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Introduction

Proteins belong to the group of biopolymers, which also comprises nucleic
acids (DNA, RNA) and polysaccharides. While the latter are evolved to per-
form a particular task—i.e. information storage for nucleic acids and energy
storage for polysaccharides—, proteins can cover an unlimited and amazing
number of different functions in living beings. In addition to catalyzing al-
most all the biochemical reactions, proteins are responsible for the transport
of ions, can form structures as skin and hairs, control and repair genetic
material, regulate the transcription of DNA determining molecular biosyn-
thesis and have a fundamental role in macroscopic mechanisms as muscle
contraction. '

One of the secrets of this functional diversity and omni-presence of pro-
teins in the organism is the complex relationship between the sequence of
amino acids forming the polypeptide chain and the associated three-dimen-
sional structure. The sequence of amino acids characterizes uniquely the
protein from a chemical point of view and corresponds to the order in which
amino acids are assembled together during the biosynthesis process. This or-
der is always the same for a given protein and it is well defined and encoded
in a specific segment of DNA, called gene. The sequence of a protein is the
translation of the associated gene and for each protein in the organism there
is a gene that codify for it. All the information that an organism needs to
synthesize a protein, and hence to switch on the associated biological activity,
is encoded in the gene and might be inferred by the only knowledge of the
sequence of nucleotides forming the gene. There are four different kinds of
nucleotides, i.e. Adenine, Guanine Cytosine and Thymine for DNA; in RNA
Thymine is replaced by Uracil The translation code to determine a protein
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4 Introduction

sequence starting from the sequence of bases corresponding to the gene is
called genetic code and it is clearly understood: to each codon, i.e. triplet
of nucletides, corrispond a well defined amino acid. Though the details of
translation and the cell machinery involved in protein synthesis may be com-
plex, it is at least algorithmically simple to imagine sequential processing in
which codons are read one by one and the corresponding amino acids are
added to the growing protein chain.

When the protein is synthesized, it is not yet biologically active. In order
to become active the polymeric chain has to fold into a unique and specific
three-dimensional structure. It is the stability of the protein in this (native)
conformation to guarantee the correct effects of the protein in the cell. Usu-
ally, such effects occur thanks to specific interactions between the protein
and other molecules or macromolecules. It is the geometrical shape of the
protein, together with the specific biochemical interactions in some special
region of the protein, to confer a specific effect, the biological function, to
the protein. Some famous diseases are just caused by an incorrect folding
of the involved protein, which is no more able to work in the desired man-
ner (Mediterranean anemia, mad cow disease, and so on). To summarize,
information contained in the gene are expressed through a three-step mech-
anism: the gene encodes the sequence, which specifies the structure, which,
finally, determines the biological function. A schematic representation of
gene expression is represented in fig. 1.

In order to understand a particular biochemical reaction in the cell, it is
necessary to know all the reagents participating to the reaction. Up to now,
there is no standard method in structural biology to predict the structure
of a known protein sequence. Experimental determination of structures,
basically X-ray crystallography and NMR, are hard and expensive [11,4]. In
contrast, amino acid sequences can be determined very fast and the number
of sequences that have been determined is at least an order of magnitude
greater than the number of protein structures [23]. Furthermore, the genomic
revolution promises to increase the gap between known sequences and known
structures and will make available, in few years, a large number of protein

sequences. It follows that the intermediate step sequence—structure is a sort
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Figure 1: Gene expression occur through many intermediates: the gene is
translated in an amino acid sequences, which will be biologically active only

after reaching the three-dimensional conformation.

of bottleneck in the understanding how genes are expressed in the cell.

How proteins can find their three-dimensional structure, 1s interesting
even from a theoretical, and not only applicative, point of view. The number
of conformations that could house a protein sequence is exponentially large
and it is intriguing [34] that proteins can find their native conformation in
a very short time (1ms to few seconds). It has been shown [2] that at least
a large variety of proteins can unfold and re-fold in their three-dimensional
structure without the assistance of any biological machinery (this is not true
for biosynthesis, for example, that is working thanks to a complex biological
mechanism). These studies confirm, instead, the thermodynamic hypothe-
sis: the native structure is the conformation in which the protein has a free
energy minimum. According to this discovery, proteins fold in their three-
dimensional structure through a spontaneous and, to some extent, reversible
physical process, until the lowest free energy conformation is reached. Pro-
teins in their native conformations, together with the acqueous solvent in
which they are embedded, constitute a system in thermodynamic equilib-
rium. It follows that the key to understand protein folding is not a well-
defined code, like the genetic code, controlled and regulated by biological

5



6 Introduction

mechanisms in the cell, but it can be understood by the laws of physics.

The above considerations suggest that physics should be able to answer a
lot of questions that are crucial to understand the mechanism of the protein
folding: How does it fold a protein? Are there some regions of the chain
that have a key-role in the folding process? All the amino acids contribute
with the same weight to the protein stability? Are there some crucial inter-
mediate conformations between the new-formed polypeptide chain and the
final native conformation? In principle, one could attempt to answer these
question by integrating numerically the equations of motion for proteins in
the solvent and observing the evolution of the polypeptide chain. However,
all atoms simulations are very expensive and cannot be applied, up to now,

to macromolecules as large as proteins.

For this reason, a lot of simplified models have been proposed for studying
protein folding, both by computer simulations [20] and analytical calculations
[6]. Some of these models arose from the comparison of proteins with other
systems that have been widely studied in physics: in particular spin glasses
and random heteropolymers. Frustration, a key concept in spin glasses, is
realized in physical polymeric systems like proteins, basically, by the chain
connectivity. Such constraints prevents the chain to reach unphysical lower
energy conformations, where each amino has favorable interaction with its
neighbors. Proteins can be considered as special cases of random heteropoly-
mers, whose glassy dynamics is strongly influenced by the chain connectivity.
When the temperature is lowered, random heteropolymers are frozen in a
unique conformation; however, in contrast with proteins, the conformation is
random and depends on an uncontrollable number of conditions In proteins,
instead, the final conformation is completely defined by the sequence, the
folding is fast and the transition between the unfolded and the folded state is
more abrupt with respect to random heteropolymers. It is conceivable that
protein sequences have been selected during evolution for fast folding. This
selection principle is also called “principle of minimal frustration”: among
all heteropolymers which it is possible synthesize using the twenty amino
acids, protein sequences are the ones with the smallest frustration in their

native state [5]. The energy (or free energy) landscape has been smoothed
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heteropolymers

protein-like sequences '
"

Figure 2: Among all the possible sequences only a fraction of them are

protein-like, i.e. fold rapidly in a unique and well-defined three-dimensional
structure. Natural proteins are an extremely small subset of all the protein-
like sequences. A selection procedure should find the correspondence among

protein-like sequences and the structure which they encode.

by the selection procedure carried on by natural evolution and traps and
kinetic barrier have been, in part, eliminated in order to aid fast folding [51].
Furthermore interresidue interactions have been optimized through changes
in the amino acid sequence in order to optimize the thermodynamic stability
of the protein chain.

Once the principle of minimal frustration has been accepted, a lot of
questions remain unsolved: How has Nature selected protein sequences? How
many heteropolymer sequences show protein-like features? How large is the
fraction of proteins that fold quickly and reversibly into a given structure?
Which kind of sequences fold into a given target structure? The last two
questions, in particular, are extremely important. They are interesting not
only from a theoretical point of view, but also from an experimental and
technological one. In experimental protein design the goal to synthesize
proteins that are able to fold into a desired stable conformation, has very
few successful examples in the literature, at least in comparison with the
performed efforts [52, 56, 30, 83, 1]. In computational all-atoms protein
design, where the prediction is usually followed by an experimental validation
test, the main focus has been on problems of optimal packing of amino acids
[55, 21, 13, 22, 75, 74].

Approaches to protein design by using analytical tools or simulations on
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8 Introduction

coarse-grained models clarified, at least in our opinion, several aspects of
protein design.

In this thesis, the problem of finding an optimal sequence selection pro-
cedure, that is a central problem in protein design, is faced. Strategies for
protein design based on rigorus statistical mechanics principles will be imple-
mented both on simplified models of proteins and on more realistic models.
The original part of our work is grouped in chapters 3 and 4.

The plan of this thesis is the following. In the first chapter we introduce
the most important and basic concept related to protein folding and design.
In the second chapter, after introducing some standard lattice models of
proteins and heteropolymers, the most important methods of protein design
present in the literature are described. In the third chapter we will introduce
a novel iterative procedure for protein design and it will be applied to lattice
protein models [58]. A different approach based on geometrical criterion
[49] will also be presented. In the fourth chapter, we will implement an
approximated approach in order to design real protein structures [59]. In
this case, it has been possible to compare our designed sequences with real
sequences, whose native states are known. The good correlation between
natural sequences and designed sequences indicates that the method is very

promising.



Chapter 1
Protein folding and design

One of the secrets of the biological diversity and omni-presence of proteins
in the organism is the complex relationship between the sequence of amino
acids forming the polypetide chain and its three-dimensional structure.

This relationship can be studied from two opposite and complementary
points of view. On one hand it is of fundamental importance to determine
the structure of proteins present in the organisms, since it would help greatly
in understanding the role of the proteins. This problem, generically called
protein folding, is based on the Anfinsen’s discovery: a protein can fold fast
and reversibly into a unique three dimensional structure, the native state,
corresponding to a free energy minimum. The basic idea is that the structure
of a protein could be, in principle, obtained by integrating the equation of
motion for the sequence in presence of the solvent. Direct applications of this
method are not convenient, since proteins are large macromolecules with
many degrees of freedom whose mutual interactions, due to the presence
of the acqueous solvent are too complicated for the present computational
capabilities.

The second approach is known as “inverse protein folding” and aims of
finding the sequences whose native state is preassigned. This problem, al-
though apparently involves a search in sequence space rather than in confor-
mation space, is even more complex. Given a structure, only a microscopic
fraction of all the viable sequences fold on that, and finding them is like

searching a needle in a haystack. The problem of finding one or more se-
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10 Protein folding and design

quences able to fold into a given structure is named protein design, and has
fundamental applications in drug design.

The plan of this chapter is the following. In the first section we will briefly
describe structural properties of amino acids, the building blocks of proteins,
and some regular arrangements of them, known as secondary structures. The
description of a protein through its sequence of amino acids is the simplest one
and is sometimes referred as primary structure of the protein. However, the
sequence does not contain information, by itself, on the three-dimensional
structure of the protein, that is more conveniently described in terms of
secondary structures. In the second section, the problem to determine the
three-dimensional structure of proteins will be analyzed. As we shall see,
theoretical predictions of protein structures succeed only in particular cases
and experimental tools (X-ray and NMR) are often the only (expensive)
methods to obtain information about the three-dimensional structures. In

the last two sections, we will briefly review protein folding and protein design.

1.1 The building blocks of proteins

Proteins are macromolecules ranging from 1000 to more than 5000 atoms
without apparent symmetries or regularities. Describing such large objects
at the atomic level seems a quite discouraging, and in some cases useless, task.
Fortunately, since 1958, when the first protein structure has been determined
by X-ray crystallography, a number of recurrent structures and motifs have
been discovered. In some cases, description of protein properties by these
motifs is helpful and simplifies concepts, while, in other cases, a resolution at
the atomic level is necessary. For example, secondary structures (see below)
are very convenient to describe the architecture of proteins and to associate
a protein to a family (channels, enzymes, antibody domain and so on).

At the lowest level of this hierarchy, there are the 20 amino acids, whose
covalent structure is the base for the structure of proteins. Amino acids are
bonded together to form a linear chain, through the peptide bond, which
constitutes the backbone of the structure. Though the polymeric chain is

flexible and can adopt, in principle, many different conformations, the in-
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1.1 The building blocks of proteins 11

teractions among the different regions of the chain are such that only one
conformation will be adopted by the protein under physiological conditions
(temperature, pressure, pH). The order of amino acids placed along the chain
is of fundamental importance, since changing it will dramatically change the
interactions, destabilizing the native conformation.

The sequence, i.e. the order in which amino acids are placed along the
protein backbone, is the first level of complexity. It can be in fact represented
by a one-dimensional string, where each letter is associated to one of the

twenty types of amino acids (see table 1.1). For example the string
APLEPEYPGDNATPEQMAQYAAELRRYINMLTRPRY

is the amino acid sequence of the Bovine Pancreatic Hormone, a protein
involved in the digestion of cow. Here we have used the single letter repre-
sentation, though in other circumstances is more convenient the three-letter
representation (see table 1.1).

The string above, does not tell us very much about the Bovine Pancre-
atic Hormone. Of course, to each letter we have to associate the covalent
structure of every amino acid in the sequence. By doing so, we obtain a
polymeric chain, that can assume, in principle, many different conformations
compatible with steric constraints. To understand which conformations are
allowed and which not, one has to know the covalent structures of amino
acids and how they bind together to form the peptide chain.

To the o carbon atom, are bonded the aminic and carboxylic groups (NH;
and COOH, respectively), the residue R and a hydrogen atom:

(1.1)
NHy— CoH— COOH

Apart from proline, whose carbon atom in the carboxilic group is bonded to
the residue itself, the other amino acids differ only in the nature of the residue
R. The number of atoms forming residues can vary from one—in glycine R

is just one hydrogen atom—to a maximum of eighteen for Tryptophane and

11




12 Protein folding and design

Frequency
Residue type in

proteins(%)
Alanine ALA | A 8.3
Arginine ARG | R 5.7
Asparagine ASN | N 4.4
Aspartic acid | ASP | D 5.3
Cysteine CYs | C 1.7
Glutamine GLN | Q 4.0
Glutamic acid | GLU | E 6.2
Glycine GLY | G 7.2
Histidine HIS | H 2.2
Isoleucine ILE | I 5.2
Leucine LEU | L 9.0
Lysine LYS | K 5.7
Methionine MET | M 2.4
Phenylalanine | PHE | F 3.9
Proline PRO | P 5.1
Serine SER | S 6.9
Threonine THR | T 5.8
Tryptophane | TRP | W 1.3
Tyrosine TYR | Y 3.2
Valine VAL | V 6.6

Table 1.1: List of the twenty amino acids with their frequency in proteins
(data from [11]). Amino acids can be identified by a three-letter code or a

one-letter code (second and third column, respectively.)

12



1.1 The building blocks of proteins 13

Arginine. Basically residues are formed by different combination of carbon
and hydrogen atoms, but for some amino acids oxygen is present too. In
Cysteine and Methionine a sulfide atom is present and it is responsible for
stabilizing three-dimensional structures through a disulfide bridge.

While the résidue characterizes the chemical-physical properties of the
amino acid type, the aminic and the carboxilic groups have an important
role to connect amino acids in a polymeric chain. When two amino acids are
hydrolised, the aminic group and the carboxylic group of different amino acids
form a covalent bond following the reaction NHy,+COOH — NHCO+ H,O0.

1.2)
NHy— C,H— CO — NH — C,H— COOH (1.2)

The bond between the carbon and the nitrogen is called peptide bond and,
since it is a partial double-bond, rotations along this axis are very rare (except
180°). Rotations are, instead, allowed along the single bonds between C, and
N and between the two carbon atoms, as for as steric clashes do not occur.
As illustrated in figure 1.1, rotations along this axis are represented by two
torsional angles called ¢ and 1, respectively. Since bonds between nearest
neighbours atoms are not aligned, these rotations cause a conformational
change in the polypeptide chain.

Though ¢ and %, also called dihedral angles, can in principle assume all
the values in [—m, 7], some values are more likely than others. In particu-
lar, some values are never allowed due to steric reasons, since they would
correspond to an overlap of atoms of the residue, or side-chain, with atoms
of the backbone. The permitted values of ¢ and 1) were first determined by
Ramachandran and co-workers [57], using hard-sphere models of the atoms
and fixed geometries of the bonds. The permitted values of ¢ and 1 are
usually indicated on a two-dimensional map of the (¢4,%) plane, what has
come to be known as a Ramachandran plot. Since the size of the residue
depend strongly on the amino acid type, Ramachandran plots of different
amino acids, are different. In particular, glycine, which has the smallest

13




14 Protein folding and design

Figure 1.1: Protein flexibility is due to the presence of single bonds along
the main chain between the nytrogen atom and C, (¢ angle) and between
C, and carbon atom (v angle). Angles ¢ and ¢ are defined as the dihedral

angles formed by planes 7; and 7y and by mp and 3, respectively.

residue, has a Ramachandran plots with several allowed regions, indicating

a flexibility unknown to other amino acids.

