 

the average amplitude of ERP effects we found in experiment 1 does not 

depend on the frequency with which that color was presented in the training 

sessions, since we did not find any effects in the middle color which was the 

one most frequently presented in experiment 2. 

Crucially, the fact that we see differences between learned and 

incongruent trials indicates that ambiguity of the color per se is not what 

drives the ERP effects. Furthermore, if ambiguity was effectively the critical 

feature of the stimuli, color 5 would show the largest ERP effect in Term-Color 

condition trials as well, which is not the case.  

 

5. Conclusion 

In chapter 1 we mentioned a hypothetical situation in which a group of 

monolingual tourists on an island, who have different native languages, are 

observing the horizon on the sea. We wondered whether they would look at it 

as the boundary between one color category and another or think of the sea 

and the sky as being of the same color category. Now consider one of them as 

having to different colors for the sky and the sea in her native language. She 

points to the sky and teaches a man in the group the name for that color in 

her language. Then the same for the color of the sea, and does this throughout 

the day. Will this man see these colors the next day differently? On possibility 

is that they would perceive the colors in the same way as before but they would 
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pay more attention to the newly learned color categories and process more 

effortfully colors that are ambiguous in their native languages.  

On the other hand, Thierry et al.(2009) studied the effects of color 

terminology in Greek and English on early stages of visual perception using 

the vMMN, an electrophysiological index of perceptual deviancy detection. 

Greek speakers use two terms that are equivalent to the English term blue. 

The visual mismatch negativity was similar for blue and green in English 

participants, but there was greater distinction between different shades of 

blue than different shades of green in Greek participants. Future 

investigations should be done on what the effect of learning this artificial 

categorization of the blues would be on speakers of languages that use more 

color categories inside the blue hue. 



 

General discussion 

The aim of our research was to recreate in the laboratory a situation in 

which speakers of different languages, with possibly different color systems, 

interact, and one of them acquires a new color categorization from the other 

in a communication game (signaling). To this end, we set out by investigating 

two actual language groups co-existing in the same region. 

Fieldwork 

We analyzed how speakers of Galician and speakers of Spanish named 

84 different Munsell colors, and we studied the similarities and differences in 

color categories within and across the two language groups. We observed 

differences in how the two languages set boundaries between the categories 

of yellow and green (hue), and within the blue category (lightness). These kind 

of findings are not new in the field. The EoSS project has enabled research on 

closely related languages such as Galician and Spanish. By using an objective 

referential grid of comparison across languages it is possible to investigate 

how the boundaries of words change across languages. In one of the studies 

that stems from this project, Majid et al (in press) analyzed data from 12 

Germanic languages on 4 domains: color, body parts, containers, and spatial 

relations. Even if languages were very similar in the color domain, differences 

across languages were found in the choices of speakers on the best example 

of the color category. Also, there was a difference of 33 color terms between 

the language that had the most distinctions (English) and the one with the 

fewest (Faroese).   

One interesting finding of our study is that Galician is a language 

spoken in a country where Spanish (Castilian) is the dominant language. Most 

inhabitants of Galicia are competent Galician speakers, but only 44% use the 

language regularly and 45% only occasionally2. Moreover, our participants 

were young adults. The percentage of young adults speaking Galician has 

                                                           
2 I.G.E. Instituto Galego de Estatística. © Xunta de Galicia. 
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dropped from 28.49% in 2003 to 18.59% in 2008. This suggests Galician is 

becoming more and more a minority language. Importantly, we still found 

differences in how Galician speakers categorize colors, relative to Spanish 

speakers. However, these differences require further research.  

In Chapter 1 we asked whether there would be differences in the way a 

Spanish speaker and a Galician speaker, who are looking at the same green 

tree, process the colors of leaves given they categorize this color differently. 

Our answer may be: possibly so, if only for a narrow set of colors in the 

relevant color range. Such differences are however more likely to play out in 

communication than in perception. Our laboratory experiments made use of 

signaling games to re-create a situation in which, from an initial condition of 

potential disagreement among speakers, one of them (the participant) will 

learn the color categories of the other (the computer) by partly rewiring her 

own native color system. 

Signaling games 

Moreno & Baggio (2014) showed that signaling games are a viable 

laboratory model of the acquisition of signals and their meaning. Here we used 

signaling games with fixed roles where the receiver (participant) adjusts her 

mapping and the sender (computer) sticks to its original categorization. An 

important step in our laboratory experiments was to determine whether the 

color categories we constructed were learnable. The nature of feedback 

participants obtain is potentially misleading: even if the color they chose was 

indeed one of those associated with the relevant color term, their exact color 

choice might not match the particular color as seen by the sender. We had to 

have a confirmation that this kind of feedback would actually be effective, 

allowing participants to actually learn the new categories, and not only finish 

the game. Our computer simulations allowed us to do so, and moreover to set 

optimal accuracy levels to which our behavioral results can be compared. 

