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Introduction

The object of this thesis is the study of the following boundary value problem

% = F(t,X) 0.1)
x(0) = x(T), O (02)

where F : [0, T]xC—R™ is a continuous function, CCR™ and T>0.

In particular, the existence of at least one solution x(-) to (0.1)-(0.2) such that x(t)e C, for all te [0,T], is
investigated. ,
It is important to recall, once for all, that if F : [0, T]xR™—R™ is T-periodic in the first variable, then any
solution of (0.1)-(0.2) is the restriction of a classical C 1, T-periodic solution of (0.1) defined on the
whole real line.

The results of Chapters 2 to 6 have been developed by the author during her permanence at the
International School for Advanced Studies; in particular, Chapter 2 and Chapters 3, 4, 5 are joint works

with Fabio Zanolin and with Jean Mawhin and Fabio Zanolin, respectively.

The periodic boundary value problem is a classical topic in the qualitative theory of ODEs, which
was initiated by H. Poincaré. Models arising from several branches of the physical sciences (e.g.,
mechanics, biology, mathematical economy) have been motivating (and stimulating) for the last decades
the work of many mathematicians, in several directions and with different methods.

In this thesis, existence theorems for (0.1)-(0.2) are performed by means of "topological degree”
methods. In the last 25 years (even if Poincaré himself used topological degree arguments), many results
have been obtained in this general framework for the solvability of various boundary value problems
associated to (0.1) in the particular case of C=R™ . A short and definitely not exhaustive account of some
of the classical techniques for the periodic BVP is given below.

Generally speaking, the existence of solutions to (0.1)-(0.2) is obtained by proving the existence of
zeros (or fixed points) of some operator defined in a suitable space. The most important concept is the
"degree"; more precisely, both the "finite-dimensional" Brouwer degree and its "infinite-dimensional”
analogue, which was developed by J. Leray and J. Schauder [90], are used. A classical procedure
consists of the following three steps:

(i) write F(t,x) = £(t,x;1), where f = f(t,x;A) : [0,T]xR™x[0,1]—=R™, as to imbed (0.1) in a

family of parametrized equations
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= F(Lxh), (0.3)
where f is an auxiliary function related to F, and Ae ]0,1[;

(i) perform "transversality conditions" for the solutions of (0.3) in order to show that the
"continuation" from A =1 to A—0" is admissible;

(iii) show that the Brouwer degree of a suitable autonomous map (related to F) is nonzero.

In this way, by means of (i) it is possible to carry problem (0.1)-(0.2) to a "simpler" one; more precisely,
by (ii) one can prove that the "degree" of the operator whose zeros are the solutions of (0.1)-(0.2) is equal
to the finite-dimensional Brouwer degree of a corresponding autonomous map with values in R™. Indeed,
the application of (ii) and (iii) corresponds to the use of the homotopy and existence properties of the
degree. '

It is the procedure described above which motivates the word "continuation" for the theorems like those
performed in this thesis.

A brief description of earlier continuation theorems for the case C=R™ can be useful before
explaining the core of the results of this thesis. In Stoppelli's pioneering work [139], the "simpler"
problem obtained after the continuation is an autonomous equation whose T-periodic solutions consist of
an odd number of nondegenerate equilibria; another possibility is to obtain a linear equation having only
the trivial T-periodic solution (see e.g. [98], references for Th. IV.5). However, such an approach will
only succeed in problems having an odd degree.

In a more general situation, two main approaches in order to perform step (ii) have been developed.
By clG, frG we denote, respectively, the closure and the boundary of a set GER™.

On the one hand, by the Liapunov-Schmidt reduction, problem (0.1)-(0.2) is transformed into an
equivalent coincidence equation in the space of T-periodic functions:

Lx = Nx, 0.4)

with L a linear (not necessarily invertible) operator and N a (nonlinear) Nemitzky operator. Under rather
general hypotheses, (0.4) is replaced by an equivalent fixed-point problem

x = Mx.

In this framework, J. Mawhin has proved the following:
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THEOREM A [98]. Ler £:[0,TIXR™X[0,1]1-R™ be continuous and let GER™ be an open bounded
set. Assume

(al) for any x(-) solution of x = Af(t,x:A), Ae]0,1[, with x(0) = x(T) and x(t)eclG for allt, it
follows that  x(t)e G for all t;

@) dpF0G0)#0, with Tyi= o ]Esx(),00ds.
0

Then, there is a solution x(-) of x = f(t,x;1), satisfying (0.2) and such that x(t)e clG for all t.

Assumptions (al)-(a2) correspond, respectively, to (ii) and (iii); the "continuation" is performed via the
homotopy

T
(o) = (1 =) %—,G[f(s,x(s),x)ds FAREXA) = F(ExA), ©.5)
leading for A = 0 to the integro-differential system

T
% - —lT-Ojf(s,x(s),o)ds -0, (06)

whose T-periodic solutiens are constant and given by the zeros of the function
T

?0 iy jf(s x(s),0)ds. In this case, the "coincidence degree" (in a suitable space of T- penodxc
functions) of the operator associated to the left-hand member of (0.6) can be computed in terms of the

Brouwer degree in R™ of f,,.

A second point of view has been developed by M.A. Krasnosel'skii, and is originated by the study
of the fixed points of the translation operator (Poincaré-Andronov map) Tt : x(0)—7(T,x(0)). Recall
that if 7t is a dynamical system in R™ induced by a Cauchy problem, then 7(t,x) denotes the value at time
t of the unique solution of the Cauchy problem with initial value x(0). In this setting, it is worth recalling
the celebrated Krasnosel'skii theorem:

THEOREM B [79]. Let F:[0,TIXR™—=R™ be continuous and such that uniqueness and global
existence for the solutions of the associated Cauchy problems is guaranteed.
Assume:

(bl) there is no solution x(+) of x = F(t,x) such that x(0) = x(k)e frG for some 0<k<T,

(b2) F(0,z) # 0 for zefrG;



(b3) dg(¥(0,-),G,0) #0.
Then, there is a solution x(-) of x* = F(t,x) satisfying (1.2) and such that x(0)e clG.

Assumptions (b1)-(b3) correspond to (ii), (iii) and the needed homotopy carrying problem (0.1)-(0.2) to a
simpler one is the following:

z - n(AT,z)

k h(A) for A=0

M.2) = f(Lz;)) =
-F(0,z)  forA=0,

where h(-) : [0,1]=R" is a continuous function such that h(0) = 1/T, h(1) = 1.
Further developments along this direction have been achieved by R. Srzednicki [138] on the line of
WaSewski's method.

Both Mawhin's and Krasnosel'skii's theorem have found useful applications in the literature (see
for instance the references in [7,55,81,98,116,131,132]. For other different but related results see
[87,129,138].

In recent years, some results have been obtained in the case when the underlying space has not a
linear structure. For instance, the situations in which the set C is a regular manifold [11,52,53], a convex
set or a conical shell [18,33,44,56] have been investigated. More precisely, in [11,33,44,52,53] the
properties of the Poincaré map are used, while in [18,56] coincidence degree arguments in function spaces
are employed. In any case, the positive (negative) invariance of the set C is a key assumption.

Generalizations of the above quoted results are given in Chapters 2 to 6, where extensive
comparisons and comments are performed.

Before describing the main results of this thesis, we have to mention that problem (0.1)-(0.2) has
been treated by a different functional-analytic approach also by L. Cesari [21], and that isolated results
based on various different techniques (e.g., implicit function theorem, shooting method, Poincaré-
Birkhoff theorem) can be found in the literature. On the other hand, it must be noticed that problem (0.1)-
(0.2) has been successfully tackled by many authors in the completely different framework of "variational
methods". If the problem has a variational structure, then it is possible to define a functional whose critical
points correspond to the T-periodic solutions (cf. [104]). These different approaches, however, will not
be studied in this work; mention of them will be made in several remarks.

In what follows, a description of the contributions obtained, by means of continuation methods, to
the periodic boundary value problem is given.
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The first goal has been to study the case in which Cng. Assume that C is a flow-invariant ENR
(Euclidean Neighbourhood Retract). Recall that a metric space U is an ANR (Absolute Neighbourhood
Retract) if and only if it is homeomorphic to a neighbourhood retract of a Banach space V. If V is finite
dimensional, we say that U is an ENR (Euclidean Neighbourhood Retract). In this situation, step (i) is
developed using the homotopy (0.5), and an assumption analogous to (al) in Theorem A is made for the
system

x = A f(t,x;A).

The difficulty arises because the set I' = {y(-): [0,T]—=C} is not a linear space. Hence, the usual Leray-
Schauder degree is not available. The approach proposed consists, roughly speaking, of embedding (0.1)-
(0.2) in a functional-analytic framework (which is different from Mawhin's one) and to use the fixed point
index introduced by A. Granas [59] for arbitrary ANRs . This is possible because (cf. [75]) the space I is
an ANR if and only if Cis an ENR. The operator defined on I" whose fixed points are the solutions of
(0.1)-(0.2) is constructed by means of the family of processes induced by the Cauchy problem associated
to (0.5). In this way, the approaches described by Theorems A and B are unified and previous results
(valid for some particular choice of the ENR) such as [18,44,53,56] are extended. In the applications, the
set C is, in a first example, a domain with holes and, in another one, an (m—1)-dimensional symplex; in
the former, the Euler-Poincaré characteristic is a useful concept for the computation of the "index of rest
points" of the dynamical system induced (for X=0) by (0.5). These results are motivated by possible
applications to hydrodynamics and biology, respectively. '

The definition and the mzin properties of the fixed point index for arbitrary ANRs are recalled in
Chapter 1 (on the lines of [13, Chap. 1]), where a description is also given of the "index of rest-points";
the latter is the "finite dimensional analogue" of the fixed point index, i.e. it has the the role played by the
Brouwer degree with respect to the Leray-Schauder degree in classical results such as Theorems A and B.

The case when the set C is a closed convex set with nonempty interior has been treated in [18]; the
results for ENRs are contained in Chapter 2. The operator defined on the space I" which is introduced in
Section 2 of Chapter 2 is used also in Sections 5 of Chapter 3 and 2 of Chapter 6, where results
improving Theorems A and B also in the case C = R™ are generalized to this more general situation. We
also point out that, since the proof of these results is based on processes, it is necessary to require the
uniqueness for the solutions of the Cauchy problems which are taken into account. Hence, for simplicity,
the considered vector fields are assumed to be lipschitzian in the x-variable. A "continuous" version of our
results (cf. [18,53,98]) can be performed by means of a standard pertrubation argument based on
Weierstrass-Stone and Ascoli-Arzela theorems.

Another aspect which has been studied consists of working on step (ii) (at first, for C=R™) in order
to get continuation theorems suitable for some special cases of problem (0.1)-(0.2).

First (Chapter 3), perturbed systems of the form
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x = g(x) +e(0)

have been considered.
In this situation, one is naturally led to consider the homotopy

A= £(txA) = g(x) + Ae(t),

which connects F(t,x) =£(t,x;1) to the function g(x) (for A=0). More generally, one may assume that the
homotopized field £(t,x;A) is such that there exists an autonomous function fy satisfying £(t,x;0) = f; (x).
In the above situation, however, the computation of the coincidence degree of the left-hand member of the
autonomous differential equation

x — £y (x) =0

is made more difficult by the presence of possible non constant closed orbits with period less than T.
Indeed, it is shown that a connection still holds between the coincidence degree and the Brouwer degree of
fo, so that step (iii) can be accomplished. In the proof of this result, the crucial point is the use of an
approximation procedure for the map fy based on the Kupka-Smale's theorem [22,119], which ensures
the existence of a sequence (@) of C ! functions, (@) —1y , such that for each 6>0, for every compact
subset K of R™ and for all ke N, system x = ¢x(x) has finitely many rest points or closed orbits with
period less or equal than G which are contained in K.

A generalization in the framework of Chapter 2 to the case when the phase-space is a flow-invariant ENR
is possible, provided that an additional "Kupka-Smale approximation property" holds; this is the case, for
example, when the set C is a regular manifold or a convex set.

The applications given deal with the case when F(t,x) = g(x) +e(t,x), and the homotopized field used is

Ftx;A) = g(x) + Ae(t,x).

On the one hand, it is possible to obtain results of perturbational type, assuming that lel_, is sufficiently
small. In this case, earlier contributions of Amel'kin-Gaishun-Ladis [1], Berstein-Halanay [9], Cronin
[27,28,29], Gomory [57], Halanay [62,64], Hale-Somolinos [68], Lando [84,85], Reissig [129],
Srzednicki [137,138], Ward [145] are generalized in various ways.

On the other hand, results of global type are obtained assuming that the function g is positively
homogeneous of some order; in this way, it is possible to improve theorems due to Dancer [31], Fonda-
Habets [47], Fonda-Zanolin [48], Fudik [49], Krasnosel'skii-Zabreiko [81], Lazer-McKenna [88],
Lasota [86], Muhamadiev [110,111].

Chapter 4 is concerned with the following boundary value problem for a retarded functional
differential equation (RFDE)
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x(t) = F(t,x), t€R, (0.7)
x(0) = x(T), (0.8)

where F : RxC, —R™ is continuous, T-periodic in the first variable, takes bounded sets into bounded sets
and C, := C ([-1,01,R™), x,(8) := x(t+6), 6€ [-T,0].
As in Chapter 3, problem (0.7)-(0.8) is imbedded in a family of parametrized equations

x = f(t,xs\),

where the function f: RxCx[0,1]—k™ is such that £ (t,¢;1) = F(t,9), for all te R, pe ; moreover, the
existence of a map fy : G—R™ such that fy(9) = £(t,9;0), for all te R, @& ( is assumed.

A result on the computation of the coincidence degree of the left-hand member of the autonomous retarded
functional differential equation

x(t) — fy(x) = 0 (0.9)

in terms of the Brouwer degree of fyjgm is performed, on the lines of Chapter 3. :

A basicingredient in the proof is an extension due to Mallet-Paret [93] of the Kupka-Smale's theorem in
the case of a RFDE. It is worth noticing that the different nature of (0.9) requires at various steps
nontrivial variants of the arguments developed in Chapter 3, and even completely different ones due in
particular to the fact that time-scaling involves modifications of the delay in a RFDE. More precisely, it is
necessary to use the fact that the "finitely many" singular orbits are, in the RFDE case, hyperbolic. Using
the result on the computation of the degree, a continuation theorem for the T-periodic solutions of (0.7) 1s
proved. |

Another aspect of the research developed in this thesis is the object of Chapter 5, which is devoted
to the so-called "superlinear" periodic boundary value problem. This class of nonlinearities arises when
dealing with a second-order equation of the form

X + g(x) = p(®), (0.10)

where p is T-periodic. First, conditions for the existence of T-periodic solutions of (0.9) must exclude the
well-known resonant situation

% + (nw)*x = cos not, (0.11)

2
where ® = —:;—E- andneZ,.

This can be obtained by assuming, for example, that g(x)-x < O for Ix| large (in a variational setting, this
corresponds to the coercivity of the associated action functional). Another general way to exclude
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counterexample (0.11) consists in not allowing g to be linear. If one wants to avoid boundedness
restrictions on g, one is led to consider the class of superlinear nonlinearities, i.e. functions g such that

X
g% —+ o0 as Ixl—>+oo,

Earlier results on this topic can be found in the works of Morris [106,107,108,109], Ehrmann [39,40],
Harvey [71], Cesari [21], Micheletti [105], Fu¢ik-Lovicar [50], Struwe [140], W. Y. Ding [36], Bahri-
Berestycki [3,4], Rabinowitz [126,127]. These authors have used various methods, which are briefly
described in Chapter 5.

In the above situation, the main difficulty in developing the procedure explained at the beginning of this
Introduction is in step (ii), since, roughly speaking, in the superlinear case no a priori bounds are
available.

This problem is overcome (in the framework of coincidence degree for L-compact pertrubations of linear
Fredholm mappings of index zero) by a continuation result (Lemma 1), where the new ingredient is a
functional @ which is proper on the set X of possible solutions of the homotopic family of equations and
which avoids two values during this homotopy. For the applications to periodic BVPs, the significant
special case is that of a functional taking only positive integer values on large norm solutions and whose
positive integer level sets have a bounded intersection with Z. In particular, the functional used is closely
related to the mapping counting the number of rotations around the origin of the solutions of a planar
differential system. Applications are provided for planar systems with linear growth, for superlinear
planar hamiltonian systems and for "weakly coupled” systems of the form

X+ 8(x) = peltxy),  k=1,.,m.

Note that when a priori bounds are available for the (possible) solutions of an operator equation
x = M(x,A), where M : Ux[0,1]-U and Q is a bounded open subset of a normed space U containing X,
then the choice

—dist(x, frQ) for xe Q,
O(x;A) = (0.12)
dist(x,frQ) for xe¢ Q

is suitable for the applications of Lemma 1; therefore, solutions of the classical continuation theorems can
be reobtained.

It is also worth mentioning that for the proof of Lemma 1 it is crucial to investigate attentively the structure
of the solution set Z. It is interesting to compare this approach with earlier work in [46,51,53]; in [51],
the existence of a connected branch of solutions to the parametrized system

x = A f(t,x;A)
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(for a function f as in Theorem A) is proved using the concept of "regular map". The results of Chapter 5,
however, are independent of [51].

In Chapter 6 the method initiated in Chapter 2 is used in order to generalize to ANRs the abstract
continuation theorem of Chapter 5. On the other hand, setting T := { (x,\)e Qx[0,1] : x = M(x,\) }, the
existence of a closed connected branch CcX of solutions to the operator equation

X = M(x,A)

(with M : £2x{0,1]-U a completely continuous operator defined on a bounded open subset of U, a
metric ANR) such that CN(Zgx{0}) # &, and, for T := (xeZ : A > 0}, C:= {xe = : A<0}, the
following alternative holds : either CT is unbounded or Ct N 0Q # @. With this result, which
generalizes [51] to ENRs by the use of the fixed point index, it is possible to give a different proof of the
abstract continuation theorem; on the other hand, choosing ¢ like in (0.12), it is possible to reobtain the
usual existence results for differential systems in flow-invariant ENRs when a priori bounds are available.
Indeed, if this is the case the second alternative in the result described above is excluded so that, for A =1,
existence for the operator equation x = M(x;1) is proved.

Finally, we point out that the use of the functional ¢ originated by the time-map may provide
information for other boundary value problems (e.g. for the two-point BVP). Moreover, an investigation
has started on a (possible) deeper use of the functional ¢ used in Chapters 5 and 6 in relation with the
fundamental homotopy group of some suitable space. In this direction, the use of the d;grec for
equivariant maps might be fruitful (cf. [6]). “

In this thesis, the number of formulas, sections, theorems, corollaries, lemmas, propositions refers,
if not otherwise specified, to the chapter in which it appears.
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Chapter 1

Preliminaries and notations

1. Introduction

In this Chapter we describe the most important concepts used in this thesis and we recall some well-
known facts which are employed in what follows. In Section 2 we give the axioms and the main properties
of the fixed point index; in Section 3 we describe the Euler-Poincaré characteristic; in Section 4 we

introduce the "index of rest points". In Section 5, we give a list of notations.

2. The fixed point index

In this Section, we introduce in an axiomatic way the fixed point index for a rather general class of
spaces and maps. To this aim, we follow [59,113].

First, we introduce the class of spaces for which we define the fixed point index.

DEFINITION 1. A metric space U is an ABSOLUTE NEIGHBOURHOOD RETRACT (ANR) if
and only if for every metric space V, for every closed subset M of V and for every continuous map

f: M — U there exists a continuous extension t of f which is defined in an open set containing
M.

REMARK 1. We point out that, equivalently, U is an ANR if and only if U is homeomorphic to a
subset V of a Banach space B and V is a neighbourhood retract of B. This is a consequence of the classical
Arens-Eells embedding theorem [59, p. 221].

DEFINITION 2. If U is an ANR and the Banach space B in the above remark is R™, then U is
called an EUCLIDEAN NEIGHBOURHOOD RETRACT (ENR) .

Now we recall some elementary properties and examples of ANRs (for a general treatment of ANRs,
see [75]).



(@)

(b)

©

(d)
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(Dugundji) [83, § 53]. If U is a closed convex subset of a normed linear space, then U is an ANR

(indeed, U is a retract of the space).
If U is a closed subset of a normed linear space V and if there exists a family {Cj}je ; of closed
convex subsets of V suchthat U= UC; and {Cj}jeI is a locally finite covering of U, then U

ey
is an ANR.
A retract of an ANR is an ANR.

Every open subset of an ANR is an ANR.

This latter fact implies that any ANR is locally ANR. The converse of proposition (d) is also true; namely:

(e)

(Hanner) [69]. If U is a metric space and every xe U is contained in an open neighbourhood Ny
which is an ANR, then U is an ANR.

In particular, a metrizable Banach manifold is an ANR (this fact will be extensively used in the sequel).

Finally, we recall:

®

()

(West) [147]. Every compact ANR is homotopically equivalent to a compact polyhedron (see also
Section 3 ).

([75]). Let U be a compact metrizable space and V a metrizable space. Let d be a distance which
defines the topology of V . Consider the function space Q = {f: U — V, continuous} , endowed
with the distance d*, where d*(f,g):=sup d(f(x), g(x)) . Then, Q with the d"-topology is
an ANR if and only if V isan ANR.  *€°

Let Uy, Uy and U;nU, be ANRS; then, U;UU, is an ANR.

Let U be an ANR and let W be an open subset of U.Let f: W — U be a continuous function.

Let us give the following

DEFINITION 3. The triple (U,W,f) is called ADMISSIBLE if the set S ={xe W:f(x) =x} is
compact (possibly empty) and there exists an open neighbourhood V of S such that cIVGCW and

lclV IS compact.



REMARK 2. Frequently, the axioms of the fixed point index are given in a less abstract framework, i.e.
one assumes that W is a (bounded) open subset of U and f:clW—U is a compact map such that
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f(x) # x for all xefrW. Indeed, if this is true, then the triple (U,W,f) is admissible.

THE AXIOMS

To any given admissible triple (U,W,f) we associate an integer

iy(f,W)

called the fixed point index of f on W (relatively to U) satisfying the following properties:

I.

EXCISION

Let W' be an open subset of W with SCW' and let f' = le. : W' — U. Then,

1y, W) = iy, W).

(Note that the triple (U,f,W") is admissible.)

II.  ADDITIVITY
n
Assume that W= W, andlet f;: = fw.Sit=8nW; . If §N§;= &, i#j, then
i=1 1
n
iGEW) = D, igE, W) .
i=1
III. FIXED POINT PROPERTY
If igEW)=0,then S#J,ie. themap f has a fixed point.
IV. HOMOTOPY
Let H: Wx[0,1] - U be a continuous homotopy, and let H, : W — U be defined by
H (x) :=H(t,x) . Assume that S := U {xe W: H/(x) = x} is compact and there is an open

te [0,1]

neighbourhood V of S such that clV < W and Hjcjyxo 17 is @ compact mapping. Then,

V.

iy(Ho, W) = ipg(H,, W).

MULTIPLICATIVITY

If the triples (W1,Uy,f}) , (W, U, f,) are admissible, then

1y U, (F1x6, Wi xW)) = iy, (1, W) - iy, (£, W) .
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VI COMMUTATIVITY
Let Wy, W, be open subsets of Uy, Uy, respectively; assume that f; : W, — U, , f,: Wo— Uy

are continuous maps and that the map f; is compact in a neighbourhood of {xe W: f,f;(x) = x} (or the
map f;is compact in a neighbourhood of {xe W,: f;f,(x) = x}). Consider the composite maps:

f,f, 1 ;' (Wy) = Uy
f1f, 1 551 (Wp) = Uy

If one of the triples

(] (W, Upbofy) o (61(W1),Upfyfy)

is admissible, then so is the other and, in this case,

ity (B £ (W) = iy, (£, £ (W)

VII. NORMALIZATION
If W=U and the map fis compact, then the Lefschetz number of f is defined and

g, W) = A(D).
For the definition and properties of the Lefschetz number, we refer to [59,89].
REMARK 3. We point out that the axioms given above are not independent. For instance, axiom III
(fixed point property) is an easy consequence of the additivity and excision axioms.
Now, we recall a useful property of the fixed point index which follows from the commutativity axiom:
PROPOSITION 1 (Contraction property of the fixed point index). Let W be an open subset of U

and f: W—U a continuous map for which the index iy(f,W) is defined. If a metric ANR V is a
subset of U such that the inclusion j: Vc U is continuous and f{(W)CV, then

lU(f,W) = iv(flwnv,WﬂV).
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REMARK 4. First of all, we point out that if we assume that U is a compact ANR and we denote by
Idy; the identity map, then iyy(Idy;,U) = A(Idyy); this number, which depends only on the set U, has many
important topological properties, which we recall in Section 3.

Furthermore, we remark that‘ the normalization axiom is, essentially, the Lefschetz fixed point theorem.

It seems interesting to recall also the "weak" form of the normalization axiom (and to compare it with the
analogous property of the Brouwer degree):

VI BIS. "WEAK" NORMALIZATION
If the triple (W,U,f) is admissible and f(x) =p for all x, then

1 if pe W
iy(tW) =
0 if pe W

The proof of the existence of the fixed point index for ANRs is omitted for brevity. See [59, Th. 7.1, Th.
10.1] for details.

3. The Euler-Poincaré characteristic

In this Section we give the definition and some remarks about the Euler-Poincaré characteristic of a
set, another important tool in this thesis. Although it is defined in algebraic topology, in recent years it has
turned out to be very useful from the point of view of analysis too. Accordingly, after the abstract
definition, we briefly present an intuitive explanation of this important concept; as a consequence, we
outline the way in which it can be viewed, and used, by analysts.

Let CcR™ be a compact ENR (indeed, it is sufficient to consider a set which has the homotopy type of a
polyhedron).

DEFINITION 4. The Lefschetz number of the identity map 1dq is called the EULER-
POINCARE" CHARACTERISTIC of the set C, and it is denoted by ¥ (C).
The following useful formulas can be proved by the axioms and properties of singular homology:
x((PH =1, x(B[O,1) =1, x(SO,1)=1+ D™, xSy =2-2h,
where Sy, denotes an orientable surface of genus h (see [37, p.106]).

