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Chapter 1

Introduction

This thesis deals with some aspects of the geometry of "special” embeddings in Calabi-
Yau manifolds and in projective spaces and it focuses on the main original results I have
obtained during the last four years.

By special embeddings we just mean embeddings with some additional properties/structures
or data. Throughout the thesis, we will see very different structures associated to em-
beddings: mainly Lagrangian embeddings in Calabi-Yau manifolds, small codimension
embeddings and linearly normal embeddings in projective spaces. In all these cases, we
investigate some consequences due to these extra structures and we try to get insight on
how these additional requirements/data force the geometry of the subvariety, in each case.

Besides this introduction, the thesis is devided into four chapters, whose content we
are going to briefly describe. Each chapter contains original results, which have been
already published in the scientific literature or appear in preprint form.

In the next chapter, we describe Lagrangian embeddings (and also special Lagrangian
embeddings) in Calabi-Yau manifolds. We give a consistent definition of the Maslov class
for such submanifolds and we prove that it is possible the represent such a cohomological
class via the contraction of the mean curvature vector field with the symplectic form.
Essentially, this representation theorem extends a previous result (due indipendently to
Morvan and Fomenko), which shows that for a Lagrangian embedding in a Euclidean
symplectic vector space, the Maslov class can be represented as the contraction of the
mean curvature vector field with the symplectic form. The main problem here comes
from the fact that, in general, we can not use in this environment (Calabi-Yau manifolds)
a trivial Levi-Civita connection as in the case of a Euclidean symplectic vector space.
However, we succeed in proving our result, exploiting the fact that the holonomy of the
Levi-Civita connection associated to a Calabi-Yau metric is sufficiently small. Finally, we
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comment on some properties of special Lagrangian embeddings in irreducible symplectic
manifolds. The original results of this chapter have been published in ([58]).

In the third chapter, we leave the environment of Calabi-Yau manifolds and we focus
our attention on projective embeddings. Here we deals with small codimension embed-
dings. We review the famous Hartshorne’s conjecture and also some outstanding (but
unfortunately partial) results concerning this field, just to put our result in a wider frame-
work. The general philosophy operating behind Hartshorne’s conjecture is that smooth
subvarieties of small codimension (compared to their dimension) in a projective space,
have to be complete intersections. This conjecture is extremely difficult and unfortu-
nately is far from being solved (either positively or negatively).

We also review the construction of the Serre correspondence which have been essential
for our work on codimension two subvarieties: this correspondence relates a subcanonical
local complete intersection subvariety of codimension 2 in P™ to an algebraic vector bundle
of rank 2 over P", as soon as n > 3. Our contribution in this field concerns a scheme-
theoretic criterion for recognizing complete intersections in codimension two. Briefly put,
it is known that any locally complete intersection (l.c.i.) subvariety in P* can be scheme-
theoretically defined by n+1 equations. We prove that any codimension two subcanonical
l.c.i subvariety in P™, scheme-theoretically defined by p < n — 1 equations, is indeed a
complete intersections (the proof works for varieties defined on an algebraically closed
field of any characteristic). This result extends two previous theorems of Faltings (see
[26]) and of Netsevetaev (see [34]).

As an application we answer (partially) to a question proposed recently by Franco,
Kleiman and Lascu in [27]. Finally, we give an elementary proof of a weaker criterion on
codimension two complete intersection subvarieties. These results are going to appear in
[59].

The fourth chapter deals with linearly normal projective embeddings of a peculiar
class of singular surfaces. These surfaces represent boundary points in the Alexeev’s
compactification of A, (for g = 2); the Alexeev’s contruction is particularly meaningful
in that it selects among all possible compactifications of .4, the one which has good
functorial properties for moduli problems. Thus these singular surfaces are degenerations
of principally polarized abelian surfaces and are all equipped with an ample line bundle
L. Alexeev and Nakamura proved that for such surfaces £® is very ample and this
corresponds to embed such surfaces in P?4. (In fact the results of Alexeev and Nakamura
are much wider in the sense that they hold for all degenerations of principally polarized
abelian varieties, not just for surfaces, corresponding to the boundary points of their
compactification of Ay). Here we prove by elementary methods that L®3 is already
very ample. In general, it is a difficult task to prove directly the very ampleness of a
complete linear system, since it requires a deep knowledge of the intrinsic geometry of the



variety we are going to embed: indeed, our proof is based on studying very concretely the
corresponding linear systems on the various degeneration models. This permits to embed
these surfaces in IP® and to study ”by hand” the corresponding singular loci, since we have
a clear description of the intrinsic geometry of these degenerations. Unfortunately, this
underlines the fact that it is hopeless to solve (either positively or negatively) Hartshorne’s
conjecture by studying explicitly very ample complete linear systems of small dimension
on 3-folds or 4-folds. The results of this chapter appear in a preprint which have been
submitted to ” Annali della Scuola Normale Superiore di Pisa” (see ([60])).

Finally, the last chapter is devoted to a study of some deformation properties of
projective curves: for any integral smooth curve C C P", we study the functorial map
(not everywhere defined) ¢ : Hilb(d, g,7) — M,, which associates to each point p(C) in
Hilb(d, g, r), representing the curve C, the corresponding isomorphism class [C] € M,.
In particular, we study in which cases the image of ¢ has positive dimension (i.e. the
corresponding family is not isotrivial). In this study, a key role is played by linearly
normal curves, since they tend to be less rigid than other classes of embedded curves, and
via them, we can prove the non-isotriviality also for other curves, obtained by projecting
down a given linearly normal curve. First of all, we focus on first order deformations,
and then, under some additional assumptions we get some positive conclusions for finite
deformations. The last paragraph deals with this kind of problems for some special classes
of curves in P? (e.g. curves of maximal rank), exploiting the minimal free resolution of
their ideal sheaf. So, in this chapter we see how an embedding with some additional
properties (linear normality, in this specific case) can help to study a seemingly totally
unrelated problem. The results of this chapter appears in a preprint which has been
developed in collaboration with Stefano Brangani (see ([61])).
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Chapter 2

Lagrangian embeddings in
Calabi-Yau manifolds

2.1 Introduction

In this chapter, we study some aspects of Lagrangian embeddings (and to some extent
also of special Lagrangian embeddings) in a particular class of complex symplectic man-
ifolds, called Calabi-Yau manifolds. We focus our attention to the proper definition of a
topological invariant of these embeddings called Maslov class. Moreover, we prove that
it is possible to define this class via the mean curvature vector field, analogously to what
is known for Lagrangian embeddings in Euclidean vector spaces. Finally, at the end of
the chapter, we give a brief description of Special Lagrangian embeddings and how they
relate to complex submanifolds under some specific circumstances, following Bruzzo and
his collaborators.

The Maslov class [ua] of a Lagrangian embedding j : A < V in the standard Euclidean
symplectic vector space V has been constructed by Maslov in the study of global patching
problem for asymptotic solutions of some PDEs (see [55] for further details on this point
of view). Subsequently, this cohomological class has found applications in the analysis of
several quantization procedure, starting from [1] up to recent aspects on its relations with
asymptotic, semiclassical and geometric quantization, for which we refer to [13]. In spite
of this, there are several problems in the very definition of the Maslov class for Lagrangian
submanifolds of generic symplectic manifolds.

In [16] it has been proved that, for a Lagrangian embedding j : A < V in a Euclidean
symplectic vector space (V,w), the Maslov form pa can be represented by pua = igw, that
is by the contraction of the symplectic form with the mean curvature vector field H of

5



6 Chapter 2. Lagrangian embeddings in Calabi- Yau manifolds

the embedding j. Unfortunately, the very definition of Maslov form (and related class)
as exposed in [1], [2] and [55], depends on the fact that the Lagrangian submanifold A is
embedded in a symplectic vector space, in which we have chosen a projection 7 : V" — Ay
over a fired Lagrangian subspace Ap; then the Maslov class [ux] € H'(A,R) can be
defined as the Poincare’ dual to the singular locus Z(A) < A, where Z(A) := {A €
Alrk(m. () < max} N H,-1(A,Z). In the classical literature it is proved that if one
changes projection m, that is if one changes the reference Lagrangian subspace Ag, then
the Maslov class s does not change, while its representative changes. This is achieved
using the so called universal Maslov class construction on the Lagrangian Grassmannian
GrL(V), (the homogeneous space which parametrizes Lagrangian subspaces of (V,w), see
[1], [2] and [13]). These formulations depend heavily on the linear structure of the ambient
manifold V; in particular it is assumed that V is endowed with the trivial connection.
Therefore, it seems difficult even to define the Maslov class for Lagrangian submanifolds
of symplectic manifolds, which are not vector spaces. For instance, it is possible to define
the Maslov class of a Lagrangian embedding via the so called generating functions, or
their generalization (Morse families), for which we refer to [55], and particularly [57]. In
this way, one obtains a notion of Maslov class for Lagrangian submanifolds embedded
in any cotangent bundle T*M over a Riemannian manifold M, constructing a Z-valued
Cech cocycle, starting from the signature of the Hessian of a Morse family; however this
construction depends strongly on the choice of a “base manifold” (M in the case of the
cotangent bundle) and does not seem to be generalizable to Lagrangian embedding in any
symplectic manifold. (See [57] for more details on this kind of construction).

Recently (see [26]), Fukaya has shown how to define a Maslov index for closed loops
on Lagrangian submanifolds of a quite general class of symplectic manifolds, the so called
pseudo-Einstein symplectic manifolds. The construction is developed using non trivial
assumptions on the structure of the ambient manifold and is carried on only for a partic-
ular subclass of Lagrangian submanifolds; moreover, there is no explicit reference to the
corresponding Maslov class.

In this chapter we show that, whenever the ambient manifold is Calabi-Yau, it is
possible to give a consistent definition of Maslov class for its Lagrangian submanifolds,
generalizing the approach of Arnol’d with the so called universal Maslov class. In this
framework, we show that it is possible to generalize the result of Morvan and then we com-
ment on various consequences of our construction, in particular on the possible definition
of Maslov class for Lagrangian embedding in any symplectic manifold.
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2.2 The Maslov class for Lagrangian embedding in Calabi-Yau

Let us briefly recall the standard construction of the Maslov class uy, for a Lagrangian
submanifold A, embedded in a symplectic vector space (V,w), of real dimension 2n: first
of all, one considers the tangent spaces to A as (affine) subspaces of V. Then, using
the trivial parallel displacement one transports every tangent plane in a fixed point P
of V, (for example the origin). Now, one has to consider the Lagrangian Grassmannian
GrL(TpV'), which by definition parametrizes all Lagrangian subspaces of TpV. Using the
trivial connection, we have thus obtained a map:

G: A — GrL(TpV).

It is easy to see ([1], [2]),that GrL(TpV) has the natural structure of the homogeneous
—O—(—n—); then by the standard tool of the exact homotopy sequence for a fibration

n
(see[7]), it is proved that 71 (GrL(TpV)) = Z. In fact, having fixed a Lagrangian plane Ag
in TpV, all other Lagrangian planes are obtained via a unitary automorphism A € U(n).
Obviously, we have a fibration:

space

SU(n) — U(n) 2% 57,

but this does not descend to GrL(TpS), since we have to quotient out the possible or-
thogonal automorphisms. However, since the square of the determinant of an orthogonal
automorphism is always 1, we have a well defined map:

det® : GrL(TpS) — S,

which sits in the following commutative diagram of fibrations:

SO(n) — O(n) &% &0

\ { \:
SU(m) — Uln) 2% st
l \J %

GrSL(C?) — GrL(C?) %5 st

In this diagram the space GrSL(C") denotes the Grassmannian of special Lagrangian
planes in C", that is the Grassmannian of Lagrangian planes which are calibrated by the
top holomorphic form of C"; the corresponding Lagrangian submanifolds are called special
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Lagrangian (see [11] for more details or the last section of this chapter). Notice that this
space is always simply connected.

Finally, using Hurewicz isomorphism and taking a generator belonging to H*(GrL(TpV), Z),
which is thought as the pull-back via det® of the generator [a] € H(S',Z), one defines
the Maslov class [uy] := G*(det?)*[a]. Obviously, this construction is indipendent on
the choice of the point P, since if another point is chosen it is possible to construct a
homotopy in such a way to prove the invariance of [us]. It is clear that, in this frame-
work, the existence of the trivial connection is an (almost!) essential requirement for the
construction to work. In fact, we will see in this section that, to have a consistent defi-
nition of Maslov class it is not necessary that the ambient manifold is endowed with the
trivial connection, but is sufficient that the global holonomy of the symplectic manifold
is “small” in a suitable sense.

From now on we restrict our attention to Lagrangian submanifolds of Calabi-Yau
manifolds. Recall that Calabi-Yau manifolds can be defined as compact Kaehler manifolds
with vanishing first Chern class; recall also that a celebrated theorem by Yau (proving
a previous conjecture by Calabi) implies that for every choice of the Kaehler class on a
Calabi-Yau, there exists a unique Ricci-flat Kaehler metric. Moreover, while the holonomy
of a Kaehler manifold is contained in U(n), if g is the Ricci-flat metric of an n-dimensional
Calabi-Yau, then the corresponding holonomy group is contained in SU(n). Finally, let
us recall that, on every Kaehler manifold (X, g,J) (where g is a Kaehler metric and J
the integrable almost complex structure) the corresponding symplect or Kaehler form w
is related to g via:

w(X,Y) = g(X,JY) VX,Y € (TX), (2.1)

and that the almost complex structure tensor .J is covariantly constant with respect to the
Levi-Civita connection induced by g. Considering a Kaehler metric ¢ on a Calabi-Yau,
we will always mean the Ricci-flat metric. Typical examples of Calabi-Yau are given by
the zero locus of a homogeneous polynomial of degree n+1 in P*(C) (whenever this locus
is smooth); however it is by no means true that all Calabi-Yau are algebraic. For further
details on this class of manifolds see for example [5] and [20].

The construction of Fukaya for defining the Maslov index of closed loops goes as follow
(see [26] for details and motivations). He considers symplectic manifolds (X, w) which are
“pseudo-Einstein” in the sense that there exists an integer N such that Nw = ¢ (X).
By this relation, the line bundle det(7X) is flat when restricted to every Lagrangian
submanifold A of X, but Fukaya restricts further the class of Lagrangian submanifolds
considering only the so called Bohr-Sommerfeld orbit A (BS-orbit for short), which are
defined as the Lagrangian submanifolds for which the restriction of det(7°X) is not only
flat, but even trivial. This implies that if we consider a closed loop h: S' — A (A is a



2.2. The Maslov class for Lagrangian embedding in Calabi-Yau 9

BS-orbit), then the monodromy M of the tangent bundle TX along h(S*) is contained in
SU(n). Then the idea is to take a path in SU(n) joining M with the identity, in order to
get an induced trivialization of h*(TX|ps1)) = S* x C”. In this trivial bundle there is a
family of Lagrangian vector subspaces Ty A and in this way we get a loop in GrL(C")
and hence a well-defined integer (the Maslov index) m(h). Obviously m(h) is independent
of the choice of the path in SU(n) which joins M to the unit, since m1(SU(n)) = 1.

Now we come to our construction. Consider embedded Lagrangian submanifolds A
of a Calabi-Yau (X,w,g,J), where w, g, J are related by (2.1). Define the Lagrangian
Grassmannization GrL(X) of TX as the fibre bundle over X obtained substituting 7, X
with GrL(T,X), thus:

GrL(X) = [] GrL(T,X)

zeX

and in particular:

GrL(X)a == [] GrL(T,X).

Let G(j) be the Gauss map, which takes z € A in T, A thought as a Lagrangian subspace
of T,X. Via G(j), the embedding j : A — X lifts to a section G(j) : A — GrL(X),.
We would like to define the Maslov class of A via a map M : A — S' in the following
way: to every point z € A, we consider G(j)(z) and then through the isomorphism

GrL(T,X) = —g—g—n—;, taking the map det? we get a point in S'. However, as we have
n
seen, to establish an isomorphism to every space GrL(T;X) (z € A) with —g%—; we need
n

a reference Lagrangian plane in GrL(T,X) Vz € A, that is we need another section of
GrL(X), besides G(j)(A).

To this aim, fix a point p € A, consider T,A and use the parallel displacement, induced
by the Levi Civita connection of g, along a system < of paths on A starting from p, to
construct a reference distribution of Lagrangian planes D, over A, that is another section
of GrL(X),. This is indeed possible, since the holonomy is contained in U (n), the parallel
displacement is an isometry for g and J is covariantly constant: these facts, combined
with the relation (2.1) imply that parallel transport sends Lagrangian planes in Lagrangian
planes. Obviously this distribution D., is not uniquely determined, since it depends on the
choice of the system of paths +y starting from p. In spite of this, due to the fact that the
holonomy of a Calabi-Yau metric is very constrained, this dependence does not prevent
us to reach our goal. Indeed, consider ¢ € A and compare the two Lagrangian planes
(D,)q and (D;), obtained by parallel transport of T,A along two different paths y and 4.
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By the holonomy property of a Calabi-Yau metric we have:
(Dy)q = M(Ds)g M € SU(n).

Thus, if A € U(n) is such that T,A = A(D,),, then TgA = AM(D;)g; so to every g € A
we can associate A, such that G(j)(¢) = T,A = A4(D,)q, where A, is determined up
to multiplication by a matrix M € SU(n). At this point the key observation is that
det*(A,) € S* is a well defined point, which is not affected by the ambiguity of A,. In
this way we have a well-defined map, the Maslov map:

M: A — St
g — det’(Ay)

Take the generator [o] of H'(S*, Z) represented by the form o := 3-dfl. Observe that the
target space of the Maslov map, is not only topologically a circle, but even a Lie group,
the group U(1): this implies that the choice of the form -2—1;d9 is compulsory, since it is
the unique normalized invariant 1-form. Now we can give the following:

Definition: Using the previous notations, we define the Maslov form of the La-
grangian embedding j : A < X as pp := M*a and the corresponding Maslov class as
[1a] = M*[o] € H'(A, Z).

Remark 1 : The Maslov map M has been built up fixing a reference point p, from
which we constructed D.,; in this way the map M associates 1 € S ! to p. It is clear that
if one takes a different reference point p’, then the map M changes (this time p’ goes to
1), but the Maslov class and the Maslov form do not change, as it is immediate to see.
In particular, the invariance of the Maslov form is due to the invariance of o under the
action of the Lie group U(1).

Remark 2 : In [19], Trofimov costructed a generalized Maslov class, as a cohomo-
logical class defined on the space of paths [X, A]; these paths start from a fix point z in
a symplectic manifold X and end to a fixed Lagrangian submanifold A of X. We argue
that the the Maslov class we have just defined can be obtained as a finite dimensional
reduction of the class built up in [19], when one uses the Levi-Civita connection induced
by the Calabi-Yau metric. In fact, Trofimov did not use metric connections, but instead
affine torsion free connections, preserving the symplectic structure, which are generally
not induced by a metric.

2.3 Representation of the Maslov class via the mean curvature
vector field

In this section, generalizing what has been proved by Morvan in [16] for Lagrangian
embeddings in Euclidean symplectic vector space, we prove the following:
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Theorem: Let j : A — X be a Lagrangian embedding in a Calabi-Yau X and let
H € T(NA) be the mean curvature vector field of the embedding j (with repect to the

Calabi-Yau metric), then:
1

pa = ;r'iHW,

where w s the Kaehler form constructed from the Calabi-Yau metric g, and ua is the
Maslov form previously defined.

Before proving the theorem we need various preliminary results, which we are going
to state and prove, and we need also to decompose into simpler pieces the action of M*
on [a).

Recall that given an embedding 7, the associated second fundamental form o : TA x
TA — NA is a symmetric tensor defined by:

o(X,Y) = VLY — VLY, VXY e T(TA),

where V9 is the Levi-Civita connection in the ambient manifold, while V7"9 is the con-
nection induced on A via the pulled-back metric. If o is identically vanishing, then the
submanifold is called totally geodesic. Taking the trace of o we get a field of normal vec-
tors, that is the mean curvature vector field H of the embedding j. Those embeddings
for which H is identically vanishing are called minimal.

First of all we need to understand the local structure of TGrL(T,X). Fix a point
g € A and set V :=T,X for short. We can prove the following:

Lemma 1: The space T,GrL(V) over a Lagrangian n-plane © of V' can be identified
with the subspace of linear maps v : m — 7+ (7w denotes the orthogonal subspace in V
with respect to the metric g in q) such that:

g(TP(X)a JY) = g(w(Y)WJX)’ VX,Y e

Proof: First of all, we have T,,Gr L(V') = S(n), where S(r) is the space of all symmetric

bilinear forms on 7. In fact every v € T, GrL(V) can be represented as EB(t)mt:g, where

B(t) is a path of linear symplectic transformation of V', with the condition B(0) = idy.
To v € T,GrL(V) we can associate a form S, given by:

d
SU (X, Y) = w(—CEB(t)Xltzo’ Y)
This form is clearly bilinear and is symmetric:

S,(X,Y) = w(%B(t)X|t=0, B(t)Y,o) =
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= & (BU)X, B)Y ) imo — (B X, 5 B ¥ico) = 0 = (X, £ B0Yico) =
= w(%B(t)Ylt:o,X) = 5,(Y, X),

by the fact that B(t) is a symplectic linear transformation of V' and by skewsymmetry of
w. It is easy to verify that the corresponding map T,GrL(V) — S(w) is an isomorphism.
Moreover we have:

d . d
Sy(X,Y) = w(aB(t)Xn:o,Y) (2.1) g(%B(t)X“:O, JY)
) e L .. d
and thus, identifying ¢ : m — 7~ with -CEB (t)T=0 we get the result. O

By Lemma 1 it is clear that J itself, restricted to ¢, can be considered not only as
an element of T,GrL(V) but even as an invariant vector field on GrL(V), that is J, €
T(TGrL(V)). Lete, ..., e, be an orthonormal basis of 7 and f*,..., f™ the corresponding
dual basis, in such a way that Jeq,...,Je, is a basis of 7+ and —Jf!,...,—Jf™ the
associated dual basis. Then J as a vector belonging to T, GrL(V), can be represented as
a section of m* ® 7, that is J = f* ® Je; (Einstein summation convention is intended).
From J in this representation one can construct a 1-form J € w'(GrL(V)) using the
paring induced by the metric, that is J = e;® —Jfi. This 1-form has a quite outstanding
role:

Lemma 2: Fiz an arbitrary Lagrangian plane in V in order to have a map det?® :
GrL(V) — S*. Then:

(det®)*(a) = =,

R}

so that J defines a closed form on GrL(V).
Proof: It is sufficient to prove that for every X € T,GrL(V) one has (det*)*(a)(X) =
1J(X). Indeed:
(det?)*(@)(X) = (o) (dety (X)),

so we are led to compute the tangent map to det?. Assume for simplicity that 7 is the

~ U(n)

reference Lagrangian plane in the isomorphism GrL(V) = o)
n

by the identity matrix. Then, since T,GrL(V) = %%%, consider a path v : (—¢,€) = u(n),

such that v(0) = O and such that its image in u(n) has empty intersection with o(n)
(except for the zero matrix). The exponential mapping determines in this way a path in

, 80 that it is represented
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GrL(V) through 7. Now, we have:

d d d
zﬁdet?(e”‘t))u:o _ Edet(ewy(t))'tﬂ) _ E(em(v(t))) im0 =

2Tr(7(0)) = 2Tr (X)),
where §(0) is identified with the tangent vector X in T,,GrL(V). Hence one gets:

(det?)* (@)(X) = (@)(der?(X)) = (@)(2Tr(X)) = ~Tr(X).

