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INTRODUCTION

The aim of this thesis is to prove a general maximum principle for conjugate boundary
value problems and deduce a variety of applications to linear and nonlinear problems.

This work started from a problem raised by Prof. Vidossich during a class. He pointed
out the following. Erbe and Wang [15;14] published some existence and multiplicity results
for positive solutions to singular two-point BVP whose proofs are centered on a tricky in-
equality on the interval [1/4,3/4] for the Green function of the two-point BVP on [0, 1].
Prof. Vidossich asked for a generalization to multipcint BVPs. The difficulty in the exten-
sion lies on the fact that Erbe-Wang’s inequality depends heavily on the simplicity of the
Green function in the two-point case. It is not clear even what should be the counterpart
in the multipoint case.

Working on this question, I proved the following maximum principle for conjugate BVPs,
inspired by an inequality established by Pokornyi [20] in a special case:
Ly > 0

y(j)(ai):(), 1<i<m, OSjSki~1} = Sp(y(t) = e®)ylle

where Sp indicates the sign of the Levin polynomial P(t) = H:il (t —a;)® and ¢ is a
continuous function with the property

o(t)
)

A SIS
B = @ O

for a suitable ¢y. The proof is somehow involved, it is based on Levin's theorem about the
sign of the Green function, and on Polya’s factorization of disconjugate linear differential
operators. Polya’s theorem claims that Lz = z(™ 4p; (£)z(»= .. +pn( )z is disconjugate
if and only if L admits the factorization

Lx =1 UnDi‘D‘DiI‘ ,
Un (%]
where D = £, v; € C"~1([q,8]) and v; > 0. It follows that every “suboperator”
Lk,:L‘ = —-D D-—ﬂ?
U1

is disconjugate. We use this idea repeatedly in order to get a successive lowering of the
order of the equation under consideration, as a fundamental ingredient in the proof of the
maximum principle.



The maximum principle suggested the definition of two new ordered Banach spaces:
(i) a vector subspace of C°
X = {1: eCl: jz(t)]| < JP®)], a<t<b; withc= c(z)}

endowed with the norm

lzllp = llzllec + sup
¢

and the cone -
K = {mEX:ASp(t)x(t)z(), a_<_t§b}

We show that int(K) is nonempty and that the linear operator T' associated to the Green
function is strongly positive. In this way, we can apply the strongest version of the Krein-
Rutman theorem [avoiding the use of Krasnosel’ski’s order unit as well as of any differen-
tiability property of the Green function| in order to study the existence and the property of
the principal eigenvalue A;(g) of

Ly:Aq(t)y
ya) =0, 1<i<m, 0<j<ki~1

where ¢ € L. Tt is found that A;(g) is the inverse of the Vspectral radius of 7' and has an
‘eigenfunction in int(X). Several applications to nonlinear BVPs are obtained.

(ii) CO ordered by the cone
K = {m €C®: Sp(t)e(t) > o)zl , a<t< b}

This allows the use of Krasnoselski’s theorem about the compression/expansion of the cone,
in order to study singular problems in analogy to the mentioned work of Erbe and Wang.

The detailed content of the thesis is the following.

In §0 we recall the notations, definitions and main well-known results needed in the
sequel, in order to make the thesis self-contained. Our terminology and notations are the
most traditional ones, being based on the book Elias [9].

In §1 we prove the above mentioned maximum principle and we show that it includes
several known inequalities.

§2 provides the detailed study of the ordered Banach space and the eigenvalue problem
mentioned in (i). We prove existence and comparison results for the principal eigenvalue
when ¢ € L. Besides the key role of the new Banach space, the argument is based on
a particular approximation of g by continuous functions g obtained by suitably glueing

together the approximations of ql[a. atpa] by continuous functions with compact support in

]ai, a+1]; the maximum principle is applied to each g, and we pass to the limit to reach the
desired conclusions.



§3 is devoted to the study of the existence and multiplicity of positive solutions to
conjugate BVPs for nonlinear equations Ly = f(¢,y) when f is singular [roughly speaking,
this means that of the two limits

f(t.y) it y)

=lim ~——~+ and [, = lim —2*=%
fo. A ] nd -, yTIélo Y

one is finite and the other is infinite]. There are two types of results:

(a) those concerned with solutions y that are positive in the traditional sense, i.e. y(t) >0
for all £. They are obtained by applying the maximum principle of §1 in the context of the
ordered Banach space mentioned in (ii);

(b) those concerned with solutions y which belong to the cone introduced in (i). Their
proofs are based on the comparison of the principal eigenvalues stated in §2.
In both cases, the nonlinearity enters through an application of Krasnosel’skii theoren on
the compression/expansion of the cone.

In §4 we prove some uniqueness and existence theorem similar to the well-known results
for nonresonant elliptic problems with the nonlinearity below the eigenvalue.

In §5 we apply the theorems of §3 to extend to arbitrary conjugate BVP the bifurcation
results of Agarwal-Bohner-Wong [2]. Our assumptions are less general and the proofs are
quite different leading to a kind of Ambrosetti-Prodi alternative for the parameter \.

To finish, we remark tha‘p

(i) The Theorems stated in §3, 4 and 5 have immediate corollaries on the solvability
for differential equations on annular domains since the problem

—-Au = g(|z]) f(u)
u=0 on 90

where
Q:{:L‘ERN: ri<l|z|<rz}; with 0<ri<ry and N>2 ,
has a radially symmetric solution
u(z) = v(z))

if and only if v is a solution of the BVP,

v+ T’ = —g(t) f (v)

v(ry) =0

viry) =0,
with the observation that the second order differential operator

Lz = z”+-]i—£_:—l—z'



is always disconjugate on [ri,r2] CJ0, cof (cf. Proposition 0.4-(1)).

(i) The content of this thesis produced the papers [7], [8] and [25].
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STANDING NOTATIONS

When we consider a conjugate BVP [cf. §0 for the definition];
Ly =f
yW(a) =0, 1<i<m, 0<j<ki—1

it is understood that a =a; <+~ <am =5, 2<m<n and > . k=n.

P denotes the Levin's polynomial P(¢) = [[i~, (¢t — a;)" associated to the given
conjugate BVP. ' '

G denotes the Green function associated to the given linear conjugate BVP.

T, denotes the linear operator defined by
b
Tz(t) = / G(t,s)q(s)z(s) ds .

£(2) ]
S; denotes the sign of the function f: Sf(t) = { [/ i s (t)_# 0
0 otherwise

» < denotes the order relation defined by the cone under consideration.

When a notation is used several times in a section, then it is mentioned in the beginning
of the same section.



50. PRELIMINARIES: Notations, Definitions and fundamental
results

In this section we state the notations, definitions and the main well-known results needed
in the sequel. We shall not provide the proofs of these results since they are long and involved,
above in the case of the results related to ordinary differential equations in §0.A, 0.B and
0.C [The reason why these proofs are long is because they are based on a detailed algebraic
analysis of the generalized Wronskian; i.e., the Wronskian evaluated at the boundary points
with the corresponding order of derivation).

Qur terminology and notations are based on the book Elias [9].

Let a < b be two real numbers and donote by C([a, b]) the set of continuous functions on
the compact interval [a,b]. Given any positive integer k, C*([a,b]) will hold for the set of
functions k times continuously differentialble.

We shall deal with n*-order linear differential operators of the form

Lz =z +p ()™ D + -+ otz

where n is a positive integer and the coefficients py,- -, Pn are continuous functions.
0.A Disconjugacy

Definition 0.1 An nt-order differential linear operator L defined by
Lz =™ + py(0)z™ D + -+ p ()

is disconjugate on an interval I C [a,b], if every nontrivial solutions has less than n zeros
counting their multiplicities.

Theorem 0.1 (Polya Factorization) An ni*-order differential linear operator L;
Lo =z™ + pi()al™ D + -+ po(t)z

withpy,- -+, pn € C([a,b]), is discongugate on [a,b] if and only if L has a Polya factorization;
that is, there ezist n smooth positive functions v; € C"**1([a,b]), 1 <14 < n, such that

1 1
Lx:vl---van——D---D;-z for every z € C"([a,b]) ,
n 1

- 4
where D = ;.



Proof:
Cf. [6, Theorem 2 at page 93 and Theorem 3 at page 9d]. O

Remark 0.1 Note that any Polya factorization can be performed into a Mammana fac-
torization (and vice versa). In fact, given smooth positive functions v; € cn=*1([a, b]),
1<i<n,

vl---vnD——l—D---D-}—m = (D—-up)- (D —w)zx
Un V1 -

with

1 4

w=2 o+ e CHab]), 1Sign
1

(vice versa v;(t) = exp(ft(ui(s) —u;_1(s)) ds), 1 <i < n, putting up =0).

The simplest example of disconjugate operator is Lz = (™,

The following two propositions provide general examples of linear differential operators
as regards disconjugacy.

Proposition 0.2 Let
Lo = o +p1 (52" + -+ pu(t)e

be an nt'-order differential linear operator with continuous coefficients p1,--+, DPn. Then
there ezists a positive real number £ > min{1, ﬁ}, where M = Ipillco, such that L is

max
1<i<n
disconjugate on any subinterval of [a,b] with length less than £.

Proof:
Cf. [6, Proposition 1 at p. 81] and see [9, p. 1. 0

Proposition 0.3 L is disconjugate on [a,b] if X(b—'zﬁ) < 1 where x is defined by

X(h‘) — Z h’Z”p'LHoo

SR

Proof:
Cf. [6, Theorem 1 at p. 86]. O



In the second order case, we have the following supplementary criterias.

Proposition 0.4
(1) The second order linear differential operator g+ plt)z + qt)z; = € C*[a,b)),
p,q € C([a,b]), is disconjugate whenever g fulfills

o) <0, a<t<b .

(2) The second order linear differential operator ' +q(t)z; © € C*([a,b]), with q €
C([a, b)), is disconjugate whenever q fulfills

b
d)>0, a<t<b, ond /q(s)ds < b‘*
a —-a

Proof:
For the statement (1) cf. [21, Theorem 3 at p. 6], and for (2) cf. [6, Theorem 13 at p. 21}
O

The following assertion gives a structure of the set of disconjugate linear differential op-
erators, showing that there are enough of them.

Proposition 0.5 Let £ be the set of all nth-order differential linear operators of the

form
Lz = 3™ +p ()Y +- -+ pa(t)e

with coefficients p1,- -+, Dn CONLINUOUS OV [a,b]. Let define the distance in L from Ly to Lo
with
Liz =z(™ +pi,1(t)z("“1) +eotpiatl , =12, by
"
d(Ly, Lo) = max, z:l |p1,5 () — p2,5 (8)]
]:

Then the subset consisting of all disconjugate nth-order differential linear operators of L is
connected and open in the metric space (L,d).

