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Abstract

This thesis consists of two parts. The first part addresses the issue of

conformal anomaly matching from the holographic perspective and is

reported in chapter 2. The second part aims to the study of higher

spin generalisations of black holes in 3D and is reported in chapters

3 and 4.

In chapter 2 we discuss various issues related to the understanding of

the conformal anomaly matching in CFT from the dual holographic

viewpoint. First, we act with a PBH diffeomorphism on a generic

5D RG flow geometry and show that the corresponding on-shell bulk

action reproduces the Wess-Zumino term for the dilaton of broken

conformal symmetry, with the expected coefficient aUV − aIR. Then,

we consider a specific 3D example of RG flow whose UV asymptotics

is normalizable and admits a 6D lifting. We promote a modulus ρ

appearing in the geometry to a function of boundary coordinates. In

a 6D description ρ is the scale of an SU(2) instanton. We determine

the smooth deformed background up to second order in the space-

time derivatives of ρ and find that the 3D on-shell action reproduces

a boundary kinetic term for the massless field τ = log ρ with the

correct coefficient δc = cUV − cIR. We further analyze the linearized

fluctuations around the deformed background geometry and compute

the one-point functions < Tµν > and show that they are reproduced

by a Liouville-type action for the massless scalar τ , with background

charge due to the coupling to the 2D curvature R(2). The resulting

central charge matches δc. We give an interpretation of this action

in terms of the (4, 0) SCFT of the D1-D5 system in type I theory.



The content of this chapter has been reported in arXiv:1307.3784v3

[hep-th] (JHEP 1311 (2013) 044).

In chapter 3 we address some issues of recent interest, related to the

asymptotic symmetry algebra of higher spin black holes in sl(3,R)×
sl(3,R) Chern Simons (CS) formulation. In our analysis we resort to

both, Regge-Teitelboim and Dirac bracket methods and when possible

identify them. We compute explicitly the Dirac bracket algebra on the

phase space, in both, diagonal and principal embeddings. The result

for principal embedding is shown to be isomorphic to W
(2)
3 ×W

(2)
3 .

Our revision complements the viewpoints of [1, 2]. The content of

this chapter has been reported in arXiv:1407.8241 [hep-th].

In chapter 4 we present a class of 3D black holes based on flat con-

nections which are polynomials in the BTZ hs(λ)×hs(λ)-valued con-

nection. We solve analytically the fluctuation equations of matter in

their background and find the spectrum of their Quasi Normal Modes.

We analyze the bulk to boundary two-point functions. We also relate

our results and those arising in other backgrounds discussed recently

in the literature on the subject. The content of this chapter has been

reported in arXiv:1407.5203v2 [hep-th](submitted to JHEP).
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1

Introduction

The proof of the a-theorem in D=4 CFT and the alternative proof of c-theorem

in D=2 CFT [3], given in [4, 5], inspired by the anomaly matching argument

of [6], has prompted several groups to address the issue of a description of the

corresponding mechanism on the dual gravity side [7, 8]. While a sort of a(c)-

“theorem” is known to hold for RG-flows in the context of gauged supergravity

[9, 10], as a consequence of the positive energy condition, which guarantees the

monotonic decrease of the a(c) function from UV to IR [11]1, one of the aims of

the renewed interest on the topic has been somewhat different: the field-theoretic

anomaly matching argument implies the existence of an IR effective action for

the conformal mode, which in the case of spontaneous breaking of conformal

invariance is the physical dilaton, whereas for a RG flow due to relevant per-

turbations is a Weyl mode of the classical background metric (“spurion”). In

any case, upon combined Weyl shifting of the conformal mode and the back-

ground metric, the effective action reproduces the conformal anomaly of amount

aUV − aIR (cUV − cIR), therefore matching the full conformal anomaly of the

UV CFT. This effective action therefore is nothing but the Wess-Zumino local

term corresponding to broken conformal invariance. So, one obvious question is

how to obtain the correct Wess-Zumino term for the dilaton (or spurion) from

the dual gravity side. One of the purposes of our study is to discuss this issue

offering a different approach from those mentioned above. In known examples

1 Different approaches have been discussed lately [12, 13, 14].
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1. INTRODUCTION

of 4D RG flows corresponding to spontaneous breaking of conformal invariance

on the Coulomb branch of N = 4 Yang-Mills theory [15, 16, 17, 18], indeed the

existence of a massless scalar identifiable with the CFT’s dilaton (see also [8, 19])

has been shown. However, the background geometry is singular in the IR, so that

one does not have a full control on the geometry all along the RG flow. It would

be therefore desirable to have an explicit example which is completely smooth

from UV to IR, and indeed we will discuss such an example in the AdS3/CFT2

context.

Before going to analyze in detail a specific example, we will generally ask

what is the bulk mode representing the spurion field of the CFT. The spurion

couples to field theory operators according to their scale dimension and trans-

forms under conformal transformations by Weyl shifts. These properties point

towards an identification of this mode with the PBH (Penrose-Brown-Henneaux)-

diffeomorphism, which are bulk diffeomorphisms inducing Weyl transformations

on the boundary metric, parametrized by the spurion field τ . This identification

has been first adopted in [20, 21] to study holographic conformal anomalies and

also recently in [7, 8, 22] to address the anomaly matching issue from the gravity

side.

As will be shown in section 2.1, for the case of a generic 4D RG flow, by

looking at how PBH diffeomorphisms act on the background geometry at the

required order in a derivative expansion of τ , we will compute the regularized

bulk action for the PBH-transformed geometry and show that it contains a finite

contribution proportional to the Wess-Zumino term for τ , with proportionality

constant given by aUV − aIR.

In the case where conformal invariance is spontaneously broken, when D > 2,

one expects to have a physical massless scalar on the boundary CFT, the dilaton,

which is the Goldstone boson associated to the broken conformal invariance.

As stressed in [8], one expects on general grounds that the dilaton should be

associated to a normalizable bulk zero mode, and therefore cannot be identified

with the PBH spurion, which is related to a non normalizable deformation of the

background geometry.

In section 2.2 we will follow a different approach to the problem: starting from

an explicit, smooth RG flow geometry in 3D gauged supergravity [23], we will

2



promote some moduli appearing in the solution to space-time dependent fields.

More specifically, we will identify a modulus which, upon lifting the solution to

6D, is in fact the scale ρ of an SU(2) Yang-Mills instanton. We will then find

the new solution of the supergravity equations of motion up to second order in

the space-time derivatives of ρ. We will find that demanding regularity of the

deformed geometry forces to switch on a source for a scalar field. We will then

compute the on-shell bulk action and verify that this reproduces the correct ki-

netic term boundary action for the massless scalar field τ = log ρ, with coefficient

δc = cUV − cIR
1. The computation of the CFT effective action is done up to

second order in derivative expansion. Namely, only the leading term in the full IR

effective action is computed, and our procedure is similar to the one followed in

[24] for the derivation of the equations of hydrodynamics from AdS/CFT. In sec-

tion 2.3 we reconsider the problem from a 6D viewpoint [25]: the 6D description

has the advantage of making more transparent the 10D origin of our geometry

in terms of a configuration of D1 and D5 branes in type I string theory 2.

Here we take one step further: not only we determine the deformed back-

ground involving two derivatives of ρ but also solve the linearized equations of

motion around it to determine the on-shell fluctuations. This allows us to com-

pute one-point functions of the boundary stress-energy tensor < Tµν >, from

which we deduce that the boundary action for τ is precisely the 2D Wess-Zumino

term of broken conformal invariance, i.e. a massless scalar coupled to the 2D

curvature R(2) and overall coefficient δc. An obvious question is what the field τ

and its action represent on the dual CFT. We will argue that the interpretation of

the effective field theory for τ is a manifestation of the mechanism studied in [28],

describing the separation of a D1/D5 sub-system from a given D1/D5 system

from the viewpoint of the (4, 4) boundary CFT. There, from the Higgs branch,

one obtains an action for the radial component of vector multiplet scalars which

couple to the hypermultiplets, in the form of a 2D scalar field with background

1This new field τ should not be confused with the spurion fields discussed in sections 2.1

and 2.2. We hope not to confuse with this abuse of notation.
2As it will be clear in section 2.3, the background geometry involves to a superposition of

D5 branes and a gauge 5-brane [26] supported by the SU(2) instanton. The latter is interpreted

as a D5 branes in the small instanton limit ρ→ 0 [27].

3



1. INTRODUCTION

charge, such that its conformal anomaly compensates the variation of the central

charge due to the emission of the sub-system. In our case we will see that in

the limit ρ → ∞, the gauge five-brane decouples, whereas in the limit ρ → 0

it becomes a D5-brane: these two limits correspond in turn to the IR and UV

regions of the RG flow, respectively. The effective action for τ = log ρ accounts,

in the limit of large charges, precisely for the δc from the UV to the IR in the RG

flow. We will give an interpretation of the action for τ in terms of the effective

field theory of the D1-D5 system in presence of D9 branes in type I theory.

We stress that the above procedure, although, for technical reasons, imple-

mented explicitly in the context of an AdS3/CFT2 example, we believe should

produce the correct Wess-Zumino dilaton effective action even in the D = 4 case,

had we an explicit, analytic and smooth RG flow triggered by a v.e.v. in the UV.

Of course, in this case we should have pushed the study of equations of motion

up to fourth order in the derivative expansion.

In the second part of this thesis we attempt to study distinctive features of

black holes in the context of 3D higher spin theories. We start by trying to

provide a hint for classification of charges in the case of sl(3,R) Chern Simon

formulation. Thereafter we proceed to present and study a class of solutions that

we argue should be interpreted as black holes.

Higher spin (HS) theories [29, 30, 31, 32] in 3D, have been of great interest

recently and specifically, the study of higher spin generalisations of black holes in

the Chern-Simons formulation has been one of the most active lines of research

[1, 2, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43].

The 3D Chern-Simons (CS) is a theory of pure gauge degrees of freedom.

However, in backgrounds with conformal boundaries, like AdS3, it is not a trivial

theory. To have a well defined variational principle, boundary terms should be

added to the original action. These boundary terms are designed to make the

total action stationary under motion in a given region of the moduli space of flat

connections. The selection of that region, a.k.a. imposition of boundary con-

ditions, defines the domain of the moduli space to work with: the phase space.

Motion outside of the phase space does not leave the action invariant and it is

incompatible with the variational principle. The corresponding gauge transfor-

mations are dubbed non residual. Motion inside the phase space instead, leaves

4



the total action invariant by construction, then it is admissible. The correspond-

ing gauge transformations are called residual and they emerge as global symmetry

transformations. It is very important to stress that throughout chapter 3 we will

use the term phase space in the sense stated above, and not to denote all possible

initial data in a given Cauchy surface, as it is usually done.

In the last few years some families of phase spaces have been argued to contain

generalisations of the BTZ black hole [44]: They are called higher spin black holes.

See [2, 33]. Each one of these families is labeled by a set of numbers µ, µ̄ usually

called chemical potentials. The name derives from the fact that they can be

identified with the chemical potentials of conserved higher spin currents in a 2D

CFT. Recently, attention has been drawn to the fixed time canonical symplectic

structure of these families [1, 2] (studies for highest weight boundary conditions

can be found at [32, 45, 46]). One main point of concern, regards whether the

associated Asymptotic Symmetry Algebra (ASA) is or is not independent on

the chemical potentials (µ, µ̄). An important fact that calls for attention is that

black holes are zero modes of a corresponding family, and so different phase spaces

sharing one of them, will provide different descriptions of the given black hole [47].

In fact the initial gauge invariance guarantees the presence of a map between any

two of such descriptions, the gauge transformation being of course non residual.

However, as we shall show, not all non residual gauge transformations take to a

new description of the phase space while preserving the form of the zero modes.

In chapter 3 we will address issues related to these questions. In order to simplify

the analysis we will do it in a perturbative framework and for the case in which

the gauge algebra is sl(3,R).

The outline of this chapter is as follows. In section 3 we start by showing how

to identify the Regge-Teitelboim (RT) formalism [48] with the Dirac one, for a

family (µ3, µ̄3) in sl(3,R) CS presented in [1]. Even though, as already known [1],

one can arrive at a fixed time W3 symplectic structure by use of RT formalism,

we will show that this procedure is equivalent to the implementation of a non

residual gauge transformation to a new phase space, that does not include the

(µ3, µ̄3) black hole as zero mode. Thereafter we compute the Dirac brackets at a

fixed time and show that they can not be identified to the W3 algebra. Finally,

we compute the fixed time Dirac brackets in a different phase space that does

5



1. INTRODUCTION

include the (µ3, µ̄3) black hole as zero mode [2, 33], and show that their algebra

is isomorphic to W
(2)
3 [2].

A distinctive feature of Black Holes (BH), in both asymptotically flat or

asymptotically (A)dS space-times, is the existence of “Quasi Normal Modes”

(QNM): if one perturbs a Black Hole one finds damped modes, i.e. modes whose

frequencies are complex, signalling the fact that the corresponding field can decay

by falling into the Black Hole. In the AdS case these modes have an interpreta-

tion in the dual CFT as describing the approach to equilibrium of the perturbed

thermal state [49, 50, 51]. This phenomenon has been studied extensively, espe-

cially after the proposal of the AdS/CFT correspondence, in the ordinary (su-

per)gravity context in various dimensions. In particular, for gravity coupled to

various matters in D = 3, the case of the BTZ BH has been studied in detail.

In chapter 4 we will be interested in generalising the problem to the context

of higher spin systems in D = 3. Such systems, with finite number of higher spins

≤ N , can be formulated via Chern-Simons theories based on sl(N) algebras, but,

like ordinary 3D gravity, they do not contain propagating degrees of freedom and,

moreover, they do not allow coupling to propagating matter. In order to introduce

(scalar) matter coupled to the higher spin sector, one formulates the theory in

terms of a flat connection (A, Ā) for the infinite dimensional algebra hs(λ)×hs(λ)

[29, 30, 31]. The matter fields are packaged in an algebra valued master field C,

a section obeying the horizontality condition with respect to the flat connection,

in a way that will be detailed below. It turns out that if one embeds the BTZ

BH in this system, one can follow a “folding” procedure to reduce the equation

of motion for C in the BTZ background to an ordinary second order equation for

the lowest, scalar, component of the field C, with a λ dependent mass given by

m2 = λ2 − 1. Therefore the corresponding QNM are the usual ones found for a

massive scalar field coupled to BTZ in the ordinary gravity case.

However, the higher spin systems are expected to admit generalized BH’s

carrying different charges, other than the mass and angular momentum carried

in the BTZ case [1, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 52]. The issue then

arises to study matter fluctuations in their background and possibly identify the

spectrum of the corresponding QNM. Unlike for the BTZ background, one expects

in general the “folding” procedure to give rise to a differential equation of order

6



higher than two for the matter scalar field and it is not to be expected to be able

to solve it analytically.

In chapter 4 we present a class of flat connections, depending on parameters

(µ, µ̄), in such a way that when µ and µ̄ go to zero we recover the BTZ connection.

We will argue that they correspond to BH configurations in 3D hs(λ) × hs(λ)

higher spin gravity. In addition, we will be able to solve the equations for matter

fluctuations analytically and therefore identify the presence of QNM.

As first discussed in [33], establishing whether a given geometry represents

a BH in higher spin theories is a subtle issue, due to the presence of a higher

spin gauge degeneracy that can, to mention an example, relate seemingly BH

geometries to geometries without horizons. We will follow the criterion of [33]

and impose the BTZ holonomy conditions on the connection around the euclidean

time S1. As a result spacetime tensor fields [32] will be shown to behave smoothly

at the horizon.

But as remarked above, further evidence arises from the analysis of their inter-

action with matter, in particular from the existence of QNM and their dispersion

relations. Another subtle and important issue, whose general aspects have been

subject of recent investigations, with different conclusions, [1, 2, 39, 40, 53], con-

cerns the precise determination of the charges carried by our backgrounds and,

more generally, their asymptotic symmetry algebras. Perhaps, one could get a

clue of the general answer by studying the truncations of hs(λ) with integer λ,

we hope to come back to this problem in the future. In this way one would be

able to, first, properly define their charges and, second, identify whether they are

of higher spin character or not.

As for the bulk to boundary 2-point function, even though the differential

equations of motion that determine them are of order higher than two, they are

described by combinations of pairs of solutions of a 2nd order PDE’s. Only one of

all these pairs is smoothly related to the solutions corresponding to a real scalar

field with m2 = λ2 − 1 propagating in the BTZ black hole [30, 54], as µ, µ̄→ 0.

The outline of chapter 4 is as follows. In the first section in 4 we introduce

the ansätze mentioned above and show that they define smooth horizons by use

of the relation between connections and metric-like fields proposed in [32]. Then,

7



1. INTRODUCTION

we identify our (µ,µ̄) with the so called chemical potentials in the solutions intro-

duced in [33] and [2], that from now on we denote as GK and BHPT21, respec-

tively. We do it by identifying the gauge transformation relating our connection

to those ansätze. Next, in section 4.1 we discuss the equations of motion for the

effective scalar in the BH backgrounds and describe the strategy to solve them

for a generic element in the class. We give the explicit solutions for a couple of

particular cases. An important fact to stress on, is that even though connections

and generic metric like fields do break the asymptotic of AdS, the equations for

fluctuations do preserve the behaviour of scalars minimally coupled to AdS in all

cases.

In section 4.2 we show how to obtain the QNM and bulk to boundary 2-point

functions for a generic element in the class and discuss them in the same par-

ticular cases. As a last check, we transform our results to the GK and BHPT2

descriptions and verify that the result of the gauge transformation coincides with

the perturbative solution of the equations of motion for linear fluctuations of

matter, written in those ansätze, as it should.

1Strictly speaking its embedding into hs(λ)× hs(λ).
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matching
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2

Holographic anomaly matching

In this chapter we discuss various issues related to the understanding of the

conformal anomaly matching in CFT from the dual holographic viewpoint. First,

we act with a PBH diffeomorphism on a generic 5D RG flow geometry and show

that the corresponding on-shell bulk action reproduces the Wess-Zumino term for

the dilaton of broken conformal symmetry, with the expected coefficient aUV−aIR.

Then, we consider a specific 3D example of RG flow whose UV asymptotics is

normalisable and admits a 6D lifting. We promote a modulus ρ appearing in the

geometry to a function of boundary coordinates. In a 6D description ρ is the

scale of an SU(2) instanton. We determine the smooth deformed background up

to second order in the space-time derivatives of ρ and find that the 3D on-shell

action reproduces a boundary kinetic term for the massless field τ = log ρ with the

correct coefficient δc = cUV − cIR. We further analyse the linearized fluctuations

around the deformed background geometry and compute the one-point functions

< Tµν > and show that they are reproduced by a Liouville-type action for the

massless scalar τ , with background charge due to the coupling to the 2D curvature

R(2). The resulting central charge matches δc. We give an interpretation of this

action in terms of the (4, 0) SCFT of the D1-D5 system in type I theory.

2.1 The holographic spurion

The aim of this section is to verify that the quantum effective action for the

holographic spurion in 4D contains the Wess-Zumino term, a local term whose

11



2. HOLOGRAPHIC ANOMALY MATCHING

variation under Weyl shifts of the spurion field reproduces the conformal anomaly
1, with coefficient given by the difference of UV and IR a-central charges, in

accordance with the anomaly matching argument. We start by characterizing a

generic RG flow background and the action of PBH diffeomorphisms on it. The

action of a special class of PBH diffeomorphisms introduces a dependence of the

background on a boundary conformal mode which will play the role of the spurion.

Indeed, we will verify that the corresponding on-shell Einstein-Hilbert action

gives the correct Wess-Zumino term for the conformal mode introduced through

PBH diffeo’s. We then study the case of a flow induced by a dimension ∆ = 2

CFT operator, and check that boundary contributions coming from the Gibbons-

Hawking term and counter-terms do not affect the bulk result. A derivation of

the Wess-Zumino action has appeared in [22], studying pure gravity in AdS in

various dimensions: the spurion φ is introduced as deformation of the UV cut-off

boundary surface from z constant to z = eφ(x), z being the radial coordinate of

AdS. In appendix A.1.5 we present a covariant approach to get the same result

for the WZ term.

2.1.1 Holographic RG flows

We start by characterizing a generic RG flow geometry. For the sake of simplicity,

we are going to work only with a single scalar minimally coupled to gravity. In

the next section we will consider a specific example involving two scalar fields.

The action comprises the Einstein-Hilbert term, the kinetic and potential terms

for a scalar field φ, and the Gibbons-Hawking extrinsic curvature term at the

boundary of the space-time manifold M :

S =

∫
M

dd+1x
√
G(

1

4
R + (∂φ)2 − V (φ))−

∫
∂M

ddx
√
γ

1

4
2K, (2.1)

where K is the trace of the second fundamental form,

2K = γαβLnγαβ, (2.2)

1This is a combination of a Weyl shift of the background metric with a compensating shift

in the spurion field. In this way the remaining variation is independent of the spurion field. It

depends only on the background metric.

12



2.1 The holographic spurion

and γ is the induced metric on the boundary of M , ∂M . Ln is the Lie derivative

with respect to the unit vector field n normal to ∂M .

The metric has the form:

ds2 =
l2(y)

4

dy2

y2
+

1

y
gµν(y)dxµdxν , (2.3)

which is an AdS5 metric for constant l(y) and gµν(y) (µ, ν = 0, 1, 2, 3.). A RG flow

geometry is then characterized by the fact that the above geometry is asymptotic

to AdS5 both in the UV and IR limits, y → 0 and y →∞, respectively.

We assume that the potential V (φ) has two AdS5 critical points that we call

φUV (IR) and the background involves a solitonic field configuration φ(y) interpo-

lating monotonically between these two critical points:

φ(y) ∼ δφ(y) + φUV , when y →∞ (2.4)

φ(y) ∼ δφ(y) + φIR, when y → 0 (2.5)

Around each critical point there is an expansion:

V (φ) ∼ ΛUV (IR) +m2
UV (IR)δφ(y)2 + o(δφ(y)4), (2.6)

where δφ(y) = φ(y)−φUV (IR). By using (2.6) in the asymptotic expansion of the

equations of motion:

1

4
Rµν = ∂µφ∂νφ+

1

3
V [φ], (2.7)

one sees that the constants ΛUV (IR) play the role of cosmological constants and

fix also the radii of the two AdS5’s.

We discuss here the possibility to work in a gauge that makes easier to ap-

preciate how only the boundary data is determining the spurion effective ac-

tion. Consider a RG flow geometry of the form (2.3). Poincaré invariance of the

asymptotic value of the metric implies gµν(y) = g(y)ηµν . This is going to be an

important constraint later on. The scale length function l2(y) has the following

asymptotic behaviour:

l2(yUV ) ∼ L2
UV + δlUV y

nUV
UV , L2(yIR) ∼ L2

IR + δlIR
y
nIR
IR

. (2.8)

13



2. HOLOGRAPHIC ANOMALY MATCHING

Notice that there is still the gauge freedom:

(x, y)→ (x, h× y),

where h = h(y) is any smooth function with asymptotic values 1 in the UV/IR

fixed points. This gauge freedom allows to choose positive integers nUV and nIR

as large as desired. In particular it is always possible to choose nUV > 2. This

gauge choice does not change the final result for the effective action because this is

a family of proper diffeomorphisms leaving invariant the Einstein-Hilbert action

(we will comment on this fact later on). Its use is convenient in order to make

clear how only leading behaviour in the background solution is relevant to our

computation. At the same time it allows to get rid of any back-reaction of δlUV

and δlIR in the leading UV/IR asymptotic expansion of the equations of motion.

The metric gµν has the following UV expansion, for y → 0:

gµν = g(0)
µν + g(2)

µν y + y2
(
g(4)
µν + h(4)

µν log(y) + h̃(4)
µν log2(y)

)
+ o(y3), (2.9)

and a bulk scalar field dual to a UV field theory operator of conformal dimension

∆ = 2 that we denote as O(2), behaves like:

δφ = φ(0)y + φ̃(0)y log(y) + ..., (2.10)

where the ... stand for UV subleading terms. From the near to boundary expan-

sion of the Klein-Gordon equations it comes out the useful relation between the

conformal weight of O(2) and the mass of φ on dimensional AdSd+1:

∆UV =
d

2
+

√
d2

4
+m2L2

UV . (2.11)

In this critical case we have the standard relation between asymptotic values of

bulk fields and v.e.v.’s or sources, for the dual CFT operators: namely φ(0) is the

v.e.v. and φ̃(0) the source. We have chosen the case ∆ = 2 to take a particular

example, but one can generalise the results to any other value of ∆ ≤ 4. In the

remaining of the section we refer only to relevant perturbations.
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2.1 The holographic spurion

2.1.2 On the PBH diffeomorphisms

The PBH diffeomorphisms transform, by definition, the line element (2.3) into:

ds2 =
l2(eτy)

4y2
dy2 +

1

y
g̃µν(y)dxµdxν , (2.12)

with g̃µν given by a UV asymptotic expansion of the form (2.9):

g̃µν = e−τg(0)
µν + ... (2.13)

and h
(4)
1,2 and g(i), with i = 2, 4, determined in terms of the boundary data by the

near to boundary expansion of the equations of motion (A.10).

For the static RG flow geometry at hand, (2.3), a PBH transformation has

the following structure in terms of derivatives of τ :

xµ → xτ µ = xµ − a(1)[eτy]∂µτ − a(2)[eτy]∂µ�τ − a(3)[eτy]�µντ∂ντ

−a(4)[eτy]�τ∂µτ − a(5)[eτy](∂τ)2∂µτ +O
(
∂5
)
,

y → yτ = yeτ + b(1)[eτy](�τ) + b(2)[eτy](��τ) + b(3)[eτy](∂τ)2

+b(4)[eτy](�τ)(∂τ)2 + b(5)[eτy](∂τ)4

+b(6)[eτy]∂µτ�
µντ∂ντ + b(7)[eτy](�τ)2

+b(8)[eτy]∂µ(�τ)∂µτ +O(∂6).

(2.14)

Notice we have written the most general boundary covariant form and that this

derivative expansion of the full transformation is valid along the full flow geometry

up to the IR cut off, not only close to the boundary. The constraints implied by

preserving the form (2.12) allow to determine the form factors a(i) and b(i) in

terms of the scale length function l. To begin with, it is immediate to see that :

∂za
(1) =

l2(z)

4
,

where z = eτy, which can be readily integrated. Some of these form factors can be

settled to zero without lost of generality, since they are solution of homogeneous

differential equations. Let us study the following factor: b(1). We can look at

second order in derivatives contribution of δxµ ≡ xτ µ−xµ to the (y, y) component

15



2. HOLOGRAPHIC ANOMALY MATCHING

of the metric, which is ∼ (∂τ)2. The contributions coming from δy ≡ yτ − y

contains a linear order in y term proportional to((
− l
z

+ ∂zl

)
b(1) + l∂yb

(1)

)
�τ,

that does not match any contribution from δxµ and also a term proportional

to (∂τ)2. This implies b(1) has to be taken to vanish. Consequently a(2) would

vanish. In the same fashion one can prove b(2) can be taken to vanish and b(3) can

be found to obey the following inhomogeneous first order differential equation:(
∂zl

l
− 1

z

)
b(3) + ∂zb

(3) = − l
2

8
z,

which can be solved asymptotically to give:

b(3) ∼ −L2
UV

8
z2 +O (znUV +2) , b(3) ∼ −L2

IR

8
z2 +O (z−nIR+2) . (2.15)

Notice that so far, we have always taken the trivial homogeneous solution. In

fact we are going to see that this choice corresponds to the minimal description

of the spurion. The choice of different PBH representative 1 would translate in

a local redefinition of the field theory spurion. In the same line of logic one can

find that:

∂za
(5) =

l2

4
∂zb

(3), ∂za
(3) =

l2

2

b(3)

z
, ∂za

(4) = 0. (2.16)

From these we can infer that b(4), b(7) and b(8) obey homogeneous differential

equations provided a(4) is taken to vanish, so we set them to zero too. The

following constraints:((
∂zl

l
− 1

z

)
b(5) + ∂zb

(5)

)
= −

(
(∂zl)

2 + l∂2
z l

2l2
+

3

2

1

z2

)(
b(3)
)2 −(

2

(
∂zl

l
− 1

z

)
b(3) +

1

2
∂zb

(3)

)
∂zb

(3) − l2

4
z∂zb

(3),

(2.17)((
∂zl

l
− 1

z

)
b(6) + ∂zb

(6)

)
= − l

2

2
b(3), (2.18)

1 Namely, to pick up non trivial solutions of the homogeneous differential equations for the

form factors.

16



2.1 The holographic spurion

give the UV/IR asymptotic expansions for the form factors:

b(5) ∼ −L4
UV

128
z3 + ..., b(5) ∼ −L4

IR

128
z3 + ..., (2.19)

b(6) ∼ −L4
UV

32
z3 + ..., b(6) ∼ −L4

IR

32
z3 + ..., (2.20)

where the ... stand for subleading contributions. In appendix (A.1.2) we extend

these results to the case of non static geometries. We use those non static cases in

section 2.2 to check out the general results of this section in a particular example.

Before closing the discussion, let us comment about a different kind of PBH

modes. To make the discussion simpler we restrict our analysis to the level of

PBH zero modes i.e. τ is taken to be a constant. Then, is easy to see that one

can take the transformation

y → yτ = eh×τy, with h(y) −−−−−→
y→(0,∞)

h(UV,IR).

This arbitrary function h constitutes a huge freedom. In particular we notice

that one can choose a PBH which does not affect the UV boundary data at all,

but does change the IR side, namely such that:

h ∼ 0, h ∼ 1,

respectively, or vice versa. This kind of PBH’s are briefly considered in appendix

A.1.2.

Besides acting on the metric the change of coordinates also changes the form of

the scalars in our background. We focus on the UV asymptotic. So, for instance

the case of the dual to a ∆ = 2 operator the transformation laws are:

φ̃(0) → eτ φ̃(0), φ(0) → eτφ(0) + τeτ φ̃(0). (2.21)

Notice the source transforms covariantly, but not the v.e.v.. This asymptotic

action will be useful later on when solving the near to boundary equations of

motion.

As already mentioned, we assume smoothness of the scalar field configurations

in the IR. It is interesting however to explore an extra source of IR divergencies.
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2. HOLOGRAPHIC ANOMALY MATCHING

The original 5D metric is assumed to be smooth and asymptotically AdS in the

IR limit, y →∞:

ds2
IR =

L2
IR

4

dy2

y2
+

1

y
g(0)
µν dx

µdxν . (2.22)

This AdS limit assumption implies that g
(0)
µν = ηµν . Non trivial space time de-

pendence for g(0) sources an infinite tower of extra contributions that break AdS

limit in the IR. For instance, a Weyl shifted representative will alter the IR AdS

behaviour. The change is given by:

g(0)
µν → e−τg(0)

µν + yg(2)
µν [e−τg(0)] + y2g(4)

µν [e−τg(0)] + y2(h(4)
µν [e−τg(0)] log(y)) + ...,

in (2.22). Clearly AdS IR behaviour, y →∞, is broken in this case. This is related

with the fact that PBH diffeomorphisms are singular changes of coordinates in

the IR. These modes alter significantly the IR behaviour of the background metric.

Let us comment on a different approach that will be employed in the following

to study the effect of PBH diffeo’s on specific background solutions. Clearly

PBH diffeo’s map a solution of the EoM into another. By knowing the UV and

IR leading behaviours, one could then use near to boundary equations of motion

to reconstruct next to leading behaviour in both extrema of the flow. Namely we

can find the factors g(2), g(4) and h(4)’s in (2.9) in terms of the Weyl shift of the

boundary metric eτg(0). We can then evaluate the bulk and boundary GH terms

of the action with this near to boundary series expansion. Some information will

be unaccessible with this approach, concretely the finite part of the bulk term

remains unknown after use of this method. In appendix A.1.4.1 we compute

the divergent terms of the bulk term and find exact agreement with the results

posted in the next subsection. We will use this procedure to evaluate the GH

and counter-terms indeed.

2.1.3 Wess-Zumino Term

Given its indefinite y-integral S[y], the bulk action can be written as:

Sbulk = S[yUV ]− S[yIR].
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2.1 The holographic spurion

The divergent parts of the bulk action come from the asymptotic expansions of

the primitive S:

S ∼
∫
d4x

(
a

(0)
UV

y2
UV

+
a

(2)
UV

yUV
+ a

(4)
UV log(yUV ) +O(1)

)
, S ∼ SIR. (2.23)

For a generic static RG flow solution a
(0)
UV,IR = 1

2LUV/IR
. The factors a

(2)
UV/IR and

a
(4)
UV/IR, will depend on the specific matter content of the bulk theory at hand.

As for our particular choice of ∆’s in the UV/IR, the a
(2)
UV/IR coefficients are

proportional to the 2D Ricci Scalar R of the boundary metric g(0) and vanish for

the static case g
(0)
µν = ηµν (See equation (A.14) and (A.15)). However, a different

choice of matter content could provide a non trivial a
(2)
UV/IR[ηµν ] dependence on the

parameters of the flow, so in order to keep the discussion as general as possible

until the very end of the section, we keep the static limit of both a
(2)
UV/IR as

arbitrary. As for the expansions of the primitive S in a generic static case, one

gets thence:

S[yUV ] ∼
∫
d4x

(
1

2LUV

1

y2
UV

+
a

(2)
UV [ηµν ]

yUV
+ a

(4)
UV [ηµν ] log(yUV ) +O (1)

)
,

(2.24)

S[yIR] ∼
∫
d4x

(
1

2LIR

1

y2
IR

+
a

(2)
IR[ηµν ]

yIR
+ a

(4)
IR[ηµν ] log(yIR) +O (1)

)
.

