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Chapter 1

Recurrent processing: an overview

1.1 Donald Hebb’s idea

The words “recurrent processing” have been invoked in many different contexts and
with many different meanings, and seem to represent a fundamental ingredient of
many theories of the brain, or of its subsystems. The origin of the concept is prob-
ably in Donald Hebb’s idea of cell assemblies (Hebb, 1949), groups of neurons in-
terconnected by a large number of excitatory synapses, which shape and determine
the activity of the neurons itself. Recurrent excitatory synapses imply positive feed-

back: this feedback may be large énough to cause activity in the cell assembly to =

self-sustain, or may cooperate — and compete — with influences external to the cell
assembly, in generating activity configurations for the assembly.

Probably Hebb’s major contribution to the history of brain theory was the hy-
pothesis that the synaptic matriz, the set of all the synaptic connections between pairs
of neurons, encodes cell assemblies, and that synapses are modifiable by experience,
in a very peculiar way. Hebb hypothesized that when two neurons are often coactive,
the strength of the connection between them is increased by some sort of “growth
process, or metabolic change”. This has been one of the most influential ideas in
neuroscience, both for theoretical and experimental research. The great majority of
models of neural learning are in some sense “Hebbian”: learning rules with few excep-
tions assume that synaptic strength changes are related to the correlation of activity
in the pre-synaptic and in the post-synaptic cell. A lot of versions of the Hebb learn-
ing rule exist, probably claiming to be more different between each other than they
actually are (for a review see e.g. Hertz, Krogh, & Palmer, 1991), and a large amount
of research was carried out in the field of “learning theory”, with approaches origi-
nating from computer science and statistical physics (see e.g. Sompolinsky, Tishby,
& Seung, 1990).
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The impact of Hebb’s ideas on experimental neurophysiology was even more strik-
ing. An entire field of research was born, trying to find the physiological mechanism
of the “growth process, or metabolic change”. An in vitro analogue was eventually
found (Bliss & Lomo, 1973), the Long-Term Potentiation (LTP) which is observed
in hippocampal synapses after simultaneous synaptic stimulation of the pre-synaptic
and the post-synaptic cells. The mechanism of LTP and the relationship between the
LTP (and related phenomena) and learning (in the Hebb’s sense) are very delicate
issues, yet to be solved. In fact, LTP is usually induced by means of very artificial
protocols, involving innaturally strong, long, or patterned stimuli, conditions that
never occur physiologically. On the other hand, for example, blockade of what is
thought to be the key molecular agent in LTP induction, the NMDA glutamate re-
ceptor has been shown to cause learning impairment in behaving animals (see e.g.
Morris, Anderson, Lynch, & Baudry, 1986) although the evidence is far from being
satisfactory (Barnes, 1995).

1.2 The anatomical substrate of the cell assembly

There is little doubt that recurrent connections between neurons dominate the brain,
and particularly the cortez, the phylogenetically more recent and advanced part of the
brain, including the hippocampus (archicortex), the pyriform cortez (olfactory cortex
or paleocortex) and the neocorter, that is, the hemispheres (Braitenberg & Schiiz,
1991).

As the hippocampus is one of the main objects of this thesis, and since it has
distinctive anatomical features, we postpone the discussion of it to sec. 2.1, and we
give here a few data regarding the neocortex, stressing the role of recurrent processing
there.

The neocortex, like the hippocampus, has a planar organization; it is a sheet of
tissue, about 2 mm thick, containing the cell bodies of the neural cells, the neurons,
and covering the hemispheres. This thin, gray looking tissue (gray matter) overlies a
lighter tissue, with no cell bodies, made mainly of fibers (white matter).

The neural circuitry looks very similar throughout the neocortex, which for this
reason is also called isocortez. According to Braitenberg and Schiiz (1991), there are
three fundamental types of neural cells. Pyramidal cells, so called for the shape of
their cell body (or soma), represent the majority of the cortical neurons (between
62% and 85% in the rat brain) and they are pre-synaptic to excitatory (or Type I, or
asymmetric synapses, as they are called for the appearance of the synaptic membrane
when examined at the electron microscope); the neurotransmitter at those terminal
is usually glutamate. They have two distinct dendritic trees, one pointing upward,
towards the exterior (apical dendrites), and the second one spreading in the lower
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tiers of the cortex (basal dendrites). The axons can spread for long distances in the
gray matter, as they also form the fibers connecting different cortical areas (through
the white matter). Pyramidal cells also form the fibers exiting the cortex towards
subcortical structures. They receive both excitatory and inhibitory synapses, the
excitatory ones mainly on special dendritic excrescences called spines, the inhibitory
ones on the cell body and on the proximal part of the dendritic tree. Other spiny
cells, smaller and without the apical dendrites, are found in layer 4 of sensory cortices,
in which they are the major recipients of the thalamic inputs: spiny stellate neurons.

There are cells with no spines on their dendrites, and in general with no axonal
arborization outside the cell’s proximal region. These are called smooth cells, and
they are generally inhibitory, using GABA as neurotransmitter.

It is to be noted that genuine input and output connections are indeed a tiny
fraction of the total of the connections between neurons in the cortex. They represent
between one in 100 or one in 1000 among white matter fibers, and the proportion
further decreases dramatically when one considers local, gray matter, projections
(which probably account for one half of the synapses afferent to a single pyramidal
cell).

The pattern of connections suggest an organization of the cortex in columns, repre-
senting the basic functional unit. The size of the column is determined by the typical
range of the axonal arborization of pyramidal cells plus the length of the dendritic
trees, altogether around 1-2mm. Pyramidal-pyramidal connections represent the vast
majority of the synapses in the cortex, around 90% (Braitenberg & Schiiz, 1991). In
a column, there are about 10° neurons (let us consider here the pyramidal cells only,
which are the majority of the cells and are probably the ones mainly responsible for
actual computations), each one receiving 7 — 8 x 10° excitatory synapses (in the rat),
of which about one half from neurons in the same column. This yields a connectivity
fraction ¢, (that is, the average fraction of cells in the column making synapses with
a given cell.) of ~ 0.03. This is a quite sparse connectivity, but still it implies that
there is a lot of excitatory feedback within one cortical column: one can pass from
a neuron to another one in a column, in one or two synaptic steps with very high
probability. These recurrent connections have been invoked many times as a very
important component in determining the functional behavior of the cortical modules,
as we will see in the following of this thesis.

Each patch of cortex is further organized in layers. The layering organization is
pretty much stereotyped across the whole neocortex (which because of this is also
called isocorter). The conventional subdivision includes 6 layers, from the most su-
perficial to the deepest. Roughly, Layer I has very few cell bodies in it, and is mainly
composed of fibers parallel to the surface. In most parts of the cortex, layers II and
II1 form a continuum, and they are rich in cell bodies. In sensory areas, layer IV is
populated by many small cells, the spiny stellate cells, which we have mentioned be-
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fore, constituting an important relay station for thalamic inputs. Layer V has many
pyramidal cell, the largest ones in the cortex. Layer VI has again smaller cells.

The laminar pattern of connections within a column is rather stereotyped, and has
been schematised by Douglas and Martin (1991b) (see also Douglas & Martin, 1998)
as follows: layer IV spiny stellate cells receive inputs from thalamic nuclei (lateral
geniculate nuclei in the case of primary visual cortex), which represent, though, only
10% of all the excitatory affering synapses. The majority of the excitatory input comes
from the cortex itself, e.g. from other stellate cells (30%) and layer V-VI pyramidal
cells (40%). Layer IV cells project to layer II-III pyramidal cells, which form a
recurrent network among themselves and in turn project to layer V-V1 pyramidal
cells, from which they receive feedback projections. Deep layers pyramidal cells are
the column’s output, sending projections in the white matter, as well as recurrent
projections. Again, this sketchy circuit is dominated by intra-cortical feedback. The
hypothesis Douglas and Martin make, along with other modelers as we will see in
the following, is that cortical feedback is the main factor in determining response
properties of neural modules, already at the level of primary sensory areas, as it is
the case for orientation selectivity in visual area V1, a problem we will discuss a little
more deeply in sec. 1.4.

1.3 Models of the cell assembly

The nature of the activity in cell assemblies is a matter of debate in the neuroscience
community, one of the main points being probably which features of the activity
encode information. For some authors, the precise temporal structures of the spike
trains are important, and the correlation between spike timing in different cells is
also extremely relevant. In this point of view, synchrony between spike from different
cells carries information (Phillips & Singer, 1997) for example playing a fundamental
role in solving the binding problem in visual cortex: cells encoding different features
pertaining to the same object need to be tagged in some way, to allow a coherent
representation of the object itself. A version of the Hebb’s cell assembly theory
including time coding was for example formulated by Abeles (Abeles, 1991). The
opposite point of view denies the significance of the fine temporal structure of neural
activity: cells would encode information only through their time averaged firing rate
(rate coding) (Shadlen & Newsome, 1994; Amit, 1995). This was the approach taken
by the first attempts at formalization of the cell assembly theory (Marr, 1971). Marr
introduced the concept of auto-associative memory, that is, a memory that can be
addressed through its content. When such a memory is given a corrupted, or partial,
version of one of the items encoded in the connection structure, the positive feedback
is capable of correcting the errors and yield a less degraded, or even perfect, version
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of the encoded item.

Hopfield revived this idea, and suggested a toy neural implementation of an auto-
associative memory (Hopfield, 1982), with neural “units” more resembling Ising spins
as used in the theory of ferromagnetism. Hopfield work has been very important from
the historical point of view, because it put into light the analogy between such neural
systems and disordered magnetic systems. A part of the statistical mechanics com-
munity, more or less the same that in the same years was studying the prototypes of
disordered statistical systems, the “spin glasses” (Mezard, Parisi, & Virasoro, 1988)
got then interested into neural networks. The Hopfield net had a number of attractor
states corresponding to the ferromagnetic states in a magnetic system. The attractor
states, or memories, of the net were encoded in the synaptic matrix as a superimpo-
sition of Hebbian terms. The interference between memory items generated disorder
in the system, such as it is present in a spin-glass. It became evident that the same
techniques could be used in spin glass theory and in attractor neural network theory,
for example the replica method, for averaging over quenched (static) disorder. This
approach revealed to be very fruitful, leading to a complete statistical mechanics anal-
ysis of the Hopfield net (Amit, Gutfreund, & Sompolinsky, 1987), and successively
of many related models (Amit, 1989). The main object of the statistical mechanics
analysis of this class of models is the storage capacity that is, the number of possi-
ble items that can be stored before the interference between their encoding in the
synaptic matrix disrupts the attractor, or “retrieval” states. An interesting related
quantity is the information capacity, that is the amount of information that can be
stored in the synaptic matrix and then retrieved through the attractor dynamics.

The Hopfield net was by no means a realistic representation of a real neural
module. Neurons were represented by binary variables, assuming an active state (1)
and a non-active state (—1), and the system is symmetric for permutation of 1 and
—1 states. This has no analogue in a real neural system: in particular, in a Hopfield
stable configuration each neuron has a probability 0.5 of being active, while only a
small fraction of the neurons in a brain module is active at each moment (sparse
representations). The problem was addressed by many modelers, who considered
a modified Hopfield model in which the active state was represented by 1 and the
inactive state by 0. In each attractor state, as encoded in the synaptic matrix, only
a fraction a (the sparseness) of the units were active (Buhmann, Divko, & Schulten,
1989). Another problem with the Hopfield model was the binary representation of the
activity of the neurons: Real neurons have a wide and graded dynamic range, and in
physiological conditions they stay very far from the maximum activity, or saturation
state. A slightly better modelization of neurons is the threshold-linear unit: firing
rate is modeled as a continuous variable, which is a linear function of the input to the
unit, if the input exceeds a threshold, otherwise it is zero. This is inspired by current-
to-rate relationships as recorded from real neurons (Mason & Larkman, 1990), and

3



12

Recurrent processing: an overview

also as can be computed from detailed Hodgkin-Huxley type conductance models,
including some kind of potassium conductance (Wang, 1998).

The statistical mechanics of the attractor network of threshold-linear units was
studied by Treves (Treves, 1990; Treves & Rolls, 1991). This kind of models intro-
duced the possibility of quantifying the additional information that could be stored
and retrieved due to the graded nature of the response, and possibly of the encoded
items.

As an outcome of these improvements of the Hopfield model, it became clear
that the analogy between spin glasses and neural nets (“replica symmetry breaking”,
“frozen states”, “slow dynamics”, see e.g. Mezard et al., 1988), was more a feature of
the Hopfield model itself. Treves (1991a) showed that the threshold-linear attractor
net has no spin-glass state, and the replica-symmetric solution is stable in nearly all
the parameter space. The analogy was lost, and part of the statistical mechanics
community interest as well, but the techniques remained, and they are still a useful
tool for investigation of biologically interesting problems, even in this thesis, see cap. 3.

The statistical analysis of models of the Hopfield class gives little hints about the
dynamics of a real neural system. It focuses on the static properties of the network and
it can characterize the equilibrium properties of it. Also, an incorrect interpretation of
the Glauber-type dynamics that sometimes is used in simulations of such networks can
lead to misleading conclusions about the dynamical properties of real systems, as we
will discuss in cap. 4. The variable describing the state of a unit in these models, being
discrete or continuous, represent a time-averaged firing rate. To address many issues
about dynamics, it is on the other hand important to describe the system in terms of
spike timings (this even if what is encoding information is the firing rate). Then one
needs a model of the process that generates spikes. Probably the simplest possible
model is the integrate-and-fire neuron: each cell is modeled as a capacitor which is
charged by synaptic current and is discharged by a leakage conductance. When the
capacitor (“membrane”) potential reaches a certain threshold, a spike is emitted and
the membrane potential reset. This model has a lot of problems, for example its
current-to-rate relationship is highly non-linear, while both real neurons and more
detailed conductance models show an approximately threshold-linear current-to-rate
relationship. Still, it can be a good model for understanding the behavior of large
networks of neurons (Amit & Brunel, 1996). This is the model used in the part of
this thesis dealing with dynamics (cap. 4).
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1.4 The role of recurrent processing in brain func-
tion |

The conclusive evidence for attractor states, caused by the positive feedback gener-
ated by the recurrent connections, has not been found yet in any region of the brain.
Nevertheless, the anatomical facts we have summarized in sec. 1.2 about the pre-
ponderance of the recurrent connections, and the computational power of feedback
processing evidentiated by the very first theoretical speculations, as we have seen,
gave rise to many hypotheses about the possible role of recurrent processing in ex-
plaining the function of several brain areas. These functions range from the relatively
elementary processing performed in primary visual areas to higher cognitive func-
tions; many of them relate to the hippocampus, and they will be discussed in cap. 2.
Self-sustained activity in a recurrent, excitatory, auto-associative memory, network
has been invoked as an explanation of working memory function. Working memory
(Tanaka, 1992) is a temporary, short-term buffer, which stores the data used to carry
on the task the subject is performing. One electrophysiological correlate of working
memory is delay activity in tasks in which some variable has to be remembered in a
delay period between the presentation of the variable itself and a behavioral response.

A classical example is the experiment by Goldman-Rakic and coworkers (Kojima &

Goldman-Rakic, 1984) in which a monkey had to remember the position in its visual
field of a simple stimulus (a flash of light) and successively make a saccade in that
direction, after a delay period. Simultaneous recording from cells in prefrontal cortex
showed the persistent neural activation during the delay activity. The activation was
selective, in that cells responded to a specific stimulus position only.

Other remarkable examples of delay activity are the experiments of Miyashita
(Miyashita, 1988; Miyashita & Chang, 1988; Sakai & Miyashita, 1991) in which a
monkey was shown a series of images (fractal geometric patterns, with no particular
meaning); after each image, a delay period followed, then the presentation of a test
image. The monkey had to perform a delay match to sample task, that is, it had to
say, by means of some motor response, whether the test image was the same as the
previous one or not. The activity of the neurons in the inferotemporal (IT) cortex,
which is a higher visual area, involved in object recognition, was recorded during
the delay period, which lasted for up to 16 seconds, as well as during the stimulus
and the response phase. Sustained delay activity was found, and notably, the delay
activity pattern was not identical to the stimulus activity. This would fit in the at-
tractor network paradigm (Amit, 1995), in which the internal representation of an
item is determined by the matrix of strengths of the recurrent collaterals, being an
attractor of the dynamics induced by those connections. The recurrent connections
are “learned”, in the Hebbian sense, during the training phase, reflecting the corre-
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lations in the activity generated by the stimuli in the area under consideration. The
activity configuration elicited by the stimulus can be different from the internal rep-
resentation, and can be corrected by the attractor dynamics during the delay period.
If the monkey is trained with the images presented always in the same sequence,
images presented in neighboring positions in the sequence may have correlated in-
ternal representations, with correlations decaying with the distance between images
in the presentation sequence. It has been suggested (Griniasty, Tsodyks, & Amit,
1993) that this is due to Hebbian learning producing terms in the synaptic matrix
proportional to the correlation between the activity generate in the neural module by
subsequent stimuli in the presentation sequence. In this case the recurrent network
works as auto-associative memory in the proper sense, as synaptic connections reflects
the Hebbian traces of previous experiences, that can be recalled by presentation of
the same item, or of a similar one. We have examples, from primary sensory areas,
in which the recurrent synaptic matrix, and the attractor states generated, do not
reflect experience, at least not in a direct way, but they shape the way the sensory
stimulus is processed. We will only mention here the case of orientation selectivity
in the primary visual cortex (V1): in V1 there are cells that selectively respond to
bars oriented in a given direction, while they are minimally responsive bars oriented
in the orthogonal direction. Orientation selectivity is absent from the response of the
previous processing station, that is, the thalamic nucleus LGN. The early theory of
orientation selectivity (Hubel & Wiesel, 1962) hypothesized that receptive fields of
LGN cells projecting to an orientation selective cell in V1 are aligned, providing a
greater excitation in the case of a stimulus aligned with the axis of the receptive fields
distribution. According to this theory, the origin of orientation selectivity would be
mainly feed-forward. More recently, other theories have been proposed, suggesting

- that the great deal of recurrent connections in the visual cortex, as we have discussed

in sec. 1.2, is the main origin of orientation selectivity. This can be achieved if cells
in V1 with similar preferred orientation (PO) are connected with excitatory synapses
of strength decreasing with the difference of the POs. In the proper parameter range,
this “recurrent V1” network, has attractor states in which only cells with PO point-
ing in a certain direction are active even in the absence of orientation selective inputs
(Ben-Yishai, Bar-Or, & Sompolinsky, 1995). Thus, this theory would be capable
of accounting for the independence from input contrast which has been observed in
V1 (for a review see Sompolinsky & Shapley, 1997), fact which challenges the feed-
forward theories of orientation selectivity. In this case, the origin and the function of
the recurrent connections matrix is not the memory of some specific item, they reflect
some statistical feature of the environment which was seen during early development
in a critical period, or perhaps even statistical features of the spontaneous activity in
the retina before birth (Shatz, 1996), and it is likely that the underlying mechanism
is again some form of Hebbian synaptic plasticity. In the hippocampus we will see
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a very similar case with the path-integration and head-direction cells systems, also
including some form of continuum attractor network, which is one of the objects of
this thesis.

