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INTRODUCTION

Dynamics, from how a car moves up to the evolution of a quantum particle, are modelled in
general by differential equations. Control theory deals with dynamics where it is possible to
act on some part of the equation by means of controls, e.g., how to park a car or how to steer
a quantum particle to a desired state.

More precisely, a control system on a smooth manifold M is an ordinary differential equation
in the form

q(t) =f(q(t),u(t)), (1.0.1)

where u : [0, T] — U is an integrable and bounded function — called control — taking values in
some set U C R™, and f: M x U — TM is a continuous function such that f(-,u) is a smooth
vector field for each u € U. Thus, fixing a control and an initial point q¢, system (1.0.1) has a
unique maximal solution q..(t). Every curve y : [0, T] — M that can be written as solution of
system (1.0.1) for some control u and with starting point y(0), is said to be admissible.

With a control system it is possible to associate an optimal control problem. Namely, one
considers a cost | : (u, T) — [0,+00), where T > 0 and u € L*([0, T],R™). Then, given two
points do, q1 € M one is interested in minimizing the functional ] among all admissible
controls u € L*([0, T],R™), T > 0, for which the corresponding solution of (1.0.1) with initial
condition q,(0) = qo is such that q,,(T) = q;. This is written as

q(t) =f(q(t),u(t)),
q(0) =q1, q(T) = qq, (1.0.2)
J(u, T) — min.

The final time T can either be fixed, or free to be selected in a certain interval of time.

From the optimal control problem associated with a cost J, one defines the value function
V:MxM — [0,+00]. This is a function that associates to every pair of points qo, g1 € M
the infimum of the cost of controls admissible for the corresponding optimal control problem
(1.0.2). If there are no such controls, then V(qq, q1) = +o0.

The aim of this thesis is to study two different problems arising from control theory, re-
garding control-affine systems with unbounded controls, i.e.,, with U = R™. A control-affine
system on a smooth manifold M is a control system in the form

q(t) = folq(t)) + D_ wi(t)fi(q(t)), (1.0.3)
i=1

where, u : [0,T] — R™ is an integrable control function and {fy, fy,...,fm} is a family of
smooth vector fields. The vector fields fq,...,fn are called control vector fields, while g is



called the drift. For most of the dissertation we will consider as a cost J : (u, T) — [0,+00) the
L-norm of u. Namely we will be interested in the optimal control problem

q(t) =folq(t) + ) wi(t)fi(q(t),
i=1

0) = ’ T) = ’
q(0) = qo q(T) =q (1.0.4)

m
Zui(t)z dt — min.

i=1

T

H(u,T)=J

0

From a mathematical point of view, these systems describe the underlying geometry of
hypoelliptic operators, as we will see later. In applications, they appear in the study of many
mechanical systems, from the already mentioned car parking problem up to most kind of
robot motion planning, and recently in research fields such as mathematical models of human
behavior, quantum control or motion of self-propulsed micro-organism (see [ADLo8, BDJ " 08,
BCGoz2a]). A suggestive application of these systems and of hypoelliptic diffusions, in the
particular case where fy = 0, appeared in the field of cognitive neuroscience to model the
functional architecture of the area V1 of the primary visual cortex, as proposed by Petitot,
Citti, and Sarti [PTg9, Petog, CSo6].

We will focus on the following two general problems for these kind of systems.

1. Complexity of non-admissible trajectories. A common issue in control theory, used for ex-
ample in robot motion planning, is to steer the system along a given curve I'. Since, in
general, I is not admissible, i.e., it is not a solution of system (1.0.3), the best one can
do is to steer the system along an approximating trajectory. The first part of the thesis
is dedicated to quantify the cost of this approximation — called complexity — depending
on the relation between I" and (1.0.3). As a preliminary step, it is necessary to study the
value function associated with the optimal control problem (1.0.4), estimating its behavior
along the curve I'. This research appears in [Prai4, JP].

2. Singular diffusions. In the second part of the thesis we will focus on a class of two di-
mensional driftless control systems in the form (1.0.3), to which it is possible to asso-
ciate intrinsically a Laplace-Beltrami operator. Due to the control vector fields becoming
collinear on a curve Z, this operator will present some singularities. This research ap-
pears in [BP, BPS]. In [BP] our interest lies on how Z affects the diffusion dynamics. In
particular, we will try to understand if solutions to the heat and Schrodinger equations
associated with this Laplace-Beltrami operator are able to cross Z, and whether some heat
is absorbed in the process or not. On the other hand, in [BPS] we are interested in how
the presence of the singularity affects the spectral properties of the operator, in particular
under a magnetic Aharonov-Bohm-type perturbation. Recent results on this topic, that
have been part of the research developed during the PhD, but are not presented here, are
contained in the work in progress [PP].

