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Main Results

The aim of this thesis is to discuss some results concerning Seiberg-Witten invariants of
a closed four manifold M having b (M) > 1, which decomposes in two factors along a

three manifold of positive scalar curvature.

A typical problem which arises in the study of the differential topology of smooth four
manifolds is to determine under which conditions a given four manifold admits a decom-

position along three manifolds with some topological or geometrical properties.

The prototype of such a kind of question has been investigated by S.Donaldson, in the
80’s, when he has proven that a closed four manifold with non trivial Donaldson invariants
(e.g. an algebraic surface) does not admit a decomposition along S3, i.e. is not a con-
nected sum, with two factors having both b > 0. In the framework of Donaldson theory
this kind of investigation has produced some partial or conjectural results extending the
class of three manifolds for which a result as the one mentioned holds true. The difficulty
that such a kind of study have to face up is related to the study of Donaldson-Floer theory
for a general three manifold, which is technically very complicated, and although in the
beginning of the 90’s many steps had been done, mainly thanks to the contribution of
J.Morgan, T.Mrowka, C.Taubes et al., the route seemed still long to go.

With the appearance of Seiberg-Witten theory, in Fall 94, also this type of questions has
quite simplified, thanks to the usual patterns of mild nonlinearity of the equations and

compactness properties of the spaces of solutions which are well known for this theory.

In this thesis we will use Seiberg-Witten theory to prove some results concerning the
decomposition of four manifolds having non trivial Seiberg-Witten invariants along three
manifolds of positive scalar curvature, class which generalizes in a way which is very nat-
ural, in view of Seiberg-Witten-Floer theory, the case of S®. To prove these results, we
will study the moduli space of finite energy solutions of Seiberg-Witten equations on a

5



6 Main Results

riemannian cylindrical end four manifold (X, gz), whose end is isometric to N x [0, co)
with its product metric, where (IV, gn) is a three manifold of positive scalar curvature.
We will suppose that X is built starting from a compact open manifold (X, gx) with
boundary X = N in such a way that

XZXUNNX[O,OO);

with the quotient metric, this manifold is complete, and Fredholm theory for differential
operators in such a setting is well established, see [APS], [T1].

One of the major ingredients of our study is the fact that in the case of spin® structures
on X whose determinant bundles restrict to torsion bundles on the end, the curvature
condition on N compels the solutions of the SW equations to decay exponentially fast,
along the cylinder, to static solutions which correspond to U(1) flat connections on the
three manifold. This result allows to apply in a fairly easy way standard results for
studying the moduli spaces on the cylindrical end manifold, and in particular to compute
their dimension, which depends on the geometry of X. In suitable cases, as illustrated
below, the study of this class of spin® structures on X and the analysis of the possible

perturbations for SW equations will be sufficient to prove the following results:

Theorem 1 Let M be a closed four manifold with b5 (M) > 1 which decomposes as
M = M* Uy M~ along a three manifold of positive scalar curvature in two factors and
which satisfies the relation

by (M) > b3 (M™);

then the Seiberg- Witten invariants
SWas : Spin®(M) — Z
are identically zero.

Here by (M*) refers to the number of positive eigenvalues for the (possibly degenerate)
pairing induced by Lefschetz duality on Ho(M*) or, which is the same, for the non
degenerate pairing on Im(H?(M=*,0M*) — H*(M®)).

The statement of Theorem 1 is clarified by recalling that, under the above decomposition,

the positive eigenspaces of the pairing are related by the formula

HIA(M*)® Hf (M™) = Hy (M) = Im(Hy(M) — H.(N)).
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Theorem 1 defines whether, according to the form of the previous short exact sequence,
the Seiberg-Witten invariants have to vanish. The statement of Theorem 1 is just a

reformulation of the results of two vanishing theorems we shall proof:

Theorem 2 Let M be a closed four manifold which decomposes as M = M+ Uy M~
along a three manifold of positive scalar curvature in two parts both having b (M*) > 0;
then the Seiberg- Witten invariants SW)yy : Spin®(M) — Z are identically zero.

The proof of Theorem 2 will follow from the moduli dimension formula we will discuss in
Chapter 3. This theorem has an obvious consequence for the topology of some classes of
four manifolds:

Corollary 1 Let M be a four manifold with non vanishing Seiberg- Witten invariants
which decomposes as M = M+ Uy M~ ; then one of the factors has non positive definite

intersection form.

The typical examples of such a kind of manifolds are symplectic ones and more general
examples are listed in Chapter 1. Theorem 2 generalizes the well known case of 52, proven
within the framework of Yang-Mills theory by Donaldson (see [DK]). There are interesting
examples of allowed decompositions, apart from the obvious S? case of the blow ups, for
the case of some lens spaces in [FS1].

The statement of Theorem 1 is completed, when b;(N) > 0, with the following

Theorem 3 Let M be a closed four manifold with b (M) > 1 which decomposes as
M = M* Uy M~ along a three manifold of positive scalar curvature and by(N) > 0 in
such @ way that by(M) > by (M) 4+ by(M~) — b1(N); then the Seiberg-Witten invariants
SWis : Spin®(M) — Z are identically zero.

In this case the proof follows from a perturbation of the SW equation. The request on
the first Betti numbers of the manifolds involved, which corresponds to the possibility of
such a perturbation, will appear clearly from the proof.

As a corollary of this result, we obtain the natural non-decomposition theorem for the
manifolds with non-vanishing SW invariants analogous to Corollary 1. We note that, in
Theorem 3, no conditions on b (M*) are involved: as the case of [MST], Lemma 10.2

shows, this is not a necessary condition.

We will prove the above Theorem 2 under the hypothesis that M is simple type, but this
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can easily be removed, along the lines of [Sa).

The existence, in some form, of a vanishing theorem of the type above, in the case of S3,
is already suggested in the original paper by Witten [Wi], and in other cases in a survey
paper by Donaldson [Do], but a complete proof is present, as far as we know, only for 53
[Sa], with a technique which appears not to be extendible to other cases.

In Chapter 4 we will analyse some topological consequences of these results; in particular
we will prove the following:

Proposition 1 Let M; and Ms be two closed four manifolds diffeomorphic in the com-
plement of a point or in the complement of a wedge of circles: then SWy, = SWy,.

Proposition 2 Let M be a closed four manifold with b3 (M) > 1 which contains a two
sphere S of self intersection S-S > 0 and infinite order; then the Seiberg- Witten invariants

vanish.

Proposition 1 parallels the result, in Donaldson theory, of [De], while Proposition 2 is a
“classical” result and has been obtained with different techniques by [MST].

In Chapter 4 we shall show as well that the proof of Theorem 3 can be in fact reduced to
the particular case of S* x S? and, starting from this observation, we will discuss some
generalizations of Theorem 3 to a class of three manifolds that we define as Q-reducible,
i.e. containing a sphere which does not bound any rational homology disk. Q-reducible
manifolds admit a decomposition of the form

N = (#_,Yi)#( ?:151 X S2)#(F#ho1 K (e, 1))
with Y; a rational homology sphere and ¢ +7 > 1 or ¢ = 1. We prove the following

Theorem 4 Let M be a closed four manifold with by (M) > 1 which decomposes as
M = M*Uy M~ along a Q-reducible three manifold in such a way that the map

Hy(M,Q) — Hi(N,Q) = (81H:(S" x §%,Q)) & (&1H1(K (1, 1), Q))

has rank at least one on the first q factors or is nontrivial on at least two factors; then
the Seiberg- Witten invariants SWy : Spint(M) — Z are identically zero.
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This result appears as a consequence, in many cases, of Theorem 3, and in general from
a discussion of three dimensional Seiberg-Witten theory for Q-reducible manifolds, that
we assume to have the same patterns of the four dimensional one. '

This thesis is organized as follows. Chapter 1 contains a quick review of Seiberg-Witten
theory on a closed four manifold, focusing mainly on the results and techniques which will
be used in the other Chapters. These results, when not explicitly appeared in literature,
are more or less common folklore, eventually with the exception of Section 1.2. Chapter 2
is dedicated to SW theory on a cylinder N x [0, T] with N of positive scalar curvature and
it is proven that, up to a gauge transformation, a finite energy solution of SW equation on
the infinite cylinder decays exponentially fast to a static one: this is a technical ingredient
which is used in the proof of Theorem 2. Chapter 3 contains a discussion of geometric
limits of solutions of SW equations on a closed four manifold after “stretching the neck”
and a description of the moduli spaces of solutions of SW equations for a spin® structure
on a cylindrical end four manifold; with these results we give then a proof of Theorem 2;
then we prove Theorem 3, independently, with the study of some perturbations to SW
- equations. Chapter 4 is devoted to some applications of these Theorems and to the proof
of Theorem 4. The Appendix contains some technical results which are useful in the proof
of the decay result of Chapter 2.

Concerning the notations, we have tried to follow, with minor modifications, the one of
the book [Mo].

- The content of this thesis is, to the best of our knowledge, original, except when other-
wise indicated; when we used or adapted others’ results, we tried to make explicit our
contribution.






Chapter 1

Seiberg-Witten Invariants

In this Chapter we will outline the basic facts concerning the definition of Seiberg-Witten
invariants, introduced by Edward Witten in late 1994 in [Wi] following previous work
with Nathan Seiberg. A rigorous construction of the invariants is in some sense routine,
since it follows closely the definition of Donaldson polynomials in Yang-Mills theory [DK]
or of Gromov-Witten invariants in the case of pseudoholomorphic curves in symplectic
manifolds [MS]. Apart from Section 1.2, where the approach is quite original, the purpose
of this Chapter is more or less just filling the details of the results outlined in [KM1]. A
standard reference on the subject is, by now, the book [Mo], although our treatment will
follow more closely the usual approach for Yang-Mills theory.

1.1 Seiberg-Witten Equations.

In this Section we will introduce a couple of equations for the pair (M, 15M) given by a
smooth compact closed riemannian four manifold M endowed with a spin® structure Py
whose determinant bundle will be denoted by Ly;. The study of these equations will
bring to the definition of some differential invariants for M. These equations will appear
as God-given (in fact, as Yang-Mills equations do), but their origin comes from physical

considerations that are beyond the scope of our exposition.

When we consider the fundamental complex representation of Spin(4), which has dimc =
4, we can canonically define an associated spin® vector bundle S(PM) over M, which
decomposes as ST (Py) ® S™(Py): the factors are U(2) vector bundles with common
determinant bundle £,;. As follows from the definition of spin® structures, the set of

11



12 Chapter 1

spin® structures Spin®(M) is a 2-torsor over the set of line bundles (which admits as well
known a canonical identification with H2(M, Z)) and therefore, for a given Ly, the choice
of Py depends on the 2-torsion part of H 2(M,Z).

Once we endow M with a metric, we have a canonical connection on the tangent bundle,
the Levi-Civita connection. The sections of the complexified cotangent bundle of M
act on spinor sections, as elements of the complex Clifford bundle on M, via Clifford
multiplication; we can define a Dirac operator, acting on the spinor bundle, by choosing
an abelian connection on £;. With this construction we have a family of Dirac operators

P4 parameterized by A(Lys), the space of connections on £y, which act as
Pa : (ST (Pur)) — T(S™(Pu)). (1.1)
As dimM is even the action of forms on the spinor bundles induces an isomorphism
Q0*(M;C) = End(S(Pu)); (1.2)
if we restrict to the even forms this isomorphism specializes to
Q% (M; C) = End(S*(Py)) ® End(S™(Py)) (1.3)

and the direct sum decomposition corresponds, on the left hand side, to positive, resp.
negative eigensections of the complex unit we of the Clifford bundle. It is not difficult
verifying, by direct computation, that in four dimensions the positive eigensections are

those of the form
1 +we

2
(in fact, on two forms, wg coincides with the Hodge star operator) and that traceless

C( ) @ Q2 (M;C) (1.4)

endomorphism correspond to the second factor.

Summing up, we have an identification
02 (M;C) = Endo(S*(Py)). (1.5)

Now we give a way to relate self dual forms and spinors: given a couple of sections v, ¢
in T(S*(Py)) we can construct a bilinear map
a(,-) : T(ST(Pu)) @ T(ST(Pu)) — Endo(S*(Pur))
) (16)
(Y, 0) = (¥, 8) = (b ® ¢* + 9 ®Y* — Re <9, ¢ > Id).
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Once for all, this has the matrix form

_ 1 hipy + hrgy — ady — oo 2o+ 2010
2%, 9) = 4 ( 29901 + 20911 ~ P11 — Y11 + Yoy + Y22 ) - @0

This clearly represents a traceless endomorphism; moreover, as g(v, ¢)" = q(%, ¢), this
endomorphism corresponds to purely imaginary elements of the Clifford algebra, and then
to Q% (M;iR). In terms of forms, via the inverse of the identification map of equation
1.5, a straightforward explicit calculation shows that ¢(%) is identified, as element of

02 (M, 4R), with 1

W) = 5 D cme Ae <€ ey, (1.8)
15kl

We are now in position to write the Seiberg-Witten equations: they are given by the
couple

Pap =0
Fi=q()

for ¢ € T(ST(Py)) and A € A(Ly). We will call a solution of equations 1.9 reducible if it
has the form (A, 0), and irreducible otherwise. Reducible solutions correspond evidently

(1.9)

to anti self dual abelian instantons.

An equivalent alternative procedure to introduce SW equations is to work with a connec-
tion on Py which induces the Levi-Civita on the tangent bundle, and define the second of
equations 1.9 with the induced connection in A(Lys). The difference with our definition
is immaterial but it implies some minor change in the formulae involving the action of

group of automorphisms of Py

1.2 Topology of the Orbit Space.

Now we want to study the topology of the space on which Seiberg-Witten equations
are defined; of course both the space of connections on L3 and the space of sections
I'(S*(Pys)), being respectively an affine space and a vector space, are contractible infinite
dimensional manifolds, but the equations 1.9 admit a gauge symmetry. It is immediate
to see that the equations are invariant with respect to the action of the gauge group of
those vertical automorphism of Py, which project to the identity automorphism of the
frame bundle, i.e. those which act trivially on the forms. This group corresponds, as
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follows from the defining group exact sequence of Spint(4), to transformations having
value in the central U(1) subgroup of Spin®(4). The gauge group, that we will denote
by G(Py), corresponds therefore to the space of Spin°(4)-invariant maps 7 : Py —
U(1) C Spin®(4), which coincides, of course, with the space of maps Map(M,U(1)). The
subgroup of base point fixing automorphisms is given by the space of maps of pointed
spaces Map.(M,U(1)).

The gauge group acts by projection on Lj: its action, on the space of connections, is
related to the usual action of the group of gauge transformations of the line bundle,
G(Lu), by push forward of the covering 'ma,p of U(1) to itself given, pointwise, by the
determinant (that on the U(2) factors correspond really to the algebraic determinant),
while on spinors it just acts by multiplication. The explicit form of the action of G (PM)
is given by

G(Prr) x (A(Lar) x D(S*(Bu))) = (A(Lys) x T(S* (Bar))) o
g (A,9) s (A + (detg)d(detg), g¢) |

(note: the form of the action brings often to “factors 2” in the formulae involving gauge
transformations; unfortunately very often, in the literature, there are mistakes on this
point because of the confusion between gauge transformations on the Spin®(4) bundle
and their projection on Lys; we hope we will be precise on this point). Because of gauge
invariance of equations 1.9 we are in fact interested in the quotient of the product of the
spaces of connections and spinors by the action of the gauge group,

B(Pyr) = (A(Lar) X T(ST(Pue))) /G (Pus). (1.11)

It is a standard fact in gauge theory that once completed in suitable Sobolev norms,
respectively £2,,, L2 with k£ > 2, the gauge group is a Banach-Lie group and acts on the
space A(Ly) x T(S*(Py)). A slice for the action is provided by a suitable generalization
of the standard one of Yang-Mills theory; the linearization of the gauge group action is
given by

6(X) (aw) = (2dx, —x¥) (1.12)

and the slice orthogonal to the gauge action is contained in the plane

Cim< i é>=0},  (L13)

kerdly ) = {(a,8) € Q' (M,iR) x T(S*(Py))|d"a + : ‘
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as follows from a straightforward explicit computation.
The gauge group acts freely outside the space of reducible couples (A4, 0), where it has
isotropy group isomorphic to U(1). There are two ways to make this action free: the first
one is to consider only base point fixing automorphisms, g"(f’M), defining the orbit space
of based couples

- B°(Py) == (A(Ly) % T(S*(Py)))/G°(Par). (1.14)
The second one is to restrict to the space of irreducible couples, defining the irreducible
orbit space

B(Py) = (A(Lw) x (T(S¥(Pa)) \ 0))/G (Par). (1.15)
Naturally the space of irreducible based couples B°(Py) fibers over B(Py) with fiber
U(1), via base point fibration. Note that the homotopy type of B°(Py;) is the same as
that of B°(Py), as reducible couples have infinite codimension in the latter space.

As the action of G°(Py) (respectively G(Py)) is free over A(Lyr) x T(S*(Pu)) (respec-
tively A(La) x (T(St(Py)) \ 0)) the orbit spaces, for a given spin® structure, appear as
classifying spaces BG°(Py) and BG(Py). We must study therefore the topology of the
classifying space of Map(M,U(1)).

Our aim is to prove the following

Claim 1.2.1 The gauge orbit space B(Py) has the weak homotopy type of a product of
Eilenberg-MacLane spaces

B(Py) = K(H'(M,Z),1) x K(Z,2). (1.16)

To prove this claim we will start by studying the topology of the based orbit space B"(PM).
First of all we study its homotopy groups.

As B°(Py) is the base space of a G°(Py)-fibration on a contractible space we can compute
its homotopy groups from those of G°(Py) = Map.(M,U(1)). These homotopy groups

appear as )
11(G°(Py)) = moMap.(S*, Map.(M,U(1))). (1.17)

We can then apply the exponential law for spaces of maps of pointed spaces, i.e.
Map, (X, Map,(Y,Z)) = Map((X xY,X VY),(Z,%)))- (1.18)
We get the equivalence

Map,(S*,G(Py)) = Map((S* x M, S¥v M), (U(1),1)). (1.19)
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We now note that U(1) is the Eilenberg-Maclane space K(Z,1); this allows to compute

easily the homotopy type of the indicated space of maps. Summing up we have
m6(G°(Py)) = HY(S* x M, S* v M, 7). (1.20)

This latter cohomology group can be computed noting that it is by definition the first
cohomology group of the smash product S* A M, i.e. the k — th suspension SF¥M of M.

The suspension isomorphism
HP(SFM, Z) = AP~*(M, 7) (1.21)
brings immediately to the proof of the

Proposition 1.2.2 The orbit space B°(Py) has the weak homotopy type of the Eilenberg-
Maclane space K(H*(M,Z),1).

In fact, from the previous computation and the exact homotopy sequence of a fibration

we have that

1 (B°(Pu)) = 70(G°(Pur)) = H (M, Z), ma(B°(Pa)) = T-1(G°(Par)) = 0 for m#1,
(1.22)
as claimed.
Note that the isomorphism of homotopy groups is not enough, in general, to prove the
weak homotopy equivalence of two spaces, but in the case of Eilenberg-Maclane spaces
this holds true. Note, moreover, that the based gauge group retracts to the set of its
components m,(M,U(1)). The definition of cohomology classes in terms of obstruction
theory shows that this retraction is canonically identified with the correspondence between
amap g: M — K(Z,1) and the element g*k € H*(M,Z) where k € H'(K(Z,1),Z) is
the characteristic class.

We can pass now to the study of the topology of the orbit space B (PM), and to do this we
look for the topology of the unbased gauge group G(Py). First, the inclusion of G°(Pyy)
in G(Pys) identifies the homotopy fiber for the fibration

Map,(M,U(1)) < Map(M,U(1)) — U(1) (1.23)
which induces the exact sequence of homotopy groups

T (G(Py)) = mi(U(1)) — mo(G°(Par)) 5+ m0(G(Pur)). (1.24)
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We claim that the map i, is also injective, i.e. the based and unbased gauge group have
the same number of components: in fact, let go, g1 € Map.(M,U(1)) be two maps which
are homotopic in Map(M,U(1)): this means that there exist an homotopy '

©:IxM—U(L), &(,m)=g;m); (1.25)
it is quite clear now that if p € M is the base point of M the map
@' (1,0) x (M,p) = (U(1),1), ®'(t,m):=®(t,p)™" - (t,m) (1.26)

defines a based homotopy between gy and g; (put it in another way, this is nothing but
the fact that as U(1) is an H-space, its fundamental group acts trivially on the set of
components). It follows from this that the set of components of G(Py), G°(Py) coincide
and, restricting to one component, the fibration 1.23 has contractible fiber and each
connected component of G(Py) has therefore the homotopy type of U(1). The unbased
gauge group has therefore the homotopy type of H*(M,Z) x K(Z,1).

In order to identify the homotopy type of the orbit space we recall that the latter is
defined as quotient of the principal action of the gauge group over the contractible space
of (irreducible) couples, see equation 1.15, and thus has the weak homotopy type of the
classifying space of H'(M,Z) x K(Z,1). This gives the weak homotopy equivalence

B(Py) = K(HY(M,Z),1) x K(Z,2). (1.27)

This result proves Claim 1.2.1. The U(1) base point fibration corresponds exactly to the
K(Z,?2) factor of the quotient.

We note that, as a consequence of this result, the torsion part of the fundamental group
of M plays no role in the topology of the orbit space.

Tt is interesting to analyse the relation between the orbit space A(Lar)/G°(Par), defined
with the use of the gauge group G°(Py), and the usual Yang-Mills (or better to say,
Maxwell) orbit space B°(Lyr) = A(Lp)/G°(Lum), as in the first case G°(Py) acts on
A(Lyr) via the square of the usual action.

We must compare the different actions of two groups, which are of course homeomorphic,

but act in a different way on the same contractible space. We have the following

Proposition 1.2.3 There is a natural covering map A(Lar)/G°(Prr) = B°(Lar), whose
fiber is given by Hom(H(M,Z),Z,). h
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Proof: we observe first of all that the maps of g"(PM) appear, with respect to their action
on connections, as the subset of the maps of G°(Ly,) which are squares of other maps.
Consider now the subgroup of G°(L;,) given by those elements which lie in a component
which is in the image of the natural homomorphism o, given by multiplication by 2:

HY(M,Z) = H"(M,Z) — Hom(H'(M, Z), Z,): (1.28)

we claim that this subgroup corresponds to elements which are in fact image, via the
square, of a map of G°(Py;), and moreover there is an homeomorphism between compo-
nents which correspond under the map o. Proving this is means essentially to analyse
whether a map admits a “square root” and whether this square root is unique.

Now it is obvious that a necessary condition for a map g € G°(Ly) to have a square root
is that g*k € H'(M,Z) lies in Imo, i.e. that g lives in an “even” connected component.
This condition is also sufficient: we take any map s = #2, in that component, which is
already a square (the existence of such a map is obvious); by the previous results s is
connected with g via an homotopy that we denote by ®. Find a square root of g now

simply amounts to solve the homotopy lifting problem

{0} x MU0, 1] x {p} &% @)
il lzz (129)
0,1] x M —2 5 UQ)

The uniqueness of the solution follows from the fact that Map.(M, Z,), the space which
acts freely and transitively on the set of square roots of a map, is a point.

From this results, the statement follows: the only difference between the action of G°(Py)
and G°(Ly) on A(Lys) amounts to the different action of components.