In real proteins, not all the allowed regions of the Ramachandran plots
are equally likely. A statistical analysis of protein structures shows that
some regions of the (¢, 1) plane are more populated than others. The most
populated region corresponds to angles around (—60°,50°). Several amino
acids with such values of (¢,), takes part to helical structures This is called
a-helix and it is a motif quite recurrent in proteins. Each turn in the helix
is formed on average by 3.6 amino acids, the 4-th amino acid being in spatial
contact with the (z + 3)-th and with (i + 4)-th one.

Another recurring secondary structure is the extended conformation, or
B-strand, that is associated to the angles (¢,v) ~ (—130°, +120°). Extended
conformations are frequently found associated together to form (-sheets. It
is possible to distinguish between parallel and anti-parallel sheets. In the

first case if the i-th and j-th amino acids are in contact then 4 + 1-th and

14



1.2 Determining the protein structure 15

j + 1-th will be still in contact. In the second case it will be true for the
1+ 1-th and 7 — 1-th ones.

Secondary structures are assembled together to form more complex struc-
tures by turns and loops. In the first case, an amino acid, usually glycine,
that is the smallest residue, makes a tight turn which changes completely the
direction of the backbone. In loops, the change of direction is more gradual,
being distributed over several amino acids. Finally, random coil are protein
regions for which amino acids do not have a definite value.

Secondary structures contain information on the structure of the protein
and can be represented by a one-dimensional string. For example, for the
Bovine Pancreatic Hormone, to the string representing the sequence we can
associate a string representing the secondary structure amino acids belong
to:

APLEPEYPGDNATPEQMAQYAAELRRYINMLTRPRY
RRRRRRRRSSRSSTTHHHHHHHHHHHHHHHHRRRRR

where H=helix, S=bend or loop, T=turn and R=random coil ([29, 62]).
In fig. 1.1 secondary structures are highlighted by the cartoon scheme of

visualization.

1.2 Determining the protein structure

One of the most important challenges in understanding biological reactions
occurring in organisms is the determination of the structure of the molecules
participating to the reaction. This is true especially for proteins, for which
the structure has been selected by evolution for a specific biological task. In
some cases, it is just the geometrical shape that contains important infor-
mation on the function, especially when a cavity in the structure is comple-
mentary to the geometrical shape of another macromolecule ligand (docking
problems). More often, the geometrical shape can give only generic indica-
tions where the binding site is located, and only detailed electrostatic calcu-

lations can solve the docking problem.

15




16 Protein folding and design

Figure 1.2: A “cartoon” representation for the protein la2p. Secondary
structures are highlighted by a special pictorial scheme: helices are repre-
sented by a light-grey cartoon, strands by dark-grey arrows and random coil

and loops by a tube.

While the structure is important for understanding the function of the
protein, its experimental determination is difficult and expensive. By con-
trast, it is very easy to determine the sequence of amino acids by exper-
imental measurements (sequencing) or by translating the associated gene.
The number of sequences that have been determined up to now is almost an
order of magnitude larger than the number of structures, and the number
of sequences that will be acquired per day is destinate to increase with the
genomic revolution. It follows that one of the most important research field
in bioinformatics and biophysics is the prediction of the structure of already
known sequences. In principle this problem can be solved by following the
dynamics of the protein embedded in the solvent (which has a fundamental
role in driving the folding of the protein) on a computer and finding the lowest
free energy conformation. However, the complexity of the atomic structure
of a protein and the time scale on which the folding occurs, do not allow to

16



1.2 Determining the protein structure 17

integrate the equations of motion.

A possible way out to overcome this kind of problems might be to use
simplified descriptions of proteins in which amino acids interactions and steric
constraints are described in an effective way. These models have received a
lot of interest in the community of physicists. However, because of their lack
of atomic details and their approximate description of interactions, simplified
models are still far to be successfully applied in structure prediction.

Among the methods more reliable for structure prediction there are those
based on homology modeling. Homology modeling deals with the problem to
detect an homology, i.e. an evolutionary relationship, between the protein,
for which the structure has to be determined, and proteins of known struc-
ture. Usually, homology is detected by aligning and comparing the target
sequence —i.e. the sequence for which the structure has to be predicted—
with the sequences of proteins of known structure. Such structures can be
used as templates to make a “model”, that will be carefully refined. A similar
procedure has many advantages. First, it can be automated allowing many
scientists to access model structures for proteins, whose structure has not yet
experimentally determined. Second, for good model structures, usually when
a high homology has been detected, an experimental determination could be
not necessary. Third, it can be used on a large number of known protein
sequences: it has been estimated that it is currently possible to model with
useful accuracy significant part of approximately one third of all known pro-
tein sequences. Furthermore, the number of proteins of known structures is
destined to increase.

The basic idea of homology modeling is that similar sequences, likely, have
similar structures. Just to give an idea, similarity above 25% can be enough
to produce a good model of the unknown structure. Usually, structures
are more conserved than sequences by the evolution. This implies that two
related sequences can share similar structures [10]. However, deciding on the
base of sequence similarity if two structures are similar, is a very hard task.

For these reasons and for the importance that the structure has for molec-
ular biologists, structure data have been collected in a unique big database,
called Protein Data Bank (PDB). Since 1975, when PDB has been builded up,

17



18 Protein folding and design

a lot of structures of macromolecules (basically proteins) have been collected.
In 1992 there were about one thousand of macromolecules structures. At the
moment (June 2000) of the 12474 macromolecules structures (proteins, nu-
cleic acids, carbohydrates) there are more than 11059 of protein structures.
Most of the protein structure data were obtained by X-ray crystallography
(9233) and by solution nuclear magnetic resonance (NMR) (1583) and only
243 are obtained by theoretical modeling. Structures deposited on PDB con-
stitute an important source for molecular biologists and for people working

in bioinformatics and biophysics.

1.3 The protein folding problem

In the higher living beings proteins are synthesized in the cytoplasm through
a complex mechanism of biosynthesis. Once the sequence is synthesized the
protein is not yet active. To become biological active it has to fold into a
specific three-dimensional conformation, i.e. the native state. In principle,
there are a lot of different conformations that the sequence can adopt. As-
suming there are 3 different coarse-grained conformations per amino acid, the
number of possible distinct conformations, for a protein with 100 amino acid
(a relatively small protein), should be 3!%° = 10*®. Some of these conforma-
tions are not accessible, due to steric reasons. Nevertheless, even taking into
account this observation, the number of physical conformations is enormous
and the protein should take, to fold, a time larger than the universe age,
to find the native state by a random exploration. How can the protein find
his native conformation among a gigantic number of conformations? This
question is known as Levinthal paradox, from the first that arose it ([34]).
A first attempt to answer this question, comes from the Nobel laure-
ate Anfinsen and coworkers ([2]). Before their studies, the nature of the
sequence-structure relationship was completely unknown: is the structure
written in the sequence as a physical-chemical message or there is a biolog-
ical machinery similar to the complex of enzymes regulating biosynthesis?
Anfinsen’s studies on the re-folding of ribonuclease showed clearly that pro-

tein sequences under physiological conditions can automatically find their

18



1.3 The protein folding problem 19

native state minimizing the free energy. In other words, proteins with their
solvent constitute a physical system that is thermodynamically stable only in
their native conformation. This “thermodynamic‘hypothesis” excludes the
possibility, that proteins adopt their native conformation thanks to a com-
plex biological machinery. Anfinsen itself, writes about the thermodynamic
hypothesis ([2]):

...the three-dimensional structure of a native protein in its normal
physiological milieu (solvent, pH, ionic strength, presence of other
components such as metal ions or prosthetic groups, temperature,
and other) is the one in which the Gibbs free energy of the whole
system is the lowest; that is, that the native conformation is
determined by the totality of interatomic interactions and hence

by the amino acid sequence, in a given environment.

The impact that this discovery had on molecular biology has been so
strong that this paper is one of the most cited in the field. If the native state of
a protein is the global minimum of the free energy, consequently it is possible
to predict its structure just by simulating its dynamics by standard tools of
physics. This is up to now, one of the fundamental still unsolved problems
in biophysics. The complexity of the problem is mainly due to the size of
proteins —proteins range from 100 to 500 amino acids, i.e. from 1000 to 5000
atoms— and to the difficulty to treat the solvent accurately. Integrating the
Newton’s equation numerically is possible by using supercomputers only for
time intervals of few picoseconds. A striking result in this field has been
obtained in 1998 by Duan and Kollman, who were able to follow the folding
of a small protein for 1us [17]. The time necessary for the simulation was
4 months on a 256 processors supercomputer corresponding to a total CPU
time of 80 years! At the end of the simulation they observed the presence of
an intermediate state in the folding pathways.

The result of Duan and Kollman, if it is important in the history of force
field simulation, shows that we are still far from solving the protein folding
problem by brute force, i.e. simulating the real dynamics of proteins until the

global free energy minimum is found. Most of the proteins are much longer
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20 Protein folding and design

than the one used in [17] and they would fold in a CPU time that is 10°-
108 million times much longer. Furthermore following biophysical processes
by simulating them in full details does not necessarily mean to understand
them.

In order to understand protein folding better a lot of simplified models
have been proposed. Usually, simplified models have not, at the moment, the
aim to find the native state of protein sequences, but focus on the dynamics
and thermodynamics of such physical systems. This is the case, for example,
of the Go-model [20], in which the knowledge of the native structure is the
input of the model itself. The main idea is that and energetic bias towards
the native state, without any realistic description of physical interactions,
allow to study protein dynamics. In the simplest form, the energy function
is defined as the negative of the number of contacts present in the native
conformation. Two amino acids are said to be in contact, if the distance of
their C-a’s is less than a given cutoff, usually taken in the interval 6-8A, and
if they are not consecutive along the peptide chain. To each conformation is,
then, associated an energy equals to the negative of the number of contacts
shared with the native conformation. Since the energy is well specified and
the native state is by definition the state with the lowest free energy, the only
problem is how to define the dynamics. The basic feature of this model is
“ultra-specificity”, since the native conformation is by definition the ground
state and an ergodic dynamics will reach always the native state. However,
such model is interesting because it allows an analisys of the folding process
of a well designed sequence and how dynamics is controlled by the topology
of the native state.

Models for random heteropolymers can be used to study protein-like fea-
tures. Usually, models that allow analytical calculations are too simple to
capture the sequence-structure relationship, peculiar of proteins. Instead,
models apt for numerical implementation, like the one described in next
chapter, capture some of general features of proteins and allow a deeper
study of protein folding and design. Proteins, in fact, can be considered
special heteropolymers that have evolved for fast-folding into a unique and
thermodynamically stable conformation [51, 67, 5, 31]. By contrast with the
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1.4 The protein design problem 21

Go-model, such models are completely unbiased, since fast folding and other
protein-like features have to emerge through a suitable sequence selection
[61, 67, 70, 8, 15]. In fact, heteropolymers at low temperature behave dif-
ferently from proteins. They show a glassy dynamics and the state in which
they fold depend on the initial conditions [5, 53]. Kinetic and energetic bar-
riers prevent a easy access to the ground state and the search of the global
minimum is more similar to that prospected by Levinthal [34].

This is not the case for sequences that show protein-like features: they
fold through a two-state mechanisms rapidly and reversibly in the native
state [15). It follows, that a rigorous study of protein folding has to be
preceded by a suitable optimization of the sequence: only for such a sequence
physical properties, for example the type of transition in the native state,
could be compared with real proteins. For example, the optimization of
the thermodynamic gap between the native state and a generic random coil
conformation seems to be a sufficient condition for fast folding [60]. Such
optimization will be reviewed in next chapter, where different methods for

protein design on simple models will be presented and discussed.

1.4 The protein design problem

Protein design deals with the problem to find how many and which kind
of sequences fold on a given target structure. In principle the problem can
be solved enumerating all the possible sequences and attempting to solve
the protein folding problem for each of them. Obviously, a similar strategy
is not practicable. The number of sequences that can be mounted on a
structure formed by 100 amino acids is 20'°°. Even having a crude algorithm
able to decide if a sequence is compatible with the given structure in a very
short time—let’s say 1ms—it would take 10%" seconds to solve the problem.
Furthermore, as we have seen previously, the structure prediction problem is
far from a general solution even in an approximated way.

A simple but approximated solutions to protein design, has been pro-
posed and verified by experiments by Hecht and coworkers [30, 83]. The
method is based on the assumption that the hydrophobic force is the main
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force driving proteins into their native conformation. The hydrophobic force
is the propensity of hydrophobic amino acid to dislocate themself in buried
regions and polar ones in regions exposed to the polar solvent. By specify-
ing explicitly the sequence locations of hydrophobic and polar amino acids
it should be possible to design sequences, whose stability in the target con-
formation is large. This strategy is based on the premise that formation of
stably folded structures does not require the explicit design of specific inter-
residue contacts; the precise packing of the three-dimensional jigsaw puzzle
need not be specified a priori. This strategy is different from others used
in computational protein design where the goal is the optimization of the

packing of side-chains especially in the protein core.

Such a strategy has been applied, first, to a four helix bundle [30]. The
four helix bundle is a common fold among natural protein and has been the
target structure also in previous efforts in de novo protein design. The col-
lection of protein sequences have been produced by generating a degenerate
family of synthetic genes. Each gene encoded a different sequence, but all
the sequences shared the same periodicity of polar and non-polar residues .
Positions requiring a non-polar residue were filled by Phe, Leu, Ile, Met or
Val, whereas positions requiring a polar amino acid were filled by Glu, Asp,
Lys, Asn, Gln, or His. Since in the four-helix bundle there are 24 buried
positions and 32 surface positions the sequence degeneracy can be simply
evaluated: 52* x 6%2 = 4.7 x 10*'. This is a number extremely small with
respect to the number of possible sequences, when nobody restriction is used,
i.e. 2024132 = 7.2 x 107, The design strategy is based on the premise that a
substantial fraction of the sequences fitting this pattern will actually fold into
proteins that are compact, stable, and a-helical. By contrast, if one does not
use any design criterion to select sequences, a very small (negligible) fraction
of sequences will be expected to fold to the target structure, neither to a

similar one.

In order to test this strategy, 48 sequences were generated by binary pat-
terning amino acids following this criterion. Experimental determinations of
the protein structure, as we have seen in previous sections, are long and ex-

pensive. For these reasons, a direct determination of their three-dimensional

22



1.5 Summary 23

structure has not been attempted. However, the ability of 29 of the 48
sequences to resist to proteolytic degradation suggests that they fold into
stable globular structures. Other tests done on three of the remaining 29
sequences show that they possess a content of alpha-helix comparable with
the four-helix boundle. In conclusion, at least a large fraction of the designed
sequences 60% fold into globular a-helical folds.

If hydrophobic-polar patterning of sequences is not a sufficient condition
for a successful design, it seems to be a good filter to reduce the gigantic
number of sequences. On the other hand, a statistical analysis of protein
structures show that only a fraction of amino acids (70%, [77, 43]) are binary
patterned in protein sequences. It follows that burial of amino acids cannot
be the only criterion to select sequences; in other words hydrophobic-polar
patterning is not even a necessary conditions for protein design. There are
two reasons to this, in part obvious, result. First, hydrophobic interactions
are not the only ones. Stabilization in the native state is increased by hy-
drogen bond, polar forces between amino acids, van der Waals forces, and
so on. Furthermore, the different size of side-chain can play an important
role in discarding otherwise energetic favorable conformations. Second, op-
timization of sequences on the target conformations, in this case by binary
patterning amino acids on the basis of information of the target structure,
cannot be the most convenient strategy. It has been shown, with the use of
simple models, that alternative conformation can play an important role in
destabilizing sequences optimized to fold on the target conformations. This
problem, called negative design, will be reviewed in next chapter. It will be
shown how it works in simple models and it will be one of the main issues of
this thesis.

