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1 Introduction

Lot of complex structures can be characterized using the concepts of fractal geometry.
The key point leading to this description is the recognition that these structures obey a
striking kind of symmetry, the scale invariance, implying that these objects look the same
on different scales of observation. Examples of these kind of structures can be found in
various field of science, and on various scales. Clouds, landscapes, lightnings, fractures and
galaxies are all fractal objects.

Researches in the fields of diffusion-limited reactions and surfaces growth demonstrated that
scaling concepts, similar to those successfully developed in the context of phase transitions
in equilibrium statistical mechanics, could provide a powerful technique in the study of scale

invariant systems.

The main part of this work deals with a rather unusual subject in non-equilibrium sta-
tistical mechanics, that is the dynamics of river networks.
Many laws of Nature are independent, or nearly so, of a scaling factor, reflecting the fact
that, as observed previously, many structures observed in Nature are self-similar, i.e. in-
variant against changes in scale. River networks are a beautiful example of such self-similar
structures, and their fractal character can be observed experimentally on several scales.
Previous approaches to the problem focused especially on reproducing the statistical charac-
teristics of the drainage network, without taking care of the dynamic driving these systems
in their critical state.
We propose a model which is able to predict the final stable shape of the landscape ob-
tained, as a product of erosion, from an initially featureless surface.
The equation for the landscape evolution is derived from very simple principles, and, in spite
of that, provides a good explanation for all observed facts in geomorphology. Moreover, it
predicts the exact scaling of a new quantity that may be deduced from observational data
and that will thus provide a decisive test for our theory.

Another reason for being interested in drainage networks comes from the fact that they
provide a beautiful example of tree-like structures spontaneously produced in Nature.

Branching patterns abounds in Nature. Examples can be found everyvwhere: in blood
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vessels, Lichtenberg figures created by dielectric breakdown, crystal aggregates, patterns
generated by viscous fingering, even in termite trails in sand! Some of these fascinating
patterns are shown in fig. 1.1, 1.2 and 1.3.

A desirable goal would be to characterize these patterns and understand what leads to
them.

In the case of the river networks we will see that loopless structures arise quite naturally from
the minimization of the dissipated energy under the constraint of the continuity equation
for the flow.

The last part of this work will deal with random aggregation models and reaction diffu-
sion processes.
We will show that a much studied random aggregation model proposed by Takayvasu (equiv-
alent to one of the first river networks models proposed by Scheiddeger!) can be mapped
on the diffusive annihilation. This random aggregation model was already known to be
related to the directed sand-piles and to the voter model, that is a stochastic model for the
formation of public opinion.
Finding an exact mapping between various problems of physics always represent an impor-

tant progress, from which all them may benefit.

CAPTIONS:

(1.1a) Aggregates of zinc from an experiment of metal crystalline deposit growth.

(1.1 b) Branching patterns in an experiment of viscous fingering.

(1.2a) Lichtenberg patterns created by dielectric breakdown.

(1.2 b) Pattern of termite trails searching food in sand.

(1.3 a) Radar image of the Mississippi River delta.

(1.3 b) Radar image of Mount Rainier in Washington state. At the top of the image
curving to the northwest you can see the White River, leaving the mountain at
the bottom right (south) Nisqually River, and leaving to the left the Carbon
river.



(b)

(a)

Figure 1.1:

Figure 1.2:

(b)

(a)

Figure 1.3:
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2 Dynamics of River Networks

The numerous efforts to model river networks [3. 1. 5] have primarily focused on reproducing
the statistical characteristics of the drainage network. Less attention has been payed to the
temporal behaviour and to the evolution of the profile. Some previous models have been
proposed by [6, 7, 8, 9] but none of them is capable to predict the shape of the final profile

obtained when erosion keeps acting on an initially featureless surface.

In this chapter we present a nonlinear model which describes the evolution of a landscape
under the effects of erosion by means of a simple differential equation. The equation is
derived by reparametrization invariance arguments [10, 11} and exactly solved in d = 1.
Results of numerical simulations in d = 2 show that the model is able to reproduce not only
qualitatively but also quantitatively the critical scaling characterizing landscapes observed
in natural river basins. We also predict the exact scaling of a quantity that may be deduced

from experimental observations, providing a test of our theory.

The chapter is organized as follows: in the first section we introduce the reader to this
rather unusual topic of non-equilibrium statistical mechanics, defining what is called river
basin, what kind of data are available from Nature, and what are the experimentally ob-
served facts. Then we introduce the equation for the for the evolution of a basin’s landscape,
deducing it from simple principles.

In section 2 we show how the equation proposed to describe the evolution, can be regarded
as a lower order gradient expansion of an equation obtained by reparametrization invariance
arguments [12, 11].

We solve exactly the equation in d = 1 (section 3) showing that it is equivalent to the
Burgers equation [13] without viscosity. The solution in one dimension not only gives some
qualitative features of the two dimensional case. but can be interpreted as the evolution
along the mainstream in the physical case (d = 2} if one takes properly into account the area
collected by each point of this stream. Moreover the d = 1 case turns out to be enlightening
about the role of boundary conditions.

Results of a numerical analysis in d = 1 are presented in section 4 both in the deterministic

case and in the case in presence of multiplicative disorder, modeling a random rainfall.

(&3]
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Figure 2.1: Subbasin of the Kentucky River basin. Kentucky makes a good study region because
there are few geologic controls and the climate is fairly homogeneous and humid throughout the
region. The predominant lithology of the bedrock in this rezion is limestone. DEM image: The
lowest elevations are red and black, while the highest ones are yellow and white. The white diagonal

stripe near the bottom is Pine Ridge, which also shows up well on the shaded aspect image.

In section 5 we briefly reviewed the finite size scaling ansatz proposed in [10] describing the
critical behaviour exhibited by river network models and the scaling laws [14] relating the
critical exponents. Results of numerical studies in d = 2 are reported in section 6. Simula-
tions have been performed both by direct integration of the equation and with the help of
a new algorithm converging very quickly to stationary solutions. The latter method allows
to get very good statistics. Critical behaviour of stationary solutions is analyzed in details
in the context of the finite size scaling ansatz. showing a perfect consistency with already
known scaling relations and a very good qualitative and quantitative agreement with real
data.

Numerical results reported in section 7 refers to simulations obtained “heating” the system
with an additive noise term and then carefully quenching. The aim is to reach more stable
solutions. The motivations come from the fact that stationary solutions of the evolution
equation are ‘strictly related to the solutions of an optimization problem arising from a
static model of river networks [15, 16]. and will become clear in the next chapter. With
this method we found a distinct class of stationary solutions whose critical behaviour is
characterized by a different set of exponent corresponding to a mean field model [17].
Results of numerical studies in d = 2 in presence of mulriplicative correlated and uncorre-
lated noise, again modeling randomuness in the rainfall are reported in section 8.

All the results obtained are summarized and discussed in section 9.



Figure 2.2: A shaded aspect image. In this image. each pixel’s color 1s determined by the direction

in which water would flow away from that pixel.

Figure 2.3: A river network image. The colors in this image blue, green, vellow, orange, red,
and black correspond to streams of different Stralher orders [1, 2]. Stralher ordering system is the
most common classification scheme of the hierarchical branching structure of river networks used in

hydro-geomorphology.
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PRODUCTION
Z0NE

TRANSFER
ZONE

DEPOSITION
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Figure 2.4: Idealized fluvial system. The region inside the dotted line is the drainage basin.
2.1 General Framework

Branched river networks are one of the most common examples of fractal patterns sponta-
neously produced in Nature. Examples are shown in figures 2.1, 2.2 and 2.3 relative to a
sub-basins of the Kentucky river basin. The three images comes from processing of data
from satellite. The drainage network in a river basin has a tree-like structure which provides
an efficient means of transportation. Experimental analysis on river basins have shown clear
evidences of fractal behaviour characterized by the absence of a single well-defined length

scale.

2.1.1 Definitions and Empirical Observations

A fluvial system may be ideally divided in three distinct regions (see fig 2.4). They are

called according to their working purpose production zone, transfer zone and deposition
zone [18]. ‘

We call river basin the production zone of a river that is where water is collected.

Data relative to the landscape of a basin are available from Digital Elevation Maps (DEM)
[19, 20] consisting in discretized elevation fields obtained by topography from space. The
unitary areas in the discretization units are called pizels and are boxes of about 30 x 30m
in a square grid. The drainage network is determined from a DEM assigning to each pixel

a drainage direction. Since water flows downhill through the steepest descent, drainage
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Figure 2.5: The construction of the river network from the landscape in a simple ekample.
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Figure 2.6: Hack law relates the length of the mainstream in the (sub-)basin with the total area of

the (sub-)basin.

directions go from each pixel to the nearest neighbour with the lowest height. Multiple
flow directions are excluded since they practically do not occur in Nature, at least in the
production zone. Figure 2.5 shows how construct the drainage network from the landscape
in a simple example.

To each pixel 7 one can associate a variable that gives the number of pixels draining through
t. This quantity represents the total drainage area (cumulated area) a; at the point ¢
expressed in pixel units, and, in the case of uniform rainfall, provides a measure of the flow
at that point. The upstream length [; at the point i is defined as the distance from the
farthest source draining in 7, measured along the stream.

In a first approximation channels may be defined as made of those pixels with total drainage
area greater than a support area threshold even if it has been argued [21] that support area

alone may not be sufficient to determine channels initiation.

Observations lead to a lot of empirical relations between quantities characterizing rivers
morphology. The Hack’s law (1957) [22], relates the length of the leading stream [ in a
drainage region with the area a of that region (see 2.6): | = ka” with k~ 1.4 and h ~ 0.6.
In fig. 2.7 some experimental data from [22] are shown. This relation is true both for
sub-basins of the same basin (fig 2.7 (A)) and for the whole basin of different rivers (fig 2.7
(B)) with the same approximative values for & and h.

The sensitive departure of the observed value of A ~ 0.6 from the Euclidean value % lead to
the first conjectures about the fractality of rivers [23].

Another well established empirical relation (slope-discharge) is between the flow in a point
and the gradient of the height of the landscape at that point (see fig. 2.9): | VA | J7~1

with a numerical value of v around 0.5.

The distributions of accumulated ares a; and upstream length I; are characterized by
power law distributions with exponents 7 and 1 respectively, in the ranges 1.42 — 1.46,
1.73 — 1.85.
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Figure 2.7: Figure (A) shows the relation between length of the longest stream and drained area in
different sub-basins of the same basin (Shenandoah Valley, Virginia). Figure (B) shows the relation

between mainstream and total drained area for different rivers in different parts of the world.
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Figure 2.8: Log-log plot of slope versus discharge (with different DEM support areas) for Hack basin
(Schoharie Creek headwaters, Hunter, NY).
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2.1.2 Equation for the Evolution of a Landscape under the Effects of

Erosion

Recently a lot of efforts have been done in order to define static models able to reproduce

the previous mentioned statistical characteristics of real rivers (for a review see [24]).

Real drainage basins are not static but evolve on extremely long time scales. Nevertheless
some statistical properties seems to be preserved during the evolution. This consideration
follows from the fact that some quantities characterizing river basins morphology are almost

the same for all rivers, irrespectively of their “age”.

Our aim is to find the simplest model that simulates an evolution to morphologically realistic
landscapes and that preserve certain features during evolution. The equation we propose

to describe the evolution of the landscape is
Z(t,z) = —aJ(t,z) | VZ(t,2) > +7V*Z(t,2) + . (2.1)

where Z denotes the elevation in the point z = (z,y) of the substrate plane at time ¢ and
J(t,2) the modulus of the flux in that point at time ¢. The first term is an erosional term
proportional to the flux, the second is a diffusive term and the third is a constant term
modeling a constant upltft. The existence of an uplift originated by tectonic forces is a well
known fact in geomorphology [21, 25]: a landscape represents the instantaneous equilibrium
of two concurrently active processes, uplift (endogenic) and degradation (exogenic). A

stationary state results from the exact balance of this two agents.

