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Introduction

Given a regular bounded open set 2 of R, N > 1, and a linear elliptic operator

A of the form
N
Au = — Z D;(ai; Dju),
J,i=1

with a;; € L*°(2), we study obstacle problems for the operator A in  with homo-
geneous Dirichlet boundary conditions on 9€2, when the datum g is a bounded Radon
measure on {2 and the obstacle ¢ is an arbitrary function on .

Obstacle problems have always been studied as part of the well known theory of
variational inequalities (see Section 1.2). In this frame the problem consists in finding a

function u € Hj(2) which is above a given function % (the obstacle) and is such that

(Au,v —u) > (f,v —u)
Vo € HY(Q) s.t. v > 1.

For such problems (which will be denoted by VI(f,1)) a wide abstract theory has been
developed, and we know that if the datum f belongs to the dual H™(Q) of the Sobolev
space H(€2), and if there exists at least a function v € H}(Q) above the obstacle 1,
then there exists one and only one solution. Also many results on continuous dependence
with respect to data (both the forcing term and the obstacles) are known. Several
characterizations of the solution have also been produced: the one we quote here concerns
the fact that the solution of the variational inequality touches the obstacle wherever it is
not the solution of the corresponding equation Awu = f. More precisely it is possible to

prove that Au = f+ X and A is a nonnegative measure concentrated on the set {u =1} .

In order to extend this theory to problems where the forcing term is a measure
various difficulties arise.

The main ones are in writing equations with such data: it is not possible to use
a variational formulation and the distribm;ional solution of an elliptic equation with
discontinuous coefficients may not be unique. So G. Stampacchia introduced in [41] a

formulation (using duality and regularity arguments) which allowed to obtain existence

and uniqueness in Wé’q(Q), with ¢ < N_1 of the solution of an equation of the form

{Au:u in 2

(0.0.1)
u=20 on 0f2
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whenever p is a measure in M,;(§2), the space of bounded Radon measures (see Sec-
tion 1.3). These solutions coincide with the variational ones when the datum allows both
formulations, i.e. when p € My(Q)NHQ).

Following these ideas we give (Section 2.1) the following definition of obstacle prob-
lems: a function wu is a solution of this problem, which will be denoted by OP(u, ), if
u is the smallest function with the following properties: © > ¢ in {2 and u is a solution
in the sense of Stampacchia [41] of a problem of the form

Au=p+ A inQ,
(0.0.2)

u=20 in 09,

for some bounded Radon measure A > 0. The measure A which corresponds to the
solution u of the obstacle problem OP(u,1) is called the obstacle reaction associated
with u.

From now on, with a little abuse of language, we will call obstacle problems the
ones with measure data, according to the previous definition, and variational inequalities
those with data in H}(Q), solved in the variational sense.

We want to study the problem with possibly also thin obstacles. This means that
we will consider a function u to be above the obstacle ¢ when the inequality uw >
holds up to sets of zero harmonic capacity.

For example if B;(0) is the unit ball of IR?, the segment I := {—% <z < %, Yy =
0} has nonzero capacity with respect to B1(0), but has zero 2-dimensional Lebesgue
measure. So the sets {v € H}(B1(0)) : v > x; ae.} and {v € H{(B1(0)) : v >
xr cap — q.e.} are different, since the former coincide with H}(B;(0)). We shall consider
only the latter in our formulation of the problem.

In order to simplify the exposition, throughout the thesis we assume that the obstacle
1 is quasi upper semicontinuous. This technical assumption is not restrictive, since we
can prove that every obstacle problem can be replaced by an equivalent problem with a
quasi upper semicontinuous obstacle (see Proposition 1.1.3).

The only restriction required on the choice of the obstacle is that there exists a
nonnegative measure p € M (Q) such that the solution of equation (0.0.1) with datum
p is above the obstacle.

This condition, called OP-admissibility, is similar to the one needed for the varia-
tional case, but it is not comparable to that. Both are minimal in their context, in a

sense that will be made precise in Section 2.5.
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In this work we develop the three subjects outlined in the classic case. Existence
and uniqueness of solutions, characterization in terms of “contact set” and continuous
dependence with respect to data.

In Chapter 2 we prove existence and uniqueness of solutions of OP(u, ).

To do this we first consider the case of negative obstacles (Section 2.2) so that we
are able to show that, when the datum u belongs both to H™()) (for which variational
inequalities make sense) and to M (§2) (for obstacle problems) the solution to the latter,
if it exists is the same as the solution to the former.

Another preparatory result, which is also interesting on its own, says that the reac-
tion A of the obstacle can not be stronger than the “downward” part p~ of the load u,
in the sense that

AQ) < lumI(@).

Now, given a general p € My(Q2) we apply an approximation argument: we build a
particular sequence of measures py which belong to M(Q)NH™(Q) and such that pj —
p weakly-* in My(Q); for any k the solution to VI(ug,1) exists and is unique, then
we prove that this solutions converge and the limit is the desired solution of OP(u,v).
The result easily extends to the case of a general obstacle, provided the latter is OP-
admissible (Section 2.3).

In Section 2.5 we will show that the variational solution to the Obstacle Problem
(equation (1.2.1)) coincides with the new one (Definition 2.1.1) when both make sense.
Section 2.6 provides a characterization of the solution in terms of approximating se-

quences of solutions of variational inequalities.

Chapter 3 is devoted to the study of the interaction between obstacles and data.
The aim is to obtain something similar to complementarity conditions, but we will see
that this is not possible in general.

An important role in this problem is played by the space M2(Q) of all bounded
Radon measures on {} which are absolutely continuous with respect to the harmonic
capacity. If the datum p belongs to M2(£2), so does the obstacle reaction, provided
that there exists at least a measure o € M?(Q2) such that the corresponding solution of
(0.0.1) is greater than or equal to ¥ (see Theorem 3.1.5). Also in this case the obstacle
reaction is concentrated on the contact set {u = 1} (see Theorem 3.1.7 proved by

C. Leone in [33]). Example 3.0.1, which is a variant of an example proposed by L. Orsina
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and A. Prignet, shows that this is not always true when p is not absolutely continuous
with respect to the harmonic capacity. .

Using the linearity of the operator A, it is easy to see that the obstacle reaction
belongs to MJ(Q) and is concentrated on the contact set {u = t} even if just the
negative part p~ of u belongs to MP(2). Therefore we concentrate our attention
on the case u~ ¢ MP(Q). Then p~ can be decomposed as p~ = p; + Ly , where
Ly € M2(Q) and p; is concentrated on a set of capacity zero. We assume that the
obstacle 1 satisfies the estimates —v — ¢ < ¢ < v, where ¢ € H!(Q) and v is the
solution in the sense of Stampacchia of a problem of the form

Av=v in Q,
(0.0.3)
{ v=20 in 0K,

with v € MJ(Q). Then we prove (Theorem 3.3.1) that the obstacle problems OP(u, )
and OP(u*—pg , 1) have the same solution u, while the corresponding obstacle reactions
A and Ap satisfy A = A; 4 pu; . This shows that, under these assumptions, the solution u
of OP(p,%) does not depend on pj , while the obstacle reaction has the form \; + by
where A; is a nonnegative measure in MY(Q) which is concentrated on the contact set
{u=1v} (Theorem 3.3.5).

These results rely on Lemma 3.2.5 which is the most general form of the follow-
ing result, which has an intrinsic interest. Let u, and u, be the solutions of (0.0.3)
corresponding to the measures p and v, which are not assumed to belong to M)
Suppose that u™ L v and that u, < u,. Then ut € MY(Q). This result is obtained
by investigating the behaviour of the potentials of two mutually singular measures near
their singular points (Lemmas 3.2.3 and 3.2.4).

Finally Chapter 4 develops the theme of continuous dependence with respect to
data.

As for stability with respect to the right hand side, we obtain that if pu,, g € My(Q)
are such that p, — p strongly in My(Q) then u, — u strongly in WH9(Q), where u,
and u are the solutions of OP(un, ) and OP(u,) respectively (Proposition 4.1.1).

This is too strong a condition, because, for instance, we can not approximate all
measures p € M;(§2) by means of more regular measures (say elements of M;(Q) N
H™(Q)) with strong convergence. Indeed the strong closure of My(Q)NH™(Q) is M2(Q).

So we would need to turn our attention to weak-* convergence. But Example 4.1.4
shows that in general p, — p weakly-* does not imply that u,; — u, even with the
obstacle ¥ = 0.
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So we content ourselves with the fact (see Section 2.6) that for any measure u €
My (), there exists a special sequence py, — p weakly-* in My(Q), with pr € Mp(Q)N
H™(£2), such that, for any obstacle v, uy — u strongly in Wh4(Q).

It is easy to see that also stability with respect to obstacles (a first result is proved,
for technical reasons, already in Section 2.4) is not always true. To study this question
we introduce in Section 4.2 a kind of convergence of functions, the level set convergence,
which yields the convergence of solutions under very mild assumptions.

The convergence of 9, to 1 in the sense of level sets, defined precisely in Defini-

tion 4.2.1, is verified in particular when
cap({¢ >t} N B) = lim cap({yyn >t} N B)

for all t € IR and for all B CC Q (see also Remark 4.2.5).

We will see that without further hypothesis it can only be proved that, calling u,
and u the solutions of OP(u,v,) and of OP(u,v) respectively, if 1, le—v> 1 then, up
to a subsequence, u, — u* > u (Proposition 4.2.9)

Then we will see that in all those situations, described in Chapter 3, in which the
reaction of the obstacle is concentrated on the contact set, we obtain, from the level set
convergence of the obstacles, that u, converge to u.

In particular, by means of the Mosco convergence of convex sets, we obtain that

o if u= € HYQ) then u, — u strongly in H}(Q);
o if = € M) then u, — u strongly in WH4(Q);
e if ¢ is suitably controlled below then u, — u strongly in W19(0Q).

In Section 4.3 we list a few conditions, generalizing Proposition 2.4.1, that, together
with level set convergence, ensure the convergence of the solutions.

We conclude this study considering two cases in which the assumptions that the
obstacles converge in a stronger way allows to obtain a stronger convergence also for the
solutions. When the difference ,, — 1 belongs to H}(2) and tends to zero strongly in
this space, then we obtain the same type of convergence for the solutions.

In Section 4.5, we extend the theory so far developed to the case of nonzero boundary
values. For any function g € H*(Q2), we can define the function u to be the solution of
OP(u,g,v) if and only if w —ug is the solution of OP(yu, 1), where uJ is the solution of

{ Auf = in HY(Q)
ud — g € Hj(Q).
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All the results developed in the case of homogeneous boundary conditions can be ex-
tended, thanks to the linearity of A.

Using this extension we prove a new characterization: the solution of OP(u, g, ¥) is
the minimum element among all the supersolutions of A— 11 which are above the obstacle
and greater than or equal to ¢ on the boundary 0€2. From this we easily prove that if
the obstacles difference 1, — 1 tends to zero uniformly then so do the solutions of the

corresponding obstacle problems.

The case of nonlinear operators was studied by L. Boccardo and T. Gallouét in [7]
and by L. Boccardo and G.R. Cirmi in [5] and [6] when the right-hand side is in L(Q).
With Remark 4.1.3 we will note that our theory is consistent with that one.

More recently C. Leone studied in [33] nonlinear obstacle problems when the right
hand side is in MJ(Q), using the so called entropy solutions (defined in [4] and [9]).
The obstacle problems are defined similarly to the linear case, existence and unique-
ness are proved together with coherence with linear theory. The characterization via

complementarity conditions is the one we quote here in Theorem 3.1.7.

The content of the chapters 2, 3, and 4 corresponds approximately to the papers
[17] with C. Leone, [16] with G. Dal Maso, and [15].



Chapter 1
Notations and preliminary results

Consider first the objects that won’t change throughout the work.

Let € be a regular bounded open set in RY, N> 1 (for the notion of regularity
see Definition 1.1.1).

Let Au = —div(A(z)Vu) be a linear elliptic operator with coefficients in L>(Q),
that is A(z) = (a;5(z)) is an N x N matrix such that

N
a;; € L*(Q) and Z aij ()€€ > y|€)?, VE€ RY, for a.e. z €. (1.0.4)
3,j=1

Recall that H!(Q) is the Sobolev spacé of functions with distributional derivatives
in L2(Q2), and H}(£2) is the closure in HY(Q) of C$°(Q). We shall denote

2

Il = / uf? dz + / Dulfdz|
Q Q '

2

- / Dulds| |
Q

respectively.

1.1. Capacity

We want to consider the obstacle problem also in the case of thin obstacles, so we
will need the techniques of capacity theory. For this theory we refer, for instance, to [28].

We recall very briefly that, given a set E C {1, its capacity with respect to 2 is
given by

cap(E, Q) = inf{l[z]l%lé(m . 2 € Hi(Q),2z > 1 a.e. in a neighbourhood of E}.

When the ambient set 2 is clear from the context we will write cap (£).
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A property holds quasi everywhere (abbreviated as g.e.) when it holds up to sets of
capacity zero. -

A set A is said to be quasi open (resp. quasi closed) if for any € > 0 there exists
an open set V such that cap(V) < e and AUV is open (resp. A\ V is closed).

A function v : Q — IR is quasi continuous (resp. quasi upper semicontinuous) if, for
every € > 0 there exists a set E such that cap(E) < € and v, . is continuous (resp.
upper semicontinuous) in Q\ E.

We recall also that if v and v are quasi continuous functions and v < v a.e. in €
then also u < v q.e. in Q.

A function u € H}(Q) always has a quasi continuous representative, that is there
exists a quasi continuous function 4 which equals u a.e. in 2. We shall always identify

u with its quasi continuous representative. With this convention we have

cap({u > t}) < tlz/}pumm (1.11),
Q

for all t € IR". From this it follows that if u, — u strongly in H{(£2) then there exists
a subsequence which converges quasi everywhere.

Moreover, for every set £ C (2 we have that
cap(E) = min{u € H}(Q2) : u > 1 qge. in E}.

If cap (F) < 400 the minimizer wg is called the capacitary potential of E in Q2

We can now introduce the concept of Wiener point (see for instance [28]).

Definition 1.1.1. Given Q C IRY we say that a point zo € O satisfies the Wiener

condition if

p = +00.

/1 [cap(Bp(xo) N Q°, By,(zo)) ld
0 Cap(Bp<x0)aB2p($0)) p

With this definition we can give the following theorem.

Theorem 1.1.2. Let Q CRY. The point zo € Q is a Wiener point if and only if
for every g € L>°(Q) the solution u of

Au=g nHYQ)

u € HY(Q)
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which is continuous in £ by Proposition 1.3.8, is such that

lim wu(z) = 0.
T—rTg

From now on we will assume that the set ) is such that every point of 9} is a
Wiener point. Such a domain is said to be regular. This is not a very strong condition,
especially in low dimensions, in particular notice that this condition is satisfied when 9Q

is Lipschitz.
Consider the function 1 : Q@ — IR, and let us define the convex set
Ky () := {z quasi continuous :z > ¢ g.e. in Q}.

Without loss of generality we may always assume that 1) is quasi upper semicontinuous
thanks to the following Proposition (it is a consequence of Proposition 1.5 in [19]).

Proposition 1.1.3. Let o : Q — IR. Then there exists a quasi upper semicontinuous
function 9 : Q — R such that:

1. zﬁ > ge in Q;

2. if v :Q — R is quasi upper semicontinuous and @ > 1 q.e. in Q then ¢ > ) q.e.
wn ).

Thus, in particular, Ky (Q) = K;(9).

1.2. Variational inequalities

In their natural setting, obstacle problems are part of the theory of variational
inequalities (for which we refer to well known books such as [3], [31] and [43]).

