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Notation

We collect here a list of notation commonly used in this thesis.

R the set of real numbers.
N the set of natural numbers including 0.
RN N-fold cartesian product of R with itself.

B(zo,R)  theball {z €RY : |z — x| < R}.

n open set in RV .

A the exterior product in R®.

sV the unit N-sphere {z = (z1,...,2y41) € RV : 3,22 = 1}.

A the Laplace operator defined by Au = Zf_i_l —(%%u for any reg-
ular function v : RY — R.

Co(RM) the set of continous functions on RY with compact support.

Co(RY) the closure of Co(RY) with respect to the uniform norm.

C°(RY)  the space of smooth functions from RY — R with compact
support.

DL2(RN)  the closure space of C$°(RY ) with respect to the norm

1/2
H’u,le,z(RN) = (/ !Vu|2d:r> .
RN

By the Sobolev inequality we can see that DV2(RY) can be
equivalently defined as the class of functions in L2 (RY) the
distributional gradient of which satisfies [,y |Vu|?dz < co.

2% the critical Sobolev exponent 2N/(N — 2).




DL2(RM) the completion of C§°(RY) with respect to the norm

[ /R fal VP dz] v

H1(2)  the closure of C*°({2) with respect to the norm

gz = /ﬂ 1272 (|Vul? + [uf?) -

D'(RN)  the space of distributions on RV .

M(RN)  the space of finite measures on RY .
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1 Introduction

In physics and geometry non-compact group actions arise naturally from scale or
gauge invariance. These phenomena are mathematically reflected in a loss of com-
pactness which expresses as the failure of the Palais-Smale condition (PS) at certain
levels. Given a differentiable functional J : X — R on a Banach space X, we say that J
satisfies the Palais-Smale (PS) condition at level ¢ € R if any sequence {u, }ney in X
satisfying
J(un) - ¢ and DJ(u,) — 0

in the dual space X' has a convergent subsequence, where DJ denotes the Fréchet
derivative of J. In several situations (PS) provides the good compactness property to
solve nonlinear elliptic equations by finding critical point of an associate functional,
as in the case in which such a functional has a mountain pass geometry, as described
in the following theorem due to Ambrosetti and Rabinowitz [18].

Theorem 1.1 (Mountain pass). Let J be a C' functional on a Banach space X .
Suppose

(i) there exist a neighborhood U of 0 in X and a constant p such that J(u) > p
for every u on the boundary of U,
(i) J(0) < p and J(v) < p for some v ¢ U.

Set

= inf >
o= huE ) ze

where I' denotes the class of continuous paths joining 0 to v. Then there erists a
sequence {u;} in X such that J(u;) — ¢ and DJ(u;) — 0 in the dual space X'. If J
satisfies (PS)., then c is a critical level for J.

Important examples of failure of (PS) can be found in situations involving the crit-
ical exponent in the Sobolev embedding theorems or in the cases of the action of
a noncompact group, as in the case of the action of the conformal group acting on
Dirichlet’s integral for minimal surfaces (see Chapter 7).

For p € [1,00] and {2 open set in RY, let W™?(£2) denote the Sobolev space

W™P(0) = {u € LP(R) : 8%ue LP(R), |a| < m}

where, for a multi-index o € N*, we denote by la| = a1 + -+ + ay, its length and

5% = 35;:1 ---%- We endow W™?((2) with the norm
1 1
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folbwrniar = (5 10%000ce))

laj<m

For p = 2, the space W™2({2) is a Hilbert space denoted by H™(£2). If 2 C RY is a
sufficiently smooth domain, from the Sobolev Embedding Theorem we know that the
following embedding is continuous

; : Np
J+m,p 3,9 <qg< .
w () cW»i(2) Whenp_q_N_mp

Moreover if {2 is bounded and p < ¢ < Tv]—f%{a then the embedding is compact. On

the other hand the embedding of H1(RY) into L>N/(N=2)(RV) is not compact. The
reasons why H(RY) < L2N/(N=2)(RN) fails to be compact are essentially twofold:
the unboundedness of the domain and the presence of the exponent 2N/ (N —2) which
is the critical threshold for compactness of the Sobolev immersion. This phenomenon
can be clearly illustrated by the following two examples.

Ezample 1.1. Let ¢ : RY — R be a smooth function with compact support, ¢ Z 0.
If {zn}nen is a sequence of points in RN such that |z,| — 40 as n — oo, then
the sequence of functions u,(z) := ¢(z + T,) obtained by translating ¢ (see fig. 1.1)
is bounded in H*(RY) and converges to 0 almost everywhere. On the other hand
it is clear that it does not contain any subsequence converging in LP (RY) for any

2N
1<p< 755

Fig. 1.1. o(z + zn)

Ezample 1.2. Let o be as in Example 1.1 and consider the sequence of dilated func-
tions un(z) := nV=2/2p(n(z — o). It is easy to verify that {uv,}, is bounded in
H(RN), converges to 0 almost everywhere, and does not contain any subsequence
converging in L>NV/(N=2)(RN) (see fig. 1.2).

The critical threshold 2* = ]31:’2 is related to the Pohozaev identity: if u is a
smooth solution of

—Au = f(z,u) in 2
u=10 on 9{2,

in a C* domain 2 C RY, then

2-N 1 dul’
N [ Fa@yds+ 257 [ wesu)is= [ @5
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Fig. 1.2. nW=2/24(n(z — z0)).

where F is the primitive of f, i.e. F(s) := [; f(¢)dt, and v, denotes the outward
normal unit vector to {2. As a consequence, if u is a solutions to the problem

- = |y|9-1 i
{Au w7ty in 02 (1.1)

u=0 on 912,

where {2 is a star-shaped domain with respect to some point z* € {2 (for simplicity
let us assume z* = 0 so that star-shape of the domain means z - v, > 0 on §£2), there

holds N N_o
—_— 75 (.
(Q+1 2 >/o‘u| =0

Hence (1.1) has only the trivial solution u = 0, whenever ¢ > {£2 = 2% — 1.

The critical exponent 2* appears also in the Sobolev inequality in RY. Let
DL2(RN) be the completion of C§°(RY) with respect to the norm

1/2
1;u|1D1,2(RN).~.< / ]Vu|2dx> .
RN

By Sobolev embedding, D2 (RY) ¢ L2 (RV) continuously and there exists a constant
S = S(N) such that
2 2
Slullze- < HU”DL?(RN) (1.2)

for all u € DY2(RY). The best constant S in the Sobolev inequality is given by

S= inf / |Vu|? dz. (1.3)
uE'Dl‘z(RN) RN
llull 2x =1

Note that the above minimization problem presents lack of compactness in the sense
that it is invariant under translations and dilations; indeed if

™ (z) = AT v(Az +y)

then
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02 lpr2@my = [ollpra@ey and o™ [lger = flollze:

Let us recall that the best constant S in (1.3) is attained by the istanton (Aubin,
Talenti 1976)

(N(N —2) "
(1+ o)™
The phenomenon of lack of compactness arising from the criticality of the limit-
ing Sobolev exponent was studied by Brezis and Nirenberg [27], who considered the

following critical elliptic equation in a bounded domain 2 C RY

] W

U(z) =

. — 2"l
{ Au+iu=u in 2 (1.4)

u>0 in 2, we H}N)

where ) is a real parameter and N > 3. In the case of a subcritical nonlinearity, the
problem is completely solvable. Indeed if 2 < p < 2*, then the problem

1.5
u>0 in2, ueH}N) (1.5)

{——Au +du=uPl in 02
has a nontrivial solution if and only if A > —\;({2), being A1 ({2) the first eigenvalue
of —A in H}(R2) (for the proof we refer to [83]). The main result in [27] is that for
N > 4 problem (1.4) has a nontrivial solution provided —A;(£2) < A < 0.

In this thesis we are going to study some non-compact elliptic problems on RY in
which the lack of compactness originates not only from the invariance by translations
due to unboundedness of the domain but also from two other kinds of invariances:

— invariance under the action of a non-compact group of dilations due to the pres-
ence of a nonlinear term which is critical with respect the Caffarelli-Kohn-Nirenberg
inequality (see Section 4.1), which can be seen as a generalization of Sobolev in-
equality;

— invariance under the action of the class of conformal diffeomorphisms of the sphere
S? (see Chapter 7).

In order to treat this kind of noncompact problems, we will essentially follow three
methods. The first one is the finite dimensional reduction method introduced by
Ambrosetti and Badiale [7, 8] and successfully used in a perturbative setting to
treat noncompact elliptic problems arising in Nonlinear Analysis, such as the Yam-
abe and scalar curvature problems and nonlinear Schédinger equations, by sev-
eral authors: Ambrosetti-Garcia Azorero-Peral [11], Ambrosetti-Li-Malchiodi [14],
Ambrosetti-Malchiodi [15], Berti-Malchiodi [22], Ambrosetti-Badiale-Cingolani [9],
Ambrosetti-Malchiodi-Secchi [17], Ambrosetti-Malchiodi-Ni [16] etc. This method al-
lows to find critical points of a perturbed functional f. = fo — G by constructing
a natural constraint Z. as a perturbation of the manifold of solutions of the unper-
turbed problem, i.e. of the problem with € = 0. In this way we are reduced to study
the functional restricted to Z., namely to study a finite dimensional functional. An -
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introduction to this abstract method is given in Chapter 3 whereas applications to the
study of degenerate critical elliptic equations related to the Caffarelli-Kohn-Nirenberg
inequalities and H-systems can be found respectively in Chapters 4 and 7. An applica-
tion of such a method was also used by the author to treat the problem of prescribing
a fourth order conformal invariant related to the Paneitz-Branson operator [44] and
by F. Uguzzoni and the author to study the Webster scalar curvature problem on the
Heisenberg group [51].

The second method is a fine blow-up analysis which will be the key ingredient in
Chapter 5, where the aim is to prove a-priori bounds for the solutions to degenerate
critical elliptic equations in suitable weighted spaces in order to exploit the homotopy
invariance of the Leray-Schauder degree and thus to obtain existence also in the
nonperturbative case. To do this we will mainly follow the scheme of [69]; see also
[46] and [47] for an application of such blow-up analysis to the proof of compactness
results in deformations of Riemannian metrics on compact manifolds with boundary.

The third method, mainly used in Chapter 6, is the Concentration-Compactness
Principle by P.L. Lions [70, 71]; in order to make this thesis the most self-contained
as possible, we will illustrate it in Chapter 2.

Contents of the thesis

The thesis is organized as follows. After presenting in Chapter 2 the Concentration-
Compactness argument by P.L. Lions [70, 71] and in Chapter 3 the abstract pertur-
bation method introduced by Ambrosetti and Badiale in [7, 8], we will mainly treat
two problems:

1. Degenerate critical elliptic equations related to Caffarelli-Kohn-Niren-
berg inequality (Chapters 4, 5, and 6). In Chapter 4 we use perturbation methods to
study a class of degenerate elliptic equations related to the Caffarelli-Kohn-Nirenberg
inequality, which present lack of compactness due to invariance of the problem under
the action of a noncompact group of dilations. Moreover, the study of nondegeneracy
properties of the unperturbed problem which are needed to apply the method gives
rise to some precise information about the so called symmetry breaking phenomenon.
We present the results obtained by the author in collaboration with M. Schneider in
[48], where the following elliptic equation is considered in RN, N > 3

. o A uP~1 N
— div (Jz|~* Vu)—muzK(x)W, z € RY \ {0} (1.6)

2N
N-21+a-0)

Yy :p(a,b) =

where —o0 < a < ¥22, —c0 < A < (-N—:%-“—:g)z,anda < b < a+1l We
start by discussing in Chapter 4 the perturbative case K(z) = 1 + ek(z), where
ke L®(RN)NC(RY). Our approach is based on an abstract perturbative variational
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method discussed in Chapter 3. The unperturbed problem has a one dimensional man-
ifold of radial solutions. If this manifold is non-degenerate in an appropriate sense, a
one dimensional reduction of the perturbed variational problem is possible, so that
we are reduced to look for critical points of a Melnikov-type functional defined on
the real line. The exact knowledge of the critical manifold enables us to clarify the
question of non-degeneracy, i.e. to find for which values of the parameters a,b, A the
tangent to the unperturbed manifold coincides with the space of the solutions to the
linearized problem. This nondegeneracy result fairly highlights the symmetry break-
ing phenomenon of the unperturbed problem observed in [34], i.e. the existence of
non-radial minimizers of the associated minimization problem. Following the abstract
scheme presented in Chapter 3, we prove existence of a solution under suitable as-
sumptions on k for the parameters satisfying the nondegeneracy condition and for all
le] sufficiently small.

In Chapter 5 we use blow-up analysis techniques to prove an a-priori estimate
in a weighted space of continuous functions. From this compactness result, we prove
existence in the non perturbative case by exploiting the homotopy invariance of the
Leray-Schauder degree. In particular the computation of the degree of the solutions
can be reduced to the computation of the degree of the finite dimensional Melnikov-
type function introduced in Chapter 4; such degree turns out to have explicit expres-
sion, which allows us to find sufficient conditions on K for existence of solutions to
equation (1.6).

In Chapter 6 we present some results obtained in collaboration with B. Abdellaoui
and L. Peral [2] concerning equation (1.6) in the case a = b = 0, also considering the
case in which, instead of A, we have some function satisfying suitable assumptions.
We prove existence by Concentration-Compactness arguments and multiplicity using
techniques that previously had been introduced to study related problems by Cao-
Chabrowsky in [32] and the Lusternik-Schnirelman category.

2. Existence of S2-type surfaces with prescribed mean curvature (Chapter 7).
In Chapter 7 we discuss the problem of existence of surfaces in R3 parametrized
on the unit sphere S? with prescribed mean curvature H (H-bubble), which can be
formulated as follows: given a function H € C!(R®), find a smooth nonconstant
function w : R?2 — R3 which is conformal as a map on S? and solves the problem

Aw = 2H (W) wy Awy, in K2,

/ IVe]? < +o0.
RZ

After presenting a short description of the models of capillarity phenomena motivating
the study of this problem (see Section 7.1), we will present the existence results
obtained by the author in [45], where, using the perturbative method discussed in
Chapter 3, the above equation is studied in the case H = Hp + €Hj, for some Hy €
R\ {0} and H; € C*(R®). Under the assumptions

im Hi(p) =0 and VH; € L®(R’,R®)

|pj—ro0
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the existence of a smooth H-bubble is proved provided |e| sufficiently small. Moreover

we prove the existence of two or three solutions under some extra assumption on the
perturbation H;.






2 The Concentration-Compactness principle

In this chapter we discuss the P. L. Lions Concentration-Compactness principle, see
[70, 71]. Let Co(RY) denote the set of continuous functions on RY with compact
support and let Co(RY) be its closure with respect to the uniform norm. A finite
measure y on RY is a continuous linear functional on Cy(RY) and its norm is defined

by
/ ud,u’.
RN

We denote by M(RY) the space of finite measures and will say that a sequence {fin }n
converges weakly in the sense of measures to u if for any u € Co(RY)

“#HM(RN) = sup
ueCo(RY)
”uHLw(mN):l

/ U dfly, — U di.
RN RN

In this case we will use the notation p, — p.
Theorem 2.1. (Concentration-compactness) Let {u,} be a sequence weakly con-
verging to u in DV2(RY). Then, up to subsequences,

(3) |Vun|* weakly converges in M(RY) to a nonnegative measure pu,

(i1) |un|*" weakly converges in M(RY) to a nonnegative measure v,

and there exist an at most countable index set J, a family {z; : j € J} of distinct
points of RY | and families {v; : j € J}, {u;: j € J} of positive numbers such that

V= [u[z* dz + Z ujém].
=
p> |Vul do + > 10,
JjEJ
and for allj € J . i
S <y,

where S is the best Sobolev constant given in (1.3) and 0, is the Dirac measure at
point z;. In particular Zjej(yj)Q/Q* < o0. Moreover if u =0 and
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2_.";.
du < s( / du) 2.1)
RN RN
then J is a singleton and v = y0g, = S”lfyTZV“u for some v > 0.

Proof. Let us sketch the proof. For details we refer to [70, Lemma I.1]. Let u, — u
in DY2(RY). Then

1Vunl* dz ] gy = /R |Vun|* dz < const

and

. 2*/2
un|? dz N = unl? dz < s—F Vuy|? dz < const.
M(R ) RN RN
Therefore, up to a subsequence,

[Vun|>de — p>0

lun|?” dz — v->0.

Set vy, = up —u € DL2(RY). We have that v, — 0 in DV?(RY). From the Brezis-Lieb
Lemma (see e.g. [83], Lemma 1.32)

wn = un)? dz — [uf*” dz = |ua|? dz + o(1). (2.2)
Set A := |V, |? dz. There exist \,w € M(R") such that
An = A>0 and w, — w>0.

From (2.2) we have that w = v — |u|?". For any ¢ € C$°(RY), we have

/ €)% dw:lim/ 135 dwn=1im/ |€ v dz
RN n JrN n RN
2%
gs—%ummf( / |V(vn§)|2)“. (2.3)
n RN

Since H]f +gllzz — [|f||Lz| < |lgllzz we have

([.ve. 5)12)1/2 -(L. lé}levn|2>l/2 < ([ weemr) s s

moreover, for some compact set C, up to a subsequence, v, — 0 in L?(K) and hence

/RN |VER v |? < const/)clvnIQ-——)& (2.5)
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From (2.3), (2.4), and (2.5), we obtain

2
£

S</RN P dw)2

for any £ € C°(RY). Let A = {z;, j € J} C RY be the set of atoms of w and wp the
atom less part of w, i.e.

< [ lerar (2.6

w=wp + E yj(i,;]..
jeJ

Since w(RY) < 400, J is at most countable. Moreover, for any Borel set A
wo(A) = wo(ANA) +wo(A\ A) =w(A\ A) >0
and hence wy > 0. From (2.6) it follows
A> S5, VYield

Furthermore for any ¢ € C§°(RV)
/|an|2£d:r=/§|Vu]2 dx-l—/&qunPda:-2/§Vu-Vunda:
— /5du—/§|w12daz.

Hence A = p — |Vu|? dz which yields
uw>A> S(Vj)Q/z*éwj and p > |Vu|*dz.

For any ¢ € Co(RY), ¢ >0

sodu=/ pdp+ / pdp
/RN RIM\A ZJ: {o3}
> [ oIVl do+ 3050 o)

7

hence p > |Vul? + ;5 (V7)5% 6, ;- From (2.6) it follows that wy is A-absolutely con-
tinuous. From the Radon-Nikodym Theorem there exists f € L'(RY,)\) such that

wp = fA and
fB (z) duwo
)= lim [ -—=&~—u0u].
o= 5 ( I,y A

If z is not an atom of A

. S
S f(z)™ = lim J
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which yields wp = 0. Hence

VupPdz = p>[Vul> + > S@)F6,,
J
]unlz* dr — v = |u|2* + Zvj5mj.
Jjed

2

Assume now that u = 0 and [pndp < S( fgwdv)?® . Hence w = v and A = p. From
(2.6) it follows that Sv(RY )z < u(RY) so that (2.1) yields

p(RY) = Sy(RV)= . (2.7)
From (2.6) and Holder inequality we have that

)

for any £ € C§°(RY) and hence

oo

2
¥

< u(RN)%( |l du)2

v < 87T p(RY )", (2.8)

#

From (2.7) and (2.8), we deduce that v = S_%M(RN)WQ-'E/.L and hence (2.6) yields

1

(s <swnrs( [ 0)

for any & € CS°(RY). Hence by approximation we get v(E)=v(RV)¥ < v(E)% for
any Borel set E, which is possible only if J is a singleton and v = vz, = 5—17%
for some v > 0. The proof is now complete.

O=

The following theorem provides information about possible loss of mass at infinity.

Theorem 2.2. (Loss of mass at infinity) Let {u,} be a sequence weakly converging
to u in DY2(RY) and define

Voo = lim Iimsup/ |un)? dz,
B |z|>R

~00  p—oo

loo = lim 1imsup/ |Vtg|? dz.
B~ |e|>R

00 n—oo

Then the quantities Voo and lie are well defined and satisfy

i) lim sup/ lun|? dz = dv + Ve,
RN RN

n—oo

ii) limsup/ |Vun]2dx=/ dp + phoo,
RN RN

—+CO
2
i) SvE < peo,

where p and v are as in Theorem 2.1.



2 The Concentration-Compactness principle 17
Proof. For any R > 0, let ¢r be a smooth function on RY satisfying

or(z) =0 if |z| <R,
or(z) =1 1if |z| > 2R,
0<¢r<1 and |V¢r|<2/R

From Sobolev inequality (1.2) we have that

o* * 2
S(/RN |un@g| d:v) < /RN |V {(prun)|* dx. (2.9)
Since

lim Iimsup/ |un)? 6% = Voo, lim limsup/ [Vun|20% = loo,
R0 paoo JRN R—0 pooo JpN

3 3
< ([ uavent) ([ 1vunPer)
RN RN
1
2
< const(/ ui}quRiQ)
RN
limsup/ |un|*|Vr|? =/ [ul*|Vgr|® < (/ Jul*” di’?)
n—oo JRN RN |z|>R

2
* 2*
< const(/ |u|2 dm) — 0
lz|>R R—r00

from (2.9) we obtain iii). Observing that

limsup [ |un|? = limsup (/ |un|? +/ {un|2*>
n—co JRN n—r0Q lz|<R lz|>R

= v(|z| < R) + limsup lun|?

n—roQ lz|>R

/ UnVUndrVor
RN

o
2o

([, wox)

and letting R — oo we obtain i). The proof of ii) is analogous. O

An an example of the use of the Concentration-Compactness principle, we present
here the proof that the best constant in the Sobolev inequality (1.2) is attained.

Theorem 2.3. Every minimizing sequence {un}n of (1.3) is relatively compact in
DV2(RY) up to a translation and a dilation. More precisely for any o € (0,1) and
every y € RY there ewists a subsequence of {un}n, still denoted by {un}n, and a
sequence {on}n C (0,+00) such that

T+ o 2
a= / un< ”y) ! 0N dz (2.10)
B(0,1) '

On
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and

oy X .
un( "y)an2 —u as n — oo in DVERY),
On

where

S=/ |Vu|*dz  and / lu(z))? de = 1.
RN RN

Proof. Since by a change of variable ‘

2*
[ o (-‘”—i“—‘i—y)| = [ @)l
B(0,1) On B(y,1/0)

for each n we can choose o, such that (2.10) holds. The sequence w,, defined by

_N
) = (2202)

On

is bounded in D2(RM) and hence weakly converges to some u € D*?(RY) up to a
subsequence. Let us prove that u # 0. By contradiction, let us assume that v = 0.
Let F : DY2(RY) — R be defined by

F(u) = %~/]RN |Vu|? dz — 2l*/1RN luf?" da.
The sequence v, = ST 2w, satisfies F(vn) — 3-%)S % and F'(uvy,) — 0. Since
Jlim (F'(vn),vn¢r) =0
uniformly in R > 1 (where ¢g is the cut-off function defined at p. 17), there holds
Poo = SVoo

where po, and ve, are as in Theorem 2.2. From Theorem 2.2 it follows that

1:/ dv+ve and S= [ du+ e (2.11)
RN RN

/du=5'(l—uoo),=5' deS(/ du)
RN RN RN

From Theorem 2.1 v must be a singleton of the form

and hence

W)
&]N

V=Yg, = SlyFy (2.12)

for some v > 0 and zo € RY. From (2.11)-(2.12) it follows that

’Y—"-—l"‘Voo:/" dv
RN
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and therefore we have
1= Voo = STy (1 = 1) = (1 — veo) 1+ .

Hence v = 0 and v = 1. On the other hand
a= / lwn|? dz — v(B(0,1)) = 84, (B(0,1)) = 1
B(0,1)

which is not possible since @ € (0,1). Hence we have proved that u # 0. Let us set
p= Jo~|ul* €(0,1]. If p < 1 then from Theorems 2.1 and 2.2 we have

p:l—Zuj~yoo

JjeJ

and

/N’vulzdmss‘z.“j*liooSS<1—ZVJ§*———1/§§;>
R

jeJ jedJ
2_%'
<S(1—Zvj—ym> =SpF.
i€t

On the other hand Sobolev inequality yields
Sp# < / Vuf? do
RN
giving rise to a contradiction. Hence p = 1, which implies that v; = 0 for j € J and

Voo = 0. Thus neither concentration nor loss of mass at infinity may occur and the
theorem follows. O







3 The perturbation technique

In this chapter we describe the perturbation method which was developed by Am-
brosetti and Badiale ([7, 8]) to deal with problems which present lack of compactness,
see also [11, Section 2]. This method allows us to find existence and multiplicity results
for problems in which a small perturbation parameter appears and applies successfully
also to some situations in which the concentration-compactness arguments fail or lead
to involved calculations. The key ingredient is a kind of finite dimensional reduction
which permits to exploit some precise knowledge of solutions to unperturbed equations
to find one or more solutions of a perturbed equation. For the sake of completeness,
we present below this technique in some detail.

Let E be a Hilbert space with inner product (:,-) and norm || - ||. Let us consider
the family of perturbed functionals

fe = fo—eG

where fo, G € C?(E,R). Let D? fo(u) € L(E, E') denote the second Fréchet derivative
of fo at u. Through the Riesz Representation Theorem, we can identify D?fy(u)
with f§(u) € L(E,E) given by f'(u)v = K(D?fo(u)v) where K : E' — E satisfies
(lC(go),v,[))E = g {p,¥)g, for any v € E',7 € E. Suppose that f, satisfies

fo has a finite dimensional manifold of critical points Z; (3.1)
for all z € Z, fy(z) is a Fredholm operator of index 0; (3.2)
for all z € Z, there results T, Z = ker fy/(2). (3.3)

Let us recall that a linear continuous operator A is said to be a Fredholm map if
its kernel N(A) is finite-dimensional and its range R(A) is closed and with finite
codimension. We set Index A = dim N(A) — codim R(A4). If (3.1)-(3.3) hold, we will
say that Z is a non degenerate manifold.

Condition (3.3) is in fact a nondegeneracy condition which is needed to apply the
Implicit Function Theorem. The inclusion T,Z C ker f/(z) always holds due to the
criticality of Z, so that to prove (3.3) it is enough to show that ker f{'(z) C T.Z, which
means that every solution of the linearized equation for the unperturbed problem
belongs to the tangent space.

Consider the perturbed functional f.(u) = fo(u) — eG(u), and denote by I" the
functional G| - Due to assumptions (3.1), (3.2), and (3.3), it is possible to prove (see
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Lemma 3.1) that there exists, for || small, a smooth function w,(2) : Z — (T32)*
such that any critical point Z € Z of the functional

é.: 7 — R, D (z) = fo(z + we(2))

gives rise to a critical point u, = Z + w.(2) of f;; in other words, the perturbed
manifold Z; = {z + w.(2) : z € Z} is a natural constraint for f..

We will assume that Z = ((R?%) with ¢ € C?(R¢, E). Denote Z® = ((Bg), where
Br={z eR¢: ||z|| < R}.

Lemma 3.1. Given R > 0, there exist ¢o > 0 and a smooth function w = w(e, z)
defined for || < g and z € Z%, w(e, 2) € E, such that

(i) w(0,2)=0 VzeZzZ%

(i) w(e,z) LT.Z Vz€ Z, € (—eo,0);
(i) fi(z+w(e,2)) €T.Z Yz€ Z, € € (—€o,50);
(iv) w(z,&) = O(e) as e — 0 uniformly in z € Z%;
(v) 2%(z,e) =+ 0 ase — 0 uniformly in z € ZR.

Proof. For any z € Z%, let ¢ = q(2) = (q1,---,¢a) denote an orthonormal basis for
T,Z. Consider the map (g¢ to be determined later)

H: ((~e0,60) X ZF) x ExR? — E x R
Hz+w)—agq) _ (H
((s,z),w,a) —_ ( £ (,wlq) q) = ('H;) )

where (w|g) = ((wlg1), (wlga), .- -, (w|ga)). Solving
H(g,z,w,a) =0 (3.4)

we mean to find w satisfying (i-iii). Since

H(0,2,0,0) = (fé(gz)> _ (8)

and H is of class C! by definition, we can try to solve equation (3.4) by means of the
Implicit Function Theorem. In order to do that, we have to prove that

OH
A(w, a) 1(0,2,0,0)

is invertible. We get

8H,
8w, a)
Oy

m[ﬂﬂ] = (v]q)-

[U’ﬂ] = 6,(2)'0 - 6‘11
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Since f{'(z) is a Fredholm map, it is enough to prove injectivity. In order to do that,
let us assume L(z)[8,v] = (0,0). Then

{ 4(2)v — Bg =0
(vlg) = 0.

Hence, since ¢ € ker f{'(z),
0= (fo(2)alv) = (fg (2)vlg) = Bla]* == B=0,

so that we have

P

and then, by assumption (3.3), v = Ag. Since
Adlg) = (vlg) =0

we deduce A = 0 and therefore v = 0. We can apply the Implicit Function Theorem
to find w, whose regularity is the same of H# and of f', namely w is of class C*. Since
w(z,0) = 0 for all z € Z%, it follows that w(e, z) tends to 0 as € — 0 uniformly in Z%.
Let us now prove (iv). Setting w.(2) = e tw(e, 2), (iii) yields

Py (2)w:(z) — PG'(z) — PG"(2)w(e, z) + ||@e|jo(1) = 0.

Since w(g, z) tends to 0 as € — 0, we find that ||@|| < const, for |e| sufficiently small,
thus proving (iv). Finally (v) comes easily from the Implicit Function Theorem. O

Let us define
Ze ={z+w(e2): (g2) € (—eo,e0) x ZF}

and note that Z; is locally diffeomorphic to Z.

Fig. 3.1. The perturbed manifold.

Lemma 3.2. Z; is a natural constraint for fl, namely: if ze = z+w(g, 2) is a critical

point of b, := fElZg’ then f;(z) = 0.
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Proof. By assumption, one has
fé(zE) —L TZEZE
ie.
(fe(z +we)lg + ) =0,
where . stands for the derivative with respect to z. (iii) implies that
iz +we) = aeqg

for some ., hence

0= (aeqlg +w:) = as!‘]]z + ae (gl ). (3.5)
From (ii) we get (we|g) = 0 and, after a derivation, (w.|g) + (we|¢) = 0. Since w, — 0
as e — 0, (1:]|q) = —(we|q) goes to 0 as € — 0. From (3.5) (remember |g| = 1) we get

0 = a. + a.0(1), e—=0

which implies a; = 0 so that f!(z.) = 0. O

The previous lemma says that critical points of f. constrained on Z. give rise
to critical points of f. (free critical points). This means that in order to find critical
points of f it is sufficient to study the critical points of a finite dimensional functional
@, defined on Z ~ R?. Therefore we can say that the previous lemma is a sort of
Lyapunov-Schmidt reduction, in the sense that an infinite dimensional problem is
reduced to a finite one.