1.5 Summary

In this chapter, we have introduced several concepts of fundamental impor-
tance to understand the motivations of this work. Here, we would like to
summarize some of the most important concepts that will be useful in the

following chapters.
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24 Protein folding and design

protein sequence: is the sequence of amino acids, that uniquely defines

the biological function of the protein.

protein structure: is the native conformation of the protein, i.e. the con-
formation in which the protein is biologically active. Protein structures
can be determined by X-ray crystallography or by solution NMR and
experimental data can be retrieved from PDB [23].

secondary structure: several consecutive amino acids can be arranged in

highly regular structures, basically alpha-helix or beta-strand.

structure prediction: the possibility to predict the three-dimensional struc

ture of proteins is of fundamental importance in molecular biology. An
algorithm for structure prediction reads as input a protein sequence

and returns as output the associated protein structure.

protein folding: globular proteins are physical systems that fold sponta-
neously and reversibly into globular conformations, the protein struc-
ture. The study of protein folding through standard methods of physics
has attracted many physicists.

protein design: only a microscopic fraction of all the possible sequences
fold on a preassigned protein structure. Giving a rule to determine
which kind of sequences adopt a given target structure would be of

fundamental importance in drug design.
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Chapter 2

Statistical mechanics approach

to protein design

In this chapter we will discuss the protein design problem in the contexts
of simplified protein models. Such models treat a protein structure as a
self-avoiding walk on a cubic lattice. Each vertex of the self-avoiding walk
corresponds to an amino acid of the polypeptide chain. Interactions between
amino acids are described by some coarse-grained contact potentials that can
be extracted from real proteins [47, 48, 37, 71, 72, 76, 79, 82, 63, 64, 80, 16,
9, 38, 46] or assigned according to heuristic observations [33, 35]. During
the coarse-graining procedure all the internal degrees of freedom have been
integrated out, while the dependence on the coarse-grained conformation has
been retained. By eliminating some “marginal” problems like packing of dif-
ferent side-chains or the detailed description of amino acid interactions—that
are of fundamental importance in a experiment-based approach to protein
design— one can focus on the major problem in protein design: the negative

design.

This problem arises from the observation that sequences optimized for
being stable in a target conformation, can be even stable in alternative con-
formations known as decoys. This competition between decoys and target
structure can be solved by decreasing the fitness of sequences with respect

to decoys structure, rather than optimize it on the target one. Negative
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26 Statistical mechanics approach to protein design

design has been understood only recently on the bases of statistical mechan-
ics [14, 65]. Its solution relies on writing the right fitness or scoring function
as a non-local energy function, i.e. depending on the target conformation as
well on the alternative ones. Previous approximated methods proposed by
Dill for the HP model (see below) [8, 77] and by Shakhnovich [69, 67, 70],

give only a partial and unsatisfactory answer to negative design.

In this and in the following chapters, negative design will have a primary
role. In the following sections we will review the main approaches to protein
design on coarse-grained models of proteins and we will introduce a rigorous
scoring function for protein design. In the next chapter, we will describe an
iterative method to approximate in an efficient way such scoring function.
Finally, in the last chapter, an approximated scoring function will be applied
to real protein and designed sequences will be compared with sequences se-

lected by evolution.

2.1 A coarse-grained model for proteins

In this section we describe a protein model that has been widely used in the
literature for understanding global properties of proteins and that has been
a key ingredient in my studies. A lot of questions have been faced by the use
of this model, ranging from protein folding to protein design: How proteins
fold? Which and how many sequences fold into a given structure? Why
some structures are more encodable (or designable) than others? Though
extremely simplified with respect to real proteins, such models contains a lot
of features that can be identified in proteins and more in general in random
heteropolymers.

In the model we are considering, interactions are described in an effective
way as two-body contact interactions. Two amino acids are said to be in con-
tact if the distance between their C-a/s is less than a cutoff value, dp,ranging
between 6 and 8A. For example, in our studies on protein design in chapter
4, we have done the choice dy = 8A. Contacts are conveniently described in

terms of a contact map. To a given conformation I', we can associate the
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2.1 A coarse-grained model for proteins 27

contact map A(I'), such that:

1 diys <dy .
A;(D) = " 2.1
J( ) { 0 otherwise ( )

where 7 and j are two sequence indices (1 =1,... ,L,' where L is the number
of amino acids of the sequence) and d;; is their Euclidean distance in space.
Contact maps are two-dimensional representations of protein structures and
are frequently used by people determine or analyze protein structures. In
fig. 2.1 there is a graphical representation of the contact map of barnase,

whose structure is represented in fig. 1.1.
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Figure 2.1: Contact map for the protein la2p. Both on the horizontal and
vertical axis there is the sequence index. Contacts between amino acids are
visualized by dark squares. Secondary structures appear as clusters parallel
(a-helices or parallel S-sheets) or perpendicular (antiparallel [-sheets) to the

diagonal.

Two amino acids that are in contact, contribute to the energy with an
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28 Statistical mechanics approach to protein design

amount that depends on the type of amino acids involved in the contact.
Since in nature there are twenty different amino acids, the contact potentials
can be stored in a 20 x 20 matrix, the symmetric contact potentials matrix B;
thus there are 210 distinct interaction potentials. Let’s o be the sequence and
o; and o; the amino acid types at position 7 and j. Then, the contribution
to the energy from the i-j contact is B(o;, 0;). To a particular sequence o,
adopting a given conformation I', is associated an energy that is the sum

over all the possible two-body interactions

H,(T) =Y Ay(I)B(oi, 05) , (2.2)
i<j
where ;. is a shorthand for Zle SE ;+1- Two different conformations,

generally speaking, will have two different contact maps and, probably, two
different energy values.

Since we are not considering internal degrees of freedom of amino acids,
the energy function H has to be considered equivalent to the free energy
(sometimes called internal free energy) mentioned in section the previous
chapter. In the coarse-graining procedure, internal degrees of freedom are
integrated out through a (partial) statistical average. In the present chapter
and in the next ones we will call energy function, or Hamiltonian, the free
energy associated to a coarse-grained conformation and we will distinguish
it from the conformational (or global) free energy.

In the coarse-grained representation that we are considering, proteins are
modeled as chains of dimensionless beads and sticks. In order to implement
self avoidance due to the three-dimensional nature of amino acids, one has
to introduce constraints on the angles formed by two consecutive sticks. We
observe that, without such constraints, the model protein would collapse on
itself, minimizing the energy in a trivial and unphysical way. The simplest
way to introduce these constraints is to allow amino acids to lay only on the
sites of a lattice. In particular, we will adopt the cubic lattice, that is simple
to use and respects the correct peptide bond length (see fig. (2.2)). Two
amino acids, consecutive along the chain, lay on two nearest neighbour sites

on the lattice. In order to implement self-avoidance, one site will be occupied
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2.1 A coarse-grained model for proteins 29

by no more than one amino acid. Then, a generic conformation or protein
structure is represented by a self-avoiding walk on the cubic lattice like the
one in fig. (2.2) with a number of steps equal to the number of bonds in
the polypeptide chain. Two self-avoiding walks are different if they cannot
be super-imposed by any roto-translation and correspond to two different

protein structures.

Figure 2.2: An example of protein conformation in the cubic lattice model.
The 27 monomers are connected by 26 bonds and occupy a 3 x 3 X 3 cube.

The sequence is represented by the differently colored monomers.

The angles formed by two consecutive sticks are not too realistic since
the protein backbone trace does not follow a cubic zig-zag. Furthermore the
different size of side-chain can be important in the folding of protein sequences
[41], while the lattice constant is independent of the type of amino acid. The
cubic lattice is quite poor from this point of view. In more sophisticated
calculations a higher lattice resolution, without necessarily introducing an
off-1attice model, can improve the description of the conformation space. For
example, it has been shown that using a Face Centered Cubic lattice, a real
structure can differ by less than 2A from the best-fit conformation [54].
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30 Statistical mechanics approach to protein design

2.2  Which potentials to use?

The interactions of amino acids in proteins are much more complex than the
contact potentials shown in the previous section. First of all, real proteins
can fold only in their natural environment. This means that the presence
of water is of fundamental importance to drive the protein into its native
conformation and to stabilize it, whereas, in the model we deal with, the
solvent is absent. Then, interactions between amino acids are the result of
several different kind of interaction (electrostatic ones, van der Waals forces,
hydrogen bonds) and vary in a complex way with the distance. Finally,
the interactions between two amino acids do not depend only on the kind of
amino acid but even on the environment in which they are embedded: several
amino acids can have a hydrophobic or polar behaviour depending on their
position on the protein. Why one should use then such a simplified model

for interactions?

There are many reasons. First, models with two-body interactions have
an important role in statistical physics and, in some cases, it is possible to
find analytical results [73]. Second, exact calculations of energetic interac-
tions require quantum mechanics and are not practicable for objects as large
as proteins, whose native conformation is stabilized by the interactions with
thousands of water molecules. Last, but not least, even if the dependence
of the interaction with the distance is specified a priori by the definition of
the contact map, the contact potentials B’s can be optimized by fitting data
obtained by the Hamiltonian (2.2) using a method generally called knowledge-
based potential extraction. The free parameter in eq. (2.2) allow to compen-
sate, though only partially, the simplifications described above.

The problem to fit/optimize the two-body contact potentials with the
unknown real ones is a fundamental subject in using coarse-grained Hamil-
tonians. Many different groups have used several different methods to accom-
plish this formidable task. Here we are interested especially in the so-called
knowledge-based methods that are relatively simple to use and have the ad-
vantage to take into account all the external factors (like the interactions

with the solvent, the different frequency of amino acids in proteins, and so
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on) [47, 71, 37, 48, 46, 9, 80]. Such methods, instead of facing the difficult
task to coarse-grain the quantum interactions between atoms by an effective
mean force parameters, aim to find optimal pararrieters by using in a smart
way the already known sequence-structure relationship. Here we will review
briefly some of them.

One of the most used (and criticized) methods for extracting contact
potentials, is the quasi-chemical approximation [47, 48, 71]. The basic as-
sumption of the quasi-chemical method is that two kinds of amino acids, let’s
say A and B, that are frequently found in contact in protein structures, likely,
will attract each other strongly. By analyzing a set of protein structures, it is
possible to estimate the frequency fap of contacts between A and B—defined
as the number of contacts A-B divided by the total number of contacts—and
the frequency fa and fp of the amino acids A and B, respectively. The
contact potential B(A, B) is given by

B(A,B) = —Tlog Jf:’*}fB : (2.3)

where the denominator in the logarithm represents the expected frequency
for independent events. If the measured frequency is larger than the expected
frequency the potential will be negative and the associated interaction attrac-
tive.

Another knowledge-based method for extracting potentials is the one in-
troduced by Maiorov and Crippen [37, 80]. From PDB it is possible to re-
trieve data for M sequences together with their associated structure, (o1,T1),
(09,T9), ... ,(oam,Tar). By threading (a technique widely used in this field)
or by other tools it is possible to generate, for each protein, N alternative
conformations not related to the native state. Since the native state is the
conformation in which the free energy has a global minimum, we can write

the following system of inequalities:

H(e,,T1) < H(oy,TY)
H(os,Ts) < H(oy,TH)

H(O’M,FM) < H(O’M,ngf))
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where j = 1,..., N. This set of NM inequalities can be solved by standard
methods of linear programming or with more efficient techniques. The poten-
tials obtained in this way are, at least in principle‘, more reliable, since they
are based on physical principles. However, the goodness of such parameters
depends in a crucial way by the method used to generate alternative confor-
mations and, in part, by the parametrization used for the energy function.

Simplified models can be interesting tools even when one does not possess
optimal potentials. In this case, one renounces to reproduce some partial
results in structure prediction of natural sequences, in protein folding or in
protein design —for example, the prediction of key-sites of a specific protein,
like folding nucleus or conserved residues—but use them to understand better
general features of proteins. For example, one could use lattice models to
answer the following general questions: Can the typical sequence-structure
relationship of proteins be reproduced in simple models? How does it depend
on the potentials used? In this case, the use of a twenty-letter alphabet is
not necessary, whereas using a smaller alphabet can help in exploring the
sequence space.

The simplest protein model (we are not considering ultra-specific mod-
els, like the Go-model [20]) is the HP model [33]. The twenty amino acids
are grouped in two classes, Hydrophobic and Polar, and, consequently, B
becomes a 2 x 2 (symmetric) matrix. The Hamiltonian can be rewritten in

the following form:
H,(I') = Ngg By + NgpBgp + NppBpp (2.5)

where Ny, for example, is the number of hydrophobic contacts in the struc-
ture I'. The standard potentials introduced by Lau and Dill are:

BHHZ—l BHp:BpHZBpp:‘—O. (26)
Then the energy function is simplified in:
H;(I') = NgyBun - (2.7)

This energy function implement the observation that proteins in nature form

a compact hydrophobic core, while polar amino acids are prevalently located
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2.3 Designing sequences by energy minimization 33

at the surface. In fact, a generic sequence will adopt as maximally stable
conformation the one in which the number of H-H contacts is as large as
possible. l

We observe that the presence of the solvent, even in this simple Hamil-
tonian, is not neglected: instead, it is taken into account in an effective way,
since monomers that maximizes the contact with other monomers, necessar-
ily minimize the exposition to water molecules.

Li et al. in [35] preferred to use a slightly different potentials, i.e.:
Byy =—-2.3 Bpp=Bpyp=-10 Bpp=0. (2.8)
They observed, in fact, that these potentials satisfy some physical constraints,
not satisfied by the standard potentials:
1. compact shapes have lower energy than non-compact shapes;

9 H monomers are buried as much as possible, which is expressed by the

relation Byy < Brp < Bpp;
3. different types of monomers tend to segregate, which is expressed by
2Bpp > Bug + Bpp.

Conditions 2. and 3. were derived from analysis of the real-protein data
contained in the Miyazawa-Jernigan matrix of inter-residue contact energies.

Finally, another set of potentials that has been used for testing design
algorithms is the so called AB model. The two kinds of monomers are here
referred with the letters A and B, since potentials are not aimed to implement

hydrophobicity. Potentials for AB model are:
BAAZ—]. BAB:BBAZO BBB:—']- . (29)

In this model, monomers tend to segregate but no hydrophobic core is formed.

2.3 Designing sequences by energy minimiza-
tion

In this section we will discuss one of the first methods of protein design

inspired by statistical mechanics studies. The goal is to give a strategy for
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selecting sequences showing protein-like features, i.e. sequences able to fold
fast into a unique and specific protein structure. The (target) structure,
that is specified before the selection procedure, 'Will be chosen randomly
or, when possible, selected so that there exist many sequences folding on
it. This requirement, on one hand, guarantees that the set of solutions to
protein design is not empty and, on the other hand, makes more stringent the
correspondence with real problems of protein design. Indeed, it is strongly
believed that real protein structures admit many different sequences folding
on them [35]; this provides a wide basin for selecting the sequences most

appropriate to their biological function.

In order to test rigorously and efficiently the proposed strategy, simplified
models of proteins will be used. For such models, indeed, folding algorithms
can be, at least for short proteins, efficiently implemented and, in some cases,
an exhaustive enumeration in the conformation space is possible. An algo-
rithm of protein folding reads in input a sequence and returns in output the
structure with the lowest energy (native structure or ground state). An al-
gorithm of protein design reads in input a target structure and returns in
output a sequence, such that will fold on the given structure. By piping the
folding algorithm to the design algorithm, it is possible to verify the goodness
of the design algorithm: if the target structure and the native structure are
the same, the design algorithm will be considered successful; otherwise will

be considered unsuccessful (see fig. 2.6).