For any datum f € H™(Q) the variational inequality with obstacle
(Au,v —u) > (f,v—u) Vv € Ky(Q)NHLQ) (1.2.1)
u € Ky () NHI(Q) o

is denoted by VI(f,v), and makes sense whenever the set K, (Q) NH§(2) is nonempty,
that is ensured by the condition

3z € H3(Q) : 2> qee. in Q. (1.2.2)

In this case we will say that the obstacle is V' I-admissible.
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Theorem 1.2.1. For any f € HY(Q) and for any ¢ satisfying (1.2.2) there exists
a unique solution of VI(f,v). Moreover, if fi, fo € HYQ) and uy and uy are the

corresponding solutions, then

lur = uallui o) < cllfs = follumay (1.2.3)

where ¢ s a constant depending only on A.
In this frame, among all classical results, we recall that the solution of VI(f,¢) is
also characterized as the smallest function u € H{(2) such that

Au — f>0in D'(Q)
(1.2.4)
u>1Y g.e. in €.
Since A := Au — f is a nonnegative element of H™(2), by the Riesz Representation

Theorem, it is a nonnegative (not necessarily bounded) Radon measure, that will be
called the obstacle reaction associated with w. The measure X is concentrated on the
set where the solution touches the obstacle. More precisely it can be proved that (see,
e.g., Theorem 3.2 in [1]) u is the solution of VI(f, %) if and only if

Auv—f=X>0inD'(Q)
u>1 qe. in (1.2.5)
A{u>9}) =0.

The last condition can be read also as u = 1 A-a.e. These are called complementarity

conditions.

Of course variational inequalities can be studied also with nonhomogeneous bound-
ary conditions. Indeed for any g € H!(Q) we say that ¢ is VI -admissible if there exists
z € HY(Q) such that

Y<z qe inQ and z—geH;Q).
For such 9 and g we can define the set
Kj(Q):={z¢€ HY(Q): 2> qe. inQ, z—g e H;(Q)},
which is nonempty. In this case the variational inequality (which will be indicated by
VI(f.g,%)), s

{ (Au,v —u) > (f,v—u) Vv € KJ(Q)
(1.2.6)

u€ Kj(Q)
and has all the properties of the homogeneous one. Another useful characterization of

the solutions to variational inequalities is the following one.
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Proposition 1.2.2. Let f € H'(Q), g € HY(Q) and ¢ be VI,-admissible. Then u
is the solution of VI(f,g,v) if and only if the two following conditions hold:

Au—f >0 inD(Q)

u> P g.e. in €2

u>g on 0%}
and for all v such that

Av—f >0 inD'(Q)

v > g.e. in §2

v>g on OS2

we have v > u g.e. in §).

Recall that writing u > g on 02 we mean in the sense of H}(Q), ie. (u—g)~ €
HY(Q).

Problems with nonhomogeneous boundary conditions will be taken into account in
Section 4.5. Until that point, for the sake of simplicity, we will instead always consider
the case when g = 0.

The problem of continuous dependence with respect to obstacles was completely
solved by U. Mosco in [36]. He introduced a convergence for the convex sets Ky, ()
which is defined as follows:

Definition 1.2.3. Let K, be a sequence of subsets of a Banach space X . The strong
lower limit

s— lim inf K,
n—-+oo

of the sequence K, is the set of all v € X such that there exists a sequence v,, € K,,,
for n large, converging to v strongly in X .
The weak upper limit

w— lim sup K,
n—-+oo

of the sequence K, is the set of all v € X such that there exists a sequence vy converging
to v weakly in X and a sequence of integers ng converging to 4oco, such that vy € K, .
f M
The sequence K, converges to the set K in the sense of Mosco, shortly K,, — K,
if

s—liminf K,, = w—limsup K,, = K.
n—-+0oa n—-+o00
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Mosco proved that this type of convergence is the right one for the stability of
variational inequalities with respect to obstacles. This is the main theorem of his theory.

Theorem 1.2.4. Let ¢, and v be VI-admissible. Then
Ky, (@) NH(Q) —— Ky (@) N HY(®),
if and only if, for any f € HHQ),
Un — u strongly in H (),
where u, and u are the solutions of VI(f,¢n) and VI(f,¢), respectively.
Several stability results can be proved as corollaries of this theorem by Mosco. In

particular we give here the following two results which are well known, but that we prove

here for the sake of completeness

Corollary 1.2.5. Let f € HYQ) and let ¥, and ¢ be VI-admissible obstacles. Let
un and u be the solutions of VI(f,v¥n) and VI(f,v) respectively. If

P, <Y ge in U — ¥ g.e. in (1.2.7)

then
U, — u strongly in H' ().

Proof. Let us prove that
M
Ky, (Q) NH(Q) — Ky(9) N H;(Q),

then the conclusion will follow from Theorem 1.2.4. Consider first the case when %, <
Yns1. Then clearly Ky ., () NHJ(Q) C Ky, (2) NH(Q). By Lemma 1.3 in [36] we
have that

M Py
Ky, (QNHHQ) — 5= (ﬂ Ky, (Q)) NH(Q).

Let us prove that S C K, () NH(Q), the reverse inclusion being trivial. If v € S,
by Definition 1.2.3, there exists a sequence v, € Ky, (€2) N H§(Q) such that v, — v
strongly in H(2). Then we can pass to the limit quasi everywhere in the inequality
vp > Un q.e. in £ and obtain v > ¢ g.e. in 2.

In the case of general 1, using the sequence ¢, := infg>n 9%, which is such that
op <Yy qe. in Q and @, Y ge. in 2, we can refer to the previous case. J
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Corollary 1.2.6. Let 9,9 : Q = IR be VI-admissible. Suppose that v, —1 € H(Q)
and that v, — 1 — 0 strongly in HX(Q)). Let f € HHQ) and let u, and u be the
solutions of VI(f,vn) and VI(f,), respectively. Then '

U, —u — 0 strongly in Hi(Q).

Moreover if ¥, — 1 € H{(Q) then

C
lun — vl o) < > 19 = Pl (q) (1.2.8)

where 7 is the ellipticity constant and C is such that |(Au,v)| < Cllullmq)llvllm o).
so they depend only on the operator A.

Proof. It is well known that the strong H*(Q2) convergence of v, to v implies
M
Ky, () NH(Q) —— Ky (Q) N Hy().
This by Theorem 1.2.4 implies that u, — u strongly in H3(Q).

For the second part, suppose first that f = 0. Then we have
(Au,v —u) >0 Yo € HyQ),v>v qe in Q,

(Atp,v —up) >0 Yo e H(Q), v >4, qe. in Q.

Counsider v = u, + (¢ — ¥5,) as test function in the first inequality and v = v+ (¥, — ¥)
as test function in the second one.

Using the linearity and the ellipticity of 4 we can obtain

’YHU— UnH%{g(Q) < (AU — un), u — un)

< {A(u —un), ¥ — ¥n) < Cllu —unllm @) 1¥ — Ynllay o
from which the thesis.

For the case of f # 0 it is enough to observe that u — uy and wu, — uy are the
solutions of VI(0,% — uy) and VI(0,%, — uy), respectively, and the obstacles 9 — us
and 1, — us satisfy the hypotheses of the theorem. So, thanks to the previous step we
conclude

lu = unllay ) = llu = up = (un — ug)lluy@)

C C
< ;W —uf = (Yn —uf)llm o) = ;Hw - Unllmo)-
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As for continuous dependence with respect to the right hand side we know from the
" Theorem 1.2.1 that if f, f, € H}) and » and wu, are the solutions of VI(f,%) and
VI(fn, %), respectively, then

= unllmye) < ellf = Fallioy:

and from this we obtain the continuous dependence of solutions when the data converge
strongly in H(Q).
We will see with Example 4.1.4 that the weak convergence of data in H™(Q2) does

not give the converge of solutions.

1.3. Equations with measure data

Let now My(Q) be the space of bounded Radon measures viewed as the dual of the
Banach space Cp(2), the space of continuous functions on Q which are zero on 9. We
denote by pt and p~ the positive, bounded and mutually singular measures called the
positive and negative part of x. The norm on My(Q) is given by ||p|| s, (o) = [[(2) =
pt(Q) +p(Q). I p € Mp(2) and A C Q is a Borel set, the restriction of u to A,
pl A, is defined by (uLA)(B) = u(AN B) for every Borel set B C (2. The measure
plL A still belongs to My(Q). By duality we say that a sequence p, € My(Q2) weakly-x*
converges to p € My(Q) if

_/hdunﬁ/hdu Vh € Co(Q).
Q Q

Tt is a classical fact that if a sequence , is bounded in the norm of M,(§2), then
there exists a subsequence u,, and a measure u € M;(Q2) such that p,, — p weakly-*
in Mp(2).

MP(Q) is the subspace of measures of M,(Q2) vanishing on sets of zero capacity.
M () and M2’+(Q) are the corresponding cones of non negative measures. Recall
that HH(Q) € M, (Q) but H(Q) N Mp(Q) C MQ).

Any measure pu € My(Q) can be decomposed as p = pg + ps, where pg € MP(Q)
and u, is concentrated on a set of capacity zero (see [25]).

If z € Q, we denote by d, the Dirac’s delta centered at z.

In order to study the problem
{ Au = p in O
u=20 on 02
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with p € Mp(2), we can not use the variational formulation used in the case of right
hand side f € H(Q):

/aij DjuDivdz = (f, V) H-L(Q)HA(Q) Vo € Hy(Q)
Q

u € HE(Q).

Indeed notice that only for N = 1, we have that Mp(Q) € HY(R), and hence the
variational theory applies. Unfortunately, in general, the term (u,v) has not always
meaning when s is a measure and u € WP (Q), p < N. Moreover it is well known that,
when N > 2, the solution of

—Av = -—50 n Bl (0)
v=0 "on 8By(0).

N
does not belong to H(Q) but only to Wy?(Q), with g < N1
Hence we need to use a weaker formulation with more regular test functions

/aij Dju Div dz = /vdu Vv € U Wé’ql(ﬂ)
Q o) q’>N

ve [ Woi(Q)
N

9<w—T

(1.3.1)

so that everything makes sense, because Wé’q'(ﬂ) CC(Q) for ¢ > N.

Now, when N = 2, the solution of equation (1.3.1) exists and is unique (see [26]);
but in general the solution in this sense may not be unique. Indeed in the following
example (given by A. Prignet in [39] modifying the classical one presented by J. Serrin

in [40]) shows that the homogeneous equation

{Au=omDﬂn
u =0 on 92

has a nontrivial solution w € ﬂ Wg9(£2) which does not belong to H5(€).

a<wiy
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Example 1.3.1. Let Q = B;(0), the unit ball in RY, with NV > 2. Let

1 T;T;
5ij+<—2—1> — fori,j=1,2
Q5 1= € |z|
51’_7‘ for 'i,j =3..N
where € > 0 is still to be fixed. With this choice the coefficients are in L>°(£2) and the
operator A satisfies the ellipticity condition (1.0.4).

For £ sufficiently small, the function

—1—¢

w(z, .., zN) = u(z1,22) = z1(z %+ 39%) 72

N
belongs to WH4(Q2) for all ¢ < N1 but does not belong to H' ().

It is proved that u is a solution of Au = 0 in the sense of distributions, and its trace
on 9B1(0) belongs to Hz (9B;(0)). Thanks to this regularity of u we can consider the
following Dirichlet problem

Av =0 in B1(0)
V= on 0B1(0)

which has a unique variational solution v € H(£2). At this point, by linearity, the
function w := u — v satisfies
Aw =10 in B1(0)
{ w=20 on 0B1(0)

or, more precisely,

/Cl,ij Djw DZ‘Z dz =10 Vz € U Wé’p(Q)
Q p>N

w € ﬂ Wod(B1(0)),

Q<1#il

that is, w is a solution in the sense of (1.3.1). Clearly, by Lax-Milgram Lemma there
exists a unique variational solution in H{(2) and this is u = 0, which is also a solution
in the sense of (1.3.1). So we have obtained two solutions in the sense of formulation
(1.3.1) which is then proved to be too weak to ensure uniqueness.

G. Stampacchia overcame this difficulty for linear equations, usirig a wider class of
test functions, and gave in [41] (see also [42] and [34]) the following definition, which uses

regularity and duality arguments.
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Definition 1.3.2. Let p€ My(Q). A function wu, € L}(Q) is a solution in the sense
of Stampacchia (also called solution by duality) of the equation

Au, =p  in Q
g (1.3.2)
u, =0 on OS2
if
/uug dz = /u; du, Vg€ L>®(Q), (1.3.3)

Q Q

where u; is the solution of

A*ur =g in HYQ)
uy € Hg(52)

and A* is the adjoint of A.

The theory of this type of solution relies on the following proposition due to E. De
Giorgi and G. Stampacchia.

Proposition 1.3.3. Let f € WbH9(Q), with ¢ > N, and let v € HL(Q) be the

variational solution of

Av = f in
v=20 on 012,

then v € L>®(Q) N C%*(Q) and

HUHL“(Q) < chHW"lyQ'(Q)'

The constants ¢ and o depend only on 2, A and ¢'. By the regularity of Q we have
also v € Cy(Q2) thanks to Theorem 1.1.2.

Thanks to this we can first of all notice that Definition 1.3.2 makes sense. In the
first term of (1.3.3) g € L*(Q) and u, € L'(Q), in the second one u; € Cy(Q)

. The next

Throughout this work ¢ will be any exponent satisfying 1 < ¢ < N1

theorem shows that a solution u, exists, is unique, and belongs to‘Wé’q(Q); we give the

complete proof because it casts light on the duality technique.
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Theorem 1.3.4. Let pn € My(2). Then there exists a unique u, € W) solution

of the equation
Au, =p inQ
u, =0 on 0X)

in the sense of Definition 1.58.2. Moreover we have

Huul\wm(sz) <c ”UHM(,(Q)- (1.3.4)

Proof. From Proposition 1.3.3 we get that when g € WL (Q), with ¢ > N then uy,

belongs to Co(2) NHE(Q). Hence, for any ¢’ > N, we can consider the linear functional
L:Wh(Q) — R

defined by
L(g) = / Uy dp

Q

Using the estimate in Propositidn 1.3.3 it is easy to see that this functional is continuous:

1L(g)] < Nlugllue @ llella @) < cllgllwrarqy 1ol @)- (1.3.5)

Hence, by the reflexivity of Wé’q(Q) , we have that there exists a unique function wu, €

Wg9(Q) (since ¢ > N we have g <
that

N _ 1), with |luuHW1~‘Z(Q) = []L“W'LQ’(Q)v such

L{g) = (g, uu>w

ey wiie)
for all g € Wh4(Q). In particular, since L®(Q) C W™P(Q) for any p > 1, for all

g € L™®(Q) we can write
/u;d,u-—— /u”gd:c,

Q Q

and hence u,, is the solution we wanted. The estimate on the solution comes from (1.3.5).
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First of all it is worth to notice that this theory is consistent with the variational one.
More precisely, it is possible to prove that, if the datum g belongs to My(Q) NH(Q),
then the solution coincides with the variational one.

From now on we will use the following notation: wu, denotes the solution of the
equation

Auy,=p  inQ
{ u, =0 on 011,

when g is either a measure in My(Q) or an element of H(Q2). In the former case we

refer to the Definition 1.3.2, in the latter to the usual variational one.

Another important fact is the continuous dependence with respect to the data con-
verging weakly-x in My (). This is useful mainly because a measure in My(Q2) can be
approximated in this way by means of measures of M;(Q2) NH™(Q).

Proposition 1.3.5. Let pn, p € My(Q2) be such that u, — p weakly-+ in My(S2)
then u, — u, strongly in WH4(Q).

