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Introduction

This thesis deals with some problems in Calculus of Variations concerning integral
functionals with linear growth. The “natural” function space where these problems
admit a solution is the space BV of the functions of bounded variation.

A classical problem of the Calculus of Variations is to find, among all functions
with prescribed boundary condition, those which minimize a given functional. In

a general framework, one considers integral functionals of the form
(1) F(’U,) = f(m,u(m),Du(a:))dm
Q

where u is a real-valued (or vector-valued) function defined on a bounded open
subset 2 of IR" and the integrand f satisfies some appropriate conditions.

The classical approach looks for necessary or sufficient conditions that the
solution of the “minimum problem” must satisfy (e.g. Euler equation, Welerstrass
condition).

At the beginning of the 20th Century, in order to prove the existence of min-
imizers, the so-called “Direct Methods” are introduced and developed by Tonelli
and other mathematicians. They consist in proving the lower semicontinuity and
the coerciveness of the functional with respect to a suitable topology. This latter
requirement guarantees the compactness of the minimizing sequences, i.e. it allows
to extract a convergent subsequence; then, thanks to the lower semicontinuity, the
limit of this subsequence achieves the minimum value.

The compactness of the minimizing sequence is usually ensured if one con-
siders a weak topology in a Banach reflexive space and assumes an estimate from
below of the functional. In general, one considers functionals for the type (1) sat-

isfying the condition

(2) f(:z:,.s,p) > a(m) + b|z|"

where a is an integrable function and b is a positive constant, and one assumes
suitable “qualitative” properties of the integrand f (Carathéodory condition and
convexity or quasi-convexity with respect to the last variable), which imply the

lower semicontinuity. Under these hypotheses, the Direct Methods work if one



studies the problem in the Sobolev space W1P(Q) with the same exponent p in-
volved in the estimate (2). Hence the existence of minima in this space is ensured.
Actually the Sobolev spaces are reflexive for 1 < p < 4oo. When p = 1, (e.g

in the classical non-parametric Plateau problem of the minimal surfaces), since
W(Q) is not reflexive, the existence of minimizer of a minimum problem for
an integral functional having linear growth cannot be guaranteed in this Sobolev
space. Actually, this class of problems admits a solution in a larger space of inte-
grable functions, which is also not reflexive, but where a compactness result holds:
the space of functions of bounded variation.

The functions of bounded variation of one variable, first employed at the
beginning of this century by Vitali and Lebesgue in the development of measure
and integration theory, have been utilized by Tonelli and Cesari in several fields
such as area theory and Calculus of Variations. This notion has been generalized
to the case of several variables in the fifties by Caccioppoli and De Giorgi and
had a considerable development during the past 30 years through contributions of
many authors.

In the fifties, in order to solve the classical Plateau problem (i.e. to find
minimal surfaces among those bounded by a given curve), Caccioppoli and De
Giorgi took again into account the notion of function of bounded variation and
the related notion of set of finite perimeter. The definition proposed (for functions
depending on several variables) can be seen in the context of the distribution
theory. In this environment a function of bounded variation (or BV function) is
an integrable function whose distributional derivatives are measures of bounded

total variation.

An important aspect of the theory of BV functions is the analysis of the
measurable sets in IR" whose characteristic functions belong to the space BV (the
so-called sets of finite perimeter or “Caccioppoli sets”). This class of sets (which
includes the class of the domains with Lipschitz boundary) has the important
property that the Gauss-Green Theorem holds. De Giorgi introduced the notion
of reduced boundary of a Caccioppoli set and of generalized exterior normal; he
established the rectifiability of this boundary and the existence of this normal
in “almost” every point of the boundary and he also proved the isoperimetric
inequality for sets of finite perimeter. In this class the Plateau problem admits

a solution which is almost everywhere regular, except on a possible singular set,
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having very lower Hausdorff dimension.

Since the BV functions can be regarded as integral currents in IR", De Giorgi’s
theory can be examined in the context of geometric measure theory. Such theory
had an important development in the sixties by many contributors, in particular
Federer and Fleming. The normal and the boundary introduced by De Giorgi are

equivalent to the normal and the boundary of the geometric measure theory.

Subsequently, pointwise behavior of BV functions has been studied by
Vol’pert and other authors. They applied the BV functions to the theory of hy-

perbolic non-linear equations.

Recent developments of the BV functions are due to De Giorgi and Ambrosio
who considered a class of “special” BV functions, where some variational prob-
lems involving discontinuities, such as the image segmentation in Computer Vision

theory, the phase transitions and the liquid crystals, find a solution.

Since on BV () the usual distributional gradient is not a function, but only
a measure, the integral functionals of the type (1) are not well defined. They are
well defined on the space of regular functions and need a suitable extension to a
wider space. Then for this extended functional one uses the Direct Methods and
finds a minimizer on BV (). As mentioned above, these methods work on the
space BV, because a Rellich’s compactness theorem holds. Whereas, in general,
the coerciveness easily follows from proper “quantitative” hypotheses (growth esti-
mates), the lower semicontinuity involves “qualitative” properties of the integrand
function, such as the lower semicontinuity and the convexity with respect to some
variables. One tries to prove the lower semicontinuity requiring as little as possible
of the integrand function. In order to treat the situation, where the functional is
not lower semicontinuous, the Relaxation Methods have been introduced. They
consist in defining a new functional as the lower semicontinuous envelope. This
relaxed functional has the interesting property that its minimizers are the limit
points of a minimizing sequence of the given functional and its minimum value
equals the “infimum” of the functional. Actually the Relaxation Methods allow to
extend to a larger space, preserving the lower semicontinuity, a functional which is
well defined only on a subspace. In some sense the largest space where a variational

problem can be “naturally” studied is the space where the relaxed functional is



finite. For instance, by relaxation of the functional
Jo |Du|Pdz + Jo lulPde  if uw e CH(Q)
+oo otherwise,

it is possible to construct the space W' ?(Q2),if 1 < p < +o00, and BV (Q),if p = 1.
This argument clearly justifies the introduction of the space BV in order to study
problems with linear growth.

However a shortcoming of the relaxation approach is that the definition (which
implies directly the lower semicontinuity) is given in an abstract way. Then it is
interesting to check whether this relaxed functional is an integral functional, i.e.
it admits an integral representation formula with a suitable integrand, and also
to check the cases where this integrand can be exactly characterized. It is worth
noticing that if the functional is coercive, then the relaxed functional satisfies also

the coerciveness condition; hence it admits a minimum point.

The purpose of this thesis is to collect several results concerning the lower
semicontinuity and the relaxation of integral functionals with linear growth.

In chapter 1 we recall some preliminary notions which will be useful in the
next chapters; in particular we establish the notation, we list some definitions and
we recall some general properties, which we often use in this thesis.

In chapter 2, we expose a semicontinuity theorem for the following extension
to the space BV(f) of the functional (1)

(8)  Flu)= /Q (@, Danyds + [ [f :(”foc (t%) dt} Dol

where Du = D,u dz+ Dgyu is the decomposition of the measure Du in its absolutely
continuous and singular part with respect to the Lebesgue measure, u_(z) and
14 (z) denote the approximate limits at z, and f° indicate the recession function
of f. ‘

For f dependent only on Du, the functional (3) has been introduced by Goft-
man and Serrin (see [59]), and for functional dependent also on z by Giaquinta,
Modica and Soucek (see [57]). In the general case the functional has been pro-
posed by Dal Maso in [33], considering the mean value in the singular part of the



5 INTRODUCTION

functional. Dal Maso proved that F is a lower semicontinuous extension of F to
BV () under suitable hypotheses on the integrand f(z,s,p); in particular, the
lower semicontinuity is assumed with respect to the variable s.

Chapter 2 of this thesis is devoted to establish that the lower semicontinuity of
F holds without any semicontinuity assumption on s. An analogous result has been
proved in [39] where f does not depend on the variable z. Similarly, in [41] and [7],
the same hypothesis has been dropped for functionals of the type (1) on whi(Q)
for integrand f(s,p) and f(z,s,p) respectively. The idea of the proof introduced
in [41] consists of two steps: first, one approximates from below the functional E,
having integrand f(z,s,p) (convex in p), with affine functionals whose integrand
is of the type a(z,s) + (b(z,s), p), where a, b are Carathéodory functions; then the
proof is reduced to establish the lower semicontinuity of these linear functionals.
This is obtained, in the second step of the proof, by using the chain rule for BV
functions. In order to apply this idea to the functional I*:, there are some difficulties
to treat the singular part of the functional. To overcome this complication, we use
a result of Miranda (see [69]) which allows to write again F as an integral on
2 x IR with respect to a suitable measure on © x IR. Moreover we need a sharper
approximation of this functional and the chain rule for BV functions proven by
Ambrosio and Dal Maso in [9].

In chapter 3 we give an integral representation result concerning the lower
semicontinuous envelope of an integral functional, defined on vector functions and
depending on the higher order derivatives. More precisely, we consider a functional
of the type

(4) P = [ #(VFu)d,

where f is a function with linear growth, £ € IN, v € W51(Q;IR™) and V*u is
the k-th derivative of u. We study the lower semicontinuous envelope F of F on
the space BV of the integrable functions, whose k-th derivative in the sense of
distributions is a measure with bounded total variation. We state that F can be

represented in the following way

(5) Py = [ o(vtuds+ [ o (22 ) Dkl

where g is the quasi-convex envelope of f, g™ is the recession function of g and



DFy = Vky dz + D%u is the decomposition of the measure D¥u in its absolutely
continuous and singular parts with respect to the Lebesgue measure.

This result generalizes to the case of higher order derivatives a theorem of
Ambrosio and Dal Maso (see [10]), which deals with the case k = 1. The notion we
use of quasi-convexity (for functions depending on the k-th derivative) has been
given by Meyers and it extends the usual definition of Morrey (which concerns the
case k = 1). The difference between the notions of quasi-convexity in the sense of
Meyers and of Morrey implies that our result cannot be obtained directly from the
case k = 1. However we follow the outline of the proof in [10]. In order to obtain
the result, first we assume a coerciveness condition and we adapt to the case & > 1
a blow up technique. Moreover we use a rank-one property for the gradient of
BV functions, proven by Alberti and true also for BV* functions. Finally the
coerciveness hypothesis can be dropped using a perturbation technique.

In chapter 4 we study the lower semicontinuous envelope of degenerate
quadratic integral functionals on the space BV(I;IR"™) with I a real interval. For
these functionals, which are still quadratic functionals, we give an integral repre-
sentation formula involving a new “relaxed” matrix and some linear constraints
on the derivative measure.

We consider a functional F : L*(I;IR™) — [0, +oo] of the type

a;j(t)uu; dt if w e Whi I;IR"
pray = | L 2 ety (R)

1,j=1

(6)

+o0 otherwise

where A(t) = (a;;(¢)) is a symmetric matrix of Borel functions satisfying the only

assumption

k
(7) 0< Z ai;(t)ziz;.
i,j=1

We remark that, if some coerciveness hypothesis is assumed, then the functional
F is lower semicontinuous in a (possibly “weighted”) Sobolev space. Under the
condition (7) F' may not be lower semicontinuous; hence we consider the semicon-
tinuous envelope F in the space BV (I;IR") and we find a characterization in an

integral form. The main result of chapter 4 is an integral repr‘esentation theorem
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of F; we state that

Z i (8)(da)i(t)(da);(1)dt i () € E(t) |ig|-ace. on

I’j:]'

(8) F(u)= -/I
+oo elsewhere in BV (I;IR"),

where A(t) = (@ij(1)) is a new matrix of Borel functions, E(t) is a linear subspace
of R", and © = w,dt + 1, is the decomposition of the Radon measure % in its
absolutely continuous part (1,) and singular part (1,) with respect to the Lebesgue
measure.

In the same chapter, we consider a sequence of functionals of this type and we
prove a stability property with respect to a suitable variational convergence, known
as ['-convergence. In fact we prove that the limit functional admits a representation
similar to (8), but involving a new Radon measure.

In the proof of these theorems we use some representation results proven by
Bouchitté for convex functionals on the space of measures. Eventually we discuss
some examples in order to describe the matrix A(t) and the linear subspace E(t)
of IR" which appear in the formula (8).

In chapter 5 we give an uniqueness result concerning the minimizers of the
functional proposed by Mumford and Shah in order to study the problem of the
image segmentation in Computer Vision Theory (see [76] and [77]). This problem
admits a solution in the class of the functions of bounded variation, in particular in
a subclass of “special” BV function, called SBV. This notion has been introduced
in the last years by De Giorgi and Ambrosio. The functional proposed, in order to

give a mathematical description of the segmentation problem, is the following
2 2 n—1
(9) Fi(u) = /Q |Vu|“dz +‘/Q lu — g|*dz +vH"*(S,)

where 5, is the jumping set of the function u, H" ™! is the n—1 Hausdorff measure
on R", g is a given function, called “grey-level”, and v is a real parameter.

For the corresponding minimum problem, Ambrosio proved in [8] an existence
result on the space SBV. Moreover some regularity results about the singular set
has been established. In general, for this problem the uniqueness of the minimizers
does not hold. Very simple examples show that the problem may admit more than
one solution.



In chapter 5 we concern the model case in dimension 1 of the functional (9).
We state that the uniqueness is a generic property in the sense that for “almost all”
the grey-level functions g and the parameters v of the problem, the minimum point
is unique. More precisely, we prove two theorems. First of all, for every v eRT
the uniqueness of the problem is a generic property of g € L?; this means that for
a Gs-subset of L? the uniqueness property holds. Secondly, for a generic g € L2,
the uniqueness is guaranteed if v belongs to IR™ \ N9 and N is a countable set
depending on g. The proof of these results is constructive; in order to find the
Gs-set, we study in detail the properties of the solution, and in particular its form

and its discontinuities, when g is piecewise constant.

The content of this thesis, which is published in the papers [4], [5], [19] and [38],
is the result of a research activity carried on by the Author during her graduate
studies at the International School for Advanced Studies in Trieste, under the

guidance of Prof. Gianni Dal Maso and in collaboration with Dr. Micol Amar and
Prof. Andrea Braides.




Chapter 1

Notations and Preliminaries

1.1 Notations and definitions
First of all, we list the basic notations frequently used in this thesis.

Let n > 1 be an integer and let 2 be an open bounded set in IR". We denote
by
L(IR") the class of Lebesgue-measurable sets in IR";

L£*(D) the Lebesgue measure of a set D € L(IR") (sometime we use also the
notation meas(D));

B(Q) the class of Borel subsets of {1;
H"}(B) the Hausdorff (n — 1)-dimensional measure of any Borel set B C IR";
14 the characteristic function of any set 4 C IR";
supp ¢ the support of any function ¢ € Cy(£2);
(z,y) the scalar product of z and y in IR";
|z| the norm of z € IR"™;
B,(z) the open ball of radius p at z;
t* the positive part of ¢ € IR, i.e. max{0,t};

f ® g the tensorial product of two functions f : A — IR and g : B — IR,

defined by (f®g)(z,y) = f(z)g(y) for all (z,y) € Ax B (A, B contained
in IR™).

Now we recall some preliminary definitions. Let f : IR" — [0,+o00] be a
function. We denote by f* the conjugate of f and by f** the conjugate of f".
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Moreover we denote by fVg the infimal convolution of the two functions f and g,

which is defined by

(fVg)(z) = lexlg [f(z—y)+g(y)l

y

If f is convex, we define also the so-called recession function f : IR" — [0, +o0]

by

we remark that f is a Borel function, which is convex and positively homogeneous

of degree 1. It is easy to see that

F>(z) = sup (z,2"),
Z* 6_4*
where A* is the effective domain of the conjugate function f* of f; i.e., the set of
the z* € IR" such that f*(z*) < 4+o0.

1.2 Radon measures

A Borel measure p on IR" is called a “Radon measure”, if every subset of IR"
is contained within a Borel set of equal p measure, and p(K) < +oo for every
compact set K C IR".

Let p : B(f2) — IR" a vector valued Radon measure on 2. We adopt the

notation |u| for its total variation, which is defined by

(L.1) |pl(4) = {supz w(4:) | Ai Ai € B(Q), 4 mutually disjoint}
1€IN i€IN .

for every A € B(f)). We say that p is a measure with finite (or bounded) total
variation if |p|(f2) < +o0.

Let A : B(f2) — [0, +oco[ and g : B(Q2) — IR™ be measures on §} with bounded
total variation; we say that A is absolutely continuous with respect to u, and we
denote by A << p, if u(E) = 0 implies that A(F) = 0 for every Borel set E

contained in 2.
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If A << u, then by the Radon-Nikodym Theorem, there exists a den51ty 2
such that A(E) = [, —d,u (we denote it also with i’} or A*). This functlon is
usually called the Radon Nikodym derivative of u Wlth respect to A\. We remark
that, since p << |p|, always there exists the Radon-Nikodym derivative l—ﬁ—,

We denote by M(Q;IR™) the set of the IR™-valued Radon measures on
with bounded total variation, and by M™ () the space of the (scalar) positive

Radon measures on 2 with bounded total variation.

1.3 Sets of finite perimeter

Let E a Borel subset of IR". We define the perimeter of E in by

P(E,Q) = sup {/ divgdz : g € Cy(Q;IR"), |g| < 1} .
E

If P(E,§)) < +o0, then E is said a set of finite perimeter. If P(E,QY) < 400, then
E is called a set of locally finite perimeter in Q or “Caccioppoli set”.
We remark that if F is a set of finite perimeter, then there exists a vector

valued Radon measure p in B(2) with finite total variation such that

/divgd;z: = —~/ gdu
JFE Q

for every g € C3(;IR"), i.e. p = D1g, and

P(E,Q) = |D1g|(Q).

1.4 Functions of bounded variation

The space BV (Q;IR™) of the functions of bounded wariation is the space of all
functions u € Lj, (©2;IR™) whose distributional gradient Du belongs to M(Q;IR™)
(if m = 1 we use also the notations BV (f), as well as C.(Q), Co(2) and L1(Q)).
Moreover the space of all functions which belong to BV (Q';IR™) for every open
set ) CC £, is denoted by BV(f)';IR™).
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The total variation |Du| of the measure Du on a Borel set B will be denoted
by [5[Dul. It is well known that for every u € BV () for every open set 4 C Q

the integral of the measure [Du| over 4 is given by

/ |Du| = sup {/ udivgdz : g € C5°(4;IR"), |g| < 1} .
4 2

€

Moreover a function v € L'(Q) belongs to BV(€) if and only if the quantity
Jq |Du| defined by (1.1) is finite. The integral of a Borel function f with respect to
the measure |p| will be denoted by [ fIDu|. Moreover a Borel set E contained in
IR" is a set of (locally) finite perimeter in § if and only if 1z € BV (Q) (BVioe(Q)
respectively) and in this case P(F,Q) = Jo |D1E|.

Fixed a measure A € M¥(Q), for every function u € BV (£2;IR™) we consider
the decomposition Du = Di‘ud)\—!—Di‘u of the measure Du in its absolutely contin-
uous part and singular part with respect to the measure A\. When )\ is the Lebesgue
measure we decompose Du as Du = D,udx + Dsu; moreover if u € WL(Q; R™),

with abuse of notations, we use also Du in order to note the Radon-Nikodym
derivative Dyu. On BV (€;IR™) we shall consider the norm

lullpr = fulln: + / Dul.

It can be seen that |Du|(C) = 0 for every C € B(Q) with H"~1(C) = 0.
Given a Borel function u : @ — IR, we define the approximate upper and
lower limits wy,u_ : Q — [~oc0, +o0] as

. . meas(B,(z)N{ycQ: u(y) > t}
uy(z) = inf {t € [—o0, +oc] ,,1_1151 meas(B,(z))

):0}

and

u_(z) = inf {t € [oo, +oo] : pl_i%l_*_ Inea,S(Bp(iisa;{(yBi(z)z)u(y) < t}) _ O}

and we observe that v, and w_ are Borel functions.
Let w € BV(Q); we say that z € Qis a jump point of u, ifu_(z) <uy(z). The
set of the jump points of u has Lebesgue measure zero. Moreover, it can be almost
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covered with C! hypersurfaces; in fact, it is countable (H"™!,n — 1)-rectifiable in
the sense of Federer, i.e. it can be written as

U KhUN,

helN

where (K}) is a sequence of compact sets, each contained in a C! hypersurface
and H""}(N) = 0.
For the general properties of the functions of bounded variation we refer to

[50], [58], [88], [89] and [92].

1.5 Relaxation

We recall the notion of relazed functional.

Let (X,7) be a topological space and F : X — IR; the relaxed functional F
of F' (in the 7-topology) is the lower 7-semicontinuous envelope of F} i.e.,

(1.2) F(u)= sup inf F(v),
UeN (u) VEL
where M (u) is the set of all open neighbourhoods of u in the 7-topology.

It is easy to check that F is the greatest lower semicontinuous functional
majorized by F. Moreover, if X satisfies the first axiom of countability, then F
may be characterized in terms of sequences by the following conditions:

a) for every sequence (z5) converging to  in X we have

F(m) < liminf F(z3);

h—oc

b) there exists a sequence (z5) converging to = in X such that

F(z) > limsup F(zy).

h— o
An important property of F is the equality
in F(z) = inf F(z).
We remark also that the minimum point of F can be characterized as the limit

point of the minimizing sequence for F'.

For a general survey on the relaxation theory we refer to [20] and [32].



Chapter 2

A Lower Semicontinuity Result

2.1 Introduction

The aim of this chapter is to show some lower semicontinuity results for an exten-
sion to the space BV (Q) of an integral functional of the type

(1.1) e /Q f(z,u, Du)da w e Wh(Q).

In many papers the lower semicontinuity on W11(Q) for this functional has been
studied, assuming some lower semicontinuity and convexity hypothesis on the in-
tegrand f (see, for instance, [27], [61], [78] and [83]).

For f independent of z, a lower semicontinuity result with respect to the
convergence L'(Q) is proved in [41]; this result differs from the previous ones
since a weaker assumption is made on the regularity of the integrand f(s,p) with
respect to the variable s, i.e. measurability instead of semicontinuity. The technique
employed consists in approximating the given functional with simpler ones (whose
integrands are affine functions) and in proving the lower semicontinuity of the
approximating functionals. Using a suitable approximation technique, in [7] this
theorem is generalized to the case of a function f depending on z too.

However, since W'(Q) is not reflexive, many integral functionals with linear
growth do not admit any minimizer on W11(Q); hence one considers the wider
space BV (Q) of the functions u € L!(f2), whose generalized derivatives are Radon
measures of finite variation, and one finds a suitable extension of the functional
(1.1) to this space (see [51], [57], [59], [83]); then, if the extension considered is lower
semicontinuous, one can apply the direct methods of the Calculus of Variations
and finds a minimizer in BV (€2) for the extended problem.
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In this chapter we consider the following extension to BV(§2), given in [33],
of the functional (1.1):

F(u) = ) f(m,u,Dau)deer [][j)) 7 (m,t,-l%fz—’(m)) dt} |Dyul(z),

where D,udz and D.u are the absolutely continuous and the singular part of the
measure Du, T% is the Radon-Nikodym derivative of the measure D,u with
respect to its total variation, f°° denotes the recession function of f(z,s,p) with
respect to p and vy (z) and u_(z) are the upper and lower approximate limits of
u at z.

In [33] it is proved that this functional is lower semicontinuous on BV ({2) for
the L'(§2) topology, under suitable assumptions on f(z,s,p), including the lower
semicontinuity with respect to s.

Using a similar approach as in [41], a more general theorem for functionals
F, whose integrands do not depend on z, is obtained in [39] without requiring
the lower semicontinuity of f(s,p) in s. The idea of the proof is to represent the
functional F'(u) as an integral over the reduced boundary of the subgraph of the
function u in the space  x IR. This representation allows to approximate F' with
functionals whose integrands are affine functions; the lower semicontinuity for these
functionals is obtained using the chain rule for BV () functions proved in [9] and
[35].

In the present chapter we extend this result to the general case when f depends
on z too, without assuming the lower semicontinuity of the map s — f(z,s,p), ex-
cept for p = 0. Putting together the above technique of [39] and the approximation
technique of [7], we establish a lower semicontinuity result for the functional F' on
BV (). The basic idea of the proof consists in writing again F' as an integral on
0 x IR with respect a suitable measure on  x IR and so in reducing the problem
to prove the lower semicontinuity for functionals with integrands of the type

f(m,S,P) = ¢(5)[a($75) + <b(:l:,5),p>}+,

where ¢ € C5°(92) and a(z,s), b(z,s) are continuous in ¢ and measurable in s.
This proof is based on further approximations and on a projection result which

permits finally to write the approximating functional again as an integral on 2
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with respect to the measure Du; the proof is concluded using the chain rule for
BV () functions.