The method that will be reviewed in this section is also called energy min-
imization [69, 67, 70]. It has been proposed by Shakhnovich and it is based is
based on previous studies of the energy spectrum of random heteropolymers.
Approximated statistical mechanics studies of random heteropolymers have
shown that their energy spectrum consists of two parts: the continuous part,
to which the majority of random conformations belong, and the discrete part,
representing a few conformations with best-fit contacts. In the continuous
part energy levels are highly degenerate with an exponentially large number
of conformations associated to each such level. More important, in this part
the model is self-averaging, so that its features do not depend on the specific

order of the amino acids but rather on the global properties of the sequence
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as his composition. By contrast the bottom part of the spectrum is very
sequence-sensitive, so that different sequences deliver significantly different
energies to their low energy states. '

The above discussion suggests a simple way for selecting good folder se-
quences. The basic idea is that thermodynamic stability can be, on average,
a necessary and sufficient condition for fast folding. This is not guaranteed a
priori, since dynamical properties of statistical systems could depend on the
dynamical accessibility in the configuration space too. However, some studies
on protein folding suggest that the ability for a protein to fold rapidly de-
pends mostly on the thermodynamic gap [60, 61, 78]. Experimental studies,
furthermore, suggest that proteins would be optimized by Nature not for fast
folding, but for stabilizing the native conformation [31]. Hence, the problem
is selecting sequences with high thermodynamic stability. In fig. 2.3 is shown
a possible energy spectrum for a random heteropolymer and a protein-like se-
quence. Since the continuous part of the spectrum is composition dependent,
optimization of the energy with respect to sequences by keeping constant the
amino acid composition will lead to a consequential optimization of the ther-

modynamic gap.

protein heteropolymer

continous
pa

discrete ap ‘__I___‘

part

L native state

Figure 2.3: Energetic spectrum for a protein sequence: the ground state is a

pronounced energetic minimum.

The technical aspect of searching in the sequence space for sequences with
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low energy does not create particular difficulties. Shakhnovich and Gutin, for
example overcame this problem by optimizing the energy of the sequence by
exploring the sequence space with a Monte Carlo rﬁethod at low temperature.
Moves in the sequence space are efficiently proposed by swapping two amino
acids at the same time. Such moves generate new sequences with the same
composition of the old ones. The probability for accepting the proposed
moves is the standard Metropolis probability:

exp [-AH,(I")/Ts] if AH,(T) >0

] (2.10)
1 otherwise

Ploc —+0o') = {
where Ty is a control parameter.

The meaning of the probability (2.10) is the following: if AH < 0, then
the move will be always accepted—accepted with probability 1—otherwise
will be accepted with probability depending on AH/T. By the previously
described rule for proposing moves and with the Metropolis acceptance prob-
ability, one can generate a path, or Markov chain, in the sequence space, i.e.:

o® = oM 5 6@ 5.0 (2.11)

Sequences present in this chain, have, on average low energy and, hence,
a high thermodynamic gap. (This is not necessarily true for the initial se-
quence, o9 that, usually, is generated randomly, and for sequences close to
it along the Markov chain, since they are still correlated to it.) For a high
value of Ty the algorithm is not enough selective and sequences with a large
value of H, (') can be visited as well. At an intermediate value of Ty the
algorithm visits low energy sequences and, at the same time, fluctuations in
the energy allow to overcome small energetic barriers. Finally at very low
Ty the algorithm is not able to overcame global and local energetic barriers
and low energy sequences becomes hard to be retrieved. In this case one
can use more sophisticated selection algorithms like simulated annealing or
simulated tempering.

The method described above has been applied by Shakhnovich and cowork-
ers to many different models—always in the context of two-body Hamiltonian

but for different interaction parameters and chain length. For example he
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tried to design 27-mer self-avoiding walks with AB interactions and 80-mer
with HP and MJ interactions, described in the previous section. In the
first case the relatively shortness of the chain and the further constraints
to consider only maximally compact conformation allows an exhaustive enu-
meration to assess the performance of the design strategy.

In the second case an exhaustive enumeration is out of reach and a fold-
ing algorithm is used to verify the ability of the designed sequences to find
the target structure. The success of the design procedure is only partial
since it works only for the MJ interactions, while designed sequences in
the framework of the HP model are unable to find the target conformation.
Shakhnovich suggests that for some protein models, viable sequences fold-
ing on a given structure could not exist. Miyazawa and Jernigan potentials
should describe real-world interactions and should be used as a prototype for
protein folding simulations. His statement is that the number of amino acids
classes for reproducing a sequence-structure relationship isomorphous to the
one occurring in proteins has to be larger than 5 or 6.

He takes as a support to his observation, analytical calculations for ran-
dom heteropolymers. From this calculation the critical energy FE. which
separates the continuous part of the spectrum from the discrete one is given
by:

E,=FE;— JN+/2lnvy (2.12)

where Ej is the average of the distribution of the energy levels, J its stan-
dard deviations and + the number of conformations per monomer—about
4 for the cubic lattice. For a particular sequence composition Shakhnovich
estimated both Fy and J by using 1000 random energy states. Furthermore
he calculated the energy Ey for a generic low energy designed sequence and
compared with E.. He found for the HP model Ey > E, while Ey < E, for
the MJ parameters and concluded that “the HP model is not specific enough
to have unique [native] structures”.

In the next chapter we will use procedures for protein design with a
reduced number of amino acid classes as well as with twenty classes. In

fact, it is likely that just two classes (Hydrophobic and Polar) are enough
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to reproduce the correct sequence-structure relationship present in the real
world. As we have seen in the previous chapter, protein design experiments
by binary patterning amino acid, produced good results [30, 83]. Such results

show essentially two things:
e a two-letter alphabet allows for the unique encoding of structures.

e the hydrophobic force is the main force driving protein to the native

state.

For these reasons understanding the sequence-structure relationship for a
reduced number of classes seems an interesting challenge both from a con-

ceptual and technological point of view.

2.4 A rigorous approach to protein design

In the energy minimization method explained above there are a lot of unsat-
isfactory aspects. First, one has to choose a priori the sequence composition.
Consequently, sequence selection occurs by exploring an infinitesimally small
subspace formed by all the sequences with such composition. Second, it is
not generally applicable: in fact for models with a reduced number of classes
it gives wrong answers [86]. Third, it is based on the empirical consideration
that for heteropolymers with the same composition the energy gap should
depend only on the discrete part of the spectrum. Even if the method is
very simple and does not consume CPU time, a direct improvement is not
feasible: the solution obtained by minimizing the energy can fold or not fold
in the target structure but it is not possible to decide which of these are the
best solutions.

The correct method was envisaged independently by Deutsch and Kuroski
[14] and Seno et al. [65], who replaced the energy scoring function with a more
complex scoring function. Here, we will follow the approach given in [65],
that follows directly from elementary statistical mechanics considerations.

The probability to find a sequence ¢ on a particular conformation I'* and
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at a given temperature T, is given by the Boltzmann probability

exp(—Hq(I")/T)
P (I') = : 2.13
5y exp(~H, (/1) (2:19)
The conformational free energy for a sequence o at the temperature 7 is
given by F, = —TInY pexp(—H,(I')/T). Then, the probability F, can be

rewritten as:

P,(T*) = exp [ (H,(T) = F) /T . (2.14)

At high temperature P,(T") will be almost 0 for all the sequences and for all
the structures. However, at lower value of T' some sequences show a pref-
erence for lower energy structures. If the temperature is still decreased the
probability to find the sequence in its ground state will be almost 1 and it will
be 0 for all the other structures. Since the F, is independent of I'* the confor-
mation with the largest probability is the ground state. However, in protein
design problems the Boltzmann probability is not directly correlated with
H,(I'*). In particular, it is clear that sequences with the highest probability

to fold on a given conformation are those which minimize H, — Fo.

2.5 The first order cumulant approximation

Deutsch and Kuroski apply this strategy to the 27-mer lattice model with
interaction of type AB and HP. In order to evaluate F, they introduce two
important simplifications. The first one is to consider just the maximally
compact conformations. The justification is that globular proteins have folds
with a high degree of compactness. In the framework of protein lattice models
this is realized by adding to the Hamiltonian a negative interaction to all
the contacts, independently on the type of amino acids that are interacting.
This excludes the possibility that for some sequences the native state is a
non-maximally compact conformation.

The second simplification they apply is the high-temperature expansion
on the free energy. This approximation is not completely justified. The tem-
perature at which native states are highly populated has to be small com-

pared with the average energy separation between low energy conformations.
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The first order expansion gives

F, ~ (H,) + const. (2.15)

so that the approximate scoring function to minimize for the contact inter-

action Hamiltonian is:

Ko (T) = [Ay — (84)]B(si, 55) (2.16)

1<J

This scoring function is very similar to the energy function of eq. (2.2).
The geometrical properties of the conformations are contained in an “ef-
fective” contact map, A — (A). Since all the entries in (A) range in the
interval [0,1], Ay — (Ay;) is positive (negative) for a native (non-native)
contact. The average (---) has to be done over all the maximally compact
conformations for which an exact enumeration is feasible. Depending on the
self-avoidance of the walks not all the contacts have the same probability.
For some short chains (27-mers) one can assume a mean-field approximation
where the probability for a contact is equal for all the contacts allowed by

geometrical properties of the lattice. In this case

(A”> — N Ncontacts (217)
possible contacts

for all the contacts i, 7 allowed by the geometric topology of the cubic lattice.
For longer chains, a dependence of A on |2 — 7| should also be considered. A
discussion about such problem can be found in chapter 4 and appendix B,
whereas in fig. 2.4 we show a graphical representation of an average contact

map, where the |7 — j| dependence has been taken into account
It is possible to show that the energy minimization approach to protein
design is a consequence of the score function of eq. (2.16). Mutations in the
sequence during the Monte Carlo procedure has effect on the average contact
map only for sequences with different composition. It is easy to observe that,
if (A;;) = Ag is independent on ¢ and j, the second term in eq. (2.16), i.e.

Ag Zij B(o;,05) is a function of the composition of the sequence.
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Figure 2.4: A visual representation of an average contact map evaluated
according to criteria explained in appendix B. Dark (light) colors correspond
to large (small) values of average contacts. To be compared with the map in
fig. 2.1.

26 A Monte Carlo estimate for the confor-

mational free energy

The first-order high-temperature expansion in eq. (2.15) is the first attempt
to take into account contributions coming from the free-energy, i.e. from
the denominator of eq. (2.13). Approximations of the free energy through
a cumulant expansion like in [50], do not lead to a significant improvement
with respect to the first order cumulant expansion (Seno et al., unpublished
results).

A substantial improvement with respect to mean field approximation, has
been introduced in reference [65]. There, it is recognized that high-energy
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42 Statistical mechanics approach to protein design

expansion of the free energy is not a good approximation for lattice models of
protein and, instead, it is applied a standard method from polymer theory to
estimate it. The method is based on a stochastic generation of self-avoiding
walk to sample the configuration space in a smart way.

First one recognizes that the partition function, that is related to the
conformational free energy by Z, = exp (—F,/T), can be evaluated as a
thermal average, i.e.

_ Ctot
o <eHa'/T> .

(2.18)

Here Cioy is the total number of conformations and (- - -) denotes the canonical-

ensemble average, i.e.

ZI‘ e~ Ho/T Hy [T
N > ore He/T

Then one uses an importance sampling Monte Carlo growth scheme to esti-

(eFel7)

(2.19)

mate the average in eq. (2.18). Conformations are generated in a step by step
manner and are completely decorrelated. At each step a direction is selected
in a stochastic way and a new bond is added to the walk in such direction.
Directions carrying the smallest amount of energy are selected with the high-
est probability, while directions that don’t preserve self-avoidance are never
selected. This guarantees self-avoidance and compactness, speeding up deter-
mination of the average. However, since walks are generated with a growing
mechanism, the distribution is different from the desired Boltzmann one and
a re-weighting mechanism is necessary for a correct estimate. Let p; be the
probability for the selected displacement at the i-th step, the probability
that a generic conformation I' is sampled is p(I') = [, p;. Finally, we get the

following estimate of the denominator of eq. 2.18:

<6Ha/T> ~ Ep(e—Ha/T/p(F))eH,,/T
>or(e=He /T [p(T))

where the sum is done over the sampled structures.

(2.20)

This method to estimate the partition function has been applied in the
context of HP lattice model to the 48-mer Harvard structures. Such struc-

tures are some 48-mer maximally compact conformations that have been
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used to test folding design algorithms. Shakhnovich, representing the Har-
vard group, proposed to design some HP sequences that,according to his
method described above, would fold to pre-selected three-dimensional struc-
tures of his choice (the Harvard structures). Then he gave the sequences to
the UCSF group, coordinated by Dill, and the UCSF group attempted to fold
the sequences, i.e. to find their lowest energy structures. If structures with
energy equal to or lower than the energy of the target structure were found,
then the design algorithm would have been unsuccessful. The blind test (the
UCSF group didn’t know the target structures selected by Shakhnovich) is
sketched in fig. 2.6.

For the folding process the UCSF group used the CHCC algorithm (Con-
straint-based Hydrophobic Core Construction), based on a systematic assem-
bly process using discrete geometry. For the design algorithm the Harvard
group used the energy minimization (see section (2.3)) with fixed composi-
tion using a Monte Carlo procedure to explore low energy sequences. As a
result of the test, in 9 cases over 10 the energy for the low energy conforma-
tions obtained by CHCC were systematically much lower than the energy on
the relative target structures. Only in one case the two energy were equal.
While both the groups conclude that the energy minimization strategy does
not work for the HP model, really interesting are the different explanation
that they give about this failure. While the Harvard group point out the
poorness of the HP model and states that for a twenty class model energy
minimization should work, the UCSF group believes that there may be a
problem in the Harvard procedure. In particular, they insist on the problem
of negative design: a method based on a mean-field theory of heteropolymers

cannot have enough information for designing out bad conformations.

The statement that the HP model is not enough protein-like, we think,
it is not well supported. Since the hydrophobic force has been recognized
as the main force stabilizing protein in their native state, a two class model
appear realistic enough to capture the main essence of the sequence-structure
relationship. Furthermore, attempts to design by patterning amino acids in
two classes has been successful more than once. In principle, the structures
used by Shakhnovich could be not encodable for the HP model. Since the
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number of sequences Ny, is 2%%, while the number of structures Ny, is a
number of the order p*® with u ~ 4, the average designability [35] Nseq/Nstr
is unfavorable, while it should be favorable for a‘twenty class model. This
estimate for the average encodability is not realistic because we know that
too open conformations have not to be considered, since they are not low
energy conformations.

In fact, an answer to the Harvard-San Francisco problem has been found
later by Micheletti et al. [44]. Though the sequences proposed had not a
unique ground state, the CHCC algorithm couldn’t found structures for all
ten proposed structures with an energy lower than the energy on the target
ones. The method used by Micheletti et al. [44] was a combination of the
energy minimization and the importance sampling Monte Carlo in conforma-
tional space as described above. Energy minimization has been used to filter
75 viable sequences with different composition, since estimate of free energy
with importance sampling is quite expensive. For each sequence 100000 un-
related conformations were generated in order to estimate the score H, — F;
(see eq. 2.14). Finally, the sequence with the lowest score was folded by the
CHCC algorithm.

Nevertheless, sequences selected by Micheletti et al. [44], are high degen-
erate, since CHCC estimates from 1000 to 10° or more ground state for each
of them. An exact solution for protein design should not be degenerate at all.
Actually, we don’t know if a solution for the Harvard structure exists or not,
and hence how reliable the design method is. For sure, the ten structures
chosen randomly by E. Shakhnovich, are not the most designable, and hence
are not protein-like. In fact, in nature, protein structures are the most encod-
able, since sequence degeneracy, i.e. the fact that many sequences can fold
on the same structure, it has been suggested it is important for evolutionary

reasons.

2.7 Conclusions

The success of the method used by Micheletti et al. [44] shows that energy

minimization and minimization of energy gap are not enough selective for
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protein design, even for simplified protein models. A more refined method
for estimating the free energy has to be used. However, generating low energy
conformations for a given sequence can be computationally very expensive
and, for low value of T', not too accurate. Micheletti et al. overcome this
problem isolating a reduced set of sequence by energy-minimization, and
applying to their method on these filtered sequences.

