ISAS - INTERNATIONAL SCHOOL
FOR ADVANCED STUDIES

Aspects of special Kahler geometry
and moduli space theory
in string compactifications

and (2,2) superconformal models

Thesis submitted for the degree of
“Doctor Philosophiae”

Elementary Particle Sector

Candidate: Supervisor:

Paolo Soriani Prof. Pietro Freé

Academic Year 1991/92

TRIESTE







Aspects of special Kahler geometry and moduli
space theory in string compactifications and
(2,2) superconformal models

Thesis presented by
Paolo Soriani
for the degree of Doctor Philosophiae

Supervisor: Prof. Pietro Fre

S.I1.5.5.A. - I.S.A.S.

Elementary Particle Sector

academic year 1991 -92



Contents

Introduction

1 Overview on the subject

1.1 Discussion on moduli and moduli spaces . .. .. ... .........
1.2 Moduli space of Calabi-Yau manifolds . ... .. ... .........
1.3 Duality symmetry and target modular invariance ... ... ... ...

2 Symplectic embeddings and special Kahler geometry

2.1 Introductlonm . . . . v v v v i et e e e e e e e e e e e e e e e e e e

2.2 Special Kéhler manifolds: definition and applications . .. .. .. ...
SU{1, S0(2,n
2.3 The case of SK(n+1) = Tl x 230 H . .. ...,
2.3.1 The symplectic embedding of SK(n+1) . ... ... ... ...
2.3.2  Automorphic function for SK(n+1) . .. ... ... ... ...
5U(3,3
2.4 The case of M35 = SU(3)xS§J(3))xU(1) ....................
2.4.1 Construction of the section Q for M35 . . ... ... ... ...
2.4.2 The momentum lattice of T7°/Z; orbifold . . .. .........
2.4.3 Construction of the MK coefficients . . . ... .........

3 n=2 first order systems

3.1 Introduction

---------------------------------

3.2 Lagrangian formulation of n=2 theories via first order systems

3.2.1 On the quantum properties of the system

-------------

---------------

3.2.2 Bosonization of the (b, ¢, 3,7)-system

3.2.3 Explicit calculations of topological correlation functions

1

14

19
19
21
26
27
34
37
38
40
45



3.3 Digression: The Landau-Ginzburg approach
and Picard Fuchs equations . . . . . . . . oo oo v v it o

A Aspects of algebraic-geometry in special manifolds

B Technical remarks concerning Chapter 3

B.1 Landau-Ginzburg action and transformation

rules in component formalism . . . . ... e e
B.2 The lagrangian for the topological (b,¢,3,7)-system . . . . ... .. ..
B.3 Adding marginal perturbations to the free first order lagrangian
B.4 The flat metric method: an example . . . .. .. . ...

Acknowledgements

Bibliography

97

101

101
104
106
110

113

115



Introduction

The appearance of peculiar geometrical structures [1, 2, 3, 4, 5, 6, 7, 8] in superstring
compactifications and (2,2) superconformal models stimulated, in the last few years,
many interesting progresses in the search for a candidate superstring vacuum [9].

The string vacuum is degenerate, since the effective four dimensional theory one
gets from a suitable compactification depends on scalar neutral fields which do not
contribute to the scalar self-interaction. These “flat directions” of the scalar potential
are usually called moduli [2, 5, 10, 11, 12, 13].

From the point of view of the underlying superconformal field theory, which
defines the compactified string, this means that such a theory is not isolated. Moduli
parametrize marginal perturbations of the superconformal theory [14, 15]. Geometri-
cally this reflects into the fact that also the compact manifold is not isolated. Moduli
correspond to allowed deformation parameters of such a manifold.

Special Kahler geometry arises naturally from heterotic superstring compacti-
fication on Kéhler manifolds with vanishing first Chern class ¢; = 0 (Calabi-Yau
manifolds) [16, 17]. Moduli spaces, described by Kéhler and complex structure defor-
mations, preserving the Ricci flatness, are special Kahler manifolds [4, 7]. Historically,
however, the concept of special Kihler geometry was introduced in the context of
N = 2 supergravity, while solving the problem of coupling an arbitrary number of
vector multiplets [3, 18, 19, 20].

The connection between these rather different contexts, which give rise to special
geometry, is easily understood from the observation that on the same Calabi—Yau space
one can compactify either the heterotic superstring or the type II superstring, display-
ing N=1 and N=2 supersymmetry, respectively [5, 6]. The moduli space geometry is
therefore compatible with N=2 supersymmetry, and this is why it is special.

Let n be the complex dimension of the moduli space. The structure of special
geometry is encoded in a homogeneous, degree two holomorphic function F(X*), where
X* (A = (0,i) = 0,1,---,n) are holomorphic sections of a line bundle whose first
Chern class coincides with the Kahler class. A natural 2(n+1)-dimensional symplectic
structure defined by the section (X*,79,F) is the characterizing property of special
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Kihler manifolds [4, 8, 21, 22]. “Special” coordinates can be obtained by defining the
moduli space coordinates as z' = %é [20, 23]. From a physical point of view these
properties allow to extract informations on Yukawa couplings for the chiral families in
the effective lagrangian, and for the matter fields metric involved in the kinetics terms.

If one considers a d—dimensional Calabi-Yau manifold as a target space of an
N=2 o-model, one expects, on general grounds, a correspondence between the critical
point of this model and a (2,2) superconformal model with ¢ = 3d [14]. It then follows
that moduli of a Calabi-Yau can also be interpreted as marginal perturbations of the
corresponding superconformal theory.

It is well known [15] that the geometry of the moduli space for a generic con-
formal theory has a Riemannian structure. For ¢c=3d, (2,2) superconformal theories,
marginal perturbations that belong to the so called chiral ring correspond to complex
structure deformations of the Calabi-Yau manifold and, as a consequence, exhibit a
special Kahler structure [11]. A similar statement can be said for Kahler structure
deformations, that correspond to the antichiral ring.

Starting from a (2,2) theory one can always get, with a suitable “twist” of the
superconformal algebra, a topological conformal theory, which is characterized by a
nilpotent BRST operator [24, 25, 26, 27]. The cohomology of such operator defines the
physical space, which coincides with the chiral (or the antichiral) 1ing of the original
superconformal theory. The main advantage of a topological field theory is that it can
be solved exactly, and for this particular case it can give informations on the moduli
space special geometry.

A very powerful technique to study moduli spaces of (2,2) superconformal mo-
dels and of their topological counterparts is represented by 2-dimensional Landau-
Ginzburg models with two supersymmetries (28, 29, 30, 31, 32, 33, 34, 35, 36, 37] .
All relevant properties of these models are encoded in a polynomial superpotential W,
which defines the structure of the chiral ring. On the other hand, the superpotentials,
seen as analytic functions, are exactly the same functions appearing in the construction
of Calabi-Yau manifolds [38] . This establishes a well defined relation between modal
deformations of the superpotentials, moduli of superconformal (topological) theories
and moduli of Calabi-Yau spaces.

The global structure of moduli spaces is in general modified by discrete sym-
metries, called duality transformations [39, 40, 41]. These symmetries generalize the
R — —2—1R transformation, which states the equivalence between a string compactified on
circles of radius R and 5. Since moduli enter the effective action as massless neutral
fields, the action should be invariant under duality transformations, which are also
denoted as target space modular transformations. Automorphic functions for these

symmetries give exact non—perturbative results for self-couplings in the effective four
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dimensional action (automorphic superpotentials) [42].

In this thesis we are concerned with some aspects of special Kahler geometry
arising in string theory and superconformal models.

In the first chapter we present a general discussion on moduli and moduli spaces,
with the purpose of clarifying some topics sketched in this introduction. In the second
one, after a suitable definition of special Kdhler geometry, we consider orbifolds of ho-
mogeneous special Kédhler manifolds, namely varieties of the type M = M’/T where
M’ is a special Kahler coset manifold G/H and I' C G is a discrete subgroup of its
isometry group. Varieties of this type appear as moduli spaces in orbifold compactifi-
cation of superstrings, where I' plays the role of target space modular group.

We show that the construction of the homogeneous function F(X), encoding the
special geometry of M’, can be systematically derived from the symplectic embedding
of the isometry group G into Sp(2n + 2, R), n being the complex dimension of M’
[43]. This is actually related to the Gaillard-Zumino [39] construction of Lagrangians
with duality symmetries. Different embeddings yield different F'(X). For the case of
M' = 558’)1) X SOf2O)§(2§r8(n) , we show that it is possible to obtain a new symplectic section
0 = (X,20F (X)), generating a new set of special coordinates. They transform linearly
under SO(n), differently from the old special coordinates that transform linearly only

under SO(n — 1). This solves an apparent paradox in superstring compactifications.

From the embedding of G into Sp(2n + 2, R) one retrieves the embedding of T
into Sp(2n + 2, Z). This embedding yields the explicit rule to give a formal definition
of a PSL(2,Z) x SO(2,n,Z) automorphic superpotential for any n.

As a second application we consider the duality group I' = SU(3,3,Z) [44]
for the Narain lattice [45] of the T°/Z; orbifold and its action on the corresponding
moduli space M33/T, where Mj3 = SU(B)igl(J:s(’??))xU(l)' A symplectic embedding of the
momenta and winding numbers allows to connect the orbifold lattice to the special ge-
ometry of Mj3. A formal expression for an automorphic function, which is a candidate
for a non-perturbative superpotential, is given.

In the last chapter we consider the realization of (2, 2) superconformal models in
terms of free first-order (b, c,3,v)-systems [46, 47], and show that an arbitrary Landau-
Ginzburg interaction with quasi-homogeneous potential can be introduced without
spoiling the (2,2) superconformal invariance [48]. We discuss the topological twisting
and the renormalization group properties of these theories, and compare them to the
conventional topological Landau-Ginzburg models [49].

By deforming the theory with relevant and marginal operators it is possible to
define perturbed correlation functions, and a suitable metric in the coupling constant
space. After a proper bosonization of the first-order systems, explicit calculations of
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perturbed topological correlation functions are performed by using standard Coulomb
gas techniques [50, 51, 52]. In the coupling constant space of topological field theories
there is a preferred coordinate frame in which the metric is constant. These “flat
coordinates” are strongly connected with special coordinate systems in special geo-
metry. We show that in our formulation the parameters multiplying deformation terms
in the potential are flat coordinates. We retrieve known results for minimal models
and for the ¢ = 3 cubic torus. The extension of the techniques presented here to a
general ¢ = 3d theory should give more information on the special geometry structure
of the moduli spaces.

At the end of the chapter we elaborate, for a particular example, on the relation
between Picard—Fuchs equations and topological Landau-Ginzburg models

Finally in the appendices we deserve some technical remarks on the topics
treated in the thesis.




Chapter 1

Overview on the subject

1.1 Discussion on moduli and moduli spaces

The action for a string moving in a non trivial metric and antisymmetric tensor back-
ground is [9]:

S = —2i / d’o [’r]aﬁaaX‘lagXDGp;,(X)+EaﬁaaXﬂagXﬁBﬁf,(X)] , (1.1)
™

where we have chosen the conformal gauge and kept only bosonic degrees of freedom.
The index £ runs on the range £ = (g,1), where g is the space-time index and i is the
internal (compactified) one.

Moduli space is the space parametrized by the allowed deformations of a given
background on the internal manifold.

In the more general context of conformal field theories moduli are truly marginal
operators, i.e. operators with conformal dimension (h,k) = (1,1), with the property
that perturbations generated by these operators do not act to change their own di-
mensions. A very interesting aspect of two dimensional superconformal field theories
is the possibility of describing the abstract space of all such theories in standard geo-
metrical terms. In particular the space of conformal field theories is equipped with a
natural Riemannian structure [15]. For the application, one is particularly interested
in the connected components of this space, which are the moduli spaces of the various
superconformal field theories.

A very powerful tool [10] to construct the moduli space and to compute their
geometrical properties is to study the low energy field theory for a superstring com-
pactified on the given superconformal theory. Roughly speaking, the moduli space
is just the manifold of classical vacua for the low—energy theory. Moduli appear as
massless neutral scalar fields M; whose vacuum expectation values < M; > are left

7



8 Chapter 1. Overview on the subject

undetermined by the equations of motion, and they represent the free parameters for
the internal metric and anti- symmetric tensor field. The method is particularly useful
when the resulting low—energy effective theory is supersymmetric, since the spacetime
SUSY gives rather severe restrictions on the space of possible vacua.

For physical applications, the most important case is that of the (2,2) super-
conformal theories with ¢ = 9. They can be used to compactify the heterotic string
down to four dimensions, while preserving space-time supersymmetry [12]. Indeed this
class of superconformal systems can be viewed [14] as sigma models on some kind of

Calabi-Yau manifold [16].

To study the moduli space of (2,2) superconformal systems it is more convenient
[10, 2] to use them as internal spaces for type II rather than heterotic superstring. The
reason being that in this case we get N = 2 space-time supersymmetry, and thus
stronger SUSY constraints.

The relation between the scalar moduli and the underlying two—dimensional
conformal field theory is best seen from their interpretation as flat directions of the
scalar potential. If we denote by P any other scalar field which may be charged or
neutral under the gauge group but which comes from the gauge degrees of freedom (as
we will see below), and by V(M, P) the scalar potential of the theory, then the moduli
fields satisfy identically the following property:

ov
50 0, (1.2)
while for the field P the equation g—% = 0 fixes its value at some point P,. The moduli
thus parametrize flat directions of the potential. In the background field approach
[53] moduli appear as “coupling constant” in a underlying two-dimensional o model.
The requirement of conformal invariance beyond the tree level, that is the statement
that the S—functions associated to these couplings vanish, is nothing but their effective
space-time equation of motion. i.e.

1
IBQuV =0 - RHV - §Rguu = T,uu (13)
“and for a generic scalar field ¢
Bo=0 o So=0fmg=<d> . (1.4

From eq. (1.4) we see that flat directions correspond to a coupling constant < ¢ >
of the underlying conformal field theory for which the theory is ezactly conformal
invariant. If we call Vj; the marginal operator which corresponds to moduli massless
excitation then Vs is a conformally invariant perturbation for all M. The motion in
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the space of conformal field theories is given by the geometry of the M manifold, i.e.
the “coupling constant space”.

Let us assume that this space has some differentiable structure. Zamolodchikov
has shown [15] that it can be regarded as a Riemannian space with metric given by':

(Var,(1)Va5(0)) = g:5(M) . (1.5)
It may be shown that in the effective lagrangian the M; kinetic term is given by:
g,’jayﬂ/f,'a“Mj (16)

and moreover
V(M)=0. (1.7)

when we set all other non—-moduli fields to their vacuum expectation values. The
characterization of the metric g;; is the main problem to be solved, since it gives most
of the information on the geometry of the moduli space. Let us analyze in some detail
the case of moduli space, obtained by superstring compactification on Calabi~ Yau
spaces.

1.2 Moduli space of Calabi—Yau manifolds

In any string compactification to four dimension we require N = 1 space- time su-
persymmetry to be unbroken. This requirement allows to solve the hierarchy problem
of the weak interaction scale [54], provided that some still mysterious mechanism will
generate both weak and supersymmetry scale breaking at energies below 1 Tev.

An interesting class of compactifications leading to N = 1 space- time super-
symmetry are those on Calabi-Yau manifolds [16]. The latter are defined as compact
Kihler manifolds of complex dimension d (three in the case of physical compactification
down to four dimensions) with vanishing first Chern class.

More generally, Calabi-Yau (CY) compactifications are referred as (2,2) vacua,
because of the famous Gepner conjecture which states the correspondence of a (2,2)
superconformal theory with ¢ = 9 with a critical point of an n=2 o-model on a target
Calabi-Yau space [14]. In the context of type II string theories this means that the
internal conformal field theory with central charge (c,¢) = (9,9) has left and right
moving n = 2 superconformal symmetries . Such a theory can be mapped to a het-
erotic theory with the same internal superconformal system [55, 56]. The missing 13

In this chapter we denote the moduli space metric by lower—case letter, to be clearly distinguished
by the “capital” metric G, which refers to the space time or to the internal CY space

2From now on we will refer to capital N for spacetime SUSY and to small n for the world sheet
one
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units to the left-moving conformal anomaly are provided by 13 free bosons moving on
the maximal torus of Es x $O(10). The U(1) current of the left moving n=2 algebra
combines with the SO(10) to Es. The gauge group of heterotic Calabi-Yau compact-
ifications is thus in general Eg x Eg. For type II Calabi-Yau compactifications the
spacetime supersymmetry in an N = 2 [12, 57, 58, 59]. In heterotic compactifications
the right moving n=2 algebra is necessary for N=1 space-time supersymmetry. The
left moving n=2 algebra now establishes a one-to-one correpondence between those
massless multiplets whose scalar components are moduli, and the matter multiplets
charged under the gauge group [10, 11, 59, 60]. This relation between N=1 heterotic
and N=2 type II theories compactified on the same CY space will be exploited in the
following.

A CY manifold [17] is characterized by some topological numbers hpq (g =
0,1,2,3), which describes the number of harmonic (p,q) forms on the manifold. For
CY threefolds the hy; and hy; harmonic forms have the geometrical meaning of de-
formation parameters of the Kahler structure and of the complex structure respec-
tively. Indeed, if one varies the metric on the CY space such as to preserve Ricci
flatness, one can show that 16G;-dy’ A dy’" have to be harmonic (1,1) forms, whereas
Qi—}ﬁGl‘k* dy* A dy’ A dy*" have to be harmonic (2,1) forms. Here y' = y',y" are the
complex coordinates on the internal CY threefold and Q;jx = gkai-;- is the unique
covariantly constant holomorphic (3,0) form, which can always be shown to exist. If
we denote by wf; 1y(y) (@=1,-+-huy)) and w1 (y), a =1, b the bases for har-
monic (1,1) and (2,1) forms respectively, we can expand any variation of the Kahler and
complex structure in terms of them. The expansion parameters are just the moduli.
We let they depend on the uncompactified space-time dimensions z* and we get:

i6Gi (2, y)dy' Ndy' = Y M{’(:c)wfj*dyi Ady'

95;5G1*k*(:c,y)dyi Ady? Ndy® = Y N”‘(a:)w;-"jk*dy" Ady’ A dyF . (1.8)

The fields M? (real) and N (complex) appear as massless scalar fields with vanishing
potential in Minkowski space. This follows from the equation of motion for the internal
components of the metric.

The total number of real moduli fields we extract from (1.8) is hyy + 2ho;.
However, in a string theory compactified on a CY manifold we have additional scalar
degrees of freedom from the non gauge sector, namely those coming from the internal
components of the antisymmetric tensor B;;» (which are exactly h;;) and two more
coming from the dilaton field and the space time components By, of the antisymmetric
tensor (the axion field). Therefore in any superstring compactified on a CY threefold
the non gauge sector gives 2(hy 1 +ho1+1) degrees of freedom. The real fields M7, which
are associated with changes of B;;» (whose zero modes are also harmonic (1,1) forms),
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combine with the fields M} to complex massless scalar fields M. The 1 4+ hy; + hy
complex moduli become coordinates of a Kahler manifold. It can be proved [11], using
superconformal Ward identities, that the moduli manifold has the product structure:

M= Sl;lff((]i’)l) X Mpy, X Mpy, (1.9)
where My, , My, are two Kahler manifolds of complex dimension h;; and hy; re-
spectively, and SU(1,1)/U(1) is the moduli manifold associated to the dilaton- -axion
field. This is also shown in [10, 5, 6], where N = 2 space-time SUSY is explicitly
utilized, via the connection between heterotic and type II theories above mentioned.
This also gives additional insights in the structure of the moduli space. Since the
moduli metric does not know which specific superstring theory one is compactifying,
the kinetic term in (1.6) in the effective Lagrangian is common to heterotic and type
I theories, but in the latter case it has to satisfy the additional constraint coming
from the second space—time supersymmetry. The same constraint can be recovered by
Ward-identities of the underlying (2,2) superconformal algebra [11]

As already mentioned above, the left moving n = 2 superconformal algebra
relates moduli to charged matter fields. Each (1,1) modulus is accompanied by a 27
and each (2,1) modulus by a 27 left-handed family of the Fg gauge group (singlet with
respect to the residual Eg). The Euler number is now simply given by 2(h11 — ko)
and a model is therefore chiral if such number is nonzero. For CY compactifications
to four dimensions we can also see the degrees of freedom in a pure space—time picture
assuming the compactification scale R much larger that the string size v/a'. In this
regime we may use the point field limit of 10 ~dimensional superstring. For heterotic
superstring we have 10D supergravity coupled to a Yang-Mills Eg x Eg multiplet. For
type II strings we have type IIA (non-chiral) and type IIB (chiral) supergravity [9]
The bosonic fields which give rise to scalars in four dimensions are :

G[u"/’ Bﬂfn ¢7 A;[L (110)
for heterotic superstring,
G[‘,;, B,][,, (}S,A,;,, A,},}ﬁ (1.11)
for type ITA superstring, and
Gpos By, 8%, Apops (1.12)

for type IIB superstring. Here B, ¢° denote complex antisymmetric tensor and scalar
field in ten dimension, A;Iz are gauge fields and Ay, and Appss are antisymmetric
tensors, the latter being self~dual. In CY compactifications the harmonic (1,1), (2,1)
forms come as follows (with the splitting of the internal index i = (z,7%),1 = 1,2,3):

G,‘jt,Bij: H Gi_.,' (1.13)
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for the heterotic case,

Gijey Bijey Auije s Gijy Aijere (1.14)
for type IIA strings, (where suitable contraction with the metric and the (0,3)—(3,0)
forms of the CY are understood, to get the correct index content for (2,1) forms) and

Gij», Bjj Auvij*-; Gijs Apijoke (1.15)

3%

for type IIB string. The reason we have as many 27, 27 families as (1,1), (2,1) forms is
because we identify the SU(3) [16] holonomy connection of the Calabi-Yau manifold
with the SU(3) gauge connection in the decomposition of Eg — Eg x SU(3). The full
spectrum of the scalar fields in the three theories compactified on the same CY space
is as follows:

Heterotic case:

M,,N,, ¢l ¢l S, (1.16)

a? o ?
where M, corresponds to Gj+, Bij«; Ny to Gij; S to ¢ and B, and a = 1,---hy 1,
a=1,-+,hoy, I €27,1" € 27.
Type IIA case
M,,N,,C,,S,C , (1.17)

where C, correspond to the A;;;+ modes and S to A;j; mode.
Type IIB case:

M,,C,4, 51,52, No (1.18)
where M,,C, correspond to Gij», B, Auije and 51,52 correspond to ¢°, B,

Since in type IIA theories there are 4 degrees of freedom for each (2,1) form
and in type IIB for each (1,1) form, we can show [10, 5] that (2,1) and (1,1) moduli
belong to N=2 hypermultiplets respectively in type IIA and type IIB theories. In
the chirality reversed theory the same moduli belong to vector multiplets. Indeed in
type IIA theories there are hy; + 1 gauge vectors coming from Aije- and A,qjk. The
additional vector is the graviphoton. The only interaction of vector multiplets and
hypermultiplet consistent with N= 2 supergravity is a non linear —model of the form:

Msk x Q, (1.19)

where Mgk is a very “special” (Kahler) manifold (see in the following) for the vector
multiplets and Q is a quaternionic manifold for the hypermultiplet [18, 19, 61]. By
writing explicitly the dimension of these manifolds we get [62]:

MY = M X Qh s | (1.20)
MP = MP QP i, (1.21)

the additional multiplet for the @ manifold coming from the space- time dilaton and
antisymmetric tensor sector.
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Notice that while the M Kahler manifolds contain the same moduli fields which
appear in heterotic strings the @ manifolds are obtained by gluing together moduli
scalars with non—-moduli scalars.

The first observation at this point is that the manifolds M* and M?P must
coincide with the submanifolds of the heterotic string when we freeze one of the two
set of topologically distinct moduli. The fact that the full manifold is a product space
given by eq. (1.9) comes by setting to zero the non-moduli fields in type II theories.
In the type IIA example, setting C, = C = 0 we get

Qit 41 = Mg, %11)1) . (1.22)
We conclude by pure space-time arguments that eq. (1.9) is true. The moduli spaces
Mp,,, Mh,, have a very rich geometrical structure: they are “special Kahler” man-
ifolds. We give precise definition of special geometry in the following chapter, here
we simply mention that the curvature of a special manifolds satisfies the constraint
[3, 4, 21]:
1

Raved = —9s(p9d)a + Eezc’waaﬁwqdbgﬁq ’ (1-23)

where wgy is a holomorphic 3-index symmetric tensor 2 and G is the Kahelr potential.
The tensor wgy. has the meaning of Yukawa coupling for (27) (or 27 families) [11].

warc(27)® ,  Wap,(27)° . (1.24)

A metric which satisfies (1.23) can be found in a special coordinate sysiem which is the
one used in N=2 supergravity tensor calculus [3]. We will describe this special system
in the following chapter.

