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Abstract

We develop and extend the existing theory of reheating the
universe after inflation. By exploiting elegant and powerful math-
ematical results we are able to find and classify new channels by
which reheating may proceed. In particular we show that pre-
heating via pure gravitational effects - geometric reheating - can
be extremely efficient. We present new preheating classes and
a spectral method for defining equivalence classes of reheating
models. These results are then immediately applicable in the
strong-coupling limit of realistic theories where reheating occurs
via stimulated effects in many fields. This chaotic enhancement
of the power of preheating leads to enhanced possibilities of un-
usual phenomena such as non-thermal symmetry restoration after
inflation. Further we demonstrate that gravitational waves suffer
a resonant amplification during oscillatory reheating in a man-
ner dual to the scalar field case. Finally we exhibit an electro-
magnetic duality for classical General Relativity which allows us
to map linearised Schwarzschild into linearised Taub-NUT, that
is, linearised pgravito-electric monopoles into linearised gravito-
magnetic monopoles.
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Introduction & meotivation

In his 1937 Nobel Lecture, G. P. Thompsoen said “... The goddess of learning is fabled to have sprung
full grown from the brain of Zeus, but it is seldom that a scientific conception is born in its final form,
or owns a single parent. More often it is the product of a series of minds, each in turn modifying the

ideas of those that came before, and providing material for those that come after.”

Likewise it is rare in physics that conclusive and profound evidence is found in a single experiment
rather than in a slow accumulation of knowledge at centres around the world. Perhaps cosmology and
particle physics provide the only counterexamples to this. The discovery of the (W:h, Z") bosons at
CERN and the temperature anisotropies in the Cosmic Microwave Background (CMB) by the COBE
satellite are two prime examples. Prior to and since the COBE discovery observational cosmology has

largely been in stasis.

The main direction of this thesis, while obviously building on the work done by others, has been
shaped by the potential of the future and lies on the interface between cosmology and particle physics.
The CMB satellites MAP and PLANCK will, in principle at least, map the full-sky CMB anisotropies
to a resolution of 10/ by about 2010, also providing polarisation and cross-correlation data. These
will be supplemented by ground-based and balloon-bourne experiments and the Sloan Digital Sky
Survey (SDSS) and 2dF galaxy surveys. These will provide direct probes of the possible existence
of topological defects, will test whether inflation ever occured and will help determine the nature of
the dark matter. In addition the various gravitational wave telescopes, headed by LIGO, will become

fully operational in the next 4-10 years and will provide a completely new view of the universe.

Each one of these ‘big-science’ projects, offers the possibility of completely altering our view of
the universe. LIGO will fest the existence and nature of gravitational radiation, the final outstanding
test of General Relativity. The 5D5SS will provide an uniﬁrecedented three dimensional view of the
observable universe which will provide amazing constraints on models put forward by theorists. More
importantly, along with the CMB satellites, it will directly test, for the first time, the homogeneity of
the observable universe - the Copernican principle - principally via the Sunyaev-Zel’dovich effect. The
philosophical implications of this are huge. If the Copernican principle is verified, as most expect, the
parameters of owr Friedmann universe should theoretically be determined using all available data, to

an accuracy of around 5 — 10%.

While this serves as a mativation for studying cosmology 1n general, it also holds a great threat
o classical General Relativity, at least as a subject “relevant” to cosmology, and this is a pertinent
influence on this thesis. If the above is true, the years around 2010 will act as a mirror. Research
will either proceed to examination of smaller scales with fixed background cosmology and detailed
modeling of non-linear hydrodynamical physics (cluster scales and beiow)‘or will proceed to much

earlier phases in the universe’s history where there is still freedom to create new ideas while having



14

specific goals to aim at - the explanation of the state of the universe at and after the decoupling of
photons from matter. This thesis has been coherently influenced by these issues and leans strongly
towards the second path, and in particular towards the study of the end of inflation and the reheating

of the universe.

The work in this thesis documents results which have been achieved in collaboration with several
people and published in the following papers: Chapter 3: Stefano Liberati [11]. Chapter 5: Fabrizio
Tamburini [98] and [154]. Chapter 7: Roy Maartens {210}. The work in Chapter 4 is based on the
paper [148], while that in Chapter 6 reflects the articles [153, 149]. The papers [12, 13] are not
included as they concern issues too distant from the main thrust of the thesis, »is.: multi-luid galaxy
formation and approximation theory for the error function, respectively. Other work published before

completion of the thesis are the papers [14]-[17] and [93]

Guide for the reader

Here we make a brief tour of the thesis: Chapter (1) provides an introduction to the CMB, quanéum
field theory in curved spacetimes and the inflationary paradigm. Chapter (2) is dedicated to an
extensive review of reheating and the explosive phase known now as preheating. This is important
reading in the sense that it sets up the basic paradigm, conventions and notation of the field and
provides a platform from which the rest of the thesis departs. Chapters (3,4) and (5) look at systematic
attempts to understand preheating in realistic models of physics, each from a different peoint of view.
Respectively they are concerned with the effects of running of coupling constants and non-minimal
coupling to the curvature, with the classification of all preheating models when the expansion of the
universe can be neglected and then, in Chapter (5), with preheating in strongly coupled theories with
multiple fields. These three chapters are the heart of the thesis.

Chapter (6) examines gravitational wave evolution and amplification through preheating and in
cosmologies which have large components of oscillating dark matter (e.g. axions) or global defects.
Finally, Chapter (7) investigates the duality structure of General Relativity in the covariant formalism,
showing that it processes a remarkable similarity to the duality of electromagnetism and other non-

Abelian gauge theories which are currently providing so much excitement in theoretical physics.

Bruce A. Bassett’
Trieste, Italy
August 1998



Chapter 1

Introduction

and Setting

One never really understands mathematics...
one just gets used 1o 1.

J. von Neumann

It is always the best policy to tell the iruth,
unless, of course, you are an exceptionally good lar.

— Jerome K. Jerome

Only two things are infinite, the universe and human stupidity,
and I'm nol sure about the former.

- Einstein

15



CHAPTER 1. INTRODUCTION AND SETTING 16

1.1 Introduction

As emphasized by many authors, notably by Geroch [18], the Einstein field equations are incomplete
due to the intrinsic differences between the purely geometric left hand side - the Einstein tensor Gy,

- and the “physical” stress-energy temsor T, on the right hand side.

Of course, the contracted Bianchi identities G¥¥;, = 0 link the geometrical “boundary of a bound-
ary is zero” to the conservation of stress-energy, T#”., = 0, but the freedom in constructing the stress

tensor manifests itself in the myriad of approximations to the real universe.

We are particularly interested in field-theoretic and fluid definitions of the stress tensor and will
often use the equivalence between a scalar field and its formulation as a perfect fluid, as is required -
for interfacing with standard results in general relativistic cosmological perturbation theory started
by Landau and Lifschitz in 1946 and continued in a series of fundamental steps extensively laid out
and reviewed in the works by Bardeen (1980) [19], Kodama & Sasaki (1984) [20], Ellis & Bruni (1989)
[21] and Mukhanov, Feldman & Brandenberger (1992) [22] to name but a few.

At a deeper level, the differences between the fluid approach to cosmology and the field-theoretic
approach of particle physicists evidence the fundamental issues and problems of gquantum gravity:
the problem of time, the problem of large quantum fuctuations ete... In the realm of inflation these

issues have largely heen skirted around.

The program of serni-classical quantum gravity developed on the notion that one could treat
spacetime classically while quantising the matter, thereby further increasing the disparity in treatment
of the left and right hand sides of the field equations and despite an extensive body of literature (see
e.g. Birrel & Davies [23]) there is no guarantee that the limiting solutions to this ansatz will be
solutions to the full quantum gravity theory. Indeed, there are strong indications in the recent work
of Ashtekar (1997} [25] that many semi-classical solutions are spurious, or more precisely, that the

domain of applicability of the semi-classical theory is very limited.

Semi-classical gravity becomes even more vulnerable once one allows the universe to have non-
trivial topology. At the classical level this has no effect since GR is formulated purely in the tangent
space and has no global “knowledge” of the topology of the underlying manifold !, Yet the renor-
malised stress tensor is sensitive to spacetime topology and contains global information such as the
scale of compactification of the manifold (the topological Casimir effect). This immediately means
that the Einstein field equations fail to hold [28, 28]. Quantum gravity cannot therefore simply be
a quantization of General Relativity unless (a) non-trivial topologies are excluded, or (b) the true

quantization procedure is not sensitive to topology. {a) implies that our current view of quantum

1Tn classical General Relativity the topology of spacetime is fixed by Geroch’s theorem [26]. Thus gravity is played
off on a manifold of constant, absolute topology much like Newtonian gravity was set in a constant curvature (Hat)
absolute space and time. Quantum effects are expected to allow topology change and imply that the metric becomes
degenerate at the hyper-surface of topology change for Lorentzian signature metrics [27],



CHAPTER 1. INTRODUCTION AND SETTING 17

gravitational processes, founded on the early ideas of Wheeler, are completely wrong, while (b) im-
plies that the renormalisation and regularisation techniques of standard quantum field theory, which

have served us so well, are fundamentally flawed.

(Given these unresalved issues, much of the work on inflation must be considered as dubious since
it has relied heavily on the semi-classical and even purely classical theory of General Relativity.
Nevertheless, current research in semi-classical quantum gravity is very active and is attacking very

difficult issues such as non-equilibrium quantum field theory in expanding universes.

In this chapter we will cover the background needed for the remaining chapters on reheating after
inflation. The reader is assumed to be familiar with General Relativity and basic gquantum field theory
both at the level of a simple post-graduate course. We start with the main observable and cornerstone
of present cosmology: the cosmic microwave background (CMB), which will almost certainly provide

the next major test for the inflationary paradigm.

1.2 The cosmic microwave background and inflation

The discovery of the CMB monopole radiation in 1965 and the positive detection of octopole and
higher order anisotropies in the CMB by the COBE DMR instrument in 1994 are arguably the two
most influential events in modern cosmology. The perfection of the first signalled the beginning of
the end for the steady-state cosmology and marked the rise of the big-bang model, while the second,
the flaws in the perfection, was a seemingly miraculous vindication of pure thought - the inflationary
paradigm. Inflation was originally introduced by Guth, as we will discuss in a following section, to
solve the problems of the standard cosmology that arose from the discovery of the CMB and its

amazing isotropy.

Only later (but not much later) was it realized that quantum fluctuations during inflation could
perhaps solve the other thorny observational cosmology issue: how to make galaxies and clusters of
galaxies in accordance with observations, or in other words “how to get a scale-invariant (Harrison-
Zel'dovich) power spectrum of energy density fluctuations 7” The near constancy of the Hubble con-
stant over a long period needed to solve the horizon problem naturally supplied such scale invariance
since the amplitude of the quantum fluctuations at a given time during inflation just turned out to be
proportional to the Hawking temperature, i.e. = H/2%. where H is the Hubble constant. Inflation
therefore seemed to provide a way to smooth out the universe while simultaneously providing the

perfeet preen-house for seeding good galaxies.

The discovery by COBE of a spectrum of fluctuations (see figure 1.1) consistent with a scale-
invariant spectrum (n = 1.1 £ 0.3 from the 4-year data [30]) seemed therefore to vindicate the infla-

tionary paradigm.
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Figure 1.1: The four-year COBE DMR data. The full data including the dominant dipole (top), the
data with the dipole removed (middle) and the full data afier removal of the galactic plane contribution
{bottom).
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There are a number of weaknesses in this interpretation. Firstly, while inflationary models predict
a nearly scale-invariant spectrum of fluctuations (a truly scale-free spectrum could only result from de
Sitter spacetime from which there is no exit 2}, the natural amplitude of the fluctuations as controlled
by the coupling constants of the theory, was wrong. For example, in one of the simplest models of
the inflaton field ¢, based on a quartic potential V = A¢*/4, the temperature anisotropies predicted
are roughly:

% ~ (10 = 100)vX (1.1)
which, given the COBE results, implied A ~ 10732 — 107" for the self-interaction coupling. Such
small values are found in other simple models too and are a severe embarrassment for a theory trying
to solve fine-tbuning problems. Secondly, scale-invariance is a natural result of scaling and fractal
phenomena, and are typical in statistical physics and in particular in 2nd-order phase transitions
where there are fluctuations on all scales and divergent correlation length of the field. Thirdly there
are competitive models based on scaling networks of topological defects [36] which are ubiquitous in
modern physics based on spontaneous symmetry breaking [37]. Finally there exist no truly convincing
models of inflation that arise without prior thought or insertions by hand, from realistic models of

particle physics.

Indeed, it is now believed [38], that it will be the next generation of microwave background satellites
- MAP ? and PLANCK * - that will provide the final tests of inflation, both in terms of the fiuctuation
spectra (temperature, polarisation & spectral distortions) and the parameters (and validity) of the
FLRW background - (Q, A, Oy, H, ..).

So how is it possible to prove inflation or, what is more likely given the huge number of inflationary
models, falsify its competitors 7 This is a delicate task since the CMB angular spectra depend
sensitively on the cosmological background and the fluctuation spectrum. The basic object of study
are the Legendre transforms of the angular two point functions C(f) of the temperature, polarisation
etc... to yield the CF, Cf respectively defined by (e.g. [39]):

C(6) = > (26 + 1)Ce Wi Pefcos 0) (1.2)
£

and the rms anisotropy is: ,
AT) - 1
o = e (26 + 1)C'£W1 (1.3)
( T T™ims 4“’ Zt:

where Fy are the usual Legendre polynomials, the Cy are derived by angular averaging of the spherical
harmonic coeflicients of the distribution under study, viz. C; = (|azy,|*) and the W; are the multipoles

of the window function specific to the experiment (giving its resolution in f-space).

Typical angular spectra for adiabatic inflationary models (with different dark matter) are shown

as solid lines in figure (1.2). In contrast a typical topological defects spectrum {with non-zero A} is

?Fxcept perhaps due to 2-loop quantum gravity effects which cause A t6 decrease [31]. Then there is still the problem
of how to reheat the universe however.

3Current planned launch date is late in 2000, Web site http://map.gsfc.nasa.gov

tCurrent planned launch date is 2007. Weh site http://astro.estec.esa.nl/SA-general/Planck/
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shown in the same figure as the dotted magenta line. The major difference lies in the nature of the
Doppler, or acoustic, peaks at £ > 150 - adiabatic inflationary models predict muliiple peaks with
the first at around 200/+/Q while defect models typically predict a single peak shifted to larger £ (i.e.

smaller angular scale).

Current and future large scale structure data is shown in figure (1.3) and plotied in figure (1.4) are
the expected accuracies that are expected from the combined CMB satellites (MAP and PLANCK)
and next generation galaxy surveys (2dF and SDSS).

One of the crucial parameters which has come under the spotlight is the spectral index n, defined
via the power spectrum, Pg(k), of primordial fluctuations, the Fourier transform of the spatial two-

point correlation function, defined via:

92

(@(k)2(K)) = 6°(k ~ k') 77

Pa(k) (1.4)

where we have already assumed statistical isotropy and homogeneity in dropping the vector depen-
dence of & and @ iz a typical gauge-invariant scalar metric perturbation, For scale-invariant spectra,

Pp(k) < k" so that dIn P(k)/dInk = n. A scale-free spectrum corresponds to n = 1.

1.3 Quantum field theory in General Relativity

Quantum field theory is elegantly described in the books by Birrel and Davies [23], Fulling {42]
and Friedlander [43], so we will not cover such basic aspects as construction of the Hilbert space of
Foch states, imposition of the commutation relations, Bogoluibov transformations, Greens functions
(which may be familiar anyway from the theory of partial differential equations), time-ordering and

the path-integral approach.

Neither shall we review the recent developments in non-equilibrium field theory since, while rele-
vant to many aspects of reheating after inflation, involve extremely dry and technical details needed
to develop machinery of sufficient power to handle the out of equilibriurn situations and which so
far have only been solved in sitvations of considerable simplicity relative to the full problem. A

phenomenological discussion of the results of this sub-field is included in chapter (2).

Instead we will concentrate on lessons to be learned from QFT in an expanding universe: the
conditions for particle production, the effects of renormalisation and regularisation in curved spacetime

and an overview of de Sitter spacetime as a basis for the inflationary paradigm.

1.3.1 Archetypal examples in quantum field theory

The fundamental object in QFT is perhaps the Lagrangian £, a scalar funcéional constructed from the

" tensor fields of the theory ¥2-£, ; their covariant derivatives and the metric g,y of the background.
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Figure 1.2: Compilation of CMB anisotropy results with horizontal error bars showing the full width
at half maximum of each instrument’s window function and vertical error bars showing the 68% con-
fidence interval. The error bars include uncertainties due to instrument noise, calibration uncertainty,
sample variance from observing only in one part of the sky, and cosmic variance from ohserving
at only one location within the universe. The radiation power spectra are shown for each model
with its best-fit normalization, including SCDM (solid black), TCDM (dashed black), CHDM (solid
red), OCDM (dashed blue), LCDM (solid blue), PCDM (dotted black), BCDM (dotted blue), ICDM
(dashed magenta), PBH BDM (solid magenta), and Strings+-LCDM (dotted magenta). The ICDM,
PBH BDM, and Strings+LCDM models disagree with the slope implied by COBE, 8P, and BAM,
which prefers the adiabatic models. Taken from [40].
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The equations of motion of the fields are then given by variations of the action to yield the Euler-

Lagrange equations (e.g. [44]):

oc ac .
B‘I’a"‘bc"_d - (ama...bc“‘d;e);g ={ (15)

where ; denotes covariant derivative, as per usual and these equations hold for all such fields ¥%¥, 4

of the theory.

Bzample 1: the minimally coupled scalar fleld

By far the simplest and most relevant example for us, the Lagrangian of the minimally coupled
(£ = 0) scalar field with potential V() is:

1
L= §gab¢;a ‘?5‘.5 - V(ﬁb) (1-5)
The equations of motion are then:
av
gt = 1.7
#.apg”" + 54 0 (1.7)
with the associated stress tensor;
Tap = ¢;a¢;b — Janl (1'8)

Ezample B: the non-minimally coupled scalar fleld

The above Lagrangian was not completely general since there was no coupling to the curvature
of spacetime. On dimensional grounds, such a coupling “must” be quadratic in the scalar field: °

—%E(#ER, where R is the Ricel scalar of spacetime. This leads to the modified equation of motion:

¢:ab9ab + %% +ERe =10 (1.9)
with stress tensor [45]:
Tas = Q”;aﬁb;b - gub(%‘ﬁ;m@m - V) + f[gab((?sz);m;m - (ﬁbz)ab - (Rab - %gabR)éz] . (1'10)

K can be eliminated from Eq. (1.9) by using the trace of the unrenormalised Finstein field equations
and Eq. (1.9) to get [45]:

_ BxGé?
¢ — 2

where ¢2 = [87GE(1 — 6€)]~ L. In low curvature regions where R ~ (), such as the present day universe

R [(1 = 66),m ™ — 4V + 666V], (1.12)

on average, even highly non-minimally coupled fields would be difficult to distinguish from minimally
coupled scalar fields, In the early universe or near other curvature singularities, their evolution is
significantly more complex than their minimally coupled counterparts and this can lead to interesting

particle production effects, as we will discuss in chapter (3).

SNote that the choice of sign of £ is highly inhemogeneous in the literature. e.g. Birrel and Davies choose £ to have
the same sign as the mass term so that conformal coupling corresponds to £ = é, a convention which we follow.
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Erample 3: Mazwell electrodynamics

The electromagnetic field can be described perhaps most unambiguously by the Maxwell tensor
Fyp. The Lagrangian is then:

L= ml—é—rF bF“b : (1.12)

where Fap = 2A[q;), As the four-potential. Varying the action w.r.t. the four potential yields the
equations [44, 23]:
Feby =0 (1.13)

which, together with the Bianchi identities Frapye) = 0, fully specify the evolution of the source-free

electromagnetic field.

Ezample {: Charged, minimeal, scalar field

One can choose to represent this as a single complex field or a pair of real scalar fields, ¢; and ga.

If we define ¢ = @1 + igs, then the Lagrangian of ¢ coupled to the electromagnetic field reads:
L= (q5 +ieds)g* (8, — dedy) — V(46) — ——F pFot (1.14)

where e is the gauge coupling, and ¢ denotes the complex conjugate. The equations of motion are
[44]:
B0 + V' ($) + ieds (20 +ieAd) +ied, "¢ =0 (1.15)

and its complex conjugate, and the generalization of equation {1.13}):

—ied($., —iedad) +ied(da +icdad) =0 (1.16)
with the corresponding stress-energy tensor:

1
Tar = QS( a¢ b]+ ( ‘Pu"‘eAW&'*"‘D 35Ab¢+95 bwA b—dpied, ﬁb) ach +e’4, Ab‘i‘ﬁb"‘gabﬁ (1.17)

1.3.2 Conditions for particle creation in expanding spacetimes

To answer the question posed in this subsection: under what conditions is there particle creation in
an curved, expanding spacetime, it is useful to consider what happens to curvature objects under a

conformal transformation of Minkowski spacetime.
Conformal transformations preserve angles between vectors while simply scaling distances:
Gab — Fab = (") gas ' (1.18)

where (1 is a continuous, non-zero and finite real-valued function of the spacetime coordinates. The

geometric objects of the manifold are not invariant in general under (1.18) and are given, in four
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dimensions, by {23] (here the ~ refers to the object w.r.t. the transformed metric Fas):

Rub — Q—ZRab _29—1(0—1);510 - %9—4(92);;:;‘:661: (119)
B = Q_zR_i_GQ—SQ'm;a (1.20)
éabcd = Cabcd (121)

The idea is quite simple. If we consider all metrics which are conformally flat (i.e. all §a; above
such that gqs = 745) then, by definition their Weyl tensor vanishes: Caped = 0. If we then consider
a field (which might be any of the examples presented above) on the new manifold with metric gas,
then there will be no particle production if the equation of motion of the field w.r.t fu; is the same

(perhaps in new coordinates) as in Minkowski spacetime, i.e. if the equation is conformally invariant.

Two examples will suffice. The first comes from Example (2) above where we consider a massive
scalar field with quartic self-interaction %¢* and non-minimal coupling € = . The Klein Gordon

equation before the conformal transformation is:
[A+m®+¢Rl¢+ A% =0 (1.22)
while after the transformation it is (in four dimensions):

[A+m®+ 1R+ Ad8 =
= QA4 LR|$+ mPd+ AgS (1.23)

where A = ¢%V,V, and A is the same object but taken w.r.t. the metric Fo» and é is the field

transformed so as to try and insure invariance. From (1.23) we see that defining:
$=0Q 1 (1.24)

we gel:
Q-? ([A-!— LRIG+A6%) + Q7' m% (1.25)

so that only in the massless m = 0, conformally coupled £ = % case, do we recover the Klein-Gordon
equation (1.22) after the conformal transformation. Introducing a mass for the field generates a
natural length scale for the problem and hence breaks conformal invariance. This is easily seen from
the above equation (1.25), and results in particle production of massive scalar bosons in an expanding

background.

The second example is Maxwell electrodynamics. Maxwell’s equations are conformally invariant
and hence there is no production of photons in FLRW backgrounds. Again giving the photon a mass
breaks conformal invariance which leads us to the Proca equation which allows for production of

particles due to the expansion (see chapter 3 for further discussion of this.)
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1.4 The inflationary paradigm
1.4.1 Lackings of the standard cosmology

Here we will discuss the three main issues to which the standard FLRW cosmology can give no
satisfactory response other than appealing to initial conditions. We then discuss in each case how

inflation impacts on these issues and to what extent inflation can claim to solve them.

The horizon problem

Simply put, the horizon problem stems from the CMB with its near perfect isotropy (1 part in
10® including the dipole and 1 part in 10° without the dipole). Today, the horizon at the surface of
last scattering subtends about 1° in the sky. This means that regions in opposite directions in the
sky had never been in causal contact at a redshift of z = 1200, the approximate epoch for the start of
photon decoupling. Of cousse, the intergalactic medium is reionised and the surface of last scattering
may actually be much nearer in redshift, say z ~ 50, but the problem still remains, although it is less

severe.

Inflation alleviates this problem by hugely increasing the distance between photon decoupling and
the Planck epoch [46], thereby allowing much larger regions of the sky to come into causal contact.
It can never, however, put the whole sky into causal contact with itself and hence there are limits to
how large a temperature contrast across the sky inflation can ‘deal’ with. The question then becomes,
“how likely is it that inflation would start with a temperature contrast small enough thaé it could

solve the horizon problem 7

The isotropy problem

Even if the universe had been in causal contact, there is no gaurrantee that it would have become
isotropic. The set of models which isotropise permanently ® in the set of all possible solutions is of
measure zero [47]. This is easy to understand since it is the nature of gravity to cause inhomogeneity,
it is the arrow of time associated with the increase of gravitational entropy. Hence the isotropi! of the

CMB, v & X-ray background and galaxy distribution at large is a mystery.

While observations do not yet confirm that we are in an almost-FLEW phase, the only known al-
ternatives are the spherically symmetric Tolman-Bondi solutions which violate the almost-Copernican

principle. Either way we are left with fundamental questions without answer,

The flatness problem

Einstein sought a static universe but found that the only way to achieve this was to iniroduce a A-

term. Even then however, it was apparent that this flat, static solution was unstable to perturbations

5Many Bianchi models go through an almost-FLRW phase at some stage but typically diverge away again after a
finite amount of time.
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because the density parameter 2 — oo or 0 with time.

The fact that our universe has lived for around 15Gyr, i.e. 10%° units of the Planck time is a
mystery given that the only dimensionless constant of quantum gravity yields the time scale 5 ~
10~ %5, Of course, any FLRW model with Q < 1 will have this property, but given that observations
bound g € (0.1,2) one can caleulate that Q at the Planck epoch would have had to satisfy [3]:

-1 <107 (1.26)

which is incredible fine-tuning w.r.t. a uniform measure. However, there are purely classical arguments
that a uniform measure is not the correct one to use. Using a Bayesian interpretation of probability, the
correct observational measure appears to be oc 1/|1 — €| [41]. Since this gives a dominant contribution

around £ = 1, it is arguable that there is no flatness problem in the standard cosmology.

However, let us assume that the correct measure is the uniform measure, thereby bringing back the
fine-tuning problem. Inflation alleviates the “fHatness problem” of the standard cosmology by driving
£ towards unity at an éxponential rate. Hence, if @ < 10%° say at the Planck time, then 60 e-foldings
of inflation will drive @ — 1, thus explaining the current closeness of £ to unity. But since we are
using a uniform measure, all values of Q € [0, 00) are equally likely at the Planck epoch. Therefore,
the measure of the set of initial  which lead to models compatible with current observations after a

fintle amount of inflation, is zero, just as for the standard cosmology without inflation [49].

Clearly then, a uniform measure leaves us with no joy. However, this discussion is still salubrious
since almost all discussions of the Aatness problems implicitly assume a uniform measure based on
“common sense” arguments. A more sophisticated approach, pioneered by Hawking and Page [50]
is to try and construct a naturel measure on the initial phase space. The obvious candidate is the
Liouville measure which is volume (probability) preserving. The result of this construction, which is
not without ambiguity [48], is that the flatness problem is not a problem, even without inflation. This
is perhaps a boon since, as we will see later, new inflation cannot claim to solve the flatness problem
anyway. Perhaps the only definite resolution to this issue will come when we have a full quantum

gravity measure, however,

To end this discussion I think it is fair to say that a truly satisfactory resolution to the problems of
the standard cosmology would start with a fully inhomogeneous and anisotropic quantum universe and
show that a nearly flat (i.e.|Q0—1| < 0.8) universe is the only attractor, e.g. asolution along the lines of
Misner’s chaotic cosmology programme [57]. Inflation has, with only two groups of exceptions, always
started by writing down a (typically flat) FLRW line-element and working from there. The exceptions
are the chaotic inflation model of Linde which still requires a nearly homogeneous background, and
studies of scalar field dynamics in anisotropic or inhomogenecus backgrgunds such as the Bianchi
models or G, (n = 1,2) cosmologies which find that inflation only initiates if inhomogeneity is not
too large [51].
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1.4.2 The monopole problem

Essentially all known GUT"s predict monopoles due to the electromagnetic /(1) sub-structure of the
standard model. To see the reason why gives us a good reason to indulge in 2 little algebraic topology.
Symimetry breaking implies going from a theory with a symmetry described by the group G to one with
the smaller group H, G — H. Topological defects in general (domain walls, cosmic strings, monopoles
or textures) occur when the associated homotopy groups m,(G/H) 7 are non-trivial. Domain walls,

strings, monopoles and textures respectively occur when m,(G/H }, n=10,1,2,3 are non-trivial,
Now examine the beautiful exact homotopy sequence between different homotopy Eroups:
= 1a(G) 22 ma(G/H) "2 a1 (H) "2 e 1(G) — .. (1.27)
where the homomorphisms a; are such that:
Im{o;) = ker{ay ) (1.28)
where Im(-) denotes the image of the map and Ker(.) the kernel® of the mapping.

Now it is quite easy to show that if m, (G)=1=ms_1(G), ie. are trivial, then the mapping opny;
is both one-to-one and onto and hence is an isomorphism, so that — becomes equality above and we

have:

Tn(G/H) = a1 (H) (1.29)

The crucial point is that the group H must contain the U(1) of electromagnetism and hence
m(H) = Z since m(U(1)) ~ Z and U(1) ~ 8%, Since the group G is usually taken o be simply
connected and without monepoles, this implies, through Eq. (1.29), that mo(G/H) = Z, and we have

shown fairly generically that GUT’s predict monopoles in breaking down to the standard model.

This then is the monopole problem. Inflation might solve this if the symmetry brealting occurs at
least 20 e-foldings before the end of inflation [129]. It solves the problems, not by bringing monopoles
and anti-monopoles closer together so that they can annihilate, as in the Langacker-Pi mechanism
(see section [3.6.1]) but by diluting their density to such a small amount that they no longer affect

cosmic dynamics,

1.4.3 de Sitter spacetime

de Sitter spacetime provides the archetypal example of an inflationary model and illustrates beautifully

some of the fundamental results common to most inflationary models. But there are some subtleties

"The n-th homotopy group (M) of a manifold M tells one about the “shrinkability™ of closed n-dimensional loops
in M. Thus e.g. 71{8?} = Z - a closed loop around a circle cannot be shrunk to a point, in fact such loops are indexed
by their winding number - 2 topological invariant, In fact we have 7, (S") = Z,

8The kernel of 2 mapping is the set of elements that are mapped to the identity element.
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as well that should not be overlooked. Our aim is to present both of these aspects and then to move

on to more current models based on scalar field dynamics.

Part of the confusion surrounding the de Sitter solution is that many similar objects are given
that name. If for example, one imposes that the energy density > 0 is a constant in space and time

(equivalently that there is a cosmological constant), then the Friedmann equation:

ﬁ+§:% (1.30)
shows that H? — const. as the scale-factor expands. Indeed, the scale factor obeys [31:
a(t) = H lcoshHt K =41 (1.31)
a(t) = H™ K=0 (1.32)
a(ty = H7'sinhHt K=-1 (1.33)

go that asymptotically all solutions approach the X = 0 solution, with #* = 87u/3M ;;’,. What is much

less obvious is that all these solutions actually describe the same manifold in different coordinates.

The simplest interpretation found so far is to embed de Sitter, which is maximally symmetric (10
Killing vectors), into R® with signature +-3. It then takes the form of a hyperboloid (the symmetry
group of the manifold is thus SO(1,4)) which can be given coordinates to make it look open, flat or
closed. These different coordinate systems on the hyperboloid are crucial in defining a good vacuum
[23]. Perhaps the most usefu] in this regard is the flat coordinate system which allows an adiabatic
vacuum to be defined which is well behaved over the whole coordinate chart which, in this case, cover

only half the hyperboloid.

Of course, invariants tell us about the true curvature of the manifold and we find that the Ricci
scalar is:

R=12H? (1.34)
which is positive or negative in de Sitter and anti-de Sitter ® respectively. de Sitter is one of the three
constant curvature spacetimes - the others being Minkowski and anti-de Sitter - and has topology
5% % R3 [44]. We have thus been presented with some of the subtleties of general relativity (and have
skipped over how they affect quantisation on de Sitter spacetitne, see [23]). One more coordinate
similarity will be useful. By changing to coordinates (¢, 7,6, ¢) defined in analogy with Schwarzschild
coordinates the metric takes the interior Schwarzschild form, so that in static coordinates, de Sitter

appears like the inside of a Schwarzschild black hole of radius H*.

This analogy is very useful in understanding the production of quantum fluctuations in de Sitter
spacetime since with the above mapping onto Schwarzschild our problem is equivalent to that of
Hawking radiation at a temperature:

My H
8t 2w

9While anti-de Sitter spacetime plays an important réle in recent advances in string theory [52] it will not be of any
interest to us at this time.

Ty (1.35)
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where M is the mass of the hlack hole. The last step comes from a Wick rotation of the time which
yields a Euclidean metric 5. The finite-temperature Green’s functions then become periodic (anti-
periodic) for bosonic (fermionic) fields and as usual in Euclidean statistical field theory the period,

27 /T, is simply inversely related to the temperature of the fields.

Naively we can understand the implications of this result for the spectrum of density perturbations.
If we consider a scalar field with flat potential (equivalent to a cosmnological constant) then the equation

of motion for the Fourier modes, ¢, of the field is just the Klein-Gordon equation:

dr + 3H i + f;fu- =0 (1.36)
which has the general solution {23]:
b)) = LTl [C(0)HED + Cul) L) (187
H@(x) = H(e)= —\/%e""” (1 + ;1;) (1.38)
where 5 = —H~'e~H* ig conformal time and the H :g?z are Mankel functions. Clearly from Eq. (1.36)

as a(t) — oo, ¢(t) oscillates with longer and longer period and asymptotically is constant. By looking
al the high-frequency limit (which must coincide with quantisation in Minkowski spacetime) we find
C1=0,Ca= -1V k, and one can show that [3]:

b — iH /b2, (1.39)
in the long-time limit.

Physically, this means that modes are excited with variances {(§¢)?) o« 7% which are independent

of time. This leads to our scale-invariant power spectrum, which we can calculate explicitly:

H2
7= =Ta - (1.40)

B
Py(k) = 5 Il

where we have used Eq. (1.4) and (1.39). Note that this is only valid asymptotically and that
at small times, or for large momentum modes k& > 1, the spectrum will have some extra k- and
time-dependence, although it is typically weak because of the no-hair theorem. The no-hair theorem
presents us with another problem: how does one exit the de Sitter state 7 This is the graceful exit
problem. Inflation is so powerful that it never ends and dominates the entire later history of the
universe. There are two ways out of this: (i) either one asks that the de Sitter vacuum tunnels
coherently to a radiation-dominated FLRW spacetime while preserving the isotropy and homogeneity
produced during the de Sitter phase or (i) we invoke scalar field dynamics with a potential which is
not exactly flat, but rather allows a smooth transition to the FLRW state. This smcoth transition to
the FLRW state is exactly the phase known as “reheating” since the super-cooled vacuum phase is
replaced with a very hot radiation FLRW model. Hence we will concentrate on option (ii) from here

an.
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1.4.4 Inflationary scenarios

Having realised that a cosmological constant, or equivalently a scalar field with potential V(¢) = A,
a constant, is not. sufficient, for our cosmological needs, we now find ourselves in the inflation model
building department. Clearly, at the lowest level this becomes a game in which the shape of the
potential is chosen in order to (a) allow the relevant cosmological equations to be solved, (e.g. power-
law inflation where V o &% so a(f) o« #*) (b) match with potentials from particle physics (e.g.
the Coleman-Weinberg potential, axion cosine potential, dual inflation [3, 137], etc..) (c) follow

philosophical guidelines (e.g. chaotic inflation with quadratic or quartic potential).

What is even more disturbing perhaps is that a true theory of inflation will have to come from
a post-standard model of high-energy physics and will almost certainly involve many flelds, so that
the inflaton effective potential will have a large number of possible degrees of freedom. This issue is
particularly pertinent to our discussion of reheating in Grand Unified Theories (GUT’s) as we will
describe in chapter (5). Here however we will content ourselves with a brief overview of old inflation,

new inflation and the chaotic inflationary scenarios.

Scenario I; Old inflation

This is the model of inflation proposed by Guth [24]. In it the universe was in a state of restored
symmetry ¢ = 0 with positive vacuum energy density V(0) > 0, leading to exponential expansion
which cooled the universe and reduced thermal contributions to the potential (see section 1.6) thereby
creating a global minimum at some ¢, > 0 with V{¢.) = 0. This super-cooled state ¢ = 0 is unstable
to fluctuations and after a certain time the field tunnels, via a first order phase transition, through
the barrier to the global minimum at .. At this time inflation ends and the universe is reheated via

bubble wall collisions.

The problems with old inflation were mainly two-fold. Firstly, the bubble of true vacuum could
not grow fast enough relative to the exponential background expansion to cause bubble collisions
to be effective and the transition never occurred because of this. This is just another form of the
graceful-exit problem and the no-hair theorem mentioned earlier. To picture it, one might think of
water on the brink of going from the liquid to the gaseous phase, but that as the bubbles form and
expand, the container holding the water expands exponentially (the density of water always being

constant) so that more volume of water appears than of bubbles.

Secondly, even if the transition could be made successfully, collision of bubbles is a highly non-linear
and violent process in which the much-prized isotropy and homogeneity of the super-cooled state would
be lost. This can be understood further from the fact that each bubble would choose its four-velocity
independently from all the others (since they are nucleated out of the maximally symmetric de Sitter
spacetime) and hence, even neglecting bubble-wall collisions, one could not expect a homegenecus

universe after merging all the bubbles.
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Scenarieo 2: New inflation

The failings of the old inflationary scenario did not stop the meodel building long and soon after

the new inflationary scenario was introduced (63, 53].

The idea of new inflation was to change the order of the phase transition from first io second
order. Second order phase transitions are maore well-hehaved and less violent. To do this, the field
must evolve continuously in a classically-allowed manner between ¢ = 0 and ¢, without the tunneling
of a first-order transition. Many potentials aliow this but the irick is to find one which will allow for
sufficient inflation on the way down to the global minimum, i.e. a flat enough potential is required.
This condition leads to the fine-tuning problems of new inflation but is philosophically close to the

de Sitter paradigm which has an exactly flat potential.

The near-constancy of the Hubhle constant on the way down leads to a nearly scale-invariant
spectrum of density perturbations and the curvature of the potential at ¢, leads to inflaton oscillations
which allow reheating to take place. The new inflationary scenario has its own share of (less disastrous)

problems; however.

Firstly, the flatness of the potential requires fine-tuning. If one chooses at random a potential
from the space of smooth potentials C*(R.), what is the probability that it will have a region near
the origin which is both sufficiently long and flat to give enough inflation and the right amplitude of
density inhomogeneities 7 QObviously the probability is very small w.r.t. any standard non-singular
measure, so without motivation from particle physics, this is a severe fine-tuning problem which is,

however, significantly eased with the introduction of supersymmetry.

Secondly, why should the field be in the ¢ = 0 state 7 Since the curvature of the potential is
controlled by the inflaton self-coupling and its couplings to the other fields, the flatness of the potential
implies very weak couplings which mean that the inflaton was almost certainly out of equilibrium at
the beginning of inflation. So even though high—teniperature corrections to the potential may have
created a local minimum at ¢ = 0, there is no reason to believe that the field would find itself there

just after the Planck epoch t.

Thirdly, in this scenario, the inflaton moved slowed towards ¢ = #.. However this is a classical
picture and one should use the quantum viewpoint instead, in which case one is interested in ().
But as pointed out by Guth and Pi[568], if the potential has a discrete Zy symmetry (i.e. is invariant
under ¢ — —¢), then {¢) = 0 all the time, and so (¢} never actually equals ¢. at any stage.

Finally, and perhaps most important historically [3], new inflation only begins when the tem-
perature of the universe has dropped sufficiently: 7% < V(0) so that the vacuum energy starts to
dominate the thermal energy. In the same way our universe may have a small cosmological constant
which is undetectable at present but which would determine the future {ate of our universe. In typical

models of new inflation V{0) <« M;l, being related to e.g. the GUT phase-transition. This means



CHAPTER 1. INTRODUCTION AND SETTING 34

that inflation only starts at T2 « M;;’, ar at a time t 3> tp;. However, since in a naive measure, an
average FLRW universe does not live past t,;, or expands so rapidly that structures never form, new
inflation cannot be said to solve the flatness problem because it already requires huge fine-tuning for

the universe to live long enough for inflation to actually begin.

Scenario §: Chaotic inflation

In response to these difficulties, Linde introduced the chaotic inflation scenario {3] which throws
out the basic assumptions of the previous seenarios. In chaotic inflation, the initial value of ¢ is
randomly distributed throughout the universe and curvature quantities have values consistent with

those expected at the exit of the Planck epoch, { = iy:

(3:8) < My (1.41)
V(g) < M, (1.42)
R® Ry R™, RapeaR™*® < Mjy (1.43)

For a theory with V = A¢*/4, the second condition above implies with A ~ 10~1% that ¢(Z,) ~
10®Mp;, while the change in ¢ over the horizon scale at that time is only of order My from Eq.
(1.41). Linde [3] then discusses the possible onset of inflation in various special cases and argues that
the probability of a region exiting the Planck epoch with ‘small erough inhomogeneity’ for inflation
to occur, is not very small. At the end of the day it requires a weak form of the anthropic principle,
not to mention ignoring the problems associated with a natural measure on the space of solutions at
tpr [48).

What casts further doubt on this scenario is that studies of inhomogeneous inflation find that
quite strong constrainks on the inhomogeneity or anisotropy of the spacetime must be imposed for
successful inflation {51]. This should also be viewed in the context of the generic singularity question
of general relativity. Latest evidence supports the mixmaster singularity as the most generic [58] and
it seemns highly doubtful that inflation would be generic at ¢,; after one of those singularities due to

the large shear and tidal terms.

However, there are also asymptotically velocity dominated singularities which might turn out to be
the generic clossical singularity [59]. Asymptotically velocity term dominated (AVTD) cosmologies
are ones where the spatial gradients can be ignored relaiive to velocity and acceleration terms. If
AVTD singularities are generic there would be much in favour of chaotic inflation since it has been
shown [3] that if the enerpy in spatial gradients can be ignored relative to the kinetic energy - even if
this completely dominates the poteniial energy - then assuming that the universe lves long enough,

an inflationary stage will ensue.