2.2 Some definitions and preliminary lemmas

2.1. — For every Borel function u : Q — IR we define two functions Uy, U_ :
! - [—o0,+o0] by
(2.1)
. . meas(B,(z)N{y € Q:uly) > t})
=infqt €[~ 21 £ =0
u+(:z:) o N [ OO’+OO} p—1+I(IJ1+ meaS(B/)(:U))

and

(2.2) u_(z) =inf {t € o0, +00] : pl_ifgl+ meas(Bp(Iﬂrzl?a‘s{(yBEp((::):)u(y) < t}) _ 0} ,

the functions v and w_, which are called the approximate upper and lower limits,

are Borel functions.

2.2. - For every u € BV(§2) we consider N(u) ={z € Q :u_(z) <ui(z)}; a
point z € N(u) is said a jump point of u. It is known that N(u) is a Borel set and

(2.3) L"(N(u)) = 0.
Moreover we recall that we have (see [50], Theorem 3.2.23)
(2.4) H*=H" ' x L' on N(u)xIR.

2.3. - A point z € Q is said a Lebesgue point of u if there exists a number
u(xz) such that

p—0

lim p~" /B )~ @)y =0,

we indicate by Q(u) the set of the Lebesgue points of u and we recall that (see
[50], Theorem 4.5.9 (21))

(2.5) H"1Q\ (u) U N(u))) = 0.
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2.4. — For every u € BV (1) we define

(2.6) Su)={(z,s) e A xR:s <uy(z)}
and
(2.7) Clu)={(z,s) e A xR:u_(z) <s <uy(z)};

we recall that S(u) is a set with locally finite perimeter in {2 x IR, i.e. the distribu-
tional derivative of 1g(,) is a Radon measure on Q x IR (see [69], Theorem 1.10).
We indicate by a(u) = (ai(u),...,a,41(u)) the derivative measure of 15(,) and

we remark that
(2.8) la(u)|(B) = H"*(C(v) N B)

for every Borel set B in 2 x IR (see [50], Theorem 4.5.9 (5)). Let v(u) be the
IR""!-valued measure on © defined by

v(u) = (D1u,...,Dpu, —L").
We remark (see [50], Theorem 4.5.9 (15)) that
(2.9) lv(u)| = |Du| = (uy —u_)H"? on N(u);

moreover |v(u)| and, for 7 : 1,...,n, D;u are the images of |a(u)| and «;(u)
respectively under the canonical projection of £ x IR onto @ (see [69], Theorem
1.10) i.e.

e [ jewi= [ @l ma [ )= [ Da

for every Borel set D in 2. Finally we observe that for |a(u)| almost all (z,s) €
2 x IR we have (see [49], par. 5)

a(u)
()]

where n[(z,s); S(u)] is the interior normal of S(u) at (z,s), if it exists, and is 0

otherwise, and @EZ% is the Radon-Nikodym derivative of the measure a(u) with

(2.11) n[(z,s); S(u)] = (z,5),

respect to its total variation.
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2.5. — We adopt the following conventions:

for every Borel set B in [, g|Du| is the integral on B of a Borel function
g : 8 — R with respect to the Radon measure |Du| and fB (f, Du) is the integral
on B of a vector valued Borel function f :  — IR"™ with respect to the vector
valued Radon measure Du. Analogously for every ¢ € C§°(2) fQ (f,Du) ¢ is the
integral on ) of ¢ with respect to the measure (f, Du).

Moreover we denote by (f, DufL the positive part of this measure; we note that

[ 5.0 =sup{/ (F,Du) s 6 € C(R),0 < ¢ < 1}
Q Q

and, using the decomposition of the measure Du,

(2.12) /Q(f,Du)+:/gz(f,Da,u)+dm+L<f,£—j:>+leu].

2.6. — Given u € BV(f}) and a € L}, (IR) we denote by @(u) the Vol'pert’s

loc
averaged superposition of a and u, defined in the following way:

for H"! almost all z € Q)

uy(z)
(2.13) - E(u)(m):f o a(t)dt,

where, for every ¢1,% € IR, t; < 9, we set

s e [T a(t)dt ity <t
/ a(t)dt
t a(tl) if tl = tg.

We remark that a(u)(z) = a(u(z)) for every ¢ € Q(u) and by (2.12) we obtain
(2.14)

/Q(d(u),Dufr _ /@ (a(u), Dyu)™ do + /Q {7[?()) <a(t), |g:2](m)> dtr |Dyul.

2.7.— Let f: QxR x IR" — [0,+00] be a Borel function such that the map
p+— f(z,s,p) is convex on IR" for each (z,s) €  x IR. We can define the so-called
recession function f>:Q x IR x R" — [0, +o0] by

(2.15) ~(z,s,p) = tE%1+ f(z,s,p/t)t
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and a new function f:  x IR x IR" x]oo, 0] — [0, +oc] by

~ “f(a775)”“p/t) ift < 0,

(2.16) f(z,s,p,t) =
>(=z,s,p) if t=0.

We note that f is a Borel function too and for each (z,5) € xR the map (p,t) —

f(z,s,p,t) is convex and positively homogeneous of degree 1 on IR" x]— o0, 0]. Now

we define the functional F': BV(Q) — [0,+0o0] by

i o Dyu
(2.17) Fu)= [ f(z,u,D,u)dz + / ]/ i (m,t, ———-———) dt| |Dgsul,
Q Jo | Ju_ | D sul

where, in the last term, we mean that the function

uy () D.u
T — (gt ——(z) ) dt
]{L,(I) d ( ’ ’leul( )>
is integrated with respect to the measure |Dsu|. Moreover we consider a more
general functional: for every ¢ € C°(Q), ¢ > 0, we define

vt Du
(2.18) I(f,u,d) = /gz flz,u,D,u)pde + '/Q i:][ fo (;L-,t, W) dt} | Dsul.

In the sequel, we will prove that these functionals (now defined for Borel functions
f) can be defined also with weaker measurability assumptions.

Finally we say that a functional G : BV () — [~o0,+o0] is L*(2) lower
semicontinuous along sequences bounded in BV(Q), if for every sequence (u;) in

BV (Q) and for every u € BV(2) such that uj converges to v in L'(2) and
limsup/ |Duy| < +o0,
h Q
the following inequality holds
G(u) < ]im]inf G(up).

Now we recall some basic results which will play a fundamental role in the

following proofs.
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Lemma 2.1. Let u € BV(Q), let N a Borel subset of IR with Lebesgue measure
zero and set E = {z € Q(u) :%u(z) € N}, where © is defined in par. 2.3. Then
the measure Du vanishes on E, i.e. |[Du|(E) = 0.

Proof. See Appendix of [35]. L]

Lemma 2.2. Let h: IR — IR be a globally Lipschitz continuous function. Then
for every u € BV (Q) the function hou belongs to BV(§) and the chain rule

D(hou)=h*(u)Du, as measures on I,

holds, where h* : IR — IR is any Borel function such that h*(t) = h'(t) a.e. on IR
and h*(u) is defined by (2.13).

Proof. See [9] and [35]. UJ

Lemma 2.3. Let f: Q xR x IR" — [0,+00] be a Borel function such that for
each 2 € 1 and s € IR the map p — f(z,s,p) is conver on IR". Then

)= [ (@) 2 (2,9)) latw)l(z,9)

where F is defined by (2.17), f~by (2.16) and a(u) as in par. 2.4.

Proof. See [33], Lemma 2.2. U]

Proposition 2.4. Let p be a positive Radon measure on ) x IR and let (fi) be
a sequence of functions of L*(p) such that f := sup fr > 0. Then for every open
kEIN

subset A of 2 x IR we have

k k
fdp = sup sup {Z /4 fimidp s mi € CP(A),mi 20, m; < 1} :
A =1 -

kex =1
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Proof. For every k € IN let gr = sup{f; : i = 1,...,k}; from Beppo Levi’s
Theorem we have ‘

fdp = sup/gkd#-
A keEIN J 4

Fixed k € IN, there exist measurable pairwise disjoint subsets By, B1,..., By of A
such that

k
A={]Bj,

j=u
gkIBU - 07

gr|Bi = [ and gklB; >0 for 1=1,...,k;

since u is a regular measure, we have

k k
grdp = / fidp = sup / fidp: K; C B;, K; compact o <
/.—i ; B; ; K;

k k

< sup {Z /4 femidp :mi € CG°(A)ymi >0, i < 1} <
i=1 - =1
k k

< sup {Z/ gkmidp s € C3°(A),mi >0, mi < 1} =
i=1 A =1

= / grdp.
A

Then

i=1

k k
/{gkdﬂ = sup {Z /4 fimidp :mi € CF(A)m; 20, i < 1} :
- —J.
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Lemma 2.5. Let p be a positive Radon measure on Q0 x R and let (fi.) be a
sequence of functions of L'(p) such that f := sup fr > 0. Then for every open

keIN
subset A of Q@ x IR we have

[ rau=su Y [ fule,)bilonie)dnte, )

A B ierd4

where B is the set of all families (k;, ¢i,v:)ier with I a finite set, k; € IN, ¢; €
Cio(Q), #i € C°(R), $: > 0, % > 0, > ¢:i ®; < 1, and (supp ¢; X supp ¥;) C

iel
A.

Proof. By Proposition 2.4 it is enough to prove that for every 7 € C{°(4) with
0 <7 <1 and for every € > 0 there exist two finite families (¢;);c, (¥5)jer,

where
$; € C5°(R), ¢; € C(R), ¢; >0, ¢; >0,
(supp ¢;) x (supp ;) C 4, Y ¢;@9; <1,
jeJ
and
n(z,t) — Z(qﬁj ® Y;)(z,t)| <e for every (z,t)€ A.
JjEJ
We set

Qo={2z€QxR:|z| <1 for k=1,...,n+1}

and for every j € Z"™! and § > 0 we set

Q;(8) = 8(7 + Qo);

moreover we fix (z;,1;) € Q;(8). Now, for every j € Z"*! we denote by R;(§) the
union of @;(6) and of its adjacent cubes and by K the finite subset of Z"*! such
that

R;(8) = |J Q.(8).

sER;

For every € > 0 there exists § > 0 such that

In(z,t) —n(z;,t;)] <e for every (z,t)€ R;(§);
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moreover there exists a finite subset J of Z"*! such that

supp 1 C | Qj(8)-

V=

We indicate by R the family (R}(6));e.s, where R(6) denotes the interior of R;(6).
It is easy to see that there exists a partition of unity subordinate to the cover R

consisting of tensor products x; ® ¥; with 5 € J, where
xj €C(Q), ¥, €CF(R), 0<yx; <1, 0<4; <1,

and
(supp x;) x (supp ¥;) C Rj(8).
For each j € J we define
¢; = n(z;,ti)x;;

fixed (z,t) € supp 7 there exists j, € J such that (z,t) € Q;,(6); then we have

}77(;3775) - Z(¢J ® ¢j)(m7t)\ = |TI(-’BJ) - zn(mjatj)(Xj ®¢j)(m7t)‘ =

jeJ jedJ
= In(z,t) = D n(@srts)(xs @ s)(z,t)] =
sek;,
= Z (xs ® X«?)(mvt)‘n(m’t) —n(zs,ts)] <e.
sel;,

Now we deal with the problem that the functional F is well defined.
Definition 1. We call “integrand” a function f : @ x R x R" — [00, +o0]
such that

(z) fis B(Q) ® L(R) ® B(IR"‘)—measurable;
(i) the map (z,p) — f(z, s,p) is lower semicontinuous on { for each s € IR;

(4i1) the map (z,s) — f(z,s,0) is B(Q)) @ B(R)-measurable.
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Definition 2. We say that two functions f,g : @ x IR x IR" — |00, +c0] are
“equivalent” if

(a) there exists a Borel subset NV of IR such that meas(N) = 0 and f(z,s,p) =
g(z,s,p) foreachz € 2, s e IR\ N and p € R";

(b) f(z,s,0) = g(z,s,0) for each (z,s) €  x IR.

Remark 1. For every B(Q) ® L(IR) ® B(IR")-measurable function f there exist
a B(?) ® B(IR) @ B(IR") — measurable function g and a subset N of IR with
meas(N) = 0 such that f(z,s,p) = g(z,s,p) for every 2 € Q, s € IR\ N and
p € IR". Indeed, for every 4 € B(Q) ® L(IR) ® B(IR") there exist a set B €
B(Q) ® B(IR) ® B(IR") and a subset N of IR with meas(N) = 0 such that for
every s € R\ N

1(z,p) € @ xR" : (2,5,p) € A} = {(z,p) € A x R" : (z,5,p) € B}.

This easily follows from the fact that the o-algebra of the sets 4 C Q x IR x R"
satisfying this property contains the sets of the form A; x 4y x 43, with 4; € B(Q),
Ay € L(IR), A3 € B(IR"). Moreover we remark that for every integrand f, convex
in p, there exists a B(Q?) @ B(IR) ® B(IR")-measurable function g, convex in p,
such that f and g are equivalent integrands. In fact from the previous part of this
remark there exist a Borel function A : @ xIRxIR" — [—00, +0c0], convex in p, and a
Borel set N C IR such that meas(N) = 0 and f(z,s,p) = h(z,s,p) for every z € 0,
s € R\ N and p € R". Now we define a new function g : @ x IR xIR" — [—o0, +00]
by

h(z,s,p) ifseR\N,

g(z,s,p) =

f(z,s,0) ifseN.
We note that g is a Borel function convex in p and f and g are equivalent inte-
grands.

Lemma 2.6. Let f, g be two equivalent integrands, convez in the variable p. If

u € BV(Q), then

(2.19) f(z,u(z), Dou(z)) = g(z,u(z), Dou(z)) a.e. on
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)
oG Dsu o e+ e DS’U,
f (a:,t, W—(m)) dt = ]{L_ g (a:,t, |Dsu|(w)> dt |Dsu|—a.e. on .

Proof. Let B be a Borel set in IR such that meas(B) = 0 and f(z,s,p) = g(z, s, p)
for each z € Q, s € IR\ N and p € IR". We consider the set E = {z € Q(u) :
u(z) € N}. From Lemma 2.1 we obtain that Du vanishes on Ej; hence, from (b)
of Definition 2, the formula (2.19) holds. On the other hand, f> and g* are also
equivalent functions and f*(z,s,p) = ¢°°(z,s,p) for each z € ,s € R\ N and
p € IR". Then we have

(2.21)
I= (m,u(a;),-l-g_:%'(x)> _ g (m,u(m), tg:zl(m)> IDyul—ae. on Q\N(u);

moreover, since meas(/N) = 0, we have

wet () D,u (=) D.u
2.22 / f (m— z ) dt = / g% (a:t————— x ) dt
( ) w_(zx) le’lL]( ) u_(x) ]Dgul( )

for every € N(u). Therefore (2.20) follows from (2.21) and (2.22). U

Lemma 2.7. If f is an integrand convezr in p and u € BV (Q), then the function

z— f(z,u(z), Dyu(z)) is measurable on 2 and the function

ug(x) D.u
T >z, t, ——(= ) dt
‘/u_(w) ( leu|( )

is |Dyu|-measurable on 2.

Proof. By Remark 1 there exists a Borel function g, convex in p, such that f and

g are equivalent integrands. Then from Lemma 2.6 the assertion follows. O
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2.3 Semicontinuity of approximating functionals

In this section we prove the lower semicontinuity of the functional (2.18) in the

particular case in which the integrand function f is of the form

F(z,5,p) = ¥(s)la(=,s) + (b, ), p)] ™,

where ¢ € C§°(IR) and a(z,s), b(z,s) are continuous in z and measurable in

s. Since the lower semicontinuity of the first term of (2.18) follows easily from

Scorza-Dragoni’s Theorem and Fatou’s Lemma, it is enough to consider the case
where

f(z,s,p) = y(s) (b(z,s),p) " .

The idea of the proof consists in representing the functional as an integral over
the reduced boundary of the subgraph of » in Q x IR and in approximating this

integral with simpler ones, whose integrands are of the type

f(=:5,p) = y(s)1E6(s) (¢lu(e),p) ",

where E C IR, U C § and ¢ € Q". The result for this functional is then obtained
using the chain rule for BV (Q) functions and the following technical lemma which

allows to write the above functional as an integral on  with respect to the measure

D,

Lemma 3.1. Let v : IR — IR" be a measurable and bounded function. Then for
every u € BV (Q), x € C5°(Q), x >0, and i :1,...,n we have

Bs)(w)ens (w)(z, ) = A B(u)(2)x(=)Dru(z),

QxR

where J(u) denotes the Vol’pert averaged superposition.

Proof. First of all we note that from (2.8) and (2.11) we have

$a(a) 2 (2,9 la(w) o, 5) =
(3.1) JOxIR

[ pex@n(e, o) S H s s),
(QxIR)NC(u)
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where C(u) is defined by (2.7). Now, since
(A\N(w)) xR]|NC(u)={(z,s) e A xR:u_(z) =s = ui(z)},

from (2.8) and (2.10) we have

/ b(s)x()nil(2,); S(w)| H" (2,5) =
[(Q\N (1)) xIR]NC(u)

/ Du)(@)x(z)ni((z, 5); S(u)H (z,5) =
[(Q\N(u)) xIR]NC(u)
(3.2)

I

/ w)(@)x(e)as(u)(z,5) =
(Q\Mu))xm

It

/ B(2)x()Diu(=).
Q\IN(u)

On the other hand from (2.4) we obtain

/. B )x(@)nil(a, 8); SEWIH" (2,5) =
[N(u) xIRJNC(u)

/. B(s)x(eInil(, 5); S H () x L2(s);
[N (u) xIR]NC(u)

now since for H"~! almost all z € N(u) there exists n(z) = (n1(z),...,n.(z)) €
IR" such that n[(z,s); S(u)] = (n(z),0), whenever s €lu_(z),us(z)] (see [50],



SEMICONTINUITY OF APPROXIMATING FUNCTIONALS 28

Theorem 4.5.9 (17)), and by (2.9), (2.10) and (2.11) we have

) TL’(S)X(m)ni[(x’S);S(U)JH”(:D?S) =
N(u)xR]NC (u) :

—_—

uy(z)
= s)ds a:ni:DH"_la; =
L [ b xem@m

wy(2)
= s)ds zn;(z)|lv(u)l(z) =
/\m _/u_m (s x(emlz)l )] (2)
(33) = [0, PO 0)(e) =
= [ B, ) Swlaw)(e,s) -
N(u) xR

a;(u)

-/ Blu)(e)x(z)

N(u)xIR lou(u)

= fo B D)

(z,5)|a(u)|(z,s) =

Therefore from (3.1), (3.2), and (3.3) the assertion follows. L]

For every u € BV(Q) we denote by ai,...n(u) the vector measure
(ea(u),...,a,(u)) formed by the first n components of the measure a(u) intro-

duced in par. 2.4 .

Lemma 3.2. Let E be a measurable and bounded subset of IR and let ¢ € IR".
Then for every x € C5(2), x > 0, and for every ¢ € Ce(IR), o > 0, the
Junctional L : BV(2) — IR defined by

(23]

= [ 1s(sp(e <q, m-)(]—“l()> (@)l w)((z, ),

is continuous on BV () with respect to the topology induced by L ().

Proof. By Lemma 3.1 we have

——

L(u) = /2 (129 (u)(z) (g, D) x(z).
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Now we consider ¥ : IR — IR defined by
t
U(t) = / 1p(s)Y(s)ds
0
and, since ¥ is a Lipschitz continuous function, using the chain rule for BV ()

functions, (see Lemma 2.2), we obtain

L(u) = /Q (g, D(¥ 0 w)) x() = / (¢, Dx) ¥ (u)dz.

Therefore the continuity of L immediately follows. ]

Lemma 3.3. Let E be a measurable bounded subset of IR and let ¢ € IR™. Then
for every x € C(Q), x > 0, and for every ¢ € C°(IR), ¥ > 0, the functional
H : BV(2) — [0, +oo[ defined by

X
H(u) = ¢(3)1E(5)<q,m(m,s)> (@) la(w)|(z, ),

QxR !C“(’“)l

is L'(Q) lower semicontinuous along sequences bounded in BV (Q).

Proof. First we observe that

H _ al,...,n(u) .

) =sup{ | @) (0 222 0, 0)) x(ohnta,o)a(w)lz,9):
QxR
URS C(?O(Q X IR),O <n< 1}'

Now arguing as in the proof of Lemma 2.5 (see [39]) for every n € C°(IR" 1), with
0 <n <1, and for every € > 0 there exist two finite families (¢;);cr and (w;)ier,
where ¢; € C5°(2), wi € C2°(IR), ¢ > 0, w; > 0, (supp ;) x (supp wi) C Q x IR,
z ¢ Quw; <1,

iel
[n(m,s)*2(¢i®wi)(w,s){<s for every (z,s)e€ 2 xIR.
il
Then
= su $ s w—zms z)oi(z)w;lz)|a(u)|(z,s
B =spd [ s ) (02,0 M@)ol (e, 9)

where D is the set of all families (¢;,w;)iesr with I a finite set, ¢; € C (%),

wi € C°(R), ¢; > 0, w; >0, Z ¢ Q@w; <1 and (supp ¢;) x (supp w;) C N x IR.
i€l

Therefore the thesis follows from Lemma 3.2. OJ



SEMICONTINUITY OF APPROXIMATING FUNCTIONALS 30

Lemma 3.4. Let U be an open subset of Q, let F be a measurable bounded
subset of IR and let ¢ € R". Then for every x € C5°(Q), x > 0, and for every
¥ € C°(IR), ¥ > 0, the functional ® : BV(Q2) — [0, +oo[, defined by

+
B(u) = w(s>1E(s><q,——ﬁg—§l—)(m,s)> (@) 1o(@)a(w)|(z, s),

QxR

is L'(2) lower semicontinuous along sequences bounded in BV (Q).

Proof. It is easy to see that there exists an increasing sequence (xr), xn € C(Q),

0 < x» <1 converging to 1y almost everywhere. Then from Beppo Levi’s Theorem
we have

—i_
2@ =swp [ w1n) (02220 6,0) xepa@le@)e)

h€EIN

Therefore from Lemma 3.3 the functional @ is lower semicontinuous. ]

Proposition 8.5. Letb: QxR — IR" be a-Borel function satisfying the following
properties:

(i) for every s € IR the map z b(z,s) is continuous in (;

(ii) there exists M € IR™ such that |b(z,s)| < M for every z € Q and s € IR.
Then for every x € C§°(Q), x > 0, and for every v € C(IR), ¥ > 0, the
functional F': BV(Q) — [0, +oo|, defined by

f(u):/ $(u) (b(z,u), Dou) ™t xdz+
2
vy ()

L wo (e o] s

is L' () lower semicontinuous along sequences bounded in BV (Q).

Proof. First of all, we note that from Lemma 2.3 we have

= mswws+‘mau z,s
o= [ (e 2 6,0) xelle (o)
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Following the lines of the proof of Lemma 2.6 in [7], we define
S = {(6V) e Q" x Ax g < M},

where A is a countable base of open sets in ) such that each element of A is

relatively compact in Q. Let S = {(qr,Uk)}rew; given € > 0, for every k € IN we
define

By ={s € R: (b(z,s),p)" +elp| > (i1, (2),p)” Ve e Q, WpeR"}.

From the projection theorem (see [26], Theorem II1.23) for every £k € IN E; is a

measurable set; now we define for each &k € IN
gr: xR xIR" — [0,+00]

by

gk(fﬂ, 57p) =1Eg, (5) <Qk1Uk(€E),P>+

and g: Q@ x IR x IR" — [0, +o0o[ by

g(z,s,p) = sup gr(z,s,p).
keIN

From the definition of g; and Ej the function g satisfies the following properties:
for every z € 2, s € IR and p € IR"

0 < g(,5,p) < (b(z,5),p) " +elpl,
0 <g(z,s,p) < Mip|
and, by using the continuity of the map = — b(z, s),
(b(z,5),p)" < g(,s,p)-

Now we define the functional G : BV () — [0, +oo] by

OxIR

Guy= [ (o) ((m,s>, “—-—ﬁ‘—)<)) (@)]e(w)|(z, =)
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and we prove that the functional G is lower semicontinuous on BV () with respect
to the topology induced by L*(§). From (2.10) follows that for each k € IN

2 (](U x B) = (U0 < [ 1Dul+ £7(02) < +oo

then the function (z,s) — g ((az,s), W(m,s)) belongs to L*(]a(u)|). Hence

from lemma 2.5 we have

B

o) = Y L o (@ ) xX(2)] Biz)or(s)la(u)(2:5),

where B is the set of all families (k;, ¢;,w;)ier with I a finite set, k; € IN, ¢;

S
C*(Q), ¢i > 0, wi € C3°(R), wi >0, Y ¢; ®w; < 1 and (supp ¢:) x (supp w;) C
iel
! x IR.