(2.25)

The terms a
(4)
uv,ir[ηµν ] are the contributions to the Weyl anomaly coming from

the matter sector of the dual CFT, they must be proportional to the sources

of the dual operators. The order one contribution is completely arbitrary in

near to boundary analysis. Notice that we have freedom to add up an arbitrary,

independent of y functional,
∫
d4x C, in the expansions. The difference of both

of these functionals carries all the physical meaning and it is undetermined by

the near to boundary analysis. To determine its dependence on the parameters

of the flow, full knowledge of the primitive S is needed.

Next we aim to compute the change of the bulk action introduced before,

under an active PBH diffeomorphism. The full action is invariant under (passive)
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2. HOLOGRAPHIC ANOMALY MATCHING

diffeomorphisms xµ = fµ(x′), under which, for example, the metric tensor changes

as:

g′µν(x
′) =

(
∂xρ

∂x′µ

)(
∂xσ

∂x′ν

)
gρσ(x), (2.26)

and similarly for other tensor fields. Here the transformed tensors are evaluated

at the new coordinate x′. On the other hand by an active diffeomorphism, the

argument of a tensor field is kept fixed, i.e:

g(x)→ g′(x). (2.27)

The infinitesimal version of this transformation above is given by the Lie-derivative

acting on g. The difference between the two viewpoints becomes apparent on a

manifold M with boundaries. Let us take a manifold with two disconnected

boundaries to be time-like hypersurfaces. An integration of a scalar density over

this manifold is invariant in the following sense:

S[BUV , BIR, g] =

∫ BUV

BIR

dDx
√
g(x)L[g(x)]

=

∫ f−1(BUV )

f−1(BIR)

dDx′
√
g′(x′)L[g′(x′)]

= S[f−1(BUV ), f−1(BIR), g′], (2.28)

where the boundaries are denoted by BUV (IR). By f−1(BUV ) we mean the shape

of the boundaries in the new coordinates x′ = f(x). On the other hand, under

an active transformation we have the change:

S[BUV , BIR, g]→ S[BUV , BIR, g
′]. (2.29)

By using (2.28), the variation of the corresponding functional under an active

diffeomorphism can be written as:

∆fS = S[BUV , BIR, g
′]− S[BUV , BIR, g]

= S[f(BUV ), f(BIR), g]− S[BUV , BIR, g], (2.30)

where in the last step we have used the invariance under the passive diffeomor-

phism induced by the inverse map f−1. Of course, if the maps f or f−1 leave
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2.1 The holographic spurion

invariant the boundary conditions then the functional S is invariant even under

the active transformation induced by them.

From now on in this section we specialize to D = 5 with x5 ≡ y. We take

as diffeomorphism the PBH diffeomorphism discussed earlier. The aim is to

compute the on-shell action of the PBH mode τ . From the last discussion it

follows that all needed is the on-shell action in terms of the original background,

namely the background before performing the PBH transformation, and a choice

of time-like boundary surfaces, which we take to be:

y = yUV , y = yIR. (2.31)

Under a generic PBH GCT this region transforms into:

−∞ < t, x <∞, yτIR < y < yτUV , (2.32)

with yτUV and yτIR given by the action (2.14) on yUV and yIR respectively. In

virtue of (2.30) we compute the transformed bulk action:

S[yUV ]− S[yIR] =

∫
d4x

∫ yUV

yIR

dy
√
−gL

→
∫
d4x

∫ yτUV

yτIR

dy
√
−gL = S[yτUV ]− S[yτIR], (2.33)

where yτ is given in (2.14). Given the near to boundary expansion of the bulk

action for boundary metric g(0) = η:

Sdiv =

∫
d4x

(
1

2LUV

1

y2
UV

+
a

(2)
UV [ηµν ]

yUV
+ a

(4)
UV [ηµν ] log(yUV ) + ...

)
,

with cut off surface at y = yUV , we can then compute the leading terms in the

PBH transformed effective action by using (2.14) and (2.33):∫
d4x

1

y2
UV

→
∫
d4x

(
1

z2
UV

− 2

(
b(3)(∂τ)2

z3
UV

)
−

2

(
b(5)(∂τ)4 + b(6)∂µτ�µντ∂ντ

z3
UV

)
+ 3

((
b(3)
)2

(∂τ)4

z4
UV

))

→
∫
d4x

(
1

z2
UV

+
L2
UV

4

(∂τ)2

zUV
+
L4
UV

32

(
(∂τ)4 + 2∂µτ∂ντ�

µντ
)
...

)
→

∫
d4x

(
1

z2
UV

+
L2
UV

4

(∂τ)2

zUV
+
L4
UV

32

(
(∂τ)4 − 4�τ(∂τ)2

)
...

)
.

(2.34)
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Similar contribution comes from the IR part of the primitive S. Should we

demand IR smoothness of every background field, the static coefficients a
(2)
IR[ηµν ]

and a
(4)
IR[ηµν ] will vanish automatically (See last paragraph in appendix A.1.4).

So finally, we get the following form for the regularized bulk action:

Sregbulk =

∫
d4x

(
e−2τ

2LUV y2
UV

+
LUV e

−τ

8yUV
(∂τ)2+

(L2
UV a

(2)
UV [ηµν ]− L2

IRa
(2)
IR[ηµν ])

8
(∂τ)2+

(a
(4)
UV [ηµν ]− a(4)

IR[ηµν ])τ +
∆a

8

(
(∂τ)4 − 4�τ(∂τ)2

))
+ . . . ,

(2.35)

where ∆a = aUV − aIR with aUV/IR =
L3
UV/IR

8
. The . . . stand for logarithmic

divergent terms that will be minimally subtracted. Notice that the gravitational

Wess-Zumino term comes out with a universal coefficient ∆a, independent of the

interior properties of the flow geometry. Specific properties of the flow determine

the normalization of the kinetic term and the Wess-Zumino term corresponding

to the matter Weyl Anomaly. Next, we have to check whether this result still

holds after adding the GH term and performing the holographic renormalization.

So, from now on we restrict the discussion to the case of ∆ = 2. The finite

Gibbons-Hawking contribution can be computed with the data given in appendix

A.1.4.1. One verifies that the contributions of both boundaries are independent

of derivatives of τ . The difference SGH |UVIR gives a finite contribution proportional

to
∫
d4xφ0φ̃(0) which after a PBH tranformation reduces to a potential term for

τ .

Notice that this term vanishes for a v.e.v. driven flow, so in this case no

finite contribution at all arises. We will crosscheck this in the particular exam-

ple studied in the next sections. In the case of a source driven flow, the finite

contribution
∫
d4xφ0φ̃(0) give a potential term which is not Weyl invariant, as

one can notice from the transformation properties (2.21). In fact its infinitesimal

Weyl transformation generates an anomalous variation proportional to the source

square δτ
(

8 L3
UV

3
(φ̃(0))2

)
. From the passive point of view, the GH term presents

an anomaly contribution log(yUV )
(

8 L3
UV

3
(φ̃(0))2

)
that after the cut off redefini-
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tion originates a matter Wess-Zumino term
∫
d4x

(
8 L3

UV

3
(φ̃(0))2

)
τ (See equations

(A.12) and (A.18)).

Next, we analyse the counter-terms that are needed in order to renormalize

UV divergencies. Covariant counter-terms involve the boundary cosmological

constant and curvatures for g(0) and the boundary values of the scalar field,

namely v.e.v. and source:∫
d4x
√
γ =

∫
d4x
√
g(0)

(
1

y2
UV

+
1

yUV

R

12
+

2

3
φ̃2

(0) +
4

3
φ2

(0) + ...

)
,

(2.36)∫
d4x
√
γR[γ] =

∫
d4x
√
g(0)

(
R

yUV
+
R2

12

)
, (2.37)∫

d4x
√
γΦ2(x, yUV ) =

∫
d4x
√
g(0)

(
φ2

(0) + . . .
)
, (2.38)

where . . . stand for logarithmic dependences that at the very end will be min-

imally substracted. We take g(0) to be conformally flat and then use the Weyl

transformation properties of the boundary invariants to compute the Weyl factor

dependence of counter-terms. The “volume” counter-term (2.36) is used to renor-

malize the infinite volume term of an asymptotically AdS5 space. One then needs

to use the R-term to cancel the next to leading divergent term. In the process

one remains with a finite potential contribution that even for a v.e.v. driven flow

gives a non vanishing energy-momentum trace contribution. The usual procedure

[15, 55] is then to use the finite covariant counter-term (2.38) to demand confor-

mal invariance in the renormalized theory, when the source is switched off. The

counter-term action satisfying this requirements is:

SCT =

∫
d4x
√
γ

(
3

2
− 1

8
R[γ]− 2Φ2

)
|UV .

This action will provide an extra finite contribution to (2.35) proportional to:∫
d4xe−2τR2[e−τη] ∼

∫
d4x

(
�τ − (∂τ)2

)2
.
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Finally the renormalized action takes the form:

S∆=2
ren = S∆=2

reg + S∆=2
GH + SCT

=

∫
d4x

(
16 L3

UV

3
φ̃2

(0)τ +
∆a

8

(
(∂τ)4 − 4�τ(∂τ)2

)
+β
(
�τ − (∂τ)2

)2
+O(1) +O

(
∂6
))
.

We should notice that no second derivative term, (∂τ)2, is present in this partic-

ular case, just as in the similar discussion of [22]. However, there is a source of

higher derivative terms: due to the fact that the PBH diffeomorphism used is

singular in the IR. In fact, the higher orders in derivatives come with the higher

order IR singularities. So, the higher derivative terms are counted by powers of

the IR cut off. We do not address here the issue of renormalizing these terms. The

main idea here was to show the presence of a Wess-Zumino term compensating

the anomaly difference between fixed points. The term O(1) stands for possible

finite contributions (4D cosmological constants) in the static on shell action plus

GH term and CT. As for the GH term this contribution vanishes for v.e.v. driven

flows.
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2.2 RG flow in N = 4 3D gauged supergravity

2.2 RG flow in N = 4 3D gauged supergravity

In this section we consider a particular, explicit and analytic example of a Holo-

graphic RG flow in 3D gauged supergravity. The reason to analyse this particular

example is twofold: first, it is relatively simple and analytic, and, second, it is

completely smooth, even in the infrared region. Indeed smoothness will be our

guiding principle in deforming the background geometry in the way we will detail

in this section. We will promote some integration constants (moduli) present in

the flow solution to space-time dependent fields and identify among them the one

which corresponds to a specific field in the boundary CFT. To get still a solution

of the equations of motion we will have to change the background to take into

account the back reaction of space-time derivatives acting on the moduli fields.

This will be done in a perturbative expansion in the number of space-time deriva-

tives. The starting point is one of the explicit examples of RG flows studied in

[23], where domain wall solutions in N = 4 3D gauged supergravity were found.

These solutions are obtained by analyzing first order BPS conditions and respect

1/2 of the bulk supersymmetry. They describe holographic RG flows between

(4, 0) dual SCFT’s. It turns out that the solution we will be considering admits

a consistent lift to 6D supergravity, which will be reviewed and used in the next

section. In this section the analysis will be purely three-dimensional.

We start by writing the action and equations of motion for the three dimen-

sional theory at hand. In this case the spectrum reduces to the metric g, and a

pair of scalars A and φ, which are left over after truncating the original scalar

manifold. The action is:

Sbulkscalars =

∫
d3x
√
−g
(
−R

4
− 3

4

(∂A)2

(1− A2)2 −
1

4
(∂φ)2 − V (A, φ)

)
, (2.39)

with potential for the scalar fields given by:

V = 1
2
e−4φ

(
2e2φ(A2(g2A(g2A(A2−3)+4g1)−3g2

1)+g2
1)

(A2−1)3 + 4c2
1

)
. (2.40)

The corresponding set of equations of motion is then given by:
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2. HOLOGRAPHIC ANOMALY MATCHING

1

2
�φ− ∂φV (A, φ) = 0, (2.41)

3

2

1√
−g

∂µ(
1

(1− A2)2
gµν∂νA)− ∂AV (A, φ) = 0, (2.42)

−1

4
Rµν −

3

4

∂µA∂νA

(1− A2)2
− 1

4
∂µφ∂νφ− gµνV (A, φ) = 0. (2.43)

2.2.1 The domain wall solution and its moduli

In this subsection we review the domain wall solution describing the RG flow on

the dual CFT and identify its moduli. Let us choose coordinates xν = t, x, r and

the 2D (t, x)-Poincaré invariant domain wall ansatz for the line element:

ds2 = dr2 + e2f(r)ηµνdx
µdxν , (2.44)

and the scalar field profiles AB(r) and φB(r).

The equations of motion reduce then to the following set:

f ′φ′B +
φ′′B
2
− ∂φBV = 0, (2.45)

3A′′B + 6A′Bf
′ + 6

ABA
′2
B

(1− A2
B)
− 2

(
1− A2

B

)2
∂ABV = 0, (2.46)(

2f ′′ + 2f ′2 + φ′2B +
3A′2B

(A2
B − 1)

2 + 4V

)
= 0, (2.47)

where the primes denote derivative with respect to r. It is then straightforward

to show that the following field configuration:

eφB(r) =
2c1

(
g2

2 −
g2
1ρ

2

(ρ+y(r))2

)
g1g2

2

√
1− AB(r)2

, (2.48)

AB(r) =
g1

g2

ρ

(ρ+ y(r))
, e2f(r) =

1

2
e2spy(r)

(
g2

2 (ρ+ y(r))− g2
1ρ

(ρ+ y(r))

)2

,(2.49)

with y(r) = e2g1F (r) is the most general solution of (2.45),(2.42), (2.41), provided:

F ′(r) =
g1g

2
2 (ρ+ y(r))2

2c1

(
g2

2 (ρ+ y(r))2 − g2
1ρ

2
) . (2.50)
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2.2 RG flow in N = 4 3D gauged supergravity

We can solve this equation explicitly for r(F):

r(F ) =
2c1

(
F(g2

2−g2
1)−

g1ρ

2(e2Fg1+ρ)
+ 1

2
g1 log(e2Fg1+ρ)

)
g1g2

2
+ τ. (2.51)

Notice the presence of three moduli τ , sp, ρ. The first one corresponds to a

freedom in shifting the radial coordinate by a constant amount τ , r → r + τ .

This mode is a PBH rigid diffeomorphism in the domain wall coordinates. As

mentioned a rigid PBH in domain wall coordinates becomes a warped one in the

Fefferman-Graham coordinates. The second modulus sp can be identified with

a rigid conformal transformation in the boundary coordinates (t, x). The third

modulus ρ is an internal mode respecting the boundary conditions for the metric

in both UV and IR limits but changing the scalar modes and it corresponds to

a normalisable zero mode. In the next section we will see this mode is basically

the instanton size modulus in the 6D description of the RG flow. But can be

also thought of as a linear combination of a PBH and sp mode. In order to have

a flavor of the properties of the flow geometry it is useful to make a change of

coordinates, from (t, x, r) to (t, x, y) with y = e2g1F (r). In these coordinates the

metric becomes:

ds2 =
(g2

2(y+ρ)2−g2
1ρ

2)
2(y+ρ)2

(
2c21(g2

2(y+ρ)2−g2
1ρ

2)
g4
1g

4
2y

2(y+ρ)2 dy2 + e2spy (dx2 − dt2)

)
. (2.52)

This geometry approaches AdS3 in both the UV(y → ∞) and the IR (y → 0)

limits, with corresponding radii:

L2
IR

4
=
c2

1 (g2
1 − g2

2) 2

g4
1g

4
2

and
L2
UV

4
=
c2

1

g4
1

. (2.53)

These radii determine the central charges of the (4,0) CFT’s at the fixed points,

through the expression c = 3L/2GN , GN being the 3D Newton’s constant 1.

Additionally the limit:

g2 →∞ with g1 fixed, (2.54)

recovers AdS3 space with radius L given by L2

4
=

c21
g4
1
. An additional transforma-

tion in the boundary metric is needed to keep it finite in the limit, η → 2
g2
2
η. The

1In our conventions GN=4.
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scalar fields go in the UV and IR to different fixed points (extrema) of the poten-

tial V (A, φ). In particular, in the UV, A→ 0 and φ→ log
(

2c1
g1

)
. Expanding the

potential (2.40) around the extremum we find out the masses of the bulk fields

A(r), φ(r) at the UV fixed point:

m2
A = 0 and m2

φ =
h2g4

1

c2
1

=
8

L2
UV

. (2.55)

The allowed conformal dimension of the corresponding dual boundary operators

are:

∆A+ = 2, ∆A− = 0 and ∆φ = 4, (2.56)

respectively. By looking at (2.48) we can read off their asymptotic expansions

near the UV boundary (y →∞):

δA(y) ∼ g1

g2

ρ

y
and δφ(y) ∼ − g2

1

2g2
2

ρ2

y2
. (2.57)

These are “normalisable” excitations, and in the standard quantization, which

adopts ∆ = ∆+, they would correspond to a vacuum state in the dual CFT, where

the dual operators OA and Oφ acquire a v.e.v.. This clashes with the fact that in

D = 2 we cannot have spontaneous breaking of conformal invariance 1. Notice

that the problem arises also in the well known case of the D1-D5 system in IIB,

when one deforms the AdS3×S3 background by going to multi-center geometries.

Most probably this is a feature of the supergravity approximation, or dually, of

the leading large-N expansion on the CFT side. It would be interesting to see

how the picture is modified in going beyond the supergravity approximation, as

discussed, in a different context, in [57].

At the IR region,

δA(y) ∼ −g1

g2

y

ρ
and δφ(y) ∼ − g2

1

g2
1 − g2

2

y

ρ
. (2.58)

In particular, the background is completely smooth. Now we notice a property

of the metric (2.52) : the UV/IR AdS limits of the geometry are independent

1On the other hand, the “alternate” quantization [56] would interpret this background as

a source term for the ∆− = 0 operator OA. However, this interpretation clashes with the

standard axioms of 2D CFT.
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2.2 RG flow in N = 4 3D gauged supergravity

of ρ, and, as mentioned earlier, this modulus corresponds to a normalisable zero

mode.

It is instructive to look at how can be represented a PBH diffeomorphism

zero-mode of the form y → e2σPBHy in terms of the moduli appearing in the

background geometry: it amounts to take the combined set of transformations

ρ → ρe2σPBH and sp → sp + σPBH . Conversely, the ρ modulus can be thought

of as a combination of a PBH mode mentioned before plus a suitable choice of

sp such that the boundary metric remains unchanged. We should stress that the

PBH zero-modes τ and σPBH aren’t precisely the same. The difference will come

about in the next subsection. But we can already say that there is a choice of

τ and sp for fixed ρ = 1 that preserves normalisability. We can explore then

two possibilities, either we analyse the combined pair of moduli (τ, sp)ρ=1 or the

single modulus ρ. In the next subsection we analyse both cases. We will also

check the geometrical procedure discussed in section 2.1.3.

2.2.2 Fluctuations analysis

In this subsection we are going to analyse a deformation of the background ge-

ometry which arises when one gives a non trivial (t, x) dependence to some of

the moduli introduced in the previous subsection. Specifically, we will promote

the integration constants sp and τ to functions of t and x, sp(t, x) and τ(t, x).

In doing so, of course, we have to take into account the back reaction due to

the (t, x) derivatives acting on these fields. The equations of motion will involve

therefore inhomogeneous terms containing derivatives of sp(t, x) and τ(t, x). We

will work in a perturbative expansion in the number of t and x derivatives. For

that purpose it is convenient to introduce a counting parameter q, whose powers

count the number of t, x derivatives. As for the metric, we keep the axial gauge

condition and therefore start with the expression:

ds2 = dr2 + (e2fηµν + q2g(2)
µν )dxµdxν , (2.59)

where x0 = t and x1 = x, and µ, ν = 0, 1.
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For the background deformations, at second order in (t, x) derivatives, we

adopt the following ansatz for the scalar fields:

A = AB + q2A(2),

φ = φB + q2φ(2), (2.60)

whereas for the metric components:

g
(2)
tt = −e2f (g(2) + T ), g(2)

xx = e2f (g(2) − T ), (2.61)

and we redefine g
(2)
tx → e2fg

(2)
tx . The homogeneous part of the equations of motion

will involve an ordinary linear differential operator in the r variable acting on the

fluctuations and this will be sourced by an inhomogeneous term involving two t, x

derivatives acting on sp and τ , which represents the moduli back reaction to the

original background. Now we have five unknown functions and eight equations,

(2.41), (2.42), (2.43), so that we need to reduce the number of independent equa-

tions. It is a long but straightforward procedure to find out the general solutions

to the system. We are going to sketch the procedure we followed to solve them.

Details are given in appendices. Specifically the equations of motions at order q2

are given in appendix A.2.1.

A change of coordinates is useful to render the system of partial differen-

tial equations simpler. We perform a change from the domain wall coordinates

(t, x, r) to the Poincaré like coordinates (t, x, y) already introduced in the previous

subsections:

y = e2g1F (τ(t,x),r), (2.62)

where,

∂rF −
g1g

2
2

(
e2g1F + 1

)2

2c1

(
g2

2 (e2g1F + 1)2 − g2
1

) = 0. (2.63)

Notice that if we are using a non fluctuating cut off surface r = rUV in the original

coordinates, in the new coordinates the same surface will be fluctuating at a pace

dictated by τ(t, x). We can however use a different choice of coordinates:

ỹ = e2g1F (0,r). (2.64)
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2.2 RG flow in N = 4 3D gauged supergravity

It is then easy to show based on (2.51), that cut off shapes in the y-system and

ỹ-system are related as follows:

yUV → e
g21
c1
τ
ỹUV , yIR → e

g21g
2
2

c1(g22−g21)
τ

ỹIR. (2.65)

The set of equations, (2.41), (2.42), (2.43) provides a system of second or-

der differential equations for the fluctuations in terms of the inhomogeneities

produced by derivatives acting on sp(t, x) and τ(t, x). We are going to denote

the five Einstein equations (2.43) by (t, t), (x, x), (t, x), (r, r), (t, r), (x, r), with

obvious meaning. Equations (t, t), (x, x) and (r, r) form a set of second order

equations in the η-trace part of the metric parametrized by g(2)(t, x, r) and the

traceless part parametrized by T (t, x, r), together with the scalar fluctuations,

which only appear up to first order in radial derivatives. It turns out that the

combination (t, t)− (x, x) gives an equation for the trace part and scalar fluctua-

tions, but the traceless part decouples in the combination (t, t) + (x, x). Namely

it gives the equation:

y∂2
yT + 2∂yT +

2e−2sp2g2
1(g2

1 + 3g2
2(1 + y2)) ((∂2

t τ)2 + (∂2
xτ)2)

(g2
1 − g2

2(y2 + 1))3
= 0, (2.66)

whose general solution is:

T = C3(t, x)− 1

y
C2(t, x) +

g2
1

g2
2y (g2

2(y + 1)2 − g2
1)
e−2sp

(
(∂tτ)2 + (∂xτ)2

)
, (2.67)

where C3 and C2 are integration constants promoted to be arbitrary functions of

t and x. Let’s focus then on the set of equations (t, t)− (x, x) and (r, r). This is

a coupled system for the trace part and the scalars which can be solved in many

different ways, here we present one. First of all (r, r) can be integrated to get:

∂yg
(2) = R

(1)

∂yg(2)A
(2) +R

(2)

∂yg(2)φ
(2) +

1

y2
C5, (2.68)

where,

R
(1)

∂yg(2) = − 6g1g
3
2(y + 1)2

(g2
1 − g2

2(y + 1)2) 2
, R

(2)

∂yg(2) = − 2g2
1

(y + 1) (g2
2(y + 1)2 − g2

1)
, (2.69)

with an integration constant C5. Then, one can notice that Eq. (t, t) − (x, x)

only contains derivatives of the trace part of the metric fluctuations, so we can
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use (2.68) and its derivative to eliminate this function. The remaining equation

will contain the scalar fluctuations up to first order in “radial” derivatives:

∂yφ
(2) = R

(1)

∂yφ(2)∂yA
(2) +R

(2)

∂yφ(2)φ
(2) +R

(3)

∂yφ(2)A
(2)

+R
(4)

∂yφ(2)(C5 −
2c1

g2
1g

2
2

�τ) +R
(5)

∂yφ(2)(∂τ)2 +R
(6)

∂yφ(2)e
−2sp�sp.

(2.70)

Under the conditions already found the remaining equations (2.41), (2.42)

reduce to the final algebraic equation for φ(2) in terms of y-derivatives of A(2) up

to second order. By solving it and plugging the result in (2.70) we obtain the

third order differential equation:

∂(3)
y A(2) +R

(2)

A(2)∂
2
yA

(2) +R
(1)

A(2)∂yA
(2) +R

(0)

A(2)A
(2) = e−2spF, (2.71)

where the inhomogeneous part takes the form:

F = F (1)C5 + F (2)�sp + F (3)�τ + F (4)(∂τ)2. (2.72)

The R
(i)

A(2) and F (i) are rational functions in the radial coordinate y (they are

given in the appendix A.2.2). We solve this equation by Green’s function method

(See appendix A.2.3).

The (t, x) equation:

∂2
yg

(2)
tx = −2

y
∂yg

(2)
tx +

4g2
1e
−2sp (3g2

2(y + 1)2 + g2
1)

y (g2
2(y + 1)2 − g2

1) 3
e−2sp∂tτ∂xτ, (2.73)

can be solved to get:

g
(2)
tx = −C6(t, x)

y
+ C7(t, x)− 2g2

1

g2
2y (g2

2(y + 1)2 − g2
1)
e−2sp∂tτ∂xτ. (2.74)

As for the mixed equations, (t, r) and (x, r), they involve odd number of

(t, x) derivatives and one needs to go to third order, were in fact they reduce to

differential constraints for the integration constants C2, C5 and C6 sourced by

second derivatives of the moduli τ and sp. Before solving for these constraint

equations it is convenient to analyse the constraints that IR regularity imposes

on the modulus C5.
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At this point we should comment about an important issue. We have nine

integration functions Ci(t, x) and our general on shell fluctuations develop gener-

ically infrared singularities and/or UV non-normalisability, in the latter case rep-

resenting source terms on the dual CFT. We have two ways to deal with possible

IR divergencies in our deformed background geometry: we could allow infrared

singularities of the geometry and setup a cut off at the IR side, or demand IR-

smoothness. This latter will spoil full normalisability of all fluctuations, as we

will see. This is something perhaps we could allow because at q0 order the mod-

ulus which could be associated to the “dilaton” is still a normalisable bulk mode.

The first option will guarantee full normalisability to order q2, but will require

the presence of an IR Gibbons Hawking (GH) term (2.93). In any case we will

see that the GH term will give no contribution to the boundary effective action

of the moduli. In this chapter we take the first point of view and demand full

smoothness of the deformed geometry. By demanding regularity at the IR side

for matter fluctuations A(2) and φ(2) we get the following set of relations for the

integration functions:

C5(t, x) = − 2c1

g2
1g

2
2

e−2sp�τ +
4c2

1 (g2
1 − g2

2)

g4
1g

4
2

e−2sp�sp, (2.75)

C10(t, x) =
9g5

1

4g9
2

e−2sp(∂τ)2 − c2
1 (9g4

1 − 17g2
2g

2
1 + 8g4

2)

2g1g11
2

e−2sp�sp. (2.76)

At this point we could solve the (t, r) and (x, r) fluctuation equations for the

moduli:

e2spC2(t, x) =
4c2

1 (g2
1 − g2

2)

g4
1g

4
2

(
(∂tsp)

2 − ∂2
t sp
)

− 4c1

g2
1g

2
2

∂tsp∂tτ −
1

g2
2

(∂tτ)2 +
2c1

g2
1g

2
2

∂2
t τ + (∂t → ∂x) ,

(2.77)

e2spC6(t, x) = −8c2
1 (g2

1 − g2
2)

g4
1g

4
2

(∂tsp∂xsp − ∂2
txsp)

+
4c1

g2
1g

2
2

(∂tsp∂xτ + ∂xsp∂tτ − ∂2
txτ) +

2

g2
2

(∂tτ∂xτ).

(2.78)
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According to the AdS/CFT dictionary, a state in the boundary CFT should corre-

spond to a normalisable bulk mode, whereas non normalisable modes correspond

to source deformations of the CFT. In our case, the UV boundary metric in

the Fefferman-Graham gauge looks like e
2sp+

g21
c1
τ
η. So, assuming the “standard”

quantization, if we do not want to turn on sources for the trace of the boundary

energy momentum tensor we need to take:

τ = −2c1

g2
1

sp. (2.79)

This is not the case in the IR boundary where the induced metric picks up a

shifting factor that we can not avoid by staying in the axial gauge (grr = 1). By

requiring not to turn on sources, even at second order in the derivative expansion

for other components of the UV boundary CFT stress tensor, we see that:

C3(t, x) = 0, C4(t, x) = 0, C7(t, x) = 0. (2.80)

At this point of the nine integration constants at our disposal, after requiring

regularity and normalisability of the metric fluctuations, two are left over, C8

and C9. Together with τ they determine the CFT sources inside the matter

fluctuations φ(2) and A(2). This remaining freedom can be used just to require

normalisability of either φ(2) or A(2), but not both of them. From here onwards

we choose to make φ(2) normalisable but for our purposes the two choices are

equivalent. Finally we get:

C9(t, x) = 4C8(t, x) +
(−3g7

1 + 13g2
2g

5
1 − 4g4

2g
3
1)

g7
2

e−2sp(∂τ)2

+
2c2

1 (27g8
1 − 144g2

2g
6
1 + 139g4

2g
4
1 + 23g6

2g
2
1 − 12g8

2)

9g3
1g

9
2

e−2sp�sp.

(2.81)

This choice turns on a source for the CFT operator dual to A. Indeed the UV

expansion for A-fluctuation reads:

A(2) ∼ − 2c2
1

3g3
1g

3
2

e−2sp (�sp) . (2.82)

To summarize, requiring IR regularity forces us to turn on a source term for

one of the scalar fields. Notice that under the condition (2.79) the traceless and
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2.2 RG flow in N = 4 3D gauged supergravity

off-diagonal modes T and g(2) are IR divergent. They go as 1
y

in the IR limit.

Nevertheless the IR limit of the metric is not divergent because of the extra warp

factor, which is proportional to y. Notice that The AdS IR limit is in fact broken

by q2 order fluctuations, as already argued in section 2.1.

2.2.3 Evaluating the on-shell action

The regularized boundary Lagrangian coming from the bulk part is obtained by

performing the integral over the radial coordinate with IR and UV cut-offs yIR ,

yUV respectively:

Lbulk2D =

∫ yUV

yIR

dy L3D. (2.83)

First we present the result for the presence of both the moduli sp and τ . We can

write down the 3D lagrangian as:

L3D = l(0) + l(1)(∂τ)2 + l(2)�τ + l(3)�sp

+ ∂y

(
l(4)∂yg

(2)
tt + l(5)g

(2)
tt + l(6)A(2) + l(7)φ(2))

)
. (2.84)

After integration and evaluation at the cut off surfaces we arrive to a boundary

regularized action:∫
dtdxLbulk2D =

∫
dtdx

(
g2

1g
2
2

8c1

e2sp(t,x) [y]UVIR

− g4
1

8c1 (g2
1 − g2

2)
(∂τ)2 +

(
1

4
�τ +

c1

2g2
1

�sp

)
log yUV

−
(

1

4
�τ +

c1(g2
2 − g2

1)

2g2
1g

2
2

�sp

)
log yIR + ...+ [Lhom]UVIR

)
,

(2.85)

where the ... stand for infinitesimal contributions and a total derivative term

− c1

2g2
2

�sp + log

(
1− g2

2

g2
1

)
�τ,

which is irrelevant for our conclusions. Notice that the logarithmic divergent

part is a total derivative, as it should be. Moreover the coefficient in front of it is

proportional to the difference of central charges at the UV and IR fixed points.
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The contribution of the homogeneous part of the solutions to the on-shell bulk

action can be written as:

Lhom =
(
l(4)∂yg

(2)
tt + l(5)g

(2)
tt + l(6)A(2) + l(7)φ(2)

)
. (2.86)

As we will show in a while, this contribution does not affect the finite value of

the moduli τ and sp effective action at all! In next section we will see this will

not be the case if we work in Fefferman-Graham gauge since the beginning. In

that case, the solution of homogeneous equations do affect the final result but

upon regularity conditions the contributions are total derivatives of the moduli

and hence irrelevant. The explanation in this mismatch comes from the fact that

the coordinate transformation from one gauge to the other is singular at q2 order.

After using (2.68) on (2.86) we get:

Lhom =
(
l(5)g

(2)
tt +

(
l(6) + l(4) ×R(1)

∂yg
(2)
tt

)
A(2) +

(
l(7) + l(4) ×R(2)

∂yg
(2)
tt

)
φ(2)
)
.

(2.87)

Now, we asymptotically expand Lhom. For this we need to use the most general

form of the solutions to g
(2)
tt , A(2) and φ(2). After a straightforward computation

one gets:

Lhom −−−−→
y→yUV

g2
1g

2
2

8c1
e2spC5(t, x) +O

(
1

yUV

)
, (2.88)

Lhom −−−−→
y→yIR

g2
1g

2
2

8c1
e2spC5(t, x) +O (yIR) . (2.89)

The only integration constant entering the boundary data is given by C5(t, x).

