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Chapter 1

Overview

It has often been said that our Universe is like a laboratory where very important phys-
ical phenomena can be studied which could never be repeated on Earth. Unfortunately,
astrophysicists cannot prepare their own experiments as the other physicists do in their lab-
oratories. This represents a serious limitation which prevents astrophysics from being also an
experimental science. The occurrence of an astrophysical event, in fact, is obviously neither
arbitrarily repeatable nor checkable, and therefore it lacks the two minimum requirements
for a physical phenomenon to be called an experiment in the Galilean sense. On the basis
of these considerations some philosophers of science have cast doubts on the scientific status
of astrophysics as a whole! Leaving aside all of the objections that could be made to this
statement, it is interesting to note that since numerical simulations have become a common
tool in astrophysics, a new kind of “laboratory” has become available. Of course its epis-
temological status is quite different from that of the usual laboratory: after all, numerical
simulations describe the evolution of physical systems according to some law which is known
a priori. However, they can provide a fundamental link between our present theories and the
physical systems under investigation, filling the gap between the theory and the experimental
activity. In most of the cases, for example, astrophysic processes involve extreme conditions
which are absolutely inaccessible to the experiments in the laboratory, and one has to rely
on extrapolations of the known physics into different regimes. Moreover, the timescales of
the processes involved are often much longer than the human life and what can be observed
astronomically is in many cases just a particular short phase of a long lasting phenomena.
Finally, and remarkably, highly non linear processes take place in a wide variety of astro-
physical systems which can only be handled by adopting sophisticated numerical techniques.
In these circumstances, in fact, the theoretical model adopted, which is supposed to provide
a good description of the physical system under investigation, has some predictive power
which can only be tested by mean of simulations where the non-linear evolution equations
are solved exploring a large parameter space. For all of these reasons, a numerical experi-
ment offers the extraordinary means of unveiling fundamental physical aspects that the mere
knowledge of the theory, no matter how deep it is, could never reveal.

This is particularly true for numerical relativistic hydrodynamics', whose applications to

1Unless stated otherwise, with the term “relativistic” we will refer to both special and general relativity.



2 Chapter 1: Overview

astrophysics are nowdays numerous, allowing for a quantitative description of a large variety
of astrophysical phenomena. A significant portion of this Thesis (Chapter 2 to Chapter 4)
is directly devoted to this field of research.

Chapter 2 serves as an introductory chapter where High Resolution Shock Capturing

(HRSC) methods are presented and the most important ingredients for their developments

are discussed. Particular attention is focused on the presentation of the Riemann problem?,
which is the subject of the following two chapters.

In Chapter 3, in fact, we concentrate on the exact solution of the Riemann problem
in special relativistic hydrodynamics by proposing a new procedure which focusses on the
relativistic invariant relative velocity between the two unperturbed initial states of the fluid.
This new approach, which is valid for both one-dimensional and multi-dimensional flows, al-
lows extraction of some important information contained in the initial data, that traditional
approaches were not able to reveal. In particular, we have shown that, given a Riemann
problem with assigned initial conditions, it is possible to determine in advance both the na-
ture of the nonlinear waves that will be produced after the removal of the initial discontinuity
and the bracketing interval of the unknown pressure in the region that forms behind the wave
fronts. These new ideas can be successfully implemented in the construction of an efficient
numerical algorithm. Although in modern hydrodynamical codes using HRSC methods the
solution of the Riemann problem is usually obtained in approximate ways (through the so
called Approximate Riemann solvers), is yet very important for improving an Exact Riemann
Solver. In a typical flow, in fact, the overwhelming majority of local Riemann problems are
in regions of smooth flows, and approximate Riemann solvers give satisfactory results. When
large gradients occur, however, approximate Riemann solvers can be very inaccurate, causing
the numerical method to fail. Under these conditions, one might think of a hybrid scheme,
where an approximate Riemann solver is used in regions of smooth flows, while adopting
the exact solver in the presence of large gradients. The method proposed here could be
particularly suitable within such an “adaptive” approach. It should also be stressed that
special relativistic Riemann solvers can be exploited in general relativistic hydrodynamics
by means of a local change of coordinates.

Chapter 4 shows a further advantage of the new method presented in Chapter 3. New
hydrodynamical effects, in fact, emerge in a special relativistic Riemann problem when ve-
locities tangential to the initial discontinuity surface are present. In particular, a smooth
transition from one wave-pattern to another can be produced by varying the initial tangential
velocities while otherwise maintaining the initial states unmodified. These special relativistic
effects are produced by the coupling through the relativistic Lorentz factors, do not have a
Newtonian counterpart and naturally emerge when solving the Riemann problem with the
method presented in Chapter 3.

Chapter b represents the part of this Thesis where many of the sophisticated numerical

techniques for the solution of general relativistic hydrodynamics equations find a concrete

*The Riemann problem consists in following the decay of a discontinuity between two regions with different
uniform initial states.



application. We have in fact performed axisymmetric simulations of constant angular mo-
mentum tori orbiting a Schwarzschild black hole. It is well known that in a system consisting
of a black hole surrounded by a torus, the fluid flows in an effective potential, whose struc-
ture resembles that of a close binary. There are three fundamental circumstances making
these objects astrophysically relevant. Firstly, as became apparent from the very beginning,
they could develop a dynamical instability, called the “runaway” instability, which could
have important astrophysical consequences in connections with y-ray bursts models. The
occurrence of this instability has been the subject of several numerical simulations over the
years. Overall, a final conclusion on its occurrence is still premature, because different effects
such as the self gravity of the torus, rotation of the black hole, and the dynamical response of
the background metric have not yet been included in a comprehensive manner. The second
important reason for being interested in tori around black holes is that they are likely to be
significant sources of gravitational waves, a fact which has been somewhat underestimated.
Finally, thick discs around black holes may develop internal oscillations under various kinds
of external perturbations, a fact which is attracting the interest of both theoreticians and
observers, given the large existing phenomenology of periodic and quasi periodic X-ray emit-
ters. Our attention in this Chapter has been oriented towards each of these three issues. In
particular, by introducing suitable perturbations, we have shown that these systems either
become unstable to the run-away instability or exhibit a strikingly regular oscillatory behav-
ior resulting in a quasi-periodic variation of the mass accretion rate as well as of the density
distribution. Despite being axisymmetric, the perturbed discs experience large variations of
the rest-mass distribution hence emitting considerable amounts of gravitational radiation.
The strength of the gravitational waves emitted is of the same order of magnitude of that
expected in stellar-core collapse making these new sources of gravitational waves potentially

detectable.
Chapter 6 is a natural follow up of the previous one, in the sense that it presents an in-

terpretation of the oscillations detected numerically. Oscillations are ubiquitous phenomena
in physical systems and accretion discs are not exceptions. However, these oscillations have
been mostly studied in thin accretion discs, either Newtonian or relativistic. Our approach,
based on a perturbative analysis for computing the fundamental frequencies of oscillations
in a “vertically integrated system”, is a first attempt towards a fully two-dimensional de-
tailed study and strongly supports the idea that the oscillations appearing in our numerical
simulations are, in fact, acoustic modes.

Chapter 7 is a short review of relativistic Extended Thermodynamics, a fascinating field
of research which we started studying recently. As it is well known, the Navier-Stokes theory
of dissipative fluids introduces a parabolic nature into the equations and thus predicts infi-
nite signal speeds. Naturally, this feature is unsatisfactory in relativistic hydrodynamics and
pushed for the formulation of alternative theories, ultimately leading to extended thermody-
namics. The latter is better described as a hierarchy of theories with an increasing number of
fields as the gradients and the rates of thermodynamic processes become steeper and faster.

We summarize the basic concepts of this new formulation, emphasizing its importance in




4 Chapter 1: Overview

specific astrophysical contexts, from both theoretical and computational points of view.
Chapter 8, which is the last one of the Thesis, deviates from the main course taken
so far, and focusses on a very hot topic in astrophysics, namely the influence of strongly
curved spacetimes on the properties of electromagnetic fields in rotating neutron stars. After
presenting the physical aspects of the problems, we have solved numerically the general
relativistic induction equations in the interior background spacetime of a slowly rotating
magnetized neutron star. The analytic form of these equations shows that corrections due
both to the spacetime curvature and to the dragging of inertial frames are present. By means
of a number of calculations we investigate the evolution of the magnetic field with different
rates of stellar rotation, different inclination angles between the magnetic moment and the

rotation axis, as well as different values of the electrical conductivity.

Notation

The common conventions adopted through the Thesis are the following. A space-like
signature (—, +, +,+) is used. Greek indices are taken to run from 0 to 3 and Latin indices

from 1 to 3. Partial derivatives are either indicated with a comma or with the standard “9”
notation. The system of units adopted, on the other hand, is specified at the beginning of

each Chapter, whenever necessary.



Chapter 2

Numerical Relativistic
Hydrodynamics

1 Introduction

The Euler equations are a nonlinear hyperbolic system of equations that follow from the
Navier-Stokes equations when both viscosity and heat conduction are neglected. One of the
most remarkable features of these equations is that, at least in the case of compressible fluids
and in the classical fluid description, they admit discontinuities, even if the initial data are
smooth. We recall here that the concept of discontinuity is a natural consequence of the
hydrodynamical description, according to which the quantities characterizing the fluid are
averaged over a fluid element, whose linear size is smaller than the typical macroscopic size
of the system, but which is larger than the collisional mean free path of the particles. From
a microscopical point of view, the relevant physical quantities across these discontinuities
are certainly continuous, altough they might experience large variations® which make them
appear as “discontinuities” on a macroscopic scale.

From a computational point of view the appearance of discontinuities represents a formidable
obstacle for any numerical method. In traditional finite difference methods, the differential
of a function u at a point Z is approximated by using only values of u at a finite number of
points near Z. However, a finite-difference approximation to a derivative is not satisfactory
in the presence of discontinuities, which are usually reproduced with strong smearing or with
very pronounced oscillations in their vicinity.

Fortunately, the mathematical structure of the hyperbolic equations can be successfully
exploited in order to develop numerical methods that are very efficient in resolving these
discontinuities. In this Chapter we will present the main ideas of this approach, which collects
a large family of techniques going under the name of High Resolution Shock Capturing
(HRSC) methods. Several authors have contributed to the development of this field of
research in the last few decades, bringing it now into a rather mature stage. As a result,

the number of numerical techniques has grown considerably and there are often a lot of

'In general, we classify discontinuity surfaces as contact discontinuities and shock fronts. The former are
characterized by the fact that there is no fluid flow across them, while the opposite is true for the latter.



6 Chapter 2: Numerical Relativistic Hydrodynamics

different numerical methods to choose from when solving a nunerical problem. It is not our
intention to give a systematic presentation of all the computational methods for the solution
of hyperbolic equations. Rather, we will restrict ourselves to a short selection of fundamental
ideas, putting more emphasis on those techniques which will be further discussed in this
Thesis.

Before doing this, however, it is worth giving a short historical perspective, which will be

presented in the following Section.

2 Historical Overview

One of the first general relativistic hydrodynamical codes was the one dimensional Lagrangian
code of May & White (1996) that allowed the first numerical modelling of a collapse leading to
black hole formation. As is well known, the Lagrangian formulation prevents the occurrence
of numerical diffusion of momentum during the simulations. However, this advantage is
largely lost when considering multidimensional problems, since the comoving grid of the
Lagrangian coordinates is easily distorted in the presence of shear or vortex flows, thus
requiring complicated rezoning of the grid. This difficulty was the main motivation for the
development of Bulerian codes, the first of which was that of Wilson (1972), followed by
Centrella & Wilson (1984) and Hawley et al. (1984). All of these codes share the same
technique for handling the appearance of shock waves. Namely, a wavelength-dependent
artificial viscosity term is introduced in the stress energy tensor in exactly the same way
as a physical bulk viscosity, and has the property of spreading the shock over several grid
zones, sacrificing resolution. The main motivation for introducing numerical dissipation was
that the continuity and the Euler equations were not written in such a way to preserve the
conservation form of the original hyperbolic system, and the solution across discontinuities
had to be stabilized. In spite of these limitations, this approach has been widely adopted to
simulate flows in relativistic stellar collapse, accretion onto compact objects, and cosmology.
A fundamental step forward in the simulation of relativistic flows was obtained with the
introduction of High Resolution Shock Capturing (HRSC) methods (Marti et al., 1991;
Marquina et al., 1992), which are based on a new approach taking full advantage of the
hyperbolic and conservative formulation of the hydrodynamics equations. In particular, the
resulting numerical schemes, which avoid completely the introduction of artificial viscosity
terms, combine the following ingredients: the conservative formulation of the hydrodynam-
ics equations, the knowledge of the characteristic fields of the system, the application of
Godunov methods (Godunov, 1959) based on the hyperbolic formulation, the introduction
of Riemann Solvers, either exact or approximate, and the introduction of particular pro-
cedures for increasing accuracy without producing nonphysical oscillations. The two most
striking features of relativistic flows are the presence of large Lorentz factors and of strong
shock waves. As a result, the competition which naturally started between artificial viscos-
ity methods and HRSC methods has been played by comparing the relative performances
in dealing with these kind of intrinsic difficulties. Norman & Winkler (1986), for example,
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showed that numerical schemes using artificial viscosity are not able to model relativistic
flows with Lorentz factors larger than 2. Over the years, moreover, the performances of
HRSC methods have been extensively tested (see Ibafiez & Marti, 1999 for a review) show-
ing that they allow for second order (or higher) accuracy of the solution in smooth regions

of the flow, while producing very small smearing of strong discontinuities.

3 Introduction to Hyperbolic Partial Differential Equations

The set of first order partial differential equations considered in the present Chapter is of

the type

8’11,1' i 8uj
Py +Zaij—a—;+bi = 0, (2.1)
7=1

with ¢ = 1,...,m. This is clearly a system of m equations in m unknowns u;, which in general
depend both on space? z and on time t. It is sometimes useful to write the system (2.1) in

matrix notation as

U,+AU,+B=0, (2.2)
where
U1 b G11 Q12 Gim
U b G21 G222 v Gom
U= , B= . , A=
U bm, aml am2 " Omm

The system is said to be linear with constant coefficients if all of the elements of the matrix
A and of the vector B are constant. If instead a;; = a;5(z,t) and b; = b;(z,t) the system is
said to be linear with variable coefficients. If the matrix A of the coeflicients is a function of
the vector U, the system is then said to be quasi-linear®, whereas the system is said to be
homogeneous if B = 0. Finally, we recall that the system (2.2) is said to be hyperbolic if the

matrix A is diagonalizable with a set of real eigenvalues Ay, ..., A;, and a corresponding set

of m linearly independent right eigenvectors K1), ..., K(™) such that
AKD = \ KO, (2.3)

A peculiar feature of hyperbolic systems is that they typically describe physical processes
involving wave motion or advective transport, and indeed, as will become clear in the rest
of the Chapter, the condition of reality for the eigenvalues is associated with the existence

of propagating waves.

*In the following we will refer to the one dimensional case, although all the results can be generalized to
the full three dimensional case.

*Note that, despite the name, quasi-linear systems are in general systems of nonlinear equations, such as
the Euler equations.
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3.1 Conservation Laws

A system of partial differential equations is said to be in conservative form if it can be written
as
U:t + F(U>,T =0, (24)

where U is then called the vector of conserved quantities and F = F(U) is the vector of
fluzes. The main property of equation (2.4) is that the knowledge of the state-vector U(z, t)
at a given point = at time ¢ allows to determine the rate of flow, or flux, of each state variable
at (z,t). Conservation laws of the form given by (2.4) can also be written as a quasi-linear
form

U,+AU)U, =0, (2.5)

yT

where A(U) = 0F/0U is the Jacobian of the flux vector F(U). The use of a conservation
form of the equations is particularly important when dealing with problems admitting shocks
or other discontinuities in the solution. A non-conservative method, i.e. a method in which
the equatibns are not written in a conservative form, might give a numerical solution which
looks reasonable but is incorrect. A well known example is provided by Burger’s equation,
i.e. the momentum equation of an isothermal gas in which pressure gradients are neglected,
and whose non-conservative representation fails dramatically in providing the correct shock
speed if the initial conditions contain a discontinuity (see LeVeque 1992). Moreover, since
the hydrodynamical equations follow from the physical principle of conservation of mass and
energy-momentum, the most obvious choice for the set of variables u; to be used is that of
the conserved quantities. As proved by Hou & Le Floch (1994), non conservative schemes do
not converge to the correct solution if a shock wave is present in the flow, whereas, as Lax &
Wendroff (1960) showed in a classical paper, conservative numerical methods, if convergent,
do converge to the weak solution of the problem (see the box below for the definition of weak

solution).

3.2 Characteristic Equations

The simplest example of a hyperbolic equation in conservation form is given by the scalar
linear advection equation
O+ Aozu =0, (2.6)

with generic initial conditions given by
u(z,0) = up(z) . (2.7)

Here the Jacobian and the eigenvalue of the system coincide and are given by the constant

), which is called the “characteristic speed”.
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Definition of Weak Solution:
It should be noted that a discontinuous function of class C° clearly does not satisfy

the partial differential equation (2.4) in the classical sense, since the derivatives
are not defined at the discontinuities. For this reason, another integral formulation
can be adopted in order to rewrite a differential equation in a form admitting non
smooth “solutions”. The basic idea consists in multiplying the PDE by a smooth
test function ¢, and integrating it by parts to move derivatives off the function U
onto the test function. For instance, if we multiply U ; +F ; = 0 by a continuously
differentiable function ¢(z,t) of compact support and we then integrate over space
and time we get

o'} +co
/ / [$U , + oF 4]dadt = 0, (2.8)
0 —00
Integration by parts leads to
co +00 +co
/ / (64U + 6 oFdudt = — / b(z,0)U(z, 0)dz, (2.9)
0 —co —0o0

where the property that ¢ has compact support, and therefore vanishes at infinity,
has been used. As a result, a function U is called a weak solution of the conservation
law if it satisfies equation (2.9) for all functions ¢, as described above. In practice, all
the solutions involving discontinuities in the physical quantities are weak solutions.
Note also that weak solutions to a problem are often not unique, and a criterion
is needed in order to identify which one is physically correct. In most of the cases
the choice is made according to the entropy condition. Namely, a discontinuity is
physically realistic only if the entropy of the fluid increases as the fluid crosses the
discontinuity.

Although very simple, this equation represents the prototype of all hyperbolic equations
and it offers the opportunity for introducing the concept of characteristics, or characteristic
curves. These may be defined as curves z = z(¢) in the (z,t) plane along which a partial
differential equation becomes an ordinary differential equation (ODE). The rate of change

of u along = = z(¢) is in fact

dt 8t dtoz’ (2.10)
and if z = z(t) satisfies:
dz
= = A (2.11)

then equation (2.6) ensures that (2.10) is identically zero, or, in other words, that v is
constant along the curve z = z(¢) with slope X in the (z,t) plane. As a result, if u is given
an initial value according to (2.7), then the solution along the whole characteristic curve

z(t) = zg + Mt crossing the initial point g on the z-axis (see Fig 2.1) is

u(z,t) = ug(zo) = up(z — A). (2.12)
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t characteristic through X

Figure 2.1: Characteristics for the linear advection equation with positive characteristic
speed .

Therefore, given initial data ug(z), the linear advection equation simply translates this data
with velocity A to the right or to the left, according to whether A > 0 or A < 0, respectively.
For more complicated systems of equations, such as the Euler equations, it is possible to
associate a set of characteristic lines to each eigenvalue of the Jacobian matrix A, and these

determine the wordlines of small disturbances propagating in the fluid.

4 Linear and Nonlinear behavior

Since in many cases the integration of a nonlinear hyperbolic system is obtained by first
approximating it with a suitable linear system, we will first consider how these systems are
usually treated. In the previous Section we presented the simplest PDE of hyperbolic type:
a linear advection equation with constant wave propagation speed. We can now extend our
analysis to a set of m hyperbolic PDEs of the form (2.2), where the coefficients of the matrix
A are still constant and where we further assume that B = 0. The hyperbolicity of the

system guarantees that the matrix A is diagonalizable as

A = K'AK, (2.13)
where
MO 0
0 Ay 0
A= D
0 0 0 Ap

is the diagonal matrix of eigenvalues A; and K is the matrix whose columns are the right

eigenvectors of the matrix A. If we now introduce the characteristic variables defined as

W = KU, (2.14)
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the system

U,+AU)U, = 0 (2.

[N
=
4
s

can be rewritten as

W, +AW, = 0. (2.16)

This is called the canonical form of system (2.15) and it consists of m decoupled independent

linear advection equations, each of which, as discussed in the previous Section, has solution
w;(z,t) = wgo) (z — Ait, 0), (2.17)

(

i

Once the canonical form of the system has been solved, the solution of the original system

where the w!”’s denote the initial values corresponding to the initial data of the vector U.

is immediately recovered by inverting equation (2.14) as U = KW. It should be noted that

w; is the coefficient of the vector K® in an eigenvector expansion of U, that is to say
m .
Uz, t) = y_ wiz, )KO. (2.18)
1=1

Combining this last expression with the solutions (2.17) of the decoupled scalar equations

yields

Uz,)) = 5w (@ - AMt)KO. (2.19)
i=1

Equation (2.19) reveals two important properties of linear hyperbolic systems. The first
and more obvious one is that the knowledge of the eigenstructure, i.e. of the eigenvalues
and of the eigenvectors, makes the solution of a linear system straightforward. The second
one is that the solution can be written as the superposition of m waves, each propagating

undistorted with a speed given by the corresponding eigenvalue.

4.1 Nonlinearities and Shock Formation

The two most distinctive features of nonlinear hyperbolic equations are the “wave steepening”
and the “shock formation”. This can be simply illustrated by considering the inviscid Burger’s
scalar equation

ug+ung =0, (2.20)

where the vector of fluxes has only one component F' = %uQ. At small times, the solution
can still be constructed in terms of characteristic curves. These are straight lines, but no
longer parallel, unless the solution is the trivial one (i.e. ugz = 0). The characteristic

speed, in fact, is now in general a function of the solution itself, A(u) = df /du, and this
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i

Figure 2.2: Shock formation in Burger’s equation. Characteristics intersect at time ¢t = Tj.
g g q

u(x,Ty)

u(x 0)

produces distortions in the initial profile as time evolves. Higher values of w, in fact, will
propagate faster than lower values, with expansive and compressive regions forming. The
wave steepening mechanism will eventually produce a “folding over” of the solution profile
with the characteristic curves intersecting at a certain time. As a result, the solution can
be found by following the characteristics only for times shorter than a precise breaking time
Ty (see Figure 2.2), after which the waves “break” and a shock might form (see Whitham
1974). It is important to underline that in the evolution of inviscid compressible flows wave

steepening and shock formation are very common situations.

5 The Riemann Problem

The appearance of discontinuities poses the problem of how to treat them numerically in a
consistent way and without losing accuracy. In the following we will first define the Riemann
problem mathematically for a general set of hyperbolic equations and then illustrate it for the
particular case of the Euler equations. In Section 6, where Godunov’s scheme is introduced,
~ we will show how the solution of the Riemann problem is included as a crucial building block

in a numerical scheme, while in Section 7 we will consider some existing Riemann solvers.

5.1 Mathematical Definition

From a mathematical point of view, the Riemann problem for a general m X m nonlinear

hyperbolic system like (2.2) is an initial value problem with initial conditions given by

_ U; if z <0,
U($’0>‘{UR if 7 >0,
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where Uy and Up are two constant values. Depending on the particular set of hyperbolic
equations considered, different wave structures emerge in the solution. For instance, if the
equations are simply given by the linear advection equation (2.6), then we expect the initial
profile to propagate rigidly. In particular, the initial discontinuity at z = 0 will propagate a
distance d = A, and the characteristic curve z = At will separate those characteristic curves
to the left, on which the solution is the constant value Uy, from those curves to the right,
on which the solution is Ugr. As a result, the solution of the Riemann problem for the linear

advection equation can be written as

Up if z-XAt<0

U(m’t):UO("E—“):{ Ug if z—A>0.

On the other hand, in the case of nonlinear equations, such as the Kuler equations, the
solution of the Riemann problem may contain rarefaction waves as well as discontinuities.
The main properties of the Riemann problem under these circumstances will be discussed in

the following section.

5.2 Physical Definition

Consider a fluid, initially divided by a membrane into two sections. The fluid has different
values of uniform velocity, pressure and density on the two sides of the membrane. At
a certain time the membrane is removed and the system starts evolving. The problem
of describing this evolution was addressed by Riemann more than a hundred years ago
and became the prototype of the initial value problem for nonlinear hyperbolic systems of
partial differential equations with discontinuous initial conditions. The conclusion reached by
Riemann in Newtonian hydrodynamics is that the one-dimensional flow that develops when
the barrier separating the initial “left” (L) and “right” (R) states is removed, will allow for
four different and distinct solutions. All of the solutions are composed of nonlinear waves,
in the form of either shock waves or rarefaction waves, that propagate in opposite directions
and join the two unperturbed left and right states. Schematically, the fluid solution for any

¢t > 0 can therefore be represented as (Marti & Miiller 1994)
LW, L. R W, R, (2.21)

where W denotes a shock or a rarefaction wave that propagates towards the left (+) or the
right (—) with respect to the initial discontinuity, while L, and R, are the new hydrodynamic
states that form behind the two waves propagating in opposite directions. These waves are
separated by a contact discontinuity C and therefore have the same values of the pressure
and velocity, but different values of the density. As a result, three different “wave-patterns”
can be produced as listed below

(i) two shock waves, one moving towards the initial left state, and the other towards the
initial right state: LS, L.CR,S_ K.
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(ii) one shock wave and one rarefaction wave, the shock moving towards the initial right
state, and the rarefaction towards the initial left state (or viceversa): LR, L.CR.S R,

(iii) two rarefaction waves, one moving towards the initial left state, and the other
towards the initial right state!: LR_L.CR.R_R.

The Riemann problem is said to be solved when the velocity, pressure and density in the
new states L, and R, have been computed, as well as the positions of the waves separating

the four states. In Section 7 we will consider different approaches to the solution.

6 Godunov Type Methods

The solution of the Riemann problem attracted a wider interest when it was realized that its
numerical solution could be implemented as building blocks in the construction of numerical
methods for the accurate solution of the hydrodynamical equations. In such methods, which
are usually referred to as Godunov-type finite difference methods after the fundamental work
of Godunov (1959), the computational domain is discretized and each interface between two
adjacent grid-zones is used to construct the initial left and right states of a “local Riemann
problem” (see Marti & Miiller, 1999; Ibafiez & Marti, 1999 for recent reviews). In the present

Section we will present the basic features of this procedure.

6.1 Integral Form of Conservation Laws

Conservation laws may be expressed in differential form, as done in Section 2.1, and in
integral form. The major advantage of the integral form rests on the fact that the governing
equations are naturally derived in terms of integral relations (see LeVeque, 1998). Consider
a one-dimensional time dependent system described by the Euler equations. We can define
a “control volume” in the z — ¢t plane as V = [z1,z2] X [t1,t2]. The integral form of the
conservative equations (2.4) on this domain can be written as

d [

- "Uls, ) = F(U(zy, 1) — F(U(za,1) - (2.22)

If we now integrate it in time between t; and %o, with #; < {3 we get

ta

3 T to
/ U(cv,tg):/ U(x,tl)—!—/t F(U(zl,t))dt—/ F(U(20,8))dt | (2.23)

t1

which represents our integral form of the equations. In order to solve them numerically,
the spatial domain is discretized into N computing cells I; = [z;_1/2, T;41 /2] of size Az =
Tip1/a — i1y, With1=1,..,N. In Godunov’s method the evolution from the time ¢" to

the time #"t! = " + At is obtained by first assuming a piece-wise constant distribution of

*A special case of this wave pattern is produced when the two rarefaction waves leave a vacuum region
behind them.
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/ Local Riemann Problem

u Q/\// / Interface

i-1 1 i+l x

Figure 2.3: Schematic representation of a piece-wise constant distribution of a general quan-
tity U giving rise to a sequence of local Riemann problems at the interface between adjacent
cells.

the data over the spatial grid, according to the following averaging (see also Figure 2.3)

Uy = —1~/Ii+1/2 U(z,t")dz . (2.24)
Z Az Ti_1/9

Of course, by doing so, part of the knowledge of the original initial data U(z,t") inside the
cell is lost, and to increase the accuracy a number of reconstruction procedures have been

developed (see discussion in Section 8.2). If we now apply the integral conservation form

(2.23) to the control volume with z1 = x;_1 /9, Ta = Tjp1/2, t1 = 1", t2 = t"+1 we obtain

tn—f—l tn+1

Tit1/2 1 Tit1/2
[ o = [T e [ RO - [ O
T tn

i-1/2 Ti-1/2 tn
(2.25)
Dividing all terms of (2.25) by Az and recalling the definition (2.24) we obtain the Godunov

scheme as

At

UMt = U+ E(Fi~1/z —Fir1/2), - (2.26)
where we have defined
1 tn—l—l
Fieipp = 1 FU(z41/2,1)]d2 . (2.27)
tn

A relevant comment about the scheme (2.26) is that no approximation has been introduced

yet in its derivation. One should in fact distinguish between the mathematical formulation
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of the method, which assumes the knowledge of the analytic functions U(x,t) and F(z.1),
from its numerical application, which requires an interpretation of the terms entering (2.26)
before a numerical scheme is effectively built. In particular, the correct interpretation is
suggested by the fact that the scheme (2.26) takes into account quantities that are averaged
over the grid cells of the numerical grid. From a computational point of view, we can only
suppose to be dealing with approximations to these averages (i.e. the piece-wise constant
distributed quantities (2.24)), which for simplicity we shall still denote as Uj'. Different
numerical algorithms can then be devised from (2.26) according to the method used to
calculate the fluxes at each interface, F;_/» and Fipq/o. If these fluxes are calculated by
solving the sequence of local Riemann problems generated at the edges of two adjacent
zones (see Figure 2.3) and by adopting as left and right states the same piece wise constant
distribution of data given by (2.24), then the resulting method is called Godunov’s first-order
upwind method. Solving the local Riemann problem provides either the term U(zit1/2,t) to
be used in (2.27), or the F[U(z;11/2,t)] term itself (see Section 7).
Another important remark about the scheme (2.26) is that the time step At must satisfy a
Courant-Friedrich-Lewy type condition (Courant et al. 1928)

At < BT (2.28)

- IUI"’II'IlaXI ’

where v™ . denotes the maximum wave velocity® present through the computational domain

max
at time £".
It should be emphasized that the originality of Godunov’s idea consists on the way an upwind

method is obtained for a general nonlinear system of equations. Upwind methods, we recall,
are characterized by the fact that the spatial differencing is performed using grid points on
the side from which information flows. If we think of the advection equation as modelling
the advection of a concentration profile in a fluid stream, then this is exactly the upwind
direction. For a linear system of equations, upwind methods can only be used if all the
eigenvalues of the matrix A have the same sign. If the eigenvalues have mixed signs, an
alternative procedure is often adopted aimed at identifying the direction of propagation of
information on the numerical grid. According to this procedure, the flux F is decomposed
in two parts, F* and F~, in such a way that the corresponding Jacobian matrices At =
OFt /09U and A~ = OF ~/9U contain just the positive and negative eigenvalues, respectively,
of the original matrix A. The upwind character of the resulting numerical methods, called
Flux Vector Splitting methods (FVS), is thus guaranteed. However, for nonlinear systems of
equations the matrix of eigenvectors is not constant, and this same approach does not apply

directly. Godunov succeeded in obtaining an upwind method in which the local characteristic

5Note that in a Riemann problem both shock waves and rarefaction waves are produced, so one has to
look for the fastest wave at each time step. In multidimensional problems, when this procedure might become
unsuitable, a common alternative is to select Umaz 8 Umax = maz(Jv?| -+ al), where v]" is the flow velocity
and a} is the sound speed.
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structure is not provided by diagonalizing the Jacobian matrix, but rather by solving a
Riemann problem forward in time. The solutions of Riemann problems, in fact, provide the
necessary information about the characteristic structure, and lead to conservative methods,
since they are themselves solution of the conservation laws.

Finally, it should be recalled that the Godunov scheme (2.26) with the piece wise constant
distribution of the data is just first order accurate in time and space. This can be better
appreciated if we apply the scheme (2.26) to the linear advection equation (2.6) with the
flux given by F = AU. In this case, as explained in Section 5.1, the solution of each local
Riemann problem at the generic cell interface z;,1/5 is given by U7, if A <0, and by U7,

if A > 0. Therefore, the resulting scheme is given by
UMt = U? - (U} - UL,), if A >0, (2.29)

and
U?+1 — U:I _ C( '?Jrl — U'Zn')’ if A< 07 (230)

where ¢ = AAt/Az is the Courant factor. The schemes (2.29) and (2.30) are nothing but the
first order upwind method first introduced by Courant et al. (1952). The spatial accuracy
of the first order Godunov’s method presented here can be improved by adopting some kind
of reconstruction procedure, as discussed in Section 8.2, while the time accuracy can be
increased by combining the method outlined above with a conservative Runge-Kutta scheme

(see, for instance, Aloy et al., 1999).

7 Exact and Approximate Riemann Solvers

Codunov’s method, and its higher order modifications, require the solution of the Riemann
problem at every cell boundary and on each time level. According to the notation of Sec-
tion 5.2, this amounts to calculating the solution in the regions L, and R., as well as the
wave speeds necessary for deriving the complete wave structure of the solution.

The solution of the general Riemann problem cannot be given in a closed analytic form, even
for one dimensional Newtonian flows. What can be done is to find the answer numerically
to any required accuracy, and in this sense the Riemann problem is said to have been solved
ezactly, even though the actual solution is not analytical. In Newtonian hydrodynamics, the
~ exact solution of the one dimensional Riemann problem was found by Courant & Friedrichs
(1948). In special relativistic hydrodynamics the shock tube problem, which is basically a
particular case of the Riemann problem given by the case (74) mentioned in Section 5.2, was
first considered by K. Thompson (1986), while the general solution of the one dimensional
Riemann problem was first obtained by Marti & Miiller (1994). Interestingly, it is also
possible to take advantage of the local flatness of a curved spacetime in order to exploit

this special relativistic Riemann solver in general relativistic hydrodynamics (see Pons et al.,

1998).
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s right state

Figure 2.4: Solution of the Riemann problem in the (v,p) plane with initial conditions given by
pr =20, pp = 10, vy, = —0.5, pg = 10, pr = 1, vg = 0.6 for an polytropic gas with adiabatic index
v = 5/3. The solution for this set of initial conditions consists of two rarefaction waves, propagating
towards the left, R, and towards the right, R_,. The intersection of the two curves identifies the
pressure and velocity in the unknown region.

Since in Chapter 3 we will propose a new idea for the exact solution of the Riemann prob-
lem in special relativistic hydrodynamics, we will briefly concentrate here on the procedure

adopted by Marti & Miiller (1994), so as to make the comparison more apparent later on.

7.1 Exact Riemann Solver in Special Relativistic Hydrodynamics

The fundamental physical principle exploited in the exact solution of the Riemann problem,
both in Newtonian and in special relativistic hydrodynamics, is the continuity of pressure and
velocity across the contact discontinuity separating the two regions L. and R,. The velocity
v, = vg, in the unknown region is then written as a function of the pressure py, = pg, in
the same region. This is done by connecting the unknown state forming between the two
nonlinear waves to the initial left and right states. The connection is done separately for the
wave propagating to the left and to the right and it is obtained by exploiting the condition
of self similar flow if the propagating wave is a rarefaction wave, and the Rankine-Hugoniot
relations across shocks if the propagating wave is a shock wave. The numerical solution of
the Riemann problem consists then of finding the root p. = pr, = pr. of the nonlinear
equation

vL, (p«) = VR, (p+) =0, (2.31)
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Figure 2.5: vz, (p.) — vr, (p«) as a function of the pressure. The curve is given by the smooth
joining of three different branches, corresponding to the three possible wave patterns. Here 25, SR
and 2R indicate a two shock, a shock-rarefaction and a two rarefaction wave-pattern, respectively.
The initial conditions are the same as those in Fig 2.4 and the unknown pressure p, falls in the
branch corresponding to two rarefaction waves propagating in both directions. The smoothness of
the function guarantees the convergence to the correct p. even if the initial guess py belongs to the
wrong branch.

which is obtained numerically by an iterative root finding procedure. Figure 2.4 shows the
solution of (2.31) in the (v,p) plane for a particular set of initial conditions. In the figure
the two initial states have been denoted with filled dots of different shape, and they are
connected to the unknown state through rarefaction waves propagating to the left and to
the right. The intersection of the two curves identifies the solution of the Riemann problem
in this particular case. For general initial conditions such as those appearing in the local
Riemann problems of a numerical code, the nature of the waves connecting the initial states
to the unknown state is not known a priory, and the resulting wave pattern is discovered only
at the end of the solution procedure. Once the pressure p, has been computed, in fact, we
can deduce the nature of the nonlinear waves produced by performing the foliowing simple
check

(7) p« > maz(pr,pr): LS L.CR.S.R,
(41)  min(pr,pr) < p« < maz(pr,pr): LR _L.CR.S,R, (2.32)
(4i1) pe < min(pr,pr): LR_L.LR.R_,R.

Note that the solution of the Riemann problem may consists of a single wave, and this

corresponds to the case when p, = py, or p. = pgr. The reason why it is possible to solve
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(2.31) without knowing what is the analytic form of vy, (p+) and vp, (p.) (i-e. not knowing
the wave pattern that will be produced) is clear by looking at Figure 2.5, where we have
plotted vy, (ps) — vr. (p=) as a function of the unknown pressure p,. This function, whose
root will provide us with the solution, is given by the continuous joining of three branches,
corresponding to the three possible wave patterns. Remarkably, it can be shown that it is
a function of class Ct. Therefore, even if we start from an initial guess pg, corresponding to
the filled dot in Figure 2.5, which belongs to the wrong branch, lL.e. assuming a wrong wave
pattern, a standard root finding algorithm will converge to the correct solution p. thanks
to the smoothness of the function vy, (ps) — vp, (ps). This is the way in which this exact
Riemann solver is usually implemented in a numerical code. In the next Chapter we will

propose an alternative approach.

7.2 Approximate Riemann Solvers

The exact solution of the Riemann problem is available in both Newtonian and relativistic
hydrodynamics, but, due to its high computational cost, a large number of approzimate
Riemann Solvers have been proposed that are computationally less expensive and yet give
results that are equally satisfactory.

Approximate Riemann solvers can be divided in approzimate State Riemann Solvers, where
an approximation is given to the state U(z;41/2, t) which is then used to evaluate the corre-
sponding flux by (2.27), and in approzimate Fluz Riemann Solvers, where an approximation
is given to the flux directly, thus avoiding the computation of the state U(z;1 /2,t) at each
zone edge. For this reason, approximate State Riemann Solvers, such as the Marquina
method discussed below, are not strictly considered as Riemann solvers, and are referred to
as fluz formulae. In the following we will briefly summarize some of the most important
Riemann solvers used in computational hydrodynamics, focusing just on the main ideas on

which they are based.

7.3 Approximate State Riemann Solvers

“Pwo-Rarefaction” Riemann Solver

Finding the wave pattern in a Riemann problem is part of the solution procedure, but
if one assumes a priori that both nonlinear waves are rarefactions, then the solution can
be obtained analytically (see Toro (1997) for the Newtonian case and Appendix C for the
relativistic case). The resulting method is very accurate for flow conditions near vacuum,

when rarefaction waves give indeed the best approximation to the problem.

“All-Shock” Riemann Solver

In analogy with the previous solver, it is possible to ignore the occurrence of rarefaction waves
and assume that both nonlinear waves are shock waves. This represents a good approxima-

tion in a wide range of flow conditions, particularly when dealing with more complicated
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equations of state than the usual polytropic one (see Colella, 1982). However, this approach
is typically inadequate in the case of a transonic rarefaction, yielding a numerical solution

which does not satisfy the entropy condition.