There are profound implications for superstring dynamics which come from this
specific structure of the moduli space and its relation to the Yukawa couplings. The
first one is that (27)® and (27)% couplings can only depend on their separate moduli
(the M moduli for the (27) and the N moduli for the 27). Moreover it has been shown
that Yukawa couplings for 27 families are just constant and cannot depend on the
moduli parameters [63]

Another consequence of (1.23), which is worth to mention here, is the relation
between the moduli and the matter metric. In heterotic string the full scalar (moduli
+ matter) self-couplings in N=1 supergravity action are determined by the function
[64]

G =G +log|W|?, (1.25)

3Here we are abusing of the definition of “tensor”, since wgp. is actually a section of a bundle
which will be defined in the next chapter
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where W is the superpotential. In this case we can write:
WM, N 6%, 6%) = Wae(M)§*$'6° + wagy(N)§° 676" (1.26)

(Es gauge indexes are suppressed for convenience). Here ¢* and ¢* are the matter
fields related to the (1,1) and (2,1) moduli respectively. From eq: (1.23) we learn that
under Kahler transformation of the moduli space we must have:

A 2Ap
Gh, — Ghy — A, — Ap,, 5 Wabe = Wabc€™ ",

_ 2A .
Gh2,1 - Gh'z,l - AhQ,L - Ah2,1 3 Wapy = WapyE "2, 9 (1'27)

where Ay, , = Ap,, (M) and Ap,, = Ap,, (V) are holomorphic parameters of the moduli.
The full Kahler potential of the moduli + matter field has the form:

G = Gy, + Gh,, + O(¢°) + high. order terms . (1.28)

The crucial fact is that the matter dependent part must be Kéahler inert under the
Kahler transformation of the moduli subspace. In order for the function G to be
invariant both terms in W must scale as We™athrn,
following Ké&hler transformations for the ¢ fields:

This is achieved by using the

pa — paePrza =t gy () (1.29)

It is now easy to see that the only possible metrics for the matter fields, which are
Kéhler inert are given by:

gqbad—;@ = g
g¢a<2_55 = .g(JLBe(GhZ’I_Ghl'l)/3 (1.30)

aBE(Ghl’l "Ghz,L )/3

a result derived from conformal field theory argument in ref. [11]

1.3 Duality symmetry and target modular inva-
riance |

So far we have only considered the local structure of the moduli space of string com-
pactifications. As we will see, the global structure is modified by discrete symmetries,
called duality transformations [41, 40] We will demonstrate this in the simplest case,
namely the compactification of the closed bosonic string on a circle of radius R , i.e.
we choose M;,; = S'. If we denote by X the string coordinate, compactification on
a circle means that we have to identify X = X + 27 R. This implies that the center
mass momentum is quantized, p = %, m € Z. Moreover the string may wrap around
the circle, so that:

X(oc+ )= X(o)+ 2R, (1.31)
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where n € Z is the winding number (the number of times the string wrap around the
circle). The internal string coordinate can be expanded as:

X(o,7) = o+ 20nR + pr + oscillators
— o+ po(r + o) + pr(r — o) + oscillators (1.32)

where

m

PLR = 5p +nR. (1.33)

The mass string state is:

1 1 1
—m? o= —m%—i——mf{

8 8
= L(p} +pR)+ N+ Np—2

o

= Ezz 4+ n?R2+ N+ Ng—2, (1.34)

where Ny r counts the number of oscillator excitations and we have also included the
normal ordering constant appropriate for the closed bosonic string. We see that under
a simultaneous interchange of momentum and winding quantum numbers m < n, R «
51}—2 the mass of a given state is invariant. This symmetry is called duality symmetry. It
leaves the spectrum invariant and is consequently a symmetry of the partition function.
To show that it is really a symmetry of the theory we also have to make sure that it is
a symmetry of the interactions. In particular ¢iP ¥ = ilP-X2+Pr-XR) must be invariant.
Indeed, one finds that if one accompanies the interchange of momentum and winding
quantum numbers and the replacement of the compactifying radius R by its dual radius
z—lﬁ by X;, — X1, Xp — —XR, then all the S—matrix elements are invariant [65]. This
symmetry of the theory means that we cannot distinguish a string theory compactified
on a large circle radius R from one compactified on a small circle with radius 5. The
value R = —\}; is the fixed point of the duality symmetry.

For this example any radius R is possible. Naively one would conclude that the
moduli space for circle compactification is R > 0. However, due to duality symmetry,
the moduli space is actually either R < % or R > 715 Each encompass all possible
distinct compactifications on a circle. The duality symmetry for this case is simply a

Zy symmetry.

Let us now generalize the discussion to the more interesting case of compactifica-
tions on a d—dimensional flat torus with constant metric and antisymmetric tensor field
background [40, 45]. The metric is defined in terms of the basis vectors e;,2 = 1,---,d
of the lattice T'y that generates the torus Ty = R JAVE

G,‘j =€;*€5. . (135)
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By compactification assumption we have to identify * X* = X'+ 27nt,nt € Z, and
winding states satisfy X*(¢ + 7) = X'(o) + 2rn'. The compact string coordinates are
then:

Xi(o,7) = @' 4+ 2n'c + p'T + oscill. . (1.36)

The canonical mass momentum:
= / dodS5)8X* = Gijp’ + 2By’ (1.37)

must be quantized. Note that even though the B;; term is a total derivative and
does not modify the equation of motion, it does enter the definition of the canomical
momentum. Single valuedness of e™i*' requires that 7; = m; € Z. We again define the
left-right momenta p}/, R= %pi + n! for which we get:

1

PZ,R = EGijmj — Giijknk +n' ni,mj eZ. (1.38)

Using this in the mass formula with p%,R = pz,RG,-jp};,R we find:

1 1
gm%,k = [ZmTde +nT(G-BG 'B)n+ inTBG'm

mTG'Bn+nTm|4+ Npr—1, (1.39)

DN =

N

where we have employed a matrix notation. The expression m%, r are manifestly in-
variant under simultaneous interchanges of

meon and L G'oG-BGT'B
B Gle-GB, (1.40)

which is equivalent to
1
men and (G+B) Z(G +B) 1. (1.41)

This generalize the duality transformations R — §1§ of the one—dimensional circle case,
which corresponds to B;; =0, Gjj = R2.

The discussion on the moduli space is most easily done by using the correspon-
dence between metric and antisymmetric tensor background with Lorentzian lattices
. One finds that locally the moduli space is (—)—(%g% with dimension d? equal to the
number of components of G;;, B;;. They can be used to parametrize the moduli space.
The group of duality transformations generated by the symmetries mentioned above

can be shown to be O(d,d, Z) [40]. We do not proof this result, but we explain in some

41X are the components with respect to the lattice I'y. The components with respect to R? are
X+ =elX!
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detail the example of the compactification on a two-dimensional torus. The generating
lattice of the torus is spanned by the two basis vectors ey, e;. They define the metric
Gi; = ei - ej, with three independent components. The antisymmetric tensor has only
one component B;; = be;;. Together we have four real moduli which can be rearranged
into two complex moduli as follows:

_ |_€1_|e;¢

g =
|e2]

, T=2b+14), (1.42)

where ¢ is the angle between the two basis vectors and A = y/|det G| > 0 is the area
of the unit cell lattice. Both the moduli parametrize the upper half complex plane,
which is isomorphic to %%2 o is a complex structure modulus and is usually called
the Teichmuller parameter, while 7 parametrize the different Kahler structures. To
compare with the general result we recall the isomorphism:

0(2,2)  SU(L,1) _ SU(1,1)
02) x0(2) ~ UM U@

(1.43)

Naively one would conclude that the moduli space for the two— dimensional torus com-
pactification is just two copies of the upper half plane. Let us see how this is modified
by discrete duality symmetries. We express the metric component and antisymmetric
tensor in terms of o0 = oy + 10y and T = T} + 179:

- _m (o o
b=4m G‘m( o 1 ) (1.44)
and obtain
1
P = 2027_21(””1 — omy) — 7(ny + omy)|*
1
Py = Sors |(my — omy) — F(ny + ony)]? . (1.45)

It is now easy to see that with a suitable redefinition of the momentum and winding
quantum numbers we have the following symmetries of p} and p%. A Z, x Z, given
by ¢ — 1 and (o,7) < (—&,—7) and a SL(2,Z) ~ SU(1,1,Z) given by: 7 — Z:_;‘"Z,
ad—bc=1,a,b,c,d € Z. The combination of the previous discrete symmetries implies
a SL(2,Z) symmetry for o. Due to these discrete symmetries the moduli space is
no longer the product of two copies of the upper half plane. If we identify all points
on the upper half plane which are related by a SL(2,Z) transformation, we arrive at
a fundamental region F = —51%1—2*1—2—), H, ~ S—IL],((—IITQ The moduli space for the two-

dimensional torus compactification is thus Z2Z-.
ZaXZy

What we have seen in some specific examples is how discrete symmetries affect
the global structure of the moduli space of string compactification. We know that
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moduli enter the effective action as massless neutral scalar fields with vanishing po-
tential. The action should then be invariant under duality transformations which are
discrete coordinate transformations in the moduli space which is the target space of
the four dimensional o—model for the moduli. For this reason duality transformations
are also referred as target space modular transformations. Instead of torus compact-
ifications we can have orbifold compactifications, were the torus is modded out by a
discrete symmetry . The moduli spaces can be obtained by performing suitable trun-
cations of the original moduli space for the torus compactification. In particular Z,

orbifolds correspond to particular choices of the following special symmetric moduli
spaces [5, 66].

SU(1,1) SU(1,1) SU(2,2)
Mo =gy —) U1)  SU2) x SU2) x U(1)
SU(3,3)
 SUE) X SUE) x U(L)
~ SU(1,1)
Mh2,10 = lor SU(l) ’ (1.46)

where k1%, hy° refers to the (1,1), (2,1) moduli in the untwisted sector, i. e. “proper”
moduli of the orbifold, whereas the twisted moduli are moduli of the smooth Calabi-
Yau space of which the orbifold is a singular limit (the so called “blowing up” of the
orbifold singularities). As we will see in next chapter the duality groups corresponding
to the moduli spaces in (1.46) can be analyzed in detail.

Finally it is worth to mention the orbifold compactifications that are compatible
with the N=1 supergravity effective actions for the untwisted (2,2) sector. We have
the following generic cases [66],

' _ so2,2) 1 [su@,n]*"
1)3h2, + 1Y duli: = : SN =0,1,2
) 1,1 + 2,1 mo uh M [SO( )X 50(2):\ X [ U(]_) ? l 07]'7 )3
| _ 50(2,2) SU(2,2)
2)5RY . + A9 : =
)8hay + hyy modulic - M= 25y "550) ¥ SU@) % SUR) x U(L)
_ SU(2,2) SU(1,1)
3)5h? : =
)ohyy modulis - M=erer St < U ¢ SUQ)
4) 9h?,1 moduli: M= SU(3,3) (1.47)

SU(3) x SU(3) x U(1)

which are in correspondence with particular abelian orbifolds [67], obtained by modding
suitable products of Zy discrete subgroups.

{



Chapter 2

Symplectic embeddings and special
Kahler geometry

2.1 Introduction

Originally the concept of special K&hler geometry was introduced in the context of N=2
supergravity, while solving the problem of coupling an arbitrary number n of vector
multiplets [18, 3, 19]. It was found that the n complex scalars z*, corresponding to the
lowest spin components of these multiplets, had to parametrize a Kahler manifold of
a restricted type, where the Kéhler potential G(z,%) is obtained from a holomorphic
prepotential f(z) through the formula!

G(z,2) = —log [2(f + ) = (8:f — 6F) (¢ — 27)] . (2.1)

Furthermore the same holomorphic function f(z), that through eq. (2.1) determines
the scalar kinetic terms, appears also in the vector kinetic terms. Clearly eq.(2.1) is
a coordinate dependent statement and, for a long time, the intrinsic geometric char-
acterization of special Kahler manifolds remained unknown. Nonetheless it was early
realized [3, 19, 20] that, in all these manifolds, the Riemann tensor satisfies the following
identity :

1

Ri‘jl*k = "“gf*(]‘gk),'* + EBQGwi*ps»wtkjgs‘t . (22)

In [20] all the homogeneous symmetric Kahler manifolds with such a property were
classified and a suitable f(z) function was found, for each of them, in appropriate
special coordinates. A very strong result was also proved [23], namely that the only
manifold fulfilling eq.(2.2), which is also a direct product of manifolds, is necessarily

!To avoid any particular reference h 1,1 and hg i labels, here we use the indices z,7*, which are not
;in the following, internal space indices, but span a generic special Kihler manifold

19
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of the following form:

SU(1,1) S0(2,n)
SK(n+1) = TOBIOEEIOR (2.3)

As we are going to illustrate, the manifold SK(n+1) plays an important role in various
contexts. In the following we will be particularly concerned with its structure and we
solve an apparent paradox related with its geometry. The other case that we will study
in detail is the special Kdhler manifold given by:

B SU(3,3)
Maa = SU(3) x SU(3) x U(1) ’

(2.4)

which is also in the list of ref. [20]

To explain this matter we have to resume our discussion, concerning the intrinsic
geometric characterization of special manifolds.

As sketched in Chapter 1 special Kéhler manifolds M’ are regarded as mod-
uli spaces of Calabi-Yau complex 3-folds, describing either the n = h; ;-dimensional
space of Kahler class deformations, or the n = h, ;-dimensional space of complex struc-
ture deformations [4]. In both cases, the relation with Dolbeault cohomology of the
underlying 3-fold puts into evidence a crucial symplectic Sp(2 + 2n, R) structure, cor-
responding to change of bases for the homology cycles, which eventually can be taken
as an intrinsic definition of special Kahler geometry. We shall review this definition in
section 2.2.

In [21, 22] special manifolds M’ were instead regarded as the o-model manifolds
VM, associated with the vector multiplets of an arbitrary N=2, D=4 Supergravity:
utilizing superspace Bianchi identities and the theonomy approach, rather than the con-
formal tensor calculus, the authors of [21, 22] were able to obtain the just mentioned
intrinsic definition of special geometry as a pure consequence of N=2 target supersym-
metry, without using special coordinate systems. From the supergravity viewpoint, the
symplectic Sp(2 + 2n, R) structure is related with duality transformations that fit in
the general scheme developed in [39, 1]. Furthermore it is shown that the symplec-
tic structure and the existence of a w;j; satisfying eq.(2.2) are equivalent properties
implying each other.

The relation between the supergravity and the Calabi-Yau view point, was pro-
vided [5, 6] through the observation that, on the same 3-fold one can compactify either
the heterotic superstring or the type II superstring, displaying N=1 and N=2 super-
symmetry, respectively. The moduli-space geometry must therefore be compatible
with N=2 SUSY and that is the reason why it is special. Actually in [11] eq. (2.2)
has been directly derived from (2,2) superconformal ward identities. This has been
the direct proof that special Kihler geometry is the geometry of the moduli space for
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(2,2) superconformal field-theories. New insight in this direction has recently been
obtained [31, 68, 33, 49] by the topological reinterpretation (through twisting) of n=2
2D theories. Indeed it appears that the holomorphic prepotential of special geometry
is directly related to the topological free-energy and w;ji is related to the topological
3-point function. On the other hand w;jx expresses the Yukawa couplings, when the
(2,2) theory is utilized to compactify the heterotic superstring. We will resume this
discussion in chapter 3. Here we begin the main body of the present chapter by giving
characterization of the special geometry.

2.2 Special Kahler manifolds: definition and ap-
plications |

A special Kihler manifold is a Kahler manifold with additional restrictions on its
Kéhler structure.

Definition 1 A manifold M,, of complez dimension n, is Kihlerian if it has a complex
structure and a hermitean metric

ds® = gij+(2,2)dz' @ dz7° | - (2.5)
such that the (1,1)-form _
K =igijo(2,2)dz' A dz”" (2.6)

is closed (dK = 0).
As it is well known, K cannot be globally exact, yet it is certainly locally exact.

Indeed in every coordinate patch we can find a real function G(z,z) (named the Kahler
potential) such that

gij» = 0:0;G(z,%),
K = 4o,

Q = -%(a,-adzf — 8,.Gdz") . (2.7)
Under a Kéhler transformation
G — G+ a(z) + a(z) (2.8)

the 1-form Q transforms as
Q — @+ d(Ima). (2.9)

Therefore Q is a U(1) connection.
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The U(1) covariant differential of a field ®(z,2) of weight p is
V®é = (d+1p2)2, (2.10)
or in components
Ve = (6;+ %pB;G)@ ,
Vb = (B — %paﬁa)@ , (2.11)
A covariantly holomorphic field of weight p is defined by
Vid =0. (2.12)
By a change of trivialization the real U(1)-bundle can be reduced to a holomorphic
U(1) line bundle £. Indeed setting
$ = eP9%Q (2.13)
we have A
Vid = (&i+0p8:G)®,
Vid = 8.3 . (2.14)

In particular,if @ is a cox}ariantly holomorphic section with respect to the @-connection,
$ is a holomorphic section with respect to the holomorphic connection 0;G.

Definition 2 If the U(1) line bundle is such that the first Chern class c1(L) coincides

with the Kéhler class [K] then the Kdhler manifold is of restricted type or a Hodge
manifold.

A special Kahler manifold is a Hodge manifold obeying additional restrictions that we
shall presently illustrate. To this effect we point out that in addition to the U (1)-
holomorphic connection 8;G one has the holomorphic Levi Civita connection

i = szdzk,

J

b= —g" (Bigke)
i i* k*
Fj* - k:j*dz 5
* i
k*jc —g (8,-~gk.g) (2.15)
and its curvature
Ri = Ridz" Adzt,

i _ i
Rjk*[ = ak*rjts

. ¥

RE = Rigped®ndz",
Riper = Ol . (2.16)
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Definition 3 By definition a restricted Kahler manifold is special if and only if there
ezist a completely symmetric holomorphic 3-indez section w;jr of (T*)* ® L* (and its
antiholomorphic conjugate wi«ji+) such that

3m*w,~jk = 0 9 8mw,~*j.k* =0 ) (217)

Vimwiie = 0, Vigwisgjue =05 (2.18)
1 .

Riijl'k =t —gﬂ*(]gk)l* + 562Gwi*£t3*wtkjgs t o (2.19)

In the equations above V denotes the derivative covariant with respect to both the Levi
Civita and the U(1) holomorphic connection.

In the case of the w;j, p = 2. In [4, 21, 22] it was shown that on a n—dimensional
special Kahler manifold one can always introduce a a (n+ 1)- dimensional holomorphic
vector bundle whose holomorphic sections we denote by X* (A =1,...,n + 1)

O-X" =0 (2.20)

and a function F(L) which is holomorphic and homogeneous of degree two in the
transformed section

LM (z,2) = e /20 XA(2) . (2.21)
This means that F(L) = e®%) F(X(z)) so that F(X) is a holomorphic section of £2.
For L*(z,z) we have:
VIY = dI* +4iQI* = VL 2 + V. LAz (2.22)
1 .
Vil = §.IL" - 5a,-.GLA =0. (2.23)

Eq. (2.23) follows from eq. (2.20) and eq.(2.21).

The geometry of the special manifold is completely determined by the sections
{X"} and by the analytic function F(L) or equivalently by F(X). Define

0 0 0

F.tn =575 518 5 T () (2.24)
and set

Nz = Frz+ Fas ) (2.25)

=Vl = 61" + %GiLA = %/ (6p — ———)f /;x ?2 )8:X>,  (2.26)

AN AR N T e UL CReRT)

1
S = —ZNAELALE , (2.28)
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then one finds

gij = —fARNyy = 8:XM9;X%0,0:G(X,X), (2.29)

ewijp = ViV;ViS = fMFf Fasr =
= %8, X%0,X*6, X  Fysr(X) , (2.30)
NasIAL® = eCNppXAXE =1, (2.31)
FAIPNyy = 0, (2.32)
fALE N,y = 0, (2.33)
UM =g A R = —(NTYHME L IALE (2.34)
NasU™Npr = €98,6:G , (2.35)

where 8; = 5%,(’9- = 3‘%“

In ref. [4] it was shown that @ = {X*,i25} can be viewed as the cross-section
of a flat holomorphic, Sp(2n + 2, R)-bundle H, whose existence is in fact equivalent to
eq. (2.2). In the case where we are considering CY compactifications there is a deep
relation between this symplectic structure and the algebraic geometry of the underlying
CY manifold. We give some detail on this point in the appendix A.

The Kahler 2-form is given by:

K = —8dlog (i< Qla>) , (2.36)

where —i < (2|Q > denotes the compatible hermitean metric on :

0 1

2 - of
<QQ>=Q (_1 0

) Q = i(X'0uF + 8,FX*) . (2.37)
Recalling the definitions (2.6), (2.7), (2.25) and the fact that F(X) is homogeneous of

degree two, equations (2.36) and (2.37) are equivalent to the following formula relating

the Kéahler potential G to the norm of the holomorphic section {2 in the Sp(2n + 2) flat
bundle :

G=—log|| Q= —log (—i < Q0 >) = ~log(Naz X" X7) . (2.38)

Special coordinates for the underlying Kéhler manifold correspond to the choice 2 =

X'/X°(i=1,..,n) and the prepotential f(z) mentioned at the beginning is related to
F through
-2
fz) = (Xx°)7 F(X). (2.39)
With this identification the formula (2.1) for the Kahler potential match perfectly with
(2.37)
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In this context duality transformations associated with a discrete subgroup I' C
Sp(2+ 2n,Z) C Sp(2 + 2n, R) of the above mentioned symplectic group have become
a focus of interest [42, 41, 40]. T is the target space modular group and corresponds to
the action on the Calabi-Yau homology basis of global diffeomorphisms. For the same
reason as explained in chapter 1, I' must be modded out and it turns out to be an
exact non perturbative symmetry of the effective low energy lagrangian. This provides
a powerful tool to obtain exact non perturbative results for the superpotential W(z).
Indeed in order to maintain ' symmetry W(z) has to be a I'-automorphic function.

In [42] a general formula has been proposed to express the automorphic super-
potential W(z) as a sum over a I'-homogeneous lattice Ar:

log |[W(2)|? = log [IW(Z)|2 eG(z,E)] _
|Ms X" +iN 85 F|?

- - Z log a — < ;
XE0gF + X*0cF

(Mg, NZ)eAr reg

(2.40)

where a suitable regularization of the infinite sum is understood. From (2.40) we see
that in order to obtain an explicit evaluation of the automorphic superpotential we
need two informations:

i) An explicit form for the homogeneous function F'(X)

ii) An explicit embedding of the homogeneous I' lattice Ar into the homogeneous

Sp(2 +2n, Z) lattice Agp(a42n,z) Which corresponds to an unrestricted sum over all the
integers My, N*

The embedding Ar C Asp(242n,2) is clearly determined once we know the embed-
ding I' C Sp(2+2n,Z). A crucial observation is the following. when the special variety
M = —Afﬂ is an orbifold of a special Kéahler coset manifold M’ = G/H with respect to
the action of a discrete subgroup I' C G of the isometry group, both problems (i) and
(i) can be solved in one stroke.

Indeed the function F(X) is completely determined by the embedding of G into
Sp(2+2n, R) and of H into the maximal compact subgroup U(n +1) C Sp(2+2n, R).
This is just the general construction of continuous duality transformations according
to [39, 1]. Different choices of F(X) correspond to different embeddings. Furthermore

the embedding of the modular group I' into Sp(2 + 2n,Z) is obviously realized by
restricting from R to Z.
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2.3 The case of SK(n+1) = Sg, ((i,)l) % sofﬁfé’g(n)

As already mentioned the list of homogeneous symmetric special Kahler manifolds was
found in [20]. Tt includes the series SK(n 4 1) defined in equation (2.3), and the series:

SU(1,n)

Chu11 = SU(n) x U(1)’

(2.41)

corresponding to the so called minimal coupling. In addition we have the four sporadic
cases

SP(G, R) ) SU(B, 3) . SO*(12) . E‘T(——ZS)
U(3) ' SUB)xU() U®) ' EsxU(l)
The F-functions for these manifolds obtained in [3, 20] are all of the following form

(2.42)

) =i ET "
where djsr are constant coefficients. In the SK(n + 1) case, we have:
dasr = di;; = —4mi; ;3 0 otherwise (2.44)
where the index A range is as follows
A=0,I;, I=1,i; i=2,---n+1 (2.45)
and
n:; = diag{+,—,—,---, =} . (2.46)

From equation (2.46) one observes that F' is invariant under an S O(n — 1,1) group
and not under an SO(n) group. This means that the holomorphic symplectic section
(X,i0F) does not transform linearly under SO(n). Comparing with the results of
[22] one concludes that if SK(n + 1) is utilized as the vector multiplet manifold VM
for an N = 2 supergravity model, one can not gauge an n—dimensional semisimple
group. Apparently one always needs at least two spectator multiplets: one is sitting
in SU(1,1)/U(1) and the other in SO(2,n)/50(n) x SO(2). Indeed the condition to

gauge an n + 1-dimensional group G of isometries of V.M is :
LX' = —flo X", (2.47)

where I is the Lie derivative generating an infinitesimal G-isometry, and fls are the
G structure constants.

On the other hand, from string theory, one knows that there are N = 2 models
based on VM = SK(n 4 1) where an n-dimensional semisimple group is gauged,
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the only spectator being the vector multiplet that contains the dilaton and the axion
(SU(1,1)/U(1) factor). For instance in the free fermion construction of superstring
vacua, one obtains N = 2 models by means of a Z; projection on N = 4 models
such that the massless vector multiplets are all untwisted states. This implies that
the corresponding N = 2 manifold Y M is obtained by disintegration of the known
N = 4 scalar manifold MY=* = SO(6,dimGN=*)/SO(6) x SO(dimGN=*) and one
finds VM = SK(dimGV=2 + 1) [69, 70].

If GN=? is semisimple we are in trouble. This trouble occurs in hundreds of
examples: one example is described in detail in the appendix of [82], where n = 418 =

343+ 3+28+ 133 +248 and GV=2 = SU(2)* x SO(8) x E; x EL..