From Claim 1.2.1, the structure of the integral cohomology ring of B(Py,) follows imme-
diately: if we set n = rkH'(M,Z) and we let ey, ..., e, be the generators of H'(B(Py),Z)
and u the generator of H2(B(Py),Z) the cohomology ring of B(Py,) is given by

H*(B(Py),Z) = Z(ey, ..., en) ® Z[p). (1.30)

These cohomology generators have a geometrical meaning, which naturally is very similar
to the one that analogous cohomology generators have in the Yang-Mills case. In fact
these can be realized as images, under the slant product on the homology classes of M,
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of the first Chern class of the universal line bundle & over M x B(Py); this is just the
abelian case of Donaldson p map, defined as

fher(ey : Hi(M,Z) — H*7(B(Py), Z)

lla(a)([ﬂ) = 01(5)/[’7’]-

In detail the generators of degree 1 can be interpreted as pull-backs of the fundamental

(1.31)

class k of U(1) under the holonomy representation around loops of M (in the Yang-Mills
case, this happens for the generators of degree 3): for a given loop [y;] € Hi(M,Z) we
consider the holonomy around -;

hy, : B(Py) — U(1). (1.32)

We then have that e; = A2 (K) as follows from the fact that for any l-cycle T €
H,(B(Py), Z)

<h(k), T >=<ci(E),[%] xT >. (1.33)
(both represent in fact the degree of the holonomy map, as follows from the definition of
the Euler class via obstruction theory).
The generator of degree 2 of H*(B(Py),Z) appears, in the construction of the x map,
as image of an element [p] € Ho(M,Z). It is interesting to relate this generator with the

determinant of the index bundle of the Dirac operator @4. In fact we can represent u as

oo () = e E)/lp] = [ ea(®) A [ (134

If the manifold M has non vanishing A-genus we can take as Poincaré dual of a point,

up to a multiplicative constant, the A-class and therefore
b / ¢ (E) A A(M) = ¢ (detinddy), (1.35)
M

as follows from Atiyah-Singer index theorem, and thus the determinant index bundle of

P4 is nontrivial: otherwise
c1(detindPy) = c1(E)/[A(M)PP] = 0 (1.36)

and that line bundle is trivial.
The identification of the generators of the cohomology ring of B(Py) will allow later on
to define differential invariants associated to the solutions of Seiberg-Witten equations,

mimicking the construction in Donaldson theory.
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1.3 Properties of the Moduli Spaces.

In this Section the object of our analysis will be the space of solutions of the equations

1.9 modulo the action of the gauge group.

Definition 1.3.1 The moduli space of solutions of Seiberg- Witten equations for a spin®

structure Py on M is defined as

M(Par) = {(A,¥) € A(Lar) x T(SH(Pu))|Ff = a(), Pat = 0}/G(Par) C B(Pw);
(1.37)
We will denote by M*(pM) the subset given by the gauge equivalence classes of irreducible

solutions.

Let’s consider the properties of these solutions. The more important fact, concerning the
solutions of SW equations, is that the norm of the spinors is bounded by above in terms
of the scalar curvature of the metric. As we will see this property is in some sense the

basic feature of these equations and will bring important consequences.

Proposition 1.3.2 Let (A4,%) be a solution of Seiberg- Witten equations and consider the
function [Y> : M — R; at a point of mazimum p € M such a function satisfies the
inequality

] < maz(0, —s). (1.38)

Proof: if (A,) is a reducible solution the statement is trivially true. Let’s suppose it
is irreducible; the standard Bochner-Weitzenbdck formula, applied to the case of a spin®

structure, for a couple (A4, 1)), takes the form

P = VaVah+ 30+ 5Ff 9, (1.39)

where s denotes the scalar curvature of M. This formula follows from the usual one
making explicit the Clifford multiplication and noting that F', -¢ = 0 for positive spinors.
Consider now a solution (A4,%) of SW equations: working on a compact manifold we can
consider a point where |1|?, the point square norm of ¢, attains its maximum. At this
point, the Bochner-Weitzenbdck formula and SW equations imply
0 < d*dlp]?=2< ViV, > =2 < Va9, V) ><
B (1.40)
<2< VLV, Y >= —5 < 9,9 > — < q(h)p, ¥ >= —3[|* — 3¢[*
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(the last term comes from the explicit formula 1.6 for g(¢)). If we suppose now that ||
does not vanish at its maximum, i.e. that ¢ is not identically zero, we can divide by |¥|?
and we obtain exactly what we stated in the Proposition.

This proposition has two fundamental corollaries, the first of which follows immediately

from the proposition:

Corollary 1.3.3 On a manifold M with positive scalar curvature the SW equation admit

no irreducible solutions.

Corollary 1.3.4 The moduli space of solutions of SW equations M (Py) is sequentially

compact.

Proof: we must show that for any sequence of solutions (A;, v;)ier in A(Ly) xT(ST(Py))
we can extract a subsequence indexed by J c I and gauge transformations (g;);cs such
that g; - (4, ;) converges smoothly to a solution in A(Ly) x T'(S*(Py). First of all we
will prove a global gauge fixing theorem for a connection A, following the same line of
reasoning of the non abelian case.
Start by considering a smooth reference connection Ay € A(Ly): putting a connection
A in Coulo‘mb‘ga,uge with respect to Ay corresponds to finding a gauge transformation
g € G(Py) such that

g-A— Ay € kerd”. (1.41)

Let’s see that this can be achieved using an element in the connected component of the
gauge group: we can write any such element as g = exp(x) for x € LieG(Py), the Lie
algebra of the gauge group. The gauge fixing condition has the form

d*(A+2dx — Ag) =0 (1.42)

and we look thus for a x satisfying that equation. This corresponds to solving the elliptic
equation

2Ax = d*(Ap — A). (1.43)
The latter equation can be solved once is known that A maps onto smd*: but this follows
from Hodge decomposition of 0-forms, as these decompose, on a closed manifold, as
imd* @ kerA. Once such a  is found, g = ezp(x) € G¢(Pys) will define the suitable gauge

transformation. The hypothesis 1.41 allows us to write

g-A—Ay=dv+w, ' (1.44)
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where w is an harmonic 1-form, as in general Harm! (M) = HL5(M,R) # 0. The presence
of this harmonic term does not create any problem, as we can control its norm taking
gauge transformations in a suitable component of the gauge group, whose component

group is, as shown in Section 1.2,
moMap,(M,U(1)) = moMap.(M,K(Z,1)) = H*(M,Z) (1.45)

and thus w is defined in the Jacobian torus H'(M,R)/H'(M,Z).

Now, for each p, we can control the £} norm of g; - A; — Ay, with (A4;, ;) solution of
SW equations, through the fundamental inequality for the elliptic operator d* + d* (for
notational simplicity, we will not indicate no more the gauge transformations and will

assume the A; as gauge fixed w.r.t. Ag):

[[4i = Aollce < C([(dT + d")(Ai = Ao)llr + [[will o) = C([1d7(Ai = Ao)llcr + llwiller) <

< Cllg@i)ller + ld* Aoll e + llwillce) = CGllwillZer + lld* Aoller + [lwills). 149

Note that in the estimate it does not appear the £P norm of the term d*v;, as it is £2-
orthogonal to the kernel of d* + d*, which is ker(d* + d*) = kerd|ierax = Harm'(M).
Now 1); satisfies a C° uniform bound, as proven previously, and then ||4;]|%,, is bounded,;
the previous remark on w;, plus the hypothesis on Ay, brings an uniform (in 7) bound,
depending only on Ay, for ||A; — Agllzr. If we put p > 4, in particular, £] C C° and
(4; — Ap) has a C° bound. From this bound we get an £ bound on 4);, as the elliptic
inequality applied to the Dirac operator @y, brings

1%ill ez < C'(11Paoill e + [l ce) (1.47)

(the reason why we choose an estimate w.r.t. @4, is that we look for a bound not depending
on 1) and this inequality becomes

1
[billey < C(1Patiiller + SH(As = Ao)iller + [[Wills). (1.48)

Now SW equations and the C° bound on (4; — Ag)%; bring to the required uniform £}
bound on ;. We can continue this process; with our choice of p > 4, L7 is an algebra;
this provides a control on the £} norm of ¢(v;) and the fundamental elliptic inequality for
d* +d* gives a bound on the £} norm of (A4; — Ao); analogously we have (A4; — Ag)v; € L
and the fundamental elliptic inequality for @4, gives a bound on the £} norm of 1;. We can
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continue this bootstrapping process to gain regularity in higher derivatives: this allows to
take converging subsequences in each Sobolev space, as the sequence lives in a bounded
and complete subset of a function space; Sobolev embedding theorem brings then smooth
convergence and thereafter sequential compactness. We note that as the moduli space

can easily be given a metric, this result implies compactness, as well.

Once proven the compactness of the moduli space, our aim is to study its structure. Asit
is usual in similar situations, we will not study directly the solutions of SW equations, but
the solutions of a parameterized perturbation of them, in such a way to study a family
of moduli spaces parameterized by the perturbation parameters. This will allow, by use
of the implicit function theorem, to deduce results of regularity for generic values of the
parameter and, eventually, for generic paths of parameters. We will perturb the equations
adding, in the curvature part, an imaginary self dual term contained in a suitable Sobolev
space: consider thus a perturbation € Q7 (M, 1R) and define the 7-SW equations as

Pab =0

Ff=q()+n.

We call M(PM,n) the moduli space of solutions of the 7-SW equations. It is easy to

(1.49)

prove that this moduli space, once 7 is contained in a suitable Sobolev space (e.g. £Z, in
such a way that such a perturbation is continuous) has the same compactness property

proven in the case 7 = 0. We define now the parameterized moduli space as

PM(Py) = Uneﬂi aramy M Por7) (1.50)
with obvious notation. If we complete the space of connections and the gauge group in
the suitable Sobolev spaces the irreducible parts of the moduli spaces live in a Banach
space, allowing the use of the implicit function theorem for Banach spaces. We are in

position to give a regularity theorem for the parameterized moduli space:

Theorem 1.3.5 PM*(Py) is a smooth manifold, the projection map 7 : PM*(Pyy) —
Q2 (M, iR) is proper Fredholm with indez

A(Pur) = 7(ex(Ea0)* = (2(M) + 30(0))) (1.5

and thus, for a second category subset of the parameter space, the fiber M*(PM,n) 18

smooth of dimension d = d(Py).
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Proof: consider the solutions of the parameterized equations, with nonvanishing 1. We

can consider this set of solutions as the zero locus of a G(Py)-equivariant map

SW : A(Las) x T*(S+(Par)) x Q2.(M,iR) — Q2.(M,iR) x T(S~(By))
(1.52)
SW(A7 ¢7 77) = (FZ - Q(¢) - ﬁA'L/));

this map is evidently smooth. In order to obtain transversality results we must first
of all prove that the linearization of the map is surjective, as we restrict to irreducible
solutions: the linearization of SW, computed in correspondence of a solution (4,1, n), is

the operator
DSWiapm + (M, iR) x T(S*(Par)) x Q2 (M, iR) — Q2 (M, iR) x D(S~(Py))

DSW(AJP,U) (a’7 ¢7 6) - (d+a’ - 2Q(¢7 ¢) -6 ﬁA¢ =+ %CL : 1/))
(1.53)

(recall that working with a connection on £ we have that Pa, 00 = Pat + za-1). We
must prove that this operator DSW is surjective, to use the implicit function theorem.
If an element (b, @) is L2-orthogonal to ImDSW, we must have, ¥(a, ¢, €),

< dta—2q(¢ 1) — eb>+ < Pac+ -;—a ), >=0. (1.54)

First, we show that (b,0) is in ImDSW: if there exist a b € Q2 (M,iR) such that
(6,0) ¢ ImDSW, by varying a we see that it must live in cokerd* (in particular it must
satisfy unique continuation theorem because of surjective ellipticity of d*, and so it cannot
vanish on an open set without vanishing everywhere); by varying e then (even within the
Banach subspace of forms supported in a ball) we see that it must vanish everywhere.
Now let’s prove that (0, ) € ImDSW: if it where orthogonal to ImDSW then it would
satisfy, for any (a, ¢,0)

<Pad+ 20,0 >=0 (1.55)

Putting a equal to zero we see that ¢ solves a Dirac equation, and so cannot vanish on an
open set without vanishing globally. Using the fact that 7 as well solve Dirac equation
and is not identically zero, and choosing ¢ = 0 and a bumped around a point of the
(nonempty) common support of 1 and ¢ we get ¢ = 0 too. This implies that DSW
is surjective. From the construction it is clear the reason of the choice of Qi(M ,iR) as

parameter space. From the previous discussion, moreover, we see that we can also choose,
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as perturbation space, forms supported in a ball.
By equivariance, the map SW descends to a map over the gauge orbit space, and its zero
locus is the moduli space of irreducible solutions.
We can now complete the prove that the zero locus of this map is regular: first of all
we note that this map is Fredholm: its linearization up to zero order term is the sum
of two elliptic operators, namely the selfduality Hodge operator and the Dirac operator
and thus is Fredholm; this linearization, as seen above, is surjective; standard results of
transversality theory bring thereafter the regularity of the parameterized moduli space.
The restriction of the projection map m to the zero locus of SW is a Fredholm map of
index given the sum of the real index of Dirac and selfduality Hodge operators, and is
proper, because of C° bounds on the solutions. Sard-Smale theorem guarantees then the
existence of a Baire second category (i.e. countable intersection of open and dense) subset
of regular values for 7 in Q% (M, iR) for which 7 provides fiberwise local charts in such
a way that M(PM, n) is a compact smooth manifold. Moreover, applying density argu-
ments it is also possible to show that we can assume the perturbation to be of class C*,
see [Mo].
To compute the dimension of a generic fiber M*(Py,7) of , after Coulomb gauge fix-
ing, we note that we have to compute the index of an operator which is the compact
perturbation of the sum of the operators
a : T(5* (Pu)) — (S~ ()
(1.56)
d* +dt : QN (M,iR) — Q°(M,iR) & Q% (M, iR).

The first index is in fact the index of the spin® Dirac operator that we can compute via
the Atiyah-Singer index theorem which gives, in general,

indcPs = / ez (Ea) . A (M), (1.57)
M

We develop the computation on a four manifold: the A-genus satisfies

AM)=1- -2%1;1 (TM) (1.58)

and thus

[ 1+ et + §AENL - Zp (T = ) o)) (159)



26 . Chapter 1

as Hirzebruch signature theorem gives py(TM) N [M] = 30(M). The second index to

compute is the Euler characteristic of the complex
0 — Q%(M,iR) — Q'(M,iR) — Q2 (M,iR) -0 - (1.60)

which has index equal to —%(x(M) + ¢(M)) as can be readily computed.

The sum of these indexes gives immediately the formula stated in the proposition.

Now we have proven that, in correspondence of the generic fiber, the moduli space
M*(Py,n) is smooth and compact; in order to associate it a fundamental homology
class, which will allow the definition of the invariants, we have to prove that it is ori-
entable.

To prove orientability, let’s see that a local model of the moduli space of irreducible so-
lutions is provided by the zero set of a map between finite dimensional vector spaces,
according to the decomposition of deformation complex associated to the differential of a

Fredholm map as

HY(M,iR) = Q(M,iR) “5% Q2 (M,iR) @ QO(M,iR) —» H2 (M, iR) & HO(M,iR),

kerfa s T(S*(Py)) 2 T(S~(Pyr)) —» cokerda.
(1.61)
It is clear that this identifies the tangent space to the moduli space as the zero set of a
map
f: HY(M,R) @ ker pa — H2(M,iR) & H°(M,iR) & cokerpa (1.62)

(for a discussion of this point in Yang-Mills theory see [DK]). An orientation bundle will
be therefore defined by the tensor product of the real determinant bundles of the index
bundles of the Fredholm operators d* + d* and @4. Clearly the first bundle is trivial on
the orbit space, and the second, although the complex determinant bundle of the Dirac
operator is in general not trivial, as we have seen in Section 1.2, it is trivial as real line
bundle. This proves not only the orientability, but gives a canonical orientation bundle:
the choice of an orientation is provided by a choice of sign in the maximal external product
in

H°(M,R) @ H(M,R) ® H2(M,R), (1.63)
as the Dirac determinant bundle has a given canonical orientation provided by its complex

structure.
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1.4 Definition of the Invariants.

We are now in position to define, for a given metric on M, an invariant (respect to the
choice of the parameter 7) associated to each spin® structure and then discuss its depen-
dence on the metric. The basic problem is that we would like to work with irreducible
solutions, to maintain smoothness of moduli space, while changing the parameters (which
could be the perturbation parameter n or the metric), we could encounter reducible solu-
tions. Let’s see how to treat this problem.

First of all we see that, for any metric, reducible solutions for the unperturbed equations
correspond to connections A with anti self dual curvature: this is quite a strong require-
ment, as 5’—7;F is the Chern class of the line bundle £j; and thus it represents a point
in the integral lattice of H2(M,R) which has zero projection on the self dual subspace
HZ(M,R); more generally, a reducible solution to n-SW equations corresponds to a point
of H?(M,Z) whose projection to H2(M,R) coincides with the harmonic self dual part
of —2i177; it is clear (applying an easy Hodge decomposition argument) that this condition
is not generic w.r.t. the choice of the perturbation, once b% (M) > 0, and therefore in
that case, outside a closed nowhere dense subset of the parameter space, we have not
reducible solutions. Note that this is true also for spin® structures which have torsion
determinant bundle. In the case that b% (M) > 1, more is true: if we take a generic couple
of perturbation parameters ny and 7; and a generic path 7, transverse to the projection
map 7 in Q2 (M, iR) connecting them, then the moduli spaces associated to 7 and 7 are
compactly cobordant: in fact, as long as b3 > 1, the self dual harmonic component of the
path 2—}77,: will not meet any value which is self dual part of a point in the integral lattice
H?(M, Z); the counterimage of the path n; w.r.t. 7 is a smooth, compact, oriented mani-
fold of dimension dimM (Py) + 1 with boundary M(Pyr,m0) [T M (Pas,m1) (the proofs of
these statements follow exactly like in the case of fixed perturbation) and thus provides a
compact oriented cobordism between the two moduli spaces: this is nothing but an easy
consequence of transversality.

With this approach we can also deal with the problem of the dependence from the metric:
the same line of reasoning as above allows to show that taking any two metrics go, g1
on M and two generic perturbations 7o, n:; self dual w.r.t. the corresponding metric, we
obtain cobordism between the moduli spaces, considering a path of metrics connecting go
and ¢; and a generic path 7; of g; self dual forms connecting 1o and 71, see [Mo].



28 Chapter 1

In the rest of this work we will always assume that b% (M) is greater than 1 and so all

moduli spaces will be generically cobordant.

We can now define, regardless of the perturbation and the metric chosen an invariant
which depends only on the smooth structure of M.

Consider first the case of d(Py) > 0: the space of based solutions M°(Py) fibers over
M(Py;) with fiber U (1) via the base point fixing fibration. Denote by x the Euler class of
this fibration; as we have seen in Section 1.2 this is the restriction of the two dimensional

generator of the cohomology ring of the orbit space B(Py):

Definition 1.4.1 The Seiberg- Witten invariant associated to a spin structure Py with
d(PM) > 0 is defined as
SW (By) := pl) 0 [M(By)]. (1.64)

This vanishes trivially if d is odd and is a well defined integer if d is even, which corresponds
to the case of b' (M) + b2 (M) odd.

The Euler class  is the restriction of one generator of the cohomology ring of the orbit
space; it is quite clear that using other generators we can similarly define other invariants,
which are polynomial in H;(M, Z) and Hy(M, Z); these will not concern the sequel of this
work.

Consider now the case of zero dimensional moduli space: in that case M(Py) is a smooth

compact zero-dimensional oriented manifold and thus a finite set of oriented points:

Definition 1.4.2 The Seiberg- Witten invariant associated to a spin® structure Py with
d(Py) = 0 is defined as
SW (Py) = #M(Py). (1.65)

These invariants, for what we have shown, are well defined and depend only on the smooth
structure of M and the spin® structure which is considered, as long as b2 (M) > 1. It
is clear from the dimension formula that the dimension of these moduli spaces, for a
fixed manifold, depends only on the Chern class of the determinant bundle of the spin®
structure. There’s a fundamental conjecture that states that, under the hypothesis of
b2 (M) > 1, the only spin® structures that can give non zero Seiberg-Witten invariants
are those who have a zero dimensional moduli space (simple type conjecture). Up to now
there’s not a precise strategy of how to prove this conjecture in generality, apart from



Seiberg-Witten Invariants 29

specific classes of four manifolds.

Using the previous definition we can associate to the manifold M a function, denoted by
SW oy, from the set of spin® structures on it, an affine H 2(M,Z), to the integer numbers,
le.

SWis : Spin®(M) — Z (1.66)

defined associating to any spin® structure Py the value of SW (Py). The determinant
bundle of a spin® structure with non vanishing SW invariant is called a basic class; an
important fact that comes quite directly from the definition is that the set of basic classes
is finite, which amounts to say that the function SWj, is non zero only on a finite set of
spin® structures.

Now that we have defined these invariants it is relevant to know some classes of four
manifolds for which the function SWj, is non zero. This is, of course, interesting per se
and moreover this group of manifolds (which extends from time to time) will naturally be
a field of application of the results of the sequel. We limit ourselves to quote some classes
(eventually overlapping) of four manifold with 5% (M) > 1 sharing this property:

- Kéhler surfaces ([Wi],[FM] et al.);

- Symplectic manifolds ([T3]);

- Non Kéhler complex surfaces ([Bi]);

- Manifolds obtained from those in the first two classes which contain c-embedded tor:
(e.g. algebraic elliptic surfaces), removing their neighborhoods and then gluing the open
manifold with the complement of a link L C S® times S* ([Sz],[FS2]).

The computation of the Seiberg-Witten invariants in the quoted cases is based on explicit
analysis of the space of solutions, using the Kéhler or symplectic structure, or via gluing
formulae along 7% ([MMS]).






Chapter 2

Seiberg-Witten Theory on N x [0,T]

In this Chapter, which is rather technical, we will discuss the behavior of a finite energy
solution of Seiberg-Witten equations on a cylinder N x [0,T], where N is a three di-
mensional compact closed three manifold admitting a metric of positive scalar curvature.
Following a pattern that is common with Yang-Mills theory, the Seiberg-Witten equations
on a cylinder appear as gradient flow equations for the Chern-Simons-Dirac functional,
defined over the three dimensional orbit space ([KM1]). We prove here that these gradi-
ent flows converge exponentially, as the cylinder becomes infinite, to the critical points
of the CSD functional, which correspond to the solutions of a three dimensional version
of Seiberg-Witten equations on NN i.e., up to a covering, to a component of the U(1)
character variety of N.

2.1 Gradient Flow Equations.

Let M be a closed four manifold which decomposes along a three manifold N. The
Seiberg-Witten theory on M is clearly related to the Seiberg-Witten theory on the two
factors of the decomposition, which appear as open manifolds with boundary N, so we
address ourselves to the study of it.

Let X be a four manifold whose boundary X = N admits a metric of positive scalar
curvature. Over X we can consider a spin® structure Py and we can define, in the very
same way of Chapter 1, the Seiberg-Witten equations associated to this spin® structure.
Instead of studying directly these equations, a fruitful approach to the problem of man-
ifolds with boundary is to consider the complete manifold, with cylindrical end, defined

31
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as

X =X Uy N x[0,00). (2.1)

This manifold, from the topological point of view, is equivalent to X, as it retracts onto
it, but has different geometrical properties. Our aim is to study the moduli space of
solutions of SW equations for a spin® structure ]55{ defined on X these are induced
from spin® structures on the compact part X. Let Px be a spin® structure on X, with
determinant line bundle Lx; this spin® structure can be extended to a spin® structure on
X. We denote by Py the restriction of Px to X = N, and L its determinant line bundle,
that we identify with its topological Chern class in H?(N,Z). On the end of X we have
a bundle isomorphism [0,00) x L = L3|yxjo,c), and a correspondingly an embedding
[0,00) x Py <> Pg| Nx[0,00) Which covers the embedding of frame bundles. With a slight
abuse of notation we will say that, on the end, the spin® structure PX is the pull-back of
Py: although this is evidently false in the sense of the bundles, it is true from the point
of view of their cohomological representatives.