7.4 Approximate Flux Riemann Solvers

The HLLE Solver

In the Riemann solver given by Harten, Lax and van Leer (1983) and later improved by
Einfeldt (1988) the regions L, and R, are approximated by a single state bounded by two

waves moving in opposite directions

Uy, if 12/25 < gmina
U= UHLL if gmin < I/t < Emaxa
UR lf .T/t > fmaxy

where Emin and Emax are the smallest and the largest of the signal speeds arising from the
solution of the Riemann problem®. The resulting numerical flux to be used in the Godunov

scheme is given by

FHLL — gmaxF(UL) - gminF(UR) + gminfmax(UR - UL)

gmax - gma}:

(2.33)

This Riemann solver, which is very simple in its original form, performs well at critical sonic
rarefactions but produces excessive smearing at contact discontinuities due to the fact that
middle waves are ignored in the solution. Furthermore, it needs to be implemented with an

algorithm for the calculation of the wave speeds &min and &max.

The Roe Solver
The idea behind Roe’s Riemann solver (Roe, 1981) is to determine an approximate solution
by solving a constant coefficient linear system, instead of the original nonlinear one, after

which the solution of the Riemann problem can be obtained” exploiting the properties of

linear systems, as illustrated in Section 4. The Jacobian matrix A is replaced by a constant

coefficient matrix A (U, Ug) so as to satisfy the following conditions

1. A is still diagonalizable with real eigenvalues
2. A(Up,Ug) (Ug —UyL) = F(Ug) - F(Uy)

3. A(U,U)=A(U)

8The simplest choice is to take the smallest and the largest among the eigenvalues of the Jacobian matrix
OF /AU evaluated at some intermediate state.

"In this sense Roe’s Riemann solver can also be considered an Approximate State Riemann solver, as long
as it allows the computation of the state vector U.
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Condition (1) guarantees that the modified system is still hyperbolic and solvable. Condition
(2) is required for the special case in which the initial states are connected by a single shock
wave or a contact discontinuity. In this case, in fact, the Rankine Hugoniot condition must
be satisfied

F(Ug) - F(Up) = s(Ug - Ur) (2.34)

with s being the velocity of propagation of the discontinuity. In these circumstances, condi-
tion (2) guarantees that (Ur —Uy) is an eigenvector of A with eigenvalue s, and so also the
approximate solution consists of a single jump. Finally, condition (3) ensures consistency
with the conservation laws. The Roe flux at each zone edge is then calculated as

1 A
B, = o |F(UL) + F(UR) - ) adK?| | (2.35)
=1

where K(l) and \; are the right eigenvectors and the eigenvalues of the approximating matrix

A, respectively. The quantities @; represent the jumps of the characteristic variables across

each characteristic field and are obtained from

m .
Up-U, =Y ak". ‘ (2.36)

1=1

In all modern application of Roe’s method, however, the computation of the constant matrix

@ 3

A is avoided, and one seeks to evaluate directly averages of the quantities K ' , A and @;.
Roe’s method has been widely used by the astrophysics community (see Font et al. 1994;
Bulderink & Mellema 1994, for an application to relativistic jets; Banyuls et al. 1997 for
simulation of accretion onto compact objects) and, making no assumption on the equation

of state, can be adopted in a large variety of different physical conditions.

The Marquina Solver

Marquina’s flux formula obtained by Donat & Marquina (1996) aims at removing a fun-
damental disadvantage of Roe’s solver. This is due to the fact that the solution to linear
systems like the one considered by Roe’s method does not admit rarefaction waves and this
can lead to numerical approximations of discontinuities violating the entropy condition. The
new flux formula obtained by Donat & Marquina has a flux splitting structure, and leads to
an upwind scheme. One first defines the left eigenvector L(Uy, r) and the right eigenvector
R(Uy ) and evaluates the eigenvalues A\(Ur gr) of the Jacobian matrix OF /09U computed

at the left and right states. Then, the characteristic variables and fluxes are calculated as

Wi.r=L(ULR) ULr, (2.37)
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and
¢r.r =L(Urg) F(Urr), (2.38)

respectively. Finally, one chooses the correct sided characteristic flux if the eigenvalues
Ai(Ugz) and \;(Upg) have the same sign, and switches to the entropy satisfying Lax-Friedrichs

scheme® if they change sign. The resulting Marquina’s flux formula is ultimately given by

m

B =2 [BLRI(UL) + LR (Ug)], (2.39)

=1

where the choice on the fluxes ¢%. depends on the criterion specified above (see Donat &
Marquina 1996 for the details). This formula is often used together with Runge-Kutta
time stepping and with cell reconstruction procedures (see Section 8.2) in order to achieve
higher order accuracy both in time and in space. It has been successfully adopted in many
astrophysical contexts, including simulation of relativistic jets (Marti et al., 1995; Marti
et al., 1997), long-term dynamics of relativistic stars (Font et al., 2002), simulation of the
runaway instability in thick discs (Font & Daigne, 2002), etc.

In the dynamical simulations presented in Chapter 5 of this Thesis we have adopted Mar-

quina’s flux formula.

8 High Resolution Shock Capturing Methods

A large effort has been spent in recent years in developing a numerical method able to satisfy

the following requirements
e at least second order accuracy on smooth parts of the solution,
e sharp resolution of discontinuities without large smearing,
o absence of spurious oscillations everywhere in the solution,
e converge to the “true” solution as the grid is refined.

Irrespective of the Riemann solver adopted, the original Godunov method is only first or-
der accurate on smooth solutions and gives poor approximations to shock waves and other
discontinuities. However, if we wanted to modify the first order Godunov method in order
to obtain a higher order numerical scheme we would encounter a fundamental difficulty.

Namely, all higher order linear schemes produce nonphysical oscillations in the vicinity of
large gradients. If we define a monotone linear scheme of the form u*! = H(u? |, s U )
where H is a linear operator, as a scheme for which 0H/du} > 0 for all k, then only mono-
tone linear schemes do not suffer from oscillations. Unfortunately, as proved by Godunov

(1959), monotone schemes are at most first order accurate. As a result, higher order linear

$The first order Lax-Friedrichs scheme can be written as u™™! = t(1+c)uly + 3(1 — c)ulyy, ¢ being the
Courant factor.
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schemes and absence of oscillations are two incompatible requirements, forcing the use of

nonlinear numerical methods. To summarize: HRSC methods result from the combination
of Godunov type methods, which take advantage of the conservation form of the equations,

and of numerical techniques aimed at obtaining second order (or higher) accuracy in smooth

parts of the solution without producing oscillations.

8.1 Total Variation Diminishing Methods

The concept of spurious oscillations in the solution can be made more quantitative by the
notion of the total variation of the solution. The total variation of a grid function ) at time

level ¢ is defined as

+co
TV(QM = Y 1QF - QL. (2.40)

i=—co
and is used to “measure” the oscillations appearing in a numerical solution. The requirement
to have a scheme that is both second (or higher) order accurate and does not produce
spurious oscillations is that the total variation should not be increasing in time, so that the
total variation at any time is uniformly bounded by the total variation of the initial data.

In other words, a numerical method is said to be total variation diminishing (TVD) if, for

any set of data @™, the values Q"+ computed by the method satisfy
TV(Q"™) < TV (Q™). (2.41)

TVD schemes are intimately linked to the more traditional Artificial Viscosity methods (see
Richtmyer & Morton, 1967), where viscous terms were introduced explicitly in the scheme
in order to eliminate or at least control the appearance of the oscillations. In modern TVD
methods, on the contrary, artificial viscosity is inherent to the scheme itself in a rather
sophisticated way. TVD methods do not generally extend beyond second order accuracy. To
construct third (and higher) order methods one must drop condition (2.41) and allow for an
increase of the total variation which is proportional to some power of the typical step size.
The resulting methods are called Essentially Non-Oscillatory (ENO) (see Toro, 1997).

A large variety of TVD methods have been developed in computational hydrodynamics over
the years. Some of them, like the Fluz Limiter Methods and the Slope Limiter Methods
are particular types of Approximate Flux Riemann solvers. Some others, like the so called
MUSCL method, are based on the idea of producing a better representation of the solution
than the simple piece-wise constant provided by (2.24) and paying attention to how the
data behaves at the zone edges of each cell. Since this second approach is the one that
we also adopted in the numerical simulations of accretion discs presented in Chapter 5, we
will briefly present it in the following section, while addressing the reader to the books of
LeVeque (1998) and Toro (1997) for a complete description of the flux limiter and slope

limiter methods.
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8.2 Reconstruction Procedures

Due to the discrete numerical representation, any information about the behavior of the
quantities inside the numerical cell is lost. In order to recover in part this information and
improve the spatial accuracy of a numerical code based on Riemann solvers, different spatial
reconstruction procedures have been developed. The common goal is to interpolate the
profiles of the various thermodynamical quantities within each cell, thus providing a better
estimate for the calculation of the left and of the right state of the Riemann problem to be
solved at the interface between two adjacent cells.

Van Leer (1979) was the first to introduce the idea of modifying the piece-wise constant data
(2.24) as a first step in achieving higher order spatial accuracy. This approach has been
generically called Monotone Upstream-centered Scheme for Conservation Laws (MUSCL).
Since then, many other reconstruction procedures have been developed, such as the piece-wise
parabolic method (PPM) of Colella & Woodward (1984), or, more recently, the piece-wise
hyperbolic (PHM) method of Marquina (1994), where the interpolation is obtained by using

hyperbolae instead of parabolae.
Because of its great popularity, in the following we will quickly present the PPM method,
which has been adopted in a variety of numerical codes. An important extension of this

method to one dimensional relativistic hydrodynamics can be found in Marti & Miller
(1996).

The Piecewise Parabolic Method

Consider the initial averaged values of the general quantity u between z; ;o and ;o over

a general non-uniform spatial grid

n 1 Tit1/2 nb :
up = A'z:~/ u(z,t")dz, (2.42)
STy

where Az; = T;41/9—%;1/2- The basic idea of the PPM is to build an interpolating parabola
® (&) inside each zone

B(8) = al® + bé +c, (2.43)

where & = (£ — @;_1/3)/Azi, T € [T5_1/9, T411/2], satisfying the condition

1
up = /O@(f)df- (2.44)

An additional constraint is that no new extrema appear in the interpolating function ® which
do not already appear in the ul’s. Since determining a parabola requires the calculation of

the three unknown coefficients a,b,c, and one condition for their calculation is obtained

°In this method some growth of the total variation is allowed for preventing degeneration to first order
accuracy at extreme points (see Osher & Chakravarthy, 1984).
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from (2.44), we still have the freedom to choose the values up ; and ug; of the interpolating
parabola at the left and right edge of the i-th numerical cell. The common procedure is to
interpolate a value 11,;:_1/2, i.e. an approximation of the value of u at w;;/5, subject to the
constraint that w1/, does not fall outside the range between the two adjacent values u}
and uj, ;. This can be achieved by performing a polynomial Lagrangian interpolation on the
values of the indefinite integral of u, U(z) = [* w(z',t")dz', whose value at zone edges is

known by definition

Ulzizin) = Zuﬁﬁ\ik- (2.45)

E<i

As aresult, the value of u at the edge of the numerical cell can be calculated by differentiating

(2.45), and, in case of a uniform spatial grid, this is given by

" du
Uiv1/2 = 5

Tit1/2
Lrd

7 , 1
= 1—9(U7 + U"?—I—l) - ﬁ(uﬂg + ’U.?_l). (246)

In the smooth parts of the solution, away from the extrema, u?;H j2 = URi = UL,it1, SO that
the interpolation function is continuous at z;,1/5. The values up,; and ur,t1 are further

modified to guarantee the monotonicity of the function ®(¢) within each numerical cell. It
is this step which introduces the discontinuities at the zone edges, thus generating the initial
left and right states of the local Riemann problem to be solved in the implementation of
a Godunov-type method. Monotonicity is an essential requirement for these interpolating
algorithms, since it avoids the production of spurious oscillations typical of higher order
schemes (Ibanez & Marti, 1999).

Further technical details regarding the monotonicity part of the algorithm and the way in
which spurious postshock oscillations can be avoided near strong shocks can be found in
Marti & Miiller (1996).

9 The Conservation Form of the Relativistic Hydrodynamics
Equations

Considerable progress in the application of HRSC methods to relativistic hydrodynamics was
achieved in 1991 (Marti et al., 1991), when the relativistic Euler equations were recast as
a hyperbolic system of conservation laws. In particular, the Jacobian matrix of the system
was obtained explicitly in terms of suitable conserved variables. As a result, this formulation
allows the spectral decomposition of the system and, therefore, the application of all of those

Godunov type methods involving approximate Riemann solvers where this information is
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required.
It is very interesting to consider this procedure in the general case of a curved background
space-time. In this case (see Banyuls et al., 1997), the local conservation of baryon number

and of energy momentum can be written as
V-J=0 (2.47)

and
V.-T =0, (2.48)
respectively, where V- stands for the covariant derivative. If {J, 0;} define the basis vectors

“adapted” to the coordinates, the current of rest-mass, J, and the energy-momentum tensor,

T, for a perfect fluid of four-velocity w* can be written as
JH = put, (2.49)

and

T = phutu” + pg"¥, (2.50)
respectively, where p is the rest-mass density, p the pressure, h the specific enthalpy, and
9w the metric components. The usual thermodynamic expressions relating e and p to the

specific enthalpy A and to the specific internal energy e of the fluid are

e = p(l+e), (2.51)

h o= l+e+2 (2.52)

0
An equation of state p = p(p,e) closes the system. For computational purposes, it is also
very useful to adopt a 3+ 1 decomposition of the metric', according to which the space time
is assumed to admit a slicing by hypersurfaces ; (t = const.). The coordinate basis vector

0Oy is therefore decomposed into normal and parallel components relative to the slicing,
Bt = oan + ,6, (253)

where n is a unit timelike vector field normal to the hypersurface ¥; (n-9; = 0), whereas the
vector § = ('0;, called the shift, is tangent to it. The function «, called the lapse, measures
how time is advancing between different slices. In this representation, the metric can be

rewritten as _
ds® = —(a® — B;3")dt® + 2B;dz’dt + v;dz’dz’. (2.54)

The advantage of this representation is that all measurements can be referred to an Eulerian

observer n at rest in the slice ¥;. For instance, the components of the three velocity of the

10The idea was originally due to Arnowitt, Deser & Misner, 1962.
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fluid measured by n are given by

) ui le
vt = + —, 2.55
aut o (2.55)
where W = —(u-n) = ou' is the Lorentz factor, satisfying W = (1 — v?)H2 ) with
v? = o', The next step is to introduce suitable “conserved” variables allowing for
J P g

a conservative formulation of the general relativistic hydrodynamic equations. These are
not the ordinary fluid, or “primitive”, variables w = (p,v;,€) , but rather the quantities

U(w) = (D, Sj,7), with

D = pW,
Sj = phVngj 5
r = phW? -p-D. (2.56)

Here D, §; and E are the rest mass density, the momentum in the j-direction and the
total energy density, respectively, as measured by the Eulerian observer. As a result, the

fundamental system in quasi-conservation form reads

O /yU(w —gF(w
\/E_g< \/Zwo( s aﬁj( )> = s(w), (2.57)

where g = det(g,,) and /=g = a/7 (v = det(vi;)). The fuxes F*(w) and the source terms
s(w) in (2.57) take the explicit form

Fi(w) = (D <u - %) ,S; (w’ - E) +pdl, T (vi - %) +pqﬂ‘> : (2.58)

and

09y 1
s(w) = <O,TW (_9_1_ - P‘Z#gag) o (Tuo%n_j‘ - TWFQH)) : (2.59)

OzH T

respectively, where the I'j"’s are the Christoffel symbols of the given metric. Note that the

presence of the source terms s(w) does not prevent the application of conservative methods,
since the sources do not include gradients of the conserved variables and are jsut related to
the curvature of the metric. In case of a Minkowski spacetime equations (2.57) assume a

strict conservation form (see Font et al. 1994 for a specific analysis of the flat spacetime).

9.1 Eigenstructure of the Equations

As we have shown in the previous Sections, the characteristic decomposition of the Jacobian
matrix of a nonlinear system such as (2.57) is a key ingredient in the comstruction of a

Godunov type numerical method using Riemann solvers. The source terms due to gravity
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in (2.57) do not represent a problem from a computational point of view as long as they do
not contain any differential operator acting on the conserved quantities, a fact which would
break the hyperbolic nature of the system.

There are three 5 x 5 Jacobian matrices A® associated with system (2.57), one for each spatial

dimension. They are defined as

;  OF
Al = o—= =1,2,3. 2.
(&) 8U 5 ? ) 73 ( 60)
The eigenvalues and the right eigenvectors of A®, for instance, are given by
N = av®—=p" (2.61)
o
Moo= T3 {”U‘T(l — ) £ eoy/ (1 — v [y=e(1 — v2c2) — vmv=(1 —~ CE)]} — %(2.62)
]
and
- 1 . ) . _
. AT
W (w - = )
YT — vTAL Vg
ry = hWu, roq = Uy
AW, Uy
fya:m — ,Ua:Ai hW
| Wy | W, |
h (fymy + QWzvmvy) h ('yxz + 2W2vmvz)
2 2
ros = R (yyy + 2W vyvy) | ros = h (12 + 2W vyv;)

h ('yzy + QWQ’UZ’Uy)

b (Yer + 2W20,0;)

Wy (2hW — 1) W, (2hW — 1)

respectively, where A}, = At + B and D) /. The eigenvectors r4. are associated with the
eigenvalues \x defining the acoustic waves of the system, while the remaining eigenvectors

are associated with the triple degenerate eigenvalue Ag, which defines the material waves.
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Construction of the Grid

Fix the metric

Initialize variableg

Time loop

Determine time step through Courant factor

For each spatial
direction

Compute boundary conditions

Reconstruct primitive variables inside cell
(linear reconstruction)

Evaluate the flux
(Marquina’s formula)

Compute the source terms

Evolve conserved quantities with Runge Kutta
using Godunov’s first order method as prediction step

Transform back to primitive evolved variables

Figure 2.6: Flow chart of the hydrodynamical code used in Chapter 5.

9.2 Structure of a HRSC numerical code

In Chapter 5 a numerical code using HRSC methods and originally developed by Font &
Ibafiez (1998), has been implemented for the study of quasi-periodic accretion and gravita-

tional wave emission from accretion discs around Schwarzschild black holes. We conclude
this Chapter on numerical methods by showing in Figure 2.6 the flow chart of the code

implemented there. Note that the expressions (2.56) relating the conserved variables to the
primitive ones cannot be inverted analytically. This means that at each time step an itera-
tive method is needed for recovering the primitive variables pressure, density and velocity.
This represents a rather time consuming procedure, and particular attention is needed for
its optimization. For an ideal gas equation of state p = pe(y — 1) the method has been
extensively described by Marti et al. (1991), Aloy et al. (1999). For an adiabatic evolution
of an ideal gas obeying a polytropic equation of state p = kp7, like the one considered in

Chapter 5, the variable 7 in (2.56) does not need to be evolved, and the recovering of the

physical variables is performed by expressing the norm S? = (ph)?W*v? of S; as a function
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of the Lorentz factor only

2 D\* Y 1 ’ 4 9
S = W 1—;—7_1&[){ Wy~
2
2 Y DN\ 2
= D 1+,},_1I€ —W 4 - 1). (2.63)

Once the Lorentz factor has been calculated, the other primitive variables are recovered by

p=D/W,h=1+ ﬁ—lfﬁp“’“l and v; = S;/phW?2.
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Chapter 3

A New Exact Riemann Solver in
Special Relativistic Hydrodynamics

1 Introduction

The solution of the general Riemann problem in special relativistic hydrodynamics, first ob-
tained by Marti & Miiller (1994) after the special case of the shock tube problem had already
been solved by Thompson K. (1986), exploits two properties of the Riemann problem. The
first one is that both pressure and velocity are continuous across the contact discontinu-
ity, and the second one is that the velocity in the intermediate states forming behind the
two non-linear waves can be written explicitly as a function of pressure. Alternatively, the
solution of the Riemann problem can be obtained exploiting the relativistic invariant expres-
sion for the relative velocity between the unperturbed left and right states. This chapter
is devoted to the presentation of this exact Riemann solver which is particularly suitable
for implementation in a numerical scheme. After a general introduction, given in Section 2,
the new method will be first applied to the case of one dimensional flows in Section 3, and
then generalized to flows with nonzero component of the velocity tangentially to the contact
discontinuity in Section 4. In Chapter 4 we will show how the new approach is also useful

for revealing new physical aspects that have remained hidden for a long time.

2  General Presentation of the Method

In a flat spacetime consider a perfect fluid described by the stress-energy tensor
TH = (e + plutu” + pnt” = phutu” 4+ pn™” (3.1)

where n*¥ = diag(—1,1,1,1) and e, p, p, and h are the proper energy density, the isotropic
pressure, the proper rest mass density, and the specific enthalpy, respectively. Assume more-

over that the fluid obeys a polytropic equation of state

p=k(s)p” = (y—1)pe, (3.2)

33
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where p is the proper rest mass density, v is the adiabatic index, and k(s) is the polytropic
constant, dependent only on the specific entropy s. For such an equation of state, the

relations (2.51) and (2.52) given in Chapter 2 take the form

e = p(1+e>:p+7§—, (3.3)

ho= 1+6+P—:1+£(L>. (3.4)
p pAy—1

Further assume the fluid to consist of an initial “left” state (indicated with an index 1) and an
initial “right” state (indicated with an index 2), each having prescribed and different values
of uniform pressure, rest mass density and velocity. The two discontinuous states are initially
separated by a planar surface ¥ placed at a constant value of the z coordinate so that the
unit space-like 4-vector nf normal to this surface at ¢ = 0 has components ng‘ = (0,1,0,0)".
Notice that, in contrast with Newtonian hydrodynamics, in special relativity this surface X
is of constant time only for the set of inertial frames connected by a boost in the direction
normal to the initial discontinuity or by spatial rotations. In a different set of inertial frames,
in fact, a hypersurface of constant time consisting of a single initial discontinuity separating
two constant states will not exist. Rather, the ”initial states” will be more complex and
reflect the rich structure of the solution of the Riemann problem.
Because we are in general considering a multidimensional flow, the fluid 4-velocity on either
side of the initial discontinuity is allowed to have components in spatial directions orthogonal
to ng, Le.

ut = W(1,v%,vY,v%) , (3.5)

b

where W2 = (1—v?)~! is the square of the Lorentz factor and v? = v'v; = (v%)2+ (v¥)%+ (v?)?
is the norm of the 3-velocity. The hydrodynamical properties of the initial left and right states

are described by the “state-vectors”

where we have indicated with v* = [(v¥)? + (v%)?]'/? the tangential component of the three
velocity, satisfying the obvious relativistic constraint that (v%)? + (v*)? < 1. Hereafter, we
will refer to v® as the normal velocity.

The fiuid states Q; and Qs represent the initial conditions of a multidimensional “‘Riemann

problem” whose solution consists of determining the flow that develops when the system is

allowed to relax? (see Section 5.2 of Chapter 2).

More precisely, the unit normal to the hypersurface Y is defined as the one-form mapping each vector
tangent to the surface into zero.
*Note that both the rest mass density and the tangential velocities can be discontinuous across the contact
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The new approach that we introduce here focuses on (v{;)g, the relativistic invariant ex-
pression for the relative velocity between the two unperturbed initial states. By construction,
this quantity measures the relativistic jump of the fluid velocity normal to the discontinuity
surface. The solution of the relativistic Riemann problem is then found after the pressure
in the region between the two nonlinear waves, p., is calculated as the root of the nonlinear

equation
Uia(p«) — (viz)o =0, (3.6)

where v{,(p.) has a functional form that is different for each of the three possible wave-
patterns that might result from the decay of the initial discontinuity. The key aspect of
the new approach is that the wave-pattern produced can be entirely predicted in terms of
the initial data Q2. This represents an important advantage since it allows to deduce in
advance which set of equations to use for the solution of the exact Riemann problem and
the interval bracketing the root of (3.6).

The validity of the approach discussed here is in the mathematical proof that the function
v}y = vi5(p«) is monotonically increasing with p, and it is composed of three branches corre-

sponding to the three possible wave-patterns (see Fig. 3.1). Furthermore, the three different
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Figure 3.1: Relative velocity between the two initial states 1 and 2 as a function of the pressure at
the contact discontinuity in a Riemann problem with zero tangential velocities. Note that the curve
shown is given by the continuous joining of three different curves describing the relative velocity
corresponding respectively to two shocks (dashed line), one shock and one rarefaction wave (dotted
line), and two rarefaction waves (continuous line). The joining of the curves is indicated with filled
dots. The small inset on the right shows a magnification for a smaller range of p, and we have
indicated with filled squares the limiting values for the relative velocities (912),s, (012)sn, (912).p -

discontinuity C.
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branches always join smoothly through specific values of v{y(p.), denoted respectively as®
(%) 165 (T89)sps (0F5),p- In view of these properties, it is possible to compare (vfy)0 with
the relevant limiting values (7%5),q, (0%)sg: (072),5 constructed from the initial conditions
and determine, prior to the solution of equation (3.6), both the wave-pattern that will be
produced and the functional form of v, (pk) to be used. Before entering the details of our
analysis, however, it is worth showing how relative velocities can be calculated in different

reference frames.

2.1 Limiting Relative Velocities

The expression for the relative normal-velocity between the two initial states of the Riemann
problem represents the building block in our approach and, to simplify our notation, hereafter

we will refer to the different flow regions using the following mapping
W, L.CRW_R = IW_3C3w,2, (3.7)

so that, for instance, p, = p3 = pa.

While the values of v¥, are relativistic invariants under a Lorentz boost in the z-direction,
there exists a reference frame which is better suited to evaluate this quantity. In the reference
frame of the contact discontinuity, in fact, the normal velocities behind the nonlinear waves

are, by definition, zero (i.e. v$, =0 =v§ ) and the relative velocities across the nonlinear
3 )

waves measured in this reference frame will be

vl — V3e
T ” ) e = Um 38
(U13),C 1 — (U%C)(Ugc) 1,C » ( )
Vie — U3 4
(viz)e = ’ e = U5c . (3.9)

L= (w5 c) 7

Because of their invariance, the normal velocity jumps across the nonlinear waves measured

in the Fulerian frame can be expressed as

vl —v3

('U%:;) 1 — U%"Ug; = (0{3)7C [U::lv,c ’ (310)
T U% - IU%:’ T T
, , . 3.1
(v3) T kot (viz)e = vsc (3.11)

As a result, the relative normal-velocity between the two initial states can be written as

’Uic — U3¢
1- (“af,c)(”%,c) '

$Here 25, SR and 2R indicate a two shock, a shock-rarefaction and a two rarefaction wave-pattern,
respectively.

z

Vig = (’Ufz),c = (3.12)




3 One-dimensional Flows 37

As mentioned before, the basic operation in our approach consists of calculating the relative
normal-velocity across the two initial states and comparing it with the limiting relative
velocities for each of the three possible wave-patterns. In practice, this amounts to calculating
equation (3.12) making use of expressions (3.10) and (3.11). In the following two sections we
will apply our procedure to the case when the flow is one-dimensional and multi-dimensional.
In doing so we will adopt the convention by which p; > po, with the z—axis normal to the

discontinuity surface being positively oriented from 1 to 2.

3 One-dimensional Flows

As a first application of our method we will consider the case when there are no tangential
velocities. The solution of the Riemann problem consists of three different wave patterns,
each being composed of two nonlinear waves moving in opposite directions and separated by
a region where a contact discontinuity is present. In the case of a shock in a one-dimensional
flow, the relativistic expression for the relative velocities ahead of (a) and behind (b) the
shock can be easily obtained in a reference frame comoving with the shock front, and takes
the form (Taub 1978)

(3.13)

Vabh =

Vg — Up — (pb "pa)(eb - ea)
1 —vaup (eq + pp)(ey + Pa)

In the case of a rarefaction wave, on the other hand, it is more convenient to use the Eulerian
frame in which the initial states are measured. In such a frame, the flow velocity at the back

of a rarefaction wave can be expressed as a function of pressure at the back of the wave as

(1 + 'Ua)Ai(pb) — (1 - va)
(14 va) A (pp) + (1 —va)

vp = (3.14)

The quantity A4 (p) in (3.14) is defined as (Marti & Miiller 1994)

) = H(v— 1)1/ —cs<p>} W_ b +cs<pa>} }ﬂ/ T

(v = DY2 +es(p) | | (v — D2 = c5(pa)

with the & signs corresponding to rarefaction waves propagating to the left (R..) and to
the right (R_,) of the contact discontinuity, respectively. The quantity cs(p) in (3.15) is the

local sound speed which, for a polytropic equation of state, can be written as

y(y—1)p (3.16)

Cg = 4 .
) (y—=Dp+p

We can now use expression (3.14) to write an invariant expression for the relative velocity

across a rarefaction wave (i.e. the relative velocity of the fluid ahead of the rarefaction wave
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and behind the tail of the rarefaction wave) as

1— Ai(ps)

e Wek (3.17)

Vab

Equations (3.13) and (3.17) can now be used in (3.10)-(3.11) to obtain vi, and vj, after
which the calculation of the relative normal-velocity between the two initial states will be
straightforward [cf. eq. (3.12)].

In the following three sub-sections we will apply the procedure outlined above to derive
the relative velocity between the left and right states for the three different wave patterns

that might be formed in a one-dimensional Riemann problem.

3.1 18_3C3 8, 2: Two Shock Waves

We start by considering the wave pattern produced by two shocks propagating in opposite
directions (see Fig. 3.2). This situation is characterized by a value of the pressure downstream
of the shocks which is larger than the pressures in the unperturbed states, i.e. pg > p1 > po.
By simply applying equation (3.13) to the shock front propagating toward the left and
evaluating it in the reference frame of the contact discontinuity, we can write the velocity

ahead of the left propagating shock as

e [(ps—pi)(es —e1)
e = l\/<€1 +ps3)(es +p1) (3.18)

Similarly, we can apply equation (3.13) to the shock front moving towards the right and
evaluate it in the frame comoving with the contact discontinuity to obtain that the velocity

ahead of the right propagating shock is

v = _\/(Ps — p2)(ey — e2) _ (3.19)

(e2 + p3)(ex + p2)

Equations (3.18) and (3.19) can now be used to derive the relativistic expression for the
relative velocity of the flow ahead of the two shocks (v};),s through (3.12). As proved in
Appendix A, the expression for the relative velocity between the unperturbed states is a
monotonic function of p3 for all possible wave patterns. In particular, for the present choice
of initial data, this expression is a monotonically increasing function of p3. As a result, the
value of (v3,),s can be used to build a criterion for the occurrence of two shocks propagating
in opposite directions. In fact, since p; is the smallest value that ps can take, two shocks

will form if

¢ —moy — |p1—p2)(é—ea)
Vig > (UIQ)‘ZS - \/(é +p2)(€2 "I’pl) 3 (320)
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Figure 3.2: Schematic wave pattern in the pressure for the decay of a discontinuity generating
two shock waves propagating in opposite directions. The vertical solid lines show the position of the
shock fronts while the dot-dashed vertical line shows the position of the contact discontinuity. The
different arrows show the gas flow and the directions of propagation of the different fronts.

where

” A 2 P
E=hp—p =h—-~oe—— —py (3.21)
(v=1(h-1)

and h is the only positive root of the Taub adiabat (Taub 1978, Marti & Miiller 1994)

(v = Vp2 = ps) | 52 (v = 1)(p2 —p3) 5 n holps —ps) B2=0. (3.22)

p3 YP3 P2

1+

when p3 — p;. Simple calculations reported in Appendix B show that the Newtonian limit
of (0f;),s corresponds to the expression derived by Landau and Lifshitz (1987).

3.2 1R.3C3 S8, 2: One Shock and One Rarefaction Wave

We next consider the wave pattern produced by one shock front propagating towards the
right and one rarefaction wave propagating in the opposite direction (see Fig. 3.3). This
situation is therefore characterized by p1 > p3 > po.

Evaluating expression (3.17) in the reference frame comoving with the contact disconti-

nuity, we can evaluate the flow velocity ahead of the rarefaction wave to be

vie= %ii“f”—% ! (3.23)
where
9/ (m—111/2
= (- 1)1/2 —cs(ps) | | (v — 1)1/2 + ¢s(p1) /(=1
Ay(ps) = { [(’Y ~1)/2 4 Cs(p3)} {(7 —1)1/2 - Cs(p1)J } . (3.24)

The flow velocity ahead of the shock front can be derived as in Section 3.1 and is given
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Figure 3.3: Schematic wave pattern in the pressure for the decay of the discontinuity into a shock
wave propagating towards the right and a rarefaction wave propagating in the opposite direction.
The vertical lines show the discontinuities formed (continuous for the shock front; dashed for the
head and the tail of the rarefaction wave; dot-dashed for the contact discontinuity) while the arrows
show their direction of propagation and that of the gas flow.

by equation (3.19). When combined with expression (3.23), it can be used to derive the
relativistic expression for the relative velocity of the fluids ahead of the shock and ahead of
the rarefaction wave (v%,).,. As for (v],),s, it can be shown that (vf5) s is a monotonically
increasing function of ps (see Fig. 3.1 and Appendix A for an analytic proof). Exploiting
now the knowledge that for this wave pattern the pressure in the region between the two
waves must satisfy ps < ps < p1, we can establish that the criterion on the relative velocity

for having one shock and one rarefaction wave is

¢ (m—p)(e—ex) o
“ <wpp < ‘\/(82 o)t (012)ss - (3.25)

(075)sp = T A, (ps)

Note that the upper limit of (3.25) coincides with (?12),s, which is the lower limit for the
occurrence of 2 shock waves (3.20) and whose Newtonian limit coincides with the equivalent
one found by Landau and Lifshitz (1987) (see Appendix B). Note also that in the limit,
p3 — po, regions 1 and 2 are connected by a single rarefaction wave. In this case the sound
speed can be computed using ps = pz but with p3 = p1(p2 /p1)}/7. Finally, note that this is
the only wave pattern in which v; and vy have the same sign and it therefore includes the

classical shock-tube problem, where v; = vo = 0.

3.3 1R.3C3 R. 2: Two Rarefaction Waves

We now consider the wave pattern produced by two rarefaction waves propagating in opposite
directions (see Fig. 3.4). This situation is characterized by p; > p2 > p3 and when the waves

are sufficiently strong it might lead to a vacuum region (p3 = 0) behind the rarefaction
waves.
Following again the same procedure discussed in the previous Section, we can determine
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Figure 3.4: Schematic wave pattern in the pressure for the decay of the discontinuity into two rar-
efaction waves propagating in opposite directions. The vertical lines show the discontinuities formed
(dashed for the head and the tail of the rarefaction waves; dot-dashed for the contact discontinuity)
while the arrows show their direction of propagation and that of the gas flow. Note that the region
downstream of the two rarefaction waves has a density ps > 0.

the values of the fluid velocities ahead of the two rarefaction waves as, respectively,

Ap(ps) -1
= —_—— 9 2
e Ay(ps) +17 (3.26)
1—A_(py)
s .
UZ,C - 1 + A_ (pgl) 3 (327)

where

— _1y1/2
G =DY2 —cg(pa) | | (v = DY2 + e(p2) 20
A_(p3) = { [(’Y — 1)1/2 + cs(pg,)} {(7 _ 1)1/2 _ CS(;”?):i } . (3.28)

We have indicated with cs(pa) the sound speed in the region 3/, which differs from the one
in region 3 because of the jump in the densities p3 and pg. The relative velocity built using
(3.26) and (3.27) is then

(’UI ) — __A+(p3) - A—(p?»’)
12/en Ay(ps) + A (py)

(3.29)

As for the relative velocities of the previous wave patterns, it can be shown that (v12),,,

is a monotonically increasing function of ps (see Fig. 3.1 and Appendix A for an analytic

proof) so that the criterion for the occurrence of two rarefaction waves can be expressed as

~T

('Ufz)zR

where A_(p3 = p3) = 1 and therefore the upper limit for (3.30) coincides with the lower
limit for (3.25).
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The condition (3.30) can also be expressed in a more useful form as

=Sy _ e o _1=Ailp)

—_— _— 3.31
Si1 5 =TT A () (3:31)
where, the constants S; and Sy are shorthand for
B 1/2 T 2/(7*1)1/2
=D ~cilp)
- 1-2/(y=1)1?
T (=) = es(po) | '

An important property of equation (3.29) is that it can be inverted analytically. This
involves rewriting it in terms of a quartic equation in the unknown sound speed in the region
L, (see Appendix C for the explicit form of the equation). Once the relevant real root of this
equation has been calculated analytically, the value of the pressure p. can be found through
a simple algebraic expression. In this case, therefore, the solution of the exact relativistic
Riemann problem can be found in an analytic closed form.

We conclude the analysis of the different wave patterns with a comment on the case of two
rarefaction waves propagating in opposite directions and leaving behind them a region with
zero density and pressure. This situation occurs when the fluids in the regions 1 and 2 are
moving sufficiently fast in opposite directions. This is the case whenever the relative velocity
between the two states ahead of the rarefaction waves is less than or equal to the lower limit
for (v%,),, L6 '

S; — S

—— 3.3
S1+ 59 ( 4)

vy < (915),5 =

Also in this case, taking the Newtonian limit of (0%,),, we obtain the corresponding expres-
sion derived by Landau and Lifshitz (1987) (see Appendix B). Finally, note that when a
vacuum is produced, v¥, is no longer dependent on p3 and this branch of the curve cannot

be plotted in Fig 3.1.

4 Multi-dimensional Flows

The extension of the approach presented in the previous section to the case when tangential
velocities are present is straightforward and equation (3.6) applies unmodified. The major
changes introduced by the presence of tangential velocities are restricted to the expressions
for the limiting values of the relative velocity (0%,),s, (075)grs (912)2n- However, there are
two further complications. The first one concerns shock waves, and it rests on the fact
that calculating jump conditions in the rest frame of the shock front is now not particularly

advantageous. In this case, in fact, the velocity jump across the shock cannot be expressed
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as an algebraic relation among the thermodynamic quantities across the shock. Rather,

the ratio of the velocities ahead and behind the shock front needs to be found as root of a
nonlinear equation. Analytic solutions to this equation can be found only in the weak-shock

limit or for an ultrarelativistic equation of state (see Koenigl 1980 for a discussion). The
practical consequence is that it is not possible to derive a simple expression analogous to
equation (3.13). The second complication concerns rarefaction waves, namely that there are
not closed form solutions for them if tangential velocities are present. For these reasons, in
the following two subsections we will show how shock and rarefaction waves can be handled

in the usual Eulerian frame.

4.1 Jumps Across a Shock Wave

Following Pons et al (2000), we use the Rankine-Hugoniot conditions in the fixed Eulerian
reference frame. In particular, adopting the standard notation in which the difference of a
quantity evaluated behind (subscript b) and ahead (subscript a) of the wave is denoted as
[[F]] = Fo — Fp (Anile 1989), these conditions can be expressed as

[0 = ——V%ul/m], (3.35)
) = 5-l05%/D], (3.36)
18Y/D]] = 0=[%/D], (3.37)
)] = ﬁ,']—s[wDH- (3.38)

In expressions (3.35), (3.36) and (3.38), J represents the mass flux across the shock
J=WsDo(Vs —v2) = WDy (Vs — vy) (3.39)

and W, = (1 — V2)~Y/2 is the Lorentz factor of the shock velocity Vs, with the latter being

vt PaWavE £ |1V T + pa Wl — (v5)’]
’ paWe +J? ’

(3.40)

and with the & signs referring to a shock wave propagating to the right or to the left,
respectively. We can now exploit equations (3.35)-(3.38) to express the normal velocity of

the fluid on the back of the shock front in terms of the pressure as

o — haWa,Ug + I/Vs(pb —pa)/J )
b hoWq + (pb - pa)[Ws'Uif/J + 1/(PaT’VaH

(3.41)
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Besides giving the jump in the normal velocity across a shock wave, expression (3.41) states
that the two regions of the flow across the shock wave are effectively coupled through a
Lorentz factor which, we recall, is built also in terms of the tangential velocities. This is a
purely relativistic feature and an important difference from Newtonian hydrodynamics, in
which the solution of the Riemann problem does not depend on the tangential component
of the flow. An important consequence introduced by this coupling will be discussed in
detail in Chapter 4. For the moment it is interesting to notice that expression (3.37) implies
that the ratio v¥/v? remains unchanged through shocks, so that the tangential velocity 3-
vector does not rotate but can change its norm. This property, which applies also across
rarefaction waves, represents a major difference from the behaviour of the tangential 3-
velocity vector across Newtonian nonlinear waves, which does not rotate, nor changes its
norm: [[v¥]] = 0 = [[v*]].