Proof:
Cf. [6, Proposition 9 at p. 95]. O

0.B Conjugate boundary value problems

Definition 0.2 Let n, m and ki, -+, km be positive integers such that 2 < m <
S ki=mn andlet a =0 < < am = b be m ordered real numbers. We. call

10



(ai,---»am; ki, -, km)-conjugate boundary value problem, shortly Conjugate BVP, the
problem of finding a solution to

L£E=f(t,$),
(@) =0, 1<i<m, 0<j<k—1

where [ is a given function.
We are particularly interested in the eigenvalue problem for conjugate BVP

Lz = Mp(t)z .
e a;) =0, 1<i<m, 0<j<ki—1

that will be studied in §2.

With this, we can rephrase the definition of disconjugacy: L is disconjugate if and only
if A = 0 is not an eigenvalue of any conjugate BVP for L.

Definition 0.3 Letn, mand ki, -, kn be positive integers such that 2 <m < Z:;l ki =
n andlet a=a; < - < am =b be m ordered real numbers. Then the Levin polynomial
P of the conjugate BVP

L.’L‘=f(t,1') ’
zW(a;) =0, 1<i<m, 0<j<hk—1

is defined by

m

P(t) = [t - a0)*

i=1

0.C Properties of the Green function of a disconjugate linear differential equa-
tion associated with a conjugate boundary condition

Assume that L is disconjugate on [a,b]. Let n, m and ki,---, km be positive integers
such that 2 <m < Y iv, ki =n and let moreover a = a1 < -+ < G = b. Then the Green

function of the equation
Lz =0

associated with the (a1, **,@m; k1, -+, km)-conjugate boundary condition is the unique real

function G defined on [a,b] x [a,b] and satisfying the following conditions:

(i) as a function of t, G(t,s) satisfies the equation Lz = 0 on the two intervals [g, s
and ]s, b] with the boundary condition

J
%q(aias)zOv 1_<_'L_<_ma OSJSkz"'l

11



(ii) as a function of ¢, G(¢,s) and its first n — 2 derivatives are continuous at t = s, while

an-1G L Te
5 08 - 55

As a result, given f € C([a,b]), z € C™([a,b]) is the solution to

(s—0,8) = 1.

if and only if

Theorem 0.2 (Levin) Assume that L is disconjugate on [a,b]. Letn, m and ky, -+, kn
be positive integers such that2 < m < S ki =n andlet moreovera =a1 < -+ < Gm =b.
Furthermore, let P be the Levin polynomial. Then

(i) the Green function G of the boundary value problem

Lz =0,
W (a;) =0, 1<i<m, 0<j<k~1

has the sign property
G, 5)Pt) >0, a<ts<b .
t,5

(ii) the quotient map (t,s) P(t)) has a continuous extension to [a,b] x [a,b] with

positive infimum.

Proof:
For (i) cf. [6, Lemma 14 at p. 106] and for (ii) cf. [6, Theorem 11 (and its proof) at p.
108]. d

0.D Cones and the Krein-Rutman Theorem

Definition 0.4 Let X be a Banach space and K a nonempty subset of X. Then we
say that K is a conein X if

(i) (@K +pBK) C K, forall o,8>0

(i) KN(—K)={0} and

(i) K is closed.

12



Remark 0.2 If K is a cone in a Banach space X, then the relation <, in X defined
by
=,y <= y—zekK

is an order relation in X compatible with the addition, the multiplication by nonnegative
scalar as well as the convergence in X. Hence we say that (X, K) is an ordered Banach space.

Vice-versa, if < is an order relation compatible with the addition, the multiplication
by nonnegative scalar and the convergence in X, so that (X, <) is an ordered set, then the

set
K={zeX: 03z}

is a cone in the Banach space X.

Definition 0.5 A cone K of a Banach space X is said to be:
(1) reproducing if the linear subspace K — K coincides with X; that is, X = K — K,
(2) total if K — K is dense in X; that is, X = K ~ K.

Remark 0.3 If X is a cone with nonempty interior in a Banach space X, then K is
reproducing since K — K holds then for the only linear subspace with nonempty interior in
X.

Definition 0.6 Let K be a cone in a Banach space (X, || ||). Then we say that the
cone K is normal if the norm || || is (monotone) increasing in K; that is,

02z =2y = |z <l -

Definition 0.7 Let X be a Banach space and K a cone in X. Then a bounded linear
operator T : X — X is said to be:

(1) positive with respect to K if
T(K) ¢ K
(2) strongly positive with respect to K if (K has nonempty interior int(K) and)
T(K) C nt(K) .

13



Follow now two famous versions of the Krein-Rutman theorem.

Theorem 0.3 Let K be a cone with nonempty interior in a Banach space X, and let
T : X = X be a strongly positive linear compact operator on K.

Then the spectral radius of T', v(T"), is an algebraically simple eigenvalue of T and T™ hav-
ing associated eigenvectors (unique up to normalization) in int(K) and int(K™) respectively,
where T is the adjoint of T and K™ is the dual cone of K; that is,

K* = {f*eX*:<f*,u>2 0 for all uEK}

Proof:
Cf. [24, Theorem 7.C at p. 290]. O

Theorem 0.4 Let K be a total and normal cone in ¢ Banach space X. Suppose that
T : X — X is a positive linear operator (with respect to K) and some iterate of T' is com-
pact. Assume moreover that for some x € X \ (=K, natural number k, and some positive

real number o we have
Tz = az .

Then the spectral radius of T, v(T'), is greater than or equal to a and is an eigenvalue of T
with an eigenvector in K.

Proof:
Cf. [17, Theorem 9.4 at p. 89] and [19, Corollary 2.5 at p. 62]. O

0.E Krasnosel’skii compression and expansion of the cones
Definition 0.8 Let (X,K) be an ordered Banach space and A a completely continu-

ous operator on X, mapping K into itself. Then we say that

(1) Ais a compression of the cone K if there exist two positive real numbers 7 < R such

that
O<|lz||<r, z€ K = z-Az¢K, and

Izl >R, z€ K = Adr-z¢K .

(2) A is an ezpansion of the cone K if there are two positive real numbers r < R such

that
0<|jzl]<r, ze K = Ar-z¢ K, and

Izl >R, z€ K = z-Az¢K .

14



Theorem 0.5 Let (X,K) be an ordered Banach space and g1 # g2 be two positive real
numbers. Let moreover A : K — K be a completely continuous map such that

(i) for any z € K with ||z|| = 01, we have Az -z ¢ K, while
(ii) for any z € K with ||z|| = g2, we have z - Az ¢ K .
Then A has a fized point u € K such that

min{g1, 02} < llu|] £ max{oi,e2} -

Proof:
Cf. [16, Theorem 2.3.3 at p. 93]. O

15



§1. THE MAXIMUM PRINCIPLE

In this section we prove a maximum principle for conjugate boundary value problems
aiming to unify the known results. Concerning maximum principles for multipoint boundary
value problems, the direction goes back to Pokornyi [20] who established some inequalities
in 1968, on the basis of the differential properties of the Green’s function for a multipoint
boundary problem proved by Levin, and applied them conjointly with Krasnosel’skii [18].
Subsequently, in 1996 R.P. Agarwal [1] and [2] appealed elegantly on Hermite interpolations
to prove a generalization of a series of maximum principles due to Chow-Dunninger-Lasota,
Dunninger, Kuttler and Seda, with some application. Meanwhile, L.H. Erbe and H. Wang
[15] proved an existence result for singular two-point boundary value problems whose proof
is based on a variant of Pokornyi’s inequality. This has attracted the interest of many math-
ematicians, who managed to extend to multipoint boundary value problems, the results of
Erbe and Wang, c¢f §16 of [3] for the pertinent and up-to-date references.

Special cases of our theorem include the inequalities of Pokornyi [20], partially the max-
imum principles of Agarwal [1] and Eloe-Henderson [13], and imply the inequalities of [11],
[12] and [23].

The proof is based on a repeated use of the Levin’s Theorem 0.2 about the sign of the
Green’s function, and on a successive lowering of the order of the equation by using Polya
factorization for disconjugate differential operators.

We shall consider n** order differential operators of the form
Lz = :L'(”) +p (t)z("'-—l) oo +pn(t):t:

where the coefficients py, - -+, pn are given continuous functions on [a,b]. Let P denote the
Levin polynomial.

Besides, given f € C([a,b]), we set ||fllc = sup |f(¢)] and
a<t<b

2O ) #£0
Sf(t)= HOI
0 if f(t)=0

QOur main result is the following theorem

Theorem 1.1 If L is disconjugate there erists a continuous function v, strictly positive
on U;Zl]ai, a;v1[ with ¢/|P| having a positive infimum on U;’;l}ai, aiy1[, such that

Sp()y(t) 2 eyl , a<t<b,

16



for every y € C*([a,b]) satisfying the differential inequality
Ly > 0
and the homogeneous Hermite m-point conditions

yNa) =0, 1<i<m, 0<j<k—1.

Remark: An explicit evaluation of p is given at the end of the proof. In fact the function ¢

may be taken as o(t) = min{|a(®)|/]|2llo, 18(E)|/||8]loo }; where e is any nontrivial solution
(which is unique up to a multiplicative constant) of the boundary value problem

Lz =0,
tW(a) =0 if 0<j<hk—2,
gW(a;)=0 for 2<i<m; and 0<j<hki—1,

while 3 is any nontrivial solution (also unique up to a multiplicative constant) of the bound-
ary value problem

Lr=0,
2 (a;) =0 for 1<i<m—1; and 0<j<ki~1,
g (am) =0 if 0<)<km—2,

in agreement with the results of [11], [12] and [23] for special cases.

Proof of Theorem 1.1:
Since the equation Lz = 0 is disconjugate on [a, b], L has a Polya factorization

Lz = vn+1D——1—-D . -Dix
Un vy
where D = d%, v; € C" " ay,am] with v; > 0,4 = 1,---,n , and vp41 = V1 -+ Vg, by
Theorem 0.1.
Now let y € C™([a,b]) satisfy Ly > 0 and y(a;) =0, 1 <i<m, 0 <5<k — 1 Then
there exits 7 € U:-’;Il]ai,ai.i.]_[ (that we fix at once) such that |y(7)| = ||y||c, and we see
from Levin’s Theorem 0.2 and Ly > 0 that y(¢)P(¢) > 0. This implies

ly®)] = Sp(t)y(t) , a<t<b . (L.D)

Let P; denote the polynomial (¢ — T)z-i—(z%.

To achieve the conclusion, at first we deduce a series of inequalities.