On the other hand, X € I'(7* ® 1), so that it can be represented as X = X} f*® Je;;
thus one gets:

J(X) = (e, ® —Jf)(X.fF® Je) = X} = Tr(X).
O

Till now we have worked only locally, having fixed a point ¢ € A. To proceed we need

to globalize the properties stated in lemma 1 and 2. Let us define the vertical tangent
bundle VT (GrL(X)a) (VT (GrL) for short) over GrL(X), as:

VT(GrL(X)s) == [[ TGrL(TuX);

notice that this is not the tangent bundle of GrL(X),, since it is obtained taking the
tangent bundle of the fibre only (thus the name vertical). Analogously, one can define
the vertical cotangent bundle over GrL(X), as:

VT*(GrL(X)s) := [ T*GrL(T,X),

TEA

(from now on denoted as VT™*(GrL) for short).

Now, by the previous reasoning and since J is covariantly constant on a Kaehler
manifold X, we have that J defines a section of VT(GrL) and analogously J induces a
section of VT™(GrL). In order to globalize the result of lemma 2, observe that the section
D, of GrL(X), over A, defined in the previous section, enables one to give a well-defined
map Det? : GrL(X), — S' (one takes as a reference Lagrangian plane in GrL(T,X) the
subspace (D,)z). It is clear that one gets immediately the following:

Corollary 1: Under the previous notations and considering the fibration Det? :
GrL(X)a — S induced by the reference distribution D., one has:

(Det?)*(a) = %j
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where J is viewed as a section of VT*(GrL).
Via the Gauss map we can pull-back VT(GrL) to A:

G()*(VT(GrL)) VT(GrL)
4 dpryr
A - GTL(X)A

Lemma 3: The bundle G(j)*VT(GrL) can be identified with the subspace of T*AQNA
consisting of those sections ¥ € T'(T*A ® NA) (that is NA-valued 1-forms on A) such
that:

g(@(X), JY) = g(4(Y), JX), VX,Y eI(TA).

Proof: By the very definition of pulled-back bundle, we have that:
GU)'VT(GrL) 2 {(z;2',7,X) e AX VT(GrL) : (z,T,A) =G()(z) =

= pryr(z’,m, X) = (¢, 7)},

which clearly implies the constraint z = 2’ and T, A = 7 so that:

G()*VT(GrL) & [] Tner,nGrL(T,X).

TEA

On the other hand, by lemma 1:
T AGrL(T,X) = {tp € TI(T*A® NyA) such that :

g(W(X),JY) = g(¥(Y),JX), VXY € T:A},
so one gets immediately the thesis. ]

The tangent application to the Gauss map is related to the second fundamental form
as shown in the following:

Lemma 4: The tangent map to G(j) in a point x € A can be identified with the
second fundamental form o, thought of as an application with values in T*A ® NA; more
ezactly o takes values in the subspace G(j)*(VT(GrL)) of T*A ® NA, in the sense that
it satisfies g(o(X,Y),JZ) = g(c(X, 2),JY).

Proof: First of all, the identity g(o(X,Y),JZ) = ¢g(0(X, Z), JY) is a consequence of
the fact that Lagrangian submanifolds of K&hler manifolds are always anti-invariant (also
called totally real) submanifolds of top dimension (see [22] page 35). Hence, always by
result of [22], page 43, we have the desired relation. Finally, the fact that the tangent
map to the Gauss map can be identified with the second fundamental form, via the action
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of the almost complex structure J and the metric g, is a classically known result which
can be found, for example in [6], page 196. o

Observe that by lemma 3 and 4, the second fundamental form (X, .), considered as
a map taking values in T*A ® NA is an element of G(j)*(VT(GrL)). Let us summarize
the situation in the following diagram:

G(5)~

A 9 GU)*(VT(GrL)) cT*A® NA VT(GrL)
1 1
AW G()(A) - GrL(X)a

Denote again with J the restriction of J to the bundle G(5)*(VT*(GrL)). By the
previous diagram we can pull-back J to a closed 1-form on A via G(j)*:

(GU)*(INX) = J(GU):(X) = J(0(X, ) VX € (TA), (2:2)

where the last equality in equation (2.2) is due to lemma 4 and the pairing between J and
o(X,.) isinduced by the natural pairing between G(5)*(VT*(GrL)) and G(j)*(VT(GrL)),
respectively.

Proof of the theorem: First of all, notice that the Maslov map M : A — S? can
be decomposed as M = Det? o G(j), as is immediate to see. Then u, = M*(a) =
G(j)* o (Det*)*(a) and so pp = %G(])*(J), by lemma 2. Now J = ¢, ® —J f* and o(X,.)
can be represented as T'(T*A® NA) 3 o(X,.) = oF(X)f*® Jeg. In this way we have that
for all X e I'(T'A):

(GUH) (IN(X) = (e ® T (F(X)fi ® Jey) = o} (X) =
= ZQ(U(X, e;),Je;) = (by lemma 4)= Zg(g(ei,ei), JX) =

=g(H,JX)=w(H, X) =igw(X).
Hence, one gets the result:

pn =GO CI) = Timw € HYA,2). (2.3)

|

By the result of the theorem, one can give the following:
Definition: Let A — X a Lagrangian embedding in a Calabi-Yau X; then the Maslov
index m of a closed loop v on A is given by:

1
m(y) = —/in € Z.
v

™
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2.4 Some comments and a conjecture

Calabi-Yau manifolds have received great attention as target spaces for superstring com-
pactifications. Moreover their Lagrangian and special Lagrangian submanifolds are now
considered as the cornerstones for understanding the mirror symmetry phenomenon be-
tween pairs of Calabi-Yau spaces, both from a categorical point of view ([14]), and from a
physical-geometrical standpoint ([18]). Let us recall that special Lagrangian submanifolds
A of a Calabi-Yau X are exactly what are called BPS states or supersymmetric cycles
in the physical literature; on the other hand, it is known that special Lagrangian sub-
manifolds are nothing else that minimal Lagrangian submanifolds (compare [11] page 96,
where this is proved for special Lagrangian submanifolds of C"). From our result it turns
out that the Maslov class of special Lagrangian submanifolds is identically vanishing; on
the other hand, this can be seen just by considering the Grassmannian of special La-

U(n)
SO(n)
(notice that the Grassmannian of special Lagrangian planes is isomorphic to the fibre in
the fibration det? : GrL(C") — S*). It is then clear that the Maslov index is identically
vanishing for all special Lagrangian submanifolds A of a Calabi-Yau X. We believe that
this simple observation can enhance our understanding of the structure of the A*-Fukaya
category, whenever its objects are restricted to minimal Lagrangian submanifolds (see
[26] for a definition of A™ category, and [14] for its application in the study of mirror
symmetry). Indeed, this is a key point for the proof of homological mirror symmetry for
K3 surfaces, for which we refer to [3].

The Maslov class so far constructed does not depend on the choice of a canonical
projection, from which one could determine the singular locus (as usually happens when
one considers Lagrangian embedding in cotangent bundles over an arbitrary Riemannian
manifold). However, it is still possible to determine, rather then the singular locus, the
homology class [Z] € H,—1(A, Z) of a “singular locus”, just considering the Poincare’ dual
to [pal], and setting [Z] := Pd([ua]) (Pd stands for Poncare’ duality). We have said “a
singular locus”, because Z is not determined at all uniquely, but only up to its homology
class; in spite of this one could take as singular locus any representative of [Z]. So it
makes sense to speak of a singular locus, even if there is no projection to which to refer
it.

It is clear that it is not possible to extend our definition of Maslov class for Lagrangian
embedding in arbitrary symplectic manifolds; even the construction of Fukaya (which is
specifically designed for Maslov index of closed loops only on BS orbits) needs several
assumption such that the ambient manifold admits a “prequantum bundle” and so on. We
are thus tempted to suggest the following alternative description: we would like to define

grangian planes, which turns out to be diffeomorphic to , hence simply connected
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the Maslov class for a Lagrangian embedding in any symplectic manifold (X, w), via the
mean curvature representation ;zw. Two problems arise following this approach. First of
all, to define the mean curvature vector field H it is necessary to fix a Riemannian metric
on X; as it is well known, on any symplectic manifold one has lots of Riemannian metrics
g;(X,Y) = w(X,JY), constructed using the given symplectic form w and choosing an
w-compatible almost complex structure J; (recall that the set of w-compatible almost
complex structures on a given symplectic manifold is always non empty and contractible,
see [52]). What is the “right” choice for g;7

Once we have fixed the right metric, the second problem is related to the closure of
the 1-form ixw, considered as a form on A; indeed there is no reason, a priori, for which
igw has to be closed. We are thus led to the following:

Conjecture: Having fixed the Lagrangian embedding j : A — X, on any symplectic
manifold (X,w) there exists at least one Riemannian metric g; built up from an w-
compatible almost complex structure J, such that the 1-form igw, considered as a form
on A is closed. Multiplying the corresponding cohomological class [igw] for a suitable
constant in such a way that it is integer valued, we call this class the Maslov-Morvan
class of the Lagrangian submanifold A.

It does not seem possible to give an interpretation of this conjectured Maslov-Morvan
class via the universal Maslov class, as we have done for Calabi-Yau manifolds, since, in
general, we have no control on the holonomy of g;.

2.5 Special Lagrangian embeddings

First of all, we recall from ([11]) the following:

Definition-Proposition: Let X be a Calabi-Yau n-fold, with Kaehler form w and
holomorphic nowhere vanishing n-form Q. A (real) n-dimensional submanifold j : A — X
of X is called special Lagrangian if the following two conditions are setiesfied:

1. A is Lagrangian with respect to w, i.e. 7*w = 0;
2. there exists a multiple Q' of Q such that 7*Im(Q') = 0.

One can prove that both conditions are equivalent to j*Re(Y) = Voly(A).

This last condition means that the real part of ' restricts to the volume form of
A, induced by the Calabi-Yau Riemannian metric g. In this way, special Lagrangian
submanifolds are considered as a type of calibrated submanifolds (see [11] for further
details on this point).

Despite their importance, it is difficult to construct examples of special Lagrangian
submanifolds, especially in Calabi-Yau 3-folds, where there is no a priori evident relation
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between the Kaehler form and the holomorphic form which trivializes the canonical bun-
dle. However, there is a subclass of Calabi-Yau n-folds, for which it easier construct such
examples. These are the so called irreducible symplectic n-folds:

Definition: A complez manifold X is called irreducible symplectic if the following
three conditions are satisfied:

1. X s compact and Kaehler,
2. X is symply connected,

3.  HY(X,0%) is spanned by an everywhere nondegenerate 2-form w.

In particular, irreducible symplectic manifolds are special cases of Calabi-Yau man-
ifolds (the top holomorphic form which trivializes the canonical line bundle is given by
a suitable power of the holomorphic 2-form w) and moreover they are all hyperkaehler.
Observe that in dimension 2, K3 surfaces are the only irreducible symplectic manifolds,
and indeed irreducible symplectic manifolds appear as higher-dimensional analogues of
K3 surfaces, as strongly suggested in ([12]). Unfortunately, up to now there are also few
explicit examples of irreducible symplectic manifolds. Indeed, almost all known examples
turn out to be birational to two standard series: Hilbert schemes of points on K3 surfaces
and generalized Kummer variety (both series were first studied in ([4]) , but quite recently
O’Grady has constructed irreducible symplectic manifolds which are not birational to any
of the elements of these two groups (see ([17])).

Let us fix a Kaehler class [w] in the Kaehler cone of X, a irreducible symplectic n-folds.
(In this case, n is alwaus even, so we put n=2m). By Yau’s theorem, this detemines a
unique hyperkaehler metric g. Choose a hyperkaehler structure (I, J, K') compatible with
this metric (notice that the triple (I, J, K) is not uniquely determined) and consider the
associated symplectic the associated symplectic structures w;(.,.) = g(I.,.), ws(.,.) =
g(J.,.) and wg(.,.) = g(K.,.). Fixing the complex structure K on X, the holomorphic
n-form which trivializes the canonical bundle can be expressed as:

Qe = %(w; i)™ (2.4)

Then we have the following:

Proposition (Bruzzo and others): Let X as above. Let A be a submanifold (compact
and without border) of X, which is Lagrangian with respect to the symplectic form w; and
complez in the complex structure I. Then A is a special Lagrangian submanifold of X in
the complez structure K.

Proof: By assumption, A is Lagrangian in the symplectic structure w; and so wyp =
0; moreover A is a complex submanifold of X in the complex structure I so that by
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Wirtinger’s theorem Volg(A) = & [(wr)™. Now, since Qg = —(wr + iws)™, it is imme-
diate that Re(Qx)jn = Volg(A), so that A is a special Lagrangian submanifold of X in
the structure K. o

Let us remark that this proposition is even stronger in dimension 2, i.e. for K3 surfaces.
Indeed, in this case, it is just sufficient to require that A be a complex submanifold of
X in the structure I: then it is immediate to see (again by Wirtinger’s theorem) that A
is calibrated by the real part of Qx = w; + ww; and thus it is special Lagrangian in the
structure K. This means that on a K3 surface, special Lagrangian geometry is equivalent
to the geometry of complex submanifolds of dimension 1 (curves).

As we have alredy observed, K3 surfaces or more generally Calabi-Yau manifolds need
not to be algebraic. Starting from the next chapter, we leave the big realm of complex
geometry we will focus our attention to projective algebraic varieties, and specifically to
their projective embeddings.
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Chapter 3

Small codimension embeddings in
projective spaces

3.1 Introduction

With this chapter, we start to study “special” embeddings in projective spaces, thus we
abandon the realm of Kaehler geometry and we focus on some aspects of (projective)
algebraic geometry.

More specifically, in this chapter we address the problem of studying and possibly
classifying (smooth) subvarieties of small codimension in some P* (where small is intended
with respect to n) and the ultimate goal would be to understand which properties of the
geometry of subvarieties are forced by the small codimension condition. Indeed, for any
subvariety X of P", we have the following exact sequence:

0—>TX—+T}P’,’}( — Nx/pr — 0.

Thus, (restricting to the case of X smooth) we obtain for the corresponding total Chern
classes the relation ¢(T'X)c(Nx/p») = (TP ); this implies immediately that the Chern
classes of TX can be computed using those of Nx/p~. On the other hand, if the codimen-
sion of X is small compared to its dimension, then all the Chern classes of 7'X depend
on a small number of variables (i.e. the Chern classes of Nx/p»). This suggests somehow
that, in general, we expect to have only very few small codimension subvarieties.

In a very famous paper (see [32]), Hartshorne formulated a key conjecture regarding
smooth projective subvarieties of small codimension. Briefly, let us recall a fundamental
definition. Let k be an algebraically closed field and let P* be the n-dimesional projective
space over k. Let X C P™ be a smooth irreducible subvariety of dimension r. Then

21
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we say that X is a complete intersection in P", if one can find n — r hypersurfaces
Hi,...,H,_,, such that X = H,N...NH,_,, and such that this intersection is transversal,
i.e. the hypersurfaces H; are smooth at all points of X, and their tangent hyperplanes
intersect properly at each point of X. In algebraic terms, X is a complete intersection
iff its homogeneous prime ideal I(X) C k[zo,...,z,] can be generated by exactly n —r
homogeneous polynomials.

Fundamental Conjecture (Hartshorne): If X is a smooth subvariety of dimension
7 in P", and 7 > 2n, then X is a complete intersection.

Despite the fact that this conjecture can be stated in elementary form, it is still
completely open, after almost thirty years! (In “ Geometric Invariant Theory”, Mumford
wrote that this is the most important and most difficult conjecture in projective algebraic
geometry which is still open).

3.2 Evidences for the conjecture

To put the previous conjecture in a wider framework, let us consider a more general
question. Let X be any smooth algebraic variety, and let ¥ be a (possibly singular)
subvariety. Then we can consider the cohomology class of YV, in any suitable cohomology
theory on X. For simplicity, let us assume that X is a projective variety defined over
C. Then we can consider X as a compact complex manifold. If Y is a subvariety, it
defines a homology class on X, which, by Poincaré duality, gives a cohomology class
[Y] € H?(X,Z), where ¢ is the complex codimension of ¥ in X. Now, we can ask:
if Y is a smooth subvariety of codimension g in X, to what extent are the properties
of Y determined by its cohomology class [Y]? Indeed, the conjecture can be viewed
as a special case of this question. The general philosophy which operates here is that
a nonsingular subvariety of small codimension of a fixed variety X must be subject to
stringent conditions. More specifically, in the case of a subvariety X of P*, if we know that
it is a complete intersection of hypersurfaces of degrees dy, ..., dn—,, then we essentially
know all about it. (For simplicity, let us restrict to varieties over C). Indeed, we have the
following remarkable:

Theorem (Lefschetz): Let X be a smooth subvariety of dimension r of P*, which is
a complete intersection. Then:

1. The restriction map H'(P*, Z) — H'(X,Z) is an isomorphism for i < r, and injec-
tive for i =r.

2. m(X)=1,ifr>2.
3. Pic(X) 2 Z, generated by Ox (1), if r > 3.
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On the other hand, the outstanding results of Barth and others show that many of
the same properties hold for smooth subvarieties of small codimension. This supports the
conjecture, in the sense that it shows that subvarieties of small codimension “look like”
complete intersections, at least from a cohomological point of view.

Theorem (Barth, Larsen): Let X be a smooth subvariety of dimension r in P™ (which
is not necessarily a complete intersection). Then:

1. The restriction map H*(P",C) — H'(X,C) is an isomorphism for i < 2r — n.
The same is true for cohomology with Z coefficients.

m(X)=11ir> i(n+2).

Pic(X) = Z, generated by Ox (1) if r > 2(n + 2).

Note in the statements of the theorem that the restrictions on 4 and r operate so that if
T < %n, then there is no conclusion. On the other hand, as the codimension of X becomes
small with respect to its dimension, then one gets stronger and stronger conclusions.

Following ([32]), we want to show that part 1 of the Barth-Larsen’s theorem is an easy
consequence of the strong Lefschetz theorem. First of all, recall:

Theorem (Strong Lefschetz Theorem): Let X be a smooth projective algebraic variety
of dimension n, and let h € H2(X,C) be the class of a hyperplane section. Then the cup-

product map H (X, C) N H?~(X,C) is an isomorphism, for eachi=10,...,n.
This theorem is proved using Hodge’s theory of harmonic integrals.
We have the following:

Corollary: Within the hypotheses of the theorem, the cup-product map HY(X,C) Lo
H*%(X,C) is injective whenever j < n — 1.

Proof (part 1 of Barth-Larsen’s theorem): Let X be a smooth subvariety of dimension
r of P*, and let j : X < P" be the embedding map. Let j* : H'(P") — H'(X) be
the restriction map on cohomology (always with C coefficients), and let j, : HY(X) —
H#+2n=2r(Pn) be the covariant map induced by Poincaré duality, from the covariant map
7. on homology. Let [X] € H?~?(P") be the cohomology class of X. Then for any
x € H'(P"), by projection formula we get j.5*(z) = zU[X] € H*?"=2r(P"). On the other
hand, for any y € H*(X), by the Thom isomorphism theorem on a tubular neighbourhood
of X, we have 7*7,(y) = y U j*([X]) € H"?¥(X).

Now suppose that X is a variety of degree d. Then [X]| = dh™", where h € H?*(P")
is the class of a hyperplane. Applying the previous corollary to X, we find that the
map j*j, : HY(X) — H*™?"=2"(P"), which is the cup-product with j*([X]) = dj*(h)*™" is
injective, provided that n —r < 7 —1, i.e., i < 2r — n. If this is so, then 7, : H*(X) —
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H#*2r=2r(P") must also be injective. On the other hand, j*j, : H*(P") — H™2"=2"(P") is
an isomorphism. Indeed, these groups are either both 0, if 7 is odd, or both C, if 7 is even,
and they are generated by the appropriate powers of h, so the cup-product with A" is
an isomorphism. Putting these facts together, we find that j* : H(P") — H*(X) is an
isomorphism, provided i < 2r — n. O

Observe, that the same argument can be applied to other ambient varieties, besides
projective spaces. For example, suppose X is a smooth complete intersection variety of
dimension n, and Y is a smooth subvariety of X of dimension r. By Lefschetz’ Theorem we
know the cohomology of X and by the same reasoning, we find that j* : HY(X) — H(Y)
is an isomorphism for i < 2r — n, and injective for © = 2r — n.