The square of the mass flux across the wave can be expressed as

J2 = _ [lp]] (3.42)

where the ratio h/p in the shocked region can be calculated through the Taub adiabat (Taub,
1948)

u#n=(“+f@)mn. (3.43)

Pa P

In a general case, the mass flux can be obtained as a function of just one thermodynamic
variable (p,) after using the EOS and the physical (h > 1) solution of the nonlinear equation
(3.43). In the case of an ideal fluid EOS, like the one considered here, this can be done
explicitly because (3.42) and (3.43) take respectively the simple form

2 7 [[PH
T =TI - Dl (3.44)

and

-1 — 9 —1 — Pa — -
14 0D =p)] e (y=Dea=p)y ha(Pa=Pb) _p2 _ ¢ (3.45)
TPy Py Pa

4.2 Jumps Across a Rarefaction Wave

When considering a rarefaction wave it is convenient to introduce the self-similar variable
¢ = z/t in terms of which similarity solutions to the hydrodynamical equations can be found.
An explicit expression for ¢ can be obtained by requiring that non-trivial similarity solutions

for the rarefaction wave exist. This then yields (see Pons et al 2000 for details)

(1 — ) + ¢ 1_21_22_ le_g-
ngu( c2) +es/( 1@_)£zcgvc (v=)2( c)]’ (3.46)
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where here too the + signs correspond to rarefaction waves propagating to right or to the
left, respectively. In the case of a perfect fluid, the isentropic character of the flow allows
to calculate the velocity on the back of the wave as a solution of an ordinary differential
equation
dv® 1 (1-£&%)
dp  phW?2 (£ —v®) '

(3.47)

In principle, to calculate the normal fluid velocity at the tail of the rarefaction wave
one should solve the ordinary differential equation (3.47), which might be very expensive
numerically. To overcome this, it is convenient to make use of constraints such as those in
expressions (??) (which remain valid also across a rarefaction wave) and express equation
(3.47) in a different way. Defining A = hoWov! = hbW},vg, the tangential velocity along a

rarefaction wave can be expressed as
» 1 — )2
(v')? = A7 {————(U ) } : (3.48)

This allows us to eliminate the dependence on v* from equation (3.46). From the definition

of the Lorentz factor and equation (3.48) it is straightforward to obtain

A h? + A2
W= — 2 46
P ) (3:49)
and after some algebra one can arrive at
1—¢&v* h? + A%2(1 — ¢
(5 - 'Um) hes
Using this results, equation (3.47) can be written as follows
dv® h2 4+ A%(1 - ¢2) d
LA v _ (9 s) dp (3.51)
[— (o) WA po

Note that in this way we have isolated the thermodynamical quantities on the right hand
side of (3.51) and the kinematical ones on the left hand side, which can then be integrated
analytically. For some particular cases (for example when the sound speed is constant), the
right hand side too is integrable but for a generic EOS a numerical integration is necessary.

The velocity at the tail of the rarefaction wave can then be obtained directly as
vi =tanhB , (3.52)

where

T D 2 2 2
log(lJrva)i/ VIZT A0 =) dp (553
P

(B2 +A%)  pes
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Here, h = h(p,s), p = plp,s), and ¢; = ¢s(p,s), and the isentropic character of rarefac-
tion waves allows to fix s = s,. Despite its complicated look, the integrand is a smooth,
monotonic function of p, and a Gaussian quadrature with only 10-20 points has proved to be
more accurate and efficient than a third order Runge-Kutta integrator requiring hundreds
of function evaluations to solve (3.47).

In the following, analogously to what done for the one-dimensional case, we will apply our
procedure to derive the relative velocity between the left and right states for the three

different wave patterns that might be formed.

4.3 18_.3C3 S, 2: Two Shock Waves

We first consider a wave-pattern in which two shock waves propagate in opposite directions.
In this case, the general expression for the relative normal-velocities between the two initial
states (vf,),s can be calculated from (3.12) with the velocities behind the shock waves vg
and v} being determined through the jump condition (3.41). Because p; is the smallest
value that the pressure at the contact discontinuity pz can take, the limiting value for the
two shock waves branch (7,),s can be expressed as

V0),e = lm (vi9),q - 3.54

(@5 = Jim (v (354
Evaluating the limit (3.54) basically involves calculating the limits of v{, and vj, for ps

tending to p;. Both these limits are straightforward to calculate and are

pgg}l’l vic=0, (3.55)
v¥ — 05,
lim 03, = —2—3 (3.56)
ps—pr ¢ 1 — i

where o3, is simply the value of vg for p3 = p, L.e.

vy = i ¥ 3.57
vs Palir’;’l Ys ( )

Using now the limits (3.55)—(3.56) and some lengthy but straightforward algebra, the
explicit analytic expression for the limiting value of the two shock waves branch can be

calculated as

(pr —p2)(1 = U%gsg) (3.58)

(07y),s = — lim Uic:

P3P (Vs — v8){hapa(W2)?[L — (v§)%] +p1 — p2}

Here V; is the velocity of the shock wave propagating towards the right in the limit of p3 — p;
and an explicit expression for it can be found in the box below in the case of an ideal fluid.
Expression (3.58) will be discussed further in Section 3 but it sufficient to point out here

that the threshold value (9%,),s does not depend on the initial velocity in the state 1, f.
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Detail: an explicit expression for V.

We provide here an explicit expression of the velocity of the shock wave propagating
towards the right in the limit of p3 — p; and when the fluid is ideal. This quantity,
which is necessary to calculate the limiting relative velocity (vf,),; in equation

(3.58), can be easily computed as [cf. eq. (3.40)]

p%I’VQQ’Ug + IJQg/!\/-]223/ + ,O%VVQQ[l - (Ug){z]
§ p%W; + J%g/

: (3.50)

where the mass flux Jpg is given by [cf. eq. (3.44)]

JQ,:—< Y ) P1=ps , 3.60
» v =1) hy(hy —1)/p1 — ha(ha — 1)/p2 (360)

and where, finally, hs is the positive root of the Taub adibat (3.45) in the limit of

P3 — Pi, ie.
hy = YD =11 —p2) (3.61)
2((y = Dpz2 +p1
The quantity D in the root (3.61) is just a shorthand for
(y=Upa+p1 Thalpz—p1) 9
D=1-4 —h3| . 3.62
T =21 — p2)? p2 ? (3.62)

4.4 1 7&, 3C 3 S, 2: One Shock and One Rarefaction Wave

We next consider the wave-pattern consisting of a rarefaction wave propagating towards the
left and of a shock wave propagating towards the right. Also in this case, (vf;)4; can be
calculated from (3.12) with v being determined through the jump condition (3.41) and v§
from the numerical integration of equation (3.47) in the range [p1,ps]. Because ps is now the
lowest pressure in the unknown region behind the two nonlinear waves, the limiting value

for the one shock and one rarefaction waves branch (97,)s, can be expressed as
(02) s = lim (v12) sk - (3.63)

In the limit p3 — po, the right-propagating shock is suppressed, v3, — v3 so that

li 50=0, .
2931—1-}1172 vac (3 64)
and

(V12) sz = Jm Vi - (3.65)
Defining now

1 1+9f
By =<1 .
: zog(l_v%), (3.66)
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and using (3.52), it is readily obtained that

(3.67)

" P2 /R + A1 -2
(U2)sr = pggn;_’tanh(ﬁl — B) = tanh ( Vi + A c°)clp>

Jp1 (hz + Af)p Cs
where the above integral can be evaluated numerically. A better look at the integral shows
that only quantities in the left state are involved (through the constant A; = hiWivt) and
that (9%,),, does not depend on the initial velocity in the state 2, v3. This property has an

important consequence that will be discussed in the following Chapter.

4.5 1R_3C3 R, 2: Two Rarefaction Waves

When the wave-pattern consists of two rarefaction waves propagating in opposite directions,
(v%,),, can be calculated from (3.12) with the velocities behind the waves being calculated
using (3.52) and (3.53). Since the lowest value of the pressure behind the tails of the rarefac-
tion waves is zero, the limiting value for the two rarefaction waves branch (7f,),, is given
by

(02)20 = Lm (V1) g - (3.68)

p3—>0

Proceeding as in previous subsection, we can now express (07,),, as

(5%,),, = e T (3.69)
e 1= (07 c)(03c)

where

0 /h2+ A%(1—¢c?)
7T, = tanh / L Ldp | o, 3.70
e ( b (P ADpe 10

_ PQ\/hZ_*_A%(l_dZ)
€T — t S .
Ua.c anh (A (hQ + Ag)p Cs dp | (3 71)

and where Ay = hoWavl. While the determination of (9f,),, requires the numerical calcu-
lation of the integrals (3.70) and (3.71), it has very little practical importance as it marks
the transition to a wave-pattern with two rarefaction waves separated by vacuum; this is a
very rare physical configuration which cannot be handled by a generic numerical code.
Note that in computing (3.69), both the left state quantities and the right ones are
involved and, as a result, (9%,),, will depend on both v§ and v3. Fig. 3.5 shows the functional
behaviour of v¥, = v%(p3) and how this behaviour is changed by the presence of nonzero
tangential velocities. The initial conditions are those of a modified Sod’s problem (Sod,
1978) in which py = 1.0, p1 = 1.0, vf = 0.0, p2 = 0.1, p2 = 0.125, v§ = 0.0, and v = 5/3.
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Figure 3.5: Relative normal-velocity between the two initial states as a function of the pressure at
the contact discontinuity. Each curves is the continuous joining (marked by the solid dots) of three
different curves corresponding respectively to two shock waves (25), one shock and one rarefaction
wave (SR), and two rarefaction waves (2R). The solid line refers to the case of zero tangential
velocities, while the dashed line to the case in which v} = 0.7 = v5. The initial state vectors are those
of Sod’s problem.

Each of the two curves shown is effectively the composition of three different ones (joined
at the solid dots) corresponding to wave-patterns consisting of two shock waves (25), one
shock and one rarefaction wave (SR), and two rarefaction waves (2R). While the solid
curve refers to initial conditions with zero tangential velocities, the dashed one is produced
when nonzero tangential velocities, v! = 0.7 = v, are considered. Note that also in this
latter case, the three branches are monotonically increasing with p3 (a fundamental property
whose mathematical proof can be found in Appendix A) but are all altered by the presence

of nonzero tangential velocities.

5 Numerical Implementation

As shown, the core of an exact Riemann solver, both in Newtonian and relativistic hydro-
dynamics, is based on the numerical computation of the pressure in the regions L. and R.
that form behind the waves. The key property exploited when performing the numerical
calculation is that the velocity in such regions can be expressed as a monotonic function
of the pressure i.e. vi = v} (pr,), and v} = v%, (pr.). Since there is no jump across a

contact discontinuity in either the velocity or in the pressure, the numerical solution of the
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Riemann problem consists then of finding the root p. = pr. = pg, of the nonlinear equation

vr. (p:) — v, (ps) =0, (3.72)

where v7_,v§ have different functional forms according to the different wave patterns pro-
duced (see Section 7.1 of Chapter 2). This method has two obvious disadvantages: (1) it
cannot determine, using the initial conditions, the wave pattern produced and thus which
of the functional forms to use for v§ ,v% ; (2) it cannot provide a straightforward bracket-
ing interval for the root. In practice, however, these difficulties are effectively balanced by
efficient algorithms based on a sequence of trial and error attempts that rapidly bracket the
root and determine the correct equation to solve (see, for instance, Marti, & Miiller 1999
and the algorithm presented therein).

The exact Riemann solver which we have presented differs from the one discussed above
mostly because it avoids the disadvantages (1) and (2). In fact, as shown in the previous
Sections, by comparing the relative velocity between the initial left and right states (v,)g
with the relevant limiting values constructed from the initial conditions (97,),s, (0%5)4n,
(0f),, we can determine both the wave pattern which will be produced and the correct
bracketing range in the pressure. Once this information has been obtained, the Riemann
problem can be solved either through the solution of equation (3.72) or, equivalently, by
looking for the value of the pressure p, which would produce a relative velocity (v];)g. This
latter approach, involves then the solution of the nonlinear equation (3.6), where v, (p.) is
given by the expressions for (v{y),s, or (vfy)sp, Or (v]5),, derived in Sections 3.1-3.3 for the

one-dimensional case and in Sections 4.3-4.5 for the multi-dimensional case.
Besides providing direct information about the wave pattern produced, about the correct

equation to solve and the relevant bracketing interval, our approach is also very simple to
implement numerically. In practice, the basic steps for the solution of the Riemann problem

can be summarized as follows:

1. Evaluate from the initial conditions the three limiting relative velocities (97,),s,
(77%2)5115 (6%‘2)2}2'

2. Determine the wave pattern and the functional form of v7,(p.) by comparing (vf,)o

with the limiting values calculated in (1) and according to the scheme below
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(vig)o > (092)ss + LS LuCRSLR, v (p+) = (v12) s
(6%2)53 < (UIQ)O < (612)25 LR%L*CR*S-%Rv U%Q(p*) = (U%'Z)SR
(17%2)212 < (v )0 < ({)12)51? LR’*L*CR*R%Rﬂ Uf2(p*) = (Uzlb‘z)g)a

(vT5)0 < (075),5 LR, L.CR,R_,R with vacuum, —
(3.73)

3. According to the wave pattern found, determine the extremes pmae and ppin of the

pressure interval bracketing p.. Within our conventions this is equivalent to setting?

LS_L.CR.S,R LR L. CR,S R LR _LLCRRR
Drmin max(p1,p2) min(p1, pa) 0
Prax 00 max(p1, p2) min(p1, p2)

4. Solve equation (3.6) and determine p..

5. Complete the solution of the Riemann problem by computing the remaining variables

of the intermediate states L, and R,.

We have implemented our algorithm for an exact Riemann solver and have tested it for a

range of classical test Riemann problems. We have also compared the performance of our

algorithm with the “standard” approach presented by Marti & Miller 1999 and have found a

systematic reduction in the computational costs for the same level of accuracy in the solution.

The quantitative efficiency improvement depends on the type of problem under consideration.

In the case of a generic hydrodynamical problem (in which very simple Riemann problems

are solved), our approach brackets the solution very closely and this produces substantial

computational improvements of up to 30%. More systematic tests in three-dimensional

relativistic hydrodynamics codes and also in comparison to some approximate Riemann

solvers are still in progress.

There is a final advantage of the new method presented here, namely that it allows for the

discovery of new relativistic effects arising in a Riemann problem with non zero tangential

velocities. This will be the subject of Chapter 4.

“Note that in practice, the upper limit for the pressure in the case of two shocks is found by starting from
a reasonable value above pmin, which is incremented until the solution is effectively bracketed.
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Chapter 4

New Relativistic Effects in the
Dynamics of Non-linear
Hydrodynamical

1 Introduction

An important aspect of the new approach that has been presented in the previous Chapter
for the solution of the Riemann problem is that it naturally points out a relativistic effect
that takes place whenever the relative velocity normal to the initial surface of discontinuity
is nonzero. When this is the case, in fact, the tangential velocities can affect the solution of
the Riemann problem and cause a transition from one wave-pattern to another one. More
specifically, by varying the tangential velocities on either side of the initial discontinuity while
keeping the remaining state vectors unchanged, the nonlinear waves involved in the solution

of the Riemann problem can change from rarefaction waves to shock waves and vice-versa.

2 Preliminary Discussion

The extension of the one-dimensional Riemann problem to fluid velocities for which special
relativistic expressions are needed, has been performed by Thompson K. (1986) for the
“shock-tube” problem and by Marti & Miiller (1994) for the general problem. Besides
the bbvious additional complications introduced by special relativity, the one-dimensional
Riemann problem in relativistic hydrodynamics does not show qualitative differences from
its Newtonian counterpart.

In the previous Chapter it was shown that new insight on the Riemann problem is offered by
considering the key quantity v{, = v{,(p3), the relative velocity between the two unperturbed
left and right states. It is useful to remind that in Newtonian hydrodynamics a multidimen-
sional Riemann problem does not depend on the values of the tangential velocities in the two
initial states. Rather, different wave-patterns can be produced only after a suitable change
in either the normal velocity, the rest-mass density or the pressure. This is essentially due to

the fact that tangential velocities are not changed across Newtonian nonlinear waves, neither
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in the modulus, nor in the orientation. In relativistic hydrodynamics, on the other hand,

this is not the case and is at the origin of the effects discussed here.

3 The New Effect: Changing the Wave-pattern

Let us restrict our attention to a situation in which the tangential velocity of only one of the
two initial states is varied. This is simpler than the general case as it basically represents
a one-dimensional cross-section of the three-dimensional parameter space, but it maintains
all of the relevant properties. The two panels of Fig. 4.1 show the relative normal-velocity
for the same initial conditions of Fig. 3.5 where either vf or v is varied while all the other
quantities of the initial state vectors are left unchanged. Different line types mark the
different branches (joined at the filled dots) describing the relative velocity corresponding to
two shock waves (25, dashed line), one shock and one rarefaction wave (SR, dotted line), and
two rarefaction waves (2R, continuous line), respectively. Both panels of Fig. 4.1 indicate
that when tangential velocities are present the relative normal-velocity! is a function of p3

but also of v} and v5.

e S S e A N S B S Sy B R S e e T e AL N A A R B
I T I T

— 0.5

X
12

-0.5 -0.5

I TN B

Figure 4.1: The same as in Fig. 3.5 but here the different line types mark the different branches
corresponding to two shock waves (dashed line), one shock and one rarefaction wave (dotted line),
and two rarefaction waves (continuous line), respectively. The two panels show how the functional
behaviour is modified when only one of the initial tangential velocities is varied (vh for the left panel
and v! for the right one) while all the other components of the initial state vectors are left unchanged.

Consider, for instance, the case in which the normal velocities are chosen to bev{ = 0.5, v =
0.0, and there are no tangential velocities. In this case, (vfy)o = 0.5 and the left panel of
Fig. 4.1 shows that the solution to the Riemann problem falls in the SR branch, hence
producing a wave-pattern consisting of a shock and a rarefaction wave moving in opposite

directions. This is shown in more detail in the left panel of Fig. 4.2 where the different

1For the of initial conditions chosen in Fig. 4.1 the position of (912),, is very close to the limit —1.
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Figure 4.2: Transition from a SR wave-pattern to a 25 one. The left and right panels show the
exact solution of the Riemann problem corresponding to models (a) and (e) in Table 4.1, respectively.
The initial state vectors are identical except for the values of v§. Solid, dotted and dashed profiles
refer to pressure, rest-mass density and normal velocity, respectively.

types of line show the solution of the Riemann problem at a time ¢ > 0 for the pressure, the
rest-mass density and the velocity.

However, if we now maintain the same initial conditions but allow for nonzero tangential
velocities in state 2, the left panel of Fig. 4.1 also shows that the solution to the Riemann
problem can fall in the 25 branch, hence producing a wave-pattern consisting of two shock
waves moving in opposite directions. This is shown in the right panel of Fig. 4.2 which
illustrates the solution of the same Riemann problem but with initial tangential velocities
v = 0.0 and v§ = 0.9. Note that except for the tangential velocities, the solutions in Figs. 4.2
have the same initial state-vectors but different intermediate ones (i.e. p3, p3, ps, and v).
The Riemann problem shown in Fig. 4.2 is only one possible example but shows that a
change in the tangential velocities can produce a smooth transition from one wave-pattern to
another while maintaining the initial states unmodified. Furthermore, because the coupling
among the different states is produced by the Lorentz factors, the effect is not sensitive on the
sign chosen for the tangential velocity. The transition from one wave-pattern to the other is
better illustrated in Fig. 4.3 where we have collected in a three-dimensional plot a sequence
of solutions for the pressure in which v} is gradually increased from 0 to 0.9. Note that when

vh = 0, the SR wave-pattern is well defined and the pressure at the contact discontinuity is

intermediate between p; and po. Note also that as v} is increased, the wave-pattern gradually
changes, p3 increases up until it becomes larger than pi, signalling the transition to a 25
wave-pattern.

Interestingly, the transition does not need to always produce a solution consisting of two
shock waves. Suppose, in fact, that the normal velocities are now chosen to be v{ = 0.0, v§ =
0.5. We can repeat the considerations made above and start by examining the wave-pattern

produced when there are zero tangential velocities. In this new setup, (v5)o = —0.5 and the



¥Bhapter 4: New Relativistic Effects in the Dynamics of Non-linear Hydrodynamical Waves

i
Q -

’ / //, ”' Ill II/IIIIII//

Illl /Ill Ill

\\“\ diimi
“3&1 / / III%I /

“ ‘ :\":" I /i lI III/ lIl lIllIIl I’I II il 7 ”lll’ i "I
Ry v lIll

‘.. @, Illlllll/
/" .

L)
LA T 3 7
i
il ll i
/1;;...,,, w
L ,,,,,a.,,.,,,,,,;'"" it
o
i e

Figure 4.3: Sequence of solutions for the pressure in Sod’s problem. The initial tangential velocity
v} is gradually increased from 0 to 0.9. The first and last solution of this sequence are also plotted
in Fig. 4.2

right panel of Fig. 4.1 shows that the solution to the Riemann problem still falls in the SR
branch (cf. dashed line), with the corresponding solution at a time ¢ > 0 being presented in
the left panel of Fig. 4.4 (Note that the wave-patterns in Fig. 4.2 and 4.4 both consist of a
shock and a rarefaction wave, but have alternating initial normal velocities.).

When nonzero tangential velocities are now considered in state 1, the right panel of Fig.4.1
shows that (vfy)g can fall in the 2R branch, hence producing a wave-pattern consisting of two
rarefaction waves moving in opposite directions. The solution to this Riemann problem is
shown in right panel of Fig. 4.4 where we have chosen initial tangential velocities v} = 0.999
and v = 0.0. In this case too, it should be noted that, except for the tangential velocities,
the solutions in the two panels of Fig. 4.4 have the same initial state-vectors but different
intermediate ones.

In analogy with Fig. 4.3, we have collected in Fig. 4.5 a sequence of solutions for the pressure
in which v¢ is gradually increased from 0 to 0.999. Here too, when vs = 0, the SR wave-
pattern is well defined and the pressure at the contact discontinuity is intermediate between
p1 and py. However, as v} is increased, the wave-pattern gradually changes, p3 decreases until
it becomes smaller than p, signalling the transition to a 2R wave-pattern. Note that while
this happens, the region of the flow covered by the rarefaction wave becomes progressively

smaller.
In Table 4.1 we have summarized a few of the solutions shown in Figs. 4.3 and 4.5, presenting

numerical values for all of the relevant quantities in the Riemann problem when different

combinations of the tangential velocities are used.
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| vt=0.0, vi=0.0 1 | v=0.999, vi=0.0

Figure 4.4: The same as in Fig. 4.2 but for models (h) and (n) in Table 4.1. Also in this case
the initial state vectors are identical except for the values of vi. Note that in the right panel the
left-propagating rarefaction wave covers a very small region of the flow and is closely followed by the
contact discontinuity.

To gain a better insight in these effects it can be instructive to consider how the velocities
at which the various nonlinear waves propagate in the unperturbed media change when
the tangential velocities v! and vf are varied separately. This information is contained in
Fig. 4.6 in which different curves show the behaviour of the head and tail of a left-propagating
rarefaction wave (i.e. Eals fgd), of the head and tail of a right-propagating rarefaction wave
(ie. &F, &), and of a left or a right-propagating shock wave (i.e. V{7, V;F). The left
panel of Fig. 4.6, in particular, shows the transition from a SR to a 25 wave-pattern with
the dotted line marking the value of v§ at which this occurs. Similarly, the right panel
shows the transition from a SR to a 2R wave-pattern and the dotted line is again used to
mark the value of v¢ distinguishing the two regions of the parameter space. A number of
interesting features can be noted and some of these were pointed out also by Pons et al
(2000). Firstly, the speed of the head of a rarefaction wave propagating towards a region
of constant tangential velocity is constant, or, stated it differently, £, does not depend? on
v. Secondly, the velocity of the waves converges to zero if they propagate in regions with
increasingly large tangential velocities. Thirdly, the values of v* at which the speeds of the
head and tail of the rarefaction wave coincide, mark the transition from one wave-pattern
to another and are indicated with vertical dotted lines in Fig. 4.6.

As mentioned before, the appearance of these new relativistic effects is related to the be-
haviour of the function v{y = v§,(ps) for different values of the initial tangential velocities
and in particular to how the three branches composing the curve change under variation of

vt ,. As a result, the occurrence of these effects can be recast into the study of the depen-

®The reason is actually trivial, because £, propagates with the characteristic speed of the left sound wave
of the left state.
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Figure 4.5: The same as in Fig. 4.3 but here the initial tangential velocity vl is gradually increased
from 0 to 0.999. The first and 1&% solution of this sequence are also plotted in Fig. 4.4.

dence of (0%,),s, (0%,)s, and (0%,),, on the tangential velocities. Using expressions (3.58),

(3.67), and (3.69), this dependence can be summarized as follows

(ﬁTQ)zs = ({):162)25 (Ué) ) (4'1)
(6%2)3}2 = (@TQ)SR(UD ) (4.2)
(,DCIE?)BR = (6%‘2)21{(1}%7”3) ) (4-3)

and can be best studied by considering the limits of (7%,),s, (035) ¢z and (7f,),, when W1 5 —
oo. In the case of a 25 wave-pattern, expression (3.58) simply indicates that
li Ok =0. ,
W;i)noo(vm)zs 0 (4 4)

This result is also shown in the left panel of Fig. 4.1, where the right solid dot converges

to zero as Wa — 0o, while the left one does not vary. The limit (4.4) can also be used to

deduce that for any (vf,)o > 0, there exists a value W of Wy such that
(vT)o > (913),s for Wy > W, . (4.5)

A direct consequence of (4.5) is that given a Riemann problem having initial state vectors
with positive relative normal-velocity and producing a SR wave-pattern, it is always possible
to transform it into a 25 wave-pattern by increasing the value of the initial tangential velocity
in the state of initial lower pressure.

In the case of a SR wave-pattern we refer to (3.67) to notice that in the limit of Wi — oo
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Model v} vy vl V5 D vy 03 Jo2Y W-p
(a) 0.5 0.0 0.0 0.000 | 0.597  0.640 0.734 0.342 | SR
(b) 0.5 0.0 0.0 0.300 | 0.621  0.631 0.751 0.349 | SR
(c) 0.5 0.0 0.0 0.500 | 0.673  0.611  0.788 0.364 | SR
(d) 0.5 0.0 0.0 0.700 | 0.787  0.570  0.866 0.394 | SR
(e) 0.5 0.0 0.0 0.900 | 1.150  0.455 1.088 0.474 | 25
(f) 0.5 0.0 0.0 0.990 | 2.199  0.212 1.593 0.647 | 25
(g) 0.5 0.0 0.0 0.999 | 3.011  0.078  1.905 0.750 | 25
(h) 0.0 0.5 0.000 0.0 0.154  0.620  0.326 0.162 | SR
(1) 0.0 0.5 0.300 0.0 0.139  0.594  0.306 0.152 | SR
(3) 0.0 0.5 0.500 0.0 0.115  0.542  0.274 0.136 | SR
(k) 0.0 0.5 0.700 0.0 0.085  0.450  0.228 0.113 | 2R
) 0.0 0.5 0.900 0.0 0.051  0.280  0.168 0.084 | 2R
(m) 0.0 0.5 0.990 0.0 0.031  0.095  0.123 0.061 | 2R
(n) 0.0 0.5 0.999 0.0 0.026  0.031 0.110 0.052 | 2R

Table 4.1:  Solution of the modified Sod’s problem at ¢ = 0.4. All models refer to an ideal EOS with
v = 5/3 and share the same values of pressure and rest-mass density: p1 = 1.0, p1 = 1.0, p2 = 0.1,
p2 = 0.125. The only differences present in the problems considered are in the normal relative velocity
and in the tangential velocities. These quantities are reported in the first three columns, while the
remaining ones show a few relevant quantities of the solution in the newly formed region as well as
the wave pattern produced.

the integrand vanishes (C' — co) and therefore:

li o] =0.

Wllgloo(vw)SR (4.6)
As for the previous one, the limit (4.6) can be deduced from the right panel of Fig. 4.1, where
the left solid dot converges to zero as Wj — oo, while the right one does not vary. Also in

this case the limit (4.6) can be used to conclude that for any (vfy)o < 0, there exists a value

W, of W1 such that
('UfZ)O < (/5:182)53 for Wl > Wl y (47)

and therefore causing an initial SR wave-pattern solution to become a 2R one as a conse-
quence of an increased tangential velocity in the state of initial higher pressure®.

Overall, expressions (4.4) and (4.6) indicate that for tangential velocities assuming increas-
ingly larger values, the SR branch of the vf, curve spans a progressively smaller interval of
relative normal-velocities. When the tangential velocities reach their asymptotic values, the
SR branch reduces to a point. In practice, therefore, the main effect introduced by relativis-
tic tangential velocities in a Riemann problem is that of “disfavoring” (in a statistical sense)

the occurrence of a wave-pattern consisting of a shock and a rarefaction wave.

3Note that it is not possible to provide analytic expressions for W nor for Wi.
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Figure 4.6: Velocities of the various nonlinear waves when the tangential velocities v} and v} are
varied separately. The initial conditions are those of Sod’s problem and the different curves refer
to the head and tail of a left-propagating rarefaction wave (i.e. &, &4), to the head and tail of a
right-propagating rarefaction wave (i.e. &I, &), and to a left or a right-propagating shock wave (i.e.
VoL V.

For completeness we also report the limit of the relative normal-velocity marking the branch
of two rarefaction waves separated by vacuum. In this case, the limit is taken for both W;
and W5 tending to infinity, and using (3.70)-(3.71) yields

plim (#5),, =0 (48)
Because the effects discussed here have a purely special relativistic origin they might conflict
with our physical intuition, especially when the latter is based on the knowledge of the Rie-
mann problem in Newtonian hydrodynamics. However, the behaviour reported here is typi-
cal of those special relativistic phenomena involving Lorentz factors including also tangential
velocities. A useful example in this respect is offered by the relativistic transverse-Doppler
effect, in which the wavelength of a photon received from a source moving at relativistic
speeds changes also if the source has a velocity component orthogonal to the direction of
emission of the photon (Rindler, 1980). In this case too, a Lorentz factor including the
transverse velocity is responsible for the effect.
It should be pointed out that there exists a set of initial conditions for which these new
relativistic effects cannot occur. These initial conditions are those in which v{ = 23 as in
the classic “shock-tube” problem, where v¥ = 0 = v%. In this case, in fact, (v{y)o = 0 and,
because of the limits (4.4) and (4.6), the solution of the Riemann problem will be given by
a wave-pattern consisting of a shock and a rarefaction wave, independently of the values of
the tangential velocities.
The effects that have been shown in this Chapter have a purely relativistic nature, do not

have a Newtonian counterpart and could be relevant in several astrophysical scenarios, such
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as those involving relativistic jets or y—ray bursts, in which nonlinear hydrodynamical waves
with large Lorentz factors and complex multidimensional flows are expected (Blandford 2002,

Meszaros 2002).
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Chapter 5

Quasi-Periodic Accretion and
Gravitational Wave Emission from
oscillating “Toroidal Neutron
Stars”

1 Introduction

The theory of non-geodesic, perfect fluid, relativistic tori orbiting a black hole has a long his-
tory dating back to fundamental works made in the late 60s and 70s (Boyer 1965; Abramowicz
1974; Fishbone 1976; Abramowicz 1978; Kozlowski 1978). Omne of the most important re-
sults obtained in this series of investigations was the discovery that stationary barytropic
configurations exist in which the matter is contained within “constant-pressure” equipoten-
tial surfaces. Under rather generic conditions, these surfaces can then possess a sharp cusp
on the equatorial plane. The existence of this cusp does not depend on the choice of the spe-
cific angular momentum distribution and introduces important dynamical differences with
respect to the standard model of thin accretion discs proposed by Shakura & Sunyaev (1973)
and then extended to general relativity by Novikov & Thorne (1973).

The first important difference is that the cusp at the inner edge of the disc can behave as
an effective L; Lagrange point (although this is really a circle), providing a simple way in
which accretion can take place even in the absence of a shear viscosity in the fluid. The
second important difference is that for a disc filling its outermost equipotential surface (the
equivalent of its Roche lobe) the mass loss through the cusp could possibly lead to a “run-
away” instability (Abramowicz et al. 1983). The basic mechanism at work in this instability
is rather simple. Any amount of matter accreted through the cusp onto the black hole would
change the mass of the latter thus affecting the equipotential surfaces and the location of the
cusp. If, as a result of the increased mass of the black hole, the cusp would move to smaller
radial positions, the new configuration would be of equilibrium and no further accretion
would follow. If, on the other hand, the cusp would move to larger radial positions, the

new configuration would not be of equilibrium and new matter (which was previously in
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equilibrium) would be forced to accrete onto the black hole which, in turn, would increase
its mass. This process clearly triggers a run-away mechanism in which more and more mass
is accreted onto the hole, evacuating the whole disc on a timescale between 10 ms and 1 s.
Besides being a catastrophic event, the run-away instability has also attracted attention
in connection with models of v-ray bursts. In these models, in fact, the central engine
is assumed to be a disc of high density matter orbiting a stellar mass black hole, with
intense electromagnetic emission processes lasting for a few seconds at least, as deduced
from observations (see Ruffert & Janka 1999, 2001 for a recent review on this). While many
of the investigations of the run-away instability have concentrated on the stability properties
of stationary disc models (both in Newtonian gravity and in General Relativity), a time-
dependent and fully relativistic study of the run-away stability has been presented only
recently (Font & Daigne 2002a). Through a number of different hydrodynamical simulations
the authors were able to show that, at least for constant specific angular momentum tori
slightly overflowing their Roche lobes, the runaway instability does takes place and for a
wide range of ratios between the mass of the disc and that of the black hole.

It should be noted, however, that while the instability seems a robust feature of the dynamics
of constant specific angular momentum tori, its existence has been severely questioned under
generic initial conditions. Different works, in fact, have shown that a more detailed modelling
of the initial configurations can either suppress or favour the instability.

Taking into account the self-gravity of the torus seems to favour it (Masuda & Erigichi 1997).
The inclusion of rotation of the black hole, on the other hand, has a general stabilizing effect
(Wilson 1984; Abramowicz et al.). The same applies for tori with non-constant angular
momentum distributions, as shown first by Daigne & Mochkovitch (1997) using stationary
models and by Masuda et al. (1998) with SPH time-dependent simulations with a pseudo-
Newtonian potential. We note that very recently Font & Daigne (2002b) have extended
their relativistic simulations to the case of non self-gravitating tori with non-constant angu-
lar momentum, finding that the runaway instability can be suppressed already with a slowly
increasing specific angular momentum distribution. A summary of the different results ob-
tained with the different approximations made so far can be found in Table I of Font &
Daigne 2002a.

The first aim of our research is to establish how sensitive the onset of the instability is on the
choice of constant specific angular momentum configurations that are initially overflowing
their Roche lobe. As it will become apparent in the rest of the Chapter, one of the pecu-
liarities of the tori that we have considered in our simulations is that they have very high
rest-mass densities, in some cases almost reaching nuclear matter density. A second and most
important aim of our work is to investigate the dynamical response of these relativistic tori
to perturbations. Our interest for this has a simple justification: because of their toroidal
topology, these objects have intrinsically high mass quadrupoles and if the latter are induced
to change rapidly as a consequence of perturbations, large amounts of gravitational waves

could be produced.
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Both of the aspect mentioned above justify in part our choice of terminology. Over the
years, in fact, different authors have referred to these disc models in a number of different
ways, starting from the original suggestion of Abramowicz et al. (1978) of “toroidal stars” to
the more recent and common denomination of “accretion tori”, or “thick discs”. Hereafter,
however, we will refer to these specific objects as tori but also as “toroidal neutron stars”.
There are three reasons for this unconventional choice. Firstly, these objects have equilibrium
configurations with (small) finite sizes that are pressure supported and not accreting. In this
sense, they are very different and should not be confused with standard accretion discs that
are in principle infinitely extended, are generically thin because not pressure supported and
are, of course, accreting. Secondly, these objects have rest-mass densities much larger than
the ones usually associated with standard accretion discs. Thirdly, while possessing a toroidal
topology these objects effectively behave as the more familiar neutron stars, most notably
in their response to perturbations.

While this analogy is attractive, important differences exist between toroidal and ordinary
neutron stars, the most important being that toroidal neutron stars are generically unstable
while spherical neutron stars are generically stable. More of these differences will appear in
the following Sections. As a final remark we note that the idea of toroidal neutron stars might
appear less bizarre when considering a neutron star as a fluid object whose equilibrium is
mainly determined by the balance of gravitational forces, pressure gradients and centrifugal
forces. In this framework then, the familiar neutron stars with spherical topology are those
configurations in which the contributions coming from the centrifugal force are much smaller
than the ones due to pressure gradients and gravitational forces. On the other hand, when
the contributions of the pressure gradients are smaller than the ones due to the centrifugal
and gravitational forces, a toroidal topology is inevitable and a toroidal neutron star then
becomes an obvious generalization (see Ansorg et al. (2002) for a recent summary of the
research on uniformly rotating axisymmetric fluid configurations).

The system of units used in this Chapter results from setting G' = ¢ = 1. The unit of length

is chosen to be the gravitational radius of the black hole, ry = GM/c?, where M is the mass
of the black hole.

2 Analytic solutions for stationary configurations

In what follows we recall the basic properties of stationary disc configurations in a curved
spacetime and the interested reader will find a more detailed discussion in Font & Daigne
(2002a). The considerations made here will be useful only for the construction of the back-
ground initial disc model which we will then perturb as detailed in Section 4.

Consider a perfect fluid with four-velocity u and described by the usual stress-energy tensor
T = (e 4+ p)uru” + pgh” = phutu” + pg"” (5.1)

where g"¥ are the coefficients of the metric which we choose to be those of a Schwarzschild
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black hole in spherical coordinates (t,r,0,$). The thermodynamics quantities e, p, p, and
h = (e + p)/p have the same meaning as in (2.50) of Chapter 2. In the following we will
model the fuid as ideal with a polytropic equation of state (EOS) p = kp7 = pe(y—1), where
¢ = e/p—1 is the specific internal energy and v is the adiabatic index. Also, for simplicity we
will consider the fluid not be magnetized. This may represent a crude approximation given
that the toroidal neutron star will probably be created by material originally magnetized
and that very large magnetic fields can be easily produced when rapid shearing motions are
present in highly conducting magnetized fluids (Spruit 1999, Rezzolla et al. 2000).