1.5 This thesis

The objects of his work are two aspects of the theory of recurrent processing. In
cap. 2 and 3 we deal with spatial processing in the hippocampus, analyzing with
statistical mechanics methods the multi-chart path-integrator, a model for spatial
computation in the rodent hippocampus. The model allows to draw parallels between
the spatial-computational function of a recurrent network, such as the hippocampus,
or some part of it, and information storage function, as it is usually considered in auto-
associative memory theories. Cap. 2 provides some background and the rationale for
the work, while cap. 3 deals with the technical treatment. Cap. 4 focuses on different
aspects of the dynamical of auto-associative memories, that is the time-scale of the
attractor dynamics, and the stability of the attractor states. While the study of these
dynamics aspects, and particularly of the speed of processing issue, was inspired by
considerations about the visual system, which is known to work extremely fast, we
think that these are very important problems for the theory of processing in the brain
in general. The approach undertaken in the work presented in cap. 4 aims to include
more and more element of realism in the models under consideration, trying to single
out the most determinant ones for the function of the system, and to figure out how
they change its behavior.
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Chapter 2

Recurrent processing in the
hippocampus

The hippocampus is one of the most widely studied brain structure, for the distinctive
position and architecture that makes it particularly easy to identify (and record from)
the different regions within it, both in vivo and in slice preparations. As a result,
a large amount of information is available about the anatomy and physiology of
the hippocampus, at all levels. Long-Term Potentiation and Long-Term Depression,
candidate phenomena for the role of cellular correlates of learning, were also found
first in this brain structure. This was of particular interest considering what is known
about the functional role of the hippocampus. In fact, this structure was recognized
as involved in learning and memory. Scoville and Milner (1957) described a patient,
known as H.M., who showed anterograde amnesia after bilateral hippocampal removal.
This patient could not form new memories of his recent experiences, but he was still
capable of remembering his experiences prior to surgery. Other patients, with similar
syndromes, and similar deficits, were found in the following years, for example Zola-
Morgan, Squire, and Amaral (1986) described a patient, R.B., whose only brain
damage was a bilateral loss of the CA1 field of the hippocampus, assessed by post-
mortem analysis. This patient showed anterograde amnesia like H.M. but less severe,
suggesting the hypothesis that the memory impairment was related to the fraction of
the hippocampus being lesioned.

The hippocampus, or better the medial temporal region was found to be particu-
larly involved in spatial memory: Damage in this region in monkeys produced deficit
in learning object-place memory tasks in which both the object seen and the place
where it is seen are to be remembered (for review see Rolls, 1996a) although evi-
dence exists that the surrounding cortical areas are more related to memory (with no
particular spatial character) than the hippocampus itself.

A very large amount of evidence about the role played by the hippocampus in
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processing and storing spatial information has been collected in rodents. Rats with
lesioned hippocampus cannot learn navigational tasks which imply complex spatial
computations: one classical example of that is the Morris water maze, in which the
animal swims in a pool filled with opaque water and has to learn to find a submerged
(and invisible) platform, relying only on remote visual cues. Hippocampally lesioned
animals cannot learn this task, while they are able to learn a modified task in which
the platform is made visible or is signalled by some local visual cue (Morris, 1981;
Morris, Garrud, Rawlins, & O’Keefe, 1982). In vivo electrophysiological studies have
shown that the main correlate of activity of principal cells in the hippocampus is the
animal’s position. These cells are therefore called place cells and represent one of
the most studied phenomena in behavioral neurophysiology. Place cells and related
models are one of the main focuses of this thesis, so we present a review of the main
theoretical and experimental findings in sec. 2.3.

2.1 Some anatomy

The anatomical investigation of the hippocampus goes back in time to the Golgi
studies of Ramon y Cajal (Ramén y Cajal, 1911) and Lorente de No (Lorente de N6,
1933a, 1933b). Many reviews have been published on this topic, see e.g.(Amaral &
Witter, 1995), (Amaral & Johnston, 1998). Here we just sketch the findings of greater
importance for the following of this thesis, and we limit ourselves to the anatomy of
the rat hippocampus.

A large anatomical unit known as the hippocampal formation is defined, formed
by six cytoarchitectonically distinct regions: the dentate gyrus, the hippocampus
proper, further subdivided in the CAl, CA2, and CA3 subfields, the subiculum,
presubiculum, parasubiculum (these three latter known as the subicular complez),
the entorhinal cortex. The reason to group together these regions is that they are
linked by largely unidirectional synaptic projections forming a “loop”, or a circuit.
This is a feature which is seldom found in connections between neocortical areas
which are mostly reciprocal or bidirectional. Other surrounding cortical areas in
the temporal lobe, like the perirhinal cortex, does not share the same connectivity
property with the rest of the hippocampal formation, having bidirectional connections
with the entorhinal cortex.

Another possible criterion in grouping anatomical regions is the layering struc-
ture: the hippocampal proper and the dentate gyrus have a characteristic three layer
structure, with one layer of principal neurons and fiber layers above and below. The
entorhinal cortex has a structure more similar to the standard, six-layers structure of
the neocortex, of which it is actually part. Pre- and para-subiculum have a distinctive
layering structure, but they are usually included in the multilaminar structures.
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In the rat, the hippocampus represents a significant fraction of the whole brain,
also due to the relatively undeveloped neocortex. It is an elongated, banana-shaped
formation, from the septal nuclei rostrally to the temporal cortex caudally. It is
composed of two interlaced, C-shaped sheets, extending through the whole length,
the dentate gyrus (DG), and the hippocampus proper or Cornus Ammonis, with the
subfields (from the closest to DG to the farthest) CA3, CA2, CA1l. The structures
of the subicular complex and the entorhinal cortex (EC) surround this two sheets
system.

The DG and CA sheets, have a similar layer structure. In DG, the principal cells
(roughly, the glutamatergic (excitatory) cells which project outside DG) or granule
cells are in a middle layer (granule cell layer).

In rat DG the number of granule cells has been estimated in a range from 0.6 x 10°
to 2.2 x 10°. Granule cells dendrites extend perpendicular to the granule cells layer,
in what is called the molecular layer towards the exterior of the hippocampus. The
axons leave from the cell body on the opposite side, in the polimorphic layer, and
form the mossy fibers.

In CA the principal cells are called pyramidal cells from the shape of the cell
bodies. They are distributed across a middle layer called the pyramidal cell layer.
Their dendrites extend in both directions perpendicular to the pyramidal cell layer.
The apical dendrites point to the inner part of the hippocampus, through the stratum
lucidum, the stratum radiatum and the stratum lacunosum-moleculare. The basal
dendrites, with a smaller total length point towards the exterior of the hippocampus,
in the stratum oriens. Estimates of the number of pyramidal cells in CA are about
3.3 x 10° in the CA3 subfield and 4.2 x 10° in the CA1 subfield (see fig. 2.1). Fig. 2.2
shows a schematic diagram of a transverse section of the rat hippocampus, with
drawings of the shape of the principal neurons, and the length of the dendritic trees,
subdivided among the different layers.

Many other types of cells are present in DG and in CA: most of them are inhibitory
GABA-ergic cells. They differ by morphology, connectivity pattern and positioning
in the DG and CA layers. They are present in a much smaller number than principal
cells (in DG about two orders of magnitude smaller), but they are fundamental in
determining the dynamics of the activity in the hippocampus, for example in all the
oscillatory collective phenomena that characterize local hippocampal EEG.

The classical basic circuit of the hippocampus is an unidirectional sequence of
pathways known as the tri-synaptic circuit (EC — DG — CA3 — CA1, see fig. 2.3)
. The entorhinal cortex (EC), which receives, through the perirhinal and post-rhinal
cortices, projections from all the sensory areas, and can therefore be seen as a sort of
highest order sensory area, projects to the dentate gyrus and to CA3 via the perforant
“path, which originates from layer II of EC, pass through (perforates) the subiculum,
and terminates on DG in the molecular layer, with a very orderly and topography pre-
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Figure 2.1: Estimates of the number of principal cells in different regions of the
hippocampal formation, from Amaral et al. (1990): There are about 1 x 10° granule
cells in DG, 3.3 x 10° pyramidal cells in CA3, 4.2 x 10° pyramidal cells in CA1,
1.28 x 10° in the subiculum (inserted in the hippocampal circuit in this figure) and
about 2 x 10° cells in the layer II of the entorhinal cortex, projecting to DG.

serving connection pattern, which accounts for ~ 85% of all the synaptic connections
in the molecular layer.

The granule cells, the principal cells in DG, project through the mossy fibers on
the proximal dendrites of CA3 principal (pyramidal) cells, which therefore receives
two distinct input systems. Mossy fibers show a very small degree of divergence and
convergence. It has been estimated that each mossy fiber contacts approximately 14—
28 CA3 pyramidal cells, conversely, each pyramidal cell receives about 50 contacts.
As a matter of comparison, each cell in CA3 gets about 1.2 x 10* synaptic contacts
from the perforant path from EC. On the other hand, the position on the proximal
dendrites and the large size of the synapses suggest that their efficacy is particularly
strong.

The pyramidal cells of CA3 project to all fields of the hippocampus proper. Most
importantly they give rise to an extensive projection (associational connections) onto
themselves and a big projection (Schaffer collaterals). These projections are very
divergent: on average each pyramidal CA3 cell contacts as many as 30,000 to 60,000
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Figure 2.2: A transverse section of the rat hippocampus from Amaral and Johnston
(1998), showing the shape of the principal neurons (granule cells in DG, pyramidal
neurons in CA). The length of the dendritic trees (in pm) of the granule cells in
the molecular layer and of the pyramidal cells in the stratum lacunosum-moleculare,
stratum radiatum, and stratum oriens (and total lengths). Assuming a density of 1
synapse/pm, the figures given are also indirect estimates of the synaptic convergence
onto hippocampal cells.

other pyramidal cells (among the 3 x 10° pyramidal cells in rat CA3), and with
a certain geometric gradient (along the septo-temporal axis of DG one encounters
from cells projecting to a narrower region to cells with a more widespread axonal
arborization) span much of the extent of the hippocampus.

Due to the associational connections the CA3 region may act as a recurrent net-
work, and for this reason it is seen by many modelers as “the heart” of the hip-
pocampal system. The widespread connection pattern calls for unitary processing of
information in the CA3 region, which therefore may form a single network from the
functional point of view. CAl, in turn, projects to the deep layers of the entorhinal
cortex, via the subiculum.

In the sketch of the hippocampus we have just drawn many connections are miss-
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Figure 2.3: A representation of the hippocampal circuit, along with the main critical
input-output pathways, from Rolls (1996b).
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ing: several secondary projections between hippocampal regions are also present, as
well as projections from and to many subcortical areas. We will not discuss these
important feature, as they are outside the scope of this work.

2.2 Models of hippocampus in memory

The data available from hippocampal neuroanatomy, on the one side, and the knowl-
edge from behavioral neurophysiology, electrophysiology, lesion studies etc. about
the computational role of hippocampus on the other, call for a quantitative theory
capable of putting in relation the two kinds of evidence, and of giving a plausible func-
tional explanation of the processing performed in this brain structure. In principle,
this approach may provide us with predictions, requirements and constraints about
the organization and the function of the underlying neural system. It is possible to
analyze in this sense the size of the neural populations, the connectivity structure, the
features of the pattern of activity shown by the cells, and to investigate how these as-
pects of the system, or better the parameters determining their statistics, were tuned
by the evolution to develop a system capable of performing the tasks it appears to be
dedicated to. Moreover, the hippocampus seems to have rather different functions in
different mammalian species, the most studied examples being rodents and primates
(humans and non-humans), whereas the anatomy of the system seems to preserve the
same gross features — at a statistical level, after the obvious rescaling in population
sizes, connectivity etc, passing from the “small” rodent brain to the “large” primate
brain. The theory may then try to explain how similar systems can be optimized for
different tasks. Part of the work in this thesis addresses specifically this latter point.

2.2.1 Marr’s first attempts

The class of models we are talking about have a common origin in the work of David
Marr (Marr, 1970, 1971), who was the first to attempt to use statistical tools to draw
conclusions about neural systems’ function starting from neuroanatomical data. At
the time he did his work, Marr had a limited amount of anatomical and neurophys-
iological evidence available, compared with what we have today, and could not use
the powerful tools from statistical physics which have been developed in the last two
decades. Nevertheless, most quantitative models of neural functions are inspired by
his attempts, more or less openly.

Marr tried to explain the hippocampus (the archicortez) as a mainly memory
system, as opposed to the meocortex capable of memorizing and classifying. Marr
recognized the possible role of auto-associative memories, or in his terms, free simple
memories, in correcting and completing neural representations, and also pointed out
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that two relevant parameters in determining the performance of the system were the
connectivity level and the sparseness, that is, how many cells are active in a typical
representation. This two hypotheses have been made clearer in more recent years as
we will see in the next section

2.2.2 Recent models of the hippocampus as a memory

Recent models of the hippocampus may be divided in two classes. The first one,
inspired by neurophysiological findings from primates, tends to privilege the memory
role of the hippocampus. The second one stems from the rodent literature, and is
mostly concerned with the role of hippocampus in spatial computation. We will
discuss both classes, then we will try to formulate a few suggestions about possible
links between the two theories.

In primates, hippocampal damage impairs specifically, among others, object-memory
tasks, that is, tasks in which the monkey had to remember the object seen and
the place where the object was seen (Smith & Milner, 1981; Parkinson, Murray, &
Mishkin, 1988; Gaffan, 1994). This suggests that the hippocampus participates in
the memory of spatial context, or better, of the spatial relationships between objects.
This kind of memory is formed very fast (one-shot learning), and amounts to “snap-
shots” of the scenes the animal is presented with. This kind of hypothesis is supported
by the fact the the hippocampal formation receives inputs from all the higher sen-
sory areas, in particular from the ventral visual stream (carrying information about
objects) and the parietal, or dorsal visual stream, which is more specialized in spatial
information (Milner & Goodale, 1995). In fact, the hippocampus itself may be the
first area where full convergence of the different sensory streams is achieved, as some
kind of topographical and modality segregation is preserved in the immediately pre-
vious stages, that is, the perirhinal and parahippocampal cortices, and the entorhinal
cortex (Suzuki & Amaral, 1994). The deficit pattern following lesions to perirhi-
nal and parahippocampal cortices is actually different from the one for hippocampal
lesions, including recognition tasks like delayed non-matching to sample, object reten-
tion, and 8-pair concurrent discrimination) (Zola-Morgan, Squire, Amaral, & Suzuki,
1989; Zola-Morgan, Squire, & Ramus, 1994).

Electrophysiological recordings from the hippocampus provides further support
for this hypothesis: in monkeys hippocampal cells can respond differently to stimuli
presented in different positions in space, or even respond to a particular combination
object-location, in a egocentric frame of reference or in different allocentric frames of
reference (for a review see Rolls, 1996a).

In the modeling work of Alessandro Treves and Edmund Rolls, (Rolls, 1996b;
Treves, Skaggs, & Barnes., 1996) the heart of the hippocampal system, the module
in which ultimately all the sensory streams converge, is an auto-associative memory,
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identified with the CA3 region for its extensive recurrent collaterals. The hippocam-
pus is the locus of episodic memory, that is, the kind of memory which subsume
many objects and relation between object in a snapshot of a episode (see also Co-
hen & Eichenbaum, 1993). The auto-associative memory implemented in CA3 could
form spatial snapshot memories as well as episodic memories, with equal efficiency.
The formal analysis was carried out based on recurrent networks of threshold-linear
neurons (and related architectures) (Treves, 1990; Treves & Rolls, 1991). Memories
are represented in the recurrent network as stable (and static) activity configurations
characterized by the sparseness of the representation, defined as

(>2iri/n)?

a S 12/n (2.1)
where r; are the cell firing rates. Note that if 7; can only assume the values 0 and 7,
(binary activity configurations) the sparseness is equal to the fraction of active units.
As in Marr’s intuition, the sparseness and the connectivity determine the memory
storage capacity, that is, the maximum number of different items (configurations of
active and inactive neurons) that may be stored in the net before disruption of the
attractor retrieval states. The capacity is given by the formula:

C
max ~ 0.2—————
P alog(1/a)

where C represents the average number of modifiable synapses afferent to a neuron.
As it evident from this formula, sparse coding increases the storage capacity of the
network, in terms of the number of storable items. The downside to this is that
each item carries less and less information as it gets sparser. In fact, the information
carried by each item is equal to the Shannon entropy of the corresponding activity
configuration. For strictly binary configurations:

Livem = —(1 —a)log(l —a) —aloga (2.2)

and a similar amount is obtained for the non-binary configurations observed in the
real system. The result of these two contrasting effects is that the total storable
information, Iio; = Pmax/item 15 Weakly increasing with sparser codes. By inserting in
the formula reasonable estimates for rat CA3, that is; a ~ 0.02 and C ~ 1.2 x 10%,
one obtains ppax ~ 30000 different items. The corresponding I, is approximately
0.2-0.3 bits per synapses.

The analysis of (Treves & Rolls, 1991) is carried out for uncorrelated activity
configurations, with no particular structure. To apply to the spatial memory case, the
analysis needs to be extended, to consider items which are spatially organized. The
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work we will present in cap. 3 while referred to a different model of the hippocampus,
is an example of how to adapt the analysis to include the geometrical structure of the
representations.

This model takes over the idea of the hippocampus as a circuit in which the
information flows unidirectionally: CA3 is the key element in the circuit, which is
modelized as a cascade of networks with Hebbian plasticity.

In particular the CA3 autoassociative net would receive inputs from the entorhinal -
cortex (perforant path) and from the dentate gyrus (mossy fibers). The dentate gyrus
(which has more cells than the CA subfields), could contribute in orthogonalizing the
represntations. From the analysis in (Treves & Rolls, 1992) the hypothesis was raised
that the large number of weak synapses in the perforant path are not suited to effi-
ciently store information in the CA3 network, as they are not capable to overcome
the effect of the recurrent collaterals in determining the state of the network, while
the strong mossy fibers synapses, with little convergence and divergence, are suited
to effectively clamp the activity configuration in order to cause efficient storage of the
newly learned item. On the other hand, the perforant path would be the main source
of input for the retrieval of stored inputs, calling for the need for two input streams
to CA3. An alternative theory of storage and retrieval is suggested by the experi-
mental data of Hasselmo and Schnell (1994), who showed that synaptic transmission
trough Schaffer collaterals in CA1 is 90% suppressed by acetilcholine (ACh), which
leaves unaffected the perforant path. As Schaffer collaterals are formed by the same
axons that form the recurrent collaterals in CA3, and as the hippocampus receives a
cholinergic input from the septal nuclei, it is possible that this latter input is capable
to switch the hippocampus from a “retrieval” mode, in which CA3 is dominated by
the collaterals, to a “storage” mode, in which the recurrent dynamics is suppressed
by acetilcholine, and the perforant path is able to encode new items. This hypothesis
is also supported by the findings that while ACh suppresses synaptic transmission, it
enhances LTP in the Schaffer collaterals.