This can be understood as follows: since (,152 > V(¢), the equation of state of the field is D~ p, e
that of stiff matter. If the potential is flat in the neibourhood of the field the potential energy drops

very slowly (roughly logarithmically [3]) compared with the kinetic energy which typically falls off as
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a power-law like t™%. Hence a region with V > ¢ occurs at some time. Again the problem is that
the universe is not allowed to recollapse before becoming potential dominated if inflation is to work.

Hence again some fine-tuning is required.

Of course, an analysis based on classical general relativity can only be taken as a warning and
nothing else. Two other arguments are in favour of chaotic inflation being successful. Penrose’s
Weyl curvature hypothesis states that the lowest gravitational enfropy state should correspond io
an initial singularity with zero Weyl tensor, i.e. a conformally flat metric. Since the Weyl tensor
carries tidal forces, Cypeq = 0 places strict controls on the shear, which might be sufficient to allow
inflation generically (the vorticity is zero by construction for a scalar field). Finally one might consider
a spacetime-foam type model. If spacetime is discrete at the Planck scale, as seems plausible in
reconciling gravities bad ultra-violet behaviour, it may be natural !that there are no anisotropic or
inhomogeneous degrees of freedom at scales smaller than My ! so that spacetime is constant curvature
at those scales. In this case the spatial inhomogeneities are zero and inflation is essentially gaurranteed.

Clearly, however, this must wait for a full theory of quantum gravity for verification.

1.4.5 Inflation, slow-roll and the CMB

Since the CMB is so crucial in modern models of inflation, we will briefly discuss how to translate
parameters of the effective potential into those of the CMB statistics for some simple, single field,

models.

Perhaps the two most fundamental parameters in current large-angle CMB data are the normal-
isation and the spectral index, n. The spectral index determines the slope of the power spectrum
on large scales, with n = 1 corresponding to the canonical scale-free Harrison-Zel'dovich spectrum.
COBE yielded the constraint n = 1.1 4 0.3. In many models of inflation which have a long slow-roll

phase, the value of n is almost independent of wavenumber k and is given by [35):
n=1-—6¢ -+ 27] (144)

where the so-called slow-roll parameters € and 5 are defined in terms of the curvature of the potential,
V', and are both zero for a cosmological constant (i.e. for de Sitter spacetime). They thus control by

how much the Hubble ‘constant’ varies with time during inflation and are defined by:

vy 2 el
2 = A7
ﬂ/fp! (-";;“) y = Mpf"f}_* (1.45)

where here () = d/dd. The slow-roll approximation during inflation is to ignore the ¢ term in the

Klein-Gordon equation for ¢, Eq. (1.36), yielding:

b (1.46)

Successful inflation requires ¢, |9 < 1 and, in fact, that V{®)/V < 1 [35], where V(") denctes n-th
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derivative of V. To check the approximation, one can show {35[:
= — ) (1.47)
so that the scheme is internally consistent at least.

By accurate determination of the slow-roll parameters € and 7, one might hope to reconstruct the
inflationary potential V. Indeed this is an active area of research [54] but one which will suffer from
both systematic and instrumental errors. But in principle at least, one could place restrictions on the

inflaton potential, and hence on particle physics at the GUT and higher scales.

A related issue is the gravitational wave contribution to the microwave background. Tensor pertur-
bations will cause anisotropies in the CMB via the Sachs-Wolfe effect just like scalar perturbations. For
any potential V, define r to be the ratio C,E?)/ C'F;J of the tensor quadrupole to the scalar quadrupole
of the CMB temperature anisotropies. This is related to the deviation of the tensor spectral, n;, from
zero via [54]:

= e 1.48
ny 7 ( )

If this relation was not respected in the CMB, this would be strong evidence against inflation. The
problem is that typical potentials give very small gravitational wave gignals and so extracting their
signal from future CMB data will be extremely difficult and noisy. Nevertheless, the test remains

powerful in principle.

The other COBE success was to fix the normalisation of the anisotropy spectrum, a resulé we
have already used in Eq. (1.1). The error bars on the normalisation have two origins: one is due to
instrument resolution limitations (COBE had an angular resolution around 10° {30]), the other is due

to cosmic variance.

Simply put, cosmic variance is the unavoidable error that comes from only having one universe
and one CMB to observe, Hence, statements about the parent statistical distribution cannot be
trusted at any high level ' At a slightly more precise level we see some added structure to the cosmic
variance problem related to ergodicity. For an ergodic!! random field, ensemble averaging and spatial

averaging give the same results in the large volume limit.

A statistically isotropic and homogeneous Gaussian random field (the model for inflationary fluc-
tuations) is ergodic. Thus assuming ergodicity of the fluctuation spectrum is very closely related, and
perhaps one of the better formulations of, the Almost-Copernican principle [62]. What does this have
to do with cosmic variance 7 They are related by the fact that even if the spatial distribution of inho-
mogeneities is ergodic (e.g. in a spatially infinite X' = 0 FLRW model), the temperature anisotropies

in the CMB form part of a compact sub-manifold - our past light cone. Indeed, for all purposes it is

10This is why COBE places only weak limits on possible non-Gaussian signals, though see also [61].
11 A random field can be thought of as a dynamical How on a manifold M. Hence ergodicity is inherited from the
flow and implies coming arbitrarily close to all points of M in the large time limit.
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just S, the celestial sphere. Hence it is impossible to take the large volume limit in the averaging
and hence we can never get the same results that ensemble averaging would provide, no matter what
the resolution of our instruments. Fortunately, cosmic variance drops off rapidly with £ so that only

the lower multipoles, probed by COBE, are significantly affected.

Nevertheless, COBE was able to fix the normalisation at the level of around 10%, which gives the
constraint (assuming no gravitational waves contributed to the CMB and Q = 1) [35]:

T:—://; = 6.7 x 10'6GeV (1.49)
where the numerical factor on the right is remarkably close to the best-guess GUT scale. Note
however, that if we want to invoke chaotic inflation with V' ~ M3, then this requires e ~ 10712 | But
slow-rall requires that € < 1 = V'/* < 10'%GeV. Thus it appears that within the approximations
made to find Eq. (1.49), that chaotic inflation is not compatible with COBE. Conversely, from the
last problem discussed in the new inflationary scenario, these slow-roll calculations seem to imply

inflation occurring at a scale much below the Planck scale. Hence we are left again with the Hatness

problem of the universe which realistically this model of (new) inflation cannot claim to solve [3).

1.5 More curved space quantum field theory

We now return to the foundations of inflation and indeed reheating. We will review some important
aspects of renormalisation, regularisation, anomalies, corrections to the effective potential and will
finish with a realistic supersymmetric model of inflation. By locking at the decay of the inflaton we will
be able to constrain the masses of the heaviest neutrinos by constraining the reheating temperature

to be below 10*°GeV required so as not to affect standard nucleosynthesis.

1.5.1 Renormalisation and regularisation

The divergence of the zero-point energy of the harmonic oscillator in Minkowski space is perhaps the
most famous example of the bad ultra-vielet (UV) behaviour of quantum-field theory which appears
in all quantities such as (0]¢°|0) and (0[Z%|0). These divergence can be removed simply by normal
ordering [23].

By way of contrast, the same problem in a curved, expanding background such as a FLRW universe,
is much more complex. For example, even in the simplest case of a massless, minimally coupled scalar
field in a K = 0 FLLRW background, the value of (0|Tp0|0), the expectation value of the energy density,

contains extra quadratic and logarithmically divergent terms not found in the Minkowski expression.

The process by which these new infinities are removed is the subject of tegularisation, and there
exist several different regularisation methods, which we will not discuss in detail, but refer the reader to

the literature for in-depth analyses [23, 42]. Instead we will give the physical resulis of regularisation.
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Qur starting point are the semi-classical Einstein field equations:

Gas + Agasy = 871G {Tus)
Gay = Ras— iRga (1.50)

which axiomatically implies that we are treating spacetime geometry classically and the stress-tensor
gquantum mechanically. We have already expressed doubts about the range of validity of this scheme,
but even at a practical level we are faced with the problem of computing (T;} which should be derived
from the matter part of the action, just as in the classical field theory case. Thus we seek a functional
W which, in analogy with the classical theory, gives {Ty) via[23]:
2 oW _
ﬁ 5gab -

where § denotes functional differentiation. One can show that W is simply related $o the Feynman

{Tus) {1.51)

propagator, Gp(z, z'), (the expectation value of the time-ordered product of the field), via [23]:

W = —iTr[in(-Gr)] (1.52)
= —% [diay/=g{z|In(~Gr)|z) (1.53)
= L [% dm? [ d*e/"5GR5(z, x) {(1.54)

where m? is the mass-squared of the particle, and Ggs (z, ) is the DeWitt-Schwinger representation
of G [23]. Notice that we have taken the limit # — z’ in the integral and so the expression is
completely local. The advantage of these manipulations is that the final spacetime integral above is
just the expression for the one-loop Feynman diagram contribution to the vacuum energy density.

Thus W is called the one-loop effective action and leads naturally to the effective Lagrangian, Legy:
Lejs = Hlimg_zr [ dm*GB3(z, ) (1.55)

While this is all very neat, it is easy to show [23], that L.;; diverges as we take the limit # — 2’. In

four dimensions the divergent terms in the DeWitt-Schwinger expansion of Gg are given by:
. o ds ifymd 9 ' . n
Latn o€ limgepr / L o=ilm®s=0/20) 43, 1) + ay (2, 2')is + as(z, 2')(is)?] (1.56)
W) S

where, in the limit # — &', the functions a; above are given by (for a scalar field with non-minimal

coupling £} :

a(z) = 1 (1.57)
u(z) = (§—OR (1.58)
as(z) = 1LpK?— G RaR® - HE - OAR+LHE~€)2R? (1.59)

where K2 = Rap.a %08 is the Kretchmann scalar and, as before, A represeﬁts the covarlant Laplacian.
The crucial point for us is that all the terms ag, ay, as are local geometric functions independent of the

field itself. Since L.;f is only the matter part of the total Lagrangian, we can cancel Ly, by adding
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suitable counterterms based on the a; into the gravitational part of the action. This means that we
no-longer have the Einstein-Hilbert action for gravity, since as(z) involves fourth-order derivatives of

the metric, but it means that we can remove the divergences.

Here we will discuss and use dimensional regularisation. QOther methods such as zeta-function and
poini-splitting subtraction schemes give the same results [23]. The idea is that one allows the number
of spacetime dimensions, n, to be a free parameter. In that case, we get a slight generalisation of
Eq. (1.56) which has the first n/2 + 1 terms divergent as ¢ — 0. The trick is then to analytically
continue n throughout the complex plane, allowing the  — z’ limit to be taken. This vields a series
involving I' functions, which can then be expanded around the point n = 4. In dimensions different
from 4, L.s; has units other than (length)~* unless one introduces an arbitrary mass scale g which is
then added appropriately into L.;;. This leads to renormalisation of the mass and other parameters

of the theory, as we will see in chapter (3).

Let us now consider 4-dimensional FLRW models with flat spatial sections. The metric is then

conformally flat:
ds® = a*(n)dsiins (1.60)

where a is the scale factor of spacetime and dn = dt/a(t) is conformal time (here ¢ is proper time). The

time evolution of the single degree of freedom a(t), is governed by the “new” Einstein field equations:
Gas +aHY + BHE) 4 Mgy = ~87(Tw) (1.61)

where the extra terms H) come from the a; of (1.59). The idea is that by correctly choosing the
form of the H{), they will cancel the divergent terms coming from Ly, leaving only finite terms in

the action. To do this we require [23]:

1 6 ”
H(Et) = —( ,__g W/(\/—_g)fﬂ“d‘*x (162)
= 2R — 29apAR ~ gapR2 + 2R Ry (1.63)
and

) = abpp die 1.64
2 = ”‘, — f (V=7) R Ry (1.64)
= 2R — 100AR— ARy — 3053 R% Ryy + 2R Regay (1.65)

where:
A = g%V, = /—g8.[V—g5° &)} (1.66)

is the covariant D’'Alembertian. Now in n # 4 there is an additional term similar to the H{1:2)
above involving the full Riemann tensor, but in four dimensions, it can be writien in terms of the
Euler characteristic via the generalised Gauss-Bonnet theorem which states that the following is a

topological invariant:

/ V—=9d*2(Rasca R — AR, R® + RY) (1.87)
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so that its variation with respect to the mefric vanishes. The extra term then reduces to a linear
combination of () and H(® in four dimensions and we do not include it. It is included in the
arbitrary o and g of Eq. (1.61) already, which are to be determined experimentally {and which may

be zero).

Further, if space-time is conformally flat, the H() terms are related by

_1

HY =+

HY) (1.68)
so that one can put § = { without loss of generality in, for example, FLRW backgrounds.

This discussion shows how consideration of semi-classical General Relativity naturally leads one to
the study of higher order Lagrangians, even in a FLRW background. Similarly, and as we remarked
earlier, the study of renormalisation and regularisation of General Relativity in topologically non-
trivial spacetimes (which yields the topological Casimir effect [28, 29]), leads one to field equations

which are sensitive to the topology of spacetime.

1.5.2 The conformal anomaly

Oune of the more interesting effects in quantum field theory is the anomaly. Simply put, an anomaly
occurs when a classical symmetry (and hence conservation law) is violated at the quantum level. A fa-
mous example is the axial vector anomaly, discovered by Adler in QED. Qur discussion of dimensional

regularisation is particularly suited to studying the so-called conformal anomaly.

Now theories which are invariant under conformal transformations of the metric, Eg. (1.18)
are particularly interesting. General relativity in 2 dimensions is a conformally invariant theory.
Indeed, the general set of conformal field theories is most instructive in 2 dimensions since the algebra
corresponding to the group of conformal transformations is infinite, unlike in other dimensions. This
allows a huge amount of powerful, complex analysis and geometry to be brought to bear on the

problem and many beautiful results have been obtained.

Now in general, by the definition of functional derivatives, the actions §, before and after the

conformal transformation satisfy:

S[Fas] = S{gas] +f§—'§-‘é‘§c;;b}5§°dd"z (1.69)
From Eq.(1.18) it follows that 8F.s = —2F.502~16Q(2) and by definition of the classical stress-energy
tensor: ~
\/—2::56?5:5} = Tos[Far) (1.70)
one finds that:
%55“’ = —/ =T Q  60d" z (1.71)

§§cd
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so that if the theory is conformally invariant, S[Fas] = S[gas), it automatically follows that the trace of
the classical stress tensor vanishes, as actually occurs for massless spin 1/2 fermions, the conformally-
coupled, massless, scalar field and photons (in n = 4). The introduction of masses for fields will, as
mentioned before, introduce a natural length scale and hence breaks conformal invariance. We are
therefore interested in regularisation and renormalisation in the massless case which is significantly
more subtle since all higher order terms in the expansion of Eq. (1.56) are infrared divergent in the

massless limit, m — 0.

Returning to the affective action W, Eq. (1.54), one may isolate the ultraviolet divergent piece,
Wiy, which in four dimensions may be written as a linear combination of a spacetime integral over
CapeaC?° and the Euler characteristic, Eq. (1.67). Both of these are invariant under conformal
transformations and hence Wy, in four dimensions is invariant under conformal transformations. So
one might suspect that quantum trace will vanish by the argument implicit in Eq. (1.71); i.e. that

there would be no trace anomaly in four dimensions.

However, since we are using dimensional regularisation, as before we cannot set n = 4 until the
very end. If we expand (7,9} 4y in powers of (n —4) we find that it does not vanish even at zero order
! This is understood from the fact that for n #£ 4, Wy, is not conformally invariant and hence the
price of regularising the stress tensor is that we pick up a conformal-breaking residue at the point

n = 4 due to our analytical continuation to n # 4. It appears that the trace has a memory !

In general, the full expression for the renormalised trace is [23]:

1

Ta")ren = ~ 355577

[CabeaC®*®® + Ry R — LR — AR] (1.72)
3

which is particularly simple in FLRW spacetimes where Cupcq = 0 and Rgp is determined by R. We
turn now to a less pernicious aspect of curved space quantum field theory, but one which of greater

importance in model building.

1.6 Corrections to the effective potential

One of the most pervasive problems in inflationary cosmology comes under the title of this section
heading: corrections to the effective potential. The very existence of inflation depends onr having
a potential whose curvature is small, so that slow-roll (see section 1.4.5) can occur. Secondly, the
curvature contrels the amplitude of density fluctuations and hence the size of CMB temperature
anisotropies and finally also controls the scale-invariance, or rather breaking of scale-invariance, in

the spectrum of inhomogeneities.

The curvature of the inflaton potential therefore holds the keys both to the observational consis-
tency of inflation and specific signatures that might allow the distinguishing of one inflationary model

from another.



CHAPTER 1. INTRODUCTION AND SETTING 42

Quantum corrections to the potential alter the curvature of the potential in a dynamic and often
disastrous way. The basic preblem is simple. Consider that one has a classical (tree-level) potential
V{0 which has the desired property that its curvature is very small in some direction so that it
predicts encugh e-foldings of inflaéion and the right spectrum of density perturbations. Unfortunately,
the effective potential will recéive quantum corrections. In the language of Feynman diagrams these
corrections will come from all one-particle irreducible vacuum diagrams (i.e. those diagrams which

are still topologically connected after a single line is cut).

Thus it is conceivable (and in fact occurs often) that a classically ‘nice’ potential is spoilt by
quantutn corrections which lead to overproduction of anisotropies in the CMB. Here we give some

fleld theoretic background to this problem by way of illustrative examples.

Ezample (1): Scalar field with broken symmetry potential

Let us consider the lagrangian:
1 . A
£=Z(dut") + 5 - T4* (1.73)

which has as classical (tree-level) potential:

Vo= 5(Va) L+ 24" (L74)
where V denotes the usual 3-dimensional gradient. This potential has a local maximum at the origin
¢ = 0 and a global minimum at ¢. = u/v/A. For this potential, expansion in the number of
Feynman loops is equivalent to a perturbative expansion in A [3]. In the onre-loop approximation, the

equilibrium correction to the effective potential is [3]:
1
V) = Vot gy [ LHVE D) (175)

where the effective mass? of ¢ is: ‘

m($) = 3Ag? - 2. (1.76)
Physically, the one-loop correction to the (renormalised) effective potential is given by adding a ¢-
dependent vacuum energy due to quantum fluctuations of ¢. To simplify Eq. (1.75) we need to impose
normalisation conditions on the potential {arising since counterterms have to be added to the bare
Lagrangian for regularisation purposes, as we discussed in the previous section). If we choose them to
be that the new potential has the global minimum at the same point, ¢, and has the same curvature,
V", at ¢. as in the tree-level potential Vg, then we are lead to [3):

_[2aag? ﬁ 5 A 272 a . (3Ag? — p)? g — p?
i)y = ( 64m? 2 ) #r (4 - 1237r2) Y e BT (177

so that the coefficients of the quadratic and quartic terms are altered. Thus we need to impose
that both 2 and X are <« 1 if the quantum corrections are not to spoii. the shape of the potential.
Since CMB anisotropies require this in this model, there is no problem since as long as ¢ 3% u°, the

corrections are small. This happy state is not true in our next, and slightly more realistic, model.
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Ezample (2): The (Abelian) Higgs model

Consider an Abelian vector field 4 (it might be the vector potential of electromagnetism) inter-

acting with the complex scalar ¢ (¢.f. Eq. 1.14). The Lagrangian is given by [3]:
- 1 p N . -~ -2
£= =3 () + (Va + ie Ay )B(Vo + ieds)b + 763 — A7) (1.78)

This is the model Lagrangian for describing the Higgs mechanism: the spontaneous acquiring of mass
by the vector particles, with m, = e¢,, where ¢, = p/v/A again describes the global minimum of the
field &.

In the case where e? < A the quantum fluctuations of the vector particles are irrelevant, but
since we are interested in the case where A ~ 107! due to the constraints from CMB temperature
anisotropies, this would mean fine-tuning not only the scalar field self-interaction but also the gauge-

couplings e?.

Instead it is much more natural that e? 3» A (note that this doesn’t mean that €2 > 1; so
perturbation theory can still be valid), In that case the scalar fluctuations are irrelevant and the
vector quantum corrections give rise to the new potential [3]:

_H2¢2 3 384 L& 964 384¢4 E
V{¢)=— (1 IGWQA)+ \1 "5 ) T ) (1.79)

which for A < 3¢*/327? has its global minimum at ¢ = 0, so that the vector bosons become massless
again. More important from an inflationary point of view, however, is that even if we fine-tune
the tree-level potential so that it is very flat in the ¢ direction corresponding to inflation, quantum
corrections will completely spoil the flatness at one-loop level (and in principle we should include all

orders of loops 1),

Thus we immediately see that (non-supersymmetric) inflation, which was introduced to salve
severe fine-tuning problems in the standard model (which we discussed earlier in this chapter), not
only involves its own fine-tuning (of the tree-level potential) but involves problems more fundamental
and subtle than fine-tuning, such as forbidding the inflaton to couple more strongly to other fields
than it does to itself,

Ezample (3): The general Coleman-Weinberg formula

Assuming that there is local thermodynamic equilibrium so that a temperature T, can be defined,
the general form of the effective potential at high temperature was given (assuming weak couplings
so that perturbation theory is valid) by Weinberg:

T*? av ;L
V==l 75— Tuly)ij ' 7 1.80
aviny =T () + 3BT (1.80)
where T, are the gauge group generators and the ¢; are the real components of the fields. For SU(5)

for example, these corrections turn out to change the effective mass of the Higgs fields in a way that
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depends non-trivially on the self-; and mutual-, couplings of the Higgs fields. In fact, the possibility
has been investigated [63] that the effective masses remain negative for all T - i.e. that the universe
was never in a unbroken phase and hence that there was never symmetry breaking. In this case no

monopoles would he formed.

Example (4): Gravitational corrections

Finally we arrive at the quantum gravity border - everything couples to gravity and hence there
are always gravitational corrections to the potential even if the inflaton coupled to no other fields.
Indeed, we will see later that this is a major headache in supergravity inspired models of inflation,

the so-called n-problem of supergravity.

The gravitational corrections to the potential arise due to exchange of gravitons between vacuum
fluctuations. Clearly this is expected to be sub-dominant except in extreme conditions. The quantum

corrections to the potential are given by [3]:

d*V(¢) V(d) ~A* V), A
5 5~ In w5 + O In —;
de? M ol M, ol M ;r M i

AV =Gy (1.81)

where the C: are order unity and A is the UV cutoff scale. Note that the V> term will generally
introduce non-renormalisable corrections {i.e. terms with powers higher than ¢*). But this is familiar
to all attempts $o renormalise gravity. If we argue that A ~ My, then these quantum gravitational
corrections to the potential will be order one or larger unless V' < ﬁrfpg,. Unfortunately we said in
chapter (1} that the natural initial conditions for chaotic inflation were included V ~ M; ! In this

case quantum gravity corrections to the effective potential are expected to be very large.

Erample (5): Supersymmetry and the non-renormalisation theorems

One of the beauties of supersymmeiry is that it automatically requires the cosmological constant
to be exactly zero. This occurs since it is a theory uniting fermions and bosons with a symmetry which
makes them indistinguishable. For this to happen, it is easy to show that the true fermion groundstate
must coincide with that of the bosons and that it must be at zero energy [35]. So let us imagine that
our tree-level potential is supersymmetric and so has zero energy. What will happen when we include
1-loap, 2-loop ete... corrections 7 Obviously if we have an exactly supersymmetric theory then the
radiative corrections cannot change the zero point of the potential. In fact, all radiative corrections

to an exactly supersymmetric theory turn out to be zero !

How can we understand this 7 Well, because there are supersymmetric partners for all the known
particles, the number of bosons equals the number of fermions. Because of this, when one calculates the
Feynman diagrams giving the radiative corrections to the potential one finds that since the fermionic
and bosonic degrees of freedom contribute with opposite sign and the number of fermionic fields equals
the number of bosonic fields, the corrections cancel and give zero at each order in a supersymmetric

theory.



CHAPTER 1. INTRODUCTION AND SETTING 45

Because of these non-renormalisation theorems it is gaurranteed that if one fine-tunes a parameter
of the potential to be very small ai tree-level then this small value is protected from getting any
quantum corrections. Obviously this is a very desirable feature in inflation since we typically require
very small coupling constants to ensure the potential is sufficiently flat. Indeed because of this,
non-supersymmetric inflationary models looks significantly less natural than their supersymmetric

counterparts.

1.7 A “realistic” inflationary model from Supersymmetry

Here we end this introductory chapter by discussing a model which contains many of the features
expected of a complete theory of inflation. It is a theory based on supersymmetry which is exper-
imentally unverified although it predicts a neat unification of the strong and electroweak coupling
constants at around Mgyr ~ 10%GeV which does not accur in the known non-supersyminetric

extensions of the standard model.

In the spirit of Dirac’s large number hypothesis, it is then tempting to try to use the small
dimensionless number Mgy /Mp ~ 1073 to explain cosmological data. Notably one might try and
link this to the amplitude of the primordial density perturbation spectrum. Indeed, this appears
rather naturally in the following scenario due to Lazarides, Schaefer and Shafi [65]. A nice review of
this area is given in the work of Lyth and Riotto [35]. Cosmic strings are rather typically in these

models and contribute both to structure formation and CMB anisotropies [129].

1.7.1 The superpotential

The idea behind supersymmetric inflation is very beautiful: when supersymmetry is unbroken the
vacuum energy density is zero (the cosmological constant is forced to be zero) and there is no inflation.
However, with chaotic initial conditions, a large inflaton value leads to a minimum of the potential
which breaks supersymmetry but which causes all fields coupled to the inflaton to relax to zero.
As these fields relax to zero, the curvature of the potential tends to zero and the potential of the
inflaton becomes dominated by the constant term which is determined by the symmetry-breaking
scale of the model. This leads to inflation and an almost constant Hubble constant (and therefore
near scale-invariance of the density perturbation spectrum). However, since supersymmetry is broken,
the potential will receive (typically small) radiative corrections which will give the potential a small
amount of curvature and allow the inflaton to slow-rall to the global minimum of the theory and for

reheating to occur. We will now present a specific model of this type,

Supersymmetric potentials V', are derived from the so-called superpotential, denoted W, by the
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following formula:

oW |?
= —_— 1.82

v Z,: Yy + Vp, (1.82)

where Vp are the D-terms which lead to spontaneous breaking of supersymmetry. The simplest

renormalisable superpotential which leads to hybrid inflation is given by 1*:
W=oado7—p’e | (1.83)
which via Eq. (1.82) yields the potential:
V(g,0,7) = |o*(lo|* + |7} + jeee — p*|* + D — terms. (1.84)

The D-terms vanish along the so-called D-flat direction ¢ = 7 which contains the

supersymmetric minimum defined by:

(¢) = 0 (1.85)
{|o]) (IFI)z%EM (1.86)

As required of a supersymmetric minimum, V' = 0 as can be easily checked by substituting these values
into Eq. (1.84). However, this is not the minimum for all values of the inflaton field. In particular,
for ¢ > M, the potential is not minimised by the above values of {|o|) & (|7} since the first bracketed

term in (1.84) dominates. Rather the lowest V value is given by the non-supersymmetric minimum:

6 > M (1.87)
o = =10 (1.88)

which makes the potential {1.84) very simple; it is just:
V=t (1.89)

If this were the end of the story we would be in exactly de Sitter spacetime and ihere would be no

exit, the universe would inflate forever.

However, supersymmetry is broken by this non-zero energy density and hence all the terms which
are allowed by rencrmalishility in the corresponding non-supersymmetric theory should be included
to Eq. (1.84). These terms break the flatness of the potential and cause the inflaton to evolve with

time.
For ¢ > M the effective potential V has, at one-loop level, the following form [65}:

a CEE a? 2 3 M4
Vers () = o (1+ T [In ( ,\f ) T3 gt D (1.90)

This determines the curvature of the potential during slow-roll and hence determines the amplitude

and spectral characteristics of the CMB anisotropies.

12In supersymmetric theories of inflation the inflaton is often denoted by & to signify that it is 2 singlet under the
gauge group. For continuity we continne to use ¢ to denote the inflaton. ¢ and 7 denote standard model singlet
components of a conjugate pair of SU(2)p % U(1) g_1 doublet superfields [65].
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1.7.2 Symmetry breaking and COBE

The simplest fits to the COBE and other CMB data involve two quantities: the normalisation of the
spectrum and the deviation from a Harrison-Zel’dovich n = 1 slope power spectrum. The normalisa-
tion, or amplitude, is typically given in terms of the rms — PS anisotropy, the value of (AT/T)? at
10° or the quadrupole anisotropy, in decreasing order of complexity and sophistication. Lazarides et
al choose the quadrupole anisotropy and show that for the effective potential given by Eq. (1.90) the

quadrupole anisotropy is given by:

(%"1:)@ i (%)1/2 (f,;f-) (%)2 (1.91)

which, as desired, involves the dimensionless particle physics constant M /M. Here Ng ~ 55 is the
number of e-foldings between the time the scales giving the dominant contribution to the temperature
quadrupole (i.e. the longest wavelength modes which contribute to the CMB anisotropy via the
Sunyaev-Zel'dovich effect [66]) left the Hubble radius and the end of inflation. This is typically close
to the number of e-folding for the whole period of inflation itself. £q = ¢g/M where ¢g is the value
of ¢ ai the time when the present horizon scale crossed the Hubble scale for the first time (often

incorrectly called “horizon exit”).

Finally, yg is defined in terms of g via the perturbative relation:

7
@ = zq( (1252) ) (
The above potential also determines the slope of the primardial spectrum, which using Eq. (1.44)
gives:
1
~1— — ~{.08 1.93
n Na 0.9 (1.93)
certainly consistent with measurements from COBE and small scale data.

1.7.3 Neutrino mass bounds and reheating

As an interesting example of how one can use the full theory in which the inflation is embedded we will
congider constraints on the masses of the heaviest neutrinos that come from bounds on the allowed
reheating temperature [65]. These calculations of the reheat temperature are not fully consistent since
they ignore preheating and resonance effects (as is discussed in more detail in the next chapter) but

are instructive in showing how tightly interwoven all of the features of a full theory are.

The essential idea is that the temperature after reheating, 75, cannot be too high in supersym-
metric theories since otherwise one would over-produce gravitinos - the supersymmetric partner of
the graviton - which then decay around the time of nucleosynthesis and destroy the nice standard pic-
ture of those low-energy processes. Another constraint arises from the condition of having successful

baryogenesis, which in this model occurs via a process involving leptons - so-called leptogenesis.
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To estimate the reheating temperature, T, in this model, (neglecting resonance or stimulated effects
due to the coherent nature of the inflaton condensate), Lazarides et al [65] consider the evolution of
the fields ¢ and o,F near the supersymmetric minimum ¢ = 0,0 = @ = M. Defining the new
field 8 = (80 + 67)//2 where 60 = ¢ — M and 67 = & — M, its main decay channel is via the
non-renormalisable superpotential term:

-;— (A;T”;) Torvt, (1.94)
where M, denotes the Majorana mass of the right-handed neutrino v¢. Since the coupling term s
proportional to this mass squared, ¢ will decay predominantly into the heaviest neutrinos allowed. T

is then determined by the decay rate, I's, of the field 8 via [65]:
1
N (1.95)

1 /56\"*
= E('ﬁa) 1,/yQﬂjfyc (196)

so that 7} scales linearly with A<, which is very neat.

The constraint on the reheat temperature from the gravitino abundance is that 7. < 10'%GeV
unless a large amount of entropy is generated at a later stage (which is precisely the idea behind
thermal inflation [158}). The subsequent calculations require a large amount of phenomenological
input regarding the mass matrix of the left and right handed neutrinos, the masses of the top and
charm quarks and of the tau and electron neutrinos. Combining Eq. (1.96) with generation of
maximally allowed baryon asymmetry then yields the estimates of ~ 2 x 103 and 6 x 10° GeV

respectively for the masses of the heaviest and next-heaviest righé-handed neutrinos.

1.7.4 Supergravity aches and the 7n-problem

In the above model it was argued that using a model in which supersymmetry is a global theory
was sufficient due to the low scale at which inflation occurs. In general however, and certainly for
chaotic inflation, one would not be able to do this and the correct theory would be supergravity where
supersymmetry arises as a local, gauge symmetry. The problem that arises there is that the flatness
of the potential, so nicely arranged in globally supersymmetric theories and protecied by the non-
renormalisation theorems (see section[1.6]), is spoiled by large gravitational corrections. This is the

so-called np-problem of supergravity models of inflation, where 7 is the slow-roll parameter of inflation
defined by Eq. (1.45).

Now in supergravity the tree-level potential is the sum of an F-term and a D-term {corresponding

to the different possible ways of breaking supersymmetry) [35]:
V=Vp+Vp. ' (1.97)

Since supergravity is not renormalisable, it is thought of as an effective theory - much like the Fermi

model of weak interactions - since it is typically believed that nonrenormalisable theories are not
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generally exactly solvable *3. An effective theory will then give valid predictions up to some scale M,
which for supergravity is often taken to be the Planck scale, M. Certainly we have M < M. Since
the theory is non-renormalisable, an infinite number of non-renormalisable terms (e.g. ¢” with n > 4)

are expected to be present in the Lagrangian and these terms contribute to Vr generically giving [35):

Ve
H
Mrr;"f
=l ~ 3h>1 (1.98)

while inflation requires || < 1. It was then proposed that the V@ vanish during inflation and that
the D-term dominate, giving D-term inflation. However, even in this case, non-renormalisable terms
typically contribute to Vp through the gauge kinetic function (which determines the kinetic terms of

all gauge and gaugino fields) and yield the same estimate for 5 as in (1.98) [68].

In this case, however, it appears that these large contributions to Vp can be avoided, and hence
the small value of |n| protected, if one imposes a discrete symmetry on the potential [68]. Whether
this discrete symmetry is actually present is, of course, something that that will only be answered

from a more complete theory such as string theory.

13Fhis is known not to be a iheorem since counterexample exist. The Gross-Nouveau model is not rencrmalisable
but is exactly solvable [67]. ‘



Chapter 2

Reheating the Universe after

Inflation

There is nothing permanent except change.

— Heraclitus

Nothing is built on stone; all is buill on sand,

but we must build as if the sand were stone.

Jorge Luis Borges

30
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2.1 Introduction

As the title “Visions of the end of inflation” suggests, the main thrust of this thesis is reheating after
inflation. Having discussed in some detail the basic framework of current understanding of curved
space quantum field theory, of how inflation will be tested with the CMB and of attempts to construct
realistic models of inflation, we will now give an introduction and overview of the various aspects of

reheating that will serve as a platform for the work presented in the following chapters.

This chapter begins by setting the problem of reheating in the greater inflationary context, then
in (2.3) describes the old theory of reheating. From section {2.4) onwards we are concerned with
preheating - the explosive and non-equilibrium production of particles that marks the end of inflation
in many models. We begin the study of preheating with the classical theory of stimulated resonant
decay of the inflaton in terms of the Mathieu equation and Floquet analysis ! in general. We then
go on to survey the more complex phases following this explosive “preheating” phase: backreaction,
rescattering and finally thermalisation. These issues are non-linear and extremely complex, requiring

the use of analytical approximations and numerical studies, both of which we review.

We then examine the impact of the expansion of the universe and the exciting possibility of non-
thermal symmetry restoration whereby broken symmetries might he restored at preheating due to the
large quantum corrections to the effective potential arising from preheating. Finally in section (2.13)
we examine preheating in a realistic hybrid inflation model coming from the same superpotential that

we studied at the end of chapter (1}.

2.2 The onset of reheating

Before we describe how reheating proceeds, a natural question is “When exactly does reheating begin
7" Despite the lack of discussion of this point in the Literature, the issue is in fact rather subtle. For

example, one might argue that reheating begins:
(la} when the couplings of other fields to the inflaton “switch on”,
(1b) when the rate of energy transfer to other fields exceeds a certain critical value,
(1c) when the entropy of the universe starts to grow rapidly,

(2a} when the inflaton moves from the flat part of its potential to the highly curved part (if the

potential has such a drastic change in curvature, as e.g. in dual inflation [137]),
(2b) when the slow roll parameters ¢ and 5 exceed a certain critical value (the end of slow-roll),

(2c) when the kinetic energy becomes of the same order as the potential energy (a virial-like

1Floquet analysis concerns itself with the solutions of linear differential equations with time-periodic coeflicients,
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epoch)},
(3a) when the quantum-to-classical transition for metric fluctuations occurs.

These three groups of definitions differ significantly: (1a,b) rely on the actual transfer of energy to
other fields, while those in group (2) depend only on the dynamics of the inflaton, and are concerned
rather with the end of the quasi-de Sitter expansion of the universe with its near-constant expansion
rate. Reheating had betier start at this stage, if not before, or the universe ends up with a reheating
temperature which is too low. In this sense definitions (2a-c) are wishful rather than prescriptive. Or
perhaps to be fairer, they describe the onset of oscillations of ¢, assuming that the effective potential
has a local minimum, during which time, if the couplings to other fields are non-zero (1a), resonant
production of quanta of the other fields may begin, and energy transferred (= 1b). (3) is strongly
related to (1c}, although the exact nature of this connection is still rather controversial as we will

discuss later.

Clearly, (1a) and (1b) are the most sensible, but perhaps also the most profound of definitions
because they require complete knowledge of the S-functions of the theory within which the inflaton
is embedded. The F-functions of a theory govern the “running” of the coupling constants, i.e. the
changes of the couplings as the energy scale is altered 2. If the couplings of the inflaton to other fields
are large even during slow-roll one has warm-inflation or a variant thereof {203], while a wickedly
asymptotically-free theory or one with a strong-weak coupling duality, will approximately give the
standard isentropic new and chaotic inflationary models with almost no entropy production during

the inflationary stage.

Now within the slow-roll approximation described above, what do (2b) and {2c) imply for the

value of ¢ at the onset of reheating 7

(2b) For the potential V = A¢™ /n, the slow-roll parameters are:

2 M2 M2
n pl pl

E= ——5 =n{n—1)— 2.1
e s @

If we set e = 7 < 1 as the absolute limit at which the slow-roll approximation has completely broken
down, then we find the corresponding values for ¢ are ¢e=1 = nMy/V2 and ¢p=y = mMp;.
For n = 2,4 these are ¢.=; = ﬁMpI,Q\/iMpi and ¢y=; = \/iMpr,Q\/gﬂffpg respectively. Thus for
n = 2 the constraints coincide and give ¢ = 1.3Mp; while for n = 4 the i constraint is stronger with
inflation ending at around 3.4Mp;. These should be contrasted with the initial values for oscillations
taken by Linde ef af [9, 70] of ¢ ~ 0.3My.

(2c) requires the equality of kinetic and potential energy, and hence in chaotic inflation models
with V' = Ag™ /n, we have:

(54

% = Ang" (2.2)

?fn chapter (3) we discuss the renormalisation group equations, S-functions and running of the couplings in some
detail.
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which leads to (using the expressions for ¢ given by 1.46):

Buirial R %ﬂ/fpf (2.3)

which for a quartic potential, n = 4, giv'es Preneat = 0.2Mp;. To get this simple expression we have
neglected the acceleration of the inflaton, . Nevertheless, at this low value of ¢ the slow-roll condition
would have been violated for a considerable amount of time and the virial estimate, which makes use
of those same slow-roll conditions, cannot be trusted. Including the acceleration term would enhance
the estimate of qS and hence the virial equality would occur at a much earlier time, consistent with

the estimates above where ¢ropear > M.

2.2.1 Entropy and the quantum to classical transition

Intimately related to the issue of reheating is the generation of the large entropy of the universe.
This is a very tricky issue, since one must be careful what one means by “entropy” since there is still
no accepted definition of gravitational entropy. Rather, we mean here the large entropy as normally

ascribed in quantum fleld theory, and in the appropriate thermodynamic limit, to fluids.

Further, there exists at present a rather subtle discourse as to the true nature of the quantum-
to-classical transition of metric perturbations during and after reheating and whether or not it is the

huge generation of entropy that is responsible for the quantum-to-classical transition [72, 73].

We will not delve into these issues in detail here since they represent a seriously divergent course
from that which we choose to follow. Nevertheless we present the two sides of the case more to highlight
issues that will appear later in our discussions of reheating, since almost by definition reheating is the

transition from a coherent condensate to a radiation dominated, large entropy and classical state.

First we present the proposal of Starobinsky, Polarski, Lesgourgnes and Kiefer [72]. They exarmine
metric perturbations (as opposed to quantum field perturbations) of scalar and tensor type and show
that the corresponding states become highly squeezed on super-Hubble scales due to the expansion
of the universe. They alse find that the decaying mode decreases exponentially and that there is
minimal information loss and entropy production with the metric perturbations becoming classical

stochastic variables with Gaussian statistics.

The much more standard proposal for the quantum to classical transition leads to extensive entropy
production, see e.g. [73, 74]. In this approach the field is split into an order parameter (given by
the field coarse-grained or averaged over a certain spatial volume) and the high-frequency part which
acts as an environment. The interaction of the environment with the order parameter implies that
the order parameter describes an open system and deccherence occurs, with a significant growth in
entropy. In this case, the off-diagonal terms in the density matrix describing the system osciliate
rapidly in time on super-Hubble scales and so these off-diagonal terms time-average to zero, leaving

an essentially diagonal and hence classical density matrix. The entropy generated is then associated
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X W

X W

Figure 2.1: The Feynman diagrams corresponding to single body ¢ decay into scalar bosons (left) and
fermions (right) with couplings g”c and h respectively.

with the loss of information regarding the density matrix and to the implicit coarse graining of the

density matrix or equivalent cbject implied by its temporal averaging.

For our later study of preheating in models with self-interaction, we note that the latter proposal,
requires that the field either have self-interactions (so that the high-frequency part can actually couple
to the order parameter) or be coupled to some other field(s) which then act as an environment bath.
The first proposal, on the other hand, makes no such requirements and hence reheating does not follow
necessarily. The metric perturbations could undergo the quantum to classical transition without the
generation of much entropy {there will always be some decoherence due to the production of particles

due to the expansion of the universe), with the temperature of the universe staying very near zero.

We now leave these side issues and begin an historical review of reheating.

2.3 Single-body and perturbative decays

The first models of reheating came out in 1982 [75] shortly after Guth’s original paper on inflation [24].
There, perturbatively sma_ll couplings between the inflaton ¢ and other bosonic, ¥, and fermionic, ¥,
fields were considered with interaction terms given by v2o¢x? and hih¢e) respectively [3]. Here v, h

are dimensionless coupling constants and ¢ is a mass parameter.

