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Abstract

This thesis deals with the idea that the Higgs scalar doublet of the Stan-
dard Model is a Goldstone boson arising from a spontaneous breaking of
an approximate global symmetry, driven by new physics effects, otherwise
unobserved. This would regulate the behavior of the Higgs potential with
the aim of addressing the Standard Model hierarchy problem, limiting the
validity of the Standard Model as an effective theory to processes at ener-
gies below a cutoff around the TeV scale. After introducing this paradigm,
also reviewing some literature, we describe few explicit models, minimal in
some sense, built in the context of supersymmetric field theories. We show
the details of the constructions, in particular its novel properties given by
the presence of supersymmetry. We take into account the most important
experimental constraints and we argue that some versions of these theories
can be soon tested at collider experiments.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is a renormalizable quantum
field theory established in the last fifty years aiming to describe interactions
among observed particles. Despite its accuracy in describing many observed
processes there are several experimental hints suggesting that it has to be
extended to take into account for other phenomena. The recent observation
of a neutral scalar boson with a mass of 126 GeV [4, 5]1 resembling the
Higgs boson carried renewed vigor to the, otherwise unverified, hypothesis
of the breaking of the electroweak (EW) symmetry through the simplest
mechanism, an elementary scalar field charged under SU(2)L×U(1)Y with a
non vanishing vacuum expectation value (VEV).

Despite its simplicity the idea of a light elementary field is not appealing
from a theoretical point of view because light scalars are unnatural. The
SM is no exception: it classically possesses an approximate scale invariance
symmetry broken by the mass term of the only scalar field present, the Higgs
field. This mass term in turn sets the EW scale, the VEV v of its neutral

component, which is experimentally constrained to be v = (
√

2GF )
−1/2 ' 246

GeV. Quantum fluctuations make the mass square (quadratically) sensitive
to any cutoff of the theory and so a natural theory, in which this quantity
is what is expected to be, either has a cutoff at the EW scale or is valid
on its own at arbitrary high energies. There are a lot of experimental hints

1In the past few months the experimental collaborations provided a measurement with
smaller uncertainties, of the order of the percent; the value of the measured mass is closer
to 125 GeV rather than 126 GeV [6,7]. Nevertheless we will continue to refer to 126 GeV
because most of the work collected here has been carried on before this measurement: in
any case the change is small and no conclusion is affected by this new result.
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CHAPTER 1. INTRODUCTION 7

suggesting that the second cannot be true,2 the strongest among them is
not a hint but a fact: gravity exists and becomes non negligible at energies
comparable with the Planck scale MPl ' 1018 GeV. Therefore in this case
enormous cancellations among unrelated quantum contributions to the Higgs
mass occur leading to the observed value(

v

MPl

)2

' 10−32 � 1 , (1.1)

and at the present time we do not have any reason why this should happen.
We stress that independently of the new physics entering at MPl the observed
value of the Fermi scale is extremely unnatural because under the SM RG
evolution this solution is highly unstable: if naturalness is restored it has to
be done at a low scale. Otherwise we are led to accept the unnaturalness
of the world in which we live and explain the needed Fine Tuning (FT) as
a consequence of some environmental selection: this calls for extensions of
the SM, as certain constructions from string theory, with a (large) number
of vacua. In each of this vacuum (a universe) v assumes a different value
and we observe only a value of v which is compatible with the existence of
observers: determine which values are allowed, and which SM parameters (ei-
ther dimensionless or dimensionful) are allowed to vary from one universe to
another is a hard task. Without strict assumptions about the detailed struc-
ture of the landscape of vacua and assuming that the values for the varying
parameters are distributed with a reasonable probability an efficient mech-
anism to fix them is to find conditions related to the presence of observers
which put bounds (or corners in the case of a multidimensional parameter
space) on these values. For instance consider the case of a single parameter
x occurring with a probability density p(x) on the vacua: then

dP

dx
= p(x) ⇒ dP

dy
= p(ey)ey where y = log x (1.2)

and a flat distribution p′(x) = 0 implies that larger values of x are exponen-
tially favored. If at the same time there exists a limiting value xc such that

2An example is the measured value of the physical Higgs mass: 126 GeV fixes the
quartic coupling at the weak scale such that it crosses zero at a scale 1011 GeV becoming
negative. Strictly speaking this is not a problem because this running is subject to large
uncertainties and this scale can be shifted to MPl within 2σ. Moreover for the central
value the lifetime of the EW breaking vacuum is larger than the age of the Universe [8,9].
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universes with x > xc do not lead to the formation and survival of observers
we conclude that most likely we live in a universe with a measured value of
x of the same order of magnitude xc, saturating the upper bound. From this
discussion it is already clear that this line of reasoning can be extended to
“explain” the value of other SM parameters different from the Higgs VEV
v: in fact it was originally proposed for the cosmological constant [10], with
several refinements as [11, 12], and we can also imagine to generalize it. In
general it is not simple to decide which parameters (and how and why) are
anthropically chosen. It is worthwhile mentioning that within the context
of multiverse theories anthropic selection is not the only option and there is
the possibility that some dynamics is responsible for selecting specific val-
ues for parameters, see e.g. the discussion of near-criticality in [9]. Finally
we remark that detecting, and therefore confirming, the existence of other
universes seems very infeasible. We will not further discuss this possibility.

The other possibility3 is a low energy cutoff close to the EW scale but
not necessarily coinciding with it: taking into account a possible loop sup-
pression, the SM as an effective theory should be valid up to the TeV scale
and the resulting theory would be perfectly natural. This second attitude
is not on firm grounds, we can collect a number of arguments pointing to
the direction of a high energy cutoff: flavor measurements, precision tests, a
possible gauge coupling unification, neutrino masses through a see-saw mech-
anism, inflation. Any physics Beyond the SM (BSM) should take them into
account. The most urgent threat to natural physics at the TeV comes from
experimental searches, mostly at the LHC. Many models studied in the liter-
ature predict the existence of new states, typically charged under the SU(3)c
SM color gauge group: their presence is related to the dominant role of the
top quark in the loops correcting the Higgs mass in the SM. They should be
copiously produced through colored interactions and then decay leaving de-
tectable signatures. Currently bounds for stop and gluino masses are around

3To be fair we mention a third way to resolve the dichotomy: if for some reason new
physics, including gravity, does not introduce any mass shift proportional to a threshold
scale a small value of the Higgs mass is natural in the sense that it is stable under RG
evolution: this is because its beta function is proportional to the mass itself. Despite
the fact that it is not known if this possibility can be realized it has lately received
attention, under the names of finite naturalness, UV naturalness, natural tuning and
similar names. Also, in the context of the minimal supersymmetric SM (MSSM) specific
boundary conditions at some high scale, as MGUT , allow for the existence of a focus point
and a Higgs soft mass not scaling with the other soft terms is obtained without a large
FT.
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600 GeV and above 1 TeV respectively, while for Kaluza Klein (KK) gluon
excitations the bound is around 2 TeV and finally 800 GeV for composite top
partners with exotic 5/3 electric charge [13]: see the supersymmetry (SUSY)
and Exotics webpage of ATLAS and SUSY and Exotica of CMS collabora-
tion. These bounds are derived under simplifying assumptions and are not
in general valid for any model of BSM physics: on the contrary there are
many explicit models evading these bounds and preserving naturalness and
they are an active research direction. Anyhow in this regard we well resume
the general feeling reinterpreting a quote of E. Fermi: where is everybody?

SUSY surely offers one of the best motivated possibilities to solve the
hierarchy problem in a natural way. Relating the number of bosonic and
fermionic degrees of freedom in the UV allows for cancellations in the loop
contributions. The Minimal Supersymmetric Standard Model is the simplest
SUSY generalization of the SM: it introduces SUSY partners for every SM
field and it contains one Higgs doublet more, necessary for anomaly cancella-
tions. Furthermore it has many other welcome features, namely it improves
gauge coupling unification and it provides a dark matter candidate. Never-
theless the Higgs boson mass is predicted to be too low: at tree-level it has
to satisfy the bound

M2
H ≤ m2

Z cos2 2β (1.3)

where tan β measures the relative importance of the two Higgs doublet in
participating to the EWSB mechanism, it is the ratio of the two VEVs.
Loop corrections are important and necessarily depend on SUSY breaking
parameters, they can increase the Higgs mass at the price of a larger amount
of FT, which is around 1% or less in the MSSM [14]. At tree-level the largest
source of FT is given by higgsino masses, governed by the so called µ term of
the superpotential; at one-loop also stop soft parameters enter and finally, at
two-loops, gluino masses are responsible, if too heavy, for a certain amount
of FT. The situation gets improved for non minimal extensions, new (su-
per)fields with new interactions can increase the Higgs mass. For instance
the Next to Minimal Supersymmetric SM (NMSSM) is just the MSSM cou-
pled to a chiral superfield, gauge singlet, with appropriate superpotential
interactions.

Moreover there is a more profound reason why the MSSM is not enough,
and it is linked to the SUSY breaking. The breaking has to be soft, namely
only relevant operators are allowed, such that the UV nice behavior of the
theory is not spoiled. But we need other fields spontaneously breaking SUSY

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO
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and we have to make sure that there exist interactions4 among this new sector
and the MSSM fields, the visible sector, such that SUSY breaking is induced
also for visible fields, namely SUSY particles are much heavier than their
ordinary partners, satisfying at the same time other constraints for instance
from flavor physics. The necessity of a separate sector responsible for SUSY
breaking comes from the supertrace mass formula, which relates the sum of
the squared masses of all the particles in the spectrum, properly weighted
according to their spin, to the D terms computed in the vacuum: it cannot
be satisfied with only the MSSM fields.

Finally we stress that SUSY can be broken either at tree-level or by
non perturbative effects. This second option is favored because it dynami-
cally generates a hierarchy among mass scales. A very generic expectation
is a SUSY theory spontaneously broken, by non perturbative effects, in a
metastable vacuum. A central role is played by the R symmetry, a bosonic
U(1) whose generator does not commute with the supercharges. It forbids
(Majorana) gaugino masses and therefore it has to be broken but, on the
one hand, if it is spontaneously broken in the vacuum it implies the presence
of a too light R axion, the associated Goldstone boson; on the other hand
it can be shown that in a generic theory without an R symmetry SUSY is
not broken [15]. However it can be that we start with a theory without an
R symmetry and besides one or more SUSY preserving vacua there exists
a metastable vacuum, a local minimum of the potential, breaking SUSY. In
this vacuum there exists an approximate R symmetry which still allows for
gaugino masses, but the full theory does not respect it. If its lifetime is long
enough it provides a viable way out of the aforementioned tension.

Composite Higgs Models (CHM) are another possible extension of the
SM of the second attitude mentioned before, aiming to solve the naturalness
problem in a natural way, namely introducing new physics at the TeV scale.
The general idea is that the Higgs is not an elementary scalar but instead
a bound state of some new objects charged under a new, still unknown,
strongly coupled gauge theory. This is similar to technicolor theories in which
a condensate breaks the EW symmetry SU(2)L × U(1)Y to the U(1)Q: the
similarity is in having a new gauge interaction responsible for this breaking;
the main difference is that in CHM there exists a light scalar in the spectrum,
with the right quantum numbers, whose VEV breaks the EW group. Several

4Gravity will eventually couple the two sectors. One might want, for several reasons,
to avoid relying on it and having some other mechanisms of mediation.
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different realizations of this idea have been studied and they can be classified:
an up to date review, containing also several other interesting discussions, is
given in [16]. In this thesis we concentrate on models of Higgs as a pseudo
Nambu Goldstone bosons (pNGB): we do not discuss little Higgs or other
realizations. A doubtless elegance of these models is in the dynamical origin
of EWSB, whereas many others models, as for instance the MSSM, simply
accept it as a matter of fact item.

As mentioned before any light scalar is unnatural because its mass is
additively renormalized. Moreover scalar bosons are not protected by any
symmetry and the massless limit does not restore any symmetry. This is not
the case for Goldstone bosons of a spontaneously broken global symmetry:
in this case the broken symmetry is non linearly realized and the associated
Goldstones transform under shift. Therefore they do not have non derivative
interactions and they are massless: in fact they are so constrained that their
low energy Lagrangian, a non linear σ-model, is determined only by the
structure of the coset associated to the breaking, regardless any other detail
[17,18]. Identifying the components of the Higgs doublet as Goldstone fields
would therefore predict their mass to be exactly zero. Since this is not
the case we want the global symmetry spontaneously broken to be only an
approximate symmetry of the theory, namely we introduce some terms of
explicit breaking: these terms drive a non trivial profile for the would be
Goldstones. This radiatively induced potential is responsible for the EW
breaking providing a non vanishing VEV for the Goldsones identified with
the Higgs.

The typical situation is as follows: a gauge theory is responsible, through
non perturbative effects, to the breaking of a global symmetry G to a proper
subgroup H: the scale associated, denoted by Λ, is dynamically generated
and exponentially suppressed with respect to the scale where the theory is
defined perturbatively, for instance MPl. The scale f < Λ, the decay con-
stant of the σ-model, regulates the interactions of the associated Nambu
Goldstone bosons. The unbroken symmetry H has to contain the SM group
SU(3)c×SU(2)L×U(1)Y : the broken generators have to be charged under the
EW group SU(2)L ×U(1)Y in order to be identified with the Higgs doublet.
This means that the symmetry G is explicitly broken by a partial gauging:
moreover the coupling to SM fermions, in particular the top, is also explic-
itly G violating. This explicit breaking is mediated by a mechanism named
Partial Compositeness (PC): SM fields acquire small components in terms
of bound states of the new sector, in contrast to the Higgs which is fully
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composite. The resulting neat effect is a potential for the Goldsone bosons:
it provides a VEV v < f to the neutral component of the Higgs. The ratio

ξ =
v2

f 2
(1.4)

quantifies the separation of scales occurring among the Higgs and new physics.
While ξ is generically expected to be O(1) a certain separation is requested
from phenomenological reasons: therefore ξ encodes a measure of the FT of
the model. In the following we focus on the benchmark value

ξ = 0.1 . (1.5)

In the models which we are going to discuss the FT is estimated in a
refined way and it is computed numerically using the definition of [19] with
logarhitmic derivatives: the actual level of FT is found around 1− 2%.

Given the negative results so far obtained for any BSM physics search,
and insisting on naturalness, it is more than worthwhile to explore less mini-
mal scenarios and to pursue new ideas. Therefore it has been natural to study
supersymmetric realizations of pNGB CHM; the benefits from the union of
the two frameworks well studied in separation, SUSY and composite Higgs,
are manifold as we will explain in detail: SUSY provides tools to deal with
strongly coupled theories, namely it allows us to build explicit models whose
range of validity as effective field theories is not limited by non perturba-
tively generated energy scales5, and it helps in controlling the little hierarchy
problem generically affecting BSM theories; at the same time stops or other
superpartners are not already excluded and the same is true for fermionic
resonances, while they are within the reach of Run II at LHC in their less
tuned versions.

Pure four dimensional UV completions of the CHM paradigm have been
recently investigated also in [20–22], focusing on constructions without ele-
mentary scalars. On the other hand holographic descriptions, based on five
dimensional spacetime, of the strongly coupled gauge theory have been ex-
ploited: we will comment on them in the next chapter. SUSY allows, namely
thanks to Seiberg duality, a greater level of calculability, and therefore predic-
tivity, than generic gauge theories, without enlarging the number of spatial
dimensions.

5We often encounter Landau poles at high energies, therefore a UV cutoff must exist
at some scale below MPl; the interesting part is that its appearance is not strictly related
to the strong dynamics producing the pNGB Higgs.
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The rest of the thesis is organized as follows: in chapter 2 we introduce
CHM based on a pNGB Higgs, we discuss partial compositeness, the Higgs
potential, the main features and some experimental constraints; from chap-
ter 3 on we concentrate on original results and we turn to supersymmetric
models, we again analyze the Higgs potential on general grounds and we
sequently focus on one specific model in some sense minimal. The param-
eter space is inspected with the help of numerical scans. In chapter 4 we
move to another model with a richer gauge structure, reviewing the most
important bounds from negative direct detection of heavy states combined
with a numerical scan. We review how to deal with the RG flow of UV soft
SUSY breaking terms in presence of confining dynamics. Since the model
sits in a metastable vacuum we address the issue of its decay and we show
that a lifetime larger than the age of the universe is fully compatible with all
the other requirments. We also discuss a mechanism, different than partial
compositeness, to transmit EWSB to all SM fermions (we do it explicitly for
quarks): we rely on dimension five operators in the initial superpotential. We
check also that they satisfy bounds coming from flavor observables, mainly
from mesons physics. Chapter 5 is devoted to the study, both analytical and
numerical, of an excluded model in which the right top is fully composite: the
discussion proceeds, with less details, in resemblance to the one carried on
in the prior chapter. Finally we draw our conclusions and we close the thesis
with few appendices. In appendix A we collect some one-loop beta functions
coefficients on which we rely in the main text and we explicitly show how
they enter the scale dependence of the Higgs potential. In appendix B we
study how the non linearities of the Higgs field and new massive resonances
modify the high energy behavior of the two to two scattering of EW bosons
in the two models discussed in the text: in particular we show that pertur-
bative unitarity of the amplitude of the process is recovered. We report our
group matrices conventions in appendix C.



Chapter 2

Composite Higgs Models

This chapter is devoted to introducing the pNGB Higgs. We begin review-
ing the Callan Coleman Wess Zumino (CCWZ) description of low energy
Lagrangian for Goldstone bosons in a generic theory and we employ it to-
gether with some general parametrization of the strong sector breaking the
symmetry. We describe the interactions with the SM and how they generate
a potential for the Higgs, outlining its most relevant features. We also make
contact with extra dimensional theories, also via the AdS/CFT correspon-
dence. Finally we survey the experimental constraints on these models, both
from direct searches and indirect measurements.

2.1 The CCWZ Construction

We briefly recall the CCWZ construction of the low energy Lagrangian for
Goldstone bosons [17,18]. Given a global symmetry (Lie) group G broken to
a subgroup H we distinguish the generators of the associated algebra among
unbroken T i and broken Xa. They satisfy the following

[T i, T j] = if ijkT k, [T i, Xa] = if iabXb, [Xa, Xb] = ifabcXc + ifabiT i .
(2.1)

The structure constants f are antisymmetric in their indices. We work with
orthogonal and unitary groups and a simple realizations for the generators is
in terms of hermitian matrices. If the constants fabc vanish the coset is said
to be symmetric and its Lie algebra is invariant under a discrete Z2 symmetry
under which T i are even and Xa are odd; we call R this automorphism of

14
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the algebra of G:
R(T i) = T i, R(Xa) = −Xa . (2.2)

In a neighborhood of the identity any g ∈ G can be decomposed as

g = eiξ·Xeiu·T (2.3)

such that
∀ g0 ∈ G g0e

iξ·X = eiξ
′·Xeiu

′·T (2.4)

where ξ′ and u′ are appropriate functions of ξ and g0. With the definition
U = eiξ·X this last can be expressed as

U → g0Uh
−1(ξ, g0) . (2.5)

We focus on the product

U−1∂µU = iXaDa
µ + iT iEi

µ (2.6)

where the decomposition along the generators is meaningful because the l.h.s.
is an element of the algebra of G. Under a transformation g0 ∈ G

U−1∂µU → h(U−1∂µU)h−1 − (∂µh)h−1 . (2.7)

From this we can read:{
Dµ = XaDa

µ → hDµh
−1

Eµ = T iEi
µ → h(Eµ − i∂µ)h−1 . (2.8)

With these objects we can build a Lagrangian invariant under a linear and
local H symmetry, where Eµ acts as a gauge field and we can build out of it
covariant derivatives and a field strength. This Lagrangian is also symmetric
under any transformation g0 ∈ G, which acts non linearly. In an expansion
in the number of derivatives the leading term is given by

1

2
f 2Da

µD
aµ , where Da

µ = ∂µξ
a + . . . (2.9)

One can prove that under a transformation generated by broken Xa, ξ trans-
forms with a shift; moreover ξa are identified with the canonically normalized
Goldstone bosons, ξa = f−1πa.
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For symmetric coset space the matrix U2 turns out to be useful because
it transforms linearly under G: it can be proven that

U2 → gU2R(g)−1 (2.10)

where R is the automorphism defined in eq.(2.2).
With this procedure of constructing invariant Lagrangians one can miss

terms which are not invariant but shift by a total derivative under a symmetry
transformation [23,24]. These terms in the action can be written as

SWZW =

∫
S4

β (2.11)

where S4 is the (compactified) spacetime. If β shifts by a total derivative un-
der a transformation symmetry the 5-form ω = dβ is left invariant. Because
of the Stokes theorem we can also write

SWZW =

∫
S4

β =

∫
B
ω (2.12)

such that ∂B = S4. Therefore the allowed invariants are related toH5(G/H,R),
the fifth cohomology class of the coset G/H [25]. However for the only coset
we are going to discuss, SO(5)/SO(4), this object vanishes and none of these
terms can be added to the effective Lagrangian.

Finally the present discussion can be generalized to the case of a gauged
subgroup of G: the simplest way is to gauge the entire group G and discard
the non dynamical fields at the end, consistently replacing derivatives with
covariant ones and adding kinetic terms for the field strengths. As expected
the Goldstone bosons along the broken gauged directions are eaten.

One may be interested in including in the low energy Lagrangian also
other fields, massless or massive. Their interactions are not completely fixed
by symmetry considerations, nevertheless they can be included in a G invari-
ant way if they transform in a proper way under the unbroken subgroup H,
namely if they fullfill representations of H: it is sufficient to note that with
the help of the matrix U we can “lift” them to representations of G; this
fact is simple to understand recalling eq.(2.5). From a top down perspective,
knowing a UV Lagrangian spontaneously breaking G → H, the redefinition
of all the fields through the matrix U makes the Goldstones disappear from
the non derivative part of the Lagrangian. In our context this operation is
useful to treat the explicitly G breaking terms.
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An outstanding example of the use of the CCWZ formalism is the con-
struction of the pion Lagrangian in QCD (with two quarks only, up and
down): it presents analogies with the case of composite Higgs. Pions are
the Goldstone bosons associated to the spontaneous breaking of the chiral
symmetry SU(2)L×SU(2)R → SU(2)V triggered by non perturbative effects.
This formalism allows to overtake the difficulties of the strongly interacting
QCD and we correctly identify the low energy degrees of freedom, the pions.
The Wess Zumino Witten term, described in eq.(2.11) and eq.(2.12), for the
QCD is responsible for a term in the Lagrangian of the form

L ⊇ − Nce
2

48π2fπ
π0εµνρσFµνFρσ (2.13)

where Nc = 3 is the number of QCD colors and fπ is the pion decay constant.
This describes an interaction vertex among the neutral pion and photons and
it is related to the decay process π0 → 2γ. Moreover the chiral symmetry is
not a true global symmetry of the QCD Lagrangian: it is explicitly broken by
quark masses and by the gauging of the electromagnetic group U(1)Q. These
breaking generate a potential for the pions, otherwise forbidden. Indeed
pions in nature are not massless particles. Quark masses

L ⊇ muūu+mdd̄d = q̄Mq (2.14)

can be written in a way formally respecting the chiral symmetry, namely
pretending that the matrix M transforms as a bidoublet, M → LMR† acting
with an element of SU(2)L×SU(2)R. Imposing formal chiral invariance, with
the help of this spurious mass matrix, we can argue that the low energy
Lagrangian will contain

L ⊇ cf 3
πTr[MU ] (2.15)

where U contains the three pions π± and π0, U = exp
(
i
f
σaπa

)
, a = 1, 2, 3

and Tr[σaσb] = δab. Expanding for large fπ we obtain a mass term for the
pions,

L ⊇ − c
4
fπ(mu +md)π

aπa . (2.16)

A more detailed computation leads to the exact determination of the pion
masses, c = 〈q̄q〉

f3π
. The presence of the U(1)Q further breaks the chiral sym-

metry and the electric charge is responsible for the mass difference among
the charged pions and the neutral one.
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2.2 Composite Higgs Models

The main ingredient of pNGB CHM is a strongly interacting sector which we
consider at first in isolation from the SM: it contains the new physics showing
up at the TeV scale. We frequently refer to it as composite sector, in contrast
to an elementary sector which contains the SM fields, to stress that in the
composite sector a new gauge interaction is at work, resulting in bound states;
more in general, with the aim of a unified discussion, we will continue to
denote as composite the sector responsible for the pNGB Higgs also in cases
where the fields are not composite objects. Original models were formulated
in terms of a conformal field theory (CFT) and the relevance of holographic
techniques have been extensively stressed [26]. They are characterized by two
mass scales: starting from a UV point, either free or interacting, the theory
flows to an IR scale, hierarchically suppressed, where it becomes strongly
coupled and an operator breaks a global symmetryG to a proper subgroupH.
Before entering the details of the construction we note en passant the analogy
with the chiral Lagrangian for pions described at the end of section 2.1: in
that case the symmetry breaking pattern is SU(2)L×SU(2)R → SU(2)V and
we have three Goldstone bosons, the pions; we instead focus on cosets with
four Goldstone and we identify them with the Higgs. In the case of QCD we
have mass terms for quarks and the electromagnetic interactions explicitly
breaking the chiral symmetry, while in our pNGB Higgs we introduce mass
mixings, under the name of partial compositeness, and we gauge the EW
group, again bringing an explicitly breaking: in turn it induces a potential
for the Goldstones. The main difference is that in QCD the pion masses are
positive, here we obtain a negative (squared) mass for the Higgs, since it has
to trigger EWSB.

In the literature several models have been extensively explored, for in-
stance SU(N)/SO(N) and SO(N)/SO(N−1). We focus on the simplest real-
ization allowing for a custodial symmetry with G = SU(3)c × SO(5)×U(1)X
and H = SU(3)c × SO(4) × U(1)X : the interesting part of the breaking is
in SO(5) → SO(4) and the other factors are spectators, nevertheless they
are needed for a realistic model1. The four Goldstone bosons live on the
coset SO(5)/SO(4) ≡ S4 and they are identified with the Higgs doublet
of the SM: therefore we realize the SM symmetries gauging a subgroup of

1Strictly speaking G and H can be larger, the key point is that they contain SO(5)×
U(1)X and SO(4)× U(1)X respectively.
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the global symmetry of the composite sector: we recall the isomorphism
SO(4) ' SU(2)L×SU(2)R and we identify the hypercharge as T 3

R+X, where
the X can be seen as proportional to the SM B −L; the choice for the color
group is self evident. With this identification the real fourplet in the 4 of
SO(4) has the right quantum numbers, it is a composite state of the new
physics sector and it has a vanishing potential: it is a good candidate to
play the role of the Higgs doublet. Moving to the realistic case with the SM
coupled the total Lagrangian schematically is

L = Lcomp + Lel + Lmix . (2.17)

The first term in the Lagrangian is coming from the strongly interacting
theory and it contains, among others, the kinetic term for the pNGB Higgs
from eq.(2.9). The second term, elementary in contrast to the composite one,
is the Lagrangian for the SM fields without the Higgs, namely the kinetic
terms for fermions and gauge bosons. These fields are neutral under the new
strong gauge group and therefore they do not participate in the formation of
bound states. The third part is the mixing part and it has the form

Lmix = gaJ
a
µA

aµ + · · ·+
∑
r

εrψ̄rOr + h.c. . (2.18)

The first part contains the currents of the composite sector associated to
symmetries gauged by the SM, where the dots include possible terms with
higher powers of the gauge fields; the second part is a sum of portal interac-
tions for SM fermions, in principle ψr ∈ {qL, uR, dR, lL, eR}, with composite
operators Or with suitable quantum numbers. The energy scaling of εr’s are
dictated by the anomalous dimensions γr ' dim(Or)− 5

2
: the scaling dimen-

sions of Or can be significantly different from the classical ones and therefore
each of these mixings εr can be driven weak or strong in the IR. Because of
them the SM fermions are partially composite where the degree of compos-
iteness varies for different r, and for different families, and it regulates the
strength of their coupling to the Higgs boson: the mass eigenstates coming
from larger mixings have a more significant component in terms of compos-
ite states and they couple more to the Higgs, therefore they are heavier. It
is clear that the more composite SM fermion is the top and we expect the
associated anomalous dimensions γ’s to be the smallest.