Furthermore, we recall that if M is a compact manifold and if the dimension of M is odd, then ¥(M) =0
(see [142]).
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We now outline the way in which the Euler-Poincaré characteristic, a purely algebraic topology object, can
be used in order to apply topological methods in the search of periodic solutions to differential systems.
Roughly speaking, in many cases the Euler-Poincaré characteristic of certain subsets of R™ turns out to
be equal to the "index of rest points"(cf. Section 4). In other words, in this thesis (expecially in the
applications) the Euler-Poincaré characteristic "plays the role" of the topological degree and/or the fixed
point index, i.e. the hypothesis ¥(C) # 0 in some cases implies (the existence of fixed points of suitable
operators and consequently) the existence of solutions to some boundary value problem.
In some sense, we establish a link between the topological nature of a manifold (or, in general, of a
compact ENR) and the possible kinds of singularities of a vector field on such a set.

Actually, this link is in the classical Poincaré-Hopf theorem; indeed, if we denote by i, the "index
of isolated singularities" x of a given vector field on a (sufficiently regular) manifold M , then

> b= x (M),

Let T(M) denote the tangent bundle of M. The famous Poincaré-Hopf theorem states that if ¥(M) = 0 then
any smooth vector field v : M—T(M) must vanish somewhere.

In the case m = 2, for example, since x(S(0,1)) = 2, a vector field defined on S(0,1) has at least one
singular point.

The results we present in this thesis include the Poincaré-Hopf theorem as a particular case.

Before ending this section we observe that, among others, H. Groemer, V.A. Efremovic and Yu.B.
Rudjak [38,60] have given a characterization of the Euler-Poincaré characteristic for compact polyhedra
by means of the fullowing axioms:

1. ADDITIVITY
X(C1UCy) = %(Cyp) + %(Cyp) — % (C;NCy).

2. NORMALIZATION

x(@) =0, x({P}))=1

Indeed, we point out that since compact ANRs are homotopically equivalent to compéct polyhedra (see
[147]) then we have a characterization of the Euler-Poincaré characteristic for compact ANRs by adding to
the additivity and normalization axioms the following property:

3.  HOMOTOPY EQUIVALENCE
If C; and C, have the same homotopy type, then

X(Cy) =x(Cy).
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In this way, the Euler-Poincaré characteristic is determined by a number of axioms, just as in the case of
the Brouwer degree and the fixed point index, independently of its construction through (the Lefschetz
number and) singular homology.

4. The index of rest points

In this Section we introduce another important concept for this thesis, the index of rest points, by

means of the fixed point index (cf. Section 2). In some of our main results (Theorem 1 in Chapter 2,
Theorem 5 in Chapter 3, Theorem 2 and Corollary 2 in Chapter 6) the "index of rest points” plays the role
of the Brouwer degree in classical theorems for the periodic BVP (see [79,81,98]).
Let U be an ENR, and let T be a dynamical systemin U. Let { be an open subset of U. Assume that
there are no rest points of 7 in frQ and Q is relatively compact. Then, we know (see Section 2) that the
fixed point index iy(n,U) (where m;: X — 7(t,x)) has a constant value for 0 <t <Eg, provided that £1s
sufficiently small. In this situation, we can give the following:

DEFINITION 5 [137]. The INDEX OF REST POINTS of the dynamical system T in the set
Q is given by the formula:

I(r,Q2) : = lim iU('Itt,Q).
g0t

In what follows, we often deal with a dynamical system T which is induced by an (autonomous)
differential system of the type

x = fo(%), (1.1)
where f;: Rm — R™ is locally lipschitzian.

A concept analogous to the index of rest points has been introduced by Furi and Pera in [53] for flows on
manifolds satisfying suitable assumptions. More precisely, for a vector field fy() asin (1.1) they define
% (f), the "Euler characteristic of the vector field £ " the properties of this characteristic are analogous to
those of the fixed point index (i.e. the solution, excision, additivity, homotopy, normalization properties
hold). Indeed, if 7 is the dynamical system induced by (1.1), then we have:

I(TC’Q) = X(—’f)
Now, we recall (following [137]) some properties of the index of rest points.
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PROPOSITION 2 [137, Prop.4.3, Th.5.1, Th.6.1].

(@)

(i)

(i)

(iv)

v)

(v

(vii)

Assume that W and W, are open, Wy cW,, cIW, is compact and there are no rest points in
(cIW W, ; then:

K, W) = I(,W,).

Assume that W1, W,,..,.W_ are open subsets of Usuch that WiNW, = for i#j and there are

T
no rest points in U\ (\UW,); then,
i=1

I(n,U) = > I(m,W,).
i=1

Assume that U is compact; then,
I(m,U) = x(U).
Assume that there are no rest points in the set clQ); then,
I(w, Q) = 0.
Assume that m is generated by the equation x = Ax, where A is a real nonsingular matrix; ler
k denote the number of its eigenvalues having positive real parts; then, for any open ser Q,
0e Q,

I(7,Q) = (-~

Assume that w is a dynamical system in R™ generated by a function fy: R™ —=R™ Ler QcR™
be an open bounded set and suppose that fo(x) # 0 for xe frQ; then,

I(m,Q) = (-1)™ dg(£,,Q,0).

Assume that there is a compact subset K of U such that, for every xe U, n([0,o[,x)NK # &;
then,

= U is of finite type;
- K has a rest point provided that x(U) # 0;

= If there are no rest points in ftK, then

I(,intK) = 5 (U).
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(viii) [137, Theorem 4.4]. Let Bbea vblock” and b the set of "egress points” . Assume that B,
b~ are ENRs. Then,

I(n,B) = x(B) - x(b).

(If a set B is a "block", then, roughly speaking, each point of frB is, in WaZewski's terminology, a "strict
ingress point" or a "strict egress point", i.e. "sliding points" are not allowed. We refer to [24] for an
extensive treatment of the concept of "block”).

A homotopy property for the index of rest points has been proved in the particular case of tangent vector
fields by Furi and Pera in [53]; for the general case, we refer to Lemma 2 in Chapter 2.

We end this Section with an important remark concerning the computation of the index of rest points.

REMARK 5. First, we point out that in this thesis we use the index of rest points in a situation which is
slightly more general than the one of Definition 5. Roughly speaking, we consider a "flow invariant” ENR
CcRm and a bounded set GcC , open relatively to C.
Let us now recall some facts about the computation of the index of rest points.

If G = C (C compact), then (0, G) = % (C), where denotes the Euler-Poincaré characteristic (see
[53,1377).

If clGeintC, then I(0, G) = (=1)m dg(fp, G, 0) (see [81,137]).

If C is a closed convex set with non-empty interior, then I(xt0, G) = ic(r(T + fp), G), r:R"=C
being the canonical projection (see [18]).

If C is a manifold (satisfying suitable assumptions) and fj is a vector field tangent to C, then
1(n9,G) = y(—fp), where X is the "characteristic of the vector field" f, introduced in [53].

If 10 is dissipative, i.e. there is a compact set %cC such that for each xe C there is t,20 with
n0(x,t)e K for all ©t,, then C is of finite type and I(n®, G) = x(C) for every GoX (see [137, Th. 6.1]).

Finally, if c1G is a "block”, then the index of rest points may be computed by means of Proposition
2, (viii).

5. Notations

We denote by N, Z, R, the sets of natural numbers, integers and reals, respectively; we also
consider Z, = NU{0}, R, = [0,+e<[ and R" =10,+o0[.
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The m-dimensional real euclidean space R™ is endowed with the usual scalar product (- | .)1/2,
norm |-l and distance d(-, -). The vectors of the canonical orthonormal basis in R™ are denoted by e,
(G=1,...,m).
Given two subsets C;, C, of R™, we denote by

dist(Cy,Cy) = inf{la—bl: ac C;, be C, },

the distance between the sets Cy and Cy; we also set diam(C,) := sup{la=bl: a, be C}.
For a closed convex set K « R™ we denote by N(z,K) the set of (nonzero) outer normals to K at ze frK.

Given any metric space V, for ACBCV, by intgA, frgA, clgA we mean, respectively, the interior,
boundary and closure of the set A relatively to B; cardA is the cardinality of the set A. We omit the
subscript whenever no confusion occurs. The open and closed ball of center Xo and radius R>0 are
dencted by B(xy,R) and B[0,R]; we also set S(x,R) := frB(x,R). Let £ be a subset of the product space
Vx[0,1]. Then, we denote by Q,, Ae [0,1], the section of Q at A, that is Qy = {xeV:xMNeQ};
moreover, we set: (02), := {xeQ : (x,\)e fryx(0,112}. Observe that, in general, (3Q); @ fr(€;).

If U is a normed space, Iy denotes its norm and Iy the identity operator in U; as a usual
convention, the subscript is omitted for U = R™.

The norm of a linear bounded operator L. between normed spaces is denoted by IILIL.

We shall deal with the following Banach spaces:

Y := C([0,T],R™), X := {xe Y: [0,T]-=R"™, x(0) =x(D)},
G = C ([-1,0],Rm), Cr = {x():R— R™,x(0)=x(D)},

with the sup-norm |-l and distance d*, d*(x1,%,) = Ix1=X ..
Moreover, for any 1<q<+es, we denote by -1y the L%-norm of a function u(-) belonging to the Lebesgue

space LY([0,T1,R™ ); weset Z:=L([0,T,R™).

For a map ueL!([0,T]R™ ), we define
1 T
u:= —T-Oju(s)ds,

the mean value of u(:) on [0,T], and for a function y = y(tA) 1 [0,T]x[0,1]—=R™, we write

T
- 1
Y= Tofy(s,k)d&

By dg and deg we mean, respectively, the usual Brouwer degree in R™ and the Leray-Schauder
degree in a normed vector space. ‘

A final preliminary to our results is needed.
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Let CcR™ be a closed set. We denote by

T(zC) = {ve R™: liminf d(z + hv, C) /h=0}
h

—0t
the (Bouligand) tangent cone to Catz.
Recall that, according to a classical theorem of M. Nagumo [112], given a continuous function
F : IxC—R™, where JCR is a nondegenerate interval with interior I, for each (tg,xg)€ IXC the Cauchy
problem

x = F(t,x)

x(tg) = Xp

has a solution x(-) : domx(-)—C defined on a right maximal neighbourhood of ty if and only if
F(t,2)e T(z;C) forallte 1, ze frC. (1.2)

Equivalently, if F* : IxR™—R™ is any continuous extension of F, then (1.2) ensures that the set C is
(weakly) positively invariant with respect to the equation x = F*(1,x), i.e. for each (tg-xg)€ IXC there is at
least a solution x(-) of x = F*(t,x) with x(tg)=xq such that x(t)e C in its right maximal interval of
existence. Accordingly, since we are interested in solutions lying in the set C, there will be no loss of
generality if we assume F(t,") defined on the whole space R™ whenever (1.2) is assumed.
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Chapter 2

An existence theorem for the periodic boundary value problem in flow-
invariant ENRs with applications

1. Introduction

Let CcR™ be a closed ENR (Euclidean Neighbourhood Retract) and let F : [0,T]xC—R™ be a
continuous function. The aim of this Chapter (which is based on [19]) is to prove the existence of a
solution x() to the periodic BVP

x = F(t,x) (1.1)
x(0) = x(T) (1.2)

such that, for all te [0,T], x(t) belongs to a certain subset of C.

In the Introduction, we have recalled the celebrated results for the case C=R™ by J. Mawhin and M. A.
Krasnosel'skii (Theorems A and B) and some contributions obtained in the case when the underlying
space has not a linear structure.

In this Chapter, an unifying result is provided, both regarding the methods and with respect to the
properties required for the set C. Indeed, problem (1.1)-(1.2) is embedded in a functional-analytic
framework and, at the same time, the properties of the translation operator are used. On the other hand,
since regular manifolds, closed convex sets and conical shells are examples of ENRs, the result given
below takes into account all the situations mentioned above.

In Section 2 the main result of this Chapter is proved (Theorem 1). Instead of the Brouwer degree,
we use the index of rest points of an associated flow. As for the proof, the crucial point is based on the
study of nonlinear operators in the space of continuous functions depending on some processes which are
defined from (1.1). Corollaries 1 and 4 extend Theorems A and B (respectively) to flow-invariant ENRs.

In Section 3 Krasnosel'skii's method of guiding functions is adapted to the case of ENRs, and a
computation of an analogue of the "index of non-degeneracy"” for a potential function is performed (see
[79, p.84]).

In Section 4 more concrete examples which illustrate the range of applicability of the above results
are given; the first example (suggested by possible applications to hydrodynamics [76,128]) deals with a
set which is a domain with holes; then, as a simple corollary, a result related to the Floquet problem is
obtained. In the last example a periodicity theorem for the generalized hypercycle equation (see
[41,73,134]) is performed. In this case, the set C is an (m—1)-dimensional symplex,and therefore all the
theorems quoted in the introduction are not applicable (cf. Remark 10).
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Finally, we point out that, without loss of generality, we can assume (if it is convenient)
F : [0,TIxA—R™, with A any open set such that CcAcR™ (cf. Remark 2).

2. The main result

Throughout this Section, we suppose that CcRmis an ENR.
As usual, we deal with the periodic boundary value problem

x = F(t,x) | (2.1)

x(0) =x(T) , (2.2)

where

F(tx) : = f(t.x;1)

and f = f(t,x;?»):=[0,’[’j><Rm><[0,1]-——>Rm is a continuous function which is locally lipschitzian in X. As it
was mentioned in the Introduction, such assumption is not strictly necessary in our proofs, but it avoids
the requirement of the uniqueness of the solutions to all the Cauchy problems which will be considered
henceforth.

In what follows, we denote by I' the complete metric space of the continuous functions x():[0,T]=C
endowed with the distance d*, d*(xl,xz):=lx1—lem. From [75, p.186], we know that (I',d*) is a (metric)
ANR. We want to prove the existence of solutions to (2.1)-(2.2) belonging to certain subsets of I.

To this end, we produce a continuation theorem (on the line of [94,98]) involving the averaged system

x = fo(x) (2.3)

Observe that the map fj is locally lipschitzian; accordingly, (2.3) induces a local dynamical system 7 with
phase space Rm. We also note that if the set Cis positively invariant for x = f(t,x;0), then the same
property is true for T (see Lemma 2 in Section 3).

We further remark that if GC is a bounded set, open relatively to C, such that

Fo(x) % 0 for all xe frcG (2.4)

holds, then there is gy > O such that the map ;te . x> (€,x) is fixed point free on frcG, for all
0 < & < g;. Therefore, whenever C is positively invariant for T and (2.4) holds, the fixed point index
ic(m,,G) is defined and it is constant with respect to €, for all 0 <€ < €. In this situation, according to
Chapter 2, the index of rest points
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I(n,G) : = lim ic(ne, G) (2.5)

g—0t

is well defined.
For the computation of the index of rest points, we refer to Remark 5 in Section 4 of Chapter 1.

The main result of this Chapter is the following. Note that points of C are identified with constant
functions.
THEOREM 1. Assume
(gl) Cis positively invariant for x = f(t,x;A), Ae [0,1].
| Let QcT be an open bounded set such that the following conditions are satisfied:
(g2) there is no x(-)e fil'Q, with x(0) = x(T), such that
x = M(t,x;A), Ae10,1[; (2.15)
(g3) fo(z)#0 for all ze CfrpQ;
(g4) I(m,QNC) = 0.
Then, (2.1)-(2.2) has at least one solution x(-)e clpQ.
REMARK 1. Observe that in the particular case C = Rm assumption (g1) is trivially verified, while
conditiqn (g4) is equivalent to dB(-f-O,Qr\Rm,O) # 0, so that we obtain [94, Th. 2]. Actually, in [94] the
local lipschitzianity of f is not supposed; however, in the special case C = R™ we can relax such regularity

assumption on f using a standard perturbation argument.

The following result is crucial for the proof.

LEMMA 1. Assume (gl). Then, for each a.,p 20 and 0 <A, < 1,i=12, C is flow-invariant for
X= af(t,x;Ay) + B ?xz(x). '




Y

Proof. At first, we observe that the function ouf(t,x;A;) + ﬁ‘f_;\a(x) is locally lipschitzian in x, so that the

uniqueness for the solutions of the associated Cauchy problems is guaranteed. Recall that, by the
characterization of flow-invariant sets in terms of tangent cones (see [2,25]), (gl) implies that
£(t,z;A)e T(z;C), for all te [0,T], ze frC and Ae[0,1], where T(z;C) is a suitable tangent cone to C at z.

Without loss of generality (see [121, Th.3.9]), we can assume that T(z;C) is closed and convex (for
instance, the Clarke tangent cone can be chosen). Then, by the mean value theorem [2, p.21],
?l(z)e T(z,C) for all ze frC and A€ [0,1]. Finally, the convexity and the cone property of T(z;C) imply that
af(t,z;Ay) + B—sz(z)e T(z;C). |

The proof is complete. ¢

Proof of Theorem 2. At first, we prove our result under the supplementary assumption that there is a
constant A >0 such that

If(t,x;M) < A (2.6)

for all te [0,T], xe Rm, A& [0,1]. The general situation will be examined at the end of the proof.

Without loss of generality, we also suppose that (g2) holds with A€ ]0,1] in (2.1,) (otherwise, the result is
already proved for xe frr(2).

We begin with some technical preliminaries.

Let e=]0,T[ be arbitrarily small but fixed. We define the following functions:

BA):=(AT—-¢)/(T-¢) , gT<A<L;
60,0 :=[e+6(T-)] /T, 0<0<1, 0<t<O;
£(sT/6(8,T),y;A(8)) , 0<0<1,0<s<¢(0,T),ycRm,

g(s,y;e):z{
f(T,y;A(8)) , 0<6<1,s>6¢(0,T), yeRm ,

Observe that g:R,xR™x[0,1]—R™is continuous and such that uniqueness and global existence for the
associated Cauchy problems are guaranteed. Accordingly, if we denote by u(c,z,-;0) the solution of

y = g(s,y:6)
2.7

y(©)=z

then a one-parameter family of processes is defined. Using (g1), it can be easily checked that, for each
6 [0,1], the set Cis positively invariant for the corresponding process u. We further note that, since

A = A(6) = 6(0,T)/T,
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then the function y(s) is a solution of (2.7) for se [0,6(8,T)] if and only if the function
x(0) : = y(¢(8,T)YT) = y(§(8,1)) (2.8)

is a solution of (2.1,) with te [0,T].

The existence of solutions to (2.1)-(2.2) will be achieved producing a fixed point for a suitable operator
defined on I'. We will carry out this programme using the properties of the fixed point index for compact
operators in metric ANRs (see [59]); more precisely, some admissible homotopies will be constructed.

As a first step, we introduce a nonlinear operator M defined on I'x[0,1] as follows:

M(x,8) : = u(0,x(T),0(8,-);8) , 6€[0,1].

By the flow-invariance of C, M : I'x[0,1]—T"; moreover, by the Ascoli-Arzela theorem, M is compact on
clrQx[0,1]. Using the definition of u and (2.8), it is immediately seen that x is a fixed point of M(:,6) for
some 8¢ [0,1] if and only if x is a solution of (2.1;) with Ae [e/T,1] and x(0) = x(T). In particular, (2.1)-
(2.2) is solvable if and only if M(-,1) has a fixed point. Hence, this claim and assumption (g2) imply that
M(x,0) # x for xe frpQ and 8 [0,1]. Therefore, M is an admissible homotopy and so

ir(M(,1),Q) =ip(M(-,0),2). | (2.9)

Secondly, we denote by v(0,z,+;LL) the solution of

y=(1-p foly) + ugls,y;0)
y(o) =z,
with pe[0,1].
As before, a one-parameter family of processes is defined. By Lemma 1 we have that, for each ple [0,1],

the set C is flow-invariant for the corresponding process v as well. Now, we consider another nonlinear
operator N(x,lL), defined on I'x[0,1] as follows:

N(R) = = v(0,x(T),0(0,); ).

Arguing as before, N : I'x[0,1]-T and it is compact on cI-Q2x[0,1]. Moreover,

N(x,1) = M(x,0).

We want to prove that N is an admissible homotopy. To this end, we observe that x is a fixed point of
N(-,u) if and only if x(-) is a solution of
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x = (&/D[(1 - p) fox) + Lt x;e/T)] (2.10)

with x(0) = x(T).

We claim that there is €; > 0 (small enough) such that N(x,t) # x for all xe frrQ and pe[0,1], provided
that e ]0,gy]. (Recall that the function g and, consequently, the operator N depend on the constant €
chosen at the beginning of the proof). In fact, assume the contrary, i.e. that for each ne N there are
,€ [0, T] with lim €, = 0, pe [0,1] and x,€ frrQ such that N(p.Hy) = X,. Then, from (2.10) and (2.6)
we have:

I, < (/DA (2.11)

Moreover, as Q is bounded there is a constant R > 0, independent of n, such that Ix |, < R. By the Ascoli-
Arzela theorem, we get that there is x*e frrQ such that (up to a subsequence) x,(-)—>x*() in the d*-
metric.

Clearly, x*(t) = constant = x*e CfrpQ (use (2.11)). We can also assume (passing, possibly, to a further
subsequence) that lim i, = p*e[0,1]. Taking the mean value of (2.10) and dividing by (e/T), we obtain,
for each n,

T

T
0=[a-uy %Of fo(xq(D)dt + un-}f dff(t,xn(t);e,ﬂ)dt] :

Passing to the limit as n—+oo, we get

T
0=(1-p#) Folx) +pe [0 = Folxr) , with xeefrrQ.

Thus, a contradiction with (g3) is reached. Hence, the claim is proved and we can write:
iF(M('7O)aQ) = i[‘(N(',l),Q) = IF(N("O):Q)' (2 12)

Finally, we define a third homotopy. Let 1: RxRm—Rm be the dynamical system induced by i(zfo(x)
and observe that, with the notation introduced along the proof,

T—E(t,z) = v(0,z,t;0).

By Lemma 1, C is positively invariant with respect to w. A nonlinear operator H is defined on I'x[0,17 as
follows:
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H(x,B) : = n((1 - B)e + BO(0,),x(T)).

As before, H : I'x[0,1]—I" and it is compact on cl2x[0,1]. Moreover,

N(x,0) = H(x,1).

In this case, xe I is a fixed point of H(-,p) if and only if x(t) = y((1 - B)e + Be(/T)), with y:[0,e] >C an
g-periodic solution of

y = fo(y)
y(0) = x(T).

We claim that there is €,€]0,g] such that H(x,B) = x for all xe frrQ and Be [0,1], provided that
e€]0,e;]. Assume the contrary; then for each ne N there are € € [0,T] with lime, =0, B,€[0,1] and
xq€ frrQ such that H(x,,B,) = x,. We consider the auxiliary functions z,€ I" defined by z,(t):=y,(g,t/T),
where y, = fo(y,) and y,(0) = y,(g,) = x,(T). For such z_ we have:

z, = (/) fg(zy),
(2.13)
2,(0) = 2,(T) = x,(T)
and
x, (1) = z,((1 - BT + B,t). (2.14)

Arguing as in the preceding claim, we easily get I'znlc,° < (e,/TA and lz,(0)| <R (with R > 0 a suitable
constant independent of n). Again, the Ascoli-Arzela theorem implies that (passing, possibly, to
subsequences) z,(-)—z*(-) in the d*-metric, with z*(-) = z* = constant and limf, = B*e [0,1].
Furthermore by (2.14) x_(-)—z* in the d*-metric, with z*e CNfrQ. Taking the mean value of (2.13) and
dividing by (e/T) we get‘

T

L [fmnai=0;
0

hence, passing to the limit as n—+eo, we have ?o(z*) =0, with z*e Cnfrr2 and a contradiction with (g3)
is reached.

Therefore, the claim is proved and we can write:

ir(N(-,0),Q) = ip(H(-,1),Q) = ir(H(-,0),Q). (2.15)
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By definition of H, we have:

H(x,0) = (g, x(T)) = To(x(T)),

where ?cs is the e-Poincaré map (0 < € < €;). Hence, since H(:,0):T—C, by the contraction property of the
fixed point index (see Proposition 1 in Section 2 of Chapter 1) we have:

ir(H(,0),9) = ic(H(-,0),20C) = ic(®,2NC). (2.16)

(Observe that, as a consequence of the last claim, 7, is fixed point free on fre(QNC)CCErrQ).

In conclusion, we have proved that, via (2.9), (2.12), (2.15) and (2.16), the integer
ic(M(:,1),Q) = (1, QNC) is constant with respect to €, for € > 0 small enough.

Then,

ir(M(,1),Q) = Iim ic( 7, QNC) = I( 1,QNC) .
£-071

Assumption (g4) provides (see Chapter 1) the existence of a fixed point xe Q of M(:,1). Therefore, the
conclusion is established.
In the case when (2.6) is not satisfied, the proof can be repeated for the equation

x = f(t,x;1)-p(IxI), (2.17)

where p:R,—[0,1] is lipschitzian and such that p(x) = 1 for Ix| <R, p(x) = 0 for Ixl 2 2R and
clrQcB(0,R).

Of course, the local flow 7 induced by (2.3) coincides with the flow induced by x = ‘f‘o(x)p(lxl)
in a neighbourhood of QNC and, moreover, any solution of (2.17)-(2.2) such that xe clrf is also a
solution of (2.1)-(2.2).

The proof is complete. ¢

REMARK 2. As we mentioned in Section 5 of Chapter 1, the flow-invariance condition (g1) may be
stated in an equivalent geometrical manner using tangent cones. Indeed, (g1) holds if and only if
(h1) f(t,z;A)e T(z;C), for all te [0,T], ze frC, Ae [0,1]

is satisfied (see [2,25]). Hence, if f(t,x;A) is defined only for xe C, then (h1) ensures that all the processes
considered in the proof of Theorem 1 are defined.
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A standard situation in which the function f(t,;A) is defined just on the set C occurs, for example, when C
is a regular manifold; in this case, f(t,z;A)e An—A, where A = T(z;C), whenever f is a tangent vector field
and so (h1) holds. Accordingly, our result is general enough to be applied to the setting considered in
[11,52,53].