The fluid is assumed to be in circular non-geodesic motion with four-velocity u® =
(ut,0,0,u?) = u'(1,0,0,Q), where Q = Q(r,0) = u®/ut is the coordinate angular veloc-

ity as observed from infinity. If we indicate with £ the specific angular momentum (i.e. the

angular momentum per unit energy) £ = —ug Just, the orbital velocity can then be written
in term of the angular momentum and of the metric functions only, Q@ = —£(g9:t/9¢¢)-
From the normalization condition for the four-velocity vector, u®u, = —1, we derive both

the total specific energy of the fluid element, u; and the redshift factor, u® as

1

2 GopFit 2
Up)” = — u) = .
( t) ( ) gt + QdiMb

_ » 5.2
9op + Pau (5:2)

Under these assumptions, the equations of motion for the fluid can be generically written as
hi,,VMT““ = 0 where h,y = gu + uuty is the projector tensor orthogonal to u and V the
covariant derivative in the Schwarzschild spacetime. Enforcing the conditions of hydrostatic
equilibrium and of axisymmetry simplifies the above equations considerably. Furthermore,
if the contributions coming from the self-gravity of the disc are neglected, the relativistic

hydrodynamics equations then reduce to Bernoulli-type equations

Vip AV
= -Vl .
etp nlue) + g

(5.3)

The simplest solution to equations (5.3) is the one with £ = const., since in this case the
equipotential surfaces can be computed directly through the metric coefficients and the value
of the specific angular momentum. Note that for any value of (r,8), the potential can either
be positive (indic&ting equipotential surfaces that are open) or negative (indicating equipo-
tential surfaces that are closed). The special case W = 0 refers then to that equipotential
surface which is closed at infinity. Note also that the equipotential surfaces contain local
extrema and in the equatorial plane these mark two very important points. There, in fact,

V,W = 0 = V;p and an orbiting fluid element would not experience any net acceleration,

I1Note that this is not the only definition for the specific agular momentum used in the literature. Often,
in fact, the specific angular momentum is defined as ¢ = u, because this is a constant of geodesic (i.e. zero-
pressure) motion in axially symmetric spacetimes. When the pressure is non-zero, on the other hand, huy is
a constant of motion, while £ is not. For axially symmetric, stationary spacetimes ¢ = —ug/u; is constant
for both geodesic and perfect fluid motion.
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Figure 5.1: Total specific energy of the fluid element on the equatorial plane. The two extrema
mark the position of the keplerian points, namely the cusp, rcusp, and the centre, r¢ of the disc. The
inner edge 74, can be chosen anywhere between reysp and re. The energy gap AW, is used to fix rin.
See the text for further discussion.

with the centrifugal pull balancing the gravitational force exactly. These points correspond
to the (radial) positions of the cusp reusp, and of the “centre” of the disc r. (see Figure 5.1).
Because at these radial positions the specific angular momentum must be that of a Keplerian
geodesic circular orbit

o M3

equation (5.4) can effectively be used to calculate the position of both the centre and the
cusp.

In the case of a marginally stable disc it is straightforward to show that the position of the
cusp is located between the marginally bound circular orbit and the marginally stable
circular orbit rps of a point-like particle orbiting the black hole (Abramowicz et al. 197 8).
Note that the position of the inner edge of the disc ri, and the position of the reusp need not
coincide and indeed i, can be chosen to be anywhere between the cusp and the centre of
this disc. Once made, however, the choice for ri, also determines the position of the outer
edge of the disc on the equatorial plane through the constraint that both points belong to
the same equipotential surface, i.e. W (rous,7/2) = W (rim,7/2) (see Fig. 5.1).

A particularly attractive feature of tori with constant specific angular momentum is that
once the background spacetime and the value of the specific angular momentum have been

fixed, the angular velocity Q = Q(r, 6) is fully determined and if a polytropic EOS is used, the
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Bernuolli equations (5.3) can then be integrated analytically to yield the rest-mass density

(and pressure) distribution inside the disc as

o 1 1/(”/*1)
p(r,0) = { o [exp(Wip, — W) — 1]} , (5.5)
where W;, = W (ri,, 7/2) and ri, has been conveniently chosen. Once the rest-mass distri-

bution (5.5) is known, the total rest-mass of the disc can be easily calculated as

My, Z/p\/—guodgx, (5.6)

while the total mass-energy in the toroidal neutron star is computed as
M, = / (17 + Tg’ + T — T/ —gdz (5.7)

where d®z = dr df d¢ is the coordinate volume element. For simplicity, hereafter, we will
refer to the mass-energy of the toroidal neutron star as the “mass” of the toroidal neutron
star. Depending on the value of £ chosen and in particular on how this compares with the
specific angular momenta corresponding to orbits that are marginally bound /.3, = 4 or
that are marginally stable g = 3\/%, different configurations can be built. A detailed
classifications of the disc models can be found in the literature (Abramowicz et al. 1978,
Font & Daigne 2002a), but we here simply recall that if 4y < £ < fyp, there will be
an equipotential surface closed at a finite radius and possessing a cusp. As a result, a
stationary toroidal neutron star of finite extents can be built and this will represent our

fiducial, background initial toroidal neutron star.

3 Mathematical Framework

3.1 Hydrodynamic equations

The conservative formulation of the equations of general relativistic hydrodynamics was given

in Chapter 2 [cf. Eq. (2.57)], and we rewrite it here in a slightly different form

GU(w) | Jak"(w)] , OB’ (w)]

ot o g - o) (5:8)

where o« = /=ggo is the lapse function of the Schwarzschild metric and where U(w) =
(D, S, Sy, Sg,7) is the state-vector of the conserved variables to be evolved. The other
vectors F¢, S appearing in (5.8) represent the of fluxes and sources, as usual. The relation

between the conserved and primitive variables in the vector w = (p, v;, €) are given by (2.56),

which, we recall, cannot be inverted analytically.
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Note that the covariant components of the three-velocity are defined in terms of the spatial
3-metric v;; to be v; = 07, where v = u'/ou’ [cf. BEq. (2.55)] (note that although in
axisymmetry, we evolve also the azimuthal component of the equations of motion, so that
the index j in equations (2.56) takes the values j = r,0,¢). More specifically, the only
non-zero component of the three-velocity of a fluid element in orbital non-keplerian motion

around the black hole is given by

_ .th
V14 g (ut)?Q? ’

v? (5.9)

which correctly reduces to @ 'Qf in the keplerian limit of Q2 = Q% = 1/r3. The Lorentz
factor W measured by a local static observer and appearing in equations (2.56) is renamed
here as I, to avoid confusion with the potential. The explicit expressions for the components

of the flux vectors F* and of the source vector S are given by

F'(w) = (Dv", S,v" +p, Spv", Sgv”, (1 +p)v"), (5.10)
Fl(w) = (Dvg, S0, Sgv? + p, Sqwg, (1 —I—p)?ﬂ) , (5.11)
S(w) = (51,59, S5, 54,S5), (5.12)
respectively, where
S; = DAV —BY), (5.13)
M
Sy = ——55(r+D)-acot 05,v% +
%(5909 + Sy — 25,07) (5.14)
S3 = Sp(Av" — Bu?) + ar2§%v? sind cosd . (5.15)
Sy = Sy(Av" - B, (5.16)
2
S5 = ——7?57" — S8~ 5, (5.17)
and
M 200

= acotf . (5.19)
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3.2 Spacetime Evolution

The general relativistic hydrodynamics equations we solve assume that the fluid moves in a
curved spacetime (provided by the Schwarzschild solution) that is static. On the other hand,
the onset and development of the run-away instability depends crucially on the response of
the fluid to variations of the spacetime and in particular of its longitudinal part. To follow
this in a self-consistent manner would require the solution of the Einstein field equations
together with those of relativistic hydrodynamics. However, this is a much harder problem
computationally and “full” numerical relativity codes evolving black hole spacetimes with
perfect fluid matter (either in two or three spatial dimensions) are being developed only
recently (Brandt et al. 2000; Shibata & Uryu 2000, Shibata et al. 2000, Font et al. 2002).
Furthermore, the level of grid resolution and the need to evolve these configurations for
timescales that are much larger than the dynamical one, may still be too taxing for full
numerical relativity codes. ’
To avoid the solution of the full Einstein equations and yet simulate the onset and develop-
ment of the instability we have followed the approach first proposed in Font & Daigne 2002a.
Most notably, we calculate at each timestep the accretion rate at the innermost radial point

of the grid as
m(ri) = —27r/ V—=gDv"db| (5.20)
0 Tin

where /=g = r?sin @ and thus determine the amount of matter that would be accreted onto

the black hole as
M™M= M™ 4+ At m" (1) (5.21)

where, the upper indices refer to a given time-level. Once the new mass of the black hole

has been computed, the relevant metric functions are instantaneously updated as
Gy (7, M™) — G (r, M"Y (5.22)

so that g, will describe the new spacetime over which the hydrodynamical equations will
be solved. We note that to be consistent the transfer of angular momentum from the torus

to the black hole should also be taken into account. While we have not considered this
here, the interested reader will find the details on a procedure to account for the angular

momentum transfer onto the black hole in Font & Daigne (2002b). Our approach for the
spacetime evolution is clearly an approximation and it masks important features such as
transfer of angular momentum from the toroidal neutron star to the black hole or the response
of the latter to the accreted mass and the consequent emission of gravitational radiation.
Nevertheless, this approximation is often very good especially when the toroidal neutron
star is not very massive and the rest-mass accretion rates are therefore small. In these cases,
then, the fractional variation of the black hole mass between two adjacent time-levels is
minute and treating the spacetime evolution as a discrete sequence of stationary spacetimes

represents a very good approximation.
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3.3 Numerical Approach

The numerical code used in our computations is based on a code that has been exten-
sively described in Font & Ibailez 1998 (see also Font &Daigne (2002a)). This code
performs the numerical integration of system (5.8) using High Resolution Shock Captur-
ing schemes as discussed in Chapter 2. In particular, the time evolution of the dis-
cretized data from a time-level n to the subsequnt one n + 1 is performed according to

AN
Uyt = ( i

=
Ap \it1/25 T i~1/2,j>

At =g 6
N (Fz}j-f-l/? - Fi,j—1/2>
+ AS, (5.23)

where the subscripts ¢, 7 refer to spatial (r,0) grid points, so that ur, = U(r;,0;,t"). The

. 0 A,,‘ A() . . . y .
intercell numerical fluxes, 7, /2.] and Fi,j L1/ A€ computed using Marquina’s approximate

Riemann solver (Donat & Marquina, 1996). A piecewise-linear cell reconstruction procedure
provides second-order accuracy in space, while the same order in time is obtained with a
conservative two-step second-order Runge-Kutta scheme applied in the above time update.
Our computational grid consists of N, x Ny zones in the radial and angular direction, re-
spectively, covering a computational domain extending from rmiy = 2.1 to rmax = 30 and
from 0 to w. We have used numerical grids with different number of grid-points and found
that the truncation error is reduced to reasonable values when N, = 250 and Ny = 84.
All of the results presented in the following Section have been computed with this number
of grid-points. The radial grid is logarithmically spaced in term of a tortoise coordinate
re =7+ 2M In(r/2M — 1), with the maximum radial resolution at the innermost grid be-
ing Ar = 6 x 107%. As in Font & Daigne (2002a), we tend to use a finer angular grid in
the region that are usually within the disc and a much coarser one for the regions outside
the disc. A grid-point belongs to the external surface of the initial unperturbed disc when
ug(r,0) = Utin = ut(7in, 7/2). This equation defines the meridional section of the surface as
a closed polar curve C of equation

u?, 21— 2Myr) |
r2(ufy, — 1+ 2M/r)

sinf = (5.24)

The angular extension 6,, of the unperturbed disc can then be computed by searching for
the local extrema of the curve C. As a result of this, in most of our simulations 75% of
the angular grid points where uniformly distributed in the range [0,,, 7 — 6,,], while the

remaining points cover the outside region.
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As far as the boundary conditions are concerned, we have adopted the following procedure.
In the radial direction the primitive variables p, v,, vg and v, have been extrapolated linearly
at the inner boundary ry, (the rest mass density is however assumed to have zero gradient
there). At the outer boundary rnax all the variables have been frozen to their constant initial
values. On the other hand, reflection boundary conditions have been adopted at both poles
(§ = 0,7). Finally, the numerical grid outside the toroidal neutron star is filled with a low
density atmosphere, in such away to avoid vacuum regions while not affecting the dynamics

of the simulations (see Font & Daigne, 2002a).

4 Initial Data

Simulating a dynamical instability with a numerical code inevitably brings up the problem
of suitable initial conditions. A natural choice would be that of a configuration that is in
equilibrium, where the latter is not a stable one. In this case, then, any perturbation would
move the configuration away from the equilibrium and induce the instability on a finite
timescale. While we see this happen regularly in Nature, it is rather difficult to simulate
numerically and the major obstacle in this respect is given by need of performing such
simulations on the rather short timescales that can be afforded computationally. Fortunately,
however, there are ways of by-passing this limitation and these generally consist of choosing
an initial configuration which is, although only very slightly, already out of equilibrium.
Controlling the deviation away from the equilibrium state in some parametrized form, the
timescale for the development of the instability can then be reduced to values that are
compatible with the computational ones.

An approach of this type has been used in the past also to simulate the run-away instability,
where a measure of deviation away from the unstable equilibrium can be made in terms of
the potential difference AWi, > 0 at the inner edge of the disc. This quantity, defined as
AWin = Win ~ Weusp (see Fig. 5.1), accounts for the potential jump on the equatorial plane
between the inner edge of the disc and the cusp (Igumenshev & Beloborodov (1997). By
simply varying the value of AWiy, it is then possible to select a configuration corresponding
to a disc inside its Roche lobe and for which no mass transfer is possible (i.e. AWi, <0), or
a disc overflowing its Roche lobe and therefore accreting (i.e. AWi, > 0). The case limiting

the two classes of solutions, (i.e. AW;, = 0) refers to a configuration that is just marginally

stable to the run-away instability, which will therefore develop over an infinite timescale?.

All of the models considered by Font & Daigne (2002a), for instance, have been constructed
with potential differences AW;, > 0, so that the outermost potential surface is not closed at
the cusp but reaches the black hole. After truncating the disc at 7 = rcysp, the simulations
were then carried out by evolving the set of equations discussed in Section 3.1. With this
choice, a non negligible volume fraction of the initial fluid configuration (i.e. all the one

residing outside the Roche lobe) is out of equilibrium. Of course, this is not the only way of

?Note that this condition is also equivalent to setting rin = Tcusp-
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Model l\’[t/f\'[ K ¢ Tin Tout Tcusp Teentre torh Peentre (/3>

cgs ms cgs cgs
(a) 1. 4.46x1073  3.8000 | 4.576 15.889 | 4.576 8352  1.86 | 1.14x10f%  9.32x10'"
(b) 0.5 5.62x10%%  3.8000 | 4.576 15.880 | 4.576  8.352  1.86 | 5.74x101%  4.67x10'!
(c) 0.1 0.96x10'*  3.8000 | 4.576 15.889 | 4.576 8352  1.86 | 1.14x10'®  9.35x10'0
(d) 0.05 1.21x10™  3.8000 | 4.576 15.889 | 4.576  8.352  1.86 | 5.74x10'%  4.67x10'0
(e) 0.1 70x105 737845 | 4.646 14.367 | 4646 8.165 1.80 | 1.60x107°  1.12x10H!
(f) 0.1 1.0x10™  3.8022 | 4.566 16.122 | 4.566 8378  1.87 | 1.10x10'3  9.89x10'0
(g) 0.1 2.0x10%  3.8425 | 4.410 21.472 | 4410 8.839  2.03 | 4.96x10%%  7.22x10'0
(h) 0.1 3.5%10'"  3.8800 | 4.200 20.539 | 4.200 9.246  2.17 | 2.41x10'?  5.10x10'0

Table 5.1: Definition of the models. From left to right the columns report: the name of the model,
the mass ratio My/M, the polytropic constant s, the specific angular momentum £ (normalized to
M), the inner and outer radii of the toroidal neutron star 7j, and rous, the radial position of cusp
Teusp, tha radial position of the centre rcensre (all radii are in units of the gravitational radius r,), and
the orbital period at the center of the disc #ob, expressed in milliseconds. All of the models share
the same mass for the black hole, M = 2.5M, and adiabatic index v = 4/3.

triggering the instability and in the calculations by Masuda & eriguchi (1997), for example,
the size of the disc was expanded by a small amount past the Roche lobe so as to set the
configuration out of equilibrium and to trigger the conditions for the occurrence of the run-
away instability. While it has been argued that the occurrence of the instability is not much
affected by the choice of the initial model (Masuda & Eriguchi 1997) we have here followed a
different approach to the problem of initial condition for the run-away instability as discussed

below.

4.1 Introducing a Perturbation

Firstly, all of the models we have considered have a potential barrier AWj, < 0. As a result,
these represent configurations that are either marginally stable (i.e. AWj, = 0) or even stable
(i.e. AWi, < 0) with respect to the runaway instability. However, because these configura-
tions cannot develop the instability on a finite timescale, we have introduced parametrized
perturbations that would induce a small outflow through the cusp. More specifically, we
have modified the stationary equilibrium configuration discussed in Section 2 with a small
radial velocity which we have expressed in terms of the radial inflow velocity characterizing a
relativistic spherically symmetric accretion flow onto a Schwarzschild black hole (the Michel
solution, Michel 1972). Using 7n to parametrize the strength of the perturbation, we have

specified the radial (covariant) component of the three-velocity as

Vr = 1(Vr)yticher - (5.25)

We regard this choice of initial data as a more realistic one for at least two reasons. Firstly,
in this way only the a small region of the fluid configuration, (i.e. the one located near the
cusp) is out of equilibrium. Secondly and more importantly, an initial configuration of this
type is much closer to the one that might be produced in nature. We recall, in fact, that
tori of the type considered here are expected to form in a number of different events such as

the collapse of supermassive neutron stars (Vietri & Stella, 1998), or the iron-core collapse



Chapter 5: Quasi-Periodic Accretion and Gravitational Wave Emission from oscillating
74 “Toroidal Neutron Stars”

of a massive stars (Macfayden & Woosley, 1999). Other scenarios for the genesis of these
objects involve the coalescence of a binary system, either consisting of two neutron stars
(especially if they have unequal masses) or consisting of a black hole and of a neutron star
which is then disrupted by the intense tidal field (Lee & Kluzniak, 1999a,b; Lee, 2000). In
all of these catastrophic events, the newly formed torus will be initially highly perturbed
and is expected to maintain also a radial velocity in addition to the orbital one. In recent
Newtonian simulations performed by Ruffert & Janka (1999) the torus resulting from the
dynamical merging of two neutron stars was observed to oscillate and accrete onto the newly
formed black hole. The average inflow velocity in the central region of the newly formed torus
was measured to be ~ 3 x 1073, whereas at very small distances from the black hole the fluid
was infalling much more rapidly. To be consistent with the estimates provided by Ruffert &
Janka (1999), we have chosen the parameter 7 in the range [0.001, 0.06], corresponding to an
average inward radial velocity in the range [0.0002, 0.04], respectively. However, simulations
with values as small as 7 = 0 and as large as n = 0.17 have also been performed, but these
have not introduced qualitatively new features. It should also be noted that because the
orbital velocities are at least one order of magnitude larger than the radial ones induced
through the perturbations, the contribution of the latter to the kinetic energy budget is
rather small even when large values of 7 are considered.

An aspect of our initial models worth underlining is that while in principle m = 0 when
AW, = 0, the accretion rate induced at the cusp can be made arbitrarily small after a
suitable choice of the mass of the disc and of the strength of perturbation. This represents
an important possibility because in the case of very small rest-mass accretion rates, the
variations in the spacetime metric can be neglected and we can therefore investigate the
response of the toroidal neutron stars in the absence of metric variations. This, in turn,
allows for long-term evolutions and we will refer to this regime as to the one with a “fized”
spacetime to distinguish it from the “dynamical” regime, in which the accretion rate is not
negligible and metric functions need to be updated as in (5.22).

With the choice of initial conditions discussed above, we have evolved a large number of
models covering only in part a large parameter space. The properties of the different models
simulated are summarised in Table 5.1 where we have reported the ratio between the mass of
thr toroidal star and the black hole, the polytropic constant, the specific angular momentum,

as well as the inner and outer radii. Each of the models in Table 5.1 has been simulated for at
least four different values of the parameter 7, either on a fixed or dynamical spacetime or in

both. Two quantities we have kept fixed in all of the simulations and these are the adiabatic
index, taken to be that of degenerate relativistic electron gas v = 4/3, and the initial black
hole mass, that we have chosen to be M = 2.5M, for comparison with the results of Font &
Daigne (2002a).
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5 Numerical Results

In what follows we will discuss in detail the dynamics of the perturbed toroidal neutron stars
summarised in Table 5.1. In particular, we will first report the results about the run-away
instability and subsequently will discuss the long-term dynamics of the toroidal neutron stars

in response to perturbations.

5.1 Dynamical Spacetime: the run-away Instability

Because the code implemented here is similar but distinct from the one used by Font & Daigne
(2002a), we have first tested it against the results published there. More precisely, we have
considered out-of-equilibrium initial conditions (AWj, > 0) and evolved this configuration
using the set of equations (5.8) and the metric update (5.22). The results obtained confirm
(with differences less than one percent) what found by Font & Daigne (2002a), indicating
that with this choice of initial conditions, and after an initial relaxation, the instability
develops rapidly on timescales that are progressively smaller as the mass ratio and the initial
potential jump AW;, are increased. The occurrence of the instability is signaled by the
exponential growth of the rest-mass accretion rate which rapidly reaches super-Eddington
values. It should be noted that while the simulated mass fluxes are many orders of magnitude
larger than the Eddington limit (this is ~ 1.2 x 107*% Mg /s for the black hole considered
here), these mass fluxes are also the ones required to account for the large energetic release
observed in «y-ray bursts.

After this validating test, we have investigated the onset and development of the run-away
instability using the inital conditions discussed in Section 4. Shown in Figure 5.2 is the
evolution of the rest-mass accretion rate for model (a) (see Table 5.1) and with three different
values of initial velocity perturbation, n. The time is expressed in terms of the orbital period
torb = 27 /Qcentre Of the centre of the toroidal neutron star and is reported in Table 5.1 for the
different models considered. Note that the minimum rest-mass accretion rate in Figure 5.2 is
never zero but of the order ~ 0.02M@ /s, even initially. This is just the cumulative result of a
small truncation error which is always producing a tiny and constant in time mass overflow
at the cusp, coupled to the use of very high density matter which then amplifies the accretion

rate.
The behaviour of the muss flux reported in Figure 5.2 incorporates two important features.

Firstly, it shows that the run-away instability does occurr also with this choice of initial
data and that the growth-rate is smaller for larger initial velocity perturbations (i.e. larger
values of ). As mentioned in the Introduction of this Chapter, this is a rather important
point confirming that Roche lobe-overflowing is not a necessary condition for the develop-
ment of the instability and that the latter is inevitable, at least in constant specific angular
momentum tori whose self-gravity is not considered. The small inset of Figure 5.2, offers a
more detailed view of the simulation with = 0.06 on a logarithmic scale for the time and

should be considered as the dynamical evolution that more than any other resembles the one
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Figure 5.2: Evolution of the rest-mass accretion rate for model (a) and for different values of  when
the spacetime is allowed to vary. The time is expressed in terms of the timescale for the centre of
the toroidal neutron star to perform an orbit. The small inset focuses on the case in which 1 = 0.06,
showing the results on a logarithmic scale.

observed for Roche lobe overflowing tori by Font & Daigne (2002a).

The behaviour observed in Figure 5.2 for the onset of the instability with different values
of the perturbation velocity has a rather simple interpretation. In fact, In order to trigger
the instability a certain fractional change in the mass of the black hole (and therefore in the
spacetime curvature) needs to be reached. If the initial strength of the perturbation is large,
a considerable amount of matter will be accreted onto the black hole already during the first
oscillation in the accretion rate and the instability is therefore able to develop very rapidly.
If, on the other hand, the strength perturbation is small, much less mass will be accreted
during each oscillation and more oscillations will be needed to produce the fractional change
in the black hole mass that will accelerate the development of the instability. In this latter
case, the instability will develop on larger timescales which do not scale linearly with 7.

A second novel and remarkable feature to notice in Figure 5.2 is that, after the system
has relaxed from the initial conditions (i.e. at about t/tep = 2) the secular growth in
the rest-mass accretion rate is accompanied by an oscillatory behaviour with increasing
amplitude. These oscillations are less regular in the case of the high amplitude perturbation
(i.e. n = 0.06) but are much more regular as the strength of the perturbation is gradually
reduced. Tt is also interesting to notice that when very low amplitude perturbations are
used, the amount of accreted matter is so small that new features can be revealed. In the

case of the simulation for = 0.02 in Figure 5.2, for instance, it is possible to distinguish at
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least three different stages. Most notably, an 4nitial stage for t/to < 18, during which the
rest-mass accretion rate is very small and does not manifest a regular oscillatory behaviour.
Despite the apparent quiescence, and as it will become clearer in the following Section,
during this stage the toroidal neutron star is not at all static and other hydrodynamical
quantities manifest a different behaviour. This stage is then followed by an intermediate
stage for 18 < ¢/torn, S 45, during which the rest-mass accretion rate shows the secular
growth already observed for higher amplitudes perturbations. Note that while this happens,
the toroidal neutron star enters in phases during which no accretion is present (i.e. the
accretion rate reaches the minimum possible values). Eventually, a third final stage sets in
for t/torn
deduced from the fact that during this phase the the accretion rate does not reach the floor

2 45, during which the instability starts to develop more clearly. This can be
as it did in the previous intermediate stage and the oscillations have progressively smaller
amplitude while the accretion rate grows exponentially.

It worth pointing out that each of these oscillations deposits a considerable amount of matter
onto the black hole which, before reaching the event horizon, is likely to loose part of its
potential binding energy by emitting electromagnetic radiation. In view of this, it is plausible
to expect that the quasi-periodic accretion measured during our simulations could also be
observed in the form of a quasi-periodic X-ray luminosity, as it is indeed the case in the quasi-
periodic oscillations (QPO’s) observed in the X-ray luminosity of Low Mass X-ray Binaries
(LMXB’s) (van der Klis, 2000). While the connection between the two phenomenologies is
very suggestive, it should be remarked that the discs which are thought to be behind the
quasi-periodic X-ray luminosity in LMXB’s have much smaller rest-mass densities and more
detailed calculations need to be made before a conclusion on the connection between the two
phenomenologies can be drawn.

All of the calculations shown in Figure 5.2 terminate when the accretion rate has reached
a maximum value of ~ 3 x 103My/s and the rest-mass of the disc has become only a few
percent of the initial one (cf. Figure 5.4). During these very final stages of the instability
the calculations are made very difficult by the exponential changes in the hydrodynamical
quantities and Courant factors as small as 0.01 are needed to prevent the code from crashing.
Soon after the accretion rate has reached its maximum, it drops rapidly to very small values
as a result of the almost complete disappearance of the disc (this final part of the evolution
is not reported in Figure 5.2).

As mentioned above, the growth-time for the instability depends on the efficiency of the
mass accretion process and on the reaching of a certain fractional change in the black hole
mass. How rapidly this change is achieved depends both the strength of the initial velocity
perturbation (as shown in Figure 5.2) but also on the density of the accreted matter. To con-
firm this, we have performed simulations for the same initial perturbation but with different
mass ratios. The results of these simulations are summarized in Figure 5.3 which shows the
behaviour of the rest-mass accretion rate for models (b) and (c) in Table 5.1, which have the

same properties of model (a) of Figure 5.2, but have been constructed using larger values
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Figure 5.3: Rest-mass accretion rate for three different mass ratios in a dynamical spacetime evolu-
tion. The solid and dotted lines correspond to models (b) and (c), respectively, after a perturbation
with 7 = 0.06.

of the polytropic constant s [cf. equation (5.5)]. As expected, lower density toroidal neu-
tron stars have proportionally smaller accretion rates (note that the floors are also different)
and proportionally longer timescales for the onset and development of the instability. Two
interesting aspects of Figure 5.3 need to be pointed out. Firstly, the timescale for the insta-
bility to set in has an almost linear dependence on the mass ratio M;/M. This is a rather
important detail as it reveals that what could be considered as a “realistic” toroidal neutron
star, i.e. one with M;/M =~ 0.1 and with a level of perturbations of the order n >~ 0.02,
has a lifetime of roughly 1 s. (cf. also with Figure 5.2). Secondly, when the mass accretion
rate is generically low, the amount of matter accreted can be very small even over several
tens of dynamical timescales. When this is the case, and as mentioned in Section 4.1, the
spacetime can be held fixed and the overall calculations simplified. More importantly, this
provides the possibility of distinguishing the dynamical response of the toroidal neutron star
to perturbations from the development of the stability. We will exploit this possibility in the
following Section which focuses on the investigation of the oscillation properties of toroiodal

neutron stars.

5.2 Fixed Spacetime: Quasi-Periodic Oscillations

The dynamical response of the toroidal neutron star to perturbations provides information

about the basic properties of this object in a strong gravitational field. While the details of
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Figure 5.4: Evolution of the rest-mass of the toroidal neutron star (normalized to its initial value)
in a dynamical (continuous line) and in a fixed (dashed line) spacetime simulation. The calculations
refer to model (a) with an initial perturbation n = 0.06.

these properties depend on the details of the gravitational field the torus is experiencing, we
expect some features to be generic and therefore to be present also in those circumstances in
which the runaway instability is suppressed. To prevent the runaway instability from hiding
the quasi-periodic response of the torus to perturbations, we have simply suppressed the
instability by maintaining the spacetime fixed.

The most apparent consequence of this choice is that the disc is no longer dramatically
accreted onto the black hole but remains at almost constant rest-mass for extremely long
times. This is shown in Figure 5.4 where we present the evolution of the rest-mass of the
disc (normalized to its initial value) in the two different cases of a dynamical and of a fixed
background spacetime. The dotted line, in particular, refers to the model shown in Figure 5.2
with the same line type. Note that when the instability is fully developed and the calculations
are interrupted, the toroidal neutron star has almost completely disappeared into the black
hole, the residual mass being just ~ 4.% of the initial one. Note also the the rest-mass in
evolution with fixed spacetime is not exactly constant but shows a secular decay as a result
of the small amounts of matter that are quasi-periodically accreted onto the black hole (cf.
Figure 5.5).

Figure 5.5 is the equivalent of Figure 5.2, but shows the quasi-periodic accretion rate during
the first 30 orbital periods for a simulation in which the spacetime is being held fixed. It is
apparent that the both the dynamical and the fixed spacetime evolutions have a qualitatively

similar behaviour: after the toroidal neutron star has relaxed at t/fon = 2, it starts accreting
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Figure 5.5: Rest-mass accretion rate in a fixed spacetime evolution. The solid, dotted and dashed
lines correspond to 1 = 0.006,0.04, 0.02, respectively.

matter onto the black hole at quasi-periodic intervals which do not depend on the strength of
the perturbation. On the other hand, the amplitude of the mass accretion rate does depend
on the value of n, producing larger amounts of accreted matter with increasingly larger values
of n. (Note that when n = 0.02, the mass accretion rate seems to drop to an almost constant
value for 6 < t/top S 15. This is just the consequence of the logarithmic scale used and,
as shown in Figure 5.6, it is indeed possible to observe a periodicity also during this time
interval.).

The periodicity at which this happens is remarkable if one considers that these curves are the
result of numerical calculations in which each period requires several thousands of iterations.
In addition to this, the periodic behavoiur does not seem to be altered even when observed
over 100 orbital timescales as shown in the inset of Figure 5.5, although some new secular
features appear. Most notably, it is quite evident that the mass accretion rate oscillates
around values that are increasingly larger. This is due to the fact that as the accretion
proceeds, matter of increasingly larger rest-mass density reaches the cusp (the low-density,
outer regions of the toroidal neutron star have already been accreted) and this will therefore
produce a small secular growth in the amplitude of the mass flux.

The mass accretion rate is not the only quantity showing a periodic behaviour and indeed all
of the fluid variables can be shown to oscillate periodically. In Figure 5.6 we have reported
the time evolution, over 30 orbital periods, of the central rest-mass density of the toroidal

neutron star normalized to its initial value. The small inset shows the evolution of the same
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Figure 5.6: Evolution of the central rest-mass density normalized to its initial value. Asin Figure5.5,
The solid, dotted and dashed lines correspond to n = 0.006, 0.04, 0.02, respectively.

quantity but for a much longer timescale and offers a direct evidence of the regularity of the
oscillation. The inset should be contrasted with the evolution of the rest-mass density in a
simulation with a dynamical spacetime. In that case, in fact, the oscillations in the rest-mass
density do not remain (roughly) constant but grow exponentially as the runaway instability
develops.

The periodic behaviour presented in Figure 5.6 is due to the fact that, as a result of the
initial perturbation, the toroidal neutron star has acquired a linear momentum in the radial
direction pushing it towards the black hole. When this happens, the pressure gradients
become stronger to counteract the steeper gravitational potential experienced as the disc
moves inward, thus increasing the central density and eventually pushing the disc back to
its original position. This is illustrated more in detail in the different panels of Figure 5.7,
which show the rest-mass distribution at different times during the oscillation.

More precisely, the sequence in Figure 5.7 shows that once the unperturbed toroidal neutron
star [whose initial rest-mass density distribution is shown in the panel (a) of Figure 5.7] is
subject to a radial velocity perturbation, it will then start moving towards the black hole [see
panel (b)]. The existence of a potential barrier at 7 ~ 4.5, however, causes a compression of
the matter that is approaching the black hole [see panel (c)], giving rise to the first peak in
the central density visible in Figure 5.6 at ¢/top =~ 0.45. Because the initial configuration
is just marginally stable, a small fraction of the matter in the disc will be pushed over the

maximum of the potential barrier and generate the first maximum in the rest-mass accretion
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Figure 5.7: Rest-mass distributions of a perturbed toroidal neutron star at different times. The
sequence illustrates the periodic behaviour during the first cycle of an oscillation excited with 1 =
0.06. The iso-density contours plotted on the (z,y) planes of the different panels can be used to
trace the motion of the matter and are the same for all of the panels (in particular they refer to
p=5.0x 10,1, x 10'3,2.5 x 10*3,5.0 x 10'3,7.5 x 10'%,1.0 x 10, and 1.11 x 10, respectively).
The times are expressed in terms of the orbital timescale, while the spatial coordinates are in terms
of the gravitational radius.
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rated reported in Figure 5.5. The presence of a net mass flux onto the black hole can directly
be appreciated through iso-density contours shown in the (z,y) planes of Figure 5.7. Most
notably, the lower density contours of panel (c¢) are closed on the event horizon and signal
therefore a thin channel of accreting matter that is linking the toroidal neutron with the
black hole (Note that because of this correlation between the rest-mass density and the
accretion rate, the peaks in Figure 5.6 are slightly advanced in time with respect to the
corresponding peaks in Figure 5.5.). As the compression increases, the pressure gradients
become sufficiently strong to produce a restoring force on the toroidal neutron star which is
then pushed back, away from the black hole. The restoring effect is so efficient that the disc
overshoots the original position [panel (a)] and moves outwards to larger radii [panel (d)].
When this happens, the central density decreases and the mass accretion rate drops to its
floor value; both of these effects are reflected in the first minima of Figures 5.5 and 5.6.

The dynamics of this process can also be followed by monitoring the total energy of a fluid
element at the edge of the disc, (u¢)cusp- If, at a given time, this quantity becomes larger than
the potential barrier at the cusp, Weygp, the corresponding fluid element will have sufficient
kinetic energy to overcome the barrier but not sufficient angular momentum to sustain an
orbital motion at the smaller radius at which it has been displaced. As a result, it will
be forced to fall into the black hole, producing, after its free-fall time, a peak in the mass

accretion rate. ,
Once triggered, the behaviour described above will repeat itself with great regularity amd

minimal numerical dissipation up until the numerical simulation is stopped or the toroidal
neutron star has been entirely accreted by the black hole (cf. the small insets of Figures 5.5
and 5.6). During these oscillations, the pressure gradients act as restoring forces during
the periodic transformation of the excess kinetic energy (transferred with the initial velocity
perturbation) into potential gravitational energy and viceversa. As we shall comment later
on, this is a first clue about the nature of these pulsations.

A final comment should be made about initial models consisting of initially stable toroidal
neutron stars and that are therefore fully contained in barotropic surfaces smaller than their
Roche lobe. Also for these models we have performed a number of simulations investigating
their behaviour for different initial perturbations as well as for different initial masses. Over-
all, the behaviour observed with this initial data is qualitatively similar to the one already
discussed for marginally stable discs, i.e. these models also develop the runaway instability
or show a quasi-periodic behaviour depending on whether the spacetime evolution is taken

into account or not.
The most significant difference introduced by these models is that smaller rest-mass accretion

rates are generally produced for the same initial perturbation. This is clearly due to the
fact that in stable models a large potential barrier is present at the cusp and is therefore
increasingly more difficult for a fluid element to reach the black hole as a result of the initial

perturbation.
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Figure 5.8: Power spectrum of the accretion rate for the models (a), (b), (c) and (d). The values
on the vertical axis have been suitably normalized to match the power in the fundamental frequency
and arbitrary units have been used.

Fourier Analysis

We have so far commented on the “quasi-periodic” behaviour of the hydrodynamical variables
in response to the initial perturbation but we have not yet discussed how periodic is “quasi-
periodic”. To this scope, we have calculated the Fourier transforms of the relevant fluid
quantities for a number of different models. As a good representative case, we have reported
in Figure 5.8 the power spectrum of the rest-mass accretion for models (a), (b) and (c) of
Table 5.1. The Fourier transform has been calculated with data obtained with n = 0.06 and
computed over a time interval going up to ¢/to, =~ 100. Note that larger values of n produce
correspondingly higher peaks, but the data in Figure 5.8 has been suitably normalized to
match the power in the fundamental peak.

There are two important features of Figure 5.8 that need to be pointed out. The first one
is that all of the three power spectra shown consist of a fundamental frequency fo (228
Hz for the models considered in Figure 5.8) and a series of overtones (at 456 and 684 Hz,
respectively) in a ratio which can be determined to be 1:2:3... and to an accuracy of a
few percent (note that higher overtones have been measured, though with much lower power
than the one found in the first three peaks.). Indeed, the presence of at least three peaks can
be detected also in the power spectra of basically all of the fluid variables as well as in the
overall displacement of the toroidal neutron star during the oscillations. It should also be
noted that the power spectra of some fluid variables, such as that of the Ly norm of the rest-
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Figure 5.9: Dependence of the fundamental frequency fo on the average density in a sequence of
models having the same mass ratios.

mass density, seem to show peaks with much lower power also at intermediate frequencies,
and in particular at frequencies that are in a ratio 2 : 3 : 4 : 5 : ... with respect to the
fundamental one. Because the energy of these peaks is very close to the background noise, it
is not yet clear whether these modes correspond to physical modes or are due to numerical
errors. The second important feature is that the peaks in the power spectra have all the
same frequencies, with differences below 0.1%. All of these properties are clearly suggesting
that the quasi-periodic response observed is the consequence of some fundamental mode of
oscillation of toroidal neutron stars and that, as for isolated neutron stars, it is probably
independent even of the presence of a central black hole.

An important clue on the nature of these modes can be deduced if one considers that all of
the models reported in Figure 5.8 refer to toroidal neutron stars with fixed spatial dimensions
and specific angular momentum, but with varying mass (cf. Table 5.1). This has basically
been obtained by suitably rescaling the polytropic constant in the EOS. However, another
common property that these models share is that they all have the same initial average sound

speed. This can be deduced if one bears in mind that for the fluid configurations considered

here, the local sound speed can be calculated as ¢y = V(v = 1)p/[(v = 1)p + vp], but this
is effectively a constant for models with an initial density distribution given by equation
(5.5). As a vesult, it is not surprising that the peaks coincide in all of the models if the
oscillations discussed so far should be associated to the p-modes (or acoustic modes) of

toroidal neutron star. Proving that the periodic oscillations observed in our simulations can
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be interpreted as p-modes and validating the presence of modes at intermediate frequencies
is something that needs a detailed perturbative analysis and will be discussed in Chapter 6
under certain simplifying assumptions. For the moment, let us just make the conjecture that
these oscillations represent the vibrational modes of relativistic toroidal neutron stars having
time-varying pressure gradients as the restoring force.

Since the peaks in the power spectra seem to depend on the average sound speed, the
dependence of the fundamental frequency on the properties of the toroidal neutron star
needs to be investigated along sequences different from the one consider in Figure 5.8. As
an example, we have reported in Figure 5.9 the fundamental frequency fy as a function of
the average rest-mass density inside the disc. The data refer to the evolution of models
(e)-(h) that, we recall, have different dimensions, specific angular momenta and polytropic
constants, but all have the the same mass ratio My /M (cf. Table 5.1). An evident correlation
exists between the fundamental frequency and the logarithm of the average rest-mass density,

and a fit to the data has shown this correlation to be (cf. straight line in Figure 5.9)
fo = (122.551og (p) — 1201.67) Hz , (5.26)

where (p) is expressed in cgs units. This expression is important as it indicates that a
systematic study of these oscillations is possible for different initial models of toroidal neutron
stars. Furthermore, it represents a first step towards a relativistic disc-seismology analysis for
massive and vertically extended discs in General Relativity, in analogy to the one extensively
developed for geometrically thin discs (Rodriguez et al. 2002; Kato 2001; Silbergleit et al.
2001).