The single-body decay rates for the two channels are then given by ordinary one-loop calculations

(assuming h, g2 < 1, the associated Feynman diagrams are shown in figure [2.1]):

vig?

I'({g — xx) = B (2.4)
h2M¢

P¢ =) = 5 — (2.5)

In this old model of reheating, it was assumed that strong interactions between the decay products
would ensure at least local thermodynamic equilibrium (strict equilibrium is not valid in an expanding

universe and quarks and gluons go out of equilibrium at a temperature of above 10'*GeV) so that one
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can define a reheating temperature 7, and the universe would take on a truly radiation-dominated

character.

The condition for this local equilibrium is roughly that I'yp; ~ 3H, H being the Hubble constant.
At that time, in a flat FLRW model, the energy density is roughly [3]:

I‘fat'zwpzl
Pea ™ "oy
TN(T;)
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T (2.6)

where we have assumed radiation domination and thermalisation to T}, in the second line and N (T}.) is
the effective number of degrees of freedom (see e.g. [37]) at the temperature T,. Unlike in preheating,
T; depends only on T' and not on the initial value of ¢y, where pg denotes the vacuum expectation

value of the inflaton. The above analysis leads to the estimate [3]:

Ty ~ 1071 /Ten My , (2.7)

Now, in this perturbative-style reheating, the evolution of gauge-invariant density perturbations is
essentially unaffected by the inflaton oscillations. The standard requirements that metric perturba-
tions not over-produce CMB anisotropies means that my ~ 107%Mp; in the simple quadratic potential
model. This is based on the curvature of the patential, which receives radiative quantum corrections
from the couplings to 1 and x [3]. These radiative corrections cannot be too large without endangering

the anisotropy levels of the CMB, which places the constraints:

hE

IA

By Myt ~ 1077
ve < Bmy ~ 10MGeV (2.8)

on h? and vo. Hence from Eq. {2.5) we see that I', dominates the contribution to 7}, leading to the
constraint that 7, < 10'GeV. This ensures that dangerous GUT-symmetries were unlikely to be
restored after inflation and hence no GUT-scale topological defects would be produced after inflation.

In section (2.12) we will show that this is no longer necessarily true in preheating.

It is also not mecessarily true in supersymmetric models either, which may have very large h°
and ve couplings while the effective potential is protected from radiative corrections by the powerful

non-renormalisability theorems.

In this section we presented the theory of reheating based on treating the inflaton as a collection
of bosons where the whole was just the sum of the parts. The revolution of preheating, from a
physical point of view, is similar to the revolution caused by lasers. Instead of thinking of photons
as always coming incoherently from individual atoms, laser physics concerns itself with coherent
effects, where there is a strong dependence on the inverted population of atoms in excited states
(leading to exponential growth) which then decay via stimulated emission. Preheaiing is a very

similar phenomenon where inflaton decays are stimulated by the inflaton condensate which has very
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high occupation number and perfect coherence. Mathematically it is described, partially and at least

classically, by Floquet theory - the theory of differential equaiions with periodic coefficients.

2.4 Floquet theory and the Mathieu equation

To illustrate the phenomenan of parametric resonance, consider the n-dimensional first order systern:
¥y = P(tly (2.9)

where P is any matrix with period 7. Then Eq. (2.9) has n linearly independent normal solutions of

the form:
yi = pi(t)e! (2.10)

where the p; are the characteristic/Floquet exponents of the system and the p; are functions of period

7. Then the n characteristic numbers defined by p; = e#T satisfy:

T
P1P3...pn = EXP (/c; TrP(s)ds) (2.11)

with repeated characteristic numbers counted accordingly. The trace of P(t) is thus the crucial factor
determining the existence of exponentially amplified modes. If TrP(¢) > 0 then eq. (2.11) implies
that:

Tlpi > 1 (2.12)

which implies that at least one of the p; > 1 = p; > 0 and hence by eq. (2.10) there is at least

one unbounded, exponentially growing solution.

Now we derive the Mathieu equation. The evolution equation for the inflaton ¢, with effective
potential Vers(9) 2, is given by:
6+3Hd+V'($)+ 16 =0 (2.13)

where ' = 9/0¢. I in eq. (2.13) generically represents the backreaction of quantum fluctuations
on the zero mode evolution via a change to the effective mass of the inflaton. It may be written
specifically as the polarisation operator [3] or given explicitly in certain approximations, such as the
Hartree-Fock approximation [69], or the large-V limit of O(IN) vector models [85] as we will discuss

in the section on backreaction.

The geometry of space (if the background is FLRW) enters only through the expansion H, whose

evolution is given by the Raychaudhuri equation [220], which in flat FLEwW spacetime is:
H = —4nG¢? (2.14)

Here & is Newton’s constant which we will set to unity throughout.

3From here on we drop the ef subseript from V(#). It is implicit.
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To illustrate preheating, assume that ¢ interacts with a light scalar field v, which itsell has no

self-interaction, via the Lagrangian interaction term
1 a5 o
9 X {2.15)
Consider the simplest effective potential for chaotic inflation:
1 4.

The solution of the inflaton equation of motion (2.13), when the frequency is an adiabatic invariant,
is that of decaying sinusoidal oscillations, ¢(2) = ®(t)sin(myt). In the absence of particle production
the amplitude varies roughly as @ ~ -, due to the averaged expansion. The time evolution of the

quantum fluctuations for each mode of the y-field is given by [1]:

- . k2 bl 7 + 7 -
¥+ 3Hxe + (E"t)_g + mi + g~ @~ sm"(mt;,t)) xr =0 (2.17)

This can be put in canonical Mathieu form (the case n = 2 above with P(t) particularly simple)

if one neglects the expansion of the universe (H = 0):
Xy -+ [A(k) — 2gcos(22)] x = 0 (2.18)

with dimensionless coefficients:

k2 e padix
Al = —— X4+, Q= 5 2.19
x (k) e R (2.19)
and z = myt, ' = d/dz. Depending on the size of the coupling, g, and the mass my, certain modes

xk will thus be amplified exponentially: xi = pp{myt) exp(#k(”)m¢t), where p;, are functions with
the same period as the oscillations of the inflaton field and the positive p(") are the Floguet indices

corresponding to the n-th instability band.

In the first resonance band and for 13 ¢ > 0, we have the explicit estimate for the Floquet index
(9
e = ((2/2)* = (2k/m — 1)%)* (2.20)

This can be extended to give uf in the N-th resonance band {82] as long as 4 > 0 and 2N%2 5 ¢:

N 1 sin 24 N

i BT AP LA (2.21)

where § varies in the interval {—=/2,0] and pf¥ < 1.

~ The existence of resonance bands survives when the expansion of the universe is included [155, 69].
"The parameter g divides the phase space into three broad classes with qualitatively different behaviour.
The case ¢ « 1 is well understood [180] and can be treated perturbatively, the effects of expansion
being important. The broad resonance case is described roughly by 7! < ¢ < ¢. , g« ~ 102, is non-

perturbative and requires consideration of the backreaction of created particles on the zero mode .
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Figure 2.2: A density plot of the Floquet exponent on the A-q plane for the Mathieu equation. The
broadening of the resonance bands as ¢ increases is very evident.

The resonance bands are characterized by huge occupation numbers of produced particles, typically
of order ny ~ 31,— The upper limit, g., is for an expanding universe and is much lower in Minkowski
gpacetime (H = 0) [7]. The wide resonance, ¢ > ¢., evolution is dominated by scattering effects

which rapidly shut-off the exponential growth of the x fluctuations [6, 7].

The growth of the y; modes during resonance is directly interpreted as particle production. The
number density of created y particles, ng, in each mode can be estimated as the total energy in that
mode, divided by the energy £ of each particle (the x are assumed massless):

Qi xel® AN
- 2y_L 9.22
ng 2 ( Q% + x| ) ( )

which leads, under parametric growth to ng ~ xi ~ e2#*™e!,

2.5 The Lamé equation

In the previous section we considered a simple model of preheating with two fields and at maost
quadratic couplings. Here we consider a very interesting model, the highest polynomial power potential

which is renormalisable in the old, Dyson power-counting, sense [76] - the guartic effective potential:

V(g)= %ﬁ‘* (2.23)
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Figure 2.3: A slice through the Mathieu instability chart for ¢ = (327)%. Notice the rapid decrease in
i as a function of the frequency & = k/(ma). From [9].

We will also assume that the field is conformally coupled ¢ = 1/6. In this case the inflaton evolves
according to:

G+3H+2¢° + L1Re =0 (2.24)
where R is the Ricci scalar. This equation, when we switch to conformal time dn = di/a(t) and the

rescaled field variable ¢ = a(t)¢(t) yields the equation (' = d/dp):
o"+2p° =0 (2.25)

which is precisely the corresponding evolution equation in Minkowski spacetime, so that the effects

of expansion are taken into account at the classical level. If we write the initial value of the inflaton

as ¢ then the energy density is simply p,, = %1,54 o a~*. Further, this is almost the canonical form of

the Lamé equation which has solutions in terms of Jacobi elliptic functions. Indeed we can write {10]:
@ /T

where

. fz) = en (m — g, —\—}——i)

8TV2 o e T(n=1/2) ] 27(2n - D
T 2t g nin-1/m B

n=i

(2.7)

where T ~ 7.416 is the period of oscillations in units of z. The above Fourier expansion converges
very rapidly with the first coefficient ~ 0:9550 and the second 0.0431, so the oscillations are well
approximated by f(x) = 0.995 cos(27a/T).

Since the field exhibits self-interactions, the quantum fluctuations S¢y. will exhibit resonant growth

due to the oscillatory evolution of ¢:
]

By + 3HEo + (;—%-)—2 + 3A¢3) Sgr =0 (2.28)
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Figure 2.4: The density plot of the Floquet exponent on the A-q plane for the Lamé equation.

which again in terms of conformal time and a rescaled field Xy = a(t)6é; takes the simplified, nearly
conformally invariant, form:

2

X+ (% + 3en? (a:, %)) X =0 (2.29)
We now see a beautiful example of non-perturbative corrections to the Mathieu picture of infinite
instahility bands. The above equation in fact, exhibits only one resonance band centred around
k* ~ 3Aa®” [1]. Thus the harmonic approximation to cn(.), while very accurate at the perturbative

level, predicts the wrong number of instability bands (infinite instead of one !).

In the case that we consider the quartic potential and a coupling g°¢”x” to a massless scalar field
¥ as before, the above equation for the fluctuations of the scaled fleld ¥, = a(¢)y: becomes modified

by the simple transition 3 — g*/A in the last term of eq. (2.29).

For general values of ¢ = %%\i eq. (2.29) has an infinite number of instability bands (see fig. 2.4)
which compress to a single band when ¢ = g— or -é- The latter value arises in the large-N limit of
an O(N) vector model [183], which lead de Vega et al to emphasise the importance of the existence
of only a single resonance band. From the general theory of Floquet theory, infinite numbers of
instability bands are known to be generic, and hence the above emphasis was perhaps, in retrospect,

unuecessary,
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2.6 Negative coupling instability

When we wrote down the original model of reheating in section (2.4) we gave as interaction term
g;¢2x2 so that the coupling g%, and hence A and g o g°, were automatically positive.

However, this is not forced upon one. Indeed, if one considers a potential, V' (¢), with broken
symmetry - such as the usual Mexican hat or wine-bottle shaped potential - then near the origin the
potential has negative curvature, corresponding to a negative frequency of oscillation near the origin.
Of course, as one approaches the global extrema of the potential, the quartic terms start to dominate

and the curvature becomes positive again, leading to a positive mass ~ V",

This type of behaviour with negative frequency - personified by the inverted harmonic oscillator -
has been well studied but rejected because the potential is unbounded from below with exponentially

growing solutions. Indeed, if we examine it:
i =mly (2.30)

we see that solutions are y = ¢; cosh(mt)+ ¢y sinh(mt). Thus, while for the Mathieu equation, pj was
typically less than one even for very large values of g, the effective Floquet index in this case, played

by m, can be much larger than 1.

Can we get this kind of behaviour in preheating ? The answer is yes and at present there exist two
known mechanisms for full blown negative coupling instability, as this phenomenon has been dubbed
in reheating. The first model derived showed [8] that it arises when one uses a coupling gé®y?/2
with the dimensionless coupling g replacing the g2 that we had put in eq. (2.17). Since in the simple
models 4 = £/ (miaz) +2g, negative g implies negative ¢ which can yield negative 4 and hence gives

the negative coupling instability.

This is & very interesting possibility since it means that the inflaton (which from naive CMB
estimates must have a mass my ~ 107% ~ AT/T) can produce much heavier particles my ~ 1073 Mo
as needed for GUT bai‘yogenesis. This is extremely important since previously it was believed that
GUT baryogenesis was almost impossible after inflation. Nevertheless, the model of the negative
coupling instability cutlined above is not completely efficient since the coupling between ¢ and x

gives x a non-zero expectation value and this partially cripples the power of the effects.

The only other known model of a true negative coupling instability {the wine-bottle potential
exhibits it near the origin, but this is perturbative) will be presented in the next chapter on geometric
reheating [11]. There, the freedom in sign of the non-minimal coupling parameter £ to the Ricei scalar
R allows the negative coupling instability to exist in that model, with similar implications for GUT
baryogenesis and the possibility of non-thermal symmetry restoration, which we will introduce later

in this chapter.
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To be more precise about the negative coupling instability, let us consider the potential:

m} m? 0 A A
267+ S0+ Tt 4 et T (2.31)

V=3 2 4

where g can be positive or negative. When it is positive we simply reproduce a generalised Lamé
equation for the evolution of the modes y in the absence of expansion, but when g < 0, we find that
A= k?+2¢,q9x g and so A is negative for long-wavelength, k& ~ 0 modes, and we have the negative
coupling instability. Note that the quartic self-interaction terms are necessary in the absence of a
non-minimal couplings to ensure that the potential is bounded below *. To do this they must satisfy
the constraint that [8]:

%x_ >1 (2.32)
For g < 0 the physical region, (¥ > 0), is now given by we now have 4 > —|2¢| compared to the
standard Mathieu case where A > |2q|. This extra resonance region leads to an enhanced Floquet

index and for 2ig| > |A| > 1 there is an explicit solution [§]:

2 27
cosh 2w py = coshIm ['/ dzv/ A — 200 cos(?z)] % cos Re [/ dzy/Ag — 2q0 cos(Ez)] (2.33)
0 a

where the 0 subscript indicates the corresponding values of A, ¢ with k set to zero. Along the physical
separatrix Ag = —32|qgo|, this evaluates to p = (4/7)|qo|*/?, which is slightly smaller than the naive
estimate p = (2|gq|)!/? we would get from treating this as a simple inverted harmonic oscillator (i.e.

by averaging over the oscillations of the frequeney).

However the situation is rather more subtle than we have made out since we implicitly assumed
that xo = (v} = 0 in the above discussion. As we discussed in the first chapter, since typical couplings
are rather small we cannot expect the fields to be at the origin or in general, at the minirenm of the
effective potential at the start of inflation. Nevertheless, by the end of inflation one would expect
that yq would have reached the minimum of the effective potential, but this does not correspond to

Xo = 0 in general due to the non-zero value of ¢ during inflation.

Minimising the potential® (2.31) w.r.t. x we find that the expectation value g, of x is:

mi+gds .. s
X = - 99 m, +g¢° <0 (2.34)
X

= 0 otherwise (2.35)

In the absence of non-minimal coupling, the self-interaction terms Ay, are required to make the
potential bounded from below and it is they who cause yp to be non-zero if g is sufficiently negative.
The implication of this is that the Fourier equation for éy modes is then [8]:
d*oxe
d*t
T V is not bounded below there is no global minimum and no sensible way to do perturbation theary or define a

vacuum for the theory. As a result it wonld be possible to extract an infinite amount of energy from the system [42].
5i.e. setting V/5x = 0.

4 (k4 m2 4 30 + 96°) Sxa + 2gx 666k = 0 (2.36)
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so that for x = x¢ given by the non-zero value in (2.35) the effective value of g becomes positive and

the negative coupling instability is lost — we return to the positive g case we had befare.

In the massless case m,, = 0 the condition in (2.35) is, bar a set of measure zero, always satisfled
and xo is enslaved to follow ¢, In the massive case 'this is not true since as ¢ oscillates, the condition
that m?{ +g¢* < 0 will be violated near every inflaton zero and x will feel a restoring force towards the
origin. If this force acts for long enough each cycle a phase mismatch hetween y and ¢ will develop
and then the 3A,x* + g¢* term in the frequency squared above can become negative as ¢ reaches its
maximum each oscillation. During this part of the cycle the negative coupling instability is effective

and leads to very powerful particle production.

The instabilities lead also to large field variances ((6x)?) which alter the effective mass of the y
field. Even in the case my = 0, when the variance is so large that 6m, ~ lgit/*wy 8] (see later
discussion on changes to the effective mass due to large field variances), the phase mismatch process

becomes effective and the negative coupling instability can start to occur.

Even this partial effectiveness of the negative coupling instability leads to the possibility of pro-
ducing extremely massive bosons with m, 3 my. Kinematically the simple two-body decay dd — Yy
in this case would be impossible, and even with coherent effects described by the Mathieu equation
with positive ¢ resonance it is not possible if my > 10my for reasonable coupling values. This puts the
bound m, < 10'*GeV on the masses of produced particles in all but the most violent of preheating
scenarios and hence GUT baryogenesis, which involves GU'T bosons with masses around 1015-16GeV
are very difficult to produce. With the negative coupling instability however, producing particles of
this mass is no problem [8] and leads to a model of baryogenesis at reheating which is consistent with

the observed baryon to photon ratio.

2.7 Fermionic preheating

While it is true that reheating to bosonic fields is constrained a priori only by conservation of energy
and momentum while production of fermionic fields is restricted due to the Pauli exclusion principle,
rapid production of fermions is possible and yields very different dynamics to the corresponding
perturbative case considered in section (2.3). This very recent development is the subject of this

section.

The Pauli principle in the field theoretic context implies that the occupation number of each mode
cbheys ny. < 1/2. During preheating, some parameter values yield dynamics which periodically saturate
this bound, in contrast to the perturbative result which gives ny oc #* < 1/2. The appropriate starting

point for fermionic perheating is the Dirac equation for the Fermi field ¢ [77):

[iv#Vy — hd()]p = 0 {2.37)
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which of course differs from the Klein-Gordon equation in that it is first order in time and space. Just
as in bosonic preheating, it takes as input the background oscillating inflaton field, ¢, whose evolution

is determined at zero order by its potential.

H we are not to ignore the effects of expansion, the simplest model to consider is a conformally

coupled inflaton (€ = 1/6) with a quartic potential:
A 1 —
V(e,4) = 76* + S0 R+ KTy (2:38)

with the last term a Yukawa interaction describing the single-inflaton decay into two fermions, or in
our (non-perturbative) case, of fermions being produced due to their interaction with the coherently
oscillating field ¢(t). -

The advantage of the above potential is that the inflaton evolution is, at zero order, conformally
invariant (corrections to the effective mass and the backreaction of the fermionic fields may break
this invariance but give second order effects) so that the evolution of ¢ can be reduced to that in
Minkowski spacetime, as discussed in section (2.5). The appropriate conformal transformations are
[10] ¢ = a¢ and ¥ = @y and conformal time defined by: dr = \/A@2dt/a(t) where @ is the constant
amplitude (when particle decay is neglected) of oscillation of ¢. In full we have o(r) = Gen(r, :}5) -
oscillations with period T ~ 7.416 and amplitude 3.

To make a connection with our previous study of bosonic reheating and the Mathieu or Lamé

equations we follow [77] by introducing an auxiliary field X defined implicitly via the equation:
¥ = [i7*V, + o)X (2.39)

which differs in structure from the Dirac equation (2.37) only in that it has a + sign which then gives

a neat second order time equation for X in Fourier space:

2

Xe + (,\% +qf* ~ iﬁf) Xe=0 (2.40)

where g = A*/) and in this case f(1) = en(r, ﬁ) The fermionic equation is thus more complex than
its bosonic counterpart with the addition of a purely complex term in the frequency. The occupation
number of fermionic particles in a given spin state is then given by [77]:

TR s AF
_l_ K 3oy YAl 9.41
=3 T G e KE) — 9 (2.41)

where the real part of the frequency is Q; = &% + ¢f° where the rescaled momentum is & = &2 Ape.
q

By numerically solving Eq. {2.40) for X} one finds that the occupation number n; caanot grow
monotonically but oscillates on two distinct time scales - see figure (2.5). The first is associated with
the underlying oscillations of the inflaton and so oecur with period ~ T'/2 while the second oscillations

typically occur on a much longer time scale determined by ¢ and «.

What is interesting is that, just as in the bosonie case, the occupation number ny shows a resonance

band structure as a function of k, as shown in figure (2.6). Further, as can be seen from figure (2.9),
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T

Figure 2.5: Numerical solutions showing the short (~ T/2) and long period oscillations in the oc-
cupation number, n, of massless ferrmions for several parameter sets: g = h*/A = 107* (bottom),
1 (middle curve at right) and 100 (upper right) for normalised momenta «? = 0.18,1.11 and 11.9
respectively. From [77].

the occupation numbers reach ~ 1 /2 after only a few tens of inflaton oscillations. This should
be compared with the perturbative decays which require a time of order I‘;i,}”# corresponding to
about 10'* oscillations. In the simple model presented above, the creation of fermions is essentially a
reversible process and the number density oscillates back down to zero by the reverse process %1 — ¢.
In the real universe the decoherence due to the decay of the amplitude ¢ and the backreaction due to
the particle creation is likely to inhibit this reconversion process, leaving the fermion number evelution

predominantly monotonic.

2.8 Backreaction

The resonances described in the earlier sections on bosonic preheating cannot last indefinitely, if
through no other reason than energy conservation. If one considers two pendula coupled through
a spring, one readily observes the resonant transfer of energy from one pendulum to the other and
back again. In the quantum field theoretic case, with the existence of an infinite number of possible
modes of ¥ to transfer energy to, there are selection rules deeiding which x modes are amplified (the

resonance bands described earlier).

More complex is the nature of the backreaction. Energy is not simply transferred back to the
inflaton condensate - indeed this would be an unhappy state of affairs since we are trying to rid
the ¢ field of its energy - because the produced y particles have a range of different momenta and
hence frequencies. Thus the correct analogy is that of the inflaton coupled to an infinite number
of oscillators, each oscillating with a different frequency. Once the amplitudes of these oscillators
become significant, they do not resonantly transfer energy back to the inflaton because they interfere

destructively, at least at the level where we neglect all the modes corresponding to the inflaton fieid.
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g

Figure 2.6: The resonance band structure as a function of the normalised momentum & for the inflaton
)

potential A¢?/4 and ¢ = A%/} = 107%,107" and 1 respectively from narrowest to broadest bands.
From [77].

So what happens 7 When the oscillators have significant amplitude, they act at lowest order as an
effective mass for the inflaton, thereby changing radically the frequency of the inflaton oscillations and
decreasing the resonant transfer of energy to the coupled oscillators (leading to a significant reduction

in g, see eq. 2.19).

2.8.1 The Hartree-Fock approximation

To study backreaction effects requires non-perturbative techniques. How can we proceed 7 One of
the simplest approximations is to model the backreaction using the mean-field or Hartree-Fock ap-
proximation ®. In this approximation there is no scattering that does not involve the zero-momentum

inflaton mode and energy is therefore only transferred via the condensate.

Let us consider a simple model with self*interaction to illustrate this:
A
V= Z¢4 (2.42)

As we showed in section (2.5), this leads to a Lamé equation for §¢;. But in that discussion there
was no attemnpt at describing the end of the resonance brought on either by the build-up of Sk

fluctuations or by energy conservation. We now do this by defining the mean value of 8¢k, (CIRE
n 1 7 2
S = —— [ dkk” - 2.
(567) = s [ Akt (249
and then saying that the backreaction is completely encoded in this quantity. Hence the evolution

equations for ¢, the condensate, and 8¢y become {cf. eq. 2.28):

¢ + 3Ho+ A" +3M((5¢)")¢ =0

8 There is a good deal of confusion regarding the naming of this, the mean-field approximation. Many authors refer
to it simply as the Hartree approximation while others also attach the name of Fock to it as we have done. The main
point is that they are ene and the same approximation, up to small details,
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Figure 2.7: The backreaction in the Hartree approximation for a quadratic inflaton potential and

quadratic coupling 921¢3X2_ Two x masses are shown. The significant decrease in {{(6x)*) in the
massive-x case can be simply understood from a Mathieu-type analysis - adding a y mass simple
increases the Mathieu parameter A, leading to a decrease in the Floguet index py. From Khlebnikov
and Tkachev [205].

2

S+ 3Haq'sk+(‘—+3A¢2+3f\((6¢)2>)6¢k=0 (2.44)

a?

Equations (2.43,2.44) become a coupled set of ordinary integro-differential equations for the conden-

sate and the quantum Auctuations which can be solved numerically [85, 77].

‘The results show that at a certain time the growth of quantum fluctuations is shut-off by the
backreaction. See figure {2.7) which shows the Hartree-Fock approximation in the case where ¢ has
a quadratic potential (2.16) and is coupled via the interaction term gz,iqﬁgxg to the scalar field y.
In that case, the equation for ¢ in (2.44) above has A = 0 and instead gains the term g4 {(8x)%) o
which again therefore leads to a change in the effective mass of the inflaton. We will see that the
corresponding equation for §¢, is best treated more completely than is possible with the Hartree-Fock

approximation, as we will do later in the section on rescattering.

There are a couple of further points to add. Firstly, the above systern of equations is classical. A
full quantum study of these equations has been performed including regularisation and renormalisation
of the bare quantities such as energy density and pressure [183]. However, qualitatively this does not
really introduce new effects and the system is essentially classical after the first part of the resonance
before backreaction. This is typically justified as due to the large occupation numbers ngy ~ 1/A. One
caveat to the previous statement is that in curved spacetime, renormalisation generically leads to a
non-minimal coupling to the curvature € # 0, even if the bare coupling was minimal. This will serve

as a justification for investigating geometric reheating in chapter (3).
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2.8.2 The large-N expansion

The Hartree-Fock approximation is not significantly more complicated than our preliminary studies
in section (2.4) and predicts the shut-off of the resonance. But how accurate is the approximation
and can we derive it in some systematic expansion 7 This might seem very unlikely since it contains

non-perturbative effects, but in fact there is a way, based on a large-N expansion.

Let us consider a model for ¢ as an N-component vector with an O(N)-symmetric Lagrangian.
We allow N to be a free variable. The Lagrangian density and potential for the O(N) vector model
are given by:

L= 18,00%6 V(6 9) (2.45)

and A
V(od)= gm’p - §+ 5r(6- 8 (2.46)

Here ¢ is an N dimensional O(N) vector, ¢ = (o, 7) and (7) represents N — 1 “pions”. Notice the
factor E“)“\ﬁ in the potential, which vanishes in the imit N — co at constant coupling A. Hence we may

study non-infinitesimal values of A and still use perturbation theory, this time in the ratio M (BN).

What is particularly elegant is that in this case, the large-N limit essentially reproduces the
Hartree-Fock approximation, which becomes exact {183]. However, this is not always the case. When
one couples ¢ to x; where now x; are N flelds with an O(N) symmetric Lagrangian, via the term
(2.15), the x; gain a strongly ¢-dependent mass given by 2‘,;‘,2-(;52 which is not constant, but oscillates
during reheating. In this case, there are scattering terms which also survive the N — o0 limit,
thus demonstrating the inadequacies of the Hartree-Fock approximation in non-equilibrium reheating,
Indeed, rescattering, as these effects not included in the large-N limit are known, induces some very
complex and interesting physics, which, at the classical level, bear strong similarities to nonlirear

studies of turbulence, structure formation, magneto-hydrodynamics and so on [181, g].

2.8.3 Non-equilibrium effects

One of the advantages of the above large-N and Hartree-Fock approximations is that they allow direct
study of non-equilibrium effects. Clearly this is an issue of great interest since preheating leads to

highly non-thermal spectra (see e.g. fig (2.3).

The general result typical of these non-equilibrium studies is that the quantum-backreaction cannot
be described by a simple Markovian friction term {183, 4]. This means that the dissipation retains
memory of the field value at earlier times. We will not describe in detail the techniques used to study
out of equilibrium quantum fields (other uses for the same techniques includ.e study of disordered chiral

condensates and the quark-giuon plasma) but will attempt instead to carry over the bare essence only.

The most widely used technigue is known as the closed-time-path (CTP) formalism and goes back
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Figure 2.8: Non-equilibrium effects: (a) shows the evolution of the inflaton condensate (zero mode)
in the large-N limit of an O(N) symmetric scalar field. Note two non-equilibrium effects: (i) the
drastic change to the oscillation frequency at around r = 50 and (ii) the sudden drop in amplitude
at 7 ~ 100. (b) shows the growth of the variance of quantum field fluctuations while (c) gives the
number of produced “pions” N, vs ¢ = k/m at = 30 (dashed line) and 7 = 150 (solid line). Adapted
from [69].

to Julian Schwinger and Keldysh. The basic idea is to double the number of fields, and hence the

number of Greens functions, and integrate along a closed time path in the complex plane [4].

This technique allows, in the large-N limit of an O(N) symmetric model or in the Hartree-Fock
approximation, to calculate the evolution of the inflaton zero mode. As mentioned above the non-
perturbative effects give rise to a non-Markovian kernel in the evolution equation for the condensate.
‘This yields two effects that can be seen in figure (2.8 a). Firstly the frequency of oscillation changes
drastically due to the backreaction on the effective mass and secondly, the amplitude of oscillations
exhibits near-discontinuous drops near 7 = 50 and 7 = 100. These sudden transitions are completely
missed in Markovian models of dissipation based on adding the phenomenological term T'é to the
inflaton evolution equation, since that simply gives rise to an exponentially decaying envelope. This
is a nice example of the power of non-equilibrium techniques since we see that most of the particle

production - see part (b) of figure (2.8) - occurs in the narrow band between 7 = 50 and 100,

2.8.4 Changes to m}_,, and the Mathieu equation

Since one of effects of backreaction is to change the effective mass mj s of the inflaton, it is instructive
to see how it affects the analyses based on the simple Mathieu equation. In the literature one typically
finds that the mass term in the parameters A and q is replaced with mj;,e 75+ However, this leaves the
ratio A/q invariant in the simplest models since both 4 and ¢ are proportional to mf, so that one

might conclude that the Floquet index is not strongly dependent on m’ie 1 changes.

What has never been explicitly discussed in the literature is how the (A, q¢) parameters change
due to having m};,e 75 # 0 during the backreaction phase. Here we remedy this. Again we start with
the Klein-Gordon equation for the field x and make the change of time variable z = mgt, but now

allowing for a time-dependent effective mass. As a result, the time derivative d2 /dt* now picks up My
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and it terms which must be given by external inputs.

Crucially we find a term proportional to d/dz, i.e. a term associated with damping. We will
neglect the expansion but since the effective mass typically changes in a very rapid fashion during
violent preheating the small loss of accuracy in neglecting the expansion is more than made up for in
clarity gained. The final, Mathieu-like, equation is (c.f. Eq. 2.18, () = d/dz):

2
My
(g + my)?

me(fyez + 2mg)
; X1+
(thgz + my)? k

k2 n
Xi+ (54560 =0 (.47

Again it is evident that the ratio A/g is unchanged. The crucial development is the appearance of a

X} term typically associated with damping effects, assuming that the coefficient is positive.

In the Hartree approximation, it is possible to estimate the change to the effective mass in the
simplest models [§]. We will briefly outline that calculation in order to discuss the effect on the

resonant growth of y; Huctuations.

The effective mass for a quadratic inflaton potential is given in the Hartree approximation by:

miepr = my+a7{(6%)%) (2.48)
(6507 = s [ B OF (2.49)

Now, the simplest way to treat this is to neglect the oscillatory part of the xi(t) evolution and
approximate it by its envelope. This captures the mean behaviour of the resonance and gives e())? o

exp(2umyt) ~ ng /wy. The effective mass is then roughly:

8 2 Ty
mqsleff = m¢ +g|¢(t)| (2.50)

since w, ~ g|#(t)| due to the smallness of the momenta, k, of produced y fluctuations, except when

¢ ~ 0 when wy ~ k/a. This means that s .rs is positive and oscillates.

Returning to Eq. (2.47), we see that the x} coefficient has a complex behaviour even in this very
simplified situation. To be consistent, we must neglect the oscillations in n, since we neglected the
oscillations in Eq. (2.50). In that case 7, is strictly positive, and hence so is ™y c;¢, While Mg ez s

negative at late times when the resonance starts to shut off.

We then see that the coefficient of x4 is positive almost everywhere and the mean effect of the
change to the effective inflaton mass is to significantly damp the resonance. What happens when we
reinsert the oscillatory behaviour of xx into the expression for the field variance ((6x)%), Eq. (2.49) 7

In that case the situation is significantly more complex and is partially described in Kofman et al [9].

Essentially the expression for {(6x)?) contains an extra term Re(of} exp(—2i [ wydt)) where
o, Ar. are the usual Bogoliubov coefficients {23]. The important point is that the exponential reduces
approximately {when ¢ # 0) o cos (gﬂ%b cos mqst) which oscillates extremely rapidly with frequency

~ 29®. In the broad resonance regime this is 3» mgy, the underlying frequency of the inflaton
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oscillations. This high frequency modulation of the effective mass appears to have little effect on
particle production [9] and can be understood from the numerical results we will present in chapter
{4) for quasi-periodic potentials. In that chapter we consider potentials with two frequencies. When
the frequencies are close together the change to preheating is large. When one of the frequencies is
much higher than the other, the effect is a very small perturbation of the standard theory presented

earlier in this chapter.

2.8.5 The effect of y self-interaction

So far we have simply considered the reheated field, x, to be a free field in the absence of the inflaton,
with a mass my. Now let us consider the x field coupled to ¢ via eq. (2.15), and with y exhibiting
self-interaction:

A
Vi) =7 (2.51)

The simple Mathieu-like analysis is altered because the equation of motion for v now becomes, in

the associated Hartree-Fock approximation:

. . k? 2. 3
Xx + 3Hx, + (m + 32 ((6x)%) + ¢2@° s;n“(m¢t)) Xe =0 (2.52)

leading to the modified Mathieu-like parameters:

N B X6 g-o*
Ax(’“) = m.’éag mi +2¢ , Gy ~ 4

(2.53)

2z
Ty

Self-interactions therefore cause the {{(§x)*) to appear directly in the equation of motion. This
gives the x an effective mass ~ 3A,{(6x)?)%. As {(6x)?) grows, this mass causes A to grow rapidly
and hence there is vertical motion on the instability chart, which essentially shuts off the resonance

since pp is a rapidly decreasing function of A.

The resonance effectively ends therefore, long before most of the inflaton energy is transferred to
X. In such a model, secondary scatterings prove to be very important in leading to large {(§x)?) and
((8¢)%), as we will now describe. These rescatterings are not included in the Hartree-Fock, or Large-N

approximations.

2.9 Rescattering effects

In the previous section we gave a simple pendulum-based analogy for the effect of backreaction,
which tends to end the resonances well before all the condensate energy is transferred to y particles.
However, there is another effect that we have not discussed. In reality the inflaton corresponds to
a bose condensate with all the non-zero momentum modes essentially empty. Nevertheless, we can

think of an infinite hierarchy of ¢-oscillators which are also coupled to the yx-oscillators. A natural
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effect, independent of the backreaction effect discussed above, is that the y oscillators will transfer
some of their energy to these non-zero momentum ¢ modes. In the particle picture, the stimulated,
forward scattering effect occurs via “bose evaporation” when a x particle interacts with a ¢ boson at

Zero momentum via:

X{(nkres) + d(k = 0) — x((n — m)kres ) + 5(rnkres ) (2.54)

thus shifting the y particle to lower momentum and generally leading to a smoothing of the spectra

of produced particles towards a thermal distribution.

This very interesting effect can be seen in fig. (2.9). Despite the fact that in this figure both the
y and ¢ fields have no self-interactions, and so a naive Mathieu-like analysis would insist that no d¢y
particles would be produced at k # 0, the {{§¢)?) actually grows to dominate over the {(§x)?} ! Thisis
due to scattering of the {(6x)?) off the homogeneous inflaton mode ¢(t). This efficient backscatiering

leads to strong 8¢y production.

There is another channel, “bose condensation”, which is typically suppressed relative to (2.54),
except at late times, in which a condensate boson is produced. This is very important since it leads

to the production of higher and higher momentum modes (the “hard” modes).
X(nkees) + 80(mkres) — x((n + Mm)kees) + d(k = 0) (2.55)

Clearly the process given by (2.54) will dominate over the process (2.55) as long as the number density

of the condensate is much larger than the effective number density at non-zero momentum {181]:

no > f dheny (2.56)
Wi

where wy is the effective frequency of the mode with momentum k. At late times, when the nj have
large occupation numbers, the channel (2.55) becomes of comparable importance to (2.54) and the
inflaton decay rate becomes very small [181]. We are then lead once more to the need for Yukawa-iype
couplings, such as k¢, involving only a single ¢ particle, if we wish for the inflaton field to decay
completely. Otherwise we will be left with the inflaton as part or all of the dark matter of the universe
(1, 2].

But why is ({§¢)2) > {(6x)?) in figure (2.9) ? This is due to the symmetric observation we made
in the previous section. Due to the production of é¢; particles, the x; equations of motion get a
backreaction which manifests itself s 2 change in their effective mass. This has the effect of increasing
A, L.e. causing a vertical motion on the instability chart of fig. (2.2) and leading to a rapidly decreasing
i and a rapid shut-off of the x resonance, even if the previous backreaction mechanism {the alteration

of my .z4) was not efficient.

To see this more precisely, consider the full equations of motion for the fields, including the
polarisation operators, II; and Hy. These can be given quite simply in the classical limit [9] by using

the simple result that the Fourier transform of a product is the convolution of the individual Fourler
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Iigure 2.9: The variances of the fields {(§x)?) and ((§4)2) resolved using a full lattice simulation for
the parameters m = 107°®, A, = Ay = 0,7 = 10~% and ® = 10%. Trom Prokopec and Roos [7].

transforms. Implicitly we have ignored this so far, as in e.5. Eq. (2.17). More precisely we have
assumed that the inflaton field é; consisted only of a zero mode, ie. g = ¢(2)8(k), so that the

convolution collapses to the term g?¢?(t)xz on which our earlier studies were based.

As we have just outlined however, rescattering invalidates both this, and the better Hartree,
approximation. Instead, for the quadratic potential and g?¢%x?/2 interaction term, the classical limit
(i-e. ignoring quantum phases) yields the following equations for the rescaled variables [9]. The mode
equation for X = a® %y, is

o

o k- -

X + (Eg‘ +g“¢“(t)) Xk

_ 92¢(t) =
=~y | €4 K

—-(Qia)s /dak'daf\:”xk_kl_;_kﬁgokfgokn. (257)

The mode equation for the non-zero momentum inflaton modes bpr(t) = a2 (2) is:
- k? 2 — 7°¢(t) 37,
Pr + (Eg-i—m )‘Ph —-—Wg/d b Xy Xier

2
~Tinas | PHP i T X (2.58)

‘The equation for the oscillating background field ¢(¢) is finally given by:

b+ 3HG+m>p = —(er)faa fd%’xﬁ,
g2

31,7 33 .01 -
—W/d k'd k Dett _Yet Ak.v Xku, (259)
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At the first stage of the resonance, all the right hand sides of these three equations are zero. Eq.
(2.57) then reduces to the Mathieu equation, Eq. (2.57) describes a free harmonic oscillator with no

resonance and Eq. (2.57) is just the free evolution of the inflaton condensate under gravity.

The full set of equations describes two infinite sets of classical coupled harmonic oscillators and
is therefore very similar to systems found in studies of turbulence and gravitational collapse in the

nonlinear regime,

2.9.1 Parasitic growth of §¢, fluctuations

In figure (2.9) from [7], it is evident that ¢ fluctuations grow very quickly after initially being
dormant and that they dominate the y; variance. Since this figure is for the case with no ¢ self-

interaction, this cannot be due to parametric resonance, as we mentioned eatlier.

By examining Eq. (2.58) we see that the first term on the r.h.s is the driving term oc ¢(t}X * X
where * denotes convolution. This term is almost $(2){(6x)*) of the Hartree approximation (which
does appear on the RHS in the equation for ¢(¢), (2.59)). From these three equations we now know

the form of the terms missing from the Hartree-Fock approximation.

While the complete set of equations iz not possible to solve analytically, we can understand the
effects in figure {2.9) with one simplification. Let us assume that the Xj are growing exponentially as
they do in the first phase of the resonance, X} ehe™t for b in a resonance band. Since the ¢ ~ 0
initially, we can solve Eq. (2.58) iteratively via Green’s functions to get the solution (neglecting the

second term on the r.h.s. of Eq. 2.58):
P jdk’k’gxk_y}fk: (260)
~ / di' k2 g2Hem (2.61)

and hence the number density of 66, particles grows (see Eq. (2.22)) like ngy o 02 ~ ™ | This is
precisely what we see in figure (2.9) and is an example of an effect which was discovered in numerical

lattice simulations first and then only understood analytically afterwards [9].

In chapter (5) we will study the rescattering equations in more detail and use them to study the
qualitative differences between models of reheating presented in this chapter and the ones developed
in the rest of the thesis.

2.10 Thermalisation and turbulence-like effects

At the end of preheating the occupation numbers are typically huge, but the individual energies
and momenta of particles is typically very small, with k close to zero, i.e. corresponding to long-

wavelength Auctuations with a non-thermal distribution. However, the strong couplings between the
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fields (needed for preheating to occur in the first place) ensure that the system relaxes quickly to local
thermal equilibrium, leaving the universe in a radiation-dominated FLRW state. As we will show in
chapter (6), this is important since it ends the oscillations in the curvature which resonantly amplify
the stochastic background of gravitational waves. Further, as we discussed at the end of the previous
chapter, the final reheating temperature is crucial in determining the gravitino abundance for which

there are strict upper bounds coming from baryogenesis of T, ~ 108 — 1010GeV.

