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Introduction

The recent discovery of high-T, superconducting materials [11] has revived the in-
terest in the physics of strongly correlated systems. In fact these ceramic super-
conductors are good insulators, and on the other hand, expecially in the CuO,
two-dimensional planes in which superconductivity takes place, they can exhibit
strong antiferromagnetic correlations, with the antiferromagnetic phase remarkably
close to the superconducting one. Therefore, the relevance of the interplay between
magnetic behavior and metal-insulator transition (also known as Mott transition)
near half-filling seems to be crucial.

The simplest model to describe the main features of strongly correlated elec-
trons is the so-called Hubbard model, originally introduced in [40] as an attempt
to describe the effect of correlations for d-electrons in transition metals. The model
hamiltonian consists of two contributions,

H=- Z Ztij(a’io'ajv" + a;[ygai,a) + UZ it (0.1)
<ig> o ;
a kinetic term describing the motion of electrons between neighbouring sites (the
hopping integral #; ; is usually restricted to nearest-neighbours) and a on-site term,
which approximates the interactions among electrons. The indices 4, j label the sites
of a d-dimensional lattice A.

A considerable amount of work has been devoted to the solution of the Hubbard
model since its introduction in physics. The limits ¢ — 0 (fully localized electrons)
and U — 0 (free itinerant electrons) yield hamiltonians solvable in any dimension.
For intermediate couplings, the model is not exactly solvable, except in one dimen-
sion where it has been solved by Lieb and Wu [47], using the Bethe Ansatz technique.
In the latter case, however, the Mott transition is absent at any T # 0, according
to the Mermin-Wagner theorem.

The failure of exact results in dimensions greater than one has naturally stimu-
lated the growth of several approximation methods [50, 38], particularly in the limit
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4 INTRODUCTION

|U/t| — oo (strong-coupling regime) and in proximity of band half-filling, where an-
alytical methods and numerical simulations have answered a lot of questions about
the magnetic behavior of the model. *

However, it is still not clear if the Hubbard model itself is capable of describ-
ing a superconducting phase, 2 therefore extensions of the model have been pro-
posed to enhance this possibility. The simplest choice consists in adding to the
Hubbard model coulomb interactions between nearest-neighbour sites of the form
Y cii> Looot VijioNjer, Tesulting in what is referred to as the eztended Hubbard
model. Furthermore, the neighborood of antiferromagnetism (AF) and supercon-
ductivity (SC) in the phase diagram of the high-T. cuprates indicates that AT cor-
relations may play an important role in the pairing mechanism. Now, the starting
point for all the schemes proposed so far which involve AF interactions is a more or
less large on-site Coulomb repulsion energy Uy on the Cu d-orbitals considered usu-
ally within the frame of the single-band Hubbard model in two dimensions. While
the corresponding large U limit of this single-band Hubbard model is indeed in ac-
cord with some essential magnetic properties of the CuO materials at half-filling
[19], there is a growing evidence that a multiband Hubbard model is required to
account for charge fluctuations, and spetroscopic data clearly point to the necessity
to consider both Cu-3d and O-2p orbitals together with their intra- and interatomic
correlations. Therefore, many studies have been done on this three-band extended
Hubbard model [74, 64, 34].

Among the various approaches to models describing interacting many- fermions
systems, a particular method has been introduced by Solomon [70, 71]. The strategy
adopted there amounts essentially to linearizing the hamiltonian by a mean-field
approximation, which leads to a conventional pair-reduced mean-field model. The
effective hamiltonian is then recognized to be an element (of a representation) of a
Lie algebra .A, referred to as the spectrum-generating algebra (SGA); through an
automorphism of 4, it is then possible to diagonalize the hamiltonian, leading to the
energy spectrum. Finally, self-consistency equations reconduct the exact results for
the linearized model to approximate (mean-field like) results for the original model.

The use of SGA’s permits a unified treatment of systems exhibiting coexistence
of competing order parameters such as superconductivity, charge density waves and
spin density waves [15] and the construction of the many fermion Green function for
T = 0 and T # 0 from factors completely determined by the underlying dynamical

'We refer to [41], where the most important articles related to this topic are contained
2Some people believe that the Hubbard model could describe d-wave SC but high-T. materials
also show s-wave SC
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algebra [13].

In [53], a refinement of the Solomon’s method, called successively fermionic
linearization has been proposed. It is characterized by the fact that expectation
values of fermionic operators to be self-consistently evaluated in the ground state
(or in some suitable equilibrium quantum state) must be taken as odd elements of a
Grassmann-like algebra G, anticommuting among themselves and with the fermionic
operators.

The Hubbard model, when fermi-linearized, exhibits a dynamical algebra which
is a superalgebra (also called Z,-graded algebra). This is also the case for an exten-
sion of the model to a superlattice consisting of the sum of two sublattices , when
dealt with in a generalized mean-field scheme where a cluster of two sites is treated
exactly instead of a single site [54]. Based on these results, supersymmetric hamilto-
nians has been constructed from conserved fermionic charges living in the fermionic
sector of the superalgebra. The resulting hamiltonians are then generalizations of
the Hubbard model, exhibiting superconductive-magnetic phase whose appearance
is associated with spontaneous supersymmetry breaking. ‘

Furthermore, it is interesting to point out that the structure of the superlattice

realizing the supersymmetry is indeed that of most of the known compounds exhibit-
ing high-T, SC. For this reason it seems reasonable to suggest the hypothesis that
spontaneous supersymmetry breaking could be a possible mechanism to account for
high-T, superconductive phase transition in systems, such as the ceramic rare earth
doped copper oxides, well described by Hubbard-like hamiltonians.
- This thesis is devoted to the application of the fermi-linearization scheme to
Hubbard-like models and is fundamentally divided into two parts. The first part
composed by the first two chapters includes a review of the known results. The
second part, composed by chapter 3 and 4, contains the original results recently
published in [20, 21, 22, 52]. The work is completed, as usual, with the conclusions
and the outlooks.

In Chapter 1, we introduce the concept of dynamical algebra of a system, giving
the various choices for the Grassmann-like algebra related to fermionic linearization.
We also show how order operators in Hilbert space can be associated to elements
of the SGA. Then we illustrate the SGA method with the conventional linearized
BCS model and with a more complex system of interacting fermions showing the
coexistence of three phases. The chapter is closed showing how the BCS model,
when fermi-linearized, may be regarded as the hamiltonian of a model exhibiting
spontaneously symmetry breaking.

Chapter 2 is completely devoted to the fermi-linearized Hubbard model. The
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Grassmann-like algebra will be here a Banach-Grassmann algebra. First, we describe
the model, showing the connections with high-T, superconductivity. Then, we show
the possible breakings of the SO(4) symmetry discovered by Yang and Zhang, with
the related order parameters. Here, the difference between fermionic linearization
scheme and other approximation methods is pointed out. After a general analysis
of the dynamical superalgebra for the n-cluster fermi-linearized Hubbard model,
we then study the thermodynamics in the case n = 1 (single-site) and the ground
state for the case n = 2 (dimer). The last section contains a discussion about
the supersymmetric extensions of the Hubbard model in two dimensions previously
mentioned.

Chapter 3 is entirely dedicated to a particular version of the extended Hubbard
model called the extended Falicov-Kimball model [20, 21]. Partition function and
self-consistency equations are derived in details. Then a special solution of the
problem is presented together with numerical results. Also in this case, a Banach
Grassmann algebra has been used.

Chapter 4 deals with the case where the Grassmann-like algebra is a Clifford
algebra. The dynamical algebras for the Hubbard and the extended Hubbard models,
which in this case are no longer superalgebras but ordinary Lie algebras, are derived
[22, 23]. We give a numerical analysis for the Falicov-Kimball [52].

Those who are not familiar with concepts like Lie algebras, superalgebras, super-
symmetry and coherent states can look at the appendices where a short introduction
to these notions is contained.



Chapter 1

The Fermi-linearization scheme

1.1 Dynamical groups and coexistence phenomena

The relationship between symmetry groups and phase transitions is well-known:
the transition of a system from one phase to another is usually accompagnied by
the spontaneous breaking of the symmetry group G associated with the system.
That is, the latter in its disordered state (above a critical temperature T¢) , is
described by a Hamiltonian H having symmetry group G, whence in the ordered
state (below T¢), it is described by a reduced hamiltonian H,.qy which is invariant
under a smaller symmetry group Gy C G. The appearance of order parameters will
then be associated to the disappearance of the higher symmetry.

Well-known cooperative many-body effects such as superconductivity, charge-
and spin-density waves, ferromagnetism, etc. can be investigated as broken symme-
tries. For example, above T, a ferromagnet is rotationally invariant and G = SO(3).
Below T, an arbitrary but fixed direction in direct space is distinguished. The axis
of the magnetization M # 0, which in this case is the order parameter, becomes the
axis of lower symmetry and Gy = S0O(2). For a superconductor, one assumes that
above T¢, the fields satisfy angle-phase (U(1)) invariance (equivalent, by Noether’s
theorem, to number conservation). In the superconducting state, this U(1) invari-
ance is broken. In this case, the order parameters are the fields or their expectation
values if quantum theory is used.

The discovery of the presence of coexisting phases in certain alloys at low temper-
atures ([73]) raised the question whether the general coexistence problem of many-
fermion systems can be suitably handled in a compact way within a unified group
theoretical approach.

-1



8 CHAPTER 1. THE FERMI-LINEARIZATION SCHEME

In this context, the concept of dynamical group has been introduced [70]. Dy-
namical groups, which describe both the symmetry of the system and its spectrum,
arise in the following way: the reduced hamiltonian, usually a mean-field approxi-
mation, is a representation of an element of a Lie algebra, the so-called Spectrum
Generating Algebra (SGA). The name of the algebra derives from its property of
generating the spectrum of the system, and the dynamical group is usually defined
as the Lie group of this SGA.

1.2 The linearization procedure

In this thesis, we will be primarly concerned with hamiltonians describing systems
of interacting fermions: '

H=Z€iajai+%z<i,j|V|k,l>a}ta;[aka1. (1.1)
i ijkl

where the label i is a multi-index including both momentum and spin indices (i =
(k,0)). As usual, a!, a; are creation and annihilation operators of fermions in the
state labelled by the index 7 satisfying {a;, a;} = 0, {a;, a}} = §;;.

Methods of solution which we will refer to as linearization methods usually in-
volve the reduction of the four-fermions term in the interaction to multilinear terms
of lower order or the linearization of the kinetic term, leading to a reduced Hamil-
tonian Hj;r which is expressed as a linear combination of multilinear products of

fermion operators. The closure, under Lie bracket, of these multilinears generates
then the SGA of that hamiltonian.

From a general point of vievs}, let us consider the product of two operators A and
B, and write the identity

AB=(A-<A>)(B-<B>+<A>B+A<B>-<A><B>. (12)

where < A >,< B > are the expectation values of the respective operators 4 and
B in some suitable equilibrium quantum state or statistical mechanical average. If
we assume that the terms (A— < 4 >) and (B— < B >) are ”small”, their product
can be neglected and the above identity is replaced by the approximate expression

AB>~<A>B+A<B>-<A><B>. (1.3)

At this point, in order to keep consistency, we have two possibilities which we shall
discuss in the following two subsections.
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1.2.1 Bosonic linearization

The operators A and B in (1.3) commute: then BA leads to the same linear approz-
imation of AB with < A > and < B > ordinary c-numbers.

In this case, typically, A and B are identified successively with all different
pairs of commuting operators entering the four-fermions interaction and use of the
approximate identity (1.3) transforms H into a bilinear form, which belongs to an
ordinary Lie algebra. We mention, as well-known representative examples, Hartree,
Hartree-Fock, and BCS approximations. For further purposes, we give below the
algebras related to single and pair fermion operators.

Algebras for fermion operators
We consider a fermion system with N single particle states, labelled by indices
a,8,7,..., etc. We define the pair operators of the fermions by
1
EF = alag — 3 0B
E.3 = asag, E*f = alag (1.4)
with the properties EET = Eg,Eaﬁ = Ega,Eag = —FEgs. The set consisting of all

single and pair operators generates the Lie algebra By isomorphic to so(2N + 1).
The commutation relations are given by:

[E3,E]] = 6.8E§—6asE}

[ E§,Evs] = 6asEPY — 60y Eps

[ B°®,Eys) = 8asEP + 85,Ef — 60, E®® — 6p5ES

[ Eopy Eys]) = 0, | (1.5)

[ aavaﬁ] = 2 EE? [ @a,ag] = 2 Eag,
[ Qny E§] = 6a6a"ya [ aaaE{ﬂrﬁ] =0 )
]

[ aa,Eﬁ5 = (Sa.aa:l; — b a];

The other commutators are straightforwardly obtained by hermitian conjugation.
From (1.5), the set of all pair operators (1.4) is closed under commutation and
generates the algebra Dy ~ so(2V), while the subset { E} forms a u(N) Lie algebra.
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1.2.2 Fermionic linearization

The operators A and B anticommute: then < A >,< B > should anticommute with
the operators A, B and among themselves.
In this approach, we linearize the hopping term in the following way:

> a:f,aaj,,, — gy (< a:[, > ajo + aia <aje > — < a:r, ><aj,>) , (1.6)
<i,j> i
where ¢ denotes the number of nearest neighbours per site in the lattice.
For the four-fermions interaction term, the linearization will proceed by replacing

aFaTakal —< a,T aT

3 (it} i

ap > a; + a:[a;[ak <a>-—-< aTaIak >< ap>. (1.7)

Let us now notice that if this linearization procedure is applied to the hamiltonian
(1.1), it can never happen that A equals B or B | and therefore we have no constraints
on < A >< A > and < B >< B >*. This means that we have various choices
for the algebraic object to incorporate < A > and < B > and achieve the above
condition. Let us define the numbers ©; =< A4; >, where A; could be a linear or a
trilinear in fermion operators, then the ©; may belong to:

1. Grassmann algebra !: a Grassmann algebra G has a Z,-gradation in two
non-intersecting subsets of elements which are products of even (Gy) and odd
(G1) numbers of anticommuting objects, respectively, that is G = Gy @® Gy, with
[Go,G1] = 0. The (anti)commutation relations are given by

{0;,0;}=0 , {@,’,éj} =0 . (1.8)

We will not consider this possibility, because, due to the associativity, quan-
tities like (©®)? vanish and this fact makes it difficult to give to results of
computations inside the algebra, a sound physical interpretation.

2. Non-associative Banach-Grassmann algebra: it has the same structure
and algebraic relations (1.8) of the Grassmann algebra plus a set of new rela-
tions implying that bilinears of the type ©;0; are c-numbers. Therefore, since
(00) = ¢ (c €R), (00)? = ¢ In the reduced hamiltonian we will then have
coeflicients at most linear in the variables ®,®. A possible realization could

be 0;0; ~ sin (p; — ;).

!See appendix B for a more detailed definition
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3. Clifford algebra: the (anti)commutation relations are now
{0:,0;}=0 , {0, éj} =6 . (1.9)

In the following, we will generally denote by Grassmann-like algebras the group of
three algebras introduced right now. Chapter 2 and 3 will be devoted to the case
(2), while case (3) will be the subject of Chapter 4.

1.3 The algebraic structure

1.3.1 The Cartan-Weyl basis

In general, for a rank-I/, d-dimensional semi-simple Lie algebra g, 2 we may choose
the Cartan-Weyl (CW) basis

{hiy--shijes1, . o eem}y, 1+2m=d (1.10)

where
[h'i7 hJ] =0, [h'i7 e:i:a] = ta,e,

leas€s] = Nageatrs (a+ B #0) (1.11)

!
[eqs —al] = Z a;h;.
i=1

If g is the SGA, we can rewrite Hp/r in the CW-basis as follows:

l m
Hyur =3 85 hj+ ) palea +e_a) (1.12)

7=1 a=1

1.3.2 Bogoliubov transformation

Hj r can be rotated to diagonal form by means of an automorphism & : g — g
represented here by the adjoint action of the operator Z = 3.0 ¢al€a — €—o). By
diagonal we mean that Hp = exp(ad Z)(Harr), through an appropriate choice of
the coefficents {¢,}, will belong to the commuting Cartan subalgebra generated by
the set {h;}.

The diagonalization is performed in the following way. First notice that

=< 1 o< 1 .
H = dZVHyup) =S =1(2,..,0Z,Hud...1=S =HM . (113
exp(ad Z)(Har) n};() m n_ﬁme[s vE] ] 2 o (1.13)

?See appendix A
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Due to the fact that [Z, Hysp| € g, we can generally write

H®) = [z, F®-1)] Z,B(k) hj+ Z pE)(eq + e_q), (1.14)

j=1

with H©®) = H ArF, and the commutator defines a recursive relation for the coeffi-
cients {ﬂ(k), Ly )}

Now let us introduce the vector | v > (k) = | l.tgk ,#£n), (k)

ﬂ(l) >

1 -3 M1 ’

[+ m = p together with | § >= | él,...,ém,hl,...,hl >, éy = €q + €_q, in such
a way that H*) =< v(¥)| G >. It is then possible to write down a p X p matrix 4
such that | v >®*+= A| v >) where 4 = A({¢o}) and

Ag =T AT = diag (A1, Ap)- (1.15)

Defining by | w >= ( v1,...,¥m,71,.--, 71) the coefficients relative to H, (i.e. H =<
w| G >), we obtain from (1.13) and (1.15)

.1 X1
— il (n) — 4" (0)
| w > nz::()n!|v> nz::OmA | v >
201
= T — AN T! ©) 1.1
(n}::) —ADT v> (1.16)
and therefore »
wi= Y M TuTqt v (1.17)
k=1

The m nonlinear coupled equations {v,({¢s}) = 0; a,8 = 1,...,m} give the re-
quired solutions ¢, and at the end we are left with

!
Hp = Z:)’i hiy i = 1i({a})- (1.18)

1.4 The order parameters

Let us now show how it is possible to associate the appearance of order parameters
with the dynamical group, as well as the symmetry group, of the system in question,
in the case of abelian broken symmetries [14].

The mean-field approximation to the system, represented by the hamiltonian
Hjrp, in the ordered state has a reduced hamiltonian H,.q, that is an element of (a
representation of ).the SGA of the system. The hamiltonian H of the system, in the
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disordered phase is not, in general, an element of this SGA; however, there may be
an element of the SGA, let us call it H,yn,, that effectively recovers the symmetry
of the original hamiltonian H. When this happens, then, as far as symmetry is
concerned, one can use the Hyym — Hyeq transition to mimic the H — H.q phase
transition; by means of the former, we can define the order parameters associated
with the latter.

We shall assume that the reduced hamiltonian is a representation of an element
Treq Of a semisimple complex Lie algebra g. We shall identify the algebra g, of the
(abelian) symmetry group G with a subalgebra of the Cartan subalgebra h of g.
Similarly, gg is the algebra of the subgroup Go. We thus have

go C g, C hC g, [ Hred1 gO] =0 ) and [Hreda gs] 7£ 0 . (119)

If H,eq is diagonalizable, z,.g belongs to some Cartan subalgebra h of g. Since,
in the semisimple complex case, all Cartan subalgebras are conjugate under the
adjoint group of g, we have an automorphism T : g — g, such that & = (k). This
automorphism enables us to define a new element z,,,, € g, by

Toym = L(Tred) ER . (1.20)

Since [ Tsym , gs] = 0, the Hilbert space representative Hyym of zsym has the full
symmetry of the original hamiltonian H and the same spectrum as H,.q4. Therefore
we may label eigenstates of Hy, with symmetry labels appropriate to H; these
are the eigenstates we use to mimic those of H and for which we require the order
parameters to vanish. For example, the eigenstates of Hp in (1.18) are labelled by
the eigenvalues A; of the h;:

hil {Ai} >= Aj {7} > . (1.21)

Let us define the order parameter 74 as the expectation value of an order operator
O, such that 7% = 0 in the disordered state | d > but 7% # 0 in the ordered or
broken symmetry ground state | g >. The state | d > will be identified with a
state in which the [ mutually commuting operators Ay, ..., h; are all diagonal and
represent then conserved quantities.