The mathematical motivation of the problems considered in this thesis lies in sub-Riemannian
geometry. Thus, next section will be devoted to a short introduction to this topic. Our contri-
butions will then be described in Sections 1.2, 1.3.2, and 1.3.3, while Section 1.4 is devoted to
expose some open problems and future lines of research.



Other material that is related to these topics and that has been part of the research developed
during the PhD, but is not presented here, is contained in the following papers and preprints.

P1. U. Boscain, J.-P. Gauthier, D. Prandi and A. Remizov, Image reconstruction via non-isotropic
diffusion in Dubins/Reed-Shepp-like control systems, to appear on Proceedings of the 51th IEEE
Conference on Decision and Control, December 2014.

P2. R. Chertovskih, J.-P. Gauthier, D. Prandi and A. Remizov, Image reconstruction and hypoellip-
tic diffusion: new ideas — new results., in preparation.

P3. D. Prandi, Sobolev and BV integral differential quotients, in preparation.

1.1 SUB-RIEMANNIAN GEOMETRY

Sub-Riemannian geometry can be thought of as a generalization of Riemannian geometry,
where the dynamics is subject to non-holonomic constraints. Classically (see, e.g., [Mono2]), a
sub-Riemannian structure on M is defined by a smooth vector distribution A C TM —ie., a
sub-bundle of TM — of constant rank k and a Riemannian metric g defined on A. From this
structure, one derives the so-called Carnot-Carathéodory distance dsg on M: The length of any
absolutely continuous path tangent to the distribution — called horizontal — is defined through
the Riemannian metric, and the distance dsr(qo, q1) is then defined as the infimum of the
length of all horizontal paths joining q¢ to q7. If no such path exists, dsr(qo,q1) = +oo.
Locally, it is always possible to find an orthonormal frame {fy, ..., fm} for A. This allows to
identify horizontal trajectories with admissible trajectories of the non-holonomic control system

q(t) =) wi(t)fi(q(t)). (1.1.1)
i=1

The problem of finding the shortest curve joining two fixed points qo, q1 € M is then naturally
formulated as the optimal control problem

q(t) =) ui(t)fi(q(t),
i=1

q0) =q1,  q(T) =4z,

T m
I, T) = L . Z u;(t)2 dt — min.
i=1

With this point of view, the Carnot-Carathéodory distance is the value function associated with
(1.1.2).

This framework is however more general than classical sub-Riemannian geometry. Indeed,
choosing f1,...,fm to be possibly non-linearly independent, this optimal control formulation
allows to define sub-Riemannian structures endowed with a rank-varying distribution A(q) =
span{f1(q),...,fm(q)}. Namely, it is possible to define a Riemannian norm on A(q) as

(1.1.2)

m
[vllq = min {|u| lv= Zuifi(q)} , forany v e A(q),

i=1



=

from which the metric g, follows by polarization. Through this metric we obtain the Carnot-
Carathéodory distance, coinciding with the value function of the optimal control problem
associated with the non-holonomic control system, as in the classical case. Since it well known
that every distribution can be globally represented as the linear span of a finite family of
(possibly not linearly independent) vector fields (see [Suso8, ABB12a, DLPR12]), it is always
possible to represent globally a sub-Riemannian structure as a non-holonomic system.

Although it is outside the scope of the following discussion, we remark that this control
theoretical setting can be stated in purely geometrical terms, as done in [ABB12a].

1.1.1 Metric properties

Once the Carnot-Carathéodory distance is defined, the first natural question is: is it finite? This
amounts to ask if every pair of points of M is joined by an horizontal curve. This property, in
the control theoretic language, is known as controllability or accessibility.

A partial answer (for analytic corank-one distributions) can be found in Carathéodory paper
[Carog] on formalization of classical thermodynamics, where the role of horizontal curves is
roughly taken by adiabatic processes’. However it is not until the 30’s, that Rashevsky [Ras38]
and Chow [Cho39] independently extendend Carathéodory result to a general criterion for
smooth distributions. The key assumption of this theorem is the Hormander condition (or Lie
bracket-generating condition) for A, i.e., that the Lie algebra generated by the horizontal vector
fields spans at any point the whole tangent space.

