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Summary 

 

TMEM16B, also known as anoctamin 2 has been recently identified as a 

calcium-activated chloride channel. It is expressed at the synaptic terminals of 

photoreceptors, in hippocampal cells, in the cilia of olfactory sensory neurons and in 

the microvilli of vomeronasal sensory neurons. TMEM16B, as its most known cousin 

TMEM16A, is activated both by calcium and voltage. When this thesis was started 

there was no available data correlating the gating function and protein structure in 

TMEM16B.  

In our first manuscript, we show a coupling between calcium and voltage in 

TMEM16B activation. Primary sequence analysis did not show any canonical calcium 

binding sites nor S4-like dedicated voltage sensors. However, the first intracellular 

loop contains several negatively charged amino acids. We performed site directed 

mutagenesis at 367E, and 386EEEEE390 in the first intracellular loop and investigated 

their role in calcium or voltage dependence of TMEM16B. Either neutralizing or 

deleting these acidic residues strongly shifted the conductance-voltage relation 

towards more positive voltages without a significant effect on the apparent calcium 

sensitivity. Our findings indicate involvement of glutamic acids from the first 

intracellular loop in voltage dependent activation of TMEM16B, and provides an 

initial structure-function study for this channel. 

In our second manuscript, we focused on understanding the effect of permeant anions 

on TMEM16B activation. Our results show TMEM16B is poorly selective among 

anions and has a permeability sequence of SCN- > I- > NO3
- > Br- > Cl- > F- > 

gluconate. The channel kinetics also shows dependence on the permeant anion, with 

more permeable anions, such as SCN-, causing a much slower activation and 

deactivation kinetics than Cl-. Moreover, SCN-  facilitated the channel activation by 
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lowering the half-maximal concentration of calcium required for opening the channel 

and shifting the conductance-voltage relation towards less positive voltages. From this 

work we report the existence of a crosstalk between calcium, voltage and permeant 

anion in TMEM16B activation. 

Furthermore, we looked for a compound that could modulate the function of 

TMEM16B. We found that anthracene-9-carboyxlic acid, one of the traditional 

calcium-activated chloride channel blockers is very interesting since it had multiple 

effects on TMEM16B. In our third manuscript we report the block by A9C as voltage 

and concentration dependent, with maximal inhibition at positive voltages. 

Surprisingly, A9C also potentiated the current at intermediate concentrations and 

negative voltages. However, anthracene-9-methanol (A9M), a non-charged analog of 

A9C, completely abolished the voltage dependent inhibition and the potentiation effect 

seen with A9C. Both A9C and A9M had much slower current kinetics. This indicates 

the requirement of negative charge of A9C for its voltage dependent block of outward 

currents and potentiation of inward currents. 

In summary, the studies included in this thesis reveal a complex coupling between 

calcium, voltage, and permeant anion in TMEM16B activation. The identification of a 

compound have contrasting effects on the channel activation, provides a new tool for 

future structure-function studies on this channel.   
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1. Introduction 

 

1.1 Anion channels 

Anion channels are integral membrane proteins that allow the passive 

diffusion of negatively charged ions along their electrochemical gradient. Since 

chloride ions are the most abundant permeant physiological anions these channels 

mostly mediate chloride current and are often called chloride channels. Unlike most 

cation channels which often show high selectivity for a specific ion, chloride 

channels are less selective and allow passage of other anions including halides such 

as I-, Br-, NO3
-, the pseudohalide SCN-

, and also HCO3
-.  

Chloride channels have important roles in regulating electrical excitability, cell 

volume regulation, transepithelial salt transport, smooth muscle contraction and pH 

regulation. Mammalian chloride channels can be broadly categorized into five classes 

based on their regulation as follows (Verkman and Galietta, 2009; Table-1 in Ferrera 

et al., 2011b): Cystic fibrosis transmembrane conductance regulator (CFTR); voltage-

gated or swelling activated chloride channel (CLC); ligand-gated chloride channel 

(GABA(γ-amiobutyric acid) and glycine-activated); volume-regulated chloride 

channel (VRAC); and calcium-activated chloride channel (CaCC). Physiological 

relevance of these chloride channels were appreciated from studies on various 

inherited diseases and knock-out mouse models (for detailed review Jentsch et al., 

2002; Planells-Cases and Jentsch, 2009; Verkman and Galietta, 2009; Duran et al., 

2010).  

 

 

 



 Introduction 
 

2 
 

1.2 Calcium activated chloride channels (CaCCs) 

CaCCs are activated by an increase in cytosolic calcium. CaCCs were first 

observed in Xenopus oocytes in early 1980`s, where an increase in cytosolic calcium 

upon egg’s fertilization results in rapid chloride efflux through CaCCs, which 

depolarizes the membrane and prevents polyspermy (Miledi, 1982). Later the 

discovery of CaCCs in rod inner segments from salamander retina indicated a 

possible role in sensory processing (Bader et al., 1982). CaCCs were subsequently 

observed in several other cell types like neurons, various epithelial cells, olfactory 

and photo-receptors, muscle cells in cardiac, smooth and skeletal tissue. In line with 

their widespread expression, CaCCs show physiological relevance in epithelial 

secretion, membrane excitability in cardiac muscle and neurons, olfactory 

transduction, regulation of vascular tone, modulation of photoreceptors and several 

other processes (for detail review  Hartzell et al., 2005; Eggermont, 2004; Duran and 

Hartzell, 2011; Ferrera et al., 2011b; Huang et al., 2012a; Kunzelmann et al., 2012). 

 

1.2.1 Biophysical properties of CaCCs  

CaCCs show significant variations among different cell types. At the same 

time share some common biophysical properties: (Huang et al., 2012a) 

 They are activated by an increase in cytosolic calcium with half maximal 

concentration for activation in the submicromolar range, although the exact 

value varies among cell types. 

 At low cytosolic calcium the I-V relation is outward rectifying, while at 

higher cytosolic calcium it becomes linear. 

 The channel allows permeation of larger anions and displays a selectivity 

sequence of NO3
- > I- > Br- > Cl- > F-.  

 They are inhibited by some of the traditional chloride channel blockers such 

as DIDS, NPPB, tamoxifen, NFA and A9C (Table 1. in Frings et al., 2000) 
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Figure 1.1 illustrates the native CaCCs recorded from Xenopus oocytes and 

mammalian cells. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 1.1. Examples of native CaCCs recorded in Xenopus oocytes and mammalian cells. (A) 

Calcium-activated chloride current in excised patch from Xenopus oocytes exposed to 600 nM free 

calcium on the cytosolic face. The patch was clamped from a holding potential of 0 mV to potentials 

between 120 and -120 mV for 1.3 s, followed by a 0.3 s pulse step to -100 mV. (B) Steady state I-V 

relations at different cytosolic calcium for the cell shown in A.  (Kuruma and Hartzell, 2000). (C) 

Calcium-activated chloride current evoked in pulmonary artery myocytes in whole cell with 500 nM 

free cytosolic calcium from a holding potential of -50 mV to potentials between -90 to +130 mV for 

1.5 s. and followed by a 1 s step to -80 mV (D) Representative current trace recorded from a 

pulmonary artery myocytes in the absence (Control) or in the presence of 100 µM NFA.  At holding 

potential of -50 mV, a voltage step to +70 mV followed by a step to -80 mV was used. The time 

dependent activation and deactivation of the current at +70 and -80 mV respectively, were well fitted 

by a single exponential (continuous line) with respective time constants of 255 and 123 ms 

(Greenwood et al., 2001). 

 

B A 

C D 
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1.2.2 Molecular identity of CaCCs 

Despite the wide expression of CaCCs in different tissues and extensive 

biophysical and physiological studies, the search for a molecular counterpart of 

CaCCs was challenging for the following reasons (Nilius and Droogmans, 2003; 

Hartzell et al., 2005): 

 The absence of a selective blocker made it difficult to isolate the current 

electrophysiologically (De La Fuente et al., 2008);  

 Heterologous expression of CaCCs in several cell types resulted in up-

regulation of endogenous channels producing a false positive result (Hartzell 

et al., 2009);  

 The most common expression system used for ion channel studies, Xenopus 

oocytes, proved unsuitable due to high endogenous expression of CaCCs 

(Miledi, 1982; Barish, 1983);  

Nevertheless, efforts to identify the channel went on with the proposal of several 

candidates such as CLCA (Cunningham et al., 1995), CLC-3 (Huang et al., 2001), 

bestrophin (Qu et al., 2003b) and Tweety (Suzuki and Mizuno, 2004).  However, 

researchers failed to clone some of these candidates from tissues expressing 

endogenous CaCCs (Papassotiriou et al., 2001; Hartzell et al., 2009). Additionally, 

heterologous expression studies showed that some biophysical properties of these 

candidates, such as the calcium sensitivity and unitary conductance strongly differ 

from native CaCCs (Eggermont, 2004; Hartzell et al., 2005). Functional diversity also 

existed, indeed CLC-3 has been shown to be an electrogenic H+/Cl- antiporter 

(Matsuda et al., 2010) and CLCA to modulate the activity of chloride channels rather 

than forming the ion channel themselves (Loewen and Forsyth, 2005). Bestrophin 

was considered to be a promising candidate. However, there were some doubts raised 

about its calcium sensitivity and lack of voltage and time dependence with hBest-1 

and mBest2 (Tsunenari et al., 2003; Qu et al., 2003b; Tsunenari et al., 2006; Hartzell 

et al., 2008). Indeed the endogenous CaCCs in olfactory sensory neurons and 

submandibular salivary glands remained unaffected even after knockout of Best2 
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(Pifferi et al., 2009b; Romanenko et al., 2010). In summary, all the proposed 

candidates failed to qualify as CaCCs. 

 

1.3 TMEM16/anoctamin titled as CaCCs 

Later in 2008, the molecular identity of CaCCs finally came to light when 

three different research groups independently proposed TMEM16A as CaCCs (Yang 

et al., 2008; Caputo et al., 2008; Schroeder et al., 2008). 

Yang et al., (2008) performed bioinformatic screening for novel proteins with more 

than two transmembrane domains and pinned TMEM16A. Heterologous expression 

of TMEM16A, resulted in the appearance of calcium-activated chloride current 

sensitive to traditional chloride channel blockers. Caputo et al., (2008) followed 

functional genomic approach for identifying TMEM16A. Previously in 2002, they 

reported that CaCCs are up-regulated in interleukin-4-treated human bronchial 

epithelial cells, later in 2008 through global gene expression analysis it was found to 

be TMEM16A. Schroeder et al., (2008) realized that a different amphibian, the 

Axolotl salamander is physiologically polyspermic and their oocytes are devoid of 

CaCCs activity. This made the traditional expression cloning approach for CaCCs 

possible using Axolotl oocytes, with cDNA extracted from Xenopus oocytes. The fact 

that three different research teams arrived at the same conclusion following different 

approaches strengthened the proposal of TMEM16A as CaCCs in different cell types. 

 

1.3.1 TMEM16/anoctamin family 

The TMEM16 (also called anoctamin) family comprises ten members. They 

have alphabetical nomenclature from A to K excluding I for TMEM16, whereas they 

are numbered from 1-10 when named anoctamin (abbreviated as ANO). Hydropathy 

analysis of TMEM16 predicted eight transmembrane domains with cytoplasmic N 

and C terminus and a reentrant loop between the 5th and 6th transmembrane domain. 

The predicted transmembrane topology was later confirmed on TMEM16G with 
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epitope and N-glycosylation site accessibility approach (Das et al., 2008). However, 

recently the proposed topology was challenged and remodeled based on epitope and 

site accessibility approach on TMEM16A (Yu et al., 2012) (Figure 1.3). On the other 

hand, for the remaining members of TMEM16 family, the topology still remains 

unclear. Phylogenetic analysis of different TMEM16 family members explains the 

relatedness among them as shown in figure 1.2. TMEM16A and TMEM16B with 

62% amino acid similarity is grouped under the same subfamily whereas 

TMEM16C/D/J and TMEM16E/F form two separate subgroups followed by 

TMEM16G/H/K which is the most distant paralogs of TMEM16A (Milenkovic et al., 

2010; Flores et al., 2009). Previous studies done on TMEM16A and TMEM16B 

established that they are CaCCs (Yang et al., 2008; Caputo et al., 2008; Schroeder et 

al., 2008; Stephan et al., 2009; Pifferi et al., 2009a) whereas the ion channel function 

and the anion selectivity of the remaining members of the TMEM16 family is still 

under debate (for example TMEM16F reviewed by Kunzelmann et al., 2014). 

 

 

 

 

 

 

 

Figure 1.2. Phylogenetic tree of the mouse TMEM16 family members (Flores et al., 2009) 

 

1.3.2 Oligomeric structure 

Recent studies have indicated TMEM16A probably exist as a homodimer 

(Sheridan et al., 2011; Fallah et al., 2011). The expression of TMEM16A with two 
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different fluorescent proteins, mCherry and eGFP demonstrated a significant level of 

fluorescence resonance energy transfer (FRET), explaining a close physical 

interaction between them (Sheridan et al., 2011). Biochemical assay with blue native 

polyacrylamide gel electrophoresis (BN-PAGE) indicated the presence of high-

molecular weight complexes of TMEM16A protein, consistent with homodimer 

formation (Fallah et al., 2011). The property of homodimer formation was also 

observed for two more members, TMEM16B and TMEM16F (Tien et al., 2013). 

Additionally, the authors also found the existence of heteromers when TMEM16A 

and TMEM16B were co-expressed in a heterologous expression system (Tien et al., 

2013). However, to date there is no data showing the actual existence of such hybrid 

channels in native cells.  

 

1.3.3. TMEM16 isoforms 

Another reason for the functional differences observed in TMEM16 family 

may come from alternative splicing of mRNA. At least TMEM16A, TMEM16B and 

TMEM16F have been reported to exist in different isoforms generated through 

alternative splicing (Caputo et al., 2008; Ferrera et al., 2009; Stephan et al., 2009; 

O’Driscoll et al., 2011; Segawa et al., 2011; Ponissery Saidu et al., 2013). 

TMEM16A can be translated into at least four isoforms depending on either inclusion 

or exclusion of alternative exons 6b (segment b), 13 (segment c), 15 (segment d) or 

use of an alternative promoter for the initial 117 amino acids (segment a) (segments 

are marked in figure 1.3). A minimal isoform lacking any of these segment named as 

TMEM16A(0) is also a functional channel with different voltage dependence. It is 

expressed only in testis and very weakly in kidney (Ferrera et al., 2011a; Sondo et al., 

2014). Each segment has its own functional relevance, such as inclusion of segment b 

reduces the sensitivity for cytoplasmic calcium (Ferrera et al., 2009; Galietta, 2009; 

Ferrera et al., 2011a), whereas deletion of segment c can reduce the activation of the 

channel at positive membrane potentials (Ferrera et al., 2009) along with altered 

calcium sensitivity (Xiao et al., 2011). TMEM16B isoforms exist with either 

inclusion or exclusion of exon 14 which resembles segment c of TMEM16A. The 
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presence of exon 14 (ERSQ), found in retina and pineal gland, prevents inactivation 

at high calcium concentrations differently from the isoform found in olfactory 

sensory neurons where exon 14 is absent (Ponissery Saidu et al., 2013). Other 

TMEM16B isoforms include the splicing of exon 4, a 33 amino acid segment coupled 

with either a longer or shorter NH2 terminus expressed depending on different start 

sites (Ponissery Saidu et al., 2013).  TMEM16F also have an isoform with inclusion 

of the first 21 amino acids at NH2 terminus that increase the calcium dependent 

scramblase activity of the channel (Segawa et al., 2011). These findings suggest that 

alternative splicing is a mechanism to regulate the channel properties and basis for 

generation of CaCCs in different cell types with different voltage and calcium 

sensitivity. 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. A proposed topology and functional domains of TMEM16A. A possible topology of 

TMEM16A slightly modified from Pedemonte and Galietta, (2014) with the sites involved in the 

regulation of ion channel function. Alternative segments are marked as (a,b,c,d). Segment (b) is also 

identified as a calmodulin binding site. Other calmodulin binding sites include RCBM, CBM1 and 

CBM2. The region EEEEEAVK in the first intracellular loop overlap segment (c) which is EAVK. A 

direct calcium interacting site Glu702 and Glu705 is marked in red (E). 

 

(a) 

(d) (c) 
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1.3.4 Gating mechanism in TMEM16A and TMEM16B 

1.3.4.1 Activation by calcium and voltage 

CaCCs are highly sensitive to changes in cytosolic calcium, activating at 

submicromolar concentrations. This activation is also influenced by the membrane 

potential. Indeed, the membrane potential can alter the apparent calcium sensitivity of 

the channel (Arreola et al., 1996; Nilius et al., 1997; Kuruma and Hartzell, 2000; 

Hartzell et al., 2005). Such a complex interplay between calcium and voltage was 

also observed for TMEM16A and TMEM16B (Yang et al., 2008; Ferrera et al., 2009; 

Stephan et al., 2009; Pifferi et al., 2009a; Xiao et al., 2011). The half effective 

concentration of TMEM16A increased from 0.4 - 0.6 µM at +100 mV to 5.9 - 8.4 µM 

at -100 mV ( Xiao et al., 2011). TMEM16B was comparatively less sensitive to 

calcium with a half effective concentration in range of  2 µM to 3.5 µM at +50 mV 

(Pifferi et al., 2009a; Stephan et al., 2009). This difference in calcium sensitivity 

among TMEM16A and TMEM16B was also reflected on their activation and 

deactivation kinetics which was at least ten fold faster in TMEM16B (Yang et al., 

2008; Caputo et al., 2008; Pifferi et al., 2009a; Stephan et al., 2009). The molecular 

mechanism behind such a coupling of calcium and voltage in activation of 

TMEM16A and TMEM16B are still unknown.  

 

1.3.4.2 Direct or indirect activation by calcium              

Primary protein sequence analysis of TMEM16A or TMEM16B did not show 

the presence of a high affinity calcium binding site like EF hands or C2 domain. 

However, a cluster of highly conserved negatively charged residues (EEEEE) is 

present in the first intracellular loop (Figure 1.3). This negatively charged cluster may 

resemble the calcium binding pocket as reported for the ‘Ca2+ bowl’ in calcium-

activated potassium channel (Bao et al., 2004). Interestingly, the fifth glutamic acid 

of this cluster is actually a part of segment c (exon 13) which codes for four amino 

acids EAVK in TMEM16A. Deletion of segment c decreased the apparent calcium 

sensitivity fifty fold and also shifted the voltage dependence to much positive value 
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in TMEM16A (Ferrera et al., 2009; Xiao et al., 2011; Xiao and Cui, 2014). The 

deletion of EEEE abolished the intrinsic voltage dependence with very little effect on 

apparent calcium sensitivity of the channel (Xiao et al., 2011; Xiao and Cui, 2014). 

Additionally, Xiao and Cui (2014) recently identified a few more charged residues 

D452, E464, E470, and E475 in the first intracellular loop having a role in calcium 

dependent gating of TMEM16A (Xiao and Cui, 2014). Interestingly, neither of these 

mutants abolished the calcium-dependent gating completely, indicating involvement 

of more sites for calcium binding or existence of an indirect activation by calcium.  

In another study, Yu et al., (2012) identified two acidic residues E702 and E705 in an 

intracellular loop between 6th and 7th transmembrane of TMEM16A (ac) to be 

important for direct calcium binding (Figure 1.3). Mutation to these residues shifts 

the calcium sensitivity of the channel from micromolar to millimolar range, further 

experiments with cysteine-modifying reagents also confirmed their role as direct 

calcium binding site (Yu et al., 2012). 

Earlier this year, Tien et al (2014) confirmed the involvement of E698 and E701 in 

TMEM16A(a) (same as E702 and E705 from the previous study on TMEM16A(ac)  

by Yu et al., 2012) as a calcium binding site. Three additional acidic residues E650 , 

E730, and D734 were also identified with a possible role in calcium binding (Tien et 

al., 2014). The authors used an extensive screening by charge neutralization, charge 

reversal, charge conserving mutagenesis and use of different divalent cations to 

indicate the direct involvement of E698, E701, E730 and D734 in calcium binding 

(Tien et al., 2014). The authors remodeled the previous two topologies (Yang et al., 

2008; Yu et al., 2012) proposed for TMEM16A with the inclusion of four acidic 

residues involved in direct calcium binding as shown in figure 1.4. 
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Figure 1.4. Schematic representation of calcium binding.  Schematic representation for possible 

calcium binding sites in TMEM16A based on experimental data from  Yu et al., (2012) and Tien et al., 

(2014) 

 

Indirect interactions of intracellular calcium with auxiliary proteins for activation of 

TMEM16A were also hypothesized. Calmodulin has being postulated as a major 

factor for indirect activation in native CaCCs (Kaneko et al., 2006). Several 

calmodulin binding sites including segment b, CBM1, CBM2 and RCBM are 

identified through bioinformatics analysis and also experimentally confirmed to be 

involved in indirect activation of TMEM16A (Tian et al., 2011; Jung et al., 2013; 

Vocke et al., 2013) (Figure 1.3). However, these observations were strongly 

contradicted when purified TMEM16A was activated directly by calcium in 

proteoliposomes (Terashima et al., 2013). Other studies using mutations in the 

predicted calmodulin binding domains or use of calcium insensitive calmodulin 

mutants did not find any alteration in the calcium dependent activation of TMEM16A 

further confirming the dispensable role of calmodulin in channel activation (Yu et al., 

2014; Tien et al., 2014).  