Partial compositeness, introduced in [27], is studied in a simplified version
in [28]. It consists in treating Or as vector-like (Dirac) massive fermions and
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declaring that εr are mass mixings: the relevant part of eq.(2.17) can be
written as

L = ψ̄ri/∂ψr + Ōr(i/∂ −Mr)Or + εrψ̄rOr + h.c. (2.19)

The mass eigenstates are given by(
cosφr sinφr
− sinφr cosφr

)(
ψr
PrOr

)
(2.20)

where Pr projects onto the suitable chirality state and the mixing angle is

tanφr = εr
Mr

; the mass eigenvalues are 0 and (M2
r + ε2r)

1/2
. We understand

this approximation looking at the two point function 〈Or(q)Ōr(−q)〉: in the
large N limit of a gauge theory we expect it to be the sum of narrow reso-
nances with increasing masses and the above simplification is nothing more
than the truncation to the first resonance; alternatively we may think to
rotate to a basis where only one state, approximatively the lightest, has a
mixing with the elementary ψr. An analogous reasoning line applies to vector
currents and heavy spin-1 resonances.

In the SUSY models we will discuss the operators responsible for fermionic
partial compositeness are marginal in the UV, where the BSM is weakly
coupled, and they flow to relevant deformations. They are mesonic, rather
than baryonic, fermion states of the confining gauge theory: their presence
is well understood thanks to SUSY and Seiberg duality.
Lmix is explicitly SO(5) breaking and therefore the degeneracy of the

Higgs is lifted. The potential generated by gauge interactions does not trigger
EWSB because it tends to align the vacuum in a preserving direction [29],
therefore the contribution of the matter fields, mainly the top fermion, is
crucial. We will elaborate more on this compensation of effects as one of the
sources of the FT.

2.2.1 Spurionic Formalism for the Mixing Lagrangian

The mixing Lagrangian eq.(2.18) can be made formally SO(5) invariant en-
larging the symmetry to SO(5)×U(1)X × SU(2)0,L ×U(1)0,R ×U(1)0,X ; the
operators Or transform in SO(5) × U(1)X representations, the SM fields ψr
are charged under the other SU(2)0,L×U(1)0,R×U(1)0,X factors and the cou-
plings εr’s are promoted to spurions charged under both symmetries: their
VEV break the symmetry to a diagonal combination.∑

r

ψ̄r · εr ·Or + h.c. . (2.21)
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Similarly promoting the SM gauge coupling g and g′ to spurions allows to
recover SO(5) invariance [30]. Alternatively, but completely equivalently, we
can embed the elementary fields ψr in spurionic representations of SO(5) ξr
whose extra components are set to zero. In this way again the invariance is
formally recovered: ∑

r

εr ξrOr + h.c. . (2.22)

ξr is chosen such that the product with Or contains the singlet, therefore it
depends on the details of the composite sector. Typically the most studied
representations are the smallest ones which are 4, 5, 10 and 14 for SO(5) [31].
The neat examples of the following chapters are based exclusively on the 5.

If we redefine all the fields in the composite sector as explained at the
end of section 2.1 with the aim of singling out the Goldstones we remove the
Higgs dependence from the non derivative part of the Lagrangian and the
only places where it remains are the SO(5) breaking terms of Lmix eq.(2.18).

2.3 Extra Dimensional Models

In the following we will move to study the main predictions of CHM but
before doing it we comment on extra dimensional theories, in particular on
possible extensions of the SM defined on a five dimensional spacetime where
one of the spatial dimensions is compactified and we explain their relation
with CHM introduced in the previous sections. Extra dimensional models
have provived many calculable examples in particular as holographic descrip-
tions of the strong sector postulated in section 2.2. With the language offered
by holography extra dimensional theories and strongly coupled CFT are two
equivalent ways of describing the same physics.

The simplest example is R1,3 × S1, although it turns out that the choice
of the orbifold R1,3 × S1

Z2
is much more convenient and interesting. The first

consequence of orbifolding the fifth dimension is that proper boundary con-
ditions allow to introduce a chiral fermion field, despite the fact the the
spinorial representation of SO(4, 1) is not reducible, that is a fermion in five
dimensions is defined with both its left and right chirality components.

There is a second advantage from compactifying the extra dimension on
an orbifold, again coming from the imposition of adequate boundary con-
ditions: in the case of gauge theory we can reduce the gauge group at low
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energy. In particular on the branes gauge invariance is associated to Neu-
mann boundary conditions for the corresponding vector field and a five di-
mensional gauge theory can be reduced in two different ways at the orbifold
fixed points.

The description of fields in extra dimensional theories and their reduction
to four dimensions take great advantage from the Anti de Sitter/Conformal
Field Theory (AdS/CFT) correspondence. This conjectured correspondence
helps in making contact between extra dimensional models and CHM, it
provides a description of a BSM CFT in terms of a gravitational dual very
often more calculable than the original field theory. Therefore in the following
we introduce and briefly discuss warped spaces2, and the correspondence and
finally we comment back on CHM models.

In a theory with n extra dimensions the four dimensional Planck scale
MPl is related to the 4 + n one M by

M2
Pl = Mn+2Vn (2.23)

where Vn is the volume of the compact extra dimensions and typically Vn ∼ rnc
for a compactification radius rc. In [34] it has been considered a setup,
universally known as RSI, of a five dimensional theory with the topology
of R1,d−1 × S1

Z2
: at the fixed points of the orbifold two 3 branes are placed,

supporting four dimensional field theories. On these branes an SO(3, 1) ⊆
SO(4, 2) isometry group survives.

It has been shown that, with a proper choice of the vacuum energies de-
fined in the bulk and on the branes, the resulting spacetime has the geometry
of a slice of an Anti de Sitter (AdS) space with a curvature function of M
and another mass scale k < M . The compactification radius rc is a free
parameter but sensible constructions require

MPl > M > k >
1

rc
. (2.24)

The condition k < M ensures the stability of the AdS solution against quan-
tum gravitational corrections. The metric can be explicitly written (choosing
a mostly minus signature) as

ds2 = e−2krc|y|gµνdx
µdxν − r2

cdy
2 (2.25)

2Notice that holographic models with a flat extra dimensions have been also studied,
see e.g. [32, 33].
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where y parametrizes the fifth dimension, y ∈ [−π, π] and the 3 branes are
located at y = 0 and y = π, the orbifold fixed points; we emphasize the
consequences of the non factorizability of this geometry. Eq.(2.23) becomes

M2
Pl =

M3

k
[1− e−2krcπ] ' M3

k
(2.26)

and therefore M < MPl. The exact value of rc does not affect the four
dimensional Planck scale but it has a remarkable consequence: it enters the
theory living at y = π through the factor e−2krcπ from the restriction of the
metric to the brane, after properly rescaling the fields of the bulk action. A
mass term v is redshifted to

v′ = e−krcπv . (2.27)

For a generic relevant operator of dimension α we expect the coupling λ to
be sent to λ′ = e−krcπ(4−α)λ. In this way a value krc ∼ 10 naturally generates
a hierarchy of 15 orders of magnitude among a fundamental mass scale and
the physical one: this is the crucial observation employed to resolve the SM
hierarchy problem.

The correspondence AdS/CFT has been originally formulated in the con-
text of superstring theory but it is believed to have a wider range of appli-
cability. The claim is that a gravitational theory on a warped background
is dual to a gauge theory living on a manifold with one dimension less, typ-
ically the boundary of the manifold of the gravitational theory, see [35] and
also [36, 37]. Given an operator belonging to the CFT there exists a bulk
field ϕ, i.e. living on the entire five dimensional manifold, with a defined
boundary condition ϕ0 such that the gravity solution is unique: from both
languages we can extract, in principle, the same amount of information sim-
ply relating the effective action for this field and the generating functional of
the correlators of O in the CFT,

e−Γ[ϕ0] = 〈e−
∫

d4xϕ0O〉 (2.28)

(in Euclidean spacetime). The boundary field acts as a source for the operator
O and it allows to compute n point functions in the strongly coupled regime,
typically a large N limit in case of a gauge theory, as functional derivatives
of the on shell action for the field φ0.

For the holographic interpretation of the RSI scenario we follow [38, 39].
The AdS metric eq.(2.25) can be expressed as

ds2 =
1

(kz)2 (gµνdx
µdxν − dz2) (2.29)
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with the change of variable kz = ekrcy. The orbifold fixed points are at the
positions z = 1/k and z = ekrcπ/k. The fifth coordinate z is related to the
RG scale of the CFT, therefore we refer to the branes as UV and IR brane
respectively. The presence of the UV brane acts as a cutoff for the field
theory. Moreover at the scale MPl the CFT couples to gravity, in a way such
that conformal symmetry is broken only by Planck suppressed operators. As
it is clear from eq.(2.26), written as

MPl =

(
M

k

)3

(
1

z2
UV

− 1

z2
IR

) . (2.30)

the limit zUV → 0 implies a CFT valid up to arbitrary high energies and
completely decoupled gravity, because it implies MPl → +∞. An AdS back-
ground modified by the presence of a single brane has been considered in [40],
whose scenario is known as RSII. In [40] indeed it has been shown that this
extra dimensional setup of AdS5 ending to a brane supports a massless nor-
malizable graviton and a continuum of KK states. Remarkably this also
shows that, with the only purpose of building a theory consistent with New-
ton’s law and general relativity, extra dimensions do not need to be compact.

The addition of the second IR brane introduces a new boundary condition
at zIR = ekrcπ/k and quantizes the spectrum of KK excitations. Moreover the
IR brane signals a departure from AdS background at low energies, therefore
in the field theory language we expect a breaking of conformality in the IR.
The position of this brane is the VEV of a dynamical radion field which is
viewed as the dilaton, the Goldstone boson of the broken dilatation symme-
try. This VEV can be adjusted, namely the position of the brane can be fixed
and the radius of the extra dimension is stabilized, with a mechanism pro-
posed in [41]: integrating over an additional single scalar field forced to have
a nontrivial profile along the fifth dimension provides a potential for the ra-
dion. In the spirit of AdS/CFT correspondence this field is dual to a slightly
relevant operator which deforms the CFT and it grows in the IR where it
causes the breaking of conformal symmetry, and the hierarchy between scales
is generated through dimensional transmutation.

The holographic interpretation of the RSI can be extended also to gauge
fields, including the breaking obtained imposing proper boundary condi-
tions [42], and to fermions [43]. In particular while in the original RS models
the SM fields where localized, namely confined to live, on the IR brane, it has
been realized the convenience of having fields propagating in all the dimen-
sions [44]. The bulk mass of a fermion is related to the strength of the mixing
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of the associated massless four dimensional fermion with an operator of the
CFT. In the language of the KK reduction this comes from the localization of
the zero mode in the fifth dimension controlled by its bulk mass. A fermion
whose profile is localized close to the UV brane is less sensitive to what hap-
pens in the bulk, i.e. the mixing with the CFT is weaker, and therefore we
refer to it as more elementary, in contrast to a fermion more localized toward
the IR brane, more related to the strong dynamics. The four dimensional
Yukawa couplings are determined by the overlap in the fifth dimension of
the wavefunctions of the fermions (left and right) with the one of the Higgs
scalar.

2.4 The Higgs Potential

Regardless on the possible UV completion we try to draw conclusions on the
shape of the generated Higgs potential, not relying on the details of the CFT:
we make model independent statements, assuming the coset SO(5)/SO(4)
and partial compositeness. The one-loop Higgs potential can be obtained
in a two steps procedure, following for instance [45]: all the new physics is
integrated out and can be encoded in form factors for SM fields; then the
one-loop action is computed in the background of the Higgs. Once the strong
sector has been integrated out we are left with a Lagrangian (in momentum
space) for the SM fields coupled to the Higgs, specifically the top and the
EW gauge bosons:

L = t̄L /pΠtLtL + t̄R /pΠtRtR − (t̄LΠtLtRtR + h.c.) + (2.31)

+
P µν
t

2

(
2ΠW+W−W

+
µ W

−
ν + ΠW 3W 3W 3

µW
3
ν + ΠBBBµBν + 2ΠW 3BW

3
µBν

)
where P µν

t = ηµν − pµpν

p2
. We neglect SM fermions different from top be-

cause their contribution is negligible, but this formalism can be straightfor-
wardly extended to account for them. The Higgs dependence, not manifest
in eq.(2.31), is in the various form factors:

Π = Π(h) . (2.32)

The computation of the effective action is best performed in the Landau
gauge where the ghosts and the longitudinal components of the vectors de-
couple: the resulting potential does not depend on the choice of the gauge.
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A standard one-loop computation leads to

V (h) = −2Nc

∫
d4q

(2π)4 log
[
q2ΠtLΠtR + |ΠtLtR |

2]+ (2.33)

+
3

2

∫
d4q

(2π)4

[
2 log ΠW+W− + log

(
ΠW 3W 3ΠBB − Π2

W 3B

)]
where every form factor Π is a function on −q2, Π(−q2), and q is the Eu-
clidean four momentum; Nc = 3 is the number of QCD colors. In order to
simplify our notation considerably, we work in the unitary gauge and denote
by h the Higgs field in this gauge.

Since the Higgs is a pNGB associated to an approximate spontaneous
symmetry breaking, its VEV is effectively an angle. For this reason it is
often convenient to describe its potential not in terms of the Higgs field h
itself, but of its sine:

sh ≡ sin
h

f
, (2.34)

where f is the Higgs decay constant. Following a standard notation we also
define

ξ ≡ 〈s2
h〉 . (2.35)

The electroweak scale is fixed to be v2 = f 2ξ ' (246 GeV)2. We focus on
small values of ξ and in explicit results we set it to the benchmark value
ξ = 0.1. Due to the contribution of particles whose masses vanish for sh = 0
(such as the top, W and Z), the one-loop Higgs potential contains non-
analytic terms of the form s4

h log sh that do not admit a Taylor expansion
around sh = 0. In the phenomenological regions of interest, these terms
do not lead to new features and are qualitatively but not quantitatively
negligible. However, they make an analytic study of the potential slightly
more difficult.

For sh � 1, the tree-level + one-loop potential V = V (0) + V (1) admits
an expansion of the form

V (sh) = −γs2
h + βs4

h + δs4
h log sh +O(s6

h) (2.36)

where

γ = − 1

2

∂2V

∂s2
h

∣∣∣∣
sh=0

, δ =
sh
4!

∂5V

∂s5
h

∣∣∣∣
sh=0

, β =
1

4!

∂4(V − δs4
h log sh)

∂s4
h

∣∣∣∣
sh=0

(2.37)
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and higher order terms are entirely neglected. In a naive expansion around
sh = 0 the presence of δ would be detected by the appearance of a spurious
IR divergence in the coefficient β. At first order in δ around δ = 0 the non
trivial minimum of the potential, assuming it exists, is found at

〈s2
h〉 ≡ ξ = ξ0

(
1− δ

4β
(1 + 2 log ξ0)

)
, (2.38)

where
ξ0 =

γ

2β
(2.39)

is the leading order minimum for δ = 0. The physical Higgs mass, computed
as the second derivative of the potential at its minimum, is given by

M2
H =

8β

f 2
ξ0(1− ξ0) +

4δξ0

f 2

(
1− ξ0

2
+ ξ0 log ξ0

)
. (2.40)

For ξ0 � 1 we get

M2
H ' (M0

H)2
(

1 +
δ

2β

)
, (2.41)

where

(M0
H)2 ' 8β

f 2
ξ0 . (2.42)

In the limit δ = 0 we would recover

ξ =
γ

2β
, M2

H =
8β

f 2
ξ(1− ξ) . (2.43)

In all the models we will consider, there are two distinct sectors that do not
couple at tree-level at quadratic order: a “matter” sector, including the fields
that mix with the top quark and a “gauge” sector, including the SM gauge
fields and other fields, neutral under color. The matter and gauge sectors
contribute separately to the one-loop Higgs potential:

V (sh) = Vgauge(sh) + Vmatter(sh) (2.44)

and

γ = γgauge + γmatter , β = βgauge + βmatter , δ = δgauge + δmatter . (2.45)

The explicit SO(5) symmetry breaking parameters are the SM gauge cou-
plings g and g′ in the gauge sector and the mixing parameters εr’s given by
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eq.(2.18) in the matter sector. Since the latter are sizably larger than the
former, for sensible values of the parameters βmatter � βgauge.

3 At fixed ξ,
then, the Higgs mass is essentially determined by the matter contribution (in
the numerical study, however, we keep all the contributions to the one-loop
potential). The gauge contribution should instead be retained in γ because
the FT cancellations needed to get ξ � 1 might involve γgauge.

In the models we considered, the particles massless at sh = 0 are always
the top in the matter sector and the W and the Z gauge bosons in the gauge
sector. Correspondingly, the explicit form of δ = δgauge + δmatter is universal
and given by

δmatter = − Nc

8π2
λ4
topf

4 , δgauge =
3f 4(3g4 + 2g2g′2 + g′4)

512π2
, (2.46)

with Mtop ≡ λtopv.
In the most general case both γgauge and γmatter are quadratically sensitive

to high energy scales, namely if the potential is expressed as in eq.(2.33) as
an integral in momentum space

γ ∼
∫
q dq

(
1 +O(q−2) + . . .

)
. (2.47)

At the same time βgauge and βmatter assume the following behavior

β ∼
∫
q dq

(
q−2 + . . .

)
, (2.48)

revealing a logarithmic sensitivity to the cutoff of the theory. To improve
calculability and relax this UV sensitivity, therefore keeping under control the
fine tuning, generalized sum rules have been studied [45,46]: if the parameters
of the theory satisfy these sum rules the divergent behaviors are canceled;
they have been derived in close analogy with the Weinberg sum rules for
QCD.

In section 3.2 we will comment on the UV sensitivity of the SUSY cases.
SUSY introduces contributions to the Higgs potential of opposite spin with
respect to the ones discussed here, but a generalization of the procedure to
get eq.(2.33) is straightforward: matter fermions are properly included in
chiral superfields, while vectors are part of vector multiplets; also additional

3A numerical analysis confirms this result and shows that typically βgauge is at least
one order of magnitude smaller than βmatter.
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chiral superfields will contribute to the gauge part of the potential. We an-
ticipate now that only gaugino soft masses can contribute quadratically to
the (negative) Higgs square mass. In the language of eq.(2.47) and eq.(2.48)
this result can be seen as the fact that for the matter contribution the most
divergent terms, quadratically and logarithmically divergent in γmatter and
βmatter respectively, are zero because the parameters satisfy a certain condi-
tion, while the logarithmic part in γmatter is canceled by the sum of the effect
of bosonic and fermionic degrees of freedom: at the end the Higgs potential
is UV finite. In the gauge sector SUSY cancellations are not exact and there
is a leftover dependence on the cutoff of the theory, as we will see in greater
detail in the next chapter.

2.4.1 Non-SUSY Higgs Mass Estimates

Before analyzing the Higgs potential in SUSY CHM, it might be useful to
quickly review the situation in the purely non-SUSY bottom-up construc-
tions. We focus in what follows on models where the composite fields are in
the fundamental representation of SO(5). Higher representations lead to a
multitude of other fields, they are more complicated to embed in a UV model
and they worsen the problem of Landau poles. Moreover they might lead to
dangerous tree-level Higgs mediated flavor changing neutral currents [47].
It should however be emphasized that they can be useful and can result in
qualitatively different results, see e.g. [31] for a recent discussion of the Higgs
mass estimate for CHM with composite fermions in the 14 of SO(5). Gener-
ically, the Higgs mass is not calculable in CHM, since both γ and β defined
in eq.(2.37) are divergent and require a counterterm. The situation improves
if a symmetry, such as collective breaking [30, 48], is advocated to protect
these quantities, at least at one-loop level, or if one assumes that γ and β
are dominated by the lightest set of resonances in the composite sector, sat-
urating generalized Weinberg sum rules [45, 46]. As far as the Higgs mass
is concerned, we see from eq.(2.43) that, at fixed ξ, it is enough to make β
finite to be able to predict the Higgs mass.

In CHM with partial compositeness, the largest source of explicit breaking
of the global symmetry comes from the mass term mixing the top with the
composite sector. In first approximation, we can switch off all other sources
of breaking, including the electroweak SM couplings g and g′. The estimate
of the Higgs mass is then necessarily linked to the mechanism generating a
mass for the top. Let us first consider the case in which both tL and tR are
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elementary and mix with their partners. In this case two mass mixing terms
εL and εR are required to mix them with fermion states of the composite
sector. The top mass goes like

Mtop ∼
εLεR
Mf

sh , (2.49)

where by Mf we denote the mass (taken equal for simplicity) of the lightest
fermion resonances in the composite sector that couple to tR and tL. In
the limit in which ε are the only source of explicit symmetry breaking, a
simple NDA estimate gives the form of the factors γ, β entering in the Higgs
potential (2.36):4

γ ∼ Nc

16π2
ε2M2

f , β ∼ Nc

16π2
ε4 . (2.50)

Plugging eqs.(2.50) and (2.49) in eq.(2.43) gives

M2
H '

Ncε
4

2π2f 2
ξ ∼ Nc

2π2
M2

top

M2
f

f 2
(tR elementary) . (2.51)

This estimate reveals a growth of the Higgs mass with the top partners mass
scale. If one assumes that the composite sector is characterized by the single
coupling constant gρ [49], we expect that Mf ' gρf . Indirect bounds on the S
parameter require gρf & 2 TeV. For values of f . 1 TeV this implies gρ & 2.
In many explicit models [45, 46, 50, 51] it has been shown that such a choice
results in a too heavy Higgs. Indeed, a 126 GeV Higgs is attained only
if one assumes that another mass scale characterizes the composite sector
and one has relatively light fermion resonances in the composite sector, with
Mf < gρf . Although the splitting required between Mf and gρf is modest,
it is not easy to argue how it might appear in genuinely strongly coupled
non-SUSY theories.

Another possibility is having tL elementary and tR fully composite. This
means that the right top is not present among the elementary fields and
in the meanwhile in the composite sector there is one state, with the right
quantum numbers, that we identify with tR

5. We can now have a direct
mixing between tL and tR, in principle with no need of composite massive

4The estimate (2.50) changes when fields in higher representations are considered. For

instance, β ∼ NcM
2
f ε

2

16π2 when fields in the 14 are considered [31].
5Gauge anomalies have to cancel non trivially, that is non independently, among ele-

mentary and composite fermions.
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resonances, that can all be taken heavy. Denoting by ε this mass mixing
term, we get

Mtop ' εsh . (2.52)

Proceeding as before, we get

M2
H '

Ncε
4

2π2f 2
ξ =

Nc

2π2
M2

top

M2
top

v2
(tR composite) . (2.53)

We see that the Higgs mass is at leading order independent of the details of
the composite sector and tends to be too light.6 Of course, this is the case in
the assumption that the top mixing term is the dominant source of explicit
SO(5) breaking. One can always add extra breaking terms to raise the Higgs
mass. Clearly, this is quite ad hoc, unless these terms are already present
for other reasons. This happens in the concrete model with composite tR
introduced in [1], where anomaly cancellation and absence of massless non-
SM states require adding exotic elementary states that necessarily introduce
an extra source of explicit SO(5) breaking. We have explicitly verified in the
model of [1] that the estimate (2.53) captures to a good accuracy the top
contribution to the Higgs mass. This is still too light, despite the presence
of additional sources of SO(5) breaking, that cannot be taken too large for
consistency. We conclude that models with a composite tR, at least those
where the top sector plays a key role in the EWSB pattern, lead to a too
small Higgs mass.

Let us now briefly mention on how ξ can be tuned to the desired value.
There are essentially two ways to do that in a calculable manner: either
|γmatter| � |γgauge|, in which case the cancellation takes place mostly inside
the matter sector, or |γmatter| ∼ |γgauge|, so that the gauge and matter con-
tributions can be tuned against each other (see, for example, the discussion
in Section 4 of [45]). Both options are generally possible, with the exception
of minimal (i.e. where one ε is the only source of SO(5) violation in the
matter sector) models with a fully composite tR embedded in a fundamental
of SO(5), where one can rely only on the second option.

6 The problem of a too light Higgs when tR is fully composite (when embedded in a
5 of SO(5)) was already pointed out in [45], where a formula like eq.(2.53) (see eq.(5.14))
was derived for a particular model.
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2.5 Experimental probes of Composite Higgs

Models

2.5.1 Direct Searches

In this section we discuss the experimental consequences of pNGB CHM. The
presence of new, still unobserved, massive states characterizes many models
of BSM physics: in the case at hand heavy resonances are introduced as
partners for SM fields. The discussion on the Higgs potential in section 2.4
outlined that the most relevant ones are top partners because their presence,
and their relative “lightness”, is linked to top and Higgs masses. They are
colored fermions transforming in representations of SO(5) × U(1)X where
now the X charge is not negligible: as we explained a common choice is
to obtain the SM hypercharge as Y = T 3

R + X where T 3
R is a generator of

SU(2)R ⊂ SO(4) ⊂ SO(5). Therefore under SM gauge group we decompose
52/3 = (4 + 1)2/3 = 27/6 + 21/6 + 12/3. We thus expect massive vectorlike
quarks and new fermions with exotic electric charge Q = 5/3. The relevance
of searches for resonances has been stressed in [52] where simplified models
have been introduced; dedicated studies of CMS collaboration [13], along the
lines of [53], put a limit of 800 GeV for masses of Q = 5/3 colored fermions at
95% c.l. using 19.5 fb−1 collected at

√
s = 8 TeV at LHC. The strategy is to

look for top partners pair produced through colored interactions each of them
decaying to a W boson and a top which decays to another W and a bottom :
they analyze events with two same sign leptons coming from leptonic decays
of the two (same sign) W bosons. While this bound applies universally
to Q = 5/3 top partners the single production case is model dependent:
the cross section for the single production is expected to overcome the pair
production for masses of the resonance roughly around the TeV. The process
involves the vertex interaction among an EW vector boson, a quark and one
of its partners, therefore the model dependence rely on the strenght of the
various mixings εr.

For Q = 2/3 top partners CMS published the results of an inclusive search
based on 19.5 fb−1 at 8 TeV [54]. They can decay to top and Higgs, top and
Z boson or bottom and W boson and masses below 700 GeV are excluced:
the exact value depends on the various branching ratios.

Higher dimensional SO(5) representations contain other exotic partners,
like the 14 where a fermion with Q = 8/3 is present. The case is studied
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in [55], where events with same sign dileptons are analyzed and a bound is
put at a mass 940 GeV. Q = 8/3 partners do not couple directly to SM fields
at the renormalizable level due to their large electric charge: their decay is
mediated by a vertex with two W bosons and a top (it can be seen as a two
step decay through a Q = 5/3 fermion). In [55] they also explored the more
realistic scenario with all the states in the 14 roughly at the same mass,
obtaining a comparable bound.

While fermion resonances are an essential ingredient of partial compos-
iteness, vector resonances are not strictly necessary, even though they have
received a lot of attention, for instance in [56]. Partners of Z and W bosons
with masses below 1.5 TeV are excluded [57, 58], [59] for limits not from
the experimental collaborations. While experimental collaborations focused
on benchmark models, in [60] has been considered the more realistic case of
a heavy spin-1 resonance accompanied by fermionic resonances, specifically
those typically arising from fundamental representation of SO(5).

On general grounds one could also expect the presence of gluon reso-
nances, massive vectors in the adjoint of SU(3)c: this is particularly true in
extra dimensional models where they are identified with KK excitations of the
ordinary SM gluons, while in pure four dimensional theories they are not un-
avoidable. They affect the two point functions of other fermionic resonances
and they enter the Higgs potential at two loops, nevertheless their effect can
be not negligible as long as they do not completely decouple: as stressed
in [61] masses above the experimental limit, set by CMS at 2.5 TeV [62], can
contribute to lower the Higgs physical mass by a few percentage points.