A major ingredient in the study of the structure of the moduli spaces of solutions of the
Seiberg-Witten equations defined for a spin® structure on a cylindrical end manifold is
the knowledge of the behavior of the solutions on the end of the manifold. We want to
analyse the asymptotic behavior of finite energy solutions of SW equations for Pfc on the
end of X; we need to study therefore the Seiberg-Witten-Floer theory on the cylinder
N x [0, 00).

The study of the form of Seiberg-Witten equations on a cylinder (SWF equations now
on), already began in [KM1], parallels strictly the analogous one in Yang-Mills theory, in
[MMR], [T2], so we limit ourselves to discuss the points of major interest.

Consider a spin® structure P with determinant bundle £ on a cylinder N x [0, 7] (the
results of this Section include as well the case of T = c0).

We denote as usual with A(L) the space of U(1) connections on the line bundle £ and
with LA(L) the space of U(1) connections on the line bundle L, while we denote by S()
the bundle of spinors associated to a spin® structure.

When we work with an open manifold, we suppose that connections and spinors are locally
in some Sobolev space, so they live, say, in £ .., ¥ > 2 and the gauge group is defined
in such a way to act on them, so in £}, ;.-

The embedding of the pull back of the spin® structure on N in the spin® structure P
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induces isomorphisms of spinor bundles [0,T] x S(Py) = S%(P). As a consequence of
this a section 1 € T'(S*(P)) defines a path in I'(S(Py)). We can obtain a similar result
also for the connections: a connection A € A(L) is said to be in temporal gauge if the
[0,T] direction is parallel w.r.t. the connection, i.e. A has no temporal component. It
is clear that there exist a gauge transformation, connected to the identity, which puts a
connection in temporal gauge. Therefore, up to a gauge transformation, we can assume
that A as well defines a path in A(L).
Under the aforementioned assumptions, elements of A(L) x T'(S*(P)) appear therefore
as paths '

(4,) : [0,T) — A(L) x T(S(Bw)), (2.2

The four dimensi_onal equations, in temporal gauge, for a couple connection-spinor (A4, 9)
in A(L) x ['(S*(P)) on N x [0,T], appear as a pair of equations for a path of couples
(A(t),%(t)) in A(L) x T(S(Py)) on N of the form

{ 2p(t) = Papyv(t),
2A() = #(q(¥(t) - Fag).

These equations can be obtained from equations 1.9 by direct computation, specializing to

(2.3)

the cylindrical case. The bilinear term ¢(-) is defined, with the suitable modifications, like
the one in equation 1.6. After endowing A(L) x T'(S(Py)) of an inner product (slightly
different from the standard one induced by the pointwise product of equation A.2, as on
the spinor part we take twice the real part of the hermitean product), equations 2.3 are just
the gradient flow equations for a suitable generalization of the Chern-Simons functional,
whose critical points are given by the static solutions ([MST]). This Chern-Simons-Dirac
functional is defined, on A(L) x T'(S(Py)), as

C: A(L) xT(S(Py)) — R,
(2.4)
C(A,¢) =1 [y(Fa+ Fag) N(A— Ag) + [y <, Pa0 >,

where Ag is a fixed reference connection in A(L). As happens with the Chern-Simons
functional in Yang-Mills theory, the CSD functional is not in general invariant under the
action of the three dimensional gauge group, but only under the component connected to
the identity.

Acting with the set of components of the three dimensional gauge group, C (4, ) changes
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by the cup product with a term proportional to ¢;(L):
C(AY,49) = C(A, ) + 8r2ci(L) U g], (2.5)

where [g] € H'(N, Z) is the class corresponding to the set of components: an application
of the results of Section 1.2 to the three manifold N identifies in fact mo(G(Py)) with
H(N,Z). In the case where L is a torsion bundle (i.e. ¢;(L) = 0 in rational cohomology),
therefore, C' is invariant under the full gauge group.

Equations 2.3 have therefore the form

8(A(2;1/)(t)) — VC(A(t), 1/)(15)) (26)

It is not difficult to verify, using various explicit formulae computed in the appendix, that
the gradient flow is orthogonal (w.r.t. the inner product used to define it) to the gauge
orbits. Following what has become an habit, we will not keep track of the different inner
product, all the difference amounting, for what will concern us, to an irrelevant scaling
between connection and spinor part. For example, using the standard inner product, it is
not VC but (x(g(v) — Fa),2P4%) which is orthogonal to the gauge orbits.

2.2 Seiberg-Witten Equations in Dimension 3.

The critical points of the Chern-Simons-Dirac functional defined in equation 2.4 corre-
spond to the static solutions of the SWF equations, i.e. to couples (A,¢) € A(L) x

T'(S(Py)) such that ‘
Pay =0,

Fy=q(¥).
These equations are the natural three dimensional version of SW equations. Adopting

2.7)

the notation of [KM3] we introduce the following

Definition 2.2.1 An integral cohomology class represented by the determinant bundle L
of a spin® structure Py for which equations 2.7 admit solutions for any metric is called a

momnopole class.

It is quite easy to construct a general theory for the moduli space of solutions of equations
2.7 by adapting, mutatis mutandis, the results of Chapter 1. In the case under analysis,
anyhow, we will not need such a kind of results, as it is possible to recognize explicitly
the solutions of equations 2.7: :
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Proposition 2.2.2 For a three manifold admitting a metric of positive scalar curvature
the monopole classes are the torsion classes; with that metric the only possible solutions of
the three dimensional SW equations Pab = 0, Fy = q(¢b) are the reducible couples (A,0)

where A is a flat connection.

Proof: we first note that, for any metric on N, reducible couples (4,0) with A a flat
connection on a torsion bundle, are solutions to equations 2.7. If we now endow N with a
metric with positive scalar curvature s, these are the only possible solution: the proof of
this is a standard application of three dimensional Bochner-Weitzenbdck formula, which
in our case reads as

B = ViVap+ 3Fa 0+ 59, (2.8)

For solutions of the equations 2.7 this becomes

0= ViVt + sal) -+ 30 (2.9)

Taking the hermitean product with ¥ and integrating over the manifold we get the integral

formula .
/ VA + 210l + ZW =0. (2.10)
N

In correspondence of positively curved IV, we get ¢ = 0. This means that A must be flat,
and L torsion: the only monopole classes are therefore torsion elements in H*(N,Z).

The moduli space of solutions, that we denote by x(IV), is defined as quotient of the space
of flat connections on L by the action of the gauge group QO(PN). This space appears as a
covering, with fiber Hom(H'(N,Z), Zs), of a component of the U(1) character variety of
N, ie. Hom(m(N),U(1)), which is identified with the space of flat connections modulo
G°(L): in fact, the only difference amounts to the different action of the gauge group, as
follows from the proof of Proposition 1.2.3, applied to the three dimensional case.

. When N is a rational homology sphere, all line bundles are torsion and the only gauge

equivalence class of flat connections is the one defining the torsion bundle L in
H*(N,Z) = Hom(m1(N),U(1)) = x(N), (2.11)

where the last equivalence (with the “honest” character variety) is implied by the fact
that H'(N,Z) = 0. In the case where b;(N) > 0, instead, this proposition tells us that

static solutions of SWF equations appear only if L is a torsion bundle and that for each
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such L they correspond to a torus T%(") which covers a component of Hom(m(N),U(1))
with fiber ZZI(N). By abuse of notation we will often refer to x(/N) as character variety.

We note that, of course, the proof of Proposition 2.2.2 applies also for proving that the
kernel of a Dirac operator twisted by a flat connection vanishes on a three manifold of
positive scalar curvature, result that will be used in the sequel.

Along the same lines of Proposition 2.2.2 we can prove as well that there are not irreducible

solutions of equations 2.7 after a perturbation of the curvature equation of the form
Fa=q(¥) +15, (2.12)

as long as the perturbation § € Q%(V,R) is small enough, in the sense that the C° norm
of the endomorphism 7§ satisfies

man(s)

/N Z|¢IQ+ <y >2 (= — [[id]]eo) /N lw|* >0, (2.13)

which we will always suppose later on.

We recall that, although in all formulas we will suppose that the manifold N has a scalar
curvature which depends on the point, it is a general result that any manifold which
admits a metric with nonnegative scalar curvature, which does not vanish identically,
admits also a metric with constant positive scalar curvature ([Be]) so in fact we could

even assume that s is constant.

We now prove that, in the case of rational homology sphere, the reducible connections
are non degenerate solutions of Seiberg-Witten equations, while for b;(N) > 0 they are
nondegenerate in the sense of Bott, i.e. the hessian of our functional is non degenerate on
the normal bundle to the critical set. We will use, like in Chapter 1, an argument based
on transversality of a gauge equivariant map defining the equations; we can interpret this

map as a section of the tangent bundle of B°(Py): it has the form

§(A, ) = (x(¢(v) — Fa), Parb) (2.14)
and it linearizes, around a static solution, to
D&(Ao,o) (a’7 ¢) = (” * da, ﬁAGQS)- (2'15)

The tangent space to the orbit space at (A, 0) is given, by the gauge fixing condition, by
Tia0,0)B°(Py) = kerd* @ T'((S(Py)) = d*Q*(N,iR) ® Harm!'(N,iR) @ T(S(Py)). (2.16)
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The map in equation 2.15 is therefore defined as an endomorphism
D€(aoyp) : kerd* @ T(S(Py)) — kerd* @ T'(S(Py)). (2.17)
If an element (b, ¢) is £? orthogonal to ImD¢4,0) then it must satisfy both
< xda,b>=0, < Pa,0,0>=0, Va,d; (2.18)

by the selfadjointness of @4, we get, from the second equation,

Pap=0, (2.19)

which implies ¢ = 0, as A is flat (see the note at the end of Proposition 2.2.2). In the
case where N is a real homology sphere, Hodge decomposition of one forms gives b = d*c
and thus the first condition of equations 2.18 (putting a = *c) implies b to vanish as well.
This result of non degeneracy is related to the fact that these solutions, although being
reducibles, are not removable with a perturbation of the equation, as we will analyse later
on.

In the case that b;(IN) > 0, instead, the computation above says that a couple (b,0) is
L£? orthogonal to ImDE4,0) when b € Harm!(N,iR), i.e. that the hessian of the Chern-
Simons-Dirac functional is non degenerate on the normal bundle to the critical set. This
tells us that the critical set, which is smooth, is non degenerate in the sense of Bott. In
fact in this case a perturbation of the equations, as in 2.12, with a closed non exact form,

can remove all the solutions. Summing up, we have the

Proposition 2.2.3 The solutions of three dimensional Seiberg- Witten equations on a
three manifold N of positive scalar curvature are non degenerate if by(N) = 0 and non
degenerate in the sense of Bott if bi(N) > 0.

It is the right moment to point out a basic difference between the case of positive scalar
curvature and the case of zero scalar curvature. It is easy to verify that the proof of
Proposition 2.2.2, applied to the case of a manifold NV with s = 0 brings as well to a
vanishing result for the spinor part of the solutions of SW equations, i.e. the moduli
space of solutions, also in that case, corresponds to the U(1) character variety of the
three manifold. What does not hold true anymore, instead, is that having a connection A
flat implies ker @4 = 0; the Bochner-Weitzenbdck formula implies just, in that case, that

an element in the kernel is V 4-covariantly constant. If there exist covariantly constant
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spinors, for some flat connection, this connection is a non smooth point of the space of
solutions: the proof of Proposition 2.2.3 gives up (see equation 2.19 and its consequences).
In the sequel of this work it will be quite clear how such a situation would affect all the
discussion of the problem of four manifolds split along a three manifold of zero scalar
curvature; for an analysis of this situation, the only reference, as far as we know, is
[MMS], where the case of T® is analysed.

Another remark that is worthy is that the result we have obtained, for three dimensional
manifolds, is related to the scalar curvature and not only on the homotopy type. In Yang-
Mills theory the set of critical points of Chern-Simons functional is the SU(2) character
variety of the three manifold and the theory depends therefore only on the fundamental
group of the three manifold. In particular S and fake spheres, in Donaldson theory,
behave in the same way with respect to the problem of decomposition of four manifolds.
In Seiberg-Witten theory, instead, the critical set depends also on the curvature and there
is no reason why homotopic three manifold should have the same critical set. For example,
as we don’t know whether fake spheres admit a metric of positive scalar curvature, we
don’t know any way to deduce any information on the decomposition problem for fake

spheres using directly Seiberg-Witten theory.

2.3 Exponential Decay Along the Cylinder.

In this Section we will prove that a finite energy solution of SW equations on an infinite
cylinder decays exponentially to a static solution and therefore such a kind of solutions
differ from a static one by a term contained in a weighted Sobolev space on the end.
First of all the energy of a couple (4,v) € A(L) x T(S*(P)) on the cylinder N x [0, 7]
is defined as

T
E(0,T) = / dt /N 10(@(1)) — Fayl? + [Pacey b (®)” (2.20)

and finite energy condition on an infinite cylinder means that this term remains bounded
as T goes to infinity (observe that the definition of energy does not depend on the choice of
gauge). The finite energy condition for a solution is the natural transposition, in Seiberg-
Witten theory, of the £2 condition that is imposed to the curvature, in Yang-Mills theory,
to study similar problems.

To study the moduli space of finite energy solutions of SW equations on the cylinder we
must obtain some information on the way such solutions decay along the ¢ coordinate.
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In the rest of this Section we will often use the fact that s > 0, as this simplifies in some
points the discussion, but this is not a necessary hypothesis for decay properties like the
ones we are going to discuss. '
As our interest is in those spin® structures, on the cylinder, which arise as restriction of
a spin® structure on a compact closed manifold M = M Uy M~ which has non trivial
SW invariant, we will focus on those solutions, on the cylinder, that can glue to global
solutions on M. This imposes some limits on the classes of spin® structures, on N x [0, 7],
that we need to analyse; in fact we will now prove that we just need to focus to the case
where L restricts to a torsion bundle on N. We have already seen in Proposition 2.2.2
that this class of bundles is the only one which admits static solutions to the gradient
flow equation: we claim that, under finite energy condition, this is the only class of spin®
structures which gives non trivial Seiberg-Witten invariants for the manifold M. This is

the content of the following

Claim 2.3.1 Let M, M* N be as above; let Py be a spin® structure with determinant
bundle Ly which restricts to a line bundle L on N; if SW(Py) is non zero then L is

torsion.

Proof: this claim is simply an application of Prop.8 of [KM1], where it is proven that if
the moduli space M(PM) is non empty for any metric, condition which is satisfied under
the hypothesis that SW(PM) is non zero, then, by constructing a family of metrics gr on
M which identify isometrically a tubular neighborhood of N with the cylinder N x [T, T
and then taking the limit 7' — oo, there must exist at least a translation invariant so-
lution on the cylinder, which corresponds of course to a static solution on N. In other
words the determinant bundle £y, must restrict to a line bundle L which represents a
monopole class on N. In our case, as the only spin® structures on /N which correspond to

a monopole class are those with ¢;(L) torsion, the Claim follows.

We will therefore consider, now on, only the case of L torsion, without explicitly men-
tioning it.

From a general viewpoint, which has been investigated, at least at a sketchy level, in
Donaldson-Floer theory, there are two cases where we expect an exponential decay condi-
tion for solutions of Seiberg-Witten (or Yang-Mills) equations on a cylinder: the case of
isolated nondegenerate static solutions, which corresponds to the Chern-Simons-Dirac (or

Chern-Simons) functional being a Morse function, and the case where the static solutions,
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although appearing in families, define a smooth variety, with tangent space everywhere
coinciding with the first cohomology group of the equation complex, that we implicitly
analyzed in Section 2.2 (and which in our case is given by H'(X,iR)), which corresponds
to Morse-Bott case. This general viewpoint, although being suggestive, is not too helpful
from the practical viewpoint, in face of the difficulty of Morse theory on infinite dimen-
sional manifolds (and in fact often results on these topics are extracted from results on
finite dimensional models), so we will approach directly the problem of convergence. It
will not escape from an analysis of the proof, anyhow, that the deep reasons of con-
vergence are related to the aforementioned regularity properties of the character variety
(about this point, recall the remarks at the end of Section 2.2, on the T? case: there, the
first cohomology group of the deformation complex, in correspondence of the connection
¢ with kerVy # 0, has an extra ker@, subspace).

We start with a study of the behavior of a solution of SWF on a finite cylinder under a
condition which is more restrictive than just having finite energy, i.e. we suppose that a
solution (A(t),%(t)) on N x [0,T] has distance from a static solution (T, 0), measured in
the £2 norm on the based orbit space, which is less than a given e.

We need now some comments on the choice of an £? norm on the space of orbits. In
the case of b;(N) > 0 the space of static solution is not composed of an isolated point
(when b; (V) = 0 some of the results proven in this Section are in fact unnecessary). At
a reducible point (T',0) € A(L) x I'(S(Py)), a slice for the action of the gauge group
G°(Py) is given by

kerd(r g = {(a, ¢) € Q'(N,iR) x I'(S(Py))|d"a = 0}. (2.21)
In that slice an £? norm is defined by

lal 25 = llal 2 + lldal 2
(2.22)
18123y = 161122 + 1 Vr6 2.

A ball in the slice provides a chart, around (T',0), for the orbit space B°(Py).

Note that the definition of the spinor norm requires the choice of a connection on L.
When we work in a neighborhood of the space of flat connections x(N) it is important to
be able to compare the Sobolev norms defined with respect to different flat connections.
We represent elements in x(N) in Coulomb gauge, in such a way that the difference of
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two flat connections (I'V —T') is represented by a purely imaginary harmonic one-form. In
particular, the sup norm of (I" — ') on x(NN) is well defined and uniformly bounded, as
x(N) is compact. Now we claim the following result: |

Claim 2.3.2 The L2 norms defined w.r.t. any two flat connections are commensurate,

in the sense that there ezist a finite positive constant C, independent of I', TV, s.t. for any
¥ € T(S(Py)) then
Y]] 22y < ClYI 2 (2.23)

Proof: the proof is as follows: first, by elliptic estimates, as kerdr = 0, we have

19lle2 < CO)IBoll e, (2.24)

where in general the constant C(I") depends on its argument; anyhow, if §r is in £2,
s0 is ¥, and an eigenfunctions expansion of 9 w.r.t. the selfadjoint P tells that C(I") <
(A ()~ where Ay () is the the first eigenvalue of . Now, because of positive curvature
condition and compactness of the character variety, there exist a C := mazy(wy (A (T)) !
and this provides an uniform bound on the elliptic constant. We claim that we can obtain
a similar result also for Jrv), as

1809llc2 = [1Porh + 3(T = T)9IIZ < [1Aopllee + ST = D)l <
< 1eablle2 + 3l = Tlleollvlle2 < CliP 2

where C depends only on the manifold N. By symmetry, the same result holds inter-

(2.25)

changing I, I". It is now easy to verify, using Bochner-Weitzenbock formula and s > 0,
that we can in fact use ||@ri||z2 to define the £3(I") norm on I‘(S(PN))r and it follows
therefore, from the formula 2.25, that all £2(T') norms are uniformly compatible.

This allows us to use any flat reference connection to compute spinor norms, all the dif-
ference amounting to multiplying by finite constants. In the sequel we will assume this
uniformity, which in practice corresponds to uniformity in the Sobolev constants, without
explicitly mentioning it. Moreover we will often simply denote by £2 any £3(I') norm, on

spinors, defined with the choice of a flat connection in Coulomb gauge.

Under the condition of small distance we can prove the following

Lemma 2.3.3 There ezist positive constants e, ¢, 9, such that if (A(t),¥(t)) is a solution
of SWF on N x [0, T] which is in an e-neighborhood of a static solution (T',0) in the L3
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norm, in the based orbit space, then its L2 distance from a static solution (I'y,0) (which

is parameterized by t, and is given by the harmonic part of A(t)), satisfies the relation
(1) = a2 ((A(1), (1)), (T,0)) < cd*(0)ezpl—26t] + cd?(T)ewp[~26(T — )]s (2.26)
moreover all the values of the constants can be chosen to depend only on N.

Proof: we claim that under the above hypothesis, the square norm of the Chern-Simons-

Dirac gradient

F@&) = F(AR), %) = |Pawy I + [la(t) — F )| (2.27)

(when no risk of confusion arises we denote by || - || the £ norm, reserving || - ||z to
other Sobolev norm) satisfies an inequality of type f” > 46%f, from which we have the
inequality

f(t) < f(0)exp[—26t] + f(T)exp[—26(T — t)]. (2.28)

The proof of this claim, which is quite technical, is contained in the appendix.
Now note that the CSD gradient, which is orthogonal to the gauge orbits, can be inter-
preted as a section (A, ¥) = (x(q(¥)) — Fa), Path)) of the tangent bundle of B°(Py). As
we have seen in detail in Section 2.2, £ is transversal to the normal direction to the har-
monic subspace of Q(NV, iR); according whether b; (V) vanishes or not its £2 norm gives
a different control on (A(t),%(¢)): in the first case, in a neighborhood of the critical point
(T, 0) the norm of the gradient bounds, up to a constant, the £? distance of (A(t), ¥(t))
from (T',0), i.e.

dz (A1), 9(1)), (T,0) < craf (A(t), %(2)) (2.29)

(we continue to index the constants following the enumeration of the Appendix); in the
second case it just bounds the distance from the critical set, i.e.

d*(t) := d%%((A(t), ¥(t), (T[4, 0)) < craf (1), (2.30)

where I'; is the flat connection such that (A(¢t)—I';) has no harmonic component (the other
Hodge components are independent of the choice of I';). The size of the neighborhood
where this holds true depends ultimately only on N.

Therefore, for some constant cqo, that we can choose to depend only on the three manifold,

by compactness of x(/V), we have in all cases

(1) < c1af (0)eap[—26t] + ciaf (T)exp[—25(T - 1)) (2.31)
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We can get, as well, a control of f(t) in terms of d?(¢); with a suitable choice of the
representative, we have a formula similar to the one obtained in equation A.38 in the
appendix for the distance of (A(t),%(t)) from (I',0); here we can write, in the gauge
where (A(t) — 'y, %(t)) has small £2 norm,

(&) < I1Fawll? + Hlw @)1 + 20V aw @12 + 252 @) <

< [ Fal? + Sl @)l + 20 Ve (4 + eall A®) — Tel| 2l (91122 + Z5 10 (1)1
(2.32)
and the latter term is bounded in terms of the distance d?(¢).
Applying these relations at ¢ = 0,7 and rearranging the constants we obtain the formula
2.26 in the statement of the lemma, for a suitable value of the constant c. Concerning
the constants involved, these depend only on N, as follows from Prbposition A.1.2 and
Claim 2.3.2.

So far we have obtained, in the orbit space, a good exponential control on distances under
the hypothesis of small distance: now we want to pass from a condition of small distance
to a condition of small energy, which is the one suitable for our purposes. To do so we have
two viable alternatives: the first is to analyse carefully the weak compactness theorems of
[KM1] to deduce that finite energy implies the existence of a limit point for the path in
the orbit space; this is the approach outlined, e.g., in [MOY]. This allows to use directly
Lemma 2.3.3 and then pass to Lemma 2.3.6 to deduce the decay result. The second,
which is more transparent and we will follow here, uses the content of Lemma 2.3.3 to
deduce a control of distance from the control on energy. This method has been used in
[MST] to deal with a case of isolated static solution; here we make also use of Simon’s

estimates on lengths in terms of energy to deal with the case of b, (V) > 0.

We claim first of all that, working on the based orbit space, the statement of Lemma 6.10
of [MST] holds true, namely we have

Lemma 2.3.4 For any n > 0 there ezist a A > 0 such that if (A,v) € B°(Py) has L2
distance from the critical set greater than m, then f(A,¢) > .

The proof is a straightforward modification of the original one.

If we suppose that the energy of a cylinder N x [a, b] satisfies

/ b f(t)dt < Eq . (2.33)
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with Ey sufficiently small, we deduce that there must exist a value ¢; in the interval for
which the distance d(¢;) is smaller than a given value, that we fix, for reasons that will
appear clearly in the rest of the Section, equal to 7, where the € is the one determined by
the previous lemma and we take an n > 1.