Proof. By (1.3.4) we have that the sequence u,,, is bounded in W14(Q) and hence, up
to a subsequence, ,
u,, — z weakly in W54(Q).

To see that the limit is u, itself consider

/u“ng dz = /uz dfin Vg € L=(Q).
Q 0
Since, by Theorem 1.1.2, u; € Co(£2). Then by the definition of weak-* convergence we

/zgd:vz/u;d,u.

Q Q

can pass to the limit and get

Hence, by uniqueness, z = u, . This holds for every subsequence and hence for the whole
sequence.

To see that the convergence is in fact strong we have to consider that Du,,6 — Du,

N
weakly in (LI(Q))Y, for all ¢ < N1 (from (1.3.4)) together with Du,, — Du, a.e.
in Q (from the next lemma) gives that Du, — Du, strongly in (LI(Q))¥, for all
. And this concludes the proof. L]

<
1SN 1
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In the previous proof we have used this Lemma, due to L. Boccardo and T. Gallouet
(see [8] and [11] ).

Lemma 1.3.6. Let pn, i € My(Q) be such that p, — p weakly-x in My(S2). Then

Du,,, — Du, a.e. in .

We point out that the request for regularity of 02 we made in Section 1.1 is crucial
in the last proposition, which will be fundamental in the theory.

Indeed the following example shows that otherwise we can find a weakly-* converg-
ing sequence of measures whose Stampacchia solutions do not converge, to the solution

corresponding to the limit measure.

Example 1.3.7. Let Q C RY, N > 2. Suppose that zo € Q2 does not satisfy the
Wiener condition (see Definition 1.1.1).

Thanks to Theorem 1.1.2 it is possible to construct a function g € L®°(€) such that
uy, the solution of

A*ul =g i HYQ)
{ ul € HL(Q)

has the following property: there exists a sequence z, € Q, T, — zo and uy(zn) — 1.

Now consider the sequence of measures u, := 6, . Clearly it is such that

U, — 0 weakly-* in My(2),
but w,, does not converge to 0 because by Definition 1.3.2

/uungdxz /u;dun = u;(xn) —3 1.
Q 0

We notice now that the function u, is in fact more regular. Here and in the following
Ty(s) :== (—k) V (s A k) denotes the usual truncation function.
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Proposition 1.3.8. If u, is the solution of (1.3.2) then Ty(u,) € H(Q), for any
k€ IR". Moreover

[Tt < K@), (38
Q

Proof. Let f, € My(Q) N HYQ) be such that f, — p weakly-* in M;(Q) -
I fallio) < llullaty (o). Then

/A(x)Djuaniv dz = /fnv dr Vv € Hy(Q);
Q Q

then we can take as test function v = Ty (uy,) and obtain, using ellipticity, that

L/WEWHWS%HthmSQ
Q

Hence, up to a subsequence, Tj(uys,) — w weakly in H{(Q). The limit w is actually
Tx(u,) itself because, by Proposition 1.3.5, we already know that uy, — u, a.e. in .
Hence Ty (u,) € H{(Q) for all £ > 0. O

Proposition 1.3.8 implies that wu, has a quasi continuous representative. In the rest

of the paper we shall always identify u, with its quasi continuous representative.

Proposition 1.3.9. If u, is the solution of (1.8.2) then there ezists w quasi continuous,

with u, = w a.e. in Q.

Proof. Since, for all k, Ty(u,) € H{(Q), then it has a quasi continuous representative.
 Call it vg. Notice that, if A < k, then Tp(vg) = v, a.e. in £ and hence q.e. in .

Step 1. Suppose that on some E C Q we have that vy, is continuous for every k
and that Th((vi(z)) = vp(z) for all z € E, for h < k. Moreover assume that for every
z € 2 there exists k such that |ug(z)| < k.

In each z € E we define v(z) := vg(z) for such k. This definition is well posed: if
there exists another h < k with |vp(z)| < h then

| T (vi ()| = lvn(2)| <,

from which vi(z) = Ty (v (z)) = vi(z).
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Let us prove now that v is continuous on E. Fix zg € F and k such that jug(zo)| <
k, and hence v(zg) = vx(zo). By continuity there exists a neighbourhood of zg in £ in
which |vk(z)| < k, and then v(z) = vg(z) for all such z. The continuity of vy says that

around the point zg
"Uk(.’E) - ’Uk(m'o)l < E.

In a suitable vicinity of zq in F we can replace vy with v and obtain
[o(z) — v(zo)| < e,

so that v is continuous on E. And finally v = u, a.e. in E since T(v) = v, vx = Tk (u)
a.e., and we can pass to the limit with respect to k a.e. in E.
Step 2. For the general case, consider the set

+oco
B:= [ {lval > A}.
h=1
To prove that cap(B) = 0, observe that

cap(B) < cap({|vx| > k}),

for all k£, and using (1.1.1) and (1.3.6), we can compute

cap({vg| > k}) < /IDUk|2 dz

/1DTk u)|?dz < < —

and obtain the claim as k£ tends to +co.
By the definition of quasi continuity, for all £ and m there exist AF C Q with

1 1
ARy < ——

such that Ukl is continuous in Q\ A® . The sequence of sets A% can be taken to

A%,
be decreasing.
Set
+oo
Am =] A5 UB,

k=1
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1
so that cap(An,) < o

For any m fixed, in the set Q\ 4,,, we are in the situation of Step 1. Indeed, for all k.
Ukl 4,, 18 continuous and, for all z € 2\ A,, there exists k such that Ivkin\Am (2)| < k.
So, by Step 1, there exists a continuous function w,, : Q2 \ A, — IR such that

Te(wm) = u ae. in Q\ Ap,.
Define now w : Q — IR by

’UJ|Q\Am = W
“+o0
The definition in ﬂ A, is irrelevant because this set has capacity zero.
m=1 »

The definition is well posed: indeed, for all z € Q\ A,, there exists k such that
lvg(z)] < k so that wer1(z) = vg(z) = wm ().

The function w is quasi continuous, because, for all € there exists m such that
cap(A,,) < € and Wi\ 4, = Wm is continuous. Moreover w = u a.e. in {) since so do
the w,,’s. U

Remark 1.3.10. From (1.3.6) it follows also that if u,, p € Mp(Q2) are such that
tn — p weakly-+ in My(Q2), then

Ti(u,,) — Te(u,) weakly in Hy(Q).

Indeed since the sequence pu, is bounded, from (1.3.6) it is clear that, up to a subse-
quence, Tx(u,, ) — 2 weakly in H*(Q2), where z € Hj(€2). But on the other hand, from
Proposition 1.3.5, Tx(u,, ) = Tx(u,) a.e. in Q, for all £ > 0. Hence by uniqueness we
have the thesis, for the whole sequence.

It is to be noticed anyway that in general it is not possible to obtain the strong
convergence of the truncates in H}(Q). This is shown in the following example, which

follows a well known construction made by D. Cioranescu and F. Murat in [14].

Example 1.3.11. Let Q= (0,1)" with N >3, A= -A.

1
For each n € IN, divide the whole of  into small cubes of side —. In the centre of
n

<7

1 N3
each of them take two balls: B . , inscribed in the cube, and By, of ray rp, = (——-) .

In each cube define w, to be the capacitary potential of B, with respect to B_L
extended by zero in the rest of the cube.
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ST SCES
Yoy

Consider the measures

Ly = —Awy,

it is possible to prove (the proof is rather tricky, see [14]) that p, € My(Q)NH™(Q) and
that

tn — 0 both weakly in H(Q) and weakly-* in My(Q)

Hence from Proposition 1.3.5 and Remark 1.3.10, and from the fact that 0 < w, <1 we
get that

wyp, — 0 strongly in WH4(Q) and w, — 0 weakly in H}(Q).

If we had also that w, — 0 strongly in H'(€) this would imply the convergence in
capacity, but it is possible to see that

ap ({2 11 6

and the constant ¢ does not depend on n. This fact was already observed in [11].

As for the approximation of measures, the following theorem due to L. Boccardo

and F. Murat (see [12]) gives a special approximating sequence of measures in Mp(Q)N
HY(Q).

Theorem 1.3.12. Let u, be the solution of (1.3.2). Then
ATy (u,,) € Mp(Q) N H_I(Q).

Moreover

ATy (uy) = p weakly-+ in My(£2).
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Remark 1.3.13. Notice that in general it is not possible to approximate any measure
p € My(Q) by means of measures in My (Q)NH™(Q) with respect to the strong topology
of My(). Indeed the strong closure of My(Q) NH™(Q) is MY(Q). In particular, for
any measure p € MP(Q2), we know (see [9]) that we can write it as g = f + F where
f e LYQ) and F € Mp(Q) NH™(Q). Hence if we take py := Tx(f) + F we have that
pr € Mp(Q)NH™Q) and g — p strongly in M,(2). Conversely, since every measure
of Mp(Q) NH(Q) vanishes on sets of capacity zero, so does every measure in its strong
closure.

Also the potential theoretic aspect of this theory is important and will be used in
Section 3.2 to study some properties of this kind of solutions.

The Green’s function G§(z,y) relative to the operator A in  is defined as the
solution, in the sense of Stampacchia (Definition 1.3.2), of the equation

A*GH(z,") =6, inQ
Ga(z,) =0 on 92

In [41] it is proved that Gg : Q x Q — [0, +00] is continuous and satisfies the following
estimates: for every compact set J C ) there exist four constants ¢; >0, co >0, d; >0
and ds > 0 such that

c1G(|z — y|) — d1 < G (z,y) < 2G(|z — y) + do, (1.3.7)

for every z,y € J, where G(|z|) is the fundamental solution of —A in IRY, i.e

1 N-2 .
e | if N > 2,
(N“‘ 2)0’N_1 [ !
Gla) =9
— log | — if N =2;
27 |z|

here on_1 is the (N — 1)-dimensional measure of the boundary of the unit ball in
IRY (see also [27]). Notice that we can take d; = d» = 0 if N > 3. Thanks to this
Stampacchia proves that the solution of (1.3.2) satisfies

uy,(z) = /Gé(:}:,y) du(y) for q.e. z € Q. (1.3.8)

It can be proved (see [35]) that this potential representation of w, is finite q.e. in €.
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Obstacle problems with measure data

2.1. Definition

Now we want to arrive to a suitable definition of obstacle problems with measure
data. As we have seen, we can not use the variational formulation (1.2.1), because the
term of the form (i, v—u) may not be defined. Also the use of the characterization (1.2.4)
is not possible because this, in general, does not determine the solution of the Obstacle
Problem. Indeed reconsider Example 1.3.1: with such A, if we choose ) = —co, and if
1 were the minimal supersolution, then we would have v < u+tw a.e. in §) for any ¢
in IR, which is a contradiction.

To avoid these problems we give the following definition, in which, roughly speaking,
we choose the minimum element among those functions v such that Av — p is not only
nonnegative in the sense of distributions but is actually a nonnegative bounded Radon
measure.

First of all recall from Section 1.1 that 9 : © — IR is a quasi upper semicontinuous
function and Ky () is the set of all quasi continuous functions z such that z > ¢ g.e.
in .

Definition 2.1.1. We say that the function u € Ky () N W, %(Q), 1 < ¢ <
a solution of the Obstacle Problem with datum g and obstacle ¢ if
1. there exists a positive bounded measure A € M (Q) such that

N1 is
U = Uy + U\;
2. for any v € M; (), such that v = u, + u, belongs to Ky(£2), we have
u<wv q.e. in .

Also here the positive measure A, which is uniquely determined, will be called the
obstacle reaction relative to w. This problem will be shortly indicated by OP(u. ).
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To show that for any datum p there exists one and only one solution, we introduce
the set

Fyl) = {'u € Ky(QNWEUQ) : Fv € M (Q) st v =1, + u} .

We will prove that Fy(u) has a minimum element, that is a function u € Fy(u) such
that v < v q.e. in Q for any other function v € Fy(u). This is clearly the solution
of the Obstacle Problem according to the Definition 2.1.1. If this solution exists it is
obviously unique. Hypothesis (1.2.2) does not ensure that Fy(u) be nonempty. The
minimal hypothesis, instead of (1.2.2), will be

Jp e Mp(Q) ¢ u, > qe. in (2.1.1)

so the set Fy(u) is nonempty for every p € Mp(£2), because it contains the function
u,+ - Up. In this case we will say that the obstacle is OFP-admissible.

In Section 3.1 we will need a slightly stronger condition of admissibility. If
Jo € MYQ) : u, > qe in (2.1.2)

we will say that the obstacle is OP?-admissible.

This definition of obstacle problem is given in the case of homogeneous boundary
condition. It will be extended to general boundary data only in Section 4.5 to make the

exposition simpler.

2.2. Nonpositive obstacles

We begin the proof of existence of solutions to obstacle problems from a case that
makes things easier. Throughout this section we assume the obstacle to be nonpositive.
In this frame both hypotheses (2.1.1) and (1.2.2) are trivially satisfied, i.e. the obstacle
is both VI- and OP-admissible.

We begin with a preparatory result which will be proved in two steps.
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Lemma 2.2.1. Let 9 <0 ge. inQ anlet p € Mp(2)NH™(Q) such that p* and
u~ belong to HYQ). Let u be the solution of VI(u,v) and X the obstacle reaction
associated with u. Then

Moy < e Hmu(e)-

Proof. Observe that the function u,+ is positive and hence greater than or equal to v
g.e. in 2, belongs to H}(2), and

Auye —p >0 inD'(Q).

By (1.2.4) we have

u=1u, +uy < uy,+ ae in Q,

hence, since both functions are quasi continuous, also g.e., and, by linearity,
uy < u,- g.e. in . (2.2.1)

We will prove that this implies
) < p™ () (2.2.2)

which is equivalent to the thesis.
To prove (2.2.2) we note that, thanks to (2.2.1)

[N
[\]
(VN
~

/wd,u_ = (A"w,u,-) > (A*w,uy) = /wd/\, (2.2.

Q Q

for every w € H}(S2), such that A*w >0 in D'(Q).

It is now easy to find a sequence {w,} in H}(Q) such that w, A~ 1 and A*w, >0
in D’(2). For instance, one can choose as w, the A*-capacitary potential of .J,, , where
Jy, is an invading family of compact subsets of 2.

Passing to the limit in (2.2.3), as n — oo, we obtain (2.2.2). Ul

Theorem 2.2.2. Let ¥ < 0 and p € Mp(Q) NH™Q). Let u be the solution of
VI(p, ) and let X be the obstacle reaction relative to w. Then

HA A ) < 1T 1My () (2.2.4)
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Proof. Thanks to Lemma 3.3 in [21] there exists a sequence of smooth functions f, such

that
1

- and anHLl(Q) < II'UJHMb(Q)'

fn = pllgmqy <
Thanks to the next lemma, the sequence f, satisfies
fE — p* weakly-+ in My(Q) and || £ |lLr) = 185l a0

Let u, and u be the solutions of VI(f,,v) and VI(u, 1), respectively. We know
from the general theory that u, — v in H}(2). So the measures A, and A associated

with u, and u, respectively, satisfy
An — A in HY(Q),

ll/\nllmm) < |Ifa Ly

So A, — X in weakly-* in My(€)), and we get the inequality (2.2.4). O
The following lemma is quite simple, but is proved here for the sake of completeness.
Lemma 2.2.3. Let p, and pu be measures in My(2) such that

pn — p weakly-+ in My(Q) and |[n]|a0) — |1 A0

then
ph = pt oand p, — po weakly-x in My($2),

and

et @) = et lame) and o ) = 167 e ) (2.2.5)

Proof. Observe that
eE ity ) < el -

so, up to a subsequence,
pt — aand p, — B weakly-* in Mp(Q);
where o — § = p. Hence, we can compute

et ap () + 1Bl a0y < Hminf |ur || agy ) + iminf [[u7 [ a0

< Hminf ||pn||my0) = Hellae @)
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from which we easily deduce that o = g™, 8= p~. Therefore the whole sequences f.
and p converge to put and p~ respectively. Moreover, as

1. + 1- . f J—
im sup |17 | ) + B s (a0

< 11133 Hl‘l’”“Mb(Q) = HMHMb(Q) = i|u+HMb(Q) + HM_HMb(Q)

n—r—1+0Q

we obtain easily the first relation in (2.2.5). The second one is obtained in a similar way.