If Cis a convex set like [18], then (h1) reduces to (f(t,z;A)m) < 0 for each ne N(z,C).

We end this Section with the following
REMARK 3. It is possible to obtain a variant of Theorem 1 assuming, besides (g2) and (g3), the
following conditions which replace (g1) and (g4):

(g) Cis negatively invariant for x=f(t,x;A), Ae [0,1];

(g lm ic(m,QNC)=0.

-0~

This can be accomplished by the standard change of variables t—s T—t which transforms equation (2.1)
into kz—f(s,x;l), where s=T—t.
Observe that if, furthermore, the critical set

Z={zeC: fo(z) =0}

is compact and QNC>Z, then lim iC(T—tE,Qr\C) is exactly x(_fﬂ), the "characteristic of the vector field"
£—-0"

fg defined in [53]. It is also clear that (g)) is equivalent to

(h) f(t,z;M)e -T(z;C), for all te [0,T], ze frC, Ae [0,1].

so that the situation considered in [53] fits our hypotheses (see also Remark 5 below).

Now, we present, as immediate corollaries of Theorem 1, an extension to ENRs of two classical results of
existence of solutions for the periodic problem (2.1)-(2.2). Namely, only a (suitable) different choice of
the set QT is needed.

In what follows, GeC denotes a bounded set which is open relatively to C. Observe that clcG = clG.

As a first application, in the lines of theorem A we can prove the following:
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COROLLARY 1. Assume (g1) and suppose that the following conditions are satisfied:

(h2) for any x(), solution of (2.1,)-(2.2) such that x(t)e clG for all te [0,T],
it follows that x(t)e G for all te [0,T];

(h3) fo(z) = 0 for all ze frG;
(h4) I(x,G) = 0.
Then, (2.1)-(2.2) has at least one solution x(+) such that x(t)e clG, for all te [0,T].
Proof. In the setting of Theorem 1 we define:
Q ={xeT: x(HeG, Vte [0,T1}.

It can be checked that Q is bounded and open relatively to I
Furthermore, the following facts hold true:

QNG =G;

crQ c{xeT: x(DeclG, Vte[0,T]};  frrQ < {xeT: x(t)eclG, Vt and Ity with x(tp)e frcGJ.

Hence, (h2) and (h4) imply (g2) and (g4), respectively. Finally; (g3) follows from (h3) since

frcG < CnfrrQ.

Therefore, Theorem 1 applies and the proof is complete.

REMARK 4. Hypothesis (h2) is a transversality condition at boundary points as considered in theorem

3.1. However, in (h2) not all the boundary is concerned, but only points of frcG are taken into account.

This advantage is balanced by a weak boundary condition which is implicitly required in (gl1). As we

already observed in the previous Section, the flow-invariance assumption (g1) is equivalent to the cone

condition (h1). However, since in Corollary 4.3 we study solutions lying in clcG, we realize that it is

possible to obtain a slight improvement of Corollary 1 by relaxing (h1). Namely, we have:

COROLLARY 1'. Besides (h2), (h3), (h4), assume

(h) f(tzNeT(zC)
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for all t [0,T], ze frCNclG, e [0,1].
Then, the same conclusion of Corollary 1 holds.

The proof of this result can be achieved via a standard perturbation argument based on the Ascoli-Arzela
theorem (see [44] for an analogous situation).

In the particular case when C is a closed convex set with nonempty interior, Corollary 1' can be seen as a
consequence of [18, Th. 1].

A simple application of Corollary 1 is based on the fact that assumption (h2) is fulfilled whenever a priori
bounds for the solutions of (2.13)-(2.2) can be produced. Accordingly, we have (recall Remark 3):

COROLLARY 2. Assume that, for all te [0,T], ze frC and A [0,1],
f(t,zzA)e T(z;C)  (respectively, f(t,z;\)e —T(z;C)).

Suppose that there is a compact set KcC containing all the solutions of (2.13)-(2.2) and such that
{ze C: ?O(Z) = 0}cK. Let GcC be a bounded set, open relatively to C, such that KcG and suppose that

ic(m,G) 0 (respecrively, lim ic(m,,G) = 0) .
A

£—0 £—0"

Then, (2.1)-(2.2) has at least one solution with values in K.

Observe that, by the excision property of the fixed point index, the limits h'm+ ic(n,,G) = 0 are
£—-0+

independent of the choice of GoDK. The above proposition clearly contains [53, Th. 2.4]; in fact,
according to the notations introduced in [53], lim iCGEst) = X(—fo)-
e—0"

We note that there is no loss of generality, in our setting, if we take K = B[O,Ry]NC and G = B(O,R)nC
for any R > Ry. In this way, we obtain a generalization to arbitrary ENRs of an useful principle due to
Mawhin [94, Th.4]. Finally, we remark that Corollary 2 is suitable for C non-compact. Indeed, if C is
compact then we can choose K = G = C and f(t,x;A) = F(t,x). Accordingly, Corollary 2 recovers a
classical result on the existence of periodic orbits in compact positively (negatively) invariant ENRs with
non-zero Euler characteristic (cf. Poincaré-Hopf theorem).

As a second application, by means of another choice of the set Q in Theorem 1 we prove two corollaries of
our main result which are in the lines of the well-known Krasnosel'skii theorem [79, Th.6.1].

COROLLARY 3. Besides (gl), (h3) and (h4), assume further
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(h'z) there is no solution of (2.15)-(2.2) with x(0)e frcG;

(h5) If(t,x;M)! < Alxl + B, for all te [0,T], xe C, A [0,1].

Then, (2.1)-(2.2) has at least one solution x(-) such that x(0)e clcG.

Proof. First of all, we note that (h5) ensures the global existence for all the Cauchy problems associated
to (2.15) with initial values in C. ‘

Then, there is a constant R > 0, independent of A, such that x|, < R for every x(-) solution of (2.1;) with
x(0)e clG.

In this situation, the appropriate definition of the set Q (in order to apply Theorem 1) is the following:

Q: = {xel: x(0)eC, xl, <R}.
Obviously, Q is bounded and open relatively to I'. Observe that Q" C = G and
frrQ c{xeT: x(0)e frcG, Ixl. < R}u{xeT: x(0)eclG, Ixl. =R}. Then, by the choice of R, it is
immediately seen that (hvz) implies (g2). Since frcG < Cnfrr€Q, arguing like in the proof of the previous
corollary, from (h3) and (h4) we obtain (g3) and (g4), respectively. Then we can apply Theorem 1 and the

proof is complete. 4

As a consequence of Corollary 3 we immediately get an extension of Krasnosel'skii's theorem to arbitrary
ENRs. Precisely, we consider the equation:

X = g(t,x) (2.18)/
with g : [0,T][xRm—Rm™ continuous, locally lipschitzian in x and such that the (forward) global existence
for the solutions of the associated Cauchy problems with initial values in C is guaranteed. Then, we have:
COROLLARY 4. Suppose that the following conditions are satisfied:

(k1) Cis positively invariant for equation (2.18);

(k2) there is no solution x(-) of (2.18) such that x(0) = x(k)e frcG,
for some 0 <k <T;

(k3) g(0,z) # 0 for ze frG.

Let 0 be the (local) flow induced by x = g(0,x) and assume:
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(k4) I(=0,G) = 0.

Then, (2.18)-(2.2) has at least one solution x(-) with x(0)e clG.

According to Krasnosel'skii's terminology, assumption (k2) means that the points of frcG are points of
"T-irreversibility".

Proof. By the global existence, there is a constant R > 0 such that Ix|< R for every x(-) solution of (2.18)
with x(0)e clG. Let p:Rm—[0,1] be a locally lipschitzian function such that p(x) = 1 for Ix| £ R and
p(x) =0 for Ixl = 2R.

Now we define, for Ae [0,1], f(t,x;A):=p(x)g(At,x) and observe that (by the choice of R, p(-)) xe'is a
solution of (2.13)-(2.2) with x(0)e fr¢G if and only if y(t):=x(t/A) is a solution of y = g(t,y) with y(0) =
y(AT)e frcG. Then, (h'z) follows from (k2). We also remark that (k1) implies (g1) and (k3), (k4) are

nothing but (h3), (h4) respectively. Finally, (h5) is fulfilled with A = 0 and B = sup {Ig(t,x)l, te [0,T],
xe C, IxI <R}. Then, Corollary 3 applies and the result is achieved. ¢

An analogous result was obtained by R. Srzednicki in [137, Th. 1], whenever g:RxRm—Rm is T-periodic
in the t-variable. More precisely, according to the notations of [137], let us set P:= clG and let p denote the
process induced by (2.18). Then, the same conclusion of Corollary 4 holds provided that, instead of (k2),
we assume the existence of a closed subset P~ of P such that

P™xR = {(z,06)e PxR : 3 (g)4 0, p(0,z,8,)e P}.

However, we point out that Corollary 4 is not contained in [137], as easy examples show (see [13,129]).
Indeed, it is sufficient to find a set P which is a " for Wazewski set" for x0 but not for p.

REMARK 5. Straightforward variants of Corollaries 2 and 3 may be easily obtained following
Remarks 2 and 3. In particular, the case of C negatively invariant may be treated as well.

The above result clearly generalizes [79, Th.6.1]; in the special case in which C is a manifold and g is a
tangent vector field Corollary 4 reduces to an existence result following from Furi and Pera bifurcation
theorem [53, Th. 2.2].

3. On the "index of nondegeneracy"

Let CcR™ be a closed ENR. We consider the equation
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x = g(t,x), (3.1)

with g : [0,T]xRm — R™ continuous, locally lipschitzian in x and such that the global existence for the
solutions of the associated Cauchy problems, with initial values in C, is guaranteed. Our aim is to obtain a
consequence of Corollary 4 in which the transversality condition (k2) follows by means of some explicit
geometrical hypotheses on the vector field g. More precisely, we examine an extension to ENRs of the
concept of guiding function (see[79,81]).

Now, we introduce the concept of guiding function relatively to the set C.

DEFINITION 1. Letr ®:R™ — Rm pe a continuously differentiable function with VY ® locally
lipschitzian on C. We say that @ is a guiding function for the equation (3.1) relatively to C if there is
Ry > 0 such that B(O,Rg)NC # @ (10 avoid trivialities) and

(Vo) | g(t)) >0 (3.2)
Jor all te [0,T], xe C and x| 2 Ry,

In particular, it follows that {xe C:V®(x) =0} < B(0,Rp)C.
We confine ourselves to guiding functions satisfying the additional condition:

(@1) C is positively invariant for
x = VO(x). (3.3)

Then, if we denote by nt® the (local) flow induced by (3.3), we have that, by (3.2) and (¢1), the index of
rest points I(n®,B(0,Ry)NC) is defined for any R > Ry (see Section 4 of Chapter 1) and it is constant
with respect to R 2 R, by the excision property. Hence, the integer

Jo(@,00) : = Lm  I(n?,B(0,R)NC) (3.4)

R—+e0

1s well defined.

REMARK 6. Up to now, we have just followed, verbatim, the corresponding definition of guiding
function in R™ given by Krasnosel'skii ([79, § 6.3]), modulo the natural modifications due to the more
general setting. Now, we explain the meaning of (3.4) in some particular cases. If C = R™, then (®1) is
vacuously satisfied and

Jo(@,20) = (-1)m (D00,
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where 7 is the "index of non-degeneracy" of ®, according to [79, p.84]).
If Cis a (regular) manifold, it turns out that

Jo(@,00) = X (-VD),

where % (-V®) is the characteristic of the (tangent) vector field —=V®, according to [53, p.325].
If C is compact, then

Jo(@,0) = I(r®,C) = x(C), (3.5)
where ¢ (C) is the Euler-Poincaré characteristic of C.

For the proof of the next theorem, we need a preliminary result relating homotopic fields with the indexes
of the corresponding flows.

Let h = h(x;A):Rmx[0,1]—=Rm be continuous and such that, for each Ae[0,1], the solutions for the
Cauchy problems

{k = F(t,x) | (3.6)

X(t9) = Xg 3.7

are unique. We denote by wt* the local flow induced by (3.6).
Then we have, for G as in Section 2:

LEMMA 2. Let G be a bounded subset of R™, open relatively to C. Assume that, for each A€ [0,1], C
is positively invariant with respect to equation (3.6). If

LD hx;A)#0

holds for all xe frcG and A€ [0,1], then

I(n9,G) = I(n!,G). (3.8)

Particular cases of this result have been already examined in [53]. For the reader's convenience, we give
the complete proof in the general situation.

Proof. We set
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N : =inf{Ih(z;A)l: ze frcG, Ae[0,1]};

by (L1), n> 0. We define x(t,z;\) to be the solution of (3.6)-(3.7) and observe that, according to the
notations previously introduced:

x(g,z;A) = nz(z).

First of all, we note that there is K > 0 such that x(-) is defined on [0,K], for each ze frcG and A€ [0,1].
Then, the set

B = {x(t,z;A): te [0,K], ze frcG, e [0,1])

is a compact subset of C.
Finally, let M > 0 be such that

lh(w; Dl <M

for each we B and Ae [0,1].
Fix &) such that 0 < g < K. Then, for any €€ ]0,&¢], we have:

1
x(€,z;0) —z=¢ OJ'h(x(ee,z;k);k) do

1
=g J[h(x(es,zgk);l) - h(z;k)] d6 + eh(z;A) .

Since
Ix(Be,z;A) - zl < ggM
for every 6€[0,1], e€]0,g], ze frcG and A€ [0,1], by the uniform continuity of h on Bx[0,1] we have:
Ih(x(8e,z;M);1) - hzM)| <m/2
for gy small enough. Hence, we obtain:
(1/e)lx(e,z;\) - zl = Ih(z; M)l -2 =2 n/2

for all ze frcG, Ae[0,1], €€10,g0].
Then, we have proved that
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ic(x(e,sM),G) = constant

for all Ae[0,1], e€]0,g4].
Therefore, (3.8) follows immediately. ¢

Now we are in position to state the main result of this Section. As before, we denote by I' the complete
metric space of the continuous functions x(-) : [0,T]— C endowed with the distance d¥*,
d*(x1,X9) = X1-Xplee.

THEOREM 2. Let @ be a guiding function for equarion (3.1) relatively to C and suppose that C is
positively invariant for (3.1) and (3.3).
Then, there is a solution x(-)e T 1o (3.1)-(1.2) (i.e. a T—periodic solution), provided that

(@2)  Je(@,=) =0.
Proof. We apply Corollary 4 with respect to the set G = B(0O,R)nC, where R > R*, and
R* : = sup {x(1): t,t,e [0,T], x = g(t,x), x(ty) < Ry}. Then, (k2) and (k3) follow from the definition of

guiding function, arguing like in [81, p.48]. Finally, we observe that (3.2) implies that the function
h(x;A): =(1 - A)g(0,x) + AVD(x) satisfies (1) of Lemma 2, so that

I(n,G) = I(r0,G) = I(xn1,G) = Jo(D,e)
Then, (©2) implies (k4) and the proof is complete. ¢
Clearly, Theorem 2 is an extension of Krasnosel'skii's result [79, Th.6.5], [81, Th.13.1] to the case of a
flow-invariant ENR. In [79,81], various criteria are proposed in order to evaluate Y(®,e0) for C = R™. In

particular, it is proved that

Y(@,00) = (-1)m, for im @ (x) =— oo

xl—+eo
and

Y(@,00) =1, for lim @ (x) = + o

[xl—+oo

On the same line and combining arguments from [79,137], we can prove an analogous result for Jo(®,).

LEMMA 3. Let @ be a guiding function relatively to C, verifying (®1) and
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(D 3) lim @ (x) = —oo.
[xl— + o
xe C

Then, C is of finite type and Jo(®,e) = 3(C).

Essentially, this result follows from (vii) in Proposition 2. However, according to our hypotheses,
equation (3.3) does not induce a dynamical system as required in [137] but just a (local) semi-flow on C.
Thus, we give the details of the proof for the reader's convenience.

Proof. Obviously, if C is bounded then (®3) is vacuously satisfied and Remark 6 immediately gives the
result. Hence, we consider the case of C unbounded.
First, we observe that

Vo(x) =0 _ (3.9)
for all xe C, Ixl 2 Ry. Now, we fix c¥*e R such that
c* <inf{®D(x): xe C, IxI <R, }.
Then, for any ¢ < ¢*, we consider the sets:

K :={xeC: ®(x) 2 c},
Lo : = {xeC: O(x) =c},
M, : ={xe C: O(x) < c}.

By (@1), (®3) and (3.9), it follows that for every ¢ < c*, we have: K¢ is compact and flow-invariant for
(3.3), Le = frcK¢ = frcM, and each xe L is a strict egress point for M. (according to Wazewski [146]).
Let xe M¢*; we want to show that there is t, 2 0 such that n®(t,,x)e Lo*. Indeed, let us assume ®(x) = ¢
< c*; then, there is 1 > 0 such that IV®(y)l 2 1 for every ye K\K¢*. Following [79, Lemma 6.5], the
function ¢(t) : = ®(n®(t,x)) is such that ¢(t) = ¢ for all t = 0 and ¢(t) =22 for all t > 0 such that
T®(t,x)e KO \Kc*. Then, arguing by contradiction, it can be seen that the solution of (3.3) with initial value
x meets L at a time t,, with t, < (c* - ¢)/n2. Note that such t, is unique. If xe L¢*, the claim follows with
t, = 0.

By Wazewski's Lemma, we know that the map xFt,, X€ M¢x, is continuous (see [24,146]) and so K;*
is a strong deformation retract of C via the homotopy

(x, M) T®(At,,X), xEMc*

(X, A)F=x, xe K.
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Then, K* is a compact ENR and C and K¢+ have the same homotopy type. Accordingly, C is of finite
type and

x(C) = x(Kcx) = x(Ke)

for every ¢ < c*.

Now, it is clear that T®(t,x) # x for every xe M¢* and t > 0 (see also the proof of Theorem 2); hence, for
any € > 0, lc(ﬁ B(0,R)"C) is defined whenever B(0,R)DK+. Fix such an R and let ¢ < ¢* be such that
K¢ o B[O,R]NC. Then, using the excision and contraction properties of the fixed point index, we can

write:

ic(nf,mo,R)mC) = ic(n‘:, intcKe) = iKC(nf, Ke).

On the other hand, 1:2 is homotopic to the identity Id on K¢ (moving the points along the semi-orbits);

consequently,
. o .
IKC(Tte ’ Kc) = IKC(Id, Kc) = X(Kc) .

From the above inequalities, letting e—0+, R—>-+o and recalling the definition of J c(@,%), we have the
conclusion. ¢

REMARK 7. A simple application of Lemma 3 can be performed when C is convex and flow-invariant
with respect to (3.3). Indeed, in such a case X(C) = 1 and so (®2) holds. We notice that, even in this
simple situation, the validity of (®2) is not ensured if

lim @(x) = +oo (3.10)
[xl—s-too
xeC

is assumed instead of (®3). For instance, it is easy to prove that when C\B(0O,R) (R large enough) is
contractible, then (®1) and (3.10) imply Jo(D,o<) = 0.

We finally notice that in the proof of Lemma 3 we have shown that the flow n® is dissipative; indeed, one
can prove (suitably modifying the arguments in [74,137]) that I(T1,B(0,R)NC) = %(C), for R > 0 large,
whenever I1 is a dissipative semi-flow on C.

If, furthermore, g:R,xRm — Rm is T-periodic in the t-variable, then, with a few changes in the proof of
Lemma 3, one can also show that the process induced by (3.1) is dissipative on C, provided that (®1) and
(@3) are satisfied. Hence, in such a particular case the existence of an T-periodic solution may be obtained
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using some extensions to ENRs of the known theorems for periodic dissipative processes (see [65,
Ch.4]).

4. Applications
In this Section we present some applications of the previous results to the periodic BVP

x = F(t,x) (4.1)
x(0) = x(T) (4.2)

with F: R, XD — R™ continuous, T-periodic in the first variable and D a subset of R™. Obviously, in
order to make problem (4.1)-(4.2) meaningful we shall further require that x(t)e D, for all te [0,T]. We
recall that the solutions of (4.1)-(4.2) may be extended to R, as classical T-periodic solutions.

We examine two cases in which Corollary 1 may be applied. In both examples, the choice of the set CcD
will be suggested by the nature of the model represented by equation (4.1) and by the interest of finding
solutions satisfying some particular properties.

In order to apply Corollary 1, we suppose that the function F is locally lipschitzian in x. However, we
stress the fact that all the results contained in this Section are still true even if F is just continuous (use
standard perturbation arguments).

EXAMPLE 1. We examine the case in which it is natural to choose C as a domain with holes. Such
situation occurs, for instance, in hydrodynamics applications (see [76,128]); for instance, F may denote
the velocity field of the flow and x = x(a,t) the position vector at various times t of the "element" of fluid
identified by the label a.

We are interested in the case in which

D =M\P,

where McR™ is a regular manifold and Pc9/ is a compact set. Along the lines of the Poincaré-Hopf
Theorem, we want to prove the existence of solutions to (4.1)-(4.2) using topological properties of the set
D, combined with suitable assumptions on the tangent vector field F. For simplicity, and in view of the
next application (Corollary 5), we confine ourselves to the simple case

P = {xq,....x,)
(4.3)
M= S(O,R).

In this situation, we assume
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(F(t,x) 1x) =0, for te[0,T], Ixl =R, xeP, (4.4)

so that F is a vector field tangent to the set D. It is clear that (4.4) ensures (via Nagumo's Theorem) the
local existence for the solutions of (4.1) with initial values in M\ P.

This case has some independent interest also in view of the study of homogeneous vector fields with
singularities (see Corollary 5 below).

For P like in (4.3), we define:

8 := min{Ix; - Xl 1ij = 1,...n. i#}.

Then, we have:

PROPOSITION 1. Let AUB = {1,..,n}, AnB =@, and 0 < € < min{8/2,R/2} be such that

(F(t,x) | x = x;) 20 forie A (4.5)
(F(t,x) I x -x;) €0 forieB . (4.6)
for all te [0,T], xe Mand Ix — x| = ¢.

Then, (4.1)-(4.2) has at least one solution x(-) with x(t)e D for all t, provided that one of the following
conditions holds:

m even, cardB #cardA B C%))

modd, n=#?2. 4.8)

Roughly speaking, our hypotheses mean that the flow enters in the holes surrounding x;, ie B, and
escapes from the holes around x;, i€ A. In such a situation, we only need conditions on the number of
such holes.

Our example is a generalization of a similar one considered in [52, p.169], where M = R? and
n=cardB = 1.
Proof. 'We apply Corollary 1. First of all, we note that there exist two lipschitzian functions

k:M—>R" , p:a—[0,1]

such that
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- X; + R™2 (xIx)x, for ieA,Ix—x;l=¢

k(x) =
x;- R™2 (xIx)x, for ieB,Ix —xl=¢
0, if JieB :I1x —x;1 €€/2,
p(x) =
1, if VieB Ix —x;l2¢e.

Then, we define:

C:=a\ (U B(xy€) U U B(x;,/2))
ieA ieB -

G:=C\(U B[xye])
ieB
and

f(t,x;A) : = pX)(AF(L,x) + (1 — AMk(x)).

We observe that, using (4.4), (4.5) and the definitions of k and p:

(f(t,x;A) 1x) =0, for xe M\ P (4.9)
(fitx;A) 1 x — %) 20, for i€ A, Ix—x;l=¢, xe M (4.10)
(f(t,x;A) 1 x —x,) =0, for ieB, Ix —x;l = €/2, xe M (4.11)

hold for all te [0,T], Ae [0,1].

Then, (4.9),(4.10) and (4.11) imply that the set C is positively invariant and (j1) is satisfied (see also
Remark 2).

We note that

freG =M (U S(x,€))
ieB

and, by (4.6) and the choice of k and p:
(f(tx;M) 1x—x,) <0  forieB, Ix—x]=¢ xeM
holds for all te [0,T] and Ae ]0,1[. Hence, the homotopized field Af is transversal at frcG and so, by

standard arguments, (h2) is satisfied.
Moreover, f(z) = p(2)k(z) = k(z) for all ze frcG so that (h3) holds.
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Finally, (h4) may be computed by Srzednicki's formula as clG is a block, with frcG its set of "egress
points". Therefore

I(% , G) = %(clG) — % (frcG).

As clG is the sphere S(O,R) with n pairwise non-intersecting holes, we have:

n, m even
x(ch)={
2—n,m odd.
On the other hand,
: 2cardB , m even
(frcG) ={
xie 0, m odd ;
hence,

n— 2cardB , m even

I(E,G>={
2 - n, m odd

and, using (4.7)-(4.8), (h4) is proved. ,

Thus, we can apply Corollary 1 and we obtain the existence of a solution x(-) of x = f(t,x;1) %‘Fisfying
(4.2) and such that x(t)e clG for all te [0,T]. At last, we observe thatp = 1 on clG, so that
f(t,x;1) = F(t,x) and the proof is complete. ¢

REMARK 8. We point out that Proposition 1 is not contained in [18,79,98], since intC = .
Moreover, neither the results in [52,53] can be directly applied since our assumptions do not imply the
compactness of the set of T—periodic solutions for the equation x = Af(t,x;A).

We also remark that it is not difficult to adapt the proof of Proposition 1 to other choices of the manifold
M. However, the case M = S(0,R) is suitable for studying systems where the field F is homogeneous in x,
as we show below.

EXAMPLE 2. We consider the following problem:

x = g(t,x) | (4.12)
x(T) = px(0) (4.13)




where e R is areal parameter.

We are interested in proving the existence of a Floquet solution, i.e. a solution x(-) to (4.12)-(4.13),
corresponding to some pe R\{0}, with x(t) # 0 for all t.

Such a problem, or its slight variants, has been examined in [72] and, for g positively homogeneous, in
[77].

It is easy to find examples in which (4.12)-(4.13) does not possess non-trivial solutions: for instance, the
system Xj =Xy, Xp=- ax; (a>0) has a Floquet solution if and only if T = k7t/(a)1/2 for some ke N.

We show how Proposition 1 can be used in order to treat (4.12)-(4.13) in the particular case of
(positively) homogeneous nonlinearities.

On the other hand, our result can be applied to the case of vector fields with singularities as well.
Accordingly, we consider the following situation.