If we are considering the problem of the decay of a finite energy solution on the cylinder
N x [0, 00) this small energy hypothesis (and the possibility of the choice of a t; as above)
is satisfied under the condition of working on an interval whose infimum is greater or
equal than a value which depends on the way the energy is distributed over the cylinder,
i.e. on the particular solution. In that case the decay results we are going to prove in
the rest of the Section, will hold, for each solution, starting from an initial value which
depends on the solution itself.

Keeping memory of this observation, we reparameterize the cylinder in such a way to have
[a,b] = [-1,T 4+ 1], ¢t; € [0,7] and we put I';, =: . Then the following holds:

Lemma 2.3.5 There ezist a value of n, Ey such that (A(t),v(t)) remains in an e-
neighborhood of (T',0) in the L2 metric for all the interval [0,T].

Proof: the proof is by contradiction. If this did not hold true we could find a value
to € [0,7] that by symmetry we suppose greater than ¢; and a 1 < p’ < n such that

€

d((A(tQ)a '(P(tz)), (Fa 0)) = 27 (2.34)

(d(+) without any subscript refers to the £2 distance); we can deduce from this that there
exist a p with 1 < p K ns.t. d(t2) = f;; in fact we have

d(tz) 2 d((A(t2), ¥(t2)), (T, 0)) — d2 (T, 0), (T, 0)) = ; —de2((T,, 0), (T,0)); (2.35)

but
dc2((T1,0), (T, 0)) < de2((A(t2), ¥(t2)), (Atr), ¥(11))). (2.36)
Now we look for a control on the term on the r.h.s.: as we are in a neighborhood of " we

can apply Simon’s estimates for the £2 length of paths in terms of the energy, see [MMR],
which guarantee that there exist an 0 < 8 < % for which

R ECL T T (2.57)
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choosing a suitable Ej we can suppose that dg2((A(t2), ¥(t2)), (A(t1),¥(t1))) < £ (this
choice is purely conventional, we just need a bound smaller than 57) and therefore, rear-

ranging the various terms,

€E_ € €
-> === 2.38
22y n (2.38)
(note that this term is evidently bounded by above by > the relevant fact is the bound

d(to) =

by below, which guarantees that if (A(t2),%(t2)) is far from I, then it is far also from
T'y)-

We denote now by u € (t1,%;) the point in which d{u) = 5; as in the interval [t1,to]
we remain in the e neighborhood of I' we can use the results obtained under the small
distance hypothesis, and so apply Lemma 2.3.3 to the interval [t1, t2] to deduce that

d?(u) = 422 < c—e—z-emp[ 26(u — t1)] + C;—Z&'Ep[—2(5(t2 —u)]; (2.39)

the utility of this formula is that it allows to obtain a finiteness result on ¢y —u: asp K< n

we deduce that, say,
2 2

€

5—0—2')’2' < 52—6@0[—5(752 - ’LL)] (240)
from which we obtain that 0 < t5 —u < o0o. This finiteness result will be very important,
as we will see.

Now we want measure the £2 distance of (A(t2),¥(t2)) and (A(u), ¥ (u)); we have

d((A(t2), ¥(t2), (A(w), ¥(u))) = d((A(t2), ¥(E2)), (T, 0)) — d((A(u), ¥(w)), (T, 0)) 2

2f-5= %

(2.41)
and so the £? length of the path within u and ¢, has a bound by below, i.e. we have at
least (A 9)

/ 125 gt > o (2.42)
u

We claim that if the energy in the interval is small enough this brings a contradiction: in
fact, the previous bound on the length implies, by Cauchy-Schwarz, that

T 9(A, O(4, €
[ 12> [F12 G > oV - @)

the regularity result proven in [MST], Lemma 6.14, tells that we can bound the first term

in terms of the energy, as

T+1 (
B> [ Y i.d > K f 28 e g (2.44)
-1
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where K is a constant depending only on the geometry of V; we deduce that choosing Ej

small enough we obtain a contradiction and consequently we prove the Lemma.

We want to point out that the method we used here, that of working in a neighborhood
of a fixed flat connection, (which, as we have seen, is guaranteed by the application of
Simon’s estimate) is not the only possible one. In fact it is not difficult to modify the
proofs of Propositions 2.3.3 and 2.3.5, and part of the Appendix, to obtain the same decay
result with the condition of small distance from the critical set, without appealing to any
condition on the behavior of the harmonic part of A(t). This latter problem, as in the
method we have followed, can be then dealt to with the approach we will analyse in the
rest of the Section.

Let’s discuss the consequences of Lemma 2.3.5; this Lemma tells us that the £3 distance
of (A(t),®(¢)) from (T',0), in the orbit space, is bounded by above, for sufficiently small
energy, and this brings an uniform bound as well on the value of f(¢), call it A, which
does not depend on the particular solution. Together with inequality 2.28, this implies
that V¢ € [0, 7]

f(t) < Aexp[—26t] + Aexp[—26(T — t)]. (2.45)
When we work on an infinite cylinder which has energy sufficiently small, as previously
remarked, this equation proves the desired exponential decay, as A does not depend on

time, and therefore
f(t) < Aexp[—26t]. (2.46)

We concentrate now on on this result, which controls the behavior of f(t), to deduce a
decay result to a limit point for the solution (A(t),%(t)) in the space A(L) x T'(S(Py)).
We can state now our decay lemma:

Lemma 2.3.6 There ezist two positive constants C, &, depending only on N, such that
a finite energy solution of the Seiberg- Witten equations in temporal gauge on a cylinder
N x [0,00) is equivalent, up to a time-independent gauge transformation, to a solution
(A(2),%(t)) which converges exponentially fast with weight & in any L 5(IN x [0, 00)) norm
in A(L) x T'(ST(P) to a static solution (A,0), i.e.

|4 = Aollez , < C, (2.47)
Wllez, < C. (2.48)

- 1
The convergence s moreover smooth on compact subsets.
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Proof: our aim is to use the previous result on f(t) to deduce an exponential decay result
on the £2(N) norm of a solution in temporal gauge, as we already have a exponential
control on the decay behavior of the time derivative. As we mentioned, general lemmas
would guarantee us, after application of some compactness arguments, convergence to a
static solution in the orbit space (as it can be proven that I'; converges to some limit
value), but we want to prove that in fact (A(t),4(t)) itself converges exponentially to a
limit, and in order to do so we will use the decay properties of f(¢).
We start with the following observation: for any solution (A(¢),(¢)) in temporal gauge
there exist a time independent gauge transformation g., and a flat connection Ay such
that, V¢ € [0, 00), '

||9o - A(t) — Aol|zz < Kexp[-6t]; (2.49)
we want obtain such an estimate by application of Sobolev inequality to the elliptic

operator d + d*; it is immediate to verify, using the definition and Weitzenbock formula,
that

SIFsoll + I + IV ap Ol + "oz < 7o) @250

from which, as s > 0, ||Fa|[%: < 2f(t) and so d(A(t) — 4y), for any flat Ay, is already
controlled in £2 norm by v2\exp[—dt]. We would like to obtain a similar control with
d*(A(t) — Ay).

We can try to analyse the gauge fixing condition: in order not to compromise the temporal
gauge condition, we look for a time independent gauge transformation g = exp[x] s.t.

g A(t) — Ay € kerd*: this amounts to solve the elliptic equation
2Ax = d*(Ay — A(t)) (2.51)

and this has a solution once we know that A surjects onto I'md*. This follows from Hodge
decomposition of 0 forms, as these split as Imd* & kerA.
Now, from SWF,

0

(g — A1) = #dla(b(8)) — Fa) =iIm < pavs, >, (2.52)

as follows from the formula for xdg(v) proved in the appendix.
From this result we see that we can not apply a constant three dimensional gauge trans-

formation to A(t) to gauge fix it w.r.t. Ag. This represents a difference w.r.t. Yang-Mills
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theory, where the gauge fixing is available and the §-decay of a connection in temporal
gauge to a flat one can be proved directly by elliptic techniques starting from the result
corresponding to equation 2.46 for the Chern-Simons functional (see [JRS]).

Anyhow we can try to gauge fix a connection at infinity: we want to estimate the £2
length of the path of d*(A4q — A(t)): we have, from equation 2.52,

e o] a . ox<
[ dsligd o =~ Al < [ dsll <9(0) Pacob(s) > v (259)
Choosing, as usual, a suitable gauge to make the computation, we have
<, Pah > ||z = || < Y9, Pasth? > |2 < cas||Pasth?|| 2|9l 2 <

(2.54)
< C14H55‘,24g¢g“%2 = ‘314“529?4"/’“%2-

So, the £2 length of the path of d*(A4y — A(s)) within the interval [¢, 00) is bounded, as
follows from Proposition A.1.4, by ¢;sexp[—dt] (we choose w = §), which is finite; we have
therefore convergence to a value, say £, in such a way that

|ld* (Ao — A()) — €wollc2 < crsemp[—6t] (2.55)

(note, from the remarks at the end of Proposition A.1.4 that, eventually at the price of
reparameterizing the ¢ axis, the constant c;5 is independent of any choice, in view of the
uniform bound on f(t)). Now just define x., to be the (time independent) solution of the
equation

2A%00 = oo (2.56)
We gauge transform now (A(%),%(t)) by the action of g = exp[Xoo]; this transformation

does not affect, of course, any result concerning the behavior of the solution w.r.t. time.
Now the gauge transformed solution will satisfy

Hd*(goo . A(t) — Ao)”gz S 0156$p[—5t]. (257)

In the case of a rational homology sphere, this is the “missing half” of the elliptic inequal-
ity. If harmonic one forms are present, a little more work is in order: first we asymptoti-
cally gauge fix A(t) as we did in the homology sphere case (note that d*(A(t) — Ag) does
not depend on the harmonic part of (A(t) — Ap)), and then decompose (g - A(t) — Ag)

in its Hodge components:

oo A(t) - AO = d*p(t) + Cb(t), ) (258)
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where a(t) contains both the harmonic and the exact part; SWF equations tell us now

that -g—ta(t) is related only to xg(1(t)). Arguing as above, we have that

0 1
Ioa(®lles < SlIv I (259)

the right hand side term has decay conditions which are dictated from its bound in
terms of f(t), equation 2.50; the £2 length of the path of a(t) is therefore bounded by
g-gvzexp[—dt] and we have £? convergence to a limit a, which is in fact harmonic because

of the asymptotic gauge fixing conditions, for which

la(®) = alles < 2 eapl—st) (2.60)

For notational simplicity, now on, we will chose, as reference connection, (Ag+a) as defined
above, denoting it as Ay, and will consider A as already asymptotically gauge fixed w.r.t.
it. If we consider now (A(t) — Ap) and we put together everything, by application of
elliptic inequality, we obtain the result claimed in equation 2.49.

To obtain a similar result for the spinor part presents no difficulty, using directly the
standard elliptic inequality applied to @a(;); inequality 2.49 guarantees, in asymptotic
gauge and with the right choice of the reference connection, that (A(t) — Ap) is small,
in A(L), in £? norm; we can therefore use directly the fundamental elliptic inequality
for the Dirac operator @4,, as we did in the Appendix with equation A.50, to obtain the
inequality

b @lz < callPayv(t)]] 2 (2.61)

with the constant depending only on the geometry of N.

Now we have an exponential £2(N) control on (A(t) — Ag,%¥(t)) and on its derivatives,
both in the N direction (equations 2.49 and 2.61) and in the cylinder direction (equation
2.46) and this gives, by definition, an EiS(N X [0,00)) control on (A — Ag,v), for a
constant 0 < § < 6. ,

We can now bootstrap these results, using Sobolev embedding theorems for weighted
spaces (at the price of eventually decreasing again the weight) to gain the convergence in

higher Sobolev norms.

Remember that the initial value of ¢, that we denoted for simplicity as ¢ = 0, from which
the decay result holds, depends (at least at this stage) on the particular solution, with
the decay coefficient and constants which depend instead only on V.






Chapter 3

Cylindrical End Moduli Spaces

In this Chapter we will study the moduli spaces of finite energy solutions of Seiberg-Witten
equations on a cylindrical end four manifold, and the way it is connected to the moduli
space of solutions on a closed manifold. We will start with an analysis of the problem of
geometric limits of solutions of SW equations on closed manifolds and their relations with
solutions on cylindrical end manifolds. We will proceed then to deduce regularity results,
for the moduli space of finite energy solutions on a cylindrical end manifold, similar to
those obtained in Chapter 1 for the case of a closed manifold. With these results we will
be able to relate some properties of these moduli spaces, in particular their dimension,
and this will allow to deduce Theorem 2. Without appealing to these regularity results,
by a direct analysis of some classes of perturbations to the SW equations, we will then
obtain, in the case of b;(N) > 0, Theorem 3, whose proof just requires a modification
of some results of [KM1]. We finish this Chapter by exhibiting a gluing formula which
relates moduli spaces on a closed four manifold, which decomposes along N in a way
admitted by the previous theorems, with the moduli on the two factors. In this Chapter
we will use often an index for four dimensional objects (connections, spinors, and so on)
to distinguish them from their three dimensional counterpart. This is slightly incoherent

with the notation of Chapter 1 but is notationally much clearer.

3.1 Definition of the Moduli Spaces.

In Section 2.3 we have shown that finite energy solutions of Seiberg-Witten equations on
a cylinder N x [0, 00) have nice decay properties to some static solution. We will apply
this result to analyse the moduli spaces of finite energy solutions of SW equations on X,

ol
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as these solutions, on the end, satisfy the aforementioned decay properties.
As one of the aims of this Chapter is to obtain regularity results for the moduli spaces,
we will introduce, as usual, a compactly supported self dual perturbation term in the four

dimensional SW equations, i.e.

’81441[)4 =0
(3.1)

Fy = q(s) + na

with 7y € Q2 (X, iR) compactly supported. The hypothesis on the support of the per-
turbation guarantees us that the solutions of 74-SW equations share the same decay
properties, on the end of X, with the unperturbed case. These equations, as in the closed
case, are invariant under the gauge group G (PX) of vertical automorphisms which project
to the identity on the frame bundle.

The natural constraint on energy, on X, is to consider finite energy, on the end, as defined
in equation 2.20: if we have a solution (A4, %4) € A(Lz) x T(SH(Pg)), we consider its
restriction to the end N x [0,00); we can find a gauge transformation, connected to the
identity (which extends to X as it is unobstructed, see later) which puts it in temporal
gauge. We denote the gauge transformed pair, on the end, as (A(¢), ¥(t)) (we will usually
omit any reference to the gauge transformation, for sake of notation). This solutions is
said therefore to have finite energy if it satisfies

T
Jim [ atllla = Pl + 14wy < 0. (32)

Restricting now on to this class of solutions we introduce the following

Definition 3.1.1 The moduli space of finite energy solutions of ns-Seiberg- Witten equa-
tions for a spin® structure ]5X on X is defined as

M(Pg, 1) = {(As, 1) € A(Lg) x T(ST(PR))IFL, = a(we) + 04, Pasa = 0}/G(Py).
(3.3)
We will reserve the notation M*(PX,m) to the gauge equivalence classes of irreducible

solutions.

We now define the Chern integral of a solution (A4, ¥4) on X as

1
cx(Ag, Y4) = Pl ;‘(FA4 A Fa; B (3.4)
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it is a well defined, finite term, as there are not limit terms due to the decay conditions,
and it is a locally constant function on the moduli space; we denote by M., (155{, n4) the
union of the components of the perturbed moduli space with Chern integral cx. This

moduli space can be endowed of a natural topology as in [MST], par. 8.

The definitions above are valid for any three manifold /V; in the case when IV has positive
scalar curvature the results of the previous Chapter have relevant consequences on the
structure of these moduli spaces. When we take a solution (A4, 14) of Seiberg-Witten
equations for a spin® structure ]55( on X and we apply to its (gauge transformed) restriction

on the end the results of Lemma 2.3.6 we deduce the existence of a limit map

O : M(Pg,ms) — X(N), (3.5)

which sends the G(Py)-gauge equivalence class of finite energy solution (A(t),®(t)) on
the end to the G(Py)-gauge equivalence class of its limit flat connection Ag on the bundle
L on N. The space x(N) is, by definition, the space of gauge equivalence classes of flat
connections on N under the action of those gauge transformations of G(Py) which extend

to P)‘{- Concerning this space, the following holds:
Proposition 3.1.2 X(N) is a covering of x(N) with fiber H*(N,Z)/H(X,Z).

Proof: proving the statement amounts to identify the obstructions for the extension
problem, for a gauge transformation u € G(Py) = Map(N,U(1)), represented by the
diagram
X — v
ZT le (3.6)
N —— U(1).
Standard homotopy theory (Eilenberg extension theorem, see e.g. [Wh], Chapter 5)
identifies as only obstruction class, in H?(X, N, m1(U(1))), the class 6*u*k, where k is the

characteristic class of U(1) and 4* is the coboundary operator of the exact sequence
HY(X,Z) — HY(N,Z) & H*(X, N, 7). (3.7)

Therefore u extends if and only if it lies in a component of G(Py) which is labeled, in
H'(N,Z), by an element of the image of H'(X,Z). From this the statement follows.

Note that although the decay results on the cylinder have been proven for the orbit space
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B°(Py), as they correspond to a control on the length of a path, they hold in fact true
in any covering of the orbit space, so we don’t need to care, concerning this point, about
the relation between X(N) and x(N).

A relevant fact, when N has positive scalar curvature, is that the decay of the connection
part of a solution to a flat connection implies that the value of the Chern integral of a
solution is determined by the spin® structure ]55(; in fact, if A4, A} are the connection
parts of two solutions, we will have A} = A, + & for some & € Q'(X,iR) which decays
to the difference of the limit values of A} and A4, i.e. a closed one form; in particular,
d&4 decays to zero at infinity. With this in mind we have, with selfexplaining notation,
IX’FAQ /\FAQ = limTfXTFA‘l /\FA4 +d(f4 A (2FA4 + d§4)) =
(3.8)
= l'imTfXT FA4 A\ FA4 -+ fo{T}g‘i A (QFA4 +d§4) = f){'FA:; /\FA4.

In the sequel, for sake of clarity, we will often keep track anyhow of the value of the Chern

integral of a solution.

The map Oy of equation 3.5 which sends each solution (Ay,14) to its limit value on the
cylinder (Ag, 0) is continuous, by construction, and by fiat smooth if b;(IN) = 0. In the

other case, we have the following

Claim 3.1.3 the limit map O : M(Pg) — X(N) is smooth.

Proof: the proof follows by analysing the way a solution (A(¢),%(t)) on the cylinder
relates to its limit value. Roughly speaking, in gauge theory, the moduli space “fibers”
over the limit set, and has its same regularity; in our case the non degeneracy in the
sense of Bott of the critical manifold tells that we can consider the three dimensional
orbit space, defined as the space A(L) x I'(S(Py)) modulo the gauge transformation on
N which extend to M, as fibering over the critical manifold, identified for a given spin®
structure with H*(N,R)/Im(H'(X,Z)), with a smooth projection map. Now to each
point (A4, 14) in the moduli space we associate the harmonic components of the Hodge
decomposition of A(0) and *g(x(t)); these are smooth maps, and in the first case, up to
the action of the group of gauge components, it corresponds to the smooth projection
map to the critical manifold. We have seen in Section 2.3 how the harmonic component
A"(0) relates to the limit value: we have
0

AM0) - 4g = / (eq((@)rdt; (3.9)

o0}
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all the operations are smooth w.r.t. the topology of the orbit space, and therefore the

limit map is smooth.

3.2 Geometric Limits.

The aim of this Section is to discuss the definition of geometric limit in Seiberg-Witten
context and to study its consequences. For sake of notation in this Section we will omit the
index which denotes four dimensional objects. First we recall some definitions, suitably
adapted, from Chapter 6 of [MMR].

Definition 3.2.1 Let (M, gn, p.) be a sequence of complete riemannian four manifolds
with k base points pi, € M, satisfying the condition that limad(pl,,p%) = oo for i # j.
We say that a complete riemannian four manifold (M, g,b") with k base points b € M
is the geometric limit of the sequence if M consists of k connected components M3 b
such that for each 1 < i < k the following holds: Yt > 0 and all n > n(t) there erist
compact submanifolds with boundary A; C M (respectively By ; C M,) containing the
ball of radius t around b* (respectively pt) and k diffeomorphisms

¢’n,i : (Az7 bz) - (Bn,iapi) (310)

such that the induced metrics satisfy

lim (b;,i(gnan,i) = g[Ai' (3'11)
n—0o0
Once a sequence of manifolds has a well defined geometric limit we can study the relations
between differential geometric objects on the elements of the sequence and on the limit. In

particular we are interested to the case of spin® structures and couples connection-spinor
associated to them. The following definition arises naturally:

Definition 3.2.2 The couple (Py, (A,%)), with (A,¢) € A(Ly) x T(ST(Py)), is the
geometric limit of a sequence (Pu,, (An, ¥n)), with (An, ¥n) € A(Lu,) X T'(S*(Py,)), if
(M, g,b) is the geometric limit of (M, gn, p) with diffeomorphisms ¢y ;, these diffeomor-

phisms are covered by spin® bundle isomorphisms
Gns: Pa,, — Pa, (3.12)

and, for each t, q},‘;z - (An,n)|B,; converges in the smooth topology, as n goes to infinity,

to (A, d})lflz
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Note that, unlike the Yang-Mills case, as there are no bubbling phenomena, we are not
forced to extend the definition of limit to cover something analogous to generalized con-
nections.

We continue the discussion on geometric limits considering the particular case we have to
deal with.

Consider a four manifold (M = M* Uy M~,g) and define the sequence of manifolds
(Mp, gn, p*) s My, = M+ Uy N x [-n,n]Uy M~ with the product metric g = d¢?+ gy on
the internal cylinder glued in a smooth way to the metric of M \ [~¢,¢] x N (as this kind
of process is largely standard in Donaldson theory we will not bother with the details)
and two base points p* € intM®*. The geometric limit of this sequence is given by the
manifold (M, g, p*) which has two components M* = M* Uy N X [0, 00), with the prod-
uct metric on the cylindrical end and with the same base points p*. In the very same way
we can identify the geometric limit of a sequence of spin® structures PMn defined, starting
from a spin® structure Py, on M, as Pyr+ on M* while on the finite cylinders [-n,n] x N
they are pull-back of Py; the geometric limit PM will coincide, on the two components
M#*, with the union of the spin® structures Pys on a cylindrical end manifold we have

been considering in Chapter 2.

In this context we can consider the problem of the geometric limit of sequences of couples
connection-spinor which solve SW equations.

The main result on convergence is the following compactness lemma, which parallels The-
orem 6.1.1 of [MMR] in Seiberg-Witten set up:

Lemma 3.2.3 Let (M, gn,p%) be the sequence of four manifolds defined above, with
geometric limit (M ,9,p%), and PMn the sequence of spin® structures on M, with geometric
limit Py;,. Consider o sequence (An,¥n) of solutions of SW equations associated to Py, .
Then there exist a finite energy solution (A,v) of SW equations for ]E’M which s the

geometric limit of a subsequence of (An, V).