In summary, how the channel gating is regulated by calcium and voltage is still an 

open question. Most of our knowledge about the channel activation comes from the 

biophysical studies done on TMEM16A, and partially from TMEM16B, while the 

rest of the family members have not been completely characterized yet and they 

might not work at all as ion channels. 
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1.3.4.3 Anion selectivity 

It has been observed that native CaCCs, as well as TMEM16A and 

TMEM16B expressed in heterologous system favor the passage of larger anions such 

as SCN-, NO3
-, I-, Br- besides Cl- (Yang et al., 2008; Schroeder et al., 2008; Pifferi et 

al., 2009a; Stephan et al., 2009; Sagheddu et al., 2010; Adomaviciene et al., 2013). 

The permeability ratio among different anions varied for different cell types. 

However, it followed a permeability sequence inversely proportional to anion’s 

dehydration energy (Wright and Diamond, 1977; Zhang and Cremer, 2006). More 

permeant anions such as SCN- strongly affect the channel kinetics with a slow time 

constant for deactivation and favoring a channel open state by increasing the mean 

open time (Evans and Marty, 1986; Greenwood and Large, 1999; Perez-Cornejo et 

al., 2004). Moreover, the effect of a permeant anion on channel activation is far more 

complex, with the apparent calcium affinity and voltage dependence of the channel 

found to be dependent on the permeant anion in endogenous CaCCs as well as in 

TMEM16A (Evans and Marty, 1986; Qu and Hartzell, 2000; Perez-Cornejo et al., 

2004; Xiao et al., 2011).  

 

1.4 Pharmacology of CaCCs 

The “pharmacology” of a protein comprises the description of its interactions 

with small organic or inorganic molecules, whose binding can alter protein function. 

Such a selective and potent molecule is always a valuable research tool to study ion 

channel function and their tissue distribution. Much of our early knowledge of the 

functional architecture of ion channels came from pharmacological experiments 

(Hille, 2001). Unfortunately, pharmacological studies on CaCCs remain limited due 

to lack of specific potent agents, and knowledge about a structurally defined pore 

region. Thus, the possibility to develop specific and high affinity inhibitors is 

potentially very useful to elucidate the physiological function of CaCCs in different 

tissue types.  
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1.4.1 Traditional blockers 

In early times, endogenous CaCCs in different tissues were inhibited with 

compounds such as niflumic acid (NFA) (Hogg et al., 1994b; Greenwood and Large, 

1995), 4,4’-diisothiocyanato-stilbene-2,2’-disulfonic acid (DIDS) (Hogg et al., 

1994a), and anthracene-9-carboxylic acid (A9C) (Hogg et al., 1994a) (Figure 1.5). 

However, the effect of most of these traditional blockers is nonspecific and target 

chloride channels in general, and they are less efficacious with potency in the 

micromolar to millimolar range. 

NFA is considered to be the most potent among available traditional blockers tried 

and tested on CaCCs. However, the action of NFA is quite complex and varies 

according to cell type. In pulmonary artery myocytes 100 µM of extracellular NFA 

has multiple effects: at positive membrane voltages it inhibit the outward current, 

while at negative membrane potentials it increases the inward current and lastly on 

washing out extracellular NFA, it increases both the inward and outward current 

(Piper et al., 2002; Ledoux et al., 2005). In contrast, NFA inhibits endogenous CaCCs 

in Xenopus oocytes from both the sides of the membrane with less voltage 

dependence but, without any increase in inward current (White and Aylwin, 1990; Qu 

and Hartzell, 2001).  

NFA has also been reported to block TMEM16A and TMEM16B expressed in 

heterologous system (Yang et al., 2008; Caputo et al., 2008; Schroeder et al., 2008; 

Pifferi et al., 2009a; Sagheddu et al., 2010; Romanenko et al., 2010; Kunzelmann et 

al., 2012). As shown in figure 1.6 A, extracellular 30 µM NFA reduced the amplitude 

of outward TMEM16A current along with a slow deactivation of tail current. 

Although NFA reduced TMEM16A current at all the voltages, its inhibition was 

slightly voltage dependent at positive voltages. Moreover, likewise in pulmonary 

smooth muscle cells, at lower concentrations (< 30 µM) NFA potentiated the inward 

current of TMEM16A in heterologous expression systems (Bradley et al., 2014; Liu 

et al., 2014).  
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Figure 1.5. Pharmacological modulators of CaCCs.  Structure of traditional CaCCs blockers (NFA, 

DIDS, and A9C) and of new TMEM16A inhibitors (CACCinh-A01, T16inh-A01, MONNA, 

Benzbromarone, Tannic acid, and Eugenol). 

 

The property of voltage dependent interaction of NFA with CaCCs was also extended 

to other structurally dissimilar compound like A9C. A9C is an aromatic carboxylate, 

used in study of several chloride channels. It is less efficient compared to NFA but 

has much steeper voltage dependence as reported for endogenous CaCCs (Hogg et 

al., 1993, 1994a; Akbarali and Giles, 1993; Cotton et al., 1997; Wayman et al., 1997; 

Toland et al., 2000; Qu et al., 2003a; Qu and Hartzell, 2001) and heterologously 

expressed TMEM16A. (Figure 1.6 B) (Bradley et al., 2014). Like NFA, A9C also has 

complex mode of action. Piper and Greenwood (2003), carefully studied the effect of 

A9C on endogenous CaCCs from pulmonary artery smooth muscle cells. Application 

of extracellular A9C strongly inhibited the outward current in a concentration and 

voltage dependent manner. Whereas, the inward current at negative potential 

increased 3.7 times with A9C compared to control (Piper and Greenwood, 2003). The 
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authors further confirmed by changing external anions that the observed increase in 

inward current was in fact chloride dependent and not due to background channel 

activation (Piper and Greenwood, 2003). 

 

The effect of A9C on TMEM16A current in heterologous expression system was 

studied only recently, and had similar concentration and voltage dependent inhibition 

of outward current as shown in figure 1.6 B (Bradley et al., 2014). Furthermore, A9C 

potentiated the inward tail current as for endogenous CaCCs. It also made the 

deactivation kinetics of the channel much slower compared to control (Bradley et al., 

2014). Although a nonspecific blocker, having a strong voltage dependent interaction 

and multiple effect on channel activation makes A9C an interesting compound for 

future structure-function studies of TMEM16 family members.  

 

1.4.2 Specific blockers  

CACCinh-A01: 

The absence of a potent and selective blocker has limited the studies of 

CaCCs. De La Fuente et al., (2008) screened 50,000 small molecules using high 

throughput screening methods in search for a candidate with inhibitory action against 

endogenous CaCCs in epithelial cell line HT-29. The authors screened out two 

classes of drugs (Class A and Class B) based on their potency, water solubility, 

chemical stability and CaCCs targeting (De La Fuente et al., 2008). Among these, a 

compound labelled CACCinh-A01 (Figure 1.5) was further used because of its 

potency and specificity towards endogenous CaCCs in several cell types (Bevers and 

Williamson, 2010; Ousingsawat et al., 2011) and TMEM16A in heterologous 

expression system (Bradley et al., 2014; Liu et al., 2014). It inhibited 90% of the 

current across the voltage range and enhanced the rate of tail current deactivation 

with much faster kinetics compared to control as shown in figure 1.6 C (Bradley et 

al., 2014). 

 



 Introduction 
 

16 
 

T16Ainh-A01: 

After identification of TMEM16A as a CaCCs, high throughput screening of 

~110,000 small molecules library revealed four novel chemical classes of TMEM16A 

blockers that fully inhibited TMEM16A chloride current with an IC50 < 10 µM and 

without interfering with calcium dependent activation of the channel. Further 

structure-activity analysis screened T16Ainh-A01 (Figure 1.5) to be the most potent 

with an IC50 of ~1 µM (Namkung et al., 2011). T16Ainh-A01 inhibited more than 60% 

TMEM16A current and increased the rate of channel closure as shown in figure 1.6 D 

(Bradley et al., 2014). T16Ainh-A01 show specificity towards CaCCs as it failed to 

have inhibitory action on CFTR but it still remains to be confirmed for other chloride 

channels (Namkung et al., 2011). Recently, Davis et al., (2013) used T16Ainh-A01 to 

confirm that TMEM16A constitutes a major component of endogenous CaCCs in 

isolated vascular smooth muscle cells. Moreover, the authors found T16Ainh-A01 to 

be a potent vasorelaxant for the smooth muscle cells in comparison to the traditional 

chloride channel blocker, NFA (Davis et al., 2013).  

Several reports have shown that TMEM16A is overexpressed in many tumor types 

including esophageal cancer (Huang et al., 2002), gastrointestinal stromal tumors 

(West et al., 2004) and head and neck squamous cell carcinoma (SCCHN) (Akervall 

et al., 1995).  Duvvuri et al (2012) reported that TMEM16A expression directly 

impacts cellular proliferation in SCCHN by activating RAS-REF-MEK-ERK1/2 

pathway. Here the authors found that application of T16Ainh-A01 inhibited tumor 

cell proliferation in vitro. In a similar study, T16Ainh-A01 inhibited the cell 

proliferation in interstitial cells of Cajal (ICC) by acting on TMEM16A and blocked 

the tumor formation (Mazzone et al., 2012). These studies present TMEM16A as an 

interesting pharmacological target for control of tumor proliferation, however its 

ubiquitous expression and involvement in different physiological processes might 

cause side-effects.  

 

 



 Introduction 
 

17 
 

 

  A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

B 

C 

D 

Control 30 µM NFA 

Control 1 mM A9C 

Control 10 µM CACCinh-A01 

Control 10 µM T16Ainh-A01 

Control 
NFA 

Control 
A9C 

Control 
CACCinh-A01 

Control 
T16Ainh-A01 

InA 

V(mV) 

InA 

V(mV) 

InA 

V(mV) 

InA 

V(mV) 



 Introduction 
 

18 
 

Figure 1.6. Effect of chloride channel blockers on TMEM16A current.  Whole cell current 

recorded from HEK293 cells transfected with hTMEM16A (ac) in the presence of 171 nM 

intracellular calcium. Panel represent current in control, in presence of extracellular blocker and steady 

state I-V relation from respective control and blocker. A) 30 µM NFA, B) 1 mM A9C, C) 10 µM 

CACCinh-A01, D) 10 µM T16Ainh-A01. (Bradley et al., 2014). 

 

Other: 

In another study, small scale screening for TMEM16A blocker identified 

compounds such as benzbromarone, dichlorophen, and hexachlorophene. These 

compounds in future could be potential candidates for the treatment of asthma, as 

they inhibited the airway smooth muscle contraction and mucin release from goblet 

cells (Huang et al., 2012b). A search for compounds with inhibitory properties is not 

just limited to available chemical libraries, instead chemical modification of different 

anthranilic acid derivatives identified N-((4-methoxy)-2-naphthyl)-5-nitroanthranilic 

acid (MONNA) (Figure 1.5). This compound was most potent among the reported 

with an IC50 of 0.08 µM for xTMEM16A. MONNA appeared selective and did not 

block CFTR, CLC or bestrophin (Oh et al., 2013). Very recently, compounds with 

inhibitory action from natural sources were also studied. Compounds such as tannic 

acid and its derivatives, and eugenol (Figure 1.5) from sources such as green tea, red 

wine and medicinal herbal preparations were found to have inhibitory effect against 

TMEM16A (Namkung et al., 2010; Yao et al., 2012). A large panel of blockers for 

TMEM16A is now available. In contrast, the pharmacology of remaining TMEM16 

members is still unknown.  
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2. Project Aim 

 

Several reports from different laboratories helped to increase our understanding about 

TMEM16A as a CaCC and its biophysical properties. In comparison only few 

countable reports exist for the close cousin TMEM16B. In this thesis we conducted a 

first structure-function analysis of TMEM16B expressed in heterologous system.  

Here we addressed the following questions: 

 What is the role of some conserved glutamic acid residues in the first 

intracellular loop in channel activation? 

 How extracellular and intracellular anions affect the gating? 

 What is the effect of the traditional chloride channel blocker A9C and its non-

charged analogue A9M on channel activation? 
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3. Materials and methods 
 

 

3.1 Cell culture and transfection 

HEK293T cells (American Type Culture Collection, USA) were cultured in 

DMEM (Gibco, Italy) with 10% fetal bovine serum (Sigma, Italy), 100 UI/ml penicillin 

and 100 µg/ml streptomycin (Sigma, Italy) at 37 ᵒC in humidified atmosphere of 5% 

CO2, and passaged every second day.  

Full-length mouse TMEM16B cDNA in pCMV-Sport6 mammalian expression plasmid 

was obtained from RZPD (clone identification, IRAVp968H1167D; NCBI Protein 

database accession no. NP_705817.1). Mutations were made using a PCR-based site 

directed mutagenesis kit (Gene tailor mutagenesis kit, Invitrogen, OR, USA) and 

confirmed by DNA sequence. 

HEK293T cells were transfected with 2 µg TMEM16B cDNA using transfection 

reagent FUGENE 6 (Roche diagnostic, USA). For positive identification of transfected 

cells they were also co-transfected with 0.2 µg enhanced green fluorescent protein, 

eGFP (Takara Bio Inc, USA). After 24 h of transfection the cells were trypsinised and 

plated at a lower density to 35-mm Nunc petri dishes (Thermo Scientific, USA) and 

later used for patch clamp experiments between 48-72 h from transfection. 

 

3.2 Electrophysiological recording 

HEK293T cells were visualized under an Olympus IX70 inverted microscope 

(Olympus, Japan) placed on anti-vibration table (TMC, USA) and shielded from 

external noise with a homemade Faraday cage. All the instruments kept inside the 
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Faraday cage was connected to a single ground to avoid current loops.  TMEM16B and 

its mutants currents were recorded in whole-cell or inside-out configuration using a 

Axopatch 1-D amplifier controlled by Clampex 9.2 via Digidata 1322A (Axon 

Instruments, USA). The data was acquired at rate of 10 kHz and the signals were low-

pass filtered at 5 kHz. Patch electrodes were made of borosilicate glass (WPI, USA) and 

pulled with a PP-830 micropipette puller (Narishige, Japan). Pulled patch electrodes had 

resistance of 5-7 MΩ for whole cell and 2-5 MΩ for inside-out configuration when filled 

with internal solution. The patch electrode was mounted on electrode holder with 

Ag/AgCl electrode, connected to CV-4 headstage (Axon Instrument, USA). The 

movement of this headstage is controlled either by MM3 mechanical micromanipulator 

(Narishige, Japan) for coarse adjustment or through MWO-3 three dimensional oil 

hydraulic micromanipulator (Narishige, Japan) for fine movement.  The bath was 

grounded with a 1 mM KCl agar bridge connected with Ag/AgCl reference electrode. 

All the experiments were conducted at room temperature.  

The tip of patch electrode is pressed against the cell membrane and suction is applied to 

form a high resistance gigaseal ( >1 GΩ ). After gigaseal formation, the membrane patch 

under the electrode tip is excised by pulling the patch electrode away from the cell to 

achieve inside-out configuration and to expose the cytoplasmic face of the patch to 

different bath solutions. Alternatively for whole-cell configuration, after gigaseal 

formation slow and constant suction is applied to rupture the membrane patch enclosed 

within the tip of patch electrode. The intracellular solution filled in patch pipette is 

dialyzed into the cell and currents from ion channels expressed on the plasma membrane 

of the cell can be measured. The recording chamber was continuously perfused with 

gravity fed Ringer solution, while an aspiration tube connected to a suction pump placed 

on the opposite side provided a controlled level of solution in the recording chamber. 
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3.3 Perfusion setup 

Rapid exchange of solutions in close vicinity to patched cells either in whole-

cell or excised patch configuration was achieved using a multibarrel glass tube each 

with an internal diameter of 0.9 mm. The movement of these pipes was motorized by 

perfusion fast-step SF-77B (Warner Instrument Corp. USA) with user defined voltage 

commands relayed through Digidata 1332A (Axon instruments, USA). Exchange of 

solutions was efficiently achieved within less than 20ms for inside-out experiment and 

approx. 30ms for whole-cell experiments. The perfusion system was entirely gravity fed 

from the solutions stored in 50 ml syringe connected with polyethylene tubes of 1.14 

mm internal diameter to the multibarrel opening. The flow of solution was controlled 

by solenoid valves operated manually. A schematic representation of the perfusion setup 

is shown in figure 3.1. 

 

 

 

 

 

 

 

 

 

Figure 3.1 Perfusion system used for patch clamp recording.  Four parallel streams of solutions 

emerging from glass pipes, were delivered in front of the patch pipette. Through motorized movement of 

pipes, it was possible to change rapidly the solutions bathing the cells (or the excised patch) attached to 

the patch pipette. (Scheme from Dr. Simone Pifferi) 
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3.4 Solutions 

Solutions with different ionic composition were used for experiments, the 

composition was tailored as per the experimental design and is being clearly reported in 

respective manuscripts in the result section. The standard extracellular mammalian 

Ringer contained (mM) 140 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 10 glucose and 10 HEPES 

to buffer pH which was adjusted to 7.2 with NaOH or HCl as appropriate. 

Intracellular solutions with different concentrations of free calcium were calculated with 

program WINMAX C (C. Patton, Stanford university, Palo Alto, CA USA) (Patton et 

al., 2004). The composition for different intracellular solutions is as reported in the table 

3.1. pH was adjusted to 7.2 using CsOH and HCl. Osmolarity for all the solutions were 

balanced in range of 280-300 mosm with glucose. 

 

Free Ca2+ 

(µM) 

CsCl 

(mM) 

CaCl2 

(mM) 

HEDTA 

(mM) 

HEPES 

(mM) 

0 140 -- 10 10 

0.5 140 1.242 10 10 

1.5 140 3.209 10 10 

3.8 140 5.866 10 10 

13 140 8.263 10 10 

100 140 9.980 10 10 

 

Table 3.1 Composition of intracellular solution with variable calcium concentrations. 
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Stock solutions of blockers were prepared in either DMSO for A9C or in chloroform 

for A9M. Final concentrations were achieved by diluting these stocks in standard 

mammalian Ringer solution. These compounds had very low solubility so they were 

sonicated at 37 ᵒC until a clear solution was obtained. Preparation and application of 

these blockers were done with minimal light exposure.  

 

3.5 Data analysis 

The electrophysiology data saved in .abf format in Clampex 9.2 (Axon 

Instruments, USA) were further analyzed using IGOR Pro software (Wavemetrics, Lake 

Oswego, OR, USA). IGOR procedures used for analysis were written by Dr. Simone 

Pifferi. All the figures presented in the three manuscripts in the Results section has been 

prepared using IGOR. Data are presented as mean ± SEM, with n indicating the number 

of cells. Statistical significance was determined using paired t-tests or ANOVA as 

appropriate. When a statistically significant difference was determined with ANOVA, 

a post hoc Tukey test was done to evaluate which data groups showed significant 

differences. P values < 0.05 were considered significant. 
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4.  Results 

 
 

4.1 The voltage dependence of the TMEM16B/anoctamin2 calcium-

activated chloride channel is modified by mutations in the first 

putative intracellular loop.    
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I N T R O D U C T I O N

Ca2+-activated Cl channels (CaCCs) are expressed in 
many cell types, where they play various physiological 
roles. For example, CaCCs are involved in fast block of 
polyspermy in Xenopus laevis oocytes, in the regulation 
of smooth muscle contraction, in fluid secretion from 
exocrine glands, in the control of excitability in cardiac 
myocytes, as well as in olfactory, taste, and phototrans-
duction (Frings et al., 2000; Hartzell et al., 2005; Leblanc 
et al., 2005; Petersen, 2005; Wray et al., 2005; Bers, 2008; 
Kleene, 2008; Lalonde et al., 2008; Petersen and Tepikin, 
2008; Duran et al., 2010; Kunzelmann et al., 2011a).

Despite the fact that CaCCs are broadly present in sev-
eral tissues, their molecular identity had remained elusive 
until 2008, when three independent studies reported 
that the expression of TMEM16A/anoctamin1 was 
associated with CaCCs (Caputo et al., 2008; Schroeder  
et al., 2008; Yang et al., 2008). The TMEM16 family com-
prises 10 members, and another member of the family, 
TMEM16B/anoctamin2, has also been shown to func-
tion as a CaCC when heterologously expressed in axolotl 
oocytes (Schroeder et al., 2008) or in HEK 293T cells 
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cine, 13125 Berlin, Germany.
Abbreviations used in this paper: CaCC, Ca2+-activated Cl channel; 

WT, wild type.

(Pifferi et al., 2009; Stephan et al., 2009; Stöhr et al., 
2009; Rasche et al., 2010; Sagheddu et al., 2010).

The study of knockout mice for TMEM16A (Rock 
and Harfe, 2008) and for TMEM16B (Billig et al., 2011) 
further confirmed that CaCC activity was reduced or 
abolished in several cells (Flores et al., 2009; Galietta, 
2009; Hartzell et al., 2009; Kunzelmann et al., 2011b, 
2012; Huang et al., 2012; Pifferi et al., 2012; Sanders 
et al., 2012; Scudieri et al., 2012).