Now we see that the operators in Hilbert space corresponding to the non-Cartan
elements e, of the SGA behave as order operators. This follows from

1
<d|ey d>= = < d|[hi, ea] | d>=0 (1.22)
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provided that a; # 0. In that case, e, will be an order parameter for the phase
described by the non-conservation of the h;, which form the subset A of {hy,..., i;}.
For a system with SGA of rank [ > 2, the es,eg,... can correspond physically to
coexisting order operators with order parameters 7%, 7%, ..., and a phase boundary
can be defined in the space of coupling parameters {8}, iio } in Harr by 7% = n%,ete.

This approach manifestly fails in the case of non-Abelian broken symmetries
such as, for example, the SO(3) case of ferromagnetism. Here a typical model,
H =3, ;7ij5:i5;, which is S0(3) invariant, leads to a mean-field reduction, Hyeq =
>, iiSi, which is not. However, the best one can do in this case, by an automorphism
of the so(3) SGA, to send H,.q to |u|S3 which does not recover the full SO(3)
symmetry. In chapter 2, we will present a scheme also including non-Abelian broken
symmetries.

1.5 The conventional linearized BCS-model

The simplest model which illustrates the SGA method is the celebrated reduced
BCS-model for the superconductivity [8]. The latter is recovered retaining, among
the interaction terms in the hamiltonian (1.1), only the following term:

1 . ..
3 Z <t,—i|V|j—-7> a]aiia_jaj, (1.23)

i!j

which correspond to the Cooper-pairing terms responsible for the superconduc-
tivity. Notice that the hamiltonian is invariant under the gauge transformation
ay — exp(i¢)ay corresponding to the symmetry group U(1).

Upon selecting 4 (= BT) equal to a:[ai-

; in (1.3), and introducing the order

parameter

1
Ay := 52 <k,~k|V|j—j><aja_;>, (1.24)
j

the Hamiltonian H reduces to H(1), a direct sum of commuting single -k hamiltoni-
ans, i.e. H() = S He,

H = Ek(nlc +nog)+ A;\.(alatk + a_jay). (1.25)

Hy, is readily seen to be an element of the Lie algebra £ = su(2) generated by

1
Tr=dd, =, 5= S+ = 1), (1.26)
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and therefore H(!) is an element of the SGA g = @ su(2)x. In the basis (1.26), we
have

Hy = 2e.J3 + A »(J_|_ +J2) (1.27)

and the diagonalization of Hy is then achieved through a Bogoliubov rotation U =
exp ¢(J;+ — J_) in the associated group space so that

H?Y =U H, U™ = 2E,J; (1.28)

where ¢ = I tan™!(Ax/ex) and By = /[ex]? + [Ax]%
The eigenkets of H ,gd) are su(2) states | ¥ > which are labelled by the eigenvalues
of J; and J?, the Casimir operator of su(2), for each k. Using the notation | ¥ >=

| J2J3 >, we have

HO ¥ > = 2B,0s| J20; >= 2Eym]| J2J5 > (1.29)
T T2 > = j(G+1)] 203> . (1.30)

From J? = ngn_ + J3 + J32, we deduce that both the Casimir and J3 are functions
only of the number operators nii and that the only possibilities are therefore

1
J3 — m::}:—é or 0 , (1.31)

oo g+ =

> w

or 0 . (1.32)

Recalling that j also labels irreducible representation D7 of su(2), the possible kets
are

+ 1 §>~D1/2
Pr>=] | i ’ 1.33
2n = { ] (1.33)

The eigenket of Hy is then | & >= U_ll J2J3 > and the representation labels
7 = 1/2,0 distinguish physically different states. States given by U™'| +1/2,3/4 >
are excited (+1/2) and ground (—1/2) "pairs” while U~!| 0,0 > states are ”singles”.
The ground state has energy —FE(/2, in accord with the physical expectation that
both constituents of the pair are occupied, i.e. ny = n_r =1 and m = —-1/2.

In fact, the identification of different types of states (excitations or quasi-particles)
with irreducible representation of the SGA is a general feature in all these many
body systems. Another important point that we do not treat here is the fact that
the many fermion Green functions for 7 = 0 and T # 0 are built up from factors
completely determined by the Dynamical Algebra. ‘
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1.6 Dynamical su(8) for phase-coexistence

Considerable interest, both theoretical and experimental has been aroused by evi-
dence of the presence of coexisting phases in certain alloys at low temperatures. The
main question investigated is the relation between the SGA of the coexisting phases
and its subalgebras, and the connections with uncoupled phases.

Let us describe a multi-phase interacting system of electrons [15]. For this pur-
pose, we introduce a mean-field hamiltonian which incorporates (apart from the
usual kinetic energy term (Hg.)), singlet superconductivity (H,.), charge-density
(Hcdw) and spin-density wave (H,qy ) terms. Thus

H = Hpe + Hsc + Hegy + Hyq, (134)
where

Hie = Zskaz,aka (1.35)

k,o
H,, = Z AzakTa—kl + h.c. ‘ (136)

k
Hcdw - Z‘)’g ‘IL-Q,JC”W + h.c. (1.37)

ko
Hygy = Z a]1;+Q Y0 ke + h.c. (138)

k

Charge-density waves (CDW) are associated to periodic lattice distortions occuring
at low temperatures for certain quasi-one-dimensional crystalline compounds. The
conduction electrons will attempt to screen the periodic potential set up by the
atomic displacements, and the CDW describes the density modulation of the elec-
trons near the Fermi surface. Since the compounds showing this phase transition
(referred to as Peierls transition) may also be superconducting, there is the possibil-
ity to observe the simultaneous occurence of both states, SC and CDW, in a given
sample.

Above, Q = 2kr is a characteristic wave vector for density wave order. With the
additional semplification that there is no contribution from terms for which |k| > Q,
we may write H = @Z""H(k), where H (k) is a bilinear in the set

AR} = {onr ol oy ol s o, aly g, al ), (L39)

where £ = k — Q. It is then easy to verify that {4i(k) , Aj(F)} = 6;;6¢k and that
X]’: = AITA]- (¢,7 = 1,...,8) generate the Lie algebra gI(8). The hamiltonian, due
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to its hermiticity, may be considered as an element of su(8) and the SGA is thus
EBk.su(S)k.

The Lie algebra su(8) is an algebra of order 63 and rank 7. Following the
discussion in section(1.4), we try to classify the order parameters for the model. We
have the seven commuting Cartan elements h;, corresponding to operators such as
number, spin, momentum, etc., which are no longer conserved in the transition to
broken symmetry phase and 56 order parameters corresponding to the elements e,.
These order operators consist of four quartets (singlet plus triplet, of differing parity
and time-reversal sign) for each of the superconductivity type axa_i, density wave

]

a,a—qg and anomalous type ara_(x_q) operators, together with 8 ferromagnetic
operators.

From this system of operators, we may derive various chains of subalgebras,
considering the centralizers C(h;) of the relevant h;, and their complement C (k).
For example, density wave terms conserve the electron number

N = ZNk , Np= Z (n;w + ke + N5, T+ TL_EO,) (1.40)
k a=T]

while superconducting (and anomalous) type do not. Therefore
gdw = Cau(s)(Ni) = u(1) @ su(4) ® su(4) . (1.41)

The pure CDW-phase SGA is given by the centralizer of the spin operator
o)=Y Yal.c®Pas (1.42)
p=x+k,+k B

since the CDW waves conserve spin; thus
getw = Cauu(2(k)) = u(1) ® s0(4) . (1.43)

In this case, we expect four N-invariant order-parameters corresponding to breaking
of momentum P and the k, k-number difference § = (IN; — N)/2, these being the
operators corresponding to the two Cartan of so(4). There are four root vectors and
therefore four independent order parameters. They may be most simply obtained
from the operator '

by parity 7 transformation ® and hermitian conjugation. For real coupling con-
stant g, the SGA reduces to u(2) ~ u(1) @ so(3).

3The parity transformation is defined in the following way: 'rra.k,:,ﬂ'T = Gk, -rra;mrT =a_fg-
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su(8)

C(N) u(l) @ su(4) @ su(4) u(1) @ so(5)
(SDW + CDW) (SDW)
C(o)
u(2)
c(N) (CDW)
C(o) so(6)
(SC + CDW)
c(P)
so(3)
C(o) (SC)
c(P) su(4) @ su(4) S;I({i)

Figure 1.1: SGA cascade from su(8)
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The SDW wave case correspond to g = 0; this has SGA

Gsdw = u(1) @ so(5) ® so(5) . (1.45)

The center u(1) is again generated by the total number operator N; the four other
Cartan of s0(5) @ so(5) correspond to P, S, 03, and P - ¢ number S’. There are
sixteen root vectors, and therefore potentially sixteen order parameters. However,
four of these commute with P, and so there are only twelve S DW order parameters,
which split into 4 spin triplets. Again, these may most simply be generated from
the operator

X;} - X? = aZTaET - azla,;l (1.46)

by spin-totation g, parity 7 and hermitian conjugation. For real coupling constants
7, the SGA reduces to u(1) ® so(5).

In figure (1.1), we illustrate the subgroup descent from su(8) which encompass
the phenomena described so far.

We have seen that the above algebras are all reductive, with the u(1) component
being generated by the number operator (1.40) as central element. If in addition,
the so-called "nesting” condition is imposed, (k) + ¢(k) = 0, then the SGA’s will
reduce to their semi-simple component.

1.7 The supersymmetric linearized BCS-model

If we use Fermi-linearization instead of the usual bosonic linearization method, we
are led to SGA which are superalgebras. Lie superalgebras are Z, -graded vector
spaces with a bosonic (even) B sector and a fermionic (odd) F sector. * An hamil-
tonian H is said to be supersymmetric if it exists a charge operator Q € F such
that

H={Q, 0} , @*=¢ql" =0 . (1.47)

In this section, we show how the BCS model may be regarded as the hamiltonian of
a model exhibiting spontaneously broken supersymmetry [53].

First, we consider, together with (1.23), interactions of umklapp type ([62])
retaining terms of the type

1 .. . Tt .. ;
§Z<z,]|V|-],—z>ai'a}a_,~a_j, 2(1+_])EA# (1.48)
ZIJ

*For more details about superalgebras and supersymmmetry, see appendix B
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where A¥ is the reciprocal lattice of the crystal and define the new order parameter
1 . .
O :=§Z<k,]IV|'—],—k >< ajaj> . (1.49)
j
Then Hj in equation (1.25) modifies to

Hie = ex(ne + nog) + (Akaiatk + 6ka,1;a_k + h.c.). (1.50)

which belongs to the Lie algebra su(2) & su(2).
Now let us retain other terms from the general hamiltonian (1.1) coming from
the following umklapp (momentum non-conserving) processes:

1 Al e

> Z <, —i|V|j,i> ajafr_ia;aj, (i+])€ A# (1.51)
i,j

1 A A | - #

5 Z <t —-iVl|j,—i>ajala_ja;, (I-j)€eA (1.52)
1,J

We then Fermi-linearize these terms as shown in subsection (1.2.2). The new result-
ing linearized hamiltonian H ]gs) is recognized to be an element of the Lie superalgebra
su(2|2) where the bosonic sector B is the su(2) @ su(2) Lie algebra £ of Hy

{alat y GGy %(n_*. +n_— 1)} ® {aia_ , aia+ , %(n+ ——n_)} , (1.53)

and the fermionic sector F is given by the eight operators

{ai(l—n;), al(l—n;),nia;F, aln;} . (1.54)

Here and in the following, we omit the subindex k setting a4 = air. Therefore, we
can write H,ES) = Hr + H,EF), where

ngp) = Z v F;, , v, eg . (1.55)
FeF

Let us now show how Hj; can be considered as a supersymmetric hamiltonian in
terms of charge operators @, QT € F(su(2]|2)). We define

Hy = erny ~e_n_ + (Akalaz + 5kaT+a_ + h.c.) (1.56)

which is a generic element of su(2) @ su(2) and the charge Q:

Q=aayn_+Pa_ny +7a1(1—n_)+6ai(1~n+) (1.57)
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M
5= (105 4015)  [b>= —e(e}/"I00 > +e?11 )
c—é4 L \/5 216] ' i
, of
() @9 (5)
17y >= —=(]10 > —[01 >) by >= —— (/)00 > —e/2[11 >)
c—e. L V2 V208 T -

Figure 1.2: The energy spectrum of Hy

which is an element of F(su(2|2)) and whose square is zero. Then provided |a|? —
Y12 =e_, |1B]2-16]> = €4, By — ™6 = A and 6™y — a™B = bk, We may express
the hamiltonian (1.56), up to an additive constant ¢ = |y|* + |6|?, as

e = {0,011, with [F4, Q] = 0. (1.58)

In this case the potentials must satisfy |6x|> = |Ax| + ere_ and we have a spon-
taneously broken supersymmetric model; M, satisfies (1.58) but QTIf(-, >%# 0 and
Q|by >7# 0 (unless ¢ = [6;| - (E+E_)%), where {|f) >, |by >} is the degenerate ground
state of the model. In figure (1.2), we exhibit the spectrum of this system in the
basis {| ny n_ >}, where ¢ = |y|* + |6)? and ex = [§]x & (e4e-)"/2
But if the pairing order parameter Ay vanishes (y = § = 0), then we obtain an
Hamiltonian
'Hio) =esn_+e_ng + 5ka1a_ + 5;ata+ . " (1.59)
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su(2(2) vfs), Ap =
) 2 su(2[1)
Q v; =0 Qo ’Ul(l) =0
su(2) 6, =0 su(2) @ su(2) Ap=0 su(2) @ u(1)
HPCS A = {Q,Q' HO = (90,01}

Figure 1.3: Lie algebra-superalgebra chain

with 6 = exp(igr)(e4+€e- )L The hamiltonian Hg)) describes a system with unbroken
supersymmetry, because 'H( ) = = {Qo, g} with

Qo =+/e_ ayn_ — e~ fer a_ny, QF=0, (1.60)

such that | 'Hg)), Qo ]=0 and Qy, Qg annihilate the (degenerate) ground state
{\/_(11 0> —]0,1>), 10,0 >}.

Identifying A as the superconducting order parameter, H©) describes a system
above the critical temperature for pairing, where Ax = 0 and |8 # 0. In this sense,
the superconductive phase transition may be considered as a spontaneous breaking
of supersymmetry for this model.

Notice that the SGA of ’H,(co) is the algebra u(2) generated by

{;(n_,_—}—n -1), 1(n+ -n_), ala._ , ala, } . (1.61)

The appropriate superalgebra for the discussion of this model is that obtained adding

the fermionic elements {aynz , aT =N } of Qp and Qu The resulting superalgebra
is su(2[1).
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In figure(1.3) we give a diagram of the connections between the various Lie
algebras and superalgebras of the models discussed above. The coefficients v§1) are
related to terms of the type < a; >, 11,(3) to terms of the type < a;a;ja; >.
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Chapter 2

Fermi-linearization on

Hubbard-like models

2.1 Transition metals and compounds.

An interesting group of solids is the family of materials containing transition-group
elements whose atoms have incomplete d or f subshells.

Metals and alloys in which atomic magnetic ordering (ferro-, antiferro- or fer-
rimagnetic) is observed in a certain temperature interval requires that at least one
of the constituents be a transition element. In these materials, many-electrons ef-
fects are manifest very intensively and even when they possess no magnetic order,
they still exhibit unusual thermal, magnetic, optical, electrical and even mechanical
properties. The nature of these anomalies is due to the peculiar behavior of d and f
states.

Let us consider the atom of a transition element. First we have to pay attention
to the small radius of d electron and particularly f electron subshells in comparision
with characteristic distance between nearest ions in the metallic state of a relevant
element. Another interesting feature is that the filling of d and f subshells proceeds
in jumps at the middle and end of each series. This indicates that the one-electron
approach is inadequate to describe the atoms of the transition elements and we have
to take account of the exchange correlation interaction, which leads to the formation
of an atomic magnetic moment.

When atoms are united into a crystal, the electronic states which we are con-
cerned primarly with are the states of unfilled shells, for these states are respomnsible
for almost all the properties of the crystal. When atomic states form a band we

25
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have a gain in kinetic energy and a loss in Coulomb repulsive energy. If the radius
of a relevant electron subshell exceeds the nearest atom or ion distance, Bloch states
arise. This situation occurs for outer s- and p -shell electrons, giving rise to metals,
covalent bonds or ionic crystals.

A different situation occurs in rare-earth metals for the states of felectrons, which
are believed to be well localized (~ 0.3 A). These electrons maintain their atomlike
character and do not form a band, so that their magnetic moment in compounds or
in the metallic state are normally close to those of the corresponding atoms.

Both cases may be realized for d states. The atomlike behavior of d -states
persists in many semiconducting compounds (f.ex. NiO). In other cases metal-
insulator transitions occur. But despite the efforts during the last decades, the
problem of constructing a unified description of the "localized itinerant” behavior
of d-electrons is still far from being resolved, even if on the whole the problem as to
the nature of d states is solved rather in favor of their band character.

The simplest models describing such systems are characterized by a kinetic term
describing the motion of the electrons and a local electron-electron coupling and are
generally called Hubbard-like models. The class of these models can be described
by a general second quantized Hamiltonian

H= Z Z Z ttc:,?_; a’la’,iaa'a',j + Z Uanad,ina,—a,i (21)

o oo ij a,l

where o, a are spin and band indices respectively, U, and t:,‘fj, are the Coulomb
strenght and the hopping amplitude.

2.2 The Hubbard model and high-T; superconductiv-
ity

The Hubbard hamiltonian is the simplest model describing strongly correlated elec-
trons. It appeared in the literature for the first time in 1963, in two subsequent in-
dependent papers of Gutzwiller and Hubbard [40], and is characterized by a nearest-
neighbour hopping. In its one-band version, it reads

H=— Z Ztij(ajaa.jﬂ -+ aJ'-O_a,-_o.) -+ Z U,"TL,‘“TL,‘[ s (2.2)
<4L,j> o €A

where the sums run over the lattice sites, the symbol < 1,5 > indicates a sum
over nearest-neighbor pairs and ¢;; is the hopping integral. U > 0 corresponds to
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repulsive Coulomb interaction, whereas U < 0 could eventually describe an effective
attractive interaction mediated by ions.

The hamiltonian (2.2) is commonly agreed to be the ideal tool to describe the
relevant collective features of the transition metals, namely itinerant magnetism and
metal-insulator (or Mott) transition. Indeed, for U = 0, H reduces to a system of
non-interacting moving electrons, while in the atomic limit (¢ = 0), the electrons are
fully localized and at half- filling, the system is insulating. The latter feature still
holds for finite £ and U = oo, and the corresponding system has been shown to be
an antiferromagnetic insulator.

For intermediate couplings, the model is exactly solvable only in one dimension,
where Mott transition is absent at any 7' # 0, according to the Mermin-Wagner
theorem. The failure of the attempts in finding exact statistical mechanics solutions
in dimension greater than one has stimulated the growth of several approximate
methods. For example, in the so-called strong coupling limit characterized by [t| <<
U, which is the most appropriate physical region in dealing with strongly correlated
electron systems, the Mott transition and the magnetic behaviour of the model have
received partial answer. The main result is that to second-order in |t|/U and at
exact half-filling, the Hubbard hamiltonian can be mapped into an antiferromagnetic
Heisenberg hamiltonian

1
H = Z Jii{SiS; — Z} y Ji; >0 (2.3)
<t,J>
where | ‘2
t;; 1
Jij = 4—5.— ,» Si=g3 Zaj#[a]u”:ai,,: ’ (2.4)
up!

thus exhibiting clearly the dominant role of the magnetic correlations in limit of
strong Coulomb repulsion.

