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Introduction

The aim of this work is the study of the continuity of the map which assigns to a

drift vector field b; the probability measure P, weak solution, if it exists, of the stochastic

differential equation
t
Xt :1Y0+/ bs(Xs)dS+Bt, (1)
0

where X;(7) := v(t) is the canonical stochastic process on the path space C(IR+; R?). We

will interested in the case where the drift b is singular and unbounded since this is the
case in most of the physical interesting situations. We will study therefore the situation
where is not possible to apply the usual convergence theorems for diffusion processes. To
handle this pathological situation we give a criterion for convergence of weak solutions
of stochastic differential equations which only require to control the convergence of the
corresponding drifts outside “bad” sets for which the probability to be attained can be
made arbitrary small ( thm.3.1 ). Making use of relative entropy estimates ( lemma 2.3
) all our convergence results are given in terms of total variation norm. Our convergence
criterion, which contains the previously known results ( see §4 ), and can be easily applied,
via classical potential theory, to the case in which the drifts are in HI(IRd) (see §5 ),
becomes really useful when one has an explicit knowledge of the densities of the processes.

We will therefore concentrate on the case where

1
b:v-i-'u,, ut(:c) ::-—2—

if ps(z) # 0, u = 0 otherwise, where p(t,z) = p:(z) is a given family of probability densities,
and v satisfies the Fokker—Planck equation

/}Rd fz, T)p(z,T)dz — /;Rd f(z,0)p(z,0)dz = /UT[RJ(” -V plz,t)dzdt |

for all T > 0, and all f € COOO(IRd+1). We will require moreover that the drift satisfies the

“finite energy condition”

T
[ [ @) + @) pulo)dodt < 400
0 R4

Within these hypotheses always there exists an unique P solving (1) w.r.t. which X; is a
Markov process with density p: (see [C1], [C2], [C3]). Therefore in this setting our problem
is well posed and we have a well defined map C from the set P of pairs (v, p) into M;(Q2),
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the space of probability measures on 2. The elements in the range of this map are called
Nelson Diffusions. An important class of Nelson Diffusions is the one corresponding to the
pairs (¥4, (V1 /1), where 1, is a solution of a Schrodinger equation ( observe that
here the drift is unbounded on the nodes of %; ). We have therefore that in this case the
stochastic process X; gives us a pathwise representation of quantum phenomena (see [N1],
[N2] for this non trivial fact).

In order to maximize the applicability of our convergence criterion we introduce an
appropriate parabolic capacity ( §8 ), and using nonattainability results ( §9 ), in §10 we
prove that the map C is continuous with respect to a natural metric ( the Guerra metric )
on P ( thm.10.2 ). Moreover in §12, after giving a result on the continuity, in H!-norm,
of solutions of Schrédinger equation with respect to the choice of Kato—class potentials
( lemma 12.1 ), we prove convergence of Nelson Diffusions corresponding to Schrodinger
operators in terms of H!-convergence of initial data and convergence in Kato—norm of the
potentials. This also shows that the Guerra metric is too strong with respect to convergence
of solutions of Schrédinger equations. In fact in this case our convergence result is not a
corollary of the theorem on convergence of general Nelson Diffusions ( even if the proof is
essentially the same ).

We conclude remarking that these results on convergence of diffusion processes with
singular drifts seems also to be useful in a pure functional analytic contest. Indeed in 87
we give a convergence theorem for diffusion corresponding to energy forms ( a particular
class of Nelson Diffusions corresponding to the case v = 0 ), and we use it to give a
“regularization” theorem for “generalized” Schrddinger operators in which the potential

should not necessarily exists as a measurable function.



Contents

A

10.
11.

12.

13.

Topologies on M;(2)

Relative Entropy and the distance between Diffusions Processes

A criterion for convergence of weak solutions of stochastic differential equations

The case of drifts in L} _(IRp; LP(IRY)) + L®(RY), p > d + 2

The role of capacity: the case of drifts in HY(RY)

Nelson Diffusions

Convergence of Diffusions corresponding to Energy Forms and regularization of Hamil-
tonians

A Parabolic Capacity

Stopping times and nonattainability

Convergence of Nelson Diffusions

Nelson Diffusion corresponding to Schrédinger Operators with potentials form bounded
by — % A

Convergence of Nelson Diffusion corresponding to Schrodinger Operators with Kato—
class potentials

Nelson Diffusion corresponding to Schrédinger Operators with potentials given by

measures

Acknowledgements

References



1. Topologies on M; (1)

We will work on the measurable space (2, F), where Q = C(IR+;]Rd) is the space of
continuous paths in IR?, and F is the Borel o—algebra with respect to the topology on §2

given by the metric
+00 !
1 supycicn [[7(2) = 7'(2)]l

/
m(y,7) =y = _
( ’ ) nz>:1 ACE -+ supUStSn ”")’(t) _ ’)’,(t)”

Let
X, 0 Q@ - R X (y) i=~(2)

be the evaluation stochastic process . Since X; is continuous, and therefore measurable, it

is easy to see ([BV], §1.3) that
F=0c(X: : t20) .
Moreover we will consider the increasing filtration {F}:>0
Fii=0(Xs : 0<s<t) .

Obviously (see [SV], §1.3)
Tt:a(U}"s> Vi>0,
§<t
and
F=c U ft
>0

Moreover, if T is a F;—stopping time, then ([SV], lemma 1.3.3)
Fr={EeF : En{r<i}eF Vi>0}=0(Xsnr : s>0).

We will denote with M;(Q) the space of probability measures on (Q,F). If Bis some
sub—o-algebra of 7, then M;(Q,B) will denote the corresponding space of probability

measures.
Let Cy(£2) denote the set of all bounded continuous functions on Q. Viewing M; ()

as a subset of the dual space of C}(£2), M1(Q) inherits the weak—# topology. Since Q is a

complete metric space, M;(§2) will admit a complete metric inducing the weak—+ topology

4



(see [DM], chap.IIl, no.60). Such metric is the Prohorov metric p so defined (see [B],
appendix III):

p(P,Q) :==inf{e >0 : Q(A) < P(A°)+¢ P(A) < QA7) +¢, YAEF },

where A€ is the e-nbh. of 4 w.r.t. the metric m.
The following theorem characterizes convergence w.r.t. the Prohorov metric (see [SV],
thm.1.1.1 or [B], thm.2.1, chap. 2):

Theorem 1.1. Let P", P, n > 1 be probability measures in M1(Q). These five conditions
are equivalent:
1)

lim p(P™,P)=0;

n—-+oo
ii)

n—-4oo

- /S;fdpn:/QfdP f € Cy(9);

i)
limsup P*(C) < P(C) VC closed;

7~ 00

liminf P"(G) > P(G) VG open;

7Y > - OO

lim P™(B)=P(B) VBE€F st P(8B)=0.

n—-+oo

We will moreover consider on M;(f2) the stronger topology induced by the metric

IP—-@Ql = sup > [P(E:)~Q(E) |
{Eeleemw g
where the sup is taken over all measurable partitions of (. This is the topology that
M () inherits as subset of the Banach lattice of bounded signed measures on §2, normed
with the total variation norm. A more workable equivalent definition is (see [JS], lemma
4.3, chap.V)
1P — Q| :=2sup [P(4) — Q(4)] .
AeF

By v) in the preceeding theorem we see that the topology induced by convergence in total

variation is strictly stronger than the weak—* one.
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If the supremum in the above definitions is taken over a sub—o— algebra B, then we

will denote the corresponding metric on M;(2,B) by || -

Since the filtration {F;};>¢ is an increasing one, we can introduce another topology
on M;(f2), stronger than the weak—* one but weaker than the one given by the total
variation norm. Such topology is the topology of “local” convergence in total variation,

i.e. a sequence {P"},>; will converge to P iff ||[P™ — P||, — 0, V¢ > 0. This topology is

B

obviously induced by the metric

X1 IP-QlF,
d(P’Q)’zzz_nHHP-Q o

n>0

Since U;>yF; generates the Borel o-algebra, M;({2) is a complete metric space w.r.t. d.
Such topology is stronger than the weak—x one since weak—+ convergence on C([0,7; IRd)
VT > 0, implies weak—* convergence on {1 (see [W], thm.5 or alternatively use lemma

11.1.1 in [SV] applied to the sequence of trivial stopping times 7 = k).