What we have described is the apparent paradox mentioned at the beginning of
this chapter. Its obvious solution is that there must be a different description of the
special structure of SK(n + 1) in terms of a different section (X,70F') such that the
50(n) transformations are linearly realized.

In what follows we derive this new section, constructing the corresponding em-
bedding of SU(1,1) x SO(2,n) into Sp(2n + 4, R). we show that the transformation
mapping the old into the new section is symplectic. Qur construction allows a deriva-
tion of an explicit formula for automorphic superpotentials under the modular group
I' = 50(2,n,2Z) x SL(2,Z) which in the case n = 2 reproduces the result of [42] for
the 3-torus.
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The derivation we present here is related to the Gaillard—Zumino construction of la-
grangians possessing duality rotations on the vector fields. Let us recall some crucial
points of this construction [39].

Consider lagrangian densities of the following form:
L = —4Re(Nyx(9))FAF™ — 2iIm(Nas(¢)) FAFS€™™ + g0p0,0°0,4° . (2.48)

They describe a system of n+ 1 vector fields Af;\_ (A=0,---,n) and 2m scalar fields ¢,
(a =1,..2m). They can be obtained from the general formula of the N = 2 Lagrangian
[22] by setting to zero the gauge coupling(s), by defining z' = ¢' + i¢g™* (i = 1....m),
and by deleting the gravitational and hypermultiplet sectors. Mg isa (n+1)x (n+1)
symmetric matrix functionally depending on the coordinate of the manifold, namely
on the scalar fields. In the case of an N = 2 supergravity N,y is given by

NAz = —‘FAZ -+ NAHLHNEALA . (2.49)

Nra LT LA
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If we assume that the scalar manifold is a coset -g— and that gup is its own invariant met-
ric, then the scalar sector of the lagrangian is invariant under G-isometries. Howewer
in the case of (2.48) there is something more than the G-isometries. According to the
results of [39, 1] the isometry group G of the scalar c—model acts on the n + 1-vector
fields as a group of duality transformations. This means the following:

i)There is an inclusion mapping
G—-Usp(n+1,n+1)=Un+1n+1)NSp(2n+2,C), (2.50)

H-Un+1), (2.51)

which to each element g € G associates a (2n +2) x (2n +2) complex matrix S(g) with
the following block structure :

_ ¢0(9) zb}‘(g)
S@“(ww¢mﬂ’ (2:52)

where the (n + 1) X (n + 1) matrices %,, ¥ fulfill the conditions:

Yo — Pl =1, (2.53)

Yoy —Yivs =0. (2.54)
Equations (2.53) and (2.54) guarantee that S(g) is simultaneously pseudo-unitary and
symplectic, as required by (2.50).

ii) The equation of motion and Bianchi identities of the n+1-vector field A2 can
be written as a system of 2n -+ 2-equations of the following type:

1. 0L
59 =

OFL = 0,
 —— 0
o !

(2.55)
where F. denotes the self dual part of F,;. Analogous equations hold for the antiself

dual part. Equations (2.55) are left invariant by the transformations of G defined
through the action of the matrix S(g).

Given a parametrization L(¢) of the scalar coset manifold <, we can construct
immediately S(L(¢)). The lagrangian, which yields equations of motion with the
invariance properties (2.55) has, in terms of ¥o(L(¢)) = %o and 9P1(L(¢)) = 91, 2

universal structure. Indeed one must have:
L=—4(F} FY N+ ce), (2.56)
where N'*¥ = Re(NA%) + iIm(N**) and

— 4N = [} 4+ il -] (2.57)
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In all this construction a crucial role is played by the embedding of % into

Usp(n 4+ 1,n + 1), which defines the right structure of duality rotations in connection
with G-isometries.

In the same way we are going to show that the right duality transformations on
the section (X,20F) for the coset SK(n + 1) are induced by the G-isometries in the
appropriate Sp(2(n + 2), R) embedding.

We start by recalling some basic definitions and introducing our notation.

A general matrix of Sp(2(n + 2), R) can be written in the following block struc-
ture (each block is a (n + 2) X (n + 2) matrix):

A B
(45) o
and it is defined by the condition

A B (0 1\(ABY (0 1 (2.59)
cC D -1 0 Cc D) \ -1 0 ’ )
which implies ATC —CTA=10; BTD-D'B=0; ATD-CTB=1
The manifold ?E)%?O)_g%l'oL(z—) can be described by the following equation in C P(1,n):

- 1
Ay E A§FE
Y 'Y =0 , maYY" = 3 (2.60)
where we set A = 0,1,0; @ = 2,--n + 1; gax = (+,+,—, -+, —). The constraints
(2.60) are easily solved by choosing the so called Calabi-Visentini parametrization,
namely

1 o L
Y= 5(1"}‘3’&1‘/ 1B

7 L
Yt o= 5(1“3/03!&)/']127
1
Y* = ya/']lza
Jio= (=249 +y°y°5°5°) - (2.61)

Finally SU(1,1)/U(1) is parametrized by choosing two complex numbers ¢, ¢;
such that

Bol? il = 5 - (262)
In particular equation (2.62) is automatically satisfied if we choose
D+
23

¢ =

7
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D—i
(151 = - )
2J;
J, = —i(D-D), (2.63)

where D = 1§ is the complex field containing the dilaton and the axion fields. As
already stated, in the old parametrization, the special structure of the manifold SK(n+
1) was realized by an F-function of type (2.43) with dagr as in (2.44), where X° =
1, X! =D, X' = 2* (i runs from 2---n+ 1 with lorentzian metric (+,—,-+,—)). The
special coordinates were defined as follows

Xl
21 = FZD,
. X
&= I (2.64)

and the Kéhler potential was given by:

G(D,D,z,3) = —log[%(D DY) (& — B2 — 7)) - (2.65)

SO(2,n
50(n)x50(2) and
they are related to the Calabi-Visentini frame through an appropriate holomorphic

The z—coordinates are an alternative parametrization of the manifold

coordinate transformation [71], which, as we will see, is actually induced by a symplectic
transformation . In terms of the Calabi-Visentini variables, G is given by:

G(D, D,y,7) = —log[=(D — D)(1 — 24°F* + y°¥°7°3°)] - (2.66)
2

Obviously the special coordinates (2.64) are not unique; they depend on the
choice of the section we consider. This means that there is a different choice of special
‘coordinates which as well as the 2*’s reveal the special structure of SK(n + 1). Let us
construct the new coordinates (or equivalently the new Sp(2(n + 2), R) section). We
consider a general SO(2,n) matrix :

(g g) , (2.67)

where A is a 2 X 2 matrix; Ba2xn; C an x 2 and D a n X n matrix. A,B,C,D
satisfy the following conditions:

ATA - CTC - 12)(2 3

A'TB-¢'D = o,
B'TB—-D'D = —1,.,. (2.68)
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As can be easily checked the 2(n + 2) X 2(n + 2) matrix

A 02xn 02x2 -B
e (2.69)

02x2 02xn
"'C Oan 011.)(2 D

is in Sp(2(n+2), R), and it is a good candidate for the embedding we search. Moreover
let us take the SL(2,R) ~ SU(1,1) matrix:

(‘c” 2) , (2.70)

where ad — bc = 1. SL(2,R) can be easily embedded into Sp(2(n + 2), R) by writing

(in the same block structure notation):

CL12 0 b12 0
0 di, 0 «c1,
0 b1, 0 al,

A, =

with 1, = 1359,1, = Loxa. One can check that the two Sp(2(n+2), R) matrices A;, A,

commute, and that they close the SO(2,n) x SL(2, R) algebra. Let us introduce the
- 1 N

shorthand notation ¥ = (Y°JZ,Y'J?),Y {Y"‘Jl} for the ——E%%L(—z—) variables

(suitably rescaled). Under the actlon of an SO(2,n) isometry (¥,Y) transforms as a

vector. Analogously (¢0J2 , ¢1J2 ) transform as a vector under the action of an SU(1,1)
matrix. Equivalently (no = (¢0+¢1)J2 = 1(¢ho— ¢1)J ) transform under the action
of the SL(2,R) matrix (2.70). If we impose that the section (X,i0F) transforms as a

vector under the particular Sp(2(n +2), R) transformation given by the product A;A4,,
we find the following relations:

X = Yo,
X = -Yoq,
iW0F = Yn,
i0F = —Yro. (2.72)

If we use the parametrizations (2.61) and (2.63) (with rescaled variables) we get:

D
X° = -—5(1+y2),
X' = *i—lzz(l—yz),
Xa — _ya

7
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1
ZaUF = ‘2‘(1 + y2) ’
7

z@lF = (1 - y2) 9

2
i0,F = Dy, (2.73)

1l

where y? = y*y*. The relations (2.72), (2.73) are actually a set of differential equations
for F. To see this it suffices to utilize the constraints (2.60) in eq. (2.72). The solution
of this system of equations is:

F(X) = i\/(X°X0 + X1X1) XX , (2.74)

It is an easy algebraic calculation to Verif;' that the function F(X) in (2.74) gives
the right Kahler potential. A different (but equivalent) solution can be obtained by
interchanging the role of X and i0F, that is:

1

Xt = %(1 - yz) 3

Xa — Dy& ,

. D
z@OF = ——2—(1 + y2) N

D

i F = —i—2—(1 -9),
0, F = —y~. (2.75)

It is now a standard matter to introduce the new special coordinates using for instance

(2.75). We obtain:

1 X! (1_1/2)

™ = -—Xa =1 1 n y2 5
Xa yoz
* = ~n — 2D .
™ >0 1152 (2.76)
and the new holomorphic prepotential:
flr) = iy /(1 + wtat)(meme) . (2.77)

In terms of the variables 7w the Kahler potential is:

G(r,®) = —log{i[\/(l + mirt)(mweme) — ce] — dfr'y —1—%71% + c.c[nt — 7]

14 7lixl

T

e el

—c.c.]} (2.78)
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A lengthy but straightforward calculation shows that (2.78), once expressed in terms
of the old special coordinates has the form (2.65) (modulo the logarithm of a real
function). In the same way, by defining [4, 21, 22]:

crx = e 010;0k f(7) (2.79)

one can obtain the Yukawa couplings wysx = 01050k f(r), which transform into the
old one (modulo a phase), once we use the right tensor property transformations of
cryi - Explicitly one has:

1 [fraro
G(mm) T VT T

= =% 2.80
Cin L= (1+ ngrl)% ’ ( )
V/ jpus]
Cafy = 3ieG(””—r)——1———‘——7r—:—r*[7r(°‘7rB7r7) — 5B xb] , (2.81)
’ (ror):
c = gflm7) i §Pnixt — roxP) (2.82)
tef (7r57r5)%(1 + wixl)z ’ .
= G i : 2.83
file = © (wdw®)z (1 + wiml)z (2.83)

The choice of the Calabi-Visentini parametrization for Y, Y is of course arbitrary. One

can use any 30—?3%%3—(2—) parametrization. Let us take:

1 .
Y = —5(1-mya'd),
xlrl — 22 ,
Yd — zd—i—l ,
1 .
yrtt = 5(1—}-7],'1'2121) (284)
where we set: & = 2,3,---,n; 1 = 2,-+-,n + 1. we concentrate, to fix ideas on the

case n = 2, the general case being an obvious generalization. In these coordinates the
section (X,20F) is expressed by the formula:

D .
X0 = E(l_nijzzzj) d Xlz_Dzza

1 .
X = -2, X3=——§(1+1]gjz'z1),
1 .
z@UF = ——5(1 —nijz'z]) 5 'LalF '“——“22 5
D .
i8,F = D2° | i63F=5(1+n,»,-z*zf), (2.85)

which is again solved by the square-toot function (2.74). The Kahler potential coming
from (2.85) is precisely (2.65). we know that the same Kéhler potential is given by the
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old special section (X’,8F"):
x¥=1 , XxY=D, XY=z, X¥=2,

) D . ) 22
'I/aoFl = —~2—qijz’z3 3 z@lF' = l’;‘i 3
10, F' = D2* , i03F' = —D2° . (2.86)

In the spirit of special geometry we expect that the two sections should be related by
a Sp(2(n + 2), R) transformation. This is precisely what happens, since the matrix:

/0 0 0 -1 -10 0 0
1 0 0 0 6 0 O 1
6 0 O 0 0 1 0 0
0 0 -1 0 0 0 0 0
U=142 0 0o 0 0 0 0 =1/ (2.87)
0 0 0 —1/2 1/20 0 0
0 -1 0 0 0 0 0 0
0 0 O 0 0 0 -1 0
is symplectic and transforms the new section into the old one: (X',i0F') = U(X,10F)

2.3.2 Automorphic function for SK(n + 1)

The construction of the previous section can be utilized also to define the automorphic
function (2.40) for the manifold SK (n+1). In this case the modular group is well known
[41, 40], and it is given by SO(2,n,Z) x PSL(2,Z). The only so far undefined point
is how to restrict the sum over the integers My, N* appearing in (2.40), which define
Sp(2(n + 2),Z) orbits, to unrestricted integers, defining orbits of the true modular
~group SO(2,n,%) x PSL(2,Z) C Sp(2(n +2), Z).

We consider, to perform this restriction, the conjugate transformation of (M, N )

under Sp(2(n + 2), Z):
(2)-(2 5)(%)

in such a way the expression (2.40) is invariant under symplectic transformations. If
we denote by m®,m!, m® the integers transforming as a vector under the (conjugate)
50(2,mn, Z) matrix; so,s; those transforming under SL(2, Z) and if we use the explicit
form of the matrices A, B,C, D, we get (with m = (mg,m1), M = {m.}):

M = ThSO 5
M -*T;’L.Sl )
N ’thl ;
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Equation (2.89) gives the explicit dependence of the capital integers M, N in terms
of the lower case m,s, and the rule to restrict the sum in (2.40) to the appropriate
SK(n+1) modular group orbits. In this way one can make explicit the general formula
(2.40) for the automorphic superpotential W. In terms of the symplectic section ) =
(X,i0F) eq. (2.40) can be reinterpreted as follows:

< LISy > |2

log | W |* = log|W|%e® = — logz——;—-—g——z—l—ﬁ—; ,

LeAr

(2.90)

where L = (N,—M) is a vector in Ap. In our case we have L = (N,—M) given
by eq.(2.89), and the summation on Ar corresponds to a summation over unrestricted
integers (so,s1) (spanning a lattice of PSL(2, Z) orbits) and over integers (mg, my,m,)
such that:

mi4+mi—mem, =0. (2.91)

Eq (2.91) clearly defines a lattice of SO(2,n,Z) orbits and it is immediately recogniz-
able as the level matching condition, equating the the left and the right masses in the
I'; . Narain Lattice.

What is still missing to make (2.90) well defined is the specification of a regular-
ization procedure. In general this can be done via a (—function regularization scheme:

d
2.G Vi
log[W['e™ = ~—lim —((s)
Y < LI > |?
C(s) = I‘(s)/o dtt L§r exp — 1t <o@gs (2.92)

This procedure always provides a correct definition for the infinite sum appearing in
the right-hand side of equation (2.90). What is not obvious, in the general case, is how
to extract from (2.92 ) the squared modulus of a holomorphic function WW™* modulo
the holomorphic anomaly —i < Q|Q) >. However, in some specific cases one can verify
this holomorphic factorization explicitly. This is for instance the case of n = 2 case,
where SK(3) ~ (SU(1,1)/U(1))*. There the automorphic function is given by [42]:

log | W(D;, Di) |I* = =3 log||n(—iD)|*(D; — Di)] , (2.93)

i=1

where 7 is the Dedekind function, and Dy, D,, D3 are the complex fields parametrizing
the three SU(1,1)/U(1) manifolds.

The connection between our result and the one found in [42] is retrieved once we know
the embedding (actually the isomorphism) of (SU(1,1)/U(1))? into SO(2,2)/50(2) x
S0(2) which is explicitly realized by the choice:

Y® = —D,—Ds,
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Y! = (1-D;Dj),
Y2 = (—-1 ~D2D3) 9
Y? = (Ds—D,), (2.94)

where the Y are the (rescaled) SO(2,2) coordinates which satisfies:

nuY'Y? = 0,
i Y'Y? = —2(Dy— D) (D3 — Ds) . (2.95)

All the other steps are just algebraic. We construct the section (X,i0F) following the
above procedure. We get:

X° = D(D;+ Ds),
X' = —Di(1 - D,Ds).
X* = (1+ D.Ds),

X3 = (D, - Dj),

i0F = -D,—Ds,

i0,F = (1— D,Ds),

i0,F = —Dy(1+ DyDs),

i0,F = (Ds— Dy)Dy (2.96)

Then we write down the explicit dependence of M, N on 7o,71;to,t1; 50, 51 for the three

SU(1,1)/U(1) factors, that is formula (2.89) with ,7n given by (see eq. (2.94)):

m = (rito+ roti,m1t1 — roto) ,

m = ('—T‘Qto _ 7‘1t1,7‘0t1 -— Tlto) . (297)
Note that eq (2.97) parametrize the four integers mg, m;,m3, m3, obeying the constraint
(2.91), in terms of the four integers ro,71,%0,¢: in the orbit of [SL(2, Z)]®. By writing
down the sum:

S g (V80X N, 2.99)
(3613117'0,7'1,t0,f1) g XéF + -YaF -
and comparing with:
|(81 — soD1)(r1 — roD2)(t1 — tODs)lz)
A ) : - 2.99
(m,n,r%}hto,tl) I ( z(Dl - Dl)(Dz - Dz)(D3 - D3) ( )

we get the same result (modulo logarithm of a constant). This shows that the final
form of the automorphic function is exactly the same as in [42] (with the only change
—i1D; = T}), in terms of the same regularization procedure.
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SU(3,3
2.4 The case of Mj3; = SU(3)><S§J(3))XU(1)

As we know from the previous discussions the list of homogeneous symmetric special
Kéhler manifolds M contains in particular the manifold:

8U(3,3)

Maa = SU(3) x SU(3) x U(1)’

(2.100)

In this section we extend the symplectic embedding technique to the case of
the manifold M3 3, that is the Teichmuller covering of the moduli space for the T°/Z;
orbifold. In this way we exhaust the analysis of automorphic superpotentials for the Z
orbifold compactification of superstrings. Indeed, comparing with the list appearing in
eq: (1.47) we see that, with the exception of Mj3, all the other (untwisted) orbifold
moduli spaces correspond to special values of n in the SK(n + 1) series (we have just

to remember the isomorphism between the manifolds SUS(Z)(i,IZI)(Z) and sofggi,;o) @ )

Our goal is to exhibit the special geometry of M3 3 and to construct the appro-
priate infinite sum defining the SU(3,3,Z) automorphic superpotential.

As for any other special manifold M, the special geometry of Mj3 is encoded
in a homogeneous of degree two holomorphic function F(X). The F function proposed
in ref. [3], via supergravity considerations, for the case of M35 is of the form:

detX
F(X) ~ i—%—, (2.101)

where X is a three by three matrix. Equation (2.101) is just a particular case of
the general formula F(X) = idAzAi\:—\—‘&i—’i\;i, where the dyya are constant coefficients,
g X

valid for any M in the list of homogeneous symmetric special Kéahler manifolds, except
CP n-1,1+

As pointed out in the previous sections one should be able to derive system-
atically the F function from the embedding of M into Sp(2dimM + 2, R). Here we

show that we can get, in a rigorous way, a symplectic section  corresponding to the
F function (2.101).

Let T’ denote the (target) space modular group of M. Using the general formula
(2.40), we are able to construct the I' automorphic function (the superpotential) for
our case, writing it as a sum over integers describing a modular lattice.
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2.4.1 Construction of the section {2} for Mj3

We start our programme by writing the coset representative of the manifold Mj3 = —g—

in projective coordinates [1]:

1— 2742 (1-22Y2Z
m={ L . 2.102
( Zt1—-2zzYhY"r 1+2'(1-2z%)'Z ( )

where Z is a complex 3 x 3 matrix. Let us denote by A4 the 6 x 3 matrix given by
A=((1-22Yh=:,(1-22Y17), (2.103)

where the indices of A! run as follows: I = (4,1%); 4,1 = 1,2,3 (¢ corresponds to the
plus signs of the metric and ¢* to the minus signs). Following the general procedure
discussed in [43, 1] we have to embed G into the symplectic group of dimension (9 +
1) x 2 = 20. If we consider the isometry group G = SU(3,3), it is easily recognized
that the three-index antisymmetric representation of G' has the required dimension.
Hence let us define:

tE = P AT ATAY . (2.104)

The three index antisymmetric tensor t/% is acted on by the matrix B = Z{}I’U JJ'UIQ{I},
where U € SU(3,3). One can verify that: ‘

utcu =, (2.105)

where the matrix C satisfies CT = —C, C%? = —1, and can be viewed as acting on the
triplet IJK as the Levi Civita symbol: [C’t]”L = lJKLMNy, . Moreover one has

U'EU = E, (2.106)
where E? = 1, E' = E and where E acts on the three-index temsors as E =
nipninmine (n = (+,+,+,—,—,—)), antisymmetrized with respect to L', M’, N'.

Equations (2.105) and (2.106) show that t//X realizes a symplectic embedding of
G into a symplectic group of dimension 20. However, due to the signature of the “met-
ric” E this group is Usp(10,10) rather than Sp(20, R). The use of a generalized Cayley
matrix allows us to transform the Usp(10,10) representation into the real symplectic
one. Explicitly we set:

TLMN _ EijkAl_Ic}’JAJchAfcl’}’ =Ct, (2.107)

where

1 (13 —ily
6_75(13 oy ) (2.108)
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is the “Cayley matrix” in the 3 + 3 space (i.e. in the fundamental representation of
SU(3,3)) and C as defined by equation (2.107), is the generalized Cayley matrix in the
20 space (i.e. in the three index antisymmetric representation of SU(3,3)). Note that
both C and C are defined up to a phase. The three-index representation is now written

as (if we drop an overall —\}-5— factor)

1+ 27
e ——
(1—ZZ1)2

Tk = ik det (( )) R

ijk
b

Tijk

(1—2zzt: \ Z+1 ],
. i* . k*
Tij'k* = det 1+ 2 Eirs T’(Z — 1) ! ’I’(Z - 1)
(1-ZZt): Z+1 Z+1 ’

1+2 , (Z-1)

Ti-tj*k* :
(1—-22%)2 © Z+1"’

= det

(2.109)

where we adopt the convention: detMsy3 = gl-zefjke,-.j‘kd\/lf* M}WM,IJ‘. Equation (2.109)
gives the explicit form of the Sp(20, R) section {2, and each line of such an equation has
to be interpreted as X* or as 10, F(X). If we divide by the overall factor det(1 + Z),
which gives, together with its antiholomorphic counterpart, a real function contribution
to the Kihler potential, we can read the first 10 components of () as the elements of

the matrix X" = [%]ll]:‘ together with X° = 1.

By recalling the definition L* = €29 X", and remembering that for Mj3 the
Kahler potential G is expressed by [1]

Q(Z,2%) = —logdet(1 — ZZ1), (2.110)
we obtain from (2.109) the following identifications:
Tk = kO
Tik = R
ape e O detL e O
Tz]k — ik Y :ljk___:__'FL
© Bl ( 0 ) <7 gy tFE)
ch kK Sk ik L 6 detL RrER a
7'k — U M A — I k*_~ ¢
T € 510 ( 7o ) € 6LO(ZF(L)). (2.111)

The last two eq.s (2.111) have to be interpreted as differential equations satisfied by
the F function. These are solved by:

det L
7,0
(the same expression, of course, holds for F/(X)). If we introduce the “special coordi-
nates” S5 = L' /L’ = X!" /X", we immediately recover the standard expression of the

F(L)=1i (2.112)
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Kahler potential G(S,5) = —log det(S — §), which is explicitly obtained from (2.38)
and which coincides with the —log det(1 — ZZ), while posing S = ’—(ZZ:‘IQ (modulo the
real part of a holomorphic function).

Our next step consists in searching an explicit formula for an automorphic su-
perpotential in the case of 7%/Z;. For sake of clarity we recall the general formula for

the superpotential.

_IMsX® 4 NG5 F ]
& XThF + KXo F |

reg

log |[W|[? = log [W[*e] = | = X

(Mz,NE)eAr

(2.113)

where the integers (M, N) belong to a homogeneous lattice A associated with the tar-
get space modular group I' € Sp(20, Z), where I' corresponds to a suitable definition
of SU(3,3,Z) (see next section). The only difficult point, to make formula (2.113) ex-
plicit, is to find the explicit parametrization of the capital integers (M, N) in terms of
the small integers n spanning the Narain lattice for the T°/Z3 orbifold. In particular,
for our case, we need the formula relating 20 “integers” M!’¥ in the three-times anti-
symmetric representation of Sp(20, R) (or equivalently Usp(10,10)) to the “integers”
I’ in the fundamental 6-dimensional representation of SU(3,3). We write “integers”
in quotes because both M?/¥ and I are not integers, rather they are complex numbers
parametrized by a double number of integers (real and imaginary parts). The solution
of this problem is given by splitting the (complexified) momentum lattice of T°/Z;
into three conjugacy classes, and by constructing the symplectic integers in terms of
the integers belonging to these classes. Let us give in some detail the analysis of the
momentum lattice and its behaviour under the modular group SU(3,3, Z).