3.2.1 Subvarieties of small degree

It is possible to approach the conjecture, studying varieties according to their degree,
instead to their dimension. By so doing, it has been recognized that subvarieties of small
codimension and small degree are indeed complete intersection. A variety of degree 1 is
a linear variety, which is itself a projective space, hence a complete intersection. If X is a
variety of degree 2 and dimension r in P?, then it is contained in some P"*!. Hence it is a
hypersurfaces in P™*!, and as such it is a complete intersection. More generally, one can
show that any variety of dimension r and degree d in some P” is always contained in a
linear subspace P**4-1. Indeed, if V = P"" is a generic subspace, then X NV is finite set
of d points. This set spans at most a linear subspace of dimension d — 1 and one proves
immediately by induction that X is contained in Pr+d-1,

For varieties of degree 3, we have the following result, the proof of which is completely
elementary:

Theorem: Let X be a smooth variety of dimension v and degree 3 in P", and assume
that X is non degenerate (i.e. not contained in any P*~'). Then either r = n —1 i.e.
X s a hypersurface, orr =n—2, n=3,n=4 orn =>5 andY is obtained by linear
automorphism of P™ from one of the following three varieties:

1. the Segre embedding of P* x P? in P,
2. its general hyperplane section, which is a rational ruled surface in P4,
3. the twisted cubic curve in P3.

In particular, we see that if X is a smooth variety of degree 3, which is not a complete
intersection, then it is contained in a projective space of dimension n < 5.
There is a similar analysis for varieties of degree 4:
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Theorem (Swinnerton-Dyer): Let X be a smooth variety of dimension r and degree
4 n P, which is nondegenerate. Then either: r = n — 1, so X is a hypersurface, or
r=n—2, and Y is a complete intersection of two quadric hypersurfaces, or n <7, and
X is one of the following (up to an isomorphism of P™):

1. the Segre embedding of P* x P? in P7,
2. the Veronese embedding of P? in P?,

3. a variety obtained from the two previous ones, by a succession of sections by a hy-
perplane and/or projections from a point into a lower-dimensional projective space.

As in the case of degree 3, we see that those varieties of degree 4 which are not complete
intersections are contained in a projective space of bounded dimension, in this case n < 7,
and that there is a finite list of possibilities. Unfotunately, this method of classification
is hopeless to extend to the general case.

However, using different tools, one can show the existence of such a bound for any d:

Theorem (Barth-Hartshorne-Van de Ven): For any d > 0, there exists an ng(d) > 0,
such that if X is a smooth projective variety of degree d, defined over C, which is not
a complete intersection, then X is contained in some P*, with n < no(d). Furthemore,
there is only a finite number of continuous families of such varieties.

3.3 Embedding varieties in projective spaces

One could try to approach the conjecture, studying which very ample complete linear
systems exist on a given variety and selecting those of small dimension (compared to the
dimension of the given variety). This is however an impossible task, since in this problem
we have to deal with varieties of big dimension and it is very difficult, in general, even to
study complete linear systems on a surface. Thus, we can follow another way and embed
a projective algebraic variety X of dimension r in a big projective space P"; then we
can define a mapping of X into P"~!, by projecting from a point of P* to a hyperplane.
One can easily show that if X is smooth, and if n > 2r + 1, where r = dim(X), then
the projection can be chosen so that the image is still nonsingular, and hence we obtain
an embedding of X in P"~!. Indeed, the only thing to check is that the center P of
the projection map does not lie on any chord, or any tangent line of X. By counting
parameters, we see immediately that the chord variety of X, which is the locus of all
points on chords and tangents of X, has dimension < 2r + 1. So, if n > 2r + 1, we can
find a point in P™, not on the chord variety.
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Hence, by successive projection, we show that smooth projective variety of dimension
r can always be embedded in P?"*1. In general, if we try to project further X into smaller
projective spaces, the image will acquire singularities.

However, in special cases, X may already lie in a smaller projective space, or the
projection of X into a smaller projective space may remain smooth. Let us investigate
further on this point and consider some examples.

If X is a smooth subvariety of P, then X can be realized as the projection of a variety
in P"*1 not lying in any P", iff the linear system of hyperplane sections (in P") is not
complete. On the other hand, if the linear system of hyperplane sections is complete, we
will say that X is linearly normal for the given embedding (hence it is not obtained by
projection!). In terms of sheaf cohomology, this means that the map H°(P", Op.(1)) —
H°(X,Ox(1)) is surjective (and this happens, for example, if H'(Zx(1)) = 0). Being
linearly normal, is weaker then the condition of being projectively normal, which means
that for all integers k € Z, H°(P", Opn(k)) — H°(X,Ox(k)) is surjective (and this
happens if for example H*(Zy(k)) = 0). X is projectively normal iff the vertex of the
affine cone over X in A™*! is a normal point (i.e. the correponding local ring at the vertex
is integrally closed in its quotient field). As far as complete itersections is concerned, one
knows that any smooth complete intersection variety is projectively normal, hence it is
linearly normal and so cannot be realized as a projection of a variety sitting effectively
in a higher dimensional projective space. (For a smooth codimension two subvariety X,
in a projective space of dimension greater or equal to six, even more is true: indeed,
in this case it is known that X is a complete intersection iff it is projectively normal
(Hartshorne, Ogus, Szpiro)). Thus, for instance, any non singular hypersurface in P is
a smooth complete intersection, hence it is linearly normal and so cannot be obtained
by projection. This in particular applies for smooth curves in P2, smooth surfaces in P2,
smooth threefolds in P* and so on.

Now, let us look at some more examples. A smooth surface in P? is projectivaly
normal, hence it cannot be the projection of a surface in any higher P*. But, a surface in
P* might be a projection of a surface in P°. Indeed, there is a classical theorem of Severi,
which tells us when the projection is smooth:

Theorem (Severi): Let X be a nondegenerate surface in P, whose generic projection
into P* is smooth. Then, up to an isomorphism of P°, X is the Veronese surface, which
is the embedding of P? in P° induced by the complete linear system of conics.

In higher dimensions, we know a few interesting examples of varieties which can be
projected down into smaller projective spaces than one would expect. Indeed, if X in
P" is an irreducible nondegenerate r dimensional variety, whose chordal variety S(X) has
dimension strictly less than min(2r + 1,n), we say that X has deficient secant variety; in
these circumstances, we define the deficiency 6(X) to be: 6(X) := 2r +1 — dim(S(X)).
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Here we have the following outstanding examples:

Proposition: Consider the embedding of P" into PN (N = %r(r+3)), by the complete
linear system of hyperquadrics. Let X be the projection into P> *1. Then, in this case X
can be projected into P?" and remains smooth, i.e. 6(X) = 1.

Proof: First of all X is smooth. We claim that the chordal variety S(X) has only
dimension 2r. To see this, suppose ¢ € P¥*! is a general point lying on a secant line
to X; we may write the secant line as z{x,, for some pair of points z;,zs € P! and
belonging to X. Now, the points z1, z3 correspond to two points ¢i, gy in P". The line
L := g{gz C P is carried, under the Veronese embedding and the subsequent smooth
projection down to P> *1, to a plane conic curve C C X C P!, and since q € z1zs, ¢
will lie on the plane ) spanned by C. But then every line through ¢ in A, will be a secant
line to C, and hence to X. In particular, it follows that a general point lying on a secant
line to X lies also on a one-dimensional family of secant lines to X. We may deduce from
this that the dimension of S(X) is at most 2r. Since it is clear on elementary grounds
that S(X) cannot have dimension less than 2r, (for example all the cones pX over X with
vertex p € X would have to coincide), we conclude that dim(S(X)) = 2r. O

The following two propositions, whose proof can be given using analogous arguments,
give two other kind of examples of deficiency:

Proposition: Consider the embedding of P™ x P* into PN (N = rs+ 1+ s), given
by the Segre embedding. Assume moreover s > 3,7 > 3 or s = 2,7 > 4 (otherwise we
cannot project down, since N is too small compared to v+ s). Let X be the corresponding
projection into P2r+9)tL Then, in this case X can be projected down to PXU+9)=1 without
acquiring singularities, i.e. §(X) = 2.

Proposition: Consider the natural embedding X of G(1,n) (Grassmannian of lines
in P™) into pr-1

Since all smooth complete intersections are linearly normal, the validity of Hartshorne’s
conjecture on smooth varieties of small codimension would imply that all such varieties

are linearly normal. Indeed, this was first proved by F. Zak in 1979, in the following
outstanding:

Theorem (Zak): Let X be a smooth r-dimensional variety in P*. If 3r > 2(n — 1),
then X is linearly normal.

. Assume n > 5, then in this case we have 6(X) = 4.

Zak classified also all varieties at the boundary of the inequality 3r > 2(n — 1) and
proved that, up to projective equivalence, there are exactly four such varieties (called
Severi varieties). A clear exposition of such topics can be found in ([33]).
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3.4 The Serre correspondence

In the next sections we will deal mostly with subvarieties of codimension 2. In this case,
we can get stronger results due to the fact that it is possible to associate vector bundles
of rank 2 over P* to such subvarieties; this is the so called Serre correspondence which we
are going to review in this section, following closely ([56]).

Let E be an algebraic vector bundle over P" of rank 2, with a section s whose zero
scheme Z(s) is a locally complete intersection subscheme Y of codimension 2. Let U C P"
be open and such that E|y is trivial; let 51,52 € H(U, E\y) be a local basis for E over U.
Then sy = fis1 + fas, for suitable regular functions fi, fo € H %(U, ). One obtains a
global sheaf of ideals Zy C Opx with Zy|y = (f1, f2) Opnjy. We have Supp(Op-/Iy) =Y,
it follows that ¥ = (Y, Op» /Zy) is a codimension 2 locally complete intersection in P", as
we already observed. Notice that ¥ may not be reduced.

Ty /T2 is in natural way a sheaf of Opn/Zy-modules and as such it is locally free of
rank 2 (over V), for if sy = fis1 + fa5, then the germs fi 4, foq, for z € UNY form a
regular sequence and represent a Oy ,-module basis of Zy/Z%. Usually, Zy /I3 is called
the conormal bundle of Y in P*, so that the normal bundle Ny/pn = (Zy/Z%)*.

Over U the ideal sheaf Zy has the free resolution:

0—‘—>OU£>OU@OU£)IY|U—_>03

with a(g9) = (= f229, f1,29), and B(g, h) = figg+ fogh, forz € U, g,h € Oyg, fix € Ovg.
The sequence is exact because fig, foz € Oyg is a regular sequence (in the sense of
commutative algebra), for any point z € U.

These local sequences yield a global resolution:

0— det(E") S B* 5 T 0, (3.1)

with a(qbl A (bg) = ¢1(Sm)¢2 - ¢2(5X)¢]_ and 6((;5) = ¢(Sz), for x € Pn, (bl,qég,gb € E; =
Hom(E,, Opn ). (As always, s, denotes the germ of s at the point z).

The sequence (3.1) is the Koszul complez for s, and as we have just seen, it is a locally
free resolution of Zy, if s has a codimension 2 zero set. If one restricts the Koszul complex
to Y, one gets the exact sequence:

det(B*) ® Oy “2% EYy — Ty /T2 — 0.

a ® lp, is the zero homomorphism as one sees from the local description. Hence we get
an isomorphism:
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By = Iy T3,

Thus F is an extension to all of P* of the normal bundle Ny p~.

The Serre correspondence is essentially a successful attempt to reverse this construc-
tion. Thus, for a given locally complete intersection (Y, Oy ), we seek an extension of the
normal bundle Ny/p~ such that a regular section of this extension has as zero set precisely
Y, with structure sheaf Oy. An obvious necessary condition for the extendability of the
normal bundle Ny p» is the extendability of the determinant bundle det(Ny,p»). Indeed,
if the determinant bundle is extendable, then E*, if it exists, is an extension (in the sense
of homological algebra) of the sheaf of ideals Iy, by an extension over P" of det(Ny pa),
as the sequence (3.1) shows. The following theorem shows that the extendability of
det(Ny/pr) is also sufficient for the extendability of Ny pn.

Theorem (Serre’s correspondence): Let Y be a locally complete intersection of codi-
mension 2 in P*, n > 3, with sheaf of ideals Ty C Oy. Let the determinant bundle of the
normal bundle be extendable: det(Ny/pn) = Opn(k)y (k € Z). Then there is an algebraic
2-bundle E over P™ with a section s which has precisely (Y, Oy) as zero set. Moreover s
induces the eract sequence:

0— Opn 3 E — Ty (k) — 0. (3.2)

The Chern classes of E are given by: c1(E) =k, co(E) = deg(Y) (if Y is smooth ).
Proof: If there is a bundle E' as claimed, then det(Ny p.) = det(E}y), so we would
choose det(E*) = Opn(—k). Thus E* is an extension:

0— Opn(—k) = E* — Iy — 0.

Thus we investigate the extension of Zy by Opn(k). These are classified by global Ext-
group (see [31], page 725) Ext!(Zy,Op:(—k)). For the calculation of this group, we
employ the lower term sequence of the spectral sequence (see [52], page 706):

EP? = HP(P", Ext?(Ly, Opn(k))) = EPT = ExtPT(Ty, Opn(—k)).
The induced exact sequence is the following:
0 — HY(P", Hom(Zy, Opa(—k))) — Ext' (Iy, Opn(—k)) —

— HO(P", Ext(Ty, Opn(—k))) — H*(P", Hom(Zy, Opn(—k)))
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On the other hand, the sequence 0 — Zy — Op. — Oy — 0 gives rise to the long
exact sequence:

0 — Hom(Oy, Opn(—k)) — Hom(Opn, Opn(—k)) —

— Hom(Zy, Opn(—k)) — Ext*(Oy, Opn(—=k)) — ...

Since Y is a locally complete intersection of codimension 2, we get (see [31], page 690)
Ext'(Oy, Opr(—k)) = 0fori = 0,1, and thus Hom(Zy, Opn(—k)) = Hom(Opn, Opn(—k)) =
Opn (—k).

If we put these results into the lower term sequence induced by the spectral sequence,
we get the exact sequence:

0 — HY(P", O(—k)) — Ext'(Ty, Opn(—k)) —

— HY(P", Ext* (Ty, Opn (=k))) — H*(P", O(-k)) — ...

In particular, for n > 3, we have Ext!(Zy, Opn(—k)) = H°(P", Ext! (Ty, Opa(—F))).
For n = 2, the group H%(P", O(—k)) is zero only for k < 3, so that the previous isomor-
phism also holds in the case n =2,k < 3.

Now, we calculate £xt' (Zy, Opn(—k)): from the £zt-sequence associated to 0 — Iy —
Op. — Oy — 0, we get the isomorphism Ezt!(Ty, Opn(—k)) = Ext?(Oy, Opa(—k)).
Since Y is a codimension 2 locally complete intersection, we have (see for instance [31],
page 690), the local fundamental isomorphism (LFT):

Ext*(Oy, Opn(—k)) = Hom(det(Ty /TE), Oy (—k)),

where Oy (—k) = Opn(—k) @ Oy.

However, by assumption det(Zy/Z%) = Oy(—k), so Hom(det(Ty /IZ), Oy(—Fk))
Oy. Thus, altogether, we have a canonical isomorphism of sheaves £zt!(Zy, Opx(—k))
Oy, which implies that Ezt'(Zy, Opn(—k)) & H(Y, Oy).

Now we consider the extension represented by 1 € H(Y, Oy):

1R

0— Opn(=k) = F = Iy — 0,

with F' a coherent sheaf over P".

Claim: F is a locally free sheaf over P"

Proof of the claim: Let z € P". Due to what we have so far proved, the germ 1, of
1 in the point z is an element in (£xt*(Zy, Opn(—k)))s = Extp o (Ty,e, Opno(—Fk)) and
defines the extension:
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0 = Opn z(—k) = Fy — Iy, — 0.

Since 1, naturally generates the Opr ;-module Eglct]%,,’z (Zy,z, Opn 2 (—k)) = Oy, it turns
out that Fy is a free Opn z;-module and so F is locally free, according to the following
lemma, of Serre:

Lemma (Serre): Let A be a noetherian local ring, I C A an ideal with a free resolution
of lenght 1:

0— AP -5 A7 — T —0.

(e.g. the Koszul compler 0 — A — A®% — I — 0, if I is generated by a regular sequence
(f1, f2))- Let e € Exth (I, A) be represented by the estension:

0A—->M-—=T-—0.

Then M is a free A-module iff e generates the A module Exth(I, A).
Proof of the Lemma: Assume that M is a free A-module. Then, the Ext-sequence
associated to 0 = A — M — I — 0 gives:

... — Homa(A, A) 5 Ext (I, A) — Ext' (M, A) — Exty (4, A).

On the other hand, M and A are free A-modules so that Exty (M, A) = Exth (A, A) =0
In this case ¢ is surjective and since §(id4) = e, this happens precisely when e generates
the A-module Extl (I, A)

On the other hand, since Exth (A, A) is always zero, Exty (M, A) = 0 precisely when
§ is surjective (and this in turns happens when e geerates Ezt} (I, A)). Thus, it remains
to show that Exzth (M, A) = 0= M is free.

To this aim, we construct out of the exact sequences:

0— AP 5 A1 5T 0

0ASMET0
a free resolution of length 1 for M: let ¢ : A — M be a lifting of ¢ to M and 9 :
A® AT — M be defined by ¥(z,y) = a(z)+¢(y). Then we have a commutative diagram:

0 - A —- AgpA? — A7 — 0
= v o lé
0 A 3 M A 1 S0
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By snake lemma, it follows that ker(¢) = ker(¢) = AP and coker(y) = 0. Thus we have
an exact sequence:

0> AP 5 A"(= A A7) - M — 0.

Since Extl (M, A) = 0, this sequence splits. Hence is a direct sum in A", hence projective
and thus free. m|

Coming back to the proof of the theorem (Serre correspondence), we have an extension:

0 — Opn(—k) = F 5 Ty -5 0, (3.3)

with a 2-bundle F over P*. F = F* is the bundle we are searching for, and (3.3) is just
the Koszul complex of a section s € H°(P", E). Multiplication with s, .s: Op» — E, is
dual to the composition:

E* —5> Iy — Opn.
On the other hand, let 8’ : E —> Ty (k) , be the composition:

E~E* ®det(E) = B* (k) ™% Ty (k),

where E = E* ® det(E) = Hompn(E,A?FE) is the canonical isomorphism given by s
(t — s At). From this we get the exact sequence:

O%OPn-ﬁ)EE}Iy(k)*')O,

and this concludes the proof of the theorem. O

The relation between codimension 2 locally complete intersections in P and rank 2
vector bundles is even closer, as displayed by the following:

Proposition: Let E be a 2-bundle which is associated to a locally complete intersection
Y c P*, n> 3. Then E splits iff Y is a global complete intersection.

Proof: Let Y be defined by the section s € H(P", F). If E splits, let us say E =
O(a) ® O(b), then s = (51, 53), with s; € H'(P", O(a)), s2 € H*(P",0(})), and ¥ = {s =
0} is the intersection of the hypersurfaces given by {s; = 0} and {s, = 0}.

Conversely, let Y be the intersection of two hypersurfaces V,, V}, of degree a respectively
b: V,= {5 =0}, = {5 = 0}, with 5, € H'(P", O(a)), s2 € H*(P", O(b)). The Koszul
complex of the section s = (s1, s2) in O(a) ® O(b) gives the extension:

0 — Op=((—(a +b))) = Opn(—a) & Opa(—b) = Iy — 0.
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This extension defines a non-zero element in Ext!(Zy, Op(—(a+b))) & H(Y, Oy). Thus,
if we can show that H°(Y, Oy) is 1-dimensional, then every other non-trivial extension of
Ty by Opn(—(a + b)) must give the split bundle. Now we prove that (Y, Oy) = 1 for
every global complete intersection Y of codimension 2 in P*, n > 3. (In particular Y is
connected). Indeed, from the cohomology sequence associated to:

we get immediately (a,b > 0, n > 3): h®(P",Iy) = h*(P", Zy) = 0. Thus H°(P", Opx)
HY(Y, Oy).

o IR

Due to this kind of correspondence, it is possible (and useful !) to relate the problem
of recognizing complete intersection in codimension 2, with the problem of proving that
a certain rank 2 vector bundle is split.

3.5 A scheme-theoretic criterion

As we have seen in the previous sections, the problem of detecting (global) complete
intersections is a key question in projective algebraic geometry and commutative algebra.
Up to now, this problem is far from being solved and a complete answer is known only
in trivial cases, such that of hypersurfaces in projective spaces or in Grassmannians.
Moreover, the outstanding conjecture of Hartshorne is still not proved. Besides the various
"evidences” supporting the conjecture, in the last 25 years, there have been some partial
results in this direction, particularly in the case of codimension 2. Essentially, the results
obtained in the case X is a smooth codimension 2 subvariety of P", n > 6 can be grouped
into two kinds of criteria.

The first one says that if X is contained in a hypersurface V, such that deg(V) < n—2,
then X is a complete intersection (see [35] or the recent improvement in [24], where it
is shown that the bound on the degree of V' can be increased to n — 1, in the case of
codimension 2 subvarieties of P°); using this kind of criterion one can give also a bound
on the degree of X, so that to assure that X is a complete intersection.

The second kind of criterion is based on giving a bound on the number p of genera-
tors, not for the homogeneous ideal 7(X), but for an ideal I, (X) which coincide with
I(X) only in high degree, that is [I;en(X)]a = [I(X)]g, for d > 0. We call I, (X) the
“schematic” ideal of X, in that its generators define X scheme-theoretically. Following
this approach, Faltings proved in [26] that if p < n — 2 and n > 8 and X is a (possibly
singular) subcanonical local complete intersection, then it is a complete intersection (in
any characteristic). Some years later, this result was improved in [34], proving in charac-
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teristic zero that if p < n — 1, n > 8, then X is a complete intersection (but assuming X
smooth).