2. Relative Entropy and the distance between Diffusion Processes

Let P,Q € M;(Q), and let B be a sub—o-algebra. We define the relative entropy of

Pi w.rt. Qp as

if P< Q on B, and Hz(P;Q) = +oo otherwise.
The total variation distance can be estimated in terms of relative entropy by the

Csizlar-Kullback inequality (see e.g. [FF62], remark 3.2)
1P -Q

In order to give estimates on the distance between weak solutions of stochastic differential

5 <2H3(P;Q) .

equations we therefore need to write relative entropy of such measures in term of the
corresponding infinitesimal characteristics. This is given in the following lemma which
follows from Girsanov’s theorem (see [H] or [JS], thm.4.23, chap. IV for 1), and see [F51],
prop. 2.11, or [F82], remark 1.3 for ii)).

Lemma 2.1.Let B; be a F;-Brownian motion on the probability space (2, F,Q), and let
P e My(Q). Then



P!_’Fi < Q|_7:t Vi>0

if and only if there ezists an adapted process by, with
t .
/ |bs]|* < +00 P —a.s. VYt>0,
0

such that .
B; — By —/ b,ds 1s a P — Brownian motion.
0

2ds> .

In this case, for any F;— stopping time T, one has
dP dp 17,%4 1 iINT
exp (/ bsdBS———/ |
- P\ 2 Jo

il = — b
dQ -FE/\T dQ
Hr (P;Q) <400 Vt>0

i)
if and only if

t
EP/ |bs]|?ds < +o00 V>0,
0

In this case, for any F;— stopping time T, one has

Hr, (PiQ) = Hr(PsQ)+ 3B [ [balds.

The adapted process b in the previous lemma can be computed as a stochastic forward

derivative in the sense of Nelson [N]:
Theorem 2.2. ([F61],[F62]) If Hr,(P;Q) < 400, Vt > 0 then, for almost every t

1
by = L? — lim =Ep(Btse — Bi|Fx) .

el0 €

From the previous lemma, and the Csizlar-Kullback inequality, one can estimate the dis-

tance in total variation of two weak solutions of stochastic differential equations:

Lemma 2.3. If P and P' are probability measures on §) given by weak solutions of

stochastic differential equations

Xi(y) ==z + /(;tbs(v)ds + Bi(7)
X ==+ [ s+ i)
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with drifts b and b’ such that
t t
/ |Ibs]|°ds < 400 P — a.s., / bll?ds < +c0 P —a.s., V>0,
0 0
then

t
1P =P < Bp [ b —bi)ds vezo.
0

Proof: since

i
Ep/ Hbs —_ b;“zds < +o00 = Pl}—t < Qlfc
0

( see [JS], theorem 4.23, chap.IV ), we have
t
Bt = / (bs -—b;)dS"l-B; PI_'Ft—a..S.

0

Therefore, by the previous lemma,
N ' 12
Hr (P;P') = iEp IIbs — bll|°ds
0

and, by the Csizlar—-Kullback inequality it follows

t
1P =P < Be [ b= (s)ds
3]

Remark 2.4. An estimate of the same kind as the one given in the previous lemma can be
obtained as a corollary of more general results giving estimates of the total variation dis-
tance in terms of the expectation of the Hellinger process corresponding to the pair (P, P')
(see [KLS], thm.5.1 or [JS], chap.V, §4d). However, in the case of measures corresponding

to diffusion processes, such generality is unnecessary.

3. A criterion for convergence of weak solutions of stochastic differential equa-

tions

In this chapter we will give a criterion for convergence of probability measures which

will be particularly useful when applied to Nelson diffusions.
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Theorem 3.1. Let P,P", n > 1, be probability measures on (2, F), weak solutions of the

stochastic differential equations

¢
X=X, +f bn(s,Xs)ds +B; n>1,
0

t
zYt = XO +/ b(S’JYS)dS + Bt .
0

Let uyy = Po X', u? = P" o X[ ! the corresponding one dimensional marginals. Assume

the following holds true:
1)
t t
/ brll?(s)ds < +00  P™ — a.s., / Ibl|?(s)ds < +c0 P —as.,, ¥Yn>1 Vi>0,
0 0

i) there ezists a decreasing sequence {Dy}r>1 of Borel-measurable subsets of IRy X R
such that
k
Yk > 0, for a.e. t > 0, there ezist subsequences {b,x};>1, {t;’ }i>1 such that
kfj> >

lim [ |bye(t,2) — b(t,2)|2dus’ (2)dt =0
j—-+oo Dli J

i)

im P(r, <t)=0 Vit>0,

k—+o0
where T, denotes the first hitting time of Y = (¢, X;) to the set Dy,
)

Lm [lpg —poll =0

n

Then there exists a subsequence {P™ };>; such that

lim d(P™,P)=0.

j—too

Remark 3.2. By lemma 2.1, hypothesis 1) is equivalent to
)
P < W/ Pr <Wpgr Vi20 ,Vo2>1,
where W™ := [p, Wodug(z), W := [p, Wedpo(z), and W, is the standard Wiener mea-
sure supported on (2, the space of continuous paths starting at . This obviously implies

that
pts oy <mo V>0, Vn > 1,
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where m denotes Lebesgue measure.

Remark 3.3. According to [BG], theorem 10.7, definition 10.21, theorem 3.1 holds true
with the weaker hypothesis that the sets Dy are “nearly Borel set”, i.e. there exist Borel

sets By and B}, such that
By C Dy C By,

and the set B; N B§ is polar for ¥; w.r.t. P" P, for all n. We will make use of this later

(see lemma 9.1).
For the proof of theorem 3.1 we need the two following lemmas.

Lemma 3.4. Let P, P", n > 1, be probability measures on Q, and let P = [ P.du(z), P" =
J Pldpn(z) be the disintegration of such measures w.r.t. X,, p = PoX;',pn =ProX; L.
Let {Tk}k21 be a non~-decreasing sequence of Fy~stopping times, and let {Pf}k?_l,{Pz’"k}k?_]

be sequences of probability measures such that, for each k > 1, Pflﬂ = zlfk,P:l’;k =

:‘I}-k, with Fr = F;,. Finally assume that, for each k > 1, there exist subsequences

k&
{Pxn] }iz1s {/"‘n;ﬁ}j?_l such that

n’7
lim [P~ PE[ldp,e (=) = 0
J—+oo J R j

If
lim P(ry <t)=0 Vt>0, and Lm |p,—pl|=0 |,

k—+oo n-—-oo

then there ezists a subsequence {P™ };>1 such that

Lm d(P™,P)=0 VYt¢>0.

jtoo

Remark 3.5. The above lemma is similar to lemma 11.1.1 in [SV], with weak convergence
replaced by convergence in variation. We don’t need here any hypothesis of lower semi-
continuity for the stopping times. Moreover we remark that the disintegration of measures
assumed in lemma 3.4 always exists since §) is a Polish space (see [DM], chap.III, nos70 to

74).

Proof of lemma 3.4: let vyny = v}, — v7,, be the Jordan decomposition of the signed

Measure vy = P;L'ft — Py r,. We have

1P = Pellr, = [vanel(Q) = v00(Q) + v7,,(2) 2 |[P}(E) — P.(E)| VE€F

znt
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For each n, let {Al", Bi"} A" U BI® = 1, be a Hahn decomposition of Q for v,,;. Then
1P} = Pellr, = vin (A7) + vonu(BL")
Since {7 < t}, and E N {7 > t}, are Fr—measurable for each F;-measurable E, and

Pn,k — Pn

o F 2 Fer W have

|PY(E) = Po(B)| = [PHE N {me <t}) + PN(E) = PPH(E N {7 <1}) — Po(E))|
S |PPHE) = Po(B)| + [PPME N e < 1}) = PHE N {7k < t})]
< |PPME) = Po(B)| + 2P (1 < 1)

Analogously we have

\P¥(B) — P,(E)| < 2P, (T < t)
so that
vini(AS) = PI(AL) — Po(AL)
< |PPF(AYY) — PEAD)| +2P] (1 < t) + 2Py (14 < 1)
< ||PMF — PR 4+ 2PmF(rp < 1) 4+ 2P, (7 < 1)
<3| PPF — PE| 4+ 4P (1 < 1)

An analogous estimate holds for v, ,(BL*). From
12"~ Pl < [ 1P~ Pelldun(e) + s = u]
one derives
17~ Plls, <6 [ [[P2* = P dun(z)
Rd
48 [ Pu(rn < Odn(z) + lan — ]
R

= 6/ P2 = PEldpn(@) + 8P(ri < £) + 9] — i
Rn

This implies that Py, is a limit point of {P{}t}nzl, and our thesis follows.