The processing stage right after CA3 is the CA1 subfield, which is the circuit out-
put stage to the entorhinal cortex. CAI has a larger cell population than CA3 (which
seems to be the narrower point in the hippocampal channel), so that it can re-expand
the compressed representation in CA3. CAl is modeled as a feedforward network,
or an hetero-associator, with Hebbian synapses, which can contribute in increasing
the information content of the hippocampal output. A quantitative analysis (Treves,
1995) suggested that the CA1 operation is optimized if the Schaffer collaterals (pro-
jection from CA3 to CAl) share the same synaptic plasticity as the associational
collaterals (recurrent projections of CA3 onto itself).
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2.3 The place cells system

The picture that arises from the experimental findings in the rat seems to be very dif-
ferent: a great deal of experimental work has addressed the role of the hippocampus
in spatial memory and computation. Also, the notion of space cognition is very dif-
ferent between rodents and primates: monkeys have a very developed visual systen,
they can hold a complex representation of their environment, including the location
of many objects they see and their spatial relationships, useful for planning of motion
and action. Rats have a much more primitive visual system, and their cognition of
space is probably very influenced by somatosensory and olfactory (local) cues. The
main object of rats’ representation of space is therefore likely to be their own posi-
tion in space. This point of view is supported by the key finding that hippocampal
principal cells recorded during behavioral tasks are mainly correlated with the ani-
mal’s position. This was first observed for CA1 and CA3 pyramidal cells (O’Keefe
& Dostrovski, 1971): each cells fires when the animal is in a certain region of space.
These cells were therefore called place cells, and the regions of space in which they
get active were called place fields. Place cells are a consistent representation of the
animal’s position. In fact, it has been shown (Wilson & McNaughton, 1993) that the
position of the rat can be reconstructed, by means of a decoding algorithm, from the
firing of an ensemble of cells. Many different kinds of information are to be integrated
to generate such a representation of the animal’s position such as place cells provide.
Kinesthetic information has to be used, that is, information about the animal’s mo-
tion, as well as visual (and other sensory) information. Moreover, local and remote
visual cues have been proven to affect place cells in different ways. All these different
Inputs interact in a complex way shaping the behavior of the place cells system.
The place cells system (or the navigational system as it is the set of structures and
functions allowing the rat to navigate, that is, to find its way in the environment) have
been decomposed by many theorists (see e.g. Redish & Touretzky, 1997 in smaller
subsystems dealing with the computations involved. The path integration system
integrate the kinesthetic cues to compute the animal’s trajectory (and the current
position) with reference to some starting position. It needs to make use of information
about direction of motion, roughly equivalent to head direction, which is what the
head direction subsystem computes. The result of this computation must be corrected
and completed with information about the cues present in the environment (local view
subsystem) to yield a coherent representation of place (place code). The association
between these subsystems and specific brain structures is undefined. Although several
hypothesis have been formulated, it is well possible that each logic subsystem include
many of the same brain structure, among the ones which take part in the spatial
computation system. We now give a brief overview of the main experimental findings
and theoretical suggestions about these subsystems, emphasizing on the possible role
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of recurrent processing.

2.3.1 Head direction cells

To be able to compute the trajectory, the navigational system has to know about the
direction the rat is heading to. It needs a compass system, which seems actually to ex-
ist in the brain in the form of direction cells, that is cells tuned to the orientation of the
animal in space. Such cells have been found in three distinct subcortical brain areas:
in the postsubiculum (PoS, or dorsal presubiculum, part of the hippocampal forma-
tion) (Ranck, 1984; Taube, Muller, & Ranck, 1990), in the anterior dorsal nucleus
of the thalamus (AD) (Blair & Sharp, 1995; Knierim, Kudrimoti, & McNaughton,
1995; Taube & Muller, 1995), and in the lateral mammillary nuclei (LMN) (Leonhard,
Stackman, & Taube, 1996). This three structures are interconnected and therefore
they form a unitary system. A few suggestions about the functions of this system
are given by the findings that lesions to AD disrupt head direction related firing in
PoS (Goodridge & Taube, 1994), while postsubiculum lesion do not disrupt head
direction related firing in AD (Goodridge & Taube, 1994; Taube, Goodridge, Golob,
Dudchenko, & Stackman, 1996). The compass system remains coherent, even when
the rat is placed in a different environment, and the differences between preferred
orientation of cells remain constant. In the three brain regions, the head direction
systems works in the dark as well (Taube et al., 1996), presumably driven by vestibu-
lar inputs (after vestibular lesion head direction selective firing is lost (Stackman &
Taube, 1997)) In the three brain regions, the tuning curves of head direction cells are
about 100° wide.

The fact that the head direction system is capable of maintaining direction related
activity even in the dark, and when the animal is not moving (therefore virtually in
absence of any input) suggested to theorists including attractor networks in their
models of the head direction system. In fact, a system similar to what has been
invoked to explain orientation selectivity in the primary visual cortex (see sec. 1.4),
and to the model of place cells we analyze in cap. 3, may account for head direction
selectivity: with some variation among different models, cells have excitatory recip-
rocal connections with cells with similar preferred orientation (so that the network is
topologically arranged on a ring), and all the cells are inhibited by a non-structured
population, which controls the average activity. Such a net, in the appropriate pa-
rameter regime, exhibits stable direction selective firing configurations (due to the
attractor dynamics) even in the absence of any input. The vestibular inputs (related
to angular velocity) have then to update the representation, by driving it clockwise
or counterclockwise. This can be accomplished if the angular velocity input activates
another set of synapses, unidirectional (non reciprocal) and therefore capable of dis-
placing the activity configuration in a moving wave-like fashion. In the version by
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Skaggs, Knierim, Kudrimoti, and McNaughton (1995) the head direction cells project
to left and right rotation cells, which are also driven by vestibular inputs. The ro-
tation cells in turn project to the head direction cells left or right of the ones they
receive input from. When the rat moves, the rotation cells are activated and they
cause the attractor representation to displace. Zhang (1996) proposed that head di-
rection cells are subdivided in two populations, labeled as left and right, each one
receiving vestibular input in correspondence with clockwise and anti-clockwise head
rotations. The two populations are in turn asymmetrically connected to the left and
right neighbors. When there is no vestibular input, the two populations are equally
activated, and the situation is equivalent to having symmetric connections only, so
that one has stable configurations. The vestibular input activates differentially the
two populations revealing the asymmetry in the connections, and causing the activity
configuration to move. Redish and Touretzky (1996) proposed a variant of this model,
in which two attractor networks are considered, corresponding to ‘PoS and AD, and
the asymmetric connections are multiplicatively modulated by the angular velocity, in
order to allow the network to track angular displacements at different angular veloci-
ties. A model of head direction cells also has to include a mechanism by which visual
cues may “reset” the system: an excitatory selective input strong enough to move the
activity configuration to point in the desired direction. The effect of the excitatory
input may be to make the activity configuration slide to the new configuration, or to
make it jump abruptly, depending on the angular distance between the old and the
new configuration, as it was pointed out in the visual orientation selectivity theory
context by Ben-Yishai et al. (1995).

2.3.2 Path integration

Path integration, or dead reckoning, is defined as the ability to come back to the
starting point after some, even complex and tortuous, exploratory trajectory, in the
absence of any visual landmark. More generally, path integration is the ability to
integrate the information about self motion (body motion and head direction) to
keep track of the vectorial (in two dimensions) displacement from the starting point.
This system is integrated with the place field system, being one of its main logical
inputs. The computations the path integration system has to perform are in some
sense similar to the ones performed by the head direction system. Velocity inputs are
to be integrated in time, in this case as well as in the head direction case, to track a
trajectory, and if necessary corrected by visual inputs, this time in a two-dimensional
space. The representation of position must be stable even in the absence of any input,
and this suggests a role for attractor networks in some stage of the system. The
identification of the different components of the path integration system with brain
regions is still a matter of debate, but a number of hypotheses have been formulated,
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all assuming the existence of an attractor system with symmetric connections, which
keep the representation stable, and asymmetric (or offset) connections set which are
in charge of moving it according to the velocity input.

The details change from one model to another: Samsonovich and McNaughton
(1997) proposed that the attractor stage of the path integrator resides in the hip-
pocampus, more specifically in the CA3 stage, that is, it coincides with the place
cells system (the P stage, in the authors’ terms). The P stage has a set of offset con-.
nections to and from the I stage, which contains a representation of place x velocity,
that is, it has cells responding to particular combinations of place and motion. This
stage may be identified with the subiculum, post-subiculum, and para-subiculum,
where cells were found with directional place fields (the cells get activated only when
the rat crosses the place filed in a particular direction), even in the case in which
hippocampal place cells were non-directional (Taube, 1995; Sharp & Green, 1994).
The I stage receives input from the head direction system modeled in the same way as
in Skaggs et al. (1995), This model was criticized for the very complex wiring scheme
required, and the complexity is even increased by the fact that in the hippocampus
(the P stage) multiple arrangements of place cells are seen in different environments
(see the next section), so that multiple wirings must exist between the I and the P
stages. Samsonovich and McNaughton (1997) assume that the path integration con-
nectivity is pre-wired, probably “learned” in some critical period during development
(see also next section). The P stage also receives visual inputs from the V. stage, that
is, the cortex through the entorhinal cortex relay. The visual input can correct and
update the representation in the P stage. ‘ :

Sharp (1997) proposed in contrast that the path integration system be located in
the subiculum, as place cells in the subiculum show approximately the same arrange-
ment in different environments. Redish and Touretzky (1997) proposed that a loop
between the parasubiculum, the subiculum and the superficial layers of the entorhinal
cortex be responsible for path integration.

2.3.3 Recurrent processing models for the place field system

We have seen already that recurrent processing plays an important role in the models
of the spatial navigation system. In the head direction and in the path integration
systems auto-associative memories were used as a buffer to temporarily store the
current direction/position, capable of updating it by integrating a velocity signal.
The strongest arguments in favor of the auto-associative memory hypothesis are the
fact that place fields are still observed when the rat is moving in the dark (Quirk,
Muller, & Kubie, 1990), and the fact that if the light is lit off during the recording
session, the place fields arrangement stays unchanged, even though more cells show
place fields in the light than in the dark and place fields are generally more reliable in
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the light than in the dark (Markus, Barnes, McNaughton, Gladden, & Skaggs, 1994).
Thus, place cells can be generated in the absence of visual cues, updated by path
integration only, and maintained in an input independent way.

Moreover, place fields may be seen from the initial entry in an environment (Hill,
1978), even though it may take 10-30 minutes for them to stabilize (Wilson & Mc-
Naughton, 1994). This was explained by assuming some kind of pre-wired connectiv-
ity structure: Zipser (1986) and Sharp (1991) supposed that the local view system is
largely pre-formed. In contrast, Samsonovich and McNaughton (1997) assumed that
the attractor structure responsible for path integration, and probably located in the
hippocampus, is pre-wired. This model relies on the extensive recurrent connectivity
which is observed at least in the CA3 subfield of the hippocampus. Synaptic connec-
tions between two cells encode the distance between the place field centers of the two
cells, that is

Jij o< F (7 = 7jj) (2.3)

where Ji; is the synaptic strength between cell ¢ and cell j, which have place fields
centered respectively in 7; and n;, and F(z) is a monotone decreasing function of its
argument. The system is also thought to have non-specific inhibition, keeping the
average activity level limited. As we will see in cap. 3, in a wide parameter regime
this system has place-related stable states, activity peaks, or activity packets, as they
were termed by Samsonovich and McNaughton (1997), that is states in which activity
is confined to cells with place fields nearby (as it is actually the case for hippocampal
place cells, see fig. 2.4). The activity packet can be moved by the path integration
machinery as we have seen in sec. 2.3.2. 4

Muller and Stead (1996) formulated a similar model, in which recurrent connectiv-
ity was not taken as pre-wired, but was shaped by hebbian learning during experience,
and reflects information about the possible routes between a start and a goal point
in the environment (see also Blum & Abbott, 1996).

Another experimental fact proposed a fundamental ingredient for the model of
Samsonovich and McNaughton (1997): in different environments completely different
arrangements of place fields can be seen, that is the spatial relationship between the
place fields centers of two given cells can be completely altered (see e.g. Bostock,
Muller, & Ranck, 1991 and Markus et al., 1994). The place field arrangement can
be changed partially by changing the behavioral task the animal has to perform
(Markus et al., 1995), or even completely, after returning in a previously visited
environment after distraction, in aged animals (Barnes, Suster, Shen, & McNaughton,
1997). If the place cells arrangement are indeed in large part determined by the
recurrent connections in some auto-associative network and these are to be determined
previous to experience, then multiple place fields arrangement must be pre-wired and
co-exist at the same time in the synaptic matrix. This can be achieved in a way very
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Figure 2.4: The activity packet as it was reconstructed by Samsonovich and Mec-
Naughton (1997) from the experimental data of Wilson and McNaughton (1993).
The firing rate of about 100 hippocampal cells is plotted here, versus the position of
the place field centers of the cells. The plot is the result of averaging across many-
snapshot of ensemble activity, with the space coordinates realigned in order to have
the rat position always at the point (100,100).

similar to what is done in Hopfield-type models of auto-associative memory: different
charts, as Samsonovich and McNaughton named the arrangements of place fields, are
superimposed in the synaptic matrix, in a linear fashion. Many terms like the one in
eq. 2.3 are summed up to form the synaptic matrix: :

1 P
Jij“-ﬁZF(ﬁf—ﬁf) (2.4)
p=1
As in the case of Hopfield-type auto-associative memories, the superimposition of

many, uncorrelated items (charts in this case) in the synaptic matrix cause interfer-
ence, and as the number of stored items increases, interference eventually disrupts



2.4 The formal analysis of hippocampal models

33

the attractor states related to each of the items, in this case the chart states.

The analysis of the multiple chart-attractor network is one of the objects of this
thesis, and the mathematical treatment is presented in cap. 3. In the following section
we present the motivations and state the results in a non-technical way, referring the
reader to the next chapter for technical details. ‘

2.4 The formal analysis of hippocampal models: a
possible synthesis

Up to here we saw two apparently very different theories of the hippocampal func-
tion, one “episodic memory” theory mainly inspired by the (human and non-human)
primates literature, but with related experimental findings in the rat as well (see e.g.
Eichenbaum, Kuperstein, Fagan, and Nagode (1987)), and one “spatial navigation”
theory, based mainly on the neurophysiological evidences in rodents.. The main point
of contact between these two points of view is the importance attributed to the recur-
rent connections present in the hippocampus, especially CA3. Mammalian species,
from rodents to primates, seem to share the same anatomical features, such as the as-
sociational CA3 pathway, although there is not a comparable amount of quantitative
evidence for the monkey as there is for the rat.

The role auto-associative memories play in these two theories is nevertheless very
different: in the episodic memory theory, CA3 collects multi-modal sensory input
and can form on the fly a coherent representation of them, containing also informa-
tion about the spatial relationship between objects in the scene. Learning-related
modifications are supposed to occur on the input pathways synapses and on the re-
current synapses, according to an Hebbian rule. Stored items can be later retrieved,
maybe to be transferred in long-term storage sites in the neocortex as Marr (1971)
proposed, for example during sleep. Re-activation of correlation between neural ac-
tivity recorded from two cells during behavior was observed during sharp-wave sleep
(Wilson & McNaughton, 1994), as a hint that activity configurations which occurred
during behavior are being retrieved, perhaps due to some kind of attractor dynamics.

The performance of the auto-associative memory network is a subject of theoreti-
cal analysis: the number of stored items, the quality of retrieval, the total information
stored in the network, the time required for the dynamics to approach the attractor
states are all quantities of relevance for the function of the net, and ones that can be
addressed by analytical and/or numerical means.

In the formal models, storage of patterns is modeled as Hebbian modifications
that build up to form the synaptic connection matrix. If n¥ (for example, we may
assume that the ns can be 0 or 1) is the the activity level of unit 7 in the u-th of p
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stored patterns, the synaptic connection matrix reads, in the simpler models:

ki
Jiy = Z 77577]”

u=1

—~
[R]
n

~

As we have anticipated, the main parameters determining the storage efficiency of
the network are the sparseness (as defined for example by eq. 2.1) and the connectivity
structure. The connectivity structures can be characterized be their degree of dilution:
a fully connected network, in which every unit is connected to all the others, and an
extremely diluted network, in which each unit receives connection from a vanishing
fraction of the others, represent the two extremes of a range of possibilities. They
also are two analytically addressable cases: more precisely, we define the extremely
diluted network as the network in which the number of connections C a unit receives
on average is

C ~logN

where N is the number of units in the network, when N — o (Derrida, Gardner, &
Zippelius, 1987). If we define the tree of ancestors for unit 7 as the set of unit sending
connections to unit ¢, plus the set of units sending connections to this latter set, and
so on recursively, the trees of ancestors for units 4 and 7 have null intersection with
probability 1 in this limit. Thus, the activity of unit 7 and unit j are uncorrelated,
and the effect of interference reduces to a trivial Gaussian term, which makes this
limit of very easy (and exact) solution. It is a little incorrect to define the network
in this limit as a recurrent network, though: there is no feedback loop closing here,
so virtually no “recurrent connections”.

On the contrary, the fully connected network is dominated by feedback and this
makes the analysis more difficult (see e.g. Amit et al., 1987, Treves, 1990), requiring
the replica trick (or related tools) to average over the static noise due to the interfer-
ence by the other stored items, when the network is in an attractor state correlated
to one of the items. In the threshold linear units case, anyway, with sparse coding
(that is, only a small fraction of the units are active) it is shown (Treves, 1991a)
that the replica symmetric solution is stable and it is the valid one (we do not enter
in the details of the replica theory, the reference book for these subjects is the one
by Mezard et al. (1988)). In this case the mean field equations describing the stable
states are very similar to the extremely diluted case (Treves & Rolls, 1991), with a
Gaussian noise term, which gets normalized by the effect of the feedback, just like
the transfer function gain does.

In this framework it is possible in both cases to calculate the network storage
capacity, that is the number of items pmax which can be stored in the synaptic matrix,
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preserving the retrieval states (attractor states correlated with one of the items). For
the extremely diluted network, this is given in first approximation by the scaling law

C

Prmax ~ O-QW- (2.6)

The fully connected network has in general a smaller storage capacity, but for very
sparse coding, its storage capacity approaches the extremely diluted network capacity
(see fig. 2.5). This means that sparse coding in some sense reduces the effect of
feedback, as one could intuitively conclude from the observation that sparse coding
makes less synapses active at a given time.