Participants' accuracies were below optimal accuracies by informed choices: 

participants were not aware they could perform better by choosing the most 

probable of the 2 or 3 colors associated to the term they had observed. They 
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were instead close to optimal accuracies by random choices: they chose at 

random among the 2 or 3 colors that were associated to the terms, showing 

they had learned the structure of the color category and not the frequency by 

which each color appeared on the screen.  

We could argue that our games were not actual ‘signaling games’: in a 

way they lack strategic uncertainty and therefore real interaction. However, 

our participants were instructed to learn the artificial language only, they did 

not know the sender (computer) always played with the same strategy. In fact 

many participants spontaneously expressed they thought the computer was 

now and then changing the color categorization.  

EEG experiments 

The aim of the EEG experiments 1 and 2 was to explore the cognitive 

and brain processes underlying the acquisition of new color categories. In 

experiment 1 we used an array of 5 colors that varied in hue from brown to 

green. The intermediate color in the array was the most ambiguous in both 

the native color categorization of the participants, and in the newly learned 

categorization: this color constituted the boundary between two categories.  

 The results of experiment 1 suggest there is a neural representation of 

color categories, which contains information on color sets and color terms 

associated to them. This representation seems to be of a high-level/semantic 

kind, as suggested by the presence of late endogenous ERP effects. This 

suggests that the neural changes that accompany the acquisition of color 

categories are semantic in nature and not strictly perceptual. This is further 

supported by the fact that early exogenous ERP effects were relatively weak, 

and not statistically significant.  

 The fact that we found effects only for color 3 (the most ambiguous 

one) in the color-term condition and in colors 2 and 4 (the transition colors) 

in the term-color condition is intriguing. One hypothesis is that ERPs reflect 

the outcomes of learning effort. Terminal colors can be effortlessly assigned 

to one or another color category also because they are unambiguous in their 
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native categorization (this confirmed by our labeling data). The other colors 

are more ambiguous and more difficult to discriminate. Color 3 in particular 

is the color that sets the boundary between one and the other category in the 

artificial language as well as in the native language of participants. Forcing a 

shift in the category boundary may be challenging. However, this hypothesis 

does not explain the fact that ERP effects were stronger at the middle color in 

CT sequences, whereas they were stronger at the transition colors in TC 

sequences. Moreover, are these ERP results due to the fact that color 3 is 

ambiguous in the native categorization of participants, and is therefore harder 

to rewire, or to the fact that it lies at the boundary of two categories in the 

artificial system? We tried to address this question in experiment 2. 

In experiment 2, our array of colors varied in lightness instead, within 

the blue hue, and the position of the ambiguous color was at one extreme of 

the array (color 5). This color was labeled as 'blue' and 'black' with equal 

frequency by an independent group of English speakers. Colors 2, 3 and 4 

were non-ambiguous blue colors and color 3 was the most prototypical blue 

(derived from our labeling results). Although color 1 was considered blue by 

all our participants in our forced choice labeling study, it was labeled with the 

non-basic color terms ‘light blue’ and ‘dark blue’ with equal frequency. This 

makes it a non-basic ambiguous color in spite of it being still ‘blue’.  

With this distribution of the colors, we produced a color array in which 

the artificial category sets a boundary in the middle of it (as in experiment 1), 

but the most ambiguous color in the participants' native categorization lies at 

the terminal position, instead of at the middle one.  

 

We did not find an ERP effect at the color that sets the new category 

boundary but at the most ambiguous color in participants' native category. 

Again this effect was a late N400-like negativity, only in the CT condition. We 

did not find earlier low-level/perceptual effects. These ERP results confirm 

our prediction of an ERP effect at the terminal color and is in accordance with 

experiment 1. This suggests that the effects we observe reflect the effort of 

rewiring or translating the native categorization into to the artificial color 



General Discussion 

97 
 

system learned in the experiment, a task that is especially demanding for the 

more ambiguous colors in participants’ native color system. However, this line 

of reasoning cannot explain why we do not see the same effect in the TC 

condition.  