Lemma 3.6. Let (0, F,F;, By, P) be a weak solution of the stochastic differential equation

t
JYt = JYU +/ b(S,z‘{g)dS + Bta
0

11



and let P = [ Pydu(z) be the disintegration of P w.r.t. the random variable X,, p =
PoX;*'. Let T be a Fi-stopping time. Define Pr:=P,o X1 with

Xy Q-0 X (7)) = Xinr(n (7)

Then
AT
BT ::Xt—:n——/ b(s, X;)ds
0

is a PT-Brownian motion for p-a.e. = € R%.

Proof : by our hypotheses
wf = 160 - [ Losxas
with L, := A + b, -V, is a P-martingale for each f € C2(IR%), so that
[ Mieara) = [ mimara)  vaer vest.

From the definition of disintegration of a measure it follows that v Px,p( - ) is a
version of the conditional probability P( - |o(Xy)) ( see [DM], chap.III, no.70 ), so that,
V B « .7‘-0, Vs S t,

//M.f(”r’)dP.\-m)(7’)dP(7)=/ M](v)dP(v)
B ANnB

_ f f

——/:mB M (v)dP(y //Af (7)dPxy(5)(v")dP(7)

Since B € F; is arbitrary, and g = P o X!, we have that ]\/I,_f is a Py—martingale for
p-a.e. z € RY. From this, and the definition of P, we have that

F(X0) — / L, f(X,)ds

is a P]-martingale, and the lemma now follows from the equivalence between existence of

solutions of martingale problem and existence of weak solutions of stochastic differential

equations (see [St], theorem 2.6, chap.3).

Proof of theorem 3.1: let Pf = P;’,‘,Pzn’k = P:’r’i, ;. := 74 Ak, be defined as in lemma 3.6.
Then there exist sets 4, A,, with uy(A) = pl(A4,) =1, such that, Vz € 4,, := 4N 4,,

tAT,
Bf =X, -2z — / b(s, X )ds
0

12



and

t/\r,’c
B = X, —u _./ bo(s, Xy )ds
U

are Brownian motions w.r.t. P* and P/* respectively ( since ul' — uo 3 @ s.t. A, #

0V n>n). Since, by our hypotheses i),

[ xop(@blies < 400 PE - as,
Ry

[ xtomp@lbalP(s)ds < 400 PE* s,

+

for all z € A, by lemma 2.3 we have

([ 1eze- Pfi!du3<m>)2

< / Ibat,y) — bt ) |2 dus (y)dt
D3

k

+ f Pk — PE2dun(z) .
Ae

Since ,u{}(é%) — 0, lemma 3.4 implies our thesis.

Remark 3.7. Since one can exchange P with P’ in lemma 2.3, the statement of theorem

3.1 does nor change if we substitute hypothesis ii) with the following one:
i’) there exists a decreasing sequence {Dj}r>1 of Borel-measurable subsets of IR x R*

such that Vk > 0, there exists a subsequence {b, };j>1, such that
krj>

Lim [ ||be(t,2) = b(t, 2| dpe(w)dt = 0
J—+o0 D,i i

4. The case of drifts in L], (IR; LP(R%)) + L®(R“™), p> d + 2.

In this paragraph we will show that theorem 3.1 contains the results previously ob-

tained by various authors (see [P2], chap.l, §6, for the L? case, and [SV], chap.11, [JS],
chap.V, §4d, for the L*>° case). To this end, in order to apply theorem 3.1, we recall the

following
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Theorem 4.1.([P1]) Let b = b? + b™, with b” € L} (R;L?(IR?)), p > d + 2, and
b € L°°(1Rd+1). Then there ezists an unique P € M1(Q), P < W on F; VYt > 0, which

solves, as a weak solution, the stochastic differential equation

i
XtZXO+/ byds + B, .
0

Remark 4.2. Since existence of weak solutions is equivalent to existence of the correspond-
ing martingale problem (see e.g. [St], theorem 2.6, chap. 3) by the results in [SV], §10.0,
it follows that thm.4.1 implies that lim,— 4o P(7, < t) = 0, V¢ > 0, where 7, denotes the
first hitting time to the set {||(¢,z)|| > n}, i.e. the process does not “explode”.

By the previous theorem we can apply theorem 3.1 to the situation in which the drifts are
in L}, .(IR; L?(R%)) + L=®(IR**Y), p > d + 2:

loe

Theorem 4.3. Letb,b,,,n > 1, be time-dependent drift vector fields in L} (IR; LI’(IRd))-{—
L=(R*), p > d+2, and let P,P™,n > 1 be the corresponding sequence of weak solutions

obtained solving the stochastic differential equations with drifts b, b, and initial distribu-

tions fy . If

T
lim / / IIb2(t,y) — bP(¢,y)||Pdydt =0 VYT >0, VR>0,
0 JzlI<R '

n—-+0o0

lim ess sup  ||b;°(¢t,z) — b (t,z)|| =0 VI >0, YR>0,
noEee LT InlI<R
and

im |lpn —ulf=0,

n—-+oo

then
lim d(P",P)=0

n-—4oc
Proof: By [P2], lemma 1.8, chap.l, we have

1

P

T T
/ / nbz(t,w—bf’(t,y)uzwwdtsGT(/ / Hbfi.(t,y)~bp(t,y)llpdydt) ,
0 Izl <R 0 lz|I<R

Then convergence follows from theorem 3.1 and remark 3.7 using the sequence of sets

Dy :={ |[t|+ ||z|| > k }, and observing that iii) holds true because this is equivalent to the

non explosion of the process.

14



Remark {.4. If the drifts are assumed to be all time—independent then the previous theorem

holds true with p > d (see [P2], chap.2, §5).

5. The role of capacity: the case of drifts in Hl(IRd).

Up to now the choice of the sets D we made was trivial. We simply use them to
avoid to control the convergence of the sequence of drifts at infinity. Now we will show
that a more clever choice of the sets D will allow us to treat more singular cases. To this

end we premise the following key remark.

Remark 5.1. Let B be a Borel (or analytic) set such that cap(B) = 0. Here cap denotes
the Choquet capacity defined for an open set B by

cap(B) :=inf{ ||p||%: : ¢ € HYRY), ¢ > xp ae. }
where xp is the characteristic function of B, and by

con(B) iy, Iul o pear(E)

for any set E. Let P a probability measure such that Py, < Wz, V& > 0. Here
W = [ W.du(z), and p is the initial distribution of P. Suppose moreover that cap(B) = 0
implies p(B) = 0 (for example this is true if p < m, where m denotes the Lebesgue
measure). Since cap(B) = 0 < Wy(rp < T) =0 VT > 0, Vz € B° where
denotes the first hitting time to the set B ( see [Ful] ), we have that cap(B) = 0 implies
P(tp < T) = 0,i.e. capacity zero sets will be polar for the process X; w.r.t. the probability

measure P. Moreover, since ( see [Ful] )
Ca'p(Bk) = HekHi‘[l, Ek(ﬂj) = Eﬂ'z(e—rﬁk) 5

if {Bg}r>o is a decreasing sequence of open subsets of R? such that cap(B) | 0, we have
W(rs, <T)10 VT >0,and consequently P(p, <7) |0 VI >0.