If preheating generically lead to temperatures significantly above this temperature, preheating
would be in trouble, without some other mechanism to help reduce the gravitino abundance. Clearly
then, the thermalisation of the large ((6x)?) and ((6¢)*) after preheating is a crucial issue. The
problem is that it is also highly non-trivial. At present there does not exist any way to estimate T,
iﬁ terms of the input parameters (such as the couplings and amplitude of ¢ oscillations) at the start

of preheating,

However, one could make some naive attempts at estimating the temperature based on knowledge
of the occupation number distribution at the end of the resonance. Let us assuine that most particles
lie around the narrow band at k = k,. If we assumed (wrongly) that the particles were already part

of a Bose-Einstein distribution, then we would have:

1

M = ClEmT 1

(2.62)

where g here is a chemical potential. In the Wien (low frequency) part of the spectrum gives this
gives np « Topr/k. From this we would estimate a huge temperature T;; which is of course com-
pletely fictitious because the rest of the distribution at higher frequencies is missing. One might then
conjecture that rescattering would create higher momentum particles via bose condensation, but it is
fairly easy to see that it is not possible to produce a Bose-Einstein spectrum while conserving particle

number.

"The closest that anyone has come so far o understanding thermalisation is through lattice simula-
tions. Figure (2.10) shows some lattice results. We see that even when rescattering becomes effective
and fills in the regions between the resonance bands, the particle number continues to increase without
depleting the occupation number of the resonance bands. Further, even at the largest times, there is
no real sign of a thermal spectrum. The final curve shows an exponential decay oc exp(—k) but the

turnover still occurs at k., the wavelength of the first resonance band.,

At this stage we can imagine that this low-energy ensemble decays via single-body (number vio-
lating) decays via ferms such as A1 to much lighter particles, in which case the theory presented

in section (2.3) may be valid.
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Figure 2.10: The occupation number ny as a function of & and time from 3-d numerical lattice
simulations including rescattering effects. Initially three resonance bands are visible {bottom) while
rescattering dominates at late times and causes a filling in of modes between the resonance bands.
From Prokopec and Roos [7].

2.11 The effects of expansion on reheating

The effects of expansion on reheating are interesting and varied. Here we review results from the
literature and delay until chapter (3) a discussion of geometric reheating which is driven by oscillations

in the Riccl curvature.

2.11.1 Stochastic resonance

In section (2.4) we neglected the expansion of the universe, allowing us to study an exact Mathieu
equation, with a given mode k in a fixed stability or instability band. However, when one includes
the expansion of the universe, all modes are redshifted k¢ — k/a(t) and the amplitude of inflaton
oscillations decreases as ® ~ t~'. This canses the parameters (4, q) to tend to (0}, 0), and hence to
remove the resonance, as we will discuss in the next section. However, an exciting effect preludes this

damping.

At the epoch of the first oscillations, the amplitude ¢ decreases extremely rapidly. Indeed, one
has approximately that & ~ 1/N, where N is the number of oscillations undergone by the inflaton.
We thus see that between N =1 and N = 2, & drops by a factor 2, and hence g drops by a factor 4.
If g(v=1) = 1000, g(v=2) = 250.

The crucial point about this is that this does not correspond o motion within a single band.
Rather, it corresponds to rapid motion through many bands. Indeed, one can estimate the band

number which is dominant at a value of ¢ in the broad resonance regime. It is n ~ VA > +/Zq.
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Figure 2.11: Narrow resonance, g ~ 0.1, showing the almost constant growth of the field during all of
the inflaton oscillations. From [9].

Thus we see that the field moves through about /2¢/2 resonance bands between the first and second
mflaton oscillations ! If ¢ = 10°%, for example, this means traversing around 700 resonance bands.

Within ten oscillations, the field traverses 90% of all the possible bands.

This means that an adiabatic approach, based on the slow change of the parameters (A4, ) relative
to the inflaton oscillations, fails completely. Instead, one must use the sudden approximation, or as
done by Kofman, Linde and Starobinsky [9], make some inspired simplifications. They proceed by
noticing that in the broad resonance case (g 3> 1), x particle production in the simple quadratic model

(2.17) takes place not continuously, but rather in brief, highly non-adiabatic periods when B{t) ~ 0.

We can understand this behaviour in terms of the general power for particle production in an
expanding spacetime which is strongly related to the dimensionless ratio /Q%, where €, is the
time-dependent frequency of the ficld under investigation. If this ratio is less than unity, then particle
production is exponentially suppressed. On the other hand, if it is much greater than unity, then
the adiabatic approximation is strongly violated and extensive particle production can occur. To
understand the transition that occurs in going from the mild resonance (small ¢} to broad resonance
(¢ > 1) cases that is illustrated in figures (2.11) and (2.12), let us write down the ratio /2 for
the v field:

k2
Q = E§+H'¢"(t) (2.63)
Qe 2%l mlgm? 44 (2.64)
Q; ( Kokl 2¢3) _ '
PEITE a7 g

which is valid as long as ¢ # 0. We can gain a wealth of information from this: (i} particle production

is a decreasing function of &, it is more difficult to produce high-momentum (and hence energy)
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Figure 2.12: Broad resonance (g ~ 200) in Minkowski spacetime. Notice the sudden jumps in occu-
pation number near the points where ¢ = 0. From [9].

particles. (ii) the two terms in the numerator of Bq. (2.64). are maximised for different values of
¢. The first term, o< @ is maximised at ¢ = 0, while the second term is actually maximised at
¢m = k/(3ga), so only for the infinite wavelength case k = () does most of the particle production
actually occur when ¢ = 0. This is shown in figure (2.13) where it is evident that mosi particle
production will occur just before and after ¢ = 0. More importantly perhaps, as g increases, the
graphs of O /02 become rapidly more and more peaked around the points ¢, which converge fo
¢ = 0. This explains why there is such a radical shift in the nature of particle production from the

narrow-resonance to the broad resonance cases.

Having understood the reason for the change i the time evolution of ny as a function of the
parameter g, we can get a good guantitative grasp of the numerics by exploiting this insight. Near
¢ = 0, the oscillating factor sin?(myt) appearing in eq. (2.17) can be Taylor expanded to give
g2¢" ~ ¢*®*mi(t — t;)° where t; label the zeros of ¢(t). The Mathieu equation (2.19) is thus
replaced with the problem of scattering in successive parabolic potentials, a problem for which the
transmission and reflection coefficients are well known. This approach to wide resonance (without
the above observation regarding the violation of the adiabaticity condition near ¢ = 0 af large g} was
first used by Yoshimura [5]. With the new insight presented above, we know that the particle number
is essentially constant between the zeros of ¢, and our differential equation collapses essentlally to a

discrete difference equation.

The full wavefunction for this problem consists of knowing the Bogoliubov coefficients oy, §; and
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Figure 2.13: The ratio Qk/Qi as a function of myf for the quadratic potential and k = 1,9 = 4.
Superimposed is the arbitrarily normalised inflaton evolution (¢ ~ sinmgt) with expansion effects
not included. Note that {ﬂk/Qf] reaches its maximum near, but not at ¢ = 0. The value of ¢ at
this maximurn varies as ~ g~ and the ratio becomes rapidly more peaked around these maxima as
g increases, leading to the explosive jumps in occupation number,

the phase &; of the solution. The Floquet exponent for this problem can then be given as [9]:

wo= -é-}:-_» In (1 + 2e~™ — 2sin Bl "™ A1 4 e e? }

& = (Ar - 20)/27 (2.65)

where #_, is the total phase accumulated at the time of the j-th zero. This explicit expression for
the Floquet index is impressive since it is completely non-perturbative, ¢ 3> 1. To be useful we must

know &{ot however, and this can be done explicitly in the case of no expansion.

When the expansion of the universe is included there are two interesting novelties. Firstly, ], €
[0, 27} so that it’s contribution to p in eq. (2.65) can cause an increase or reduction of the particle
number, a purely quantum effect. More interesting perhaps, one can estimate the change in phase

between successive zeros of the inflaton [91:

g My /o \
68; ~ = 2.66
T T 20maN? T 2N? (2.66)

where we have put gy to emphasise the initial value of g. The crucial observation, which leads to the
name stochastic resonance, is that if we consider gg 3> 1, then §8; > 1 during the first few inflaton
oscillations. But being a phase, 66; € [0, 27]. Therefore the change in phase between zeros is of the
form Z mod 27, Z 3> 1 which is the classic pseudo-random number generator used in most computer
languages and simulations. The phase therefore behaves as a random variable, hence so does pp. The
Floquet exponent ceases to resemble in any way that implied by the instability chart (fig. 2.2). This
stochastic resonance lasts ouly for a few oscillations however until;
1/4

Nsta:h = ‘3/0’2—;

which for go = 10%, is about five oscillations. Afterwards, the change in phase rapidly decreases

(2.67)

~ 1/N* and the Floquet exponent settles down to a more orderly existence, converging to a sedate,
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Figure 2.14: The characteristic exponent p; in the stochastic case as a function of * = (A —2q)/(2q)

for the initial value of the parameter ¢ = (327r)2 a2 10%. The curve is obtained at the time after the
first 5 oscillations, which corresponds to g} with j = 10. The envelope of the curve is obtained from
Eq. (2.65) by taking there sinf = +1. The resonance is much broader, there are no distinguished
stability /instability bands, and for certain values of momenta the function g, is negative. During the
stochastic resonance regime, this function changes dramatically with every half period of the inflaton
oscillations. Compare with fig. (2.3) for g of the Mathieu equation. From Kofman et al [9].

adiabatic movement on the instability chart, fig. (2.2). The main effect of this is to damp the

resonances, as we will now describe,

2.11.2 Expansion in the adiabatic realm

Now by introducing the variable y = ch#’, Eq. (2.1B) is converted into a 2 — d non-autonomous
dynamical system. The explicit time dependence of the systern implies that trajectories can both
self-intersect and intersect other trajectories, as can be seen in figures (2.15, 2.16). Nevertheless they

are useful discriminators of evolution characteristics.

Typical Poincaré disks (compactified phase planes) are shown in figs. (2.15,2.16) for (4, g) values
in the stable and unstable bands respectively. Fig. (2.16) is the trajectory of a single point as
it converges to the boundary. Introducing the expansion of the universe alters the nature of the
phase planes considerably. In Fig. (2.17) two trajectories for the same (A4, ¢) values are shown. The
resonance begins in the same way but at a certain stape the dissipative effects of the expansion start

to win and the solution spirals into the origin.
In the case when the spatial curvature is zero, K = 0, the Raychaudhuri equation is:
. 1w
H = —54;#)' . (2.68)

The fFriedmann equation can be solved perturbatively with the parametéf € = H/mgy to yield {150]:

_2 sin(myt)
p=d [ tam
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Figure 2.15: Poincaré disk for the Mathieu equation. The orbits of three typical trajectories within a
stable band are shown. The bounded, periodic nature of the evolution is clear. {4, ¢) = (0.13,0.88).
From [149].
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Figure 2.16: The evolution of a single trajectory of the Mathieu equation with (A4, 7) = {3,33/2), e
in the strongly unstable band. Notice the space-filling chaotic approach to the border at infinity in
contrast to the well-behaved stable band motion. From [149].
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Figure 2.17: The effect of expansion. From [149].

This is only valid after the end of the preheating when the amplitude of cscillations is ® < M,;. This

equation can be solved perturbatively to give [11]:

L sin 2mgt  2ci(2mgt)
a(t) = Texp ( St 3 (2.70)
where @ = £*/3 is the background EDS evolution, and ci(mgt) = — [ cos(myz)/zdz. This example

explicitly demonstrates how temporal averaging (which yields @) removes the resonance.

In the special case where V = Ag*/4, with non-minimal coupling £ = 1/6 and K = 0, the whole
system is conformally invariant and hence the expansion has no effect on the initial resonant decay of

the inflaton [155].

2.12 Non-thermal symmetry restoration

Until now we have allowed for poteniials with mass terms and self-interactions but not for poten-
tials with broken symmetry. This seemingly small step has lead to the most controversial aspect of
preheating to-date: the idea that symmetry can be restored by the large quantum corrections to the

effective potential.
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Figure 2.18: The coupling-mass parameter plane for the simple Mathieu equation in an expanding
universe, showing the significant difficulty of reheating to massive bosons. From {156].

Let us consider the simple Z, symmetric potential with broken symmetry:
_ A 2 252 92 2,2 371
V(g0 = 56"~ 837+ gt (211)
This gains the following quantum corrections to V due to the {(§4)?) and {(§x)?):
3A 2 § a2, 4 2y .,2
av =2 (69126% + L (60067 + L (58 272)

[131]. In (equilibrium) thermal field theory, we have that {(§x)?},{(6¢)%) & T2, the temperature
squared. It is then easy to recover from eq. (2.72) that the symmetry is restored in the large-
T [imit. But what happens during preheating when the fluctuations in eq. (2.72) are completely

non-equilibrium ?

Well, because the average energy of produced particles is very small (u;, is greatest for small A and
hence small k), the occupation numbers of modes is huge and is again dominated by the small-& part
of the spectrum. This implies that the variances in {2.72) are much larger than one would naively
expect. Indeed, from energy conservation, one has the bound [131] ((6¢)%) < Cg~1AM; In™2 g=2 with
C ~ 107% — 103, Saturating this bound implies that Eq. (2.71) can have a positive effective mass,

m3 .o = (V + AV)" even for a GUT symmetry breaking scale ¢g ~ 1015GeV.

As we saw from fig. (2.9), the variances tend to oscillate rapidly about a mean value which
slowly decreases due to the expansion (gravitational evolution of the corresponding energy density
perturbations having been completely ignored until now). Therefore it is plausible that symmetry
could be restored for a considerable amount of time, certainly enough for the mean field ¢ to cross
the origin and hence probe the alternative vacua of the theory. This naturally leads o the strong
possibility of defect formation at reheating, including monopoles. We will see in chapter (5) that this
is indeed the case in multi-field models (n > 2), especially at strong coupling. Further, the variances
{(6x)?) and {(64)*) estimated using the Hartree-Fock approximation are typically significantly smaller
than those that are obtained from full 3 — D lattice simulations due to the neglect of rescattering

effects.
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Figure 2.19: The evolution of the inflaton zero-mode as a function of time. Note that even once
oscillations have amplitude less than v = ¢g, the oscillations are still centered on the origin g9 = 0,
rather than converging to one of the absolute minima at ¢q = v, thus indicating the restoration of
symmetry. At time ~ 850 the symmetry is broken and the field starts to converge to ¢dg = %v in
the two realisations shown. This random choosing of which vacuum to fall into will lead to defect
formation via the Kibble mechanism. From [70].

2.12.1 First order non-thermal phase transitions

How does the non-thermal symmetry breaking occur 7 Is it first order, weakly first-order or of second
order 7 Recently, Khlebnikov et af have claimed that typically the transition is of first order when
the couplings in eq. (2.71) obey g 3> A. Presumably, as this condition is continuously weakened, the

transition becomes weakly first order and then finally of second order.

Given the controversy over the existence of NTSR, the great advaniage of a first order phase
transition is that it occurs via nucleation of bubbles, which are relafively distinctive numerically. The
bubbles of true vacuum then expand and collide, eventually leaving no regions of false vacuum. Such

an event is shown in figure (2.20) resulting from a 3 — D 1282 lattice simulation of preheating.
The sufficient conditions that the phase transition be of first order transition are [70]:

(i) At the phase transition, ¢ = 0 should be a local minimum of the potfential. From Eq. (2.71)
this means that g?{(6x)?) > AéZ.

(ii) The typical momentum of particles should be smaller than g¢y to ensure that there is a

potential barrier between ¢ = 0 and the minima at *+¢g.

Once the minima at %¢q becomes deeper than that at the origin, fluctuations drive the system

over the barrier creating an expanding bubble driven by a pressure due to the difference in potential
at ¢ = 0 and £dp.
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S

Figure 2.20: A numerically detected bubble of true vacuum nucleated via a first order phase transition
after non-thermal symmetry restoration due to preheating. This is a surface of constant ¢ = —0.7dq.
Inside the bubble ¢ < —0.7dp. From [70].

If these conditions are violated then the phase transition will most likely be of second order in
which case there is no bubble nucleation. In either case there will be defect formation via the Kibble
mechanism {78]. In the case of a first order phase transistion however, the collision of bubbles is
expected to release a large amount of high-frequency gravitational radiation [207] which may be

detectible with future gravitational wave experiments.

2.13 A “realistic” model of reheating from supergravity

Finally, to end this review chapter we study reheating in the simplest model of hybrid inflation based
on supergravity using the same theory we studied in section (1.7) at the end of chapter (1). It is
based on the superpotential:

W = ¢(abo — u?) (2.73)

which, using Eq. (1.82), gives the tree-level hybrid inflation potential (we take o = 7):
V = 2a%|¢[%0” + |ad® — p*)? _ (2.74)

Note that while supersymmetry is preserved there are no single body inflaton decays and if this
were to remain true always there would almost surely be some amount of dark matter in the form
of the inflaton field, since the concentration of inflaton particles drops rapidly with the expansion
and the decay rate tends to zero just as happens during nucleosynthesis to protons and neutrons.
Unbroken supersymmetry therefore naturally yields scalar-fleld models of dark matter now known as

quintessense or Q-matter [71].

However, supersymmetry is broken during inflation by definition since the vacuum has non-zero

energy density and so the above potential gains one-loop (and higher) radiative corrections. In section
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Figure 2.21: The ¢ — o phase plane showing the rather chaotic evolution.From [138§].
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Figure 2.22: The time evolution of the fields ¢ and o showing the very slow decrease in the amplitude
as a function of time compared with the single field case. From [138].
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(1.7) we studied the decay of the fields to neutrinos completely ignoring resonance effects. Now we

are a position to understand what preheating looks like in this model.

The fact that there is only one coupling, A, in the superpotential (2.73) means that both ¢ and
o are dynamically important and the evolution is typically chaotic (see figure 2.21) and even when
the expansion of the universe is included the amplitudes of the oscillations decrease very slowly due
to the fact that the evolution of H is highly non-monotonic [138]. The fact that a grows very slowly
on average in this region of weakly chaotic oscillations is very interesting since the horizon size =<t

grows much faster relative to @ than it would in a single field model.

I we now couple ¢ and o to our canonical massless scalar field x via the interaction terms:
2
S (2.75)
where as usual g,h are dimensionless coupling constants, we are lead to the usual Klein-Gordon

equation of motion for x but with a mass term [138]:
mi = g*¢*(t) + KPo?(t), (2.76)

Also of interest is the evolution of §o), fluctuations which obey the Klein-Gordon equation with mass
term:

my = 12070 (t) + 200 (1) ~ 4oy (2.77)
so that while the couplings determining the y; fluctuations are arbitrary, those in the dop equation

are fixed by CMB anisotropy data.

Figure (2.23) shows the results from integration of the coupled equations for the occupation number
for xz as a function of the number of oscillations of the ¢ fleld. Now to good approximation during
reheating we have that:

¢==®sinmgt , o= Isinmyt (2.78)

go that the masses oscillate just as one would expect for a resonance system. But if one tries to
convert the equations for y or 8o (the édy rase is similar to the §oy case) we are faced with an
immediate dilemma. A crucial step is to make the equations dimensionless which we did in section
(2.4) and (2.5) by switching to a new time such as z = myt. If we do that then we find terms of the
form sing(%:-z) in the equations and this cannot be reduced to Mathieu form except for very special

values of the ratio %. In particular a minimum requirement is that the ratio be an integer.

So the natural question is, “what happens when the ratio is not an integer 7”7 What happens when
it is some other fraction, or as turns out to be much more interesting, what happens when the ratio
is trrational ? This is the partly the subject of chapter (4) and actually defines a new reheating class,
missed in [138]. In [138] they further claim that the chaotic phase of oscillations does not lead to any
particle production. In chapters (4) and (5) we reexamine this issue more'éloseiy with analytical and

numerical results which point strongly to the opposite conclusion - particle production is generically

enhanced in the case of stochastic field evolution.
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Figure 2.23: The exponential growth of the occupation number versus the number of o oscillations
N for the mode k = p. From [138].

2.14 Where the thesis fits into the reheating hierarchy

In this chapter we have reviewed the stages of reheating as they are now known. Almost certainly there
are major changes in lstore but at present it is safe to make the decomposition into four conceptual, but
not chronological, phases. The first phase is the initial resonance. This is very strong in preheating and
weak in perturbative reheating. This is also the phase on which the work in this thesis concentrates

most since it is the phase which lays the foundation for the rest of reheating.

Let us make an analogy. If reheating were a car, then the resonance is like the engine. With a
big V12 engine, acceleration can be very large, but drag goes up as the square of the velacity and
soon backreaction becomes important. Tf asrodynamics of the car are good then backreaction need
not cause a large breaking effect, if the aerodynamics are bad (corresponding to large self-interaction
in the y field; section 2.8.5) the maximum speed of the car is low. Depending on the situation and
design of the car, eddies and essentially nonlinear effects could lead to unexpected instabilities — and
back-propagation on the ambient medium - this is like rescattering. Finally, the return to rest of the
car and the surrounding air once the engine is turned off and the car free-wheels to a stand-still is like
thermalisation. How the turbulent eddies dissipate their energy and return to laminar flow is almost

precisely the classical analog of thermalisation after preheating,

The engine is thus the focus of most of this thesis, although we will consider the other aspecis,
especially in chapter (5). In the next chapter we look at geometric reheating where the driving engine
for the resonance comes directly from the geometiry. In chapter (4) we use elegant spectral methods
to classify all qualitatively different types of engines for resonance. In chapﬁer (5) we put everything

together and examine what effects multiple fields have on reheating. In our analogy, the question
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is how several engines in the same car affect performance. Naturally adding several engines into a
car body on a single chassis affects aerodynamics and drag too. In the same way we examine the
implications of multiple fields, arising naturally in GUT and supergravity theories, for preheating,
backreaction and rescattering. Finally in chapter (§) we examine the effect of reheating on the
evolution of gravitational waves and find that they too are amplified, leaving a signal that may be

detectable with future experiments such as LIGO.



Chapter 3

Geometric Reheating After
Inflation

Time is nature’s way of keeping everything from happening at once.
Woody Allen

The first sign of a nervous breakdown is when you starl thinking your work is terribly important.

Mile Bloom
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3.1 Introduction

Having reviewed the current status of reheating ! in the previous chapter, we now move on to a
reheating based purely on General Relativity. However, its motivation comes from particle physics
and renormalisation in curved spacetime. In fact, this chapter is largely based on giving the answer
to the question “if all couplings of the inflaton to other fields are weak, must reheating be of the

perturbative form described in section (2.3) or is preheating in some form still possible 7"

The answer to the last question is yes and its implementation is the substance of geomeiric re-
heating. The idea of geometric reheating is quite simple. At the end of chaotic inflation the Ricci
curvature follows the inflaton in executing coherent oscillations. If fields other than the inflaton are

non-minimally coupled to the curvature then this leads fo a gravitational preheating.

3.2 Renormalisation in curved spacetimes

As we discussed in chapter (1) (see also [136, 81, 85]}, renormalisation in curved space time generically
leads fields to be non-minimally coupled even if the bare coupling was minimal. Further, all the
couplings in a theory fypically run with energy, except in a few very special cases. Indeed, this is the
very foundation of the GUT concept and the basic ingredient of almost all unified theories: that the
coupling constants of the various forces unify at some high energy. This running of the couplings,
masses and non-minimal couplings of a theory is controlled by the f-functions of its renormalisation

group equations 2,

Typical modern incarnations of inflation arise within supergravity, string or GUT theories where
the inflaton, ¢, is only one of many fields. Studies of inflation including couplings to these other
flelds, yield extremely complex dynamics [140] and are little investigated beyond two-field hybrid
models [130]. However, since we are particularly interested in the preheating realm which occurs
when inflation ends near the Planck scale, we ar« near the high-energy ultra-violet (UV) fixed points
of the renormalisation group equations, so that even if there are many fields involved in realistic
theories, the dynamics typically simplify greatly and the various fields usual decouple, either partially

or completely 3

Now, while the UV fixed points may correspond to a conformally invariant field (m =0, § = %),
in different GUT models the coupling may also diverge, [€] — oo, in the UV limit [136, 84] as we will

now discuss in some detail.

However to do this we must first continue our discussion of renormalisation in curved spacetime,

1As of Angust 1998,

?For a tharough and extensive introduction to renormalisation in the presence of gravity and renormalisation group
equations for different thearies, see the book by Buchbinder et of {136].

3 Alternative approaches to the problem of multiply coupled fields will be presented in the following two chapters.
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started in chapter (1). The details in the following two subsections are not vital however, though very

useful for putfing the results in context, for the rest of the chapter.

3.2.1 Renormalisation of the non-minimal coupling

Let us consider a general theory in curved spacetime with &4 = (¢',4%, A}) where i numbers the
field; ¢' are scalar fields, ¥* are spinor fields and the Al are vector fields. Let the scalar and fermionic
Lagrangian mass terms * be of the form %mij @7 4+ M, ¢* and let the non-minimal couplings be

16;0%7.

One finds [136] that the renormalisation of all fields ®# and parameters (which throughout this
chapter will mean the masses and the Yukawa-, gauge-, self- and non-minimal couplings of the fields)
other than &; is carried out with the same renormalisation constants as in flat spacetime. Dimensional

and gauge-invariance constraints force the relation:
€oij = Zois ' &x + Zaj (3.1)

where the subscript 0 denotes the bare (unrenormalised) value of a field or parameter and the 7
are the renormalisation constants, which map the unrencrmalised action into the renormalised one.
The fact that this equation is inhomogeneous provides the reason for why £ # 0 in general, even if
& = 0. Now at the one-loop level, the constants Z» and Z3 can be related, as first shown in general
in [87]. Z2 is connected with the renormalisation of the mass and the relation betwesn Z, and Z3
shows how all renormalised fields and parameters can be calculated via the corresponding theory in

flat spacetime.

Interestingly, for the renormalisation of the &;; it is sufficient to consider the massless theory only.
In four dimensions it turns out that conformal coupling & = % is a fixed point and so £ = &y if & = é.
Using this in equation (3.1) we find that at one loop the desired relationship between Z2 and the

purely curved-spacetime-constant Zs is:
zg" = -4z’ - 1) (3.2)
where the superscript (1) reminds us that it is a one-loop result and we have suppressed the ij indices

for notational clarity.

3.2.2 Renormalisation group equations

The effective action turns out to be invariant under renormalisation % in the sense that:

Wﬂ[h;.w:@!‘(hpoan} = W[gulfs ¢lpnu'ln] . (33)

*Vector fields are not given mass explicitly so as to preserve gauge invariance.
STechnical remark: this follows from multiplicative renormalisability of the theory [136].
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where again a subseript 0 denotes a bare quantity, ¢, p and n denote the fields, parameters and
dimension of spacetime respectively and p is the mass scale that was introduced in subsection (1.5.1)
to ensure that the effective Lagrangian retained the correct dimensions when n # 4. The above
expression (3.3) can be restated differentially as [136]:

d

J’—‘E’"W[gpv»‘.ﬁsp»ﬂzn]: 0 (34)

1

which, expanding the toial functional derivative d/dy, gives:

& a ]
#aj‘ - ﬂpé}; = 7(”) / d"z Cﬁ(m)m] W[gf-w: ¢1p1#1 HI =0, (35)

where §/§¢ denotes functional differentiation w.r.t the fleld ¢(z) and we have defined:

g = uj—i (3.6)
vmi(a) = w2 (3.7

The fS-functions f,, which depend explicitly on the parameters p, control the evolution of the param-
eters under changes of the mass scale p. But what we would really like to know is how the parameters
and fields change with energy, or via the uncertainty principle, with length scale. Now for the simple
case of a massive, non~minimally coupled scalar field with quartic self-interaction, W satisfies a simple

scaling relation under a constant conformal transformation:

Juer == e_grg;w ' (3.8)

where 7 is a constant. This allows the d/dy term in Eq. (3.3) to be replaced by a term involving

d/dr, which is what we wanted.

This leads to a solution W{g,.,, ¢(7), p(7}, #] where the 7 dependent @, p satisfy the renormalisation

group equations ®:

dg

B = ()~ dg)el) , (39)
B~ yir) - dplplr) (3.10)

where dy , are constants, the so-called canonical dimensions of ¢, p at n = 4 [136], and ¥, 3, depend

implicitly on 7 through p.

3.2.3 Asymptotic freedom, conformal invariance and finite models

The Einstein field equations are invariant under the constant conformal scaling in Eq. {(3.8) - see chap-

ter [7] - since under this transformation R, is invariant while £ — " R.. Similarly the Kretchmann

4r

scalar (“Riemann tensor squared™”) scales as e*” so that as 7 — oo, the curvature invariants diverge

8The constant scaling of the metric gy — ™77 gy defines a group of transformations (technically a semi-group).
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and g, — 0. The high energy, short-distance (UV), behaviour of the theory is then controlied by

this limit.

We have a dilemma however., How can we look at the 7 ~+ co limit using only the one-loap
approximation, as we are doing here ? The answer is that it only makes sense in theories which are
asympiolically free, i.e. those theories whose coupling constants g* are such that g2 — { as 7 — co.
QCD is a relevant example. As it turns out, the 7 — oo limit only exists in a theory with scalars,

spinors and non-Abelian gauge fields if that theory is asymptotically free [90].

Now the equation for £ coming from (3.10) can be solved [136] and has the general structure {we

suppress unnecessary detail):
_A'
) =3+ L.~ ) (8.11)
where the A; are the eigenvalues of a certain constant matrix. Clearly we can decern three possibilities
as T — 00!

(1) AlLX, <0

In this case £ — é independently of the initial, bare value &;. Since as T — oo, the theory becomes
massless (m® — () the theory exhibits what is known as asymplotic conformal invariance. This
means that particle production due to the expansion of the universe will progressively shut-off as a

conformally flat singularity is approached.

This is a nice example showing how, even though the classical Einstein field equations are invariant

under the constant conformal sealing, quantum effects are not.

(2} At least one A; >0

In this case, |§| — oo irrespective of &. This result is of central interest to this chapter since
it shows that £ may be the only interesting coupling in a theory at high energy. All fields can be
described in the above limit as free but highly nor-minimally coupled fields, i.e. it is not necessary

to consider their masses, self-interactions or couplings to other fields such as the inflaton.
(3) AllA, =0
&(r} = 1 and the value of £ is not renormalised in the one-loop approximation.

Finally we arrive at finite theories. These are theories where 2ll the J-functions controlling the
renormalisation of fields, masses and couplings (other than for £) vanish. The couplings g7 are truly
constants, invariant under 7. Perhaps the classic exampleis N = 4 supersymmetric Yang-Mills theory

where the S-functions vanish at all orders in perturbation theory, and not just at one-loop.

In these finite theories the above three situations for £(7) are again possible. As an example
consider SU(2) gauge theory with an SU(4) global invariance and action containing Weyl spinors and

scalars in the adjoint representation of SU(2) [136]. In this theory, |§} — oo as 7 — oo, while at
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low energies it tends towards conformal coupling as preferred hy the equivalence principle of General
Relativity [80]. Indeed, since these one loop calculations typically yield (%, 00) as the fixed points of
the renormalisation group equations as T —+ ==co, and since the equivalence principle strongly favours
conformal coupling at low energies {i.e. 7 — —co}, it appears much more likely and natural that
|€] — co in the high energy limit than the other way around. This is precisely the motivation for
this chapter where we consider preheating to non-minimal scalar fields. The strength of the effect is
due to the congruence of two facts: (1) the Ricci curvature oscillates during preheating and (2) the
nen-minimal coupling, €], is & {ree parameter. The first ensures that there is resonance, the second

that the effect is non-perturbative.

Further on in the chapter we shall study the gravitational production of spin 0,1 and 2 particles
due to the expansion of the universe during preheating, and will show that a unified treatment in
terms of parametric resonance exists. This is shown by reducing the evolution equations to generalized
Mathieu form:

" + [A(k) ~2gcos 2z]z = 0, (3.12)

with time-dependent parameters 7.

When A(k) < 0 a qualitative change occurs and the dominant effect comes from the fact that
one effectively has an inverted harmonic oscillator yielding the negative coupling instability [8], as
discussed in section (2.6). In this case the Floquet index can be as large as . ~ |g|'/?, there are no
stability bands to speak of and the typical variances are larger by a factor |¢|*/? than in the A(k) > 0

case,

3.3 The specific setting for the model of geometric reheating

To be concrete, consider the case of a scalar field in a FLRW universe (g,, = diag{—1,a%(t)/(1 —
Kr?), a?(t)r?, a®(t)risin?8) , K = £1,0 is the curvature constant). We shall restrict® ourselves to the

quadratic potential,

Mg o

. (3.13)

513

V(d) =

o)

For K = 0, the latter potential gives ¢ = ®@sin(mgyt), with @ ~ 1/myt. In what follows we shall try to
preserve maximal generality; we denote with = results which are derived specifically for the potential

(3.13).

The energy density and pressure for a minimally coupled scalar field, ireated as a perfect fluid,

"We can then use all of the extensive formalism developed in chapter (2) regarding the instability chart of the
Mathien equation, effect of expansion, estimates for the Floguet index etc...

8%We note that application of stochastic resonance methods to the vector, tensor and non-minimal scalar fields of
this chapter for the potential ¥ = -i‘-c_z’:‘* requires an extension of the existing theory to scattering in a quartic potential
as opposed to the standard quadratic potential [9, 10].
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are:
1, 1 .
p=rRGEHV@) L p=rGE - V). (3.14)
These equations breaks down if the field is non-minimally coupled (an imperfect fluid treatment must

be used), if the effective potential is not adequate [183], or if large density gradients exist [37]. The
FLRW Ricei tensor is [20]

a\* K|
+2(E> +—}6J-, (3.15)

al

where 7, 7 = 1..3. The Ricci scalar is:

R=¢86 (g + (%)q + %) . (3.16)

The Raychaudhuri equation for the evolution of the expansion © = 3H = 34/a is ° given hy:

: 3k .o 3K g
0= _?QS + 27 (3.17)
while the Friedmann equation is
. 9K 1.,
€% + =5 = 3xp = 3x (5¢~ + V(qﬁ)) . (3.18)

As an example, when K = { and a/(amy) < 1, one may solve Eq. (3.18) perturbatively {1501, to

obtain:

in 2mgt
@ig[l_m : (3.19)
i 2myt

to first order in a/(emy). This is only valid after preheating when ® < 1 but shows that the expansion
oscillates about the mean Einstein-de Sitter (£Ds) pressure-free solution. Eq. (3.19) can be integrated

to give the scale factor:

- sin 2mgt  2ci{2mgyt)
a(t) = dexp ( Smgt 3 (3.20)
where @ = t%/2 is the background Eps evolution, and ci(myt) = — [[7 cos{myz)/zdz. This example

explicitly demonsirates how temporal averaging (which yields &) removes the resonance.

Via Eq.’s (3.17,3.18) one can systematically replace all factors of @, & with factors of ¢ and V(4)
terms®?. In this way one can show that the vector and tensor wave equations take the form of Mathieu

equations during reheating [148].

3.4 Scalar fields

Consider now the effective potential:

1 1
Vgx) =V +50 mixs + 50 GXiR, (3.21)

9The expansion is generally defined as @ = u%;s where v® is the 4-velocity and ; denotes covariant derivative [220].
10Tndeed, a useful combination is 26 + 2 = —3xp = %ﬁm%@z cos(2mgt} .
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describing the inflaton with potential V(¢) coupled only via gravity to N scalar fields, x,, which have
masses m,, no self-interactions and non-minimal couplings £,. The equation of motion for medes of

the »-th field is:

. ) k*

Xe+Oxe + (;—- +m, +£»R) Xk =0, (3.22)
From Eq (3.16,3.17,3.18) the Ricci scalar is given by ':

R=—xd’ +4sV(d) (K =0). (3.23)

3.4.1 The minimally coupled case

Consider £, = 0. Then (3.22) reduces, on using Eq’s (3.17,3.18), to:
d.’!(aaf?.xk) L2 Y 3.,
—_ 2L g’ 24
2 + (a(z)ﬂ Fmy +agd (3:24)
3 3K, am
54V(¢)+4a2)(a xe)=0.

There exists parametric resonance because the expansion © oscillates. The potential (3.13) yields
equation (3.12) (K = 0) with time-dependent parameters:
o 2

Alk, 1) = (;T;& % L g= -13_65@2 (3.25)
From this we see that the production of particles is reduced as m, increases. Indeed, since A —
mZ/m3, ¢ — 0 due to the expansion, production of minimally coupled bosons is rather weak and
shuts off quickly due to horizontal motion on the stability chart. We stress that the production is,
however, stronger than that obtained in previous studies where the scalar factor evolves monotonically

[152]. This mild situation changes dramatically when a non-minimal coupling is introduced.

3.4.2 Non-minimal preheating

Now include the arbitrery non-minimal coupling £,. Using Eq. (3.23) one can reduce Eg. (3.22) to
(K =0)

d2(a3/2xk) kz 5 3 in

- & G - 45) V(¢)) (& x1) = 0. (3.26)

Defining a new variable z = myt + w/2, Eq. (3.26) takes the form of equation (3.12) with time-

dependent parameters:

Akt) 2 o Do B
atmy 3 2
. 3 1 n ' -
o(t) = i (Z - E) - (3.27)

11 Assuming that at the start of reheating the inflaton is the dominant contributor to the energy density of the
universe.
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Figure 3.1: The evolution of the & = 0 mode (mﬁ/mi = 1), as a function of time and the non-minirmal
coupling parameter £. For positive £ the evolution is qualitatively that of the standard preheating
with resonance bands. However, for negative A (negative £) the solution changes qualitatively and
there is a negative coupling instability. There are generically no stable bands and the Floquet index
corresponding to —|€} is much larger, scaling as gy, ~ [£]1/7.

The crucial observation is that since £ is initially free to take on any value '2, A(k) is neither restricted

to be positive nor small in magnitude.

From Eq. (3.27) it is clear that A(k) < 0 for sufficiently negative £. The-possibility of negative 4
was the thesis of the work by Greene et of [8]. However, in their model, this powerful negative coupling
instability was only partially effective due to the non-zero vacuum expectation value acquired by the
x fleld due to its coupling, g, with the inflaton. Here we only have gravitational couplings and the

same constraint is removed.

Negative A (induced when ¢ < () imples that the physical region of the (4, ¢q) plane is altered.
Tnstead of A > 2|¢| we have A > 7®% — 2]g|/3. Now when 2{g|/3 > |A4| > .1 we have p; ~ Ig|/? ~
(67)6)L/2® along the physical separatrix A = 7$? — 2|g|/3. Since the renormalised |¢] may have very
large values, this opens the way to exceptionally eflicient reheating - see Figs. (3.1,3.2) - via resonant
production of highly non-minimally coupled fields with important consequences for GUT baryogenesis

[8] and non-thermal symmetry restoration.

For example, let us consider my ~ 2x 10'2GeV as required to match large angle CMB anisotropies
AT/T = 1075 ~ my/Mpr. Then GUT baryogenesis with massive bosons x with m,, > 10'*GeV sim-
ply requires £ < —(7®%)~!, with @ in units of the Planck energy. Instead if one requires the production

of GUT-scale gauge bosons with masses mg; ~ 10%GeV this is still possible if the associated non-

12The only constraints that one might impose are that the effective potential should' be bounded from below and
that the strong energy condition, Rgpu®ul > 0 & Typutu? > —T/2, be satisfied. The first is difficuli to impose since
R oscillates and the second since one should use the renormalised stress-tensor, (T3), and even in this case there is no
bound on £ as we discussed in subsection (3.2.3).
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Figure 3.2: A slice of the spectrum in fig. (1) at t = 5 as a function of the non-minimal coupling £.
The qualitative differences between £ < ) and € > 0 are clear.

minimal coupling is of order £ ~ ~103. Such coupling values have been considered in e.g. {91]. The
massive bosons with m, ~ 10" GeV can be produced in the usual manner via parametric resonance

if £ > 0, but this process is weaker (c.f. [135]).

Since the coupling between ¢ and y is purely gravitational, backreaction effects in the standard
gense (see [9, 183]) cannot shut off the resonance. The inflaton continues to oscillate and produce

non-minimally coupled particles, receiving no corrections to m’é, efs Tom {8x%)-

To estimate the maximum variance {§x>) is therefore rather difficult. The standard method is to
establish the time when the resonance is shut off by the growth of A(k) which pushes the £ = 0 mode
out of the dominant first resonance band. For this we must understand how A(k) changes as the
x-fleld gains energy and alters the Ricei curvature. If we assume that most of the energy goes into the
xo mode, justified in the £ < 0 case *3, then the change to the Ricci curvature is §R, = 8x(E — 5},
where [92]:

E=Gepy

] a2_92 .
Xo , ThXo o0l 2
5 T 5 12£x0x0 a] (3.28)

is the T component of the x stress tensor,

s 3Gy X3 my X5
14+ 192nGapp8%x2 | 2 2
n2 .
+ 4 (Z—g - xufcug - m;’;xﬁ) + 647r£2x3E] , (3.29)

is the spatial trace of the stress tensor T%; corresponding to 3p in the perfect fluid case and Gepy = (1+
16mEx2)~1 is the effective gravitational constant. Since g is rapidly growing, the major contribution

of ¢, will be to A(k), causing a rapid vertical movement on the instability chart. Once 64+ 4 >

1371 the case £ 3> 1 one needs to use {5x7) instead.
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2|q] + |g]*/?, the resonance is shut-off. If £ < 0, most of the decaying ¢ energy is pumped into the
small k modes (see fig. 3.2). Subsequently we expect the oscillations in yg to produce a secondary

resonance due to the self-interaction and non-linearity of Eq’s (3.28,3.29).

The case of a Ay x*/4 self-interaction provides another mechanism that may be dominant in ending
the resonance: namely mg‘ ot7» and hence A(k), gains corrections proportional to A, (§x2) which shuts
off the resonance [8] leaving a peak variance of order (§x?) m§(4|q| —mi)/,\x (assuming that £ < 0).

If £ > 0 the variance is smaller by a factor |¢]'/2.

3.5 Non-thermal symmetry restoration

Let us now consider a modification of the effective potential to include symmetry-breaking:
1oaa, 8% 90 A 4 242
Vig,x) = gmad™ + 567X + 700 — x0)”, (3.30)

The effective mass of x is now given by the curvature of the effective potential including non-thermal

corrections due to preheating:
My epp = =5+ 37 HER 4 M(6x)7) + g*((66)%) (3.31)

When 0 < £ < 1 but g » m'j, we return to the standard preheating theory and non-thermal
symmetry restoration discussed in sections (2.4) and (2.12) [131) where there is the difficult task of
understanding the effects the highly non-equilibrium fuctuations have on the effective potential. Here
we rather concentrate on the g = 0 case. During the early phase of preheating the backreaction term

o {(6x)?) in (3.31) is relatively small and we neglect it.