As we can see from eq. 2.6, the storage capacity diverges when a — 0 that is, for
extremely sparse coding. This does not mean that the efficiency of the network as
a information storage device becomes infinitely good: as we already mentioned, the
total storable information lipy = Pmaxlitem 1S a slowly changing function of a. The
total amount of information stored can be evaluated in a fraction of bits per synapses
(Tsodyks & Feigelman, 1988), see fig. 2.6

2.4.1 Spatial information encoding in an auto-associative
memory
In the place cells/path integration model by Samsonovich and McNaughton, the recur-

rent synaptic connections are pre-wired, perhaps during some kind of critical period
in the early development. They are not supposed to change during exploration, not

even in new environments. On the other hand, they provide a geometric structure,

“sheets” where pieces of knowledge about different environment can be attached, con-
structing a “map” of the environment itself. The “map” also has path integration
capabilities, as it is connected to a more complex apparatus, as we have seen. Never-
theless, the two models are based on the same mechanism: several items are stored in
the synaptic matrix by linear superimposition and, as long as interference is not too
strong, the network has attractor states related to each of the items. The multi-chart
path integrator model is a model of spatial information processing, and unlike other
models of its kind, it makes full use of the information storage capabilities of a recur-
rent matrix of Hebbian modifiable connections, as auto-associative memory models
do. This is a interesting starting point for a comparative analysis of the function of
recurrent processing in two contexts that were previously considered as unrelated, by
quantitative and analytical means. We are interested in studying the performance,
the storage capacity (how many charts we can store before interference disrupts the

function of the network), the information capacity (as later defined) of the multi-chart,

path-integrator, and how these quantities vary with the relevant network parameters.
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Figure 2.5: The maximal storage capacity for the Hopfield type auto-associator, as
it was calculated by Treves and Rolls (1991). Here qmax = Pmax/C is plotted here
as a function of the sparseness a. The four lines are referred (from top to bottom in
the right part of the plot) to a fully connected network with exponential patterns ,
binary patterns and to an extremely diluted network with exponential patterns and
with binary patterns.

If we find that the relevant parameters are the same as for the Hopfield-type auto-
associator (that is, again, the connectivity structure and the sparseness) and the way
network performance depends on them is similar, then we can hypothesize that a
system (as it could be CA3, or even a broader portion of the hippocampus and/or
cortex) which is optimally tuned to operate as an Hopfield auto-associator, is also
optimally tuned to work as a multi-chart auto-associator.

2.4.2 The continuum (space) nature of information does not
affect information encoding efficiency

The statistical mechanics analysis of the multi-chart auto-associator was published
in Battaglia and Treves (1998a), and it is presented in cap. 3.

First, we have to define sparseness: a close analog we could think of is the size
of the activity peak (the space related attractor configuration). If we study the case
in which the dynamics of the network evolves towards stable states with no external
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Figure 2.6: The maximal storable information for the Hopfield type auto-associator
as it was calculated by Treves and Rolls (1991). The maximal storable information

per synapse (in bits) is plotted here, as a function of the sparseness a. Lines as in
fig. 2.5

inputs, the size of the place field can only depend on the spread of the connections,
defined by the function F'(z) in eq. 2.4. Indeed, when all the other parameters are
equal, the size of the place field must be proportional to the spread of place fields.
we can therefore define the map sparsity as

d
2 (

[0 kd-—-—
| M|

2.7)
(see also eq. 3.48) where p is the typical range of the connections in the synaptic
matrix, d is the dimensionality of the chart (so for the place fields on a place case it
is d = 2). kg is a proportionality factor, assumed to be independent of p between the
“effective” size of the place fields and the range of the connections. |M]| is the size of
the environment surface. To carry on the equivalence with the storage of “patterns”
i.e. simple activity configurations, and assign an activity level to each unit, we may
imagine subdividing the surface the chart is defined on, in portions occupying a
fraction a,, of the whole chart surface. To each portion we can then associate an
activity pattern, by assigning an elevated activity level to the units having place field
centers within the region, and zero activity to the remaining units. This pattern
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would be roughly equivalent to an “activity packet” in the sense of Samsonovich
and McNaughton (1997). A number 1/a,, of such patterns, or activity packets, can
completely cover the chart surface. We know from eq. 2.6 that we can store in an
auto-associative memory a number ppe, = k,C/(am In(1/am)) of patterns of sparsity
am In an auto-associative memory. (k, is a proportionality factor. We could assume
that the amount of interference noise a chart causes in a network is equivalent to the
amount caused by 1/a,, patterns (covering the chart surface). If this was the case,
then we would find a storage capacity in terms of charts, for the extremely diluted
network:
C
Cmax = k}m (28)

Although the analogy is extremely lousy — it does not keep in consideration the
fact that there are many more possible attractor states (actually, a continuum) than
the set of patterns (or of activity packets) we considered — the formal treatment we
developed and we will present in cap. 3, proves formula (2.8) to hold, at least to the
leading order in 1/a,,. The mathematical machinery yields the exact values for the
ky and the k proportionality factors, appearing in egs. 2.7 and 2.8. k, is about 3.6
for the 2-dimensional model and 4.5 for the uni-dimensional model. % is about 0.5.
Thus, we can read eq. 2.8 as though each chart is substituted, for the sake of capacity
calculations, by a set of 1/a,, patterns corresponding to activity packet with a radius
of (kg)"/?p in the chart space. kq gives us the effective size of the activity packet.
Indeed this effective size is comparable to what is obtained directly by computing the
average shape of the activity packet (see fig. 3.4). It is also interesting to compare
the average activity packet shape (averaged over the interference, or static, noise) in
fig. 3.4 with the shape calculated by experimental data in fig. 2.4. It is to be noted
that, if we assume that the place field centers of the units are uniformly distributed
over the environment, the size of the activity packet coincides with the size of the
typical place filed. 7

If we substitute in eq. 2.8 the figures we used in sec. 2.2.2 (a, ~ 0.02 and C' ~
1.2 x 10*) we obtain a value of ~ 500 for cy... The estimate can be further refined by
recognizing that not all the cells take part in all the charts. Our capacity calculation
can be modified to take this new fact into account as follows: if a fraction a, of cells
has a place field in an environment, and each chart has a map sparseness a,,, then
we can imagine constructing a larger chart by tiling 1/a, charts, one in which all the
cells have a place field in. The bigger chart has a sparsity a,,a.. We can apply eq. 2.8
and find that up to

C

;oo I ]
e = M T aman)) (2.9)
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“big” charts, or

. c |
e = K T lamal)) (2.10)

“sparse” charts can be stored.

We can evaluate the fraction of cells having a place field in a given environment
as ~ 20%. If a typical place field spans, say, 1/20 of the environment, we get a value
of ~ 800 storable charts. From eqs. 2.8 and 2.10 it turns out that the number of
storable charts decreases when a,,, that is, the size of the activity packet, decreases.
We must bear in mind though, that a chart with smaller activity packets (or smaller
place fields) is equivalent to an larger number of more distributed charts. Thus, the
analogy with the Hopfield-type pattern auto-associator is still valid.

2.4.3 A definition of encoded space information

In the model of Samsonovich and McNaughton (1997) the multi-chart auto-associator
is only marginally seen as an auto-associative memory: the recurrent connections are
pre-wired, and they do not underlie any experience dependent change. The synaptic
matrix does not encode any information about the experienced world. Nevertheless,
it is still interesting to quantify the efficiency of the system in terms of stored (and
retrievable) information. The first question is: What is the network storing infor-
mation about? The function of the multi-chart auto-associator, the P stage in the
spatial navigation system of (Samsonovich & McNaughton, 1997), is to receive inputs
from a visual sensory stage and to organize them spatially, in a map, and to give the
map path integration capabilities. The spatial organization of many different envi-
ronments (or even different logical representations of the same environment), can be
stored in the feed-forward connections between the V stage and the P stage, thanks
to the multi-chart mechanism. The feature equivalent to the quality of retrieval in
Hopfield-type auto-associators in this class of networks is therefore the precision of
the spatial localization of the visual (or sensory) components of a scene.

The spatial navigation system locates sensory cues through an association between
representations in the V stage and cells in the P stage. The precision of the local-
ization of sensory cues is therefore the precision of the localization of the place field
centers of the cells in the multi-chart auto-associator. Let us consider a very extreme
situation in which the local view (containing local and distal landmarks etc.) A is
seen from the position z4. In the cortical V stage A is represented by the activation
of the set of neurons ¢4, which project uniquely onto the cell c4. c4 is therefore the
“spatial grandmother cell” of A. ¢4 has a place field centered in z4. We assume
here that the spatial selectivity properties of c4 are only determined by the recurrent
collateral in the multi-chart stage P. The precision with which A can be associated
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to the position x4 is therefore determined by the precision with which the place field
center of ¢4 can be evaluated from the activity of the cell itself.

There are two sources of noise limiting this precision: there is the static noise
caused by the traces in the synaptic matrix of the non-active charts, which will cause
the activity packet to enlarge, and its profile to get fuzzy, then there is the effect
of the irregular firing of the cells. Firing of hippocampal place cells is extremely
irregular, probably well approximated by a Poisson process. This implies that there
is an uncertainty associated with any estimate of the mean firing rate (which in our
assumption is the variable carrying information) derived from a sample of activity
in a limited time window. As we are now interested in storage of information in
the synaptic matrix, we will only consider the first source of noise, leaving to the
discussion section a few remarks about how the two sources relate to each other.

The activity of the cell can be monitored while the rat is wandering in the envi-
ronment, covering ideally the whole surface. As the activity packet is displacing, the
activity can be sampled infinitely many times with the rat in different locations. The
information about the cell’s place field center does not diverge while we collect more
and more samples, though, since the activity values measured in nearby locations will
be correlated, so they not yield independent information. In mathematical terms, we
want to calculate the limit

.14
Tehart = Sh_)ngo ‘C"I(fcl:w {Véu(k)}kzl...s) (2.11)

of the mutual information between the place field of cell ¢4 in the u-th chart, as it
encoded in the synaptic structure, and a set of activity samples {V} (k)}. As it is
normalized in eq. 2.11, Iy, is the information per afferent synapse to cell c4. To
yield the total stored information per synapse, this quantity must be multiplied by
the number of stored charts pmay.

This information will depend in general on the size of the activity packet: the
smaller the packet, the smaller the place field and the better the precision we can .
estimate the place field center with, and on the amount of static noise. The full
calculation of I,., as defined in eq. 2.11, is not feasible analytically. We have devel-
oped an approximated procedure to calculate I, based on the idea of calculating
the wnformation correlation distance l; defined as the distance between two positions
of the rat such that the correspondgin activity packets give independent information.
We calculate the quantity ¢ that is, the information about the place field center
we get from a single sample of activity, then we calculate the quantity I$"*(]) which
is the information from two samples of activity collected with the rat in two positions
at a distance [. For [ = 0 we will have I$?(]) = I$Pa a5 the two samples will be
identical. When [ is very large, we will have I$Pat(]) = 2I¢hart, [} is defined as the
distance [ for which 5" () = (2 — €)I{*"* according to some criterion e.
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Indeed, we can imagine to sample the activity values while the rat is spanning
a lattice of position with lattice distance [; so that the information we get from the
samplings will be independent. This will yield a value for the information

| M]

Ichart ~ Il d
I

(2.12)

This value must be multiplied by the maximum number of storable pattern ppax, to
obtain the total storable information per synapse. As even this approximate method
involves very lengthy numerical computations, we were only able to evaluate this
quantity for 1-dimensional charts. In this case we get a result of a fraction of bit
per synapse, comparable to the maximal storable information for a Hopfield-type
auto-associator.

2.4.4 Simulations of the multi-chart network

To give a flavor of the function of the multi-chart auto-associator, we present here the
result of simulations of a fully connected network of 900 neurons. Due to the small
size of the network, it was not possible to estimate with some precision the network
storage capacity, so we only show here some stable activity configurations or attractors
of the dynamics. The simulations were performed as follows: p charts were created

by assigning to the i-th unit a place-field center 7" on a 30x30 lattice of side 1, for the

p-th chart. This procedure was chosen instead of just choosing the place field centers

randomly on a surface, because any inhomogeneity in the distribution of place field

centers disrupts the continuum of attractors on the chart surface. Only attractors
relative to activity packets concentred in chart regions with upwards fluctuations of
the place field centers density are found to be stable, as it was pointed out by Tsodyks
and Sejnowski (1994).

The connection matrix was formed as in eq. 2.4. The function F(z) in eq. 2.4 was

F(z) =exp (—_—2%) (2.13)

Neurons were represented by threshold linear-units, with activity given by

where [z]T = max(z, 0) and h; is the synaptic input

hi = Z Jij-Vj

J#

o~
[N}
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Figure 2.7: Simulated activity packets from the multi-chart auto-associator. With
900 cells, and a range of connections p = 0.2 one would expect ppax ~ 9. Here we are
in the low memory loading regime, as p = 3. A: The activity packet in the retrieved
chart is a very clean, space related configuration. B: the activity configuration, plotted
against the place filed center coordinates in a different chart. The configuration looks
random, with no spatial selectivity.

The network was initialized in a configuration in which only units with place
fields near a given point in a given chart were active. A Glauber type dynamics
were simulated and the stable states were considered. The attractor states were of
the activity packet form when plotted versus the (z,y) coordinates of the place field
centers, in the chart being retrieved, see fig. 2.7A. The activity, plotted versus the
place field centers coordinates in a different chart shows no spatial selectivity, see
fig. 2.7B.



Chapter 3

Statistical mechanics analysis
of the Multi-chart network

3.1 Introduction

In this chapter we present the mathematical analysis of the multi-chart auto-associator,
as it was published in Battaglia and Treves (1998a) In sec. 3.2 the case of a single
attractor chart stored is studied, then in sec. 3.3 the case of multiple stored charts is
analyzed and the storage capacity is found, first for a simplified model and then for a
more complex model which makes it possible to address the issue of sparsity of repre-
sentations. In sec. 3.4 the storable information in a multi-chart network is calculated,
making more precise the sense in which such a network is a store of information, and
completing the parallel with auto-associative memories.

3.2 The single map network

As a first step, we consider the case of a single attractor map encoded in the synaptic
structure, as it was proposed in (Tsodyks & Sejnowski, 1994). We focus here on the
shape and properties of the attractor states, as a useful comparison for the following
treatment of the multiple charts case.

The neurons are modelled as threshold linear units, with firing rate:

Vi = glhi — 0" = g(h; — 0)O(h; — 0) (3.1)

i.e. equal to zero if the content of the square brackets is negative. h represents
the synaptic input current, coming from other cells in the same module, 6 is a firing
threshold, which may incorporate the effect of a subtractive inhibitory input, common
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to all the cells, as it will be illustrated later on. The connectivity within the module
is shaped by the selectivity of the units. If r; is the position of the center of the place
field of the i-th cell, in a manifold M, of size | M|, corresponding to the environment,
the connection between cells ¢ and j may be expressed as

_ 1M

K(|r; = 1;)), - (32)
where K is a monotone decreasing function of its argument.
The synaptic input to the i-th cell is therefore given by

b= Y00 = 30 B = ;. 33)

If the number N of cells is large, and the place fields centers (p.f.c.) are homoge-
neously distributed over the environment M (be it one or two-dimensional), we can
replace the sum over the index j with an integration over the coordinates of the p.f.c:

h(r) = /N K (e =)V () (3.4)

Note that the normalization in eq. 3.2 is chosen in order to keep the synaptic
input to a given unit fixed when |M| varies and the number of units is kept fixed,
that is, the density of p.f.c.s N/|M| varies (the | M| factor will then compensate for the
fewer input units within the range of substantial K strength). A fixed-point activity
configuration must have the form

+
V(r)=g {/M dr'K(fr —r')V(r) — 0| . (3.5)

We could write eq. 3.5 as
Vi) - { olade Kl =r)V () =) x <0 66

where (2 is a domain for which there exists a solution of eq. 3.2 that is zero on the
boundary.

If only solutions for which €) is a convex domain are considered, the fact that
V' (r) is zero on 92 will ensure that units with p.f.c. outside Q2 are under threshold,



3.2 The single map network

45

therefore their activity is zero and solutions of eq. 3.2 are guaranteed to be solutions
of eq. 3.5. The size and the shape of the domain €2 in which activity is different from
zero is determined by eq. 3.2. As a first remark, we notice that it is independent from
the value of the threshold 6. In fact, if Vj is a solution of (3.2) with threshold 8, given
the linearity of eq.3.2 within €,
9/
Vg = 5%

will be a solution of the same equation with ¢ instead of #, with the same null bound-
ary conditions on 2. Rescaling the threshold will then have the effect of rescaling the
activity configuration by the same coefficient. This means that subtractive inhibition
cannot shape, e.g. shrink or enlarge, this stable configuration, and therefore it is
not relevant for a good part of the subsequent analysis. Some form of inhibition is
nevertheless necessary to prevent the activity from exploding. Moreover, there are
fluctuation modes which cannot be controlled by overall inhibition as they leave the
total average activity constant. They will be treated in sec. 3.3.3. It is found that,
at least in the one dimensional case, these modes do not affect stability in the single
chart case.

In absence of an external input, any solution can be at most marginally stable,
because a translation of the solution is again a solution of eq. 3.2. An external,
“symmetry breaking” input, taken as small when compared to the contribution of
recurrent synapses, is therefore implicit in the following analysis.

3.2.1 The one-dimensional case

The case of a recurrent network whose attractors reflect the geometry of a one-
dimensional manifold, besides being a conceptual first step in approaching the 2-
dimensional case, is relevant by itself, for example in modeling other brain systems
showing direction selectivity, e.g. in head direction cells (Muller, Ranck, & Taube,
1996; Touretzky & Redish, 1996), and also for place fields on one-dimensional envi-
ronments (Gothard, Skaggs, & McNaughton, 1996).

In this case eq. 3.2 reads:
R
(/ K(jr — ¥V () — 9)
~R
R)=0

g
V(R) = V(- (3.7)

For several specific forms of the kernel K it is possible to solve explicitly eq. 3.7,
yielding interesting conclusions. For example if:

K(r—r)=el, (3.8)

Vir) =
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(see also (Tsodyks & Sejnowski, 1994)) differentiating eq. 3.7 twice yields:
V'(r) = —y*V(r) + g4, (3.9)
where v = /29 — 1.

Solutions vanishing at —R and R (and not vanishing in | — R, R]), have the form:

gl

V(r) = Acos(yr) + 2—g—:—1,

(3.10)

with

_ 99
A= "By 1) cos(1E) (3:11)

The value of R for which (3.10) is a solution of eq. 3.7 is determined by the integral
equation itself: for example, by evaluating V'(R) or V/(—R) from eq. 3.7 we get:

V'(-=R) = -V'(R) = g¢#. (3.12)
Substituting (3.10) and (3.11) in eq. 3.12 we have:
tan(yR) = —v

so that

tan™t(—v) +
R n~t(—~) m‘r'
Y

Requiring R to be positive and V(z) to be positive for —R < 7 < R, leads to
choose :

_ -1
R= tMI;7%+”, (3.13)

note that A > 0.

R is then a monotone decreasing function of «, and therefore of the gain g.