Since the discovery of superconducting materials with unexpectedly high transi-
tion temperatures, a large variety of mechanisms and new concepts (spin liquids [4],
spin and charge bags [68], anyons [27], etc.) have been proposed but the origin of this
phenomenon however is still unclear. Namely these transition temperatures exceed
the upper limits which can be deduced on the basis of the present understanding of
the BCS-mechanism, that is retarded electron-electron attraction via phonons.

The main theoretical efforts has been devoted to model the CuO systems, which
are believed to contain the relevant physics of the new superconducting materials.
Typically, they are ceramic layered compounds with a highly complex unit cell, which
becomes superconducting upon doping, an example being La;_; (X): Cu O, with
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X=Ba, Sr. Their behaviour falls into two distinct regimes, depending on doping.
Pure samples are considered to be good examples of Mott insulators. At low doping ,
they are bad metals and exhibit the Mott transition with magnetism characteristic of
transition metal oxides, phenomena originating in the strong intraatomic Coulomb
interaction between poorly screened electrons. At high doping, they become high-T,
superconductors and are quite good metals, with the antiferromagnetic phase being
remarkably close to the superconducting one.

Therefore, the interplay between magnetic behavior and Mott transition near
half-filling (from stochiometric measurements) seems to play a crucial role, and
this has led theorists to seriously reconsider the physical properties of the Hubbard
model and its extensions. Especially the two-dimensional strong-coupling version of
the model (the so-called ¢ — J model) has been extensively investigated.

However, for the Hubbard model itself, numerical studies are restricted to small
lattices and it thus seems unclear, up to now, whether models of strongly correlated
fermions could have a superconductive ground state.

We conclude this section mentioning the anyon superconductivity. This scenario
suggested by Laughlin ([46]) is based on the idea that in three space-time dimen-
sions, one has the possibility of particle excitations with non-integer statistics, called
anyons. The mechanism leading to superconductivity can be summarized as follows:
anyons in a planar sample attract each other with a vector (gauge) interaction that is
necessarily present in anyon theories. If the excitations are also electrically charged
such attraction can be made strong enough so as to overcome Coulomb repulsion and
bind the excitations in pairs (as Cooper pairs in conventional BCS theories), pro-
ducing superconductivity. A review about the interrelations between the Hubbard
model and anyon superconductivity can be found in [7].

2.3 The Yang-Zhang SO(4) symmetry

Let us rewrite the Hubbard model (2.2) in the grand-canonical ensemble:
.f
H = —yZ(niT + i) —t Z Zaisgajw,, + UZni-rnil , (2.5)
i i j> o i
where p is the chemical potential.

In a recent paper [79], C.N. Yang and S.C. Zhang have shown that the model at
half filling is endowed with a global SO = (SU, ® SU:)/Z» symmetry.

At half filling (p = —;—U) one can indeed check that hamiltonian (2.5) as well as the

total momentum -operator commute with two mutually orthogonal su(2) algebras.
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The first spin su(2) is generated by the operators

S+ = Za:rTa,-lEZaZTakl 3 S_IS_T_
7 k .

So = %Z(nn — ) = %Z(nm —nkl) (2.6)
H k

with the usual su(2) algebra [So, S+] = £5+ , [S4, 5-] = 250, and derives from the
fact that the interaction is isotropic in spin space. However, besides this "obvious”
symmetry, there is a "hidden” pseudospin su(2) symmetry, which is generated by

5= Yerdalal = alal,, , =]
7 k

1 1
Joo= 3 > (nip+miy —1) = 5 D (nkr+mp—1) (2.7)
i k

where p is the vector (7, m, 7). By ago, we denote the Fourier transforms of a;,.

When the condition of half filling is not met, Jy still commutes with the hamil-
tonian, due to the conservation of the particle number but Jy and J_ do not, and
the global symmetry of the model is u(1) ® su(2) generated by {Jo; S+, 5-, So}.

The physical meaning of (2.7) can be understood as a coherent resonant exci-
tation of the system. This remarkable fact is due to the particular combination of
both the kinetic and the potential energies in (2.5).

The Z, present in the full global symmetry is a duality transformation given by
a unitary operator U such that

ﬁanff_lzajT , ffail(}'“lz(—-l)ia:rl : (2.8)

which exactly interchanges the spin with the pseudospin algebra. This transforma-
tion is known to transform the negative U Hubbard model in the positive U model.

1
It is crucial to observe that J? = §{J+, J_} + J2 is an exact conserved quantity.

Therefore, the four quantum number associated to S2, Sy, J2,Jy can be used to
classify all the eigenstates of the Hubbard model. An important consequence.of
this fact is the exact one-to-ome correspondence of the states at half-filling (p =
U/2,Jy = 0) and the states away from half-filling.

In the superconducting phase, the U(1) symmetry associated to Jy is sponta-
neously broken. From a generalization of the Goldstone theorem, Zhang proved
that, for the Hubbard model, if the ground state is superconducting, there must
exist a triplet of collective excitations, with energies +(U — 2u) , 0. Experimental
detection of these new modes could answer the question whether the Hubbard model
describes the high-T¢ superconductors.
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2.4 Symmetry breaking and order parameters

In this section, we shall discuss how the different mean-field approaches to the Hub-
bard model may affect the Yang-Zhang symmetry, as well as the dynamical algebra
emerging in the approximation scheme, and which relevant order parameters are
generated by the related symmetry breaking processes [49].

In the sequel we shall denote by gs(") the algebra of the symmetry group of (1)

<_H_e_i; N, and
Ny

N, denoting, respectively, the total number of electrons operator and the number

of sites). Half filling implies n = 1, and ggl) = su(2) @ su(2).

Let us denote by g4 the dynamical algebra of the linearized hamiltonian H,.
Naturally, the process of linearization affects only part of the hamiltonian. We de-
note by H(® the part of H not affected by the approximation. In other words,
H=HO+HD, and B, = HO + BD. HO and B have themselves dy-
namical algebras which are subalgebras of g4, and we denote them by gc(lo) and 9.;(1[)
respectively.

corresponding to filling n (n is the average occupation number n =

In section (1.4), the order parameters associated with the breaking of abelian
symmetries were defined as the expectations of those operators in g4 generating its
root space. This identification holds when, besides being abelian, g, is a subalgebra
of the Cartan subalgebra ﬁd of g4: the order parameters correspond to the breaking
of the symmetries induced by the operators in g, N hy. A natural generalization of
the above scheme, also holding for non-abelian symmetries, is the following! :

e construct the commutator set g = [Hy, g4;

o define the set g’ = g4/g;

o define g, = 4 9/ oy ifga= g @ gl
P g\ gl(iu), otherwise;

e identify the order parameters as the averages of the operators P; € Jp-

This procedure implies that < P; > is non identically vanishing, < s > denoting
some average over Hy (for instance, it can represent a statistical average over a Gibbs
ensemble or the expectation value over the ground state). Any mean field strategy
can now be made explicit by constructing suitable consistency equations for < P; >.

"When the operation is not defined with algebras, we denote by the symbol / subtraction of the
common generators in the basis fixed by g. On the other hand the symbol \ denotes subtraction
element by element of common operators
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In genéral, one should expect that in the disordered phase (corresponding to vanish-
ing order parameters) the whole symmetry g, were restored for the linearized model
and in fact this happens for most of the bosonic and for the fermionic linearization
schemes . However, this is not always the case and the phase described by the
vanishing of the order parameter may still be an ordered phase.

2.4.1 Bosonic Linearization Schemes

Three different bosonic linearization schemes have been adopted for the Hubbard
model, all of which approximate the on-site interaction U term, quadrilinear in the
fermionic operators, by a combination of bilinear terms. Such schemes lead therefore
to a description suitable for the weak coupling regime in which the electrons exhibit
a band-like behavior (i.e. they are almost delocalized). The dynamical algebra for
the resulting hamiltonian is easily recognizable in all cases if one represents the site-
dependent operators in their Fourier transformed form. In particular, in the latter
representation one immediately verifies that gc(io) = @y u(1)k, each u(1l), generated
by

1
ARE (et +mep - 1), (2.9)

as the tight-binding model is diagonal in wave-vector space.

The Hartree Approximation

In this case ([37]), the hamiltonian (2.5) is modified by assuming

1 1
NN, (a - 5) (nit + ngy) - Eaz , (2.10)

where a =< n;; + n;] >. The resulting linearized hamiltonian H é reads

1 1
| = ~ = @LW + 1)+ SN2 2.11
H= 3 a0 (o= 3)] 02O+ 1)+ G (211)
d
where € = —p + 2t Z cos (k). H; is manifestly diagonal in its wave-vector space
r=1

representation, and its dynamical algebra g4 coincides with gf,')). Since H} is invariant
with respect to all of the transformations generated by gg"), the linearization does
not provide, any non-trivial order parameter.
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The Hartree-Fock Approximation

This approximation ([75]) consists in substituting
1 T * T 2
n;in;| — E(n,‘T + nil) + vaira;) + 7 aia; +7]° (2.12)
where 7 =< a:-rTai 1 >= |7|e**. The linearized hamiltonian Hy has the form

HY = zk: (ek + %U) (2Lg’°) +1)-U (7K+ LK+ |712) . (2.13)
One can check from eq. (2.13) that the symmetry algebra of Hy is su(2) ® u(1) at
half filling (u(1)@®u(1) for n # 1), whereas the dynamical algebra is gg = gc({o)easu@).
In view of the remaining steps of our scheme, it is indeed convenient to think of the
latter su(2) as generated by {e **7 K + e K_, e K, —eK_, K,}. The set
g is then given by g = {K,, e 7K, — """ K_}, whence g’ = g‘(io) U{e ™ K, +
e**1K_}, and g, ~ u(1) has a unique generator eWTK, +e K,

The only order parameter of the Hartree-Fock approach is therefore |y, in that
< e WK, + e K_ >=2|y|. |y| # 0 describes a phase for which the symmetries
induced by K, and e **7 K, — e'?vK_ are broken, namely a phase endowed with
magnetic order. |y| = 0 on the other hand provides a good description of the
disordered phase, since equation (2.13) implies that the corresponding hamiltonian
commutes with the whole gﬁ").

The BCS Approximation

The BCS bosonic linearization consists in introducing the pairing” parameter § =
< a;ja;1 >= |6]e!¥s, whereby one replaces

ninip — 0 a:-fTaj-l + 6%a; a1 — 1612 . (2.14)

The resulting linearized hamiltonian is

B =Y (e (200 + 1) w0 (00 4600 )] (219)
k
with 1
Jgrk) = azraikl VI = alpia, IR = 9 (ki +nogp—1) . (2.16)

The dynamical algebra is gg = @y su(2), where each su(2), is generated by
{Jik) ) J® , J¥)}. We once more refer the latter su(2); to a "rotated” basis

(6P = iy J® 4 0 5], G 2 [0, 70 + 1581, G = iy, where 51 =
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—;— (ei“"’J_(,_k) + e'i9"5J(_k)), with 7x = coshz, o = sinhz, and z; = tanh™ ({;);
being (; = _°k_). In such basis the hamiltonian (9 simply reads H;” = 2U|§
ST
1 1 '
Z{%Gg’c) + 3 (Ce— 106 I)} The set g is thus the collection of mutually commuting
k

elements g = Uk{G(k) G(k)}, and hence ¢’ = |, {G )} Since g( ) can be equally
well be thought of as generated by Uk{Jz )}, in this particular case it is manifestly
a subalgebra of gc(,l), so that g4 coincides with g‘(l,l). Thus, finally, g, = Uk{SSrk)}.
The appropriate order parameter is hence just

N_A Z < S_E_k) >= E—J—V—/: Z < e“"’da;laﬁ + e"’*’a}}a:rl >= |§l . (2.17)
k i

It is worth noticing that the order parameter here is unique because of the assump-
tion, implicit in the self-consistency equation, that § =< a;a;; > is site-independent.

The phase described by |§| # 0 has the “superconductive” symmetry completely
broken, whereas the whole "magnetic” symmetry survives.

On the other hand, when the order parameter |§| equals zero, the linearized
hamiltonian reduces to H(©), which is invariant with respect to the entire g§") only
for n # 1. Indeed, at n = 1, H (0) is invariant with respect to the subalgebra of
ggl) u(1) & su(2), the whole symmetry su(2) @ su(2) being recovered only for the
unphysical case p = 0. Thus at half filling the vanishing of the order parameter
|6] restores only partially the “superconductive” symmetry, therefore it describes
an order-order (and not an order-disorder transition), corresponding to the onset
of non-vanishing pairing between couples of electrons. One should also point out
that the self-consistent implementation of the present linearization scheme implies
U < 0; in fact the self-consistency equation

Tr { ) exp(—BH}")}
Ny < Tr{exp(-BH;")}

6] = , (2.18)
has non-vanishing solutions for |§| only if U is < 0. This latter feature is at the

basis of the major interest devoted to the negative-U Hubbard model in the frame
of high T. superconductivity [67].

2.4.2 Fermionic Linearization Scheme

In this approach, the hopping term in (2.5) is linearized instead of the U term. Thus
(F)

the approximate mean-field hamiltonian H; ’ is particularly suited to describe the
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system in the strong coupling limit, in which the electrons exhibit an almost atomic
behavior (i.e. they are strongly localized).

H l(F) has two interesting features: it has a dynamical algebra which is a super-
algebra, and it can be diagonalized by a straighforward extension to the case of
spectrum generating superalgebras of the (super)group-space Bogolubov rotation,
turning out to be diagonal not in the wave vector Fock space but in the direct
configuration space.

The linearization proceeds by replacing

Z az,aaj,«r = q Z (602'0' + a;i'l’g'ﬂa - {9—0'790') ) (219)

<,7> i

where g denotes the number of nearest neighbours per site in A, whereas ¥, =< ic >
is assumed site independent. 9,,%, belong to the odd sector of a Grassmann-like
algebra.

The detailed analysis of the Hubbard model within this scheme will be presented
in the next sections of this chapter. Here, let us just mention that the dynamical
algebra is the direct sum of N, copies of the same superalgebra: g; = P; u(2[2);
and the order parameters turns out to be proportional to (9:9; + 9,9,), and to
U iéT + 19T1§ ;- Notice that once more, due to the assumed translational invariance of
the 9,’s the two order parameters are site-independent.

In the case when also spin-exchange invariance is assumed (i.e. ¥; = ¥)), gq
reduces [55] to @;(u(1]1) ® u(1]|1)); and the two parameters coalesce into a single
one, say #9. In this case the corresponding self-consistency equation has solutions
99 = 0, describing a disordered phase in which the whole g§”) symmetry is restored,
as well as 99 # 0. In the latter case the original symmetry is completely broken
(both the “superconducting” and the “magnetic” su(2)). As the order parameter is
unique, in general it will describe a superposition of the two ordered phases ("mixed”
phase). Of course, in the more general case when 91 # 9, one expectes that the
existence of two order parameters might lead to a deeper insight in the structure of
the ordered phases.

The global §O4 = (SU,® SU,)/Z, symmetry discussed by Yang and Zhang may
be thought of - as pointed out by the same authors - as related to the possible coex-
istence of “superconductive” and "magnetic” phase. We have seen how the standard
bosonic linearization allows one to define order parameters describing the breaking
of one symmetry only at a time. On the contrary, the fermionic linearization scheme
leads to introducing order parameters which break both symmetries simultaneously,
and are therefore able to represent "mixed” phases. In particular, such a scheme
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is the only one permitting to describe a phase with U > 0, characterized by an
order parameter associated with the breaking of the superconductive symmetry. It
is worth pointing out here that even though states non conserving the local aver-
age number of electrons may thus be generated, such states do not correspond to
non-vanishing pairing, which can indeed be obtained only from extended Hubbard
models [55, 20] ' '

An important characteristic feature which emerged from this analysis is the
property that even within a linearized scheme the transition from an ordered to a
disordered phase can be consistently described only if the whole original symmetry
is restored for the linearized hamiltonian by the vanishing of the order parameters.
This is not always the case in the bosonic mean field approximations: when it
happens, it leads to situations which are of very little physical relevance (the self-
energy term becomes identically zero). Therefore, the fermionic mean field approach
on the other hand allows us to restore the complete symmetry in the disordered phase
in a non-trivial dynamical way.

2.5 The n-cluster Fermi-linearized Hubbard model

In this section, by means of an interacting cluster expansion method to be defined

below, we apply the Fermi-linearization scheme dicussed in Chapter 2 to a variant
of the Hubbard model

Hy = Z Z EiNig + Z Uin;tn;) + Z ti; Z aj;raj,/ (2.20)
iIEA O €A <i,7> o0’

where A is a d-dimensional lattice of N sites and 7 € A is the site label. As usual,
the sum over < %,j > is meant to run over all the sites 7 and j of A which are nearest
neighbors.

Let {H,/n < N} be a sequence of hamiltonians which approximate H =
> {caten Hn, where {c;} denotes any possible cluster covering of A. The cluster lin-
earization method consists in taking into account exactly the mutual interactions of
the particles within the selected cluster and using fermionic linearization to describe
interactions between neighbouring clusters [56].

In the model described by (2.20), one can recover the standard Hubbard model
by choosing the spin-flip amplitude ¢, _, = 0. On the contrary, we select ¢, _, =
ty, =t and this naturally leads to introducing the new set of local operators

1 i
4; = ait +aif) 5, Ni=AjA,
754t 1)
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1
D;, = §(niT +n; + aiTa’;'rl + aila;‘.T) s D? = D;. (2.21)

Notice that the operators A,',Aj and N; satisfy the same commutation and anti-

commutation relations as a;, a}L and n; and that D; commute with both 4;, A;[ and
N;.
In terms of the old operators, we have the relations

LN+D; =%, nip ;

2. N;D; = n;3n)

3. Ni = %Etr(niﬂ' + a’jaa‘iv"”)

Through the new operators (2.21), the hamiltonian (2.20) can be rewritten as

H= H{A} = Z(E,’ + UD,')N,‘ + 1 Z (A,'Aj: + AJ'A;'.) + Z e; D; (2.22)
€A <i,J> 1€EA
and explicit reference to the spin index has now disappeared.
In this case, the fermionic linearization acts on the hopping interactions between
sites on the cluster boundary and sites outside the cluster replacing the bilinears by

the linear form

Al4; > 7d; + aln; — fin;. (2.23)
As discussed in section (1.2.2), the coefficients 7; =< Aj > and 7; =< A; >
belong to the odd sector G; of the non-associative Z, Grassmann-like graded algebra
G = Gy ®§;. Non associativity raises from the physical requirement that n? = 0 but
(min;)* # 0. H, is then given by (7 := t(n — 1)):

n n

Hy=3 HO+r > (AlAa-H + Al+1Aa) (2.24)
a=1 a=1
(mod n)
with
HY = €,(No + Do) + UsDaNa + V2(9, 40 + Al 5.) - C. (2.25)
and

Vo =t Y W—ty 7 (2.26)

keA/en
T ~ _ n _
Co i= 5 2 (M +na) =7 ) T, (2.27)

keN/cn V=
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where k = n.n.(a).

As we are interested here only in the spectrum of the hamiltonian and in the
zero temperature features of the model, it is irrilevant which covering one selects
(whereas at T # 0 one should consider all possible coverings of the lattice in order
to account properly for the global lattice entropy). It is worth to point out that
the trimer is the minimal cluster necessary to obtain a complete covering of the
decorated lattice typical of Copper-Oxide planes in high-T. superconductors.