Remark 3.1. If Z is compact, then #. must have either a maximum point or a mini-
mum point and hence Lemma 3.2 allows to conclude the existence of a critical point
of f.. Actually in [10] it is proved that if Z is compact and nondegenerate, then
f- has at least cat(Z) critical points provided |e| is small enough, where cat(Z) de-
notes the Lusternik-Schnirelman category of Z, i.e. the least integer k£ such that
Z CUyU... UUy, being U;, i =1,...,k, closed subsets of Z contractible to a point
in Z.

In the case in which Z is not compact, in order to find critical points of &, the
following Lemma, which provides an expansion for &., can be useful.

Lemma 3.3. Uniformly in z € Z%, there holds
P (z)=b—el'(z)+0(e) ase—0 (3.6)
where fo =b on Z andF=G| .
z

Proof. The result can be proved simply by writing a Taylor expansion for @,
B (2) = fe(z +w(s, 2)) = fo(z +wle, 2)) — eG(z + w(e, 2))
= b+ (fo(2)|w(e, 2)) —e[G(2) + (G'(2)|w(e, 2))] + o(e)
=b—el'(2z) + o(e).
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Since I" is the leading term in the expansion, we will find results making assumptions
on I'. Such a I' is the Poincaré function and its derivative is the Melnikov function.
From Lemma 3.3 and Lemma 3.2, the following theorem follows.

Theorem 3.1. Let fo satisfy (3.1), (3.2), and (3.3) and assume that I" has a critical
point Z € Z satisfying one of the following conditions:

(a) Z is nondegenerated;
(b) Zz is a proper local mazimum or minimum point;
(c) Z is isolated and the local topological degree of I at z is different from zero.

Then for |e| small enough, the functional f. has a critical point u. such that u. — 2
as € = 0.

Proof. Let us briefly sketch the proof of (b). If zy is a proper minimum point of I,
then there exists an open neighborhood A C Z of z such that I'(zp) < infs4 I'. From
the expansion (3.6) it is easy to get, for € small, that

Je(zo + ’LU(E,ZQ)) > sup fe(z + ’UJ(E, Z))
zEDA

Since Z. is finite dimensional, f, must have a maximum point of the form z + w(e, 2)
for z € A. In the same way if zg is a proper maximum point of I', we can find
maximum points of f.. Hence the theorem is proved under assumption (b). In order
to treat case (a), we expand @ as

BL(z) = —el"(2) + O(?) = —e(I"(2) + o(1))(z = 2) + O(e?) asz— Z.
From the invertibility of I"(Z) we can find for & small soﬁe z. near Z such that
ze =Z+(I"(2) +0(1))"'0(e) and &.(z.) =0
hence also (a) is proved. (¢) can be handled with the same kind of arguments. O

Remark 8.2.1f Zo = {z € Z: I'(z) = ming I'} is compact, it is still possible to prove
that f. has a critical point near Z. The set Zy can also consist of local minimum
points; the same holds for maximum points. In statement (c) we can allow that I" as
an isolated set of critical points C such that deg(I™, £2,0) # 0 in an open neighborhood
{2 of C.

Example. Let us consider the problem of finding homoclinics of
& — 1z +1° = eh(t).
V3

cosht

Tt is easy to see that 2z(t) = is a solution of the unperturbed problem (see fig.

3.2). Let us take E = H*(R),
Z={z(t) = n(t-7): 7R},
Glu) = /R h(t)u(t) dt,
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and introduce the Poincaré functional

I(r) = G(z) = /R h(t)zo(t — 7) dt = /R h(t + 7)o (£) dt.

==Y
Ntas=

Fig. 3.2. The homoclinic solution to the unperturbed problem.

Z satisfies assumptions (3.1)-(3.3). Suppose that A € L?*(RN), so that the integral
makes sense. I' is a one dimension function and its proper maximum or minimum
points give rise to homoclinic solutions to the problem.

Remark 3.3. More general perturbations are treated in [7], where functionals of the
form

fe(u) = fo(u) — G(e,u) 3.7)

are considered.
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Degenerate critical elliptic problems







4 Céﬂ‘arelli—Kohn—Nirenberg type equations

In this part, we study the problem of existence of solutions to some degenerate critical
elliptic equations related to the Caffarelli-Kohn-Nirenberg inequality with a singular
Hardy-type potential. In particular in the present chapter we discuss some existence
results obtained in [48] in a perturbative setting whereas in the next chapter we treat
the nonperturbative case through the blow-up analysis and the Leray-Schauder degree
arguments developed in [49]. In chapter 6 some existence and multiplicity results
obtained in [2] for a less general class of equations involving Hardy inequality and
critical Sobolev exponent via concentration-compactness arguments are presented.
Let us mention that on bounded domains related degenerate equations were studied in
[4, 5, 39], while some results concerning elliptic equations with Hardy-type potentials
can be found in [3, 52, 74]. Concerning parabolic equations related to the Caffarelli-
Kohn-Nirenberg inequality one can see [1, 40].
Let us start by recalling Hardy and Caffarelli-Kohn-Nirenberg inequalities.

4.1 Hardy and Caffarelli-Kohn-Nirenberg inequalities

Let us recall the following inequality due to Hardy (see [59]). For the proof we refer
to [21] and [54].

Lemma 4.1. (Hardy inequality) Let N > 3 and assume that u € DV2(RY), then

u

— ¢ L*(RY) and

|z|

|ul?

/ —zdzT SCN/ |Vu|?de,
R 2] RN

where Cy = (ﬁr‘)_—g)2 5 optimal and not attained.

The above inequality actually says that the embedding of DV2(RY) in L? with respect
to the weight |z|~2 is continuous. On the other hand it is possible to see that such an
inclusion is not compact.

In [28] Caffarelli, Kohn, and Nirenberg established the following inequalities which
can be considered as a generalization of Hardy and Sobolev inequalities (see (1.2))

2/p
(/ || ~%P |u|P dm) < Cap |z|722|Vul?dz  Yu € CP(RY) (4.1)
RN RN




30 4 Caffarelli-Kohn-Nirenberg type equations

where for N > 3

N-2
—o<a< 5 a<b<a+l,
IN (4.2)
N-214+a-b)

p :p(av b) =

Let us note that the above inequalities contain the classical Sobolev inequality (1.2)
(a = b =0) and the Hardy inequality (e = 0, b = 1). The problem of sharp constants
and extremal functions was faced by Catrina and Wang in [34] (see also [33]). Let
DL2(RV) be defined as the completion of C§°(RY) with respect to the norm

1/2
[/ lz|~2%|Vu|? dz] , (4.3)
RN

s0 (4.1) holds for u € DL2(RY). The best constant in (4.1) is given by

—2a 2
S(a,b) =Cop™t = inf M. (4.4)
ueD?(RN)\{0} (f |z|=tP|ulP)?
The extremal functions for S(a,b) are solutions of the Euler equation
—div (|z|7?*Vu) = ﬂ >0, zeRY (4.5)
= [:E|bp , u>0, .

which is the prototype of more general nonlinear degenerate elliptic equations describ-
ing anisotropic physical phenomena. In [34] it is proved that

l.forb=a+1, S(g,a+1)= (H—:%—“—Zﬂ)2 and it is not achieved;
2. for a = b <0, S(a,a) is equal to the best Sobolev constant and is not achieved;
3. fora<b<a+1, S(a,b) is always achieved.

In addition, in [34] the symmetry breaking phenomenon, i.e. the existence of non-
radial minimizers of (4.4), is studied; in particular the following result is proved.

Theorem 4.1. [34, Theorem 1.3] There exist an open subset H C R? containing
{(a,a)|a < 0}, a real number ag < 0 and a function h :] — 00,a0] = R satisfying
h{ag) = ap and a < h(a) < a+1 for all a < ag, such that for every (a,b) € HU{(a,d) €
R? |a < ag, a < b < h(a)} the minimizer in (4.4) is non-radial.

The exponent p(a, b) defined in (4.2) is critical for the Caffarelli-Kohn-Nirenberg in-
equality; indeed equation (4.5) is invariant under the action of the noncompact group
of dilations, in the sense that if u is a solution of (4.5) then for any positive u the

dilated function
_N—2—2a

pm 2 u(z/p)

is also a solution with the same norm in DL:2(RY).
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4.2 Caffarelli-Kohn-Nirenberg equations in a perturbative
setting

Motivated by [34], in [48] M. Schneider and the author studied the following elliptic
equation in RY in dimension N > 3

. 5 uP~1
—le (]LL‘I 2 V’U,) et W u = K(m)—ll’l—bp, T e ]RN \{0} (4:6)
where a,b, and p satisfy (4.2) and
N —2a-2\2
-0 <AL — ) - (4.7

The above equation is a prototype of more general nonlinear degenerate elliptic equa-
tions describing anisotropic physical phenomena. For A = 0 equation (4.6) is related
to the family of inequalities (4.1) discussed in Section 4.1. We will deal with the
perturbative case K(z) = 1 + ek(z), namely with the problem

: —2a — up—-l
—div (|z|~22Vu) — R u = (1 +€k(m))—-—————|m|bp (Pass)
u € DY(RY), w>0in RV\{0}.
Concerning the perturbation & we assume
ke L®RY)nCRY). (4.8)

Our approach is based on the abstract perturbative variational method discussed in
Chapter 3, which splits our procedure in three main steps. First we consider the un-
perturbed problem, i.e. € = 0, and find a one dimensional manifold of radial solutions.
If this manifold is non-degenerate (see Theorem 4.2 below) a one dimensional reduc-
tion of the perturbed variational problem in D12(RY) is possible. Finally we have to
find a critical point of a functional defined on the real line. Solutions of (P, ) are
critical points in DL2(RY) of

1 oare 12 A u? 1 uf,
£.(u) .--2-/RN =22 | Vul? do 2/R~ S & p/RN (1-+ ek(a) 5> do.

where uy = max{u,0}. For € = 0 we show that fp has a one dimensional manifold
of critical points

_N-3-2¢ z
Zap\ = {Zﬁ’b’/\ =p Zf’b”\(;) lu> 0} ,

where
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N=2(14a—b)

_ 9 _ 5 _ T 4(1+a—’b)
Zf,,,,k(w)le(N 2 — 2a)\/(N — 2 — 2a) 4,\} :

N-2(1+a-1b)

_ N~2(14a-b)
«/(N—z—zu)z—‘u) (N—2—2a)(14a—b) - 2(1+a=b)
1— —= — - 2(1+a—b)\/(N-2-2a)2 -4
. []$|< N—2—2a N-—-2(14a~b) [1_'_]2:’ N—3(1¥a—b) } .

These radial solutions were computed for A = 0 in [34], the case a = b = 0 and
—00 < A < (N —2)2/4 was done by [82]. The exact knowledge of the critical manifold
enables us to clarify the question of non-degeneracy.

Theorem 4.2. Suppose a,b, \,p satisfy (4.2) and (4.7). Then the critical manifold
Zap,x 15 non-degenerate, i.e.

T, Zop =kerD*fo(2) V2 € Zapa, (4.9)

if and only if for any j € N\ {0}

[~

_ J_V;zj_?% (4.10)

N G(N+j-2) 1
b hya,)) = = 1+(Ni(2_+22)2_)4J

b=+l b b=a

iN2v2

Fig. 4.1. A=0 and h;(-,0) for j=1...5

The above theorem is explicit and fairly highlights the symmetry breaking phe-
nomenon of the unperturbed problem observed in [34], see Theorem 4.1. In fact from
Theorem 4.2 we deduce the following result.

Corollary 4.1. Suppose a,b,p satisfy (4.2) and a # b. If b < hi(a,0), then S(a,b) in
(4.4) is attained by a non-radially symmetric function.

With respect to Theorem 4.1 by Catrina and Wang, the above corollary provides a
curve starting from the origin below which symmetry breaking occurs; such a curve
is explicitly given by hi(a,0), i.e. the first curve at which degeneray occurs, and stays
above the curve found by Catrina and Wang. A comparison between the symmetry
breaking result by Catrina and Wang and ours is done in pictures 4.2 and 4.3 below.
Concerning step two, the one-dimensional reduction, we follow closely the abstract
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b

b=a+l." " b=a

Fig. 4.2. region of non-radial minimizers in [34]

b=atl P L~ b=a

R a

Fig. 4.3. region of non-radial minimizers given by hi(:,0)

scheme in [7] presented in Chapter 3 and construct a perturbed manifold

Z5pn = {20" +w(e, p) | w > 0},

such that any critical point of f. restricted to Zg p» 1s a solution to (Pap,»). We
emphasize that in contrast to the local approach in [7] we construct a manifold which
is globally diffeomorphic to the unperturbed one such that we may estimate the
difference [lw(e, p)|| when p — oo or u — 0 (see also [13, 19]). More precisely we show
under assumption (4.11) below that ||w(e, p)|| vanishes as g — co or u — 0 . We will
prove the following existence results.

Theorem 4.3. Suppose (4.2), (4.7), (4.8), and (4.10) hold. Then problem (Pq.)
has a solution for all || sufficiently small if

k(co) = |w1l1£}nmk(m) exists and k(oo) = k(0) = 0. (4.11)

Theorem 4.4. Assume (4.2), (4.7), (4.8), (4.10) and
ke C3*(RY), |Vk| € L2(RY) and |D?k| € L= (RV). (4.12)

Then (Pap,a) is solvable for all small || under each of the following conditions

limsup k(z) < k(0) and Ak(0) > 0, (4.13)
|z|—ro0
l‘iminf k(z) > k(0) and Ak(0) < 0. (4.14)

z|—oco
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Problem (4.6), the non-perturbative version of (P,p,»), was studied by [77] in the
casea=b=0and 0 < A < (N —2)2/4. A variational minimax method combined
with a careful analysis and construction of Palais-Smale sequences shows that in
dimension N = 4 equation (4.6) has a positive solution u € DL2(RV) if K € C? is
positive and satisfies an analogous condition to (4.11), namely K (0) = lim 4|00 K ().
In our perturbative approach we need not to impose any condition on the space
dimension IN. The nonperturbative case will be discussed in Chapter 5. The remainder
of this chapter is devoted to the proof of Theorems 4.2, 4.3, 4.4, and Corollary 4.1.

4.3 Preliminaries

In [34] it is proved that, for b = a + 1, S(a,a + 1) = (ﬂ-":;;?“f (see Section 4.1).
Then we obtain for —co < A < (&%)2 a norm, equivalent to norm (4.3), given by

2 1/2
20 U
”’LLH = [/RN !.’12[ 2 |Vul2 d(l?—‘)\/r;N Wdﬂ)} . (415)

We denote Dii (RY) the Hilbert space equipped with the scalar product induced

by |-l .

= 29V - Vo d ——/\/ e
(u,v) /RN |z|**Vu - Vvdz o 0T z

Moreover, we denote by C the cylinder Rx SV~1. It is is shown in [34, Prop. 2.2] that
the transformation

_N—-2—-23a X
u(z) = |z z v( —In|z|, m) (4.16)

induces a Hilbert space isomorphism from Di’f\(]RN ) to H i’r‘) (C), where the scalar
product in H )1"2(6’) is defined by

N — 2 —2a\?2
('01,02)1{;"2((3) = /val . V’Uz + ((-———-—2-————) — )\)'U]_'Uz.

Using the canonical identification of the Hilbert space Dtllf\(]RN ) with its dual induced
by the scalar-product and denoted by K, i.e.

K :(DIA®RY)) = DIS(RY),
(K(p),u) = p(u) VY (p,u) € (DY3(RY)) x DIIRY),

we shall consider f(u) as an element of D;'3(RY) and f/'(u) as one of L(Dy3(RN)).
If we test f!(u) with u_ = max{—u,0} we get
p—1

(Flw)us) = /Rlel“z”‘Vu-W— —A/RN E%%;—) - /RN (1+ak(x))y5|£$—|—bz-:—:

= —lu_?
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and see that any critical point of f. is nonnegative. The maximum principle applied in
RN \{0} shows that any nontrivial critical point is positive in that region. We cannot
expect more since the radial solutions to the unperturbed problem (¢ = 0) vanish at
the origin if A < 0. Moreover from standard elliptic regularity theory, solutions to
(Pap,x) are CL2(RY \ {0}), a > 0. The unperturbed functional f, is given by

1 21w 12 /\/ u? 1/ ufl,
== 2 Y gt g
folw) = 3 /R Jemevupde -2 [ a2 [ S

for any u € Di:i(RN ), and we may write fc(u) = fo(u) — eG(u), where

P
1 ul

= - k(z)——. 4.17
G = | ke (417)
4.4 The unperturbed problem
Critical points of the unperturbed functional fu solve the equation
A 1
T —2a _ — p—1
div (|z|=22Vu) PEEE u = B U (4.18)
ue DJA(RY), u>0in RV\{0}.

To find all radially symmetric solutions u of (4.18), i.e. u(z) = u(r), where r = |z,
we follow [34] and note that if u is radial, then equation (4.18) can be written as

v N-2a-1, A 1

—_ - = . Pl
720 r2atl ¢ T ety P T e W (4.19)

Making now the change of variable

u(r) =r= "2 p(lnr), (4.20)

we come to the equation

2
o [ (2E2) - <o o)

All positive solutions of (4.21) in H'?(R) are the translates of

N=2(1+a—b)

(t) _ N(N -2 20,)\/(N -2 — 20.)2 . 4A 4(1+a—b)
s 4(N —2(1+a—b))
(1+a~b)\/(N—-2_2a>2_4/\ T+a—
(cosh N-20%a"0b) t
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namely @, (t) = 1 (t—1n ) for some p > 0 (see [34]). Consequently all radial solutions
of (4.18) are dilations of

N—2(14a—b)
L8 (g = N(N -2 —2a)y/(N —2—2a)2 —4x| 0+
! B N—-2(1+a-0)
VISR | (r-g-aa)tas) e o
N)z| N=3=2a N—2(T+a-b) [1 +lz|T mraEen }
(4.22)

and given by
N-—~2—2a T
Zz’b’/\(l‘) = M——T_Zf’b’A (ﬁ), mw> 0.

Using the change of coordinates in (4.20), respectively (4.16), and the exponential
decay of z2%* in these coordinates it is easy to see that the map p — z3** is at least
twice continuously differentiable from (0, co) to Dif\(RN ) and we obtain

Lemma 4.2. Suppose. a,b, \,p satisfy (4.2) and ({.7). Then the unperturbed func-
tional fo has a one dimensional C?-manifold of critical points Z,p » given by
{zg’b”“l,u > O}. Moreover, Zap\ is ezactly the set of all radially symmetric, posi-
tive solutions of (4.18) in Di?\(RN)

In order to apply the abstract perturbation method we need to show that the manifold
Zq.p,x satisfy a non-degeneracy condition. This is the content of Theorem 4.2.

Proof of Theorem 4.2. The inclusion T asxZapx C ker D2 fo(z2"*) always holds
and is a consequence of the fact that Z,; » is a manifold of critical points of fo.
Consequently, we have only to show that ker D?f, (zﬁ’b”\) is one dimensional. Fix

u € ker D? fo(2%"*). The function u is a solution of the linearized problem

A _p—1

: —2a
—div (|z|7**Vu) — 2D u = B

(zpPM)P~2u, (4.23)
We expand u in spherical harmonics
w(rd) = > vi(n)Yi(¥), reR", desV,
i=0

where vi(r) = [qnvo,u(r?)Y;(9)dd and Y; denotes the orthogonal i-th spherical
harmonic jet satisfying for all 1 € Ny

—Agn1Y; = ’L(N +1— 2)Y,;. (4.24)

Since u solves (4.23) the functions v; satisfy for all < > 0
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v;" N—-1-2a

! i _p-1 a,b,Ayp—2
Tyea YiT T e Vi Yi-—om A“‘Y“_Tz(aﬂ) viY;= 7op P v Y
and hence, in view of (4.24),
vi" N-1-2a , i(N+i-2) A D=1, opip2
T2 T T jzarr Vi ) Vi T paern Vi S e )P v (4:25)

Making in (4.25) the transformation (4.20) we obtain the equations

2
—;"" — Bcosh™2 (vt —Inp))p; = </\— <J_V_-_—_z—_2a> —i(N+z'—2)> i, 1€Ng,

where
5 N(N +2(1+a—-0))((N—2-2a)?~4))
4(N -2(1+a—0))2
_(14+a—-0b)/(N—-2-2a)2—4X
N—-2(14+a-0) ’
which is equivalent, through the change of variable ((s) = (s +1n p), to

and

—¢" — Beosh™(ys)¢; = (/\ - (_]Y_:__Qi_—__Q_a)‘ —i(N+i- 2)) G, 1€No. (4.26)

It is known (see [56],[68, p. 74]) that the negative part of the spectrum of the problem

—¢" — Beosh™*(ys)¢ = v¢

is discrete, consists of simple eigenvalues and is given by

2 2
vi= =T (-0+2)+ VIF4877) e, 02 <z (-1+VIT4B77).

Thus we have for all 7 > 0 that zero is the only solution to (4.26) if and only if

; ; << .
Ai(a,X) # Bj(a, b, \) foraﬂO_]<2(1+a_b), (4.27)
where : )
_9_
Ai(a,N) = A — <Z—V-§—33> —i(N +i—2)
and

Bj<a,b’/\):_((N"2—2a)2—4,\)(1+a—b)2(_2j+ N )2

4(N -2(14+a-10))? l+a-1b

Note that Ag(a,A) = B1(a,b, ), 4i(a,A) > Aia(a, A) and B;(a,b,A) < Bji(a,b,\),
as it is shown in the figure below.

Hence (4.27) is satisfied for ¢ > 1 if and only if By(a,b,A) # A;(a,b,\), which
is equivalent to b # h;(a, A). On the other hand for i = 0 equation (4.26) has a one
dimensional space of nonzero solutions. Hence, ker D2 fo(z2%*) is one dimensional if
and only if b # h;(a,\) for any 7 > 1, which proves the claim. O
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AZ A] AO

| !
T T

Fig. 4.4. Ag =B, Ai > Aiy1 and B; < Bjn

Proof of Corollary 4.1. We define I on DL2(RY)\{0} by

IVullz
llull3e

vule=( [, 'wl‘““’“lvup)% and = ([ | |z|~bp|u|p)%

I is twice continuously differentiable and

w0 = oo ([ ervuve Il [ japiup2ug).

llull3 5 [l

Moreover, for positive critical points u of I a short computation leads to

I(u) ==

where

@ onon) = ([ T v0n = [t = 1) [ et )

+(p— 2)5”5;;& (/ lzl’_bpup_lfﬁl) (/RN |m|'bpup_1<p2>.

Obviously I is constant on Z, ;0 and we get for z; := z7 0 and all w1,p2 € Dl’“ (IRN)

(I'(z1), 1) = (fo(z1),01) =0,

2
”21”2,b

(") = U8 e o)

# o=t ([l ) (e ). @)

From the proof of Theorem 4.2 we know that for b < hy(a,0) there exist functions
$ € DL2(RVN) of the form ¢(z) = (l:cl)Yl(:c/ |z|), where Y7 denotes one of the first
spherical harmonics, such that (fg(z1)@, #) < 0. By (4.28) we get (I"(21)$,6) < 0
because the integral [ |z|=%2f~ 145 = 0. Consequently C, ;! is strictly smaller than
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I(z1) = I(23"°). Since all positive radial solutions of (4.18) are given by 7200 (see
Lemma 4.2) and the infimum in (4.4) is attained (see [34, Thm 1.2]) the minimizer
must be non-radial. O

As a particular case of Theorem 4.2 we can state

Corollary 4.2.

2
() If0<a< N;:) and 0 <A< (N—“%:J—“) then Z, p,x is non-degenerate for any b

between a and a + 1. )
i) Ifa=0and0 <\ < (¥=2=22)" then Z,, » is degenerate if and only ifb = \ = 0.
2 10, )

Remark {.1.1f a = b = X = 0, equation (4.18) is invariant not only by dilations but
also by translations. The manifold of critical points is in this case N + 1-dimensional
and given by the translations and dilations of 20"*°. Hence the one dimensional man-
ifold Zp,0 is degenerate. However, the full N + 1-dimensional critical manifold is

non-degenerate in the case a = b= A =0 (see [11]).

4.5 The finite dimensional reduction

We follow the perturbative method developed in [7] (see Chapter 3) and show that a
finite dimensional reduction of our problem is possible whenever the critical manifold
is non-degenerated. For simplicity of notation we write z, instead of zl‘j’b*’\ and Z
instead of Z, 5, if there is no possibility of confusion.

Lemma 4.3. Suppose a,b, A\, p satisfy ({.2) and (4.7) and v is a measurable function
such that [y |z~ |v|752 is finite. Then the operator J, : Dif\(RN) - Dif\(RN),
defined by

Ju) = i /R el ), (4.29)

1S compact.

Proof. Fix a sequence (un)nen converging weakly to zero in Dii (RM). To prove the
assertion it is sufficient to show that up to a subsequence J, (u,) > Dasn — 0. Using
the Hilbert space isomorphism given in (4.16) we see that the corresponding sequence
(Un)nen converges weakly to zero in H )1\’2(6). Since (vn)nen converges strongly in
L2((2) for all bounded domains (2 in C, we may extract a subsequence that converges
to zero pointwise almost everywhere. Going back to D}L:i(RN ) we may assume that
this also holds for (un)nen. By Holder’s inequality and (4.1)
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M@l < sup [ jal P loljunlia

llh”Di‘i(mN)Sl R

1/p » \(e-1)/p
< s ([ e ([l )
Il pae <1 N RN RN

D (p—1)/
<o [ el =)
RN

To show that the latter integral converges to zero we use Vitali’s convergence theorem
given for instance in [61, 13.38]. Obviously the functions |- |"1’b|'vl£T |un|7-T converge
pointwise almost everywhere to zero. For any measurable {2 C RY we may estimate
using Holder’s inequality

P » _ p_\ (P—2)/(p—1) _ 1/(p—1)
/ 2l P[] 7 un 75T < ( / 2 }o] ) ( / 2/ fual?)
2 2 2

_ _p N\ (P—2)/(p—1)
<c( [ spi7)

for some positive constant C. Taking {2 a set of small measure or the complement of
a large ball and the use of Vitali’s convergence theorem prove the assertion. O

Lemma 4.3 immediately leads to

Corollary 4.3. For all z € Z the operator fg(z) : Dif\(RN) — D‘llzr“:\(IRN) may be
written as f(z) = Identity — Ji,jo—> and is consequently a self-adjoint Fredholm
operator of index zero.

2

Define for z > 0 the map U, : D} (RY) — D3 (RY) by

_N-2-2a [Z
Up(u) :=p~ " 2 u(;)

It is easy to check that U, conserves the norms || - || and || - ||p,5, thus for every p >0
U)™t = (U =Uy-1 and fo = foo Uy (4.30)

where (U,)* denotes the adjoint of U,. Twice differentiating the identity fo = fooUy,
yields for all Ay, ha,v € Dy (RY)

(fo @)ha, he) = (fo (Uu(v))Up(h1), Un(he)),
that is
V() = (Uu) " o fy(Uu(v)) o Uy Vv € DA(RY). (4.31)

Differentiating (4.30) we see that U(u, z) := Uy(z) maps (0,00) x Z into Z, hence
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oU
5;(#, 2)=Uu: T2 = Ty, Z and Uy, : (T.2)* = (Ty,(»2)™ . (4.32)

If the mam'folgl Z is non-degenerated the self-adjoint Fredholm operator f§ (z1) maps

the space D3 (RY) into T,, Z1 and fU/(z,) € L(T., Z1) is invertible. Consequently,
using (4.31) and (4.32), we obtain in this case

175 ) ey 20y = 105 ) e zey Vze 2. (4.33)

Lemma 4.4. Suppose a,b,p, X satisfy (4.2), (4.7), and (4.8) holds. Then there exists
a constant C1 = C1(||kl|co, @, 0, X) > O such that for any p > 0 and w € Di:?)'\(IRN)

Gz +w)] < Ca(IIBP22, + lw]?) (434)
16/ o+ I < Cr (b2 225 + [} ~) (435)
16"z + )| < G (K22 257 + o] P~2). (436)

Moreover, if lim|g) 00 k() =: k(o) = 0 = k(0) then
&P 2, 0lps — 0 as p— 0o or u=+0. (4.37)

Proof. (4.34)-(4.36) are consequences of (4.1) and Hélder’s inequality. We will only
show (4.36) as (4.34)-(4.35) follow analogously. By Holder’s inequality and (4.1)

IG"(z +w)ll < (= 1) sup / [k ()]

b4
bl iaali<t Jrw ||

<@=DIKMPIL  sup FMP (2 + )32 llp s lallp,s
s s <1

< c(llElloos @y b, ) [I|E[YP (2 + w)|257

|2 4 w[P=?|ha o

Using the triangle inequality and again (4.1) we obtain (4.36).
Under the additional assumption k(0) = k(co0) = 0 estimate (4.37) follows by the
dominated convergence theorem and

B, _ [ o)
Lo et = L, faftp
O

Lemma 4.5. Suppose a,b,p, A satisfy (4.2), (4.7), (4.8), and (4.9) hold. Then there
exist constants €9, C' > 0 and a smooth function

w = U)(/J,, 5) : (Oa +OO) X ("50750) — Di:i(RN)
such that for any p > 0 and € € (&g, &p)

w(p,€) is orthogonal to T, Z (4.38)
Fizu +w(p,e)) € T.,Z (4.39)
lws,e)ll < Clel. (4.40)
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Moreover, if ({.11) holds then
llw(u,e)]| = 0 as p —+ 0 or p — co. (4.41)

Proof. Define H : (0,00) x Dy5(RV) x R x R = D3 (RY) x R

H(/‘Li w, a, 6) = (fé(zl.t + ’U.)) - aéln (w7éﬂ))1

where €, denotes the normalized tangent vector z ﬂz” If H(p,w,a,e) = (0,0) then

w satisfies (4.38)-(4.39) and H(u,w,a,&) = (0,0) if and only if (w,a) = Fue(w,a),
where

-1
Fu.(w,0) =— (6(61’{ )(,u,O 0, O)) H(p,w,a,¢) + (w, a).

We prove that F, . (w, @) is a contraction in some ball B,(0), where we may choose
the radius p = p(¢) > 0 independent of z € Z. To this end we observe that

0H
((‘—""3(%&) (#,0,0,0)> (w, B), (F (zu)w — B, (w, gﬂ)))
= ” (z,u UJH2 + ﬂ" + I(w gu)]2 (4.42)

where

OH . L
(s 00,00 ) (,8) = (o = B, (,60)

From Corollary 4.3 and (4.42) we infer that ( - (/,L, 0,0,0)) is an injective Fredholm
operator of index zero, hence invertible and by (4 33) and (4.42) we obtain

|(egmoon)”

Suppose (w,a) € B,(0). We use (4.31) and (4.43) to see

< max (1, |(fg (2)) 7)) = max (L, [|(fg (1) 7)) =: C
(4.43)

(H(u,w,a,e) - (5%(#,0,0, O))(w,a))

< Cullfilzu +w) = fo' (zu)wll

1
<c. / £ (2 + tw) — F2 (2] dt ]l + CulellIG (2 + w)]

HFu,E(w: a)l| < C.