0

In order to proceed we need to prove that when both the classical formulation for
the obstacle problem and the new one, given in Definition 2.1.1, make sense then the
solutions are the same. At present we prove it for a nonpositive obstacle, and we will

prove it in the general case in Section 2.5.

Lemma 2.2.4. Let p be an element of Myp(Q)NH™(Q) and ¥ a nonpositive function;
then the solution of VI(u, ) coincides with the solution of OP(u, ).

Proof. Let u be the solution of VI(u,%) and A be the corresponding obstacle reaction.
Thanks to Theorem 2.2.2 it is an element of M(Q); so u € Fy(p). Take v an element
in Fy(u), then v =u, +u,, with v € M;(Q), and v> 19 q.e. in Q.

Consider the approximation of v, given by ATj(u,) =: v,. This is such that
vy — v weakly-x in My(Q) and v, € MJ(Q) NHY(Q) (see Theorem 1.3.12). Set
Vg = Uy + Uy, = Uy + Tk(uy). Since trivially Tk (u,) /v, q.e. in 2, we have

vy v g.e. in Q.
Denote now the solutions of VI(u,vr) by uk, where 9 are the functions defined by
Yk =P A\ Vg

From 95 < ¥gr1 q.e. in Q it easily follows that up < ugy1 g.e. in £2. Then there exists
a function u* such that uy 7 u* q.e. in Q.
So, passing to the limit in ug > 9 q.e. in §2 we obtain u* > 19 q.e. in (2.
Moreover it is easy to see that ||ux|lmi(q) < C. So, thanks to Lemma 1.2 in [20] we

get that u* is a quasi continuous function of H{(f2) such that

wp — u* weakly in Hg(Q).
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Thanks to this, in the inequality
(Aug — p,v —ug) 2 0
using Minty Lemma, we can pass to the limit and obtain
(Au™ — p,v —u”) 20,

for all v € H3(Q), with v > 1 g.e. in Q (notice that such v can be used as test function
also in the first inequality, since ¥ > % q.e. in Q). So u* is the solution of VI(u, )
and by uniqueness u* =wu g.e. in 2.

Naturally, from the minimality of ug, we deduce
ur < v g.e. in .

so, passing to the limit as k — +o0o we conclude that v < v g.e. in {2. Since this is

true for every v € Fy(p), the function v is the minimum in Fy(u), i.e. the solution of

OP(p,v). L

We are now in a position to prove that, for every p € M,(Q2) and for every 9 <0,
there exists a solution to the obstacle problem according to Definition 2.1.1.

Theorem 2.2.5. Let 1) <0 and u € My(Q2). Then there ezists a (unique) solution of
OP(p, ).

Proof. Consider the function u, and define
A(Tk(uu)) =i Ug-
We know from Theorem 1.3.12 that
pre — u weakly-* in Mp(Q)

and px € H(Q).
Let u; be the solution of VI(ug,v) and denote

Aug — pr =: A,
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which we know from Theorem 2.2.2 to be a measure in M (2) such that

1Akl Aty ) < Mg s () ' (2.2.6)

Up to a subsequence Ay — A weakly-* in M,y(§2). From this, thanks to Proposi-
tion 1.3.5, it follows that ux — u strongly in WH4(Q), with w = u,, 4+ u,, and also that
Th(ug) — Tr(u) weakly in H{(S), for all A > 0.

Now the set

E={veH}Q) : v>Th(¢) qe inQ}

is closed and convex in H}(Q), so it is also weakly closed. Since, clearly, Th(ux) >
Tr(1) q.e. in 2, passing to the limit as & — +oco we get that also Th(u) € E, hence
Tr(u) > Th(¥) qe inQ for all A > 0. Passing to the limit as h — 400 we get
u > 1) q.e. in  In conclusion we deduce u € Fy(u)-

To show that u is minimal, take v € Fy(p) so that v > ¢ qe. inQ and v =
Uy + Uy .

Let vk = uy, + Uy so that ve = Ty (uy) +u, and v, — v weakly in Wé’q(ﬂ).

Since 1 < 0, we have that vy > % q.e. in Q. As ug is the minimum of Fy (ux), by
Lemma 2.2.4, we obtain uy < v g.e. in §2, in the limit v < v a.e. and then also g.e. in
Q2. Hence u solves OP(u, ). 4 [

From formula (2.2.6) we see that to extend (2.2.4) to the case of p € My(£2) we just
need to show that

g @) = e a9

this is proved in the following proposition.

Proposition 2.2.6. Let 9 <0 and p € My(Q2). Let u be the solution of OP(u,1)

and X\ the corresponding obstacle reaction. Then
A A ) < 1T s (@)

Proof. This proof repeats the one in [12] with minor modifications.
Let f, be a smooth approximation of p in the *-weak topology of My(Q2), such
that ||fnllLie) < llellag, (@), and let uy, be the solutions of

Au, = f,  in HHQ)
u, € H3(Q).
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Consider, for § > 0, the Lipschitz continuous functions hs defined by

((hs(s) =1 if |s| <k
hs(s) =0 if |s|>k+90
Bls)l=5  itE<|s|<k+s,
and Ss defined by
(S5(s) =0 if |s| <k
! Ss(s) =sign(s) if|s|>k+46
ksg(s):% iE < |s| < k+6.

A

1
t
i
i
!
i
i
]
:
L
S5k -k ;
1
1
1
1
1]
1
1
1
i

We can compute
—div(hs(un) A(z) Dun) = hs(un) fn + hs (Un)A(x)DunDUﬁ

1 1
= hs(un)fn + 5X{—k—5<un<—-k}(m)A<$)DunDun - gX{k<un<k+6}(x)A<m)Dun«Dun~
The second term gives
1
/ gA(x)DunDun dr = ~/fn55_(un)dm.
{—k—8<un<—k} )

Similarly for the third term we obtain

/ %A(:::)Dunpundx: / FnS5 (un) dz.
{k<u,<k+68} Q

So we get that

/ | — div(hs(un)A(z)Duy)| dz

Q

< [ Vil (hstum) + 7 1) + 57 (1) 0
Q

=/1fn[dcc < ullmy9)-
Q
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Hence

| — div(hs(un) A(e) Dun) | gyt = || — div (s (1) A2) D)l @) < sty -
Now let ¢ tend to zéro, with n and k fixed, and obtain
—div(hs(un)A(z)Dun) — AT (uy,) strongly in H™(Q)
which implies

|IATk(un)HMb(Q) < H:u’HMb(Q)

As also n — 400 we get

ikl mo ) < il i)

and thanks to Lemma 2.2.3 we obtain

ek ) < T g )

and, since A\z — A weakly-* in Mp(§2) and by the lower semicontinuity of the norm

HA M) < ggligll/\kHMb(m < e my(a)-

2.3. The general existence theorem

We come now to prove the existence and uniqueness of the solution to the obstacle
problem, without the technical assumption that the obstacle be negative. From now on
the only hypothesis will be (2.1.1), i.e. that the obstacle is OP-admissible.

Theorem 2.3.1. Let v be OP-admissible and let p € My(Q2). Then there exists a
(unique) solution of OP(p,v).

Proof. It is enough to show that we can reduce the problem to the case ¥ < 0. Indeed
define

Q=1 —up,

which is, obviously, g.e. negative.
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By Theorem 2.2.5 there exists v minimum in F,(u — p), and we prove that the
function u := v 4+ u, is the minimum of Fy(u).

Trivially u > % q.e. in  and, denoted the positive obstacle reaction associated to
v by A, we have u = v+ u, = u, + ux, which shows that u is an element of Fy(u).

Consider now a function w € Fy(p). By similar computations we deduce that
w — u, belongs to F,(u — p) and, by the minimality of v, v < w — u,, so that we

conclude u < w q.e. in ©, and A is the obstacle reaction associated to u. U

Remark 2.3.2. From the previous proof we deduce that in the general case we have

the inequality
M Moy < 1= 2) " M) (2.3.1)

We mention here a very simple and very useful result whose proof is immediate, but

that is worth stating on its own.

Lemma 2.3.3. Let p, v € My(Q) and ¢ is OP -admissible. Then u is the solution
of OP(u, ) if and only if u — u, s the solution of OP(u — v, —w,). The obstacle

reaction is the same.

2.4. A stability result

In this section we want to show a result of continuous dependence of the solutions
on the obstacles.

The following proposition is proved here because it will be needed in the following,
but the problem will be studied in details in Chapter 4.

Proposition 2.4.1. Let 1, : Q@ — IR be obstacles such that

Yo <Y and Y, — Y ge in

W OP-admissible, and let u, and u be the solutions of OP(u,n) and OP(u, ),
respectively. Then
Un — u  strongly in WH9(Q).

We also obtain that un, — u g.e. i Q and that Ti(un) — Te(u)  weakly in HE(Q), for
all k> 0.



Obstacle problems with measure data, 37

Proof. Since u is trivially in Fy_(p) for any n we have
up <u g in Q. L (24.0)

To every minimum u, there corresponds a positive obstacle reaction A, , satisfying

inequality (2.3.1), so we obtain that, up to a subsequence,

An = A weakly-x in M;(2)

Un — @ strongly in Wy?(Q)

and

u:uu—i—u;\.

Hence, from (2.4.1), 4 < u a.e. in 2, and also g.e. On the other side, we have to prove
that 4 > 1 q.e. in Q, in order to obtain 4 € Fy(p), and so u < 4 g.e. in .

First consider the case when ¢, < ¥,4+1 g.e. in €.

From this fact it follows that u, < up+1 g.e. in Q, and then Tx(un) < Tg(tni1)
g.e. in Q, for all £k > 0. Hence this sequence has a quasi everywhere limit. On the other
hand, the fact that w4 An — g+ A weakly-* in My(Q) implies that Ty (u,) — Tx(@)
weakly in Hj(2) and then, by Lemma 1.2 of [20], Tx(un) — Tk(@) g.e. in . Since this
holds for all £ > 0 we get also

U, — 4 g.e. in €2

Then, passing to the limit in u, > %, q.e. in Q we get & > q.e. in Q.

If the sequence 1, is not increasing, consider
:— inf , 2.4.2
©On ]i> wk ( )

so that ¢, 9 qe. in Q and ¢, < ¥, qe. in Q. If T, is the solution of OP(u, pn)
it is easy to see, using Definition 2.1.1, that %, < un, < u g.e. in 2. Applying the first

case to U, and passing to the limit we get u, — u g.e. in . L]

2.5. Comparison with the classical solutions

In this section, we want to show that the new formulation of the obstacle problem

is consistent with the classical one.
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To talk about the equivalence of the two formulations it is necessary that both make
sense. So we will work under the hypothesis that p € My(2) N H(Q) and that the
obstacle 1 satisfies

3z € Hi(Q) st 2> ¢ qe. in (2.5.1)
3p € MF(Q) st up, > qe. in Q. (2.5.2)

or, in other words that ¢ is both VI- and OP-admissible.

Later on we will discuss these conditions in deeper details.

Lemma 2.5.1. If there exists a measure 0 € Myp(Q2) N HYQ) such that u, >
¥ g.e. in ), then the solutions of VI(u,%) and of OP(p, ) coincide.

Proof. Let u be the solution of VI(u,). Subtracting u, to it, and with the same
technique as in the proof of Theorem 2.3.1, we return to the case of negative obstacle

and we can use Lemma 2.2.4. U]

Theorem 2.5.2. Under the hypotheses (2.5.1) and (2.5.2), the solutions of VI(p, 1)
and of OP(u, 1) coincide.

Proof. As a first step consider the case of an obstacle bounded from above by a constant
M. By Theorem 1.3.12, the measure par = A(Twm(u,)) is in Mp(Q) N H™(Q) and
T (up) > % qee. in £ so that we are in the hypotheses of the previous lemma.

If, instead, ¢ is not bounded, we consider the truncates i A k, and, with respect
to this new obstacle, conditions (2.5.1) and (2.5.2) are satisfied by the function Ty (u,),
and in addition ¥ Ak ¢ q.e. in 2.

Hence we can apply the first step and say that u, solution of VI(u, ¥ A k), is also
the solution of OP(u, ¥ A k).

From Corollary 1.2.5 we know that the sequence uj tends in Hg(f2), and hence
also q.e., to the solution of VI(u,1), while, from Proposition 2.4.1, uj converges to the
solution of OP(u, %) q.e. in . L]

Remark 2.5.3. At this point we can notice that

Jo e MF(Q)NHQ) s.t. ug > 9 qe. inQ
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is not only a sufficient condition for both (2.5.1) and (2.5.2) to hold, but is also a necessary
one. N ,

Indeed if ¢ satisfies both (2.5.1) and (2.5.2), then it is enough to take u, the
solution of OP(0,%), which, by Theorem 2.5.2, is the same as VI(0,v), so that o €
ME(Q)NHYQ).

A little attention is required in treating conditions (2.5.1) and (2.5.2). Each one
is necessary for the corresponding problem to be nonyempty, but together they can be
somewhat weakened.

First of all we underline that no one of the two conditions is implied by the other.

This is seen with the following examples.

Example 2.5.4. Let Q= (—1,1) C R and let A= —A = —u". Take ¢ € Hg(-1,1)
such that —1” is an unbounded positive Radon measure. For instance we may take
%= (1— |z|)(1—log(1—[z])).

Now (2.5.1) is trivially true, and the solution of VI(0,%) is ¢ itself. If also (2.5.2)
were true, then 1 would be also the solution of OFP(0,%). But this is not possible,

because, being —9” an unbounded measure, we can not write it as uy for some A €

M(Q).

Example 2.5.5. Let N >3, A= —A and p = dg,, the Dirac’s delta in a fixed point
zo € Q.

Take 1 = usg, , the Green’s function with pole at zg. Then (2.5.2) holds, but if also
(2.5.1) held we would have ¢ € L (Q) which is not true.

On the other side we already saw in the proof of Theorem 2.5.2 that if an OP-
admissible obstacle is also bounded, then it is V' [-admissible.

Moreover, if a VI-admissible obstacle is “controlled near the boundary” then it is
also OP-admissible: assume that (2.5.1) holds and there exists a compact J C {2, such
that ¥ < 0 in Q\J. Then also (2.5.2) holds. Indeed just take as p the obstacle reaction
corresponding to u, the solution of VI(0,%). Then

suppp C J,

and hence p € M (Q).
A finer condition expressing the “control near the boundary” .is that there exist J
compact C Q and 7 € M (Q) NH™(Q) sucht that u, > qe. in Q\J.
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To complete this discussion we present here a simple result which will be useful in
the future.

Proposition 2.5.6. Let 1 € HY(Q) be OP -admissible. Then it is also VI -admissible.

Proof. Let p € M; (Q) be such that ¢ <wu, g.e. in .
For any k € R™, we have 0 < ¢+ Ak <wu, Ak. Since u, Ak belongs to H (), so
does YT A k. As

f|D(¢+ A k)|2dz < / |DyF|2dz < +o0.
Q Q

the function T is the limit of the increasing sequence T Ak, which is bounded in
HL(Q). This implies that ¥ € Hj(Q2), hence ¢ is VI-admissible. 0

In conclusion we want to remark that, in general, in classical variational inequalities,
the obstacle reaction associated to the solution is indeed a Radon measure, but it is not
always bounded, as Example 2.5.4 shows.