In my first studies on protein design, we tried to apply ab initio the
Rosenbluth Monte Carlo for estimating the conformational free energy, i.e.
by not limiting in any way the search in sequence space. Since neither the
conformation space nor the sequence space, at least for long chains can be
exhaustively enumerated, the basic idea is to nest a stochastic procedure in
conformation space in a stochastic procedure in sequence space. This idea,
that has been applied by adopting a different formalism on short lattice pro-
teins by Peterson and coworkers [26, 27], is not doable for longer chains. If
one uses the Rosenbluth method for sampling the conformation space and a
standard Monte Carlo procedure in the sequence space, the computational
cost is extremely large. Furthermore, the approximation for the free en-
ergy that is allowed for computational reasons, is not enough accurate and
this selection procedure, though computational expensive, does not improve
previous results.

For these reasons, we renounced to follow the idea of using a nested
Monte Carlo and we focused on a different strategy. Instead of generating low
energy conformation for every sequence visited by our stochastic procedure
in sequence space, we will build up a small but accurate set of conformations
and the conformational free energy will be evaluated by using only this set.
In next chapter we will give a procedure for selecting such conformations and
we will show that the approximation is very good even by using a very small

set.
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Statistical mechanics approach to protein design

target conformation

PROTEIN DESIGN

PROTEIN FOLDING

designed sequence

native conformation

Figure 2.5: An example of blind test in protein design. The sequence se-

lected by Shakhnovich, aimed to stabilize the target structure, is “folded”

by the UCSF group, finding a lower energy conformation. Ideally, the target

structure would have to be recovered by the UCSFE group.
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Chapter 3

An iterative method for protein

design

In experimental studies on protein design, sequences optimized to be stable
on a particular conformation, unfold in an ensemble of unwanted conforma-
tions or decoys. The problem to decrease the fitness of designed sequences

with respect to such decoys is a main theme in experimental protein design.

In this chapter we will introduce and test on lattice models some strategies
for recognizing such decoys and taking into account them in protein design.
Such strategies are based on a stochastic minimization of the scoring function
H, — F, in the sequence space, where the conformational free energy is

estimated by using only an optimized subset of decoy conformations.

The first strategy we will present is an iterative procedure for selecting
conformations highly-competitive with the target structure and reducing at
the minimum the decoy set. In a spirit of trial and error, design attempts
are followed by validation tests through a folding procedure and failures in
designing sequences are exploited by enriching the decoy set by new decoys.

The iterative method is extremely efficient in terms of number of gener-
ated decoys. However, it is based on a folding procedure that can be used,
up to now, only on simple models like lattice proteins. Implementing such
method to design real protein structures, would require an enormous com-

putational effort.
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48 An iterative method for protein design

In the attempt to overcome this problem, we introduce some geometric
methods, which are based on criteria of similarity of decoy conformations
with the target one. Geometrical criteria, though are not performing like the
iterative method, are simple to be implemented and in many cases might be

an efficient tool for designing real structures.

3.1 Formulation of the design strategy

The design procedure, as described in several works [44, 14, 65, 45] and in the
previous chapter, consists in maximizing the probability that a sequence s is

found in a target conformation I'y at a preassigned temperature 7' (kg =1)

PO'(FQ) = exp {— (HU(FO> _Fa) /T} ) (3'1)

where H,(T) is the energy of s in I'g and the conformational free energy F;
is defined by:

exp(—F,/T) = Zexp (-BH,(T)) . (3.2)

Here {I'} represents the ensemble of all the possible conformations. If I'y
is the native state of a sequence s then there must exist a temperature Tx

below which

P,(Ty) >

Do) —

? (3-3)

i.e. Ty is the ground state of s and below T there is a macroscopic probability

to occupy it. In terms of eq. (3.1), eq. (3.3) can be rewritten
K, (Do) = H,(To) — Fy < Tn2 . (3.4)

All sequences satisfying inequality (3.4) are solutions of the design problem
on the conformation I'y and have folding temperature greater than 7". The
main problem of inequality (3.4) is that in order to evaluate F' using eq. (3.2),
one would need, in principle, all possible alternative conformations that can

house the sequence o.
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conformation space ®
target conformation

decoy set

Figure 3.1: The approximate conformational free energy is evaluated in this
chapter by using a small subset of the conformation space: this subset is

represented by the decoy conformations and the target one.

The result of the following analysis is that F' can be well approximated
restricting the sum in eq. (3.2) to a manageable set, D, of conformation I'.
In other words, if we define the approximated free energy F by

exp(—F,/T) = exp(—H,(To)/T) + Y _ exp(—H,(T)/T) (3.5)
reD
we will show that in the design procedure we can replace the exact free energy
F with F, without affecting too much the final results. Sequences satisfying
eq. (3.4), will satisfy the following inequality too:

]Cg(ro) = HU(FO) —Fs < Tln2 . (36)

In fig. 3.1 is shown in a schematic way the decoy set as subset of the confor-
mation space.

In order to test in a rigorous way the validity of our design methods, we
have made calculations on a lattice model, which has been quite commonly
used in the literature [8, 70, 35, 14, 44]. The model we will treat has an

energy functional

H,() = Y 84(T)B(os,05) (3.7)
i<j—1
where T" represents a self avoiding chain with nodes ¢ = 1,..., NV in a simple

cubic lattice, A;;(I) = 1 if ¢ and j are non-consecutive nearest neighbors

49



50 An iterative method for protein design

nodes, i.e. they form a contact, and zero otherwise and B(o, ¢') is the energy
associate to a contact between amino acid type s and s’. Furthermore, if we
restrict to IV = 27, the set C of all the maximally compact conformations,
i.e. conformations filling a 3 x 3 x 3 cube, can be exhaustively enumerated
[35].

When all the B’s are negative enough and maximally compact target
native states are considered, then the search for the most competitive decoys
can be restricted to C. We will consider only two classes of amino acids,
hydrophobic, H, and polar, P, since the hydrophobic forces are the main forces
driving the folding of proteins ([33]). There are many reasons we choose to
use two classes. First, the number of possible sequences that is possible to
mount on a 27-mer structure is easily enumerable and this allows for stringent
tests. Second, the HP model is the hardest benchmark for protein design,
as already recognized in the blind test on the energy minimization design
algorithm ([86]). Finally, theoretical studies on two-letter code models of
proteins are justified by the repeated successes in experimental attempts to
design by binary patterning amino acids ([30, 83]).

3.2 The iterative strategy

Selecting a set with the most competitive conformations is a combinatorial
problem. If you have N possible conformations and you want select the M
most competitive, you have to choose among (ﬁ) possible sets. In our case
N = 103346 and M will range between 100 and 1000. It is clear that an
exhaustive enumeration of all the possible sets is not feasible. Furthermore,
we don’t have a simple criterion to establish which set is better in recog-
nizing good sequences (i.e. sequences satisfying eq. (3.4)). For every set we
should perform several design test, verifying if the designed sequences satisfy
eq. (3.4).

The iterative strategy overcome this hindrance by updating the set D
iteratively. The basic idea is to implement several design attempts followed
by a validation procedure, i.e. a folding procedure, to check the proposed
solutions. After each attempt, sequences recognized as wrong solutions are
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Initialization:
decoy set empty

l

Design algorithm:
minimize approximate
H-F in sequence space

|

Folding algorithm:
minimize H in Add native
conformation space conformation
l to decoy set
native conformation
target conformation NO
YESI
Design by using
approximate H-F

Figure 3.2: Schematic representation of the iterative procedure.

discarded and, most importantly, conformation with energy less than the
target structure are used to improve D. An optimal decoy set could in
principle not exist, i.e. could be very as large as the whole conformation
space, and the typical size of this set will depend on the protein model used.
However, we will show that a similar procedure will converge very rapidly to
the optimal decoy set, for three different lattice model.

The iterative procedure is schematically represented in fig. 3.2 and can

be described as follows.

1. At the beginning D contains the target structure and other optional
conformations. These conformations can be selected randomly or with
a heuristic procedure. For exmple, in our tests on lattice models we
have selected no optional conformation. The free energy for a given

sequence is evaluated by using this primitive decoy set.

2. A simulated annealing in the sequence space is implemented to find at

least a sequence s* satisfying eq. (3.6).
3. A folding procedure is used to validate our putative solution s*. Such
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procedure could be a real dynamics in the conformation space, a stochas-
tic algorithm, or an experimental structure determination. In our stud-
ies, we have used both an exhaustive search and a deterministic algo-
rithm like CHCC (see below) to find the ground state of s*.

4. If the retrieved conformation, let’s say I'*, is just the target structure
Iy, then s* is a real solution to protein design (supposing the folding
procedure is enough reliable). Otherwise s* is not a solution of eq.
(3.4) meaning that the decoy set has to be improved.

5. The improvement is obtained by adding the conformation ['* to D.

6. The new decoy set allow a more efficient sequence selection procedure.
The simulated annealing will be applied as in point 2., but now the

estimate of IC will be more accurate.

3.3 Implementation and test of the iterative

procedure

Step 3. of the iterative procedure was carried out in two distinct ways. In
a first attempt we found the true lowest energy state of s by exhaustive
search. In a second attempt we tried to mimic the difficulty of finding the
ground state in a realistic context and hence carried out a random partial
exploration of the structure space. Although the first method was expected
to be more efficient than the second one, their performance turned out to be
almost identical, as we discuss below.

The four target conformations used to test the procedure are given in
Table 3.1.

We used three possible choices for the B’s. First, we adopted the standard
9_class HP model with Bgg = —1 — @ and Bgp = Bpp = —a. «a Is a
suitable constant ensuring that native conformations are compact. Since all
conformations considered here have the same number of contacts the value

of o is irrelevant and will be omitted from now on. This model reduces to
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relative structures Enc.
I'y | URDDLLFFRBRFULLBBUFFRRBDLU 25
'y | UURFLFDBRBDFLFRRBBUUFFLDRB 337
I'; | UURRFDLULDDFUURRDDBBULDFFU | 1224
I'y | UURRDLFFRBULLDDRBRFFLLUURR | 1303

Table 3.1: The four structures used for benchmarking the design strategy.
The conformations are encoded in bond directions: U, up; D, down; L, left;
R, right; F, forward; B, backward. The encodability in the rightmost column
is defined as the number of sequences admitting the corresponding structure

as their unique native state (HP interactions are assumed).

1 2 3 4 5 6
-50.00 | -20.49 | -38.20 | -6.65 | -43.65 | -10.63
-20.49 | -14.91 | -18.13 | -4.00 | -15.56 | -3.81
-38.20 | -18.13 | -35.75 | -5.07 | -23.96 | -26.02

-6.65 | -4.00 | -5.07 | -1.65 | -5.17 | -9.47
-43.65 | -15.56 | -23.96 | -5.17 | -43.71 | -18.63
-10.63 | -3.81 | -26.02 | -9.47 | -18.63 | -26.70

S| O | W DN

Table 3.2: Energy parameters for the 6-class model. Parameters obey the
segregation principle [35].

the standard HP model described in chapter 2 (see eq. (2.6)). The second

case is a 6-class model and the B’s are shown in Table 3.3.

For the last case we considered the full repertoire of 20 amino acids used
the Miyazawa and Jernigan energy parameters given in Table 3 of ref. [48].
With the standard HP parameters, structures I'y — I'y have various degree
of designability. The latter is defined as the number of sequences admitting
them as unique ground states [35] . Hence, the encodability of I'y and Iy is
poor and average respectively, while I'y and I'y have very large encodability.
It was shown that the degree of encodability is mainly a geometrical property
of the structure and not too sensitive to the number of amino acid classes or

the values of interaction parameters [35, 41, 42]. For this reason we expect
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that the relative encodability of 'y — I'y remain different when using all the

three sets of parameters.

3.4 Results and discussion for the iterative
method

The “dynamical” performance of the iterative algorithm can be seen in Figs.
3.3a-c. The plots show the number of solutions retrieved as a function of the
number of iterations at a “physiological” temperature equal to 0.1, 10.0 and
0.7 for 2, 6 and 20 classes of amino acids, respectively. The different values
of the physiological temperature are related to the different energy scales of
the interactions.

It can be seen that, after an initial transient, the performance of the
method (given by the slope of the curves) is very high. In particular, for a
Jarge number of classes, it is nearly equal to 1 for all structures. Table 3.4
provides a quantitative summary of the performance of the method. For the
HP model, first column of Table 3.4, the method was iterated until it could
not find further solutions with (estimated) folding temperature greater that
0.1 . For the cases of 6 and 20 classes, a very large number of solutions exist.
Hence, we stopped the procedure after 1000 or 500 iterations, depending on
the number of classes.

An appealing feature is that the extracted solutions show no bias for
sequence composition (see Fig. 3.4) or ground-state energy. This can be seen
in Fig. 3.5, where we have plotted the energies of 1000 designed solutions
of fixed composition for the 6-classes case. Solutions do not exhibit packing
around the minimum energy (= —830) and their energy spread is fairly wide
(the estimated maximum energy is = —17 0). Furthermore, for each extracted
sequence we also calculated its folding temperature, to compare it with T'. As
we remarked, if all the significant competitors of I'y were included in D, then
sequences satisfying eq. (3.4) should have folding temperatures greater than
T. As shown in the typical plot of Fig. 3.6 this is almost always the case,
ensuring that solutions can be extracted with a desired thermal stability.
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HP 6 classes 20 classes
Nit | Nsor || Nig | Noop | Nig | Noor
Iy 62 8 || 1000 | 895 | 500 | 388
Iy || 722 | 337 | 1000 | 891 || 500 | 419
I's || 1898 | 1219 || 1000 | 906 || 500 | 423

Iy || 1719 | 1297 || 1000 | 911 || 500 | 457

Table 3.3: Number of extracted solutions, N, after N;; iterations of the
design procedure. For the HP model NV;; is the number of iterations at which
the iterative scheme stopped. It was verified that the 1297 extracted solutions

for structure I'y have a folding temperature between 0.15 and 0.6.

An alternative measure of the thermal stability connected to the cooper-
ativity and rapidity of the folding process is the Zs.re. For a sequence, s,
designing structure ', the Z.. is defined as [3]:

Zscore = w (3.8)
US

where (H;) is the average energy over the maximally compact conformations
and o, the standard deviation of the energy in this ensemble. Fig. 3.7
shows a scatter plot of extracted solutions for target structure I'; for the
20-letter case. It can be seen that there exist solutions with very high Z;.,e
throughout the displayed energy range. This proves the usefulness of the
novel design technique which has no bias in native-state energy. In fact, it
allows to collect equally good folders with a wide range of native-state energy
(and hence very different sequences). This ought to be useful in realistic
design contexts, where among all putative design solutions one may wish to
retain those with specific amino acids in key protein sites. The ability to
select sequences across the whole energy range highlights the efficiency of
the technique. In fact, as shown in Fig. 3.8, away from the lowest energy
edge, the fraction of good sequences over the total ones with the same energy
is minuscule (note the logarithmic scale). Our method is able to span across
the whole energy range without restricting to those of minimal energy, which

are a negligible fraction of the total solutions.
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Finally, we analyzed the degree of mutual similarity between extracted
solutions. For the 6-class model, the sequence similarity between solutions
was rather low, being around 20%, as can be seen in Fig. 3.9. This rules out
the possibility that solutions correspond to few point mutations of a single

prototype sequence.