However [Lhom]yUVyIR
vanishes, and the boundary effective action for the moduli sp

and τ coming from the bulk action is independent of all the integration constants,

namely, any particular solution of the inhomogeneous system of differential equa-

tions gives the same final result, so far. We say so far, because still we have not

commented about the GH and CT contributions. This is an interesting outcome,

since the result holds independently of the IR regularity and normalisability con-

ditions imposed on the fluctuations discussed earlier. The GH term will not

affect this observation, but the CT contribution does it. In any case, we choose

integration constants in order to satisfy our cardinal principle: IR regularity.
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2.2 RG flow in N = 4 3D gauged supergravity

2.2.4 Gibbons-Hawking contribution

Let us discuss now the GH contribution. In the domain wall coordinates, (2.113),

it reads:

1

2

∫
dtdxLGH2D =

1

2

∫
dtdx
√
grr∂r

(√
grr
√
− det g

)
|boundary, (2.90)

where so far grr = 1, but for later purposes it is convenient to write the most

general form above. In the (t, x, y) coordinates and after using (2.68) it is simple

to show that:

LGH2D =

(
−g

2
1g

2
2y (g2

2(y + 1)3 + g2
1(y − 1))

4c1(y + 1) (g2
2(y + 1)2 − g2

1)
e2sp − 2Lhom

)
|boundary, (2.91)

The UV and IR asymptotic expansions are thence given by:

LGH2D −−−−→
y→yUV

−g
2
1g

2
2

4c1

e2spyUV +O

(
1

yUV

)
, (2.92)

LGH2D −−−−→
y→yIR

g2
1g

2
2

4c1

e2spyIR +O
(
y2
IR

)
. (2.93)

Even though we are not taking the approach of cutting off the geometry in the IR

side, we present the IR behaviour of GH term just for completeness of analysis.

An important point to stress on is that there is not finite contribution coming

from them and again one should notice the independence of the final result on

the integration constants, as previously mentioned.

Regularized Action At this point we can write down the regularized La-

grangian for the “normalisable” modulus sp. We first make the change to the

Fefferman-Graham gauge at q0 order, y → ỹ, make use of the normalisability

condition (2.79) and the final result becomes:

S2D
reg =

∫
dtdx

(
g2

1g
2
2

8c1

ỹUV −
c1

2g2
2

�sp log ỹIR +
1

2

c1

(g2
2 − g2

1)
(∂sp)

2 + ...

)
, (2.94)

where the ... stand for subleading contributions in terms of the cutoffs and finite

total derivative terms. Notice that there is no logarithmic divergence at the UV

cutoff. This is because this modulus is not affecting the UV boundary metric.

On the other hand the IR side does have a logarithmic divergent factor, which

however is a total derivative.
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2. HOLOGRAPHIC ANOMALY MATCHING

Now, we discuss possible contributions coming from covariant counterterms.

Let us start by gravitational countertems. In the asymptotically AdS3 geometries

the leading divergence in the on-shell action is renormalized by using the covariant

term∫
d2x
√
− det γ|bdry =

∫
d2x

g2
2

2
ỹUV +

c1

g2
1

(
2c1

g2
1

�sp + �τ

)
+O

(
1

ỹUV

)
.

Other possible counterterms are:∫
dtdx
√
−γR(2D)[γ]|bdry =

1

c1

(
2c1

g2
1

�sp + �τ

)
+O

(
1

ỹUV

)
,

(2.95)∫
dtdx
√
−γ(δA)2|bdry = − 2c2

1

3g2
1g

2
2

�sp,
∫
dtdx
√
−γ(δφ)2|bdry = O

(
1

ỹ3
UV

)
,

(2.96)

where δA, δφ denote the fluctuations around the UV stationary point of the

potential. Notice that after imposing the normalisability condition (2.79) the

finite contributions of this counterterm disappear except for the δA fluctuation

which is a total derivative contribution. The remaining IR logarithmic divergence

is minimally subtracted. Finally the renormalized action takes the form:

S2D
ren =

∫
dtdx

(
1

2

c1

(g2
2 − g2

1)
(∂sp)

2 +O
(
∂4
))

. (2.97)

The coefficient in front of this action is not the difference of central charges of the

UV/IR fixed points. Although we can always rescale the field, this mismatch is

unpleasant, because a rigid shifting in the spurion mode τ (not on sp) rescales the

CFT metric (UV side) in accordance with the normalization used in [5], and the

mode sp only contributes through total derivatives to the boundary Lagrangian.

So, the QFT side is saying that once fixed the proper normalization, the corre-

sponding coefficient of the kinetic term of the spurion should coincide with the

difference of central charges. This, points towards the conclusion that the mod-

ulus τ seems not to be the optimal description for the QFT spurion. In fact the

PBH modulus τ looks like a warped PBH in the Fefferman-Graham gauge, see

A.1.2, so the outcome of the 2D version of the computation done in section 2.1.3

will change. We will show the result in the next subsection.
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2.2 RG flow in N = 4 3D gauged supergravity

The appropriate description of the spurion from the bulk side seems to be

associated to a rigid PBH in Fefferman-Graham gauge. As we already said

the modulus ρ could be seen as a combination of a PBH of that kind and the

mode sp. So, following our line of reasoning ρ seems to be the most natural bulk

description of the dilaton. In fact in the 6D analysis to be discussed in section 4

this identification will become even more natural.

2.2.5 Checking the PBH procedure.

There is an equivalent way to arrive to (2.97). We present it here because it gives

a check of the procedure we used to compute the spurion effective action in a

4D RG flow. As was already noticed the modulus τ can be related to a family

of diffeomorphisms. To check the procedure we take as starting point the bulk

on-shell action of the modulus sp without turning on τ :∫
dtdxLbulk2D =

∫
dtdx

(
g2

1g
2
2

8c1

e2sp(t,x)y
∣∣UV
IR

+
c1

2g2
1

�sp log yUV

−c1(g2
2 − g2

1)

2g2
1g

2
2

�sp log yIR + . . .+ Lτ=0
hom

∣∣UV
IR

)
, (2.98)

and perform the UV and IR asymptotic expansions of the corresponding PBH

transformation (A.3) keeping only terms up to second order in derivatives. The

result coincides with (2.85). Notice that the PBH transformations do not affect

the boundary conditions of the matter field (2.21), provided we take the restriction

(2.79). So all the IR constraints and normalisability conditions we imposed before

will still hold in this second approach provided they were imposed at τ = 0.

Finally, after applying the same previous procedure to the GH term and to the

counterterms, namely transforming the metric (2.113) at vanishing τ -modulus,

gives (2.92) and (2.95) respectively.

2.2.6 The ρ-branch analysis

We can repeat the same computations done before but using the ρ modulus

instead of the pair (τ, sp). The trace and off-diagonal modes T and g
(2)
tx can be
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solved from the decoupled equations (t, t) + (x, x) and (t, x) to be:

T = C3(t, x)− 1

y
C2(t, x) +

c2
1

g2
1g

2
2y
(
g2

2 (y + ρ)2 − g2
1ρ

2
) ((∂tρ)2 + (∂xρ)2

)
,

(2.99)

g
(2)
tx = −C6(t, x)

y
+ C7(t, x)− 2c2

1

g2
1g

2
2y (g2

2(y + ρ)2 − g2
1ρ

2)
∂tρ∂xρ.

(2.100)

In the same manner, we can then solve for all fluctuations in terms of A(2) by

integrating the (t, t)− (x, x) and (r, r) equations:

∂yg
(2) = R

(1)

∂yg(2)A
(2) +R

(2)

∂yg(2)φ
(2) +

1

y2
C5, (2.101)

∂yφ
(2) = R

(1)

∂yφ(2)∂yA
(2) +R

(2)

∂yφ(2)φ
(2) +R

(3)

∂yφ(2)A
(2) +

R
(4)

∂yφ(2)C5 +R
(5)

∂yφ(2)�ρ+R
(6)

∂yφ(2)(∂ρ)2,

(2.102)

with:

R
(1)

∂yg(2) =
6g1g

3
2ρ(ρ+ y)2

(g2
2(y + ρ)2 − g2

1ρ
2) 2

, R
(2)

∂yg(2) = − 2g2
1ρ

2

(ρ+ y) (g2
2(y + ρ)2 − g2

1ρ
2)
,(2.103)

which is also found to obey a third order linear differential equation of the form:

∂(3)
y A(2) +R

(2)

A(2)∂
2
yA

(2) +R
(1)

A(2)∂yA
(2) +R

(0)

A(2)A
(2) = Fρ, (2.104)

where

Fρ = F 1(y)�ρ+ F (2)(y)(∂ρ)2 + F (3)(y)C5(t, x). (2.105)

The rational functions F (1), F (2) and F (3) are given in the second paragraph of ap-

pendix A.2.2. We solve this equation by the Green’s function method (see second

paragraph appendix A.2.3). As for the case before, we use the nine integration

constants to demand IR regularity and as much normalisability as possible. In

this case we are able to turn off UV sources except for one of the two correspond-

ing to ∆ = 2 and ∆ = 4 CFT operators. We choose to allow a non vanishing

source of the A scalar field, namely at the UV boundary, y = yUV :

A(2) ∼ c2
1

3g3
1g

3
2

(∂ρ)2 − ρ�ρ
ρ3

. (2.106)
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2.2 RG flow in N = 4 3D gauged supergravity

We compute then the full renormalized boundary action

Sren = Sbulk + SGH + SCT .

The result up to total derivatives and without ambiguity in renormalization (as

for the previous case) is:

Sren =

∫
dtdx

(
c1

g2
2

(∂s)2 +O
(
∂4
))

, (2.107)

where s = log(ρ). Notice that the coefficient in front of this kinetic term is

proportional to the difference of holographic central charges among the interpo-

lating fixed points, which in 2D can be identified with the difference of AdS3 radii

∆L = 2c1
g2
2

. Notice that we have a freedom in normalization of s. We have chosen

the normalization to agree with [4, 5]. Namely, the associated PBH diffeo shifts

the UV/IR metric from η to e−2σPBHη. As we mentioned the ρ modulus is a

combination of a PBH mode with sp. So we can again check the procedure used

in section 2.1.3 via (2.107).

We can see the rigid ρ modulus as a combination of a PBH mode y → e2σPBHy

and the sp = −σPBH mode. This last constraint guarantees not to turn on sources

for the CFT’s energy momentum tensor (nor for the hypothetical IR one). To

obtain the bulk contribution we perform the PBH transformation (A.7)-(A.8),

on the on-shell action with only sp turned on (2.98). Before performing the PBH

transformation, explicit solutions in terms of sp are demanded to be IR regular

and as normalisable as possible. As usual, we choose to let on the source of the

dimension ∆ = 2 CFT operator, which we can read from (2.82). As in previous

cases. The GH and Counterterms (CT) contributions are evaluated by explicit

use of the transformed metric and fields. The GH term does not contribute to

the final result for the regularized action at all. As for the CT’s, they contribute

with total derivatives to the final result of the effective action which, under the

identification σPBH ≡ s, coincides with (2.107).

A last comment about the relation between bulk normalisability and the iden-

tification of (2.107) as quantum effective action for s: Notice that demanding

normalisability of the mode s amounts to impose the on-shell condition

�s = 0,
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in both equations (2.82) and (2.106). This is in agreement with holographic com-

putations of hadron masses, where normalisability gives rise to the discreteness of

the spectrum and indeed puts on-shell the states corresponding to the hadrons1.

On the other hand, the on shell supergravity action, as already mentioned in the

paragraph below (2.86), is independent of A(2). Also, as shown in (2.96), the con-

tributions coming from counter terms which depend on A(2) give contributions

that are linear in the source for the operator dual to A, at order q2, but at the

end, these contributions reduce to total derivatives in (2.107). Notice that no

other sources, apart from the one corresponding to the operator dual to A are

turned on. Therefore (2.107) has no source dependence and can be interpreted

as the (off-shell) effective action for the massless mode s.

2.3 6D Analysis

Six dimensional supergravity coupled to one anti-self dual tensor multiplet, an

SU(2) Yang-Mills vector multiplet and one hypermultiplet is a particular case of

the general N = 1 6D supergravity constructed in [25] and admits a supersym-

metric action. The bosonic equations of motion for the graviton gMN , third rank

anti-symmetric tensor G3MNP , the scalar θ and the SU(2) gauge fields AIM are:

RMN −
1

2
gMNR−

1

3
e2θ
(
3G3MPQG3

PQ
N − 1

2
gMNG3PQRG3

PQR
)

−∂Mθ∂Mθ +
1

2
gMN∂P θ∂

P θ − eθ
(
2F IP

M F I
NP −

1

2
gMNF

I
PQF

IPQ
)

= 0,

(2.108)

e−1∂M(egMN∂Nθ)−
1

2
eθF I

MNF
IMN − 1

3
e2θG3MNPG3

MNP = 0,

(2.109)

DN(eeθF IMN) + ee2θGMNPF I
NP = 0,

(2.110)

DM(ee2θG3
MNP ) = 0.

(2.111)

1We would like to thank a referee from JHEP for pointing out this analogy.
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The three-form G3 is the field strength of the two form B2 modified by the Chern-

Simons three-form, G3 = dB2+tr(FA− 2
3
A3), with the SU(2) gauge field strength

F = dA+ A2. As a result there is the modified Bianchi identity for the 3-form:

dG3 = trF ∧ F. (2.112)

We are going to consider all the fields depending on coordinates u, v and r where

u and v are light-cone coordinates given by u = t+ x, v = t− x, and r is a radial

coordinate. For the metric we take the following SO(4) invariant ansatz:

ds2
6 = e2f (guudu

2 + gvvdv
2 + 2guvdudv) + e−2f

(
dr2 + r2dΩ2

)
, (2.113)

where dΩ2 is the SO(4) invariant metric on S3:

dΩ2 = dφ2 + sin2(φ)
(
dψ2 + sin2(ψ)dχ2

)
, (2.114)

and f , guu, guv, gvv are functions of (u, v, r), from now on we will not show this

dependence. As for the SU(2) one-form A, we take it to be non trivial only along

S3, preserving a SU(2) subgroup of SO(4),

A = is
3∑

k=1

σkωk, (2.115)

where σk are Pauli matrices and ωk left-invariant one-forms on S3, and s is a

function of (u, v, r). For the three-form G3, we take it to be non trivial only

along u, v, r and along S3,

G3 = G
(1)
3 du ∧ dv ∧ dr +G

(2)
3 sin2(φ) sin(ψ)dφ ∧ dψ ∧ dχ, (2.116)

where the functions G
(1,2)
3 only depend on (u, v, r) . Finally we will have a non

trivial scalar field θ(u, v, r).

2.3.1 Deforming the RG flow background

The aim of this section is to look for a solution of the above equations of motion

which deforms the RG flow solution of [23], with the appropriate boundary condi-

tions to be specified in due course (in order to demand IR regularity). To be more
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specific, this background is actually BPS. It preserves half of the 8 supercharges

and interpolates between two AdS3 × S3 geometries for r → ∞, the UV region,

and r → 0, the IR region, with different S3 and AdS3 radii. It describes a naively

speaking, v.e.v. driven RG flow between two (4, 0) SCFT’s living at the corre-

sponding AdS boundaries parametrized by the coordinates u, v. The solution

involves an SU(2) instanton centered at the origin of the R4 with coordinates r,

φ, ψ, χ, corresponding to s = ρ2/(r2 + ρ2). The scale modulus ρ enters also in

the other field configurations, as will be shown shortly. Our strategy here is to

promote ρ to a function of u, v, ρ = ρ(u, v). So, the starting point will be given

by the field configurations:

g(0)
uu = g(0)

vv = 0, g(0)
uv = −1/2,

s(0) = ρ2/(r2 + ρ2),

f (0) = −1

4
log[

c

r2
(
d

r2
+

1

r3
∂r(r

3∂rlog(r2 + ρ2))],

θ(0) = 2f (0) + log(c/r2). (2.117)

Notice that s(0) goes like ρ2/r2 in the UV. As for the three-form, it turns out that

the following expressions for G
(1)
3 and G

(2)
3 solve identically the Bianchi identity

and equations of motion:

G
(1)
3 = e4f−2θ

√
−detg c/r3,

G
(2)
3 = −

(
4 + d+ 4s2(−3 + 2s)

)
, (2.118)

where det(g) = −guugvv+g2
uv and f , θ and s are functions of (u, v, r). As explained

in [23, 58], the positive constants c and d are essentially electric and magnetic

charges, respectively, of the dyonic strings of 6D supergravity. More precisely we

have:

Q1 =
1

8π2

∫
S3

e2θ ∗G = c/4,

Q5 =
1

8π2

∫
S3

G = d/4 + 1, (2.119)

where we see that the instanton contributes to Q5 with one unit as a consequence

of the modified Bianchi identity (2.112). The constants c and d determine the
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central charges of the UV and IR CFT’s, respectively: cUV = c(4 + d), cIR = cd

[23].

These fields solve the equations of motion only if ρ is constant (apart from

G
(1,2)
3 which solve them identically). We will then deform the above background

to compensate for the back reaction due to the u, v dependence of ρ. In this way

one can set up a perturbative expansion in the number of u, v derivatives. For

the purpose of analyzing the equations of motion keeping track of the derivative

expansion, again it is convenient to assign a counting parameter q for each u, v

derivative. The first non-trivial corrections to the above background will involve

two u, v-derivatives of ρ(u, v). i.e. terms that are linear in two derivatives of

ρ(u, v) or quadratic in its first derivatives. From now on we will not write down the

coordinate dependence of the modulus ρ. Therefore we start with the following

ansatz for the deformed background:

fb(u, v, r) = f (0)(u, v, r) + q2f (2)(u, v, r),

sb(u, v, r) = s(0)(u, v, r) + q2s(2)(u, v, r),

θb(u, v, r) = θ(0)(u, v, r) + q2θ(2)(u, v, r),

gbuv(u, v, r) = −1/2 + q2g(2)
uv (u, v, r),

gbuu(u, v, r) = q2g(2)
uu (u, v, r), gbvv(u, v, r) = q2g(2)

vv (u, v, r). (2.120)

Our first task is to determine these deformations as functions of ρ and its deriva-

tives. The structure of the resulting, coupled differential equations for the defor-

mations is clear: they will be ordinary, linear second order differential equations

in the radial variable r with inhomogeneous terms involving up to two deriva-

tives of ρ. Due to the symmetry of the problem, there is only one independent

equation for the gauge field, with free index along S3, say φ, and the non triv-

ial Einstein’s equations, EMN , arise only when M,N are of type u, v, r and for

M = N along one of the three coordinates of S3, e.g. φ. The traceless part of

the Einstein equations Euu and Evv involve only g
(2)
uu and g

(2)
vv respectively and

these differential equations can be solved easily. The equations Euv, Eφφ, Err,

the gauge field equation and the θ equation involve only g
(2)
uv , s(2)(u, v, r), f (2) and

θ(2). Since a constant scaling of u and v in the zeroth order background solution

is equivalent to turning on a constant g
(2)
uv , the latter enters these equations only
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with derivatives with respect to r at q2 order. Therefore we can find three linear

combinations of these equations that do not involve g
(2)
uv . To simplify these three

equations further, it turns out that an algebraic constraint among the fields f , θ

and s, dictated by consistency of the S3 dimensional reduction of the 6D theory

down to 3D, gives a hint about a convenient way to decouple the differential

equations by redefining the field θ in the following way

eθ =
r2e−2feϕ

(4 + d− s2)
. (2.121)

Note that for the reduction ansatz, ϕ = 0. In general the new field ϕ will also

have an expansion in q of the form:

ϕ(u, v, r) = ϕ(0)(u, v, r) + q2ϕ(2)(u, v, r). (2.122)

For the zeroth order solution defined above one can see that ϕ(0) = 0. The

reduction ansatz indicates that at order q2 one can find a combination of the

linear second order differential equations which gives a decoupled homogeneous

second order equation for ϕ(2). This equation can be solved for ϕ(2), which involves

two integration constants denoted by a1 and a2 (that are functions of u and v)

ϕ
(2)
h = a1(u, v)

48r6(r2 + ρ2)2 log( r
2+ρ2

r2 )− 48r6ρ2 − 24r4ρ4 + (12 + d)r2ρ6 + dρ8

r4ρ2((4 + d)r4 + 2(4 + d)r2ρ2 + dρ4)

+ a2(u, v)
4r2(r2 + ρ2)

ρ2((4 + d)r4 + 2(4 + d)r2ρ2 + dρ4)
, (2.123)

and after substituting this solution, we get two second order differential equations

for s(2) and f (2). In general one can eliminate f (2) from these two equations and

obtain a fourth order differential equation for s(2). However, it turns out that in

these two equations f (2)/r2 appears only through r-derivatives 1 and this results

in a third order decoupled differential equation for s(2)

A3(r)∂3
rs

(2) + A2(r)∂2
rs

(2) + A1(r)∂rs
(2) + A0(r)s(2) = B(r), (2.124)

1This can be understood by observing that one can add a constant to the solutions for

eθ−2f and e−θ−2f in equations (3.28) and (3.26). At the infinitesimal level this is equivalent to

turning on a constant f (2)/r2.
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where

A3(r) = r3(r2 + ρ2)6((4 + d)r4 + 2(4 + d)r2ρ2 + dρ4)2,

A2(r) = r2(r2 + ρ2)5(11(4 + d)2r10 + 51(4 + d)2r8ρ2

+2(4 + d)(128 + 47d)r6ρ4

+2(4 + d)(24 + 43d)r4ρ6 + d(80 + 39d)r2ρ8 + 7d2ρ10),

A1(r) = r(r2 + ρ2)4(21(4 + d)2r12 + 130(4 + d)2r10ρ2

+(4 + d)(948 + 311d)r8ρ4

+4(4 + d)(100 + 91d)r6ρ6 + (−192 + 456d+ 211d2)r4ρ8

+10d(−8 + 5d)r2ρ10 + d2ρ12),

A0(r) = 16ρ2(r2 + ρ2)3(4(4 + d)2r12 + (4 + d)(72 + 19d)r10ρ2

+(4 + d)(72 + 35d)r8ρ4

+2(16 + 54d+ 15d2)r6ρ6 + 2d(6 + 5d)r4ρ8 − d2r2ρ10 − d2ρ12),

B(r) = 16cρ(r2 + ρ2)2((4 + d)r4 + 2(4 + d)r2ρ2 + dρ4)3∂u∂vρ

+16c(r4 + 2r2ρ2 − 3ρ4)((4 + d)r4 + 2(4 + d)r2ρ2 + dρ4)3∂uρ∂vρ.

(2.125)

The three independent solutions of the homogeneous part of the above equa-

tion are

s
(2)
h = a3(u, v)

3(4 + d)r8 + 24(4 + d)r6 log(r/ρ)ρ2

12r4(r2 + ρ2)2
+

a3(u, v)
−6(10 + 3d)r4ρ4 − 6(2 + d)r2ρ6 − dρ8

12r4(r2 + ρ2)2
+

a4(u, v)
ρ2(24r6 log(1 + ρ2/r2)− 24r4ρ2 + 3(8 + d)r2ρ4 + 2dρ6)

144r4(r2 + ρ2)2

+a5(u, v)
r2ρ2

(r2 + ρ2)2
. (2.126)

Using the most general solution of the homogeneous equation one can construct

the Green’s function for the third order differential equation and obtain a partic-
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ular solution of the full inhomogeneous equation

s(2)
p =

c(3(4 + d)r6 − 6(4 + d)r4ρ2 − 2(30 + 7d)r2ρ4 − 5dρ6)

3r4(r2 + ρ2)3
∂uρ∂vρ

+
cρ(3(4 + d)r4 + 3(4 + d)r2ρ2 + dρ4)

3r4(r2 + ρ2)2
∂u∂vρ. (2.127)

Substituting the general solution for s(2) in the remaining equations one gets

first order linear differential equations for f (2) and g
(2)
uv which can be solved easily

resulting in two more integration constants. Moreover, Euu and Evv give two de-

coupled second order differential equations for the traceless part of the metric g
(2)
uu

and g
(2)
uu that can also be readily solved giving another four integration constants.

In all there are eleven integration constants as compared to nine integration con-

stants in the 3D case discussed in the previous sections. This is to be expected

since the S3 reduction ansatz from 6D to 3D sets ϕ = 0. Finally Eru and Erv at

order q3 give first order partial differential equations in u and v variables on the

integration constants. The full homogeneous solution and a particular solution

for the inhomogeneous equations are given in Appendix A.3.

Now we turn to the analysis of the IR and UV behaviour of the general

solutions. The general solution for s(2) is a sum of the particular solution (2.127)

and the homogeneous solution (2.126). Near r = 0 this solution has divergent

1/r4 and 1/r2 terms that can be set to zero by choosing:

a3(u, v) =
4c∂u∂v log ρ

3ρ2
, a4(u, v) =

16c

ρ4
(7∂uρ∂vρ− ρ∂u∂vρ). (2.128)

Similarly analyzing the general solution for ϕ(1) one finds that it has also IR

divergent 1/r4 and 1/r2 terms that can be set to zero by setting a1(u, v) = 0.

With these choices we have checked that Ricci scalar and Ricci square curvature

invariants are non-singular at r = 0.

Finally, the Einstein equations Eur and Evr give certain partial differential

equations with respect to v and u on the integration constants b1 and c1 respec-

tively and these are solved by:

b1 =
4c (−2(∂uρ)2 + ρ∂2

uρ)

ρ2
, c1 =

4c (−2(∂vρ)2 + ρ∂2
vρ)

ρ2
. (2.129)
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2.3 6D Analysis

With these conditions even the metric functions guu, gvv and guv have no power

like singularities in r near r → 0. Thus we have a smooth solution near IR up to

q2 order.

In the UV region, r →∞, the source terms behave as O(r2) for ϕ and f , and

O(1) for the metric guv, guu and gvv. By making an asymptotic expansion of the

homogeneous solutions one can see that a2, a4, a7, b2 and c2 control these source

terms. Since in our background we do not want to turn on any sources, we set

these integration constants to zero.

Finally, the UV behaviour of the gauge field s(2) is:

c(4 + d)∂u∂v log ρ

3ρ2
(1− 2ρ2

r2
(4 log(

ρ

r
+ 1)) +

ρ2

r2
a5. (2.130)

It turns out though that IR regularity forces us to allow a source term for the

sb(u, v, r) field, this is a term of order r0 for r →∞ and of order q2:

s(2) → c(4 + d)(ρ∂u∂vρ− ∂uρ∂vρ)

3ρ2
+ O(1/r), (2.131)

as r →∞. Notice that here, like in the 3D case, discussed at the end of section

2.2.6, the source term for the operator dual to s is proportional to the EoM for

the massless scalar log ρ, and therefore vanishes on-shell.

2.3.2 Finding linearised fluctuations around the deformed

background

Having determined the background corrected by the leading terms involving two

space-time derivatives of the modulus ρ, we could compute the regularized on shell

action, as was done in the 3D case. We find it more convenient to compute directly

one-point functions of dual operators (especially of the stress energy tensor). To

this end we need to switch on corresponding sources and therefore to solve the

linearized equations of motion of the various fields on the deformed background.

This is done again in a derivative expansion starting with the following ansatz
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for the fields fluctuations:

δs = δ(0)s+ q2δ(2)s, δguu = δ(0)guu + q2δ(2)guu, δgvv = δ(0)gvv + q2δ(2)gvv,

(2.132)

δguv = δ(0)guv + q2δ(1)guv, δf = δ(0)f + q2δ(2)f, δθ = δ(0)θ + q2δ(2)θ,

(2.133)

where δ(0) stands for the zeroth order in space-time derivatives, and δ(2) stands

for fluctuations coming at second order in space time derivatives and this is why

is weighted by q2. The general solution for δ(0) is the homogeneous solution given

in Appendix A.3. We fix the integration constants so that

δ(0)guu = huu, δ
(0)gvv = hvv, δ

(0)guv = huv, (2.134)

δ(0)f =
2ρ4r2

(ρ2 + r2) (dρ4 + (4 + d) r4 + 2 (4 + d) ρ2r2)
a5(u, v), (2.135)

δ(0)θ =
4ρ4r2

(ρ2 + r2) (dρ4 + (4 + d) r4 + 2 (4 + d) ρ2r2)
a5(u, v), (2.136)

δ(0)s =
r2ρ2a5(u, v)

(r2 + ρ2)2
, (2.137)

where huu, hvv and huv are the integration constants b2(u, v), c2(u, v) and a7(u, v)

respectively. Consequently they are the sources for the boundary stress energy

tensor components Tuu, Tvv, and Tuv. These h’s are small fluctuations around the

flat boundary metric, g(0) = η+h, and the corresponding linearized curvature is

R(2)(g(0)) = −2(∂2
vhuu − 2∂u∂vhuv + ∂2

uhvv). (2.138)

We have also kept the integration constant a5 for reasons that will become ap-

parent later on.

The next step is to solve the equations of motion at order q2 for the δ(2) fields.

The equations for δ(2) fields contain also inhomogeneous terms that involve δ(0)

fields and their derivatives, up to second order with respect to u and v. The

procedure is the same as the one employed in solving for the corrected background.

As the differential equations are inhomogeneous, the general solution will be the

sum of the homogeneous solution and a particular solution of the inhomogeneous

one, which can be obtained using Green’s functions once we have the homogeneous
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2.3 6D Analysis

solutions. The integration constants in the homogeneous part of solution can be

partially fixed by requiring IR smoothness and absence of sources for δ(2)θ and

δ(2)f . Moreover some sources can be reabsorbed in the already existing sources

at zeroth order. Finally, the mixed u, v and r Einstein’s equations result in

differential constraints among the integration constants.

Concerning the IR behaviour, the metric components go, for r → 0, as:

δ(2)guv ∼ −cd
4
R(2)/r2,

∂vδ
(2)guu ∼ −cd

4
∂uR

(2)/r2,

∂uδ
(2)gvv ∼ −cd

4
∂vR

(2)/r2. (2.139)

The apparent 1/r2 singularity is presumably a coordinate singularity: we have

verified that both the 6D Ricci scalar and Ricci squared are finite both at the

IR and UV. The other fields are manifestly regular at the IR. We have seen that

there is a physical fluctuation for the operator Os proportional to ρ2 at order q0

and that at order q2 there is a source, Js, which couples to it, proportional to

� log(ρ)/ρ2. Therefore we expect that, at order q2, the corresponding term OsJs

in the boundary action will not give any contribution being a total derivative.

So, this type of term will not contribute to the dilaton ρ effective action if we

were to compute it, as it was done in the 3D case, by evaluating the regularized

bulk action on the background together with boundary GH and counter-terms.

We close this subsection by writing down the full source term Js for the operator

Os dual to the bulk field s, i.e. the sum of the source in the background sb plus

the one in the fluctuation δs:

Js =
c(4 + d)

12

(
�g(0) log(ρ)− 1

2
R(2)[g(0)]

ρ2

)

+
c(4 + d)

12

� log(ρ)

ρ2
a5 +

c(4 + d)

24

1

ρ2
�a5. (2.140)

Next, we go to compute the contribution of the term
∫ √

g(0)JsOs to the 2D

boundary action. While Js is the coefficient of r0 in the UV expansion of s, < Os >

is proportional to the coefficient of 1/r2. We will determine this proportionality
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constant in the following by studying the dependence of the regularized bulk

action on a5. Note that Js is already of order q2, therefore we need only q0 term

in the coefficient of 1/r2 in s, which can be seen from (2.117) and (2.134) to be1

< O >s∼ ρ2(1 + a5). (2.141)

Using the fact that
√
g(0) at order q0 is 1/2(1 − 2huv), it can be shown that√

g(0)Js < Os > up to the order we are working at, is a total derivative and

therefore the corresponding integral vanishes.

2.3.3 Boundary Action

Here, we will determine the boundary action in presence of sources for the dual

stress energy tensor Tµν , which will allow to compute its one-point functions. We

will expand the bulk action around the determined background to linear order in

the fluctuation fields, at order q2. First of all, we need to point out a subtlety

concerning the bulk action. Recall that the bosonic equations of motion of (1, 0)

6D supergravity, (2.111), can be derived from the following action:

Sbulk6D =

∫
d6x
√
−g6D

(
−1

4
R +

1

4
eθF 2 − 1

4
e2θ(G3)2 − 1

4
(∂θ)2

)
, (2.142)

where the equations of motion are obtained by varying with respect to all the

fields, including the two form BMN . The 6D equations of motion have been shown

in [23] to reduce consistently to the 3D equations discussed earlier. In particular

the 3D flow solution discussed before has a 6D uplift. For convenience, we give

the map of the 6D fields and parameters in terms of 3D ones used in the previous

sections:

r6e−8fdr2 → dr2, r3e−2f → ef , s→ 2A, e4θ → g6
1e

2φ

256g8
2 (1− A2)3 ,

ϕ→ 0, 4 + d→ 4g2
2

g2
1

, c→ c1

2g2
2

. (2.143)

1Of course, the same remarks about the CFT interpretation of the asymptotic data of

bulk fields made in sub-section 2.2.1, implying spontaneous symmetry breaking of conformal

invariance, apply here.
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2.3 6D Analysis

In the 6D action (2.142) above, (G3)2 equals (G
(1)
3 )2 + (G

(2)
3 )2. However the

3D gauged supergravity action is not the reduction of Sbulk6D . The difference lies

in the fact that in reducing to 3D, one eliminates G3 by using its 6D solution in

terms of the remaining fields. The 3D action is constructed by demanding that its

variation gives the correct equations for the remaining fields. From the explicit

solutions for G
(1)
3 and G

(2)
3 in (2.118), one can easily prove that the modified action

S̃bulk6D , obtained by replacing (G3)2 → (G
(1)
3 )2 − (G

(2)
3 )2 in Sbulk6D , reproduces the

correct equations of motion for all the remaining fields. From the AdS/CFT point

of view, it seems reasonable to use S̃bulk6D , since the two-form potential in 3D is not

a propagating degree of freedom and does not couple to boundary operators. We

should point out that the boundary action that we will compute in the following

is not the same for Sbulk6D and S̃bulk6D . Only the latter reproduces the results of the

3D analysis. The flow solution studied in this chapter can be described in the 3D

gauged supergravity, however there are many solutions describing flows in 2D or

4D CFTs that cannot be described in 3D or 5D gauged supergravities. Instead

one has to directly work in higher dimensions. In such cases, we think, that

the bulk action that should be used in the holographic computations, is the one

that reproduces the correct equations for the fields that couple to the boundary

operators, after having eliminated 2-form and 4-form fields respectively.