2.4.2 The momentum lattice of T°/Z; orbifold

Following a well-established literature we define a T?"/Zy orbifold via a two-step
process [45, 72, 66]. First we introduce a 2n dimensional torus T?" by identifying
points in R?" with respect to the action of a lattice group Ar:

XH~XHE 4" 5 v eAR (2.114)

and we define T%"/Zy by identifying points in 7%" with respect to the action of a point
y g p

group P ~ Z, that acts cristallographically on the lattice A and that is a subgroup
of SO(2n):

(OX)y ~ X* ; ©¢€ S0(2n) (2.115)
(Ov)* € Ag if v € Ag. (2.116)
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In the case of T®/Zj, the standard choice of Ag corresponds to Ap = RA;® RA; Q@ RA,,
where RA, is the root lattice of the simply laced Lie algebra A, [72]. In this way one

easily obtains an SO(6) rotation matrix ©, which maps A into itself and such that
03 =1.

This construction has been discussed in the literature [45, 72] but we need to
recall it here. Indeed we have to illustrate the properties of the momentum lattice we
shall utilize in the derivation of the SU(3,3,Z) modular group and of the coefficients
MK We begin by introducing a complex structure in R°. This is done by substituting
three complex coordinates Z' to the six real coordinates X* via the relation:

Xt =Z'et 4+ 77 el (2.117)

i.1* = 1.2.3), where {e”,e"} is a basis of six complex, linear, independent vectors
b bR 7 1Y ) ?

fulfilling the conditions [73]:
(&) = e
(eirej) = (eirsejr) =0 (eie50) = gije - (2.118)

In (2.118) the scalar product (, ) is defined with respect to some constant metric g,
with (+,+,+,+,+,+) signature:

(v,w) = v w" g, . (2.119)

The Hermitian form:
gij» = (eirejr) = gjei (2.120)

defines a Hermitian metric in R® equipped with the complex structure (2.117):
GuXHXY =2Z'Z7 gijn . (2.121)

The torus T is obtained by setting the following identification of points in R® [72]:
Z'=Z' + (n' 4+ Om')V2 (2.122)

where n', m' € Z
0 =™/, (2.123)
Equation (2.122) corresponds to the modding by a lattice Ap = RA, ® RA; ® RA,, as

claimed at the beginning. Indeed for the algebra A, a system of simple roots is given
by the two—dimensional vectors:

27V2

o =(vV2,0) =v2 az= (_{2 §) = /23 (2.124)



42 Chapter 2. Symplectic embeddings and special geometry

so that an element of the root lattice RA, can be represented by the following complex
number:

nay +may = vV2(n+m0) (n,me€ Z). (2.125)
The dual-weight lattice W A, is spanned by the simple weights:

1 1 2 .
= —_— | = Zeril6 .
M (ﬁ\/a) A\/;e ! (2:126)
2 2 .
2) = & wif2 .
(0, 3) 3¢ (2.127)

and a generic element of this lattice is represented by the following complex number:

A2

l

2
AL+ gAr = \/;(P% + quy), (2.128)

wi/6 wif2

where w; = e and ws, = €

The metric g;;» defined by eq. (2.120) enters, together with an antisymmetric
two—form B;;«, the two—dimensional o model action on the T torus [40, 66]:

S = /dz,;‘aaZ"a‘IZ"*(gij* -+ B,‘j*) . (2.129)
The nine complex parameters encoded in the complex 3 X 3 matrix
JVIZ‘]‘* = gij* -l— Bij* (2.130)

parametrize the orbifold 7°/Z; moduli space whose special Kahler geometry we have
described in the previous section. For a generic T° torus we would have 36 moduli
corresponding to an arbitrary g,, metric and an arbitrary B,, two—form. On the
contrary, for the orbifold, we just have the freedom of choosing g;;« and B;;+, since the
complex structure (2.117) cannot be deformed. Indeed in addition to the identification
(2.122) under the lattice group Ag we also have the identification under the point group
Z3. The generator © of Z; acts on the complex coordinates Z* as a multiplication by
CF

7'~ 0Z =Bz, (2.131)
Equations (2.122) and (2.131) are compatible just because © acts cristallographically
on the lattice Ar. Indeed:

O[V2(n' + m')] = V2(n' + Om"), (2.132)
where ' = —m, m" = n' — m‘, which follows from

O =¢"lP=_1-0. (2.133)
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The momentum lattice is introduced in the usual way by considering the plane waves
exp(:P,X*) and demanding that they are single-valued on the torus T°® with the com-
plex structure (2.117). This implies:

Py = gu(Pe” +Pne™), (2.134)
2
F = \/;(Piwl-l*qw:») y (pi,qi € Z), (2.135)

where {e",e"*} i,4° = 1,2,3 form the dual basis to the basis (2.118). Following a
standard procedure the winding modes can be included into the momentum lattice,
which becomes the Lorentzian 12 dimensional Narain lattice [45] Ay~ with signature
gis = diag(+,+,+,+,+,+,—,—,—,—,—,—). In complete analogy to Eq.s (2.135),
one writes:

Pﬂ = g[“.,(PIeID + PI* eI*D) , (I - ]_, vee 6) s (2136)
2
Py = \/;(lel + qw2) , (p1,91 € Z), (2.137)
where e’?, e/ "7 are the basis vectors of the Narain lattice Ay, and P; its elements. We
have:
(el,e!) = 0 , (eff,e!)=0 (2.138)
(efe”) = ¢ (2.139)

The metric g'’" is a Hermitian metric with signature diag(+,+,+, —, —, —); hence the
sesquilinear form v'gw is invariant against the transformations of a group isomorphic
to SU(3,3). This is the origin of the SU(3,3) symmetry discussed in the previous
section. Its role is clarified by considering the level- matching condition in the Narain

lattice [45] (i.e. the equality of the left and right masses):

o 2 .
0=P'Pgsy = 59” (p1ps + @195 + p19s) - (2.140)

Equation (2.140) follows upon straighfforward substitution of eq. (2.135) and (2.128)
into P#P”g;;. By means of a similarity transformation, the metric g/’ could be
reduced to the standard SU(3,3) metric 7" = diag(+,+,+,—, —, —). Indeed there
exists a non—singular 6 x 6 matrix {2 such that:

g7 = (). (2.141)

Consider now the matrix S given by:

g

ok

E'I:Sl“
éi"’ o

. ) , (2.142)
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where 1 is the unit matrix in the six dimensions. Equation (2.140) can be rewritten as
follows:

0=ulgu+v7gv (2.143)

(:):5(2). | (2.144)

The quadratic form (2.140) is the standard SO(6,6) invariant form. The elements of
S50(6,6) have the generic form:

where

A= ( o0 ) (2.145)

where the 6 x 6 blocks fulfil the following conditions:

ATgA+CTgC = g,
ATgB+CTgD = 0,
BTgB+DTgD = g. (2.146)

In the (u,v) basis the Z3 generator © is given by the matrix:

2\ _ain(2E
Ofum) = ( cos(5)1 —sin(7)1 ) . (2.147)

sin(Z£)1  cos(3F)1

The normalizer of Z3 in SO(6, 6) is the group SU(3,3). It is composed of those matrices
that have the special form:

A -B
A= ( B 4 ) . (2.148)
with:
ATgA+BTgB =0 ; ATgB=BTgA, (2.149)
In the (p,g) basis the Z; generator is integer—valued:
- -1 -1
Opg) = S OnS = < A ) , (2.150)

a proof that Zs acts cristallographically also on the Narain lattice. In the torus
compactification the modular group is I'(T®) = SO(6,6,Z), namely the subgroup
of SO(6,6) that maps the Narain lattice into itself. In the orbifold case the modular
group I'(T®/Z;) is the subgroup of of SU(3,3) that maps the Narain lattice into itself.
We name this group SU(3,3,Z) and we easily identify its elements. In the (p,q) basis
an SU(3,3) element is obtained from eq (2.148) via conjugation with the matrix S.
We get:

A-L 25 H H-K
= g1 = V3 V3 =
Apq =5 AS ( 2% A+% ) (—~H+K e ) , (2.151)
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where we have set: B B
H=A-— ; K=A+—. 2.152
7 7 ( )

In terms of the blocks H, K the conditions (2.149) become:
K9k = HYgH, (2.153)
: 1
HTgH + KTgK — %KTgH - §HTgK =gq. (2.154)
The group SU(3,3,Z) is obtained by demanding that H, K should be integer-valued:
H;5, K1 € Z. Since det A, q) = det A = 1, this condition is compatible with the group

structure and SU(3,3,7) is well defined. Equivalently we can say that the group
SU(3,3,Z) is composed by all the pseudo—unitary 6 x 6 matrices U:

Ulg =g ; dettd =1 (2.155)

that have the special form:

V3

U=4(K+H)+i~-(K - H), (2.156)

il

K, H being integer—valued matrices. In this case eq.s (2.153) and(2.154) follow from
insertion of (2.156) into (2.155). The matrices ¢ have the property that acting on
complex vectors of the form:

1 1
U= —p'+ —=@+2) ., pdez (2.157)
\/2—'- \/6 e e 2 p 4 N ;
map them into complex vectors of the same form. Equations (2.156), (2.157) are the
final parametrization of the SU(3,3,Z) modular group and of the Narain lattice for
the T%/Z; orbifold. They are the starting point for the construction of the MT/K
coefficients appearing in the automorphic superpotential formula.

2.4.3 Construction of the MI'X coefficients

Na“ively ! are in the six of SU(3,3) while M'/X are in the three-times antisymmetric
representation, where we are considering the Usp(10,10) symplectic group. The only
possibility of constructing M!/¥ out of the I/ momenta would be:

MUK = U1K (2.158)

which unfortunately is zero! The way out of this riddle results from the properties of
the Narain weight lattice Ay~ which, while modded with respect to its root sublattice
AR C Ay, splits into three conjugacy classes that are separately invariant under the
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action of SU(3,3,Z). Working in the (p, ¢) basis (related to the actual momenta I via
eq.(2.157) we define Ag as the sublattice, where p, g have the form:

pl = 2ol —m!, (2.159)
g = 2m!—nl, (2.160)

where n/,m! € Z. This definition is inspired by the relation between simple roots and
simple weights in the A, case:

Q1 = 2}\1 -+ /\2 H Qo = —)\1 -+ 2)\2 5 (2161)

so that
na; +ma; = (2n — m)A; + (2m —n)A; . (2.162)

Equation (2.160) is equivalent to the condition:

%( I_ghez (2.163)

or
ol = %(2}9[ +¢ez, (2.164)
m! = %(pl +2¢Ye Z. (2.165) .

An‘important result is the following:

Lemma: The modular group SU(3,3,Z) maps the root sublattice Ar into itself.
This follows straightforwardly from eq.(2.151)

1
3

If the condition (2.163) (implying (2.165)) is fulfilled by (p,¢), the same condition is
fulfilled by the transformed (p,q’). We can now write the complete Narain lattice Ay
as the sum of three sublattices

%(P'—q') = Z[Hp+(H-K)q+ (K - H)p— Kq] = H—é(2p+q)—K%(2q+P) (2.166)

An' - Ao + A[ + Az 3 (2]_67)

where Ay = Ag is the already defined root lattice while A; and A, are defined below:

Definition 4 Let a = 1,2. A vector (p,q) € Aw belongs to Ao C Aw if and only of
there exzists an integer—valued non-zero siz-vector z' € Z such that:

(%(pf —d)+ g—ml> €Z. (2.168)



2.4. The case of M3 47

The reason why the above is a good definition and why (2.167) is a good decomposition
is the following. For each value of the index I the difference p! — ¢/ can be 0,1,2 mod
3. The root lattice is that sublattice such that p! — ¢/ = 0 mod 3 for all the values of
I. A, is composed by those vectors such that p/ — g’ = 1 mod 3 for some values I (at
least one value) and p!/ — ¢/ = 0 mod 3 in all the other cases. An analogous definition
1s given for A;. Since we have exhausted all the possibilities, any vector (p,q) € Ay
can be written as the sum of a vector in A plus a vector in A;, plus a vector in As.
We have now the following:

Theorem 1 The lattices A, are invariant under the action of the modular group -

SU(3,3,%).

proof: Using the definitions (2.165) for each (p,q) € A, we can write:

nl = %(2;)’ +q)y=al+ Eng (2.169)
1 @
ml = 5(26_1[ + pl) =ml - gml, (2.170)

where #/m! € Z. Under the action of SU(3,3, Z) we get:

%(p’_q’):Hn——Km:Hﬁ—ﬁb—l—%(H‘i'K)m; (2.171)

since Han — Km € Z it follows that:

1
(¢ — )+ =2’ (2.172)
3 3
where ,
¢’ = —(H+K)z. (2.173)

Therefore, provided z’ # 0, the image of a vector in A, is still in A,. On the other
hand 2’ cannot be zero. Indeed if @’ were zero then the image of (p,q) € A, under the
SU(3,3,Z) group element v we consider, would be in Ay. Consider now the inverse
group element y~': we obtain v !y(p,q) = (p,q) € A4, with a = 1,2. This would

imply that the image of the Ay element y(p, q) under the SU(3,3,Z) transformation
4! is not in A, contrary to the lemma we have shown. Hence 2’ # 0 and the theorem

is proved.

Relying on this theorem we can now conclude the construction of the M!/K
coefficients. Extending the index a to the value @ = 0 corresponding to the root
sublattice we can set:

MR = Pl ik (2.174)

[¢ Y ?
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where the Il € A, is given in terms of p!,q’ by eq. (2.157). The final formula for the
automorphic superpotential (where we are considering the Usp(10,10) representation)
is encoded in the following (—function regularization:

d
2. G _ _ 1 —
log|W['e” = —lim —((s)
(s) = mr(ls) / Tt Y M b (2.175)
0

léEAa

As can be seen, by summing independently on the three sublattices A, we are actually
summing on Ay. The coefficients (2.174) transform as a three-index antisymmet-
ric representation of SU(3,3,Z) because of our theorem. Utilizing the embedding of
SU(3,3) into Usp(10,10) (or via Cayley in Sp(20, R)) we discussed in Section 2.4.1 we
also see that SU(3,3,Z) is a suitable discrete subgroup of Usp(10,10) and that M'/¥

span the corresponding 20 dimensional symplectic representation of this modular group.




Chapter 3

n—=2 first order systems

3.1 Introduction

In the previous chapters we recalled that the N = 1 low energy effective field theory
is largely determined by two holomorphic functions fi, of the Kahler and complex
structure moduli, respectively, in term of which Yukawa couplings of the matter fields
and Kahler potentials are given by:

wzlﬂzc = 0;0;0kf12, (3.1)
NL,N? - . Y _—
Kip = —log| > —(0ifiz—0ifr2)(zis— Z12) +2(fre+ Fr2)| - (3.2)

|1

where Ny = hy 1, Ny = hyy and 2', 7" are special coordinates of the moduli spaces for
complex and Kahler deformations. As we know the geometry of such moduli spaces is
of the special Kahler type. The moduli space of (2,2) superconformal field theories with
central charge ¢ = 9 (or in general ¢ = 3d) exhibit a very similar structure. Calabi-Yau
threefolds are examples of c = 9 SCFT and thus their moduli spaces are special Kahler.

A crucial property that we will extensively use in this section is that substantial
informations about (2,2) SCFT can be obtained from a purely topological sector of the
theory. Topological conformal field theories obtained by Twisting n=2 superconformal
theories have this topological sector as physical sector [24, 31, 32, 25, 28, 29]. The main
advantage of topological theories is that they can be solved completely, by computing
all correlation functions at any order. Then one conclude that the study of topological
conformal field theories can give essential information on N=1 low energy effective
actions, giving an additional technique to characterize it.

For sake of completeness we give a brief review on the basic formalism of the

topological field theories. We first recall the definition of (two—dimensional) topological
theories [25].

49
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Given a collection of physical operators in a quantum field theory, their cor-
relation functions depend, in general, on the positions of the operators and on the
metric defined in the manifold M, on which we consider the correlators. The first
characteristic feature of a topological field theory is that the correlation functions of
the observables are independent of the metric on M, and therefore independent of the
position of the operators. The fact that the physical correlation functions are metric
independent is the consequence of a symmetry of topological QFT which reduces the
Hilbert space H to the space Hpny, of physical states, and causes the stress—tensor T,
to decouple from physical correlation functions. The symmetry that is responsible for
all this is generated by a nilpotent BRST-like operator @ satisfying;:

Q*=0. (3.3)

The physical states are characterised by the cohomology of the operator Q. The space
H of the physical states is equal to:

Ker@
= — A4
so that physical observables are defined up to —commutators:
¢ = ¢ +{Q, ¢} - (3.5)

The @ invariance of the theory implies that physical correlators are independent on the
representative of each ¢;. Moreover the stress —energy tensor of topological theories is
a ()-commutator.

Top = {Qy Gaﬁ}v (3'6)

and thus vanishes inside the correlation functions. This ensures that the physical corre-
lators are indeed independent on the two dimensional metric g,5. The second important
property of topological field theory is that correlation functions can be factorized by
inserting a complete set of states in the intermediate channels. This amounts to the
equation:

Longs = Y 193)1(851 (3.7)

where 7'/ is the metric in H,p,, defined by the inverse of the two point function on the
sphere

(bibj) = mij - (3.8)

The class of Topological Conformal Field Theories (TCFT) is singled out by requiring
the additional property that the energy momentum is traceless. The combined presence
of conformal invariance and topological symmetry implies that the generator Q can be
decomposed into holomorphic and antiholomorphic components.
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It is well known that given an n=2 superconformal algebra generated by 7'(z),
G*(z) and J(z), one obtains a topological conformal algebra by “twisting” the currents
according to [25, 26, 27]

Tu(z) = T(z)ﬂ:%@](z) :

Ji(z) = £J(2) , (3.9)
Qs(z) = G*(2) ,
G(z) = GF(2) .

As a result of the modification of the energy-momentum tensor the supercurrent of the
n = 2 algebra acquire conformal spins % + % In this case Q+(z) is interpreted as a
BRST current and the cohomology classes of the BRST charge

BRST _ fdz Q:(2) (3.10)

are identified with the physical fields of the topological theory. To fix ideas let us
specialize to the + case in (3.9) (we drop for convenience the “+” superscript) The
fundamental operator product expansion are:

tote) = 2ROy T,

1) 6w) = gy G0) + s + reg

HQW) = o Q) + TR + reg,

1)) = 57 _1w)3 + _1w)2 J(w) + (z—_l—;v—)aj(w)
Q(z)G(w) = %c(z _1w)3 + 2(ZJ_(w3U)2 + 2%—) + reg,
J(z)6w) = —G-C-"{—’“”—)@ T reg,

IDQw) = s 4 ey,

1) Iw) = % ; _}w)g + reg . (3.11)

Notice that the central extension of the Virasoro subalgebra vanishes, but the U(1)
current is anomalous, coupled to a central extension ¢. The cohomology of the BRST
operator defines a ring which is in one to one correspondence with the states in the
chiral ring of the original n=2 conformal field theory. In the case where we choose

the “—” twist the correspondence is with the antichiral ring of the n = 2. To choose
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a unique representative in each cohomology class we can indeed impose the “Hodge”
conditions:

Gol¢) = Lol¢) =0, (3.12)

which, in the correspondence with n = 2 models are precisely the conditions defining
the so—called chiral primary fields. In general there are only a finite number of such
fields, and their U(1) charges are positive and bounded by £ = d:

Joldi) = gild:) 0< g <d. (3.13)
To each chiral primary, we can associate a (chiral n = 2) superﬁeld'
A(z, z, 9,5) = qS(O) + 9¢(1) + é&(l) + 95@5(2) , (3'14) |

which contains the “zero form” (first component) #©) = ¢, as well as the “one” and
“two form” components (¢!, #1) and #?) of the physical field. We refer to superfield
components as to “form” for a very simple reason (which will be completely clarified in
the following sections): by @ symmetry 6 and 0 transform as differentials dz, dz, since
§2 = 0 and 6z = 0. These components are obtained by acting with the superconformal
generators G and G . In particular:

¢ = j{Gf G, (3.15)
which shows that the two—form has U(1) charge (¢ — 1,7 — 1).
As can be easily verified using T in (3.11) the physical operators ¢; = ¢(0)

3

have conformal dimension (h,kh) = (0,0), and their operator product expansions are
nonsingular:

$id; = i (3.16)
where
Cijk = ik =< $iidr > (3.17)
are the three point correlation functions between the primary fields.

Let us suppose now that our (generical) topological field theory can be described
by an action S. Consider the following family of actions:

5(6)=5(0)— Stn [ 42 . (3.18)

They are obtained by deforming the action S = S(0), describing the original topological
theory, with the operators [ ¢§2), corresponding to the coupling constants ¢;. These
perturbations respect the nilpotency symmetry @ and therefore preserve the topological
properties of the theory, such as the metric independence and the factorization. In
correspondence to eq. (3.18) we can write the perturbed correlation functions:

cisnlt) = ($isgnenp(Stn [ 42) . (3.19)
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In the case of TCFT, by exploiting the conformal invariance of the ¢, = 0 point, we can
show that the coefficients c;;x(t) satisfy an important integrability condition. Namely

3C,’jk(t) _ 6c,‘j1(t)
ot, Oty

This equation shows that it is possible to integrate the c;;k(t), and obtain a single
function F(t) that satisfies:

(3.20)

3

) = egmgr: (3.21)

Another important consequence of the integrability equation is that the metric 7;; = coi;

is in fact independent of the couplings ;.
%
Oty

The coordinates t; form a distinguished basis in the space of couplings: the “flat” basis.

They correspond to the directions in the space of all TCFT that are perturbed by the

scaling operators. However we can take arbitrary directions s;,- - s,, where s; = 5:(t;)-

=0. (3.22)

In this case we must replace in the above equations the ordinary derivatives by covariant
ones defined by the metric 7;; (which is no more constant). This is very reminescent
of the fact that in special geometry, only in “special” coordinates one can write (3.1),
where in a general system we must use covariant derivatives. It is obvious that there
should be a relation between the flat geometry of topological theories and the special
geometry. Since in special geometry we are in particular dealing with modu]j—spa.ces
of Calabi-Yau manifolds such a relation can be fully established using superconformal
theories with ¢ = 9 (or in general ¢ = 3d) , which precisely corresponds to space-
time compactification of CY manifolds. In this case the “moduli” (chiral primary
marginal perturbation) of the n=2 superconformal theory corresponds to the moduli
of the CY manifold, and Yukawa couplings of (3.1) can be computed using the marginal
perturbations in (3.18) [74].

The best way to analyze the general properties of TCFT, whether in connec-
tion with CY compactification or not, was mainly based on the Landau—-Ginzburg
formulation of topological models, with deep connections on singularity theory and
algebraic geometry [28, 29, 30, 75, 31, 32, 33, 34]. Indeed in the LG formulation of
(2,2)-supersymmetric models, the superconformal theory is viewed as the infrared fixed
point of a two-dimensional n=2 Wess-Zumino model with a polynomial superpotential
W. When W is an analytic quasi-homogeneous function of the chiral superfields, we
can assign a well defined U(1) charge to these fields, which are in one to one corre-
spondence with the chiral primary fields of n=2 superconformal theory. Furthermore,
the polynomials W’s can be identified, in the particular cases where ¢ = 3d, with those
used in the construction of Calabi-Yau d-folds. It can be shown [38, 30] that a super-

conformal model with ¢ = 3d, corresponding to a LG potential W, is the same as that
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associated to a o-model on the Calabi-Yau d-fold defined by the polynomial constraint

W(X;) = 0 in a suitable projective or weighted projective space .

In such a formulation the parameters entering the Landau-Ginzburg superpoten-
tial corresponds either to “versal” deformations of the holomorphic (antiholomorphic)
superpotential, or to “modal” deformations. In terms of quantum field theory this
means that we are perturbing the theory, which is known to correspond to a well de-
fined n=2 model, with some relevant (versal) or marginal (modal) deformations. The
coupling constants parametrizing the deformations are interpreted as coordinates of

some space (a moduli space in the case of marginal ones).

As was shown before, once given the chiral ring of the n= 2 superconformal
theory (i.e. the topological sector of the model), we can consider the perturbed three
point functions ¢;;(¢) as well as the metric 7;;(t) = 7,;(0), which defines in the coupling
space a flat constant geometry. This is not so in the Landau—Ginsburg formulation of
the n=2 superconformal theories, just because the versal and modal deformations of
the superpotential do not corresponds directly to deformations around the conformal
point; rather they are related to the latter by the solution of a uniformization problem,
which in general involves higher transcendental functions. This is easily undestood
with the following consideration. The n=2 Landau-Ginsburg action can be put into
correspondence with a n=2 supeconformal theory only at its infrared fixed point. In

particular the chiral primary ring of the conformal theory can be identified with the
quotient ring

ClXi]
R=—7F+ 2
T (3.23)
of polynomials in X; modulo the vanishing relations dW = 0 (where the index I runs
over the number of Landau—Ginzburg fields X;). When we turn on a coupling §s; to

one of the operators ¢;(X;) we change the potential as:
oW = 55j¢)j . (324)

This modifies also the chiral ring, which as a consequence will effect the potential W
to the next order. This reflects to the fact that the metric defined by residue pairing
relation of the perturbed potential is no more constant in the couplings s, as shown in
[31, 32, 33, 34, 76, 77, 78]. In particular in ref. [49] is studied the problem of twisting
LG models into topological LG models and of computing arbitrary correlation functions
in the topological theory. At genus zero one finds the following residue pairing metric

g5 = (X)) = 3 R _ o 4l X)d5(X)

= , 3.25
e W oW (3:25)

'In general W(X;) is actually the sum of several terms W(X;) = 3 Wo(X;) and the Calabi-Yau
d-fold is given by the complete intersection Wy = Wy = --- = W,, = 0 [38].
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(where the residue involves taking a contour at large radius). As stated above g;; is
no more constant. Moreover there exists a coordinate transformation s; = s,(t;) such
that the new metric is constant. In the more complicated cases (i.e. when moduli are
present), the search for such a transformation is the afore mentioned uniformization
problem.