From the previous remark it is obvious that a good choice for the sequence of sets D,
appearing in theorem 3.1 is a sequence of sets with capacity decreasing to zero. Therefore
condition ii) in theorem 3.1 forces us to look for the right functions with respect to New-

tonian capacity. The following theorem is a well know results of potential theory ( see e.g.

[Ful], §3.1)
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Theorem 5.2. i) Let u be in H'(IR*). Then there exists a decreasing sequence of open
sets Dy C IR? such that cap(Dy) | 0, and the restriction of u to D is continuous for all
k.

ii) Let {un}n>1 C H'(IR?) be a Cauchy sequence converging to u. Then there ezist a
decreasing sequence of open sets D, C IR? such that cap(Dy) | 0, and a subsequence

{un; }j>1 converging pointwise and uniformly to u on DS, for all k.
Now the following theorem easily follows:

Theorem 5.3. P,P",n > 1 be a sequence of weak solutions of stochastic differential
equations with drifts b,b, in HI(IRd), and initial distributions p,p,. Suppose that p
charges mo zero (Newtonian) capacity set, and that the hypotheses i) of theorem 3.1 holds
true. If

lim by — bz =0,

n-—-+00

im |lpn —pll =0,

n-—+-+oo

then
lim d(P",P)=0

n—-+oc

Proof: by the hypotheses i) in theorem 3.1 it follows that Pir, < Wig, ¥t > 0 (see
remark 3.2). Moreover, by the remark 5.1, hypothesis iii) in theorem 3.1 holds true for
any sequence of sets Dy such that cap(Dy) | 0. The hypotheses on our sequence of drifts
imply that, by the preceeding theorem, there exists a sequence {Di}r>1 of open subsets
of RY, with cap(Dy) | 0, such that

m [ba; = bl ooy =0, Yk =1,

j—tos

for some subsequence {bnj }j_>_1, where f)k = Dy U {||z]| > k}. Proceeding as in theorem
4.3, by using the sets Dy := Dy U {||z|| > k} U {|t| > k}, one proves the existence of a
converging subsequence {P{;ﬁt}jZI. Suppose now that the whole sequence {P”,}t }n>1 does
not converge. Then there exist an ¢ > 0, a 7' > 0, and a subsequence {P”’“}k21 and such
that HPI';_-’i — Pir,|| > e for all k, and for all t > T'. But by the above reasoning applied to
the convergent sequence {by, }+>1 we get a further subsequence along which the measures

converge to P, which would be a contradiction, so {Pi"_,’}'rl }n>1 converges to Pyr, forall t > 0.
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6. Nelson Diffusions.

Theorem 5.3 in the preceeding section is not satisfying since we have to assume the
existence of weak solutions of the stochastic differential equations corresponding to the
given sequence of drifts, and we have to explicitly require that all such probability measures
are absolutely continuous w.r.t. the Wiener measure, i.e. that they satisfy i) in theorem
3.1. Moreover we have not yet fully used theorem 3.1, in the sense that this theorem is
especially powerful when one has an explicit knowledge of the densities of the processes.
This will allow us to treat more singular drifts than the ones allowed in theorem 5.3. To
this end we introduce the class of Nelson Diffusions. Such diffusions are defined in term of
their proper infinitesimal characteristics (see [C3]):

The space P of proper infinitesimal characteristics is defined to be the set of pairs
(v, p) with p; a time dependent probability density on IR? and v; a time dependent vector
field on IR? defined py(z)dzdi-a.e. so that

T
flz, T)p(z,T)dz — f(z,0)p(z,0)dz = / / (v-Vf)e(z,t)dzdt , (F.P.)
Re R 0 R4

and

T
[ U9 vmls + lomilia) di < oo (FEC)

for all T >0, and all f € C°(IR?T).
The following theorem ([C1], [C2], [C3]) give us a map from P into M;(Q). The probability

measures in the range of such map will be called Nelson Diffusions.

Theorem 6.1. Consider the measurable space (2, F), with ) = C(]I{+,R(i), F the Borel
o—algebra. Let (v,p) be a proper infinitesimal characteristic, define b := u + v, where

_ 1Vp(=)
2 p(z) ’

u

if p(z) # 0, u(z) := 0 otherwise, and let (Q,F,F:, X;) be the evaluation stochastic process
Xi(v) = v(t), with Fy = o(Xs,s < t) the natural filiration. Then there ezists a unique
Borel probability measure P on §) such that :
i) (Q,F,Fi, X, P) 1s a Markov process;
i) the image of P under X; has density p(t,z);
iii)
t
By =X, - Xy — / b(s, X;)ds

0

17



18 a P-Brownian motion.

Hemark 6.2. From the definition of proper infinitesimal characteristic, ii) in theorem 6.1,

and iv) in lemma 2.1, it follows
1.7 )
Hr, (P;W) = EE Ib(s)||“ds < o0 VT >0
0

(E denotes the expectation w.r.t. P ), so that (F.E.C.) is a finite entropy condition. This
moreover implies

so that, by remark 3.2, the hypothesis 1) in theorem 3.1 holds true.
Since o(Us>yFt) = F, by [JS], theorem 4.23, and corollary 2.8, chap.IV, if

B[ bt <o
Ry
then P < W, and, in this case,

1
H(P;W) = sup Hr (PiW)= 28 [ [b(s)]ds
TER, 2 Jm,

7. Convergence of Diffusions corresponding to Energy Forms and regulariza-

tion of Hamiltonians

Let p be a probability density such that /p € Hl(IRd). Then the pair (0,p) is
obviously a proper infinitesimal characteristic for a Nelson Diffusion P. Theorem 6.1
implies that P solves, as a weak solution, a stochastic differential equation with drift
%Vlog p. Moreover P is a stationary probability measure with density given by p. Such
diffusion process may be alternatively characterized (see [Fu2]) as the one associated to

the Dirichlet Form (sometime in this case one speaks of Energy Form)

6,(1,0) = L V(@) Ve(@pl(e)de  fa€ OZ(RT).

We will show now that theorem 3.1 gives us a convergence theorem for diffusion processes
associated to energy forms within natural hypotheses (compare with the results in [AH-

KS2] and [AKS] where only convergence of the finite dimensional distributions is given).
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Theorem 7.1. Let {pn}n>1 be a sequence of probability densities such that {\/p }n>1 is
a Cauchy sequence in HI(IRd). Let {P"}n>1 the sequence of probability measures on the
path space Q = C(Ry,IR?) corresponding to the sequence of energy forms {&, }n>1, as
gwen by theorem 6.1. If

then
lim d(P",P)=0

n—--oo

where P is the probability measure corresponding to £,.

Proof : for simplicity we will suppose that YR > 0 there exists a ép > 0 such that the
infimum of p on {||z|| < R} is greater than §g; the general case will be contained in theorem
10.1.

We essentially proceed as in the proof of theorem 5.3. By remarks 3.2 and 6.2 it
follows that the hypothesis i) in theorem 3.1 holds true. Moreover from remark 5.1 and
thm.5.2 it follows that hypothesis iii) in thm.3.1 holds true for a sequence of sets D such
that

;Hmly/n; = Vol (pz) =0, VR 21,

for some subsequence {pn; };>1, where Dy := Dy U{||z|| > k}. Let us now consider the
sets Dy := Dy U {||z|| > £} U{|¢| > k}. From the definitions of b, and p,,, we have

[ on = bl pudyas
e - \/"fvmg).
/ / IVVBats) - Vpt) P + [ v R o) - Vo)l dya

o
k

<KV = VBl + ko IV VAl /Am - mzmﬁz) ,

dydt

. . n;
and so we have proved the existence of a converging subsequence {PI 7, }i>1. The conver-

gence of the whole sequence now follows proceeding as in the proof of thm.5.3.

Remark 7.2. TFor the case of diffusions corresponding to energy forms, thm.6.1 can be
improved in the following sense (see [RT-S], §6):

Conclusions i)-iii) of thm.6.1 hold true if p € LY(IRY), p > 0 a.e., and /p € H} (N€),
with cap,(N) =0, N closed.
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Here cap, denotes the capacity corresponding to the energy form &,, i.e. (see e.g. [Ful])
cap,(E) = inf{ £,(u,u) + (uy/plu\/p)rz : v € D(E,), u > xg a.e. }.