As promised at the beginning of this subsection our goal will be to evaluate

Sbulk6D , with the modification just mentioned, on the field configurations which are

sums of the background fields plus the δ fields, at first order in the latter and to

order q2. Since the background solves the equations of motion, the result will be

a total derivative and there will be possible contributions from the UV and IR

boundaries, i.e. r → ∞ and r → 0, respectively. It is simpler to give the sum,

S1, of the boundary term coming from the bulk action and the Gibbons-Hawking
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term, which in our case is
∫
dudv

∂r(e2fdet(g))√
(−detg)

:

S1 =

∫
dudv√
−detg

[−r3(4gb
2
uv∂rfb − gbvv∂rgbuu + 2gbuv∂rgbuv

− gbuu(4gbvv∂rfb + ∂rgbvv))δf/2

− r2(gbuv(−6 + 4r∂rfb)− r∂rgbuv)δguv/4

+ r2(gbvv(−6 + 4r∂rfb)− r∂rgbvv)δguu/8

+ r2(gbuu(−6 + 4r∂rfb)− r∂rgbuu)δgvv/8

− r3(−detg)∂rθbδθ

− 6e2fb+θb(−detg)δs]. (2.144)

By looking at the solutions for the various fields one can see that this expres-

sion has a quadratic divergence for r →∞ at order q0, which can be renormalized

by subtracting a counterterm proportional to the boundary cosmological constant:

SCT =
1

2(c(4 + d))1/4

∫
dudvef

√
−detg. (2.145)

The final term Sf = S1 − SCT , at order q2, for r → ∞ is obtained using the

explicit solutions:

Sf =

∫
dudv

c

8ρ2
(2huu(9(∂vρ)2 − ρ∂2

vρ)

+ 2∂uρ(8a5∂vρ− 16huv∂vρ+ 9hvv∂uρ

+ 2ρ(7∂uρ∂uhvv − 8a5∂u∂vρ+ 16huv∂u∂vρ

+ hvv∂
2
uρ) + 7ρ2(∂vvhuu + ∂u∂va5 − 2∂u∂vhuv + ∂2

uhvv))). (2.146)

For r → 0 one can readily verify that there is no finite contribution left over.

Before coming to the computation of < Tuu >, < Tvv > and < Tuv >, let us

analyse more precisely Os . This can be obtained by comparing Js from (2.140),

after setting to zero the sources of Tµν , with the corresponding term in Sf , which

gives
∫ √

g(0) < Os > Js. Setting the sources of Tµν to zero, i.e. keeping only

a5, Sf is 2c(∂uρ∂vρ − ρ∂u∂vρ)/ρ2a5 which by the holographic map is equal to∫ √
g(0) < Os > Js. Using the expression for Js given in (2.140) one finds:

< Os >
(0)=

6ρ2

4 + d
. (2.147)
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Notice that using the fact that < Os > is proportional to ρ2 (2.141), the term

proportional to �a5 in Js is a total derivative. The above equation actually

gives the proportionality constant in (2.141) so that including the first order

fluctuation:

< Os >=
6ρ2

4 + d
(1 + a5). (2.148)

2.3.4 One-point function of Tµν

The one-point functions of the stress energy tensor, < Tuu >, < Tvv > and

< Tuv >, are determined as the coefficients of hvv, huu and huv, respectively, in

Sf . After performing a partial integration one obtains the result :

< Tuu > =
−2c(2(∂uρ)2 + ρ∂2

uρ)

ρ2
,

< Tvv > =
−2c(2(∂vρ)2 + ρ∂2

vρ)

ρ2
,

< Tuv > =
2c(−∂uρ∂vρ+ ρ∂u∂vρ)

ρ2
. (2.149)

This stress energy tensor can be derived from an effective action for the field ρ:

Sρ = 2c

∫
dudv

√
−g(0)[(∂ log(ρ))2 −R(2)(g(0)) log(ρ)]. (2.150)

Note that the coefficient that appears in Sρ is c which is proportional to cUV −cIR.

Under the Weyl transformation

g(0) → e2σg(0), ρ→ e−σρ, Sρ → Sρ+2c

∫
dudv

√
−g(0)σR(2)(g(0)), (2.151)

and therefore Sρ precisely produces the anomalous term. Finally note that Js in

(2.140) transforms, up to the linearized fluctuation that we have computed here,

covariantly as Js → e2σJs under the Weyl transformation.

Finally, using (4.2), (2.140) and (2.148), we find that the conservation of stress

tensor is modified by the source terms as:

∂i < Tij >= Js∂j < Os >, (2.152)

which is the Ward identity for diffeomorphisms in the CFT in the presence of a

source term
∫
jsOs.

55



2. HOLOGRAPHIC ANOMALY MATCHING

Now we would like to interpret (2.150) from the dual (4, 0) SCFT point of

view. It is useful to recall some facts from the better understood type IIB (4, 4)

SCFT describing bound states of Q1 D1-branes and Q5 D5 branes [28, 59]. If

one wants to study the separation of, say, one D1 or D5 brane from the rest,

one has to study the effective action for the scalars in the vector multiplets, ~V ,

in the relevant branch of the 2D (4,4) gauge theory, which is the Higgs branch,

where (semiclassically) the hypermultiplet scalars H acquire v.e.v., whereas for

the vector multiplet scalars, which carry dimension 1, < V >= 0. One can obtain

an effective action for V either by a probe supergravity approach [28] or by a

field theory argument [59, 60, 61], i.e. by integrating out the hypermultiplets

and observing that in the 2D field theory there is a coupling schematically of

the form ~V 2H2. This can be shown to produce for log |~V | a lagrangian of the

form (2.150) with the correct background charge to produce a conformal anomaly

which matches the full conformal anomaly, to leading order in the limit of large

charges.

In our case, where we have a D1-D5 system in presence of D9 branes in

type I theory, the role of the vector multiplet scalars is played by the field ρ,

the instanton scale in the background geometry. The “separation” of one D-

brane corresponds geometrically to the limit ρ → ∞, where the gauge 5-brane

decouples, making a reduction in the central charge from an amount proportional

to Q1Q5 in the UV to Q1(Q5−1) in the IR, where, as shown earlier, Q1 = c/4 and

Q5 = d/4 + 1. Therefore the variation of the central charge, δc, is proportional

to Q1. On the other hand, from the D-brane effective field theory point of view

the instanton scale corresponds to a gauge invariant combination of the D5-D9

scalars, h, with h2 ∼ ρ2. The h’s are in the bifundamental of Sp(1)×SO(3), Sp(1)

being the gauge group on the D5-brane and SO(3) that on the D9- branes. The

h’s couple to D1-D5 scalars H which are in the bifundamental of SO(Q1)×Sp(1)

and belong to (4,4) hypermultiplets. In the Higgs branch, which gives the relevant

dual CFT, again H’s can have v.e.v. semiclassically, while < h >= 0. In the 2D

effective action there is a coupling of the form H2h2 and upon 1-loop integration

of H’s one gets a term (∂h)2/h2[60], with coefficient proportional to Q1. The

presence of the background charge term can be justified along the lines of [28, 59]

and it guarranties the matching of Weyl anomalies along the flow.
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Part II

On black holes in 3D higher spin

theories
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3

The phase space of sl(3,R) black

holes.

In this chapter we address some issues of recent interest, related to the asymp-

totic symmetry algebra of higher spin black holes in sl(3,R) × sl(3,R) Chern

Simons (CS) formulation. In our analysis we resort to both, Regge-Teitelboim

and Dirac bracket methods and when possible identify them. We compute explic-

itly the Dirac bracket algebra on the phase space, in both, diagonal and principal

embeddings. The result for principal embedding is shown to be isomorphic to

W
(2)
3 ×W (2)

3 .

3.1 The Regge-Teitelboim formalism

We start this section by reviewing the Regge-Teitelboim (RT) formalism in the

context of Chern Simons theory in a 3D space with boundaries. Firstly, we

provide some tips that the reader should keep in mind during this section.

• Along our discussion we will use the λ = 3 truncation of hs(λ) to sl(3,R).

However many of the procedures to be reviewed in the next section do

generalise straightforwardly to any of the truncations gotten for positive

integer λ.

• The super index (0) in a given quantity X stands for its restriction to the

Cauchy surface X(0). Or equivalently to its initial condition under a given
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flow equation.

• The symbol δ stands for an arbitrary functional variation whereas δΛ stands

for a variation due to a residual gauge transformation Λ.

Let us denote by (A, Ā) the left and right sl(3,R)-valued connections of in-

terest. Let us focus on the sector A and let us denote the space-time coordinates

by (ρ, x1, x2). The Chern Simons action supplemented by a boundary term is

SCS =

∫
tr

(
AdA +

2

3
A3

)
+ Ibdry. (3.1)

Part of the hs(λ) 1 gauge freedom is fixed by the choice

Aρ = V 2
0 ,
(
Āρ = −V 2

0

)
. (3.2)

The (1, ρ) and (2, ρ) components of the equations of motion dA+A2 = 0 impose

the form

Aa = bAab
−1, b = e−ρV

2
0

(
Āa = b̄Aab̄

−1, b̄ = eρV
2
0

)
, (3.3)

with a = 1, 22. The remaining (1, 2) components read

dA+ A2 = 0, d ≡ dxa∂a. (3.4)

Up to this point we have twice as many variables than equations. Equation (3.4)

can be thought of as:

• x2 evolution equation for A1 (I). (∂2A1 + . . . = 0).

where the . . . define quantities that do not involve derivatives with respect to x2.

From this point of view A2 is an arbitrary source and the Cauchy surface initial

condition is A1|x2=fixed. The arbitrariness of the source A2 represents an extra

gauge freedom that tunes the x2 evolution of a Cauchy data surface A1|x2=fixed.

Should we make the choice A2 = 0, evolution is trivial and all Cauchy surfaces

1See appendix B.1 for notations, conventions and definitions concerning the hs(λ) algebra.
2 From now on we will focus on the unbarred sector A. The results for the barred sector Ā

can be obtained in the same way.
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3.1 The Regge-Teitelboim formalism

have the same data A1(x1). Data A1(x1) and A1(x1) + δΛA1(x1) are physically

inequivalent as the gauge degeneracy has been already fixed.

However, notice that one can map δΛA1(x1) to a “improper” hs(λ) gauge

transformation with parameter Λ(x1)1. In this way the gauge choice A2 = 0 is

preserved and

δΛA1(x1) ≡ ∂1Λ(x1) + [A1,Λ]. (3.5)

The gauge parameters Λ carry thence some physical meaning, they will define

global charges Q(Λ) whose Poisson bracket with the initial data A1(x1) will gen-

erate the changes δA1(x1). In fact, in virtue of what was said, it results that

Q(Λ) = G|Aρ=V 2
0 ,A1=bA1b−1(bΛ(x1)b−1). (3.6)

Where G is the generator of gauge transformations in a given Cauchy surface

before imposing any second class constraint. Even though we did not make it

explicit in (3.6), we have also imposed A2 = 0.

Before defining G let us stress that in the following paragraph we do not

impose neither (3.2) nor (3.3) which are not compatible (second class) with the

x2 = fixed Poisson bracket algebra

{A1,Aρ}PB = −{Aρ,A1}PB = V 1
0 δ

(2). (3.7)

Where by V 1
0 we mean the identity operator in the hs(λ) algebra (See appendix

B.1). However we are free to take A2 = 0 as it is compatible (first class) with

(3.7). The quantity

G(Γ) ≡
∫
dx1tr(ΓA1)|ρ=∞ +

∫
dx1dρ tr(ΓF1ρ), (3.8)

is defined over each x2 = fixed Cauchy surface and obeys the following properties

{G(Γ),A1,ρ}PB = D1,ρΓ ≡ δΓA1,ρ,

δA1G(Γ) = −
∫
dx1dρ tr (DρΓδA1) , (3.9)

1In terms of the A components the parameter is bΛ(x1)b−1, in such a way that it preserves

the hs(λ) gauge choice Aρ = V 2
0 . The gauge transformation Λ is usually called “improper” as

it changes the specified boundary conditions. In a manner that will be explicitly shown below

these transformations define global symmetries.
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under the brackets (3.7). Namely, it generates the gauge transformations on a

given Cauchy surface under (3.7), and it is properly differentiable under off-shell

variations δA1. By computing the gauge variation of (3.8) and regrouping some

terms one arrives to the algebra

{G(Γ1), G(Γ2)}PB ≡ δΓ1G(Γ2) = G([Γ1,Γ2])−
∫
dx1 tr(Γ1∂1Γ2), (3.10)

which is inherited through (3.6) by the Q(Λ)’s.

In fact, after plugging (3.8) into (3.6) one gets

Q(Λ) =

∫
dx1tr(ΛA1). (3.11)

From the first line in (3.9) and after imposing the second class constraints (3.2)

and (3.3) we arrive to

{Q(Λ), A1}PB = D1Λ ≡ δΛA1(x1), (3.12)

which after taking Λ = δ2τa, A1 = Ab1τb reduces to the Kac-Moody algebra

{Aa1(x1), Ab1(y1)}PB = fabcA
c
1δ(x1 − y1)− gab∂x1δ(x1 − y1), (3.13)

where gab is the inverse of the Killing metric, gab = tr (τaτb), that is also used to

raise indices. To lower indices we use the Killing metric gab itself. For instance

fabc = gaāgbb̄gcc̄f
c̄

āb̄
. Where [τa, τb] = f c

ab τc. Notice that the same result (3.13)

can be deduced from (3.10) and the definition (3.6).

It is worth to notice that in the previous definition of G, the gauge parameter

Γ was supposed to be field independent. Should this not be the case, then (3.8)

should be replaced by

G(Γ) ≡ B(Γ,A) +

∫
dx1dρ tr(ΓF1ρ), (3.14)

where the boundary term B is such that

δA1B(Γ) =

∫
dx1tr(ΓδA1)|ρ=∞. (3.15)

Is easy to check that (3.14) still obeys the properties (3.9), but in a weak sense,

namely up to terms that vanish when one imposes the equations of motion, F1ρ =
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0. Clearly when Γ is field independent both definitions (3.8) and (3.14) are

equivalent. But (3.14) is more general. So we will stick to (3.14).

For later use we impose (3.2), (3.3), and Γ = bΛb−1, onto (3.15) and rewrite

it as

δQ(Λ) =

∫
dx1tr(ΛδA1). (3.16)

Where now we note that the ρ dependence has disappeared, and the non linearity

of Γ is inherited by Λ. The integration of (3.16), Q(Λ) generates the residual

gauge transformations that preserve any further constraint, with Λ being the

corresponding residual gauge parameter. From (3.12) we have then a way to find

out the Poisson brackets on a further reduced phase space.

A shortcut to find out the algebra without integrating (3.15) is at hand. After

use of the equivalence relation in (3.10) inherited by the Q, together with (3.16)

one gets

{Q(Λ1), Q(Λ2)}PB ≡ δΛ1Q(Λ2) = −
∫
dx1 tr(Λ1D1Λ2). (3.17)

In this way we just need to use A1 and the residual gauge parameter Λ to evaluate

the RHS [1]. We will not resort to this way.

Notice also, that in the process we have been neglecting total derivative terms

with respect to x1 under integration. To take care of them, one imposes boundary

conditions on the field and gauge parameters, like for instance periodicity under

x1 → x1 +2π. In the next section we will study a case in which such a periodicity

is lost due to the use of perturbation theory.

3.2 Regge-Teitelboim method in the principal

embedding

In this section we impose extra constraints (boundary conditions) on the phase

space of the theory with Lie algebra sl(3,R). We will explicitly set up the RT

method in order to make it equivalent to Dirac formalism. In the process we

will show, as already known, that it is also possible to set up the RT formalism

in order to define a W3 algebra at fixed time slices [1]. We will show explicitly
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that this choice can be thought of as the realisation of a non residual gauge

transformation that resets the initial constraints in favour of the usual highest

weight one. Next section we will show that such W3 is not isomorphic to the fixed

time Dirac bracket algebra.

Let us relax the condition A2 = 0 used in the previous section. Besides (3.2)

and (3.3), we impose the following constraints

A1 = V 2
1 + LV 2

−1 + WV 3
−2,

A2 = µ3

(
V 3

2 + lower components
)
, (3.18)

where the highest weight elements (L,W, . . .) are arbitrary functions of (x1, x2).

From now on to save some notation we denote the set of all of them (L,W, . . .)

as M. The flatness conditions along the generators V s
ms≥−s+1 provide algebraic

equations for the “lower components” in terms of (M, ∂2M).

A2 = µ3

(
V 3

2 + 2LV 3
0 −

2

3
∂1LV

3
−1 +

(
L2 +

1

6
∂2

1L

)
V 3
−2 − 2WV 2

−1

)
. (3.19)

The remaining ones provide the x2-flow equations

∂2L = −2µ3∂1W, ∂2W = µ3

(
8

3
L∂1L +

1

6
∂3

1L

)
, (3.20)

which determine the M out of the initial conditions M(x1, 0). Solutions can be

found in terms of perturbations of the chemical potential µ3 and will have the

generic form

M = M(0) + µ3

(
x2M

(1) + M
(0)
1

)
+O(µ2

3), (3.21)

where M(1), are local functionals of the initial conditions M(0), M
(0)
1 . Notice that

the integration constants M
(0)
1 are just shifts in M(0). In general we will take

M
(0)
1 as the most general functional of x1 and M(0) consistent with dimensional

analysis. The explicit dependence in x1 will play an important role.

We ask now for the set of linear gauge transformations preserving the bound-

ary conditions (3.18)

δAa = ∂xaΛ + [Aa,Λ], (3.22)

Λ = εV 2
1 + ηV 3

2 + higher components, (3.23)
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3.2 Regge-Teitelboim method in the principal embedding

1 where the lowest components {ε, η} are arbitrary functions of (x1, x2). We

will denote the set of lowest components {ε, η} by Θ. The projection along

the generators V s
ms>−s+1 of the x1 equation in (3.22) solves algebraically for the

highest components in terms of the lowest ones Θ:

Λ(ε, η) = εV 2
1 − ∂1εV

2
0 +

(
Lε− 2Wη +

1

2
∂2

1ε

)
V 2
−1 + ηV 3

2 − ∂1ηV
3

1 +(
2Lη +

1

2
∂2

1η

)
V 3

0 −
(

2

3
∂1Lη +

5

3
L∂1η +

1

6
∂3

1η

)
V 3
−1 +(

Wε+ L2η +
7

12
∂1L∂1η +

1

6
∂2

1Lη +
2

3
L∂2

1η +
1

4
∂4

1η

)
V 3
−2. (3.24)

Notice that the A2 component (3.19) can be viewed as a residual gauge parameter

Λ(0, µ3). This is of course a reminiscence of its spurious character.

The remaining x1 equations provide variations of the gauge field parameters

M(x1, x2)

δΛL = ∂1Lε+ 2L∂1ε− 2∂1Wη − 3W∂1η +
1

2
∂3

1ε,

δΛW = ∂1Wε+ 3W∂1ε+
1

6

(
16L∂1L + ∂3

1L
)
η +

1

12

(
9∂2

1L + 32L2
)
∂1η +

5

4
∂1L∂

2
1η +

5

6
L∂3

1η +
1

24
∂5

1η,

(3.25)

From flatness conditions and the Dirichlet boundary condition to impose, it is

clear that any other component variation of the gauge fields can be deduced from

these ones. Demanding the lowest weight components (V 2
1 , V

3
2 ) of the final A2

connection to be fixed, determines the x2-flow equations

∂2ε = −µ3

(
8

3
L∂1η +

1

6
∂3

1η

)
, ∂2η = 2µ3∂1ε, (3.26)

which allow to solve for the gauge parameter Θ(x1, x2) in terms of the initial con-

ditions Θ(x1, 0). Again, solutions can be found in perturbations of the chemical

potential µ3

Θ = Θ(0) + µ3

(
x2Θ(1) + Θ

(0)
1

)
+O(µ2

3), (3.27)

1Notice that in (3.22) we have used δ and not δΛ. In fact we use δΛA to denote the solution

of the condition (3.22), meanwhile δ stands for an arbitrary functional variation.
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where the Θ(1), are local functionals of the initial conditions Θ(0). The Θ
(0)
1 are

shifts of Θ(0) and we will define them as general functionals of x1, M(0) and Θ(0)

consistent with dimensional analysis, and linear in the Θ(0).

Let us define our coordinates x1 = 1
2
(t0 + φ), x2 = 1

2
(−t0 + φ) and consider

time evolution. This choice of coordinates identify (3.18) with the first two lines

in equation (3.1) of [1] under our conventions 1.

The Cauchy data at a fixed time slice and the corresponding residual gauge

transformations are

Adφ̃ = 2Aφdφ̃ = A1dx1 + A2dx2, δΛA = 2δΛAφ = δΛA1 + δΛA2, (3.28)

where the effective angular variable is φ̃ = 1
2
φ. By the following redefinition

L
(0)
1 = 2W(0) + 2x1∂1W

(0),

W
(0)
1 = −L(0)2 − 1

6
∂2

1L
(0) − x1

1

6

(
16L(0)∂1L

(0) + ∂3
1L

(0)
)
,

ε
(0)
1 = x1

(
8

3
L(0)∂1η

(0) +
1

6
∂3

1η
(0)

)
,

η
(0)
1 = −2x1∂1ε

(0), (3.29)

we get rid of all terms in the connection A and residual gauge transformation δΛA

that break periodicity under φ→ φ+ 2π. The periodic terms however are chosen

by convenience2. The V 2
−1 and V 3

−2 components of A become L(0) + 1
2
µ3t0L

(1) +

O(µ2
3) and W(0) + 1

2
µ3t0W

(1) +O(µ2
3) respectively. The (L(1),W(1)) are determined

by the equations of motion (3.20) to be

L(1) = 2∂1W
(0),

W(1) = −1

6

(
16L(0)∂1L

(0) + ∂3
1L

(0)
)
. (3.30)

Notice that explicit dependence in the Cauchy surface position t0 remains in both

A and δΛA. The contribution of this explicit dependence in t0 to the charge Q is a

1Should we have chosen x1 = φ and x2 = t the fixed time Dirac bracket algebra of (3.18) is

seen to be W3 [2].
2Later on we will compare the result for the ASA with the choice 3.29 with the Dirac bracket

algebra. (3.29) is the consistent choice for that case.
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3.2 Regge-Teitelboim method in the principal embedding

total derivative whose integration vanishes upon imposing our periodic boundary

conditions. The integrated charge out of (3.16), for any t0

Q(t0) =

∫ π

0

dφ̃

(
ε(0)L(0) − η(0)

(
W(0) + µ3

(
1

3
∂2

1L
(0) +

1

3
L(0)2

)))
+O(µ2

3),

(3.31)

and the variations

δΛL
(0) = . . .+ µ3

(
2∂1W

(0)ε(0) + 4W(0)∂1ε
(0) + 4L(0)∂1L

(0)η(0)

+3L(0)2
∂1η

(0) + 3∂1η
(0)∂2

1L
(0) +

11

2
∂1L

(0)∂2
1η

(0)

+
1

3
∂3

1L
(0)η(0) +

8

3
L(0)∂3

1η
(0) +

1

6
∂5

1η

)
+O(µ2

3), (3.32)

δΛW
(0) = . . .+ µ3

(
−8

3
L(0)∂1L

(0)ε(0) − 13

3
L(0)2

∂1ε
(0) − 4

3
∂2

1L
(0)∂1ε

(0)

−25

6
∂1L

(0)∂2
1ε

(0) − 1

6
∂3

1L
(0)ε(0) − 11

3
L(0)∂3

1ε
(0) − 1

3
∂5

1ε
(0)

+
16

3
W(0)∂1L

(0)η(0) +
20

3
L(0)∂1W

(0)η(0) +
38

3
L(0)W(0)∂1η

(0)

10

3
∂2

1W
(0)∂1η

(0) +
11

3
∂1W

(0)∂2
1η

(0) +
5

3
W(0)∂3

1η
(0) + ∂3

1W
(0)η(0)

)
+O(µ2

3),

δΛL
(1) =

(
δL(1)

)
|δ→δΛ ,

δΛW
(1) =

(
δW(1)

)
|δ→δΛ , (3.33)

determine, after long but straightforward computation, the Poisson bracket al-

gebra (3.55) by means of (3.12)1. The . . . in (3.32) stand for the zeroeth order

in µ3 contribution, which is given by the right hand side of (3.25) after substi-

tuting (L,W, ε, η) by (L(0),W(0), ε(0), η(0)) respectively. Remember that δ stands

for arbitrary functional differential and so by (δ . . .)|δ→δΛ we mean to take the

functional differential of . . . in terms of (δL(0), δW(0)) and after substitute δ by

δΛ. We will prove that the ASA on a fixed time t0 slice that is obtained by im-

position of (3.29) upon the Regge-Teitelboim bracket definition (3.17), namely

(3.55), coincides with the fixed time t0 Dirac bracket algebra in the space of flat

connections (3.18). We will check that the µ3 deformation of (3.55) can not be

1. . . with the substitution (x1, ∂1)→ ( t02 + φ̃, ∂φ̃) always implicitly intended.
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absorbed by a field redefinition. In other words the ASA (3.55) is not isomorphic

to W3.

However, there is a way to associate a W3 algebra to (3.18). In fact the choice

L
(0)
1 = . . .+ W(0), W

(0)
1 = . . .− 5

3
L(0)2 − 7

12
∂2

1L
(0),

ε
(0)
1 = . . .−

(
8

3
η(0)L(0) +

1

4
∂2

1η
(0)

)
, η

(0)
1 = . . .+ ε(0), (3.34)

with the . . . denoting the rhs of the previous choice (3.29), defines the integrated

charge

Q(t0) =

∫ π

0

dφ̃
(
ε(0)L(0) − η(0)W(0)

)
+O(µ2

3), (3.35)

with variations (δΛL
(0), δΛW

(0)) given precisely as in (3.25) with (L,W, ε, η) sub-

stituted by the initial conditions (L(0),W(0), ε(0), η(0)).

The variations (δΛL
(1), δΛW

(1)) are given in terms of (δΛL
(0), δΛW

(0)), as pre-

sented in the last two lines in (3.33). Thence from (3.12) one derives (3.52) which

is W3. As already stated this Poisson structure is not equivalent to the Dirac

structure (3.55) mentioned before. The technical reason being the presence of

the field dependent redefinition of gauge parameters (3.34) that is not equiva-

lent to a redefinition of (L(0),W(0)). As we will show this procedure is somehow

violating the Dirichlet boundary conditions of (3.18).

But before going on let us write down the expression for the original (V 2
−1, V

3
−2)

components of the projection A1 of A and the corresponding residual gauge pa-

rameters, (L,W, ε, η), in terms of the (L(0),W(0), ε(0), η(0)) for the choice (3.34)

L = L(0) + 3µ3W
(0) + µ3t0∂1W

(0) +O(µ2
3),

W = W(0) − µ3

(
8

3
L(0)2

+
3

4
∂2
x1
L(0)

)
− 1

12
µ3t0

(
16L(0)∂1L

(0) + ∂3
1L

(0)
)

+O(µ2
3),

ε = ε(0) − µ3

(
8

3
η(0)L(0) +

1

4
∂2
x1
η(0)

)
+

1

12
µ3t0

(
16L(0)∂1η

(0) + ∂3
1η

(0)
)

+O(µ2
3),

η = η(0) + µ3ε
(0) − µ3t0∂1ε

(0) +O(µ2
3). (3.36)

The (V 2
−1, V

3
−2) components of A are recovered by dropping the terms linear in µ3

without t0 dependence in the first two lines in (3.36).
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3.3 The RT reduction to W3 as a non residual

gauge transformation

As promised, we will show that the process that follows the choice (3.34) in

defining a W3 algebra for (3.18), is equivalent to the process of performing a

gauge transformation that maps the phase space (3.18) with µ3 6= 0 to the one

with µ3 = 0. Namely to perform a gauge transformation that changes the original

boundary conditions. First let us collect useful information. Let A be the space

of flat connections with residual gauge transformation condition δA = DAΛA.

Let g be an arbitrary field dependent gauge group element which is not a

residual transformation of A. By performing the similarity transformation by g

on both sides of (δA) = DAΛA we get

gδAg−1 = δAg −DAg(gδg
−1),

gDA(ΛA)g−1 = DAg(gΛAg
−1), (3.37)

where Ag ≡ gAg−1 + g∂g−1. From (3.37) we read out the transformation law for

the residual gauge parameter Λ

ΛAg = gΛAg
−1 + gδg−1, (3.38)

where at this point, we are free to substitute the arbitrary differential δ by δΛA ,

the initial residual gauge transformation.

Now we notice that equations (3.20) and (3.26) are integrable at any order in

µ3 as it follows from gauge invariance [1, 38]. One way to solve them is to express

the solution in terms of a gauge group element g = g(L̃, W̃, µ3x2) that takes the

highest weight connection

Ã1 = V 2
1 + L̃V 2

−1 + W̃V 3
−2, Ã2 = 0, (3.39)

to (3.18), via the usual transformation law Ã → Ãg ≡ A. The element g that

transforms (3.39) into (3.18) is generated at the first order in µ3 and linear order

in the algebra element by:

Λg = Λ(ε̃g, η̃g)− x2A2 +O(µ2
3)

= Λ(ε̃g, η̃g) + Λ(0,−µ3x2) +O(µ2
3), (3.40)
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with Λ, as a function of (ε̃, η̃), given by (3.24) with background fields (L̃, W̃)

instead of (L,W). From the second line in (3.40) it follows that Λg generates

transformations of the kind (3.25) on the (L̃, W̃) and relate them with the new

parameters (L,W) by

L = L̃− 2µ3x2∂1W̃ +O(µ2
3), W = W̃ + µ3x2

(
8

3
L̃2 +

1

6
∂2

1L̃

)
+O(µ2

3), (3.41)

where we have hidden the arbitrariness Λ(ε̃g, η̃g) in (3.40), inside of the (L̃, W̃).

From the x2 flow equations (3.20) and (3.41) one is able to identify the parameters

(L̃, W̃) with the initial conditions

L̃ ≡ L(0) + µ3L
(0)
1 +O(µ2

3), W̃ ≡W(0) + µ3W
(0)
1 +O(µ2

3). (3.42)

The map induced by Hg is then identified with the Hamiltonian evolution along

x2 that recovers (L,W) out of the initial conditions (3.42).

Now we can apply (3.38) to this specific case

Λ = gΛ̃g−1 + gδg−1

= Λ̃ + x2 (δA2 − [A2,Λ]) +O(µ2
3) = Λ̃ + x2∂2Λ|x2=0 +O(µ2

3)

= Λ̃ + x2

(
−µ3

(
8

3
L̃∂1η̃ +

1

6
∂3

1 η̃

)
V 2

1 + 2µ3∂1ε̃V
3

2 + . . .

)
+O(µ2

3).

(3.43)

Where by δ we mean the analog of the variations (3.25), and again we have

hidden the arbitrariness Λ(ε̃g, η̃g) inside the parameters Λ̃ ≡ Λ(ε̃, η̃). The last

line in (3.43), together with the x2 flow equations (3.26), allows us to identify the

parameters (ε̃, η̃) with the initial conditions (ε(0) + µ3ε
(0)
1 +O(µ2

3), η(0) + µ3η
(0)
1 +

O(µ2
3)). For later reference

ε̃ ≡ ε(0) + µ3ε
(0)
1 +O(µ2

3), η̃ ≡ η(0) + µ3η
(0)
1 +O(µ2

3). (3.44)

After imposing (3.34), the explicit form of Λ (3.24), (3.42), (3.44) on (3.41) and

(3.43), one finds the same relations gotten from the previous procedure, (3.36).

This was expected a priori, since the latter approach is simply a way to encode the

x2 evolution in the element g. Additionally, it provides an alternative perspective

to understand the significance of the choice (3.34).
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From (3.38) it follows that the differential of charge δQ ≡
∫ π

0
dφ̃ tr(Λ̃δA) is not

invariant under a gauge transformations g. In particular, the differential of charge

for (3.39) previous to the gauge transformation g encoding the x2 evolution, is:

δQ(ε̃, η̃) ≡
∫ π

0

dφ̃ tr(Λ̃δÃ1) =

∫ π

0

dφ̃
(
ε̃δL̃− η̃δW̃

)
, (3.45)

and picks up an extra µ3 dependence after the gauge transformation g is per-

formed. The choice (3.34) is the one that cancels, up to trivial integrations of

total derivatives, this extra µ3 dependence contribution to the final differential of

charge. The final result for the transformed charge, after functional integration

is performed, coincides with (3.35).

Notice however that the non residual gauge transformation g takes to a phase

space (3.39) that does not include the (µ3, µ̄3) GK ansätze [33].