This is also true for other forms of the connection kernel K. As an example,
consider the kernel:

K(r—r")y =cos(r —r') (3.14)
by a similar treatment it is shown that a solution is obtained with

1
R=-. 3.15
7 (3.15)
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The kernel
Kir—=ry=0@0-|r—7"DA-1|r—7) (3.16)

will result in a peak of activity of semi-width

i ,
R Nt (3.17)
Equations of the type (3.5) have more solutions in addition to the ones considered
above, representing a single activity peak. For example, if we consider an infinite
environment, periodic solutions will be present as well, representing a row of activity
peaks separated by regions of zero activity. These solution can be checked to be
unstable if we model inhibition as an homogeneous term acting on all cells in the same
way and depending on the average activity. Intuitively, if we perturb the solution by
infinitesimally displacing one of the peaks, it will tend to collapse with the neighbor
which has come closer.

3.2.2 The two-dimensional case

To model the place cells network in the hippocampus we need to extend this result
to a two dimensional environment. The equation for the neural activity will be:

+

Vi) =g UM 'K (- V) - 0| . (3.18)

The generalization to 2-D is straightforward if for the kernel K (|r—r'|) we consider
the one with Fourier transform is

- 2

K(p) = T5p2 (3.19)

(the two-dimensional analog of the kernel of eq. 3.8) that is, a kernel resembling the
propagator of a Klein-Gordon field in Euclidean space. The fact that this kernel is
divergent for (r — r') — 0 does not give rise to particular problems, since, in the
continuum limit of eq. 3.4, the contribution to the field A coming from the nearby
points will stay finite, and in fact two units will be assigned p.f.c’s so close to each
other to yield a overwhelmingly high connection only with a small probability. Let
us look for a solution with circular symmetry such that activity V(r) is zero outside
the circle of radius R, C(R). If we apply the Laplacian operator on both sides of

V(r) = g/ d'K(r—)V(') -6 (3.20)
C(R)
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we obtain:
VAV (') = =V (') + g8 (3.21)

(again, v? = 2g — 1), which in polar coordinates reads:

V' (r) + %V’(r) =2V (r) + ¢0. (3.22)

The solution is

gb

V(r) = AJy(vyr) + -

(3.23)

Jo is the Bessel function of order 0. For the solution to vanish on the boundary
of C(R) one must take:

g0
(29 = 1)Jo(vR)

The other condition that determines R may be found by substituting (3.23) in
eq. 3.20. Here again, R(g) is a monotone decreasing function.

As in the one-dimensional case, solutions with a non-connected (or even non-
convex) support can be seen not to be stable.

3.3 Storing more than one map

Let us imagine now that the p.f.c’s for each cell are drawn with uniform distribution on
the environment manifold M, and connections are formed according to (3.2). Several
“space representations” may be created by drawing again at random the r.p.c. of each
cell from the same distribution. The connection between each pair of cells will then be
the sum of a number of terms of the form (3.2), one for every “space representation”,
or “map”, or “chart”. With p = a/N maps, and the r.p.c. of the i-th cell in the u-th
map indicated by x*:

P
M
gy =3 B ke -, (5.24)
=1

The question that immediately arises is: what is the capacity of this network, that
is, how many maps can we store, so that stable activity configurations, corresponding
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to some region in the environment described by one map, like the ones described by the
solutions of eq. 3.2, are present? The problem resembles the classic attractor neural
network problem (Amit, 1989), with threshold linear units. A standard treatment
has been developed (Treves, 1990) allowing to calculate the capacity of a network of
threshold linear units with patterns drawn from a given distribution and stored by
means of a hebbian rule. The treatment is very simplified in the extreme dilution
limit (Derrida et al., 1987; Treves, 1991b). In the next sections it will be shown
how this treatment can be extended to the map case, first for one particular form of
the kernel K, leading to the solution of the capacity problem for a fully connected
network; in the following, the solution is extended to more general kernels, first in
the diluted limit, then for the fully connected network.

Another related question is: how much information is the synaptic recurrent struc-
ture encoding, and in which sense is the synaptic structure a store of information?
The aim is to develop a full parallel between the multi-chart network and autoas-
sociative networks, and if possible to characterize the parameters constraining the
performance of this system.

3.3.1 The fully connected network: “dot product” kernel

Let us consider a manifold M with periodic boundary conditions, that is, a circle
in one dimension and a torus in two dimensions. The p.f.c. of a cell r; can then be
described by a 2-dimensional unit vector 7; for the one-dimensional case and by a pair
of unit vectors 772»1’2 for the two dimensional case. Suppose now that the contribution
from the p-th map to the connection between cell 7 and cell j is given by:

d
K(lr(ﬂ) _ rgu)\) — Z(ﬁi(#) 77;(#) +1), (3.25)
=1
so that
1 G
= =
= SN @ v, (3.26)
p=1 [=1

where d is the dimensionality.

p = aV is the number of stored charts. Eq. 3.25 describes an excitatory, very wide
spread form for the kernel (3.2) (the contribution to the connectivity is zero only if
the r.p.c.s of the two cells are at the farthest points apart, i.e. at 180°). This spread of
connectivity would lead to configurations of activity that are large in the r.p.c. space,
that translated in auto-associative memory language would be very “unsparse”, i.e.
very distributed representations. It is therefore plausible that this will severely limit
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the capacity of the net. In any case, the form of (3.25), factorizable in one term
depending on 7j; and one term depending on 7j;, after incorporating the constant part
in a function b°(z), makes it possible to perform the free energy calculation through
Gaussian transformations as in (Treves, 1990). A similar model has been studied in
(Samsonovich & McNaughton, 1997) with McCulloch-Pitts neurons.

A Hamiltonian useful to describe the thermodynamics of such a system is

Vi
H= —% > J;ViV; - NB (Z N) - ;Zj;s“#) AV (3.27)

4,5 (#17)

where B(z) = [“b(y)dy, and b(z) is a function describing an uniform inhibition
term depending on the average activity in the net. s'*) is a symmetry breaking
field, pointing in a direction in the p — th map space. The mean field free-energy
in the replica symmetric approximation can be calculated (the partition function is
calculated as the trace over a measure that implements the threshold-linear transfer
function, see (Treves, 1990)). The presence of a phase with spatially specific activity
correlated with one map will be signaled by solutions of the mean field equations with
a non-zero value for the order parameter

N
1
X = e AR (3.28)
i=1

which plays the role of the overlap in an auto-associative memory. This parameter
has the meaning of a population vector (Georgopoulos, Kettner, & Schwartz, 1988),
that is, the animal position is indicated by an average over p.f.c.s of the cells weighted
by cells activity. :

The set of resulting mean field equations can be reduced to a set of two equations,
eqs. A.7 and A.8, in two variables, the “non-specific” signal-to-noise ratio, w, and
the “specific”, space related signal-to-noise ratio v. The details of the calculation are
reported in Appendix A.

The critical value o, indicating the storage capacity of the network is the maximum
value for which eq. A.7 still admits solutions corresponding to space related activity
(non-zero v) and may be found numerically. At this value o, the system undergoes
a first-order phase-transition towards a state in which no space-related activity is
possible. Eq. A.8 gives the range of gain values for which there exist solutions at a
given o < a, (Treves, 1990).

In this model there is no possibility for modulating the spread of connections in the
chart-space. As we anticipated, the activity configurations that one obtains are very
wide, with a large fraction of units active at the same time. Cells will have very large
place fields, covering a large part of the environment (of the order of roughly one half
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for the one dimensional case, and roughly one quarter for the two-dimensional case).
As one would infer from the analysis of autoassociative memories storing patterns, for
example binary, these “unsparse” representations of space will lead to a very small
capacity of the net.

For the model defined on the one-dimensional circle the capacity found is o, ~
0.03. At this value the system undergoes a first order transition. As « increases
beyond «,, x jumps discontinuously from a finite value to zero. :

The capacity for the diluted analogue of this model (see (Treves, 1991b), Appendix
A and section 3.3.2) is given by the equation

Er(w,v) = [(1+6)As)* — ad; = 0. (3.29)

Remember that in this case p = ac/N where c is the connectivity fraction parameter,
see section 3.3.2. In this case a, ~ 0.25. At a, the transition is second order, with the
“spatial overlap” x approaching continuously zero, verified at least with the precision
at which it was possible to to solve numerically eq. 3.29. For the 2-D case, storage
capacities are a, ~ 0.0008 for the fully connected network and o ~ 0.44 for the
diluted network.

To get a larger capacity, and to provide a possible comparison with the experi-
mental data from the hippocampus, in which the tuning of place fields is generally
narrow, we must extend our treatment to more general kernels, and this will be done
in the following two sections.

3.3.2 Generic kernel: extremely diluted limit

Consider a network in which every threshold-linear unit, whose activity is denoted by
Vj, senses a field:

1 \
h; = - i Vi .
i =22 CulsVs (3.30)
J#
where J;; is given by eq. 3.24. From now on the kernel K is defined as
KiF-7) = KF-7)-K

K = <<K(F— f’)>> (3.31)
for any 7, where ((...)) means averaging over 7. With this notation, whatever the
original kernel K, K is the subtracted kernel which averages to zero. The manifold

M is taken with periodic boundary condition (that is a circle in one dimension and a
torus in the two dimensional case).
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C;; is a “dilution matrix”
1 with prob. ¢
= ’ 3.32
Cig { 0 with prob. 1 —¢ (3.32)

and Nc/log N — 0 as N — co. In the thermodynamic limit NV — co the activity
of any two neurons V; and V; will be uncorrelated (Derrida et al., 1987). A number
of charts p = aclN is stored. Looking for solutions with one “condensed” map, that
is, solutions in which activity is confined to units having p.f.c. for a given chart
in a certain neighborhood, it is possible to write the field A; as the sum of two
contributions, a “signal”, due to the condensed map and a “noise” term, pz — z being
a random variable with Gaussian distribution and variance one — due to all the other,
uncondensed, maps, namely, in the continuum limit, labeling units with the position
7+ of their p.f.c. in the condensed map,

W) = g f d K (7 — 7YV () + (3.33)
M

the noise will have a variance

p* = aglMP (I = 7)), (339
where
y=5 D0 (3:39)

The fixed point equation for the average activity profile z*(7) is

(7)) = g/+ Dz(h(7) - 0). (3.36)

where again Dz is the Gaussian measure, and

h(7) = / K (7 — )3 (7) + b(z) — pz (3.37)
and
ar 4, .
Tz = il z'(F) (3.38)
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is the average overall activity. The average squared activity (entering the noise term)
will read:

v=¢ [ & [ Do) - oy (3.39)
| M| ' '
The fixed point equations may be solved introducing the rescaled variables
I (3.40)
p
1
V() = = éﬂ. (3.41)

The fixed point equation for v(7) is

v(F) = g\ (/dT—’K(F_'F')U<'F’)+w> (3.42)
where
N(z) = 2@(z) + o(z), | (3.43)

(®(z) and o(z) are defined in eq. A.15 and eq. A.16) is a “smeared threshold linear
function”, monotonically increasing, with

lim N(z)=0

T—r—00

and

lim N(z)/z =1

T—+00

In terms of w and v(7), y reads:

y = p’g? / I—E%%M (/ di K (7 — 7)u(7) + w) (3.44)
where
M(z) = (1 + 22)®(z) + zo(z). (3.45)

By substituting eq. 3.44 in eq. 3.34, we obtain

L _ MK /dFM (/ dr K (7 — 7)v(7) + w) : (3.46)

(8
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If we can solve eq. 3.42 and find v(7) as a function of w and g, a solution is found
corresponding to a value of a given by eq. 3.46. To find the critical value of o, we
have to maximize o over w and g.

The mathematical solution of eq. 3.42 is treated in Appendix B.

With this model, we can modulate the spread of connections by acting on K (7'—7")
or alternatively, by varying the size of the environment. The results are depicted in
fig. 3.1 for the 1-D circular environment and in fig. 3.2 for the 2-D toroidal environment
(upper curves). Examples of the solutions of eq. 3.42 are displayed in fig. 3.3 for the
1-D environment and in fig. 3.4 for the 2-D environment.

We note that, as the environment gets larger in comparison to the spread of
connections (therefore, to the size of the activity peak), the capacity decreases ap-
proximately as

ae ~ —1/log(am) (3.47)

where a,, is the map sparsity and it is equal to:

kg
where k, is a factor roughly equal to ~ 4.5 for the 1-D model and ~ 3.6 for the 2-D
model.

That is, the sparser the coding, the less the capacity. This is, at first glance, in
contrast with what is known from the theory of auto-associative networks, in which
sparser representations usually lead to larger storage capacities.

For comparison, keeping the formalism of (Treves, 1990), for threshold-linear net-
works with hebbian learning rule, encoding memory patterns {ri}i=1. v with sparsity
a defined as

(for binary patterns this is equal to the fraction of active units), and for small a, the
capacity is given by

1

aplog(1/ap) (3.49)

ap ~
The apparent paradox (larger capacity with sparser patterns, smaller with sparser

charts) is solved as one recognizes that each chart can be seen as a collection of
configurations of activity relative to different points in space covering, as in a tiling,
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the whole environment. Each configuration is roughly equivalent to a pattern in
the usual sense. Intuitively, and in sense that will made clearer below, a chart is
equivalent, in terms of “use of synaptic resources” to a number proportional to a'
of patterns of sparsity a,,.

The proportionality coefficient, or equivalently, the distance at which different
configurations are to be considered to establish a correct analogy, will be dealt with
in Appendix D.

These considerations and the comparison of eq. 3.47 and eq. 3.49 make clear that
. is the exact analogue of the pattern autoassociators’ a,.

-1

107 ey

max

a'/\

107° 107 10
1/IMI

107

Figure 3.1: The storage capacity plotted as a function of the “map sparsity” a,,, for
the 1-D model, for the extremely diluted (upper curve) and the fully connected (lower
curve) limit.
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max

1072 /__—\
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Figure 3.2: Same as fig. 3.1, for the 2-D model. The capacity is smaller than for the
1-D model for the same a,,.

3.3.3 Inhibition independent stability

The dynamical stability of the solutions of eq. 3.42 is in general determined by the
precise functional form chosen for the inhibition, which we assumed a function of
the average overall activity in the net. Nevertheless, there are fluctuations modes
which leave the average activity unaltered. Stability against these modes is therefore
unaffected by the inhibition and may be checked already for a general model. Let
us consider a “synchronous” dynamics, that is, all the neurons are updated simulta-
neously at each time step. The evolution operator for the variables V'(r,¢) and p(¢)
1S:
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V(T’,t + 1) = gp(t)_/\/‘ ( y ‘C]Z\ZII((T _ 7") V(r/,t)

PE+1) = galM|p*()((K?)) x

dr' e W VLY b)) ]
/M““"M(MMIK( ORI > (3:51)

This evolution operator has as its fixed points Vo(r) = poue(r) and py where vg(r)
and pp are the solutions of eq. 3.42, 3.34, and 3.44, i.e. the stable states of our
system.

We can linearize the evolution operator around (Vo(r), po) and look for fluctuation
modes (eigenvectors) (6V (r), dp) with

Sl

o® e (350

(S5}
Q]
~——

/ dréV(r) =0 , (3.
M

We obtain the following equations:
AV (r) = g®(ug(r)) [/ dr' K (r — T')éV(?"')] + go(ug(r))dp (3.53)
M

sip = (1= Joalai(ae) [

drug(r)ve (r)) 0p+
M

2 90| M|((K%) /M druo(r)SV (r), (3.54)

where

) =7 (20,

Inserting eq. 3.53 in eq. 3.52:

Jop dr'®(uo(r)) [fM drK(r — r’)éV(r’)]
fM dro(ug(r))

Eq. 3.55 can be inserted again in eq. 3.53, obtaining a closed integral equation in
JV. Unfortunately, this equation is very difficult to solve, but we can derive a stability
condition by making an ansatz on the form of the eigenfunction 6V (7). More precisely,
let us concentrate on the 1-D case. We look for solutions with even symmetry (we
know there must be an eigenfunction with odd symmetry, and eigenvalue equal to 1,
corresponding to a coherent displacement of the activity peak). This kind of solution

0p = —
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corresponds to spreading and shrinking of the activity peak. Let us assume that
the even eigenfunction with the highest eigenvalue (the most unstable) has only two
nodes (an even eigenfunction must have at least two nodes because of eq. 3.52), at 7o
and —ry. Let us take the sign of the eigenfunction 6V (r) such that §V(0) > 0. From
egs. 3.52 and 3.55 we see that L ,

op < 0.

Now, from eq. 3.54:

A= (1 — %ga]M\((KQ» /M druo(r)vo(r)> +

1 5 sV (r) -

el MIES) [ druotr) =5, (3.56)
and we recognize that

sV (r)
/M drug(r) 5 < 0.
Thus,
A<1— —g (3.57)

with

I' = ga|M|((K?)) ; drug(r)ve(r). (3.58)

Thus, if the ansatz we formulated holds, we have a stability condition I' > 0, which
is found to be fulfilled for all the solutions we found relative to maximal storage capac-
ity. This implies that the storage capacity result is not affected by instability of the
solutions, provided of course that an appropriate form for inhibition is chosen. This
stability result is also related to the correlation in the static noise for two solutions
centered at different p.f.c.s, as we will show in App. D.

It can also be shown that by taking the oo — 0 limit (i.e. the single chart case),
one always has I' > 0 since it is vp(r) = 0 when ug(r) < 0.

3.3.4 The fully connected model

The treatment of the model with the fully connected network and a kernel K for
connection weights satisfying the condition (3.31) will use the replica trick to average
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over the disorder (the realizations of the 7’s) and will eventually lead to a non-linear
integral equation for the average activity profile in the space of the “condensed map”
very similar to eq. 3.42. Let the Hamiltonian of the system be

H= —% > JgViV; — NB (Z %) - ;Z;s“ﬂ) My (3.59)

6,5 (#1)
where now the Jf; are given by (3.24) with a generic kernel

~

KF-)=KF-7)-K (3.60)

where, again,

The free energy calculation is sketched in Appendix C. Again, the stable states of
the system are governed by mean field equations. The mean field equation, eq. C.16 is
an integral equation in the functional order parameter v(7), the average space profile
of activity.

If we are able to solve eq.C.16 and find v(7) as a function of w and g¢', by
substituting eq. C.17 and eq. C.18 in eq. C.11 we have an equation that gives us the
value of o corresponding to that pair (¢, w) o is then the maximum of « over the
possible values of (¢, w).

To solve eq. C.16, it is easy to verify that if 4(7) is a solution of

9(F) = g'N (/M A7 K (7 — 7)o () + w) (3.61)

with

that is, the same equations as egs. B.2 and B.3, then

o(f) = /Mdf" L7~ ) —

is a solution of eq. C.16. © can therefore be interpreted as the average activity profile,
apart from a constant. Eq. 3.61 can be solved with the same procedure used for
eq. 3.42, and the maximum value of a can be found by maximizing over g’ and w.
The results for 1-D and 2-D environment are depicted in fig. 3.1 and 3.4 (lower
curves). As we may expect from pattern autoassociator theory, the capacity is much
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lower than for the diluted model, due to an increased interference between different
charts.. As the sparsity a ~ 1/|M| gets smaller, the capacities of the two models
get closer, both being proportional to m, Reducing the sparsity parameter
of space representations has therefore the effect of minimizing the difference between

nets with sparse and full connectivity.