The aim of this section is twofold: on one hand we would like to give a different (in
that we use Serre’s correspondence) and simpler proof of the result announced in [34],
hoping to give a “crystal clear” version of some obscure (to our opinion) arguments.
Moreover, assuming only that X is a (possibly singular) subcanonical l.c.i., we prove in
any characteristic that if n > 3 and p < n — 1, then X is a complete intersection and we
give some more results, assuming that the normal bundle of X extends to a numerically
split bundle E on P" (i.e. the Chern classes of E are those of a split bundle), n > 3,
p < n. On the other hand, as an application of our result we answer to a question posed
recently by Franco, Kleiman and Lascu in [27], (neglecting the case of space curves).
Unfortunately, our result shows that the characterization given by Faltings is not peculiar
of two codimension embeddings in high dimensional projective spaces.

Our proof is based in constructing and exploiting an exact sequence of locally free
sheaves, (sequence (3.6)), which relates the rank 2 vector bundle F appearing in Serre’s
correspondence with the generators of the “scheme-theoretic” ideal of X.

Untill the end of this section, X will denote a codimension 2 subcanonical l.c.i. (possi-
bly singular) closed subscheme of a projective space P™ over an algebraically closed field
k of any characteristic, where, as usual P* = Proj(k[zo,...,z,]). Then, under these
assumptions, we prove the following result:

Theorem A: If X C P*, (X as above, n > 3) is a scheme-theoretic intersection of
p < n — 1 hypersurfaces, then X is a complete intersection.

Proof: Since X is assumed to be subcanonical (i.e. its dualizing sheaf wx, which is
locally free, is of the form Ox(e)) , by Serre’s correspondence there exists an algebraic
vector bundle F of rank 2 over P* and a section s € H°(P, E) such that X is identified
with the scheme of zeroes of s, Z(s). The Koszul complex for this section gives a projective
resolution of the ideal sheaf of Z(s), hence of the ideal sheaf of X:

2
0— ANBE*— E* — Ix —0. (3.4)

Since Zx is not itself projective, by (3.4) it turns out that the projective dimension of
TIx is 1. On the other hand, if X is schematically cut out by p < n — 1 hypersurfaces of
degrees dy, ..., dp, we have an exact sequence:

0 — Ker(f) — @ O(—dy) L1y —s0. (3.5)

Since pd(Zx)=1, then the first syzygy Ker(f) is also projective (see for example [57]),
hence it corresponds to a locally free sheaf. Certainly, we can construct a morphism
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h € Hom(&O(—d;)® O(—c;),Zx) which is given first by projecting to ®@O(—d;) and then
composing with f, (c; is the first Chern class of E). Moreover, since Ext!(®O(—d;) @
O(—c1),0(—c1)) =0, then h comes from an element g in Hom(®O(—d;) ® O(—cy), E*);
indeed, due to the fact that A2 E* = O(—c;), we have the following commutative diagram:

0 — O(-c) — DO(—di)®@O(—c1) — HO(-d;)) — 0
1= lyg Lf

0 — ANE — E* — Tx — 0

Applying the snake lemma to the previous commutative diagram, we see that g is surjectve
and that Ker(g) = Ker(f), so that dualizing the sequence 0 — Ker(g) — D O(—d;)®
O(—c;) = E* — 0, we get a short exact sequence of locally free sheaves:

0— E =5 PO(d) ®0(c1) =2 C — 0, (3.6)

where C is just the cokernel sheaf. Since C is locally free, it can be identified with a
vector bundle of rank equal to p—1 (p < n—1). Let in; denote the canonical injection of
O(d;) into @ O(d;) ® O(c1), and pr; the corresponding projection from @ O(d;) ® O(c1)
to O(d;). Considering the maps f; := prj o oy and g; := oy 0 in; we have a diagram like
the following:

0 — E 5% @0(d)a0(a) = C — 0
fi 95
e pri L 1T1n, /!
O(d;)

Now consider the morphisms F EEN O(d;) and O(d;) %+ C and denote by Z(f,) and
Z(g1), their respective degeneracy loci. Since in general we have that codim(Z(f;)) < 2
and codim(Z(g;)) < p — 1, it turns out that if p < n — 1, then Z(f;) N Z(g1) # 0.
On the other hand, by exactness of (3.6), it is clear that Z(f1) N Z(g1) = 0. Indeed, if
it exists z € Z(f1) N Z(g1), then Ker(fi1), = Ey, but since the morphism oy can not
degenerate at any point (due to the fact that the cokernel C is locally free), we have that
Im(an)z C ®i»20z(d;) ® Oz(Cy). On the other hand, Ker(g:), = Oz(d1), but since in; is
always injective, we have that Ker(as), = in1(O(d1)),. Hence, ifexists z € Z(f1)NZ(g1),
then Ker(as), N Im(a;), = 0 and so the sequence (3.6) can not be exact in the middle,
at . Absurd.

Hence Z(f1) =0 or Z(g:) = 0.

If Z(f1) = 0, then f; is never degenerate, so dualizing E RN O(d;) — 0 we get

T
0 — O(dy) (1), E*, where the map (f1)7 is never degenerate; hence E* splits, so E

splits and X is a complete intersection.
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If instead Z(g;) = 0, we build up the following commutative diagram:

0 — O(d,) = O(d) —
1 ding Lo
0 — E — HO0d)®O0(c;) — C — 0
\ 1 1
0 — Ker(d) — @p:0d)@0) X ¢ — 0
1 1
— é — 0 — 0

By applying the snake lemma to the two central rows, we see that Ker(y) = E, C' is
locally free since Z(g1) = 0, and we obtain a short exact sequence of locally free sheaves:

0—E— POod)®O(c;) — C — 0. (3.7)

i>2

Repeating the previous reasoning, we can consider the morphisms E LN O(dy) and
O(dy) 2+ C" and as before Z(f,) = 0 or Z(g;) = 0. If Z(f,) = 0, then E splits and X is
a complete intersection. On the other hand, if Z(g;) = 0, arguing as before, we obtain a
short exact sequence of locally free sheaves:

0— E— PO(d) ®0O(c;) — C" — 0.

i>3

In this way we obtain a sequence Z(f1), ..., Z(fp-1). If one of these is empty, we are
done; otherwise, if all are not empty, then, necessarily, Z(g,—1) = @ and as before we
obtain:

0 — E— O(dp) ® O(c1) — 0,

and we are done. |

We can obtain a similar result, for the case p < n, under the additional hypotheses of
the following:

Theorem B: Let X (as above) be scheme-theoretically defined by p < n hypersurfaces
Vi,..., Vo of degrees dy,...,d,, respectively. If the normal bundle of X can be extended
to a rank 2 vector bundle E on P"* which is numerically split (i.e. ¢i(F) = a+b and
c2(E) = ab, a,b € Z) and a or b is in (dy,...,dp), then X is a complete intersection.

Proof: In our assumption X is cut out schematically by n hypersurfaces V1,...,V, of
degrees dy, ..., d, and we have that ¢;(E) := a+ b = di + b and c(E) := ab = dib for
some k € (1,...,n). (It is not restrictive to assume that a € (dy,...,d,)). Reordering
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the hypersurfaces, we can assume that ¢;(F) = di + b and ¢y(E) = dib. From the exact
sequence (3.6), it is clear that the rank of C' is n — 1, so that the morphism O(d;) <% C

degenerates at most in codimension n—1. On the other hand, the morphism E N O(d1)
can not degenerate in codimension 2, otherwise, if Z(f;) is its degeneracy locus, the
corresponding class in the Chow ring [Z(f1)] € A?(P™) would represent co(E* ® O(d;)) =
c1(E*)d; + co(E*) + d? = 0, so that either the morphism f; does not degenerate at all,
and in this case we are done as before, or it degenerates in codimension 1.

So if the morphism f; degenerates in codimension one, we have that Z(f,)NZ(g,) # 0,
provided that Z(g;) # @. On the other hand, by exactness of (3.6), we must have
Z(f1) N Z(g) = 0, so that we conclude that Z(g;) = 0. Thus, arguing as in part A, we
obtain the following short exact sequence:

0—E—POd)®O(c;) — C —0,

i>2
and, from this, we conclude as in Theorem A, since the rank of C’ is equal ton —2. O

The result of Theorem B can be interpreted as a relation between degree deg(X) and
subcanonicity e, recalling the well-known fact that if E is the vector bundle associated to
X via Serre’s correspondence, then deg(X) = co(E), while e +n+1 = ¢1(E).

Corollary A: Let X C P" (X as in the hypotheses of Theorem B), n > 3 be scheme-
theoretically defined by n hypersurfaces of degrees di, .. .,d,, and let | be an integer in the
set (dy,...,dy). If the following relation is satisfied:

deg(X)+12— (e+n+1) =0, (3.8)

then X is a complete intersection.

Proof: Arguing as in part B, it is clear that to show that E splits is sufficient to show
that co(E* ® O(l)) = 0 for some [ as above. But the vanishing of the second Chern class
of E* ® O(l) is exactly the relation (3.8), as an easy computation can show. O

Remark 1: The approach of giving bounds on the degree of a subvariety to detect a
complete intersection is particularly ”effective”, but it is obviously hopeless if one pretend
to solve Hartshorne’s conjecture. On the other hand, since any closed subscheme (irre-
ducible or not) of P* which is a local complete intersection is always scheme-theoretically
defined by n + 1 hypersurfaces, as proved in [28], the approach of recognizing a com-
plete intersection via the number of generators of its scheme-theoretic ideal, could be in
principle useful to solve the conjecture. Unfortunately, the cases p = n and in particular
p =n+1 (the generic case) appear completely intractable, at least up to now, since it is
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very difficult to relate the algebro-geometric properties of a small codimension embedding,
with those of its scheme-theoretic ideal.

Remark 2: In the light of the previous remark and of Theorem B, it would be
nice to know when a subvariety can be scheme-theoretically defined by n equations. To
get a sufficient condition, we can use the theory of excess and residual intersections as
developed in [28]. For example, let us consider 4 hypersurfaces {V1,...,V4} in P*, such
that NV; = X U{p1,...,p}, where X is a smooth subcanonical surface and {p,...,px}
are (possibly non reduced) points, i.e. the four hypersurfaces define scheme-theoretically
the union of X and a bunch of points outside X. The theory of residual intersections
enables us to predict the (weighted) number of residual points as a function of the degrees
of the hypersurfaces, of the degree of X and of the degrees of the Chern classes of T,
the tangent sheaf of X. Imposing that the number of residual points is zero, gives us
a sufficient condition for a surface (a subvariety in general) to be scheme-theoretically
defined by n equations. (The basic idea is not new, and it appears, perhaps for the
first time, in the work of George Salmon ([29]), where it is exploited particularly for the
case of space curves; then it appears again in the work of several classical geometers,
such as Vahlen, Enriques ([25]), Severi, up to Gherardelli ([30])). In this way, combining
Proposition 9.12 (page 154) of [28] with Example 9.1.5. we get (for a surface in P*):

deg(c2(Tx)) + (01(9:) — 5)deg(ca(Tx))+

+(U2(gz) - 50‘1(97,) + 15)d€g(X) -+ W(pl, . 7plc) = 0'4(92'), (39)

where W (py,...,px) is the weighted number of residual points and o;(g;) is the j-th
elementary symmetric polynomial in the degrees g; of the hypersurfaces V;. Assuming
X subcanonical, from ¢;(Tx) = —Kx, we get ¢;(Tx) = —eH, where H is the class of a
hyperplane section; moreover, from the exact sequence:

0—+TX——>TP4®OX——>NX/P4~—>O,

we get co(Tx) = 10H? + 5HK + K? — CQ(NX/]P)4), and by ¢(Tx) = —eH, we have

cs(Tx) = (10 — 5e + e?)H? — cg(NX/]P,4). Since deg(cz(NX/]P,4)) = d?, deg(H?) = d and
deg(H) = d, (where d is deg(X)), substituting in (3.9), taking degrees and imposing

Wi(p1,...,px) = 0 reads:
[25 + Ug(gi) - (5 + e)al(gi) + 62 - d]d = 04(gi). (310)

Thus, the relation (3.10) gives a sufficient condition for a subcanonical surface in P* to
be scheme-theoretically defined by 4 equations.
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3.5.1 An application: the linkage criterion

As usual, if X and Y are lci. of codimension 2 in P", we say that X is (directly)
linked to Y if there exists a complete intersection (Fi, F3), such that Y is the residual
scheme of X in the intersection F} N Fy, and viceversa. In [23], working in characteristic
zero and assuming X smooth and subcanonical dim(X) > 1, Beorchia and Ellia proved
that X is a complete intersection iff it is self-linked, i.e. iff there exists a complete
intersection (Fy, Fy) such that F} N Fy = 2X (F; and F; define on X a double structure
which is a complete intersection). They also asked if the same criterion holds also for
possibly singular l.c.i.. Recently, in [27], Franco, Kleiman and Lascu have given a positive
answer to this question proving that the same criterion holds avoiding smoothness: X
can be reducible and nonreduced. Their proof works only in characteristic zero (unless
dim(X) > 4, where it holds over any algebraically closed field, due to a previous result of
Faltings), so they ask if the same holds in positive characteristic, for lower dimensional
X. Using our Theorem A we prove the following:

Proposition A: Let X be a subcanonical (possibly singular) l.c.i. subscheme of codi-
mension 2 in P*, n > 4, defined over an algebraically closed field of any characteristic.
Then X is a complete intersection iff it is self-linked.

Proof: According to the “Gherardelli linkage theorem”, which holds over any alge-
braically closed field (see [27] for its proof) we know that X C Fy N F; is subcanonical
iff its residual scheme Y (in the complete intersection Fy N F3) is scheme-theoretically
defined by the intersection of Fy and F, with a third hypersurface F3. On the other hand,
if X is self-linked by Fy and F5, then, by definition X is equal to its own residual scheme
in the complete intersection of Fy and Fp, and since X is assumed subcanonical, by the
Gherardelli theorem it is scheme theoretically defined by Fj, F» and Fj; hence, by Theo-
rem A, it is a complete intersection as soon as dim(X) > 2. Viceversa, if X is a complete

intersection, it is immediate to see that it is self-linked (just consider the intersection of
F1 and 2F2 le:FlﬂFQ) O

There is an immediate generalization of the previous proposition, which is the follow-
ing:

Proposition B: Let X as in Proposition A. Then X is a complete intersection iff
it can be (directly) linked to Y, where Y is any subcanonical (possibly singular) l.c.i.
subscheme.

Proof: It is sufficient to use again the Gherardelli linkage and Theorem A. 0

Remark 3: The X’s as in Proposition B are self-linked iff they are scheme-theoretically
defined by three hypersurfaces. Indeed, if X is self-linked, then by Gherardelli it is
“schematically” defined by 3 equations; viceversa, if X is defined by 3 equations it is a
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complete intersection by Theorem A and then it is self-linked by Proposition B.

Remark 4: The most difficult case, in order to characterize complete intersections
via self-linking is that of curves in P?. Beorchia and Ellia proved their criterion (in
characteristic zero) also for curves, assuming that they are smooth, while Franco, Kleiman
and Lascu extended this result to l.c.i. curves (always working in characteristic zero). In
positive characteristic (characteristic 2), however, there is certainly a counterexample for
this criterion to hold in the case of curves, due to Migliore (see the discussion at the end of
[27]). So our extension of this criterion over a field of any characteristic is the best possible
for low dimensional subvarieties: that is surfaces are the lowest dimensional (possibly
singular) l.c.i. subvarieties where this criterion holds without exceptions. Unfortunately,
up to now, there is no positive result for the case of space curves in characteristic grater
than zero.

3.5.2 An elementary obstruction result

In this subsection, we give an obstruction result which forces a smooth codimension two
subvariety to be defined scheme-theoretically by a number of equations which is not too
small (unless the subvariety itself is a complete intersection). In fact, the number of
equations depends on the dimension of the singular loci of the hypersurfaces which define
scheme-theoretically the subvariety.

Proposition C: Let X be a smooth subvariety of codimension two in P, n > 4 and
let X be defined scheme theoretically by the equations {fi,..., fm} corresponding to the
hypersurfaces {Z1, ..., Zn}. Let also dim(X N Sing(Z;)) =n — 6;. Then if there ezists i
such that 0; > 4 then X is a complete intersection. Moreover, in the other case, setting
0; = n — dim(Sing(Z;)) we have that n+1 > m > f(n,0;), where f(n,0:) == Z, and ;
is the arithmetic mean of the {o;}i=1,...m-

Proof: If there exists ¢ such that é; > 4, this implies dim(X N Sing(Z;)) < n—4, then
cutting with a general P* we will get a smooth surface S, lying on a hypersurface Z! in
P4, such that S N Sing(Z]) = 0. But then , by Severi-Lefschetz theorem it would follow
that S is a complete intersection and so also X itself is a complete intersection.

In the other case we have that §; < 4 for all <. Now since dim(X N Sing(Z;)) =
n—0; > n—4 for all 4, this in particular implies that n—1 > Sing(Z;) > n—4. Let us set
o; = n — dim(Sing(Z;)). Since X is smooth, hence a l.c.i., for any point p € X we have
to find two hypersurfaces Z;, Z; which are smooth and meet transversally at p. On the
other hand, if dim(NZ,Sing(Z;) > 0, then we certainly have that X can not be scheme-
teoretically defined by these hypersurfaces (otherwise it would not be smooth). Since we
are working in a projective space, we have that dim(N™,Sing(Z;) > n— >, 0i, so that
a necessary condition for X to be defined scheme-theoretically by these hypersurfaces is
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that n — 3, 0; < 0, which can immediately be written as m > f (n,o;) with f as in the
statement of Proposition C. ]

For example, with the previous notation, observe that 1 < o; < 4, so that if for
example o; = 4 for all 4 then X can not be defined by m equations, form < %, orifo; =1
for all 4, then X can not be defined by m equations with m < n.
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Chapter 4

Embeddings of some singular
surfaces

4.1 Introduction

In this chapter, we study quite concretely projective embeddings of singular surfaces
which correspond to degenerations of principally polarized abelian surfaces. These specific
degenerations realize boundary points of the (functorial) compactification of A, recently
constructed by Alexeev (here we deal only with surfaces, so set g = 2). For more details
on this outstanding construction see ahead in this introduction and in the bibliography.
By a theorem of Alexeev and Nakamura these singular surfaces are equipped with an
ample line bundle £ and they prove that £®° is indeed very ample (this embeds these
surfaces in P?*). By elementary methods and analyzing the corresponding linear systems,
we prove "by hand” that already £®3 is very ample (and this embeds these surfaces in
P?). Hence, these are certainly not small codimension embeddings, in the sense of the
previous chapter. On the other hand, it is clear from the constructions developed in
this chapter that it is very difficult to study projective embeddings directly on a given
variety X, unless one knows a lot of its intrinsic geometry. Unfortunately with regard to
Hartshorne’s conjecture, we have no such a deep understanding of the intrinsic geometry
of 3-folds and 4-folds, not to say n-folds!

Now we give a very short review of the various attempts to construct compactifications
of A,.

In the past, there have been many methods to construct suitable compactifications
of the (coarse) moduli space of abelian varieties, both in the principally polarized and
in the non-principally polarized cases (see [43] for a detailed review). Let us restrict our

43
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attention to the principally polarized case. In this case, the first solution was given by
Satake (see [45]) who constructed a projective normal variety A,, which is highly singular
along the boundary (the boundary 0.4, of A, is not a divisor in this case and it is set-
theoretically the union of the moduli A; for i < g—1). Subsequently, by blowing up along
the boundary, Igusa constructed a partial desingularization of Satake’s compactification:
in his compactification the boundary has codimension 1 (see [44]). These ideas were the
starting point for Mumford’s theory of toroidal compactifications of quotients of bounded
symmetric domains (see [39] for a detailed description of this theory). Namikawa proved
that Igusa’s compactification is a toroidal compactification in Mumford’ s sense. Unfortu-
nately, toroidal compactifications are not unique, since they depend on the choice of cone
decompositions. Ideally, one would like to construct a compactification which is mean-
ingful for moduli, so as to abtain a space which represents a functor (at least as a stack),
described in terms of abelian varieties and well-understood degenerations. Of course, the
model is the Deligne-Mumford compactification of M,. The fact that toroidal compact-
ifications are not unique has made very difficult to select the right compactification (if
there is one). In spite of this, quite recently, Alexeev and Nakamura (see [38] and [37]),
building up on previous works of Nakamura and Namikawa, have shown that the toroidal
compactification .A;/OT, associated to the second Voronoi decomposition represents a good
functor (as a stack). This means that .A;/"T represents the canonical compactification of
the moduli space A, of principally polarized Abelian varieties, as the Deligne-Mumford
compactification represents the canonical compactification for the moduli space of curves
(this point is investigated in [37]).

More specifically, A}]/"T represents the functor of stable semi-abelic varieties (SSAV).
Let us recall that a semi-abelian variety G is just an extension 1 - T — G — A —
1, where A is an abelian variety and T is an algebraic torus T' = (C*)", for some r.
Then, in Alexeev’s construction a SSAV Y is a “good” degeneration of an abelian variety
(corresponding to a boundary point in .A}*") and on it there is an action of a semi-abelian
variety GG in such a way that there are finitely many orbits. We will not recall the whole
construction (see [38]), we want just to remark that any SSAV Y is a projective, semi-
normal variety (i.e. Y is isomorphic to its semi-normalization Y’ in Y™°T: V" —» V' S Y
and Y’ is maximal such that for each z € Y there is a unique 2’ € Y’ with 7(2') = z and
C(z) = C(2')), equipped with an ample line bundle Oy (1).

In this chapter, we study very ampleness of line bundles coming from multiples of
principal polarization on degenerate abelian surface (over C), corresponding to boundary
components of AY°", that is on SSAV’s. A well-known theorem of Lefschetz states that if
A is a smooth abelian variety of dimension g and O4(1) is a principal polarization, then
04(3) is very ample, (in fact, the theorem of Lefschetz is true for all polarizations, not just
for principal polarizations). We want to understand how far is this statement if we replace
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A, with a SSAV Y (restricting to the case of surfaces). Indeed, in [38] it is proved that for
a SSAV Y of genus g, Oy (n) is very ample as soon as n > 2¢ + 1, that is, in the case of
surfaces, as soon as n > 5. We improve this bound, showing that already Oy (3) is very
ample (that is Lefschetz’s theorem still holds for a SSAV of dimension 2, which deforms
to a principally polarized abelian variety). The proof of this result is elementary in spirit
and it is based on proving the analogous statement for each degeneration type, providing
a careful description of Oy (3) and of its sections. Indeed, in the principally polarized
case, there are only three types of degenerations for surfaces. Two degenerations where
there is no remaining abelian part (which in the following sections are called degenerations
of second and third type), corresponding to the two standard Delaunay decompositions
of Z2 (lattice of rank 2) and one degeneration (of the first type) where there is still an
abelian part surviving (an elliptic curve) and which corresponds to the unique Delaunay
decomposition of a lattice of rank one.