3.4 Dirac bracket in the principal embedding

In this section we compute the Dirac bracket on the phase space (3.18), on a

Cauchy surface at fixed t0. From there, we will check that they define an algebra

which is not isomorphic to W3. To make things easier we start by computing

them on a Cauchy surface at fixed x2. In this case the phase space is given by a

generic sl(3,R) valued function of x1

a(x1) = AsmsV
s
ms = AaVa,

Va =
(
V 2

1 , V
2

0 , V
2
−1, V

3
2 , V

3
1 , V

3
0 , V

3
−1, V

3
−2

)
, (3.46)

We start from the Kac-Moody algebra (3.13) and proceed to impose the following

6 second class constraints

Ci =

(
A2

1 − 1, A2
0, A

3
2, A

3
1, A

3
0, A

3
−1

)
, (3.47)

onto it, but first we choose the integration constants to be

L
(0)
1 = 2W(0) + 2x1∂1W

(0),

W
(0)
1 = −L(0)2 − 1

6
∂2

1L
(0) − x1

1

6

(
16L(0)∂1L

(0) + ∂3
1L

(0)
)
, (3.48)
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precisely as in (3.29). From now on, to save space we will not write down the

explicit t0 dependence but the reader should keep in mind that the full result is

recovered by making the substitutions

L(0) → L(0) + µ3t0W
(0) +O(µ2

3),

W(0) → W(0) + µ3t0
1

12

(
16L(0)∂1L

(0) + ∂3
1L

(0)
)

+O(µ2
3), (3.49)

at the end. The constraints (3.47) define the Dirac bracket

{Aa(x1), Ab(y1)}D = {Aa(x1), Ab(y1)}PB −
(
{Aa, Ci}PBMij{Cj, Ab}PB

)
(x1, y1),

(3.50)

in the reduced phase space with configurations Aa = (L(0),W(0)). The object

Mij(x1, y1) is the inverse operator of {Ci(x1), Cj(x2)}PB, whose non trivial com-

ponents are computed to be

M12 =
1

2
δx1y1 , M21 = −M12, M22 =

1

2
∂x1δx1y1 , M36 = −1

4
δx1y1 ,

M45 =
1

12
δx1y1 , M46 = − 1

12
∂x1δx1y1 , M54 = −M45, M55 =

1

24
∂x1δx1y1 ,

M56 = −1

4
(L(0)δx1y1 +

1

6
∂2
x1
δx1y1), M63 = −M36, M64 = M46, M65 = −M56,

M66 = −1

4

(
∂x1L

(0)δx1y1 + 2L(0)∂x1δx1y1 +
1

6
∂3
x1
δx1y1

)
. (3.51)

It is easy to check that Mij(x1, y1) = −Mji(y1, x1) as it should be. After some

algebra (3.50) takes the explicit form

{L(0)(y1),L(0)(x1)}D = ∂x1L
(0)δx1y1 + 2L(0)∂x1δx1y1 +

1

2
∂3
x1
δx1y1 ,

{L(0)(y1),W(0)(x1)}D = 2∂x1W
(0)δx1y1 + 3W(0)∂x1δx1y1 ,

{W(0)(y1),W(0)(x1)}D = −1

6

(
16L(0)∂x1L

(0) + ∂3
x1
L(0)

)
δx1y1 −

1

12

(
9∂2

x1
L(0) + 32L(0)2

)
∂x1δx1y1 −

5

4
∂x1L

(0)∂2
x1
δx1y1 −

5

6
L(0)∂3

x1
δx1y1 −

1

24
∂5
x1
δx1y1 , (3.52)

where all the L(0) and W(0) in the right hand side are evaluated on x1. The

brackets (3.52), define a W3 algebra at fixed light cone coordinate x2 slices1 for

1This is, when evolution along x2 is considered.
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3.4 Dirac bracket in the principal embedding

the phase space (3.18) [53]. Notice that in this case, the µ3 dependence is implicit

in the fields through the redefinitions (3.49).

Now we go a step forward to compute the Dirac bracket on a Cauchy surface

at fixed time t0. This time the constraints will look like

Ci =

(
A2

1 − 1, A2
0, A

3
2 − µ3, A

3
1, A

3
0 − 2µ3L, A

3
−1 +

2

3
µ3∂1L

)
, (3.53)

and the corresponding first order in µ3 corrections to (3.51) are

M1
14 =

1

6
δx1y1 , M

1
15 = −1

6
∂x1δx1y1 , M

1
16 = δx1y1L

(0) +
1

4
∂2
x1
δx1y1 ,

M1
23 = −1

2
δx1y1 , M

1
24 =

1

3
∂x1δx1y1 , M

1
25 = −2

3
δx1y1L

(0) − 1

4
∂2
x1
δx1y1 ,

M1
26 =

5

3
δx1y1∂x1L

(0) +
7

3
∂x1δx1y1L

(0) +
1

3
∂3
x1
δx1y1 , M

1
32 = −M1

23,M
1
41 = −M1

14,

M1
42 = M1

24, M
1
51 = M1

15, M
1
52 = −M1

25, M
1
56 = −1

6
δx1y1W

(0), M1
61 = −M1

16,

M1
62 =

2

3
δx1y1∂x1L

(0) +
7

3
∂x1δx1y1L

(0) +
1

3
∂3
x1
δx1y1 , M

1
65 = −M1

56,

M1
66 = −1

3
δx1y1∂x1W

(0) − 2

3
∂x1δx1y1W

(0). (3.54)

Again it is easy to check that M1
ij(x1, y1) = −M1

ji(y1, x1). From (3.50), (3.51)

and (3.54) we compute the corresponding Dirac bracket. They can be checked to

obey the compatibility property {Ci, . . .}D = 0.

The corrections to (3.52) are given by

{L(0)(y1),L(0)(x1)}D = . . .+ 2µ3∂x1W
(0)δx1y1 + 4µ3W

(0)∂x1δx1y1 ,

{L(0)(y1),W(0)(x1)}D = . . .− µ3

(
8

3
L(0)∂x1L

(0)δx1y1 +
1

6
∂3
x1
L(0)δx1y1+

13

3
L2∂x1δx1y1 +

4

3
∂2
x1
L(0)∂x1δx1y1+

25

6
∂x1L

(0)∂2
x1
δx1y1 +

11

3
L(0)∂3

x1
δx1y1 +

1

3
∂5
x1
δx1y1

)
,

{W(0)(y1),W(0)(x1)}D = . . .− µ3

(
22

3
∂x1(W(0)L(0))δx1y1 +

44

3
L(0)W(0)∂x1δx1y1+

∂3
x1
W(0)δx1y1 +

10

3
∂2
x1
W(0)∂x1δx1y1+

4∂x1W
(0)∂2

x1
δx1y1 +

8

3
W(0)∂3

x1
δx1y1

)
,

(3.55)
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and cannot be reabsorbed by a general analytical redefinition at first order in µ3

L→ L + µ3L
0
1hom, W→W + µ3W

0
1hom, (3.56)

where the (L
(0)
1 hom,W

(0)
1 hom) are given in the first line of (B.9). So the fixed time

Dirac bracket algebra (3.55) on the phase space (3.18) is not isomorphic to W3.

However as we will see (3.18) can be embedded in a larger phase space whose

constrained algebra at fixed time slices is isomorphic to W
(2)
3 .

3.5 Dirac bracket in the diagonal embedding

As promised, in this section we first review how to embed the phase space (3.18)

into a larger phase space with gravitational sl(2,R) diagonally embedded into

sl(3,R). Thereafter we compute the corresponding fixed time Dirac bracket al-

gebra and show that it is isomorphic to W
(2)
3 .

First we redefine our generators as

J0 =
1

2
V 2

0 , J± = ±1

2
V 3
±2, Φ0 = V 3

0 ,

G
(±)
1
2

=
1√
8

(
V 2

1 ∓ 2V 3
1

)
, G

(±)

− 1
2

= − 1√
8

(
V 2
−1 ± 2V 3

−1

)
, (3.57)

with the non trivial commutation relations being:

[Ji, Jj] = (i− j)Ji+j, [Ji,Φ0] = 0, [Ji, G
(a)
m ] = (

i

2
−m)G

(a)
i+m,

[Φ0, G
(a)
m ] = aG(a)

m , [G(+)
m , G(−)

n ] = Jm+n −
3

2
(m− n)Φ0, (3.58)

with i = −1, 0, 1, m = −1
2
, 1

2
and a = ±. The J ’s denoting the sl(2,R) generators

in the diagonal embedding. After the shift ρ → ρ − 1
2

log(µ3), the space of flat

connections (3.18) can be embedded into

A1 = ν3

(√
2
(
G

(+)
1
2

+G
(−)
1
2

)
− 1√

2

(
G+ + G−

)
J− −

√
3J
(
G

(+)

− 1
2

+G
(−)

− 1
2

))
,

A2 = 2J+ + 2G+G
(+)

− 1
2

+ 2G−G
(−)

− 1
2

+
√

6JΦ0 + 2T′J−, (3.59)

74



3.5 Dirac bracket in the diagonal embedding

where ν3 ≡ µ
− 1

2
3 and

G+ =

√
2

6
µ

3
2
3 (∂1L + 6W) , G− = −

√
2

6
µ

3
2
3 (∂1L− 6W) ,

J =

√
2

3
µ3L, T

′ = −1

6
µ2

3(∂2
1L + 6L2). (3.60)

To obtain the previous phase space (3.18) out of (3.59), one must impose

restrictions on the latter. This is, relations (3.60) imply the constraints

G+ − G− − 1√
3 ν3

∂1J = 0, T′ +
1

2
√

6 ν2
3

(
∂2

1J + ν2
3

√
3

2
J2

)
= 0, (3.61)

which are not compatible with the equations of motion

∂1G
± = ∓ ν3

2
√

2

(
6J2 ±

√
6∂2J + 4T′

)
, ∂1J =

√
3ν3

(
G+ − G−

)
,

∂1T
′ = −ν3

(√
3
(
G− − G+

)
J +

1

2
√

2

(
∂2G

− + ∂2G
+
))

, (3.62)

and hence they define second class constraints on the corresponding phase space

of solutions. We will not impose them, in fact they are non perturbative in ν3.

The gauge parameter of residual gauge transformations for (3.59)

Λ = 2ΛJ+J+ + 2ΛG+
1
2

G+
1
2

+ 2ΛG−1
2

G−1
2

+
√

6ΛΦ0Φ0

+

(
−1

2
∂2ΛJ+

)
J0 +

(
−G+Λ

G
(−)
1
2

− G−Λ
G

(+)
1
2

+ 2T′ΛJ+ +
1

4
∂2

2ΛJ+

)
J−

+

(
−
√

6JΛG+
1
2

+ 2G(+)ΛJ+ − ∂2Λ
G

(+)
1
2

)
G+
− 1

2

+

(
−
√

6JΛG−1
2

+ 2G(−)ΛJ+ + ∂2Λ
G

(−)
1
2

)
G−− 1

2

,

(3.63)

define the variations

δΛJ+
T′ = ΛJ+∂2T

′ + 2∂2ΛJ+T
′ +

1

8
∂3

2ΛJ+ ,

δΛΦ0
J = ∂2ΛΦ0 , δΛ

G
(+)
1
2

J = −
√

6Λ
G

(+)
1
2

G−, δΛ
G

(−)
1
2

J =
√

6Λ
G

(−)
1
2

G+,

δΛJ+
G(±) = ∂2ΛJ+G+

3

2
ΛJ+∂2G

(±) ±
√

6ΛJ+JG
±,

δΛ
G+

1
2

G− =

(
2T′ + 3J2 −

√
3

2
∂2J

)
ΛG+

1
2

−
√

6J∂2ΛG+
1
2

+
1

2
∂2ΛG+

1
2

, (3.64)
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and the following differential of charge in the case of x1 evolution

δQ =

∫
dx2tr (ΛδA2) =

∫
dx2

(
ΛJ+dT − ΛΦ0dJ− Λ

G
(−)
1
2

dG+ − Λ
G

(+)
1
2

dG−
)
.

(3.65)

We could now repeat the Regge-Teitelboim analysis done for the case of the

principal embedding to this case, but instead we choose to work out the Dirac

bracket algebra.

For the seek of brevity we will work at t0 = 0, but the conclusion of this

computation remains unchanged at any other fixed time slice. The difference

being that the charges will carry an explicit t0 dependence as in the previous

case. At t0 = 0 the Cauchy data at first order in ν3 can be written in the form

A = 2Aφdφ̃ = (Ax1dx1 + Ax2dx2)

=
(

2J+ +
√

2ν3

(
G

(+)

− 1
2

+G
(−)

− 1
2

)
+ 2G̃+(0)G

(+)

− 1
2

+ 2G̃−(0)G
(−)

− 1
2

+
√

6J(0)Φ0 + 2T̃′(0)J−

)
dφ̃+O(ν2

3), (3.66)

by a choice of integration constants. Where

G̃±(0) = G±(0) −
√

3

2
ν3J

(0), T̃′(0) = T′(0) − 1

2
√

2
ν3

(
G+(0) + G−(0)

)
. (3.67)

Again, we remind that by super index (0) we refer to the initial conditions of

the system of x1 evolution equations (3.62). Some comments on notation are in

order. Let the components of A in the W
(2)
3 basis (3.57), be denoted again by Aa

with a = 1, . . . , 8 and the ordering corresponding to(
J0, J+, J−,Φ0, G

(+)

− 1
2

, G
(−)

− 1
2

, G
(−)

− 1
2

, G
(+)

− 1
2

)
. (3.68)

At this point, we impose the four second class constraints

Ci =
(
A1, A2 − 2, A7 −

√
2ν3, A8 −

√
2ν3

)
, (3.69)

on the phase space (3.66) endowed with the algebra (3.13) written in the basis

(3.68). Notice that we shall not impose at this point the second class constraints

coming from (3.61). As already mentioned they are non perturbative in ν3.
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3.5 Dirac bracket in the diagonal embedding

Next, is straightforward to compute the Dirac bracket (3.50). For complete-

ness we write down the non vanishing elements of Mij in this case

M11 =
1

8
∂x2δx2y2 , M12 = −M21 = − 1

2
√

2
δx2y2 , M34 = −M43 =

1

2
δx2y2 ,

M13 = −M31 = M41 = −M14 =
ν3

4
√

2
δx2y2 , (3.70)

from where we can check explicitly by using (3.50) that {Ci, . . .}D = 0.

The algebra in the reduced phase space will depend on ν3 explicitly, but after

implementing the change

G±(0)
ν3

= G̃±(0) −
√

3

2
ν3J

(0), T′ν3
= T̃′ − 1√

2
ν3(G̃+(0) + G̃−(0)), (3.71)

we obtain the undeformed W
(2)
3 algebra:

{T′(0)
ν3

(y2),T′(0)
ν3

(x2)}D = T′(0)
ν3
δx2y2 + 2∂x2T

′(0)
ν3
δx2y2 +

1

8
∂x2δx2y2 ,

{J(0)
ν3

(y2), J(0)
ν3

(x2)}D = δx2y2 ,

{J(0)
ν3

(y2),G±(0)
ν3

(x2)}D = ±
√

6G±(0)
ν3

δx2y2 ,

{T′(0)
ν3

(y2),G±(0)
ν3

(x2)}D = ∂x2G
±(0)
ν3

δx2y2 +
3

2
G±(0)
ν3

∂x2δx2y2 ±
√

6J(0)
ν3
G±(0)
ν3

δx2y2 ,

{G+(0)
ν3

(y2),G−(0)
ν3

(x2)}D = −

(
2T′0ν3

+ 3J(0)
ν3

2 −
√

3

2
∂x2J

(0)
ν3

)
δx2y2

+
√

6J(0)
ν3
∂x2δx2y2 − ∂2

x2
δx2y2 ,

(3.72)

that agrees precisely with the signature of charges in (3.65) and the transforma-

tion laws (3.64). The most canonical form can be achieved by the usual redefini-

tion of energy momentum tensor T
′(0)
ν3 → T

′(0)
ν3 + 1

2
J

(0)
ν3

2
that makes G

±(0)
ν3 and J

(0)
ν3

primaries of weight 3
2

and 1 respectively. It is then proven that the fixed time

asymptotic symmetry algebra of the space of solutions (3.59) is W
(2)
3 at first order

in the parameter ν3. However, it would be strange would this not be the case at

any order in ν3.

Notice that (3.59) does contain the (µ3, µ̄3) higher spin black hole solutions [33]

(of course, after performing the shift ρ→ ρ− 1
2

log(µ3) on them), as zero modes.
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Thence, both families (3.18) and (3.59) can be used to define the charges of these

black holes. However, the two possibilities are not equivalent as we have already

shown that (3.59) is larger than (3.18) and thence the corresponding algebras

are not isomorphic. The family (3.59) is the preferred one, as for (3.18) it is

impossible to define a basis of primary operators for the corresponding algebra 1.

We make a last comment before concluding. Notice that should we have

worked with the following coordinates

x1 =
t+ φ

2
, x2 =

φ

2
, (3.73)

all previously done remains valid, up to dependence on t0. This dependence

only affects implicitly the W
(2)
3 algebra through field redefinitions. The hs(λ)

ansätze to be introduced in the next chapter [62], belong to (3.59) under (3.73)

for the truncation to sl(3,R) via the limit λ = 32. Thenceforth, in this case, the

corresponding charges are not of higher spin character.

In this study we will not attempt to meddle with the issue of asymptotic

symmetry algebras coming from generalised boundary conditions in the context

of hs(λ). We hope to report on that point in the near future.

1One can define a quasi-primary field of dimension 2, as a Virasoro subalgebra can be

identified in (3.55), but the remaining generator can not be redefined in order to form a primary

with respect to the Virasoro one.
2However one should keep in mind the extra shift in the coordinate ρ→ ρ− 1

2 log(µ3).
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4

A class of black holes in the

hs(λ)× hs(λ) theory

In this chapter we argue that a given class of hs(λ) × hs(λ) flat connections do

have a space time interpretation as black holes. As a first argument, we resort to

the usual relation between connections and metric like tensor fields discussed in

the finite dimensional case in [32].

We start by writing down the generic form for the flat connections of interest:

Aρ = V 2
0 , Āρ = −V 2

0 ,

At,φ = bAt,φb
−1, Āt,φ = b̄Āt,φb̄

−1, (4.1)

with b = e−ρV
2
0 , b̄ = eρV

2
0 . The generators and structure constants for hs(λ)

algebra are listed in appendix B.1. Let us denote our space-time coordinates as

(ρ, t, φ) and restrict our analysis to connections that obey the gauge choice (4.1)

with A independent of xa = (t, φ).

The relation between the connection and the space time tensor fields is:

g(n) = −1

2
tr(en), e = A− Ā, (4.2)

with e being the dreibein. As a starting point we remind the condition:

et|ρ=0 = 0, (4.3)

required in order to have a smooth horizon at ρ = 0 in the spacetime tensor field

g(n). Under (4.3) each t component in g(n) will have a zero at ρ = 0 with the
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appropriate order. By appropriate orders we mean those that make the corre-

sponding reparameterisation invariant quantities smooth at ρ = 0. For instance,

g
(n)
t ∼ ρn, and thence, it will be smooth after transforming to a regular coordinate

system about the horizon. In virtue of (4.1) we can rewrite (4.3) as:

Āt = At. (4.4)

From the flatness condition the φ components are constrained to be of the form:

Aφ = P (At) , Āφ = P̄ (At)
1, (4.5)

where we take P and P̄ to be polynomials in At and Āt respectively. The condi-

tion:

g(n)(ρ) = g(n)(−ρ), (4.6)

guarantees that all the components of g(n) will be C∞ in the Cartesian coordinates

in the plane (ρ, t), with ρ thought as the radial coordinate. Condition (4.6)

ensures smoothness for the g(n) at ρ = 0. As far as Euclidean conical singularity

is concerned, it will be automatically excluded by requiring fulfilment of the BTZ

holonomy condition [33]. See the paragraph before (4.85) for more details.

Let us identify a sufficient condition on the connections (A, Ā) for (4.6) to

hold. Consider the generic connections:

Aa =
∑

(s,ms)

csmsV
s
ms , Āa =

∑
(s,ms)

c̄smsV
s
ms . (4.7)

Notice that the change ρ to −ρ in (4.7) is equivalent to the change V
s

ms → V
s

−ms
2.

By inserting (4.7) in (4.2), and using the properties of the ?-product, we can

notice that tr(ena) is invariant under the combined action of ρ → −ρ and any of

the following pair of Z2 transformations:

I : csms
(
c̄sms
)
→ cs−ms

(
c̄s−ms

)
AND/OR I× II, (4.8)

1 It could be the case that At = P (Aφ) and not the other way around, but for our purposes

we stick to the case written above. In fact the most general case is Aφ = Pφ(A) and At = Pt(A)

with a generic A ∈ hs(λ).
2Here we consider s = 1, . . .∞, ms = −2s + 1, . . . , 2s − 1. So that under summation the

indices s and ms are mute and can be renamed without lack of rigor.
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with the Z2 II given by

II : c̄s−ms → −c
s
ms . (4.9)

Transformation I together with V s
ms → V s

−ms leaves the dreibein ea = Aa− Āa

invariant and therefore the trace of powers of ea. The transformation II leaves

tr(ena) invariant but generically not the dreibein ea.

A trivial (even) representation of (A, Ā)a under (4.8) is sufficient condition

for (4.6). Should some components in (A, Ā) not remain invariant under the

Z2 I or I×II, but carry a non trivial (odd) representation under any of them,

then the corresponding component of the dreibein e will carry a non trivial (odd)

representation too. Condition (4.6) will thus imply that traces involving an odd

number of such components must vanish.

Let us analyze the particular case of the BTZ connection

At = Āt =
1

2
a, Aφ = −Āφ =

1

2
a, (4.10)

where

a = V 2
1 +MV 2

−1. (4.11)

From now on, for simplicity, we will choose the value M = −1, which locates the

horizon at ρ = 0. For later use we define a±ρ = bab−1.

The φ component of the pair (A, Ā) remains invariant under the transforma-

tion II whereas the t component is odd. However the t component is also odd

under I and so even under the composition I× II. Finally, the following symme-

tries of the corresponding t and φ components of the dreibeins

et =
1

2
(aρ − a−ρ) ≡ a I × II −even,

eφ =
1

2
(aρ + a−ρ) ≡ a II−even, (4.12)

imply that (4.6) holds for the connection (4.10). We can still get further informa-

tion from symmetries. As et and eφ are odd under I, any tensor field component

with an odd number of t plus φ directions, vanishes. As et and eφ are odd and

even respectively, under II, any tensor component with an odd number of t com-

ponents vanish. Finally, what said before implies that any tensor component with

and odd number of φ directions vanish too.
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4. A CLASS OF BLACK HOLES IN THE HS(λ)×HS(λ) THEORY

Much of what was used for the BTZ case before, holds also for generic con-

nections. Specifically:

• Any pair of connections (A, Ā) that carries a trivial representation under I

or I × II, will define metric-like fields obeying (4.6).

Additionally, one can argue also for a necessary condition for (4.6) to hold.

Let us suppose that a pair (A, Ā) contains a part (Arep, Ārep) that satisfies the

conditions above, and a part (δA, δĀ) that does not, but still defines metric like

fields which are even under ρ to −ρ. In that case the term (δA− δĀ) should be

orthogonal to itself1, its powers, and powers of the generators in (Arep − Ārep)

(This is possible to find, for example V 3
2 is orthogonal with itself and its powers).

Should this not be the case, the term (δA− δĀ) would give contributions which

are not even in ρ (based on the invariance property of the trace mentioned above).

However, if (Arep−Ārep) contains all of the sl(2,R) elements, V 2
0,±1, it is impossible

to find a set of generators in hs(λ) that is orthogonal to every power of them. In

that case, symmetry under any of the Z2 transformations in the maximal set, out

of the (4.8), (I, I× II) for any (s,ms)
2 is also a necessary condition for (4.6).

At this point we specify our class of connections:

At = Āt = Pt (a) ,

Aφ =
1

2
a+ Pφ (a) , Āφ = −1

2
a+ P̄φ (a) , (4.13)

with Pt, Pφ and P̄φ being arbitrary traceless polynomials of the form

Pt =
∞∑
i=0

νi
(
a2i+1 − trace

)
,

Pφ =
∞∑
i=0

µi+3

(
a2i+2 − trace

)
, P̄φ =

∞∑
i=0

µ̄i+3

(
a2i+2 − trace

)
. (4.14)

Notice that (4.14) obeys (4.3) and that Pt and Pφ are selected in such a way that

gtφ = 0. We also choose the components gρt and gρφ to vanish. In particular (4.14)

1 The orthogonality is meant with respect to the trace operation in hs(λ).
2Notice that there are many possible Z2’s. The number grows exponentially with the num-

ber of generators in (A− Ā). The calligraphic letters indicate the full connection, ρ component

and ρ dependence included.
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reduce to the non rotating BTZM=−1 connection in the limit ν0 = 1
2
, νi>0 = 0,

and vanishing µi, µ̄i. Now:

• The transformations of a, the corresponding deformation polynomials (Pφ(a),

P̄φ(a), Pt(a)) and the ρ components ±V 2
0 under I in (4.8), are odd, even,

odd and even respectively.

• In virtue of properties of the ?-product, the traces with odd numbers of a

and Pt(a) with any number of insertions of V 2
0 and (Pφ(a), P̄φ(a)), vanish,

and so all non vanishing traces are even under I and henceforth even under

ρ→ −ρ.

We conclude that the ansätze (4.14) give rise to spacetime tensor fields that obey

(4.6). In fact we explicitly checked (4.6) to hold up to arbitrary higher order in

n and the order of the polynomials P and P̄ .

In the near horizon expansion, g(2), the line element defined by (4.2), will look

like:

dρ2 − 4

T 2
ρ2dt2 + . . . = ρ∗dv2 +

1

2
dρ∗dv + . . . , (4.15)

with v = t− T
2
log(ρ) + . . . and ρ∗ = 4

T 2ρ
2 + . . . being coordinate redefinitions that

are going to be useful later on when analyzing fluctuations. The . . . denoting

higher orders corrections in ρ. The temperature:

T (Pt) ≡
1√

1
2
tr ([Pt(a), V 2

0 ]2)
, 1 (4.16)

defines the thermal periodicity under t→ t+ πT i.

We will focus our study in the cases ν0 = 1
2
, νi>0 = 0. These are solutions that

obey the usual BTZ holonomy-smoothness condition as the temporal component

of the connection coincides with the BTZ one with M = −1. This implies that

not only the eigenvalues of the time component of connection are the same as

BTZM=−1, but also that the holonomy around the contractible euclidean time

1From the positiveness of the traces tr(V 2s
2ms+1V

2s
−2ms−1), see (B.4), in the interval 0 < λ < 1

and the fact we have chosen odd powers of a in Pt it follows that the quantity inside the roots

in (4.17) and (4.19) is a sum of positive defined quantities and hence positive defined. We stress

that we restrict our study to the interval 0 < λ < 1.
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4. A CLASS OF BLACK HOLES IN THE HS(λ)×HS(λ) THEORY

cycle coincides with the BTZ case, since the euclidean periodicity, determined by

the temperature T
(

1
2
a
)

= 2, is the same as for the BTZM=−1.

However before going on, let us comment on the possibility of arbitrary νi.

The euclidean smoothness condition is:

eπiT (Pt)Pt(a) ∼ V 1
0 . (4.17)

To solve for (4.17) we use the fact that πiP (a), with P (a) an arbitrary polynomial

in a with arbitrary integer coefficients, are known to exponentiate to V 1
0 in the

region 0 < λ < 1, see [63].

Then relations (4.17) reduce to find out the νi such that νiT (Pt) are integers.

To study this quantization conditions it is useful to write down Pt in the basis

as−1
⊥ ≡ 1

Ns

s−1∑
t=0

(−1)t
(
s− 1
t

)
V s
s−1−2t ∼ (as−1)

∣∣
V t<smt →0

, (4.18)

where Ns is a normalization factor, chosen in such a way that: ((as−1
⊥ )2) = 1. We

get thus

Pt(a) =
∞∑
s=0

ν⊥s
a2s+1
⊥√

1
2
tr([as−1

⊥ , V 2
0 ]2)

, νs⊥ = M siνi, (4.19)

where the linear transformation matrix M is upper triangular. In the appendix

C.1 we present the explicit form for M , (C.1), for the case µ2i+1 6= 0, with

i = 0, . . . , 4. An important property to use is that the eigenvalues (the diagonal

elements) of M can be checked to be larger or equal than 1 in the range 0 < λ < 1

until arbitrary large i.

The desired quantization conditions can be written as:

νiT (Pt) = (M−1)is cos θs = ni, (4.20)

with cos θs ≡ νs⊥√∑
s(νs⊥)

2 and ni an arbitrary integer. The condition for the quan-

tization relation (4.20) to admit solutions is:

∞∑
s=1

(M � n)s2 = 1. (4.21)
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In appendix C.1 we show that the property of the eigenvalue of M mentioned

above excludes the presence of other solutions to the consistency condition (4.21)

in the region 0 < λ < 1, apart from the trivial one, n0 = 1 (ν0 = 1
2
, νi>0 = 0).

Here we just continue with the cases that are continuously linked to the BTZ

connection in the limit µi, µ̄i to zero. Namely ν0 = 1
2
, νi>0 = 0. The requirement

of the BTZ holonomy condition will guarantee the absence of any possible conical

singularity in the tensor like fields as the dreibein itself is thermal periodic.

Generically, (4.14) will define asymptotically Lifshitz metrics with critical ex-

ponent z < 1, except for the cases in which the contributions out of the deforma-

tion parameters µi, µ̄i will not provide ρ dependence. An example being when

µ̄i = 0 (or µi = 0) in which case the only contribution to gφφ comes at quadratic

order in µi(or µ̄i) but it is independent of ρ due to the cyclic property of the

trace. In those cases the metric becomes asymptotically AdS.

To summarize, (4.14) will define metrics of two classes:

• Generically Lifshitz metric with z < 1.

• AdS metrics when µ2i = 0 (or µ̄2i = 0).

This classification relies on the definition (4.2). For instance the line elements

coming from (4.2) for the cases µ3 6= 0, µ̄3 = −µ3 6= 0 and µ̄3 = µ3 6= 0 look like :

ds2
(µ3, 0) = dρ2 − sinh2 ρ dt2 +

(
cosh2 ρ+

16(λ2 − 4)

15
µ2

3

)
dφ2,

ds2
(µ3,−µ3) = dρ2 − sinh2 ρ dt2 +

1

30

(
12
(
λ2 − 4

)
µ2

3 cosh(4ρ)

+5
(
4
(
λ2 − 4

)
µ2

3 + 3 cosh(2ρ) + 3
))
dφ2,

ds2
(µ3, µ3) = dρ2 − sinh2 ρ dt2 +

1

5
cosh2(ρ)

(
−8
(
λ2 − 4

)
µ2

3 cosh(2ρ)

+8
(
λ2 − 4

)
µ2

3 + 5
)
dφ2.

(4.22)

The first line element in (4.22) behaves asymptotically as AdS3 and shows a

smooth horizon at ρ = 0, while the last two cases are Lifshitz metrics with

dynamical critical exponent z = 1
2
< 1. Should we have turned on a higher spin

µ deformation, the parameter z would have decreased like z = 1
4
, 1

8
. . . .
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4. A CLASS OF BLACK HOLES IN THE HS(λ)×HS(λ) THEORY

The bulk of the present chapter, section 4.1, will be devoted to the study of

matter fluctuations around the connections (4.13), which are not just gravita-

tional but involve also higher spin tensor fields turned on. This further analysis

will confirm the expectation that these backgrounds truly describe black holes,

through the “dissipative” nature of matter fluctuations we will find.

Before closing this section, we make contact (perturbatively in µ3) with other

relevant backgrounds studied in the literature recently. More precisely, we look for

static gauge parameters (Λ, Λ̄) (independent of x1,2), that transform (4.14) to the

GK [33] and BHPT2 [2, 64] backgrounds. Notice that these gauge transformations

will not change the eigenvalues of the components (A1,2, Ā1̄,2̄) of the connections

because they are just similarity transformations. The two classes of backgrounds

we want to relate ours, are described by the following connections:

A1 = V 2
1 + LV 2

−1 + WV 3
−2 + ZV 4

−3 + . . . , A2 =
∞∑
i=0

µi+3

(
Ai+2

1 − traces
)
,

Ā1̄ = V 2
−1 + L̄V 2

1 + W̄V 3
2 + Z̄V 4

3 + . . . , Ā2̄ =
∞∑
i=0

µ̄i+3

(
Āi+2

1̄
− traces

)
.

(4.23)

Our parameters (µi, µ̄i) will be identified precisely with the chemical potentials

in (4.23). In our approach the charge-chemical potential relations [33, 65] are

determined a priori by the condition ν0 = 1
2
, νi>0 = 0. Namely, after applying

the gauge transformations (Λ, Λ̄) the charges L, W and Z will be already written

in terms of the chemical potentials (µi, µ̄i). In this way one can generate GK, and

BHPT2 ansätze with more than one (µi, µ̄i) turned on, and with the holonomy

conditions already satisfied. However, with the choice ν0 = 1
2
, νi>0 = 0 one can

only reach branches that are smoothly related to the BTZM=−1.

Taking x1 = x2̄ = x+ and x2 = x1̄ = x−, we recover the GK background, whereas

for x1 = x1̄ = φ and x2 = x2̄ = t we get BHPT2.

For later use, we write down the particular gauge transformations that takes

the representative with non vanishing µ3 = −µ̄3 into the wormhole ansatz for
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4.1 Equations for fluctuations

GK’s case. They read, respectively, to leading order in µ3 = −µ̄3:

ΛGK = µ3

(
−5

3
e−ρV 3

−1 + eρV 3
1

)
+ commutant of aρ +O(µ2

3),

Λ̄GK = µ3

(
eρV 3

−1 −
5

3
e−ρV 3

1

)
+ commutant of a−ρ +O(µ2

3). (4.24)

The holonomy conditions are satisfied a priori and so the corresponding charge-

chemical potential relations are as follows:

L = L̄ = −1 +O(µ2
3), W = −W̄ =

8

3
µ3 +O(µ3

3), Z = Z̄ = O(µ2
3), . . . (4.25)

For BHPT2, namely when the chemical potentials are turned on along the t

direction and the asymptotic symmetry algebra is the undeformed Wλ × Wλ

[64, 66], they are given by:

ΛBHPT2 = 2ΛGK +O(µ2
3),

Λ̄BHPT2 = 2Λ̄GK +O(µ2
3). (4.26)

In this case the relations charge-chemical potential are:

L = L̄ = −1 +O(µ2
3), W = −W̄ =

16

3
µ3 +O(µ3

3), Z = Z̄ = O(µ2
3). (4.27)

Later on, we will apply these transformations to the matter fluctuations in the

µ̄3 = −µ3 6= 0 background in (4.14).