A simple argument leading to an equation of the form (21) is the following: the evolution
of a landscape had to be of the form Z = F(V’"Z, V2%Z,...,J), where an explicit dependence
on Z is excluded since would break the translational invariance, and the dependence on J
(bidimensional projection) is simply trough J =| J | since J || VZ. In the small gradients
expansion

Z=A+B-VZ+C(VZ)?+---. (2.2)

Observing that in order to ensure the rotational invariance it must be B = 0, one recov-
ers an equation of the form (2.1). In the next section equation (2.1) will be derived by

reparametrization invariance.

The constant term in equation (2.1) can be eliminated by simply replacing Z(¢,z) with
z(t,z) = Z(t,z) — ct. In what follows we will always consider the frame in which the system

drifts with velocity ¢ an thus equation (2.1) can be rewritten as

H(t,2) = —al(t,z) | Vz(t,2) | +7V72(t,2) . (2:3)

The diffusive term act on the surface even in points with infinitesimal contributing areas

where the first term vanishes since the flux become zero. In absence of the diffusive term



14 § 2. Dynamics of River Networks

the presence of maxima on the surface will cause the formation of singularities during the
evolution, since points at the top of an hill will never be eroded by the first term (both J
and Vz vanish). The presence of even an infinitesimal diffusive term is then essential in

eliminating these singularities.

In the discretized version of the model each site (pixel) collect at least an unit area, thus
no singularities due to a vanishing contributing area appear even in absence of the diffusive
term . Moreover the discretization introduce implicitly a diffusive term since it smoothes z
on distances of the order of the lattice length and then prevent also from singularities due

to a vanishing Vz that appear when v = 0.

For these reasons we will focus on the simplified version of equation (2.3) in its lattice
discretization obtained by putting v = 0. In fact, due to the coarse grained scale of the
elevations field, the effects of the diffusive term would be negligible. The possible relevance
of that term will be discussed later.

In this case the equation reduces to
Ht,z) = —aJ(t.z) | Va(t,2) |* . (2.4)

When it is not explicitly stated the flux is taken to be proportional to the drained area and
flux and drained areas are used indifferently. This corresponds to have an uniform rainfall

acting on the surface.

In spite of its simplicity, this model shows a lot of interesting features.

The stationary solutions of equation 2.4 are such that
| Vz|xJ7V2, (2.5)
This the previous mentioned slope-discharge relation and is a well known empirical fact.

It will be shown that the evolution is characterized by two time scales. The elevations are
lowered in a nonuniform way by erosion, causing variations of the draining directions during
the evolution. Sketching again the system with a lattice model, one can associate to any
time a two dimensional configuration giving the drainage directions at any site (fig. 2.5).
After a first characteristic time, the freezing time, the spanning graph determining the two
dimensional configuration of the basin does no longer changes. Erosion keeps acting (till
equation (2.5) holds at any site) on the profile but preserves the two dimensional drainage
structure. The second characteristic time, much longer, is the relazation time at which the
profile reaches its stable shape.

Since a lot of the measured quantities like the distributions of drained areas and mainstream
lengths depend only on the two dimensional structure, the existence of a freezing time
much smaller than the relaxing time may provide an explanation of the phenomena we
were pointing out at the beginning, that is the fact that some statistical properties must be

preserved during the evolution since are found to be almost the same for all rivers.
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2.2 Evolution Equation for River Networks by

Reparametrization Invariance

The evolution of a surface under the effect of erosion can be described in terms of an

equation of the form

0:7(s,1) = a(s, 1) Fls, 1), J(7(s. 1)), Gl (2.6)

where 7(s,1) is a three dimensional vector spanning the surface and s = (1, s2) varies in a
parameter space. 7(s,t) is the unit normal to the surface at 7(s, 1), G is the gravitation field
supposed to be constant on the surface, f(f’(i, t)) is the flux in the point 7 which is directed
along the steepest descent direction of the surface and F contains a deterministic erosional
mechanisms. The time derivative of 7 must be parallel to the normal to the surface. This
follows by regarding ¢t = sp as a coordinate in a curvilinear coordinate system (sq.s1,52).
Changes of the parametrization cannot involve sp, since it represent the absolute time.
This implies that the elements go; = 907 - 9;7 of the metric tensor vanish. Thus it must be
0o L 0;7,Vi, i.e. 0;7 is perpendicular to the plane tangent to the surface in 7 and then
7 || 7.

With general considerations one can guess the form of F. The first is the reparametriza-
tion invariance: irrespectively of the details driving the evolution, the equation must satisfy
the requirement to be independent of the choice of the particular parametrization, s, we
are using to describe the surface. This means that the only quantities that can enter in the

equation are intrinsic i.e. invariant under reparametrization.

The second consideration is that in absence of flux, erosion does not take places, and then

0,7 must be equal to zero. Calling J the modulus of the flux, the simplest hypothesis is:
F=JF+0(J%. (2.7)

Fisa scalar, thus it must depend by A and G only by their scalar product 7 - G. Moreover,

when 7 || G again no erosion must take place, thus F = 0. This suggest:

F=G+#n-G (2.8)
where G denotes the modulus of G.

Thus, to the first order in J
F=JG+n-G) (2.9)

Let us use for ¥ the Monge parametrization. In the Monge parametrization z is a two
dimensional vector in the “substrate” plane and z(z) is the height of the surface in the
direction z (|| G_") perpendicular to that plane. This is not the most general parametrization:

the presence of overhangs in the surface is in fact excluded, otherwise the function z(z)
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would no more be single valued. Nevertheless it is enough general for our purposes. In
this parametrization the metric tensor has the form g¢;; = 6;; + 8;z 9;z with determinant

g = 1+ | Vz |, The normal versor is

o —1/29 = - (—62,1) .. :
f=g O X O = — (2.10)
VI+|Vz ]2
In these coordinates, equation (2.6) reads
Oz, z(z, 1)) = nlz, 2(z,t))F. (2.11)

Taking in both sides the scalar product with the versor # yield
;}:f\/ +|ﬁz |2. (2'12)
Thus ﬁ has the meaning of velocity in the direction perpendicular to the surface.

Replacing in equation (2.12) the expression of F given by equation (2.9) and using G =

G(0,0,1)
F=GJ(\J1+|Vz ]2 -1). (2.13)

To the lowest order in the gradient expansion equation (2.4) is recovered.

2.3 Analytic Solution in d =1

Equation (2.4) in d = 1 determines uniquely the evolution of a profile z(¢) once boundary
conditions are properly chosen. We will study the equation on a segment [0, L]. The initial
profile zp(z) and the elevation in L at any time determine uniquely the solution. In what
follows, in particular, we will consider the case in which the point at L lowers with constant
velocity v. We will show that this equation has a stationary solution in the sense that after
a certain relaxing time the profile will rigidly move with the constant velocity v preserving
its shape. This is exactly the solution we are interested in, since it is constant in time in
the real coordinates Z(z,t) = z(z,t) + ct if the velocity v is taken equal to the uplift ¢. For
smooth profiles without lakes J = z and then equation (2.4) becomes

Hz,t) = —2[0.2(z, )], z€]0,L] (2.14)
with boundary conditions

{ z(z,0) = zo(x) (2.15)

2(L,t) = —v (v>0).

With the change of variable y = \/z and deriving both sides with respect to z one gets an
equation for u(y,t) = 0yZ(y,1) = 2v/202(z,t) |02 :

1
uw(y,t) = ——Q—U(y,t)ayu(y,t) (2.16)
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with boundary conditions

{ u(y,0) = wn(y) = 20(00(2)) lo=y o

w(VI,t) = —27.

Note that the boundary conditions (2.17) give rise to a continuous solution only if up(V'L) =

=2\/vie if Ozz0(2) 2= ——3\/%. In effect we will show that the discontinuity in u(y,t) does
not imply a discontinuity in z(z,t) if the initial condition zp is such that dzzo(z) |1 > —3\/%.

Equation 2.16 is the Burger [13] equation without the viscosity term. This is a special
case of a class of differential equations called conservation laws and related to the problem
of shock waves that have been extensively studied both from physicists and mathematicians.
Their solution is well known on (—oc, oc). We will show that the problem on [0, L] defined
by equation (2.16), with boundary conditions (2.17), is equivalent to a certain problem on

(—oc,o¢) and can be thus solved exactly.
The general solution of equation (2.16) is implicitly given by (see for example [26]. Cap.
15)
u(y,t) = to (y - %W(y:t)> (2.18)
where ug is a suitable initial condition®. This can be checked quite easily by direct substi-

tution in equation (2.16). If boundary conditions are supposed in the form

= <y<
uy,0)=u(y) 0<y<A (2.19)
u(A,t)=f(t) t20
where ug and f are specific known functions, then
. up(y) 0<y<A
fio(y) = " (2.20)
ER P

where t(y) solves the equation y = A — 1tf(¢). f must be such that equation (2.20)
does not contains ambiguity in the definition of up. In the specific case of equation (2.17)
f = const = —=2,/v, equation (2.20) becomes

i ( ) . Qy(al‘:f)(l)) l:v:y2 yE [07 V/I—’)
I Lavm y> VI

and thus, trough equation (2.18), we have the complete solution for z(z,t),V¢ > 0, which

(2.21)

taking into account equation (2.15) becomes

2z, 1) = — /xL Q%u(\/;,t) — vt (2.22)

'One can show that the only C* functions which satisfy equation (2.16) for any t > 0 are those which are

monotonically increasingin y for each fixed ¢ > 0. Our ug is not an increasing function and the solution on
y € (0,00) exist only up to time ¢ = —1/ugy. However, the solution on {0, L] remain finite for any y € (0, L].
However, uo cannot be arbitrary. A sufficient condition for the existence of the solution for any ¢t > 0 for

the problem on [0, L] with a decreasing initial condition uo is for example that ug > 0.
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Such solution depends on the initial profile zy only in the transient regime, while the sta-
tionary solution depends only on v.
For example, if the initial condition is simply a line with slope —m : z(z,0) = m(L — 2),

from the above equations one easily finds

Aot = -5t mL z < _(
2/o(VI - Vz) —vt 2> (1)

(2.23)

where the function 7(t) must be determined imposing the continuity of z. Such function

exists for any m < 3\/% and it is given by

In this case it emerges quite clearly a relaxation time for the evolution that could be
defined as

i e X t_ . 22-
R= max (z) (2.25)

where ¢t = #(2) is the inverse function of z = Z(t).
In the simple case of equation (2.23), tgp = 2% - ":}—L Ifm= e\/%- with 0 < ¢ < 1 then

tp = %(Q—E)N\/-{E.

For a generic initial condition tg ~ v/L.
The last statement can be easily obtained with the following scaling argument: assuming
the scaling of z, z and ¢ with L:

r~IL ,z~L% |t~ L, (2.26)
one gets, from equation (2.14) that @ — ( = 2a — 1 = 0 and then
a=(=1/2. (2.27)

The solution z(z,t, L) assumes the scaling form
L) =VIf(E L 2.28
Z(:L"'J )"" L’LC ’ ( . )
where f is a scaling function given by

Flw, k) = -/1 5‘%12(\/;, K- ok, (2.29)

w

where ﬂ(\/—-LE, —\/t—f) = u(y/z,t; L) and we used the fact that the function u(y/z,t; L) can be

expressed in terms of the dimensionless variables w = fand k = —\/t—z This is possible since

from equation (2.18) u ~ L3=¢ = [0 (equivalently, from the definition of u, u ~ L“_%).
For t > tg the scaling function becomes f(w,k) = 2,/v(1 — \/w) — vk.
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Figure 2.10: Alternative derivation for the form of the scaling function f.