In the following sections we present an alternative approach to topological mod-
els where the relation to singularity theory is directly obtained in a natural system of
flat coordinates [48]. At the same time, these are the parameters of a Landau-Ginzburg
superpotential as well as the deformations around the conformal point. The first step
of our construction is the use of free first-order (b, ¢, 3,v)-systems to describe n=2 su-
perconformal theories as proposed in [47]. We then show that an arbitrary interaction
of the Landau-Ginzburg type - i.e. characterized by a polynomial potential V' ~ can be
added to the free Lagrangian without spoiling the superconformal invariance if V is a
quasi-homogeneous function. The deformation parameters of the potential are the flat
coordinates simply because they corresponds to deformations by primary fields around
the conformal point. In this way we loose something: in the presence of a deformed
potential we cannot use the residue pairing metric to define the perturbed correlation
functions. We have to do any computation in the context of conformal field theory,
using for example bosonization techniques.

3.2 Lagrangian formulation of n=2 theories via
first order systems

In this section we consider the realization of (2,2)-supersymmetric models in terms
of free (b,c,3,7)-systems recently introduced in [47], and generalize it to include in-
teractions of the Landau-Ginzburg (LG) type. We show that it is possible to add a
polynomial interaction V of the LG type to a collection of free first-order (b,c,3,7)-
systems in such a way that, if V is a quasi-homogeneous function, the theory possesses
an n=2 superconformal symmetry already at the classical level. We also show that the
interaction potential unambiguously fixes the weights of the pseudo-ghost fields. As
in the standard LG case, also here we can recover the ADE classification of the n=2
minimal models from ADE classification of the interaction potential [30, 75]; however
in our case the theory is always manifestly superconformal invariant. Our formulation
allows us to add all relevant perturbations (versal deformations of the potential) and
to study the renormalization group flows in a very simple way. Whenever we use a
quasi-homogeneous potential with modality different from zero, we can study marginal
deformations and eventually Zamolodchikov’s metric on the associated moduli space.

Alternatively, we can consider topological models by “twisting” the generators of the
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superconformal algebra and compute topological correlation functions. Our formula-
tion provides valuable methods to evaluate these latter.

We start this program by defining our model. We consider a collection of pseudo-
ghost fields {be, ce, B, Ve; br, vy Bry e} where £=1,...,N;, and r = 1,..., Ng. S and
¢ form a bosonic first-order system with weights A; and 1 — A, respectively whereas by
and ¢; form a fermionic first-order system with weights A; + £ and L — A, respectively.
The same can be said for the tilded fields with A, replaced by .. The action is

S = /dzz L= /dzz (Lo + AL) (3.26)
where

Lo = Y. [—"/\z Bebye + (1 — M) 7e0Be — (Mo + &) bebce + (Ao — 1) Czébz]

£

+ S [FAB0% + (1= 2708, — (O + )05 + (A — 1) &85,] (3.27)

T

and

AL =S"bb8,V(B)0.V(B) . (3.28)

£r
Here and in the following we use the short-hand notations 0, = 0/08, and b, = 6/8&.
Lo in (3.27) represents the standard free Lagrangian for first-order systems of the
given weights and AL in (3.28) defines an interaction of the LG type when V and 1%

are polynomial functions of B, and B, respectively. From (3.26) one can derive the
following equations of motion

88 = 0, Oby=0 ,

8B, = 0, 8by=0 ,

bee = Y. b.OV(B)OV(B) ,

By = Y bub,8:0.V(8)0.V(B) , (3.29)

aér = —bealv(ﬁ)érv(lé) 3
£

8%, = S b0, V(8)5,6.8,V(8) .
£,3

first two lines of (3.29) show that B, by, B, and b, satisfy the same equations as in
the free case, whereas ¢, ¢, ¢, and ¥, have no longer a definite holomorphic or anti-
holomorphic character in the presence of the interaction. We can write formal solutions
to the equations for ¢; and 7, as follows [88]:

o7 = &)+ [ TS h@avew)iEe) , (630
d*w 1

3 b (w)be ()38 V (B(w))3, 7 (B(0)) (3.31)

m,r

— _ 0 oL w
n(z2) = )+ [ oo
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where A is a disk containing w, and cjand ~} are arbitrary holomorphic fields. Similar
formal expressions (with the obvious changes) hold also for ¢ and 4,. It is fairly
easy to realize that under canonical quantization of (3.26) the fundamental operator
product expansions are the same as in the free case. Indeed, even in the presence of
the interaction, we have

N Stm
Be(2z) Ym(w,w) = S 4 e,
b
bi(z) em(w,w) = — + e, (3.32)

and similarly for the tilded fields. Of course, the interaction is not immaterial and

it has to be carefully analyzed in a complete quantum treatment as we will do in
Section 3.2.1.

It is well-known that Lo in (3.27) describes a (2,2)-superconformal field theory
with central charges

a=3(8-12)) , c=.(3-12}) , (3.33)

for the left and the right sectors respectively. We will now show that the addition of
the interaction AL does not destroy this (2,2)-superconformal invariance if V and V
are quasi-homogeneous functions, i.e. if for any a € R,

V(e B) =aV(B) , V(e*B)=aV(B) . (3.34)

The parameters w; and @, are called the homogeneous weights of G, and B, respectively.
By enforcing the requirement that the interaction Lagrangian AL have the correct
dimensions, one can see that

Wy = 2)\5 3 l:)r = 2/\, ’ (335)

the parameters A; and ), of the free Lagrangian (3.27) are therefore fized by the
interaction terms. When (3.34) and (3.35) are satisfied, the action S in (3.26) is

invariant under the following n=2 holomorphic supersymmetry transformations

86 = 2v2¢b;
§by = \/iie+6ﬁe+\/§/\z5€+ﬁe )

bey = 2\/56_75 ,

1
Syp = 7§5+6c£~\f2(/\g——§)36+c£ , (3.36)

56, = 0,
§b, = 0 ,
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5:, = —%ﬁvm)ay(ﬁ) ,

5 = <5V LAV @
where €* are arbitrary holomorphic functions (8¢ = 0). The action S is also invariant
under n=2 anti-holomorphic symmetries which are similar to the ones defined in (3.36),
with the exchange of the tilded and untilded quantities, and the replacement of et with
arbitrary anti-holomorphic functions & (8e* = 0). Moreover, if we relax the hypothesis
that V and V are quasi-homogeneous, the transformations (3.36) and their &-analogues
remain symmetries of (3.26) provided et and € are constant parameters. This means
that our model has a global n=2 supersymmetry for any choice of V' and V, and
an n=2 superconformal invariance for quasi-homogeneous potentials. Using Noether’s
theorem, we can calculate the conserved currents associated to (3.36).

Let E(q&i,@qﬁi,éqﬁ;) be a 2d- Lagrangian for a collection of fields ¢; and let us

assume that under a variation

5 = eaT™ () (3.37)
we have:
5L = en(OFN +0F2) . (3.38)
The corresponding currents are given by the formula:
oL
‘A — TA - A
Jz t (¢)a(a¢) fz 7
oc
A = TMP)— — A )
and are conserved
85 + 852 =0. (3.40)

If one of the two components of j vanishes, the other is holomorphic (respectively
antiholomorphic).

For our lagrangian the above procedure leads to the following conserved currents

G’:’ — \/Q—Z [(% — Ag) 658,813 — A( ,55(96;3] 5
£
61 = VEY [+ (A~ 1) 0fuce] - —5 Y VERDV(B)
l T
G; = 2\/527£bl 9
J4

G = 0. (3.41)

2From now on, to avoid repetitions we will discuss only the left sector and understand that similar
considerations can be made in the right sector, with some obvious change of signs.
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If we use the equations of motion (3.29) for quasi-homogeneous potentials, we see that
Gf vanishes on-shell; thus from the conservation laws we deduce that G} and G are
holomorphic currents even if they contain the non-holomorphic fields ¢, and v,. We
denote these currents by G*(2).

The general superconformal transformations (3.36) are retrieved from the struc-
ture of the supercurrents utilizing the general formula

S¢(w, @) = ;z—,[e+(z)G+(z 7) + e (2)G (2, )] $lw, B)

* ]( 27rz (2,2) + €7 (2)G; (2, 2)|$(w, @) , (3.42)

which holds for any field ¢(w,@).

The action (3.26) is also invariant under holomorphic conformal reparametriza-
tions and U(1)-rescalings of the fields; the conserved Noether’s currents associated to
such symmetries are the stress-energy tensor 7, and the U(1)-current J,. For homo-
geneous potentials it is not difficult to see that the trace of T}, and the z-component
of J, are zero on-shell (see also Section 3.2.1). Therefore, from the conservation laws,
we deduce that

T., = Z [—-—)\(ﬂga’ﬂ -+ (1 - /\g)’ylaﬁz — (A[ + %) beOcy — (zl,— - Ag) Cgabg] 5 (343)

£

and
J, = Z i(z;\( - 1)5[0[ -+ 2/‘\1,6[711] (34&)
- ‘
are holomorphic currents. We denote them by T'(z) and J(z) respectively.
Using the OPE’s in (3.32), it is straightforward to check that T'(z), G*(z) and

J(z) close an n=2 superconformal algebra

T(z)T(w) = -;- e _1w)__, + (j:ﬁ("ﬁ)o + (fowi) + reg,
TEEW) = om0 ) + P ke,

T()Iw) = g W) + ey () 4 reg
CHz) G (w) = gc(;—}-@; teg waz])n_, + ZT("(’ZJF_%‘?UJ)(W) + reg,
J(2)GF(w) = i(;Gi_(_% + reg,

J(z)J(w) = %m + reg , (3.45)
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with central charge

C = C, = 2(3 - 12)\5) B (346)

Thus, we have shown that the interaction AL with homogeneous polynomials V' and
V does not spoil the superconformal properties of Lq.

In our formulation the ADE classification of n=2 superconformal models is
an immediate consequence of ADE classification of homogeneous polynomials of zero

modality [38, 30, 75]. The latter are

1 1
A, = ——_fgntl A= >1
V=070 75 neh
1 _ 1 1 n—2
Doi V=g i 43hh shegmg o=y 2
1 1 1 1
E¢ =§5?+Zﬁg =>/\1=ga/\2=§a
1 1 1 1
E; : :§ﬁf+§ﬂ1ﬁ§’ =>)\1"—“—‘6,)\2=§ )
1 1 1 1

We remark that the values of A’s listed in (3.47) are fixed by the homogeneous weights
of B¢’s according to (3.35). If we now insert such values into (3.46) we obtain the
correct central charges for the n=2 minimal models in the ADE classification, namely

3n—3 3

L (D) = 5 8 14

o e(Be) =5, o(Br) =5, (B = 5 . (3.48)
It is also interesting to observe that the ring determined by the potential V, which
contains all polynomials in B,’s modulo the vanishing relations 9;V = 0, coincides with
the ring of chiral primary operators of the n=2 minimal model associated to V. Indeed,
using 3.43 and (3.44), one can easily check that the U(1)-charge of (8)" is twice its
conformal dimension.

c(A,) =

'
n —

In order to compare our formulation of n=2 supersymmetric models with the
standard LG approach and to establish a clear correspondence with the topological
conformal field theories, it is convenient to specialize our system to the case of a
complete symmetry between the left and the right sectors (N, = Ng = N). We shall
then consider interactions of the form

N
AL =Y bb; 8;,0,W (3.49)

iyj:I

where W is a quasi-homogeneous function of the variables

X, =86 , i=1,...,N . (3.50)
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This is clearly a very special case of (3.28). Under these conditions, the Lagrangian
(3.26) describes the infrared fixed point of an ordinary n=2 LG model with superpo-
tential W. This equivalence will be fully illustrated in the next sections. Here instead,
we discuss the topological formulation of our models. It is interesting to study the
consequences of the twist (3.9) on our (b, ¢, 8,7) systems. We first analyze the + case.
From (3.43) and (3.44) we simply get

N
P, =T+ %BJ =3 (Beibi + 1 0B) - (3.51)
=1

This is the canonical stress-energy tensor for a collection of N commuting (3,)-systems
of weight A = 0, and N anticommuting (b, c)-systems of weight A = 1. T in (3.51)
closes a Virasoro algebra with vanishing central charge. Indeed, the central charge of
a first-order system of weight A is

cx =e(1-3Q7%) (3.52)

where
Q =¢e(1—2A) (3.53)

is a “background charge” and € = 1 or —1, depending on whether the system is
anticommuting or commuting. In our case both the (8,v)-systems and the (b,c)-

systems have ) = —1, but since their statistics is different, their central charges exactly
cancel.

To fully appreciate the effects of this topological twist on our models, we now
write the topological Lagrangian and its BRST symmetries. The Lagrangian is
N _ _ _ ~ N _ ~
Etop = Z ["yiaﬂ,‘ -+ ’-)’56,35 — b;0c; — biaé,‘] -+ Z [bib,-ai@,-W (X)] . (3.54)
i=1 t,7=1
The BRST transformations which leave (3.54) invariant, can be obtained from (3.36)
and their analogues by identifying the BRST parameter § with % = % (the factor

of 1/4/2 is introduced for convenience). These transformations are most conveniently
exhibited as the action of the nilpotent Slavnov operator s on all fields, namely

s = 0,
sB; = 0,
sb, = 06; ,
sb; = 0B; ,

N
8%, = Bci - Z bj 8,6JW 9

i=1



62 Chapter 3. n=2 first order systems

N
s = 55,‘ + Z bj B,BJW y
=1

7
sc¢; = +O;W s
s& = —W . (3.55)

Using (3.55) it is quite easy to construct the representatives of the BRST-cohomology
classes and the corresponding integrated invariants. According to the general theory,
we have to consider multiplets composed by a 0-form ®p, a 1-form @S) and a 2-form
@S) which satisfy the following descent equations

SQ)P - 0 9

sel) = —da,

s = —dal})

de® = o . (3.56)

Moreover the 0-form ®, must belong to a non-trivial BRST-cohomology class, i.e.
it should not be BRST-exact. The solutions of the descent equations (3.55) provide
the local physical observables ®p appearing in correlation functions as well as the
(2)
P

integrated invariants ®’ which can be used to deform the theory. Thus, the general

form of a perturbed topological correlation function is

M
epy,..Pn(tiy- o ytar) = <<I>Pl(z1) < ®p (2m) exp [Z i / @Efk)} > (3.57)
k=1

top

where (---)i,, means functional integration with the measure provided by the umper-
turbed Lagrangian L., and ¢, are coupling constants parametrizing its deformations

J el

In our (b,¢,3,) formulation the general solution of the descent equations (3.56)
is

¢, = PX) ,
N -~ ~
oL = -3 [bi6iPdz+5;6:Pdz|
=1
2 a 7 A
op) = 3 [b:b;0:6;P) dzndz (3.58)
1,j=1
where P(X) is any polynomial in the variables X; = B:3: corresponding to a non

trivial element of the local ring determined by the superpotential W of the Lagrangian
(3.54). Indeed if the polynomial P(X) is proportional to the vanishing relations (i.e.
if P(X)=7Y; pi(X)g}\‘,—;), then using the BRST transformations (3.55), we easily see
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that P(X) = s K and so $p would be exact. (For the proof it suffices to set K =
p'(X) g._%.; ¢; -) Thus, the physical observables in the topological theory are simply local
polynomials of 8; and B;, which correspond to chiral primary fields of the original n=2
superconformal theory.

On the other hand, comparing the expression of the 2-form @53) in (3.58) with
the topological Lagrangian (3.54), it is easy to see that a deformation of the potential
with some element P(X) of the local ring, <.e.

W(X) — W(X)—-tpP(X) , (3.59)
corresponds to a perturbation of the action with f @g), 1.€.
/ &2 Lopy — / &z Loy — tp / 2 (3.60)

Thus, the possible perturbations of the theory are in one-to-one correspondence with
the possible deformations of the potential. As we are going to see , something similar
happens also in the ordinary LG models, but only up to BRST-exact terms.

For the sake of comparison we now write the general form of the Lagrangian,
of the supersymmetry transformations and, after twisting, of the topological BRST-
transformations of an ordinary n=2 LG model [28, 29, 49]. A short rheonomic deriva-
tion of the results hereinafter reported is given in Appendix Bl. Let X(z,z) be N
complex scalar fields, X*'(z, %) their complex conjugates, 1 and 9*" their left-moving
anticommuting superpartners, and ¢' and 9" their right-moving anticommuting su-
perpartners. The Lagrangian for a LG model with superpotential W is

L = —[0X'6X% + 38X 0X7 | nije + 80W 0 W 47"
+ 41 [y By + P 097 i
+ 8[B0,W P — 00 W Y] (3.61)

where 7;;« is the flat Kéhlerian metric of C*. Here we have understood summations over
repeated indices, and used the short-hand notations §; = 8/0X* and 9;» = 9/0X".

The Lagrangian above is invariant against the following global n=2 supersymmetry
transformations

X' = —e -,
6Xi* — +E+¢i*+é:+,(z}i* ,
s = -%aX‘s++n‘f*aj*W5- ,
(5'I)Li o= ~}2—5‘Xié+~nij*8j*We“ ,

97 = JOXTe 4o wer

e 1

§P7 = .iéxf*é-nnﬁ*ajWle . (3.62)
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Contrary to our (b,c,(,7) formulation, the global supersymmetries (3.62) do
not extend to classical superconformal symmetries of the action (3.61), even when
the superpotential W(X) is a quasi-homogeneous function. Indeed, it is only after
quantization that one can argue the equivalence of (3.61) at its infrared fixed point
with a (2,2) superconformal model. Our theory in (3.26) instead, is superconformal
already at the classical level whenever the potentials V' and V are quasi homogeneous.
Of course, this applies in particular to the left-right symmetric case we are discussing
where we have a single potential W(B23) that can be identified with the superpotential
W(X) of the LG theory.

Performing the topological twist does not modify the Lagrangian (3.61) but
merely changes the spin of the fields [49]. If we choose as BRST-parameter § = et =&t
(as is appropriate for the + twist), the action of the topological Slavnov operator on
the LG fields turns out to be

sXt = 0,

X =

st = ——;—3Xi ,

31Li = —--iz—gXi ,

3":&1* = ni*jajW )

s = —ntI oW . | (3.63)

Using (3.63), we can easily solve the descent equations (3.55) and find

33 = 21 P (Y dz+ P dz)
8% = —4[8:0;P 'Y + OP oW | dz N dz (3.64)

where P(X) is a polynomial corresponding to some non trivial element of the local
ring determined by the superpotential W (X). Indeed, if P(X) is proportional to the
vanishing relations (i.e. if P(X)=13; pi(X)gj% , then using the BRST transformations
(3.63), one can see that P(X) = s K and so & would be exact. (For the proof it suffices

to set K = p(X)¢ i )
It is interesting to observe that under the deformation
1
W — W — —2-tp P(X) , (3.65)

where P(X) is some element of the local ring and tp is the corresponding coupling
constant, the (topological) LG action changes as follows

/dzz L— /dzz L— tP/q)Sé) _Ip f 3@ (3.66)
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where L is given in (3.61), @SE) in (3.64) and @1(92) is the complex conjugate 2-form.
These equations have to be compared with the analogous ones (3.58) and (3.59) of
the (b,c,0,7) theory. At first sight, in the LG models there seem to be a problem in
identifying the topological perturbations of the Lagrangian with the deformations of
the superpotential because of the last term in (3.66). However, this problem does not
exist because the 2-form éﬁf) is BRST-exact, and so adding or not its integral to the
action is completely irrelevant. In fact, using the BRST-transformations (3.63), one
can check that

8 =5 (—40;:Py7") . (3.67)

We want to emphasize that in the (b, ¢, 8, ) formulation instead, there is no counterpart
of this BRST-trivial part and deformations of the superpotential identically coincide
with topological deformations of the Lagrangian.

We conclude this section by briefly commenting on the other choice of sign in
the topological twist for our (b, c,,7)-system. If one chooses in (3.9) the — sign, from
(3.43) and (3.44) one obtains
Too= T o)

- = T3

N
= Z(l — 2)\,') Ob; c; — 2X; b;0c; + (1 — 2A,’)’yi 8,(3, —2X; B; 3’7,' . (368)

1=1
This is the canonical stress-energy tensor for N commuting (3,~)-systems with weight
2A; and N anticommuting (b, ¢)-systems also with weight 2);. It is straightforward to
check that T closes a Virasoro algebra with zero central charge; indeed the bosonic and
fermionic contributions to the central charge exactly cancel each other. However, the
cohomology classes of the BRST charge QBRST correspond to anti-chiral primary fields
of the original n=2 algebra and these do not have a simple and local representation
in terms of the elementary fields appearing in the Lagrangian: indeed, to describe the
anti-chiral operators one has to resort to the bosonization of the (b,c,,7)-systems
(see Section 3.2.2). On the other hand, as we explicitly show in Appendix B.2, after
performing the topological twist, the Lagrangian is BRST-exact, t.e. it is of the form
Liop = [ @BRST | ¢/ ] for some local functional £'. Using the terminology of [24], this
means that the — twist defines a topological field theory of the Witten-type. On the
contrary, the + twist leads to the Lagrangian (3.54) which is not BRST exact with
respect to QBR5T; thus the + twist defines a topological field theory of the Schwarz-

type. As pointed out in [49], also the ordinary topological LG models are theories of
the Schwarz-type.

In conclusion, we have shown that n=2 LG models admit a (b, ¢, 8,v)-formulation
which is already superconformal at the classical level. After topological twisting, there

is a natural correspondence between the deformations of the LG potential and the
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abstract topological deformations. In the next sections, after discussing the renormal-
ization group properties of our theory, we shall illustrate how one can use this explicit
formulation to calculate (perturbed) topological correlation functions in LG models.

3.2.1 On the quantum properties of the system

In the previous section we discussed the classical properties of the action (3.26) and
showed that with a suitable choice of the interaction potential, the theory exhibits a
non trivial (2,2)-superconformal invariance. However, the presence of interactions can
in principle spoil this invariance at the quantum level and one has eventually to restore
it after a suitable renormalization [89].

For the sake of clarity, we begin by considering a single left-right symmetric
(b,c,B,v)-system of weight A = X with potential

_ 1 2\nt1

W= m(ﬁﬁ) - (3.69)
This corresponds to the A, minimal model of the n=2 discrete series if A = 1/(2n 4 2)
(see (3.47)). We are going to give now two different “proof” that the interaction (3.69)
preserve all the classical properties of the (2,2) action, and in particular the conformal
invariance. The first one is supported by a so called “criterion for integrability” of
marginal operator that is strongly used in the literature (see for example [79]). It gives
the recipe to state when a perturbing operator is “truly marginal” (i.e. it does not
modify its conformal dimension at quantum level). Let us explain it.

From a purely conformal field theory point of view, once requiring that the
interaction term has the right (1,1) dimension, we are perturbing the theory with a
“candidate” marginal operator. The mere existence of a (1,1) operator is not sufficient
to guarantee the existence of a fixed line. We have to require additional “integrabil-
ity”conditions (see [79]), so that the perturbation generated by the marginal operator
does not act to change its own conformal weight from (1,1). In our case, where we
have collected the potential term as a single marginal operator O with coupling g, this
reduce to one loop level to the requirement that in the operator product expansion of
O with itself there are no term of the form:

O(Z,E)O(w,'lf)) = Cooo(z — ’w)—l(z — ID)”IO . (370)

If this condition is not satisfied the conformal weight of O is shifted by a quantity
proportional to the three point function cppo: O would not remain marginal away
from the point of departure, and could not be used to generate a family of conformal
field theories. To higher orders we need to require as well the vanishing of integrals of
the (n + 2)-point functions of the O’s. If this is the case O is called a “truly marginal
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operator”. It is easily verified that our interaction satisfies this requirement (even in
the general case), due to the operator product expansion of the b,3 fields. We will
do some more comment on this point in Appendix B.3, where we will discuss some
different possible choices of marginal perturbations.

The second “proof” is more direct, we explicitly compute the stress—energy
tensor and show that the interaction considered does not give any loop correction to
it. For the time being we leave the weight A unfixed. The Lagrangian for this system
is L = Lo+ AL where Ly is as in (3.27) and the interaction term is

AL = g bbp"3" (3.71)

where g is a coupling constant. Since the weight of # and ( is arbitrary, ¢ is a quantity
with dimension

[gl=(1-2Xn+1)) . (3.72)

To study the scaling properties of this system, we compute the trace of the stress-energy
tensor which turns out to be 3 ‘

T.e = [-2887 + (1= 2788 — (A + 4)bdc — (4 — X)eBb + ¢ bbA"A"] + c.c. . (3.73)
After using the equations of motion (3.29), we have

O=-T.:=g2n+1)A-1)bba"6" , (3.74)

so that our system is classically invariant under scale transformations (i.e. ® = 0)
either if

g=0 forany A , (3.75)

or if 1
A= v 0 . q
2n+1) or g# | (3.76)
Discarding the case (3.75) which corresponds to a free theory, we see from (3.76) that
A must be fixed by the homogeneous weight of the potential (cf. (3.35)); when (3.76) is
satisfied of course g becomes dimensionless and the operator bb 38 becomes marginal,

so that no dimensionful parameters are left in the model.