4.1 Equations for fluctuations

In this subsection we show how to obtain the differential equations for the scalar

fluctuations over the backgrounds (4.14). Firstly, we review how this works for

the BTZM=−1 case. This will allow us to identify a strategy for the cases (4.14).

As mentioned in the introduction, the equation of motion of the master field

C in generic background connections (A, Ā) is simply the horizontality condition:

∇̃C ≡ dC + A ? C − C ?A = 0 with C =
∑

Cs
msV

s
ms , (4.28)
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4. A CLASS OF BLACK HOLES IN THE HS(λ)×HS(λ) THEORY

whose formal solution and its corresponding transformation law under left mul-

tiplication (g, ḡ)→ (eΛg, eΛ̄ḡ), are, respectively:

C = g C g−1 and C(Λ,Λ̄) = eΛCe−Λ̄, (4.29)

where dC = 0 and C =
∑

CsmV
s
m.

The trace part of the master field C and its transformation law are also:

C1
0 = (C)

∣∣
V 1

0
and C1

0 (Λ,Λ̄) =
(
e(Λ−Λ̄)C

) ∣∣
V 1

0
. (4.30)

The integration constant C is evaluated in the limit C
∣∣
g→1

. In our cases (4.14) g

goes to 1 at the points (ρ, xa) = 0. However notice that these points are located

at the horizon ρ = 0 of (4.14) and, as we shall see, many of the components of

the master field C will diverge there.

Our aim is to “fold” (4.28) for our ansätze (4.14) with ν0 = 1
2
, νi>0 = 0.

By “folding” we mean the process of expressing every Cs
ms in terms of C1

0 and its

derivatives, and finally to obtain a differential equation for C1
0 . For such a purpose

we start by reviewing how this process works for the simplest case, BTZM=−1,

and in doing so we will discover how to fold the matter fluctuations in the case

of the backgrounds (4.14).

We start by proving that for BTZM=−1 every higher spin component Cs
ms , can

be expressed in terms of ∂± derivatives of C1
0 and C2

0 . Using the explicit forms

for g and ḡ in this case:

C = e−aρx+C(ρ)e−a−ρx− . (4.31)

It is easy to see that:

∂±C
1
0 = −(a±ρC)

∣∣
V 1

0
∼ −(e±ρC2

1 − e∓ρC2
−1), (4.32)

from where (C.15) of the Appendix C.3 is immediate. By
(
. . .
)∣∣
V 1

0
we denote the

coefficient of V 1
0 in

(
. . .
)
.

Now we can repeat the procedure at second order in ± derivatives of C1
0 . At

this stage we can write down three combinations:

∂2
+, ∂

2
−, ∂

2
+−,
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4.1 Equations for fluctuations

which would generate the following quadratic relations inside the trace element:

a2
ρ = Ṽ 1

0 + e2ρV 3
2 − 2V 3

0 + e−2ρV 3
−2, (4.33)

a2
−ρ = Ṽ 1

0 + e−2ρV 3
2 − 2V 3

0 + e2ρV 3
−2, (4.34)

aρa−ρ = cosh 2ρ(Ṽ 1
0 − 2V 3

0 )− 2 sinh 2ρV 2
0 + V 3

2 + V 3
−2, (4.35)

where Ṽ 1
0 =

(λ2−1)
3

V 1
0 .

Equations (4.33), (4.34) and (4.35), allow to write down C3
−2, C3

0 and C3
2 in

terms of (
∂2

+C
1
0 , ∂

2
−C

1
0 , ∂

2
+−C

1
0 , C

2
0

)
,

so that one arrives to the relations (C.17) and (C.19).

Proceeding this way, we see that at the level s = 3 we can still use first

derivatives acting on C2
0 :

∂+C
2
0 = −(V 2

0 aρC)
∣∣
V 1

0
and ∂−C

2
0 = −(a−ρV

2
0 C)

∣∣
V 1

0
. (4.36)

Then, if we use:

V 2
0 aρ = −1

2
(eρV 2

1 + e−ρV 2
−1)− e−ρV 3

−1 + eρV 3
1 , (4.37)

a−ρV
2

0 =
1

2

(
e−ρV 2

1 + eρV 2
−1

)
− eρV 3

−1 + e−ρV 3
1 , (4.38)

on both equations in (4.36), together with (4.32), we get the spin three compo-

nents C3
±1 in terms of: (

∂+C
1
0 , ∂−C

1
0 , ∂+C

2
0 , ∂−C

2
0

)
,

as shown in (C.18).

Now we show how this process of reduction works at any spin level s. First

we remind some useful properties of the lonestar product. Let us start by the

generic product

V s1
m1
? V s2

m2
,

that will reduce to a combination of the form:

V s1+s2−1
m1+m2

+ . . .+ V s1+s2−1−j
m1+m2

+ . . .+ V
|m1+m2|+1
m1+m2

, (4.39)
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4. A CLASS OF BLACK HOLES IN THE HS(λ)×HS(λ) THEORY

where we are not paying attention to the specific coefficients, which will be used

in due time. The index j goes from 0 to s1 + s2 − 2− |m1 +m2|. From (4.39) it

follows that the products: V s1
m1
? a and a ? V s1

m1
, with a = V 2

1 − V 2
−1, will contain

combinations of the form:

V s1+1
m1+1 + V s1+1

m1−1 + . . . , (4.40)

where the . . . stand for lower total spin s contributions. For our purposes only

the highest total spin generators are relevant.

Furthermore, for any chain of 2s − 1 generators with even spin 2s and even

projections,
s−1∑

m=−s+1

V 2s
2m + . . ., further left or right multiplication by a will change

it into a chain of 2s generators
s−1∑
m=−s

V 2s+1
2m+1 + . . . at the next spin level 2s+ 1. As

a consequence, arbitrary powers of a look like:

a2s =
s∑

m=−s

V 2s+1
2m + . . . and a2s+1 =

s∑
m=−s−1

V 2s+2
2m+1 + . . . . (4.41)

From (4.30) and (4.31), it follows that each ∂± derivative acting on C1
0 is

equivalent to a left or right multiplication by −a±ρ inside the trace. In particular,

taking 2s of these derivatives on C1
0 is equivalent to take 2s powers of ±a±ρ inside

the trace.

The number of different derivatives of order 2s denoted by: ∂2s
± is 2s+1. This

number coincides precisely with the number of components with total spin=2s+1

in the first power of (4.41). So one can use the 2s+ 1 relations:

∂2s
± C

1
0 = (a2s

±ρC)
∣∣
V 1

0
, (4.42)

to solve for 2s+ 1 components of C:

[C2s+1
2m ] with m = −s, . . . , s, (4.43)

in terms of components with lower total spin and their ± derivatives.

One can always solve equations (4.42) in terms of (4.43) because the set of

symmetrized powers of a2s
±ρ (more precisely, their components with the highest

total spin) will generate a basis for the 2s+ 1 dimensional space generated by:

[V 2s+1
2m ] with m = −s− 1, . . . , s.
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4.1 Equations for fluctuations

In order to prove this statement, we take the large ρ limit. In this limit a given

symmetric product a2s
± with 2m+ plus signs and 2m− = 2 (s−m+) minus signs

reduces to a single basis element V 2s
2(m+−m−). So, the set of all possible symmetric

products a2s
± span an 2s + 1-dimensional vector space. Consequently the system

of equations (4.42) is non-degenerate.

Similarly, increasing the spin by one, one can solve the 2s+ 2 relations:

∂2s+1
± C1

0 = −(a2s+1
±ρ C)

∣∣
V 1

0
, (4.44)

for the 2s+ 2 components

[C2s+2
2m+1] with m = −s− 1, . . . , s, (4.45)

in terms of lower spin components and their ± derivatives.

Summarizing, what we have done is to use the identities:

∂+ = −aρ?L, ∂− = −a−ρ?R, (4.46)

with left ?L and right ?R multiplication inside any trace. Notice that in Fourier

space (−i∂t,−i∂φ) = (w, k) the master field (4.31) is an eigenstate of the operators

on the right hand side of (4.46). This will turn out to be a crucial observation,

and it will be useful for later purposes, but for now we just use (4.46) to solve for

every component of Cs
ms with (s,ms) being points in a “semi-lattice” with origin

(1, 0) and generated by positive integral combinations of basis vectors (2, 1) and

(2,−1). From now on we will refer to this particular “semi-lattice” as I and to

the corresponding set of components of the master field C in it as CI .

In exactly the same manner one can show how the set of powers

as+ρ V
2

0 a
s−
−ρ, (4.47)

with s = s+ + s− + 1 spans the complementary “semi-lattice” of spin s + 1

and projection ms = −s + 1,−s + 3, . . . , s − 3, s − 1 generators. Namely the

“semi-lattice” with origin at (2, 0) and positive integral combinations of (2, 1)

and (2,−1). We refer to it as II, and the corresponding components of the

master field C, CII . More in detail, this means that we can solve the s relations:

∂
s+
+ ∂

s−
− C

2
0 = (−1)s++s−

(
a
s−
−ρV

2
0 a

s+
ρ C

) ∣∣
V 1

0
, (4.48)
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4. A CLASS OF BLACK HOLES IN THE HS(λ)×HS(λ) THEORY

for the set of components in CII with highest spin= s+ 1 and projections ms =

−s+ 1,−s+ 3, . . . , s− 3, s− 1.

• In conclusion, equations (4.42)-(4.45) and (4.48) allow to solve for every

components of CI and CII in terms of C1
0 and C2

0 and their derivatives

along ± directions.

Finally, the V 1
0 -dρ component of (4.28) gives C2

0 ∼ ∂ρC
1
0 and the V 2

0 -dρ com-

ponent of (4.28) will determine the differential equation D2C
1
0 = 0 with

D2 = �−
(
λ2 − 1

)
, (4.49)

being the Klein Gordon operator in the BTZM=−1 background, for a scalar field

with mass squared λ2 − 1.

Now we go back to our case ν0 = 1
2
νi>0 = 0. Here the t component of (4.28)

is the same as for the BTZM=−1 case and so we use it as before

∂tC
s−1
ms+1 = Cs

ms + Cs
ms+2 + . . . , (4.50)

to solve for the highest spin, with the lowest spin projection components (s,ms).

The dots refer to components with lower total spin and we have omitted precise

factors. That is, we solve for all components in CI and CII in terms of the line

of highest weight and its contiguous next-to-highest weight components, namely:

Cs+1
s and Cs+2

s with s = 0, . . . ,∞. (4.51)

Next, ∂φ ∼ a1+s̃Max + lower powers, and therefore from (4.41) one can prove that

the use of the dφ component of the equations (4.28) reduces the set of independent

elements in (4.51) to:

Cs+1
s and Cs+2

s with 0 ≤ s ≤ smax, (4.52)

with smax + 1 being at most s̃max + 1, the maximum value of the power in the

polynomials (P (a), P̄ (a)), that determines the φ component of the connections

(Aφ, Āφ). Notice that for some configurations in (4.14) there are degeneracies

and the number of independent components decreases in those cases. In fact
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4.1 Equations for fluctuations

smax determines the degree of the differential equation for C1
0 (or equivalently

the number of ρ-components one has to use to close the system) to be given by

2 (smax + 1), after the ρ components of the equations of motion are imposed.

4.1.1 Solving the matter equations of motion

In this subsection we show how to proceed for the simplest cases, and later on

we prove in general that the equations of motion for scalars in (4.14), can be

expressed in terms of simpler building blocks. Let us start by explicitly exhibiting

the solutions for matter fluctuations in the case of the backgrounds with µ3 6= 0.

Firstly, we determine the differential equation for C1
0 by using the procedure

outlined in the last paragraph of the previous section. In this case smax = 1

and we get a differential equation for C1
0 with degree 2(smax + 1) = 4 in ρ. It is

convenient to Fourier transform from (φ, t) to (k, ω) for the fileds Cs
m :

Cs
m[ρ, t, φ] = eiωteikφCs

m[ρ]. (4.53)

The final form of the equation for C1
0 is given in (C.13), here we will be somewhat

schematic. After the change of coordinates ρ = tanh−1 (
√
z)1 and the following

redefinition of the dependent variable C[z] = z
−iω

2 (1− z)
1−λ

2 G[z] one gets a new

form for the original differential equation:

D4G[z] = 0. (4.54)

The differential operator D4, whose precise form is given in (C.13), has three

regular singularities at 0,1 and ∞ with the following 4 × 3 = 12 characteristic

exponents:

αI0 = (0, iω) αI1 = (0, λ) α∞ = (δ+
−, δ

+
+)

αII0 = (1, 1 + iω) αII1 = (1, 1 + λ) α̃∞ = (δ−−, δ
−
+),

where:

δ+
+ = 1−λ

2
+ δ+

0 (µ3), δ+
− = 1−2iω−λ

2
− δ+

0 (µ3),

δ−+ = 1−λ
2

+ δ−0 (µ3), δ−− = 1−2iω−λ
2
− δ−0 (µ3), (4.55)

1Notice that this implies that z lies in the positive real axis.
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4. A CLASS OF BLACK HOLES IN THE HS(λ)×HS(λ) THEORY

and:

δ±0 (µ3) =
−3±
√

9−36iµ3(ω+k)+12µ2
3(λ2−1)

12µ3
. (4.56)

Notice that δ+
0 is regular in the limit of vanishing µ3 whereas δ−0 is not.

For a Fuchsian differential equation of order n with m regular singular points

the sum of characteristic exponents is always (m− 2)× n(n−1)
2

[67]. It is easy to

check that in our case n = 4, m = 3 the sum of characteristic exponents is indeed

6. An interesting case is when n = 2 and m = 3 in that case one has m× n = 6

characteristic exponents whose sum equals 1. Conversely, it is a theorem that any

set of 6 numbers adding up to 1 defines a unique Fuchsian operator of order n = 2

with m = 3 regular singular points. It is also a theorem that such a sextuple of

roots defines a subspace of solutions that carry an irreducible representation of

the monodromy group of Dn and hence a factor D2 [67]. Namely:

Dn = DL
n−2D

R
2 , (4.57)

and DL
n−2 is also Fuchsian and the L and R denote the left and right operator,

respectively, in the factorisation.

Before proceeding, let us review some facts that will be used in the following

[67, 68]. The most general form of a Fuchsian differential operator D2 once the

position of the regular singular points are fixed at 0, 1,∞ and a pair of charac-

teristic exponents is fixed to zero, is:

D2 ≡ y(y − 1)
d2

dy2
+ ((a+ b+ 1)y − c) d

dy
+ ab. (4.58)

The characteristic exponents are:

α0 = (0, 1− c), α1 = (0, c− a− b), α∞ = (a, b). (4.59)

The kernel of D2 is generated by the linearly independent functions:

u1(a, b, c|z) ≡ 2F1(a, b, c|z),

z1−cu2(a, b, c|z) ≡ z1−c
2F1(a+ 1− c, b+ 1− c, 2− c|z), (4.60)
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4.1 Equations for fluctuations

which are eigenstates of the monodromy action at z = 0. The second solution is

independent only when c is not in Z. The monodromy eigenstates at z = 1 are:

ũ1(a, b, c|z) ≡ 2F1(a, b, 1 + a+ b− c|1− z),

(1− z)c−a−bũ2(a, b, c|z) ≡ (1− z)c−a−b 2F1(c− a, c− b, 1 + c− a− b|1− z),

. (4.61)

when c− a− b is not in Z. In a while we will see that c− a− b = λ.

Our operator D4 does have the properties mentioned in the paragraph before

(4.57). In fact each one of the set of characteristic exponents:(
αI0, α

I
1, α∞

)
,(

αI0, α
I
1, α̃∞

)
, (4.62)

adds up to 1, and hence defines the second order Fuchsian operators:

DR
2 : a = δ+

+(µ3), b = δ+
−(µ3), c = 1− iω,

D̃R
2 : a = δ−+(µ3), b = δ−−(µ3), c = 1− iω. (4.63)

As a result D4 has two independent factorizations:

D4 = DL
2D

R
2 and D4 = D̃L

2 D̃
R
2 , (4.64)

as one can check explicitly. Consequently we have:

kerD4 = kerDR
2

⊕
kerD̃R

2 , (4.65)

where kerDR
2 is given by the hypergeometric functions u1 and u2 given in (4.60),

with the parameters a, b and c defined in (4.63). This proves that the fluctuation

equation in the background µ3 6= 0 is solved in terms of four linearly independent

hypergeometric functions, which, from now on we refer to as “building blocks”.

One can explicitly verify this factorization pattern for the next background,

with µ3, µ5 6= 0. In this case sMax = 3 and the corresponding differential oper-

ator D8, has order 8, and is again Fuchsian with 3 regular singularities in the z

coordinate system previously defined (we always place them at 0, 1 and∞). The

characteristic exponents are:
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αI0 = (0, iω) αI1 = (0, λ) αI∞ = (δ++
− , δ++

+ )
αII0 = (1, 1 + iω) αII1 = (1, 1 + λ) αII∞ = (δ+−

− , δ+−
+ )

αIII0 = (2, 2 + iω) αIII1 = (2, 2 + λ) αIII∞ = (δ−+
− , δ−+

+ )
αIV0 = (3, 3 + iω) αIV1 = (3, 3 + λ) αIV∞ = (δ−−− , δ−−+ ),

where for each of the couples of exponents α∞ the following property holds:

δ±±+ (µ3, µ5) + δ±±− (µ3, µ5) = 1− iω− λ. As a consequence there are four triads of

characteristic exponents whose sums equal 1 :

(
αI0, α

I
1, α

I
∞
)
,
(
αI0, α

I
1, α

II
∞
)
,(

αI0, α
I
1, α

III
∞
)
,
(
αI0, α

I
1, α

IV
∞
)
. (4.66)

Each of them defines a second order “Hypergeometric operator” as in (4.63):

DI R
2 , DII R

2 , DIII R
2 and DIV R

2

such that

kerD8 = kerDI R
2

⊕
kerDII R

2

⊕
kerDIII R

2

⊕
kerDIV R

2 .

In fact there is a simple way to prove that the above pattern generalizes, show-

ing that the solutions of our higher order differential equations can be expressed

in terms of ordinary hypergeometric functions, for all of the representatives in

(4.14). The point is to use the fact that the Fourier components C(ω, k) of the

full master field C(t, x) defined by the arbitrary polynomial Pφ and P̄φ, are eigen-

states of the operators in the right hand side of:

∂t =
−aρ ?L +a−ρ?R

2
,

∂φ = −
(aρ

2
+ Pφ(aρ)

)
?L −

(a−ρ
2
− P̄φ(a−ρ)

)
?R, (4.67)

with eigenvalues (iω, ik) respectively. The same can be said of the trace compo-

nent C1
0(ω, k) but in this case, the left and right multiplication are equivalent by

cyclic property of the trace. As the operators on the right hand side of (4.67) are
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4.1 Equations for fluctuations

polynomials in a±ρ, they share eigenvectors with the latter. But as we pointed

out around (4.46):

i(ω′ + k′)CBTZ(ω′, k′) = −aρ ?L CBTZ(ω′, k′),

i(k′ − ω′)CBTZ(ω′, k′) = −a−ρ ?R CBTZ(ω′, k′), (4.68)

where CBTZ is the master field for the BTZM=−1 connection. So from (4.67) and

(4.68) it follows that:

C1
0(ω, k) = C1

0BTZ(ω′, k′), (4.69)

where (ω′, k′) are any of the roots of the algebraic equations:

iω = iω′,

ik = ik′ −
(
Pφ(−i(ω′ + k′))− P̄φ(−i(k′ − ω′))

)
. (4.70)

Relations (4.69) imply that the differential equation for C1
0 in the class of ansätze

(4.14) is always integrable in terms of hypergeometric functions 2F1. The num-

ber of linearly independent modes being given by twice the order of the algebraic

equations (4.70), which can be checked to be, 2(sMax+1). Here sMax+1 coincides

with the order of the polynomial equation (4.70) for k′ in terms of (ω, k).

Summarising, the most general solution for fluctuations in (4.14) is:

C1
0(ω, k) =

∑
r

ei(ωt+kφ)(1− z)
1−λ

2

(
cinr z

− iω
2 u1(ar, br, 1− iω, z)

+ coutr z
iω
2 u2(ar, br, 1− iω, z)

)
,

ar ≡
i(k′r − ω) + 1− λ

2
, br ≡

−i(k′r + ω) + 1− λ
2

,

(4.71)

where k′r are the roots of (4.70) and r = 1, . . . , 2(sMax + 1).

For later reference we write down (4.71) in terms of monodromy eigenstates

at the boundary z = 1:

C1
0(ω, k) =

∑
r

ei(ωt+kφ)z
−iω

2 (1− z)
1−λ

2

(
c̃1
rũ1(ar, br, 1− iω; z)

+ c̃2
r(1− z)λũ2(ar, br, 1− iω; z)

)
. (4.72)
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As a check, let us reproduce the first result of this section by using this method.

For the case µ3 6= 0 the equation for k′r are:

ik = ik′r − µ3

(
−(ω + k′r)

2 +
1− λ2

3

)
, (4.73)

whose solutions are :

ik′± = −iω − δ±0 (µ3). (4.74)

This coincides with the solution one obtains from (4.63), as can be seen using the

definitions in the second line of (4.71). We note that only k′+ is smooth in the

BTZ limit µ3 to zero.

As an interesting observation, we would like to draw the attention of the reader

to the fact that the boundary conditions for the most general fluctuation (4.71)

at the horizon and boundary, z = 0 and z = 1, respectively, are not affected by

the fact that connections (4.14) and the corresponding background tensor fields

g(n), defined as (4.2), do break the original BTZM=−1 boundary conditions!

4.2 QNM and bulk to boundary 2-point func-

tions

As anticipated, in this subsection we will further argue that the connections

(4.14) describe a class of black hole configurations. We will do so by showing the

presence of Quasi Normal Modes(QNM). We will compute their spectrum for any

representative in (4.14) and, in particular, more explicitly for the simplest cases

discussed in the previous section.

We start by recalling the conditions for QNM for AdS Black Holes [49]: they

behave like ingoing waves at the horizon, z = 0 and as subleading modes at the

boundary z = 1. In the language employed before, the QNM conditions reduce

to ask for solutions with indicial roots α0 = 0 at the horizon z = 0, and α1 = λ

at the boundary z = 1. In this section we are considering the region 0 < λ < 1

so that (1 − z)
(1−λ)

2 is the leading behaviour near the boundary. In terms of the

98



4.2 QNM and bulk to boundary 2-point functions

most general solution (4.71), the ingoing wave condition reads: coutr = 0. The

subleading behaviour requirement implies the quantisation conditions1.

ω ± k′r + i(1 + 2n+ λ) = 0, r = 0, . . . 2(sMax + 1), (4.75)

where n is an arbitrary and positive integer.

We should elaborate about the smoothness of the QNM at the horizon. In the

Eddington-Finkelstein coordinates v = t− T
2
log(ρ) + . . . and ρ∗ = 4

T 2ρ
2 + . . ., see

(4.15) the incoming waves, namely the cinr modes , behave as plane waves eIwv,

at leading order in the near-horizon expansion. In contrast, the coutr modes are

not C∞ as they look like eiωv
(
ρ∗iω

)
. In other words, the requirement of incoming

waves at the horizon amounts to have a smooth solution at the horizon [49].

In our example µ3 6= 0, sMax = 1, there are 2×2 branches in the quantisation

conditions (4.75). The associated branches of QNM being:

ω0
n = −k − i

(
1 + 2n+ λ− 2µ3

3
(1 + (1 + 2λ)(1 + λ) + 6n(1 + λ) + 6n2)

)
,

ω±n = −1
2
i(1 + 2n+ λ) + δ±(n, µ3), (4.76)

where:

δ±(n, µ3) =
−i±

√
−1 + 8(1 + 2ik + 2n+ λ)µ3 −

16(λ2−1)µ2
3

3

8µ3
. (4.77)

Before going on, let us briefly mention some relevant issues about the stability of

the branches (4.76). It is not hard to see that for large enough values of k ∈ R
at least one of the branches ω±n will exhibit a finite number of undamped modes,

namely modes with positive imaginary parts. However for a fixed value of k and

µ3 the UV modes (n � 1, k, µ3) will go like ω±n ∼ −in and hence will be stable.

The branch ω0
n is stable for µ3 < 0. Finally notice also that (ω0

n, ω
+
n ) become the

left and right moving branches of the BTZM=−1 case, in the limit of vanishing

µ3, whereas ω−n is not analytic in that limit.

1 We have the identity 2F1[a, b, c, z] = Γ[c]Γ[a+b−c]
Γ[c−b]Γ[c−a] 2F1[a, b, a + b − c + 1, 1 − z] + (1 −

z)c−a−b Γ[c]Γ[c−a−b]
Γ[b]Γ[a] 2F1[c− a, c− b, c− a− b+ 1, 1− z] [68]. The quantisation condition (4.75)

is equivalent to c − a = −n and c − b = −n respectively. These choices guarantees that the

first term on the rhs of the previous identity vanishes. Indeed, this is the term that carries the

leading behaviour of the field at the boundary.
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We have 2 × 2(sMax + 1) independent solutions (cin, cout)r in (4.71). Each

block r represents an independent degree of freedom and a general fluctuation in

the background (4.14) can be re-constructed as a combination of them. So, for

the moment we restrict our analysis to a given sector, let us say the block r.

In order to define the bulk to boundary 2-point function we set c̃2
r = 0 in

(4.72), corresponding to the solution with the leading behaviour (1−z)
1−λ

2 at the

boundary. We will further fix c̃1
r = 1, to guarantee independence on ω and k of

the leading term in the expansion of the solution near the boundary, in such a

way that its Fourier transform becomes proportional to δ(2)(t, φ) at the boundary,

which is the usual UV boundary condition in coordinate space. As a result, in

Fourier space, the bulk to boundary 2-point function of the block of solutions r

is given by:

G(2)
r (ω, k, z) ≡ ũ1(ar, br, 1− iω; 1− z). (4.78)

After Fourier transforming back in (t, φ) space and using the ρ coordinate one

gets preliminary:

G(2)
r (t, φ, ρ) = Jr(−i∂t,−i∂φ)

(
G

(2)
BTZ(t, φ; ρ) + δG(2)

r (t, φ, ρ)
)
. (4.79)

We stress that (4.79) obeys the boundary condition:

G(2)
r (t, φ, ρ)→ δ(2)(t, φ), when ρ→∞. (4.80)

The quantity:

Jr(ω, k) ≡ 1
∂k′r(ω,k)

∂k

ei
(
k−k′r(ω,k)

)
φ,

is the product of the Jacobian from the change of variables from k to k′r times an

exponential contribution. For our specific case:

Jr(ω, k) =
(
1 + 2iµ3δ

±
0 (ω, k)

)
ei
(
k−k′r(ω,k)

)
φ. (4.81)

The quantity:

G
(2)
BTZ(t, φ, ρ) = −λ

π

(
e−ρ

e−2ρ coshx+ coshx− + sinhx+ sinhx−

)1−λ

, (4.82)

is the bulk to boundary 2-point function for BTZM=−1. Notice that (4.82) is

smooth in the near-horizon expansion as its leading contribution is independent
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of t. We note that the contributions coming from G
(2)
BTZ to (4.79) are also smooth

at the horizon provided the Taylor expansion of Jr(w, k) around (ω, k) = 0 starts

with a constant or an integer power of k. This is always the case, as one can infer

from (4.70) that Jr = 1 +O(µ3), as in the particular case (4.81).

Finally δG
(2)
r is a contribution that comes from the deformation of the coun-

tour of integration that follows from the change k → k′r . The change of variable

from k to k′r(ω, k) deforms the real line R to a contour Cr,ω ≡ k′r(R, ω). Integra-

tion over the contours k′r ∈ R and k′r ∈ Cr,ω (followed by integration over ω ∈ R)

of the integrand

eik
′
rφ+iωtũ1(ar, br, 1− iω; 1− z),

differ by the quantity δG
(2)
r (t, φ, z). This quantity can be obtained imposing the

condition (4.80). In Fourier space (ω, k′r) It reads:

δG(2)
r (ω, k′r, z) =

(
∂k′r
∂k
− 1

)
ũ1(ar, br, 1− iω; 1− z).1 (4.83)

Finally, (4.79) takes the form:

G(2)
r (t, φ, ρ) = e−

(
ik′r(−i∂t,−i∂φ)−∂φ

)
φG

(2)
BTZ(t, φ, ρ).2 (4.84)

For the same reasons explained before (4.84) is smooth at the horizon, namely

its leading behaviour is independent on t.

Notice that periodicity under t → t + 2πi is preserved by all building blocks

(4.84). The preservation of thermal periodicity comes after imposing the BTZ

holonomy condition on (4.14). It is a global statement in the sense that is deter-

mined by the exponentiation properties of the algebra. Namely the gauge group

elements generating the family (4.14) with ν0 = 1
2
, νi>0 = 0:

g = e−ρV
2
0 e−

a
2
t−(a2 +Pφ(a))φ,

ḡ = eρV
2
0 e−

a
2
t+(a2−P̄φ(a))φ, (4.85)

are thermal periodic due to the fact iπa exponentiates to the center of the group

whose Lie algebra is hs(λ) [63].

1Notice that the quantity δG
(2)
r (ω, k′r, z) ( as G

(2)
BTZ(ω, k′r, z)) is in the kernel of the BTZ

Klein-Gordon operator D2(ω, k′r, z).
2We note that the φ in the exponential (4.84) is located to the right of the derivatives.
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4.2.1 Making contact with other relevant backgrounds

In this section we perform the gauge transformations (4.24) and (4.26) taking our

backgrounds to the GK (BHPT2) ones. As already said, the backgrounds to be

transformed have critical exponent z < 1. Here we will focus in performing gauge

transformations (4.24) and (4.26) on the scalar fluctuations for µ̄3 = −µ3 6= 0 and

we will explicitly verify that they solve the equation of motion for matter fluctua-

tions in the GK (BHPT2) backgrounds. The analysis will be done perturbatively,

to first order in a µ3 expansion.

To this purpose we introduce the series expansion:

C =
∞∑
i=0

µi3
(i)

C, (4.86)

for the master field in equations (4.28) with the connections (A, Ā) given by

(4.23), (4.25) and (4.27). Taking the µi3 component of (4.28):

(d+
(0)

A ?L −
(0)

Ā?R)
(i)

C = −
i∑

j=1

(
(j)

A ?L −
(j)

Ā?R)
(i−j)
C , i = 0, . . . , ∞, (4.87)

where
(j)

A is the coefficient of µj3 in the Taylor expansion of A about µ3 = 0. Notice

that if
(i)

C is a particular solution of (4.87), then
(i)

C+constant
(0)

C is also a solution.

This is in fact the maximal freedom in defining
(i)

C and it constraints the form of

the “folded” version of (4.87) to be of the form:

D2

(0)

C1
0 = 0, i = 0,

D2

(i)

C1
0 =

(i)

D

(
(0)

C1
0 , . . . ,

(i−1)

C1
0

)
, i = 1, . . .∞, (4.88)

where the differential operator D2 is the BTZ Klein-Gordon operator (4.49) and
(i)

D is a linear differential operator in ρ that we shall find out explicitly when

analysing up to first order in µ3.

Let us write down the connections (4.14) with µ3 = −µ̄3 6= 0 as:

Aours =
(0)

A + µ3

(1)

Aours, Aours =
(0)

A + µ3

(1)

Aours. (4.89)
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The full answer C1
0 ours is defined as the building block r in (4.71) with k′r, given

by the root (C.5) of equation (C.4) which is the analytic solution in the limit µ3

to zero. By using the folding method one can check until arbitrary order in i that

(4.88) works for the expansion coefficients
(i)

Cours. Here we restrict to the i = 1:

D2

(1)

C1
0 ours =

(1)

Dours

(0)

C1
0 , (4.90)

where:
(1)

Dours =
16ike2ρ

(
1
3
(λ2 − 1) + k2 + w2

)
(e2ρ + 1)2 . (4.91)

Let us solve (4.90). We can expand in series the solution for C1
0 ours (4.71), but

we will use gauge covariance instead. From the use of the transformation laws:

Aours = eΛoursAe−Λours + eΛoursd e−Λours ,

Āours = eΛ̄oursĀe−Λ̄ours + eΛ̄oursd e−Λ̄ours , (4.92)

at linear order, with:

Λours = −φPφ(aρ), Λ̄ours = −φP̄φ(a−ρ), (4.93)

and C1
0 ours =

(
(eΛours−Λ̄ours)

(0)

C1
0

)∣∣∣∣
V 1

0

, for the case µ3 = −µ3 6= 0 in Fourier space,

it follows that:

(1)

C1
0 ours = −i∂k

(
(a2
ρ + a2

−ρ − trace)
(0)

C

) ∣∣∣∣
V 1

0

= −i
(

2

3
(1− λ2)− 2(k2 + w2)

)
∂k

(0)

C1
0 + . . . , (4.94)

where the . . . in (4.94) stand for terms that are proportional to
(0)

C1
0 and hence are

in the kernel of D2.

To check that (4.94) is solution of (4.90) it is enough to check that:[
i

(
2

3
(1− λ2)− 2(k2 + w2)

)
∂k, D2

]
=

(1)

Dours, (4.95)
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by using (C.12) or to notice that (4.94) coincides with the first order coefficient in

the Taylor expansion around µ3 = 0 of the corresponding solution C1
0 ours which

is given by ( ∂k
′

∂µ3
∂k′C

1
0 ours)|µ3=0 = ∂k′

∂µ3
|µ3=0∂k

(0)

C1
0 .