Proof: the proof requires essentially an adaptation of Kronheimer-Mrowka compactness
Lemma for manifolds with boundary, Lemma 4 of [KM1]. The content of this Lemma
is that a sequence (An,¥m) of solutions of SW equations on a spin® structure Py on a
compact manifold with boundary Z with uniform C° bound on %,,, admits a subsequence
(m') C (m) and a family of gauge transformations g, € G(Pyz) such that g - (Am, ¥ny)
converges smoothly to (A4,%). Now consider the manifolds (M,,g,): these are closed
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manifold with a bound on scalar curvature which does not depend on n and therefore
Proposition 1.3.2 apphes to prove that the C° norm of 1, has a uniform bound. Now for
any t > 0, n > n(t ) consider the manifolds with boundary A* C M#*, B¥ C M, which
contain the ball of radius ¢ around the base point p*; by definition of geometrlc limit we
will have a sequence of isometries A* = B% and of spin® bundle isomorphisms of spin®
structure covering it; we can identify therefore the sequence (An,¥n)| B, up to gauge
transformation, with a sequence of solutions on the spin® structure Py: = PMI A+ with
bounded C° spinor norm. We apply to this sequence the Kronheimer-Mrowka Lemma to
obtain smooth converge, up to gauge transformation, of a subsequence (n') C (n). Direct
use of the definition of geometric limit of (An,,) and a standard diagonal argument
brings therefore to the identification of the geometric limit, up to gauge transformation,
of a subsequence (n") C (n) which coincides, on each compact subset of M, with the limit
described above. This geometric limit has finite energy by virtue of the fact that each

solution of the sequence has energy bounded by a constant depending only on M and Py
(see [KM1] or [MST]).

Note that, until now, we put no conditions on the geometry of N and in fact the previous
result holds without any further hypothesis on N. There is another aspect, instead,
that depends strictly on the three manifold considered, name-ly the convergence without
variation of the Chern integral. Normally in Yang-Mills case the condition analysed is
that of convergence without variation of energy, where the energy of a solution is given by
the Yang-Mills functional. This functional, on the space of solutions, is a fixed multiple
of the Pontrjagin number and is therefore determined by the geometry of the problem. In
Seiberg-Witten case a complete analogy is not so immediately available (or, at least, we
have not been able to develop it in a satisfactory way), due to the slightly more involved
form of the functional which defines, via variational methods, SW solutions as absolute
minima. We have anyhow at our disposal the integral of the square norm of the first
Chern class of £y, which, via Chern-Weil theory, takes the form

ey, = (L) N [My] = s

Fuq, NFa,, (313)
M
and therefore coincides, on a closed four manifold, with the Chern integral of a solution
as defined in equation 3.4. It is clear that cp, is in fact independent from n and is
determined only by the spin® structure Pys. We can naturally study the question whether

the Chern integral of the geometric limit of a sequence of SW solutions has the same value
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of the Chern integral of the elements of the sequence.

The condition of convergence without variation of the Chern integral depends strictly on
N or, better to say, on the interplay between the equations and the geometry of IV. At this
point, to make the discussion nontrivial, we will keep a point of view which is intermediate
between full generality, i.e. N whatsoever, and our specific case (otherwise, as we will
see soon, the whole argument would collapse). In particular we will make no assumption
on the connectedness of the critical set of the CSD functional, that we continue denoting
by x(N). Instead we will assume that the CSD functional is gauge invariant, as happens
in our case; in the general case this could require a passage to the universal cover of the
orbit space.

So let’s consider the geometric limit (A,v) on M of a sequence (An,¥,). Because of
smooth convergence over compact subsets of M problems of Chern integral variation arise,
roughly speaking, “within the cylinder”. Here the arguments, for any kind of gradient
flow equations (Yang-Mills, Seiberg-Witten), are analogous, so we follow the discussion of
[MMR] (in a slightly different context, see also [MST]). We claim that for any 7 smaller
than an 7, eventually passing to a subsequence, there exist a partition of the internal
cylinder of My, [-n,n] x N, composed of the following pieces: first, a collection of disjoint
cylinders T, ..., 7", which have energy smaller than a fixed value 1, whose length goes to
infinity as n goes to infinity; second, the complement C,, = [-n,n] x N \ U;T¢ which has
the property that each cylinder having energy less than 7 has length uniformly bounded.
The length of C,,, moreover, is uniformly bounded.

Let’s briefly- discuss why this hold true. First we notice that, for any 1 suitably small,
there exist a neighborhood v; of any component of the critical set Xi(N), such that if

(A1,%1) and (As,1)9) are both contained in »; then

|C(A1, 1) — C(Ag,92)| <1 (3.14)

(here and in what follows, when we talk about distances, neighborhoods and so on we
always refer to the based orbit space). In the case when the two points belong to neigh-
borhoods of different components, two cases can appear, depending whether the two
components have the same value of the CSD functional or not; in the first case, the
relation 3.14 again holds true, while in the second case we have

Clds, 1) = Clda o)l > SAC >> 7 (315)
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where AC denotes the minimal nonzero gap in the CSD functional between components
of the critical set.

Now we can identify, within [~n,n], a set of jumping intervals, i.e. minimal intervals
whose endpoints have the property that (A,,,) lies in the boundary of neighborhoods
of components of the critical set having different value of CSD functional. We observe
that the number N, of such jumping intervals is finite, as it must satisfy the relation
N, - %—AC’ < E where FE is a bound to the total energy of the cylinder. Moreover the
length of these jumping intervals must be finite, as for each internal point of the intervals
Lemma 2.3.4 applies and finite energy condition imposes a bound on the length. The
complement to the set of jumping intervals is composed by a finite number of intervals.
By eventually cutting out at the two extremes an interval, whose length is again finite
by Lemma 2.3.4, we can suppose that these intervals connect neighborhoods of compo-
nents of x(NV) which coincide or have the same value of CSD functional; the energy of
these intervals is given by the variation of the CSD functional between the endpoints and
therefore its value is bounded by 7, by virtue of equation 3.14. These intervals, as n
goes to infinity, can assume or not infinite length. We label the cylinders identified by
intervals of the latter type as T°. The statement on the finite length of C;, is at this point
quite evident. Passing eventually to subsequences we might assume that the number of
cylinders T is constant and that the label respect an ascending order.

Now if we consider the sequence (Aj,,%,) restricted to the cylinder T}, the output of
Lemma 3.2.3 is that we can extract a subsequence converging to a geometric limit (A, ;)
on the infinite cylinder N x R which is a solution of SW equations having energy bounded
by n. The results of Section 2.3 apply to deduce that its limit values as ¢ +— oo are
static solutions. The small energy condition, once 7 is chosen small enough, dictates that
the only possibility is that these static solutions have the same value of Chern-Simons
functional, and therefore the solution, over the cylinder, must be a static one.

Coming back to the cylinder [-n,n] X N we see therefore that the possibility of varia-
tions of the energy is due to components of C,; moreover, because of convergence over
compacts, the eventual external components are excluded form this phenomenon, and
the only available remaining possibilities are related to components which are comprised
between two cylinders of type T;. If we apply the same arguments as above, moreover,
we see that this component must contain at least a jumping cylinder. The geometric

limit of the sequence (Ay,,,) restricted to this component together with its neighboring
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cylinders T} s is a finite energy solution on N x R with energy bounded by below by AC,
as on a compact interval of R each element of the sequence has energy bounded by below
by equation 3.15 and connects components of x(N) having different CSD functional, i.e.
represents a nonstatic flowline between static solution. The variation of energy due to the
presence of such a cylinder implies a variation of Chern integral, according to the formula
which relates energy and Chern integral,

CW-0@= [ EanEat [ <y puvt) >~ [ <) dule) >, (316)

formula which can be obtained from Stokes’ Lemma.

Now let’s come again to the specific case of a four manifold M with 6% (M) > 1 decomposed
along a three manifold of positive scalar curvature, having a spin® structure Py with
nonzero SW invariant. In this case we can obtain strong results on the variation of Chern

integral: we have the following “ungluing” property, which refines Lemma, 3.2.3:

Proposition 3.2.4 Let M,M*,N as above, and suppose that SW(PM) is different from
zero: then there ezist a couple cyr= with cpr+ + cpr- = ey such that M., (PMi) are non

empty.

Proof: the proof of this proposition is an obvious consequence of the previous discussion.
As b2 (M) > 1 the Seiberg-Witten invariant is independent of the metric, and the fact
that SW(Py) is non zero implies that, for any n, M(Py, ) is non empty. We can therefore
consider a sequence of solutions (An,v,) on M, like in Lemma 3.2.3 and the geometric
limit of this sequence will be a finite energy solution of Seiberg-Witten equations on
M = M+]] M-, i.e. defines two points in M (Py..). In the case where the critical set of
CSD functional is connected, as happens when N has positive scalar curvature, the critical
set has the same value of CSD functional and, by fiat, there can not be flow between static
solutions of different value of C'SD functional (in practice, we can identify a single cylinder
T!) and thus no variation for the Chern integral of the geometric limit. Consequently
the Chern integral c;; will get shared in some way (that will generally depend on the
geometry and topology of M¥) between the solutions on M%*; from this the part of the

statement on the Chern integral of the moduli spaces follows.

In the case when b,(/N) > 0 one can investigate the relation between the limit values of
the two solutions, on M* and M~, identified in Proposition 3.2.4. We can prove that
these limits are compatible, i.e. the following holds: '
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Proposition 3.2.5 The solutions constructed in Proposition 8.2.4 have the same limit
point under the limit map 0= : Me, . (pMi) — x(N).

Proof: this is as well a consequence of the absence of nonstatic flowlines between static
solutions: in fact for n high enough we can assume that the energy on the cylinder T, is
arbitrarily small and, by virtue of Lemma 2.3.5, all values (A(t), % (t)) on the cylinder lie
inside a neighborhood, which can be made arbitrarily small with n, of a static solution
(this can be seen as a consequence of equation 2.37). This is compatible only with the
condition that the limit points under the map 0, do coincide.

We finish with the obvious remark that all the discussion of this Section continues to
hold true when we considered solutions of n-Seiberg-Witten equations with 7 compactly
supported.

3.3 Regularity of the Moduli Spaces.

We now come to the problem of regularity of the moduli spaces for cylindrical end man-
ifolds. The first thing we are interested in is the study of smoothness and compactness
property of the moduli spaces of finite energy‘ solutions of SW equations for a spin® struc-
ture 155( on X = XUyN x [0, 00). Regarding the compactness, the proof will be, similarly
to what we have done in Section 3.2, an application of the compactness lemma of [KM1],
for the case of manifolds with boundary, while to obtain a smoothness result we must
appeal to genericity theorems which follow from perturbation of the equations, with the
condition of having b2 (X) > 0. We will see that the knowledge of the decay properties
of the solutions allows the construction of an infinitesimal theory, for the moduli space,
which is essentially the same we found for the case of closed manifolds. We can state the

main

Proposition 3.3.1 There ezist a second category subset of the perturbation parameter
space such that the moduli space of solution M., (}55{, ny) of ny-Seiberg- Witten equations
on a cylindrical end manifold X = XUy N x[0,00) with b2(X) > 0 is a compact smooth

oriented manifold of the expected dimension.

Proof: the proof of compactness follows almost word by word part of the discussion of
geometric limits of Section 3.2. The basic ingredient of the proof is as well the connect-

edness of the critical set of the CSD functional, so we will provide a proof under this
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hypothesis, more general than having N with positive scalar curvature. We have first to
verify that the hypothesis of compactness lemma of [KM1] are satisfied: in fact, we simply
need a C° bound on %, ; for any sequence of solutions, and this follows immediately from
the maximum principle and the decay conditions on the spinors along the cylinder; the
compactness lemma of [KM1] implies then smooth convergence of a subsequence of the
sequence of solutions over a compact subset of X to a solution (A4, 1) of Seiberg-Witten
equations for P)‘d applying a diagonal argument we obtain convergence over any com-
pact subset of X. Similarly to the closed case, when we consider a sequence of solutions
with fixed Chern integral the energy of the solutions on the cylinder is uniformly (w.r.t.
the index ¢) bounded. The limit solution (A4,1;,), therefore, is as well finite energy, it
defines a point in M(PX,m) and has all the decay properties discussed in the previous
Sections. We have to check, now, that our hypothesis guarantee strong convergence to the
limit point, i.e. convergence in the topology of the moduli space, and in particular that
there are no variation in the Chern integral of the limit (fact not obvious in the general
case). These two aspects are in fact related and depend both on the uniform decay for
the elements of the sequence that we will now establish. This uniform decay follows in
fact directly from an application of Lemma 2.3.4 and the observation that the energy is
uniformly bounded (for fixed Chern integral), but analysing this in detail we can better
understand the role of connectedness of the critical set.

Assume that there’s not uniformity, in i, for the decay along the ¢-coordinate: this im-
plies that, for some finite K, there is a sequence 7; — oo such that the energy of the it
solution, on the cylinder N x [T}, 00), is greater that K:

C(x(N),0) = C(As;(T3), v 4(T3)) > K (3.17)

(we will implicitly pass to subsequences and relabel whenever necessary); this means that
the energy of the solutions of the sequence walks to the end. Application of Lemma
2.3.4 guarantees that, for a positive n < % there exist a finite 7, ; such that (Ay;(T; +
T,i), ai(T; + Tp;)) is sufficiently near x(IV) to have

C(X(N),0) = C(AL(T: + T), Y (T + Ta)) <1 (3.18)

Moreover, as the energy of the sequence has an uniform bound, there is a upper bound
T (depending on 7, but this has no relevance for us) to these T,,,,,-'.' This implies that the
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sequence (Ay;,v4;) satisfies the condition

C(Asi(Ti + 1), ¢ai(Ti + T)) — C(Ags(T3), ai(T3)) > %{*

(3.19)
If we now translate the solution (As;, ¥4;)|02m)xn by —T; we obtain a sequence of finite
energy solutions of SW equations on [~T;,T;] x N, with energy over [0,T] x N uniformly
bounded by below; the geometric limit is a finite energy solution on NV x R, nonstatic as
C(A4(T), ¥4(T))—C(A4(0),44(0)) is bounded from below by £; this condition is excluded
in the case of N having connected critical set, and in particular having positive scalar
curvature, as all flows between static solutions must be static.

Convergence over compacts and uniform t-decay imply now the strong convergence and
absence of variation in the Chern integral. In fact, the same argument as above, with
minor modification, can be applied by controlling, instead that the energy of the ith
solution over N x [T;,00), the integral f;:’ Fp,; N Fa,;; equation 3.16 suggests how to
relate the two approaches. In particular, when N has positive or zero scalar curvature,
 and thus cx is fixed, convergence over compacts and connectedness of the critical set
imply directly compactness of the moduli space.

As remarkable consequence of the previous discussion we note therefore the uniformity,
in the moduli space, for the exponential decay to the limit set, i.e. the initial value of
Lemma 2.3.6 can be chosen independent of the particular solution.

Another point that worths noticing is that this compactness result, differently from the
one proved in the closed case, is not intrinsic of Seiberg-Witten theory. As well known, in
Yang-Mills case, there are two non compactness phenomena that arise dealing with moduli
spaces on manifolds with cylindrical end: the first one, shared with the closed manifold
case, is due to the bubbling phenomenon; in SW theory, the absence of such phenomenon
(due to the “C° bound” on spinors, strictly speaking), forbids, as seen above, such a kind
of problem. The second one, instead, has to do with non static flows on cylinders, with
appear, in the compactification process, as solutions that “walk off the end”. There’s no
a priori reason why such phenomenon should not arise in SW theory, and in general, as
seen in Section 3.2, it does. The absence of this, that we have proven before, is related to
the geometry of the three manifold under analysis.

Concerning smoothness, we apply Fredholm theory for manifolds with cylindrical end
([APS], [T1]) to obtain a smoothness result, for generic parameter, away from reducibles.

In order to do so we will need to perturb SW equations using a parameter space that fits
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in Sard-Smale scheme, i.e. a Banach manifold: compactly supported self dual forms, in
particular, do not satisfy this requirement as they do not form a Banach space. There
are several possible approaches, at this point: the first one is to consider the fact that
compact supported perturbations (say of class C") are dense in any Sobolev space of -
decaying self dual forms. Once extended the class of perturbation to this new space, at
the price of recover some of the previous results (explicitly those concerning decay of any
solution of perturbed SW equations) in this new set up, results that in fact are often given
for granted, we use the fact that the Sard-Smale theorem will provide a second category
subset of parameter space where the moduli space is smooth.

In fact we prefer to use another approach, which has the advantage of limiting ourselves
to the usual set up of perturbations supported on a compact subset of X. The idea is to
use the fact, well known in Yang-Mills theory, that it is enough, to obtain smoothness, to
perturb equations (or metrics, in Yang-Mills case), in any open subset of the manifold.
The reason of this is that the operator which linearizes unperturbed equations is surjective
elliptic, and its cokernel (which is what we want to “kill” by perturbing the equations)
satisfies unique continuation properties: in particular, if it vanishes on an open set, it
vanishes everywhere. We already gave some detail of this, in the closed case, in Section
1.3. We will consider therefore as perturbation class the Banach space of C" self dual
forms supported on a fixed compact subset of X (with nonempty interior), say K =
X Uy N x[0,1] (but we will see that also any ball in X would do the job); with this class
of perturbations, all decay results are automatically satisfied.

Recall now that the domain of Seiberg-Witten equations is given by A(Lz) x ['(S*(Pyg)),
which is defined by forms and spinors which are locally in some Sobolev space; with this
space it is not possible to construct a Fredholm theory, so we are interested in redefining
the domain of SW equations. The guidelines of this construction are the results of [LM],
concerning Fredholm theory for manifolds with cylindrical ends, and the idea of extended
solutions contained in [APS]. In light of the results of Chapter 2 we introduce the space
As(L ) xT5(S*(Pyg)) (see Chapter 7 of [MMR] for the analogous definition in Yang-Mills
case) which is defined as the space of couples which d-decay, in some Sobolev norm, to
(the pull-back of) a gauge fixed solution on N, which is conveniently represented by an
imaginary harmonic one form on NV; in particular, once a cut-off function 3 equal to zero
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(say) on X and equal to one on X \ K is defined, we have a (noncanonical) isomorphism

Harm!(N,iR) x QX ,iR) — As(Lz)
(3.20)
(Ao, aa) — B*Ag + o

in the sequel, for sake of simplicity, we will omit to mention the pull-back and Ay will be
interpreted as a form on X , constant on the end.
To make contact with the results of [MMR], the space Harm!'(N,iR) plays the role of
the center manifold, the fact that the flow is constant on it corresponds to the fact that
all the points of the critical set are smooth (see the introduction to Part 1 of [MMR]),
and this witnesses the property, shared with the analogous case in Yang-Mills theory, that
the solutions exponentially decay to a static one (and not only to the center manifold, as
happens in the general case). An example of center manifold which gives rise to nonstatic
flow is discussed in [MMS]; also in that case, anyway, outside the nonsmooth point of the
critical set, the situation is identical to ours.
We consider now the perturbed Seiberg-Witten equations as a map

SW : As(Lg) x T(ST(Pg)) x Q2 . (K,iR) — Q2 , (X,iR) x [s(S(Pyg)) -

3.21
SW (Ag, Y, ma) = (Fif, — qa(ha) — 14, Pastpa).

We will consider also the projection from the domain of SW to the parameter space, that
we will denote by 7.
The map SW is clearly smooth, by construction, and Qg(PX)-equivariant, where gé-(PX) is
the group of the automorphisms of IE’X which project to the identity automorphism on the
frame bundle and act on A;(Lz) x [s(ST(Pg)). In order to identify this group, which is
a subgroup of the gauge group of 155{, we need to take care, roughly speaking, of both the
components of As(L ) which appear in equation 3.20. In the case of a rational homology
sphere, or more generally whenever the action of the group of components of Q(pX) (which
is given by H'(X,Z)) is trivial on Harm*(N,iR), i.e. H'(X,Z) — H'(N,Z) is the zero
map, the situation is a bit simpler than the general case; as we have chosen to already
gauge fix the extended solutions on N, representing them as harmonic forms, the action of
G5(P5) must be trivial at infinity (recall the proof of Proposition 3.1.2) up to the constant
action of the stabilizer of the limit point, and the work of Taubes [T1] identifies Gs(Py)

as
Gs(Py) = {9 € G(Pg)|g 7 dzg € L} 5}, (3.22)
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as the asymptotic values are reducible. Its Lie algebra is identified, via Lemma 5.12 of
[T1], with Q2(X,iR) @ iR. Each element of G5(P%) has a limit map r with values in the
stabilizer of a flat solution on NV, i.e. U(1).

In the general case, the group defined as above describes only some of the components of
the whole gauge group (those which are labeled by H'(X, N,Z)), as we must also deal
with those elements of G(Pg) which act, at infinity, via a translation on Harm!(N, iR)
along its lattice ImH* (X, Z) C H'(N,iZ), which labels the components of G(Py) which
extend to X, and whose action on QL(X,iR), w.r.t. to the identification of equation 3.20,
is the same as in the previous case. These elements of Q(]BX) define as well an action on
As5(L5) x Ts(S*(Pg)) and together with the elements identified by the right hand side
of equation 3.22 define the whole subgroup of G(Py) acting on As(Ly) X T5(S*(Py)).
We now have, as expected, my(Gs (PX)) = HY(X,Z). Applying componentwise the results
of [T1] we still have a limit map, that we denote again by r, for any element of G;(Pg),
which identifies (apart from the lattice translation) a constant U(1) transformation on
the end.

The action of the gauge group is free on As(L¢) x T's(S*(Py)) outside the reducible; we
will make use also of the based gauge group defined as the subgroup of 95(155{) whose
action at infinity is (eventually) just given by translations, i.e. whose limit element in the

stabilizer of a flat solution is the identity:
G3(Pg) :=r7(1) € Gs(Py); (3.23)

its Lie algebra LieGZ(Py) is given by QI(X,4R). This based gauge group acts freely on
As(Lz) x T5(ST(Pg)).

Note that the approach we followed i.e. that of fixing the gauge at infinity and take the full
gauge group Gs (155(), is not the only possible one when one deals with extended solutions;
slight differences are possible, for example the approach of [KM2], Section 5.3, differs
from our by the choice of the gauge group (only the components labeled by H(X, N, Z)
are considered) and gauge equivalent (on N) static solutions are identified a posteriori,
in order to define the correct moduli space.

The results of Chapter 2 tell us that, in correspondence of compactly supported pertur-
bations, the parameterized moduli space fits in the above scheme as

PM(Px) = SW(0)/Gs(Py). ) (3.24)
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The relation is constructed by taking, for the G(Pg)-class of a solution, a representative
which §-decays to a flat connection on the end; we can always suppose, up to the action
of the connected component of g('PX), that this connection decays to an element of
Harm!(N,iR); the action of the group of components identifies then an element of %(N).
We associate then to this representative, which lies in As(L3) x T3(S*(Pyg)), its G (Py)-
equivalence class. This shows that the choice of A;(L¢), built as indicated, in the domain
of SW, is the correct one to obtain the relation 3.24.

Now we want to prove that, away from reducible solutions, the moduli space is a smooth
manifold. In order to prove this we need to show that SW has zero as regular value, i.e.
its linearization, which is the map

DSWipypam : TAs(Lz) x Ts(SH(Py)) x 92 (K, iR) — 03  (X,iR) x T'5(S™(Pg)),
(3.25)
is surjective whenever the solution is not reducible. By definition, there exist an equiv-
ariant limit map that we denote as well Ou:
Bso = As(Lz) x T5(ST(Py)) x Q2 (K,iR) — Harm'(N,iR)
(3.26)
(Ag,¥1,m4) = Ao,

(here, the action of G5(Pg) on the domain is the one described above, while on the
codomain Harm!(N,iR) it is the action of the group of components 70(G5(Py)), whose
quotient, by definition, is x(IV)).

We claim that, in correspondence of each fiber d3!(Ao) of the limit map, zero is a reg-
ular value of SW: this means, obviously, that zero is a regular value and that 0 is a
submersion, transverse to any finite set of submanifolds of H arm!(N,iR). To prove that,
we must show that the component of the linearization DSW on a fiber, that we will
denote by D;SW, is a surjective operator: the linearized equations around an irreducible
solution have the form

DsSWipsmame : (X, iR) x T(S*(Py)) x Q2 (K, iR) — QF (X, 4R) x T'5(S~ (Pg))

D SWiaqpem) (04, b4, €2) = (504 — 2qa(hs, bs) — €4, Pa b + Tas - Pa);
(3.27)

to prove surjectivity of D;SW we proceed like in the closed case. First, any element of
the type (bs,0) lies in ImD;SW: by contradiction, if (bs,0) ¢ ImD;SW, then varying
a4 we see that by € cokerd};, so that bs must satisfy unique continuation theorem; by
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varying €4, we deduce that it must vanish in any open set contained in K and so it has to
vanish everywhere. For what concerns the spinor part, the proof that any (0, ¢4) belongs
to ImD;SW goes as in the closed case, by application of unique continuation theorem,
using irreducibility of (A4, 4).