Case 1: Suppose that for [ = 1 or [ = m we have k; > 2. Then there exists a unique
function ; satisfying

1
Un -1

Lp. i ...pLXpD = 1
;}:Dvn-—l D'u1 Ql =1 = Un+41 'unD

QP (a)=0 for 0<j<k-2,
Q) =0 for 1<i<mwithi#l, and 0<j <k —1

10, —
+D=Qr = vnq1

17



because of the disconjugacy on [a, b] of the (n — 1)t* order differential operator

! 5...pt, ’
Un-1 U1

vy - Up1D

by Theorem 0.1. If g; is the Green’s function of the related homogeneous problem (i.e., the
Green’s function associated to the right handside problem according to §0.C), then from the
relation

b
Qut) = / a1(t, 8)unsa(s) ds

and the fact that P(t)/(t—a;) is the corresponding Levin’s polynomial, it follows by applying
Levin’s Theorem 0.2 that @Q; (t)'(?}z—(«i_):) > 0, hence

Sq,(t) = Sp(t)S(. —ay(t)
so that
Sp(r) = S(. —ay(T)Sq,(r) and Sp(t) =S —-n(t)Sq,(t), a<t<b . (1.2)
‘We have moreover @; # 0 and

LQl:O7
Wig)=0 for 0<j<hk—2,
QW(a)=0 for 1<i<mwithi#l, and 0<j<ki—1,

whereas
P @) # 0 # Qulr)

otherwise we would have a non-vanishing solution of Lz = 0 with n zeros in [a, b], counting
multiplicities, against the disconjugacy of L.
Since y is the unique solution of

L.’E:Ly,

m(T):yT)7

IE(J)(GZ):O for O_<_]Skl—2a

2 (a;)) =0 for 1<i<mwithi#[l, and 0<j< ki —1,

from the classical representation by solutions of homogeneous and non-homogeneous prob-
lems, we have

_a®
Qi(7)

where G, denotes the Green’s function of the conjugate boundary value problem:

b
0 y(r) + / Gu(t,a)Iy(s) ds, a<t<h;

Lz=0,

z(r) =0,

zW)(q) =0 for 0<j <k -2,

2@ (a;)) =0 for 1<i<m withi#!, and 0<j<ki—1.

18



Noting now that Sp, (¢)G1(t,s) > 0 and recalling that Ly > 0, we have for every ¢ € [a, 1],

Sa () > SP‘—&%@M .

Hence, from (1.1), (1.2) and the definition of S;(t), we have

i
Sn e > 2Ol s 08 (), a<t<s (13)
|Qu(T)
Case 2 Suppose that ki = 1. Then there exists a unique function g; such that
qu =0 )
qi(a) =1,

¢ (a)=0, 2<i<m, 0<j<h—1

since the equation Lz = 0 is disconjugate on [a,b] (see [6, Proposition 1 at p. 1] for the
evident existence, while noting that the uniqueness follows from the disconjugacy). Observe
(again by disconjugacy of Lz = 0 on [a,b]) that g1 cannot have other zeros, counting
multiplicities. Therefore ¢; has the same zeros with the same respective multiplicities as
t — P(t)/(t — a1), so that for either ¢ = 1 or € = —1, we have S, (t) = eSp(t) for every
t €la, b]. Then we have

w0 = 28y 4 [ G ome o, asish

where G5 denotes the Green’s function of the conjugate boundary value problem:

sW(a) =0, 2<i<m, 0<j<hki—1.
Applying again Levin’s Theorem 0.2, we get ‘
Sp, (t)a (t) g1 (2)|
Sp (ty(t) > ————=y(r) = —= S _n(t), a<t<b . 14

Case 3 Suppose that k, = 1. Proceeding as in the previous case, we consider the unique
function ¢, such that

Lgm =0,
qm(am) = 1 ’
¢(a) =0, 1<i<m-1, 0<j<hk—1

and we have S,,, (t) =eSp(t), a <t < b, with either ¢ = 1 or ¢ = —1, and
_ n(t) ' .
y(t) = —==<y(r) + | G3(t,s)Ly(s)ds, a<t<bh;
gm (T) a
where G5 denotes the Green’s function of the disconjugate boundary value problem:

Lz=10,
z(r) =0,
W (a;) =0, 1<i<m—-1, 0<j<k—1.
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Again from Levin’s Theorem 0.2 we see that

Sp, (H)gm(t)

80y = 2Oy @), asi<s . @

Sp. ()y(8) 2 lam ()|

Consequently we have:
x if by =1 and kn, = 1, using (1.4) when ¢ > 7 and (1.5) when ¢ < 7 we see that

(@) |gm @)
llglleo” llgmlleo

()] > m{ }nynw, a<t<b;

- % ifky =1 and %k, > 2, using (1.3) when ¢ < 7 and (1.4) when ¢ > T we see that

[ la® 1Qm®) |
@l 2 mm{uqlnm’ nczmnm}”y”""’ astsh;

x if k; > 2 and kp, = 1, using (1.3) when ¢ > 7 and (1.5) when ¢t < 7 we have

1Q1(8)]  lam ()]
’HQlHoo’ llgm||co

v(®l 2 min{ byl 0520

x ifk; > 2 and ky, > 2, then (1.3) with Il =m if ¢t < 7 and [ = 1 if ¢ > 7 show that

(100 1m0
W)l > mm{HQle, HQme}uynm, a<t<h,

and these inequalities imply the exact definition of ¢ in each case.
To show that /| P| has a positive infimum on Uim:'ll]ai, a;+1[, it is enough to use repeat-
edly de I'Hopital rule. O
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§2. THE PRINCIPAL EIGENVALUE WITH
L-COEFFICIENTS

This section is devoted to the study of the principal eigenvalue problem for the conjugate
multipoint BVP -
y (@) =0, 1<i<m, 0<j<hk-1
with ¢ € L*.

The maximum principle of §1 will be used several times in this section. In §2.1 it is
used to introduce an ordered Banach space structure on a suitable vector subspace of CY
in such a way that the cone has interior points and the integral operator associated to the
Green function turns out to be strongly positive. As a consequence, in §2.2 it is shown
that ||g|lLt > O implies that (P) has a positive eigenvalue which is the inverse of the
spectral radius of the integral operator associated to the Green function (it turns out to
be the unique positive eigenvalue with a positive eigenfunction belonging to the interior of
the cone), a fact that provides comparison results for the principal eigenvalues related to
different ¢’s.

§2.1 An ordered Banach space of continuous functions

Following an intuition suggested by the above maximum principle, in this section we
introduce a new ordered Banach space of continucus functions and we study its properties,
mainly with respect to the linear operator associated to Green funtions.

We shall consider disconjugate n** order differential operators of the form
Lo :=g™ +p ()™ + - + pa(t)z

where the coefiicients p1,-- -, pn are given continuous functions on [a, b].

Let G be the Green’s function of the boundary value problem

Ly=0,

yP(a) =0, 1<i<m, 0<j<hk—-1.
Therefore -
Ly =Xq(t)y, y#0, (P)
yD(a:) =0, 1<i<m, 0<j<hi—1
if and only if

A#0 and 0 2 [ G(t,5)g(s)y(s) ds = Ly(t), -a<t<b.
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We shall use the following inequality that follows from Levin's Theorem 0.2-(ii) :

0<g—]%5—)~§cl<oo. (2.1)

From this, we have the following property for eigenfunctions of (P):
@l < L IGE ] - ao)l - ly(s)] ds
< Ayl J7 e ()] - la(s)] ds
< e lylleo PO - gl
= const.||ylle|P(t)] .
Motivated by this, we introduce the following definitions :
X = {m € C([a,b]) : |z(t)] < c|P()], a<t<b; for a positive constante ¢ = c(:z:)} ,

|z(t)]

llellp = llzlleo + , sup

@1yt Om

!
—
[
=

K = {zeX: Sp®)z(t) >0, a<t'<b} .
We shall denote by < the order defined by K on X, i.e.

r %y < y—-z€K .

Lemma 2.1 (X, || ||p) is an ordered Banach space with K as the come of positive ele-
ments.
The cone K has nonempty interior. In fact

z(t)

T € int(K) < t;ﬁair,}-f-,am};(t_) >0

so that at least P € int(/C) .

Proof:

It is quite clear that X is a linear space, that || || is a norm on X and that K is a closed
cone in X.

To show that X is complete, consider a Cauchy sequence (zy)z. Since it is also a Cauchy
sequence in €9 := C([a, b]), we have z — o uniformly for a suitable zo € €. Now, to every
¢ > 0, there corresponds k. such that

o (t) — z1(£) ]

< —
P(t) < Hfl:k lep < E

sup

t#a1, " 0m
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for k,1 > k.. Here we fix t # a1, -+, @m and k, and take lim; obtaining

Tk (t) — To(t)
Z0)

for k > k.. It follows that zo € X and zy — 2o in the norm || ||p. Thus X is complete.
To prove the statement about int(K), define

. e EQ)
U= {zek: o o P@) 0} _'

We desire to show that I/ is an open subset of (X, || ||p) and K \ U coincides with the
boundary of K. For this end, let u € I/, then there exists ¢ > 0 such that

t
_u_(_l > 2 for t#ay,- -, am

P(t) —
so that given any z € X satisfying ||z —u||lp < ¢, we have

z(t) _ z(t)—u(t) +Eﬁl

P(t) - P(t) P(t)
- ¢
> —|lz - ullp + B
> —e+42¢
= €
for t #ag, - : , @m, which implies that
t
z(t) >e >0

. e
t#a1, ", 0m P(t) -

showing that = € /. Thus U/ is open. It follows that K\ / is closed and then to complete
the proof it is enough to prove that

veK\U = uedk

u(t)

where K is the boundary of K. Now, u € K\ I/ implies ” inf oy = 0, hence there
a1, 8m
exists t; # ag,- -+, Gm Such that ;((i")) — 0. Fix € > 0. We have

Sp(tz)('u,(tl) - eP(tl)) = Sp(t) - P(t) - {;(i,l)) _E}.

= |P@)] {54 ¢}

~

<0

for [ large enough. Therefore u — eP ¢ K. Letting € | 0 we deduce u € 9K as desired. O
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Lemma 2.2 Let g € L*([a,b]). Then the operator
T,z Ty
defined by
= /b G(t,s)q(s)z(s) ds

is o compact linear operator on (X, || ||p).
In the sequel Ty will always denote the above operator for a given g.

Proof:
It follows from (2.1) that T, maps X into X. To state its compactness, fix a sequence (z;);
in X with ||z;||p = 1 for all I. We need to show the existence of a convergent subsequence

of (qul>z' Standard arguments based on Ascoli theorem and the uniform continuity of G
guarantee the existence of a subsequence such that

Tqzi, —+ y uniformly . (2.2)

for a suitable y € C°. To simplify notations, we set T' := T and zj, := z;,. So we have done
if we show that

— 0

uniformly on ¢ # a1, -+, Gm- We_have

’T:ck( ‘ G oo(s) ds - YO

P

By Coppel’s result mentioned for (2.1), G;zg) is uniformly continuous. Thus we can apply

again Ascoli theorem and obtain a subsequence such as

b
[._G;i’t;)q(s)xkj(s) ds — z(t)

uniformly on ¢ for a suitable z € C°. For ¢ # a1, -+, am, we deduce from (2.2) that
b
G(t,s) y(t)
, d e
/ el () ds — B
Thus z(t) = }%%% for t #ai, -, Gm, and we have done. O

Lemma 2.3 If g € L'([a,b]) satisfies

q# 0 on a set of positive measure, and Sp(t)q(t) > 0 for a.e.t€a,b] ,
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then the operator T, is positive on the ordered Banach space X. In fact
teK = either Tpz=0 or T,z eint(K) ,

hence particularly
z€int(K) = Tyzecint(K) .