Let g : R,X W — R™ be continuous, T-periodic in the first variable and locally 1ip$chitzian in x. We
suppose

n

Ww:=R"\(U oy), (4.14)

i=1
where each ¢; is a half line passing through the origin; furthermore, we assume

g(t.kx) = kg(t,x), for all te[0,T], xe Wand keR,. (4.15)
As remarked in [77], any function x(-) satisfying (4.12)-(4.13) may be extended to R, as a solution such
that x(t + T) = ux(t) for all t.
In view of (4.14)-(4.15), we also observe that it is sufficient to know the behaviour of g on the set

D :=S(0,1) n W= S0,1)\ {wyq, .., Wy},

where, for each ie {1,...,n}, {w;} := ;™ S(0,1). Then, the following result holds.

COROLLARY 5. Suppose there is M > 0 such that, for each i = 1,...n,

either liminf(g(t,w) | w — w;) = 1, or limsup(g(t,w) | w — w;) < -1, (4.16)
W‘—)Wi W—)Wi
weD weD

holds uniformly in t [0,T] and assume

lg(t,w)l < cylw — wyl " + ¢y, forall t[0,T], weD, (4.17)
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with ¢y, ¢, € R,. Let v be the number of indices for which the liminf in (4.16) is positive. Then, there is
1L > 0 such that (4.12)-(4.13) has a solution x(-) with x(t)e W for all 1 [0,T], provided that one of the
following conditions holds:

m even, v #n/2 (4.18)

m odd, n#2. (4.19)

It is clear, by the homogeneity of g(t,-), that if x(-) is any such solution, then Kx(-) is a (Floquet) solution
too, for every K > 0.

Proof. First of all we observe that, since g is homogeneous, x(-) is a solution of (4.12) such that x(t)
e Wfor all t if and only if

x(t) = k(OI(x(t) / x(O) = k(1) w(t),
where the functions k: R,—R and w:R,—R™ are solutions of

w(t) = Ft,w) := g(t,w) — (wWlg(t,w))w, - (4.20)
k@ =k@) (wigt,w)), 4.21)

respectively, such that w(t)e D, k(t) > 0, for all t. Note that F : R, xD—R™.
We apply Proposition 1 to equation (4.20) (in this situation, cardA = v). By the form of F, it is
immediately seen that (4.4) is satisfied. In order to verify (4.5)-(4.6), we note that

(Ft,w) l w—w)) = (g(t,w) - (wlg(t,w)w | w— wi) =
= —(g(t,w) | wy) + (wlg(t,w)) (w I wy).

Adding and subtracting (g(t,w) | w), we get:
(Ft,w) | w—w) = (gt,w) | w—w,) — (1= (w1 wp) (gt,w) | w).

Using the equality lw — wil2 =2(1 - (w | wy), then it is easily seen that, taking the limit as w—w;, we D,
(4.16) and (4.17) imply (4.5)-(4.6), with the obvious choice of the sets A and B. Conditions (4.18)-
(4.19) are equivalent to (4.7)-(4.8).

Thus, we can apply Proposition 1 and obtain an T-periodic solution w(-) to w = F(t,w) such that w(t)e D
for all t. Then, we insert it in (4.21) and obtain k() by direct computation solving (4.21) with the initial
condition k(0) = ko > 0. Finally, since w(0) = w(T), (4.13) follows immediately, with i = k(T)/k(0) =
Ix(T)I/ 1x(0)I. The proof is complete. ¢
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REMARK 9. The proof of Corollary 5 can be repeated if, instead of (4.16), we assume that
{1,...n} = AUB, AnB = &, cardA = v, and

liminf (g(t,w) lw —-w;) /lw - w;/'>m, ieA
W-—)Wi
weD

limsup (g(t,w) | w —w;) / lw — wj"< -1, ie B
weD

uniformly in te [0,T], with 0<y<2. In this case (4.17) has to be replaced by
lg(t,w)l < ¢ lw — wi® + ¢, , i=1,..n, B<2-7%,
for all te [0,T], weD.
Theorem 1 in [77] is a particular case of our Corollary 5 for m odd, n = 0; on the other hand, [77, Th.2,3]
can be straightforwardly obtained from Corollary 1 as well.
EXAMPLE 3. Our third example deals with system:

X; = %; (O + x,A;(6%) — O(4,x)), i=1,.,m, (4.22)

where g; : R,— R, A;: R, X R™ —R are continuous and T-periodic in t, A; are locally lipschitzian in x
and

8

D(t,x) := Y x;(q;() + x;_1A(6,x)). (4.23)

1

]
—

In (4.22) and (4.23) the indices are counted mod m (m>2).

System (4.22) represent a generalization to the time-dependent case of the inhomogeneous generalized
hypercycle. This equation was introduced by M. Eigen and P. Schuster [41] and successively studied by
many authors for its significance in describing some models arising from the theory of self-organization of
biological macromolecules, population genetics and animal behaviour (see [73,74,134]).

The peculiarity of system (4.22) lies in the fact that the (m — 1)-dimensional simplex

m
Spm= {xeR™ : x,2 0 Vi, Y x;=1}
i=1

1s invariant. Moreover, since x; represents the (relative) concentration of the i-th species, it is interesting to
study the behaviour of the solutions in
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o]

Sy ={x€Sn:x;>0Vi}.

J. Hofbauer [73] examined (4.22) in two special cases: q; = constant, A;(t,x) = k; = constant, with k;>0
(the inhomogeneous hypercycle [73, § 2.1]), and g; = 0, A;(t,x) = A{(X) 2 k; > O (the generalized
hypercycle [73, § 2.2]). In [73], necessary and sufficient conditions for permanence are obtained; more
precisely, it is proved that the inhomogeneous hypercycle admits a compact attractor in S, if and only if
there exists an equilibrium point in gm. Along these lines, we assume

Atx) 2k > 0 (4.24)

for all te [0,T], xe S, 1 = 1,...,m, and we consider the auxiliary system

}'(1 = xi ( al + Xi_lki - (D*(X)), 1= 1,~--7m9 (4‘25)
with
m
D*(x) : =Zt x;(q; + xi-1ky)-
1=

o
If we assume, as in [73, th. 2], that (4.25) has an equilibrium poizgt pe S,,, then it is easy to prove the
existence of at least one T-periodic solution of (4.22) with values in S, provided that, for all i,

gi- Q< 8, suplA(x)-ki<d, (4.26)

X€ Sy

with 8 a sufficiently small constant. This follows by standard arguments from degree theory or by
considering system (4.22) as a small perturbation of the dissipative system (4.25). However, if (4.26) is
not satisfied then small perturbation techniques cannot be applied. Our result, which is "global" in nature,
provides an answer to such a problem. Indeed, we have:

0
PROPOSITION 2. Assume that (4.25) has an equilibrium point pe S.,. Then, there exists at least
0
one T—periodic solution x(-) of (4.22) such that x(t)e S, for all t [0, T].

Proof. We apply Corollary 1, with C = S_, fi(t,x;A)=x;(qy(t) + x;1 [AA{(L)+(1=L)k;] — o(tx;N))
i=1,...,m, Ae [0,1], where
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otxA) == 3 x;(qi(0) + %1 [AA(6x) + (1 = k)
i=1

and

G := {xeS,, : x;>p, i =1,...m},

with p > 0 a suitable constant which will be chosen along the proof.
Observe that system

x; = Mi(t,x;A), i=1,..m (4.22y)

reduces to (4.22) for A = 1 and that the averaged field ?O(X) = <f(-,x;0)> is the right-hand side of (4.25).
By the form of (4.22,), it is immediately seen that assumption (j1) is satisfied.

Now, we show that there exists a constant p > 0 such that the set G defined above is a "bound set" for
system (4.22). .

First of all, we observe that, since pe S, we have:

®*(p) =q; + kiPi-1, (4.27)
so that
N := (®*(p) — maxq;) > 0. (4.28)
1<i<m

Using (4.27) and adding and substracting Ax;k;x;_; to the i-th equation of (4.22) we see that (4.22;) may
be rewritten as:

X; = lxi{ [ai® — @] + ks[xiey — piog] + Axi_i[A{(Lx) — K] + ©*(p) — o(t,x;1) } (4.29)

o]
Let x(-) be an T-periodic solution of (4.22;) such that x(t)e S, for each te [0,T] and consider (as in [73, p.
237]) the function

P() := I}(xim)m‘i .

Since P(x(t)) > O for all t, we obtain:
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P(1) /P(t) = ( Z K O) M %@ - TTx))/ H(xi(t))l/ki -
i=1 i=

j#i
= . e m m
= Z xi(1) / kx;(©) = & Z‘kzl[qi(t) gl + A Y X -A Y P +
i=1 i=1 i=1 i=1

DI X O(AG) - k) + A DK [0¥E) -~ o)
i=1 o1

By (4.24) and (4.28) we have:

P(t)/P(t) = lz k;l [q;() = q;]+A E k’i1 [ maxq;+m — 0(t,x;A)]. (4.30)
i=1 1<i<m
i=1

We set, for the sake of semplicity,

m .
o= 21{}1 ,  Q:=maxg; , M:=max {Ajtx):te[0,T], xe S}
i=1

1<i<m 1<i<m

Then, taking the mean value on [0,T] in (4.27) and dividing by A>0, we have:
1 T
T J¢(s,x(s);?»)ds >Q+1. (4.31)

We claim that for every index j = 1,...,m there is some t; such that
x(t) 21 / M. (4.32)

Indeed, assume, by contradiction, that there is j such that x;(t) <7 /M for all t. Let j =i—1 and take the
mean value in [0,T] of the equation

% /% = Mqi() + 1 [MAFI-DK] = 0(txiL)). (4.33)

Then we get (after a division by A > 0):
: T
-T-OJ'(I)(S,x;?L)ds < g+ M<xop> < Q41

and a contradiction with (4.31) is achieved.
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Therefore, the claim is proved.
From (4.32) we also have:

X, / x;(0) | € 2(Q* + M), (4.34)

where

Q* := max lIgjl...
1<i<m

Then, using (4.32) and (4.34), an easy computation shows that
(1) 2 py == M/M) exp(-2(Q* + M)T), (4.35)

for all te [0, T]. A

By (4.35), we see that the set G previously defined verifies condition (h2) for any p such that
O0<p<p;. .

In order to verify (h3)-(h4), it is sufficient to recall that the assumption pe S, implies (by Hofbauer's
Theorem) the existence of a compact set Kc:gnrl which is an attractor for the "averaged" system (4.25):

X = (Foh(®) = x; {Q + ik —@*®)}, i=1..m.

Then, if we take the constant p in the definition of G small enough (i.e. 0 < p < pg:= min {x;: xe K})

and we denote by 7 the dynamical system induced by (4.25), we have: lsism

I(m,G) = x(Sp) = 1

(see [137, Th.6.1]).

Finally, for 0 < p < min{py,p,}, all the assumptions of Corollary 1 are fulfilled and the proof is
complete. ¢

REMARK 10. We point out that the result proved in Proposition 2 can be obtained neither by means
of our Theorem in [18], since intC = &, nor by Theorems A or B, which require G to be an open subset
of R™.

Moreover, also the results in [138] cannot be used since the set G in our proof is not a block for system
(4.22); we also remark that the results in [53] cannot be applied as well, since the phase space C = S, is
not a differentiable manifold.
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Further examples can be produced for differential systems of Lotka-Volterra type. In particular, a natural
setting for the existence of positive periodic solutions is C := R} (see [18]). Other examples can be found
in [13].
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Chapter 3

Continuation theorems for periodic perturbations of autonomous systems

1. Introduction
In this Chapter (which is based on [15]) we are concerned with the periodic boundary value problem

x = F(1,x) (1.1)
x(0) = x(T) (1.2)

where F:[0,T]xRm™— R™ is a Caratheodory function (T > 0).
More precisely, the important situation (occuring in several applications) which corresponds to the case
when the nonautonomous field F(t,x) splits as

F(t,x) := g(x) + e(t,x) (1.3)

is studied. In such a situation, it is natural to choose the homotopy field f(t,x;A) := g(x)+Ae(t,x),
A [0,1]. In general, this cannot be done with a standard continuation theorem like Mawhin's one.

The aim of this Chapter is to provide new continuation results for (1.1)-(1.2) which are particularly
suitable for dealing with nonlinearities like (1.3).

To do this, it is assumed that

F(t,x) = f(t,x;1),

where f={(tx;A) : [0,TIXR™x[0,1] — R™ is a Caratheodory function such that for A =0 the map f is
autonomous, 1.e. there is a continuous function f: Rm — R™ such that

fo(x) = f(t,x;0),

for almost all te [0,T] and all xe Rm .

In Section 2 it is shown (Theorem 1) that, whenever it exists, the coincidence degree of the left-
hand member of an autonomous differential equation x = g(x), in the space of T-periodic functions, can
be computed in terms of the Brouwer degree of g. The proof is performed by means of an
"approximation" procedure for the map g based on the Kupka-Smale's theorem [22,119].
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In Section 3 the above result is used to provide efficient continuation theorems specially for T-
periodic perturbations of autonomous systems (Theorems 2,3).

In Section 4, applications (in two different directions) of the continuation theorem in Section 3 are
given for the important case when F splits as

F(t,x) = g(x) + e(t,x)
and the performed homotopy is

f(t,x;A) = g(x) + Ae(t,x).

In Section 5, an extension of Theorem 2 to flow-invariant Euclidean Neighbourhood Retracts is performed
(Theorem 4). In such a general framework, continuous vector fields and the fixed point index of compact
operators defined on the space of continuous functions which take values in the given ENR are used.
Moreover, Theorem 4 enables to deal with some cases when the phase space is not the whole R™ but e.g.
a regular manifold, a closed convex set or a conical shell.

2. The main result: an estimate for the degree

We deal with the periodic boundary value problem:

x = F(1,x) (2.1)
x(0) = x(T), (2.2)

where
F(t,x) = f(t;x;1) (2.3)

and f = f(t,x;A) : [0, TIxR™ x[0,1]=R™ satisfies the Caratheodory conditions, i.e. f(-,x;A) is (Lebesgue)
measurable for each (x,A), f(t,;;-) is continuous for a.e. t and, for each >0, there exists B, Ll([O,T],R)
such that If(t,x;X)I<B,(t) holds for a.e. te [0,T] and all IxI<r, Ae[0,1]. Accordingly, solutions for
x = f(t,x;A) are intended in the generalized (i.e. Caratheodory) sense. With small abuse in the
terminology, we call T-periodic any solution satisfying the boundary condition (2.2).

As we mentioned in the introduction, we assume that for A = 0 the map f is autonomous, i.e. there
exists a continuous function f : R™ —R™ such that

fa(x) = £(t,x;0) (2.4)
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for almost every te[0,T] and each xe R™. A particular but significant case in which such a situation occurs
1s when f splits as

f(t,x;A) = fo(x) + Ae(t,x;A);

this is examined in detail in Section 4.
The proof of continuation results for problem (2.1)-(2.2) is based, essentially, on the homotopy
invariance of the topological degree and on estimates for the degree of some operators associated to system

x = f5(x). (2.5)

This second goal is achieved showing that, under certain circumstances, it is sufficient to evaluate the
(finite dimensional) Brouwer degree of the vector field f,,. In this Section, we prove some results in which
the above programme is developed for various operators related to (2.5).

In what follows, the (real) Banach spaces Z := Ll([O,T],Rm), Y = C([0,T],R™) and
X = {xe Y: x(0) =x(T)}, with their usual norms, are considered. Notice that points of R™ are identified
with constant functions.

First, we recall some basic facts from coincidence degree theory, borrowing notation and
terminology from [98]. We define L : domLcX—Z, Lx = x, a Fredholm mapping of index zero, Wlth
domL = {xe X: x(-) is absolutely continuous}.

Let M, be the Nemitzky operator from X to Z induced by the map £y, i.e. Mg : x(-)+—f,(x(-)).

In this situation, problem (2.5)-(2.2) can be transformed into the equivalent coincidence equation:

= Myx, xedomlL. (2.6)

T

If we introduce the linear projectors Q : Z—>cokerL < Z, Qz := z = (1/T) Jz(s)ds and
0

P := Qix : X—kerL c X and we denote by Kp g : Z—kerPndomL the generalized inverse of L, then

equation (2.6) is equivalent to:

x = Ry(x) := Px + Kp oMgx + JQMgx = x — (JQ + Kp )(L — Mp)x

where J : ImQ = R™ — kerL = R™ is a linear isomorphism, so that 1— Ry = T(L — M,) , for some linear
isomorphism T (see [98,99,120,143)).
In the sequel, for simplicity, we take J := I (the identity in R™).

Let QX be bounded and open (relatively to X).
Itis a standard fact to check that Ry : clxQ—X is compact. Therefore, the coincidence degree of L and M,
in Qis defined by:

D (L - My, Q) := deg(Ix — Ry, Q, 0),
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provided that

Lx # Mpx for all xe fryQndomL.

From [98, p.19] we know that the definition of the coincidence degree is independent of the projectors P
and Q. .
We note that a similar framework may be introduced by a different choice of the function spaces. In
particular, the use of Z := L'([0,T],R™) is not necessary at this point. However, such a choice is
convenient as we deal later with nonautonomous nonlinearities satisfying only the Caratheodory conditions
(see [98, Ch.VI]).

The following theorem, which is crucial for the proof of Theorem 2 in next section, may be
considered of some independent interest as a contribution to the coincidence degree theory.

THEOREM 1. Assume that there is no x(-)e frxQ such that x = fy(x). Then,

Dy (L = My, Q) = (-1)™dg(fy , QNR™, 0). \ (2.7)

Proof . First of all, we observe that, as Q is bounded, there is a constant R > 0 such that Ixl, <R, for
every xe Q. Furthermore, we point out that the assumption is equivalent to

Lx # Myx, (2.8)

for all xe domLNf{ry Q2; therefore, the coincidence degree Dy (L — My, ) is well defined.
The proof is performed by means of a corollary of the Kupka-Smale's theorem [22, p.68]; this result
ensures the existence of a sequence of C'-functions (¢y), ¢, : R™ —R™, such that:

(a) (@) —f, uniformly on compact sets;
(b) for every compact subset K of R™ and for all ke N, system
X = @y (X)
has finitely many singular orbits (i.e., rest points and closed orbits) with minimal
period in [0,T+1] which are contained in K.

Let NkMbe the Nemitzky operator induced by the functions x——ufy (x) + (1 = W@(x), ue[0,1]. We
claim that there is ky > 0 such that, for all k > k; and for all pe [0,1]

Lx # Nkix for all xe domLNfrg€. (2.9)

This fact will imply, in particular, that
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O (z) 20 forall zefryQNR™, k> kg (2.10)

Then, a classical compactness argument ensures that, for any k > k,, there is 8; = 8,(k) such that

(y)#0 forall ye B(fryQNR™, §,). (2.11)
O (¥ 1

To obtain (2.9), it is sufficient to observe that the sequence of operators NKH converges, as k—+eo, to My
in Z uniformly on clxQx[0,1] and that, by (2.8),

inf{I(L — Mp)xly: xe domLNfrgxQ} > 0.

Hence, the claim is proved and, using the homotopy property of the coincidence degree (see [55, Th.
II1.2]), we can write

Dr(L - Mg, Q) = Dr(L - N°', Q) =Dy (L - N*°, @), (2.12)

for every k 2 k; , and, in particular,
dg(fp,2NR™, 0) = dg(@,, LNR™, 0). (2.13)
Let us fix k* > k. For brevity, we set
Q:=Qpx , Np:=NK%0, §,:=5, (k*).

Consider the singular orbits (i.e. rest points and closed orbits) with minimal period in [0,T+1] of the
system

X = Q(x). (2.14)

By the Kupka-Smale's theorem, there exist finitely many such orbits which are contained in B(O,R). We
denote these orbits by S;,...,S,. They are mutually disjoint. Pick, for each i=1,...,n a point z,e S;. Then,
z; is a periodic point (possibly a rest point). We can assume that z; is a rest point for 1<i<p (p=0 an
integer) and a periodic point for p+1<i<n. We denote its minimal period by T, (p+1<i<n). We can also
assume that T,<T for p+1<i<q and T<T;<T+1 for q+1<i<n. We denote by k; the largest integer such that
K T<T (p+1<i<q), so that (k+1)T>T (p+1<i<q). We denote by x,(-) the solution of (2.14) with x;(0)=z;
(p+1<i<n). We claim that for each T' such that

T<T< min{(kp+1+1)Tp+1,...,(kq+1)Tq, Tqstreeo Ty T+ 1} =1,
the problem
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X =) , x(0)=x(T) (2.15)

has no solution x(-), with x(t)e B(O,R) for all t, other than the equilibria z,,...,z,.
Indeed, if x(-) satisfies (2.15) and is contained in B(O,R), then S = {x(t): 0<t<T'} is a singular orbit of
(2.14) contained in B(O,R). If it is not a rest point, then S = S; for some p+1<i<n and hence there exists
o;€ R such that

x(t) = x;(t + o), O<t<T".

In particular,

Xi(T' + O(i) = Xi(OCi).
This is impossible for q+1<i<n as then T'<T; and T; is the smallest period. This is impossible for
p+1<i<q as in this case k;T;<T'<(k;+1)T;.

Therefore the claim is proved.
Now, the solutions of (2.15) correspond, by the transformation

YO =x(=1), 1€[0T],

to the solutions of the problem
. T
y(© == ¢(y®) , y(0)=y(D. (2.16)

Thus, problem (2.16) has, by construction, no nontrivial (i.e. non-equilibrium) solution on clx{2 and, by
assumption, no rest point on frxQ (as its rest points are the same as those of (2.14), and all its possible
solutions in B(O,R) are rest points). Now, as (2.14) has no solution on frg£2, the homotopy invariance of
coincidence degree implies that

Tl

Dp(L ~ Ny, Q) = D (L - 7Ny, Q), (2.17)
for all T<T'<z. Fix some T'e (T,1).
Now, by excision,
DL(L ~ 5 Ny, Q) = > Dp(L- 7 Ny, B(z;,8)), (2.18)
1<j<p
zjeQ

where




-58-
6 = min{3;,n/2}, M = min{dist(S;,S;): 1<i #j<n}.
Now, the problems
. T
x() =1 7o), Ae(0,1]

x(0) = x(T)

have no solution on frxB(z;,3). ,
Indeed, if there exists A*¥e]0,1] and x*(-)e frxB(z;,8) such that

K+ = M p(xH(D),  X*(0) = x*(T)

then

Tt
AT

y(t) = x( )

will satisfy

y(® = o(y®), y0) =yQA*T")
and hence {y(1): te [0,A*T']} = S.s, for some 1<i*<n. Moreover,

ly(®) =1 <8 for all te [OL,A*T']

so that, by the choice of 8, i*=j and y(-) is constant and equal to z; for all te [0,A*T", a contradiction.
Thus we can argue as in [55, pp.28-29] and obtain
Tl

Dp(L ~ Ny, B(z;,8)) = dg(-JQN,B(;,8)"R™, 0) = (-1)™ dg (¢, B(z,8)"R™,0)  (2.19)

for 1<j<p, z;e . Consequently, form (2.18) we have:

Dy (L —%N(p, B(z;,0)) = (=)™ > dg(@,B(z,8)NR™, 0) = (-1)™ dp(¢, QNR™, 0). (2.20)
1<5<
iy

The result follows by (2.17), (2.20), and (2.13). The proof is complete. ¢

Theorem 1 is a generalization of Lemma V1.1 in [98], where the case fy = ~VV, with Ve C 1(Rm,R) and
QNR™ = B(0,1), r>0, is treated.
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We remark that (2.19) holds for any linear orientation preserving isomorphism J : R™— R™ (see [98]),
and so (2.7) is independent of the choice of P, Q, J, whenever det] > 0. In the more general case in which
J : ImQ=R™ — kerL=R™ is an arbitrary linear isomorphism, we can write, instead of (2.7),

IDp(L — My, Q) = ldg(fy, QAR™ ,0).

We remark that a different proof of Theorem 1, obtained in the framework of degree theory for equivariant
maps, has been recently obtained by T. Bartsch and J. Mawhin [6].

From Theorem 1, using the duality theorems developed in [98, Ch.III] and [81, Ch. III], we can
find other relations between the degree of some fixed point operators related to (2.5)-(2.2) and the
Brouwer degree of f;. To this end, the following maps @; : Y=Y, i = 1,2,3, are defined:

t
DL = x(T) + Ojfo(x(s))ds,
T t
DH(x)(0) = x(0) + Ojfo(x(s))ds . G[fo(x(s))ds ,

t

T
D3(x)(1) 1= x(0) + (T—1) [fo(x(s))ds + Offo(x(s))ds‘
0

All the @,, i=1,2,3, are completely continuous and their corresponding fixed points are exactly the
solutions of (2.5)-(2.2). Moreover, @3]y : X—X. Let QY be bounded and open (relatively to Y). In
[98], the following equalities are proved, provided that there is no xe fry€2, solution of (2.5)-(2.2):

deg(ly — @4, Q, 0) =deg(y — @y, Q, 0) = deg(ly — D3, Q, 0) = deg(lyx — D5]x.2MX,0).
Indeed, it is sufficient to apply, respectively, Theorem III.1, Theorem II1.4 and Proposition IIL.5 in [44,

Ch.III]. Related results can be found in [81,68].
Now, we have:

COROLLARY 1. Assume that there is no xe XNfryQ such that X = fo(x). Then, for i=1,2,3,
deg(Iy — @;, Q, 0) = (-1)"dg(fy, QNR™ ,0). (2.21)
Proof. It is sufficient to recall that, by [98, Th.II1.7],

deg(ly — @3, €2, 0) = DL(L — My, QNX)
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and then Theorem 1 can be applied. ¢

In [111], the author stated the equality deg(ly — @y, ©, 0) = dg( £, QAR™ 0) for the case when Q is a
ball and f; is positively homogeneous of order 1, assuming that equation (2.5) does not possess non trivial
periodic solutions of any period. Hence, Corollary 1 improves Muhamadiev's theorem in [111, Th. 5.

m=1] (see the next Section for a more detailed discussion).