Theorem 1.1.1 (Chow-Rashevsky Theorem). Let M be a connected sub-Riemannian manifold, such
that A satisfies the Hormander condition. Then, the Carnot-Carathéodory distance is finite, continuous,
and induces the manifold topology.

Heuristically, the Chow-Rashevsky theorem is a consequence of the fact that, in coordinate
representation,

e Yoe tfoet9oetf(q) = q+t2[f, gl(q) + o(t?). (1.1.3)

Iterating this procedure shows that, if the Lie bracket-generating condition is satisfied, it is
possible to move in every direction and hence to connect every couple of points on M.

Let us remark that the converse is not true without assuming M and A to be analytic (see
[Nag66]). From now on, we will always assume the Lie bracket-generating condition to be
satisfied.

Although finite, the Carnot-Carathéodory distance presents a quite different behavior than
the Riemannian one. It is a basic fact of Riemannian geometry that small balls around a fixed
point are, when looked in coordinates, roughly Euclidean. This isotropic behavior is essentially
due to the fact that geodesics tangent vectors are parametrized on the Euclidean sphere in the
tangent space. In sub-Riemannian geometry this is no more true, and as a consequence the
Carnot-Carthéodory distance is highly anisotropic. Indeed, in order to move in directions
that are not contained in the distribution, it is necessary to construct curves like (1.1.3). This
suggest that the number of brackets we have to build to attain a certain direction is directly
related to the cost of moving in that direction.

Indeed, the proof of this fact relies on the theory of Carnot cycles. This is why the sub-Riemannian distance is known
as “Carnot-Carathéodory” distance.



In order to exploit this fact, it is necessary to choose an appropriate coordinate system. Let
A" = A and define recursively AST! = AS +[AS,Al, for every s € N. By the Hérmander
condition, the evaluations of the sets A® at q form a flag of subspaces of T4M,

A'(q) C A*(q) C...C AT(q) = TqM. (1.1.4)

The integer r = 1(q), which is the minimum number of brackets required to recover the whole
TqM is called degree of non-holonomy (or step) of A at q. Finally, let wy < ... < wy be the
weights associated with the flag, defined by w; = s if dim ASTT (q) <1< dimA®(q), setting
dim Ao(q) = 0. A system of coordinates z = (z1,...,zn) at q is privileged whenever the non-
holonomic order of z; is exactly w; —i.e., if fi, --- i, zi = 0 for any {iy,...,in,} C{1,...,m}
but f;, ---fi,, fi,, ,zi # 0 for some {iy,... ,iwi,iwﬁf} C {1,...,m}. In particular, any system
of privileged coordinates at q induces a splitting of the tangent space as a direct sum,

TyM =AN(q) @ A%(q)/ A (q) @ ... &A™ (q)/ A" " (q),

iw;

where each A%(q)/ A% '(q) is spanned by 9,[q with w; = s.
Starting from the 80’s, various authors exploited privileged coordinates to obtain the fol-
lowing result, showing the strong anisotropy of the Carnot-Carathéodory distance. For early

versions see [NSW85, Gergo, Grog6], while a general and detailed proof can be found in [Belg6].

Theorem 1.1.2 (Ball-box Theorem). Let z = (z1,...,zn) be a system of privileged coordinates at
q € M. Then, there exist C, eq > 0 such that for any € < €, it holds

Box (és) C Bsr(q, €¢) € Box (Ce).

Here, we let Bsr(q, €) be both the sub-Riemannian ball of radius € > O centered in q and its coordinate
representation z(Bsr(q, €)). Moreover, we let

Box(e) ={x € R™ | [x;] < e™i}. (1.1.5)

An immediate consequence of this theorem is the Holder equivalence of the Carnot-Carathéodory
distance and the Euclidean one. Namely, in any coordinate system centered at q and for q’
sufficiently close to g, it holds

9’ —ql S dsr(q,q") S g’ —qI (1.1.6)

Here we used “<” to denote an inequality up to a multiplicative constant.

As a consequence of the anisotropy of the distance, the Hausdorff dimension of a sub-
Riemannian manifold is different from its topological dimension. A point q is said to be
regular if dim A® is constant near q for any 1 < s < r. If every point is regular, then the sub-
Riemannian manifold is said to be equireqular. This allows to prove the following celebrated
theorem [Mit85].