It is clear from (3.31) that when {{| > 1, m] ,,, will change sign periodically as the curvature
oscillates, with B = x®*(1 + 3 cos 2myt)/2, valid as long as ¢ is still the dominant contributor to the

energy density of the universe.

Since the period of the oscillations of R is ~ (2my)~!, while the y field initially has a period
of oscillation given approximately by (ER — Ax3 + 3Ax?)'/2, we see that as long as £ > AyZ, the
oscillations of x will be much faster than those in the Ricci curvature and hence, during the time(s)
that mfm 77 > 0, the x field will effectively probe the alternative vacuum many times and hence it is
extremely likely that topological defects will form (in this case domain walls) once m: .+, < 0 again,
with the universe cut into roughly equal numbers of regions with —xp and yo due to the thermal

Kibble mechanism.

In the case when £ < 0 the restoration of symmetry via the £R term is still available, except for
small values of £ in which case symmetry restoration must occur through the fluctuations {(5x)%).
This is not a problem, however, given the power of the negative coupling instability. Indeed, one

simply requires a small value of j£| > Axﬁ/(i}nmﬁ@z) ~ ®=2 for GUT-scale symmetry breaking and
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coupling A ~ 103, Hence obtaining mi.e“ > 0 is very easy. Further, while {(§x)?) typically oscillates
extremely rapidly (see section [2.8.1] and figure [2.7]), the time average ((6x)?) > 0 so again defects

can form as in the usual theory.

There are two important differences between the two cases described abave however. in the €] > 1
case, defects are expected every time R oscillates from its maximum to its minimmm. In that case the
fluctuations ((6x)?) and {(6¢)*) will be small and the field will evolve coherently. The defect density
will thus be determined by the instantaneous horizon size. In the second case, and in the first case
as ({§x)?) becomes very large, the fluctuations are highly non-thermal and the correlation length =
of the y field will be much smaller than the horizon scale in general. The defect density will then be
much larger, determined by 2" where n = 1,2, 3 for domain walls, cosmic sirings and monopoles

respectively [87]. Further non-thermal issues will be discussed in chapter (5).

3.6 A solution to the monopole problem ?

In the previous section we have seen that we may restore symmetries which may have been hroken
before or during inflation. In the case that the potential has a discrete symmetry, domain walls will
be formed and if in addition true GUT restoration occurs, monopoles will also be formed. These are
cosmologically lethal if allowed to survive very far into the matter-dominated epoch, since in the case
of a low-Q universe, the transition from radiation to matier domination occurs after decoupling of
photons and recombination of hydrogen ions with the ambient electrons. In short, after the CMB was
formed. Excellent reviews of defects in cosmology can be found in the book [79] and the review by
Zurek [97].

Here we present a recent proposal for solving the monopole problem that has af least two new

implementations at reheating. One we will present in this chapter and the other in chapter (5).

3.6.1 Alternative solutions to the monopole problem

Here we briefly review the known solutions to the monopole problem which are not directly related
to inflation. Further, as we have just seen and shall discuss in the following chapters, reheating after
inflation can quite effectively restore GUT-scale symmetries in several ways and hence regenerate

monopoles and domain walls.

Before 1997, there were only three known alternatives to inflation regarding the monopole problem:
(a) symmetry non-restoration at high energy, (b) the Langacker-Pi mechanism and (c) a non-trivial
topology for the universe. Symmetry non-restoration relies on the idea that symmetry is not nec-
essarily restored at high temperatures, and that it might have been bréken for the whole history

of the universe. This has a basis in condensed matter physics with the prototypical example given
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by Rochelle salts which roughly speaking, involve increased symmetry breaking at higher tempera-
tures [32]. Within this framework there is no symmetry breaking at all and thus domain walls and

monopoles would never have been produced.

In the Langacker—Pi scenario [33], the idea is to do the opposite to inflation: instead of diluting the
monopole density, the aim is to bring couples of monopoles and anti-monopoles together efficiently
go that they can annihilate. To do this, one needs to break the /(1) electromagnetic symmetry for
a time, During this phase, photons gain a mass, and the monopoles and anti-monopoles become
joined by strings which cause them to be drawn together facilitating annihilation 4. Finally, if the
universe has a non-trivial topology, monopoles and domain walls may be excluded automatically due

to topological arguments.

None of these mechanisms however, fits into what might be called the mainstream vision of high
energy cosmo-physics. A scenario which is more in the standard vein has recently been proposed, and
at least two implementations of this new mechanism appropriate to the end of reheating are possible.

Here we will discuss one, leaving the other for chapter {5).

This new mechanism, proposed by Dvali, Liu and Vachaspati (DLV) {160], is quite simple and
works within the simplest GUT model, namely SU(5). The idea runs as follows.

The SU(5) GUT model has a Higg’s field &, responsible for the breaking of SU(5) to the standard
model (see Eq. [3.33] below) with potential:

1 o h RN
V(@) = —gm*Tr@® 4 (Tre?)* + %Trcb‘* + %Tr@a (3.32)

Here T'r denotes a trace over the multi-component Higgs field. In the usual case where v = 0, this
potential has a @ — —@ symmetry - a Z» symmetry. In this case the symmetry is broken down to

that of the lull standard model via the usual Higgs mechanism:
SU(B) x Zg — [SU(3) x SU(2) x U(1)]/Zs {3.33)
when @ relaxes to the non-zero value (the vacuum expectation value - vev)
| ®q = v x diag(2,2,2, -3, -3)/+/30 (3.34)

where v = m/A and A’ = h + 7A/30 [160]. The two vev's +®y are degenerate due to the exact Z»
symmetry. This discrete symmetry leads to domain walls due to the Kibble mechanism [78] whose
energy density, like that of monopoles, decays much more slowly than normal matter and radiation

and hence come to dominate the energy density of the universe causing unacceptable anisotropies in

the CMB.

This degeneracy between the two vev’s is broken if v # 0. In this case, there is so-called biased

domain wall formation with regions of space preferentially relaxing into the lower energy vev, denoted

1Tndeed, this is very similar to the Seiberg-Witten mechanism for guark-confinement in Supersymmetric SU(2)
Yang-Mills theory. For an introduction to this beautiful work see [34].
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&, (the higher energy vev we denote ®_). Then the probability, P_ of a domain falling into the ®_
vacuum is given by [160]:
P_ = Pyexp(~AFy/T,) (3.35)

where P, is the probability of going into the P_;: vacuum. Here AFy is the free energy difference
between two domains of volume V in the two different vacua and 7% is the so-called freeze-out tem-

perature of the domains during the phase transition [97)].

The walls so produced are not stable (as they are in the ¥ = 0 case). This is because the breaking
in degeneracy creates a pressure difference across the walls of order 2ym T+®3/3 which causes the
walls to shrink arcund regions in the @_ vacuum and eventually collapse. If this occurs on a time-scale
which is not too long, then they will disappear before dominating the evolution of the universe, This

constraint gives a lower-bound on v of [160]:

N _1«9_(_4@_)
! VX \ My
~ (107% — 10~ %)\-1/2 (3.36)

where Mg i3 the GUT symmetry breaking scale.

On the other hand, if 7y is too large, the pressure difference will cause the initially plane walls to
curve and collapse on short timescales. Why is this undesirable 7 The whole purpose of this discussion
is to remove monopoles, and so far we have not discussed them at all. The idea of Dvali el al is that if
the domain walls percolate to form infinite walls which move relativistically, they will sweep through
the entire horizon volume in a time which is short compared with cosmological time scales. When
monopoles collide with the walls, one of two things may happen: (i) either the monopoles scatter from,
or pass through, the wall or (ii) the monopoles are captured on the wall. In this second case, since the
domain wall is by definition a region where the full (SU({5)) symmetry is restored, the monopole has
no topological barrier to its decay and will preferentially decay by unwinding, dissipating its energy
as waves on the wall surface, Evidence in favour of the second paossibility comes from numerical
simulations and simple phase coherence arguments [160], although we note that it is not certain yet

that this is what actually would happen.

However, accepting the scenario that monopoles are predominantly trapped on the walls, the idea
is then that the walls move throughout space sweeping up most of the monopoles, which then unwind
on the walls. The domain walls then become pressure dominated and decay themselves, thus remaving
both problems simultaneously, while dumping a large amount of energy in the form of gravitational

waves and radiation into the ambient arena [96].

The first constraint is then that the walls actually percolate to form infinite walls. This means
that the pressure difference across the walls must not dominate the surface tension on the wall given

by o/r, where r is the radius of curvature and o is the energy per unit area. This places an upper
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bound on  given by [160]:

10V

™m
~ 10M7 (3.37)

Given the constraints (3.36) and (3.37), the walls slowly become pressure dominated and collapse. A

fortunate result is that these two constraints allow a large range of values for 7 for reasonable values
of A’ in this model of SU(5).

Having shown that this mechanism can work for a large range of 7 # 0, a natural question to ask
is “what process generates a non-zero v 7”. Dvali et al do not consider this problem in detail, noting
rather that a cubic term naturally exists in the standard model. They also outline a way of breaking
the discrete Z» symmetry via quantum effects: the symmetry would be anomalous (i.e. not respected
by quanturm aspects of the theory) and explicitly broken by instanton effects. We will not discuss this
possibility here any further, but look at the implication of reheating for the DLV solution.

3.6.2 A modified solution for geometric reheating

The crucial ingredient of the DLV mechanism is the odd term in the potential which breaks the Zy,
symmetry. Now if ane includes a linear term then quantum effects will automatically generate a cubic
term at I-loop. However, in chapter (1) and at the start of this chapter we saw that in a curved
space-time, renormalisation generically leads to fields being non-minimally coupled with a coupling

which runs with energy.

The work of Hosotani [45] is very interesting in this respect. It examined the classical stability of
maximally symmetric spacetimes {de Sitter, Minkowski and Anti-de Sitjer) as stable vacua and hence

suitable backgrounds to do perturbation theory around.

He found that if £ # 0 then the coefficient of the cubic term @7 of a Higgs field must vanish since
otherwise the Kiein-Gordon equation has no absolute minimum, it is unbounded below and quantum
fluctuations grow without bound since we essentially have an untamed negative coupling instability
15 While his results were concerned with classical stability, we immediately see that a linear term is
not allowed either, since that would immediately give rise to a cubic term, as mentioned previously.
Thus at this level it appears that in an expanding FLRW universe, and particularly in the context of

peometric reheating, we have lost the basic ingredient of the DLV mechanism.

But happily this is not true since the basic ingredient is not the cubic term but the destabilisation
of domain walls by breaking of discrete symmetries of the effective potential. Indeed, the DLV
mechanism is sufficiently fiexible to find an implementation in geometric reheating. Up until now

we have presented the simplest possible model of geometric reheating by considering a non-minimal

15This is instructive since at first glance one might think that as & — foo, the &* term would always dominate the
®? term. This is true in the minimally coupled case but is not true when £ # 0.
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coupling of the form —£x”R. This preserves any discrete symmetries including the archetypical Zs
symmetries y — —x or ¢ -+ —¢. Thus, at this level it appears thai there does not exist a way of

implementing the DLV mechanism in geametric reheating.

However, even this is premature since our previous choice of the non-minimal coupling term was
rot unique. Any quadratic combination of fields multiplying the Ricei curvature would be acceptable.
Indeed, if one believes the adage that everything in particle physics occurs if it is not explicitly

forbidden, then couplings of the form:
Lyl esxiei R

can be consistently expected, where y; and ¢; represent all relevant fields at reheating. In this case,
we will typically break around half of the Z,, symmetries of the potential and thus destabilise half of

the domain walls. Unfortunately the rest are left untouched and are cosmologically unacceptable.

The problem again lies in our choice of coupling to the curvature. Indeed we chose a quadratic
coupling of the form £4% R because it leaves £ dimensionless. However, in more general thearies arising
from string theory or supergravity, the coupling will be of the much more general form: f(¢/Mp)R
where f is the gauge kinetic function. In string theory one also has the coupling e? to the curvature
where ¢ is the dilaton. Under the inversion ¢ — —¢ we have e? — 1/e? (the basis of S-duality in

string theory since [ is the coupling constant in perturbative expansions [238, 239]).

Returning to the DLV mechanism, we see that all discrete symmetries will be broken if f =
F(é,x,...) is an odd function of all the fields in the problem. This provides a sufficient condition for

destabilising all domain walls and hence allows implemention of the general DLV proposal at reheating
16

We leave to future work the explicit implementation of this mechanism for specific gauge kinetic
functions to get numerical results regarding the size of parameter space for which effective solutions

to the monopole problem exist.

Next we consider the resonant production of vector bosons during reheating.

3.7 The vector case

Until now, reheating studies have been limited to minimally-coupled scalar fields, fermions and gauge
bosons [94]. In the case of vector fields the minimum one can do to preserve gauge-invariance is to
couple to a complex scalar field via the current since real scalar fields earry no quantum numbers. We

consider here only vacuum vector resonances, however.

15We note that in general we also expect non-renormalisable, Planck-suppressed terms of the form 1,111”,"1\/1';,‘(_'1 where

n > ¢ to come into the effective theory that gives rise to infation. For n odd these will also give rise to explicit breaking
of the discrete sysnmetries of the potential [88].
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A massive spin—1 vector field in curved spacetime satisfies the equations:
~V VEA +mi A+ R AT =0 (3.38)

These equations are equivalent to the Maxwell-Proca equations for the vector potential A4, only after
an appropriate gauge choice which removes one unphysical polarization (the massive case has an extra
longitudinal degree of freedom). In our case we shall use the so-called tridimensional transversal gauge
condition:

Ag=0, Vid; =10 (3.39)

This set is equivalent to the Lorentz gauge, although it doesn’t conserve the covariant form of the
latter. Nonetheless, in either case, gange-invariant quantities such as the radiation energy density, are

unaffected.

In 2 FLRW background, the Ricci tensor is diagonal, which together with the gauge choice (3.39)
and expansion over eigenfuncticns, ensures the decoupling of the set of equations (3.38)., We can

reduce the systermn to a set of decoupled Mathieu equations. The Ricci tensor is (see Fq. 3.15):
R% = kV(8)6% — k9°6%56%, , (3.40)

which leads to the Mathieu parameters for for the spatial components (a%/%.4%):

.k m> R
A(k):m+m§+2q ,0E (3.41)

showing that vector fields are also parametrically amplified, albeit weakly, during reheating as in the

scalar case.

3.8 The non-minimal vector case

The proof of a resonance in the minimally coupled cases for spin 0,1 (and as we shall see in section
[3.9] spin 2} particles is pleasing for its unified nature but the effect is rather weak in all cases. The
non-minimally coupled scalar case on the other hand provided an appropriate opposite limit in which
purely cosmological effects could cause non-perturbatively large particle production. In this section
we examine this possibility in the spin 1 case. Non-minimal coupling of the electromagnetic field
to spacetime curvature has been considered previously as a mechanism for producing the large-scale

magnetic flelds which are known to persist in galaxies and the intergalactic medium.

As done in section (3.7), the typical assumption is that the electromagnetic field is governed by
the minimal Lagrangian:

L=L1/SGF®Pp,, (3.42)

where g = det[g,.], which leads to the very simple equations of motion in vacuum:

Fi =0 (3.43)
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which together with the Bianchi identities give the complete evolution of the field.

Breaking the hypothesis of minimal eoupling involves the addition of terms to eq. (3.42) which
couple the electromagnetic field directly to the curvature in one form or another, in analogy to the
scalar field case. There are seven possible ways to do this [89] and these seven possibilities fall into

two groups: those which are electromagnetically gauge invariant and those that are not [89]:

Gauge-dependent

Ly = RA,A¥ (3.44)
Ly = Ry, A#A* (3.45)
Guauge-invariant
Ly = RF,, Fe® (3.46)
Ly=RE,,F#¢ {3.47)
Ls = Rquchc'u (348}
Lg= RaﬁquaﬁF'uy (349)
L; = Ra,ﬁquaﬁF*F” (350)

where # indicates the Hodge dual®”.

Now L; and Lo are gauge-dependent but they have the correct dimension in the sense that in the

action:
S = /\/—Q(AlLl + A;;Lz) (351)
the arbitrary non-minimal couplings Ay and Ag are dimensionless. The second class of Lagrangian

terms Lj...Ly are gauge-invariant but require coupling constants A; which have dimensions of {length)?,

related to the introduction of curvature scales in the background manifold.

Since we wish to consider only the possibility of sirong particle production in the non-minimal
vector case we wish to choose the strongest candidate among L;...L7;. We therefore exclude L; and
L3 because they are not gauge-invariant. L4 and L; are eliminated since they will lead to violation of
parity, involving as they do the dual of Fy,,. Since we consider the background to be flat FLRW, the
Weyl tensor vanishes and the curvature is completely determined by the scale factor, so that Ls, Ls
and Lg become essentially equivalent for our purposes. Hence we will consider Ly as the simplest
physically motivated example, yielding the new complete Lagrangian density for the electromagnetic
field: '

Lvsr = 53/ (AR — 1)Fu F¥*) (3.52)

17See chapter (7) for the definition and in-depth discussion of the dual operator.
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and modified equations of motion [89):

F}’;v o] A(RF#U)W
ARSD Frv
where the second equivalence in Eq. (3.53) comes due to the FLRW background where R depends

only on fime.

Note that when A # 0, photons still follow null geodesics of the background geometry, but that the
number of photons is not conserved in general in the geometric optics approximation. One might hope
to place limits on A via optics experimentis or other observational evidence, however, this is extremely
difficult due to the appearance of the R factor on the RHS of Eq. (3.53) which is very small, being of
the order of H + HH. This offers the possibility that A might be large, and hence the non-minimal

effect might be very important in high curvature regions such as reheating,.

3.9 The graviton case

We will show in chapter (6) using the electric and magnetic parts of the Weyl tensor [148] that there
exists a formal analogy between the scalar field and graviton cases during resonant reheating. Here we
will show that the correspondence also holds in the Bardeen formalism. The gauge-invariant {at first
order) transverse-traceless (TT) metric perturbations h;; describe gravitational waves in the classical
limit. In the Heisenberg picture one expands over eigenfunctions, Y,; of the tensor Laplace-Beltrami

operator [20] with scalar mode functions kg, which satisfy the equation of motion:

- . k242K
hk+@hk+ ("""‘"‘1_2'—}—) hk: g, (354)
or equivalently .
@ionaye (FE2E 4 ) @iy =0, (255)

where p = fc(rglﬁz/Q — V) is the pressure. This gives a time-dependent Mathieu equation (c.f. Eq. 3.25)

with parameters:

.k . 3r®°
A(L)_azmi T

(3.56)
In this case, a negative coupling instability is impossible and only for & ~ Mp; is there significant
graviton production. Note, however, that if temporal averaging is used, the average equation of state
is that of dust, F = 0. Eq. {3.55) then predicis (falsely} that there is no resonant amplification of

gravitational waves since the value of ¢ corresponding to the temporarily averaged evolution vanishes.

What happens to the gravitational wave evolution once maost of the energy is transfered into the
y field ? This is a highly non-trivial question for two reasons since the expansion (eq. 3.18) and
curvature (eq. 3.16) now gain noun-negligible contributions from (i) the backreaction due to the large

fluctuations ((§x)%) [111] and (ii) the anisotropic stress of x coming from the fact that £ £ 0.
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We will not look at (i) since the metric perturbations are assumed to remain small enough not to
violate CMB anisotropy levels. In the models in which this is true, the backreaction will be small.
Secondly, at least in the £ < 0 models, the mede most amplified is the £ = 0, homogeneous mode, so

that neglecting the short-wavelength fluctuations is certainly justified.

In the presence of an anisotropic stress, the RHS of eq. (3.54) is modified to xa®pll, instead of

being zero. The pressure p also gains nonlinear terms proportional to & ¥ [20]:

1 . [} 1 n g e a4
p= 5"2 —V(x)—€|2Hx® + ge‘xz +(x*) + g(x“)] . (3.57)

IT is the anisotropic stress and is given by:
kz
pll = —€ 5[ X + (@ + )], (3.58)

where X, @, ¥ represent the various scalar metric perturbations associated with x and the inflaton
[20]. We see that in the case where |£] is finite, the & = 0 mode is still conserved: kg = const remains
a solution of eq. (3.54), although the other modes will evolve differently due to the change in a{t)
through eq. (3.57). A crucial difference compared with the minimally coupled case however, is the
fact that eq. (3.17) is no longer monotonically decreasing in time when |£] is large (v can violate the
weak energy condition; see eq. 3.28). This means that a can actually decrease for short times which
turns the & = 0 gravitational wave decaying mode kg ~ a¢~3 into a growing mode, something not

possible in the simple, minimally coupled one-field models usually considered.

In the & # 0 the situation is much more complex as gravitational waves couple to the density
perturbations via eq. (3.58), something which in the minimally coupled case only happens at second
order. Moreover, for sub-horizon modes and |£] ~ 105, the driving term given by (3.58) grows to be
of order unity and hence very important for gravitational wave evolution. Nevertheless an analysis of

these issues is beyond the scope of this chapter and is left for future work.

3.10 Conclusions

We have described a new — geometric — reheating channel after inflation, one which ocecurs solely due
to gravitational couplings. While this is not very strong in the gravitational wave and minimally
coupled scalar field cases, it can be very powerful in the non-minimally coupled case, either due to
broad-resonance (£ 3 1) or negative coupling (£ < 0) instabilities. Particularly in the latter case, it
is possible to produce large numbers of bosons which are significantly more massive than the inflaton,
as required for GUT baryogenesis. Non-thermal symmetry restoration may also be very effective in
geometric reheating, leading to the resurrection of the monopole problem after inflation although an

implementation of the Dvali-Liu-Vachaspati mechanism for its solution is possible.

18This time we neglect the energy that may remain in the field ¢; justified if reheating has been successful.
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Geometric reheating further gives rise to the possibility that the post-inflationary universe may be
dominated by non-minimally coupled fields. These must be treated as imperfect fluids which would
thus alter both density perturbation and background spacelime evolution, which are known to be
signiﬁ'cautly different [95] compared with the simple perfect fluid case. We have further presented a

unified approach to resonant production of vector and tensor fields during reheating in analogy to the

scalar case.



Chapter 4

First Light - a Classification via
Spectral Methods

Come forth into the light of things
let nature be your feacher

Wordsworth

Muon wanis to move the stars {o tears with his words,

while all the while he beals out a broken tune for bears to dance to.

I have hardly ever known o mathemalician who was capable of reasoning.
Plato

Pure logical thinking cannol yield us any knowledge of the empirical world;

all knowledge of reality staris from ezperience and ends in @i,
Einstein

112
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4.1 Introduction

As we discussed in chapter (2), reheating in standard models of inflation can largely be split into
four phases: the initial resonance (“first light”), the phase when rescattering becomes important, the
phase when backreaction becomes important, and thermalisation. The middle two phases can occur
simulfaneously in some models, or may well be completely absent in others, such as in reheating where

couplings are very weak.

This chapter! will present a method for a systematic classification of the first phase where backre-
action and rescattering can be neglected. This phase typically starts with the universe energy density
completely dominated by the inflaton energy with the temperature of the universe near absolute zero.
"The initial phase of reheating therefore introduces the first radiation back into the universe and hence

we label it the “first light” epoch.

The techniques used in this chapter arise in the spectral theory of linear operators on Hilbert spaces
and are functional analytical in nature. Because the Schrédinger equation is one of the most important
examples these techniques have been applied since the beginning of quantum mechanics and indeed,
the stability bands of the Mathieu equation will be seen to correspond simply to the conduction bands
of metals described by a 1 — [J Schrddinger equation with periodic (in space) potential. The more
complex potentials we will study were also first used in condensed matter physics in the study of

correlated electron systems and phenomena such as Anderson localisation.

The mathematics itself is extremely beautiful with connections to many branches of mathematics -
solitons, inverse scattering techniques, geodesics on the ellipsoid and so on, For a beautiful exposiiion
of some of these aspects the reader is referred to the small monograph by Moser {119] which strikes
a balance between clarity and rigor. Much more complete, and perhaps necessarily dry, discussions
of related issues can be found in the following books: “Spectra of Random and Almest-Periodic

Operaiors” [106], “Functional Analysis I' {104] and ” Theory of Solitons™ [110].

4.1.1 Our modis operandi

Given that the simple models of two-field reheating have been thoroughly studied in the last few
years, it is natural to ask how these studies an be extended to the case of reheating based on realistic
models of inflation coming from GUT, supergravity or even string-inspired theories, some of which

we considered in chapter (2). This question raises several non-trivial but fascinating issues:

eHow does the symmetry group of the theory and the symmetry-breaking paitern affect reheating

and non-thermal defect production ?

1This chapier is based on the papers [148] and [154].
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oThe particle content of the theory - what couples to the inflaton 2 and what spin fields are they

¢Quantum corrections to the potential ? and the effects of renormalisation and regularisation.
sNon-equilibrium corrections to the equations of motion and to symmetry breaking/restoration.

#The beta-functions of the theory governing the running of the coupling constanis as a function of
the energy. In particnlar, for chaotic reheating which initiates at field values a bit below the Planck
scale, the high-energy, ultra-violet (UV) fixed points of the theory are very interesting. In gauge
theories one often has different phases at different energies (e.g. SUSY QCD [105}) where the theory
may be asymptotically free, where chiral symmetry is broken, where the theory is described by a
o-model etc... These different phases and the existence of supersymmetry are responsible for many

of the exciting features such as strong-weak coupling (S) duality [238, 239].

oThe nature of field evolution at strong coupling and the existence of quantum chaos. What is

the relationship with the classical evolution ?

These issues lie within the broad reach of some of the most difficult and exciting frontiers of much
of modern theoretical physics. As such, it is extremely difficult to answer these questions in realistic

theories, based for example on the standard model or minimal extensions thereof.

Thus to answer the question about GUT reheating to any satisfactory degree one is faced with
a bifurcation in approaches, which yield rather different results. Firstly, one may choose a specific
model. Such a specification requires (i) a choice of gauge group, e.g. SO(10) or SU(8). (ii} the
imposition or not of supersymmetry, and/or the consideration of supergravity corrections; (iii) the
choice of what fields will play the role of the inflaton and which couplings to the inflaton to include.
(iv) Calculation of the -functions of the resulting model and the quantum corrections to the effective

potential.

After these issues have been taken care of, one could examine if there is successful reheating in
the correct vacuum corresponding to the standard model SU(3) x SU(2) x U{1). Even if the field
reaches this correct vacuum, which is not gaurranteed since the inflaton may end up in the wrong
local minimum of the effective potential [86], reheating might allow one to rule out certain regions of
parameter space. In conjunction with experimental data (coming from nucleosynthesis constraints or
accelerator data) this might even allow the ruling out of certain models due to reheating predicting

too high a gravitino (the spin 3/2 superpartner of the graviton) abundance or the over-production of
moduli/Polonyi fields [35].

We have already discussed in chapter (2) the consiraint on the reheating temperature of T, <

2For example, if one has only fermions coupled to the inflaton then preheating is qualitatively very different to the
bosonic case due to the exclusions principle, as discussed in chapter {2).
3 And in general the quantum moduli space compared with the classical moduli space [108)].
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10'%GeV coming from the gravitino abundance and how it can be used to bound masses of neutrinos
in a minimal supersymmetric model. Nevertheless, this constraint is only valid if entropy remained
conserved after reheating, an observation which significantly weakens the power of the neutrino mass

bound.

This approach is plagued by the sheer complexity of the problem and while leading to precise
predictions, these predictions are typically only valid under certain strong assumptions and in small
ranges of parameter space (e.g. such as the perturbative coupling region) and are, as in the example

above, almost always subject to strong caveats.

The alternative approach [148] is to attempl a broad classification of reheating classes - a panoramic
portrait or landscape of possible models. Here a reheating class is defined to consist of those reheat-
ing models which give qualitatively similar results. But how can we make a sensible definition of
reheating class 7 After all, physical quantities such as the reheating temperature, size of the quantum
fluctuations, gravitino abundance etc... are all conlinuous variables and there appears no elegant way
to create these classes ?. It seems that we can take our landscape and blur and deform it into any

other landscape.

Fortunately, this is not true, at least for the first-light phase of reheating, since there exists a rather
beautiful equivalence between the Klein-Gordon equation in Fourier space in a Minkowski background

and the 1-D Schrédinger operator-eigenvalue problem {148].

Preheating is largely controlled by the nature of the Floguet indices, as we discussed in depth
in chapter (2). The above mentioned equivalence maps the set of Fourier modes onto the possible
real eigenvalues of the Schrédinger operator. The spectrum consists of thase eigenvalues (and hence
modes) for which there is not exponential growth. A subtlefy arises in the structure of the spectrum
as we will discuss later, but it is true that the set of modes with positive Floquet exponent, contains
(often properly in the set theoretic sense), the complement of the spectrum of the corresponding

Schrodinger aperator.

Thus by studying how the spectra flow as one varies parameters and potentials (corresponding to
inflaton evolution), one naturally achieves a division of reheating into inequivalent classes classified
by the very differe.nt nature of the spectrum in the different cases. For example, periodic operators
(Floquet theory), which include the Hill, Lamé and Mathieu equations, always have band specira.
QQuasi-periodic operators on the other hand, typically have Cantor-set spectra which are no-where
dense. This implies that the number of exponentially growing modes is usually much larger in the
case of quasi-periodic evolution, than in the case of simple periodic evolution. As we will show in
the next chapter, these potentials arise naturally in multi-field models with incommensurate mass

spectra.

*One might set excursion levels for these quantities and build elasses around these, but they are completely arbitrary,
noi diffeomorphism invariant and thus unsatisfactory.



CHAPTER 4. FIRST LIGHT - A CLASSIFICATION VIA SPECTRAL METHQODS 116

Neg, Coupling [8]
Gegmetric

Limit

om) i« reheating Almost  periodic
periodie
Stochastic, i
resonance Mathien Mﬁﬁ%ﬁze

[6,10] Eq. [1,2]

attice Random operators
quadratic [5] studies [6,7]

Figure 4.1: A schematic map of models and approximations in preheating. Minimal references for
techniques in the exactly periodic case are shown in brackets. The right-hand branch corresponds to
paradigms developed in this chapter.

Thus our aim is to classify all the interesting types of spectra that arise and therefore create a table
of equivalence classes of preheating. The exit to thermalisation where backreaction and rescattering
are important, is a secondary and much more intricate problem requiring a more nuts-and-bolts

approach [9].

Even when limited to the first-light phase, this equivalence has some lackings and is only really
useful in its present form in a Minkowski background or perturbatively when the the expansion of
the universe can be neglected (m > H). This simple equivalence should, in the future, be extended
to include the expansion of the universe and the backreaction of the produced particles, which can,

nevertheless be done in principle, by extending the equivalence to the Sturm-Licuville operator.

4.2 Classes of reheating during “first light”

We will now present in greater detail the program we outlined above. First we lay down the equivalence
more precisely followed by some spectral theory that we will need. This presents the necessary
background to appreciate the fundamental theorems of the chapter that are tested numerically in the

second half of the chapter.

4.2.1 The 1-D Schrédinger — Klein-Gordon equivalence

Now the Klein-Gardon equation for the field x in Minkowski spacetime is:
(8,8" + Vx(t,x) =0 (4.1)

where v = 1,2, 3,4 and V is the total potential describing the mass, self-interaction, coupling to the

curvature and couplings of x to other fields and V' = 8V/dx.

If we Fourier transform this equation we find:

. k2
X+ (53" + V’) xe =0 (4.2)
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where ag is an arbitrary normalisation. Now if we consider that x is essentially a test field in its
vacuum state, then the potential term V’ can in principle be given explicitly as a function of time
V! = V'(t), as we did all through chapter (2). Further, if V* is a periodic function, then the Fourier-

space Klein-Gordon equation above takes the form of the Hill equation:
i+ [A-2¢P(20)ly =0 (4.3)

where P(21) is any periodic function of the independent variable t. When P(-) o cos(-), we have
the Mathieu equation, while P(-) = cn?(-) yields the Lamé equation, where cn(") is the elliptic
cosine function. Now Eq. (4.3} is equivalent to the one-dimensional Schrédinger operator-eigenvalue
problem:
dy

Lly) = ——3 + Qz)y = Ay (44)
under the transformations x < ¢, Q(z) + 2¢P(2t), A «+ A. We denote the spectrum of £ by (L),
its complement by m. The crucial point to notice is that the set of modes with positive Floquet
index of Eq. (4.3) exactly coincides with o(£) of Eq. (4.4) for the case of Periodic P(2t).

Indeed, this equivalence can be exténded, if suitable care is taken, to the case where P(2t) is a

metrically transitive potential, as will be discussed in coming section.

4.3 Spectral theory

Here we will present the minimum amount of spectral theory required for our classification. Rigorous
details (and the inevitable caveats and lemmas) can be found in many books, such as Pastur and
Figotin [106].

4.3.1 Metrically transitive potentials

The potential Q(z) in the Schroddinger equation above can, a priori take any form. However, for
our purposes it is convenient to restrict ourselves here to a class of potentials known as Metrically
transtitve operators, that are appropriate for studying first light in preheating in Minkowski spacetime.
We state here that inclusion of the expansion in the present classification program can be achieved
in principle by extending the equivalence of subsection (4.2.1) to a Stiirm-Liouville - Klein-Gordon

equivalence. However, the number and power of spectral results in this case are much more limited.

Metrically transitive potentials are those which, simply stated, show a specific form of statistical
homogeneity in the z-coordinate (or in the reheating case, under the equivalence of Eq. (4.4), t). At
one end of this class therefore, lie the exactly periodic potentials which have a discrete translation
group invariance determined by the minimal period, T. Thus, we call already see that all of the
standard theory of preheating based on periodic inflaton oscillations (leading to the Mathieu eq., the

Lamé eq. and in general the Hill eq.) is contained as a special sub-group in the set of 1-D metrically
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transitive potentials. At the extreme opposite end lie the completely random potentials. So what,
exactly unifies these potentials since random potentials seem at first sight very different from periodic

potentials 7

We have to clarify our earlier statement and say that a metrically transitive potential is one such
that the probability distribution induced by the potential is homogeneous {(or stationary in the case of
time-processes). Secondly, to be metrically transitive, the potential should have zero correlations at

infinite spatial separation [106], the weakest formulation of which is to require ergodicity.

The reader is referred to [106] for the gory details. Here we present some examples of metrically

transitive functions:

Ezamples of metrically transitive functions

{1) Independent, identically distributed random variables.
(2) Random Markov processes (processes without memory).
(3) Gaussian random fields.

(4) Periodic, quasi-periodic and almost-periodic functions.

Examples (2) - (4) will prove useful later in extending the set of known reheating classes. We
will not require a more precise definition of metrically transitive potentials and go on to discuss more

relevant details.

4.3.2 The spectrum

Here we present a brief overview of speciral resulis in infinite dimensional vector spaces (Banach or

in our case, typically Hilbert). See for example Reed and Simon, {104].

Definition (1) - The spectrum

Let £ be a bounded operator on a Hilbert space . Then A is in the resolvant set p(L) of L if
M — £ is a bijection with a bounded inverse (here I is the identity). Then Ry(£) = (Al — L)' is
called the resolvant of £ at A, If A & p(L) then X is said to be in the specirum of £, denoted o(L).
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Definition (2) - The point specirum

An z # 0 which satisfles Lz = Az for some A € C is called an eigenvector of £, ) an eigenvalue of
L which implies that Al — £ is not injective so A € o(L£). The set of all eigenvalues of £ is called the

point spectrum of L.

4.3.3 Dissecting the spectrum further

In the case of a separable Hilbert space as we have for the 1-D Schrodinger operator, we may decompose

the spectrum with respect to an abstract measure dy ° as:
c=cgacUogcUop (4.5)

That is, we split the spectrum into three pieces: an absolutely continuous (AC) part, a singular
continuous (SC) part and the pure point (P) component. At this stage this decomposition is formal
and indeed it turns out that we do not need to use the continuity properties of the spectrum for our
work. Rather we can simply use high-level results regarding the Floquet index depending on whether

A 18 a member of ¢4, 75¢ o1 Tp.

Before we go any further, however, let us consider an example, p the canonical example for
reheating. Let Q(x) be exactly periodic. In fact, let it be cos(2z). Then £ is simply the Mathieu
eq. in disguise. In this case, for fixed g, o(£) is just a union of bands, which are just the siuble
bands of the Mathieu equation (when converted into frequency space & - slices though the red region
of fig. 2.2). The obvious step then is to observe that the instability bands - where resonant particle

production occurs - simply correspond to o(£) at any fixed q.

But we have oversimplified a little. Here we have spoken about (L) and o(£), but what about
the decomposition above in Eq. (4.5) 7 Why did we introduce this refinement of the spectrum if it
was unnecessary 7 Well, it turns out that in this case (and in general for any periodic Q(z)), the

spectrum only has an ebsolutely conitnuous part:
o(L) =oac (Periodic operators) (4.6)

and we begin to see the importance of o4¢ for reheating.

4.3.4 Reheating and o,

Within the set of periodic potentials, one might try to search for a @(z) which lead to the smallest
oac in an attempt to make as many modes grow resonantly as possible, i.e. to find the most efficient
reheating model. Indeed, if we look back at the history of preheating, this sort of argument caused

quite some controversy, as we touched on in chapter (2).

5The measure is not to be confused with the Floguet index p;. Since we only use the measure in formal definitions,
this should not occur however.
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The original paper by Kofman, Linde and Starobinsky in 1994 [i] locked at the Mathieu equation,
with its infinite number of stable and unstable bands. Later, Boyanovsky et af [183] claimed that
the correct equation, suitable for a quartic potential, is the Lamé equation (2.29). The corresponding

Schodinger operator has a spectrum of the form:
o= [(}, )\Q] U [}\1, OO) (47)

in contrast to the Mathieu case. The lamé equation thus only one instability band corresponding to
m = (Ao, A1). This, Boyanovsky et el claimed, made a big difference to the nature of preheating.
Unfortunately, their claim was unstable since inclusion of even perturbatively weak couplings to other
fields breaks up the spectrum in Eq. (4.7) into an infinite disjoint sequence of bands, again resembling

the Mathieu case.

Nevertheless, it is an interesting and unanswered question as to which periodic potential gives rise

to the largest (in the set theoretic sense) ¢(£) and hence the most efficient preheating. Although

perhaps a caveat is in order here. One could easily imagine a perverse situation in which there were

two models, one with a very large (L) but very small Floquet index pg, and one with small (L) but

much larger pp for modes in ¢(£). The question as to which leads to the more effective preheating

is a difficult one. Indeed, at present there is little understanding about how y; and a(L£) are related.

In the case of the Mathien equation, however, we have at least a partial answer since #(£} is an

increasing function of ¢ and we can use the equation for g in the first resonance band:

pkz\/ﬁ—(%’—l)g (48)

so as we increase g, we increase o) as is evident since the width Ak of modes for which py is real

from Eq. (4.8) increases with q. And as a result the maximum value of g increases. Hence for the
Mathieu equation, increasing (L) implies an increase in the maximum, and average value, of . In

other cases, however, we cannot be sure that this will be the case, although it seems reasonable.

With this broad preamble we come to the next obvious generalisation. Is it possible that outside
the class of pericdic potentials, there exist classes of potentials which are more efficient than any

periodic potential ? and how would we even go about quantifying this issue ?

It turns ocut that oac plays the key réle in the study and answering of this issue. We have
the constraint [106] that in general for a metrically transitive potential (and not just the periodic

potentials considered above}, bar a set of A with Lebesgue measure zero, if A € ra¢ then
Tac = {A = RI,LL), = 0} . (49)
i.e. cac coincides with the set of stable modes, exactly as it did in the periodic case.

This gives us a weapon of great power, since we also know that on the complement (L), g > 0

[118]. Hence, we may search for potentials which have very thin o(L) and be assured that the
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resulting reheating models are good candidates for explosive particle production. Before we examine
our results in this direction, let us first make a slight, but enlightening detour into the theory of

isospectral deformations of the Schadinger equation.

4.3.5 TIsospectral deformations

The spectral theory of the Schrodinger equation abounds with beauty, but one of the most elegant
aspects must be the theory of iso-spectral deformations, namely deformations of the potential Q=)
which yield the same spectrum o{£) for the operator £. Naturally one would expect that very few
types of deformations would leave the spectrum unchanged - one cannot just run around the space
C*(R), of smooth potentials expecting the spectrum to stay the same. Rather one expects to have
to have to pick a well chosen path, depending on a parameter, say 7, for which = 0 corresponds to
the starting potential, @(z) = Q(z,7 = 0). Indeed, a priori it is not obvious that such a curve exists

or that the solution will depend continuously on 7.

The answer to this question, for the 1-D Schrédinger equation (4.4), turns out [119] to be that
if @(z,7) is our one-parameter family of potentials depending on the space dimension z, then the

spectrum ¢ will be independent of the parameter 7 € R {ff Q(z, 7} is a solution of the KdV equation:

@r — 6@z + Qrzr =0 (4}.0)

Suddenly our linear Schrodinger equation is linked to the famous nonlinear KdV equation with its
solitonic solutions and infinite hierarchy of conserved quantities. Hence we may take 2 solution of the
KdV equation, e.g. a solitonic solution, allow it to evolve in time (which is our parameter ), and

know that ¢(£) will be unchanged.

Using this we can generate, in principle, potentials which give the .ex;actly the same spectra,
although we are not sure how ;. will depend on the parameter = above. Let us examine this in more
detail. The potential (}(z) in the Schridinger equation comes, under equivalence with the Klein-
Gordon equation, from the coupling between the inflaton ¢ and the reheated field y. Indeed, the
equivalence with the linear Schrédinger equation only makes sense for couplings of the form g2 F(é)x?,
in which case Q(z) = g*F(¢(z)). To find Q(x) we thus need to find the evolution of ¢ as a function of

time (which then becomes ¢ under the equivalence between Schrédinger and Klein-Gordon equations).

To salve for ¢(t) is typically rather simple if we ignore backreaction from the produced particles

and the expansion, as we are doing here. The evolution equation is:
¢+V'=0 (4.11)

where V(¢) is the inflaton effective potential. In the limit where the expansion is unimportant we

recover the energy as a conserved quantity (we get a timelike Killing vector):

E:V—l—%:. (4.12)
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Now in our case, @ = g°¢>, which means that we can write the KdV equation {(4.10) in terms of ¢
and V' = ¥V (g, ).