In case q does not vanish identically in any subinterval of [a,b] , T, is strongly positive, i.e.

zeK\{0} = Tyzeint(K)

Proof:

The set of continuous functions with compact support contained in [a;,ait1] is dense in
L'([ai,ai41]). Glueing together functions chosen on each interval [as, ai+1], 1 <1 <m —1,
we deduce the existence of a sequence (g ) of continuous functions vanishing at ay, -+, am
and converging to g in L*([a,b]). Set

a = |gslSp for k=1,2, - .

Since g vanishes at a1,--, Gm, gk iS continuous. Let us show that g —+ ¢ in L ([a, b]).
We have ) A
Llae(s) —a()l ds = [ Sp(s)lgr(s)] — Sp(s)la(s)l | ds
, ,
< Lo gn(s)l = la(s)l | ds

IA

llgr — q .2
from which the desired conclusion follows.

Now choose any = € K and set
Yr =Tgz and y =T,z .
From g — ¢ in L!([a, b]), it follows
Yy — y uniformly .
For every k, we have

Lyy = qr(t)z = Sp(t)ax(t) - Sp(t)z 2 0
yP(a)=0, 1<i<m, 0<j<hi—1.

Then Theorem 1.1 implies
Sp(ye(t) = w@llyrlle

col P()] - llyalleo -

v

Taking limits, we deduce: ‘
Sp()y(t) = col P®)] - |lylleo
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showing that either y = Tyz = 0, or y = T,z € int(K) by virtue of Lemma 2.1. Tt also
follows from the above inequality and from Lemma 2.1 that T; maps int(K) into itself, while
in case g does not vanish identically in any subinterval of [a,b], we have

>0 = Tyzcint(K)

since
-0 = Tz #0

by (2.1). O

§2.2 Existence and properties of the eigenvalues

Here we apply the lemmas of the previous sections in order to study the eigenvalue prob-
lem. We need, however, also the following lemma:

Lemma 2.4 Let Y be a Banach space. Denote by L(Y) its space of bounded linear
operators and by K (Y) the subspace of L(Y) consisting of compact linear operators. Then
the spectral radius 7(T') depends upper semi-continuously on T € L(Y) and continuously on
T € K(Y) in the operator topology. -

Proof:
We need only to show that 7 : L(Y") — [0, c0[ is upper semi-continuous in view of the proof
given to the version of Nussbaum [19]. For this end, fix arbitrarily T' € L{Y) and let (T3)i,
i=1,2,---, be any sequence of L(Y) converging to T' in the operator topology. We show
that
limsupr(T;) < r(T) .
1—rCQ

For any positive integer k> 2 and any H € L(Y), we have

W@+ EF < TR+ S5 CHITIP A
< T+ 251 HI E520 CLoa TR
< |IT*| + EINENAT] + TH DA

Thus . 1 1 1 1 k-l
(T + H)*||& < 2% (lIT’“HF+kFHHHF(HT“+HHH)T>

which implies
T+ HPMIE < 2 (ITHIE + el HIF QT+ 1E]+ n) - (2.3)
Suppose now by contradiction that

r(T) < limsupr(T;) .

-0
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Therefore, there exists a subsequence (T3 ) of (T;) such that
lim 7(T;) = limsupr(Ti) > r(T).

=0 i—+cO

Now fix € > 0 such that
r(T)+e < lim r(T3) .
l—+co

Thus there exists [, such that for every [ > [,
rT)+e < r(Ty) = mil|TEF = lm|ITHIF .
Hence, for every positive integer k, by taking an integer I > I such that
1T, =TI < e
and using (2.3), we get
@) +e < ITE IF < 2k (ITHE + eI+ e + 1)
Consequently we have |
r(T)+e < WmE|ITEIF < r(D)

which is absﬁrd. O

Theorem 2.1 If g € L([a,b]) satisfies
g0 on a set of positive measure, and Sp(t)g(t) > 0 forae. te [a,b]

then (P) has a positive eigenvalue Ay (g) with an eigenfunction y € int(KC) (which is unique
up to normalization). Moreover, A1(q) is the inverse of the spectral radius of Ty and A(q)
depends continuously on q with respect to the Ll-norm.

Proof:
At first, we prove the existence part of the eigenvalues, dividing the argument in two

steps.

Step 1: Sp(t)g(t) > 0 for a.e. t. In this case, Lemmas 2.2 and 2.3 guarantee that T, is a
strongly positive compact linear operator on the ordered Banach space X. Therefore the
classical version of the Krein-Rutman theorem, c¢f. Amann [4], implies that the spectral
radius of Ty is the inverse of the principal eigenvalue A;(q) of (P) and that it admits an
eigenfunction y € int(K) . '

Step 2: The general case Sp(t)q(t) > 0 a.e. with ||g|l: > 0. Refering to the proof of
Lemma 2.3 we know the existence of a sequence (gx)x of continuous functions vanishing at
a1, -, am and converging to ¢ in L' ([a, b]). Set

P
o = |gx|Sp + % for k=1,2, ---

so that g is continuous (since gi vanishes at ay,--+, an) and gx — ¢ in L'([a, b]) with

Sp(t)ge(t) > 0 for ae. t .
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Therefore, Step 1 implies that the spectral radius of 7}, is the inverse of the principal
eigenvalue A, (gx) of (P) with ¢ = g and that there is an eigenfunction y; € int(K) such
that

b
w(®) = na) [ Gl slaul) ds , at<h . (2.4
We assume ||yx||co = 1. From the maximum principle of Degla [7] we have
Se®uk(t) > w(f) , a<t<b . (2.5)

Multiplying (2.4) by Sp, we get

@] = Sp@us®) = Mlae) [ SP(E)G(t,5) - Sp(s)as(s) - Sp(s)yx(s) ds

IA

M(as) fP1G (G, 8)] - lan(s)] ds
and then from (2.5)

b
o) < M@ [ 16,9 lau(s)lds , a<t<b . (2.6
Clearly
b b .
/ IG(t,8)] - |gr(s)] ds  — /IG(t,s)l-lq(s)[ds uniformly on ¢
so that ; 5
max [6¢ ) & — max [16¢ )] la(o) 45
Since the last quantity is positive, taking sup, in (2.6) we get
Ailgs) > const. > 0 . (2.7)

Using again (2.4) and (2.5) we have

b
1= [lyellee > f\1<qk>/ G, s)| lax()lw(s) ds , a<t<b ,

and from here we can repeat the argument leading to (2.7) in order to deduce
A1(gr) < const. . (2.8)

On the other hand, g¢ —+ ¢ in L! implies T,, — T in the operator norm [since its topology
corresponds to uniform convergence on the unit ball], hence from Lemma 2.4 it follows

1 1
— Ty) = — .
X1 (gr) rifa) =5

By this and (2.7), (2.8), we deduce that Ag is a positive real number. Besides, set for every
k,

r(Tq) = (2.9)

b
) = [ Gs)aEuE d , a<t<h.
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It is easily seen from ||gx|lr: < const. and ||yx|lce = 1, that (zz)x is equicontinuous and
pointwise bounded. Therefore by Ascoli theorem, there exists a subsequence and a suitable
zo € CY such that

Zr, — zop uniformly .
Combining with (2.9), we take limits in (2.4) and we find that yg, —y uniformly, y being
a suitable continuous function such that ||y||cc = 1, and that

b
v = o [ Gltsla(slyls) ds . <t .

Since y; € K, also y € K. Moreover, (2.5) implies that Sp(t)y(t) > ¢(t) fora <t <b.
Thus y € int(X) by Lemma 2.1. We conclude that y is an eigenfunction of (P) corresponding
to the eigenvalue Ag = r’(‘%’ﬁ,,_) =: A (q).

It remains to state the continuous dependence. To this aim, assume that qx — ¢ in
L!([a,b]) with gx(t) # 0 on a set of positive measure, and Sp(t)gx(t) > 0 for ae.
t € [a,b]. By the above, A1(gx) = ;—(%1;—) and r(Ty,) = T(I&ZT' Therefore, since gz — ¢
implies Ty, — T, in the operator norm, we need only to apply Lemma 24. O

The following result implies a type of variational characterization of the first eigenvalue:
Corollary. ‘If Sp(t)q(t) >0 for a.e. t, then:

1) Mg = min{/\ >0: z 2 X,z for some = > 0} ;

(i) 0<z<ATyz = Ai(g) <A.

Proof:

(i) From 0 < z < Mz, it follows +z < Tyz. This implies r(T;) > & by the normality of
the ordered Banach space (X, || ||p), and the conclusion follows.

(ii) Suppose 0 < T < AT,z and set y = Tor. Since ¢ > 0, we have y > 0. Since
My —z = AT,z —z = 0, we have Ty(A\y — z) € int(K) by Lemma 2.3. By the continu-
ity of ¢(t) = tT,y — y, there exists 0 < Ag < A such that AT,y —y € K, hence y < AoTyy.
Then (i) implies A1(g) <Ao< A O

Theorem 2.2 The following comparison results hold.
(a) If L is disconjugate and g1, g2 € L'([a,b]) do not vanish on a set of positive measure,
are different on a set of positive measure and satisfy

0 < Sp(t)gi(t) < Sp(t)qa(t) for ae. tela,b] ,

then
0 < Mlg) < M) -

(b) If L is disconjugate and q € L*([a, b]) does not vanish on a set of positive measure and
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satisfies Sp(t)q(t) >0 for a.e. t, with L — g as a disconjugate operator, then

Mg > 1.

Proof:

(a) For simplicity of notations, set T; = Tg, for 1 = 1,2. On the basis of the assumptions
on ¢ and ga, we see from Lemma 2.3 that the compact linear operators Ty, T and Th — T3
are positive with respect to X and

(Ts — T1)(it(K)) € mt(K) .

Therefore, letting y; € int(K) be an eigenvector of Ty corresponding to r(T71) > 0 (cf.
Theorem 2.1), we have

Toyr — Thyr = Toyy — r(T1)yn € int(K)

which implies that
Toyy — (r(T1) +e)yr € K

for sufficiently small e > 0, and so r(Tz) > r(T1) by Theorem 0.4.- That is
0 < M) < Mla) -

(b) To show that A;(g) > 1, it suffices to prove that A;(g) is not less than 1 due to
the disconjugacy of L —g. For each o €lai,a141], 1 £ 1 <m—1, define the operator
Ty : C([a,b]) = C([a,b]) by

{ [2Galt,s)a(s)z(s) ds  if a<tLla
Taz(t) =

0. if a<t<b

)

where G (t, s) is the Green's function of the boundary value problem

Ly =0, '
y W a;)) =0, 1<i1<l, 0<j<ki—1,
y N a)=0, 0<j<kip1+ - +Ekn—1.