Hydropathy analysis indicates that TMEM16 proteins 
have eight putative transmembrane domains with both 
N- and C-terminal domains located at the intracellular side 
of the membrane, and the predicted topology has been 
experimentally confirmed for TMEM16G/anoctamin7 
(Das et al., 2008). At present, TMEM16A and TMEM16B 
have been shown to function as CaCCs, whereas it is 
unclear whether the other members of the family are 
CaCCs (Duran and Hartzell, 2011; Huang et al., 2012; 
Scudieri et al., 2012). Furthermore, splice variants have 
been identified both for TMEM16A (Caputo et al., 
2008; Ferrera et al., 2009, 2011) and for TMEM16B 
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Ca2+-activated Cl channels (CaCCs) are involved in several physiological processes. Recently, TMEM16A/
anoctamin1 and TMEM16B/anoctamin2 have been shown to function as CaCCs, but very little information is avail-
able on the structure–function relations of these channels. TMEM16B is expressed in the cilia of olfactory sensory 
neurons, in microvilli of vomeronasal sensory neurons, and in the synaptic terminals of retinal photoreceptors. 
Here, we have performed the first site-directed mutagenesis study on TMEM16B to understand the molecular 
mechanisms of voltage and Ca2+ dependence. We have mutated amino acids in the first putative intracellular 
loop and measured the properties of the wild-type and mutant TMEM16B channels expressed in HEK 293T cells 
using the whole cell voltage-clamp technique in the presence of various intracellular Ca2+ concentrations. We mu-
tated E367 into glutamine or deleted the five consecutive glutamates 386EEEEE390 and 399EYE401. The EYE deletion 
did not significantly modify the apparent Ca2+ dependence nor the voltage dependence of channel activation. 
E367Q and deletion of the five glutamates did not greatly affect the apparent Ca2+ affinity but modified the voltage 
dependence, shifting the conductance–voltage relations toward more positive voltages. These findings indicate 
that glutamates E367 and 386EEEEE390 in the first intracellular putative loop play an important role in the voltage 
dependence of TMEM16B, thus providing an initial structure–function study for this channel.

© 2012 Cenedese et al.  This article is distributed under the terms of an Attribution–
Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publi-
cation date (see http://www.rupress.org/terms). After six months it is available under a 
Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, 
as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

Th
e 

Jo
ur

na
l o

f 
G

en
er

al
 P

hy
si

o
lo

g
y

 on M
ay 17, 2014

jgp.rupress.org
D

ow
nloaded from

 
Published March 12, 2012

Lijo Cherian
Typewriter
26

Lijo Cherian
Typewriter

Lijo Cherian
Typewriter

http://jgp.rupress.org/


286 Voltage dependence of TMEM16B/anoctamin2

of 3–5 MΩ when immersed in the bath solution. Currents were 
recorded with an Axopatch 1D or Axopatch 200B amplifier con-
trolled by Clampex 9 or 10 via a Digidata 1332A or 1440 (Molecular 
Devices). Data were low-pass filtered at 5 kHz and sampled at 10 kHz. 
Experiments were performed at room temperature (20–25°C). 
As reported previously (Pifferi et al., 2006), control experiments in 
nontransfected and only eGFP-transfected cells did not show any 
significant Ca2+-activated current.

The standard extracellular solution contained (in mM): 140 
NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 10 glucose, and 10 HEPES, adjusted 
to pH 7.4 with NaOH. The intracellular solution filling the patch 
pipette contained (in mM): 140 CsCl, 10 HEPES, and 10 HEDTA, 
adjusted to pH 7.2 with CsOH, and no added Ca2+ for the nomi-
nally 0 Ca2+ solution, or various added Ca2+ concentrations, as 
calculated with the program WinMAXC (Patton et al., 2004), to 
obtain free Ca2+ in the range between 0.5 and 100 µM. The free 
Ca2+ concentrations were experimentally determined by Fura-4F 
(Invitrogen) measurements by using a luminescence spectropho-
tometer (LS-50B; PerkinElmer), as described previously (Pifferi 
et al., 2006). The total Cl concentration was 158 mM in the extra-
cellular solution, whereas in the pipette solution it ranged from 
140 mM in 0 Ca2+ to 160 mM in 100 µM Ca2+, with a calculated 

(Stephan et al., 2009). However, although the functional 
properties of different isoforms have been extensively 
investigated for TMEM16A, only preliminary data have 
been presented for TMEM16B (Saidu, S.P., A.B. Stephan, 
S.M. Caraballo, H. Zhao, and J. Reisert. 2010. Association 
for Chemoreception Sciences Meeting. Abstr. P68).

At present, very little is known about the structure–
function relations for these channels. The analysis of the 
sequence of TMEM16A and TMEM16B did not reveal 
any canonical voltage-sensing or Ca2+-binding domains 
(Yang et al., 2008), but a comparison among the biophys-
ical properties of the TMEM16A splice variants pointed 
to the functional relevance of the first putative intracellu-
lar loop (Caputo et al., 2008; Ferrera et al., 2009, 2011). 
Moreover, a recent study performed site-directed mu-
tagenesis experiments on TMEM16A modifying some 
amino acids in the first putative intracellular loop and 
found that deletion of EAVK affected both the Ca2+ and 
voltage dependence of TMEM16A (Xiao et al., 2011).

Here, we aimed to perform a first site-directed muta-
genesis investigation of TMEM16B to contribute to the 
understanding of the molecular mechanisms underly-
ing the channel voltage and Ca2+ dependence. We iden-
tified some acidic amino acids in the first intracellular 
loop of TMEM16B (367E, 386EEEEE390, 399EYE401), which 
are conserved in TMEM16A, where some of them have 
been studied (Xiao et al., 2011). We mutated or deleted 
the indicated glutamates and made a comparison be-
tween the electrophysiological properties measured 
in the whole cell configuration of the wild-type (WT) 
TMEM16B and its mutants. We have found that 367E 
and 386EEEEE390 contribute to the voltage-dependent 
regulation of the TMEM16B channel.

M A T E R I A L S  A N D  M E T H O D S

Site-directed mutagenesis of TMEM16B and  
heterologous expression
Full-length mouse TMEM16B cDNA in pCMV-Sport6 mamma-
lian expression plasmid was obtained from RZPD (clone identifi-
cation, IRAVp968H1167D; NCBI Protein database accession no. 
NP_705817.1). Mutations were made using a PCR-based site-
directed mutagenesis kit (Gene Tailor; Invitrogen) and con-
firmed by DNA sequencing. HEK 293T cells (American Type 
Culture Collection) were transfected with 2 µg TMEM16B by 
using transfection reagent (FuGENE 6; Roche). Cells were co-
transfected with 0.2 µg enhanced green fluorescent protein 
(eGFP; Takara Bio Inc.) for fluorescent identification of trans-
fected cells. After 24 h, transfected cells were replated at a lower 
density and used for patch-clamp experiments between 48 and 
72 h from transfection.

Electrophysiological recordings and ionic solutions
Current recordings from HEK 293T cells expressing TMEM16B 
or its mutants were performed in the whole cell voltage-clamp 
configuration, as described previously (Pifferi et al., 2006, 2009). 
Patch pipettes were made of borosilicate glass (World Precision 
Instruments, Inc.) and pulled with a PP-830 puller (Narishige). 
Patch pipettes filled with the intracellular solution had a resistance 

Figure 1.  I-V relations of TMEM16B. (A) Representative whole 
cell voltage-clamp recordings obtained with an intracellular solu-
tion containing nominally 0 Ca2+ or 1.5 µM Ca2+, as indicated. 
Voltage steps of 200-ms duration were given from a holding volt-
age of 0 mV to voltages between 100 and +100 mV in 20-mV 
steps, followed by a step to 100 mV, as indicated in the top part 
of the panel. (B) Steady-state I-V relation measured at the end 
of the voltage steps (circles) or instantaneous I-V measured at 
the beginning of each voltage step (inverted triangles) from the 
cell shown in B. (C) Representative recordings at 1.5 µM Ca2+ ob-
tained with a voltage protocol consisting of a prepulse to +100 mV 
from a holding voltage of 0 mV, followed by voltage steps between 
100 and +100 mV in 20-mV steps, as shown in the top part of 
the panel. (D) I-V relations measured from tail currents (inverted 
triangles) or at the steady state (circles).
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R E S U L T S

TMEM16B activation by Ca2+ and voltage
To study the activation of TMEM16B by [Ca2+]i and 
voltage, we performed whole cell voltage-clamp record-
ings on HEK 293T cells transiently transfected with 
TMEM16B using intracellular solutions containing dif-
ferent free [Ca2+]i. Fig. 1 A shows that voltage steps be-
tween 100 and +100 mV from a holding voltage of 
0 mV elicited very small currents with a nominally 0-Ca2+ 
pipette solution (8 ± 3 pA/pF at +100 mV; n = 8), whereas 
it induced large outward currents in the presence of 
1.5 µM Ca2+.

In the presence of Ca2+, depolarizing voltage steps 
elicited an instantaneous outward current, indicating that 
channels were open at the holding potential of 0 mV, fol-
lowed by a time-dependent outward relaxation (see also 
Fig. 5). Hyperpolarizing voltage steps induced instan-
taneous inward currents followed by a relaxation toward 
less negative values, in agreement with previous results 
(Pifferi et al., 2009; Stöhr et al., 2009; Rasche et al., 
2010). The I-V relation measured at the steady state 
showed a pronounced outward rectification, whereas 
the instantaneous I-V curve measured at the beginning 
of each step was linear (Fig. 1 B). A similar result was 
obtained by activating TMEM16B with a different volt-
age protocol: channels were first activated by a 200-ms 
prepulse to +100 mV, and then tail currents were in-
duced by voltage steps between 100 and +100 mV in 
20-mV steps (Fig. 1 C). The I-V relation obtained by 
plotting the tail currents measured at the beginning of 
each step versus the step voltage was linear, whereas the 
steady-state I-V curve showed an outward rectification 
(Fig. 1 D), as in Fig. 1 B. These results clearly demonstrate 
that the I-V relation of the open channel is linear, and 
therefore the outward rectification is a result of a voltage-
dependent mechanism that favors channel opening at 

equilibrium potential for Cl of 1.5 and +1.9 mV, respectively. 
All chemicals, unless otherwise stated, were purchased from 
Sigma-Aldrich.

In most experiments, we applied voltage steps of 200-ms duration 
from a holding potential of 0 mV ranging from 100 to +100 mV 
(or from 200 to +200 mV), followed by a step to 100 mV. 
A single-exponential function was fitted to tail currents to extrapo-
late the current value at the beginning of the step to 100 mV. 
In another set of experiments, channels were activated by a 200-ms 
pulse to +100 mV, and then rapidly closed by the application of 
hyperpolarizing steps. Single-exponential functions were fitted to 
tail currents at each voltage step.

Membrane capacitance and series resistance were compen-
sated with the amplifier during the experiments. Membrane cur-
rent density was calculated by dividing the current by the cell 
capacitance. The conductance, G, was calculated as G = I/(V  Vrev), 
where I is the tail current, V is the membrane voltage, and Vrev is 
the current reversal potential. Because in our experimental con-
ditions the calculated equilibrium potential for Cl ranged be-
tween 1.5 and +1.9 mV and the measured Vrev was close to 0 mV, 
Vrev was set to 0 mV in all calculations.

Data analysis
Data are presented as mean ± SEM, with n indicating the number 
of cells. Statistical significance was determined using paired or 
unpaired t tests or ANOVA, as appropriate. When a statistically 
significant difference was determined with ANOVA, a post-hoc 
Tukey test was done to evaluate which data groups showed  
significant differences. P-values of <0.05 were considered signi
ficant. Data analysis and figures were made with Igor Pro soft-
ware (WaveMetrics).

Figure 2.  Ca2+-dependent rectification of TMEM16B. (A) Whole 
cell currents activated by the indicated [Ca2+]i. Voltage protocol 
as in Fig. 1 A. (B) Average steady-state I-V relations from several 
cells (n = 3–6). (C) Average ratios between steady-state currents 
measured at +100 and 100 mV at various [Ca2+]i (n = 3–6).

Figure 3.  Ca2+ sensitivity of TMEM16B. (A) Conductance den-
sity calculated from tail currents measured at 100 mV after pre-
pulses between 100 and +100 mV as indicated was plotted versus 
[Ca2+]i (n = 3–6). Voltage protocol as in Fig. 1 A. Lines are the fit 
to the Hill equation (Eq. 1). (B) K1/2 and nH (inset) values plotted 
versus voltage.
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288 Voltage dependence of TMEM16B/anoctamin2

The voltage dependence of steady-state activation 
(G-V relation) was analyzed by measuring tail currents at 
the beginning of a step to 100 mV after prepulse volt-
ages between 200 and +200 mV. The range of voltages 
was extended from the previous voltage protocols to ob-
tain a better estimate of voltage dependence. Fig. 4 A 
shows the average conductance activated at a given 
[Ca2+]i plotted versus membrane voltage and fit by the 
Boltzmann equation:

	 G G z V V/ / / ,/max 1 2 1 1  exp F RT= + −( ) { } 	  (2)

where G/Gmax is the normalized conductance, z is the equiv
alent gating charge associated with voltage-dependent 
channel opening, V is the membrane potential, V1/2 is 
the membrane potential producing half-maximal acti-
vation, F is the Faraday constant, R is the gas constant, 
and T is the absolute temperature.

The maximal conductance density Gmax was determined 
by a global fit of G-V relations, and G at each [Ca2+]i was 
then normalized to the same Gmax. Because at the smaller 
[Ca2+]i the prediction of Gmax from the fit could be 
affected by a large error, we also estimated Gmax at each 
[Ca2+]i. Gmax at 0.5 µM Ca2+ was 4.1 ± 0.4 nS/pF, not 
significantly different from the value of 4.7 ± 0.4 nS/pF 
at 100 µM Ca2+, indicating that the estimate of Gmax was 
little affected by [Ca2+]i. Fig. 4 A shows that increasing 

depolarizing voltages. Thus, TMEM16B is activated by 
[Ca2+]i and modulated by voltage at low [Ca2+]i.

To further examine the interplay between [Ca2+]i and 
voltage in channel activation, we varied [Ca2+]i (Fig. 2 A). 
Steady-state I-V relations measured at low [Ca2+]i showed 
an outward rectification that became less pronounced 
as [Ca2+]i increased (Fig. 2 B). We calculated a rectifica-
tion index as the ratio between the steady-state current 
at +100 and 100 mV at each [Ca2+]i. The rectification 
index was 4.8 ± 0.2 at 1.5 µM Ca2+ and decreased to 1.4 ± 
0.2 at 100 µM Ca2+, showing that the I-V relation is 
Ca2+ dependent and becomes more linear as [Ca2+]i 
increases (Fig. 2 C).

To analyze the Ca2+ dependence of TMEM16B activa-
tion at various voltages, we measured the dose–response 
relations. Tail currents at each [Ca2+]i were measured at 
the beginning of the step to 100 mV after prepulses 
ranging from 100 to +100 mV. Fig. 3 A shows the aver-
age conductance densities plotted versus [Ca2+]i and fit 
at each voltage by the Hill equation:

	 G G K=     +( )+ +
max

2

i

nH 2

i

nH

1 2
nHCa Ca/ ,/

	  (1)

where G is the current density, Gmax is the maximal cur-
rent density, K1/2 is the half-maximal [Ca2+]i, and nH is 
the Hill coefficient.

The Hill coefficient was not voltage dependent with a 
value of 1.2 at 100 mV and 1.1 at +100 mV. The finding 
that the Hill coefficient was >1 indicates that the bind-
ing of more than one Ca2+ ion is necessary to open the 
channel. K1/2 slightly decreased with membrane depo-
larization from 4.3 µM at 100 mV to 1.6 µM at +100 mV, 
as illustrated in Fig. 3 B. These data show that the Ca2+ 
sensitivity of TMEM16B is moderately voltage dependent, 
in agreement with previous results obtained with inside-
out patches (Pifferi et al., 2009; Stephan et al., 2009).

Figure 4.  Voltage dependence of TMEM16B. (A) Normalized 
conductances at the indicated [Ca2+]i calculated from tail cur-
rents at 100 mV after prepulses between 200 and +200 mV 
were plotted versus the prepulse voltage (n = 4–9). Lines are the 
fit to the Boltzmann equation (Eq. 2). (B) V1/2 and z (inset) values 
plotted versus [Ca2+]i.

Figure 5.  Activation and deactivation kinetics of TMEM16B. 
(A) Representative recordings at the indicated [Ca2+]i. Voltage 
protocol as in Fig. 1 A, with voltage steps from a holding voltage of  
0 between +40 to +100 mV in 20-mV steps. Red dashed lines are 
the fit to a single-exponential function. (B) Average activation time 
constants (act) plotted versus voltage (n = 6–8). (C) Represen-
tative recordings at the indicated [Ca2+]i. Voltage protocol as in 
Fig. 1 C, with a prepulse to +100 mV and tail currents induced by 
voltage steps between 100 and +100 mV in 20-mV steps. Only 
tail currents are illustrated. Red dashed lines are the fit to a single-
exponential function. (D) Average deactivation time constants 
(deact) plotted versus voltage (n = 4–9).
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Activation and deactivation kinetics are regulated by 
[Ca2+]i and voltage
To characterize activation and deactivation kinetics, we 
analyzed the time-dependent components in response to 
voltage steps in the presence of a given [Ca2+]i. As shown 
in Figs. 2 A and 5 A, current activation in response to 
depolarizing voltage steps had two components: an in-
stantaneous time-independent current, related to the 
fraction of channels open at the holding voltage of 0 mV, 
followed by an outward time-dependent relaxation, a 

[Ca2+]i produced a leftward shift in the G-V relation: 
V1/2 was 124 ± 20 mV at 1.5 µM Ca2+ and became 115 ± 
18 mV at 100 µM Ca2+, whereas the equivalent gating 
charge was not largely modified (z = 0.23–0.30). Thus, 
V1/2 decreased as [Ca2+]i increased, indicating that 
more channels can be activated by depolarization in 
the presence of a high [Ca2+]i (Fig. 4 B). At a given 
[Ca2+]i, the conductance increased with depolarization, 
showing that the conductance depends both on [Ca2+]i 
and voltage.

Figure 6.  TMEM16B mutations. (A) Predicted topology of TMEM16A and TMEM16B from hydropathy analysis. (B) Alignment be-
tween mouse TMEM16A (a,c; available from GenBank/EMBL/DDBJ under accession no. NM_178642.4) and the retinal isoform of 
TMEM16B used in this study (NP_705817.1), with the mutations or deletions highlighted in color. (C–F) Representative recordings at 
the indicated [Ca2+]i for E367Q (C), E5 (D), EYE (E) mutants, and WT (F). Traces for WT are the same as in Fig. 2 A. Voltage proto-
col as in Fig. 1 A. (G) I-V steady-state relations (n = 3–8). (H) Average ratios between currents measured at +100 and 100 mV plotted 
versus [Ca2+]i for each mutant (n = 3–8).
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290 Voltage dependence of TMEM16B/anoctamin2

In summary, the activation kinetics are voltage in-
dependent and become faster by increasing [Ca2+]i, 
whereas the deactivation kinetics are prolonged by de-
polarization and by increasing [Ca2+]i.

Functional characterization of mutations in the first 
putative intracellular loop
To investigate the molecular mechanisms responsible for 
channel activation by Ca2+ and by voltage, we performed 
a site-directed mutagenesis study. Hydropathy analysis in-
dicates that each member of the TMEM16 family has 
eight transmembrane domains (Fig. 6 A). Analysis of the 
sequence of TMEM16B does not reveal the presence of 
any typical voltage sensor or Ca2+-binding domain. How-
ever, some acidic amino acids are located in the first puta-
tive intracellular loop between transmembrane segment 
2 and 3, and we hypothesized that some of them may be 
involved in Ca2+ and/or voltage activation of TMEM16B. 
As illustrated in Fig. 6 B, we mutated glutamate at position 
367 into glutamine (E367Q), deleted the five consecutive 
glutamate residues 386EEEEE390 (E5), or deleted 399EYE401 
(EYE), and measured their biophysical properties.

Fig. 6 (C–F) illustrates recordings from each mutant 
channel in the presence of various [Ca2+]i. Similar to WT 

result of the increase in the fraction of channels opened 
by depolarization. The time-independent component 
became larger as voltage or [Ca2+]i increased.

To examine the activation kinetics, we analyzed the 
time-dependent component of the current elicited by 
depolarizing voltage steps. Fig. 5 A shows that most of 
the time course of time-dependent relaxations was 
well fit by a single-exponential function. The time 
constant of current activation, act, in the presence of 
1.5 µM Ca2+ was 8.1 ± 0.8 ms at +100 mV and did not 
vary as a function of voltage at a given [Ca2+]i (Fig. 5 B). 
At +100 mV, act at 100 µM Ca2+ was 3.9 ± 1.4 ms, sig-
nificantly smaller than the value of 8.1 ± 0.8 ms at  
1.5 µM Ca2+, showing that an increase in [Ca2+]i accel-
erated activation.

The time constant of current deactivation (deact) 
was calculated by fitting with a single-exponential 
function the tail currents obtained after a prepulse at 
+100 mV by voltage steps ranging between 100 and 
20 mV (Fig. 5 C). In the presence of 0.5 µM Ca2+, 
deact was 3.0 ± 0.2 ms at 100 mV and 5.4 ± 0.5 ms at 
20 mV, showing that less negative voltages slowed 
deactivation (Fig. 5 D). At 100 mV, deact at 1.5 µM 
Ca2+ was 7.2 ± 0.8 ms, significantly different from the 
value of 3.0 ± 0.2 ms at 0.5 µM Ca2+, showing that an 
increase in [Ca2+]i slowed deactivation.