Therefore the lower semicontinuity of G follows from Lemma 3.4. Finally

we prove the lower semicontinuity of F. Let (uj) be a sequence in BV (Q) and
u € BV(Q) such that (uy) converges to v in L'(2) and lim sup/ |Dup| < +o0.
h Q

From the previous properties of g and from the lower semicontinuity of G we have:
Flu) < Gu) < limlinf G(up) <

< limhinf F(up) + elimsup p(s)x(z)|ar,.. n(un)l(z, s).
g h OxIR

Since uj; converges weakly on BV () to v and so lim sup/ |Dujp| < +o0, and
h B

since by (2.10)
/ [ Duy| = / o, on (un)]
B BxIR

for every B € B({1), we have

limsup/ lar,.. n(un)] < 4oo.
h BxIR

Therefore the lower semicontinuity of F' follows from the arbitrariness of ¢. O
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Corollary 3.6. Letb: QxR — IR" be as in Proposition 3.5 and let a : ) x IR —
| — 0,0] be a Borel function such that:

v) for every s € IR the map z — a(z,s) is continuous in Q;
Y P

(it) there exists M € IR™ such that —M < a(z,s) for every z € Q and s € IR.
Then for every x € CJ(Q), x > 0, and for every ¢ € CP(R), ¥ > 0, the
functional G : BV (2) — [0, +oo| defined by

Gu) = . Y(u)la(z,u) + (b(z,u), Dou)| x(z)dz+

L oo 22 a]ron

is L'(Q) lower semicontinuous along sequences bounded in BV (Q).

Proof. By Scorza-Dragoni’s Theorem there exists an increasing sequence K of
y g g seq

compact subsets of IR such that meas(IR \ E) = 0, where E = U K}, and the

kelN
function a : @ x Kj, — IR is continuous (see [47], page 235). From Lemma 2.6 we

obtain

G(u) = / 1 (w)p(w) a(z,w) + (b(z, w), Daw)|Fx(e)de
D,u

o,

From Beppo Levi’s Theorem we have

f:m) Le(t)¥(t) <b(:c,t), Do >+ dt} x(z)|D,ul.

- (=)

G(u) = sup{ ﬂ 110, (w)b () (e, w) + (b(2, ), Dyur)]* x(w)da-+

heIN
wy(z) Do\t
A9 b:l}, , g z RS
/ [][() L 0900 (80 7% ) dt} X(@)ID.u

now, since a(z,s) < 0, we have [a(z,s) + (b(z,s),p)]T = la(z,s) + (b(m,s),p)+]+;
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hence

6 = sup sup { [t (i(ulate, wnte)x(a)da +
eN recgm ( Jo

+ [ Ly @) (6, w), Do) n(e)x(e)de+
Q

+ e g, (£)(2) b(:c,t),—D—iL‘ +dt n(z)x(z)| Dsul .
Q [Ju_(z) | Dsul

Now we note that #(s)a(z,s) < 0 for each z € Q and s € IR and so the map
s+ 1g, (s)¥(s)a(z,s) is lower semicontinuous on IR. Therefore the lower semi-

continuity of G follows from Fatou’s Lemma and Proposition 3.5. ]

2.4 The main semicontinuity result

In this section we prove some lower semicontinuity results for the functionals

Plu) = [ fo,uDow)de + / []f U <t%%}) dt} Do

and

1708 = [ flou, Dow)ads + / []f (e ,gg,)dt} 41D,

defined in par. 2.7.
The technique we used in [39] allows us to prove the first theorem in which
we assume that f(z,s,0) = 0.

Theorem 4.1. Let f: @ x IR x R" — [0,+00] be a B(2) ® L(IR) ® B(IR")-

measurable function such that:

a) for every s € IR the map (z,p) — f(z,s,p) is lower semicontinuous on
y P P

QxIR";
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(b) for every x € Q and s € IR the map p — f(z,s,p) is conver on R";
(c) for every r € Q and s € IR we have f(z,s,0) = 0.

Then for every ¢ € C°(Q), ¢ > 0, the functional v — I(f,u, ), is well defined
on BV(Q) and L'(Q) lower semicontinuous along sequences bounded in BV ().

Proof. First of all, Lemma 2.7 assures that for every ¢ € C°(§) the functional
uw — I(f,u,¢) is well defined. Moreover we observe that it is enough to prove
the theorem for the case where f € C§°({2); in fact, in the general case, we can
approximate a non negative function ¢ € C°(f2) with an increasing sequence (¢y)

of non negative functions in C3J°(€2) and using Beppo Levi’s Theorem we obtain
I(f:“’a qb) = SI;P I(f,u, th)-

Hence we assume that ¢ € C§°(§2). By Lemma 1.7 and Remark 1.8 of [7] there
exist two sequences a; : Q! x IR — IR and b;, : 2 x IR — IR" of bounded functions
such that for every h € IN the maps z — ap(z,s) and z — bj,(z, s) are continuous

on { for each s € IR, the maps s — a,(z,s) and z — by(z,s) are measurable on

IR for each z € ) and

F(z,5,p) = suplas(z,s) + (ba(e, s),p)]*.
heIN

By the hypothesis (c¢) we have a,(z,s) < 0 for every z € 2 and s € IR. Let us
define

fu(z,s,p) = [an(z,s) + (bu(=,s),p)]T.
It is easy to verify that

o~

f(z,5,p.t)¢(z) = sup fu(z,s,p,1)¢(z)

heIN
for every z € 2, s € IR, p € IR" and t €] — o0, 0], where the function f and ]?;, are
defined as in (2.16). Using Lemma 2.3 applied to the integrand f(z,s,p)d(z) we
can represent the functional I(f,u,¢) as

QxR

)= | anw,“”(aa)wwmwMan.
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From Lemma 2.5

Wwd)=sw [ fo (@), 2 (2,9)) (oM (s)lata) (s, ),

2 a(u)]

where B is the set of all families (ki,éi,%i)ier with I a finite set, k; € IN, ¢;

€
CF(Q), ¢ > 0,9 € C(IR), ¢ > 0, S ¢r @ep < 1 and (supp 1) x (supp i) C
el
1 x IR. Now by Lemma 2.3 again

I(f,u,¢) =sup »_ Gi(u),

B Ger

where

Gi(u) = s bi(u) fri(z,u, Dow)di(z)de+

v []f (()) w17 (ot o) dt] #1(2)|Doul =

=) Yi(u)lar, (z,u) + (by, (z,u), Dau)] " ¢i(z)dz+

+ [
Q

Therefore the lower semicontinuity follows from Corollary 3.6. U]

]C’“r(”’) ¥i(t) <bk,.(a:,t), ,-g—:%>+ dt] $i(z)|D,ul.

The hypothesis (c) in the previous theorem is too restrictive. In the next
theorem we look for a more general hypothesis, which still assures the lower semi-
continuity of the functional F. Suppose that f satisfies all hypotheses of Theorem
4.1 except (c). Arguing as in [AM] and [DBD], we will introduce a new function

9(3375727) = f(:D,S,p) - f(a:’saO) - <)\(.’E,S),p> ’
where A(z,s) € 8f(z,s,0) for each (z,s) € 2 x IR, i.e.
f(zys,p) = f(z,5,0) + (M2, s),p)

for each p € IR". The function g satisfies the hypotheses of Theorem 4.1; hence

the functional u — I(g,u, @) is lower semicontinuous. Then, in order to prove the
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lower semicontinuity of the functional w — I(f,u,¢), it is enough to prove it for

the functionals
U — / f(z,u,0)dz and u— Au, @), -
Q

where

(4.1) A(u,qﬁ):/Q(A(a:,u),Dau) ¢dw+/ﬁ Vt()) <A(m,t) lg ul>dt:| 6|D.ul.

The semicontinuity of u +— fQ f(z,u,0)dz follows from Fatou’s Lemma, provided
that the function (z,s) — f(z,s,0) is lower semicontinuous.

The lower semicontinuity of the functional A will be obtained, under suitable
hypotheses on A, by the same technique introduced in [7], i.e. by approximating

the functional A with simpler ones whose integrands are functions of the type

h(iE,S,p) = <Z ]-Ei('s)fi(m)vp> )

where E; are measurable disjoint sets in IR and f; € C°°(Q;IR"), and by proving
the lower semicontinuity of the approximating functionals. In order to prove this
property, we need, as in [7], the following lemma which gives a formula of integra-

tion by parts and which is obtained, in our context, by applying the chain rule for

BV (Q) functions.

Lemma 4.2. Let (Ei)iex be a sequence of measurable pairwise disjoint sets in

IR such that Zmeas(E ) < +oo. Let (fi)iers = (f}, .-+, f1)iex be a sequence in

C>(Q;IR") .s«.u,h that sup{|divfi(z)| ;2 € Q,1 e N} = M < +oo. Let b : xR —
IR" be the function defined by

o
S
i=1
Let us assume that there exists g € L*(IR) such that

(4.2) |b(z,5)] < g(s)
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for every ¢ € Q and s € IR. Then for every u € BV (Q) such that

(4.3) /Q (b(z,u), Dyu)" do < +o0

and

(4.4) /Q H+ <b(m,t), ]_g—:%'y dt} Do < 4o

and for every ¢ € C5°(Q)), ¢ > 0, we have

(4.5) /Q<b(m,u),pau> ddzx +/Q V+ <b(a:,t), £i|>dt

:_/Q(U,L,D@ da:-/Q [/Uumgdivfi(m)lgi(s)ds} $(z)dz,

u(x)
where o, (z) = / b(z,s)ds.

0

Proof. First we assume that ¢ € L>(IR). Let us define for each 7 € IN and
ij=1,...,n

. . u()
oi(z) = fi(x) / 15 (s)ds.

We note that from Lemma 2.2 the functions ag belong to BV () and

, ) u(z) .
Djd? :Djfl-](os)/ 1g,(s)ds + f/(z)1g,(v)Dju as measures on {.
0

: (A1
Hence, if we set o; = (07,...,07), we have

u(x) o
diveo; :divf,-/ lEi(s)ds—}—<f,;(m)1E;(u),Du> as measures on ).

U

Then for every ¢ € C*(Q), ¢ > 0, using the decomposition of the measure Du
and the definition (2.13), we have

[ @1, Do) sda + [ V <f,-(m>1Ei (¥, %’3‘} dt} #Dvul =

= - /Q (o, D¢} do — | { / " divf,(a:)la(s)ds} B(x)de.
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Now we observe that from (4.2)

oS
Oy = § gi
=1

and for every k € IN the following inequalities hold:

k
(4.7) Zfi(ﬂ?)lE;(S)] < llgliz=,
uy k
(4.8) [ s o) < gl
(4.9) Zm(m) < cllgllLe,
k
(4.10) > divfi(z)1g,(s)] < M
and
u(z) k
(4.11) / Zdivf,;(a:)lgi(s)ds < cM,

where ¢ = Z meas(F;) < +oo.

i=1
Then from (4.6), (4.7), (4.8), (4.9), (4.10) and (4.11), using Lebesgue’s domi-

nated convergence Theorem the formula (4.5) holds. Now we consider the general

case where g € L*(IR). For each h € IN we set

A = {s € R:g(s) < b}

and from Lemma 2.1 we can assume that U A;, = IR; moreover we define

helN

bi(z,s) = b(z,5)14,(s)
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and uio)
U'h.u(w) = / | bh(was)ds;
0

hence we have

“t Dgu
bp(z,u), Dyu) ¢pdz bp(z,t), — d su| =
[ utew. Deppds [ 7 (e, 5 ) it aip
(4.12) u(s) o
:—A(Jh,u,D¢) d:c—/Q /U 2. d1vfl(m)1Eln4h(s)ds} ¢dz
Since
'O'b u(m)l < ”gHLla
IZdlvfl J1Ena,(s)| < M

and

H/ Zdwf, 1En4h() }@5 < cM||f|[ze=,
we obtain

u(x) o¢
(4.13) hliri {/{; <O’h.u,Dqﬁ> dr + '/Q [[ waﬂ 1E m.u( ) 5} (}Sdm} =

:/Q<gu,,D¢> do:+/9 [Ju(x)gdivfi(m)lgi(s)ds

Since (b;,,(:n,s),p) and (bn(z,s),p) are increasing sequences which converge to

pdz.

<b($,.5),p>+ and (b(z,s),p)  respectively, from Beppo Levi’s Theorem we obtain
that

lim (bh(a:,u),Dau>+¢:d:z: = (b(a:,u),Dau>+ pdz
Q

and
h]jm (bp(z,u), Dyu) ¢dz = / (b(z,u),Dyu)” ¢dz
e Ja Q
so that from (4.3) we have
(4.14)
Jim [ (ba(z,u), Duu) pda :/ <b(m,u),Dau>+¢dm—/ (b(z,u), Dyu)~ pdz =
L JQ Q Q
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= / (b(z,u), Dyu) ¢pdz.
Q

Analogously using (4.4) we have

. v D,u B

/n 7[+ <b(“”t)’ |gi¢> dt} $|1Dul.

Therefore the assertion follows from (4.12), (4.13), (4.14) and (4.15). L]

(4.15)

Lemma 4.3. Let A: Q! x IR — IR" be a function such that

a) there ezists a constant C > 0 such that A(z,s) = 0 for each z € (1 and
s € IR, with |s| > C;

b) for every z € Q the map s — A(z,s) is measurable;
c) the functions {z — A(z,s) : s € IR} are equicontinuous on §1;

d) the function g : IR — [—o0,4o00] defined by

g(s) = sup |A(z, s)|
€

belongs to L*(IR). Let (un) be a sequence in BV(Q) and uee € BV(Q) such that

up, converges to uo in L1(Q),

limsup/ |Dup| < 400,
h JQ

(4.16) sup/ (A(a:,u;,,),Dau;,,}+ dz < +o0
helN JQ

and

uh+ Dkuh +
(4.17) sup/ ]/ </\(a;,t), - > dt| |Dsup| < +o0.
helN JQ uy _ ‘D,ﬂth
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Then for every ¢ € C°(R), ¢ > 0, we have

lim A(Uh,qb) = A(”oc:¢)7

h—oc

where A is defined by (4.1).

Proof. Of course we may suppose A to be a Borel function (see Lemma 2.6). Since

the function A(z,s,p) = (A(z,s),p) " satisfies the hypotheses of Theorem 4.1, from

(4.16) and (4.17) we obtain
(4.18) ,
Yoo ‘ D.u +
Ma —sTee dt| | Do )
]/um— < (z,1), !Dsuool> t:l | Dsuoo| < +oc

/S;()\(a:,uoo),Dux}Jr dz +/Q

From Lemma 4.11 of [7], fixed & > 0, there exists a sequence (f;) in C=(Q;IR")
such that

for every s € IR there exists ¢ IN

(4.19) |
such that |[f; — A(:,8)|[pee(omn) <€
and
(4.20) R = sup{||0fi/ 0zl 1~ mn) 1€ N,1 <j <n} < +oo.

For each 7 € IN we set
B; = {5 E] - C,C[‘ “fi - )‘(':S)HLm(Q;mn) < 5}

and
E; = B;\ | J Bj;
j<i
we note that (E;) is a sequence of measurable and disjoint sets. Now we define

b: QxR — IR" by

b(z,s) = Zlgf(s)fi(a:).
From the hypothesis d) we have
(4.21) [b(z, 5)| < ; Le(s)lfi(z) = A=, )| + (2, 9)] <

< eljccr(s) + Az, 5)] < elj_cels) + g(s)
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and for each h € INU {+o0}

/(b(m,uh),Dauh dw+/
Q Q

(4.22) S/Q(/\(:B,uh)aDﬂuh dm+/gz

26/Q | Duy|.

It is easy to see that from (4.16), (4.17), (4.18), (4.20) and (4.22) the hypothe-
ses of Lemma 4.2 are satisfied; therefore for each ¢ € Cse(92), ¢ > 0, and for every
h € INU {+oco} we obtain

Doup \ ©

J[ < "D Zi:> ‘“} Daun] <
Doy \ 7T

][ < |D"Zj|> dt} | D un|+

(b(z,up), Daur) pde + " e, 1), g“" dt)| ¢|Dyuy| =
Q Q [Ju,_ | |

(4.23) - )
wp(x) ©C
= —/ (ou,, D) dz —/ / Zdivfi(m)lgi(s)ds] ddz,
Q Q| Ju =1
up ()
where o, (z) = b(z,s)ds. Since from the hypothesis a) and (4.21) for each

0
h € IN we have

7w, (2)] < 2¢C + [lgl|
and from (4.20)

<2CnR,

0

wp(z) 9
[ S asi@ne (s

=1

applying the Lebesgue’s dominated Convergence Theorem, from (4.23) we have

. “hy Dguy,
lim /(b(:v,uh,),D,,u;,,>¢da:+/ f <b(:1:,t), >dt é|Dsup| p =
h—> | Jg Q| Juy,_ | Dsup
e Do
:/(b(z,uw),D,,uoc)qum—I—/ 7[ ’ <b(:c,t), ke >dt A|Dsue).
Q Q |Vt | Do

Now, since by (4.19) for every z €  and s € IR

‘b(mvs) - /\(.73,3)| <€,
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we obtain, for each h € IN U {+o0}

kg D.u
[/{;(b(m,uh),Dauh)QSdm—l—/&; [7{ <b(m,t),@st,>dt} ¢|Dyup|—

“hy Dguy,
(AMz,up), Douy) ¢pdz —'/; [f </\(a:,t), ’DSU:LI> dtJ é|Dsup

<2 fll~ [ (D).

|
JQ

Since (up) converges to 1., in L'(Q) and lim sup/ |Dup| < 400, the assertion
h Q

follows from the arbitrariness of ¢. OJ

Theorem 4.4. Let f : Q xR x R" — [0,+00] be a B(Q) ® L(R) @ B(R")-
measurable function such that

(a) for every z € Q and s € IR the map p— f(z,s,p) is conver on IR";

(b) for every s € IR the map (z,p) — f(z,s,p) — f(z,s,0) is lower semicon-
tinuous on ) x IR";

(c) the map (z,s) — f(z,s,0) is B(Q)® B(IR)-measurable and for a.e. z € Q
the map s — f(z,s,0) is lower semicontinuous on IR;

(d) there exists a function X : Q x IR — IR" such that
i) Az, s) is continuous in = and measurable in s;

ii) Mz,s) € 0f(z,5,0) for every z € Q and s € IR, where Of denotes the
subdifferential of f(z,s,p) with respect to the variable p;

i) for every open set A CC Q the function g4(s) = sup{|A(z,s)| : = € A}
belongs to L}, (IR);

i) for every open set A CC Q and for every set B CC IR the functions
{z = A(z,s) : s € B} are equicontinuous on A.

Then the functional F, introduced in (2.17), is well defined on BV (Q) and

LY(Q) lower semicontinuous along sequences bounded in BV (Q).
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Proof. We may suppose that there exists a constant C > 0 such that f(z,s,p) =0
for every = € Q, p € IR" and s € IR, with |s| > C, since in the general case f can
be approximated from below by an increasing sequence of functions having this

property: in fact we can write

f($75ap) = sup_ f(:c?s;p)l]—-k,k[(s)'
keIN

Moreover we may suppose that A(z,s) = 0 for every z € Q and s € IR, with
|s| > C. Let (up,) be a sequence in BV () and let uy in BV(§2). Suppose that

(up) converges to us in LY(Q) and Hmsup [ |Dup| < +oo. We may assume
h Q
that F(up) < M < oo for each h € IN. Now, we define a new function g :

QxR xR"—[0,+c0] by
g(ac,s,p) - f(w,S,P) - f(337570) - <A(£I},S),p> .
Then for every ¢ € C°(f2), ¢ > 0, and for every open set A CC  we have

(424) IA(fv“ﬂ QS) - IA(gaua ¢) + H.—l(ua (;5) + A.—l(u, (}5),

where

AR D.u
Is(fru,¢) = [Lf(m,U,Dau)¢dm+/4 H £ (wtm> dt} ¢|Dul,

H.—l(uv ¢) = ‘/_1 f(:z:,u, 0)¢d1}

and

Aa(u, ) = /.4 (Mz,u), Dou) ddz + ./_4 H+ <A(:c,t), Tg%l> dt} $1D,ul.

Since the function g satisfies the hypotheses of Theorem 4.1, we obtain that
(4.25) I4(9,%00,¢) < limhinf Ii(g,un, o).
Moreover, from hypothesis (¢) and Fatou’s Lemma we get

(4.26) Hi(use, ¢) < limhinf Hy(un, @)
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Furthermore, since A(z,s) € 0f(z,s,0),1.e. foreachp € R" f(z,s,p) > f(z,s,0)+
(Mz,s),p), and since f(z,s,p) > 0, we have f(z,s,p) > ()\(m,s),p>+ so that for
every h € INU {400}

/ (Mz,up), Dgup) T do < F(up) < M
A

Uh unh +
/ ][ </\(a;,t), —-—-———> dt| |Dsuy| < F(up) < M;
EY Up _ I'Dsuh!

then using Lemma 4.3 we obtain

and

(4.27) A4(uoo,¢)) - h}l;n A__l(uh,gb).
Therefore from (4.24), (4.25), (4.26) and (4.27) we have
I(fius,d) < lirnhinf Ii(f,un, @) < ]imhinf I(f,un, d);

then, since 4 is arbitrary, the functional v — I(f,u, ) is lower semicontinuous.

The conclusion follows immediately, because

F(u) = sup{I(f,u,6): ¢ € CF(2),0 < ¢ < 1}.

Remark 2. The hypothesis (d) in Theorem 4.4 can be weakened; in fact if the

following condition is satisfied, then the same result holds:

(d") for every € > 0 there exists a function ). : @ x IR — IR" such that

i) A:(z, s) is continuous in z and measurable in s;

i) A(z,s) € 0-f(w,s,0) forevery z € Q and s € R, i.e. f(z,s,p) > f(z,5,0)+
(Ae(z,s),p) — € for each p € IR";

iii) for every open set 4 CC Q the function g. 4(s) = sup{|A:(z,s)| : =z € A}
belongs to L7, (IR);

loc
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iv) for every open set 4 CC § and for every set B CC IR the functions
{z — A(z,s) : s € B} are equicontinuous in C(4;IR").
In fact for each € > 0, if we define

g-(z,s,p) = f(z,s,p) — f(z,8,0) — (Ae(z,5),p)

and
hf(m7s7p) - g:(m75’p) + f(m‘sﬁo) + <A5(m15)7p>

for every z € {1, s € IR and p € IR", then we have

(4'28) f(:B?S?p)_l_aZhE(m’s’p) Zf(w’57p)7

(4.29) | f*(z,s,p) = hZ(z,s,p)

and MA.(z,s) € Oh.(z,s,0). Now applying Theorem 4.4 to the function h., we get
the lower semicontinuity of the functional
U un
h° t,—— | dt
fu_ ) (13, , IDSU|>

then from (4.28) and (4.29), for every sequence (u) in BV () converging in L*(Q2)

to us € BV () and lim sup/ | Dup| < 400
h JQ

H.(w) = /Q ha(m,u,Dau)dm+/

Q

IDsul;

Flusx) < He(ux) < limhinf H.(up) < limlinf F(up) +eL™(£).

Therefore the same conclusion holds.

Remark 3. In [7] is proved that if f satisfies the hypotheses (a), (b) and (c)
of Theorem 4.4, then for each € > 0 there exists a function A.(z,s), continuous
in # and measurable in s, such that A.(z,s) € 0.f(=,s,0) for each z € 2 and
s € IR. Then the conditions i) and 4i) in (d') are always satisfied. On the other
hand, the hypothesis 4ii) cannot be disregarded (see Examples in [7] and in [41]),
but it can be replaced by suitable estimates from above of the integrand function.