Theorem 1.1.3 (Mitchell’s measure theorem). The Hausdorff dimension dimgC M of a sub-Riemannian
manifold at a reqular point q is given by

T
dim3M =} s(dim A®(q) —dim A" '(q)).
s=1
In particular, if dim A(q) < dim M, then dim M < dimgf M. Moreover, the (dimgc M)-dimensional
Hausdorff measure is absolutely continuous with respect to any smooth volume, near q.



The theorem has been proved only at regular points since near these points the Ball-Box
Theorem holds with uniform constants. See [G]13] for some more general results in this
direction.

1.1.2  The sub-Laplacian

A differential operator P is hypoelliptic if for any a : U C M — R it holds that Pa € C*(U)
implies a € C*®(U). The deep connection between second-order hypoelliptic operators and
sub-Riemannian geometry became evident after the celebrated work [Hor67]. In this paper,
Hormander proved that the Lie bracket-generating condition is sufficient for the hypoellipticity
of a second order differential operators with local expression

m
L= Z 2 + “first-order terms”,
i=1
where the fi’s are first-order differential operators. Then, interpreting {fy,...,fm} as a family
of vector fields, it is possible to define a sub-Riemannian structure on M.
The operator £ = Y ™, f# is commonly called the sub-Laplacian on M associated with the
frame {fy, ..., fm}. From a sub-Laplacian it is possible to recover the Carnot-Carathéodory met-

ric dgg defined by the frame. In fact, letting the sub-Riemannian gradient Viyu =Y I, fiu, it
holds that

dsg (4o, q1) = sup {u(x) —uly) | w € CX(M) and | Vuuf? < Tae.},

where |Vyul2 = >y (fiw)2. This has allowed to find many estimates on the fundamental
solution of £ in terms of the associated Carnot-Carathéodory distance (see, e.g., [FS74, RS76]),
and was at the origin of the renovated interested in sub-Riemannian geometry in the 70’s
[Gavy7].

However, the correspondence between hypoelliptic operators and sub-Riemannian mani-
folds is not one-to-one. Indeed, it is easy to check that the sub-Riemannian gradient does
not depend on the family of vector fields {fy,...,fm}, but is intrinsically defined by the sub-
Riemannian structure>. On the other hand, the sub-Laplacian £ associated with a different
family of vector fields {g1,...,gm}, generating the same distribution, differs from £ by a first-
order differential operator. Thus, the same sub-Riemannian structure is associated with differ-
ent sub-Laplacians.

Since we are interested in having a diffusion operator intrinsically associated with the sub-
Riemannian structure, we have to resolve this ambiguity. The same problem arises in Rie-
mannian geometry, when defining the Laplace-Beltrami operator, and it is resolved through
the Green identity. We will proceed in the same way. Namely, instead of defining the sub-
Laplacian through a local frame of the distribution, we consider a global smooth volume form
dy, and let the sub-Laplacian £ to be the only operator satisfying the Green identity:

—J f(Lg)du= J g(Vuf, Vig)dy, for any f,g € CZ(M). (1.1.7)
M M

Hence, in order to have an intrinsically-defined sub-Laplacian, one needs the volume du to be
intrinsically defined by the geometric structure of the manifold.

Indeed, the sub-Riemannian gradient of u is the only vector field such that g q (Vau(q),v) =du(v),forany g € M
and v € A(q).



In the Riemannian case this problem is readily settled. Indeed, on any Riemannian man-
ifold there are three common ways to define an intrinsic volume: The Riemannian metric
defines the Riemannian volume, with coordinate expression dV = ,/gdx; /A --- /A dx;, while
the Riemannian distance allows to define the n-dimensional Hausdorff and spherical Haus-
dorff volumes. Since these three volumes are proportional up to a constant (see, e.g., [Fed69]),
they are equivalent for the definition of the Laplace-Beltrami operator through (1.1.7).

In the sub-Riemannian setting, through the sub-Riemannian structure it is possible to define
an intrinsic measure — called Popp measure — that plays the role of the Riemannian volume, and
which is smooth if M is equiregular. In the equiregular case, by Theorem 1.1.3, we have at our
disposal also the (dim”f M)-dimensional Hausdorff measure and spherical Hausdorff measure,
which are commensurable one with respect to the other (see, e.g., [Fed69]) and are absolutely
continuous with respect to the Popp measure. Recent results [ABB12b], have however proved
that the density of the Hausdorff measures with respect to the Popp measure is not, in general,
smooth. Thus these measures define different intrinsic sub-Laplacians. When the manifold is
not equiregular, moreover, these sub-Laplacians can present terms that diverge near singular
points, as we will discuss in the next section.