Figure 7.  Ca2+ sensitivity of TMEM16B mutants. Conductance 
density calculated from tail currents measured at 100 mV after 
prepulses between 100 and +100 mV as indicated was plotted 
versus [Ca2+]i for E367Q (A; n = 3–6), E5 (B; n = 3–5), and EYE 
(C; n = 3–8) mutants. Lines are the fit to the Hill equation (Eq. 1). 
(D) K1/2 values plotted versus voltage for each mutant.

Figure 8.  Voltage dependence of TMEM16B mutants. Normal-
ized conductances at the indicated [Ca2+]i calculated from tail 
currents at 100 mV after prepulses between 200 and +200 mV 
were plotted versus the prepulse voltage. Black lines are the fit 
to the Boltzmann equation (Eq. 2) for WT from Fig. 4 at 100 µM 
Ca2+ (solid line) or at 1.5 µM Ca2+ (dashed line). Colored lines are 
the fits to the Boltzmann equation for E367Q (A; n = 3–4), E5 
(B; n = 3–5), and EYE (C; n = 3–6) mutants. (D) Average V1/2 
values plotted versus [Ca2+]i.
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given [Ca2+]i, fewer channels can be open by depolariza-
tion compared with WT.

The kinetic properties of activation and deactivation of 
mutant channels also showed some interesting changes 
compared with WT channels. Upon depolarizing volt-
age steps, the activation of mutant channels was still 
characterized by two components: an instantaneous time-
independent current, followed by an outward time-
dependent relaxation (Fig. 6), which was well fit by a 
single-exponential function as in WT channels. In the 
presence of 1.5 µM Ca2+, act at +100 mV was 2.8 ± 0.3 ms 
in E367Q, faster than 7.5 ± 0.7 ms in the WT channel, 
whereas it became slower than WT in E5 (17.7 ± 3.0 ms) 
and in EYE (25.5 ± 2.3 ms). These results indicate that 
each mutation altered the time course of activation. 
Indeed, the time necessary to respond to a depolarization 
decreased in E367Q, whereas it was progressively pro-
longed in E5 and in EYE compared with WT. As in the 
WT channel, act in each mutant was not significantly 
modified by voltage (Fig. 9 A).

Deactivation kinetics was also well fit by a single-
exponential function and, similarly to WT, deact showed 
an increase at less negative voltages for each mutant 
channel (Fig. 9 B). In the presence of 1.5 µM Ca2+, deact 
at 100 mV was 1.6 ± 0.3 ms in E367Q, smaller than 7.2 ± 
0.8 ms in the WT channel, whereas it was not significantly 
different from WT in E5 (6.8 ± 0.3 ms) and became larger 
than WT in EYE (12.3 ± 1.5 ms). The time necessary for 
channels to close upon repolarization decreased in E367Q 
but remained similar in E5, and it was prolonged in EYE 
compared with WT. Thus, E367Q and EYE mutants also 
showed a modified time course of deactivation.

D I S C U S S I O N

Here, we have provided the first site-directed mutagen-
esis study to investigate structure–function relations of 
the TMEM16B channel. Because previous studies have 
shown that TMEM16B in excised inside-out patches has 
a significant rundown (Pifferi et al., 2009, Fig. 5; Stephan 
et al., 2009, Fig. 3 A), whereas whole cell recordings are 
rather stable (Pifferi et al., 2009, Fig. 1 h), we decided to 
use the whole cell configuration.

We first characterized the WT TMEM16B channel and 
established one important difference between TMEM16A 
and TMEM16B activation properties in the absence of 
[Ca2+]i. Indeed, we found that TMEM16B cannot be acti-
vated by voltages up to +200 mV in the absence of Ca2+ 
(32 ± 10 pA/pF; n = 6; not depicted), whereas recent data 
from Hartzell’s laboratory showed that TMEM16A was ac-
tivated by strong depolarization in the absence of Ca2+ 
(140 pA/pF at +200 mV; Fig. 5 A in Xiao et al., 2011). 
Thus, our data show that TMEM16B needs Ca2+ to be acti-
vated differently from TMEM16A, which can be activated 
by voltage also in the absence of Ca2+ (Xiao et al., 2011).

(Fig. 2 A), the steady-state I-V relation for each mutant 
was Ca2+ dependent, showing an outward rectification 
at low [Ca2+]i that became less pronounced as [Ca2+]i 
increased (Fig. 6 G). However, although the overall 
Ca2+ dependence was similar, the rectification index, 
measured from the ratio between steady-state currents 
at +100 and 100 mV, was significantly higher at every 
[Ca2+]i in E367Q and E5 mutants than in WT, whereas 
it remained similar in EYE mutant channel (Fig. 6 H).

The dose–response relations for each mutant chan-
nel, evaluated from tail currents as described previously 
for the WT channel (Fig. 3), were fit by the Hill equa-
tion (Fig. 7, A–C). Fig. 7 D shows that K1/2 at +100 mV 
(100 mV) was 1.6 µM (4.3 µM) in WT, 1.3 µM (4.0 µM) in 
E367Q, 2.2 µM (4.0 µM) in E5, and 1.3 µM (3.2 µM) in 
EYE. The Hill coefficient nH at +100 mV (100 mV) 
was 1.1 (1.2) in WT, 1.6 (1.2) in E367Q, 1.4 (2.9) in E5, 
and 2.0 (1.7) in EYE. Thus, the mutations produced only 
some very small changes in K1/2 or nH, but overall no 
strong modifications in Ca2+ sensitivity were observed.

The G-V relations in mutant channels were measured 
at each [Ca2+]i and compared with the corresponding 
relations in WT channels. Fig. 8 A shows that the E367Q 
mutation produced a rightward shift of the G-V relation 
at a given [Ca2+]i with respect to WT; indeed, V1/2 
changed from 124 ± 20 mV in WT to 169 ± 6 mV in 
E367Q at 1.5 µM Ca2+, and from 115 ± 18 mV in WT 
to 44 ± 8 mV in E367Q at 100 µM Ca2+ (Fig. 8 D). The 
deletion E5 also shifted the G-V relations to the right 
(Fig. 8, B and D): V1/2 changed from 124 ± 20 mV in WT 
to 248 ± 39 mV in E5 at 1.5 µM Ca2+, and from 115 ± 
18 mV in WT to 58 ± 15 mV in E5 at 100 µM Ca2+. Dif-
ferently from the previous mutants, the EYE deletion 
did not produce any significant change in the G-V rela-
tions (Fig. 8, C and D). The equivalent gating charge for 
each mutant varied between 0.15 and 0.32, values similar 
to those of the WT channel (z = 0.23–0.30). Thus, E367Q 
and the E5 deletion modified the voltage sensitivity: at a 

Figure 9.  Activation and deactivation kinetics of TMEM16B mu-
tants. Kinetics were measured as explained in Fig. 5. (A) Average 
activation time constants (act) plotted versus voltage for E367Q 
(n = 5), E5 (n = 3), and EYE (n = 6) mutants. (B) Average deac-
tivation time constants (deact) plotted versus voltage for E367Q (n = 
4), E5 (n = 4), and EYE (n = 5) mutants.
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TMEM16B is expressed in the retina, at the synaptic 
terminal of photoreceptors (Stöhr et al., 2009; Billig et al., 
2011), in the cilia of olfactory sensory neurons, and in 
the microvilli of vomeronasal sensory neurons (Stephan 
et al., 2009; Rasche et al., 2010; Sagheddu et al., 2010; 
Billig et al., 2011; Pifferi et al., 2012). Zhao’s laboratory 
showed that the major TMEM16B olfactory isoform dif-
fers from the retinal isoform in the absence of the exon 
encoding the four amino acids ERSQ in the first puta-
tive intracellular loop (Stephan et al., 2009). It is worth 
pointing out here that segment c (EAVK) in TMEM16A 
is not present in TMEM16B, but that ERSQ residues are 
located in the corresponding positions in the retinal 
isoform of TMEM16B (Fig. 6). A comparison between the 
biophysical properties measured in inside-out patches 
from the retinal isoform (Pifferi et al., 2009) and from 
the olfactory isoform (missing ERSQ; Stephan et al., 2009) 
did not reveal any major difference in the rectification 
properties and in the dose–response relations between 
the two isoforms, although we cannot exclude that 
more detailed biophysical studies may reveal subtle dif-
ferences. Indeed, the functional properties of addi-
tional isoforms for TMEM16B are under investigation 
(Saidu, S.P., A.B. Stephan, S.M. Caraballo, H. Zhao, and 
J. Reisert. 2010. Association for Chemoreception Sciences 
Meeting. Abstr. P68).

Although the amino acidic sequences of both TMEM16A 
and TMEM16B lack any classical voltage-sensor or Ca2+-
binding domain, a series of five consecutive glutamates 
located in the first putative intracellular loop has been 
identified as a good candidate to play a role in channel 
gating. Moreover, we have investigated if other glutamates 
in the same loop could also be involved in the activation 
of TMEM16B by Ca2+ and voltage. We found that dele-
tion of the five glutamates, E5, did not greatly affect 
the apparent affinity for Ca2+ (Fig. 7), but it significantly 
shifted the activation curve to the right. Indeed, V1/2 at 
1.5 µM Ca2+ changed from 124 mV in WT to 248 mV, 
whereas the equivalent gating charge was not modified. 
In addition, the time necessary to respond to a depolar-
ization was prolonged in E5, whereas the deactivation 
constant was not significantly affected (Fig. 9). Thus, the 
five consecutive glutamates are involved in the voltage 
dependence of the TMEM16B channel, whereas they do 
not seem to play a significant role in the apparent affinity 
for Ca2+. These results are in agreement with a recent 
study in TMEM16A, showing that the substitution of the 
four correspondent glutamates into alanines (444EEEE/
AAAA447) did not greatly affect the apparent affinity for 
Ca2+ but modified the voltage dependence, producing a 
shift of the activation curve to the right (Xiao et al., 2011).

In the TMEM16B mutant E367Q, both activation and 
deactivation kinetics were shortened; the dose–response 
relation for Ca2+ was not strongly modified, while the 
activation curve was shifted to the right. Finally, the de-
letion EYE produced an increase in the time constants 

In the presence of Ca2+, dose–response relations for 
TMEM16A and TMEM16B obtained by different labo-
ratories reported variable values for K1/2. For TMEM16A, 
from inside-out recordings, K1/2 at +60 mV (60 mV) 
was 0.3 µM (2.6 µM) (Yang et al., 2008), and at +100 mV 
(100 mV) it was 0.4 µM (5.9 µM) (Xiao et al., 2011), 
whereas from whole cell recordings at +100 mV (40 mV) 
it was 332 nM (700 nM) (Ferrera et al., 2009). For 
TMEM16B, from previous work in inside-out patches, K1/2 
at +50 mV (50 mV) was 3.3 µM (4.9 µM) (Pifferi et al., 
2009), and at +40 mV (40 mV) it was 1.2 µM (1.8 µM) 
(Stephan et al., 2009), whereas from whole cell record-
ings we found that K1/2 at +40 mV (40 mV) was 2.0 µM 
(2.7 µM), and at +100 mV (100 mV) it was 1.6 µM 
(4.3 µM) (Fig. 3). Although there are some differences 
among studies reported from different laboratories, 
every report showed that the apparent affinity for Ca2+ 
is slightly voltage dependent, with higher apparent Ca2+ 
affinity at positive voltages, and the Hill coefficients are 
consistently higher than one, indicating that more than 
a Ca2+ ion is necessary to activate the channels. A compari-
son between TMEM16A and TMEM16B shows a fourfold 
difference between K1/2 values at +100 mV: 0.4 µM (Xiao 
et al., 2011) for TMEM16A and 1.6 µM for TMEM16B 
(Fig. 3), indicating a lower apparent affinity for Ca2+ of 
TMEM16B compared with TMEM16A.

A critical question about the function of TMEM16A 
and TMEM16B is the following: what are the molecular 
mechanisms responsible for Ca2+ and voltage modula-
tion of channel gating in each channel? Galietta’s labo-
ratory (Ferrera et al., 2009) has shown that human 
TMEM16A has various protein isoforms generated by 
alternative splicing, and it has labeled the four identi-
fied alternative segments as a, b, c, and d. A rare minimal 
version of TMEM16A lacking all alternative segments, 
TMEM16A (0), still shows CaCC properties, although the 
voltage dependence is reduced, (Caputo et al., 2008; 
Ferrera et al., 2009, 2011). Ferrera et al. (2009) showed 
that segment b modified the Ca2+ sensitivity by nearly four-
fold, decreasing the apparent half-effective concentration 
at +80 mV from 350 to 90 nM, whereas segment c affected 
the voltage dependence but not the Ca2+ sensitivity of 
human TMEM16A (abc). Segment c is composed of the 
four amino acids EAVK, which have also been recently 
deleted from mouse TMEM16A (ac) in a study from 
Hartzell’s laboratory (Xiao et al., 2011). Differently from 
Ferrera et al. (2009), Xiao et al. (2011) found that dele-
tion of EAVK modified both Ca2+ and voltage dependence 
of TMEM16A. The discrepancy between the results can be 
a result of differences between human TMEM16A (ab) 
and mouse TMEM16A (a), and/or to the different tech-
niques, whole cell versus inside-out recordings, used for 
the experiments in the different laboratories. Although 
the two studies reached some different conclusions, they 
both pointed to the relevance of the segment c in the regu-
lation of the TMEM16A functional activity.
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for activation and deactivation, whereas it did not cause 
any large change in apparent affinity for Ca2+ or in volt-
age sensitivity.

Collectively, our results indicate that glutamates E367 
and 386EEEEE390 in the first putative intracellular loop 
play a relevant role in the modulation of the voltage 
dependence of TMEM16B.

Conclusions
In conclusion, we have found evidence that the five con-
secutive glutamates in the first putative intracellular loop 
are not involved in Ca2+ sensitivity in TMEM16B but 
have an important role in voltage dependence. Another 
glutamate in position 367 plays a similar role, further 
indicating that the first intracellular loop is involved in 
voltage-dependent activation of TMEM16B.

At present, the location of the Ca2+-binding site in 
TMEM16A and TMEM16B remains unknown. It is pos-
sible that several residues in different regions contrib-
ute to bind Ca2+ ions, but it cannot be excluded that the 
Ca2+-binding site is located in an accessory subunit ex-
pressed both in HEK 293T cells and in axolotl oocytes. 
Future work will have to shed light on the intricate 
mechanisms that couple Ca2+ gating and voltage depen-
dence, including intriguing interactions between gating 
and permeation.
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I N T R O D U C T I O N

Permeation and gating properties in most ion channels 
have been traditionally considered to be independent, 
with the opening and closing of the ion channel (gating) 
as a separate process from ion entrance and passage in 
the channel pore (permeation). However, several studies 
on many ion channels have described interactions be-
tween permeation and gating, suggesting that these two 
processes are not always independent (Hille, 2001).

Ca2+-activated Cl channels (CaCCs) play important 
physiological functions, including regulation of cell ex-
citability, fluid secretion, and smooth muscle contraction 
and block of polyspermy in some oocytes (Frings et al., 
2000; Hartzell et al., 2005; Leblanc et al., 2005; Petersen, 
2005; Wray et al., 2005; Lalonde et al., 2008; Duran et al., 
2010; Berg et al., 2012; Huang et al., 2012a). Evidence 
that anions modify gating of endogenous CaCCs was re-
ported in several cell types. Indeed, partial replacement 
of Cl with other anions caused alterations in CaCC ki-
netics or conductance in lacrimal gland cells (Evans and 
Marty, 1986), parotid secretory cells (Ishikawa and Cook, 
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1993; Perez-Cornejo and Arreola, 2004), portal vein 
smooth muscle cells (Greenwood and Large, 1999), and 
Xenopus laevis oocytes (Centinaio et al., 1997; Kuruma 
and Hartzell, 2000; Qu and Hartzell, 2000). Moreover, 
Qu and Hartzell (2000) showed that the sensitivity for 
Ca2+ of CaCCs in Xenopus oocytes depended on the per-
meant anion, indicating that the permeant anion is able 
to affect channel gating.

The molecular identity of CaCCs has been controver-
sial for a long time, but there is now a general consensus 
that at least two members of the TMEM16 (anoctamin) 
gene family, TMEM16A/anoctamin1 and TMEM16B/
anoctamin2, encode for CaCCs (Caputo et al., 2008; 
Schroeder et al., 2008; Yang et al., 2008; Pifferi et al., 
2009; Stephan et al., 2009; Stöhr et al., 2009). TMEM16A 
is expressed in secretory cells, smooth muscle cells, and 
several other cell types (Huang et al., 2009, 2012a), in-
cluding supporting cells in the olfactory and vomerona-
sal epithelium (Billig et al., 2011; Dauner et al., 2012; 
Dibattista et al., 2012; Maurya and Menini, 2013) and mi-
crovilli of vomeronasal sensory neurons (Dibattista et al., 
2012). TMEM16B is expressed at the synaptic terminal of 

Interactions between permeation and gating in the TMEM16B/anoctamin2 
calcium-activated chloride channel
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At least two members of the TMEM16/anoctamin family, TMEM16A (also known as anoctamin1) and TMEM16B 
(also known as anoctamin2), encode Ca2+-activated Cl channels (CaCCs), which are found in various cell types 
and mediate numerous physiological functions. Here, we used whole-cell and excised inside-out patch-clamp to 
investigate the relationship between anion permeation and gating, two processes typically viewed as independent, 
in TMEM16B expressed in HEK 293T cells. The permeability ratio sequence determined by substituting Cl with 
other anions (PX/PCl) was SCN > I > NO3

 > Br > Cl > F > gluconate. When external Cl was substituted with 
other anions, TMEM16B activation and deactivation kinetics at 0.5 µM Ca2+ were modified according to the se-
quence of permeability ratios, with anions more permeant than Cl slowing both activation and deactivation and 
anions less permeant than Cl accelerating them. Moreover, replacement of external Cl with gluconate, or su-
crose, shifted the voltage dependence of steady-state activation (G-V relation) to more positive potentials, whereas 
substitution of extracellular or intracellular Cl with SCN shifted G-V to more negative potentials. Dose–response 
relationships for Ca2+ in the presence of different extracellular anions indicated that the apparent affinity for Ca2+ 
at +100 mV increased with increasing permeability ratio. The apparent affinity for Ca2+ in the presence of intracel-
lular SCN also increased compared with that in Cl. Our results provide the first evidence that TMEM16B gating 
is modulated by permeant anions and provide the basis for future studies aimed at identifying the molecular deter-
minants of TMEM16B ion selectivity and gating.
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M A T E R I A L S  A N D  M E T H O D S

Heterologous expression
Full-length mouse TMEM16B cDNA in pCMV-Sport6 mammalian 
expression plasmid was obtained from RZPD (clone identification: 
IRAVp968H1167D; NCBI Protein accession no. NP_705817.1). 
This is the retinal isoform with the same start site of the olfactory 
isoform used in Stephan et al. (2009) and contained exon 14 
(Ponissery Saidu et al., 2013; named exon 13 in Stephan et al. 
[2009]). 2 µg cDNA was transfected into HEK 293T cells using 
FuGENE-6 or X-tremeGENE 9 (Roche). Cells were cotransfected 
with 0.2 µg pEGFP-C1 (Takara Bio Inc.) for fluorescent identifica-
tion of transfected cells.

Electrophysiology
Electrophysiological recordings were performed in the whole-cell 
or inside-out patch-clamp configurations between 48 and 72 h 
from transfection, as previously described (Pifferi et al., 2006, 
2009; Cenedese et al., 2012). Patch pipettes, made of borosilicate 
glass (World Precision Instruments, Inc.) with a PP-830 puller 
(Narishige), had a resistance of 3–5 MΩ or 1–2 MΩ, respectively, 
for whole-cell or inside-out experiments. Currents were recorded 
with an Axopatch 1D or Axopatch 200B amplifier controlled by 
Clampex 9 or 10 via a Digidata 1332A or 1440 (Axon Instruments 
or Molecular Devices). Data were low-pass filtered at 4 or 5 kHz 
and sampled at 10 kHz. Experiments were performed at room 
temperature (20–25°C). The bath was grounded via a 1 or 3 M 
KCl agar salt bridge connected to an Ag/AgCl reference elec-
trode. A modified rapid solution exchanger (Perfusion Fast-Step 
SF-77B; Warner Instruments Corp.) was used to expose cells or 
excised membrane patches to different solutions.

In whole-cell recordings, one stimulation protocol consisted of 
voltage steps of 200-ms duration from a holding potential of 0 mV 
ranging from 100 to +100 mV (or from 200 to +200 mV), fol-
lowed by a step to 100 mV. A single-exponential function was 
fitted to tail currents to extrapolate the tail current value at the 
beginning of the step to 100 mV. The conductance, G, was cal-
culated as G = It/(Vt  Vrev), where It is the tail current, Vt is the 
tail voltage, 100 mV, and Vrev is the current reversal potential.

To estimate Vrev, channels were activated by a 200-ms pulse to 
+100 mV and then rapidly closed by application of hyperpolariz-
ing steps. Single-exponential functions were fitted to tail currents 
to extrapolate the tail current value at each voltage step. Tail cur-
rent values were plotted as a function of voltage, and the Vrev was 
estimated from a linear fit in a ±20-mV interval around Vrev.