In principal at least, it should be possible to obtain a partial differential equation for V (¢, 7)
whose solution would yield a reheating with precisely the same spectrum of amplified modes as the

potential V(d,0). So far I have not succeeded in deriving this closed partial differential equation.

4.4 Spectral results for almost-periodic potentials

Here we present some spectral results for potentials which form equivalence classes for reheating.
The almost-periodic potentials have as sub-classes the quasi- and limit-periodic potentials. Here we
concenirate on the mathematics and delay giving real examples of these potentials to the section on

numerical studies .

Definition (3a) - almost periodic potentials [106]

A bounded, continuous potential @(z) on R is called almost-periodic if ary subset of the set of
all its possible shifts @(x + £), £ € R, contains a sequence that converges uniformly on the entire real

line®.
Perhaps this is not very helpful to the reader. Another, more physical definition is as follows:

Definition (3b) - almost periodic polentials [113)

The almost-periodic potentials are those for which their Fourier transform consists of a frequency

basis {w;} where the smallest vector space’ containing this basis, M, is dense in R..

As a simple example, one can immediately see that cos({2z) with Q a constant, is net almost-
periodic (fortunately !) since its frequency basis is just {€2,} = © and the module w,Z is a proper
subset of Z, Q or A in the cases where Q € Z, Q, or A respectively®. it is of course never equal to

any of these and hence is not dense in R for any Q.

The spectrum of the Schrédinger equation associated with almost-periodic potentials can be pure-
point - the spectrum is made up completely by eigenvalues - and is believed to be generically a nowhere

dense Cantor set®, However this remains unproven in any rigorous sense [114].

Si.e. every subset is precompact in the topalogy C(R).
"Technically a module.

8We denote the rationals by Q and the irrationals by Q.
9A nowhere dense set A has dense complemnent 4.
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4.4.1 Quasi-periodic potentials

Using definition (3b) above for almost-periodic potentials, we arrive at the [ollowing definition of

quasi-periodic potentials:

Definition (4) - quasi periodic potentials [113]

If the module M in definition (3a) is generated by finitely many w;, then the potential, Q(2), is

quasi-periodic.

If Q(z} is quasi-periodic then Q(z) = fwiz, ...,waz) with f{z1 + m1, .., 20+ my) = f(Z1, ..., 2a)

with my; € Z and the w; pairwise incommensurate [113].

One can visualise quasi-periodic potentials very simply as flows on an n-dimensional torus, T".
If the flow repeats after a certain time, then the flow is exactly periodic. However, if the flow moves
over the torus coming arbitrarily close to any point then the flow is ergodic and quasi-periodic. The

almost-periodic case corresponds to taking the n — co limit in this example.

From this it is easy to construct physical models which lead to quasi-periodic frequencies. All
one requires (c.[. section 2.13) is two periodic functions whose periods of oscillation are irrationally

related. The corresponding module M will then be dense in R.

4.4.2 Limit-periodic potentials

Definition (§) - limit periodic potentials[106]

A limit periodic potential (J(z) is an almost-periodic potential which is also a wniform limil of

pertodic potentials.

Limit periodic potentials are therefore very well approximated by Fourier series. A typical example

is provided by:

Q=Y aneos (B2) | Sl < o0 (11

n=1
More rigorous results (instead of the previous hand-waving !) exist in the case that @ is limit-
periodic. For these potentials we have the theorem:

Theorem 1 [103] - o(L) of Eq. (4.4) is generically X" o nowhere dense Cantor set for @ an element

of the space of imit periodic potentials. Hence o(L) is dense in R.

Thus the set of & for which pg # 0, is dense in R despite the fact that o4¢ is not empty. This

existence of only a Cantor set of stable modes leads us to call this cantor reheating. An associated

10The space of limit periodic potentials is a complete metric space and hence generic means here “for a dense Gg"
e.g. [114].
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Figure 4.2: A schematic diagram comparing the spectrum of the Mathieu equation (upper) and that of
a generic limit-periodic operator with fractal Cantor spectrum (lower). The black shading represents
the complement of the spectrum, i.e. modes with g # 0. The Cantor spectrum is only shown at
second level due to resolution limitations. ‘The same pattern repeats itself in each white gap and
hence the number of stable mades is much smaller than in the periodic case.

issue is what happens as the coupling to the potential (analogous to g in Eq. (1)) is increased. While
in Eq. (1) this simply changes the breadth of the instability bands and magnitude of g while always
leaving & = o4, in the almost-periodic case this is not the case. Indeed, as in the example below,

the nature of the spectrum (w.r.t. the splitéing into op, 75¢, 74¢) can change suddenly with ¢.

4.4.3 The discrete almost-Mathieu equation

Consider the discretized Schrédinger eq. (4.4), which is also used (in higher dimensions) in numerical
preheating studies [205, 7]. A special case is the almost-Mathieu equation with exhibits a rich variety
of effects 1!

—y(z + 1) —y(z — 1) + 2gcos(ere + w)y(z) = Ay(z) {4.14)

When « is rational the potential is periodic and one has the band spectrum of the Mathieu equation.
However, for irrational «, the spectrum is a Cantor set generically for pairs (g,a) € R? [122]. This
shows that the nowhere dense nature of the spectrum is not lost as one increases ¢ and hence moves
from perturbative reheating to broad-resonance preheating. Further, when o is irrational, the Floquet

index has the lower bound [124]:
pi(g) > In gl (4.15)

so that for |g] > 1, gx > 0 and hence the absolutely continuous part of the spectrum, o4¢, becomes
empty. In this case, if o is a Liouville number 2, then the spectrum is purely singular continuous,

o = ogc [116]. Conversely if |g| < 1, the point part of the spectrum is absent for irrational o [123].

4.4.4 Finite-band spectra and the Bargmann potentials

In subsection (4.3.5) we presented a beautiful counter-example to the intuitively sensible idea that if

one deforms the potential Q(z), then the corresponding spectrum (L) must change too.

1 For example, Eq. (4.14) also exhibits the beautiful property of duality, similar to the S-duality of string theory,
since under Fourier transform ¢ — 1/g and A — —A/qg [124].

12 A Liouville number, o, is irrational but well approximated by rationals so that there exist integers pn,gn — ca and
a number € with Jo — pn/gn] < Cn—9n.
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In this subsection we do the same for the following (incorrect) assertions:
“All almost-periodic potentiols have sirange, non band-like spectra”

or ‘equivalently’:

“Only periodic polentials have band-specira”

Now a natural enough question to ask is “give me all potentials which lead to specira which
consist of finitely many bands”. How does one solve this problem 7 The answer is given by the
inverse scattering method!® and while we will not describe the resulis here (see e.g. [119]) it turns
out that potentials having finite-band spectra are actually guasi-periodic in géneral [119]'* and the
periodic potentials are quite special correspending to a frequency basis which is made up of only one

frequency.

As an nice example, one can ask what potential corresponds to the case when one lets the bands
shrink down to single points so that one obtains a discrete spectrum which is pure point. The
corresponding potentials are known as the Bargmann potentials and can be obtained as limiting cases

of quasi-periodic patentials.

4.5 Stochastic potentials

In the introduction to this chapter, we gave perhaps the archetypical physical example of the band
structure arising from a periodic potential - the conduction bands in perfect metals with their regular
electron lattice structure. What happens if we add random impurities to the otherwise periodic (1-D)

electron lattice 7

This is modeled by adding a stochastic element to our periodic potential. The resulting spectrum
splits into different colours in the sense that cue D o and gp,05¢ % ©. The impurities act like a
spectral prism. Physically this typically gives rise to Anderson localisation, as it is known in con-
densed matter physics. The eigenfunctions corresponding to allowed eigenvalues become exponentially
decreasing about some point z, in space, and the wave function is confined to the region around z.

By our equivalence however, it is the valies outside the spectrum that we are interested in.

Stochastic potentials are at the opposite end of the metrically transitive ‘world’ to periodic po-

tentials since they generically have empty cac. In fact we have the following theorem:

Theorem 2 [120, 121] - If Q(2) is a sufficiently random polential for Eq. (4.4), then py > 0 for
gimost all A € R and oa¢ of £ is emply with probability one.

Indeed we see that a positive Floquet exponent is guaranteed for all modes bar a set of measure

13The inverse scattering technique allows one to reconstruct the potential from observations of its apecirum [110].
14This does not, of course, imply that most quasi-periodic potentials have band spectra !
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zero, and again reheating is significantly different from the periodic case. Here “sufficiently random”
means nondeterministic [106] and is typically a requirement that correlations decay sufficiently rapidly.
An example is a Gaussian random field whose correlation function has compact support. To proceed
to obtain quantitative estimates of the Floquet indites, we exploit the fact that Eq.s (4.25,4.26) have

the form of stochastic harmonic oscillators.

4.5.1 Explicit estimates for the Floquet indices

Consider the stochastic harmonic oscillator, with frequency given by w? = &2 + ¢é(t), where g is a
dimensionless coupling to the mean-zero coloured stochastic process £(¢) and &* = k*/a® in our case.
The Floguet index has been shown ta be strictly positive for all g [117]. It has also been related to the
spectral density of fluctuations via averaging over the second moments [126] of the random process £
[127):
o (E(E(t —t')) cos[2(w?)t']dt’
p = :
2w}

This hag the form of a fluctuation-dissipation theorem since fiuctuations in the inflaton field determine

(4.16)

the dissipation rate into other fields. In the case that £(1) is a mean zero ergodic Markov process, gk

can be explicitly estimated as [125]:
o
e = 25 1(26) + 0(%) (4.17)

where f is the Fourier transform of the expectation value of the two-time correlation function {€(¢)€(¢—
t')). Note that g oc £72, so that although all modes grow exponentially, the Floguet index is, as in the
periodic and stochastic resonance [9] cases, a rapidly decreasing function of k. In the broad-resonance
limit, ¢ — oo, we write &% = &3 + gx?, which gives (assuming maz £ < &3) [125]:

gy = i% /u“ﬂ dﬂ/d&g———%G(in(mf - £ cos” 8))

+ O(1//79) | (4.18)
where (7 is the infinitesimal generator of £{t) defined by the limit of the operator sequence: G =
lim_o(U; — I)/t. Here I is the identity operator and U; is a family of operators on the space of
bounded continuous functions f, defined by U:f(z) = E{f(f(t))[f(o) = z], where E denotes the
expectation operator [107]. Again g > 0 or all k, and given a model of ¢ evolution, one can explicitly

estimate i, and hence the numbers of praduced particles ny and variances {667} and {x?).

4.6 Numerical results

Here we present numerical simulations®® to test the theorems we have given regarding the behaviour
of g for almost-periodic and stochastic potentials. We will also provide feheating examples for why

these potential are physically interesting, a task taken significantly further in the next chapter.

15These simulations appear in the papers [98, 154] done in collaboration with F, Tamburini.
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In the next section we shaw how p compares in the purely periodic Mathieu case and the almost-

periodic and stochastic cases respectively.

4.6.1 Quasi-pex-'iodic potentials - Cantor reheating

As we discussed in section (2.13), reheating with two or more fields leads naturally to quasi-periodic

evolution of the frequencies of the fields undergoing particle production,

We limit our discussion in this section to Minkowski spacetime 6. Consider the infiaton, ¢, and
the two minimally coupled scalar fields ¢, x with the natural mass hierarchy mg > m, > my. In
this section we consider the effective potential:

a
me

2
i e
2

A
V(qsltplx) = 9 ¢2_+ ZQS‘} +

hﬂ
+ %"F(qﬁ)x"2 + 5 I (o)’

m2
o'+ 54x (4.19)

F(-), J(-) are assumed to be analytic in their respective arguments. The evolution of the X& modes is
then [1]:

) kz ¥ 2 2

Xk + (a_3 +my + g F(8)+ hﬂ(@)) xe =0 {4.20)

Instead the inflaton zero-mode evolves according to:
b+ my 0+ A® =0 (4.21)

where the frequency of oscillation is partially controlled by the effective mass:

i

2 o qF o 0
Mgeps = My 9" 2= () +3M(667) (4.22)

In the case that {x?) = (§¢®) = 0, the inflaton simply oscillates with constant period. However, when
there are multiple-fields, or the mass acquires corrections due to quantum fluctuations, the period is
no-longer constant, but may increase monotonically, oscillate or exhibit random Auctuations. As an

example, in the special case of a Yukawa interaction, F(¢) = ¢, Eq. (4.21) has a pure driving term

o g7 (x*).

As a simple example consider Eq. (4.20) with F(¢) = ¢ , J(p) = ¢* and A = 0. Then the

equations for the quantum fluctuations of yj are:
. kz <> a el )
Xk + (E.:; +my + g ¢ + hggo') xe=10. (4.23)

with ¢ ~ sin(myt) and ¢ ~ sin(myt). When m/m,, is irrational, the potential is quasi-periodic. The
spectrum of Eq. {4.4) for almost-periodic potentials can be pure point and is, in a non-rigorous way,
generally a nowhere dense Cantor set [114]. Hence, in the example above, for infinitely many irrational
values of mg/m,, we may expect that the spectrum of y; will be nowhere dense, and consequently

that almost all modes will grow exponentially.

18The general expanding FLRW case is contained within the spectral theary of Sturm-Liouville aperators,
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However, unlike the random potentials considered in section (4.5), the Lebesgue measure of the
spectrum, even if a Cantor set, need not be zero [113} and ¢4c may be non-empty. Indeed it is

possible to have ¢ = o4 [103].

4.6.2 Stochastic inflationary reheating

We now consider the case where the potential @ in Eq. (4.4) is random. This models for example,
the classical limit of stochastic inflation, where the dynamics of the local order parameter in a FLREW
background, are described by [108}:

B3+ V(8) = g5V (B, (424

where H = ¢/a is the stochastically evolving Hubble constant [112], € is a coloured Gaussian noise
of unit amplitude with a correlation time of order H~!, so that the inflaton evolves stochastically.
The origin of the noise is the backreaction of quantum fluctuations with wavelengths shorter than the

coarse-graining scale [111, 112, 100].

Here we will consider the potential V(d) = Ad*/4 and as before an interaction term g2¢?x?/2.

The quantum Auctuations of the flelds ¢ and y are then given by 17

" bl k2 Y SAHZ )
(a¥?5¢1) + (0—2 + 3287 + 67Gp — —— E(t)) (e®28y) =0, (4.25)
(%2} + (a—; +m}, + 6rGp + ggfiz) (a*?xz) = 0. (4.26)

where p = m(%ézg — V(#)) is the pressure and k = 8xG. These equations are again equivalent to Eq.

(4.4), but this time with stochastic potentials, which are the opposite extreme to periodic potentials

since they generically have empty o4¢.

Note one important point. From Eq. (4.24) above we see that the inflaton evolution is driven
by a coloured noise driving term which generically ensures that ¢ itself will not be a white noise in
stochastic inflation. Therefore the numerical simulations that we will present in the next section -
which are for white noise - cannot be taken as truly reflective of reheating in stochastic inflation. The
white noise results will, however, be extremely useful in the next chapter where we attempt to study

reheating at the strong-coupling limit of realistic multi-field theories.

4.7 Comparison of the Floquet index for the various poten-
tials

Here we present Floquet spectra at various ¢ and g to show the relative power of noise and quasi-

periodic potentials over the pure Mathieu potential.

17 Here we neglect the backreaction of the produced field x on the expansion; valid during the first phase of reheating
before backreaction terminates the resonance.
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Below we show cross-sections of the Floquet index at constant g. Physically this gives up versus

frequency (or equivalently, momentum) k.

The quasi-periodic spectra are all shown for the case my/m, = 7. The fact that the magnitude of
the ratio is close to one is important, as we described earlier, for the increase tn . Thus, we should

interpret our earlier spectral results, and our numerical results, with caution, since:

(1) the spectral theory results may be valid for all irrational mgy/m,,, with g > 0 for almost all £,

but g is so small that it does not show in out numerical simulations for large mass ratios.
(2) The case of large mass ratios corresponds to Cantor sets with large measure (where g = 0).
(3) The nature of the “genericness” depends on the mass ratio.

Of these, it seems most likely that (1) and (2) are at play. From our studies of the white noise case,
i appears to vanish on non-zero measure sets even though theory states that the contrary is true.
Therefare, (1) is almost certainly true {we are alsc dealing essentially with chaotic dynamical systems
for which computer errors are significantly amplified). Issues (2) and (3) are beyond our reach to study
unfortunately, but an experiment in the periodic case would be interesting. One may parametrise
the band spectra by a continuous variable, say r, such that r = 0 implies that the spectrum fills the
whole real line, while increasing r uniformly decreases the bands of the spectrum with » = oo making
the spectrum empty. By the inverse scattering technique, me may hope to obtain the corresponding
potentials as a function of r, though this might not be unique. In the Mathieu case, cne might choose

=T

To summarise the findings in the following graphics, it is evident for all values of ¢ that (i) the
Floquet indices are strongly enhanced both by adding a white noise component and by going to a
quasi-periodic potential. (ii) Secondly the regions where g = 0 are strongly diminished for these two
cases compared with the purely periodic Mathieu case. Both of these findings are in line with what
we expected from our theoretical considerations based on spectral theory in the earlier part of the

chapter.
Spectrafor ¢=35

Here we compare the pure periodic, quasi-periodic and white noise Floquet spectra for fixed ¢ = 3

and with the ratio of the frequencies in the guasi-periodic case always equal to .

Spectra for g = 10

Here and in the case ¢ = 20, the development of edges where p jumps almost discontinuously is

evident (here at ¢ = 2.). We have no explanation for these “non-thermal edges” at present but are



CHAPTER 4. FIRST LIGHT - A CLASSIFICATION VIA SPECTRAL METHODS 130

M M i)
v 8

‘M
Figure 4.3: @ =5. Top: the Mathieu (left) and stochastic Mathieu (g = 5) spectra - p vs k. The

quasi-periodic (left) case and the quasi-periodic case with noise (g = 5) are shown as the bottom left
and right figures respectively. .
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Figure 4.4: q = 10. Top: the Mathieu (left) and stochastic Mathieu (g = 5) spectra (right) - u vs k.
The quasi-periodic (left) case and the quasi-periodic case with noise (g = B) are shown as the bottom
left and right figures respectively. .

confident that they are not numerical abberations.

Spectra for ¢ = 20

Here we present the case for ¢ = 20. Again we see the same patterns as before plus a new one: the

stochastic case appears to develop a flat “table-top” part.

4.7.1 The incommensurate sub-space at large ratios

We have shown that for a ratio of masses equal to , the increase in the pp is be drastic. What

happens when we allow the mass ratio to become much larger or smaller 7

One might expect that the high frequency component would become less important and this is



CHAPTER 4. FIRST LIGHT - A CLASSIFICATION VIA SPECTRAL METHODS 132

25

0.5

o
e
-
o
o
=3
Bl
=
=
1
B

Figure 4.5: q = 20. Top: the Mathieu (left) and stochastic Mathieu (g = 5) spectra (right) - u vs k.
The quasi-periodic (left) case and the quasi-periodic case with noise (g = 5) are shown as the bottom
left and right figures respectively. .
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Figure 4.6: The Floquet index vs & in the quasi-periodic case but this time with a ratio of frequencies
= 100w, instead of 7. The effect of the extra frequency is a very small perturbation of the single-
frequency case. In this case one can do perturbation theory in the dimensionless frequency ratio and
the distinction between the rational and irrational nature of the ratio is much less important.

indeed seen in figure (4.6). One way to understand this is that in the case where the ratio mg/my, is
very small (it is of order 1/300 in the figure), one can use this dimensionless ratio to reduce the problem
to a perturbation of the single-frequency Mathieu equation and the second frequency is expected to
make only a small impact at small times, the distinction between the rational and irrational nature

of the ratio is then much less important than before.

4.8 Including self-interaction: the Gross-Pitaevski and INLS
equations

In chapter {2) we saw that the introduction of self-interaction in the reheated field y, at least in the
Hartree approximation to a rapid shut-off of the resonance. In the case that that we have a potential:
mj g A
2 (3.9 5
Vig,x) = 56> + T x* + Ex* (4.27)
2 2 4
the equation for the quantum fluctuations y; has the exira term Ay® which makes it nonlinear, and

the equivalence with the I-D Schrédinger equnation breaks down.

This represents no theoretical difficulty however, since the problem is now equivalent to a different
operator: the Gross-Fitaevski and non-linear Schrodinger operator equations. Our only problem is to

find spectral results for these equations.
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4.9 From Minkowski to FLRW

As in the previous section where we allowed sel-interaction, inclusion of the expansion of the universe
causes problems with the equivalence procedure that we have successfully employed so far in this
chapter. Indeed in full generality this is a serious problem since our equations become a coupled,

autonomous'® set of equations including the Hamiltonian constraint (the Friedmann equation).

Nevertheless, in the case where we consider the growth of fluctuations in an expanding background
determined by the inflaton evolution. This splits the set of equations and breaks the autonomy of the
equation for the fluctuations so that we can hope to reestablish our link with spectral theory. Now
we have an equation (again assuming a simple g?¢°x>/2 interaction term):

0

. g k_ 2.1
Xk +3H X + <a_2 + y"ti’"(f)) X =0 (4.28)
which can be cast into the form of a general Stiirm-Liouville problem which is the natural generalisa-

tion of the 1.I) Schridinger problem and is usually written:
—(s(x)¥' () + q(z)b(z) = Ar(z)d(z) (4.29)

where the functions s{z), g{z), r(z) are arbitrary and s(z) = 1 = r(z) gives us back the Schrodinger

equation.

To include the time-dependence of the scale-factor a(t) one can then simply make the following

identifications between {4.28) and (4.29):

r — ¢t
A o= K
s(z) = alt)
1
r{z) = ﬁ
g(z) = —ag’$’(1). (4.30)

Again the usefulness of this equivalence is bounded by how much is known about the spectral

theory of such operators for relevant a(z}, ¢{t). -

4.10 Conclusions

In this chapter we have used spectral theory both to shed light on the deeper origin of many of the
results in reheating and to illustrate the connections reheating shares with many parts of condensed

matter physics. Further we have found an invariant way, based on the spectra of the associated

18 A ntonomous’ implies that the time variable appears in none of the equations explicitly. This is simply a consequence
of the covariance of GR and relativistic field theory.
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1 — D Schrédinger equation, to classify the initial phases of qualitatively different reheating classes.
Simultaneously we have been able to enlarge the number of known classes to include potentials of
mnterest in the modeling of such complex phenomena as quantum backreaction on the metric and

effective masses of fields.

The equivalence between the unstable modes of the Klein-Gordon equation and the complement
of the spectrum of the assaciated Schrédinger equation seems to be completely new and holds much
promise, especially if new developments in condensed matter or the spectral theory of linear operators

occur. In the next chapter we shall find that many of the results can be put to new use,

The most powerful method of advance ... is to employ all the resources of pure mathematics
in attempls {o perfect and generalise the mathematical formalism that
forms the ezisting basis of theoretical physics ... and to try and interprel the new mathematical

features in terms of physical entilies.
P. A. M. Dirac



Chapter 5

Inflationary Reheating in Realistic
Theories

An ezpert is a man who has made all the misiakes which can be made in a narrow field.
Neils Bohr

Time is a greal leacher, bul unfortunately ot kills all its pupils.

Hector Berlioz
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5.1 Introduction

What would preheating look like in realistic models of inflation embedded in 2 complete and consistent
theory of particle physics ? Clearly in answering this question one immediately faces two problems:
(i) firstly, we do not have such a theory and (ii) even if we did, practical computational problems
might be prohibit us in obtaining precise answers, due to lack of resources or ingenuity. With regard
to (i}, even if one resfricts oneself to Grand Unified Theories (GUT’s), the choice is not unique, or

rather there is no obviously ‘best’ candidate, although currently SO(10) leads the pack.

As a result of (i) and (ii) above the situation appears rather bleak. Whilein the rest of the literature
on reheating the standard policy has been to either (a) restrict attention to two-Reld models or (b}
choose a specific model (such as SU(5) or SO(10)) but make many simplifying approximations, we
have in the past two chapters taken a different route. In chapter (3) we asked about the high-energy
fixed points of the renormalisation group equations and found that in many cases |£| — oo was the
appropriate result with all ather couplings very small. This lead to geometric reheating and seems to

cover many interesting and even realistic models.

In chapter (4) we tried to classify all possible reheating classes. We used spectral methods to
set up strong houndaries between the different classes. This allows us to understand the reheating
“moduli space”, the space of qualitatively different types of “first light” preheating. In that chapter
we took little specific input from particle physics and were guided principally by mathematical results

on the spectral theory of the I — D Schrédinger equation.

Finally, in this chapter we try a different, but related approach, in an atéempt to close some of the
gaps left in our understanding of realistic reheating theories. Here we examine what characteristic
features one is almost sure to find in the promised complete and consistent next-generation theories
of physics, be they GUT, supersymmetric or string based. Other than the running of the coupling
constants, perhaps the most fundamental feature we can expect is the existence of multiple fields.
Indeed, if we look back at the history of physics in the last century, the number of known fields
has monotonically increased with time, and supersymmetry, if correct, implies many more, as yet

undiscovered, super-partner fields.

The leit-motif for this chapter then, is to understand what reheating in the presence of many fields
looks like. What is its shape, its form ? How does it differ from the reheating models presented in the
review in chapter (2) 7 Nowhere in the literature does there exist another investigation of reheating
with more than 2 fields '. This is a very relevant question: for example the 126 representation

of SO(10) involves 252 real Higgs fields, not to mention the rest of the fields corresponding to the

The hybrid preheating paper [138] examines three fields bui treats the third as a test field, and is therefore not
consistently a three-field study. The S0(10) study [145] started with four fields but then restricted the Beld Ructuations
to caincide, thereby reducing the problem to the two field case. The work of Levin and Comish [140] studied several
felds (n = 3,4) but treated only the homogensous & = 0 modes, so that reheating was actually impossible since they
had only 3 or 4 degrees of freedom {classical mechanics as opposed to field theory). Nevertheless their discovery of
chaos formed part of the inspiration for the work in this chapter which is based on the papers [88, 154].
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standard model and super-partners. Since it is not realistic to numerically salve for the evolution of
all of these fields, yet alone investigate the parameter space associated with all of their couplings and
masses (the number of which grow quadratically with the number of fields), it seems that our study

is doomed from the start.

But fortunately this is not the case. We are, however, forced to take an alternative approach.
Instead of choosing a realistic model and then approximating the dynamics by excluding almost all
of the degrees of freedom (which thereby makes the results valid only for a restricted parameter set
of a single theory), we try to capture statistical properties of the complete ensemble set of degrees of

freedom. Indeed, our approximation is statistical in spirit.

Our puiding observation is that in General Relativity, as in other gauge theories, the introduction
of n > 3 degrees of freedom typically leads to chaos at the classical level. We will discuss the
issues associated with this later but first we add another condition: strong coupling. Without strong
couplings between the fields the evolution is not necessarily chaotic. In the case that only one coupling
is strong we regain the theory of preheating to a single field, with its simple description in terms of
the Mathieu equation. Thus we are interested in discussing preheating when there are two or more

strong couplings between fields.

But what happens when the inflaton evolution is not chaotic but there exist couplings (not nec-
essarily weak) to many fields 7 i.e. when we find ourselves both out of the chaotic range and the
range covered by the simple perturbative single-body decay theory presented in section (2.3). In this
case, what we find is that the mass spectrum - how the masses of fields are arranged hierarchically -
of the fields which couple of the inflaton, is erucial. This issue, and how it affects preheating, will be

discussed in section (5.6).

5.2 The strong-coupling limit of GUT reheating

In this section our aim is to justify why a strangly coupled phase is interesting both from the new
reheating effects that may arise and from a more general phenomenological/theoretical point of view.
A selection of unrelated scenarios is presented where strong coupling is required or implicit, but first
we make a cautionary note that strong coupling during inflation is not compatible with the COBE
data in non-supersymmetric theories since large couplings will cause large radiative corrections to the
potential, spoiling its flatness and over-producing temperature anisotropies. Nevertheless, this is also
true of the ordinary preheating reviewed in section (2.4) and so is not specific to the things we will
discuss now. Indeed, one could imagine a model where the couplings run and become large only near
the end of inflation, i.e. exactly at reheating. A perfect example of this is Dual inflation, as we wiil

now discuss.
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5.2.1 Seiberg-Witten models and dual inflation

The work of Seiberg & Witten (1994) [240] was perhaps one of the most influential events of the last
10 years in theoretical physics. It proved quark confinement in N = 2 supersymmetric Yang-Mills
theory via monopole confinement by exploiting a strong-weak coupling duality under which electric
monopoles were mapped inta magnetic monopoles and excited a large part of the physics community
to search for duality aspects in other areas. Indeed, that work was the inspiration for the study we

will present in chapter (7).

It was then realised [137] that the associated low-energy N = 0 (i.e. broken supersymmetry) scalar
potential in the moduli space was very flat along one direction without the need for any fine-tuning,
even with the inclusion of all non-perturbative quantum corrections. Inflation then proceeds along
this flat direction which corresponds to the weakly coupled (or Higgs) phase of the theory. There is
then a transition to a highly curved part of the potential which corresponds to the strongly-coupled,
confining phase where the monopole gains a non-zero vacuum expectation value and the condensate
(playing the réle of the inflaton) oscillates. The crucial thing for us is that since oscillations occur in
the strong-coupling region, and there are many fields to which the inflaton couples, we have found a

specific implementation of our earlier general discussion.

"To amplify on this point, the single-field Mathieu parameter g ~ g>®2/m? in this case has g > 1
(strong coupling), ® ~ A where A is the only free parameter of the Seiberg-Witten solution and
m ~ fo, where fq is the supersymmetry breaking scale of the theory. Natural values both from the
CMB and abstract concerns favour fy ~ 10=2A. This gives ¢ > 108, deep in the broad resonance
regime. Note however that ¢ will couple strongly to all members of the supermultiplet and so we have

mulktiple fields at strong coupling.

5.2.2 Symmetry non-restoration

Another example requiring strong-coupling is of a different type. It is provided by the solution of the
monapole problem discussed in section (3.6.1) based on symmetry non-restoration at high temperature
[63], due to the effective mass of the Higgs fields remaining negative at all temperatures. The effective
mass receives finite temperature corrections dependent on the gauge coupling ¢?, and dimension
of the representation; see section (1.6). For example, in the case of SU(5) in the five-dimensional
representation, symmetry non-restoration impases a constraint on the quartic self-interaction coupling,
Ap, of Ap > 39¢%/10, which implies that As > 1 for typical gauge couplings g*/(47) ~ 1/50 [64].
Clearly this mechanism was seen as an alternative to inflation and is therefore not directly related to
reheating, but it serves as an example of a completely separate reason for studying the strong-coupling

limit.
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5.3 Chaotic reheating

Setting aside the subtle issue of the quantum behaviour of gauge theories af strong coupling {139],
one finds that in the two and three scalar-field cases studied so far, (classical) chaotic motion is
typical {140}, especially at reheating. This chaotic evolution parallels results in the Einstein-Yang-
Mills equations {141}, semi-classical QCD and lattice gauge theory 7142). Thus a natural question is

“what is the nature of chaotic reheating 7”

The correct setéing for this question is therefore to consider n flelds 2 @ which are in homogeneous
condensate states, coupled to the inflaton ¢ via the n{n—1)/2 couplings Ay and all evolving chaotically
in time. We then couple a scalar field, x, to the inflaton via our canonical interaction term %:—qbzxg.
Equally we may think of x = 6%, as the non-zero momentum modes (k # 0) of the fields ¥ with

self-interaction.

The modes of x then obey: [11j:

2 3/z
(a Xk)+

kg 2 -9 n
ai2 (—3 + my + 67Gp+ g“qﬁz) (a*xp) = 0 (5.1)

a

where a(t) is the scale factor of the universe cbeying the Hamiltonian {Friedmann) constraint H* =

4/a)? = pyoe/3 With pior the total energy density and p the total pressure of the universe.
7 p g

Now increase the couplings Ag of the fields ®, thus moving into the strongly coupled, chaotic
region of the parameter space. While we are unable to study chaotic reheating in full generality, we
have full control over the region in which the chaotic fluctuations are extremely rapid, due to the

following powerful statistical result.

5.3.1 Taylor’s theorem and the stochastic limit

In the strong coupling limit it is fair to say that many systemns show an increase in chaoficity, namely
an increase in Lyapunov exponents {equivalent to our Floguet indices) and a decrease in correlation
times. In these cases we can apply Taylor’s theorem to replace the chaotic flow by a white noise

random process.

More precisely, let ¢ obey Smale’s Axiom A type dynamics with chaotic flow @, and non-periodic
attractor 5. This ensures that the flow is sufficiently chaotic. For an open, dense set of functions b

with E(f) = 0, 3¢%,¢ > 0 and a Brownian motion B(t) such that for almost all initial ¢o € £ [148]:

' o 1
|j; VAF(®r tho)dT — WB(M,@]” = () (A—) : (5.2)

here E(f) denoting the expectation value of f.

2Here we represent the n felds as a vector ¥ suppressing associated indices. Similarly we write the couplings as the
vactor Ay .
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Since white noise is the derivative of Brownian motion, this implies that chaotic motion is, in the

rapid fluctuation limit A — oo, indistinguishable from white noise.

The beauty of this result is that while we have had to restrict ourselves to the rapid fluctuation
limit, which will only be an approximation to true chaotic reheating, we have reduced owr problem

to one we have studied in the previous chapter: namely one within the stochastic reheating class.

5.4 Reheating using white noise

In the limit where Taylor’s theorem is applicable, Eq. (5.1) reduces to quasi-Mathieu form:

d2(a3/2+ b2 . :
Lo (S r60) @) =0 (53)

where the potential F(4,1) is given by:

F(g,1) = g°€(1). (5.4)

which corresponds to Ag-independent stochastic evolution - £(¢) is a Gaussian white noise - deseribing
the effect of multiple fields in the strong coupling limit. Actually there is a slight subilety here. We

have “neglected” the total pressure (all fields are assumed o be minimally coupled):
. n . 2
p=30+ 35 - V(e T) (5.5)

which involves time-derivatives of the fields ¢, ¥. Time-derivatives of a white noise process are not
themselves white noise, and so one might feel that Eq. (5.4) is much too simplistic. However, this is
the wrong way to go. For each set of conplings Ay > Achaes We have a chaotic flow @; and potential
F(®,),,. Now if a function ¢ is chaotic, then the time-derivative and powers of ¢ are also generally
chaotic (although this may not be true in all possible cases). In that case we can take the rapid
fluctuation limit for all components of p and hence, by Taylor’s theorem - which can be extended to
vector flows [146] - find that p tends to a white noise process and that in the limit F(®;)a, = F(4,1)
as given by Eq. (5.4), with the appropriate coupling g* including the various contributions from the

pressure 2 and inflaton.
As an aside we can generalise Eq. (5.4) slightly to include a pericdic component:
F = —2gcos(2t) + g%£(t) . (5.6)

g = 0 corresponds to the strong-coupling limit above and g = 0 gives us back the simple Mathieu
equation and leads us to the standard theory of preheating. This generalised potential is therefore a
realistic way of éxamining the effect of small stochastic fluctuations in the effective mass of the field,
as was done, for example, in [147]. In our graphics we will present results for both parameters (q, g).

This will enable us to examine what happens to physical quantities as we vary both ¢ and g.

3Which is, after-all, a weak effect - see chapter (3).
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Figure 5.1: Mathieu eq. (a) Floquet index u vs ¢ along 4 = 2¢. (b) Contour plot of g on the
instability chart (A4, g).
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Figure 5.2: Stochastic eq. (2), ¢ = 5: (a) Floquet index p vs ¢ along A = 2g. (b) Contour plot of
ingtability chart - note the breakup of Mathieu bands and the very large peaks in p.

5.4.1 The Floquet index

In chapter {4) we presented very generic theorems about the existence of imstability in the modes
of the Klein-Gordou equation (5.1) for the case of a stochastic potential. In particular, theorem (2)
gaurranteed that with measure one, all modes grow exponentially, i.e. g > 0. But we had no real

analytical control over the magnitude of the pj relative to the Mathieu case.

In figures (5.1), (5.2) we present a side-by-side comparison of the instability charts for the pure
Mathieu and mixed stochastic-periodic (see Eq. 5.6) cases along the physical separatrix A = 2q. The
band structure of the Mathieu equation is clearly visible while the complete destruction of these bands
is visible in figure {5.2). The other effect clearly evident is the significant growth at all wavelengths

in the Floquet exponent over the purely periodic case (g = 0).
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5.4.2 Backreaction in the Hartree-Fock approximation

A crucial result of the large Floguet indices py, is the possibility of non-thermal symmetry restoration
(NTSR) [131], as we described in section (2.12). Consider the simplest 2-field effective potential with

symmetry breaking:
’\ a3 i 2 -
Vigx) = 38~ 43) + % . (5.7)
This gains the following quantum corrections:
AV = B((86)°)¢° + F((6x)°) 4% + T((86)" x> (5.8)
(131], where the dominant variance is given in the Hartree approximation by [9]

a3/2§¢k|2

(Goy) = (et [au
~ /dkkge‘”‘m'r"t (5.9)
where the last step comes from assuming effective rescattering.
From energy conservation, one has the bound [131]:
{(66)*) < CT " AMp I~ 57 (5.10)

with ' ~ 1072, Saturating this bound implies that Eq. (5.7) can have a positive effective mass,
My,ers = (V + AV)" even for ¢o ~ 101°GeV.

Nevertheless, exhausting the available energy and realising these large variances in the simple

Mathieu equations is highly non-trivial [134]:
(i) sufficiently large p are required since {(6¢)%) ~ [ dkk2e®#,

{ii) The breadth {and very existence of) the first instability band controls how long the resonance

continues before backreaction shuts it off (see figure 5.1).

(iii) The expansion of the universe is forced to be monotonically decreasing: H = —xg%/2, which

drives {4, ¢) — (0,0), damping the resonance and reducing the variances [155].

(iv) Finally, for defect production we require mi.e s > O for time scales 6t > w‘gl, the pericd of ¢

oscillations.

These factors conspire against NTSR. and defect production in the simplest models of preheating

[134]. However, in the strong-coupling limit of GUT’s considered here we know that:
(1} we can easily achieve very large u (see figure 5.2).

(ii) since the stability bands are completely destroyed {147, 148], modes never stop growing, p > 0,

even when backreaction becomes important.
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Figure 5.3: Three realisations of {(§x)?) vs g at ¢ = 2m_" for ¢ = 5. At larger times, {(§x)*) becomes
completely dominated by a single peak (c.f. fig. 2(b)).

(iii} Finally, and very importantly, when there are multiple fields, the expansion need mot be
monotonic and indeed, in our case will increase and decrease stochastically {140] until reheating and
thermalisation are completed. This means that the expansion need not only have a damping effect,

2

but can also act as a pump, when H > 0 [140}, enhancing the fluctuations ((§¢)*) and {(6x)%).

From these robust considerations, we expect NTSR to be much more effective at strong-coupling,
allowing us to approach the limiting variances set by energy conservation. Indeed this is borne out

by direct simulation of mj ,;, o< M{(66)*) + 5 ({6x)*) (see fig. 5.3).

Examining the statistics of mj ,,; [98] we see that while m} ,;, fluctuates very rapidly, very large
values of ((6x)?} occur, with m} ;. € {~Adg, §°M})). Assuming Ady? < g*M2, the statistics of

m'é' ¢7; 2re highly skewed, yielding a temporal average:
mi,eff >0. (5.11)

. "This means that most of the time symmetry is restored and ¢ is likely to diffuse across the origin,

leading to defect production including monopoles in a full model including SU(3). x SU(2)r x U(1)y .

5.5 Backreaction and rescattering — beyond Hartree-Fock

Since the produced spectra in the white noise case are very different from the simple band specira
of the Mathieu equation, we have a much smoother distribution function f(p) of produced particles
instead of the rather sharp k — space shells obtained from the Mathieu equation. Clearly this difference

is likely to have a strong influence on both backreaction and rescattering.

Rescattering typically leads to a strong enhancement of the field variances in simple periedic
models over the estimates provided by the Hariree-Fock approximation which includes no scattering
effects and energy is transfered only via the mean field. Is the same true in the cases we have studied

in this chapter ?
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Here we consider the simplest model exhibiting rescattering:

Tfl2 g .
Vg, x) = Lo + %y (5.12)

2 2

although we will also make comments regarding the case with ¢ self-interaction. Fluctuations of
bose fields generated from vacuum by an external field in the large occupation number limit can be
considered as classical waves with Gaussian statistics [9]. Therefore in the first approximation all
flelds y, ¢ can be treated as interacting classical waves. We can then use the equations (2.57—2.59),

which we give again for completeness.

The Fourier decomposition of the Klein-Gordon equations of the interacting fields can be reduced

to mode equations. The mode equation for X; = a3/ 2y is

- k2 2,9 _ g ¢(t) 3 1.1
Xp+ (a_2+g @ (ﬂ) Xy = (2,"_)3 (9 8,3/2 /d A X yripwr

dﬂk dak”X L 1 H 1 .
(2"ra)3f k= Pl PR (5.13)

where we label the first and second integrals Iy and IIx respectively.

The mode equation for o = §¢r(t)a®/? is

B, (t
(Pk-i-(a—-l-m“) or = '(-ég)ﬁ—;,qfdakffk k! Xk
- (Qia)ﬂ / A5 &k i qxer X Xien. (5.14)

The first term on the right of this equation, I, describes rescattering of y-particles on the classical
field #(2), which leads to ¢-particle production. The second term, I1, describes scattering of higher-
momentum ¢-particles and y-particles. Corrections to the effective mass of the modes ¢, appear as

a result of the iterative solution of the system of equations which we now present.

" The equation for the oscillating background field cf)(i) takes the following form:

b+3HG+m’p = (2 )3 S/dsk’Xk.
2

“Z‘z'}jgw f EH PR o X Kien. (5.15)

The first term, I; on the r.h.s. of this equation is proportional to the polarization operator Hé;,.
The second term, I1; describes rescattering, which is related to the imaginary part of the polarization

operator ﬁi.

5.5.1 Rescattering in a simple é-approximation

To obtain a simple analytical understanding of rescattering and backreaction, we will limit ourselves to

Minkowski spacetime (modes are then not redshifted). This means that broadening of the produced
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particle spectrum is solely due to rescattering. Further, since particle production due o periodic
parametric resonance is peaked around the center of the first resonance band, we will make the
approximation that the produced spectrum for X is a é-function ai the center of the band, k =
k., with a time dependent coefficient which describes the development of the specirum due to the

resonance, an effect determined by the Floquet index u;, .