2.5.2 Indirect Measurements

Higgs Couplings

Direct detection of a resonance would surely be a reliable sign of BSM physics
and it would also helps in discriminating among several BSM hypothesis.
Other indirect indications might come from deviations in the measure of the
Higgs couplings: in this case different models may results in comparable pre-
dictions and further experiments would be needed. In CHM such deviations
are intimately related to the pNGB nature of the Higgs: couplings to fermions
and EW gauge bosons are dictated by symmetry considerations. For instance
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for the coset SO(5)/SO(4) the Lagrangian for gauge bosons contains

1

2

f 2

4
s2
h[g
′2BµBν − 2g′gBµW

3
ν + g2(W 1

µW
1
ν +W 2

µW
2
ν +W 3

µW
3
ν )]ηµν (2.54)

coming from the covariant derivative of the Higgs field. The identification
v2 = f 2〈s2

h〉 = f 2ξ yields to the correct values for W and Z masses and
ensures the relation mW = cos θWmZ . If we expand around the VEV 〈h〉+h
for small fluctuations we find

f 2s2
h ' v2 + 2v

√
1− ξh+ (1− 2ξ)h2 , (2.55)

whereas the SM is recovered in the limit ξ → 0 at fixed v. Therefore the
coupling V V h and V V hh are modified by a factor

√
1− ξ and 1−2ξ respec-

tively. The couplings of the Higgs to the EW bosons are reduced compared
to the SM case in a variety of cosets: an enhancement is obtained in non
compact cosets, like SO(4, 1)/SO(4) [63,64].

The couplings to SM fermions depend on the SO(5) representations of
the fermion partners. If we choose the fundamental 5 for both left and right
the mass term is proportional to

f sin
2h

f
' 2v

√
1− ξ + 2h(1− 2ξ) = 2v

√
1− ξ

(
1 +

h

v

(1− 2ξ)√
1− ξ

)
(2.56)

and therefore the Higgs coupling to fermions hf̄f with respect to the SM
case is modified by the factor (1− 2ξ)/

√
1− ξ.

Couplings to gluons and photons are induced by loops of charged and col-
ored particles and are model dependent. The quickest way to compute them
is through the low energy theorem [65, 66] which states that an amplitude
involving a soft Higgs as external leg can be computed as a function of the
same amplitude without the Higgs, namely

lim
ph→0
A(X + h) = h

∂

∂v
A(X) (2.57)

if MH is much smaller than the masses in the loop. This is because inserting
a Higgs in a propagator means the following replacement in the amplitude
A(X):

1

/q −m
→ 1

/q −m
h

1

/q −m
= h

∂

∂m

1

/q −m
. (2.58)
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The Jacobian ∂m
∂v

contains the Yukawa coupling of the vertex. In fact inter-
actions with the Higgs may be generated in a Lagrangian, with the kinetic
term consistently neglected in the soft limit, with the formal substitution

m→ m

(
1 + g

h

v

)
(2.59)

where g is a proper coefficient (g = 1 in the SM); with different values for
g the theorem can be generalized to new physics models. As an example of
the use of eq.(2.57) we compute the coupling of the Higgs to two gluons in
the SM mediated by a top loop. We start with the term in the action

L ⊇ − 1

4g2
3

F a
µνF

µνa (2.60)

with g3 the coupling of SU(3)c such that β 1

g23

= b
8π2 . We recall that

∂ 1
g23

∂ logMtop

= −2

3

1

8π2
(2.61)

due to the changing of the beta function at energies crossing Mtop. With the
identity ∂

∂v
= 1

v
∂

∂ logMtop
and putting everything together we obtain

L ⊇ g2
3

48π2
F a
µνF

µνah

v
(2.62)

where we have reabsorbed the gauge coupling constant in the vector fields,
Aaµ → g3A

a
µ; it agrees with the full one-loop computation up to terms of order

O(
M2
H

M2
top

). Notice that the effect does not depend on the top mass, as long

as Mtop � MH because the coupling is proportional to the Yukawa of the
top: in other words a massive field does not decouple because the heavier
it is the more it interacts. The vertex with two gluons and n external soft
Higgs legs is obtained iterating eq.(2.57) on eq.(2.62) and dividing for n! to

avoid multiple counting. Noticing that
(
∂
∂v

)n−1
v−1 = (−1)n−1(n−1)!v−n the

resummation of all the vertices hngg results in

L ⊇ g2
3

48π2
F a
µνF

µνa log

(
1 +

h

v

)
. (2.63)
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More in general the result can be expressed in terms of log det |M(h)|2 and the
Higgs dependence is obtained performing the replacement eq.(2.59), where
M(h) is the mass matrix of the fields entering the loop. This holds not
only for the SM but has wider applicability. In [67] the couplings of the
Higgs to gluons has been studied extensively taking into account both the
contribution from heavy resonances and the non linearities coming from the
coset structure.

So far all the data extracted from the experimental collaborations at LHC
are in good agreement with the expectations from the SM, no significant
deviation for any of the probed couplings of the Higgs to bosons (massive
vectors, photons and gluons) or fermions (bottom, tau) is found and the
uncertainties shrank toO(10%): see [68–70] and the many references reported
therein.

Electroweak Precision Observables

In discussing electroweak precision tests (EWPT) we follow the discussion
of [71]. New physics effects are included in form factors of EW gauge bosons

ΠV (q2) = ΠV (0) + Π′(0)q2 +
1

2
Π′′(0)(q2)

2
+ . . . (2.64)

where V ∈ {W+W−,W 3W 3, BB,W 3B} as in eq.(2.31). The vector bosons
need not to be mass eigenstates but simply they are the gauge fields appearing
in the covariant derivatives of the SM fields with gauge couplings g0 and
g′0: namely they are the elementary fields and in principle they can mix
with heavy vector resonances. Moreover we decide to work with canonically
normalized fields. For these reasons in the following formulae both the pairs
g0, g

′
0 and g, g′ appear. While g0 and g′0 are the couplings associated to the

gauging the couplings g and g′ are the observed ones, taking into account
possible mixings. An example of the mixing will be given in eq.(4.16).

Stopping at the second order in the expansion five out of the twelve
parameters are fixed by phenomenological considerations:

Π′W+W−(0) = −g
2
0

g2
, Π′BB(0) = −g

′2
0

g′2
, ΠW+W−(0) = g2

0

v2

2
. (2.65)

The masslessness of the photon Aµ = Bµ cos θW + W 3
µ sin θW is guaranteed

by the following

ΠW 3W 3(0) = − gg0

g′g′0
ΠW 3B(0) , ΠBB(0) = −g

′g′0
gg0

ΠW 3B(0) , (2.66)
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Consequently we are left with the following:

{
1
g2
Ŝ = − 1

g0g′0
Π′W 3B(0)

2
gg′M2

W
X = − 1

g0g′0
Π′′W 3B(0)

,

{
2

g2M2
W
W = − 1

g20
Π′′W 3W 3(0)

2
g′2M2

W
Y = − 1

g′20
Π′′BB(0)

,


1
g2
M2

W T̂ = − 1
g20

(ΠW 3W 3(0)− ΠW+W−(0))

− 1
g2
Û = − 1

g20
(Π′W 3W 3(0)− Π′W+W−(0))

2
g2M2

W
V = − 1

g20
(Π′′W 3W 3(0)− Π′′W+W−(0))

.

(2.67)

We have distinguished them into three classes: T̂ , Û and V vanish in
a theory preserving either custodial symmetry or SU(2)L. Ŝ and X are
not protected by the custodial symmetry while W and Y are not protected
neither by the custodial nor by the SU(2)L symmetry.

They are related to the S, T, U parameters [72,73]:

S =
4 sin2 θW

α
Ŝ , T =

T̂

α
, U = −4 sin2 θW

α
Û . (2.68)

where we use α = e2

4π
, e = g/ sin θW . In an expansion around q2 = 0 of the

form factors ΠV we expect the coefficient of the n-th term to be suppressed
with respect to the (n− 1)-th one by a factor (MW/Λ)2, where Λ is the scale
at which new physics enters into the form factors. Therefore we can restrict
ourselves to the set of parameters Ŝ, T̂ , Y,W . In pNGB CHM a suppression
by a factor (g/gm)2 is reasonable: thus the most relevant parameters for the

present discussion are Ŝ and T̂ .
We are interested in contributions to form factors, and hence to Ŝ and

T̂ , different from the SM ones and possibly due to new physics. Let us
start considering Ŝ. A first important contribution to the ΠW 3B(q2) from
the strong sector can be interpreted, in the strongly interacting limit, as the
exchange of heavy narrow spin-1 resonances: due to partial compositeness
they mix at tree-level with the EW gauge bosons. For example a heavy
vector boson ρ in the 6 of SO(4) can be treated with a simplified Lagrangian
including its coupling constant gm and its mass gmf : the mixing with the
SM bosons is proportional to gf . Its effect is

∆Ŝρ =
g2

g2
m

ξ . (2.69)
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At the loop level the form factors get more contributions from the strong
sector: in the narrow resonances approximation other states enter the loop.
In particular fermionic partners of the SM fermions, depending on their SO(4)
properties, can affect the result. In [74, 75] a one-loop computation has
been performed taking into account the non linearities of the couplings. In
the presence of a ψ4 and a ψ1 resonances respectively in the 4 and 1 of
SO(4) ⊆ SO(5) a non derivative coupling with the Higgs is induced by

ψ̄4 /D ψ1 + h.c. (2.70)

where Dµ is defined in eq.(2.8). The induced ∆Ŝf has no definite sign and
it can vanish for a particular choice of the coefficient of the above operator:
this corresponds to points with enlarged symmetries.

A third important effect is related to the non linearities of the Higgs
boson [76]: as we discussed they translate into deviations of the couplings of
the Higgs to EW vector bosons with respect to the SM values, reobtainable
in the limit ξ → 0 at fixed v. In the SM, being a renormalizable theory, Ŝ
has to be finite because we cannot add counterterms for it; on the other hand
the effective theory at ξ 6= 0 is no longer renormalizable, a UV completion is
given by the addition of the strongly interacting sector. Therefore we expect
Ŝ to be sensitive to the cutoff scale, Λ. Notice that, conversely to what
happened before, this contribution does not depend on the details of the
UV theory, namely masses and couplings of heavy resonances, but it is fully
understood in the effective theory: in this sense it is a IR contribution. The
total one-loop computation with the vectors, the Goldstones and the neutral
Higgs with modified couplings results in [76]

∆ŜH =
1

6π

g2

16π
ξ log

Λ

MH

. (2.71)

For what concern T̂ there is no tree-level contibution because the com-
posite sector respects a custodial symmetry. At the loop level this symmetry
is spoiled therefore we expect a non vanishing ∆T̂ : in particular the contri-
bution from fermionic resonances can be estimated to be [30,49]

∆T̂ferm ∼
Nc

16π2

ε4rf
2

M2
L

ξ . (2.72)

Higgs non linearities produces an IR effect similar to the one in eq.(2.71)

∆T̂H = − 3g2

32π2 cos2 θW
ξ log

Λ

MH

. (2.73)
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The numerical values for Ŝ and T̂ , although in terms of the non hatted
quantities S, T and U , can be found in [77,78].

As pointed out in [79,80] models with 5 or 10 representations for Or are
favoured with respect to the minimal models with fermions embedded in the
spinorial 4. While corrections to T̂ vanish at tree-level if the BSM physics
respects a custodial symmetry, one can also include an additional symmetry
PLR exchanging L ↔ R, on top of SU(2)L × SU(2)R. Since PLR ∈ O(4)
and PLR 6∈ SO(4)7 it can be forced enlarging to the breaking O(5) → O(4)
which is equivalent at the level of the algebra but does not allow for spinorial
representations. At the same time the former representations automatically
guarantee that no deviations occurs at tree-level in the coupling of the bottom
left to the Z boson with respect to the SM value: the bound from [81,82] on
deviations is about 10−3. The couplings of top to Z and of top and bottom to
W are instead modified but they are less constrained experimentally. Notice
that the requirements studied in [79] to protect the coupling Zbb cannot be
satisfied if one wants to embed in (different) SO(5) spurions the top and the
bottom quarks: therefore with the most common choice, the one we adopt
in the following, a tree-level correction appears proportional to the mixings
εbL of the bottom quark.

7PLR acting on the fundamental 5 of O(5) can be written as diag(−1,−1,−1, 1, 1).



Chapter 3

Supersymmetric Composite
Higgs Models

3.1 General Setup

We now proceed to generalize the pNGB Higgs paradigm in SUSY theories:
our models consist of an elementary sector, containing SM fermions, gauge
bosons and their supersymmetric partners, coupled to a composite sector
where both the global symmetry G and SUSY are spontaneously broken.
On top of this structure, in order to have sizable SM soft mass terms, we
need to assume the existence of a further sector which is responsible for
an additional source of SUSY breaking and its mediation to the other two
sectors. We do not specify it and we parametrize its effects by adding soft
terms in both the elementary and the composite sectors. Our key assumption
is that the soft masses in the composite sector are G invariant. See fig.3.1 for
a schematic representation. The main sources of explicit breaking of G are
the couplings between the elementary and the composite sectors, namely the
SM gauge couplings and the top mass mixing terms. We assume that partial
compositeness in the matter sector is realized through a superpotential portal
of the form

W ⊃ ε ξSMNcomp , (3.1)

the supersymmetric generalization of eq.(2.18). In eq.(3.1) Ncomp are chiral
fields in the composite sector and ξSM denote the SM matter chiral fields.
No Higgs chiral fields are present in the elementary sector, since the Higgs
arises from the composite sector. The term (3.1) is the only superpotential

40
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term involving SM matter fields. For concreteness, we consider only the
minimal custodially invariant SO(5) → SO(4) symmetry breaking pattern
with Ncomp in the fundamental representation of SO(5). Like in non-SUSY
CHM, the SM Yukawa couplings arise from the more fundamental proto-
Yukawa couplings of the form (3.1).1 We do not consider SM fermions but
the top since they are not expected to play an important role in the EWSB
mechanism. They can get a mass via partial compositeness through the
portal (3.1), like the top quark, or by irrelevant deformations, for instance
by adding quartic superpotential terms.

As we are going to show, the SUSY models we consider can be seen as the
weakly coupled description of some IR phase of a strongly coupled theory, in
which case the Higgs is really composite, or alternatively one can take them
as linear UV completions, in which case no compositeness occurs. Depending
on the different point of view, general considerations can be made. If we want
to take our models as UV completions on their own, we might want to extend
the range of validity of the theory up to high scales, ideally up to the GUT
or Planck scale. In this setting, introducing gauge fields in addition to the
SM gauge fields is disfavoured, because the multiplicity of the involved fields
would typically imply that the associated gauge couplings are not UV free
and develop a Landau pole at relatively low energies. Avoiding analogous
Landau poles for certain Yukawa couplings in the superpotential implies that
the “composite sector” should be as weakly coupled as possible. However,
reproducing the correct top mass forces some coupling to be sizable; in our
explicit example a Landau pole is reached at a scale around 102f . Viceversa,
additional gauge fields are generally required if we assume that the linear
models considered are an effective IR description of a more fundamental
strongly coupled theory, like in ref. [1]. We might now assume that the theory
becomes strongly coupled at relatively low scales, such as Λ = 4πf . We can
actually determine the low energy non-SM Yukawa and gauge couplings by
demanding that they all become strong around the same scale Λ. As we will
see, light fermion top partners still appear in both cases.

In light of these two different perspectives, we will consider in greater
detail two benchmark models, with and without vector resonances.

1In the field basis where we remove non-derivative interactions of the pNGB Higgs from
the composite sector, the Higgs appears in eq.(3.1).
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Soft SUSY terms

Figure 3.1: Schematic representation of the structure of our models.

3.2 General Features of the Higgs potential

We now move to realizations of pNGB CHM in concrete models which enjoy a
rigid N = 1 SUSY. First we consider more specifically the Higgs potential in
SUSY models. No tree-level D-term contribution to the potential is present
in our models, in contrast to many SUSY little Higgs constructions. We make
comparisons with little Higgs models [83,84] because they are a realization of
the idea of CHM different from the one we are pursuing and because they also
have been considered in SUSY versions [85–89], therefore it is instructive to
point out similarities and differences. The latter are based on global unitary
symmetries, where one typically embeds the two MSSM Higgs doublets in
two distinct multiplets of the underlying global symmetry group. Because of
that, one generally ends up in having too large D-term contributions to the
Higgs mass, whose cancellation usually requires some more model building
effort. In our case, instead, the two Higgs doublets are embedded in a single
chiral field q4 that is in the 4 of the unbroken SO(4) group. More precisely,
the two Higgs doublets Hu,d are embedded in q4 as follows:

q4 =
1√
2

(
− i(H(u)

u +H
(d)
d ), H(u)

u −H
(d)
d , i(H(d)

u −H
(u)
d ), H

(u)
d +H(d)

u

)
,

(3.2)
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where the superscript denotes the up or down component of the doublet.
Thanks to the underlying global symmetry, the Hu and Hd soft mass terms
are equal, thus vu = vd and tan β = 1. The mass eigenstates are simply the
real and imaginary components of q4. Im q4 is identified with the heavy Higgs
doublet, while Re q4 is the light (SM) Higgs doublet. No D-term contribution
affects the Higgs mass. In fact, at tree-level the SM Higgs is massless and
its VEV is undetermined. Of course, the situation changes at one-loop level,
because of the various sources of violation of the SO(5) global symmetry.
The SM Higgs will still sit along the flat direction (i.e. tan β remains one at
the quantum level), but quantum corrections will lift the flat direction, fix
its VEV and give it a mass. As explained at the beginning of section 2.4,
being the light Higgs doublet a pNGB, it is convenient to parametrize its
potential in terms of the sine of the field, as in eq.(2.34). From now on, for
simplicity, we denote the SM light Higgs doublet as the Higgs and denote
by h the Higgs field in the unitary gauge, matching the notation with that
introduced at the beginning of section 2.4.

In the Dimensional Reduction (DRED) scheme the one-loop Higgs po-
tential V (1) is given by

V (1)(sh) =
1

16π2

∑
n

(−1)2sn

4
(2sn + 1)mn(sh)

4

(
log

m2
n(sh)

Q2
− 3

2

)
=

1

64π2
STr

[
M4(sh)

(
log

M2(sh)

Q2
− 3

2

)]
,

(3.3)

where m2
n(sh) are the Higgs-dependent mass squared eigenvalues for the

scalars, fermions and gauge fields in the theory and we have denoted the
sliding scale by Q. When the mass eigenvalues are not analytically available,
we compute the logM2 term by using the following identity, valid for an
arbitrary semi-positive definite matrix M , see e.g. [90]:

M4 logM2 = lim
Λ→∞

(1

2
Λ4 − Λ2M2 +M4 log Λ2 − 2

∫ Λ

0

x5dx

x2 +M2

)
. (3.4)

The RG-invariance of the scalar potential at one-loop level reads

∂

∂ logQ
V (1) + βλI

∂

∂λI
V (0) − γnΦn

∂

∂Φn

V (0) = 0, (3.5)

where the indices I and n run over all the masses and couplings (including
soft terms) and all the scalar fields in the theory, respectively, and V (0)
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denotes the tree-level scalar potential with the addition of soft terms. By
expanding eq. (3.3) for sh � 1, we get the explicit form for γ and β defined
in eq.(2.37). As we already pointed out in section 2.4, in first approximation
we can switch off all SM gauge interactions and keep only the top mixing
masses ε as explicit source of symmetry breaking. In this limit, only colored
fermion and scalar fields contribute to the Higgs potential (3.3).

When all sources of SUSY breaking, denoted collectively by m̃, are switched
off, SUSY requires

lim
m̃→0

V (h) = 0 . (3.6)

However, one has to be careful in properly taking the two limits m̃→ 0, and
sh → 0, since in general they do not commute. The cancellation (3.6) is only
manifest when we first take the m̃ → 0 limit. In practice, however, we only
expand in sh since the sources of SUSY breaking cannot be taken too small.

When the soft terms in the composite sector are SO(5) invariant and the
SM gauge interactions are switched off the only SO(5) violating term is the
superpotential term

W ⊇ εLξLOtL + εRξROtR , (3.7)

a superfield generalization of eq.(2.18). It contains the partial compositeness
mass mixings among SM fermions and partners as well as an analogous term
involving scalar fields, as dictated by SUSY. Also we point out that in the
ungauged SM limit the β-functions βλI and the anomalous dimensions γn
appearing in eq.(3.5) are necessarily SO(5) invariant at one-loop level. As a
consequence, neither the second nor the third term in eq. (3.5) can depend on
sh and hence the sh-dependent one-loop potential V (1) is RG invariant and
finite. In this case, in contrast to the MSSM, the electroweak scale ξ defined
in eq.(2.38) is only logarithmically sensitive to the soft masses when these
are taken parametrically large. A similar structure is found for the one-loop
potential in SUSY little Higgs models, where a phenomenon named double
protection is said to be at work [91,92]. The global symmetry breaking scale
f is quadratically sensitive to the soft mass terms associated to the fields
responsible for this breaking when these are taken parametrically large. In
our models such fields are always in the gauge sector, where we provide a
dynamical mechanism of SUSY breaking.

When the SM gauge interactions are switched on, βλI and γn are no longer
SO(5) invariant and can depend on sh. Although holomorphy protects the su-
perpotential from quantum corrections, the Kähler potential is renormalized
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and the gauging of SU(2)L×U(1)Y explicitly breaks the SO(5) global symme-
try. This implies that the physical, rather than holomorphic, couplings of the
composite sector entering in the superpotential split into several components
with different RG evolutions, depending on the SU(2)L × U(1)Y quantum
numbers of the involved fields. We discuss this aspect in more detail in ap-
pendix A.1. In what follows, we take the physical couplings to be all equal
at the scale f . mψ introduced in eq.(3.12) and h, introduced in eq.(3.12) as
well as in eq.(4.3),2 are the couplings whose running is relevant for the Higgs
potential.

Similarly, the RG flow induced by the SM gauge couplings gives rise to
SO(5) violating contributions to the soft mass terms. In the models we will
consider this dependence appears only at order s2

h. It implies that the RG
flow of the tree-level soft terms contributes to γ and induces a quadratic
sensitivity to the wino and bino soft terms suppressed by a one-loop factor
∼ g2/(16π2). A “Higgs soft mass term” of the form 1

2
m̃2
Hf

2s2
h, even if absent

at tree-level, is radiatively generated by the bino and wino masses m̃g. A
radiatively stable assumption about the Higgs soft term m̃2

H is to take it at
the scale f of order

|m̃2
H | ∼

g2

16π2
m̃2
g . (3.8)

In this way, we can neglect its effect on the one-loop potential. Conversely
this does not happen for the soft masses of squarks or other scalar fields. A
term of the form (see [93] and references therein or [94])

g′2Tr[Yim̃
2
i ] = g′2S , (3.9)

present in the beta function of the Higgs soft mass, with i spanning over
all relevant scalar fields identically vanishes at leading order. In fact soft
masses from the composite sector are assumed to be SO(5) invariant, there-
fore they do not contribute to the SO(4) breaking soft Higgs mass. For what
concerns soft masses for elementary scalar fields they do not enter the gauge
contribution at one-loop level: this is a consequence of the fact that the hy-
percharge D term does not introduce quartic interactions among the Higgs
and elementary fields, because for the models presented

Tr
[
(U〈q̃〉)tT 3

R(U〈q̃〉)
]
≡ 0 . (3.10)

2Throughout the text we denote also the field associated to the physical Higgs particle
with the same letter h. The difference should be clear from the context and no confusion
should arise.
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where the matrix U contains the pNGB Higgs, see eq.(3.17) and the relative
discussion. This statement can be reprashed in the following equivalent way,
thanks to the embedding of the Higgs in a 4 of SO(4) as given explicitly in
eq.(3.2). The relation tan β = 1 ensures that the physical Higgs is contained

into the sum H
(d)
u +H

(u)
d : therefore the contribution proportional to S cancels

out in the beta function of the soft mass, while of course it affects the mass
of the other heavy doublet (although this effects does not enter the Higgs
potential at one loop and we neglect it). We conclude that apart from the
effect induced by EWinos a vanishing soft mass for the physical Higgs is a
radiatively stable assumption at one-loop level.

3.3 Minimal Model without Vector Resonances

Given the features outlined in the previous sections we move to a specific
example. This allows us to make real predictions, mainly about the spectrum
of the theory. A simple supersymmetric pNGB Higgs Model with elementary
tL and tR can be constructed using two colored chiral multiplets NL,R in the
5 of SO(5), two colored SO(5) singlet fields SL,R, two color-neutral multiplets
in the 5, q and ψ, and a complete singlet Z. All these multiplets are necessary
to have a linear realization of the global symmetry breaking SO(5)→ SO(4)
without unwanted massless charged states. The superpotential reads

W =
∑
i=L,R

(εiξ
a
iN

a
i +λiSiq

aNa
i )+mNN

a
LN

a
R+mSSLSR+W0(Z, q, ψ) , (3.11)

where
W0(Z, q, ψ) = hZ(qaqa − µ2) +mψqaψa . (3.12)

Notice that the gauge sector of the model can be seen as a supersym-
metrization of the liner σ-model presented in [76] and in the Appendix G
of [56].

We embed the elementary qL and tR into spurions ξL and ξR in the 5 of
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SO(5) SU(3)c U(1)X
NL 5 3̄ −2/3
NR 5 3 2/3
S 1 3 2/3
Sc 1 3̄ −2/3
q 5 1 0
ψ 5 1 0
Z 1 1 0

Table 3.1: Superfields of the model and their quantum numbers under the
SU(3)c × SO(5)× U(1)X ⊇ GSM group.

SO(5) for minimality:3

ξL =
1√
2


bL
−ibL
tL
itL
0

 , ξR =


0
0
0
0
tR

 . (3.13)

The superpotential eq.(3.12) corresponds to an O’Raifeartaigh model of
SUSY breaking. For µ2 > m2

ψ/(2h
2), this model has a SUSY breaking mini-

mum with4

〈qa〉 =
f√
2
δ5
a , (3.14)

where

f =

√
2µ2 −

m2
ψ

h2
. (3.15)

The scalar VEV’s of Z and ψa, undetermined at the tree-level, are stabilized
at the origin by a one-loop potential. The symmetry breaking pattern is the
minimal

SO(5)× U(1)X → SO(4)× U(1)X , (3.16)

3In order to keep the notation light, we omit in what follows the color properties of the
fields, that should be clear from the context.

4With a common abuse of language, we denote with the same symbol a chiral superfield
and its lowest scalar component, since it should be clear from the context the distinction
among the two.
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where SU(2)L×U(1)Y is embedded in SO(4)×U(1)X in the standard fashion.
The four NGB’s hâ can be described by means of the σ-model matrix as

qa = Uabq̃b = exp

(
i
√

2

f
hâT â

)
ab

q̃b, (3.17)

where T â are the SO(5)/SO(4) broken generators defined as in the Appendix
C and q̃ encodes the non-NGB degrees of freedom of q. In the unitary gauge
we can take hâ = (0, 0, 0, h), and the matrix U simplifies to

U =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0
√

1− s2
h sh

0 0 0 −sh
√

1− s2
h

 . (3.18)

The effect of the SUSY breaking is not felt at tree-level by the colored
fields NL,R, SL,R mixing with the top. We add to the SUSY scalar potential
the soft terms Vsoft = V E

soft + V C
soft, transmitted from the external SUSY

breaking sector, with

V E
soft = m̃2

tL|ξL|
2 + m̃2

tR|ξR|
2 , V C

soft =
∑

φi=NL,R,SL,R

m̃2
i |φi|2 , (3.19)

and soft masses for the elementary gauginos of the SM gauge group, m̃g,1,2,3.
We neglect the smaller soft mass terms radiatively induced by W0 and for
simplicity we have not included B-terms. Let us analyze the tree-level mass
spectrum of the model. We fix the mass parameter mS = 0, since all the
states remain massive in this limit,5 and take λL = λR = λ, so that the
composite superpotential enjoys a further Z2 symmetry (exchange of L and
R fields), broken only by the mixing with SM fermions. We also assume
all parameters to be real and positive. Before EWSB, the fermion mass
spectrum in the matter sector is as follows. A linear combination of fermions,
to be identified with the top, is clearly massless. The SU(2)L doublet with
hypercharge 7/6 contained in NL,R does not mix with other fields and has a
mass equal to MQ7/6

= mN . The doublet with hypercharge 1/6 mixes with

5We checked that, if taken non-zero, its contribution to the potential does not change
qualitatively the conclusions of our analysis.
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qL and gets a mass MQ1/6
=
√
m2
N + ε2L. Two SU(2)L singlets get a mass

square equal to M2
S±

= 1/2(m2
N + ε2R + λ2f 2 ±

√
(m2

N + ε2R)2 + 2m2
Nf

2λ2).
The scalar spectrum is analogous, with the addition of a shift given by the
soft masses (3.19). After EWSB, the top mass is

Mtop =
εLεRfλsh

√
1− s2

h√
2
√
m2
N + ε2L

√
2ε2R + f 2λ2

=
εLεRf

2λ2sh
√

1− s2
h

2
√

2MQ 1
6

MS+MS−

. (3.20)

The gauge sector contains the SM vector superfields w(0) and b(0) and the
chiral superfields qa, ψa and Z. For simplicity, we neglect all soft mass terms
in this sector, but the SM gaugino masses. Regarding the fermion spectrum,
the SO(4) fourplets qn and ψn (n = 1, 2, 3, 4) get a Dirac mass mψ. A linear
combination of ψ5 and Z, we call it p5, gets a Dirac mass, together with q5,√

2(f 2h2 +m2
ψ). The orthogonal combination of ψ5 and Z (χ5) is massless

being the goldstino associated to the spontaneous breaking of SUSY. In the
scalar sector, Re qn are identified as the pNGB Higgs, while Im qn get a mass√

2mψ. These two are the mass eigenstates of the two Higgs doublets Hu, Hd

introduced in section 3.2. The partners of ψn and p5 will get the same mass
as the fermions while the partner of the goldstino χ5 is a pseudo-modulus,
whose VEV is undetermined at the tree-level. This field is stabilized at the
origin by a one-loop induced potential. Its detailed mass depends on the
ratio µ2h2/m2

ψ. In the region defined in the next subsection, its mass is of
order mψh/(2π) ∼ 50 ÷ 70 GeV. The real and imaginary parts of q5 have

masses
√

2fh and
√

2(f 2h2 +m2
ψ), respectively.