In inside-out recordings, currents were recorded after the ini-
tial rundown, as described in Pifferi et al. (2009). Moreover, to 
allow the current to partially inactivate, patches were preexposed 
to the various Ca2+ concentrations for 500 ms before applying volt-
age protocols (Pifferi et al., 2009). Stimulation protocols con-
sisted of a 100-mV voltage step of 200-ms duration from a holding 
potential of 0 mV, followed by a step to 100 mV or by double 
voltage ramps from 100 to +100 mV and back to 100 mV at 
1-mV/ms rate, and the two I-V relations were averaged. The dose–
response curves were obtained by exposing the patches for one 
second to solutions with increasing free Ca2+ concentrations. Leak 
currents measured in nominally 0 Ca2+ solutions were subtracted.

Ionic solutions
The same solutions were used for whole-cell and inside-out re-
cordings, unless otherwise indicated. The standard extracellular 
solution contained (mM) 140 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 10 
glucose, and 10 HEPES, pH 7.4. The standard intracellular solu-
tion contained (mM) 140 CsCl, 10 HEPES, 10 HEDTA (or 5 
EGTA), pH 7.2, and no added Ca2+ for the nominally 0 Ca2+ solu-
tion, or various amounts of CaCl2, as calculated with the program 
WinMAXC (C. Patton, Stanford University, Stanford, CA), to 

photoreceptors (Stöhr et al., 2009; Billig et al., 2011; 
Dauner et al., 2013), in hippocampal cells (Huang et al., 
2012b), in the cilia of olfactory sensory neurons, and in 
the microvilli of vomeronasal sensory neurons (Stephan 
et al., 2009; Hengl et al., 2010; Rasche et al., 2010;  
Sagheddu et al., 2010; Billig et al., 2011; Dauner et al., 
2012; Dibattista et al., 2012; Maurya and Menini, 2013). 
Studies with knockout mice for TMEM16A or TMEM16B 
(Rock and Harfe, 2008; Billig et al., 2011) or knockdown 
of these channels further confirmed a reduction in 
CaCC activity (Flores et al., 2009; Galietta, 2009; Hartzell 
et al., 2009; Huang et al., 2012a; Kunzelmann et al., 
2012a,b; Pifferi et al., 2012; Sanders et al., 2012; Scudieri 
et al., 2012).

At present little is known about the structure-function 
relations for TMEM16A and TMEM16B. Bioinformatic 
models based on hydropathy analysis indicate that 
TMEM16 proteins have eight putative transmembrane 
domains (Caputo et al., 2008; Schroeder et al., 2008; 
Yang et al., 2008). In TMEM16A, the first putative intra-
cellular loop contains regions that are involved both in 
the Ca2+ and voltage dependence (Caputo et al., 2008; 
Ferrera et al., 2009, 2011; Xiao et al., 2011). In TMEM16B, 
some glutamic acids in the first putative intracellular loop 
contribute to voltage dependence (Cenedese et al., 2012). 
A recent study identified splice variants for TMEM16B 
and found that N-terminal sequences affect Ca2+ sensitivity 
(Ponissery Saidu et al., 2013).

A region located between transmembrane domains 5 
and 6 was proposed to form a reentrant loop exposed to 
the extracellular membrane side and to be part of the 
channel pore. Indeed, mutations of some basic amino 
acids in this region of TMEM16A, such as R621E, altered 
ion selectivity (Yang et al., 2008), although another study 
did not confirm the change in ion selectivity with this 
mutation (Yu et al., 2012). The same group proposed a 
different topology in which a reentrant loop is exposed 
to the intracellular membrane side of the membrane, 
also forming the third intracellular loop. Indeed, muta-
genesis of two amino acids in this region, E702 and E705, 
largely modified Ca2+ sensitivity of TMEM16A (Yu et al., 
2012). Experiments with chimeras between TMEM16A 
and TMEM16B support the finding that the third intra-
cellular loop is important for Ca2+ sensitivity (Scudieri 
et al., 2013). At present, no mutations significantly alter-
ing ion selectivity have been found (Yu et al., 2012).

Recent studies reported that anions modify gating of 
TMEM16A. Ferrera et al. (2011) showed that membrane 
conductance increased at all voltages when extracellu-
lar Cl was replaced with I or SCN. Xiao et al. (2011) 
found that voltage-dependent gating of TMEM16A was 
facilitated by anions with high permeability or by an 
increase in extracellular Cl. Here, we investigate how 
extracellular and intracellular anions affect gating in 
TMEM16B and show the presence of a strong coupling 
between permeation and gating.
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experiments in inside-out patches with different anions 
in the pipette solution, at the extracellular side of the 
membrane patch. Fig. 2 A shows currents activated at 
1.5 µM Ca2+ using voltage ramps from 100 to +100 mV, 
in the presence of the indicated extracellular anions. 
PX/PCl ratios were SCN (18.2) > I (7.1) > NO3

 (4.1) > 
Br (2.3) > Cl (1.0) > F (0.3) > gluconate (0.1).

The sequence of PX/PCl in inside-out patches was the 
same as that measured in whole-cell experiments, al-
though the value of PX/PCl for some anions was sig-
nificantly higher when measured in inside-out than in 
whole-cell recordings (see Discussion). Moreover, we com-
pared selectivity when anions were replaced at the extra-
cellular or intracellular side of inside-out patches and 
showed that for each internal or external anion PX/PCl 
was not significantly different (Fig. 2 B; data for intracel-
lular I, NO3

, and Br are from Pifferi et al. [2009]).
We plotted PX/PCl for extracellular anion substitution 

versus ionic radius (Fig. 2 C) or free energy of hydration 
(Fig. 2 D) of the test anion X. These plots show that 
PX/PCl increases with the ionic radius, with the exception 
of F and gluconate. On the other side, PX/PCl increases 
monotonically as the free energy of hydration decreases, 
indicating that the facility with which the anion enters 
the channel is related to its free energy of hydration.

Activation and deactivation kinetics
To characterize activation and deactivation kinetics in 
the presence of various anions, we analyzed the time-
dependent components in response to voltage steps in 
whole-cell recordings at 0.5 µM Ca2+. We measured the 
activation kinetics of currents in response to a voltage 
step to +100 mV from 0-mV holding voltage. The cur-
rent in Cl had an instantaneous component, related 
to the fraction of channels open at 0 mV, followed by  
a time-dependent component caused by the increase  
in channel opening at +100 mV. The time-dependent 
component was fit by a single-exponential function to 
calculate the time constant of activation, act. Fig. 3 A 
shows superimposed normalized currents from the 
same cell in Cl or with the indicated extracellular 
anion. No time-dependent component at +100 mV was 
observed when Cl was replaced with gluconate or F 
(not depicted). On average, act at +100 mV in the pres-
ence of 0.5 µM Ca2+ was 7.7 ± 0.4 ms in Cl, whereas it 
became slower with more permeant anions: 28 ± 3 ms in 
SCN, 14.8 ± 1.2 ms in I, 12.5 ± 1.0 ms in NO3

, and 
11.1 ± 1.4 ms in Br. The mean act is plotted as a func-
tion of PX/PCl in Fig. 3 C, showing that more permeant 
anions significantly prolonged the time course of activa-
tion, increasing the time necessary to respond to a de-
polarization compared with Cl.

To examine the deactivation kinetics, we calculated 
the time constant of current deactivation (deact) by fit-
ting with a single exponential function the tail currents 
obtained by a voltage step to 60 mV after a prepulse at 

obtain free Ca2+ in the range between 0.18 and 100 µM (Patton et al., 
2004). The intracellular solution with 1 mM Ca2+ contained (mM) 
140 NaCl, 10 HEPES, and 1 CaCl2, pH 7.2.

Cl in the extracellular solution was substituted with other an-
ions by replacing NaCl on an equimolar basis (unless otherwise 
indicated) with NaX, where X is the substituted anion. The con-
trol extracellular solution (140 mM Cl) used in Fig. 4 contained 
(mM) 140 NaCl, 2.5 K2SO4, 2 CaSO4, 1 MgSO4, and 10 HEPES, 
pH 7.4. For the 11 mM Cl and 1 mM Cl solutions, NaCl was re-
placed on an equimolar basis with Na-gluconate or sucrose. The 
osmolarity was adjusted with sucrose. In the extracellular solu-
tions containing NaF, divalent cations were omitted. When NaF 
was tested in the presence of 1 mM Ca2+ at the intracellular side of 
inside-out patches, no current was measured, probably because of 
the insolubility of CaF2. When the patch pipette contained SCN, 
I, and Br, a 1 M KCl agar salt bridge was used to connect the 
Ag/AgCl wire to the recording solutions. Applied voltages were 
not corrected for liquid junction potentials. All chemicals were 
purchased from Sigma-Aldrich, except K2SO4 from Carlo Erba 
and CaSO4 from J.T.Baker.

Data analysis
Data are presented as mean ± SEM, with n indicating the number 
of cells or patches. Statistical significance was determined using 
paired or unpaired t tests or ANOVA, as appropriate. When a sta-
tistically significant difference was determined with ANOVA, a 
post hoc Tukey’s test was used to evaluate which data groups 
showed significant differences. P-values <0.05 were considered 
significant. Data analysis and figures were made with Igor Pro soft-
ware (WaveMetrics). For the sake of clarity in the figures, the ca-
pacitative transients of some traces were trimmed.

R E S U L T S

Anion selectivity of TMEM16B
To determine the selectivity of TMEM16B to anions, we 
measured currents in the presence of various extracel-
lular anions by replacing 140 mM NaCl in the Ringer 
solution with the Na salt of other anions. Fig. 1 A shows 
representative whole-cell recordings at 0.5 µM Ca2+ in 
the presence of Cl, after replacement of Cl with the 
indicated anions, and in Cl after wash out. Steady-state 
I-V relations are plotted in Fig. 1 B. To obtain a better 
estimate of Vrev, we also measured tail currents (Fig. 1, C 
and D). When Cl was replaced with gluconate, the out-
ward currents decreased and Vrev shifted to positive val-
ues, revealing a lower permeability of gluconate than 
Cl. On the contrary, in the presence of SCN, I, 
NO3

, and Br, the outward currents were larger than 
those measured in Cl and Vrev shifted to negative val-
ues, indicating a higher permeability of the substituted 
anions than Cl. Permeability ratios (PX/PCl) were SCN 
(3.0) > I (2.6) > NO3

 (2.3) > Br (1.7) > Cl (1.0) > F 
(0.5) > gluconate (0.2). Fig. 1 (E and F) shows that the 
selectivity of TMEM16B estimated both from permea-
bility ratios (PX/PCl) and from chord conductance ra-
tios (GX/GCl) had the same sequence: SCN > I > NO3

 > 
Br> Cl > F > gluconate.

To obtain a direct comparison of selectivity in whole-
cell and inside-out configurations, we also performed 
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706 Permeation and gating of TMEM16B/anoctamin2

Figure 1.  Extracellular anion selectivity in whole-cell recordings. (A) Representative whole-cell voltage-clamp recordings obtained 
with an intracellular solution containing 0.5 µM Ca2+. Voltage steps of 200-ms duration were given from a holding voltage of 0 mV 
to voltages between 100 and +100 mV in 20-mV steps followed by a step to 100 mV, as indicated in the top part of the panel. 
Each cell was exposed to a control solution containing NaCl (black traces) and NaX, where X was the indicated anion, followed by 
wash out in NaCl (gray traces). (B) Steady-state I-V relations measured at the end of the voltage steps from the cells shown at the 
left (A) in control (squares), NaX (circles), or after wash out from the NaX solution (triangles). (C and D) Representative record-
ings from two cells at 0.5 µM Ca2+ obtained with a voltage protocol consisting of a prepulse to +100 mV from a holding voltage of 
0 mV, followed by voltage steps between 60 and +70 mV (C) or 60 and +20 mV (D) in 10-mV steps. Only current recordings every 
20 mV are shown in C. I-V relations measured from tail currents in Cl (squares) or in the indicated anion (circles) are shown on the 
right of each cell. (E) Mean permeability ratios (PX/PCl) calculated with the Goldman-Hodgkin-Katz equation (n = 11–14). (F) Mean 
chord conductance ratios (GX/GCl) measured in a 40-mV interval around Vrev per each anion (n = 4–14). Error bars indicate SEM.
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G G z V V= + −( ) { }max // exp ,1 1 2 F/RT

	
(1)

where G is the conductance, z is the equivalent gating 
charge associated with voltage-dependent channel 
opening, V is the membrane potential, V1/2 is the mem-
brane potential producing half-maximal activation, F is 
the Faraday constant, R is the gas constant, and T is the 
absolute temperature. Gmax was evaluated for each cell 
from a global fit of G-V relations in control, after anion 
substitutions, and after wash out.

In a first set of experiments, we decreased the extra-
cellular Cl concentration from 140 to 11 mM or 1 mM 
by replacing Cl with equimolar concentrations of the 
less permeant anion gluconate, in the presence of  
1.5 µM Ca2+ (Fig. 4, A and B). Fig. 4 C shows that the de-
crease of [Cl]o produced a rightward shift of the G-V 
relation. From a global fit of G-V relations with the 
same Gmax and equivalent gating charge (z), V1/2 signifi-
cantly changed from +79 ± 13 mV in 140 mM Cl to 
+187 ± 14 mV in 11 mM [Cl]o. When Cl was further 
decreased to 1 mM, V1/2 was +205 ± 17 mV, which was 
not significantly different from the V1/2 value in 11 mM. 

+100 mV. Fig. 3 B shows superimposed normalized 
currents from the same cells of Fig. 3 A. In the pres-
ence of 0.5 µM Ca2+, the mean deact at 60 mV was 4.6 ± 
0.3 ms in Cl, whereas it became faster with less per-
meant anions (2.3 ± 0.5 ms in F and 1.9 ± 0.2 ms in 
gluconate) and slower with more permeant anions 
(23.3 ± 4.8 ms in SCN, 9.3 ± 1.4 ms in I, 7.5 ± 0.5 ms 
in NO3

, and 5.8 ± 0.9 ms in Br). The mean deact is 
plotted as a function of PX/PCl in Fig. 3 C, showing that 
the deactivation kinetics prolonged as a function of 
permeability ratios.

Voltage dependence
To investigate the effect of anions on the voltage depen-
dence of channel activation in whole-cell recordings, we 
extended voltage steps from 200 to +200 mV to obtain 
a better estimate of voltage dependence (Fig. 4). The 
voltage dependence of steady-state activation (G-V rela-
tion) was analyzed measuring tail currents at the begin-
ning of a step to 100 mV after the prepulse voltage 
steps. The conductance was plotted versus membrane 
voltage and fit by the Boltzmann equation:

Figure 2.  Anion selectivity in inside-out patches. 
(A) I-V relations in 1.5 µM Ca2+ obtained from a 
ramp protocol in inside-out membrane patches. In 
each patch, the pipette solution contained 140 mM 
NaCl or the Na salt of the indicated anion. Leak-
age currents measured in 0 Ca2+ were subtracted. 
(B) Comparison of mean permeability ratios (PX/
PCl) calculated with the Goldman-Hodgkin-Katz 
equation with different anions in the internal (n = 
5–6; data for intracellular I, NO3

, and Br are 
from Pifferi et al. [2009]) or external solution (n = 
6–12; as experiments shown in A). Error bars in-
dicate SEM. (C and D) Permeability ratios (PX/PCl), 
obtained from experiments as in A, plotted ver-
sus ionic radius (C) or free energy of hydration (D) 
of the extracellular anion. Ionic radius and free 
energy of hydration were taken from Table 1 of 
Smith et al. (1999).

 on M
ay 27, 2014

jgp.rupress.org
D

ow
nloaded from

 
Published May 26, 2014

Lijo Cherian
Typewriter
41

http://jgp.rupress.org/


708 Permeation and gating of TMEM16B/anoctamin2

z value was not significantly different: 0.33 ± 0.04 and 
0.26 ± 0.01, respectively, in 0.5 and 1.5 µM Ca2+.

To investigate whether the leftward shift of the G-V 
relation was specific to SCN or was present also with 
other anions more permeant than Cl, we performed 
experiments changing the external anion from Cl to 
NO3

 in the presence of 1.5 µM Ca2+ (representative 
recordings not depicted). A leftward shift of the G-V re-
lation was observed also with NO3

, and the mean V1/2 
significantly changed from +52 ± 16 mV in Cl to 101 ± 
18 mV in NO3

 (n = 6), as shown in the right columns 
of Fig. 5 I. Thus, V1/2 decreased in the presence of SCN 
or NO3

, indicating that more channels can be acti-
vated by depolarization in the presence of some anions 
more permeant than Cl.

Ca2+ dependence
To investigate whether different anions modify the Ca2+ 
dependence of TMEM16B activation, we measured 
dose–response relations. The best technique to mea-
sure the Ca2+ dependence of TMEM16B is to use ex-
cised inside-out patches because channels can be 
activated by several [Ca2+]i in the same patch and the 
leakage current in the absence of Ca2+ can be subtracted 
from each measurement. However, as we have previ-
ously shown, the current induced by TMEM16B pres-
ents a rundown in activity in inside-out patches (Pifferi 
et al., 2009), limiting the number of recordings that can 
be compared on the same patch. For this reason, we 
measured currents activated by various [Ca2+]i at only 
two voltage steps of +100 or 100 mV, as shown in 
Fig. 6 A. Currents in the presence of each extracellular 
anion were measured at the end of each voltage step by 

The mean z value was 0.29 ± 0.02 (n = 10). Similar re-
sults were obtained when [Cl]o was reduced by partial 
substitution with sucrose: V1/2 changed from +70 ± 19 mV 
in 140 mM Cl to +209 ± 23 mV in 11 mM Cl and +199 ± 
23 mV in 1 mM Cl, confirming that the shift was 
caused by [Cl]o reduction rather than the presence of 
gluconate (Fig. 4 D).

These results show that V1/2 increased when extracel-
lular Cl was reduced by substitution with gluconate or 
with sucrose, indicating that fewer channels can be acti-
vated by depolarization when the external Cl concen-
tration is reduced. The opposite trend, consisting of a 
leftward shift of the G-V relation at a given [Ca2+]i, was 
observed when Cl was partially replaced by the more 
permeant anion SCN (Fig. 5). Indeed, in the presence 
of 0.5 µM Ca2+ (Fig. 5, A–C) or 1.5 µM Ca2+ (Fig. 5, 
D–F), the substitution of Cl with SCN produced a left-
ward shift of the G-V relations. Upon a further increase 
of Ca2+ concentration to 13 µM (Fig. 5, G and H), the 
substitution of Cl with SCN caused an almost com-
plete activation of the current at all membrane poten-
tials in all of the experiments, preventing the possibility 
to numerically estimate V1/2, which was shifted to very 
negative potentials << 200 mV (Fig. 5, G and H).

Data from several cells at 0.5 or 1.5 µM Ca2+ are sum-
marized in Fig. 5 I, in which mean V1/2 values are shown. 
At 0.5 µM Ca2+, the mean V1/2 significantly changed 
from +195 ± 19 mV in Cl to +11 ± 35 mV in SCN (n = 4). 
At 1.5 µM Ca2+, the mean V1/2 significantly changed 
from +84 ± 20 mV in Cl to 189 ± 20 mV in SCN (n = 9; 
in some experiments with SCN at 1.5 µM Ca2+, in which 
the current was fully activated and V1/2 could not be 
evaluated, we considered V1/2 = 250 mV). The mean 

Figure 3.  Activation and deactivation 
kinetics in whole cell with various extra-
cellular anions. (A and B) Normalized 
single traces from whole-cell currents 
in the presence of extracellular NaCl 
or the Na salt of the indicated anion in 
0.5 µM Ca2+. Voltage protocol similar 
to Fig. 1 (C and D), with a voltage step 
to +100 mV (A) from a holding volt-
age of 0 mV and followed by a step to 
60 mV (B). Trace in gluconate in A is 
not shown because at the test potential 
there is a negligible time-dependent 
component. (C) Current activation and  
deactivation were fitted with a single 
exponential (fit not depicted for clarity). 
Mean activation time constants (act) 
at +100 mV and deactivation time con-
stants (deact) at 60 mV were plotted 
versus permeability ratios (n = 8–14; 
*, P < 0.05; **, P < 0.01, paired t test 
with Cl). Error bars indicate SEM.
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To further investigate how external SCN modifies 
the Ca2+ dependence of TMEM16B compared with 
Cl, we measured dose–response relations in whole-
cell recordings at different voltages and compared the 
results with values measured with voltage ramps in in-
side-out patches (Fig. 7). The whole-cell configuration 
has the advantage of allowing the comparison of record-
ings with different extracellular anions in the same 
cell but has the disadvantage that different [Ca2+]i val-
ues have to be tested on different cells. To compare 
currents from different cells, current densities were 
calculated by dividing current amplitudes by the cell 
capacitance. Fig. 7 A shows whole-cell currents at vari-
ous [Ca2+]i in external Cl or SCN. In each cell, at a 
given [Ca2+]i, both inward and outward currents in 
SCN significantly increased with respect to those in Cl. 
Dose–response relations in whole-cell were analyzed 
by measuring tail currents at the beginning of the step 
to 100 mV after prepulses ranging from 100 to 
+100 mV in steps of 20 mV. Mean conductance densi-
ties in the presence of external Cl or SCN were cal-
culated, plotted versus [Ca2+]i, and fit at each voltage 
by the Hill equation:

taking the mean current between 150 and 190 ms, nor-
malized to the maximal current at the same voltage and 
plotted versus [Ca2+]i (Fig. 6 B). Data were fitted by the 
Hill equation:

	 I I K/ / ,max /=     +( )+ +Ca Cai
n

i
n nH H H2 2

1 2 	 (2)

where I is the current, Imax is the maximal current, K1/2 is 
the half-maximal [Ca2+]i, and nH is the Hill coefficient.