Since cap,(N) = 0 is equivalent to nonattainability (see [Ful]), and since an analogous of

thm.5.2 holds for Newtonian capacity relative to an open subset U C IR?
cap(E;U) := inf{ ][u[lﬁ{l(U) : u € HY(U), u> xg a.e. }

(see e.g. [Fr]), it is easy to generalize thm.7.1 to obtain convergence if the limiting density
satisfies the hypotheses of this remark. Let us remark that, since N is nonattainable,
denoting by 7, the first hitting time to the set N U {||z|| > n}, P.{m, <t} | 0, V¢t > 0,

implies
H}'M'_n(Px;I/V,;)<+OO, Vi>0,Vn>0 = left <<W,,[}-t, vt > 0.
Therefore i) in thm.3.1 holds true. This also implies

cap(E)=0 = cap,(E)=0.

Remark 7.9. If p satisfies the hypotheses in the preceeding remark then the corresponding
energy form is closable, and, if A4 denotes the symmetric operator on L?(pdz) corresponding
to £, then A is essentially self-adjoint on C2°(IR") (see [RT-S], §4). Moreover 4 is unitary
equivalent to a “generalized” Schrédinger operator on L?(IR"). In fact, setting ¢ = VP,
one can define a self-adjoint operator on LQ(IR(I) by H := ¢H¢™ !, and, if Vo,¢p" Ve €
L? (IR%), then the distribution V := s¢"1A¢ is a continuous linear functional on CHIR")
and the quadratic form defined by H is given, on C1(IR"), by (see [AH-KS1], thm.2.3)

1 2 r( 72
5 | IVH@IFde+ V()

Let H be defined as in the preceeding remark. In general it is not possible to write H as
the perturbation of the Laplacean by a potential V', which need not exists as a measurable
function (see [AH-KS1] for some examples). It is however natural to ask if it is possible
to find approximations of the “generalized” Schrédinger operator H by “smoother” ones
which are perturbations of —%A by smooth potentials. Theorem 7.1 implies that this is
the case (see [AH-KS2], [AKS] for results of this kind obtained under other conditions):

Theorem 7.4. Let {p,}n>1 be a sequence of a.e. positive probability densities such that
VPn E HI(IRd), Vn > 1, and let {Hp}n>1 be the sequence of generalized Schrédinger
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operators corresponding to the energy forms £, . If there exists an a.e. positive probability

density p, /p € H}, (N€), such that

lim {lon — pllzr =0,

n-—-40o0
Jim /e = Vellag (ve) =0,

where N is a closed set such that cap,(N) = 0, then H, — H in strong resolvent sense,

where H is the self-adjoint operator corresponding to £,.

Proof: let pZ(t,y), t > 0, be the densities of the diffusion processes starting at z, corre-
sponding to the energy forms £, . By Markovianicity one has p?(t,y) < pn(y), Vi > 0, for
pn(z)dz—a.e. z. Therefore by thm.7.1 and remark 7.2 one has

Bm ess sup |P; — P,|| =0, lim / pn(z)dz = lim p(z)dz = 0, (ﬂo)

n-—-+o0 z€A, n—++oo‘,__lc n—-+0o0 e
where P, is the measure corresponding to £,. Let

T := e HHn Ty = e,
By the definition of H,, H, one has, putting ¢ = p,,¢* = p,
T f(z) = ¢n(@)EZ[(f/dn)(X)ls  Tif(z) = d(2)E[(f/9)(X4)], [ e L*(R).
Let f € L°(IR?), then

T (fn) — Te(F)|2:
< [ 8a(@)B2(F 0 X0) = $(@)Bulf 0 X0) P
An

b [ (@B 0 X0~ () Bulf o X ds
Ae

<|l¢n — Bllz2 ess sup | E=(f o Xo)]” + [|énllze ess sup (B (f 0 Xy) = Eu(f o Xy)[?

n / 16u(2)E(f 0 X,) — $(a) Ea(f 0 X)) da,
A

c
i

so that, by (o), Vf € L=(IR%),
Jim TR (f¢) = T(flIze < lim (1T (Fén) = T )7 + 10 — #llZ: = 0.

Since ¢ > 0 a.e., our thesis follows then by density.
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8. A Parabolic Capacity

In order to extend theorem 7.1 to the case of general Nelson diffusions we need to
introduce a capacity adapted to the space-time process ¥; = (¢, X;), and to functions with
the same regularity of time-dependent probability densities corresponding to infinitesimal

proper characteristics. Let us consider the Banach space (Wr,|| - |lw, ), where

Wr = C([0, T, H{(IR?))  and  |jullw, := sup |jule

0<t<T

We will consider real-valued functions only; considering real and imaginary parts sepa-
rately, theorem 8.3 below holds for complex—valued functions as well. We need “good”
pointwise properties of functions belonging to Wz. To this end we will introduce a sort
of parabolic capacity on subsets of [0,T] x IR%, and we will study properties of elements
of Wr up to sets of arbitrary small capacity. Following the general procedure in reference

[AS], we define a set function on subsets of [0, T] x IR*
I'r(F) = inf or(Er)
T( ) {Ek}keﬁv, EklI%)pen, U/cEk_DE§ T( k)
where, for an open set
67(E) :=1inf{ |[ull}y, : v € Wr, u > xF ae. }

The set function I'r has the following properties ( [AS], pg.146 ):

Pl.'
Lr(0) = 0;
Pz.'
ECE =Tr(E)<Tr(E");
P3.’
Tr(UkBr) < > Tr(Er);
k
P*.‘

Ve>0 36>0 sit. 6p(E)<§=Tr(E)<e¢

From the above definition it is also obvious that there exists a relation between I't and

the Choquet capacity defined in remark 5.1: :
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Lemma 8.1.

I'r(E) > cap(Ey) vte [0,T] ,
where By :={z € R : (t,z) €E }

Proofk : from the definitions of I'r, cap, and by countable subadditivity of cap
( see [Ful] ), it follows

Tr(E) > inf ool (B
T( ) " {Ek}rew, E:Itpen, UkEkDEzk: p(( k)t)
Z inf Ca’p(uk(Ek)f)

1
{Ex}rem, Ex open, Uy ExDE

> inf cap(4:) = cap(Er)

Remark 8.2. Let D be an open subset of IR, xIR%. Since D is open, and X(.y is continuous,

we have

{rp < T} = U {X,€eDg}

7€QnN[0,T)
where Q is any dense denumerable subset of IR. By lemma 8.1 and remark 5.1 it follows
that if I'v(D N [0,T7] x IRd) =0 VYT > 0, then D is polar for the process Y; := (¢, X;)
w.r.t. P. Moreover, if {Dj}r>1 is a decreasing sequence of open subsets of IRy X R? such
that T7(Dk N [0,T) x RY) | 0 VT > 0, then, by lemma 8.1, cap((Dx):) L 0 ¥t >0, and,
by remark 2.4, W(r(p,), <T) 10 VT >0, ¥t > 0. Therefore W(rp, < T)l0 VYT >0,
and P(rp, <T) 10 VT >0, by remark 5.1.

We state now the main result of this paragraph. This result does not depend on our par-
ticular definition of 'z but holds for any capacity defined by means of a “good” functional
space ( see [AS] ).

Theorem 8.3. i) Let u be in Wr. Then there exists a decreasing sequence of open sets
D1, C [0,T] x R? such that Dr(Dr) | 0, and the restriction of u to DT, N [0,T] x R’
is continuous for all k.

i1) Let {u,,,}nzl C Wr be a sequence such that Wr-lim, 4ocun = u € Wr. Then there
ezist a decreasing sequence of open sets Dty C [0,T] x R? such that I'r(Drx) 10, and a
subsequence {un, };>1 converging pointwise and uniformly to v on D%, N [0,T] x R? for

all k.

Proof : i) first of all we note that Wr N C([0,T] x IR") is dense in Wr. This can be

seen considering, for each u € Wr, the approximating sequence of continuous functions
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un(t,z) := (J1/n * u¢)(z), where
S € CE(RY),  supp(frjn) C {2 : flef <1/n}

is a molliflier, and then proceeding in the same way as in [LSU], lemma 4.8, chap.II.