Finally, we give an analogous result for the Poincaré map. Suppose that equation (2.5) defines a flow in
R™, i.e. assume uniqueness and global existence for the solutions of the Cauchy problems associated to
(2.5). For each ze R™, we denote by x(:,z) the solution of (2.5) with x(0,z) = z. Thus, the Poincaré-
Andronov operator on [0,T] is defined by

Upz : =x(T,z).

Let GER™ be an open bounded set. Then, the following result holds.

COROLLARY 2. Assume thar Ugyz # z for all ze f1G. Then,

dg( - Uy, G, 0) = (-1)™dp( f;, G ,0). (2.22)
Proof. We fix R > 0 such that
R > sup{Ix(t,z)l : O<t<T, ze clG}.
Then, for Q := {xe Y : x(0)e G, Ixl.. <R}, we have:
deg(ly - @y, Q, 0) = dg(1- Up, G ,0). (2.23)

Indeed, (2.25) can be obtained either from [81, Th. 28.5], observing that GER™ and QY have a
"common core” with respect to the T—periodic boundary value problem (2.5)-(2.2), or from [98, Th.
HIL.11, Cor. II1.12]. Hence, Corollary 1 can be applied and the thesis follows. ¢

Recall that in [9] and [79] the equality dg(I — U, G, 0) = dg(~ f;, G ,0) is proved under the stronger
condition that x(t,z) # z for all t€ ]0,T] and ze frG (that is, assuming that all the points of frG are of T-
irreversibility [797).
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3. Existence theorems

In this Section, we use the notations introduced in Section 2. Recall that

f(t,x;0) = fy(x),  f(t,x;1) = F(t,x).
First, we give our main result for the solvability of

x = F(t,x) (3.1)
x(0) = x(T). (3.2)

THEOREM 2. Let QcX be an open bounded ser such that the following conditions are satisfied:
(pl) there is no x(-)e frxQ such that

x = f(t,x;0), e [0,1]; (3.1
(p2) dg(fy ,QNR™ ,0) = 0.
Then, (3.1)-(3.2) has at least one solution x(-)e clxQ.

Proof . We use the framework of coincidence degree theory as in Theorem 1. The classical Leray-
Schauder continuation Theorem [90] could be used instead, by the equivalence at the beginning of Section
2. Beside the spaces and the operators considered there, we further define M = M(x;A) : Xx[0,1]—Z:

M@E;M)(1) = f(6,x(0);M\).

Observe that M(-;0) = M,,.

According to [98, Ch. VI], M is L-compact on clxQx[0,1]. We remark that x(-) is a solution of
x = f(t,x;A), A& [0,1], with x(0) = x(T), if and only if xe domL is a solution of the coincidence equation
Lx = M(x;A), Ae [0,1]. In particular, (3.1)-(3.2) is equivalent to Lx = M(x;1) (according to (2.3) in
Section 2).

Without loss of generality, we suppose that (p1) holds for Ae[0,1] in (3.1,). Otherwise, the result is
proved for xe fryxQ. Accordingly, by the definition of M(:;A) and using (p1) we have:

Lx #M(x;A)  Ae[0,1],
for all xe domLNfrxQ. Thus, we can apply the homotopy property of the coincidence degree and obtain:

Dy.(L — My, ©) =D (L ~ M(;0), Q) = Dr(L - M(:1), Q). (3.3)
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Assumption (p1) (for A = 0) ensures that Theorem 1 can be applied, so that, using this result, (3.3) and
(p2) imply :

Dp(L - M(;; 1), Dl = ldg(fy, QAR™ ,0)l # 0.

Hence, by the existence property of the coincidence degree, there is X domLNQ such that LX = M(X;1);
thus X(-) is a solution to (3.1)-(3.2), with x(-)e domLNQ. The proof is complete. ¢

An immediate consequence of Theorem 2 which is just based on a (suitable) choice of the set Q=X is the
following:
COROLLARY 3. Let G be a bounded open subset of R™. Suppose that the Jollowing conditions
are satisfied:
G ("bound set” condition)

Jor any x(-), solution of (3.13)-(3.2) such that x(t)eclG for all te[0,T],

it follows that x(t)e G for all t[0,T] ;
G2) dg(fy, G, 0) = 0.
Then, (3.1)-(3.2) has at least one solution x(-) such that x(De clG, for all te[0,T] .
Proof. 1tis sufficient to define (in the setting of Theorem 2):

Q= {xe X : x(e G Vte[0,T]}

and to check that (p1)-(p2) are fulfilled. For brevity, we omit the details. ¢
REMARK 1. Corollary 3 is a continuation theorem analogous to [94]. Namely, in [94] the bound set

condition is required for equation

x = Ah(tx;A), Ae0,1], (3.4)

with h(t,x;1) = F(t,x), and, in place of (j2), the Brouwer degree of the averaged vector field
T

Ho(z) :=(1/T) [h(s,z;0)ds is considered.
0
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A comparison between the continuation theorem for (3.4) and Corollary 3 can be made by means of
the following examples.

EXAMPLE 1. Let us consider the plane system

. - + —
X] = X9, X =—Hx; +Vx, + (1),

with pe Ll([O,T],R), u>0, v>0, x" = max{x,0}, x :=max{-x,0}, which comes from the study of the
equivalent second order scalar equation X + px" — vx_ = p(t).

It is easy to prove that Corollary 3 can be applied with f(t,x;A) := (x5, —ux; + vxI + Ap(1)), Ae[0,1] and
G =B(0,R), for R>0 sufficiently large, provided that

~1/2

n(u_l/2 +v ') # T/n, forevery neN. (3.5

Indeed, in this case a priori bounds for the T—periodic solutions are available (see [31,49]). On the other
hand, if we consider the system

X1 =AXy, Xp=A(-px; + x| +p@®), 2e10,1],

the a priori bounds for the T—periodic solutions can be found only if

}‘»_ln(u"l/2 + V_w‘) # T/n, for every ne N and Ae]0,1]. (3.6)
Note that (3.6) holds if and only if ™2 +v 2> T/m.
Hence, it is easy to choose W and v such that (3.5) holds, while (3.6) does not. This elementary example
shows that there are situations in which Theorem 2 may be more directly used. In Section 4 we provide

some more substantial applications.

Example 1 deals with a periodically perturbed autonomous system. In the case of a general non-

autonomous equation
x = F(t,x),

a natural choice for the homotopy in applying Theorem 3 is to take

f(t,x;A) = (1 = A) F(x) + AF(t,x),




where F is the averaged vector field defined by

1 T
Fx) = T [F(s,x)ds.
0
EXAMPLE 2. We consider the problem

x = h(t,x) + p(t) (3.7

x(0) = x(T), (3.2)

where h : [0,TIXR™ -R™is a Caratheodory function positively homogeneous of order a#1 in x and
peL'([0,T,R™). As usual, | : R™ —R™is defined by

T
hx) = -T-th(s,x)ds,

and we assume that h(z) # 0 for Izl = 1 so that dg(h, B(0,r),0) is defined and constant for each 1> 0. Let
us define H : Xx[0,1]—Z by

HEGA)(®) = (1- A) h(x(D) + A h(t,x(D) + AS(o)p(t) ,

where 8(a) = max{O,I 1 } . We first show that there is some ry>0 such that, for each Ae[0,1], the

- al
equation

Lx = H(x;A)
has no solution x with Ixl_ =1, forall 0< r<rgif a>1and r2ry if a<1.
If this is not the case, there are sequences (x;) in X and (A,) in [0,1] such that I(x )l =1y , o < 1k if
a>1,np 2k if o<1, and
)l(k = (1" 7\,1() H(Xk) + )\.k h(t,xk) + ?\.kﬁ(oc)p(t)

(ke N). Letting u = x;./ | ¢, = x,/1; , we get

e =17 [(1= A0 Rla) + Ay h(tu)] + Ayry 8(o0p(n) (3.8)
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so that, a.e. on [0,T],
la ()1 < B0 + 10,
for some PeL'([0,T],R). Consequently, there are subsequences (Aj)> (ug) and A*e [0,1],

ve (([0,T1,R™), vl = 1 such that (ujk)——w uniformly on [0,T] and (Xjk)—ék*. From

t
uk(t) - Uk(O) = kl—aJ [(1— Q\,k) H(uk(S)) + ?\.kh(s,uk(S))]dS,

we get
v(t) —v(0) =0, te[0,T],

so that v is constant and Ivl,, = 1. From (3.8) we also get

T
0= J [(1 = M) B(ui(s)) + A h(s,u(s)) + Ay, *B(e)p(s)Jds
0

and hence, letting j—>+eo,
0=Th(v),

a contradiction.
Hence,

Dy (L - H(;1), B(0,r)) = D (L - H(50), BO,r))
and by Theorem 1 and our assumption,
DL(L - H(';O)a B(O,r)) = (—1)mdB(H3B(O,r)’O) # 0.

Then, if dp(h,B(0,1),0) # 0, (3.7)-(3.2) will have at least one solution for each pe L}([0,T],R™) if
o<1 and, when a > 1, there will be some €3>0 such that, for Ipl;<gj, one has

D (L - H(;1) = p, B(0,rg)) = D (L — H(-;1), B(O,r)) # 0
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and (3.7)-(3.2) has at least one solution. This last situation is related to earlier work of Halanay [63] and
Mawhin [97].

A simple consequence of Corollary 1 is based on the fact that, whenever a priori bounds for the solutions

of (3.1) can be performed, then the "bound set" condition (j1) is satisfied. More precisely, we have:

COROLLARY 4. Assume that there is a compact set KCR™ containing all the solutions of (3.1 V-
(3.2) and such thar {ze R™ : fy(z) = 0)cK. Let GER™ be an open bounded set such that KcG and
suppose that

G2) dg(f;, G, 0) = 0.
Then, (3.1)-(3.2) has at least one solution with values in K .
A result analogous to Corollary 3 can be performed in the case when the phase space in not R™ but a

closed convex subset C of R™ with non-empty interior, provided that a flow-invariance condition for the
set Cis satisfied. More precisely, we have:

THEOREM 3. Ler GcC be a bounded set which is open relatively to C, where CcR™ is a closed
convex set with intC#Q. Assume that the following conditions are satisfied:
(c1) for each ue ftCNG there is me N(u) such that
(f(t,wA) IM) <0 for a.e. te[0,T] and he [0,1];
(€2) for any x(:), T-periodic solution of

x = f(t,x;A), Ae[0,1[,

such that x(t)e clcG for all te [0,T], it follows that x(t)e G for all te [0,T];
(c3) the fixed point index ic(x(1 + £,),G) is defined and
ic(r( + £,),G) = 0,
wheret : R™ —C is the canonical projection .

Then, (3.1)-(3.2) has at least one solution x(-) such that x(t)e cleG, for all te [0,T].
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For the proof of Theorem 3, it is sufficient to use the claims in Theorem 1 and to argue as in [18], where a
continuation theorem for the existence of solutions to (3.1)-(3.2) which remain in a convex set is
performed. Obviously, Corollary 4 can be modified accordingly.

In Section 5 we prove a continuation theorem which is a generalization of Theorem 2 to the case when the
phase space is an Euclidean Neighbourhood Retract (ENR); however, the proof of this result is obtained
by embedding (3.1)-(3.2) in a functional-analytic framework which is different from [98].

Another consequence of Corollary 3 can be deduced in the case of planar systems (m=2) for which
equation (3.1,) takes the form

5(1 =Xy Kgl(xl) + )\.P(t), 5(2 = ~—g2(t,xl;7\,), (3.9)

where g; : R—R and P : [0,T]—R are continuous functions and g, : [0,T]xRx[0,1]—R satisfies the
Caratheodory conditions.

Systems like (3.9) come in a natural way from the study of the parametrized Liénard equation in the scalar
case (xeR)

X + Ay (X)X + Wy (t,x;A) = Ap(t),

X1

t T
imposing g;(x;) := le(s)ds, g =Yy, P(t) = Jp(s)ds (usually, Jp(s)ds = 0 is also assumed in order to

get P(0) = P(T)). In this particular situation, the following one-sided continuation theorem can be proved.

COROLLARY 5. Suppose that g,(t,z;0) := g,(z) and assume that there are constants R2d>0 such that
g2,(t,z;A)z > 0, for a.e. te [0,T] and all Ae[0,1[, lzl=>d
and
max {x;(t): te [0, T]} # R, for any solution (x,(t),x,(t)) of (3.9)-(3.2),with A€ [0,1].
Then, system (3.9) has at least one T—periodic solution for A=1.
The proof of Corollary 5 can be performed through the construction of an open rectangle
G=]-M,R[x]-M,M[cR? such that condition (j1) of Corollary 3 is satisfied with respect to the solutions
of (3.9)-(3.2). The choice of the constant M>R follows by the estimates developed in [103] and [115]. We

omit the rest of the proof referring to these papers for the needed computations. We note that Corollary 5
(or some slight variants of it) is the basic tool for the proof of some recent results concerning the periodic
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BVP for some Liénard and Duffing equations under one-sided growth restrictions on the restoring term W,
(see [35,45]). Our result also improves [35, Lemma 1].

REMARK 2. We point out that the results of this section may be extended to the periodic BVP for n-th
order differential systems :

x™ + F(t, x, %, ..., x®D)= 0, (3.10)

xP0) =x(T), i=01,.,n-1, (3.11)
with F: [0,T]xR™ — R™, by means of the standard reduction of (3.10)-(3.11) to the periodic BVP for a
system of n first order equations in R™ . .
More precisely, we assume that there are f : [0, TJXR"™x[0,1] — R™ which fulfils the Caratheodory

assumptions and fy : R™— R™ such that

F(t, x, %, ..., x"D ) =—1(t, %, %, ..., X"V 1),

fo(x, %, ..., x™ ) = —1(t, X, X, ..., ™V 0).
We also define q; : R™— R™ by
qo(2) := fy(z, 0,...,0), zeR™.

Then, we have

COROLLARY 6. Assume that there is R>0 such that
max {Ix].:i=1,.,n—1} <R,
for all possible solutions x(-) of
W=t x, %, .0 x™ P00, Ae[01

satisfying the boundary condition (3.11). Suppose that , forr 2 R,

dg(qg, B(0,r), 0) = 0.

Then, (3.10)-(3.11) has at least one solution.
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The proof follows straightforwardly from Corollary 4, arguing like in [95], and therefore it is omitted.
We recall that in [32, p. 677] a similar result has been obtained for a second order scalar equation using a
different approach based upon some equivariant degree theory.

As a final result, we give a continuation theorem based on the study of the Poincaré map.
For each ze R™ , Ae[0,1], we denote by x(-,z;A) the solution of x = f(t,x;A) such that x(0,z;L) = z. As
usual, to do this, we assume uniqueness and global existence for the solutions of the Cauchy problems

associated to (3.1,). The Poincaré-Andronov operator Uy = U, (z) : R™ — R™ is defined as follows:

U,(z) = x(T,z;k).

Then, we have:

THEOREM 4. Let GER™ be open and bounded. Assume that the following conditions are satisfied.:
(m1l) U,(2) # z for all ze f1G, Ae [0,1];

(m2) dg(fy, G, 0) = 0.

Then, (3.1)-(3.2) has at least one solution .

Proof. Without restrction, we can suppose that (m1) holds with Ae [0,1]. Then, it is sufficient to observe

that assumption (m1) ensures that the map (I - U,) is an admissible homotopy, so that, by the homotopy
invariance of the Brouwer degree,

dg - Uy, G, 0) =dgd = Uy, G, 0).
Furthermore, Corollary 2 is applicable, so that
dg(1- Uy, G, 0) = (-1)™ dg(fy, G, 0).
Hence, there is ze R™ such that U,(z) = z. The proof is complete. ¢

Extensions to differential-delay equations may be performed as well, combining Theorem 1 with the
arguments developed in [96] (see Chapter 4).

4. Applications

In this section we deal with the problem of the existence of solutions x(-) to
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x = F(t,x) (4.1)
x(0) = x(T) (4.2)

such that x(t)eclG for all te[0,T], where G is an open bounded subset of R™ .
We state some consequences of Theorem 2 and of its corollaries which illustrate the range of applicability

of our main result.

Throughout this section, we assume that the nonlinear field F splits as

F(t,x) = g(x) + e(t,x), (4.3)
where the function g: R™ — R™ is continuous and e : [0,TJxR™ — R™ satisfies the Caratheodory

assumptions. First, we consider the case of "small perturbations"; then, we study large perturbations of
positively homogeneous vector fields.

4.a. Small perturbations

COROLLARY 7. Assume that the following conditions are satisfied:
(k1)  for any T—periodic solution x(-) of
x = g(x) (4.4)
such that x(NeclG for all t[0,T], it follows that x(t)e G for all te[0,T] ;
(k2) dg(g,G,0) # 0.

Then, there is €y>0 such that, for any forcing term e(-, -) with le(-, z)I_ < €y for all ze clG, system
(4.1) has at least one T—periodic solution x(-) such that x(t)e clG for all t[0,T].

Proof. We apply Corollary 3 with f; = g. We imbed (4.1) in the family of parametrized equations

x = f(t,x;A) := g(x) + Ae(t, x), Ae[0,1], (4.1)
and we claim that there is €y >0 such that for every function e(-, z) with le(:, z)I_ < gy for all z, the set
G is a "bound set" for (4.1,).

Indeed, assume by contradiction that, for each ne N, there is a function €, such that le (-,z)l, < 1/n
for all z and there is an T—periodic function x,(+) satisfying
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x,(1) = g(x,(0) + Agen(tx,(D), A,e[0,1], (4.5)

such that x (t)eclG for all t and x,(t,)e frG for some t e [0,T]. By Ascoli-Arzela's theorem we have
that there is a T—periodic solution x*(-) of (4.4), with x*(t)e cIG V't, such that (up to subsequences)
x, — x* uniformly on [0,T]. Moreover, for t,—t*, we have x*(t*)e frG. Thus, passing to the limit in
(4.5), a contradiction with (k1) is reached and the claim is proved, so that (j1) is satisfied for e(:)
sufficiently small. Thus we can apply Corollary 3 and the proof is complete. ¢

With elementary changes in the proof it can be seen that the result is still true when e(t,x) = e(t) and
bounds for lel, are considered.

Corollary 7 enables us to recover a number of previous results, thanks especially to the rather weak
condition (k1).

For example, (k1) is satisfied whenever the flow ©t® induced by (4.4) is dissipative (i.e. there is a compact
set KER™ such that for each xe R™ there is t,20 with no(t,x)e K for all tt,); indeed, if this is the case,
then dg(g,G,0) = (1) % (R™) = (-1)™, for every G2K, where  is the Euler-Poincaré characteristic (see
[811,[138, Th.6.11). Hence, Corollary 7 guarantees the existence of periodic solutions for small periodic
perturbations of autonomous dissipative systems. In this manner, we recover some classical results
contained in [29,68,123].

Now, we discuss other results for the existence of solutions to (4.1)-(4.2) where some conditions less
general than (k1) are required.

In the two-dimensional case, J. Cronin [27,28,29] and A. C. Lando [84,85] deal with periodic
perturbations of autonomous systems of the form:

x = X(x,y) + E, (D)
(4.6)

y = Y(x,y) + €E,(1).

Following Gomory's approach [57], the authors are led to construct a simple closed curve J (containing
the origin in his interior) such that the unperturbed system

x = X(x,y) @47)

y=Y(xy)

has no closed orbits intersecting J.

Clearly, in this situation (k1) is satisfied and condition (k2) either is explicitly required (see [84,85]), or it
is an implicit consequence of other hypotheses. For instance, in [27,28,29] it is assumed that "the point at
infinity is strongly stable relative to (4.7)". However, in this case it can be proved that
dp((X.,Y), B(O,R), 0) = 1, for R sufficiently large.
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From the above discussion, it follows that Corollary 7 contains all the results proved in [27, Th.2], [28,
Th. 6], [29, Th. 2], [84, Th. 3], [85, Th. 3].

On the other hand, we observe that none of the above quoted theorems is suitable for dealing with systems
like

x=—y +€E(t)
(4.8)

v =% +eEy (D).

(see [28, p. 159]), while Corollary 7 applies.

We also note that many regularity hypotheses which are required in [27,28,29,84,85] are avoided using
our approach.

Another condition (stronger than (k1)-(k2)) leading to the existence of T—periodic solutions of (4.6) was
given in [1, Th. 2], where it is assumed that the origin is an isolated critical point with non-zero index and
it is not an isochronous center of period T/k (ke N). In fact, in this case it is sufficient to take G = B(0,5),
with & > O sufficiently small. On the same line, see [9, Th. 2]. Finally, we mention that, by means of
Corollary 7, we can give an easy proof of the

NEMITZKII'S CONJECTURE (first settled by A. Halanay [62]): If the autonomous system (4.7) has a
limit cycle, then there is least one T—periodic solution of (4.6), for € sufficiently small.

Again Corollary 7 may be applied, choosing G such that frG is "sufficiently close" to the limit cycle.

In the higher dimensional case, Corollary 7 is an improvement of [1, Th. 1], [9, Th. 1], [64, Th. 3.13],
where, besides (k2), various specific conditions are required, such as, e.g. [64], "The origin is the only
critical point of (4.7) in a neighbourhood G of itself, and (4.7) has no periodic solutions of period ’I‘,
0<T<T , passing through points of frG".

Corollary 7 is also a generalization of [138, Th. 4], [145, Th. 4.1, (c1)], where, instead of (k1), the
existence of a compact isolating neighbourhood K for the flow induced by (4.4) is required. Indeed, if this
is the case then G = intK is suitable for the validity of Corollary 7. Again, equation (4.8) provides an
example of applicability of our result while [138,145] cannot be used (see also Example 3 below).

We end this subsection with an example of a system which is non-dissipative and such that, furthermore,
the corresponding autonomous system has the origin as a global center. For related results see [50,118].

EXAMPLE 3. We deal with the forced nonlinear second order scalar equation:

X + y(x) = p(t), (4.9)
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where Y : R— R is continuous and p : R,— R is continuous, T-periodic and such that

T
p = l,f [ p(s)ds = 0. As is well-known, equation (4.9) is equivalent to the phase-plane system:
0

x =y +P(), ¥ =—y(x),

where
t
P(t) :=g p(s)ds.

We assume that the function  is continuously differentiable, odd and satisfies:

y(x)x >0 forlxl#0, (4.10)

lim W(x) = 4o, with P(x):= Oj'w(z‘;)dg. (4.11)

[xl—e0

From (4.10) and (4.11), it follows that the origin in R’isa global center for the autonomous system
x,9) = glxy) = (¥,-¥(x)), (4.12)

so that there is no compact isolating neighbourhood clG of the origin (with G open).
Moreover, for any open bounded set GCRz,

dp(g,G,0) =1 for 0eG, dp(g,G,0) = 0 for 02 G.

Hence, Theorem 4.1 in [145] cannot be applied.

On the other hand, in order to use Corollary 7 it is sufficient to find a bound set G for (4.12), i.e. an open
bounded set with Oc G such that there is no T—periodic solution of (4.12) "tangent" to frG. To this end,
we consider, for any ¢>0, the level set ¥ := {(x,y)e R (1/2)y2 +¥(x) <c}. Then, fi¥; is a

periodic orbit with minimum period:

Cc

Te=v2 L d&,  withd <0 <c, y(d) = y(c).
() - ¥E)

d
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Hence, it is sufficient to find ¢ > 0 such that T¢ # T/n for all ne N. Such a choice of ¢ is always possible if

the continuous map 7 : ]0,+e[—]0,+oo[, c+— T, is not constant.
Then, the following result follows from Corollary 7.

PROPOSITION 1. For any continuous map  : R—R satisfying (4.10)-(4.11) and having a non-
constant associated time-map <, there is €0 such that equation (4.9) has a T-periodic solution for every

T—periodic forcing term p(-) with Ipl; <e.

Recall that if y is continuously differentiable and odd, then, by a classical theorem of M. Urabe [62,
§13.3, Cor. 4], 7(-) is constant if and only if y : R—>R is linear.

4.b. Asymptotically homogeneous systems

In this subsection, we deal with perturbations of autonomous systems with positively homogeneous
nonlinearity. More precisely, we consider equations of the form

x = g(x) + e(t,x), (4.13)
with g : R™—>R™ continuous and such that, for some 0>0,
(L1) gkx) =k* g(x) for all k >0, xeR™
and e : [0, TIXR™—R™ satisfying the Caratheodory conditions and such that
(L2) lim (le(t,x)l / xI*) =0 uniformly a.e. in te[0,T] ;

1Xl—3 400

Systems of the form (4.13) have been widely studied; see, for instance, [81,86,88,101,110,111]. In [81,
§ 41], [110] the more general situation in which the function g may depend on t is considered too.
However, as we show below, there are situations that can be settled in the framework of Corollary 4 but
do not fit in [81,111].

In the first result of this subsection we consider the case of g homogeneous of degree one.

COROLLARY 8. Assume (L1)-(L2) with o = 1. Suppose that the following conditions are satisfied:

(L3) x =01is the only T—periodic solution of
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x = g(x); (4.14)
@14) dg(g, B(0, Ry), 0) =0, for some Ry > 0.
Then, there is at least one T—periodic solution to (4.13).

Note that, from (L3), the origin is the unique singular point of g, and (L1)-(L4) imply that
dg(g, B(O,R), 0) # 0, for every R>0.

Proof. We apply Corollary 4, with K = B[O,R] for R > 0 sufficiently large, G = B(O,Ry),
R, >R, fy =g, f(t,x;A) = g(x) + Ae(t,x). In order to find R and, as a consequence, to prove the
existence of a priori bounds for the solutions of (4.1,), assume by contradiction that there is a sequence
(x,,) of T—periodic functions, with x|, — +e and such that, for every neN,

Xy = 8(xy) + Ay e(txy), A, e[0,1]. (4.15)
Now we set, for all ne N,
Yn() = %,() / Xgles s
so that, dividing (4.15) by Ix |, and using (L1) we get
Vo = 8(yn) + Mg e(txy) / 1%l - (4.16)

We observe that we can apply Ascoli-Arzeld's theorem; therefore, there exists y*, with ly*l, =1, such
that (up to subsequences) y,— y* uniformly on [0,T]. Thus, taking the limit as
n — +oo in (4.16) and using (L2) we obtain:

y* = g(y*).