Let us discuss the possible values of the parameters of the model. De-
manding Mtop to be around 150 GeV at the TeV scale gives a lower bound on
the smallest possible value of the Yukawa coupling λ at the scale f , obtained
by taking εL,R →∞ in eq.(3.20):

λmin(f) & 1.2 . (3.21)

An upper bound on λ is found by looking at its RG running. The relevant
beta functions are reported in appendix A.2. For h� 1, the Yukawa coupling
λ is UV free for λ(f) . 0.9 and develops a Landau pole for higher values.
Demanding that the pole is at a scale greater than 4πf gives the upper
bound:

λmax(f) . 1.7 . (3.22)
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Putting all together, we see that the maximum scale for which the model is
trustable and weakly coupled is obtained by taking λ = λmin, in which case
we get a Landau pole at around 300f . This limiting value is never reached
in realistic situations, but Landau poles as high as 100f can be obtained.
The current bound on the top partner with 5/3 electric charge puts a direct
lower bound on mN [13]:6

MQ7/6
= mN & 800 GeV . (3.23)

Demanding a value for λ as close as possible to the minimum value (3.21), the
top mass (3.20) favours regions in parameter space where tL and tR strongly
mix with the composite sector: εL,R � mN .

3.3.1 Higgs Mass and Fine Tuning Estimate

As we have already remarked, when V C
soft is SO(5) invariant, the one-loop

matter contribution to the Higgs potential is RG invariant and finite. Since
the explicit form of βmatter is quite involved, there is not a simple analytic
expression for the Higgs mass valid in all the parameter space. In particular
an expansion for small values of εL,R is never a good approximation because,
as explained, these mixings should be taken large.

The region of parameter space which realizes EWSB with ξ = 0.1 and
gives MH = 126 GeV is essentialy unique. In most of the parameter space
γgauge and γmatter are both positive and bigger than βmatter, and no tuning is
possible to obtain the right value of ξ. The only region where γgauge < 0 is
found for m̃g,mψ . f where, however, the size of γgauge is smaller than the
natural size of γmatter, eq.(2.50). The bound (3.8) forces m̃2

H to be negligibly
small. From these considerations we see that γmatter has to be tuned in order
to become smaller than its natural value. The requirement of perturbativity
up to Λ = 100f fixes λ(f) ' 1.3. Regarding mN , a lower bound is given by
eq.(3.23) while an upper bound is given from the fact that, increasing mN

requires a higher value of εL in order to reproduce Mtop, see eq.(3.20), and, as
a consequence, γmatter increases, which is the opposite of what it is necessary
to get ξ. This forces mN ∼ f , near its lower bound. Reproducing Mtop fixes

6This bound can be applied directly only if the lightest top partner is this one with
Q = 5/3, in which case it decays in tW+ with BR ' 100%. For lower values of the BR
the bound is weaker. We take a conservative approach and use the bound as a constraint
on the mass of this particle.
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also εL, εR � f . The Higgs mass is not sensitive to the stop soft masses m̃tL,R

and its correct value is found for composite soft masses m̃ ∼ 3.5f , taken all
equal. Finally, in order to fix ξ = 0.1, m̃tL and m̃tR have to be tuned in the
region m̃tL � m̃tR ∼ m̃.

An approximate analytic formula for M2
H in this region is obtained by

expanding for λf � mN , m̃� εL,R, where m̃ is a common universal soft mass
term (the last one is a good approximation because MH does not depend on
the stop soft masses). In this limit we get

M2
H '

Nc

2π2
M2

top

M2
top

v2

(
5 log

( m̃2

λ2
topf

2

)
+4x log

( x

1 + x

)
+

1

2
−4 log 2

)
, (3.24)

where x = m̃2

m2
N

. It is immediate to see that for values of m̃ & mN ∼ f ,7 a

126 GeV Higgs is reproduced.
Let us briefly discuss the fine tuning. We define it here as the ratio

between the value of ξ we want to achieve and its natural value given by
(2.39) in absence of cancellations. This is a crude definition, but it has the
advantage to estimate the actual FT provided by cancellations rather than
the sensitivity, without the need to worry about possible generic sensitivities.
The electroweak scale is determined by eq.(2.39). As argued above most of
the tuning arises within the matter sector. We can then neglect γgauge and
determine the expected value of ξ by comparing γmatter and βmatter. We get8

γmatter ∼
Nc

8π2
λ2
topf

2m̃2 , βmatter ∼
Nc

8π2
λ4
topf

4 . (3.25)

The FT can then be written as9

∆ ∼ m̃2

f 2

1

ξ
, (3.26)

and is always higher than the minimum value 1/ξ. From eq.(3.24) we see
that MH grows with m̃ in the region of interest and hence we expect a linear
increase of ∆ with the Higgs mass.

7We have numerically checked that the range of applicability of eq.(3.24) extends to
the region with mN ∼ f .

8As explained below eq.(3.6), the limits sh → 0 and m̃ → 0 do not commute. As a
result, βmatter in eq.(3.25) does not vanish for m̃→ 0.

9Another possible source of FT might arise from the origin of the scale f as the can-
cellation of the two terms in eq.(3.15). In the region of interest no significant cancellation
occurs and we neglect this effect.
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Figure 3.2: FT of the minimal model, (in %) as a function of the Higgs mass
for ξ ' 0.1. In this scan we fixed λ(f) = 1.29 and h(f) = 0.44, so that both λ
and h reach a Landau pole at the same scale Λ ∼ 100f , mN = 1.2f and picked
randomly εL ∈ [8.5f, 10f ], mψ ∈ [0.7f, 1.5f ], m̃g ∈ [0.5f, f ], m̃ ∈ [2.5f, 4.5f ],
m̃tL ∈ [4.5f, 6.5f ], m̃tR ∈ [f, 3f ] and m̃2

H within the bound (3.8). We fixed Mtop

by solving for εR and then selected points with ξ ' 0.1. The pink strip represents
the Higgs mass 1σ-interval as reported in ref. [95].

In order to check these considerations we performed a parameter scan in
the restricted region described at the beginning of the section. We fixed the
top mass by solving for εR and then obtained the minimum of the potential
and the Higgs mass from the full one-loop expression of eq.(3.3). We report
in fig.3.2 a plot of the FT computed using the standard definition of ref. [19]
as a function of the Higgs mass. As can be seen, we obtain ∆−1 ∼ 2% for
MH = 126 GeV, in reasonable agreement with the rough estimate (3.26).

Let us now discuss the spectrum of new particles. In this region, the
electroweak gauginos are relatively light, m̃g . f ∼ 800 GeV and the two
higgsino doublets (from ψn and qn) have also a mass mψ ∼ 800 GeV. The
stops and their partners are heavy, above 2 TeV, while the fermion top part-
ners are usually below the TeV, the lightest being the singlet with Q = 2/3
and a mass MS− ' 660 GeV.10 The gluinos do not contribute to the Higgs

10The recent CMS analysis [54] rules out charge 2/3 top partners below ∼ 700 GeV.
A careful phenomenological analysis should be performed to check if the model with the
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SO(5) SO(4)2 SU(3)c U(1)X
NL 5 1 3̄ −2/3
NR 5 1 3 2/3
XL 1 4 3 2/3
XR 1 4 3̄ −2/3
q 5 4 1 0
Z 1⊕ 14 1 1 0

Table 3.2: Chiral superfield content of the model with vector resonances.

potential at one-loop, therefore they can be taken heavy (above the experi-
mental bounds) without increasing the fine tuning.

3.4 Road to Vector Resonances

A modification of the model is obtained introducing partial compositeness
also for EW gauge bosons mixing them with heavy spin-1 resonances. In our
linear realization this is achieved enlarging the pattern of symmetry breaking
from SO(5) → SO(4) to SO(5)× SO(4)2 → SO(4)D: the gauging of the
additional SO(4)2 provides the vector resonances and keeps the number of
uneaten Goldstone modes to be identified with the components of the Higgs
doublet equal to four. The field content is reported in table 3.2 while the
superpotential is

W =
∑
i=L,R

(εiξ
a
iN

a
i +λiX

n
i q

a
nN

a
i )+mNN

a
LN

a
R+mXX

n
LX

n
R+W0(Z, q) , (3.27)

where NL,R and XL,R are colored fields in the (5,1) and (1,4) of SO(5) ×
SO(4)2, respectively, and q is a color-singlet in the (5,4) (a = 1, . . . , 5, n =
1 . . . , 4). The spurions ξL,R are taken as in eq.(3.13). The superpotential
term W0 reads

W0 = h
(
qnaZabq

n
b −

f 2

2
Zaa

)
, (3.28)

where Z is a field in the symmetric 14⊕ 1 of SO(5).

benchmark parameters taken is ruled out or not. Slightly decreasing ξ or the scale of the
Landau pole are two possible solutions to increase the mass of MS− beyond 700 GeV.
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The extra gauge sector is strongly coupled and it has a Landau pole at
a low scale, around 10f . Also, due to the augmented multiplicity of fields,
the couplings λ and h enter the strong regime at the same scale. This case
is discussed in [2] in a manner similar to the previous case. Nevertheless
here we emphasize that it can be nicely seen as an effective field theory for
a theory valid up to arbitrary high energy in the limit of ungauged SM. In
fact the superfields, with the addition of a colored state Y , can be grouped
as

q =

(
XL, XR

q

)
, M =

(
Y NL,R

N t
L,R Z

)
. (3.29)

The colored fields are grouped embedding the SU(3)c × U(1)X in a larger
SO(6) such that 6 = 32/3 + 3̄−2/3. The superfield q is written as a (6 + 5)× 4
matrix while M is a (6 + 5)× (6 + 5) symmetric matrix. The transformation
properties of the field Y are consequently deduced: it transforms as a 6× 6.
Also the couplings

√
2λL,

√
2λR and h can be collected in a new coupling,

which we call again h. The cubic terms of eq.(3.27) and eq.(3.28) can be
written as

W = hTr[qMq] . (3.30)

In the limit of decoupled SM the SO(6)×SO(5) group is a global symme-
try, while the SO(4)2 is gauged. It can be viewed, through Seiberg duality,
as the low energy description of a UV free supersymmetric QCD (SQCD)
with a SO(11) gauge group and Nf = 11 flavors in the fundamental [1]: the
gauge group SO(4)2 is emergent and we refer to it as magnetic, in contrast
to SO(11) which we call electric. We recall the details of Seiberg duality
focusing on orthogonal groups in the next section and we devote the next
chapter to the discussion of this model from the UV completed point of view.

3.5 Seiberg Duality for Orthogonal Groups

In this section we briefly review Seiberg duality for orthogonal groups, [96,97];
similar considerations can be made for other Lie groups, although we focus
on orthogonal for definiteness and because it is the case of our interest.

We first introduce N = 1 SQCD with SO(N) gauge group and Nf chiral
superfields Q in the fundamental: they transform in the fundamental of a
global SU(Nf ). N and Nf play a crucial role in determining the dynamics of
the theory and for different values we have qualitatively different situations,
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N − 2 3
2 (N − 2) 3(N − 2)

runaway free magnetic phase interacting fixed point free electric phase

UV free IR free

confining non confining

Table 3.3: Diagram for SO(N) SQCD: the number of flavor Nf increases
from left to right.

as we are going to recall. The coefficient of the beta function of the gauge
coupling is bel = 3(N − 2) − Nf , therefore the theory is IR free for Nf ≥
3(N −2); for Nf < N −4 gaugino condensation occurs, while the cases Nf =
N−4, N−3, N−2 have a richer vacuum structure. For 0 < 3(N−2)−Nf � 1
the theory is expected to have an interacting fixed point: in fact in this range
of parameters the one-loop coefficient of the beta function for g is positive
while the two-loop coefficient is negative, therefore it exists a value of g such
that the beta function vanishes: it can be shown that g ∼ 1/N . An elegant
way to derive the two-loop result is to relate the physical gauge coupling
to the holomorphic coupling which, being protected by SUSY, runs only at
one-loop and whose beta function is exactly proportional to bel [98]. It can
be argued that the existence of an interacting fixed point extends within a
conformal window defined by

3

2
(N − 2) < Nf < 3(N − 2) . (3.31)

The position of the lower bounds can be inferred inspecting the scaling
dimension of the gauge invariant scalar operator M = QQ: because of an
unitarity bound valid in any CFT the dimension of any scalar operator can-
not be smaller than 1 [99]. At the same time the current associated to the
R symmetry and the stress energy momentum tensor (related to the current
associated to dilatations) sit in the same real vector superfield. In a supercon-
formal field theory (SCFT) both currents are conserved and the associated
charges are proportional, in particular11

2 dimM = 3R(M) (3.32)

11This holds true for primary chiral operators: for a discussion see [37].
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and the unitarity bound becomes R(M) > 2/3. Combining R(M) = 2R(Q)
and the expression of R(Q) given in table 3.4 gives the bound

Nf > 3(N − 2)/2 . (3.33)

An electric magnetic duality, named after Seiberg, can be formulated for
SO(N) SQCD as long as

N − 2 < Nf < 3(N − 2) . (3.34)

The dual theory is a supersymmetric gauge theory with magnetic quarks in
the fundamental of an SO(Nf −N + 4) gauge group and a neutral meson M :
it has a non perturbative superpotential of the form

Wmag = hqMq . (3.35)

Consistently the dual theory has an interacting fixed point in the same con-
formal window where both h and the gauge coupling are attracted to fixed
values. Notably the magnetic theory is IR free for the values N − 2 < Nf ≤
3
2
(N − 2). In this region the electric theory is strongly coupled in the IR and

confining, and the magnetic dual can be seen as an effective theory for the
IR dynamics, otherwise intractable. On the other hand the magnetic theory
provides, in terms of weakly coupled degrees of freedom, a description valid
up to a certain cutoff, above which it becomes inconsistent and it is UV com-
pleted by the electric theory; see for instance [100]. Finally for Nf ≤ N − 2
the magnetic dual is not defined and the original theory typically develops a
non perturbative superpotential or a quantum moduli space of vacua: we do
not discuss these cases. We summarize this behavior in table 3.3.

In table 3.4 we recall the superfield content of the electric and the mag-
netic theories with the gauged and global symmetry.

The running of the gauge coupling constant in a gauge theory produces
a scale which is associated to non perturbative effects, as it is well known:

Λ = µ exp

(
− 8π2

bg2(µ)

)
(3.36)

In our case of Seiberg duality the requirement that the two coupling con-
stants, electric and magnetic, match (up to a phase) at a certain scale µ
translates to the following

Λbel
el Λbmag

mag = (−1)Nf−NµNf (3.37)
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SO(N)el SU(Nf ) U(1)R

QN
I N Nf

(Nf−N+2)

Nf

SO(Nf −N + 4)mag SU(Nf ) U(1)R
qI,n Nf −N + 4 Nf

N−2
Nf

MIJ 1 1
2
Nf (Nf + 1)

2(Nf−N+2)

Nf

Table 3.4: Field content of the electric and magnetic theories.

The sign is fixed by other considerations, namely consistency of this relation
and the duality. Eq.(3.37) tells us that g−2

el + g−2
mag ∼ const and in the

conformal window at the IR fixed point the weaker one coupling is, the
stronger the other.

In the range N−2 < Nf ≤ 3
2
(N−2) the magnetic theory is IR free and it

can be seen as an effective theory valid up to Λmag, while its UV completion,
the corresponding electric theory, becomes non perturbative at and below a
scale Λel. It is natural to choose the parameters of the theory such that there
is only one scale

Λ = Λel = Λmag = µ . (3.38)

In the following we will assume this is the case and we will refer to the unique
non perturbative scale of the theory Λ.

Several checks of this proposed duality have been verified: for instance
they enjoy the same global symmetries, the ’t Hooft anomalies match, and
adding a mass term for quarks in a theory results in higgsing part of the gauge
group of the dual theory and vice versa. The gauge invariant operators of
the electric and magnetic theory are in one to one correspondence:

♠ QN
I Q

N
J

♥ εN1...NNQ
N1
I1
. . . QNN

IN

♦ εN1...NN−4W1...W4Q
N1
I1
. . . Q

NN−4

IN−4
(Wα

elWel,α)W1...W4

♣ εN1...NN−2W1W2Q
N1
I1
. . . Q

NN−2

IN−2
WW1W2
el,α

, (3.39)
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♠ MIJ

♥ εI1...INJ1...JNf−N εn1...nNf−Nw1...w4q
J1n1 . . . qJNf−NnNf−N

(
Wα
magWmag,α

)w1...w4

♦ εI1...IN−4J1...JNf−N+4
εn1...nNf−N+4

qJ1n1 . . . qJNf−N+4nNf−N+4

♣ εI1...IN−4J1...JNf−N+2
εn1...nNf−N+2w1w2q

J1n1 . . . qJNf−N+2nNf−N+2Ww1w2
mag,α

.

(3.40)
Notice that the dual quarks bilinear qq in the IR is fixed to zero by the

F term equations implied by the superpotential eq.(3.35).
In the regime N − 2 < Nf ≤ 3

2
(N − 2) the SUSY gauge theory confines

at a scale non perturbatively generated: below that scale we have a descrip-
tion in terms of an effective theory for vectors, scalars and fermions which
are free in the IR but strongly coupled in the vicinity of the cutoff of the
theory. Therefore we use this theory, gauging a subgroup of the global sym-
metries, as a candidate for the BSM sector, generically introduced in chapter
2, providing a pNGB composite Higgs. An interesting phenomenon occurs
if a mass term is turned on for the quarks in the electrical theory: near the
origin in moduli space there exists a metastable vacuum in which SUSY is
spontaneously broken, to which we refer as the Intriligator Seiberg and Shih
(ISS) vacuum [101]. The original computation has been possible only thanks
to the Seiberg duality since the vacuum is found in terms of magnetic vari-
ables. Since the lifetime can be made parametrically large the vacuum is
interesting also from a phenomenological point of view, as a SUSY break-
ing sector. We put ourselves in the ISS vacuum but we do not rely on this
SUSY breaking to generate soft masses: we are concerned with the pattern
of breaking of bosonic symmetries and, as already mentioned, we appeal to
another unspecified SUSY breaking source.



Chapter 4

A UV Complete Model

4.1 The Basic Construction

As argued in subsection 3.4 the model there presented has a UV completion in
terms of a confining SQCD theory described, at low energy, through Seiberg
duality, recalled in section 3.5. Before discussing in detail the model we start
this chapter with a more general approach, namely we do not completely fix
the rank of the flavor group spontaneously broken: in fact the key points
underlying our models are best illustrated in a set-up where we keep only
the essential structure. We then converge to specific models. We focus on
constructions where the Higgs is the NGB of an SO(5)/SO(4) coset, but the
generalization to other cosets should be obvious.

Consider an N = 1 SUSY SO(N) gauge theory with Nf = N flavors in
the fundamental of SO(N), with superpotential

Wel = mabQ
aQb + λIJKQ

IQJξK . (4.1)

In the first term of eq.(4.1), we split the flavor index I in two sets I = (i, a),
a = 1, . . . , 5, i = 6, . . . , N . The fields ξK are singlets under SO(N) and
in general can be in some representation of the flavor group Hf ⊂ Gf left
unbroken by the Yukawa couplings λIJK . The ξK ’s are eventually identified
as the visible chiral fields, such as the top fields. We take λIJK � 1, so
that these couplings are marginally relevant, with no Landau poles, and can
be considered as a small perturbation in the whole UV range of validity of
the theory. We assume the presence of an external source of SUSY break-
ing, whose origin will not be specified, that produces soft terms for all the

59
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SM gauginos and sfermions. For simplicity, we neglect for the moment the
dynamics of the singlets ξK and the impact of the external source of SUSY
breaking in the composite sector. We take the quark mass matrix propor-
tional to the identity, mab = mQδab, to maximize the unbroken anomaly-free
global group. For λIJK = 0, this is equal to

Gf = SO(5)× SU(N − 5) . (4.2)

We take |mQ| = ε2Λ� Λ, where Λ is the dynamically generated scale of the
theory.

For N ≤ 3(N−2)/2, namely N ≥ 6, the theory flows to an IR-free theory
with superpotential [96,97]

Wmag = hqIM
IJqJ − µ2Maa + εIJKM

IJξK , (4.3)

where
εIJK = λIJKΛ, µ2 = −mQΛ = (εΛ)2. (4.4)

For simplicity, we identify the dynamically generated scales in the electric and
magnetic theories,1 whose precise relation is anyhow incalculable. The fields
qI are the dual magnetic quarks in the fundamental representation of the dual
SO(Nf − N + 4)m = SO(4)m magnetic gauge group, with coupling gm, and
M IJ = QIQJ are neutral mesons, normalized to have canonical dimension
one. The Kähler potential for the mesons M IJ and the dual quarks qI is
taken as follows:

K = Tr[M †M ] + q†Ie
VmagqI , (4.5)

where Vmag is the SO(4)m vector superfield.
The original Yukawa couplings λIJKQ

IQJξK in the electric theory flow
in the IR to a mixing mass term εIJKM

IJξK between elementary and com-
posite fields, the SUSY version of the fermion mixing terms appearing in
weakly coupled models with partial compositeness [28]. The quark mass
term mQQ

aQa, introduced to break the flavor group from SU(N) down to
SO(5)× SU(N − 5), is also responsible for a spontaneous breaking of SUSY
by the rank condition, as shown in [101]. Up to global SO(5) × SO(4)m
rotations, the non-SUSY, metastable, vacuum is at

〈qnm〉 =
µ√
h
δnm , (4.6)

1We refer to the UV and IR theories as electric and magnetic theories, respectively.
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with all other fields vanishing. For simplicity, in the following we take µ and
h to be real and positive. In eq.(4.6) we have decomposed the flavor index
a = (m, 5), m,n = 1, 2, 3, 4, and we have explicitly reported the gauge index
n as well. When λIJK = 0, the vacuum (4.6) spontaneously breaks

SO(4)m × SO(5)→ SO(4)D , (4.7)

where SO(4)D is the diagonal subgroup of SO(4)m × SO(4). The group
SU(N − 5) remains untouched, being qna singlet under it. In the global limit
gm → 0, this symmety breaking pattern results in 10 NGB’s:

Re (qmn − qnm) : along the broken SO(4)m × SO(4) directions , (4.8)√
2 Re qn5 : along the broken SO(5)/SO(4)D directions . (4.9)

For gm 6= 0, the would-be NGB’s (4.8) are eaten by the SO(4)m magnetic
gauge fields ρµ, that become massive, while the NGB’s (4.9) remain massless
and are identified with the 4 real components of the Higgs field.

The remaining spectrum of the magnetic theory around the vacuum (4.6)
is easily obtained by noticing that all fields, but the magnetic quarks qn5 and
the mesons M5n, do not feel at tree-level the SUSY breaking induced by the
F -term of M55:

FM55 = −µ2. (4.10)

The chiral multiplets (qmn +qnm)/
√

2 and Mmn combine and get a mass 2
√
hµ,

as well as the multiplets Mim and qmi that form multiplets with mass
√

2
√
hµ.

The chiral multiplets (qmn − qnm)/
√

2 combine with the SO(4)m vector multi-

plets to give vector multiplets with mass
√

2
h
gmµ. As we have just seen, the

NGB scalar components Re (qmn − qnm) are eaten by the gauge fields, while
Im (qmn − qnm) get a mass by the SO(4)m D-term potential. Similarly, the
fermions (ψqmn −ψqnm)/

√
2 become massive by mixing with the gauginos λmn.

The chiral multiplets Mij and Mi5 remain massless.
The scalar field M55 is massless at tree-level and its VEV is undetermined

(pseudo-modulus). This is stabilized at the origin by a one-loop induced
Coleman-Weinberg potential, as we will shortly see. Its fermion partner
is also massless, being the goldstino. Around M55 = 0, the fermions ψq5
and ψM5m mix and get a mass

√
2
√
hµ, the scalars M5m get the same mass.

Im qm5 get a mass 2
√
hµ, while Re qm5 remain massless, the latter being indeed

NGB’s. The fate of M55 is determined by noticing that the superpotential of
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the M55 −M5m − qm5 sector is

Wmag ⊃ −µ2M55 +
√

2hµqm5 M5m + h(qn5 )2M55 , (4.11)

that is a sum of O’Raifeartaigh models. The associated one-loop potential is
well-known (see e.g. appendices A.2 and A.3 of [101]). The pseudo-modulus
M55 is stabilized at zero, and gets a one-loop mass

m2
M55

=
h4µ2

π2
f(h) (4.12)

where f(h) =
[

(1+h)2

h
log 1+h

h
− (1−h)2

h
log 1−h

h
− 2
]
. The SM vector fields are

introduced by gauging a subgroup of the flavor symmetry group

Hf ⊇ SU(3)c × SU(2)0,L × U(1)0,Y (4.13)

that is left unbroken when we switch on the couplings εIJK . We embed SU(3)c
into SU(N − 5) and SU(2)0,L ×U(1)0,Y in SO(5)×U(1)X , where U(1)X is a
U(1) factor coming from SU(N − 5) needed to correctly reproduce the SM
fermion hypercharges. The details of the embedding are model-dependent
and will be considered in the next sections. We identify SU(2)0,L as the
subgroup of SO(4) ∼= SU(2)0,L × SU(2)0,R ⊂ SO(5). The hypercharge Y
is given by Y = T3R + X, where T3R and X are the generators of the σ3

direction U(1)0,R ⊂ SU(2)0,R and of U(1)X , respectively. Denoting by AaLµ
(a = 1, 2, 3), A3R

µ and Xµ the SU(2)0,L × U(1)0,R × U(1)X gauge fields and
by g0 (the same for SU(2)L and U(1)R, for simplicity) and gX their gauge
couplings, we have (see appendix C for our group-theoretical conventions)

AaLµ = W a
µ , A3R

µ = cXBµ , Xµ = sXBµ , (4.14)

where

cX =
gX√
g2

0 + g2
X

=
g′0
g0

, sX =
g0√

g2
0 + g2

X

. (4.15)

The SU(2)0,L×U(1)0,Y gauge fields W a
µ and Bµ introduced in this way are not

yet the actual SM gauge fields, because the flavor-color locking given by the
VEV eq.(4.6) generates a mixing between the SO(4)m ∼= SU(2)m,L×SU(2)m,R
magnetic gauge fields and the elementary gauge fields. This explains the
subscript 0 in SU(2)L,R and U(1)Y,R and in g and g′ in eq.(4.15). The combi-
nation of fields along the diagonal SU(2)L×U(1)Y ⊂ SO(4)D×U(1)X group
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is finally identified with the SM vector fields. The SM gauge couplings g and
g′ are given by

1

g2
=

1

g2
m

+
1

g2
0

,
1

g′2
=

1

g2
m

+
1

g′20
. (4.16)

This mixing between elementary and composite gauge fields is analogous
to the one advocated in bottom-up 4D constructions of composite Higgs
models. The situation is simpler for the color group, since the gauge fields
of SU(3)c are directly identified with the ordinary gluons of QCD; since the
group SU(N−5) in eq.(4.2) contains SU(3)×U(1), the minimal anomaly-free
choices are SO(6) and SU(4)2.