This said, considering sub-Riemannian manifolds endowed with additional structure can re-
solve this ambiguity. For example, for left-invariant sub-Riemannian structures, i.e., Lie groups
equipped with a left-invariant distribution and metric, both the Popp and the Hausdorff mea-
sures are left-invariant and hence Haar measures. The uniqueness up to a constant of Haar
measures, allows then to define the sub-Laplacian through (1.1.7), as studied in [ABGRog].

1.2 COMPLEXITY OF CONTROL-AFFINE MOTION PLANNING

The concept of complexity was first developed for the non-holonomic motion planning prob-
lem in robotics. Given a control system on a manifold M, the motion planning problem
consists in finding an admissible trajectory connecting two points, usually under further re-
quirements, such as obstacle avoidance. If a cost function is given, it makes sense to try to
find the trajectory costing the least. This study is critical for applications. As examples we
cite: mechanical systems with controls on the acceleration (see e.g., [BLos], [BLS10]) where the
drift is the velocity, or quantum control (see e.g., [D’A08], [BMo6]), where the drift is the free
Hamiltonian.

Different approaches are possible to solve this problem (see [LSL98]). Here we focus on
those based on the following scheme:

1. find any (usually non-admissible) curve or path solving the problem,

2. approximate it with admissible trajectories.

The first step is independent of the control system, since it depends only on the topology of
the manifold and of the obstacles, and it is already well understood (see [SS83]). In the first
part of this thesis, we are interested in the second step, which depends only on the local nature
of the control system near the path. Our goal is to understand how to measure the complexity
of the approximation task for control-affine systems. Namely, we are interested in systems in
the form

q(t) = folq(t) + ) wi(t)filq(t), (1.2.1)
i=1



By complexity we mean a function of the non-admissible curve I' C M (or path vy : [0, T] = M),
and of the precision of the approximation, quantifying the difficulty of the latter by means of
the cost function.

The following two sections will be dedicated to some generalities on systems of the form
(1.2.1) and to the preliminary results contained in [Prai4], respectively. These results are es-
sential for the study of the complexity carried out in Section 1.2.3, where we will present the
results contained in [JP].

1.2.1  Control-affine systems

It has been known since the the 70’s that under the strong Hormander condition, i.e., if {fy,...,fm}
satisfies the Hormander condition, and with unbounded controls, systems in the form (1.2.1)
are controllable. Such a result is proved for example in [BLy5], considering (1.0.3) as a per-
turbation of a non-holonomic control system. From now on, we will always assume the
strong Hormander condition to be satisfied. Such assumption is generically satisfied, e.g.,
by finite-dimensional quantum control systems with two controls, as the ones studied in
[BCo4, BCGo2a, DDo1].

Although out of the scope of the present work, we have to mention that from as early as the
60’s the problem of controllability of such systems under the Hérmander condition - i.e., that
the Lie algebra generated by the drift and the control vector fields spans the whole tangent
space at any point — has been subject to a lot of attention, see for example [Kal6o, Her64, BL75,
Sus82]. In particular, the main focus has been the so-called small time local controllability around
an equilibrium point, i.e., if given an equilibrium point ¢ € M and any time T > 0 the end-
points of admissible trajectories defined on [0, T] and starting from q cover a neighborhood of
q. This problem is important, for example, in the context of quasi-static motions for robots
with controls on the acceleration. For a review on results obtained in this direction see e.g.,
[Kawgo].

System (1.2.1) can be seen, from a geometrical point of view, as a generalization of sub-
Riemannian geometry, where the distribution A(q) is replaced by the affine distribution fo(q) +
A(q). Thus, in addition to the L' cost J considered in (1.0.4), it makes sense to study also the
cost

that measures the “Riemannian” length of admissible curves. We then fix a time 7 > 0 and
consider the two value functions V? (go0,9q1) and Vj(qo, d1) as the infima of the costs g and J,
respectively, over all controls steering system (1.0.3) from qo to q7 in time T < 7. Contrarily
to what happens in sub-Riemmanian geometry with the Carnot-Carathéodory distance, these
value functions are not symmetric, and hence do not induce a metric space structure on M. In
fact, system (1.2.1) is not reversible —i.e., changing orientation to an admissible trajectory does
not yield an admissible trajectory.