This scaling argument is also useful to analyze the relevance of a possible diffusive term
92z in the equation. Such term should scale as L2 = L~=3/2 and then results to be

irrelevant in the large size limit.
Note that the presence of the uplift in equation (2.1) is essential to avoid a constant down
drift of the landscape and the flattening of the landscape. In fact the stationary solution

2(z,t) = 2/o(VL - z) — vt (2.30)

vanishes if v = 0. This is indeed what happens for the particular choice of ref. [7].

It is interesting to note that the form of the scaling function in the stationary solution
(2.30) can be obtained from very general considerations and on the scaling assumption,
without referring to a specific evolution equation. For a river of size L let z(z, L) be the
hight at position . We impose z(L,L) = 0. The height z(z — y, L) with y > 0 can be

related to the height z(z, L) and to the one of a river of length z at position z —y as follows
(see fig. 2.10):

e -y, L)=z(z,L)+ 2(z — y,2). (2.31)

In the limit y — 0
2(a, L) -y (2, L) = =(2, L) + 2(2,) -y (2, ) (2.32)

where z{(z,L) = —g—i—(w,L). From equation (2.32), being z(z,z) = 0, it follows g;;(z,L) =
dz

z1(z,z) independent of L. Integrating §3(z, L) from 0 to L we have

L 5. L
z(L,L)— z(z,L) = / —_gi(s, L)ds = /r z1(s,8)ds = F(L) — F(z). (2.33)

T

where F is a primitive of 2] i.e. 4(z) = 2{(z,z). Since 2(L,L) = 0, we have z(z,L) =

F(z)— F(L). This is the general expression that a profile must have (up to this point we
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Figure 2.11: Numerical integration of equation (2.14) with a flat plain with slope —m as initial
profile, and velocity —v in L (we choose m = \/%—) The landscape is shown at three stages of the
evolution corresponding to ¢t = 1/4tg, t = 1/2tg and t = 3/4tg, where tg = 2V/L//uv —mL/v is
the value of the relaxing time derived analytically in the previous section. The solid lines correspond

to the analytical solution given by eq. (2.23) at the various times.

did not make any assumption).

If we require scaling:

o2, 1) = L‘“‘f(%) = F(z)— F(L) = F(L)(?éz)) - 1) , (2.34)

then F(z)= —Az® implying
2(z.L) = AL“f(%) , (2.35)
where A = 2(0, L) and f(s) = 1— s*. This is exactly what we found in d = 1 with a = 1/2

and what we will find (see section 6) for the mainstream in d = 2 with the appropriate o.

2.4 Numerical Results in d =1

Equation (2.14) has been solved numerically by direct integration in the simplest case for
which the solution is given analytically in order to test the algorithm (results are shown
in fig 2.11 with the theoretical predictions). The simulations have been performed then in
the case of a random initial condition (fig 2.12) and with an additional diffusive term (fig.
2.13). Moreover the presence of an inhomogeneous rainfall has been considered, and has
been found to be irrelevant on the evolution of the profile.

All simulation have been performed on a sample of size 64. In the figures the initial profile

and the evolution at four successive times are shown.

In the case of a random initial condition the equation must be generalized in order to

be applied to a non-monotone profile. Indeed, in the case of a non monotone profile, the
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Figure 2.12: As in fig. 2.11 but with a random initial condition.

T
=t

Figure 2.13: As in fig. 2.12 a}d with the same initial condition of fig 2.12, but with the addition of

a diffusive term in the equation.




22 § 2. Dynamics of River Networks

(o]

Figure 2.14: Example of a generic initial condition. The flow J must be taken respectively equal to

Z,Tp— I, L~ Ty, L4 — I, I — 4 in each monotonic region.

identification of the flow J with z is no more valid. The equation remain the same in
each monotonic subset, with the proper direction for the flux, that now depends also on t.
The flux must be taken as in the example of fig 2.14. Solving equation (2.14) without the
diffusive term would lead to singularities in the points x5, 24 in fig. 2.14. The discretization,
introducing a diffusive effect, eliminates these singularities, as results evident from fig 2.12.

Note that in the points of minima the flux must be taken equal to zero.

We can observe that in the case in which no lakes are present in the initial condition,
they will never be generated from equation (2.14). Indeed, if Oz20(z) < 0 for z € (0, L),
then from equations (2.18) and (2.21) it follows that d,2(z,t) < 0 at any successive time.

2.5 Description of Scaling Laws

In order to provide a general setting for further considerations we review some basic concepts
about the finite size scaling approach to the statistical characterization of river networks.
Such networks are known to exhibit power law behaviour typical of fractal structures in
the distributions of some quantities characterizing their morphology. Let us define such
distributions in the simple case of a lattice model which will be used explicitly also in the

next sections.

A landscape is described by a scalar field of elevations, where drainage directions are iden-
tified by steepest descent, i.e. by the largest local decrease of the elevation field. Excluding
the presence of lakes, i.e. assuming that from each point the water can flow to one of the
nearest neighbours, a river network can be represented by an oriented spanning graph over
a two dimensional lattice of arbitrary size and shape, in which oriented links (one coming

out from each site of the lattice) correspond to drainage directions.
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Figure 2.15: Example of drainage network. In the fig. (a) the site i is upstream with respect to the

site j. In fig. (b) the numbers correspond to the drained areas and the bold line to the mainstream.

To fix the ideas, consider graphs spanning an L x L square lattice, with outlets on one edge.
We will say that a point ¢ is upstrearn with respect to a point j if there exists an oriented
path joining the two points from 7 to j (see fig. 2.15 a). To each site ¢ of the lattice, we
associate a local injection r; (the average annual rainfall in the site ¢). The flow J;, can
thus be defined as the sum of the injections over all the points upstream of site ¢ (site ¢
included). In the case of constant injection (r; = constant ) the flux in a point 7 results to
be proportional to the area a; drained in that point and we will use indifferently this two
quantities (see an example in fig. 2.15 b). In natural basins these drained areas can be

investigated through data coming from digital elevation maps (DEM’s) [19, 20].

By definition, variables .J; are related by the following set of equations:

Ji = Z’wi,j.]j + 7, (2'36)

J

where w; ; is 1if site j is a nearest neighbour upstream with respect to site ¢ and 0 otherwise.

Another relevant quantity is the so called upstream length relative to a site, defined as
the length of the stream obtained starting from that site and repeatedly moving along the
network in the upstream direction towards the nearest-neighbour with biggest area (the one
leading to the outlet is excluded, since it is a downstream site), until a source is reached i.e.
a site with no incoming links. If two or more equal areas are encountered, one is randomly
selected?.

For a given graph on a lattice of given linear size L we will consider the following two prob-

2This is the the operative definition used by geomorphologists to extract the upstream lengths from DEM.
It is slightly different to the one we gave in section 2.1 but it should be clear that the difference is irrelevant

in a statistical sense, i.e. if we are interested in probability distributions.
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ability distributions originally introduced to describe real river basins and experimentally

found to scale as power laws:

o p(a, L), the probability density of drained areas a, and

o 7(l,L), the probability density of the upstream lengths [.

These represent the fraction of sites draining an area a or having an upstream length !
respectively. We will also consider the corresponding integrated probability distributions
P(a, L), and II(I, L). For such distributions a finite size scaling ansatz has been formulated
[10] that seems to provide a simple and natural explanation to well known empirical laws.

The finite size scaling ansatz consists in postulating the following form for the distributions:

oDy =a7( ), (2.37)
(1, L) = ,—¢g<%> ’ (2.39)

where f and ¢ are scaling functions accounting for finite size effects and ac and I¢ are the
characteristic area and length respectively which depend on L. The functions f and g are
assumed to have the following properties: when z — oo they go to zero sufficiently fast
to ensure normalization; when z — 0 they tend to a constant, to yield simple power law
behaviour of the probability distributions in the large size limit. This also implies that
and v are bigger than one.

The characteristic area and length are assumed to scale as
ac ~ L'H (2.39)

Ic ~ L% . (2.40)

H is known as the Hurst exponent and is of course 0 < H < 1. The dy exponent, charac-
terizing the typical length, has the meaning of fractal dimension of a stream (each rivulet
going from any site to the outlet is assumed to have the same fractal dimension), and is
such that 1 < df <1+ H.

dy = 1 corresponds to a straight line whereas dy = 1 + H corresponds to have an almost

single space filling rivulet.

The integrated probability distributions can be written as
—7 a ¢
P(a,I) = F<Zﬁ—ﬁ> , (2.41)

(i, L) = 1“%‘(%7) : (2.42)
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which follow from (2.37) and (2.38) with

+oo A

F(z) = w”/ dy vy~ f(y), (2.43)
+oc

G(z) = $¢’"1/ dy y~¥ (). (2.44)

The four exponents introduced up to now are not independent. In fact they have been

shown [17] to be related by the following scaling laws®:

dy
_o_ % 92.45
T=2 T H (2.45)
b=t (2.46)
dy

The observed values of 7 and ¥ are in the ranges 1.42 — 1.46, 1.73 — 1.85 respectively.
A well known hydrological law, Hack’s law [22], relates the length of the longest stream
lin the drainage region to the drainage area of the basin a:

I~ at. (2.47)

The accepted values of h range in the interval A = 0.56 £ 0.02 [27, 28, 29]. Their definite
departure from the Euclidean value 0.5 lead to the first suggestion of the fractal nature of

rivers [23].

From equations (2.39) and (2.40) it follows that

dy
=4 2.4
1+ A (2.48)

The scaling relations (2.45) and (2.46) can be expressed in a simpler form, observing that

both 7 and % depend on df and H only in the combination (—1—;'%{—) = h, where h is the

3These scaling relations derive from two considerations: the first is the fact that the cumulated areas, aver-
aged over all the sites is equal to the distance from the outlet, averaged over all the sites (a) = (laownstream) -
This gives

S @-n)(+H)=4d;,

that is equation (2.45).
The other is the fact that Hack’s law suggests the existence of a well defined constraint between lengths and
areas, implying that conditional probability #(! | ) of finding a main stream with length [ in a basin draining
an area a is a sharply peaked function of I: #(I | a) = §(I — a”) or more generally #(I| a) = l"lg}(;%).
x, p and ¥ must be related by a consistency equation:

Lit+H

x(l,L) = / #(!| a)p(a, L)da,

that,in the large L limit, gives
(= 1)df = (r = D)1+ H).
From this relation and (2.45), (2.46) follows.
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parameter appearing in Hack’s law (2.47). Thus

—h, (2.49)
(2.50)

S = N

The exponents 7 and ¢ are thus related by the simple expression:

T=2-—. (2'51)

Since 1 < dy <1+ H and H < 1 it follows that 1/2 < h < 1. This implies that 7 <3/2.
The equality holds only when H = dy = 1 which corresponds to the mean field situation
(17, 14].

2.6 2-dimensional River Networks

In this section we report our results on the analysis of equation (2.4) in d = 2, corresponding
to the physical case. These results come from computer simulations joined with some

analytical arguments.