It is now straighforward to show that the dynamical algebra associated with the
n-cluster model hamiltonian H is S, = ®2" u(n|1) where the superalgebra u(n|1) is
generated by (n+1)? elements, (n®+ 1) of which form the bosonic sector B(u(n|1))
and 2n are in the fermionic sector F(u(n|1)). More explicitely:

B(u(nll)) = {H’ A;FAJ'; ,J € Cﬂ} ~ u(n) @ U(l) (2.28)
Fu(nll)) = {Ai,Al; i€ ek (2.29)

As the D;’s are projectors, the 2" orthogonal copies of u(n|1) which generate S,
are labelled by the 2" possible different combinations of eigenvalues d; € {0,1} of
D; (i € ¢y). From now on, we indicate with a multiindex A one of these com-
binations and we denote by £ the set of all the possible A’s, whereas P, is the
projection operator on the subspace u(n|l)y associated with the given A. Therefore
H. = Yaer Hy = Yaer HoPy. In order to obtain the spectrum of H., we apply
a generalized Bogolubov rotation in the (super)group space, which in turn can be
implemented by the adjoint action of a suitable operator Z € S,
With no loss of generality, we write

expZ = expZ® expzf) (2.30)

where, due to the direct product sum structure of S,, we can set

20 = Y0 =3 S N(alden - Al 4 (2.31)
AEL AEL a=1
(mnd n)
Z0 = Sz =% Z (WA, + N AT (2.32)
AL AeL a=1

with {zV/A € £, a = 1,...,n} € G, {€)/A € £, @ = 1,...,n} € G;. The
diagonal form H of H. can then be obtained from

EB exp (ad Z/(\b))(exp (ad Zf\f))(HA)
AeL
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= Pexp (ad Z,(\b))(H&f)) (2.33)
A€l

by suitably choosing the coefficients z,g)‘) and g&*) in such a way that the resulting
operator belongs to the Cartan subalgebra of B(S.). The first step consists in se-
lecting the variables {f((;\)} in such a way that HE\f) lives in B(S.) and this leads in
general to a system of linear equations (homogeneous over the odd sector Gy of G
and hence equivalent to a regular linear system over IR).

Notice that due to the presence of the anticommuting Grassmann-like coeflicients
for the fermionic operators, we have

[%Fa,ﬂﬁFﬁ] = nﬁna{FaaFﬁ} y MM EYGL (2.34)
[7F,aB] = ag[F,B] , a€Gun€b (2.35)

and therefore we remain into the superalgebra.

After this, since we know that the bosonic sector of a superalgebra is a Lie
algebra, we can perform a usual Bogolubov rotation in B(Sc) = u(n) @ u(1) with
the adjoint action of Z(®) as seen in section (1.3).

2.6 The single-site cluster

2.6.1 The spectrum

The simplest case, which we will work out in detail in this section, is obviously the
single-site cluster, which is equivalent to a mean-field treatment. Let us rewrite the
Hubbard hamiltonian for this particular case in the following form:

Hy = Z EiNig T Z Uiniyni) + Z tij“:'raajrr- (2.36)
i i <ij>o
Upon defining
Fi=Dip= Y. 1< a;[(, >€ Gi; (2.37)
j=n.n.(i)

and assuming further that 9;; = ;) (time reversal invariance), and that &; = ¢;, is
independent of o, the linearized hamiltonian takes the form H gm) =>,H () with

HO =g(ng +n_)+Unin_ +9(ay +a_) — 1§(a1 + ai) (2.38)

where we dropped the index ¢ and wrote £ for T, |.
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H() is an element of a superalgebra S;, hence Hgin) €8 =@; S;. S;is the
16-dimensional superalgebra u(2|2) which can be thought of as the extension , by
the Cartan element nyn_, of su(2[2). To be more precise, HG) sits in a smaller
superalgebra A = B4 @ F.4 generated by

By = {ny+n_, nyn_, aia_ + aia+, 1} , (2.39)

Fia = {ay+a, ai + ai, npa_ +n_ay, n+ai + n_ai} ,  (2.40)
which is an 8-dimensional subalgebra of S;. A is isomorphic to the centralizer
Cpu(2|2) = u(1|1) ® u(1|1), where D = (ny +n_ + a.,.ai + a_al). However, A,
unlike S;, does not contain in its bosonic sector the Lie subalgebra su(2) necessary
to rotate H() to diagonal form in Fock space.

Now, we perform the diagonalization with the two-step procedure introduced in
the last section. First consider the adjoint action of the skew hermitian fermionic

element Z() € F(S;),
ZU) = AMay + a-) + p(nya_ + n_ay) - hec, (2.41)
on H where A\, p € Gi. Selecting A = ~9/¢ and p = c?, ¢ = U/e(U + ¢€), this

rotates H(Y) into H, which no longer contains fermionic terms. The second step
consists to rotate Hy into Hp which is diagonal in the Fock basis {|ny > ®|n_ >
sn4 € Zy} by the adjoint action of the bosonic operator

JAQNES ga(a+ai - a_ai) (2.42)
which lies in S;/A. By selecting ¢ = (2m 4 1), m € Z, we obtain:
exp(ad Z®)exp(ad zUY 7O .= Hy (2.43)
with ) 5 _
Hy =¢e(ny +n_)+ Unyn_ + 2e09n_yymer — -6—1919. (2.44)

Notice that 99 € Gy and the spectrum is obviously independent of the choice of the
integer m.

2.6.2 The self-consistency equations

We now compute statistical-mechanical averages in the canonical ensemble. With
Z := tr{exp[-BH "}, we obtain
<0> = 27 't:{0 exp [-BH]} (2.45)
tr{exp(—fHy)exp(ad Z®))(exp(ad 21)(0))}
tr{exp(—FHy)}
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Figure 2.1: 99 vs. T (semilogarithmic scale). Notice that T, depends strqngly ont
and weakly on U.

where 8 = (kgT)™!, ky denoting the Boltzmann’s constant. The model defined by
(2.38) has no superconductive order parameter, in that < aja_ > is identically zero.

However it does have a magnetic order parameter which is interesting to consider.
We evaluate first

exp(ad Z(®))(exp(ad Z)) [¥(as +a-)]) (2.46)

= 219'5{—% + CTY(_pym+1 } -+ \/519(—1)[%!-—1-10.(_1)m (2.47)

whence, recalling that a,,a_ have vanishing trace in the basis in which Hy is diag-
onal,

< H(ay +a)>= —6—(—;-1’%—){5 + g:[l + exp(—Be)} (2.48)
where
Z, = 1+ exp(—PBe) + exp(—28cdd)[exp(Be) + exp(—B(2¢ + U))] (2.49)

is the reduced partition function. Self-consistency is imposed by requiring that (2.37)
is satisfied. For example in the case in which complete n.n. symmetry is assumed,
it reads < ay + a_ >= 29/t. Notice that in this case the result no longer depends
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on the dimensionality. Upon setting
o (U+e)t+e)

iU s (2.50)
one gets : ( N
=_ 1 k[l + exp(—PBe
9= g { g F BT O
for B > B, and 99 = 0 for B < B, where f. is the solution of the equation
1+ exp(—B(U +¢€)) _ " (2.52)

1+ exp(Bee) 1—k&

Figure(2.1) shows a plot of 99 vs. T (T, := (kpfc)”"'). One can see that 99 has
indeed the features of a magnetic order parameter.

2.7 The dimer-cluster approximation

2.7.1 The dynamical algebra

‘We now consider the next high order approximation after the mean-field one, namely
the two-site cluster (dimer). The dimer cluster can be constructed whenever the lat-
tice A can be assumed to be the disjoint union of the two sublattices, A = A; U Ay
such that the sites of each have all their nearest neighbours in the other. From equa-
tions (2.24) and (2.25) we can write down immediately the linearized hamiltonian
as

o= HO + HO + o4l 4, + al4) (2.53)

with

HO = eo(Na+ Do) + UsDalNa + V2(95 A0 + ALS.)
t _
+ > 5(%’7:‘ + i) = tTaNa (2.54)
i n.n.(a)#a&

and

Vo= Y Hfi—17a) - (2.55)
i n.n.(a)
[F351

For the sake of simplicity, but with no substantial loss of generality, it has been
assumed in (2.53) that the hopping coupling between the two sublattices A; and
A, is spin-independent because the possible diversity in the two amplitudes can be
embodied into the normalization of the ¥, in (2.55).
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From the general discussion, we deduce that H. is an element of the superalgebra
S. = u(2|1) @ u(2]1) ® u(2|1) ® u(2[1). Each u(2[1) is itself a superalgebra generated
by nine elements, five in B(u(2|1)) and four in F(u(2[1)):
Bu(2))) = {1,AT4;, 414, al4,, 4141},
Flu(1)) = {AnA], 42, 4]}, (2.56)

The four orthogonal copies of u(2]1) which generate the whole S. can be obtained
by multiplying the odd and the even sectors of u(2|1) successively by the four idem-
potent elements in the center C of S¢:

Pr = (1=Di)(1-D2) , P2=Di(l-Dy)
Ps = (1-Di)D; » Pa=DiDy (2.57)

where the operators D; were defined in (2.21).

It is worth noticing that S, is a subalgebra of su(4]4), which contains the graded
algebra necessary to perform the generalized Bogolubov transformation for the di-
agonalization of H. in Fock space.

What makes this particular model interesting is that even though there are still
only two primitive order paramaters ¥, ¥, avalaible to describe the theory, and two
self-consistency equations which determine them as a function of the temperatiure ,
the model exhibits a pairing phase in addition to the previous magnetic one. More
precisely, in a phase for which 9,0, is not identically zero for both a = 1,2, we
would find that

1. < alaald, >=< GQG-IG:IV >*£ 0 Vo, 0o, since it is proportional to 91993

2. | < aypazer > | #0and | < aa,aia, >|#0 Vo,o' and VYo, in that they are
proportional to (|191511?21§2|)1/2 and 9,0, respectively.

In other words, the model appears to show a simultaneous antiferromagnetic and
superconductive phase transition.

2.7.2 The ground state

Let us define a generic supercoherent state | ¢y > 2 as

Wy >=U|w>, U:=exp(Z), Z=-Z1€Ss, (2.58)

2See appendix C for details
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where | w >. is the heighest weight vector of S.. If exp(adZ)(H,) is diagonal, then
| w >, coincides with the vacuum of H.. In this case, we will identify the dimer-
cluster ground state | )¢ > with that particular supercoherent state which minimizes
the system internal energy (namely the expectation value of H.), for the appropriate
value of the chemical potential p at fixed site occupancy.

Here we sketch the main steps of the computation while details can be found
in [55]. Using formulas (2.30),(2.31) and (2.32) with n = 2, the T = 0 ground
state of the model will correspond to the particular choice of the twelve parameters
{ 20 5,9) |A=1,...,4; a=1,2} and p for which

1. all the derivatives of H =< 9y| H.— pNc| ¥y > with respect to the parameters

{z(’\), 5((1)‘)} are equal zero, where N, is the total number of particles operator
for the dimer.

2. < 9| N. | ¥y >= ng, where ng is the fixed dimer occupation number.
3. 74 is identified with the average < an, >.

Noticing that H contains only bilinear products of elements of Gy, since the only
elements of §; entering the model are ¥; and ¥;, the parameters 59) have to be
linear combinations of the ¥5’s. Upon the reparametrization &(;\) = n&'\)ﬁaﬂ, which
allows transforming the derivatives with respect to 5&*) into usual derivatives with
respect to rc((;\),’}'[ does contain (linearly) only elements of Gy of the form %0V, and
OB

A possible realization of the elements of G; comes from the identification of the
product in G with the inner product over the vector (super-) space associated with
G itself. The latter can be defined in terms of any antisymmetric function of the
phase associated with its factors. Here we will assume

iy = sin(p; — ;) (2.59)

where @; has to be determined consistently with the relation 7;7; = sin(2¢;).

From (2.59), we deduce that Doy ~ $in(20a11) and FoP41 ~ sin(@a + Pat1)-
Including the self-consistency equations related to this fundamental bilinears in the
minimization scheme as constraints with the introduction ot two new Lagrange mul-
tipliers p;, pa, there finally results a system of seventeen equations in the seventeen
unknowns {z(%), ,;9), Ky Pas Pa | A =1,...,4; a=1,2}. The solutions of this
system allows us to evaluate, at the ground state, the rotation paramaters {R,(','\)E(’\)}
and in particular the pairing order parameter

P=2Re (< 4didr>—- <4 >< 4y >). (2.60)
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Figure 2.2: P vs. |U;/t| and [A/t] for ny = 1.5

Besides particular solutions corresponding to zero pairing, the system has an-
other set of solutions which exhibit non-zero pairing and should be computed numer-
ically. We report below the results obtained in [55] for the case U, = 0, q; = ¢ = 4.

Figures 2.2 and 2.3 show, for ny = 1.5 and ng = 0.5 respectively, the pairing
P versus |Ui/t| and |A/t| with both U; and A positive and ¢ negative. One can
check from the figures how the first quadrant of the phase-space (U;, A), the domain
where P = 0 consists roughly of a triangle in the proximity of the origin whose area
increases with decreasing ny (all the lines separating the phase with P = 0 from
that with non-zero pairing, upper sides of the triangles, converge to the same point
for A = 0 (JU,/t| >~ 2)). Everywhere else the pairing is differen from zero, and
smoothly decreases asymptotically to zero for very large |U;/t|. A finer numerical
analysis also shows the existence of an intermediate phase with pairing very small
but not zero. The transition from the phase P = 0 to the latter is smooth, whereas
the transition from the intermediate phase to that with large P is discontinuous.
There is some numerical evidence to the effect that such a transition may occur as
well for large |A/t], at least for low |U;/t| (see figure 2.3).

These results strongly support the conjecture that the cluster fermionic lineariza-
tion method allows quantitatively describing a phase with spatial electron pairing,
such as that typical of high-T, superconductors, in terms of Hubbard-like models.
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Figure 2.3: P vs. |[U;/t| and |A/t| for ng = 0.5

2.8 Supersymmetric extensions of the Hubbard model

In this section we shall deal with d = 2 only, showing how in this case, there is a

particular class of superlattices of the sort introduced in section(2.7) naturally lend-

ing themselves to the construction of new hamiltonians which are supersymmetric

(whether or not the supersymmetry is exact or spontaneously broken depends on

the ground state). The conserved fermionic supercharges whereby the hamiltonians -
are constructed are elements of the fermionic sector of the dynamical superalgebras

introduced in section(2.7), or obvious generalizations thereof. ,

It is interesting to point out that the structure of a lattice realizing the above
conditions is indeed that of most of the known compounds (essentially copper oxides
with different rare earth additions, all appearing as a stack of weakly coupled two-
dimensional planes of Cu and O atoms) exhibiting high-T, superconductive phase
transitions.

Let A, be a 2 —d square lattice, whose sites are labelled by pairs of integers (¢ | 7)
denoting their cartesian coordinates in units of lattice spacings, with the property
that

(a) (odd—odd) : empty site ;
(b) (odd—even): e site ;

(c) (even—even): o site
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Figure 2.4: The lattice A,

Such a lattice is shown schematically in figure 2.4.
We now construct the generic fermionic charge Q € F(UF(u(4]4)e)

Q = Z Z{[n(i.j)-U Z[a,:(a(i,jil)’d: + a(iilij)'f,/) + h.C.]

ij=0 @ o'
(mod 2)

H Bo (73 j41),0 %0 1) —o + Ni+1,5),0 %(i+1,5),~0) T huc]

H Aca(ij) o + Bo(a(itr ) + 8 j41)0) Fhee ]} 5 (2.61)

where a,, ., A,, it and their conjugates are complex numbers yet to be determined
in such a way as to get the desired hamiltonian.

In the following, we will assume @ hermitian (QT = @ and H = @?) and analize
two particular cases corresponding to the following choices of the parameters:

L. B, =ika_, withk € R ;

2. the phase of §, equals the phase of a, and a is site(o)-dependent with
a.(ll7) = exp(t5 (! + j))ao, where a, = a,(0]0) (and analogously for Be)-

In case (1), the resulting hamiltonian is

7
Hy= ) Z,Z HEl (2.62)
=1

=0 @
(mnd 2)
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where
HE e = 2(21%1 + Qg iy + CGi et ) i G) e (2.63)

\ ~

ZE€o

is the self-energy of o-sites;

HEL = (Bubis + Bobios + oY1) 0 + it 3)0) (2.64)

ilj),o

=£e

is the self-energy of e-sites;

Ml = (Z 4ag’) (2.69)

=U

is the on-site Coulomb repulsion at o-sites;

HE?I)J')J = Zga;a,/ + ava;,)Jn(,-,j),,,(n(i,jiz)‘a' + n(i:{:z,j),f) (2.66)

0"

E“'(U!al)

is the Coulomb repulsion between o n.n sites;
(8) T3 T
H(_i[j),g- - ()\Ua(ivj)"’ - A”aT Z(a” Clit1,5).0 + a’(z jti)e ) +h.c. ] (267)

is the hopping (t(""’l) = As0,) and pairing (p(”"") = —)A,al) between ofe or
e /o n.n sites;

HE?I)J'),U = (2161 — B @(ie1) 102171 F GiE1)18G0 1)) + e (2.68)
NN

=r

is the amplitude for the on-site pair formation on o and e sites; and

Y I)J) v = (#Tﬂy + B+ ﬂlﬁr)(a(,ﬂ ) Tag-z 11,4, T %aED), Ta(uil) )+ h.c. (2.69)

=t

is the on-site spin-flip hopping on e sites.
Let us point out some features of the coefficients:
° £, 7 £o5

e V(o7) couples both parallel- and antiparallel- spin particles;

e = is zero if both B, and p, are independent of o;
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e 7 and £ can be simultaneously eliminated selecting e, = 0.

In case (2), the resulting hamiltonian has, with respect to H), two additional

contributions and one missing (the Coulomb repulsion V(*?") between n.n o sites)
Thus

.

Hepy = Hplv=o + 1Y |+ HY) (2.70)

(ivj)!” (i:j):U
where

Hiiy o = D (@oBlyr + aiB—o') M) (NG k1) .00 F N1 ) 07) (2.71)

!
7 =W

is the Coulomb repulsion between n.n o/s sites, and

ng)j),a = (0B + a;’ﬂv’),”(i,j),a'(a(i:tl,i),a“g:ﬂ,j),—a + “(i,jil),v“zri,j:u),—n) +hee.
=T
(2.72)
is the on-site hopping at sites e with spin-flip, controlled by the occupancy of the
n.n o -sites .

We conclude with the following considerations. First of all, what is really ex-
citing is that the particular form of the superlattice described previously is a direct
consequence of the requirement of supersymmetry. Secondly, by cluster mean field
one gets, from the above hamiltonian, hamiltonians which are in the same super-
algebra as the superlattice Hubbard model, and contains extra terms AlAa and
D, — N,. Thus, diagonalization can be achieved in the standard way. Furthermore,
we can expect a thermodynamic phase with two-site order parameters < aya,| >

and < aaTaZ | > and their conjugates both different from zero, even if in the hamil-
tonian they do not initially appear as it is the case for the pairing operator in the
extended Hubbard model.

Moreover, one can infer from the form of H, (1) that when such order parameters
vanish, then @ could annihilate the vacuum. In other words, a spontaneous summe-
try breaking would be associated with the appearance of a phase which shows both
pairing and magnetic order.