The set-up above is still unrealistic because of the presence of unwanted
exotic massless states (Mij and Mi5). There are various ways to address these
points. We do that in the following, where we consider in greater detail the
two models with SO(6) and SU(4), corresponding to Nf = 5 + 6 = 11 and
Nf = 5 + 4 = 9 flavors, respectively.

4.2 A Semi-Composite tR

With the general idea presented in the previous section 4.1, we build the
explicit UV completion mentioned in section 3.4, namely we specialize to the
case of a SUSY SO(11) gauge theory with Nf = N = 11 electric quarks. We
also have two additional singlet fields, Sij and Sia, transforming as (1,20⊕1)
and (5,6) of SO(5)×SU(6), respectively.3 We add to the superpotential (4.1)
the following terms:

1

2
m1SS

2
ij + λ1Q

iQjSij +
1

2
m2SS

2
ia + λ2Q

iQaSia . (4.17)

The mass terms in eq.(4.17) break the SU(6) global symmetry to SO(6). The
total global symmetry of the model is then

Gf = SO(5)× SO(6) . (4.18)

2The algebras of SO(6) and SU(4) are isomorphic. We embed the SU(3)c such that the
fundamental 3 is contained in the fundamental of SO(6) and SU(4), a 6 and a 4.

3See [102] for a similar set-up in the context of models with direct gaugino mediation
of SUSY breaking.
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For m1S,2S > Λ, the singlets Sij and Sia can be integrated out in the electric
theory. We get4

W eff
el = mabQ

aQb − λ2
1

2m1S

(QiQj)2 − λ2
2

2m2S

(QiQa)2 . (4.19)

In the magnetic dual superpotential, the quartic deformations give rise to
mass terms for the mesons Mij and Mi5:

Wmag ⊃ −
1

2
m1M

2
ij −

1

2
m2M

2
ia , (4.20)

where

mi =
Λ2λ2

i

miS

, i = 1, 2 . (4.21)

The mass deformations do not affect the vacuum (4.6), but obviously change
the mass spectrum given in section 4.1. The multiplets Mij and Mi5 are now
massive, with masses given by m1 and m2, respectively, and the multiplets
Mim and qmi form massive multiplets with squared masses (m2

2 + 16hµ2 ±
m2

√
m2

2 + 32hµ2)/8. We take the masses m1 and m2 as free parameters,
although phenomenological considerations favour the values of m2 for which
the mesons Mia, the ones that are going to mix with the elementary SM
fields, have a mass around µ. We summarize in table 4.1 the gauge and
flavor quantum numbers of the fields appearing in the electric and magnetic
theories. We embed SU(3)c into SO(6) and SU(2)0,L × U(1)0,Y in SO(5) ×
U(1)X , where U(1)X is a U(1) factor coming from SO(6) (see appendix C).
We consider in what follows the top quark only, since this is the relevant
field coupled to the EWSB sector. In terms of the UV theory, we might have
Yukawa couplings of the top with the electric quarks, or mixing terms with
the singlet fields. When the singlets are integrated out, we simply get a shift
in the mixing of the top with the meson fields. So, without loss of generality,
we can ignore mixing terms between the top and the singlets. The most
general mixing term is then

λL(ξL)iaQiQa + λR(ξR)iaQiQa . (4.22)

4Of course, we could have started directly by deforming the superpotential (4.1) with
the irrelevant operators quartic in the quark fields appearing in eq.(4.19). However we
want to emphasize how easy is to UV complete the above quartic terms. See [103] for
studies of ISS theories deformed by irrelevant operators quartic in the quark fields.
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SO(11)el SO(5) SO(6)
QN
i 11 1 6

QN
a 11 5 1

Sij 1 1 20⊕ 1
Sia 1 5 6

(a)

SO(4)m SO(5) SO(6)
qni 4 1 6
qna 4 5 1
Mij 1 1 20⊕ 1
Mia 1 5 6
Mab 1 14⊕ 1 1

(b)

Table 4.1: Quantum numbers under Gf and the strong gauge group of the
matter fields appearing in the composite sector of model I: (a) UV electric
and (b) IR magnetic theories.

We have written the mixing terms in a formal Gf invariant way in terms of
the fields ξL and ξR. These are spurion superfields, whose only dynamical
components are the SM doublet superfields QL = (tL, bL)t and the singlet tc,
whose θ-component is the conjugate of the right-handed top tR. In order to
write ξL and ξR in terms of qL and tc, we have to choose an embedding of
SU(3) ⊂ SO(6):

(ξL)ia =


b1 −ib1 t1 it1 0
−ib1 −b1 −it1 t1 0
b2 −ib2 t2 it2 0
−ib2 −b2 −it2 t2 0
b3 −ib3 t3 it3 0
−ib3 −b3 −it3 t3 0


2/3

, (ξR)ia =


0 0 0 0 (tc)1

0 0 0 0 i(tc)1

0 0 0 0 (tc)2

0 0 0 0 i(tc)2

0 0 0 0 (tc)3

0 0 0 0 i(tc)3


−2/3

,

(4.23)
in terms of SO(6) × SO(5) multiplets, where the superscript in the fields
denote the color SU(3)c index. The subscript ±2/3 denotes the U(1)X charge
of the fermion. The terms in eq.(4.22) explicitly break the global group Gf

of the composite sector and in the magnetic theory they flow to

εL(ξL)iaMia + εR(ξR)iaMia . (4.24)

These are the mixings for partial compositeness of the top, eq.(2.18). We add
soft terms in analogy to eq.(3.19): from a phenomenological point of view
the only needed soft terms are masses for elementary sparticles and gauginos,
because the composite states are all massive. We then add

Vsoft = m̃2
L|tL|

2 + m̃2
R|tR|

2 +
(1

2
m̃g,αλαλα + h.c.

)
, (4.25)
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where λα are the SM gauginos and α = 1, 2, 3 runs over the U(1)0,Y , SU(2)0,L

and SU(3)c groups. In order to simplify the expressions below, we take the
SM soft terms larger than µ. Due to the terms in eq.(4.24) and the interac-
tions with the SM gauginos, the SUSY breaking is transmitted to the compos-
ite sector as well. More in detail, the Dirac fermions

(
λmn, (ψqmn − ψqnm)/

√
2
)

mix with the SM gauginos: as a result the former get splitted into two Majo-

rana fermions with masses
√

2
h
gmµ±δm̃λ. Expanding for heavy SM gauginos,

we have

δm̃λ,α ∼
g2
αµ

2 2
h

2m̃g,α

. (4.26)

Similarly, the scalar mesons and magnetic quarks that mix with the stops
get soft terms of order

m̃2
s ∼ −|εL,R|2 , (4.27)

that tend to decrease their SUSY mass value. The spectrum of the fields
in the Mi5 and in the Mim-qmi sectors is affected by the terms in eq.(4.24),
while all the other sectors are unchanged. We see that a linear combination
of fermions given by tR and the appropriate components of ψMia

remains
massless. This field is identified with the actual SM right-handed top. A
similar argument applies to tL. At this stage, the “goldstino” ψM55 is still
massless. In the case in which we also consider soft terms in the electric
SO(N) theory, the mesons Mab get a non-vanishing VEV and a mass for ψM55

can be induced from higher dimensional operators in the Kähler potential.
Independently of this effect, a linear combination of ψM55 and the goldstino
associated to the external SUSY breaking is eaten by the gravitino, while
the orthogonal combination gets a mass at least of order of the gravitino
mass (see [104] for an analysis of goldstini in presence of multiple sectors of
SUSY breaking and specifically [105] for a set-up analogous to the one we are
advocating here). We do not further discuss the mechanisms through which
ψM55 can get a mass.

More generally SUSY breaking is mediated to both the elementary sector
and the composite one and without introducing further complications we
assume it is mediated by the same mechanism, although we do not specify
it: if the mediation scale M is lower than the Seiberg scale Λ the appropriate
description is in terms of magnetic operators, while if the mediation occurs
at higher scale we have to use electric operators. In both cases the RG
evolution of the SO(11)el SQCD is well captured by Seiberg duality only
if the SUSY breaking parameters are small compared to Λ: the numerical
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analysis we performed showed us that this is always the case. The condition
M < Λ, together with F < M2 where F is the non vanishing SUSY breaking
F term of the hidden sector results in unacceptably low soft masses because
Λ ' 10 TeV, as can be seen from the discussion above, and from the results
we illustrate in the following sections. Moreover we do not have a clear
description of such soft terms in terms of UV operators. Therefore we exclude
the case of a low scale mediation and we concentrate on the other: we add
to the Lagrangian eq.(4.25) the following potential in terms of electric scalar
fields

Vsoft,el = m̃2
1elQ

†aQa + m̃2
2elQ

†iQi = m̃2
1el(Q

†aQa + ωQ†iQi) , (4.28)

accompanied with SO(11)el gaugino soft Majorana masses; the last equality
defines ω = (m̃2el/m̃1el)

2. The deformation induced in the magnetic theory
is

Vsoft = m̃2
tL
|t̃L|2 + m̃2

tR
|t̃R|2 + (

1

2
m̃g,αλαλα + h.c.) + (4.29)

+m̃2
1|Mia|2 + m̃2

2|Mab|2 + m̃2
3|qi|2 − m̃2

4|qa|2 − m̃2
5|Mij|2 ,

In section 4.5 we discuss how to derive soft magnetic terms in eq.(4.29) from
eq.(4.28). The result is

m̃2
1 =

1

8
(3 + 2ω)m̃2, m̃2

2 =
1

8
(11− 6ω)m̃2, m̃2

3 =
5

16
(1− 2ω)m̃2,

−m̃2
4 = − 1

16
(11− 6ω)m̃2 − m̃2

5 = −5

8
(1− 2ω)m̃2

(4.30)

where m̃ = m̃1el. Similarly magnetic SO(4)m gauginos acquire a Majorana
mass of the form

1

2
mλλ

AλA + h.c. (4.31)

and in section 4.5 we derive mλ starting from a mass for SO(11)el gauginos,
even though we do not use this expression and we let mλ be a free parameter
because SO(11)el gaugino mass does not enter any other computation.

The condition ω < 1
2

ensures the positivity of all squared masses as defined
above. This means we have some tachyonic direction: qna , which are acquiring
a vev in any case and Mij which have a nonzero (and possibily “large”)
supersymmetric mass m1. Because of this soft terms the vacuum eq.(4.6)
gets modified to

〈qmn 〉 =
µ̃√
h
δmn , where µ̃ =

√
µ2 +

m̃2
4

2h
. (4.32)
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Finally in full analogy with eq.(3.17) and eq.(3.18) the matrix describing
nonlinearly the Goldstone bosons is extracted from

qnb = exp
(i√2

f
hâTâ +

i√
2f
πaTa

)
bc
q̃mc exp

( i√
2f
πaTa

)
mn
, (4.33)

where f = µ̃
√

2
h

and the broken generators T â are defined in appendix C.

The broken generators T a collect T aL,R. In the unitary gauge the πa are eaten
by the vector bosons; in the unitary gauge also for the EW breaking bosons
the U matrix becomes exactly of the same form as in eq.(3.18).

4.3 Landau Poles

Similarly to what happens in models with direct gauge mediation of SUSY
breaking, where the SM group is obtained by gauging a global subgroup of
the hidden sector, one should worry about the possible presence of Landau
poles in the SM couplings, the QCD coupling α3 in particular, due to the
proliferation of colored fields. Our model is no exception and Landau poles
develop for the SM gauge couplings. In order to simplify the RG evolution,
we conservatively take all the masses of the magnetic theory to be of order
µ, SM superpartners included, with the exception of the mesons Mij, whose
mass m1 is determined in terms of m1S and Λ. We run from mZ up to µ with
the SM fields, from µ up to Λ with the degrees of freedom of the magnetic
theory and above Λ with the degrees of freedom of the electric theory.

A one-loop computation shows that the SU(3)c, SU(2)0,L and U(1)0,Y

couplings develop Landau poles at the scales

ΛL
3 =m2S exp

( 2π

21α3(mZ)

)(mZ

µ

)− 1
3
(µ

Λ

) 2
7
( Λ

m2S

) 16
21
,

ΛL
2 =m2S exp

( 2π

17α2(mZ)

)(mZ

µ

)− 19
102
(µ

Λ

) 22
17
( Λ

m2S

) 11
17
,

ΛL
1 =m2S exp

( 2π

91α1(mZ)

)(mZ

µ

) 41
546
(µ

Λ

) 336
546
( Λ

m2S

) 215
273
.

(4.34)

We have taken λ1,2 ∼ 1 in the superpotential (4.17), so that m2S ∼ Λ/ε is the
highest scale in the electric theory, α1,2,3(mZ) are the U(1)Y×SU(2)L×SU(3)c
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SM couplings evaluated at the Z boson mass mZ . In deriving eq.(4.34) we
have matched the SU(2)×U(1) couplings at the scale µ, using eq.(4.16) with

αm(µ) =
2π

5log
(

Λ
µ

) . (4.35)

Notice that the scale of the poles does not depend on m1S, since it cancels out
in the contributions coming from Sij and Mij. Demanding for consistency
that ΛL

i > m2S constrains ε = µ
Λ

to be not too small. This is welcome from a
phenomenological point of view, since a too small ε leads to a parametrically
weakly coupled magnetic sector (see eq.(4.35)) and too light magnetic vector
fields. On the other hand, ε cannot be too large for the stability of the
vacuum, but values as high as 1/10 or so should be fine, given the estimate
eq.(4.46): we address the issue of the lifetime of the vacuum in section 4.4.
By taking natural choices for µ around the TeV scale, we see that all the
Landau poles occur above m2S, with SU(3)c being the first coupling that
blows up, entering the non-perturbative regime in the 102 − 103 TeV range.

The Yukawa couplings λ1,2 and λL,R in the superpotential eq.(4.17) and
eq.(4.22) might also develop Landau poles. A simple one-loop computation,
in the limit in which the SM gauge couplings are switched off, shows that
these poles appear at scales much higher than those defined in eq.(4.34). In
a large part of the parameter space the Yukawa’s actually flow to zero in the
UV. This is even more so, when the SM gauge couplings are switched on,
due to their growth in the UV.

4.4 Lifetime of the Metastable Vacuum

In presence of the meson mass terms eq.(4.20), in addition to the ISS vacuum
eq.(4.6), other non-SUSY vacua can appear [103]. They can be dangerous
if less energetic than the ISS vacuum, since the latter can decay through
tunneling too quickly to them. These vacua do not appear in our model, since
the superpotential does not include meson terms of the form M2

ab. Other non-
SUSY vacua, if present, can be found at qnm ∼ qni ∼ Mij ∼ Mnm ∼ Min ∼ µ,
qn5 = 0, Mn5 = 0, Mi5 = 0, while M55 is still a flat direction. They do not
lead to the desired pattern of symmetry breaking and they do not allow us
to embed the SM in the flavor group. All these vacua have however exactly
the same tree-level energy of the ISS vacuum and would be irrelevant for the
tunneling rate.



CHAPTER 4. A UV COMPLETE MODEL 70

Supersymmetric vacua5 are expected when the mesons get a large VEV,
in analogy with [101,103]. The scalar potential has a local maximum at the
origin in field space, with energy VMax = 5µ4, while at the local minimum
VMin = µ4. We look for SUSY vacua in the region of large meson values,
|Mij| � µ, |Mab| � µ. For simplicity, we take

〈Mab〉 = X δab , 〈Mij〉 = Y δij , Mia = 0 . (4.36)

For |X|, |Y | � µ, the magnetic quarks are all massive and can be integrated
out. Below this scale, we get a pure SUSY SO(N) Yang-Mills theory with
a set of neutral mesons M . The ISS superpotential admits N − 2 SUSY
vacua, their existence is guaranteed by an explicit computation of the Witten
index [106,107]. The same result for the index does not hold here because the
meson mass term modifies the behavior of the superpotential at large field
values, therefore we should recompute the index on our own. Nevertheless
we explicitly find, inspired by the original construction, SUSY vacua. The
magnetic superpotential, below the induced quark masses, is

W = 2Λ−
5
2 (detM)

1
2 − µ2Maa −

1

2
m1M

2
ij −

1

2
m2M

2
ia , (4.37)

where we neglect the elementary sector, that gives rise to subleading correc-
tions. The first term is non perturbatively generated by gaugino condensation
and its dependence on detM is obtained by scale matching. By imposing
the vanishing of the F -term conditions, we find SUSY vacua at

X =Λ
5
6µ−

1
3m

1
2
1 = ε−

1
3

√
Λm1 = ε−

5
6
√
µm1 ,

Y =Λ
5
12µ

5
6m
− 1

4
1 = ε

5
6 Λ
( Λ

m1

) 1
4

= ε−
5
12µ
( µ

m1

) 1
4
,

(4.38)

where
ε =

µ

Λ
(4.39)

is a parametrically small number. The vacua eq.(4.38) can also be found
directly in the electric theory. In the region where Sij is non-vanishing, all
the quarks Q are massive and the theory develops an Affleck-Dine-Seiberg
superpotential of the form [108]

Wnp = (N − 2−Nf )

(
Λ3(N−2)−Nf

detM

) 1
(N−2)−Nf

, (4.40)

5By supersymmetric vacua we mean those that are SUSY in the limit where we switch
off the external source of SUSY breaking.
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where now M = MIJ = QIQJ . It is straightforward to check that this term
induces in fact the SUSY vacua eq.(4.38). The vacuum eq.(4.38) lies in the
range of calculability of the magnetic theory if

µ� |X|, |Y | � Λ . (4.41)

The conditions eq.(4.41), together with the requirement that the mesons Mij

are not anomalously light, m1 ≥ µ, determine the allowed range for m1.
Parametrizing

m1 = Λεκ , (4.42)

we get
2

3
< κ ≤ 1 . (4.43)

We now want to estimate the lifetime of the metastable vacuum, namely
the decay rate per unit time and per unit volume to the true vacuum given
by eq.(4.38). It is given by

Γ

V T
∼ e−Sb (4.44)

where Sb is the bounce action, the euclidean action computed on the solution
of the e.o.m with proper boundary conditions. These boundary conditions
are such that there is one direction in field space interpolating among the
false vacuum far in the past and exactly reaching at some finite time the
“top of the hill”, the maximum of the potential between the two minima,
the metastable one and the truly stable one. Heuristically we can think to
this transition happening in a localized region of space, whereas far from
this “bubble” of true vacuum the field is still in the metastable vacuum.
If the energy difference between the two vacua is small compared to the
other energy scales the bubble is delimited by a “thin wall”, thin compared
to its radius [109]. In the present case the true vacuum has exactly zero
energy, being SUSY, and therefore the difference is exactly the energy of the
metastable minimum eq.(4.6): the thin wall approximation is not valid. In
fact

VMax ∼ VMin ∼ VMax − VMin ∼ µ4 , VSUSY = 0 . (4.45)

As a very crude estimate of the lifetime of the metastable vacuum, we
can parametrize the potential using the triangular approximation [110], ne-
glecting the direction in field space along the Y direction, which is always
closer to the ISS vacuum, given the bound (4.43).
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The bounce action is parametrically given by [101,109,110]

Sb ∼
|X|4

VMax

∼ ε−
16
3

+2κ & ε−
10
3 . (4.46)

We conclude that for small ε the metastable vacuum is parametrically long-
lived and a mild hierarchy between µ and Λ should be enough to get a vacuum
with a lifetime longer than the age of the universe.

4.5 RG Flow of Soft Terms

In this section we explain, following [111, 112], how to understand the fate
of UV soft terms in a SUSY gauge theory at strong coupling6: this is an
essential ingredient for the model presented in chapter 5. For concreteness
we focus here on SO(N) gauge theories with N−2 < Nf ≤ 3/2(N−2) flavors
in the fundamental, admitting a Seiberg dual IR free description. This is the
case of interest for us, but what follows has clearly a wider applicability.
More specifically, we want to determine the form of the IR soft terms in
the magnetic theory in terms of the electric ones. We first consider the
case with no superpotential: Wel = 0. Soft terms can be seen as the θ-
dependent terms of spurion superfields whose lowest components are the
wave-function renormalization of the Kähler potential and the (holomorphic)
gauge coupling constant. The Lagrangian renormalized at the scale E is

Lel =

∫
d4θ

Nf∑
I=1

ZI(E)Q†Ie
VelQI +

(∫
d2θS(E)Wα

elWel,α + h.c.
)
, (4.47)

where

ZI(E) =Z0
I (E)

(
1− θ2BI(E)− θ̄2B†I(E)− θ2θ̄2(m̃2

I(E)− |BI(E)|2)
)
,

S(E) =
1

g2(E)
− iΘ

8π2
+ θ2 m̃λ(E)

g2(E)
(4.48)

6An alternative derivation of the results of [111, 112] has been formulated [113]. We
follow the original papers because we have found easier in this way to estimate the correc-
tions coming from superpotential effects, although a reformulation in terms of the flow of
conserved currents and of the would-be conserved R-symmetry should be possible.
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are the spurion superfields that encode the B-terms BI , non-holomorphic
mass terms m̃2

I and the gaugino mass m̃λ. When there is no superpoten-
tial, the BI terms are irrelevant and can be set to zero. The Lagrangian in
eq.(4.47) is invariant under a U(1)Nf symmetry under which

QI → eAIQI , ZI → e−AI−A
†
IZI , S → S −

Nf∑
I=1

tI
8π2

AI , (4.49)

where AI are constant chiral superfields and tI are the Dynkin indices of the
representations of the fields QI , tI = 1 for SO(N) fundamentals. In terms of
these spurions, one can construct the following RG invariant quantities:

ΛS = Ee−
8π2S(E)

b , ẐI = ZI(E)e−
∫R(E) γI (E)

β(R)
dR . (4.50)

In eq.(4.50), b = 3(N − 2)−Nf is the coefficient of the one-loop β-function
β(R), γI are the anomalous dimensions of the fields QI , and R(E) is defined
as S(E) in eq.(4.48), but in terms of the physical, rather than holomorphic,
gauge coupling constant. In terms of ΛS and ẐI , one can further construct
a U(1)Nf and RG invariant superfield:

I = Λ†S

( Nf∏
I=1

Ẑ
2tI
b

I

)
ΛS . (4.51)

In the far IR, the dynamics of the system is best described by the magnetic
theory, whose degrees of freedom are the mesons MIJ = QIQJ , the dual
magnetic quarks qI and the SO(Nf −N + 4) magnetic vector fields Vm. We

can use the RG invariants I and ẐI and dimensional analysis to write the
lowest dimensional operators in the low-energy Lagrangian:

Lmag =

∫
d4θ
(
cMIJ

M †
IJ ẐIẐJMIJ

I
+ cqIq

†
Ie
Vmag Ẑ−1

I (
∏
J

Ẑ
tJ
b
J )qI

)
+

∫
d2θ
(
Sm(E)Wα

mWm,α +
qIMIJqJ

ΛS

)
+ h.c. ,

(4.52)

where

Sm(E) =
1

g2
m(E)

− iΘm

8π2
+ θ2 m̃m,λ(E)

g2
m(E)

(4.53)

is the magnetic version of the spurion S defined in eq.(4.48). As shown
in [111], these terms are the leading sources of soft terms provided that
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m̃I � Λ, condition that will always be assumed. The last term in the
second row in eq.(4.52) is the induced superpotential in the magnetic theory.
Demanding the invariance of W fixes the U(1)Nf charges of the dual quarks qI
to be QI(qJ) = 1/b− δIJ . These, in turn, fix the Ẑ-dependence of the Kähler
potential term of the magnetic quarks. The coefficients cMIJ

and cqI are real
superfield spurions, the IR analogues of the wave function renormalization
constants ZI(E). A relation between IR and UV soft terms is achieved by
noticing that in the far UV (IR) the electric (magnetic) theory is free. This
implies that for sufficiently high E, we can identify ẐI with ZI , neglecting
quantum corrections, and identify m2

I(E) ≡ m̃2
I with the physical UV electric

soft terms. Similarly, in the far IR, we can neglect the θ2 and θ4 corrections
induced by quantum corrections to cMIJ

and cqI . We can then compute the IR
soft terms by working out the θ2 and θ4 terms in the Lagrangian (4.52). The
physical non-holomorphic soft masses for the mesons and magnetic quarks
are

m̃2
MIJ

= m̃2
I + m̃2

J −
2

b

Nf∑
K=1

m̃2
K , m̃2

qI
= −m̃2

I +
1

b

Nf∑
K=1

m̃2
K . (4.54)

As can be argued from eq.(4.54), positive definite UV soft terms always
flow in the IR to tachyonic soft terms for some mesons and/or magnetic
quarks [114]. Indeed, the following sum rule holds:

Nf∑
I,J=1

m̃2
MIJ

+ 2Nf

Nf∑
I=1

m̃2
qI

= 0 . (4.55)

In our derivation we have tacitly taken the dynamically generated scale in the
magnetic theory to coincide with the electric one. This implies that the same
ΛS defined in eq.(4.50) should be expressed in magnetic variables, namely

ΛS = Ee−
8π2

b
S(E) = Ee−

8π2

bm
Sm(E) , (4.56)

where bm = 3(Nf −N + 2)−Nf . Identifying the θ2 components of eq.(4.56),
we get

lim
E→0

m̃m,λ(E)

bmg2
m(E)

= lim
E→∞

m̃λ(E)

bg2(E)
. (4.57)

Notice that the θ2 term of ΛS introduces B-terms coming from both the D-
and F -components of the magnetic Lagrangian Lmag that precisely cancel



CHAPTER 4. A UV COMPLETE MODEL 75

each other. This is evident by noticing that the holomorphic rescaling

MIJ → ΛSMIJ (4.58)

removes ΛS from the leading order Lagrangian (4.52).
Let us now apply these considerations to our specific set-up. We assume

that the electric soft terms do not break the Gf symmetry, so we effectively
have two U(1) symmetries, respectively rotating the quarks Qa and Qi, and
two different soft terms, m̃2

1Q
†aQa + m̃2

2Q
†iQi. We therefore use eq.(4.54)

and we obtain the result quoted in eq.(4.30). Similarly in section 5.1, where
we consider a model with Gf = SO(5) × SU(4) and fully composite right
top with b = 12, with this formalism we immediately obtain the soft terms
reported in eq.(5.7).

Let us now see the effect of having Wel 6= 0. For concreteness, consider
the following two terms,

Wel = mQaQa +
1

2
λQiQjSij . (4.59)

We promote m and λ to chiral superfield spurions in the spirit of considering
an external unspecified SUSY breaking mechanism:

m→ m(1 + θ2Bm) , λ→ λ(1 + θ2Aλ) . (4.60)

We can still set BI = 0 in eq.(4.48), their effect being a redefinition of
the Bm and Aλ terms in eq.(4.60). We can also reabsorb in Bm and Aλ
the effect of the field redefinition (4.58) that would induce additional B-like
terms proportional to the gaugino soft terms. The above U(1)2 symmetry is
unbroken provided m and λ transform as follows:

m→ e−2A1m, λ→ e−2A2λ , (4.61)

with Sij invariant. Two further U(1)2 and RG-invariants can be constructed
starting from m and λ:

Im = m†Ẑ−2
1 m, Iλ = λ†Ẑ−2

2 λ . (4.62)

The leading order Kähler potential for the mesons and the magnetic quarks
is still of the form (4.52), but now cMIJ

and cqI are unknown functions of
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Iλ/(16π2) and of Im/I.7 These corrections are sub-leading provided that
m� Λ and the effective coupling λ/Z2, at some UV scale E where the the-
ory is perturbative, is smaller than 4π. Both conditions can be satisfied in
our models. In first approximation we can then neglect the superpotential
corrections to the RG flow of the soft terms. Of course, even when tak-
ing Wel = 0, the relations (4.54) and (4.57) are only valid in the strict UV
and IR limits and with vanishing mixing and SM gauge couplings. We have
not estimated the corrections coming from relaxing the above approxima-
tions, assuming they are sub-leading in eqs.(4.54) and (4.57). It would be
interesting to perform a more careful analysis to check the validity of this
assumption.