Mean K1/2 values at +100 mV were lower for anions 
more permeant than Cl but increased for less perme-
ant anions (Fig. 6, B, C, and E). At 100 mV, the mean 
K1/2 value for SCN was smaller than the value in Cl, 
whereas there was no significant difference for values 
between the other anions and Cl (Fig. 6 C). Moreover, 
we observed a significant increase for Hill coefficient 
values (nH) both at 100 and +100 mV for NO3

, I, 
and SCN compared with Cl (Fig. 6 D). These results 
indicate that, at +100 mV, a lower [Ca2+]i is sufficient to 
activate 50% of the maximal current in the presence of 
external anions more permeant than Cl, whereas a 
higher [Ca2+]i is required for less permeant anions.

Figure 4.  Changes of voltage dependence in whole cell when extracellular Cl was substituted with less permeant gluconate or 
sucrose. (A) Representative whole-cell voltage-clamp recordings at 1.5 µM Ca2+. The same cell was exposed to a solution containing 
NaCl (black traces), Na-gluconate (green and blue traces), and back to NaCl (gray traces). Voltage steps of 200-ms duration were  
given from a holding voltage of 0 mV to voltages between 200 and +200 mV in 40-mV steps, followed by a step to 100 mV. 
(B) Steady-state I-V relations measured at the end of the voltage steps from the cell shown at the left (A) normalized to the control value 
at +200 mV. Control values are represented by black squares, wash out by gray triangles, and 11 mM and 1 mM Cl, respectively, by 
the green and blue circles. (C) Normalized conductances calculated from tail currents at 100 mV after prepulses between 200 
and +200 mV plotted versus the prepulse voltage for the experiment shown in A. Symbols as in B. Lines are the fit to the Boltzmann 
equation (Eq. 1). (D and E) Mean V1/2 values in the presence of gluconate (D; n = 10) or sucrose (E; n = 3) at the indicated [Cl]o 
(**, P < 0.01, Tukey’s test after ANOVA for repeated measurements). Error bars indicate SEM.
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710 Permeation and gating of TMEM16B/anoctamin2

activated with voltage ramps with Cl (Fig. 7 E) or SCN 
(Fig. 7 F) in the patch pipette.

Normalized dose–response relations were fit with  
the Hill equation (Eq. 2 and Fig. 7 G). Fig. 7 (H and I) 
shows that K1/2 and nH values at different voltages were 
similar in inside-out and in whole-cell configurations, 
further confirming that external SCN increased the 
apparent Ca2+ affinity at all voltages compared with Cl 
and increased nH at some positive voltages.

To determine whether SCN modifies channel gating 
also from the intracellular side, we measured the volt-
age dependence of activation in whole-cell recordings 
in the presence of SCN instead of Cl at 0.5 µM Ca2+ 
(Fig. 8 A). G-V relations showed that V1/2 was 0.4 ± 11 mV 
in intracellular SCN (n = 11; z = 0.33 ± 0.01), whereas 
it was +195 ± 19 mV in intracellular Cl (Fig. 8, B and C; 
for Cl data from Fig. 5 I).

	
G G K=     +( )+ +

max // ,Ca Cai
n

i
n nH H H2 2

1 2
	

(3)

where G is the conductance density, Gmax is the maximal 
conductance density, K1/2 is the half-maximal [Ca2+]i, 
and nH is the Hill coefficient.

The comparison between dose–response relations at 
+100 and 100 mV in external Cl and SCN is illus-
trated in Fig. 7 B. At +100 mV, K1/2 was 1.2 µM in Cl 
and decreased to 0.4 µM in SCN. Fig. 7 C shows that K1/2 
slightly decreased as a function of voltage from 7.6 µM 
at 100 mV to 1.2 µM at +100 mV in Cl and from 
1.1 µM at 100 mV to 0.4 µM at +100 mV in SCN. The 
Hill coefficient in Cl was not voltage dependent, with 
a value of 1.1 at both 100 and +100 mV, whereas in 
SCN nH was 2.2 at 100 mV and 3.5 at +100 mV (Fig. 7 D). 
Similar results were obtained from experiments in the 
inside-out configuration. Currents at various [Ca2+]i were 

Figure 5.  Changes of voltage dependence in whole cell when extracellular Cl was substituted with more permeant anions. (A, D, and G) 
Representative whole-cell voltage-clamp recordings at the indicated [Ca2+]i. The same cell was exposed to a solution containing NaCl 
(black traces), NaSCN (red traces), and back to NaCl (gray traces). Voltage steps of 200-ms duration were given from a holding volt-
age of 0 mV to voltages between 200 and +200 mV in 40-mV steps, followed by a step to 100 mV, as indicated in the top part of A. 
(B, E, and H) Steady-state I-V relations measured at the end of the voltage steps from the cell shown at the left (A, D, and G, respec-
tively) in control (squares), NaSCN (circles), and after wash out (triangles). (C and F) Normalized conductances calculated from tail 
currents at 100 mV after prepulses between 200 and +200 mV plotted versus the prepulse voltage. Symbols as in B and E. Lines 
are the fit to the Boltzmann equation (Eq. 1). (I) Mean V1/2 values at 0.5 µM Ca2+ (n = 4) or 1.5 µM Ca2+ (n = 9 in Cl, 6 in NO3

) for 
Cl, SCN, or NO3

 (**, P < 0.01 paired t test). Error bars indicate SEM.
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Figure 6.  Ca2+ sensitivity in inside-out patches with various extracellular anions. (A) Each row shows current traces from the same 
inside-out patch with the indicated anion in the pipette. The cytoplasmic side was exposed to [Ca2+]i ranging from 0.18 to 1 mM. 
Voltage steps of 200-ms duration were given from a holding voltage of 0 mV to +100 mV, followed by a 200-ms step to 100 mV. 
Leakage currents measured in 0 Ca2+ were subtracted. (B) Dose–response relations of activation by Ca2+ obtained by normalized 
currents at 100 or +100 mV, fitted to the Hill equation (Eq. 2). Black lines are the fit to the Hill equation in external Cl. (C) Com
parison of the mean K1/2 values at 100 or +100 mV in the presence of various anions (n = 5–13; **, P < 0.01 comparison with Cl by 
Tukey’s test after ANOVA). (D) Comparison of the mean nH values at 100 or +100 mV in the presence of various anions (n = 5–13; 
**, P < 0.01 comparison with Cl by Tukey’s test after ANOVA). (E) Mean K1/2 values at +100 mV plotted versus permeability ratios. 
Error bars indicate SEM.
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D I S C U S S I O N

In this study, we have provided evidence that, in the 
TMEM16B channel, permeant anions modulate the ki-
netics of current activation and deactivation, as well as 
the voltage and apparent Ca2+ sensitivity. Indeed, extra-
cellular anions more permeant than Cl prolonged 
both act and deact at low Ca2+, shifted V1/2 toward more 
negative values, and decreased K1/2, favoring the chan-
nel’s opening. In contrast, extracellular anions less per-
meant than Cl shortened deact, shifted V1/2 toward 
more positive values, and increased K1/2, contributing 
to channel closure. Moreover, a decrease of extracellu-
lar Cl by replacement with sucrose also shortened deact 
(not depicted) and shifted V1/2 toward more positive 
values, favoring the closed state of the channel. Overall, 
these results indicate that the most permeant anions 

Moreover, we measured dose–response relations for 
Ca2+ in inside-out patches in the presence of SCN in 
the bathing solution (Fig. 8 D). The comparison be-
tween dose–response relations at +100 and 100 mV in 
intracellular Cl and SCN is illustrated in Fig. 8 E. At 
+100 mV, K1/2 was 2.2 ± 0.1 µM in Cl and decreased 
to 0.85 ± 0.06 µM in SCN; at 100 mV, K1/2 was 6.4 ± 
0.4 µM in Cl and 3.3 ± 0.3 µM in SCN. The Hill co
efficient in Cl was not voltage dependent, with a value 
of 1.41 ± 0.06 at 100 mV and 1.4 ± 0.3 at +100 mV, 
whereas in SCN nH was 1.90 ± 0.06 at 100 mV and 
2.2 ± 0.2 at +100 mV. These results show that not only 
extracellular, but also intracellular SCN affects gating 
of TMEM16B by producing a leftward shift of the volt-
age dependence and an increase of the apparent affin-
ity for Ca2+.

Figure 7.  Comparison of Ca2+ sensitivity in whole-cell and inside-out patches. (A) Whole-cell recordings obtained with various [Ca2+]i in 
extracellular Cl or SCN. The same cells were recorded in Cl or SCN for each [Ca2+]i. Voltage protocol as in Fig. 1 A. (B) Comparison 
of dose–responses in Cl or SCN at 100 and +100 mV in whole cell obtained from conductance density calculated from tail currents 
plotted versus [Ca2+]i (n = 3–5). Lines are the fit to the Hill equation (Eq. 3). (C and D) Mean K1/2 and nH values from whole-cell record-
ings plotted versus voltage. (E and F) Currents in an inside-out patch activated by voltage ramps at the indicated [Ca2+]i in symmetrical 
Cl (E) or in extracellular SCN (F). Leakage currents measured in 0 Ca2+ were subtracted. (G) Comparison of dose–responses in Cl 
or SCN obtained by normalized currents at 100 or +100 mV, fitted to the Hill equation (Eq. 2). (H and I) Mean K1/2 and nH values 
from inside-out patch recordings plotted versus voltage (n = 6–7). Error bars indicate SEM.
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several reasons, including the loss of some intracellular 
factor after patch excision, such as calmodulin, and/or 
ion accumulation effects caused by restricted ion diffu-
sion altering the ion concentration gradient. If SCN or 
other anions entering the cell accumulated at the intra-
cellular side of the membrane, the concentration gradient 
between the intracellular and extracellular side would 
decrease, producing a less negative Vrev value. The differ-
ences we observed are consistent with anion accumula-
tion at the intracellular surface membrane in whole cell, 
whereas the continuous flow of solutions containing Cl 
in inside-out membrane patches is likely to prevent or 
reduce the possibility of anion accumulation at the in-
tracellular side of the membrane. In addition, we cannot 
exclude a difference induced by effects after patch exci-
sion. Jung et al. (2013) reported that the anion selectiv-
ity of TMEM16A is dynamically regulated by the 
Ca2+–calmodulin complex, whereas the effect of Ca2+–
calmodulin on selectivity of TMEM16B has not been  
investigated yet. In any case, despite the difference in 
some values of permeability ratios, we obtained the same 
sequence for anion permeability ratios measured with 
different patch-clamp configurations, confirming that 
the permeability ratio sequence for TMEM16B follows 
the Hofmeister sequence or lyotropic sequence, in 
which anions with lower dehydration energy (lyotropos) 
have higher permeability compared with anions with 
higher dehydration energy (Wright and Diamond, 1977; 
Zhang and Cremer, 2006). As previously pointed out, “the 
relationship between anion permeability and anion energy 
of hydration supports the notion that anion dehydration 

and Cl itself favor the open state of TMEM16B. Fur-
thermore, we investigated the effect of replacing Cl 
with SCN at the intracellular side of the channel and 
found similar gating modifications as from the extracel-
lular side.

Anion selectivity
The sequence of permeability ratios measured in whole-
cell recordings when extracellular Cl was replaced with 
other anions was SCN (3.0) > I (2.6) > NO3 (2.3) > 
Br (1.7) > Cl (1.0) > F (0.5) > gluconate (0.2). More-
over, the sequence of relative chord conductance fol-
lowed the same order. Both sequences are in agreement, 
for the corresponding anions, with measurements ob-
tained by Adomaviciene et al. (2013; see their Fig. 4) on 
TMEM16B and TMEM16A.

The order of anions in the sequence was the same 
when measurements were obtained both from whole-
cell and inside-out patches. However, permeability ratios 
in inside-out patches were SCN (18.2) > I (7.1) > 
NO3

 (4.1) > Br (2.3) > Cl (1.0) > F (0.3) > gluconate 
(0.1), showing larger differences among anions than in 
whole-cell recordings. Indeed, we measured a difference 
in Vrev when anions were exchanged in the whole-cell or 
inside-out configurations. For example, when external 
Cl was replaced with SCN, the mean Vrev in whole cell 
was 27 ± 2 mV, whereas in the same ionic conditions 
with SCN in the pipette, Vrev in inside out was 70 ± 1 mV. 
We measured a less negative Vrev in whole-cell than in 
inside-out recordings also with the other anions more 
permeant than Cl. This difference may be the result of 

Figure 8.  Effect of intracellular SCN. (A) Whole-cell recordings at 0.5 µM Ca2+ with a standard intracellular solution containing Cl (same 
traces of Fig. 5 A) or SCN. Voltage steps as in Fig. 5. (B) Normalized conductances calculated from tail currents at 100 mV after prepulses 
between 200 and +200 mV plotted versus the prepulse voltage for the experiments shown in A. Lines are the fit to the Boltzmann equation 
(Eq. 1). (C) Mean V1/2 values in the presence of Cl (n = 4; same data of Fig. 5 I) or SCN (n = 11; **, P < 0.01 unpaired t test). Error bars 
indicate SEM. (D) Traces from an inside-out patch with SCN at the intracellular side. [Ca2+]i ranged from 0.18 to 100 µM. Voltage steps 
of 200-ms duration were given from a holding voltage of 0 to +100 mV, followed by a 200-ms step to 100 mV. Leakage currents measured 
in 0 Ca2+ were subtracted. (E) Dose–response relations of activation by Ca2+ obtained by normalized currents at 100 or +100 mV (n = 11), 
fitted to the Hill equation (Eq. 2). Black lines are the fit to the Hill equation in symmetrical Cl solutions.

 on M
ay 27, 2014

jgp.rupress.org
D

ow
nloaded from

 
Published May 26, 2014

Lijo Cherian
Typewriter
47

http://jgp.rupress.org/


714 Permeation and gating of TMEM16B/anoctamin2

> Br (1.6) > Cl (1) > F (0.3) > aspartate (0.1) > gluta-
mate (0.05). Kinetics of current activation and deactiva-
tion were measured in the presence of 250 nM Ca2+. 
Activation kinetics increased about fourfold in SCN and 
about twofold in NO3

. Deactivation kinetics increased 
about threefold in SCN and about twofold in NO3

, 
whereas it decreased in F. As in previous studies, the ef-
fects on kinetics largely followed the order of the perme-
ability sequence, with anions with permeability ratios > 1 
producing larger effects. Also in this case, SCN efficacy 
was much larger than what was observed with the other 
more permeant anions, an effect consistent with the high 
permeability of SCN.

Although results from CaCCs on different cells are 
heterogeneous, all share the same property that act and 
deact were affected by extracellular permeant anions 
according with their permeability ratios, similarly to our 
results. deact was prolonged or shortened by anions 
more or less permeant than Cl, respectively. One im-
portant difference from our results is that we found that 
act for the TMEM16B current was prolonged by anions 
more permeant than Cl, whereas in the previous work 
on endogenous CaCCs, act was shortened (Evans and 
Marty, 1986; Perez-Cornejo and Arreola, 2004). This dif-
ference may be the result of the difference in channel 
proteins, as TMEM16A is most likely the CaCC expressed 
in lacrimal glands and in parotid acinar cells and/or by 
the [Ca2+]i. Indeed, we measured act at 0.5 µM Ca2+, a 
concentration at which the TMEM16B current induced 
by depolarization has a clear time-dependent compo-
nent, whereas as [Ca2+]i increases the time-dependent 
component decreases, and most current has an instanta-
neous change to the new level (Fig. 7 A). Thus, differences 
in act may be explained by different Ca2+ dependencies 
of the time-dependent component among CaCCs.

Voltage and Ca2+ dependence of activation
We measured the voltage-dependent activation of 
TMEM16B at low Ca2+ concentrations, showing that the 
substitution of both intra- and extracellular Cl with the 
more permeant SCN caused a leftward shift of the G-V 
relation. Also the Cl itself is affecting TMEM16B voltage 
dependence because its substitution with sucrose caused 
a shift of V1/2 to more positive values. Furthermore, dose–
response relations for Ca2+ showed that the sensitivity for 
Ca2+ depends on the permeant anion and that K1/2 at 
+100 mV decreases as a function of permeability ratios.

Also, these results can be compared with the small 
number of previous studies which have investigated the 
effect of permeant anions on endogenous CaCCs. Ishi-
kawa and Cook (1993) recorded in whole cell from 
sheep parotid secretory cells and measured the follow-
ing permeability ratios: SCN (1.80) > I (1.09) > Cl 
(1) > NO3

 (0.92) > Br (0.75). These authors analyzed 
current amplitudes and showed that both outward and 
inward currents increased when Cl was replaced with 

is the limiting step in permeation” (Dawson et al., 1999; 
Linsdell et al., 2000).

Activation and deactivation kinetics
We found that anions more permeant than Cl slowed 
both the activation and deactivation time constants at 
0.5 µM Ca2+. act at +100 mV was 7.7 ± 0.4 ms in Cl and 
almost doubled to 14.8 ± 1.2 ms in I. deact at 60 mV was 
4.6 ± 0.3 ms in Cl and also increased twice to 9.3 ± 1.4 ms 
in I. For anions less permeant than Cl, currents acti-
vated by depolarizing voltage steps lost any time depen-
dence; although the deact values were shortened in 
gluconate, deact at 60 mV decreased to 1.9 ± 0.2 ms.

These results can be compared with the limited num-
ber of previous studies investigating the effects of per-
meant anions on endogenous CaCCs. Although some 
differences in permeability sequences were reported in 
different cells, in each case there was a correlation be-
tween changes in kinetics and permeability ratios.

Evans and Marty (1986) reported the following se-
quence of permeability ratios for CaCCs in isolated cells 
from lacrimal glands when Cl was replaced with some 
extracellular anions: I (2.71) > NO3

 (2.39) > Br 
(1.59) > Cl (1) > F (0.18) > isethionate (0.11) = meth-
anesulfonate (0.11) > glutamate (0.05). The same au-
thors investigated current kinetics at 0.5 µM Ca2+ and 
showed that replacement of extracellular Cl with the 
two most permeant anions in these cells, I or NO3

, 
led to significant alterations of both act at +20 mV and 
deact at 60 mV. The value of act in Cl was 241 ± 53 ms 
and was shortened 0.91 and 0.83 times in I and NO3

, 
respectively. The value of deact was 170 ± 45 ms in Cl 
and increased 1.54 and 1.38 times in I and NO3

, re-
spectively. Other anions such as Br, isethionate, meth-
anesulfonate, or glutamate did not significantly modify 
current kinetics, indicating that “the more permeant 
the anion, the greater was its effect on channel kinetics” 
(Evans and Marty, 1986).

Greenwood and Large (1999) studied the effects of ex-
tracellular anions on the deactivation kinetics of CaCCs 
in smooth muscle cells isolated from rabbit portal vein 
with the perforated patch-clamp technique. The se-
quence of permeability ratios was: SCN > I > Br > Cl 
>> isethionate. The same authors reported that deact was 
prolonged by the external anions SCN, I, and Br, 
which were more permeant than Cl, whereas it was ac-
celerated by the less permeant anion isethionate. Indeed, 
deact was 97 ± 7 ms in Cl, 278 ± 19 ms in SCN, 157 ± 
37 ms in I, and 67 ± 5 ms in isethionate, showing a strong 
correlation between permeability ratios and changes in 
kinetics of deactivation, suggesting that gating is linked 
to permeability.

In another study, Perez-Cornejo and Arreola (2004) 
obtained whole-cell recordings from acinar cells dissoci-
ated from rat parotid gland and measured the following 
permeability ratios: SCN (4.3) > I > (2.6) > NO3

 (2.0) 
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How are permeant anions modifying gating in these 
channels? Greenwood and Large (1999) first suggested 
that the slower deactivation measured with more perme-
ant anions could be explained if the more permeant 
anion favors the channel open state, for example by in-
creasing the mean open time, possibly with a mechanism 
similar to the “foot in the door,” originally observed in 
potassium channels (Armstrong, 1971) and afterward 
confirmed in various other ion channels, where the most 
permeant ions stabilized the open conformation (Yellen, 
1997). Our results could be explained by this mecha-
nism, as the most permeant anions also produce an in-
crease in the apparent open probability.

Overall, we found that permeant anions affected the 
voltage dependence and the apparent Ca2+ affinity but 
not the voltage sensitivity, as measured by the equiva-
lent gating charge z. However, it is likely that permeant 
anions play a more complex role in addition to an in-
crease in open probability. We observed that the substi-
tution of Cl with SCN both at the extracellular and 
intracellular side produced a shift of the G-V relation 
toward more negative values, an increase of the appar-
ent Ca2+ affinity, but also a reduction in the voltage de-
pendence of the apparent Ca2+ affinity (Fig. 7, C and H), 
and an increase of the Hill coefficient at positive volt-
ages. These results could suggest that more permeant 
ions can bind with higher affinity than Cl to an alloste-
ric binding site (inside or outside the pore) that may 
control the gate of the channel.