3.3.5 Sparser maps

A possible extension of this treatment is inspired from the experimental finding that,
in general, not all the cells have place cells in a given environment. Ref. (Wilson &
McNaughton, 1993) e.g. reported that ~ 28 — 45% of pyramidal cells of CA1 have a
place field in a certain environment. We would like to see how this fact could affect
the performance of the multi-chart auto-associator. It is then natural to introduce
a new sparsity parameter, the chart sparsity a. indicating the fraction of cells which

- participate in a chart. We will show that, for the capacity calculation, a_' “sparse”

charts are equivalent to a single “full” chart, of size a;!. We will present the argument
for the diluted case, the fully connected case is completely analogous.

Let m! be equal to 1 if cell ¢ participates in chart p, that is with probability a..
Thus, the synaptic coupling J;; will read

P
M
Jij = Z - N‘,K(xg“) - xg.“))mfm;‘. (3.62)
p=1 "¢

Let us consider a solution with one condensed map: cells participating with p.f.c.
in 7 in that map will have a space related signal-to-noise ratio

o(F) = g ( / K (7 — 7 Yo(7) + w> (3.63)
for all the neurons not participating in the condensed map we will have
v =N(w). (3.64)
The noise will have a variance

| M]

Qe

P’ = aacy ( )2 (K2 (7 — ™)), (3.65)

that is a, times the value we would get for the same number of “full” charts with size
|M|/ac. and now

y = p*g? {ac ; [%«IM (/ di K (7 — 7w () + w) + (1 - ac)M(w)} . (3.66)
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By comparing eq. 3.44 and eq. 3.66, and remembering that for 7 far from the
activity peak, v(7) ~ N (w) we realize that this y value is approximately equivalent
to the y value we would get for “full” charts of size |M]/a..

Inserting eq. 3.65 and eq. 3.66 in eq. 3.46, one finds, for the maximal capacity:

| 1 1 - ~ - N
c(sparse charts) ™ - . 367
Ce (sparse charts) a.log( ML) 2e10g(;) o

kgac

As we anticipated one may interpret this result as follows: the capacity is the
same as if we had taken a>' “sparse” charts, including ~ NV cells, and put them side
by side to form one single “full” chart. If we have started with aC “sparse” charts
we now have have a.aC “full charts”. From eq. 3.46 we see that we can store at most

Qe (full charts)C full charts and

1
e (full charts) ™ m
am Q¢

and this explains eq. 3.67. Therefore, this network is as efficient in terms of spatial
information storage as the one operating with full charts.

3.4 information storage

Like a pattern auto-associator, the chart auto-associator is an information storing
network. The cognitive role of such a module could be to provide a spatial context to
information of non-spatial nature contained in other modules, which connect with the
multi-chart module. Each chart represents a different spatial organization, possibly

related to a different environmental/behavioral condition. Within each chart, a cell is

bound to a particular position in space, thus being the means for attaching some piece
of knowledge to a particular point in space, through inter-module connections. To give
a very extreme, unrealistic, but perhaps useful, example, let us assume that each cell
encodes a particular discrete item, or the memory of some events happened somewhere
in the environment, as in a “grandmother cell” fashion, encoding “the grandmother
sitting in the armchair in the dining room”. The encoding of the “grandmother”
may be accomplished by some set of afferents from other modules. The multi-chart
associator can then attach a spatial location to that memory of the “grandmother”.
The spatial location encoded is ideally represented for each cell by its p.f.c.

In this sense, the information encoded in the network, which can be extracted by
measures of the activity of the units, is the information about the spatial tuning of
the units, that is their p.f.c.s.
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To restate this concept in a formal way, we look for

1 B}
L= Jim =3 > I(r}, (VY21 s) (3.68)

n 7

that is the information per synapse that can be extracted from S different observations
of activity of the cells with the animal is in S different positions , and the system
in activity states related to chart p. This quantity does not diverge as S — oo,
since repeated observations of activity with the animal in nearby positions do not
yield independent information, because of correlations between activity configura-
tions, correlations which decrease with the distance at which the configurations are
sampled.

The full calculation of this quantity involves a functional integration over the dis-
tribution of noise affecting cell activity as the animal is moving, and exploring the
whole environment. In Appendix D we suggest a procedure to approximate this quan-
tity based on an “information correlation length” [; such that samples corresponding
to animal positions at a distance [; yield approximately independent information.

I, is the amount of spatial information which is stored in the module. It is the
exact analogue of the stored information for pattern auto-associators (Treves, 1990).
As for storage capacity, it is to be found numerically, by maximization over w and g.

As for the capacity one can find the solution which maximizes /5. The resulting
Iuax 1 a function of the size of the relative spread of connections @ = 1/|M]|, and it
amounts to a fraction of bit per synapse (see fig. 3.5).

As with pattern auto-associators, the information stored increases with sparser
representations. The increase is more marked for the fully connected network. For
very sparse representations the performance of the fully connected model approaches
the extreme dilution limit. ‘

3.5 Discussion

We have studied the multi-chart threshold linear associator, as a spatial information
encoding and storage module. We have given the solution for the dot-product kernel
model, then we have introduced a formalism in which the generic kernel problem is
soluble.

The second treatment has the advantage of providing a form for the average
activity peak profile, which can be compared with the experimental data (see for
example (Samsonovich & McNaughton, 1997), fig.1).

We have shown that the non-linear integral mean field equation (eq. 3.42) can be
solved at least for one class of connection kernels K (r — r').



3.5 Discussion

63

The storage capacity for both models has been found. We note that the capacity
for the dot-product model is compatible with the wide kernel (non sparse) limit of
the generic model in one and two dimensions in the fully connected and in the diluted
condition. ‘ ‘

The generic kernel treatment makes it possible to manipulate the most relevant
parameter for storage efficiency, i.e. the spread of connections. It is shown that
this parameter plays a very similar role as sparsity for pattern auto-associators. In
the multi-chart case, moreover, the effective sparsity of the stable configurations is
determined also by the value of the gain parameter g, as shown analytically for the
noiseless case. Nevertheless, the capacity of the network depends on the spread of
connection parameter a, = kq/|M| through a relation which is the exact analogue of
the relation between sparsity and capacity for the pattern auto-associator, at least in
the very sparse limit. V

We have only considered here the capacity problem for one form of the connection
kernel, although the treatment we propose is applicable, at least, to the other kernels
considered for the noiseless case. Our hypothesis is that a similar law for sparsity is
to be found as eq. 3.47, at least in the high sparsity limit, for more general forms of
the kernel.

We have then shown that the capacity scales in such a way that the information
stored is not changed when only a fraction of the cells participate in each chart. In
this case the firing of a cell carries information not only about the position of its p.f.c.
in the chart environment, but also about which environment the cell has a place-field
in. This information adds up, so that 1/a, charts can be assembled in a single larger
chart of size 1/a, times larger.

We have introduced a definition of stored information for the multi-chart memory
network, which measures the number of effective different locations which can be
discriminated by such a net: representations of places at a distance less than /; are
confused, because of the finite width of the activity peaks, and because of the static
noise.

Ir does not vary much when |M| varies. This is consistent with the fact that the
storage capacity is well fitted by eq. 3.47 with kg ~ 4.5. [; turns out to be ~ 3.5 for
the 1-D model, with the arbitrary value for f of 0.95. [; is therefore similar to the
“radius” of the activity peak which should correspond to the “pattern” in the parallel
between the chart auto-associator and the pattern auto-associator.

It was not possible to carry over the calculation of 715 and I; in the 2-D model
as it turns out to be too computationally demanding. Therefore we are not able to
show the values of the storable information The fact that the storage capacity follows
eq. 3.47 also in this case is an indirect hint of a behavior very similar to what is found
in 1-D.
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Figure 3.3: The “activity peak” profile corresponding to the solution of eq. 3.42 at
the maximal storage level at |M| = 30 and |M| = 15. The second case is plotted
expanded to match the environment size of the first one and to show the effect of
more widespread connections.
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Figure 3.4: The maximal storage activity peak profile in 2-D at | M| = 400.
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Figure 3.5: The maximal storable information per synapse, as a function of 1/|A/|.



Chapter 4

Speed of retrieval and
stability of retrieval states
in an integrate-and-fire network

4.1 Introduction

Information processing in the brain is extremely fast. Sensory systems can produce
responses involving very complex computations in a very short time, in the range
of tens, or hundreds of milliseconds. A very striking example is the visual system:
complex scene analysis and object recognition, which require processing by higher
visual areas, can be performed in very short times. A demonstration of this is given
by the experiments of Thorpe, Fize, and Marlot (1996). Human subjects were shown
images of complex scenes, and they had to figure out whether there was an animal in
the scene or not, and react consequently. This is a very abstract task, as the kind of
animal, the view, the position of the animal in the image, the background it should
appear against, were not specified. Thorpe et al. showed that signs of a correct
detection (or even of an erroneous one) of an animal in the image show up in the
subject’s EEG trace after about 150 msec from image onset.

It is likely that visual information has to flow through 8-10 synaptic connections
from the retinal ganglion cells to the higher visual area that perform the abstract
computation. This purports 15-20 msec available for each processing stage. In this
short time, the neural module has to carry out the computation it is devoted to, and
it has to present the outcome to the next layer in a readable form. This represent an
important constraint for any theory of processing in the brain: not only the model
has to prove itself capable of solving a given problem, but it also has to prove it can
do it fast enough, once the parameters and the time scales of the real brain hardware
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are taken into account.

15-20 msec are indeed, in some sense, the elementary time scale of neurons, that
is, the time it takes to fire a spike, or more properly, the inter-spike interval, for
cells (not uncommon especially in higher sensory areas) with a typical firing rate of
50-60 Hz. Even cells with higher firing frequencies will emit a few action potentials
in that time. Also the time scales of synaptic conductances and dendritic integration
are comparable to this interval of time. Thus, the constraints coming from function
of consideration require that each neural module does its work, which is complex
and likely involves a large number of units cooperating, in the time a single unit can
fire a few spikes, or transmit a few synaptic elementary bits of information. This
seemed to some authors (see e.g. Thorpe & Imbert, 1989) to rule out a possible role
for recurrent processing in systems, like vision, that have to perform so fast. The
recurrent processing, this is the argument, involves relazation, that is approaching
an equilibrium state, an attractor. The typical dynamics of symbolic neural units
considered in earlier, statistical physics flavored models, and in models from the
Connectionist school, and even implemented in simulations is Glauber dynamics, or
some more or less close relative. In this class of dynamics at each discrete time
step, the activity value of each unit is modified according to some update rule. The
somewhat tricky point is now to identify to which time scale a discrete time step has
to correspond to, if sensible conclusions about the collective phenomena time scales
are to be drawn. The inter-spike interval, or the synaptic conductances and dendritic
integration time constants seemed to be viable choices. On the other hand, it turns
out that approach to equilibrium in attractor networks (auto-associative memories
etc.) is achieved in at least a few time steps, and this would be far too long, given the
speed of processing requirements and the time interval that would correspond to the
time step. The conclusion one could draw from this picture is that processing must be
prevalently feed-forward, with information flowing through an uni-directional chain
of synaptic relays.

Moreover, rate coding appears to be unfeasible for fast information transmission:
a reliable estimate of the firing rate of one cell requires a fairly large number N, of
subsequent inter-spike intervals to be read, since the error on the estimate is propor-
tional to 1/4/N;. Thorpe and Imbert proposed a different coding scheme, based on
the order of arrival of spikes from different cells. Many other schemes, involving the
detailed time structure of the activity, have been proposed.

What we attempt here is to re-examine this issue, starting with the assumption
that Glauber-type, discrete time dynamics are not enough to realistically describe
dynamics of neural assemblies. We need a formal model capable of representing with
some degree of accuracy what happens at the level of single spikes. The simplest
suitable model is the integrate-and-fire neuron (Lapique, 1907; Eccles, 1957) with
conductance-based synaptic transmission (Eccles, 1964). This latter feature amounts
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to assuming that an action potential event in the pre-synaptic cell causes a conduc-
tance change in the post-synaptic cell (as opposed, for example, to an injection of
current), the synaptic conductance successively following its own dynamics, typically
inactivating, or decaying, for example with an exponential time behavior. Treves
(1993) analyzed this family of models with analytical tools and yielded an analytical
formula for the time constants of the exponentially decaying transient modes, through
which firing activity in the network approaches the firing at steady state. There are
many different modes, each of which has a time constant with a real part, describing
the rate of decay of the mode, and an imaginary part, specifying the frequency of
the oscillations accompanying the decay. An important family of transients has the
real part of the time constant determined by the rate of inactivation of the synaptic
conductances opened by activity on the recurrent collaterals.

Since such rate of inactivation in the brain is typically short of the order of 10-20
msec, even when taking into account the dendritic spread not included explicitly in
the integrate-and-fire description (Hestrin, Nicoll, Perkel, & Sah, 1990; Colquhoun,
Jonas, & Sakmann, 1992; McBain & Dingledine, 1992), a prediction arising from the
analysis is that the contribution of recurrent collaterals to the retrieval of a memory
representation may take place in a relatively short time, over a few tens of msec,
independently of the prevailing firing rates and of the membrane time constants,
however defined, of the neurons in the population (Treves, Rolls, & Tovee, 1996).
The analysis has however remained incomplete, because it only describes the modes
close to steady state, and not the full dynamics from an arbitrary initial state, and
because it is unable to tell to what extent each individual mode will be activated
when the activity evolves from any initial state. These limitations can be overcome
by computer simulations of the same network model considered by the analytical
treatment.

A second aspect which has to be addressed by models that aim to be applicable
to the real brain, is that of the stability of the steady states which are taken to corre-
spond to memory retrieval. As with any steady state in the dynamics of a system of
many units, there are very many possible sources of instability. One example is the
instability of the steady states in which the firing of different units is asynchronous,
to synchronization among groups of units (Tsodyks, Mitcov, & Sompolinsky, 1993
Deppisch, Bauer, & Schillen, 1993; Abbott & van Vreeswijk, 1994; Hansel, Mato, &
Meunier, 1995). The asynchronous stable state is an important assumption for all
the conclusions from equilibrium statistical mechanics about the stable states of a
network, described in terms of firing rate to hold and be of relevance for real neural
systems. A more basic potential instability, however, arises out of the fact that the
Hebbian modifiable connections which are thought to mediate associative memory in
the brain are those between pyramidal excitatory cells. Therefore a recurrent auto-
associative memory is in itself a positive feedback circuit, and unless its activity can
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be tightly controlled by appropriate inhibition, it will tend to explode. Although
the stability of realistic networks of excitatory and inhibitory units has been studied
already (e.g., Abbott, 1991), it was not in the context of auto-associative memories.
In following section we show that there is in such networks a fundamental conflict
between stability to excitatory explosion and storage capacity. In the next section,
we show that the conflict can be avoided by inhibition which is predominantly multi-
plicative in nature. Then we go back to the issue of the time scales for retrieval, with
simulations that support and qualify the analytical predictions. The last sectoin fo
this chapter discusses the implications of these results for the operations of associa-

tive memories in the brain. This work was published in paper form in Battaglia and
Treves (1998b).

4.2 The stability-capacity conflict

A full analysis of the stability of asynchronous steady firing states must be carried
out using appropriately detailed models, but the requirements for stability against
excitatory runaway reverberations can be discussed, to start with, using a simple two-
variable model. In such a model, two variables vz and v; describe the average firing
rates of excitatory and inhibitory units, which approach their steady state values with
time constants 7 and 7;7. The steady state values are determined by these average
firing rates and by the level of afferent inputs. If we assume that, above threshold, the
dependence is approximately linear, the dynamical system can be written (Wilson &
Cowan, 1972)

TEVg = —vg+ Jhvg — Jévl—!-z/%ff (4.1)
TV = —u[-i—Jf;uE—J}I/I—H/}fo (4.2)

where the J’s are the adimensional effective couplings (signs are chosen so that they
are all positive in value) between the dynamical variables, as they emerge, essentially,
from averaging synaptic strengths across pairs of active units, and v*/7 are constant
terms, which depend on the afferent input activity and are proportional to fixed point
rates. They ensure that equilibrium rates are not zero, even if the network does not
receive any input, reflecting the capability of the network of self-sustain its activity.
If this system of equations has a fixed point, its stability requires that

Tt = (JE-1)/mg = (JF+1)/m7 <0 (4.3)
Det = —(JE-1D)(JI+1)+JEJL > 0. {4

Both inequalities can obviously be satisfied for arbitrary values of the mean excitatory-
excitatory coupling among active units, J£, provided inhibitory couplings are strong
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enough to control excitation. If we want, however, on the basis of this simple two-
variable model, to ensure the stability of a real auto-associator, both inequalities must
be satisfied with ample margins. The reason is that exactly which units are active
will be highly variable, and therefore the effective value of JE at any moment in time
will fluctuate substantially. It is easy to realize, then, that for values of the four mean
couplings much larger than 1, the determinant appearing in the second condition will
be of the order of such large value, squared. Now, the fixed point firing rates are

I+ 1) — Tt

fp
— 4.5
g Det, (4.5)
! Det ’ '

which means that if the couplings are large, under conditions of robust stability
the mean excitatory firing rate at the fixed point will be much lower than the one
determined by afferent inputs alone, vff << ve/!. This is however incompatible with
the the effective operation of the network as content addressable memory, since it
makes recurrent processing minor with respect to the feed-forward relay of the cue. In
fact, when we tried to simulate memory retrieval with large couplings, and at the same
time we insisted on the condition that local intrinsic inputs dominate over external
afferent inputs (a condition intended to mimick the observed cortical anatomy Abeles,
1991), we always run into large oscillations (Simmen, Treves, & Rolls, 1996), due to
even transient imbalances between local excitation and inhibition, which resulted in
large fluctuations in the effective couplings, and prevented the network from reaching
a steady retrieval state. Only by using as a cue the nearly complete memory pattern
we could effect proper retrieval, but then recurrent connections played only a minor
role. Therefore, to obtain robust stable fixed points we had to restrict ourselves to
smaller effective couplings, in particular to values of JE not much above 1. In that
case, since the excitatory self-coupling always appears in the combination (J£ —1), its
potentially devastating influence on the stability of the fixed point will be reduced, and
at the same time conditions will exist under which even small cues will be sufficient
to initiate retrieval. Keeping the excitatory self-coupling low conflicts, however, with
ensuring a large storage capacity, as shown next.