We remark that the hypothesis iv) also cannot be dropped (see [7], Example 6).
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Finally we note that in the particular case where f does not depend on z (see [8],

Theorem 1 and [7], Theorem 2), the existence of a measurable selection A(s) of
0f(s,0) follows from the other assumptions of the theorem; while the condition
A € L} (IR) is obtained by assuming that the function '

loc

. [f(S,O)“f(S,p)}+
ar(s) = limsu
f( ) 1)-—>0p |p|

belongs to L{ (IR).




Chapter 3

Relaxation of Quasi-Convex

Integrals of Arbitrary Order

3.1 Introduction

In this chapter we give an integral representation result for the lower semicon-
tinuous envelope of the functional [ f(V*u)dz on the space BVF(Q;IR™) of the

integrable functions, whose the k—t}? derivative in the sense of distributions is a
Radon measure with bounded total variation.

Let {2 be an open bounded subset of IR" with Lipschitz boundary, let f be a
function with p-growth (with p > 1) and let us consider the functional

Flu) = /Q £(Vu)da

defined on the space C*(Q;IR™).
In [1], [29] and [31], there was considered the relaxed functional F defined on
the space W1 P(Q;IR™) and there was proved that it admits an integral represen-

tation of the form

Fu) = / g9(Vu) dz
JQ

where g is the quasi-convex envelope of f.

The quasi-convexity, introduced by Morrey in [72] and [73], is the appropriate
condition in order to deal with functionals defined on vector valued functions.

We note that a convex function is also quasi-convex. On the contrary, it is
well known that, for p > 1, a quasi-convex function is not necessarily convex. Some
recent examples (see [75], [86], [91]) show that also in the case p = 1 there exist

quasi-convex functions which are not convex.
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If p > 1 the minimum problem associated to F on WhP(;IR™) admits at
least one solution, thanks to the reflexivity of this functions space. When p = 1,
the existence of a minimum in W**(0;1R™) is not guaranteed, since the direct
methods of the Calculus of Variations fail. In this case, it is well known that
the appropriate space in which the minimization problem must be considered is
BV(Q;IR™).

Recently, Ambrosio and Dal Maso in [10] proved an integral representation
result on BV (Q;1R™) for integral functionals with quasi-convex integrands having
linear growth, where the relaxed functional is considered with respect to the L1-
topology. Previous results concerning the integral representation on W LIQ;R™)
of the same functional can be found in [52] and [53].

In this chapter, we consider the same problem for the functional
(1.1) F(u) = / f(Vku)dm
Q

where f is a function with linear growth, k € IN, u € WHLQ;IR™) and VFu is the
derivative of order k.

We recall that there exists a notion of quasi-convexity for functions depending
on higher order derivatives (given by Meyers in [67]): a function f is said to be

quasi-convex if

(1.2) /Qf(g + V¥2)dz > f(€) meas(Q)

for every open bounded subset  of IR, for every constant ¢ and for every z €
C§(Q;IR™). Since € can be considered as the k-th derivative of a polynomial w of
degree equal to k, the previous definition means that each polynomial w realizes the
minimum of the integral functional in the class of functions C*(Q;IR™) assuming
the same datum on Q. When k = 1, this notion coincides with the usual quasi-
convexity. '

In [67] and, for a more general case, in [55], it is proved that, in the case of p-
growth, the condition (1.2) is necessary and sufficient in order to obtain the lower
semicontinuity of (1.1) on W*»?(Q;IR™) for p > 1. Further results for functionals
depending on higher order derivatives are contained in [13], [14], [15] et al.

In the case p = 1, the direct methods of the Calculus of Variations work if we
relax the functional (1.1) on the space BV*(Q;1R™), of those functions belonging
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to L'(Q;IR™), whose k-th derivative in the sense of distributions is a measure with

bounded total variation.

In what follows, we also assume that f has linear growth and satisfies a

coerciveness hypothesis. :
We state an integral representation result in BVk(Q;IR™) for the relaxed
functional F of F, with respect to the L!-topology; we prove the following formula:

(1.3) T = [ o(vhaie+ [ o (,ggg,) |D¥u)

where g is the quasi-convex envelope of f, g is the so called recession function

of g, defined by

g°°(€) = limsup

t—+oc

9(t)
t

and D*u = V*u dz + D¥u is the Lebesgue decomposition of the measure D*y in
its absolutely continuous part V*u dz and its singular part DFu.

We want to point out that this result cannot be obtained by applying the
result in [10] to those functions v of the type v = V¥~1y, since the notion of
quasi-convexity for functions depending on the k-th derivative (k > 1) does not
imply the usual notion of quasi-convexity.

The proof is obtained following the outline of [10] and introducing a blow up
technique for the functions belonging to BV *(£};IR™), similar to the one in [53]. A
crucial tool is the rank-one property for the higher order derivatives of a function
in BV¥(Q;IR™), proved by Alberti in [3]. Finally, using a perturbation technique,
we obtain the same representation formula (without assuming the coerciveness

hypothesis) for the relaxed functional with respect to the weak convergence on
BVEQ;R™).
3.2 Some definitions

2.1 Let n,m and k be positive integers; let us denote by T*(IR™) the space
of the k-covariant tensors on IR". Now let us define the space Th* by

Tﬁ;k — R™ ® Tk(IRn),
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it is (canonically) isomorphic to the space LF(IR";IR™) of the k-linear functions
defined on IR”™ with values in IR™. Let eq,..., e, be a basis of IR"; let e!,...,e™ be
the dual basis and let €1,...,e, be a basis of IR™; then a basis of Tk is given by
the tensors ¢; Qe'®---Qe*, withj=1,...,mand 13,...,%4x = 1,...,n. Hence

a tensor £ € TLX can be written as

(2.1) ¢ = Z Zh“.’ikﬁj@t?il ® - Qe

We endow the space Tgk with the Euclidean norm
‘EIZ = Z ( gl,...,ik)z'

In the sequel, we will deal only with k-covariant symmetric tensors, which are char-

acterized by the invariance of the coeflicients ffl’ ;

i, in (2.1), under permutations

of the indices 21,...,%%.

The subspace of the k-covariant symmetric tensors is isomorphic to the
space LF (IR";IR™) of the k-linear and symmetric functions defined on R"
with values in IR™. This space is also canonically isomorphic to the space
Loym (R"; Ly (IR™;IR™)).

We will say that a k-covariant symmetric tensor has rank one, if
the range of the corresponding linear and symmetric function belonging to
Loym (Rn;ﬁf;}l(]}{";mm )) has dimension one. In this case, it is easy to see that

the k-covariant symmetric tensor has the following representation

k—times

with n € R™, v € R" and |n| = |v| = 1.

2.2 Let f : T%% — [0,+o0o[ be a Borel measurable function. We say that f

is quasi-convex if

(2.2) [ #(& + D 2o > 5(6) meas(@)
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for every bounded open set { contained in IR", every ¢ € TOX and every z €
CE(Q;IR™). Since every £ € Tk is the k-th derivative of a polynomial w of degree
equal to k, the previous definition means that each polynomial w realizes the
minimum of the integral functional in the class of functions C*(Q;IR™) assuming
the same datum on 8f. This notion of quasi-convexity, introduced by Meyers in
[67], generalizes to the higher order the notion of quasi-convexity due to Morrey
(see [72] and [73]). It is easy to see that any convex function is quasi-convex and in
the case m = 1 and k = 1 the two notions coincide. Moreover every quasi-convex

function is rank-one convex ;i.e., the map t — f(£ + t{) is convex, for every
£,¢ € T with rank(¢) = 1.

2.3 A T .valued Radon measure will be a set function, defined on the o-
algebra of the Borel sets, with values in the space Tk, whose components are
scalar Radon measures on 1. Given a T"*-valued Radon measure p on {}, we use
the notation |u| for its total variation, which is the scalar non-negative measure
on ) defined for every Borel set B C § by

|ul(B) = sup > _ |u(Bi)l,
i€IN
where the supremum is taken over all the countable families (B;)iew of mutually
disjoint Borel subsets contained in B and relatively compact in Q; the number
|£|() is said the total variation of p (it is denoted also by Jo l1])- Let p be any
scalar or vector valued Radon measure; the integral of a Borel scalar function g
(defined on Q) with respect to the measure p will be denoted by fQ gdu or fQ gu
and for every scalar non-negative Radon measure X on {2, we indicate by p2 and by
p respectively the absolutely continuous and the singular part of p with respect
to the measure \; when A is the Lebesgue measure we prefer write p, and p,.
The density of u2 with respect to p will be denoted by %‘5 or by &; then we have
p(B) = I %Lf\—d/\ for every Borel set B contained in Q. The support of a scalar

non-negative Radon measure g on § is the set

supp(p) = {z € Q: p(QN By(z)) >0 Vp >0}

2.4 Fixed a positive integer k, we say that a function u € L'(Q;IR™) belongs
to BV¥(;IR™) if its k-th derivative in the sense of distributions is a T *-valued
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Radon measure with bounded total variation; more precisely, the k-th derivative
DFu takes its values in the space of symmetric T *-tensors. The k-th derivative
DFu of u will be decomposed as VFu dz 4+ D¥u. In the case k = 1 these functions
are the BV functions. Using Theorem 1.8 of [68] and [66] section 6.1.7, given u €
BV*(;IR™) we have that V*u is a summable function for every a = 1,...,k—1;
then v € BV*(Q;IR™) if and only if u belongs to W*~11(;IR™) and D*u is a
T2k valued measure. Moreover for every u € BV¥(Q;IR™) the (k—1)-th derivative
V*~1u belongs to BV (Q; T%k71). It is easy to see that BVF(Q;IR™) is a Banach

space endowed with the norm

g = 3 / Veuldz + [ D*ul(9).

0<a<k

We consider in BVF(€;IR™) the weak convergence BV*-w defined in the following
way: a sequence (up)ren belonging to BVF(Q;IR™) weakly converges to a function
u belonging to BV*(£;IR™) (and we use the notation uj, — u) if up strongly
converges in W*~11(f;1R™) and the sequence of the T%*-measures (D¥up)pemn

weakly converges to D*u in the sense of measures; i.e.,

/goDkuhH/chku
Q Q

for every continuous function ¢ with compact support.

In the following proposition we state a compactness result in the space
BV¥(Q;IR™) with respect to the BV*-w convergence.

Proposition 2.1. Let (up)rew be a sequence contained in W*(Q;IR™).

i) If ||un|| gy« < C, then there exists a subsequence (up, Jiew BVF-w converging
to some function u of BVF({;IR™).

i1) If for every j = 0,...,k—1 we have [, Diupde = 0 and if [, |VEu,| < C,

then there exists a subsequence (up,)iezw BVF-w converging to some function u of

BVk(Q;R™).

Proof. 1) It is enough to apply the compactness theorem of BV (see, for instance,
[58]) to (Viup)pew C BV for every 5 =0,...,k— 1.
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i1) It is enough to note that, since forevery j=1,...,k—1 Viup, has mean

value zero, then there exists a positive constant ¢; such that

/ |Viug|dz < Cj/ | Vit iy, |de.
Q2 Q
Then the assertion follows by 7). U

In the following proposition we prove a Taylor’s formula for the BV functions.

Proposition 2.2. Letu € BVE(Q;IR™). Then for a.e. zy € {2

(2.3) lim p""/B - [u(=) —Pk(mo’m)ida: =0

p—0+t IIB - ﬂ?olk

- 1 .

where Pr(zy,z) = Z avau(mo)(w — z¢)® is the Taylor polynomial of degree
V|| <k

k of u with initial point in x,.

Proof. When k = 1 the assertion is proved in [50] Th. 4.5.9 (26). The general case
can be proved using the analogous arguments as in Chapter 6 of [48] and using
the Taylor’s formula for the C* or Wk functions on IR" (see [92], Th. 3.4.1, page
126). O

2.5 Let f : T2% — [0,+oo[ be a Borel function; we will assume that there
exists a constant M > 0 such that

(2.4) 0 < f(&) < M(1 +[£])-

Associated to f, we consider the so-called recession function f°° : Tk — [0, +00]

defined by

t
(2.5) f(é) = limsup —JB—)—
t—stoc 1
We remark that, if f is quasi-convex, then it is also rank-one convex; hence, it is

possible to prove that f is a Lipschitz function (with Lipschitz constant L, which
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depends only on M, n and m) and, when ¢ is a tensor with rank({) =1, f* is
actually a limit.

Let F: BV¥(Q;IR™) — [0, +oo[ be the functional defined by
Jo F(VFu))dz ifue WEL(Q;IR™),
F(u,Q) =

4+ o0 otherwise.

(2.6)

We consider the lower semicontinuous envelope (or relazed functional) F of F with
respect to the L'-topology, which is defined by

(2.7) F(u,Q) =inf liminf | f(VFu,)de,
h—=+o0 Jo

where the infimum is taken on the sequences (up)rev belonging to CHO;R™)
converging to u in the L'-topology. Moreover, we consider the functional F , which
is the greatest sequentially lower semicontinuous (with respect to the BV*-w con-
vergence) functional not greater than F'.

For the main properties and a general survey of the relaxation theory we refer
to the books [20], [30] and [31].

Now, we list some invariance properties of the functional F, which will be
useful in the following and which can be directly proved using the definition of the
relaxed functional: |

i) for every z € R"

F(ru,m.Q) = F(u,0),
where (T,u)(z) = u(z — 2z) and 7.(Q) = z + €;
i) for every polynomial P*~! of degree k — 1 with values in IR™
F(u+ PF1,0) = F(u,Q);
i43) for every p > 0
F(0,,0,9) = p"F(u, ),
where (8,u)(z) = p~*u(pz) and 6,(Q) = p~ €.

3.3 Preliminary results

The first result of this section is a continuity theorem for integral functional on

BVH(;IR™).
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Lemma 3.1. Let Q be an open bounded set with Lipschitz boundary. Let (up)hew
be a sequence contained in W*(Q;IR™) and let u € BVF(Q;R™) such that up

converges to u in the L*-topology. Let us assume that

(3.1) lim |VFun|(Q) = |DFu|(2).

h—+oc

Then for every continuous function g : Tk 5 TR we have

o2 o (e e [ () o

Proof. Repeating k-times an integration by parts, it is easy to see that the measure
V¥u, dz converges weakly in the sense of measures to DFu. Then the thesis follows
from the Reshetnyak continuity theorem (see [63], Appendix and [80], Theorem
3). O

Now we introduce the appropriate notation in order to apply the blow up
technique to BV¥ functions. Let u € BV*(;IR™) and let C be a convex open
subset of IR"; for every zy € C and every p sufficiently small, we consider the
function u, : C — IR™ defined by

(3.3) u,(y) = p~ Fu(my + py).
For every s > 0 set

Cyo(zo) ={sy +zy:y€C} and C,=C4(0).
Then for each 0 <0 <1

(3.4) Dkup(ca) = p""Dku(Cgf,(mU)) and ]Dkup](C’g) = P_n‘Dk”](Cap(“’U))-
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Theorem 3.2. Let u € BVF(Q;IR™) and let £ : Q — Tk be the density of
DFu with respect to |D¥u| ; i.e., € = gg‘s—l. Then, for |D*u|-a.e. zy € 1 we have
|é(z0)| = 1, rank(&(zy)) = 1, and for every C convez bounded open subset of R"

containing the origin we obtain

CDMGe) oy oy e IDRC0)
35 Ry~ ) BT

= +00.

Let zy € supp(|D*u|) such that £(zy) can be written as
E(zp)=10rv®...0v,
k—times

withn € R™, v € R" and |n| = |v| = 1. Let u, be as in (3.3) and let

ko)

= p U —m
vp(y) - 1Dk‘u|(0p(ﬂ30))( P(y) P(y))’

where m, is a polynomial of degree k — 1 with values in IR™ such that

(3.6) /C Viv,(y)dy = 0

for every 7 =0,...,k— 1.
Then for every 0 < p <1 and every 0 < o <1 we obtain

IDku](Cw(‘EU))
DFul(Cylen))

(3.7) |D*v,|(Co) =

Moreover for every 0 < o < 1 there exist a sequence (pj)ner and a non-decreasing

function v :]a,b[— IR, where a = inf (y,v) and b = sup(y,v), such that
yeC yecC

a) pn converges to zero, when h goes to +oo,
b) v,, converges in L' to a function v belonging to BV¥(C;IR™),
¢) |D*v|(Co) 2 o™,
d) D¥u(y) = QU
) v(y) =¢((y, ) ®r®...0v

(k—1)—times

Proof. The Rank One Property of higher order derivatives has been proved by
G. Alberti (see [3], Corollary 4.14). The equalities in (3.5) are a consequence of a
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strong version of the Besicovitch Covering Theorem contained in [10] (Proposition

2.2). In order to prove the second part of the theorem, we state that

>o".

. |D*u|(Cop(20))
(3.8) B SUP Dk ul(C,(20)

By contradiction, we suppose that there exists po > 0 such that (setting w(p) =
|D*ul(C)))
w(op)
w(p)
Then for every h € IN

<g" for every 0<p < po.

w(a®py) _ w(po).
(ahpo)™ = pp

this is a contradiction, since, when h — +oo0, a"py — 0 and by (3.5)

h
im P o
h—+too (o py)”

Then (3.8) is proved. Now by the definition of v, and since 0 < o < 1, we have
that

. B p" by _ |Dku|(Oap(m0))
|D*v,|(Cs) = lechp(iIJo))lD ol(Co) = |DFu|(C,(z0)) <1

Then (3.7) holds and so by (3.8) there exists a sequence (pr)hew converging to 0
such that

(3.9) im |D*v,,|(Cs) > o™.
h—+oc

Setting vy, := v,, , we note that by (3.7) and (3.6) the sequence (vh)new satisfies the
conditions of the Proposition 2.1 ii). Then (passing, if necessary, to a subsequence)
v), strongly converges in W¥~11(Q;IR™) to some function v € BVF(C;IR™) and
D*v;, weakly converges in the sense of measures to D*v. By the compactness the-
orem on the space of measures (passing to some new subsequence) we assume that
the total variations |D*vy| converge weakly in the sense of measures to a Radon

measure g on C. We will prove that p = |D¥v| on C. The lower semicontinuity
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of the total variation implies that |D*v| < p. For every 0 < s < 1 such that
p(8C5) = 0 we have that

DFuy(C,) — D*v(C,) and | DFvi|(Cs) — p(Cs).
Then, for every o < s < 1 such that p(8C,) = 0, we have by (3.9)

(3.10) p(Cs) > o™,
We remark that by (3.4), for every 0 < s < 1

Druu(C) _ Dup(Co) _ D*u(Cpuslza)) o0y
[D*ual(Cs)  [D*up,|(Cs)  [D*ul(Cpys(o))

This implies that D*v(C,) = &(zo)p(Cs) for any o < s < 1 with p(0C;) = 0.
When s — 1, recalling that |é(z)| = 1, we have

[DFv|(C) < u(C) = ID*(C)| < [D™|(C),

i.e. u(C) = |D*v|(C). Since the other inequality holds, we get |[D*v| = p on C. In
particular, by (3.10), we have |D*v|(C;) > ™. Setting v := ——'%I:%, we obtain

|D* ]
_ D) [F et o [1pkeiioy - RO _
L= mi| 17t =2 o)~ iy o
As D*v(C) = &(zy)p(C), this implies that
ko
(3.11) 7(m):—l—g—k1)—|%%:n®v®...®v
k—times

for |D*v|-a.e. z € C. We claim that

(3.12) VEN(y) = (g, ) ®r ® ... ® v,

(k—1)—times

with 9 :]a,b[— IR a non-decreasing function, a = igg(y,l/> and b = sup(y,v). In
y yel
fact, if we denote by ¢(y) = V¥ 1u(y), by (3.11) we get

D¢

l—l—)—qs—l:n@u@...@vz(n@u@...@v)@u

k—times (k—1)—times
for |D¢l|-a.e. z € C. This implies that ¢ satisfies the relation (2.9) of [10] with 7
replaced by @ v ® ... ® v, hence 22 admits a representation as in (3.12). [J
— D]

(k—1)—times
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In the following lemma, we state the so called “fundamental estimate” (see,
for instance, [32] chapter 18, [24], [36]).

Lemma 3.3. Let f: T — [0, +oo[ satisfying the condition

(3.14) Mylé| < f(€) < M1+ [€])

for every & € ThX, for some positive constants My and M,. Let Ay, Ay, Cq1, C2
be open bounded subsets of R™ such that C, CC Ay and Cy C As. Let (up)rew
and (vp)pew be two sequences of C* functions such that

up — U vy — U strongly in L!(Q)

and

limsup/ f(Vkuh)d:c <, limsup/ f(Vkvh)d:c <C
h—+co JQ h—+oo JQ

for a suitable positive constant C. Then there ezists a sequemce of functions
(én)nexs C C¥(IR™;(0,1]), which are 0 in a neighbourhood of IR" \ A; and such
that the functions wy = ¢pup + (1 — dn)vn satisfy

Hmsup/ F(VFwy)dz < limsup F(VFup)dz + lim sup F(V*vy)dz.
h—+4o00 JC NC, h—+oo J 4, h—+4o0 J 4,

Proof. First of all, we note that it is enough to prove that, for every ¢ > 0,
there exists a sequence of functions (¢5)re belonging to Ck¥(IR™;[0,1]) such that,
setting w§ = d5un + (1 — @5 )vn, we have

(3.15)
lim sup / F(VEwS)de < limsup [ f(VFup)dz +limsup [ F(VFvs)dz +e.
h—4o0 JC NC2 h—+oc J 4, h—+co J 4,

In fact, using a standard diagonal procedure, it is possible to construct a sequence
of functions (w3*)rew such that

limsup/ F(VFwet)dz < limsup F(V*up)dz + lim sup F(V*vy)dz.
h—+4o0o JC NC, h—+o0 Ay h—+o0 A,
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For the sake of simplicity, in what follows we omit to write explicitly the depen-
dence on €.

In order to prove (3.15), let § < dist(C1,041) and let
) ) 2
S=0y0N {.’E € 4;: 3 < dist(z,C1) < 56} )

Let us assume that S CC S’ CC 4, U 4, with 85’ Lipschitz.

Fix € > 0, since lim sup f vk up)dz and lim sup/ f(Vkvh)d:v are bounded,

h——+oc h—+o0
by the coerciveness follows that there exists a positive constant M (which depends

only upon C) such that
/;(1 + |V un| + |VEon|)da < M.
Now, let I € IN be a constant sufficiently large such that
M, L(1 + |VEuy| + | VEop | de < el

(for instance I = [%] +1). Now for every ©« = 1,...,1, we set

S; = {‘E e IR": £+—;l~—5<dlst(w301)§ l;_lz }ﬂ02

and we consider ¢; : IR™ — [0,1] belonging to C*(IR") such that ¢;(z) = 1 if
dist(z,C1) < =16, ¢i(z) = 0 if dist(z,Cy) > %’1,3'6 and for every m =0,...,k

l
v il < (5)
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Then, if we set wi := ¢;up + (1 — ¢:)vn, we obtain

ko k k
/;:lucz f(Viwy)dz < /-;1 f(v uh)al:z:—l—/A2 f(V¥vy)dz+

+ M, f (1 + |VEw}|)dz <
S

F(VFuy) dac—!—/ F(VFvy)dz+

Ay
+ M, fS;(l + | mZ:O (m) [quﬁivk_muh VT - ¢i)vk—-m’vh]!)dm <

f(Vkuh)dm + | f(VFu)dz + Mo / (14 |V*up| + | V| )dz+
Ar

i

+M Z / T [VE T — VE Tyl de <

SUS;

f(Vkuh)dac + [ f(VFvp)dz + M / (14 |VFup| + |VFvs|)dz+
.-12 Si

k m
— (4l .
+y M (3> /S |V~ My, — VE 0, |dz.

For every h € IN, there exists an index 15 € {1,...,l} such that, setting wp =
¢i,un + (1 — @i, )vn, we have

1

/ F(VFwy)de < EZ/ F(VFwi)de <
CiNC, l ;=1 Y C1NCy

< F(VFuy)dz + f(Vk'vh)d:x: +e+

Ay
+CZ< ) /lv’“ Moy — V"™ |dz <
m=1
F(VFup)de + [ f(VFup)dz + e+
-11 A,
+C Z ( ) |vk~muh — VFy, e,
m=1

Since S’ is regular, since up — v, — 0 strongly in L*(Q), which contains §, and

since [, |V*(up — vi)|dz < 2C, by the interpolation inequality (see, for instance
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[2]) and by the Proposition 2.1 we obtain that Viu, — Viv, — 0 strongly in
LY(S') for every j = 1,...,k — 1. Taking the upper limit in the previous chain of

inequalities, we get

lim sup/ F(VFwp)de <limsup | f(VFuy)dz +limsup F(VEvy)dz + ¢,
h—4o00 JC,NC, h—+4oc J 4, h—-+toco 4y

hence the thesis follows. ]

Using the previous lemma, we can state that F(u,-) is a measure.