On the other side, in the new setting, the minimum of Fy(x) is not, in general, an
element of H(2).

Hence the two formulations do not overlap completely and no one is included in the
other.

2.6. Approximation properties

As we will see in Section 4.1, if we have a sequence pu, *-weakly convergent to u,
we can not, in general deduce convergence of solutions u, of OP(un,) to the solution
u of OP(u,), but, from (2.3.1) we have

Al e @) < H(kn = 0) 7 Il ay(@)s

where the ), are the obstacle reactions relative to the solutions u,. So, up to a subse-
quence,
An — A weakly- in Mp(Q)

and

up — U = uy, +uj strongly in Whe(Q).
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With the same argument used in the proof of the Theorem 2.2.5 we can show that
4> qe. in Q. Hence 4 > u, the minimum of Fy(u).

On the other hand, in Theorem 2.3.1 we have obtained the solution of OP(u,%) as
a limit of the solutions to OP(ATk(u,—,) + p,¥). We remark that if p belongs to the
ordered dual of H3(Q) that is V = {u € Mp(Q)NHY(Q) : [u| e HHQ)} (e o is
both VI- and OP-admissible), then the approximating problems are actually variational
inequalities.

Thanks to these two facts, when the obstacle is VI- and OP-admissible, we can
characterize the solution u of OP(u,) by approximation with solutions of variational
inequalities with data in V as follows.

1. For every sequence py in My(Q2), with px — p weakly-* in My (), we have
S—Wé’q(Q)- lim ug > u.
k—o0
2. There exists a sequénce pi €V, with g — p weakly-* in Mp(Q) such that
s-Wyd(Q)- lim ug = u
k—oo
In other words:

k—+oco

u = min{s—lim ug : ug sol. VI(ug, ), pr €V, pr — p weakly-* in Mb(Q)}.
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Interaction between obstacles and data

As mentioned in Section 1.2, for variational inequalities we have the characterization
of solutions via complementarity conditions (1.2.5). These say, roughly speaking, that
the solution of a variational inequality VI(f, ) always touches the obstacle wherever it
is not the solution of the equation itself Au = f.

This fact is no longer true when we pass to consider data in Mp(Q2): we show now
an example (suggested by L. Orsina and A. Prignet) in which the solution of the obstacle
problem with right-hand side measure does not touch the obstacle, though it is not the

solution of the equation.

Example 3.0.1. Let N > 2, Q be the ball B1(0), and A= —A. Take the datum p a
negative measure concentrated on a set of zero 2-Capacity and the obstacle ¢ negative
and bounded below by a constant —h. Let u be the solution of OP(u,4), then u =
uy, + ux. We want to show that A = —pu.

First observe that, for minimality, u < 0; on the other hand u > —h, so that u =
Ty (u) and hence u € HA(Q2). This implies that the measure p+ X is in M(Q)NH™(Q),
which is contained in M (). In other words A = —p+ M, with A a measure in M(Q),
and so positive, since A is positive. Then u > 0, and finally u = 0. Thus the solution

can be far above the obstacle, but the obstacle reaction is nonzero, and is exactly —pu-

3.1. Measures vanishing on sets of zero capacity

We want to consider here a class of data for which the above phenbmenon is a{roided.
Consider, as datum, a measure in MP(£2). In this case we can use the fact (see
Remark 1.3.13) that for any such measure p there exists a function f in L'(Q) and a
functional F' in Mp(Q) NH™(Q), such that p = f+ F. If, in addition x> 0, then also
f can be taken to be positive. '
Assume that the obstacle satisfies also

Jo € MYQ) : uy > P qe. in (3.1.1)

this will be shortened by saying that 1 is OP°-admissible.
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Remark 3.1.1. Notice that, thanks to Remark 2.5.3, if an obstacle is both VI- and
OP-admissible then it is also OPY-admissible

We want to show that also the obstacle reaction A belongs to M(2) and that in
this particular case we can write our obstacle problem in a variational way, that is with
an “entropy formulation”.

Notice that if the datum g is in MJ(€2), but the obstacle is only O P-admissible,
then the reaction \ in general does not belong to M3 ().

Indeed if for instance we take A= —A, p =0 and ¥ = us,, the Green’s function
relative to the Dirac’s delta centered at zq € Q, then the solution of OP(0,%) is Us,,
itself and hence A\ = 0z, & MD(Q).

We begin by considering the case of a negative obstacle.

Lemma 3.1.2. Let ¢ < 0 and let uy, po € Mp(Q) NH™Q). Let Ay and Ay be
the reactions of the obstacle corresponding to the solutions uy and ug of VI(u1, 1Y) and
VI(ug, 1)), respectively.

If p1 < po then Ay > Ag.

Proof. This proof is inspired by Lemma 2.5 in [22]. We easily have that uy < us.
Take now a function ¢ € D(2), ¢ > 0, and set

e = EP N (UQ - ul) € Hé(Q)
Now, using the hypothesis that pu1 < p2 and monotonicity of A, compute
(A1, 60 — @e) > (Aur, 60 — @) — (p2, €9 — @c)

= (Auy — Aug, e0 — 0c) + (A2, 60 — ¢e)
> ¢ [ A@) (w1 — ) Vo + b, ) — Dz, 00)

{uz—u1<ep}

Now, using u; as a test function in VI(ugz,%) and the fact that ug —uy > e 2 0 we
easily get (Mg, @) = 0.
Since, also, —(A1,pe) < 0 we obtain

Ang) > / A(2)V (4 — u2) Vo + (Ao, 0).

{u2—u1<ep}
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Passing to the limit as € — 0 and observing that

/A(a:)V(ul —ug)Vep — /A(:c)V(m —ug)Ve =0,

{uz—u1<ep} {uz=u1}

we get the thesis. Ll
Let us see now what can we say more if u € MJ(Q), still in the case of negative
obstacle.

Lemma 3.1.3. Let ¢ <0 and let p € MJ(Q). Then the obstacle reaction relative to
the solution of OP(u,1) is also in M2(Q).

Proof. Tt is not restrictive to assume p to be negative. Indeed, if p = g™ — p~, then
also ut and p~ are in M2(Q). Hence, by Lemma 2.3.3, the minimum of Fy(u) can be
written as u,+ + v with v minimum in fw—u” . {(—p7), and the same obstacle reaction
A; and so we are in the case of a negative measure.

Consider now the decomposition = f+ F with f < 0. And let pg =T (f) + F
so that pg — p strongly in Mp(92).

Let uz be the solution of OP(ug,%). It is also the solution of VI(ug, 1) so that
A € MYQ).

Thanks to Proposition 4.1.1 we have that ug — u = u, + uy strongly in Wy'(Q)
and that A\ — A weakly-* in My(Q).

From the fact that pp > pgr1 and from Lemma 3.1.2 we obtain that Ap < Apq.

Hence if we define

~

A(B):= lim A\(B) VB Borel set in Q,

k—o0

we know from classical measure theory that it is a bounded Radon measure, it is in
MO(Q), since all Ay, are, and necessarily coincides with A. So A € MP(Q). O

Remark 3.1.4. It is clear from the proof that the lemma holds as well if we only
suppose that u~ € MY(9).

In order to pass to a signed obstacle we need to require now that the obstacle is
OP°-admissible, i.e. satisfies (3.1.1).

Once we have noticed this, it is easy to use the result for a negative obstacle, as we
did in the proof of Theorem 2.3.1 and obtain the following result.
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Theorem 3.1.5. Let ¢ satisfy hypothesis (3.1.1), and let p € Myp(Q) with p= in
MP(Q). Then the obstacle reaction relative to the solution of OP(u,v) belongs to
M) as well. '

Remark 3.1.6. Notice that thanks to the pointwise convergence we have, in this case,
that Ap — A strongly in M(Q).

As pointed out with Example 3.0.1 the fact that the reaction of the obstacle is
concentrated on the coincidence set (roughly speaking, the set where the solution u 1s
equal to the obstacle) which is true for variational inequalities (see complementarity
conditions (1.2.5)), fails when the datum is a measure.

In the following theorem, proved by C. Leone in [33], it is shown that this holds
anyway in the case of data in /\/[2(9) (in [33] it is proved for obstacles that are both
OP- and VI-admissible, but thanks to Lemma 2.3.3 it holds for any OP°-admissible
obstacle).

Theorem 3.1.7. Let p~ e MY(Q) and let ¢ be an OP°-admissible obstacle. Then
the following facts are equivalent

1. w is the solution of OP(u,) and A is the corresponding obstacle reaction;

2. A€ Mg’+(Q), w=u,+uy ge mQ, u>Y ge inQ, and u=1yP A-a.e. infd

The problem of the interaction between data and obstacles will be deeply investigated
in the forthcoming sections. In particular, Theorem 3.3.5 will extend Theorem 3.1.7 to

general data, but of course, some restrictive hypothesis on the obstacle will be made.

Remark 3.1.8. These properties of the case of M?(Q2) measures, allow us to write the
obstacle problem in a “more variational” way, when the obstacle is bounded from above.
Namely, if 4 € MJ(Q) and its decomposition is 4 = f + F then the function u solution
of OP(u,) satisfies also

(A Tylo =) 2 [ £ T30 =)+ (R T (0 =)
J |

Yo € H(Q)NL®(Q), v>19 qe inQ

for any j € RT. This is similar to the entropy formulation given by Boccardo and
Cirmi in [6] in the case of datum in L'(€2). Also the proof that such a formulation holds
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is similar to the one in [6] and is made by approximation. To this aim we choose the
particular sequence of measures (see Remark 1.3.13) py = T (f) + F', so that pi — p
strongly in My(Q) and pr € Mp(2) N H™(Q). Hence also the solutions of OP(ux, )
(and also of VI(ug,1)) converge strongly in Wé’q(ﬂ) to u solution of OP(u, ). Then
ug solves

(Aug, v — ug) > (g, v — Uk)
Vv € HY(Q), v > ¢ qe. in Q

In this inequality we can use as test functions v = Tj(w — ug) + ug, with w € Hg(2) N
L>®(Q), w > v q.e. in Q, so that we obtain

(Aug, — Aw, Tj(w — uk)) + (Aw, Tj(w — ur))

SR TR TR

Q

Consider one by one the four terms of this inequality. From Tj(w — ug) — Tj(w — )
weakly in H{(Q2) we get

(Aw, Tj(w - uk)> — (Aw, Tj(w — u))

and
><F7Tj(w —ug)) — <F7Tj(w —u));

by the dominated convergence theorem, we get

/Tk(f)Tj(w — ug) dr — /ij(w —u) dz;
Q Q
and thanks to Lemma 1.3.6 and by Fatou’s lemma we get
—lim inf(A(w — uk), Tj(w — ug)) = —lUminf | A(z)DT;(w — ug)DTj(w — ug) dz

Q

< - /A(a:)DTj(w —u)DTj(w — u) da; = —(Alw —u), Tj(w — u)).
Q

Hence, letting & tend to infinity in (3.1.2) we get the thesis.

In the following sections it will be discussed how, when the obstacle is controlled
from below in an appropriate way (see Theorem 3.3.1), it is possible, roughly speaking,
to “isolate” the effect of the singular negative part of the data and refer to the case of
datum in MY(Q).
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3.2. Some results of potential theory

In this section we prove some results concerning the potential of a measure. The
first two lemmas characterize the measures of Mg""(ﬂ) in terms of their potentials.

The main result of this section is Lemma 3.2.3 about the behaviour of the potentials
“of two mutually singular measures near the points where both potentials diverge.

Tt allows us to study the solutions of two equations of the form (1.3.2) corresponding
to mutually singular data. In particular (Lemma 3.2.4) we will compare these solutions
near their singular points.

For every u € M;’(Q) we consider the potentials Gu‘ and Géu defined for every
z € ) by

Gulz) = / Gz — yl) duly)
Q

and by
Gau(z) I/Gé(x,y) dp(y).-
Q

The functions G(|z|) and G§(z,y) were defined in page 25. Note that —AGp = p in
the sense of distributions in Q. By (1.3.8) G4 is a precise representative of the solution
u, of (1.3.2).

Lemma 3.2.1. Let p€ M (Q). Then,

W€ Mg’+(Q) & Gu < +oo p-ae infl,

Proof. One implication is easy: by a classical result (see, e.g., Theorem 7.33 in [29]) Gp
is finite q.e. in € and hence p-a.e. in Q if pe MP(Q).

We will prove the converse first in the case N > 2, so that G > 0. We start proving
that p*({Gu < +o0}) = 0.

For every t > 0, let By := {z € Q: Gu(z) <t} and py = pl Ey. Note that Fy is a
closed set since Gu is lower semicontinuous. As ps < g, we have Guy < Gpu (recall that
G > 0). In particular Gu; <t in Fy. By the maximum principle (see, e.g., Theorem
1.10 in [32]) we obtain G, <t in Q.

Since Gy is superharmonic and bounded it belongs to H}

L .(Q) (see, e.g. Corollary
7.20 in [28]). As p = —AGpu; in the sense of distributions in {2, we have u; € HL(Q)
and hence u; € M2’+(Q)‘
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Let now B C {Gu < +oo} such that cap(B) = 0. Then B is the union of the sets
E,NB, for t >0 and hence

u(B) = sup u(EyNB) = sup u(B)=0
telRT teRT

and so p*({Gp < +o0o}) = 0. In conclusion, if, by contradiction, u° were not identically
zero it would be p*({Gu = +oo}) > 0, which implies p({Gu = +oo}) > 0 and this
would contradict the hypothesis.

The case N = 2 can be dealt with by adding a suitable constant ¢ to G so that
G +c¢>0in Q. The proof is the same with minor modifications; in particular we use

the version of maximum principle given in Theorem 1.6 in [32]. O]
Now using (1.3.7) we can extend Lemma 3.2.1 to general elliptic operators.

Lemma 3.2.2. If y€ MJ(Q) then

pe M) = Giu < +oo p-a.e. inQ,
for all elliptic operators A satisfying (1.0.4).
Proof. Thanks to (1.3.7) it is easy to prove that for every z € {2

Gu(z) < 400 <= Gau(r) < +oo (3.2.‘1)

and so the thesis follows from Lemma 3.2.1. U

Also the next result is proved first for the case of the Laplacian on RY, then it will
be extended.

Lemma 3.2.3. Let p,v € M (Q), with p L v and let
E:={zcRY : Gu(z) = Gv(z) = +oo}.

Then

=0 forp-ae zck, (3.2.2)
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where ][ denotes the mean value on A.
A

Probf. Let R > 0 be such that Q C Bgr(0). Observing that Q C Bgr(z) for every

z € 0, we have
Gty dy= [ Golle - = dvl),

B.(z) Bar(z)

where G, (|z — z|) ::][ G(ly — z|)dy and v is defined for every Borel se B C RY by

Br‘(z)

v(B) = v(BN ). As G(|z]) is superharmonic in RY and harmonic for = # 0, we
obtain

=G(s) fors>r

Gr(s)

<G(s) fors<r

and Gr(s) /" G(s) as 7\, 0.
For any measure v € M (Q) the following equality holds

2R
/ G, (lz — 2|) dv(z) = G, (2R)v(Q) — /G;(S)D(Bs(x)) ds. (3.2.3)
Bar(x) 0
Note that v(Q) < 4+oco and that G,(2R) = G(2R) for r small enough. Since the
left hand side of (3.2.3) tends to +oco, so does the last term.