Let us now quantize this system by using perturbation theory in g. From the
explicit expression of the Lagrangian £, we see that the propagators are

(12 2)B(w,m)) = (b2, B)elw, @) = ——

(’7(2,2),3(10,11))) = (B(Z,Z)E(w,i))):

1

z—w

: (3.77)

3H§re and in the following “c.c.” means exchanging the untilded fields with the tilded ones and 8
with 8.
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so that it is obvious that even when the interaction (3.71) is present, it is impossible to
form loops. Therefore we conclude that there are no (perturbative) quantum correc-
tions to the classical results simply because there are no loops! These considerations
imply in particular that © in (3.74) is also the quantum trace of the stress-energy tensor
and hence the coefficient of the spinless operator bb3"3" appearing in (3.74) can be
interpreted as a renormalization group S-function [15], namely

Blg) =g(2(n+1)A-1) . (3.78)

The zeroes of B(g) identify the conformal fixed points and these are given precisely by
(3.75) and (3.76).

It is now interesting to see what happens when a second interaction
AL = g'bbg™ ™ (m < n) (3.79)

is added to the original system. We now assume that A = 1/(2n + 2) so that (3.79)
can be considered as a perturbation around a conformal theory. Following the same
procedure as above, we compute the S—function 8(g’) and find

m+1 1) mon,

Bl =g (2 -1) =TTy (3.80)

It is clear from (3.80) that the new model does not have any non-trivial fixed point;
indeed the only solution to B(g') = 0 is ¢’ = 0 which is achieved in the ultraviolet
regime for m < n. Hence we cannot have a renormalization group flow to another n=2
superconformal field theory, in agreement with the conclusions of [90].

The extension of these results to the generic case of quasi-homogeneous poten-
tials is an easy task. To this end let us first recall that if f is a quasi-homogeneous
polynomial in N variables with weights (w;, - wn), (wi € @, w; > 0) and

f=> ama’ (3.81)
p
where p = (p1, - pn), XP = X7 -+ X8V, p, € Z7 and a, # 0, then
p;lwl + .- cPNWN = 1. (382)
Let us now consider the following interaction term

AL =g > bb;8:VE;V (3.83)
i.J
where V() and V(B) are quasi-homogeneous potentials satisfying (3.81) and (3.82).

For simplicity, we take V(8) = V(8) and assume that the weights ), = ); are un-
constrained. Then, the trace of the stress—energy tensor, upon using the equations of
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motion (3.29), turns out to be

O=-T:= — g3 (bb;aVE;V —20B:1;8,VE;V) (3.84)
,J
-— Z ()\;,Bib,i)jc‘),-alVéjV - /\i/éibjéléiélvaj‘/) . (385)
1,7,

Using (3.81), after some algebra, the trace (3.85) can be rewritten as

©=g (22 Akpr — 1) (Z apbipiB' - - JPVN) (Z a,bipiBY -+ —gIN> . (3.86)
k 1,p ‘

he
If g # 0, the system is invariant under scale transformations only if

1

Comparing (3.87) with (3.81) and (3.82) we see that the weights A; must be one half of
the homogeneous weights of the potential w;. Since there are no loop corrections, this
result extends automatically to the quantum theory. Furthermore, we point out that
the same conclusion is obtained in a similar way when V(3) and V(,B) are different,

or when the interaction depends on a single quasi-homogeneous function W in the
variables X; = (3;8; with weight w;.
Finally, in our formulation it is easy to realize that the potential
L o omin
V(- =v(E)+ >, (87 (3.88)
A=n+1

defines the same conformal theory as the potential V (as one should expect from the
notion of stable singularity [30, 75]). Indeed, a (b,¢,8,7)-system with Ay = 1 gives a
¢ = 0 conformal field theory.

3.2.2 Bosonization of the (b,c, 3,7)-system
The result of our previous analysis is that for any value A = (2n+2)7! withn = 2,3,...,
we have a realization of the n=2 superconformal algebra with central charge

3(n—1)
n+l

c=3—12) = (3.89)

The conformal weights A and the U(1)-charges g of the pseudo-ghost fields that define
such a realization are given by

1 1

h(B) = At D) Q(5)=n+1

; (3.90)
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n+1 1

h(y) = At D) a(7) = e (3.91)
n-+ 2 n

h(b) = Mt D) q(b) = ol (3.92)

We) = gy 0 W9= nil (3.93)

The Fock space generated by the modes of the almost-free fields b, ¢, B, v and their
spin fields, contains the irreducible representations of the n=2 minimal models. Such
representations can be obtained from the Fock space through a suitable projection
like in the case of the standard free-field realization of the minimal models as given
for instance in [50]. In this section our aim is to make contact with this Coulomb
gas formalism, which, as we will see in the sequel, enables us to calculate explicitly
(perturbed) topological correlation functions in the presence of a LG interaction.

Adopting the conventions of [50], an n=2 minimal model with central charge
as in (3.89), can be described in terms of three scalar fields ¢o, ¢, and ¢, with mode
expansions

$i(z) = —pilnz+ S k| =012 , (3.94)
o k
where
[G:0B5] = 8ij 5 [@h 8] = K Sirro 67 (3.95)

While ¢y and ¢, are really free fields, ¢, is coupled to a background charge

2

(n) _
Q1 .

(3.96)

In this realization the holomorphic currents of the n=2 superconformal algebra are 4

T = L0602 + (86 + (08 - 501 0 (3.97)

J = MZ;iaﬁ , (3.98)
2n — 2 n
Gt = T g exp [ﬂ:\/ - —_‘-_ 1 9250} , (3.99)
1 .2 In+1 .
gt — ~—\/—§ exp {:{:1 — (]52} ( Z_ 15(,251 :i:l@(ﬁg) . (3.100)

The field ¢, bosonizes the U(1)-current and its exponentials realize the well known n=2
spectral flow [38]. The operators ¥* in (3.100) are, instead, parafermionic currents

4Here and in the following, any exponential of free fields is understood as normal ordered.
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and generate the non trivial part of the n=2 algebra. The complete Fock space which
embeds the n=2 irreducible modules is generated by the vertex operators

Vam = €xp [

q l . m
ﬁ%%— m¢1+ \/2-(77"—1)%} (3.101)

and their derivatives.

In particular the n=2 primary fields are given by

(n) 1

¢mis — \/— (3102)

m—{—.sn—sqSU ¢1+1 ¢2]

where £ takes the integer values 0 < £ < n — 1 and m takes the integer values m =
—1l,~1+2,...,l. The quantum number s represents the sector and is 0 in the Neveu-
Schwarz sector and £1/2 in the Ramond sector. The conformal weight A and the
U(1)-charge g of AP are given by the standard formulas

£{m;s
) £L+2) m? (m 4+ sn — 5)?
AL, m;s) dntl) dn—4' 2m-1) (3.103)
m-+sn—s
g(m;s) = ———r—

n+1

As we will see later, it is convenient to factor out the ¢y contribution and rewrite the
primary fields (3.102) as

n 3
AL, = exp Ngq(m,s) ¢0] or, (3.104)

where

L oexp |t g™y
=

The operators ¢, are the principal primary fields of the Z,,_, parafermion algebra and
must be identified according to

n—1-¢

Of, ~ it (3.105)

In fact the Hilbert space created by ¢, is isomorphic to the one created by cp;il(nl 1)

due to the existence of a map between the two that commutes with all generators of

the algebra [50].

In order to relate this realization of the n=2 minimal models to the one provided
by our (b,c,,7)-system, we bosonize the latter according to the standard rules and
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write®

b=e™ , B=¢m™  c=¢e" , q=e ™tgn, (3.106)
where the 7;’s are scalar fields coupled to the following background charges

SO
@ e

n

n+1

M =i , O =1 . (3.107)

7

These numbers are explained as follows: m; bosonizes the anticommuting (b, ¢)-system
n+2

whose weight is A + 4 = Insertion of this value in the general formula (3.53)

2(n+1)°
yields an) as listed in (3.107). The field im, bosonizes the commuting (8,7)-system
according to the rule

y=eTimPE | B=e"2q (3.108)
where ¢ and 7 form an anticommuting first-order system of weight ., = 1. The
background charge Q&") of the field m, follows from (3.53) with Agy, = A = 2n1+2.

Finally 5 is the scalar field that bosonizes the (¢,7)-system and its background charge
"g") also follows from (3.53) upon use of the value A¢, = 1.

Consequently, in terms of the fields ,’s , the stress-energy tensor of the n=2
model is

T= % [(3T1)2 + (0m)? + (571'3)2] - % (“‘m &*my + in Z_ i 8wy — 0%m3
(3.109)
Similarly, using (3.106) in (3.41) and (3.44) we obtain
J = —— (ndm —ibm) , (3.110)
n+1 '
G~ = 2v2exp [-m —im + 3] O3 . (3.111)

Comparing (4.16) and the last two equations with (3.97)-(3.100), we obtain the relation
between the 7’s and the ¢’s, namely

n 1 1
7 0 — L Fi———y 1
V=1’ ,/2(n+1)¢ ’ ,/2(n—1)q5 (3:112)
1 n n
i7l'2 (s M 1-!—1——*'——— 2 3.113
V=1’ ,/2(n+1)¢ ,/2(n——1)¢ (3.118)

n+1 L n—1
T3 = — 2 d)l +1 D) q52 . (3114)

5Notice that the bosonization rules we are giving are actually true for the “free” holomorphic part
of the ¢, fields. However, as we are going to see, we only need of the bosonized b, 3 fields (which are
correctly expressed by (3.106), (3.115) and (3.116) in application to topological correlation functions
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One can proceed even further and use (4.13) and (3.112)- (3.114) to identify
the pseudo-ghost fields with the operators of the abstract n=2 superconformal model.
Explicitly one finds

1 1 1
= ex . + Y S — I 3.115
f o e ey on—1) | (3:115)
R 1 ~1 ]
= eXx 0 1 i 2 7‘ 3.116
’ ’ _x/ﬁ’r-—'T¢ i 2(n+1)¢ ¥ 2(n—1)¢_ (3.116)
[ n -1 1 ]
c = €X ¢U+ ¢1 +1"~"——'——‘¢2 3 (3117)
V=TT ey -
- exp- S S A M S ¢- x
! Va1 1) yf2An—1)

n—1 n+1 .

From (3.115) one realizes that [ is a chiral primary field and is given by
B=A, (3.119)
More generally one can write
ﬂK:AE"?;O for £=0,...,n—1 , (3.120)

which shows that at the quantum level the general chiral primary field is simply the £-
th power of B and the vanishing relation is recovered by enforcing the bound £ < n —1.
Moreover b is the first component of a chiral primary superfield and can be explicitly
obtained by 5% §. G~ (w)B(w) = b(z); the same is true for fields of the form b3'~!. On
the contrary v and c are in the Fock space of the three scalar fields, but not in the n=2
irreducible module.

It could be interesting to mention that in the bosonized formalism the operator

bB", which appear in the interaction term is simply expressed by:
b = eV BV IS = (3.121)

where 7 is the fields appearing in (3.108). Equation (3.121) shows that b8"™ coincides
precisely with the screening operator S, (z) in ref [50], which can be used to construct
the Felder complex [91], and the Fock space. The Felder BRST @ charge is given by
Q4 = $§dz5,(z) = ny, where 7, is the zero mode for 7.

We now consider the case when the theory is topologically twisted with

Q4(2) = G¥(2) . (3.122)



74 Chapter 3. n=2 first order systems

As mentioned in Section 3.2, we have a new (b,c,3,7)-system with Ag = 0, A, = 1
whose Lagrangian is given in (3.54). These new pseudo-ghost fields are still bosonized
as in (3.106), but now the background charges of the m;’s become

O =—1, 0P =i, O =-1. (3.123)

The new stress-energy tensor is then given by

7= % [(8m1)? + (8m2)? + (B3)?] — % (~8%m +i 8%m, — O'ms) (3.124)

whereas the U(1)-current J is the same as in (3.110). On the other hand, the twist of
the stress-energy tensor is given by T = T + 3J, and hence, using (3.97) , (3.98) we

get
A 1 1 2 9 1 jn—1
T= 3 [(asﬁo)z + (061)* + (6¢2)2] - 5\/ ma ¢+ 5\/ p—y 132¢o . (3.125)

If we now compare (3.124) and (3.125) and observe that J is the same before and after
the twist, so that

n— 1

1 n
J = ————1—3¢U = maﬂ'l -

Vot ory (3.126)

nd+1

we can realize that the relations (3.112)—(3.114) and the identifications (3.115)—(3.118)
and (3.120) hold true also in the topological field theory, giving us a complete character-
ization of the fields b, ¢, 8 and v at the quantum level. Moreover, using (3.115)—(3.118)
and taking into account both left and right movers, we can easily check the descent
equations (3.56) in the complete bosonized formalism. As is clear from (3.125) in com-
parison with (3.100), the net effect of the topological twist is simply to switch on a
background charge for ¢, given by

n) _ l1—n
Y n?—1

(3.127)

Therefore, even if the bosonized expressions for the topological b, ¢, # and v are still
given by (3.115)—(3.118), their conformal dimensions change with the twist. In particu-
lar the chiral primary fields B¢ loose their conformal weight and become dimensionless,
as is appropriate for the physical operators of a topological field theory. Furthermore,
the U(1) current J acquires an anomaly proportional to an).

Let us briefly mention that if we perform the topological twist with Q. = G~
instead of @, = G, not only the the stress energy tensor but also the lagrangian
becomes a BRST commutator (see Appendix B.2 for details). In this case, however,
there is no identification of the chiral fields in terms of local expressions of b, ¢, § or
~: they can only be written in a bosonized form. As is well known, chiral fields with
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respect to the BRST charge Q. = G~ are antichiral fields with respect to the BRST
charge @4 = GT. This means that the bosonized expression of these fields could be
obtained via spectral flow from (3.120).

The complete bosonization of the (b, c,3,7)-system we have just presented is the
technical tool which enables us to make explicit calculations of (perturbed) correlation
functions for single minimal models as well as for tensor products thereof. It is also
very useful in establishing the precise relationship between the correlation functions of

topological minimal models and the chiral Green functions of LG theories as computed

in [29].

To this end, let us first introduce the following notation
lg,£,m) = lli% Vaem(2) 10,0,0) (3.128)

where V4, is defined in (3.101) and |0,0,0) is the SI(2,C) invariant vacuum of ¢y,
¢, and ¢,. Before the topological twist only ¢; has a background charge and the dual
conjugate of |q,£,m) is (—g, —2—£, —m/|. After the twist also ¢, acquires a background
charge and so the dual conjugate of |q,4,m) becomes (n — 1 — gq,—2 — £, —m]|.

In the LG theory with superpotential W ~ X"*!  the supersymmetric vacua
|m) (m = 0,...,n — 1) are identified at the conformal point with the Ramond vacua
of the minimal model A,. According to (3.102), the Ramond chiral primary fields of
such a model are

Rn(z) = N A\ (2) (3.129)

where m = 0,...,n — 1 and the normalization factor A, is introduced to enforce the
standard structure constants of the n=2 operator algebra . This normalization can
be computed using different techniques [29, 51] and is given by

B 1 sin (755) T ()

Therefore at the conformal point, the supersymmetric vacua of the LG theory are
lm) = 111'% Rm(z)loaOaO)L X ];iI%Rm(Z)I()’O)O)R
= Npllm —(n—1)/2,m,m)y x |m — (n — 1)/2,m,m)g  (3.131)

where the subscripts L and R refer to the holomorphic and anti-holomorphic compo-
nents respectively. The vacua (m| are obtained by taking the dual conjugate of (3.131)

SNotice that the Ramond fields R,, do not have a local expression in terms of the fields b,¢,3, v
of our model, contrary to the Neveu-Schwarz chiral primaries which are simply powers of the bosonic

field g.
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and remembering that only ¢; has a background charge (indeed the topological twist
has not been performed yet).

It is now straightforward to compute the correlation functions of a string of chiral
primary fields between two supersymmetric vacua. From Eqgs. (3.120) and (3.131) we
have

N . 2 N e
(mu| I_I (ﬁ(z.—)B(z,-))fx |my) = j\vf:zz TI(z:z)7+ 6 (Z £+ mg — ml) (3.132)

=1

where the §-function arises from charge conservation. Apart from the z-dependent
factor, this result coincides with the LG chiral Green functions computed in [29] using
quantum field theory techniques. To make the precise comparison, however, one has to
remember that in [29] the LG theory was defined on a cylinder, whereas our formula
(3.132) applies to the plane. This difference is easily eliminated by mapping the plane
to the cylinder, under which the chiral primary fields transform as

£;

Bl(z) — Bl(ws) 277 (3.133)

Here w; are the cylinder coordinates. An analogous expression holds also for the A
fields. The z-dependent factors of (3.132) are therefore cancelled in going from the
plane to the cylinder and we can conclude that

__Nmi’
._N 3

N L
(mal IT (88)" Im.)

§ (Z £ +my — ml) (3.134)
cyl {
exactly coincides (normalization factors included) with the chiral Green function of the
LG theory of [29]. Once more we see that the L.G. field X has to be identified with
the product (88) (see also Eq. (3.50)).

‘We now proceed to establish the relationship with the topological conformal field
theories. To this end let us consider a particular case of (3.132), namely the correlation
functions between the lowest vacuum |0) and the highest one (n — 1|,

N

(n—1] ] (B(=)8(z))" 10) =

=1

o (1 =n)/2,—-1 —n,1 —a| [[B5=)I(1 —n)/2,0,0), x (c.c.) (3.135)

n—1 3
=1

Since
(1 —-n)/2,0,0) = exp [%/%2— ] |0,0,0) (3.136)
and

B4(2) exp[( Lo } ~ exp [(—1—5\/_——"'_)_& } B(z) =7t (3.137)
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from (4.34) and (4.31), we get

L{(l—n,-1—-n,1—n| ﬁ B%(2)]0,0,0), x (c.c.) =6 (Z L —n+ 1) . (3.138)

i=1

This is the natural candidate for a topological correlation function. Notice that (3.138)
is independent of z; as any topological correlator should be. Indeed all the 2-dependent
factors are canceled in flowing from the lowest vacuum |0) of the Ramond sector to
the SI(2,C) invariant vacuum [0,0,0) of the Neveu-Schwarz sector. However, the
fields ¢o, ¢ and ¢, which implicitly appear in (3.138) are those which bosonize the
original (b,c,3,v)-system before the topological twist. To obtain a more adequate
characterization of topological correlation functions in the bosonized formalism, it is
more appropriate to use the fields which bosonize a twisted (b,c,B,7v)-system. As
we have seen, only very few things change; most notably the field ¢, acquires the
background charge (3.127). Thus, in (3.138) instead of the state (1 —n,—1—n,1—n|,
which is the dual conjugate of [n —1,n — 1,n — 1) before the twist, we should have the
state (0,~1—n,1 — n| which is the conjugate of |n — 1,n — 1,n — 1) after the twist. If
we define the topological vacuum |0).p as

10)eop = 10,0,0) (3.139)
and its dual conjugate ¢op(00| as
top(00] = (n —1,-2,0[ , (3.140)

we can rewrite the holomorphic part of (3.138) and define the topological correlator as
follows *

N N
(I B%Dun = (0,-1=m,1—nl [ #5(=)[0,0,0)

=1

= top(oomi H ,Bil(zi)w)top

- § (Z 2 —=71z + 1) (3.141)

where

a

o1 Pmi)n +1,/2(n T

and the ! operation is defined as (eaq') = e7?% (see e.g. [50]). Notice that Q is simply
the zero-mode part (the only one which survives on the left vacuum) of the top chiral
primary field "1,

(3.142)

-1 -1 —
Q:exp{n . n . .o n—1 }

"Notice that in the topological case, a string of 3 between the “bra” and “ket” does not give zero,

as in the non-topological case. This is due to the definition of the dual conjugate of the topological
vacuum
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Therefore our conclusion is that in the bosonized formalism a topological corre-
lation function of a string of fields is obtained by taking the expectation value between
the topological vacua |0,0,0) and (0,—1 — n,1 — n|.

3.2.3 Explicit calculations of topological correlation func-
tions

In this section we show in a few examples how to use the (b, ¢, 3,7) representation to
compute ezplicitly some (perturbed) topological correlation functions. We also verify
that the parameters of the deformed LG potential for the (b,¢c,8,7)-system are the
flat coordinates of the topological field theories. We stress that our techniques can
be applied to single minimal models as well as to their tensor products, since there is
practically no difference between the two cases. Even though the final goal is to use
our methods in the interesting case of the Calabi-Yau 3-fold, for the sake of clarity here
we will limit ourselves to the simpler cases of the minimal models and the torus.

We start by considering the simplest possible situation: the A, minimal model,
which corresponds to the potential

W = ~;5([33)3 : -~ (8.143)

In this model, besides the identity ®; = 1, there is only one other chiral primary
field: &, = (88) with U(1)-charge ¢ = 1/3. As one can see from (3.58) the 2-form
operator associated to (88) is simply (bb). Therefore, [d?w b(w)b(w) is the only
relevant deformation which can be used to perturb the minimal model A,. The resulting
Lagrangian is then

L= Loy —t f 2w b(w)l(®) (3.144)

where L, is the Lagrangian for a topological (b,c,8,7)-system as given in (3.54),
and t is a dimensionful coupling constant parametrizing its perturbation. .Using the
rules explained in the previous section and in particular enforcing the anomalous U(1)
charge conservation, it is not difficult to realize that at ¢ = 0 the only non-vanishing
topological 3-point function for this model is

coo = (8o Bo B1(2,2))iop =1 - (3.145)

However, things change when ¢ # 0. The perturbed topological 3-point functions (see
(3.57)) are in fact given by

Coe(t) = <(I’ll(zl721) By, (22, 22) Bey (23, 75) S "(‘”)'3(‘5')> (3.146)

top

where £,, €5, £3 can be either 0 or 1. A simple analysis reveals that the only interesting
case is the correlation cyy((t); all other correlators are indeed zero because of charge
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conservation. To compute ¢;11(t) we expand the exponential and evaluate each term
using the bosonization rules of Section 3.2.2. In particular, once again because of
charge conservation, all terms in this expansion vanish except for the first-order one.
Thus we obtain

nlt) = b (@or,7) uon,7) B, ) [ d'w bw)i())

=t [ dw (B(z1)B(z2) Bl2) bW}y (B(21)A(2) A(z)B(w)),  (3:147)

top

top

Let us now turn to the calculation of the conformal blocks appearing in the
integrand of (3.147). We will focus just on the holomorphic piece, since the anti-
holomorphic one is simply obtained by complex conjugation. First of all let us use
(3.115)—(3.118) and (3.2.2) for n = 2 and write

= exp |—=do| ¢!
ﬁ — P {\/’3—‘]50] 501 9
b = exp [~~%¢0] et . (3.148)

Then, using (3.147) together with the definition of topological correlation functions
given at the end of Section 3.2.2, we have

(8(21) /3(22) B(23) b(w))top
= ( 3, —118( 21)5 22),3(23) b(w)l[) 0, 0)
© o] ] ] el
X (=3,—1lpi(z1) ¥i(z2) ¢i(23) 11 (w)[0,0) . (3.149)

The ¢o-contribution in (3.149) is immediate: the charges exactly soak up the back-
ground anomaly fo) = —1/4/3 and so we get

(o peloe] Jame] fane)] [gae]
= [z - 2)(z— z)(z — 2)]° [(21—w)(z2 —w)(zs —w)] 3 . (3.150)

The parafermion contribution

(=3, —1lpi(z1) ¥1(22) pi1(23) ¥4 (w)]0,0) (3.151)

is also easily computed. The most eflicient way is perhaps the following: if we take
into account the identification (3.105), we see that the fields ¢} and ¢!, are both
proportional to ) = 1. Moreover, the vacuum (—3, —1| is proportional to (-2, 0| since
their dual conjugates |1,1) and |0,0) are equivalent because of (3.105). Thus, (3.151)
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is simply the vacuum expectation value of the identity and so it is a constant. One can
also verify this result by explicitly computing (3.151) using for example the method of
the screening charges [50, 91]. In particular, using two of the above identifications for
v1(22),¢1(23) we have to compute:

B = (-2,0]¢1(21)¢l,(w)]0,0) . ’ (3.152)

Now we see that in order to compute B we have to insert one screening operator
1

S(u) = 7

(V3061 (u) + i0a(u))e” B | (3.153)
thus we have
B = 5 f du(-2,0eF 0 (V50 (w)
+ i0¢y(u)) eFHW TR E@I-FRE) g gy (3.154)

Putting everything together, and remembering that

(249 (u)e*™)) = (2 — w)*? [ “au + = f'w} 8(a+B) (3.155)

m —
we obtain:

(ﬂ(zl) ,3(22) 5(23)b(w))top

~ (71 — z)(21 — 23)(22 — 25))]

(A1

(21 — w)(22 — w)(z5 — w)]~(3.156)

Notice that this topological correlation function does depend on the coordinates z;
where the chiral fields £ are inserted. This is not at all a surprise because (3.156) is
not a correlator of only physical fields.

The full topological correlation function ¢;111(¢), which of course should be inde-
pendent of z;, can now be easily computed. If we substitute (3.156) and its complex
conjugate into (3.147), we get

BOtd

2 -
cn(t) ~ t (a1 =zl 2 — 2ol oz — 2o)} [ dPw (21— wl 22 — w] |25 — w))
(3.157)
The integral I in (3.157) is evaluated using elementary techniques and the result is

I ~ (]Zl - Zzl {Zl d 23] lZz - 2«'3[)_§ . (3158)

Absorbing all numerical factors of (3.156) and (3.157) into a rescaling of ¢, we can
conclude that

ci(t) =t (3.159)
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Notice that only after doing the integral over d?w, the correlation function (3.157)
becomes independent of the coordinates z; of the physical fields, as it should. In the
minimal model A,, ¢;11(t) = t and cpu1(t) = 1 are the only non vanishing topological
3-point functions.