The case of the P'-bundle over an elliptic curve (degeneration of the first type) is the
most general, since it depends on two moduli, i.e. the moduli of the elliptic curve and
the glueing parameter. The second degeneration type depends on 1 moduli, namely the
glueing parameter, while the third degeneration type depends on no moduli at all.

4.2 Very ampleness on the first type of degeneration

The first type of degeneration for smooth principally polarized abelian surfaces can be
constructed from a P'-bundle X, with two sections, over an elliptic curve E, 7 : X — E.
In this case, in the degenerate surface, there is still an abelian part surviving and the
smooth model is X := P(Og® Og(e—0)) (eis a point on E and o is the zero of the group
law on E); it has two sections Cy and Cy, corresponding to the fact that the ruled surface
X comes from a split rank two vector bundle on E. We can identify the two sections by
saying what is their normal bundle, so we define Cy so that Ng,/x = O¢,(Co) = Or(e—o),
and correspondingly C; so that N¢,/x = O¢,(C1) = Og.

It is well known that Pic(X) = n*Pic(E) @ ZCy, while the Néron-Severi group of X
is NS(X) = ZF @ ZCy, where F is any fibre of X over E and the intersection pairing is
C?=0, F?=0and C;.F =1 (see for instance [42]).

The degenerate abelian surface Y is obtained by identifying each point z € Cp with
the point z + py € C; for some parameter py € E, as displayed in the following picture:
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\\ : X+P_Q
' /33 ] ﬁ\\ c_1

Let v be the desingularization map of Y: v: X — Y. Let £ € Pic(Y) and L' := v*L.
Then £’ is numerically equivalent to aCy + bF, for some a and b. We want £ to represent
a principal polarization: since on an abelian surface a principal polarization has self-
intersection 2, and the self-intersection does not change in a flat family, we require £2? = 2,
which pulling back to the normalization, implies £? = 2. Thus we get (aCy + bF)? = 2,
which implies a = b = 1. This means that £' = Ox(Cy+ F), for some F = 77(p), p € E,
or equivalently £' = Ox(Cp) ® m*M, M € Pic'(E), M = Og(p). Now we ask under
which conditions on the glueing process, such an £’ descends to Y, or equivalently, when
there exists £ € Pic(Y) such that v*£ = L'. The answer is given by the following:

Lemma 1: Let L', X = P(Og & Og(e —0)) and Y as above; then L' descend to'Y
if and only if e + py ~ o (where ~ stands for linear equivalence and p, is the glueing
parameter described above).

Proof: Let ¢ : C; = C; be the isomorphism between the two sections, given by
T ¥ T + pg. Then it is clear that £’ descends to Y iff:

(p*Eicl = Eico (41)

e = Ox(Co + F) ® Og, and this is equal to Ngy/x(p), where p = Co N F. Since
Co =2 E = Cy, and Ngyyx = Og,(Co) = Og(e—o), we get that L) = Or(e—o+p), where
we identify Cy with E and the point p = Cy N F with its projection to E. Analogously,

{or = Ox(Co+ F) ® O¢, which is equal to Og, (p) for p’ = C1 N F since Oc, (Cy) = Oc,
(due to the fact that C; N Cy = B). Then Oc, (p') = Og(p) (since if 7 is the projection
to E, then m(p) = m(p')) so that we can translate condition (4.1) as a relation on line
bundles on F: Og(p — po) = Og(e — 0 + p), which is equivalent to e + pg ~ 0. m]
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Fixed e, that is fixed X, from now on we assume that the parameter py has been chosen
in order to satisfy the condition e + pg ~ 0. Under this assumption, not only £, but also
all line bundles of the form Ox(nCy + nF) descend to Y. Let us call Oy (1) the line
bundle £ on Y such that v*L = Ox(Cy + F) so that v*Oy(n) = Ox(nCy + nF). Then,
by the results of Alexeev and Nakamura ([38], Theorem 4.7) it turns out that the map on
Y associated to the line bundle Oy (5) gives an embedding. We will prove (Theorem 2)
that the map associated to Oy (3) gives also an embedding (this is again an analogue of
Lefschetz theorem). Before doing this, we compute h°(Y, Oy (n)):

Proposition 1: Let Y and Oy (n) as above. Ifn > 0 and k > 0, then h®(X, Ox(nF +
kCo)) = (k + 1)n and h°(Y, Oy(n)) = n?.

Proof: Since v*Oy(n) = Ox(nCy+nF), first of all we compute h®(X, Ox(nCo+nF)).
From the exact sequence:

70 — OX(—C()) — OX — Oco — 0,
twisting by Ox(Co + nF'), we obtain the exact sequence:
O%OX(HF) —-)(DX(’I‘I,F-{-C())—)OCO(OO":'TLF) — 0. (4.2)

To go on, let us recall that if S € Pic?(E) (d > 1), where E is a curve of genus 1,
then h°(E,S) = d and hi(E,S) = 0 for ¢ > 1 (this is just an immediate application
of Riemann-Roch theorem and Serre duality); moreover, by Lemma 2.4 of Chapter V of
([42]), we have that H'(X,Ox (D)) & H'(E,m.0x(D)) for i > 0 and for any divisor D
on X such that D.F >0, and if D.F = k then m,Ox(D) is locally free of rank % 4 1.

Since HY(X,Ox(nF)) = HY(E,m(Ox(nF))) = 0, because m,Ox(nF) = Og(np).
Indeed, we have m,Ox(nF) = 7.(Ox ® 7*Og(np)), which is equal by projection formula
to m,.0x ® Op(np) = O ® Og(np) = Og(np).

Therefore, taking the long exact cohomology sequence from (4.2), we obtain that
RU(X, Ox(nF + Cy)) = h*(X, Ox(nF)) + h®(Co, O, (nF + Cp)). Now, m.Ox(nF') is a
line bundle on E of degree n, so that h®(X,Ox(nF)) = n; moreover Og,(nF + Cp) =
Og(e — 0+ np), under the identification Cp = E, and Og,(Co) = Ngy/x = Or(e — o).
This implies that h%(Cy, Oc¢,(Co + nF)) = n, so that h°(X, Ox(nF + Cp)) = 2n.

Now we prove by induction that h%(X, Ox(nF + kCy)) = (k + 1)n. This is true for
k = 1; assume, by inductive hypothesis that h’(X, Ox(nF + (k — 1)Cy)) = kn. We have
the following exact sequence:

0— Ox(nF -+ (k — 1)00) — Ox(nF + kCO) -7 OCO(’H,F -+ kC()) — 0. (43)

Again, since Og, (nF + kCy) =2 Og(ke — ko -+np), we have that h®(Cy, Og, (nF + kCy)) =
n. Now we prove that H}(Ox(nF + (k — 1)Cp)) = 0; first of all this is equal to
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HYE,m.(Ox(nF + (k — 1)Cp))) and 7.0x(nF + (k — 1)Cy) = m(Ox((k — 1)Cp) ®
m*Og(np)), which is, by projection formula 7,(Ox((k — 1)C%)) ® Or(np).

We have that 7,(Ox ((k — 1)Cp)) = Sym*—1(Og & Og(e — 0)), since 7, (Ox(dCy)) =
7+ (Ope)(d)) = Sym*(Og & Og(e — 0)), where Sym? is the d-th symmetric power and £
is the decomposable rank two vector bundle O @ Og(e — 0). (The equality Ox(Cp) =
Op(e)(1) comes from the fact that we have chosen Ox(Cy) as one of the generators of
Pic(X) (see Proposition 2.3, page 370 of [42]) and from the fact that Pic(X) = n* Pic(E)®
Zh, where h is the class of the tautological sheaf Opg)(1) (see [40], Proposition 3.18, page
36)).

Thus, 7.0x(nF + (k — 1)Cy) is a direct sum of line bundles of positive degree on
and this implies that H'(E, m.Ox (nF + (k — 1)Cy)) = 0.

This proves our claim on h%(X, Ox (nF+kCy)); in particular we have that h°(X, Ox (nF+
nCq)) = n? + n. To prove that h°(Oy(n)) = n?, consider the following restriction mor-
phism (which is just the direct sum of the restriction morphisms to Cy and Ch):

HO(Ox(’I’LCO + ’IZF)) — HO(OCO (nCo -+ T'LF)) & HO(Ocl (’I’LCO + nF))
S > (S|CO>3|01)

Now, the section s descends to a section of Oy (n) iff the glueing conditions ¢*(s|c,) = sjc,
are satisfied, where, as above, ¢ is the isomorphism between C; and Cj, induced by
translation. Since H%(Og,(nCy + nF)) and H°(Og, (nCy + nF)) are both n-dimensional
vector spaces, these glueing conditions determine n equations in H%(Og,(nCy + nF)).
Thus, it remains to prove that these n relations are independent, but this is clear,
because there is certainly at least one non-trivial relation and hence, due to Heisenberg
invariance, there are n independent equations, since the action of the Heisenberg group is
irreducible (recall that the divisor nCy 4+ nF' cuts out on Cy a divisor of degree n). This
implies that h°(Oy(n)) = n?.
|

Collecting the results of Alexeev and Nakamura ([38], Theorem 4.7), and Proposition
1, we have that |0y (5)| gives an embedding of Y as a linearly normal surface in P?*. In
fact, we can do better, embedding Y as a linearly normal surface in P® as proved by the
following:

Theorem 1: Let Y and Oy (n) as above. Then the complete linear system |Oy(3)] is
base-point free and the associate morphism ¢|oy(3) : Y < P8 is an embedding.

Proof: First of all we prove that |Oy(3)| has no fixed component. Assume the contrary,
and let K be an irreducible component of the 1-dimensional fixed locus. Now observe
that any curve on the smooth model which is not equal to C}, intersects Cy. Then K
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corresponds to a locus on the smooth model, which will intersect Cy or C;. Thus, there
exists always an z € K N Cy (or C) which is identified to Cy on Y).

Now the restriction morphism H°(Y, Oy (3)) — H®(Cy, Oc¢,(30)) is clearly surjective
by construction, so that there exists a t € H°(Cy, Oc,(30)) such that ¢(z) # 0 (since the
complete linear system |Oc,(30)| embeds Cy in P? and we can always find a hyperplane
section of this embedded curve which does not hit the point z) ; this implies that there
exists s € HO(Y, Oy(3)), such that s(z) # 0 so that z is not a point in the fixed component:
this is a contradiction. Thus |Oy(3)| has no fixed component and Bs|Oy(3)| is at most
a finite set of points.

Let s € H(Y, Oy (1)) and consider D := (), the zero scheme of s (clearly Bs|Oy(3)| C
D). If e # o D is irreducible and its pull-back to X is numerically equivalent to Co+ F" (if
e = o the proof that @0, (3) is an embedding is completely trivial, see remark 1 at the end
of the proof). Now s®3 € HY(Y, Oy (3)) and red[(s®*)g] = D (where red is the reduced
scheme structure on the zero scheme (s®%)y). Since |Oy(3)| has no fixed-component, we
can always choose s’ € H°(Y, Oy (3)) such that s, # 0.

Let D' = (s')g, then the pull-back of D' to X is numerically equivalent to 3Cp+3F', so
that D.D' = (Cy + F).(3Cy + 3F) = 6. By this computation we have that Bs|Oy(3)| C
(5")0.(8%%)p, which consists of (at most) 6 distinct points, possibly with multiplicities. On
the other hand, let us consider the group E® := {z € F;3z = o} of 3-torsion points of
E, which is (not canonically) isomorphic to Z/37Z x Z/3Z. This is a finite group of order
9 and for any A € E®) if ty : £ — x + ), then t3O0x(3Cy + 3F) = Ox(3C, + 3F) (since
F = F, for some p € E and 3F, ~ 3F,y), being 3\ = o). This action of E®) clearly
descends to Oy (3), since the two sections Cy and C; are just glued together by a rigid
translation.

In view of this action, it turns out that if |Oy(3)] has one fixed point (possibly with
multiplicities), then it has to have at least 9 distinct base-points (possibly with multi-
plicities), while by the previous computation Bs|Oy(3)| has at most 6 distinct points.
Contradiction. Thus |Oy (3)| is base-point free and defines a morphism of ¥ to P®.

Now we have to prove that |Oy(3)| separates points. We have to deal with different
cases.

First case: the inverse images P, and P, of the two distinct points z,y € Y on the
smooth model X belong to distinct fibers and z,y ¢ Sing(Y"); then consider the sections
s € HY(X,0x(3Cy + 3F,)) such that s;¢, = 5|, = 0, which certainly descend onto Y.
These sections are in one to one correspondence with the sections of Ox(3Cy + 3F, —
Cy — C,). Since we have C, ~ Cy + (F, — F.), we have that Ox(3Cy 4 3F, — Co — C1) =
Ox(Co) ® 7*Og(B), where B is a divisor of degree 3 on E. Since we can always find on
E a divisor of degree 3, containing 7(P;), but not 7(P,) (recall that P; and P> belong to
different fibres), it is always possible to find out a section of Ox(3Cy + 3F, — Cp — C1),
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which vanishes on P;, but not on P, and consequently a section of Ox (3Cy + 3F,) which
descends to Y and which separates z,y.

Second case: the two distinct points z,y € Y are on the glued sections Cp, C;. In
this case, since the restriction morphism H(Y, Oy (3)) — H®(Cy, O, (3)) is surjective by
construction, and the complete linear system |Og,(3)| gives an embedding of Cj into P?,
we are done immediately.

Third case: the point z € Cy, y ¢ Cy. In this case we can do as in the first case or
just observe that there are certainly sections which vanish on z (those sections which on
the smooth model vanish on Cy and Cy), but not on y.

Fourth case: the inverse images P; and P; of the two distinct points z,y € Y on the
smooth model X belong to the same fiber F), and are outside the two sections Cp and
C;. In this case, consider the sections of Ox(Cy + 2F, + F), which are in one to one
correspondence with the sections of Ox(3Cy + 3F,) which vanish on Cj and C}, that is
those sections which descend automatically onto Y. We have the exact sequence:

0 — Ox(Cy+2F,+ F, — F,) = Ox(Co + 2F, + F,) = Of,(1) = 0 (4.4)

twisting the defining sequence of F, since (Cp + 2F, + F.).F, = 1 and F, = P'. Now,
HY(X,0x(Cy + 2F, + F, — F,)) = H'(E, 7.(Ox(Co + 2F, + F, — F},))) = 0, as in the
proof of Proposition 1, so that taking the long exact cohomology sequence induced from
(4.4), we get that the restriction morphism H°(X, Ox(Cy+ 2F, + F.)) = H°(F,, OF,(1))
is surjective. Then we can always find a section s of Op, (1) which vanishes on P, but
not on Py; we lift s to a section of Ox(Cy + 2F, + F), which corresponds to a section
t of Ox(3Cy + 3F,) vanishing on Cy and Ci; this section descends to a section of Oy (3)
and vanishes on z, but not on y. Thus, the linear system |Oy(3)| separates points also in
this case. So we have proved that the map ¢jo,(3): Y — P8 is injective, since there are
clearly no other cases for the relative position of the points z and y.

|Oy(3)| separates tangent directions: to prove this we distinguish two different cases:
p € Y is a smooth point (first case), or p € Y belongs to the the image of Cj and so it is
singular (second case).

First case: let v € T,Y = A% To prove that |Oy(3)| separates tangent directions it
is sufficient to find out a curve C' € |Oy(3)|, passing through p and smooth at p such
that 7,C" # v. If v # T,F , then we consider any smooth curve C" on X, inside the
linear equivalence class of 2Cy — C; + Fy + Fy + Fs, where p € F1, p ¢ Fp, p ¢ F5 and
such that the fibres Fy, Fy and F3 are arranged so that 2Cy — Cy + Fy + Fy + F3 ~
2Cy — Cy + 3F,. In this case, [2Cy — Cy + Fi + F5 + F3| can be viewed as a subsystem
of |Ox(3)], corresponding to sections vanishing on Cy and Cj. All these sections clearly
descend to Y and correspondingly any curve C" € |2Cy — Cy + F; + Fy + F3|. Thus it is
sufficient to set C' := v(C"), where v : X — Y is the desingularization map.
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If instead, v = T,F, it is sufficient to prove that the morphism H®(Y,Oy(3)) —
HO(F, Or(3)) is surjective, since the complete linear system |Or(3)| defines an embedding
of P! as a twisted cubic. Assume that this is not the case; then, since we already know
that the map ¢|0, (3 is injective, it means that the image in P8 of F is a plane rational
curve, having at most a cusp as a singularity. Since the image is a plane curve, then
there exists a unique plane V = P? containing it. Now consider all hyperplanes of P?
containing this V: by a standard argument, they are parametrized by a P°. Observe that
the rational curve intersects the image Z of the singular locus of Y (an elliptic curve) in
two distinct points (because py # 0), which are obviously contained in V.

Let z and y be these two points and fix another point z on the image of the elliptic
curve Z in P® so that z + y + 2z is not linearly equivalent to a hyperplane section of Z.
Then, all hyperplanes containing V and z, have also to contain Z; these hyperplanes are
parametrized by a P*, but their pull-back to X cut out a divisor D such that 3Cy+3F — D
is numerically equivalent to Cy+2F. Now, by Proposition 1, h®(Ox(Cy+2F)) = 4, which
implies that these hyperplanes should form a P?, not a P*. Contradiction. This happens
because we have assumed that the image of F' is a plane rational curve. Thus o, (3)
separates tangent directions also in this case.

Second case: the point p belongs to the singular locus Sing(Y) of ¥ and clearly
T,Y = A3, In this case, to prove that |Oy(3)| separates tangent directions it is sufficient
to prove that the image of 7,Y in P® is 3-dimensional. Assume that the image is not
3-dimensional; then its image in P® is at most a ¥V = P2, Then look at the hyperplanes
of P® containing this V; by a standard argument, they are parametrized by a P°. The
pull-back of any of these hyperplanes to the smooth model X determines a divisor on X
having multiplicity 2 at the point zy and z;, where zy € Cy and z; € C (the two points
z and y are just the preimages in X of the point p € Sing(Y)). Then choose an other
point ¢ on the image of the singular locus Z of Y (the image of Sing(Y) in P® is just a
plane elliptic curve, since H°(Y, Oy (3)) — H°(Cq, Og,(3)) is surjective). Choose g such
that 2p -+ ¢ is not linearly equivalent to a hyperplane section of Z, the image of Sing(Y")
in P8,

Then we obtain a P* of hyperplanes, containig V' and ¢. Since we have chosen ¢ in
this way, it turns out these hyperplanes have to contain Z, hence on the smooth model
they cut out a divisor containg Cy and Cy and the points zo and z; with multiplicity 2.
Finally, choose on the smooth model X two other points: y, on the fiber passing through
zo and y; on that passing through z;. On the hyperplanes of P® satisfying the previous
conditions, impose also to pass through the images of 35 and y;: in this way we get a P? of
these hyperplanes. The pull-back of any of these hyperplanes to the smooth model X cut
out Cy, C; and two fibers F; and F, and the remaining divisor in 3Cy + 3F' is numerically
equivalent to Cy + F. On the other hand, by Proposition 1 h%(X, Ox(Cy + F)) = 2 and
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this is true if replace Cy + F' with any other divisor numerically equivalent to it. This is a
contradiction, because we have a P? of these hyperplanes, while |Ox(Co + F)| = P!. The
contradiction arises from the fact that we have assumed that the image of 7,Y in P® is
at most 2-dimensional.

Thus, we have proved that ¢jo,(3) : Y — P8 is an embedding. O

Remark 1: In the proof of Theorem 1, we have assumed that e # o (and consequently
po # 0). Indeed, if e = 0, by Lemma 1 we take py = 0 and in this case Y = F x C, where
E is an elliptic curve and C is a nodal cubic curve. Then we get E x C — P? x P? < P8
, where the last embedding is a Segre map. Since h°(Y, Oy(3)) is independent of the
parameter e (hence py), it turns out that for generic e the map ¢)o, (3)| gives an embedding.
However, to prove this for any e we have to do as above.

Remark 2: The image of Y in P® is a linerly normal surface. Assume e # o, then its
singular locus is a smooth plane elliptic curve Z and through each point of this elliptic
curve there are two twisted cubic curve, intersecting transversaly each other and also
transversally with Z. The degree is 18, since (3Cy + 3F)? = 18.

4.3 Very ampleness on the second type of degeneration

The second type of degeneration of smooth principally polarized abelian surfaces we are
going to consider is obtained by a smooth quadric X = P! x P! (with homogeneous
coordinates [zg, 1] X [yo,¥1]), identifying the points of coordinates [zo,z1] % [1,0] with
those of coordinates [zg,z1T] X [0,7] and the points of coordinates [1,0] X [yo,y1] with
those of coordinates [0, T] X [yo, y17] for some parameter 7' € C*; in particular the points
corresponding to coordinates [1,0] x [1,0], [1,0] x [0,T7, [0,7] x [0,T] and [0,T] x [1,0]
are all identified. This is symbolically displayed in the following picture:
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P 1xP™1
[v_0.Ty_1]

[y..0,v_1]

Observe that this type of degeneration depends on 1 moduli, namely the glueing
parameter T

Let us call Y (strictly speaking Y7, since it depends on the parameter T') the image of
X under these identifications, 7 : X — Y. Y is one of the degeneration type of smooth
principally polarized abelian surfaces represented by a point in the boundary of AYer,

Recall that Pic(X) = ZL1®ZL,, where L, and L, generate the two rulings on X, while
the intersection pairing is symply L? = 0, L;.Ls = 1. Recall also that the self-intersection
of a principal polarization on a smooth abelian surface is 2 and that self-intersection does
not change in a flat family. Having recalled this, it is natural to consider as a degenerate
principal polarization on Y a line bundle £ such that 7*£ = Op1yp:(1, 1) (simply because
the corresponding divisor class is of the form L, + Ly and (L; + Lg)? = 2). In this light,
proving a sort of Lefschetz theorem for this type of degeneration is equivalent to prove
the following:

Theorem 2: Let L be a line bundle on' Y such that m*L£ = Opiyp1(3,3). Then the
complete linear system |L| is base-point free and the corresponding map ¢z : ¥ — P8
defines an embedding of the singular model Y.