In subsection 6.1 we describe an iterative algorithm for the search of stationary solutions
of equation (2.4).
All data regarding the stationary solutions have been obtained with this method. They are
analyzed in detail in subsections 6.2 and 6.3.
In particular, in subsection 6.2 we analyze the distributions of drained areas and mainstream
lengths, and in section 6.3 the scaling properties of the “average” profile and of the profile
along the mainstream. The profile along the mainstream is deduced also from analytical
arguments, thanks to the fact that it is topologically one dimensional.
The iterative algorithm turns out to be much faster than a direct integration of the equation
and thus reveals to be very useful to get richer statistics. However it does not give infor-
mations about dynamic itself, i.e. about the behaviour of the system during the evolution,
in particular if one is interested on the disappearance of lakes and on relaxation times.
For this reason a numerical study with standard methods has also been performed. Results

are reported in subsection 6.4 .

All simulations described in this section refer to a square lattice with periodic boundary

conditions on one direction and open boundary conditions on the other one.
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2.6.1 Description of The Iterative Algorithm

We are looking for stationary solutions of equation (2.4). Any stationary solution must

satisfy
aJ | Vz|?=v, (2.52)

where v is a constant velocity imposed by the boundary conditions* on the lower edge. Thus

for a stationary solution, the relation

|Vz|= \ﬁ.}-% (2.53)
«

between flux and gradient must hold in any point.

The landscape is described giving a field of elevations {z;}. The drainage basin can be
reconstructed using the rule of the steepest descenti.e. assuming that the flux in a point has
the direction of the maximum gradient of the elevation field (the direction of the lowest of
all nearest neighbours). This is correct as far as there are not lakes. We will call compatible
a field of elevations that satisfy this request. Since our equation has been shown numerically
in d = 1 to eliminate lakes during the evolution and have been proved not to form them
again, we restrict ourselves for simplicity to landscapes described by compatible fields of
elevations. It is then clear that to any of such landscapes one can uniquely associate an
oriented spanning graph on the lattice, i.e. an oriented graph loopless and passing through
each point. Now, identifying the flux in a point with the total area drained in that point, one
can reconstruct the field of fluxes {J;} corresponding to a given oriented spanning graph.
The flux in a site is simply given by the number of sites upstream with respect to that site
in the case of uniform rainfall, and is given by equation (2.36) in the more general case.
From the fluxes a new field of elevations can be defined using equation (2.53). The new
configuration of the landscape will be again compatible since each point has at least one
nearest neighbour with biggest flux, that is the one in which it flows, and then from (2.53)

it has at least one nearest neighbour with smaller height.

We can thus define a transformation from the set of compatible configurations in itself:

{'i} =T({=}) (2.54)
consisting in the following chain of transformations:

steepest descent spanning drained areas equation 2.53 ’
{zi} — graph — {J:} — {'i}

Any fixed point of equation (2.54) is a stationary solution of equation (2.4).

* As noted in subsection 2.3, the presence of an uplift term 5 0 is of crucial importance. An uplift equal
0 would cause the complete flattening of the surface. This is indeed what happens in ref. [7]. .
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2.6.2 Scaling of Drained Areas and Upstream Lengths

We performed simulations on samples of different sizes starting. for each size, with 100

different initial conditions.

We started the algorithm giving a spanning graph as initial condition. The initial networks
have been constructed in the following way: we chose a site at random and let it follow
a random walk until it reach a site on the edge containing the outlets. Then another site
is randomly selected among the ones not visited by the previous walks and a new random
walk is generated till it visits one site on the edge containing the outlets or it intersects the
already existent pattern (consisting in the union of the previous random walk(s) but the
present). If, before to do that, this walk intersects itself in some point 7, the oldest of the
two links outcoming from ¢ is deleted in order to eliminate the loop.

All this procedure is repeated until all sites have been touched. The distributions (2.41)
and (2.42) of such spanning graphs has been tested in order to check to which universality

class (assumed to be identified by the exponents in the power laws introduced in section 3),
they belong to. We found 7 = 0.40 + 0.03 and % = 0.67 £ 0.03.

For sizes 32, 64, 128 and 256, starting from configurations generated in this way and iterating
the algorithm described in subsection 6.1 we got stationary solutions of equation (2.4).
The distributions of drained areas and mainstream lengths show power law behaviour. The
exponents are nearly the same for each configuration and are different from the ones we
started from.

Averages over the 100 stationary solutions give for the exponents respectively 7 = 1.4540.02
and ¢ = 1.8240.02. Log-log plots of these integrated probability distributions of cumulated

areas and upstream lengths are shown respectively in fig. 2.16-2.17 and fig. 2.19—2.17.

Collapse test have been done in order to evaluate the exponents defining the characteristic
area and length that result to be: 1+ H = 1.984+0.04, df = 1.10+0.04. Collapses are shown
in fig. 2.18 and 2.21. These numerical values are in perfect agreement with the scaling laws
in section 5.

To have a direct measure of the exponent h appearing in the Hack law, we plotted the
drained areas along the mainstream against the corresponding upstream length (see the
inset in fig. 2.26, in the next subsection). We found a good power law with an exponent

= 0.55£0.02 in good agreement both with the values of H and ds and with the value
observed in Nature.
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Figure 2.16: Integrated probability distribution of cumulated areas averaged over 100 samples on

32 x 32,64 x 64, 128 x 128 and 256 x 256 square lattices. The slope of the dashed lineis 7—1 = 0.45.
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Figure 2.17: Integrated probability distribution of cumulated areas times n averaged over 100

samples as in fig. 2.16.
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Figure 2.18: Collapse plot for the distributions of fig. 2.16 obtained with 7 = 1.45 and 1+ H =1.98.
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Figure 2.19: Integrated probability distribution of mainstream lengths averaged over 100 samples on

32 x 32, 64 x 64, 128 x 128 and 256 x 256 square lattices. The slope of the dashed line is ' — 1 = 0.82.

Figure 2.20: Integrated probability distribution of mainstream lengths times n®3? averaged over 100

samples as in fig. 2.19.
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Figure 2.21: Collapse plot for the distributions of fig. 2.19 obtained with 4 = 1.82 and d; =1.1.
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2.6.3 Scaling of Profiles and Profile along the Mainstream

Let z be the direction parallel to
the edge containing the outlets in
the “substrate” plane, i. e. the
edge which is lowering with veloc-
ity v, and y the one perpendicular.
For each sample we considered the
one dimensional profiles obtained
taking slices in the z direction at
constant y and considering for each

value of y the mean height and the

corresponding roughness (see fig.
2.22). Figure 2.22: Slices for the average profile.

Profiles and roughness averaged over all 2 show again scaling properties.
The height of the profile is found to have the form:

) =225 (2) (2:55)

with a numerical value for the exponent of a = 0.20 £ .05 (see fig. 2.23 (a), 2.24).

Likewise for the roughness in the y = const plane
nN=r1f (L 2.56

with v = 0.20 £ 0.05 (see fig. 2.23 (b), 2.24).

w(y)

: , - : : 0.0 . *
0 50 100 150 200 250 0 50 100 150
4 y

Figure 2.23: Averaged profiles (a) and roughness (b) along the x direction plotted versus y for sizes
32, 64, 128 and 256. '
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Figure 2.24: Reasonable collapses of averaged profiles and roughness are obtained with o = .2 and
v =.2.
¥

Moreover we reconstructed the profile along the mainstream.

This have again scaling properties with a law analogous to that of the averaged profiles
(2.55) were L is replaced with the length of the mainstream £ and with a different value &
of the exponent:

(1) = Lf(-é-) (2.57)
In (2.57) I refers to the length along the stream and £ represents the mainstream length.
The value of & is @ = 0.09 £ 0.01 definitely smaller than the value of « in (2.55).
This is not surprising since by definition, going back up along the main stream, at each
step one chose the direction of the site with biggest area, i.e. for the relation (2.53), the
direction of the smallest gradient. The resulting path is then systematically lower than a

generic one.

It is very interesting to note that
equation (2.57) can be recovered
analytically with the correct ex-
ponent and with the explicit form
of the scaling function with the
following argument: the evolution
along the mainstream can be re-
garded as an effective one dimen-
sional problem if one take properly
into account the fluxes along the

stream. Thus we argue that the be-

haviour of z(/,t) is well described
by equation (2.14) replacing z in

the right hand side with {. The’

value of v is expected to be given by the exponent h~! = %H- relating the area drained in

a point with the upstream length relative to that point (see equation (2.47)).

Figure 2.25: Profile along the mainstream.
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Figure 2.26: Profiles along the mainstream obtained in two dimensional simulations on a 128 x 128
square lattice and averaged over 100 samples starting from different randomly chosen initial con-
ditions. The solid line is the analytical result in dimension one with an exponent h = 0.55. The
value of h has been obtained from the log-log plot of the upstream lengths along the mainstream

versus the corresponding areas shown in the inset. Numerical values and theoretical prediction are

practically indistinguishable.
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Figure 2.27: Collapse of profiles along the mainstream corresponding to 32 x 32, 64 x 64, 128 x 128
and 256 x 256 square lattices obtained with & = 0.09 and d; = 1.1.
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Thus we are lead to the following equation for the main stream evolution (after the

imprinting of the drainage directions has occurred (sec. 2.4.6))
2w, 1) = —ke22(z,1) (2.58)

with initial conditions

{ .j:(;r,(}) = 20(2) (2.59)
,Otz(L,t) = =v.

1-—

(SN

This can be solved with the same method used in section 3 with the substitution y =

unless v = 2. The stationary solution is given by

z(z,t) = %\/%(L“ —a*) — vt (2.60)

Y

where p=1-3

Using v = h7! = % weget p=1-%=1- lﬁ—fl— ~ 0.09. p corresponds to the
scaling exponent & in equation (2.57). The value of £ = 0.51 has been extrapolated from
the log-log plot of fig. 2.26 where the cumulated areas along the mainstream are plotted
against the upstream length. This analytical expression for z fits surprisingly well with the
profiles obtained with the simulations, how is shown in figure 2.26 for the samples of size

128. Figure 2.27 show the collapse of the profiles of sizes 32, 64, 128 and 256.

2.6.4 Relaxation and Freezing Times

A direct integration of the two dimensional equation proves to be slow, and then we are able
up to now only to give qualitative results: simulations show that there are two disparate time
scales associated with the dynamics. The first of these is the time tg (freezing time) taken
to determine the connectivity of the spanning tree and it is relatively fast. This was also
observed in [7]. The second, tg (relaring time) involves further erosion without changing
the spanning tree, until the soil height acquires a stable profile that satisfies equation (2.53).
This may account for the robustness of the scaling statistics associated with the spanning

trees, as the imprinting of the tree occurs relatively early in the evolution process.

2.7 Results in d = 2 with Additive Noise

Heating the system with an additive noise term, and carefully quenching, enables to reach

more stable solutions, with different statistic.

Simulation described in subsection 6.2 have been repeated starting from 10 initial condi-

tions chosen as in subsection 6.2 for the equation

ht,z) = —aJ(t,z) | Vh(t,2) |> +1(t,2). (2.61)
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where 7(¢,2) are independent variables identically distributed with uniform distribution

with zero mean and variance ( (9(¢!, 2)n(1%,2?)) = Dép 26, 52 ).
A brief sketch of the algorithm is as follows:

i) Generation of a random initial configuration:
We generate randomly an initial configuration as described in sec 6.2.
iz) Evolution of the configuration:

The system is evolved with the algorithm described in subsection 6.1 apart for
the fact that v in equation (2.53) is replaced by v+7(t,z), for 4x L X L iterations.

i17) Lowering of the variance D:

In each cycle the variance D of the noise distribution is lowered by a factor
o' ~ .95 by decreasing the interval of definition of 1 of a factor & = 0.983. At
the first cycle n € [—~va,va], at the % cycle n € [—va™, va™].

After step i), steps i) and 7ii) are repeated many times, till D reaches very low values

(=~ 107*). The entire algorithm is repeated from step i) with a new initial condition.