One of the most significant features of the novel design procedure is that
the number of decoys, used to calculate the approximate free energy, (3.5),
can be kept to a negligible fraction of the total structures and yet allow
a very efficient design. This is proved even more strikingly by a further
test of our design strategy in the whole space of both compact and non-
compact conformations. We carried out a design of structure 'y by using
the HP parameters with the constant a set to 0. This amounts to allow for
non-compact conformations to be native states. Since it is unfeasible to ex-
plore this enlarged structure space, folding was carried out with a stochastic
Monte Carlo process, as described in refs. [65, 44], which generated dynam-
ically growing low-energy conformations at a suitable fictitious Monte Carlo
temperature. The correctness of the putative solutions was carried out by
using an algorithm known as Constrained Hydrophobic Core Construction
(CHCC)[85, 84]. The algorithm relies on an efficient pruning of the com-
plete search tree in finding possible low energy conformations for a sequence.
At the heart of the algorithm is the observation that the most energetically
convenient conformations for the hydrophobic monomers is to form a com-
pact, cubic-like, core. This ideal situation may not be reachable for arbitrary
sequences, due to frustration effects; these are taken systematically into ac-
count to build a compact core with a number of cavities sufficient to expose P
singlets (i.e. a P flanked by two H monomers in the sequence) on the surface,
which is energetically more effective than burying them in the core. Then, ex-
haustive search algorithms are used to check the compatibility of a sequence
with cores of increasing surface area (i.e. decreasing energy). A detailed de-
scription of the method can be found in Refs. [85, 84]. The time required by
CHCC to find the ground state energy of a sequence increases significantly,
on average, with the increase of the number of H residues. For this reason

we limited the search for design solutions to sequences with ng = 13. The
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solutions, obtained in about one hundred iterations, appears in table (3.4).
All the 23 extracted solutions had I'; as the unique ground state among the
compact structures, and 17 of them retained I'; as ground state even when
" non-compact structures are considered. Given the vastity of the enlarged

structure space this represent a remarkable result.

3.5 A first geometrical criterion: maximum

overlap

The iterative method is a powerful tool to build up a set of decoy confor-
mation, when amino acids interactions are well specified, like in the case of
model proteins, and when an approximate but efficient folding algorithm can
be implemented. In this section and in the next one, we will introduce other
design methods that don’t require a folding procedure to recognize decoy
conformations. Such methods are instead based on a criterion of geometrical
similarity between decoys and the target conformation.

In order to search for a decoy set determined by only geometrical infor-
mation of the target conformation, we will study geometrical properties of
the iterative decoy set. We define the overlap between two conformations I'

and T as:

O,y = 3 Ay(0)Ay(T) (3.9)
i<j—1

and it will be used as a parameter to quantify the degree of similarity of two
conformations. In the case we are dealing with (i.e. only compact confor-
mations of 27 beads) O(T,T") < 28. Fig. 3.5 shows the distribution of the
overlap of the conformation I'y with the whole set of decoys obtained with
the iterative method and with an equal number of random conformations.
Similar distributions are obtained also for the other target conformations.
Notice that the tail at high overlap in the latter case (random set) is much
lower than in the former one. This fact suggests that similarity in terms of
overlap with the target could be a good geometrical criterion for selecting

decoys.
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Correct solutions
010111001110110001010100001
000011011100111101000100101
000010011100111101000101101
000010000111100101110101101
000010010100101111000110111
000010000110100111010110111
000010110100100111000101111
000010000110100111010110111
000010110100100111000101111
000010010100101111000101111
000010000110100111010101111
000010110100100101000111111
000010010100101101000111111
000010100100100111000111111
000010010100100111000111111
000010000110100101010111111
000010000100100111010111111

Incorrect solutions
110010001110110001010101001
010011001110110100010100101
110010001100110101000101101
100011001100110101000101101
000010100100100111010101111

Table 3.4: Extracted solutions for structure I';. The design attempt was
carried out in the whole space of conformations with arbitrary degree of

compactness.
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interactions: B = —-1,0,0
A R B C
I 86 3 12 3
[y 85 1 21 16
| 57 1 13 3
Iy 87 1 35 11
average | 79 1 20 8

Table 3.5: Number of distinct sequences correctly designed over a bunch of
100 sequence predicted with our design procedure and using a set of 250
decoys. The decoy sets are determined using different criteria: A=iterative
method; R=conformations chosen randomly; B=method of maximum over-
lap; C=method of minimum burial distance. In order to implement a rig-
orous test we used four highly encodable target conformations (the number
of sequences having as ground states the four conformations is I'y = 337,
[y = 1303, I's = 1224 and 'y = 1310).
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Column B in table 3.5 shows the design performance obtained when the
set D is made up with 250 conformations with high overlap with the target
one. In fact, by comparing these results with those shown in columns A and
R, we can conclude that the overlap criterion captures some features of the
optimal decoys set, i.e. the one obtained with the iterative method, whose
performance is much better. This observation leads us to introduce a second

geometrical criterion.

3.6 Similarity of conformations in terms of

burial

In this section we define a new criterion to determine decoy conformations.
Given a conformation I', let z; be the number of nearest neighbour non-
consecutive nodes of I' around the i-th node. For a self avoiding chain in
a simple cubic lattice 2 < z; < 5 for the extrema (i=1,27) whereas 1 <
z; < 4 for the remaining nodes. Thus for each conformation a burial vector
Z=2z,...,2; is defined. For interaction potentials favoring the burial of
the most hydrophobic amino acids and exposition of the most hydrophilic
ones, we might expect that the most competitive decoys with a given target
conformation I'y are those with a burial vector similar to I';. We define a

distance between I' and I" in terms of their burial vectors Z, as

1/2
B(T,T") = (Z [ (T) - zia")J?) (3.10)
The minimum value of B is zero. For some conformations, I'g, with high
encodability we found that there are no I's, apart from the target itself,
such that B(T'g,I") = 0. This is the case for I'y and I'y, whereas I'; and T's
have siblings, that is conformations for which the score function B is equal
to zero (respectively 2 and 3).

Given a target I'g, we built a decoys set D made up of the 250 closest
conformations (in terms of burial distance) to calculate the approximate free

energy in eq. (3.5) The performance obtained in designing is summarized in
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table 3.5, column C. The results show that this geometrical criterion seems
to be worse than the overlap method: this might depend on the fact that our
HP Hamiltonian does not correctly account for a burial effect, i.e. only H-H
. contacts give a contribution to the energy.

In order to gain a more complete insight, we have used the same four
decoy sets as above with another set of interaction parameters, i.e. B =
(Brw, Bup, Bpp) = (—2.3,—1,0) ([35]). The results are presented in table
3.6; they are quantitatively similar to the previous ones, except for the burial

decoys, whose performance remarkably increases. We note that both criteria

interactions: B = (-2.3,-1,0)
A R B C M
I 69 0 d 8 15
I 100 2 25 51 7
Iy 86 3 18 18 21
'y 99 4 38 56 68
average | 88 2 21 33 45

Table 3.6: The same as in table 3.5, but with different interaction poten-
tials. With this interaction potentials geometrical criteria, in particular C,
are quite efficient. The mixed set (column M) is obtained using 50 high

conformations and 200 low burial distance conformations.

(B and C) capture some geometrical features of the optimal decoys. So we
created another set by combining the high overlap and low burial distance
decoys. The results (see table3.6, column M) are remarkably good for two
targets, I'y and I'y. However they fail with I'y and I's. This is not surprising
for I'; which has an encodability much lower than I'y, I's, 'y (see caption Tab.
3.5). However it is rather surprising for I'3. As we will suggest below, this is
probably due to the different number of siblings of these conformations.

An interesting feature of any geometrical method is that the temperature
T can be varied in order to obtain solutions with the desired stability. By
applying the strategy outlined in sec. II, if the free energy is approximated
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with the proper decoys set D, then the solutions that can be found are
likely to have a folding temperature Tr higher than the temperature T'. We
have tested the robustness of our geometrical methods by rising the design
temperature (from 7' = 0.1 to T' = 0.5). It turned out that conformations
with siblings (I'; and I';) are hardly designable with any decoy set, including
the iterative one (we just could not find 100 sequences satisfying Eq. (3.4)),
whereas the performance of the geometrical methods on I'; and I'y is even
better than at lower temperature. The efficiency of the mixed geometrical
method (method M) has been verified also for other nine conformations
without burial siblings,for which the true encodability was unknown: here
the average success obtained is 75.5%, that is comparable with I'; and I's.
This results shows that the number of siblings is a stringent criterion to
determine the designability of a conformation, at least within our design

scheme.

interactions: B = (—2.3,—1,0), T =0.5
A R B C M

'y 0 1 6 5 0
Iy 100 10 54 70 91
I's 9 1 8 2 30

Iy 100 4 30 82 95
average | 92 4 24 40 55

Table 3.7: The same as in table 3.6, but with higher design temperature
(T = 0.5 instead of T' = 0.1). In some cases less than 100 sequences were
found: there we reported the true fraction of solutions over sampled sequences

instead of the percentage.
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3.7 Encodability, designability and burial de-

generacy

In design problems, at least for protein models, the aptitude of a target con-
formation to be designed with stochastic sampling in the sequence space is
related to its encodability, i.e. the number of sequences having as unique
ground state the target conformation. However, it is likely also other char-
acteristics of the sequence space affect significantly this aptitude. For some
conformations the landscape of H,— F} in the sequence space could be smooth
with a very large funnel in the neighborhood of good sequences, facilitating
the search by stochastic methods. In other cases the landscape is very rough
with good sequences spread out in all the sequence space. In the last sec-
tion we noted that there are two highly designable conformations (I'; and
I'y) which have a non-degenerate burial vector, i.e. no other conformation
has the same burial vector. We have looked at the possibility that the high
designability of the conformations we have used in the previous sections is
related to the fact that these conformations have a small number of burial
siblings, i.e. their burial vector has a low degeneracy. To do this, we first
investigated, in an analogous spirit to [36], the relationship between encod-
ability and burial degeneracy. A random sampling of 10° sequences, each
folded to its ground state, permitted to identify some encodable conforma-
tions: these conformations were ranked into different sets, depending on the
number of design solutions found during the sampling; this ranking is related
to the exact encodability of the conformations. Then 100 conformations at
random were picked out from each set; for each conformation the burial de-
generacy dp was calculated. Then, was obtained the average value (dg) for
each set (see Table 3.8).

Table 3.8 shows that (dg) decreases as the estimated encodability in-
creases. This data is confirmed by fig. 3.5, where distribution of dp for two
sets of conformations with high and low encodability is shown.

Only 120 out of the 103346 compact conformations of length 27 have
no compact conformations with the same burial vector. We have verified

that among them there are the most designable conformations with both the
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Encod. | (dp)
0 31.2

1 19.2

2 19.8

3 18.7

> 10 | 11.1

Table 3.8: Conformations are ranked as a function of the number of the
estimated encodability. The encodability has been estimated with a random
a sampling of 108 sequences. In particular conformations have been gathered
in five sets (0,1,2,3, > 10), referring to the number of sequences having it
as unique ground state.In the second column the average number of siblings
within each set is calculated. This average decreases as the encodability

increases.

interaction parameters we used before: this means that they are likely to be
highly encodable, but also that designing them with a geometrical method

is quite easy.
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Figure 3.8: Solid line: distribution (in arbitrary units) of solutions (good
sequences) to the design problem on structure I'; (20 letter alphabet). The
dotted line denotes the distribution containing bad sequences. The data was
obtained by randomly sampling 107 sequences with fixed composition.
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Chapter 4

Knowledge-based approach to

protein design

Protein design, having obvious practical and evolutionary significance, has
attracted considerable attention and effort of experimentalists and theorists,
especially in the last years [52, 56, 70, 65, 14, 50, 13, 64, 44, 43, 45, 75, 83, 87].
The difficulty of the protein design problem is enormous because, in princi-
ple, a rigorous approach [65, 45] would entail a simultaneous exploration of
both the family of viable sequences and the family of physical conforma-
tions. Progresses in protein design obtained using model proteins have been
remarkable in the last ten years. However, despite several efforts [69, 77, 43],
the extension of this machinery to the design of natural proteins has not yet

reached maturity. The reasons are mainly two:

e the difficulty in giving a reasonable functional form of Hy(T") [81],

e the impossibility to verify whether the predicted sequence really folds
in the desired conformation, without performing an expensive real ex-

periment.

These two obstacles are absent in simplified models where H (I") is as-
signed a priori and the exact solution can be rigorously found. In this chapter
we investigate the degree of accuracy one can reach when designing natural
structures (taken from the Protein Data Bank (PDB)) by using simple func-
tional form of H,(I') and a limited number of classes of amino acids. The
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unknown parameters defining Hy(T") are determined with a strategy [12, 63]
based on the observation that physical forms of the energy ought to guarantee
that any amino acid sequence should recognize its native state as the confor-
mation with minimum energy-score and maximum thermodynamic stability.
We use such optimized energy functions to design PDB protein conformations
by applying some of the above-mentioned theoretical techniques. Finally we
check the quality of our predicted sequences not only through a mere com-
parison with the naturally folding amino acid sequences (retrieved from the
PDB) but performing a statistical analysis of our results with respect to the
full set of homologous sequences (e.g. sequences folding to the selected pro-
tein or in homologous conformations) [18]. In this way we try to establish
which amino acids are important to stabilize the sequence in the target struc-
ture and we compare these sites with sites important for the folding process,
i.e. sites belonging to the folding nucleus [68]. Furthermore, we show how it
is possible to give a degree of reliability to any design attempt.

The chapter is organized as follows: in section 1 the schematic represen-
tation of protein structures is illustrated together with the energy functions
and the classification of amino acids that have been used. In section 2 the
new strategy to estimate interaction potentials is derived while section 3 is
devoted to explain the design procedure and to discuss the results, which are
summarized in section 4, while technical details are given in the Appendices.

4.1 Protein modeling

4.1.1 Two- and three-body energy functions

As is customary in many numerical approaches to folding and design strate-
gies we shall also adopt a simplified protein backbone representation that
neglects amino acid rotameric degrees of freedom. In fact, we shall use the
common coarse-grained model of PDB proteins in which each amino acid
unit is represented by a centroid placed on the 8 carbon (for glycine the
coordinates of the centroid can be estimated by the local geometry of the

backbone [54]). According to this procedure any protein conformation, I,
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obtained by a sequence of /N amino-acid is specified through the 3N Carte-

sian coordinates:
P:(Tlﬁ,T‘Qﬂ,...,’f‘N> . A (4.1)

This simplification is mainly dictated by the necessity to deal only with the
main protein degrees of freedom, but, as we shall mention, it is also partic-
ularly appropriate in design contexts. Furthermore, we shall also partition
the 20 types of amino acids into a restricted number of classes. This sim-
plification is not dictated by the numerical convenience of dealing with a
restricted sequence space (in fact, the design strategy outlined in section III
can be straightforwardly applied to 20 amino acids classes). Rather, the
choice follows from the need to have a sound statistical basis for estimating
the free-energy contribution of interacting amino acid classes and also from
the observation that most amino acids in natural proteins can be substituted
without disrupting native folds [30]. Hence, within the present design scheme
we aim at predicting the classes of amino acids designing a given structure.
As in ref. [75], the putative solution could, in principle, be fine-grained into
20 amino acids alphabet by using steric packing and solvation constraints.
Finally, the last ingredient of our strategy is the introduction of a suitable
(free) energy scoring function. The most popular choice adopted in simplified

models is the pairwise-interaction form
HO(T) =Y AP (D) Bs(si, s5) (42)
1<j

where 7, j are the positions along the sequence of the of amino acids and
the sum is taken over all possible pairs. Bs(s;, s;) represents the interaction
strength of the amino acid pair s; and s;. However, only amino acids that
are close enough will interact in a non-negligible way. This is enforced with a

suitable weight function, or contact map, Ag) () = f(z = |7, — 75]), where:

flz) = —;—tanh(ao —z)+ % (4.3)

and ag is a cutoff value that we choose equal to SA.
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Hydrophobic | Neutral Charged
Alanine Asparagine Arginine
Isoleucine Cysteine Histidine
Leucine Glutamine Lysine
Methionine Glycine Aspartic acid
Phenylalanine Serine Glutamic acid
Proline Threonine —
Tryptophane Tyrosine —
Valine — —

Table 4.1: The three columns contain the three classes of amino acid we have

used in the design strategy.

In addition to this scoring function (4.2), and to assess possible design

improvements, we shall adopt also one including three-body interactions:

HO(T) = HO) + Y AGRT)Bs(si, 55, 58) (4.4)
i<j<k

where AE;’,)C(P) = Ag?) (I‘)Aﬁ) (F)Ag) (T'). The matrix Bs represents the ef-
fective three-body interactions among the different classes of amino-acids.
Indeed, it has been recently suggested that pairwise energies [81] may be un-
suitable to describe effective amino acid interactions in proteins. Hence, the
introduction of three-body terms might be regarded as the first correction
term to (4.2) in an expansion scheme where all many-body interactions are

included.