Theorem 3.4. Let f: T:* — [0, +oo[ be a function which satisfies the condition
(3.14) of Lemma 3.3. Let us consider the relazed functional F defined in (2.7).
Then, for every u € BV*(Q;IR™) and for every open subset A of 1, we have

(3.16) M, |D*u|(A) < F(u, A) < My(meas(A4) + |D*u|(4)).

Moreover, for every u € BVF(Q;IR™), the set function F(u,-) is the restriction to

the family of the open sets contained in §) of a o-additive measure on the o-algebra

of the Borel subsets of (1.

Proof. First we note that, for every u € BVF(Q};IR™), there exists a sequence
(un)rew of CF functions converging to u strongly in L! and such that

k — k
h——>+oo/ |VPup|de = | D u|(A).

In fact, it is sufficient to repeat the proof of the Theorem 1.17 of [58], with minor

modifications. Then F(u, 4) < l}}minf/ F(VFup)de < My(meas(A) + | D*ul(4)).
> -1~ OO 4

On the other hand, by the definition of F', there exists a sequence (v )rew in
C*(4;IR™) converging to u in the L!-topology such that

F(u,A) = ’Hm/ F(VFv)dz > M, _}Jmf |VEuy|dz.
Hence, by the semicontinuity of the total variation

F(u, A) > M;|DFu|(A).
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Now, let u € BV¥(Q;R™) and set p(4) = F(u, A). In order to prove the second
part of the theorem, it is enough to show (see [44]) that for all bounded open
subsets A and A’ of 2 we have
(4.2) if A C A', then p(A) < p(A);
(4.b) if AN A" =0, then p(4UA") > p(A) + pu(A");
(4.c) p(A) = sup{p(4') : 4’ CC A},
(4.d) (AU A') < p(A) + u(4).

(4.a) and (4.b) follow easily by the definition of p; (4.c) and (4.d) can be
obtained (in a similar way as in Theorem 3.1 of [10]) as a consequence of the

fundamental estimate proven in Lemma 3.3. O

3.4 Integral representation of the relaxed functional

In this section, we will give the integral representation of the relaxed functional F
defined in (2.7) and of the relaxed functional F defined in section 2.5. We begin
by proving the inequality from above for F; in Lemma 4.3, we will prove the
inequality from below for F. Lemma 4.2 is a technical lemma, which is used in
order to prove the inequality from below. Finally, in Theorem 4.4 we state the
integral representation for F, as a consequence of Lemma 4.1 and 4.2, and in
Theorem 4.5 we state the integral representation for F , applying a perturbation
technique to F.

Lemma 4.1. Let f: T2* — [0, +oo[ be a quasi-convez function and let My, M,
be two positive constants such that

(41) Mylel < F(6) < Ma(1+e]) Ve € T
Then

Al k fo'e) Dfu k
(42) P, < [ £(7"udat [ 1 (i) 122

for every open and bounded subset §1 of IR" with Lipschitz boundary and for every
u € BVE(Q;IR™), where F is the relazed functional with respect to the strong
L' -topology, defined in (2.7).
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Proof. The thesis follows by Lemma 3.1 and by [10] Proposition 4.2, where V and
D, are replaced by V¥ and D¥. U]

Lemma 4.2. Let f: T%% — [0,400[ be a quasi-convez function satisfying (4.1),
let Q0 be an open bounded subset of R™ and let w € BVF(Q;IR™).

(i) Let u be a homogenous polynomial of degree k on IR"™ with values in IR™; i.e.,
there ezists £ € TXX such that

uwi(z) = Z § iy Tip T j=1,...,m.

11,0 ie=1
Then
F(u,Q) > /Qf(vku)dm = f(¢)meas().

(ii) Let Q = Q be a unit n-cube contained in IR™, whose sides are orthogonal or
parallel to the unit vector v € IR™. Let v € BVF(;IR™) be a function such that

VEu(y) = d(ly, ) @re... Qv

(k—1)—times

as in Theorem §.2. Then, if supp(v — u) CC Q, we have

F(u,Q) > f(D*u(Q)).

Proof. (i)Let 1, 2, and Q3 be three open sets such that {1, CC O, cC Qs cc .
Let (up)hew C Ck(ﬂ,IRm) be a sequence such that u, — u strongly in L' and

h_ﬂoo/ F(VFup)dz = F(u, ).

By Lemma 3.3 with C; = Qa, 4; = Q;, Co = 4y = Q\Q and vy = u,

we obtain a sequence (wp)rexw S C*(Q,IR™) converging to w in L' such that
supp(wp, —u) CC Q and

F(u,Q) + /@ f(VFu)dz thsup/Qf(vkwh)dz > f(€)meas(02),

h—+4occ
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where the last inequality is due to the quasi-convexity of f.
By letting ©; " Q the thesis follows.
(ii) Without loss of generality, we may assume that v = e; and Q = [0,1]".
Hence :
VEly(y) = (11 )n®e1 ®...®@er.

Since 1 is a non decreasing function, we may write

oi= Tim (1) — lim $(t) = [41(0,1]) = [D*v](Q) < +oo.

t—1-

Let us consider the function w € BV*(]0, +oo[*;IR™) defined by

w(y) =u(y — [v]) + %[yf]n

where [y;] denotes the integer part of y; and [y] = ([y1], ..., [yn]). We observe that,
when u,(y) = Frw(hy), we have

lurllgyeommy < C

1 u(hy — [hy o [REyF o
un(y) = pw(hy) = *(_‘ﬁ’[—ﬁ + g[ hkl]ﬂ — E!‘yfﬂ =: uy(y1)

strongly in L'; in fact

lwldy = hn1+k /]; . lu(y — [y])ldy =

~ e [, 1y = DIy = 5 [ o)y 0

Let us decompose @Q in h" congruent cubes Q;, in a standard way. Clearly,
|D*up|(Q N 8Q;) = |D*w|(Q) = 0, since D*w does not charge any hyperplane
of the form y; = [ with / € IN and j = 1,...,n. By the properties i), i1) and 17i1)
listed in section 2.5, we obtain

F(u,,@NoQ;)=0
7 (uh] 0, % D _F <;}Ew(hy), ‘;1;10’1[n) — h"F(w,Q) = h"F(x, Q)
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and hence

— 1 —
uh;Q) ZFuha ‘_hnF (uha}oa’};[ ) :F(’U,,Q)
By (i) and by the lower semicontinuity of F(-,Q), we have
Flu,@) = lm Pu,Q) 2 Fluo, Q) =

=F (49kmQ) 2 flan® e ®...® e1) = (D*u(Q))

k—times

since DFu(Q) = D*v(Q) = an ®e1 ® ... ® e1, and the proof is complete. Ol
(-

k—times

Lemma 4.3. Let f : T%* — [0, 400 be a quasi-convez function satisfying (4.1).
Then

(a) Fa(u,Q)Z/;zf(Vku)da:

(6)  Fo(u,Q) > Lfoo (%) | DEu|

for every open and bounded subset O of IR™ with Lipschitz boundary and every
u € BVE(Q;IR™).

Proof. We begin by proving (a). By Proposition 2.2, it follows that

(4.3) lim p—”/ . [ue) = Peorloo2) = Qulzo,2)l g, _ g

p—->0+ ’w _ :D()Ik
for a.e. zy € (1, where
Pa(ene)= S —Vou(e)(e - o0)°
k—‘l U? - a! 0 0 3
0<]a| <k-1
Qule0,2) = 30 SV u(wo)(z — 20)°
E\Zp,T) = o To\T — Ty

la|=k
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are, respectively, the polynomial of degree k — 1 and the homogenous polynomial
of degree k with initial point zg associated to u by the Taylor formula.

Let us fix such an z, and set ug(y) = Qi(zy,py). Let y € By := B1(0),
0 < p < dist(zy,00) and :

u(zo + py) — Pr-1(z0,pY)
pk '

“p(y) =

Since

/ lu,(y) — wo(y)ldy = p" / lu(z) — Pr—1(zy,2) — Qr(zy,z)] do,
B B,(zo)

l:l) — (E()lk

when p goes to zero, it follows by (4.3) that u, converges to wy strongly in
LY(B;,R™).

By #i1) of section 2.5, by Lemma 4.2 (i) and by the lower semicontinuity of
F, we have

limiI}_f p " F(u, By(z)) = lim inf F(u,, B1) > F(uo, B1) > F(VFu(zy))meas(Bi)-

p—0 p—0+

Finally

liminf

ku Ty
p—o+ meas(B,(zo)) > f(Viu(2)

and hence Fqo(u, Q) > [, f(V*u)de. This proves (a).
In order to prove (b), we will previously show the following claim.

CLAIM: Let (vp)hew C© BV*(Q,IR™) defined by

_ P
’Uh(y) - leul(leph(wO)) (uﬂh(y) = Mp, (y))

with
vp — v € BVF(Q,IR™)  weakly in BV*(Q,IR™),
Vi lo(y) =¥ ((y,v))n®v®...QV (3 non decreasing),
(k—1)—times
o" < |DF0|(Q,) < ID*|(Q) <1 (Qe ={oy:y €@})

lim sup |Dkvb,l(Qo) > o
h—-+oc
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as in Theorem 8.2. Let wy, = ¢vp + (1 — d)v with ¢ € C¥(Q), 0 < ¢ <1 and g =1
in a neighborhood of Q,. Then

(i) msup|DF(ws —va)l(Q) < 2w,
h—-+4oc

(32) lim sup leth(SU) < 2w,

h—-+oo

where Sy = Q\ Q, and wy, =1 — o™
Proof of the claim. Since w, — vy, = (1 — @)(v — v3), we have

ID¥(wn — on)|(@) = ID*(1 — $)(v —w)(Q) <
k—1
<0y /Q V9w = Vg + Do — o) (@ @) <

k—1
< C(o) ZL VI — Vivg| + [D*0|(Q\ Q) + D" ual(Q\ Q).

Recalling that vy, — v weakly in BV¥(Q,IR™) and hence Vv, — Vv strongly in
LYQ,R™) for j =1,...,k —1, we have

lim sup | D*(wy — va)|(Q) < lim sup ID*u4|(@\ @,) + ID*|(Q\ Q,) <

h— 4o — 4o

< lim sup (ID*ua](Q) — ID*vil(@,)) + D*0[(Q) ~ ID*0|(Q,) < 2(1 — ™) = 2w,

—+oc

This proves (z). The proof of (iz) is carried on in a similar way, hence the claim is
done.

Now the proof of (b) can be obtained as in [10] Proposition 4.5, where D is
replaced by D*. O]

We are now in a position to give the main result of our chapter. In order to
state the following theorem, we need the notion of quasi-convex envelope of a given

function f, which is the greatest quasi-convex function less than or equal to f.
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Theorem 4.4. Let f : TN — [0,4+o00[ be a Borel function and let My, M be
two positive constants such that

MilE| < f(€) < Mp(1+[€])  Vé € TR

Let us consider the integral functional F' defined in (2.6); then the corresponding
relazed functional in the sirong L' -topology 1s given by

(4.4) F(u,ﬂ):/;zg(vku)dm—kjg;goo <1113§Z|> | D)

for every open and bounded subset Q of R™ with Lipschitz boundary and for every

u € BVF(Q;IR™), where g is the quasi-convez envelope of the function f.

Proof. 1f we consider the integral functional 7 : CH(Q;IR™) — [0, +o00[ of the form
F(u,Q) = [q F(V¥u) de where f has linear growth, the result in [1] assures that
its relaxed functional in W*1(Q;IR™) is given by the functional

Jo 9(VE(u))de ifue WEL(Q;IR™),
G(u,) =

400 otherwise

where g is the quasi-convex envelope of f. Moreover, if we relax G and F' in the
space BV¥(Q;IR™) with respect to the L!-topology, it is easy to see that the two
relaxed functionals do coincide. Hence there is no loss of generality, assuming that
the function f is itself quasi-convex. Then the proof of the theorem follows by
Lemmas 4.1, 4.2 and 4.3. J

It is possible to obtain an integral representation of the relaxed functional
even if the function f is not coercive, and in this case the relaxation takes place
in the weak convergence of BVF(Q;IR™).

Theorem 4.5. Let f: TRX — [0, 400 be a Borel function and let M be a positive
constant such that

(4.5) 0< f(€) < M(1+€]) Vée TRk

m
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Let us consider the integral functional F defined in (2.6); then, for every open and
bounded subset Q of IR™ with Lipschitz boundary and for every u € BVF(Q;IR™),
the corresponding relazed functional F with respect to the weak convergence of
BV¥(Q;IR™) is given by

(4.6) F(u,) :/g;g(Vku)dzv—l-‘/&;goo (lgk“l) |D¥u|

where g is the quasi-convez envelope of the function f.

Proof. Without loss of generality, we can assume, as in the proof of the previous
theorem, that f itself is quasi-convex. Hence (4.6) will be proved with g and g*
replaced by f and f°°.

Let us consider the functional

G(u, Q) /ka dm+/f°°(Dk |>1Dku|

defined on BVF(Q;IR™). It is our purpose to show that G(u,) = F(u,9).
Let £.(€) = £(¢) + elé] and

{fQ F(VFu))de if uw e WEHQ;TR™),
F.(u,Q) =

+o00 otherwise.

Clearly, for every € > 0, f. is coercive; i.e., it satisfies (4.1) for a proper choice of
M, (e) and M>(e); hence, by Theorem 4.4, it follows that

Faw) = [ 5 e+ [ 2 (DeL) 1Dkl

We observe that

£2o(€) = timaup =58 — tim sup T 4 i = () 4 el

t—-+4oc t—-—r—l-oo

hence F.(u, Q) converges to G(u, ) when € goes to zero. Since F. is coercive, we
have that . = F. and hence, from F' < F, it follows that F < F. for every
e > 0. Passing to the limit when ¢ goes to zero, we obtain F(u,Q) < G(u, Q).
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Let (up)new be a sequence in BV¥(Q;IR™) such that up — u weakly in
BV¥(Q;IR™); then, since / |VFup|dz < C, it follows
Q

G(u, Q) < Feo(u, ) < liminf Fe(up, Q) < liminf G(un, Q) + €C.
h—+4oc h—+4o0
Passing to the limit when € goes to zero, we obtain the lower semicontinuity of

G. Moreover, it is clear that, by definition, G(u, ) < F(u,§), hence G(u,) <
F(u, ). This implies

F(u,ﬂ):Lf(V%)dw%—/wa (u’;gm |D*ul

and the theorem is proved. ]




Chapter 4

Relaxation of Quadratic Forms

4.1 Introduction

The study of quadratic forms, and of linear elliptic PDEs, has always been a guide-
line for the understanding of many phenomena related to more general functionals
of the Calculus of Variations. In the framework of the so-called Direct Method,
fundamental issues are the lower semicontinuity with respect to suitable topologies

and the possible extension to larger spaces of a functional of the form

n
(1.1) F(u) = / Z a;j(z)DiuDju dx,
Qi5=1
which is naturally defined for every open set § C IR™ and for every u € C'(Q2),
when A = (a;;) is a symmetric matrix of Borel functions.
A “classical” situation is when, beside the usual boundedness and symmetry
condition, F is coercive, i.e. if the matrix (a;;) satisfies the estimate

n

blz” < Y aija)ziz,
i,j=1
for a suitable constant b > 0. In this case the lower semicontinuity in the space
H()) with respect to the L*-topology is ensured, together with stability with
respect to variational convergence of sequences of such form (see [45] and [85]).
Nevertheless, in some problems, quadratic degenerate forms may occur, e.g.,
in elasticity and in the theory of composite media and homogenization. When a

weaker coerciveness condition of the type

b(z)|2)* < ) aij(z)zizj,

i,j=1
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is satisfied, with b belonging to a proper class of weights, the space where the
problem has a solution is the corresponding weighted Sobolev space. If also this
hypothesis fails, the functional F as defined in (1.1) may not be lower semicontin-
wous in some natural space, hence the problem arises of the characterization of its
semicontinuous envelope.

When € is an open bounded interval (€ C IR), Marcellini in [64]) gave an
explicit formula for the integrand which represents the lower semicontinuous en-
velope in H*, with respect to the L2-topology, without assuming any coerciveness

hypothesis. More precisely, the lower semicontinuous envelope of

(1.2) Fu) = [ at)li(e)dx

is given by

FW=LWW@WH

i) = tim (o [ ate) )

—&

where .

if ¢! is integrable in a neighbourhood of z, and b(z) = 0 otherwise. This formula
has been generalized in [56] for @ C IR" (for a survey of known results see also
[81] IL1.3).

If we consider a sequence of functionals of the type (1.2) (defined using a
sequence of functions ay), an example, given in [65], shows that their variational
limit may be representable in an integral form, but the integration is performed
with respect to a Radon measure different from the Lebesgue measure. A theorem
is given in [23] for the I'-limit of a sequence of general functionals, under proper
conditions on the functions aj, which assures a representation formula involving
a new Radon measure.

In this article we deal with the case of quadratic forms defined on vector-
valued functions of one real variable; i.e., I CIR,u: I — IR*, and we consider

the functional

n

fQ Z a;j(t)uu;dt ifu € WL(I)

i,j=1

(1.3) F(u) =

+ o0 otherwise
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under the only assumption

k
E ZZJ

In this case we have no a priori coerciveness in any (weighted) Sobolev space. A
natural setting on which to consider the lower semicontinuous envelope F of the
quadratic form F is then the space BV (I; IR*) of functions of bounded variation.
We give an integral representation theorem for F' (Theorem 3.6) on BV (I; R):

(14) Fu / Z a;j(t)(Ua)i(t)(ta);(t)dt if lgil(t) € E(t) |is]-a.e.onl

+o0 elsewhere in BV (I; ]Rk),

where (@;;) is a new matrix of Borel functions, E(t) is a linear subspace of RF,
and 4 = 1,dt + @, is the decomposition of the Radon measure @ in its absolutely
continuous part (%,) and singular part (u,) with respect to the Lebesgue measure.
An analogous result holds if the Lebesgue measure is replaced by an arbitrary
positive Radon measure in (1.3) and (1.4).
Moreover, we study the stability properties of functionals of the form (1.4)
with respect to I-convergence, and we prove an integral representation result for |
the I'-limit F' (Theorem 5.1) of a sequence of functionals F}j of the form (1.3)
defined using a sequence of matrices a . Under the condition that

S ali(t)ziz; > bi(t)]2)?

i,j=1

for a sequence of scalar Radon measures (p5) and a sequence of positive integrable
functions (by,) such that fI(bh (1)) 'dun < bwith b > 0, there exist a measure p1, a
matrix (@;;) of Borel functions and a family of linear subspaces G(t) of IR, such
that

(1.5) F(u) = /I D @) an);()(as);(t)dp if 4 € MY

+o0 otherwise,
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where Mf is the subset of M(I;IR") of the measures A such that |A| << p and
dAt/dp(t) € G(t) for p-a.e. t € I.

The proof utilizes the representation results of Bouchitté (see [16] and [17])
for convex functionals on the space of measures. ‘

Note that we obtain an integral representation for the I'-limit without any
boundedness condition. These result can not be extend when  is contained in IR"

with n > 1, as shown by a counterexample given in [21], further developed in [74].

The plan of the chapter is the following. In Section 1 we fix some notations and
we discuss some preliminaries. Since BV (I;IR") is a dual of a Banach space we shall
consider the weak® topology (noted by BV-w") with respect to this duality. Hence
we can use the representation theorems of Bouchitté for the lower semicontinuous
envelope and the I'-limit of convex functionals on the space of measures to obtain
representation theorems on BV (I;IR") with respect to the BV-w" topology.

In Section 2 we consider quadratic degenerate functionals (no coerciveness
condition is supposed) and we look for the lower semicontinuous envelope, which
is still quadratic. By using the results in Section 1, we establish an integral rep-
resentation formula, involving a new matrix and for every ¢ € I a linear subspace
E(t) of IR". More precisely, the relaxed functional on a function u is finite (and
representable with this new matrix) if the singular part of the gradient of u be-
longs to E(t) for a.e. t € I. Loosely speaking, E(t) is the set of the directions along
which « can jump in the point ¢t € I.

Section 3 contains some examples which illustrate that, while in the case
of semicontinuous dependence of the matrix on the point it is possible to give
explicitly E(t) and A(t), in the general case it is not possible to give an easy
characterization of the matrix and of the subspace.

Finally Section 4 is devoted to state an integral representation formula for
the I-limit of quadratic functionals on BV (I;IR™). This representation involves a
new Radon measure. Moreover, we prove that the functionals of the form (1.3) are

dense in the class of functionals which can be represented as in (1.5).
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4.2 Preliminaries

The letter I will denote in the sequel a fixed bounded open interval of IR. We
denote by Co(I;IR") (resp. C°(I;IR™)) and by C.(I;IR™) (resp. C(I;IR")) the
space of the IR"-valued continuous (resp. C*) functions defined on I which vanish
at the endpoints of I, and with compact support respectively.

The space BV (I;IR") of the functions of bounded variation is the space of all
functions v € L{T.(I;IR™) whose distributional gradient @ belongs to M(I;IR")
(if n = 1 we use also the notations BV(I), as well as C.(I), Co(I) and L!(I)).
The total variation |#| of the measure © on a Borel set B will be denoted by
J li]. Moreover the integral of a Borel function f with respect to this measure
will be denoted by [ flii|. Fixed a measure A € M™(Q), for every function u €
BV(I;IR") we consider the decomposition & = 1)d\ + @) of the measure @ in
its absolutely continuous part and singular part with respect to the measure A.
When A is the Lebesgue measure we use the notation w as © = 1,dt -+ 1; moreover
if w e WH(;IR™), with abuse of notations, we use also 7 in order to note the
Radon-Nikodym derivative 2,. On BV (ZI;IR") we shall consider the norm

oy = el + | il
On the space BV (I;IR") we can consider a weak* topology (in some text referred to
simply as the “weak” topology of BV'); in fact, the space BV (I[;IR") ~ (BV(I))"

is (isometric to) a dual of a Banach space, as shown in the following lemma.

Lemma 2.1. Let ¥ = L!}(I) x C,(I) endowed with the norm ||(f,é)||y =
max{|| ¢,} and let Z be the closure of the set {(x,x) : x € C}. Then
BV (I) 1s (isometric to) the dual of the Banach space Y/Z.

Proof. (Dal Maso [34]) It is easy to check that Z+ = {(u,%) : v € BV(I)} C
L>(I) x M(I)=Y" (endowed with the dual norm ||(u, p)|ly~ = [Ju|lL= + |u](I)),
and that Z1 is isometric to (Y/Z)* (see [46], Exercise 11.4.18(b)). Denoting the
Z-equivalence class of (f,¢) € Y by [f, ¢], the isometry u — ®, between BV (I)

and (Y/Z)" is defined by
2. (1,6 )—/fudx+/d>u

for every u € BV(I), f €L'(I), and ¢ € C,(I L]
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The weak® topology on BV (I), that we shall denote by BV-w" , is then de-
fined as the weakest topology on BV (I) for which the maps v — ®,([f,¢]) are
continuous for every f €L'(I), and for every ¢ € Co(I).

With a similar notation as above, if ¥ € C,(I) and g € M(I), we set ¥, () =
J;¥u. The usual weak® topology on M(I) is then defined as the weakest topology
on M(I) for which the maps p — ¥,(¢) are continuous for every ¢ € C,(I).

Let us define the subspace

BV.(I;IR") = {u € BV(I;IR"): /
I

u(t)dt = 0} .

Let us remark that in order to restrict the BV-w* topology on BV, (I) it is sufficient
to consider the maps ®,([f, #]) when [, f(t)dt = 0, since ®,([f, 4]) = ®u([f+c,¢])

c any arbitrary constant).
y

Lemma 2.2. Endowed with the restriction of the BV-w* topology, the space
BV,(I) is linearly and topologically isomorphic to the space M(I) with the weak”
topology.