The distributions of drained areas and mainstream lengths show power law behaviour with
exponents respectively 7 = 1.50 £ 0.03 and ¢ = 1.98 £ 0.03 , as shown in fig. 2.28 The
exponents for the characteristic area and length are found to be 1 + H = 1.98 £ 0.05 and
df = 1.0040.05 from the collapses. The exponent h has been extrapolated from the log-log
plot of drained areas along the mainstream with respect to the corresponding upstream
lengths and result to be A~! = 2.00 & 0.05.
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Figure 2.28: Averaged distributions of drained areas (a) and upstream lengths (b) for sizes 32, 64,

128. The solid lines correspond to slopes .5 and 1 respectively.
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Figure 2.29: Profile along the mainstream for a size 128. The solid line corresponds to the theoretical

prediction.

Scaling of the profiles along the mainstream has also been tested. We found a logarithmic
behaviour of z with £. This is in perfect agreement with the argument in dimension one:

1-

equation (2.58) with v = 2 cannot be solved with the substitution y = 7. Anvway

solving equation (2.58) with v = 2 — ¢ and taking the limit ¢ — 0 in the solution one gets

z(z,t) = —\/glog <—£J—> — vt (2.62)

that solves equation (2.58) with v = 2.

In fig. 2.29 the profiles obtained by simulation for a size 128 are compared with the theo-
retical prediction. The value of k, as in section 6.2 has been extrapolated from the log-log
plot of the areas along the mainstream versus the corresponding upstream length.

Note that a naive scaling argument as in section 2.3 gives again the correct result: assuming

the scaling of z, z and ¢ with L
t~L ,z~L% Lt~ LS (2.63)
and observing that the noise term scales as (z=1¢t~1)/2 ~ L~73" one gets

{ a—(=2a-1

NI (2.64)

that gives ( = 1 and o = 0, in accordance with the logarithmic behaviour found in (2.62).

Also in this case, the possible diffusive terms seems irrelevant since it should scale as L¥~2.

2.8 Results in d =2 with Random Injection

Natural river basins are known to be heterogeneous. The simplest heterogeneity that one

may consider is random precipitation with 7; no longer being uniform. Sites with large
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drained area have contributions from the r; of all the upstream sites. Thus, fluctuations
in r; that do not have a long tail in their distribution would be expected to average out
to yield the homogeneous result. Indeed a numerical study of this case shows that, as in

d = 1, the universality class is unchanged on adding this kind of heterogeneity.

2.9 Discussion, conclusions and outlook

The model proposed and analyzed in this chapter seems in spite of its simplicity to cap-
ture lot of features of landscapes evolution. The evolution equation is derived from very
general considerations and provide a good qualitative and quantitative explanation for all
the observed facts: the Hack’s law, the slope-discharge relation, the power law distributions
of drained areas and upstream lengths. It also predict the exact scaling of two quanti-
ties, the average profile and the profile along the mainstream that may be deduced from

observational data and would provide a good test of our theory.

There is one point that is still unclear and is the fact that as a consequence of short
freezing times corresponding to a very rapid imprinting of the landscape, the final drainage
configuration of the network has a strong dependence on the initial condition. This can
account for the range of values observed for 7 and % but opens the question of what is a
good physical choice for the initial configuration. Note however that this problem does not

affect at all our result on the evolution of the profile and the relative scalings.

Another interesting question is to clarify if networks resulting from this erosional dynamics
are related to the configurations (Optimal Channel Networks (OCN) [15, 16]) arising from
the minimization of the total dissipated energy. Addressing this question will be part of the

subject of the next chapter.
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3 Optimization and branching pat-

terns

Lot of branching patterns are observable in Nature . Some beautiful examples are shown
in the first chapter (fig 1.1, 1.2 and 1.3).

Starting from a river network model and generalizing to any open dissipative system with
injection we show that branching structures may arise from optimization of a cost function

with the constraint that the continuity equation be satisfied.

In this chapter (section 1) we introduce the Optimal Channel Network (OCN) model for
river networks, based on a principle of minimum dissipated energy expenditure. Minimum
energy dissipation rate models are based on the postulation that an open system with
constant injection evolves toward a structure that minimizes the total energy dissipation
rate.

Drainage basins, subject to a uniform energy input from precipitation are an example of this
type of systems and they may form a structure that minimizes the rate of energy dissipation

in the whole basin.

For the OCN model the statistical features of the global minimum are exactly known. Local
minima are statistically indistinguishable from configurations observed in Nature and quite
different from the global solution. This consideration suggested the concept of feasible
optimality [30] (the discussion of which is postponed to section 5) claiming that Nature
is unable to reach the true ground‘ state in complex optimization problems and that local
minima, having well defined statistical properties belong to a new universality class.

Some evidences of that comes also from the study of domain walls in random ferromagnets.

Optimal configurations coming from the OCN model are shown (section 2) to be sta-
tionary solutions of the equation describing landscapes evolution analyzed in the previous
chapter, in the sense that the landscape reconstructed from an optimal drainage network
with the slope-discharge rule is consistent with the fact that the flow follows the steepest
descent. This is not at all a trivial fact.

Another system which is known to arrange itself in order to minimize the rate of energy

39
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dissipation is a resistor network (section 3). The key difference is that in a network of
resistors there is just one configuration minimizing the total energy dissipation, while in the
river network case the energy landscape has been found to be riddled with a lot of local

minima.

In section 4 we show how loopless structures may arise as optimal structures minimizing
a cost function with the constraints imposed by the continuity equations.
In the river networks case, if one enlarge the configurations space allowing configurations
in which the flow can split in more directions (i.e. renouncing to the statement that the
all flow run in the direction of the steepest descent), and minimizes the dissipated energy,
one recovers the spanning loopless configurations. Thus loopless trees are minima of the

dissipated energy with respect to small variations of the flow.

3.1 Optimal Channels Network Model

To each landscape {z;} defined on a lattice as in section 2.1 we associate a dissipation energy

as

E =3 kiJiAz(i) (3.1)

where Az(7) is the height drop along the drainage direction, J; is the flow through the site
i. and k; is a quantity related to the soil properties such as erodability, vegetation, lithology

etc. For homogeneous basins k; = 1 without loss of generality.

Field investigations [31, 32, 33] shown that the velocity of the flow tends to be constant
throughout the network. Thus the energy dissipated to maintain the water flow, equals the
potential energy associated with precipitation. The power dissipation in a link is J;Az; and

then the (3.1) represents the power expenditure in the whole system.

Using the empirical law Az(7) ~ JP® [34. 31, 35] equation (3.1) can be rewritten as
E(T)=>_J7. (3.2)

where v = 0.5 and T represents the oriented spanning graph associated to the landscape.
The Optimal Channels Networks [15, 16] consist of the configurations T' which are local
minima of the dissipated energy (3.2) in the sense specified below:

we will say that two configurations 7" and 7’ are close if one can go from one to the other
Just changing the direction of one link, i.e. if the set of links 7 U T” represent a graph with
a single loop (see fig 3.1). A configuration T is said a local minimum of the functional (3.2)
if to each close configuration T’ corresponds a bigger energy. Note that not all changes are
allowed in the sense that the new graph needs again to be loopless.

Thus a local minima is a stable configuration under a “single link flip T = 0 dynamic”, i.
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e ————— i

T T’ TruT’
Figure 3.1: Example of two close configurations.

e. a dynamic in which only one link at times can be flipped, and it is flipped only when the

move does not creates loops and decreases the functional (3.2).

Numerical analysis on this OCN model [14] lead to the conclusion that the energy land-
scape is riddled with a large number of local minima characterized by similar values of
E(T). As “statistical indicators” one can choose the exponents in the probability distribu-
tions of cumulated areas P(a > n) « n~(=7) and of upstream lengths P(I > n) & n=(1=¥)
(see section 2.5), that for real rivers gives the experimental values 1 — 7 = 0.44 £ 0.02 and
1 -1 =0.7940.06.

Interestingly, OCN’s show features in remarkable agreement with real data only when “im-
perfect”searching procedures (like this 7 = 0 dynamic) are used. For the global minimum,
the exact value of the exponents are known [14, 17] and are 1 — 7 = 1/2 and 1 — ¢ = 1,
significantly different from the ones of local minima.

This has been the starting point for the formulation of the concept of feasible optimality

[30], that we will briefly discuss in the last section.

3.2 Relation with the Model of Landscape Evolution

We will prove that any elevation field corresponding through the relation
| Tz |~ JH? (3.3)

to a configuration minimizing at least locally the functional of equation (3.2) is a stationary
solution of equation:
it,z) = —J(t,z)| Vz(t,z) |* . (3.4)

The proof is as follows: consider a configuration realizing a local minimum of the dissi-

pated energy, and a site ¢. The link outcoming from ¢ will go in one of the nearest neighbours
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case (a) case (b)

Figure 3.2: Example of the two cases (a) and (b). Sites belonging to Sk, are denoted with crosses,

sites belonging to S;, are denoted with circles.

of i, let us say k. Let j be one of the other nearest neighbours such that changing the link
from ¢ — k to ¢ — j one still gets an allowed configuration. Paths outcoming from k and j
will intersect downstream in a given point w (case a) or will never intersect until they reach
their outlets (case b). Let Si denotes the set of all points in the path from k to w in the
first case and from k to its outlet in the second (see fig. 3.2). Likewise for j.

Changing the link from ¢ — k to ¢ — j only the areas of sites belonging to the sets Sk;
and S, will change. In particular all areas in the set S;, will be increased of an amount
equal to the area a(%) contributing to the flow through i, and all areas in the set Sy, will
be decreased of that amount. Thus such a change will cause a change AF in the dissipated

energy equal to

AE = 3 [(a()+a(i))" —a(z)]+ > [(a(z) - a(i))" - a(z)"], (3.5)

TE€S;, Z‘GSkj
where 7 = 1/2 and a(z) are the the fluxes before the flip.

The condition for a configuration to be a local minimum of E translates in the set of

conditions

> [(al@) +a())” —a(=)"]+ 3 [(a(z) - a(i))" - a(z)"] > 0 (3.6)
.‘L'ESJ'k .Z‘Eskj
for each 7 and j such that j is a nearest neighbour of 7 and gives rise to a loopless configu-

ration.