Note that the mapping a + T, is continuous, and then by continuity of the spectral-radius
mapping on compact linear operators (cf. Lemma 2.4), the mapping o = r(Ty) is also
continuous. Since Ty — 0 as @ — a, if 7(Ts) = )\—1%5 were not less than 1, there would

exist @ €]a,b] and ! € {1,---,m — 1} such that r(To) = 1 which would imply that the linear

problem
L?J.'——Q(t)y:
y(])(al):O, lglgl, 0_<_]Sk1—1,
y(])(a)zo, OS]Sk[+1+'+km‘—1

has a non trivial solution by Theorem 2.1, contradicting the disconjugacy of L —¢. O

As a consequence we have
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Corollary. Let g € L!([a,b]) be such that ||gilr > 0 and Sp(t)q(t) > 0 for a.e. t € [a,b],
and assume that I and the perturbed differential operator L — g are both disconjugate on
[a,b]. Moreover let f € L'([a, b]) satisfy Hflln: > O with f >0 for a.e. t € [a,b]. Then there
ezists a unique function y such that

Ly —qlt)y = f(2) ,
ya;)=0, 1<i<m, 0<j<hki—1,

and the function t = y(t)/P(t), t # a1, -+, am has a continuous extension to la,b] with
positive infimum. Furthermore, given any yo € C([a, b]) with Sp(t)yo(t) > O, the sequence
(y)i; 1 =1,2, -+, defined recursively by

Lyir = q)y + (), for ae t€[al],

v (a) =0, 1<i<m, 0<j<k—-1,

converges uniformly (and thus with respect to the Cr~lomorm) to y.

Proof:
The nonhomogeneous problem

Ly—q(tly = f(t), for ae t&lab],
y@(@)=0, 1<i<m, 0<j<hk-1,

is equivalent to
. : . b
(I-T)y=f, fe€K, where f(t) :/ G(t,8)f(s) ds .
And since T, is positive and r(T,) < 1 by Theorem 2.1, the inverse operator (I-Tyis

well-defined and can be represented as the series I -+ T + qu -+ ... and so is positive with
respect to K. Therefore the conclusions of the Proposition follow from {17, Theorem 15.1 at

p. 158]. O
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§3. Application to the existence and multiplicity of strictly
positive solutions to singular BVPs

In this section, we apply the previous results in order to deduce the existence of positive
solutions to singular BVPs. There are two types of results leading respectively to:

e solutions y that are positive in the traditional sense, i.e. y(t) > 0 with y # 0,
obtained by using the maximum principle of §1. These are found in §3.1.

o solutions y that belong to the cone introduced in §2.1. There are found in §3.2.

Another important ingredient of ‘our proofs is Krasnosel’ski’s Theorem 0.5 about the
compression /expansion of the cone.

§3.1 From the maximum principle

We start with

Theorem 3.1 Let F : [a,b] x R — [0,00[ be a nonnegative continuous function which
admits continuous functions q : [a,b] = [0,00] and f : [a,b] x R — [0,00[ such that:

(1) ¢#0,
(2) F(t,y) > a®)f(ty) forall (t,y) €la,b] xR, oand
(3) either
(i) Fp=limsup Fity) =0 and fo =lminf M =oco uniformlyont, or
v—=0 .yl lyl=co |yl
i) fo= liminff—(-t’—z’l—) =co and Fu = limsup Ft.y) =0 uniformlyont.
y=0 |yl lyl—reo V]

If L is disconjugate, then the conjugate problem

Ly="F(ty),
y(a) =0, 1<i<m, 0<j<hk-1,

has at least one nontrivial solution y such that the function t — y(t)/P(t), t & {a1,...,am},
has a continuous ertention to [a,b] with o positive infimum.
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Proof:
Let ¢ be as in Theorem 1.1. Since F' is a nonnegative continuous function, Theorem 1.1

implies that every solution of the problem

Ly =F(ty) ,
v a) =0, 1<i<m, 0<j<k—1,

belongs to the subset
K ={z€Cab): Sp®)z(®) 2 o®llalloo, a<t<b} .

The set K is clearly a cone in the Banach space (C([a,?]), || - |l) and has the following

property:
if zek\{0}, then z(t) #0 for t & {as,...,am} -

Consider the map T : K = K defined for every y € K by

b
Ty: tr—}/'G(t, 5)F(s,y(s)) ds

where G is the Green’s function of the conjugate boundary value problem

Lz=0,
z@(a;)=0, 1<i<m, 0<j<hk—1.
We note that T maps indeed X into K by Theorem 1.1. Furthermore, a standard argument

based on the Ascoli theorem shows that 7' is completely continuous (i.e., T is continuous

and maps bounded subsets into compact sets).
Now to prove that T': K — K has a fixed point with a positive norm, it suffices to es-
tablish the existence of two positive real numbers 71 < r satisfying one of the two conditions:

(@) 1ITylloo < |lylloo i y € K and ||yllec =1, and ||Ty{lco > [lylleo if y € £ and {[yllco =72
(6) 1ITylloo > llylloo if ¥ € K and [lyllee = 71, and || Tyllee < |lylleo ify € L and [jyllec =72 ;

as shown by the Krasnosel'skii theorem on the expansion and compression of cones, in

the recent version of [3, Theorem 11.2], as a result of Theorem 0.5. To this aim, fix € > 0,
a>06¢{ai,...,am}, and a compact set A C U;’;l]ai,aiﬂ[ with a positive measure,

such that ,
emax/ |G(t,8)|ds < 1 < a/ IG(8, s)|g(s)w(s) ds .
a A

a<Lt<h
Case 1: Suppose that the assumption (3)-(i) holds, and let us show the existence of 0 <
ry < 73 < oo such that: .

if yeX satisfies ||y]lco =71, then [Tyl <ll¥lloo
whereas if y € K satisfies ||yllec =72, then ||Tyllee > ||¥lleo -

Indeed, on one hand we have the existence of 71 > 0 such that F(t,y) < ely| for all ¢ € [a,}]
and all y € [~ry,71]. Therefore, given y € K with |y||oo = 71, we have

b b
lTy(t)|=/ |G(t, 9)|F'(s,y(s)) ds < EHyHoo/ |G, 8)l ds < |lyllec » a <2<,
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and thus ||T%]leo < ||¥llee- On the other hand, there exists ro > 0 such that f(t,) > afy|
for a <t < band |y| > ro. Set ry = 11 + (ro/ min{w(s) : s € A}) so that r; > 7, and
romin{ip(s) : s € A} > ro. Therefore, given y € K with ||y|jcc =12, We have

Sp(t)y(t) 2 wllylle = ro for €4,

which implies F(¢,y(¢)) > aly(t)|, t € A, and so

ITy(8) = Sp()Ty(8) = [21G(,5)F(s,y(s)) ds

v

fA |G (6, 8)|F(s,y(s)) ds
J41G(, 8)la(s)f (s, 9(s)) ds > .C‘IA IG(6, 5)|g(s)|y(s)| ds

allyllos [41G(6, 8)la(s)e(s) ds > |lylleo

AV}
\Y

v

Le. ||Tylles > [[¥llco-

Now we apply the above mentioned theorem of Krasnosel’skii and we see that T' has a fixed
point y € K such that r1 < ||ylleo < T2

Case 2 Suppose that the assumption (3)-(ii) holds, then let us prove the existence of
0 < < ma < oo such that:

if yek satisfies [[y|leo =m , then ||TYlleo > |lylleo
whereas if y € K satisfies |[yllec =72, then [|[T¥]lec < [|¥lleo -

Tn fact, on the one hand there exists 71 > O such that f(¢,y) > ely| for a <t < b and
ly| <. Therefore, given y € K with ||yllcc = 71, we repeat the series of inequalities above
to obtain

ITy(8)] > llYlleo
and 0 ||Ty||ce > ||¥llco. On the other hand, there exists 7o > 0 such that F(t,y) < €ly| for
a <t<band |y| > no. Setting

72 :770+771+ (ma‘X{F(twy)aStSb7 iyl ST/Q}/E) 3

we have ny > m; and F(t,y) < enp for all ¢ € [a,b] and y € [—7,72]- Therefore, giveny € K
with ||y|lee = 72 we see again that ||Ty|leo < ||yllco. Thus also in this second case T has a
fixed point ¥ € K with 1 < [|y]leo < 72

Applying the remark after Theorem 1.1, we have

@) 2 eMllyllee 2 clP@)] [1¥lleo

for a suitable positive constant c. If follows that y/P has a strictly positive continuous
extension from [a, 8] \ {a1,...,am} to [a,b]. O '

Remark: It follows from the proof that the assumption (3) can be refined to other assump-
tions which make either Fiy sufficiently small and f., sufficiently large, or fo sufficiently large
but F., sufficiently small. For instance letting ¢ be as in Theorem 1.1, (3) can be replaced
by:
(3") There exits some § & {a1,...,am} such that either

0 Fomax [JG¢s)ds <1< foof/ |GG 8)la(s)pls) ds , or
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@) fo TGS, 8)la(s)e(s) ds >1>ﬁ;£%ﬁwmm¢.

As consequences of Theorem 3.1, we have the following corollaries:

Corollary 3.1 Let q: [a,b] = [0, 00 be continuous with ¢ # 0, and also let f : R — [0, 00[
be continuous and such that either

(i) hmi—@—)--—O and lim M =00 | or
T e To1

(ii) hm [(y( =0 and ylgnoo -’L— =0.
Then the nonlmear problem with homogeneous Hermite m-point conditions

Ly =q(t)f () ,
yD(a;) =0, 1<i<m; 0<j<hk—1,

has at least one nontrivial solution y such that the function t — y(t)/P(t), t € {a1,---,am},
has a continuous eztention to [a,b] with a positive infimum.

Corollary 3.2 Let k be a positive integer such that 1 < k < n — 1 and suppose that
F :[a1,a2] % [0,00[— [0,00[ is a nonnegative continuous function which admits continuous
functions q : [a1,a2] = [0,00[ and f : [a1, a2] x [0, c0[— [0, c0[ such that:

(1) ¢#0,
(2) F(t,y) >2q(t)f(t,y) for aa<t<az and y20, and
(3) either
(i) Fp = lim M =0 and foo = lim &% = unzformly ont, or
y-—~r0+ y—+oo v
(i) fo= lim f(;’y) 0o and Fop = lim @ =0 uniformly ont .
y—0+ Yo

Then the (k,n — k)-conjugate boundary value problem

ym = (=1)"~kF(t,y) ,
”ma—o 0<j<k-1,
yW(as) =0, 0<j<n-k—-1,

has at least one solution y which is positive on Ja, as|.

Proof:
Since the equation y(® = 0 is disconjugate on [a;,as], Theorem 3.1 implies the exitence
of a function = € C"([a1,az]), with 'EZWE(&Q?{;)—F > 0 on Jai, as|, satisfying the following

(k,n — k)-conjugate boundary value problem

2™ = F(t,]al)
zW(a;) =0, 1<i<k-1,
W (a) =0, 0<j<n-k-1.