The same argument can be developed for the denominator so the limit in (3.2.2) is

equal to
2R
[ GroBae)) ds
Lim, = (3.2.4)
G, (s)u(Bs(z)) ds

Given § € (0,2R), the integrals between § and 2R remain bounded as r — 0, so that

(3.2.4) is equal to
5

G'.(s)v(Bs(z)) ds

lim —2 : (3.2.5)

r—0+ g

/ G (s)(Bo(a)) ds
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Since p L v, by the Besicovitch differentiation theorem (see, e.g. Chapter 1.6 in [23]),

for p-a.e. T € Q we have
. v(Br(x))
lim ——r\r//
70+ (B, ()

Fix z € E such that (3.2.6) holds. For each € > 0 there exists a 6 > 0 such that

_o (3.2.6)

v(Br(z)) < ep(By(z)), forallr e (0,6)

and since G, is decreasing in s, we have

1 - )
—/G;(S)V<Bs(m))ds < —e/G;(sm(Bs(x))ds.
0 0

This shows that the limit in (3.2.5), and hence the one in (3.2.4), is less than or equal to

e. Since ¢ is arbitrary, the limit (3.2.4) is zero and we get the thesis. [

Using (1.3.7) we can now prove this result in the general case of A elliptic operator
with coefficients in L*°(£2).

Lemma 3.2.4. Let p,v € M (Q), with p L v, and let F be the set of points z € §
such that

7‘1_1>1fé1+ uy(z) dz = Tﬂl& uy(z) dz = +o0.
B.(z) B, (z)
Then
f uy(2)dz
li Br(z) =0 forp-a.e. v €F.
r—0t+
][ u, () dz

Proof. As for the numerator, let us fix z € F' and choose R > 0 such that Br(z) CC Q.
Then

f w@a=§ [ ety

B (z) B (z) &

_ / ][Gg(z,y)dzdy(ywr/ ][Gg(z,y)dzdy(y).

Q\Br(z)Br(z) Br(z)Br(z)
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: R . . .
The first term, when r < 2 is bounded, so only the second one is relevant in the limit.

The same can be said of the denominator, so that we can study the ratio

/ ][ Gé(z,y) dz dv(y)

Br(z) Br(z)

| cawdzany

Br(z) Br(z)

Thanks to (1.3.7) this is smaller than or equal to

& / ]l G(|z — y]) dz du(y) + dav(Ba(2))

Br(z)Br(z)

. / ][G(Iz—dezdu(y)—dm(BR(m))

Br(z)B,(z)

Using again (1.3.7), for every z € F' we have

li G dz = li G dz = :
S g Culde=lig, 7 Gvlz)dz=rroc
B, (z) B, (z)
Since Gp and Gr are superharmonic, this implies Gu(z) = Gr(z) = +oo for every
z € F.
Considering once again the fact that the integrals over  \ Br(z) remain bounded

as r — 0%, we obtain that the ratio in (3.2.7) tends to zero as r — 0% for p-a.e. z € F.
O

Lemma 3.2.5. Let p, v € My(Q), let A € MP(Q) and let v € HY(Q). Assume that
v L ut and that
Uy < Uy tux+v o ge. n Q.

Then pt e MJ(Q)

Proof. First of all the measures v and A can be assumed to be positive, replacing them
with their positive parts. The function v can be replaced by w + g, where g is the

solution of

Ag=0 in HHQ),
g — U+ € H%)(Q)a
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and w = (v — g)T. Note that g is a nonnegative A-harmonic function and w is a

nonnegative function of Hj(Q2) and we still have u, < uy, +uy +w+g qe. in Q.

Step 1. Consider first the case u, < u,. Then u,+ < uy +uy- qee in 2. Clearly
pt L (v+p~). Let E be the set of points = € Q such that

Tl_i,IélJr uy+(y) dy = +oo
B, (z)

Note that, by our hypothesis, £ is contained in the set F' of Lemma 3.2.4, relative to

the measures ut and v + p~ . Therefore

][ u(u-{-,u—) (z) dz

B.(z)

lim =0 forpT-ae z€E. (3.2.8)
r—0+
uy+(2) dz
B, (z)
But by hypothesis
v (@) dz
B (=) >1 for By(z) C Q. (3.2.9)
][ u,+(2) dz
B.(z)

Hence we have p(E) = 0. As Gdut is lower semicontinuous, we have G&uT(z) for
z € Q\ E, and this implies p* € Mg’+(Q), by Lemma 3.2.2.

Step 2. Let now u, < u, + g q.e. in Q. Since g is A-harmonic, it is continuous,

hence
lim ][ g(y)dy = g(z) < +o0, Vr el

r—0+
B (z)

Therefore, if we add this integral in the numerators of (3.2.8) and (3.2.9), we can repeat

the same argument and we obtain p* € Mg’+(ﬂ) also in this case.

Step 8. Consider now also the term in A. Assume u, < uy, +g+uy g.e in .
As before uy+ < Ugp-) + g+ un, with p¥ L (v+ p7). Let now decompose p*
into py + po, pi € M:(Q), with g1 < A and pp L A. Then uy, < upgps,-) + g, and
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by Step 2 ug = pa € M2’+(Q). But uq € Mg’+(§2) since A € Mg’+(Q), so we conclude
that pt e MpT(Q).

Step 4. Consider now the general case u, < u, +g-+ux+w ge in Q.

Take as obstacle u, —u, —g —ux which is controlled above both by w and by u, so
that it is both VI- and OP-admissible. Then the solution u, of OP(0,u, —u, — g —ux)
belongs to HE(Q), hence 7 € My (Q) NH™(Q) C MpT(Q).

So uy < Uy + g+ Upgr) and we conclude by means of Step 8. O

Corollary 3.2.6. Let p, v € Mp(Q), let A € MY(Q), and let v € H'(Q). Assume
that v L p and that |u,| <uy +v+ux ge . Then pe MYUQ).

3.3. Interaction between obstacles and singular data

We arrive now to the main theorem in which it is shown that when the obstacle is
regular enough, the component of 4~ which is singular with respect to the capacity is

completely absorbed by the reaction A.

Theorem 3.3.1. Let p € My(Q) and let py be the part of p~ which is concentrated
in a set of capacity zero. Let ¢ : Q0 — R be an obstacle such that

_UT_'U'G—QOS"P Sucn (331)

where ¢ € HY(Q), 0 € M(Q), and 7 € Mp(Q), with 7 L pu7 . Let u=uy, + ux be the
solution of OP(u,). Then
A=A+ Hg

with A\, € My ¥ (Q).

Proof. Write u as uy+ — u,- — U,~ + Ux. As
a s

Uy + Uy— + Us = Uy+ +Us 2P Qe in €,

by Definition 2.1.1 we have u,+ + 4o > u qg.e. in 2, which implies uy —u,- < uy; +
u,- qe. in Q. Hence by Lemma 3.2.5, (A=)t e MUQ).
On the other hand —u - +ux 2 Y — Uy +u,- qe in {2 and hence

Ugyr —x) S Upt — Ur T Us + @ Qe in Q. (3.3.2).
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Now (u™ +7) L (py —A)T since p* L p=, 7 L p7 and A is positive. So, by Lemma
3.2.5, (u7 — AT e MPT(Q).

As (T = A~ = (A=)t € MpT(Q) we conclude that (uy — A) € M(Q).
Therefore A = Ay +p; with Ay € MJ(Q), hence Ay L py . Since X > 0, we deduce that
A1 > 0. O

Remark 3.3.2. Hypothesis (3.3.1) is satisfied, for instance, when 1) belongs to
HY(Q) and is OP-admissible. Indeed, in this case, we know from Proposition 2.5.6 and
Remark 3.1.1 that 1 is OP%-admissible, then we can take ¢ = —1 and 7 = 0 in (3.3.1).

Remark 3.3.3. In the previous theorem the hypotheses on 7 depend also on the
datum p, while the hypotheses on o and ¢ depend only on the obstacle .

The presence of 7 in (3.3.1) allows anyway to treat situations like the following one.
If A=-A, Q= B1(0), N > 2, the obstacle is —us, and the datum is —d,, for any
zo # 0, then the solution of the obstacle problem is zero, because the theorem applies

and, on the other hand, the solution must be less than or equal to zero.
The next result follows easily From Theorem 3.3.1.

Theorem 3.3.4. Let p € My(Q) and let ¢ € HY(Q), OP-admissible. Then the
solutions of OP(u,v) and of OP(u* — u, ,v) are the same.

Proof. If w and u' are the respective solutions, then
U = Uy+ — u“; + 'U/(_p’s—_h\) > '@[)

with (—p5 + A) positive. Then u > u' q.e. in Q by Definition 2.1.1. Similarly, v’/ > u
g.e. in 2. [

Notice that the solutions coincide but the reactions of the obstacle do not. In fact,
if the first one is A the other one is the A; of Theorem 3.3.1.

Notice also that the case ¢ € H*(Q) is a particular case of this one, thanks to
Remark 3.3.2.

We are in a position now to extend Theorem 3.1.7, valid for data in M(), to the
case of data in My(£2), using the fact that for the above obstacles. the negative singular
part of the datum disappears.
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Theorem 3.3.5. Let p € My(Q) let ¥ satisfy the hypothesis (3.3.1). The following
facts are equivalent

1. w is the solution of OP(u,1) and X s the corresponding obstacle reaction;

2. X=X+ u;, with A1 € Mg’+(Q) and u = u, +uy ge mQ, u>Y ge inl
u=1% Ar-a.e. 1n

Proof. By Theorem 3.3.4 u = u, + uy, + u,- is the solution of OP(u,v) if and only
if u = u, + uy, is the solution of OP(ut — p;,%). To this case Theorem 3.1.7 can be

applied, and the conclusion follows. O



Chapter 4
Stability with respect to data

In this chapter we will be concerned with the stability of obstacle problems with
respect to data. Both the dependence on the right-hand side and on the obstacle will be
discussed.

The first one is much like the variational case: there is stability with respect to data
converging strongly, but not, in general, with respect to data converging weakly-=.

As for the second one, we will see how it is influenced by the strange behaviour
of solutions due to the singular components of the datum, that we have studied in the

previous chapter.

4.1. Stability with respect to right-hand side
As for stability with respect to the right-hand side, we will show later that in general
tn — o weakly-* in My ()

does not imply
U, — u weakly in Wy4(Q),
where u,, and u are the solutions relative to u, and p with the fixed obstacle ¥.

However we can give now the following stability result.

Proposition 4.1.1. Let ¢ be OPF -admissible and let py, and p be measures in My(Q))
such that

tn — @ strongly in Mp(§2),

then
Uy, — u strongly in Wg4(Q)

where u, and u are the solutions of OP(u,, %) and of OP(u, ), respectively.

Proof. Let A, be the obstacle reactions associated to u,, then
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so, up to a subsequence,
A, — A weakly-* in Mp($2)

and
un — 0 strongly in WH9(€)

Tie(un) = Th(0) weakly in Hg(Q) V& >0

where 1 = u, + uj -

As Ti(un) > Tr(y) qee. in Q for every k > 0, and for every n, we have Ty(a) >
T () q.e. in Q for every k> 0.

Passing to the limit as k — +co we obtain that 4 belongs to Fults)-

Let v € Fy(p), with v the associated measure. Consider now vy the Stampacchia
solution relative to Cn i= tn + (n — u)~ +v. Since { — p+v strongly in My(£2), the
sequence v, converges strongly in Wé’q(Q) to v.

Moreover v, > v > ¥ q.e. in Q; hence vp € Fy(n), then up < vp qee. in ©, and,
in the limit,

o <wv a.e. in

and hence also g.e. in §). L]

Remark 4.1.2. This result was used in the proof of Lemma 3.1.3. We prove it here,
but its proof is completely independent of that result.

Remark 4.1.3. Thanks to this result we can say that the solutions obtained in this
paper coincide with those given by Boccardo and Cirmi in [5] and [6] when the data are

L (Q)-functions, because those are obtained by strong approximation.

As said above we give now the counterexample showing that in general there is not

sfability with respect to *-weakly convergent data.

Example 4.1.4 Let Q= (0,1)" with N >3, A=-A and ¢ =0.
Consider w,, and i, as defined in Example 1.3.11 so that

L, — 0 both weakly in HY(Q) and weakly-* in Mp(2).

Thus wn, — 0 weakly in H§ ().
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Let ¢ = 0 and let wu, be the solution of VI(u,,0). Using w, as test function
in the variational inequality we get ||us|lm () < C. By contradiction assume that its
H(Q)-weak limit is zero.

Consider the function z, := u, + w, which must then converge to zero weakly in
H}(Q). Obviously z, > w, g.e. in © and then z, > 1 g.e. inQ on |JB,, . Hence if

we define the obstacles
1 in UBrn
"j)n =

0 elsewhere
zp > Yy . Call v, the function realizing
min / |Vv|? dz.

v>2Yn
uEH(l)(Q) Q

A simple computation yields
—Az, = —Au, — Aw, > 0.
Then z, > v, > 0, so that
vp, — 0 weakly in Hj(€).

But this is not possible because a I'-convergence result contained in [13] says that there

exists a constant ¢ > 0 such that v, tends to the minimum point of

v2>0
1
vEHO(Q) Q

min / \Vo|?dz + c/ (v —1)"|*dz
Q
which is not zero.

4.2. Stability with respect to obstacles: the level set convergence

The question regarding stability with respect to obstacle is much more variegated.
In Proposition 2.4.1 we gave a first result, because it was needed in the subsequent
discussion. Now we want to treat the subject as generally as possible.

It is possible to see that in general there is no continuous dependence on the obstacles
unless we make additional assumptions.

In this section we will define a kind of convergence of functions which will prove to be
a good one for the obstacles in obstacle problems with measure data: it is rather general

and allows to obtain the convergence of the solutions under very mild assumptions.




60 Chapter 4

Definition 4.2.1. Let ¥, and ¢ be quasi upper semicontinuous function from Q to
TR. We say that v, tends to ¢ in the sense of level sets and write

Yo —r
if
cap({yp >t} N B) < lirlrrigfcap({zpn > s}nN B’ (4.2.1)
lim sup cap({¢n, >t} N B) < cap({y > s} N B') (4.2.2)

—r0Q

for all s,t € R, s <t,and forall BCC B' CC Q.

To make sure that this is a good definition we prove now that if the limit exists then
it is unique.

To this purpose we give the following lemma from capacity theory which can be
found in [24]. |

Lemma 4.2.2. Let E and F be quasi closed subsets of ) such that
cap(ENA) <cap(FNA), VACQ open, (4.2.3)

then cap(E\ F) = 0 (we say also that E is quasi contained in F').

Proof. First show that (4.2.3) holds also for all A quasi open. Indeed then there exists
an open set V, with cap(V) < e such that AUV is open. Then

cap(ENA) <cap(EN(AUYV)
<cap(FN(AUV))

< cap(FNA)+cap(V) <cap(FNA)+e

and conclude by arbitrariness of €.

Now, since E is quasi closed we can take A = Q\ E and obtain that cap(E\F) = 0.
O
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Proposition 4.2.3. Let ¢, , 1 and ¢ be quast upper semicontinuous functions. If

lev . lev

Yo — ¢ and Y — @,
then ¥ = .

Proof. Let us fix an open set A CC £ and two real numbers s < t. Take now two
subsets A’ and A" such that A” cC A’ CC A and real numbers ¢’ and t” such that
s<t' <t'<t. Then

cap({v > t"}nA") < lir_il_%nfcap({wn >t'tnA)

< limsup cap({¢yn, > ¢'} N A") < cap({p > s} N A).

n—r+o0 -

Then, since {9 >t} C {¢ > t"}, we have

cap({th > t} N A") < cap({y > s} N A),

from which, invading A by means of A” CC A,

cap({y) >t} N A) < cap({p > s} N A).