1
< C*/O 175 (21 + 801 (w)) = fo' (1)l dt flwl] + Culel|G' (2 + w)]

< Cup sup |Ifi(z1 +w) — f3(z0)ll + Cule] sup [IG'(zp + )|l (444)
Jlwli<p : lwll<e
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Analogously we get for (w1, a1), (w2, a2) € B,(0)

[[Fpe(wi, o) = Fp o (ws, as)] < Welzu +wi) = filzu +wa) = f3/(2) (wy — wy)||
Cullwr — wy| - [lwr — wal|

1
< / 172 (2 + 3 + by — wa)) — £ ()|

1
< / £ (2 + w2 + twy — ws)) — £(z,)]] dt
0

+ |e|/0 IG" (24 + wa + t(wy — wy))|| de

< sup Ifg'(z1 +w) = ' (z0)ll + [e] sup [|G"(z, + w)].
flwll<3p llw]|<3p

We may choose pg > 0 such that

; 1
Cs sup |lfg(z1 +w) = fil(z1)]| < =

llwl|<3p0 2
and gy > 0 such that
1 7=
1 -1 ; P
4500*01““{:] /Pz;zng,b < min {po, (m) }
-1
§ 3 < ( sup  ||G"(z -|—w)H> ct (4.45)
z2€Z,||lw|[<3po
-1
seo< (s [0z <wll) o,
{ 2€2,|[wl|<po

where C is given in Lemma 4.4. With these choices and the above estimates it is easy
to see that for every 2, € Z and [¢] < g the map F), . maps B,,(0) in itself and is a
contraction there. Thus F), . has a unique fixed-point (w(y,e), a(u,¢)) in B,,(0) and
it is a consequence of the implicit function theorem that w and « are continuously
differentiable. :
From (4.44) we also infer that F, . maps B,(0) into B,(0), whenever p < pp and

p>2lel( sup |G (= +w)])C..
[lwll<p

Consequently due to the uniqueness of the fixed-point we have

[(w(z,€), a(z,€))ll < SIEI(” Sup 1G"(z +w)ll) -,
wi|=po

which gives (4.40). Let us now prove (4.41). Set

Pu = 4800*01“lkll/pzu”£,—bl'
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From (4.45) it follows that

1
. N
Pu < min {p07 (850010*) }

In view of (4.35) we have that for any || < &o and 2 > 0

2le|C. s I1G" (2, + w)| < 2le|CuCrlllkPzullhy" + 21elCuCrpl ™ pu-
w||<pp

Since pf~2 < g2~ we have,
— 1 3
2le|Cy sup [|G' (2 +w) < 216l0*01|||kll/pzu||p,bl + Zpu < 1Pm < Py,
flwli<pn

so that, by the above argument, we can conclude that F}, . maps B,,, (0) into B,,(0).
Consequently due to the uniqueness of the fixed-point we have _

llw(u, )l < pu-
Since by (4.37) we have that p, — 0 for x — 0 and for p — +o00, we get (441). 0O
Under the assumptions of Lemma 4.5 we may define for || < &o
Z5yx = {u € DIARY) Ju= 20" +w(p,e), p € (0,00)}. (4.46)
Note that Z¢ is a one dimensional manifold.

Lemma 4.6. Under the assumptions of Lemma 4.5 we may choose go > 0 such that
for every |e| < eo the manifold Z¢ is a natural constraint for f-, i.e. every critical
point of f.|z= is a critical point of fe.

Proof. Fix u € Z¢ such that f.|%.(u) = 0. In the following we use a dot for the
derivation with respect to p. Since (2,,w(p,€)) = 0 for all 4 > 0 we obtain

(Zu, w(p,€)) + (2,0 (p,€)) = 0. (4.47)
Moreover differentiating the identity z, = U,z,/, with respect to u we obtain
. 1. . |
z2g = =Us21 and 2, = —Ug 2. (4.48)
o o
From (4.39) we get that f.(u) = c12, for some p > 0. By (4.47) and (4.48)

0= (fi(u), 2 + w(p,€)) = c1(Zu, Zu + w(ps€))
= eop 2 (Jll? — (1, U (s, 2))) = o™ (Il = [11110(1)e)).

Finally we see that for small € > 0 the number ¢; must be zero and the assertion
follows. O

In view of the above result we end up facing a finite dimensional problem as it is
enough to find critical points of the functional @, : (0,00) — R given by felze-
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4.6 Study of &,

In this section we will assume that the critical manifold is non-degenerate, i.e. (4.9),
such that the functional &, is defined. To find critical points of &, = f.|ze it is
convenient to introduce the functional I" given below.

Lemma 4.7. Suppose a,b,p, A satisfy (4.2), (4.7), and (4{.8) holds. Then
P (1) = folz1) — el () +ole), (4.49)

where I'(p) = G(z,). In particular, there is C > 0, independent of p and €, such that

|Pe (1) —(fo(z1) — eI'(w))]
< O(llw(e, P + @+ leDllw(e, P + lell|w(e, ). (4.50)

Consequently, if there exist 0 < py < ps < p3 < co such that

P(p2) > max(I'(w), T(pa)) or D(ps) < min(T(ue), D(pa)) (451
then @, will have a critical point, if £ > 0 is sufficiently small.
Proof. Note that for all 4 > 0 we have fy(z,) = fo(z1),

2P~y

Il = [ D and (i) = [ ETEE )

N |z|tP vy |z[PP

From (4.52) we infer

P p—l,w , 2 , p
2.0)=7 [, pptglvenlis [ i‘l‘ilf(iﬂ“% L= Ek)(ﬁﬁ;w(s 2
" = _ Lo L= (11 o
ot = o) = 31l = [ g = (5 3) L e
Hence
2.(0) = fole) = T + (e, = ZHo(w), (4.53)
where

H.(u) = / (Z/.L + w(E,ﬂ)) - Zﬁ _-pzz“lw(gb;u) + Ek((zu + ’UJ(E,M))p _ 25) |
RY ||

Using the inequality

C(z*Bw? +w™t) ifs>3

+ s—1 _ _s—1 __ -1 =2, <
)™ =2 = -1 w S 5 e if2<s<3,
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where C = C(s) > 0, with s = p+ 1 and Holder’s inequality we have for some
ca,c3 >0

we, p—z”— 2P Lw(e,
le(u)l</ | (2 +w(e, n)) [z[bp pzE w(e, p))

e ]/ k| ((z + w(e, p))P — 2E)

|z]°?

2272w (e, 1) lw(e, w)[P
= [/ Iz *AN B

A w
e [ e [ M
<es [lule I + (0 + D (e, 1P + el (e, )]

and the claim follows. O

Although it is convenient to study only the reduced functional I" instead of &, it
may lead in some cases to a loss of information, i.e. I' may be constant even if k is
a non-constant function. This is due to the fact that the critical manifold consists
of radially symmetric functions. Thus I" is constant for every & that has constant
mean-value over spheres, i.e.

=),
—— k(z) dS(z) = const Vr > 0.
T ), e 45
In this case we have to study the functional &, (u) directly.
Proof of Theorem 4.8. By (4.11), (4.37), (4.41) and (4.50)

lim Pe(u)= lm &. (1) = folz).

p—0t

Hence, either the functional &, = fo(21), and we obtain infinitely many critical points,
or &, £ fo(z1) and &. has at least a global maximum or minimum. In any case &,
has a critical point that provides a solution of (Pg5,x)- O

The next lemma shows that it is possible (and convenient) to extend the C*— func-
tional I" by continuity to u = 0. The proof of this fact is analogous to the one in [11,
Lem. 3.4] and we omit it here.

Lemma 4.8. Under the assumptions of Lemma 4.7
. _ 1 »
I(0) = limy I'(p) = k(O)EHleIp,b and (4.54)

]. . - p . . . 1 - p
Ellgln—}g k(@)||zll} , < h/.LIE)lo%f I'(p) <limsup I'(p) < ihmsup k(z)llzllp,-  (4.55)

p—r00 |z]|—o0

If, moreover, (4.12) holds we obtain
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r'(0) = 0 and I'(0) = 0) / LGy (4.56)

III“’

Proof of Theorem 4.4. To see that assumptions (4.13) and (4.14) give rise to a critical
point we use the functional I". Condition (4.13) and Lemma 4.8 imply that I" has a
global maximum strictly bigger than I'(0) and limsup,_,., I'(4). Consequently &,
has a critical point in view of Lemma 4.7. The same reasoning yields a critical point
under condition (4.14). O







5 Blow-up analysis for Caffarelli-Kohn-Nirenberg
equations

In this chapter we continue the study of degenerate critical elliptic equations of
Caflarelli-Kohn-Nirenberg type by presenting the compactness and existence results
obtained by M. Schneider and the author in [49]. By means of blow-up analysis tech-
niques, we first prove an a-priori estimate in a weighted space of continuous functions.
Then from this compactness result, the existence of a solution to our problem is proved
by exploiting the homotopy invariance of the Leray-Schauder degree.

As in the previous chapter, let us consider the following equation in RY in dimen-
sion N > 3,

pPl

v=K(z)——, v>0, ve&DL3RY)\{0}, (5.1

—div (lxl—Zavv) - IQ:I‘BP 3 =

A
|z|2(0+a)

where K € C2(RV) N L®(RY) is positive and
2 bl
A< (N -2-2a

a< a<f<a+]l, (5.2)

2N

)d, p=p(a,ﬁ)=N_2(l+a_ﬂ)- (5.3)

2

We look for weak solutions in the space D2 (RY) (see page 30 for the definition of
DL2(RM)). Let us define

ala, A) := Z—\%ﬁ - \/(W)d —Aand b(a, B,A) =B +ala,\) —a. (5.4)

The change of variable u(z) = |z|*"®v(z) shows that equation (5.1) is equivalent to

~div (|z| % Vu) = K(w)%;, u>0, ue DLYHRV)\ {0}, (5.5)

where a = a(a, A) and b = b(a, 8, ). More precisely the following lemma holds.

Lemma 5.1. v is a solution to (5.1) if and only if u(z) = |z|* *v(z) solves (5.5),
where a = a(ao, ) and b = b(a, B, ) are given in (5.4).
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Proof. By standard elliptic regularity » and v are C*(RY \ {0}). Consequently we
may compute for z € RY \ {0}

div (Jz|**Vu(z)) = (a — @)(N — a — a = 2)|z|7*"*?v(z) + [z*~div (jz|~>* V)

and hence, in view of (5.1)

. _ u(z uP~1

—div (Jz|**Vu(z)) = [A+ (@ — a)(N ~ 2 — a — a)] TIEFS;)E + K(w)m.
From (5.4) we have that A+ (a —a)(N—-2—-a—a) =0and a —a + 3 = b. Since
C= (RN \ {0}) is dense in DL2(RY) and DL2(RY) (see [34]), the lemma is thereby
proved. |

Clearly, if we replace a by a and 8 by b then (5.2)-(5.3) still hold and p(e,8) =
pla,b). We will write in the sequel for short that a, b and p satisfy (5.2)-(5.3). We
will mainly deal with equation (5.5) and look for weak solutions in DX2(RY). The
advantage of working with (5.5) instead of (5.1) is that we know from the regularity
results discussed in Section 5.1 that weak solutions of (5.5) are Holder-continuous
in RY whereas solutions to (5.1), as our analysis shows, behave (possibly singular)
like |z|*~® at the origin. The main difficulty in facing problem (5.5) is the lack of
compactness as p is the critical exponent in the related Caffarelli-Kohn-Nirenberg
inequality. More precisely, if K is a positive constant equation (5.5) is invariant under
the action of the non-compact group of dilations, in the sense that if u is a solution
of (5.5) then for any positive pu the dilated function

_N~—-2-2a

pmE u(z/p)

is also a solution with the same norm in D.2(RY). As already pointed out in the
previous chapter, the dilation invariance gives rise to a non-compact, one dimensional
manifold of solutions for K = K (0) (see in (5.15) below).

The first theorem in this chapter, provides sufficient conditions on K ensuring
compactness of the set of solutions by means of an a-priori bound in a weighted space
E defined by

E:= DY) N CO®Y, (1 + [N —2720)),

where
CORY, (1 +[zV=272%)) := {u € C°(RY) : u(@)(L + |2V ~272%) € L®(RV)}
is equipped with the norm
llullco@mn, (14 [z|v—2-20)) = ZS:BEN lu(z)|(1 + |z|V27%%).
We endow E with the norm

lullg = llull pr2@ry + [ulloo®n, (14 |2|¥ ~2-20)).
(RN)
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The uniform bound in E of the set of solutions to (5.5) will provide the necessary
compactness needed in the sequel. We formulate the compactness result in terms of
o, B and v the parameters of equation (5.1), where we started from. Let us set

K(z) = K(z/|z]?). (5.6)
Theorem 5.1. (Compactness) Let o, 8, A satisfy (5.2)-(5.8) and

A>—a(N-2-a), (5.7)

(_____N"z“m)‘_lq, (5.8)

B>a, p> 2 . (5.9)
(N—g)—za)Q —

Suppose K € C*(RY) satisfies
K € C*(RY), where K () is defined in (5.6), (5.10)
VK(@0)=0, AK(0)#0, and VK(0)=0, AK(0)#0, (5.11)
and for some positive constant Ay
1/4; < K(z), VzeRY. (5.12)
Then there is Cx > 0 such that for any t € (0,1] and any solution vy of

pp—1

[a]PP’ (5.13),
v >0, veDYA(RY)\ {0},

—div (|z|2*Vv) — v=(1+4+t(K(z)-1))

A
|20 +a)
we have |||z|*"*w]|g < Ck and

Cx' < |z *(1 +|z|V 272"y (z) < Cx in RY \ {0}. (5.14)

To prove the above compactness result we adapt the arguments of [69] to carry out a
fine blow-up analysis for (5.5). Assumptions (5.7)-(5.9) imply

(5.7) = a>0, (58) = Mt<a< 2
(59) e m<p<2*=1\?;jj2.

A key ingredient is the exact knowledge of the solutions to the limit problem with
K = const, which is only available for a > 0. In [37] (see also [82]) it is shown through
the method of moving planes that if a > 0 then any locally bounded positive solution
in C?(RN \ {0}) of (5.5) with K = K(0) is of the form

b - _N—-2-2a ,b X
2= z;((o)(;), p>0, (5.15)
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where z;{’l(’o) = 20 (z K(0) cEale =2=73) ) and zy * is explicitly given by

_ N—2(1+a—b)
N—-2(1+a-b), 20ta-b(v-2-20) S(I+fa~b)

NV -z —aap

220(z) = {1 +

As we pointed out in the previous chapter, for a < 0 the set of positive solutions
becomes more and more complicated as a— —oo due to the existence of non-radially
symmetric solutions (see Theorem 4.1 and Corollary 4.1). Up to now, our blow-up
analysis is only available for p < 2*; the case p = 2* presents additional difficulties
because besides the blow-up profile z7 * a second blow-up profile described by the usual
Aubin-Talenti instanton of Yamabe-type equations may occur. The further restrictions
on a, p and K should be compared to the so-called flatness-assumptions in problems
of prescribing scalar curvature.

Non-existence results for equation (5.5) can be obtained using a Pohozaev-type
identity, i.e. any solution u to (5.5) satisfies the following identity

VK vy
RN( (x)'iv)]‘:'v—lg,; z =0,

provided the integral is convergent and K is bounded and smooth enough (see Corol-
lary 5.3). This implies that there are no such solutions if VK (z) - z does not change
sign in RY and K is not constant.

The above compactness result allows us to exploit the homotopy invariance of the
Leray-Schauder degree to pass from ¢ small to ¢ = 1 in (5.13);. We compute the degree
of positive solutions to (5.13); for small ¢ using the Melnikov-type function introduced
in [7, 8] (see Chapter 3) and show that it equals (see Theorem 5.10)

_ sgnAK(0) + sgnAK (0)
2

In particular, we prove the following existence result.

Theorem 5.2. (Existence) Under the assumptions of Theorem 5.1, if, moreover,
p>3 and _
sgnAK(0) + sgnAK(0) # 0

then equation (5.1) has a positive solution v such that |z|* “v € Bg,(0) C E and v
satisfies (5.14).

The assumption p > 3 is essentially technical and yields C? regularity of the functional
associated to the problem which is needed in the computation of the degree.

Remark 5.1. If we drop the assumption o < 5—2:2 we may still change the variables

u(z) = |z|*~*v(z), where a is given in (5.4), and we still obtain weak solutions u of
(5.5) in DL?(RY). But in this case the transformation v(z) = |z|* %u(z) gives rise
only to classical solutions of (5.1) in RY \ {0} but not to distributional solutions in
the whole RV. :
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The chapter is organized as follows. In Section 5.1 we establish Holder continuity of
weak solutions to (5.5). In Section 5.2 we prove a Pohozaev type identity for equation
(5.5). In Section 5.3 we introduce the notion of isolated and isolated simple blow-up
point which was first introduced by Schoen [75] and provide the main local blow-
up analysis. In Section 5.4 we prove Theorem 5.1 by combining the Pohozaev type
identity with the results of our local blow-up analysis. The last part is devoted to the
computation of the Leray-Schauder degree and to the proof of the existence theorem.

5.1 Regularity for equations of Caffarelli-Kohn-Nirenberg type

In this section we present the regularity results for degenerate elliptic equations of
Caffarelli-Kohn-Nirenberg type obtained by M. Schneider and the author in [50]. Our
purpose is to establish Holder continuity of weak solutions to

: —2a _ f : N |
—div (|]z|7**Vu) = I in 2 CRY, (5.16)
where {2 is an open set, N > 3 and a, b, and p satisfy (5.2) and (5.3). For a given
weight w we denote by LP({2,w) the space of functions u such that

”“Hip(ﬂ w) = lulPw(z) < oco.
’ 2
The space H(£2) is defined to be the closure of C*({2) with respect to

ol = /Q 22 (Vul? + Jul?)

In order to study problem (5.5) for non-constant functions K using for instance a
degree argument (as we will do in Section 5.5), Hélder estimates for weak solutions
of (5.16) are an important tool. Regularity properties of weak solution to degenerate
elliptic problems with more general weighted operators of the form div (w(z)V(-)) are
studied in [42, 43, 60] (see also the references mentioned there). The classes of weights
w treated there include the class (QC) of weights

w(z) = |detT'|' 2/,

where T : RV — RV is quasi-conformal (see [43, 60] for a definition). In fact
our weights | - |72% are associated with quasi-conformal transformations T,(z) :=
z|z|~2%/(N=2) The right-hand sides studied in [42, 43, 60] are either zero or in diver-
gence form, e.g. Holder continuity of weak solutions to

—div (|z]~?*Vu) = div (F) in 2

is established in [42] assuming |F||z|>* € LP(2,|z|72*) for some p > max{N —
2a,N,2}. We derive Holder estimates for weak solutions to (5.16) in terms of f,
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because a sharp relation of the integrability of f and its representation in divergence
form F in the various weighted spaces is not obvious. We compare weak solutions of
(5.16) with pe-harmonic functions, which are by definition weak solutions of

—div (|z|7?*Vu) = 0 in 12,
and for which Holder regularity is known (see for instance [60]) and prove

Theorem 5.3. Suppose 2 C RY is a bounded domain and u € HL(2) weakly solves
(5.16), that is

/Q[a:|'2“Vu-thdm=/Q|a:|"bpf<pda: Vo€ Hj ,(12).

Assume a, b and p satisfy (5.2) and (5.3), b < a+1, and f € L*(2,|z|~%) for some
s>p/(p—2). Then u € C®* for any a € (0,1) satisfying

(%2-0) (p-2-2) 520

N(p-2-2) ifb<0’

a < min(ap,1) end a < {
)

where oy, is the regularity of po-harmonic functions given in Theorem 5.5 below.
Moreover, for any {2’ CC 12 there is a constant C = C(N,a,a, {2, dist(2', 02), s) such
that
lu(z) — u(y)
sup [u| + sup —;—l <C {H“”Lz(o, dpa) HfHLs(rz,m—bp)}-
el z,y€’ ICE - y[
THEY

For the nonlinear problem (5.5) we use a De Giorgi-Moser type iteration procedure
as in [26] and obtain

Theorem 5.4. Let a, b and p satisfy (5.2) and (5.3) and u € DL?(RY) be a weak

solution to
[ulP~u

|zl
where K € L°(£2). Then u € L{ (12,|z|7°P) for any s € [p, +oo[. Moreover, u is
Holder continuous with Hélder exponent given in Theorem 5.3.

—div (|z|~%*Vu) = K(z) z €2 (5.17)

Let us mention that in [39] weighted g-Laplacian equations of the form
—div (|z|7%|Vu|T™2Vu) = g

are studied. Under assumption (5.2) and (5.3) Holder regularity of weak solutions to
equation

fo.

B

—div (Jz|79*Vu) = n 2 CRY,

is shown if a = b, @ > —1, and f € L*(£2, |z|~%P) for some s > p/(p — 2). Theorem 5.3
extends this result to the full range for a and b in the case ¢ = 2.
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5.1.1 Properties of weighted measures

We collect some properties of the weighted measure p, = |z|72% dz and p,-harmonic
functions. We refer to [43, 60] for the proofs.

— The measure p, satisfies the doubling property, i.e. for every 7 € (0, 1) there exists
a constant C(s.18)(7) such that

ta(B(z,T)) < Cs.18) (T e (B(z, 1)) (5.18)

— A Poincaré-type inequality holds, i.e. there is a positive constant Cs.19) such that
any u € DL2(RY) satisfies

£ooum v dua < Coagr® 9l (5.19)
B.(z)

B (z)
where ug » denotes the weighted mean-value

1
Ug,p 1= udua=~——————————/ u(z) du,.
fl;’(z) Ba(Br(z)) B.(z) () dpse

Concerning p,- harmonic functions we have the following results.

Theorem 5.5 (Thm. 3.34 in [60](p. 65), Thm. 6.6 in [60](p. 111)).
There are constants Cs.30)(N,a) and ap = ar(N,a) € (0,1) such that if u is p,-
harmonic in By(zo) CRY and 0 < p < r then

ess-suP (a1l < Clozey . Jul? d (5.20)

(ED:T)

osc(u, B,(zg)) < 2%+ (é) osc(u, Br(zg)), (5.21)

where osc(u, By(20)) = SUPp, (50) ¥ — 0L B, (z,) U denotes the oscilllation of u. Conse-
quently, p,-harmonic functions are Holder continuous.

1,2

We will call a function v € D,
nonnegative p € C°({2) we have

(RY) weakly super pu,-harmonic in {2, if for all

/ |z| 24 VuVyp > 0. (5.22)
2

Theorem 5.6 (Thm 3.51 in [60](p. 70)). There ezist positive constants s =
s(N,a) and C(523) = C(s5.23)(IV,a) such that if u is nonnegative and weakly super
L -harmonic in 2 and Ba,(zo) C 2 we have

1
K

ess infB%(mo)u > C(5.23) ( fB u® dp,a) . (5.23)

#(zo)
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We use the two theorems above to derive

Lemma 5.2. For any ball B, (o) there is a constant C(5.24)(Br(20)) such that any
Ha-harmonic function u in B,(zg) satisfies

200, —2
£ vedns<cen(2) T £ wuPde 620
B, (z0) r B (zo)

where ayp, € (0,1) is given in Theorem 5.5.

Proof. To prove the claim we may assume that 0 < p < (1/4)r and that u has mean-
value zero in B;(zq). We take a cut-off function £ € C2°(Bs,(zo)) such that £ =1 in
B,(z0), 0 <€ <1, ||VE|leo < 2p7! and define ¢ := £2(u — u(zo)). Testing with ¢ and
using Holder’s inequality we get

/ |Vul?€® du, < / IVEI2 (u — u(z0))? dpe (5.25)
Br.(zo) Br(zo)
< llu = u(@0) 126, B, (ao) o (B2 (20)) 72 (5.26)

From (5.26) and (5.21) we infer

2a 2a
][ |Vu|? du, < C(£> osc(u, By (20))?p 2 < C’<£> p2 f |u|? dpg-
By (z0) r r B.(z0)

Finally, since u has mean-value zero in B,(xg) the Poincaré inequality (5.19) yields
the claim. O

5.1.2 Growth of local integrals

We give a weighted version of the Campanato-Morrey characterization of Holder con-
tinuous functions.

Theorem 5.7. Suppose 2 C RN is a bounded domain and u € L?(02,du,) satisfies
£ o) = unrl duo < M for any Bu@) € 2 (5.27)
B,.(z)
and some a € (0,1). Then u € C%*(£2) and for any 2' CC §2 there holds

—u
sup ju| + sup _Iu(m) iy)l
ry z,yeQ’ lz —y|
THY

< C{M + 1|U“L2(9,|z|—2a)}

where C = C(N, a,a, 2, dist({2',2)) is a positive constant independent of u.
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Proof. Denote Ry = dist({2',012). Using the triangle inequality and integrating in
B, (zo) we have for any zg € 2 and 0 < ry <712 < Rp
2
lumo,rl - uwoﬂ‘zl

2 / 2 2
< —Q u(z) — Ugy,ry| G +/ u(z) — gy, d }
:U'a(Bn (170)) { B, (z0) I ( ) ° 1[ fa B, (zo) l ( ) o 1’2‘ Ha

Using assumption (5.27) we obtain

|ufto,7'1 = Ugzg,rs

2 2M? va o
| Sm{ﬂa(l?rl(mo))rl + pia(Bry (z0))75 } (5.28)

For any R < Ry we take r; = 270+DR and ry = 27'R in (5.28). The doubling
property (5.18) then gives

]uzo,z—(“‘l)R - uwo,Q"iR| S 2.2VI2 (1 + O(5~18) (N, a)22°‘)2_2(i+1)°‘R2°‘.

We sum up and get for h < k

C(N,a,a)M
Iu:co,Q_"R - uzo,2"“Rl < "‘(—‘5‘,;.7—)“—1%&. (529)

The above estimates prove that {u;, 2-ig}ien C R is a Cauchy sequence in R, hence
it converges to some limit, denoted as G(zg). The value of 4(zo) is independent of R,
which may be seen by analogous estimates. Consequently, from (5.29) we have that

|tag,r — a(zo)| < C(N,a,a)Mr* Vo € £2'. (5.30)

By the Lebesgue theorem we infer

—2a
| Br(z)| . fBr(fL‘) ™ uly) dy — u(zr), a.e.in .

Ug,r = )
(@) W12 dy ERE) roo

Hence @ = u a. e. in 2 and (5.30) gives
|thao,r — u(zo)| < C(N,a,a)Mr* Vo €2, (5.31)

which implies that u, » converges to u uniformly in {2'. Since x — ug,, is a continuous
function, we conclude that v is continuous in 2. From (5.31) we have

lu(z)] < C(N,a,0) MR® + |uz.r] Vz €', VR<R,.
Thus u is bounded in 2’ with the estimate
sup |u| < C(N, a,a, {2, dist([?', .Q)){M + “U“LZ(Q’lml—mz)}. (5.32)
QI

Let us now prove that u is Holder continuous. Let z,y € ' with |z —y| =R < %Q.
Assume that |z| < |y|- Then we have
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lu(z) —w(y)| < |u(z) = ue2r] + [u(y) — uy2r] + |uz,2r — Uy 28]
The first two terms are estimated by (5.31), whereas for the last term we have
[uz2r — Uy 2| < 2{1%,21?. —u(&)|? + |u(€) - Uy,2R|2}
and integrating with respect to & over Bag(z) N Bar(y) 2 Br(z) we obtain
lug,2r — Uy,2R|?

< #-a-(B—R (:17)) (M2ﬂa, (B2R (.’L’))22°‘R2°‘ + M2/La (BQR(y))22°‘R2°‘) )

Since z is closer to 0 than y, we have that pq(Bagr(y)) < pe(B2r(z)) and hence
|’L&($) - U(y)‘ < C(N7 a, CY)MIZ' - yla‘

If |z — y| > &2 we can use estimate (5.32) thus finding

1
) = )] < 2supu] < 2% M + e ulgaga-an) lo — 31
0

The proof is thereby complete.
Corollary 5.1. Suppose 2 C RN is a bounded domain and u € HL(2) satisfies

][ [Vul? du, < M?r2%=2 for any B,(z) C 2
B.(z)

and some a € (0,1). Then u € C%®(2) and for any 2' CC 2 there holds

sup |u| + sup ________|u(z) — Uiy)l
2 z,yen’ l.’E - yl
THY

where ¢ = ¢(N, a, a, 2, dist({2', 2)) > 0.

< C{M + ”u”Lz(!2,|m|—2°)}

Proof. The proof follows from Theorem 5.7 and the Poincaré type inequality in

(5.19).

Lemma 5.3. Suppose @ be a nonnegative and nondecreasing functions on [0, R] such

that

8(p) < A1 pa(Bp(2)) pa(Br(2)) ™ (§>— B(r) + As po(Br(z))r P, (5.33)

for any 0 < p < 7 < R, where A1, As, o and 8 are positive constants satisfying
a < B. Then for any v € (o, B) there ezists a constant C5.34)y = C(5.34)(A1,, 5,7)

independent of x and v such that for 0 < p<r <R

8(p) < Cis 3y (ua (B, (@) tta (B (@) ({i) B(r) + A3 pa (B,,(rz:))p“ﬁ) (5.34)
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Proof. Fix v € (o, ) and set 7 := min(A7 /"™ 1/2). Then we have for 0 <7 < R
&(rr) < pa(Brr(2))pa(Br()) 7 77B(r) + Aor ™ pa(By ().
Hence we may estimate for k € N

@(Tk-{—lr) < Pa(Brk‘lr(m))ua(Brkr(w))—lTﬁ—7)
< ua(B w10(2)) o (Br (@) T T EFTR(r) + Ag (1) TP pa (B (2))

Z,Ua T’““r(z))/"a(B‘r’“r(m)) -t (B ke Jr( )),lba(B.,.k—j+1,(m))"1l7‘(ﬁ—7)j

- <1 <Cgs. 18)(;3 by (5.18)
< Clp.18) (Pt (Basan (@) ta (Br (2) 7= +07(r)
A"C(s 18) (T)

+ W(Tkr)_ﬁﬂa(&kr(w))-
For 0 < p < r we may choose k € N such that 7*72r < p < 7%*1r and obtain

P(p) < B(r*+r)
= AsCE Lo (1)
—1(pP 2-(5.18 -
< Giss (T a By (@)ia (B, () (2] 000) + 220 (8,0
The proof is now complete. O
In order to prove Theorem 5.3 we need the following lemma.