Letting now y = (—1)""*z, we have |z| =y, y(¢) > 0; a1 <t < ap, and

y™ = (~1)"*F(t,y)
yD(a)=0, 0<j<k-1,
yW(a2) =0, 0<j<n-k-1.0
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In particular, Corollary 3.2 implies that for a positive integer k such that 1 <k <n -1
and for given continuous functions ¢ : {a1,a2] — [0,00[, ¢ # 0, and f : [0, c0[— [0, 00]
satisfying either

(v

A W) " W) . fy)
(1) yliz(r)l+ ” 0 and ylglgo ” co, or (i) ylfél+ > oo and ylgrolo =0,

the (k,n — k)-conjugate boundary value problem

(")—( D™ *q(t) f(y)
D(a) =0, 0<j<k-1,
y(ﬂ(ag)=0 0<j<n—-k-1

has at least one solution y which is positive on Jay, as[.

Theorem 3.2 Let F : [a,b] x R — [0,00] be a nonnegative continuous function which
admits continuous functions q :[a,b] =+ [0,00[ and f :[a,b] x R — [0, 00| such that:

(1) ¢#0,
(2) F(t,y) > q@)f(t,y) forall (t,y) €[a,b] xR, and
3)
t
Fy = limsup —-—-—F( X)) = 0 = Fy =limsup Ft,y) uniformly on i
y-—0 ly[ |ly|—co Iyl

(4) For some § € oy Yai, aip1[, 7 > 0 and a compact set A C Uz_l las, ai+1[; with positive
measure, on which q # 0 and @ # 1 {which hold whenever dlst A, {a1,...,am}) is sufficiently
small), we have

flt,y) >ar for or<|y|<r and t€ AC[a,b] ;

where

-1
a= (/AIG((S, s)a(s) ds) and o= ?élil(p(t)
with G as the Green’s function of the conjugate boundary value problem

Lz =0,
W (a;) =0, 1<i<m, 0<j<k-1.

If L is disconjugate, then the conjugate problem

Ly =F(ty) ,
yD(a;)=0, 1<i<m, 0<j<k—1,

has at least two montrivial solutions yy and ys with ||y1]lee < 7 < ||y2llcc such that each of
the functions t — i (t)/P(t), t € {a1,-..,am}, | = 1,2, has a continuous eztention to [a, b]
with a positive infimum.

Proof:
Let consider (again) the cone K of C([a, b]) defined by

K= {z €Ca,b]): Sp(t)z(t) > p®llzlles, a <t < b}
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and the completely continuous map T : KL — K well defined for every y € K by

b
Ty : tl—)/ G(t, 8)F(s,y(s)) ds .

To complete the proof it suffices to show that there exist two positive real numbers r; and
ro satisfying r, < r < ry and such that T is an expansion of {yeK:r <|lyllee <7} Le,y
T satisfies our condition (a) quoted in the proof of Theorem 3.1, and T is a compression of
{y € K:7 <||ylloo < T2};ie., T satisfles our condition (b) quoted in the proof of Theorem
3.1, according to the Krasnosel’skil theorem on the expansion and compression of cones.
Indeed, fix € > 0 such that

b
emax/ |G(t,8)] ds < 1 .

a<t<b

Therefore by assumption (3), as Fo = 0, there exists vy €]0,r[ such that F(t,y) < ely| for
all t € [a,b] and all y € [—-r1,71] so that

||T'1/Hc>o<”yHoo for y € K with Hy”oozrl .

Moreover, as Fso = 0, there exists rg > r such that F(t,y) < ey fora <t < band lyl > 7.

Setting now
ro = 1o+ (max{F(t,y):a<t<h, |yl < ro}/e) ,

we have F(t,y) < ers for t € [a,0] and y € [~72,72] implying
ITylloo < Iyl for y € K with [[yllec =72 -
Furthermore, by assumption (4), we have for every y € K with ||yllec =7,

or <|ly@)<r for te A

and

\Ty(8)] = [71G(S, 5)|F(s,y(s)) ds
> [,1G(, )| F(s,y(s)) ds
> [41G(8,8)]a(s)f(s,y(s)) ds

>ar [,1G(6,8)lg(s) ds = 1 .
yielding ||Ty]leo > |[¥llce- O

Example: Let A Clai,as] be a closed nondegenerate interval such that o = ItxéJE o(t) <1

a= (arg?gb[qu(t, s)] ds)_l .

Let also A €]1,2[ and then consider the function

and set

1+ lyj"
od  1+yl

Ft,y)=p with u>a .
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If L is disconjugate, then the conjugate problem

ya) =0, 1<i<m, 0<j<k—1,

has at least two nontrivial solutions y; and ys with ||y1]lee <1 < |l¥2l|ec such that each of
the functions t = y;(t)/P(t), t € {a1,...,am}, | = 1,2, has a continuous extension to [a, b]
with a positive infimum.

Theorem 3.3 Let F : [a,b] x R — [0,00[ be a nonnegative'continuous function which
admits continuous functions q :[a,b] — [0,c0[ and f:[a,b] x R — [0, co[ such that:

(1) ¢#0,
@) F@y) 2at)f(ty) forall (t,y) €la,b] xR, and
(3)
fozlimsupf—(fly—) = oo = fc,ozlimsupf—(2§ﬂ uniformly on t
y—0 iyl |y| o0 lyl

(4) There ezists a positive real number n such that
F(t,y) < en for |y|<n and a<t<b ;
where

€= ( max /bIG(t,s)l ds)—l

a<t<h

with G as the Green’s function of the conjugate boundary value problem

Lz =10,
W (a) =0, 1<i<m, 0<j<k-1.

If L is disconjugate, then the conjugate boundary value problem

Ly="F(t,y) ,
yD(a)=0, 1<i<m, 0<j<k~1,

has at least two montrivial solutions y1 and ya with [[y1]lee <7 < ||y2lleo such that each of
the functions t = vy (t)/P(), t € {a1,...,am}, | = 1,2, has a continuous eztention to [a,b]
with a positive infimum.

Proof:
Consider the cone K of C([a, b]) defined by

K={z €C(la,b]) : Sp(t)z(t) > p(t)l|zllco, a <t < b}
and the completely continuous map T": KX —+ K well defined for every y € K by

b
Ty: tr—->/ G(t,s)F(s,y(s)) ds

We shall complete the proof by showing that there exist two positive real numbers 1, and
nz satisfying 7 < 7 < 7 and such that T'is a compression of {y € K : m < ||ylleo < 71} ie.,
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T satisfies our condition (b) quoted in the proof of Theorem 3.1, and T is an expansion of
{y € K:n<|lyllo < m};ie., T satisfies our condition (a) quoted in the proof of Theorem
3.1, according to the Krasnosel’skii theorem on the expansion and compression of cones. For
this end, fix & > 0, 0 € {a1,...,am}, and a compact set A C U;:l'l]ai,ai_l.l[ with a positive
measure, such that

a/hmaﬂmamgds>1.

By assumption (3), as fo = co on the one hand, there exists n; €]0, n[ such that f(t,7) > afy|
for t € A and y € [-n1,m]. Therefore, given y € K with ||y|lco = m1, We have

ITy(0)| = [} |G(8,8)|F(s,y(s)) ds 2 o [, |G(3,8)la(s)ly(s)] ds

> allylleo [4 IG(6, )lg(s)p(s) ds

\Y

which implies that ||T'y]|co > [|¥|lce; that is,
ITylloo > llyllee for y € K with [[gllec =m0 -

As foo = oo on the other hand, there exists 7o > 0 such that f(Z, y) > aly| for t € A and
lyl > no. Set ma =7+ (no/ min{ip(s) : 5 € A}) so that 7y > and ny min{p(s) : s € A} 2 7o
Thus, given y € K with ||y}co = 72, we have

ly@&)] > eWllylle = mo for te A,

that implies 7(t,y(t)) > aly(t)|, t € A, and so

b :
ITy(5)i=/ |G(6,5)|F(s,y(s)) ds = a|ly||m/4|G(575)]Q(5)99<5) ds > |[[ylleo

yielding '
HTYlloo > |lyllee for y € K with |lyllec =72 -

Finally, it is clear by assumption (4) that

1Tylleo < [lylleo for y € K with Yoo =7 . O

Example: Let A > 1, set

. B
€= (argta%cb/a 1G(t, 8| ds) )

and consider
F(t,y) =pll —|y||* with O<p<e .

If L is disconjugate, then the conjugate problem

Ly = F(t1y) ’
yWD(a;) =0, 1<i<m, 0<j<k—1,

has at least two nontrivial solutions y; and yg with ||y1]lec < 1 < [|yallee such that each of
the functions t — y(t)/P(t), t € {a1,...,am}, l = 1,2, has a continuous extension to la, 0]
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with a positive infimum.
As an immediate consequence of Theorem 3.3 combined with its proof (above}, we have

Corollary 3.3 Let ¢ : [a,b] = [0,00] and f : R — [0,00[ be nonnegative continu-
ous functions such that:
(1) ¢#0,
(2)
()

fo=limsup === = oo = fc,(,zlimsupM

and
y—0 |:UI lyl—eco lyl '

(3) there ezists a positive real number n such that

fly)<en for |yl <n ;

where

-1
€= ma*c/[Gts|q ds)

a. <t<b
with G as the Green’s function of the conjugate boundary value problem

Lz=0,
(@) =0, 1<i<m, 0<j<k—1.

If L is disconjugate, then the conjugate problem

Ly=o)f@) |
y(J)(az):D’ 1SZ_<__'ITL, OS]Skz_la

has at least two montrivial solutions y1 and ya with ||y1llee < 7 < ||y2l|co such that each of
the functions t — y,(t)/P(t), t € {a1,...,am}, [ = 1,2, has a continuous extension to [a,b]
with a positive infimum. '

Corollary 3.4 Let f:R — [0, col be a nonnegative continuous function which is nonde-
creasing on [0,00[ (e.g., y = e with A >0, yr |y|" + |y/* with0 <y <1< p)and
assume that g : [a,b] = [0, c0] is a nonnegative continuous function, such that

(1) g#0 ,
§2g Ffly) < f(yl) forall yeR ,
3
fo = limsup === B = 00 = fo = limsup =+ £ ,  and
y—+0 |y] |y|=-+c0 ly|
(4)

min —= f(y) max/ |G(t, 8)|g( )ds) o ;

y>0 y <t<

where G is the Green’s function of the conjugate boundary value problem

Lz =0,
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If L is disconjugate, then the conjugate problem

Ly = q()f(y) ,
yW(a;) =0, 1<i<m, 0<j<k—-1,

has at least two montrivial solutions y1 and ys such that the functions t — y(t)/P(2),

té{a1,...,am}, | = 1,2, have each a continuous estension to [a,b] with a positive infimum.
Proof:
On the basis of the assumptions on f, the function

y o fy)

)
defined from 0, oo into [0, oo is continuous and admits a (minimum) point 7 > 0 such that
) . ) -1
" = a<t<b IG(t s)|q(s) ds

Thus
f) <Fly) £ fm) < en “for |yl <n .