Using the fact that ¢ and ¢ are quasi upper semicontinuous and thanks to Lemma 4.2.2
we deduce that {¢ > t} is quasi contained in {¢ > s}. Now, fixed ¢, consider two
sequences tr \,t and sx \,t, with ¢z > sx, so that

“{wztk}/{wﬂ} and {¢ > si} 7 {o > 1},

and we get that
{% > t} is quasi contained in {¢ > t},

for all t € IR.

Exchanging the roles of ¢ and ¢ we get the reverse inclusion so that {¢ > s} and
{¢ > s} coincide up to sets of capacity zero.

Now we recover the values of ¥ and ¢ at quasi every point z € {2 thanks to the

well known formula

W@):$msxw>ﬂ@)
sEQ

Since the level sets are the same, the two functions coincide quasi everywhere. O




62 * Chapter 4

The main result on level sets convergence is the following theorem which shows the
connection with the Mosco convergence introduced in Definition 1.2.3 (for the proof see
Theorem 5.9 in [19]).

Theorem 4.2.4. Let v, and ¥ be functions Q — R If
M
Ky, (Q) NH(Q) —— Ky() N Hy(Q).
then
lev
'an — ¢
If moreover the obstacles are equicontrolled above, namely

Yn, ¥ <wu, with p€ My(Q) NH™Q),

then also the reverse implication holds.

Notice that, though very similar to Mosco convergence, the level set convergence

concerns also the case of obstacles that are not VI-admissible.

Remark 4.2.5. From the definition it is clear that the level set convergence is implied
by

cap({yp >t} N B) = ngrfoo cap({¢n, > t} N B). (4.2.4)
for all t € IR and for all B CC Q2

Remark 4.2.6. From Theorem 4.2.4 it follows that, if 1, converge to 7 in capacity,
ie.
cap({[thn — %[ > }) = 0, Vi€RT,
1
then ¥hn — 1.
Another simple observation, which requires no proof, but which is useful to state

separately, is the following.

1
Lemma 4.2.7. Let ¥, =, ¥ and let @ : R — R be a continuous non decreasing
function. Then
lev )
®<¢'n) S CD(¢)

In the next lemmas we will denote the solution of OP(u, ¥n) by un and of OP (s, )
by w.

Let us show that in general the Mosco convergence (and so also the level set conver-
gence) of the obstacles does not imply the convergence of the solutions.
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Example 4.2.8. Let Q = B1(0) C RY, with N > 2, A= —A and u = —§p, the
Dirac delta in the origin.
Let the obstacles 1, = —n, so that clearly

Ky, (Q) NHY(Q) —— H(Q)

and, by Theorem 4.2.4, also ¥y, —IL —00

It is immediate to see that the solutions u, = u_s, +ux, of OP(—dp, —n) are less
than or equal to zero since the latter is in F-,(—dg). So u, = T, (u,) and hence is in
Hi(Q). But then —&p + A, € H(Q) N Mp(Q) € MP(Q), and it must be a positive
measure and hence u, = 0 for each n. On the other hand u = u_;, and cannot be the
limit of the u, .

What can be proved without further assumptions is the following result.

Proposition 4.2.9. Let ¥, ¢ <u, g¢.e. inQ with p € Mp(Q). Assume that

Yo s

Then there exists a subsequence u, and a quast continuous function u* € Wé’q(Q) , such
that
U — u* strongly in WH4(Q),
and
u* >u g.e. in €.

Proof. By Theorem 2.3.1

Pallatsc@ < 16 = 27 Ly (425)

so that there exists a subsequence {\,} and a measure A\* € M (Q) such that A, —
N weakly-+ in M,(Q) and hence un = uy+uy , — u* = uy+uy~ strongly in Whe(Q).
If we show that u* > ¥ q.e. in 2 we will have that v* is in F,(p) and get the
thesis, by Definition 2.1.1.
Given k > 0, observe that, thanks to (1.3.6) and to (4.2.5)

/]DTk(un,)]zda) <kc
Q
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and hence Tj(un') — Tx(u*) weakly in H§(Q).
From Lemma 4.2.7 it follows that

lev

Te (V) — Te(®), Yk eRT;

Since T (un) > Tx(n) q.e. in Q for each n and k, and using Theorem 4.2.4 and the
definition of Mosco convergence, we get Tk (u*) > Tx(¥) q.e. in Q.
Now we can pass to the limit as k — +oco and obtain u* > ¢ q.e. n Q. O

We prove now the central lemma of this section.

Lemma 4.2.10. Let v, and ¢ be quasi upper semicontinuous functions controlled
above by u, with p € Mp(2) NHXQ), and let w be a quasi continuous function. If

lev

wn—'>¢

then
lev

Yy — W —— P — W.

To prove this Lemma we need the following result.

Lemma 4.2.11. Given a quasi continuous function w, for each A CC § and for each
e > 0, there exists u € C§°(S2) such that

cap ({jlu —w| >e}NA) <e. (4.2.6)

Proof. By definition of quasi continuity there exists a relatively closed subset C' such
that cap(Q\C) < € and w,, is continuous. By Tietze’s theorem there exists a continuous
function g which extends w), - to RY.

Obviously, for any A CC Q, we have {Jw —g| > 0} N A C Q\ C so that

cap ({lw—g| >0} NA) <e.

On its turn g can be approximated in A with a function u € C§° () so that
sup 4 |u—g| < €, and again from the fact that {|jw —u| > e}NA C {jw —g|> 0}NA we
get cap ({jlw —u] > e} NA) <e. L
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Proof of 4.2.10. It is immediate to observe that the thesis is true when, instead of w, we
have a function u in H(2). This is because under our hypotheses level set convergence

is equivalent to Mosco convergence (see Theorem 4.2.4) and translating K, (€2) and
K4(Q) by u € HY(Q) we get

M
K(¢n_u) N Hé Q) —— K(w_u) N H(l) (Q).

or equivalently
lev

Up — U — ) — U

We want to show the inequalities (4.2.1) and (4.2.2) for ¢, —w and ¢ —w.
Let us fix B CC Q, € > 0 and a function u € C§°(Q2) such that (4.2.6) holds with
respect to B.

Observe now that for any ¢t € IR we have
{Vn—w>t}NBC {¢Yn—u>t—e}nNB)U({u—w>e}NB),
hence, by subadditivity,
cap ({¢yn —w >t}NB) <cap{Yn —u>t—e}NB)+cap({jlu—w| >e}NB).
Passing to the limsup and using (4.2.6), we obtain

lim sup cap ({¢n —w >t} N B) < limsupcap ({¢, —u >t —€e} N B) +e.

7. — 00 —00

We know that, for ¥ —u, (4.2.2) holds true, so we can use it with ¢t —e and ¢ — 2¢ instead
of t and s, so that, for B cC B’ CC 2, we get

limsupcap ({¢p, —w >t} NB) <cap({v —u>t—2e}NB') +e. (4.2.7)

n—00

With an argument similar to before from
W-—u>t—2}NB C{v—-—w>t-3nNBYUu{{w-u>e}nNB),
we obtain,

cap({¢—u>t——2£}ﬂB’)§cap({¢—w>t—3e}>ri1B/)+57
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and substituting in (4.2.7) we get

limsupcap ({thn —w >t} N B) <cap({yp —w >t —3e} N B’) + 2.

77— 00

For any choice of s and ¢, € can be taken sufficiently small so that s <17 — 3e. Then we

can let € — 0 and conclude

limsupcap ({¢n — w >t} N B) <cap({¢ —w > s} N B').

n—r 00

Here nothing depends on u so this holds for all s, € IR, s < and for all B CC B' CC
Q.

Inequality (4.2.1) is proved in a similar way and this concludes the proof. O]

Theorem 4.2.12. Let ¥n, % < u, with p € Mp(Q) NH(Q). Let p € Mp(Q)
with p= € HXQ) and let u, and u be the solutions of OP(u,¥n) and of OP(u, )
respectively. If

lev

'(.bn’——>¢

then :
up —u € HY(Q) and un, —u — 0 strongly in H5(Q).

Proof. Thanks to the previous lemma we have that

lev

wn — Uy e ’lﬁ — Up,
and then, since ¥n — uy, ¥ — Uy < Uy +uy- q.e. in Q, by Theorem 4.2.4,
1 M 1
. K(":bn‘_up) N HO(Q> — K(q}[)—uu) N Ho(Q)

Hence all solutions of variational inequalities converge. In particular if v, and v are
the solutions of VI(0,%, — u,) and VI(0,% — u,), respectively, then v, — v strongly
HY(Q).

By Lemma 2.3.3 we have up, = vp, +uy and u = v+u, . This implies that u, —u =

v, — v and the conclusion follows. ]
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The minimal hypothesis on the obstacles 1, and ¢ in order to have the solutions of
OP(p, ) and OP(u,1) is that they be OP-admissible. Nevertheless if in this theorem
we drop the request that they be controlled by a function which is also in Hj(Q), the

conclusion fails. Indeed there is the following example which derives from Example 4.2.8.

Example 4.2.13. Let us consider the operator A = —A | the domain Q = B;(0) C R,
with N > 2, and the datum p = 0.

Consider now as obstacles v, = us, —n, where 0o is the Dirac delta centred at zero.
They are clearly OF-admissible, and also bounded by the same function u,, but in this
case p =0y € HY(Q).

Now for each n the solution u, of OP(0,v,) is us, itself. Indeed, according to
Lemma 2.3.3, u, — ug, is the solution of OP(—dg, —n), that, as seen in Example 4.2.8,
is zero. ,

But then we have that although 1, L ~oo and u, — us, while the solution of
OP(0,—c0) is u = 0.

When the negative part of the measure p is only in MY(Q), we can not use the
same trick because the the sets Ky _,, N H{(Q) might be empty, but anyway we do
not fall in the pathology of the Example 4.2.8, and in fact we can prove the following

theorem which gives the convergence of the solutions as well, though in a weaker sense.

Theorem 4.2.14. Let n, ¥ < u, with p € Mp(Q) NHYQ), u € Mp(Q) such
that p= € MY(Q), and let u, and u be the solutions of OP(u, ) and of OP(u, )
respectively. If

lev

'ﬁbn_—>'€b

then u, — u strongly in WH4(Q).

Proof. From [18] we know that pu~ can be written as gv where v € M (Q) N H(Q)
and g € L*(Q,v), g > 0. Hence the measure p; := (g A k)v is in HY(Q), so that
px = pt — pp satisfies the hypothesis of the previous theorem.

Call uf and w® the solutions of OP(u* ,) and OP(u* 1), respectively. By
Theorem 4.2.12,

uf — u®  strongly in HY(Q) Yk > 0.

Now, observing that x4~ — u, is a positive measure, we easily obtain by comparison
that uf > u, and v* >u, q.e. in Q.
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On the other hand

Un + U(um_pmy = U T U —pr )

where A, > 0 is the obstacle reaction of OP(pu,%y). Since also Un +U (- ) > Uy > U,
by Definition 2.1.1 we have un + u(,- ) > uF qe. in Q. In the same way we prove
that u+ug,-_,—y > vk ge. in Q.

Since p~ —py — 0 strongly in M,($2), we have v, - Ty 0 strongly in WH4(Q),

so, from

U+ U —p7) >ufF>u qe inQ
letting k — co we get that u* — u a.e. in Q.
Recalling Proposition 4.2.9, let us fix a subsequence {un } which converges to a
function u* strongly in WH4(2), so that from

U +u(u——u;) > uﬁ, > U, g.e. in £

letting first n’ — oo and then k& — oo we obtain u* > u > u* q.e. in Q. Therefore

uk — u, since the limit does not depend on the subsequence. Ll

As seen in Example 4.2.13 the request that the obstacles be well controlled can not
be dropped, even if the datum is regular. On the other hand Example 4.2.8 showed that
the control from above can be not enough to have convergence for all data p € My(Q2).

In the following theorem we show how, provided we strengthen the assumptions on
the obstacles in the way given by Theorem 3.3.4, we can give up any assumption on the
datum . )

Notice that in the examples is always the limit obstacle the one that gives troubles.
Indeed we see here that it is enough to require the control from below only for the limit.

Theorem 4.2.15. Let ¢, < u, with p € My(Q)NH(Q) and let ¢ satisfy (3.3.1).
Let p € My(Q) and let u, and u be the solutions of OP(u,vyn) and of OP(u,¢),
respectively. If

lev

"pn'—_>¢

then u, — u strongly in WH9(Q).

Proof. From Proposition 4.2.9 we know that, up to a subsequence, u, — u”* strongly in
Wh4(Q), and u* > u q.e. in 2.
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Now consider v,, solution of OP(u™ —p7,1,). These, by Theorem 4.2.14, converge
to v the solution of OP(u* — Lq %), but, according to Theorem 3.34, v=u.

On the other side v,, = UpFUn, +u, -, with Ay € MF(Q), and v, > Yy qg.e. in 0
and so, by Definition 2.1.1, we have

Un 2 Uy q.e. in Q.

Letting n go to +oo we obtain u > u® g.e. in Q. Therefore Un — u strongly in
WH4(Q). Since the limit does not depend on the subsequence, the whole sequence 1,

converges to u. L]

Let us show now a further example, which clarifies more deeply in which cases there
is not convergence of the solutions.

In particular we see that the limit obstacle need not be —co everywhere, nor in a
large portion of ; it suffices it is singular in the “right” point.

Example 4.2.16. Let us choose A= -A, Q= B1(0) € RY, with N > 2, and
p = —0dp. Let us consider the obstacles ¥ = —ugs, and

1

-+
Yn = — (usy An) — <§u<;0 - n)

which can also be written as

_§u60(;)3) if ]xl < Gp
Un(z)=1q _, if a, <|z| < by,
—Ug, if bn < '(El

where a,, and b,, are appropriate constants, which tend to zero as 7, — 400 (see picture

in the next page).

lev

It is easy to verify that Yn —— 9 and that the solution of the limit problem

OP(—do,v) is clearly —ug, itself.

1
Let us prove that the solution of OP(—6p,%y,) is — U -
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A
i
t
i
!
i
i
I

level -n

This is indeed in Fy(u) because it is of the form w, + uis and it is above the
obstacle for each n.
Fix n and suppose v, € M;(Q) such that w, + u,, is the solution. Then it is

smaller than or equal t0 u, + uig4,, Or also
Uy, <uzg, g€ in .

In the small circle B, (0) they must be equal. In B1(0)\ B, (0), u,, issuperharmonic
and ULs, is harmonic and they have the same boundary data. So u,, > u1s, and they
must coincide. )

This proves that the solution u, of OP(—dq,%r) is ——;—u(so independently of n, and
that u, does not converge to the solution u = us, of OP(—do,?).
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As of Remark 3.3.3 we point out that in the example it is crucial that the deltas
involved are centered in the same point. If for instance, with the same obstacles, we had
as datum p = —dg, for any zo # 0, we would obtain, thanks to Théorem 3.3.4 that the
solutions of OP(—0g,,%n) and of OP(—6,,,1) are all identically zero.

The last consideration of this section concerns the fact that passing from Theo-
rem 4.2.12 to Theorem 4.2.14 we lose something on the convergence of the solutions. To
see that this loss is not due to the technique of the proof we can consider the following

example.

Example 4.2.17. Let Q = B;(0) € RY, with N > 2 and let f € L'() be the
function defined by

1
f(z) =« |a|V(-log|z|)”
0 if =0

ifzeQ z#0

with 9 > 1. L. Orsina in [37] noticed that the solution u; of the equation

~A’u]c :f in 2
ug =0 on 0f)

belongs to WH4(Q2) for any ¢ < N]i . but does not belong to W1 =1 (Q).

With this choice of A and Q, take as datum u = —f, which clearly belongs to
M2’+(Q), and as limit obstacle 1 = —uy, which satisfies condition (3.3.1) with o = f,
so that the solution of OP(—f, —uy) is —uy itself.