Proof. The map T : BV.(I) - M(I), v — Tu = %, is a bijection. Notice also
that we have the 1-1 correspondence between {[f,¢] € Y/Z : [, f(t)dt = 0} and
Co(I) given by [f,#] — ¢ — [ f (where [ f is the primitive of the function f which
vanishes at the endpoints of I); in fact, [f,¢] = [0,¢ — [ f], and hence the inverse
map is given by ¥ +— [0,%]. In order to prove that T is a linear and topological

isomorphism is then sufficient to remark that

T({v € BV.(I) : |2.([f, ¢])| < e}) = {p € M(I) : [¥u(¥)| < e},

whenever [f,¢] € Y/Z with [, fdx = 0 and ¢ € Co(I) such that ¢ = ¢ — J f,and
that from this equality we obtain a correspondence between the neighbourhoods

of 0 (and hence of every point in BV,(I)) in the weak™ topologies. UJ
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On BV(I;IR"™) we shall consider the product topology BV-w* of the weak*
topologies on BV (I).

Given A € M™(I), let us consider the functional F : BV (I;IR™) — [0, +00]
defined by

(2.1) F(u) = /If (t,%(t)) d) if o] << A

+ 00 otherwise.

When A is the Lebesgue measure we have

(2.2) Flu) = [_f(%'ll(t))dt if w e WHi(I;IR™)
+c0

otherwise.

The theorems in the rest of this section will be obtained as a direct consequence

of the Lemmas above, and of the representation results contained in [16] and [17].

Theorem 2.83. Let f: I x R" — [0,+o0] be a Borel function and \ € MH(Q)
such that

a) for every t € I the map z — f(t,z) is convez and lower semicontinuous on

IR_n,'
b) there exists v € L (I; IR™) such that fI f(t,v(¢))dA < +oo.

loc

Let
B= {8 QLR : [ £(,8(0) < +oo)

and let h: I x IR™ — [0, +0c0] be the function, which is lower semicontinuous and

positively homogeneous of degree 1 in the second variable, defined by

h(t,z) = ZEE<¢(t)’ z).

Let us consider the function g : I x R™ — [0, +0c0] defined, for every t € I, by

g(tv ) = [f(t7 )Vh(t7 )]**7

B e
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let F be defined as in (2.1), and let F be the relazed functional of F' in the BV-w*
topology. Then for every u € BV (I;IR") we have

. A .
= . Uy .
(23) Py = [ ot ido)ar+ [ 1 (ngh0) 1)
I I a2
where 4 = 4}dX\ + 4l is the decomposition of the Radon measure 1 in its abso-
lutely continuous part and singular part with respect to the measure X, and 4 /|42
denotes the Radon-Nikodym derivative of the measure u) with respect to its total

variation. Moreover

for A-a.e. t € I.

Proof. By Lemma 2.2 we can identify M(I;IR") with (BV.(I))" ~ BV.(I;IR").
We can consider the restriction of F' to BV, (I;IR"). From Theorem 4 in [16] (which
gives the analogous representation formula on M(I;IR")), we obtain then formula
(2.3) for the relaxed functional on BV.(I;R"). Noticing that F(u) = F(u — [, u),
we eventually obtain the representation on the whole BV (I;IR™). L]

Now we recall the definition of the T'-limit of a sequence of functionals. Let
(X, o) be a topological space, and let Fj, : X — [0, +o0] be a sequence of function-
als on X.

Let us define the I'-lower limit and the I'-upper limit respectively by

(T-liminf F})(z) = sup liminf inf Fj(y)

h—oc UEN (z) h—oo y€U
and
(I-lIimsup F,)(z) = sup limsup inf Fi(y)-
h—soc UeN(z) h—oc VEU
If we have

I- ]jhrninf Fyp(z) = I'-limsup Fy(z),

h—oo

then we say that the sequence (F},) I'-converges at = and that the value F(z) of
the I'- li}minf F)(xz) is the I'-limit of the sequence (F}) at z.
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We say that a functional F : X — [0, +o0] is the sequential T'-limit of the
sequence (F},) (or Fy sequentially T-converges to F') if the following conditions are
satisfied for every z € X:

a) for every sequence (z),) such that z, — z we have F(z) < hmmf Fr(zp);
b) there exists a sequence (z1) such that £, — z and F(z ) = hm Fh(mh) If
(X, o) is a metric space, then the I'-limit coincides with the sequentlal I'-limit.

The I-convergence has been studied by many authors (for an introduction and
an extensive bibliography we refer to [32]). Since it coincides with the convergence
(in the sense of Kuratowski) of the epigraphs of F}, it is called sometimes also
epi-convergence (see [12]).

In the following, we will consider the relaxation and the I'-convergence on
the space BV (I;IR") with respect the B V-w* topology. We observe that when the
sequence of functionals (F},) satisfies a condition of the type

/ |Du| — ¢ < Fy(u),
I

then their I'-limit (or the relaxation) with respect to the BV-w* topology coincides
with the corresponding sequential T-limit (see Remark 2.3 in [23).

Theorem 2.4. Let F}, : BV (I; IR") — [0, 400] be a sequence of convez functionals
such that: :

a) for every h € IN, F3,(0) =0,

b) for every h € IN, Fj is an additive functional; i.e., for every uy,u, €
BV (I;1IR™) such that the measure Du, is orthogonal to the measure Dus we have

Fy(ur +up) = Fy(uy) + Fi(us),

c) there exists a constant b > 0 such that

/I[Dul —b < Fy(u)

for every w € BV(I;IR") and h € IN.

Then there ezists a convexr lower semicontinuous functional F' and a subsequence
(hi) such that F equals both the sequential T-limit and the T-limit of F},, . Moreover
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there ezist two functions g,h : I x R™ — [0, +00] and @ measure p € M () such
that

i) g is lower semicontinuous and the map z — g(t,z) is convez,

1) h is lower semicontinuous and the map z + h(t,z) is convez and positively

homogeneous of degree 1,
111) for every z € IR" and p-a.e. t € I we have h(t,z) = g>(t, 2),

iv) F admits the following representation formula:

. ul .
(2.4) Fw) = [ ot st + [ (020 0)1az),
I I 5
where 4 = ul'dy + ! is the decomposition of the Radon measure @ in its abso-
lutely continuous part and singular part with respect to the measure p, and wh /|ul |
denotes the Radon-Nikodym derivative of the measure ul with respect to its total

variation. Moreover we have

/|Du! —b < F(u).
I

Proof. Asin the proof of the previous theorem, the assertion follows from Theorem

3.11 in [3] which gives a representation formula on the space of measures. OJ

4.3 Integral representation of the relaxed functional

In this section we give an integral representation theorem for the lower semicontin-
uous envelope of a quadratic functional on BV (I;IR"), with respect to the BV-w"
topology.

We begin by recalling the definition, and some properties of quadratic forms.

A non-negative quadratic form f on a topological vector space X is a function
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f: X — [0,+0c0] such that there exist a linear subspace E of X and a symmetric
bilinear form f, : E x E — [0, +o00] such that

folz,z) ifzeFE
o]
+00 otherwise.

We remark that every non-negative quadratic form is a convex function. It is
possible to give an algebraic characterization of quadratic forms by means of the

parallelogram identity as in the following proposition.

Proposition 3.1. Let f : X — [0, +00] be a lower semicontinuous function. Then

[ is a quadratic form iff f(0) = 0 and f(z1 + 22) + f(z1 — 22) = 2f(2z1) + 2f(22)

for every z1,z0 € X.

Proof. The statement is a direct consequence of standard algebraic manipulations
similar to those customarily used to show that any norm satisfying the parallel-
ogram identity can be obtained from a scalar product (see e.g. [90] Ch.1, Sect.5.
Theorem 1). O

Moreover quadraticity is preserved on passing to the relaxed functional and

to the I'-limit, as explained in the following proposition.

Proposition 3.2.

a) Let F' be a non-negative quadratic form. Then the lower semicontinuous

envelope 1s still a non-negative quadratic form.

b) Let (Fy) be a sequence of non-negative quadratic forms I'-converging to a

functional F'. Then F is a non-negative quadratic form.

Proof. See [82]. / Ll

Remark 3.3. Let f:IR" — [0, +oo| be a quadratic form positively homogeneous

of degree 1. Then there exists a subspace E of IR" such that f(z) = xg(z). In fact,
since tf(z) = f(tz) = t*f(z) for every ¢ > 0, we have that f(z) = 0, whenever
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f(z) < +oo. If we define E = {z € R" : f(z) < 40}, then E is a subspace of

IR"; in fact, since f is convex,

z1 + 22
2

%f(zl + z2) = f( )S%f(zl)Jf‘;‘f(Z?)‘

for every 21,2, € E; hence zy + 2, € E; moreover, for every ¢ € IR, f(tz1) = tf(z1)
implies tz; € E.

Remark 3.4. We observe that the recession function f* of a quadratic form
f+ R" — [0, +00] is quadratic. In fact, f>(0) = 0 and, since f(tz) = 2 f(z), for
every zi,z2 € IR" we have

(21 + 22) + (21 — o) :t_ljgixt[f(zl + z2) + f(z1 — 22)]
= t_liinoct[zf(zl) -+ 2f(z2)] = 2f°°(z1) + 2]::00(22)

Then by Remark 3.3, there exists a subspace E of IR" such that > (2) = xe(z2).

We can turn our attention now to the relaxation of a quadratic form in
BV(I;IR"). Let A € M™(Q) and let A(t) be a n x n symmetric matrix of measur-
able functions (a;;(t)) defined on I such that for every z € IR"

n

(3.1) > aij(t)ziz; > 0.

i,j=1
Let F: BV(I;IR") — [0, +o0] be the quadratic functional defined by:

n d L di
/Z aii(t ;; () “J()dA i i) << A

4,j=1

(3.2)
+oo otherwise.

When A is the Lebesgue measure we have

/Zau Jui(t)u;(t)dt  if w e WH(L;IR™)

400 otherwise.
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We shall consider the relaxed functional of F' with respect to the BV-w* topology.

We remark that if A is the Lebesgue measure, then we obtain the same result
if we consider the functional which coincides with F on CY(I;IR™) and equals +oo
on BV(I;IR™)\C*(I;IR"). In fact, it is easy to see that a function u € WL TRY)
can be approximated (using convolution and truncation arguments) by a sequence

of C' functions (up) such that uy converges to u in BV-w" and F(u;) converges

to F(u).

The following lemma will be useful in the proof of Theorem 3.6.

Lemma 3.5. Let A € M™(Q), let B be a Borel subset of I and let LA IXIR" -
[0,4+0c0] be two Borel functions such that

/I F(tv()dA = / B(t,v(£))dA

for every integrable function v on I with respect to the measure X. Then flt,z) =
h(t,z) for X-a.e. t € B and for every z € IR".

Proof. See for instance [22], Corollary 2.3. Ul

Theorem 3.6. Let A(t) be a n x n symmetric matriz of measurable functions
(@ij(t)) satisfying (3.1). Let X € MH(I) and let F be defined as in (3.2). Then
there ezist

i) a n x n symmetric matriz A(t) of measurable functions (a;;(t)) such that
for every z €¢ IR"

n

Z aij(t)ziz; > Z a;;(t)ziz; > 0,

ij=1 Q=1
it) a Borel multivalued function ¢t — E(t) with values linear subspaces of IR",
such that the relazed functional F of F in the BV-w* topology admits the following

representation formula for w € BV (I;IR"):
(3:3)

Flu) = /IZ a;j(t)(d;});(t)(qlg)j(t)d,\ if ﬁg—q(t) € E(t) |u}-ae. on I

i,j=1

~+o0 otherwise,
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where & = u}d)\ + 42 is the decomposition of the Radon measure 4 in its abso-
lutely continuous part and singular part with respect to the measure X, and ul /]|
denotes the Radon-Nikodym derivative of the measure 1) with respect to its total

variation.

Proof. First we observe that by proposition 3.2 the relaxed functional F is a

quadratic functional and so it is convex; moreover by proposition 3.1

(3.4) F(0)=0
and
(3.5) F(u +v) + F(u —v) = ZF(U) + 2?(1})

for every u,v € BV(I;IR"). We can apply Theorem 2.3 with flt,z) =

Z a;j(t)zizj; then

ivjzl

(3.6) F(u) = / ot ia ())dA + / h (t,’—;%(t)) a2,

where g and h are defined in Theorem 2.3. Let uy,us € BV (I;IR") such that the

measures Du; and Duy are absolutely continuous with respect to A; the formulas
(3.5) and (3.6) imply that

/g(t,dl(t) + ua(t))dA + /g(t,ﬁl(t) — uz(t))d\ =
I

I

2/Ig(t,ﬁ1(t))d/\+2/Ig(t,ia2(t))d)\.

By using Lemma 3.5 we get for A-a.e. t € I and for every z,zs € IR"

9(t 21+ 22) + g(t, 21 — 22) = 2g(t, 21) + 2g(2, 25).

On the other hand, by (3.4) for X-a.e. t € I we have g(t,0) = 0. Therefore for
A-a.e. t € I the map z — g(¢,z) is quadratic.
Let us call A the negligible set of the ¢ for which A(t,-) # ¢*(t,:). Using

Remark 3.3, the map z — A(t,z) is quadratic and homogeneous of degree 1 for
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every t € I\ A. Moreover for every ¢, € A and for every z € IR" let us consider
the function

0 ift<t,
(3.7) uy(t) = {

z ift>t,.

We have F(uy) = h(t,, z); hence, by the quadraticity of F', we obtain the quadratic-
ity of hin 2. Therefore by Remark 3.3, for every ¢ € I there exists a linear subspace
E(t) of IR" such that

(3.8) h(t,z) = xE(1)(2)-
Moreover

9(t:2) = [ inf {f(t2 ) + h(t, )}

n n

= inf aij()(zi —yi)(zj —yi) < > aij(t)zizj < +oo.
YyEE(t) ) iz

Since for A-a.e. t € I the map t — g(t,z) is quadratic and finite, there exists
a positive symmetric bilinear form Q; on IR" such that g(t,2) = Q(z,2) for all

z € IR". Fixed ey,...,e, a base of IR", we have that for every z,w € IR"
Q:i(z,w) = Z ziw;jQ(ei, €j).
1,j=1
Hence we obtain

(3.9) g(t,z) = Z aij(t)zizj,

,j=1

where a;;(t) = Q:(e;, ej). Therefore by (3.6), (3.8) and (3.9) F' admits the repre-
sentation formula (3.3). L
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Remark 3.7. If, in addition to the hypotheses of Theorem 3.6, we assume that
(3.10) F(u) > / |Du| — c,
I

we can take E(t,) = {0} for all ¢, € I. Hence
_ [ 30 asEn,mar il <<
F(u) = 152 ,
4+ oo otherwise.

In fact, if ¢y is an atom of X ; i.e., A({tv}) > 0, then the singular part ) of ¥
with respect to the measure A does not weigh the point ¢,. On the other hand,
if A\({tv}) = 0, let us consider z € E(ty) and the function u, defined in (3.7). By
(3.3) for every k € IN we have F(kuy) = 0; then we obtain

0 = F(kuy) > k/ |Duy| — ¢ = kz —c.
I
If z £ 0 we obtain a contradiction for large k; hence E(t) = {0}.
Proposition 3.8. Let (a;;) and X as in the previous theorem. Let t — G(t)

be a Borel multivalued function. with values linear subspaces of R". Let F :

BV(I;IR") — [0,-+0c0] be the quadratic functional defined by:

(3.11)
- di; , .\ dij s i
F(u) = Iij=1
+ o0 otherwise.
Then

i) there exists an n xn symmetric matriz A(t) of measurable functions (a;;(t))

such that for every z € IR" we have

n n

37 ai(t)zizg > ) @(t)ziz 20,

ij=1 ij=1

i1) there ezists a Borel multivalued function t — E(t) with values linear sub-
spaces of IR",
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such that the relazed functional F' in the BV-w* topology can be represented for
every u € BV (I[;IR") as:

(3.12) A
/ Z Eij(t)(ﬁ;\)i(t)(’d;\)j(t)dA if 12 (t) € G(t) A-a.e. on I
_ =1
Flu) = and !Zi‘(t) € E(t) |i}-a.e.
+00 otherwise.

Proof. As in the proof of Theorem 3.6, F' admits the representation formula (3.6)
with h(t,z) = xg@u(z) and g such that for d-ae. t € I the map t — g(t,z2) is
quadratic. Since now

n

f(t,z) = igz:l a;ij(t)z;iz; if z € G(t)

400 otherwise.

Then

g(t:2) =[ inf {f(t:z —y) + Rty =

n

inf a;i(t)z; —y; N z; —y;) ifze€ Gt
_ !/EE(t)n(Z'i—G(f))ijZ:l J( )( y)(] y.}) ()

+ o0 otherwise.

Since for A-a.e. t £ I the map z — g(t,z) is quadratic and finite on G(t), there

exists a symmetric matrix of measurable functions a;;(¢) such that

n

> G@(t)ziz; if 2 € G(2)

9(t,2) = § 5=
4+ o0 otherwise.

Moreover for A-a.e. t € I and z € G(t) we get

n n
> @i(t)niz; = g(t,2) < f(t,2) = 3 aij(t)zizy.
b=t ij=1
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Corollary 3.9. Let (a;ij), A, G(t) and F as in the previous proposition. We

assume also that

n

(3.13) D aij(t)zizg > b(t)|z)?

Lj=1

with fI(b(t))—ld/\ < 4o0. Then the functional F is lower semicontinuous with
respect to the L' topology.

Proof. We consider the relaxed functional F(u). By Proposition 3.8 it can be
represented as in (3.12). As in Remark 3.7, since (3.13) implies (3.10), we can
assume that E(t) = {0} for all t € I. Moreover

n n T

D @ij(t)ziz; = Ei%f(t) aii(t)(zi —yi)(z —yi) = > aij(t)ziz;.
ij=1 R ij=1

Therefore F = F. ]

4.4 Study of the set E(¢) and of the matrix A(¢)

The set E(t) is the vector subspace of IR" of the directions along which v “may
jump” in t. We want to give a description of the set E(t). We shall restrict to the
case when A is the Lebesgue measure, the general case being treated in the same
way.

Remark 4.1. When the dependence of the matrix 4 on the variable ¢ is lower
semicontinuous, it is possible to give a characterization of the subspaces £(t). Let
us define

(4.1) E(t) = {z € R" : A(t)z = 0};

it is easy to see that for a.e. ¢ € I the recession function of the map z — (A(t)z,2)

is given by Xf(t)(z)' Hence by Proposition 10 of [16] we obtain

E(t) = E(t) for ae. te .
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Moreover we have

(4.2) A(t) = A(t) for a.e. t€ 1.

In fact, by Theorem 2.3 we get

(4.3) (A(t)z,2) = yég”(fl(t)(z —¥),z—y).

Then (4.2) follows from (4.3). In the general case, E(t) D E(t) for ae. t € T (see
Proposition 7 and Proposition 8 of [16]).

Proposition 4.2. Lett € I; then we have
(4.4)
i) BE(t) O{v € R" : 3(u.)ju. € CH((t —e,t +&);IR™), uc(t + €) —u(t—¢g) > v

t+e

t+e ™
/tn. Z a;j () (e )i(t) (i) (t)dt < c,/;_ i<(t)|dt < ¢}
(4.5)
@) B(t) C{v € R" : Jus)jue € CH(t — eyt + ;R ua(t + &) — ualt — £) — o
t+e n
[ ant@ae; 0 <)

i,j=1

Proof. 1) Suppose that there exists a sequence u;, € CH((t — +,t + +);IR"™) such
that

t—!—T‘; n H—ﬁ
3 euti; e < o |
and

1 1 n
u;,(t——ﬁ)—uh(t—kﬁ)—%vém .

Then it is easy to extend (a translation of) us to C*(I;1R") in such a way that

Fup) <e, / [25(2)]dt < c,

-1
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and uj, — u, in L'(I). Since the sequence (un)is bounded in BV, we have (passing
possibly to a subsequence) that u;, — u, in BV. This implies that F(u,) < +oo;
hence I—Z’f—[ € E(t); i.e., v € E(t).

i) Fix t € I;if v € E(t), |v| = 1, and we define

(r) = 0 ifr<t
AT T if 7>t

then we have
’l'Ll, = (’ll,,)g = I/(St,

hence

(d”)ﬁ (t) =v € E(t).

By Theorem 3.6 we have F(u,) = 0. Remark that the relaxed functional of F
in L' is less than F(u,), and hence it needs equals zero. We can find a sequence
uj, € C*(I;IR™) such that up — u, in L! and a.e.,and limy, F(up) = 0. In particular
there exists ¢ > 0 such that

t+(1/h) n
(4.6) LS e o < e

=(1/h) ;524

Moreover, we can suppose (renumbering if necessary the sequence) that u,(t —
i—ll)—->0, uh(t+%)——>u. U

Remark 4.3. If n =1 (hence F(u) = f—11 a(t)|u(t)|*dt), then either E(t) = {0}
or E(t) = IR. It is easy to see (e.g. in [16] Example 5) that E(t) = {0} iff t belongs
to the set I', where

(4.7)

1

I'={t € I:3e > 0 such that a(t) > 0 a.e. on (t—e,t4€), and = € L (t—¢,t4¢)}.
a

We “may have a jump” in ¢ then only if 1/a is “not integrable near ¢t”. Such a

simple description is not possible any more in general if n > 2, because we have

more freedom of choice in the direction of the jump.

We discuss here some simple examples which will illustrate the situation. From
nowonn=2and I =]-1,1][.
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Example 1. Let ay; = 1, Q12 = a9s = as; = 0. Then E(t) = <€2> for all ¢ €
I(*). Hence jumps on the direction of e; are forbidden, while we can jump in the

orthogonal direction ey at every point of I. ]

In Example 1 the fact that aj;' was integrable guaranteed the impossibility
of jumps in the e;-direction. This may suggest that we could obtain a description
of E(t) studying for every v € IR" the real function

(4.8) a,(t) = (i CLij(t)V,’l/j) _1.

i,j=1

This is not the case, as the following example shows.

Example 2. Let a1 = as; = 0,
1 ift<0
a1 (t) = {
0 ift>0,
az2(t) =1 — ay1(¢). Then we have
(e2) <O
E(t)={R*> ift=0
(er) ift > 0.
If v € IR® and vyvy # 0 then

(1/1)_2 if ¢ <0
a,(t) =
(V2)—2 if ¢ > O,

which is clearly in L'. The only two directions v for which a, is not integrable

near 0 are e; and es. ]

(*) We denote by (v) the subspace of IR" spanned by v.
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The previous example suggests that E(t) could be spanned by the directions

for which a, is not integrable. Again, we can give a counterexample.

Example 3. Let us define

a1 (t) = }sint|1/2, az; = (cos t)1/2,

a1y = ag; = —signt|costsint|}/*.

If v € IR? \ {0} the function

-1
a,(t) = (1/12] sin t|'/? — 2u1vpsign t] cos tsin ¢]1/* + 12 (cos t)1/2>

-2
:(1/1| sin t|*/* — vysignt| cost]l/*)

is L! near 0. In fact, if v =+ 0 it is bounded, while if v = 0 then it behaves like
i,

Let us consider the functions u. € C*((—¢,€);IR?) defined by

1 ! 1 t
uer(t) = 2—5/_ lcoss{l/zds Uea(t) = “2?/ Signsicosssinsll/*ds.

We have u.(—¢) = (0,0), u.(e) — (1,0), f_:: |i.|dt < 2, and

Hence by (4.4) we have (1,0) € E(0), despite a, being integrable for all non-zero
v e R O
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Example 4. Let a : I — IR" be a Borel function whose direction is a piecewise

continuous function. We consider the functional

/Z(ai(t)ﬁi(t))zdt ifuc Wl’l(I; R™)
F(’LL) = I =1
+oo otherwise.