Therefore Corollary 3.3 yields the result. O

In particular, Corollary 3.4 implies that for a positive interger k suchthat 1 <k <n -1
and for given continuous functions ¢ : [a1,as2] — [0, co[ with ¢ # 0, and f : [0, co[— [0, o0
with f nondecreasing (e.g., y — e with A > 0, y = y7 + y# with 0 <y < 1 < p), such

that
fozlimsupf—(y—) = o0 = fm:limsupi@ , and

y—o0+t Y y—+oo

minM < ( max [ lg(t,5)lg(s) cls>—‘1 ;

y>0 Yy a1<i<ar Jq,
where g is the Green’s function of the conjugate boundary value problem
z™ =0,

() =0, 0<j<k-1,
gD (@) =0, 0<j<n-k-1,

the (k,n — k)-conjugate boundary value problem

yt™ = (=1)"*q(t) f(y) ,
D(a1) =0, 0<j<k-1,
yDaz) =0, 0<j<n-k-1,

has at least two solutions which are positive on ]aj,as[, in agreement with [2] and [5, Ex-
ample 3.2].
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3.2. From the comparison of the eigenvalues

In this section we apply the previous results to the search of strictly positive solutions,
in the order defined by X, of nonlinear BVPs.

Theorem 3.4 Assume that L is disconjugate and that F' : [a,b] x R — R is a contin-
uous function such that
(1) F@t,Sp(t)y) 20, a<t<b, y20
(2) F(t,0)=0, a<t<b
(3) The function y — F(t,y) is differentiable at 0 with
Fty) _ 5

313{1) — " L (t,0) =: q(t) uniformly for t€[a,b]

and is such that L — q is disconjugate;

(4)
F(t,Sp(t ' . . ) ‘
hrfco -—(——EP—(—EI—)— = +oo uniformly for tin a subset of [a,b] with positive measure.
y—
Then the conjugate BVP

Ly =F(ty) ,
ya)=0, 1<i<m, 0<j<hk—-1,

has at least one nontrivial solution such that the quotient y(t)/P(t) has a continuous exten-
tion to [a, b] with positive infimum.

Proof:
The nonlinear problem

yW(a;) =0, 1<i<m, 0<j<k—1,

is equivalent to
b
v = [ G o)FGyle) s, a<i<h

and we plan to seek for a solution y such that Sp(t)y(t) > 0 which will yield the result.
Recall, for later use, that by virtue of the maximum principle for multipoint boundary value
problems, Theorem 1.1, there exists ¢ € C([a,b]) positive on U as, aiy1] and such that
for every y € C™([a,b]) satisfying the differential inequality Ly > 0 and the homogeneous
Hermite boundary condition

yWa;)=0, 1<i<m, 0<j<k—1,

we have
Sp)y®) > eyl , a <E<D .

Now let
Y={y € Cla, b : ylar) =--- =y(am) = 0}
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Ke={yeY: Sptly(®) 2 w®)llylleo , a<t< b}
Ko={yeY: Se(lyt)>0, a<t<b)
and note at once that the sup-norm || || is monotone (increasing) in K, and Ky with

respect to their corresponding orders.
Consider moreover the integral operator A defined for every y € Ky by

b
Ay : tH/ G(t,s)F(s,y(s)) ds .

Then A maps Ky into X, since given any y € Ky and putting z = Ay, we have via the
property of the Green’s function G that

Lz =F(t,y@t) = F(t,Sp®)|y(t)]) >0,
2Na) =0, 1<i<m, 0<j<k -1,

which implies that

Sp(t)z(t) 2 o(®)llzlls , a<t<h .
In particular A maps K, into itself. Since furthermore A is completely continuous, to con-
‘clude that 4 : K, —+ K, has a fixed point with a positive norm, it suffices to show the
existence of two positive real numbers € < R such that:

(i) ify €K, and |jylleo =€, then Ay—y &K, , while
(ii) if y € Ky and {lyllcc = R, then y— Ay ¢ K,

as shown by the Krasnosel’skil theorem on the expansion and compression of cones in the

version of Theorem 0.5.

Indeed, on the one hand, by assumption (3) above, A is Frechet differentiable at 0 with
A'(0) = T, =: T (for simplicity). If ¢ = 0, then r(T) = 0. If otherwise ¢ # 0, then using
the above assumptions (1) and (3), we have r(T) = %(q) < 1 by Theorem 2-1 and Theorem
2.2-b. Thus r(T) < 1 in any case, hence I — T is invertible. Now suppose by the way of
contradiction that (i) is not satisfied for any ¢ > 0. Then there would exist sequences ¢ | 0
and y; € Ky such that ||yi]lec = ¢ whereas Ay, — y, € K,. Putting z; = /e, (so that
[lz1]] = 1 for all I) and My, = (Ay; — T'yi)/e;, we would then have

My —-(I-T)z € K, CKy,
which, by the positivity of (I —T)™ =T+ T +T?+--., would imply
(I-T) "My, —2 € Ky, already with 2z € Kg ,
and so for all [ we would get, by the monotonicity of the sup norm,
NI =D IMyllee 2 T =T) Mylleo > llaillee = 1

contradicting the fact that limy; |[My|jc = 0 since T = A'(0). Hence (i) holds for some

€ > 0 that we fix for the sequel.
On the other hand, by assumption (4) above, there exists a compact set Q C [a, b] with

positive measure such that

i F:5200)

W = 400 uniformly for t € Q
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and moreover, a; € Q for j=1,---, m. Now choose § & {a1,---, am} and @ > 0 such that

a/Q]G(cS,s)lgo(s) ds > 1

(this is possible since |G(d, s)|¢(s) > 0 for s € Q). Therefore, there exists Ro > 0 such that

F@t,Sp(t)y) > ay, t€Q, y>Ry .

Set now
By

infop

R=¢+
Hence, if y € K, and ||y||cc = R, then
ly®l 2 wtlyllo = Ro, t€Q

which implies
Ft,y@®) 2 cp®)|lylle , t€Q.

Therefore
Ay = Sp(O)Ay(S) = [}1G(,9)F(s,y(s)) ds
> [o|G(89)|F(s,y(s)) ds
> (@ folG6,9)le(s) ds ) e
and so

l4ylleo > l¥lleo
implying in its turn that y — Ay € K, and showing (ii). O

As a consequence we have

Corollary. Assume that L is disconjugate and let g : [a,0] -+ R and h:R — [0,c0] be

continuous functions such that
(1) g#0, Sp(t)g(t) >0 and L—gq is disconjugate;
(2) h0)=1 and I ]lirﬁl. h(y) = +o0 .

y|—++c0

Then the nonlinear problem

Ly = q()h(y)y ,
yW(a;) =0, 1<i<m, 0<j<k -1,

has at least one nontrivial solution y such that the functiont — y(£)/P®) , t € {a1, -

has a continuous extention to [a,b] with positive infimum.
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Theorem 3.5 Assume that L is disconjugate and let F : [a,0} x R — R be a continu-
ous function such that ‘
(1) F(t,Sp(t)y) >0, a<t<b, y>0 ;
(2) there ezists the limit
F(ty)

lim =:q(t) uniformly for t € [a,b]
lyl=+o0 Y

with L — q disconjugate;

(3) we have
F(t
lin01+ ——(%}3—@2 = +co uniformly for tin a subset of [a,b] with positive measure.
y—r
Then the nonlinear BVP

Ly = F(t,y) ,
yD(a;)=0, 1<i<m, 0<j<k~1,

has a least one nontrivial solution y such that the gquotient y(¢)/P(t) has a continuous ez-
tention to [a,b] with positive infimum.

Proof:
Let K, be as in the proof of Theorem 3.1 and consider the operator A assigning to every
y € K, the function Ay defined by

b
Ay: i‘l—)-/ G(t,s)F(s,y(s)) ds

which belongs to K. It suffices to show that this completely continuous operator 4 : K, —
K, has a nonzero fixed point y yielding that the corresponding quotient y(z)/P(t) has a
continuous extension to [a, b] with positive infimum by the property of the Green’s function

G.
For this end, we prove that there exist two positive real numbers ¢ < R such that:

(i) fye K, and ||y|lo =€, then y— Ay € L, , while
(i) f y € £, and ||yl = R, then Ay—y €K,

and we apply the Krasnosel’'skii theorem on the expansion and compression of cones in
the version of Theorem 0.5.
(i) By assumption (3), there exists a compact set O C UT7%]a;, a;1[ with positive measure

such that Pt Snls
lim £, 5p(t)y) = 4+co uniformly for t € Q .
y—0t Y

Now choose ¢ & {a1,--+, am} and @ > 0 such that

a/Q|G(6,s)|cp(s) ds > 1.

Therefore, there exists € > 0 such that
F(t,Sp(t)y) > ay, teQ, 0<y<e .
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Thus, if y € Ky, with [|y]|e = € we have:

|4y(6)] = Sp(8) [L G(8,5)F(s,y(s)) ds = [|G(5,5)|F(s,Sp(s)|y(s)]) ds

v

a [21G(6,9)| - ly(s)] ds

Y

a [2 G5, 9)0(s)|[¥]loo ds
> {9l

which implies ||Ay||eo > ||¥]|co, and then y — Ay & K.

(ii) Suppose by contradiction that there does not exist any positive real number R > ¢ such
that Ay —y & KC,, for every y € K, satisfying ||y||cc = R. Then, there would exist a sequence
(1)1 of elements of KC, \ {0} such that {|yi|] 1 co and Ay, —y; € K.

Considering A'(c0) = T, =: T that exists and is defined (according to assumption (2)) by

b
Ta(t) = / Gt s)als)z(s) ds, a<t<b

we observe that if ¢ = 0, then r(T") = 0, while if otherwise g # 0, then using the assumptions

(1) and (2), we have r(T') = 577y < 1 as a result of Theorem 2.2-b. Thus r(T') < 1 in any

case so that the inverse of I — T, (I — T')™*, exists and is positive. It follows that

Ay —Ty) + Ty ~y) =4y -y € Ky

and so
My + Tz —2) € Ky ;
where 4 T
=Y and oy = A0 Tw
Hyilloo lyilleo

which implies that
(I-T) My -2z € Ky, already with z; € K, .

Consequently, by the monotonicity of the sup norm, we have

N =) Mylle 2 I =T Myl > llzllo = 1, for all I,

on contrast to the fact that limy ||Myi||e = 0 since T = Y (c0). O
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§4. Application to uniqueness and existence for nonlinear problem below the
principal eigenvalue

From the comparison result in §2, we deduce in this section a uniqueness and an existence
theorem for nonlinear BVPs.

Theorem 4.1 Assume that [ : [a,b] x R — R satisfies the generalized Caratheodory
conditions and that f; = 5‘9; [ exists and satisfies the generalized Carathedory conditions. If

there exist p,q € L' such that

(a) p and g do not vanish in sets of positive measures;

(b)
0 < Sp()faltiz) < Sp(E)p(t) < Sp(t)a(H)ri(a)

for a.e. t and all z, A\ (q) being the principal eigenvalue of (P) ;
(¢) p#Ai(g)g in a set of positive measure;

then the conjugate BVP

Lz = f(t,1)
2 (a;)=4;, 1<i<m, 0<j<k~1

has at most one solution whenever A;; € R.