There is an important consequence in having a non-vanishing Wel. In the
IR, the first term in eq.(4.59) becomes linear in the mesons Maa and the Bm

term induces a tadpole for these fields. This is nothing else that the defor-
mation discussed in the next section, 4.6. The tadpole changes the vacuum
structure of the model, as we will fully show in the next section. Extremiz-
ing the whole scalar potential, soft terms included, we will get eq.(4.67) and
eq.(4.69), namely

〈qmn 〉 =
µ̃√
h
δmn , 〈M55〉 = X5 , 〈Mmn〉 = Xδmn . (4.63)

The presence of soft terms in the composite sector affects also the analysis
of the vacuum decay pursued in section 4.4. We have checked the bound on
the soft terms in the composite sector (eq.(4.29), with the addition of the
B-terms in the composite sector) above which L���SUSY can no longer be taken
as a perturbation of the SUSY scalar potential in the region of large meson
VEV’s, eq.(4.36). In particular, we have verified under what conditions the
vacuum displacements from the SUSY values δX/X and δY/Y , where X and
Y are defined in eq.(4.36), are much smaller than one. Comparable bounds
arise from the soft terms m̃2, m̃m,λ and Bµ2 . We get

|m̃2| ∼ |m̃m,λ| ∼ |Bµ2| � ε
4
3
−κ

2 |µ| , (4.64)

where κ is defined in eq.(4.42). Given the bound (4.43) on the allowed values
of κ, we see that the soft terms are constrained to be parametrically smaller

7These functions are not completely unrelated, since the combination of Kähler terms
associated to conserved global currents should precisely match in the UV and IR theories
[113]. We have not studied this flow in detail, since we anyway neglect the effects of such
corrections.
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than µ. We have numerically explored also the region of soft terms larger than
eq.(4.64), resulting in shifts δX & X, δY & Y . Although it is not possible to
draw a definite conclusion from this numerical analysis, we believe that the
bound (4.64) is quite conservative, since the would-be SUSY vacuum energy
becomes greater than the one of the ISS-like vacuum (4.32), when the soft
terms become comparable to (or larger than) µ. This is intuitively clear by
noticing that the dominant source of energy coming from L���SUSY is the soft
term m̃2

2X
2 (being |X| � |Y |) and this is positive definite. If this is the case,

the ISS-like vacuum would become absolutely stable, provided that other
non-SUSY vacua with lower energy do not appear elsewhere in field space.

4.6 Deformation

In this section we study soft deformations including, besides scalar and gaug-
ino masses as in eq.(4.29), A and B terms for the couplings in the superpo-
tential eq.(4.3). We have just discussed the inclusion of SUSY breaking terms
in the theory, in the previous section 4.5: the techniques employed to follow
the soft masses [111, 112] cannot be used in the case of A, B terms because
the former can be computed only in absence of any superpotential and thus
they are expected to be valid up to perturbative corrections in couplings,
while the latter are identically zero if the superpotential vanishes.

The most general soft terms may lead to unwanted tachyonic directions
and we restrict to safe cases where they only modify the spectrum: this
happens if they are not too large with respect to the holomorphic and soft
masses. As we already argued the presence of B terms for the electric quarks
induces a term of the form

Lsoft ⊇ −µ2Bµ2TrM (4.65)

which introduces a new qualitative feature, even for arbitrary small Bµ2 . In
fact the scalar potential now includes

V ⊇ |2hMnnq
n
m|

2 + |hqnmqnm − µ2|2 +(µ2Bµ2Maa+h.c.)+ m̃2
2|Mnn|2− m̃2

4|qnm|
2 .

(4.66)
The VEV of the magnetic quarks, eq.(4.32), becomes

〈qmn 〉 =
µ̃√
h
δmn , where µ̃ '

√
µ2 +

m̃2
4

2h
−

hµ4(Bµ2)
2√

µ2 +
m̃2

4

2h
(4hµ2 + 2m̃2

4 + m̃2
2)

2

(4.67)
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expanding for small Bµ2 : the true value for µ̃ is a solution of the equation
cubic in µ̃2:

[µ̃2 − (µ2 +
m̃2

4

2h
)](m̃2

2 + 4hµ̃2)
2

+ 2hµ4B2
µ2 = 0 . (4.68)

At the same time magnetic mesons also acquire a VEV

〈M55〉 = X5 , 〈Mmn〉 = Xδmn where

 X5 = −µ2Bµ2

m̃2
2

X = − µ2Bµ2

4hµ̃2+m̃2
2

. (4.69)

Contrary to the previous case the mesons Mab have a nonzero VEV. Notice
that the symmetry breaking is still of the form eq.(4.7), SO(4)m × SO(5)→
SO(4)D. The spectrum of the theory gets modified but the only qualitative
difference is about the Goldstone bosons: the four uneaten ones, identified
with the Higgs, are now contained in the massless field combination

cosα Re qn5 + sinα Re M5n , where sinα =
2(X −X5)

f
. (4.70)

Their kinetic term comes from |Dµqa|2 and |DµMab|2; at the non linear level
they are described by a σ-model through a matrix U as in eq.(3.18) with a
new decay constant given by

f =

√
2

h

(
µ̃2 + 2h(X −X5)2) . (4.71)

In the limit of vanishing B terms we have X = X5 = 0 and cosα = 1.
For numerical analysis we work in the regime of small Bµ2 , in particular
we neglect its effects on the Higgs mass: this is consistent as long as the
suppression between Bµ2 and other masses, both holomorphic and soft, is at
least of the order of one-loop effects.

4.7 Quark Masses

The plain generalization of partial compositeness in our SUSY setup to all
quarks and leptons does not work: it requires the presence of a large number
of (super)partners, leading to tremendously large flavor symmetry of the
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composite sector and aggravating the problem of SM Landau poles. Therefore
we abandon it for all the fermions but the top.

To induce all the SM Yukawas we need a further explicit breaking of the
SO(5) global symmetry, proportional to two matrices λABU and λABD where
A,B = 1, 2, 3 are family indices. The extension to leptons through another
pair of matrices is straightforward. Deformations in the electric superpoten-
tial8

Wel ⊇
λABU
ΛL

(
ξiaL,U

)A(
ξibU
)B
QaQb +

λABD
ΛL

(
ξiaL,D

)A(
ξibD
)B
QaQb (4.72)

generate Yukawa terms if the dual mesons Mab ∼ QaQb
Λ

get a vev, eq.(4.69).
ξL,U and ξU are the spurionic embeddings of up type quarks in a fundamental
of SO(5), as in eq.(3.13). ξL,D and ξD are the spurions for down type quarks
and can be defined in analogy to the up case but with a different X charge
assignment, X = −1/3. The most general low-energy Lagrangian will contain

L ⊇ q̄ALεu
B
RH

c + q̄ALλ
AB
u uBRH

c + q̄L
AλABd dBRH + ...+ h.c. (4.73)

where9

λu,d = λ†U,D
Λ

ΛL

sinα (4.74)

and the dots stand for higher dimensional operators: eq.(4.73) arises from
the expansion in powers of f−1 of Mab = Uca〈Mcd〉Udb once we make explicit
the Higgs dependence through the matrix U defined in eq.(3.18). H is the
Higgs doublet

H =
(
H(+), H(0)

)t
=

1√
2

(
ih1 + h2,−ih3 + h4

)t
. (4.75)

Without loss of generality we can go to the top basis in which ε ∼ εALε
∗B
R

f2
is

different from zero only for A = B = 3: this is the term generated by the
mixings in eq.(4.24). The second and the third terms in eq.(4.73) are the
new operators responsible for the other quark masses. They have similarities
with technicolor theories, where quark bilinears are coupled to an operator H

8The simplest way to induce these operators, as well as the the ones in eq.(4.19), is
through the exchange of heavy chiral superfields, schematically W = λABξAΦξB+QΦQ+
ΛL

2 Φ2 as already explained in the main text.
9The dagger is only for notational convenience.
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arising from a strongly interacting theory and responsible for EW breaking.
The main differences are first that in our case the Higgs is protected by a
shift symmetry and second that this coupling is not the dominant source for
the top mass.

To estimate the size of these masses we restrict for a moment on a single
generation:

L ∼ λD sinα
Λ

ΛL

v b̄RbL + h.c. (4.76)

where v = 246 GeV is the Higgs VEV and Λ is the crossover scale dynami-
cally generated. If ΛL ∼ 10Λ the correct value for the bottom mass can be
reached with λD = O(1) and sinα ∼ 0.1. As discussed before a natural value
for Λ is around 10 TeV while ΛL can be chosen to be the scale of Landau
poles for SU(3)c, in the region 102 - 103 TeV. Other quarks require smaller
couplings: we do not explain neither the hierarchy among SM masses nor
the hierarchical structure of the CKM matrix, we assume them and we only
distinguish between the top, partially composite, and other quarks, elemen-
tary. This different origin of the masses results in the splitting between the
top and other quarks, making them naturally live at two different scales.

Finally we define Yd = λd and Yu = λu + ε, the down- and up-type quark
Yukawa matrices; they can be diagonalized with

Yu → Y diag
u = V †uYuUu , Yd → Y diag

d = V †d YdUd . (4.77)

If we perform the transformations Vd, Uu and Ud we go to the basis in which
Yd is diagonal, while Yu → V †d VuY

diag
u and we can define the CKM matrix

VCKM = V †uVd. Thus

λu → V †d λuUu = V †CKMY
diag
u − V †d εUu . (4.78)

Since the matrix V †d εUu has arbitrary entries the second term signals a de-
parture from minimal flavor violation, as it is depicted in [115]. In the next
section we elaborate on it and on its consequences.

4.8 Flavor Analysis of Dimension Five Oper-

ators

A number of processes involving transitions in flavor space, ∆F = 0, 1, 2,
results in flavor and CP observables and they very often receive sizeable
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contributions from the presence of new physics, which in a broad class of
CHM are mainly induced by the mixing of quarks with their partners. Since
for the lightest generations the mixings are weaker generically we have a
protection mechanism, known as RS-GIM [116] (see also [117]).

Despite the fact that the mixings are related to SM Yukawas, the re-
sulting suppression might be not enough for a generic composite sector and
additional flavor symmetries are frequently postulated: a recent review is
provided in [118]. If light quarks are not partially composite, that is there
are no mixings with bound states, these contributions are absent: this is the
case for the interactions introduced in subsection 4.7.

On the other hand our model exhibits the same tensions of the MSSM,
due to the presence of sparticles around the TeV scale: squark mass matrices
cannot be completely anarchic. Solutions to regulate the contributions to
flavor processes are either to assume a certain level of degeneracy or alignment
among squarks masses or to rely on some hierarchy between the first two
generations and the third one, without threatening the naturalness, ending
up with a scenario close to effective SUSY, depicted for instance in [119]
where a discussion on flavor processes is also present. Correlations among
new physics contributions in different processes could help in the future to
distinguish among these possibilities [120]. We derive our results with aligned
squarks masses10 and we allow for small misalignment treated in the mass
insertion approximation.

We do not perform a full analysis of all existent bounds; we instead con-
centrate in what follows on the effects of the physics leading to the superpo-
tential in eq.(4.72): at the scale ΛL other operators are plausibly generated.
Under the spurionic flavor group U(3)q×U(3)u×U(3)d we assign the quantum
numbers:

qL ∼ (3, 1, 1), ucR ∼ (1, 3̄, 1), dcR ∼ (1, 1, 3̄), λu ∼ (3, 3̄, 1), λd ∼ (3, 1, 3̄) .
(4.79)

Compatibly with these charges, with gauge invariance and with the holomor-
phy of the superpotential we can write the following dimension five opera-

10Alignement is nicely realized in a variety of SUSY breaking mediation schemes: for
instance in gauge mediation A-terms vanishes at the mediation scale.
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tors11,12

W ⊇ a1

ΛL

(ucRλUqL) (dcRλDqL) +
a2

ΛL

(
ucRλU t

ÂqL

)(
dcRλDt

ÂqL

)
= (4.80)

=
Y ABCD

ΛL

[
a1

(
ucR,AqL,B

) (
dcR,CqL,D

)
+ a2

(
ucR,At

ÂqL,B

)(
dcR,Ct

ÂqL,D

)]
where Y ABCD = λABU λCDD . Dimension five operators in the MSSM are dis-
cussed in [121–123]: they result in, among other terms, contact interactions
between two quarks and two squarks. We assign the couplings λu,d to the
vertices quark-squark-higgsino, neglecting deviations for tops, stops and left
sbottoms. With higgsino exchange we draw one-loop diagrams contribut-
ing to four fermions interactions, experimentally constrained by ∆F = 2
transitions in mesons. The resulting operator is

(d̄R,CkdL,Dl)(d̄L,EidR,Fj) · (4.81)

· λ
EA
u λBFd

(4π)2m̃ΛL

{
δijδkl

[
Y ABCD(a1 −

a2

6
)− Y ADCB a2

2

]
−

 B ↔ D
j ↔ l


}
,

where m̃ is a common soft mass for the squarks and the higgsino in the loop.
For the general case of different masses the loop integral results in the follow-
ing function of squarks and higgsino masses, m̃Q, m̃u and m̃h respectively:

I(m̃h, m̃Q, m̃u) = −m̃h

m̃2
hm̃

2
Q log

m̃2
h

m̃2
Q

+ m̃2
Qm̃

2
u log

m̃2
Q

m̃2
u

+ m̃2
um̃

2
h log m̃2

u

m̃2
h

(m̃2
h − m̃2

Q)(m̃2
Q − m̃2

u)(m̃
2
u − m̃2

h)
(4.82)

such that

I(m̃, m̃, m̃) =
1

2m̃
, (4.83)

altough we use eq.(4.81) and we do not need this exact expression. For
operators of the form

c

Λ2
F

(d̄RdL)(d̄LdR) (4.84)

the most stringent bounds come from kaons (the strongest is on the CP
violating part). The Wilson coefficient computed from eq.(4.81) identically

11At high energies the flavor spurions are λU,D and not λu,d, the difference being a factor
ΛL

Λ sinα ∼ 100.
12tÂ are the SU(3)c generators such that tÂijt

Â
kl = 1

2 (δilδjk − 1
3δijδkl).
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vanishes, even in the non MFV limit of eq.(4.78). Non aligned squark masses
at ε = 0 results, in the mass insertion approximation, in (the hadronic matrix
element with j ↔ l is less significant by a factor of 3 [124,125])

c

Λ2
F

' 1

(4π)2m̃ΛL

A2λ5

(
ΛL

Λ sinα

)4

ydysy
2
t δ

⇒

{
ΛF = 1 TeV

c ' 10−8δ
(

1TeV
m̃

)(
100TeV

ΛL

)
(4.85)

where for concreteness we fix a1 = a2 = 1; A and λ are the parameters ap-
pearing in the Wolfenstein parametrization of the CKM matrix and δ mea-
sures the relevant misalignement of squarks: it is the mixing of the first two

families left handed squarks normalized with a common mass m̃2, δ =
(m̃2

Q)
1,2

m̃2 .
From [126] we easily read:

Re c < 6.9× 10−9 , Im c < 2.6× 10−11 if ΛF = 1 TeV . (4.86)

Bounds from box diagrams for different processes, with squarks and gluinos
at 1 TeV, are stronger, they set for δ an upper bound around 10−2, see [127]
and references therein13, resulting in c ' 10−10, below the bound eq.(4.86)
(the bound on the CP violating effect computed here is not fully satisfied,
it needs a1 ' a2 = O(10−1) or so). The numerical value of c is of the same
order also with general ε.

Similarly the up-type quarks are involved in D mesons oscillations: in
this case the calculation is performed in the up-type mass basis, that is

λu = Y diag
u − V †u εUu , λd = VCKMY

diag
d . (4.87)

The relevant operator has the same form as in eq.(4.81) with the exchange
u ↔ d. In this case the coefficient is identically zero only if ε = 0, and for

ε = O(1) it is controlled by
(

ΛL
Λ sinα

)2
y2
bAλ

2; its value can be recast as

ΛF = 1 TeV, c ' 10−10

(
1 TeV

m̃

)(
100 TeV

ΛL

)
(4.88)

13Notice that in box diagrams down squarks run into the loop while loops with vertices
from eq.(4.80) are sensitive to up squark mass insertions, constrained by box diagrams for
D − D̄ oscillation.
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with a1 = a2 = 1, below the experimental constraints, c < 10−8 [126]. Small
squarks mass insertions do not change this numerical value14.

Hence we can infer that the inclusion of eq.(4.80) does not reintroduce
violations and does not hack the solution settled to avoid flavor problems.

4.9 Numerical Analysis

We show now the numerical results from an extensive scan in parameter
space in the determination of the mass spectrum of the model, particularly
the Higgs mass. We fix εR by requiring the correct top mass Mtop(1 TeV) '
150 GeV and then scan randomly for the other parameters searching for
points with ξ ' 0.1. For any such point we then extract the Higgs mass from
the exact potential and compute the full spectrum.

We find that the Higgs mass is distributed in the range 70 GeV .MH .
160 GeV, peaking between 100 − 140 GeV. The measured value MH '
126 GeV is therefore a typical value for this model. For each point of the
scan we obtain the FT computing numerically the logarithmic derivative of
the logarithm of the Higgs mass with respect to all the parameters of the
model, and taking the maximum value [19]. The FT ranges between ∼ 10
and ∼ 300, the typical value being around 50, with no evident correlation
with the value of the Higgs mass.

Let us now discuss some properties of the spectrum in the gauge sector
and in the matter sector.

Gauge Sector

The mass of the spin-1 resonances is given by mρ = gmf , up to corrections of
order O(gSM/gm) due to mixing with the elementary SU(2)L ×U(1)Y gauge
bosons. Considerations of metastability and perturbativity fix gm(f) ' 2.5,
which means mρ ' 1950 GeV for ξ = 0.1. Such values are still above
the experimental limits from direct searches at the LHC [57, 130], [59] for
limits not from experimental collaborations, but are in tensions with indirect
bounds from the S parameter.

The lightest uncolored scalar resonance has a mass bounded from above
by the same value as the vector resonance. It is usually the complex neutral

14Bounds on down-type squark mass mixings are reported in [128,129].
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singlet M55 with a mass ∼ 1 − 1.4 TeV. With less frequency it is the Im qn5
or the lightest eigenstate of the symmetric part of qnm.

Among the spin-1/2 states, the lightest ones in our scan are usually the
winos (200−1200 GeV), the doublets h̃u,d arising from qn5 and M5n (around 1
TeV), or the fields in the (1,3) of SU(2)L×SU(2)R coming from the magnetic
gauginos ρ and the fermions in the antisymmetric part of qnm (in particular,
the ones ρ̃±R with Y = ±1, 600 − 1300 GeV, which do not mix with the
elementary bino and the ones ρ̃3

R which do mix, 200− 1200 GeV).
The goldstino, contained in the superfield M55, combines with the gold-

stino coming from the external SUSY breaking: a combination of the two
will be eaten by the gravitino and the orthogonal will stay in the spectrum as
a massive particle. The exact value for their masses depends on the F terms
and we can have different mixed situations in collider experiments, leading to
a cascades of decays from neutralino to pseudogoldstino in turn decaying to
the true goldstino, resulting in multiphoton events (and missing transverse
energy) [131].

Matter Sector

As in some non-SUSY CHM, the lightest colored fermion resonance is the
exotic doublet with Y = 7/6: the singlet with Y = 2/3 coming from a
mixture of the elementary tR and Mi5 is heavier, typically ∼ 1 TeV, while
the mass of the lightest fermion ranges up to 900 GeV.

In the case of colored scalars, the lightest one belongs almost always to
the fields which mix with the elementary t̃L and t̃R, respectively doublets
with Y = 7/6 and singlets with Y = 2/3. Actually the whole bidoublet (a
doublet with Y = 7/6 and a doublet with Y = 1/6) is almost degenerate in
mass, the mass difference between the two doublets being . 100 GeV. The
mass of the lightest scalar ranges from 600 GeV to 1 TeV. See fig. 4.1 for a
scatter plot.

The gluino has a mass M3 which does not enter the Higgs effective poten-
tial at one-loop, therefore it can be heavier than the current bounds without
affecting the FT of the model: contrary to what happens in the MSSM the
EW scale is only logarithmically sensitive to stops masses [2]. It is also
worth mentioning the existence of the chiral superfield Mij with supersym-
metric mass m1, singlet under the electroweak group and in the symmetric
components of the (3 + 3̄) × (3 + 3̄) representation of SU(3)c. Since it does
not enter the Higgs potential at one-loop, its holomorphic mass m1 is free in
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Figure 4.1: Masses of the lightest colored fermions and scalar resonances.
In shaded green we superimposed the exclusions discussed in section 4.10.
Colors represents Higgs mass as indicated aside.

our setup and for consistency we take it m1 < Λ ∼ 10 TeV. In the following
we will assume that it is heavy enough and neglect its phenomenology.

4.10 Detection Bounds

Given the features outlined in the previous section direct searches should
concentrate on colored states, in particular fermions and scalars with exotic
electric charge 5/3. First we notice that there is a consistent R parity charges
assignement. We have defined the gauge sector as the one which contributes
to the one-loop Higgs potential via the SM electroweak gauge couplings, while
the matter sector as the one which contributes through the mixings ε. This
classification reflects also the R parity assignment for the superfields: it is
the same as the one of the corresponding SM superfield with which the field
mixes.

This implies, as usual, that scalar colored partners and EW fermion part-
ners are pair produced and that the lightest among them is stable. Fermionic
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W,B,G ρm qna Mab qL tR Mia qni Mij

RP + + + + − − − − +

Table 4.2: RP assignment to the lowest component of the superfields.

top partners share the same R parity as elementary fields, because they mix
with them; since they are a typical signature of CHM models [52] dedicated
searches exist: a bound on their mass from events with a pair of same sign
leptons has been put at 800 GeV by CMS [13]. For scalar particles there
are not such searches but we can reinterpret the results for sbottoms pair
produced and decaying into tops and charginos: events with two b-jets and
isolated same sign leptons are considered by CMS in [132] and a bound is
set at 450 GeV, well below the values found in the numerical scan, although
the analysis is not based on the full dataset available but only on a portion
corresponding to an integrated luminosity of 10.5 fb−1.

In the model presented the scalar with Q = 5/3 is, up to EW effects,
degenerate with a full bidoublet of SO(4), namely with other scalars with 1/3
and 2/3 electric charge. EW effects are Higgs VEV insertions, affecting the
masses of these particles and removing this degeneracy inducing splitting of
order 100 GeV. Thus we can convey as indirect bounds limits on the masses of
the other components of the bidoublet: in particular the scalar with Q = 2/3
would behave similarly to a stop with decoupled gluinos. Bounds on stops
decaying into top and neutralino or bottom and chargino in events with one
isolated lepton are derived by CMS from the full 19.5 fb−1 dataset and stops
are excluded with a mass approximatively below 650 GeV [133].

Also CMS collaboration provides a stronger bound, of 750 GeV [134], on
pair produced stops decaying into tops and neutralino using razor variables.

Finally we stress that the simultaneous presence of fermions and scalars
in the same mass range can strengthen the respective exclusion limits. Also
in our setup multiple scalar stop partners appear and each of these can be
produced and decay at the LHC thus heightening the number of expected
events and consequently the exclusion bounds: this effect can be simply
estimated as follow. We denote with σ(M) the pair production cross section
of one scalar top partner with mass M and with Mexcl,n the excluded mass
in case of n identical scalars; if we assume a BR = 1 in top and chargino we
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Figure 4.2: Pair production cross sections at LHC through QCD interactions.
Dashed lines are the LO values, computed with MADGRAPH 5 [135], using
CTEQ6L PDFs and the model produced with the package FEYNRULES [136];
solid lines are the NLO, using a common KNLO = 1.5.

estimate

nσ(Mexcl,n) = σ(Mexcl,1) ⇒ Mexcl,n = σ−1(
σ(Mexcl,1)

n
) (4.89)

assuming that the production cross section for n particles is just n times
the case with a single scalar in the spectrum: we neglect decay chains and
mutual interactions which deserve a dedicated study. We numerically have

Mexcl,n −Mexcl,1

Mexcl,1

' 0.1 for n = 2, 3. (4.90)

Therefore we claim the following: the exclusion limits for n particles in
the spectrum with n = 2, 3 are O(10%) stronger then the limits obtained for
a single particle.

Turning to non colored states the lightest particles are fermions with
quantum numbers of EW gauginos or higgsinos. As recently summarized
in [137] limits on charginos and neutralinos pair produced have been set by
ATLAS [138] and CMS [139]: with all sleptons and sneutrinos decoupled
they set limits at 350 GeV from events with three or more leptons in the
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Figure 4.3: Expected exclusion bounds on masses of the lightest fermionic
(left panel) and scalar (right panel) top partners from 75 (dashed line) and
300 (solid line) fb−1 at

√
s = 14 TeV. The dotted lines correspond to present

bounds at 800 and 750 GeV discussed in the text.

final state. This analysis also allows CMS to put bounds on sbottoms and
excludes at 95% CL masses below 570 GeV.

Projections for exclusion limits for scalar and fermionic top partners from
LHC at a center of mass energy of 14 TeV can be obtained simply rescaling
integrated luminosities15. Fig. 4.3 clearly shows that higher luminosities,
and higher center of mass energies, data will probe the relevant part of the
parameter space. We expect they will be able to exclude exotic 5/3 charge
fermions up to 1400 (1650) GeV and scalars up to 1300 (1550) GeV with
data corresponding to an integrated luminosity of 75 (300) fb−1, assuming
BRs = 1. For fermions we also expect single production to become more
important than pair production at these energies.

We conclude this section noting that we can interpret already existing
experimental searches to exclude portions of the parameters space of the
main model described in this chapter, introduced in section 4.2: we expect
future experiments, LHC at 14 TeV will play a preponderant role, to further
probe it and constrain it to regions with higher level of FT.

15ATLAS released projections for future sensitivities in [140].



Chapter 5

A Fully Composite Top Right
Case

As stressed in subsection 2.4.1 models of composite Higgs in which the right
top entirely belongs to the BSM strongly interacting sector are generically
disfavoured: the Higgs boson is predicted to be too light, not compatible with
the measured value for its mass. Nevertheless we find instructive to present
a simple realization of this idea, first introduced in [1], within the SUSY
framework depicted in section 4.1: we do it in the following. Also the problem
of SM Landau pole is less severe here than in the previous case, due to a more
restricted number of partners. We allow for an additional elementary field,
color and weak singlet with an exotic hypercharge: despite the further explicit
SO(5) breaking induced by the pairing with the corresponding composite field
no reasonable corner of the parameter space is found.

5.1 A Fully Composite tR

We consider a SUSY SO(9) gauge theory with Nf = 9 electric quarks in the
fundamental of the gauge group and an additional singlet Sij in the (1,10)
of the global SO(5)×SU(4). We add to the superpotential (4.1) the following
term:

λQiQjSij . (5.1)

The terms (5.1) do not break any global symmetry. The total anomaly-free
global symmetry of the model is

Gf = SO(5)× SU(4) . (5.2)

90
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In full analogy with the previous case of section 4.2 the theory turns to strong
coupling at a scale Λ, below which we rely on a magnetic description provided
by Seiberg duality. In the magnetic theory eq.(5.1) turns into a mass term
λΛM ijSij. If we take λ ∼ O(1) around the scale Λ, the singlets Sij and M ij

can be integrated out. At leading order in the heavy mass, this boils down
to remove the chiral fields Sij and M ij from the Lagrangian. We summarize
in table 5.1 the gauge and flavor quantum numbers of the fields appearing in
the electric and magnetic theories.