Chapter 3

The extended FalicoV-Kimball
model |

3.1 Introduction

Various generalizations of the Hubbard model have been proposed in order to de-
scribe features that the conventional model does not, such as pairing. In particular,
in [24] and [25], an additional diagonal term was added, designed to account for
Coulomb interaction between nearest neighbour sites. The resulting model is the
so-called extended Hubbard model which permits one to treat magnetic and super-
conducting correlations with a minimum of parameters. The hamiltonian of this
model reads

1
Hpyeg = UZni,rni,L+§V Z an’,unj,a"

<t,j> 0,0
t
+—2_ Z Z (az,vajﬂ' + a:‘i]."g"ai,ﬂ') . (31)
<i, 1> o,0!
a:! ,» @i are the usual fermionic creation and annihilation over a d-dimensional lat-

tice A (i, j € A, o € {1, ]}), whereas the parameters U, V,{, have the usual meaning,
and < i, j > stands, as customary, for nearest neighbours (n.n.) in A.

The mode] (3.1) can be considered as rather genefal, resulting from a system
of narrow-band electrons strongly coupled to a boson field which they polarize.
This field in turn acts onto the electrons thereby forming entirely new quantities
described by a correlated motion of the electrons and their surrounding polarization
field and by a short-range attraction which can compete with the Coulomb repulsion.

49
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The bosonic modes can be phonons, excitons, acoustic plasmons, etc. The induced
attractive potential can partially overcome the Coulomb repulsion and this can give
rise to the formation of on-site pairs of electrons if the coupling is strong enough to
overcome the usual Hubbard U [3]. For less strong coupling (intermediate-coupling
regime) one has essentially intersite pairing due to the short-range effective attraction
and on-site as well as long-range Coulomb repulsion [2].

The one-dimensional version has been extensively studied by many people using
different methods (renormalization-group techniques, Monte Carlo simulation, exact
solution for small clusters, etc.). Despite the apparent simplicity of the extended
Hubbard model, there is a rich ground-state phase diagram in terms of the interac-
tions U and V. The ground state of the system can be a spin-density wave (SDW),
charge-density wave (CDW), or superconducting state. One important feature of
the phase diagram is that there is a SDW-to-CDW transition the line U = 2V for
U>o.

In two dimensions, only few numerical results are avalaible but it seems that
the situation is qualitatively similar to that in one dimension. In [81], a numerical
study of a 4 x 4 cluster at half-filling is presented, while we refer to [51] for a
(Hartree-Fock) mean-field study, where connections with experimental datas about
superconductivity and magnetism in La, CuQO,4-based compounds are also presented.

3.2 Linearization and Dynamical Algebra

In the present section we first construct the dynamical algebra of the fermi-linearized
version of (3.1) on a dimer. For the sake of simplicity, but with no real loss of gen-
erality, we will consider in particular the case in which only one species of electrons
(say with up spin) is moving, whereas the other is fixed. This particular version of
the Hubbard model has been already studied in the literature [43] and is called the
Falicov-Kimball model (FK). In the following, we will therefore call our model the
extended Falikov-Kimball model.

The FK model has several interesting interpretations; it can be thought of as a
model for: ‘

1. a model of crystallization

2. mixed-valence states in rare-earth compounds, where the moving particles play
the role of s-band electrons and the localized ones stand for f-electrons with
sharp energy level

3. an approximation of the Hubbard model
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After relabelling the fermion operators by A; = a;1, B; = a;, N; = AEA,*, and
D; = B:-L B;, hamiltonian (3.1) can be rewritten (having in mind a grand-canonical
ensemble) as

it
H = —py ZN,’ — UB ZD; + 5 Z (AIAJ' + A}Ai)
H ) <1, 7>
+U ZN,'D,'-F -;-V Z (N,'+D,')(Nj+Dj) . (3.2)
7 <1,7>

where 4 and pp are chemical potentials which have to be determined in such a way
that the numbers of up and down spins are conserved (as the corresponding operators
commute with H). The fact that there is no hopping term between electrons of
type B; has the important consequence that the idempotent number operators D;
commute with each term in (3.2), and can be dealt with as a classical Ising-like
variable.

The exact statistical mechanical solution for the FK model is known only for large
dimensions [16]. However, a few general theorems are known [43] for the symmetric
(or neutral) case g4 = pp = U/2, and in particular an Ising-like phase transition
is expected for dimension d > 2 at some critical temperature, whose value should
vanish both for small and large U. Moreover, there are a number of investigations
of the ground state phase diagram in dependence on the configuration of fixed spins
[35]. Also a strong-coupling thermodynamic mean-field theory, based on the d = oo
exact solution, was proposed [29].

We proceed now to fermionic linearization over the hopping terms in (3.2). Ac-
cording to the scheme discussed in section(1.2.2), we set

A:?Aj ~ 8;A; + A:rg_j — (9,'§j ) (3.3)

where §; =< Af > (< e > stands for the expectation value of the operator e in some
appropriate state (Gibbs or ground)). As usual, 8, 8 are nilpotent variables anticom-
muting with both the fermion operators Aj-, A, Bf , Bi and among themselves.

Furthermore, we perform standard Hartree linearization over the intersite Cou-
lomb interaction terms, i.e.

(N; + D;)(N; + D;) ~ no(N; + Dy + Nj+ D) = nj (3.4)

with ny =< N; + D; >=ns + ng.
Both approximations (3.3) and (3.4) will be implemented in the following within
the dimer-cluster Fermi-linearization scheme. H reduces thus to an effective hamil-

tonian denoted here by H,, which is a sum — over an arbitrary set of dimers covering
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A - of commuting dimer hamiltonians Hy,

Hy=

Mm

[ecVi +2(g—1) (074: = 0:4]) | + VN, + ¢ (Al 4z + Af4)) + €,

]_[

i

(3.5)
where €; = —py + UD; + V[D; + (¢ — 1)ng ], and

c= }2: —pp + V(g = 1)no)D; + (g — 1) i8] + V (D1D; — (¢ - 1)nd)  (3.6)

is a central term. ¢ denotes the number of nearest neighbours per site in A, 7 the site
in the dimer which is not 7 . Furthermore, we assumed that the mean field sensed
by site ¢ is the same for each of its neighbours.

Hy as given in (3.5) has a dynamical algebra A which is the direct sum of 4
copies of a superalgebra &, isomorphic with the Cartan extension by By = NN,
of su(2]|2). The latter has a bosonic subalgebra B isomorphic with su(2) & su(2),
generated by the two sets of operators {B;, Bs, B2} and {Bs, B, B4} where

By = AA,+ALAL By = 414, — AlAT By =T (N +N,) , (3.7)
By = Aldy+ A4, Bo=Aldy—Al4,By,=N, - N, |, (3.8)
and a fermionic sector F with eight generators:
F, = A(1-N,;),F,=A1Ny, F3=A4;Ny, Fy = 4,(1 - Ny)
Foy = Fl 5 k=1,...,4 . (3.9)

By and B, are the two Cartan elements of B. Each copy of S is characterized by a
different distribution of the eigenvalues (0 , 1) for the operators D; entering (3.5).
Let us write the commutation (anticommutation) relations as

[ Bm, Ba] = b2, B, , (3.10)
[Faa Bm] - Cgm Fﬂ 5 (311)
{F,, F3} = f™% Bn , (3.12)

where {b2,.,¢c8 . fm™} are the structure constants of S.

Due to the fact that only hermitian operators will appear in the hamiltonian,
that is By,..., By, in order to simplify further summations over B;, we have used
an unusual numeration of the elements of 3.

Now, we can diagonalize the hamiltonian (3.5) by implementing a generalized
Bogolubov automorphism in S rotating Hy into the Cartan sector of B .
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3.3 The Diagonalization

3.3.1 The Fermionic Rotation

Since S is a superalgebra, we first act on (3.5) by the adjoint action of a suitable
antihermitian rotation operator Zr € F,

4
Zrp = Z(‘PnFn + ¢NFK+4) 3 (3-13)

k=1

which maps Hy into H' = exp (adZp) (Hg). The coefficients p,, € Gy are to be
chosen in such a way that H' turns out to be an element of B.

The evaluation of H' for generic ¢, ’s gives

H' = VBOJer By, +Z foFe = feFeys) +C 5 fi€Go ,  (314)
p=1

where, as H' should naturally be hermitian, the operators B; and B do not appear:
bs = 0, and bg = 0.

The coefficients b, and f, in (3.14) can be expressed in terms of the coefficients
X ‘(Jm) € R,and Y, m) € G, defined by the recursive relation

(ZF)moHa = [ZF, (ZF)m-1 OHd]

ZX )B, +Z(Y M~ ¥ M) s (3.15)

p=1 k=1

il

with m € IN*, and (Zp)o 0 Hy = Hy. From the formula

<1
exp(adZr) Ha= Y 'Fn'((ZF)"‘ o Hy), (3.16)
m=0
it follows that
21 <1
—X =3 Ly 3.17
b= 2 = 2 .11

Tet us now deduce the explicit form of the coefficients b,’s and f,.'s different from
zero. For this purpose, we split Hy in two parts,

Hy=HY + HY (3.18)
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and we define, for m > 1

4
B = (7, 2P = X0 Y XM, (319
p=1
1 ! % >
B = (2p, S = Y (VME, - TIE,,) + 61V Y i F: (3.20)
k=1 =2

Notice that Hg)) contains the Cartan extension term V N1 N, giving rise in H 1(;1) to
the extra term explicitly written in H }m). It follows that

4
HEY = 3 (<goY ™ {Foy Fo} + ¢a¥™{Fy, Fepa}) +hc
o,k=1

4
= x{™Yr+ ¥ Q—%ﬁi‘nYém) +daft T 4 h.c) B, (3.21)
u:l ~ '

x{m+n)

o4 4
HI(;"_}'I) = Z Xlgm) Z <¢a[ Fo, Bu] + (}_Sa[ F0‘+4’ B“])
p=1 =1
4

4 4
= (XIS uda) P+ hec. (3.22)

k=1 p=1 a=1

~ v

)i;;d)

The commutators (3.21) and (3.22) lead to the definition of two matrices transfering
fermionic coefficients to bosonic and viceversa, at each step. The more convenient
way to solve the problem is to restrict the action of this transfer matrices to the set
of coefficients {X,Em), Y,{(m) ; By& =1,...,4}. Namely, the operator By appears only
in H g)) while the contributions to the constant term arising from the commutators
[ ZF, Hj(rm)], m > 0 will be calculated separately.

After this preliminary statement, we define the kets | X(™) > and | Y(™) > de-
noting 4-vectors whose components are labelled by u,x = 1,...,4 and the "reduced”
4 X 4-matrices R, S calculated from (3.21) and (3.22):

=3 Yy —P1  Pa @3 - @ P

R=| P08 F TR g | TR TR , (3.23)
=Py P33 P2 - YL —¥3 Y —@3
—-P1 @2 —P3 Py P2 -y L —py
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such that | Y(m+1) >=g| x(m) > | Xx(m+1) 5= R| Y(™) >, Gluing together the
last two relations, the following recursive relation holds as well:

X0 s=p| x(™W > | P=RS . (3.24)

P is a 4 x 4 matrix whose elements (€ G.) are given by

a 0 b ¢
0 e d e
P= .25
-b —d -a 0 ’ (3.25)
—c —e 0 -a
where
a = —p1P1+ p2P2 + P3Pz — PaPs
b —2(p1p2 + P3pa)
c 2(p103 — P2004) s (3.26)
d = 2(p1P4 — p263)
e = p1¢1 — P22 + P3P3 — PaPy
Defining
ap = b2+ ¢c? oy = b2+ d°
,Bl = bd + ce ,62 = bc + de (327)
and @
2_ .. _A. J
A=, B , Q= At ?,-) (3.28)
-5 e - 0 A
we can write P2 = A, @ A,. The eigenvalues and the eigenvectors of P? are then
given by
| [a' l]
zl = ’\E—)f“*)” , a=1,...,4 , (3.29)
; Bi )
vl = 3.30
N ( 3 (i — i F VD) (3-30)
where L1
MW= o202 —ai— v VA, A= (e —7)° + 487 (3.31)

Defining the 2 x 2 matrices R; = (vi,vi), i = 1,2, the rotation matrix T diago-
nalizing P? can be written as T = R; @ Ro. With @ = 2, @ ©, we have therefore
P’=T QT L
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As the matrix P? turns out to be block diagonal (two 2X 2 blocks), it is convenient
to express the first of equations (3.17), upon implementing (3.24), as a series of even
powers of P, assuming the first four IX(’”) >’s, namely m = 0....,3, as primitive.
For the kets | b > and | f >, we therefore obtain

o> = —_— | XY > (3.32)
i~ (4k + 1)! ’

f> = )> 4| T >+ S—— | x(-1) > 3.33

| | Y | ;ICX% (4k+l)' (3.33)

where Yl(o) = Yz(o) = 16,, Y3(O) =Y, 4(0) = 78,, and T',, € G; are the coeflicients of the
fermionic operators obtained by the commutation of Zr with the operator Ny Nj.
Setting K,( = (T7Y)4,0(T)a,u, one finally obtains the b,’s in (3.32) as

4 3
— &) (8

bu= Y. > LX) (3.34)

w'=1¢=0

with
4 -,
24 — d Za

Efﬁ?u, = Zn( ) 271 (3.35)

Ll 4—f ?
o1 Hap dzéf

Z, = (cosh(za)—i—cos(za))@(za)——cosh(\/.)c (\/_)@( Za),

where ©(z) is the usual Heaviside step-function: ©(z) = 0 when z < 0 and @(m) =1
when z > 0. For the coefficients of (3.33), one also obtains in analogous way

4
=Y 4T, +> 8,7, , (3.36)
p=1
where
£) £— -(2) (£
T, = ZZ(E( XED - xPel ) (3.37)
I_.le_

As for the term proportional to the identity, upon defining the vector | ¢ > as

—2(p103 + @2104)
—(0181 + p2P2 + P3@s + paBa)
2(01P4 + p23)

P1P1 + P2Pr — P3P3 — PaPy

lg>= ; (3.38)
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we obtain

4
1
C'=C+ Z(Yéo)saa) + ‘2“V(902‘/_92 — p3P3)

a=1
4 4
e T (L O ). (9
a=1 =1

H' as given by (3.14) is an element of B, if the coefficients f, given by (3.36)
equal zero. The latter requirement gives tise to a system of four equations in the
unknown ¢, € G;. In order to solve it, it is convenient to express both the 8’s and
the ¢’s as linear combinations with coefficients in R of two anticommuting units §
and £ € Gy, with ¢£ = 1. More precisely we choose

b;=pi+aif , wo=mltsf . (3.40)

Once the above representation has been inserted in the system (3.36) and the
equation (3.37), by separately setting equal to zero the coefficients of the £ and
the £ part of each equation, one finally gets a system of eight equations in the real
unknown 7, and s, (v = 1,...,4). This system explicitly reads

—s3Ti —m L a3+ Ty = —Tp
—5yT; — Ty + 3T+ ey = —Tpy — Vra

3.41
31’]3 - 7’3’]5 -+ 7'2'13 —_ 7‘3:& = —Tpgy — Vrs ( )
52']1 - 7‘47—2 + 7'17,’:’, - ’I"4’_T4 = —Tpo
—_T37‘1 - 5173 + 547?3 + SIII = —TOq
riTi Tt 5T+ Ty = —ro1 = Vs (342)

T — $3To + 8213 — 53Ty = —To2 — Vs
Ty — s4To + 51T — 84Ty = —702
One then solves, say, the first system in the variables T = T (7q, So) and substitutes
them in the second. This new system, due to the complicate form of the 7 is highly
non-linear in the variables 7 and s, and must be solved numerically.
We shall denote their solution by {7, 5.}, and by Bu the expressions (3.34)
evaluated at 7, = 7y, 5, = 5,. We also denote as H' the rotated bosonic hamiltonian

given now by

4

H =VBy+ Y. bB.+ C . (3.43)
p=1

It is worth noticing how ' contains the off-diagonal pairing operator B, even

though Hy doesn’t. As mentioned in section(2.8), this makes the model considered
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particularly interesting in view of high T, superconductivity, as such operators were
intrinsically generated by the dynamical algebra of the system, and may therefore
be expected to give rise to non-vanishing order parameters.

3.3.2 The case D; = D,

For two of the four copies of §, when the eigenvalues of the operators D,, D, are
equal, the equations for the rotation parameters ¢, can be solved exactly. This is due
to the fact that in equation (3.5),we obtain ¢y = ¢y = £ and we can set § = §; = 6,
because of the exchange symmetry between the two dimer sites. Defining

Eoo) =€+ W Dy =Dy =0 3.44
C(O’O)Z2E+E+W} ! 2 ( )
and
Eq =e+U+V+W Di=Dy,=1 3.45
C(l‘l):3(6—l—W)+2(K.+V)+U ! 2 ( )
where v
W:=V(g—1ng ; k:=(t06+ —2—n(2))(q -1) , (3.46)
we obtain
. 4 -
Hél) = _E-(i,i)BZ + th + VN1N2 + TZ(HF' - 9E+4) + C(i,i) . (347)
=1
ZF in equation (3.13) becomes
Zp = Sal(Fl + F4) -+ (‘02(F2 + Fg) —h.c (348)
and
ZyENY =D + [ 20, BO 1 1 25, 127, HO 3.49
exp(a F)(d)— d+[ F, d]+2[ F1[F7 d]] ) ( )

because commutators of higher order in (3.16) vanish.

It is worth noticing that only two angles 1, p» are sufficient to cancel the
fermionic part since the dynamical algebra of Hff) is in fact a subalgebra of S
generated by the eight operators { By, B2, By, I; F|+Fy, Fs+Fs, Fs+Fy, Fy+F-}.
A simple calculation leads to the solution

T8 70

PETER 0 BT TR

T , (3.50)
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and the coefficients for the hamiltonian (3.43) are in this case

where

—(§+VRT29§) y
by = t—Vpr?08 (3.51)
¢ = C-1%00(Vr + )

[ R~ )
3]
Il

2
V4+éett
v

VR= G et

(3.52)

and the indices (¢,7) denoting the projection are omitted.

3.3.3 The bosonic rotation

We can now proceed to the rotation of H' into H", by means of the adjoint action

of Zg = z Bs+w Bg € B ; z,w € R. Of course, as the rotation is an automorphism
in B, H" will still be of the form

4
H"=VBy+ > h.B,+C' . (3.53)

p=1

Let us define H/(m+1) = [ Z5, H'(™] ,m > 0. Then | (™ >= Q™ | b >, with

0 -2z 0 0 z
2z 0 0 0 0
=0 0 0 -2w 0 (3.54)
' 0 0 2w 0 0
z 0 0 0 0
and from | A >= exp(Q)| b >, the exponentiation of the matrix {2 leads to
K Voo
hiy = bjcos2w+ (5 —by)sin2w
-V - 1
hy = (by— ~2—)cos2w+b1 sm2w+§V , (3.55)
hy = bycos2z — b,sin2z
hy = bycos2z+ bysin2z

In order for H to be diagonal, the equations hy = 0 = h3 must be satisfied. These
can be easily solved in z, w. Denoting the solution by Z,w, one has

2b 1 b
'd):-;-arctan< Saia ) ) Eziarctan (f) . (3.56)

263-—V 4
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With the above choices H finally reads
H:‘— (ilq——ilg)Nl—(E4+BQ)N2+VN1N2+C” 9 (357)

where

- . -V Vv
hy = \/b%+(bz—“§)2+— )

2
hy = JB24+0b2 (3.58)
C” — é’-}*f.lg

Of course, the spectrum is given by (3.57) setting N; = 0,1 for ¢ = 1, 2.