Linear and Nonlinear Regimes

All of the quasi-periodic behaviour discussed so far is the consequence of the finite size
perturbations that have been introduced in the initial configuration. It is also clear that
there will be a linear regime in which the response of the toroidal neutron star will be
linearly proportional to the perturbation introduced and a nonlinear regime when this will
cease to be true. It comes then natural to investigate what is the strength of the perturbation
which marks the transition between the two regimes and this is shown in Figure 5.2 where
we have reported the averaged maximum rest-mass density measured during the oscillations

and normalized to the central one in the toroidal neutron star.
A rapid look at Figure 5.2, in fact, reveals the presence of both the linear and nonlinear

regimes with the first one being shown magnified in the inset, where the solid line shows
the very good linear fit to the data. The transition between the two regimes seems to
occur for n ~ 0.05, with the nonlinear regime producing maximum amplitudes that are
~ 35% larger than the initial one. A careful analysis of the behaviour of the fluid variables
shows that for perturbations with strength n > 0.05, some of the kinetic energy which
is confined to the lower order modes in the linear regime, tends to be transferred also to

higher order modes (As remarked above, while in Figure 5.8 we have reported only the
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Figure 5.10:  Averaged maximum rest-mass density measured during the oscillations and normalized
to the central one in the toroidal neutron star. The small inset shows a magnification of the behaviour
in the linear regime and the solid line shows a linear fit to the data. The data refers to model (a)
and has been averaged over 10 orbital timescales.

first three peaks, the power spectrum shows the presence of higher order overtones, with
up to the seventh one being clearly visible). The nonlinear coupling among different modes
and the excitation of higher order overtones is often encountered in Nature where it serves
to redistribute the excess kinetic energy before the production of shocks. In practice, the
nonlinear coupling deprives of energy the fundamental mode (which is the one basically
represented in Figure 5.2) and is therefore responsible for the decay of (pmax/pc) for n > 0.1.
Interestingly, when analysed in terms of the power spectra, this effect shows a very distinctive
behaviour. As the nonlinear mode-mode coupling becomes effective, the amount of power in
the fundamental mode becomes increasingly smaller as the strength of the perturbation is
increased. At the same time, the conservation of energy transfers powers to the overtones,
with the first ones reaching amplitudes comparable to the fundamental one and with the
high order ones becoming more and more distinct from the background.

Determining the transition to the nonlinear regime represents a important result because
it sets an approximate upper limit on the amplitude of the oscillations and, as will be
discussed in the following Section, will be particularly relevant when discussing the emission
of gravitational waves. It should also be noted that in the parameter range for n in which
we have performed our calculations (i.e. € [0.001,0.1]) the peak frequencies in the power
spectra have not shown to depend on the values used for ), while, of course, their amplitude

does. This is of course consistent with them being fundamental frequencies (and overtones)
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but we also expect that as the perturbation amplitude enters in a fully nonlinear regime,
other modes will probably be excited and appear in the power spectra.

A final comment should be made on the minimum value of the perturbation parameter 7
which is sufficient to produce the quasi-periodic behaviour described in the previous Section.
On the basis of the continuum equations one expects that this minimum value is strictly larger
than zero. However, we have performed simulations of marginally stable disc configurations
with n = 0 and observed much of the phenomenology described above even if at rather minute
amplitudes and with a larger numerical noise. This result, which has been encountered also
in other accurate simulations of relativistic stars (Font et al. 2002), is not surprising and is
simply indicating that in the absence of finite size perturbations, even the small truncation
error introduced in the construction of the initial configuration is sufficient to excite the

pulsations in these modes of vibration.

6 Gravitational wave emission

Despite our analysis has been restricted to axisymmetry, two simple considerations suggest
that strong quasi-periodic gravitational waves should be expected together with the quasi-
periodic accretion. The first of these considerations is that these oscillating tori undergo large

and rapid variations of their mass quadrupole moment which, we recall, can be calculated

as
" 5 1
I= / p (;—zz - 5) ridrdz | (5.27)

where z = cos@. It is therefore reasonable to expect that gravitational waves, with a strain

proportional to the second time derivative of Eq. (5.27), should be produced during such

oscillations®. The second consideration is suggested by expression (5.27), which shows that
a configuration with toroidal topology and in which the rest-mass density has a maximum
away from the origin will naturally have a large mass quadrupole simply because of the
product pr? in the integrand of this equation. This should be contrasted with what happens
for stars with spherical topology and which have instead the largest densities at the centre.
Both of these arguments justify the intense gravitational radiation and the large signal-
to-noise ratio we have calculated using the Newtonian quadrupole approximation. Before
discussing this in detail, however, it is useful to remind that since we are not solving the
Einstein field equations, we are unable to account for that part of the gravitational radiation
“that is emitted by the black hole itself as a result of the quasi-periodic mass accretion. For the
same reason we cannot estimate the amount of gravitational radiation that will be captured
by the black hole and will not reach null infinity. Work is now in progress to calculate also
this part of the radiative field using an approach in which the fluid evolution is used as a
“source” for a perturbative form of the Einstein equations.

The presence of an azimuthal Killing vector has two important consequences. Firstly, the

31t is worth underlying that a deviation from axisymmetry is only a sufficient condition for the emission
of gravitational waves and not, as sometimes stated (Mineshige et al. 2002), a necessary condition.
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gravitational waves produced by these axisymmetric oscillating tori will carry away energy
but not angular momentum, which is a conserved quantity in this spacetime. This is to be
contrasted with the gravitational wave emission from non-axisymmetric perturbations in a
massive torus orbiting a black hole, whose strength has been estimated in recent papers (van
Putten 2001a,b; Mineshige et al 2002). Secondly, the gravitational waves produced will have
a single polarization state (i.e. the “plus” one in our coordinate system, Kochanek et al.
1990), so that the transverse traceless gravitational field is completely determined in terms
of its only nonzero transverse and traceless (7'T) independent components, hggT = —hi(’;g
(Zwerger & Miller, 1997). Adopting then Newtonian quadrupole approximation, we can
calculate the gravitational waveform h?7(t) observed at a distance R from the source in

terms of the quadrupole wave amplitude A5? (see also Zwerger & Miiller 1997)

. 5\ AE2(t —
WTT(4) = 7y <é\/;) 14;0_%_52 , (5.28)

where F. = F(R,0,¢) is the detector’s beam pattern function and depends on the orien-
tation of the source with respect to the observer. As customary in these calculations, we
will assume it to be optimal, i.e. F = 1. The wave amplitude A5? in Eq. (5.28) is simply
the second time derivative of the mass quadrupole moment and can effectively be calculated
without taking time derivatives, which are instead replaced by spatial derivatives after ex-
ploiting the continuity and the Euler equations (Finn, 1989; Blanchet et al. 1990; Rezzolla
et al. 1999) to give

AEQ T k/p [UT'UT<3Z2—‘1)+/UHU9(2—BZZ)_U¢U¢

~6z\/(v"vr)(v9v9)(1 —z2)~r%§ (322—1)

+32%§i\/1—22} r?drdz , (5.29)

where k = 167%/2//15, and @ is the gravitational potential. Since Eq. (5.29) is intrinsically
Newtonian, it brings up two subtle issues when evaluated within a relativistic context. These
basically have to do with the definition of the radial coordinate and with the definition of
the gravitational potential appearing in Eq. (5.29). We have here opted for a pragmatical
approach and treated r as the Schwarzschild radial coordinate and computed the gravita-
tional potential in terms of the radial metric function as ® = (1 — g,»)/2, which is correct to
the first Post-Newtonian (PN) order.

To validate the correct implementation of the integral in Eq. (5.29), we have considered a

stationary torus in stable equilibrium, (i.e. AWi, < 0) and without any perturbation besides
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Figure 5.11: Time evolution of the second time derivative of the mass quadrupole, computed for
model (a). The solid, dotted and dashed lines correspond to n = 0.06,0.04,0.02, respectively. The
inset corresponds to the case n = 0.06 and spans 100 orbital timescales.

the one introduced by the truncation error (i.e. 7 = 0). Under these circumstances, no
gravitational radiation can be produced and the terms in the square brackets of Eq. (5.29)
should therefore compose to give zero identically. When computed numerically, we have
found that the sum of these terms is effectively very small and of the order ~ 1072, This
small residual in the integrand is due to approximations mentioned above (i.e. the use of
the Schwarzschild radial coordinate and the first PN approximation to the gravitational
potential) and should be interpreted, in practice, as a consequence of the fact that our tori
are highly relativistic objects, whose equilibrium is not exactly given by the balancing of
the Newtonian terms in the square brackets. Because of this residual, however, the wave
amplitude AYZ will not average to zero over an oscillation but will have a net offset. We
account for this by removing the overall residual in the evaluation of the wave amplitude
(see also Dimmelmeier et al. 2002 for the discussion of an analogous technique).

Figure 5.11 shows the time evolution of the wave amplitude A5? computed for model (a) via
the expression (5.29). The different line types refer to n = 0.06,0.04 and 0.02, respectively.
The computed gravitational waveform exhibits the same periodic behaviour discussed in the
previous Sections for several fluid variables and shows oscillations that are in phase with
the ones observed in the rest-mass density (cf. Figure 5.6). Furthermore, and as one would
expect, the wave amplitude scales with the strength of the initial perturbation. Note that
in the case of a simulation with a dynamical spacetime (not shown in Figure 5.11), the
gravitational waveform does not maintain a constant in time amplitude but, as the runaway

instability develops, the variations in A:}?Oz become increasingly large, with an exponential
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Figure 5.12: Dependence of the wave amplitude A5? on the mass of the torus. The solid, dotted
and dashed lines correspond to models (a), (b) and (c), respectively. The data refers to an initial
perturbation of strength 7 = 0.06 and the inset shows a linear fit (solid straight line) of the data,
including the one for model (d).

growth rate that matches the one observed in the density evolution.

Since the mass quadrupole and its second time derivative are linear in the rest-mass density
[cf. Eq. (5.29)] and the latter exhibits a quasi-periodic behaviour upon perturbations, it
is natural to expect the same linear dependence to be present also in terms of the mass
ratio My /M. To verify this we have computed AL? with an initial perturbation n = 0.06 for
models (a), (b), and (c) that, we recall, differ only for their mass M;. The results of this

analysis are reported in Fig. 5.12 which shows the behaviour of AS? over one representative
period of oscillation and for the four models. As expected, the scaling of the amplitude is
linear with M;/M and this is more clearly shown in the inset where the wave vamplitude
[including the data for model (d)] is fitted linearly with My /M.

Using Eq. (5.28), it is possible to derive a phenomenological expression for the gravita-
tional waveform that could be expected as a result of the oscillations induced in the toroidal
neutron star. Restricting our analysis to the linear regime for which a simpler scaling is
possible, we can express the transverse traceless gravitational wave amplitude for a source

in the Galaxy in terms of the relevant parameters in our problem

- M, 10 Kpe
RIT ~ 9.9 % 1072 (1 t
* (0.04) 0.1 Mas R ) (5.30)

where we have defined M5 = M /(2.5 Mg).

Overall, expression (5.30) shows that, already in the linear regime for the perturbations,

a non-negligible gravitational wave amplitude can be produced by an oscillating toroidal
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neutron star orbiting around a black hole. This amplitude 1s indeed comparable with the
average gravitational wave amplitude computed in the case of core collapse in a supernova
explosion (Zwerger & Miiller, 1997; Dimmelmeler et al. 2002) and can become stronger for
larger perturbations or masses in the torus.

Of course, the large wave amplitudes suggested by expression (5.30) are referred to a galactic
source and would become three orders of magnitude smaller for a source located at the edge
of the Virgo cluster (i.e. at about 20 Mpc). What is important to bear in mind from
expression (5.30) is that oscillating toroidal neutron stars can be sources of gravitational
waves as strong or stronger than a core collapse and that could occur with comparable event
ratest. This notion then serves as a useful normalization for estimating their relevance. It
should also be noted, however, that a strong gravitational wave signal is just a necessary
condition for the detectability of the gravitational wave emission from toroidal neutron stars
and that additional conditions, such as a sufficiently high event rate or a good matching
with the sensitivies of the detectors, need to be met. In the following Section we will discuss
these issues in more detail and evaluate the detectability of these potential new sources of

gravitational waves.

6.1 Detectability

To assess the detectability of toroidal neutron stars as sources of gravitational radiation
we have computed the characteristic gravitational wave frequency and amplitude, as well
as the corresponding signal-to-noise ratio for the interferometric detectors that will soon
be operative. More specifically we have first computed the gravitational waveform in the
frequency domain as the Fourier transform of the traceless transverse waveform in the time

domain

h(f) = /jo AR TT () dt (5.31)

where hT7T(t) is calculated according to Eq. (5.28) and where we have considered the grav-
itational wave amplitude computed over a fized spacetime only. (Hereafter we will indicate
RTT () simply as A(t).). While in principle the integral in Eq. (5.31) is over an infinite time in-
terval, in practice h(t) is nonzero only over a finite interval 7jig. If the initial model chosen for
the toroidal neutron star is not a stable one, this time interval is simply set by the timescale
over which the runaway instability develops. If, on the other hand, the initial model is stable,
the timescale over which a gravitational wave signal is produced can be considerably longer
and is basically set by the time over which the star is able to survive, for instance, against
non-axisymmetric instabilities. Hereafter, as a representative timescale for our “realistic”
toroidal neutron star model we will assume 7o ~ 0.2 s, while longer /shorter timescales will

be assumed for models with smaller/larger initial perturbations (cf. Table 5.2).

40f course not all of the collapsing iron cores will produce a black hole sourrounded by a massive torus. On
the other hand, and as discussed in Section 4.1, there is a multiplicity of scenarios in which toroidal neutron
stars could be produced.
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Given a detector whose response has a power spectral density S;(f), it is then useful to

calculate characteristic frequency of the signal (Thorne, 1987)

~ ~ —1
R G I INE s
fc_{ﬂ 5u(f) fﬂ}‘ﬁ #} | (5:52)

Sn(f)
where (|h(f)]?) denotes an average over randomly distributed angles, that we have simply

approximated as (|h(f)[2) = |h(f)|?. The characteristic frequency provides a representative
measure of where, in frequency, most of the signal is concentrated and is therefore relevant
when the gravitational wave signal has a rather broad spectrum in frequency, as is the case
in a gravitational core collapse. In the case of an oscillating toroidal neutron star, on the
other hand, the signal is basically emitted at the fundamental frequency of oscillation (cf.
Table 5.2), increasing the detectability.

Once the characteristic frequency is known, it can be used to determine the characteristic

amplitude as

— < Sulfe) 5 2 V2
O A (5.3

It worth remarking that when the characteristic frequency fits well in the minima of the

sensitivity curves, the weight Sy (fc)/Sx(f) in the integral of (5.33) can significantly increase

he when compared to hTT. This is indeed what happens for the toroidal neutron stars
considered here (cf. Table 5.2).
A direct comparison of characteristic amplitude with the root-mean-square sirain noise of

the detector
hrms = fSh(f) ) (5'34)

finally determines the signal-to-noise ratio at the characteristic frequency as

S he

N~ o) ()
In Figure 5.13 we show the characteristic wave amplitude for sources located at a distance of
R =10 Kpc and R = 20 Mpc, as computed for two different values of the toroidal neutron
star mass. These amplitudes have been computed for the expected strain noise of LIGO
I and LIGO II, but the strain curves of VIRGO (that is similar in this frequency range,
(Damour et al. 2001) and of EURO (Winkler, 2001) have also been reported for comparison.
Interestingly, with small initial perturbations (n = 0.04) and mass ratios (M;/M = 0.1),
the computed characteristic amplitudes can be above the sensitivity curves of LIGO I for
sources within 10 Kpc and above the sensitivity curve of EURO for sources within 20 Mpc.
Both results suggest that a toroidal neutron stars oscillating in the Virgo cluster could be

detectable by the present and planned interferometric detectors. Summarized in Table 5.2
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Figure 5.13: Characteristic wave amplitudes for a perturbed toroidal neutron star with n = 0.04.
These amplitudes have been computed using the strain noise estimated for LIGO I for a source located
at a distance of 10 Kpc and for LIGO II for a source at a distance of 20 Mpc. The numbers can
also be effectively compared with the sensitivity curves of VIRGO and EURO that are similar in this
frequency range. Different points refer to different mass ratios, with triangles indicating My /M = 0.25
and squares My /M = 0.1.

are the basic properties of the gravitational wave signal emitted by a toroidal neutron star.
Most notably, we report: the characteristic frequency, the characteristic wave strain and the
signal-to-noise ratios as computed for LIGO I, LIGO II and EURO, as well as the timescale
over which the signal has been computed. All of these quantities refer to models with different
initial perturbations and located at either 10 Kpc (for LIGO I) or 20 Mpc (for LIGO 1II and
EURO).

The values for the signal-to-noise ratios reported in Table 5.2 are already interesting, but
could become larger in at least three different ways. Firstly, and as remarked above, the
signal strength computed does not include the exponential growth in the gravitational wave-
form that would accompany the runaway instability and that would provide an important
contribution to the overall characteristic amplitude, as it is the case in binary mergers. As
an illustrative example, consider that if the last 10 ms (i.e. roughly the last 5 oscillations)
before the disappearence of an unstable torus at 10 Kpc with My/M = 0.1 and an initial
perturbation with 7 = 0.02 were taken into account, they would yield a final S/N =~ 90.
This is to be contrasted with the corresponding S/N = 11.9, obtained when the oscillations
are considered on a fixed spacetime (cf. Table 5.2). Secondly, we here have assumed the
lifetime of the tori to be limited by the runaway instability to avoid the uncertainties related
to the very existence of the instability when the specific angular momentum is not constant.
On the other hand, a toroidal neutron star oscillating for a timescale longer than the one

assumed in Table 5.2 will have a proportionally stronger signal even when the exponentially
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growing phase is neglected. Again, as an example, it is useful to consider that the model
yielding S/N = 11.9 over 0.2 s would produce a S/N = 16.3 if 5o = 0.4 s. Thirdly, an
oscillating toroidal neutron star stable to the runaway instability would probably be subject
to viscous or magnetic driven non-axisymmetric instabilities on timescales longer than the
ones discussed here. Once the non-axisymmetric deformations are fully developed the torus
would then have a mass quadrupole with much larger time variations, losing amounts of
energy (and angular momentum) in gravitational waves larger than the ones computed here.
The final point to be addressed is the rate at which the emission of gravitational waves
from toroidal neutron stars could be detected. Although a realistic estimate of this rate is
very difficult since very little is still known about the formation of toroidal neutron stars, it
is reasonable to expect that these objects will be produced in a significant fraction of the
events leading to core collapse in supernova explosions, binary neutron star mergers and tidal
disruption of neutron stars orbiting a black hole. Because in a volume comprising the Virgo
cluster all of these sources are among the most promising ones, overall our results indicate
that toroidal neutron stars could potentially be new sources of gravitational radiation and
certainly suggest a more accurate analysis.

More extended discussions will be provided in the Conclusions of the Thesis.



Chapter 6

Axisymmetric Oscillations of
Vertically Integrated Discs

1 Introduction

Oscillations and waves in accretions discs have been much less studied than those in stars.
This is partially due to the fact that both the existence and the importance of discs as fun-

damental astrophysical objects were recognized much later than stars. Nowdays, however,
periodic and quasi-periodic variations are currently observed in different classes of astro-
physical objects containing accretion discs. In black hole candidates, for instance, quasi
periodic oscillations (QPOs) in the X-ray band were first found in LMC X-1 (Ebisawa et al.,
1989), and later on in a large number of different analogous sources’. Moreover, after the

lauching of the Rossi X-ray Timing Explorer (RXTE), a new class of sources was discovered,

namely kiloHertz quasi-periodic oscillations?. There are of course a number of parameters of
the central compact object that can be expected to influence the X-ray variability. In case
of back holes candidates, for instance, observational differences can be mostly due to the
mass and to the spin rate of the black hole. However, the flow dynamics and therefore the
emerging radiation will be also strongly affected by the accretion rate and by the magnitude
and orientation of the specific angular momentum of the accreting matter. Although many
different models have been proposed for the interpretation of the large phenomenology that
is now available, there seems not to be a widely accepted mechanism for most of the observed
sources (see van der Klis, 2000 for a review; Lewin et al., 1995).

As in stars, oscillatory motions are in general the consequence of restoring forces responding
to perturbations and these offer a way for classifying oscillations. In particular, in non
rotating hydrodynamical systems, without magnetic fields, the main restoring forces are due
to pressure gradients and to the stratification of entropy and/or chemical composition. The
first ones give rise to acoustic waves, while the second one is responsible for the internal

gravity waves. The presence of rotation is responsible for additional modes of oscillations

IReviews of some of the observed QPOs features in black-hole candidates can be found in Novak (1995)
and Tanaka & Lewin (1995).

2The first two sources in which kHz QPOs were detected were 4U 1728-34 and Sco X-1 (Van der Klis
1996).
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appearing in a physical system. In stars, for instance, the Coriolis force due to rotation
produces the so called r-modes. Moreover, a general linear perturbation in a star can be
written as the sum of quasi-normal modes characterized by the indices (I, m) of the spherical
harmonics ;™. A further effect of rotation on these modes is to remove the degeneracy that
exists in the index m, thus splitting a non rotating mode of index [ into 2/ +1 different modes
(Stergioulas, 1998).

In accretion discs, on the other hand, the major restoring force against gravitational at-
traction is the centrifugal force, which is responsible for the appearance of so called inertial
oscillations tightly related to the orbital motion of the disc. A second peculiar restoring force
in accretion discs is the vertical gravitational field, which causes corrugation waves. If a por-
tion of the disc plane is perturbed in the vertical direction, in fact, the vertical component
of the gravitational field will produce a harmonic oscillation across the equatorial plane with
oscillation frequency equal to the orbital frequency (see Kato, Fukue & Mineshige, 1998,
for a complete overview on classification of disc oscillations) . Referring to the fundamental

frequency, disc oscillations can be roughly classified as
e Modes of higher frequency; also called inertial-acoustic waves, or p-modes.
e Modes of lower frequency; also called inertial gravity waves, or g-modes.
e Corrugation waves, with no nodes in the vertical direction.

It should be emphasized that this terminology can be somewhat confusing, since it does not
match the convention adopted for stellar oscillations, where the naming of the gravity mode
is used for denoting “internal gravity waves”.

Two complementary approaches have been followed for studying the perturbations of equi-
librium models of geometrically thin accretion discs. The first one is a local approach, and it
has been extensively used to investigate the propagation of waves with the inclusion of many
different physical effects, such as buoyancy, atmospheres and magnetic fields (see, among the
others, Lubow & Ogilvie, 1998). Being local, these approaches derive dispersion relations,
where the frequency of the perturbation is expressed as a function of a given radial coordinate
and as the combination of different contributions (Kato, 2001). The second approach is a
global one and it is based on the fact that, under suitable conditions, Eulerian perturbations
to all physical quantities can be expressed through a single function satisfying a second order
partial differential equation, which is then solved as an eigenvalue problem, the eigenvalue
being the frequency of oscillation (see Ipser & Lindblom, 1992; Silbergleit ef al., 2001; Novak
& Wagoner, 1991).

In the previous Chapter we have shown that global modes of oscillation might be excited in
non Keplerian discs as a response to a given perturbation in the initial velocity field. We
have also argued that the restoring forces responsible for this behaviour appear to be pressure
gradients. In this Chapter we present a perturbative analysis of axysimmetric relativistic

discs in the Cowling approximation. Since the discs we are considering are non Keplerian
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and geometrically thick, a full two-dimensional treatment would be required, to accomplish
for the coupling of the oscillations in the radial direction with those in the vertical one
(Kato, 2001). However, we will consider a simpler system where the vertical structure of
the disc is accounted for by integrating each quantity along the direction perpendicular to
the equatorial plane of the disc. In our analysis we will follow both the local and the global
approach. The first one will allow us to derive the local dispersion relation obeyed by the
oscillations in relativistic non Keplerian discs, while the global approach will provide us
the eigenfrequencies of the system resulting from the solution of an eigenvalue problem. In
the height of the results obtained with this perturbative analysis, the dynamical behaviour
discussed in Chapter 5 will find a consistent explanation.

The system of units chosen in this Chapter is given by setting G = ¢ = Mg = 1.

2 Local approach in the Newtonian case

In this Section we first present the derivation of the dispersion relation in the Newtonian
case. This is a useful exercise to clarify the concept of local analysis and introduce the most
important assumptions which will remain valid in our extension to the general relativistic
case, to be considered with more details in Section 3. Moreover, a comparison between the
physical properties of Newtonian and relativistic oscillations clarifies the differences among

the two regimes and is very useful for understanding the basic concepts of diskoseismology.

2.1 Basic assumptions

We here neglect the perturbations in the gravitational potential (this is referred to as the
Cowling approximation, Cowling 1941), and consider fluid configurations that are not self-
gravitating.

We first introduce a cylindrical coordinate system, (w, ¢, z), whose origin is at the center
of the central object, the z axis being taken in the direction of the disc rotation. Physical
quantities like density and pressure are integrated in the direction vertical to the disc and
the dependence of these quantities on the vertical coordinate is therefore neglected. As
a consequence of this assumption, the equation of state is defined as a relation between

integrated quantities
P=Kxt, (6.1)

where we have defined the vertically integrated pressure, P, and the vertically integrated

surface density, 2, as

H
PE/ pdz, (6.2)

-H
and

ZE/HML (6.3)

—-H
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respectively®, H being the local thickness of the disc. Note that equation (6.1) mimics a
polytropic equation of state, with the constants /C and I' playing the role of the polytropic
constant and of the adiabatic index, respectively. However, this analogy should be taken with
care, since the equation of state (6.1) does not represent a vertically integrated equation of
state (unless the adiabatic index v appearing in p = xp7 is equal to unity).

The unperturbed fluid is supposed to be in circular non Keplerian motion with angular
velocity €, and we will define the averaged components of velocity in the @ and in the ¢

directions as

1 H
U= — “dz )
20 /_HU 4, (6.4)
and
1 H
= @ 4
W = 55 ——HU dz, (6.5)

respectively*. Furthermore, as another approximation of our approach, the component of
the fluid normal to the equatorial plane will be neglected.
2.2 Governing Equations

Since the motion in the vertical direction is neglected, the basic hydrodynamical equations

reduce to (see Shu 1992 for a general analysis)

1 1
AT+ 0 (ZU) + =2U + —0,(SW) =0, (6.6)
w w
2
U +UdxU + ZV—@,U W Ll poa,y, (6.7)
w w by
w Uw 11 1
8¢W + U&wW -+ E&,,W -+ w’ZD—— = _Ega(pp - ;j“a(p\]?, (68)
VU = 478, (6.9)

which represent the continuity equation, the Euler equations in the @ and ¢ directions and
the Poisson equation, respectively. The quantity ¥ in (6.7)-(6.9) represents the vertically
integrated gravitational potential, defined analogously to (6.2)-(6.3), whereas § is the ver-
tically integrated rest mass density of the central source. Stationary and axisymmetric disc
models can be built after setting to zero the time derivatives in the system (6.6)-(6.9), and

these will serve as the equilibrium solutions of the perturbative analysis.

2.3 Perturbed Equation

The basic equations for the oscillation of the disc are obtained by perturbing the equilibrium

configurations constructed as explained above. We confine our attention to the study of

3Note that the dimension of P and ¥ is that of the original p and p multiplied by a lenght.
4Note that the dimension of U and W is that of a velocity.
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infinitesimal pulsations which may be approximated as linear perturbations of the equilibrinm

fluid states. Furthermore, we will assume a harmonic dependence of the perturbed quantities
as

5U o
SW | ~ etottik®, (6.10)
q

where o is the frequency (in general complex) of the perturbation, k is a real number and the
perturbation in the pressure has been parametrized by introducing the quantity ¢ = 6P/%.
Note that in (6.10) the symbol § stands for the Eulerian perturbation, and that, according
to the Cowling approximation, ¥ = 0 everywhere in the equations. It should be stressed
that having a radial dependence of the perturbations of the type ~ ¢* is the fundamental
property of the local approach, according to which the radial wavelength of the perturbations
27 /k is smaller than the scale length of the radial variations in the equilibrium properties of
the disc. This assumption is usually referred to as the Wentzel-Krammers-Brillouin (WKB)

approximation, summarized in the box below.

WKB Approximation: The radial dependence of any complex perturbation quan-
tity can be written in terms of an amplitude and a phase. For instance, the gravi-
tational potential on the equatorial plane can be written as

U(w,z = 0) = (@)™, (6.11)

where both ¥ and k are taken to be real. The WKB approximation corresponds to
the assumption that the phase k(w) varies rapidly as compared to the amplitude

P(w)
dk 1 dy

—_

dw = Y dw
Quite often, the logarithmic derivative of ¢ with respect to w turns out to be of
order 1/w, and the WKB approximation can also be written as

(6.12)

dk
_— 1. .
dww > (6 13)

It is often the case that dk/dw ~ k/w, which reduces the condition (6.13) to the
requirement that %, called the radial wave number, is much larger than one.

When perturbing the system (6.6)-(6.8) we assume the perturbations to have small am-
plitudes and drop quantities that enter the governing equations of any order higher than
linear. Subtracting the zeroth-order set given by the equilibrium solution from the set of the

perturbed equations, we obtain the linearized perturbation equations as (Shu, 1992)
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io6U +206W = ikq, (6.14)
—i00W + 20 + wd QU = 0, (6.15)
—iocd 4 ik6U = 0, (6.16)

S

where ¢ = I'p/3 is the sound speed. We can now cast these equation into a simple real

matrix form as

o 20 -k iU
2%% o 0 ow | =0, (6.17)
k2 0 -0 1q
where &, is the epicyclic frequency defined as
Q)
e 2Q {ZQ + wa—z;} . (6.18)

Being an homogeneous linear system, a non-trivial solution to (6.17) exists if the determinant

of the coeficients matrix is equal to zero
—~0® + ko + klo =0, (6.19)
which then provides the dispersion relation
o = K2 + k2. | (6.20)

This approximate form of the dispersion relation for disc oscillations was first obtained by
Okazaki et al. (1987) and was re-derived by several authors in more general situations (see
Nowak & Wagoner (1992), Ipser (1994), Silbergleit et al (2001)). The two terms in the
dispersion relation (6.20) are most easily interpreted when considered separately. To this
scope, consider a disc composed of collisionless particles and with specific angular momentum
increasing outward. A fluid element displaced perturbed infinitesimally from its equilibrium
orbit, while maintaining its angular momentum unchanged, will start oscillating in the radial
direction due to the restoring force resulting from rotation. These oscillations are called
inertial oscillations, and their frequency is the epicyclic frequency #r(@). In compressible
fluids, on the other hand, an additional restoring force due to pressure gradients is present,
which produces acoustic oscillations with frequency k2c2. Both these terms contribute to the
right hand side of the dispersion relation (6.20) and are collectively referred to as “inertial-
acoustic waves”. Novak & Wagoner (1991, 1992) have shown that there are two general

classes of solutions to the dispersion relation (6.20), namely “high” and “low” frequency
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modes. We will in general identify the high frequency (o2 > x2) modes with acoustic p-
modes (Kato, 1980) and the low frequency (0% < k2) ones with internal g-modes (Okazaki,
1987), although the dispersion relation for the latter is more complicated then (6.20) [see

Kato, 2001].

3 General Relativistic Discs

One of the most important differences between Newtonian and relativistic disc oscillations
is that General Relativity can trap normal modes of oscillations near the inner edge of an
accretion disc (see the pioneering paper of Kato & Fukue, 1980). The trapping is related
to the fact that, in relativistic discs, the radial distribution of the epicyclic frequency has a
maximum at a certain radius [cf. Eq. (6.37) below; Okazaki et al 1987]. After describing the
general physical setup, we will present in Section 3.2 the local approach to the perturbative
analysis, as done for Newtonian discs. This will allow us to derive a new relativistic dispersion
relation for a relativistic non Keplerian orbital motion. In Section 3.3, on the other hand, we
will also consider a global approach and discuss the numerical solution of a system of ODEs
in the perturbed quantities.

A comment about the Cowling approximation is also necessary at this point. The extension
of the Cowling approximation to the general relativistic case, in fact, is obtained by setting
all the metric perturbations to zero. Numerical studies by Lindblom & Splinter (1990) have
shown that this can accurately predict the frequencies of the higher order p-modes in the
context of non-rotating relativistic stellar models. Remarkably, for a fluid configuration in
which the self-gravity is neglected, like the one considered here, the Cowling approximation

is an exact description of the pulsations (Ipser & Lindblom, 1992).

3.1 Assumptions and Governing Equations

In order to make the comparison with the results presented in Chapter 5 more direct, we will
limit our attention to a Schwarzschild background spacetime. Moreover, since the quantities
in the discs considered here are characterized by a small dependence on the spherical angular
coordinate #, it is useful to expand the Kerr metric (with spin of the black hole set equal to
zero) around the equatorial plane and retain the resulting form at the zeroth-order in the
ratio (z/r), so as to obtain the Schwarzschild metric in cylindrical coordinates as (Novikov

& Thorne, 1973)
ds? = —e¥di? + M dw® + d2” + wldy?, (6.21)

where the potentials v and A are related to the gravitational mass M of the black hole by
€2 =1—2M/w = e~?*. The basic equations to be solved in order to construct equilibrium
models for perfect fluids are the continuity equation V,(pu®) = 0 and the conservation of

energy-momentum, VT = 0, where 7% are the components of the stress energy tensor,

as already defined in Chapter 5 [cf. eq. (5.1)]. Since we are dealing with a curved background
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spacetime, it is useful to introduce an orthonormal tetrad carried by the local static observer

and defined by the one-form with components
wh = e’dt, w” = Ndw, v =dz, w¥ = wdp. k (6.22)

In this frame, the components of the four velocity of the fluid are denoted by uft (with
©=t,,2¢), and the 3-velocity components are given by
: ut w(u)

P = = 1=, Z, 6.23
ut  wh(u) 4 ( )

In analogy to the Newtonian case presented in Section 2, we introduce the ’vertically in-
tegrated” quantities, such as pressure and density, in the same way as (6.2) and (6.3) and
assume that they obey a polytropic equation of state like (6.1). The equilibrium solution to
consider in the perturbative analysis is given by solving equation (5.3) of Chapter 5, whose

radial component we rewrite here as

Owp Ve — w?
e+p e w202’

(6.24)

However, since we want to deal with vertically integrated quantities, both the left and the
right hand side of equation (6.24) must be integrated in the direction perpendicular to the

equatorial plane, obtaining

/H Owp p /H u,wem’ — szdz
7 = — e
——He_“p g eQu__wQQQ
On P Ve — w?
E+P - (6.25)

where we have used the definition (6.2) and have taken advantage of the fact that the right
hand side of (6.24) is a function of the cylindrical radial coordinate only. Note also that the

vertically integrated energy density F has been defined analogously to (6.2), namely as

H

E E/ edz. (6.26)
—-H

Equation (6.25) is of course an approximation, but a rather convenient one when dealing

with discs confined in small angles around the equatorial plane. Note also that the rest mass

density of the disc can be defined as

Tout
M, = / 2rwiulwdo, (6.27)
T

Tin
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with 7y, and 7oy being the inner and the outer edge of the disc on the equatorial plane,
where the cylindrical and the spherical radial coordinates coincide®.

As done in the Newtonian case, the linear perturbation equations are obtained by expanding
the variables around their equilibrium values and by substituting them in the hydrodynamics
equations, while keeping the first order terms. However, in order to distinguish the local

analysis from the global one, we will temporarily assume the perturbation to have just

the harmonic time dependence, in the form given by 0P, vt~ exp (—iot). The resulting

perturbed equations can then be written as

0 = -iaEF_;3PQ + e”*)‘aw((SV@) + [21/@ + —;— - /21;27 + %} N acd
+io 2l Q50®, (6.28)
A
0 = ioe’ VT 42720 <1 +w Epfp> SV 4+ Ae™ 050, (6.29)
0 = —iodV?+ (Qw + %Q - 2u,w9> we VP, (6.30)

where Q = 0P/(E + P) and A = (u*)~2. Note that, according to our approach, we have

defined the averaged quantities 6V® and 6V as

H

. 1 .
V¥ = — ™ k¥
o7 | v¥dz, (6.31)
and
R 1 H
V¥ = — dv¥d .
5F | vPdz, (6.32)
respectively.

3.2 Local Analysis

The local analysis of the system (6.28)-(6.30) can be performed by reintroducing a radial

dependence of the perturbed quantities as 6P, SV ~ exp (ikw), where k(> 1) is the radial
wave number. Although simplified, the number of terms in (6.28)-(6.30) can be further
reduced and, in particular, the third and the fourth term can be neglected in the numerical
computations. The third term, in fact, is always much smaller than the second one, which
contains the radial derivative of the exponential term ~ exp (ikw), and is therefore o &k > 1.
Similarly, the fourth term can be discarded according to the following argument. The first

term is roughly 6P/(I'P) ~ Q/c?, where ¢, is the local sound speed, while the fourth one is

5Tn the following, we will denote the relevant radii of the disc models on the equatorial plane with the
usual spherical radial coordinate 7.
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~ (@Q)§v¥. The ratio of these two terms is then given by

[4th]
[1st]

A .
@ <5> O([typical velocity|?). (6.33)
While (0V/Q) is the ratio of two perturbed quantities, and is order of unity, the typical

velocity of our system can be estimated by considering the orbital velocity at the marginally
stable circular orbit, which is ~ 1/+/6, so that the ratio in (6.33) is much smaller than unity.

After re-defining 0U = i6V¥ and dW = 6V‘2’, the linearized perturbation equations in the

unknowns ¢U, ¢W and @ can again be written as an homogeneous linear system

§U
Mk, o) | W | =0,
Q

where the matrix M is a function of £ and 0. By imposing the determinant of M to be

zero, we can obtain the dispersion relation of the wave as

. P
o —oe” Kl S P> 20020 + @wQ 5 — 2wv x0) + € (1 — e * @Rk’ Erfp
whose non-trivial solution is
2w—-A)(1 _ o—2v 202
0% = kgcfe (= Ma @) + K2, (6.35)

1+r/(T-1)

The dispersion relation (6.35) represents the relativistic generalization of (6.20) in which the
epicyclic frequency &, is given by
P

K2 = 20020 + wQ 4 — 2wv 5 Q)e” (1 + o P) . (6.36)

A few comments should now be made about this expression. The first and most obvious one
is that it reduces to (6.18) in the Newtonian limit. Secondly, if the term involving pressure
gradients is neglected®, (6.36) reduces to the expression derived by Okazaki et al. (1987)

and valid for the keplerian motion in the Schwarzschild spacetime (in spherical coordinates)

6M\ 1
H’E,Kep = (1 - T) 3 (6.37)

Finally, it predicts a zero epicyclic frequency for a constant angular momentum orbital

SNote that this term can be written explicitely as the contribution of the curvature and of the orbital
motion only [cf. Eq. 6.25].
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motion. This was a trivial statement in the Newtonian framework, where (6.18) vanishes if

¢ = Qw? = const but not necessarily so in General Relativity. Furthermore, this is the case

only with a suitable definition of the specific angular momentum. Recalling the definition

given in Chapter 5, { = —ugy/u, we have
d? d 5 _o
- (w0
dw dw (e )
= we 20+ w4y — 2mr,50], (6.38)

which corresponds with the first term in the round bracket of (6.36) and vanishes if £ = const.
This is an important result, since it rules out the possibility that the modes discovered in
Chapter 5 could be epicyclic oscillations, and provides evidence (see Section 4) that they
should be associated to other restoring forces. It is worth underlying that the property (6.38)
provides an additional reason for considering the definition £ = —ug/u; as the most natural
generalization of the Newtonian angular momentum (see Table 1 of Kozlowski et al. (1978)

for a summary of the other properties satisfied by £).