Interestingly, the effect of permeant anions on gating 
is not novel for Cl channels because it is well known 
that anion occupancy of the pore is strictly coupled to 
fast gating in CLC Cl channels. For these channels, the 
movement of the permeating anion in the pore contrib-
utes to the voltage dependence of the channel opening 
(Pusch et al., 1995; Chen and Miller, 1996; Pusch, 1996). 
However, the ion selectivity sequence for CLC Cl chan-
nels, Cl > Br > I, is very different from that for 
TMEM16B, and there is no evidence for sequence con-
servation patterns among CLC and TMEM16 families 
(Duran et al., 2010), indicating that the molecular 
mechanisms underlying the effect of permeant anions 
on gating may be rather different.

Recent work showed that the TMEM16A channel can 
be gated by direct binding of Ca2+ to the TMEM16A 
protein, rather than by binding to an accessory Ca2+-
binding protein or through phosphorylation (Yu et al., 
2012, 2014; Terashima et al., 2013). Moreover, mutation 
of two glutamic acids, E702 and E705, greatly modified 
the Ca2+ sensitivity of the channel and contributed to 
the revision of the topology of the channel (Yu et al., 
2012), a topology which received further support by results 
obtained with chimeric proteins between TMEM16A 
and TMEM16B (Scudieri et al., 2013). Yu et al. (2012) 
also obtained data consistent with amino acids 625 to 
630 contributing to an outer vestibule at the extracellular 

SCN, remained similar in I, and decreased both with 
NO3

 and Br. Thus, the conductance changes followed 
the order of the permeability sequence. Perez-Cornejo 
and Arreola (2004) measured G-V relations in the pres-
ence of anions more permeant than Cl, fit the normal-
ized conductance with the Boltzmann equation, and 
reported that G-V relations were shifted toward more 
negative voltages with respect to the value in Cl. The 
shift was larger for anions with higher permeability ra-
tios. Anions with permeability ratios < 1 were not tested. 
Qu and Hartzell (2000) compared dose–response for 
Ca2+ in inside-out patches from Xenopus oocytes, in the 
presence of Cl or SCN at the intracellular side. By fit-
ting the data with the Hill equation, they found that at  
0 mV, the Ca2+ concentration producing 50% of the max-
imal current was 279 nM in Cl, whereas it decreased 
about twofold, 131 nM, in SCN, indicating that a lower 
[Ca2+]i is sufficient to open the channels in the presence 
of the more permeant anion SCN compared with Cl. 
These results show that anions more permeant than Cl 
favor channel opening, whereas less permeant anions 
favor channel closure, in agreement with our results.

TMEM16A and TMEM16B
After the discovery that TMEM16A and TMEM16B are 
CaCCs, some studies reported the effect of some perme-
ant anion on TMEM16A, whereas this is the first study on 
TMEM16B. Xiao et al. (2011) obtained whole-cell re-
cordings from HEK 293 cell expressing the TMEM16A(ac) 
isoform and showed that replacement of extracellular 
Cl with NO3

 or SCN shifted G-V relations to more 
negative voltages. Moreover, replacement of increasing 
concentrations of extracellular Cl with gluconate or su-
crose shifted the G-V relations toward increasingly more 
positive voltages. act and deact were not reported. These 
results are in agreement with our data.

Ferrera et al. (2011) reported that whole-cell record-
ings from Fischer rat thyroid cells stably expressing the 
TMEM16A(abc) showed an increase or decrease in con-
ductance when extracellular Cl was replaced with 
more or less permeant anions, respectively. Indeed, the 
conductance increased about twofold in I and SCN, 
whereas it decreased by 50% in gluconate. Interest-
ingly, the same authors showed that the isoform 
TMEM16A(0) had some differences in selectivity com-
pared with TMEM16A(abc). PI/PCl increased from 3.6 
for TMEM16A(abc) to 4.7 for TMEM16A(0), and PSCN/
PCl increased from 3.4 for TMEM16A(abc) to 5.6 for 
TMEM16A(0). Furthermore, the membrane conduc-
tance in I and SCN increased about sixfold compared 
with Cl for TMEM16A(0), to be compared with a two-
fold increase in TMEM16A(abc). act and deact were not 
reported. It is likely that a comparison of the regions of 
the two isoforms may help to shed light on the molecular 
mechanism at the basis of the effect of permeant anion 
on gating.
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Abstract   

We investigated the extracellular effects of anthracene-9-carboxylic acid (A9C) on 

TMEM16B Ca2+-activated Clˉ channels, expressed in HEK 293T cells, using the whole-cell 

patch-clamp technique. In the presence of 1.5 µM Ca2+, A9C had multiple effects on 

TMEM16B-mediated currents. We measured a voltage-dependent block of outward 

currents and potentiation of transient early inward currents. Moreover, also tail currents 

recorded at -100 mV after various prepulse voltages were potentiated and their 

deactivation was slower compared to control. The effectiveness of A9C in potentiating tail 

current and prolonging their closure increased with higher prior depolarization, thus 

requiring  channel opening. 

We evaluated the dependence of current block, potentiation and  decay rate on A9C 

concentration. 

To test whether the negative charge of A9C was important, we used anthracene-9-

methanol (A9M), a non-charged analogue of A9C. A9M produced a small, not voltage-

dependent block of TMEM16B currents, did not produce current potentiation, but 

prolonged both the activation and deactivation kinetics of TMEM16B. This is the first report 

of A9M activity on a Ca2+ activated chloride  current. 

The data from present study confirm previous observation on paradoxical effects of A9C 

on Ca2+ activated chloride  current in smooth muscle cells (Piper and Greenwood, 2003). 
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Introduction    

Ca2+-activated Cl- currents (CaCCs) were originally identified in rod segments from the 

salamander retina (Bader et al., 1982) and in Xenopus Iaevis oocytes (Miledi, 1982). Later 

they have been observed in diverse tissues including exocrine gland cells, neurons, heart, 

skeletal and smooth muscle (Large and Wang, 1996; Frings et al., 2000; Hartzell et al., 

2005; Leblanc et al., 2005; Petersen, 2005; Wray et al., 2005; Lalonde et al., 2008; Duran 

et al., 2010; Berg et al., 2012; Huang et al., 2012a). 

The molecular identity of CaCCs has been controversial for a long time, until recently, 

when two members of TMEM16/anoctamin gene family, TMEM16A/anoctamin1  and  

TMEM16B/ anoctamin2, were shown to mediate CaCCs  (Yang et al., 2008; Caputo et al., 

2008; Schroeder et al., 2008; Pifferi et al., 2009; Stephan et al., 2009; Stöhr et al., 2009; 

Sagheddu et al., 2010; Dibattista et al., 2012; Pedemonte and Galietta, 2014). 

Since then TMEM16A and B were found to be expressed in many of the cell types known 

to exhibit CaCCs (Huang et al., 2009, 2012a; Ferrera et al., 2010; Pedemonte and Galietta, 

2014). Studies performed with knockout mice for TMEM16A or TMEM16B (Rock and 

Harfe, 2008; Billig et al., 2011) and knockdown of these channels in specific cell types 

confirmed their involvement in the generation of CaCCs (Flores et al., 2009; Galietta, 2009; 

Kunzelmann et al., 2012a; b; Pifferi et al., 2012; Sanders et al., 2012; Scudieri et al., 2012; 

Huang et al., 2012a). 

TMEM16A and TMEM16B are closely related (Pedemonte and Galietta, 2014) and their 

expression in diverse cell types give rise to voltage-dependent anionic currents, although 

they somewhat differ in certain respects, as TMEM16B shows faster kinetics and lower 

sensitivity to cytosolic Ca2+ than TMEM16A (Yang et al., 2008; Caputo et al., 2008; 

Schroeder et al., 2008; Pifferi et al., 2009; Stephan et al., 2009; Scudieri et al., 2013). 
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Selective and specific blockers are a valuable research tool to study ion channel structure-

function relations, to explore the properties of channel pore and to elucidate the 

physiological relevance of native currents (Hille, 2001). Diverse classes of compounds 

were reported to  block CaCCs in various cell types, like fenamates (flufenamic acid, 

niflumic acid; (White and Aylwin, 1990; Hogg et al., 1994b; Greenwood and Large, 1995)), 

stilbene derivatives (4,4-diisothiocyanato-stilbene-2,2-disulfonic acid, known as DIDS; 

(Hogg et al., 1994a)) and anthracene-9-carboxylic acid (A9C;(Hogg et al., 1994a)). 

Unfortunately, these compounds lack specificity and high affinity. Other blockers, such as 

eugenol (Yao et al., 2012), digallic and tannic acid (Namkung et al., 2010), benzbromarone  

(Huang et al., 2012b), CaCCinh-A01 (De La Fuente et al., 2008) and the novel T16Ainh-

A01 (Namkung et al., 2011) and MONNA (Oh et al., 2013) have been identified recently. 

The investigation of their specificity and blocking mode is still in progress.  

Anthracene-9-carboxylic acid (A9C) is an organic molecule traditionally used to block and 

identify CaCCs in various cell types, like diverse smooth muscle cells (from portal vein 

Hogg et al., 1993, 1994a; esophageal Akbarali and Giles, 1993; urethral Cotton et al., 

1997; anococcygeal  Wayman et al., 1997  and lymphatic smooth muscle cells Toland et 

al., 2000), but also in epithelial cells (Qu et al., 2003), in salivary gland cells (Romanenko 

et al., 2010) and in Xenopus laevis oocytes (Qu and Hartzell, 2001). 

A9C has been described as a low-affinity open channel voltage-dependent blocker of 

CaCCs measured in excised patches from Xenopus laevis oocytes, being more efficient at 

depolarizing voltages and acting from the extracellular side (Qu and Hartzell, 2001).  

Piper and Greenwood (Piper and Greenwood, 2003) observed an anomalous and more 

complex action of A9C on CaCCs recorded in rabbit pulmonary artery smooth muscle cells, 
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consisting of a weak block of outward currents and an increase of the amplitude of 

instantaneous inward currents recorded at hyperpolarizing potential. 

In this study we investigated the effect of extracellular A9C on TMEM16B Ca2+-activated 

Clˉ currents, recorded in HEK 293T cells using the whole-cell patch-clamp technique. In 

the presence of intracellular 1.5 µM Ca2+, A9C had multiple effects on TMEM16B-

mediated currents: a voltage-dependent block of outward currents and a strong 

potentiation of transient early inward currents. These complex effect was not replicated 

when we used an electrically neutral analogue of A9C, anthracene-9-methanol (A9M). 

 



 
59

Materials and Methods: 

Cell culture and heterologous expression of TMEM16B 

The full length isoform of TMEM16B cDNA in pCMV-Sport6 mammalian expression 

plasmid was obtained from RZPD (clone identification IRAV p968H1167D; NCBI protein 

database accession number NP_705817.1). This is the retinal isoform with the same start 

site of the olfactory isoform used in Stephan et al. (2009) and contained the exon 14 

(Ponissery Saidu et al., 2013), named exon 13 in (Stephan et al., 2009). 2µg cDNA coding 

for TMEM16B together with 0.2µg of pEGFP-C1 (Takara Bio Inc.)  were transfected into 

HEK293T cells using FuGENE 6 or X-tremeGENE 9 (Roche).  Cell were used for patch 

clamp experiments within 48 hours of transfection. 

 

Electrophysiology 

Experiments were performed in the whole cell voltage clamp configuration  at room 

temperature (22-25 ⁰C) as previously described (Pifferi et al., 2006, 2009; Cenedese et al., 

2012; Betto et al., 2014). Patch pipettes, made of borosilicate glass had a pipette 

resistance of ~3-5 MΩ when immersed in bath solution. Whole cell currents were recorded 

with an Axopatch 1D amplifier controlled by pClamp 9.2 via a Digidata 1332A (Axon 

instruments, Molecular devices). Data were low pass filtered at 5kHz and sampled at 

10kHz. Complete exchange of extracellular solution in close vicinity of patched cell was 

achieved using a gravity fed perfusion system (Perfusion Fast Step SF-77B, Warner 

Instruments Corp.) in a continuously perfused bath. Bath was grounded using a 3MKCl 

agar salt bridge connected to an Ag/AgCl reference electrode. Liquid junction potentials 

were of few mV and were not corrected. Stimulation protocol consisted of voltage steps of 
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200ms duration from a holding potential of 0mV (or -60mV) ranging from -100mV to 

+140mV with an interval of 20mV, followed by a step to -100mV. 

 

Solutions 

The standard extracellular solutions (mammalian Ringer) contained (in mM): 140 NaCl, 5 

KCl, 2 CaCl2, 1 MgCl2, 10 glucose and 10 HEPES adjusted to pH 7.4 with NaOH. The 

standard intracellular solutions contained (in mM): 140 CsCl, 10 HEPES, 10 HEDTA, 

adjusted to pH 7.2 with CsOH, and various amounts of CaCl2, as calculated with the 

program WinMAXC (C. Patton, Stanford University, Stanford, CA), to obtain free Ca2+ 1.5 

and 13 μM (Patton et al., 2004). Anthracene-9-carboxylic acid, A9C, was dissolved in 

DMSO at a stock concentration of 1M and stored at -20⁰C. Final concentrations of A9C 

were achieved by diluting the desired volume of stock into bath solution and sonicating for 

30 mins at 37 ⁰C. Anthracene-9-methanol, A9M, was dissolved in chloroform at a 

concentration of 100 mM and diluted in bath solution to final concentration of 300µM.  

Solution was sonicated till it became clear and was left open under chemical hood to 

evaporate the remaining chloroform. The maximal nominal concentration of chloroform in 

the final solution was 0.3%.  All the preparations and experiments with A9C and A9M were 

done minimizing solutions’ light exposure. All the chemicals were purchased from Sigma-

Aldrich. 

Data analysis 

IGOR Pro software (WaveMetrics, Lake Oswego, OR, USA) was used for data analysis 

and figures. Data are usually presented as mean ± SEM and the number of cells (n).  

For the sake of clarity in the figures the capacitive transients of some traces were trimmed. 
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Results     

 

Voltage-dependent A9C block of TMEM16B currents  

To measure the extracellular effect of A9C on TMEM16B-mediated currents, we recorded 

from HEK293T cells transiently transfected with TMEM16B using the whole cell patch 

clamp configuration in the presence of 1.5 or 13 µM free Ca2+ in the intracellular solution.  

In a first set of experiments, currents were activated by 13 µM Ca2+, a concentration that 

almost fully activates TMEM16B-induced currents. Indeed, the Ca2+ concentration 

necessary to activate 50% of the maximal current between -100 and +100 mV in 

TMEM16B ranges between approximately 1 and 4 µM (Pifferi et al., 2009; Stephan et al., 

2009). Figure 1 A shows representative whole-cell recordings measured in control and in 

the presence of 1 mM A9C, obtained in response to voltage steps between -100 and +140 

mV, from a holding potential of 0 mV, followed by a step to -100 mV.  I-V relations at the 

end of voltage steps show that outward currents were partially reduced by A9C (Fig. 1 B). 

The average ratios between current in A9C and control (IA9C/ ICT) plotted versus voltage 

reveal that the block was voltage-dependent and was more efficient at high depolarizing 

voltages (Fig. 1C).  

 

Multiple effects of A9C  

In a second set of experiments, we reduced intracellular Ca2+ to 1.5 M. Figure 2 A shows 

that addition of 1 mM A9C produced not only a voltage-dependent block of outward 

currents, but also a transient increase of early inward currents and of tail currents at -100 

mV (see also Fig. 2C and Fig. 3). Figure 2 B shows currents recorded from the same cell 
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as in A, from a holding potential of -60 mV. In the presence of 1 mM A9C, the voltage-

dependent block of outward currents was similar to that measured from a holding potential 

of 0 mV (Figs. 2 A, B and D), whereas the amplitude of transient early inward currents did 

not change compared to control (Fig. 2 C). Potentiation of tail currents at -100 mV was still 

present (Fig. 2 B and). Similar results were obtained in n=5 cells. 

These results show that 1 mM A9C has multiple effects on TMEM16B in the presence of 

1.5 M Ca2+, consisting of voltage-dependent block of outward currents and potentiation of 

transient early inward currents and tail currents at -100 mV. In addition, early inward 

current potentiation was elicited by 1 mM A9C from a holding potential of 0 mV, whereas 

no potentiation was observed from a holding potential of -60 mV.  

Figure 3 A shows that the kinetics of deactivation of tail currents recorded at -100 mV after 

several prepulse voltages in the presence of 1 mM A9C was often biphasic, whereas 

deactivation in control could be well described by a single exponential function. To quantify 

tail current potentiation after each prepulse voltage, we evaluated the maximal tail currents 

with respect to the values measured at steady state at -100 mV. In control, we calculated 

the current value obtained from a single-exponential fit of tail currents extrapolated to the 

beginning of the step to -100 mV (Fig. 3 B, green line). In the presence of A9C, we usually 

measured the current peak that developed between 2.5 and 3 ms after the voltage step to 

-100 mV. Both in control and in A9C the corresponding values of steady state currents at -

100 mV were subtracted from the above values. Figure 3 C shows the maximal tail current 

amplitudes in A9C and control versus the prepulse voltages. The amplitudes of maximal 

tail currents in A9C were similar to control from negative prepulse voltages up to -40 mV, 

whereas increased in A9C when the prepulse voltage was >-20 mV. 
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To quantify the tail current decay kinetics, we measured the decay time necessary to 

reach 50% of the maximal tail current (Fig. 3 B, dotted blue line) recorded at -100 mV. 

Figure 3 D shows that t50 did not change with voltage in control, whereas increased with 

voltage in 1 mM A9C. 

These results show that both transient tail current potentiation and t50 increased with 

depolarization of the prepulse voltage. 

 

Concentration dependence of A9C effects 

Figure 4 A shows representative whole-cell recordings at 1.5 µM Ca2+ in control and in the 

presence of various concentrations of A9C from 33 M to 1mM. All the effects of A9C, 

block, potentiation and change in kinetics were reversible, as shown by the wash out 

traces in the right column of Fig. 4 A.  I-V relations measured at the end of voltage steps 

are shown in Fig. 4 B. Interestingly, the inset of Fig. 4 B illustrates that at 300 M A9C and 

at intermediate depolarizing potentials (20-60 mV) there was a small potentiation of 

outward currents. Average fractional currents as a function of voltage (Fig. 4 C; n=4 to 8 

for each concentration) show the presence of a voltage-dependent block at every A9C 

concentration, but also an outward current potentiation (IA9C/ ICT >1) in 300 M A9C 

between +20 and +60 mV. Outward current potentiation was present in most experiments 

at 300 M A9C and its amplitude was quite variable. 

As the presence of potentiation prevents a correct evaluation of the blocking potency of 

A9C at every voltage, we made a rough evaluation of  the concentration-dependent block 

between +80 and +140 mV and  we did not consider values at 300 M A9C because 

potentiation obscured the blocking effect especially at this concentration. Figure 5A shows 
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the fractional current IA9C / ICT plotted versus A9C concentration at the diverse potentials, 

while the continuous lines correspond to the fit according to a Michaelis-Menten equation, 

IA9C / ICT = (1-[A9C] / KD)-1, where KD is the apparent dissociation constant.  In panel B is 

plotted the KD in function of the membrane potential and the line corresponds to the fit with 

a Woodhull equation, log KD (Vm) = log KD
0mV - δVmF/(2.3*RT), with  δ  equal to 0.57 and 

an apparent KD
0mV of 4450 M. 

We quantified the potentiation of tail currents and the deactivation kinetics at -100 mV at 

various A9C concentrations as previously described in Fig. 3. Figure 6 A and B show 

respectively the maximal tail currents at -100 mV after a prepulse to +120 mV and t50 as a 

function of A9C concentration.  

These results showed that tail current potentiation increased up to 300 M A9C and then 

decreased as A9C further increased (Fig. 6 A), while t50 monotonically increased with A9C 

concentration (Fig. 6 B).  

 

Effects of A9M, a non-charged analogue of A9C   

To test the hypothesis that the negatively charged side chain of A9C is involved in the 

voltage dependence of block, we used anthracene-9-methanol (A9M), a non-charged 

analogue of A9C and compared the effect of A9C and A9M at 300 M. Figures 7 A-B show 

that A9M had a very small blocking effect on outward currents and did not cause 

potentiation of inward currents. In the same cell, 300 M A9C had the typical voltage-

dependent effect, blocking outward currents at high depolarizing voltages (Fig. 7 A-C) and 

potentiated early inward currents and tail currents at -100 mV, in agreement with Figs. 4 

and 6, while potentiation was not present in 300 M A9M. 
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Figure 7 C shows that the small block by A9M was not voltage-dependent (average values 

from 4 experiments, the broken line refer to the experiment in panel A). Moreover, it is 

important to note that the blocking efficacy of 300 M A9M was lower than that of A9C at 

high depolarizing voltages (Vm>+60 mV), similar at about +60 mV, and higher than that of 

A9C at low positive voltages (+20<Vm<+40mV), which is the voltage range in which we 

observed potentiation by A9C. Thus, the blocking effect by A9C is underestimated at low 

positive voltages because of simultaneous potentiating effect.  

In addition, we observed that A9M slowed activation kinetics, with act of about 2.5 fold 

larger than those in control. A9M weakly blocked TMEM16B currents recorded in the 

presence of 1.5 M Ca2+, but produced a strong and reversible prolongation of the 

activation kinetics (Fig. 7 A, D).   