Next, we truncate the GK background at first order in µ3 and after following

the procedure we can explicitly show again that the form (4.88) holds until i = 1
1. Here we just present the i = 1 equation:

D2

(1)

C1
0GK =

(1)

DGK

(0)

C1
0 . (4.96)

The expression for
(1)

DGK is given in (C.14). We should stress again that (4.96)

refers only to fluctuations over the GK ansatz that are analytic when µ3 goes to

zero. Finally we check explicitly that the transformed fluctuation:

(1)

C1
0GK =

(1)

C1
0 ours +

(
(
(1)

ΛGK −
(1)

Λ̄GK)
(0)

C

)∣∣∣∣
V 1

0

=
(1)

C1
0 ours −

ik (3e2ρ + 5)

3 (e2ρ + 1)2

((
e2ρ − 1

) (0)

C1
0 −

(
e2ρ + 1

)
∂ρ

(0)

C1
0

)
, (4.97)

solves (4.96), after using (4.90) and the i = 0 equation in (4.88). We have then

reproduced the result of [35, 69], by starting from our ansatz.

1We checked it up to i = 2, when the GK background is truncated at second order in µ3.
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Conclusions

This thesis is divided in two parts that were organised in three chapters. Chapter

2 consisted of two parts. In the first part, section 2.1, we have shown how Weyl

anomaly matching and the correspondig Wess-Zumino action for the conformal

“spurion” is reproduced holographically, from kinematical arguments on the bulk

gravity side: there, its universality comes from the fact that only the leading

boundary behaviour of bulk fields enters the discussion. The PBH diffeomor-

phisms affect the boundary data and consequently the gravity action depends on

them, in particular on the field τ . The regulated effective action is completely

fixed by the kinematical procedure detailed in section 2.1. For a specific rep-

resentative in the family of diffeomorphisms the Wess Zumino term takes the

minimal form reported in literature. In appendix A.1.5 we present a different

way to approach the same result (We do it for an arbitrary background metric).

We then moved on in sections 2.2 and 2.3 to analyze an explicit 3D holographic

RG flow solution, which has a “normalisable” behaviour in the UV. In section

2.2 we studied the problem in the context of 3D gauged supergravity. We started

by identifying the possible moduli of the background geometry: out of the zero

modes (τ, sp, ρ), there come out two independent normalisable combinations. We

promoted these integration constants to functions of the boundary coordinates

(t, x) and solve the EoM up to second order in a derivative expansion. In a first

approach we used a combination of (τ, sp) dictated by normalisability, in a second

approach we used ρ. In both cases we find a boundary action for a free scalar

field with the expected normalisation. As argued in section 2.2.6, agreement with
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QFT arguments in [5] points towards ρ as the right description for the would-be-

dilaton scalar field. For possible extensions to higher dimensional computations,

could be helpful to keep on mind that this mode ρ can be seen as the normalisable

combination of a rigid PBH in Fefferman-Graham gauge and the mode sp.

Then we moved in section 2.3 to elucidate the QFT interpretation of this

normalisable mode by lifting the 3D theory to the 6D one: we promoted the

modulus ρ, the SU(2) instanton scale, to a boundary field, ρ(u, v), and solved

the EoM in a derivative expansion both for the background geometry and the

linearized fluctuations around it, up to second order. This allowed us to compute

< Tµν > and determine the boundary action for log ρ: this is the action of a free

scalar with background charge and its conformal anomaly is cUV − cIR, therefore

matching the full c. We identified τ = logρ with a D5-D9 mode in the (4, 0)

effective field theory of the D1-D5 system in the presence of D9 branes in type I

theory.

Finally, as an open problem, it would be interesting to apply the procedure

followed in sections 2.2 and 2.3 to a v.e.v. driven RG flow in a 5D example,

where we would give spacetime dependence to the moduli associated, say, to

the Coulomb branch of a 4D gauge theory: in this case no subtleties related to

spontaneous symmetry breaking arise and we should be able to obtain a genuine

dilaton effective action.

The second part of the thesis aimed to study higher spin generalisations of

black holes in 3D. In chapter 3, we started by analysing the symplectic structure

on the phase space sl(3,R) higher spin black holes in principal embedding, (3.18),

with x1 = t+φ
2

and x2 = −t+φ
2

. We were able to identify the conditions that match

the Regge-Teitelboim (RT) and Dirac procedures. The fixed time Dirac brackets

algebra is not isomorphic to W3. However a W3 structure can be defined by

use of Regge-Teitelboim [1]. The phase space of connections associated to this

construction does not contain the zero modes that are identified with higher spin

black holes but a highest weight description of them. Upon analysis in diagonal

embedding we computed the Dirac brackets algebra and as expected [1, 2] it

turned out to be isomorphic to W
(2)
3 . Our results complement the viewpoints in

[1, 2]1.

1When x1 = φ and x2 = t the fixed time Dirac brackets algebra, (3.52), is W3 [2, 39].
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It would be necessary to address similar questions for a generic value of the

deformation parameter λ. For that, analysis in perturbations of the generalised

boundary conditions in the corresponding embeddings, like (µ, µ̄) in the principal,

or (ν, ν̄) in the diagonal of the λ = 3 truncation, could result helpful. Presumably

the map between zero modes in different embeddings could be identified at any

order in the chemical potentials. Related maps have been studied for the usual

conical defects [70, 71, 72]. Nevertheless we believe that an alternative and more

general path to follow can be developed.

Finally, in chapter 4, we have presented a family of connections constructed

out of arbitrary polynomial combinations of the BTZM=−1 connection in hs(λ)×
hs(λ) 3D CS theory. Their space time tensor fields present smooth horizons. The

system of higher order differential equations of motion for matter fluctuations can

be solved in terms of hypergeometric functions related to the solutions in the BTZ

background. This allows to solve explicitly for Quasi Normal Modes and 2-point

functions. As a check, we have made contact with other backgrounds studied in

the literature. Among the open problems that our work leaves unanswered, we

mention the following ones. The first regards the understanding of which (higher

spin ?) charges are carried by these backgrounds, or, more generally what is the

asymptotic symmetry algebra associated to them. Recent progress on this pro-

blem for BH backgrounds in the sl(3) CS theory, as argued at the end of chapter

3, may allow to get an answer for the cases presented here. Secondly, one would

like to use the results found here for the matter fluctuations, to solve for more

general backgrounds by using appropriate gauge transformations (either “proper”

or “improper” ) carrying our backgrounds to these. Unfortunately, a perturbative

analysis along the lines discussed in chapter 4 seems to be unavoidably beset by

singularities at the horizon ρ = 0. It would be interesting to know whether this

is an artifact of the perturbative expansion and if a full non perturbative analysis

would be free of such singularities. This would allow to study QNM virtually for

any BH background.
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Appendix A

A.1 PBH diffeomorphisms

A.1.1 Conventions

We use the mostly positive convention for the metric, namely signature (−,+,+,+)

in 4D and (−,+) in 2D. The Riemann tensor we define as:

Rµνα
β = 2∂[µΓβν]α + 2Γβ[µλΓ

λ
ν]α,

with the Christoffel symbols:

Γβνα =
1

2
gβη (∂νgηα + ∂αgην − ∂ηgνα) .

The 4D Euler density and Weyl tensors are defined as:

E4 = R2
µνρσ − 4R2

µν +R2, C = R2
µνρσ − 2R2

µν +
1

3
R2. (A.1)

A.1.2 Non Static domain wall ansatz

Let the domain wall form for the metric be:

ds2 = dr2 + e2f(r,x)gµν(x, r)dx
µdxν . (A.2)

The PBH diffeomorphism until second order in derivatives of τ , can be written

by symmetry arguments as:

xµ → xµ − a(1)[r + τ, x]∂µτ +O
(
∂3
)
, (A.3)

r → r + τ + b(3)[r + τ, x](∂τ)2 +O
(
∂4τ
)
, (A.4)
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where index contractions and raising of covariant indices are made by using the

metric gµν(r, xµ). The gauge preserving conditions on the form factors arenor-

malisation

∂za
(1)[z, x] = e−2f , ∂zb

(3)[z, x] =
e2f

2
(∂za

(1))2, (A.5)

where z = r+ τ . Notice that if we go to the Fefferman-Graham gauge this mode

will look like a “warped” diffeomorphism. Namely, the induced y-transformation

at zeroth order in derivatives of τ will look like:

y → yeh(y)τ ,

with h some function of y interpolating between constant values. This is the

technical cause behind the fact that the coefficient in the kinetic term (2.97) does

not coincides with the difference of holographic central charges. Namely, if we

choose the right normalised in the UV h(∞) = 1, thence h(0) 6= 1, and so the IR

kinetic contribution is not properly normalised to the IR central charge.

A.1.3 Non Static Fefferman Graham gauge

Let us suppose we are in the Fefferman-Graham gauge, namely:

ds2 = gyy(y)
dy2

y2
+ y (gµνdx

µdxµ) , (A.6)

where gyy and gµν go as a constant and a Weyl factor times ηµν respectively, in

both UV and IR limits. Next, we can ask for the 3D diffeomorphisms preserving

this form above. We write it as

xµ →xµ − a(1)[e2sy, x]∂µτ +O
(
∂3
)
, (A.7)

y →e2sy + b(3)[e2sy, x](∂τ)2 +O
(
∂4
)
, (A.8)

where the covariant form factors obey the following constraints

∂za
(1)[z, x] = 2

gyy(z)

z2
, ∂zb

(1) +

(
∂zgyy
2gyy

− 1

z

)
b(1) +

z3

2gyy
(∂za

(1))2 = 0, (A.9)

which can be solved easily for a given RG flow metric in this gauge.
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A.1.4 Near To Boundary Analysis

We use the near to boundary analysis to reproduce the results for the bulk action

in presence of a PBH mode and to compute the GH and counterterm contribu-

tion. We start by writing the near to boundary expansion of the equations of

motion. We then evaluate the onshell bulk contribution and finally the onshell

contributions from GH and counterterm.

A.1.4.1 Near to boundary expansion of the EoM

The near to boundary expansion of the equations of motion in the Fefferman-

Graham gauge choice (2.3) comes from:

y[2g′′ij − 2(g′g−1g′)ij + Tr(g−1g′)gij]

+Rij − 2gij − Tr(g−1g′)gij =
4

3

gij
y

(V [φ]− Vfp)

Tr(g−1g′′)− 1

2
Tr(g−1g′g−1g′) =

8

3
gyy(V [φ]− Vfp) + 8(φ′)2,

where the primes denote derivative with respect to the flow variable y and Vfp is

the potential at the corresponding fixed point. In the boundary Vfp = V [0].

Another useful relation that is going to be helpful in computing the spurion

effective action is the following form for the on-shell action:

Sosbulk =
LUV

2

∫
d4x

∫
dy
√
g

(
− 2

3
V [φ]

)
. (A.10)

Solutions We can solve the equations of motions for a generic potential of the

form (2.6). Let us start by the UV side.

The UV side We can check now the result (2.35) (with exception of the finite

part) for the bulk action, after a τ :PBH is performed. We just need to use near

to boundary analysis. As said before, we take the near to boundary expansion of

the scalar field to be:

φ ∼ yφ(0)(x) + y log(y)φ̃(0)(x),

where the φ̃(0) and φ(0) are identified with the source and vev of a dimension

∆ = 2 CFT operator, respectively. The terms in the near to boundary expansion
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(2.9) of the metric, are obtained as:

g
(2)
ij =

1

2

(
Rij[g

(0)]− 1

6
g

(0)
ij R

)
,

T r(h
(4)
1 ) =

16

3
φ(0)φ̃(0), (A.11)

Tr(h
(4)
2 ) =

8

3
φ̃2

(0), (A.12)

Tr(g(4)) =
1

4
tr(g2

(2))−
3

2
tr(h

(4)
1 )− tr(h(4)

2 ) +
8

3
φ2

(0) + 4φ̃2
(0) + 8φ(0)φ̃(0)

=
1

4
tr(g2

(2)) +
8

3
φ2

(0) +
16

3
φ̃2

(0). (A.13)

The volume measure expansion:

√
g =

√
g(0)

(
1 +

1

2
Tr(g(2))y +

(
1

2
Tr(g(4)) +

1

8
Tr(g(2))

2 − 1

4
Tr(g2

(2))

+
1

2
Tr(h1

(4)) log(y) +
1

2
Tr(h2

(4)) log2(y)

)
y2

)
, (A.14)

is used to evaluate the near to boundary expansion of bulk lagrangian in (A.10).

The result for the UV expansion of the onshell action (2.23), is evaluated by use

of the following result for a conformally flat metric g(0) = e−τη

a
(0)
UV =

1

2LUV

∫
d4x
√
g(0) =

1

2LUV

∫
d4xe−2τ ,

a
(2)
UV =

LUV
2

∫
d4x
√
g(0)Tr(g(2)) =

LUV
8

∫
d4xe−τ (∂τ)2, (A.15)

a
(4)
UV = L3

UV

∫
d4x
√
g(0)

(
1

2
Tr(g(4)) +

1

8
Tr(g(2))

2 − 1

4
Tr(g2

(2))−
4

3
φ2

(0)

)
= L3

UV

∫
d4x

8

3
φ̃2

(0).

The Weyl transformation properties of the Ricci scalar in 4D was used in getting

this result.
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GH term contribution In the UV side we can expand the Gibbons Hawking

term in a near to boundary series:

1

4

∫
d4x
√
γ2K|UV =

1

LUV

∫
d4x

1

y2
UV

(−2
√
g + y∂y

√
g)

=

∫
d4x

(
b(0)

y2
UV

+
b(2)

yUV
+ b(4) log(yUV ) + bfinite

)
,

(A.16)

where,

b(0) = − 2

LUV

∫
d4x
√
g(0), b

(2) = −LUV
2

∫
d4x
√
g(0)Tr(g(2)), (A.17)

b(4) = L3
UV

∫
d4x
√
g(0)Tr(h

(4)
2 ), bfinite =

L3
UV

2

∫
d4x
√
g(0)Tr(h

(4)
1 ). (A.18)

The finite contribution bfinite is proportional to
∫
d4x
√
g(0)Tr(h

(4)
1 ) which by

(A.11) is proportional to the product of the v.e.v. and the source φ(0) and φ̃(0)

respectively. Namely, for a v.e.v. driven flow the GH term does not contribute

at all to the finite part of the regularized onshell action. In the case of a source

driven flow, the finite contribution gives a potential term which is not Weyl in-

variant, as one can notice from the transformation properties (2.21). In fact its

infinitesimal Weyl transformation generates an anomalous variation proportional

to the source square δτ(φ̃(0))2. This fact can be noticed by simple eye inspection,

one just needs to analyse the transformation properties (2.21) for the static case.

The IR side In this case we can do the same. As already said, we assume IR

regularity in the corresponding background, namely,

φ ∼ φIR +
1

ρm
φ(0) + ..., m > 0.

We start by writing the IR asymptotic expansion of the GH term in the IR:

1

4

∫
d4x
√
γ2K|IR ∼

∫
d4x

(
b

(0)
IR

y2
IR

+
b

(2)
IR

yIR
+ b

(4)
IR log y + bfinite +

∞∑
n=1

ynIRb
(n)
IR

)
.
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We compute the factors b in terms of the components of the near to IR expansion

of the metric:

b
(0)
IR =

1

2lIR

∫
d4x
√
g(0), b

(2)
IR =

LIR
2

∫
d4x
√
g(0)e

−2τTr
(
g(2)

)
, (A.19)

b
(4)
IR = L3

IR

∫
d4x
√
g(0)e

−2τ

(
1

2
Tr
(
g(4)

)
+

1

8
Tr
(
g(2)

)2 − 1

4
Tr
(
g2

(2)

))
, (A.20)

bfinite = L3
IR

∫
d4x
√
g(0)e

−2τTr
(
h

(4)
1

)
. (A.21)

By using the near to IR expansion of the equations of motions (A.10) at second

order we get:

g
(2)
ij =

1

2

(
Rij[g

(0)]− 1

6
g

(0)
ij R

)
,

and additionally:

Tr(h
(4)
1 ) = 0, T r(h

(4)
2 ) = 0,

T r(g(4)) =
1

4
tr(g2

(2))−
3

2
tr(h

(4)
1 )− tr(h(4)

2 ) =
1

4
tr(g2

(2)).

It is then easy to see how the IR GH term does not contribute to the finite part

of the regularized action! provided the background solutions are smooth in the

IR.

A.1.5 Anomaly matching from PBH transformations

In this appendix we present an alternative way to compute the gravitational WZ

term. The approach is covariant in the sense that it works with an arbitrary

boundary background metric g(0) and shows how the 4D anomaly matching ar-

gument of [4, 6] is linked to the 5D PBH transformation properties.

The relevant terms in the cut off expansion of the bulk action are:

S[τ ] =

∫
d4x
√
ĝ0

(
1

y2
UV

− 1

y2
IR

+
a

(2)
UV [ĝ(0), φ̂(0)]

yUV
− a

(2)
IR[ĝ(0), φ̂(0)]

yIR
+

+ a
(4)
UV [ĝ(0), φ̂(0)] log(yUV )− a(4)

IR[ĝ(0), φ̂(0)] log(yIR)

)
+ Sfinite[τ ] + . . . ,(A.22)

after a finite PBH transformation parameterized by τ is performed. The Sfinite[τ ]

stands for the cut off independent contribution to the bulk action and ĝ(0) =
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e−τg(0) and φ̂(0) stand for the PBH transformed boundary data. The leading

“matter” boundary data φ̂(0) (UV/IR need not be the same), does not transform

covariantly, unlike the background boundary metric g(0).

Next, one can perform a second infinitesimal PBH, δτ1, and think about it

in two different ways:

• Keep the cut-off fixed and transform the fields (I).

• Keep the fields fixed and transform the cut-offs (II).

In approach I, in virtue of additivity of PBH transformations:

δSfinite = δτ1

(
δSfinite[τ ]

δτ

)
. (A.23)

In approach II, one needs the generalization of (2.14) for a linear parameter

δτ1 and arbitrary boundary metric g(0). An important point is that (2.14) is not

a near to boundary expansion, but rather an IR expansion valid along the full

flow geometry. Notice also that, in principle, some contribution proportional to

�δτ1, ��δτ1, .., could come out of the cut off powers in (A.22). As discussed for

(A.22), these terms can be completely gauged away. Then approach II gives:

δSfinite =

∫
d4x
√
ĝ0 δτ1

(
a

(4)
UV [ĝ(0), φ̂(0)]− a(4)

IR[ĝ(0), φ̂(0)]
)
. (A.24)

Equating (A.23) and (A.24) we get:

δSfinite[τ ]

δτ
=

∫
d4x
√
ĝ0
(
a

(4)
UV [ĝ(0), φ̂(0)]− a(4)

IR[ĝ(0), φ̂(0)]
)
. (A.25)

Now we can expand the gravitational contribution to a
(4)
UV [ĝ(0)]− a(4)

IR[ĝ(0)]:

(L3
UV − L3

IR)

64

(
E(4)[ĝ

(0)]−W [ĝ(0)]2
)
,

by using the Weyl expansions:

Ŵ 2 = e2τW 2,

Ê(4) = e2τ

(
E(4) + 4

(
Rµν − 1

2
g(0)µνR

)
∇µ∂ντ

)
+ e2τ

(
2
(
(�τ)2 −�µντ�µντ

)
−
(
(�τ)(∂τ)2 + 2 ∂µτ�

µντ∂ντ
))
.

(A.26)
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Hence, from (A.25) and (A.26) one can integrate out the gavitational contribution

to Sfinite:∫
d4x
√
g0

(
∆a E(4)

τ

2
−∆a

(
Rµν − 1

2
g(0)µνR

)
∂µτ∂ντ +

+∆a
1

8

(
(∂τ)4 − 4 �τ(∂τ)2

)
−∆c W 2 τ

2

)
, (A.27)

where in the case we are considering c = a. Notice that in the above derivation,

we implicitly assumed the group property of the PBH transformations on fields,

that is:

Lτ1 ◦ Lτ2 = Lτ1+τ2 ,

were L represents the transformation thought of as an operator acting on the

fields (boundary data). As for the case of matter contributions, a problem arises

when a v.e.v. or source transforms non covariantly

φ(0) → eτφ(0) + τeτ φ̃(0).

So, it is not clear to us how to use this procedure to compute “matter” con-

tributions to the Weyl anomaly. An efficient procedure to compute anomalies

for generic backgrounds (in a spirit similar to the approach presented here), had

appeared in [73] (section 3.1).

A.2 3D N=4 SUGRA example

A.2.1 Equations of motion for the background fluctua-

tions

We start by writing down the gravitational side of the set of equations of motion

for the background fluctuations g(2), T (2), g
(2)
tx , A(2) and φ(2), at second order in

time t and space x derivatives. We use here the notation used through out the

main text, namely denoting the equations as the space time components they

descend from. So the equations (r, r), (t, t)− (x, x), (t, t) + (x, x) and (t, x), read
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off respectively:

∂2
rg

(2) + 2∂rfB∂rg
(2) + 4∂φBV φ

(2) + 2∂rφB∂rφ
(2)

+ 4

(
∂ABV +

3AB
(1− A2

B)3
(∂rAB)2

)
A(2) +

6

(1− A2
B)2

∂rAB∂rA
(2) = 0, (A.28)

∂2
rg

(2) + 4∂rfB∂rg
(2) + 2

(
4V + 2(∂rfB)2 + ∂2

rfB
)
g(2)

+ 8∂φBV φ
(2) + 8∂ABV A

(2) + e−2fB

(
3

(1− A2
B)2

(∂AB)2 + (∂φB)2 + 2�fB

)
= 0,

(A.29)

∂2
rT + 2∂rfB∂rT + 2

(
4V + 2(∂rfB)2 + ∂2

rfB
)
T

− e−2fB

(
3

(1− A2
B)2

(∂AB)2 + (∂φB)2

)
= 0, (A.30)

∂2
rg

(2)
tx + 2∂rfB∂rg

(2)
tx + 2

(
4V + 2(∂rfB)2 + ∂2

rfB
)
g

(2)
tx

+ 2e−2fB

(
3

(1− A2
B)2

(∂AB)2 + (∂φB)2

)
= 0, (A.31)

where for a Y ≡ AB, φB, fB, we use the notation (∂Y )2 ≡ (∂xY )2 − (∂tY )2 and

�Y = (∂2
xY − ∂2

t Y ). We also used the equations (t, r) and (x, r) respectively:

(
∂2
trT + 2∂tfB∂rT

)
+(

∂2
xrg

(2)
tx + 2∂xfB∂rg

(2)
tx

)
− ∂2

trg
(2) − 2

(
∂tφB∂rφ

(2) + ∂rφB∂tφ
(2)
)
−

6

(1− A2
B)2

(
∂tAB∂rA

(2) + ∂rAB∂tA
(2)
)
− 24

(1− A2
B)3

(AB∂rAB∂tAB)A(2) = 0,

−
(
∂2
xrT + 2∂xfB∂rT

)
−(

∂2
trg

(2)
tx + 2∂tfB∂rg

(2)
tx

)
− ∂2

xrg
(2) − 2

(
∂xφB∂rφ

(2) + ∂rφB∂xφ
(2)
)
−

6

(1− A2
B)2

(
∂xAB∂rA

(2) + ∂rAB∂xA
(2)
)
− 24

(1− A2
B)3

(AB∂rAB∂xAB)A(2) = 0.

These equations reduce to constraints for the integration constants that appear.
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A.

The Klein-Gordon equations for the scalar fields φ and A give the following

couple of equations for the fluctuations respectively:

∂2
rφ

(2) + 2∂rfB∂rφ
(2) − 2∂2

φB
V φ(2)

−2∂2
AB ,φB

V A(2) + ∂rφB∂rg
(2) + e−2fB�φB = 0, (A.32)

∂2
rA

(2) +

(
2∂rfB +

4AB
(1− A2

B)2
∂rAB

)
∂rA

(2)

+
2

3

(
−(1− A2

B)2∂2
AB
V + 3

(1− 5A2
B)

(1− A2
B)2

(∂rAB)2

+
6AB

(1− A2
B)

(
2∂rAB∂rfB + ∂2

rAB
))

A(2) + ∂rAB∂rg
(2)

+
2

3
(1−A2

B)2∂2
AB ,φB

V φ(2) + e−2fB

(
AB

1− A2
B

(∂AB)2 + �AB

)
= 0.

(A.33)

A.2.2 Rational functions for the pair (sp, τ)

In this subsection we write down the rational functions appearing in the equations

in section 2.2.

R
(1)

∂yφ(2) = − 3g3
2(y + 1)3

g1(g2
1 − g2

2(y + 1)2)
, R

(2)

∂yφ(2) = −(g2
1(2y + 1) + g2

2(y + 1)2(2y − 1))

y(y + 1) (g2
2(y + 1)2 − g2

1)
,

R
(3)

∂yφ(2) =
3g3

2(y + 1)3 (g2
2 (y2 − 1) + g2

1)

g1y (g2
1 − g2

2(y + 1)2) 2
, R

(4)

∂yφ(2) =
(g2

2(y + 1)3 + g2
1(y − 1))

2g2
1y

3
,

R
(5)

∂yφ(2) =
(y + 1)(3g2

2(y + 1)2 + g2
1)

y(g2
1 − g2

2(y + 1)2)2
, R

(6)

∂yφ(2) = −2c2
1 (g2

1 − g2
2(y + 1)2) 2

g6
1g

4
2y

3(y + 1)
, (A.34)

118



A.2 3D N=4 SUGRA example

F (1) = −2 (g4
1 (5y2 + 6y + 2) + 2g4

2(y + 1)5 − 4g2
1g

2
2(y + 1)4)

g1g2y4(y + 1)3 (g2
1(3y + 2)− 2g2

2(y + 1)2)
e2sp ,

F (2) =
4c2

1 (g2
1(3y + 2)− 2g2

2(y + 1)2) (g2
1 − g2

2(y + 1)2)

g5
1g

5
2y

4(y + 1)4
,

F (3) = −4c1 (g4
1 (5y2 + 6y + 2) + 2g4

2(y + 1)5 − 4g2
1g

2
2(y + 1)4)

g3
1g

3
2y

4(y + 1)3 (g2
1(3y + 2)− 2g2

2(y + 1)2)
,

F (4) =
2g1 (g6

1 (12y2 + 13y + 4)− 4g6
2(y + 1)8)

g2y3(y + 1)2 (g2
2(y + 1)2 − g2

1) 3 (2g2
2(y + 1)2 − g2

1(3y + 2))

+
2g2

1g
4
2(y + 1)4 (9y3 + 32y2 + 29y + 12)

g2y3(y + 1)2 (g2
2(y + 1)2 − g2

1) 3 (2g2
2(y + 1)2 − g2

1(3y + 2))
,

− 2g4
1g

2
2(y + 1)2 (21y3 + 40y2 + 34y + 12)

g2y3(y + 1)2 (g2
2(y + 1)2 − g2

1) 3 (2g2
2(y + 1)2 − g2

1(3y + 2))
,

(A.35)

R
(0)

A(2) =
8g8

2(y + 1)8 − 2g2
1g

6
2(y + 1)5(y(y(8y + 27) + 29) + 16)

y3(y + 1)2 (g2
2(y + 1)2 − g2

1) 3 (2g2
2(y + 1)2 − g2

1(3y + 2))

+
2 (g8

1(y(12y + 13) + 4) + g4
2g

4
1(y + 1)3(y(y(2y(9y + 32) + 79) + 63) + 24))

y3(y + 1)2 (g2
2(y + 1)2 − g2

1) 3 (2g2
2(y + 1)2 − g2

1(3y + 2))

− 2g6
1g

2
2(y + 1) (y (y (42y2 + 68y + 77) + 55) + 16)

y3(y + 1)2 (g2
2(y + 1)2 − g2

1) 3 (2g2
2(y + 1)2 − g2

1(3y + 2))
, (A.36)

R
(1)

A(2) =
4g4

1g
2
2(y + 1)2(y(y + 1)(15y − 13)− 6)

y2(y + 1)2 (g2
1 − g2

2(y + 1)2) 2 (2g2
2(y + 1)2 − g2

1(3y + 2))

− 2g2
1g

4
2(y + 1)4(y(2y(9y + 13)− 13)− 12)

y2(y + 1)2 (g2
1 − g2

2(y + 1)2) 2 (2g2
2(y + 1)2 − g2

1(3y + 2))

+
2 (2g6

2(y + 1)6 (5y2 − 2) + g6
1(y(12y + 13) + 4))

y2(y + 1)2 (g2
1 − g2

2(y + 1)2) 2 (2g2
2(y + 1)2 − g2

1(3y + 2))
,

(A.37)

R
(2)

A(2) =
g2

g2y − g1 + g2

+
g2

g2y + g1 + g2

+
4g2

2(y + 1)− 3g2
1

g2
1(3y + 2)− 2g2

2(y + 1)2
+

2

y
+

6

y + 1
,
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A.

l(0) =
g2

1g
2
2y (g2

2(y + 1)3 + g2
1(y − 1))

8c1(y + 1) (g2
2(y + 1)2 − g2

1)
e2sp , l(1) =

g4
1g

2
2y (3g2

2(y + 1)2 + g2
1)

4c1 (g2
1 − g2

2(y + 1)2) 3
,

l(2) =
g2

2(y + 1)3 + g2
1(y − 1)

4y(y + 1) (g2
2(y + 1)2 − g2

1)
, l(3) = −c1 (g2

1 − g2
2(y + 1)2)

2g2
1g

2
2y(y + 1)2

,

l(4) =
g2

1g
2
2y

2

4c1

e2sp , l(5) =
g2

1g
2
2y (g2

2y
3 + 3g2

2y
2 + (g2

1 + 3g2
2) y − g2

1 + g2
2)

8c1(y + 1) (g2
2y

2 + 2g2
2y − g2

1 + g2
2)

e2sp ,

l(6) = − 3g3
1g

5
2e

2spy2(y + 1)2

4c1 (g2
2y

2 + 2g2
2y − g2

1 + g2
2) 2

, l(7) =
g4

1g
2
2e

2spy2

4c1(y + 1) (g2
2y

2 + 2g2
2y − g2

1 + g2
2)
.