Proof: First of all, we have to exhibit a basis of H°(Y, £), that is we have to understand
which sections of Op:iyp:(3,3) descend to sections of L.

Since HY(X, Opiyp1(3,3)) = H(Op:(3)) ® H(Op:(3)) any section o of Opixp:(3,3)
can be written as:

3, 3 3, 2 3, .9 3,3
0 = a1 TRYy + A2ToysY1 + A3TaYoy; + aaTyyi+

2, .3 2, .2 2 2 2. .3
+asTT1Yp + A6 TpT1YoV1 + arTeT1Yoly; + AsTT1Yr+
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2 3 2 9 2. .9 2 3
+a9ZTox Yy + G10ToTIYY1 + G11T0Z1YoY] + G12T0T1Y, +
3 3 3 2 3. 9 33
a13T7Yy + 014T3Yg Y1 + G15TTYoYT + A16TTYS -

The necessary and sufficient condition for a section to descend is that it satisfies
some compatibility conditions under the glueing process described above. In particular,
it obvious that the sections represented by z2z1y2y1, T2T1%0y?, ToTiyiy: and zoz?yoy?
always descend since thay are identically zero on the points which are going to be identified
(hence RO(Y, L) > 4).

The compatibility conditions for ¢ can be expressed as

O|[1,0x[yo,1] = AT0,1)x[yo,T1]s (4.5)
and
U|[mo,.z-1]><[1,o] = /\‘Gl[xo,Tml]x[o,l], (4.6)

for some A\, \* € C*. Since we have not fixed any A, but we just say that there is some
A such that (4.5) holds, the equation (4.5) is equivalent to the vanishing of three 2 x 2

minors of the matrix:
a1 a9 as G4
2 3 .
a3 Tapn T?a15 T a6

This imposes 3 conditions on the coefficients a;, while the equation (4.6) is equivalent
(always because we have not fixed any A') to the vanishing of three 2 x 2 minors of the

madtrix:
a; as Qg a13
( ay Ta,g T2a12 T3a16 ) ’

and this imposes three other conditions on the coefficients a;, which are not all inde-
pendent of the previous ones; it is immediate to check that only 2 of these conditions
are independent of the previous ones, so that we get a total of 5 conditions. To these 5
conditions we have to add 2 other independent conditions determined by the glueing pa-
rameters A, \‘, so that we get h®(Y, L) = h%(X, Opixp:(3,3)) — (5+2) =16 — 7= 9. Now
we determine a basis for the 9-dimensional vector space H(Y, £). From the condition
(4.5), exchanging A~! with A, we have:

/\a1 = a13 )\CLQ = Ta14 ACL3 = T2a15 )\0,4 = T3a16,
while from condition (4.6), exchanging \'~! with X/, we get:

/\‘CLl = Q4 )\‘CL5 = TCLg )\‘CLg = T2a12 )\‘(143 = T3CL16,
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so that we can choose (a, ag, as, as, ag, ar, Gg, @10, a11) as coordinates on H°(Y, L), since,
by the relations just described above, we have:

AN A A
Q16 = T3 ar G5 = ﬁ% a4 = Taz a13 = Aay
X X N
dig = —=0Qg ag = —=0a5 Q4 = A'Qy.
T? T

To write down an explicit basis of H%(Y, L) it is sufficient to substitute iteratively
(a1, as, as, as, ag, az, ag, 19, a11) equal to (1,0,...,0), (0,1,...,0),..., (0,...,1) in the ex-
pression of the general section o, taking into account the relations which define a;g, a1,
14, G13, 012, ag and a4 in terms of the other a;’ s. Completing the computation, we obtain
as a basis of H(Y, L):

‘ AN A A
oYy + Nagyi + A2iyp + T aiyl, (a8 + Fe)yoyss (a0 + ) vous

[

A(
zoz1 (v +Ty?), LTy, Temyeys, Tzt (vl +Tgyi‘),

2 2 2 2
ToT Ygl1, ToTiYoly-

Different choices of A and )\’ do not lead to the same line bundle. Indeed, these are the
two parameters in Pic®(Y') = (C*)? and different choices leads to different line bundles.
On the other hand, if we map z to Az and y to Ay, this defines an automorphism of
the singular variety (recall that the torus 7 = (C*)? acts on Y and this is exactly that
action). Now pulling back via this automorphism, identifies the line bundle given by A, X',
with that given by 1,1. Thus, by acting with this automorphism, we may indeed assume
A= X =1. So from now on, we fix A=\ = 1.

Hence we get a rational map ¢z : ¥ — —— > P®; now we prove that |£| is base-point
free, so that ¢\ is actually a morphism. To this aim, suppose that we have a point P
of Y such that its image under the complete linear system L corresponds to the origin
(0,...,0) of HO(Y, L) (which is not a point of the corresponding projective space). In
particular this implies that z2z,73y; = 0, that is at least one of the coordinates is zero.
For instance, let us assume that yo = 0; then substituting in the fixed basis for H(Y, L),
we obtain: z2z1y3 = 0, Zoz?y? = 0 and z3y? + 7z2dy? = 0. From the first two equalities,
we get that either y; = 0 (but this is not possible, since [yo,y1] = [0,0] is not a point of
the projective line), or zg = 0 or z; = 0. If 2y = 0, from the last equality we have z; =0
(but this again impossible since [zg, z1] = [0, 0] is not a point of the projective line), while
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if z; = 0, then o = 0 or y; = 0, and we conclude as before. Hence we have a morphism
Q5| cl: Y — P8,

To conclude Theorem 2, we have to prove that ¢, separates points and tangent
lines. On the singular model Y we can distinguish three types of points: those inside
the square of the second figure, which correspond to smooth points of ¥ and which have
coordinates of the form [1, ] x [1, 8] for a, 8 # 0 (first type); those for which only one of
the coordinates [z, Z1] X [0, ¥1] 18 zero (second type): these correspond to points on the
edges on the square, but not on the vertices; and finally those points for which two of the
coordinates [zg, z1] X [0, ¥1] are zero (third type), the vertices of the square (actually, on
Y there is just one point of the third type). Let us consider the image under ¢ of a point
P of the first type of the form [1, a] X [1, 8]. The sections z2z1y2y: and zoz}y3y, are never
vanishing on the points of this form; moreover, from their ratio one gets immediately
the homogeneous coordinates [zg,z1]; a completely analogous reasoning, using now the
sections z2z,y0y? and z2z,y2y; gives the homogeneous coordinates [yo,v:]. This means
that ¢l731!(¢15|(P)) = P, for a point of the first type.

Consider now a point P of the second type, for instance of the form [1,a] x [1,0]. Its
image under ¢z is given by [1 + a3,0,0,,0,0,02,0,0] = Q € P® and we have to prove
that ¢|21](Q) consists of two points on the smooth model X which are on the edges and
which are going to be identified to a unique point on the singular model Y. Since o # 0,
from the expression of the coordiantes of @ we get that either yo =0 ory; =0. If yo =0,
from the expression z3z1%y5 = a, Tozi7zy} = o, taking their ratio we have 2 = oT,
so that we obtain the point P, = [1,aT] x [0,1]. If instead y; = 0, from the relations
ziz1y8 = o, zozdyd = o we are led to the point P, = P = [1,¢] x [1,0]. Now the points
P, and P, are distinct on the model X, but they are identified under the glueing process,
so that ¢]21|(¢|L[(P)) = P, also for a point P of the second type.

Finally, as for the points of third type, we can consider P = P; = [1,0] x [1,0] and its
image @ = [1,0, ..., 0] under ¢y. Now, ¢|‘£1!(Q) can be computed immediately, since from
the expression of the cooordinates of ) we obtain the following four possibilities (yo = 0,
2o =0), (yo =0, z; = 0), (y1 =0, o = 0), and (y; = 0, z; = 0), which correspond to the
four vertices of the square: again these four points are distinct on X, but are identified
to a unique point on Y. This proves that ¢, separates points on Y.

Now we prove that ¢ separates tangent directions. First of all we prove that do|c|, -
TpY — TpP? is injective for any point P of the first type. So P = [1,a] x [1, f]; since
the question about the injectivity of d¢yz| is local, we can substitute zp = 1, yo = 1 in
the expression of the sections we have fixed as a basis of H°(Y, £) (this is equivalent to
consider z1, y; al local affine coordinates such that (z1,41)(P) = (@, 8)). The fifth basis
vector has then the form z;y; and is never vanishing for a point of the first type since
a,B # 0. Thus we can divide all the other sections by z;y; obtaining a map to AS:
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p = ¢glv: U — A® (where U is an open neighbourhood of P), given by:

T4+ yd +ad + by 1 S T 1
—(1+= L1 4 =43
T1Y1 ’ :cl( +Tm1)’ CL‘l( +T2$1)’

(1) =

1 1 T 1
S m D0l o om),

To check injectivity of d¢|z| at the points of the first type, it is sufficient to compute the
Jacobian matrix of the map p (with respect to z; and y;) and evaluate it at («, ) proving
that it has rank 2. To prove that it has rank 2, just look at the form of the Jacobian
matrix (without fulfilling the computation!):

o |
=

—t
[ew}

The first column compute the derivative with respect to z; of the map p, the second
column compute the derivative with respect to y;, and the sign — means that we have
skipped the computation; however, it is clear that the rank of d¢ ;| is 2, so that ¢z
separates tangent directions for the points of the first type.

To check the injectivity of the differential for points of the second and third type,
we have to understand the singularities of ¥ on these kinds of points. From the toric
description of Y and the corresponding Delaunay decomposition, we have that TpY = A3
if P is a point of second type, while TpY = A* if P is of the third type. Indeed, the
Delaunay decomposition from which Y arises is displayed in the following picture:
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Let us study for example the singularity of P, the point of third type. Since the lattice
points u;, us, uz and uy are not cell-mates, from the associated toric construction it turns
out that we have in Cluy, uz, us, us] the relations u;us = 0, uzuy = 0; these correspond to
four 2-planes meeting in one point (the point P). These four 2-planes are m; = {(u; =
0,us =0)}, m = {(ug = 0,uq = 0)}, m3 = {(uz = 0,us = 0} and my = {(ug = 0,us = 0)}
Clearly the intersection of all these four planes is just the origin (the point P) and there
are pairs of these planes which intersect along a line, as 7; and mp. Moreover, TpY can
be spanned just by a pair of planes, which intersect each other just in P, such as (m, 4).
These two planes are represented as two small boxes near P in the above picture. This
indeed proves that TpY = A%. A completely analogous reasoning proves that TpY & A3
for a point P of the second type.

To prove injectivity of d¢z for a point P of the second type, we prove that the vector
space spanned by the image of the differential at the two points P, and P (these two
points are on the edges of the square and are identified to the unique point P on Y') is at
least 3-dimensional.

Let us consider as P, = [1,a] x [1,0] and P, = [1,Ta] x [0, T'] which correspond to the
unique (singular) point P on Y. As before, on the sections forming a basis of H(Y, £),
we substitute zo = 1, yo = 1, and we divide by the fourth basis section, which is not
vanishing on P. In this way we get a map p‘ to A® (centered at («,0)) given by:

1+yd+ad+&odyd Q+22dy O+ 72l

(z1,51) — (
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Y A 1 (1 + 7291) T1Y1 Ty
1+ 293" 1+ 293 1+ 4yd 7 1+2yd 14748/
Computing the Jacobian matrix of the map p‘ and evaluating at (o, 0) we have:

0

0

o oo oo |
OO O |

Now consider the point P, = [1,a7] x [0,T] and substitute z; = oT" and y; = T in the
expression of the sections forming a basis of H°(Y, £). We then divide all sections again
by the fourth section (which is not vanishing on P,) and we obtain a map to A® (this time
centered at (1,0)) given by:

(20,90) mdyd + T} + P T3y + *T° 3T (z +&*T?)  yT?(af + o°T)
0> %0 z2aT(y3 +T1?) * T (g +T?)  z2aT(yi+T2)°
wT  yoad® AT (3 +T)  yiaT? yooT®
B+T> oI +T?) 2ol +T%) @i +7?)" (v +T17))

Now we just take the partials of this map with respect to y and evaluate at (1,0) ob-
taining:

Comparing with the image of the differential at P;, we see that the rank of d¢) at the
point of the second type is at least 3, and this is sufficient to conclude that ¢z separates
tangent directions for the points of second type.

As for the points of the third type (actually there is just one point P of the third
type on Y which corresponds to the four vertices of the square), we have to check that
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the rank of d@| is 4. From the toric description of the singularity around P it turns out
that this can be seen as the intersection of 4 2-planes, meeting in one point (the point
P) and along some other lines (which corresponds to the points of the second type). In
particular there are 2 2-planes just meeting in P which span TpY = A*. So it is sufficient
to check that the image of these two planes under d¢). spans again an A*. To this aim,
we compute d@)z| at [1,0] x [1,0] and at [0,T] x [0, 7).

As before, for the point P; = [1,0] x [1, 0], we substitute zo = 1, yo = 1 in the sections
forming a basis of H%(Y, £), and we divide by the first basis section, which is not vanishing
on P;. In this way, we get a map (centered in (0,0)) to A8 given by:

yi(1 + 5 = 3) y%(l + lea:‘;’) z1(1+ T?J1)
1493 +331+T3331?Jl 1+y} +$1+T3~"31?J1 1+yi +x1+T3731Z/1

(@1,91) — <

T1Y1 T1y? 31+ '1'1'2y%)
1+ + 2+ madyd 1+ +ad + madyd 1+ +ad + Fadyd’

I%yl 331?!1 >
14+ 9y} + 23 + mzdyd’ 14y + 2 + eadys

Taking the Jacobian matrix of this map and evaluating at (0,0) we have:

OO OO OO H OO
OO OO OO O

Finally, to construct the corresponding map to A® centered at P, = [0,7] x [0,T], w
substitute z; = T and y; = T in the sections forming a basis of H°(Y, £) and we d1v1de
again by the first basis section (as we have done above), which is not vanishing on P,. By
so doing we get the map:

v (w5 +T7) yoT?(z5 +T)
ohys + 2813 + 373 + T3 adyd + 2§72 + yfT° + T3

(%0, yo) (

23T (ys + 1) 25y T wiyeT?
2dys + 313 + Y373 + T3 zdyd + xdT3 + ydT3 + T3 xdyd + o373 + o313 + T3
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.'L'OT2 (yS + T) Q?Oyng ZCOyoT4
adyd + 2373 + 3 T3+ T3 adyd +adT3 + T3 + T3 adyd + 2313+ y3T3 + T3 )

Again, taking the Jacobian matrix and evaluating at (0,0) we get:

OO R OO O OO
OO O O O o= O

Thus, we see that the two 2-planes spanned by the image of dd; at P, and P, are
independent (in A®), so that the rank of d¢z| at the point P of the third type on Y is 4.
Then @), separates tangent directions.

We thus have an embedding ¢z : ¥ < P2 O

Remark 3: For the value T = 1, the singular model Y is just the product of two
nodal curves C' and C'; each of these curves is embedded into P? and then via a Segre
map into P: C' x C' < P? x P? — P8, Since the dimension of H°(Yr, £) is independent
of T, this automatically implies that for generic T ¢, is an embedding; however to check
this for any T' € C* we have to give a proof as above.

4.4 Very ampleness on the third degeneration type and conclu-
sion

The third degeneration type Y for smooth principally polarized abelian surfaces is con-
structed via a glueing of two disjoint copies of P2. It does not depend on any moduli,
i.e. it is rigid. Indeed, from the toric construction associated to the following Delaunay
decomposition:
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it turns out that Y is obtained by glueing two disjoint P?’ s along the following pairs
of lines ([zg, Z1,T2] denote homogeneous coordinates on the first P2, [yo,y1, y2] on the
second): {zo = 0} and {yp = 0}, {z; = 0} and {y; = 0}, {z2 = 0} and {y. = 0} and
identifying moreover the coordinate points to a unique point. The desingularization of
Y clearly consists of X = P?IIP? 7 : X — Y. A line bundle on X is just the union
of two line bundles, one on each copy of P2. Obviously, the divisor class group of X is
generated by L, and L (each of which is a line in P?, such that L;.Ly = 0). Since the
self-intersection of a principal polarization on a smooth abelian surface is 2, and this does
not change in a flat family, it turns out that we can consider as a degenerate principal
polarization on the smooth model X the line bundle given by Op2(1) on each P2. For
simplicity, let us call this bundle Ox(1;1), and observe that h°(X,Ox(1;1)) =6. If L is
a line bundle on Y such that 7*£ = Ox(n;n), then we denote £ as Oy (n). By the results
of Alexeev and Nakamura, it turns out that the complete linear system |Oy(5)|, gives
an embedding of Y into some PV. This is concretely realized embedding each disjoint
copy of P?, via |Op2(5)], in such a way that they are glued along the prescribed lines and
points. Indeed, the embedding of Y is induced by determining which sections of Ox (5; 5)
descend to Y:

P? I P? = PN
T\ /10y (5)]
Y
Also in this case, to prove an analogue of Lefschetz theorem is equivalent to prove the

following:

Theorem 3: With the notations as above, the complete linear system |Oy(3)] is base-
point free and the map ¢jo,(3) : Y < P? is an embedding.

Proof: As previously noticed, the map ¢joy(3) is induced by the sections of the line
bundles Op2(3) on each P?, imposing the glueing conditions. Let us call zg, 21,22 the
homogeneous coordinates on the first P? and o, %1,y» those on the second. Then the
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general section o, € H°(Op2(3)) can be written as:

.3 3 3 2 2 2 2 2 2
Oz = Ty + 0123 + 2%y +a3TyTy + 64T(T2 +a5TTo + AT T2 +a7x5T0 +agT3T1 +agToT1%,
and analogously for:

0y = boyd + biy? + bays + bay2yr + bayiye + bsyio + beuivz + bry3yo + beyzy1 + boyorrye.

In order to determine which sections descend onto Y, we express the glueing conditions
as:

Oslioo=0} = A0yl{yo=0}, (4.7)
Uml{m1=0} = /\,Uyl{y1=0}a (48)
Oalfz=0y = A’'0yl{y.=0, (4.9)
Oslo0 = HOzlo,10); (4.10)
U:z|[1,0,o] = V0z|[0,0,1], (4.11)

for some (not fixed!) parameters A, X', A, u, v € C*. The equations (4.7), (4.8) and (4.9),
express the glueing conditions for the coordinate lines, while the remaining equations
express the fact that the coordinate points have to be identified to a unique point.

From the first three equations we get oz|[1,0,0 = A'Tylp000 = A/ oyln00 and ozlp,1,0 =
Aoyl = Aoylp,1,00; from these relations we get A=) = X and by = Aag, by = A
and b, = Agy. On the other hand, from (4.10) and (4.11), we obtain a; = v~ lay and
a1 = plag. Combining these relations, we see that all coordinates ao, as, bg, b1, bs are
multiples of . Now notice that the equations (4.7), (4.8) and (4.9) can be written as
(just assuming that there are some, not fixed parameters A, AL AT

a1 Qg Aag 4ag
< .
rk(bl b b bg)_l, (4.12)
ag Qg Q4 0ary
rk( bo by bs br > <1, (4.13)
ag a1 agz 4as
rk( by b b by ) <1 (4.14)

From these and from the previous relations, we find immediately all the compatibility
conditions:

-1 -1 o o
bo=Xag, b1 =Ap"ay, bo=Av"ag, ax=V "ay, a1=H ap,
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b3 = )\0;3, b4 = /\CL4, b5 = )\as, be = )\(16, b7 = )\a7, bg - )\CLg.

Then we can choose as coordinates for determining a basis for the sections of Oy (3),
the coefficients (ag, as, a4, a5, as, a7, as, bg). Now observe that changing the parameter A,
does not change the line bundle, since the two planes are different and one can make a
corresponding choice of coordinates on one of the planes, so as to cancel out the effect
of changing A. Thus we can set A = 1. On the other hand, different choices of y and v
lead to different line bundles; indeed, Pic®(Y") = (C*)? and the parameters p and v are
coordinates on Pic’(Y). But again modulo the action of the torus T = (C*)?, all line
bundles are the same, so one can choose one of them, e.g. by setting 4 = v = 1. Thus,
from now on, we set A = py=v = 1.

In the light of this analysis, the map @0, (3)| can be precisely described via a pair of
maps (¢z, ¢,) : P2 II P2 = P8, which is explicitly given by:

(@ +ad+ad 0l + vl +ud), (whosvdn), (alzo;vive), (232 U0v),

(lz2;0%10), (2303 0300),  (23m1;0301),  (207122;0),  (0;v03ny2)] -

If [20, 21, - - . , 23] denotes homogeneous coordinates in P8, then the image of the first P? is
contained in the hyperplane {z3 = 0}, while that of the second is contained in {z; = 0}.
Now we prove that @0, (3) is an embedding, checking the suitable properties on the pair
of maps (¢, ¢,)-

First of all, we check that |Oy(3)| has no base points: just take into account one of the
maps of the pair, for instance @,. If there is a point on Y such that all sections of Oy (3)
vanish, then for the correponding point(s) in X, we have zoz172 = 0, T3z = 0, 2225 =0
and z2z; = 0. Then at least two of the z;’s is zero, but since also z} + 23 + z3 = 0,
then all z;’ s are zero. This is clearly impossible since this is not a point of P2. Thus
oy (3) : ¥ — P? is a morphism.