The mass spectrum is the same as given in section 4.1, with the exception
of the multiplet M ij that has been decoupled together with the singlet Sij.
The multiplet Mi5 is massless. We embed SU(3)c × U(1)X into SU(4) and
SU(2)0,L×U(1)0,Y into SO(5)×U(1)X . The U(1)X is identified as the diagonal
SU(4) generator not contained in SU(3)c, properly normalized, such that
4 → 32/3 ⊕ 1−2 under SU(3)c × U(1)X . We identify tR as the (conjugate)
fermion component of Mα5, α = 6, 7, 8. We also get an unwanted extra
fermion, coming from M95. Being an SU(2)L singlet, ψM95 corresponds to an
exotic particle with hypercharge Y = X = 2. We can get rid of this particle
by adding to the visible sector a conjugate chiral field ψc that mixes with
M95, in the same way as Mia is going to mix with tL. The field ψc is actually
necessary for the consistency of the model, so that all gauge anomalies cancel.
Consider for instance the cubic anomaly of the hypercharge, where once again
Y = T 3

R + X and SU(2)R ⊂ SO(4) ⊂ SO(5): the contribution from the SM
fermions without the right top is proportional to A(SM − tcR) = 3(2/3)3;
from the composite sector we have A(qni ) = 4[3(2/3)3 +(−2)3] and A(Mia) =
5[3(−2/3)3 + 23]. Therefore, to have Tr[Y 3] = 0 we need to introduce a field
with Y = −2. With this addition this and all the other anomalies vanish.

In the UV theory, the mixing terms are

λtξ
iaQiQa + λφφ

iaQiQa . (5.3)

Like in the previous section, we have written the mixing terms in a formal
Gf invariant way by means of the superfields ξ and φ. These are spurions,
whose only dynamical components are the SM doublet qL and the singlet ψc.
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SO(9)el SO(5) SU(4)
QN
i 9 1 4

QN
a 9 5 1

Sij 1 1 10

(a)

SO(4)mag SO(5) SU(4)

qni 4 1 4
qna 4 5 1
Mia 1 5 4
Mab 1 14⊕ 1 1

(b)

Table 5.1: Quantum numbers under Gf and the strong gauge group of the
matter fields appearing in the composite sector of model II: (a) UV electric
and (b) IR magnetic theories.

More explicitly, we have

ξαa =
1√
2


bL
−ibL
tL
itL
0


2/3

, ξ9a = 0 , φαa = 0 , φ9a =


0
0
0
0
ψc


−2

, (5.4)

where we have omitted the color index in qL and ψc. In the magnetic theory
the Yukawa’s (5.3) become

εtξ
iaMia + εφφ

iaMia . (5.5)

Thanks to the last term in eq.(5.5), the multiplets M95 and ψc combine
and get a mass εφ/

√
2. The assumption of an external source of SUSY

breaking affecting only the visible sector cannot work now, because tR is
a fully composite particle, and would result in an unacceptable light stop
t̃R. We then also add SUSY breaking terms in the composite sector, by
assuming that they respect the global symmetry Gf . In order to have a
well-defined UV theory, we introduce positive definite scalar soft terms in
the electric theory and analyze their RG flow towards the IR following [111].
The construction discussed in section 4.5, to whom we refer for all the details
on how it is performed and the underlying approximations, here is crucial.
Neglecting soft masses for the magnetic gauginos and B-terms, the non-SUSY
IR Lagrangian reads

−L���SUSY = m̃2
L|t̃L|2 + m̃2

ψ|ψ̃|2 + (εLBL(ξL)iaMia +
1

2
m̃g,αλαλα + h.c.)

+ m̃2
1|Mia|2 + m̃2

2|Mab|2 + m̃2
3|qi|2 − m̃2

4|qa|2 ,
(5.6)
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where

m̃2
1 =

1

12
(4 + 2ω)m̃2, m̃2

2 =
1

12
(−8 + 14ω)m̃2,

m̃2
3 =

1

12
(−8 + 5ω)m̃2, m̃2

4 =
1

12
(−4 + 7ω)m̃2

(5.7)

are the soft mass terms for the scalars in the IR theory, determined in terms of
the two SO(5)×SU(4) invariant soft terms in the electric theory, m̃2

1elQ
†aQa+

m̃2
2elQ

†iQi, with m̃2 ≡ m̃2
1el and

ω =
m̃2

2el

m̃2
1el

. (5.8)

As can be seen from eq.(5.7), there is no choice of ω for which all the magnetic
soft terms are positive definite. If we take ω > 8/5, the first three terms in
the second row of eq.(5.6) are positive, while the last one is tachyonic. These
tachyons are harmless, since the SUSY scalar potential contains quartic terms
(both in the F and D-term part of the scalar potential) that stabilize them.
Negative definite quadratic terms for the qa are already present in the SUSY
potential, resulting in fact in the vacuum eq.(4.6). The only effect of the
Lagrangian (5.6), at the level of the vacuum, is to change the VEV as in
eq.(4.32), namely

〈qmn 〉 =
µ̃√
h
δmn , where µ̃ =

√
µ2 +

m̃2
4

2h
. (5.9)

The above treatment of soft terms as a perturbation of an underlying
SUSY theory makes sense only for soft terms parametrically smaller than Λ.
Notice that we cannot parametrically decouple the scalars in the composite
sector, while keeping the fermions at the scale µ, by taking the soft terms
m̃2 in the range µ � m̃ � Λ. This is clear from eq.(5.9), since in this limit
we decouple the whole massive spectrum in the composite sector. In order
to keep the compositeness scale around the TeV scale and avoid too light
scalars, we take the soft term mass scale around µ. In addition to that, we
still have, like in the model in section 4.2, an “indirect” contribution to the
composite soft masses coming from the mixing with the elementary sector, as
given by eqs.(4.26) and (4.27). A linear combination of fermions given by tL
and the appropriate components of ψMim

remains massless and is identified
with the SM left-handed top. The “goldstino” ψM55 is still massless in these
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approximations. See the considerations made in the last paragraph of section
4.2, that apply also here, for the possible mechanisms giving a mass to this
particle.

5.2 Vacuum Decay

The non-supersymmetric vacuum we have found can be metastable and su-
persymmetric (in the sense explained in footnote 5) vacua might appear, due
to non-perturbative effects in the magnetic theory. Contrary to the model
in section 4.2, we have not found SUSY vacua in the regime of validity of
the magnetic theory. The only SUSY vacua we found appear in the electric
theory. Assuming Sij 6= 0 with maximal rank, i.e. 4, all electric quarks are
massive and the resulting theory develops the non-perturbative superpoten-
tial eq.(4.40) where now N = Nf = 9. Taking the ansatz eq.(4.36) for the
gauge-invariant meson directions and Sij = S0δij, we get

FX = −5Λ−6X
3
2Y 2 +m = 0 ,

FY = −4Λ−6X
5
2Y + λS0 = 0 ,

FS = λY = 0.

(5.10)

The only solution to eq.(5.10) is the runaway vacuum

Y → 0, S ∝ Y −
7
3 →∞, X ∝ Y −

4
3 →∞ . (5.11)

We have found no other SUSY vacua at finite distance in the moduli space
and we then conclude that the metastable vacuum eq.(4.6) is sufficiently
long-lived, if not absolutely stable.

5.3 Landau Poles

Landau poles for the SM gauge couplings at relatively low energies are ex-
pected also in this model. Within the same approximations made in sub-
section 4.3, a one-loop computation shows that the SU(3)c, SU(2)0,L and
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U(1)0,Y couplings develop Landau poles at the scales

ΛL
3 = Λ exp

( π

2α3(mZ)

)(mZ

µ

)− 7
4
(µ

Λ

) 1
4
,

ΛL
2 = Λ exp

( 2π

9α2(mZ)

)(mZ

µ

)− 19
54
(µ

Λ

)2

,

ΛL
1 = Λ exp

( 6π

305α1(mZ)

)(mZ

µ

) 41
610
(µ

Λ

) 236
305
,

(5.12)

where we have matched the SU(2) × U(1) couplings at the scale µ, using
eq.(4.16) with

αm(µ) =
2π

3log
(

Λ
µ

) . (5.13)

The presence of less flavors and singlet fields here with respect to the previous
case ofN = Nf = 11 in section 4.2, allows for a significant improvement in the
UV behavior of α3, that now blows up at extremely high energies. However,
the different embedding of U(1)X in the global group gives rise to several
fields with hypercharge |2| that significantly contribute to the running of α1.
As a result, the first coupling to explode is now α1. For a sensible choice of
parameters, e.g. µ around the TeV scale and ε ∼ 1/10, we see that ΛL

1 is
about two orders of magnitude higher than Λ, around 103 TeV.

5.4 Numerical Analysis

The next step is the computation of the effective action for the Higgs field,
performed in the unitary gauge. As we mentioned many times the Higgs is
a NG boson of a spontaneous breaking of a global symmetry: the broken
symmetry is not exact and it is explicitly broken by the SM EW gauge group
and by the couplings εt and εφ. In the matter contribution to the Higgs
potential we further distinguish between colored and non colored exotic fields.
We then perform a numerical scan in the parameter space.

The value of εt is fixed by the top mass; the mixing εφ of the non colored

field is in principle free. γgauge, γ
(c)
matter and γ

(nc)
matter are equally important

and they cancel against each other: the size of these cancellations is a lower
bound on the FT. For what concern the coefficient of the quartic term we
have β ∼ βmatter � βgauge.
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The Higgs turns out to be too light (∼ 100 GeV) unless a sizable source of
SO(5) breaking comes from the non colored sector, as in fact was expected.

Since the Higgs mass square is proportional to the sum β
(c)
matter + β

(nc)
matter in

principle raising the non colored contribution controlled by εφ would be suf-
ficient. At the same time large values for εφ are disfavored because generally

γ
(nc)
matter < 0 and it tends to align the Higgs in a EW preserving vacuum. Due

to this tension the model as it stands is excluded. We have chosen to report
the results because, despite SUSY, the construction is quite minimal and
we expect it to be representative for more general examples: it embodies a
composite top right model with the addition of an extra massive singlet. The
situation can be improved if we introduce more FT: due to the logarithmic
dependence on soft masses we would need stops at a scale O(100) TeV, def-
initely loosing the naturalness. We can also introduce more complication in
the model or focus on SO(5) representations different from the fundamental,
but we have not continued along this path.



Chapter 6

Conclusions and Outlook

In this thesis we collected the work of the author on SUSY CHM. We provided
four dimensional examples of BSM sectors both weakly and strongly coupled.
The Higgs is included as a pNGB living on the minimal coset studied in
literature allowing for a custodial protection, SO(5)/SO(4). We introduced
couplings to the top field through partial compositeness and we focused on
top partners in the minimal representation of the global symmetry group, the
fundamental 5. The EW gauge fields may or may not be semi-composite, we
investigated both cases.

Here we briefly summarize the main results:

• SUSY has offered tools (Seiberg duality) to deal with strongly cou-
pled gauge theories. This allowed us to approach questions about UV
completeness of the models: we considered explicit models of Higgs as
pNGB, both as a truly elementary scalar and as a composite object. We
reviewed how to constrain the most general form of soft SUSY break-
ing masses in presence of confining theories, with the help of global
symmetries, treating them as spurion superfields: this allowed to keep
a well defined UV completion. At the same time SUSY has soften the
dependence of the Higgs potential on a low energy cutoff.

• We extensively analyzed, both analyticaly and numerically, the Higgs
potential, expressed in terms of UV parameters. We neglected the
impact of SM fermions different from top on the radiative potential,
claiming they do not play a role in the EWSB. We have computed the
FT of the models and shown that there exist regions in parameters
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space tuned at 1 - 2 % level, reproducing the correct top and Higgs
masses.

• We proposed a mechanism different to partial compositeness to sup-
ply masses to other quarks, and to leptons, through irrelevant oper-
ators and we have considered the most stringent bounds from flavor
processes. The introduction of dimension five operators generates sub-
leading corrections to flavor observables therefore flavor violations can
be addressed as in more conventional SUSY theories, as the MSSM: we
explicitly focused on the case of aligned squark masses.

• We have shown which are the most important experimental bounds,
mostly from direct searches of partners, on our models. The lightest
colored particles in the BSM spectrum are generically colored partners
of the top, both scalars and fermionic, and uncolored fermions with
the quantum numbers of EWinos and higgsinos. We expect these pre-
dictions to be independent of the particular realizations we presented.
Interestingly enough some versions of SUSY CHM can be soon acces-
sible at Run II of LHC.

For other types of observables, like indirect measurements or deviations
of (Higgs) couplings we refer to the many results and estimates present in
the literature. LHC will soon let us know more about the detailed structure
of the EWSB in nature: experimental collaborations have already achieved
significant results constraining, from the available data, the simplest realiza-
tions of BSM physics, probing both the MSSM and its variations and models
of composite Higgs, as well as extra dimensional and other exotic theories.
We hope that future efforts will help in shedding light upon less minimal
models, as the class proposed and discussed in this thesis.



Appendix A

Renormalization of the Higgs
Potential

A.1 Renormalization of the Higgs Potential

Here we want to show explicitly the cancellations mentioned in the main
text regarding the scale dependence of the effective potential of the Higgs,
as imposed by eq.(3.5). We first focus on the case of the model with vector
resonances, focusing on the superpotential

Wmag = hqaM
abqb − µ2Maa . (A.1)

The superpotential (A.1) is invariant under global SO(5) transformations.
At tree-level, with a canonical Kähler potential, this leads to an SO(5) in-
variant (and hence Higgs independent) F-term scalar potential. At the ra-
diative level, however, the Kähler potential is renormalized and the gauging
of SU(2)L × U(1)Y explicitly breaks the SO(5) global symmetry. This im-
plies that although holomorphy protects the superpotential (A.1) from quan-
tum corrections, the physical, rather than holomorphic, coupling h splits
into several components with different RG evolutions, depending on the
SU(2)L×U(1)Y quantum numbers of the fields qa and Mab. For this reason,
in order to better understand the one-loop behaviour of the scalar potential,
it is convenient to directly start by the generalization of (A.1), where we
distinguish all the couplings h with a different one-loop evolution. Recalling
that q contains one singlet and two SU(2)L doublets with Y = ±1/2 and Mab

contains three SU(2)L triplets with Y = −1, 0, 1, two SU(2)L doublets with
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Y = ±1/2 and two singlets, we have:

Wmag =
5∑
i=1

hi(qaM
abqb)

(i) − µ2Maa (A.2)

where i runs over all the five distinct possible combinations:

(10 · 10 · 10), (10 · 2±1/2 · 2∓1/2), (2±1/2 · 3∓1 · 2±1/2),

(2∓1/2 · 30 · 2±1/2), (2∓1/2 · 1′0 · 2±1/2) . (A.3)

We write the effective Higgs potential as

V (sh) = V (0)(sh) + V (1)(sh) + . . . . (A.4)

The tree-level potential V (0) is given by

V (0) = m2
1|qn5 |2 +m2

2|qnm|2 +
5∑
i=1

|FM(i)
ab |

2. (A.5)

Notice that the D-term scalar potential , as well as the F-term potential
given by the dual quarks q manifestly vanish in the vacuum eq.(4.32), where
h is now identified with h5. The first two terms in eq.(A.5) are soft SUSY
breaking terms. In the vacuum, modulo an irrelevant constant term, they
give rise to a tree-level Higgs mass term of the form m2

Hs
2
hµ

2/h5, where

m2
H = m2

1 −m2
2 . (A.6)

The mass term (A.6) violates the SO(5) global symmetry of the composite
sector, which is assumed to be exact in the limit of vanishing mixing terms
εi and SM gauge couplings. We assume in the following that mH at the scale
f assumes a value of the same order of magnitude of the one expected to be
given by radiative corrections, namely g2/(16π2) in some mass unit. In this
way, we are justified of neglecting its effect in the tree-level potential.

The RG-invariance of the scalar potential at one-loop level is governed
by eq.(3.5), which reads

∂

∂ logQ
V (1) + βλI

∂

∂λI
V (0) − γnΦn

∂

∂Φn

V (0) = 0, (A.7)
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It is easy to check that in the vacuum the last term in eq.(A.7) vanishes
when we recover the SO(5) invariant limit with hi = h. The relevant β-
functions entering in the second term of eq.(A.7) are βhi , βm2

1
and βm2

2
.1 We

have

βm2
1
− βm2

2
=

(3g2M2
2 + g′2M2

1 )

8π2
, βh1 = h1(2γqS + γMS ) , ,

βh2 = h2(γqD1/2
+ γMD1/2

+ γqS) , βh3 = h3(2γqD1/2
+ γMT1 ) ,

βh4 = h4(2γqD1/2
+ γMT0 ) , βh5 = h5(2γqD1/2

+ γMS ) , (A.8)

where

γqS = γq0 , γMS = γM0

γqD1/2
= γq0 −

1

16π2

(3

2
g2 +

1

2
g′2
)
, γMD1/2

= γM0 −
1

16π2

(3

2
g2 +

1

2
g′2
)
,

γMT1 = γM0 −
1

16π2
(4g2 + 2g′2) , γMT0 = γM0 −

1

16π2
(4g2) (A.9)

are the anomalous dimensions of an SU(2)L singlet with Y = 0, an SU(2)L
doublet with |Y | = 1/2, an SU(2)L triplet with |Y | = 1 and an SU(2)L triplet
with Y = 0. The factors γq0 and γM0 are the SO(5) invariant contributions to
the field anomalous dimensions, given by the couplings hi themselves and by
the SO(4) magnetic gauge interactions (for q only), that do not contribute
to the Higgs-dependent scalar potential. They are reported in eq.(A.18).

After some algebra, the first term in eq.(3.5) reads

∂

∂ logQ
V (1) = − 1

16π2

1

2
STr[M4] =

=
1

16π2
f 2s2

h

(
µ2(3g2 + g′2)− (3g2M2

2 + g′2M2
1 )
)
.(A.10)

It is straightforward to check that eq.(A.7) is indeed verified, when we take
the couplings hi all equal at the scale f :

h1(f) = . . . = h5(f) = h(f). (A.11)

The case of the model in section 3.3, without gauge resonances, is treated
in full analogy. The relevant superpotential is given in eq.(3.12), namely

W0(Z, q, ψ) = hZ(qaqa − µ2) +mψqaψa . (A.12)

1In principle, we also have βµ2 , but it anyway cannot contribute to the one-loop Higgs-
dependent potential, since Maa is an SU(2)L ×U(1)Y singlet.
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The couplings whose running are affected by the SM gauging are mψ and h.
The decomposition analogous to eq.(A.2) is a sum of two contributions,

W0 =
∑
i

[
hiZ(qaqa)

(i) +mψi(qaψa)
(i)
]
− hZµ2 (A.13)

where i runs over the projections

(10 · 10) , (2±1/2 · 2∓1/2) . (A.14)

Without reporting the full computation we just quote the results for the
beta functions:

βh2 − βh1 = −3(3g2 + g′2)

16π2
h , βmψ2

− βmψ1
= −3(3g2 + g′2)

16π2
mψ (A.15)

where we have subtracted the SO(5) preserving part. The third tree-level
coupling to be considered is the Higgs soft mass mH , as defined in eq.(A.6).
With these beta functions one can show that eq.(A.7) is satisfied.

In the next section we report the one-loop beta functions, computed with
standard methods, of the couplings introduced for the models with partially
composite top quark, namely the model without vector resonances introduced
in section 3.3 and the version enlarged to include vector resonances, in the
parametrization given in section 3.4.

A.2 SO(5) preserving anomalous dimensions

and β functions

In appendix A.1 we just used some one-loop beta functions for fields ap-
pearing in the scalar potential of the main theories discussed. In particular
since we were interested in the scale dependence of the Higgs potential we
focused on the RG violating the SO(5) symmetry induced by SM gauging.
Here we report the terms in the anomalous dimensions and in the beta func-
tions which are SO(5) preserving. We quoted them in several points in the
main text in discussions related to the behavior of certain couplings and the
possible appearance of Landau poles: here we list them for reference.

The model with elementary tR, without vector resonances, has the fol-
lowing anomalous dimensions for the fields appearing in the superpotential
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of eq.(3.11) and eq.(3.12):

γNL =
1

16π2

(
λ2
L −

8

3
g2

3

)
, γNR =

1

16π2

(
λ2
R −

8

3
g2

3

)
,

γS =
1

16π2

(
5λ2

L −
8

3
g2

3

)
, γSc =

1

16π2

(
5λ2

R −
8

3
g2

3

)
,

γq =
1

16π2

(
3λ2

L + 3λ2
R + 4h2

)
, γZ =

1

16π2

(
10h2

)
.

(A.16)

The β functions for the couplings appearing in the superpotential eq.(3.11)
and eq.(3.12) are therefore given by:

βαλL =
αλL
2π

(
9αλL + 3αλR + 4αh −

16

3
α3

)
,

βαλR =
αλR
2π

(
9αλR + 3αλL + 4αh −

16

3
α3

)
,

βαh =
αλ
2π

(
6αλL + 6αλR + 18αh

)
,

βα3 =
α2

3

2π

(
− 3Nc +

1

2
Nfund

)
,

(A.17)

where in the last line Nc = 3 is the number of colors and Nfund = (3(1 +
1 + 2))SSM + (2 + 10)extra = 24 is the number of fundamental representations
of SU(3)c in the theory, divided into SM ones and the extra ones from the
top-partner sector.

For what concerns the model with elementary tR with also vector reso-
nances, specified by the superpotential eq.(3.27) and eq.(3.28), the anomalous
dimensions of the fields are given by:

γNL =
1

16π2

(
4λ2

L

)
, γNR =

1

16π2

(
4λ2

R

)
,

γXL =
1

16π2

(
5λ2

L − 3g2
ρ

)
, γXR =

1

16π2

(
5λ2

R − 3g2
ρ

)
,

γq =
1

16π2

(
3λ2

L + 3λ2
R + 12h2 − 3g2

ρ

)
, γZ =

1

16π2

(
8h2
)
.

(A.18)

From this we compute the β functions for the couplings in the superpo-
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tential eq.(3.27) and eq.(3.28):

βαλL =
αλL
2π

(
12αλL + 3αλR + 12αh − 6αρ

)
,

βαλR =
αλR
2π

(
3αλR + 12αλL + 12αh − 6αρ

)
,

βαh =
αλ
2π

(
6αλL + 6αλR + 32αh − 6αρ

)
,

βρ =
αρ
2π

(
5αρ

)
.

(A.19)

In the anomalous dimensions and in the β functions we have neglected the
contribution coming from the SM gauge couplings being surely subleading in
the energy range of validity of eq.(A.18) and eq.(A.19), that is for energies
roughly between 1 and 10 TeV.



Appendix B

Unitarization of WW Scattering

In theories where the Higgs is a pNGB the 2 → 2 scattering amplitudes
between the longitudinal polarizations of the W and Z bosons, and the Higgs
itself, for energies higher than the Higgs mass grow quadratically with the
energy, A(E) ∼ E2/f 2, violating perturbative unitarity at a scale Λ ∼ 4πf .
At this scale, or before, new degrees of freedom (in the form of either strong
dynamics effects or new perturbative fields) must become important in the
scattering to restore unitarity, namely to cancel the leading order dependence
of the amplitude on the total energy. In the following we will see how the
field content present in each of the two models described in section 3.3 and
in chapter 4 is exactly what is needed to restore perturbative unitarity of
WW scattering, as expected in genuine linear models.

By means of the equivalence theorem [141–144] the amplitude of the
scattering involving longitudinal polarization of EW bosons are expressed
in terms of the eaten Goldstone, up to corrections O(MV

E
), therefore we are

led to study the UV properties of

A(hâhb̂ → hĉhd̂) . (B.1)

In the SO(5)→ SO(4) coset, all hâhb̂ scattering amplitudes can be parametrized
in terms of only two functions of the Mandelstam variables, A(s, t, u) and
B(s, t, u) [56]:

A(hâhb̂ → hĉhd̂) = A(s, t, u)δabδcd + A(t, s, u)δacδbd + A(u, t, s)δadδbc +

+B(s, t, u)εabcd. (B.2)

In our models, however, in the limit of zero SM gauging the gauge sector has
a PLR symmetry which fixes B(s, t, u) = 0. The NGB contribution to the
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scattering is universal and given by

ANGB(s, t, u) =
s

f 2
. (B.3)

The possible contributions to NGB scattering can be obtained simply by
group theory and the fact that bosonic states must be symmetric under the
exchange of identical particles:

hâhb̂ scattering: 4⊗ 4 = (1; J = 0)⊕ (6; J = 1)⊕ (9; J = 0) , (B.4)

where J is the total spin.

B.1 Minimal Model SO(5)→ SO(4)

In the theory introduced in section 3.3 the only NGB present are the four
components of the Higgs doublet, hâ, and there are no gauge bosons other
than the SM ones. The gauge sector of the model is a supersymmetriza-
tion of the linear σ-model presented in ref. [76] and in the Appendix G
of ref. [56]. The only term in the Lagrangian relevant to WW scatter-
ing is the kinetic term of the real part of q = (φ + iφ̃)/

√
2, which takes

a VEV 〈φ〉 = (0, 0, 0, 0, f). Expliciting the NGB dependence as φ(x) =

U(hâ(x))〈φ〉
(

1 + η(x)
f

)
, where η(x) is a real singlet scalar field with mass

Mη =
√

2hf , we can write the Lagrangian as

Lkin =
1

2
(∂µη)2 − 1

2
M2

ηη
2 +

f 2

4
Tr [dµd

µ]

(
1 +

η

f

)2

, (B.5)

where we defined the CCWZ structures [17], as in the general case of eq.(2.6),
dâµT

â + Ea
µT

a = iU †DµU and ∇µ = ∂µ − iEµ. The full NGB scattering
amplitude in this theory can be written as

A(s, t, u) =
s

f 2

(
1− s

s−M2
η

)
, (B.6)

where the second term comes from the tree level exchange of the singlet
field η. The total amplitude evidently recovers perturbative unitarity for√
s�Mη.
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B.2 Model with Vector Resonances

We now move to discuss unitarization in the model arising at low energy as
Seiberg dual, see chapter 4 and in particular the gauge sector described in
section 4.1 for the details on the Lagrangian. Now ten Goldstone bosons are
present: six πA in the adjoint representation of SO(4)D and four hâ in the
fundamental of SO(4)D. In the unitary gauge, where the Goldstone bosons
in the adjoint are eaten by the ρ gauge bosons, the study of their scattering is
shifted to the study of the ρρ scattering. With the aim to connect our study
with previous bottom-up studies of the effect of resonances in WW scattering
in CHM and their phenomenology at the LHC [56], in the following we will
concentrate only on the study of the scattering amplitudes among the four
NGBs which form the Higgs doublet.

All contributions to NGB scattering, see eq.(B.4), come from the kinetic
term of the fields in the multiplet which takes a VEV triggering the sponta-
neous symmetry breaking, in our case the real components of qna :

L = |Dµq
n
a |

2 =
∣∣iU †Dµq

n
a

∣∣2 = |i∇µq̃ + dµq̃ − gµq̃ρµ|2 , (B.7)

where we used eq.(4.33) to render explicit the NGB dependence. The fields
q̃na transform under the unbroken group SO(4)D ∼ SU(2)L × SU(2)R in the
representations

q̃na : 1⊕ 9⊕ 6⊕ 4 = (1,1)⊕ (3,3)⊕ ( (1,3)⊕ (3,1) )⊕ (2,2) . (B.8)

Its decomposition in terms of component fields is

q̃na (x) =

(
f√
2

+
η(x)

2

)
δna +∆ALBR(x)(2TALTBR)na+

q̃Aρ (x)
√

2
(TA)na+i

q̃n5 (x)√
2
δa5,

(B.9)
where the singlet η and the symmetric traceless ∆ are complex, while the
antisymmetric q̃ρ and the fundamental q̃5 are real fields. From eq.(B.4) we
see that the only states which can contribute to the scattering are the singlet
(η), the gauge bosons (ρ) and the symmetric (∆). Since we are interested
only in the tree-level contribution to the scattering amplitude, we can study
them separately.

Let us start with the singlet η = (η1 + iη2)/
√

2. Setting ∆ and ρµ to zero
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in eq.(B.7) one can arrive easily to the Lagrangian1

L ⊃ |∂µη|2 +
1

2
Tr [dµd

µ]
∣∣∣µ+

η

2

∣∣∣2 = (B.10)

=
1

2

(
(∂µη1)2 + (∂µη2)2

)
+
f 2

4
Tr [dµd

µ]

(
1 +

η1

f
+
η2

1 + η2
2

4f 2

)
.