4.1.2 Partitioning the 20 amino acids into classes

In order to estimate the interaction-potential matrices By or Bz appearing
in Eq. (4.2) and (4.4), we introduce a suitable classification of the 20 types
of amino acids. In an attempt to go beyond previous studies [77, 43] where
the two letter code was used, we decided to subdivide amino acids into three
classes (table 4.1).

Although many other subdivisions could be possible, adopting the one
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Figure 4.1: Typical relative frequency of the three classes in which amino

acids are partitioned, as a function of the protein length.

followed here has the advantage that, besides clustering amino acids accord-
ing to their chemical similarities, it creates classes which are almost equally
populated (see Fig. 4.1). Since the B matrices are symmetric, the number

of entries to be determined is 6 and 10 for B, and Bj respectively.

4.2 Learning the interaction potentials

4.2.1 A new theoretical approach

An efficient way to estimate the effective potentials B, and Bs was pioneered
by Crippen [37] (and recently optimized and used [80, 16]). This scheme
aims at finding a set of potentials so that, given a protein sequence s, its
native state I is recognized as having energy substantially below that of any
other equally long conformations I (assumed to be outside the native basin
of T' [25]). For a generic energy function H,(I") this requires:

H, () < Hy(T") (4.5)
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A key difficulty in turning this idea into a powerful automated scheme
is the choice/generation of physically viable decoy structures, I'. In many
instances the decoys are generated by taking compact “chunks” of suitable
length from a bank of proteins (gap-less threading). Such decoys may not be
physical for certain sequences (for example due to steric clashes) so that the
inequalities (4.5) may enforce rather loose or unrealistic constraints on the
extracted potentials.

The first goal in this chapter is to propose a strategy to overcome this
difficulty. Our idea is based on the fact that the thermodynamic stability
requirement, (4.5), should be simultaneously satisfied as much as possible for
2 whole set of conformation I', which compete significantly with the native
state.

This thermodynamic requirement can be accomplished by imposing that
H,(T) < (H) , (4.6)

where the average (---) is carried out over all the set I'c. In a more math-
ematical spirit, equation (4.6) can be derived as follow: Eq. (3.1) gives the
statistical probability that a given sequence s isin a specific conformation I
at temperature T'. If T is the native state of s, below the folding temperature
only the conformations present in I'c give a not vanishing contribution to Z.
By writing Z, = exp(log Z,) and taking the first order term in its cumulant
(high-temperature) expansion , the condition of maximizing P,(T") yields Eq.
(4.6).

Due to the linear dependence of the energies Hy and Hj on the contact
maps (the only factors that contain geometric information about structures),
the r.h.s. of Eq. (4.6) can be re-casted into the following forms:

(HDy =S (A B(si, s) (4.7)
i<j
and:
(HY =S (AD)By(si,55) + D (A5 Balsi,siose) - (48)
. 1< i<j<k
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Figure 4.2: (AE?) for small values of k = |i — j|. For k = 3,4 big errorbars

are due to the presence of @ and non-o proteins in our protein set.

Notice that both (HS(Q)) and (H§3)> depend on the sequence s and no
more on the structure I'. A detailed technical description of how the aver-
ages in equations (4.7) and (4.8) are obtained, is presented in Appendix A.
To summarize, the functional dependence of (A®) (3, 7)) was determined by
inspecting its behaviour as a function of 7, 5. The main difficulty was to
find a form suitable to represent the behaviour of (A®)) for a variety of pro-
tein lengths and families. A very satisfactorily “collapse” of data from many
structures could be obtained by assuming that A® (4, j) merely depends on
i and j, irrespective of the chain lengths, for |7 — j| < 16, as shown in Fig.
4.2.

This is reasonable, since the frequency of “local” contacts is not expected
to be influenced by the overall protein shape or length. Contacts between
residues with sequence separation larger than 16 are rather rare hence were
modeled by assuming a constant frequency of occurrence, Ag)). The value of
Ago) is regarded as a free parameter that is to be tuned separately for each
protein length so that the average number of overall contacts, Z” Az@j,
matches the number observed in nature. An analogous procedure was fol-

lowed for the three-body weight function, whose functional form is shown
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Figure 4.3: A®)(k1,k2) for small values of k1 = |i — j| and k2 = [j — k.

Fluctuations are of the same order of the previous figure.

in Fig. (4.3). For determining the potentials we consider a set of 31 non
redundant proteins listed in Tab. 4.2. Hence, through Eq. (4.6) and (4.2),
(4.7) (or (4.4), (4.8)) we obtained one inequality for each protein in the set
(that we shall term training set) The determination of the potentials, B, was
done by employing an efficient algorithm, called perceptron, that is guaran-
teed to provide the best solution for a whole set of inequalities. The method
is outlined in Appendix B. In our case, we have one inequality for each of
the training proteins. Clearly, by suitably choosing the B’s it is possible to
make arbitrarily large each inequality individually. the perceptron procedure
allows to find the best B’s that make all inequalities as large as possible si-
multaneously. There is no guarantee, however, that the inequalities can be all
satisfied. Indeed, as a rule of thumb, when the number of inequalities greatly
exceeds the number of parameters, no solution can be found if the functional
form of it and/or the approximations involved are not too satisfactory. In
our case we dealt with 5 (or 15) parameters and succeeded to find physical
solutions to the problem. This suggests that the adopted form of the ener-
gies were reasonable, otherwise the problem would have been unlearnable.
A further proof of this is that, by using a different set of training proteins,
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SET 1

lacp 77 | 1beo 98 | 1lcei 94
1coo 81 | lety 107 | lerv 105
1fd2 106 | 1fkb 107 | 1fna 91
1fow 76 | Tkum 108 | lmit 69
lopd 85 | 1lpdr 99 | 1rro 108
SET 2
1shg 57 | 1tul 108 | 1who 96
lyat 113 | lyeb 108 | 2c2¢ 112
2fxb 81 | 2imm 114 | 2mem 112
2mhr 118 | 2rhe 114 | 351c 82
3b5¢c 93 | 3ssi 113 | 3wrp 108
Ornt 104 | - -

Table 4.2: PDB name of the 31 proteins used in our design scheme with their

respective number of amino acids.

nearly the same optimal parameters were obtained, a fact that corroborates

the robustness of the potential extraction procedure.

4.3 Designing PDB structures

4.3.1 The design strategy

Once the potentials were determined, the energy scoring function of any
desired conformation can be computed within the energies defined in Eq.
(4.2) or in Eq. (4.4). In order to tackle our ultimate goal, the design of
protein conformations , it is necessary to define the design procedure. It has
been discussed in the introduction that a rigorous, but unpractical way, of
pursuing this objective consists of finding, for a given conformation I'*, the
sequence (or sequences) s* maximizing the occupation probability Pyx(T*). -
In the previous section we have however shown that, for the correct energy

parameters, the desired sequence should satisfy the inequality:
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W(s,T*) = Hy(I*) — (H,) <0, (4.9)

Therefore , since we have obtained a reliable estimate of (Hg) we can use
Eq. (4.9) to perform protein design. In practice, given the target conforma-
tion we search for the sequence that minimizes the function W (s,I'*) where
all the quantities are calculated with the above determined potentials. The
optimal solution is identified by a stochastic procedure (simulated anneal-
ing) in sequence space, the elementary move being the random mutation of a
fraction of residues from one class to another. Generally, the most stringent
way to test the reliability/validity of the extracted parameters would be to
apply them to design proteins unrelated to the training set. However, due
to the "nearly perfect” independence of the parameters from the training set
(a result reflecting the benefit of the coarse-graining into three amino acid
classes) this precaution is unnecessary in our case. Therefore we shall use the
extracted potentials to design the training proteins. Finally, the representa-
tion described by Eq. (4.1) ensures the absence of any information that could
distinguish different types of amino-acids thus allowing an unbiased test.

As in refs [43, 77], the success rate of the design procedure is defined as
the fraction of correctly predicted amino-acid classes with respect to those
of naturally occurring sequences (as found in the PDB) for the chosen con-
figuration. The success rate for a randomly designed sequence where each
residue is assigned randomly to one of the three classes would be 33%.

For all the considered conformations (see fig. 4.4) we obtained a success
“rate between 40% and 55%.

This success rate can be compared with optimized success rates for two
amino acid classes [43] which is, on average, ~ 75%. Clearly, increasing the
number of classes makes the problem more difficult, hence a reduced success
rate. It is interesting, however, to note that the success rate of the optimal
design strategy remains above the random-guessing threshold by about 20%,
as for the two-letter case. It is also interesting to notice that this rate does
not improve (see Fig. 4.4) by working with the concentration of amino-acid

biased towards the composition of the wild-type sequence or even by using
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Figure 4.4: The success is here defined as the similarity between the de-
signed sequence and the wild-type sequence as retrieved from the PDB file.
The designed sequence has been obtained by a minimization of W (simu-
lated annealing) and the success has been obtained as an average over ten
independent minimizations. The three curves refer to the design using Eqs.
(4.2), (4.6) and (4.7) with arbitrary or fixed composition —i.e. exploring only
sequences with composition not too different with respect to the composition
of the wild-type sequence—, and using Egs. (4.4), (4.6) and (4.8).

the three body energy. This possibly suggests that important features of real
proteins have been equally neglected by all these kinds of energy function.

On the other hand, the one-to-one comparison between the designed se-
quence (defined as the one that minimize W (s)) and naturally occurring ones
could not be the best check to do. The reasons are twofold:

e homologous sequences, e.g. sequences which roughly fold in the same
native state, can differ by up to 70% (similarity) of their amino-acidic
composition. A one-to-one comparison (although averagedover many
sequences) could not be sufficient to verify if our wrong predictions are

involving the most important amino-acids or only the marginal ones;
e naturally occurring proteins may not have necessarily evolved to max-
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imize the occupation probability but also to ensure a fast folding pro-
cess ([68, 39, 24]). Therefore to select only the sequences that mini-
mize W (s) could be a too drastic selection criteria, especially consider-
ing that we are working with unperfectly parameterized energy-scoring

functions.

In order to estimate the importance and the effects of these two arguments

we performed the analysis, discussed below.

4.3.2 Homologous sequences and comparison of simi-

larities

It has been shown by Clothia et al. [10] that naturally occurring sequences
with a very low degree of similarity (~ 30%, but this rate is very dependent on
the length of the alignment) can be homologous, that is they adopt almost
the same three-dimensional structure [18]. This kind of analysis has been
performed by considering all the 20 kinds of amino acids. We decided to
re-analyze the set of protein sequences treated in ref. [62] by using the same
three-letter classification of amino acids employed in our design procedure.
In such context, the similarity between two sequences of classes of amino-
acids is defined in the same way as the design success score, that is we check
whether each amino acid pair in optimally aligned homologous sequences
(data from the HSSP database [62]) belong to the same class. By definition,
this similarity cannot be smaller then the 20-letter one.

The results for a specific protein, lacp, are given in Fig. 4.5. It turns
out that, on average the homology threshold of 30% for the full amino acid
alphabet corresponds to 55% when the three letter code is used. This value
is remarkably close to the best design scores achieved with our procedure.
This does not imply automatically that our solutions are viable. Site-directed
mutagenesis experiments have shown that a small proportion of protein sites
do not tolerate any substitutive mutation at all (otherwise the native state
would be destabilized). It should then be checked whether such key residues,
which are conserved in homologous proteins, are conserved also by our design
strategy. In one of following sub-sections we shall examine this issue in
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connection with heavily investigated proteins, such barnase and ci2, and we
will show that, as a by-product of the design procedure, the location of such
sites can be easily predicted with high reliability. This is not a proof that
our design solutions, although different from the native one, are correct, too,

but it sheds a new light about their validity.
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Figure 4.5: Equivalent similarity evaluated for two different classifications:
the one used in this study (dark circle) and another random (open circle) as a
function of the similarity defined for the 20 amino acids. The figure refers to
comparison between protein sequence lacp with 51 sequence of homologous

protein.

4.3.3 Are extremized sequences the best?

The design analysis we have described so far was based on the selection of
sequences that minimize W (s), i.e. on the maximization of the gap between
the energy of the sequence in the target conformation and the average energy
(H,). However, it is presumable that the evolutionary pressure towards rapid
and reliable folding [40] has not taken the maximization of inequality (4.9) to
the extreme, but to a lower threshold sufficient for biological purposes. For

this reason we chose to test the success rate not only for the minimum value of
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W (s), but also for other sequences. In particular it is interesting to compare
all the sequences s with W(s) < W(s*), where s* is the wild-type sequence.
For each annealing temperature we extract 100 decorrelated sequences and
make statistical analysis on this sequence set. We evaluate the average of
W (s) for this set and a “super-sequence” by applying a pointwise majority
rule to this set. In other words for each site we assign the most frequent
amino acid class observed in this sequence set at the given location. Fig. 4.6
shows the data pertaining to such design attempts on five different proteins.
It appears that, indeed, the highest matching with the native sequence, is
not obtained for the lowest value of W, but for higher ones.
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Figure 4.6: The success as a function of the cost function W (s, I'y) = Hy(I'y)—
(H,) per site. Success is defined here by majority rule on a sampling of
hundred (decorrelated) sequences. The value of the cost function for the

respective wild-type sequences is between —0.48 and —0.78.

This fact suggests a powerful way to improve the reliability, of the de-
sign strategy: we can select as putative solutions a wider range of protein
sequences and then process the statistical information contained in them to
yield a single “super-sequence”. Furthermore, one can decide to make a pre-
diction only for those sites where a class has an occurrence frequency bigger

than some suitable threshold fy. The number of sites Ny for which we make
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such prediction is a decreasing function of f; and for a given f, depends on
the fictitious temperature (at low temperature all the sites are locked). Fig.
(4.7) shows success rate over the NN betted sites for different values fy (data

pertain to protein lerv, other proteins produce analogous plots).
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Figure 4.7: Success as a function of the number of betted sites for the protein
lerv. Betting over the 40 most locked sites it is possible to obtain almost an
80% of success. Note that success is almost independent on the frequency
threshold fg.

It is evident that, when N is small, the design procedure is very reliable:
retaining the first 40 sites gives the impressive success rate of 80% . It is
tempting to conjecture that the residues that are assigned with very little
uncertainty by our design procedure (conserved design residues) could also
correspond to conserved residues in nature. In the next section we shall
examine in detail this possibility, and conclude that there is a significant

correlation between the two.

4.3.4 Homologous sequences and conserved sites

It is well known [62] that homologous sequences present conserved sites,

e.g. sites where the type of the amino-acid remains unalterated throughout
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the full set of sequences. In Fig. 4.8 this fact is graphically elucidated
(and even enforced) by analyzing the homologous sequences of protein lerv
with our tripartite classification of amino-acids. To each site we assign a
color reflecting the conservation of the most frequent class observed in that
position. A full conservation of H, N and C type is denoted with a saturated
green, red and blue color respectively, while the lowest possible conservation
of the most frequent class, 1/3, is associated with the white color. According
to this scheme, sites with high variability will correspond to lighter nuances.

A visual inspection of the colors assigned to protein lerv (top panel of
Fig. 4.8) reveals that about 30% of the sites are highly conserved. We want
to elucidate whether there exist a connection between such conservation of
amino acids found in nature and the one emerging in the putative solution
obtained from our design procedure.

To do this we performed a simple analysis of the design solutions at
different values of the conservation threshold, W. In each batch of 100 design
runs, the target value of W was fixed (in a stochastic way) by varying a
suitable control parameter, 7' (by analogy, if we identify W as an energy cost
function, T plays the role of the temperature). Finally, for each value of T’
we analyze the conservation of residues in the designed sequences and color
them with the same scheme described above. The results are shown in the
large box of Fig. 4.8.