Our aim is to show that conditions (3.6) imply that the elevations field determined by the

local minimum configuration using (3.3) represent a stationary solution of equation (3.4).
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To that purpose it will be useful to express the condition of stationarity in a more explicit
form. In order to be a stationary solution of equation 3.4 the elevations field determined
by a graph trough (3.3) must be such that reconstructing from it the draining directions
with the steepest descent rule, one gets back again the graph from which the elevations field
originated from. This would imply that if ¢ — % is the drainage direction in the point i, the
biggest drop in elevation from ¢ to its nearest neighbours is in the direction of k. Then this

condition reads:

z(k) < 2(j) (3.7)

for any j nearest neighbour of ¢ and different from k. In the same notations of equations

(3.5, 3.6), the height in this two point can be written as:

I8

2(k) = 2(w) + Tpes,, alz) ™ (3.8)
2(j) = 2(w) + E.’IIESkJ a(z)™? |

™

in the case a and
(k) = Taes, ala)”
() = Toes, a(z)”

in the case b (the outlets are at zero height being the constant drift subtracted). In both

(3.9)

W= o=

cases inequality (3.7) becomes

S ale) i< Y az)7E. (3.10)

mES_,‘k fL‘ESkJ

In order to proof that eq (3.6) implies equation (3.10), let us observe that eq (3.6) can be

a(z)+a()
2 7/() vy > 27/

z€S;, T€Sk; (z)—a(i

rewritten as: (=)
Yy ldy. (3.11)
)

Since 7 < 1 the integral on the Lh.s. of equation (3.11) is lower than a(z)'~7a; and the one
on the r.h.s. is bigger than a(z)!~7a;. Thus equation (3.11) implies

Z a(z)"™t > Z a(z)"? (3.12)

€S, :rESkj

and then equation (3.10) follows since v = 1/2.
The proof holds in the more general case of 0 < 7 < 1 and equation (3.3) is substituted
with | Vz | J177,

Under this kind of perturbations, the converse is not true, i.e. a stationary solution of
equation (3.4) not necessarily realizes a local minimum of the dissipated energy (under this
dynamics). Counterexamples can be easily constructed. For example, configurations in
which occurs the situation shown in fig. 3.3 are stationary solutions of equation (3.4) for

any a; < ap + ¢ while they are not local minima of (3.4) as soon as a; < a;. Thus, for any
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Figure 3.3: One possible counterexample. A stationary solution of equation (3.4) not nec-

essarily realizes a minimum of 3.1. Indeed, in the case in the figure stationary solution =

Azy < Azp = (aa +¢)" V% < afl/g < a; < az + ¢; not a local minimum of the energy <«
(a2 4+ )2+ a7 > a5 P 4 (a1 + 9)V/? & (a1 4+ Q)2 — a7 ? < (a2 + )2 — ;' & as < ay.

choice of a1, a; and ¢ such that a; < a; < as + ¢ this provides a counterexample.
Maybe there exists a restricted set of perturbations under which that the converse holds,

but this problem is still open.

3.3 An Example of Dissipative System: Resistor Networks

In electrical networks the currents arrange themselves in order to minimize the total dissi-

pated energy. In this case, the dissipated energy is
1
Bp= 1 RyR2 (3.13)
]

where R;; and I;; are respectively the resistance of the link from 7 to j and the current
flowing through it and I;; = —I;;. A continuity equation ensuring the conservation of
charge can be written for each site j. Let us call A the point in which the current (for
example equal to one) is injected and B the point through which current flows out. Then
the continuity equations are

D Lj=64-6;5 (3.14)

(one can as well do the more general case where each site j exchanges a current J; -positive
or negative- with the exterior, with >;Ji=0).
Using Lagrangian multipliers one can minimize the energy (3.13) with the constraints (3.14)
and gets

Ai = Aj = I; Ry (3.15)

Thus, identifying A; with the potential V; at the point j one recovers the Ohm’s law.

One can show that any other currents configuration gives a bigger value of the energy

[36]: any other currents configuration I; must as well satisfy the constraints (3.14). Let us
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Figure 3.4: Portion of a lattice showing the orientation of bonds.

write Ifj = Ii; = pij (pji = —pij), then 3, . p;; = 0. The difference between the energy in
the two configurations is E' — F = %Zij Ri;(—21;;pi; —{-p?j). Observing that the constraints
on {pi]'} imply Zi,j Rijfijpij = Zi,j(/\i - Aj)pij = -2 Zi,j Aip.gj = 0, one gets E' > E.

3.4 Minimum Energy and Loopless Structures

3.4.1 Equations for the currents

Consider a square lattice. Fix an orientation for all lattice bonds (e.g. the ones of the
positive axis as in fig 3.4). On each bond b a current 7; is defined. i, > 0 if it is flowing in
the assigned direction, ¢, < 0 otherwise. Uniform (unitary) injection (rainfall in the case of

river networks) is equivalent to the set of constraint
(0i); =1 (3.16)
where 0 is a sort of discrete version of the divergence ( see fig 3.4 for the notations):
(3Z)x = -ty — g+ 13+ 1 (3.17)

We want to show that a local minima of the cost function
E=3 |l (3.18)
b

when 0 < v < 1, occur when 7, # 0 only on the bonds of a spanning tree. The tree must
be spanning due to constraints (3.16): you cannot have i = 0 for all b’s incident on a site
so that there must be at least one outlet from each site . Some site must be declared to
be a global outlet.
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Figure 3.5: Plot of the function E versus a for v = 0.5.

Figure 3.6: Plot of the function E versus a for ¥ = 0.25,0.5,0.75,1,2

o [ ==
a= 0 a= 1 a=- 1 a="2

Figure 3.7: Loopless configurations for the graph of figure 3.8.
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a

a+l1 1-a

[\S]

-a

Figure 3.8: Example: graph with 4 bonds. The black dot is the outlet.

Thus loopless structures comes out as optimal structures of equation (3.18) with the con-
straint (3.16).

Let us start with an extremely simple example: 4 sites. After implementation of (3.16),

in the notations of fig. 3.8, equation (3.18) becomes
E=la|"+]a+1]"+|1=al|"+]|2-a]|". (3.19)

In figure 3.5 one immediately sees that there are local minima in correspondence with one
of the four currents being zero (a = 2,1,0,—1), corresponding to the four trees shown in
fig. 3.7. The explanation is simple. Suppose that a ~ 0 (the other cases are equivalents).
Then all the terms in (3.19) but | @ |[* can be expanded in Taylor series around a = 0. Thus,
locally

E=242"+a|"4+0(a) (3.20)

which looks like a cusp, since 0 < 4 < 1; if ¥ < 0 there would be an asymptote instead
of the cusp. Notice that % |[q=ox= %oo and thus one cannot find the minima simply by
imposing that %—E =0.Ifa#0,+1,2, being %—z% < 0 there are no other minima of F (only

maxima).

In fig. 3.6 the function E versus a is plotted for various values of v. Note that for vy = 1

all directed (with the currents going in the positive directions) configurations, loopless or

a b
a 1+a+b b
y
s -
2-a 2-b

Figure 3.9: Example: graph with 7 bonds. The black dot is the outlet. A conventional orientation
has been fixed on the bonds.
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Figure 3.10: Plot of the function —E versus (a, b) for v = 0.5.
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Figure 3.11: Detalil of the plot of the function —FE versus (a,b) for v = 0.5.
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(a,b)= (1,1)

(a,b)= (0,0) (a,b)= (1,0) (a,b)= (0,1)
—_—p <o

(a,b)= (1,2) (ab)= (2,1)

. ! ° .
(ab)=(-1,0)

(a,b)= (0,2) (a,b)= (2,0) (a,b)= (0,-1)

(a,b)= (1,-2) (a,b)= (-2,1) (a,b)= (2,2)

L > o —<c—

(a»b): ('3»2) (a,b)= (2r'3)

Figure 3.12: The 15 loopless configurations for the graph of figure 3.9. The spanning trees with the
same energy are on the same line and the lines are in the order of increasing energy. The arrows are

drawn following the orientation fixed in fig. 3.9.
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A i2 B
Ly I3
O Iy C

Figure 3.13: Signes of the current for the example with Lagrange multipliers.

not, have the same energy. The case ¥ = 2 corresponds to the resistor networks case in

which there is just one minimum at a = 1/2.

Another example is that of the graph shown in fig. 3.9. The energy surface is shown in
figures 3.10—3.11 (to make the cusps better stand out, we plotted —E instead of E). The
15 cusps correspond to the 15 loopless configuration of this graph (see fig. 3.12). Note that
since there is one unknown current for each bond and one continuity equation for each site
the number of independent variables is given by the number of bonds minus number of sites

(excluding the outlet).

3.4.2 Lagrange multipliers

Since we have seen that local minima occur in singular point configurations, where some
currents are zero, we cannot introduce the standard technique of Lagrange multipliers to
find the minima of £ with the constraint (3.16). In order to be able to do that we must

regularize E as follows

E=3 (ij+&)/° (3.21)
b

The previous definition is obtained in the limit ¢ — 0. If we consider again the simplest
case of the 4 bonds graph, we should solve the following equations (with 77, 7, i3 and 74 as
in fig. 3.13).

0= %(E—{” /\A(Zl -+ 19 — 1) + AB(’L;_), — 19 — l) + ACI(Z4 — i3 — 1)) ,b = 1,2,3,4 (322)

These imply (defining Mg = 0)

Ado—Aq = (j?;j")j-m’y , (3.23a)
A A= R (3:23) 3
Ac — A = @?ﬁ}m‘/ ) (3.23¢)
Xo—Ac = (—%;—f)m,—z 7. (3.23d)

If we define the r.h.s. of equations (3.23 a — d) as J; then from equation (3.23) we have

—*-]1+J2+J3+-].;:0 (32—1)
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meaning that the current J, is irrotational (ie. V x J = 0 or equivalently §dl-J = 0

around any loop). This, of course, has been allowed by the regularization that avoid that

some J, — 0, corresponding to some i, — 0. If | i; |< ¢, equations (3.23 a — d) have a
solution
il =1 + 0(52)
. 2=
12 = o1=y :
3.25)
i3 =1+ 0(62) ( '
i4 =2+ 0(52) N
and
—Ai=7v, =Ap=7(1+ 27_1) , —Ac = "/27_1 , (3.26)

and thus no divergence occurs on the r.h.s. of (3.23a). —A may then be identified as the

height field. However the current directions do not correspond to the steepest descent.

It is indeed remarkable that if we take a subset of the set of all minima consisting in
those spanning tree that are local minima of the functional (3.2), the current flow in the
direction of the steepest descent. This follows directly from our proof of section 3.2 that
reconstructing the elevation field from a spanning tree that is OCN local minima, and

following the steepest descents, one gets back the same tree.

3.4.3 General Proof
Given an arbitrary graph, the number [ of independent loops is given by
#(loops) = #(bonds) — #(sites) + #(connected components) (3.27)

As was observed previously, our graphs must be spanning structures, thus #(connected
components)= 1. For example, in the case of an nxm rectangular lattice, | = nm—n—m+1.
We want to show that any spanning tree is a local minimum of (3.18) and that there are

not other minima.

The proof is easy if one fix a spanning tree and properly choose the independent variables
to be the current flowing in the bonds absent in that tree.

Consider a general structure with / independent loops. The energy
E =3 (i} + )2 (3.28)
. b

has a local minimum in all the configurations T" corresponding to currents i, ~ ¢2~7 in all
b ¢ T. If we overlap T to that structure, we can assign loop currents z1, s, ..., z; to the

bonds b ¢ T'. All the others currents are determined by the constraints (3.16) in terms of
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! :‘ 1 :‘

x;p ] {Cz 2 Y

] ;-_- _X3““
4 X4 3 Y

© 3 : S

Figure 3.14: Spanning tree: the currents z1, 2, r3 and z4 in the four missing bonds are chosen as

independent variables.

Z. Thus E = E(&). We will prove that §E/dz; = 0 at 2; ~ 277 and that the Hessian is
positive definite. Indeed

i .
——jl,—; = IZ ,.2)1 —/2 gxb s (329)
where 15 is linear in z; and %% = =1. Notice that in the sum (3.29) not all the bonds
b are necessarily present. For example in the case shown in figure 3.14 in F/dz1 it is
absent at least the contribution from the bonds z5, 23 and z4. This implies that only in one
term of (3.29) 4, ~ 0 and it corresponds to i, = z;. All the others are finite when & — 0.
Then,g—fi = 0 implies

!
TS 1 |77 sg (3.30)
b
and the sum )’ is over all the terms present in (3.29) but b: i, = z;.
0*FE " J1y
Hij=———=7v(v-1 77 5 i # 7, 3.31
J azlal] /(/ )szlzbl arJ Z#J ( )

where in the 5" the contributions from b: 7, = 2 are absent. Thus = f are finite in the

¢ — 0 limit. When 1 = j

0*F
S :A‘-’y- =7 3 3
H;; = 52:0z, + 0™, (3.32)
and thus H has the form
H =" (I +&*7T), (3.33)

where T3; = 0,T;; = H;j @ # j. This implies that the eigenvalues of H, for sufficiently low
¢ are all positive, meaning that (3.30) is indeed a minimum.