3.3 Global Analysis

The global analysis consists in solving the system (6.28)-(6.30) as an eigenvalue problem,
treating the perturbed quantities as eigenfunctions and the unknown o as the eigenfrequency
(see Rodriguez et al. 2002). This was done numerically in three different situations. The
first one focuses on constant angular momentum discs, and will allow us to make a direct
comparison with the results obtained in Chapter 5. The second and the third situations refer
to non-constant angular momentum distributions. Since the numerical procedure is almost
the same in the three case, we will describe it briefly in what follows and devote Sections 4

and Section 5 to the results of the constant and non-constant angular momentum cases.

Boundary conditions

The set of equations (6.28)-(6.30) need to be solved after suitable boundary conditions are
imposed at the surface of the disc. In same way as done when considering oscillations in
stars, the guiding property to be exploited is that both the unperturbed and the perturbed
surface must have zero pressure. This leads us to the zero pressure boundary condition which

is widely used in stellar oscillation theory

Ap=0, or 6ép+ §j8jp =0, (6.39)
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where A denotes the Lagrangian perturbation and ¢ " is a displacement vector’ . Using the
relation between the perturbed 4-velocity ©® and the Lagrangian perturbation® of the metric
(see Friedman 1978),

1
Au® = iua‘uﬁu”’Agﬂw (6.40)

which in our case reduces to the relation,

; ,V_/\5Vﬁ’
5“ = E—“&“—, (6.41)
we can write the boundary condition as
oU P
Q-+ —U—eV—A = fP =0. (6.42)

This condition, which is a simple linear relation between @ and U, gives us the boundary

conditions to be imposed at the inner and outer radii of the disc.

Numerical method

The numerical method used to solve equations (6.28)-(6.30) with the boundary conditions
given by (6.42) is the same as adopted by Yoshida & Eriguchi (1995, 1997). The differ-
ential equations are discretized on a finite uniform grid and solved as a non-linear set of
equations, by a Newton-Raphson procedure. Figure 6.1 shows a schematic representation
of the numerical grid used in our computations. The N circles denote the N grid points
at which the perturbed variables §U and Q are assigned®. The edge filled circle at the left
is set at the inner edge of the disc, while the one on the right is placed at the outer edge
of the disc. The intermediate points, denoted as crosses in Figure 6.1, are those at which
the descretized perturbation equations are assigned. For example, the radial derivative of
@ at 71y is expressed as (Qir1 — Q;)/Ar, where Ar is the uniform radial stepsize. In
that position the value of @ is approximated as [Qi+1 + Q:i]/2. In total, the number of
unknowns are, (1(tor s 1)+ Lifor @) X N (grid number) + 1(for ), Whereas the number of the equations
are (1aryon) + Lieuter)) X (IN — 1)(grid number) 4 2(boundary conditions) + 1(normalization). The number of

unknowns is therefore equal to the number of equations, and the problem has a solution®.

"In the case of polytropic stars whose surface density vanishes, this condition is the same as dp = 0
(Tassoul, 1978).

8Note that in the Cowling approximation the Eulerian perturbation of the metric, dgas, is zero, but the
Lagrangian perturbation is generally nonzero. Agay = dgab + Legab = Valp + Vals.

9Most of the computations were performed using a radial grid of IV = 1000 points.

1ONote that the equation classified as “normalization” arises from the fact that we are dealing with a linear
system, and we have therefore the freedom of rescaling quantities by a constant value. For computational
purposes, this is done by imposing the initial guess eigenfunction @ to match a certain number (tipically
unity) at the right edge of the grid.
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boundary A boundary B
@ —x—Oo—x OO %——% *———@
4
U | ue) o
Q) | Q@) ()

baryon (N-1)
euler (N-1)

baryon (1) baryon (3)

euler (1) euler (3)

Figure 6.1: Numerical grid for the solution of the system(6.28)-(6.30). The grid covers the range
[rin — Tout] Of the disc extension on the equatorial plane. The circles denotes the grid points where
the variables §U and @ are given, while the crosses denote the points where the discretized ODEs
(denoted as “baryon” and “euler” for the continuity and the Euler equations, respectively) are solved
as algebraic equations.

Normalization

Since the spacetime is completely determined by the gravitational mass M of the black hole,
we can use M as a scaling factor in the normalization of the relevant quantites involved
in the computations. The normalized, dimensionless quantities (indicated as “barred”), are

defined as follows

M M
;o= f(M—CD—)-(GCZC)), (6.43)
E=i-}£—1M GMo) ™ 6.44
= 7 ® = ; (6.44)
(MmNt GMo\ 2 )
P = P E.— 'M@' 2 C, (6—15)
_ M\ _ G Mg 2(r-1) ) :
K = (Mg) -Mg)F-( = ) eR (6.46)

o = 5(_%)_1.(@]\4@)-1.07 ' | (6.47)

. (GMG) . (6.48)
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4 Constant angular momentum discs

If the specific angular momentum is constant, then, as discussed in Chapter 5, equilibrium

disc models can be obtained analytically after fixing five parameters. These are the mass of
the black hole M, the equation of state (K and T'), the potential barrier (AWj,) and the
(constant) angular momentum £. We here just underline that the expression (5.5) giving
the rest mass density inside the disc should be interpreted as a relation between integrated

quantities, with K and T" replacing the corresponding constants'! x and .

4.1 Perturbation equations

The assumption of £ =const. simplifies the perturbation equations considerably. In fact,

according to (6.38), the second term on the right hand side of (6.30) vanishes, thus yielding

§V? = 0. As a result, the eigenfunctions to compute reduce to @ and ¢6U, which will be

calculated through the equations (6.28) and (6.29). These equations can also be rewritten
as

P dsU I'P 2 A P
v—A v—2A oo il U =
W P [E+P<y”+r A)+E+P]5 0 (6.49)

aQ

oS + Ae~v
dr

0. (6.50)

4.2 Results

For comparison with the results obtained in Chapter 5, we have solved numerically equations
(6.49) and (6.50) considering a disc model very similar to the model (a) reported in Table 5.1
of that Chapter. In particular, we have taken £ = 3.8, I' = 4/3, K = 0.01635. However,
since the marginally stable case makes the computation of the eigenfunctions rather difficult
at the boundaries of the radial grid, where they tend to diverge, we have chosen an initial
configuration slightly below the marginally stable one, namely with AW, = —107°. The
relevant parameters of the resulting disc have been reported in Table 6.1 and should be
compared with those of model (a) in Table 5.1.

In Fig 6.2 we have plotted the eigenfunctions @ and ¢U associated to the fundamental mode
and to the first three overtones (ol, 02, 03). The corresponding eigenfrequencies are listed
in Table 6.2, where we have included the frequencies up to the fifth overtone. Absolute
numbers are not important in the present context, and only the ratios of the overtones to
the fundamental frequency are meaningful.

Remarkalby, the computed frequencies are accurately in the ratio 2 : 3 :4:5:.... Thisis the

case for the lowest order modes, but does not hold as the order of the mode!? (which coincides

11 A ttention should be paid not to confuse the polytropic constant x used in Chapter 5 with the epicyclic
frequency kr.

2Note that the number of nodes of the eigenfunction @ is the number of nodes of the eigenfunction §U
increased by omne.
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My /JV[ 14 Tin Tout Teusp Teentre AWin Ycentre
(cgs)

1.0 38 4611 15880 4.576 8.352 -1.x107° 1.16x10%°

Table 6.1: Main properties of the constant angular momentum disc model considered. From left
to right the columns report: the mass ratio My/M, the specific angular momentum (in normalized
units), the inner and the outer radii of the disc 7in and Tous, the radial position of the cusp, Feusp,
the radial position of the centre, Feentre, the potential gap and the surface density at the centre of the
disc. This model should be compared with model (a) in Table 5.1 of Chapter 5.

f 01 02 03 04 05
o 0.01777 0.02627 0.03377 0.04061 0.04684 0.05246
nodes of 6U 0 1 2 3 4 5

Table 6.2: Eigenfrequencies of the fundamental (f) mode, and of the first five overtones (o) of the
constant angular momentum disc described in Table 6.1.

with the number of nodes of §U) is increased. As found in the local analysis of Section 3.2,
the epicyclic frequency of constant angular momentum discs is zero, making the second term
on the right hand side of equation (6.35) vanish. As a result, the modes computed here have
pressure as the only restoring force and they are the analogous of p-modes (acoustic modes)
in stellar oscillations. This interpretation is also supported by the fact that, according to
(6.35) in the absence of inertial oscillations, the fundamental frequency in Table 6.2 is roughly
given by the sound crossing frequency of the disc,

f~ —_———zﬁ_é——s—~ ~ 0.0158, (6.51)

(Fout — Tin) X

where we have used the sound velocity & at the centre of the disc.
In Chapter 5 we showed that the introduction of a particular perturbation in the initial
model, namely the introduction of a parametrised radial velocity in addition to the pure
orbital motion, was responsible for the appearance of a regular oscillating behaviour in all
the fluid variables, with power spectra showing a fundamental mode and a series of overtones
intheratiol :2:3:....
We have also anticipated that the power spectrum of the Lo norm'? of the rest mass density
seemed to show peaks in the ratio 2 : 3 : 4 : 5 : .... A possible explanation for these
differences in the power spectra could be associated to the fact that the initial perturbation
used in Chapter 5 may not be able to excite significantly the oscillations in the fractional
frequencies. As a result, the overtones are very hard to detect, and can be revealed only in
the power spectrum of particularly sensitive quantities, such as |[p|l2.

For this reason, we have performed an additional series of simulations on the model (a) of

13This quantity is more suitable than the mass accretion rate for putting into evidence subtle details in the
hydrodynamical response of the disc, partly because it is a more fundamental quantity and partly because it
is a natural indicator for monitoring the global behaviour of a physical system.
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Figure 6.2: Figenfunctions @ and 6U as a function of the radial coordinate for a constant angular
momentum disc. Only the fundamental mode (f) and the first three overtones, denoted by o1, 09
and o3, have been reported. The order of the mode is given by the number of nodes of 6U. The
normalization of the eigenfunctions is arbitrary.



5 Non-constant angular momentum discs 113

ll‘ll||illi!lill(l‘lllllllll!

10
Michel's pert.

228 o,

I|fflll‘
F\\Ill‘l

T
|

456

K II)!III
] t||!|||

o
iR

power spectrum of ||p[[?

IIIIIIII
I

T

|lll|tll|‘llll‘1|)|‘i|l||l¥¥l|l||l[

01
100 200 300 400 500 600 700 800
v[Hz]

Figure 6.3: Power spectrum of the Ly norm of the rest mass density for the disc model (a) in Table
1 of Chapter 5. The two spectra differ for the initial perturbations used. Solid line uses the same
perturbation in the radial velocity described in Section 4.1 of Chapter 5. The dotted line uses as
initial perturbation the computed eigenfunction of o, which excites the first fractional overtone. The
spectra have been rescaled in order to match the power of the fundamental frequency.

Chapter 5, by using as initial perturbations in the radial velocity and in the rest mass density
the fundamental modes (and its overtones) of the eigenfunctions 6U and () calculated here.
Figure 6.3, which reports still preliminary results, shows the power spectrum of ||pf|2 for
different initial perturbations and suggests that by choosing suitable initial conditions it is

possible to excite the overtones of the system.

5 Non-constant angular momentum discs

Constant angular momentum discs are rather poor approximations to realistic discs and
some of the properties valid for the first ones may no longer be true for the second ones.
For this reason, it is important to extend our mode analysis also to the case of discs with
non-constant angular momentum. This will allow us to decide whether the nature of the
oscillations described in Chapter 5 are just peculiar of constant angular momentum discs, or

the manifestation of a more general behaviour.

5.1 Equilibrium model

To construct an equilibrium model, we need to specify the specific angular momentum dis-
tribution ¢ (or, equivalently, the angular frequency ). This is, at least to some degree,

an arbitrary choice. We just remember that the dynamical stability against axisymmetric
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M, d / M Ty Tout Teentre K Ecentre
(cgs)
linear 1.0 6.5 13.88 9.217 0.004913 1.6x10%°

power-law 1.0 6.5 24.75 12.78 0.008479 5.3x10%°

Table 6.3: Main properties of the two non constant angular momentum disc models considered.
From left to right the columns report: the type of angular momentum distribution, the mass ratio
My /M, the inner and the outer radii of the disc 7, and 7oy, the radial position of the centre, Feentre,
the constant K in the equation of state and the surface density at the centre of the disc.

perturbation only requires that dé/dr > 0 (Rayleigh’s criterion'*). Smooth particle hydro-
dynamics (SPH) simulations of disc formation performed by Davies et al (1994) have shown
that the final configuration consists of a core surrounded by a disc whose angular momentum
distribution is close to that of a power law with index 0.2. In our computations we have
therefore adopted two different simple profiles for the specific angular momentum, namely a

“linear” one

£ = or+p, (6.52)

and a “power law” one
P - k(L) (6.5

where o, B, i, and a are free parameters. For the “linear” case, we have chosen o = 0.03
and B = 3.6, whereas in the “power-law” case we have set fi, = 1.004(x, where i is the
specific angular momentum at the inner edge of a Keplerian disc, and a = 0.2. Note that

the “linear” case considered is only slightly different from the constant angular momentum
case.
In order to obtain the equilibrium models we need to integrate numerically equation (5.3)

of Chapter 5 for the given distribution of 2. The integration is performed along the radial
direction only, treating all quantities as vertically integrated ones as explained in Section 3.1.
The inner edge of the disc, which is still a free parameter, has been placed at 7i, = 6.5 on the
equatorial plane. The relevant parameters of the two disc models considered are reported in
Table 6.3.

5.2 Results

Adopting the same numerical technique used for the constant angular momentum disc model,

we have solved numerically the full system of equations (6.28)-(6.30), that we re-write here

1 Note that the £ =const. case is marginally stable according to this criterion.
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“in a more compact form as

0 = oQ+e

L.\ P d(SU+€l,_A rr 5 +1_A,m . P o
E+ P dw E+P W A E+ P

we’ . Py

m U (6.54)
dQ P
i —U—\ —A @
e ] —_ 2 : .
0 ooU + Ae 7 e Q(l—i—wE_l_P)(SW (6.55)
2
0 = odW + (Qw +=0- 2%{2) we U, (6.56)

Note that the epicyclic frequency defined by (6.36) does not vanish in this case and a non-
zero contribution to the dispersion relation (6.35) is therefore expected. Figures 6.4 shows
the surface density distribution (in normalized units) and the radial profile of the epicyclic
frequency for the two different disc models.

Tn Table 6.4 we have reported the eigenfrequencies for both the angular momentum distri-
butions, while the eigenfunctions @, U and W have been plotted in Figures 6.5 - 6.10.
Interestingly, the main effect of non-constant angular momentum distributions, namely of
having non-zero epicyclic frequencies, appear clearly in the results obtained. Firstly, the
fundamental eigenfrquencies of both models are no longer in good agreement with the one

estimated by (6.51) as sonic frequencies. In fact, from (6.51) we would obtain a frequency

1.39 x 102 for “linear” case and a frequency 6.16 x 1072 for the “power-law” case. However,
if we take into account the existence of epicyclic frequency, the estimation improves. From

(6.20) we define an “effective sound speed”, ¢, as'®

If we use ¢, instead of ¢, for the estimation of frequency in (6.51), we get 0.0172 for the “lin-
ear” and 0.0117 for the “power-law” case, respectively. The numbers obtained are therefore
closer to the corresponding fundamental frequencies reported in Table 6.4.

Secondly, by comparing the eigenfunctions for the three different distributions of angular
momentum (Figure 6.2 and Figures 6.5 to 6.10), we notice that for the “power-law” case
the eigenfunctions go to nearly zero at the inner edge of the disc, while, for two other cases,
they do not. This can be understood by comparing the behavior of the epicyclic frequency
curves in the different cases. The lower panel of Figure 6.4 shows that in the inner part of
the disc the epicyclic frequency for the “power-law” case is higher than the corresponding
fundamental frecquency (see Table 6.4). Under these circumstances, as seen from (6.20), the
wave amplitude goes to zero in the inner part of the disc, which becomes an evanescent

region of the wave. In another words, the centrifugal barrier produced by rotation makes the

15\We here neglect the correction of General Relativity for a rough estimation.
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Figure 6.4: Surface density distribution (upper panel) and epicyclic frequency (lower panel), for
the disc model with a “linear” distribution of the specific angular momentum (solid line), and with
a “power-law” distribution of the angular momentum (dotted line).

epicyclic frequency so high that the wave is reflected back. On the other hand, Figure 6.4
and Table 6.4 show that the fundamental frequency is everywhere higher than the epicyclic
frequency for the “linear” distribution of angular momentum. In this case, therefore, there
is no evanescent region inside the disc.

Overall, our results confirm what found in the previous Section for the constant angular
momentum disc, namely the existence of a series of oscillating modes of the disc. It should
be underlined that, for non constant distributions of the angular momentum, the computed
frequencies contain the contribution of both the acoustic and the inertial modes, thus pro-
ducing frequencies ratios deviating from the simple 2 : 3 : 4 : 5... relation. The important
result, however, is that the oscillations discovered in Chapter 5 belong to the fundamental
modes of the disc, and they can be calculated in the correct ratio through a perturbative
analysis like the one presented here. Further investigations are needed in order to explore
in deeper details these modes for a wide class of initial perturbations. In particular, a fun-
damental step forward along this direction will be represented by performing a perturbative
analysis in the full two dimensional case, by dropping all the approximations related two the

simplified “vertically integrated” approach presented in this Chapter.
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I 01 09 03 04 o5
linear 0.01882 0.02686 0.03462 0.04229 0.04995 0.05760
power-law  0.01078 0.01507 0.01912  0.02296 0.02660 0.03005
nodes of dU 0 1 2 3 4 5

Table 6.4: Eigenfrequencies & of the fundamental (f) mode, and of the first five overtones (o, ) of the
two non constant angular momentum disc models described in Table 6.3. They should be compared
with the eigenfrequencies for the constant angular momentum distribution reported in Table 6.2.
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Figure 6.5: Eigenfunctions @ as a function of the radial coordinate for a disc with a linear dis-
tribution of the angular momentum. Only the fundamental mode (f) and the first three overtones,
denoted by o1, 02 and o3, have been reported.
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Figure 6.6: Eigenfunctions 6U as a function of the radial coordinate for a disc with a linear dis-

tribution of the angular momentum. Only the fundamental mode (f) and the first three overtones,
denoted by o1, 02 and o3, have been reported.
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Figure 6.7:  Eigenfunctions dW as a function of the radial coordinate for a disc with a linear

distribution of the angular momentum. Only the fundamental mode (f) and the first three overtones,
denoted by o3, 02 and o3, have been reported.
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Figure 6.8: Eigenfunctions @ as a function of the radial coordinate for a disc with a “power-law”

distribution of the angular momentum. Only the fundamental mode (f) and the first three overtones,
denoted by o1, 02 and o3, have been reported.
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Figure 6.9: Eigenfunctions 6U as a function of the radial coordinate for a disc with a “power-law”

distribution of the angular momentum. Only the fundamental mode (f) and the first three overtones,
denoted by o1, 02 and o3, have been reported.
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Figure 6.10: Eigenfunctions 6W as a function of the radial coordinate for a disc with a “power-law”
distribution of the angular momentum. Only the fundamental mode (f) and the first three overtones,

denoted by oy, 0o and o3, have been reported.



Chapter 7

Dissipative Hydrodynamics

1 Introduction

Dissipative fluid dynamical processes are ubiquitous in astrophysics. They might be due, for
instance, to non ideal interaction between gas particles, to turbulent fluid motion in flows
with very high Reynolds number, or to collective processes in the collisionless regime.
Modelling dissipative processes like these, with a non-negative rate of entropy production,
requires non-equilibrium thermodynamics, and the standard theory for treating them is Clas-
sical Irreversible Thermodynamics. This theory is based on two fundamental assumptions.
The first one is that the local and instantaneous relations between the thermal and mechan-
ical properties of a physical system are the same as for a system in equilibrium! (hypothesis
of local thermodynamical equilibrium). The second one is that the constitutive relations be-
tween thermodynamic fluzes and thermodynamic forces are always linear (see the box below
for the definition of these concepts). The physical description resulting from these assump-
tions has been undoubtedly useful, and has led to a large production of scientific work in
many different areas. The Fourier and Navier-Stokes equations, for instance, are derived
within this framework and they are currently applied in many fields of astrophysics.
However, Classical Irreversible Thermodynamics contains several undesirable features. First
of all, the hypothesis of local thermodynamical equilibrium is too restrictive and, very often,
other variables, not found in equilibrium, do influence the thermodynamic equations of
irreversible processes. Under these circumstances, as shown by the kinetic theory of gases,
the constitutive relations involve evolutionary laws for the fluxes, and the second hypothesis

of classical irreversible thermodynamics is also dropped. Moreover, the classical Fourier law
of heat conduction leads to a partial differential parabolic equation® for the temperature

which implies the propagation of disturbances at an infinite speed.

The concepts of thermodynamic equilibrium will be made rigorous in Section 6.1 of this Chapter.
*\We recall here that a linear second-order differential equation in two independent variables o and y of
the form 9 , )
u % o%u o

u ou
Y +bm+€5§2—+d5;+6—@+fu—~g, (71)

is said to be parabolic if b* — dac = 0. From a physical point of view parabolic equations describe diffusive
phenomena, and a relevant axtrophysical example will be discussed in detail in Chapter 8.

a
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Constitutive equations:
In thermodynamics the local production rate of entropy S

dsS <
- = > T, (7.2)

is given by the products of two factors, called the thermodynamic flux J, and the
thermodynamic force X, respectively. The fluxes are unknown quantities, unlike
the forces which are known functions of the state variables and their gradients. In
general, the flux may depend on all of the thermodynamic forces and on the state
variables T' (temperature) and p (pressure)

JU=JHX, Xy X Top)- (7.3)

Relations like (7.3) are called constitutive equations and they express specific prop-
erties of the physical system in an irreversible process. Classical Irreversible Ther-
modynamics always assumes linear relations between fluxes and forces. An example
is given by the heat flux ¢, which is connected to its associated thermodynamic force

VT~! by ¢ = Ly VT . The scalar phenomenological coefficient Lyq is then related
to the transport coefficient of thermal conductivity A by Lgq = A\T?, which leads to

the Fourier law: ¢ = —AVT.

All of these drawbacks, which could still be acceptable in a Newtonian theory, become
even intolerable when the theory is extended to the relativistic regime. In the relativistic
theory of non-ideal hydrodynamics first developed by Eckart (1940), for instance, dissipative
fluctuations propagate at an infinite speed, there are short wavelength secular instabilities
appearing and there is not a well-posed initial value problem for rotating fluid configurations
(see Hiscock & Lindblom, 1983). These unattractive circumstances are ultimately due to the
assumption that irreversible processes can be described as a sequence of local equilibrium
states alone, a fact which is then reflected in the parabolic formulation of the Navier-Stokes
equations.

To overcome these difficulties, several causal type theories have been introduced, both New-
tonian and relativistic. The central idea of these theories is to eztend the space of variables
of conventional theories by incorporating the dissipative quantities (heat flux, shear and bulk
stresses, etc.), which are therefore treated as the conserved variables of the ideal fluid, thus
restoring causality and stability under a wide range of conditions. The resulting equations,
in fact, being hyperbolic in nature, can be interpreted as evolution equations for the dissi-
pative variables as they describe how the “extended” fluxes evolve from an initial arbitrary
state to a final steady one. There is, of course, a price to pay in this extension, consisting in
a more involved theory from a mathematical point of view, with a large number of variables
and parameters. Moreover, no general criteria exists for deriving the evolution equations of
the dissipative fluxes, except the restriction imposed by the second law of thermodynamics.
A non-relativistic extended theory was first proposed by Miiller (1967) and was later general-

ized to the relativistic case by Israel (1976) and Stewart (1977). The usual name for referring
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to these approaches is Causal Thermodynamics, or Rational Extended Thermodynamics® .

We have already shown in Chapter 2 of this Thesis that the basic equations of hy-

dro/thermodynamics can be written as balance laws over a control volume dV’

%/UdVA—/%F%Vz /SCM (7.4)

where U is the vector of conserved quantities, F are the fluxes and S are the source terms.
In ordinary thermodynamics the state vector U has five components, i.e. the densities of
rest-mass, momentum and energy. If the source terms S vanish the balance equations are
in fact conservation laws. Even under these circumstances, however, the system of ordinary
thermodynamics is not closed, because specific relations must be specified relating the fluxes
T to the state U. Such relations are often called phenomenological equations, because
originally they were empirical laws based on observations. The simplest example of such
relations is perhaps the thermal equation of state, which relates the pressure at one point
and time to the densities of mass and energy at that point and time. When viscosity and
heat conduction are ignored, an hyperbolic system is derived which is given by the Euler
equations. In a more realistic description of a fluid the equations connecting U to S are

given by the equations of Navier-Stokes for the viscous stresses and by the Fourier law for

the heat flux. These are non local empirical laws, in the sense that the fluxes F' at a given
point do not depend only on the state U at that point, but also on the gradients of U. This
additional dependence gives the Navier-Stokes-Fourier system a parabolic structure, which
has been satisfactory in a large number of different applications. In the presence of steep
gradient or rapid changes, however, this description shows the shortcoming mentioned above
and Extended Thermodynamics becomes necessary.

In Rational Extended Thermodynamics, the state U is extended to include further densities,
and the closure of the system is achieved by adopting constitutive equations that are local
and instantaneous, so that F® and S at any point and time depend only on the state U at

that point and time. Therefore, the local forms of the balance equations

ou | OF

5 + i , with F'=F(U) and S=S8(U) (7.5)

provide a system of hyperbolic partial differential equations. This formulation is particularly
attractive both for physicists, since it avoids action at a distance and ensures finite speed
of propagation of the signals, and for mathematicians, because 1t guarantees well-posedness
of local Cauchy problem. The initial works on extended thermodynamics (I. Miiller, 1967)

were motivated by the paradox of thermal waves with infinite speed (see Section 2) which

3Note that the first improvement of Classical Irreversible Thermodynamics was provided by Coleman
(1964) with a theory called Rational Thermodynamics, which contained the idea of treating entropy and
temperature as primitive concepts without a precise physical interpretation. Rational Extended Thermody-
namics can be considered as a further improvement of this approach. The name “Causal Thermodynamics”,

or “causal type theories” is less specific than Rational Extended Thermodynamics, but is often used as a
synonym.
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was then solved by allowing the entropy to depend on the heat flux and on the viscous
stress (see Section 5). Nowdays, the motivations for pursuing this field of research can be
found in the large flexibility of the new theory, which has acquired a strong predictive power
in experiments of light scattering, sound dispersion, shock wave structure, non equilibrium
radiation, etc.

Even before Extended Thermodynamics received mathematical support from the theory of
hyperbolic systems, it benefitted from the contact with the kinetic theory of gases, partic-
ularly with the “moment method” of Grad* (Grad, 1949, 1958). Kinetic theory, in fact,
played a fundamental role in recognizing that the non-convective entropy flux s is not uni-
versally related to the heat flux ¢ by s = ¢/T', but can also depend on the dissipative fluxes®.
This contact between thermodynamics and kinetic theory became progressively closer as
BExtended Thermodynamics proceeded to include more and more variables (see Section 6).
This Chapter is just a starting point for possible future research and developments. In
particular, we will try to motivate the application of the new theory to astrophysics (Sec-
tion 2); then we will follow the fundamental steps which led to the birth of the extended
theory, following more or less the order in which they were historically developed. (Section 3
to 5). Finally we will mention the connection with Kinetic theory in Section 6 and we will

investigate the possibility of a numerical counterpart of these new developments in Section 7.

2 Do we need Rational Extended Thermodynamics in Astro-
physics?

A question which arises naturally is whether there are astrophysical contexts in which an
hyperbolic formulation of the equations for dissipative relativistic fluids is needed. A distinc-
tive feature of Extended Thermodynamics as comparéd with “Eckart-type theories” (Eckart
1940) is that it naturally recognises the existence of the relaxation time 7 of the correspond-
ing dissipative process, namely the tinie taken by the system to return spontaneously to
its steady state. It is precisely before the establishment of the steady regime that hyper-
bolic and parabolic-type theories differ most significantly. Therefore, if one wishes to study
a dissipative process for times shorter than 7, it is fundamental to assume an “hyperbolic
viewpoint”, whereas for times larger than 7 it may be reasonable to retain a parabolic one.
Before referring explicitly to a precise astrophysical example, it is worth mentioning the well

known case of the classical Fourier law for the heat flux ¢’ in the non relativistic regime

4In the Grad model, proposed to solve the Boltzmann equation in non-equilibrium situations, the non-
equilibrium distribution function f is replaced by its higher order moments.

5The first successful application of extended thermodynamics through kinetic theory of gases of photons
is due to Struchtrup (1996, 1997).
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where 7' is the temperature and X is the heat conductivity. This equation leads to a diffusion

equation for the temperature of the type

%% = VT, (7.7)
where x = M\/pcp, and ¢, are the diffusivity and the specific heat at constant pressure,
respectively. Equation (7.7) is of parabolic type and it implies that the heat flux vanishes
simultaneously with the disappearance of a temperature gradient. On the contrary, we
expect that if a thermodynamic force is switched off, a relaxation time will lapse before the
corresponding thermodynamic flux dies away. In our example, if VT is set to 0 at time t = 0

when the heat flux is gy, we expect a decay law of the type

7= fhexp (—3). (7.8)

T

In order to account for this relaxational feature, Cattaneo (1948) modified the Fourier law

by using the kinetic theory of gases, obtaining

07 . e
T, = ~AVT. (7.9)

This expression leads to an hyperbolic equation for the temperature (the “telegraph” equa-
tion)

o*T  or 5
7’—5%—2—‘!—"6—{'—XV T——O, (710)

which describes the propagation of a thermal wave in the direction &
T o exp[i(d - T — wt)], (7.11)

where & is the wave number and w is the frequency of the signal. The dispersion relation

resulting from (7.11) is

o? = 2 4w, (7.12)

so that the phase velocity is

w _[ 2xw }1/2

Re(o) 1w+ V1 + 1202 (7.13)

Uph
At low frequencies, 7w < 1, the phase velocity of the hyperbolic theory (7.13) reduces to
vpn — +/2x/7, which gives the divergent speed of the Fourier law assuming 7 = 0. However,

outside that regime the two expressions differ significantly from one another, and in the high

frequency limit, 7w > 1, (7.13) reduces to vyp, = +/x/7, which is the propagation speed of
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thermal pulses, also known as the second sound. This fact was first discovered experimentally
by Peshkov (1944) in Helium IT, and later confirmed in solids by a number of experimentalists
(see, among the others, Guyer & Krumhansl, 1964). Closely connected with this discussion
is the response of a material sample to an instantaneous heat pulse. Also in this case it is
possible to show that the introduction of a relaxation term removes the problem of infinite
propagation speeds.

Coming back to astrophysics, it is clear that, whenever the thermodynamic time scales
become comparable to the dynamical time scales, the assumption of local thermodynamic
equilibrium is not justified and parabolic theories are bound to fail. Astrophysical examples
where the principles of Extended Thermodynamics has been successfully applied include
the gravitational collapse of stars (Di Prisco 1996; Herrera & Martinez, 1998), the processes
taking place in the innermost part of accretion discs around black holes (Peitz & Appl 1997),
and the analysis of dissipative effects in several cosmological scenarios (Pavon et al, 1991;
Romano & Pavon, 1993; Maartens & Triginer, 1997; Maartens & Triginer 2000). In the

following we will just briefly mention the first of these examples.

2.1 Thermal Relaxation in Gravitational Collapse

The thermal relaxation time in the gravitational collapse of a luid sphere has usually been
ignored, arguing that it is very small compared with the typical timescales of collapse for
gravitating systems. The former is in fact of the order of 7 ~ 107 '!s for phonon-electron
interactions at room temperature (Peirls, 1956), while the latter can be of the order of 107 %s.
However, there are situations in which 7 cannot be neglected compared with the gravitational
collapse time, and this typically happens in the cores of evolved stars, where the quantum
cells of phase space are filled-up and the electron mean free path increases thus increasing
7. An order of magnitude estimate for the relaxation time of neutron star matter can be
made following the argument presented in the previous Section. If the thermal conductivity is
dominated by electrons, then, as reported by Flowers & Itoh (1981), the thermal conductivity

) and the relaxation time 7 can be estimated as

108K
A~ 10% (1014;111%3) ( OT ) erg s lem 'K (7.14)
and
1020
TR (7.15)
Tzvg‘h

respectively, where all quantities are expressed in cgs units. If we now take some standard

values for neutron star geometry and physics, namely a radius R = 10°cm, p = 10*g cm ™2,

1

Uph = 10%cm s~*, corresponding to the velocity of sound in superfluid helium, and a temper-
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ature T = 10°K, we obtain

7~ 10%s. (7.16)

This very rough estimate indicates that the pre-relaxation processes are likely to play a
fundamental role in the thermal evolution of very compact objects, making the need for
hyperbolic theories of dissipation inescapable. A few years ago, Di Prisco et al. (1996) and
Herrera & Martinez (1998) showed that the outcome of the stellar collapse depends strongly
on the value of 7. In particular, the fluid sphere is seen to bounce if 7 is shorter than a critical
value. Furthermore, phenomena before complete relaxation may considerably influence the
evolution of the system after relaxation. In particular, in spherically symmetric stars with
a radial heat flow, the temperature gradient, and hence the luminosity, is highly dependent

on the product of the relaxation time and the period of oscillation of the star (Herrera &
Santos, 1997).

3 Dissipative Fluids

The general stress-energy tensor for non-ideal fluids takes the form (see Landau & Lifshitz,
1987)
TH = eulv” + (p + IA* + ¢"u” + ¢"u* + o, (7.17)

Before commenting on all of the terms in (7.17), it is important to address the issue of the
definition of the four-velocity for a dissipative fluid. In relativistic mechanics, in fact, an
energy flux involves a mass flux. However, if there is a heat flux, it is no longer possible
to define the four velocity of the fluid in terms of the mass flux density. Nevertheless, we
can still define the velocity by the condition that, in the rest frame of any fluid element, the
momentum is zero and its energy can be expressed by the other thermodynamic quantities
as done in the absence of dissipative processes. This corresponds to selecting an average
velocity such that the particle flux in the local rest frame of the fluid element vanishes [so
called “Eckart-frame description”]. In (7.17) it is implicitly assumed that the state of the
fluid is close to a fictitious local thermodynamic equilibrium state, characterized by the local
equilibrium scalars n, e, p, s and T, representiﬁg the baryon number density, the energy
density, the specific entropy and the temperature, respectively. In the rest frame of the fluid
element, the four velocity is such that the number and energy densities coincide with the
local equilibrium values, and only the pressure in general deviates from it, by the bulk viscous
pressure term II. The other two dissipative terms are the heat flux ¢ and the anisotropic
stress tensor 7. Collectively, II, ¢* and 7#" are the thermodynamic fluxes and they account

for the deviation of the fluid from an ideal fluid. Overall, these terms are formally defined
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¢ = =Ty, (7.18)

P+ o = hWJTLW’ (719)
1

™ = RLATTE - g(p + A, _ (7.20)

where h*¥ is the usual projection tensor on the three dimensional space orthogonal to u*.
In irreversible thermodynamics, the entropy is no longer conserved, but grows according to
the second law of thermodynamics

V,S* >0, (7.21)

implying that the entropy flux S# has a dissipative vector-value contribution RF* in addition

to the equilibrium values S* = snu#, namely

RH
St = snut + —. (7.22)
T
Note that the specific entropy s remains related to the other thermodynamic scalars by the

Gibbs equation

Tds = d (%) +p G) : (7.23)

which can be adopted as a definition of the temperature T'. The dissipative part R* in (7.22)
is assumed to be a function of the thermodynamic fluxes which vanish in equilibrium. Clas-
sical Irreversible Thermodynamics and Rational Extended Thermodynamics differ precisely
in the form of the function R¥, as we will show in Section 4 and Section 5.

As a first step, we need to write down the equations of continuity

Vu(nut) =0, (7.24)
and the equation of energy-momentum conservation

VvV, T* =0, (7.25)

resulting from the stress energy tensor (7.17). The first one does not pose any particular

problem and can be rewritten as
n+0n =0, (7.26)

where we have denoted the total derivative u#V, of a given quantity f as f= utV, f [see

below for the definition of ©]. On the other hand, (7.25) requires more involved calculations,
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leading to the following equations for energy and momentum conservation
é+ O(e+p+ 1)+ 2qua* + D¥qy + 70 =0 (7.27)
(e +p+May, + Dylp + 1) + DYy + a”mp + hyay + <§@hw + o + wW> q” = 0.
(7.28)

In (7.26), (7.27) and (7.28) we can recognize the fundamental quantities which are usually
introduced in hydrodynamics. In particular, o is the four-acceleration, ©® = V,u# is the
volumetric expansion, accounting for shape preserving volume changes, o, = V(,u,) is the

symmetric, tracefree shear tensor, w = hghf,vhue] is the antisymmetric vorticity tensor, and

D,q, = h}hEV.q. is the covariant spatial derivative.
H 20 R

4 Classical Irreversible Thermodynamics

Classical Irreversible Thermodynamics assumes a linear dependence of R* on the thermody-
namic fluxes. The only such vector that can be built from (IT, ¢*, 7#") and the four velocity
ut is given by

RF = fTIu* + gg¢*, (7.29)

where f and g are thermodynamic functions of n and e. However, since the entropy density

(—S¥u,) must have a maximum in equilibrium, i.e.

0
(=M -
i (—SHu,,) . 0, (7.30)
it follows that f = 0. Moreover, in the rest frame of the fluid ¢*/T = (0, ¢/T'), which is the
entropy flux due to the heat flow only, meaning that we also have g = 1. As a result, (7.22)

takes the form

qu
St = Snut + T (7.31)

Using the Gibbs equation (7.23), the continuity equation of particle conservation (7.26) and

the energy conservation equation (7.27), the entropy generation rate can be written as
TV,S" = -0l — (D, InT + a,)q" — o (7.32)

If we require this expression to satisfy the entropy condition (7.21), the simplest relation to

impose between the thermodynamic fluxes and the thermodynamic forces ©, D, InT + a,,
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and oy, is still linear and is given by

n = —¢e (7.33)
gy = —AT(D,InT +a,) (7.34)
’n-#y - '"2770_/'“/, (735)

where the non-negative transport coefficients ¢, A and 7 are the bulk viscosity, the thermal
conductivity and the shear viscosity, respectively. Equations (7.33)-(7.35) are the constitutive
equations in the standard Eckart theory of relativistic irreversible thermodynamics (Eckart,
1940). Once solved with (7.27) and (7.28), these equations provide a complete set for the
solution of the relativistic hydrodynamics equations of dissipative fluids. Remarkably, (7.34)
implies the existence of a heat flux as a consequence of acceleration, even in the absence of
a temperature gradient.

Most of the applications of irreversible thermodynamics in relativity have used this original
formulation, but, as can be appreciated from the algebraic nature of the constitutive equa-
tions (7.33)-(7.35), the thermodynamic fluxes react instantaneously to the corresponding
thermodynamic forces, thus causing the propagation of signals at infinite speed, as shown in
Section 2 for the Newtonian Fourier equation (7.34). Motivated by this noncausal propaga-
tion of Auctuations in the Eckart theory, Miiller (1966) and Israel (1976) sought to generalize
the theory in order to overcome this difficulty. Their proposal aimed at changing the expres-

sion for the entropy current, as will be explained in the following Section.