3.4 Partition function and self-consistency equations

The spectrum of hamiltonian (3.57) still depends (through k,, hy) on a set of classical
Ising-like configuration variables, i.e. the D;’s. The expectation value of the latter
cannot evolve dynamically under the action of the linearized hamiltonian (3.5), since
their commutator with it (as well as with (3.2)) vanishes. Nevertheless, since we aim
to know which is the configuration of the D;’s most favourable from the point of view
of the free energy, in the frame of a dimer approximation, we should average over the
distribution of the D;’s in A. We do this by summing within the partition function Z
over all possible configurations of the D;’s in the dimer, having introduced a chemical
potential pp fixing their average number (specified by the magnetization m). In
other words, we let ug incorporate all necessary information on the distribution of
the D;’s over the lattice with a weight which is a Gibbs probability. Explicitly

Z = Z Z exp —fH

Dy ,Dy=0,1 Ny ,Ny=0,1
= eBC” [1 4 ¢Bhe (2 cosh Bhy + eﬁ("‘ﬂ—"))] . (3.59)
In order to obtain quantitative predictions from equation (3.59), we must first eval-
uate the variables §; as well as the filling ny consistently with their definitions (3.3)
and (3.4). Moreover, the magnetization m =< N; — D; >= ny — ng has to be

fixed. This requires to compute the expectation values < Af— >and < N; £ D; >

respectively. This is straightforwardly achieved upon recalling that, for any operator
Q2 € A (different from By), we have

<Q> = %Tr[ﬂe"md]

_ %Tr {exp(adZ)(exp(adZr) () e}, (3.60)
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where Zg and Zp are of course those antihermitian rotation operators which diag-
onalize Hy.

Upon denoting by ' the rotated operator exp(adZr)(Q), we observe that Q' is
given by a formula completely analogous to (3.14) (with V' = 0), in which one has to
replace the b,’s, f’s and C' by b( g (Q) ’s and Cg. The latter are still expressed
by equations (3.17) to (3.39),in whlch only the initial vectors | X8 > (£=10,1,2,3)
and | Y(®) > have been replaced by | X >% and | Y(?) >, and are obtained by
(3.15) upon substituting Hy with Q.

Also, when evaluating 0/ = exp(adZp)(Q') in (3.60), we can disregard the
contribution of the fermionic operators in ), as they remain fermionic after bosonic
rotation, and hence have vanishing expectation value in the basis in which H is
diagonal. This implies that formula (3.57)-(3.58) hold even for £/ (once more setting
V = 0), where of course the appropriate bE,Q)’s (same expression as in (3.34) with
| XD >2 instead of | X (9 >) have to be used instead of b,’s in the definition of the
corresponding hm) ’s. Recalling again that only the operators diagonal in the Cartan
basis contribute to the trace in (3.60), we finally get

<> = - Z S (RPUDD (L - Ny - Vo) + h“”({D 1N, ~ No)
{D N} _
+C({D;})) e PHUDTAND | (3.61)
with
hgﬂ) = bgﬂ) sin 210 + bgﬂ) cos 2w -, hgn) = ng) sin2z + ng) cos2Z . (3.62)

Applying (3.61) successively with {1 = %(91A1 -0, Afl), %(92442 - B_QA;), %{Nl +
Ny +(D; + D2)}, we obtain the four consistency equations to be satisfied, by setting
at the Lh.s. of (3.61) 0:6,, 628, ny and m respectively. The latter equations of
course are to be solved in the four unknowns 6,8, 6.6, 4 and pg. While the first
three of these equations are in general highly non-linear, the fourth can be solved
rigorously. Defining p =< D; >= (ng — m), we obtain pg as a function of the other
unknowns:

exp fitp = g { KL=+ P - D < plp - W), (369

where
Y. = H_lDl-{-DQ:K +rpg , £=0,1.,2 , (3.64)

is in fact independent of upg.
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Obviously, any expectation value of operators in S can be evaluated by means
of (3.61)-(3.62), once the vectors | X >% and | ¥(9) >® have been specified.
In particular, for the pairing operator B; we have

1 a
| X© 5 N D R
0 b} _ ?
0 —c
| XMW 5B = | x@) 5B y©) 5Bin g | (3.65)

with a,b and ¢ defined in formulas (3.26). It is important noticing that, depending
on the physical parameters U, ¢, and V, the expression (3.60) implemented with
{1 = By, together with (3.65), give a non-vanishing expectation value for the pairing
operator. On the contrary, when V = 0 the latter turns out to be identically zero.
The last observation suggests once more that the intersite Coulomb repulsion
could play a possible role in the onset of superconductivity. Hence, a more detailed
analysis of the ground state behavior, as well as of the thermodynamical properties
of our approximation to the model, are expected to give interesting results.
Nevertheless, because of the great number of equations (in principle there are
nineteen ones) which have to be satisfied in order to guarantee both the self-consisten
cy constraints and the requirements on the coefficients of the Bogolubov rotations are
properly implemented, their solutions is a very delicate numerical problem. Hence,
in order to gain a more detailed description of the phase space, one should first
consider solutions with special symmetries and this will be done in the next section.

3.5 The homogeneous solution.

We now turn to the detailed discussion of the homogeneous case, which consists in
setting §; = @ = 0,. Such a choice leads, due to the Grassmann-like nature of the
variable 6, to zero expectation value for the pairing. !

Even though this makes the solution slighltly less general from the physical point
of view, it leads to a much better insight into the equations structure.

'It is straightforward to check that the system for the rotation parameters has in this case the
solution 8, = 8§y = 83 = 3; = 0, i.e. @x o< 0. This implies that the fermionic rotation on the
one hand does not generate a pairing operator in the hamiltonian H', therefore, as b, = 0, one
gets 1 = 0. On the other hand B| turns out to be proportional to B, (b(lﬂl) # 0, bgp‘) = 0 for

Jj =2,3,4), hence th[) = th') = 0, and, since also C'B1) =0, finally < B, >=0.
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With the above choice the hamiltonian reads

H = e Ny +eaNo+t(AT4y + ALA) + VNN,
T(04; - 041 + 04, -84l +C (3.66)

where T = t(g — 1). Instead of applying the general scheme for the diagonalization
sketched in the previous paragraph, in this case it is more convenient to implement
the rotation of H in five successive steps, by acting on it with the adjoint action of
the following five (three bosonic and two fermionic) antihermitian operators

z80 = pi(ald, - AL4y), i=1,2,3 (3.67)
720 = (1 - Np)(0Ar +6AY) 4+ v(1— Ny)(04; + 4D, (3.68)
78 = pNy(04; +0A}) + oNy(64; + 0A])

= p(0F, + 0Fs) + o(0F3 + 0F7). (3.69)

Thus, the number of non-linear equations for the rotation parameters which diago-
nalizes H reduces now to four.

Indeed, by applying successively Zg), Z},}), Zg), with an appropriate choice of
the parameters {pi, P2, i, ¥}, we can project the fermionic operators into the F-

2t
subset {Fy, F3, Fg, Fr}. Choosing p1 = —2—t;an“1 pa—— we obtain
1— €2

HW = ¢, N, +e_No+ +V NI Ny + 7(cp (64, — 0AD) + a_ (04, — §4})) + C (3.70)

where
£x = -;—(61 +eaknVA), 1= sgn(er - €2)
A = (g —e2)? +4 (3.71)
ayr = cospy; tsinp; . (3.72)
Then, with g = ——TZ:,V = ——Z;: in Zg), we eliminate the operators Fy, Fy, Fj,

Fg and it results
H® = ¢, Ny +e_No+ VNN +t"(Al 4y + 4] A))

1V (uNo(64; — 84T) + vN (04, - 641)) + C (3.73)
where
e, = ey —2VE6°
e, = e —2V06u° (3.74)
" 272V 89
o= cos 2py

ELE_
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Finally, we can eliminate one more time the pairing operator, choosing tan2p; =
2t”
= in Z}(;) obtaining therefore:

51}_ — E_
H®) = exp(ang)) exp(ang)) exp(ang)) H (3.75)
= EllNl + E{QNQ + VNN, +C + V(7(6’F2 — 5F5) + 5(9F3 - 0—F7))
with

1
e = (e +el+n'VA) o =sgn(eh —el)

1
ey = Sl el —n'VA)

Al = (e — el )P+ 4™ (3.76)
7 = pcospy -+ vsinps
§ = vcospy — psinpa. (3.77)

In order to cancel the fermionic part of (3.75), we act on it applying Zg). This gives

, ‘
H(4) Zb1N1+b2N2+bgB3+b4N1N2+ka(g_pk_{_l "‘ng+5)+0 9 (378)
k=1
where b;, f; € R, (i = 1,...,4; j = 1,2). As before we denote by bgm) and f‘-(m) the
coefficients of the m -th commutator defined recursively by

(Z}(Tz))m o H® = [Z}?),(Z}f))mq o H®) (3.79)

with m > 1, (Z}f))o o HB®) = HO), bgm) =V §,.0, and arrange them in a vector
array. Upon defining the transfer matrices F, B, and Q by

Lplm+l) 5 = F | Fm s fim) s= B | p >{m)

| f+ > = Q™ >, Q=BF , (3.80)

we obtain, after some straightforward algebraic manipulations,
- o2 —po
Q=408 ( ) . 3.81
oo P (3.81)
Defining 2% = 80(p? + %), we have QF = 22(k-1)Q, and this gives
1 _
|f>=2 51/ >=1 9>+ [ fV>+ @) 2| F>  (382)

k>0



3.5. THE HOMOGENEOUS SOLUTION. 65

where

& = V(oy—pb), &2=po(e;—e)

coshz —1 sinh z —
& = 3, (—7—-—) + &, (——;——f) (3.83)

and

lf(0)>=V(;), [f(1)>:(£2215))>, | F>= ( _Up) (3.84)

In an analogous way, we obtain for the bosonic coefficients:

1 1
6> = 3 | bR >=1 ) > 4| p(1) > +5 | 6(2) > (3.85)
k>0 ) .

S sinhz — z coshz -1 1
+ (90) [@1 (—‘;3—‘“)+@2(—?’“—’;—2)]|B>

where
€} —20 6
5 5 —2p7
() > £2 b >= V(48 ,
| o |’ | (66) (o + pb)
14 0
—2(gh + V)o? 20p
, - —2(eh + V)p? —20p
b3 > = 8¢ ! B>= 3.86
¥ N 2o |n B89
0 0

The diagonal hamiltonian is of course obtained by solving the system of two non-
linear equations in p and ¢ defined by | f >= 0. The solutions 5 and & have then to
be successively inserted in the expression (3.85) in order to give the corresponding

vector | b >.
Final step is to rotate H® into the Cartan sector of B, i.e. to eliminate Bj.

This is easily done selecting p3 in Zj(;) such that tan2py = 253/(51 — l-)g) We end up
with a diagonal hamiltonian H given by

H = hi N1+ hoNo + VN{Ny+ C (3.87)
where
1 - - 1 - -
hy = ”2‘(bl+b2+"7\/—5) , h2=§(51+52"77\/5) )

n = sgn(b; —b2) (3.88)
A = (b — by)” +4b3
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According to the general discussion of the previous paragraph, we are now able to
evaluate the partition function, and hence the expectation value of any operator
€ S. In particular, we notice that the homogeneous case turns out to be simpler
also for what concerns the self-consistency equations. Indeed, the two constraints
on the 8,’s reduce to a single one, for the mean-field parameter 9. The resulting
equation, nevertheless, is highly non linear, and has to be solved simultaneously
with the filling equation. In general, one ends up with a system of two equations
which in principle has many different solutions. We treat then 86 as a variational
parameter, assuming that the physical solution is to be chosen as that minimizing
the free-energy f, f = —»-llgan.

The numerical results for free-energy, mean-field parameter as well as some ther-
modynamical properties of the homogeneous solution of the model given by 3.5) are
discussed in the next section.

3.5.1 Results and discussion

In figure 3.1, we report the order parameter 66 as a function of the temperature T
at half filling and for different values of V. The results refer to ¢ = 4, (e.g. a square
lattice in two dimensions), and to typical values of the physical parameters U and t.
Noticeably enough, it appears that, beside to an intermediate-temperature phase,
already discussed in [10], a non-vanishing V determines the appearence of a new
low-temperature phase. In the low-temperature regime, there exist two different
non-zero solutions to the self-consistency equation for 86 for each T, corresponding
to the two different ways the system has to realize a configuration with a given
value of ng. Indeed, as the hamiltonian (3.5) commutes separately with D; and
D,, the system itself is not capable of evolving dynamically from a configuration
with a certain distribution of D;’s to another one, realizing the same m. Hence the
different solutions at a given temperature may coexist, and the system may exhibit
phase separation.

The extra low-temperature phase can be understood keeping in mind the rela-
tionship intercurring between the existence of non vanishing mean-field order param-
eters and the breaking of symmetries. As discussed in sections(1.4) and (2.3), the
appearence of order parameters is natural whenever some of the symmetries of the
original hamiltonian are broken by the linearized hamiltonian. In the present case,
the linearized model does no longer commute with }_; N;. Following the procedure
illustrated in section(2.3), one should identify the correct order parameters with the
expectation values of those operators € S which are not generated by commutation
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Figure 3.1: 88 vs In(kgT) at half filling for fixed U and for various V

of Hy with § itsell. One can check that, when V = 0, the dynamical algebra is
smaller than S, and the above procedure leads to recognizing a single order pa-
rameter, P; =< 8(4, + 4;) + (AI + A;)H >, which describes the hopping between
neighbouring dimers. On the contrary, when V' # 0, the independent order parame-
ters turn out to be two, P as well as P, =< é(NgAl + N1 Az) + (NQAI +N1A;)9 >,
the latter referring to the hopping between neighbouring clusters when one of them
is already occupied. In this case, #6 keeps track of both of the corresponding phases.

Figure 3.1 shows that the low-temperature phase is much more sensitive to varia-
tions of V than the intermediate-temperature phase, for which in practice #8 remains
unchanged, at least in the range of V' studied. According to the above discussion, the
low-temperature phase appears to be related to P;. However, this is in agreement
as well with the intuitive consideration that the greater is the Coulomb repulsion
between neighbouring sites, the more an electron on a dimer is forced to hop out of
the cluster if the other site of the dimer is occupied. Consequently, the intermediate
temperature phase is described by Py.

In figure 3.2 we reported the behavior of 89 in the low temperature phase for
different values of the average number of fixed electrons, ny, and the same total
number of electrons (n, = 1). One can observe that, for ng close to 0 or 1, the two

branches of the curve tend to coincide, since there is only one possible distribution
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Figure 3.2: ¢ vs In(kgT) at half filling for fixed U and V and for various values of
the average number of non-itinerant electrons ng

of the Ds which realizes the limiting values ng = 1 or ng = 0. Furthermore,
one may identify the critical temperature T, as the temperature at which the two
low-temperature branches collapse into a single point.

In figure 3.3, 86 is reported versus temperature for various value of filling ny,
at a fixed value of V. Notice that both the low and the intermediate temperature
phases seem to be very sensitive to variations of the filling, and it exists a critical
value for ny above which the system always prefers the solution 66 = 0.

Finally, figure 3.4 shows the behavior at half filling of the local magnetic moment
< §? >, which for the Hubbard model was already studied numerically in 1-d[69],
and in 2-d871. The local magnetic moment is defined as

9 3 .3 3
< 8§ >= 1< ol >= 1< (i —miy)? >= Z(no —2< N.D; >) , (3.89)

where obviously at half-filling n, = 1. The two curves reported in figure refers to
V = 0 and V = 0.8 respectively. Notice how the curves are continuous and smooth
in correspondence of the transition between the two different non-zero regimes for
6. This is not surprising because S? is a on-site operator, whereas 69 is thought to
describe non-local correlation. In fact, as seen before, < §? > was not identified as

an order parameter.
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Figure 3.3: 80 vs In(kgT) at fixed U,V and np values, and for various values of the
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We conclude that the main feature that emerges, due to the presence of the
intersite Coulomb repulsion, is the appearence of an extra (with respect to the
V = 0 case) order parameter, which is proportional to the hopping expectation
value in presence of other electrons. For low-temperatures, the latter describe a
phase which is sensitively dependent on the value of V, as well as on the total filling.

The homogeneous solution presented here is not the more general solution to the
problem described by the model hamiltonian. In particular, we expect that a solution
with a different symmetry, i.e. 8; = 8, = 8, which gives non-vanishing pairing, would
minimize the free-energy for certain values of the parameters. However, the study
of such a solution present non-trivial numerical problems and no results have been
obtained up to now.



Chapter 4

The Clifford Mean-Field
Approximation

4.1 Introduction

In the present chapter, another view of the fermionic linearization scheme is il-
lustrated. It consists in requiring that the mean-field amplitudes are treated as
fermionic operators instead of elements of a Grassmann-like algebra. More precisely,
calling ¥; these variables, they satisfy a Clifford-like algebra:

{9,9;}=ciby , GER (4.1)

where ¢; are undeterminates to be defined for each specific problem.

First of all, we notice that (4.1) implies that the dynamical algebra of the lin-
earized model is no longer graded, but simply a Lie algebra. Secondly the values
of the ¢;’s have to be determined self-consistently or in a variational way. As we
will see later, the definitions for the approximate expression for multilinears and
consequently for the self-consistency equations are not unique, and this can give rise
to different linearized models.

In section (4.2), we will analize the algebraic structure of the Hubbard model with
some numerical results for the Falicov-Kimball as special case (section 4.3). Then

in section (4.4), we give the dynamical structure of the extended Falicov-Kimball.

71
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4.2 The Hubbard model

In the previous sections, we have used the fermionic linearization scheme acting only
on the hopping term of the Hubbard hamiltonian

Hy=—p Z(nm +mn;y)—t Z Z(aiyajp + Gj:',ai,a) + Uzni,Tni,l (4.2)

<ig> @ :
through the relation (4; = aiq, 0 =1,1)
Ala; =74, + Aln - (4.3)

where 7 and 7j were Grassmann-like variables. In this chapter we will use a somewhat
different approximation. Let us write

Tg. -9 ta o als.
Do AA =50 (0 A+ AlDy) (4.4)
<t g> 1
with 9; = ¢ Y, ,.,.; 4, and g is the number of nearest neighbours of a site in
] n.n.a 7

the lattice. In this case, we will improve the fermionic linearization scheme by di-
rectly replacing the operators ¥; by variable ©; still anticommuting with the fermion
operators which are locally Clifford variables:

0}=0i=0 , {0;,0;}=cé;; . (4.5)

Once the above approximation is inserted, one obtains a reduced Hubbard hamil-
tonian H which is a sum over lattice sites of single-particle hamiltonians H () com-
muting with each other. Defining the new variables

Al = a4t Ag =4y, Ag = @,/\/E (46)
so that {A;;,AI} = 1, we obtain

HO = —p(Ny + Na) + UNN; — tgv/e [(A] + al) 45 + heo] (4.7)

where the index ¢ has been omitted.
The closure under Lie bracket of the operators appearing in (4.7) leads to the
dynamical algebra Ay,

4

A = P ui(1) @ su(3) @ su(3). (4.8)
k=1
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The four central elements C; generating the u(1)’s are given by:

Cpb = 1 , C=N+No+N3 ,
C') = N1N2+N1N3+N2N3 3 C3:N1N2N3 . (49)

The Cartan-Weyl basis {H;, E,} of the first su(3) subalgebra of Ay is given by:

B, = NeAld, |, Br=maldy | Ey=Nala,

E-l = NgAlAl 9 E_.g = NlAj;Ag 3 E..3 = NQAIAJ_ (410)
1 1

H; = —N3(N;{- N Hy = —(N{(Ny — N. No(N; — N.