If we set 9, = —(ug An) then the solution u, of OP(—f,—(us An)) is between 0
(because f is positive and 0 = u_¢+uy is a supersolution) and —n. Hence u, = T}, (u,)
and this implies that u, € H}(Q).

Now it is easy to see (use for instance Remark 4.2.5) that v, —ISY—> Y so that, by
Proposition 4.2.15,

un, — u strongly in Wh9(Q).
It is not possible to have this convergence in the norm of WH?(Q) with p > N1
because the fact that u, € H'(Q2) would imply also that u € W1P(Q), which is false

since u = —uy.
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4.3. Some more conditions for convergence

In the previous section we have seen that the level sets convergence of the obstacles
in general it is not enough to give the convergence of the solutions.

In this section we want to generalize Proposition 2.4.1. Pointwise convergence is
replaced by level sets convergence, while condition ¥, <% q.e. in{ is weakened. No

control from below is required on the limit obstacle.

Proposition 4.3.1. Let ¥,y <u, with p € My(Q2) be such that

Y s 1.

Suppose in addition that
Yo <UL e in Q2

where 1 is a sequence of OP -admissible obstacles such that, if v, are the solutions of
OP(p, %), then v, = u a.e. in§2. Then

un — u strongly in WH9(€).

Proof. First apply Proposition 4.2.9 from which we know that, up to a subsequence,
U, — u* strongly in W14(Q) an that u* > u. We need to prove the reverse inequality.
We see easily that

vy > U, q.e. in

and letting n go to +co we get u > u* a.e. in {1 and hence also g.e. in 2. ]

A special case of the previous result is given by the following proposition.

Proposition 4.3.2. Let ¥, ¥ < u, with p € Mp(2) be such that

lev

Let u,, and u be the solutions of OP(u,vy) and OP(u,), respectively.
Suppose in addition that

Yo <Y+ Uy, ge infd
where o, € My (Q) 1s such that ugs, — 0 a.e. in Q. Then

Up — u strongly in WH(Q).
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Proof. We can set ¢ := 1 + u,, . If v, is the solution of OP(u, 1)) it is easy to see,
according to Definition 2.1.1, that

u < v, <u+uy, ae. in .

And letting n — +oo we get that v, — u a.e. in 2. So we can apply Proposition 4.3.1
and we obtain the thesis. ]

Corollary 4.3.3. Let v, and ¢ be OP -admissible and such that

lev

If in addition ¥, < gq.e. in Q then

Uy — U g.e. 1 ).

Let us remark that this is a generalized version of Proposition 2.4.1. Indeed under
the assumption that 1), <1 we have that the quasi everywhere convergence implies the
level sets convergence. This fact is proved as follows.

First consider the case of 1, monotone increasing. Then it is clear that for all t € IR
and B CC €,

+00
{¢n >t} B 7| | J{vn >t} NB,
n=1
+o0
Since {¢ > t} differs from U {tn > t} by a set of capacity zero, by the continuity of
n=1

capacities on increasing sequences of sets, we have

lim cap({¢n >t} N B) =cap ({¥ >t} NB),

n—+oo
and we obtain (4.2.4).
In the general case 1, <1 but v, not necessarily increasing, there always exists a
sequence ¢, < ¥, g.e. in  (see (2.4.2)) such that ¢, 1 q.e. in Q. From the fact
that ¢, <1, <1 q.e. in it easily follows that

cap({¢n >t} N B) < cap({¢n >t} N B) < cap({¢) >t} N B)

for all t € R, and B CC . Passing to the limit, thanks to the previous step, we
conclude the proof.

We want to recall here also another condition which comes from a classical result.
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Proposition 4.3.4. Let pu € My(Q) and let ¢, and ¢ be functions in Wé’p(Q) with
p > 2, such that ¥n, ¥ < u, with p € Mp(§2) and

P — ¥ weakly in W5P(Q) (4.3.1)

then
Un — u strongly in WH(Q).

Proof. In [10] L. Boccardo and F. Murat obtained that, under this hypothesis of conver-
gence of the obstacles, for every f € H™(Q) the solutions of VI(f, Yy,) converge strongly
in H{(Q2) to the solution of VI (f,%). In order to obtain the analogue in our case we
recall a result of H. Attouch and C. Picard in [2]: they proved that condition (4.3.1)
implies the Mosco convergence of the convex sets Ky (€2) NHE(Q) to Ky (Q) N Hg(Q).

lev
By Theorem 4.2.4 we have also that 9, A 2. Moreover the obstacle 9 satisfies
condition (3.3.1), and then we can apply Theorem 4.2.15. These considerations give the

proof of our theorem. U]

4.4. Obstacles converging in the energy space

Recall that in the case of variational inequalities the convergence of obstacles in the
norm of H!(Q) implies the convergence of the corresponding solutions in the same norm
(see Corollary 1.2.6).

We want to prove a similar result for the solutions of Obstacle Problems. In this
frame, as we have seen with Example 4.2.17, this can not follow directely from Mosco
convergence, as it was in the variational case. The next theorem concerns the case in

which the obstacles “have the same boundary value”.

Theorem 4.4.1. Let ¥, v @ Q — R be such that ¥n, ¥ < u, g.e in £, with
p € Mp(Q). Assume ¥, — ¢ € Hy(Q), and let Pn — ¥ — 0 strongly in HY(Q). Let
1€ My(Q) and let u, and u be the solutions of OP(u,¥n) and OP(p, 1), respectively.
Then

un —u € HY(Q) and u, —u — 0 strongly in Hy(9),
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Proof. Step 1. As a first step assume that p belongs also to H™(Q), and consider the

special sequence 1, of measures in Mp(Q)NH™MQ) pp — 4, weakly-x in M,(Q), such

that the solutions of the corresponding obstacle problems converge (see Section 2.6). In

particular uf — v, strongly in Wh2(Q), for all n, and w* — u, strongly in Whe(Q).
Thanks to (1.2.8), for all £ we also have

k- uk“Hg,(m < c|[thn — ¢HH3(Q),

80 that the sequence {uf — w*}; is bounded in H§(Q), for each n fixed. Thus, up

to a subsequence, there is a limit function 2. But we already know that the sequence

converges, strongly in WH9(2), to u, —u, so this must be also the weak limit in H!(0).
By lower semicontinuity of the norm we have

[un = ullgy o) < lim inf [lug — u¥lgy ) < clleb — Yllm1e)-

This says that u,, — u belongs to H}(2), while Upn and wu, in general, do not, and gives
the thesis in the first case.

Step 2. Let now p be only in My(£2). Set P = YA h and Y=, — o+ wh

These obstacles are equi OP-admissible, because " < 4, and Y < 9 qe. in
2. They are also equi VI-admissible since, if ¥ < u,, then ¢ < Th(up,) € HY(Q)
and Yl <, — o+ Th(up) € H5(Q), and we can find a function ¢ € H}(Q) such that
© >, —1 for all n.

Thanks to Remark 2.5.3 there exists pj, € Mp(82) NH™(Q) such that P, ph < Uy,
g-e. in . Hence we are in the hypothesis of Step 7 Moreover v — wh”Hé(Q) =
n = ¥l

So by Step 1, for each A

gy — T [ Yl 0)-

On the other side we know that, since ¥? 7 4, and Py, by Proposition 2.4.1

uy —uP = u, —u strongly in Whe (€2), so that we can conclude as in the first step. [

We want to remark that more generally if the obstacles are such that Uy —1 — 0 in
H'(Q) then they also converge in the sense of level sets, so we can deduce the convergence
of the solutions in all those situations given by Theorems 4.2.12, 4.2.14 and 4.2.15, but
here we obtain a stronger convergence with no further assumptions on the obstacles and
on the data.
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We may now wonder what happens when the obstacles converge in the space Whe(Q),
with 1 < ¢ < N In general this is not enough to obtain the convergence of the
solutions. Indeed reconsider Example 4.2.16. Let us prove that ¢, — % strongly in

Wi4(Q). We have

1 :
§u<50 in |z|<an

Yn— ¥ = Usy — T in an < |z| < by
0 otherwise

so that
1 .
1 = %llra@ = 5 / | Dusg, |9dz + / |Dus, |%dz,

Ban (O) an (0)\Ban (0)
which tends to zero, since a, and b, tend to zero and by the absolute continuity of the
integral. But, as already seen in Example 4.2.16, the solutions of the obstacle problems

do not converge.
Anyway it is possible to prove the following result.

Proposition 4.4.2. Let p be in My(Q) and let ¢, and ¢ be OP -admissible and such
that n — ¥ = u,, with p, € My(), ||pnllme (o) — 0. Then

Un — u strongly in WH9(Q),

where u,, and u are the solutions of OP(u,v¥y) and OP(u, ), respectively.

Proof. Since 1, = ¢ — u,, , we have (using Lemma 2.3.3) that u, — Up, 1s the solution

of OP(u -+ pn,®). So from Theorem 4.1.1 we get that

Up — U, — u strongly in WH9(€). (4.4.1)

Then

Jun — ullwraqe) < llun — up, — ullwia(e) + l[%pn lswrr.a ()

the first term goes to zero because of (4.4.1), the second one by hypothesis, and we get
L]

the thesis.



Stability with respect to data 77

4.5. Problems with nonzero boundary data and uniform convergence

In this section we extend the theory of obstacle problems with measure data de-
veloped in Chapter 2, to problems with nonzero boundary data. This is standard for
variational inequalities as recalled in Section 1.2. Also in this case this generalization is
very simple; we will only point out what are the points to be settled.

Let g € H'(Q) we will denote by u the solution of

Auf = in HY(Q)
ug — g € Hy(Q).

We will look for solutions of obstacle problems which take the value g on the boundary
0€2. So we have to change accordingly the notion of admissibility for the obstacles.
An obstacle % : Q — R is said to be OP,-admissible if

3p € MF () st. ¥ <wup+u qe in Q.

Given a measure p € M;(§2), a boundary datum g € H*(Q2) and an obstacle
OPF,;-admissible, the solution of the obstacle problem OP(u,g,%), if it exists, is the

minimum element of the set
Fi(u) ={veWhi(Q) : e MF(Q), v=u, +ud+u,;v>1% qe. in Q.
It 1s immediate to prove the following

Theorem 4.5.1. Let p € My(Q2) and let i be OP,-admissible. Then there evists a
unique solution of OP(u,g,v).

Proof. Consider the obstacle 9 — uf. It is OP-admissible. So there exists a unique
solution v of OP(y, ¥ —uf). Then v + uf is our solution: indeed it belongs to Fow),
and it is less than or equal to any z € FJ(u). O

Remark 4.5.2. From Theorem 4.5.1 and (2.3.1) it follows also that, if u, + uf + uy
is the solution of OP(u,g,), then

Ay () < H(“ - p)_lle(Q) )

independently of g.
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Remark 4.5.3. Since ¢ is OP-admissible if and only if ¢ — uf is OP,-admissible
and u, — u strongly in WH4(Q) if and only if u, — uf — v — uf strongly in WH9(Q),
all the theorems on continuous dependence on the data hold without modifications, in

particular Propositions 2.4.1 which will be useful in the following.

Remark 4.5.4. When g € My(Q) N HYQ) and ¢ < u, + uf ge inQ with
p € My(Q) N H(Q) then the solution of OP(u,g,%) coincides with the solution of
VI(u, g,v) as defined in (1.2.6).

We come now to discuss the continuous dependence of the solutions on the obstacles
when these converge uniformly.

To do this we will use a characterization via supersolutions similar to Theorem 1.2.2
that holds in the variational case.

To this aim let us introduce the set Gj(u) of all the functions v € Whe(Q) with
v > qe. inQ, such that v = u, + ul + u,, where v € M (Q) and h € H(Q) such
that h > g on 99, ie. (h—g)~ € H{(Q).

We see now that the solution of OP(u,g,®) can be compared not only with the
functions of fi(u), but also with all those that have boundary datum greater than or
equal to g.

Proposition 4.5.5. Let p € My(2) and ¢ be OP,;-admissible. If u 1is the solution
of OP(u,g,%) then it is the minimum element of gfz(u).

Proof. Step 1. First consider p € Mp(Q)NH™(Q) and 9 both VI- and OP-admissible.

Let v = uy + ul +u, € Qi(u). We approximate v by means of the sequence
v = ATy(uy,). By Theorem 1.3.12 we have that v € M;(Q) N H™(Q) and that
vy — v weakly-* in My(Q). Moreover observe that wu,, = Tx(u,) tends to U, g.e. in
Q and, since u, is nonnegative it is an increasing sequence.

Hence if we define vy := u, + ul +u,, , then vy /v g.e. in Q, and setting ¥y :=
W Awvg also Y Y qe in Q '

Let now uy be the solutions of VI(u,g,¥x). So, by Proposition 1.2.2, vy > uy.
Using Proposition 2.4.1 and Remark 4.5.3 we know that ux — u a.e. in 2. Then v >
u a.e. in © and then also g.e. in 2.

Step 2. Consider now u € Mp(Q2) and ¢ still both VI- and OP-admissible. Take
again v € be(y).
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Let px = ATk(u, — up) + p be the sequence of measures given in Theorem 2.3.1,
so that we know that if uy are the solutions of VI(y,g,%) then up — u strongly in
Wha(Q).

Taking now vy = uy, +u8—!—u,, it is easy to verify that vg > 9 q.e. in Q forall £ > 0,
and then, by Definition 2.1.1, vy > up g.e. in Q. Also vy — v strongly in W14(Q) so,
passing to the limit, we obtain v > u a.e. in 2 and then also g.e in Q.

Step 3. Finally consider the general case p € My(£2) and ¢ OP-admissible. The
obstacles 15 := ¥ A k are also VI-admissible and such that ¢, "4 q.e. in . So, if
ug is the solution of OP(u,g,%%), by Proposition 2.4.1 and Remark 4.5.3, we have that
ur — u strongly in WH9(Q).

Taken any v € g;jﬁ (1), v > g, for all k. Hence, by definition, v > ug g.e. in Q.
Passing to the limit, we get v > v a.e. in 2 an also g.e. in 2. OJ

From this we point out that the sets F.j(u) and Gj(u) have the following lattice
property.

Proposition 4.5.6. Let p€ My(Q), g € H(Q) and ¢ OP,-admissible. Then
(i) If u,v € Fj(u) then unv € Fj(p);
(it) If u,v € G (1) then uAv € G (u).

Proof. Let us prove only the first statement, the proof of the second being alike.

Set w := u A v and let z be the solution of OP(u,g,w). Then u,v € F4(n) and
hence also w > z.

On the other hand z > w and hence they are equal. So u A v is of the form
u, + ud + u, and is above 1, and hence belongs to J—"fz(,u). O

We can prove now the following continuity result

Theorem 4.5.7. Let p € My(Q), g € HY(), and o, and 3y be OP -admissible and
let u, and u be the solutions of OP(u,v,) and OP(u,), respectively. Assume that
U — 1 € L®(Q) and ¢, — ¢ — 0 in L>°(Q). Then

up, —u € L2(2)  and up, —u— 01 L¥(Q).
Proof. Set cp = ||Yn — ¥||Leo (). Obviously ¢, = ug®, so that

utc, =u, +ud T +uy and utc, >, ge inQ
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hence v+ ¢, € G, () and hence u+Cn 2 Un.
The same can be done the other way round to obtain that u, + ¢, > u. In the end
|un — u] < cn, and, taking the sup over x € {2, we obtain the thesis. O

Remark 4.5.8. Also in this case we have to remark that the uniform convergence of
the obstacles implies their level set convergence (via Remark 4.2.6). But the result we
have obtained in this section does not require that the obstacles be equicontrolled, and

the convergence of the solutions is in a different norm.
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