From the definition of é7 we have
1
sr({ (t,2) ¢ [u(t,2)l > A}) < Flully,  YeeWrnC([0,T] x RY) . (%)

Now we proceed as in [AS], pp. 148-149 (see also [Ful], theorem 3.1.3.):
let {un}n>1 C Wrn C([0,T] x R?) be a sequence such that Wr—lim, .4 un = u € Wr.
Since {un}n>1 is a Cauchy sequence, by (*) and Py, there exists a subsequence {un; };>1
such that

Tr(4;) <277,

where the sequence of open sets {A;};>1 is defined by
Aji={(t,2) ¢ |up; ., (tz) —un(t,z)] >277 }.

If (t,z) € (Uj>s4;)¢, then V5 > J, Vp we have
jtp _
[Un; ., (t,2) —un; (t,2)] < Z [un,(t,2) — un,_,(t,z)] <277,

k=j+1

so that {un;};>1 uniformly converges on (U;j>s4;)¢. This implies the continuity of u on

(Uj>s4;)¢. By P; we have

Pr(Ujzsd;) < ) Tr(4;) <277
izJ

Since J is arbitrary, 1) is proven.

ii) by 1), proceeding as in [Ful], lemma 3.1.5., we have
1
Pr({ (62) ¢ fu(t,a)| > A D) < ggllulfy,  Vuewr |
so that, by our hypotheses, u,, converges to u in capacity, i.e.

Im Tr({ (¢,2) : |ua(t,z) —u(t,z)] >€})=0  Ve>0.

n—-4oo

Then one proceeds in essentially the same way as in i).
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9. Stopping times and nonattainability

We now define the stopping times we will need for the proof of theorem 10.1 in order

to apply theorem 3.1. Let ¥,%™, n > 1, be functions belonging to Wr VYT > 0. Assume

llIl’l H‘gbn — ’l,/)”va = VT Z 0 ;

n—-+oco

and define, Vk > 1,
T(y)=inf {t>0: (4, X,(7) €D} j=1,2,
where
Di={(t2) : (L a)| >k YU{ (t,2) : [(t,z)| <1/k}

and the D?’s are the open subsets of IR, x IR?

2
Ds: = U Dty
TEB+

where the sets Dt are given in theorem 4.3. Define Dy, := D} U D?; by construction the

following holds:

i)
Pr(DiN[0,T] xR [0 VT > 0;

i)
¥,%" € L7(Dg) Yk>1, VYn>1;

iii) there exists a subsequence {¢)™ };>1 such that

j—too

We remark that, since || - |y, < || - Wy if T < T', the Dt ;’s may be chosen in such
a way that Dy C Dy, f T < T'.

In order to apply lemma 3.1 we need to prove that 7, and 77, are F;-stopping times,
and that P(r; A7f <T) | 0. This is the content of the following two lemmas.

Lemma 9.1. 7} and 77 are F;-stopping times.

Proof : 1) by remark 4.2, and [BG], theorem 10.7, definition 10.21, T} is a Fy-stopping

time if D} is a “nearly Borel set”, i.e. if there exist Borel sets Bj and B;. such that
By C D, C B, and TI'p(B,NBin[0,T]xRY) =0 YT>0
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Since the class of nearly Borel sets is a o—algebra, it will suffice to prove that (Di)° is a

nearly Borel set.
We have 1y € Wr VT > 0, so that, by theorem 8.3, there exists a decreasing sequence

of open sets {Um}m>1, Um C Ry x R, Tr(Up, N[0,7] x RY) | 0 VT > 0, such that ¢
is continuous on US, N[0,T] x R® VYT >0 Vm > 1. This implies that

W 1/k o) n{ It e)l <k 30 U

m2>>1

1s a Borel set. Since
Ir(Nm>1Um N[0,T] x R?) <inf Tp(U, N[0, T) xRY) =0 YT >0 |,

D; is a nearly Borel set.

2) 72 is a F;-stopping time since D% is an open set.

Lemma 9.2. Let ps,p}, n > 1, be continuous families of probability densities. Suppose
VT — /pi in Wr VT > 0, define D3, and D%, as above and let P be the probability mea-
sure corresponding, according to thm.6.1, to the proper infinitesimal characteristic (v, p).

Then P(ti AT2 <T) |0 YT >0.

Proof : since P(tri A8 < T) < P(r} <T)+ P(r} < T), we will prove
P(r} <T)]0and P(r? <T) | 0 separately:
1) let us denote by 'r]:’l and T,:’Z the first hitting times to the sets

{(tz) : 2) >k}, and {(t2) : Vp(t,z) <1/k}

respectively. "Then
P(ri <T)< P(rg' < T)+ P(rp? <T) .

One has P(v',:’1 <T) |l 0 VYT >0 by theorem 6.1, since this is equivalent to the non-
explosion of the process (2, F, Fy, X+, P) (see remark 4.2). From theorem 6.1 one has also
P(T;"z <T)l0 VYT >0, since p; is the density of the process X; w.r.t P. Indeed, since
/P is continuous up to a set of arbitrary small I'-capacity by thm.4.3, we can suppose,
without loss of generality, that {,/p(t,z) < 1/k} is an open set. Therefore {"r,:’2 <T}=

Ugeqnp, ) {v/Pe(Xy) < 1/k}, and the thesis follows.
2) P(r3 < T) | 0 by remark 8.2, and the definition of DZ.
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10. Convergence of Nelson Diffusions

We have now at our disposal all the ingredients to prove our main result. In order
to use the results of the preceeding sections we need to consider time-continuous proper
infinitesimal characteristic, i.e. we suppose that the family of probability densities is
continuous w.r.t. the time parameter. On the space of time—continuous proper infinitesimal
characteristics we put a metric. We will use the letter g to denote such metric (and we
will call it the Guerra metric since a very similar metric was used by Guerra in [G]). g is

so defined:
+0oo

9((v,p), (v',0')) ==

n=1

1 ga((v,p), (v',p))
2n 1+ gn((v,p),(v’,p’)) ’

where
T

onl(0,0) (') 1= sup 5=l + ([ o/ —ot/Bllat)
2 0

Lemma 10.1. Let Py, be the space of time continuous proper infinitesimal characteristics.

Then (Pic,g) is a complete metric space.

Proof: (we will proceed as in [G], thm.1) Let {(vn,pn)}n>1 be a Cauchy sequence in
(Pic,g). Then obviously there exist p; and w € L}, (IR; L*(IR%)) such that, VT > 0,

loc

im

su
"’—”Loote[oP

T

] IV (pn)t = Vol = 0,

T

im |(vn)e/ (pn)t — wtlli«zdt = 0.

n-—-4 00 0

Let us define the functional
T
Ly(f) ::/ / wfy/p dedt f € L*([0,T] x RY; pdzdt).
0 RY

Since [, is continuous, then there exists v € L?([0, T] x R?; pdzdt) realizing such functional.
Therefore vp = w,/p, so that v; := wy/\/pt is pi(z)dzdt —a.e. well defined and Un\/p, —

vy/p in L?. Since

UnPn — VP = Un~/ Pn(\/Pn - \/E) + (vn\/ Pn — w)\/_7
vnpn — vp in L', Therefore (F.P.) in §6 holds in the limit and the proof is completed.
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The following theorem shows that the map given in theorem 6.1 is continuous w.r.t. g:

Theorem 10.2. Let {(vn,pn)}n>1 be a sequence of time continuous proper inﬁnitesimdl
characteristics, and let {P"},>1 the corresponding sequence of probability measures on the
path space §1 = C’(]R+,]Rd) given by theorem 6.1. If

im g((vn,pn),(v,p)) =0,

-4 00

then
lim d(P",P)=0

n—-0c

where P is the probability measure corresponding to (v,p).