As it is well known, the 2-point function 7¢,¢,(t) = coe, 4, (t) serves as a metric in
the space of coupling constants. This metric is flat and hence there exist special flat
coordinates in which it is constant. For the minimal model A; we simply have

noo(t) =111(t) =0 , nou(t)=1 . (3.160)

Since n(t) is not only flat but also constant, the parameter ¢ in (3.144) is a flat coor-
dinate.

This example is however too trivial to let us reach any conclusion, and one should
test our methods in more complicated cases. This can be easily done and in several
non-trivial examples for single minimal models we have checked that the parameters
entering the deformed LG potential in our formulation are indeed flat coordinates. This
is to be contrasted with the usual formulation where the parameters of the deformed
LG potential are not flat coordinates but are related to these by more or less compli-
cated transformations. The origin of this difference is that we compute the perturbed
correlation functions without using the residue pairing defined by the perturbed po-
tential [31] and stay in the context of perturbed conformal field theory Thus we can
always maintain in a natural way a frame of flat coordinates.

We have verified these properties also in the case of the torus, which can be
described by the tensor product of three minimal models A, deformed by its marginal
operator. Therefore, the potential we should consider is

W= (B8P + 5 (BB + (B8 — £(8.8.)8,5,)(B.5.) (3.161)

The dimensionless parameter ¢ in (3.161) is (related to) the modulus of the torus. The
chiral ring of the tensor product of three A, minimal models is generated by &, = 1,
(‘Pl, ®,, ‘?3) = (ﬂzﬁxaﬁyﬂyvﬂzﬂz), ¢, = ﬁzﬁzﬁyﬁy, o5 = ﬁyﬁyﬁzﬁz; ®6 = B:P:5.5:, and
®; = B.8.8,8,8:8-. ®7 is a marginal operator and is the one appearing in (3.161) as
a deformation. The Lagrangian corresponding to (3.161) is

L= Lop—t / o (3.162)

where Lop is the Lagrangian for three topological (b, ¢, 3,7)-systems as in (3.54), and
3 is the 2-form associated to ®;. According to (3.61), we have

f 2% = f d*w [(6.8,8: + b,B:B: + b.B:8y)(w) x (c.c)] . (3.163)



82 Chapter 3. n=2 first order systems

The simplest way to check whether the parameter ¢ in (3.162) is a flat coordinate or
not, is to compute the topological metric

nis(t) = (8@, et o 3.164
J 3 top

and see whether it is constant or not. To this end it is enough to consider one compo-
nent, for example

nor(t) = <‘I’0 &7 etf®(72)> : (3.165)

top
By looking at the U(1)-charges of the operators in (3.165), it is easy to realize that
when expanding the exponential, only terms with 3n insertions of f @(72) will satisfy
charge conservation. Thus, (3.165) can be rewritten as

o0

o7(t) = -(—é%ﬁaan ¢ (3.166)

n=0

3n
a3n-_—_<@0@7 (/@(72)) > : (3.167)
top

It is immediate to see that ap = 1. The first non-trivial contribution is a3 which, spelled
out in detail, is

where

az = /d2w1/d2w2/d2w3 f(’u,’wl,w‘z,'w;;)f('l—l,,’lf)l,’ll-)z,’l—[)g) (3168)

where

3

f(u7 w13w21w3) = <(/B:c:6yﬁz)(u) H [(bmﬁyﬁz + byﬁxﬁz + bzﬁxﬁy)(wz)]> (3169)

=1

and f is its complex conjugate. To compute f, we split the r.h.s. of (3.169) into
a sum of factorized correlation functions for each of the three minimal models and
enforce on them (anomalous) conservation of the U(1) charges. During this process
the b fields in (3.169) must be suitably rearranged and proper minus signs arise from
their anticommutation relations. After some straightforward algebra, it turns out that
f = 0, which implies

a3 =0 (3.170)

Actually it is very easy to generalize this result to all higher-order coefficients, and
eventually conclude that

nor(t) = 1 (3.171)

The other entries of the metric 7;;(t) can be computed in a similar way and all of them
turn out to be constants. Thus the parameter ¢ in (3.162) is a flat coordinate.
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We want to emphasize that instead, in the standard LG formulation of the torus
described by the potential

1 1
W = —;;X3 + §Y3 o+ 523 —sXYZ (3.172)

the topological correlation (®¢ ®7)(s) is a non-trivial function of the LG parameter s,
which therefore cannot be a flat coordinate ®.

It is interesting now to investigate the relation between s and t. On general
grounds [33], it is possible to show that

ci11(t)
t) = 3.173
s(t) o ( )
where
2
c,-jk(t)=<<1>,- @j@ketf‘l’(r)> . (3.174)
top

In our formulation it is easy to compute these perturbed 3-point functions as a power
series in the flat coordinate ¢. Let us briefly see how c;23(t) is evaluated. Expanding
the exponential and looking for terms which satisfy charge conservation, we get

> 1
t) = g, £ 3.
C123( ) nz::l) (3n)!a3 ( 175)

where an\
dan = <<I>1 3, ®; (/ @323) ) : (3.176)
top

It is immediate to see that @y = 1. The next contribution is

az = /d2w1/d2w2/d2wgg(m,y,z,wl,wg,wg)g(ﬁ,gj,2,151,1712,11_13) (3.177)

where

g(maya Z, w11w25w3) = <ﬁ$(w)ﬁy(y):@z(z) ];[ [(brﬁyﬁz + by:BIIBz + bzﬁxﬁy)(wz)]>

top

(3.178)
By splitting the r.h.s. of (3.178) into a sum of factorized terms and using the explicit

results derived earlier for each of the three minimal models, one can prove that the
integrand of (3.177) is

™

3
|z —yP’le — 2 ly — 2" ] (2 — wil ly — wil |2 — wi])”

=1

(3.179)

81t turns out that (®o &7)(s) = [F(2, 3; %; 53)]_2, where F is the hypergeometric function.
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Using (3.158) and rescaling ¢ to absorb all numerical constants, we conclude that az = 1,
and hence

cns(t) = 1 + %ﬁ’ +0(t°) (3.180)
Similarly one can check that
ci(t) =t + O(t") (3.181)
so that from (3.173) it follows
su)zzt-%t4+-0(ﬁ) (3.182)

These are precisely the first terms in the power series expansion of the solution of the
schwarzian differential equation
1(8+ %)

{s;t} = —5(1—_—‘—93)—2(5')25 (3.183)

where .
' " "
{s;t} == — 3 (f-) (3.184)

and the primes denote t-derivatives. We will show in next section that the condition
(3.183) is equivalent to the requirement that ¢ be a flat coordinate [33, 34, 78], whenever
we use to compute the metric in the coupling constant space the standard Landau-
Ginzburg approach. The methods we have just presented provide automatically the
solution to (3.183) as a power series.
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3.3 Digression: The Landau—Ginzburg approach
| and Picard Fuchs equations

In this digression we recall how equation (3.183) is retrieved in the Landau-Ginsburg
approach, utilizing algebraic geometry techniques. This establishes the relationship be-
tween our superconformal approach and the theory of Picard—Fuchs differential equa-
tions satisfied by the periods of the holomorphic n—forms on ¢; = 0 n—folds. [81, 77, 35].

We skip many technical details for the general theory, restricting our attention
to the specific example of the cubic torus and trying to clarify some obscure points
found in the literature.

Consider a CP"t! projective space and denote X* A = 1,2.--,n + 2 its pro-
jective coordinates. Next consider the projective variety V defined as the zero locus of
the homogeneous potential W

W=0csXecV. (3.185)

The degree of the potential W will be denoted by v. Consider the (n + 1)-differential
form in C P(n+1)

w=XM"dX A ANdX ey Ly, (3.186)
and set
QB = €g.4ydny XM AdXA Ao AdX AR (3.187)
then
(=)D
dXM A XA A A dX A = etdnniBQg (3.188)
(n+1)!

Consider now an n—differential form ¢ defined by:

1
45 = "—/V‘—lGAINAl-»-AnXMYNdXAl A dXAz VANCERIAY dXA" 5 (3189)

where Y™ are (n+2) homogeneous polynomial of degree q. If we compute the exterior
derivative of ¢ we get after some algebra:

1 q vl w [
do = WY?(-1-— yMxQ xXQyM
¢ = i ( n+1+n+1)+n+1a"’ e a“W}QQ
(3.190)
hence if
g=1Ilv—(n+1) (3.191)
we obtain

1 [ 1
do = ——— | — M _ M
¢ Wi |n s Y oW ] WornY ] w . (3.192)
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The result in eq. (3.192) can be expressed in a more convenient way for our
purpose. Let us consider an n—form Q(Y’) defined by:

Y‘484W

where Y is a n + 2 vector of homogeneous polynomials with degrees:
deg Y4 = lv—(n+1),
degW = v (3.194)

and 7 is a small circle winding around the hypersurface W(X) = 0. Then Q(Y) is
cohomologous to

1 (9AYA
QoY) = 7 T w (3.195)
This is because
n+1 -
QUY)-Q(0- Y)=- i de (3.196)

with ¢ = [ ¢.
Consider the chiral ring R = C(X)/0W associated to the superpotential W and
consider the subring consisting of polynomials of degree 0,v,2v ---nv.

{17pyap2ua"'7pmj} . (3197)

Clearly this set defines a subring of R. Indeed pFrpkey = plkitka)v yntil we get the
polynomial of maximum degree nv. From a superconformal point of view the maximum
degree polynomial is the top chiral primary field with maximal U(1) charge content .
In the singularity theory approach it can be singled out by computing:

pm’ ~ det (6,8]‘/V(X)) . (3198)

We can put the elements of this subring into correspondence with the order n
cohomology group:

Fr=35" g kR (3.199)
k=0

where H(™=%*) are the Dolbeault cohomology groups. Indeed we can set [96]

() (X
n— P
Q((I k‘,k) = 8 —_W_(k(—-l'l)—)w 3 (3-200)
where p{*)(X) is a homogeneous polynomial of degree kv, k = 0, ,n, which is not a

trivial element of the chiral ring. It can indeed be shown that (3.200) defines a closed
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(n-k,k) form which is exact if and only if the polynomial belong to the ideal [8W¥] of
the chiral ring. The explicit proof of this statement is given in [96].

Here we give an application of eq. (3.200), which allows us to derive a differential
equation for the perturbation parameter s in the case of the cubic torus:

. |
W= —3;(X3 +Y*+ 2% - sXYZ . (3.201)

The equation we find is known in algebraic geometry with the name of Picard-Fuchs
equation.

Picard-Fuchs equations are differential equation satisfied by the periods of a
differential form (2,. In general periods are defined to be the integrals of {2, over
elements of a basis of integral homology in V.

m=/ Q., (3.202)
I

where I's is a representative of a homology basis in H,4,(CP™*+) —V, Z). The curve
I's may be thought of as a tube over the corresponding cycle in H,(V, Z). In our case
we fix I's to v and we consider the vector Q, = II{").

Our purpose is to show how to generate these differential equations directly from

W in (3.201).

Following our identification we define the H("%) and H(®! representatives as
follows:

row r XYZ
= [ %= [ (3.203)
with
w=2XdY ANdZ +YdZ NdX + ZdX AdY) . (3.204)

The “vanishing relations” which define the trivial element in the chiral ring are:

X? = sYZ+0xW,
Y? = sXZ +oyW
Z? = sXY 4+0;W . (3.205)

Using eq.s. (3.203) and (3.205) we get:

o
—_ = ), .
5 (3.206)
0 X2Y2Z2
=, = 2/ (3.207)
and
XY*z? = Yiouw (3.208)

)



88 Chapter 3. n=2 first order systems

where ¥ = (sXZ3,X?Z%,s*XY Z?) is a vector with degree four polynomial compo-
nents. According to (3.195) we have:

0 1 (9AYA
5’;(22 - 1 _ 33 W2 . (3.209)

Using again the vanishing relations we finally find:
(1 —5%)8,0 = 50 +35%Qs (3.210)
which combined with (3.206) yields:
[(1 - 6%)0% — 3578, — 5] = 0. (3.211)

For the moment we will not discuss in detail the properties of the solution of (3.211).
We are interested in the connection of the Picard-Fuchs equation (3.211) with the
Schwarzian equation we wrote in chapter 3. In particular we are going to illustrate
how this is related to the constant flatness of the metric in the coupling constant space
as defined in section 3.1 of this chapter. We will use this discussion to introduce the
concepts of duality and monodromy groups associated to the potential W and to the
differential Picard Fuchs equation (3.211). Owur starting point is the full perturbed
potential:

W = %(XB-I—Y?’—I-ZS)——so—le——szY—ng
— sy XY —55X7 —5sYZ —sXYZ . (3.212)

In general using the residue pairing relation (3.25) we can write:

(9(X1)) = (sn)h (3.213)

where g(X;) is an arbitrary monomial in X; and h is the vacuum expectation value
of the Hessian h =< det §;0,W >=< p >. For a generic potential, 7y is a polynomial
function of the relevant couplings (as can be understood by U(1) charge conservation),
but as well as h, it can depend in a nontrivial way from the marginal perturbations (if
any). The above result is due to the fact that with the help of the vanishing relations,
any monomial g(X;) can be decomposed as follows:

g(X1) =v(s1)p + GTOW + (g < ¢/3 fields) (3.214)

of which in the topological correlation functions only the first term survives.

Starting with (3.212) we can calculate the metric in the coupling constant space
gij as:

9:; =< fi( X)f;(X) > . (3.215)
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We find that restricting the vacuum expectation value of the hessian to be constant
will result in a nonvanishing curvature tensor. For g;; to be flat we have to allow
h to be a function of the marginal coupling s, and to impose the vanishing of the
Riemann tensor. Because we are interested in the s dependence, we keep only linear
and quadratic terms in relevant couplings, as we will send it to zero in computing the
Riemann tensor. Actually, in many cases, to perform such calculation, one can limit
himself to a subring of relevant and marginal perturbations. We show how to do it
for a particular case in the Appendix B.4. All the non-vanishing components of the
Riemann tensor are proportional to the left hand side of the equation:

(1 - 8%)y"(s) — 35°y'(s) — sy(s) =0, (3.216)

where we set b = y~%. The differential equation (3.216) is the same as the Picard— Fuchs
equation (3.211). To find flat coordinates (the ones in which the metric is constant),
we should write the most general coordinate transformation s; = s;(t) compatible with
the U(1) symmetry and discrete symmetries of the potential and insert it into:

Pt = M) (3:217)

Alternatively we can observe that the choice of the top chiral field ¢, = XY Z is
ambiguous in the following sense: any linear combination of the chiral primary field
with highest charge (8¢, with 8 # 0) with fields of lower charges can be used, resulting
in a conformally related metric g;; = % gij. However, conformal perturbation theory,
as explained, gives a natural set of flat coordinates ¢;, in which gy,,, = 1. This means
that to get the flat metric for (3.212) as a function of the flat coordinate ¢, we should

take the top chiral field proportional to a “flattening” factor %, le.

d
brop = E%XYZ . (3.218)

Our purpose to insert the t—-dependence, due to the flattening factor, in the computation
of the metric and Riemann tensor. We find that the flatness requirement for the metric
9ij = Mij = it jop implies: ,
1 8+s (
{t, S} = '2“("1—:_:5“5‘)—2'8 5 (3.,219)
which is precisely the one we wrote in (3.183) (by using {s,t} = —(s')*{¢,s}).

For the case of the torus, as well as for more complicated cases we can establish
some interesting relations with the theory of differential equations [35, 99, 98]. Given
a differential equation of the form:

D.é(z) = (d7 + gaj(m)d;—jxm)s(m) , (3.220)
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it can be shown that, under a coordinate transformation z = z(t), the coeflicient an_,
transforms with the law

tna(t) = G- 2(m)(d 12 4 n(n? — 1){z, ¢} . (3.221)

A possible term like a;(2)d?~! in (3.220) can always be reabsorbed, without any loss of
generality, with a suitable redefinition of £. In our case defining ¢ = Quexp(3
from (3.211) we immediately get

1337

1 844
4(1—s3)?
Using equation (3.221), where we set n = 2, and requiring that ao(t) = a(t) = 0 we get
precisely the Schwarzian equation (3.183). This requirement for the case of the torus is
perfectly equivalent to the flatness requirement for the metric g;;. Moreover it is quite

easy to verify that keeping two distinct solutions of the equation (3.211), their ratio ¢
satisfies precisely the nonlinear Schwarzian equation (3.183)

0%+ = -s£=0. (3.222)

1 8+
{t,s} =21 3 I= st . (3223)
This is a very general result for linear, second order differential equations, strongly
related to the construction of nonlinear differential equation starting from the ratio of

two solutions of the linear one [98]. For example, the linear second order equation

d*z

2 p@)% +ala): (3.224)

gives rise to the nonlinear, Schwarzian equation:

1 1 dp
— J=gqg— =p?— =% 22
where ¢ = 2;/2; is the ratio of two independent solution of the linear equation above.
The quantity I is referred as the invariant of (3.211) since it is unchanged if one replaces

(3.211) by the linear equation for f(s)Q(s) (where f(s)) is an arbitrary function ).

What we have shown in this example is that flat coordinates are associated with
appropriate invariant equations, which can be derived from the linear Picard-Fuchs
ones. This property reflects only partially to more complicated cases. In general we
can always find a system of “schwarzian” coordinates in which the coefficient a,,_» is
set to zero, but not necessarily it corresponds to flat coordinates. When the degree
of the differential equation increases (as for example for Calabi-Yau threefolds), there
are other “invariants” that can be defined. In this case one can arrange the coefficients

of the linear equation to get W-algebra generators, which have well known tensor
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properties transformations [99, 77] (notice that the schwarzian derivative is associated

to the transformation rule of a stress energy—tensor, i.e. a W5).

The understanding of these properties of Picard-Fuchs equations should play
a fundamental role (and indeed it does in the torus case) in the study the so called
duality group of the potential W, denoted by I'yy- [74].

Iy consists of those transformations of the moduli that are induced through
quasihomogeneous changes of the variables X, that leave the form of the superpoten-
tial unchanged up to an overall factor, i.e.

W(X'(X),a;) = W(X,d') = C(a)W(X,al), (3.226)

where a; are moduli parameters, and C(a) is a moduli dependent factor. This means
that the deformations in W’ are still described by marginal operators from the chiral
ring. The factor C(a) can be eliminated by rescaling the X—fields.

If one makes such a change of variables in the period integrals of ) then the result
is changed only by an overall factor. It follows that the linear system of differential
equations must be covariant with respect to the duality group I'y- of the superpotential.
The corresponding system of non-linear equations must be invariant with respect to
this duality group. This duality covariance and invariance can be very instructive in
understanding the properties of the linear and nonlinear equations. On the other side
one can get informations on I'y- from the differential equations. In particular given a
second order linear equation we can often read the solution of associated Schwarzian
differential equations in terms of triangle functions [98, 41, 35, 34] s(«,8,7). The
parameters a, 3,7 then determine the duality group of the superpotential. For triangle
functions, this group can be generated by reflections in the sides of hyperpolic triangles
(with angles ma, w3, 7y) that cover the upper half plane.

It is thus interesting to investigate the relationships between the foregoing du-
ality group I'yy-, the monodromy group I'y; associated to the linear equations and the
modular group I' of the surface defined by W = 0. The integral homology basis un-
dergoes an integral symplectic transformation when it is transported around singular
points in the moduli space of the manifold. Consequently the periods of the differen-
tial forms undergo such symplectic transformations about these singular points. This
reflects into the monodromy around Fuchsian singular points of the solutions of the
differential equation. The set of all such monodromies will generate a subgroup I'y;
of the full modular group T'. The set of duality transformations I'jy maps the surface
back to itself and will extend the group I'y; to an even larger subgroup of I'. In the
case of the torus (3.212) this extension is all of T, and then the duality group of W
is I'yir = I'/T'p;. The Schwarzian equation (3.223) is solved by the triangular function
s(t) = s(3,3,3;J(t)) [35, 98] , where J(t) is the absolute modular invariant. s(t) is a
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modular form of I'(3)° , and the full modular group of the torusis I' = PSL(2,Z). The
duality group of the torus can be easily found by imposing the conditions (3.226), with
the following transformations on the X,Y, Z fields (up to an irrelevant minus sign)

X' a 0 0 X
A Y |=}10 01 Y (3.227)
Z' 010 7z
and
X’ 1 1 1 1 X
B:|Y |=—%|1 a & Y (3.228)
Z' V3 1 & «a Z

where o = % . These transformations produce for the parameter s the following ones

[X]

i

A:s — €3

B s — s+ 2
’ s—1

The transformations defined in (3.229) generates the tetrahedral group I'y- = T', while
the ones acting on the LG fields correspond to a central extension of such a group. From

an abstract point of view the tetrahedral group is characterized by two generators A,B
satisfying the relations:

(3.229)

A’=1; B®=1; (AB)=1 (3.230)

In the case under consideration the full modular group of the torus, which is
PSL(2,Z) is obtained as a semidirect product of I'y with I'(3). I'(3) precisely corre-
sponds to the monodromy group of the Picard-Fuchs equation, as can be intuitively
understood from the observation that s(t) is a modular form of T'(3)

Actually this last observation requires some subtleties that is worth to mention
here.

The first point is to understand what are the monodromy transformations we

are interested in. If we consider the manifold M defined by the polynomial (3.212),

it is crucial to note that there are special values of s for which M is singular. This
occurs when the conditions:

ow

X

are simultaneously satisfied. This equation implies that

0 3 (Xl,Xz,X;;) — (X,Y, Z) (3231)

X*=Y® = Z2°=5°XYZ (3.232)
(XYz)* = S&(XYz) (3.233)

9We remember that T'(IV) is defined as the subgroup of SL(2,Z) with the property v € T(N) if
4 = +1mod N, where mod N means that any entry is defined modulo N.
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If s is finite then none of the X; may be zero for if one were zero then by the above
equations they would be all zero. It follows that equation (3.231) can only be satisfied
if s® = 1. The value s = co corresponds to the singular cubic XY Z = 0.

The periods are in general multivalued about the singular points of s . Trans-
port around these points generates transformations on the periods that are called mon-
odromy transformations. This reflects to the monodromy of the Picard—Fuchs equation
around its regular singular points, which are given as well by s = 1,a,a?,00. No-
tice that the tetrahedral group (3.229) permute among themselves these four singular
points.

If we perform a suitable change of variable in eq (3.211) we can trasform such
equation into an ordinary hypergeometric differential equation [35]. Thus one is very
tempted to analyze the monodromy transformations properties on such a solution in
the new variable. This would represent a great advantage, since it allows to study
the monodromy transformations around standard fuchsian singular points (0,1, c0) of
the hypergeometric equation, utilizing well known results in mathematics [98]. This
however does not give the correct result. The monodromy group one finds has two
generators that do not define I'(3).

The correct way to proceed in finding the monodromy group of the differential
equation (3.211) is to work explicitly with the variable s, and to take carefully into
account the behaviour of the solution around singular points, following the procedure
suggested by Candelas [81] for the mirror quintic case.

In the vicinity of infinity the regular solution of eq. (3.211) is given by:

12 1.1

P

wos) = 2Fi(3: 5,1 5)7 - (3.234)
The use of the Barne's integral representation [98] allows to represent wy as :
1 '(=Nr3r+1), 1
; =— 90 d T y3l+1 _
wo(s) 271-1;}{ ’ T2(1+ 1)(—-) (37) ) (3.235)

where 0 < args < %F and |s| > 1. To recover (3.234) as a sum over residues one has
to close the contour C to include the poles of I'(—!) on the positive real axis. On the
other hand one can define the analytic continuation of wy(s) in the region |s| < 1, by
closing C' to the left to include poles of I'(3/ + 1). Thus we find:

18 1‘( )@Bs)mt 1 S
3 g — 2)(m) — sé"( )y

wy(s) = (3.236)
where we have introduced the quantity Eo(s), for pure convenience. Looking at the
sum in eq. (3.236) we easily realize that an independent set of solutions can be singled
out by setting:

wi(s) = wo(as) (3.237)
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as well as

wy(s) = wo(a’s) . (3.238)
Obviously, since we are dealing with a second order equation the three solutions
w;(s), s = 0,1,2 are not all independent, and indeed they satisfy the constraint

wo + aw; + a®w, =0 . (3.239)

Notice that defining ¢ = o'¢, we get & + & + & = 0. Now we want to compute the
action on the basis ¢;(s) of the transvection around s = 1. The indicial equation for
(3.211), which displays a double root » = 0, shows that in the neighborhood of s = 1 we
have two solutions, one of which is regular and the other has a logarithmic behaviour.
This means that, in the vicinity of s = 1, any solution has the form:

¢i(s) = ciln(s — 1)gi(s) + fi(s) , (3.240)

where g,(s) is an analytic solution of eq (3.211) and f;(s) are analytic functions (i =
0,1). Notice that the factor % in the w; basis with respect to the &; basis is not
essential in writing the logarithimic behaviour in the vicinity of s=1, but it contribute
in computing the monodromy transformations, as we will point out later on. For |s| > 1
real we have that:

€i(s — ie) — &(s + 7€) = 2micig(s) - (3.241)

On the other hand considering the solution (3.234) for |s| > 1 and the identification
& = o'y it follows that

£1(s —i€) = Eo(afs — 1€)) = €o(s + te€) (3.242)

hence
2reig(s) =& — & - (3.243)
If we consider the action of a transvection 7} about s = 1 on the ¢; we find:
c;
T =& +cig(s) =6 + a(go — &) . (3.244)

For the torus case the matrix representing 7' is immediately found if we observe that
g(s) is a power series in s, and as a consequence its (trivial) monodromy transformation
implies from (3.243) that & = 1. Hence we get

T, = ( ? "01 ) . (3.245)

In the ¢; basis is easy to find also the action of the transformation s — as, which is
not a monodromy transformation. This is represented by the matrix A, with 43 =1

A= ( _01 _11 ) : (3.246)
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It can be easily seen that all others monodromy transformations T, T3, Ty around the
singular points a, a?, 0o are obtained as

Tw = AT AF | k=234 (3.247)

which gives:

-1 —4 -1 -1 10
T2=(1 3),T3_(4 3),T4_(91). (3.248)

Of course in passing from the variables w; to & the matrices Ty and A have their
entries changed by some a factor. However the two sets of matrices we get are perfectly
equivalent since they are each other conjugated in SL(2,C).