Consider a simple auto-associator in which the weights of the connections among
the units are determined by a linear sum of Hebbian-modification terms, as e.g.
in the Hopfield model (Hopfield, 1982). If the units represent excitatory cells and
the weights ultimately correspond to conductances, one may assume that all such a
memory structure is superimposed on a baseline connection weight, large enough as
to keep positive even the individual weights which happen to undergo more negative
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modifications . Therefore one may write for the weight between units 7 and j

P
wi; = w® + = Z( o 1)( i -1) (4.7)

where 77" is the firing rate of unit ¢ in the p’th memory pattern, < n > is the average
firing rate, the network stores p patterns with equal strength, and C is the number
of inputs per unit. The specific (covariance) form of the Hebbian term and the
normalization factor are inessential to the argument that follows, and were chosen for
consistency with previous analyses (Treves & Rolls, 1991). The minimum connection
weights will be those between pairs in which the pre- and post-synaptic unit happen
to be anti-correlated across all patterns, i.e. whenever one of the two is firing, for
example at a typical elevated rate n*, the other is quiescent. Then the condition
which ensures that the underlying conductance remains positive, even in such cases,
reads

*

w°>£ 1

> Gos (4.8)

On the other hand, the effective excitatory self-coupling, i.e. the effect that the
average excitatory firing rate exerts on each excitatory unit, is given by summing
conductances across input lines and multiplying by the gain 7y characterizing.the
unit’s input-output transform in a linear range above firing threshold,

JE = yCu®. (4.9)

Note that the Hebbian terms average to zero when summing across the C inputs.
Previous analyses (Treves, 1990; Treves & Rolls, 1991) have shown that for the net-
work to be able to retrieve memory patterns, the gain has to be sufficiently strong,
as expressed by the condition

v > ( (4.10)

a
1—a)’
where 0 < a < 1 is the sparseness of the firing patterns, defines as a =< n >? / <
n? > (Treves & Rolls, 1991). Putting now together the condition that the effective
excitatory self-coupling be at most of order 1 with the last 3 equations one realizes
why stability conflicts with storage capacity:

*

n a
<n>(1-a)

o) = JE=~vCu®>p (4.11)

'This assumption is made for the sake of clarity. In the simulations that follow, we use an

equivalent formulation, which is however less transparent to the analysis
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that is, in this case, to be stable at retrieval, the network must not store more than
a number of memory patterns

Pmaz = = O(l)l (412)

that is, more than a handful of patterns. In simulations that followed these very
specifications, we found it difficult to obtain retrieval in nets storing more than 2-3
patterns, whatever their size. The conflict arises out of requiring simultaneously dy-
namical stability and effective retrieval ability and biological plausibility (in that the
memory is stored on the connections between excitatory units, and in that each con-
ductance must be a positive quantity). It does not arise in storage capacity analyses
based on simplified formal models (Amit et al., 1987; Treves & Rolls, 1991) if one
treats connection weights as real variables that can have either sign, and can change
in sign as more memories are stored.

It is important to note that recurrent auto-associative memory models based on
an alternative simple “learning rule”, the so-called Willshaw models (Willshaw &
Buneman, 1969), although assuming only positive (or zero) weights among excitatory
units, still suffer from similar limitations. That class of models, however, is more
difficult to treat analytically (Golomb, Rubin, & Sompolinsky, 1990), and does not
lend itself to such a simple discussion of the conflict; moreover, what is limited is
not simply p, the number of memories that can be stored (which can be well above
2-3, (Amit & Brunel, 1996)), but the total amount of information that can be stored
and retrieved, which is proportional to p but also decreases the sparser are memory
patterns (and the more information need be provided with the cue).

4.3 Realistic inhibition may avoid the conflict

A seemingly innocuous assumption that was made in writing down Eqgs. 4.2 is that
excitatory firing rates depend linearly not just on themselves but also, through a
separate linear term, on inhibitory rates. This is equivalent to considering what is
sometimes called subtractive inhibition. Purely subtractive inhibition is a conve-
nient model for GABAp inhibition, that acts through K* channels of limited total
conductance, primarily by hyperpolarizing the receiving cell (Connors, Malenka, &
Silva, 1988). If co-located on dendrites along with excitatory inputs, GABAjp can
be thought of as providing an additional term which is negative in sign and hence
subtractive, and occurs on a slower time scale (Hablitz & Thalmann, 1987).
GABA 4 inhibition, which is responsible for fast inhibitory control of the activity
level of recurrent networks (Wong, 1987), is sometimes referred to as multiplicative
(or, rather, divisive) in nature. This is because it acts via Cl~ channels of relatively
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large total conductance (Connors et al., 1988) and inversion potential not far below
the resting potential; hence its effect is more shunting than hyperpolarizing. If located
on proximal dendritic branches or on the soma (Andersen, Eccles, & Bdyning, 1964),
it can be modeled to a first approximation as producing a division of the current
resulting from more distal inputs (Abbott, 1991). ‘

Purely multiplicative inhibition acting on excitatory cells would lead to substitute
the first of Eqgs.4.2 with

TEVg = —Vg + Jg(l/I)I/E + l/%ff (4.13)

i.e., the excitatory self-coupling is now a function of the average firing rate of in-
hibitory units (the second equation can be modified as well, but this is easily seen
to be irrelevant for the present discussion). To the extent that afferent inputs are
absent or negligible, at the fixed point the self-coupling takes the value 1, thereby
automatically ensuring stability, at least in the sense of Eqs.4.4 (since the terms in
JE — 1 disappear from the inequalities). Real inhibition, of course, is not purely
multiplicative, however the situation holding in this limit clarifies that under appro-
priate conditions (if inhibition is multiplicative to a sufficient degree) the stability of
recurrent networks against runaway excitation is automatically guaranteed.

As for the upper limit on storage capacity, we have checked, by repeating previous
analyses (Treves & Rolls, 1991) of recurrent associative memories of threshold-linear
units with a gain v now dependent on the average inhibitory rate, that the same exact
equations determine the storage capacity. Such a result stems from the fact that, by
acting on the gain, inhibition now keeps the effective J Z entering the stability analysis
close to 1, but it leaves identical, as the analytical treatment shows, the capacity
equations. This confirms that the form of inhibition used has no effect on such
absolute limit (a limit which with subtractive inhibition was far beyond what could
be achieved in practice). We have also carried out simulations of a simple network
model with 3000-5000 threshold-linear units as used in the analytical calculation, at
several sparseness values. We estimated storage capacity from the simulations by
progressively increasing memory load, and determining the critical level at which
no retrieval of any stored pattern was possible. Results are shown in Fig. 4.1, and
confirm the analytical prediction, which is the exact reproduction of previous ana,lybes
with subtractive inhibition (Treves & Rolls, 1991). Note that a value of the storage
parameter o = 0.3, for example, corresponds to 900 stored patterns.

We have then carried out simulations of a more detailed network model with
spiking units and conductance-based synaptic action, both in order to understand
whether realistic inhibition still allows retrieval of more than 2-3 patterns (the limit
we had on similar simulations with purely subtractive inhibition), and, once disposed
of this limitation, in order to address anew, in a realistic context, the issue of the
time scales for recurrent memory retrieval.
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4.4 Simulations show stability and fast retrieval

The simulated network consisted of N,, = 800 excitatory units and N;, = 200 in-
hibitory ones. Each integrate-and-fire unit represents a neuron as a single branch,
compartmented dendrite through which the cell receives all its input, and a point-like
soma, where spikes are generated. Though very simple, the compartmental model is
still computationally demanding, and severely limits the size of the network that we
could implement on a Linux workstation. The current flowing from each compartment
to the external medium is written

I(t) = Grear(V () = V°) + Zgj(t)(v(t) = Vi), (4.14)

where gieqr 1S a constant, passive leakage conductance, V9 the membrane resting
potential, g;(¢) the value of the j-th synapse conductance at time ¢, and V; the
reversal potential of the j-th synapse. V(¢) is the potential in the compartment at
time ¢. Synaptic conductances have an exponential decay time behavior, obeying the
equation ;

dg; : ' |
_dg%z =%y Ag Y (-], (4.15)
T4 &

where 7; is the synaptic decay time constant, and Ag; is the amount the conductance
is increased when the presynaptic unit fires a spike. Ag; thus represents the (unidi-
rectional) coupling strength between the pre-synaptic and the post-synaptic cell. ti
is the time at which the pre-synaptic unit fires its k-th spike.

For each time step of 1ms, the cable equation for the dendrite is integrated (Mac-
Gregor, 1987) with a finer time resolution of 0.1ms and the somatic potential is com-
pared with the spiking threshold V*"". When this is exceeded, post-synaptic conduc-
tances are updated and the somatic potential is reset to the after-hyperpolarization
value V%" throughout the neuron.

Connections from excitatory to inhibitory, from inhibitory to excitatory, and be-
tween inhibitory units are taken to be homogeneous, that is, all of the same strength.
Synaptic parameters depend only on the type of pre-synaptic and post-synaptic unit.
The connectivity level is 0.25, between populations and 0.5 within the inhibitory
population, that is, each unit synapses onto a fraction of the units of the receiving
population, chosen at random. The excitatory units, in contrast, are all connected
to each other. This very high connectivity, out of the actual anatomical range, is
necessary because of the small size of the simulated network, to produce sufficient
statistical averaging in the synaptic input to each unit.

Excitatory-to-excitatory connections encode in their strength p memorized pat-
terns of activity n!', consisting of binary words with sparseness (in this simple binary
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case the fraction of 1s, or active cells in the pattern) ¢ = 0.1. Encoding is imple-
mented through a modified Hebb rule. In contrast with Eq. 4.7, which includes a
baseline weight, all conductances are initially set to zero and then, for each pattern,
the synapse from the i-th to the j-th unit is modified by a covariance term

9EE 771“ 77?
Ag=2EZE ([ 1) (XL 41
I CEE(CI )(a > (4.16)

If the conductance becomes negative, it is reset to zero. Memories are therefore stored
through a “random walk with one reflecting barrier” procedure. The barrier acts as
a “forgetting” mechanism (Parisi, 1986), as whenever the conductance value bumps
into the barrier, it loses memory about the previously presented patterns. As there is
no upper boundary, the average value of excitatory connection strengths grows with
the number of memory items learned. The network is tested at low memory loading
(p = 10). A systematic study of the storage capacity of the net would not be very
meaningful because of the small size of the network.

The excitatory synapses impinge on the distal end compartment of the post-
synaptic dendrite, and they have a positive reversal potential (referred to resting
membrane potential). Inhibitory synapses are distributed uniformly along the den-
dritic body, and they have a reversal potential equal to the resting membrane potential
(except for the simulations in Fig. 4.2). Inhibition is therefore predominantly shunt-
ing, with a geometry very similar to the one considered in Abbott (1991), leading to
a mainly multiplicative effect on the post-synaptic firing rate. Table 1 summarizes
the parameters used for the simulations.

Once the connection matrix is constructed, a test of the retrieval dynamics was
performed according to the following protocol: The network is activated by injecting
a current in a random fraction a = 0.1 of the units (Fig. 4.2, panel A). The excitatory
and the inhibitory population become diffusely active. Notice that units active in the
memory pattern being tested are on average slightly more active than the other units.
This is explained by the fact that they have on average a slightly stronger excitatory
input, because the memory being tested contributes a positive term in the random
walk construction of the connection strengths. Since p is not too large even a single
term makes a difference (Amit & Brunel, 1996).

After 100 msec, the random current is replaced with a cue current, injected in a
fraction a + o(1 — a) of the units active in the pattern being tested and in a fraction
a(1l — p) of the units inactive in the pattern. In this way, the cue is again a binary
word with sparseness a = 0.1, and p is the the average correlation between pattern
and cue, which in the runs shown in the figures was set at ¢ = 0.3.

The cue current lasts for 300 msec. The average firing rate for the “1” units is
much higher than for the “0”ones. When the cue current is removed, the “1” units
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Quantity Symbol Value
# Exc. Cells Ng 800
# Inh. Cells Ny 200
Corruption level J7 0.3
Random activity period tinit 100 (msec)
Cue period teve 300 (msec)
Retrieval period treir 200 (msec)
Sampling time window twin 30 (msec)
# Dendritic compartments Nemp 10
Dendritic compartment leakage conductance Gé 6.28 x 10712 (S)
Somatic compartment leakage conductance 5 5% 1079 (S)
Dendritic-dendritic axial conductance Gdd 2.25 x 1077 (S)
Exc. Somatic capacitance Csoma,r | 0.5 — 4 x 10710 (F)
Inh. somatic capacitance Cisomal 5x 10712 (F)
Cue current Lo 0.25 (nA)
Firing threshold potential (exc.) Og 32 (mV)
Firing threshold potential (inh.) O 25 (mV)
After-spike hyperpolarization potential Vanp -15 (mV)
Excitatory-excitatory connectivity level Ceg 1
Excitatory-inhibitory connectivity level Crr 0.25
Inhibitory-excitatory connectivity level Cre 0.25
Inhibitory-inhibitory connectivity level Crr 0.5
“Unitary” excitatory-excitatory synaptic conductance [see (16)] JEE 5% 1078(5)7
Excitatory-inhibitory synaptic conductance 9EE 4% 107%(9)
Inhibitory-excitatory synaptic conductance JEE 2 x 1078(9)
Inhibitory-inhibitory synaptic conductance JEE 9 x 10710(S)
Excitatory-inhibitory synaptic time constant TEI 1 (msec)
Excitatory synaptic equilibrium (reversal) potential Ve 65 (mV)
Inhibitory synaptic equilibrium (reversal) potential Vi 0 (mV)
Excitatory-excitatory synaptic time constant TEE 5 - 40 (msec)
Excitatory-inhibitory synaptic time constant TEI 1 (msec)
Inhibitory-excitatory synaptic time constant TIE 1 (msec)
Inhibitory-inhibitory synaptic time constant TIr 1 (msec)

Table 4.1: Parameters used for integrate-and-fire simulations. Ranges are indicated

for quantities which varied within runs.
resting potential.

Potential values are referred to membrane
T The excitatory-excitatory synaptic conductance is scaled when

the synaptic time constant is varied, to preserve the total charge transmitted during

a synaptic event (see text).

The value given is the one used for 7gr = 20 (msec).

Simulations in Fig. 2 are an exception as concerns inhibitory reversal potential (see

caption of the figure) and ¢, which is set at 500 (msec).
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sag briefly but then recover and stay steadily active, while activity in the others de-
cays at zero firing or at a very low level. The memory pattern has therefore been
successfully retrieved. To test the specific effect produced by the type of inhibition,
we performed the stepwise manipulation shown in Fig. 4.2. First (panel B), all in-
hibitory connections onto excitatory cells were moved to the end of the dendritic tree,
colocalized with excitatory inputs. This made them somewhat less "multiplicative”,
and also weaker. The result is that inhibition becomes unable to suppress the firing of
excitatory units which should be quiescent, and the network fails to retrieve correctly
(the residual difference between ”1” and ”0” units being due to the finite-p effect
mentioned above). To make inhibition stronger again while maintaining its subtrac-
tive character, the equilibrium potential of inhibitory synapses was lowered in panels
C-F in steps of 10 mV. The result is that inhibition tends to suppress activity across
excitatory units, without ever allowing the retrieval state to re-emerge after removing
the cue. This manipulation then indicates that altering the form of inhibition makes
the network cross its capacity limit. Since even the first form, with the inputs spread
along the dendritic tree, is far from being purely multiplicative, this capacity limit is
well below the upper limit predicted by non-dynamical calculations.

The simulations were repeated varying the neural and synaptic parameters, namely
the excitatory synaptic time constant (changing at the same time the synaptic conduc-
tance to keep the strength of the connection invaried) and the somatic capacitance,
in order to vary the firing rate. The inhibitory synaptic time constant was kept
smaller than the excitatory time constant, in order to speed up the stabilizing effect
of recurrent inhibition.

To assess to quality of retrieval we have taken the same information theoretical
measure used when recording from behaving animals (Rolls, Treves, & Tovee, 1997,
Treves et al., 1996): The retrieval protocol is repeated for up to 30 “trials” for each
stored memory. 10 randomly selected excitatory units are “recorded”, i.e., sampled
for the number of spikes they fire in a time window of 30 ms. The window slides with
a step of 5 msec spanning the entire simulated time course. The firing rate vector
thus constructed at any time step of each trial is then decoded. This is done (Rolls
et al., 1997) by matching it with the p = 10 mean firing rate vectors produced at
the same time step when testing the retrieval of each of the memories, and finding
the closest match. The result of decoding all the trials is a probability table P(s'|s)
containing the likelihood that when testing for memory s the activity of the sample
of units was decoded as matching the average vector from pattern s’. The mutual
information between the actual and decoded pattern

Z ZP s) log, P((Ilj) (4.17)

was calculated and then corrected for limited sampling (Treves & Panzeri, 1995;
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Panzeri & Treves, 1996). To reduce fluctuations, results were averaged, at each
time step, over a number of samples of recorded units from the same run. The
resulting quantity is a sensitive measure of how well the activity of the network in
the time window can be used to discriminate which cue was presented, and unlike
simpler measures (such as the correlation of the firing vector with the underlying
memory pattern) can be used with identical procedures in simulations and in recording
experiments. y

In fig.4.3 we show the time course of the information for different values of the

excitatory time constant. The mutual information stays close to zero during the
random activity period (the small baseline is a remnant of the finite size error after
the correction), and when the cue is presented it rises steadily to an equilibrium
value, which depends on the correlation between the cue and the pattern, with a time
course well fitted by a saturating exponential. This appears to be consistent with
the linearized analysis for transients (Treves, 1993), and indicates that the transient
modes that are activated in this condition belong to a single family, i.e. they share
the same real part of the time constant. The time constant from the exponential fit
is in a close-to-linear relationship with the synaptic (inactivation) time constant, as

shown in fig. 4.4, with in the case shown a best-fit proportionality coefficient of 2.538.
Varying the firing rate does not appear to have a comparable effect on the transient

time constant: fig. 4.5 plots the transient time constant relative to different values of
somatic capacitance, corresponding to firing rates ranging from ~ 15 to ~ 100 Hz.
When the cue is removed, the information rises again very rapidly to a higher
equilibrium value, as the network is no longer constrained by the noisy cue, indicating
that the network is acting as an “error corrector” during this later phase. The second
transient is very rapid indeed, and it is in fact masked by an artifact induced by
the finite size of the time window used to measure information (the artifact is that,
during the time window, what the measure reflects is actually a weighted sum of
the lower value before cue removal and the higher value that is reached in a very
short time). In fact, if one shrinks the sample window size, this linear raise shortens
correspondingly (not shown). Although the actual time structure of this transients
is still to be clarified, it seems clear that it follows a very different mode in this
path to equilibrium. The final approach to the retrieval attractor is thus essentially
immediate. In fact, Tsodyks and Sejnowski (1995) showed that in integrate-and-
fire networks in a “balanced” regime, dominated by fluctuations, the network can
change state very rapidly as a reaction to a change in input currents. In the regime
studied in that work, excitatory and inhibitory input are precisely balanced so that
their absolute value is much larger than their algebraic sum. Input fluctuations
measured in Excitatory Post-Synaptic Potentials (EPSP) are much larger than the
voltage difference between spike threshold and after-spike hyperpolarization. That
is, fluctuations in the input can very easily drive the neuron to threshold, so that
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dynamics cannot be described in the mean-field framework. The mean-field solution

- of the dynamics is consistent with the time-scales behavior we obtain for the first

transient (cue onset), while the second transient (cue removal) in our simulations is
much faster, suggesting the possibility that the dynamics regime at that point be more
similar to that of Tsodyks and Sejnowski (1995), although the whole issue deserves
further investigation.