We also compared the effect of A9M and A9C on the tail currents measured at -100 mV 

after prepulse voltages from -100 to +140 mV.  Figure 8A shows tail currents from the 

same experiment of Fig. 7 A on an expanded time scale: A9C greatly potentiated tail 

currents as previously shown (Figs. 3,4 and 6), while A9M caused a small block of tail 

currents and a prolongation of the deactivation kinetics. Figure 8 B and C show 

respectively the ratios of the maximal tail currents in A9M and A9C with respect to control 

and t50 recorded at -100 mV, following a depolarization to +120 mV.  

Taken together, these results show that 300 M A9M produced a small, not voltage-

dependent current block of outward currents, did not potentiate currents, but prolonged 

both the activation and deactivation kinetics of TMEM16B.  
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Discussion     

In this study we applied the traditional blocker A9C to CaCC currents elicited in TMEM16B 

transfected cells. It is apparent that A9C has a bimodal effect, it inhibits currents at positive 

voltages, while it enhances tail currents at negative potentials. Additionally, A9C 

application strongly modifies current kinetics, prolonging channel closure. 

 

Voltage dependent A9C block of TMEM16B currents 

We measured A9C block of TMEM16B mediated currents in presence of high and 

intermediate Ca2+ concentration (Fig.1,2 and 4), where current is respectively fully or only 

partially activated (Cenedese et al., 2012).  In both cases we observed a voltage 

dependent block of outward currents (Fig.1, 2 and 4), being A9C more effective at high 

depolarizing potentials.   

We could not carefully evaluate the voltage dependence at all potentials because in our 

working conditions we observed also a potentiatory effect of A9C at intermediate positive 

potentials when TMEM16B current was activated with 1.5 M Ca2+. However, from a rough 

evaluation of the apparent KD in the range 80-140mV  we estimated that the blocking 

agent ( to which we associated a negative charge  of -1) experienced 57% of the voltage 

drop calculated from the outside of the channels ( Hille, 2001; Woodhull, 1973). 

The voltage dependence of A9C block was first described by Hogg et al (Hogg et al., 1993, 

1994a) in smooth muscle cells from rabbit portal vein, and  analyzed in detail by  Qu and 

Hartzell in Xenopus laevis oocytes (Qu and Hartzell, 2001). 

Qu and Hartzell (Qu and Hartzell, 2001) performed experiments in excised patches and 

activated the CaCC current with a saturating Ca2+-concentration. In this experimental 
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condition they found that the blocker was sensitive to 60% of the electric field, similarly to 

what we reported. However, they found that the blocker was much more efficient, with a 15 

times higher affinity, 18 M, at +100 mV in respect to what we measured for TMEM16B.  

This difference can be due to the fact that CaCC in Xenopus laevis oocyte is generated by 

TMEM16A (Schroeder et al., 2008), that might be more sensitive to A9C.  

Bradley et al. (Bradley et al., 2014) recently reported A9C block of  hTMEM16A-acd 

mediated currents,  measured in HEK293 transfected cell in the whole cell configuration. 

They found a higher affinity of A9C to TMEM16A, 56  M  at +80 mV, in respect to our 

data on TMEM16B. The value obtained by Bradley et al are similar to what has been 

reported in CaCC from rabbit portal vein (Hogg et al., 1994a).  These reports, together with 

Qu and Hartzell (Qu and Hartzell, 2001), suggest a higher block efficacy of  A9C to 

TMEM16A in respect to TMEM16B.   However, further studies are needed, since not all 

reports agree on the relative high sensitivity of A9C to TMEM16A (see Romanenko et al., 

2010). 

Nonetheless, since the voltage dependence of the block is commonly interpreted to reflect 

binding of the blocker to a site in the permeation pathway, the analogy with the voltage 

dependence found by Qu and Hartzell (Qu and Hartzell, 2001) confirms a strong similarity 

among TMEM16A and TMEM16B. 

 

Potentiation  

Application  of  1mM A9C to TMEM16B currents, activated with 1.5 µM Ca2+ in the patch 

pipette,  blocked outward directed currents, but increased notably  tail currents recorded at 

-100mV (Fig.2A and B). Additionally A9C increased the amplitude of transient inward 
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currents (Iearly in the result section, identified by the green line in Fig.2 A) following a 

holding potential of 0 mV, but not of -60 mV, suggesting that potentiation requires prior 

channel opening. Indeed in presence of  1.5 µM Ca2+ a consistent fraction of channels, but 

not all, are open at a holding potential of 0 mV (Fig2A,D; Fig4 in Cenedese et al., 2012), 

while are mostly closed when the holding potential is held at -60 mV (Fig.2B).  

Analysis of tail currents recorded at -100 mV following a test potential varying from -100 to 

+140 mV in Fig. 3C,  show indeed that currents recorded in presence of 1mM A9C 

increase in  respect to control  when the prior potential is more depolarized, corresponding 

to higher number of open channels.  At very high potentials the increase is 

counterbalanced by block. Interestingly a considerable current potentiation is already 

present at prepulses to -20 / +20 mV where the block is negligible or masked by 

potentiation (Fig 3C). This observation is confirmed by application of lower concentration 

of A9C (Fig 4  33 M, Fig5A) that produces a clear potentiation although the block is 

minimal.  

The potentiation of inward currents had a biphasic dependence on A9C concentration 

(Fig4 and 6A), reaching a maximal almost 3-fold increase at 300 M. Higher 

concentrations were less efficacious, probably due to the prevalence of the blocking action.  

We did not observe potentiation of current amplitude in presence of 13 M intracellular 

Ca2+, probably due to the fact that in this condition channels are already maximally 

activated. (Fig 4 in Cenedese et al., 2012) 

Summarizing, our data suggest that current potentiation depends on the degree of 

activation, but not on the block. 
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Slowing of deactivation  

The potentiation of inward currents was accompanied by a marked slowing of channels’ 

closure (Fig.3), more effective when preceded by a depolarizing potential (Fig. 3D), 

suggesting that also in this case prior channel opening is required. Additionally the time of 

50% current decay, t50, recorded at -100 mV increased monotonically with the A9C 

concentration (Fig. 4, 6B).  

In presence of A9C a peak was clearly visible in the tail current recorded at -100 mV (Fig3). 

This feature, although without potentiation, is usually observed in presence of open 

channel blockers that have to leave for channel closure (Cahalan and Almers, 1979).  

 

Previous studies on CaCCs 

Several studies used A9C to identify CaCC currents in different tissues and paradoxical 

effects have been observed, not only for A9C, but also with other blockers. 

An anomalous effect of A9C on calcium-activated chloride currents was reported by Piper 

and Greenwood (Piper and Greenwood, 2003) in rabbit pulmonary artery smooth muscle 

cells. Application of 500M A9C, producing a small inhibition of the maximum outward Cl- 

current at +70 mV, augmented the amplitude of the instantaneous inward relaxation at -80 

mV by 3.7 times (Fig.1B, C in Piper and Greenwood, 2003). Additionally, they also 

reported the appearance of a peak in the tail current in presence of A9C (inset in Fig1B in 

Piper and Greenwood, 2003). They pointed out that the potentiation of inward current at -

80 was more prominent than block at +70 mV (Fig 2B in Piper and Greenwood, 2003). We 

agree on this aspect and we explored higher potentials to see an effective block at lower 

concentrations (Fig. 4), at which A9C was already effective in potentiating. 
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Additionally, Piper and Greenwood did not observe a significant slowing of the deactivation 

kinetics (Piper and Greenwood, 2003) at -80 mV following a depolarization to +70 mV, but 

only at less negative potentials.  Hereof, the different relaxation kinetics of CaCC in rabbit 

pulmonary artery smooth muscle cells in respect to the much faster TMEM16B can justify 

this difference. Again likely this currents are underlined by the slower TMEM16A.  

Bradley et al. found a reduction of outward currents by 1mM A9C and a potentiation and 

slowing of inward tail current A9C in  HEK cells expressing hTMEM16A-acd cells  (Fig1-2 

in  Bradley et al., 2014). 

A bimodal action is not unique to A9C interaction with CaCC, indeed it has been reported 

also for NFA, DCDPC  on CaCCs (Piper et al., 2002; Ledoux et al., 2005) and recently for 

NFA, flufenamic acid and NPPB  in TMEM16A transfected cells (Bradley et al., 2014; Liu 

et al., 2014). With respect to A9C, potentiation in presence of these agents is smaller and 

at high concentrations is masked by the block (Liu et al., 2014). These compounds also 

have a slowing effect on current kinetics, the most effective being NFA (Bradley et al., 

2014; Liu et al., 2014). However newer agents such as T16Ainh-A01 do not produce these 

effects (Bradley et al., 2014, Davis et al., 2013).   

 

A9M 

Since A9C block is voltage-dependent we used the A9M, an analogue of A9C, but with an 

electrically neutral side-chain. This compound is scarcely used due to its low solubility. We 

succeeded to dissolve in Ringer bath solution at a maximal concentration of 300 M.  To 

our knowledge this is the first report showing the action of A9M on a CaCC current. The 

application of 300M A9M produced a voltage independent weak block of TMEM16B 
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mediated currents. Interestingly at all potentials A9M slowed the kinetics of current 

activation and deactivation, and was no longer effective in potentiating the current. 

This means that the negative charge is required only for the voltage dependence of the 

block, but not for the block itself. Interestingly, the charge is also required for the 

potentiation. We do not know if this is a direct effect or if it could be mediated by the 

interaction with the permeating anion, that would differ whether the blocking agent is 

charged, as A9C, or neutral, as A9M. 

 

Sideness of block   

Since A9C and A9M are hydrophobic molecules, although A9C is negatively charged, it is 

possible that they traverse the membrane bilayer and block from the intracellular side. Qu 

and Hartzell showed that block of CaCC in Xenopus laevis oocytes by A9C was much 

faster and about 6 fold more efficient in outside-out rather than inside-out patches, 

showing that it occurs from the extracellular side of the membrane (Qu and Hartzell, 2001). 

In our experimental condition, we observed a fast and reversible block both for A9C and 

A9M, compatible with the time of complete solution exchange, supporting an action from 

the extracellular side.  Additionally we performed experiments with intracellular 1mM A9C 

in the pipette and TMEM16B current was still present and could be blocked by the 

successive application of 1 mM bath A9C (data not shown). 

 

Specificity 

A9C has been reported to block diverse Cl conductances in different tissues, not only 

CaCC calcium-dependent currents, but also CFTR and CLC-1 (Zhou et al., 1997; Astill et 
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al., 1996; Steinmeyer et al., 1991), although the proteins underlying these currents are not 

structurally related. 

A9C, acting from the intracellular side, shows both potentiation and voltage dependent  

inhibitory effects on CFTR mediated currents (Zhou et al., 1997; Ai et al., 2004). 

Interestingly, its electro-neutral analogue A9M fails to block CFTR current, but has nearly 

identical potentiatory effect (Ai et al., 2004). 

 

In summary, in this paper we described for the first time the interaction of the traditional 

CaCC blocker A9C and its electro-neutral analogue A9M with TMEM16B. A9C inhibited 

TMEM16B currents at positive voltages, while it enhances tail currents at negative 

potentials and strongly prolonged channel closure. A9M blocked TMEM16B currents 

weakly, modified current kinetics, but was not effective in potentiating tail currents.  

Further studies are needed to comprehend the nature of this dual effect of A9C on the 

TMEM16B and A channel and to identify the molecular mechanisms and the channel’s 

region responsible for potentiation and block.  
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Figure 1. Voltage dependence of A9C block in 13 M Ca2+. (A) Whole-cell currents 

recorded in the presence of 13 M intracellular Ca2+, with voltage steps from -100 to +140 

mV from a holding potential of 0 mV in control (black) or in presence of 1 mM A9C (red). 

Stimulation protocol in shown in top right side. (B) I-V relations measured at the end of the 

voltage steps from the cell shown in A normalized to the control value at +140 mV. (C) 

Average fractional current (IA9C/ICT) as a function of voltage (n=4). 
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Figure 2. Holding potential affects early inward current potentiation. Whole-cell currents 

recorded in the same cell in the presence of 1.5 M intracellular Ca2+, with voltage steps 

from -100 to +140 mV from a holding potential (Vholding) of 0 mV (A) or -60 mV (B), in 

control (black) or in 1 mM A9C (red). (C) I-V relations of early peak inward currents 

evaluated at the time indicated by the green vertical line for the cell shown in A, B. Peak 

inward currents were strongly potentiated in A9C when Vholding was 0, but not -60 mV. (D) 

I-V relations at the end of the voltage steps (at the time of the blue vertical line) for 

experiments shown in A and B.  
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Figure 3. Multiple effects of A9C. (A) Current recordings from the same cell in Fig. 2, with 

voltage steps from -100  to +140 mV from a holding potential of 0 mV in control (black) or 

in presence of 1 mM A9C (red). Only recordings every 40 mV are shown.  (B) Tail current 

decay shown in enlarged scale. To evaluate potentiation and slowing of current decay, 

maximal tail current amplitudes and time of 50% current decay, t50, were calculated with 

respect to steady-state current at -100 mV. (C) Maximal tail currents, Itail_max, plotted 

versus membrane potential in control and in 1 mM A9C for the experiment shown in A. (D) 

Time of 50% current decay, t50, versus membrane potential.  
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Figure 4. Concentration dependence of A9C effects. (A) representative whole-cell 

recordings in 1.5 M intracellular Ca2+. Voltage protocol as in Fig. 1. Each cell was 

exposed to control (black traces on the left), to the indicated concentration of A9C, 

followed by wash out (black traces on the right).  (B) I-V relations measured at the end of 

the voltage steps from the cells shown in A in control (empty square), A9C (filled squares), 

or after wash out (cross squares). Currents were normalized to the value in control at 140 
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mV. The inset shows the IV on expanded scale for the cell exposed to 300 M A9C and 

the potentiating effect of the compound on the current. (C) Average fractional current     

(IA9C / ICT) as a function of voltage (mean±SEM n=4-8 for each A9C concentration). 
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Figure 5.  Concentration dependence of A9C block. (A) Concentration dependence of 

fractional current (IA9C / ICT) recorded at +140 (black squares), +120 (red empty squares), 

+100 (green circles), +80 mV (blue empty circles) in cells recorded in 1.5 M Ca2+ (mean ± 

SEM; n=4-8 for each A9C concentration). Continuous lines are the best fit according to a 

Michaelis-Menten equation with KD of 176, 270, 502 and 711 M respectively at +140, 

+120, +100, +80 mV. (B) KD Continuous line is the best fit with the Woodhull equation log 

KD (Vm) = log KD
0mV - δVmF/(2.3*RT), with  δ  equal to 0.57 and an apparent KD

0mV of 4450 

M. 
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Figure 6. Concentration dependence of A9C tail current potentiation and prolongation of 

deactivation kinetics, evaluated as described in Fig3B. (A) Average ratios between 

maximal tail currents, Itail_max,  in A9C and control and (B) time of 50% current decay, t50, 

evaluated at -100mV, after a prepulse to +120 mV, plotted as a function of A9C 

concentration (mean ± SEM n =4 to 8 for each A9C concentration). Broken line in A and B 

represent respectively Itail_max and t50 in control. 

 

 

 



 
92

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Effect of A9M, a non-charged analog of A9C. (A) TMEM16B currents recorded in 

presence of 1.5 M intracellular calcium. The same cell exposed to control solution (black), 

300 M A9M (blue), 300 M A9C (red) and back to control (black). (B) I-V relations 

measured at the end of the voltage steps from the cell in A. (C) Comparison of fractional 

currents (IA9C or A9M / ICT) in A9M or A9C and control as a function of voltage (n=5). Broken 

line refers to the experiment in fig. A.  (D) Time constant of activation in A9M and control 

as a function of voltage, showing that application of A9M slowed the activation kinetics 

(n=5). 
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Figure 8. Comparison of tail currents in A9M and A9C. (A) Tail currents at -100 mV from 

the same cell in Fig. 7 A, shown on an expanded time scale. Currents were recorded in 

presence of 1.5 M intracellular calcium in control bath, 300 M A9M and A9C. (B) Ratio 

with respect to control of maximal current amplitudes in the presence of 300 M A9M or 

A9C, recorded at -100 mV from a prepulse of +120 mV. Broken line refers to control.  

(n=5). (C) Time of 50% current decay, t50, in control, 300 M A9C and 300 M A9M (n=5).  



 
 

94 
 

5. Discussion 

 

Calcium and voltage dependent activation is a biophysical signature of endogenous 

CaCCs and is also observed for TMEM16A and TMEM16B (Yang et al., 2008; Caputo 

et al., 2008; Schroeder et al., 2008; Stephan et al., 2009; Pifferi et al., 2009a).  However, 

the molecular mechanisms underlying these biophysical characteristics are still 

unknown. Research in this thesis is focused towards understanding the properties and 

molecular mechanisms of activation of TMEM16B, which has been very scarcely 

studied. 

Comprehensive analysis of amino acid sequences does not reveal the presence of a 

canonical calcium binding site or a dedicated S4 like voltage sensor in TMEM16B. 

However, there are few conserved acidic residues in the first putative intracellular loop 

that may represent a potential calcium binding site or play a role in channel gating. We 

mutated the glutamic acids present at 367E, 386EEEEE390, and 399EYE401, and performed 

an extensive biophysical characterization and comparison with the properties of the wild 

type TMEM16B. Our results show that the consecutive five glutamates and a single 

glutamate at 367 position in the first putative intracellular loop are not involved in 

calcium sensitivity of TMEM16B, but they have a role in voltage dependent activation 

of TMEM16B. How the residues from the first intracellular loop contribute towards 

channel gating is still an open question. 

When extracellular or intracellular anions were changed, we measured additional gating 

modifications of TMEM16B. Permeant anions like SCN- increased open probability of 

the channel, with a shift in the activation curve towards less positive voltage and also 

an increase in the apparent calcium sensitivity. Our findings are in line with previous 

studies done on either endogenous CaCCs in Xenopus oocytes and salivary glands, or 

on TMEM16A expressed in heterologous system (Qu and Hartzell, 2000; Perez-Cornejo 

et al., 2004; Xiao et al., 2011).  
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A recent paper reported that TMEM16A(ac) channel can be gated by direct binding of 

calcium to glutamic acids 702E and 705E in the third intracellular loop (Yu et al., 2012). 

Interestingly, these residues are also conserved in the TMEM16B protein in spite of 10-

fold lower calcium sensitivity in comparison to TMEM16A. Scudieri et al., (2013) 

replaced the third intracellular loop of TMEM16A which contains 702E and 705E with 

that of TMEM16B and observed a decrease in calcium sensitivity resembling 

TMEM16B. Therefore additional amino acids in the third intracellular loop are also 

important in determining the calcium sensitivity. Indeed this hypothesis is confirmed 

from the recent structural-functional characterization of TMEM16A(a) by Tien et al., 

2014. They found two more residues at 730E and 734D to be involved in direct calcium 

binding.  

These findings also modified the initially proposed topology of TMEM16A, in which 

the loop between 5th and 6th transmembrane segments formed a re-entrant loop (Das et 

al., 2008). A mutation of single arginine residues (620R; TMEM16A(a) in Yang et al., 

2008) in this re-entrant loop changed the selectivity of the channel, so tentatively 

featuring the pore lining (Yang et al., 2008). However, Yu et al 2012 remodeled the re-

entrant loop between 5th and 6th transmembrane and proposed that it forms the third 

intracellular loop. Moreover, unlike Yang et al., 2008 they did not observe any change 

in selectivity with mutation of 620R under their experimental condition. Our study on 

TMEM16B shows a coupling between permeant anion and gating. However, 

determinants of ion selectivity are still unknown and future work should dissect further 

the molecular mechanism of this coupling.  

The ability of a compound to modify channel gating is a desirable property not just for 

therapeutic purposes but also for structural-functional studies (Hille, 2001). A9C has 

been shown to have anomalous effect on endogenous CaCCs from smooth muscle cells 

in rabbit pulmonary artery (Piper and Greenwood, 2003). We studied the effect of 

extracellular A9C on heterologous expressed TMEM16B channels. Our results show 

that the interaction of A9C with TMEM16B is voltage and concentration dependent. 

The block of TMEM16B current by extracellular A9C was more efficient at positive 

voltages. In addition, A9C also had a potentiation effect, which was more evident at 
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negative potentials and prolonged the channel closure. In fact, the amplitude of current 

potentiation depended on the degree of activation, but not on the block. We also tested 

an electrically non-charged analog A9M on TMEM16B current. Extracellular A9M still 

blocked TMEM16B current weakly and modified the current kinetics, but unlike A9C, 

A9M was not effective in potentiating the current. Future studies focused to understand 

the molecular mechanism behind the A9C‘s bimodal effect on TMEM16B currents 

would be essential for the rational design of potent and selective modifiers of 

TMEM16B members of the same protein family. 

Our findings presented in this thesis clearly portray a complex interplay between 

calcium, voltage and permeant anions in gating of TMEM16B. The mutational approach 

followed in our study along with other studies on TMEM16A and TMEM16B clearly 

shows involvement of multiple regions, spread throughout the primary amino acid 

sequences, and are involved in the channel function. However, future structure-function 

studies are required also to identify the pore region, probably where the effect of 

calcium, voltage and permeant anions play important role in channel activation. 

Structure-function studies with charged compounds like A9C, as reported for CLC in 

Estévez et al., 2003 should steer the use of similar compounds in the biophysical 

characterization of members of the TMEM16 protein family. 
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