Proof : let Tp, = 7} AT} = i, where 7}, 77, and Dy, are defined in §9. We have proven
in lemma 9.2 that P(r, < T) | 0 VT > 0. Moreover ||p,(0,-) — p(0,-)||: converges to

zero by our hypotheses. Therefore, in order to use theorem 3.1, we have to prove that

there exists a subsequence {by, };>1, such that

j—+Foo

lim |brn; — szpnj(t,y)dydt =0 Ve >1
D

From the definitions of b,, and p,,, we have

/ an - b”zpndydt
De

k
S‘/
D

e = ulPpndydt+ [ oo = ol prdyit
k

c
k

:/D’i V\/E(t,y)“‘\/gv\/ﬁ(t,y) dydt-l—/Dz Vnr/Pn(t,y) — f;-)’iv\/;(t,y) dydt
k k

S/U /B IVy/Bu(t,y) = VV/a(t,9) " dydt + / /B NonPa(tsy) = vy/plt, ) | dyd

vz [ RO o) - vt v ava

k
<k sup [VAr(t) = VAt G + [ [ Tonvnty) - vty dyd

0<t<k

+-2k° sup IV /ot )7z 1o — VPl L~ (D) -

. . n;
and so we have proved the existence of a converging subsequence {P’_,,_i{ }i>1. Convergence

of the whole sequence now follows proceeding as in the proof of theorem 5.3.
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Remark 10.3. If the sequence {(vy,, p}}n>1 given in theorem 10.2 does not converge but it

is only bounded w.r.t. the energy norm, i.e. if

sup [ (IVVAFIE + [onyBalt, IEs) de < +oo VT 20,
nelN Jo

then, by remark 2.3,

sup Hr, (P™";W") < 400 YT >0,
nelv

where W™ := [W,p,(0,z)dz. Suppose moreover that the sequence {p,,(0, )dz},>1 is
precompact w.r.t. the weak—x* topology on Ml(IRd). Then, by [Z], theorem 5, the sequence
{P"}n>1 is precompact with respect to the weak—* topology on M;(§1), and

Hr(QW) < 400 VT >0

where W := [ W,du(z), and (g, Q) is any limit point of {p,(0, Jdz}n>1.

11. Nelson diffusion corresponding to Schrédinger operators with potentials
form—bounded by —%A

Let K denote the self-adjoint representation of ——%A on LZ(IR'I), and let V be a real-

valued measurable function on IR? s.t. V is K—form-bounded, with relative bound smaller

than one,ie. 3a € [0,1), 356> 0 s.t.

(V)2 < a($|Ki)re +b{pld): Vo€ HY(RY) .

We shall discuss only the case of time—independent potentials. The extension to the time—
dependent case is immediate at the expense of heavier notation.

Let H be the unique self-adjoint operator associated to the sum of the quadratic forms
of K and V. Such H exists by the KLNM theorem ( see [RS], theorem X.17 ). Moreover

one has

H*(RHND(V)C DH) C HY(RY)
(p|Hp)r2 = ($|K¥)r2 + (V). Voe H'(R') V¢ € DH) |,
and
1113 < (1 —a) " ((|Hep)pz + (b + 1)) r2) < (2(b+ 1) + a)(1 — a)H[¥] 3
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Let e~ be the one parameter unitary group generated by H. By the above relation, it
follows that e~ maps H(IR") into itself, with

le™*  |lmm < (200 +1) + a)(1 —a)™"
Moreover, since

Jim (|(H + (b + DI g = 9z = lim [[(e7 = D(H + b+ D4z =0,

e~ *H is a continuous one parameter group of bounded linear operators on Hl(IRd).
By the above discussion, proceeding in the same way as in [C1], we have the following

analogue of theorem 2.1 in [C1]:

Theorem 11.1. Let V be a K-form-bounded potential, with relative bound smaller than
one, let 1y be in HI(IRd), and let H = K + V be defined as a sum of quadratic forms.
Then

i) e=""H is o continuous one parameter group of bounded linear operators from H' (IR'Z)
into H*(IR?);

i1) there are unique jointly measurable functions ¥(t,z) and V(t,z) such that ¥(t,z)

= e~ "Hoypy(z), and Vi(t,z) = Ve i Hypy(z);

i) defining p(t,z) := ¥(t,z)¢(t,z), and
v(t,z) =S (Vi(t,2)/9(,2)),

if ¥(t,z) # 0, u(t,z) = v(t,z) = 0 otherwise, one has

T
/ / |v||*pdzdt < +oc0 YT > 0;
0 JIRY :

w)Vf e C’;(IRd) the function t — fJRd f(z)p(t,z)dz is differentiable, and

4 flz)p(t,z)dz :/ v(t,z) - Vf(z) p(t,z)dz

dt Rd R4

From the preceeding theorem it follows that we can associate to the pair (¢, V') an element
in P and so, by theorem 6.1, a probability measure in M;(Q2). We summarize this results

in the following

Theorem 11.2.Consider the measurable space (2, F), with 2 = C(IR4,IR"), F the Borel

o-algebra. Let V be a K-form-bounded potential, with relative bound smaller than one,
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let vy be in H'(IR?), and let H = K + V be defined as a sum of quadratic forms. Let
Yy = e Hahy pyi= i, and define

b(t,z) =R+ & (Vy(t,2)/9(t,2)),

if ¥(t,z) # 0, b(t,z) = 0 otherwise. Let (2, F,F;, X:) be the evaluation stochastic process
Xi(v) == v(t), with Fy = 0(Xs,s < t) the natural filtration. Then there ezists a unique
Borel probability measure P on §) such that :
i) (Q,F,Fi, X, P) 1s a Markov process;
i) the image of P under X; has density p(¢,z);

t

B, =X, - X, — / b(s, X;)ds
0

18 a P-Brownian motion.

12. Convergence of Nelson Diffusions corresponding to Schrodinger operators

with Kato—class potentials

In the light of theorems 10.2 and 11.2 it will be interesting to find conditions on
the potentials and on the initial data which will guarantee the convergence of the Nelson
Diffusions associated to the corresponding Schrodinger operators. To this end we now

suppose that the potentials are in the Kato—class K4, where

Ky:= { V : lim sup/ Iz = yl*~ [V (y)| dy =0 } d>3,
lz—yll<e

alld o

Ky = { V : lim sup/ log ||z myH—l[V(y)[ dy =0 } ’
lz—yll<e

ald g

K= { Vo Slipr_yHg [V (y)| dy < 400 }

( see [CFKS], §1.2, [Si2], §A2 ). We also define a Ky—norm by

VI, = sup/ Qlz —y; )|V(y) dy
lz—yll<1

xz
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where () is the kernel in the above definition. One has the following inclusions:

LP(RY) ¢ L2, ,(RY) C K4 C L%, ;(RY)

untf

with p > d/2if d > 2, p = 2 otherwise, where

z

LZnif(]Rd) = { Vo SHP/” <1 [V(y)[Pdy < +oo }
T—ylls

( see [CFKS], §1.2 ), and

IVilx, <@L , 1/q+1/p=1.

unif

Vil

unif

By [CFKS], §1.2,if V € K, then V is K—form-bounded, with relative bound zero, so that
we can apply theorem 11.2 to obtain a Nelson diffusion. In this way we have a well defined
map from H'(IR*) x K, into M;(Q2). We now prove that this map is a continuous one.

To this end we need the following

Lemma 12.1.Let V,V, € Kq, n > 1, by,%? € H(R%), n > 1. If ¢y = e~ Hyy,
Y= ety B = K+ V,H, = K +V,, and if

Jim [l — ol =0, and  lm |[Va—Vix, =0

then

im sup ||[¢) —|lgr =0 VI >0.
=400 )<t T

Proof: we will prove the case d > 3, for the other cases the proof is analogous. Since
le™Fr g — e oy [l e < [|(e™ = e )bl + [le ™ o alfvd = bollan

in order to apply theorem 6.1 we have to prove

1) sup He—itHn”Hl’Hl < +oo,
nclV
2) lim  sup [(e7" — e Yl =0 Vo€ HY(R?) .
”—"*'OCUStST

From the Kato-Trotter theorem ( see [K], theorem 2.16, chap.IX ) 2) is implied by 1) and
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2') there exists a complex number z, Sz > 0 s.t.

im |[(Hp—2D)""% — (H —2I)"*9||lm =0 ¥ € H'(R?).

n— 00

Let us at first show that Ve > 0 3y, > 0, In. > 0 such that
(K +~1)7Y Vol ooz <€ VY27, YnZne.