Case of the modulus ρ

R
(1)

∂yφ(2) = − 3g3
2(y + ρ)3

ρg1(g2
1 − g2

2(y + ρ)2)
, R

(2)

∂yφ(2) = −g
2
1ρ

2(ρ+ 2y) + g2
2(2y − ρ)(ρ+ y)2

y(ρ+ y) (g2
2(ρ+ y)2 − g2

1ρ
2)

,

R
(3)

∂yφ(2) =
3g3

2(ρ+ y)3 (g2
1ρ

2 + g2
2 (y2 − ρ2))

g1ρy (g2
1ρ

2 − g2
2(ρ+ y)2) 2

, R
(4)

∂yφ(2) =
g2

1ρ
2(y − ρ) + g2

2(ρ+ y)3

2g2
1ρ

2y3
,

R
(5)

∂yφ(2) =
c2

1 (g2
1ρ

2 − g2
2 (ρ2 + 3y2 + 4ρy))

g4
1g

4
2ρy

3(ρ+ y)
, (A.38)

R
(6)

∂yφ(2) =
c2

1 (g6
1ρ

5 − g4
2g

2
1ρ(ρ+ y)2 (3ρ2 + 8y2 + 10ρy))

g4
1g

4
2ρy

3(ρ+ y) (g2
1ρ

2 − g2
2(ρ+ y)2) 2

+
c2

1 (g2
2g

4
1ρ

3 (3ρ2 + 5y2 + 8ρy) + g6
2(ρ+ y)4(ρ+ 4y))

g4
1g

4
2ρy

3(ρ+ y) (g2
1ρ

2 − g2
2(ρ+ y)2) 2

, (A.39)

F (1) =
2c2

1 (−g2
1g

2
2ρ (8ρ4 + 9y4 + 32ρy3 + 47ρ2y2 + 32ρ3y))

g3
1g

5
2y

4(ρ+ y)4 (2g2
2(ρ+ y)2 − g2

1ρ(2ρ+ 3y))

+
2c2

1 (g4
1ρ

3(2ρ+ 3y)2 + 4g4
2(ρ+ y)5)

g3
1g

5
2y

4(ρ+ y)4 (2g2
2(ρ+ y)2 − g2

1ρ(2ρ+ 3y))
, (A.40)
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A.2 3D N=4 SUGRA example

F (2) =

− 2c2
1 (−2g8

2g
2
1ρ(ρ+ y)6 (10ρ3 + 6y3 + 27ρy2 + 28ρ2y))

g3
1g

5
2y

4(ρ+ y)4 (g2(ρ+ y)− g1ρ)3 (g1ρ+ g2(ρ+ y))3 (2g2
2(ρ+ y)2 − g2

1ρ(2ρ+ 3y))

− 2c2
1 (g4

2g
6
1ρ

4(ρ+ y)2 (40ρ4 + 54y4 + 178ρy3 + 251ρ2y2 + 164ρ3y))

g3
1g

5
2y

4(ρ+ y)4 (g2(ρ+ y)− g1ρ)3 (g1ρ+ g2(ρ+ y)) 3 (2g2
2(ρ+ y)2 − g2

1ρ(2ρ+ 3y))

+
2c2

1 (g6
2g

4
1ρ

2(ρ+ y)4 (40ρ4 + 15y4 + 98ρy3 + 180ρ2y2 + 140ρ3y))

g3
1g

5
2y

4(ρ+ y)4 (g2(ρ+ y)− g1ρ)3 (g1ρ+ g2(ρ+ y))3 (2g2
2(ρ+ y)2 − g2

1ρ(2ρ+ 3y))

+
2c2

1 (2g2
2g

8
1ρ

6 (10ρ4 + 18y4 + 61ρy3 + 79ρ2y2 + 46ρ3y))

g3
1g

5
2y

4(ρ+ y)4 (g2(ρ+ y)− g1ρ)3 (g1ρ+ g2(ρ+ y))3 (2g2
2(ρ+ y)2 − g2

1ρ(2ρ+ 3y))

− 2c2
1 (g10

1 ρ
8(2ρ+ 3y)2 + 4g10

2 (ρ+ y)10)

g3
1g

5
2y

4(ρ+ y)4 (g2(ρ+ y)− g1ρ)3 (g1ρ+ g2(ρ+ y))3 (2g2
2(ρ+ y)2 − g2

1ρ(2ρ+ 3y))
,

F (3) = −2 (g4
1ρ

3 (2ρ2 + 5y2 + 6ρy) + 2g4
2(ρ+ y)5 − 4g2

1g
2
2ρ(ρ+ y)4)

g1g2y4(ρ+ y)3 (2g2
2(ρ+ y)2 − g2

1ρ(2ρ+ 3y))
, (A.41)

R
(0)

A(2) =
2g2

2ρ
2y (g2

2g
4
1ρ (510ρ3 + 18y3 + 118ρy2 + 325ρ2y))

(ρ+ y)2 (g2
2(ρ+ y)2 − g2

1ρ
2) 3 (2g2

2(ρ+ y)2 − g2
1ρ(2ρ+ 3y))

+
2g2

2ρ
2y (+4g6

2 (70ρ4 + y4 + 8ρy3 + 28ρ2y2 + 56ρ3y)− 2g6
1ρ

3(55ρ+ 21y))

(ρ+ y)2 (g2
2(ρ+ y)2 − g2

1ρ
2) 3 (2g2

2(ρ+ y)2 − g2
1ρ(2ρ+ 3y))

+
2g2

2ρ
2y (−g4

2g
2
1 (680ρ4 + 8y4 + 67ρy3 + 244ρ2y2 + 511ρ3y))

(ρ+ y)2 (g2
2(ρ+ y)2 − g2

1ρ
2) 3 (2g2

2(ρ+ y)2 − g2
1ρ(2ρ+ 3y))

, (A.42)

R
(1)

A(2) =
2 (2g6

2(ρ+ y)6 (5y2 − 2ρ2) + g6
1ρ

6 (4ρ2 + 12y2 + 13ρy))

y2(ρ+ y)2 (g2
1ρ

2 − g2
2(ρ+ y)2) 2 (2g2

2(ρ+ y)2 − g2
1ρ(2ρ+ 3y))

+
2 (+2g2

2g
4
1ρ

3(ρ+ y)2 (−6ρ3 + 15y3 + 2ρy2 − 13ρ2y))

y2(ρ+ y)2 (g2
1ρ

2 − g2
2(ρ+ y)2) 2 (2g2

2(ρ+ y)2 − g2
1ρ(2ρ+ 3y))

+
2 (g4

2g
2
1ρ(ρ+ y)4 (12ρ3 − 18y3 − 26ρy2 + 13ρ2y))

y2(ρ+ y)2 (g2
1ρ

2 − g2
2(ρ+ y)2) 2 (2g2

2(ρ+ y)2 − g2
1ρ(2ρ+ 3y))

,

R
(2)

A(2) =
g4

1ρ
3 (4ρ2 + 21y2 + 19ρy)− g2

2g
2
1ρ(ρ+ y)3(8ρ+ 27y) + 4g4

2(ρ+ y)4(ρ+ 4y)

y(ρ+ y) (g4
1ρ

3(2ρ+ 3y)− g2
2g

2
1ρ(ρ+ y)2(4ρ+ 3y) + 2g4

2(ρ+ y)4)
.

A.2.3 Solving the third order differential equation for A(2)

In this subsection we find the solutions of the homogeneous equation correspond-

ing to (2.71):

A
(2)
h1 = a

(2)
h1 (y)C8(t, x), A

(2)
h2 = a

(2)
h2 (y)C9(t, x) and A

(2)
h3 = a

(2)
h1 (y)C10(t, x), (A.43)
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A.

where:

a
(2)
h1 (y) =

y (g2
1(9− 7y) + 4g2

2(y + 1)(4y − 5))

4 (g2
1 − 4g2

2) (y + 1) (g2
1 − g2

2(y + 1)2)
, (A.44)

a
(2)
h2 (y) =

(y − 1)y (g2
1 − 2g2

2(y + 1))

2 (g2
1 − 4g2

2) (y + 1) (g2
1 − g2

2(y + 1)2)
, (A.45)

a
(2)
h3 (y) =

g2
2g

2
1(y + 1) (y (12y3 − 5y + 2)− 2) + g4

1 (2y (6y2 + 3y − 1) + 1)

6y2(y + 1)2 (g2y − g1 + g2) (g2y + g1 + g2)

+
6g2

1y
3(y + 1) (g2

2 (2y2 + y − 1) + 2g2
1) log( y

y+1
) + g4

2(y + 1)2

6y2(y + 1)2 (g2y − g1 + g2) (g2y + g1 + g2)
.

(A.46)

With this at hand we define the Green function:

G(z, y) = uh1(z)a
(2)
h1 (y) + uh2(z)a

(2)
h2 (y) + uh3(z)a

(2)
h3 (y), (A.47)

where

uh3(z) =
z4(z + 1)4

g2
1(3z + 2)− 2g2

2(z + 1)2
, (A.48)

uh1(z) =
(z + 1)2

(
(g2

1 + g2
2) g2

1

(
12(z + 1)2z4 log

(
z
z+1

)))
g2

1(9z + 6)− 6g2
2(z + 1)2

+
(z + 1)2 ((g2

1 + g2
2) g2

1 ((z(2z + 1)(6z(z + 1)− 1) + 4)z − 3))

g2
1(9z + 6)− 6g2

2(z + 1)2

+
(z + 1)2 (g2

2g
2
1(z + 1) ((2z (6z2 + 3z − 1)− 11) z + 9))

g2
1(9z + 6)− 6g2

2(z + 1)2

+
(z + 1)2 (g2

2g
2
1(z + 1) (2g4

2(z + 1)2(4z − 3)))

g2
1(9z + 6)− 6g2

2(z + 1)2
, (A.49)

uh2(z) =
(z + 1)2

(
(7g2

1 + 12g2
2) g2

1

(
12(z + 1)2z4 log

(
z
z+1

)))
6 (g2

1(3z + 2)− 2g2
2(z + 1)2)

+
(z + 1)2 (3g2

2g
2
1(z + 1) ((8z (6z2 + 3z − 1)− 27) z + 29))

6 (g2
1(3z + 2)− 2g2

2(z + 1)2)

+
(z + 1)2 ((7(z(2z + 1)(6z(z + 1)− 1) + 4)z − 27))

6 (g2
1(3z + 2)− 2g2

2(z + 1)2)

+
(z + 1)2 (4g4

2(z + 1)2(16z − 15))

6 (g2
1(3z + 2)− 2g2

2(z + 1)2)
. (A.50)
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A.2 3D N=4 SUGRA example

With this at hand we can compute a particular solution

A(2)
p = −

∫
dw G(y, w)e−2spF (sp, τ, w), (A.51)

where e−2spF is the RHS inhomogeneity in (2.71). After integration we get the fi-

nal expression for A(2). We do not post the result but the computation is straight-

forward. The remaining background fluctuations, g(2) and φ(2) are evaluated by

use of (2.68) and (2.70) once A(2) is known.

The case of the modulus ρ In this paragraph we present the results towards

the derivation of the Green function of the very last third order differential equa-

tion in case only the modulus ρ is turned on. In this case we get the homogeneous

solutions of (2.104) from:

a
(2)
h1 (y) = −y (g2

2(ρ+ 1) (−2ρ(2ρ+ 3) + (3ρ+ 5)y2 + (3ρ2 + ρ− 6) y))

(ρ+ 1)2 (g2
1ρ

2 − g2
2(ρ+ 1)2) (ρ+ y) (g2

1ρ
2 − g2

2(ρ+ y)2)

− y (g2
1ρ

2(4ρ− (3ρ+ 4)y + 5))

(ρ+ 1)2 (g2
1ρ

2 − g2
2(ρ+ 1)2) (ρ+ y) (g2

1ρ
2 − g2

2(ρ+ y)2)
, (A.52)

a
(2)
h2 (y) =

(y − 1)y (g2
2(ρ+ 1)(ρ+ y)− g2

1ρ
2)

(ρ+ 1) (g2
1ρ

2 − g2
2(ρ+ 1)2) (ρ+ y) (g2

1ρ
2 − g2

2(ρ+ y)2)
, (A.53)

a
(2)
h3 (y) = −

g4
1ρ

2
(

12y3(ρ+ y) log
(

y
ρ+y

)
+ ρ (ρ3 + 12y3 + 6ρy2 − 2ρ2y)

)
6ρ4y2(ρ+ y)2 (g2

2(ρ+ y)2 − g2
1ρ

2)

+
g2

2g
2
1(ρ+ y)

(
6y3 (−ρ2 + 2y2 + ρy) log

(
y
ρ+y

)
+ 2ρ4y

)
6ρ4y2(ρ+ y)2 (g2

2(ρ+ y)2 − g2
1ρ

2)

+
g2

2g
2
1(ρ+ y) (−2ρ5 + 12ρy4 − 5ρ3y2) + g4

2ρ
4(ρ+ y)2

6ρ4y2(ρ+ y)2 (g2
2(ρ+ y)2 − g2

1ρ
2)

. (A.54)

To compute the particular solution we obtain :

uh3(z) =
z4(ρ+ z)4

2g2
2(ρ+ z)2 − g2

1ρ(2ρ+ 3z)
, (A.55)
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uh1(z) =
(ρ+ 1)(ρ+ z)2

(
g2

2g
2
1(ρ+ z)

(
6 (ρ2 − ρ− 2) z4(ρ+ z) log

(
z
ρ+z

)))
6ρ4 (g2

1ρ(2ρ+ 3z)− 2g2
2(ρ+ z)2)

− (ρ+ 1)(ρ+ z)2 (g2
2g

2
1(ρ+ z) (ρ (−3ρ4(2ρ+ 1) + 6 (ρ2 − ρ− 2) z4)))

6ρ4 (g2
1ρ(2ρ+ 3z)− 2g2

2(ρ+ z)2)

− (ρ+ 1)(ρ+ z)2 (g2
2g

2
1(ρ+ z) (ρ (+3ρ (ρ2 − ρ− 2) z3)))

6ρ4 (g2
1ρ(2ρ+ 3z)− 2g2

2(ρ+ z)2)

− (ρ+ 1)(ρ+ z)2 (g2
2g

2
1(ρ+ z) (ρ (ρ2 (−ρ2 + ρ+ 2) z2 + ρ3 (8ρ2 + 4ρ− 1) z)))

6ρ4 (g2
1ρ(2ρ+ 3z)− 2g2

2(ρ+ z)2)

+
(ρ+ 1)(ρ+ z)2

(
g4

1ρ
2
(

12z4(ρ+ z)2 log
(

z
ρ+z

))
+ g4

2ρ
4(ρ+ 1)(4z − 3)(ρ+ z)2

)
6ρ4 (g2

1ρ(2ρ+ 3z)− 2g2
2(ρ+ z)2)

+
(ρ+ 1)(ρ+ z)2 (g4

1ρ
2 (ρ (−3ρ4 + 12z5 + 18ρz4 + 4ρ2z3 − ρ3z2 + 4ρ4z)))

6ρ4 (g2
1ρ(2ρ+ 3z)− 2g2

2(ρ+ z)2)
,

(A.56)

uh2(z) = −
(ρ+ z)2

(
−3g2

2g
2
1(ρ+ z)

(
6 (ρ3 − 5ρ− 4) z4(ρ+ z) log

(
z
ρ+z

)))
− (ρ+ z)2 (−3g2

2g
2
1(ρ+ z) (ρ (−ρ4 (8ρ2 + 15ρ+ 6) + 6 (ρ3 − 5ρ− 4) z4)))

− (ρ+ z)2 (−3g2
2g

2
1(ρ+ z) (ρ (3ρ (ρ3 − 5ρ− 4) z3)))

6ρ4 (g2
1ρ(2ρ+ 3z)− 2g2

2(ρ+ z)2)

− (ρ+ z)2 (−3g2
2g

2
1(ρ+ z) (ρ (ρ2 (−ρ3 + 5ρ+ 4) z2 + ρ3 (8ρ3 + 16ρ2 + 5ρ− 2) z)))

−
(ρ+ z)2

(
g4

1ρ
2
(

12(3ρ+ 4)z4(ρ+ z)2 log
(

z
ρ+z

)
+ ρ (−3ρ4(4ρ+ 5))

))
−(ρ+ z)2 (g4

1ρ
2 (ρ (12(3ρ+ 4)z5 + 18ρ(3ρ+ 4)z4 + 4ρ2(3ρ+ 4)z3 − ρ3(3ρ+ 4)z2)))

−(ρ+ z)2 (g4
1ρ

2 (ρ (4ρ4(3ρ+ 4)z)) + 2g4
2ρ

4(ρ+ 1)(ρ+ z)2(−6ρ+ 2(3ρ+ 5)z − 9))

6ρ4 (g2
1ρ(2ρ+ 3z)− 2g2

2(ρ+ z)2)
,

(A.57)

that allow us to compute the corresponding Green function from (A.47). Then

we calculate the particular solution by the convolution:

A(2)
p = −

∫
dw G(y, w)Fρ(w). (A.58)

The remaining background fluctuations g(2) and φ(2) are obtained by use of (2.68)

and (2.70).
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A.3 6D solutions

Homogeneous solutions In the text we have already given the solutions to

the homogeneous differential equations for ϕ1 and s1. For completeness we give

here the solutions to the homogeneous differential equations for the remaining

fields:

g(2)
uv h = −a3

2r2ρ2 + ρ4

2r4
+ a1

3ρ4

4r4
−

a4(u, v)
(1

4
log(F/r2)− dρ4

32r4
− ρ2

4F
− (3r2 + ρ2)ρ4

12r4F

)
+ a7,

g(2)
uu h = −b1

1

2r2
+ b2, g(1)

vv h = −c1
1

2r2
+ c2,

f
(2)
h =

log(F/r2)

6ρ2FG

(
72r2F 3a1 + r2(FG+ 2ρ6)a4

)
+

log(r/ρ)

FG
4(4 + d)r2ρ4a3

+ρ2 3(4 + d)r8 − 5(4 + d)r6ρ2 − 3(32 + 11d)r4ρ4 + (8− 3d)r2ρ6 + 2dρ8

12FGr4
a3

−48r8 + 72r6ρ2 + (20 + d)r4ρ4 + 2(2 + d)r2ρ6 + dρ8

4Gr4
a1

−48F 3G− 120F 2Gρ2 + (100 + 3d)FGρ4

288FGr4
a4

−−12(−4 + d)F 2ρ6 − 12(24 + d)Fρ8 + 4(60 + d)ρ10

288FGr4
a4

+
2r2ρ4

FG
a5 +

r2F 2

ρ2G
a2 −

r2

4ρ2
a6, (A.59)

where F = r2 + ρ2 and G = ((4 + d)r4 + 2(4 + d)r2ρ2 + dρ4) and a, b and c are

integration constants that depend only on u and v.
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Particular solutions The particular solution for s(1) is given in the text. The

particular solution for the remaining fields is:

ϕ(2)
p = 0,

g(2)
uv p = − log(F/r2)

8c (−5∂uρ∂vρ+ ρ∂u∂vρ)

ρ4

−c∂uρ∂vρ
(80r2 + 7dρ2)F 2 − ρ2(12r4 − 20ρ4)

2r4ρ2F 2

+c∂u∂vρ
16r4 + (12 + d)r2ρ2 + (4 + d)ρ4

2r4ρF
,

g(2)
uu p = − log(F/r2)

8c (−3(∂uρ)2 + ρ∂2
uρ)

ρ4
(A.60)

+∂2
uρ

4c(2r2 + ρ2)

r2ρF
− (∂uρ)2 4c (6r4 + 9r2ρ2 + 2ρ4)

r2ρ2F 2
,

g(2)
vv p = − log(F/r2)

8c (−3(∂vρ)2 + ρ∂2
vρ)

ρ4
+ ∂2

vρ
4c(2r2 + ρ2)

r2ρF

−(∂vρ)2 4c (6r4 + 9r2ρ2 + 2ρ4)

r2ρ2F 2
,

f (2)
p = log(F/r2)

2cr2 (−9∂uρ∂vρ+ ρ∂u∂vρ)

ρ6
+

c ∂uρ∂vρ
7G2ρ6 + 28dFρ12 + 144r2ρ12

6r4ρ6F 2G
+

c ∂uρ∂vρ
G (169F 5 − 393F 4ρ2 + 216F 3ρ4 + 56F 2ρ6 − 27Fρ8 − 29ρ10)

6r4ρ6F 2G

− c∂u∂vρ
(4 + d)ρ8 (dF 2 − 4r4 + 4r2ρ2)

6r4ρ5FG
.

− c∂u∂vρ
G (28r8 + 40r6ρ2 + 6r4ρ4 + (2 + d)r2ρ6)

6r4ρ5FG
.
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B.1 Conventions

The construction of the hs(λ) algebra can be seen for example in [74]. The algebra

is spanned by the set of generators V s
t with s = 0, . . . ,∞ and 1− s ≤ t ≤ s− 1.

To define the algebra we use the ?-product representation constructed in [75]:

V s
m ? V

t
n =

1

2

s+t−Max[|m+n|,|s−t|]−1∑
i=1,2,3,...

gsti (m,n;λ)V s+n−i
m+n . (B.1)

With the constants:

gsti (m,n;λ) ≡ qi−2

2(i− 1)!
4F3

[
1
2

+ λ 1
2
− λ 2−i

2
1−i

2
3
2
− s 3

2
− t 1

2
+ s+ t− i

∣∣∣∣1
]
N st
i (m,n),

(B.2)

q = 1
4

and:

N st
i (m,n) =∑i−1

k=0(−1)k

i− 1

k

(s−1+m+1
)
k−i+1

(
s−1−m+1

)
−k

(
t−1+n+1

)
−k

(
t−1−n+1

)
k−i+1

.

(B.3)

Where the (n)k are the ascending Pochhammer symbols. The generators V 2
0 , V

2
±1

can be checked to form a sl(2,R) sub algebra.

Let our definition of trace be

tr
(
V s
msV

s
−ms

)
≡ 6

1− λ2

(−1)ms23−2sΓ(s+ms)Γ(s−ms)

(2s− 1)!!(2s− 3)!!

s−1∏
σ=1

(
λ2 − σ2

)
(B.4)
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In chapter 3 we used λ = 3 and remain with the ideal part, 2 ≤ s ≤ 3.

The Killing metric on the principal embedding for the ordering given in (3.46)

gab = tr(VaVb) =



0 0 1 0 0 0 0 0

0 −1
2

0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1
4

0

0 0 0 0 0 −1
6

0 0

0 0 0 0 1
4

0 0 0

0 0 0 −1 0 0 0 0


(B.5)

The Killing metric in diagonal embedding for the ordering given in (3.68)

gab = tr(VaVb) =



−1
8

0 0 0 0 0 0 0

0 0 1
4

0 0 0 0 0

0 1
4

0 0 0 0 0 0

0 0 0 −1
6

0 0 0 0

0 0 0 0 0 0 −1
4

0

0 0 0 0 0 0 0 −1
4

0 0 0 0 −1
4

0 0 0

0 0 0 0 0 −1
4

0 0


(B.6)

Useful results Here we report some results that were useful during the com-

putations in section 3.2. In particular, the solution to the conditions

(δL
(0)
1 )δ→(δΛ)|µ3→0 = (δΛL)

∣∣∣∣
At µ3 & x2→0

,

(δW
(0)
1 )δ→(δΛ)|µ3→0 = (δΛW)

∣∣∣∣
At µ3 & x2→0

, (B.7)

where we remind the reader that by (δ . . .)|δ→δΛ we mean:
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B.1 Conventions

• Take the functional differential of . . . in terms of (δL(0), δW(0)) and after

substitute δ by δΛ. The expressions for (δΛL
(0), δΛW

(0)) are reported in

(3.32). The expressions for (δΛL, δΛW) are reported in (3.25).

The most general solution to (B.7) reads out

L
(0)
1 = 3c1W

(0) + c2∂1L
(0) + 2c1x1∂1W

(0),

W
(0)
1 = −c1

(
8

3
L(0)2

+
3

4
∂2

1L
(0)

)
+ c2∂1W

(0) − c1x1

(
8

3
∂1L

(0) +
1

6
∂3

1L
(0)

)
,

ε
(0)
1 = −c1

(
8

3
η(0)L(0) +

1

4
∂2

1η
(0)

)
+ c2∂1ε

(0) + c1x1

(
8

3
∂1η

(0)L(0) +
1

6
∂3

1η
(0)

)
,

η
(0)
1 = c1ε

(0) + c2∂1η
(0) − 2c1x1∂1ε

(0). (B.8)

It is straightforward to check that (B.8) coincides with (3.34) for c1 = 1 and

c2 = 0. In fact this is the unique choice out of (B.8) that allows to integrate the

differential of charge to (3.35).

It is also useful to write down the most general choice of (L
(0)
1 ,W

(0)
1 , ε

(0)
1 , η

(0)
1 )

that is consistent without explicit dependence on φ and dimensional analysis. It

is given by

L(0)
1hom = c3W + c4∂1L, W(0)

1hom = c5L
2 + c6∂

2
1L + c7∂1W,

ε
(0)
1 hom = c8∂1ε+ c9∂

2
1η + 2c10Lη, η

(0)
1 hom = c11ε+ c12∂1η. (B.9)

We use (B.9) to show that (3.55) is not isomorphic to W3.
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Appendix C

C.1 Uniqueness of the choice ν0 =
1
2, νi>0 = 0 for

0 < λ < 1

Here we show how the only solution to the integrability condition (4.21) in the

region 0 < λ < 1 is the trivial one n0 = 1. First we write down the first 4 × 4

block of the upper triangular matrix M
1 4(λ2−4)

15

4(λ2−4)(11λ2−71)
315

4(λ2−4)(107λ4−1630λ2+6563)
4725

0
12
∏3
σ=2

√
(λ2−σ2)

5
√

14

4(7λ2−67)
∏3
σ=2

√
(λ2−σ2)

15
√

14

4
∏3
σ=2

√
(λ2−σ2)(893λ4−19090λ2+113957)

2475
√

14

0 0
8
√

5
11

∏5
σ=2

√
(λ2−σ2)

21

80
√

5
11

∏5
σ=2

√
(λ2−σ2)(5λ2−89)

819

0 0 0
32
√

7
5

∏7
σ=2

√
(λ2−σ2)

429

 .

(C.1)

The eigenvalues can be checked to be greater or equal than 1, for 0 < λ < 1.

In fact they grow as the diagonal index i grows. Next we show this excludes

the presence of any other solution. Let the following definition and couple of

properties be

nO
i ≡ Oi

jn
j, OMTMOT = Diag((M ii)2), OTO = 1. (C.2)

As (M ii)2 ≥ 1 it is clear that

∞∑
i=1

(
(M � n)i

)2

=
∞∑
i=1

(
M ii
)2

(nOi)
2 ≥

∞∑
i=1

nO
2
i =

∞∑
i=1

n2
i ≥ 1. (C.3)

The saturation in (C.3) comes when one of the integers ni is ±1. As (M ii)2 = 1

only if i = 1 thence the only solution to (4.21) is the trivial one. Notice however
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that our conclusions do breakdown when we are out of the region 0 < λ < 1.

This is, to define a new solution we just need to tune up λ in such a way that for

a given i, M ii = ±1.

C.2 Solutions with z < 1

Here we study the fluctuations for a specific background z < 1. We take as a toy

example the case µ̄3 = −µ3 6= 0. The secular polynomial reads out

ik = ik′r − 2µ3

(
ω2 + k′2r +

λ2 − 1

3

)
, (C.4)

whose roots are

k′± =
−i+

√
−1 + 8ikµ3 − 16

3
(λ2 + 3ω2 − 1)µ2

3

4µ3

. (C.5)

From the quantisation condition (4.75)

w±1−n = −i1
2

(1 + 2n+ λ) + δ±1 z<1,

w±2−n = −i1
2

(1 + 2n+ λ) + δ±2 z<1, (C.6)

where the ± refer to the ± in (C.5) and the (1, 2) refer to the (+,−) in (4.75)

respectively, and

δ±1 z<1 =
3i∓
√
−1+8(−1+2ik−2n−λ)µ3+ 16

3
(5+12n2+6λ+λ2+12n(1+λ))µ2

3

8µ3
,

δ±2 z<1 =
−3i±
√
−1+8(1+2ik+2n+λ)µ3+ 16

3
(5+12n2+6λ+λ2+12n(1+λ))µ2

3

8µ3
. (C.7)

We can also study the case µ̄3 = µ3, we get in this case from (4.70):

k′ =
k + 4ikωµ3

1 + 16ω2µ2
3

. (C.8)

We get just one root, which means that after the folding process of section 4.1,

the final equation obtained is of second order, as can be explicitly checked. The

QNM in this case are given by:

ω1± =
−i−4i(1+2n+λ)µ3∓

√
−1+8(1−2ik+2n+λ)µ3−16(1+2n+λ)2µ2

3

8µ3
,

ω2± =
−i−4i(1+2n+λ)µ3∓

√
−1+8(1+2ik+2n+λ)µ3−16(1+2n+λ)2µ2

3

8µ3
. (C.9)
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In section 4 we have given the metric for these solutions (4.22). Propagation

in Lifshitz metrics with z < 1 is typically associated with the presence of super-

luminal excitations in the dual field theory, see for instance [76, 77]. For each

one of our blocks r we can make use of the AdS/CFT dictionary. The dispersion

relations for the corresponding physical excitation, n, is given by the condition for

a pole in the retarded 2-point function (4.75) and the expression for the auxiliary

momentum k′r of the given block in terms of k and w are given in (C.5) and (C.8)

respectively. The wavefront velocity vf = limω→∞
ω

kR(ω,n)
, [78], can be computed

to be

vf1 = lim
ω→∞

ω

−ω + 4ωµ3 + 8nωµ3 + 4λωµ3

=
1

−1 + 4µ3 + 8nµ3 + 4λµ3

, (C.10)

vf2 = lim
ω→∞

ω

ω + 4ωµ3 + 8nωµ3 + 4λωµ3

=
1

1 + 4µ3 + 8nµ3 + 4λµ3

. (C.11)

We end up by noticing that for |µ3| ≥ 1
2(1+λ)

there are no superluminal modes

(|vf | ≤ 1) in these examples. But for other values there is a finite number of

them. However the tale of large n excitations have all |vf | ≤ 1.

C.3 Differential operators and CBTZ

We present some differential operators that were referenced in the main body of

the text. The Klein Gordon operator in ρ coordinates:

D2 ≡
d2

dρ2
+2(e4ρ+1)

(e4ρ−1)
d
dρ

+ (1−λ2)(e8ρ−1)
(e4ρ−1)2 − 2(2(k2−ω2)(e2ρ+e6ρ)+λ2−1−e4ρ(4k2+4ω2+λ2−1))

(e4ρ−1)2 .

(C.12)

The operator D4 for the background µ3 6= 0

D4(z) ≡ ∂4
z −

2iw(z−1)+2(λ−4)z+4
(z−1)z

∂3
z +

(
−3(z−1)z+6iµ3(z−1)z(k+2w)

12µ2
3(z−1)2z2

−3w2(z−1)2−9iw(z−1)((λ−3)z+1)+z((λ−18)λ−(λ−4)(4λ−11)z+44)−6
3(z−1)2z2

)
∂2
z

+ (w(z−1)−i((λ−2)z+1))(6kµ3+4µ3(3w+(λ−2)µ3(3w−i(λ−4)))+3i)

12µ2
3(z−1)2z2 ∂z

− (−i(λ−1)(2(λ−2)µ3+3)+3k+3w)(−i(λ−1)(2(λ−2)µ3−3)+3k+12iµ3w2+3w(4(λ−1)µ3−1))
144µ2

3(z−1)2z2 . (C.13)
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The differential operator
(1)

DGK that we make reference to in section (4.2.1)

D
(1)
GK =

64ie2ρ(3e2ρ − 1)k

(e2ρ − 1)2(1 + e2ρ)3(λ2 − 1)

d

dρ

+
8k
(

1−11k2−ω2−λ2+e6ρ(−7k2+3ω2−5λ2−11)
(e2ρ−1)3 + e4ρ(3k2 + 9ω2 + λ2 − 1)

)
−ie−2ρ(1 + e2ρ)4(λ2 − 1)

+
8k
(
e8ρ(42ω2+6k2+2λ2−2)+e4ρ(29−15k2+59ω2+3λ2)+e2ρ(27k2+25ω2+λ2−17)

(e2ρ−1)3

)
−ie−2ρ(1 + e2ρ)4(λ2 − 1)

.(C.14)

Finally, we give the master field C for the BTZM=−1 background up to spin

4. We have used the Fourier basis (4.53) and redefined C1
0 ≡ C:
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C2
±1 =

6ieρ (∓(e2ρ − 1)k + (e2ρ + 1)ω)C[ρ]

(e2ρ − 1)(e2ρ + 1)(λ2 − 1)
, (C.15)

C2
0 = − 6C ′[ρ]

λ2 − 1
, (C.16)

C3
0 =

30
(

6(k2−ω2)(e2ρ+e6ρ)
λ2−1

+ 1 + e8ρ − 2e4ρ(6k2+6ω2

λ2−1
+ 1)

)
C[ρ]

(e4ρ − 1)2(λ2 − 4)

− 90(e8ρ − 1)C ′[ρ]

(e4ρ − 1)2(4− 5λ2 + λ4)
, (C.17)

C3
±1 =

(
∓(e3ρ−eρ)
(1+e2ρ)2 k + ω (e3ρ+eρ)

(e2ρ−1)2

)
C[ρ] +

(
±eρ

(1+e2ρ)
k − eρ

(e2ρ−1)
ω
)
C ′[ρ]

(4−5λ2+λ4)
60i

, (C.18)

C3
±2 = −

30
(
∓eρ

(e2ρ+1)
k + eρ

(e2ρ−1)
ω
)2

C[ρ] + 30e2ρ

(e4ρ−1)
C ′[ρ]

(4− 5λ2 + λ4)
(C.19)

C4
0 =

(
(e2ρ + 4e6ρ + e10ρ) (k2−ω2)

λ2−1
+
(

1+e12ρ

8
− (e4ρ + e8ρ)(3k2+3ω2

λ2−1
+ 1

8
)
))

C[ρ]

(e4ρ−1)3(λ2−9)(λ2−4)
5600

−

(
(e2ρ + e6ρ)(k2 − ω2) + (1+e8ρ)(11+λ2)

10
− 2e4ρ(k2 + ω2 + λ2−29

10

)
C ′[ρ]

(e4ρ−1)2(λ2−9)(λ2−4)(λ2−1)
42000

,(C.20)

C4
±1 =

±k
(

(1+λ2)(1+e8ρ)
5

− (e2ρ + e6ρ)(2 + ω2)− 2e4ρ(ω2 + λ2−9
5

)
)

ie−ρ(e2ρ−1)2(e2ρ+1)3(λ2−9)(λ2−4)(λ2−1)
2100

+
±e2ρk3 − e2ρ (e2ρ+1)

(e2ρ−1)
k2ω − (e2ρ+1)3

(e2ρ−1)3ω
(

(1+λ2)(1+e4ρ)
5

+ e2ρ(8−5ω2−2λ2)
5

)
ie−ρ(e2ρ+1)3(λ2−9)(λ2−4)(λ2−1)

2100

C[ρ]

−
2(e2ρ − 1)

(
±(e2ρ − e4ρ + e6ρ−1

2
)k − (e2ρ + e4ρ + e6ρ+1

2
)ω
)
C ′[ρ]

ie−ρ(e2ρ+1)2(λ2−9)(λ2−4)(λ2−1)
2100

, (C.21)

C4
±2 = −420e2ρ

(
±8kω + (1− λ2 ∓ 4kω + 4ω2)(1 + e8ρ) + 2e4ρ(1 + 20ω2)

(e4ρ − 1)3(λ2 − 9)(λ2 − 4)(λ2 − 1)

+
(20e4ρ − 12(e2ρ + e6ρ) + 2(1 + e8ρ)) (k2 − ω2)

(e4ρ − 1)3(λ2 − 9)(λ2 − 4)(λ2 − 1)

)
C[ρ]

+ 420e2ρ (±4kω − 2e2ρ(k2 − ω2) + (1 + e4ρ)(k2 ∓ 2kω + ω2 − 4))C ′[ρ]

(e4ρ − 1)2(λ2 − 9)(λ2 − 4)(λ2 − 1)
,(C.22)

(C.23)
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C4
±3 =

(
±k(3ω2+e4ρ(3ω2−2)+e2ρ(4+6ω2)−2)

(e2ρ−1)2 ± k3 − 3(1+e2ρ)k2ω
e2ρ−1

− (1+e2ρ)3ω(ω2−2)
(e2ρ−1)3

)
C[ρ]

−ie−3ρ(e2ρ+1)3(λ2−9)(λ2−4)(λ2−1)
140

+
(±(e2ρ − 1)k − (1 + e2ρ)ω)C ′[ρ]
−ie3ρ(e4ρ−1)3(λ2−9)(λ2−4)(λ2−1)

420

. (C.24)

The primes stand for derivative along ρ, and one can recover the result in

coordinate space (t, φ) by replacing k → −i∂φ and ω → −i∂t. Notice that all

these higher spin components are generically singular at the horizon.
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