Lemma 5.4. Let a, b and p satisfy (5.2) and (5.8) and € > 0. Then we have
2/p+e
(/ [fﬂl"b”) < Cs.a5) (V) p~ 2+ (max(p, vaol)“abp/ 2|7, (5.35)
B (30) BP Zo

Proof. Let us distinguish two cases.
Case 1: p > |zo|/2. Since (N —bp)(2/p+¢e) = N —2 — 2a + (N — bp) we obtain

2/p+e 2/p+e
L) <[ ) =,
By (zo) B3, (0)

From the doubling property (5.18) and the fact that B,(0) C By, (zo) we 'infer,

pE(N—bp)—-Q/ I_,El-—2a. Zcps(Nubp)—~2/ |$|—2a
BP(ZQ) B4p(1:0)

> cpE(N—bp)—2 / |$'—~2a — Cz(N)pN—2~2a+E(N—bp)
B, (0)

and the claim follows in Case 1.
Case 2: p < |zo|/2. We have for all z € B, (zo) that 1/2 < |z|/|zo] < 3. Consequently,
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2/p+e
(/ Izl“bp> < 03(N)pN(2/P+E)‘mOI—Qb—abp
B, (zo)
< Cg (N)pN"zI.,EDl—-2ap2N/P—N+2]$O’_g(b_a)pNslzol_Ebp

From r < |zo]/2 we get

2/p+e
(/ Iﬂfl”"p> < C3(N)pN =2 |zo| 722 pNE || ==
B, (zo)

< Cy(N) ( / lwl"2”> PN lmo| P,
By (zo)

which ends the proof. O

Proof of Theorem 5.3. Let w € u + Hj ,(B;(x0)) be the unique solution to the
Dirichlet problem

{_dqu-%Vw)=0 in By (zo) (5.36)

“’IaB,(mo) =1u.

Clearly the function v = u —w € Hg ,(Br(zo)) weakly solves

—div (|z]72*Vv) = in Br(zo)-

i
|z|*
Testing the above equation with v and using Holder’s inequality and (4.1), we get

3 :
Lo < Conn ([ o) T ([ el )
B,‘(Io) B.,.(:Z‘o) By-(zo)

Since f € L*({2,|z|~) for some s > p/(p — 2) we may use Holder’s inequality with
conjugate exponents s(p — 1)/p and

s(p—1) p—1
sp—1)—p 1+(—2-(p/s))

and Lemma 5.4 with € = 2(p — 2 — p/s)/p to obtain

2 2

5 pte
Lo vt dmeson( [ arniae) ([ jel)
Br(zo) Br(z0) Bx(z0)

< COr™**N& max(r, |20]) ™" ha (B (20)) (/

Br(zo

2/s
) lml‘bplfis) - (5.37)

From (5.24) we deduce for any 0 < p<r
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£oovePdm<af VePdurs f o (Vo du
B, (z0) By (zo) B,(z0)

20 —2
<10 (2) £ 190l dua - tuaBoleo) [ V0Pl
T B(mo) B :ED)
(5.38)

Since w minimizes the Dirichlet integral we may replace w in (5.38) by wu. If we further
estimate the integral containing v in (5.38) using (5.37) we get

/B (o) [Vul? dpq < C(,ua (B, (0)) pta(Br(20))* (g) —242a, /Br( _—

Zo)
+ T—2+NE ma.X(T‘, lmOD—pr/Ja(Blr-(l‘O)“f”%.s(Br(mo)’lm[—bp)> .

We estimate the term max(r, |zo|) "¢ by r~%¢ if 5 > 0 and in the case b < 0 by a
constant C(2). For the rest of the proof we will consider the more interesting situation
b>0. The case b <0 may be treated analogously.

Lemma 5.3 with &(p fB (o) |Vul? du, givesfor 0 < p < 7 < 19 := dist(zo, 012)

/Bp(wo) [Vuf® duo < Ofe) (;;%g—%( )—2+2a /J;T(mo) Vel dps

We take a cut-off function § € Cg°(Br(zo)) such that £ =1 in B, s(z0), 0 < £ <1,
IV&loo < 2r~! and define ¢ := £2u. Testing with ¢ and using (4.1) and Hélder’s
inequality we get

+ p—2+(N—bp)e'ua(Bp($0)

Vul*¢ du, < C, 2 '
\/B(z:o)l ’LLI f Ha = bN”f”LP T(2,|z|~t») Hg ,U'“D;Z(.Q)

+ 1uVEllL2(B, (o), dua)lIVUEllL2(B, (w0), dpa)-
We divide by ||Vué||z2(B,.(z0), du.) @nd obtain

20? ,b, N||f”2 H&‘ “ 1, 2
1(9] |~bp Do (£2)
IVul2€? du, < + 1 VEl2s, (a0, du
/-;r(mo) “vu&-“l'lz(Br(wo),dua) L( 0), dita)
2650, NI e - i 1€l 0

< + 412 |ullZ2 (8. (zo), due)

”vufllLZ(B,(zo), dpia)

8r—2||ul|2,
<20, NIFIZ o ( IullZ2(8, (z0), disa) +2>

LF7T (2,]a] ) ”VU&HQL%BT(%), dpa)

+ 472 ||ull22(B, (o), due)-
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Thus

[ T e <RI e ),

Taking r = r¢ we have for 0 < p < rg/2

Vaul? dug < C(N,a, 2, / 2 g 2 )—2+2a_
]ip(wo)l ul? dpa < C(N,a ro)( [l a4 11 e, )

From the above estimate, Corollary 5.1 and, the fact that (N — bp)2/p=N ~ 2~ 2a
we derive the desired conclusion. O

5.1.3 A Brezis-Kato type Lemma

As in [26] we prove the following lemma to start an iteration procedure.
Lemma 5.5. Let 2 C RV be open, a, b and p satisfy (5.2) and (5.8), and q > 2.
Suppose u € DI2(RV) N L(12,|z|~°P) is a weak solution of

Viz) _ f(z)

|zltr " Jalte

—div (|z|7**Vu) — n 2, (5.39)

where f € LY(02, |z|~%) and V satisfies for some £ > 0

[ el [ eyt
[V(z)|2¢ 2\B,(0)

; 1 -1 2 -1 F;LZ
S min gca,b, mcﬂ,b,N . (540)

Then for any £2' CC 2
HUHL%E(Q,M_W) < CU, g, D)ullza(,z-4#) + IfllLe(2,)o1-b7)- (5.41)
If, moreover, u € DL2(RY) then (5.41) remains true for £2' = (2.

Proof. Holder’s inequality, (4.1) and (5.40) give for any w € DL2(RN)

[arv@mr<e [ aere [ eyt
2

|V (z)|<f and |V (z)|>£ or
zE€2NB,(0) €82\ B¢ (0)
" 2 =2
? » P
<ef e ([ 2 ([ )
£2nB,(0) o |z’
[V(z)|>¢ or
z€2\B,(0)

1 2
<t z|""Pw? + min (=, —— / z| 24| Vaw|?. 5.42
<tf ol (5 75a) |l 19wl (5.42)
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Suppose now that u € LI({2,|z| ™). Fix 2' CC 2 and a nonnegative cut-off function
7, such that supp() CC 2 and n = 1 on 2'. Set ™ := min(n, |u|) € D:?(RY) and

test (5.39) with u(u™)?72n? € DL2(RY). This leads to
(¢-2) / |22 | Tun ()12 + / 2] =202 ()1~ Vi
2 2

= [ laltrv@nte ) + [ 1y
2 (2

—2/ lz| 22V un(un)? 2 Vnu.
2

We use the elementary inequality 2ab < 1/2a® + 4b* and obtain

(- 2) / 2] =202 | Va2 (wm)e=? + / 220 (u™) 12| V2 (5.43)

< /Q 2|~V ()P () + /Q 2] (™)

+4 / |z =22 V| () 02 (5.44)
2

Furthermore, an explicit calculation gives
4)(g—2
(q -+ )(q ) (un)q—znzlvunIQ + 2(un)q~2|vu|2n2

V(@i run)|” < 2=
+ 2|Vl + L2 ). (5.45)

Let C(g) := min {1, 57 }- From (5.43) and (5.45) we get

ot [ TR 505 g [ 2T
ot | L
IJ;(I"P"( -t [ ‘i;(lfzn‘l(u")é-’zu% (5.46)
Estimate (5.42) applied to n(u™)2~1u gives
[ V*(n(lvj;zp%—l ey ven I;);a'l )
e % (5.47)

2NB,.(0)

By Holder’s inequality and convexity we arrive at
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n\yg—2 — —
P e R T
bp plg—1) —
2la|F || ™% ¢ Ja

1
o [ lal s (5.49)
9/

We use (5.47) and (5.48) to estimate the terms with f and V in (5.46), then (4.1)
yields

v 2/p
( / |:c|-'"’|u"1<rl>z’tuipnp)

2CabN(q 1)/ —bp 9=} ‘“’/ b
CILIEAA S S a—1 |y |9e= = u|7T + P !
e 2l P T T 4+ e | el If (@)
28Cop,v —bp,2|, njg—2, 2
LrrabN x|y U
C(q) QﬂBe(O)I l | l
+ 4CEL b 2+ C / l |_’)a|un!q—-‘7 ‘7|V,’7|2

+ca,b,N(q - 2) /ﬂ |22 |9 V2.

Letting n — oo in the above inequality (5.41) follows. Observe that if u € DL2(RY)
then we need not to use the cut-off  and the same analysis as above gives the estimate
(5.41) for 2 = f2. The lemma is thereby proved. O

Remark 5.2. By Vitali’s theorem V belongs to L?/(P=2) (£, |z|~?) if and only if there
exists £ such that (5.40) is satisfied. But the constant in (5.41) depends uniformly on
£ and not on the norm of V in LP/(P=2) (0, |z|~).

Proof of Theorem 5.4. We apply Lemma 5.5 vv1th f =0 and V(z) = K(z)uP2.
Startlng with ¢ = p, the lemma gives u € LIOC(Q |z|~%P). Taking ¢ = P;, we find

&
u € LIOC(O |z| ~P). Tterating the process, we obtain that u € Lfo:l/z (2, |z]~tP) for

any k. Let ko € N be such that (p/2)*0 > 2(p—1)/(p—2), then after ko steps we find

2p(p—1)
that u € L, ,?~> (£2). Having this high integrability we may use Theorem 5.3 with
f(z) = K(z)|u|P~%u to get the desired regularity of u. O

5.2 A Pohozaev-type identity

Theorem 5.8. Let 2 be a bounded domain in RY (N > 3) with smooth boundary, a,
b, and p satisfy (5.2)-(5.8), K € C*(2) and u € D12 (RY) be a weak positive solution
of

p—1

—div (|z|2Vu) = K(x)%}-b—p—, zEn. (5.49)
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There holds

1/ u? 1/ uP N—2—-2a/ o
VK -z dz — ~ K(z T-v= z|7**uVu- v
D Q( )I o P Jaq ()lﬂilb” 2 arzl |

. —ee 2 —2a
“§AQIm| 2|VU|93-1/+/60|2| (z - Vu)(Vu - v)

where v denotes the unit normal of the boundary.

Proof. Note that

[t o[ ] = o [ ] <

which implies that there exists a sequence &, — 07 such that

o /aBEnm) [IK(z)IU” * IWIT ~0 (550

|z|°® |z[2

asn — co. Let {2, := 02\B., (0). Multiplying equation (5.49) by z-Vu and integrating
over 2., we obtain
_s, Ou uP~1
_ Z / e ( 2] azj) " do = Z/ s G K@) T . (551)

jkl

Let us first consider the right-hand side of (5.51). Integrating by parts we have
N
Ou uP~1 N u?
L K(p)——dz = [ b— —
kg/ Tk B (z) B3 dz ( p) o K(z‘)\ 7 dz
K(
- = Z/ u”mk——lzl"b” + = Z/ LVk‘“"—'—‘Tb: . (5.52)
802,
Integrating by parts in the left-hand side of (5.51), we obtain

_oa 6'”; _ N—-Q—?a —2a 2
Z/ 3%( | )m 5o do = . /ﬂ |22 Vul? dx

J.k=1

+%/an |2 Vule v~ / o] (& - Vu)(Vu - »). (5:53)

En €n

From (5.51), (5.52), and (5.53), we have
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N
N u? 1 0K
- —_— - = Dy, 2" || = 0P
(b ) / K(z) B dz E /an uPzy, szm

K(z)uP
T Z/ R g

082,

N-2-2 1
= ———~———E/ |z| 22| Vu|? dz + —/ |z| 2% | Vul|?z - v
2 2. 2 Joq

n En

- / 272"z - Vu)(Vu - ).
a

€n

Because of the integrability of |z|~*Pu? and of |z|~2¢|Vu|?, it is clear that

N u? 1 oK
- — - Doy~ || —bP
(b 2 ) /n Ko g 5 Z/ T Gy ]
— b——]Y- /K( Z/ upmk——lx|"b”
e—0+ /) Ja ]zl”P

/ |z| 72| Vul|? dz — / |z} 24| Vu|? dz.
. e=0+ Jo

n

and

Hence, in view of (5.50), we have

N
N uP 1 aK
- — ey — = P — 2" |p| 0P
(b >/ K(z) Bz dz Z/Qu “amk |z]
b Z/ e
N-2-2
=== [t do 4 3 [ ey
2 Q 2 Jon
- /(m |z|~2%(z - Vu) (Vu - ). (5.54)
Multiplying equation (5.49) by u and integrating by parts, we have
du uP
—2a 2 _ —2a, Z7 -
/Q[a;| [Vul d:z:—/{m |z] Chrw +/QK( )[z|"1’ dz. (5.55)
The conclusion follows from (5.54), (5.55), and from the identity &= b” e )
O

Corollary 5.2. Ifa, b, and p satisfy (5.2)-(5.8), K € C*(B,) and u be a weak positive
solution in DL2(RN) of :
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p——1
—div (|z]~2*Vu) = K (z) i €B, ={zcR": |z| <o} (5.56)

then

l/ (VK -2) 2 do — i’-/ K(z / B(o,z,u,Vu)  (5.57)

pJs, |z I”” P JaB, leb” '
where

_ N - 2 - 201 —2a 6“ —2a 2 —2a BU
B(o,z,u,Vu) = 5 |z| "% 5 —| | 72| Vul|* + o |z| 5 )
Corollary 5.3. Let u be a weak positive solution in DL?(RN) of
p—l
—div (Jz|~%*Vu) = (a:) P2 zeRY

where a, b, and p satisfy (5.2)-(5.3) and K € L® NCY(RY), |VK(z) - z| < const.
Then

/RN(VK(:U) :c)l lbp dz = 0. (5.58)

Proof. Since

[ o ] = L[ v ] <

there exists a sequence R, — 400 such that

K (z)|uP | |Vul?
R’n aBHn [ lwlbp lwIZa n‘:go O (559)
From Corollary 5.2 we have that
1/ R, uP N—-2—2a/ o, Ou
- VK -z =— K(z + |7 % —
P JBg, ( )| lbp P JoBg, ( )|$|b” 2 8Bn, a ov
R"l —2a 2 —2a ou
), T R / e (ay)
(5.60)

In view of (5.59) and noting that from Holder inequality

/ e ou — R- a/' u Vu-v
8Br, £ oBg, 17I°  |z[®
1
it (N=D(p=2) 1 _1 P \P 2
< |SN! 2P R[r)z - * P2 Rn/ ubp Rn/ IVZL
8Bk, |z] 8Bk, |z|
1 1
—_2 up P vuz 2
= SN Rn/ 5 Rn/ ’——2‘—
8Br,, Iml OBRr, |(Ei

we can pass to the limit in (5.60) thus obtaining the claim. O

o=
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It is easy to check that the boundary term B(c, z, u, Vu) has the following properties.

Proposition 5.1.
(i) For u(z) = |z|**?*N ¢ >0, B(o,z,u, Vu) =0 for all z € B,.

(ii) For u(z) = |z|>t2*~N + A + ((z), with A > 0 and ((z) some function
differentiable near 0 satisfying (0) = 0, there exists & such that

B(o,z,u,Vu) <0 forallz € 0B, and0 <o < &
and

_(N-2-2q)

2
lim B(o,z,u,Vu) = AlSNY.

o0 8B, 2

5.3 Local blow-up analysis

Let 2 C RV be a bounded domain, a, b, and p satisfy (5.2)-(5.3), and {K;}; C C(£2)
satisfy, for some constant 4; > 0,

1/4; < Ki(z) < 4y, Vze? and K;—» K uniformlyin 2. (5.61)

Moreover, we will assume throughout this section that a > 0. We are interested in
the family of problems

uP~!

~div (a2 Ve) = Kilo)

weakly in 2, u>0in 2, ue DY2RYN). (P)

Definition 5.1. Let {u;}; be a sequence of solutions of (P;). We say that 0 € 2 is a
blow-up point of {u;}; if there exists a sequence {z;}; converging to 0 such that

ui(z;) = +oo  and ui(xi)N—g—Za |z;] = 0 asi— +co. (5.62)
Definition 5.2. Let {u;}; be a sequence of solutions of (P;). The point 0 is said to
be an isolated blow-up point of {u;}; if there exist 0 < 7 < dist(0,012), C > 0, and
a sequence {x;}; converging to 0 such that us(z;) — +o00, ui(z;) ™% |z;| — 0 as
i — +o0, and for any z € Br(z;)

N—2—2a

ui(z) < Clz — x|~ 2

where By(z;) :={x € 2: |z —z;| < F}.
If 0 is an isolated blow-up point of {u;}; we define

1

u;(r) = U = ———— ui, >0
r) ]{33,(9,-,») |0Br(z:)| JoB,(z:)

and

Wi(r) =r (), > 0. (5.63)
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Definition 5.3. The point 0 is said to be an isolated simple blow-up point of {u;};
if it is an_isolated blow-up point and there exist some positive p € (0,7) independent
of i and C > 1 such that

wi(r) <0 forr satisfying C’ui(zi)“l\’—izu <r<p. (5.64)

Let us now introduce the notion of blow-up at infinity. To this aim, we consider the
Kelvin transform,

() = lwr(N*-zﬂ)u,-(I{E), (5.65)

which is an isomorphism of DL?(RY). If u; solves (P;) in a neighborhood of oo, i.e.
2 = RY \ D for some compact set D, then @; is a solution of (P;) where K is replaced
by K;(z) = Ki(z/|z]?) and 2 by 2 = RN \ {z/|z|? |z € D}, a neighborhood of 0.

Definition 5.4. Let {u;}; be a sequence of solutions of (P;) in a neighborhood of oo.
We say that co is a blow-up point (respectively an isolated blow-up point, an iso-
lated simple blow-up point) if O is a blow-up point (respectively an isolated blow-up
point, an isolated simple blow-up point) of the sequence {7;}; defined by the Kelvin
transform (5.65).

Remark 5.8. It is easy to see that oo is a blow-up point of {u;}; if and only if there
exists a sequence {z;}; such that |z;] — oo as i — +c0 and

IN_2_2a'U'i(

|z; z;) — oo and [wilui(azi)ﬁ’:%m — 0.
1—r+00

i—+00
In the sequel we will use the notation ¢ to denote a positive constant which may vary
from line to line.
In order to prove a Harnack type inequality (see Lemma 5.7), we need the following
lemma.

Lemma 5.6. Suppose a,b,p satisfy (5.7) and (5.4). Let (z))ien C RY and consider
the measures j1; := |z — 2;| 2% dz, then we have for 0 <r <2 asr — 0

8
—bp sds
sup / Y-z / e dy —+ 0.
2€B1(0),ieN J B, (a) | | lz—y| Hi(Bs(T))

Proof. We use as ¢ a generic constant that may change its value from line to line. Fix
z € By(0). From the doubling property of the measure p; (see [60]) we find

8
sds
Mia o=y = [ —EE
' la—y| Hi(Bs(z))
|z — y|~NF2et2 if |z —y| > 3z — 2
- |z — y| TV 2z — 22 + |z — TV T2 if |z —y| < Lz — 2.

An easy calculation shows that 2a — bp > —2 and that if @ > 0 then 2a — bp < 0.
Hence, we may estimate for 0 < r < 3|z — z;| and y € B,(z)
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1
ly — zi| > |z — 25| = |z — y| > S|z — 2

/ ly — 2| TP Mi(z, |z — y|) dy < erF2e70P,
B..(z)
Since —bp > —2 — 2a > —N we may use the above estimate to derive
ly — 2zi| "P M;(z, |z — y|) dy < c|z — 2| T2e0P,
B2|f=—z;|(z)

Consequently we obtain for |z — z;| <7 < 2|z — |
/ ly — 2| P My(z, |z — y|) dy < ¢z — 2| T297P < ¢r2H2a-tp,
B (z)
Finally we obtain for 2|z — 2;| < r <2 and |z — y| > 2|z — z|
1

v ==l 21y =2l - o~ =l > 1ly ~al

and
[ sl -y dy < e,
B (z

which ends the proof. : O

Lemma 5.7. Let (K;)ien satisfy (5.61), {ui}: satisfy (P;) and z; — 0 be an isolated
blow up point. Then there is a positive constant C = C(N,C, A;) such that for any
0 < r < min(7/3,1) there holds

u;(z) <C

max i ui(x). 5.66
c€B2,(z:)\Br/2(z:) ( ) ( )

min )
z€Bar(z:)\Br/2(z:)

N—2—

Proof. We define v;(z) = P (e + z;). Then v; satisfies in B3(0)

N—-2—2a

0<v(z)<Clz|~" = , (5.67)
and
—div (|z + 77 2|72 Vv,(z)) = _p R A2 2 gy (1-172Vu () (rz + ;)
= Ki(rz + z;) |z + a7 o 7 (),
since
—]sz“ﬂ+2+2a—bp—(p—1)N;§l-2-9=N-p(N_2<12+“_b)) —0.
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To prove the claim we use a weighted version of Harnack’s inequality applied to v;
and

—div (|2 + r7 'z 72 Vvi(z)) — Wi(z)vi(z) =0 in Byja(0) \ By/4(0),

where Wi(z) := Ki(rz + ;) |z 4+ r~1z5)~% v?"%(z). From (5.67) the function v; is
uniformly bounded in By/4(0)\ B;/4(0) and the claim follows from Harnack’s inequal-

ity in [58]. We mention that |- +r~1z;| 7P belongs to the class of potentials required
in [58] (see Lemma 5.6). O

Proposition 5.2. Let {K;}; satisfy (5.61), {u;}; satisfy (P;) and z; — 0 be an iso-
lated blow up point. Then for any R; — oo, &; — 01, we have, after passing to a
subsequence that:

Riui(z;) =275 0 as i — oo, (5.68)

- R E— a,
i (@) i (wales) "2 - as) — 230 (oo (Ban, ) < S (5.69)
l[ws(@s) ™ s (wi(ws) ™ 7275 - 43) = 2500 ()| (Bars (0)) < & (5.70)

where HL(Bag, (0)) is the weighted Sobolev space defined at page 53.
Proof. Consider
$i(2) = uiles) g (wile) VEEL £ 3;), o] < Fuie) T,

We have

—div (Ix-}-uz(l‘z) v=im xii—zan)i(fc))
— Ki (ui(xi)"z"v'——g:"ﬁz - xl) Iz -+ ui(xi)ﬁ-:zg':‘_z?mi]—bp ¢f’*1(:1;>-

Moreover, from the definition of isolated blow-up

N-—-2-2a

$:(0) =1, 0< ¢i(z) < Clz|” for |z| < 7ui(z;) 727, (5.71)

Lemma, 5.7 shows that for large 7 and for any 0 < r < 1 we have
max¢: < Cmindy, (5.72)
where C = C(N, C, A). Since
—div (Iz + ui(ivi)N~§—2ﬂ xi|—za\7¢i(z)) >0 and ¢;(0) =1

we may use (5.72) and the minimum principle for |z|~2¢-superharmonic functions in
(60, Thm 7.12] to deduce that ‘
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¢i(z) <C in By(0). (5.73)

From (5.71), (5.73) and regularity results in [50] the functions ¢; are uniformly
bounded in CY(RY) and H ;’IOC(IRN ) for some -y € (0,1). Since point-concentration

is ruled out by the L*-bound, there is some positive function ¢ € C’?O’Z' (R¥) N
Hi,loc(RN) and some ' € (0,1) such that

¢; = ¢ in C2T (RY) N HL ), (RY),

loc
di —2a i ¢p—l
—div (Jz|7**V¢) = Jim Ki(zi)m&;
$(0) = 1.
By uniqueness of the solutions proved in [37] we deduce that ¢ = z;{’?o). O

Remark 5.4. From the proof of Proposition 5.2 one can easily check that if z; — 0
is an isolated blow-up point then there exists a positive constant C, depending on
lim; o0 K;(z;) and a, b, and N, such that the function w; defined in (5.63) is strictly
decreasing for Cu;(z;)"2/(N—2-20) < r < p; = Riui(xi)"ﬁ—_;—_ﬁ, as the following
Lemma shows.

Lemma 5.8. Let {K;}; satisfy (5.61), (u;)ien satisfy (P;) and z; — 0 be an isolated
blow up point. Then for any R; — oo, there exists a positive constant C depending on
lim;_yo0 Ki(zi) and a, b, and N such that after passing to a subsequence the function
w; defined in (5.63) is strictly decreasing for Cu;(z;)~2/(V=2720) < ¢ < r; where
ri = Ryus(m;) TF

&

Proof. Making the change of variable y = u;(x;)” ¥=2-% z -+ z;, there results

1}

N—2-2a
T

Wi(r) = mm—— ui(y)
") = 8B, @l Jop oo
= rN_L;_h f ui(ui(wi)"N~§—2ﬂz +:C7;).
OB, (a;)2/(N—2-24) (0)
From the proof of Proposition 5.2 we have for some function g; € C%7(Bag, (0))
i (ui(2:) " TR g 4 ;) = u(mi) (z;gl(’o) (z) + gi(z))

where ||g:]|c2( Bar,(0)\Bc (0)) < €;. Being z;{’?o) a radial function, from above we find

_ N-2-2a a,
Wi(r) =777 wui(xy) (zKl(’o) (z) + gz(x))
OB, . (a;)2/ (N—=2~2a) (0)
N—2-2a ,b —2-92a
=r" 7 ui(z) 2, (rug(z;) ¥ V=2-22)) 4 fon 0 gi]-
; (0) o (252 (N —2-2a) (0)



5.3 Local blow-up analysis 73

A direct computation shows that

N—4-~2a

%wi (r) = us(z)r

X [N 7o (1 = K(O)ui(z:)""r

4+ N2 2a(fgz)zK(O)(Tuz(wz)z/(N_2_2a))_%J-

(25200 (ru () ¥/ (V=220 B

(p=2)(N =2-2a) o 5 /(N—2—2g)\—2
2= )+ (F 06) gty (rua(:)/ V=272~

Since for Cu;(z;) ™%/ (V=2-22) < p < 1y, there results C < ru;(z;)% V—220) < R, we
have that

][ 9i < €4y a‘r']l 9i < &4,
aBmi(mi)2/(N—2—2a) (0) aBmi(zi)W(N—z-za)(O)

p(N— 2 2a)
Choosing ¢; = o(R ) the claim follows. O

Moreover for C = (5) =D0V=2=2) we have 1 — K (0)u;(z;)P~2r 20— < 5.

Lemma 5. 9 Let z; — 0 be a blow-up point. Then for any z such that |z — :cz| > =

Riui(z;)  ¥2-= =% we have
|z — 25| = |z|(1 + o(1)).

In particular, z; € By, (0).
Proof. The assumption ziui(mi)N——%-'ﬁ = o(1) implies that |z;| = r; o(1). Hence

|| 2 |z — 2| = |2s] > ri —r50(1) = (1 + 0(1)).

Therefore - 0
ZT; T; 0
< —— =9(1
ol = nlro@) ~ W
and hence
T —I; T ZI;
bl [P i 1
ERNEEIES
thus proving the lemma. O

Proposition 5.3. Suppose {K;}; C CL_.(Bs) satisfy (5.61) with 2 = By and
|\VK;(z)| < As for all z € Bs. (5.74)

Let u; satisfy (P;) with {2 = By and suppose that z; — 0 is an isolated simple blow-up
point such that

|z — x4 e ui(z) < As for all x € Bs. (5.75)

Then there exists C = C(N,a,b, A1, Aa, A3, C, p) > 0 such that
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ui(z) < Cuy(zs) e — 222N for all |z — 2] < 1. (5.76)

Furthermore there ezists a Holder continuous function B(z) (smooth outside 0) sat-
isfying div (|z| 22V B) = 0 in By, such that, after passing to a subsequence,

ui(z:)us (z) = h(z) = Alz*t?2N 4 B(z) in C2.(B: )\ {0})

where
\b —1
K(0) (k1)

4= (N —2-2a)|SV] Jan 2]t

dz.

Lemma 5.10. Under the assumption of Proposition 5.8 without (5.74) there exist a

—2(14a—b)(N~2—2a)

positive 6; = O(Ri N=A0FE=H ) and C = C(N,a,b, Ay, As,C, p) > 0 such that

wi(z) < Cug(zs) M|z — ;20N forallr; < |z —z;] < 1, (5.77)

where A; := 1 —26;/(N — 2 — 2a).
Proof. It follows from Proposition 5.2 that
ui(z) < cus(zi)R2T2N for |z — 24| = 74 (5.78)

From the definition of isolated simple blow-up in (5.64) there exists p > 0 such that

ri =50, is strictly decreasing in r; < 1 < p. (5.79)

From (5.78), (5.79) and Lemma 5.7 it follows that for all r; < |z —z;| < p

—2—2a
3

N—-2—2a N —2-2 242a—N
|z — 22 wi(z) < ez — 3 2

N a
ai(|lz — z;]) < ecr; ai(r;) <cR, *

Therefore for r; < |z — z;] < p
ui(w)m < cR7|z — x| 72 (5.80)
Consider the following degenerated elliptic operator
Lip = div (2] 72* V) + Ki(z)|z| " Pui(z)P .

Clearly u; > 0 solves £;u; = 0. Hence — £, is nonnegative and the maximum principle
holds for £;. Direct computations show for any 0 < p < N — 2 —2a

div (le'z‘lV(Iml"“)) =—pu(N —2—2a—p)|z|~272%"* for z # 0. (5.81)

From (5.80), (5.81) and Lemma 5.9 we infer

—2(1+a=b)(N—2—2a)

Lol ™) < (~ (N =2=20=p) 4 cRy "0 [g| e



5.3 Local blow-up analysis 75

=2(14a—b)(N—2—2a)

We can choose §; = O(R, ~ 2C**=® ) guch that
max(L;(|a]~%), L(|z**+2~VH)) <. (5.82)
Set M; := 2maxpp, (z;) Ui, Ai = 1 —26;/(N — 2 — 2a), and
¢i() = M;p% |z| 7% + Auy(zi) ™ a2 N for 1 < |z — 2] < p, (5.83)
where A will be chosen later. We will apply the maximum principle to compare ¢;
and u;. By the choice of M; and Lemma 5.9 we infer for i sufficiently large

M;
¢i(z) > 5 > ui(z) for |z — z;| = p.