Therefore, by (LL3), y* = 0, which is a contradiction.

Thus, we have proved that there is R > 0 such that, for every T—periodic solution x(-) of (4.14)
x(t)e B[O,R] for all te [0,T]. Therefore, using (L4) we see that Corollary 4 is applicable, and we get the
existence of an T—periodic solution of (4.13) such that x(t)e B[O,R] for all te [0,T]. The proof is
complete. ¢

REMARK 3. Corollary 8 is a generalization of the results (in the case o = 1) in [111], where, besides
(L1)-(L2)-(L4), the fact that there are no cycles or nontrivial equilibrium states for the autonomous system
x = g(x) is assumed. In other words, (L3) must hold for periodic solutions of any period. Hence, the
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range of applicability of our corollary is wider than Muhamadiev's one. For instance, Muhamadiev's

theorem does not apply to Example 1 in Section 3; indeed, in that situation, for K, v > 0 the origin is a
global center for the autonomous system

- . 4 —
X1 =X9, Xp= —uxl + VXl,

while our result applies provided that (,v) does not belong to the Dancer-Futik spectrum [49].

We also point out that, apparently, Corollary 8 (or, more precisely, the evaluation of the Leray-Schauder
degree of the Nemitzkii operator induced by (4.14) in terms of the Brouwer degree of g) cannot be
obtained by means of the techniques developed in [81]. To this regard, see the problem raised in [81, p.
253].

Now, we state the analogue of Corollary 8 for n-th order systems of the form

x4 Fx, %, . xXTD )= et x x,..,x™ D). (4.17)

COROLLARY 9. Assume that the following conditions are satisfied:
(f1) Flkx, kx, ..., kx™ ) = kF(x, %, ..., x™),
forall k>0and (x, %, ..., xX" e R™,

(f2) lim le(t,x,%,... xX™ N / (Ixl+xl+...+x@ D)) = 0
(n-1)

KT+ X bt ppoo
uniformly a.e. in te [0,T];
(f3) x(t) =0, for all te [0, T}, is the only T—periodic solution of
x™ 4 F(x, x, ..., x®D ) =0.
(f4) dg(q, B(0,1),0) %0, for r > 0,

where q(x) := F(x,0,...,0).

Then, (4.17) has at least one T—periodic solution.
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As for the proof, it is sufficient to repeat the argument in the proof of Corollary 9 and to apply Corollary 6.

REMARK 4. The particular case when q(x) = F(x,0...,0) = VV(x), with V : R™—=R a positively
homogeneous potential of degree 2 has been considered by many authors (see, e.g., [81, §12.4], [88]).
Corollary 9 improves the result in [88], where system

%+ VV(x) = p(®)

is studied. Indeed, besides assumptions analogous to (f1)-(f2)-(f3), it is assumed in [88] that V(x)>0 for
x#0 so that (f4) holds as well (see [81, Th. 12.6]). This remark shows that Corollary 9 contains the
classical theorems in [31,49] on jumping nonlinearities, where asymptotically homogeneous autonomous
equations are considered, and some of the results in [47,48]. An easier proof of the theorem in [88] has
been recently obtained in [101].

As a second consequence of Corollary 4, we perform a result for asymptotically positively homogeneous
systems of order o, with oi#1.

COROLLARY 10. Assume (L1)-(1L2)-(L4) and suppose, respectively, either

(L'3) x =0 is the only bounded solution of x = g(x) (if a>1);
or
(L"3) gx) #0for x=0 (f a<l).

Then, (4.13) has at least one T—periodic solution.

The proof can be obtained by repeating essentially the proof of Corollary 8, or following Muhamadiev's
argument [111].
By means of [111] and Corollary 4 it is easy to extend the result to systems of the form

x = g(t,x) + e(t,x), V (4.18)

using an homotopy between (4.18) and either the "freezed" system x = g(0,x) for a>1, or the "averaged”
system x = g(x) for a<1.

We do not give any new contribution for (4.18), except for the abstract theorem we use; hence, we do not
state such results in detail.
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Finally, we mention that by means of the (continuation) Theorem 1 it is possible to obtain a result on the
so-called "regular guiding functions" (see [10],[81, § 14]). In this way, we can easily recover [26,30,57],
where a perturbation of a polynomial in R? is studied.

5. An extension to flow-invariant ENRs

In Chapter 2, a variant of Mawhin's continuation theorem has been obtained for differential systems
inducing a flow on some closed ENRs. In what follows we give a similar extension of Theorem 2,
provided that a Kupka-Smale approximation property holds.

Let CcR™ be a closed ENR. In this section, our goal is to prove the existence of a solution x(-) to

x = F(t,x) (5.1)
x(0) =x(D) (5.2)

such that, for all te [0,T], x(t) belongs to a certain subset of C.
The particular case when C = R™ has been treated in the previous sections.
As before, we assume that

F(t,x) = f(t,x;1), (5.3)
where
f = f(t,x;A) : [0,T]xCx[0,1] - R™

is a continuous function which is locally lipschitzian in x, uniformly in t, A. Once for all, we point out
that such assumption is not strictly necessary in our proofs, but it provides the uniqueness of the solutions
to all the Cauchy problems which we will consider henceforth.

Moreover, we assume that for A = 0 the map f 1is autonomous, i.e. there exists a function
fo: C — R™ such that

fo(x) = £(t,x;0) (5.4)

for all te[0,T], xe C.

In this more general situation, we need a "flow-invariance" hypothesis ensuring that system

x = f(t,x;A) (5.5)
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induces a local process in C, for all Ae[0,1]. More precisely, we want that, for each (tg,xg)e [0, T[XC
and for all Ae[0,1], the Cauchy problem

x = f(t,x;A), x(tg) = Xp

has a solution x(-) : dom x(-) = C defined on a right maximal neighbourhood of tg.
Nagumo's theorem (see [112,148]) ensures that this fact holds true if and only if

(1) f(t,zM)e T(z; C) for all t[0,T], ze frC, A [0,1],

where T(z:C) is the (Bouligand) tangent cone to C at z. In other words, condition (il) means that the
function f is "subtangential" to C at zef{rC.

We refer to Section 5 of Chapter 1 for remarks concerning the validity of (i1) in some particular cases.

Now, we introduce the crucial "approximation”

PROPERTY (A). If

fo(z)e T(z;C) for all ze frC,

then there exists a sequence of locally lipschitzian functions (@), ¢ : C— R™ such that:

(a) 0 (2)e T(z;C) forall zefrC, keN;

(b") ¢ — Ty uniformly on compact sets ;

(c") for every compact subset K of C and for every ke N system
5( = (Pk(X)

has finitely many singular orbits (i.e., rest points and closed orbits) with
minimal period in [0, T+1] which are contained in K.

We stress the fact that if the set C is a manifold (with or without boundary) and f; is a tangent vector
field to C, then property (A) is satisfied. Indeed, this is a consequence of the Kupka-Smale's theorem. In
particular, property (A) is satisfied in the case when C=R™ (asin the above Sections). If the set C isa
closed convex set with nonempty interior (as in [18]), then it is easy to prove that property (A) is satisfied.
Indeed, if (5.5) holds one can show, by a standard perturbation argument, that there are sequences (W)
and (8,)L0 such that y,—f, uniformly on compact sets and (Wi(z) IM) < (=3¢Im) < O for all
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ze frC, ne N(z,C). Now, by the Kupka-Smale's theorem, we have that, for each ke N, there is a
sequence (@), satisfying (a), (b) and (c"). Finally, a diagonal argument leads to the conclusion.

In what follows, we denote, as usual, by I" the complete metric space of the continuous functions
x() : [0,T] = C endowed with the distance d*, d*(x;, x,) := Ix; — X,l... We recall the following crucial
result (see [75]): the space (I, d*) is a metric ANR if and only if the set C is an ANR. This theorem will
enable us to work with the fixed point index of compact operators defined in the function space T'. For the
definition and properties of the index of rest points, we refer to Section 4 of Chapter 1.
Notice that in what follows points of C will be identified with constant functions.
Now, we are in position to state the main result of this Chapter.

THEOREM 3. Assume (i1) and (A). Let QcT' be an open bounded set such that the following
conditions are satisfied:
(2) thereis no x(-)efrpQ such that

x =f(tx;A), Ae[0,1]; , (5.1
i3) IO QNC) = 0.
Then, (5.1)-(5.2) has at least one solution x(-)e clpQ2.
Proof. We begin by observing that, as  is bounded, there is a constant R > 0 such that
Ixl, <R, for every xe clyQa.
Now, consider a sequence of locally lipschitzian functions (@) , ¢, : C — R™ , with ¢— f, uniformly
on CNBI0, R], and satisfying (a") and (c"), according to Property (A).
~ As a first step, we claim that, without loss of generality, we can suppose that
(d') for each keN, the problem

X =@(x) , x(0) =x(T)

has no nontrivial solution in CNB(Q,R).

Indeed, consider the singular orbits (i.e. rest points and closed orbits) with minimal period in [0,T+1] of

the system x = @,(x). By (c'), there exist finitely many such orbits S, ..., Snk, which are contained in

CNB(O,R). Let z (1 <i<p,) be the rest points among the S; . Arguing as in the proof of Theorem 1
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(from step (2.14) to step (2.17)), we can find, for each ke N, a constant T, > T such that, for each
T < T' <1y , the problem

x =@ x) , x(0) =x(T")

has no solution in CNB(0,R) other than the equilibria z;, ..., Zpy -
Hence, if we choose, for each ke N,

\ ) 1
T < T < min {Tk,T'*‘K'} ,

~ T . - . ~
and define ¢ := —rfl-‘—(pk(z) , for each ze C , we get a sequence of locally lipschitzian functions (@) ,

¢ :C—> R™, with §, — f,, uniformly on CNB[O,R] , which satisfies (a) (by the cone property of
T(z; C)) and such that the problem

x=¢(x) , x(0) =x(T)

has no nontrivial solution in CNB(0,R). The claim is proved.

Then, in the sequel, we can assume (d").

As a next step, we proceed along the lines of the proof of Theorem 1 in Chapter 2.

Without loss of generality, we suppose that (i2) holds with Ae[0,1] in (5.13) (otherwise, the result is
proved for xe frrQ).

Let us consider the Cauchy problem

y' = f(t,y;A) (5.6)
(5.7)

y(o) =1z .

We can assume f bounded, possibly replacing it by a modified function like f(t,x;A)-p(Ix]), as in the proof
of Theorem 1 in Chapter 2. Since, in this situation, uniqueness and global existence for (5.6)-(5.7) are
guaranteed, then if we denote by u(c,z,; A) the solution of (5.6)-(5.7) a one-parameter family of
processes is defined.

Besides, we introduce a one-parameter family of compact operators defined on I'x[0,1] as follows:

M(x;A) := u(0,x(T),-; A) , Ae[0,1].

By (i1), M : I'x[0,1] — T; furthermore, Ascoli-Arzela's theorem ensures that M 1is compact on
clr€2x[0,1]. By the definition of M, itis easily seen that x is a fixed point of M(;A) if and only if x()
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is a solution of (5.6) such that x(0) = x(T). Accordingly, our aim is to prove the existence of a fixed point
of the operator M(-; 1). This fact, together with (5.3), implies the thesis.

By assumption (i2), we have that M(x; A) #x for all xe frrQ and Ae[0,1], so that M is an admissible
homotopy and

ir(M(- 5 1), Q) =ir(M( ; 0), Q).

Observe that the existence of a fixed point of the operator M(- ; 0) is equivalent to the existence of a T—
periodic solution of the autonomous system (5.8).

Now, by property (A) and the preceding claim, there is a sequence (9,) satisfying (a"), (b, (c") and
(d), relatively to CNB[O,R]. Let us denote, for every ke N, by wkH : RxR™ - R™ the dynamical
system induced by

y = ufo(y) + (1 — 1) o (y) ,

with pe[0,1].

Thus, for each ke N, a one-parameter family of dynamical systems is defined. Assumptions (i1) and (A)
imply that the set C is flow-invariant for the dynamical systems 7&H as well. Indeed, this follows from
the convexity and the cone property of T(z;C) (cfr. Lemma 1 in Chapter 2 for the detailed proof of an
- analogous result).

On the other hand, assumption (i2) implies that fo(z) # 0 for all zefrrQNC; hence, by the compactness
of frrfQNX, we obtain that there is €9 €10, T such that

%) =€) = 1.(2) % 2, (5.8)

for all ze frrQNC, ee 10,&¢].
Now, as before, we introduce, for every ke N, an operator NK defined on I'x[0,1] by

N () o= (- x(T));

observe that N¥ - I’x[0,1]—-T" and that it is compact on clpQx([0,1].
Moreover,

N (1) = M(-0),

for all ke N.
We claim that there is kg such that, for all k=k, and for all pe [0,1], Ny () is an admissible homotopy.
This fact will imply, in particular, that if we denote by = 1" the flow induced by x = @y(x), then
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m(eg,z) # z, for all ze CNErpQ, k2K, (5.9)
Moreover, a classical compactness argument implies that, for any k=ky, there is §; = 6;(k) > 0 such that

(eg,y) #y, for all ye BEQNC,5,). (5.10)

Indeed, it is sufficient to observe that the sequence of operators (Nk) converges to M(-;0) uniformly on
clrQx[0,1] and that

inf { d*(x, M(x;0)) : xe frirQ} >0
(recall that M(-;0) is compact on frrQ and frQ is closed). Hence, the claim is proved and we can write:
ir(Ng(- 5 D, Q) = ip(Ny (- ; 0), Q), (5.11)

for every k=k, and, in particular,

ic(my,QNC) = iC(n:O,QmC). (5.12)

Let us fix k* > k. For brevity, we set ¢ := Qys, N := Nk*, 7® = th*, 3 = §;(k*).
Let Sy,..., S, CnB(0O,R) be the singular orbits (i.e. rest points and closed orbits) with minimal period
in [0, T+ 1] of the dynamical system n® induced by

X = 0(x) (5.13)

which are contained in CnB(0,R).

Arrange the indexes so that z, for 1<i<p, are the rest points of n® in CNB(0,R), thatis z; = §;, for
i=1,.., p.

By (d"), we know that x(-)eclpQ is a fixed point of the operator N(-; 0) if and only if x(t) =z, for all
te [0, T], with z,e QNC. Hence, by excision,

P
ir(NG; 0), @) = X ir(N(; 0), B(z;, 8)) , (5.14)
=1
€Q

N

where

§=min(8,M/2), 1 =min{dist(S;, S;), 1<i#j<n} .
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Now, we introduce a third homotopy by whom, roughly speaking, we "move along the orbits" of the

dynamical system ©° .

We define an operator H on I'x[0,1] as follows:
H(x;B) =n® (x(T), (1 - B)eg + B).
As before, H : I'x[0,1]—T and it is compact on clQx[0,1]. Moreover,
N(;0) = H(;1). (5.15)

We observe that x is a fixed point of H(-;B) if and only if x(t) = y((1 - B)e + Bt), with y(-) a Yp-periodic
solution of

y=0F), yO0)=x(D
with ¥y := (1 - B)e + BT.
By the same argument used in the proof of Theorem 1 (from step (2.18) to step (2.19)), we have that
H(-;B) has no fixed points on frrB(zj, 0),foreach j=1,...,p (zje Q) and each Be[0,1], so that

ir(H(; 1), B(z;, 8)) = ir(H(; 0), B(z;, 9)) - (5.16)

Since the only fixed points of H(; 0) in ¢l are z, i=L...p (ze Q) , by excision it follows that

P
ir(H(; 0), Q) = Y, ir(H(; 0), B(z;, 9)). (5.17)
j=1
zJjeQ

Therefore, from (5.14), (5.15), (5.16) and {5.17) we obtain that

ir(NG; 0), Q) = ir(H(; 0), Q).

Since H(-;0) : T — C, then by the contraction property of the fixed point index (see [113]) we have:
ir(H(-:0), Q) = ic(H( ; 0), 2nC).

Furthermore, using the fact that

H(x; 0)= 0(eg, (1) =, (x(T)),

we get
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ic(H( ; 0), QNC) = iC(vc:) , QNO).

Finally, by the choice of k* , we can use (5.12), so that

ic(rf , 2NC) = ic(m, , QNC) = ic(ry , 2NO),

for e€]0,eg] .
In conclusion, we have proved that ip(M(-; 1), Q) = iC(ng , QNC) is constant with respect to €, for

€ >0 small enough.

Then,
ifM(5 1), Q) = lim_ic(r, , @n0) = 1%, 2NO).
£e—0*

Assumption (i3) provides the existence of a fixed point xe 2 of M( ; 1). The proof is complete. $

REMARK 7. We point out that a generalization of Corollaries 3 and 4 to the case of flow-invariant
ENRs can be performed arguing as in Section 3. Besides an analogous "bound set" or "a priori bounds"”
condition (respectively), it is sufficient to assume, according to Remark 7, that -

1(x°,G) = 0.
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Chapter 4

The coincidence degree of some functional differential operators in
spaces of periodic functions and related continuation theorems

1. Introduction

In Chapter 3, we have shown that if Q is an open bounded set of the space X of continuous and

T-periodic functions with values in R™ such that the autonomous equation
x(t) - f(x(1)) = 0, (1.1)

with f:R™ — R™ continuous, has no T-periodic solution on fryx€2, then the coincidence degree of the
operator in X associated to the left-hand member of (1.1) is equal to (-1)™ times the Brouwer degree of
f, with respect to QNR™. Of course, we identify here R™ with the space of constant mappings from R
to R™.
The proof of the mentioned result depends upon the Kupka-Smale approximation theorem [82,136] for the
closed orbits of autonomous systems and on some delicate degree computations.

In this Chapter (which is based on [17]) we state and prove the corresponc =~ ~=sult for the
autonomous retarded functional differential equation (RFDE)

x(t) — f(x)) =0, (1.2)

where f: G, — R™ is continuous and takes bounded sets into bounded sets, C. = (([-1,0], R™ and, for
each t, x, is the element of (, defined by x,(8) = x(t + 8) , Oe [1,0] (see [65] for these notations and a
thorough treatment of RFDE).

In Section 2, we prove (Theorem 1) that the coincidence degree of the mapping in X defined by the
left-hand member of (1.2) (which, if Q is like above, is defined [96,100]) is again equal, up to a factor
(=1)™ , to the Brouwer degree of the restriction of f to QNR™. A basic ingredient in the proof is an
extension to RFDE of the Kupka-Smale theorem due to Mallet-Paret [93] and following earlier generic
results for fixed points of a RFDE defined on a compact manifold due to Oliva [114]. See also interesting
remarks in [22] and [67].

Although our proof follows the same main lines as the one given in Theorem 1 in Chapter 3 for the

ordinary differential equation case, the different nature of (1.2) requires at various stages nontrivial
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variants of the arguments and even completely different ones due in particular to the fact that time-scaling
involve modifications of the delay in a RFDE. We then relate the coincidence degree associate to a RFDE

of the form
x(t) = h(tx) =0, te R,

with h(-) T-periodic in t and positively homogeneous of degree o # 1 in its second variable, to that
associated to the autonomous RFDE

T
5 -B(x) =0, teR, with R(9)=x [h(s.0(s))ds,
0

and we give a related existence theorem.
In Section 3 we state and prove a continuation thorem for the T-periodic solutions of non-

autonomous RFDE
x(t) = F(t,x) ,teR

based upon the previous degree calculations.

2. The main result

Let C =C([-r,0,R™),r2 0.and let f: C,— R™ be continuous and such that it takes bounded
sets into bounded sets.
In the first part of this Section, we consider the T-periodic solutions (T > 0) of the corresponding RFDE

x(t) = f(xy), 2.1

where f: . — R™ is continuous and takes bounded sets into bounded sets.
By a T-periodic solution of (2.1), we mean a function x : R — R™ of class C! such that

x(t+T)=x(t), teR

which satisfies (2.1) on R. We denote by Cp the Banach space of continuous T-periodic functions X :

R — R™ with the uniform norm IxI_= max Ix(t)! .
teR

If we define L : domLcCr — Gp by domL = {xe Cp:x isofclass C!} and Lx =x, and
F: G — G by F(x)(t) =1(x) , te R (Nemitzky operator), then it is well known [96,98] that L isa
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Fredholm operator of index zero, F is L-completely continuous on (; and the existence of T—periodic
solutions of (2.1) is equivalent to the abstract equation

Lx=Fx, xedomlL .

Moreover, if QcCr is an open bounded set such that

Lx #Fx, xe dommerCTQ,

then the coincidence degree Dy (L —F, Q) is defined as the Leray-Schauder degree of an associated fixed
point problem.

THEOREM 1. Assume thar QcGy is an open bounded set such that there is no xe fr Q2 such that
x(t) = f(x,), te R . Then

Dy (L -F, Q) = (-1)ndg(flgm ,QNR™, 0) .

Proof. First of all, we observe that, as Q is bounded, there is a constant R > 0 such that Ixl <R for
EVery Xe CICTQ. Furthermore, we point out that the assumption is equivalent to

Lx#Fx, (2.2)

for all xe dommerCTQ ; therefore, the coincidence degree Dy (L —F,Q) is well defined, and as we also
have

fc)#0

for all ce RmmfrCTQ , the Brouwer degree dg(figm , QOR™, 0) is defined as well.

The proof is performed by means of Mallet-Paret's extension of the Kupka-Smale's Theorem [93]; this
result ensures the existence of a sequence of C !-functions (@), ¢ : C,— R™, taking bounded sets
into bounded sets, and such that

(@) (¢ — f uniformly on closed bounded sets

(b) for every closed bounded subset B of G and for all ke N, the equation

X = Qy(x)

has finitely many singular orbits in (; (i.e., rest points and closed orbits) with minimal period in
[0,T +1] which are contained in B and they are all hyperbolic.
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Let Nk be the Nemitzky operator induced by the functions x —pf(x.) + (1 — W@ (x.) , pe [0,1]. We
claim that there is kg >0 such that, for all k >k, and for all pe([0,1],

Lx #Nkbx for all xe dommerCTQ. (2.3)

This fact will imply, in particular, that

O(z) #0 for all ze frCTQmRm k=K.

Then, a classical compactness argument ensures that, for any k 2k, thereis 8; = (k) such that

O(y) =0 forall ye B(frCTQr'\Rm, Sy .

To obtain (2.3), it is sufficient to observe that the sequence of operators NK# converges, as k — +e0, t0
F in (Cr uniformly on frCTQx[O, 1] and that, by (2.2),

inf{I(L —F)xl : xe domLNfrQ} > 0.

Hence, the claim is proved and, using the homotopy property of the coincidence degree (see [98, p. 15]),

we can write

Dy (L -F, Q) =Dy (L - Nkl, Q) =Dy (L - NKO, Q),
for every k =kg and, in particular,

dp(fl,,QNR™, 0) = dp(Pxlpm: QNR™, 0),

R’

for every k = k.
Let us fix k* = k. For brevity, we set

P = Qg , N(P = N:= Nk*,O R 61 = 81(1{*).

Consider the singular orbits (i.e. rest points and closed orbits) with minimal period in [0,T+1] of the

equation
X = (xy). (2.4)
By the Kupka-Smale's property, there exist finitely many such orbits which are contained in B(O,R)c(;

and they are hyperbolic. Recall that for a rest point, this means that the spectrum of the infinitesimal

generator of its linearized equation contatins no purely imaginary values and, for a nonconstant periodic
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solution, this means that the characteristic multiplier =1 of the linearized equation is simple and no
other characteristic multiplier satisfies Iu| =1 (see [65]). We denote these orbits by Si....,S,. They are
mutually disjoint (two orbits of (2.4) may crossin C. because uniqueness of the Cauchy problem only
holds in the future, but this may not happen to closed orbits). Pick, for each i = 1,..,n apoint in )
¢;€ S;. Then, ¢; is a periodic point (possibly a rest point). We can assume that ¢; is arest point ; for
1<i< p(p20 aninteger) and a periodic point for p+1 < i< n. We denote its minimal period by T,
(p+1<i<n). We can also assume that T;<T for p + 1<i< q and T<T; <T+1 for g+l<i<n. We
denote by k; the largest integer such that KT;<T (p+1<i<q),sothat (k+1T;>T (p+1<i<q).
We denote by xi(-) the solution of (2.4) with x(l) =¢; (p+1<itn).

We claim that for each T' such that

T<T < min {(kp+1 + 1) Ty s eens (g + DTg, Tgygs v Ty, T+ 1) =71,
the problem
x=0(x) , x(t+T)=x(T) (2.5)

has no solution x(-), with x,&B(0, R) , and hence Ix(t)l <R, for all t, other than the equilibria (...,
s

Indeed, if x satisfies (2.5) and x,eB(0, R), for all t, then S = {x,: te R} is a singular orbit of (2.4)
contained in B(Q,R). If it is not a rest point, then S =§; for some p+ 1 <i<n and hence there exists
;R such that

X, = X:i+ti , teR
(indeed t; is such that X == x(i)) .

In particular,

Xi(T' + ti) = Xi(ti).
This is impossible for q+1< i<n asthen T'< T; and T; is the smallest period. This is impossible
for p+1<i<q asinthiscase kT;< T' < (k; + DT;.

Therefore the claim is proved.
Now, the solutions of (2.5) correspond, by the transformation

y(t) = x(-:-ll—:-'-t), te R,

to the solutions of the problem
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. T T
yO =7 o (F0)) , ye+D=y0. (2.6)
Thus, problem (2.6) has, by construction, no nontrivial (i.e. non-equilibrium) solution on chTQ and,

by assumption, no rest point on frQ (as its rest points are the same as those of (2.8) and all its possible

solutions in B(O,R) are rest points). Defining

D : GX[T, [ — G,

. T T
D(y, THO = 0(v(F)) » R,
we shall show that @ is continuous so that we can apply a homotopy argument.

If e>0,ye G, T'e[T, t[ are given, then as {y[(%(‘)) :te[0, T ]} is compact, there exists & >0
such that

lo() ~ (vt <e

whenever te[0,T] (and hence whenever te R) and lq> - Yt(%('»lcr < 9.