1 /5 3(Vy 2) ,H2 \/6( 1(Ny 3) + N2(INy 3))
and
o = —(2,0) LCvE) |, as = —=(1,v53) (4.11)
—_ , as = —(-1, = —=\1, . .

1 \/5 ? 2 \/-2‘ ] 3 \/'2-

The other su(3) Lie algebra is defined by the ”orthogonal” set of operators {H;, E.}
defined by the substitution N; — (1 — N;) for the N; multiplying the fermionic
bilinears in the set {E,} and the differences N; — N; in the Cartan subset {Hy, Ha}.

In terms of the operators define above, and making the further assumption that
p1 = pg = p (e g7 = €;) and n; + n;| is kept fixed), H®) can be rewritten as

HY =H,g) @ Hgt)(a) © Hgi)(a) : (4.12)
with
1 1
Hyyy = ‘5(2# +tc)C1 + 5UC2 )
2
Hgi)(a) = —\/_6(—” +U)Hy — qtv/e(Ey + E_2 + E3 + E_3), (4.13)
2 . .- ..
Hgi)(a) = "%“HQ —gt/e(Es + E_3 + E3 + E_3)

Now we proceed to the diagonalization of H. Let us write H as a general hermitian
element in the first su(3) CW-basis:

H = 61H1 +EQH2 +T(E2+E__2 +E3+E-3). (414)

Due to the fact that in our particular case, see equation (4.13), &y = 0, with Z; =
(—5)(E1~ E_1), we reduce H to

H' = exp(adZy)(H) = eoHy + V21(Es + E_y) (4.15)
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and therefore H' € u(2) = {H,, H, E2, E_3}. Now, we can use the procedu:re shown
in section (1.3) to diagonalize H'. We define the ket | () >= | ,B k) , utk) >
with 81 = 0, B = &5, p® = V21 and | H' >= | Hy, Hy, By >, E+~E2+E_2
such that H' =< &()] H’ >. With Z, = ¢(E; — E_;), we define the recursive
relation H'®) = [Z,, H'*-1)] =< &&)| H' >. This brings to the definition of the
3 X 3 matrix 4

0 0 -2a p 3

A: b ; = — b:: — 4.16
0 0 2 °= 75 5¢ (4.16)
a —b 0

for which | (+1) >= 4| &) >. The rotated hamiltonian H” can then be written
as

H" = exp(adZ,)(H') =< 80| & | H' > (4.17)
where
cos2¢ + 3 —v/3(cos2¢ —1) —2+/2sin2¢
et==1] —v/3(cos2¢— 1) 3cos2¢+1 21/65in 2¢ . (4.18)

V/2sin 2¢ V/6sin 2¢ cos 2¢

Equating to zero the resulting coefficient of the non-diagonal element E, gives for
the rotation angle ¢ the effective value

é= arctan—\—/_—; (4.19)

and we obtain, inserting this value in (4.17), the diagonalized hamiltonian

H" = exp(adZ;)exp(adZ,)(H)

1 1
= —4(\/—552 - \/—A—) Hl + 1(62 -V 3A) H2 5 (420)
with A := 3¢} + 167%. The partition function can be immediately obtained from
(4.20) as
2= > exp(-BH") . (4.21)

Ny ,Ny,N3=0,1

Predictions for physical quantities can then be obtained from Z once the average
number of electrons ny are fixed through the chemical potential according to
1 BZ
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where as usual < O > stays for the thermodynamical average in the Gibbs ensemble
of the operator 0.

Morever, in order to have quantitative predictions, a numerical value for ¢ has
still to be self-consistently determined. One possibility is to implement relation (4.4)
giving rise to

< ald 4 Aldy >=2ve< alay > (4.23)

where translational invariance of the lattice has been assumed.

4.3 The Falicov-Kimball model

In this section we give some explicit results about a simplified version of the Hubbard
model already introduced in chapter 3, namely the Falicov-Kimball model in which
only one species of electrons itinerates, the electrons with opposite spin being fixed
at their sites [52]. The hamiltonian (4.7) simplifies to

Hﬁf}( = —p,N; — ppD; + U D;N; —tg/c (74; + Ajn) . (4.24)

In this notation, Aj and A; are creation and annihilation operators of the itinerant

electrons (N; = A}-A,-), while D; is the number operator of the non-itinerant elec-
trons. Respect to (4.7), omitting the site index i, this implies the change of notation
N, - N, N, - D, A; — n. As the operators )_; N; and >_; D; both commute
with the hamiltonian, we introduced the chemical potentials x4 and ppg in order to
fix the average number of electrons of the two species. As in section (3.2), the D,’s
are to be considered as classical Ising-like variables, whose two possible eigenvalues
0 and 1 label the two orthogonal projections of H}(;}{ = HY @ HW., Tt is easy to
check that the dynamical algebra Ark of (4.24) coincides with the Lie algebra u(2)
generated by

Apr = {N; + 7n,74 £ An}. (4.25)

A rotation similar to (4.17) leads to the diagonal form

- 1 _ o o/ —
Hpg = §{€i(7777 + N;) £ /e +4m%(7m — Ni)} — ppDi (4.26)

with ¢; = UD; — pg. The analogon of (4.21),(4.22) and (4.23) are now

Z = > exp(-B Hrk) (4.27)
N;,D;,in=0,1
1 82
ny, = < N;>= (4.28)

T BEZops



76 CHAPTER 4. THE CLIFFORD MEAN-FIELD APPROXIMATION

1 82
= 525 (4.29)

<ﬁAi+Ajn> = 2/e< > . (4.30)

ng = < D;>

4.3.1 Results and discussion

kT
In figure 1. we report the mean-field parameter c vs. temperature e at half-filling
q

and for the symmetric case n = d = % In this case it is easy to check that the
U

solution to (4.28)-( 4.29) is pin = pag = 5 € is plotted for different U values, and

exhibits a typical order-parameter like behavior. For U = 0 (non-interacting case)

it rises from zero, in the high-temperature regime, to one, at T = 0. For generic

U < 4qt, it is possible to show rigorously that, in the limit T — 0, c reaches a value

¢y given by

1 -
d=1- EUZ ) (4.31)

- .U
where U = prt This suggests that the value ¢ = 1 used in [63] is correct at half

filling, only in a low-temperature non-interacting regime or for D = co. On the
contrary, for U > 4qt, the only solution to (4.30)is ¢ = 0.

The expression (4.31) for ¢y clarifies the physical meaning of the parameter c.
Indeed, recalling that on a hypercubic lattice g is twice the dimension of the lattice,
equation (4.31) reproduces exactly the Gutzwiller result [36] for the discontinuity
in the single particle occupation number at the Fermi surface, obtained for the
conventional Hubbard model when T' = 0. This is not surprising as, on the one hand,
the Gutzwiller result for the Hubbard model was obtained in fact by neglecting the
kinetic energy of one species of electron, thus in an approximation very similar to
that at the basis of the Falicov-Kimball model. On the other hand, according to
egs. (4.4), (4.5), and (4.30), at half filling ¢ coincides with the expectation value of
the hopping term, and hence is related to the discontinuity in its Fourier transform.

Notice that when U = 0 then ¢y = 1, and the ground state has all the electrons
below the Fermi level. For any ¢ # 0, the ground state has some electrons above
the Fermi level, but the gap is still there, and, according to eq. (4.5 ), the generic
lattice site on which one has confined the linearized hamiltonian is still interchanging
fermions with the rest of the lattice. When ¢y = 0 on the other hand, the gap in the
density of states disappears, and at half-filling we have exactly one electron per site.
In this case, the remaining of the lattice behaves as a system of scorrelated "average’

fermions (i.e. as if they were frozen at their own sites) and we are in presence of an
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Figure 4.1: ¢ vs (kpT'/qt) at different U values: U = 0 (dashed line), U = 1 (dotted
line), U = 2 (continuous line)

insulating phase.

The above analysis suggests that ¢ could be able to describe the transition from
a conducting to an insulating state. Indeed, again in agreement with the Gutzwiller
result, at 7 = 0 one finds that the double occupancy expectation value, P =<
N;D; >, vanishes precisely at I/ = 4. Explicitly, analytic calculation shows that

1 U -
1= <
po) 3 (1 4) forU <4 (4.32)

0 otherwise

It is worth noticing that the result (4.32) coincides with the exact result both in the
limit 7 = 0 and in the limit 7 >> 1. A deeper analysis of figure 4.1. shows that

the transition from non-zero to vanishing c¢ is of different order depending on the
value of U. Indeed, by requiring that (4.30) vanishes also around |¢| = 0, one can
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Figure 4.2: (kpTc/qt) vs U: dashed line represents second order transition, dotted

line first order transition.
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Figure 4.3: ¢ vs (kgT/qt) at U = 1 and different fillings, in the neutral case (n = d):
n 4 d =1 (dashed line), n + d = 0.8 (dotted line), n 4 d = 0.6 (continuous line)
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verify that there exists a tri-critical point at U = U,, where U, is solution of

R — U (4.33)

AN
(%)

One finds a numerical value U; ~ 1.845. For U smaller than U, the transition is
second order, and the critical temperature is found analytically as the solution T of
the following equation (obtained by requiring that (4.30), upon factorizing the ¢ = 0
solution, still vanishes for ¢ = 0):

; (4.34)

kT, -
with ©, = Bt , and kp the Boltzmann constant. On the other hand, when U

is larger than U, the transition is first order, and the critical temperature can be
evaluated numerically. Figure 4.2 shows the behavior of T, vs. U in the two regions.
The value I/ = 4 correspond to the vanishing of both the critical temperature and
co-

Figure 4.2 can be compared with the rough estimate of the critical temperature of
the long-range order phase whose existence is proved for the Falicov-Kimball model
in [43]. If one assumes that the phase with ¢ # 0 could possibly be the long range
order phase, the qualitative behavior of T. is in agreement with that given in [43]
for large U, whereas it is in contrast with the latter for vanishing U. One should
notice however that this approximation is expected to be more realistic for finite U.

Finally, in figure 4.3 we give the behavior of ¢ vs. T for various fillings, still
for a paramagnetic state (n=d). The figure shows that the transition is present
at different fillings, again in agreement with the features of the long-range ordered
phase described in [43]

The above results suggest that the approximation could be a natural extension
of the Gutzwiller approach to the case T # 0. They also provide a physical inter-
pretation to the method, which consists in replacing the hopping term by a term
which locally still allows to create and annihilate electrons, but with an amplitude
proportional to the discontinuity in the single particle average number at the Fermi
surface.

Moreover, as opposite to the case in which the coefficients of the linearized
operators were Grassmann variables, the present approximation produces non-trivial
results even in the case U = 0.
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4.4 Extended Falicov-Kimball model

In this section we study the structure of dynamical symmetry which the use of
Clifford-like mean-fields defined in the previous sections leads to, in the case of the
extended Falicov model introduced in chapter 4 [22]. We rewrite the linearized
hamiltonian Hp in the form

H'D = EEQNQ-FVN]Nz-}-t(AiAz-I‘-A;Al) +C~’

a=1

2
+3 (4100 + 6ads) (4.35)
a=1
with

@a:tZAg,

fn.n.a

f#a

€a = —pa+Vny(q—1)+UDa+VDs=E+W, , (4.36)
C = (E+ps—p)( D1+ D)+ VD Dy~V(g—1)nd ,

g being the number of n.n. sites per site in A and @ = a + 1 (mod2).
Let us rewrite explicitly the properties of the variables {0, , O, |a = 1,2}

o the generators {O,, ®,|a € D} anticommute with all fermion operators:

o {45,0,} = 0={4},0,} = 0={45,0.} = 0= {4},0,}, Yo, 0 € D;

o the generators {04, @,|la € D} anticommute between each other for a # A
{02, 05} = 0= {0a,05} = 0= {Oq, 0} = 0 = {Oa, Os};

e locally the generators {@,|a € D} are nilpotent Clifford variables:

e 02 =0=02, {0,,0,} = c2, where the {c,}’s are c-numbers;

o O, is the conjugate of @, , Va € D.

In other words, we introduce a mean field which jis itself a fermionic operator.
Upon noticing how {@,, ©,|a € D} enter into play in Hp, we introduce, besides
the fermionic operators A,, Af, , @ = 1,2 the auxiliary fermionic variables Ao =
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2 O, Af\_p = L ©®x; A =1,2. The linearized hamiltonian Hp will therefore be
[ - [3Y

written in the form

2 4 4
1 .
Hp = § EaNa + VNN, + 5 E E Tvy ALA’Y ’ (437)
a=1 v=1 =1l
YH#Y

where the antisymmetric matrix T of elements T, = 7, is given by
T=0,8[(ci + )2+ (c1 —c2)0:] +t (T2 + 0:) @ 0x (4.38)

O, K = €,¥, z denoting the usual Pauli matrices. It is worth pointing out that &;
is in general (V # U) different from &,.

The form (4.37) of hamiltonian (4.35) is particularly interesting, in that it ex-
hibits quite manifestly the whole set of dynamical symmetries characteristic of
the system in its linearized form. In order to show this, we observe first that,
in the absence of the V term, we should recover (with n = 4) the well known
su(n) symmetry characteristic of a system with n fermions, generated by all num-
ber conserving bilinear forms of creation and annihilation operators [14]. The n.n.
Coulomb coupling term, N;N,, can be expected to lead us to an extended dy-
namical algebra A, generated by all number preserving multilinear forms of type
{Ajll ...ALnAgL ...Ag .}, n=1,...,4 One can show (by induction, after working
out explicitely the cases n = 2 and n = 3) that in general such an algebra is

Ay = @ ue(1) © @ su ((:)) : (4.39)

k=0

In present application (n = 4) the dynamical algebra is therefore Ap = Ay = 5u(1)
®2 - su(4) @ su(6). Ap has 70 generators, 16 of which are Cartan, and 5 are central.
These generators can naturally be straightforwardly obtained by commuting in all
possible ways the operators entering Hp.

Upon introducing the auxiliary variables Ej = Al Ag (notice that Ef = Egi,
E® = N,), the generators of Ap turn out to be given by the following tensor oper-
ators:

l
() {ei} ,_ o .
F {B:} ].:.E Eﬁi , 1=1,2,3,4 , (4.40)

where the indices a;, 8; all different from one another range from 1 to 4. The five
central elements C;, generating the 5 u(1)’s, are given by:

14
Co=1 , Cr= >, (HNa,.) , £=1,...,4 . (4.41)

oy <<y \iz=l
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In order to recognize the direct product structure of the algebra, let us define the
following set of tensor operators which are subsets of the F®’s in (4.40):

J$ = N,NsE§ ; Jg=(1-N,)(1-Ns)Ej ;
3Py = EZE]{ ; TMg = N,(1- Ns)Eg (4.42)
where a # § and 7 # 6. In the first two relations of (4.42), we introduced the
convention that whenever in the definition of some operator appear two extra indices
besides those labelling the operator itself, one should think of them as assuming the

complementary values in the set {1,2,3,4}.

We may immediately obtain for J§ the commutation relations of su(4):
T5, 751 = 8pyJ5 —basTy
(75, 78] Ny Ns(Ny — Ng) . (4.43)

i

The first relation above holds whenever it is not simultaneously a = § and 8 = v,
in which case one should use the second.

Quite similar relations hold for and fg (upon replacing N; with (NV; — 1) in the
second commutator of (4.43), generating the second su(4), manifestly orthogonal —
due to the presence of the projection operators — to the previous one.

Analogously, the algebra generated by the set {J Mg, j P} is:

[ZME v eMf] = ‘5[3#(5@5‘7”?]”? + bagdqp EM(?‘
= bow(8ppbyu ?ME + Eﬁuﬁvplm{g)
+ bacbppbou P ~ bapdsabon §P5 (4.44)

GBS, 0P = (Boubsy — Sopfu) (Baw — ao)
(Nala(1 = Na)(1 = Ng) = NoNs(1 - No)(1 = N))  {4:45)

[sP5 > eMp] = (Sawby0 (68 — 68p) + bac by (8 + 88p)) M7
+ (Savbyp(88s — 6pp) — Sapbyu(bpu + 682)) DMZ - (4.46)
which can be easily recognized to be isomorphic with that of su(6) (see appendix
D).
The operators E; = J}, E; = J}, Es = J:,E, = Ji, Es = J?, Eg = J} and
the analogous E,, defined with the J’s, together with

o1
Hy = S(NiNy(Nz— Ng)+ NoNg(Ni = Vo))
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.1
Hy, = 5(N1N2(N3——N4)+N3N4(N1 —Ng)) s (447)
.1
H; = §(N2N4(N1 — N3) — NyN3(N2 — Ny)), (4.48)
and the analogous H, obtained from the H, once more replacing N; with (N; - 1),
provides us with the Cartan-Weyl realization of the two su(4)’s :
[H, En] : I‘(K)EH 3 [EK.’EK'] = Nnn’En—{-n’ 3
(B, Hj] = 0 ; [EuBE_J]=TW.H ; (4.49)

where H = |H;H,H3>, and both the vectors T(%) and the matrix N, are straight-
forwardly obtained from the definitions by explicit computation.
Similarly, suitably renaming the fifteen operators M and P as:

G, = M3 5 G2 My 5 Ga=3MY

Gy = M 5 Gs= M 5 Ge=iMi ;
Gr = M} ; Geg=3Mj ; Ge=3M] ;. (4.50)
Go = M} ; Gu=M ; Gu=3M; ;

Gz = P ; G = 1P} ; Gis= 3P

and defining moreover the five Cartan operators

5 = —\}—_2—(N1N2(1 Ny — Ny) = NsNy(1 = No— N3))

7, = %(levs,u — Na— Ni) = NaNy(1 - Ny — Ny)),

7, = %(NlNJ,(l _ Ny — Ny) = NoNa(1 = Ny — N3)) (4.51)
Ji 2 (2 = No)(Ny = )+ (Ws = Na)(Ne = M)

Js = (Np— Ng)(N2-Ns),
we obtain, also for su(6) the standard Cartan-Weyl form
[J,GN] = Q(K)GR ; [H,‘,Hj] =0 ;
(GoyGr] = MGy with 008400 =ql+=) 5 (452)
[Gr,Goy] = Q.3 ; G_.=GL ,
where J = |J1J2J3J4J5> together with the vectors QF and the matrix M completely

define the algebra structure. The vectors T'®) and QF as well as the matrix N
are explicitly given in appendix D.
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With these identifications, we can rewrite the Hamiltonian (4.37) in the form
- 1) (2)
Hp = Huqr) © Honryy ® Hons) @ Houe) (4.53)

where (see equation (4.41))

4
i A R—
=0
One finds:
X0 =¢;xW= }—1(51 tey); X = %V s XO® =p=xW, (4.55)
W 3 2
Hau(4) = k}_:l hyHy + ; (9iFi + ciEirz + h.c) , (4.56)
5 2 2
Haue) = D PeJe+Y, Y (9iGk +ciGrys +hec) (4.57)
k=1 i=1 k=2i-1
(4.58)
with
1 1
g = t,g2=0, h1:2(51+52+2V), h2=h3=1(51—€2),
. - 1 - 1
he = 2V2Rh (V—V/2),8=1,23; hy=—7=V; hs=-V ,
'\/_ ( - V/ ) K y 14 2\/5 o

su(4
setting V = 0.