Then the relaxed functional F can be represented as:

_ a; (); ()2 dt  if (ﬁ,s)iag t)=0 |&s]-a.e.on A
Fy LZ}()U) > e
+00 otherwise,

where A is the set of all ¢ such that the left-hand and right-hand side limits of a

at £ have the same direction. In fact, it can be seen that

B(t) = {@(t))-L ifte A

R" otherwise

and the integrand function values Z(ai(t)zi)z if t € A and 0 otherwise. U

=1

Now we will discuss some examples in order to describe the matrix g(t) In
the 1-dimensional case (see [17] and [65]) we have that

a(t) iftel
0 otherwise,

where I' is defined by (4.7). In general, as we will see in the following examples,

it is not possible to characterize in this way the matrix _;i(i)

Example 5. Let C be a Cantor-like set contained in I with strictly positive
Lebesgue measure (see for instance [60], Definition 6.62, page 70). Let a1:(t) =
1c(t), a12(t) = a2:(t) = 0 and as2(t) = 1. If we relax the associated functional

ﬂw:LMmW+wmwm+ﬁmew@
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then we obtain

Flu) = /I(ug(t))zdt if up € WH1(I)

+oo otherwise.
In fact, for every ¢ € I we have that E(t) = (e;), a11(t) = @12(t) = @21(¢) = 0 and
a2:(t) = 1. We remark that in this example E(t) # E(t) (see definition (4.1)) and
A(t) # A(t) on the set C which has strictly positive Lebesgue measure. L]

In this example A(?) can be describe in the following way:

A(t)z if z € (E(t))*
A(t)z =
0 if z € E(t).

In general this simple description does not hold, as it is shown in the following

example.

Example 6. Let C be as in Example 5. Let a11(¢) = 21¢(t), a12(t) = as;(t) =
1c(t) and azs(t) = 1. The lower semicontinuous envelope of the functional (asso-
ciated to this matrix)

Flu) = /C 1201 (£))° + 2(ia (1)) (1a (£)) + (tka(£))?]dlt + / (da (1)) 2t

I\C

can be represented as

2 /C(ﬁz(t))zdt + ./I\c(dz(t))zdt if u; € WHI(I)

400 otherwise.

F(u) =

In fact, again E(t) = (e;) for every t € I and a11(t) = @12(t) = @21 (t) = 0, but
@22(t) = 1 — 31¢(t). The proof of Theorem 3.6 suggests a construction of the
“minimizing sequences”. It is clear that it is sufficient to deal with piecewise affine
functions and hence it is enough to show the construction just for a linear function
u(t) = (&1t,&5t). For every h € IN we can find €, > 0, §, > 0 and 2% points
... ,té",,, of I such that

en+6p <t —th Wi:1,...,20
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and
2h

C C | Jithth +enl.
=1

We can construct a function uj, such that
up(0) =0, w3(t)=¢& forevery h € IN

and
—16 if t € [th,th + ey

ap(t) =< & + (6 + 36) it e [th +epn,th +ep + 6]

& otherwise.

The functions uj converge to u in BV-w* and we can check that F(u) =

l.lIIlh F(’LL]L). D

4.5 Integral representation of the I-limit

Now we give an integral representation of the I'-limit of quadratic functionals on

BV(I;R").

Theorem 5.1. Let (A"(t)) be a sequence of n x n symmetric matrices of mea-
surable functions af;"j(t), let b > 0, let (un) be a sequence of measures belonging
to MT(Q) and let (by) be a sequence of positive functions in L(I) such that
fI(bh(t))_ld,LLh < b and

(5.1) bh(t)lz\2 < Z a?j(t)zizj

ij=1

for every h € IN, z € IR"” and for a.e. t € I. For every h € IN let F}, : BV(I;IR") —
[0, +00] be the quadratic functional defined by

h DAY (£ (10 Y if
(5.2) Fi(u) = /I Z aif(t)(uu )i(£)(dg )j(t)dl‘l’ll f ] << pp

+oo otherwise.
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Then there ezxists a quadratic lower semicontinuous functional F' and a subsequence
(hi) such that F' equals both the sequential I'-limit and the I'-limit of F},, . Moreover
i) there exists a measure p € MT(9Q),
ii) there exists a n X n symmetric matriz Z(t) of measurable functions (a;;(t))
such that

Z @;j(t)zizj > 0 for p-a.e. t € I and for each z € R",
]:

ij=1

ii1) for p-a.e. t € I there exists a linear subspace G(t) of R™ such that the map
t — G(t) is a Borel multivalued function,

such that F' can be represented in the following way:

F(u) = /1 Z @i (1)(an)i(t)(ad);()du  if € MY

1,j=1

(5.3)

+00 otherwise,

where ME is the subset of M(I;IR") of the measures A such that |A\| << p and
dA#/du(t) € G(t) for p-a.e. t € I. Moreover there exists a constant ¢ > 0 such
that

(5.4) F(u) > /I}Du[ —c.

Proof. The sequence of the functionals defined by (5.2) satisfies all the hypotheses

of Theorem 2.4: the hypotheses a) and b) are straightforward, while c) follows

from the integrability conditions on (ﬁ), remarking that we have

: 1
— < 2
‘z‘ 4bh(t) - b[,,(t)lzl ’

and so all functionals F} verify
Fy(u) > /]Dul —b,
I

with b = 1b. Hence (F}) admits a subsequence (F}, ) I'-converging to a functional

F, which can be represented as in (2.4) with a measure p and suitable functions
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h and g. By Proposition 3.2 F is quadratic; hence by using similar arguments as
in the proof of Theorem 3.6 it is possible to prove that for every ¢ € I there exists
a linear subspace E(¢) of IR" such that

(55) h(t,z) = XE(t)(Z)-

As in Remark 3.7, since F'(u /lDul — b we can assume that E(t) = {0} for
every t € I. Note that for every ¢t € I the map z — g(¢, z) is quadratic. Hence for

every t € I there exists a linear subspace G(¢) of IR" and a non-negative symmetric
bilinear form B; : G(t) x G(¢) — [0, +oo[ such that

Bi(z,z) if z € G(t)
g(t,2) = {

+co otherwise.

Now we consider the form @Q; : IR” x IR" — [0,+oo[ which is defined for each
z,w € R" by

Qt(zaw) = Bt(PG(t)Z)PG(t)w)7
where Pg(;) denotes the canonical projection on G(t). The function @ is a non-

negative symmetric bilinear form on IR" and
Qi(z,z) iz € G(t)
g(t,2) =
+oo otherwise.

Fixed e;,...,e, be a base of IR'A', for every z,w € G(t) we have

T

Q(z,w) = Z ziw;Qi(ei, €5)-

i,j=1

Therefore we obtain

n

'E,-jtzizj if ze Gt
(5.6 oty = | 22,0 =

+ 00 otherwise,

where @;;(t) = Q:(ei, ej). The conclusion follows by (2.4), (5.5) and (5.6). ]
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Remark 5.2. We note that in the case n = 1 we can take a(¢) = 1, and the

measure £ the weak limit in the sense of measures of the sequence (a;(t)) 71 dt (see

23]).

In the following theorem we prove that the functionals which admit a repre-
sentation with the Lebesgue measure are in some sense dense, with respect to the

I'-convergence, in the class of functionals representable as in the previous theorem.

Theorem 5.3. Let p € MT(Q), let A(t) and U(t) be n xn symmetric matrices of
measurable functions a;;j(t) and continuous functions ¥, ;(t) respectively and let b be
an integrable function on I with respect to the measure p such that [,(b(¢)) " dp <
+o0. Let us suppose that

a;j(t) = i;(t)b(t)

for every 1,7 =1,...,n, and

D bii(t)zizy > |2

i,j=1

Moreover let us suppose that for p-a.e. t € I there exists a linear subspace G(t)
of R" such that the map t — G(t) is a continuous multivalued function. Let us

consider the functional F' : BV (I;IR") — [0, +oc| defined by

/ Z a;j(t ((@)(uh);(t)dp of [u| << p  and wh(t) € G(t) p — ae.

i,j=1

+o0 otherwise

and assume that F 1s lower semicontinuous with respect to the BV-w" topology.
Then there exists a sequence (A"(t)) of n x n symmetric matrices of measurable

functions afj( ) such that the sequence of functionals defined for every h € IN by

z]l

+00 otherwise

['-converges to the functional F.
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Proof. Let
z a;j(t)ziz; if z € G(t)
ft,z) = ij=1
+o0 otherwise,

and for every k € IN let

fult,2) = h Y aij(t)(z = Pog2)i(z — Payz); + L aij(¢)(Pa (1 2)i(Panz)

i,j=1 i,j=1

where Pg(;) denotes the projection onto the subspace G(t). We remark that for
every t € I and z € IR" (f,(¢,2)) is an increasing sequence which converges to
f(t,z) for a.e. t € I. For every h € IN f; is finite and quadratic; then for every
h € IN there exists a n x n symmetric matrix ¥ (t) of continuous functions ¥/;(¢)
such that

Z P > b(t)|z*.

Let us consider the associated functionals

/ Z P (0)b(E)(ak );(1)(@h);(t)dp if ] << p

1,j=1

400 otherwise.

Corollary 3.9 implies that for every h € IN F}, is lower semicontinuous with respect
to the L*-topology. On the other hand by Beppo Levi’s Theorem for every u €
BV (I;IR") the sequence F},(u) converges increasing to F'(u); hence F, I'-converges

to F' (see for instance Proposition 5.4 of [8]). We remark that we can write

/}:¢ dul Clu]()du if Ji| << B

i.j=1

fh(u

+o0 otherwise,

where 11 = (b(t))"Y/?p.
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Now fix k € IN and let g = (g * pi)dt, where py is a positive symmetric
mollifier. For every k,h € IN let us define

- dii digo
Finln) = /I,z $is(8) g= (8 g (die if ul <<

+ o0 otherwise

- /.r Z Pij(£)di () () (1 = pr)(2)) " dt  if w € WHI(I;IR™)

i,j=1

40 otherwise.

Let us remark that for every h € IN uj weakly converges in the sense of measures

to @, when k£ — +oco. Since

Z bli(t)zizj > |22 > |2] - ¢,

Lj=1

n
. . h . .
the recession function of the map z — E ¥;:(t)ziz; is the function XE;L(t)(Z)’
i,j=1
where

Eh(t) ={zeR": Z ¢f‘j(t)zizj =0},

i,j=1

and by Remark 3.7 we can take Ej(¢) = {0} for all #. Therefore by Theorem 2.2 of
[23] for every h € IN F},; I'-converges to the functional Fn(u). Hence the sequence
(Fh1) I-converges to Fj,, when k — +oo. Now we remark that the sequence (F)

satisfies the condition
Fulw) = [ 1l = 0~ [ o) an = [1a1-«
I JTI JI

moreover, since p; weakly converges to p in the sense of measures, the analogous

condition

Fiu) > /I il - D) 2 / il —

for the sequence (Fj1) holds. At this point, we recall that the I'-convergence with

respect to the BV-w" -topology on the class £ of lower semicontinuous functionals
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H : BV(I;IR") — [0,+0c0] such that H(u) > J; 4| — ¢, is equivalent to the T-
convergence with respect to the L!-topology, then it is metrizable. Then we can
use a general result of the I-convergence theory (see Theorem 10.22 of [8]), and
we can conclude that the I-convergence on £ is induced by a distance. Hence
there exists a sequence (k(h)) such that the functionals Fyiny T-converges to F
for h — +co. The conclusion follows by taking

Fp(u) = Fureny(u)

and
ali () = i () (e * prewy)(£))




Chapter 5

Uniqueness

in Segmentation Problems

5.1 Introduction

Given a function g € L%(Q2), with  an open bounded subset of IR"™, and three real

numbers o, 3,7 € (0, +o0], let us consider the functional

A1) Fyw) = [ [VuPde g [ Ju-gPde +ye(s,)
i Q Q

where S, is the jumping set of the function v and H" ™! is the n — 1 Hausdorff
measure on IR".
We can associate to Fg,a,—, the following minimizing problem

(1.2) min nga(u)

13

where the minimum is taken on a suitable class of functions.

In the case n = 2, the functional defined in (1.1) was proposed by Mumford
and Shah in [77], in order to give a mathematical description to a problem of image
segmentation in Computer Vision Theory.

In [76] and [77], Mumford and Shah conjectured that Fg.ﬁf’ has minimizers,
whose discontinuity set S, is piecewise smooth. In 8] Ambrosio proved the exis-
tence of the solution of (1.2) in the general case of the space dimension n > 1.
Some results about the regularity of S, can be found in [42].

In [37] Dal Maso, Morel and Solimini studied the particular case n = 2, giving
a constructive proof of the existence.

Further results about this problem can be found in [6], [11] and [42].
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Moreover, we recall also that in [84], the one-dimensional case has been con-
sidered; in particular the smoothing properties given by the formulation (1.1) of
the segmentation problem have been studied.

It is possible also to consider the functional
(1.3) : Fg(u) = / lu — gl*dz +yH"7Y(S,)
Q
and the associated problem

(1.4) IIElIl Fj{(u)

We point out that (1.3) can be considered a particular case of (1.1), in which
we restrict our attention to the piecewise constant functions or equivalently in
which we put @ = +00 and # = 1. In the case of n = 2, a constructive method
provides the existence of minimizers for problem (1.4), as proved in [70] and [71].
The general case n > 1 is studied in [28] by Congedo and Tamanini.

However it is not possible, in general, to say that the minimizers for these
problems are unique. To this purpose, let us consider the simple case n =1, Q) =
[0,1] and the function g : [0,1] — IR, g € L°([0,1]) defined by g(z) = X2 1(2),
where x g is the characteristic function of the set E; then the minimum problem
(1.4) for that g has, as umque solutlon the functlon U1 = X4 for 0 < vy < 2
and the function uy, = for v > 37, but for v = both functions u; and us are
solutions.

From these arguments, one could expect that given a function g € L*(Q),
there is uniqueness for these minimum problems except for a “small” set (possibly
countable) of values of the parameter ~.

Unfortunately, this is not the case in general, as the following counterexample
shows.

Let g(z) = X[4,2) +2X(%,1] and consider again the problem (1.4) associated to
this function g; then it is easy to prove that for v > l the unique solution is uy =1

and for 0 < the unlque solution is up = g, but for all the mterval <7< —;—
we have two solutlons U3 = X[J 1] and uy = 2X[U 21+ QX( 2 17 and ﬁnally fory = %
the functions us, w3 and uy are solutions and for v = 1 the functions u;, uz and

u, are solutions.
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Actually, we will see that for every non constant function g € L%([0,1]) it will
be possible to find v € (0, 4+00) such that the problems (1.2) and (1.4) have more
than one solution.

On the other hand, fixed 7 € (0, +00), we can find g € L2([0,1]) such that
(1.4) has more minimizers. In fact it is enough to take, for instance, g = (1 +
2\/5))((0‘%) + X(11), and to observe that F:f’(g) = Fg(g), where § is the mean
value of g on [0,1]. The same property holds also for problem (1.2) (see Corollary
3.5 and Remark 3.6).

These arguments lead us to observe that the best we can hope is the unique-
ness for these minimum problems only if we restrict the functions g or the values
of the parameter v to suitable “large” subsets of L*(Q) and IR™ respectively.

The aim of this chapter is, indeed, to give a rigorous proof of this fact for
problems (1.2) and (1.4), in dimension n = 1.

The main result is, in fact, that for every v belonging to IR™ uniqueness for
(1.2) and (1.4) is a generic property of g € L3([0,1]).

Moreover, for a generic g belonging to L2([0,1]), uniqueness for (1.2) and (1.4)
is a generic property of v € IR™.

To prove these results, we adapt an argument of G. Vidossich in [87] to our
situation, following the outline of Carriero and Pascali in [25].

More precisely, given o > 0 and B > 0, we construct a countable subset
M?" of L*([0,1]), dense in L?([0,1]) and a countable subset T' of IR, such that
for every g € M" and for every v € IR™ \ T', problem (1.2) relative to g has a
unique solution. Then, by means of M", for every v € IR™, we can construct a
dense Gs-subset M? of L?([0,1]), such that when the datum g is chosen in M
the corresponding problem (1.2) has only one minimizer. Really this result can be
improved by constructing a dense Ggs-subset which works for all the parameters
7 of a countable subset contained in IR*. On the other hand, we can construct a
dense Gy-subset of L?([0,1]) such that when g belongs to this set, problems (1.2)
1s uniquely solvable if v belongs to the complement of a countable subset T in
IR* depending on g.

Similar arguments are used to obtain analogous results for problem (1.4).

Since the complement of a Gs-subset of L?([0,1]) is a set of first category
and I'Y is countable it is clear now what we meant by “large” or “generic” in the

previous informal discussion. We observe that, from this point of view, our results
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are in line with the genericity results of [25], [62], [79] and [87].

In particular, the set M" will be constructed by means of a suitable class of
plecewise constant functions. In order to find this class, we will study in detail the
properties of the solution, and in particular its form and its discontinuities, when

g 1s piecewise constant.

The chapter is organized as follows: in the second section we reformulate the
problem in a suitable way to the one-dimensional case, which permits us to reduce
(1.2) and (1.4) to the study of simpler problems, with fixed jump term; in the
third section we state some preliminary results about the form of the solutions of
(1.2) and (1.4) and their continuous dependence on the datum g; finally section 4

contains the main theorems.

5.2 Formulation of the problem

We will write L?, L* instead of L2([0,1]), L=>=([0,1]).
In the following, for 5 € IN, a partition Q = (bs )ijl of [0,1] will be identified

a=={)
with a subset {by,...,b;41} of [0,1] such that 0 = &, < by <...<bji =1.
Fixed 7 € IN, we denote by 'H} the space of all the functions » on [0, 1] such
that there exists a partition Q = (bg){:f) of [0,1] such that the restriction of u

to (bs,bs4+1) belongs to H*((bs,bs41)), for every s = 0,...,7. Therefore, we define
H = U 'H}. For every j € IN we consider also the subset /C} of ’H} composed by
JEIN
the functions which have exactly j jumps.
Moreover, we denote by S the space of all the piecewise constant functions

on [0,1]. It is easy to see that each function v € S can be written in the form

J
w=> B:X(s..,,) With B, € Rfor s = 0,...,5 and j € IN.

s=0
Finally S, is the set of jump points of the function w belonging to H! or S

and # is the counting measure on IR.

Given g € L? and v € IRT, we consider the following functional F¥ : H! —
84 ) g Y
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[0, +o0]

{ bog1 1
(21) Fi(u) =Y /; (u')?dz + / (u — g)Pde + 7#(5.)

s=0

where [ = #(S,); it is easy to see that the functional depends only on u and not

on its representation. Moreover we consider the functional F.;’ : S — [0, +00]

Fi(w) = [ (u—g)de +7#(5.)

0

and the associated problems:

(2.2) min{FJ(u): v e H'}
and
(2.3) min{ﬁg(u) tu €S}

we note that (2.1) is obtained by (1.1) with a = 8 = 1.
We note that all the results we are going to prove still hold for finite o and 8
different from 1, because it is possible to reduce the general functional to our case.
We observe that the existence for this problems will be discussed in the fol-

lowing.

We point out that the results we are going to obtain for problem (2.3) cannot
be derived directly from those for problem (2.2), but since the method is the
same in both cases, we treat explicitly only problem (2.2), remarking, when it is

necessary, the differences and the analogies with problem (2.3).

Given g € L?, for every v € IR" we define
(2.4) m?(y) = min{F4(u) : v € H'};

we shall see later that the minimum is achieved.
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Moreover, we consider the functional G7 : H! — [0, +co] defined by

(2.5) G9(u) = i /bjSH(u')zda: + /Ul(u _ g)de.

=0

For every 7 € IN we consider the problem
(2.6); M{ = min{G*(u) : u € H;}.

The existence for this minimum problem follows by the usual compactness property
of the sequences of partitions and by the standard direct methods of calculus of
variation applied on each subinterval of [0,1].

It is clear that

M{ =inf{G"(u) : v € Kj},

but, in this case, the minimum is not always achieved.

Let us define the non empty subset NY of IN of the integers j for which the
value AJJ,"-’ is attained on at least a function which has exactly 7 jumps.

Moreover, it can be easily seen that 7 € NY if and only if the minimum of G
on K} is achieved and, in this case,

(2.7) min G (u) = min GY(u).
H} K}

For every 7 € IN and for every v € IRT, let us define now
(2.8); m () = MY + ;.

Since m;’-(fy) > 47 and v > 0, it follows that for every 4 €IR" there exists the
mllil mi’(q) Moreover we are going to prove that
JeIN

(2.9) m (y) = minmi(7).
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In fact, given u € H* with #(S,) = J, we have
FI(u) = GY(u) +vj > M? +~7 > minmi(y)
Y J JEIN 7
and taking the infimum with respect to u € H*, it follows that

inf F3(u) > minm? (7).
The opposite inequality is trivial.

In order to prove that such an infimum is attained, we fix v € RY and
we choose 7, € IN such that 51%11{1 mg(fy) = m?o(“/); this implies that there exists
uy € 'H}O such that

(2.10) ief%}f“ Fi(u) = G/ (wo) +vjo 2 F(uo),

hence the infimum in (2.10) is attained on uy and actually it is a minimum, more-
over (2.9) holds.

We note that #(S.,) = ju; in fact if #(S.,) = | < jo we have FI(uy) =
GY(uy) + vl < G?(uy) + vjo and this contradicts (2.10). Therefore u € K}O and
7o € NY. This proves that

(2.11) m?(y) = min mi(y),
jeNe J

for every v € IR", and that, if mi (v) = néllr\l m} () for some v € IR™, then every
jEN

minimizer u, of problem (2.6);, has exactly j, jumps,i.e. u € IC}U.
This leads us to define the subset J? of N in the following way:

J9={j e N :3y e RT s.t. mi(v) = nenxll md(7)}

(see figure 1).
Remark 2.1. [t is clear that (2.11) can be rewritten as

212, m?(~) = minm!(y).
(2.12) m(y) = minmj(y)
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Moreover, if j € J9, every minimizer v of problem (2.6); has exactly 7 jumps, i.e.
u € K}. We observe that, by (2.8);, mj(v) has a linear dependence on =, hence
by (2.12) m9(y) is a concave function (see figure 1). Finally we point out that
the sequence (MY )jer is decreasing since H; C Hj for j < k. In particular, if
j € J9, 1t is strictly decreasing; in fact if by contradiction 7,k € J? with 7 < k and
MY = M}, then for every v € R

md(1) = MY +j < M{ + 7k = mi(y)

which implies k& & J7.
We introduce, for every 7 € J9, the non empty subsets of IR
If={yeR" :m(y) = mi(7)}
and
(2.13) I' = {y € R" : 35,j' € J¥, consecutive in J?, s.t. y € 79 NT%}

(see figure 1).

Remark 2.2. It is clear that I‘? is a (possibly degenerate) interval of IR, since

it can be rewritten as

1% = (m? —m§) " (0, +00))

and mY — m']’ is a concave function. Moreover the intervals I‘? with 5 € J7 are non
g
J
I'” is unbounded. Hence for every ¢ # j and every v belonging to the interior of

overlapping, since the angular coefficient of m? is strictly increasing with j, and

I'Y we have m?(y) = mi(y) < mi(y). Given two consecutive elements j and j'
of J7, the equality m%(y) = m (7) is satisfied for at most one v € IR™; finally
we note that I'Y is the set of all the endpoints of the intervals I'Y, hence it is a
discrete countable subset of IRT and the only possible accumulation point is the

point v = 0 (see figure 1).
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Proposition 2.3. Fized v € IR, we consider the non empty subset of J¥

I8 ={j €37 :mi(y) = m?(7)}.

Then m9(vy) is attained on uw € H' if and only if there exists j € J¢ such that u
18 @ minimum point of the problem which defines ]V[;-’. In particular, if there exists
a unique j € J¢ and if the problem (2.6); has uniqueness, then also the problem

(2.2) has uniqueness.

Proof. If j = #(S.) then u € H;. Hence, if m9(y) is attained on u, then

J bt 1
mi) =Y [ Pde+ [ (- gfde 4 i 2 my(a) 2 mi(a)

8]

s=0

which implies that j € J4 and that ]W}f/ is attained on u.
Viceversa, if j € J¢ and ]l/I]g is attained on u, then j = #(S5,) (see Remark
2.1). The conclusion follows by

m(7) = md(y) = MY + vj = G4 (u) + 75 = FI(u).

Corollary 2.4.
(i) If ¥ € T'Y, then problem (2.2) has more than one solution.

(i1) If, for a 7 belonging to the interior of I’g with j € J9, problem (2.2) has
more than one solution, then for all v belonging to the interior of 1—“;1- problem (2.2)

has not uniqueness.