Moreover one can see that closing one or more loops with finite currents (taking one

or more z; finite) causes the appearance of one negative eigenvalue in the Hessian matrix
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for each added bond. If z; is the current in this added bond, then the first derivative is

gg =7 z; " Vsgn(ay) +v3, | 4 77T g%sgn(zb), and the second derivative is %zr? =
(v =1) [z "2+ 33 v(y = 1) | 5 [772< 0. Being Hyx < 0 implies that ), Hyjziz; < 0 if

zp # 0 and z; = 0,7 # k. This shows that in this case the quadratic form H;; is not positive
definite and no local minima can be found when there are loops with finite currents in the

€ — 0 limit. This completes the proof.

When Lagrange multipliers are introduced

9 _ : : .
5 [E DI 1],\3;,] - —,[ i —(d\| (3.34)

0= , ‘
(1 + )t = /2

where (dA)y = Ay — Ay if b links 2 and y. From equation (3.34)

i .
(dA\)y = GETTh (3.35)

Corresponding to a given tree T for the i, with b € T', since ¢, # 0, we have

(dX\)y =| 35 |7~V sgn(dp) + O(277) , (3.36)
whereas, for b ¢ T
2.b ! 3ib
d\), = = — A R 3.37
(= Grreyi—oya =~ ey, 1 (3-37)

where the sum has the same meaning as in (3.30).

Notice that the neglected terms in (3.36) come from the z; dependence of ;.

Let us verify that (3.36) and (3.37) are consistent. With reference to the figure 3.15 we
have that all bond on the side (1) have a current i — ¢, + 2 when = 0 — z # 0, whereas

on the side (2) ¢ — i — 2. On the side (3) the currents do not depend on z. Thus

(AN == > lip " Usgn(ie)+ D, i 77 sen(iy) , (3.38)

beside 1 peside 2

0= Zbeside lu(-side 2)Ub"(d)\)b = (339)
Zbeside 1 l ib ]7_1 sgn(ib) - Zbeside 2 1 ib ]'Y-'l sgn(ib) ~+ {d/\)b* ,
is indeed satisfied due to equation (3.38).

This also shows that the terms contributing to equation (3.37) are the ones along the unique

path of T joining the extrema of the bond creating the loop.

3.44 Casey=1

In the case 7 = 1 the previous proofs does not hold. However one can proof that in that

case, all directed configurations, i.e. in which the currents flow in the positive directions
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Figure 3.15: Notations for the last part of the proof.

correspond to the same energy, and that any other configuration has a bigger energy. You
can see that in the simple example of one loop in fig. 3.6.

The proof goes like follows: Let us call V(z) the distance of site & from the outlet. Any
site y nearest neighbourg of = and flowing into = has a distance V(y) = V(z) + 1 from the
outlet. Then

S V() = Y V)00 = Y i@V ) = s, (3.40)
T T b b

where the 3~ is a sum over the sites and ), is a sum over the bonds. Note that >V,
depends only on graph topology and is independent on currents configuration.
If the configuration is directed, then Y", 7, = >, | % |= E4, since oll currents are positive.

In any other currents configuration

E=) li|>
b

2
b

=> 1z, (3.41)

and then £ > Ej;. This completes the proof.

3.5 Feasible Optimality

In two complex optimization problems related to the evolution of fluvial networks [37, 38, 39]
and the geometry of domain walls in random ferromagnets [40], key statistical features of
the global optima are exactly known [17, 40, 41, 42]. In the first case extensive experimental
observations are also available [43, 44, 45, 21, 25, 24]. Imperfect optimal search procedures
(46, 47] yield local optima statistically indistinguishable from those observed in Nature and
quite different from the global solutions. Instead, more refined annealing procedures [14, 30]
achieve optimal states closer to the actual ground state but with significant departures from

natural structures.
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T

(a)

(b)

Figure 3.16: (a) The shape of the ground state interface of a two-dimensional random ferromag-
net bounded by + and — boundary conditions respectively at the top and bottom faces of a
two-dimensional lattice of size 96 x 96. The domain wall between regions of different magneti-
zation is highlighted. It is a self-affine curve with wandering exponent H equal to 2/3 (i.e. if L is
the linear size of the system, the vertical fluctuations Y of the self-affine curve scale like ¥ o L);
(b) feasible domain wall, obtained by a T = 0 search for minimum total energy (i.e. flipping only the
randomly chosen spins actually lowering total energy). Regardless of initial conditions, the domain
wall is a robust self-similar curve characterized by fractal dimension D = 1.6 (if the actual curve

length is £ the scaling relationship is £ o< L) .

The optimization problem defined by the OCN model, consists on choosing the network
whose energy dissipation function is lowest, and entails an involved selection procedure
among the exponentially large number of spanning networks in a given domain. As we have
already pointed out, the statistical attributes of the global minimum are known exactly [17],
and does not agree at all with the great amount of data available from Nature . Spanning,
loopless network configurations realizing local minima of the energy dissipation (OCNs)
show instead many interesting properties of fractality and a striking resemblance to river
landforms in Nature [37, 38, 39, 17, 48, 49, 50].

The same features can be observed in a completely different context, i.e. in the problem
of domain walls in random ferromagnets. Consider a ferromagnet in a box, with + and —
boundary conditions at the top and at the bottom faces. The energy at T = 0 depends

only on the shape of the interface between the + and — regions, and its minimum is
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realized when the interface is flat (the position of course does not matter). In a random
exchange ferromagnet at sufficiently low temperatures, the interface between regions of
different magnetization is no more flat, but it is self-affine [40] (Fig. 3.16 (a)). In two-
dimensional random-ferromagnets, it is known [40, 41, 42] that the roughness exponent of
the self-affine interface (the domain wall) optimum is 2/3. With local zero-temperature spin-
flip dynamics (i.e. spins are updated only if the global energy decreases), we have found
that the global minimum is never reached and the domain walls are self-similar rather
than self-affine (Fig. 3 (b)) with a fractal dimension around 1.6. This result is robust
and independent if one adopts a single or two spin flip dynamics and whether one uses a
discrete spin model or a continuum Langevin equation. Moreover, it ought to be amenable
to experimental confirmation in direct probes of the domain wall geometry in deep quench

spinodal decomposition measurements on random exchange metals.

Thus it seems in this two examples that river networks and domain walls in random
ferromagnets are not free to explore extended regions of their fitness landscapes, suggesting
that Nature might not search for global minima when striving for optimality.

This might indeed be true for many optimal configurations of a physical system that mini-

mize a cost function arising in a variety of contexts.



4 Random  Aggregation and

Diffusive Coalescence

In an aggregation phenomenon. diffusive particles join whenever they meet. This is one of

the most typical irreversible processes and has always attracted much attention since the

wn

seminal works of Smoluchowski [51].

Since aggregation processes are one of the simplest non-thermal equilibrium phenomena,
their understanding is of fundamental importance for the construction of a theory of sta-
tistical physics out of equilibrium.

Moreover they are relevant in many fields of science and technology, for example in colloid

science and polymerization.

In this chapter we describe a random aggregation model with injection proposed by
Takayasu [52], who gave the solution in d = 1 and in mean field.
We show how its solution in arbitrary dimensionality can be obtained by an exact mapping

on a reaction process.

In the first section we briefly review the Takayasu model, the Scheidegger rivers model
[4] (equivalent to the Takayasu in d = 1) and the coalescence process.
In the second section we show that this random aggregation model is related to the coales-
cence process through an exact mapping. Scaling relations may be derived, and allow to
get the solution in arbitrarv dimensionality. The upper critical dimension is found to be 2.

Moreover, randomness in injection with a finite first moment is shown to be irrelevant.

4.1 Random Aggregation and related models

4.1.1 Takayasu Model of Random Aggregation

Takayasu and collaborators[52, 53, 53] have shown that models of random aggregation with
constant injection of particles exhibit a power-law mass distribution asymptotically in time.

The random aggregation model has been solved exactly in 1+1 dimension [52, 54] and within

[W]]
=~1
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[ i

. OR
@

) i+] i

Figure 4.1: In d = 1 the particle at the i" site stay at i or jumps to the (i+1)*" site with probability
1/2.

the mean field approximation valid in dimensionalities greater than or equal to the upper
critical dimension.

This model is additionally related to a large class of dynamical models including the voter
model [55], a directed model of self organized criticality [56] and critical branching models
[57].

In the D = d+1 random aggregation model [52], particles with unit mass are initially placed
on each site of a d dimensional lattice. At each time step, the particles independently jump
to a randomly chosen site according to a given probability.

Whenever particles end up on the same site, they aggregate to form just one particle with
conserved mass. Each time step, particles with unit mass are injected on to every site.
This procedure of diffusion, aggregation and injection is then repeated. The diffusional

process is assumed to be independent of the mass of the diffusing particle.

The dynamic is described by the following set of equations relating the mass of the particle

at each site at time step ¢ + 1 to the masses at time step #:

Mi(t + 1) = Z I’Vi,j(t)]\/fj(t) +r;, (4.1)

J

where W; ;(t) are random variables given by

Wi, = { 1 with probability 1/D  fori—j=0,1,..,d (4.2)

0 otherwise

where 0, ..., d are the unit vectors along coordinate axis. In the case of uniform injection
ri(t) = 1, Vi, t. This corresponds to a particle staying still or moving along the positive
direction of a coordinate axis® with equal probability (fig. 4.1). An example of this dynamic
is shown in figure 4.2.

An infinite range mean field version of the model is obtained on replacing equation (4.2)
with

Vit bability 1/N

W :{ 1 with probability 1/1 (4.3)

0 with probability 1 — 1/N

'As far as Wi ; is short range, the critical exponents should remain the same as for the choice (4.2).
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® = stay

m = jump to the right

t
injection
] at time t+1
i i+1 i+2 i+3
; 2 1 3 2 1 2 1
w1 < 0N N SN
3 1 2 6 2 1 4
i i+1  i+2  i+3

Figure 4.2: Example of dynamics for the aggregation model.
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X

i i+1 i+2 i+3

Figure 4.3: Example of patterns formed by the aggregation process with injection in d = 1. The

particle mass at the black site is equal to the area inside the dotted region.

for every 7 and j, where N is the total number of sites. It is known[52] that at long times,

the distribution of masses is characterized by a power law.

The exponents in D = 1+1 can be deduced in a simple manner by an intuitive geometrical
argument: roughly speaking the particle mass M at a given point ¢ is proportional to the
area bounded by two random walk trajectories (see fig. 4.3). Since the width of that region
is expected to be proportional to the square root of the height A, one finds that the mass
at the point 7 is given by?

M(T) x T?, with & = 3/2. (4.4)

Since h can be regarded as the first collision time of two random walks, its distribution p(h)

is approximatively given in d = 1 by the well known expression:
p(h) ~ (2x) 2~/ 2hp=3/2 (4.5)

Combining equations (4.4) and (4.6) one gets for the probability to have a mass M bigger
than s the expression )
P(M > s)x s7M3, (4.6)

The rigorous solution for d = 1 given by Takayasu [52] goes like follows: consider the
distribution of particle mass P(M > s). The asymptotic behaviour for s > 1 corresponds

to that of the characteristic function

Z(p,t) = (e77) = ) e "p(s,1) (4.7)

?On naively generalizing to dimension D = d + 1, one obtains ® = 1+d/2 = and 7 = 2(1+4d)/(2+4d).
The mean field [52] values, ® = 2 = 9 and 7 = 3/2, are obtained in d = 2 suggesting that it is the critical
dimension.