5 Extended Thermodynamics

As argued by Miiller (1967) and Israel (1976), one might expect the physical density of
entropy to differ from sn by terms which go to zero for a fluid in an equilibrium state, i.e.
by the terms II, ¢#, #**. This intuition is supported by kinetic theory, which can motivate
R* being second order in the thermodynamic fluxes. The truncation at first order, in fact,
removes those terms which are necessary for both causality and stability, the two major
drawbacks of Classical Irreversible Thermodynamics. The most general algebraic form for
R* that is at most second order in the fluxes is (Hiscock & Lindblom, 1983)
ut opllght g

m
SH = snu + q? — (BoIT? + Brquq” + ngwﬂr‘“’)ﬁ + T + T (7.36)

The new thermodynamic coefficients £y, f1 and B2 model the scalar, vector and tensor
dissipative contributions to the entropy density, respectively; ag and a1, on the other hand,
model changes in the entropy current due to possible viscous-heat flux coupling. With the

new expression (7.36) the entropy density measured in the local rest frame then becomes

1
—S%y = sn — 5—2;(,80112 + Brgug” + Pamp ), (7.37)
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which is independent of oy and ;. In the following we will neglect the coupling between the
heat flux and viscosity, corresponding to set g = a1 = 0. Within this approximation, whose
validity is strongly dependent on the particular physical conditions examined, the entropy
generation rate associated to (7.36) follows from the continuity equation (7.26), the Gibbs
equation (7.23) and from (7.27)-(7.28), and is given by

TVyS® = -1 [®+5OH+ =TV, ('2? ”) H]
y oo, 1 Pi o,
—¢" |\ Dy InT + ay, + B1qy + —2—TV# —T—u qy
v 52
—rH oy, + Batryy, + TV# Ut ) Ty (7.38)
This last expression allows to recognize the new extended forces as the terms enclosed in the
square brackets of (7.38). The simplest way to satisfy the second law of thermodynamics
(7.21) is to impose (as in the classical theory) linear relations between the thermodynamic

fluxes and the extended forces. In this case, however, the extended forces contain total

derivatives of the corresponding fluxes, and the resulting constitutive equations are given by

ol +11 = —g@—[ TV, <<T ﬂ) H} (7.39)
PhBds 4 g = —ADaT +Tan) — | -AT? w( ﬁ) da (7.40)

2 \T2
'rgh‘cihgirw +Tap = —2n0ap — [UTV <2 T “) Waﬂ] , (7.41)

where the relaxation times have been defined as 790 = (fp, 71 = AXT'6; and 7 = 2765. In
many applications the terms in square brackets on the right hand side of equations (7.39)-
(7.41) are usually small when compared with the other terms and are often neglected. The
resulting equations are then called the Maxwell-Cattaneo equations.

The crucial difference between the Eckart theory and the extended theory of thermodynam-
ics is that in the second one the dissipative fluxes are obtained after the solution of the
evolutionary differential equations (7.39)-(7.41), while in the first one the dissipative fluxes
are simply given by the algebraic relations (7.33)-(7.35). This evolution feature, also evident
in the existence of the relaxation time coefficients, is needed for causality and for modeling
all of those phenomena where an accurate description of transition phases is essential. The
price paid for this improvement is that new thermodynamic coefficients are introduced. The
three relaxation times 79, 71 and 75 could in principle be calculated from the kinetic theory
of gases. More often, however, they are estimated as mean collision times, 1/7 ~ nXv, with
% being the collision cross section of the process involved and v the mean free particle speed.

It should be stressed that the extended theory of thermodynamics cannot be considered
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complete unless a link is established with the kinetic theory. After all, the assumption of
entropy depending on the heat flux and on the shear stress tensor is rather unconventional
from a phenomenological point of view. As shown by Miiller & Ruggeri (1998), however,
kinetic theory does provide the correct interpretation of the equations presented here and
gives the basis for a new version of Extended Thermodynamics. In the following Section we

will try to make this connection more apparent

6 Divergence Type Theories

The transport equations for the dissipative fluxes (7.39)-(7.41) have been derived under the
assumption that the entropy current vector of Classical Irreversible Thermodynamics can
be extended to include terms that are quadratic in the dissipative fluxes®[cf. Eq. (7.36)].
However, although all of the disadvantages of the Eckart theory have disappeared, it is
apparently not known whether the system (7.39)-(7.41) is always hyperbolic. An alternative
formulation of extended thermodynamics has been suggested by Liu et al. (1986), and
uses as guidelines the principle of relativity, the entropy principle and the requirement of
hyperbolicity. This new formulation, which is potentially suitable for numerical applications,
is called the divergence-type formulation of Extended Thermodynamics and it arises naturally

in the kinetic theory of gases.

6.1 The Connection With Kinetic Theory

Statistical thermodynamics defines the particle flux vector n#, the stress energy tensor THY

and the tensor of fluxes F*7 as the first three moments of the distribution function f(z#,p”),

respectively
nt = mc/p“fdp, (7.42)
™" = ¢ / pHp” fdp, (7.43)
va 1 v, g
Fre = g/p“p p? fdp, (7.44)

where m is the rest mass of a particle, p# is its four momentum and dp = v/=g/ podp*dp?dp®
is the invariant element of the momentum space. As usual, fdp is the number density of
the particles with momentum between p* and p/ + dp, and the distribution functions f
obeys the relativistic version of the Boltzmann equation, namely the Boltzmann-Chernikov

equation (see Chernikov 1964). Relativistic kinetic theory implies that dissipative relativistic

6For this reason the resulting theory is also called extended second order thermodynamics.
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fluids are subject to the following conservation laws (Liu et al. 1986)

vVt = 0, (7.45)
vV, = 0, (7.46)
Ve = pYe (7.47)

where P is called the tensor of production density of flures. Equations (7.45) and (7.46)
are the usual conservation laws of particle number and energy momentum, whereas (7.47)
is the balance law of fluxes. Kinetic theory suggests that the tensors T#, FH¥? and P"7
are symmetric and shows that the trace of (7.47) reduces to (7.45), implying that P*7 is
tracefree. Equations (7.45)-(7.47) cannot provide field equations for the 14 dynamical fields
nt and TH | unless F#*7 and P"? are related to one another. These relations are restricted
only by the requirement of hyperbolicity, by the relativity principle and by the entropy
principle as expressed by (7.21). The production density tensor also allows for a rigorous

definition of an equilibrium process as a process in which the production densities P#” vanish
PHYE = 0. (7.48)

Since the trace of P is zero (Chernikov, 1963), equation (7.48) amounts to nine independent
conditions of equilibrium. Eight of these conditions are trivial since at equilibrium 7 and ¢*
must be zero. The remaining condition obviously must give an equilibrium relation between

the remaining non-zero quantities P, n and e. We write this relation as

Pl =p(n,e) (7.49)
E
This is the motivation for the introduction of the non-equilibrium part of pressure IT (the
dynamic pressure) in (7.17), where P = p + II. Thus, in equilibrium all the three quantities
II, g# and 7" vanish.
Following Liu et al (1986), we consider the case where F*’? and P"? are linear in the

dissipative fluxes

P* = BII(g" + du’u”) + Bs(g"u” + ¢"u*) + By, (7.50)
2
B — (C’? + CFH)u”u”uﬁ + %—(pm — C’? — C’FH)(g‘“’uﬁ +g”5u“ + gﬁ“u”) +

6
C3(9"¢” + 97" + g7q") — 5 Cs(uv’a" + wuf gt + wPutg”) +
Cs (m"uf + 7Put + 7PruY). (7.51)

Even in a linear theory as characterized by the linear relations (7.50)-(7.51) we shall be able




134 Chapter 7: Dissipative Hydrodynamics

to calculate the coefficients of linear and quadratic terms of the entropy flux vector as
5P = (ns + ANIT + AT 4 Alghq,, + A-’I‘W”"’/mw)uﬁ + (A + AT 6% + Agﬂﬁ“qu, (7.52)

As required, in equilibrium P*¥ = 0 and S* = snu”. It could be objected that the for-
mulation of extended thermodynamics given by (7.39)-(7.41) contains a smaller number of
parameters than the present one, and should therefore be preferred. Liu et al. (1986), how-
ever, showed that the unknown coefficients in (7.50) and (7.52) can actually be calculated
through statistical mechanics, allowing one to make the representations (7.50) and (7.52)
very explicit. Also, due to the entropy principle, the coefficients Al through Cs are strongly

restricted in their dependence on the absolute temperature 7" and on the fugacity «, defined
as

_ le+Tsn+p
@ g (7.53)
providing the equilibrium state functions p(e, T'), e(c, T), p(a, T), CY (e, T) and s(«, T) are
known'.

6.2 The Non-degenerate Relativistic gas

The general results reported above can be applied to the limiting case of a non-degenerate
relativistic gas. We know that a relativistic gas is described by the Juttner distribution
(Jittner 1911)

/= exp [ma/k + 3ﬂpu/(kT)] +1’ (7:54)
where % is the Boltzmann constant and y = I/h3, h being Planck’s constant and I being
equal to 2s + 1 for particles with spin sf. The equilibrium distribution function (7.54) takes
on different forms according to the degree of degeneracy of the gas and to the different degrees
to which relativistic effects become important®. Let us just consider a non-degenerate gas,
i.e. a gas characterized by large values of the fugacity ma/k > 1, so that the distribution

(7.54) reduces to
[ =yexp[-ma/k —u'p,/(kT))]. (7.55)

In this case the integrals (7.42)-(7.44) over the distribution function are expressed in terms

of the Bessel function of the second kind

[e0]
Ki(y) = /0 cosh (lz)e™ 7B 2dy | (7.56)

"Fugacity and absolute temperature are the natural variables of statistical thermodynamics. However, one
can always switch to the variables (p,e), provided that the thermal equation of state p = p(,T) is known.

81f v = mc?/(ET) is much larger than 1, we have a non-relativistic gas; if instead - is much smaller than
1 the gas is ultra-relativistic.
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and, after very lengthy calculations, the fundamental thermodynamic quantities can be writ-
ten as (Miller & Ruggeri, 1998)

Ko
3.3

n = e t%rym ) (7.57)
9 1
e = pc|G——], (7.58)
Y
21 '
p = pc — =nkT, (7.59)
v
33 Ky
s = k|lndrym-c +1n-n—;+"yG , (7.60)

where G(v) = :2:—2 is a function of v = %79; Note that from (7.58) and (7.59) it follows that
G = (e+p)c? is nothing but the specific enthalpy, expressed as a function of the temperature
through . Moreover, the pressure is related to the particle density in the same way as in
a classical ideal gas,® a fact which was first noted by Juttner (1911). The remarkable fact
is that, within this approximation, the coefficients entering (7.51) and (7.52) can be written

explicitly as (see Muller & Ruggeri, 1998)

6
oY = p<1+§G>, (7.61)
6
of = -5 (7.62)
-3+ -3 -2-5)6 -2 +(1-5+56- G?) micd LY
3 _(9_20yg - B2 3
2-(2-3)G - 26226
L6~ A2, 13 3A)
o = “11 F5G G* + sym°c oy (7.63)
v 1426 - G? ’
(6 1 1 1 4 3A(a)
Cs = <7+G)+G240mc g (7.64)
1 5 2
S R . ks kA A (7.65)
! 4m302n%-(2—%/9)G—%G2+2G2 e '
o Lk 1§-+(§%—1)G—§G2+G3+5§m38;§g (7.66)
! 2m2cbn (1+ %G — G2)2 ' :
1 £k 41 6 1 A
oo o P T 1420+ —mil .
A 4m2c4nG3< +fy +24Omcn75)’ (7.67)

°In general, it is not possible to invert G(vy). In the low temperature limit, however, when v > 1, the
function G is well approximated by G =~ 1+5/2v (Synge, 1957). If we wish to make this expression compatible
with a standard polytropic equation of state p = sp', where I' is the adiabatic index, it turns out that it
must be I' = 5¢2/(2y¢), ¢ being the usual specific internal energy.
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1
AH . k i
2T m2din (7.69)
5 22 30 (4 65\2 4 22 3 4 1,5 2y 1,33
__2+:;2§_(7_;§G+'(4—?)G’+—7—G —2G +(1—7—2+;G—G°)q§m A
(1+2G -G (-2 +(2- %+ 126?267
Sy 2 L 033 A
Ag _ k 71+ 'rG G* + ggm°c e (7.70)

m’ctn  G(l+2G-G?)

Overall, the balance equations (7.45)-(7.47), with the representation (7.17), (7.50), (7.51)
and the expression (7.61)-(7.64) provide a set of field equations for the variables n, e, u”,
II, 7* and g¢*, which contains only one unknown function of one variable, i.e. A, and three
negative valued functions of n and e, i.e. BT, B3 and By. Liu et al. (1986) have also proved

that extended thermodynamics contains Eckart’s theory as an approximation.

6.3 Extended Thermodynamics of moments

The extension of the number of fields does not stop at 14 (the independent terms out of n,
uh, i p, ¢* and e), but proceeds to include the higher order moments of the distribution
function. However, the extension to a large number of fields raises the question of their inter-
pretation and of their controll, especially when planning to make numerical computations.
Furthermore, there is an important drawback connected with this procedure. Namely, the
introduction of spurious characteristic speeds, i.e., characteristic waves that arise only from
the truncation procedure (connected with the number of moments retained in the theory)
and which have no counterpart in the underlying kinetic description. Since these character-
istics represent a fan which broadens as the number of moments increases, there could be
serious difficulties due to the appearance of nonphysical discontinuities in the solution of the
equations. Fortunately, it has been shown by direct numerical integration (Weiss 1995) that
the discontinuities can occur only at the highest characteristic speed, and the latter increases

with the number of retained moments.

7 Discussion

After this brief review of the different formulations of Rational Extended Thermodynamics,
it is worth turning to astrophysics in order to provide at least an idea of what are the possi-
bilities for an application of these new theories in modeling specific astrophysical processes.
It should be said that the equations of a causal divergence-type theory will often require
modifications when applied to specific contexts. One fundamental objection that is usually
made is related to the physical content of the causal fluid theories. The transport coefficients,
for example, as derived in this framework by Liu et al. (1986) describe transport by the gas

particles, but it is a very well known fact that microscopic transport is too inefficient to
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account for the observed properties of many astrophysical systems. This is for instance the
case for the angular momentum transport in accretion discs, and for the heat transport in
stars. The correct approach in these cases would require a turbulence model on top of a
causal fluid theory. In the absence of such a description, a first order approximation consists
of assuming that the turbulence does indeed behave like a microscopic phenomenon!®.
Following a very pragmatic approach, for example, the problem of non causality in the
context of transonic accretion has been addressed in two different ways. For steady flow
Narayan (1992) has recovered causality by calculating the coefficient of kinematic viscosity
within an extended version of the flux-limited diffusion theory (Levermore & Pomraning,
1981). The influence of this modified viscosity coefficient was studied in stationary accretion
discs by Popham & Narayan (1992) and Syer & Narayan (1993). A relativistic generalization
of the modified viscosity has been proposed in models of stationary accretion discs by Peitz &
Appl (1997). A different approach was proposed by Papaloizou & Szuskiewicz (1994), which
is directly related to a causal description of thermodynamics allowing for an application to
time-dependent models of accretion disc boundary layers.

Finally, it is worth discussing the work done in the formulation of the relativistic hydro-
dynamics equations for dissipative fluids that would be suitable for numerical calculations.
The application of causal type theories to relativistic non ideal hydrodynamics has mainly
been prevented by the absence of an appropriate formulation of the equations, either in
the form given by (7.33)-(7.35c0), or in the divergence type formulation (7.45)-(7.47). Re-
cently, however, Peitz & Appl (1999) recast both sets of equations in the 3 + 1 formalism of
Arnowitt, Deser & Misner, (1962), thus providing an appealing tool for numerical applica-
tions. It should be stressed, however, that the most convenient formulation could come from
divergence type theories, which, in principle, could allow for the implementation of HRSC

methods to the hydrodynamics of dissipative fluids.

OMagnetic turbulent viscosity has been simulated by Brandenburg et al., 1995.



1

8

Chapter 7: Dissipative Hydrodynamics




Chapter 8

Magnetic Field Decay in Neutron
Stars

1 Introduction

This last Chapter of the thesis is about the influence of strongly curved space-times on the
properties of electromagnetic fields in slowly rotating neutron stars.

It is well known that the coupling between general relativistic effects and electromagnetic
fields is particularly important in the vicinity of neutron stars which are among the most
relativistic astrophysical objects and are characterized by very intense magnetic fields (Lamb
1991, Glendenning 1996). Many observations indicate that in young neutron stars the sur-
face magnetic field strengths are of the order of 10** — 10*3 G. In some exceptional cases, as
those of magnetars, magnetic field strengths > 5 x 10" G are considered responsible for the
phenomenology observed in soft gamma-ray repeaters (Duncan & Thompson 1992, Thomp-
son & Duncan 1995). Older neutron stars, observed as recycled pulsars and low mass X-ray
binaries, show instead surface magnetic fields that are much weaker < 100 G suggesting
that these are subject to a decay, even if it is still difficult to establish whether the decay is
due to accretion (Geppert & Urpin, 1994; Konar & Battacharya, 1997) or to other processes.
In the case of isolated neutron stars, the possibility of magnetic field decay as a result of
accretion does not arise, but there are still a number of different ways in which the energy
stored in the magnetic field can be lost. This can happen either through the emission of
electromagnetic (dipole) radiation, through Ohmic decay, through ambipolar diffusion, or
through more complicated effects such as “Hall cascades” (see Goldreich and Reisenneger
1992 for a review). The investigation of these scenarios requires combined efforts. On one
hand, there is the search for a more precise description of the microphysics of the processes
involved, some of which are still not well quantified. On the other hand, attention is paid to a
more realistic description of the gravitational effects on the properties of the electromagnetic
fields in highly curved spacetimes. The investigation of the general relativistic corrections to
the solution of Maxwell equations in the spacetime of a relativistic star has a long history.
The initial works of Ginzburg & Ozernoy (1964), Anderson & Cohen (1970) and of Petterson

139
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(1974) on the stationary electromagnetic fields in a Schwarzschild spacetime have revealed
that the spacetime curvature produces magnetic fields which are generally stronger than their
Newtonian counterparts (see also Wasserman & Shapiro 1983 for a subsequent derivation).
More recently, Sengupta has also considered the problem of the Ohmic decay rate in a
Schwarzschild spacetime (Sengupta, 1997). His approach is strictly valid only for the region of
spacetime external to the star as it does not provide a correct general relativistic description
of the electromagnetic fields internal to the star. Within these approximations, however,
Sengupta (1997) has pointed out that the effects of intense gravitational field seem to decrease
the overall decay rate by a couple of orders of magnitude. The same problem has also been
considered in more detail by Geppert, Page and Zannias (2000). Their analysis was aimed
at a mathematically consistent solution of Maxwell equations also in the spacetime region
internal to the star and makes therefore use of a generic metric for a non-rotating relativistic
star. Their results, while confirming a decrease in the typical decay time for the magnetic
field, also show that the decay time is smaller but comparable with the one found in flat
spacetime.

The general relativistic effects induced by the rotation of the star were first investigated by
Muslimov & Tsygan (1992) in the slow rotation approximation. A similar approach was also
used by Muslimov and Harding (1997) for the electromagnetic fields external to a rotating
magnetized star. Their analysis refers to a charge filled magnetosphere and represents the
relativistic extension of the Goldreich-Julian model. Using a different derivation, Prasanna
and Gupta (1997) have also investigated the properties of the electromagnetic fields in the
magnetosphere of a relativistic rotating neutron star, with special attention being paid to
the dynamics of charged test particles. Finally, Rezzolla et al (2001) have extended all of
the above investigations by considering the solution of Maxwell equations in the internal and
external background spacetime of a slowly rotating magnetized relativistic star. The star is
there considered isolated and in vacuum, with a dipolar magnetic field which is not assumed
aligned with the axis of rotation. As a result of this analysis, it was possible to show that
in the case of finite electrical conductivity, general relativistic corrections due both to the
spacetime curvature and to the dragging of reference frames are present in the induction
equations. Moreover, when the stellar rotation is taken into account, each component of
the magnetic field is governed by its own evolutionary law, thus removing the degeneracy
encountered in the case of nonrotating spacetimes. In the present Chapter, through a number
of calculations, we will present the numerical solution of those equations focusing on the
evolution of the magnetic field when different rates of stellar rotation, different inclination
angles between the magnetic moment and the rotation axis, as well as different values of the
electrical conductivity are considered. All of these calculations have been performed for a
constant temperature relativistic polytropic star and make use of a consistent solution of the
initial value problem which avoids the use of artificial analytic functions.

Overall, we will show that the rotation of the star and‘of the background spacetime introduce

a decrease in the decay rate of the magnetic field. In general, however, the rotation-induced
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corrections are hidden by the high electrical conductivity of the neutron star matter and are
effectively negligible even for the fastest known pulsar. Also in the absence of rotation, the
spacetime curvature introduces modifications to the evolution of the magnetic field when
compared with the corresponding evolution in a flat spacetime. These modifications depend
sensitively on both the metric functions of the interior spacetime and on the radial profile of
the electrical conductivity. In the case the star is modeled as a polytrope and the electrical
conductivity is assumed to be uniform in space and time, the spacetime curvature generally
increases the decay rate of the magnetic field as.compared to the flat spacetime case, with
this increase being dependent on the compactness of the star.

The system of units chosen in this Chapter is given by setting G = ¢ = Mg = 1. (However,

for those expressions of astrophysical interest, we have written the speed of light explicitly.).

2 The Structure of the Star

We assume that the background metric is that of a stationary, axially symmetric system
truncated at the first order in the angular velocity . In a coordinate system (ct,r, 6, ¢), the
“slow rotation metric” for a rotating relativistic star (see, for example, Hartle 1967, Hartle

& Thorne 1968, Landau & Lifshitz 1971) is
ds? = = dt? 4+ 2 ) dr? — 2w(r)r? sin® Odtdg + r?do* + r’sin 0dg? ,  (8.1)

where w(r) is the angular velocity of a free-falling inertial frame, also known as the Lense-
Thirring angular velocity. Note that using the slow-rotation approximation gives rather
accurate results for all pulsar periods so far observed. The metric (8.1) has coefficients each
of which is the lowest-order term of a series expansion in ascending powers of (2. Comparing
the magnitude of the neglected higher order terms with that of the one retained in each
case, gives ratios of the order R*Q2?/GM which is smaller than 10% even for the fastest-
known millisecond pulsar PSR 1937+214. On the other hand, for realistic values of the
stellar magnetic field (i.e. B = 10! — 10'3 G) we can also neglect the contribution of the
electromagnetic fields to the background spacetime geometry and determine the internal
structure of the star and its interior spacetime after solving the following system of ordinary
differential equations (henceforth TOV system, from Tolmann, 1939; Oppenheimer & Volkoff,
1939)

o (ot )m+dnrp 52
dr r2(1 —2m/r) ' .
d

é?— = drrie ,

Elg _ m + drr3p B _lfl_gz (1 E>—1

dr - r2(l—2m/r) edr e ’
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where p(r) is the pressure, e(r) is the energy density and m(r) is the mass enclosed within
r. Once an equation of state has been chosen, the TOV system can be solved numerically
together with the differential equation for the Lense-Thirring angular velocity w(r) in the

internal region of the star

w=0, (8.3)

- —(®+A
1d r“g*(q’ﬂ\)dfi +4M
. dr dr

where @ = Q — w is the angular velocity of the fluid as measured from the local free falling
(inertial) frame. After selecting a value for the central rest-mass density, the set of differential
. equations (8.2) - (8.3) is solved from the centre of the star until the pressure vanishes, thus
determining the radius R. For the integration of eq. (8.3), the solution near the centre of the
star is simplified if we use the analytic power series expansion /@, =~ 1 + 87 (e, + pe)r? /5,
valid for r — 0 and where the label “¢” refers to a quantity at the centre of the star (Miller,
1977). Since in the vacuum region of spacetime external to the star w(r) = 2J/r3, with J
being the total angular momentum, we can determine the two unknown quantities J and w,
by imposing continuity of the angular velocity and of its first derivative at the surface.

The interior of the star influences the magnetic evolution either macroscopically, by affecting
the metric quantities which enter the induction equations, or microscopically, through the
electrical conductivity o which, in turn, depends on the star’s temperature and chemical
composition (see Urpin & Konenkov, 1997; Page et al 2000). Our attention is here mainly
focussed on assessing the contribution coming from rotational effects in general relativity
on the decay of the magnetic field *. As a consequence, we will neglect the thermal and
rotational evolution of the neutron star and simply consider a constant in time and uniform
in space electrical conductivity. This is an approximation, but a necessary one to disentangle
the many different effects that intervene in the general relativistic evolution of the magnetic
field. Furthermore, as will be discussed in Section 4, the assumption of a uniform electrical
conductivity does not affect the role of a rotating background spacetime in the evolution of
the magnetic field.

The relativistic star is modelled as a polytrope with equation of state
p =Ko, (8.4)

where p, K, N are the rest-mass density, the polytropic constant and the polytropic index,
respectively. As “fiducial” model of neutron star we consider a polytrope with index N =1,
polytropic constant K = 100, and central rest-mass density p. = 1.28 x 1073, In this case,
the radius R and the total mass M obtained through the solution of the TOV system are
respectively R = 14.15 Km and M = 1.40 Mg, yielding a compactness ratio n = 0.29. The

1Tt should be mentioned that general relativistic corrections can appear also in the constitutive relations
of the Maxwell equations, such as in the general relativistic form of Ohm’s law (Ahmedov 1999). These
corrections are usually negligible in the electrodynamics of relativistic stars and will be neglected here.
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rotation period usually chosen for this model is P = 1073 s.

3 Evolution of the Internal Magnetic Field

As mentioned in Section 1 , the presence of the stellar rotation lifts the degeneracy found in
the case of a nonrotating star (Geppert et al 2000) and three distinct induction equations
regulate the general relativistic evolution of the magnetic field. In this Section we discuss
the solution of the induction equations for each of the magnetic field components. The main

difficulties encountered in the numerical solution are related to the definition of a consistent
initial value problem and to the complex nature of the partial differential equations when

a misalignment between the rotation axis and the magnetic dipole moment is present. A

strategy is therefore needed to handle these difficulties.

3.1 The Relativistic Induction Equations

The induction equations for the magnetic field of a slowly rotating relativistic star with finite
electrical conductivity have been derived by Rezzolla et al (2001) and we will briefly recall
them here for completeness. All the measurements are performed in the orthonormal tetrad
frame of a “zero angular momentum observer” (ZAMO) and we assume that the spatial
components of the magnetic field four-vector in this frame are solutions of the Maxwell

equations in the separable form

B (r,0,¢,x,t) = F(r,t)T:1(0, ¢, x,1) , (8.5)
BY(r,0,,%,t) = G(r,)T5(0,4,x,t) , (8.6)
BP(r,0,,x,t) = H(r, 1) T3(, x, ) , (8.7)

where F, G, H and ¥y, ¥y, U3 account for the radial and angular dependences, respectively.
Here,  is the inclination angle of the stellar magnetic dipole moment relative to the rotation
axis and the time dependence in F, G, H is here due to the fact that we are not considering
an infinite electrical conductivity but are allowing the magnetic dipole moment to vary in

time.
At first order in €, the angular eigenfunctions W; are not affected by general relativistic

corrections and assume the flat spacetime expressions

Wy = cos x cos @ + siny sinf cos A(%) , (8.8)

Wy = cos x sinf — sin x cos 6 cos A(t) , (8.9)

V3 = sin xsin A(?) , (8.10)
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Figure 8.1: Schematic representation of a misaligned rotator. Here (eg, ez, e;5,€3) is a local

orthonormal frame, p is the magnetic dipole moment of the star, x is the inclination angle relative
to the rotation axis, and A the instantaneous azimuthal position.

where () = ¢— Ot is the instantaneous azimuthal position (see Fig. 8.1). Assuming that the

contribution of electric currents are negligible? the general relativistic evolution equations

for the radial eigenfunctions F'(r,t), G(r,t), H(r,t) are

oF ) e ' _ )
E\Ifl sinf = W{ [e®r (G — H)] psinxcos A —2 [(e@rG)’T + eq’+AF] Uy sin 6

L sinxsmA{[wr(H ~ @), (1 -2sin*0)
dro ’
+2we™? [(eq)rH) .t eq""AF] sin® 0

~-Qr(G-H)®, (1 —2811129)}} ,

(8.11)

(8.12)

®Because the magnetic field decay is studied on timescales that are much longer than the electromagnetic
wave crossing time, this is a very good approximation.
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2 —A —&
%];I« sin A — C4776m“ { {e—A (eq’rH) T eq)F} {sin)\ - LLZW cos )\} }’r
ce® (G — H) we™?
e e LI A .14
4ror? sin® 6 {sm dng CO° } (8.14)

Together with the evolution equations (8.11) —(8.14), the scalar functions F', G, and H also

satisfy the constraint condition of zero-divergence for the magnetic field
[(7ZF) .t ZGATG} sin @ (cos x cos @ + sin x sin cos \) + e’r (H — G)sinx cos A = 0 . (8.15)

A rapid look at equations (8.11)—(8.14) shows that in a rotating spacetime the evolution
of the poloidal and toroidal components are correlated and that an initially purely poloidal
magnetic filed can gain a toroidal component during its evolution and vice-versa. Moreover,
since the second term in equation (8.15) does not depend on 8, the only way to sutisfy (8.15)
is to have G = H, which makes the integration of (8.14) unnecessary.

In the case of a nonrotating star, on the other hand, the three induction equations (8.11) -
(8.14) are not independent and the magnetic field evolution is described by a single scalar

function F' governed by the following evolution equation:

o (o)

= T —ze‘“f\F} : (8.16)

7

corresponding to the solution found by Geppert et al. (2000). When the metric functions
® and A refer only to the vacuum region of spacetime external to the star, equation (8.16)

further simplifies to

oF . CQ r—2M 20 9
ot Amorz\ ¢ {[( B T) (r F),T} , B ZF} ’ (8.17)

and which now corresponds to the solution found by Sengupta (1997). However, one should
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underline that using a Schwarzschild metric is intrinsically inadequate to describe physical
systems such as pulsars in which the coupling of electromagnetic fields and rotation is a key

feature.

3.2 Strategy of the Numerical Solution

The numerical solution of equations (8.11)—(8.14) is simplified if done in terms of the new

quantities
F=r’F (8.18)
G=ebra, (8.19)
H=¢e%H, (8.20)

which, when the inclination angle x is nonzero and the electrical conductivity is uniform,

allow us to rewrite eqs. (8.11) —(8.14) schematically as

oF | ~ L _
"é?:le,T‘T+fQF,T+f3F+f4H,'f‘+f5G+f6G,T ) (8-21)
oG ~ ~ ~ = ~ ~ -

i 91G e+ 92Gp + 93G 4 gaFp + g F' + gs H y +97H (8.22)
OH ~ - ~ ~ ~ ~

5t = h1Hr + hoH , + hsH + hyFp + hsF + heG . (8.23)

Explicit expressions for the set of coefficients f;, gi, hi can be found in Appendix D. For
x # 0, the coefficients f;, g;, h; have terms which are time-dependent trigonometric functions
of Ot and, as a result, each of the egs. (8.21)-(8.23) is not a simple parabolic equation
describing a pure diffusive phenomenon. In addition to a secular Ohmic decay, in fact, there
will be a periodic modulation produced by the rotation of the star. This is evident if we
look, for instance, at the coefficient f; in Appendix D and which is given by the sum of two
terms. The first one is the constant “diffusion” coeflicient responsible for the decay on a
secular timescale. The second term, on the other hand, represents the correction due to the
stellar rotation. The periodic modulation is produced by the trigonometric function tan A
and varies therefore on the dynamical timescale set by the rotation period of the star, P.
The presence of these periodic terms spoils the parabolic character and makes the set of
egs. (8.21) - (8.23) a mixed hyperbolic-parabolic one.

Although the integration of eqs. (8.21) — (8.23) is complicated in the general case, we are here
favoured by the fact that all of the terms proportional to {2 or to w (i.e. all of the terms

directly related to the stellar rotation) scale like o~? and that the electrical conductivity in
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realistic neutron stars is very high, ranging in the interval 102! — 10%s~%. As a vesult, the
star’s rotation period is about twenty orders of magnitude smaller than the secular timescale
and can be ignored in the numerical solution of the equations. In practice then, we set all of
the periodic time-varying terms to be constant coefficients and solve the set of egs. (8.21) -
(8.23) as a purely parabolic system. In this way we can capture the secular decay without
having to pay attention to the high frequency modulation. In Section 4, where we discuss
the results of the numerical integration of the induction equations (8.21) - (8.23), we will also
comment on the validation of this procedure.

Another important aspect of the numerical solution is the use of the zero-divergence constrain
equation (8.15). We do not need, in fact, to integrate in time all of the egs. (8.21) - (8.23)
but can restrict the evolution to two of them and obtain, at each timestep, the remaining un-
known radial eigenfunction from the solution of the constraint equation (8.15). Adopting this
strategy in the numerical solution reduces the computational costs and, most importantly,
enforces a constrained solution at each timestep.

Having three induction equations, we can follow the decay of each component of the magnetic
field separately. The physically relevant quantity is however the modulus of the magnetic

field which, in the locally flat spacetime of the ZAMO observer, is simply given by |B| =

[(B™)? + (Bé)2 + (B“I’)Z]l/g. The evolution of this quantity, evaluated at the surface of the

star, is the one that will be discussed in the remainder of the chapter.

3.3 The Initial Value Problem

The consistent solution of the initial value problem for the general relativistic decay of the
magnetic field in a rotating neutron star suffers from two difficult aspects. The first one is
that at present the initial topology and location of the magnetic field in neutron stars can be
only argued on the basis of some assumptions, so that the magnetic field can either permeate
the entire star, or be confined in a layer close to the stellar surface. The first configuration
is more plausible if the magnetic field is the final product of a dynamo action amplification
(see Thompson & Duncan, 1993), while the second field configuration is more realistic in a
scenario in which the magnetic field is originated by thermoelectric effects (Urpin et al, 1986;
Wiebicke & Geppert, 1996). We here focus our attention mostly on the case of a magnetic
field permeating the entire star, but in Section 4 we also show how the decay of the magnetic
field depends on the depth of penetration inside the star, when simplified assumptions on
the microphysics at the crust-core boundary are made.

The second difficult aspect of the initial value problem concerns the definition of an initial
configuration which is also solution of the general relativistic Maxwell equations. A possible
approach to this problem is the one proposed by Geppert et al (2000) (but see also Sang
and Chanmugan, 1987), who have considered the initial magnetic field to be described by

Stoke functions that represent, in flat spacetime, a class of exact solutions of the induction
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equation. In this case, the radial eigenfunction F'(r) at the initial time can be obtained from

sin(nr/R)  cos(nr/R) o= mePt/40 R

Frt) = By w2r /R s

0<r<R,(824)

for ¢ = 0, where By is the initial surface magnetic field at the magnetic pole. Because
eq. (8.24) is not a solution of the general relativistic Maxwell equations, one expects an initial
error being introduced in the solution of the induction equations, but also that this error
should disappear rapidly as the solution tends to the one satisfying the Maxwell equations.
To circumvent the problem of an inaccurate solution during the initial stages of the evolution
and in order to calculate an initial magnetic field which is solution of the relativistic Maxwell
equations, we here treat the initial magnetic field as the one permeating a perfectly conduct-
ing medium. In this case, Rezzolla et al. (2001a, 2001b) have shown that consistent radial
eigenfunctions can be obtained after solving the following set of equations [see (71)~(73) of

Rezzolla et el 2001].

Fo+2%G =0, (8.25)

—~ e<I>—|—A -

Hy+ —5F=0, (8.26)
H-G=0. (8.27)

In particular, combining eqs. (8.25) and (8.26), we obtain a second-order differential equation
for the unknown radial eigenfunction F
d2F dF F
d il 220 =0

(@ - N 2 =0, (8.28)

Equation (8.28) can be solved as a two-point boundary value problem after specifying values
for the magnetic field at the edges of the numerical grid. More specifically, the initial
magnetic field at the inner edge of the grid is chosen to be zero both when the magnetic
field permeates the whole star and when it is confined to a crustal layer. On the other hand,
the initial magnetic field at the outer edge of the grid is chosen to match a typical surface

magnetic field for a neutron star and is therefore set to be By = 10'* G. Once the initial
profile for F has been calculated through eq. (8.28), the corresponding initial values for G

and H follow immediately from egs. (8.25) and (8.27). As a comparison, we have also solved
the induction egs. (8.21) —(8.23) using as initial condition eq. (8.24) and the corresponding
eigenfunctions G and H again as computed from the conditions (8.25) and (8.27).

Fig. 8.2 shows the initial values for the two different prescriptions and, in particular, with a

solid line the initial profile as obtained through the solution of the Maxwell egs. (8.28) and
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Figure 8.2: Possible initial values for the radial eigenfunction F of the radial component of the
magnetic field normalized to the value at the surface, shown as a function of the radial position in

the star. The solid line represents the radial eigenfunction F as obtained from the integration of the
Maxwell eqgs. (8.28), while the dashed line represents the Stoke profile (8.24).

with a dashed line the Stoke profile given by expression (8.24). The noticeable differences
between the two initial profiles provide a simple explanation of why the use of Stoke’s function
produces an initially inaccurate evolution (cf. Fig. 8.3).

The use of the strategy discussed above for the calculation of the initial value problem
clearly requires the solution of an additional set of equations but it has the advantage of
removing the adjustment of the solution during the initial stages of the decay and provides
a more accurate estimate of the magnetic field decay. A discussion of this as well as a
comparison with evolutions performed with the Stoke function will be discussed in Section
4. Finally, another aspect worth stressing is that by using eq. (8.28) we also automatically

satisfy appropriate boundary conditions at the surface of the star.

3.4 Boundary Conditions

In order to correctly solve the induction equations (8.21) —(8.23), it is essential that appro-
priate boundary conditions are specified both at the inner edge of the computational domain

as well as at the stellar surface.
As for the initial value problem, the inner boundary condition imposed during the evolution

is that of a zero magnetic field and is applied both when the magnetic field permeates the
whole star and when it is confined to the crust. In the first case, this choice guarantees a

regular behaviour of the radial eigenfuctions at the origin, while it reflects the absence of
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magnetic field below the crust in the second case. The evolution of the magnetic field has
shown to be quite sensitive to the boundary conditions imposed at the stellar surface, but
proper boundary conditions can be derived if we assume that there are no electrical currents
on the surface and impose a matching between the external and the internal solutions of the
magnetic field. The radial eigenfunctions F(r), G(r), and H(r) outside the slowly rotating

relativistic star have been derived Rezzolla et al (2001) [see egs. (90) - (92) therein] and are

given by

~ 3r? 5  2M M

) = - CON i I Rl .
F(r)=-5m [mN + = ( + 7->]“’ (8.29)
~ 3N?2 [ r 1

=2 IN?+ — +1 .

Gir)=p [M nN? 4 5+ M, (8.30)
H(r)=G(r), (8.31)

where N (r) = (1—2M/r)Y/? = e® and p is the magnetic dipole moment. Since the constraint

expressed by eq. (8.25) holds also on the stellar surface, we then have

+2e*2G(R) = 0. (8.32)
R

Moreover, when electrical surface currents are not present, we can use eq. (8.29) and (8.30)

to express G(R) as

~ o~ (NM\ RWnN*M+1/N*+1 -
GR) = < R? )1nﬁ2+2M(1+M/R)/RF(R)’ (8.33)

where N = N(r = R). Straightforward calculations allow to conclude that

—TI(n)F(t,R) (8.34)
R

RF,

where II(n) is a constant given by

_4n(l—-n)+ 292 -n)/(L —n)
M(n) = 2In (1 —n) +2n +n? ' (8.35)

with n = 2M/R being the compactness of the star. The corresponding boundary conditions

for G and H are then easily obtained by means of (8.31) and (8.33).
Note that eq. (8.34) coincides with the boundary condition used by Geppert et al (2000) in

the case of a static, spherically symmetric background geometry. This is due to the fact that,
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Figure 8.3: Difference in the decay of the magnetic field when a consistent initial magnetic field is
used (solid line) or when a Stoke function is used as initial condition (dashed line). The inset shows

a magnification of the evolution during the first 10% yr. Here o = 10*°s™! and P = 10~3s. See the
main text for a complete discussion.

as discussed by Rezzolla et al (2001), the corrections to the components of the magnetic field
enter at orders higher than the first one in Q. Details on the numerical implementation of

the surface boundary conditions are presented in Appendix E.