Proof. (i) follows by the definition of I'Y and ]f‘?.
(72) If w1, uy are minimizers of F'%’, then by Proposition 2.3 they are minimizers of
GY, that is for every s = 1,2 G9(u,) = ]\/IJ,'?. Since for every v belonging to the
interior of I‘? we have

]\’IJ{} +795 =m(v),

with j fixed, it follows that u;,u, are minimizers of F7. ]
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Proposition 2.5.  Let Q = (b)) be a fized partition of [0,1] and Hi be

s=0

j
the subset of ’H} constituted by the functions u = Z/GS(”)X(ba,baw)(m) with B, €
s=0

H((by,by11)) for every s = 0,1,...,5. Then the Junctional GY defined in (2.5)

has ezactly one minimizer on H.

Proof. The existence is standard. For the uniqueness it is sufficient to observe that

H}Q is a linear subspace of H! and the functional GY is strictly convex on Hg. [

Proposition 2.6.  Fized a partition (ai)f‘:ol ofy[O,l]; if g is a function of the
k

type g = Zaix(ai,ai+1); where a; € IR for every i =0,...,k, then fired j > k we
=0

have that m?(v) < m;’(*y) for every v € RT, J¥ C {1,...,k} and I'Y is finite.

Proof. Since for every j > k g € ’Hj‘, it follows that ]\,[JQ = 0. Assume by contra-
diction that, given j > k there exists ¥ € IR™ such that mi(y) = m?(?), then

m?(7) =7j > 7k.

But, if we take u = g, we have that F:f.(g) < 7k which is a value strictly less than
m?(¥) and this is not possible.

This implies also that for every j > k we obtain that j ¢ J9; then J7 is finite
and is contained in {1,...,k} and, by (2.13) and Remark 2.2, T'? is the set of points
v € R" such that mi(y) = mi(vy) = m?,(fy), where j and j' are two consecutive

elements of J9. Therefore it follows that I'? is finite and contains at most k points.

O

Remark 2.7." We may analogously define the minimum problem
mi(y) = min{F;?(u) tu € S

moreover we can consider the functional G9 : § — [0, +0co] defined by
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and the associated problem
9 A A . 1
]\J; = min{G’(u) : v € H; NS}

With suitable modifications, we can also introduce the definitions of rh?, N9, J9,
I and f‘;’ relative to the problem (2.3).

Remark 2.8. In order to explain better the previous definitions, we give an easy
example, relative to the functional FY, in which we emphasize those concepts. Let
g(z) = X(:_l,.%)(ﬂ‘:). An easy calculation shows that GY has one minimizer u; on Kj
and one minimizer uy on K3, and that GY has two minimizers u; and ujz on Ki.
Moreover, u; is the minimizer of FJ on H! for 0 < v <7 and uy is the minimizer
of F¥ on H! for v > 7, where ¥ ~ 0,11. This allows us to construct the graph in
Fig. 1.

m ;(¥)

=
o oa
A 4

0.06 0.11 0.16 ¥

Fig. 1
N¢={uv,1,2}, J'={0,2}
MI=~u.22, M7=~0.16, MJ]=0
F=0.11: T?={F}, TI=[F.+ o), TJ=[07].
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5.3 Preliminary results

In this section we state some results concerning the form of a solution of the
minimum problem. In particular, we give an explicit formula, in terms of g, for a
minimum point » € H' of the problem (2.6);, and for a minimum point @ € S
of the analogous problem for the functional without the derivative term, and we
study where such a minimum point can jump and the continuous dependence of
it on the datum g. Moreover we investigate the non uniqueness: in particular we
show how it is possible, fixed g € L? (or v € R™), to construct v € R (or g € L?

respectively) for whose minimum problems have non uniqueness.

Remark 3.1. It is easy to see that, when j € J9, a minimizer u of problem
(2.6); must be of the form

w(@) =Y Bu(2)x(,0.40)(2)

cyj B, is the

where @ = (bg)jH is a partition of [0,1] and for every s = 0,
solution of the Euler equation in the subinterval (bs,b,11) of [0,1], i.e.

s={

(3.1) B.(z) = cs cosh(z — by) + d,(z)

where

eb” ob byt s byt :
cr= g [0 [ aetans [ getar)

b, @

di(e) = /blg(t)etdt—fz—//b(g(t)e"tdt

and cosh is the hyperbolic cosine. Finally, recalling the definition of J7 and Remark
2.1, for every s = 0,...,5 — 1 B, (bst1) # Bypq(bss1)-
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Remark 3.2. In the case of problem (2.3), the situation is even much easier, so

that for j € JY a minimizer function has the form

J
Z'B X (b, bs+l )

where Q = (b,)/1! is a partition of [0,1] and for s = 0,...,J

_ 1 bs-('-l
= t)dt;
b bs+1 — bs /bd a(t)

finally we have that 8, # Bs+1 for every s =0,...,7 — 1.

Remark 3.3. Fixed v € IR", j € J¢ and the solution u(z) =

Zﬁ Z)X (b, b,4,)(z) of problem (2.6);, we have that for every s = 0,...,j and

every function B € H*((bs,bs11))

F (Zﬂs(m)X(bs,bsm)(m)) > FY (

s=1)

if for some s € {0,...,5} we have that 8. # B,. In fact, by Proposition 2.5 the
functional G? defined in (2.5) is strictly convex on H{,, where Q = (b5)’Z}, hence

GY has a unique minimizer on H1,

In the following two corollaries we will show that, arbitrarily fixed the non
constant datum g € L? or the parameter v € IR™, it is possible to choose the
parameter 7 € IR or the datum g € L? respectively such that problems (2.2) and
(2.3) have non uniqueness.

Corollary 3.4. For every non constant function g € L?
(i) there ezists 7 € R such that F2 has more than one minimizer;

(11) there exists ¥ € RT such that Fg has more than one minimizer.
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Proof. Let us fix a non constant function g€ L2,

(z) Let uy be the unique solution of the equation
(32) «—u” +u = g
with the Neumann conditions u' (0) = 0 = u'(1); then by definition M =

ful (uy)2dz + fnl(uu — g)*dz. By (3.2), since g is not constant, also uy is Inot con-
stant; moreover uy € C*([0,1]), hence there exists b € (0,1) such that u,(b) # 0.

Let now v(z) = By(z z)X(0.5)(z) + Bi(z)x . 1)(z), where By and B; are the solu-
tions of the equation (3.2) with the Neumann conditions B,(0) = 0 = By(b) and

ﬂ1 () =0= ﬂl( ) respectively.

We observe that clearly uy does not satisfy the Neumann conditions in [0, 5]
and in [b, 1], hence it follows that G9(v) < G9(uy), i.e.
M = G¥(ug) > GY(v) > M.
This implies that, if ¥ = minT'J, then 5 > 0; since ¥ € I', by Corollary 2.4 (i) we

obtain that F;q has at least two minimizers.

(i1) Let uy = ful g(t dt, then MY = fl(uu - g)Qdm Let v(z) = Box(opn(z) +
B1x(b,1)(z), where By = Z f g(t)dt and B; = T fb t)dt. Since g is not constant,
then for a proper choice of b we have

( [ stoas - /Ulg(t)dt)z o

which implies, after some calculation,
]\7[5,’ = é”(uo) > @”(v) = ]\;[1”

Now, the same arguments used in (i) give that ¥ = min f‘g is strictly positive and

F;’ has at least two minimizers. ]

Corollary 3.5. For every v € IRT there ewists g € L? such that F3 has more

than one minimizer.

Proof. Let us fix g € L?; by Corollary 3.4 (i) there exists 7 ¥ € R* such that F" has
more than one minimizer. We can find o € IRT such that 7 Ya = «; then deﬁmng
= /ou and g = /a7, it follows that aF’( ) = FY(v). This implies that, if

g - . . !
U1,...,%; are minimizers for F;,-, then /au,,...,+/au; are minimizers for Fn,’. O
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Remark 3.6. It is clear that Corollary 3.5 can be proved with the same rescaling
technique also for the functional F 9. Moreover the previous proof shows that there

exists g € C°° (or g piecewise constant) such that F'Y has more than one minimizer.

We want to study now the continuous dependence of the solution of problem
(2.2) on the datum g. We will prove that this dependence holds when problem (2.2)
has uniqueness, and in this case it is a direct consequence of the one-dimensional

case of the results of compactness and lower semicontinuity of Ambrosio in [6].

Lemma 3.7. Let (gn) be a sequence of functions in L? such that g, — g strongly
in L%, Fiz v € RT and assume that problem (2.2) for FY 1s uniquely solvable by
@ € HY. Let (&) be a sequence of functions in H' such that for every n € IN

Fir () takes the minimum value. Then @, — @ strongly in L.

Proof. By the convergence of gn to g in L2, it follows that ||gallzz < Ci-

Since i, is a minimizer, it is easy to verify that FI"(@,) < Fin(u) < Ch,
where Cy depends on Ci and the H!-norm of u.

This implies that there exists a constant Cy depending on Cy and C: such
that ||a/,||z2 + |@nllzz < Cs; moreover #(S;,) £ Ca, hence by a compactness
result due to Ambrosio (see [6] Theorem 2.1), there exists a subsequence (nr)rew
such that ,, — u strongly in L', withw € HL.

To show that @ coincide with @, we apply again Theorem 2.1 in [6] obtaining,
after some calculation,

Fi(u) < lim nf FY(iin, ) <

1 1
< ]}-:m_tnf [F‘{Jl’nk (ﬂ'nk) + / (gnk - g)2d$ + 2/ ({l’nk - gnk)(gnk - g)dm} <
s o U 0
< lim Fine(v) = Fi(v)  YveH'.
This shows that @ is a solution of (2.2) for FY, hence, by uniqueness, @ = 4 and

all the sequence i, converges to u. U

To conclude this section, we want to show that, when the datum g € L? is
piecewise constant, a solution of problem (2.6); (and hence a solution of problem

(2.2)) can jump only where g jumps.
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We note that this fact had already appeared in the examples reported in the
introduction; in general this kind of behaviour is a feature of the minimum points

of F¥, independently of the choice of g, if g is piecewise constant.

Given k € IN, for every partition P = (a;)*} of [0,1] we consider the set Mp

of the functions g of the type

k
g(a:) = Z aiX(ai,a;H)(m)

i=0

with a; € IR for every i = 0,...,k; we remark that Mp is a linear subspace of L?.

k
Lemma 3.8. Let g(z) = Za;x(ahaiﬂ)(m) be a function belonging to M.
=0

Fized j € J9 , and let u be a solution of (2.6); of the type

u(z) = Bs(®)xX (b, 5,00 ()

s=0

where Q = (bs)ii(l) is a partition of [0,1]. Then

{b1,...,b0;} C {as,...,ar}

Proof. We recall that by Proposition 2.6 J? is contained in {0,...,k}.

We argue by contradiction. Suppose that there exist s € {0,...,7} and 2 €
{1,...,k} such that b, € (ai,a;+1). First of all we observe that, since 7 € J,
Bs—1(bs) # Bs(bs), hence we may assume that Gs_1(bs) > Fs(bs) (the other case
follows by analogous arguments) and we can consider the following two cases:

(1) Baca(be) > Balbs) > i,

(2)  Buca(be) > o > Balba).

(The third case a; > Bs—1(bs) > Bs(b.) is similar to the first one).

For every 0 < € < b, — a; we define a function u. : [0,1] — IR by
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(2) = u(z) ifz € (0,b; —€)U(bs,1)

YATI T Bs(bs) if z € (by — €, by).

In the case (1) we note that there exists 6 > 0 such that for every z such that
by, —é <z < b, we have

Bs—1(z) > Bu(bs).
Hence when € < 6 we obtain

b,

6'(u) = 67 < [ [(B.00.) = i) = (Buea(0) — i) =

b,—e¢

b,
= [ 1Bt~ s (@B (b) — @) + (Bics (o) — ailde < 0.
This contradicts the hypothesis that « is a minimizer of GY.

In the case (2) we may consider the following two subcases:

(20 Bar(bs) — s > ai — Ba(by),

(2)y Bs—1(bs) — ai = a; — Bs(bs) > 0.
(The last case B.—1(bs) — ;i < @j — B4(bs) can be studied similarly to the (2),).

If (2), is satisfied, then there exists § > 0 such that for every = with 0 <
b — 6 <z < by we have f;_1(z) — a; > a; — Bs(bs) and B._1(z) > B:(bs). Hence
for every € < § we obtain again GY(u¢) — G9(u) < 0. Now we consider the case
where (2); is satisfied. First we remark that from (3.1) for every = € (b,, a;41) we
have

B«(z) = (cs — ;) cosh(z — be) + a;

and so

Bi(z) = (cs — a;)sinh(z — by);

then since ¢, = (5(bs), we can conclude that .(z) < 0 for every z € (bs,ait1).
Therefore 3, is a strictly decreasing function on (bs, a;+1). Now for every 0 < 7 <
ai+1 — by we define a function v, : [0,1] — IR by

‘ _ Ju(z) if z €(0,b,)U (bs +7,1)
v(®) =4 g, \(b)) if € (b, by +1).

We point out that there exists § > 0 such that for every z with b, < 2z < b, + ¢
we have f,_1(bs) > Bs(z); hence for every n < 6, using (2); and the fact that
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B.(z) < 0 implies that Bs(z) < Bs(bs), we obtain

by +n
G (uy) — GO (u) < /b = Bo(@)[(Be-1(b) — @) — (@ — Ba())]dz =

bs+n
- / [Ba-1(b:) — Ba(@)][84(2) — B, (bs)]dz < 0.

This contradiction concludes the proof. L]

Corollary 3.9. Letg, k and j as in Lemma 3.8 and v € RY. Then the minimiz-

ers of the functional FY with j jumps are at most (j) Moreover the minimizers
of FJ are at most 2*.

Proof. By Proposition 2.5, for a fixed partition Q = (b, )]+1 of [0,1], G’ has

s=f{)

exactly one solution u € Hy; by the preceeding lemma the partitions Q = (bs)i;l,
corresponding to a minimizer of (2. 6); must be contained in the partition P =

(al)fﬁ, and hence they can be at most (2‘) The conclusion follows since J¢ C

k
k
0,...,%k} (see Proposition 2.6) and () = 2k,
{ F( P ) > ;

j=0

]

Remark 3.10. It is clear that if we repeat step by step the arguments used in
Remark 3.3, Lemma 3.7 and Lemma 3.8 cancelling out the term with the derivative

in the functional FJ, we obtain the same results also for F,g

5.4 Some genericity results

In Theorem 4.3 we will prove that for “almost all” g € Mp we have uniqueness

for problem (2.6);, for each 0 < j < k; but to obtain this result we need before
the following lemmas.

J—
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Lemma 4.1. Assume that 0 < a;, < a4, < a;, < a;y, <1 and that g = Xlag,ai,]"

Let us consider for m = 2,3 the following functionals

(4.1)n /“'fm Uu'lz + |u(z) — g(33)12] dz.

ig

Assume that for m = 2,3 wu,, are mintmum points for (4.1),, on H([ai,,a:,,]),
then

a{a

(4.2) /% [lu2'* + Juz(2) — g(2)[*] do </ [lus'? + |us(z) — g(2)[*] dz.

iy Tig

Proof. Since uj is a minimum point for (4.1), it follows that

U,iz

(43) / [lua'|? + Jua(=) — g(2)[?] do < / [lus'|? + fua(z) — g(2)[?] da

ig O'io

Moreover, if we had that

/(li" [lus'|? + us(2) —g(z)*] dz = /'“3 [us'? + |us(z) — g(2)|?] de

iy aig

then it should be u3 = g on (ai,,ai,), that means us = 0 on (a;,,a;,); but by
Remark 3.1 it is not possible, since u3 is a minimum point for (4.1);. Hence it is
clear that

/ai2 [us'|? + |us(z) — g(z)?] dz < /ms [lus'[? + |us(z) — g(z)|?] da

tig . ‘o

and this inequality together with (4.3) gives (4.2). This concludes the proof.
U

Lemma 4.2. Let us fiz a partition P = (al)f‘iul of [0,1] and for any choice of
k
(0gy... ak) € IR**? let us define a function g = Z QiX(a;.a;4,) belonging to Mp.

=)
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Let 7 €40,...,k} and let Q = (qs)i+3), R = (r, )s o be two different partitions of
[0,1] such that Q, R C P. Let us define two functions Q,R:RFFY L 1R by

Z/ u'| d:z:—i—/ ]u—g[%la:}

uEHtj —0)

Q(ay,...,ar) = min [

and
R et I2d d
(00, ) = min Z/ o+ [ o gftda.

where My, and Hi are defined as in Proposition 2.5. Then Q and R are two

different polynomial functions and the set

(4.4) Aor = {(ay,...,ar) € RF: Q(ay, ... yar) # R(aw,...,ar)}
is an open set dense in IRFT!,

Proof. Clearly Q and R are polynomial functions of degree 2 in the k41 variables
Qy,...,ar. The proofis accomplished if we prove that the equality Q(ay, ..., ay) =
R(ay, ..., ax) is not identically satisfied. Since Q is different from R there exists
belonging to {0,...,7} such that g,, = r,,, for every m ¢ {0,...,} and gy # 7pq;
we suppose that ¢;41 < 7/41. By hypothesis there exist 19,%2,13 € {0,...,k} such
that ¢ = 7/ = a;y, qi41 = a;, and 741 = a;,. Let us take now g, ...,0), where
a;j, =1 and an, = 0 for m # 4. Then by Lemma 4.1 with a;, = aj,+1 we have
that Q(au,...,ar) < R(ay,...,ar). This concludes the proof.

U]

Theorem 4.8.  Given a partition P = (a;)f 7} of [0,1], there ezists a subset MY,
of Mp, which is dense in Mp with respect to the L2- topology, and such that for
every g € MY, problem (2.6); has a unique solution, for every 7 € J9.

Proof. Let P = (a;)**! be a partition of [0,1] and let g € Mp. Let j € J9;: by
Proposition 2.6 we have that 0 < j < k. If j = k, then for every g € M the
problem (2.6); has the unique solution g.
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Now we define

Ap = () Aor,
0<j<k Q,RCP
#Q=#R=j+2

where the set Ao is defined by (4.4), and

k
b={geMp:g= Z AiX(araipy) With (@o,...,ar) € Apl

i=0

by Lemma 4.2 and by Baire’s Theorem, Ap is an open set dense in IR**! and
hence M, is dense in Mp with respect to the L?-topology. Moreover for every
g € MY, the problem (2.6); has uniqueness, for every j € J¥ \ {k}. In fact let
g= ZLU QiX(a;,a;4,) D€ a function belonging to M. Then (ap,...,or) € Aor
for every @, R C P, with #Q = #R = 7+ 2 and for every 0 < 7 < k. We suppose
by contradiction that there exist j, € J¢ and two different solutions u,v € ]C}O
of the problem (2.6);, (see Remark 2.1). Let Q and R the partitions associated
to w and v; by Proposition 2.5 Q and R are different and by Lemma 3.8 Q and
R are contained in P. Hence from the definition of Agr @Q(ao,...,ar) must be
different from R(ey,...,ar) , where @ and R are defined as in Lemma 4.2. But
since © and v are minimizers of the problem (2.6),, we have that Q(ay,...,ax) =
M} = R(ay,...,a); this contradiction concludes the proof. ]

Theorem 4.4. There exists a countable set M, dense in L? and a countable

set T in R such that for every g € M" and v € IRT \ T problem (2.2) admits a
unique solution.

Proof. For every k € IN we consider the partition Pj = {0, %, %, ...,1} of [0,1};
hence by Theorem 4.3 there exists a set M dense in M, such that for every
g € MY problem (2.6); has a unique solution for every j € J7. By the density of
characteristic functions in L?, the set

M = UM(,{,

kEIN
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is dense in L?. Moreover by the separability of L2, there exists a countable set

MY C M, which is dense in L?. Let us consider ' = U I'9, where I'Y is defined
geMO
by (2.13). Since, by Remark 2.2, I'Y is a countable set and M" is countable, then

I' is a countable set.

Now, fixed g € M and vy € IR"\T the uniqueness for the problem (2.2) follows
by the uniqueness for problem (2.6);, by Proposition 2.3 and by the definition of
I. U]

In the following theorem we give a “genericity” result: we establish that the

uniqueness of the solution to problem (2.2) is a generic property.

Theorem 4.5. Let us assume that there exists a countable set M, which is
dense in L%, and a countable set T' in IR such that for every g € M" and for
every v € IRY \ T problem (2.2) has a unique solution. Then for every v € IR™
there ezists a Gs-set M7 dense in L? such that for each g € M the solution of
problem (2.2) is unique.

Proof. Let M" be as in the statement of the theorem. We fix v € IRT \ T and
g € L? and define

S(g) = {u € H' : u is a solution of (2.2)}.

We observe that S(g) # 0, since as we have seen, there exists at least one solution

of (2.2). Let us define D : L? — [0, +oo] by

D(g) = sup |[ju—vlLs.
u,vES(g)
This definition implies that (2.2) has a unique solution if and only if D(g) = 0.
Now, we are going to prove that the function D is continuous in the points of
the set M".
Let us fix f € M" and suppose that there exist 7 € IN and a sequence (f)
in L? such that f; converges to f in the L2-topology and

S| =

D(fr) > —, forevery k& IN.
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This implies that there are two sequences (v) and (ur) in S(fx) such that

(4.5) [k —urllr 2

3] =

, for every k ¢ IN.

On the other hand, since f € MY, by hypothesis there exists a unique solution ug
of the problem

min {Fz(u) s u € HY.

Therefore from Lemma 3.7 we can conclude that v; and uy converge to u; strongly
in L'; but this contradicts (4.5). Hence for every f € M" and n € IN there exists
an open neighborhood Uy of f in the L2-topology such that D(g) < % for all
ge Uy.
At this point, if we denote U™ = U U¢ , we have that U™ is an open subset
feme
of L? with respect to the L?-topology. Then let us define M2 = ﬂ U" MZis a

nelN
Gs-set in L? and, by construction, contains MY; so, by hypothesis, M is dense

in L2?. Moreover we observe that, fixed g € M, for each n € IN, g belongs to U™
and so D(g) = 0.

This proves the theorem when v € IRT\T. Let now v € I' and fix v, € IRT\T.
Then there exists a > 0 such that av; = v. By the first part of the theorem, we
know that for every g € M. the problem

L e 2 ! 2
i '1°d +/ — gl*dz + yo#(Su
b L;)/b lu'|*dz /. lu— gl*dz + yo#(5u)

has only one solution. Multiplying this expression by «, defining v = y/au and
taking into account that #(S5,) = #(5,) we obtain that, if f € JaM? = M!,
then the problem

l bogr 1
min {Z/b ’ Iv’!"‘dm+/0 1v—f12dm+v#(5v)}

has only one minimizer. Since \/aM? is clearly a dense Gs-set the proof is ac-

complished. ]
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Corollary 4.6.  If Ty is a countable subset of IRT, then there exists a dense
Gs-set My = such that for every g € Mg, and for every v € T'y problem (2.2) has
uniqueness.

Proof. Tt is enough to define Mr, = ﬂ M’ and to observe that by Baire’s
’ ~€Tg
Lemma the countable intersection of dense Gg-set is still a dense Gg-set. ]

In the following theorem, we shall construct a dense G4-subset of L3([0,1])
such that when g belongs to this set, problems (1.2) is uniquely solvable if v belongs
to the complement of a countable subset 'Y in IR™* depending on g.

Theorem 4.7. There exists a Gg-set M* dense in L? such that for every g € M*
and v € R\ T'Y, where I'Y is countable, problem (2.2) has uniqueness.

Proof. In the previous corollary we may choose in particular 'y = Q™, where Q°
denotes the set of the positive rational numbers and we can define M* := Mr, .
Let us take now g € M*. Since T'y is dense in IR, we have that its intersection
with the interior of I'Y is non empty, for every interval I'}. Moreover, when 7 is
a rational number belonging to the interior of I'Y, by Corollary 4.6 problem (2.2)
relative to g has uniqueness. Hence by Corollary 2.4, we have uniqueness for every
7 belonging to the interior of I'Y and this is true for every h € J9. The proof

follows, recalling that IRT = I'v U ( U int I'} ), where int 'Y denotes the interior

hEJy
ofI‘%. ]

Remark 4.8. It is clear that there is nothing difference in the proof if we

substitute the functional F3 with FE,’, hence the preceeding results continue to

hold.

Remark 4.9. We observe that Theorem 4.7 cannot be improved, that is we
cannot expect, fixed g € L?, to have a unique solution for problem (2.2) for every
v belonging to the complement in IR™ of a countable set depending on g. In fact,
as we saw in the second example of the introduction, there are functions g € L2

for which we have to remove a whole interval of IRT in order to have uniqueness.
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