On the inner boundary |z — ;| = r; we have by (5.78) and for A large enough
di(z) > A(L + o(1))uy(z;) Nip2t2a—N+o
= A(L+ o(1)) R0~ N¥0iqy ()2~ wsimr
> A(1 + o(1))REF29 Ny () > ui(z).
Now we obtain from the maximum principle in the annulus r; < |z — z;| < p that
u;(z) < ¢i(z) for all r; < |z — 3| < p. (5.84)

It follows from (5.79), (5.84) and Lemma 5.7 that for any r; < 8 < p we have

N—2—2a

p =z M; < cpN-itza Ti(p) < cb ;(0)
N—-2—-2a

<eldTz (Mipﬁie—&; + Aui(xi)—/\i 02+2a—N+6,~).

N—2—2a

Choose 8 = 8(p, ¢) such that

N—2—2a 5
i

2 p

1 mv-2-2a
=

6_6i < 5,0

Then we have

M; < cui(zi)™,

which, in view of (5.84) and the definition of ¢; in (5.83), proves (5.77) for r; <
|z — z;| < p. The Harnack inequality in Lemma 5.7 allows to extend (5.77) for r; <
lz —z;| < 1. O

In order to prove Proposition 5.3 we also need to prove a Bécher-type theorem for
pa-harmonic functions. A function w will be called p,-harmonic in 2 ¢ RY ,ifue
D27 (RN and for all ¢ € C°(£2) there holds

a,loc

/ |z| =22 VuVy = 0.
2
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Theorem 5.9. Let u be a nonnegative pt,-harmonic function in RN \ {0}. Then there
ezist a constant A > 0 and a Hélder continuous function B, pg-harmonic in RY,
such that

u(z) = Alz[**22~N 4 B(x).

Proof. We distinguish two cases.
Case 1: there exists a sequence z,, — 0 and a positive constant M such that |u(z,)| <
M . In this case the Harnack Inequality (Theorem 6.2 of [60]) implies that v is bounded.
Moreover from [60, Lemma 6.15] u can be continuously extended to 0 and is a weak
solution of

—div (Jz|72*Vu) =0 in RY,

see [34, Lemma 2.1]. Therefore from the Liouville Theorem [60, Theorem 6.10] we get
that u is constant and the theorem holds with A = 0 and B = const.

Case 2: u(z,) — +oo for any sequence z, — 0. We can extend u in 0 to be
u(0) := 400, thus obtaining a lower semi-continuous function in RY. Moreover [60,
Theorem 7.35] implies that v is super-harmonic in the sense of the definition of [60,
Chapter 7], i.e.

— 1 is lower semi-continuous,

— u # oo in each component of RY,

— for each open D cC RY and each h € C®(RV) p,-harmonic in D the inequality
u > hon 0D implies u > h in D. :

Let us remark that in order to apply Theorem 7.35 in [60] we need to prove that 0
has capacity 0 with respect to our weight; indeed

cop-a- (0L BY) = int [ el Il < capypn (B, BY)
ina neioghborhzaod of 0
N—-2-2a
< capjg|-2e (By,Bay) < cr

for any r > 0, where we have used [60, Lemma 2.14]. Then cap, -2 ({0},R") = 0.
From [60, Corollary 7.21] there holds

—div (|z|7?*Vu) > 0 in the sense of distributions on RV

hence from the Riesz Theorem there exists a Radon measure g > 0 in RV such that
(~div (2| *Vu),ph = [ pdu Yo e OF®Y).
BN

Since (—div (Jz|72*Vu),¢) = 0 for any ¢ € CP(RY \ {0}), p must be supported
in {0} and so p = Ady for a nonnegative constant A. Since the Green’s function
Go(z) = |z|>+2~N satisfies

—div (Jz]"2*VG,) = 6 in the sense of distributions on R,

we have that
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—div (Jz| 72V (u ~ AG,)) =0

in the sense of distributions on RV . Theorem 3.70 and Lemma 6.47 in [60] imply that
B :=u — AG, is Holder continuous. ] O

Proof of Proposition 5.8. The inequality of Proposition 5.3 for |z — =] <7y follows
immediately for Proposition 5.2. Let e € RV, |e| = 1 and consider the function

vi(z) = us(zs + €) " ruy(z).
Clearly v; satisfies the equation
; —2a P2 vt '
—div (|z|7**Vv;) = uy(z; +e) Ki(m)w in Bys. (5.85)

Applying the Harnack inequality of Lemma 5.7 on v;, we obtain that v; is bounded
on any compact set not containing 0. By standard elliptic theories, it follows that,
up to a subsequence, {v;}; converges in CZ_(Bs \ {0}) to some positive functlon
v € C%(Bs \ {0}). Since u;(x; + €) — 0 due to Lemma 5. 10, we can pass to the limit
in (5. 85) thus obtaining

—div (|2]2*Vv) =0 in B, \ {0}.

We claim that v has a singularity at 0. Indeed, from Lemma 5.7 and standard elliptic
theories, for any 0 < r < 2 we have that

—2-2a N—-2-2a

hm uz(a:z-%-e) -1 11_2““1(7‘)27“ = o(r)

where §(r) = @ /. op, V- Since the blow-up is simple isolated, ry;?ﬁﬁ(r) is non-
increasing for 0 < r < p and this would be impossible in the case in which v is regular
-at 0. It follows that v is singular at 0 and hence from Theorem 5.9

v(z) = ay|z|> TN 4 b1(z)

where a; > 0 is some positive constant and b, (z) is some Hélder continuous function
in By such that —div (|z|~22Vb,) = 0.
Let us first establish the inequality in Proposition 5.3 for |z — z;| = 1. Namely we
prove that
ui(z; +e) < cug(z;) L. (5.86)

By contradiction, suppose that (5.86) fails. Then along a subsequence, we have

lm u,;(z; + e)ui(z;) = oo. (5.87)
21—

Multiplying (P;) by u;(z; + e)~' and integrating on By, we get

24 Ovs uf™! _
—/aB |z 2“—8——;=/B Ki(m)rz?;ui(mi+e) ldz. (5.88)
1 1
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From the properties of b; and the convergence of v; to v, we know that

Ov; 7]

li —92a i / -2 Y 2+4-2a—N b
dm )= s T (a1]] +b1(z))

=—a;(N -2 -2a)|SV| < 0. (5.89)

From Proposition 5.2 there holds
Ki(z)u?™ _
o gy < Cugmg) ™t 5.90)
/[-z——a:i{Sri Imlbp ( (

while from Lemma 5.10 and Lemma 5.9 we have that

Ki(z p—1 _ . [(242a—N+6;)(p—1)
/ ) );LZ dz < c/ wg(m) N ED [z = = b
ri<lz—zi|<1 ].’1}' P ri<lz—z;|<1 lxl P

(:ci)‘*f (p__l)'r"(:Z—}—?a—-N‘i-éi Y(p—1)~bp+N

<cuy

= cuy(my) TREFRTNFNETNTIN = (10 (i)

(5.91)

Finally, (5.87), (5.89), (5.90), and (5.91) lead to a contradiction. Since we have estab-
lished (5.86), the inequality in Proposition 5.3 has been established for p < |z—z;| <1
(due to Lemma 5.7). It remains to treat the case r; < |z — x| < p. To this aim we
scale the problem to reduce it to the case |z — z;| = 1. By contradiction, suppose that
there exists a subsequence Z; satisfying r; < |%; — ;| < p and

lim ui(ii)ui(mi)]:ii - $i|N_2_2a' = -00. (592)
t—+-4-co
N—2—2a
Set 7; = |#; — ;| and 4;(z) =7, 2 u(F;z). We have that ; satisfies the equation
ﬁi(ﬂ:)p_l

—div (jz| 7?2V (z)) = Ki(r”im)—W.

Since |z;| = r;0(1) and 7; > r; we have that z;/7; — 0. We have that z;/7; is an
isolated simple blow-up point for {;};. From (5.86), we have that

- -1
fxi I;—x - [z
Ui Ak B < cu; =

T T3 T3

FZN‘z_L)a wi(Z:)ui(z;) <ec.

which gives

The above estimate and (5.92) give rise to a contradiction. The inequality in Propo-
sition 5.3 is thereby established.

We compute A by multiplying (P;) by ui(z;) and integrating over B;. From the
divergence theorem,
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—22 0 ul ™!
— /3131 |z 5-1;(151(3:1)1%) = ui(z;) /31 Ki(:v)TiF; dz. (5.93)
Let w;(z) = ui(z;)u(z). We have that w; satisfies
—div (|z| 7% Vw;) = ui(xi)2‘pKi(w)~u~)£-_—l.
|z|*

Moreover the inequality (5.76) implies that w; is bounded on any compact set not
containing 0. Hence w; — w in CZ (RN \ {0}) where w satisfies

—div (Jz|72*Vw) =0 in RV \ {0}

From the Bécher-type theorem 5.9, we find that w(z) = A|z|>**2~N + B(z) where
B(z) is Holder continuous in RV and satisfies —div (|z|~2°VB) =0 in R". Hence

8 )
. —2a Y (g = —-2a ¥ 2+2a—N
tm [ el e = [ el g (el 4 B@)
= A(2 + 2a - N)ISV). (5.94)
On the other hand from (5.91) and Proposition 5.2
K, ! d Kio) Y d
ui(e:) B @) e de = (o) lo—as] <rs (@) e @+ ol)
a,b \p—1
= K; 0)/ i) . — dy + o(1)
WISB: |y +ui(2:) T2 g
(25b))”
= K(0) /RN -——'g’l)—bg—- dy + o(1). (5.95)

By (5.93), (5.94), and (5.95) the value of A is computed and Proposition 5.3 is thereby
established. O

Using Proposition 5.2 and the upper bound in Proposition 5.3 it is easy to see
that the following estimates hold.

Lemma 5.11. Under the assumptions of Proposition 5.3 we have for s = s1 + 52

[ el el oy
z—z;|<7r;

wi(z;) ¥ (0(1) + Jon lfﬂls_bpzf,m(mi)) if =N +bp<s<N-—bp,
= 4 O(uqi(z;) P logui(z;)) if s=N — bp,
o(ui(mi)—z’) if s> N —bp.

and
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/ o = 2l ol ol Pus(a)?
ri<lz—z;|<1

o(ui(z;) 7w ) if —N+bp<s<N-—bp,
< 4 O(ui(zi)"Plogus(z;))  if s= N —bp,
O (ui(zi)™P) if s> N — bp.

Proposition 5.4. Let a € [N 4 N= 2[ Suppose that {K;}; satisfy (5.61) with 2 =
By C RN for some positive constant Al, VK;(0) =0, {K;}; converge to K in C%(Bs),
{ui}s satisfy (P;) with 2 = By(0) and z; — 0 is an isolated blow-up point with (5.75)
for some positive constant As. Then it has to be an isolated simple blow-up point.

-

Proof. From Remark 5.4 there exists a constant ¢ such that r—z“Lu,( ) is decreasing
in cu;(z;)"¥W=2-29) < p < r;. Arguing by contradiction, let us suppose that the
blow-up is not simple. Hence for any i there exists u; > ri, u; — 0, such that pu;
is the first point after r; in which the function rkzz:‘z&ﬁi(r) becomes increasing. In
particular p; is a critical point of such a function. Set

N-—2—-2a

&) =p T wlw), for lwz —mi| < 1.
Clearly &; satisfies

_3 gt
—le(III av&-l) - (/‘L'L )laz:lbp) for |,LL,,£L‘ - w’L' S 1.

2

Note that p; ! < Ry uy(z;) V=22 < ui(wi)N—g—% and hence

7 ] < ) T o] 0
in view of (5.62). Moreover (5.75) implies that
|z — p{lwilN—g—h &i(z) < comst for |z — p; ey < 1/p;.

It is also easy to verify that

—2a
us(z;) = oo

-2
2

N
lim §i(,ui—1mi) = lim p,
21— o0 200

On the other hand

N—2—2a N—2—-2a _
T S
0B (7 21) 8B, (1)

N= 2—-20.

T & (r) = w;(pir)

and the function r 5§ (r) is decreasing in c&;(u; tz;)” F=2== =2 < r < 150 that 0
is an isolated simple blow-up point for {£;}. From Proposition 5.3 we have that -

Hence
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&(n7 wi)6i(@) = h(z) = Alz|P*N + B(z) in Cipo(RY \ {0})

where B(z) is Holder continuous in RV and satisfies —div (jz|~2*VB) =0 in RY.
Since h > 0, the Harnack inequality implies that B is bounded and from the Liouville
Theorem (see [60]) we find that B must be constant. Since

N—2-2a

2 ()= =0

we have that A = B > 0. From the Taylor expansion, (5.62) and the assumption
VK;(0) = 0 we find

|VKi(ui‘lwi)| < const|/,ai_1wil = o(fi(p;"lmi)"lv—?du). (5.96)

Using Lemma 5.11, (5.96), and the assumption on a, we have

£
wiVEK;(piz) - 1—%—
-/B,(ui—lsc,') ( ) Im’bp
-1 -1 §P
-/ o P [TET 20 + Ol =i %)) o
VK (pt 0 o1 &
= [ [T 0 + O+ o= )] ot

pi0 (& (u ) TF= ) if p> o=z 1
= { w0 (&(p z) P loguilws)) i p= xim [ = o(Gi(ui'2) ).
u;O Ei(ﬂflﬂ?i)_p) if p < 75z I

Hence, from Corollary 5.2 and (5.76), we have that for any 0 <o <1

/ B(o,2,, V&)
8B, (0)

1/ EP o f?
== wiVE; (i) - o= — -—/ Ki(piz) =
P JB,(0) (ki) lz[*? p Jam,(0) ( )lwlbp

1 / & —1y-
== iVE;i(piz) - == 4+ O(&(py z:)™ 7
), (e K (piz) |z|tP (&ip )7F)

= o6 (i ws) ).

Multiplying by & (u; ;)? and letting i — co we find that

/ B(o,z,h,Vh) = 0.
OB,

On the other hand Proposition 5.1 implies that for small o the above integral is
strictly negative, thus giving rise to a contradiction. The proof is now complete. [
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5.4 A-priori estimates

To prove the a-priori estimates we first locate the possible blow-up points as in [76]. To
this end we use the Kelvin transform defined in (5.65). We recall that if u solves (5.5)
then 4 = |z|~WN=2-20)y(z/|z|2) solves (5.5) with K replaced by K(z) = K(z/|z|?).
Since weak solutions to (5.5) are Holder continuous (see [50]) we infer that

lim |z|V—2-2e
|z|—o0

u(z) exists. (5.97)

Let us define wy(z) == (1 + |z|V—222)~1,

Lemma 5.12. Suppose a > 0, 2 < p < 2*, and K € C*(RY) satisfies (5.10) and for
some positive constants Ai, Az condition (5.12) and

IVE ||z (Ba(0)) + IVE||Loo(B,(0)) < A2- (5.98)

Then for any € € (0,1), R > 1, there ezists Cy = Cy(e, R, N, a,b, A1, As) > 0, such
that if u is a solution of (5.5) and K = {q1,...,qx} C RY U {co} with

—2-2

u(z) —2a
o S 0 > G

u(qi)}qilN—z—% <eg, and forall1 <i<k

(5.99)

—2—

u(z) g- 2a "(qz =
I M o L R TR @i 1) ML) dist(gi, {qn, -, qim1}) 2

N22a

then there exists g* & K such that ¢* is a mazimum point of (u/w,)dist(-, ]C) and
(A) iflg"| <1

wu(g) " FEEC 4 qY)

+ g u(g") ™= < ¢ (5.100)

u(q*) 7K @) || 007 (Ban(o))n
H(Bzr(0))
(B) if lg*| > 1
ﬁ(ﬂ(ij*) N”§_2“$+(’j*) a,b ]~/ W__ZT
ﬂ(g*) ~ ZK(q7) G (Bar(0))N + lq la(g*) ™22 <e (5101)
H!(Bar(0))

where §* = Inv(q*) = ¢*/|q*|?, G is the Kelvin transform of u, dist(-,-) is the distance
on RN U{co} induced by the standard metric on the sphere through the stereo-graphic
projection, and dist(-,0) = 1.

Proof. Fix € > 0 and R > 1. Let Cy and Cy be positive constants depending on
g,R,a,b,N, A1, Ay which shall be appropriately chosen in the sequel.

Let ¢* € RN U {oo} be the maximum point of u/w,dist(z, K) =2 By (5.97) this
maximum is achieved. From the first in (5.99) we have that
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* ®\ 3% * No2~
u(g*)/wa(g")dist(q", )" = > Co.
First we treat the case |g*| < 1. We claim that there exists a constant Cy, depending
only on &, R,a,b, N, A1, Az, such that |g* | u(g*) < Ci. If not, there exist solu-
tions u; of (5.5) and finite sets K; = {g, .. ,q,c } satisfying (5.99) above, such that

2—a

for the maximum points g of u;/w,dist(-, K; ) there holds

2-2

|| < 1and [gf] 77 ui(g]) — oo
Consider the functions v;, defined by

lH_(N =2-20)(2=p)

oy 22E
vi(x) = ui(g}) " ui(lgf u(g}) T T +q;),

which satisfy
. o (N=2-20)(2-p) _ _9
“dlv(HQil 4 ’L(q'z) z w+|Qz| ! ] avv‘i)
p—1
i1 (N=2-2a)(2=p) o\ 222 . v
= K(IQ?. ‘H— ¢ uz(q'L ) 2T+ ) o (N =2-22)(2=p) : 2-p 1
g7 | == () 5 + g [T

Let p; = ¢f, € K; be such that dist(g}, K;) = dist(g}, p;) and set Ki={d,...,d¢, 1}
From (5.99) we infer

dist(ps, ;) < dist(ps, ¢F) + dist (g}, K;) < 2dist(q}, K:)
dist(p;, IC )N Eh
dist qz,lc

o)l T <6, uilgl) <u <>(

and finally that if |p;] < 2

-

S N-—
- (dist(q;-“, ]CJ) wa(pi)
diSt(pi,]Ci) wa(gy)

Consequently there exists a positive constant ¢ such that |gf |~ dist(g}, K;) > ¢, which
is trivial in the case |p;| > 2 and follows from the above estimate if |p;| < 2. Thus

wofto

2
lg; |\ V= *| g—Zs P
“Upl > ui(p)lgi |72 eus(g;) 4 |
K3

> const u;(g})]g;| 72 — oo.

N —-2-2a)(2—p) —2-—2a
1

—2=p .. B2 1 »
'U‘i(q;:) 2 dlSt(qz’ (u’t(qz)l% 2 ) : lq'a| 1dlSt(Qi7]Ci)

N—2—3a, BZ2
> c(ui(g)lg;| ™= ) 7 - oo

i1 {
laz | !

(N =2-2a)(2-p) _2-p
1 ui(gF)~ " we have that

3

For |z < £lg;|™

(N =2 20)(2 )
|t (@) Tz + )

|1+(N —2- 2=L)(2—1£>)

vi(z) = ui(gf) " ui(|a}

< 'U"L(q'z. ) lwa (IQz

2-p U
uw(g) 7 T+ )~

< ¢ sup wa(z + g;)wa(gf) ™" < const.
lel<$
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Up to a subsequence, we have that ¢f — g and v; converges in C2_(RV) to a
solution of

—Aw=K(@@)wP ' inRY, w(0)=1.
This is impossible since the above equation has no solution for p < 2*. The claim is
thereby proved. The function v;, defined by
v (2) = u(g") Mu(ulg”) " T 4 ¢),
satisfies
K (u(g") "=z 4 ¢* )0}

—div (Jz + u(q*) N=i=z q*l"z“Vvl)
o+ u(g") T g o

v1(0) = 1.
For |z| < C’O_mu(q*)ﬁ':%—ﬁdist(q*,}@ we obtain
dist(u(q*)_mz + g%, K) > dist{g*,K) — cC’D_mdist(q*, K)
> dist(q*, K) (1 - cco“m)

and
vi(z) = U(q*)_lu(u(q*)“ﬁzzl:ﬁw + q*)
Nozo3a
< u(q*)’lwa (u(q*)‘N—_g—.z‘;m + q*) u(g *) Chst(q2 ,K)
Wa ( ) dist(u(q*)"zv——_z:‘é‘;x +¢*,K)
N— "~2a

Swa( ) (1_00 N22a.)

2 —_ 2
Notice that |g*| < const CF 22 Cy "~37%% and

N—2—=2a % 2 . " 1 N—-2—2a
CD u(q )N=2mza dist(q ,IC) > ZC’O ]

Hence for any J > 0 we may choose Cy, depending on a,b, N, ¢, R, A, Ay, C1, such
that

1 _N-2-2a
wa(g*)T(1—=Co ") T <146
and vy is €/4-close in C%7 (B (0)) to a solution of
p—1
—div (jz +u(q") V= g7 Vw) = K(q") —— in RY,
o+ u(g") vEm g

w0)=1, 0<w(z)<1+4.
If we choose § small enough, depending on & and R, then it is easy to see that any
solution of the above equation is £/4-close in C%7(Bag(0)) N H:(Bag(0)) to zK( )

and u(g*)¥=2-2= =7 lg*| < e/2. This gives estimate (5.100). Case (B) can be reduced to
case (A) using the Kelvin transform. a
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Proposition 5.5. Under the assumptions and notations of Lemma 5.12 there exists
for any 0 < e <1 and R > 1 a constant Cy = Co(g, R, N, a,b, A1, As) > 0 such that
if u is a solution of (5.5) with

1
zERNU{ 00} Wa (T)

0

then there exist 1 < k = k(u) < co and a set S(u) = {q1,92,...,qr} C RV U {cc}
such that for each 1 < j < k we have

(A) iflgl <1

——_2
. N—-2—-2a .
'U;(U(qj) T + QJ) a,b + |qj]u(q])w:-§—:-2—z <e (5102)

u(g;) ARG || oo (Ban (o)
H}(B2r(0))
(B) if lg;] > 1
(i(g;) " " + ) _ b e\ e
a(g) ZK(‘IJ‘) CO“Y(B?,R(O))n + quIu(qJ)N 22 g (5103)
HZ(B2r(0))
Moreover the sets
in case (A)

are disjoint.

U = {BR”(%)"N—‘@%’“’(%)
i
Inv(B

Ri(g;) N-2=3e

(¢;)) in case (B)

Furthermore, u satisfies

u(z) < Cowe(x) ax, dist(z, qj)_N—zz—

Proof. Fix ¢ > 0 and R > 1. Let Cy be as in Lemma 5.12. First we apply
Lemma 5.12 with £ = ) and find ¢ € RY U {co} the maximum point of u/w,.
If u(z) < Cow,(z)dist(z, ql)“N—5_2a holds we stop here. Otherwise we apply again
Lemma 5.12 to obtain ¢o. From estimates (5.102) and (5.103) it follows that U; and
U, are disjoint. We continue the process. Since u € LP(RY,|z|~*?) and

Er
uzpdm_>_—-——/ ——-—~——‘—b—)-——dy2ca,b,N,
/ e M2 | o o ea g Y 2 @b )

where c(a,b, N) is independent of g;, u, R > 1 and £ < 1, we will stop after a finite
number of steps. O

Proposition 5.6. Under the assumptions and notations of Lemma 5.12 there exist
for any 0 < e < 1 and R > 1 some positive constants Cy = Co(g, R, N,a,b, A1, As)
and 6 = (g, R, N,a,b, A1, As) such that if u is a solution of (5.5) with
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u(z) S

max
2€RNU{oo0} Wy (T)

then
dist(qj,qc) > 6 for all 1 < j # £ <k,

where q; = gj(u), ¢z = q¢(u) and k = k(u) are given in Proposition 5.5.

Proof. To obtain a contradiction we assume that for some constants €, R, A; and A,
there exist sequences K; and u; satisfying the assumptions of Proposition 5.6 such
that

Jim min dist(g; (u:), ge(us)) = 0.

‘We may assume that

o; = dist(q (ui), g2(us)) = rr;gzl dist(g;(us), ge(u;)) — 0 as i — oco. (5.104)
Fi

Let us denote gj(u;) by ¢i. Since Uy(u;) and Us(u;) are disjoint and (5.104) holds
we have that u;(g}) — oo and u;(gi) — co. Therefore we can pass to a subsequence
still denoted by {u;} and find R; — oo, &; —+ 0 such that either ¢! = g;(u;) — 0 or
|g| — oo, and for j = 1,2

wiui(g) 2=z +qf)

. — 25 + g} ui(g)) T < if gl 0
ui(q;) K(g;) €O (Bzrg, (0)) T S
(5.105)
. 2 .
a. ﬁ(q’z)mm-{—qz i P . .
'L( t\4j T J) }l{f() ;) + |q}|u¢(q})1"‘2‘2“ <eg; if lq” —% 00.
ul(qj) C%7(Bar;(0))

We first consider the case gt — 0. Since U; (u;) and Us(u;) are disjoint we have that

o; > c(N) m?}g{Riui(q§)“—N~3—2a 3. (5.106)
J=1,=

From (5.105) and (5.106) we get that o; *|gt| < - s — 0 for j = 1,2 and obtain
the contradiction

1 I

5 <loi (g —a)l = 0.
Performing the same analysis as above for the Kelvin transform @ of u leads to a
contradiction if @ —+ 0. O

Remark 5.5. Propositions 5.5 and 5.6 imply that there are only finitely many blow-up
points and all of them are isolated.

Proposition 5.7. Suppose {K;} and a €}(N—4)/2, (N —2)/2[ satisfy the assumptions
of Lemma 5.12 and Proposition 5.4. Let {u;} be solutions of (P;) with 2 = RY. Then
after passing to a subsequence either {u;/w,} stays bounded in L=°(RY) or {u;} has
precisely one blow-up point, which can be at 0 or at co.
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Proof. Suppose that {u;/w,} is not uniformly bounded in L>®(RY ), otherwise there
is nothing to prove. Consequently we may apply Proposition 5.5 and Proposition 5.6
to obtain isolated points {gt,.. ,q};(z)} satisfying (5.102) and (5.103) with R; — oo
and g; — 0. To obtain a contradiction, we assume that up to a subsequence k(z) > 2.
Since u q])/wa(q]) — oo for j = 1,2 and dist(q?,g4) > § > 0 we may assume g} — 0
and g4 — oo and k(i) = 2 as i — co. From Proposition 5.4 and Remark 5.5 they are
isolated simple blow-up points. From Proposition 5.3 we infer that

lim wi(a})ui(z) = h(a) in CB.(BY \ {0}),
div (|z|72*Vh) = 0 in RV \ {0}.

Using Theorem 5.9 for h and its Kelvin transform and the maximum principle we
obtain for some ai,as > 0

h(z) = ay|z|*T2e N 4+ g,.

We may now proceed as in the proof of Proposition 5.4 to see that
/ B(o,z,u;, Vu;) = b(ui(qi)_z).
8B, (4})
Multiplying by u;(g?)? and letting i — co we find that
/ B(o,z,h,Vh) =0.
8B,

This contradicts for small o Proposition 5.1 and completes the proof. O
Proposition 5.8. Suppose K € C*(RY) satisfies (5.10)-(5.12),

-4 -9
a>0, Nz 4<CL<N2 , and

4 <p<2¥
N—_—2_2q 2P~

Then there exists Cx > 0 such that for any t € (0,1] and any solution u; of

—div (|z]72Vu) = (1 +t (K (z) — 1))£_—1, u >0 in D22(RY) (Py)
|z|bP

there holds
luelle < Cx (5.107)

and

Cit < ww;! < Ck. (5.108)
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Proof. The bound in (5.108) follows from (5.107) and Harnack’s inequality in [58].
The estimate in Lemma 5.6 shows that (1 + ¢ (K (z) — 1))uP~2|z| =% belongs to the
required class of potentials in [58]. To show that u¢/w, is bounded in L®(RY) we
argue by contradiction and may assume in view of Proposition 5.7 that there exists
a sequence {t;} C (0, 1] converging to to € [0,1] as i — co such that u;, has precisely
one blow-up point (z;), which can be supposed to be zero using the Kelvin transform.
Corollary 5.3 yields

— I- ZL‘ uti(w)p -
o_/RN V(@) e

Since 0 is assumed to be the only blow-up point, the Harnack inequality and (5.76)
yield, for any ¢ € (0, 1),
u, (z)P

¥
/ m-vz((z)““(fg dwl: / z- VK (z) 2 da:’
B. (z:) |z RN\ B, (2:) ||
< C(0) (ue(2)77).

We have that from Taylor expansion, (5.62), and (5.11)

|VK (z;)| < const|z;| = o(ut{ (mi)'N~§—2a) (5.109)

and

uP

/ VK(z) z—* g
Bo(z:)

|z|>

D

u
VK(z;) - dz—}-/ D*K(z)(z —z;) - z Ly
/B,(m,-) (z:) - ||b” Bo (z:) (wa)( ) |z|o7

N G
ol|lz — z;|) - z—== dz|.
Bo (i) i Ibp

From Lemma 5.11 and (5.109) we infer

P

VEK(z;) z—— t’ d:z:+/ o(|lz — z;]) - dz
/. PR R L R G R

Hence

= o((uy, (ws) 7).

[ DK@e-s)-a R )
B, (z:) ||

Since by Lemma 5.11

/ DQK(Z)((E—;Z;,z) -rﬁidw:o(ut_(w,)_m>
ri<lz—zi|<co lmlbp f

we have
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P
Uy,

D2K(a:2- T —T;) T dz = ol uy, (z; —w=i=m ), 5.110
/B,,.@i) )@ =20 2 do = o (@) ) (5.110)

Making in (5.110) the change of variables z = uy, (z;)~%/(V=2-22)y 4 2, and using
Proposition 5.2

_ 2 i ?
0—_/RND K(0)y - ylyl zl+to(K(0)‘1)(y) dy

— 2—bp a,b
= AK(0) /RN lyl p21+t0(K(o)_1)(y)p dy

which is not possible in view (5.11). O
Proof of Theorem 5.1. 1t follows from Proposition 5.8 and Lemma 5.1. O
We define fx . : DI2(RY) — R by

fre(u) = fo(u) — Gk (u)

1 —2a 1 P
p =3 [ tatewap =1 [ L

L[ K@)
G =2 | T

We will use the notation f. (respectively ) instead of fr . (respectively Gx) when-
ever there is no possibility of confusion. Let us denote by Z the manifold

Z={zp=zla”fl: p> 0}
of the solutions to (5.5) with K = 1.