For high values of T' (high W) all the color intensities are very low indi-
cating an uniform (random) distribution of the classes, but upon decreasing
the temperature some of them start to be selected with higher and higher fre-
quency. At very low temperature all the sites are locked in a particular class.
This trivial situation is not shown in Fig. 4.8 which, instead, concentrates
on the more relevant range of intermediate temperatures. The comparison of
the native colored panel and the designed one strongly confirm the hypoth-
esis that sites locking early (at high values of T') are related to the naturally
conserved ones. This connection is examined in a more circumstantiated
context in the next section where we consider two specific protein instances:
barnase and chymotrypsin inhibitor.

An even more quantitative analysis of the correlation between designed
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Figure 4.8: Color-coded conservation of residues in lerv in natural context
(top panel) and in putative solutions obtained with our design procedure.
The color code, described in the text, assigns lighter colors to highly variable

sites. The conservation in the natural context was obtained from the analysis
of the HSSP database [62].
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and homologous sequences can be obtained by a simple geometrical con-
struction. For each amino acid located at site 7 in a given protein, a three-
dimensional vector is constructed whose Components are the frequencies with
which the three classes appear: in the design sequences (and we term the
vectors f) or in the homologous sequences (fN¥). To make the comparison
meaningful, the design procedure was carried out at a value of T' chosen so
that the fraction of conserved residues was similar to the one observed in na-
ture. The vector of a site which is conserved in a specific class of amino acids
is aligned with the associated axis whereas the vector of a non-conserved site

has at least two non-vanishing components.

The angle §; formed by the two vectors f2 and f¥ provides a quantitative
measure of the correlation between residue conservation in the natural and
design contexts. This angle is zero if the agreement is perfect, while it attains
the maximum value of 7/2 a2 1.5 if a residue is maximally conserved in nature

and minimally conserved in design (or the other way around).

In Fig. 4.9, we plot (for four different proteins) the histogram of these
correlation angles (light grey). Remarkably , for all the proteins, the highest
entries correspond to small angles and they represent a considerable fraction
(lerv=24, 2imm=18, 2ci2=12 and 1a2p=20) of all sites, thus highlighting a
highly significant agreement. To validate the design scheme is then crucial to
verify if the highest agreement (small angles) is observed in correspondence
of sites highly conserved in nature. This is indeed the case: in the same
figure we plot, for each angle bin , the number of sites which are naturally
highly conserved (dark grey), i.e. that have a conservation entropy, evaluated
as in HSSP data bank [62], lower than In(1.5) (In(1) and In(3) correspond
respectively to the minimum and the maximum values for the entropy when
only one class is assigned or all the three classes are assigned with equal
probability). Almost all the sites with vanishing correlation angle satisfy
this property!

We can then conclude that amino acids which, in our design scheme,
are designed with a higher confidence strongly correlate with those that are

conserved in natural sequences.
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Figure 4.9: Distribution of the angles (in radians) between amino acid fre-

quency vectors for designed sequences and aligned sequences for all the sites

(light grey) and for conserved sites (dark grey). For this plot we considered

conserved sites that with entropy less than In(1.5).
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4.3.5 Data for barnase and chymotrypsin inhibitor

In this last section we shall apply the design strategy to two proteins, whose
folding process has been heavily investigated experimentally. With a series
of key measurements [19, 28], Fersht and coworkers-workers have identified
5 restricted set of residues, the folding nucleus, which play a key role in the
folding process in proteins such as barnase (1a2p) and chymotrypsin inhibitor
(2¢i2). While, generally speaking, naturally occurring proteins can tolerate
a fair degree of amino acid substitutions without disrupting the native state,
random mutations of sites in the folding nucleus will impair the folding pro-
cess dramatically. Indeed, recent theoretical studies [40] have shown that
key sites in the folding process nucleus are part of a bottleneck in the folding
kinetic, which is mainly dictated by the native state topology. Overcoming
such a bottleneck can occur only through a careful selection of the type of
involved amino acids [7]. This novel arguments confirm and explain the ob-
servation already present in the literature [68] that sites involved in folding
nuclei should have been conserved during the evolutionary process. Hence,
our goal in this section is to design the backbone of 1a2p and 2¢i2 and com-
pare the set of residues, which are conserved in our design strategy with those
in the folding nucleus. As already seen in the previous section, we identify the
conserved residues by monitoring the frequency with which a given residue
is assigned to one of the three classes during the lowering of W controlled
by suitably changing the temperature-like parameter, T introduced in the
previous section. As we said before, the tendency of one site to prefer one
class over the others grows stronger as T is reduced, (e.g. minimizing W).
However, not all sites show this preference at the same value of T as visible in
Fig. 4.10 where we have shown the intensity with which protein sites in bar-
nase are locked in the H, N and C classes. The most conserved residues are
those for which the class-locking occurs at very high temperature. It turns
out that the sites involved in the locking process occupy buried positions
and are consistently assigned to the hydrophobic class. A visual inspection
of Fig. 4.10 reveals that sites that are first locked in barnase correlate well
with the hydrophobic core! which Fersht identified as the initiator of the
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Figure 4.10: Quenched index versus sequence index for barnase. Quenched
index is here defined as the first index for which the relative frequency for the
hydrophobic class is greater than 0.5. Circled dots represent sites belonging

to corel, core2 or cored [66].

folding transition.

An excellent agreement with experimental findings is also observed for
2ci2, where key sites have been pinpointed through mutagenesis experiment
and measurements of ¢-values [28]. The key sites have been identified as those
positions which are the highest rank in order of early locking. As visible in
Fig. 4.11 the most conserved sites in our design scheme include those found
to be crucial in the folding process. Again, these striking results serve a two-
fold purpose. On one hand they confirm the validity of the present design
approach; on the other they also show some of its possible applications, in

connection with the prediction of folding nucleus.
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Figure 4.11: Backbone for the CI2 with the 6 most conserved residues in our
design attempts. Three of them (ALA35, ILE76, LEU68) are indicated by
Itzhaki et al. [28] as the most important in the folding process.
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4.4 Summary

To summarize, we carried out automated protein design attempts over some
PDB conformations by introducing several novel strategies to identify opti-
mal energy-cost functions and select putative design solutions. A mere com-
parison of designed sequences with the PDB ones gives a success rate between
40% and 55% when working with three classes of amino acids: a value well
above the random-guessing threshold. This success rate is not improving by
introducing more sophisticated energy functions, suggesting that other im-
portant features of real proteins are neglected by short range Hamiltonians.
Nevertheless, a statistical analysis of a wider set (non-extremal) of possible
solutions, shows how the design procedure could be used to correctly predict,
with a high confidence, at least a sub-set of protein sites. These residues can
be related to the conserved sites obtained by a statistical analysis of naturally
occurring homologous sequences. Moreover, for two specific proteins (bar-
nase and chymotrypsin inhibitor), these highly predictable sites correspond
with a very good precision, to the folding nucleus, which is crucial for the

folding process.
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Conclusions

In chapter 3 we have shown the iterative method, which is a powerful tool
for protein design at least for lattice models. This method allows to select
conformations, that are highly competitive, with respect to the target con-
formation, in being the ground state of bad designed sequences. It is quite
different from the more natural strategy of nested Monte Carlo, where a
stochastic search in conformation space for estimating correctly the confor-
mational free energy is nested to a stochastic exploration of sequences space.
In fact, the iterative method is based on a preliminary iterative procedure for
collecting good decoys and a subsequent sequence selection procedure. Once
the first step is performed, the second is a very efficient procedure.

Though the iterative method is powerful on lattice models, on real pro-
teins is not yet applicable, at least in the form discussed in this thesis. Fold-
ing algorithms on real proteins are too expensive, in terms of CPU time,
and do not allow an efficient implementation of the iterative procedure. Fur-
thermore, in real proteins interactions are not so simple and well-defined as
those used in lattice models. Further tests on model proteins are necessary,
in order to understand how to implement the iterative strategy on proteins.

Even if the iterative approach is to complex to be applied on real systems
and to be compared with experimental data, other methods are becoming
accessible. In chapter 4 we have shown a design procedure that uses previous
results obtained on lattice models. In particular we use a scoring function
similar to the one introduced by Deutsch and Kuroski (see eq. 2.16). Dif-
ficulties met in the evaluation of the average contact map, due basically to
the different length of protein structures, are described in appendix A. The
other more crucial problem, the selection of optimal potentials, has been

97




98 Conclusions

solved by using a partially novel technique that has been improved in a self-
consistent way in the design procedure. The optimization procedure exploits
experimental data retrieved from the PDB and is based on energetic consid-
erations, that have been already used, though in other contexts like protein
folding and with a different formalism.

Once the scoring function has been optimized by tuning the free param-
eters on real proteins, the design procedure can be performed. A rigorous
evaluation of the performances of our procedure can be done through an
accurate comparison between designed sequences and homologous natural
sequences. Designed sequences are similar to natural sequences up to 60%
and on average 50 — 55%. This does not guarantee, of course, that our so-
lutions are correct; however the result shows that the approximate scoring
function used is, to some extent, correct.

Such results are particularly surprising if one makes the following consid-

erations.

1. The method is completely automated and no extra-information on the

protein is put by hand in the design procedure.

2. The mathematical description of interactions is extremely simplified if

compared to the one used by standard programs of molecular dynamics.

3. Both the training set and the test set are quite heterogeneous: proteins
belonging to such sets have in general completely different structures

and different functions.

4. Similarity between designed and natural sequences could be improved
by putting some phenomenological constraints like propensity in sec-

ondary structures.

The last two points need a further explanation. Regarding point 3., it is
possible that the design procedure could be improved by considering proteins
sharing a similar structure or, at least, a similar fold. For example, the
content of a-helices and S-sheets is completely variable both in the training
set and test set. At least in principle, the performances of our method might

improve by restricting the sets to only « proteins.
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Another possibility to improve our results is introducing in the Hamil-
tonian some phenomenological terms. The optimization procedure, since it
is knowledge-based, can be successfully applied independently of the nature
of the terms in the Hamiltonian. Furthermore, since it is self-consistent, the
new optimized Hamiltonian can be immediately used to design structures in

the test set. Preliminary studies are proceeding along these direction.
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Appendix A

Determination of the weight

functions A2)

A.1 Two-body energy

We estimated the average contact maps {Ag?) and (Az ; k) by considering as a
set of possible competing configurations an ensemble of structures extracted
form the PDB. We analyzed N = 116 proteins (with length ranging from 36
to 296) and for each conformation, I',, we computed the corresponding value
of the contact matrix A@) (T'y). If the structures had the same length, let’s
say L, (A, 2)> could be estlmated by simple averaging:

(A = (A.1)

::Mz

where 4,j < L. However, since we are working with proteins of different
length, we can expect a dependence of (Ag)(l”n» on the length of the chains.
To investigate this possibility we first notice that (AEJQ-) (T',)) mainly depends
on the sequence separation & = |j — 4| (at least for small k) between the
amino-acids along the chain more than from the position along the chain
and from the length of the protein (see Fig. A.1)

Let us compute now the average (A,@) value of this contact frequencies
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Figure A.1: Contact frequency for different values of the amino acid sepa-
ration k as a function of the length the protein. For k¥ = 3 and k = 4 the
fluctuations are large and depend on the protein family (o or #)considered
a-protein or S-protein). For all the k’s there is no significative dependence

on the protein length.

according to :
1 N
2 2
(AF) = 5 D AT Tn)ims=t (A2)
n=1

where (- - );_;jx represents the arithmetic average over all the contacts with
a given sequence separation k for a given protein. Then, we notice that it is
a rapidly decaying function of the chemical distance, k (see Fig. 4.2).

We can then estimate (Ag‘)) according to the rules:

APy L <k
NI 0 A3
(A7) {A(@ . (A.3)

where kg is a cut-off distance that we fixed equal to 16. The value <A,(f)) can
be estimated numerically from the data bank through eq. A.2 whereas Aéz)
should be determined according to the length of the chain.
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A.2 Three body energy 103

i<y A(Q) (Tn), is

well approximated by a linear function of the length —or number of amino

Indeed the dependence of the total number of contacts, >,

acids—, L,, of I';,. Thus, using this linear dependence on L, and Eq. (A.3)

we are able to determine A(()g).

A.2 Three body energy

The average contact map (A( ) ) can be determined in an analogous way.

17k
For a conformation I' we define the total number of 3-body contacts as

NT) = ) AGUD). (4.4
i<j<k
Similarly to the former case this number of contacts can be fitted by a
linear relation.

In this larger parameter space (A(.?-’)

six) Will depend on two indexes k1 =
|7 — 14| and k2 = |k — j|:

(AP = AB (K1, £2) . (A.5)

For k1, k2 < kg (that we choose on the basis of the statistical analysis to be
ko = 6)

AB (K1, k2) NZ S’,)c ))j—k=ka, imj=hs (A.6)

while for k1 > kg or ks > ko we assume a constant value. Here, () gk, imjmis

represents the arithmetic average over all the contacts with given sequence
separation ky, ko.
The average contact map for a generic protein will be

o) _{ A (K1, k2) k1,k2 < ko

Al A7
< A(()S) otherwise . (A7)

ijk!/ T

Using, again, that >, J < k(AS{) is well interpolated by a linear function

of L, we can determine A in Eq. (A.7), after A® (ky, ks) for ki, ky < ko

have been evaluated.
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Appendix B

Perceptron learning of the

optimal potentials

A convenient way to find the optimal potentials that satisfy inequality con-
straints such those of Eq. 4.6, is the use of the perceptron algorithm for the
optimization of a set of linear inequalities[32, 80].

For instance, in the case of the two body Hamiltonian, Eq. (4.6) can be
written, using the result of Eq. (4.7), as:

L
2 2
> (AF) = AR (D) Ba(siy s5) > 0 (B.1)
i>j=1
where L is the length of the protein. If n (") denotes the number of contacts
in the conformation I" involving amino acids of types k£ and [, and (ngj)) the
corresponding average computed on the set of competing configurations by

using Eq.A.3, Eq. B.1 can be rewritten as:

Z (<n1(921)> = n (D)) Ba(k, 1) = Z axi (L) Ba(k, 1) = ff(é) (B.2)

k>l=1 k>l=1

where the vector B; is defined as:

B =(B(1,1),B(1,2),B(1,C), B(2,2), B(2,3), B(3,3)) (B.3)
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106 Perceptron learning of the optimal potentials

Given the native state I and the sequence s the six entries of ay; depends
only on the average properties of the decoy structures.

For a given set of M inequalities to be satisfied simultaneously, it is
convenient to identify the one (related to the conformation I'y) that, with a

given set of trial potentials is the worst satisfied one , e.g.:
Fr,(B) < Fu(B) k=1,...,M k#s (B.4)

Once I', has been determined, one updates the trial potentials adding a
quantity proportional to ax(T's) where the proportionality constant is chosen
to be much smaller than one. With this new choice of the potentials, each
inequality is re-valuated and the updating cycle is repeated until frs(g)
(stability) reaches the maximum possible value. One is allowed to fix the
scale of B’s by requiring | B| = 1 where the | - | is the usual Euclidean norm.
This method can be shown to converge to an optimal solution, F*, which
can be of either sign. If it is negative , it means that no set of potentials
can be found that consistently satisfied all inequalities in the set. Otherwise
the problem is learnable and the optimal potentials are identified with those
giving the highest stability.

We have extracted potentials by using the perceptron scheme with M =
31 globular proteins. The related set of inequalities has turned out to be
learnable in all cases, with two or three body energy terms.

For the two body energy we have extracted a first set of potentials using
the 15 proteins and a second one with the remaining 16. The two set of
potentials are plotted one versus the other in Fig. B showing an extremely
good correlations.

This validate the conclusion that an interaction matrix B depending only
on 6 parameters can be determined with a dozen of non redundant globular

proteins. Similar results have been obtained with the three body energy.
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Figure B.1: The potentials B determined using a set of 15 proteins and an-
other set of 16 proteins (see table 4.2) are plotted versus the same potentials
determined by the whole set of 31 proteins. The correlation between the
potentials obtained with the two sets and the biggest one is nearly perfect
(ideally points should lie on the diagonal). Using the whole set of table (4.2)
we found B = (0.12,0.22,0.36, —0.76,0.35,0.32). Potentials are here sorted
as in eq. (B.3) where 1,2,3 refer respectively to classes P,H,C.
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