The reason for introducing a maximal time of definition for the controls — not needed in the
sub-Riemannian context — is that, by taking T sufficiently small, it is possible to prevent any
exploitation of the geometry of the orbits of the drift (that could be, for example, closed). Let
us also remark that, since the controls can be defined on arbitrarily small times, it is possible to



approximate admissible trajectories via trajectories for the sub-Riemannian associated system
(i.e., the one obtained by posing fyo = 0 in (1.0.3)) rescaled on small intervals.

1.2.2  Holder continuity of the value function

The work [Pra14], is dedicated to generalize the Chow-Rashewsky theorem and the Ball-box
theorem to system (1.0.3) with the cost J. This is a technical but essential result for the under-
standing of complexities, as we will see in the following section. Indeed, the first result we
obtain is a global continuity result for the value function.

Theorem 1.2.1. For any 0 < T < +oo, the function VI : M x M = [0, +00) is continuous. Moreover,
letting dggr be the sub-Riemannian distance induced by {f1,...,fm}, it holds

J n < : tfo / /
Vi(q,q") < Og}lgdeR(e q,9"),  foranyq,q € M.

Letting R¢ (q, ) be the reachable set from q with cost g less than ¢, Theorem 1.2.1 shows
that

|J Bsr(e*oq,e) Ry, (q,e). (1.2.2)
0<t<T

Thus, the cost to steer the sub-Riemannian system from one point to another is always larger
or equal than the cost to steer the control-affine system between the same points. Moreover,
the fact that in coordinates it holds

etfoef o etfot et (q) = 2tfo(q) + telfo, f11(q) + o(et),

suggests that exploiting the drift it is actually possible to move more easily in some directions.
Indeed, we will prove that this is the case, but only on very special directions realized as
brackets of the drift with the control vector fields. Although this will not suffice to improve
(1.2.2), we will be able to obtain a ball-box-like estimation of the reachable set from the outside.

Assume that the drift is regular, in the sense that there exists s € IN such that fo C A® \ASTT,
where A® is defined through the vector fields {f;,...,fm} as in the sub-Riemannian case. In
particular, this allows to build systems of privileged coordinates rectifying fo. Let {9, };* ; be
the canonical basis of R™ such that 9., be the coordinate expression of fy, and consider the
following sets:

=) = U (£9z, +Box(m))

0<EST

Mn) = U ZE€R™: |z2g— & <n®, [zl <™ +nE s forwy <s, ik,
0<ELT 1
and |z;i] <+ &5)ViT for wy > s},

In particular, observe that TT(n) is contained in Box(n), defined in (1.1.5), and that TT(n) N{z, <
0} = Box(n) N{z¢ < 0}. We then get the following generalization of the Ball-Box theorem



Theorem 1.2.2. Let z = (z1,...,2n) be a system of privileged coordinates at q for {f1,...,fm],
rectifying fo as the k-th coordinate vector field 0, for some 1 < { < n. Then, there exist C,ep, To > 0
such that, if the maximal time of definition of the controls satisfies T < Ty, it holds

= (ée) C Ry, (q,¢) CTI(Ce), for e < gop. (1.2.3)

Here, with abuse of notation, we denoted by R (q, €) the coordinate representation of the reachable set.

This theorem represent the key step for generalizing the estimates on the complexity of
curves from sub-Riemannian control systems to control-affine systems.

Finally, as in the sub-Riemannian case, as a consequence of Theorem 1.2.2 we get the follow-
ing local Holder equivalence between the value function and the Euclidean distance.

Theorem 1.2.3. Let z = (z1,...,2n) be a system of privileged coordinates at q for {f1,...,fm],
rectifying fo as the k-th coordinate vector field 9,,, for some 1 < € < n. Then, there exist Ty, g9 > 0
such that, if the maximal time of definition of the controls satisfies T < To and VI(q,q’) < eo, it holds

1
dist (2(q"), z(e* 7)) < V7(q,q") < dist (2(q"), 2(el*Toq)) "

Here for any x € R™ and A C R™, dist(x, A) = infyc A [x —y| denotes the Euclidean distance between
them and v is the degree of non-holonomy of the sub-Riemannian control system defined by {f1, ..., fm}.

In this result, instead of the Euclidean distance from the origin that appeared in (1.1.6), we
have the distance from the integral curve of the drift. This is due to the fact that moving in
this direction has null cost.