4.1. Random Aggregation and related models 61

for | p|< 1. Let us introduce the r bodies characteristic function
Zo(p,tyin. i) = (e Pt ooy (4.8)

where the average is on the stochastic variables {W; ;j(m), m = 0,1,..(n — 1)}. In the short
range case of equation (4.2) it is enough to consider Z,for adjacent sites 7,7+ 1,...7 + r.
Equation (4.1) implies for the Z,s:

e P

Zi(p,t+1) = ——{Zrsalp,t) + 2Z:(p, 1) + Zr—a(p, 1)]- (4.9)
Assuming the convergence Z,41(p,t) — Z,(p) in the ¢ — oo limit:
Zep1(p) + (2=4€)Z:(p) + Zra(p) =0, (Zo=(1)=1). (4.10)

Z1(p) can be expressed in form of a continued fraction

1 :
Zi(p) = : (4.11)
\ dep — 92 —
€ 4524"—2—@};—7
that, for | p |« 1 becomes:
1
Zy(p) = YT T ~ 1+ cp”. (4.12)
T 2P 2+8p___2_;_1?1p_:7

« can be computed numerically and results to be @ ~ 0.333.. in accordance with the previous

argument based on random walks that gives o = 1/3.

For the mean field case, Takayasu solution is as follows. The time evolution for the mass
distribution function p(M,t) (probability to have a particle with mass M at time t) is given

considering all possible realizations of the aggregation:

N T
ps+1L,t+1)=>"a > J]p(sit), with p(1,2) = ag, (t>0). (4.13)

r=1 514 sr=5 1==1

where a, denotes the probability that r particles come together at a site, and it is given by

‘N 1\" lN—-T )
= R —_—— = LN
o= () ) (-2 e .

The a, satisfies the constraints of normalized probability conservation S a; = 1, and the
particle number conservation "%, ia; = 1. Laplace transform of equation (4.13) gives the

characteristic function
]\T

Z(p,t+1)=¢""* Z arZ(p,t)" . (4.15)
r=0

If we assume the convergence to Z(p) in the ¢t — oo, equation (4.15) reduces to

N
Z(p)y=e"Y aZ(p), (4.16)

T:O
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that may be expanded in terms of y(p) = Z(p) — 1 for p ~ 0 and gives

2 N
Z(p)=1+y(p) = (1—p+’—’2--—--->zar[1+y(p)]’= (4.17)
r=0
N N N r(r—1)
doart ) ra-ylp)+ ) —5——ary(p) 4 (4.18)
r=0 r=1 r=2

Due to the constraints on the a,, the coefficients of the terms of order zero and one in y in
equation (4.18) vanish®, thus
y(p) o7, (4.19)

implying P(M > s) o s'/2,

4.1.2 Scheidegger model

The Takayasu model in d = 1 is known to be equivalent to one of the earliest models of
river networks [4]. It is worth discussing it since river networks are the main subject of this

work.

The basic Scheidegger river model, was originally proposed by an hydrodynamic re-
searcher, A. E. Sheidegger in 1967 to study river networks. In 1986 it has been “reinvented”
(is the word used by the authors) as a model of random aggregating particles by physicists
[58], and in 1989 has been solved by Takayasu [52].

Let us picture a slope with many bulges, under a rain (see figuré 4.4). Raindrops fall
uniformly and they flow along the slope. When a stream of water encounters a bulge, it
slides down to the left or to the right randomly. When two streams happen to gather at
the same point, they coalesce and continue to glide down. Once a path has been created,
all later raindrops that come upon it follow the same rout. If the surface is large enough,
after some time we will see a hierarchy of little streams and rivulets.

The essential points of this picture can be formulated in a simple discrete model.

On a hyper-cubic lattice, the river networks are defined to be a set of spanning trees along
which water is transported from each of the sites to the outlet sites defined to be that on
the hyper-plane given by, say, z = 0. Locally, water at a site with a given z coordinate zg is
assumed to flow to a site with z = zg— 1 ; the flow is directed. The time axis in the random
aggregation model corresponds to the spatial z-axis in the Scheidegger problem and thus
the aggregation model in dimension d is equivalent to a river basin in D = d+1 dimensions.
Equation (4.2) describes the situation in which water from any given site flows locally to one

of the nearest neighbourg sites in the hyper-plane below it with equal probability whereas

®Note that if the conservation of particles number is violated, the coefficient of the term of order 1 in y
in equation (4.18) does not vanishes, implying y o< p. As a consequence there will be an exponential decay

in the mass distribution, revealing the essential role of injection to get power law distribution of masses.
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Figure 4.4: Rivers pattern on the slope.

the mean field version (equation (4.3)) corresponds to water flowing to any site in the hyper-
plane below with equal probability. The particle mass in the random aggregation model
corresponds to the accumulated area of the aggregating water, while the injection captures

the rainfall on the individual sites.

In figure 4.3 the particles at the last row have masses equal to the area of the drainage
basin of the corresponding branching structure, since we inject an unit mass particle per

one time step at every site.

A sort of reversed version of the Scheidegger model is the voter model, a simple model
for the formation of public opinion. The sites of a one dimensional lattice are occﬁpied
by persons who are either in favor or in opposed to some issue. The voters could change
their opinion by the influence of their neighbours. This is equivalent to a particle system
in which a particle at a certain time changes its state to one of the neighbouring particle’s
state stochastically. After a long time, the particles having the same state start forming

clusters in one-dimensional lattice, similar to patterns in a reversed Scheidegger network.

4.1.3 Coalescence Process

In the next section we will show that there exists an exact mapping between the Takayasu

random aggregation model and the diffusive coalescence process A + A — A.

This is a process in which each A particle independently follows a random walk. When
two particles end up on the same site, they aggregate to form just one particle. Note that
this model is identical to the random aggregation model except for one crucial difference.

Unlike the aggregation model, here there is no injection of particles. Indeed, in the diffusive

coalescence model, at long times, one ends up with just one particle. The concentration of

A particles at time ¢t is

o(t) = %@ (4.20)

where N(t) is the number of particles and V is the total number of sites. The asymptotic
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behaviour of ¢(t) as been solved exactly [59] leading to

/2 d<?2
c(t)y~< t7llogt d=2 (4.21)
1 d>2.

A simple way to understand this is as follows. In an interval At, N(¢) is decreased by the
number of “collisions” that occur during this time. Let s(t) denote the number of distinct
sites visited by a given particle until time ¢. The number of collisions of the particle is
proportional to the number of particles in a volume As(t). The total number of collisions

is therefore proportional to N(t)c(t)As(t). Thus
N(t) = N(t+ At) ~ N(t)e(t)As(t). (4.22)

On dividing by V and in the limit At — 0 one gets

— ¢(t) ~ A(1)4(t), (4.23)
and thus .
c(t) ~ Ok (4.24)

The number of distinct sites visited by a random walker in d dimensions has been worked
out in [60, 61, 62] and yields the aforementioned result.

4.2 Mapping of the Random Aggregation Model on the
A+ A— A Reaction

In this section, we establish a link between the random aggregation model and the problem
of diffusive coalescence. This enables us to solve the random aggregation model in arbitrary
dimensionality. An important byproduct of our solution is that we are able to show that
the upper critical dimensionality is D = 2 + 1 and explicitly determine the logarithmic
corrections to the power law behavior at the upper critical dimension. We are also able
to prove that random injection with a finite first moment does not change the universality

class in any D.

It is known[52] that at long times, the distribution of masses is characterized by a power
law. Motivated by our studies [63, 64, 17, 14] of river networks, we define a quantity
analogous to upstream lengths for each site ¢ as the age of the oldest particle constituting
the composite particle at that site. We denote this by X;. We proceed to make a scaling
ansatz [10] as in section 5, chapter 2, for the probability density distributions of the masses
M and the ages X defined above:

p(M,T)= M~ f(M/T?), (4.25)



4.2. Mapping of the Random Aggregation Model on the A+ A — A Reaction 65

(X, T)= X"Vf(X/T), (4.26)
where T is the total number of time steps. Recognizing that the mean mass (averaged over
each of the sites and for all the T time steps) ought to be proportional to T (the proof is given

later in equation (4.32) for a more general case) and requiring that p(M,T)dM = =(X,T)dX
4 with X ~ T ~ MY? one obtains

®(2-~7)=1 and ¢ = 9. (4.27)

In order to calculate the % exponent for the age distribution, we have to evaluate the
fraction of sites whose composite particle is constituted from at least one particle of age
greater than 7.

This problem is directly related to one of evaluating the density of particles surviving a
diffusive annihilation 4 + A — A process after a time ¢ = 7. Indeed, the probability
P(X > Xo) = ¢(Xp) so that the probability density #(Xo) = dP(X > Xp)/dXp is given by

P P
T(Xo)~<{ X5%logXy d=2 (4.28)
X;? d>2.

Thus, from the relation between the exponents, we deduce that 1 = & = d/2 + 1 and

T = 2((‘1’1_:’21)) ford < 2 and ¢y = ® =2 and 7 = 3/2 for d > 2. Alternatively, the ® exponent

relating the mass M of a particle, with the time 7', can be deduced as follows.

Given a space-time point O, let us consider the intersection of its basin (sites aggregating
into O) with a d—dimensional spatial hyper-plane, a time ¢ prior to O (see fig. 4.5). Be N,
the typical number of points in this set. The masses on these sites aggregate, effectively
following an A + A — A process, until the number of A particles becomes of order 1 after

a time t. Thus

Ny (t)e(t) ~ 1. (4.29)
The number of particles aggregated within a time interval T is then given by
14d/2
M(T) / ! dtN / e TT2 Z f 3 (4.30)
o 1 0 C(t) lOgT — .t
T? d>2,

Logarithmic corrections to the power law behaviour of the distribution of masses in d = 2

can be evaluated using the age distribution and noting that M ~ TEI;—T“ :

7(T) log?T
P(M) ~ A JdT M~ ™ 73

~ M3 ?(log M)'/? . (4.31)

“This follows in a trivial way on changing variables from M to X, provided M is a function of X. The
same result also holds in a more general case where both M and X are random variables such that the
conditional probability to find a value X, given a particular value of M, has a scaling form i- g(Mé'X"’).
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Figure 4.5: Sketch of the basin of attraction for the aggregation of particles constituting the com-
posite particle at the site at the bottom. The time axis points downwards, the spatial hyper-plane
is perpendicular to the time axis and contains N, (t) masses that aggregate to form a single mass
at 0.

The relation between the aggregation model and the diffusive annihilation model still
holds in the case of random injection, i. e. in the case in which in (1), 7;(t) are independently
distributed random variables > 0. Moreover, the equations (4.27) can be deduced in this
more general case.

Indeed, the mean mass (averaged over each of the sites and for all the 7" time steps) averaged

over the randomness is given by

(M(T)) = lmr—oo gy T Mi(1)) = Umpooo gir Li Djoce(ri(s)) =
(4.32)

iMoo o7 Lo (ra ()T = ) = £(r) £,(T = 5) = T32(r)

In the third step }:’] is restricted to sites j at time s whose mass is “collected” at site 7 at time
t. Thus if (r) is finite, eq. (4.32) implies that the arguments used for the uniform injection
case are still valid, the scaling laws in equation (4.27) hold and the exponents remain the
same as before. Random injection with finite (non zero) (r) was already analyzed for the
particular case D = 141 by Takayasu [65], and it was shown to be irrelevant by the explicit

solution.

We conclude by noting that our results are generalizable to fractal geometries [66] with
the spectral dimension playing the role of d.
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