Lemma 5.13. Suppose p > 3. There ezist constants pg,e9,C > 0, and smooth func-
tions

w = w(luv E) : (07 +OO) X (_50750) — Di72(RN)
n=n(p,e): (0,+00) x (=eg,80) — R

such that for any p > 0 and € € (&g, &)

w(p,€) is orthogonal to T, 7 (5.111)

12 (20 + w(p, ) = n(p, ), (5.112)

7(p: )] + [lw (s, )l pra ey < Clel (5.113)
Il (s, )l pr2 vy < CA+ 17 Jel, (5.114)

where 5u denotes the normalized tangent vector H%z” and W stands for the derivative
of w with respect to . Moreover, (w,n) is unique in the sense that there exists po>0
such that if (v,7) satisfies ”’UHDi,z(RN) + 17| < po and (5.111)-(5.112) for some p >0
and |e| < €9, then v = w(p,e) and 7 = n(u, ).
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Proof. Existence, uniqueness, and estimate (5.113) are proved in Chapter 4. In fact
w and 7 are implicitly defined by H(x,w,n,e) = (0,0) where

H:(0,00) x DL2(RV) x R x R — DI*(RY) x R
H(p,w,n,¢) := (fé(zu +w) — néu, (w:gn))

Let us now show estimate (5.114). There exists a positive constant C. such that for
any u > 0 (see [48])

-1
”( (10,0, 0)) <c..
Since w satisfies
BESEE R -
n a(wv 77) (p,w,m,e) al‘l' (p,w,m,e)

we have for ¢ small using (5.113) and the fact that fo € C®

oH
, <002
llio(p o)l < €50

<o
<C+p el + 1175 (zu + wln, 5))%“

< C(L+p™Ylel + O(llw(p, &) DNzl
< CL+p Yl

(1,w,m,€)

+ l(wm, £), a%éu)

)

1+ w1 €)) 2 — n(w)isp

This ends the proof. |

Corollary 5.4. Suppose p > 3 and K satisfies the assumptions of Proposition 5.8.
Then there exist to > 0 and Ry > 0 such that any solution us of (P;) for t <tio is of
the form z, + w(p,t), where 1/Ry < p < Rp.

Proof. First we show that there exists B; > 0 and ¢; > 0 such that any solution u:
of (P;) for t < t; satisfies

diSt(ut, ZRI) < Po,

where by dist we mean the distance in the D}’ 2(RY )-norm, po is given in Lemma 5.13,
and Zg, = {2,|1/R1 < p < R1}. By contradu:tlon assume there exist B; — oo,
t; — 0, and solutions us, of (P;) such that dist(ue;, Zr;)epo. From (5.107) we can
pass to a subsequence converging weakly in Dl 2(RY) to some @; since in view of
the regularity results of [50] {u;} is bounded in C’OY'Y and such a bound excludes any
possibility of concentration, the convergence is actually strong and dist(@, Z) > po-
Furthermore, @ solves (P;) with ¢ = 0 and hence @ € Z, which is impossible.

Fix a solution u; of (P;) for some ¢ < t;. A short computation shows
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Jim dist(z,,u0)? = limdist(z,,ue)? = 2] + el > 3.

Consequently there exists Ry > 0 independent of ¢ and z, € Zg, such that
dist(ug, Z) = |Juz — 2]} and u¢ — 2, € TZuZl.

Since u; solves (P;) we have f/(z, +u¢ — 2z,) = 0 and the uniqueness in Lemma 5.13
yields the claim. O

5.5 Leray-Schauder degree

We introduce the Melnikov function
22

1

It is known (for details see [48]) that it is possible to extend the C2- function I'x by
continuity to 7 = 0 and
AK(0) L ()P

I (0) = 0 and T (0) = el L

(5.115)

Furthermore, using the Kelvin transform, we find

I (r) =I'g(t™Y) where K(z)= K(z/|z|?). (5.116)
We define for small ¢ the function @x (1) = fr (2, + w(p,t)) and will denote it
by &; whenever there is no possibility of confusion.

Lemma 5.14. Let p > 3 and assume I'x has only non-degenerate critical points.
Then there exists t1 > 0 such that for any 0 < t < t1 any solution u; of (P;) is of the
form uy = 2y, +w(pe,t), where Sy (1) = 0 and py € (Rg*, Ro) for some positive
Ry. Moreover, up to o subsequence as t — 0

lue — Al = O(t), (5.117)

where [i is a critical point of I'x. Viceversa, for any critical point i of I'x and for
any 0 < t < t; there exists one and only one critical point p; of P 1 such that (5.117)
holds.

Proof. By Corollary 5.4 any solution u; of (P;) is of the form u; = z,, + w(p, t),
where ®,(u:) = 0 and Ry" < p¢ < Ro. Using the Taylor expansion and (5.113) -
(5.114), we have that for Ry' < u < Ry :
Bi () = fi(zu +w(p, 1)) 2y + 0 (p,1))
= fi(zu) (B + (1, 1) + (ff (2u)w(p, 1), 2 + 0 (p, 1)) + O(flw(p, 8)117))
= —tG"(2u) (Zu + (1)) + (o (2u)w(p, 1), @ (1, 1))
— t(G"(zu)w(p, 1), 2 + (s, 8) + O(llw(p, 1))
= —tI'"(u) + O(#?). (5.118)
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Fix a sequence (t,) converging to 0. Since p; is bounded, we may assume that (u,)
converges to ji. From expansion (5.118) we have that

0= (t,) = —tn(I" (pt,) + O(tn))
hence i is a critical point of I'. A further expansion yields
0=} (1) = ta(l"(B)(pe, — B) + 0(pe, — 1)) + O(£7)
which gives for n — oo
(e, — BT (B) + o(1)) = O(tn)

proving (5.117) for I'"(i) # 0. Viceversa let i be a critical point of I'. Arguing as
above we find as p — f and for any 0 <t < t;

(1) = t(u ~ B)(I"(B) +o(1)) + O(F?)
hence there exists u; such that
pe =g — (I"(@) +0(1))"*0() and &;(u:) =0.

To prove uniqueness of such a ¢, we follow [20] and expand &; in a critical point
@;’(,Ut) = ( él(zut +w(”t7t))(zﬂt + w(/”’ht))a (’z"#t + ’(U([Lt,t)))

= ( (,)’(zu: + w(/-"ht))(zm + w(l"ht)L (Zue + 'Li)(/.,bt,t)))

- t(GH(Z#t -+ w(/“’ta t))('é/it + w(.u‘tv t))7 (Z'm + w(/—”ta t)))
= ( 6,(Zﬂt)w(/"'t1t)1w(”tat)) + ( (,!”(zltt)w(#tat)(zm + w(/-"ht))?ém + u.)(Mt’t))

— t(G" (2, + wlpse, 1)) (Z + 0 (1,1)), (2 + (2, 1))
= (F (2u )Wt ) Zae s 20 ) — (G (20 ) 2us > 2, ) + O(F%). (5.119)

Since any critical point u; of ®; gives rise to a critical point z,, + w(u¢,t) of fi, we
have that

0= (ftl(zl-tt + w(:u’tat))’é’;ﬂt)
= (Fllzn) + £ G )w (e D) + O(llwps, DI, )
= _t(G’(zﬂt)r.z.lLt) =+ ( él(zll't )'U)(,th,t),gm) + O(tz)' (5120)

Differentiating f& (2,)%4, = 0 and testing with w(u;,t) we obtain
0= ( (I)’I(zut)élltzunw(utwt)) + (fé’(zm)ém ,iU(/it,t))- (5121)
Putting together (5.120) and (5.121) we get

(f(g”(zuz)2u:«éunw(,u't,t)) = —t(Gl(zm)a 2#:) + O(t2)
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hence in view of (5.119)

¢7’£,(.u‘t) = —-t(G’(Z,_“), zlit) - t(G”(ZM)i’#”é'#t) + O(tz)
= —tI"" () + O(?). (5.122)
To prove uniqueness, we choose § > 0 such that sgnl™ (u) = sgnl™ (i) s 0 for any

| —f| < 8. From (5.122), there exists t(6) > 0 such that if ¢ < £(d) and p; is a critical
point of &; such that |p; — ] < J, then

sgndy (i) = —sgnl™ (7).
From (5.118) we have that for ¢ < ¢(d)
Sgnf‘”(ﬁ,) = deg(F',Bg(/j), 0) = deg(“@;,B(s(ﬂ), O)

=— > sgnd}(y) = #{y € Bs(i) : P}(y) =0} sgnl”(f).
yEBs (i)
&, (y)=0

Hence #{y € B;() : 9;(y) = 0} = 1, proving uniqueness. O

Lemma 5.15. For any K € L (RY) the operator

1K
Lg: uw (—div(|z|7*V)) llgi—bifpllulp_zu

is compact from E to E.

Proof. Let {uy} be a bounded sequence in E and set vp, = Lx (un), i.e.

—div (|a:|‘2“VUn) = _|—1;{TP

[Un|P 21y,
By Caffarelli-Kohn-Nirenberg inequality, {v,} is bounded in D}?(RV) and passing
to a subsequence we may assume that it converges weakly in D1?(RY) and pointwise
almost everywhere to some limit v € D.?(RY). Since {u,} is uniformly bounded in
L*°(Bs(0)), from [50] the sequence {v,} is uniformly bounded in C%7(B5(0)). Using
the Kelvin transform we arrive at '
—div (|2|72*V,) = |z|~ V22K (@ /[2?) [un(2/|2]*) P un(z/|2f)
_ 2y [Tn P
= K(z/|z| )W

Since {un} is uniformly bounded in E, {@,} is uniformly bounded in L% (B3(0))
and hence from [50] the sequence {7y} is uniformly bounded in C%7(B5(0)). Since a
uniform bound in C%7(B5(0)) implies equicontinuity and

[1(vn = vm)w; lco@m By (o)) < const ||Tn — Bmllco(s, (o))

from the Ascoli-Arzeld Theorem there exists a subsequence {v,} strongly converging
in CO(RY,w,) to v. Moreover, the C°(RY,w,)-convergence excludes any possibility
of concentration at 0 or at co and {v,} converges strongly in D12(RY). ]
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From Proposition 5.8, there exists a positive constant Cx such that |ju||g < Ck and
Cx' < uw;? for any solution u of (P;) uniformly with respect to ¢ € (0,1]. By the
above lemma, the Leray-Schauder degree deg(Id — Lk, Bk, 0) is well-defined, where
Bix :={u€E: ||ullp < Ck,Cx" <uw;l}.

Theorem 5.10. Under the assumptions of Proposition 5.8 and for p > 3 we have

sgnAK (0) + sgnAK (0)

deg(Id — Lk, Bk, 0) = - 5

Proof. By transversality, we can assume that I'x has only non-degenerate critical
points. If not, we proceed with a small perturbation of K. By Proposition 5.8 and the
homotopy invariance of the Leray-Schauder degree, for 0 < ¢ < t;

deg(ld — Lk, Bk, 0) = deg(Id — Lix, Bk, 0).
By Lemma 5.14 we have

deg(Id - LtK, BK, 0) = Z (_]_)m(zu‘f'w(ﬂit):fz,lc)
BE(DY £ )~1(0)

where m(z, + w(y,t), fi,x) denotes the Morse index of fi x in z, + w(u,t). We will
only sketch the computation of m(z, +w(g,t), fi,x) and refer to [7, 20, 67] for details.
The spectrum of f§/(z,) is completely known (see [48]) and D}-(RV) is decomposed in
(z) BTy, Z b (24, T, Z)*, where 2, is an eigenfunction of f§'(z,) with corresponding
eigenvalue —(p — 2), 7., Z = ker(fy'(2,)), and fy'(z,) restricted to the orthogonal
complement of (z,,T:,Z) is bounded below by a positive constant. Consequently, to
compute the Morse index m(z, + w(u,t), fr,x) for small ¢ it is enough to know the
behavior of f'g (2, +w(u,t)) along T, Z. From the expansion

Fo (20 +w(p, 1)) = folzu) — tIx (i) + o(t?) = const — tI'k (u) + o(t?)
we have that for ¢ small

1 i I (u) >0

5.123
0 if I (u) < 0. (5.123)

m(z, +w(p,t), frx) =1+ {

From (5.123) and Lemma 5.14, we know that for ¢ small

Z (_1)m(z”+w(#,t),ft.x) - _ Z (__l)m(p,*l"x)

BE(P] £ )~1(0) BE(Ig)1(0)
= deg(FI,{7 ((RO + 1)—1? Ro + 1)7 O)a

where Ry is given in Lemma 5.14. From (5.115) we obtain for p — 0

I'e(n) = T (0)p + o(u) = const AK (0)p + o(w).-



5.5 Leray-Schauder degree
Hence sgnl' ((Ro + 1)) = sgnAK (0). Using (5.116) for obtain for p — co
Tie(p) = —p 2T (u™) = —const AK (0)u™3 + o(u™%).
Therefore sgnly((Ro + 1)) = —sgnAK (0) and

_sgnAK(0) + sgnAK(0)
2 ’

deg('r}l'{a ((RO =+ 1)-1’R0 + 1): O) =

which proves the claim.

Proof of Theorem 5.2. 1t follows directly from Theorem 5.10 and Lemma, 5.1.
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6 About an equation involving Hardy inequality
and critical Sobolev exponent

In this chapter we present the results proved in [2] about the following class of prob-
lems

—Au = (ﬁl—ﬂ@)u + k(z)u* !, z e RV,

EE (6.1)
u>0in RY, and u € DM2(RY),
where N > 3, 2* = 22 and h, k are continuous bounded functions, for which we

N-2
will state appropriate complementary hypotheses. Here DL2(RY) denotes the closure
space of C§°(RY) with respect to the norm

1/2
||uHD1,z(Rw) = (/ |VUI2d$) .
ReV

By the Sobolev inequality we can see that DV2(RM) is the class of functions in
L?"(RM) the distributional gradient of which satisfies ( Jw |Vu|2dx)1/ ? < .

For h = 0,k = 1 the problem is studied by S. Terracini in [82]. In chapter 4,
following [48], we proved the existence of a positive solution in the case A = 0 by
using the perturbative method by Ambrosetti-Badiale in [8], even for a more general
class of differential operators related to the Caffarelli-Kohn-Nirenberg inequalities that
contains the operator in equation (6.1). By the perturbative nature of the method, the
solutions found in [48] are close to some radial solutions to the unperturbed problem.
On the other hand, in [77] Smets obtains the existence of a positive solution for
problem (6.1) with h = 0, k¥ bounded, k(0) = lim|| o0 k(z) and dimension N = 4.

In this chapter we study the existence of positive solutions in the case in which
either h=0and k£ lork =1and h £ 0 satisfying suitable assumptions. Qur
results hold in any dimension and are proved using the concentration-compactness
arguments by P.L. Lions, see Chapter 2.

It is known that the general problem has an obstruction provided by a Pohozaev
type identity that shows us the particularity of this problem, that is: the ezistence of
a positive solution depends not only on the size of the functions h and k but also on
their shape. More precisely, assume that u is a variational solution to our equation
with h,k € C'. Multiplying the equation by (z, Vu) and with a convenient argument
of approximation we get that necessarily

A

u? 1 2,
2 / (Vh(e), ) e + 32 / (VE(z), 2)[ul* dz = 0.




98 6 About an equation involving Hardy inequality and critical Sobolev exponent

This behaviour makes the problem more interesting to be analyzed. The existence part
of the present chapter is mainly based on the conceniration-compactness arguments by
P.L. Lions (see [70] and [71]) and involves some qualitative properties of the coefficients
that avoids the Pohozaev type obstruction. We also obtain multiplicity of positive
solutions by using variational and topological arguments.

The present chapter is organized as follows. First we study the problem of nonex-
istence and existence for k = 1 and h satisfying suitable conditions. As pointed out
above, we mainly use the concentration-compactness principle by P.L. Lions. The main
result in this part is Theorem 6.2. Then we deal with the existence and multiplicity
results for the case in which A = 0 and k satisfies some convenient conditions. In
this part we will use techniques that previously had been introduced to study re-
lated problems by Tarantello in [81] and refined by Cao- Chabrowsky in [32] (see
also the references therein). We use this approach in the case that the function k
achieves its maximum at a finite number of points. The main result in this direction
is Theorem 6.4. Finally we study a more general class of functions k, i.e. we treat
the case in which k can reach its maximum at infinitely many points, but having
only accumulation points at finite distance to the origin. To analyze this case we use
the Lusternik-Schnirelman category. This point of view is inspired by the study of
multiplicity of positive solutions to subcritical problems done by R. Musina in [72].

6.1 Perturbation in the linear term

We will study perturbations of a class of elliptic equations in RV related to a Hardy
inequality interacting with a nonlinear term involving the critical Sobolev exponent .
Precisely we will consider the following problem

—Au = ————2(3:—)u+u2*“1, z €RY,
|z| (6.2)

u>0in RY, and u € DV (RV),

where N > 3 and 2* = _]\2[_1_% Hypotheses on h will be given below. Let us denote by

Ay = C’]le =& 22)2, where Cp is the best constant in the Hardy inequality (see
Lemma 4.1). The case h = 0 of (6.2) has been studied by S. Terracini in [82]; she
shows, in particular, that

1. if A > Ay, then problem (6.2) has no positive solution in D’ (RM);
2. if A € (0, Ax) then problem (6.2) has the one-dimensional C 2 manifold of positive

solutions
Za= {w“ |w,(z) = p= T w™ (5) p> 0}, (6.3)
"
where
N -2 2\ "3 3
U)(A) (-'L') = (N( )VA) N=3) and v4 = (1 - _4—) i . (64)
(Je[t=7a (1 + |a[2va)) T An
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Moreover, if we set Qa(u) = fon |Vul2dz — A Jo~ ﬁ;da;, then we obtain that

S= inf Al _ Qalwy) = S( % )_Nv—l’

= 1— 22
weDV2RV\{0} [[ull3.  [Jw,|E

(6.5)
N

where S is the best constant in the Sobolev inequality. Notice that S is attained
exactly in the family w, defined in (6.3). ‘

6.1.1 Nonexistence results

We begin by proving some nonexistence results that show the fact that in this kind
of problems both the size and the shape of the perturbation are important. Define

Qu) =/RN|Vu;2dx—/RN (é—l—%ﬁ—(a&)uzdx, (6.6)

K = {ue DL(RY)] Jgw [u¥ dz = 1}, and consider I; = infuex Qu).
Lemma 6.1. Problem (6.2) has no positwe solution in the following cases:

(a) If A+ h(z) > 0 in some ball B;(0) and I, < 0.
(b) If b is a differentiable function such that (W' (z),z) has a fived sign.

Proof. We begin by proving nonexistence under hypothesis (a). Suppose that I; < 0,
and let u be a positive solution to (6.2). By classical regularity results for elliptic
equations we obtain that u € C*°(RV\{0}). On the other hand, since A+ h(z) > 0 in
B5(0), we obtain that —Au > 0 in D’ (Bs(0)). Therefore, since u > 0 and u # 0, by the

strong maximum principle we obtain that u(z)ec > 0 in some ball B,(0) cc Bs(0).
2
Let ¢, € CP(RY), ¢, > 0, [|@nll2« = 1, be a minimizing sequence of I1. By using %ﬂ

as a test function in equation (6.2) we obtain

/RN V(E’f@)w = [ Athi) ’,;f;(’”) 82 + /RN $2u? 2.

u BN
A direct computation gives

on _/ @21 20y — A+h(z) 5 / 2. 92%—2
2 v w V¢, Vudz o 2 |Vu|*dz = v TP o + RN¢”U ,  (6.7)

and since ’ )
n n 2 2
2—U~V¢5nVu - 'u—glvul <|Vénl?,

we conclude that

/ [Vn|2dz > w¢i+ / P2u? 2,
RN RN |$|2 RN
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On the other hand, I; < 0 implies that we can find an integer no such that if n > no,

2 A+ h(z) 5
/RN]qunl /RN -——-—————lziz o5 < 0.

As a consequence [py 242"~2 < 0, for n > no, which contradicts the hypothesis
u > 0.

Let us now prove (b). By using the Pohozaev multiplier (z, Vu), we obtain that if u
is a positive solution to (6.2), then

N

/ (h (:II),.’Z?) u2da: — 07
gy lzf?

which is not possible if (h'(z),z) has a fixed sign and u Z 0. O

Corollary 6.1. Assume either

i) A> Ay and he0, or
.. A
WA > Ay and 1 < (TV*—24)2__—I|77W;’

then problem (6.2), has no positive solution.

6.1.2 The local Palais-Smale condition: existence results

To prove the existence results we will use a variational approach for the associated
functional '

1 1 A+ h(z 1 -
Jw) = 3 /RNNu[?dx- —2-/RN ——m?(—zuzdz = /RN ul*’ da. (6.8)

We suppose that h verifies the following hypotheses

(h0) A + h(0) > 0.

(h1) h € C(RV) N L=(RY).

(h2) For some cg > 0, A + |[hflec < AN — co-
Critical points of J in D*? (RM) are solutions to equation (6.2). We begin by proving
2 local Palais-Smale condition for J. Precisely we prove the following Theorem.

Theorem 6.1. Suppose that (h0), (h1), (h2) hold and denote h(o0) = lim sup h(z).

|z]|—rc0

Let {un} C DY*(RY) be a Palais-Sale sequence for J, namely
J(un) = ¢ < 00, J'(un) = 0.

If

B e Sl

then {u,} has a converging subsequence.
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Proof. Let {u,} be a Palais-Smale sequence for J, then according to (h2), {u,} is
bounded in D"?(RY ). Then, up to a subsequence, 7) u,, — ug in D12 (RN, 44) u, —
up a.e., and #ii) un —+ o in LY, a € [1,2*). Therefore, by using the concentration
compaciness principle by P. L. Lions, (see [70] and [71]), there exists a subsequence
(still denoted by {u,}) which satisfies

L |Vun[* = dp > |Vuo|? + Zjej 10z ; + podo,

2. Jun” = dv = Juol®” + Zjej Vj0z; + vodo,

3. Suf; < uj for all j € J U {0}, where 7 is at most countable,
uZ u3

4. T ~dy =L 4§
e~ T %

5. Anvo < po.

To study the concentration at infinity of the sequence we will also need to consider
the following quantities

Voo = lim limsup [un* dz, oo = lim Iimsup/ [Vu,|* de
R—oo peo lz|>R R-—c0 paoo |z|>R
and )
N n
Yoo = lim limsup s dz.
B=0 noo Jjg|>g |7

We claim that J is finite and for j € 7, either v; = 0 or v > SN/2. We follow closely
the arguments in [12]. Let ¢ > 0 and let ¢ be a smooth cut-off function centered at
zj, 0 < ¢(z) < 1 such that

. €
b(z) = {1, if |z —2;] < 3

0, if |z —z;] > ¢,
4
and |Vg| < = So we get

0= lim (J'(un), uns)

= lim (/ qunlqu-}-/ Un VUV — wg@uifb—/ ¢‘Un|2*>-
n—00 RN BN RN IT!‘ RN

From 1), 2) and 4) and since 0 ¢ supp(¢) we find that

. 2, : 2%
Jm [ (7| qs—/RNqsdu, Jgr.go/wlunl as—/RNqﬁdu

and A+h A+h
lim ——j;T(a—:luiqf) — + 2(!13),”% .
n—roo B.(z;) lml B (z5) le

Taking limits as € — 0 we obtain
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lim lim
g—0n—o0

/ unVuanﬁl — 0.
RN

Hence
T . 1 s L .
0= lim lim (J'(un),und) = pj = ¥j-
2
By 3) we have that Sv7" < pj, then we obtain that either v; = 0 or v; > GN/2 which
implies that J is finite. The claim is proved.
Let us now study the possibility of concentration at z = 0 and at oco. Let ¥ be a
regular function such that 0 < P(z) <1,

[, iz >R+1
”’(*’”)‘{o, if |o| < B,

and |Vy| < 4. From (6.5) we obtain that

Fan |V (wnt)) Pz — (A + h(00)) fo o da > 5(1- éi_h_(z?l) T 69)

(f]RN lwun12*>2/2* An

Hence

2
Un dz
|

2
[ 19wt = (44 hio) [
RN RN IZII
, A+ h(co)\ 7 0\ 2/2"
>s(1- =) (/Rqunl )
Therefore we conclude that
/ ¥?|Vu,|?dz + / ul|VPdz + 2 / Unp Vi, Vipdz
RN RN RN

2,2 VN st
> (A + h(c0)) /RN Tll)mqlg"dx-l—S(l——A—tfv(fﬂ)

(/RN |¢Un]2*)2/2*.

We claim that

lim limsup{/ uilV¢|2dm+2/ lunh/)l\?un]lvwldm} =0.
RN RN

R—c0 pnooo

Using Hélder inequality we obtain

/R JunltVinl [V

1/2 1/2
< (/ ]un|2|V1/)[2d:v> (/ qunlzdz> .
R<|z|<R+1 R<|z|<R+1

Hence



6.1 Perturbation in the linear term 103

n—+oo

1/2
im [ V] [Vi|de < c( / |u0|2]V¢|2dm>
RN R

<Jz|<R+1

2/2* 2/N
<o/ wias) (| Vo)
R<|z|<R+1 R<|z|<R+1

_ 2/2*
< c( / o 2 d:v) .
R<|z|<R+1

Therefore we conclude that

2/2*
lim limsup/ [Un |V Vug||Vipldz < C lim (/ ]uolz*da:) =0.
R RN R—oco R

0 n—oo <|z|<R+1

Using the same argument we can prove that

lim limsup uZ|Vy? = 0.
R—oo n—+00 RN

Then we get

N—1
N *
_ Mﬂ) V2 (6.10)

oo — (A + h(00))7o0 > 5(1 —

Since limp_,q0 li_>m (J'(un),un®) = 0, we obtain that fe, — (A + h(00))Yeo < Veo.
Nn—rco

N1
Therefore we conclude that either v, = 0 or Ve, > S T (1 - —‘4—4—';1@1-55'9—)—) * . The same
holds for the concentration in zg = 0, namely that either

A+ RO\ T
An '

uo=00ry025%<1

As a conclusion we obtain

¢ = T(un) = 3" (), un) + o()

1 . 1 .
= N/RN lunl2 dl’+0(1) = N{/E;N luO|2 d:L‘—{-—I/o-{—Voo-f—Zl/j}.
jeg

If we assume the existence of j € J U {0,000} such that v; # 0, then we obtain
that ¢ > ¢* a contradiction with the hypothesis, then up to a subsequence u, — ug
in DL2(RY). O

In order to find solutions we look for some path in D2 (RY ) along which the maximum
of J((¢)) is less than ¢*. To do that, for H = max{h(0), h(c0)}, we consider {w,} the
one parameter family of minimizer to problem (6.5) where A is replaced by A + H.
Then we have the following result.
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Theorem 6.2. Suppose that (h0), (hl) and (h2) hold. Assume the ezistence of po > 0
such that 2 () 2 (0
w? (z w2 (z :
h Bo-~dz>H 2o~ d. q1
Jou M > | S (611

then (6.2) has at least a positive solution.

Proof. Let po be as in the hypothesis, then if we set

f(t) = J(twuo)

£ 2 A+ h(z) , 2" -
=7 dz — = R v 2 >
2 (/RN Vetuo "z /RN R V) T3 /RN fwp|*"dz, £ > 0

we can see easily that f achieves its maximum at some o > 0 and we can prove the
existence of p > 0 such that J(twy,) < 0 if ||tw,,|| > p. By a simple calculation we
obtain that Athiz)
2 z
. Jaw VW, Pdz — fon “5p w? dz

0 B fRN |wy, > dz ’

and

. N/2
1 [ Jan Vwy, Pdz — [on ﬁ'ﬁ’?—g—zwzodz
- . (6.12)

J(towﬂo) = max J(twl-l-o) =N 2/9%
t20 (fRN Iwuol2*d1’) /

Using (6.11) we obtain that

N/2

1 (fRN |Vwy, |*dz — (A + H) fRN
N

2
"’“g dz
J(to’wﬂo) < - - YT |z
(f]RN wy, 2 d:v)

1 .~ A+HY\ 32 .
=%° <1 Ay ) =¢
We set
I ={yec(o,1],D**(®")) : 7(0) =0 and J(y(1)) <O}
Let

= inf .
°= Jehamsy 70w

Since J(towy,) < c*, then we get a mountain pass critical point up. Then we have
just to prove that we can choose up > 0. We give two different proofs.
First proof. Consider the Nehari manifold,

M ={ueD"?®RY): u+0and (J'(u),u) = 0}
_— 2 Nv . 2 _ ________5_1’_)” uz*
_{ue’D1 (R).u#Oand[RNIVuidm~LN EE 2dm+/RNH d:v}.
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Notice that ug, |ug| € M. Since ug is a mountain pass solution to problem (6.2)
then one can prove easily that ¢ = J(uo) = mingyep J (u) (see [83]). Moreover as
J(luol) = minyeps J(u), then |ug| is also a critical point of J.

Second proof. Here we use a variation of the deformation lemma. Since Ug is a mountain
pass critical point of J, which is even, we have

¢ = J(uo) = J(luol) = mazx J (t|uo)-

Let #; > 0 be such that J(t[uo|) < 0. We set yo(2) = t(t1|uol) for ¢ € [0, 1]. Notice
that v € I" and

c=J(luol) = . J(70(t)).

If Juo| is a critical point to J, then we have done. If not then using Lemma 3.7 of [55]
we obtain that o can be deformed to a path v, € I" with maxe,1] J (11 (t)) < ¢, a
contradiction with the definition of ¢ as a min-maz value.

Hence we have nonnegative solution to problem (6.2). The positivity of the solution
up is an application of the strong maximum principle by using hypotheses (h0) and
(h1). O
We give now some sufficient condition on % to have hypothesis (6.11).

Lemma 6.2. Suppose one of the following hypotheses holds

(1) h(z) > h(0) + c1|z|"4+5N=2) for |z| small and ¢; > 0 if h(0) > h(o0), or
(2) Mz) 2 h(co) + cafz|~#4+#N=2) for |z| large and c; > 0 if h(co) > h(0),
then there exists po > 0 such that (6.11) holds.

Proof. Let 6 > 0 be small such that if |z| < & then h(z) > A(0) + ¢|z[*++#(N~2)_ For
simplicity of notation we set v4yy = v. Let

dz
Is, = h - H )
N7} /Iz!<5( (!77> )II‘(l_y)N-i-.Qy('u;y + {.’B|2”)N'2
then ‘ ' (N 9)
|V T2 dy
Is,, > .
e 2 € /|z1<6 |z|C=»)N+2v (20 |z[2)N -2

Since (N —2) = [(1 = ¥)N +2v + 2v(N — 2)] = —N, we conclude that Is, — oo as
t — 0. On the other hand

dCL‘ dx
h(z) —H < < ‘
/lwlzé |h(z) ’Iml(l—V)N+2u('u2u + |z[2r)N-2 = ¢ ol55 -—————lxl(Hy)N_zy < C(6)
Therefore we get the existence of g > 0 such that
2
/ (WMz)-H E)—‘i&(,,i)dz
RN |z|?