Now let us come to the final point of this rather technical procedure. If we look
at the monodromy group gemerated by Ti,T5,75,Ty we should find the group I'(3).
However, looking at eq. (3.248), this does not apparently seem to be the case. The
answer is that the group generated by T} is conjugated in SL(2,C) to I'(3) through

the conjugation matrix:
M = (“/5 o ) : (3.249)
Vi V3
which takes the generators T} to the standard Klein— Fricke I'(3) generators [101].
Indeed we can easily show that under conjugation 7,75, T3,Ty go respectively into:

Vlz(l 3) oy =5 12

01 T\ =3 7 )

ng(:gi) : %:(_132) (3.250)

where Vi, V;, V5 are three generator for the standard basis, while V, is connected to the
fourth standard generator Vj by the relation V; = V;V,V7'.

The matrix A does not belong to I'(3), as it should be, because it belongs to
the duality group of the potential. In this specific example the duality group I'/T(3)
contains one more generator B, with B*> = 1, which permutes the singular points of
the Picard-Fuchs equation.

In more complicated cases, say for example for the mirror Calabi~Yau quintic
[81], the structure of the duality group is quite involved, and in general it is difficult
to completely characterize it. However it is always possible to follow the procedure
above explained and find the monodromy group, and at least the generator of the
duality group which corresponds to A4 [81]. It is not clear, in the general case, how to
characterize other possible duality group generators.

However it should be interesting to find the analogue of the cubic torus for other
“Platonic” cases, namely to find to which Landau-Ginzburg polynomials correspond
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the Dihedral, Octahedral and Icosahedral groups as duality groups (for the Dihedral
group the answer is actually known [34]). This problem is presently under investigation.




Appendix A

Aspects of algebraic-geometry in
special manifolds

The definition of special geometry we have given in chapter 2 does not depend on
the fact that we are considering a Calaby—Yau compactification or not . However in
the case of CY compactifications we can find an interesting relation with algebraic
geometry [18, 4]. This relation arises with the interpretation of the Kahler metric gog-
for (2,1) moduli as the corresponding metric for the moduli space for the complex
structure deformations, i.e. the Weil- Peterson metric:

p—z/pa/\pa, (A.1)
where p, is 2 moduli dependent basis for the H(*!) Dolbeault cohomology:
Po = pa,ijk*dmi A dﬂ)] A dik* 9 (A2)

(z are complex coordinates on Calabi-Yau manifold).

Indeed, if we consider the deformed holomorphic threeform ' Q1) and take
the derivative with respect 1* in some point ¥§ we get:

o0

oy

Eq. (A.3)is easily understood if we think of variables z* as functions of the deformations

¥, and we project the derivative of dz' into a holomorphic and antiholomorphic part.
HG9) has dimension one for a CY threefold. We can explicitly show that [18]:

o0

O

We limit ourself to the case of “physical” CY threefolds, but what we say is completely general
and holds true for all CY n-folds

€ O 4+ g1 (A.3)

= kaQl + pu (A.4)

97
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where k, may depend on 9, but not on the CY coordinates. From (A.4), using

/Q/\pazfﬂ/\ﬁazo (A.5)
we immediately find:
1 WP _ . =
93 = 77 e = ~0a03 o8 (z/ﬂ AGY, (A.6)

The holomorphic sections X (1), Fa(3) of the special geometry are identified with the
periods of §) along the by = 2(hy ;1 + 1) homology cycles A and BA:

Q) = Xay +iFpph (A.7)
where ay," is a fixed cohomology basis in H 3 dual to homology cycles Ay, BE:
/aA/\,C'?Z = ~/ﬁz/\a,\:5§,

/aAAaz = fﬂA/\,BE:O. (A.8)
This means that, from an abstract point of view, we define X A Fy as:
XA = Q , Fp= Q. (A.9)
Ad BA

Tt can be shown that, locally in the moduli space, the complex structure of the CY
manifold is completely determined by the ¥®, so that Fy = Fa(¢). It is clear that a
rescaling X — AX by a nonzero A corresponds to a rescaling of 0. In other words we
may regard the X* as projective coordinates for the complex structure and ) as being
homogeneous of degree one in these coordinates.

QAX) = AQ . (A.10)

Now, in virtue of the eq. (A.4) we have:

o0
Q =0. A1l
fon g (A-11)
This gives the relation :
0
2F, = 6XA(XZFE) : (A.12)
thus F is the gradient of an homogeneous function of degree two.
oF 9
Fy = XA F(AX) = MNF(X). (A.13)

It is easy to show that the Kahler potential is written as in chapter 2:

G = —log (i / QAQ) = —log [XFy + X'Fy) . (A.14)
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Moreover the holomorphic three index section we,g. is expressed by:

o0
wfy =0 | QN o
“*4 8o 050,

The symplectic transformations are retrieved as transformations associated to the
change of canonical homology cycles.

(A.15)

Guided by this discussion we can give the following definition of special geometry
(completely equivalent to the one presented in chapter 2 )

Definition 5 A special manifold is an n-dimensional KGhler manifold of restricted
type such that on each path U; of a good cover there exist complex projective coordinates
X2 and a homogeneous, degree two holomorphic function F(X);, related to the Kéahler
potential by

G,’ = —log[Xf\gAF,' + X?@,\Fi] . (Alﬁ)

On the intersection of adiacent patches U; and Uj, OsF and X* are related by special
coordinate transformations :

X y X
(iaF)_zejuMij('l:aF), (A17)
2 J

where the f;; are holomorphic and M; is a constant element of Sp(2n + 2, R). The
transition functions are subject to the usual consistency conditions on triple overlap:

efithinthi 1,

L ,‘j}yfjkfvirki = 1. (AIS)

This definition refers to a particular coordinate system. A coordinate independent
definition is given by:

Definition 6 Let L denote the complez line bundle whose first Chern class equals
the Kdhler form K, of an n-dimensional Kéhler manifold M of restricted type. Let
H denote a holomorphic Sp(2n + 2, R) vector bundle over M and —i < | > the
compatible hermitian metric on H. M is a special manifold if, for some choice of H,
there exists a holomorphic section () of H ® L with the property:

K = —8Blog (—i(22|Q)) . | (A.19)

Note that the transition functions of a holomorphic Sp(2n + 2, R) vector bundle are

necessarily constant on each overlap. The compatible Hermitian metric can be defined
as in chapter 2.

The equivalence of all the definitions of special geometry we give are easily un-
derstood by thinking of the section Q as expressed by 2 = (X,10F) in each coordinate
patch and by utilizing eq.s (2.20)(2.36) from chapter 2
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Appendix B

Technical remarks concerning
Chapter 3

B.1 Landau-Ginzburg action and transformation
rules in component formalism

In this appendix we present the explicit form of the Landau-Ginzburg lagrangian in
component formalism and use the theonomic approach to find the N=2 supersymmetry
transformations. In the notations of [1], we write the following curvatures

T* = DV* - ZEAYE

p = D¢,
F = dA—iéNE
R® = dw® | (B.1)

where V@ is the zweibein, ¢ is the gravitino one-form, A is the U(1) connection, wab
is the spin connection and D is the Lorentz covariant derivative. The gravitino £ is a
Dirac spinor. In general we can write

E=e ( g ) (B.2)

with ¢ # (7, ¢ # (. More precisely, if we set
et = —;—(V0 +vh ,
w? = o, (B.3)

we obtain

T = dVe — w™® AV — %é_/\ ¢, (B.4)

101
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or
Ti:deiiwAei~%gA'yif , (B.5)

where v* = 1(1 £ v3). Using (B.2), we have

T — de++w/\e+—-;—c*/\c ,
7 = de"—l—w/\e"——%g"/\f . (B.6)
Similarly, we get
F=dA—C AN+ AC . (B.7)

Following the general recipes of the theonomic procedure [1], we write the background
Maurer-Cartan equations

det + w/\e"'--;—C+/\C'=0 ,

de” — w/\e—-%5+/\§_=0 )
¢t + %—w ACT =0,
- 1 -
at - 3¢ AT=0,
dw = 0 ,
dA — (CACTH+EAC =0, (B.8)
where we have set (7 = ( and ¢(* = (*. Using these notations, we can write the general

form of the LG lagrangian in components. From the Bianchi identities d>X* = d*’ =

d*¢"" =0 and from (B.8) one derives the following rheonomic parametrizations
dX' = 0, X'et +0_X'e +9(" +9C
X" = 0, X"t + 0. XTem — it — gl |
dy' = Opgiet + O gl — %3+Xic+ +07 0 W(
dp' = 0.9t +O_Ple” — —.;—(9_Xif+ — 78, W, (B.9)

where X!, X" = (X')* are complex coordinates in a flat Kahler manifold, 7" is the flat
metric and 9%, %' are the complex spin-% fermionic partners of X*’s. The parametriza-
tions of db*" and dy'" are obtained by complex conjugation. Using standard techniques,

one finds that the action, from which (B.9) follow as field equations in the vertical di-
rections, is

S = /£ (B.10)
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where
L = 'r],‘j:(dXi - Wf_ - "Zié_) A (H£6+ - HJ: e—)
Nji(dXT + 7 ¢+ 7Y A (et —TEe™)
ni (I + T Jet A e — (dingjdpidyp™ + %¢k6kvvé+) At

+ o+

(4imij ' dp’™ + %ﬁkakWCJ”) ANe”

%¢k‘ak.Wé- Aet — %&k‘ak* We Aem

(8™ 0;0;W + 8" 47 0, 0;s W + 80 O, W0, W)et N e~

dX7 AP T — dXTT APy

dZ' N (e — dZP AT (g (B.11)

+ o+ + o+ o+

The lagrangian (B.11) is written in first-order formalism and the auxiliary fields 7%,
can be eliminated through their equations of motion: Iy = 0 X* and II§ = 9. X",
The lagrangian (3.61) of Section 3.2 is obtained from (B.11) by restricting it to the
bosonic surface (namely discarding all terms containing the gravitino forms ¢E, %)
and substituting back the above mentioned equations for II%". Form the curvature
parametrization (B.9), we easily recover the N=2 supersymmetry transformations

§X' = —e -y, (B.12)
§XT = ety p ety (B.13)
syt = ~52—6X56++7]5’;*6,-*'v?'é” , (B.14)
5 = —%éxféﬂ“—nfi’*aﬁwe— , (B.15)
s = %0Xi*e"+nji*<9jWé+, (B.16)
7 = %éxf*‘é*-nﬁ*ajwf, (B.17)

which coincide precisely with the ones in (3.63) of Section 3.2.
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B.2 The lagrangian for the topological (b,c,8,)-
system

In Section 3.2 we gave the explicit form of the descent equations (3.58), using (3.55) as
BRST tranformations. We know that this case corresponds to the twisted stress-energy
tensor

T, =T+ %8.] — dcb+ 408 (B.18)

which is associated to a (b,c,3,~)-system with Ag = 0, A, = 0. For simplicity we con-
sider the case of only one collection of pseudo-ghost fields and as usual, we understand
the expressions for the tilded operators. The main advantage of this approach is that
we can write the chiral primary fields of the N=2 theory in terms of the local fields
appearing in the lagrangian, and hence we can construct the representatives of the
BRST cohomology in a rather simple way. The lagrangian, however, is not a BRST
commutator: we are dealing with a topological theory of the Schwartz-type [24].

As pointed out in Section 3.2, there is another possibilty and one can take as

twisted stress-energy tensor the following expression

A

T. = T~ —;-BJ
= (1—-2X)0bc —2Xb0c + (1 —2X)v88 — 2XBdy . (B.19)
This corresponds to a commuting (8,7)-system with weights Ag = 2X, A, = 1 — 2},

and to an anticommuting (b, c)-system with weights A, = 2) and A, = 1 — 2. In this
case the BRST tranformations are

sB = 2b , sB=2b,

s¢c = 2v , sc=2% ,

sb = 0 , sb=0,

sy = 0, sy=0. (B.20)

Eq.s (B.20) are obtained from the supersymmetry tranformations (3.36) by setting
et = & =0 and choosing as BRST parameter § = /2¢~ = /2~ This corresponds to

taking

Q- —\}—5 (fe @+ fa(zez) (B.21)

as BRST charge. The stress-energy tensor (B.19) is a BRST commutator, namely

T=s[-(r- %)caﬁ - 380¢] (B.22)



Technical remarks 105

where, as usual, we have defined s¢ = [Q, ¢] for a generic field ¢. Now we want to show
that the twist (B.19) can be seen directly at the lagrangian level, or equivalently that we
can write the lagrangian ( including the interaction term) as @ BRST commutator. If
this is the case, then we have a topological theory of Witten-type [24]. To understand
this point, we first recall that the supercurrent G*, as shown in (3.41), is actually
composed of a G} term and a G term. The latter is zero on shell, but it has to be
taken into account in defining the superconformal transformations [47]. Keeping this
in mind, we recognize that

L = s(—Gf -G)
= s[—(A — 1)cHB — ABBc + VBV — (X — 1)e0B — MFOE — LVbOV] (B.23)

Using (B.22) , we get
L= [——2/\[357 + (1 — 220788 + (1 — 2X)0bc — 2Xbdc + bE@VéV] +cc  (B.24)

which is the expected lagrangian for the twisted A’s. It is suggestive to point out that,
if we define

Gt = —(A— -;—)c dB — A3 dc+ %Vi»éf/dz :
Gt = —(A— %)a dB — \G dé — %f/bc’)de : (B.25)

where for a generic pseudo-ghost field ¢
d¢ = Opdz + Opdz (B.26)

denotes the space-time part of the rheonomic parametrizations (that is we disregard
the gravitino contributions), we get

szfzmp dzAdz:/dzAs(G+)+fs(c‘:+)/\dz . (B.27)

Finally, if we regard (B.24) as a topological lagrangian without special requirements on
the interaction term, we can ask when this model defines a conformal field theory. The
answer to this question is almost obvious, even if the calculation is a little different:
only for quasi-homogeneous potential V(3) with 2X = w we get a conformal field theory.
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B.3 Adding marginal perturbations to the free first
order lagrangian

As pointed out in the first chapters the moduli space of a (2,2) superconformal theory,
describing a Calabi-Yau compactification theory, is the direct product of two special
Kahler manifolds S(y1) X S(,1), with dimensions hi1,ho1. From the abstract (2,2)
viewpoint S(31) is the parameter space of marginal deformations induced by chiral-
chiral primary fields characterized by conformal weights A = h = 4 and U(1) charges
g = g = 1, while §(y 1) is the parameter space of the deformations induced by chiral-

antichiral primary fields having h = h = 4 and ¢ = —¢ = 1. In our first order
b— —c——f ——~ approach we are not able to produce local deformations corresponding
to the antichiral primary fields, but we can analize the chiral sector. In this context,
given a Landau-Ginzburg “characterization” of a first order system with ¢ > 3 , the
only perturbations that correspond to the chiral primary operators are the modal
deformations of the defining polynomial. Let us take for example the case of the

quintic polynomial
5
W=> X}, Xi=8b:. (B.28)
=1

As shown in [47] the perturbations which corresponds to chiral primary operators are
the 101 algebraic moduli of the polynomial (B.28). This exhaust all the hy; = 101
complex structure deformations. Of course there could exist marginal perturbations
that do not correspond to (second component of) chiral-primary operators of the n=2
theory. If we consider, say, the A, models, the interaction term in the first order
lagrangian is as well a marginal perturbation. In this case howewer there are no moduli
that corresponds to chiral primary fields, simply because the A, potential has modality
zero. We are just speaking of marginal perturbations of (2,2) theories which define fixed
lines of such theories, without corresponding directly to the geometrical interpretation
of complex—K&hler deformations.

In this case it could happen that there there exist other marginal operators,
which move the free theory along different fixed lines, and preserve as well the N=2
superconformal invariance. It is known [93] that perturbing an N=2 superconformal
theory with of the operator

O(z,%) = J(2)J(2) , (B.29)

where J(z) is the U(1) current, we move it along a one parameter fixed line, to which
belong also the SU(2) Wess-Zumino-Witten models. Howewer the perturbation (B.29)
explicitly break the N=2 invariance. This can be easily understood form the observa-
tion that it cannot be written as the second component of a N=2 superfield, or more
simply by looking at the OPE expansion of the J(z) with G%(z).
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At the classical level it is not difficult to select a marginal operator which pre-
serves both conformal and susy invariance, playing a similar role of our interaction
term (except the fundamental one of fixing the nature of the model through fixing its
conformal dimension). Let us consider the simple framework of just one collection of

b,c, B, fields. If we take the following combination [95, 100]:

Os(z,2) = —J%2)J°() = 74@ }fa (2)e(2)B(2)&()
= (bc+ ﬂv)(ﬂ'y + bc) (B.30)

(the minus sign in (B.30) is conventional) and we add it to the free first order action
with a small coupling ég such as:

L =Lo+6g0,, (B.31)

we get a theory which is classically invariant under the following N = 2 holomorphic
transformations:

§8 = 2v/2¢7b
§b = —\}—iﬁ@ﬁ—k\@)\@e*ﬂ ,

§c = 2V2e¢y

vy = :/1—§e+3c—\/§()\—§)86+c )

1
B = ol *698<h

. 1
8 = EeﬂSgﬁcb ,
1
§¢ = ——=€t8gBcc
7 gBee ,
- 1 -
6 = —7§€+59ﬂ0’7 ) (B.32)
where e* are arbitrary holomorphic functions (8¢* = 0). The action is also invariant

under N=2 anti-holomorphic symmetries which are similar to the ones defined above.
In this case the equation of motion are completely symmetric for all the fields; they
can be written in a compact way as:

(5_ 6gj3)¢ = 0,
(0—6gJ)¢ = 0, (B.33)

for any tilded and untilded fields in the lagrangian. As a consequence of (B.33) there
is no field in the perturbed lagrangian which preserve its holomorfic (antihlomorphic)
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character. Using the same procedure as in Section 3.2 we find that the Noether pro-
cedure gives the same holomorphic conserved currents Gf, G;, G5 as in (3.41), and
changes G} to:

1
V2
which is again zero on shell. To ask whether or not the operator (B.30) is truly
marginal, we can refer to the integrability criterion exposed in chapter 3. It is imme-
diately verified that the OPE of O(2.2) with itself is regular, as a consequence of the
cancellation of singular terms between the bc and (v contributions, so that there is
no one loop correction to the conformal dimension of O, itself. The operator O(z, Z)
is truly marginal. So we expect that also at the quantum level either the conformal
symmetry (B.32), either the N=2 susy is preserved. However, due to the presence of
loop corrections in this non trivially interacting theory, the quantum case is far more
complicated than our model [100], and it has to be treated very carefully. Here we
limit ourself to simple classical considerations.

G = V2[AB8c + (A — 4)0Bc] + —=bgBc[be + 7] (B.34)

Before going into further discussions let us make a comment on the use of the
“current” notation J3(z). This is a consequence of the fact that forab—c—f8 — 1«
system we can contruct [95] a SI(2) current algebra as follow:

J+ = -7,
J3 - —:87 — bc )
J~ = B%y42Bbc, (B.35)

with (left) conformal dimensions: 1 — A, 1 and 1 + A. J? is precisely the combination

used in (B.30).

The natural question that now arise from the discusion is what happens when
also the Landau—Ginzburg potential term is present. For sake of simplicity we consider
the A,, model. The interaction part of the lagrangian is now given by:

AL = §g,b"bB" — Sgx(be + By)(B7 + be)
= g10:(22) + 9204(z2, 2) . (B.36)

It is tedious, but straighforward to show that even at the classical level the trasforma-
tions obtained by a suitable combination of (B.32) and (3.36) are no more symmetries
of the full lagrangian. Hovewer, since we are adding “classical” marginal perturbations
we may ask if the conformal invariance is preserved at the quantum level. The answer
is negative. Indeed with a little generalization of the citerion exposed in chapter 3 [94]

we should require that in the operator product of O;,7 = 1,2 no pole terms are present.
Hovewer, if we consider:

Oy (w,w)

02(2,2)0,(w, @) = (n + 1) G- w)z-®) + reg.

(B.37)
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we find such a term, which destroys, at one loop level, the conformal properties of the

model [79]. Notice that if we consider instead of O, the combination O in (B.29) the
“no pole” condition is satisfied, since:

n

n+1

0(z,2)0: (w,0) = [(-—"be + ;L%ﬁy)bﬁ"} « [c.c] = reg. (B.38)
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B.4 The flat metric method: an example

The basic idea of this appendix is to give an explicit sample of calculation for the metric
and Riemann tensor in the coupling constant space for a general parametrization of
the Landau-Ginsburg potential, and impose flatness.

We consider the example of the ¢ = 3 model defined by:

X4 Y4
W="r-+4+" —sX?Y?. (B.39)
4 4
We are interested in finding the differential equation on the variable s, that repre-
sents the flatness condition, in complete analogy to eq (3.216) The usual computation
requires to write down the fully perturbed potential
X+ v
W = —4—-"}"“4—- —-‘U/o‘—[Ll_X—/.LQXZ "—/J,3XY'2‘—/.L4X2}}'2 —/.L5X2Y—,U/6Y2““SX2Y2 (B.40)
and to compute all metric elements in this eight—dimensional space . However we are
going to show that in this case it suffices, in performing calculations, to consider only
a subring of the chiral ring, resulting in a considerable semplification of the technical
machinery.

Let us consider the action on (B.39) of the Z, symmetry generated by

h=(8,8%) , B=e%, (B.41)

with the first entry of h multiplying the X coordinate and the second the Y coordinate.
The only elements in the chiral ring that are left invariant by this symmetry are ¢y = 1,
¢s = XY and ¢s = ¢op = X?Y?%. Our purpose is to compute the metric and the
Riemann tensor for the reduced perturbed potential:

X-1 Y4

1 + —4— — pdy — Ss . (B'42)

W(p,s) =

Since we are interested only in the s dependence for the potential (B.39), we will keep
only linear and quadratic terms in the relevant coupling u, as we will send it to zero
in the Riemann tensor computation. The vanishing relations associated to (B.42) are:

X® = pY +2sXY?,
Y = pX +2sX%Y . (B.43)

Using (B.39) it is immediate to find

p = det 8;0,W = (1 —4s*)X°Y?, (B.44)
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so that 1
X*Y?)(s) = = h(s) . B.45
(XY2)() = —— (o) = Tmgzh(s) (B.45)
Formula (B.45) gives the gys component of the metric, since:
gos =< dops >=< X*Y* > (s) . (B.46)

For the other components we have to use repeatedly the vanishing relations (B.43). As

an example we write explicitly gs;s. The operator product gives

bads = X3V = (uY + 2sXY?)(pX + 2sX7Y) , (B.47)
so that
(1—4s)X3Y? = p? XY +4sX°Y? . (B.48)
In the vacuum expectation value only the second term survives and
dus
= B.49
P e OF (B.49)

where we have posed f(s) = 1—}1}4%; Our final result is expressed by the following
following three by three matrix:

0 0 1
g=f(s)| 0 1 = ' (5:50)
1 418 uz 1652;12
1—442 1—492 + (1"‘432)2

If we compute the R3;, component of the Riemann tensor and send the relevant coupling
i to zero, we find:

d*f

v
as

Raey = 2(1 — 48" f— — (1 — 432)(%)2 — 6457 f2 — 127 . (B.51)

Imposing the flatness requirement and expressing the differential equation for h(s) =
(1 —45%)f(s) we get
d’h dh dh
— 45)h— — 3(1 — 45*)(—=)? — 16sh— + 4h* = B.52
2(1 —4s )hd52 3( s7)( ds) 6s 7 + 0, (B.52)

which precisely coincides with the one appearing in ref.s [34, 78]. Moreover, introducing
the flattening factor for ¢g, i.e.

ds
= —X?Y? .
$s = — ) (B.53)
we can verify that (B.52) is equivalent to the following Schwarzian equation [78]:
8s2 + 6
t,§} = ———— B.54

Also for the case in (B.39) one can analize the duality group starting from the properties
of the solutions of (B.52) (B.54). In this case the duality group is given by I'y- = 'rTFz_)
I'y coincides with the Dihedral group [34]. This result can be easily obtained by
performing the same calculations as in the cubic torus case, finding the Picard-Fuchs
equation associated to (B.39) and studying its monodromy group.
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