4 Numerical Results

In order to integrate the set of induction egs. (8.21)—(8.23), we have built a numerical code
which implements the Crank-Nicholson implicit evolution scheme and which provides second
order accuracy both in space and in time (see Morton & Mayers, 1994). The accuracy of
the code has been checked by computing the time evolution of eq. (8.24) which provides, in
a flat spacetime, an exact solution of the induction equation. The results obtained indicate
that the relative error between the numerical and the analytic solutions over a timescale of
three Newtonian Ohmic times Topm = 47R%0/c?, is always below 0.5% for the level of grid
resolution usually implemented in our calculations.

Established the consistency and accuracy of the code, we have proceeded to solve the general
relativistic induction equations for our relativistic rotating star. As mentioned in Section
3.2, if the inclination angle between the rotation axis and the dipolar magnetic moment is
nonzero, the secular decay has a periodic modulation due to the stellar rotation. We have also

discussed that because the decay timescale and the rotation period timescale differ for about
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twenty orders of magnitude, we can neglect the time dependence (which is oc sin A) contained
in each of the coefficients f;, g;, h; and set the periodic terms equal to an arbitrary constant
value. To validate this procedure and verify that the periodic modulation does not affect the
secular evolution, we have solved the induction equations using different constant coefficients
and found that the secular results are indeed insensitive to the value chosen for the constant
coefficients. We have also followed the solution of the complete set of eqs. (8.21) —(8.23) (i.e.
not considering the time-periodic terms as constant) on a timescale which is longer than the
dynamical timescale but still much smaller then the secular one. Also in this case we have
verified that the modulated evolution, which is superimposed on the secular one, shows the
small decrease corresponding to the secular decay.

Our discussion of the results starts by comparing the evolution of egs. (8.21) - (8.23) for the
two different prescriptions of the initial value problem discussed in Sect. 3.3 (cf. Fig. 8.2)
for our fiducial neutron star. Before presenting the results of the comparison, it is useful to
discuss briefly the subtleties related to the measure of the magnetic field time decay; as will
become apparent later, this is an important issue which might lead to seemingly conflicting
results. The gauge freedom inherent in the theory of General Relativity allows for the choice
of arbitrary observers with respect to which the measure of physically relevant quantities is
made. The choice of a certain class of observers might rely on the mathematical advantages
that this class may have, but not all observers are phyéically suitable observers. Locally
inertial observers are certainly preferable and in a rotating spacetime, as the one considered
here, ZAMO observers represent a natural choice. Of course, there is is an infinite number of
such observers, each one performing his own measure of the magnetic field decay, so that one
should then select a specific set of inertial observers on the basis of physical considerations.
The results presented will be referred to a ZAMO observer on the surface of the star and
at a latitude @ = 7/2. The values of the magnetic field measured by this observer and its
time evolution can then be converted to the equivalent ones measured by other ZAMOs at
different radial and polar positions through simple transformations involving the difference

in the red-shifts and latitudes. Once the choice of a suitable class of inertial observers is
made, it is also important that the results of the general relativistic magnetic field decay

are expressed using appropriate units. In their work, Geppert et al (2000) have quantified
the decay of magnetic field in a relativistic constant density, nonrotating star in terms of
the Newtonian Ohmic time. As we shall show below, while this choice is acceptable for a
constant density star, it could be misleading in general.

The two solutions of egs. (8.2‘1) ~(8.23) are presented in Fig. 8.3 and show the decay of the
magnetic field , rescaled on a timescale tg = 10% yr. It is interesting to note that while the
asymptotic decay rates of the magnetic field are almost the same for the two approaches,
a final difference emerge. This is because when using Stoke’s function as initial data, the
evolution does not satisfy Maxwell’s equations during the initial stages (see the small inset
in Fig. 8.3), but settles onto a constrained solution only after that time. Moreover, the

outer boundary conditions expressed by egs. (8.33) and (8.34) cannot be satisfied exactly by
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Figure 8.4: Relative difference in the evolution of a magnetic field in a nonrotating star Bronrot
and in a rapidly rotating one Brot. The electrical conductivity is here set to be o = 10° 571, while
the star been set to have a period P = 1073 s.

Stoke’s function and this introduces an additional error. As a result, after a time ¢ ~ g yr,
the two solutions differ of about 45%, but this difference does not grow further in time.

Next, we discuss the effects introduced by the rotation of the star and of the spacetime. In
this case it is worth distinguishing the interest in finding a general relativistic correction,
from the impact that these corrections actually have on the magnetic field decay in a realistic
rotating neutron star. As discussed in Section 3.2, in fact, the high value of the electrical
conductivity in realistic neutron stars tends to make the general relativistic corrections due
to rotation rather minute. In particular, we have found that when considering an electrical
conductivity o = 10% s7! in a rapidly rotating neutron star with one millisecond rotation
period, the relative difference in the magnetic field after 15 g yr is only one part in 10%2.
Nevertheless, general relativistic, rotation-induced corrections have an interest of their own
and these corrections can be more easily appreciated if smaller (and therefore less realistic)
values of the electrical conductivity are considered. In Fig. 8.4 we show the relative difference
in the evolution of a magnetic field in a nonrotating star, Bponrot, and in a rapidly rotating one
with a millisecond period, Bret. In this case and just for illustrative purposes, an electrical
conductivity o = 10° s~! has been considered. As can be appreciated from the figure, the
corrections due to the rotation decrease the rate of decay of the magnetic field and after a few
rotation periods, the fastly rotating star will maintain a magnetic field which is about a factor
of two larger than the one calculated for the nonrotating star. Overall, the results obtained

indicate that General Relativity does introduce, through the rotation of the spacetime, new
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Figure 8.5: Decay of the surface magnetic field as measured by a ZAMO observer on the surface of
the star at a latitude § = 7/2, expressed on a timescale tg = 10° yr. The left panel refers to a constant
density stellar model and shows an asymptotic decay rate of the magnetic field which is decreasing
for increasing values of the stellar compactness. The inset in the left panel focuses on the initial
stages of the evolution when the decay is larger. The right panel, on the other hand, refers to an
N =1 polytropic stellar model and shows an asymptotic decay rate which is increasing for increasing
values of the stellar compactness. Here the central density is the free parameter determining the
stellar compactness. The small inset in the right panel of the figure shows how the use of an Ohmic
timescale as normalizing unit can lead to erroneous interpretations.

corrections to the evolution of the magnetic field, slightly decreasing its decay rate. This
effect, however, is usually hidden by the high electrical conductivity of the stellar medium
and can be neglected in general. The results discussed above depend also on the inclination
between the rotation axis and the magnetic dipole moment, with the decrease rate being
larger for larger inclination angles. In particular, for x = 7/2, the residual magnetic field
after 10 tq yr is smaller of a factor two as compared to the corresponding magnetic field for
an inclination x = 0.

Next, we compare the results of our calculations for a polytropic relativistic star with those
for a constant density star. This will provide a first qualitative estimate of the importance of
the metric functions in the actual evolution of the magnetic field. The results are presented
in Fig. 8.5 with the left panel referring to a constant density model and the right one to our
fiducial polytropic model.

In the case of a constant-density star, we confirm the results obtained by Geppert et al
(2000) and find that the evolution of the magnetic field approaches an exponentially decaying
behaviour, with an asymptotic decay rate which is generally decreasing with increasing stellar
compactness. The inset in the left panel of Fig. 8.5 shows in more detail the initial stages of
the magnetic field decay and allows to appreciate that the magnetic field evolution is initially
following an exponential decay with decay rates which are quite large but that then reach
an asymptotic value after about 108 yr (Geppert et al 2000).

In the case of a polytropic star, on the other hand, the results in the right panel of Fig. 8.5
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show a behaviour which is the opposite to the one encountered for a constant density model
and that the asymptotic decay rate of the magnetic field is increasing with increasing stellar
compactness. When a uniform electrical conductivity is used, the explanation behind the two
distinct behaviours has to be found in the deviations that emerge in the internal spacetime for
the two stellar models and in particular in the first radial derivatives of the metric functions
® and A [cf. eqs. (8.2)—(8.3)]. These deviations produce sensible quantitative differences
in the coefficients of eqs. (8.21)—(8.23) (see the Appendix D for the explicit form of the
coefficients) which are then responsible for the increase in the decay rate. It should also be
remarked that the behaviour shown in the left panel could be easily reproduced, also in the
case of a polytropic model, by means of a suitably defined electrical conductivity. In other
words, the results presented in Fig. 8.5 underline that a definitive conclusion on the general
relativistic evolution of the magnetic field cannot be drawn until a more realistic treatment
of the electrical conductivity and of the equation of state is made.

The inset in the left panel of Fig. 8.5 can be used to explain the comment made above on the
use of relevant normalization units. In the inset, in fact, we have plotted the same evolution
shown in the main panel but with the time being normalized in terms of the Newtonian
Ohmic time. Note that when we do so, the overall behaviour is inverted and the decay rate
of the magnetic field in now decreasing for increasing stellar compactness. This is clearly
incorrect and the misleading behaviour is due to the fact that the concept of an Ohmic time
is a purely Newtonian one and is therefore justified only in a Newtonian context. A more
suitable normalizing unit for a nonrotating relativistic star would be the general relativistic
analogue of the Newtonian Ohmic time: Topm = 47 R*e* %5 /c? as can be derived from
egs. (8.21)—(8.23) in the limit © = 0. Using this normalization, we would recover the
correct behaviour, with a magnetic field asymptotic decay rate generally increasing with
stellar compactness. Unfortunately the validity of Tonm is limited to nonrotating stellar
models only. Because of the difficulties of defining an Ohmic timescale for the induction
equations of a relativistic rotating star, we measure the magnetic field evolution simply in
terms of the time measured by our ZAMO observer.

Finally, we discuss the differences introduced in the decay of the magnetic field when the
latter is confined to a spherical shell between an inner radius R, and the surface of the star.
In this case, the initial values for the radial eigenfunctions are calculated self-consistently
along the procedure discussed in Section 3.3. In Fig. 8.6 we show the evolution of the
magnetic field in our fiducial neutron star for different values of the parameter ¢ = Ry /R.
Note that decreasing the volume in which the magnetic field is confined has the effect of
increasing the decay rate of the magnetic field so that if the initial magnetic field permeates
about 90% of the stellar volume (g = 0.5), the residual surface magnetic field after 10 g
yr is about a factor thirty smaller than in the case the magnetic field permeates the whole
star (¢ = 0). Although our analysis does not take into account the microphysics of the
stellar interior and in particular the role played by the chemical composition and by the

temperature, it confirms the Newtonian results of Urpin and & Konenkov (1997) and those
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Figure 8.6: Decay of the surface magnetic field when the magnetic field does not penetrate the
whole star. The different curves refer to different values of the parameter ¢ = R, /R, with R, being
the inner radius of the stellar shell where the magnetic field is confined.

of Page et al (2000), who have shown that the magnetic field decay is slower for deeper
magnetic field penetration (see also Konenkov & Geppert, 2001). Because this behaviour
mimics the increase in the decay rate produced by an increasing compactness of the stellar
model, it is essential to be able to determine, prior to observations, the geometry and location
of the magnetic field within the neutron star and to distinguish the different contributions
to the overall magnetic field decay.

More extended comments will be presented in the concluding Chapter of the thesis.
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Conclusions

The conclusions of our work can be summarized in three main points, corresponding to the

three main fields of research which we have investigated:

e We have presented a new procedure for the numerical solution of the exact Riemann
problem in relativistic hydrodynamics for both one-dimensional and multi dimensional
flows (Rezzolla & Zanotti, 2001; Rezzolla, Zanotti, Pons, 2002). In this approach
special attention is paid to the relativistic invariant expression for the relative velocity
v12 between the unperturbed left and right states. This has been shown to be a

monotonic function of the pressure p, in the region formed between the wave fronts.

The use of the relative velocity has a number of advantages over alternative exact
Riemann solvers discussed in the literature. In particular, it extracts the information
implicitly contained in the data for the two initial states in order to deduce the wave
pattern that will be produced by the decay of the discontinuity between these two
states. This, in turn, allows an “a priori” determination to be made of the interval
in pressure bracketing p, and the correct functional form for the nonlinear equation
whose root will solve the exact Riemann problem. All of these advantages translate,
in practice, into a simpler algorithm to implement and an improved efliciency in the
numerical solution of the Riemann problem.

Because of all of these advantages, its intrinsic simplicity of implementation and the
numerical efficiency gain which it produces, this new exact Riemann solver should
be considered as an interesting alternative to the traditional exact Riemann solver
presently discussed in the literature.

Evaluating the invariant jump in the velocities normal to the discontinuity surface is
also very useful in the case of multi dimensional flows. Under these circumstances,
in fact, the presence of tangential velocities is imprinted in the expression of the rela-
tive velocity and this feature has allowed us to reveal a new special relativistic effect
(Rezzolla & Zanotti, 2002). Unless the relative velocity between the two unperturbed
portions of the fluid along the normal to the discontinuity surface is zero (as in the
classical “shock tube problem”) it is always possible to produce a change in the wave

pattern by varying the tangential velocities in the initial states, while keeping the rest
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of the thermodynamic quantities of the Riemann problem unmodified. This represents
a new effect which has no analog in Newtonian hydrodynamics and provides an example

where considerations of numerics leads to the discovery of new physical effects.

We have performed general relativistic hydrodynamics simulations of axisymmetric
massive and compact tori orbiting a Schwarzschild black hole with a constant specific
angular momentum. These objects have hydrostatic and hydrodynamical properties
(i.e. large masses in small volumes with central rest-mass densities reaching almost
nuclear matter density) that make them behave effectively as neutron stars, while
possessing a toroidal topology. Our attention has been concentrated on two different

aspects of the dynamics of these tori.

The first one was focussed on the suggestion that the toroidal neutron stars might be
dynamically unstable to the runaway instability only if suitably chosen initial data were
prescribed. To investigate this we have used a time-dependent numerical code that
integrates the general relativistic hydrodynamics equations on a curved background
using HRSC methods. The evolution of the spacetime is an essential feature for the
development of the instability and has been modelled through a sequence of stationary
Schwarzschild spacetimes differing only in the total mass content, which 1s computed

in terms of the total rest-mass accreted onto the black hole at each instant. The
conclusion reached is that, at least for constant specific angular momentum tori whose

self-gravity is neglected, the initial Roche lobe overflow is not a necessary condition for
the development of the instability, which represents a natural feature of the dynamics
of these objects. Very recent mumerical work shows that this conclusion does not

necessarily hold when the specific angular momentum is not constant.

The second aspect was focussed on the dynamical response of these relativistic tori to
the perturbations that are expected to be present after the catastrophic events that
lead to their formation. Upon the introduction of suitably parametrized perturbations,
the toroidal neutron stars have shown a regular oscillatory behaviour resulting both
in a quasi-periodic variation of the mass accretion rate as well as of the rest-mass dis-
tribution. This response has been interpreted in terms of the excitation of oscillations
modes which could be associated with the p-modes of toroidal neutron stars. These
modes, which have been detected both in their fundamental frequencies as well as in
their overtones, depend systematically on the average density of the tori, and a disco-
seismologic analysis could provide important information on the physical properties of

these toroidal neutron stars.

High rest-mass densities together with a toroidal topology are the basic properties
that yield large mass quadrupoles for these toroidal neutron stars. As a consequence of
the excitation of oscillations, the mass quadrupoles are induced to change rapidly and
intense gravitational radiation is thus produced. Estimates made within the Newtonian
quadrupole approximation have shown that strong gravitational waves can be produced

during the short lifetime of these tori. In particular, the gravitational radiation emitted
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by these source is comparable or larger than the one that is expected during the
gravitational collapse of a stellar iron core, with a rate of detectable events which
could also be larger given the variety of physical scenarios leading to the formation of
a massive torus orbiting a black hole. Overall, the strength of the gravitational waves
emitted and their periodicity are such that signal-to-noise ratios ~ O(1) — O(10) can
be reached for sources at 20000 or 10 Kpc respectively, making these new sources of

gravitational waves detectable and potentially important.

The results reported here are a first step towards the understanding of the dynamics of
toroidal neutron stars and call for a number of natural extensions and improvements.
In particular, we plan to extend the simulations to the more realistic scenario of non-
constant angular momentum tori, in order to find out if our conclusions regarding both
the oscillation properties of toroidal neutron stars and the large amplitude of the asso-
ciated gravitational wave emission still hold. In addition, it is interesting to improve,
using more accurate approaches, the calculation of the gravitational radiation from
the oscillations as well as from the runaway instability in the region of the parameter
space where the instability could exist. Equally interesting is to include the effects
introduced by self-gravity of the torus and determine the quantitative differences that
will be encountered in this case. Last but not least, it is worth analyzing how the pres-
ence of a Kerr black hole would modify the present results, determining, in particular,

the dependence of this phenomenology on the spin of the central black hole.

The results obtained here also provide promising suggestions for further work in a num-
ber of research areas different from the ones considered here. Firstly, they indicate that
more needs to be investigated about the oscillation properties of relativistic tori and ge-
ometrically thick discs. Secondly, they suggest the possibility that the phenomenology
observed in the quasi-periodic X-ray luminosity existing in LMXB’s might be related,
in some form, to the quasi-periodic accretion resulting from oscillation modes of the
discs. Thirdly, and perhaps most importantly, these results show that new and unex-
pected sources of gravitational radiation could exist and might be observed when the

new detectors of gravitational radiation become fully operative in the near future.

A complete general relativistic description of the electromagnetic field of a slowly ro-
tating star, with misaligned magnetic field, is a challenging task. If the stellar medium
has a finite electrical conductivity it is possible to show that the stellar rotation re-
moves the degeneracy in the evolution equations for the magnetic field and that three
distinct induction equations need to be solved to account for the magnetic field decay.
In this Thesis we have solved numerically the general relativistic induction equations
(Zanotti & Rezzolla, 2002), investigating the effects of different rotation rates, different
inclination angles between the magnetic moment and the rotation axis, and different
values of the electrical conductivity. The aim of these numerical calculations is that of
quantifying the corrections induced by general relativistic effects (both due to space-

time curvature and to the stellar rotation) on the evolution of the magnetic field of a
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slowly rotating neutron star.

In order to single out purely general relativistic effects from those due to the micro-
physics of the Ohmic dissipation, we have considered a simplified physical description
of the neutron star. In particular, the star has been modeled as a polytrope rotating
with a fiducial period of one millisecond, the electrical conductivity has been consid-

ered to be uniform inside the star and we have not included a treatment to consider the
evolution of the stellar rotation and temperature. On the other hand, special attention

has been paid to obtaining a consistent solution of the initial value problem and for
the initial magnetic field we have taken a stationary solution of the general relativistic
Maxwell equations. In this way we have avoided the use of initial magnetic field config-
urations that are only approximate solutions of the Maxwell equations (e.g. solutions
of the Maxwell equations only in the limit of flat spacetime). Besides eliminating the
error entering during the initial stages of the magnetic field decay, our prescription
for the initial value problem also provides a more accurate solution of the Maxwell

equations.

The results of these computations have shown that there exist general relativistic,
rotation-induced corrections to the evolution of the magnetic field. These effects gen-
erally produce a decrease in the rate of magnetic field decay. However, their contri-
bution is masked by the high value of the electrical conductivity in realistic neutron
stars and can be neglected in general. Our calculations also indicate that general rela-
tivistic effects not induced by the stellar rotation can modify the time evolution of the
magnetic field in a magnetized star. Such effects are closely related to the properties
of the spacetime internal to the star and for a polytropic stellar model with uniform
electrical conductivity these effects generally increase the decay rate of the field. The
validity of this conclusion is however limited. Density gradients are in fact expected in
a realistic star and these will affect the behavior of the electrical conductivity which,

in turn, will influence the decay of the magnetic field.

Our conclusions are that the general relativistic evolution of the magnetic field in rotat-
ing neutron stars can be studied with confidence already in a nonrotating background
spacetime. However, the role of a curved background spacetime on the decay of the
magnetic field can be fully assessed only when the details of both a realistic equation

of state and a realistic electrical conductivity are carefully taken into account.

As a concluding remark we would like to underline that the results presented in this
Thesis reflect much of our personal view on a profitable approach to modern relativistic hy-
drodynamics. In this view, the investigation of aspects of "fundamental hydrodynamics” in
the search of new and more efficient techniques for the solution of the Euler equations is con-
tinuously married to the application of the above techniques to precise physical problems. We
have found this sinergetic exchange of experience between basic and applied hydrodynamics

extremely useful and fascinating.



Appendix A

Monotonicity of the relative
velocity as function of p.

This Appendix is devoted to the proof that v{, is a monotonic function of p,.. As mentioned
in the main text, this is an important property and the basis of our approach. In particular,
because of our choice of considering the initial left state as the one with highest pressure,
the proof of monotonicity will be obtained if we show that v{; is a monotonically increasing
function of p.. To simplify our notation we will drop the superscript “z” denoting the normal

component of velocity.

1 One-dimensional Flows

Denoting by o' the first derivative of the quantity a with respect to p. = p3 = ps/, it is
straightforward to obtain that the first derivative of (3.12) is

oo = Ull,c(l - U%,C) - 'Uf‘z,c(l - U%,c) (A1)
2 (1 —v1cvyc)? ' '

Since v1 ¢ < 1, v1¢ < 1, the two terms in the parentheses of (A.1) are always positive, and
the proof that vy is monotonically increasing will follow if it can be shown that v} , and

-v’2’c are both positive. We will do so for each of the three possible wave patterns.

Two Shock Fronts

Taking the derivative of the fluid velocity ahead of the left propagating shock front (measured

from the contact discontinuity) [cf. equation (3.18)] we obtain

(e1 +p1) [(es — e1)(es + p1) + (p3s — p1)(e1 + p3)es] (A.2)
201 c(e1 + p3)%(e3 + p1)? ' '

ro_
Ve =

Since the energy density is an increasing function of pressure, e§ > 0; furthermore, p3 > p1

and e3 > e; for the wave pattern considered and ’UlLC > 0 as a result. The equivalent
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expression for the derivative of the fluid velocity ahead of the right propagating shock front
(measured from the contact discontinuity) [cf. eq (3.19)] can be obtained by replacing in
equation (A.2) the indices 1 and 3 by 2 and 3’ respectively, i.e.

) (2 +p2) [(ey — e2)(es + p2) + (p3 — p2)(ea + py el ]

oo | A3
2.0 2u9 ¢ (e2 + par)?(ey + p2)? (4.3)

Since now for the wave pattern considered: vore < 0, p3 > po and ey > es, we are led to

conclude that _7)/2,6 > 0, thus making the overall v}, positive for any value of ps3.

One Shock and One Rarefaction Wave

In this case we only need to show that v . > 0 since for the velocity ahead of the right
propagating shock front we can use the results derived in (A.3). Taking the derivative of

expression (3.23) then yields

I 24" (p3) : y
e T ) (A4)

where

(v = DV2 £ ¢5(pr)| Ap(ps)@~V7D/2
(v = D2 = cs(p) [ [(v = 12 + es(p3)]?

Al (ps) = —4 ¢, (ps)

= —Cic(ps) (A.5)

where C7 > 0. When the sound speed cs(p3) is an increasing function of pressure, as is the

case for a polytropic equation of state [cf. eq (3.2)], v} o > 0 and therefore v}, > 0.

Two Rarefaction Waves

What we need to show in this case is that vj , < 0 since we can exploit the previous result

that v} , > 0. In this case, taking the derivative of expression (3.27) one obtains

I 24" (p3)
Voo = ‘m—_m ) (A.6)

where now

Y= DYt eslpr) | A-(py)PTYTTD2
)]2 Cs (p3’)

, _ 4l
Al(py) = 4 (v — 172 — ¢y (p2) | [(7 — D)V + ¢, (py

C2C; (p3) (A7)

il

with Cy >0 and therefore v, » < 0.
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We have therefore shown that for all of the wave patterns considered vi. > 0 and

—UIQ)C > 0, thus proving that vio is always a monotonically increasing function of p..

2  Multi-dimensional flows

In the case of multidimensional flows, a rapid look at expression (A.l) suggests that the
proof of the monotonicity will follow from showing that (v§)’ < 0 and (v3,)" > 0 in equations
(3.10) and (3.11),
In the case when a rarefaction wave is present, the proof is indeed straightforward. According
to (3.47) and (3.50), in fact, (v*)" across the rarefaction wave is negative when the rarefaction
wave propagates towards the left [implying that (v)’ is negative] and it is positive when the
rarefaction wave propagates towards the right [implying that (v3) is positive].
If a shock wave is present, on the other hand, a proof for the most general case and in terms of
simple algebraic relations cannot be given. On the other hand, a rather simple analytic proof
can be found in the simpler case in which v{ = v5 = 0; while this is certainly not the most
general case, numerical calculations have shown that the result holds in general. Consider
therefore a shock wave propagating towards the left!; after lengthy but straightforward
calculations it is possible to show that

Hy (Vs = of)(1 = Vo) — HiAp(1 — (vf)*)V] = Vi(Ap)®

gy = [F(V, = o5) + BpVP B

where we have set H) = hlple and Ap = p — p1 > 0, and where p is the pressure behind

the shock. If we now impose that vf = 0, we can write the derivative of (3.40) as

Vi J piw?

L= . A9
Vs J J?+ piWE : - A9)
Inserting (A.9) in (A.8) we can conclude that (v§)' is negative if and only if
J(03WE + J*)hy — p1ApT (o1 haWT + Ap) <0 . (A.10)
Using (3.44) to calculate J', one finds that (A.10) can be written as
p1(H1 — Ap) 1 pi(Hi+Ap) [1
——— e 2R < _ - — -2)| , Al

where p and ¢ are the rest-mass density and the specific internal energy behind the shock

front. Because the right hand side of (A.11) is always positive for any v < 2, the condition

1A similar analysis can be repeated for the right-propagating shock wave.
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2.5

1.5 -

0.5 —
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Figure A.1: The solid curve represents the Taub adiabat and the points A and B on it the
states ahead and behind a left-propagating shock wave. See the main text for a discussion.

for monotonicity (A.11) will be satisfied if its left hand side is negative, i.e. if

e —plé%%l—m =-a. (A.12)
At this point the proof can be continued graphically and making use of the Taub adiabat.
In the plane (h/p,p), in fact, the Taub adiabat (3.45) selects the points solutions of the
hydrodynamical equations across a shock wave, therefore connecting the state ahead of the
shock front with the one behind it. In Fig. A.1, this curve is indicated with a solid line and
we have indicated with the points A and B the states ahead (region 1) and behind (region
3) the shock front. Once an initial state A has been chosen, the mass flux will determine the
point B of the Taub adiabat solution of the Rankine-Hugoniot relations. Because of this,
the slope of the chord connecting the point A with B (shown as a dotted line in Fig. A.1) is
equal to —J?. Indicated with a dashed line, Fig. A.1 also shows the equivalent of the Taub

adiabat passing through the state A but having mass flux equal to o2 e

S <~ _ i) . (A.13)

The point B’ on such a curve represents the state behind the shock wave and, as it is clearly

shown in Fig. A.1, the slope of the chord AB’ is always larger than the corresponding slope
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for the chord AB, thus stating that the condition (A.11) is indeed verified and that (vg,)" is

therefore positive.




Appendix B

Newtonian limits of (@'12)25, (612>539

(@12>2]{

We here show that the three limiting values of (712),5, (012)s; and (912),, reduce to their
Newtonian counterparts in the limit of v,¢; — 0, and A — 1. In particular, we will restrict
ourselves to considering the case of a polytropic equation of state (3.2) and of a onedimen-

sional flow.
We start by considering the Newtonian limit of (012), [cf. Eq. (3.20)] which is obtained

when p/e < 1 and e — 1/V, with V = 1/p being the specific volume. In this case, then

(D12) 45 = ,\/(pl "Pgi(é — e3)
Newt 2
= /(p1 —p2)(1/ea — 1/&) . B.1)

which coincides with the corresponding expression derived by Landau and Lifshitz (1987)

but with inverted indices.
We next consider the Newtonian limit of (012), [cf. Eq (3.25)] which is obtained when both

cs(p3) € 1 and ¢s(p1) < 1. In this case,

N cs(ps) \ YT es(py) V7
e = (1-32) (e )
- <1 B 465(193)) (1 . 405(101))
v—-1 v—1

1
(

% (eals) — cslp)) (5.2
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so that the Newtonian limit of (012), is given by

N 11— Ai(ps)
(h1)ss] = —EE%
Newt = D3=p2
2 Cs (s
~ _ 165([71) {1 _ s(pB):l (B.3)
Y- Cs (pl) P3=p2
Bearing in mind that
cs(ps) 3 <pz)”_1)/27
65@1) P3=Pp2 P
we obtain
) 2 p9>(7—1)/2w
U19) o = — c 1—-1= , B.5
(U12) sr et v -1 s(p1) { (PL (B.5)

which again coincides with the corresponding expression derived by Landau and Lifshitz
(1987) but with inverted indices.

Finally, we consider the Newtonian limit of (012),, [cf. Eq (3.29)] for cs(p1),cs(p2) < 1. In
this case S; and Sy in (3.32) and (3.33) can be approximated as

S]_ ~ 1 _|__ 465 (pl) ,
v—1
4es (p2)
~ 1- . B.
53 - (B.6)
so that the Newtonian limit is given by
i S~ 5, {4%md te)] | }”
. - - |- - 2+ —
(’Ulg)“R Newt Sl _I__ 52 ,Y _ 1 ’Y - 1 ,_)/ o 1[05(}?1) Cs(pQ)]
2¢5(p1)  2c5(p2) | [,
) 2001 2 ) - )

~235<p1) _ ch(pQ)
v-1 y—1 "

(B.7)

Once more, expression (B.7) coincides with the corresponding expression derived by Landau
and Lifshitz (1987) but with inverted indices.




Appendix C

A closed form solution in the case
of Two Rarefaction Waves

As discussed in Sections 3.3 of Chapter 3 for the onedimensional Riemann problem, when
(012),, < (vi2)o < (D12)gg, the initial conditions give rise to two rarefaction waves and it
is possible to derive a closed form solution for the unknown pressure p.. In this way we
can, at least in principle, avoid any numerical root finding procedure and determine the
solution exactly. In this Appendix we first derive this analytic solution in the context of
relativistic hydrodynamics and then calculate its Newtonian limit. We will restrict ourselves
to considering the particular case of a polytropic equation of state (3.2).

Using expression (3.16) we can write the pressures p3 and pa as functions of the sound speeds

cs(p3) and cs(ps) which, for convenience, we will hereafter refer to as « and z' respectively

2 ¥/ {r—1)
_ ey [t =)
pso= h [ﬂv—w—vﬂ ’ (G-1)
’ /(v=1)
o yeen [ @01 )
o= ] e

where k1 = p1/p] and ky = pa/ py are the two constants entering the polytropic equation.

Since p3 = py = p«, we can obtain the following relation between z’ and z:

) v(y — 1)z
T T ey g (©3)

where o = (k1 /k2)*/7. The expression for the relative velocity (3.29) can also be written as

Ay(ps)  1—(vi2)o
A (ps) T+ (om)o (C4)

and we then use expressions (3.24) and (3.28) to expand the left hand side of (C.4). After
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some algebra we are then left with

() (52 - e (o) ) oo

where I'? = v — 1 and the right hand side of (C.5) is a constant which we rename as

= [Eel)] [T el 1 (o] e

Introducing now the auxiliary quantity

1+1I
p= 110 (C.7)
expression (C.5) can be written as
[(zf—T)7° ‘
(¢)? = [—;_m )} : (C.8)

Comparing now (C.3) and (C.8) gives a 4-th order equation in the unknown sound velocity
z

apz* + a1z’ + az® +azz +as =0, (C.9)
where
a = 1-F(1-a), (C.10)
a1 = —2laf, (C.11)
ay = T1-a)(f?-1), (C.12)
as = 288, ‘ (C.13)
a; = —ol*. (C.14)

The analytic solution of equation (C.9) will yield at least two real roots, one of which will
be the physically acceptable one: i.e. positive, less than one, and such that the pressure p.
falls in the relevant bracketing interval.

In its Newtonian limit, equation (C.9) reduces to a second order equation in the unknown

sound velocity
1 .
(5—1> 2428z -%2 =0, (C.15)
where

—1)
2

Y = cs(p1) + cs(p2) + 5 V1 , (C.16)
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and vp = v, — v2. The fact that the Newtonian Riemann problem in the case of two
rarefaction waves can be solved analytically is well known and is at the basis of the so called
“Two Rarefaction Approximate Riemann Solver” (Toro 1997) described in Section 7.3 of
Chapter 2.



Appendix D

The numerical solution of the
induction equations

In this Appendix we provide the explicit expressions for the coefficients f;, ¢;, h; appearing

in the new form of the induction equations (8.21)—(8.23)

c2e®2h  2,-2A 2
— — tan A(1 — 2sin® 8
A = (47m)2w an A( sin” 0) ,
2p®—2A a2
fr = _4_7r_5~_(<1>77ﬂ —A,)+ e tan A(1 — 2s5in? 0)(Q® , + wA . —w,) ,
/ —2ce 2wc” 8119@3
= - I T
3 dror? (dwor)? vy
—2¢2e~ 00 3
fa (4mo)? WSt Uy
2c2e 00 :
f5 = Wtan Al — 2 sin” 0) (2, (Q+w) —wr),
-9 2 —P-—-A
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2e®-28 2,-20 Q\I/‘
g1 = - =W cosf— |
o 4o (4mo)? U,
2 ,&-2A 2,—2A
c’e c’e Uy
g2 = - A+ —cos—[® , (2w — Q) +wA , — 2w
g2 Ano )7 (47(0)2 \112[ ,7( ) T ,r] ’
2,.® o —a
c*e® cosfsiny we .
= cos A+ sin ) ,
g3 (dro)r? sin® 0T ( 4dro )

026—-2}\ \:[13 ,
B (4770-)2 cos 9_\‘1—,— [w,TT - w,r<A,r + 2@,1‘) + @,rr(ﬂ — w) + (Ld — Q)(@} -+ ®,TA,7‘)} ,
2

e AT, w 0\113
g = (4wo)r? ¢ T ame T,
c262f1>——A ) C‘ZefI)——A \IIS 2
5 = ——5(0r— =) = g costl—(wr——),
g (47rcr)7“2( "’ r) (dwor)? cos \Ilg(w’r T )
e 2 L :
g = ~lno)? cos 9—@—2 @ r(w—Q)—wy],
2 ,—2A N\
g = L8 o502 [®p(w — ) —wr + D2 — ) + B2 - w) w20, +A,)]
(4mo) Wy
2,&—2A ®
ce we
hy = 1- t A
" dro ( dno O )
2,020 [ ,—®
hy = € e—-cot/\(wCIDTerAT—wT)—AT ,
dro  |4mo ’ ’ ’ ’
2 & -
ce we
hy = ————F——— 11— cot A
’ (4mo)r2sin? @ ( dro >
P2 we™® A
hy = 1— cot A
! (dmo)r? [ dno ]
2.,28—A -2 ~-2
c’e 2 we e~ % cot A
hy = ~ 30— )+ e, -
b (4mo [(@T 7')(1 xo )+ dro (W& —ws)]
2,0 -
c‘e we
he = 1- tA ) .
° (dmo)r? sin29( dro >



Appendix E

Implementing surface boundary
conditions

This Appendix shows how the surface boundary conditions expressed by equations (8.30) and
(8.34) can be implemented in a numerical code. By adopting the standard finite-difference
notation in which v} = u(z;,¢") and assuming a uniform radial grid with J gridpoints, the

finite difference form of 'eq. (8.34) is given by
Fjlyy = Fjy =21(n)AzF} /R, (E.1)

where Az = z; — zj_1, At = t"*! — " The unknown value of ﬁ}”l, comes after introduc-
tion of (E.1) into the Crank-Nicholson scheme, centered at J; lengthy but straigthforward

calculation give

Q(fPFp_, + T + PR+ fRAL)2 — fPa + (n)als(fFAz/2 + f7)/R]

frada(H,, — 7 ,)/2+ f2G AL + flalz(Gn, — G2
L= f7 A2+ fi o — T aAs (£ /282 + f7F)/R

; (E.2)

where o = At/Az?. The are still two unknowns entering (E.2), i.e. éf}ﬂ and I-IZ}“+1.
However, they represent the external solution and by using egs. (8.31) and (8.33), they can

be written as

T N2M (R+Az)InN?/M +1/N? +1 B (8.3)
TH T T R4+ AT  InN? +2M (1 + M/(R+ Az)) /(R +Az) 70
where N is the value of N at R+ Az
. onf \1/2
N=N :(1— ! ) : (B.4)
RiAz R+ Az
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The updated values of G and H now follow immediately from (8.33) with time evolved value

of F7*! given by (E.2).



Appendix F

The stress formula

In this Appendix we derive equation (5.29) showing that the wave amplitude can be cal-

culated avoiding any time derivatives. We recall that AZ2 is defined as the second time

derivative of the mass quadrupole moment of the source

d 1
AE2 = kc—ﬁz— {/p <—222 - —2‘> 'réldrdzZI , (F.1)

where z = cos0 and k = 167/ 2 /4/15. However, this definition would pose serious problems
from a computational point of view, because the discretization of the time derivative causes
high frequencies noise in the gravitational wave signal, with noise amplitudes that are often
larger than the signal itself. Therefore, as explained in Chapter 5, the standard practice is
to use the Euler equations to replace time derivatives with spatial derivatives. Let us first
rewrite (F.1) as

d2

AE2 = ks / pUridrdz, (F.2)

where ¥ = %(37;2 —1)r2. The total time derivative of ¥, assuming axisymmetry and station-

arity (0; = 94 = 0), is given by U = !9, ¥, which, after straightforward calculations, leads

to

d _ r 2 : %
ZU=r [v (322 — 1) — 3zsinfv ] . (F.3)

Now, (F.3) can be further derived as di;—‘ll = 8,0 +1'9; ¥, where

o =r [(Bz2 —1)0pw" — 3z sin@@tvg} . (F.4)
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It is as this stage that Euler equations are used, in order to express d,v” and 9 as

4\2 ®\2 [ 1
o = CIEOT g - g — 60— Lo (F.5)
T T 0
b\2 r,,0 0 1 1
o’ = () cotd — 2 v ? — 1801)0 — —0p® — —Opp, (F.6)
T T T T rp

respectively, where ® is the Newtonian gravitational potential. Very lenghty calculations
allow to write (F.4) explicitly, which in turn leads to the following expression for the wave

amplitude (F.1)
AE@ = k / p[(322 — D2 +03(2 - 327) - v?ﬁ — 621 — z2vgu,
1 1
—(322 = 1)r <8T<I> + ;@p) + 321 — 22 (89@ + ;89]9)} r'drdz.  (F.7)

The last step in our analysis constists in showing the pressure gradient terms do not actually
contribute to the intergral (F.7), and that it actually reduces to the stress formula (5.29)

given in Chapter 5. To this extent, let us isolate the term
C = / { (322 — 1)r= 57p+32\/1 —z2= 89p ridrdz, (F.8)

which appears in (F.7). We now recall that dpp = —V'1 — 229,p, and define the function
f = (2% — 2)r®. This allows a direct integration by parts of (F.8), where the domain of

integration is [0, +oc] in the coordinate  and [0, 7] in the coordinate 6
C = / / —(32% = 1)r*0,p + 3(2° — 2)r?0,p| drdz
1 00
= / / (=0, fOrp + Or fO,p)drdz
-1Jo

o] 1
= = [Toromati+ [ of op ailp (F.9)

However, the first of these two last integrals is trivially zero, and the second one also vanishes
if the physical system is confined within a certain radius, i.e. pressure is a function with

compact support. As a result, the term C in (F.8) vanishes and the stress formula is obtained.
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