Proof:
Assume the existence of two different solutions z and y of the same conjugate BVP, and

argue for a contradiction. Setting
1
Q) = [ fa(ty) + €a(0) —y(0) de |

we have

Ftz(0) - f&y() = Q) (z() —y(®) -
It follows that the function v = z — y is an eigenfunction corresponding to A = 1 of the
eigenvalue problem

Lu:AQ(t)u, 4.1
u(a;) =0 for 1<i<m, 0<j<k—1. (1)

Clearly we have Sp(t)Q(t) < Sp(t)q(t)A1(g) a.e. and Q(t) # q(t) 1 (g) in a set of positive
measure. Then an application of Theorem 2.2-a to the eigenvalue problems (4.1) and to

Ly = AM(g)a(®)y
yD(a;) =0 for 1<i<m, 0<j<hki—1

provides
(@) > A(M(g)g) = 1. (4.2)
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But then we have a contradiction: since the principal eigenvalue is less than or equal to the
absolute value of any other eigenvalue of the same BVP, and since A = 1 is an eigenvalue of
(4.1), we should have A\1(Q) < 1, contradicting (4.2). O

Theorem 4.2 Assume that f : [a,b] x R — R satisfies the generalized Caratheodory
conditions and that f, = % [ exists and satisfies the generalized Carathedory conditions. If
there exist p,q € L' and R > 0 such that

(a) p and q do not vanish in sets of positive measures;

(b)
0 < Sp()faltiz) < Sp(t)p(t) < Se(t)g(t)M(q)

for a.e. t and’|z| > R, A1(q) being the principal eigenvalue of (P) ;
() p# M(g)g in a set of positive measure;

then for every g : [a,b] x R — R satisfying the generalized Caratheodory conditions and

lim =0
[ej—o0 ||

the conjugate BVP

Lz = f(t,z) + g(t,z) ,
2(a)=0, 1<i<m, 0<j<hk—-1

has at least one solution.

Proof:
Applying Theorem 2.2-b to the eigenvalue problems

Ly::/\p(t)y
yD(a;) =0 for 1<i<m, 0<j<k—-1 °

Ly = AAu(a)a(®)]ly
y (@) =0 for 1<i<m, 0<j<hi—1

we see that

ME) > M@ =1 . (4.3)
Let pp =p+ %. We claim the existence of ky > 1 such that

Mlpr) > 1. (4.4)
Otherwise, we have A1 (pg) < 1 for all k. Since A; (px) is an increasing sequence by Theorem

2.2-a, we have
: h]lc’n/\l(pk) = Ao < 1.
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Let z) € K be an eigenfunction corresponding to A; (pz) with norm 1. From

b
zp(t) = Al(pk)/ Gt 8)pr(s)zr(s)ds , a<t<h (4.5)

and Ascoli Theorem, we get the existence of a subsequence zj, — o uniformly. Taking
limits in (4.5) for k& = k; we obtain

]
Teot) = Aeo / Glt, 5)p(s)zao(s) ds , a<t<b .

Therefore z, is an eigenfunction in int(X) of

Lz = Apop(t)z
2 (a;)) =0 for 1<i<m, 0<j<hi—1

Claim: The principal eigenvalue A;(p) of (P) with ¢ = p is the only positive eigenvalue
having eigenfunctions in int(X) despite the fact that T, need not be strongly positive.
Assume for a moment that this claim holds. Then Ay = A;(p) contradicting (4.3). Thus
(4.4) holds. : '

Now we define

g(t,z) = /01 Ffa(t, Ex) dE
and the given equation can be rewritten as
Lz = q(t,z)z + f(t,0) + g(t,z) .
Clearly Sp(t)q(t,z) >0 for a.e. t and all z. Let |z| > R. From

R/|z| 1
ota) = [ Rnen) ot + [ o) de
o R/|z|
and from (b), we deduce the existence of 7 > R such that
0 < Splt)alt) < Setipe ()
for a.e. t and |z| > r. Now fix any h € L! such that JA(t)] > r a.e. By the above, we have
0 < Sp(t)q(t, h(t)) < Sp(t)px, (t)

a.e., hence Theorem 2.2-a implies

Alg( - R(-)) 2 Mlpk,) > 1.

Then

Lz = q(t7 h‘(t))m

zW(a;) =0 for 1<i<m, 0<j<k—1
has only the trivial solution. It follows that we can apply Theorem 1 and Example 2 of
Vidossich [22] by considering the first order system in R™ equivalent to the given equation
Lz = f(t,z) + g(t, ), letting X be the set corresponding in this equivalence to

v ={heL': 0<Spth(t) < Sp(H)ps a.e.} .,
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and obtain the existence of at least one solution to the given BVP.

Proof of the claim: Suppose that o > 0 is an eigenvalue of T, having an eigenfunction
z € nt(/C). We show that a = r(T}). Since it is evident that 7(T,) > a by the monotonicity
of the sup norm in K (see Theorem 0.4), we need to prove that r(Tp) < a. To this end, let
y € int(K) be an eigenfunction corresponding to r(T},) provided by Theorem 2.1. Now set

to = max{t > 0: ty < z} (4.6)
noting at once that
0 < tp < 21l
0 <
Ilylloo

since z € int(K) and X is normal, and put z = fpy — z = 0. Therefore

Tz = tor(Tp)y—az < 0

which implies T(Z”) <1 by (46). O
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§5. Some bifurcation problem

In this section we make use of the results of §3 to show how our theorems may enable to
solve bifurcation problems. The assumptions about f in the next theorem are fulfilled by
y e’ with 0 > 0, and y~ |y|7 + |y|* with 0 < v < 1 < 4.

Theorem 5.1 Let f:R — [0,00 be a nonnegative continuous function which is nonde-
creasing on [0, co[ and assume that gq : [a,b] = [0, cof is a nonnegative continuous function,
such thaot

(1) ¢#0 ,
E2§ f) < fyl)  forall yeR
3
f0=1imsup—]f—(y—) = Q0 = foozhmsupi(_@
y—o |yl lyl—oo |Vl
Then there are
AY> A >0

such that the boundary value problem

Ly = Aq() f(y) ,
y N (a;) =0, 1<i<m, 0<j<k—1

has:
(i) at least two nontrivial solutions y; and yy with
Sp()y2(t) 2 w@Sp(t)i(t) > P*Wllnlle , a<t<b,

for 0<A<A,

(i) at least one nontrivial solution y with
Sp()y(t) 2 e@lylle , a<t<b

for A <AL, and

(i) no solution for A > A*

Proof:
We first highlight that such a function f must be positive on R.
Let define for each A > 0, the function fy : R — [0, co[ by

oy = Af(y) .

Let mo > 0 be a minimum point of f, whose existence is guaranted by the continuity of f
and the assumption (3). Therefore

f(m0) [ fly)
—7-70L Zmln{—la—.y;éO} >0 .
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Set

_ 7 ’ -1
o = ﬂ;,%j‘(i%?é / 1G(t,5)la(s) ds)

Then for every A €]0, Ag[, the BVPs

Ly = A() () , (P)
yP(a;) =0, 1<i<m, 0<j<hk—1" A

has at least two nontrivial solutions y, ; and Ya,2 such that

lyailleo < M0 < |yazlleo

by Theorem 3.3 (cf. also Corollary 3.4).
Now set
Iy = {A>0: (P)) has at least two nontrivial solutions}

and
" = {A>0: (P)) has a nontrivial solution} .

Claim 1: The nonempty set I'* D T', is bounded.
Indeed let A € T, then there exists y satisfying (P,) (as well as Ly, > 0) and so

M2 16, 8)la(s) F(ua(s)) ds

Il

(yx(2)]

v

A-min{48 sy £ 0} - 716G, 5)la(s)[a(s)] ds

v

/\-min{% :y #0} f: IG(t, 5)la(s)p(s)|lyalloo ds

by Theorem 1.1, implying

[ ) ° :
> . —= - . .
1> A mm{ o] y#0 nr;lfécb/a |G(t,8)lg(s)p(s) ds > 0
Claim 2: Ag € T*.
In fact, this is evident since the operator defined by

b
y = Ao / G( ,9)a(s) £ (y(s)) ds

maps compactly the closed ball of C° with radius ny into itself and thus has a fixed point by
Schauder’s fixed point theorem. This fixed point is different from 0 by assumption (3) and
the monotonicity of f. Another way to realize that (Py,) has a solution is to observe that
there exists a sequence A; T A such that yy, ; converges.
Hence there does exist

A > Ao .

Put

5 -1
X = supl* < <nun{fl§/—y!) y#O}-argg%cb / Gt )la(s)e(s) ds)
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To complete the proof of the theorem, it suffices to prove that A\* € I'* since the rest will
concern the sign property of the solutions which follow from Theorem 1.1.

By definition of A* there exists a sequence A1 € T* converging to A*. Let now z; be a solution
of (Py,). We need only to prove that (21)1 is bounded in C° since the operator defined by

b
y e / G- ,5)a(s) f(y(s)) ds

is completely continuous from C° into itself. Suppose by contradiction that
Iim ||z1]]lee = oo .
{—~rco

Then, put X = min;{}}, let A C Ui";l]ai, ai11[ be a compact set with positive measure

containing a number § such that ¢(§) > 0, and fix moreover a > 0 with

a3 [ 166, s)a(e)e(s) ds > 1
A
Therefore, by assumption (3), there exists 1 > 0 such that

fy) > aly| for |y >7 .

If
i

min AP
then by the maximum principle proved in Theorem 1.1, we have

ai]leo >

1

Se(s)zi(s) > w(s)llalle > 1, secA

so that
flz(s) = ala(s)] > ap(s)llzillen , sE€A

yielding
2@ = X [11G(6,5)a(s) f(uls)) ds > A4 1G(8,9)a(s) F(zi(s)) ds

a2 [, 1G(,9)la(s)p(s)])z1]loo ds

v

Vv

1zi]] 0o

which is absurd. O

Theorem 5.2  Let consider continuous functions H < Q : [a,b] x R = R. Assume
that there exist hg,hy,qo,qu € L%([a,b]) and a positive continuous function f : R —]0, co]
which is nondecreasing on [0, c0] such that

(1) f@) < fy) forall yeRr ,

(2) go—=h1>0 with go—hy #0 on a set of positive measure,

)

ho(t) < E;(é;)y) < hi(t) forae t andall y |,
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* Qlt,y)
Y

Then for every o >0, there ezists

< q(f) forae t andall y .

Ale) €]0,00] ;

b —_
@ > %= s (e | 66, 5)en(6) = ho(s) ds)
such that the BVPS

Ly +AH(ty) = AQ(,y)
y(a) =0, 1<i<m, 0<j<h—1,

‘has a least one nontrivial solution y with

such that

lvllo < 0,
given any
Proof:

Foreach A €0, Ag], it is not hard to check that the operator defined by

b
y = A / G(- ,8)(Qs,u(s)) - H(s,y(s)) ds

maps compactly the closed ball of C? with radius ¢ into itself and thus has a fixed point by
Schauder’s fixed point theorem. The sign property of this solution follows from Theorem
1.1, O
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