In the parametrization of ref. [56] it is easy to recognize aη1 = 1
2
, aη2 = 0

and bη1 = bη2 = 1
4
. From this we obtain the contribution of the η to the hh

scattering amplitude:

Aη(s, t, u) = −1

4

s

f 2

s

s−M2
η

, (B.11)

where Mη =
√

2hf . Setting to zero the scalars ∆ and η we can obtain the
contribution from the vector ρµ. The Lagrangian can be written as

L ⊃ f 2

4
Tr [dµd

µ] +
f 2

2
Tr
[
(gρρµ − Eµ)2

]
, (B.12)

recognizing that, in the notation of ref. [56], aρ = 1. The contribution to the
scattering amplitude which grows with the energy is

Aρ(s, t, u) = −3

2

s

f 2
. (B.13)

The scalar ∆ = (∆1 + i∆2)/
√

2 is a complex field in the (3,3) of SO(4). Its
Lagrangian can be written as

L =
∑
i=1,2

{
1

2
Tr[(∇µ∆i)

2]−
M2

∆i

2
Tr[∆2

i ] + a∆i
fTr[∆dµd

µ] + . . .

}
, (B.14)

where, in components, ∆i = ∆ALBR
i (x)(2TALTBR)ba and where the dots rep-

resent terms not relevant for WW scattering. In our case a∆1 = 1, a∆2 = 0
and M∆1 = M∆2 =

√
2hf . The scattering amplitude is given by

A∆(s, t, u) =
(a2

∆1
+ a2

∆2
)

4

(
s

f 2

s

s−M2
∆

− 2
t

f 2

t

t−M2
∆

− 2
u

f 2

u

u−M2
∆

)
.

(B.15)

1Here we also used that δnc (TATB)cdδ
n
d = δAB , δnc (T âT b̂)cdδ

n
d = δâb̂/2 and

δnc (TAT b̂)cdδ
n
d = 0, where TA and T â are, respectively, the unbroken and broken gen-

erators of SO(5)→ SO(4).
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For energies larger than the masses of all these resonances we have

Atot(s, t, u) = ANGB(s, t, u) + Aη(s, t, u) + Aρ(s, t, u) + A∆(s, t, u)' const.
(B.16)

We see that, as expected, the exchange of heavy resonances restores unitarity
before the scattering amplitude becomes non perturbative.



Appendix C

SO(N)

In this appendix we report our conventions for so(N) algebra, the same as [1].

so(N) = Span{tab, a, b = 1, . . . , N, a < b} where tabij =
i

2
[δai δ

b
j − δbi δaj ] .

(C.1)
The matrices tab satisfy

Tr[tabtcd] =
1

2
(δacδbd − δacδbd) (C.2)

[tab, tcd] =
i

2
(δbcδaeδdf − δbdδaeδcf − δacδbeδdf + δadδbeδcf )tef .

With N = 5 it is customary to define different generators:

T aL,R = −1

2
εabctbc ∓ ta4

T 1
L = t32 + t41, T 2

L = t13 + t42, T 3
L = t21 + t43,

T 1
R = t32 + t14, T 2

R = t13 + t24, T 3
R = t21 + t34,

T â =
√

2 ta5, â = 1, 2, 3, 4 .

It is straightforward to check that

Tr[T iA, T
j
B] = δijδAB , Tr[T âT b̂] = δâb̂ (C.3)

[T iA, T
j
B] = iεijkT kAδAB

[T â, T b̂] = −itâb̂ = iεâb̂ĉ
(
T ĉL + T ĉR

)
+ iδb̂4(T âL − T âR)− iδâ4(T b̂L − T b̂R)

where A,B = L,R. In this basis, T 1,2,3
L generate SU(2)L and T 1,2,3

R generate
SU(2)R of the SO(4) ∼= SU(2)L × SU(2)R local isomorphism. The matrices

110



APPENDIX C. SO(N) 111

T 1̂,2̂,3̂,4̂ generate the coset SO(5)/SO(4). The last line makes explicit that
this coset is symmetric: the commutator among broken generators does not
have components along broken generators.

The SO(6) generators are taken to be, for N = 6,

T 1 = t32 + t14, T 2 = t31 + t42, T 3 = t12 + t43, T 4 = t16 + t52, (C.4)

T 5 = t51 + t62, T 6 = t36 + t54, T 7 = t53 + t64, T 8 =
1√
3

(t12 + t34 + 2t65),

T 9 = t36 + t54, T 10 = t14 + t23, T 11 = t24 + t31, T 12 = t16 + t25,

T 13 = t36 + t45, T 14 = t46 + t53, T 15 =

√
2

3
(t12 + t34 + t56) .

In this basis, T 1,...,8 generate SU(3)c. The U(1)X generator is given by
(4/
√

6)T 15, so that the fields ξL and ξR in section 4.2 have U(1)X charges
2/3 and −2/3, respectively.
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[16] Brando Bellazzini, Csaba Csáki, and Javi Serra. Composite Higgses.
2014, arXiv:1401.2457.

[17] Sidney R. Coleman, J. Wess, and Bruno Zumino. Structure of phe-
nomenological Lagrangians. 1. Phys.Rev., 177:2239–2247, 1969.

[18] Jr. Callan, Curtis G., Sidney R. Coleman, J. Wess, and Bruno Zumino.
Structure of phenomenological Lagrangians. 2. Phys.Rev., 177:2247–
2250, 1969.

[19] Riccardo Barbieri and G.F. Giudice. Upper Bounds on Supersymmetric
Particle Masses. Nucl.Phys., B306:63, 1988.

http://arxiv.org/abs/1307.3536
http://arxiv.org/abs/astro-ph/9701099
http://arxiv.org/abs/astro-ph/9701099
http://arxiv.org/abs/hep-th/0702115
http://arxiv.org/abs/1312.2391
http://arxiv.org/abs/1309.3568
http://arxiv.org/abs/hep-ph/9309299
http://arxiv.org/abs/hep-ph/9309299
http://arxiv.org/abs/1401.2457


BIBLIOGRAPHY 114

[20] James Barnard, Tony Gherghetta, and Tirtha Sankar Ray. UV descrip-
tions of composite Higgs models without elementary scalars. JHEP,
1402:002, 2014, arXiv:1311.6562.

[21] Gabriele Ferretti and Denis Karateev. Fermionic UV completions of
Composite Higgs models. JHEP, 1403:077, 2014, arXiv:1312.5330.

[22] Gabriele Ferretti. UV Completions of Partial Compositeness: The Case
for a SU(4) Gauge Group. JHEP, 1406:142, 2014, arXiv:1404.7137.

[23] J. Wess and B. Zumino. Consequences of anomalous Ward identities.
Phys.Lett., B37:95, 1971.

[24] Edward Witten. Global Aspects of Current Algebra. Nucl.Phys.,
B223:422–432, 1983.

[25] Eric D’Hoker and Steven Weinberg. General effective actions.
Phys.Rev., D50:6050–6053, 1994, arXiv:hep-ph/9409402.

[26] Kaustubh Agashe, Roberto Contino, and Alex Pomarol. The Minimal
composite Higgs model. Nucl.Phys., B719:165–187, 2005, arXiv:hep-
ph/0412089.

[27] David B. Kaplan. Flavor at SSC energies: A New mechanism for dy-
namically generated fermion masses. Nucl.Phys., B365:259–278, 1991.

[28] Roberto Contino, Thomas Kramer, Minho Son, and Raman Sundrum.
Warped/composite phenomenology simplified. JHEP, 0705:074, 2007,
arXiv:hep-ph/0612180.

[29] Edward Witten. Some Inequalities Among Hadron Masses.
Phys.Rev.Lett., 51:2351, 1983.

[30] Giuliano Panico and Andrea Wulzer. The Discrete Composite Higgs
Model. JHEP, 1109:135, 2011, arXiv:1106.2719.

[31] Giuliano Panico, Michele Redi, Andrea Tesi, and Andrea Wulzer. On
the Tuning and the Mass of the Composite Higgs. JHEP, 1303:051,
2013, arXiv:1210.7114.

http://arxiv.org/abs/1311.6562
http://arxiv.org/abs/1312.5330
http://arxiv.org/abs/1404.7137
http://arxiv.org/abs/hep-ph/9409402
http://arxiv.org/abs/hep-ph/0412089
http://arxiv.org/abs/hep-ph/0412089
http://arxiv.org/abs/hep-ph/0612180
http://arxiv.org/abs/1106.2719
http://arxiv.org/abs/1210.7114


BIBLIOGRAPHY 115

[32] Marco Serone. Holographic Methods and Gauge-Higgs Unifica-
tion in Flat Extra Dimensions. New J.Phys., 12:075013, 2010,
arXiv:0909.5619.

[33] Giuliano Panico, Mahmoud Safari, and Marco Serone. Simple and
Realistic Composite Higgs Models in Flat Extra Dimensions. JHEP,
1102:103, 2011, arXiv:1012.2875.

[34] Lisa Randall and Raman Sundrum. A Large mass hierarchy from a
small extra dimension. Phys.Rev.Lett., 83:3370–3373, 1999, arXiv:hep-
ph/9905221.

[35] Juan Martin Maldacena. The Large N limit of superconformal field
theories and supergravity. Adv.Theor.Math.Phys., 2:231–252, 1998,
arXiv:hep-th/9711200.

[36] Edward Witten. Anti-de Sitter space and holography.
Adv.Theor.Math.Phys., 2:253–291, 1998, arXiv:hep-th/9802150.

[37] Ofer Aharony, Steven S. Gubser, Juan Martin Maldacena, Hirosi
Ooguri, and Yaron Oz. Large N field theories, string theory and gravity.
Phys.Rept., 323:183–386, 2000, arXiv:hep-th/9905111.

[38] Nima Arkani-Hamed, Massimo Porrati, and Lisa Randall. Holography
and phenomenology. JHEP, 0108:017, 2001, arXiv:hep-th/0012148.

[39] R. Rattazzi and A. Zaffaroni. Comments on the holographic picture
of the Randall-Sundrum model. JHEP, 0104:021, 2001, arXiv:hep-
th/0012248.

[40] Lisa Randall and Raman Sundrum. An Alternative to compactification.
Phys.Rev.Lett., 83:4690–4693, 1999, arXiv:hep-th/9906064.

[41] Walter D. Goldberger and Mark B. Wise. Modulus stabilization with
bulk fields. Phys.Rev.Lett., 83:4922–4925, 1999, arXiv:hep-ph/9907447.

[42] Roberto Contino, Yasunori Nomura, and Alex Pomarol. Higgs as a
holographic pseudoGoldstone boson. Nucl.Phys., B671:148–174, 2003,
arXiv:hep-ph/0306259.

[43] Roberto Contino and Alex Pomarol. Holography for fermions. JHEP,
0411:058, 2004, arXiv:hep-th/0406257.

http://arxiv.org/abs/0909.5619
http://arxiv.org/abs/1012.2875
http://arxiv.org/abs/hep-ph/9905221
http://arxiv.org/abs/hep-ph/9905221
http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/9802150
http://arxiv.org/abs/hep-th/9905111
http://arxiv.org/abs/hep-th/0012148
http://arxiv.org/abs/hep-th/0012248
http://arxiv.org/abs/hep-th/0012248
http://arxiv.org/abs/hep-th/9906064
http://arxiv.org/abs/hep-ph/9907447
http://arxiv.org/abs/hep-ph/0306259
http://arxiv.org/abs/hep-th/0406257


BIBLIOGRAPHY 116

[44] Tony Gherghetta and Alex Pomarol. Bulk fields and supersymmetry in
a slice of AdS. Nucl.Phys., B586:141–162, 2000, arXiv:hep-ph/0003129.

[45] David Marzocca, Marco Serone, and Jing Shu. General Composite
Higgs Models. JHEP, 1208:013, 2012, arXiv:1205.0770.

[46] Alex Pomarol and Francesco Riva. The Composite Higgs and Light
Resonance Connection. JHEP, 1208:135, 2012, arXiv:1205.6434.

[47] Kaustubh Agashe and Roberto Contino. Composite Higgs-Mediated
FCNC. Phys.Rev., D80:075016, 2009, arXiv:0906.1542.

[48] Stefania De Curtis, Michele Redi, and Andrea Tesi. The 4D Composite
Higgs. JHEP, 1204:042, 2012, arXiv:1110.1613.

[49] G.F. Giudice, C. Grojean, A. Pomarol, and R. Rattazzi. The Strongly-
Interacting Light Higgs. JHEP, 0706:045, 2007, arXiv:hep-ph/0703164.

[50] Oleksii Matsedonskyi, Giuliano Panico, and Andrea Wulzer. Light
Top Partners for a Light Composite Higgs. JHEP, 1301:164, 2013,
arXiv:1204.6333.

[51] Michele Redi and Andrea Tesi. Implications of a Light Higgs in Com-
posite Models. JHEP, 1210:166, 2012, arXiv:1205.0232.

[52] Andrea De Simone, Oleksii Matsedonskyi, Riccardo Rattazzi, and An-
drea Wulzer. A First Top Partner Hunter’s Guide. JHEP, 1304:004,
2013, arXiv:1211.5663.

[53] Roberto Contino and Geraldine Servant. Discovering the top partners
at the LHC using same-sign dilepton final states. JHEP, 0806:026,
2008, arXiv:0801.1679.

[54] Serguei Chatrchyan et al. Inclusive search for a vector-like T quark
with charge 2

3
in pp collisions at

√
s = 8 TeV. Phys.Lett., B729:149–

171, 2014, arXiv:1311.7667.

[55] Oleksii Matsedonskyi, Francesco Riva, and Thibaud Vantalon. Com-
posite Charge 8/3 Resonances at the LHC. JHEP, 1404:059, 2014,
arXiv:1401.3740.

http://arxiv.org/abs/hep-ph/0003129
http://arxiv.org/abs/1205.0770
http://arxiv.org/abs/1205.6434
http://arxiv.org/abs/0906.1542
http://arxiv.org/abs/1110.1613
http://arxiv.org/abs/hep-ph/0703164
http://arxiv.org/abs/1204.6333
http://arxiv.org/abs/1205.0232
http://arxiv.org/abs/1211.5663
http://arxiv.org/abs/0801.1679
http://arxiv.org/abs/1311.7667
http://arxiv.org/abs/1401.3740


BIBLIOGRAPHY 117

[56] Roberto Contino, David Marzocca, Duccio Pappadopulo, and Riccardo
Rattazzi. On the effect of resonances in composite Higgs phenomenol-
ogy. JHEP, 1110:081, 2011, arXiv:1109.1570.

[57] CMS Collaboration. Search for W’/technirho in WZ using leptonic
final states. 2013.

[58] The ATLAS collaboration. Search for a WZ resonance in the fully
leptonic channel using pp collisions at

√
s = 8 TeV with the ATLAS

detector. 2014.

[59] Duccio Pappadopulo, Andrea Thamm, Riccardo Torre, and Andrea
Wulzer. Heavy Vector Triplets: Bridging Theory and Data. 2014,
arXiv:1402.4431.

[60] Natascia Vignaroli. New W-prime signals at the LHC. Phys.Rev.,
D89:095027, 2014, arXiv:1404.5558.

[61] James Barnard, Tony Gherghetta, Anibal Medina, and Tirtha Sankar
Ray. Radiative corrections to the composite Higgs mass from a gluon
partner. JHEP, 1310:055, 2013, arXiv:1307.4778.

[62] Search for ttbar resonances in semileptonic final state. 2012.

[63] Adam Falkowski, Slava Rychkov, and Alfredo Urbano. What if the
Higgs couplings to W and Z bosons are larger than in the Standard
Model? JHEP, 1204:073, 2012, arXiv:1202.1532.

[64] Alfredo Urbano. Remarks on analyticity and unitarity in the presence
of a Strongly Interacting Light Higgs. 2013, arXiv:1310.5733.

[65] Mikhail A. Shifman, A.I. Vainshtein, M.B. Voloshin, and Valentin I.
Zakharov. Low-Energy Theorems for Higgs Boson Couplings to Pho-
tons. Sov.J.Nucl.Phys., 30:711–716, 1979.

[66] Bernd A. Kniehl and Michael Spira. Low-energy theorems in Higgs
physics. Z.Phys., C69:77–88, 1995, arXiv:hep-ph/9505225.

[67] M. Gillioz, R. Grober, C. Grojean, M. Muhlleitner, and E. Salvioni.
Higgs Low-Energy Theorem (and its corrections) in Composite Models.
JHEP, 1210:004, 2012, arXiv:1206.7120.

http://arxiv.org/abs/1109.1570
http://arxiv.org/abs/1402.4431
http://arxiv.org/abs/1404.5558
http://arxiv.org/abs/1307.4778
http://arxiv.org/abs/1202.1532
http://arxiv.org/abs/1310.5733
http://arxiv.org/abs/hep-ph/9505225
http://arxiv.org/abs/1206.7120


BIBLIOGRAPHY 118

[68] Pier Paolo Giardino, Kristjan Kannike, Isabella Masina, Martti Raidal,
and Alessandro Strumia. The universal Higgs fit. JHEP, 1405:046,
2014, arXiv:1303.3570.

[69] G. Belanger, B. Dumont, U. Ellwanger, J.F. Gunion, and S. Kraml.
Global fit to Higgs signal strengths and couplings and implications for
extended Higgs sectors. Phys.Rev., D88:075008, 2013, arXiv:1306.2941.

[70] Kingman Cheung, Jae Sik Lee, and Po-Yan Tseng. Higgcision Updates
2014. 2014, arXiv:1407.8236.

[71] Riccardo Barbieri, Alex Pomarol, Riccardo Rattazzi, and Alessandro
Strumia. Electroweak symmetry breaking after LEP-1 and LEP-2.
Nucl.Phys., B703:127–146, 2004, arXiv:hep-ph/0405040.

[72] Michael E. Peskin and Tatsu Takeuchi. A New constraint on a strongly
interacting Higgs sector. Phys.Rev.Lett., 65:964–967, 1990.

[73] Michael E. Peskin and Tatsu Takeuchi. Estimation of oblique elec-
troweak corrections. Phys.Rev., D46:381–409, 1992.

[74] Aleksandr Azatov, Roberto Contino, Andrea Di Iura, and Jamison Gal-
loway. New Prospects for Higgs Compositeness in h→ Zγ. Phys.Rev.,
D88(7):075019, 2013, arXiv:1308.2676.

[75] Christophe Grojean, Oleksii Matsedonskyi, and Giuliano Panico.
Light top partners and precision physics. JHEP, 1310:160, 2013,
arXiv:1306.4655.

[76] Riccardo Barbieri, B. Bellazzini, Vyacheslav S. Rychkov, and Alvise
Varagnolo. The Higgs boson from an extended symmetry. Phys.Rev.,
D76:115008, 2007, arXiv:0706.0432.

[77] M. Baak, M. Goebel, J. Haller, A. Hoecker, D. Kennedy, et al. The
Electroweak Fit of the Standard Model after the Discovery of a New
Boson at the LHC. Eur.Phys.J., C72:2205, 2012, arXiv:1209.2716.

[78] Max Baak and Roman Kogler. The global electroweak Standard Model
fit after the Higgs discovery. pages 349–358, 2013, arXiv:1306.0571.

http://arxiv.org/abs/1303.3570
http://arxiv.org/abs/1306.2941
http://arxiv.org/abs/1407.8236
http://arxiv.org/abs/hep-ph/0405040
http://arxiv.org/abs/1308.2676
http://arxiv.org/abs/1306.4655
http://arxiv.org/abs/0706.0432
http://arxiv.org/abs/1209.2716
http://arxiv.org/abs/1306.0571


BIBLIOGRAPHY 119

[79] Kaustubh Agashe, Roberto Contino, Leandro Da Rold, and Alex Po-
marol. A Custodial symmetry for Zb anti-b. Phys.Lett., B641:62–66,
2006, arXiv:hep-ph/0605341.

[80] Roberto Contino, Leandro Da Rold, and Alex Pomarol. Light custodi-
ans in natural composite Higgs models. Phys.Rev., D75:055014, 2007,
arXiv:hep-ph/0612048.

[81] Brian Batell, Stefania Gori, and Lian-Tao Wang. Higgs Couplings and
Precision Electroweak Data. JHEP, 1301:139, 2013, arXiv:1209.6382.

[82] Diego Guadagnoli and Gino Isidori. B(Bs → µ+µ−) as an electroweak
precision test. Phys.Lett., B724:63–67, 2013, arXiv:1302.3909.

[83] Nima Arkani-Hamed, Andrew G. Cohen, and Howard Georgi.
Electroweak symmetry breaking from dimensional deconstruction.
Phys.Lett., B513:232–240, 2001, arXiv:hep-ph/0105239.

[84] N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, T. Gregoire,
et al. The Minimal moose for a little Higgs. JHEP, 0208:021, 2002,
arXiv:hep-ph/0206020.

[85] Andreas Birkedal, Z. Chacko, and Mary K. Gaillard. Little super-
symmetry and the supersymmetric little hierarchy problem. JHEP,
0410:036, 2004, arXiv:hep-ph/0404197.

[86] Tuhin S. Roy and Martin Schmaltz. Naturally heavy superpartners
and a little Higgs. JHEP, 0601:149, 2006, arXiv:hep-ph/0509357.
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[89] Brando Bellazzini, Csaba Csáki, Antonio Delgado, and Andreas Weiler.
SUSY without the Little Hierarchy. Phys.Rev., D79:095003, 2009,
arXiv:0902.0015.

http://arxiv.org/abs/hep-ph/0605341
http://arxiv.org/abs/hep-ph/0612048
http://arxiv.org/abs/1209.6382
http://arxiv.org/abs/1302.3909
http://arxiv.org/abs/hep-ph/0105239
http://arxiv.org/abs/hep-ph/0206020
http://arxiv.org/abs/hep-ph/0404197
http://arxiv.org/abs/hep-ph/0509357
http://arxiv.org/abs/hep-ph/0510294
http://arxiv.org/abs/hep-ph/0510294
http://arxiv.org/abs/0805.2107
http://arxiv.org/abs/0902.0015


BIBLIOGRAPHY 120

[90] David Shih. Spontaneous R-symmetry breaking in O’Raifeartaigh mod-
els. JHEP, 0802:091, 2008, arXiv:hep-th/0703196.

[91] Piotr H. Chankowski, Adam Falkowski, Stefan Pokorski, and Jakub
Wagner. Electroweak symmetry breaking in supersymmetric mod-
els with heavy scalar superpartners. Phys.Lett., B598:252–262, 2004,
arXiv:hep-ph/0407242.

[92] Zurab Berezhiani, Piotr H. Chankowski, Adam Falkowski, and Stefan
Pokorski. Double protection of the Higgs potential in a supersym-
metric little Higgs model. Phys.Rev.Lett., 96:031801, 2006, arXiv:hep-
ph/0509311.

[93] Stephen P. Martin. A Supersymmetry primer. Adv.Ser.Direct.High
Energy Phys., 21:1–153, 2010, arXiv:hep-ph/9709356.

[94] Nima Arkani-Hamed, Gian F. Giudice, Markus A. Luty, and Riccardo
Rattazzi. Supersymmetry breaking loops from analytic continuation
into superspace. Phys.Rev., D58:115005, 1998, arXiv:hep-ph/9803290.

[95] J. Beringer et al. Review of Particle Physics (RPP). Phys.Rev.,
D86:010001, 2012.

[96] N. Seiberg. Electric - magnetic duality in supersymmetric non-
Abelian gauge theories. Nucl.Phys., B435:129–146, 1995, arXiv:hep-
th/9411149.

[97] Kenneth A. Intriligator and N. Seiberg. Duality, monopoles,
dyons, confinement and oblique confinement in supersymmetric
SO(N(c)) gauge theories. Nucl.Phys., B444:125–160, 1995, arXiv:hep-
th/9503179.

[98] Nima Arkani-Hamed and Hitoshi Murayama. Holomorphy, rescaling
anomalies and exact beta functions in supersymmetric gauge theories.
JHEP, 0006:030, 2000, arXiv:hep-th/9707133.

[99] G. Mack. All Unitary Ray Representations of the Conformal Group
SU(2,2) with Positive Energy. Commun.Math.Phys., 55:1, 1977.

[100] Matthew J. Strassler. The Duality cascade. pages 419–510, 2005,
arXiv:hep-th/0505153.

http://arxiv.org/abs/hep-th/0703196
http://arxiv.org/abs/hep-ph/0407242
http://arxiv.org/abs/hep-ph/0509311
http://arxiv.org/abs/hep-ph/0509311
http://arxiv.org/abs/hep-ph/9709356
http://arxiv.org/abs/hep-ph/9803290
http://arxiv.org/abs/hep-th/9411149
http://arxiv.org/abs/hep-th/9411149
http://arxiv.org/abs/hep-th/9503179
http://arxiv.org/abs/hep-th/9503179
http://arxiv.org/abs/hep-th/9707133
http://arxiv.org/abs/hep-th/0505153


BIBLIOGRAPHY 121

[101] Kenneth A. Intriligator, Nathan Seiberg, and David Shih. Dynam-
ical SUSY breaking in meta-stable vacua. JHEP, 0604:021, 2006,
arXiv:hep-th/0602239.

[102] Daniel Green, Andrey Katz, and Zohar Komargodski. Direct Gaugino
Mediation. Phys.Rev.Lett., 106:061801, 2011, arXiv:1008.2215.

[103] Ryuichiro Kitano, Hirosi Ooguri, and Yutaka Ookouchi. Direct Media-
tion of Meta-Stable Supersymmetry Breaking. Phys.Rev., D75:045022,
2007, arXiv:hep-ph/0612139.

[104] Clifford Cheung, Yasunori Nomura, and Jesse Thaler. Goldstini. JHEP,
1003:073, 2010, arXiv:1002.1967.

[105] Nathaniel Craig, John March-Russell, and Matthew McCullough. The
Goldstini Variations. JHEP, 1010:095, 2010, arXiv:1007.1239.

[106] Edward Witten. Constraints on Supersymmetry Breaking. Nucl.Phys.,
B202:253, 1982.

[107] Edward Witten. Toroidal compactification without vector structure.
JHEP, 9802:006, 1998, arXiv:hep-th/9712028.

[108] Ian Affleck, Michael Dine, and Nathan Seiberg. Dynamical Supersym-
metry Breaking in Supersymmetric QCD. Nucl.Phys., B241:493–534,
1984.

[109] Sidney R. Coleman. The Fate of the False Vacuum. 1. Semiclassical
Theory. Phys.Rev., D15:2929–2936, 1977.

[110] Malcolm J. Duncan and Lars Gerhard Jensen. Exact tunneling solu-
tions in scalar field theory. Phys.Lett., B291:109–114, 1992.

[111] Nima Arkani-Hamed and Riccardo Rattazzi. Exact results for non-
holomorphic masses in softly broken supersymmetric gauge theories.
Phys.Lett., B454:290–296, 1999, arXiv:hep-th/9804068.

[112] Markus A. Luty and Riccardo Rattazzi. Soft supersymmetry breaking
in deformed moduli spaces, conformal theories, and N=2 Yang-Mills
theory. JHEP, 9911:001, 1999, arXiv:hep-th/9908085.

http://arxiv.org/abs/hep-th/0602239
http://arxiv.org/abs/1008.2215
http://arxiv.org/abs/hep-ph/0612139
http://arxiv.org/abs/1002.1967
http://arxiv.org/abs/1007.1239
http://arxiv.org/abs/hep-th/9712028
http://arxiv.org/abs/hep-th/9804068
http://arxiv.org/abs/hep-th/9908085


BIBLIOGRAPHY 122

[113] Steven Abel, Matthew Buican, and Zohar Komargodski. Map-
ping Anomalous Currents in Supersymmetric Dualities. Phys.Rev.,
D84:045005, 2011, arXiv:1105.2885.

[114] Hsin-Chia Cheng and Yael Shadmi. Duality in the presence of su-
persymmetry breaking. Nucl.Phys., B531:125–150, 1998, arXiv:hep-
th/9801146.

[115] G. D’Ambrosio, G.F. Giudice, G. Isidori, and A. Strumia. Mini-
mal flavor violation: An Effective field theory approach. Nucl.Phys.,
B645:155–187, 2002, arXiv:hep-ph/0207036.

[116] Kaustubh Agashe, Gilad Perez, and Amarjit Soni. Flavor structure
of warped extra dimension models. Phys.Rev., D71:016002, 2005,
arXiv:hep-ph/0408134.

[117] Giacomo Cacciapaglia, Csaba Csáki, Jamison Galloway, Guido Maran-
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