It follows from the above property of SW that SW~1(0), restricted to irreducibles, is
a smooth infinite dimensional manifold; its quotient by the (say) based gauge group
PM°*(Px) is a parameterized moduli space which has a map 7 to the space of parameters
and a submersion Oy to the limit set X(V), in such a way that its tangent space fits in
the exact sequence .
kerOoou = TPM®*(Px) =+ 8L TX(N); (3.28)

the first term of the sequence, as seen above, already surjects to the codomain of DSW,
and the index of 7 is given by the sum of the index of D;SW plus the dimension of
Tx(N) = b,(N). To prove that the the generic fiber of 7 is smooth we want to apply the
Sard-Smale theorem, which can be applied when 7 is Fredholm. As in the closed case,
this property follows by the analysis of the deformation complex associated to a fixed
perturbation, namely

0 — (X, iR) — Q}(X,iR) x Ts(ST(Pyg)) = Q% (X,iR) x T5(S™(Pg)) — 0; (3.29)

it is a standard fact that for all but a discrete set of § without accumulation points this
is a Fredholm complex (the first map is just the Lie algebra action, while the second
map is Dy SW for a fixed value of the perturbation). Moreover the map 7 is proper, as
we have already proven the compactness of the fibers, unaffected by the perturbation we
have considered. The application of Sard-Smale theorem guarantees that there is a second
category subset of Q2 , (K,iR) such that the fibers are smooth.
Note that the vertical complex of equation 3.29 is a subcomplex of the one corresponding
to the full linearization DSW, with quotient the trivial complex having single nonzero
term Harm!(N,R).
Now let’s deal with the issue of reducible solutions. Reducible solutions of 7,-SW equa-
tions correspond to solutions of

Fi =, (3.30)

where 7, is a purely imaginary self dual form, chosen within our perturbations space. Our
aim is to find an open and dense subset of the perturbation space such that, in corre-

spondence of the intersection of this subset with the second category subset for which the
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moduli space M**(Pg,74) is smooth, the full moduli space M°(Pg,ns) will be smooth
and composed of irreducible points. The intersection of the aforementioned subsets of the
parameter space will still be, of course, second category.

It is immediate to see, by an Hodge decomposition argument, that if we take a pertur-
bation which is in the image of d*, this can be reabsorbed by adding to the (eventual)
solution (A4, 0) a term of the type (a4,0) € QL(X,iR) x T5(ST(Pyg)); “efficient” pertur-
bation must have, therefore, nontrivial projection on cokerd®. So we look for pertur-
bations, supported in K, which have this property. Now take a term 74 € Q2 (K, iR)
and decompose it, according to Hodge decomposition of QF +(X iR), as ny = dT oy + b,
with oy € Q}(X,iR) and B4 € cokerd™ C Q2 +(X,iR); the subspace of Q2 (K, iR)
which has nontrivial projection on cokerd* corresponds therefore to the subspace of those
B4 € cokerd™ C Q} (X, iR) which can be represented (up to a term in Imd") by terms
supported in K. Now it follows, by unique continuation (much as above) that any element
in cokerd™ is representable in such a way (otherwise we could construct, by contradiction,
a nonzero term in cokerd™ which has to vanish on any open subset of K). We will see
in Section 3.4 that the dimension of the cokernel of d™, in the complex 3.29 with vanish-
ing spinor part (i.e. the complex 3.35) is equal to b2 (X) + dim(H*(N,R)/ImH"' (X,R)).
But in the case where H'(N,R) is not zero, not all the perturbations corresponding to
the cokernel of dT are necessarily efficient, as they could be reabsorbed also by a shift
the limit value of a given abelian instanton, i.e. using an horizontal transformation in

As(L), whose tangent space decomposes according to
QL(X,iR) = TAs(Lg) —» Harm!(N,R). (3.31)
The correct dimension to compute is therefore the dimension of the second cohomology
group of the complex
0 — QUX,iR) — T As(Lyg) — Q2 (X,iR) = 0; (3.32)

It is not difficult to verify (see [MMR], Section 8.7) that the second cohomology group of
the complex 3.32 is isomorphic to Im[H?(X, N,R) — H? (X, R)] (our complex coincides,
up to the term of degree zero and abelianization, with the complex Ej; of [MMR]). From
this we deduce, applying the standard arguments regarding reducibles (see Section 1.4)
that, up to a closed nowhere dense subset of codimension 5% (X) in Q7 | (K, iR), equation

3.30 has no solutions.

The based irreducible moduli space M%*(Pg,n4) carries a free U(1) limit action; if
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b2 (X) > 0 we can suppose, by the previous discussion, that there are no reducible so-
lutions for a second category subsets of perturbations, given by the intersection of the
second category subset of regular values and the open and dense subset of perturbations
which give no reducible solutions. In correspondence of this second category subset (which
in particular is dense by Baire theorem) the full moduli space M(PX, n4) is composed by
smooth irreducible points.

As a consequence of this regularity result we have, in particular, that if 47 (X) > 0 and
the dimension of M., (Pg,n4) is negative, then, for generic 7, My (Pg,m4) = 0.
Finally, the proof of orientability follows verbatim the proof for the closed case, see Section
1.3, applied to the complex of equation 3.29 plus an R factor, at the level of Lie algebra,
to keep track of the U(1) limit point action; the choice of an orientation corresponds to
an orientation of the character variety and the choice of a sign in the maximal external

product in
R & HJ(X) ® H}(X) ® H? (X) (3.33)

where the H} (X' ) are the cohomology groups of the Hodge-DeRahm part of the complex
of equation 3.29, that we will compute in the next Section.

3.4 Dimension of the Moduli Spaces.

In order to compute the dimension of the moduli space M., (P)b n4), under the hypothesis
of smoothness, in particular 2 (X) > 0, we need to to compute the index of the complex in
equation 3.29, which gives the dimension of a fiber of the limit map 0, add the dimension
of X(IV), and then subtract 1 because of the free U(1) action.

To get the index of the complex, we can homotopize it in such a way to decouple the
connection and the spinor part, as in the closed case, and then we compute the sum of twice
the (complex) index of the four dimensional Dirac operator coupled with a connection
A4 on the spin® determinant line bundle £ on the four manifold X, decaying to a flat
connection Ay on N, plus the Euler characteristic of the §-half DeRahm complex.

The part concerning the Dirac operator gives, with the'use of Atiyah-Patodi-Singer index
theorem ([APS]) and excision formula along the lines of [MMRY], Section 8.4, the following
result:

. 1 1 0
md«:ﬁA,; - _327'['2 /}:{ FA4 A FA4 - gO’(X) — 77A02'( ), (334)



Cylindrical End Moduli Spaces 71

as in our case there are no harmonic spinor for the boundary operator @4, according to
the fact (Proposition 2.2.2) that on a positively curved three manifold flat connections do

not admit harmonic spinors.

Concerning the second term, we just pick the analogous result for the Yang-Mills case
(see e.g. [R]). We consider the following complex of exponentially decaying functions and

forms:
0 — QY(X,iR) — Q}(X,iR) — Q2 (X,iR) — 0; (3.35)

in [R] it is proven that the cohomology groups of this complex are given by
HY(X) =0,
H}X) = ker[H'(X,R) — H'(N,R)], (3.36)
H . (X)=Im[H*(X,N,R) - H2(X,R)] ® H'(N,R)/Im(H" (X, R)).
Looking at the moduli space and its limit map,
oo+ Moy (Pgoma) — X(N), (3.37)
we get that the fiber has dimension

dimMey (Py, e, Ao) = Sex — 30(X) = 14 (0) = 1+ B5(X) = B, (%) = |
» (3.38
= Lex — 10(X) — nap(0) — 1+ B1(X) — B(X) — (V). |

To get the dimension of the moduli space we have still to add the dimension of the

character variety, and we obtain the

Proposition 3.4.1 The dimension of the moduli space of solution of Chern integral cx
for a spin® structure 15)3 on a manifold X = X Uy N x [0,00) is given by

dimMox (]BXJ 774) = %cX - %O‘(X) — T4 (O) -1+ bl (-X) - bi—(X) (339)

It is possible to rewrite this expression in a form which is more similar to the dimension

formula for the closed case: we have

dimMey(Pyme) = Sex ~ 2 ~3000) - 2 o), )
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although we will use the previous form, more suitable for calculations.

The dimension formula is only apparently depending on Ay, via the 7 invariant: in effect
7 is constant in the space of flat connections on a bundle L on N. To give a quick proof
of this, let I'g,I'; be two flat connections on L and let I'(-) be a path connecting them,
suitably chosen in order to be constant in a neighborhood of the endpoints; define, on
the finite cylinder [0,1] x N (where the coordinate on the interval is denoted by s), the
continuous family of Dirac operators, parameterized by ¢, given by

0
= . 3.41
‘Zzt BS + ﬁf‘(st) ( )
Due to the absence of harmonic spinors on N, for flat connections, because of the curvature
condition, the index of I}, for t = 0,1 is given, using [APS], by

1

Zﬂd@(lpt) = _327'['2

/)7 —
/ Frsty A Frgey) — “P(t)—zm (3.42)
[0,1]xN
and as indc(I};) = indc(Dy) we have np, = np,.
In many cases, as there’s an orientation reversing diffeomorphism of N, the 7 invariant

vanishes.

3.5 Proof of Theorem 2.

In this Section, using the results on cylindrical end moduli spaces obtained in the previous
Sections, we will give a proof of Theorem 2. We will consider how the moduli spaces of
solutions of SW equations for a spin® structure Py; on a closed four manifold M with

b3 > 1, split along a positively curved N in two factors, say
M=M*tuy M-, (3.43)

relates to the moduli spaces for the spin® structures Py, on M* := M= Ugy+ N x [0, 00)
induced by Py, (clearly the two manifolds with boundary M* correspond to the manifold
that in the previous Sections was denoted by X). ‘In particular we will analyse the
consequences of the dimension formulae obtained in Section 3.4.

Let Py be a spin® structure on M which restricts to Py+ and Py~ on the two factors M £
extend the spin® structures P+ to PMi and suppose that the Seiberg-Witten invariants
of M do not vanish for Pys: under this hypothesis we have the following
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Proposition 3.5.1 Let M, M*, N be defined as in 8.48 and suppose that there ezist a
spin® structure Py such that SW (Py) # 0; then one of the two factors must have b2 = 0.

Proof: denote by ciyr = ¢2(Ly) N [M] and let ¢pr= be a couple of real numbers which
satisfy the relation cp; = cpy+ + cp—; consider the (eventually empty) moduli spaces
of solutions of SW equations for the spin® structures PMi having Chern integral cp=.
Suppose by contradiction that both sides have b2 (M*) > 0: then, by Proposition 3.3.1,
the moduli spaces M., (Py+) are generically composed of irreducible solutions, smooth
and of the expected dimension. We will analyse the constraints imposed by the dimension
formulae.

For more clearness, we start by considering the easier case, that of a rational homology
sphere, as the mechanism of the proof is more transparent in this case. The computation
of the dimension for these moduli spaces is particularly simple, in that case: we have
bL(M*) = b'(M*) and b (M*) = b2 (M*); moreover the splitting of the cohomology
groups of M, over the reals, is just direct sum; therefore we have:

dimM,,,. (Pys) = jerrs — §0(MT) = 14,(0) = 1+ 0M(M*) — b3 (M),
i (3.44)
dimMe,,_(Py-) = jem- — 30 (M7) = flag(0) = 1+ b1 (M ™) — b3 (M™)
and then, using Mayer-Vietoris, Novikov additivity of signature and the relation 7 = —n

dimM., ., (Py) + dimM._(Py-) = $(ey+ + cu-) — 30(M) + 0 (M) — b3 (M) —2 =

= +(em —2x(M) = 30(M)) -1 = dimM,,, (Py) — 1.
(3.45)
This formula holds for any couple of Chern integrals cps+ such that cyr = cp++cp-. If we
consider simple type manifold, as supposed, the only interesting terms for SW invariant

come from zero dimensional moduli spaces, and therefore we have the formula
dimM.,, (Py) = 0 = dimM, +(PM+) + dimM.,,_( Py )+ 1. (3.46)

This requires one of the moduli space, say that corresponding to M ™, to have negative
dimension. It follows from Proposition 3.3.1 that such a moduli space, in our contradictory
hypothesis that b3 (M) > 0, is generically empty.

The “mismatch” of dimension, in some sense, comes from the fact that the base point

action, on the character variety of NV, is trivial, as points in X(XV) are reducible solutions
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of the three dimensional Seiberg-Witten equations (the “+1” in formula 3.46 is often
referred to as “gluing factor”).

In order to prove the proposition, we must now show that the absence of solutions on one
side is incompatible with the hypothesis that SW(Py,) # 0. But this is exactly the content
of Proposition 3.2.4 of Section 3.2: this Proposition shows that if SW (Py,) is non zero,
then both sides must have a solutions. As on M~ there are no irreducible solutions, as
the irreducible part of the moduli space is empty, nor reducible ones because of genericity
assumptions, we obtain a contradiction. It follows that M~ must have b2 (M~) = 0, as
claimed in the proposition; in that case the solution identified by Proposition 3.2.4 on
Py;- is a reducible one.

This result is of course equivalent to Theorem 2 in the case of by (V) = 0.

Now we consider the case of a manifold split along a three manifold with b;(/N) > 0. In
this case we have the relations
V(M) =" (M*)+ b (M) — by(N) + rkIm(H (N) — H?*(M)),
3.47
V(M) =03(MT)+ b2 (M) + rkIm(H*(M) — H*(N)). 340
Using these formulae and Proposition 3.4.1 we obtain the following relation for the di-
mension of the moduli spaces:

dimM., ., (Py) + dimM, _(Py-) = dimMe, (Pyr) + by (N) — 1. (3.48)

In the hypothesis of simple type M, if we suppose that the moduli space of P, is non
empty, we get the relation

dimM.,,, (Py+) + dimM, _(Py-) = bi(N) — 1 (3.49)

(again, the factor 1 in the formula is the gluing factor and has the same origin as discussed
above). As we know that the limit maps 0% are transversal, and x(/N) has dimension
b1 (IV), we deduce that, for generic compactly supported perturbations 7 on both M=,
chosen as in Section 3.3, the images of the moduli spaces w.r.t. the maps 0% (after the
natural projection over x(XN), that by abuse of notation we call as well limit values) do
not intersect. We can see this in full detail: the submersion property of the limit maps 8%,
on both parameterized moduli spaces, and the consequent parameterized transversality,
guarantees that we can assume, for generic regular values of 7%, that the product limit
map

(0%, 0%) : Mo, (Pyre,nf) x M, (Pg—,17) — x(N) x x(N) (3.50)
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is transversal to the diagonal A C x(N) x x(N), which represents common limit values
of solutions on the two sides (in fact, more is true: an index calculation and the results

of Section 3.3 show that the limit maps are immersions). The fiber product
MCM+ (PM+1 TIZ) Xx(N) MCM— (-25]\?[-’77;) = (a:-o) ao—o)—lA (351)

is therefore a well defined submanifold of the cartesian product of the moduli spaces, and

has codimension
codimM,, (P, 1) Xx(vy Me,, (Py-,mz) = bi(V). (3.52)

In order to be non empty, i.e. to have an intersection point on the diagonal A, we must
have
dim(Me,,, (Pye,ni)) + dim(Me,,_ (Py-,71)) = b (N) >0, (3.53)

condition which is excluded by equation 3.49.

The hypothesis that SW(pM) # 0 implies that the moduli spaces associated to Py,
with perturbation 77 + 7, (which is sufficient to satisfy any genericity requirement) are
non empty; the existence of a solution in such moduli spaces, for every n, entails the
existence of two points in the moduli spaces of M=, by Proposition 3.2.4. Proposition
3.2.5, moreover, ensures that these two solutions have the same limit point. This limit
point would represent a point in the intersection of the two limit sets, and as we have seen
this contradicts, assuming irreducibility of both moduli spaces, the dimensional relations
of equation 3.49.

We deduce from this, as above, that one of the two moduli spaces cannot be composed
only of irreducible points, and therefore one of the factors must have b% (M~) = 0. This
statement is equivalent to Theorem 2 for the case of b (N) > 0, and thus completes the
proof of Theorem 2.

3.6 Proof of Theorem 3.

In this Section, using a perturbation of Seiberg-Witten equations, we will prove Theorem
3. This Theorem covers some cases where the previous vanishing theorem already holds,
and might therefore provide an alternative proof of the same results, but, as we will
discuss in Chapter 4, it applies also to cases excluded from Theorem 2, and in fact we

will see that the mechanism of the proof is of completely different nature. In particular,
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the value of b% of the two sides plays no role.

We start by asking whether, by perturb'ing the equations on M, we can eliminate static
solutions on the cylinder. We will see that in order of this being possible we must have
bi(N) > 0.

When this holds we have to analyse whether the absence of static solutions for these
perturbed equations on the cylinder entails the absence of any solution to the equations,
in the very same way we discussed, in the unperturbed case, along the proof of Claim
2.3.1. If this still hold true, we can deduce a vanishing theorem. But let’s proceed in
order.

First, we can consider, as in the proof of Claim 2.3.1, the manifold My obtained by
replacing an open tubular neighborhood of N with the cylinder N x [T, T); a perturbation
of the four dimensional SW equations on My takes the form

Fj, = aa(¥a) + 14 (3.54)
Now we consider the form that the perturbation takes on a cylinder N x [T, T7:
Malwxi-T.01 =1 —*sn Adt, 1€ Q*(N,iR). (3.55)

For our purposes it will be useful to consider, as perturbation, self dual terms which induce
a perturbation, on the cylinder, given by a closed two form on N. We are constructing
now perturbations which have different features w.r.t. the compactly supported ones of
Sections 3.3 and 3.5: let’s call Ay a positive smooth function on N x [—T,T] s.t.

supp(h) C N x [-T +1,T — 1], supp(dh) C N x [-T,—T + LHUN x (T —1,T),

hlnxf-r+1,0-11 = 1;
(3.56)

we can consider, as perturbation classes for the equations,
Ns = {mzr € Q4L(Mr,iR)|nur = ihr(5 — x5 Adt)}, 6 € QX(N,R) Nkerd  (3.57)

where 4 is taken suitably small in a C° norm on N. If we consider the effect of a generic
perturbation on the two factors, there’s no reason why the solutions induced on the
cylindrical ends of the two elongated factors by the Ns,7-SW equations will preserve, as
T+ oo, the same decay properties to static solutions we proved for the unperturbed case.
This is of course true if 74 is compactly supported, and the class of compactly supported
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perturbation was sufficient to prove the smoothness properties of a generic moduli space,
but does not hold in general.

In any case, on the cylinder, 14, r-SW equations correspénd to the gradient flow equations
for a perturbed Chern-Simons-Dirac functional, which has the form, when t € T +
1,7 —1],

1
Cnd) =5 [y n@-a+ [ <vpw> 6
N N
These gradient flow equations have the form
2(t) = Paw¥(®),

2 A(t) = #(q(¥() — Fa + i9)-

(3.59)

The static solutions of equations 3.59 are the couples (4,v) € A(L) x T'(S (Py)) which

satisfy
Pap =0,
(3.60)
Fy=q(¥) + 0.

It is quite clear from this equation the reason to choose & € kerd, as both Fya and q(v),
when 1 € kerpa, are closed, the curvature because of Bianchi identity, while g(¥) as
consequence of equation A.13.
Due to the positive scalar curvature conditions on N, the proof of Proposition 2.2.2
applies to show that, once § is taken with a suitably small norm, there are not solutions

to equations 3.60 but reducible ones.

Let’s consider the consequence of this: if we consider a rational homology sphere, as the
second DeRahm cohomology group of N vanishes, 46 is exact and then cohomologous to
F: by an easy Hodge decomposition argument, the equations 3.60 admit still reducible
solutions.

In the case of a three manifold with b1 (N) > 0, instead, it is immediate that the choice
of a closed perturbation d such that i[6] # [Fa) forbids reducible solutions to appear.
We analyse now this latter case. What has to be studied, now, is whether the absence of
static solutions for equations 3.59 on the cylinder constraints the absence of any solution
on the glued manifold. We need to study whether, with M defined as above and with a
perturbation term in some class N the proof of Proposition 8 of [KM1] continues to hold

true. We assume the reader has familiarity with that paper. We can prove the following
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Proposition 3.6.1 Let M, M*,N be defined as in 8.48 and Py, be q spin® structure with,
determinant bundle £ which restricts to a torsion line bundle I on N , and suppose that
bi(M) > by (M+) + bi(M~) = b(N). Then if SW(Pyy) is different from zero there exist
a perturbation § with [5] € H2(N, R) different from zero s.t. the SWF equations on the

cylinder with perturbation of class N5 must admit o static solution.

Proof: we show that we can adapt the proof of [KM1] to the perturbed case for at least
one perturbation class (this is quite important!). As the Seiberg-Witten invariants of M
are not zero we know that for any 7' the modulj space .M(IBMT, M) is non empty; the
core of the proof of [KM1] bases on the fact that invariance for gauge transformation of
the C'SD functional of a generic solution brings to the existence of a static solution; in our
case, with the perturbation term, the variation of the perturbed C'SD functional, after a
gauge transformation, has the form

C(A%,99%) = C(A, ) + 4n25 U [g] (3.61)

(recall that L is torsion); we know that if the evaluation of g 1s zero on the Poincaré dual
of 4, the proof of (KM1] holds true: now we just need to find a single § which satisfies
this, and this corresponds to a non trivial kernel for the Mayer-Vietoris map muv

HI(N7Q) ﬂ-H-l(ju’-l-a(@)GB‘H-I(]‘J~)(@) ﬁHl(MaQ) (362)

It is easy to see that this corresponds to the hypothesis on the Betti numbers claimed in
the statement.

It is immediate to see that Proposition 3.6.1, together with Proposition 2.2.2, implies
Theorem 3.

It is important to see the role played by the perturbation, in considering the C'SD in-
variance; for the unperturbed functional the gauge invariance always holds true, and this
gives a definite relation between the existence of solutions and the presence of static solu-
tions, while here we can not deduce the same relation for any Ns,7-SW equation without
the previous assumption on bi’s. This illustrates us that when we consider the problem
of decomposing a four manifold along a three manifold (not necessarily of positive scalar
curvature) the single datum of three dimensional Seiberg-Witten theory, when dealing
with torsion spin¢ structures, is not the only ingredient of the theory and we could be
obliged, in general, to take care of reducible solutions if we look for the definition of some
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kind of relative (& la Donaldson-Floer) invariants.
Note that the result proven is, in some sense, sharp: there are cases where the condition
on the first Betti number is not satisfied and no vanishing theorem appears because of the
lack of an adaptation of the [KM1] argument: the case where M is a symplectic manifold,
M+ =M\S'x D? and

M = M7 Ugiygs2 St x D?, (3.63)

with S* a nullhomologous circle in M, is a natural example, as
Hy(S* x §%,Q) &= Hi(M*,Q) ® Hi(S* x D*, Q). (3.64)

We note that the Proposition 3.6.1 follows essentially from the fact that, after an admissi-
ble perturbation, there are not monopole classes on N, and does not involve strictly cur-
vature conditions on N; we can conclude therefore that a vanishing theorem for SW (Pyr)
holds in each case where the determinant line bundle £, restricts to a bundle L which
is not a monopole class for three dimensional SW equations (as discussed in the proof of
Claim 2.3.1) or is not a monopole class for three dimensional SW equations perturbed
with an admissible perturbation as above. |

We remark that, for b;(IN) > 0, of course, there is plenty of manifold for which both the
vanishing results stated in Theorem 2 and 3 apply; it is possible anyway exhibit examples

of manifolds for which only one of the statements applies.-

3.7 A Gluing Formula.

In this Section, that will be rather sketchy, we will provide a gluing formula, which comes
out on the nose, for cylindrical end moduli spaces associated to the usual decomposition
3.43, in some cases allowed by the previous vanishing theorems (i.e. cases for which the
previous vanishing theorems do not apply), in particular with the factor M~ having non-
positive definite intersection form. We will not provide details of the proof, which follows
in virtue of the regularity and compactness properties shown in the previous Sections and
the need, for a solution on Py, to decompose in two solutions, one of which reducible,
having compatible limit values, as shown in Propositions 3.2.4 and 3.2.5.