It is worth to mention that these results regarding control-affine systems are obtained by
reducing them, as in [AL10], to time-dependent control systems in the form

qt)=> w(t)fi(qt)), ae telo,T], (1.2.4)
i=1

where ffl‘ = (e tfo),f; is the pull-back of f; through the flow of the drift. On these systems,
that are linear in the control, we are able to define a good notion of approximation of the control
vector fields. Namely, we will define a generalization of the nilpotent approximation, used in
the sub-Riemannian context, taking into account the fact that in system (1.2.4), exploiting the
time, we can generate the direction of the brackets between fy and the fjs. This approximation
and an iterated integral method yield fine estimates on the reachable set.

1.2.3 Complexity and motion planning

The core of the first part of the thesis is [JP], in collaboration with F. Jean. Here, we focus
on extending the concept of complexity, already introduced in the sub-Riemannian setting by
Gromov [Grog6, p. 278] and Jean [Jeao1a], to the control-affine case, and to give weak estimates
of these quantities.

Heuristically, the complexity of a curve I' (or path y : [0, T] = M) at precision ¢ is defined as
the ratio

“cost” to track I" at precision &
“cost” of an elementary e-piece’

(1.2.5)
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Figure 2: Tubular approximation complexity

Bsr(v(t), €)
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Figure 4: Neighboring approximation com-
plexity

Figure 3: Time interpolation complexity

In order to obtain a precise definition of complexity, we need to give a meaning to the no-
tions appearing above. Namely, we have to specify what do we mean by “cost”3, tracking at
precision ¢, and elementary e-piece. Indeed, these choices will depend on the type of motion
planning problem at hand.

First of all, we classify motion planning problems as time-critical or static, depending on
wether the constraints depend on time or not. The typical example of static motion planning
problem is the obstacle avoidance problem with fixed obstacles. On the other hand, the same
problem where the position of the obstacles depends on time, or the rendez-vous problems,
are examples of time-critical motion planning problems.

For static motion planning problems, the solution of the first step of the motion planning
scheme (introduced at the beginning of the paper) is usually given as a curve, i.e., a dimension
1 connected submanifolds of I' C M diffeomorphic to a closed interval. On the other hand,
in time-critical problems we have to keep track of the time. Thus, for this type of problems,
the solution of the first step is a path, i.e., a smooth injective function vy : [0,T] — M. As
a consequence, when computing the complexity of paths we will require the approximating
trajectories to respect also the parametrization, and not only the geometry, of the path. While
in the sub-Riemannian case, due to the time rescaling properties of the control system, these
concepts coincide, this is not the case for control-affine systems.

In this thesis, we consider four distinct notions of complexity, two for curves (static problems)
and two for paths (time-critical problems). In both cases, one of the two will be based on the
interpolation of the given curve or path, while the other will consider trajectories that stays

The cost appearing in (1.2.5) is not necessarily related with the cost function (J or J) taken into account. This is the
reason for the quotation marks.



near the curve or path. Thus, for this complexity, we will need to fix a metric. In this work
we will consider only the sub-Riemannian metric of the associated sub-Riemannian control
system (obtained by putting fo = 0 in (1.2.1)).

We remark that the two complexity for curves are the same as the sub-Riemannian ones
already introduced in [Grog6, Jeaoia]. This is true also for what we call the neighboring
approximation complexity of a path, since in the sub-Riemannian case it coincides with the
tubular approximation complexity. On the other hand, what we call the interpolation by time
complexity never appeared in the literature, to our knowledge. Here, we define them for the
cost J, but the same definitions holds for J.

Fix a curve I'. Then, denoting by g, the trajectory associated with a control u and with
starting point q.(0) = x, we define for any ¢ > 0 the following complexities.

o Interpolation by cost complexity: (see Figure 1) For ¢ > 0, let an e-cost interpolation of T to
be any control u € U such that there exist 0 =t < t; < ... < ty =T < T for which
the trajectory q, with initial condition q,,(0) = x satisfies q.(T) =y, qu(ti) € T and
H(u\[tH,ti),ti —ti_1) <¢ foranyi=1,...,N. Then, let

int

1
I (Ie) = - inf {J(u, T) | qu is an e-cost interpolation of T'}.

This function measures the number of pieces of cost € necessary to interpolate I'. Namely,
following a trajectory given by a control admissible for Z?nt(l", €), at any given moment it

is possible to go back to I' with a cost less than e.

o Tubular approximation complexity: (see Figure 2) Let Tube(T, €) to be the tubular neighbor-
hood of radius € around the curve I' w.r.t. the small sub-Riemannian system associated
with (1.2.1) (obtained by putting fy = 0), and define

1 0<TKT,
23T e) = Sinf Q3w T) | qu(0) =x, qu(T) =1y,
qu ([0, T]) C Tube(T, ¢)

This complexity measures the number of pieces of cost ¢ necessary to go from x to y
staying inside the sub-Riemannian tube Tube(T, €). Such property is especially useful for
motion planning with obstacle avoidance. In fact, if the sub-Riemannian distance of I'
from the obstacles is at least ¢y > 0, then trajectories obtained from controls admissible

for ngp(]", €), € < g9, will avoid such obstacles.