Finally, in fig. 4.6 we show the information behavior of the network when the
excitatory collaterals are made information-less, or memoryless, by giving them all
the same strength. A finite, small amount of information is seen in the cue phase
only, at a much smaller level than for the structured network, and it falls to zero
as the cue is removed. This demonstrates that selective activity, and in particular
the capability of this network to retrieve memory patterns, depends crucially on the
information encoded on its collaterals.

4.5 Implications for recurrent processing in the
brain

The more effective control that shunting inhibition may exert on runaway recurrent
excitation, compared with subtractive inhibition, is an intuitive principle, that has
informed direct experimental studies (Wong, 1987). What has been shown here is how
shunting inhibition, in particular, may help avoid a specific conflict between stability
and extensive memory storage that would otherwise prevent the applicability of the
abstract concept of a recurrent auto-associator to actual recurrent networks in the
brain.

An attempt to demonstrate the large conductance changes that may underlie
shunting inhibition (Douglas & Martin, 1991a) has not confirmed the expectation;
however it is unclear to what extent the model used (the striate cortex of anaesthetized
cats) is relevant to the conditions we considered of massively reverberating excitation.

Having ensured the possibility of stable asynchronous firing attractor states, sim-
ulations of a model network with spiking units and synaptic conductances have been
used to confirm and extend earlier analytical results on the time required for memory
retrieval mediated by recurrent processing to occur. The time course of the initial
approach to the attractor state is, as in the analytical treatment, a saturating expo-
nential, or a mixture of exponentially relaxing transient modes with similar (real part
of the) time constant. This retrieval time constant is a linear function of the time
constant for the inactivation of excitatory synaptic conductances, and depends only

mildly on prevailing firing rates or on neuronal time scales (as determined, e.g., by
membrane capacitance).
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In practice, the contribution of recurrent processing, in this particular instance
of an auto-associator, can be dominant already within a few tens of msec (with the
parameters of fig. 4.3, within 2.5 times of the synaptic time constant, which can be
thought of as being in the 10 msec range (Colquhoun et al., 1992)). This leads to the
conclusion that at least local recurrent processing can be fast, and that it is wrong
to exclude its relevance in cases in which neuronal activity is found to acquire its
selectivity within a few tens of msec of its onset (Thorpe & Imbert, 1989; Treves
et al., 1996).

This result lends credibility to the hypothesis that recurrent auto-association may
be an ubiquitous function of local recurrent circuits throughout neocortex, as well as
possibly the main function of recurrent connections in the hippocampal CA3 region
(Treves & Rolls, 1994). At the same time, it raises the possibility of a direct manip-
ulation of the time for such a function to be executed, by acting on the inactivation
kinetics of synaptic AMPA channels.
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Figure 4.1: Simulation results for the capacity of a network of 3000 threshold-linear
neurons (5000 for a = 0.05) are compared with the theoretical prediction (full line)

at different values of the sparseness a. The prediction arises from equations identical
to those found by Treves (1990)
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Figure 4.2: Firing rates computed with a time window of 30 msec are plotted for
excitatory units for different geometries and reversal potential V;. Units are divided
between the “1” population (upper trace), active in the recalled memory, and the
“0” population (lower trace), that was silent in the recalled memory. (A): 1V} =
0mV with respect to membrane equilibrium potential and inhibitory synapses are
distributed along the dendritic body. In this condition inhibition acts to some extent
multiplicatively on the firing rate. Efficient retrieval of the memory is shown by
sustained activity in the “1” population and complete activity suppression in the “0”
population after the cue has been removed. (B-E): Inhibitory synapses are located
on the edge of the dendritic cable. Reversal potential V; is OmV (with respect to
equilibrium) (B), =10mV (C), —20mV (D), —30mV (E) and —40mV" (F). Whatever
the reversal potential, the two populations are never satisfactorily discriminated.
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Figure 4.3: Information time course for different values of synaptic time constant.
The transient corresponding to cue onset is well fitted by an exponential function.
The raise is faster with shorter synaptic time constant.
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Figure 4.5: Transient time constant plotted for different values of somatic capacitance.
Firing rates during the cue phase ranged correspondingly from 15 to 100 Hz. No clear
dependence of the information time course is apparent when firing rates are varied in
this way.
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Figure 4.6: Information time course plotted for the structureless network compared
with time course for the network structured as in previous figures. During the cue
phase, information reaches just a fraction of the steady state value in the structured
case. After the cue is removed, information decays to zero reflecting the absence of
self-sustained activity.
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Appendix A

Replica symmetric free energy
for the “dot product” kernel model

The replica symmetry free-energy reads

1
f=-T <</Dz InTr(h, h2)>> ~3 Z %2~ B(z) ~Z([s(”)’l|x+s(”)’la:.(”)’l) -
(o),0

(o).l

ad B
> @ty — gy + iy + o <1n 1-T, - )
oy 0Yo T T1Y1 28 [ 08(yo — y1)] 1 — ToB(yo — v1)

(A1)

very much like eq.19 in (Treves, 1990) and with the same meaning for symbols,
except that the population vector x(?)* plays the role of the overlap z°, the vector
Lagrange multiplier t(®)* appears instead of its scalar counterpart ¢ and the dimen-
sionality d appears multiplying the last term. h and hy are

ho= —t—=>> t@h gl -y (—orr)1/? (A.2)
(o)l
hg = Ty —Tp- (f\g)

({...)) means averaging over the distribution of p.f.c.’s 7. T is the noise level in the
thermodynamic analysis. Ty is defined here as:

(- 7 8- 7)) = Doet (A4

and it is found to be equal to 1/2 in 1-D and to 1 for the 2-D torus.
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The saddle point equations can be found from this equations, and ¢ and t{“)* can
be eliminated, in the same way as in (Treves, 1990). Carrying on the calculation the
T = 0 equations eventually reduce to two equations in the two variables (in the case
of a single “condensed” map):

w = (=) — 9] (A.5)

p
oo XAs) (A6)

P
Take for simplicity |v!| = v (while the direction is set by v! o s'). The two

equations read:
El(w,v) = (A1 + 5142)2 - Cl(A3 =0 (A?)
Eqy(w,v) =
1

Al +0A) | ———— — Ay | —ady =0 A8
(e i) (i gy o ) o )

where § = |s?|/|x*| is the relative importance of the external field and:

A (w,v) = leT—D—<<v‘-ﬁl/+Dz(w+Zvl-ﬁi—z)>>—<</+Dz>>A.9)
An(w,v) = Ung << o8 %1/ Dzw—i—Zv >> (A.10)
Ay(w,v) = <</ Dz(w+;vl-ﬁi—z)2>> (A1)

Dz is the Gaussian measure (27)~/2¢=%*/2dz. The + sign on the integral means that
integration extremes are chosen such that (w+ >, vt- 7' — z) > 0.

When the quenched average on the 7’s is performed, A;, Ay, A; reduce to (for the
d-dimensional torus C%):

Aj(w,v) = @) dvTo/dg Zcos@l

w+UZcost9l—UTg w+UZc039l)+

w—l—chos@ w—l—chosGl (A.12)
I



As(w,v) = @F)ﬁ/dé’l(; cos f') x

[(w + chos 0N ®(w + chos 0" +
¢ !

(w-l—chosGl)a(w +chos@’)] (A.13)
I l
Az(w,v) = ! /dé’l{l + (w+ chos P (w + v Zcos 0" +b

(2m)e z l

(w +UZCOS o (w +UZCOS 6" (A.14)
where

odz 22 -
o(z) = /_OO \/57?6 2 (A.15)
o(z) = °: (A.16)
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Appendix B

Generic kernel, extreme dilution

Let us consider the one-dimensional case first, and consider the kernel

N 2 - 2
KF—)=KF—-7)— — =™l = :
(F=f)=K(F-7) T e ] (B.1)

Eq. 3.42 can be written
v(7) = gN (/df'f%(?—?)v(?)—&—ﬁ)) (B.2)
where

i=w- o [ o) (B.3)
=w W (). .

For the purpose of finding o, maximizing with respect to @ is equivalent to maxi-
mizing with respect to w.
To solve eq.3.42, the transformation

is used, which results in

By differentiating twice we get

u'(F) = =2gNu(F)] + w(f) — b = ——U[u(7)] (B.6)
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where
U= / du' (29N (') — v’ + ). (B.7)

The differential equation (B.6) is locally equivalent to the non-linear integral equa-
tion (B.5) Equation (B.6) must be solved numerically. As in the single map case, not
all the solutions of the differential equation (B.6) are solution of the integral equa-
tion (B.5). Solutions of (B.6) are solution of (B.5), strictly speaking, only in the case
M = R®. Nevertheless, we force the equivalence since, also in the case of limited envi-
ronments, with periodic boundary conditions, possible pathologies are not important
for solutions with activity concentrated far from the boundaries.

In order to classify the solutions of eq. B.6 it is useful to study the “potential
function” U. If w is negative and large enough in absolute value, U(u) has a maximum
and a minimum at the two roots of equation

%u(u) = 2N (W) — u+ 1 =0, (B.8)

or, in terms of v:
v =gN(2v+ ), (B.9)

corresponding to constant solutions of eq. 3.42. We look for solutions representing a -
single, symmetric peak of activity centered in r = 0. We therefore need to solve the
Cauchy problem given by eq. B.6 with the initial conditions:

u(0) = ug (B.10)
W'(0) = 0 (B.11)

From fig. B.1 it is clear that if ug > u* the solution will escape to —oo for r
tending to infinity. This will correspond to v tending asymptotically to 0, and this
solution cannot be a solution for the integral equation (3.42) as the asymptotic value
must be a root of (B.9).

The solutions of the problem with uy < u* are periodic, corresponding to multiple
peaks of activity, and they are discarded as unstable with the same arguments holding
for the single map case. There is also the constant solution

u(r) = Umin, (B.12)

which obviously will not correspond to space related activity. The solution corre-
sponding to the single activity peak can only be the one with ug = u*. It tends
asymptotically t0 Umgy. This solution can be found numerically and inserted in
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eq.3.46 to find the value of o associated with the pair (g,w). The solution will
only be present for values of @ for which /(u) has the extremal points tmag and Umin,
that is:

W< W (B.13)

where w* is equal to —2gN (u*) + u* and u* is the root of the equation:
O(u) = — (B.14)

obtained by derivating twice U, and this shows that eq. B.5 cannot have solutions for
g < 1/2, as in the single map case.
In the two dimensional case, we can consider the kernel

where K is the kernel having Fourier transform:

. 2
K(p) = T p?

(B.16)

The solution is worked out in the same way with the transformation (B.4) and ap-
plication of Laplacian. If we consider solutions with circular symmetry and pass to
polar coordinates (r, ¢), the equation for r reads:

1
u”(r) + ;u'(r) = —29Nu(r)] + u(r) —w (B.17)
We still have a single peak solution with tends asymptotically to wmee, but in this

case we cannot rely on the U/ function argument to find the initial condition at r = 0,
which has to be found numerically.
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Figure B.1: The “potential” function U(u) defined by eq. B.7 and entering the differ-
ential equation eq. B.6. Solutions with ¥/(0) = 0 and uw(0) = wug, With Upmes < ug < u*
are oscillating. The solution with ug = u* is the one we seek, asymptotically ap-
proaching U, as r — oo.
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Replica free energy calculation for
the generic kernel

Again we will consider an environment M with periodic boundary conditions. We
assume that there exists a kernel L such that

/ JPL(7 — #) L — ) = |M|K (7 — 7). (1)

Instead of the vector order parameter x* we used for the dot-product kernel case
(or of the scalar overlap z* of (Treves, 1990)) we can use the functional order param-
eter

() = & S LG - PV, (©2)

1

in terms of which the interaction part of the Hamiltonian (3.59) reads

32Dl =

ey
%;;;[Wﬁ‘—f‘?) kv, - i) -R) Y-
%NZ/CZF[CE“(F)F - C‘_’é\/‘[_](K(O) ~R) ZV;Q (3

Introducing the “square root” kernel L allows us to perform the standard Gaussian
transformation manipulation and to carry out the mean field free energy calculation
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in the replica symmetry approximation:

f= —T<</Dzm<h,h2>>>—§‘; oz () — U1 (0) - Ky + Bl -

M

Z dr?ﬁ”'f’)ﬂc (F) =tz — ToYo + T1y1 +

o% By

= In[1 — Ty(p)B(yo — — ) C4

25;( 1= Do) - )] - 1= (C4)
where now Ty(p) is the Fourier transform of the kernel |M|K

To(p) = | M| § die P K (7). (C.5)

‘We now have
h = blz)+ Z/ dr'z? (7) [L(r’*’ —7) - I_;} - z(—2tr1)1/2 (C.6)
— I
hg = —-r9+7]. (C?)

The T' = 0 mean field equations are much like in (Treves, 1990) apart from the
z°(7) equation which reads:

2(7) = ¢ <<[L<w - )~ 1] /+Dz{/Mdf’ (L7 =) = L] a®(F) + b(z) - 6 ‘pz}>>
(C.8)

where now the + sign on the integral means that the limits of integration over z are
chosen such that

/ 47 [L(7 = 7) — L] 2(7) + b(z) — 6 > 0. (C.9)

¢’ is a renormalized gain, which takes into account the effect of static noise, defined
by:

(@) =9" —GZTO 1—T0 T (C.10)

where VU is given by eq. C.18.
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The noise variance p? is given by

[To(p)]?yo
p ——[1 YR (C.11)

o = (g')2<</+Dz{/M 07 [L(7 — ) — L] 2°(7) + b(z) —9}2>> (C.12)
\I/:g'<</+Dz>>. (C.13)

We now pass to the rescaled variables

pP=—-2Tr =«

v = = (C.14)
w = ?—(-gl (C.15)

obtaining
v (F) = g/Md*f[L(*U—r)~L}N(w+ Md"’[L(F"—F’)—L] ()9316)
% (¢)? M%M <w+ (L - 7) - 1] (ﬁ) (C.17)
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Appendix D

Generic kernel: |
storable information calculation

First, the information per synapse we get from a single observation of activity, with
the animal in a certain position times the number of stored charts is

-[1:
dr ) (0 de e e
“ W oo ,/gwe 8 gl Emu@du(r)?)
/ € 2
[ — ¢(u(r))]

+ [ = ¢(u(r))] log (D.1)

[ % 1= o(u()]
Next, we wish to calculate the joint information from two measures of activity,

from the same cells, from all charts, while the rat is in two different locations, at a
distance e. These two measures are correlated random variables: let

Vi =[h — pz]*
be the activity of a cell measured while the rat is in position 1, and
Vo = [hy — PZ2]+

be the activity of the same cell while the rat is in position 2.
The two noise variables are distributed according to a joint bivariate gaussian
distribution:

p<zla Zg) -

)(Zf + 25— 27122122)> : (D.2)

1 1
2m+/1 — 13, < 2(1 -1,
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The correlation coefficient 715 is a function of the distance ¢, implicitly defined
through the equation

pPria(e) = o MI((K?))y1a(e) (D.3)
where y10is defined as '
1
ym(e) = N ;a/;,lvi,z) (D-4)
and assuming periodic boundary conditions:
dr [tF
y12(€e) = 'OQQQ/TZ\—/[—] Dzyg x (D.5)
dr'’
= K(r — Dol _
( T (r =) +w z1>
dr” K(ir—rmo(r" +¢€) +w—=z (D.6)
| M| i '
or,
dr [t
yi12(€) = p?g? / — Dzysu(r)u(r + ¢€) (D.7)
| M|
where u(r) is defined by eq. B.4. The integration measure for the noise variable is
defined as
++
.DZ]_Q = / ledZQp(Zl, ZQ). (DS)
u(r)—21>0,u(r+e)—22>0
Inserting eq. D.7 in eq. D.3 we yield:
rio = o MI((K?))g? / drQ(u(r), u(r + €), r12) (D.9)
where
++
Qz,y,m12) = Dziz(z — 21)(y — 22).

Eq. D.9 can be solved numerically, an example is provided in fig. D.1, but a few
features can be explored analytically, in the neighborhood of € = 0. 75 = 1,6 =0 is
a solution, but now consider what happens when ¢ increases.
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Figure D.1: The ry, function plotted as a function of the distance between the two
p.f.cs, € in the |M| = 30 case.

The derivatives of

9 dr

D(r1a,€) = a{(K?))g ]

Qu(r), ulr +€),r12) — iz (D.10)

with respect to € and 715 must be taken into consideration. One has:

o 5 dr
5:D(ra =Le=0) = oK) [ L
2 0a = u(r), y = ulr + ), i(r) = (D.11)

Oy
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32
5;—2—’1?(7“12 =1e=0)<0 (D.12)

and

1o}

—D(r,2 l.e= =

0’7‘12 (’I"l — 1,€ 0)
dr

a{(K?))g® W@(U(T)) —1=

[ e ([ Iil_,\g—,wu(r»)"l -1 (oW

From eq. D.12 it turns out that when the derivative in eq. D.13 is greater than zero,
the solution 73 = 1 disappears as one moves from ¢ = 1, but another solution is still
present so that

lim 719(e) < 1. ' (D.14)

e—0t

Note that the condition

0
B'rlgp(rm —+1,e=0)>0

is equivalent to
I = gol MI({K2) /M dr u(r)o(r) < 0, (D.15)

and the quantity I' enters in the stability analysis considerations we sketched in
sec. 3.3.3, at least for the 1-D case. Solutions with I' > 0 are stable against inhibition
orthogonal fluctuations, so that it is likely that the possible pathology implied by
eq. D.14 reflects an instability of the solution. We have always found numerically
that for solution corresponding to the maximal storage capacity and information,
r'>o.

Once we know the joint probability distribution for z; and 23, we can calculate
the information we can extract about the p.f.c. of a cell from two measurements of
activity, while the rat is standing in two positions at a distance ¢, from all charts.
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The minus signs (—) beside the integration signs mean that respectively the first,
or the second condition determining the integration intervals in eq. D.8 are reversed.
The first term in the sum accounts for the contribution coming from measurement
in which both activity values are positive. The second term is the contribution from
measurements in which one value is zero and the other is positive. The third term
comes from measurements in which both values are zero.

For e =0, Iy = I3, since the two measures are identical.

For large € one has I, ~ 213, because the noise decorrelates and because in general
the two measures will give non-zero results in distinct regions of the environment. The
behavior of I, as a function of ¢ is exemplified in figure D.2. We defire as “information
correlation length” the value I; of € for which

_[2—_[1:_]([1, (D].T)

where f is a fixed fraction, say 0.95. Note that this quantity We may say that mea-
surements of activity with the rat in two positions at a distance I; give independent
information.
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This allows us to define as the stored information I the quantity

| M]

[5:I1—ZT7 (Dlg)
I

that is, sampling the activity of a cell %[—' times, with the animal spanning a lattice
I

with size [;, we may effectively add up the information amounts we get from each
single sample, as if they were independent.
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Figure D.2: The I, function plotted as a function of the distance between the two
p.f.c.s, € in the |M| = 30 case. Note that I;, with f = 0.95 (see eq. D.17) would be
approximately 3.5. This is seen not to change much when |M]| is varying (not shown).
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