We will restrict ourselves to the case, that will interest us in Chapter 4, where Hy(M~,Z)=
0, Hi(N, Z) is free on k generators and the inclusion N = 0M~ < M~ induces an isomor-
phism on the inclusion Hy(N,Z) — Hi(M~, Z). We assume, moreover, that the reducible
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solutions on M~ define a smooth (based) moduli space, cut transversely by SW equations.
This requires the vanishing of the kernel of the Dirac operator for any reducible solution.
With these hypothesis the result becomes almost tautological.

Given M, M*, N as in decomposition 3.43 we want to discuss how the moduli space of
Seiberg-Witten equations for a spin® structure Py, relates to the cylindrical end moduli
spaces on M *; as our discussion involves reducible solutions, we need to work with moduli
spaces based on a point of N, in order to have all moduli spaces embedded in the respec-
tive orbit spaces as Banach submanifolds. First, at level of bundles, as H?*(M~, Z) =0,
the Mayer-Vietoris sequence in cohomology tells that

H'(M*,Z) @ H'(M~,Z) 5 HY(N,Z) — HX(M,Z) = H*(M*, Z) — H*(N,Z),
(3.65)
where the map p is a surjection because of our hypothesis on the first homology groups of
N and M~. From the analysis of the previous sequence we see that each spin® structure
Py on M defines uniquely a spin® structure Py+ on M *+, and therefore one on M, and
a spin® structure on M™ uniquely extends to M under the hypothesis that its restriction
to IV is trivial (a trivial spin® structure is the only compatible with Claim 2.3.1, and the
only interesting for us). With the previous hypothesis on M~, we have two limit maps

0% : M2 (Pys) = X(N), 05 : x(M™) 5 x(N) (3.66)

which enter in play: note that we used the notation X(NV) to distinguish the two (even-
tually) different character varieties, as these are defined via different gauge groups; X(NN)
covers x(N). The formula which relates the moduli spaces is

M°(Pag) = ME(Pygi) Xy x(M7) = M2(B.); (3.67)

in fact each solution, on M™, decays to a flat limit value on N and defines a solution on
M by gluing with the flat extension of its limit value at V. The value of ¢ is defined by
the requirement that ¢ = ¢Z(Lyr) N [M], as the flat solution on M~ does not contribute
to the Chern integral.

A note on the gauge groups involved: the gauge group acting on a glued bundle Py, is
given, in general (see, e.g. [Br]), by the fiber product

Oh = G+ X506 G- ={(97,97) € Gops X G-I (g%) = pr(g™)} (3.68)
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where ¢ is the automorphism of Py which defines Py; and 7 is the restriction to the
common boundary N. The set of isomorphism classes of bundles glued from P+ and
Py- is given by the set of components of the double coset '

r(Gaee)\GR/7(G3r-) (3.69)

(remember that we are always consider automorphisms which act trivially on the frame
bundle, as the way the frame bundles glue is given). As, in our case, any ¢ extends to an

automorphism of the whole Py,-, the gauge group is simply given by
G3y = Gy Xag, Gor- = {(97,97) € Gigr x G- Ir(g™) = 7(97)} (3.70)

and the set of isomorphism classes of glued bundles is, as it should be clear after the
analysis of sequence 3.65, just a point. The same results, for the gauge groups, hold when
we consider the action of the full groups, forgetting the base point.

If we want to consider the unbased moduli space, the U(1) base point fixing action is
trivial over reducible solutions on M~ (this is what makes possible, at level of dimension,
the gluing with reducibles) and we have the isomorphism

M(Py) = Mo(Pygs).- (3.71)

We will make use of this formula in the next Chapter.
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Topological applications

In this chapter we will discuss some consequences and applications of the results proven
in Chapter 3. First we analyse the relations between the Seiberg-Witten invariants of two
four manifolds which are diffeomorphic outside a point or a wedge of circles, and prove
Proposition 1. We will then use Theorems 2 and 3 to prove that a closed four manifold
containing an embedded two sphere of infinite order and nonnegative selfintersection has
vanishing Seiberg-Witten invariants (Proposition 2). We will then prove that Theorem
3 can be reduced to the case of N = S' x 2. A discussion of this result and of three
dimensional Seiberg-Witten theory will bring us to a partial generalization of Theorem 3
to Q-reducible manifolds, that we state as Theorem 4.

4.1 Manifolds Diffeomorphic Outside a Set.

In this Section we will study the relations occurring between the Seiberg-Witten invariants
of two four manifolds M;, M, which are diffeomorphic a) on the complement of a point
or b) on the complement of a wedge of k circles. The case a) has been discussed, in the
framework of Donaldson theory, in [De], where it is proven that the Donaldson polynomials
of two such manifolds coincide.

Tt is natural to test the conjectured relation of Donaldson and Seiberg-Witten theory by
proving the same result for the Seiberg-Witten invariants.

As noted in [De], in the case of Yang-Mills theory two approaches are viable: the first
is a direct study of the relations of the two Yang-Mills moduli spaces, the second 1is
to observe that two such manifold admit a quasiconformal homeomorphism and have

therefore coinciding Donaldson polynomials, as comes from the work of [DS].

83
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We will follow here the first approach, which is really elementary for the Seiberg-Witten
case.
If My, M, are two manifolds diffeomorphic on the complement of a point, denote the
diffeomorphism as

o M\ pr — My \ py; (4.1)

we take neighborhoods U; of p; in such a way that the image via ¢ of a standard three-
sphere S® = 9D* ¢ D* C U, where D* contains p1, is contained in Us; now (S%)
separates M» in two components, one of which, that we denote by D¢, is homeomorphic
(but not necessarily diffeomorphic, in absence of the generalized Schénfliess conjecture) to
the four dimensional disc; calling M+ = M, \ D*, we can suppose that the two manifolds
decompose as

My =M" Uss D*, My = @(M*) Uyssy DE (4.2)

and @(M*) = M*; although we have no information on the smooth structure of D¢,
the knowledge of its homotopy type is sufficient for our purposes. From the proof of
Theorem 2 and the gluing theory, for exponentially decaying solutions, that we outlined
in Section 3.7, we can observe that the moduli space M(Py) corresponding to a manifold
Mt = ZUgs M~ where M~ is an homotopy four disc coincides with Me,,+ (JSM+), where
Pyr+ is the spin® structure induced on M+ = M+Uy N x [0, 00) by Py, (which is moreover
its only extension to M) and cps+ is determined by the requirement that it coincides with
¢t(Ly) N[M], as points in this moduli space give rise to a solution on M by the extension
with the only reducible solution on M~; this follows from the fact that we can assume
that, generically, this reducible solution is a smooth point, as stated in the next

Lemma 4.1.1 For a second category subset of perturbations n=dtv, v /€ QL(M~,iR),

the reducible solutions of dtv-SW equations have vanishing kernel.

Proof: note first that, up to gauge equivalence, the reducible solution of d*v-SW equa-
tions is given by (A + v,0) where Ay is the trivial connection. We have to check that,
for a generic choice of v, ker@a,,, vanishes. In order to do so we consider Dirac equation
as defining a section of the I's(S~(Py;-)) bundle over {Ao} X T5(S*(Py-)) x QLM -, iR)
(we can assume we are working in a fixed based gauge). It is easy to verify, in the way
we did several times, that the section s(¥,v) = Pyt is transverse to the zero set and
defines therefore a parameterized space of harmonic spinor which maps to the parameter
space with a Fredholm map whose index coincides with the index of the Dirac operator.
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Application of Atiyah-Singer index theorem shows that this index is zero, as the signa-
ture of the manifolds under analysis is zero and the 7-invariant of the boundary vanishes.
This implies that for generic v the kernel of Pa,+v has dimension zero. Now, as Dagtv is
C-linear, this kernel must have complex dimension greater or equal than one or vanishes.
This proves the Lemma.

Note that the previous Lemma makes no hypothesis on the metric of M~ and works both
for D* and an homotopy D*; in fact we can not assume, in our case, that Di has metric
of positive scalar curvature, assumption which will automatically imply the statement.

Moreover we have not to care of the existence on D2 of irreducible solution (anyhow decay-
ing exponentially to a flat one), as any extension of a solution on M~ by a non reducible
solution would imply in fact a contradiction in the dimension formula. It follows that two
manifolds decomposed along S* having diffeomorphic positive definite factors and homo-
topic second factors have diffeomorphic moduli spaces and same value of Seiberg-Witten

invariants.

An equivalent proof of this result comes by observing, as in [De] that we can consider
M, = M;#, for © an homotopy sphere, and then applying the previous idea to the
related “blow up” formula for Seiberg-Witten invariants.

Now we prove the analogous result for b), the case of two manifolds diffeomorphic outside
a wedge of k circles \/, S': we have

0 M\ V,S" — Mz \ V5" (4.3)

In this case we consider, in the neighborhood Uy C M; of the wedge, a standard #;S! x 52
which bounds the boundary connected sum #4S" X D3: this time the two manifold are

split according to
My = M* Ug,sixs2 (#axS' X D), My = @(M") Upy#,s1x5?) [#51S* x D°lr (4.4)

with again @(M™*) = M*; note that in that case, for k > 2, we just know the homotopy
type of [#5 St % D?Jr, as its fundamental group is free on k generators and therefore
we cannot conclude that it has the same homeomorphism type of the standard #55S" %
D3. Once again we can prove the result by observing that the moduli space My, (PM)
corresponding to a manifold M = Mt Ug,s1xs> M~ having H/(M™,Z) = Hy (#5455 %
D3,7) and Ho(M™,Z) = 0 coincides with M. +(}Sjm). The idea of the proof is the
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same as above, but this time we need a little extra care to keep control of the regularity
of the reducible connections on M~. We start with a result which generalizes Lemma
4.1.1; we observe first of all that for a perturbation 7 = d*v the set of reducible solutions
of d*v-SW equations is an “affine” x(M~™), i.e. solutions have the form (A +v,0) for
A € x(M~); we will denote such a set as Xv(M™) (which coincides, using the previous
notation, with the reducible solutions of M,(M~,U (2) x M=, d*v)).

Lemma 4.1.2 For a second category subset of perturbations n = dtv, v € Q};(M‘,z’R)
the set of reducible solutions s;1(0) of dtv-SW equations, is a smooth submanifold of
X(M™) x T5(S*(Py,-)) of dimension b, (M~); the natural projection map

75,1 (0) — x(M™) (4.5)

can be assumed to be transverse to any finite set of submanifolds and its fiber has real

dimension at least 2.

Proof: as we did above in the case of a single flat connection, we have to study the

zero set of the section s(A4,%,v) = Pa., ¥ of the ['5(S™(Py-)) bundle over x(M~) x
T3(S*(Py-)) x Q3(M~,iR). On any fiber 771 (Ay), zero is a regular value, so that s71(0)
is a smooth submanifold, 7 : s71(0) — x(M") (naturally identified with the limit map)
is a submersion and has a Fredholm map to the parameter space of real index indexPs +
b1(M™) = b1(M~); for a generic choice of v it is therefore a b1(M~) dimensional smooth
manifold. Now, as observed above, the C-linearity of Dirac equation ensures that in
correspondence of any connection in x(M~) such that (A + v) has nonvanishing kernel
this kernel has real dimension at least two. This proves the statement on the dimension

of the fiber.

It follows from the previous lemma, that the image under 7 of s;1(0) (which is the natural
analog, in this context, of the theta divisor of a Jacobian torus) has zero measure in
x(M~) and in particular it misses generically a finite set of points in X(M ™). This means
that a generic flat connection on the boundary extends, on M, to a regular reducible
solution. We have one more step to do to prove the equality of moduli spaces on M; and
M5, namely to prove that 9., (M., (PM+)) has dimension at most zero (and so it is at
most a finite set of points): but this follows just from equation 3.39, as a quick check
shows that

dim(Me,,, (Pyy)) = dim(Me,, (Py)) =0, i=1,2. (4.6)

X3
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This result tells that we have not to care about the eventual presence of non regular
reducible connections on (#5xS" x D?)r, a8 Oo(Me,, . (Py+)) avoids generically the flat
connections, in x(#%S* x S%), which extend to non regular reducible connections. The
gluing therefore is the same both for the standard #,S* x D?® (which has just regular
reducibles because of curvature condition) and the fake ones, for which, as in the previous

case, we have no information on the curvature. Summing up, we have the following

Proposition 4.1.3 Let M; and M, be two closed four manifolds diffeomorphic in the

complement of a point or in the complement of a wedge of circles: then SWa, = SWh, -

4.2 Spheres in Three and Four Manifolds.

Another consequence of the two vanishing theorems of Chapter 3 is a new proof of propo-
sition 10.1 of [MST]:

Proposition 4.2.1 Let M be a symplectic four manifold (in fact, in any manifold with
non trivial SWy) with b3 (M) > 1; then M can not contain a sphere S of infinite order
in Hy(M,Z) and self intersection S-S > 0.

Proof: our proof of the proposition, in the case S-S =k > 0, is based on the fact that
if such a sphere exist, it has a tubular neighborhood vg which is a disk bundle over S
and whose boundary is a lens space L(—k, 1); as such a neighborhood has by (vs) =1and
by (M \ vs) > 1 the vanishing of the invariants follows from Theorem 2. In the case that
S.8 =0 (and S of infinite order), the tubular neighborhood is vg = D? x S and it is
bounded by S! x S in such a way that the circle S* is the generator of the kernel of the
Mayer-Vietoris map mv of the sequence 3.62, (i.e. it must go to zero over the rationals

both in D? x S and in its complement), as
Hy(M,Q) —» Hi(S" x 5,Q) ™ Hy(M*,Q) @ Hi(D* x S, Q). (4.7)

The vanishing of the invariants follows then from Theorem 3. As noted in [MST], the
case of k > 0 can be reduced to k = 0 by blowing up. We remark that the proof of [MST ]
of this latter statement, which follows from a reasonable gluing formula for the moduli
spaces, makes as well use, although in quite a different way, of the fact that the circle

represented by S* is torsion in M.

This last vanishing result, for the case of an embedded two-sphere S of infinite order and
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zero self intersection, appears as a particular case of Theorem 3 and in fact the proof of
that theorem can be specifically adapted to this case.

We claim now that this vanishing result is in fact equivalent to Theorem 3, i.e. that we can
reduce the situation of a three manifold N of positive scalar curvature decomposing M
with the usual matching of first Betti numbers to the case of an embedded sphere of zero
self intersection. But first we need to point out a classical result on the representability by
spherical classes of the homology of a manifold of positive scalar curvature, result which
follows immediately from Theorem 6.1 of [SY];

Proposition 4.2.2 Let N g three manifold of positive scalar curvature and let o €
Hy(N,Z) be a nontrivial class: then there ezist a finite set of embedded two spheres
Sy — N such that we can represent o as

= "my(in)u[Si], ms € Z. , (4.8)
k

We can now state a proposition which shows the equivalence of the vanishing results:

Proposition 4.2.3 Let M pe 4 four manifold with b (M) > 1 which decomposes as
M= Mtuy M- along a three manifold of positive scalar curvature and bi(N) > 0 in
such a way that b (M) > b, (M*) + by (M~) — b, (N); then there ezist an embedded two
sphere S C N, of infinite order in M and zero self intersection,

Proof: in the case under analysis J m(Hy(M,Z) — Hy(N, Z)) has rank at least one. This
group is naturally isomorphic to | m(Hy(N,Z) — Hy(M,Z)), where the arrow is induced
by the inclusion map. By Proposition 4.2.2 each two cycle of N is representable by a
sum of embedded spheres; we can therefore identify at least one class of infinite order,
in Hy(M, Z), which is represented by an embedded sphere; this class has necessarily zero
self intersection, being in the image of Hy(N,Z), and is exactly the sphere required in the
statement.

From this proposition we see that it is in fact enough to prove Theorem 3 in the particular
case of N = S x §2.

We can now ask, in the light of the previous results, if we can extend Theorem 3 to other
classes of three manifold which have not positive scalar curvature.

As a first step we can immediately observe that a three manifold which does not admit
positive scalar curvature, but whose second homology group is represented by spherical
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classes, satisfies, via Proposition 4.2.3, a vanishing theorem under the same hypothesis
of Theorem 3. For the same reasons there exists a slightly more involved version of
Theorem 3 for a three manifold N in which only some of the generators of Hy(N,Q) are
representable by spheres: a careful check of the proof of Proposition 4.2.3 shows that we
must require the natural map i, : Ho(N, Q) — Ha(M, Q) to be nontrivial at least on one
of these spherical classes. ‘

In order to have a better understanding of this kind of results, we recall (see [Mi]) that

any three manifold N admits a decomposition of the form
N = (#_ V)#H#I S x S)#(#im K (s, 1)), (4.9)

where the factors Y; are rational homology spheres and b, (K (my,1)) > 0. It is known, by
the results of [GL], that manifolds of type

(#0, (S3/T3)#(#=1S" x 57) (4.10)

admit a metric of positive scalar curvature and we can conjecture that this is a sharp
class of manifolds having such property, the only possible exceptions corresponding to
manifolds admitting, as factor, finite group quotients of fake three spheres. Moreover, the
generators of the second homology group of three dimensional Eilenberg-Maclane spaces
cannot be represented by spheres.

In these terms, the class of manifolds for which Theorem 3 holds true without any modi-

fication is given by manifolds of type
N = (#_,Y0)#(#1.5! x 57) (4.11)

where Y; are rational homology spheres of curvature whatsoever; apart from the case
where all their rational homology spheres have positive scalar curvature, these manifolds
do not admit positive scalar curvature.

For manifolds of type

N = (#.Y)#( ?:13l X 8%)H(#r=1 K (T, 1) (4.12)

with by (K (mg, 1)) > 0, instead, a vanishing result will hold true under the aforementioned
condition of nontriviality of i, on Hy(#1_,S" x $%,Q) C H, (N,Q).
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4.3 Monopole Classes on Q-Reducible Three Mani-
folds.

In the previous Section we have seen that the existence, in M, of a three manifold N,
whose second homology group has generators which can be represented by embedded
two spheres, induces, under hypothesis that can be reconduced to Proposition 4.2.1, a
vanishing theorem for Seiberg-Witten invariants on a four manifold M which splits along
N. All the manifold of this type are, by definition, reducible three manifolds, i.e. contain
a two sphere which does not bound a three disk. For sake of notation, we allow ourselves
to introduce the following definition, which extends the concept of irreducibility:

Definition 4.3.1 A three manifold N is called to be Q-irreducible if any sphere bounds
a rational homology disk.

With this definition, connected sum with rational homology spheres does not change Q-
irreducibility of a manifold.
The aim of this section is to discuss, in terms of monopole classes, the existence of a

vanishing theorem, in the spirit of Theorem 3, for Q-reducible manifolds.

In the case where N has positive scalar curvature the original proof of Theorem 3, con-
tained in Section 3.6, follows from the fact that there can not be nontorsion monopole
classes, for unperturbed SW equations, and that torsion monopole classes, which corre-
spond to reducible solutions, can be removed, in the appropriate cases, after perturbation
of the equations with a nonexact closed two form. In the case where N has not positive
scalar curvature, but some of its two cycles are represented by spheres, we are naturally
lead to suppose that a similar procedure holds, i.e. that information on monopole classes
of N, eventually after perturbation of the equations, should give us the input to prove
(some version of) Theorem 3 along the same lines of Section 3.6. We will now discuss this
point, in all the cases analysed above, and we will see that these arguments allow us to
extend a little further Theorem 3, to the whole class of Q-reducible three manifolds. But

let’s proceed in order: we have the following
Claim 4.3.2 Let N be a manifold which admits a decomposition of the form,

N = (#-,Y)#( 5:1‘51 X 52)#( k=1K (7, 1)) (4.13)
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with by (K (m, 1)) > 0 and g +7 > 1 or ¢ = 1; then, for all spin® structures, the three di-
mensional SW equations, eventually after generic perturbation with some closed nonezact

" two form, do not admit any solution.

Proof: in order to prove this Claim we will make the assumption that three dimensional
Seiberg-Witten theory has the same behavior, concerning decomposition of a three man-
ifold along a sphere, that we have discussed in the previous Chapters in dimension four.
It is straightforward to see, in this context, that the role played by by in dimension four,
concerning genericity of moduli spaces, is played, in dimension three, by b;.

First we consider the case where all two cycles are representable by spheres: in that case
g = b1 (N) > 0 and a solution must restrict, because of curvature condition, to a reducible
one on each factor S x S2. This solution can be perturbed away after addition, on any
of the factors, of a closed nonexact two form.

We can clearly treat similarly the case when the spherical classes do not span the whole
H,(N,Q); in that case we are ensured of the vanishing of any solution after perturbation
on any of the S! x S? factors. But in that case, and also in the case where ¢ is zero,
there’s another possible way to remove the solutions; as in dimension four, independently
on the curvature of the two factors of a connected sum, a solution of SW equations on
the three manifold must restrict, on one of the two factors, to a reducible one. In order
to perturb away a solution on a multiple connected sum, in general, we can, as before,
add to three dimensional SW equations a closed nonexact two form for any one of the
St x S2, as discussed above, or for any two of the other factors (a perturbation on just
one factor would not be enough, as it would not remove solutions which are irreducible

on that factor and reducible on the others)

From the proof of the previous Claim we can not only extract information on the monopole
classes of Q-reducible manifolds, but we know also how to obtain a result in the spirit of
Proposition 3.6.1 for deducing a vanishing theorem which generalizes Theorem 3; remov-
ing away the solutions in a way which does not affect the proof of [KM1] on the existence
of static solutions on a cylindrical neck of a four manifold is possible under the condition
that the map Ho(M,Q) — H1(N,Q) has the correct rank behavior: precisely, for the

manifold NV of equation 4.13 we need to require the map

H‘Z(M’ Q) — (@ng(Sl X 527(@)) D (@ng(K(ﬂ'k, 1)7@)) (414)
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to have rank at least one on the first ¢ factors or to be nontrivial on at least two factors
of the direct sum decomposition. These results are coherent, in the case where spherical
classes are present, with the discussion on embedded spheres in four manifolds contained
in the previous Section.

Summing up, we see that a generalization of Theorem 3 holds true for any Q-reducible
three manifold:

Theorem 4.3.3 Let M be a closed four manifold with bF (M ) > 1 which decomposes as
M = M* Uy M~ along a Q-reducible three manifold in such a way that the map

Hy(M, Q) = Hi(N,Q) = (@{H:\(S" x 5%, Q)) @ (& Hy(K (ms, 1), Q) (4.15)

has rank at least one on the first q factors or is nontrivial on at least two factors; then
the Seiberg- Witten invariants SWy, Spin®(M) — Z are identically zero.

A weaker form of this theorem, eventually more practical, requires to have bi(M) =
bi(M™) + by(M™); this is a sufficient condition but, in many case, not a necessary one.

We point out that, excluding the case where the Q-reducible manifold has positive scalar
curvature, there is no any obvious reason why a generalization, this time, of Theorem 2
should hold true; in fact the proof of Theorem 2 depends on the presence of the “gluing”
factor, i.e. from the fact that, without any perturbation, the only static solutions are
reducible ones. In the case under analysis, even in the case where all monopole classes are
torsion (e.g. the connected sum of S x S? with an ¥; having nonpositive scalar curvature)

there is no reason why a solutions should restrict to a reducible one on all factors.