Now, y being uniformly continuous, there exists &' > 0, such that
1 " 8
ly(t) -yl < 5
when It'-t"< 8" and henceif T<T"<1T and T" =T'/2, we shall have

5
ly (e +2(8)) — y (e + @) < 5

when
T T ,
IF - :r—.l B1<d
which will be the case if
" 1 6‘(Tl)2
T — T S—-—z—:ﬁ:‘— .

Now, if ze Gy is such that lz—yl, <8/2, we have
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|z + (t + -TTT,-(G)) - y(t + %(6))| < lz(t + %,—(9)) ~y(t +TT;(6))| +

+ ly(t + %‘w(e)) - y(t + %.(6))[ <lz—yl + -S—S S
forall te R and Oe[-1,0] and hence
T T
l2.(70)) -y (), < 8.

Summarizing, if ze Cp with Iz -yl <8/2, andif T"e[T,7[ with

8'(T")?
Lo

T Tt s min{o- , 22

we shall have

o2 (E0)) - ol (o) <e

for all te R and this easily implies the continuity of ® on Crx[T,z[ . Now, as (2.8) has no solution on
frCTQ, the homotopy invariance of the coincidence degree implies that

Dp(L ~Ng.Q) = Dy (L - @, T),Q) (2.7)
forall T<T'<7.
Thus, by excision,
DLL-¢CT)Q) = >, Dy(L - d(,T, BE;8)) , (2.8)
1<j<p
cJEQ

where
6 =min{8;,n/2} , M =min{dist(S;,S) : 1 <i=j<n}.

But, by the choice of §,L — N, has no solution on frB({;,6) and hence, by homotopy invariance again
we have, forall T<T' <1,

DL(L - ®(,T), B;8) = Dp(L - Ny, BE8), 1<j<p, {eQ. (2.9)

As @ isof class C1, the same is true for N, and hence, by the linearization property of the degree (see
e.g. [98 , Prop. VIIL.3)),
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Dy (L - Ne» B((:,8)) =Dp(L - N'4 (L, B(0,1)), 1<j<p, CjE Q. (2.10)

where N'o((;) has the form
© 0
N'o(L)0 = 9o = [6(8) dni(e)

for some function 1 whose elements are of bounded variation ([65]).Moreover, the hyperbolicity of Z;j
implies that the corresponding characteristic equation

detAj(w) = 0,

where

0
det Afw) =pI— [erddni@) ,
—I

has all its roots with nonzero real part (see e.g. [65]). Consequently, the same is true for the characteristic
equation of the equations in the family

x(1) =ApC)x,,  Ae]0,1]

which therefore only admit the trivial T -periodic solution. A standard argument (see e.g. [98, Th. IV.12])
then shows that the same is true for the family

x() = (1- VT + 2o(Cpx,,  Ae[0,1]

where

1 T
X = -T-ij(s)ds = Px.
Consequently, by the homotopy invariance, and a classical property of coincidence degree (see e.g. [98,
Prop. 11.12]),
Dp (L = N'y(&p) , B, 1)) = D,(L - N'o(§p) P, B(0, 1))
= (-1)dg(§(L)lymr BO, DAR™, 0) (2.11)

= (-1)mdp(@lym, B, HNR™,0), 1<j<p, (.
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Therefore, combining (2.7), (2.8), (2.9), (2.10) and (2.11), we obtain

Dp(L - NgQ) = 1Z(—l>mdB(<lem, B((;,8)"R™, 0)
<i<
o

= (-1)mdp (gl QAR 0)

and the proof is complete. ¢
An alternative proof of Theorem 1 has been obtained, in the framework of degree theory for equivariant
maps, in [6] on the lines of an analogous result in the case of ordinary differential equations (see the
remark at the end of the proof of Theorem 1 of Chapter 3).
Secondly, we consider the RFDE
x(t) = h(t, x,) + 3(c)p(t) (2.12)
where h:RxC — R", (t, 9) - h(t, ¢) is a continuous mapping, taking bounded set into bounded sets,

T -periodic in t and positively homogeneous of order o # 1 in @, 8(c) = max(0, (1 — o) /11 — al) and
pe Cr . We define the averaged vector field h : C, - R™ by (

T
— 1
R () = TJh(s,(p)ds
and the corresponding Caratheodory mappings H : Cr— Cp and H: Cr— CGp by
HEO =h(t,x) ,  HEO =h(x),

forall teR.

THEOREM 2. Assume that h(z) #0 for Izl=1 in R™. Then, there exists 1o >0 such that, if
a<land r215 or a>1 and O<r <1y, (2.12) has no T -periodic solutions x with Ixl=r1 and

Dy (L - H - §(o)p, B(O.n)) =D (L - H, B(0,0)).

Proof. Letus define #: Grx[0,1]1 — Gy by
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Hix, A) = (1 = 1) Hx) + A(H®X) + S(@)p) .

We have only to show that there is some 1y >0 such that foreach r>ry if <1 oreach 0<r<ry if
o > 1, and for each Ae[0,1], the equation

Lx = H(x; \)
has no solution x with Ixl=r1.

If this is not the case, there are sequences (r,) in R, , (x)in Cr and (Ay) in [0,1] such that
lel=rk, rkS 1k if o> 1, rk2k if <1 and

xi(1) = (1 = A h((x)p) + M[h(t, (i) + 8(e)p(®)]
(keN). Letting uy = xy / Ixyl =1 ! Xy , We get

e(t) = 127 [(1 = Ah((e)y) + Ah(t, ()] + 1 Ay S(00p(1), (2.13)

so that

()] < rl‘:'l B+

for some B,y>0 and all teR . Consequently there are subsequences (kjk) , (u;) and A*e[0,1],
ve Cr, Ivl=1 such that (u;) = v uniformly on R and O‘J'k) — A*.

From

t 1
ug(®) - u0) =171 OJ[(l ~ ) Bl(upg) + A his, (g ]ds + 1 G[S(a)p(s) ds,

we get
v(t) - v(0) =0, teR,

so that v is constant and Ivl= 1. From (2.13) we also get

T
0= 0](1 — A R(()) + Ay h(s, () + £ 28()Ap()]ds = 0
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and hence, letting ji — oo,

0= Th(v),

a contradiction.
Hence, for 0 <r <ry if a>1 and r2r1; if a<1,wehave

Dp (L -H-8(op, B(O, 1)) = Dp.(L — H(-,1), B(O,r)) =
=Dy,(L - 4{, 0), B(0,n)) =D (L - H, B, 1)),
and the proof is complete. ¢
By using Theorem 1 and 2, the existence property of degree and its invariance for sufficiently small

perturbations of the nonlinear term we immediately deduce the following existence result.

COROLLARY 1. Assume that h satisfies the assumptions of Theorem 2 and that

dg(hl ., B(O,DNAR™, 0) #0.

RM’
Then, if <1, the RFDE

x(t) = h(t, x,) + p(®) (2.14)

has at least one T -periodic solution for each pe Gy and, if a.> 1, there exists gy >0 such that (2.14)
has at least one T -periodic solution for each pe Cr with Ipl, <&,

3. An existence result

Let F:Rx(C — R™, (t,9) = F(t,¢) be a continuous mapping, taking bounded sets into
bounded sets and such that

F(t + T,p) = F(t,p)
for some T>0 andall teR and ge . We consider the existence of T -periodic solutions of the RFDE

x(t) = F(t, x), teR, (3.1)
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i.e. of solutions x(-) such that
x(t) = x(t+T), teR. ' (3.2)

As it is the case in any continuation Theorem, we introduce a mapping f: RxCx[0,1] — R™ which is
continuous, takes bounded sets into bounded sets and is such that

f(t +T,0,1) = f(t,p,\)
forall teR, ¢ ., Ae[0,1],
f(t, 0) = fo(®)
forall teR, ¢e C (i.e. f(-,-; 0) is autonomous), and
f(t,9,1) = F(t,9)

forall teR, ¢e (.

THEOREM 3. Ler Qc Gy be an open bounded set such that the following conditions are saii'sﬁed:
(pl) thereisno xe frCTQ such that
x(t) = f(t,x,A) , te R, Ae [0,1[; (3.3)

(b2) dp(Ep e 2OR™0) 0.
Then , (3.1)-(3.2) has at least one solution Xe CICTQ.
Proof. We use the framework of coincidence degree as in Theorem 1. The classical Leray-Schauder

continuation theorem [90] could be used instead by the equivalence stated at the beginning of Section 2.
Besides the spaces and operators considered there, we further define M : = M(x;A) : Cpx[0,1]1 = Cr:

M@x;A)(0) = f(t,xA).
Observe that M(+; 0) = M, where

MO N CT — CT, X—")fO(X.).
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According to [98 , Chapter I], M is L -compact on chTQx[O,l] . We remark that x isa T- periodic

solution of x(t) = f(t, xpA), Ae[0,1], if and only if xedomL is a solution of the coincidence equation
Lx = M(x;A), Ae[0,1]. In particular, (3.1)-(3.2) is equivalent to Lx =M(x;1). Without loss of
generality, we suppose that (pl) holds for Ae[0,1] in (3.3). Otherwise, the result is proved for
XE frCTQ. Accordingly, by the definition of M(-; A) and using (pl) we have:

Lx # M(x; A), Ae[0,1]
for all xe dommerCTQ. Thus we can apply the homotopy property of the coincidence degree and obtain:
D@L - M, Q) =D (L - M(5; 0),Q) = D (L — M(;; 1),). (3.4
Assumption (pl) (for A=0 ) ensures that Theorem 1 can be applied, so that (3.4) and (p2) imply:

IDLL - My, Q) =ldg (fo,gm» QAR™, 0)l = 0.

Hence, by the existence property of the coincidence degree, there is xe domLNQ such that LX = M(X;1);
thus X(-) is a solution to (3.1)-(3.2), with XedomLAQ. The proof is complete. s

Theorem 3 is particularly suitable for the study of T-periodic solutions of perturbed autonomous
RFDE of the form

x(t) = f(x, +e(t)), teR,
with ee C, through the homotopy

x(t) = f(x) + Ae(t) , te R, Ae[0,1].
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Chapter 5

A continuation approach to superlinear periodic boundary value
problems

1. Introduction

This Chapter (which is based on [16]) deals with the problem of the existence of T-periodic
solutions to the first order differential system

x = F(t,x), (1.1)
where F : [0,T]IXR™—R™ is a Caratheodory function. In what follows, we prove some results for the
solvability of the periodic BVP in the case when the dimension of the space is even. Such a limitation is
motivated by our interest in applications to the second order equation

u + g(t,u,u) =0, (1.2)
which takes the form of (1.1) when it is written as the equivalent system
u=v
(1.3)
v =—g(t,u,v).
Clearly, in this case the new variable x = (u,v) belongs to R* forue R
In order to introduce the main results of this Chapter, we examine some contributions to the

solvability of the periodic problem for equation (1.2), beginning with the scalar case.
Conditions for the existence of T-periodic solutions of a second order equation of the form

U+ g(w) =p(y (1.4)
where p is a given T-periodic function, must of course exclude the well known resonant situation
u+ (n®)2u = cos nwt, (1.5)

(with @ =2n/T and neZ, ) whose solution set, given by
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u(t) = A cos nwt + B sin not + (t/2wn) sin not,

does not contain any T-periodic function. A first way consists in excluding functions g which have the
same sign than u, by assuming for example that g(u)u <0 for lul large. In a variational setting, this
corresponds to the coercivity of the associated action functional (see e. g. [104, Chapter 1]). The case
where g(w)u20 for lul large is more delicate. When g has a linear growth, known existence results
impose more or less sharp conditions on g and p which exclude in particular the case where
g(w) = (nw)2u and p(t) = cos nwt (see e.g. [34,99,117] and their references). Another general way to
exclude the counterexample (1.5) consists in not allowing g to be linear. This is done in [144] by
assuming essentially that g is bounded below or bounded above. If any boundedness restriction is
avoided, the linear situation will be excluded by considering the class of superlinear nonlinearities, i.e. of
functions g such that

g(w)/u — +oo as lul — oo, (1.6)

This case appears to be the most delicate to treat, as shown by the relative scarcity and the technical
difficulty of the papers devoted to this situation. In the first two ones in a series of four papers, Morris
[106,107] considered in 1955 and 1958 the existence of infinitely many mT-periodic solutions (with
m =21 an integer) for the equation

0+ 203 = p(t) (1.7)

when p is even, T-periodic, has mean value zero and is Sufficiently smooth. Because of the symmetry
properties of the restoring force and the forcing term, mT-periodic solutions of (1.7) are obtained as
solutions verifying the Neumann boundary conditions

u(0) = u(mT/2) = 0. (1.8)
Solutions of this Neumann problem near large amplitude solutions of the corresponding autonomous
equation are then obtained through an implicit function argument on the associated shooting mapping. In

1957, and independently of Morris, Ehrmann used existence results proved in [39] by a shooting method
for Sturm-Liouville problems for equations of the form

u+f(t, u,u)=0 (1.9)

with

]f(t, u, V) — g(U)l < thﬂ + K?_lVl + K3
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and g verifying (1.6), to obtain in [40] the existence of infinitely many T-periodic solutions of (1.9)
when f satisfies suitable symmetry conditions.

In 1963, Harvey [71] extended Morris approach and results to equation (1.4) with p like in Morris
paper and g satisfying (1.6) and some further conditions. More recent results on the existence of T-
periodic solutions of equations of type (1.4) with symmetries are due to Cesari [21] (who deals with
g(u) =u3, p(t) =sin t and uses alternative method, some numerical estimates and Brouwer degree to
prove the existence of at least one periodic solution), Micheletti [105] (who deals with g(u) = 2u3, p(t)
even, smooth and with mean value zero, and obtains infinitely many periodic solutions by reducing the
problem to the use of the contraction mapping Theorem in the space of even periodic functions on
neighborhoods of large amplitude solutions of the unperturbed equation), Castro and Lazer [20] (who
consider systems, called "weakly-coupled", of the form

Uy + g(0) = pilt, w), (1<k <m) (1.10)

with each g, odd and satisfying (1.6), p; bounded and odd, and use a shooting argument and Miranda's
Theorem to obtain infinitely many periodic solutions), and Schmitt and Mazzanti [133] (who obtain
infinitely many periodic solutions for equation (1.4) with g(u) =au + u3 by using shooting methods and
nonstandard analysis). ﬁ

It was Morris [108,109] who first proved in 1965 that equation (1.7) has, for each integer m = 1,
infinitely many mT-periodic solutions when p is smooth but not necessarily symmetric. He uses
Poincaré's operator together with an elementary fixed point theorem for area-preserving transformations in
the plane. For the more general equation (1.4), the existence of one T-periodic solution was proved in
1975 by Fudik and Lovicar [50] for each Lebesgue integrable p by using the Poincaré's operator and a
fixed point Theorem in R2, a result extended to (1.9) in 1980 by Struwe [140] with a similar approach.
We also mention W. Y. Ding, who obtained in [36] the existence of infixﬁtely many T-periodic solutions
for (1.4), with g locally lipschitzian, lim g(u)/u = +e and pe L™([0,T],R). The proof makes use of an

hal— oo
extended version of the Poincaré-Birkhoff "twist" Theorem, which can be applied since the Poincaré'’s

operator associated to the first order system

u=v

v =—g(v) +pQ®

is an area-preserving homeomorphism of the plane. However, such a property of the Poincaré's map is no
more satisfied when an explicit dependence in u, like in (1.9), is assumed.

As for variational methods, in 1984 Bahri and Berestycki [3] initiated the study of T-periodic
solutions of Hamiltonian systems of the form

z=JVH(z) + f(t)
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with ze Rm | m even, and of the form
u+ VV() = {(t)

with ue Rm, when H or V are superquadratic at infinity and satisfy further restrictions. They prove the
existence of infinitely many T-periodic solutions corresponding to arbitrary large critical values by using a
minimax principle analogous to Kranosel'skii's one for perturbations of even functions [78] but where the
Z./27 invariance is replaced by the Sl-action on periodic functions induced by time translations. Further
results in this direction were obtained, by a related approach, by Rabinowitz [127], Pisani-Tucci [122] and
Long [91].

The present Chapter proposes an approach for periodic solutions of differential equations which may
be sublinear or superlinear by a Leray-Schauder's type continuation method. For this sake, we first state
and prove in Section 2 (in the convenient frame of coincidence degree for L-compact perturbations of
linear Fredholm mappings of index zero) a continuation theorem (Lemma 1) where the new ingredient is
the use of a functional ¢ which is proper on the set Z of possible solutions of the homotopic family of
equations and which avoids two values during this homotopy. The significant special case for the
application to periodic problems is that of a functional taking only positive integer values on large norm
solutions and whose positive integer level sets have a bounded intersection with X. In differential equation
problems, the functional we use is closely related to the mapping counting the number of rotations around
the origin of the solution of a planar differential system. This is developed in Section 3, which contains a
continuation theorem (Theorem 1) for the existence of T-periodic solutions of differential equations in R™
with m even. In the special case where m = 2 (Theorem 2), a basic assumption, besides the one on the
"angular function” ¢, is the existence of an a priori bound for the uniform norms of the solutions when
the minimum on [0,T] of their Euclidean norm is a priori bounded. Such an "elastic property" of the
solutions can be checked by the use of some Liapunov-like functions, as shown in Proposition 3.

Section 4 gives applications of Theorem 2 to planar differential systems. A first application of
Theorem 2 to systems with linear growth provides a nonresonance-type existence Theorem (Theorem 3)
which is related to recent ones of Fabry [43], Fonda-Habets [47] and Habets-Metzen [61]. The idea here
consists in establishing estimates on the functional ¢ which prevent it to take integer values. The second
application to Theorem 2 deals with (not necessary Hamiltonian) perturbations of planar Hamiltonian
systems

% = JIVHX) + p(t, )]

with H superquadratic at infinity. One obtains (Theorem 4) the existence of at least one T-periodic
solution under conditions which, spécialized to (1.4) or (1.9), are more general than those of Fucik-
Lovicar [50] and Struwe [140] mentioned above, and which, in the general case with p independent of
X, do not seem to be covered by the variational techniques.
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In Section 5, Theorem 1 is used to obtain an existence result (Theorem 5) for the "weakly-coupled”
system (1.10), assuming that the function g has superlinear growth at infinity. In this case, an extension to
system (1.10) of FucCik and Lovicar's theorem is achieved, which is modelled on the result of Castro and
Lazer [20] for systems having symmetries.

Finally, we define, for a continuous function Q : domQ;gSl——eRJ’, with Slz{(xl,xz)e R2, xf—i—x% =1},

the unit circle in Rz, the value

2n

=5 [
0

that is the integral average of 1/Q on sh.

We also recall that a continuous map Q : R? > Ris positively homogeneous of degree k>0 and
positive definite if Q(tx) = tkQ(x) >0,V te R™, V xe R\ {0}. (Such functions are used in Section
4).

2. An abstract continuation theorem

In this Section we give an existence result (Theorem 1) for a coincidence equation in function
spaces, whose corollaries are crucial for the proof of Theorems 1 and 2 on the solvability of the periodic
BVP associated to (1.1). Accordingly, the following abstract setting is introduced.

Let L : domL < X — Zbe a linear Fredholm mapping of index zero, where X and Z are real Banach
spaces with norms |-[,-and Il , respectively. Borrowing notation and terminology from [98], we consider
continuous linear projectors P : X — X, Q : Z— Z such that ImP = KerL, kerQ = ImL, X = kerL@kerP,
Z = ImL@®ImQ and denote by Kpo: Z—domLnMkerP the generalized inverse of L (see [98, pp.6-7]).
We also fix a linear isomorphism J : ImQ — kerL.

Let N : Xx[0,1]—Z be an L-completely continuous operator ([98, p.12]).

In such a framework, the equation

Lx = N(x,A), xedomL, (2.1)
is equivalent to
x = T(x,\) = Px + JQN(x,A) + Kp oN(x,A). ~ (2.2)
We denote by

% := {(x,\)e domLx[0,1]: Lx = N(x,A) }
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the (possibly empty) set of solutions (x,A) of equation (2.1) and by Z (0<A<1), the section of X at A, that
is

¥ ,:= {xedomL: (x,\)eZ}.

We observe that the sets X and X 5 (0SA<1) are closed and, by the L-complete continuity of N (which, in
turns, implies the complete continuity of T), they are locally compact, in the sense that the intersection of %
(%, respectively) with any bounded closed subset of Xx[0,1] (X, respectively) is compact. In particular,
2 (or X 4) is compact if it is bounded.

In what follows, we suppose:

in X is bounded in X

(i.e. Zy is compact) and define
%o := IDL(L = N(-,0),X)! = IDL(L - N(-,0),Q)l,

where QDY is any open bounded subset of X and the coincidence degree "Dy " is defined from the Leray-
Schauder degree "deg" by the formula

IDL(L = N(,0),Q)I = ldeg(Ty — T(-,0),Q,0)l.

From [98, pp.15-19], it follows that %, is well defined; in particular, it is independent of the choice of P,
Q, J and Q. Moreover, Zg#@ if yq# 0.
Accordingly, we further assume

(12) Xo # 0.
Finally, we introduce a functional ¢ : Xx[0,1]—=R and suppose that

(i3) ¢ is continuous on Xx[0,1] and proper on Z.

Recall that @5 "proper" means that q)"l(K)r\Z is compact for each compact set KR or, equivalently, that
for any sequence (x,,A,)€ X such that @(x ,A ;) converges in R, there is a subsequence (xnk,knk)
converging in X. We also note that if ¢ : Xx[0,1]—R is continuous, then the properness of @y is always
guaranteed when X is bounded (and so compact), while for Z unbounded (i3) holds provided that

km  ( inf lp(x\)l) = +ee. (2.3)
Xlx—>+e  Ae[0,1]
(x,\)eX
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is fulfilled.
Under the assumptions (il), (i2), (i3) listed above, we have that ¢(-,0) is bounded on the compact
nonempty set 2 and hence the real constants

¢ :=inf{@(x,0): xeZy},
¢, = sup{ 9(x,0): xe Z,}

are defined; moreover, ¢ and @, are actually achieved by ¢(-,0) on X,
We can state now a continuation lemma for the solvability of equation

Lx = N(x,1), xedoml. (2.4)

LEMMA 1. Assume (i), (i2), (i3). Suppose there are constants c_, c., with
C.<Q_,C>0 , (2.5)

such that
oxA) ¢ {c_,c,} (2.6)

for each (x,\)e domL.x]0,1[, satisfying equation (2.1).
Then, equation (2.4) has at least one solution.

Proof. Assume, by contradiction, that (2.4) has no solution. From (2.5), we also have ¢(x,0) ¢ {c_, c,},
for each xe 2. Then, (2.6) yields

o) {c_,c, }=C. (2.7)

We propose now two different ways to get the conclusion. As a first possibility, we can use a corollary of
[51, Th.1.1] (see also [46]) which, in our case, ensures the existence of a (closed) unbounded connected
set C, with C < Z, such that €N Zpx{0} = &. Then, for the set p(C)cR, we have that

¢(C) is unbounded (as @z is proper and Cis unbounded),

¢(C) is connected (as ¢ is continuous and € connected),

o0 N [o_,0 ] =D (as CN Zgx{0} = D).
Hence, at least one of the unbounded intervals J—es, ¢_], [@,, +o<[ is contained in ¢(C)c@(Z).
By (2.5), we then get (Z)N{c_,c, } # & and a contradiction with (2.7) is produced.
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Secondly, we give another proof based only on elementary properties of the Leray-Schauder degree.
Assume, by contradiction, that (2.4) has no solution. For c_ and c, given in (2.5), we consider the sets
(with I =[0,1]):

2:=0¢"(Je_,c,]) € XxI
* = ¢ ([e_c,])NT . XxL

From (2.7) and (i3), it follows that X*c4, with £* compact and 4 open in XXI. Then, by a standard
covering of X* with balls of small radius in XXI contained in 4, we can find a set B, bounded and open in
XXI, such that

¥ c BcclyBc A. (2.8)
We claim now that
Lx # N(x,A),
whenever xe (0B); and Ae [0,1], with
By, = {xe X: (x,\)e B}, for each Ae[0,1], and
(0B)y, == {xe X: (x,\)efryqB}.

Indeed, if Lx = N(x,A), for some Ae [0,1] and xe (3B)y, then (x,A)e ZNclyy (B < ZNA = Z* and hence
xe B, a contradiction.

Using the homotopy invariance of coincidence degree in the slightly more general form

" Dy (L — N(-,A),Q,) is independent of A if QcXXI is an open bounded set such that Lx#N(x,A) for
each xe (9Q), and each Ae [0,1], where Q; := {xe X: (x,\)e Q} ",

which easily follows from the definition of coincidence degree and the corresponding property of the
Leray-Schauder degree (see e.g. [90, p. 60]), then we have

Dy (L - N(-0),B,) = Dp(L - N(-,1),8;) = 0,

since equation (2.4) has no solution. Thus, we have

D (L = N(-,0),8,) = 0. (2.9)

On the other hand, by (2.5)
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Zx{0}cZ*c B
and hence 2y < By, so that

|DL(L - N(",O),Bo)l =%Xo F 0,

a contradiction with (2.9) which completes the proof. ¢

EXAMPLE 1. Assume (il), (i2) and let QX be an open bounded set with Zyc€2 and such that

Lx # N(x,A) , for each xedomLNfr,Q and Ae]0, 1[. (2.10)

In this case, the solvability of (2.4) is ensured by standard properties of the coincidence degree (see [98]).
However, we note that this situation easily fits into the framework of Lemma 1. Indeed, it is sufficient to
define ’

— dist(x,frQ) for xe Q,
P(A) ==

dist(x,frQ) for xg¢ Q ;
and observe that (i3) is satisfied and
—diam (c];,£2) < o@_, ¢, <0.
Then (2.10) implies the validity of (2.5)-(2.6) for ¢, =0 and any c_ < —diam(cl;£2). ¢

In the next Section, a particular choice of ¢ 1is considered. Accordingly, we state now some

consequences of Lemma 1 which are more directly applicable to the subsequent examples.

COROLLARY 1. Assume (i1), (12), (i3). Suppose that @ is bounded below on X and there is a

sequence (c,), of real numbers, with lim c, = +oo, such that c & @(Z) , for all ne N.
n-—y+oo

Then, equation (2.4) has at least one solution.