Let us distinguish, also for this type of degeneration, three kinds of points: smooth
points (first type), singular points obtained by glueing pairs of points on the edges of the
triangles, which are not vertices (second type), and the unique point which comes from
the glueing of the vertices (third type). Now we prove that ¢, (3) separates points. For
the points of the first type, let us consider a point in the first copy of P2, of homogeneous
coordinates [1, a, ], where o, 8 € C*. Then the image of this point under ¢, is given
by: [1+ a®+ 83, a,0?, B8,a%8, 52, f%a, af3,0]. From this expression, since af # 0, then
this point in P? is never the image of a point of the second P?, and it is clear that one
can recover the homogeneous coordinates [1,a, f], just taking ratios, so that the map
®|oy (3)] Separates points of the first type. Now consider a point of the second type, which
can be represented on the smooth model X, by a pair of points of the form (for example)
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[, B8,0], [, B, 0] such that o, &', B, 5 € C* and f/a = B*/a’. Rescaling the homogeneous
coordinates, one can represent these as [1,,0],[1,~,0]. These two points have the same
image under the two maps (¢, #y): [1 +7%,7,7%0,0,0,0,0,0]. Again taking ratios one
sees that this point corresponds exactly to the pair of points, which are going to be
identified on Y to a point of the second type (indeed, looking at the zero entries, the
point [1 +93,7,+%,0,0,0,0,0,0] can not be the image of a smooth point or of a point
on a different singular line). Finally, the unique point of the third type is represented by
three pairs of points on X. Any of these pairs has image in P%: [1,0,0,0,0,0,0,0,0] = P.
Then it is clear that (¢, ¢,) " (P) consists exactly of these three pairs, which correspond
to the unique point of the third type on Y. Thus ¢|0, (3) is injective on Y.

To conclude the proof it remains to show that this map separates tangent directions.
If Q is a point of the first type on Y, then it corresponds to a unique point on one of the
two copies of P2. It is not restrictive to assume that the homogeneous coordinates of this
point belong to the first P2 and are of the form [1,, 8] (o, 8 € C*). Since ToY = A? for
this type of points, it is sufficient to prove that the rank of d¢, is 2 in a neighbourhood
of ™ 1(Q) = [1, o, B]. Substituting zo = 1 and dividing by zoz,z, the entries of the map
¢, we obtain a map from a neighbourhood U of 771(Q) to A%: ¢, : U — A%, centered at
(o, B), which is explicitly given by:

] - z1,

1+ .’E? -+ 1‘% 1 I 1 I
] B! bl — 5627 0 M
X1T9 To T9 T T
It is immediate to check that the differential of this map computed at (o, 8) has rank 2.

If Q is a point of the second type on Y, then since it is obtained by glueing two P?’s
along lines, it is clear that TpY =2 A3. Moreover, 7~1(Q) = (Py, P;) where each P; belongs
to a P2. Without loosing generality, we can assume that P; = [1, e, 0] (x-coordinates) and
P; = [1,,0] (y-coordinates). Then it is sufficient to prove that d¢,|Tpp: and doy|Tr,p:
span a vector space of dimension at least 3. To compute d¢, we substitute zp = 1 and
divide all entries by z2z;, obtaining an explicit map ¢,‘ to A® of the form:

1+ 23 + 3 Ty T2 0
) I, ! T9T1, 0 Iy, To, 0}.
X1 T z1

An analogous reasoning for the y-coordinates, gives an explicit map ¢,‘ to A® given by:

T+93 495 Y Y3
( ! 27 Y1, "—27 YY1, _27 yg7 07 Ya ] -
n 1 Y1
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Computing the Jacobian of the two maps at the point (¢, 0) (i.e. (z1,22) = («,0) for the
x-coordinates and (y;,v2) = (e, 0) for the y-coordinates) we get the two matrices:

1 0 1 0
0 1 0 0
0 0 0 1

which span together at least a 3-dimensional vector space in A%. Finally, we have to
prove that @jo,(3)| separates tangent directions for the unique point ) of the third type.
This point corresponds to the vertices of the triangles, which are all identified. It can be
represented by the origin O of the following picture:

u_s u_6 |
i
1
v_6 }
v_1 i
Vs @ o |
e N |
NG |
v_4 v_2 \
i
v_3 k‘
u.2
u_3

where there are 6 triangles meeting. Then a neighbourhood of ) can be described
as 6 copies of A?, meeting along lines according to the pattern in the previous picture.
We call this copies of A? as Vi, V5, V3, Vi, Vs, Vs. Now Vi N V4 is a line so that they span
together a 3-dimensional vector space W;. Then Wi NV; is again a line, so that the span
of Wi and Vj is 4-dimensional vector space W,. Again WV, is a line and they together
span W3 which is 5-dimensional and finally W3 N Vs is a line and they span W, which
is 6-dimensional. Then observe that Vg C W, since they have in common 2 lines. This
implies that TpY = A%, showing that @ is an extremely nasty singularity.
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We can give a cleaner proof of the fact that the dimension of the tangent space is
actually equal to 6, via toric geometry. Indeed, considering the points w1, us, us, u4, us, Ug
in the previous picture, since they are not cell-mates, we get in Cluy, . .., ug], the following
exhaustive set of relations: wjusz = 0, ujus = 0, urus = 0, uguy = 0, ugus = 0, usug = 0,
ugug = 0, ugus = 0, usug = 0. The ideal generated by these relations in Cluy, ..., ug),
corresponds to six 2-planes: m; = {u; = ug = us = ug = 0}, mp = {u; = up =
U3=U6:0},71'3:{U3=U4=7,L5=’U,6=0},7T4:{’LL2=U3:'LL4=’LL5:0},
75 = {u; = up = us = ug = 0} and 75 = {u; = us = us = ug = 0}. All these six planes
intersect just in the origin and the span of three of them, such as m;, 73 and 75 is AS.
This just proves that TpY = A®.

Then, to conclude it is enough to show that the images of d¢, at the three coordinate
points span altogether a 6-dimensional vector space. Indeed, to span TY it is sufficient
to take three copies of A% around O, which meet only in O, as those selected with dots
in the previous picture (they correspond to the 2-planes 71, w3 and 75). These copies
correpond to the three vertices of just one copy of P?, let us say the x-copy. Then we
have just to compute d¢, at the points P, = [1,0,0], P, = [0,1,0] and P; = [0,0,1]. To
compute d¢, at P, we set 1o = 1 and divide by the entry z3 + 23 + z3 all other entries,
getting the map ¢, p, as follows:

T z? To T279
? ) 2 )
14+23+23 1428423 1+23+23" 1+ 23+ 23
SE% m%zl T1T9
? ¥ ?
1+z3+23" 1+z3+23 1423+ 23

Computing the differential of ¢, p, at (0,0) we get:
10

O OO OO OO
OO OO~ O

Repeating the procedure with the point P, (this time setting z; = 1 but always dividing
by z3 + z3 + z3) we obtain the map ¢y p,:

117(2) ) 1,'81132 i)
) b b
T+ +a3 14+zd+23 1+z3+23 1423+ 43
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2 2

ToTo Ty ToTo 0
) 3 ? )

1+z3+23 1+z3+23 1+z3+ 23

and also we get the differential at (0, 0):

O O OO OO —=O
SO OO OOO

Finally, considering the point P;, we have the map ¢; p,:

2 2 2 2
? b ?
T+zd+23 1+zi+2d 1+z3+23 1+23+23

I T ToZ1
1+ad+23 1+z3+23 1423+ ’
the differential of which at (0, 0) is given by:

OO, OO O D
OO - OO o OO

This implies that d¢jo, (3) is always injective on Y, also for the point of third type, since
the rank of d¢, is 6. Thus ¢jo,(3) : ¥ — P® is an embedding. O

Recalling all the results of the previous sections, we get immediately the following
main result:

Theorem 4: Let Y be a SSAV of dimension 2, which is a degeneration of a principally
polarized abelian surface and let Oy (1) the associated ample line bundle. Then Oy (3) is
already very ample.
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Proof: Immediate in the light of Theorems 1, 2 and 3, since any SSAV Y of dimen-
sion 2, coming from a principally polarized abelian surface belongs to one of the three
degeneration types studied in the previous sections. |

Remark 4: Theorem 4 gives an improvement (in the case of surfaces) with respect
to the result proved in ([38], Theorem 4.7); indeed there they proved that Oy (5) is very
ample. In general, we expect that the bound given in ([38]) for very ampleness of Oy (n)
is not sharp, at least for some classes of SSAV’ s. This is also suggested by the results of
([41]): there it is proved (among other things) that if C is an irreducible curve, having
only nodes as singularities, then on the compactified Jacobian (considered as the moduli
scheme parametrizing torsion-free, rank 1 sheaves of Euler characteristic 0 on C), there is
a line bundle £ representing a principal polarization, such that £®? is already very ample.
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Chapter 5

Deformation properties and linear
normality of curves

5.1 Introduction

Let k£ be any algebraically closed field of characteristic zero and, as usual, let P" :=
Proj(k[zg, ..., z.]) be the associated projective space. Inside the Hilbert scheme H(d, g,7),
parametrizing closed subschemes of dimension 1, arithmetic genus g, degree d in P7, let
us consider the so called restricted Hilbert scheme Hilb(d, g, ), which is the subscheme of
H(d, g,r), consisting of those points p(C), such that every component K of H(d, g,7) on
which p(C) lies has smooth, non degenerate and irreducible general element (see Definition
1.31 of [54]).

In this chapter we present some results concerning the behaviour of the rational func-
torial map ¢ : Hilb(d,g,7) — M,, which associates to each point p(C) in Hilb(d,g,r)
representing a smooth non degenerate irreducible curve C the corresponding isomorphism
class [C] € M,. In particular, we study in which cases the image of ¢ has positive di-
mension (i.e. the corresponding family of curves is not isotrivial). In this study, a key
role is played by linearly normal curves, since they tend to be less rigid than other class
of embedded curves. So, in this chapter we see how an embedding with some additional
properties can help to study a seemingly totally unrelated problem.

Observe that any non degenerate smooth integral subscheme C of dimension 1 in P"
determines a point p(C) € Hilb(d, g,r). We give the following:

Definition 1: The projective curve C C P" admits non-trivial first order deformations
if the image of the map D¢ : Ty Hilb(d, g,7) — Tic)M, has positive dimension (or
equivalently if D¢ # 0). In this case we say that the corresponding curve is non-rigid at

71
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the first order, for the given embedding.

Definition 2: The projective curve C C P" admits non-trivial deformations if there
exists at least a curve v C Hilb(d, g,r), through p(C), which is not contracted to a point
via ¢. Fquivalently, if there ezists an irreducible component of Hilb(d,g,r) containing
p(C), such that its image in M, through ¢ has positive dimension. In this case we say
that the curve is non-rigid for the given embedding.

We can somehow get rid of the fixed embedding in some projective space taking into
account all possible nondegenerate embedding, as in the following:

Definition 3: The (abstract) smooth curve C is non-rigid at the first order, as a
smooth non degenerate projective curve, if for any non degenerate projective embedding
j: C? = P, the corresponding map D¢ : Ty Hilb(d, g,7) = Ticy M is non zero.

Analogously, one has the following:

Definition 4: The (abstract) smooth curve C is non-rigid as a smooth non degenerate
projective curve if, for any non degenerate projective embedding j : C — P7, there ezists
an irreducible component of the associated Hilb(d, g,r) containing p(C), such that its
image in Mgy through ¢ has positive dimension.

In this chapter, we prove that there exists a dense open subset U C M, (g > 1),
such that any C, with [C] € U, is non rigid at the first order as a smooth non degenerate
projective curve in the sense of Definition 3; moreover, we prove that these curves are non-
rigid (not only at the first order) under the additional assumption that p(C) is a smooth
point of Hilb(d, g,7)req (the restricted Hilbert scheme with reduced scheme structure) or
at worst it is a reducible singularity of Hilb(d, g, 7)req (see Definition 5 in section 3).

5.2 First order deformations

First of all we deal with the case of smooth projective curves of genus g > 2 in P". We
will prove that there exists a dense open subset U}y C M, such that for any [C] € Uy
and for any non degenerate smooth embedding of C' in P" the corresponding projective
curve is non-rigid at the first order (in the sense of Definition 3).

From the fundamental exact sequence:

0 - 7TC — TPy — Ngp — 0, (6.1)

taking the associated long exact cohomology sequence, since H'(TC) = H°(K;') = 0
(genus g > 2), we get:

0 — HY(TPy) — H'(Ngyp) 22 HY(TC) — HY(TP)g) — H'(Ngspr) 0. (5.2)
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In sequence (5.2), as usual, we identify H(Ng,pr) with the tangent space Tp(c)Hilb(d, g,T)
to the Hilbert scheme at the point p(C) representing C, and H*(T'C) with TjcjM,. Thus
the coboundary map D¢ represents the differential of the map ¢ : Hilb(d, g,7) = M,
we are interested in. If D¢ = 0 (i.e. the corresponding curve is rigid also at the first
order) the sequence above splits and in particular h° (TPio) = h?(Ng,pr); thus imposing
h(TPl;) < h%(Ngpr) and estimating the dimension of the cohomology groups, we get
a relation involving d, g, r, which, if it is fulfilled implies that the corresponding curve is
not rigid (at least at the first order). This is the meaning of the following:

Proposition 1: Let C C P" a smooth non-degenerate curve of genus g > 2 and degree
d. Then ifd > 25[g(r — 2) + 8], or Oc(1) is non special (this holds if d > 2g — 2), then
D¢ # 0. Furthemore if C C P" is linearly normal, then D¢ # 0 provided that

—g+r(r+1)+3
r+1 '

Proof: It is clear from the exactness of (5.2) that if h®(Ng/pr) > h°(TPf), then D¢ #

0. On the other hand, h’(Ngpr) = dim(Tpc)Hilb(d,g,7)) > dim(Hilb(d,g,7)) and

dim(Hilb(d,g,7)) > (r + 1)d — (r — 3)(g — 1), where the last inequality always holds

at points of Hilb(d, g,r) parametrizing locally complete intersection curves (in particular

smooth curves), see for example ([54]). Thus h®(Ng/pr) > (r+1)d — (r—3)(g —1). Now,

applying Riemann-Roch to the vector bundle TP" on C, we get h°(TP[;) = (r + 1)d —
(g — 1) + h'(TP]). On the other hand, from the Euler sequence (twisted with O¢):

0 - O — (r+1)0c(1) — TP = 0, (5.4)

d>(T

(5.3)

we get immediately h'(TP[;) < (r + 1)h'(Oc(1)) and by Riemann-Roch the latter is
equal to (r+ 1)(h°(Oc(1)) — d + g — 1). Now, if O¢(1) is non special (i.e. if d > 2g — 2),
then h!(TPf,) = 0, so that, imposing A°(Neypr) > R (TPR), we get 3(g — 1) > 0, which
is always sa‘msﬁed (if g > 2). This means that a smooth curve of genus g > 2, which is
embedded via a non special linear system, is always non-rigid at least at the ﬁrst order.

If instead Og(1) is special, by Clifford’s theorem we have h(O¢(1)) < d/2 + 1,
so that h'(TP[;) < (r + 1)(g — d/2). Imposing again h*(Ngypr) > hO(TPjs), that is
(r+1d—(r—3)(g—1) > (r+1)d—r(g—1)+ (r+1)(g — d/2), we get the relation
d> Z5lg(r—2) +3].

F1nally, if C c P is linearly normal and non degenerate, then h%(Og(1)) = r + 1.
Substituting in A*(TP;) < (r+1)A'(Oc(1)) = (r+1)(h*(Oc(1))—d+g—1) and imposing

the fundamental inequality h®(Ngp-) > h°(TP;), we get d > -T—QMJTF—:%TLJ‘E— m

Since the bound (5.3) is particularly good, but it holds only for linearly normal curves
and since any curve can be obtained via a series of (generic) projections from a linearly
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normal curve, we are going to study what is the relation among first order deformations
of a linearly normal curve and the first order deformations of its projections. This is the
aim of the following:

Proposition 2: Let C C P" a smooth curve of genus g > 2 which is non-rigid ot the
first order. Then any of its smooth projections C' := m,(C) C P™! from a point ¢ € P"
is non-rigid at the first order.

Proof: First of all, let us remark that the proposition states that in the following
diagram:

T,y Hilb(d, g, 7) 2 DM,
! /D¢
Tp(cr)Hilb(d, g,7 — 1)

if Im(D¢) # 0, then Im(Dg¢‘) # 0. Now consider the following commutative diagram:

0 — ker(a) — ker(b)

! ¢ !
0 - TC — TP — Nepr — 0
IF= la Lb
0 - TC' — T]P’fg,1 — Ngypr = 0
\ 4 \

0 — 0 — 0

where the morphisms a and b are induced by the projection of C' to C'. Clearly TC = T'C',
because C' and C’ are isomorphic curves (¢ ¢ Sec(C) and thus the projection is an
isomorphism) and moreover a and b are surjective by construction. Applying the snake
lemma to the previous diagram, we see that ker(a) = ker(b) and since a and b are
surjective morphisms of vector bundles, it turns out that ker(a) = ker(b) = L, where L is
a line bundle on C'. Restricting the attention to the last column of the previous diagram, it
is clear from a geometric reasoning that the line bundle £ can be identified with the ruling
of the projective cone, with vertex ¢ through which we project. Indeed, it is sufficient
to look at the projection induced map b at a point z € C: b : Ng/pr,2 — Nev/pr, (%);
the kernel is always the line on the cone with vertex ¢ going trough z and this is never
a subspace of T'C, because g ¢ Sec(C). Clearly, we can identify the projective cone with
vertex ¢ through which we project, with the line bundle £, since we can consider instead
of just P", the blowing-up Bl,(P") in ¢ in such a way to separate the ruling of the cone
(this however does not affect our reasoning since we are dealing with line bundles over C
and g ¢ C).

Applying the cohomology functor to the previous commutative diagram and recalling



5.2. First order deformations 75

that R°(T'C) = 0 since g > 2 we get the following diagram:

H() =  HL) =0

' ! !

0 — HTP) — H'(Ngp) -5 HNTC) —
la 1B , o

0 — HYTPLY) — H'(Noyp—:) 2% HYTC') —
! ! !

0 — coker(a) —  coker(f) — 0 = 0

Now, Im(D¢) C HY(T'C) and via the isomorphism v it is mapped inside H*(T'C"). On
the other hand, by commutativity of the square having as edges the maps 3,~, D¢ and
D¢’ it is clear that Im(D¢) C Im(D¢') so that if D¢ # 0, then a fortiori D¢' # 0. |

The following corollary gives two simple sufficient conditions for having Im(D¢) =
Im(D¢").

Corollary 1: Let C, C', D¢ and D¢’ as in Proposition 2. Then if Oc(1) is non
special or if h'(TP[;) = 0, then Im(D¢) = Im(D¢').

Proof: Rewrite the previous diagram as:

HY(L) H°(L) - 0
\ \J }

0 — H(TP) — H'(Ngpr) — Im(Dg) - 0
la 1B }

0 — HYTPGY) — H'(Noyp-1) — Im(Dg) =0
3 3 \

0 — coker(a) —  coker() — coker(a)/coker(B) — 0

Observe that coker(c) C H'(L) and the same is true for coker(B). So if H'(L) = 0,
then Im(D¢) = Im(D¢'). On the other hand, from the exact sequence 0 — £ — TP|; —
T]P’lrc“,jL — 0, taking Chern polynomials, we get that £ is a line bundle of degree d (and one
can identify £ with O¢(1) ® L' for some L' € Pic’(C)). Thus, if O¢(1) is non special we
conclude. If instead h'(TP]) = 0, then coker(a) = H L(L) and coker(a) C coker(8) C
H'(L) so that coker(a) = coker(f) and we conclude again. m

Now we deal with the much simpler case of curves of genus g = 1.
Proposition 3: For any smooth curve [C] € M, and for any non degenerate projective
embedding of C — P, the corresponding projective curve is non-rigid at the first order.
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Proof: From the fundamental exact sequence:
0 = T — TP — Ngp — 0,

since Tx = O¢ (9 = 1), we obtain the long exact cohomology sequence:
0 — H(Og) = H'(TPg) — H'(Noypr) 2 HY(O¢) — HY(TP)...  (5.5)

Twisting the Euler sequence with O¢ and taking cohomology, we have that Al (TP) <
(r + 1)h'(Oc(1)), but Og(1) is always non special for a curve of genus ¢ = 1 since
d > 2g—2=0. Thus H'(TP];) = 0 and being 2'(O¢) # 0, from (5.5) we have that
D¢ # 0 and it is even always surjective. O

We conclude this section with the following theorem, which is the analogue of Propo-
sition 3 for curves of genus g > 2 (in this case we do not work over all M,, but just on
an open dense subset).

Theorem 1: For any g > 2, there exists a dense open subset Ugy C M, such that
for any [C] € Uy and for any non degenerate projective embedding of C « PT, the
corresponding projective curve is non-rigid ot the first order.

Proof: According to theorem 1.8, page 216 of [46], there exists a dense open subset
Upn C M, such that any [C] € Ugy can be embedded in P" as a smooth non degenerate
curve of degree d if and only if p > 0, where p(d,g,7) == g — (r + 1)(¢ — d + r) is the
Brill-Noether number. Now we consider a curve [C] € Ugy and we embed it as a linerly
normal curve C of degree d in some P". Since [C] € Upy, we have that p > 0; on the other
hand, C is linearly normal and the fundamental inequality (5.3) is satisfied since p > 0
(indeed, it is just a computation to see that (5.3) is equivalent to p > —¢ for some € > 0).
Thus, by Proposition 1 C is non-rigid at the first order, and moreover by Propositon 2 all
of its smooth projections are non-rigid at the first order. To conclude, observe that any
smooth non degenerate projective curve C such that [C] € Uy can be obtained via a
series of smooth projections from a linearly normal projective curve C with corresponding
p > 0 (since for the curves in Ugy the Brill-Noether condition is necessary and sufficient).
o

5.3 Finite deformations

Our problem is now to extend the first order deformations studied in the previous section
to finite deformations. By Theorem 1, we know that, for the curves C such that [C] € Uy
(g > 2), the corresponding Im(D¢) # 0 and an even stronger result holds for curves
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of genus ¢ = 1. We need to prove that there exists a vector v € TpcyHilb(d, g,T),
corresponding to a smooth curve v C Hilb(d, g,7) through p(C) such that the image of
the curve via ¢ has positive dimension. To this aim, observe that if [C] € Ugy is not
a smooth point of M,, then there are w € TjcjUpy which are obstructed deformations,
that is which do not correspond to any curve in Ugy through [C]. We can easily get
rid of this problem, just by restricting further the open subset Upy. Indeed, for g > 1,
there is a dense open subset U’ C M, such that any [C] € U° is a smooth point (see
for example [54]). Thus, for curves of genus g > 2 we consider the dense open subset
USy := Upy NU° and for any w € Tig)URy, the corresponding first order deformations
are unobstructed, while for curves of genus g = 1 we just restrict to the smooth part of
My, that we denote as U?.