Thus we write:
Xe =X (0)6(k — k), (5.16)

where X2(¢) oc e#*=!, One might argue that the higher order bands should be included in the approx-
imation, but as we shall see, this is not necessary to achieve transfer of energy to higher momentum
modes and simply increases the complexity of the system whereas our main aim is pedagogical clarify.
In this approximation, integrals over the spectrum of X3 collapse immediately due to the é-function
in Eq. {5.16}.

Neglecting four-particle scatterings

To being with, we will make another approximation: we will neglect all the second integrals labeled
IIx,,4 in the full equations. This is justified when the number density of the condensate is much
larger than the total occupation number at non-zero momentum, which is valid in many cases (see

e.g. [181]), including the initial phase in which rescattering becomes imporiant.

The Eq. {5.13) for X} now becomes, :

- [ 2 2 a
Xi + (]“2 + gzqs?(t)) X = —%(k — k) or—k, (5.17)

a

and we see that Iy describes scattering of 6¢ particles at frequency |k — k.| with X}, particles. Initially
in the potential given by eq. (5.12), v is in a vacuum state with number density near zero consistent
with the uncertainty principle (in the expanding case there would also be weak production due to the
expansion of the universe). In the case of ¢ self-interaction, this is noé true since there is also the

usual o resonance - see section (2.5) [10].

So, initially, Ix has no effect on the evolution of X}. Similarly, we can see that Iy will have no

effect since it is proportional to @prpe..

Changing our focus to equation {5.14) we find under our approximations that:

o (B FSHX()? |
This equation is very interesting since we see that there is ¢ particle production only at the frequency

k = 2k.. This is our first rescattering effect. The production of a ¢y boson at this frequency is simply

an issue of energy and momentum conservation in the process:

Xe, + Xp, — ¢+ g, (5.19)
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This process implies that the condensate number density increases (bose condensation) while the

resonant production of X; particles is counteracted.

We can gain an accurate understanding of the early development of the rescattering effect on ¢y

via a Green’s function solution of eq. (5.18) neglecting the backreaction of the ¢ on the eq. for Xi.

What we obtain is the equation for the forced oscillations of 8¢, (t). The homogeneous part of
this inhomogeneous linear differential equation has a simple Green function « sin £(t — t'), where

Q4 =k 4 mj. Then the solution of Eq. (5.14) with only the fizst integral term is

g '
§de(t) = _@r)ﬂ_gk/@ dt’ sin Oy (t — t") (")
b fdk’k’zxk_kl(if)xkl(t') —I—hc . (520)

It is immediately evident that @p grows very rapidly in time, with an envelope approximately given
by elBrmwi +EniImat o p2Memst This parasitic behaviour of the ¢y fluctuations was already discussed in
section (2.9). Note that once the @i occupation numbers n, ~ e*#*™#! grow sizable, the backreaction
on the X growth cannot be neglected and the Xj-resonance is shut-off, However, even with X =
const, we see from eq. (5.20) above that the @) grow linearly with time, showing that rescattering is

effective even then.

Of course, the true situabion (at the classical level) is one of coupled oscillations with energy

transfered non-resonantly between the X, ¢ and ¢.

So far we have shown that production of y; particles at k = k. leads to production of ¢ quanta
at k = 2k.. Is this where the story stops (i.e. these frequencies form a closed system) or is there more
redistribution of energy 7 Returning to the Iy term in eq. (5.17), if we now include the s, quanta
we see that it is the Xy mode with & = 3k, which gains a driving term. So the system is not closed
at two frequencies. Nor is it closed at any finite number of frequencies: one can easily show that if
the spectrum of X} and @, contain the terms 6(k — nk.) and 6(k — mk.) respectively, then the term

Iy will generate X quanta at the frequency (n + m)k..

Thus by induction we have shown that starting from our initial approximation in eq. (5.16), power
is cascaded to larger momenta. The distribution of produced quanta is the module k.2, i.e. only
integer multiples of the original resonance frequency are produced by the three-particle scatterings.
We shall see that this is not changed by including the four-particle scatterings bus that it does changes

drastically in the case of stochastic reheating.

Including four-particle scatterings

Now consider the term I7,. If we allow X to have non-zero values at any k = nk., then Iry will
consist of a double sum for all values of n. However, they have a closed structure. There is no way io

produce quanta at non-integer multiples of £,.
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The net result of this is that the produced spectrum is peaked around the integer values of the
initial resonance frequency k.. Clearly both the expansion of the universe and the finite k-space width
of the resonance shells will canse these peaks to be smeared. In some sense they are complementary
effects: at small g, the resonance bands are very narrow but expansion is effective in redshifting modes
through the bands. In the broad resonance case, the particle production is too rapid for the expansion
to have much effect but then the resonance bands are much broader. Nevertheless, the basic structure

of the rescattering effects are those presented above.

5.5.2 Rescattering in the stochastic case

The crucial effect of noise is to destroy the stable bands. This means that all modes, bar a set of
measure zero, experience resonant growth (at least classically)?. The Floquet exponent is now larger
and has a completely different distribution in k-space. Of course, there is still a trend for p to decrease
with inecreasing k. To model the spectrum we take X to have a flat spectrum out to k= k and to be

zero at larger momentum:

.Xk(t)

X°(t) for K<k
= 0 k>k (5.21)

The difference this has is that all momenta less than the cutoff can be produced and hence the
spectrum is much closer to thermal than before. In particular, any frequency k can be amplified or

de-amplified, so that noise is a necessary requirement for full thermalisation.

Neglecting four-particle scatterings

Consider the Iy term for our new approximation eq. (5.21}):

|®+E]
Ix o X°() _dk dk" (5.22)
~[k~F

Again initially p; = 0, so this term is inoperative. The I, term on the other hand is:

[e+|
I, j db' db™ X p_ g1 X
—|k=k|

0732 — _
KOO o ie4F_ ivn k< 9% 5.23
3 -lE-F

so that we see that e/l modes with k < 2k are amplified, in strong contrast to the situation described
for the simple preheating model in the previous section which could only produce integer multiple of

k., the resonant frequency.

+Quantum effect may cause local changes to the growth rate but not to the general picture [9].
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The Hartree-Fock term I is given by:

[l
Iy dk'dk'2 X2,

—|k
0732

3 (5.24)

This is much larger than the corresponding term in the §-function approximation for preheating. This
is because of the distributed nature of the spectrum and the increased ui. The effective mass will thus
change more rapidly and strongly, causing ¢ and g to decrease very rapidly, as well as contributing
my terms to the effective mass of the y field. All of these effects will help to shut-off the resonance.
However, since p; is not zero at any k,q or g # 0, the modes will continue to grow, though more

slowly, and are never pushed into a region where pg = 0, as happens in the pure-Mathieu case.

By returning to Ix above, we see that & < 3% modes can now be produced and in analogy with

the previous section one can show easily by induction that a cascade happens to ever larger k € R..

The inclusion of four-particle scatterings again seems to have no qualitative impact on rescattering,
although it obviously affects the transition amplitudes for bose condensation and evaporation and

interchange between & 3 0 particles.

5.5.3 Realistic modeling of the stochastic spectrum

What spurious effects does our approximation (5.21) bring in 7 From figure (5.2) we see two effects:
(1) there is a decrease in pg with & and (2) py is a random function of time and &, with fluctuations

about a mean .

A more realistic model to address issue (1) would be to give Xz a monotonically decreasing
behaviour with k, whether it be linear, quadratic etc... However, the first term in such a polynomial
expansion will always be the constant term that we have just studied. Thus our calculations act as
a limit of strong coupling where we can neglect the decay of pj. Indeed, the two approximations we

have presented represent the two limiting cases for preheating.

Issue (2) is more subtle and is expected to be much more important for studies of the actual time
development of the spectra of X} and @y, something which is beyond the scope of our present study

and is left as a challenge for the future.

5.5.4 Conjecture regarding backreaction in the stochastic case

The destruction of the stability bands and the knowledge that g > 0 for all k in the white-noise case
leads naturally to the question “is there a backreaction mechanism that stops the stochastic resonance

or does it simply continue until energy conservation forces a halt ™
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In the pure Mathieu case backreaction causes corrections to the effective mass and hence to the
parameters (A, g), causing a flow on the instability chart. Once the ¥ = 0 mode is forced out of
the lowest resonance band because of these corrections the whole spectrum les in stability regions
or secondary, and hence very weak, resonance bands. The resonance is therefore ended effectively.
But because of the destruction of the stability bands in the stochastic case it appears that this exit

is missing,.

Of course, backreaction will cause the coupling g2 to the white noise to be reduced but that s
not expected to be very effective in shutting off the resonance. Instead here we conjecture that even
if Taylor’s theorem assured us that the inflaton evolution was (nearly) white noise at the start of

reheating, finite coupling eflects will cause the colour of the inflaton noise to evolve in time.

White noise is colourless, that is it has a flat spectrum in frequency space much like the Harrison-
Zel’dovich spectrum in cosmology. This means that the two-time correlation function is a §-function
- white noise has no memory. Generalised stochastic processes have colour and memory and the
coloured noises may be described as a-indexed random Brownian processes where a € [0,1] and

@ = 1 corresponds to white noise.

Memory effects appear to reduce the Floquet index quite significantly [154] and it is quite natural
to expect that backreaction will cause a to diverge away from % in the finite coupling realm (finite A

in Eq. 5.2) and hence lead to a strong damping of pg.

5.6 Sensitivity to mass spectrum deformations

We now study the effect of mass spectrum deformations on reheating [98l. A simplified toy model to

study this issue is given by the 3-field effective potential:
V(dip.x) = "6 + Tee? + L7 + Fotx. (5.25)
Eq. (5.1) is modified and leads to a new F' [148]:
Fyp = —g(cos 2t + cos 2mt) . - (5.26)

where we have chosen mg/m, = w, which implies that (5.26) is a quasi-periodic function [148, 98]
since the masses are irrationally related. Such issues are known to be crucial in the integrability
of conformal field theories [161] and in discussions of periodic orbits vs ergodic flows in dynamical

sysiems.

In deriving (5.26) we have used the fact that ¢ = ®sin(mgt), ¢ = Tsin{m,t) and we neglect
the small contribution from p, which also oscillates. Further we choose 77®* = A}Y?. Relaxing this

condition adds an extra parameter to eq. (5.26) but it remains quasi-periodic, the crucial condition.

In our case, spectral theory results guarantee that the stable bands generically form a Cantor set
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Figure 5.4: Quasi-periodic case, eq: (4) (a) 4 vs gon A = 2¢. (b) Instability chart (A, g). Note the
larger 12 and proliferation of instability bands compared with figs. (1 a,b).
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Figure 5.5: log((6¢)*} vs q for (a) the Mathieu eq., and (b) the quasi-periodic eq., both calculated at
t= 23m;1. The maximum value of ((§¢)?) is about 20 times larger in (b).
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[148], which are often of very small measure - hence physically unimportant - mimicking the stochastic
case presented earlier, Again however, no estimates for 4 are available analytically. QOur numerical
results show the growth of g in this case and the significant widening and steepening of the instability

bands relative to the Mathieu case. Also interesting is the development of “non-thermal edges” in p
(figure 5.4 and [98]).

From our discussion of the stochastic case, we expect ({§¢)*) to increase and again this is borne
out numerically. In figure (5.5) we plot log{(§¢4)%) for the pure Mathieu and quasi-periodic cases as
functions of ¢. The maximum variance is ~ 1.5 orders of magnitude larger in the quasi-periodic case
after the short time f = 23m;1. The quasi-periodic model therefore is significantly more efficient at
restoring symmetry. In general the NTSR strength of GUT theories will depend sensitively on the

mass spectrum of the theory, here encoded by mg/m,.

5.7 A non-thermal resolution to the monopole problem ?

The monopole problem has now again become a major concern in large ( “chaotic or incommensurate”)
regions of the coupling/mass parameter space, even with the expansion of the universe included. Due
to the non-thermal, quench-like, nature of the symmetry breaking, the correlation length = of the
fields will be much smaller than in the equilibrium case, and therefore the defect density « =" (n =1
for domain walls, » = 3 for monopoles) will be correspondingly larger than the equilibrium Kibble
prediction [157].

If NTSR, succeeds, a second stage of inflation will oceur [131, 158] while the vacuum energy V{0)
dominates over the energy of the {(6x)?). During this time a(f) increases by a factor ~ (32/A)/* for
the potential (5.7), which cannot, therefore, supply the needed ~ 20 e-foldings to dilute the monopole
density sufficiently [129]. In SO(10) or SU(6), however, the monopole transition is separated from the
lower transitions and this may allow enough secondary inflation to dilute the monopole abundance

sufficiently.

However, this is rather model dependent and the large corrections to the effective potential offer
us an alternative escape route via defect-defect interactions. The full corrections to the effective
potential, include not only the quadratic contributions affecting mg.e 5 but also odd powers which
do not respect any previously existing discrete symmetries (required for example for successful D-term

inflation [68]). The odd-power corrections to eq. (5.7), with § =0, are:
AVoad = M(6¢° — ¢36) + A6 (5.27)

These terms softly break the Zy ¢ — —¢ symmetry of eq. (5.7). This allows an implementation of
the Dvali-Liu-Vachaspati mechanism [160] for solving the monopole problem as follows: imagine that
NTSR was successful enough to produce monopoles and domain walls during reheating. The §¢ terms

in eq. (5.27) automatically cause the domain walls to be unstable [159 since the minima at &g are
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no longer degenerate, causing a pressure difference ~ 2AV,44(¢g) across the walls.

Since after preheating ¢ < ((6¢)%), the first term of (5.27) dominates. The constraint that the
walls percolate gives us {(6¢) < 107'M,;. Monopoles are then swept up on the walls and dissipate
because the full symmetry (e.g. SU{(5)) is restored there [160]. Requiring that the pressure difference
drives the domain walls to collapse and decay before dominating the energy density of the universe
yields [98] {6¢) > 107*A~Y/3A4,) ~ 1073 M,y if A ~ 1073, These bounds are exactly in the range of
values expected if NTSR is successful. Note that we cannot simply use the same self-coupling X for
this process and the process of CMB anisotropy formation since the above bounds are violated if we
put A ~ 107, This issue can, as we have discussed before, easily be accommodated if we allow for

strong running of coupling constants or supersymmetry.

The advantage of this formulation is that it provides a specific implementation of the general
Dvali-Liu-Vachaspati mechanism - one that is perhaps preferable to the one we presented in section
(3.6.2) - and uses the same large quantum fluctuations which produced the monopoles, to remove

them,



Chapter 6

Reheating and the Evolution of
Gravitational Waves

I don’t want to achieve immoriality through my work.
I want fo achieve il through not dying.
- Woody Allen
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6.1 Introduction

The appearance of Grishchuk’s 1993-1996 papers {196]-{198] caused a contraversy regarding perturba-
tion evolution through cosmological phase transitions such as reheating after inflation, the electroweak

phase transition and quark confinement,

Here we will only study the evolution of gravitational waves® through second order phase tran-
sitions *. We will not look at density perturbations becaunse, while very interesting, the evolution
equations typically become singular periodically during a second order phase transition due to the
oscillations of the order parameter (terms of the form ($~!) occur in the evolution equations), and
hence require rather subtle analysis. On the other hand, first order phase transitions proceed via
bubble nucleation and collision and hence are nonlinear phenomena best studied numerically with

nonlinear models [207].

However the controversy surrounding the work of Grishchuk is particularly focussed on gravita-
tional wave evolution through reheating, which in new inflationary models occurs via a second order
phase transition and in chaotic inflation via field oscillations. The part of his argument relating to
classical evolution of gravitational waves through reheating is easy to state: (1) the evolution equation
for tensor perturbations can be cast in the form of a harmonic oscillator equation with a time de-
pendent frequency. Depending on the exact nature of this time-dependence, the tensor perturbations
can be amplified or not. (2) He then treats reheating as an instantaneous surface matching a de
Sitter universe to radiation-dominated FLRW, and imposes the Darmois junction conditions across

the surface 2

However, the implications of oscillatory reheating (through a second order phase transition) and
the resulting large quantum fluctuations for local curvature (metric) fluctuations has been largely
unexplored until now, and limited to scalar perturbations [150, 151]. The evolution of the tensor
(gravitational wave) spectrum has essentially been completely ignored, apart from a study of gravi-
tational bremsstrahlung generated through the interactions of the large quantum fluctuations in the
inflaton and decay-product fields [184]. Gravitational wave production during the bubble-wall colli-
sions of a first order phase transition have been rather more studied {207]. However, the gravitational
waves produced in these mechanisms are backreaction phenomena, since they are due to the scalar

field Buctuations, rather than the background zero mode evolution itself.

In this chapter we wish to demonstrate that there exists such an amplification of gravitational

1The work in this chapter is partially based an the papers [153] and [149].

? A phase transition is said to be of n — ¢4 order (r = 1,2) if the n — th derivative of the potential is the first to be
discontimous at the phase transition. Thus first order phase transitions proceed by nucleation and growth of bubbles
of true vacuum, such 23 ocours with boiling water. At a second order phase transition, the correlation iength of the field
diverges and there are fluctuations on all scales {neglecting causality and critical slowing down) leading to conformal
invariance and critical behaviour near the phase transition.

3The Darmois conditions require matching of the first and second fundamental forms of the metric, [.e. hup and the
extrinsic curvature ,; across the junction hypersurface.
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waves, essentially due to the oscillation of the zero mode of the inflaton during reheating. This is in
addition to any gravitational bremsstrahlung that may be produced by the asscciated scalar fluctua-
tions. Further, we show that a direct analogy exists in the treatment of preheating and gravitational
wave evolution at the end of inflation if this occurs via a second order phase transition, as we shall
assume here. Indeed, both are governed by (approximately} Floquet systems *. In the case of the
quadratic potential, V(¢) = %miqﬁg, both preheating and gravitational wave amplification are ini-
ti'ally well approximated by the Mathieu equation. This “duality” is exhibited using the covariant
Maxwell-Weyl form of the Einstein field equations (see section 6.2 and e.g. [220]), and is partially
hidden in the Bardeen formalism [11]. This demonstration of gravitational wave amplification should
be considered in the light of the aforementioned controversy surrounding tensor amplification during

instantaneous phase {ransitions.

6.1.1 The Electric and Magnetic Weyl Tensors

A purely tensor description of gravitational waves is still partially lacking in the covariant approach
[246], but a sufficient description was given first by Hawking (1966) [193] in terms of the electric (Eqs)
and magnetic (H,;) parts of the Weyl tensor, which for a given four-velocity u® are defined by:

Eab = C'M;,du"ud ) Hab = 'Cncbducud, (6.1)

Now in general Hy; and E,; contain information about all types of matter and metric fluctuation.

For purely tensor perturbations about FLEW, they are related to the by via [168, 168]:
1
Eg = _§hg — (k% + K)hg Yas (6.2)
and
Hay = S‘ghi}"(‘jdnb)ucd . (6.3)

where | denotes the covariant derivative with respect to the spatial metric hgp = gas + utub, ()
conformal time derivative and Y %* are the tensor eigenfunctions of the Laplace-Beltrami operator in

the constant curvature spacelike slices [20].

The evolution equations for E,; and H,; come from the cyclic Bianchi identities, which when
written out give the nonlinear Maxwell-like equations for the free gravitational field. For brevity we

will write them out in terms of the complex variable [210] Z,p = Fas + 1H g3, yielding:

DTy = 3iw'Za —i[0,Z]a + T,
i{ab) +icurtZyy = —OZa + 30 aly” — wcf:d(uIb)d
—2i ﬁcecd(al'b)d - %(,u + p)Gas (6.4)
¥, = %an 4+ plws - ) (6.5)

*A Floguet system is any set of linear ODE’s with periodic coefficients. The solutions of such systems are charae-
terized by rescnance bands of exponentially growing modes, indexed by the momentum %.
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where the spatial gradient D®, curl and commutator [,] are defined via:

D*Cy = Rh%ViC,
curl Agy = Negraet® D°Ay)? (6.6)
and
[A, B]a - TlabcdudAbeBce ) (67)

whete 7gp.4 is the totally antisymmetric volume element. These extend the usual vector operators to
second rank tensors. Further, the projected trace-free and symmetric part of a tensor A, is denoted
by A(ﬂb) and defined by:

Afar) = hhiyAca — FheaAChyy . (6.8)

In the case of purely gravitational wave perturbations we must set ¥, = 0 to get a fully consis-
tent characterisation. One of the main outstanding problems in the covariant approach is a unique

characterisation of tensor perturbations in the presence of matter and vorticity perturbations.

Once the specification ¥, = 0 is made, the Ricei identities imply the following relevant constraint
[246]:
Hay = —curl oy, {6.9)

together with the Raychaudhuri equation for the expansion:

O+ 502 +2(a*) + L(p+3p) =0 (6.10)

2

where 0 = -.}o‘a,-,cr“b. In FLRW spacetimes @ = 35"/5' = 3H where H is the Hubble constant. The

shear is governed by the fully nonlinear equation:
Gat + 5000 + Tecatps® = —Eq {6.11)

which shows that the shear is a “potential” for both E,; and Hgay. Given agp, both Egp, Hap follow
immediately (¥, = 0).So far, all the equations have been fully nonlinear, a great advantage of the

covariant formalism over the Bardeen approach.

A natural interpretation of the linearised electric Weyl part is given by the geodesic deviation
equations, which for the special case of a plane gravitational wave propagating along the z* direction
are: [128]

E*=E%%E" | o, f=23 (6.12)

where £ is the connecting vector between orthonormal tetrads associated with the congruence of null
geodesics ruled by gravitons. This means that we can directly attribute the physical effects of linear

tensor perturbations, on e.g. a gravitational wave detector, to the electric part of the Wey] tensor.

Now in general, for a perfect fluid, the linearisation of the system (6.5) yields equations that

are coupled to energy density gradients and the vorticity. Setting ¥, = 0 ensures that D%, = 0.
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Note that 7% = 0 by construction and hence one has the exact analogue of the transverse-traceless
conditions in the metric approach. In this case, one finds the coupled wave equations for the modes
of Hgp, Eup, s after expansion in eigenfunctions of the tensor Helmholtz equation [93]:

]

Hi+ LOH, + ["

. o 1
40407+ Ju-p)| Hi=0, (6.13)

where z and p are the relativistic energy density and pressure respectively and © = ) /S. This is a

simple decoupled equation while the shear satisfies:

k--l-g-i-%’u—ﬁp]frk:(). (6.14)

. 9.
O'k'i”geﬂ'k']'[sg g 5

The modes of the electric part cbey an equation which is coupled to the shear:

k2

. T
Ey + —@Ek+[§5

. 2, 1
3 +04+06 +2(p-p)]Ek

=~ [300+n+ 3+ B o (6.15)

6.1.2 A 2nd order evolution equation for E,;

Previously it was believed [93, 227] that an evolution equation for E; containing only zero order
quantities must necessarily contain third order time derivatives. It is easy to see why. Eq. (6.15) has

a driving term due to the shear which appears impossible to remove in terms solely of £qp.

Infact there are (at least) two different ways to proceed to find a second order evolution equation
for the modes of Eg - the Ep. The simplest is as follows: linearise Eq. (6.11) and take its time
derivative. Eliminate the &q; terms in £ (6.11) and Eq. (6.14) via Eq. (6.11) to get:

" 40° 20 20 :
Tab = (T - ?)Uab + 5 Eab — Eqp {6.16)

Similarly, remove the & term from Eq. (6.14) and equate (6.14) with Eq. (6.16). This gives one ¢y

in terms of B¢ and Ey:

o = B(OEy + E) (6.17)
where X
k* 587 20 1 3
-1 {5 _ _ = s X R 1
B ( i g 3 + 5 Qp) (6.18)

This leads to the linear, second order equation for Ey:
Ey + (%Q +B c) By
k'.’. ] . 1
+ §+Bce+e-+e+§(p+p) Ey =0, (6.19)
where

€= 16(u+p)+50i+5). (6.20)
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Alternatively, the linearised, real part of Eq. (6.4) relates the shear to Eap, Bay and curl Hgy.
Taking the curl of both sides of Eq. (6.9) gives curl Hy; in terms of curl curl o435 which can be written
solely in terms of By and derivatives. Using this in the linearised real part of Eq. (6.4) and then
in the rHS of Eq (6.15) gives an equation for Eyp which is second order in time but contains higher
order spatial derivative terms. The resulting equation is again irrelevant for actual calculations and

we do not give it explicitly.

6.1.3 Oscillatory dynamies in reheating

Now let us specialise equations (6.13-6.15) to the case of classical scalar field dynamics. Treating here

only the case of a single scalar field, we have, using the equivalence of ¢ with a perfect fluid:

p=r|ze+v@)]  p=x[ia- vie)| (6.21)

so that
=) =wV(), (utp)=rd, (it s)=2edd (622
Here V(@) is the effective potential of the scalar field. Note that if scalar perturbations become
important then these relations will gather terms proportional to (V¢)* [37). This is precisely the
case if one wishes to consistently study the production of tensor perturbations from gravitational
bremsstrahlung [184]. However, it brings with it a host of complexities, since for example, eq.s {6.13 -

6.15) must be re-derived in the presence of the backreaction of matter fluctuations, a highly non-trivial

problem. We will not consider this issue further here.

‘The important point is that with the above identifications, the equations (6.13), (6.14), (6.15)
become generalizations of eq.(2.18). There thus exists a strong conmection between the evolution
governing reheating under a given potential and the equations governing the evolution Hy, E; and o

particulasly when V' (¢) is an even polynomial in ¢, as in chaotic inflation.

6.2 Chaotic inflation and Duality

Consider again the quadratic chaotic potential, Eq. (2.16). In addition to chaotic inflation, this
describes the dynamics of the invisible axion, and the Polonyi and moduli fields of supergravity and

string theory, with appropriate changes to the values of the masses, m* = V"(¢).
g

Here we will neglect the expansion of the universe as before to delineate the duality {155]. This
would of course not be adequate for the study of long-time oscillatory amplification, but is justified if
the period of oscillations of ¢ is small compared with typical averaged expansion times, i.e. my > 0.
However, the oscillations of the expansion rate should also be included in a full description 5{11] which

will act as an additional source of resonance. This will be important in obtaining the tensor spectrum

5That the expansion also oscillates can be seen from eq. (8.10),
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Figure 6.1: A schematic of the instability chart for the Mathieu equation. The two diagonal lines
correspond respectively to the zero-modes (k = 0) of the gravitational wave spectrum and the x-
spectrum of eq. (4), for the case g° < mj. The vertical line near the left border of the chart is a
sample spectrum for a given model (i.e. value of g).

from oscillating cold dark matter (CDM) relics like the invisible axion {175], as we will discuss in
section (6.4). The equation (6.13} for the modes, Hg, of the magnetic part Hy; now becomes:

0 2

: k= BTl o . g
Hi + + 5 @ sin®(myt) | Hr =10 (6.23)

52

This is the Mathieu equation and is precisely the same as equation (2.18) for the evolution of
the quantum fluctuations yj, with the replacement g* — rcng = 47rm§. Hence g = wn®. The
requirement that production of ¥ bosons is more efficient than H,; amplification is then g* > 41rmg.
If my ~ 1079, as required to match CMB observations [209], then this is a weak constraint on the
coupling g, namely g% > 107!, Nevertheless, it is a constraint independent of ® and hence applies to
both chaotic and new inflationary models (which have quadratic potentials near the global minima).
H the constraint is not met, it implies that reheating occurs preferentially via production of gravitons

rather than the y-channel 8.

In figure (6.1) this situation is depicted schematically on the instability chart of the Mathieu
equation: namely, the situation in which gz > g,. The two diagonal lines corresponding to the mode
k = 0, delimnit the physical (i.e. upper) region of the chart. The single vertical line corresponds to a
sample spectra for a given value of g. Note that for this value of ¢, the tensor spectrum has modes
in the first fundamental resonance band, while there are no ¥ modes which lie in this band. Figure
(6.2) shows a numerical integration of the spectrum as a function of time for modes in both stable

and unstable bands. Figure (6.3) zooms in on the spectrum within a stable band.

SThis is not the only constraint to be met however. If the x fleld has moderate or strong self-interactions, the
x-Tesonance is strongly suppressed {7]. This is also the case if g, > 105, due to rescattering effects [7, 6]. In these
cases, the graviton decay-channel could still be important and perhaps even dominant.
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Can Hgp be amplified in the broad resonance regime ? This is necessary if gravitational wave
enhancement is to be really effective over the expansion. This requires gz > 7—!. Since gg = 7@
this implies ® > 7! in units of the Planck energy. In the case of chaotic inflation, the amplitude
of oscillations goes as & ~ 1/N, where N is the number of oscillations of ¢, neglecting the non-
equilibrium backreaction at the end of preheating which often leads to a sudden decrease in @ [183].
Thus during preheating proper, gy ~ /N2, and Hy, is initially amplified in the broad resonance

regime, but moves rapidly towards narrow resonance,

l | Xk | Hy | ok |
k7 E? k£ 2
A e Fomz T2 Fimz T 154
3&,3 ° 2
q E‘E 7@’ Eord

Consider now the equations for the electric Weyl field, Eg;, and the shear ogp. They form a
partially decoupled linear system with time-dependent coefficients that form an approximately Floquet
system. Here we ignore the decay of the amplitude. This is appropriate during preheating while the
non-equilibrium effects and backreaction of graviton production are not too strong and the oscillation

period of &, (controlled by my) is short compared with the expansion time scale. This gives:

By + (% + %?-CIJE sin(m,;-,t)) Ey = % [@*m] sin(2myt)] o (6.24)
with
= k° 3.9, 0 3.9 _
ffk+(:q—g—hz¢ +h6m¢¢ )Uk—-ﬂ (6.25)
The equation for the shear can again be cast in the form of the Mathieu equation with
k2 2 19 _,
Alk)e = w25 tgle » e mAED (6.26)

A comparison of parameters is given in table 1.

Note that the shear always lies in a region of broader resonance than the magnetic part of the
Wey! tensor because ¢, > gg and Aq(k) < Ag(k). Now ¢, = 3232 with the requiremient of broad

resonance amplification of the shear @ > 1/%7r_1 ~ 0.567~! ~ 0.18.

Since it is the shear which directly determines the tensor contribution to the anisotropy of the
CMB, this may allow one to place constraints on large-amplitude oscillatory reheating. Since power-
law inflation is known to produce one of the strongest tensor signals during slow-roll [54] the signal
to noise (due to cosmic variance and instrument) ratio for the tensor component in the CMB may be

significantly larger than previously hoped {164]. The CMB anisotropy from a tensor signal is [208]:

5T\ A
(-2—1—) :_L S agp K2k A (6.27)
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Figure 6.2: The gravitational wave spectrum, Hy as a function of ¥ and ¢, with the initial condition
H(0) = 0,H(0) = 10~* and starting in the broad resonance regime. As can be seenm, the power
spectrum becomes highly k-dependent, breaking the usual scale-invariance of the envelope predicted
by inflation. Further, the amplitude of the spectrum is exponentially enhanced by resonant reheating
over its value during inflation.

The left hand side is 2 gange-invariant measure of the anisotropy in the CMB, and k® is the wave

vector ruling our past null cone.

Now for purely tensor perturbations, oqp and F,; are related by [93]:
, 2
Oah = ”é‘egub —Ey (6.28)

we see that exponential growth of the shear implies exponential growih of the electric Weyl field,
and hence the energy in gravitational waves, Qgw, increases exponentially, as can be seen from the
time-like component of the Bel-Robinson tensor which is naturally interpreted as the super-energy of

the gravitational field (see chapter T):

Fow o EabEBb + HabHab . (6.29)

However, a counter example to the above situation occurs if there is non-thermal symmetry restora-
tion {131, 4]: start with ¢ 3 My, as in the chaotic inflation scenario, but with a Coleman-Weinberg
type new-inflationary potential, which is flat near the origin. If preheating restores symmetry, a phase ‘
of new inflation begins with ¢ = 0. This redshifts away the resonantly amplified tensor spectrum. The
second stage of reheating will be much less effective in amplifying the tensor spectrum than the first if
V{0) < M:,. This is the generic case for non-thermal symmetry restoration and hence amplification
will occur in the very narrow resonance region where expansion effects are expected to dominate,

leaving an almost untouched, scale-invariant tensor spectrum.
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Figure 6.3: A zoom of the stable band region 3 < k < 5. The solution is the usual bounded oscillatory
one. Note the scale on the z-axis (c.f. fig. 2).

6.3 Evolution in the case of a quartic potential

A npatural generalisation of the quadratic potential is the effective potential V{g) = %964. For this
potential there is an added freedom in the parameters controlling the resonance compared with the
corresponding d¢x growth. Neglecting again the expansion of the universe for clarity, the modes of

the magnetic part satisfy the equation:
o E2 A
H <+ =g | Hy =0 6.30
b+ (az + 79 ) k (6.30)

when the expansion is neglected. Using the sinusoidal approximation to the Jacobi elliptic functions for
the evolution of ¢ and neglecting the contribution of particle backreaction the equation for quantum
fluctuations d¢y in the inflatou field can be written in the form of the Mathieu equation [1] with
A = k*/(*Aa?®?) + 3/(2¢?), ¢ = 3/(4¢”) =~ 1.04. Thus resonant particle production only cccurs
in the second resonance band with wavelengths &> ~ 3Aa®®? [1]. There is no dependence on the

amplitude of inflaton oscillations ® as there is in the quadratic potential case,

Within the same above approximation, and transforming to conformal time dp = dt/S(t), eq.

{6.30) is the simplest generalisation of Mathieu’s equation and lies within the class of Hill equations:

d?
d;k + [fo + 26 cos(2z) + 20 cos{dz)|Hy = 0 (6.31)
where:
k2 352 '
b = Ac2a2@2 + 322 (6.32)
#h = i 6.33
17 7162 (6.33)
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@2
s = e 6.34
- fde? (6.:34)

and e~ 0.85. The py are given by the solution of the equation:

“'“5““) = A(0)sin®(m\/Bo) ' (6.35)

sin”(
where A is the Hill determinant which depends on all #;. The interesting difference that arises in
the gravitational wave case is that the second term in #y and both 6, and #; depend on @ while
g = 1.04 is fixed in the case of 8¢ fluctuations. Thus if @ could vary arbitrarily then broad resonance
gravitational wave amplification could occur in all forbidden bands and not just the second one and
graviton production might be much stronger than ¢ production. However in practise, f; ~ —0.87®>

so that if @ < 1 then graviton production occurs in the realm of narrow resonances and is less effective

that §¢ amplification. Nevertheless, the extra freedom accorded in the tensor case is very interesting.

The sinusoidal approximation used above should be compared with the exact solution for ¢ which
is given in terms of elliptic functions as we described in section (2.5) [10]. In this case both the modes
of the Magnetic Weyl tensor eq. (6.30) and the shear obey a natural generalisation of the Lamé
equation, namely the ellipsoidal wave equation, which has solutions in terms of products of elliptic
functions and a convergent power series with argument sn?(n), the square of the Jacobi sine function
[195].

6.4 Axion oscillations and the gravity-wave background

Next we focus instead on another physical mechanism for distortion and amplification of any existing
gravitational wave background - damped parametric resonance due to long time oscillatory phases
that the universe may have undergone. The best example are the coherent axion or moduli oscillations
if they form a significant portion of the dark matter. Indeed, models of quintessense © based on convex

potentials will give similar effects.

For completeness we choose to discuss the amplification within the gauge-invariant Bardeen for-
malism. The conversion to the covariant approach presented earlier is straightforward. The evolution
of the transverse-traceless (T'T) metric perturbations A, are naturally described by the Fourier mode

functions k., where ¢ = {+, x} are the polarisation states. The h; ® satisfy:
. a: k2
hy 4+ 3—h; + —,,hk =10. (5.36)
a a?
Here a(t) is the scale factor of the universe which obeys the Friedmann Eq.:

(E)" - _83.;9.#, | (6.37)

"()-matter or quintessense is the old idea with 2 new name that pare of the maftter in the universe might be in the
form of a dynamical scalar field - inflation applied to large scale structure as it were | Axions are one example.
8From now on we suppress the polarisation label. We also restrict ourselves to the case of flat spatial sections.
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where p is the relativistic energy density which again we have specified to be in the form of a scalar
field ¢, with potential V'(¢). This gives us enough freedom to model the oscillations of the axion
condensate. Using Eq. (6.37), we can rewrite Eq. (6.36) as [11] (see also chapter [3]):

d2 3/z h k2 "

TeF s (Bam) @) =, (5.59)

a2
where p = ¢°/2 — V(¢) is the pressure.

The archetypal example of resonance, as we discussed in chapter (2), is provided by the Mathieu
equation. Defining ¢ = A/(2¢) — 1, we plot g vs. (¢, ) in figure (6.4) using the piecewise quadratic
approzimation [171, 172]). In this approximation the sinusoidal part of the Mathieu frequency is
replaced piecewise with parabola’s. We have already come across this approximation in section (2.11.1)
which is particularly accurate for g 3> 1. When ¢ < 0 the resonance is particularly strong due either

to the ratio A/{2¢) being very small or because A < 0, the negative coupling instability.

For the quadratic potential the pressure is (neglecting the adiabatic expansion):

m
2

p= ——>&" cos(2myt) (6.39)

yielding a Mathieu Eq. with parameters:

k2 _ 369° 3247

A= 4 q= 28 o
(k) azmg' 1 6 ' ° 3ma2m§,®2

1 (6.40)

showing that in this case, unlike in the case of standard reheating where A = k*/(a’mj) + 2¢ [1],

¢ < 0 is possible and gravitational wave amplification can be significant if @ ~ M.

The effect of the expansion of the universe decreases @ and redshifts &, causing a decrease of
both A and g, though ¢ remains roughly constant. The decrease of ¢ to below unity is particularly
important in stopping the resonance, and there is thus a competition between the damping effect of

the expansion, and the amplification due to resonance.

6.4.1 The axion and massive moduli

The axion[173] is an oscillating scalar field and a natural cold dark matter candidate. Unlike reheating,
which lasts a very short time, the axion oscillations would last a large proportion of the universe’s

history, and hence miéht cause significant tensor amplification. The axion potential is given by
[174, 175]:

V(e)=A* [1 — cos (fi)] (6.41)

with f, the axion decay constant and A = fymn,, where m, is the axion mass. The standard QCD
axion has A = Agep ~ 200 MeV, f; ~ 10'2 GeV and gains a non-zero mass due to instanton effects

at an energy around Aggp [175]. There also exist massive moduli in supergravity and superstring
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Figure .4: The Floquet index p on the stability-instability chart for Eq. (8) using the numerically
cheap plecewise quadratic approximation compared with the full numerical solution shown in figure
(2.2). Notice the rapid increase of u for decreasing € and increasing g¢.

theories with much less constrained parameters, for example one may take A ~ 1018 GeV and f, ~ Mp;

[174], with the moduli generically gaining mass at the epoch of supersymmetry breaking.

To understand the implications of axion oscillations, let us approximate Eq. (6.41) by the first,
quadratic, term in the Taylor series. We can then use the results of Eq. (6.40) with the replacement
mi — A*/f2 so that roughly we have A ~ k*f2/(A%*) and g oc ®*. For the values given above, this
yields

n

by

iy _
Agcp ~ 102"&3‘ y Amodus ~ 10728

(6.42)

ta

n[?i;

This implies that massive moduli are more likely to lead to large amplifications of the background
gravity wave spectrum since ¢ = A/{2q) — 1 < 0 for a huge range of modes, while in the case of the

QCD axion, only a tiny fraction of the modes, near & = 0, have negative e.

On the other hand, only if the moduli or axions started with near-Planck expectation values,

® ~ My, will there be significant amplification in either case.

6.5 A nonlinear O(N) o-model

Another interesting issue concerns the effect of nonlinearity on the gravitational wave amplification.
Here we give a necessarily very brief discussion via a sitnple example: the large-N limit of a nonlinear
o model. This is the appropriate model for discussing topclogical defects (N = 1, ...4 corresponding
respectively to domain walls, strings, monopoles and textures) since it exhibits broken global sym-
metries where O(X) is broken to O(N —1}. For N > 4 the dynamics simply corresponds to that of

non-linearly coupled Goldstone boson modes.

The model consists of N scalar fields assembled into a vector field ¢. The potential we consider
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is V(o) = Ap?(8® — 1) where 5 is the mass scale. After the phase transition and for N > 2 the
field is constrained to wander about the vacuum manifold visualised as $¥~? imposing the constraint

o,o¥ = 1. The equation of motion is [167}:
O — (¢ -O)g =0 (6.43)

The nonlinear coupling comes from the second term —(¢ - D)o = (G,0 - §*0)o and in the large-N
limit, this sum can be replaced by ensemble average resulting in a linear equation. This amounts to
replacing the trace of the stress-energy tensor, p — 3p, by its spatial average. Under this condition

the solution to Eq. (6.43) is given by [167)]:

o(k,t) = At"m%%wz—la(k, 0, (6.44)

where v = 2,3 for radiation and dust-dominated backgrounds respectively. Note however, that the

oscillations in the expansion where not included. The energy density and pressure are given by:
p=3062+(Va)?) , p=i(e®+Li(Va)?), (6.45)

so that the evolution of fisy is governed by the equation (K = 0):

2

(@ *he)+ (i— +3(e° + %(Vo-)”) (e2hs) =0 (6.46)

For super-horizon modes (kt < 1), the solution scales as:

VA
" 2Ty +1)

a

o(k,0), (6.47)

so that the k¥ = 0 mode grows, unlike the linear scalar field model considered in the earlier parts of
this chapter. Here most of the nonlinearity is on horizon scales. This should be clearly reflected in
the cosmic microwave background (CMB) anisotropy spectra of the theories [166]. The £ # 0 modes
tend o grow at first according to {6.47) and then begin oscillating with rapidly decaying envelope
given by Eq. (6.44). Thus from Eq. (6.46) we expect there initially to be resonance but that the

strong time-dependence of the oscillating terms to damp any resonance, particularly at late times.

6.6 Conclusions

The main result of this chapter is that gravitational wave perfurbations can be naturally amplified
during a second order phase transition. Thus, in addition to the standard creation of a scale-invariant
stochastic gravitational wave spectrum due 6o quantum fluctuations during inflation, there may be
amplification of this spectrum during reheating which breeks the scale invariance and enhances the
rms amplitude of the tensor perturbation spectrum with no e priorilimit on the maximum wavelength
affected. However the exact pattern and size of this “symmetry breaking” is highly model dependent,

and is hence relevant to inflationary potential reconstruction attempts [54, 205]. This amplification is
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qualitatively different from gravitational bremsstrahlung [184] since it is due to the coherent oscillation
of the mean energy density and pressure of the inflaton, and is largely insensitive to the nature of the

scalar Aeld Auctuations.