2

wzo(z) T — ) — wﬂo(x) r
>/’zl<5(h(w)—H) d /Im|25[h() A dz >0,

N |=|? |z|?

Then the result follows. The second case follows by using the same argument near
infinity. o a
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6.2 Perturbation of the nonlinear term: multiplicity of positive
solutions

In this subection we deal with the following problem

A .
—Au=u+k(z)u? L zeRY,
|z}? () (6.13)
u>0in RV, and u € DV2(RY),
where N >3, 0 < A < Ay and k is a positive function.
6.2.1 Existence
Assume that & verifies the hypothesis
(K0) ke L®®Y)NC(RY) and ||k|leo > max{k(0),k(c0)},
where k(co) = lim sup k(z)-
|z} —o0
We associate to problem (6.13) the following functional
1 A 2 *
Ja(u) = —f |Vu|>dz — -—/ ~u——,;er' L k(z)|ul? dz. (6.14)
2 RJ“T 2 RN IfEl" 2* RN

As in the previous section we have the following Lemma.

Lemma 6.3. Let {un} C DV2(RY) be o Palais-Smale sequence for Jy, namely
Ia(un) = ¢ < 00, Jy(un) —+ 0.

If
c < &)

for

then {un} has a converging subsequence.

The proof is similar to the proof of Theorem 6.1.
In the case in which k is a radial positive function, we can prove the following improved
Palais-Smale condition.

Lemma 6.4. Define

N —
AT N=2

a0 = 25% (1= 22) T min {(k(0) 7, (koo T -

If {un} ¢ DV2(RY) is a Palais-Smale sequence for Jx, namely

Ia(un) = ¢,  Jy(un) =0,

and ¢ < &, then {u,} has a converging subsequence.
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Remark 6.1. This follows from the fact that the inclusion of
Hy (2) = {u € L*(2) : |Vu| € L*(R), u radial}

where 2 = {z € RY : Ry < |z| < Ry}, in L(R) is compact for all 1 < ¢ < co and in
particular for ¢ = 2*, see [66].

As a consequence we obtain the following existence result.

Theorem 6.3. Let k be a positive radial function such that (K0) is satisfied. Assume
that there exists po > 0 such that

/ k(2)w? (2)dz > max{k(0), k(cc)} / Wi (@)ds,  (6.15)
RN RN
where wy, s a solution to problem
A N N
—Aw = —w+w* "l g eRY,
|z|?

w>0inRY, and w € DM2(RY).

- Then (6.13) has at least a positive solution.

Proof. Since the proof is similar to the proof of Theorem 6.2, we omit it. ]

Remark 6.2. Assume that one of the following hypotheses holds

(1) k(z) > k(0) + c1|z[*> for |z| small and ¢; > 0 if £(0) > k(c0), or
(2) k(z) > k(co) + ca|z|2** for |z| large and ¢ > 0 if k(c0) > k(0),

then there exists po > 0 such that (6.15) holds.

Let us set
+00 if k(0) = k(c0) =0
b(A) = N2 A N2 A5
min { (1) 5 (1= 55) 7 (007 (1= 25) T b otherwie
Lemma 6.5. If (K0) holds, there ezists eq > 0 such that |[14:Hc;,¥ < bleg) and
dN) =é= —]1\75”/2||k|]§o1j2;2 (6.16)

for any 0 < A < gp.

Proof. From (KO0) it follows that if £ is sufficiently small then Hk“;ﬁg—z < b(eg) and
hence from the definition of &(A) we obtain the result. O




108 6 About an equation involving Hardy inequality and critical Sobolev exponent
6.2.2 Multiplicity

To find multiplicity results for problem (6.13) we need the following extra hypotheses
on k:

- N _ ca
(K1) the set C(k) = {a eR 'k(a) = max k(w)} is finite,
say C(K) = {a;]1< j < Card (C(R))};
(K?2) there exists 2 < § < N such that if a; € C(k) then k(a;) — k(z) = o(|z — a;j|)?

as T — a;.

Consider 0 < rg < 1 such that By, (a;) N By, (a;) = 0 fori # j, 1 <1i,j < Card (C(k)).
Let 6 = %2 and for any 1 < j < Card (C(k)) define the following function

o) — Jan ()| Vul?dz
it = Sl

where ;(z) = min{l, |z — a;|}. (6.17)

Notice that if v Z 0 and Tj(u) < §, then

7"0/ ' |Vul®dz S/ ¥;(z)|Vul*dz
RN\ By (a;) RM\B, (a;)
< [ w@vitde<s [ [wupa=T [ [vupds
RN RN 3 RN

Hence we have the following property.

Lemma 6.6. Let u € DV2(RY) be such that Tj(u) < 8, then

/ [Vul? > 3/ |Vul?dz.
RN RN\B, (a;)

As a consequence we obtain the following separation result.

Corollary 6.2. Consider u € DV2(RY), u £ 0, such that Ti(u) < § and Tj(u) < 0,
theni =7j.

Proof. By Lemma 6.6 we obtain that

2/ |Vul|?dz > 3(/ |Vu|2d:c+/ |Vu]2dw>.
RN RN\ B, (a:) RN\ B, (a;)

If i # j we find that
2/ |Vu|*dz > 3/ |Vu|?dz,
RN RN

a contradiction if u # 0. O
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Consider the Nehari manifold,
MQ) ={ueD"*RY): u#0and (J5(u),u) = 0}. (6.18)

Therefore if u € M(\)

/ [Vu|2dm-—/\/ da:—/ k(z)|ul* dz.

Notice that for all « € DH2(RY), u # 0, there exists ¢ > 0 such that tu € M()) and
for all u € M(\) we have

/ |Vu|>dz — /\/ —=dz < ( / k(z)|ul* dx,

hence, there exists ¢; > 0 such that
Vue M), |lullpre@m > e

Definition 6.1. For any 0 < A < Ay and 1 < j < Card (C(k)), let us consider
M;(A) ={u € M(X) : T;(u) <6}

and its boundary
GiA) ={ue M(A): Tj(u) =06}

We define
myi(A) = inf{Jy(w) : u € M;(\)} and n; () = inf{Jx(u) : u € T3V}

The following two Lemmas give the behaviour of the functional with respect to the
critical level é.

Lemma 6.7. Suppose that (K0), (K1), and (K2) hold, then M;()\) # 0 and there
exists €1 > 0 such that

m;(A) <& forall0 <X <e and 1< j < Card(C(k)). (6.19)

Proof. We set

1 Uy j
Uy, (z) = — and wu,; = —22—, (6.20)
I (u? + |z — a;]2) "= B gl
then |luy,jlle» =1 and [y |[Vuy, ;|?ds = S. If
N—2
tug(A) = o IVuMsz 0 IR LA
# fRN z)|uy ;%" dz

then ¢, ;(N)u,,; € M(X). Making the change of variable z — a; = py, we obtain
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f]paN V()| Vup,; |2d$ - fRN Yj(a; + uy){Vuo(y)|2dy
fRN |Vuy,;*dz f]RN [Vuo(y)|2dy ’

where ug(z) is v, ; to scale p = 1 and concentrated in the origin. Then
Jrw ¥i(05) | Vuo(y)*dy _
Jrw [Vuo(y)[Pdy

uniformly in A. Hence we get the existence of pp independent of A such that if u < po,
then t, j(A)uy,; € M;()). Notice that

Ti(tpu, (MNug,) =

iii% Tj(tp,j(MNup,j) = ¥j(az) =0,

() 20 (M) = (Hkil;} (1- -A%)S) -

In order to prove (6.19), it is sufficient to show the existence of p < pg such that if
0 < A <egy then
Ia(tup,;) = Ia(tu,;(Mup,;) <E.

t>t1(z\
‘We have
tgaz"()J\(t“u,J)
t? 2 2* 2 i
<r£1>a§c{2 qu”]| da:—— km)|u“1| d:c /\t /\)
and

a |Vu,,;|2d —-ti*- k Mg, d
TRaxN 2 . Up,j| &L up,|° dz

N/2
((fRN :L‘)hi]lz* )“/2*> .

In view of assumption (K2) we have that for some positive constants ¢, &

[ k@ luasl e = ellw = | (b(a) = K@) s s
RN RN

k(a;) — k(z
el = [ G s

_ |z — a;|?dzx dz
> km—cuN{f ok
Il ! Bs(a;) (B2 + |z = aj2)N [Fllo RM\B;(a;) (1% + |2 — aj[2)N

84 cly
S 1kl — 2 N{ 9—N6~/ ___I_?!.l.__y__+2k / }
> |lklloo —C1p™ 1 ? Jan (1+ |y|2)N lEleo ly|>6 |y‘9N

= |[Eflos + O().

Then we obtain that
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1 SN/2 1 u?
max J(tu, ;) < — - — =2\ BT e
S T S NI o 2 S B
1 gn/e 1.2 “/21,3
< N -+ O )‘iAtl(’\)/ bid

Using estimate A.6 from [77] we obtain that for some positive constant ¢

2

u .
/ Edde > cp® as p— 0.
RN 2]

Therefore we get

Ttuey) < 252 o) — Loz o2

max 'LL vy “"‘C

t>t1(A) - NHkHoo s 1A
<&t e’ — SO0,

where & is a positive constant. Since from (K2) we have 2 < § < N, we get the
existence of 1 and pg such that if p < pg and 0 < A < g1, then z%a(};) J(tuy ;) < @
Zt1

and the result follows. a

We prove now the next result.

Lemma 6.8. Suppose that (K0), (K1), and (K2) are satisfied, then there exists €9
such that for all 0 < A < g2 we have

e <mi(A).

Proof. We argue by contradiction. We assume the emstence of Ap, — 0 and {un} such

that un € Ij(\s) and Ji, (un) = ¢ < &= £5V/?||k|| Z . We can easily prove that
{un} is bounded Then up to a subsequence we get the existence of [ > 0 such that

lim |Vug|?dz = lim/ E(z)|un|? dr = 1.
n—od RN

n—co RN

Notice that leSN/? °||k[| . On the other hand, by the definition of {u,} we have,

-]%f-z +o(1) = ., (un)

=—;—/ |V, |?dz — —-—/ lmlz 2*/ k(z)|un|* dz

VPR +o(1).

IN

Then we conclude that | = SN/ 2]|l~z:H;,i2—_2 and therefore,
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1 — 2* -_
lim (Hk”oo k(m))lunl dz = 0. (6.21)
We set w, = -——————-—-“ ”2* y then ||wn[[2* =1 and

lim |Vw,|*dz = S.
n—co RN

Hence by using the concentration compactness arguments by P.L. Lions (see also
Proposition 5.1 and 5.2 in [82]), we get the existence of wy € D2(RY) such that wy,
converges to wo weakly in DV2(RY) (up to a subsequence) and one of the following
alternatives holds

1. wp # 0 and w, — wp strongly in the DL2(RY).

2. wp = 0 and either
i) [Vw,|? = dp = S6z, and |wp|?” — dv = &y, or
i) [Vws|? = ditoo = S0e0 and |wn|*” — dVeo = Juo-

The last case means that

- . *
Voo = lim hmsup/ ‘wn|2 de =1
R—00 pn—oco |z|>R

and
Poo = lim lim sup/ |Vw,|? dz = S.
R— l2|>R

0 p—ro0
If the first alternative holds, from (6.21) we obtain that

tin [ (e~ k)02 ds = [ (Il = b)) dz =0,

n—roQ RN

a contradiction with the fact that k is not a constant. Assume that we have the
alternative 2 i), then since T (wy) = Tj(un) = 0, we conclude that

. fRN P (@) Vwn | dz

6 =T:(wy,) = 1
iwn) = B o NV Pda

= 9;(Zo)-

Hence the concentration is impossible in any point a; € C(k). On the other hand from
(6.21) we obtain that

0=lim | (|lklleo - k(2))w}, dz = ||klleo — k(20),

n—o0 R
a contradiction. To analyze concentration at co, consider a regular function € satisfying

1, if|z|>R+1
5("3)"{0, if || < R,

where R is chosen in a such way that |a;| < R —1 for all j. Then we have
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i(2)|Vw, |2dz
5 = Tyan) =ty Jer BT
n—+0Q fRN |V'wn| dz

i e e E@) Vs Pde + fon (1 = €(2)0;(2)[Vwn|2da
= gm lim Jaw [Vw, Pdz ‘

Since limp o0 fon (1 — &(2))9; ()| Vws|?dz = 0, we conclude that

2d
R—oon—roo o [Vw,|2dz

a contradiction if we choose § < 1. So we conclude. O

We need now the following lemma that is suggested by the work of Tarantello [81].
See also [32].

Lemma 6.9. Assume that 0 < A < min{e;,ea} where €y, e2 are given by Lemmas 6.7
and 6.8. Then for all uw € M;()) there ezists p, > 0 and a differentiable function

f:B(0,p,) C DY2(RY) — Re

such that f(0) = 1 and for all w € B(0, p,) we have f(w)(u —w) € M;()\). Moreover
for all v € DV2(RY) we have

uv

2 VuVudz — 2X P
Ry |z

(F'(0),0) = === 2 -
/ |Vul?dz -A/ = dz — (2 ~1)/ E(z)|u|* dx
/RN RV [T] RN

Proof. Let u € M;()\) and let G : Re xDH?(RY) — Re be the function defined by

(v —w)?

Gt,w) =t / IV (u — w)*dz - /\/ ~———————-dw> i / k(x)|u — w|? de.
RN RN ICL‘|2 BN
Then G(1,0) =0 and

dz — 2*/ k(z)|u* ~uvde
RN

(6.22)

Gy(1,0) = /RN Vul2dz — )\/RN l—;%da: — @ —1) /RN k(@) [ul® dz 0

(since u € M;()). Then by using the Implicit Function Theorem we get the existence
of p, > 0 small enough and of a differentiable function f satisfying the required
property. Moreover, notice that

(f'(0),v) = _ﬁ_%l_i%fl

uv

—=dr — 2*/ k(z)|u)? ~2uvdez
RN

2/ VuVudz — 2X
— __JRN rv [z]?

5 .
/ |Vu|?dz — )\/ 2y — (2*-1) E(z)|ul* dz
RN ry |2]? RN

The lemma is thereby proved. O
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We are now in position to prove the main result.

Theorem 6.4. Assume that (KO0), (K1), and (K2) hold, then there exists 3 small
such that for all 0 < X < e3 equation (6.13) has Card (C(k)) positive solutions wj x
such that

[Vu;al? = SN2 K2V =2/28,, and Juja* — SV2||kl| /26, as X — 0. (6.23)

Proof. Assume that 0 < A < €3 = min{eg,€1,€2}, Where €o, €1 and &3 are given
by Lemmas 6.5, 6.7 and 6.8. Let {un} be a minimizing sequence to Jy in M;(}),
that is, un € M;()) and Jy(un) — m;(A) as n — oo. Since Jy(un) = Jr(|unl|),
we can choose u, > 0. Notice that we can prove the existence of c¢;,cy such that
¢1 < ||unllpre@sy < ca- By the Ekeland variational principle we get the existence of
a subsequence denoted also by {un} such that

1
Ia(un) S my(A) + - and Jy(w) > Ja(en) - i-nw — | for all w € M;(N).

Let 0 < p < pp = pu, and fn = fu,, where p,,, and f,, are given by Lemma 6.9. We
set v, = pv where ||v||pr2®~) = 1, then v, € B(0, ps) and we can apply Lemma 6.9
to obtain that w, = fn(v,)(un —v,) € M;(A). Therefore we get
1
;;H'wp = un|| > Ja(un) = Ja(wp) = (I3 (un), tn — wp) + o(||un — wpl|)
> pfn(pv)(J3(Un),v) + o(|lun — wpl|)-
Hence we conclude that

[lwp = unl|

pin(pv)
Since |frn(pv)| = |fn(0)| > c as p — 0 and

||wp — unl| — || frn(0)un — fn(pv)(un — pv)||
p

(T4 (), o) < = (1+0(1)) as p— 0.

p
< Lunll1£2(0) - fn(ppv)l el < oy o)l + e <

Then we conclude that J (u,) — 0 as n — oco. Hence {un} is a Palais-Smale sequence
for Jy. Since m;(A) < ¢ and & = &(A) for X < €, then from Lemma 6.3 we get the
existence result.

To prove (6.23) we follow the proof of Lemma 6.8. Assume A, — 0 as n — co and
let up = ujy,n, € Mj,(An) be a solution to problem (6.13) with A = An. Then up to
a subsequence we get the existence of I; > 0 such that

fim [ |Vaun|2ds = lim / k(@) Junl? do = b
n—roo RN

n—0Q RN

N-=2
Therefore as in the proof of Lemma 6.8 we obtain that I; = SV/?||k||c  and
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lim (1*lloo — k(z))u® dz =0

n—00 BN

We set w,, = , then [Jwy||2+ =1 and limp—e0 HwnHDl 2®N) = = S. Hence we get

[Jun]l2+ H

the existence of wy € D2(RY) such that one of the following alternatives holds

1. wo # 0 and wy, — wp strongly in the DL2(RY).

2. wg = 0 and either
i) |[Vw,|> = du = S8, and |wy|?>” — dv = 6, or
i) [Vwn |2 = dpeo = S0 and |wn |2 = dree = 60

As in Lemma 6.8, the alternative 1 and the alternative 2 ii) do not hold. Then we
conclude that the unique possible behaviour is the alternative 2. i), namely, we get
the existence of g € RY such that

|Vwn)? = du = 88,, and |w,|?” = dv = 6,,.
Since

/ [Vw,|?dz = S +o(1) = S/ |wn|?" dz + o(1)
RN RN

5 2* S
= T o FNnl? a5 o) = k) + 000,

then we obtain that zo € C(k). Using Corollary 6.2, we conclude that zo = aj, and
the result follows. O

Remark 6.3. As in [23], we can prove .the same kind of results under more general
condition on k. For instance, we can assume that &k changes sign and the following
conditions hold,

(K'1) max k(z) >0 and C'(k) = {a € RN | k(a) = Iy, k(z)} is a finite set.
zeRY
(K'2) (K2) holds.

In this case the level at which the Palais-Smale conditions fails becomes

(1—;15;)N (e (co))~2 (1~ﬁ)N51}.

(A)-—-Szmm{nmnm (k4 (0)

6.3 Category setting

In this section we use the Lusternik-Schnirelman category theory to get multiplicity
results for problem (6.13), we refer to [6] for a complete discussion. We follow the
argument by Musina in [72]. We assume that % is a nonnegative function and that

. N-1
0 < A < &y where &p is chosen in a such way that (1 - f—%) 2> % and &y < &p,
being ¢ given in Lemma 6.5. We set for § > 0
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C(k) = {a € RY | k(a) = ||k(z)||oo } and Cs(k) = {x € RY : dist(z,C(k)) < 6}.
We suppose that (K2) holds and

(K3) there exist Rp, do > 0 such that sup |k(z)| < ||%]lcc — do-
|z|>Ro

Let M(A) be defined by (6.18). Consider
M) ={ue M) : Jy(u) <&}
Then we have the following local Palais-Smale condition.

Lemma 6.10. Let {v,} C M(\) be such that
Jr(vn) =+ ¢ < ¢ and JII\IM(,\) (vn) = 0, (6.24)
then {un} contains a converging subsequence.
Proof. Assume that {v,} satisfies (6.24), then there exists {a,} C Re such that
Ji (vn) — anGh (vn) = 0 as n — co in D2 (RY) (6.25)

where Gx(u) = (Ji(u),u). Since {v,} C M(X) and Jy(vn) < & we have r; <
[lvnllpr2@yy < 7o for some constants ry,73 > 0. Using v, as a test function in
(6.25) we conclude that ay, — 0 as n — co. Hence {v,} is a Palais-Smale sequence
for Jy at the level ¢ < € and then the result follows by using Lemma 6.3. O

To prove that M ()\) # 0 we give the next result.

Lemma 6.11. There ezists €1 > 0 such that if 0 < A < Ap := min{Zo,&1}, then
M(X) # 0. Moreover for any {\,} C Rey such that A\, = 0 as n — co and {v,} C
M(\n), there ezist {z,} C RY and {r,} C Re; such that z,, — zo € C(k),7, — 0 as

n — oo and
N—2

4
o — (_§__) tr, (- — ) = 0 in D22(RY), (6.26)
[1&lleo

where

e C’r
(2 +Jaf?) "

and C, is the normalizing constant to be |juy||+ = 1.

up(z) (6.27)

Proof. The first assertion follows by using the same argument as in Lemma 6.7 since
we have

N/2
max Jy (tw, ;) < % S =+ O0(u?) —cpy® < & for psmall and 2 < 6 < N,
= [1ello™
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where w, . (y) = ¢ ~—, £ € C(k) and C is the normalizing constant

i+ Jy — af?) 5
such that ||wy ||z« = 1 (see also [27]). As a consequence, there exists Ao such that for
all 0 < A < Ag the set M()) is not empty. To prove the second part of the Lemma,
eventually passing to a subsequence we set

lim |V, |2dz = lim f E(z)|vp|* dz = 1.
n—oo RN

n—00 BN

N=-2
Then as in Lemma 6.8 we can prove that [ = SV/2?||k||o * and

lim / (1%l — k(z))v2" dz = 0. (6.28)
n—rco RN
Consider the normalized function w,, = nii’lll—— and
njj2*

lim |V, |*dz = S.
N

n—oo R

Using the concentration-compactness arguments by P.L. Lions, we obtain the exis-
tence of {z,} C RY and {r,} C Re, such that

Wy — Uy, (- — Tp) = 0 in DH2(RY), (6.29)

and w, — wy € DH?(RY). Moreover by the same argument as in the proof of Lemma
6.8 the weak limit is wo = 0. We will show now that the concentration at infinity is
not possible. Indeed if concentration at co occurs, by using (6.28) and (K'3) we obtain

&lloo = f k(z)w? dz +o(1) = / E(z)w? dz + o(1)
RY , RN\Bg, (0)
< sup |k(z)] wi*da: +0(1) < (J|&l|lco = do) + o(1),
|z{>Ro RN\Bg, (0)

which is a contradiction. Then the unique possible concentration is at some point
To € RY. Hence we conclude that, up to a subsequence, r, — 0 and

IV, (2 — 20) 2 = S8z,-
Using (6.28) it is easy to obtain that z € C(k). O

Remark 6.4. Notice that as a consequence of the above Lemmas we obtain the exis-
tence of at least cat(M (A)) solutions that eventually can change sign.

Hereafter we concentrate our study on the analysis of cat(M())), the behaviour of
the energy, and the positivity of solutions.
If Ry is like in hypothesis (K'3), we define




118 6 About an equation involving Hardy inequality and critical Sobolev exponent
z if [z| < Ry,
= T
§@) =Ry if|z| > Ro,
||
and for u € DV2(RY) such that u # 0 we set

=y Jew (@) VulPde
= (U) - fRN lVUPdIE

(6.30)

We recall that for u € DV2(RY) such that u # 0 we have ) (u)u € M(X) where t5(u)
is given by

9 u? N—2
) = (V0 e fpde) T
Jaw K(@)[ul*" dz

Let &, : RY — DL2(RY) be given by
T(z) = tk(uux ( - "E))uﬂx ( - 1')’

where u,, is given by (6.20), ux = g()) such that g(A) — 0 as A — 0. Notice that if
z € C(k) and A is sufficiently small, then

1 SN/2
IA(Ox(z)) = max Ia(tup, (- — ) < NoooE= T O(us) — e <& (6.31)
i [1%]loo®

Then we can prove the existence of Mg, ci,ce > 0 such that for all 0 < A < Ag we have
T\ (x) € M(N), JA(Tr(z)) = E+0(1) as A = 0, and ¢; < tx(uy, (- — 7)) < cp for all
z € C(k). As a consequence, taking limits for A — 0 we obtain by Lemma 6.11 that
for any z € C(k)

N

IV (2)? = dp = SV |[k||% * 6, and [(@)P = dv = (S|IklIZH)N 6. (6.32)

We prove now the next result.
Lemma 6.12. For A — 0 we have

1. Z(@x(z)) = = + o(1) uniformly for z € Bry(0).
2. sup{dist(Z(u),C(k)) :u € M(\)} = 0.

Proof. Let z € Bg,(0), then by (6.32) we obtain that

() = e EONIVD@PY _ o )
- fRN |V&\(z)|?dy fRN du

+o(l)=z+4+0(1) asA—0.

To prove the second assertion we take A, — 0 and let v, € M()\y), then by Lemma
6.11 we get the existence of {z,} C R and {r,} C Rey such that z, — o, for some
zo € C(k),rn — 0 asn — co and
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S \' 7 R
Uy — ur, (- — ) = 0 in DV (RY).

%] 0o
Since Z is a continuous function we obtain that

fRN §(2)|Vun*dz _ fRN £(@)|Vur, (- — ) *d
Jan [Vun2dz Jow IVUr, (- = 20) 2dz

Since zo € C(k) C Bg,(0) we conclude that £(xzo) = zo and the result follows. a

Evp) = +0(1) = &(zo) + o(1).

We are now able to prove the main result.

Theorem 6.5. Assume that hypotheses (K0), (K2) and (K3) hold and let § > 0.
Then there ezists Ao > 0 such that for all 0 < X < )Xo, equation (6.13) has at least
cate, (k) C(k) solutions.

Proof. Given § > 0 there exists Ag (6)_> 0 such that by Lemma 6.12 and (6.31), for
0 <A < Ao(d) we have that @y(z) € M()) for any = € C(k), and

|E(@x(2)) — a| < & for all z € Bg,(0) and Z(u) € C5(k) for all u € M()).

Let 7(t,2) = z +¢(Z(¥r(2)) — z) where (t,z) € [0,1] x C(k), then  is a continuous
function and dist(H(t,),C(k)) < 6 for all (t,z) € [0,1] x C(k). Hence
#H([0,1] x C(k)) C C5(k).

Since 7(0,z) = 3 and H(1,z) = Z(¥(z)), then we conclude that 5 oW, is homotopic
to the inclusion C(k) <+ C;(k). Since J satisfies the Palais-Smale condition below the
level ¢, to prove the Theorem we need just to prove that cat(M (A) > catey ey C(k).
Suppose that {M;}, 4 = 1, ...,no, is a closed covering of M ()\), then for any i =1,...,m9
there exists a homotopy

H; 0 [0,1] x My — M(N)

such that
Hi(0,u) = u for all u € M; and H;(1,-) = constant for i = 1, ey Ng.

Notice that from (6.31), we obtain that ¥y (C(k)) C M(X). We set C; = o (M),
then C; is closed in Cs(k) and C(k) C U;C; C Cs(k). Then we have just only to show
that C; are contractible in Cs(k). We set

G; : [O, 1] x C; — Cg(k), where G;(t,z) = E(’Hi(t,!pA(:L‘))).
Then
Gi(0,2) = Zo¥,(z) for all z € C; and G;(1,-) = constant for i = 1, vey Tl

Since = o ¥y is homotopic to the inclusion C(k) < Cs(k) we have that C; are con-
tractible in Cs(k). To complete the proof it remains to prove that any solution has
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a fixed sign. We follow the argument used in [38]. Assume that u = ut —u” with
ut > 0,u” >0and ut # 0,u” # 0. Then we have

+12 »
t2 [u=| S B A N1 / Lo, \2/2
/I;NWU |*dz }\/RN o dz > S(1 ————AN) ( o [u™| da:)

A NI\-;l _52; :I:Z* 2/2*
> 5= 20 P |l ([ ke )

Since u is a solution to problem (6.13) we obtain that

+|2
/RN IVuilzdz-—/\-[RN ‘i;llz dz = /RN k(z)|ut|? dz. (6.33)

Therefore we conclude that

1 * 1 * : *
> Ja(u) = N Jon E(z)u* dz = N{/RNk(w)lu"'P dm—i—/RN k(z)u 2 d:c}

287 AN T _b=2
>~ (1—'/‘17\;) Hklloo * -

Hence we obtain 2(1 — Xé?) #7% < 1 which contradicts the choice of A. a

&
2

Remark 6.5.

i) If C(k) is finite, then for A small, equation (6.13) has at least Card(C(k)) solutions.

ii) We give now a typical example where equation (6.13) has infinity many solutions.
Let n : Re — Re, such that 7 is regular, n(0) = 0 and n(r) =1 for r > . We
define k; on [0,1] C Re by

B 0 if r =0,
HO =\ - sl #o<r<l,

where 2 < § < N. Notice that k: has infinitely many global maximums archived on
the set
Clky) =< ——1-+-}—forn>1
VTUTT 2 ar = f

Now we define k to be any continuous bounded function such that k(z) = ki (|z|)
if |z] < 1, ||k]jos < 1 and limjy| 00 k(z) = 0. Since for all m € N, there exists §(m)
such that cate,(x)(C(k)) = m, then we conclude that equation (6.13) has at least
m solutions for 0 < A < A(9).

iii)Let us note that if § becomes larger, then catc(x) (C(k)) decreases, so that Theorem
6.5 is interesting for § small.
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7 S?-type surfaces with prescribed mean curvafure

In this chapter we discuss the problem of existence of surfaces in R® parametrized on
the sphere S? with prescribed mean curvature. We start by giving a short description
of the models of capillarity phenomena motivating the study of this problem. For a
more detailed discussion of properties of minimal surfaces we refer to [41].

7.1 Motivation: soap films and soap bubbles

The study of the configuration of soap films dates back to Plateau (1801-1883). Some
of his physical experiments were actually very simple and familiar to everyone; any
child has enjoyed himself in blowing soap bubbles through a tube or spanning a wire
contour with soap films. In particular let us consider two kind of soap films:

1. soap films (with boundary) obtained by taking a wire contour out of soapy water
avoiding sudden movements, see Fig. 7.1 a);

2. soap bubbles (without boundary) obtained by blowing through a tube that has
previously been deeped in soapy water; such bubbles (stabilized by the addition
of glycerine to the water) are formed and stay in equilibrium by the pressure of
the air inside the bubble, see Fig. 7.1 b).

Fig. 7.1. a) soap film b) soap bubbles

The first type of soap films can be mathematically modeled by minimal surfaces.
Indeed, from a physical point of view, the equilibrium of soap film is reached in the
configuration with minimal energy. The energy of a soap film can be described by
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terms of the surface tension of a liquid, determined by the balance of the attraction
forces between molecules on the boundary of the surface. Neglecting the force of
gravity (we can do it for small sizes of the film; the larger the contour of the film
is, the easier it breaks up under the force of gravity), the liquid film turns into an
elastic surface that tends to minimize its own area and hence the energy of the surface
tension. As a consequence, a mathematical model of soap films is a minimal surface,
i.e. a surface which has the least possible area (locally) among all surfaces with a
prescribed boundary (the wire contour). The problem of finding a surface of least
area with a given boundary has been studied since the 18th century by Euler and
Lagrange while exact solutions for some special boundary contours were found by
Riemann, Schwarz and Weirstrass in the 19th century.