We can draw a first conclusion to this reasoning via the following:

Proposition 4: Let [C] € Uy or [C] € Ug and let C — P" any projective embedding
such that the corresponding point p(C) € Hilb(d, g,r) is a smooth point of the restricted
Hilbert scheme. Then the projective curve C C IP" is non rigid.

Proof: By Theorem 1 or Proposition 3, the associated map D¢ # 0, so that there
exists a w € Ty Hilb(d, g,r) such that Dé(w) # 0. Since p(C) is a smooth point
of Hilb(d,g,r), the tangent vector w corresponds to a smooth curve v C Hilb(d, g,7),
through p(C), such that T,y = w. Now consider the image Z of this curve in Ul
via ¢. Since M, exists as a quasi-projective variety, in particular we can represent a
neighbourhood of [C] € M,, as Spec(B), for some finitely generated k-algebra B. This
implies that the map ¢ can be viewed locally around p(C) as a morphism of affine schemes.
Thus the image of the curve v (which is a reduced scheme) via the morphism of affine
schemes ¢ is the subscheme Z in Spec(B). Then either Z is positive dimensional and
in this case we are done, or it is a zero dimensional subscheme, supported at the point
[C]; observe that this zero dimensional subscheme Z can not be the reduced point [CT,
otherwise we would certainly have D¢(w) = 0. So let us consider the case in which Z
is a zero dimensional subscheme, supported at the point [C], with non-reduced scheme
structure: this case is clearly impossible since the image Z of a reduced subscheme (the
curve ) via the morphism of affine schemes ¢ can not be a non-reduced subscheme.
Indeed, if it were the case, consider the rectriction of ¢ to v: ¢, Zreq = [C]; then
¢7*([C]) is a reduced subscheme, which coincides with v, since v is reduced. But this
would imply that ¢(v) = [C] and Dg(w) = 0.

Thus, it turns out that Z has necessarily positive dimension and we conclude.

0

The hypothesis of Proposition 4, according to which p(C) is a smooth point of Hilb(d, g, 1)
is extremely strong. Ideally, one would like to extend the result of Proposition 4 to anynon
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degenerate projective embedding for curves [C] € U3 y. Before giving a partial extension
of Proposition 4 (Theorem 2), let us give the following:

Definiton 5: A point p(C) € Hilb(d, g,7)req s called a reducible singularity if it is in
the intersection of two or more irreducible components of Hilb(d, g,T)req, each of which
is smooth in p(C).

Theorem 2: Let [C] € Uy or [C] € Uy and let C < P" any projective embedding
such that the corresponding point p(C) € Hilb(d, g,7) is a smooth point of Hilb(d, g,7)req
(restricted Hilbert scheme with reduced structure) or such that p(C) is a reducible singu-
larity of Hilb(d, g,7)req- Then the projective curve C C P" is non rigid.

Proof: Let us consider the exact sequence:

0 — H'TP.) — TyoHilbdgr) 2 TigM, (5.6)

from which ker(D¢) = H°(TP[). Take the reduced scheme Hilb(d, g, )req and consider
the induced morphism of schemes r : Hilb(d, g,7)rea — Hilb(d, g,T) (see for example [42],
exercise 2.3, page 79). If p(C) is a smooth point of Hilb(d, g,7)eq, then we have that
dim(Hilb(d, g,7)) = dim(Tpc)Hilb(d, 9,7)rea). On the other hand, to prove that there
are first order deformations we have just imposed h°(TP;) < dim(Hilb(d, g,r)). Now,
we want to prove that in the following diagram

0 — HY(TP),) — TyoHilb(d,g,r) 2% TioM,

T Dr S
Tp(C)Hilb(g, d, T)red

the map Dr is injective, so that since h°(TP/;) < dim(Hilb(d, g,7)) = dim(Tyc)Hilb(d, g, 7)rea),
we can find a w € TpcyHilb(d, g,7)reqd the image of which in T M, is non zero and then
we can argue as in the proof of Proposition 4. Setting Hilb(d, g,7)reqa = Xrea, P(C) = x
and Hilb(d, g,7) = X, we have to prove that given r : X,.q — X, the associated morphism
on tangent spaces is injective Dr : T, X,eq — T3 X. Since X4 is a scheme, we can always
find an open affine subscheme U,eq of X,¢q containing z such that Uyeq = Spec(Ared),
where A,.q is a finitely generated k-algebra without nilpotent elements and the closed
point z corresponds to a maximal ideal m;. Recall that, from the point of view of the
functor of points, the closed point z corresponds to a morphism A : Spec(k) — Spec(Areq)
(which is induced by Areq — Aredm. — Aredme/MaAream, = k(z) = k, where Areqm,
is the localization of A,.; at the maximal ideal m,). Recall also that via the algebra
map k[e]/e? — k and the corresponding inclusion of schemes i : Spec(k) — Spec(k[e]/€?),
Ty Xreq can be identified with {u € Hom(Spec(k[e]/€?, Spec(Areq))) such that woi = A}.
Clearly, an analogous description holds for X and 7,X, (we denote the corresponding
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neighbourhood of z in X as Spec(A)). From the description of T;X,.q just given, it
turns out any w € TpXpeq, w # 0, corresponds to a (non-zero) ring homomorphism
ul : Areq — kle]/(€)?, such that the following diagram is commutative:
Ard B kle] /€
M N\ 1 L
k(z) =k

On the other hand, saying that Dr(w) # 0 is equivalent to say that we can lift the
non zero ring homomorphism u! : A,.q — k[e]/€? to a non zero ring homomorphism
@t : A — kle]/€® such that the following diagram is commutative:

A N k@)=k
AN, 1
A B ke

NN L

It is clear that we can always do such a lifting, since the homomorphisms %" and
A are just given precomposing the corresponding homomorphisms from Aeq, with i,
Moreover, since 7% is a non zero ring homorphism, it turns out that if ul £ 0, then also
@ £ 0 and the previous diagram is commutative. This implies that Dr(w) # 0 and thus
that Dr : TpcyHilb(d, g, )rea — Tpc)Hilb(d, g,7) is injective. Reasoning as in the proof
of Proposition 4, we can find a curve v C Hilb(d, g, r)req through p(C) in such a way that
D¢ o Dr(Tycyy) # 0. Thus the image of this curve via ¢or contains the point [C] in Udy
and a tangent direction. On the other hand the image via ¢ o r of a reduced scheme can
not be a non reduced point (always because we can represent a neighbourhood of [C] in
M, as an affine scheme and consider ¢ or locally as a morphism of affine schemes). Thus
the image of v through ¢ o r must have positive dimension and in this way we conclude
if p(C) is a smooth point of Hilb(d, g, T)red-

Finally, if p(C) is a reducible singularity of Hilb(d, g, )req, it will be sufficient to
repeat the previous reasoning, substituting Tpc)Hilb(d, g,7)red, With Tpc)H, where H is
an irreducible component of Hilb(d, g, T)req through p(C), smooth at p(C) and of maximal
dimension, so that dimyc)H = dimyc)Hilb(d, g,7)rea = dimpc)H ilb(d, g, 7). In the same
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way, one can find a smooth curve v C H, through p(C), such that its image in M, is
positive dimensional, arguing again as in the proof of Proposition 4 (the image of y has to
a be a reduced scheme, hence necessarily positive dimensional, in order to have D(¢) # 0).
|

Remark: If p(C) is a reducible singularity of Hilb(d, g, 7)req, for the Theorem 2 to
work, it is not necessary that all irreducible components of Hilb(d, g,7)req through p(C)
are smooth in a neighbourhood of p(C). Indeed, from the proof of Theorem 2, it is clear
that it sufficient that there exists an irreducible component of maximal dimension H of
Hilb(d, g, 7)req, which is smooth in a neighbourhood of p(C).

In the light of the previous theorem, let us dicuss Mumford’s famous example of a
component of the restricted Hilbert scheme which is non reduced (see [55]). He considered
smooth curves C on smooth cubic surfaces S in P3, belonging to the complete linear system
|4H + 2L|, where H is the divisor class of a hyperplane section of S and L is the class of
a line on S. It is immediate to see that the degree of such a curve is d = 14 and that its
genus is g = 24. Therefore we are working with Hilb(14, 24, 3). In [55], it is proved that
the sublocus J3 of Hilb(14, 24, 3) cut out by curves C of this type, is dense in a component
of the Hilbert scheme. Moreover, it turns out that this component is non reduced. Indeed,
Mumford showed that the dimension of H4lb(14,24,3) at the point p(C) representing a
curve C of the type just described, is 56, while the dimension of the tangent space to
Hilb(14,24, 3) at p(C) is 57. On the other hand, in [48] it is proved that for the points
of type p(C) an infinitesimal deformation (i.e. a deformation over Spec(k[e]/€®)) is either
obstructed at the second order (i.e. you can not lift the deformation to Spec(kle]/€?)), or
at no order at all. This implies that the corresponding component of Hilb(14,24,3),eq is
smooth. Since for curves of this type, we have that d > %é, by Proposition 1 we know
that D¢ # 0. If [C] € M, is a smooth point, then by Theorem 2, being Hilb(14,24,3)eq
smooth at p(C) € Js, we have that the curve C < P? is non rigid for the given embedding.

For other interesting examples of singularities of Hilbert schemes of curves and related
constructions, see [50], [53], [47] and [57].

5.4 Some special classes of curves in P?

In this section, we take into account some special classes of curves and prove that they are
non-rigid at the first order or even non-rigid for the given embedding. As a first example,
let us consider a projectively normal curve C in P3, which does not sit on a quadric or
on a cubic. We prove that the curves of this class are non-rigid at the first order. Their
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ideal sheaf has a resolution of the type (with a; > 4 and consequently b; > 5):
0 — @_10p(-b) — @&HO0ps(—a;) — Ic — 0O,
from which, twisting with T3, we get:
0 = GB‘;=1T]P)3(“bj) - @jﬂTPS("Gj) - Tms®Is — 0. (5.7)

On the other hand, from the Euler sequence (suitably twisted) we have that h°(TP*(—k)) =
0 and A'(TP?(—k)) = 0 for k > 4. Thus, from (5.7) it follows that h°(TP? ® Z¢) = 0.
Moreover, H2(TP?(—b;)) is equal by Serre duality to H'(Qps(b; — 4))* and this is zero
by Bott formulas (see for example [56]), since we assumed b; > 5. Therefore, again from
(5.7), it follows that h'(TP® ® Z¢) = 0. Finally, from the defining sequence of C, twisting
by TP3, we get that H°(TP3) & HO(TP3|c). Now, h°(TP?) = 15, so that D¢ # 0 as
soon as 15 < 4d (recall that h°(N¢/ps) > 4d), that this D¢ # 0 for d > 4. Now, recall the
important fact that if C is a projectively normal curve, then Hilb(P?) is smooth at the
corresponding point p(C) (see [51]) and this implies that the projectively normal curve is
non rigid (Theorem 2) as soon as it does not sit on a quadric or a cubic surface.

Now we consider a projectively normal curve which sits on a smooth cubic surface S
in P2 and prove that this curve is non-rigid at the first order and hence non-rigid always
by Theorem 2 and by the result of [51]. From the exact sequence:

0 — Ngis — DNgps — Nsle — 0, (5.8)

since N5|C = 00(3) and Nc/s = We ®UJ§1 = wc(l) = Oc(C), we get X(NC/IP’3) =
x(we(1)) + x(Oc(3)). By Riemann-Roch x(O¢(3)) = 3d — g + 1 and by Serre duality
R (we(1)) = h%(Oc(1)) = 0, so that x(we(1l)) = C?+ 1 — g and x(Ng/ps) = 3d — g +
1+ h%(we (1)) = 3d —2g + 2+ C?. Again from the sequence (5.8), taking cohomology, we
have that h'(Ng/ps) = h'(O¢(3)). On the other hand, from the exact sequence:

0 — Zc(3) — Ops(3) — 0Oc(3) — 0O,

assuming that C is projectively normal and that it sits on a unique cubic, we have
1—-20+ hl(OC(?))) +3d—g+1 =0, so that hl(NC/]pa) =18 —3d+g. Thus hO(NC/]ps) =
X(Ng/ps) + h'(Ngyps) = 20 — g + C%. As a remark, notice that since h°(Ngyps) > 4d,
we obtain the inequality 4d < 20 — g + C? for curves of this type. To give an estimate
of hO(T]P’?C), we use as before the Riemann-Roch Theorem and the Euler sequence, so
that h%(TPY) < 4d + 3(1 — g) + 4h*(Oc(1)). On the other hand, from the defining
sequence of C twisted by Ops(1), assuming C projectively normal and nondegenerate,
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we get h'(O¢(1)) = g — d + 3, so that h®(TPj;) < g+ 15. Thus D¢ # 0 as soon as
g+ 15 < 20 — g + C?. Using adjunction formula, i.e. C.(C + Ks) = 2g — 2, we can
rewrite this as C.Kg < 3. Now, since S is a smooth cubic Kg = —H where H is an
effective divisor representing a hyperplane section. Moreover any C' is linearly equivalent
to al — Y bie; and h = 31 — Y e; (we identify S with P? blown-up in 6 different points),
so that D¢ # 0 as soon as 3a — . b; > 3, but 3a — ¥ b; = d, and so we get the condition
d > 4.

Finally , as an example we consider the case of projectively normal curves on a smooth
quadric @, proving that these curves are non-rigid (indeed it is sufficient to assume that
h*(Zo(2)) = 0). First of all, from the sequence:

0 — Nc/Q — NC/]}_:va — NQlC - 0,

being N¢jg = we(2) and Ng|c = Oc(2), we have that h'(Ng/ps) = h'(Oc¢(2)); from the
defining sequence 0 — Z¢(2) — Ops(2) = Og(2) — 0, since we assumed h'(Z¢(2)) = 0,
we have 1 —10+h(O¢(2)) +2d — g+ 1 = 0. Moreover, by Serre duality and Kodaira van-
ishing hl(wc(Z)) = hl(Nc/Q) = 0 so that hO(NC/Pa) = X(wc(Z)) + X(Oc(Z)) + hl(NC/]pa)
and this is equal to 10 — g + C2%. The previous estimate for hO(TlP’f’C) works also in this
case (we just used the fact that C is linearly normal and non degenerate), so that D¢ # 0
as soon as g + 15 < 10 — g + C% By adjunction 29 — 2 = C.(C + Kg), and by the fact
that Ko = —2H, the inequality g + 15 < 10 — g + C? can be rewritten as 2C.H > 7, so
that for d > 4 C is non rigid at the first order for the given embedding and so they are
non-rigid (Theorem 2 and [51]).

Let us take into account the wider class of curves of maximal rank in P3. By definition
a curve C is of maximal rank iff h%(Z¢(k))h}(Zo(k)) = 0 for any k € Z. Since we have
already dealt with projectively normal curves, from now on we assume that C' is a smooth
irreducible curve of maximal rank in P3, which is not projectively normal. As usual, let
s := min{k/h%(Zs(k)) # 0} be the postulation index of C. Observe that h'(Z¢(k)) = 0 for
any k > s, since C is of maximal rank. Thus, having set ¢(C) := maz{k/h*(Zc(k)) # 0},
we have that ¢(C) < s —1 (¢(C) is called the completeness index).

As a first case, let us consider ¢ = s — 2 and assume h'(Og(s — 2)) = 0 (which is
certainly satisfied if d(2 — s) +2g — 2 < 0 or equivalently d > 2=2, s > 3). Observe that
in this case, C is s-regular, i.e. h*(Zg(s — 1)) = 0 for any 7 > 0. Indeed, from the defining
sequence of C, we have that h'(Oc(k)) = h?(Zc(k)) and since h*(Oc(s — 2)) = 0, we are
done. Set u := h®(Z¢(s)). Then, if

0— EB(Qpa(—n;;i) - @OPS(—"TLQZ') - @O]pa(——nli) —Ze— 0
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is the minimal free resolution of Zg, setting n := maz{n;} and n; = min{n;}, it is
easy to see that ni = ¢+ 4 = s + 2. Moreover, we have nj > nj > nf, ny > ny >nJ
and also nf = s +2 > nf > ny; > ny = s. From these we get n = ny = s+ 1, that is
ng; = s + 1 for any 7. Analogously, one gets ng; = s + 2 for any ¢. Thus, in this case, the
minimal free resolution is

0 — yOps(—s — 2) = zO0ps(—s — 1) = uOps(—s) = Zg — 0 (5.9)

(resolution of the first kind), where y = h'(Z¢(c)) = h*(Ze(s—2)). If we have a resolution
of the first kind, we can split it as follows:

0 — yOps(—s — 2) = 20ps(—s — 1) = E =0, (5.10)

0— E — uOps(—s) >Ic —0 (5.11)

where F is only a locally free sheaf (indeed, if it were free, than C would be projectively
normal by (5.11)). Twisting (5.10) and (5.11) by TP? and taking cohomology, we get:

0 — uH(TP*(—s)) = H (Zc ® TP?) - H'(E @ TP?) — ... (5.12)
... > cHY (TP (=s — 1)) = HY(E ® TP?) — yH*(TP* (-5 — 2)) — ... (5.13)
On the other hand, in the sequence (5.13), h}(TP3(—s — 1)) = h*(Qps(s — 3)) = 0 by

Serre duality and Bott formulas, while h?(TP?(—s — 2)) = h'(Qps(s — 2)) =0, if s > 3.
Thus, we get that if s > 3, then H*(E ® TP?) = 0. Moreover, twisting the Euler sequence
with Ops(—s), we obtain that h®(TP3*(—s)) = 0 as soon as s > 2. Therefore, from the
sequence (5.12), we have that h%(Zg ® TP?) = 0 as soon as s > 3.

Now, twisting the defining sequence of C by TP and taking cohomology, we get
(assuming s > 3):

0 — HY(TP®) —» H'(TPY) = H'(Ze @ TP’) — 0. (5.14)

We want to give an estimate to h'(Z¢ ® TP?). Continuing the long exact cohomology
sequence (5.12), using again Serre duality and Bott formulas and assuming s > 5, we get
that h!(Ze @ TP?) = h?(E® TP?). Moreover, going on with the sequence (5.13), applying
Serre duality and Bott formulas (s > 5), we obtain h?(E @ TP3) < yh*(TP?(—s — 2)) =
usls==3)  Hence h!(Ze ® TP?) = usls—U(s=3) and from (5.14) we get hO(TP%) < 15 +
y—s(—s—"—léxﬂ, s > 5. Thus, if 4d > 15 + QLS——I}KS—_—?’), or equivalently d > 4 + y_s(s_—-_léx_s—_Sl,
s > 5, then a curve C of maximal rank, with a resolution of the first kind and with
h}(Oc(s —2)) =0, is non rigid at the first order for the given embedding.

As a final example, let us consider a curve C of maximal rank, such that h%(Z¢(s)) < 2
and h}(Og(s — 3)) = R (Oc(s — 2)) = K (Oc(s — 1)) = h*(Oc(s)) = 0 (this happens for
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example if d > 222 and assuming s > 4). In this case, we have ¢(C) = s — 1. Indeed,
if it were ¢ < s — 2, then C would be (s-1)-regular and this contradicts the fact that s
is the postulation. Moreover, if it were ¢ = s — 2, then C would be s-regular and since
h°(Z¢(s)) < 2, C would be a complete intersection of type (s, s), and in particular it
would be projectively normal.

Thus, ¢(C) = s — 1 and from the given hypotheses, the fact that h*(Z¢(s — 1)) =
h'(Ocg(s — 1)) = 0, and h'(Zc(s)) = 0 (since ¢(C) = s — 1), it easy to see that C is
(s+1)-regular. This implies that the homogeneous ideal J(C) is generated in degree less
or equal to s+1. With notations as above, we have nj = c+4 = s+3 > nf > nf =s+1,
where the last equality holds since I(C) is generated in degree less or equal to s+1. From
this, we get nJ = s + 2 and moreover n; > ny = s so that n; > s+ 1. On the other
hand, we can say more, because the map H°(Z¢(s)) ® HY(Ops(1)) — H(Zo(s + 1)) is
injective; indeed, h%(Z¢(s)) < 2 and from a relation of the form H,Fy = HyF] between
the two generators in degree s, we would have that H;|F, but this is clearly impossible.
It turns out that we have no relations in degree (s+1) between the generators of I(C).
Thus ny > s+ 1, n3 > n; > s+ 2, so that ng; = s+ 3 for any ¢ and also ng; = s + 2 for
any 1.

Hence,in this case, the minimal free resolution of Zs is the following:

0— vOps(—s —3) — zOps(—s —2) — wOps(—s — 1) ® uOps(—s) = e — 0, (5.15)

(resolution of the second kind), where v = h'(Z¢(c)) = h*(Z¢(s — 1)). In this case, that
is under the hypotheses that h*(Oc(k)) = 0 for k = s,s — 1,5 — 2, s — 3 (which is satisfied
if for example d > 22 5 > 4), h%(Z¢(s)) < 2 (¢ = s — 1), assuming s > 5 and arguing
as in the previous case, starting from the sequence (5.15), we get that C' is non rigid at
the first order for the given embedding as soon as d > 4 + E(s—_—%ﬁlz. We leave to the
interested reader the details of this case, which is completely analogous to the previous
one.
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