We have further examined chaotic inflation with a quadratic potential in detail and found a duality
between the equations describing the growth of x fluctuations and those of the magnetic part of the
Wey! tensor and the shear, the latter being the variable which determines the gravitational wave
signal in the CMB; eq (6.27). Finally, the resonant enhancement of the tensor spectrum is completely
missing in those models of inflation which invelve a continuous production of enéropy during inflation,

such as in the “warm” inflation models [203].

We have shawn that damped parametric resonance is important in understanding gravitational
wave evolution during phases where a significant component of the energy density of the universe

oscillates, such as during a second order phase transition or if the dark matter lies in an oscillating

scalar field,

This parametric resonance amplifies the resident stochastic background, changing the frequency
dependence of the spectrum and enhancing the rms amplitude. This implies that the possibilities of
detecting the stochastic background of gravitational waves may be better than previously thought. In
addition there is the intriguing possibility of indirect detection of the axion or moduli via their finger-
prints on the gravitational wave spectrum, although this seems unlikely in the near future unless the

fields are highly non-minimally coupled.

Finally we have derived a homogeneous second order evolution equation for the modes of Ey,
something that previously was thought impossible due to the appearance of a driving term propor-

tional to the shear.



Chapter 7

'Duality in the Vacuum Einstein
Field Equations

To be interested in the changing seasons is a happier stale of mind
than fo be hopelessly in love with spring.

— (George Santayana

Kingfisher.

There stand humble white tombs.

Kakio Tomizawa
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Figure 7.1: A Japanese wallpaper design: one of the simplest of the 17 possible group-theoretic motifs.

Figure 7.2: A 10th century Indian carpet involving all four symmetry operations on the plane.
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7.1 Introduction

In the previous chapter we discussed the evolution of linear gravitational waves in both the covariant
and gauge-invariant approach and the Bardeen formalism. What was hopefully apparent in the
covariant equations was the amazing similarity of their structure to those for freely propagating

electromagunetic radiation.

Indeed, there is a surprisingly rich and detailed correspondence between electromagnetism and
General Relativity, uncovered in a series of fundamental papers by Bel [212], Penrose {213] and
others [214, 215, 216, 217, 218, 219, 220] {see [220, 221] for more references), and further developed
recently (see, e.g., [222, 223, 224, 225, 226, 227, 228, 93, 229]). This correspondence is reflected in
the Maxwell-like form of the gravitational field tensor (the Weyl tensor), the super-energy-momentum
tensor (the Bel-Robinson tensor) and the dynamical equations (the Bianchi identities). Another form
of the correspondence arises in the search for geons (localized, non-singular, topological solutions of
Einstein’s field equations with mass and angular momentum): in the known (approximate) solutions,

the geornetry of the electromagnetic geon is identical to that of the gravitational geon [230, 231].

In this chapter we pursue the ‘electromagnetic’ properties of gravity ! in a more formal and abstract
study. We are particularly interested in areas which have already proved useful for extensions of elec-
tromagretism to non-Abelian gauge theories and string theory. QOur emphasis is on a 14 3 covariant,
physically transparent, and non-perturbative approach, with the gravito-electric and gravito-magnetic
spatial tensor fields as the fundamental physical variables.- Using an improved covariant formalism,
including a covariant generalization to spatial tensors of spatial vector algebra and calculus, we show
in detailed and transparent form the correspondence betweenr the electric/ magnetic parts of the
gravitational field and of the Maxwell field. We identify gravitational source terms, couplings and
potentials with and without electromagnetic analogues, thus providing further physical insight into

the role of the kinematic quantities shear, vorticity and four-acceleration.

In the vacuum case, we show that the nonlinear {non-perturbative) Bianchi equations for the
gravito-electric and gravito-magnetic flelds are invariant under covariant spatial duality rotations,
in exact analogy with the source-free Maxwell equations for the electric and magnetic fields. The
analogy is of course limited by the fact that the Maxwell field propagates on a given spacetime,
whereas the pravitational field itself generates the spacetime. The electromagnetic vectors fully
characterize & Maxwell solution, and duality maps Maxwell solutions into Maxwell solutions. The
gravito-electric/magnetic tensors are not sufficient to characterize covariantly a solution of Einstein’s
equations — one needs also the kinematic quantities which are subject to the Ricci identities [220].
Duality is an invariance only of the Bianchi identities, and not the Ricci identities, so that it does not
map Einstein solutions into Einstein solutions. Nevertheless, the covariant gravito-electric/magnetic

duality reveals important properties of the gravitational field.

1The work in this chapter was done in collaboration with Roy Maartens and is partially reflected in 210
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The covariant 1+ 3 duality has not to our knowledge beer given before. Although duality invari-
ance follows implicitly from Penrose’s Aspinor formalism {213, 232], this is in terms of the 4-dimensional
Weyl spinor, rather than its 143 electric and magnetic tensor parts. Four-dimensional covariant tensor
approaches to the electromagnetic analogy have been developed (see e.g. [223]), and non-covariant lin-
earized Maxwell-type equations are well established, both in terms of graviio-electromagnetic vectors
(see e.g. [233, 234]) and tensors (see e.g. [219]). In [235}, a covariant and nonlinear vector approach
is developed for stationary spacetimes. Our approach is fully covariant and non-perturbative, and in
addition is centred on the gravito-electromagnetic spatial tensor fields, allowing for a more direct and
transparent interpretation based on the Maxwell vector analogy. This approach is a development of
the work by Triimper [216], Hawking [218] and Ellis [220], and is related to recent work on a covariant
approach to gravitational waves {227, 228, 93, 220} and to local freedom in the gravitational field
[229]. A shadow of our general duality result arises in linearized gravitational wave theory, where for
vacuum or de Sitter spacetime, there is an interchange symmetry between the pravito-electric and

-magnetic tensors [93].

Duality invariance has important implications in field theory in general. It was essentially this
symmetry of the Abelian theory, and attempts to extend it to include matter, which led to the
Montonen-Olive electromagnetic duality -conjecture that there exists a group transformation map-
ping electric monopoles into magnetic monopoles within the framework of a non-Abelian (specifically
SU(2)) gauge theory [236]. This conjecture has proved particularly fruitful, stimulating work on S,
T and U dualities in string theory (see e.g. [237, 238, 239]), the extension of the electromagnetic
duality to magnetically charged black holes and nonlinear electrodynamics [241, 242] and leading to
the Seiberg-Witten proof of quark confinement in supersymmetric Yang-Mills theory via monopole

condensation [240].

We use the covariant spatial duality to find the gravitational super-energy density and super-
Poynting vector as natural group invariants, and derive a new covariant super-energy conservation
equation. Finally, we discuss graviio-electric/magnetic monopoles, providing a covariant character-
ization, in contrast to previous non-covariant treatments [243, 244, 234]. In the linearized case, we
show that the Taub-NUT gravito-magnetic monopole given in [243] is related to the Schwarzschild
gravito-electric monopole by a spatial duality rotation and an interchange of four-acceleration and
vorticity. This provides a covariant form of the relation previously given in non-covariant approaches
(18, 245]. It is well-known that the NUT metrics may be obtained from the Schwarzschild metric via
the Ehlers-Geroch transformation [18]. This transformation is in fact the generator of T-duality in
string theory, but it is not a duality transformation in the sense described here, since it maps Einstein
solutions to Einstein solutions and thus necessarily involves kinematic and geometric conditions in
addition to a duality rotation. Furthermore, the Ehlers-Geroch transformation requires the existence
of a Killing vector field, whereas the general duality that we present does nat require any spacetime

symmetry.



CHAPTER 7. DUALITY IN THE VACUUM EINSTEIN FIELD EQUATIONS 173

The relationship between the free gravitational field, and in particular the Bianchi identities, and

Maxwell’s electromagnetism is strongly evident in the covariant approach to (eneral Relativity .

In this chapter we will present the discovery of a rotation duality in the vacuum Bianchi identities
which closely parallels that of electromagnetism. This will allow us to discuss gravitational monopoles
from a unified point of view and to understand better to which level General Relativity supports the

type of duality which is playing such a prominent réle in Yang-Mills and string theory at present.

7.2 'The streamlined covariant approach

We introduced several notational devices in the previous chapter without providing a detailed back-

ground and setting. Here we remedy this.

The covariant approach to General Relativity , based on the choice of a fundamental time-like
four velocity, u®, to perform a 3+1 splitting of spacetime, has been elegantly discussed in several
major reviews, see e.g. [220]. Here we present a supplementary review designed to introduce the
streamlined covariant formalism. This introduces new notation which neatens up the old formulae

and allows the presentation of results in a semi-coordinate-free way,

Among the new developments is the extension of standard vector calculus to second rank tensors
(div, curl, commutator) and the derivation of a number of new identities in both the fully nonlinear

and linearised field equations.

'To elaborate the electromagnetic properties of the free gravitational field in General Relativity, we
first present the required covariant formalism, which is based on [246], a streamlined and extended
version of the Ehlers-Ellis 1 4 3 formalism [220]. Then we give the covariant form of the Maxwell
spatial duality in a general curved spacetime. In the following section we extend the treatment to the

gravitational field.

Given a congruence of observers with four-velocity field u?, then hap = gap + uqup projects into

the local rest spaces, where gqs is the spacetime metrie.? The spatially projected part of a vector is
Vi = ha'Vs,
and the spatially projected, symmetric and tracefree part of a rank-2 tensor is
Aasy = ha®hyy Aca — 2hoea A hay .

The spatial alternating tensor is

d
€abe = Tabedl = €[abe]

2We follow the notation and conventions of [220, 246]. {Square) round brackets enclosing indices denote (anti-
) symmetrization, while angled brackets denote the spatially projected, symumetric and tracefree part; a,b,:-- are
spacetime indices.
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where flabed = aseq) 18 the spacetime alternating tensor. Any spatial rank-2 tensor has the covariant
irreducible decomposition: -
Aab = %hchthub + A(ab) + Eﬂbcv"ic )

where

As = %EabcA[bC}

is the vector that is the spatial dual to the skew part. Thus the skew part of a spatial tensor is
vectorial, and the irreducibly tensor part is symmetric. In the 1 + 3 covariant approach [220, 229],
all physical and geometric variables split into scalars, spatial vectors or spatial tensors that satisfy

Agp = Aqapy. From now on, all rank-2 spatial tensors will be assumed to satisfy this condition.
The covariant spatial vector product is
[V, Wla = cancV'W*,
and the covariant generalization to spatial tensors is
[A, Bls = €ascA’aB™
which is the vector that is spatially dual to the covariant tensor commutator.
The covariant time derivative is
A% = uV A,
and the covariant spatial derivative is
DaA? o = hePRE - b, - VAT L
Then the covariant spatial divergence and curl of vectors and rank-2 tensors are defined by [246, 229]:

divV =D, curlV; = €. D°VE, (7.1)
divd), = D?Ag,  curl Agp = ecgra DALY, 7.2
( )

where curl Ag; is tracefree if Aqp = A(qp). The tensor curl and divergence are related by
Esg,,:DbAdc =curl Agg + %EudCDI,Abc .

The kinernatics of the u®-congruence are described by the expansion © = D%u,, the shear o4, =

Dyattsy, the vorticity w, = ——é—curiua, and the four-acceleration i, = 1g.

The above operators obey the covariant identities

(Daf) = Daf = 30ODuf + taf — 0.°Def — [, Dfla + uat®Daf (7.3)
eurl Dof = =2fw,, - (7.4)
DV, W], = WocurlV, — Vicurl W,, (7.5)

D%[A,B], = B%curl Ay — A%®curl By, (7.6)
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together with far more complicated identities [246, 229]. In the case where spacetime is almost spatially
isotropic and homogeneons, i.e. a linearized perturbation of a Friedmann-Lemaitre-Robertson-Walker

(FLRW) background, some of the main further identities take the linearized form [21, 247]

(D°Va)” ~ D°V, — HD"V,, (71.7)
(D'4u) ~ DPAw - HD'An, (1.8)
(curl V)" ~ curlV, — HeurlV,, (7.9)
(curl Ags)” &~ curl Agy — Heurl Agy (7.10)
DcurlV, = 0, (7.11)
Dleurldny ~ Leurl (DbAab), (7.12)
curlcud V, ~ —D?V, + D, (D”w)+§(pm3H3)Va, (7.13)

curl curl Agp —D*Aay + 2D DAy + (p — 3H7) Aus, (7.14)

24

where H is the background Hubble rate, p is the background energy density and D? = DD, is the

covariant Laplacian.

7.3 The free gravitational field

In this section we will review the vacuum Einstein field equations. In vacunm, T, = 0 and hence we

are restricted to so-called Einstein-manifolds, where:
R;w = Aﬂuu ’ (715)

and A corresponds as usual, to the cosmological constant. In the case A # 0, the Riemann tensor is
not fully determined by the Weyl tensor, Cjys.q since the Ricci tensor is non-zero. In this chapter,

however, we will assume that A = 0 and hence thai spacetime is Ricci-flat.

The governing equations then become (vacuum, A = 0):

Ry = 0 The field equations
VeV = 90 pequ®  The Ricei identities
ViCaped = 0 The Bianchi Identities (7.16)

where the Bianchi identities have been given with the Riemann tensor decomposed into Weyl and Rieci
parts. We now develop a covariant version of electrodynamics in preparation for the gravitational
case and as a way of further exhibiting the remarkable similarity of electromagnetism and General

Relativity.
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7.3.1 Covariant Electromagnetism

The electric and magnetic fields measured by u® observers are defined via the Maxwell tensor J7; by
By = Foul = By, Ho= teaioF* = "Fuu’ = Hig, (7.17)

where * denotes the dual. These spatial physically measurable vectors are equivalent to the spacetime
Maxwell tensor, since

Fop = QU[aEb] S PTIN - (7.18)

Maxwell's equations Vi, Fy = 0 and VP F, = J, are given in 143 covariant form for E; and H,

by Ellis [248]. In the streamlined formalism, these equations take the simplified form

D'E, = —-2w"H,+ g, (7.19)

D*H, = 2W"E,, (7.20)

Eg—curlHy, = —30E;+0aE" [, Bla+ [, Hla = ja, (7.21)

Hgy+cwlE, = —20H,+ouH" —[w, Hla — [i, £, (7.29)

where g = —J,u® is the electric charge density and j, = Jiq) is the electric current. In flat spacetime,

relative to an inertial congruence (@ = @, = wy, = o4 = 0), these equations take their familiar

non-covariant form.

Introducing the complex electromagnetic spatial vector field 7, = E, + iH,, we see that in the

source-free case (J, = 0) Maxwell’s equations become

DI, = 2iw%I,, (7.23)
Ty +icurlT, = —20I; +0Z’ — [w, Tl —i[&,Z]a. (7.24)
It follows that the source-free Maxwell equations in an arbitrary curved spacetime, relative to an

arbitrary congruence of observers, are invariant under the covariant global spatial duality rotation

I, — e'%I,, where ¢ is constant. The energy density and Poynting vector

U = 11°7,= }(E,E*+ H;H"),
1 —
Py = ﬁ[I,I]a=[EaH]a:

-1

25)

(7.25
(7.26)

QW]

-1

are natural group invariants. Their invariance also follows from the duality invariance of the energy-
momentum tensor [232, 248]
Mg® = L (Fa FPe o+ “Fo . *F) (7.27)

since U = M u®u® and P = —Mqpu’. Using the identity (7.5), and the propagation equations

(7.21) and (7.22), we find a covariant energy conservation equation:

U+D°P, = —3OU —20°P, + 0a (E°E* + H°HY) . (7.28)
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This reduces in flat spacetime for inertial observers to the well-known form 8,U + div P = 0.

A further natural group invariant is
ap — —I(ﬁfg,) = —E(ﬂEb} - H(GHE,) s (7.29)

which is just the anisotropic eleciromagnetic pressure {248]. It occurs in the last term of the conser-

vation equation (7.28), i.e. —a, .

For later comparison with the gravitational case, we conclude this section by considering the
propagation of source-free electromagnetic waves on an FLRW background, assuming that £, =0 =
H, in the background. We linearize and take the curl of equation (7.21), evaluating curl curl H; by
the identity (7.13) and equation (7.20). We eliminate curl E, by linearizing equation (7.22}, taking

its time derivative, and using identity (7.9). The result is the wave equation
D°H, = —Ha + D Ha m SHH, + (2H? + Lp— p} Ha, (7.30)

where p is the background pressure, and we used the FLRW field equation 3H = —3H? — %(p + 3p).

A similar wave equation may be derived for F,.

7.4 The Bianchi identities and nonlinear duality

The Maxwell analogy in General Relativity is based on the the correspondence Cypeq — Fas, where
the Weyl tensor Capeq is the free gravitational field (see [229]). For a given u®, it splits irreducibly

and covariantly into
Eap = Cacsat®u® = Elayy, Hap = "Cacbav®u® = Hgyy , (7.31)

as we described in the chapter (). These gravito-electric/magnetic spatial tensors are in principle
physically measurable in the frames of comoving observers, and together they are equivalent to the

spacetime Weyl tensor, since [246]
Cayd = 4 {u[uu[c + h{a{c} Ey + 2eqsoule HY 4 2up, Hyp e | (7.32)

This is the gravito-electromagnetic version of the expression (7.18). The electromagnetic interpre-
tation of E4p and Hgap is reinforced by the fact that these fields covariantly {and gauge-invariantly)
describe gravitational waves on an FLRW background (including the special case of a flat vacuum
background) [218, 21].

In the 3+1 covariant approach to General Relativity [220], the fundamental quantities are not the
metric (which in itself does not provide a covariant description), but the kinematic quantities of the
fluid, its energy density p and pressure p, and the gravito-electric/magnetic tensors. The fundamental

equations governing these quantities are the Bianchi identities and the Ricei identities for u®, with
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Einsiein’s equations incorporated via the algebraic definition of the Ricci tensor R, in terms of the
energy-momentum tensor Ty, We assume that the source of the gravitational field is a perfect fluid

(the generalization to imperfect fluids is straightforward). The Bianchi identities are
V4Cubed = Via (— Ry + L Rane) (7.33)

where = B;* and R, = Tab—%chgab- The contraction of (7.33) implies the conservation equations.
The tracefree part of (7.33) gives the gravitational equivalents of the Maxwell equations (7.19)—(7.22),

via a covariant 1+ 3 decomposition [216,; 220]. In our notation, these take the simplified form:

D'E,y = —3uwlHa+ %Dup + o, Hlas (7.34)
D'Hay = 3w Ear+(p+plwe—0, Elay (7.35)

Epapy —cutl Hyp = —OFq + 300ia By’ — wecata By’
+2ﬁ°ecd(GH5)d - %(p +0)0ap, (7.36)

Higny +cutlEgy = =OHg + 30o Hyy® — wecara Hyy*
— 20 By . (7.37)

These are the fully nonlinear equations in covariant form, and the analogy with the Maxwell equations

(7.19)-(7.22) is made strikingly apparent in our formalism.

Vorticity couples to the fields to produce source terms in both cases, but gravity has additional
sources from a fensor coupling of the shear to the field. The analogue of the charge density g as a
source for the electric field, is the energy density spatial gradient Dyp as a source for the graviio-
electric field. Since Dyp covariantly describes inhomogeneity in the fluid, this is consistent with the

fact that the gravito-electric field is the generalization of the Newtonian tidal tensor [220].

There is no magnetic charge source for Hg, but the gravito-magnetic field Hgp has the source
(p+ p)wa. Since p+ p is the relativistic inertial mass-energy density [220], (p + p)ws is the ‘anguler
momentum density’, which we identify as a gravito-magnetic ‘charge’ density. Note however that
angular momentum density does not always generate a gravito-magnetic fleld. The Godel solution
[220] provides a counter-example, where Hgy = 0 and the non-zero angular momentum density is

exactly balanced by the vorticity/ gravito-electric coupling in equation (7.35), with a4 = 0.

For both electromagnetism and gravity, the propagation of the fields is determined by the spatial
curls, together with a coupling of the expansion, shear, vorticity, and acceleration to the fields. The
analogue of the electric current j, is the gravito-electric ‘current’ (p + p)oas, which is the ‘density of

the rate-of-distortion energy’ of the Auid. There is no magnetic currens in either case.

If the Maxwell field is source-free, i.e. ¢ = 0 = j;, and the gravitational field is source-free, 1.2,
g = 0 = p, then the similarity of the two sets of equations is even more ap;,")a.rent, and only the tensor

shear coupling in the case of gravity lacks a direct electromagnetic analogue. (Note that these shear

coupling terms govern the possibility of simultaneous diagonalization of the shear and Eqp, Hap in
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tetrad formulations of general relativity [249, 250].)

To obtain the gravitational analogue of the complex equations (7.23) and (7.24), which lead to
the Maxwell duality invariance, we consider the vacuum case p = 0 = p. In general, u® is no longer
uniquely defined in vacuum, althongh in particular cases (such as stationary spacetimes), there may be
a physically unique choice. However, our results hold for an arbitrary covariant choice of u?, without
any special conditions on the congruence. By analogy with the complex electromagnetic spatial vector

~ Za, we define the complex gravito-electromagnetic spatial tensor

Ty =Fap +iHg. (7.38)
Then equations (7.34)—(7.37) reduce to:
D7y = 3iwtZe—ife, I, (7.39)
i{ab} ticurlZy = —OZLg + 3oy aly)®
~eataly)® — 2 W earaln? . (7.40)

Apart from the increased economy, the system is now clearly seen to be invariant under the global

U{(1) transformation:

Tap — €PLa, : (7.41)
which is precisely the tensor (spin-2) version of the vector symmetry of the source-free Maxwell
equations. We have thus established the existence of the covariant spatial duality at the level of
the physically relevant gravito-electric/magnetic fields, in the general (non-perturbative, arbitrary

observer congruence) vacuum case. (As with eleciromagnetism, duality invariance breaks down in the

presence of sources.)

A covariant super-energy density and super-Poynting vector arise naturally as invariants under
spatial duality rotation, in direct analogy with the Maxwell invariants of equations (7.25) and (7.26):
U = %Iubfab = % (EabEab -+ HubHab) ) (7.42)
1 —

B, = E[I’I}“ =[E, H)s = eapc E'aH? . (7.43)

This reflects the duality invariance of the Bel-Robinson tensor [212]
My = 1 (Creps O 4 "Coy "C*¥) | (7.44)
which is the natural covariant definition of the super-energy-momentum tensor for the free gravita-

tional field, since [212, 221]

13 d

utut, (7.45)
Pa = =Mpupeau'uu?. (7.46)

U = Mﬂbcduau

The agreement between equations (7.45) and (7.42) follows obviously from equation (7.44) on using
equation (7.31). However, it is not obvious that equation (7.46) agrees with our equation (7.43) for

the super-Poynting vector, and one requires the identity (7.32) to show the agreement.
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Qur expression (7.42) for the gravitational super-energy density gives a direct and clear analogy
with the electromagnetic energy density (7.25). Our expression (7.43) for the gravitational super-
Poynting vector, in terms of the tensor generalization of the vector product, provides a clearer analogy
with the electromagnetic Poynting vector.(7.26). The analogy is reinforced by the fact that I/ and Fq
obey a super-energy conservation equation which is the tensor version of the eleciromagnetic energy
conservation equation (7.28). To show this, we need the new covariant identity (7.6). Using this and
the Bianchi propagation equations (7.36) and (7.37), we find that

U +DP, = —20U —40°P, + 30° [Ey B + HyHY] . (7.47)

This is the non-perturbative and covariant generalization of Bel’s linearized conservation equation

(212, 221): 8,U = —div P.
The last term in the conservation equation (7.47) contains another natural group invariant
Tap = —Lefalty’ = —FEe(aEn\® — Hepa Hy® (7.48)
which we interpret as the anisotropic super-pressure of the gravito-electromagnetic field.

As pointed out in the introduction, duality rotations preserve the Bianchi identities in vacuum,
but not the Ricci identities for u®. This is cleatly apparent from the spatial tensor parts of the Ricei

identities [220], which in our formalism have the simplified form

Esp = Dialisy — 6(ar) — 500ar — 0c(a0s)° — W(as) + Waliny , (7.49)

Hay = curlogy + Digwyy + 2taws) - (7.50)

In order to preserve the Ricci identities, and map Einstein solutions to Einstein solutions, one needs
to perform kinematic transformations in addition to the duality rotation. An example is presented in

the following section.

The electromagnetic analogy suggests a further interesting interpretation of the kinematic quanti-
ties arising from the Ricci equations (7.49) and (7.50).% In flat spacetime, relative to inertial observers,

the electric and magnetic vectors may be written as
E=vv-8a, =culd,

where V is the electric scalar potential and & is the magnetic vector potential.* Comparing now
with the Ricci equations (7.49) and (7.50), we see that the four-acceleration is a covariant graviio-
electric vector potential and the shear is a covariant gravito-magnetic tensor potential. The vorticity
derivative in (7.50) has no electromagnetic analogue, and vorticity appears to be an additional gravito-
magnetic vector potential. Furthermore, the gauge freedom in the electromagnetic potentials does not

have a direct gravitational analogue in the Ricci gravito-potential equations (7.49) and (7.50), since

3Note that these Ricci equations have the same form in the non-vacuum case.
tThe covariant form of these potentialsis V = u®Aq, ae = Ay, where Ag is the four-potential.
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the gravito-electric/magnetic potentials are invarianily defined kinematic quantities. (Note that the
Lanezos potential for the Weyl tensor does have a gauge freedom analogous to that in the Maxwell

four-potential [223].)

The remaining Ricci equations in 1 4+ 3 covariant form are [229]

o+ ie? = —3(p+ 3p) + D%y + 0%0, + 2wy — ooy, (7.51)
Wia) + 20w, = ~Leurl étg + ogpet (7.52)
iD:® = —curlwg + Doy + 2w, 1, (7.53)

Dw, = %y, (7.54)

and do not invelve the gravito-electromagnetic feld.

Pinally in this section, we extend the analogy to wave propagation. The magnetic wave equation
(7.30) has a simple gravito-magnetic analogue. In order to isolate the purely tensor perturbations
of an FLRW background in a covariant (and gauge-invariant) way, one imposes w, = 0 [228]. We
linearize and take the curl of equation (7.36), using the linearisations of equations (7.37) and (7.35),
and identities (7.10) and (7.14). This does not directly produce a wave equation, since the curl of the
shear term in (7.36) has to be eliminated. (In the Maxwell case this feature did not arise, since we

set o = 0.) The elimination is achieved via the Ricci equation (7.50), and we find that
D2 Haup = —Hoy + D* Hop e TH Hoy + 2 (3H? — p) Has (7.55)

in agreement with [228, 93], and in striking analogy with the magnetic wave equation (7.30). Further

discussion of covariant gravitational wave theory may be found in [228, 93, 229, 251].

7.4.1 topological invariants

A further covariant quantity that may be naturally constructed from Eq. (7.38) is
I=TuI% = (EuE™ — HyH)+ 2% B, 0
= §(CatedC™ + iCupogCe%) (7.56)

which is not invariant under Eq. (7.41). It vanishes in Petrov type-Ill and type-N spacetimes {224]
(supporting the existence of gravitational waves in these spacetimes,sinct_a the analogous quantities
vanish for purely radiativeelectromagnetic fields). Further, the electromagnetic analogue of the real
part of Eq. (7.56), namely E,E4~H,H® = -—%F,,bF“b, s just the Lagrangian density. The analogue of
the imaginary part is £, H® = lli—F,,;, *Fot whose integral in non-Abelian gauge theories is proportional

to the topological instanton number.

Indeed, the imaginary part is just proportional to the Pontryargin density if the spacetime is

compact. The four dimensional Pontryargin class is defined by [211]:
1

Pz; = -
871'2 My

RO Rypeadis (7.57)
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For a vacuum spacetime this is just:

po= 2 [ B Hgds (7.58)

w2 M,
where g = det(gqs). This takes on integer values that label topologically distinct four-geometries.

Further, within vacuum spacetimes, it is the Pontryargin density which determines the chiral anornaly:

2

2

D, J% = S EHy, (7.59)

As discussed earlier, EqH® vanishes in Petrov type-III and N spacetimes and hence so does Fy and

the chiral anomaly.

In addition there is another topological invariant in four dimensions, the Euler characteristic, x,

which is related to the curvature via the four dimensional Gauss-Bonnet theorem:
X = f (Rapea R¥% — 4Rqp R™ + R*)y/—gd'x (7.60)
where x takes on integral values. Now using the fact that:
CupeaC® = RapeaR™* — 2Rap R™ + %Rg (7.61)
we may rewrite Eq. (7.60), using Eq. (7.56) as: |
. f (8o B — 8H o H — 2Ry R + %Rg)\/-_-?d‘*m (7.62)

From which we see that if the spacetime is vacuum, and type-1II or type N, the Euler characteristic

is also zero.

7.4.2 local transformations

A natural generalisation of the global transformation is to consider the duality rotation Zas — ey
but with ¢ a spacetime dependent, local transformation. The hope might be that the extra terms

that would be generated would take the form of some matter fields.

The Bianchi identities are then transformed into:

DT = Biw'Tay—i[e,T]a—iD ¢, (7.63)
i-(ab) +icurlZyy = —OIge + 3Uc(aIb)c
- wcfcd(urb)d - 21'’L-‘c'Ee:d'(al—c!!)d - ig-l‘Inb
+  €acaD eIy’ . (7.64)
Thus the extra terms proportional to D¢ and qb couple directly to Zgs and hence cannot be written

as the effect of extra matter terms since in the Bianchi identities the stress tensor does not couple to
T
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7.5 Gravitational monopoles

The electromagnetic correspondence we have developed suggests a covariant characterization of gravito-
electric (magnetic) monopoles, as stationary vacuum spacetimes outside isolated sources, with purely
clectric (magnetic) free gravitational field, ie., Hgy = 0 (Ea = 0). This is reinforced by the fact
that monopoles do not radiate, and gravitational radiation necessarily involves both E,, and H ab
nonzero (see [227, 93, 229], consistent with Bel's criterion P; # 0 (212, 221]). Our identification in the
previous section of density inhomogeneity and angular momentum density as sources of, respectively,
gravito-eleciric and gravito-magnetic fields, suggests that the monopole sources will be respectively
mass and angular momentum. However, as pointed out previously, it is possible that non-zero angular

momentum is compatible with a purely gravito-electric field, as illustrated by the Gddel solution.

The four-velocity field u® is not defined by a fluid, but is defined as the normalization of the

stationary Killing vector field £° = £u®. As a consequence of Killing’s equations, we have © = () = gy
[252], so that

Vit = €gpetw’ — Uptip .

The covariant equations governing non-perturbative monopoles are complicated. Some simplification

arises from the Killing symmetry, which implies

Lews = Ebg+uaw’Dyf =0,
LeHay = EHap + 20 ceqia Hyt — 26uiaHyyei® =0,

and a similar equation for E,;. Then it follows that

way = 0, (7.65)
Hiay = — 2% Hpy? (7.66)
E(ab) = _gwcfcd(aEb)d - (767)

Now equations (7.65)~(7.67), together with the basic monopole conditions, are applied to the
Bianchi equations (7.34)—(7.37) and Ricci equations (7.49)-(7.54). We obtain:

Gravito-electric and -miagnetic monopoles:

D, = —ildg— 2w, (7.68)
G = 0, (7.69)
curle, = 0, (7.70)
arlw, = -2[i,wl, ' (7.71)

D%, = ulw,. (7.72)
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Gravito-eleciric monopole:

184

D! Eq 0, (1.73)
0 Eqp®, (7.74)
Elany 0, (7.75)
0 RIS A (7.76)
curl Fgp 21ty By? (7.77)
By — Dyyiy atly) — W{aih) (7.78)
Dyaws) — gy - (7.79)
Gravito-magnetic monopole:

DA, = 0, (7.80)
0 = Heel, (7.81)
Hay = 0, (7.82)
0 = wiegaHy®, (7.83)
curl Hay = —20%.qHy®, (7.84)
Disiyy = =—tialls) +wiatvh) (7.85)
Hap — Diawsy = 2iyawny . (7.86)

Equation (7.70) implies that there exists an acceleration potentiak:
iig = Da®. (7.87)

This holds even when w, # 0, despite the identity (7.4), since ® is invariant under £%, so that @ = ).

Equation (7.71) shows that curlw, is orthogonal to the vorticity and four-acceleration:

wheurlw, =0 = tfcurlw, .

Schwarzschild spacetime, where alsow, = 0 (since staticity implies u? is hyper-surface orthogonal),

is clearly a non-perturbative gravito-electric monopole according to our covariant definition: it is a

static vacuum spacetime satisfying Hap = 0, by virtue of the Ricci equation (7.50). Equations (7.87)
and (7.68) imply

D?® + D*°®D,® = 0. : (7.88)

The solution @ determines #t, and Fgp, and equation (7.88) ensures that the monopole conditions
(7.68)—(7.79) are identically satisfied.

It is not clear whether there exist consistent mon-perturbative gravito-magnetic monopoles, i.e.

spacetimes satisfying the covariant equations (7.68)~(7.72) and (7.80)-(7.86).° However, linearized

5In {253 it is shown that non-flat vacuum solutions with purely magnetic Weyl tensor are a very restricted class,
and it is suggested that there may be no such selutions.
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gravito-magnetic monopoles have been found, for example the Demianski-Newman solution [243) (see

below}). It is also not clear whether there exist gravito-electric monopoles with angular momentum

(i.e. wy #0).

In the case of linearisation about a flat Minkowski spacetime, the right-hand sides of equations
(7.68)-(7.86) may all be set to zero. In particular, equation (7.71) implies that there is a vorticity
potential:

wy & D, T. (7.89)

‘The linearisation of equations (7.78) and (7.86), together with the scalar potential equations (7.87)
and (7.89), then imply that the curls vanish to linear order. Thus the linearized gravito-electric

monopole is covariantly characterized by equations (7.87), (7.89) and
D?® ~ 0, Eq~D,Dy®, DiaDyT a0, (7.90}
while for the linearized gravito-magnetic monopole

D*W w0, Hgw~ DeDy¥, DiDy®~0. (7.91)

It follows in particular that a linearized non-rotating gravito-electric monopole is mapped o a

linearized non-accelerating gravito-magnetic monopole via
Top —iZap, We—1g, g — —wy. (7.92)

Linearized Schwarzschild spacetime is readily seen to satisfy equation (7.90) with ® = —M/r, where M
is the mass and r the area coordinate. Using the spatial duality rotation and kinematic interchange de-
scribed by equation (7.92), this monopole is mapped to a linearized non-accelerating gravito-magnetic
monopole with potential ¥ = —A{/r. In comoving stationary coordinates, the metric of the linearized

magnetic monopole follows from 4, = 0 and w,; = D, ¥, using a theorem in [248] (p 24):
ds® = —dt* +dr? + v? (d6? + sin® 0 dp?) + 4M cosf dip di . (7.93)

This is a Taub-NUT solution with m =0, £ = — M and linearized in £ ([252], p.133; see also [245)). In
fact, this is precisely the linearized solution found in [243], so that we have a covariant characterization
of that solution in the framework of gravitational duality. Clearly the magnetic ‘charge’ M is an
angular momentum parameter, not a mass parameter, and the metric in equation (7.93) describes an

isolated source with angular momentum but no mass.

7.6 Concluding remarks

A covariant 143 approach, based on [220] and its extension [246, 229], is ideally suited to an analysis

of the free gravitational field that is based on observable physical and geometric quantities, with
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a clear and transparent analogy in well-established electromagnetic theory. We have used such an
approach, including in particular the generalization of covariant spatial vector analysis to spatial
tensor analysis, which involves developing a consistent covariant definition of the tensor curl and
its properties. Via this approach, we showed the remarkably close analogy between the Maxwell
equations for the electric/magnetic fields and the Bianchi identities for the gravito-electric/magnetic
fields. Although this analogy has long been known in general terms, our approach reveals its properties
at a physically transparent level, with a detailed accounting for each physical and geometric quantity.
We found new interpretations of the role of the kinematic quantities — expansion, acceleration, vorticity
and shear — in the source and coupling terms of gravito-electromagnetism. The tracefree part of the

Ricei identities also reveals the role of the kinematic quantities as gravito-electric/magnetic potentials.

The analogy provides a simple interpretation of the super-energy density and super-Paoynting
vector as natural /(1) invariants, and we derived the exact nonlinear conservation equation that
governs these guantities, and which involves a further natural invariant, i.e. the anisotropic super-
pressure. We also used the analogy to show that a covariant spatial duality invariance exists in vacuum
gravito-electromagnetism, precisely as in source-free electromagnetism. Duality invariance has been
important in some recent developments in field and string theory, and the gravito-electromagnetic
invariance in the form found here may also facilitate new insights into gravity. A crucial feature in
the gravitational case, arising from its intrinsic nonlinearity, is that the duality invariance does not
map Einstein solutions to Einstein solutions, since the Ricci identities are not invariant. Further work
is needed to investigate whether a simultaneous geometric or kinematic transformation can be found,

so that the Bianchi and Ricei equations are invariant under the combined transformation.

We showed that in linearized vacuum gravity, there is a simple combined duality/ kinematic trans-
formation that maps the Schwarzschild gravito-eleciric monopole to the Demianski-Newman gravito-
magnetic monopole. This covariant characterization of the relation between these linearized solutions
was based on our covariant definition of gravito-monopoles in the general nonlinear theory. Further
work is needed on the governing equations for these monopoles, in particular to see whether nonlinear
gravito-magnetic monopole solutions may be found. A better understanding of the relation between
nonlinear gravito-electric/magnetic monopoles could, as in field theory, open up new approaches and

insights.



Chapter 8

Conclusions and Reheating Issues
past 2001

This thesis has discussed one of the most violent epochs in the universe's history ever proposed.
The explosive particle production that is the basic nature of preheating causes inflation to end in a
manner that is currently beyond a full theoretical understanding due to its complex quantum, non-
equilibrium and non-perturbative essense. Nevertheless, the understanding that we have achieved is
remarkable perhaps principally for the stimulus it has given basic research in non-equilibrium and
non-perturbative quantum fleld theory in curved backgrounds. Preheating is a virtual laboratory
which has inspired many new insights and the application of complex techniques to an arena that

previously was rather barren of critical investigation.

It is against this background that the work in this thesis has been undertaken. We have attempted
to understand gravitational aspects of preheating, which has lead to the idea of geometric reheating
due to the oscillations of the Ricci curvature. Indeed, the very idea that the curvature oscillates is a
foreign one, even to many Relativists, so that the insights are not limited to field theorists. We have
investigated the mathematical foundations upon which the basic paradigm of preheating was initially
built - the Mathieu equation - and found that it is but a small spring that is sourced by a much deeper
well. Preheating exists in models with a much broader base and can be classified into distinet classes

using the beautiful mathematics of spectral theory of bounded linear operators on Hilbert spaces.

Further these spectral theory insights have enabled us to study aspects of preheating in more
realistic models of inflation with many fields. Without having to resort to the study of specific
models, the nature of preheating in the strong-coupling limit of chaotic theories has been analysed
and found to be even stronger than in the case where the inflaton oscillates alone, interacting with
only one other field. Returning to the implications for General Relativity, we then saw that the
oscillations in the curvature are sources for resonant amplification of gravi£ational waves - this is the

gravitational analog of populating higher-momentum modes via self-interaction.

187
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Finally we have investigated the mathematical and symnmetry properties of vacuum General Rel-
ativity itself - the most basic framework for the study of nonlinear gravitational waves and exterior
solutions. In response to the duality conjectures in supersymmetric Yang-Mills and string theory we
have shown that General Relativity exhibits essentially the same rotation duality as vacuum elec-
tromagnetism. In string theory the S-duality maps magnetic monopoles into electric monopoles and
we have found a linearised equivalent of this for gravitational monopoles which maps Schwarzschild
into Taub-NUT, exchanging mass with angular momentum. This suggests that there may be deeper

dualities ai work in General Relativity.

To end with, we list problems left to be resolved regarding the nature of reheating and its im-
plications for inflation and observational cosmology in general. Given the rapid nature with which
reheating is currently evolving, this list is likely to be out of date soon, the issues answered and with

new questions replacing the old.

Non-equilibrium Issues

Problem

How bad is the equilibrium effective potential at describing the true dynamics in reheating and
what are the qualitative differences ? In particular, how is non-thermal symmetry restoration and

defect formation different when the full non-equilibrium theory is used ?
Problem
How does thermalisation of the large quantum fluctuations to a reheating temperature Tr actually

proceed 7

Perturbation Evolution through reheating

Studies of reheating have, until now, mainly ignored the evolution of metric perturbations through
reheating, based on the opinion that reheating cannot affect super-Hubble scale modes, and hence
has little implications for the CMB or large scale structure. Given the explosive nature of preheating,

1s this true 7
Problem

How do metric perturbations evolve in the large g, strong coupling, region and how does this affect
the CMB 7

Problem

How do the large variances {(§¢)%) evolve under gravity ? How do the variances affect metric
perturbation evolution 7 What, if any, are the effects on the SAD (Sakharov, acoustic, Doppler)
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peaks of the CMB 7 Can one make a meaningful Hartree-Fock approximation for gravity in this

context 7
Problem

How do metric perturbations affect reheating. In particular, how do the constraints of General
Relativity impact on the exponential resonances of preheating 7 How does multi-fluid perturbation

theory affect preheating 7
Problem

Can one make a realistic multi-fiuid theory of reheating based on non-equilibrivm, dissipative and

causal thermodynamies ?

The issues dealing with metric perturbation evolution above have partially been resolved recently
[257)*, although more questions remain than are answered. In particular the constraint equations
coming from the Bianchi and Ricei identities force scalar metric fuctuations to grow with the field
fluctuations, with the variance of the metric perturbations saturating their linear bound before the
end of preheating. This implies that linear perturbation theory breaks down and opens up a Pandora’s
box of problems and challenges. Only time will tell whether the box can be sealed safetly or whether

preheating will be excluded on observational grounds.

1See also the web page http://www sissa.it/~bassett /Teheating/.
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University politics are vicious precisely because the stakes are so low.

— Henry Kissinger

No science is immaune to the infeclion of politics and the corruption of power.

— Jacob Bronowski

Who knows for what we live, struggle and die?... Wise men write many books,
in words too hard to vndersiand., But this, the purpose of our lives,
the end of ell our struggle, 15 beyond all human wisdom.

Alan Paton
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