Last step to be performed in order to find the spectrum of Hp is the (indepen-
dent) diagonalization of the three hamiltonians ’HE:‘)( 4 H(Si)( nt and H,y(s)- This is
done — as customary — by a generic inner automorphism in Ap (generalized Bogol-
ubov transformation), with the procedure shown in section(1.3.2), which is valid for

any Lie algebra.

whereas H(i) ) is obtained from HS}( 1) by replacing in it “hatted” operators and

Such a procedure, if one aims to obtaining only the eigenvalues of the hamilto-
nian, simplifies to either one of the following schemes:

1. if the fundamental faithful representation for each dynamical algebra is avail-
able, one simply writes the hamiltonian corresponding to su(n)(n = 4,4,6)
as a matrix of rank n, and the spectrum of H,,() is simply given by the
eigenvalues {w.|x = 1,...,n} of such matrix.
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9. since the complete set of Casimir operators {T¢({H;; E+x})| £ = 2,3,4} for
su(4) (and obvious analogous for su(4), with H; and E., replacing H; and
Eiy), or {T/({J:;Gsx})| £ = 2,...,6} for su(6), where Tz is multilinear of

order £ in the operators, is known [60] , one can write directly the secular
n—2

polynomial for Hgy(n) as w™ Z')’n—k w® = 0. Here the coefficients v, are
k=0
equal to I’y in which the operatorial arguments are replaced by the coefficient

they have in H,,(n) [32].

Of course the complete solution of the problem would still require the determination
in a self-consistent or variational way of the two mean-field parameter ¢; and c;.
It is worth pointing out here that the complete knowledge of the set of rotation
parameters {q~ba} straightforwardly leads to the evaluation of the expectation value
for any operator in the following way:

. 10 e} Tr{exp (adZ({ga})) (O)e "4}
T Tr{e-fH} Tr{e-AHa}

(4.59)

From (4.59), both the free-energy — to be minimized with respect to c; and cg if
the variational procedure is adopted — and the expectation value of the operators
entering the self-consistency equations can be directly evaluated.
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Conclusions and outlook

Motivated by the fact that the fermi-linearized conventional BCS-model is super-
symmetric and exhibits spontaneous supersymmetry (SUSY)- breaking at the super-
conductive critical temperature, we have investigated the possibility of identifying
high-T, phase transition with supersymmetry and its breaking.

It has been shown that the cluster fermi-linearized Hubbard model, as well as
of its supersymmetric generalizations, exhibit the existence of a superconductive-
magnetic phase whose appearance is associated with SUSY-breaking, and that the
lattices supporting the supersymmetric charges are similar to those of two dimen-
sional planes of Cu and O atoms in high-T¢ compounds.

We have presented the first results obtained from the analysis within the scheme
based on a Banach-Grassmana algebra, of the extended Hubbard model, which seems
to be more appropriate to describe high-T¢ superconductors than the Hubbard
model. The existence of a phase with non-zero pairing has been demonstrated
and a first numerical analysis of a special case (with vanishing pairing) is given.
A systematic investigation of the general case will be now pursuited, in order to
overcome the numerical problems arising from the high non-linearity of the involved
equations.

The use of the Clifford fermi-linearization is more recent and few results have
been obtained. However, the results obtained in the simplest case corresponding to
the Falicov-Kimball model seem very promising and more efforts will be now devoted
to numerical analysis. Work is in progress in order both to provide a complete phase
space at T = 0 and to discuss the T s 0 behavior of the physical quantities.

Another possible development, which have not been mentioned during this thesis
but seems to be very interesting, is the possibility to bridge Hubbard-like hamiltoni-
ans to phenomenological field theories, such as Chern-Simons theories, and therefore
possibly to anyons.

We have seen that the identification of the SGA allows one to easily construct
the generalized coherent states, which are parametrized by the points of a complex
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manifold M. For semisimple Lie (super)algebras this manifold is symplectic and
can be viewed as a classical phase space for the dynamical system in question.

Let us introduce in M an atlas of local coordinate system {z,2}. Since the
time evolution operator maps a coherent state into another one, all the dynamical
problem is reduced to the determination of a path in the coherent states manifold,
and the system is described by a state

| %(t) >= 0] 2(2) >
at any time t. The phase factor of | 1(t) > is given by

£ z(t)
aft) = — /0 h(z(r), %(r))dr + Im /0 %%dz ,

where h(z,2) =< z| H |z >, H denoting the hamiltonian operator, and K = K(z,z)
is the so-called Kahler potential of M, from which the metric of the manifold can
be obtained. The second term in the phase is geometrical and can be viewed as a
Berry’s phase [12].

The adiabatic (Born-Oppenheimer) approximation is a possible treatment for
systems described in terms of two typical sets of degrees of freedom which couple
each other. One assumes that the separation of degrees of freedom could be realized
from the onset and gets the effective hamiltonian (action) for a slow degree of freedom
by "integrating out” fast variables at the first stage.

As to the adiabatic approximation, it has been found by Berry that the geo-
metrical phase universally appears in the wave function in addition to the usual
dynamical phase when the system hamiltonian changes adiabatically. This specific
phase has been known to have profound effects on typical quantum phenomena cov-
ering a wide range of quantum systems. There has appeared much work related to
this subject in the last years [30].

Problems such as the low-lying collective states in nuclei, where the adiabatic
assumption must be removed, has stimulated the construction of frameworks which
enable to derive Berry’s phase beyond the adiabatic approximation [56, 45]. Ome
possible way is to adopt the time-dependent variational principle (TDVP) [48], using
the generalized coherent states as trial functions.

In [28], the analysis of dynamical effects on the geometric phase for the Two-level
model has been carried out. Work is in progress along these lines with the Hubbard
model [23].

The same considerations can be repeated for supercoherent states on super-
manifolds. If H = {Q, QT} is a supersymmetric hamiltonian, the effective action
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depending in this case on the local supercoherent states contains terms of the form
J Il<i;> dwijsin(p;;) where p;; is the phase difference between ¥; and 9;. Glob-
ally, such terms give a nonvanishing contribution to the action only for closed loops
in A, representing namely linking numbers: written in differential form over the
supermanifold, the effective action derived from these hamiltonians may contain
topological terms like Chern-Simons action.
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Appendix A

Lie groups and algebras

A.1 Elements of group theory

An abstract set G = {gy, go,...} is called a group if
1. V91,92 € G, an associative product g;g, is defined !
2. dJe€ Gsuchthateg=ge=g, Vg G
3. Vg€ G, g7 such that gg~! = g~1g = e.

If the product is also commutative, G is abelian. A group with a finite number of
elements is said to be finite.

One often encounters groups which, apart from the algebraic operations, are also
endowed with a natural topology. A group is called a topological group if it has a
topology in which the elements g9, and ¢g~! are continous functions of (91, 92) and
g, Tespectively.

An important subclass of topological groups are the so-called parametric groups,
whose elements can be parametrized (at least locally) by some systems of real pa-
rameters, i.e

g=9g(t)=g(m,...,m) (A1)
in such a way that the function £(t;,t,) defined by
9195 = g(t1)g(ts") = g(£(t1,t2)) (A.2)

is a continous vector valued function of t; and ts.

! Obviously, closure of the product is assumed, i.e.gi g2 € G

91
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Now, we can introduce the definition of Lie group. A group G is said to be
a Lie group, if it is a parametric and the function f defining the product law is
real-analytic.? Therefore, we can equivalently say that a Lie group is an analytic
manifold, on which the group operation is analytic.

A.2 Lie algebras

Since a Lie group is an analytic manifold, it makes sense to consider the tangent
space to that manifold, in particular, at the identity of the group. The union of all
tangents to the manifold at e results in a linear space X of dimension n,3 called the
Lie algebra of G

In general, a Lie algebra G is defined as a vector space over a field F on which a
product [, ], called the Lie bracket, satisfies the following properties:

1. [X;, X;] = —[X;,X:] (anticommutativity)
2. [AXi+ pX;, Xi] = A Xy, Xi] + p[Xi, Xi]  (linearity)
3. [X,[2 i Xkl + [ Xk, (X, XJ]] + [XJ', Xk, Xil] (Jacobi identity)

I F = R,C, we say that G is a real, respectively, complex Lie algebra. If G is the
tangent space X, the Lie bracket is the usual commutator, which uniquely defines
‘multiplication in a neighborood of the corresponding group G. Therefore a Lie group
G is assigned to every Lie algebra G.

If {X;} is a basis of G, then we have

(Xi, X;]= c{;j Xk (A.3)

The set of coefficients cfj are called the structure constants. From the properties of
the Lie bracket, they satisfy

i Cmk + ClkCmi + cﬂ-c’,;lj =0 (A.4)
cfj = —c?i. (A.5)

Let us list below some algebraic fundamentals to be commonly used.

o G'is a subalgebra, if G’ C G and G’ itself is a Lie algebra.

? A function is said to be real-analytic if its expressible as a local power series in the neighborood
of each point in its domain of definition
n is the number of parameters in the group G
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A subalgebra G’ is invariant or ideal if [G',G] C G’

The center of G is the largest ideal C such that [G,C] = 0. It is unique.

G is said to be abelian, if [X,Y] = 0 for each X,Y € G

G is said to be simple, if it has no invariant subalgebras besides G itself and

{0}.

G is said to be semisimpleif it does not contain an invariant abelian subalgebra.

A representation is a mapping D of the Lie algebra elements to a set of matrices
which preserves the Lie bracket, i.e. if [X,Y] = Z then [D(X),D(Y)] = D(Z). An
important representation is the so-called adjoint representation ady defined by

ady :G — G suchthat Y — [X,Y]. (A.6)

where G itself is the vector space of the representation.

Because of the direct relations between Lie algebras and Lie groups, these defi-
nitions can be straightforwardly transferred, correspondingly.

Let {G;|i=1,...,5} be a set of Lie algebras with bases {XJ(i) |7=1,...,m},
then the direct sum of these Lie algebras is that linear space which is spanned by
the Xj(-i) as the composition; thus

G=0G:1®...8G, with G;nG;={0} for 4,5=1,...,8 15 J. (A.T)

If a Lie algebra G of a Lie group G is a direct sum of several algebras, then G can
be represented locally as the outer direct product

G=G1®...0 G,;. (A.8)

An important question arising in all applications is whether there are certain oper-
ators which commute with all the generators of a Lie algebra. In fact, this is the
case, and Racah ([65]) has shown that for every semisimple Lie algebra of rank r,
there exists just 7 independent such operators, called Casimir invariants, the eigen-
values of which completely specify the irreducible representations of semisimple Lie
algebras.

We summarize the principal classical algebras in the following table:
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Algebra | Constraint Dimension | Cartan *
sl(n) TrX=0 n? -1 A
Bn— n Odd
so(n) X4+ X=0,TrX=0 1(1'{—11 { S
D% n even
sp(n) ( o azt ), ab=oay, o =a3 | n(2n+ 1) | C,
C!3 —‘al




Appendix B

Superalgebras and
Supersymmetry

B.1 Grassmann algebras

Let Ay = {¢%, a=1,..., N} be a set of generators for an algebra, which anticom-
mute:

g = —gh¢ , (€)"=0 Va,b . (B-1)

The algebra Ay is called a Grassmann algebra. The elements

I,E%, £ 8%, .., 8.6V, (B.2)

where the indices in each product are all different, form a basis for Ay with 2N ele-
ments. Under addition as well as multiplication by a complex number, the elements

of Ay form a linear vector space of dimension 2N,

B.2 Lie superalgebras

A Lie superalgebra ! is a Z,-graded vector space A over C, which is the set union
of of two vector subspaces Ay and A, : A= AU A2 We call Bose the even,
or grade 0 elements and Fermi the odd, or grade 1 elements. A is endowed with a
binary operation, called the super-Lie bracket, obeying the following properties:

'The term graded Lie algebra is often encountered, but since ordinary Lie algebras can also be
graded, confusion can arise

2A0 nA = {0}
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e bilinear : [4,B] = —(-1)?°[B, 4] € Aarp
o super-Jacobi : (—1)%[4,[B,C]] + (-1)¥[B,[C, A]] + (-1)®[C,[4,B]] = 0

where we denoted a, b, c,...the grades of the elements 4, B,C: if A € G, , a € Zs,
then a = a.

A Lie superalgebra A is simple if it has no nontrivial ideals. Simple finite-
dimensional superalgebras over C are now fully classified [42]. There are eight in-
finite families si(m|n), osp(m|n), P(n),Q(n),W(n),S(n+2),8(n+2),H(n +3), a
continuum D(2|1; @) of 17-dimensional exceptional superalgebras, and one excep-
tional superalgebra each in dimensions 31(G(3)) and 40(F(4)).

The m generators {B; , i = 1,...,m} € Ay define a Lie algebra B while the
n generators {F, , a = 1,.. .,n} € A; are tensor operators corresponding to an
n-dimensional representation F of B.

The commutation (anticommutation) relations are given by

[ Bm7 Bn ] = blr?nn. BP ? (B'3)
[F,, Bn] = 2, Fs , (B.4)
{ Fa, FB} = or:’tﬁ Bm ) (B.5)

where {62, c2 w5} are the structure constants of A.

If the representation F = {F,} is completely reducible, one gets the classical
superalgebras, otherwise one gets the Cartan superalgebras defined using fermi-dirac
creation and annihilation operators.

In general, the bose sector B will not be simple but will contain a paiece that
shuffles only the fermions, a piece that shuffles only the bosons and a piece that
shuffles the bosons among themselves and the fermions among themselves. For
example

gi(mln)o = gl(m)+gl(n) , (B.6)
sli(m|n)y = sl(m)+sl(n)+u(l) ,m#n , (B.7)

which have dimensions m? 4+ n?, m? + n? — 1 respectively. The dimensions of the
corresponding Fermi parts are then 2mn.

B.3 Supersymmetry

The notion of Supersymmetry (SS) was introduced by Wess and Zumino [76] in 1973
to provide the possibility to eliminate the quadratic divergences in one- and higher-
loop orders associated with scalar fields masses. In that case, the SS has the effect
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to couple fermions and bosons and the divergences have two sources with opposite
sign coming from scalars and fermion loops so that they can be eliminated. In a
more general setting, following Wytten [78], we have the following scheme.

Let A be a superalgebra. Then a quantum dynamical system defined by the
hamiltonian 7 € B(A) is said to be supersymmetric if it exists Q € F(A), such that

n=1{0,01} , ¢’=0f" =0 . (B.5)

Q is called the conserved, supersymmetric charge ([H, Q] = 0) and excited states
are fermi-bose degenerate, since Q, Q' project from one to the other. Therefore Q
changes the statistics of the states, and since spin is related to the behavior under
spatial rotation, SS is in some sense a space-time symmetry.

I¥fQlQ >= QTI 2 >= 0, | O > being the vacuum, the dynamical system
generated by @ is supersymmetric, otherwise the supersymmetry is said to be spon-~
taneously broken.

From (B.8), for any state |3 >, given that @ is hermitean, we have

<y lH|[¢y>=[Q|4>|*>0 (B.9)

and energy is semi-positive definite. Thus, any zero energy state is guaranteed to be a
possible ground state. On the other hand, a state is supersymmetric if it annihilated
by @, and equation (B.9) implies that any state of zero energy is supersymmetric
and viceversa. Therefore, to decide whether a system is supersymmetric, or breaks
supersimmetry spontaneously, we just have to find out whether it has zero energy
states.
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Appendix C

Coherent states

Coherent states (CS) have been first introduced in quantum optics by Glauber [33]
as the states of minimum uncertainty for the harmonic oscillator. Glauber’s CS pre-
servetheir shape during time evolution. After the work of Glauber several attempts
have been made to generalize the concept of CS to system with a larger dynamical
group [9].

We briefly review the fundamental definitions and properties of the theory of
generalized coherent states(GCS) [61],(66].

Let G be the dynamical algebra of our model, G an element of the class of the
corresponding Lie groups ! and T a unitary representation (UIR) of G on a Hilbert
space V.

We now assume there exists a fixed cyclic vector |¢g >€ V and call H the set of
elements h € G such that

T(h)|go >= Mgy > , a: H-R . (C.1)

H C G will be called the isotropy subgroup of |¢py > and e'® is a unitary character
of H. Let M = G/H be the left coset of G with respect to H. We can define the
coherent states of G by means of a mapping from M to V, which associates to each
z € M, defined by the composition g = z - h, with g € G and h € H, the state (up
to a phase factor)

lz >= T'(z)|oy > - (C.2)

Thus the coherent states are represented by the point of a manifold M, on which &
acts transitively by means of the left translation o : G x M — M defined by

goz=n(g-7"(z)) , VgeG,zeM , (C.3)

'To a given group correspond a unique Lie algebra. However, the converse is not true.
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7 being the natural projection of G on M. Therefore G is a fibre bundle over M as
base space relative to = and the fibre of the bundle is H.

The transitivity of M with respect to G reflects an important property of the
system of states just defined: the action of the dynamical group G maps coeherent
states into other coherent states. Another important properties are the resolution of
the identity and the (over)completeness of the system, of fundamental importance in
the coherent states representation of the Feynman path integral. Let du(z), Ve € M
be a G-invariant measure on the manifold M, then an arbitrary state |¢p >€ V can
in fact be expanded in terms of coherent states

[ >= %/dp(z:)lz S<z|v> (C.4)
=¢(x)

where the function (=) is a solution of the integral equation

We) = [duw) <z ly> #) - (c5)

For a real semisimple Lie algebra, the algebra of the isotropy subgroup H is just the
Cartan subalgebra if the representation is non degenerate, but can be larger if the
representation is degenerate.

For Lie superalgebras, coherent states may be defined as for usual Lie algebras
[59]. The left coset space M will be a supermanifold (that is a manifold with
even and odd coordinates) and therefore the integrations in (C.4) and (C.5) must
be intended as an ordinary integration for what concerns even variables, and as a
Berezin integration for what concerns odd variables.



Appendix D

Technical remarks on su(4) and

su(6)

We give the explicit coefficients {I'(*), ("), '} entering in the Cartan-Weyl form
of the algebras su(4) and su(6) defined in (4.49) and (4.52). M is too big, but the
commutators can be easily deduced from the considerations about su(6) at the end

of the appendix.
From the following matrix A defined as

we can derive the vector T'(*) writing I‘(k) = A, while from the matrix

:

0 0 0 1 0 1
o6 0 0 -1 -1
B - 60 0 -1 1 0 ’
1 0 -1 0 0 1
0 -1 0 0 -1
1 -1 0 -1 -1 0

(D.1)

(D.2)

we deduce the matrix N as N;j = B, ;y;. The other coefficients of A are straight-

forwardly obtained using the properties AV, = ~N3, = ~N_o 5 = N_g _..
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In an analogous way, for the Lie algebra su(6), we define the matrix A

0 V2 V2 V3 -1
0 V2 V2 V3 1
0 V2 V2 V3 -1
0 V2 -v2 -3 1
V2 V2 o 0 2
V2 V2 0 0 -2
1 V2 0 V2 V31
A:§ V20 V2 -3 -1 |. (D.3)
V2 0 —v/2 /3 1
V20 —v2 -3 -1
V220 0 2
V2 V20 0 -2
0 . 2v/2 0 0 0
0 0 2v2 0 0
272 0 0 0 0

The vector 2(F) is then given by Qz(k) = Agi.

Let us conclude giving a possible representation for the algebra su(6). Even if
the commutation relations of the operators {JM? , 7P? } given in (4.44),(4.45),
(4.46) are not transparent, the su(6) structure is readily recognized defining a set of
six fictitious fermions {c4,ca} and the associated 15 bilinears F2, which automati-
cally satisfy the su(6) algebra

[F8, Fi] = 63, FS — 6asF2 . (D.4)
The identification between the two set of operators is then:

Fl=-Py F!=M; F3=—-M_y,

Fl=M, F!=-M, F3=-P,

Fl=M; F!=DM_ F!=-P_ (D.5)
F51 = M_lg Fg = AI__Q F(;l - "’-Z\’[—ll

Fl=M_, F}=M; F}=DM;

Obviously, this is only a faithful representation and only operations (like adjoint
actions) involving commutators may be done.
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