We then define the following complexities for a path y : [0, T = M at precision ¢ > 0.

o Interpolation by time complexity: (see Figure 3) Let a b-time interpolation of v to be any
control u € L*([0, T, R™) such that its trajectory q., : [0, T] — M with g (0) = y(0) is
such that g (T) = y(T) and that, for any interval [to,t1] C [0, T] of length t; —ty < 5,
there exists t € [tg, t1] with g (t) =y(t). Then, fix a 6o > 0 and let

Gy, €) = inf{T ’

5 €(0,80) and exists u € L*([0, T],R™), }
)

5-time interpolation of v, s.t. 6 J(u, T) < ¢

Controls admissible for this complexity will define trajectories such that the minimal
average cost between any two consecutive times such that y(t) = q(t) is less than ¢. It
is thus well suited for time-critical applications where one is interested in minimizing the
time between the interpolation points - e.g. motion planning in rendez-vous problem.



e Neighboring approximation complexity: (see Figure 4) Let Bsr(p, €) denote the ball of radius
e centered at p € M w.r.t. the small sub-Riemannian system associated with the control-
affine system, and define

1. (0) =x, qu(T) =y, }

J _ qu qu Y

o ,e)=—-inf<{J(u, T .

fptr:e) = int{atu, | 0 25 0 5 %

This complexity measures the number of pieces of cost ¢ necessary to go from x to y
following a trajectory that at each instant t € [0, T] remains inside the sub-Riemannian
ball Bsr(v(t),€). Such complexity can be applied to motion planning in rendez-vous
problems where it is sufficient to attain the rendez-vous only approximately.

We remark that for the interpolation by time complexity the “cost” in (1.2.5) is the time,
while for all the other complexities it is the cost function associated with the system. For
the motivation of the bound on & in the definition of the interpolation by time complexity,
see Remark 4.3.3. Finally, whenever a metric is required, we use the sub-Riemannian one.
Although such metric is natural for control-affine systems satisfying the Hérmander condition,
nothing prevents from defining complexities based on different metrics.

Two functions f(e) and g(e), tending to co when ¢ | 0 are weakly equivalent (denoted by
f(e) < g(e)) if both f(e)/g(e) and g(e)/f(e), are bounded when ¢ | 0. When f(e)/g(e) (resp.
g(e)/f(e)) is bounded, we will write f(e) < g(e) (resp. f(e) = g(e)). In the sub-Riemannian
context, the complexities are always measured with respect to the L'cost of the control, J.
Then, for any curve I' C M and path v : [0, T] — M such that y([0, T]) = T it holds zﬂu(r, g) <
Zop(Tre) < 0dpp (v, €).

Let us remark that in the sub-Riemannian setting the asymptotic behavior of o(I',¢) as € | 0
is strictly related with the Hausdorff dimension dim”‘ . A complete characterization of weak
asymptotic equivalence of metric complexities of a path is obtained in [Jeao3]. We state here
this result in the special case where M is an equiregular sub-Riemannian manifold.

Theorem 1.2.4. Let M be an equiregular sub-Riemannian manifold and let T C M be a curve. Then,
if there exists k € IN such that TqT" C Ak(q) \ AR (q) for any q € T, it holds

1
Zint(r/ 8) = Zalgp(r, 8) = £7k
In particular, this implies that
dim”* I = k.

Here, similarly to what happened in Theorem 1.1.3, the equiregularity is needed in order
to have a uniform Ball-Box theorem near I'. Indeed, to get the general result of [Jeao3], it is
necessary to use a finer form of the Ball-Box theorem that holds uniformly around singular
points, proved in [Jeao1b].

We mention also that for a restricted set of sub-Riemannian systems, i.e., one-step bracket
generating or with two controls and dimension not larger than 6, strong asymptotic estimates
and explicit asymptotic optimal syntheses are obtained in a series of papers by G