Further research is needed to get a better understanding of the 

contrasting results we found across conditions in experiment 1 and 2. Before 

the EEG sessions, in order to keep the participants’ attention to the task, we 

told participants they should keep focused because we would ask questions 

about the task at the end of it (which we did not). We feel curious about the 

fact that some participants spontaneously expressed at the end of the 

experiment that they perceived a difference between the color-term condition 

and the term-color condition in the EEG task.  One of them said “I found the 

color-term arrangement made much more sense than the term-color. This was 

because the color coming first was asking a question "which word describes 

this?" and I could then think of the answer, then I would get told if I was right. 

Each colour is assigned only one word so I can only be right or wrong. With 

the other way around, I get the term first so the 'answer' would be any of the 

set of colours that were assigned to that word. Since each word is assigned 

many colours, this is difficult to grasp and I felt less engaged.” If it was the 

case for most of the participants to feel lest engaged to one condition than for 

the other, this task will be a crucial point to revise for future experiments. 

 

Table 1 shows a comparative scheme of the results of experiments 1-2. 
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Table 1. Comparative scheme of the neurophysiological results of experiment 1 and 

experiment 2. The colors for which we found significant ERP effects have a yellow frame. In 

experiment 1 we found a significant cluster of activation in the color-term (CT) condition for 

color 3, which is the most ambiguous (constitutes a boundary between categories) in the 

artificial color categorization (indicated with A) participants learned and in the native 

language (N) of the participants. ERP effects were also found in color 2 and color 4 in the 

term-color (TC) condition. In experiment 2 an ERP effect was found in the  CT condition only 

for color 5, which is the most ambiguous color in the native categorization  (N) of the 

participants and none was found for color 3, the most ambiguous color in the artificial 

categorization (A). 

 

Additionally, we took a series of measurements to rule out possible 

confounding variables affecting the results of our experiments: 

- We randomized the order of the colors in the array we presented when 

participants gave their color choice to insure they were not only learning 

positions in space. 

- We run computer simulations to calculate the optimal frequencies of 

presentation of the colors. These simulations predict our experimental 

data in the sense that the fixed roles forced the participant to effectively 

change her native categorization momentarily, meaning the message 

gets through. This also helped minimize the possibility that participants 

learned color frequencies instead of mappings: they actually learned the 

color categorizations and not only that color 3 was more frequent so 

they had to choose it more often to end the game; 

- We found no correlation between the mean amplitude of the ERP effect 

across all channels for a color and its frequency during training in the 

signaling game; 

- Roughly half the participants learned an artificial color categorization 

that was consistent with their native categorization and for half the 

artificial categorization was inconsistent with their native one. This 

suggests the observed ERP effects are not directly due to the structure 

of the native categories themselves, but to how these interact with the 

learned artificial system. 
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Our results may shed light into the neural processes underlying the 

acquisition of a second language. Malt & Majid (2013) highlight after reviewing 

several studies that the long learning process a person undergoes to master 

her own native language’s naming pattern suggests that learning two or more 

languages in parallel or a second language implies greater challenge. Research 

such as Paramei & Menegaz (2013) and Athanasopoulos (2008) have shown 

that the amount of exposition a speaker has to a new language can affect the 

way she categorizes colors in her own native language. The effect we found 

may be the result of a temporary reorganization of the representation of color 

categories. However, if a longer training was applied, it may be the case this 

ERP effect changes as the new categorization starts to compete with the native 

one, mirroring the process of shifting category boundaries mentioned in the 

studies above. Further research has to be done in order to reach a better 

understanding the neural consequences of this phenomenon.  

One question raised in Chapter 1 was whether there would be any 

changes in the brain of a Spanish monolingual speaker associated with 

learning the full meaning of ‘azul’ in Galician, were he exposed to these colors 

after during communicative interactions. We may conclude that could be the 

case. Neural reorganization is expected to take place. Our results are in line 

with Goldstone (1994) and with Davidoff (2001) that suggest that cultural and 

linguistic training can affect low-level perception. However, probably not so 

much at the perception level but at a later more semantic level. Also, a new 

categorization for the most ambiguous colors in the Spanish speakers’ native 

categorization might be most difficult to learn. However, the mere fact that 

the new ‘azul’ is difficult to ‘translate’ to what in Spanish is an ambiguous 

color should not be what produces an ERP effect in Spanish speakers as, 

according to our results, we would still see difference between learned and 

incongruent trials and no effects in the TC condition.  

 



General Discussion 

100 
 

For further research, it would also be interesting to investigate the 

possible plastic changes in the brain following training with our paradigm, 

using magnetic resonance imaging similar to Kwok et al. (2011).   

In conclusion, our work shows that, by using laboratory models, one can 

successfully investigate the neural precursors of the acquisition of novel 

lexical and semantic categories in language interaction scenarios, involving 

coordination and communication among agents by means of signals. 
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