We will proceed as in [CFKS], §1.2. By [RS], theorem IX.29, (K +~I)"! is a convolution
operator with an explicit kernel G(z — y;7), so that we may write, using the known

properties of G ( see [Sc], theorem 3.1, chap.6 ), and lemma 2.6 in [Sc], chap.5,

(K +~I)7" [Val [l

Ssup/ G(z — y;7)|Val(y)l dy + sup/ G(z — y;7)|Va(y)| dy
z Jlz—yl<1/7 z Jlz—yl|>1/v/7
_ C
<y sup [ e = 4P~ Va(w)] dy + 2 sup f Va(w)] dy
z Je—yll<1/ VT VY e Jje—yli<i/vA

_ C
<e1||Vm = VK, + c15up lz —y|> 7|V (y)| dy + —;nvnnz\-d

z /nz—ynsuﬁ Nal

Since |V, — V]|k, — 0, and V € Ky, Ve > 0 v, Ine s.t.
I(K +7D)7" [Val o= <€ Yy 27 Vn2ne.

This gives the result, since G(- — y;7v)|Va| is a positive integral kernel, and Al Lo Lo =
|Al||p= for any A with positive integral kernel. From the above result, by duality, and
by Stein interpolation theorem, proceeding in the same way as in [CFKS], corollary 2.8.,

it follows that Ve > 0 3., dn. s.t.
| Va2 (K +4D)7 P22 <€ V727, Yn>ne.

Since

(Vb)Y 2] < || Vel /2 (K +~4D) 723 2 (1K) L2 + 7 [[#1172)

we have that, Vn > ny, choosing v > 71, all the V,,’s are K —form-bounded with the same

bound
a= sup || [Vn]1/2(K+7I)”1/2H%2,L2 <1l, b=~a

nan

Since
le™ g < (2(b+1) +a)(1 —a)™
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( see §2 ), we have that 1) holds true.

Let us now consider the operator
An(2) i= (K + 2I) 72V, (K + 21)71/?

Since V, is K—form-bounded with relative bound 0, by [CFKS], proposition 1.3, 4,(iv) is

a bounded operator with
Hm | An(2y)||zzz2 =0

y—+oo

From the definition of A4, it follows, if v > 0,
14n(@)lip2ze < es | An(Mliezrz < es || [Val 2 (K +4D)7 23000

so that
NAn(Y)z2re <1 V727910, YR 2> 1g)0,

and the Tiktopoulos’ formula holds:
(Ho+iyD)™ = (K + oy D)TV2(1+ Anliy) )N (K +ivD) 72
( see [Sil], §II3 ). Therefore we have

I(Hn +37)™" = (H +i7) 7 )| e
<N+ An(i7) 7 = (T + A(7)) ) (K +ivD) 729 12
Since
[4n(i7) = A(i9) |2 22 < esll(K +4I) 72 (Ve = VYK +4I) 73|12z
<ol [Va = VIVAE +4D) 7?30 e
and
[V = VK +4D) 7 270 < e Vo = Vg,

( see [Sc|, theorem 2.2, chap.5, theorem 3.1, chap.6 ), 2’) follows, and the proof of the

lemma is complete.

The following theorem gives us a criterion for convergence of Nelson Diffusions in terms of

convergence of the physical data that generate them:

Theorem 12.2. Let V,V,, € Kq, n > 1, y,%? € HY(IRY), n > 1. If P,P", n > 1 are
the probability measures on () = C(IR+,IRd) which correspond, according to theorem 11.2,
to by = e Hypy 1 = ety H =K +V, H, =K +V,, and if

nll)r_l}_loo ng - ¢0”H1 =0, and HET)O HvVn - V“I\'d =0 ,
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then
lim d(P",P)=0

n—-4oo
Proof: from the previous lemma it follows that

lim sup ||[¢f — ¥l =0 VT >0.
=400 )<t <T

Moreover we know that in our case

e wt>
Pt_’¢t|7 t = (¢t

Therefore we have, if the sequence of sets Dy, is defined according to the results of §9,

/ b — b|[2pndydi
&

w0

T dydt
(U »y vividy

o Tt - o)
Pi by

2
dydt

vip - Yy,

<2f

=2 o b
k

<2 [ [ 197 - Vlayd +2 f ”mlﬂ e — el Pyt

<2k s<1il<)l» V] — Vb7 +2k3 Sup ||V¢tHL2H1/’n—¢HLw(D ;
0

and the theorem follows proceeding in the same way as in theorem 10.2.

Remark 12.9. In theorem 7.1 one can replace K3 with
. V(z)l [V(y)l
R::{V: VZ::/ -[————————-d:ndy<+oo ,
L W P
the Banach space of Rollnik—class potentials, and Kato—convergence of potentials with

convergence w.r.t. Rollnik norm || - ||g. The proof proceeds in an analogous way, using

theorems 1.21 and I1.13 in [S1].

Remark 12.4. It may appear that convergence of initial data in Hl(IRd) be an unnecessary
strong assumption; since one can disintegrate w.r.t. the initial distributions, one may
expect that L?—convergence be sufficient. However, suppose that, for every iy € Hl(IR'l),
T > 0, and for some M > 1

sup le” Hollgign <M Vie R,
n€lN
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lim  sup ||(e” ¥ — e " )y llg =0,
’l_"{'OOUStST

as is the case by our assumptions ||V, — V||x, — 0. Suppose moreover that ||¢] — 1]z —
0. Then .
%y — ol =0 = / V™ — Vb, ||22dt — 0 .
0

Indeed by our hypotheses ¥ — ; in energy norm is equivalent to

T -
[ 19— o)l 0.

0

From the group property one has
105 = ollzr < g —wollzz + sup [[Ve ™™ (%5 —4y)|1
0<t<T

S 195 = ollze + M fnf Ve (5 = o)l

n 2 ]\/Iz T —itH n 2
< g = %ollzz + = | [1Ve™ ™ (g —bo)l|z=dt
0
M2 T —1 n
<G [ e g )
0

< Mg = $ollz,

and our thesis follows.

13. Nelson Diffusions corresponding to Schrodinger Operators with potentials

given by measures

As theorem 12.2 shows, the conditions for convergence given in thm.10.2 are not optimal
in the sense that the Guerra metric is too strong with respect to convergence of solutions
of Schrodinger equations. In fact from v, — 9 in Wy VT > 0 in general it does not
follows vny/pn — v/p in L? if we define vy := (Ve /1;). As clearly follows from the
proof of thm.10.2 to obtain convergence of the processes it is sufficient to require that the
sequence {vn,/pn}n>1 converges to v,/p on the complement of the zero set of p up to a
set of arbitrary small I'-capacity, and this is exactly what 1, — 1 implies.

Let us now consider a Cauchy sequence {(%{,V,)}n>1 in HI(IRd) x K4, and let

{17 }n>1 the sequence of solutions of the corresponding Schrodinger equations. By the
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proof of lemma 12.1 it follows that this sequence is a Cauchy one in Wr VT > 0. Let
s be the corresponding limit. Let p the limit of the sequence {Va}n>1- Such limit will
not be necessarily a measurable function ( see [Si2], §A2, example I, for an example of a
measure contained in the closure of Ky ). We will therefore think of v; as the solution of
the Schrédinger equation corresponding to the operator “K + u”, with initial data 1), the
limit point of {¥{ }n>1.

The remarkable fact is that also to %; correspond a Nelson Diffusion which can be
approximated by “more regular” ones. In fact, defining vy = (Vi /1), pt 1= ¥e1b,,
obviously vnpn — vp in L', so (F.P) in §6 holds in the limit, and the pair (v,p) is a
proper infinitesimal characteristics to which corresponds, by thm.6.1, a Nelson Diffusion
P. Moreover, by thm.12.2, d(P", P) — 0, where P™ are the Nelson Diffusion corresponding
to (¢, Va).

It will therefore interesting to characterize the closure of K. Do this closure coincide

with the space of Kato measures as defined in [BM]?
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