We finish by making some almost obvious comparative considerations on the case of
three manifolds N with b;(/V) > 0 of zero scalar curvature and manifolds whose second
homology group is representable with tori. We will focus on the possible extension of the
vanishing theorems to cover these cases. In the case of zero scalar curvature, we know
from the proof of Proposition 2.2.2 that the only monopole classes, for the unperturbed
equations, are torsion ones. As argued before with the embedded spheres, it is possible to
extend this result also for the case of a manifold whose homology classes are represented
by embedded tori. It follows from this, and from Claim 2.3.1, whose statement applies
word by word to this case, that a spin® structure Py, on a four manifold M decomposing
along an IV with the properties above, and Seiberg-Witten invariants different from zero
must define a torsion line bundle L on N. For what concerns the torsion classes, instead,



Topological Applications 93

nor in the case of zero scalar curvature, nor in the other cases, we can obtain any result
after perturbation of three dimensional Seiberg-Witten equations, as nor Weitzenbdck
formula, nor decomposition argument, allow to remove torsion classes from the set of

monopole classes.






Appendix A

Appendix

Al

The purpose of this appendix is to study the decay conditions for the square norm of the

gradient of the Chern-Simons-Dirac functional, L.e.

F(t) == 1Pa @) + lla(®) - Fall’ (A1)

for a solution (A(t),¥(t)) sufficiently near to a static one in the based orbit space.

To give the complete proofs, which are quite long, of the results we will discuss we need
some preliminary work to simplify the direct computation.
We will denote with < |- > the £? product on both spinors and forms, and with < -,- >

the pointwise product given by
cab>=—ansh, <v,¢>= (59N (A2)

on forms and spinors respectively, where (-,-) is the ordinary hermitean product, C-linear
on the second variable.
To fix the notation, the bilinear term appearing in three dimensional SW equation has

the same form we have seen in the case of the four dimensional theory (equations 1.6),

ie.
1 . .
q(¢,¢):§(¢®¢ +oRY — Re <, > 1d). (A.3)
From this explicit formula it is easy verify that, for a solution of SWF, the equality
0 :
-5%61(1!)) = 2q(¥, Pa) | (A4)

95
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holds. We recall, moreover, the formula that relates Clifford product and hermitean
product, which says, for an imaginary one-form 7 € QNN,4R) that

<x*n,q(¢) >= % <Y, >, (A.5)

while for a p € Q2(V, iR), similarly,

A more delicate equality we will need is the following:

a%q(w) —dxq(Y) =ixIm <, Vuy >, (A7)

We prove this from the expression of ¢ in terms of differentia] forms. As element of
Q*(N,4R), q(¢) has the form

1 , .
q(v) = ) Zfijkez N <eF s (A.8)
ik
(the change of dimension brings to a different normalization term w.r.t. equation 1.8). It

follows that
dxq(Y) =3 (d < e, 9 >) ek =

= (3= <ez-¢,¢>—~%%<el-w,¢ >)el A e+

€1

(A.9)
+(%?32_2 <e > —%gﬁ; <€y, >)e? A e+
+(%% <el-yh > ——%% <ed-y,>)ed Ael,
On the same vein, we can give an expression for the time derivative of q(%), as
590) = § D it Ne[< € a0 > + < ok o 1p, oy 5]
(A.10)

=(3<é- 25€" Ve v,y > +3 <ed. 9, 2o Vo >)e! A e? + perm.

We can therefore compute ¢ — d % ¢; the term in e! A e?, say, ives, after some algebra,
g

% <Y, Ve, > -% < Ve, > (A.11)

and we get the equality

aﬁtq@) —dxg¥) =ixIm <y, Vyp> (A.12)
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which is what we wanted to obtain.
 Last, we compute the value of d*  (g(v) — F); applying Bianchi identity we have, from
the definition of adjoint differential, that

&+ (q(p) — F) = =+ da(®) =

=-1yi(<e Vb, v>+< ¢ 1, Vb >) = ilm < ¥, Path >

(A.13)

Now we quote a result which will be the core of the proofs of the following Propositions.
Claim A.1.1 Let f be a function in c2([0, T, R), strictly positive and satisfying
f! > 48%f. (A.14)
Then, ¥t € [0,7T1,
£(t) < f(0)ezp[—26t] + F(T)exp[—26(T — ). (A.15)
IfT = oo and f is non negative and does not diverge at infinity, then
f(t) < f(0)exp[—-26t]. (A.16)
Moreover, if f satisfies the inequality
F 4 45f +48°f >0 (A.17)

then o
[ dtezplwt] f'(t) = C < oo YOS w< 26. (A.18)
0

Proof: although we guess that a proof of this Claim should exist in literature, we have

not been able to find a complete reference; we start by a direct proof of inequality A.15

(an alternative proof can be given with the use of the maximum principle). Define the
f'(t)

1) = —

This function is well defined, as f(t) > 0. As F1> 48%f, y(t) satisfies the following

differential inequality:

new function

(A.19)

J0) = S - SO » 251~ u(eP) (4.20)
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We deduce from this that y(t) has the following behavior: if there exist a ¢y € [0, 77 s.t.
y(to) = 1 then, V¢ € [to, T], y() = 1. We can therefore divide the interval [0, 77] in two
disjoint subsets (one of which can be eventually empty) such that

VEE0t) S8 <2F(); Ve[, T] f(t) > 235 (2). (A.21)

Let’s consider this second interval. As f'(t) > 26f(t), by integrating the differential
inequality between ¢ and T, we have

F() < F(T)exp[-25(T — )] (A.22)
and, a fortiori, V¢ € [t,, T]
f(t) < f(0)exp[—26t] + F(T)exp[—26(T — ?)]. (A.23)
For the first interval we need some more work. Let’s define the auxiliary function
9(t) == f(t)exp[24t]; (A.24)
it is easy to check that the inequality f”(t) > 462f (t) implies the differentia] relation
9'(s)exp[~48s] < g'(to)exp[—4dt] Vs e [0, 20]; (A.25)
let’s integrate this inequality, w.r.t. s, between 0 and ¢ < ¢5. We obtain

9(0) = 9(0) < g'(t0)( pexplast] - T5)ezpl~46t,] (A.26)

As f, at the value to, satisfies f'(¢y) = 26 (to), g satisfies the equation g'(¢y) = 46g(t,)
from which we obtain the inequality

9(t) = 9(0) < g(to)(exp[46t] — Lezp[—~4dto] < g(to)exp[—-45(t, — 1)) (A.27)
This implies, for f, the relation, V¢ € [0, #,)

f(t) < f(0)emp[—264] + f(to)exp[—26(t, — t)] < J(0)ezp[—26¢] + F(T)exp[—26(T — 1)),
(A.28)
where in the last equation we have used equation A.22 to estimate f (to). Putting together
equations A.23 and A.28 we get the desired inequality A.15. Note that in the case where
there does not exist a ¢, s.t. F'(to) = 26f (), the proof of the inequality A.15 for the
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whole interval simply follows from the integration of equation A.25, with the extremum
T instead of t, and the use of f'(T') <20 f(T).

For what concerns the part of the statement (equation A.16) which covers the case with
T = oo the prove can be given with an easy modification of the previous arguments
(but note that, in that case, the inequality is no more a strict one, although this has
no relevance for us). Moreover it holds also under the weaker hypothesis that f > 0; in
fact we used a stronger hypothesis only to deal with the case where there exist a o with
f'(to) > 0 and, if f does not vanish identically for t > to, this is incompatible with the
condition that f does not diverge at infinity (if f'(to) > 0 there must exists an s € (to, 00)
with f'(t) > f'(s) > f'(ty) >0 Vt>s,asan analysis of f shows). For a specific proof of
this case, anyhow, see [JRS], where it is treated in detail. We give instead, as we will need
them, the details of the proof of equation A.18; f(t) now is supposed to satisfy equation
A.16. Let’s consider again g(t); we have, with some straightforward calculations which

follow from our hypothesis,

g'(t) = (26f(t) + F'(t))exp[26t] <0,

g"(t) = (f"(t) +46f' (t) + 46° f(t))exp[20t] > 0

and, as ¢’ is non decreasing and integrable over [0,00), lim o ¢'(t) = 0 and g"(?) is

(A.29)

integrable over an interval [t, o) with integral equal to [ dtg"(t) = —¢' ().
We remark that, eventually increasing the value of I, we can choose the integral of ¢"(t)
over the interval [£, c0) equal to 2 fixed constant independent of any choice.

We have, integrating over [0,00),

_g(0) = /O " dtg" () = / ™ dteaplof](F'(6) + 45 £ (1) + 407 (1) WO Sw <20 (A30)

0
We need some more information on the second term on the r.h.s., as the third one is finite

and positive: let’s define h(t) = f(t)ezplwt]; we have
/oo dth/ (1) = —h(0) = —f(0) =w /oo dtexplwt] f(t) + /oo dtezplwtlf'(t),  (A.31)
0 0 0
and thus
45 f ™ deaplwt]f/(t) = 457(0) + 5457 / dteaplwt] f(£) < 0o, (A.32)
0 0
We can write |

/oo dtexplwt] f"(t) < —-g"(O) — 46 /Ooo dtexplwt]f'(t) — 44° V/oo dtexplwt]f(t)  (A.33)

0 0
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which becomes, using equation A.32

0< / dieaplutlf(t) < ~5'(0) + 435(0) - (1 - Dyas? / dtesplwt] f(£) = C < oo.
0 0
(A.34)
In particular, note that choosing w = § we get

'/000 dtexplwt] f"(t) < —g'(0) + 451 (0). (A.35)

The previous remarks on the choice of the starting value on the interval tell us, in partic-
ular, that restricting eventually the domain to the interval [£,00) we can even bound the
integral j;-oo dtexplwt]f"(t) in terms of the upper value of f(¢) only, property we will use
later on. This concludes the proof of the Claim.

We can state now our first result:

Proposition A.1.2 There ezist positive constants e, &, such that if (A(t),¥(2)) is a so-
lution of SWF equations on q cylinder N x [0, T, which is contained in a ball of radius e,
in the L3 norm in the orbit space, around a static solution (T,0), then the square norm
of the gradient of the Chern-Simons-Dirac functional satisfies the inequality

F(t) < F(0)exp[~25t] + F(T)exp[—25(T — 1)) (A.36)
Moreover, the values of €,0 can be taken to be independent of the chosen solution,

Proof: our strategy will be to show that the square norm of the Chern-Simons-Dirac
gradient satisfies an inequality of the type discussed in the previous claim, and then
to deduce the decay conditions. As first observation we note that as the solutions of
SW equation on the cylinder are gauge equivalent to smooth solutions, by usual elliptic
techniques, the CSD functiona] is a smooth function of the ¢ variable, and therefore so
is f(¢), which is the time derivative of C (t) once its argument (A(t),%(¢)) is a solution
of SWF equations. Second, we can assume that f(t) is strictly positive, as if 3¢, with
f(to) =0, then we are at a static solution and f is identically zero.

It is practical to treat separately, first, the connection and the spinor part; we denote
therefore

h() = 1Pawv@1®, 9(t) := |lg(u(t)) — Fawll’s f(t) = g(f) + h(t). (A.37)
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Our working hypothesis guarantee us that the £? distance, in the based orbit space, of
(A(t),(t)) from (L', 0) is small; this means that we can determine, for any value of ¢, 2
gauge transformation g € Go(Py) st ||47 — T||z and ||4h9]| 2 are suitably small. Now
we use the gauge invariance of f(A, ) to write it as

F(A, ) = F(A%,99) = lla(w) — Fasll® + 1Pasv? < lla(¥®) = Fasll® + 2/|Past|I* <
< |1 Fasll? + Sl lis + 2V asd?IF + marle) e ? <

< [P + Llol|s + 20 Vrp? | + el A7 = T|[%all?lZe + mage) |l |
(A.38)
where we have used Bochner-Weitzenbdck formula for the Dirac laplacian. From this

expression we see that we can suppose that
ft) <=1 (A.39)

with 7 that can be made small with € (now on we use the ¢;’s to denote “yniversal”
constants; note that all the constant coming from Sobolev multiplication theorems and
Sobolev embeddings can depend only on I' and thus, in view of Claim 2.3.2, only on N).
An important remark is in order: in general, the gauge transformation g € g"(f’N) which
makes ||A9 — T[]z and b9 2 small depends on (4,?) and therefore, for the gradient
flow, on t. A time dependent gauge transformation would naturally affect the gradient
flow equations: but what we have done, before, is not to study the behavior of the gauge
transformed pair (A9,17), we have just chosen a gauge suitable to make the computations
easier. '

We will often apply this procedure, so 1t is better to keep in mind this remark.

We are now ready for the proof of the proposition: we want apply Claim A.1.1 to h(t) +
g(t); let’s compute, separately, their second time derivative; we start by analysing the

spinor part of the Chern-Simons-Dirac functional; we have

B(t) = /N < Payb(8), Payb(®) > (A.40)

the first time derivative 18
2h(t) = [y < 2 (Pa), Path > + < Parh, Z(Pa) >=

=2R6fN<@¢+%*(Q—F)-w,@w'>-

(A.41)
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We derive once again to get

52h(t) = 2|+ La (g — F) | 4 2Re(fyy < G(B), pav > +
Ty <xli-dx(q-F) -y, g > 11, < (0= F) - patp, fayp >] =
 =2But b F) P 2Rl < B, P > +
3y <dx(q—F) -9, pup > —3 [y <*dg-, Pap > +
I <Elrla = F)Vah g > +1 [ < 0l — do (g - F) b, Parp > +
T2 <*a = F)uv v > = 2p + 1w (g - F) 9|2+
AL + Re [, < x4 -4, paw > ~Re [\, < xdg -, Pap > +

+Re [, < x(g— F) Path, Parp > —2Re [, <3\ [+(q - E)iV ah, Pary >

(we used the equality

(A.42)

Pa(x(q—F)-y) =d*(q—F)-¢—*dq-¢—QZ[*(Q~F)]NAM**(Q*F)'ﬁAY/) (A.43)

which can be derived from the compatibility property of covariant derivative w.r.t. the
Clifford product). The terms under integral need some additional work.
The first two terms can be explicitly computed and give

Re /N < %G, Pap > /N PRI — (Im < o, pary > )7, (A.44)
*RE[V < *dgq - ’Q/J,ﬁA'g/) >= /I;T(Im < ’l/),ﬁA’lﬁ >)2. (A45)

These two terms give therefore a positive contribution, and require no other treatment,
The third one is
2Re < (¢ - F)|g(Pav) >; (A.46)

our treatment of this term will be g bit tricky: our will is to apply Holder inequality,
with coefficients (p,q9) = (2, 2) and to do so we need some kind of £* control on Pl
we will do this by controlling its £2 norm and then using Sobolev embedding theorem.
If we use elliptic inequalities applied the elliptic operator P4 we would obtain estimates
which depend on the operator, and therefore on time, while we look for estimates which
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are uniform in t. To circumvent this difficulty we must compare estimates for P4 and for
Pr; to do this, we use the fact that £2 distance of A and T in the orbit space has a value
suitably small once we take a small value of €. As first step we note that the term of
equation A.46 is gauge invariant and so we can write it, choosing a gauge transformation
g such that

149 = Tllez < (A.47)

in the form
2Re < (q(9?) — Fao)|q(Pas®®) >; (A.48)

we will obtain, in such a gauge, an estimate which does not depend both of g and ¢ that
we will apply then to the term in equation A.46. We point out again the role of the
gauge transformation g: we are using it here simply as choice of gauge where make the
computation, at the instant ¢, of gauge invariant quantities and their (gauge independent)
relations.

We use equation A.47 to compare estimates for Pas and for Pr: we have, by definition,

11z < colfrdlce < aPaod?lles+ 311 (45Dl < cs([1Par e+ secal10]lct).
(A.49)
Rearranging the terms, we get

16911cs < (1~ Seeser)callpasllex = eallPard?| (A.50)

which is exactly the result we looked for, as now the elliptic constant c4 does not depend
on t, nor on the gauge transformation, as it is related only to the operator Pr. Note
the need of an £2 control on (A9 —T') in order to apply Sobolev multiplication theorem
L2® L2 C £2. This result is, for our purposes, very good, as it allows to use elliptic
estimates in terms of Pas without the loss of uniformity in t. Moreover the estimates can
also be taken uniformly w.r.t. the point T in the space of flat connection, as shown in
Claim 2.3.2; for this very same reason, the value of € can be chosen not depending on I.

Now we can proceed with the L7 estimate on Pash?; from the formula A.50, putting
¢ = Path, we have
1Pas¥®lc2 < callPast®llc2 (A.51)

and this is allows to estimate the full term A.48 as

| < (q(¥*) — Fao)la(Pasv?) > | < [la(¥7) = Faollcolla(@ast)l 2 < mesl|Pant?|Ze (A52)
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which is enough for our purposes, as we will see later: it is clear that all the terms of
this equation are gauge invariant, and so the estimate holds, with constant independent
of time and gauge transformation, and we can use it directly to estimate the term of
equation A.46. ;
The moral of the previous result is the following: each time we need an estimate of two
gauge invariant quantities, depending on (A(t),%(t)), we can obtain such an estimate
working with any choice of gauge, and then apply to the original term. We will often use
this procedure, so we will omit sometimes to mention the various steps.

The remaining term to control in equation A.42 is
<D g = F)iVa|pagy > (A.53)

and admits a similar treatment: we need again control on the £* norm of P4t as above,
plus a control on the £4 norm of V AY; this is obtained by the following formulae, which
have the same nature of those proven above: making the computations with a suitable

choice of gauge, that we omit to mention,
I9ablles < 1Velle + Gecallplles < (1+ Secn) il (454
and concerning this latter term we have
Wlles < eallpeolles < callBusblles + secallwley). (4.55)
Rearranging carefully the terms we obtain

IVavlles < (1+ Seer)eal|Fulles = col e (4.56)

from this we estimate the full term, as the one we treated previously, as
| < Z[*(q = F)iVaPa > | < |lg - Fllea|IVallc2llPa ]l 2 < mer||B]|%e. (A57)

We see, therefore, that the two terms with undetermined sign are proportional, with a
multiplicative constant arbitrarily small, to the square of the £2 norm of P+ and are
therefore smaller than the leading term of A”. Summing up, we have

B > (2= 2ncs — 2ne) |2 2. (A.58)
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We compute now the second derivative of the curvature part of Chern-Simons-Dirac func-
tional. We have ‘

g(t):/ <q—'Faq—F>1 (A59)
N
and its first time derivative is

og(f)=2<i—dx(g-Flle—F>=
(A.60)
=2fN<i*Im<¢,VA¢>,q—F>+2<d*F\q—F>.

The second derivative gives then
.g;-g(t)=znq—d*(q—F)\\2+2<d*d*(q—F)\q—F>+
+2 [y <ix 2Im <P, Vad > q-F>=

= 9||g—dx (g — PP +2lld"(g - FY2+2 [y <ixZIm <, Vap>q-F>.
‘ (A.61)
We now must gain some control on the latter term: note, first of all, that

<il(Im <, Vap >),x(q = F) >= Lax(g— )P *(g—F) >+
+<z‘Im<;?9Azp,VAz,b>+iIm<¢,VA;BA¢ > x(q— F) >= (A.62)

= %iq_ F‘ZWJP-— <idlm < aAd)a'Qb >,*(Q“‘ F) >+
+ < 2ilm < ﬁA’QZJ,VA’(p >,*(q——F) > .

Applying the formula A.13 for dq(v) we see that the integral equals
[y la—FPll+2 [y(Im <, Pat) >)2+

+4 [y <ilm < Path, Vah >, x(qg—F) >.

(A.63)

For the last term we have in fact the following identity:
[y < iIm < Path, Vah >, s(qg—F) >=— [yidlxla- F)iIm < Pah, Vah >=

= —Re fN < Zi[*(q - F)]iVAiwvﬁAw >
(A.64)

(we used the fact that (¢ — F) is a purely imaginary form; recall moreover, the minus

sign in the definition of the product of forms); this term, therefore, has the same shape
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of the one of equation A.53, and is controlled in the same way.
We have, therefore,

9" 2 2|d"(g ~ F)|[2, ~ dneq||#p] .. (A.65)
What we have to do now is to show that f”(¢) bounds, up to a constant, f(t) = h(t) +9(t);
concerning h(t), it is bounded, in light of the arguments which brought to equation A.50,
by a multiple of [|#2|| 2, as

1842 = 1|Pastp?]| e < 1451z < call B2 = cal ] o, (A.66)

and so the spinor part of the second derivative on CSD functional satisfies our requests.
We try as well to apply the Sobolev inequality for the operator d+d* to control llg —FH%z;
decompose (g — F) in its Hodge components:

= F=du+dv+n; (A.67)

evidently only q(v) contributes to the last two terms in the r.h.s. - we deduce, therefore,
that
lla = FI* = lldul)? + [ld*y + 4|2 < lldul? +[lg(y)] 2. (A.68)
We can now apply Sobolev inequality to the exact part du: there exist g positive constant
cg € R such that
ldul| < crlld*(q - F)|; (A.69)

we can write therefore, working in the gauge where (A-T) and % have small L2 norm,

Al (@ = F)lizs > llg = FIf% — llg(w)(12 = |lq - |2 - SIBl1% > flg — FiiZ — e,
(A.70)

where we have estimated the £¢ norm of ¥ in terms of its £? norm, and used again

inequality A.50.

We now put together the results of equations A.66, A.70 on the two derivatives, and we

see that, taking now €, and consequently 7 small enough, we can cook out a § s.t.

"> 48%f, (A.71)

The various Sobolev constants do not depend on the particular solution but only on I" and
thus, definitely, on NV and therefore so do the constants €, 0, as stated in the Proposition.
Application of Claim A.1.1 gives then

ft) < F(0)exp[—26t] + F(T)exp[—-26(T — t)], (A.72)
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and this concludes the proof of the proposition.

The second result we will discuss is strictly related to the previous one. It concerns the
application of the second part of Claim A.1.1 to h(t) = | Pay ()1 Tt is clear the h(t)
is non negative and, for some § (that we can always assume coinciding with one for which
equation A.71 continues to hold true), it satisfies h" > 46%h, as show equations A.58 and
A.66. To apply the second part of Claim A.1.1 we need one more step, which is contained

m

Lemma A.1.3 Under the conditions of Proposition A.1.2, the square norm of Patb sat-
isfies the inequality
B 4+ 4K + 46%h > 0. (A.73)

Proof: first observe from equation A.58 that we can tune € in such a way that h'" >
||#4e||?. Now we need some control on h': from equation A.41 we deduce, in the suitable

gauge, that

7] < cxol||PBl |2l 1Patlles + lla — Fllzel|avllzg) < enl|Fivllz (A.74)

as comes from iterated elliptic inequalities. Tt is straightforward to see now that, eventu-

ally decreasing the value of &, we have

B+ dok! 2 || 3 — dendl|fille = 0 (A.75)
from which the inequality claimed in the lemma follows.
Application of formula A.18 of Claim A.1.1 guarantees therefore the following

Proposition A.1.4 Under the condition of Proposition A.1.2 the square norm of PR
satisfies the following inequality:
/ ds| ||z < Cezpl—wt] V0 <w <20, (A.76)
t

Proof: as we have checked h(t) satisfies the condition imposed from Claim A.1.1 and so
its second derivative can be integrated with an exponential measure of weight 0 < w < 26.
Equation A.58 tells us that so does ||#A¥||c> and thus we have, applying equation A.18,

explwt] / " sl Pasy (9 < / ™ gseaplws)||Fay ()| < C, (A7)
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which is what we wanted to prove.

Note, from the various remarks along the proof of Claim A.1.1 that, eventually restricting
the interval [¢, 00), we can make independent of any choice.
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