In the understanding of the configuration of the second type of film, i.e. soap
bubbles, the first important step is due to Boyle, who studied the dependence between
the size of a drop and its form. An important contribution to the study of the interface
between media was given in 1828 by Poisson who understood the role of the mean
curvature of the surface in the description of soap bubbles in equilibrium (see Section
7.2 for the definition of mean curvature), obtaining the following result (see [41] for
the details).

Theorem 7.1 (Poisson). The mean curvature H of a smooth two-dimensional sur-
face in R® which is the interface between two media in equilibrium is constant and

H = h(p1 — p2)

where 1/h is the coefficient of surface tension and p1,ps are the pressures of the two
media. ' ' '

From the above theorem, the physical reason why soap bubbles have spherical form
becomes clear: the pressure of the gas (air) inside exceeds the external pressure (p1 >
p2) and the equilibrium is a result of the action of the forces of the surface tension.
Thus H = h(p; — p2) = const > 0.

We will focus on the problem of existence of soap bubbles with prescribed non-
constant mean curvature, which is physically related to the phenomenon of formation
of an electrified drop. In fact it has been experimentally observed (see [53]) that an
external electric field may affect the shape of the drop making surface mean curvature
non constant. In the next section we present the mathematical formulation of the
problem.

7.2 Analytical formulation

Let us start by recalling some basic definitions about surfaces. Let S C R® be a
surface in R3. Let us consider the Gauss map which maps each point p € S into
a unit normal vector n = n(p)LS. For p € S let us take a vector v € T),S. The
pair (n(p),v) determines the normal plane P,. Let us consider the curve a = P, NS
(normal section) which is locally smooth and let denote by K (v,p) its curvature.
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Fig. 7.2. the normal section

If a: s+ as) is the arc-length parameterization, then the curvature is given by
K(s) = |a"(s)]-

Definition 7.1. The principal curvatures of S at p are defined as

K= Dax. K(v,p), Kx= vrg;fSK(v,p)-
The Gaussian curvature is defined as the product R = Ky - Ky. The mean curvature
is defined as H = (K1 + K>)/2.

The Theorema Egregium by Gauss states that the Gaussian curvature is invariant
under local isometries. This means that the Gaussian curvature is an intrinsic quantity
which depends on the surface and not on the parameterization. The conclusion of
Theorema Egregium fails for the mean curvature as one can easily observe in the case
of a cylinder of radius p: the principal curvatures are K; = 1/p and K5 = 0, so that
the Gaussian curvature is 0 and the mean curvature is 5}’; # 0. The cylinder is locally
isometric to a plane, for which both the Gaussian curvature and the mean curvature
are 0.

The principal curvatures can be defined also in another way. If p — n,, is the Gauss
map, we notice that its differential dn, is symmetric. The principal curvatures are the
eigenvalues of dn,, (in particular the Gaussian curvature is the determinant and the
mean curvature is the trace divided by 2). This second definition allows us to extend
the notion of Gaussian and mean curvature to higher dimension. In dimension N, the
previous map has IV eigenvalues ki, k2, ..., ky and we define the mean curvature H
and the Gaussian curvature R as H = (ky + ks +--- +kn)/N, R =[] k.

Let us now focus our attention on surfaces of S%-type. Let us identify R? U {oo}
with the unit standard 2-dimensional sphere

S?={(z,y,2) e R®: 22 + ¢ + 22 =1}

through the stereographic projection @ from the north pole N = (0,0,1)

¢:S2\{(0,0, )} = B, (z,y,2) = (1:’12)'
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Fig. 7.3. the stereographic projection

Let w : K2 — S2 be the inverse of the stereographic projection, i.e. w : R — S?

w(z,y) = (ulz, )z, p(z,9)y, 1 — pz,y))

where

=, (z,9) € R

o) = Ty

We will identify maps defined on the sphere with maps defined on R? through the
stereographic projection

w:R*> 3 R® ~ wv=uow:8%— R3.

A parametric surface in R3 of type S? is a map u : R? — R? smooth as a map on S
A point (z,y) € R? at which u; A u, = 0 is said to be a branch point of the surface,

where
_ {Ouy Ous Oug _ {Ouy Ouz Oug

Uy = | =—, —, =— Uy = | —, e

‘ <8$’Bm’3w>’ Y (6y’8y’8y>’

and A denotes the exterior product in R*. For any point z of the surface which is not
a branch point, consider the normal vector at point u(z), i.e. the Gauss map

A
n(u(z)) = =22V
|ug A uyl
The mean curvature of the surface parametrized by u at point u(z), where z is not a
branch point, is
1 |uyPugs - 1+ |[Ug]?uyy - 1 — 2(Ug - Uy)Ugy - 1

Huz) =3 Fia Py — (s~ )2

Definition 7.2. We say that u is conformal if
lug] = |uy| and ug -uy =0.

If u conformal then
Au-n

Hu) = 2"
() 2]ug A uyl
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where Aw = wyy + wyy and since Au is orthogonal to the tangent plane spanned by
(Ug,uy), we get
Au = 2H (u) ug A uy.

As a consequence, the geometric problem of finding a S%type parametric surface in

R? having prescribed mean curvature H (H-bubble) admits the following analytical

formulation: given H € C*(R?), find a nonconstant function u : R2 — R® smooth as
a map on S? solving

Au =2H(u)uz Au

{ () g A uy (Pa)

Jrz [Vul? < +00

where Vu = (ug,uy). Indeed, if u solves (Pg), then by regularity for H-systems
[57] u is regular. Moreover a short computation shows that v is conformal. Indeed,
let us define the map ¥ : C = C, ¥(2) = ¥(z + iy) = a(z,y) + if(z,y), where
a(z,y) = |ug|* — |uy|® and B(z,y) = 2u, - uy. The functions  and B are regular and
satisfy the Cauchy-Riemann condition

Gy = "‘By
ay = fg.
Hence ¥ is holomorphic. Since ¥ is integrable, it must be ¥ = 0, namely » must be

conformal. Then, if u is a solution of (Pfr), at any regular point p = u(z), H(p) is the
mean curvature of the surface parametrized by u at the point p.

Remark 7.1. Problem (Pg) is invariant under the action of the conformal group of
S2 ~ R? U {co}, i.e. if g is a conformal diffeomorphism

ylgzl—lgylzo and 9z gy =0

and u solves (Pp), then also uo g solves (Pg). This means that actually the unknown
of the problem (Pg) is the surface rather than the parametrization, i.e. the image of
u rather then the function u.

7.3 Existence of H-bubbles via perturbation methods

In this section we are going to present the results of [45] where the author studied
the problem of existence of H-bubbles, which, as explained in the previous section,
admits the following analytical formulation: given a function H € C'(R?), find a
smooth nonconstant function w : R? — R® which is conformal as a map on S? and
solves the problem

Aw =2H(w)wy Awy, in R2,

/ |Vw|? < +oo.
RZ

Brezis and Coron [25] proved that for constant nonzero mean curvature H(u) = Hy
the only nonconstant solutions are spheres of radius |Hp|™!.

(Pw)
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While the Plateau and the Dirichlet problems has been largely studied both for
H constant and for H nonconstant (see [24, 25, 62, 64, 65, 78, 79, 80]), problem (Px)
in the case of nonconstant H has been investigated only recently, see [29, 30, 31, 73].
In [29] Caldiroli and Musina proved the existence of H-bubbles with minimal energy
under the assumptions that H € C'(R?) satisfies

(i) sup |[VH(u+E) wul<1 for some £ € R?,

ueR?
(i) H(u) = Hs as |u| = oo for some Hy € R,
47
111) CcH = inf sup £y (su) < s
(¢id) - cn u€CL(RRY) s>% (su) 3HZ,

u7£0

where Exr(u) = § [o2 [Vul? +2 [g2 Q(u) - uz Auy and @ : R3 — R3 is any vector field
such that div@Q = H.

The perturbative method introduced by Ambrosetti and Badiale and discussed in
Chapter 3 was used in [31] to treat the case in which H is a small perturbation of a
constant, namely

H(u) = H.(u) = Ho + eH1(u),

where Hy € R\ {0}, H; € C*(R®), and ¢ is a small real parameter. This method
allows to find critical points of a functional f. of the type f.(u) = fo(u) — eG(u)
in a Banach space by studying a finite dimensional problem. More precisely, if the
unperturbed functional fo has a finite dimensional manifold of critical points Z which
satisfies a nondegeneracy condition, it is possible to prove, for |e| sufficiently small,
the existence of a smooth function 7.(2) : Z — (T.Z)* such that any critical point
Z € Z of the function .

B, : 7R, B(2) = fe(2+1:(2))

gives rise to a critical point u. = Z + 7:(2) of f, i.e. the perturbed manifold Z :=
{z+n.(2) : z € Z} is a natural constraint for f.. Furthermore . can be expanded
as

b (z2)=b—el(z)+o0(e) ase—0 (7.1)

where b = fo(z) and I' is the Melnikov function defined as the restriction of the
perturbation G on Z, namely I" = G’I - For problem (Pg,), I' is given by

IR R, F(p)Z/ Hy () da.

1
IP—Q|<TH—OT

In [31] Caldiroli and Musina studied the functional I" giving some existence results in
the perturbative setting for problem (P, ). They prove that for |e| small there exists
a smooth H.-bubble if one of the following conditions holds
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1) H, has a nondegenerate stationary point and |Hp| is large;

= . )
2) max 1(p)<rp{1€a;{cHl(p) orprggkﬂl(pb;nel}gfh(p)

for some nonempty compact set K C R® and |Hp| is large;
3) Hi € L"(R?) for some r € [1,2].

They prove that critical points of I' give rise to solutions to (Pg,) for € sufficiently
small. Precisely the assumption that Hy is large required in cases 1) and 2) ensures
that if H; is not constant then I" is not identically constant. If we let this assumption
drop, it may happen that I" is constant even if H; is not. This fact produces some loss
of information because the first order expansion (7.1) is not sufficient to deduce the
existence of critical points of & from the existence of critical points of I". Instead of
studying I" we perform a direct study of &, which allows us to prove some new results.
In the first one, we assume that H; vanishes at co and has bounded gradient, and
prove the existence of a solution without branch points. Let us recall that a branch
point for a solution w to (Pg) is a point where the surface parametrized by w fails to
be immersed.

Theorem 7.2. Let Hy € R\ {0}, H, € C*(R®) such that
(H1) lim H(p) =0
[pl—o0
(H2) VH; € L™(R3,R?).

Let He = Hy -+ eH,. Then for || sufficiently small there exists a smooth H,-bubble
without branch points.

With respect to case 1) of [31] we require neither nondegeneracy of critical points of
Hy nor largeness of Hp. With respect to case 2) we do not assume that Hy is large;
on the other hand our assumption (H1) implies 2). Moreover we do not assume any
integrability condition of type 3). With respect to the result proved in [29], we have
the same kind of behavior of H; at co (see (i) and assumption (H1)) but we do not
need any assumption of type (ii); on the other hand in [29] it is not required that
the prescribed curvature is a small perturbation of a constant.

The following results give some conditions on H; in order to have two or three
solutions.

Theorem 7.3. Let Hy € R\ {0}, H1 € C*(R®) such that (H1), (H2),

(H3) Hess Hy(p) is positive definite for any p € B1)11,(0),

hold. Then for |e| sufficiently small there exist at least three smooth H.-bubbles without
branch points.

Remark 7.2. If we assume (H1), (H2), and, instead of (H3) — (H4), that H;(0) > 0
and Hess H;(0) is positive definite, then we can prove that for |Hy| sufficiently large
and |e| sufficiently small there exist at least three smooth H-bubbles without branch
points.
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Theorem 7.4. Let Hy € R\{0}, H; € C*(R?) such that (H1) and (H2) hold. Assume
that there exist p1,ps € R® such that

(H5) / Hi(§)dé >0 and Hy(¢)de < 0.
B(p1,1/|Hol) B(p2,1/|Hol)

Then for |e| sufficiently small there ezist at least two smooth H. -bubbles without branch
points.

Remark 7.3. If we assume (H1), (H2), and, instead of (H5), that there exist p1,ps €
R?® such that H;(p;) > 0 and Hy(p2) < 0, then we can prove that for |Ho| sufficiently
large and |e| sufficiently small there exist at least two smooth H-bubbles without
branch points.

7.3.1 Notation and known facts

In the sequel we will take Ho = 1; this is not restrictive since we can do the change
Hy(u) = HoH;(Hou). Hence we will always write

H.(u) =1+¢eH(u),

where H € C?(R3). Let us denote by w the function w : R — S? defined as

w(z,y) = (u(@,y)z, wlz,y)y, 1 — pw(z,y) wz,y) = (z,y) € B

2
1422 +y?’
Note that w is a conformal parametrization of the unit sphere and solves

Aw=2w; Aw, onR?

, (7.2)
IVw|® < +o00.
R2

Problem (7.2) has in fact a family of solutions of the form w o ¢ + p where p € R?
and ¢ is any conformal diffeomorphism of R* U {co}. For s € (1,400), we will set
L° := L*(S% R3), where any map v € L° is identified with the map vow : R* — R®

which satisfies
[ wostu? = [ ol
R2 s2

We will use the same notation for » and v o w. By W1 we denote the Sobolev space
W15(S2, R?) endowed (according to the above identification) with the norm

ol = | [ 21Vv|m2-5]1/3 [ bt "

If s’ is the conjugate exponent of s, i.e. ;1,— = 1, the duality product between W1
and W' is given by :
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(v, ) =/ Vv~V<p+/ vepu® for any v € Wb and wewhs,
R2 R2

Let @ be any smooth vector field on R® such that divQ = H. The energy functional
associated to problem

Au=2(1+eH(u)) up Auy, inR2,

2 (PE)
/ [Vul* < +oo,
R2

is given by
1
Eulw) = 3 /R Vul® + 2V (u) + 26V (), we W9,

where

Vu(u) = /1;2 Q(u) -ug A uy

has the meaning of an algebraic volume enclosed by the surface parametrized by u
with weight H (it is independent of the choice of @); in particular

1
Vi (u) =—3—/l;2u-uz/\uy.

In [31], Caldiroli and Musina studied some regularity properties of Vg on the space
W13, In particular they proved the following properties.

a)For H € C'(R?), the functional Vy is of class C* on W3 and the Fréchet differ-
ential of Vg at u € W3 is given by

AV (u)p = / H(u)p - uz Au, for any ¢ € Wh3 (7.3)
R2

and admits a unique continuous and linear extension on W13/2 defined by (7.3).
Moreover for every u € W' there exists V;(u) € W3 such that

Vg (), o) = /Rz H(u)p-ug Au, for any p € W3/2, (7.4)
b)For H € C*(R?), the map V}, : W13 — W13 is of class O and

i) 1) = [ H) o hy v am)+ [ (TH@) ) (1 h )
for any u,n € W3 and ¢ € W13/2, (7.5)

Hence for all u € W2, £!(u) € W3 and for any ¢ € W13/2

(55'(u),<p)=/ Vu-Vt,o+2/ go-uz/\uy—l—ZE/ H(u)p - ug Auy.
R2 R2 R2
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As remarked in [31], critical points of & in W13 give rise to bounded weak solutions to
(P.) and hence by the regularity theory for H-systems (see [57]) to classical conformal
solutions which are C®® as maps on S

The unperturbed problem, i.e. (P.) for ¢ = 0, has a 9-dimensional manifold of
solutions given by

Z={RwoLy¢+p: ReSO(3), A>0, teR?, peR®}

where Ly ¢z = A(z—¢) (see [63]). In [63] the nondegeneracy condition T,,Z = ker &l (u)
for any u € Z (where T, Z denotes the tangent space of Z at u) is proved (see also
[36])-

As observed in [31], in performing the finite dimensional reduction, the depen-
dence on the 6-dimensional conformal group can be neglected since any H-system
is conformally invariant. Hence we look for critical points of & constrained on a
three-dimensional manifold Z. just depending on the translation variable p € R3.

7.3.2 Proof of Theorem 7.2

We start by constructing a perturbed manifold which is a natural constraint for &.

Lemma 7.1. Assume H € C?(R8) N L°(R®) and VH € L®(R*,R®). Then there
ezist £ > 0, C1 > 0, and a C* map 1 : (—€o,0) X R — W'? such that for any
p € R® and ¢ € (—€o,€0)

E(w+p+nlep) € TuZ, (7.6)
n(e,p) € (TwZ)*, (7.7)
[ nem =0, (79)
In(e, p)llws < Cilel- : (7.9)
Moreover if we assume that the limit of H at oo ezists and
]plli—IPoo H(p)=0 (7.10)

we have that n(e,p) converges to 0 in W13 as |p| — oo uniformly with respect to
le] < eo-

Proof. Let us define the map
F=(F,F) RxR x W xR xR S W xRS x R?

6
(Fl(EaP»TI,A’a)v‘P) =<5é(W+P+77)7‘P>"ZAi/R2V<P'VTi+a'fS2<P7

i=1

Fye,p,m M a) = (/ Vn-Vn,---,/ Vn-VTe,/ 77)
R2 R2 s2
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Vi € Wh3/2 where 1,. .., 7 are chosen in T.,Z such that

VTq;'VTj=5ij and Ti'——-O ‘i,j=1,...,6
R2 52
so that 7,7 is spanned by 71,...,7g,e1,€2,e3. It has been proved by Caldiroli and
Musina [31] that F is of class C* and that the linear continuous operator

LW xR xR = WS xR x R®
oF

L= W(O,pﬁ,o’o)

i.e.

[
(L1(v, 1, 8), 0) =(56’(w)-v,so)—Zm/RZVsn'Ti~ﬂ/§2so Ve w2
i=1

Ez(v,,u,ﬁ)=(/ Vv -Vr,..., V’U'VTG,/ v)
R2 R2 s2

is invertible. Caldiroli and Musina applied the Implicit Function Theorem to solve the
equation F'(g,p,n, A,a) = 0 locally with respect to the variables ¢, p, thus finding a
C*-function 7 on a neighborhood (—&,20) x Br C R x R? satisfying (7.6), (7.7), and
(7.8). We will use instead the Contraction Mapping Theorem, which allows to prove
the existence of such a function 7 globally on R?, thanks to the fact that the operator
L does not depend on p and hence it is invertible uniformly with respect to p € R3.

We have that F'(e,p,n, A, ) = 0 if and only if (n, A, a) is a fixed point of the map
T, defined as

TE,p(777 Aa Q!) - —"E_lF(E’pa 7, /\7 Oé) + (TI: /\’ Clﬁ).

To prove the existence of 7 satisfying (7.6), (7.7), and (7.8), it is enough to prove that
T p is a contraction in some ball B,(0) with p = p(e) > 0 independent of p, whereas
the regularity of (e, p) follows from the Implicit Function Theorem.

We have that if ||n]|z <p

HTE,P(na /\7 Ol)”Wl’3 xROxRE < C2HF(E7P5 m, )‘7 CY) - ﬁ(ﬂ, A, a)”le3xR6xR3
< CollEi(w +p+n) — & (W)nllwrs
< Ca(llEo(w +n) = & Wnllwrs + 20l Vi (@ + 2+ 1)llws)

1
<G (/ 166 (w + tn) = €' (@)llwr.72 ditlinllws + 2el|[Vig(w +p + ﬂ)l!WLa)
0

<Cp  sup || (w+n) — & (W)llwrsra

Inllw1,3<p
+2Csle]  sup  |[Vg(w+p+n)llwes (7.11)
IInllw13<p

where Cy = ”£_1“1:(W1,3 XREXR3)- For (171, )\1,(11), (772,/\2,a2) € BP (0) C W3 x RS x
R3 we have
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”Tf,p(nly A17 al) - TE,p("h’ )‘27 a2)”W1»3xR5xR3
Caollm — n2llws

< e (w +p+m) — EL{w +p+m2) — & (W) — M) [lwre
- Callm — n2lwr.s

1
< / 1€ (@ +p+ 12 + b — 712)) — EL(W)lwrase dt
0

1
< / €0 (@ + p 4112 + 8 — 712)) — E5(w) lwaa dt
0

1
+ 2] / Vi (w + P+ 7 + £ — 1) llssa di
0

< sup  ||E)(w+n) = EY Wllwrerz + 2]l sup  [[Vgw +p+n)llwese.
[Inllw1.3<3p lInllw1.3<3p

From (7.4), (7.5), and the Holder inequality it follows that there exists a positive
constant Cs such that for any n € W3, pe R3

2/3

Wi+ p+dlns <O ([ 1B+ p 40 PTlu) 4 s

(7.12)

2

e (R e R O

2/3
+( |VH(w+p+n)|3/21V(w+n)|3u‘1> ] (7.13)
R2 _

Choosing pg > 0 such that

: 1
C2 S'llp 5"(w + 77) _ gll(w) , < =
l7lly2.3 <300 I 8 llwrar < 3
and g¢ > 0 such that
1
8020380”HHL°"(R3)”w”%{/l,S < min {1,p0, M}’ (7.14)
Po
sup Vig(w +p+ Dllwrs < —-, (7.15)
Il <po Ve 620Cs
peR®
1
sup Va(w +p+nllwiee < o= (7.16)
[{nll 1,3 <300 “ 8e9Cs .
peR®

we obtain that T; , maps the ball B,,(0) into itself for any [e| < €0, p € R?, and is a

contraction there. Hence it has a unique fixed point (n(e, p), A(¢,p), a(€, p)) € By, (0).
From (7.11) we have that the following property holds
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(%) T.,, maps a ball B,(0) C W"* x R® x R® into itself whenever p < py and
p>4elCy  sup  |[Vg(w+p+n)llwrs.

lfnllw13<p
In particular let us set
pe =5lelCy  sup  ||[Vi(w+p+n)llws. (7.17)
7l 1,3 <po
peR®

In view of (7.15) and (7.17), we have that for any |e| < &y and for any p € R?

p: <po and p. >4le|Cy  sup |[V}I(w +p+n)|lws
[ll1.3 <pe

so that, due to (*), Tt , maps B,_(0) into itself. From the uniqueness of the fixed
point we have that for any |e| < o and p € R3

“(77(6717)7)‘(Eap)’a(57p>)”Wl’3 xR6xRE < P < Cllsl (718)

for some positive constant C; independent of p and hence ||n(e, Dllwrs < pe < Chle]
thus proving (7.9). Assume now (7.10) and set for any p € R?

: 2/3
pp = 8C2C3eg (/ sup ]H(q)!a/lewle’;fl)
_ R2 |g—p|<1+Co

where Cp is a positive constant such that |lul|r= < Collullwrs for any u € W3,
From (7.14) we have that ‘

1
inq1 — b
pp < mlnv{ » PO, 8_020350 }

Hence, due to (7.12), we have that for |e] < g9 and ||| < pp
4elCa || Vi (@ + p + )l lwr.s

2/3
< 4egCsCs (/ sup |H(q)|3/2|le3,u“1> +4EDC’203,012, < pp.
R2[g—p|<1+Co

From (*) and the uniqueness of the fixed point, we deduce that [In(e, p)||lwr.s < pp for
any le| < €9 and p € R®. On the other hand, since H vanishes at 00, by the definition
of p, we have that p, — 0 as |p| = oo, hence

lim 7(e,p) =0 in W' uniformly for |e| < &.
[p|—+c0

The proof of Lemma 7.1 is now complete.
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Remark 7.4. The map n given in Lemma 7.1 satisfies
6
o +p oo - Y nen [ Vo Tnraen) [0 Yoew
=1 R2 §2

where (n(e,p), A&, p),a(e,p)) € B, (0) C WH? x R® x R® being p. given in (7.17),
hence

/ VW +n(ep) Vo +2 / o (@ +n(Ep))e A +1ED)y
R2 R2

+2€ /Rz H(w+p+n0Ep)e - (w+n(Ep))z Aw+n(E,p)y
6
=2 Alep) / V- V1i—alep) - / o, Ype W2,
i=1 R2 s2
i.e. n(e,p) satisfies the equation
An(e,p) = F(e,p)
where

Fle,p) =2(w + (e, p))z A (W + (&, D))y — 2wz Awy + A(E, p) - AT — ale, p)u*
+2eH(w +p+n(e,p)(w +1(e,0)s A (w+1n(E, D))y in R

Since F(e,p) € L3/? and, in view of (7.9) and (7.18), F(e,p) =+ O in L3/? as e = 0
uniformly with respect to p, by regularity we have that

n(e,p) € W2 and n(e,p) — 0in W>3/2

hence, by Sobolev embeddings, F(¢,p) € L* and F(e,p) — 01in L? as ¢ — 0 uniformly
with respect to p. Again by regularity

n(e,p) € W** and 7n(e,p) = 0in w23
hence 7(g,p) € C'/? and
n(e,p) =+ 0 in C11/3 as & — 0 uniformly with respect to p. (7.19)
For any € € (—&o,€0), let us define the perturbed manifold
Ze:={w+p+nlep): PE R}

From [31], we have that Z. is a natural constraint for £, namely any critical point
p € R® of the functional

$. R =R 8.(p) =& (w+p+nlep)

gives rise to a critical point u; = w + p +n(e, p) of &.
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Proposition 7.1. Assume H € C*(R®), VH € L (R3,R?), and lim,| 00 H(p) = 0.

Then for any le| < ¢
lim &, (p) = const = & (w).

|p|—+o0

Proof. We have that

P(p) =E(w+p+ne ,p)) =&o(w +p+1(e,p)) + 26Vi (w + p+1(e, p))

1/ [Vel® + /an(E ) + /Vw Vn(e, p)

+§/ (W +p+n(Ep) - (@+n(e,p), A (+np),
R2

+2e[Va(w +p) + (Vi (@ + p),ne, ) + o(IIn(e, p) | wrs)]

1
=5 [V 3 [ nue g [ onen+ [ vo-vaten)

+ = 3 Az (we An(e,p)y + (g, p)e A wy)

+ 332' /Rz“’ “n(e,p)s An(e; )y + g/m n(:p) + (@ +n(e,p))s A (w + (e, p)),y

+2eVr(w +p) + 26(V(w + ), 7(e,p)) + 22 o([In(e, p)|lw.s)

where we have used the fact that
/ p-uzgAuy =0 VpeR:, ue whs,
RZ
(see [31], Lemma A.3). Notice that from Lemma 7.1 we have that
/ [Vn(e,p)* < Vnln(e,p)l}s — O,
R2 Ip|—o0
1/2
[ vo viten)| < 3 [ IVel?)  ln(e,pllwes = o
R2 R2 |p|—ro0

and, by the Hélder inequality and Lemma 7.1,

< 2l|wllfpaslin(e, ) lwis 0

[ e Ane,)y + (e, M)

/ w- (n(e,p)= An(e, p)y)
Rz

< lwllwrsline, p)llfyrs — 0,
Ipl—rco

/Rz 1 p) - (w+1n(e,p))z A (w+n(e, p)y

< llw + (e, D)l5slIn(e, p)llwis — 0.
|p|-—o0

Moreover the Gauss-Green Theorem yields

(7.20)

(7.21)

(7.22)

(7.23)

(7.24)

(7.25)
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Vu(w+p) = — 5 H(¢+p)d€

so that by the Dominated Convergence Theorem we have that

llim Vi (w +p) = 0. (7.26)

|p|—o0

From (7.4), Holder inequality, and Lemma 7.1, we have that

|(Vir(w + p),m(e,p))| = /R2H(w + ) n(e, ) - wa A wy

< [H gy ol e, Pllwas — 0. (727

From (7.20) - (7.27), it follows that

1

lim &.(p) ::~/ le|2+g/ W wg Awy = E(w).
pl—ro0 2 Jr2 3 Jr2

The proposition is thereby proved.

Proof of Theorem 7.2. As already observed at the beginning of Section 2, it is not
restrictive to take Hy = 1. From Proposition 7.1 it follows that for le] < eg either
& is constant (and hence we have infinitely many critical points) or it has a global
maximum or minimum point. In any case @ has a critical point. Since Z. is a natural
constraint for &, we deduce the existence of a critical point of & for |¢| < o and hence
of a solution to (P,). The H.-bubble w, found in this way is of the form w+p°+7(e, p°)
for some p° € R® where n is as in Lemma 7.1. Remark 7.4 yields that w, is closed
in CL1/3(S2, R%)-norm to the manifold {w +p: p € R*} for £ small. Since w has no
branch points, we deduce that w, has no branch points. O

To prove Theorems 7.3 and 7.4, we need the following expansion for &, (see [31])
&, (p) = Eo(w) — 2eI'(p) + O(e?) ase —» 0 uniformly in p € R3. (7.28)

Proof of Theorem 7.3. Let £ > 0 small. Assumption (H4) implies that I"(0) > 0 and
hence from (7.28) we have that for £ small ¢.(0) < &o (w), whereas from assumption
(H3) we have that Hess I'(0) is positive definite so that I" has a strict local minimum
in 0 and hence from (7.28) &. has a strict local maximum in B.(0) for some r > 0
such that @ (p) < ®:(0) — c. < &o(w) for |p| = r, where c. is some positive constant
depending on . In particular &, has a mountain pass geometry. Moreover by Theorem
7.2 &.(p) = Eo(w) as |p| = oo, and so $. must have a global minimum point. If the
minimum point and the mountain pass point coincide then &. has infinitely many
critical points. Otherwise &, has at least three critical points: a local maximum point,
a global minimum point, and a mountain pass. If £ < 0 we find the inverse inequalities
and hence we find that &, has a local minimum point, a global maximum point, and
a mountain pass. As a consequence (P:) has at least three solutions provided |e| is
sufficiently small. ’
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As observed in Remark 7.2, if H;(0) > 0 and Hess H,(0) is positive definite, by
continuity we have that for Hy sufficiently large I'(0) > 0 and Hess I'(0) is positive
definite, so that we can still prove the existence of three solutions arguing as above.
Proof of Theorem 7.4. Assumption (H5) implies that I'(p1) > 0 and I'(ps) < 0. Since
P (p) = &(w) +2e(— I'(p) + 0(1)) as & — 0, we have for & sufficiently small

@a(pl) < Eo(w) and QSE (pg) > 50(w)

if € > 0 and the inverse inequalities if £ < 0. Since by Theorem 7.2 &.(p) — &p(w)
as |[p| — oo, we conclude that &, must have a global maximum point and a global
minimum point in R®. Since Z. is a natural constraint for &e, we deduce the existence
of two critical points of &, for [¢] sufficiently small and hence of two solutions to (P.).
O

As observed in Remark 7.3, if H; (p1) > 0 and Hi(p2) < 0, by continuity we have
that for Hy sufficiently large I'(p;) > 0 and I'(p2) < 0, so that we can still prove the
existence of two solutions arguing as above.
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