Proof. We immediately get the result from Lemma 1 with the choices

c_<k,with k alower bound for @(Z),

¢, =c,, for n sufficiently large. ¢
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In the next applications to the periodic problem to first order ODEs in the plane (Section 4), we deal
with a functional

¢ : XX[0,1] - R, (2.11)
which is continuous and satisfies the following property:
(i4) AR>0 such thar o(Z\ (B, R)x[0, 1]) c Z, .

We remark that in condition (i4) we do not assume the existence of points belonging to
Z\(B(0,R)x[0,1]). What we just require is that

if (x,\) is any solution of (2.1), with IxI;,2R and \e[0,1], then @(x,\)eZ..

Thus, assumption (i4) has to be considered as vacuously satisfied when X is bounded.
If (i4) holds, theﬁ, asa Consequencé, we get

@i5) IM >0 such that ¢(Z) < [0,M]UN.

In fact, it is sufficient to observe that TN (B[0,R]x[0,1]) is compact and define
M := sup{o(x,A): (x,L)e EN(B[O,R]x[0,1])}. Hence, (i4) implies (i5).
Then we have

COROLLARY 2. Assume (i1), (i2), (i4) and suppose that

(i6) ¢-L(n)NX is bounded, for each neZ,

(with @ continuous, as in (2.11)) holds.
Then, equation (2.4) has at least one solution.

Proof. It can be easily checked that (i4) and (i6), together with the local compactness of X, imply that @5
is proper, and so (i3) holds as ¢ is supposed to be continuous on XX[0, 1].

On the other hand, (i5) (which, in turns, is implied by (i4)) ensures that @(Z) is bounded below (see also
(2.11)) and that ¢, : =k + ((2n + 1)/2)¢ o), for any fixed ke N, with k> M.

Then Corollary 1 applies and the result is achieved. ¢

We also remark that under (i4) the properness of @z is indeed equivalent to (i6) (in other words, if
it is convenient, we can check (i6) through (2.3)).
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Finally, we give a further consequence of Corollary 1 which extends Corollary 2 and is motivated by
the study of the weakly coupled systems considered in Section 5. Once again, we stress the fact that the
assumptions considered here are not the most general ones but they are chosen in order to make
straightforward the application of the abstract existence results to the differential equations examined in the
next Sections. To this purpose, the following situation is considered.

2
Let X;(G=1,...,8) be closed linear subspaces of X such that X = @ X and suppose that linear
j=1
continuous projectors Hj X—> Jg , Hj(x) =X, with HHJ-II =1(G=1,..., Q) are selected, so that every
2 2
xe X can uniquely be expressed as x = ij . By the above assumptions, we have IXly<Ixly< 2 %50,
=1 =1

for each xe X. We also define IT; : XxR—X; by ITi(x,1) = II;(x).

Then we suppose that, for each j=1,...,2, there is a continuous functional @;: Xx[0,1]-=R, such that
(i*4) Vi=1,...,8,3R;>0 such that ¢j(x,\)eZ,, for any (x,\)eX with Ixjlx2 R,

(i*5) Vi=1,...,0,3 M; > 0, such that (pj(Z) C [O,Mj]uN

and

(i*6) Vj=1,...2,VneZ, IL(¢] (mNZ) is bounded,

hold.

Essentially, (i*4), (i*5), (i*6) constitute an extension of the analogous conditions (i4), (i5), (i6). All these
assumptions are motivated by some basic properties of the functional counting the number of revolutions
of a periodic solution (see (3.13) and (3.32) in the next Section). Now, we can state the following

COROLLARY 3. Assume (i1), (12), (i*4), (i*5), (i*6).
Then, equation (2.4) has at least one solution.

Proof. Letus set M : =max{M; :j=1,...,#} and define the functional ¢ : Xx[0, 1]—=R by
@A) ¢ = max{@;(xA): j=1,....2 }.

The map ¢ is continuous and satisfies (i5) (by (i*5)). Then, arguing as in the proof of Corollary 2, we
can find a sequence c, — +e with ¢ & ®(X), for all ne N. Moreover ¢ is bounded below (by
definition of ¢ ). Hence, in order to apply Corollary 1, we need to prove the properness of @5 .
Accordingly, let X—R, be a compact set and take n*e N such that %=[0,n*] . We show that
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¢-1([0,n*])NX is compact.
Indeed, consider the sets

D;: = {(x,VNeX: gi(x,M)el0, n*1} , j=1,....2,
R;:={(xMe: @;(x,M)e [0, n*] \Z.},i=1,....,8,

5§k) r={xMeZ oM =k} k=0, 1, ..,n*% , j=1...2.

n*
Clearly, ;= R;L(USS) , for each j=1,...,2.
k=0

By (i*4), we have Ix;lx = TLxlx <Ry, for all (x, Ae R;-
On the other hand, (i*6) implies the boundedness of ﬁ;-(&?k)), for every k = 0,1, ...,n*. As a

consequence, we obtain that ﬁj(@j) is bounded, for each j=1,...,¢. Hence, there is
R >0 such that

IHjxlx <R, forall (x,A)e Q)j , J=1..,0.

Finally, let (x,A)e 9-1([0, n*])NZ, thatis (x,A\)e Z and @(x,A) < n*. By definition of ¢, we have that
(pj(x,l) <n*, for each j=1,...,# and so (x,A)e @J , for j=1,...,0. By the above estimates, we get

llex< R, for j=1,...,2,
and therefore

(x,A)e B(0, 2 R)x[0,1].
Then, we have proved that ¢-1([0, n*])NZ is a bounded (and closed) subset of Z, that is a compact set
(by the local compactness of X).

As @y is proper, we have that (i3) is fulfilled and so Corollary 1 gives the thesis.
The proof is complete. M

3. Existence results

In this Section, we give a general continuation theorem for the solvability of the periodic boundary
value problem on the interval [0,T] (T >0):
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x =F(t, x) , (3.1

x(0) =x(D) . (3.2)

More specific applications are considered in the next Sections 4 and 5.

After some (standard) preliminaries, we introduce a class of functionals whose properties (contained
in Proposition 1, 2 and 3) are used for the proof of the existence results of this Chapter (Theorems 1, 2 of
this Section and Theorems 3, 4 and 5 in Sections 4 and 5).

In what follows, we suppose that system (3.1) is imbedded into a one-parameter family of
differential equations

x = f(t,x;A) , (3.3)

where Ae[0,1] and

f(t,x;1) = F(t,x) . 3.4)

The function f : [0,T]xRmx[0,1] — Rm satisfies the Caratheodory conditions, i.e. f(, x; A) is

(Lebesgue) measurable for each (x,A), f(t, -; -) is continuous for a.e. t and, for each 1> 0, there exists
B,eL1([0,T], R,) such that If(t,x;A)l <B(t) holds for a.e. te [0,T] and all Ixl <r, A& [0,1].
We also assume that system (3.3) is autonomous for A =0, that is

f(tx;0) = fo(x), (3.5)

where f,:R™ — R™ is a continuous function. Solutions of (3.1) and (3.3) are intended in the
generalized (Caratheodory) sense (see [66, p. 28]) and are called T-periodic provided that they are defined
on [0,T] and satisfy the boundary condition (3.2). It is well known that if F: RxRm — R™ g
continuous and T-periodic in the first variable, then any solution of (3.1)-(3.2) is the restriction on [0,T]
of a T-periodic solution of the class C1 defined on the whole real line.

We consider now the spaces

X : = {xe A[0,T], Rm) : x(0) = x(T)} , Mx:=l,,
Z:=LI([0,T], R™) , Iy =k,

and the operators
L:domLcX —Z , (Lx)(D) :=x(),

with domL = {xe X : x is absolutely continuous} ,

N : Xx[0, 1] = Z, N, : = £(t, x(t); 1).
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By the above assumptions on f, it follows that N is L-completely continuous, with L a Fredholm
mapping of index zero (see [98, Chapters I, VI]).
Hence, with the notations of Section 2, we have that
% = {(x,A\)edomLx[0, 1]: x = f(t, x; ), x(0) = x(T)}
and

Ty = {xedomL : x = f3(x), x(0) =x(T)}.

Observe that every x(-)e Z, is actually of class C! and satisfies x(0) = x(T) as well.
Then, condition (i1) is fulfilled if and only if

(h1) d1y>0 suchthat Ixl,, <1y, for every T-periodic solution x(-) of

x = f(x). (3.6)
In this case, ZqcB(0,1¢).
Since every ze R™m such that fy(z) = 0 is a T-periodic (constant) solution of (3.6), from (h1) we have
that the Brouwer degree dg(fy, B(0,r), 0) is defined and is constant with respect to r 21y .
At this point, we can use Theorem 1 in Chapter 3 (with X = X and Z = Z) according to which, for each

r2ry,
ID; (L — N(-, 0), B(0, D)l =ldg(fy, B(O, 1), 0)I (3.7)
holds, provided that (h1) is assumed (see Theorem 1 in Chapter 3). Finally, by (3.7) we have
%o = ldg(fy, B(O, 1), 0)l, forany r=r1, (3.8)

and so (i2) is equivalent to

(h2) dg(fy, B(0, 1), 0) # 0, forany t271,.

REMARK 1. We notice that, in some of the subsequent applications, the validity of (h1l) will be
guaranteed by means of

(h*1) I 19> 0 such that every periodic solution (of any period) x(-) of (3.6) satisfies

x()e B(O,rp)cR™ , VieR .
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In this case, (3.7) can be obtained without invoking Theorem 1 in Chapter 3, but just using standards
properties of the coincidence degree (see, for instance, [55, pp. 28-29] or [145, p. 208]).

We introduce now a suitable class of functionals ¢ : Xx[0,1]—-R in order to apply Lemma 1 and its
corollaries.

Let m>2 and let 1, ve R™\{0} be two (fixed) orthonormal vectors.
We set, for any xe R™,

Xn = xM), Xy = (&WV) (3.9)
£ (tx;A) = (f(tx2) | n), f,(txA) = ({fEtxA) 1v). (3.10)

Observe that if x(-) is a solution of (3.3) then

Xn(0) = £, (6x(0);1)
(3.11)
xy(1) = £, (tx (1),

holds (with x,(t) := (x()) and x,(t):= (x(t)lv) defined from (3.9)).
Then, we define, for (x,A)e Xx[0,1],

T
Py h) = 517;1 [ (® £ (6xO:R) = xy(©) £ (6D 8k (D%, (D),
0

where & : R?>-R" is defined as follows:

1 for a2+b%<1,
(o) 1= (3.12)

-1 fora2+b221 :

Clearly, with the above positions, we have:

T
Py (KA) = 51; Ia[[xnm £, (6X(D;2) = x,(®) Fy(tx(©:M)] [ (0 +x,07)atl,  (3.13)

for any x(-)e X such that
xn (3,072 1, ¥ te[0,T], (3.14)

holds.
It can be easily checked that
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O : XX[0,1]10R, is continuous.

Moreover, @ vy = Py q) fOr any pair (1,v) of orthonormal vectors.

REMARK 2. The functional @y ) defined above is a modification of the classical map which counts
the number of rotations around the origin of the solutions of (3.11) (see [80, § 3.14-3.15], [38, § 2.5-
2.10]). Actually, some fundamental properties of the standard "angular function” are preserved, since we
have the following

PROPOSITION 1. Let (x,A)e X be such that xn(t)2+xv(t)221, for all t€ [0,T]. Then, @ yEZy.

Proof. We introduce polar coordinates (6,p) in the (1,v)-plane such that

xn (1) = p(t)cosB(), x,(t) = p(t)send(v), (3.15)
with
P = (xn(®+x, ()2 (3.16)
and
8() = arg(x,(0/p(® + i x,(H/p(V), (3.17)
provided that
(xq(0),%y(9)) # 0, for all te [0,T]. (3.18)

We note that we can suppose that p, 6 : [0,T]—R are absolutely continuous functions such that

p()>0 Vit andp0)=p(M), [6(T)-6(0)]/2r € Z (3.19)

hold, whenever X Xy [0,T]—>R are absolutely continuous, with xn(T) - xn(O) =x,(T) = x,(0) =0

and (3.18) is fulfilled. Hence, in this case, (3.15) is well established and, by standard computations, we
easily get

80 = [ky(0%n (D) = X (0%, (0] 7 [x (0 42,071, (3.20)

for a.e. te [0,T].
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Suppose now that (x,\)e T and (3.14) is satisfied (as assumed in Proposition 1). Then, from the
definition of &(:,-) in (3.12), we have that (p(n,v)(x,?») can be computed by (3.13) and so, using (3.11)
and (3.20), we obtain

T
Py (KA) = 21— l!é(t)dtl =16(T) - 8(0)l / 2n € Z, (3.21)
T

(recall (3.19)).
Therefore, Proposition 1 is proved. ¢

We remark that all the discussion about polar coordinates performed in the above proof (from step
(3.15) to step (3.20)) is completely independent of the assumptions in Proposition 1 (actually, such
arguments lie on the validity of (3.18)). Accordingly, in what follows we can employ (3.15)-(3.20)
without making explicit reference to the hypotheses of Proposition 1.

Now, we give some conditions which lead to the evaluation of upper and lower bounds for
Q(n.v)(X-A) when (x,\)e X and (xn(t)2+xv(t)2) is large. These estimates, which are a consequence of the
form of the nonlinearity f, will be used in Sections 4 and 5. Namely, we have

PROPOSITION 2. Suppose that there are a constant Ky > 0, a continuous function © : S-SR+
and a measurable function ye L1([0,T],R,) such that one of the following inequalities holds for a.e.

t€[0,T], all Ae[0,1] and each xeR™ such that Ix Jh=(xo+ xp'* 2 Ko :

(wl) =y <f, xA) - —X;ﬂ— (6 XA) - Xﬂ < oy (1) (lxm|@( ol nv)”@
Xy X Xy

W3) R X0 iy = fy(t x5 ot 2 o0 lxn’vl(a(‘x;lvl , lxn,vl)"w)

(wd) £t x50) - —nﬂv— fat, ;1) - ,Xx T S-mO lxnvl@)(lx ,lx:Vv|)+y(t)

where, for each Ae[0,1], ;e LI([0, T], R) and satisfies

T
[ans) ds > 0.
0
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Then, for every € >0, there exists a constant Ry 2 1 (independent of x and ) such that, for each
(x,\)€ X satisfying

xy (2 + x, (02 2R, forall 1[0,T], | (3.22)
it follows that
T B
O (nv)(Xs A) < J(ax(s) / 2 (@) ds + ¢ (3.23)
in case (wl) or (wW2), and
T
Pin)X ) 2 n"'(oc;‘(s) /2:rc (®))ds —¢ (3.24)

in case (wW3) or (w4).
Proof. We prove only (3.23), assuming the validity of (wl). The investigation of the other cases is

omitted, since it can be performed by obvious modifications of the argument developed below.
We consider the positive constants

A = max {1, Ky}

and

o : =min{©(a,b): (a,b)e St}

and suppose that (x,A)e X satisfies

xq (D2 + x,(52 2 A2, for all te [0,T]. (3.25)

Using polar coordinates for (xp(t), x,(t)) as in (3.15), we can compute é(t) by (3.20), with x;(t) and
x,(t) given by (3.11). Thus we obtain, for a.e. te [0,T],

8D = [£,(t, x(1); 1) cos8(t) — £(t, x(0; 1) sinb(®)] / p(v).

Hence, from (wl) we get
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“YO 28 < 0amO(cosh® , Si“e(tw}%'

p(t)

Then, dividing by ®(cos6(t),sin6(t)) and recalling (3.25) and the definition of ©, we have

0N 0 <@ + X (3.26)
cA  ©O(cosB(t), sinb(1)) A

We integrate now (3.26) over [0,T] and obtain

T

é(t)
_hi /oA < -
/oA < J ©(cosb(1),sind(t)) t

0

8(T) T

de
" J©(cost,sind) ds |+ (i/GA).
J@(cosﬁ,sine) : (Jax(S) SJ'F('YH CA)
8(0)

For the rest of the proof, we set

2n T

do
Li= [— = =27(0), * :=Oja (s)ds.
J@(cosG,sinG) ©h o *

0

From (3.19) in Proposition 1, we have that
6(T) — 6(0) = 2kt , for some ke Z,
where (by (3.21))

Ikl = vy (KA.

Hence, the above inequality can be written as

—~I; /oA <kL <71y + (,/0A)

(using, in this step, the fact that ©(cos6,sinB) is 2n-periodic) and, dividing by L, we get

— Il /oLA < k < (ty/L) + (Wl / oLA).



- 118 -

Now, let € >0 be given. Without loss of generality, we can also suppose that €<1. In this case,
choosing A > Iyl;/cLe, we obtain

—1<-e<k< (/L) +e
and so, recalling that ke Z we have
k=1Ikl= (p(n'v)(x,X) < (t/L) +&.
In the same manner, it is possible to prove that
—k =kl = @)(xA) S (/L) + €
holds in case (w2), while

k=1Ikl= cp(n'v)(x,X) 2(ty/L)—¢
and '

—k =1kl = @yl 2 (/L) — ¢

follow from (w3) and (w4), respectively (assuming 0<e<1, t00).
The proof is complete. ¢

From the above argument it is clear that, in condition (w1) (respectively, (w2)), the existence of a lower
bound (upper bound, respectively) for

2 2
(fyxpq = fxy) / (Xﬂ + xv)l/ 2

is employed only in order to prove that k = Ikl (respectively, — k = Ikl ), where k = 6(T) - 6(0) is the
number of counter-clockwise revolutions of (xn(t),xv(t)) around the origin in the (1,v)-plane. Thus
(3.23) can be achieved without assuming the validity of the left-hand side inequality in (w1) or (w2),
provided that we are able to detect, in another way, the sign of k. This purpose can be accomplished if,
for instance, the lower bound in (w1) (upper bound in (w2), respectively) is replaced by a condition like
(w3) (or (w4), respectively). This remark will be used for the proof of Theorem 4 in the next Section.

At last, we observe that in the particular case when

o, () = o) = constant w.r.to Ae[0,1],
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it is possible to obtain more precise conclusions from (w1), (w2), (w3), (w4). Namely, in such a situation

we have that
T
Py () < Ja(t)dr / 2m(®) (3.27)
(for (w1) or (w2)) and
T
Py (N 2 dfa(t)dt /27 (©) (3.28)

(for (w3) or (w4)) hold provided that (x,A)e T satisfies

Xn (02 + %, ()2 2 Ry?, Ve [0,T],
with Ry21 a suitable constant (independent of x and A).
This result easily follows from (3.23), (3.24) (respectively) for € sufficiently small, taking into account
that @(x,\) is an integer (for Ry 2> 1, by Proposition 1).

After this preliminary list of the basic properties the functional ®(n,vy » We are in position to state the
main results of this Section. To this end, we confine ourselves to differential systems in spaces of even
dimension. Accordingly, from now on, let us suppose

m =20 (3.29)
and set, for any j=1,...,0,
Q= ‘P(@zj_lvej) (3.30)
where {ey,..., ey]) is the canonical orthonormal basis in R™, At the same time, we observe that
Xepiop = Xajo1 = (Xlegj ) 5 Xep, = %o = (xleyy),

fezj_l = f2j—~1 = (ﬂ62j-1) ’ erj = f2_) = (ﬂe2j)’

so that, for the pair (€2i-1» €23) , system (3.11) reduces to
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).(Zj—-l(t) = fzj_l(tax(t);)\')
(3.31)

X5(t) = f2;(t,x(1);1).

If m>2, we have further to require the following assumption (h*3), which essentially appears as a
Caratheodory condition on (fy; ;.f5;), uniform with respect to the x,-components, for k # 2j-1, 2j:

(h*3) Vj=1,..,2, Vr20, 3B,eLi([0,TI,R,), such that
|(f2j_1(t,x;7\.) s fzj(t,x,)\«))l < ﬁr(t)
holds for a.e. te [0.T), all A& [0,1] and each xe R™ such that |(xgj1,xa)I<r.

Then we have

THEOREM 1. Assume (h1), (h2), (h*3) and suppose that for every j=1,.. .,@ the following properties
are satisfied : ‘

(h*4) V1,20 3r1y,>1, such that, for each (x,\)eZ,

min 1(x5; 1 (1), x;()] £ 1 = max (x5 1 (0, X <135
[0,T] [0,T]

(h*5) VneZ, 3K, 20 such that, for each xMNeZ,

(PJ(X’}\’) =n = min l(ij_1<t), ij(t))l < Kn .
[0,T]

Then, (3.1)-(3.2) has at least one solution.
As for the meaning (and fulfilment) of the above hypotheses, see Remark 3 below.

Proof. We apply Corollary 3 of Section 2.
Accordingly, we consider the subspaces XjCX (G=1,...,2) defined by

Xj:= {x() = col(x("))e X: %, =0 for ke {2j -1, 2i}} .,
with projections Hj : XX, G=1,..2),

(HJX)(t) L= XZj—l(t) er——l + ij(t)ezj
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and see that all the structural assumptions are satisfied. The functionals @;: Xx[0, 1]1-R,, (=1,...,2),
are the same as in (3.30).
We have already observed that (il1), (i2) are equivalent to (h1), (h2) (respectively). Moreover, (h*4) and
(h*5) clearly imply the validity of

(h*6) VineZ, 3C,20 suchthar max l(xy; 1 (1) , () < C,,
[0,T]

for each (x,\)eX such that (pj(x,?\) =n,
where the constant C, is obtained as r, in (h*4) when K, (given by (h*5)) plays the role of r;. Since
(h*6) is just a translation of the assumption (i*6) in Corollary 3, it is sufficient to verify the validity of
(i*4) and (i*5).

Using condition (h*4) with r;=1, we can find a suitable r, =T such that if (x,\)eZ satisfies

Mxlx = max I(x9;_1 (1), X0 > T,
[0,T]

then
Xp;-1(02 +xp;()2 2 1, for all te [0,T]

and hence Proposition 1 yields (i*4) with R;> T (j=1,...,2).
If we define now, for every j=1,...,%,

M; @ = sup{@;(x,\): xeX, e [0,1], with Mxlx < T},
from the definition of @; (=1,...,8) we get M <+eo, as

using (h*3). From this choice of the M; , we immediately get (i*5), using again Proposition 1. Then
Corollary 3 can be applied and the result follows. ¢

We note that in the two-dimensional case (m=2) assumption (h3) is contained in the Caratheodory
conditions which are requested at the beginning of the Section. In this case, we can state a simplified
version of Theorem 1, using Corollary 2. Moreover, for m=2, we consider a functional

(‘P = @(61,32)’

which is defined as follows
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T
PG : = -2-1- Oj(f(t,x(t);x) | Ix(0) S(x@®)dt| (3.32)
T
with & likein (3.12)and J: R? 5R? represented by the symplectic matrix
0 -1
J:= J .
1 0
Then we have the following existence result which ensures the solvability of
x =F(, x) (3.1)
x(0) =x(T) (3.2)
via the "continuation" through
x = f(t,x; &), Ae[0,1] (3.3)

with f Caratheodory and such that

f(tx; 0) = fo(x), £t x; 1) =F(t, x).

THEOREM 2. Ler m =2 and assume

(h1) J1y>0 such that Ixl,, <ty for every T-periodic solution of x = f(x);
(h2) dg(fp, B(O,1), 0) # 0, for any 1219 ;
(h4) V1,20 31,21, such that, for each x(-) solution of (3.3)-(3.2) (with A [0,11)

min (x;(0)2 +x,()2)12 <1 = Kl <153
[0,T]

(h5) VneZ, 3K, 20 such that, for each x(-) solution of (3.3)-(3.2) (with Ae[0,1])

(P(X,)\.) =n = min (Xl(t)z + Xz(t)z)llz < Kn
[0.,1]

(where @ is like in (3.32)) .
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Then, (3.1)-(3.2) has at least one solution.
The proof is omitted since it is essentially the same as that of Theorem 1 .

We end this Section with some remarks concerning the fulfilment of the above conditions.

REMARK 3. Assumptions (h*1), (h*2) or, respectively, (h1), (h2), concern the autonomous system
x =fy(x) and will be checked by a direct analysis of the vector field f,. The structural hypothesis (h*3)
depends on the particular form of system (3.3) and is satisfied in the case of weakly coupled systems.
Conditions (h*5) and (h5) will be obtained with the aid of Proposition 2. Finally, we examine (h*4) and
(h4).

These assufnptions are somehow related to the global forward (or backward) continuability on [0,T],
uniformly in A, of the solutions of the Cauchy problems associated to (3.3). Roughly speaking, (h*4)-
(h4) mean that it is possible to find an (uniform) upper bound for the solutions of (3.3)-(3.2) provided that
we are able to bound the solutions at some point. This situation already occurred in [102] where the result
is achieved by the use of a suitable Liapunov-like function (see also [98, Chapter VI], [58] for a more
extensive development of such technique related to the concept of guiding function [79,81]). In the light of
the above quoted papers we give an auxiliary result (Proposition 3 below) for the validity of (h*4), (h4).
The proof is performed in the case of equation (3.11) in order to ensure the applicability of our result to
planar and higher order systems. Accordingly, we use the notation Xn s Xy s fn’ f, givenin (3.9), (3.10),
where (1,v) is a pair of orthonormal vectors in Rm (m > 2). The set of solutions of (3.3)-(3.2) is
denoted by Z, as usual. Then we have the following

PROPOSITION 3. Ler V:R2 — R be a continuously differentiable function, with
VV =(V,, V), satisfying

(v1) im V(@) = +oo

[Zl—too

(for ze R2) and assume that there are a constant K >0 and a measurable function ce L1([0,T], R,)
such that the inequality

(v2) Vi (s X E(6XA) + V(i %) B (6X0) < 6 [V (xp, )1

holds for a.e. t€[0,T], all Ae[0,1] and each xeR™ such that xi + xf >K2.
Then,V 120 31,21, suchthat, for each (x,\)e X
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min (x, (t)2 + X, (D)2 <1 = max(x,(D? + %, ()2 <13 .
[0.T] [0,T]

Proof. using (v1) we can find a constant K; > K such that [V(z)l >0, for all Izl 2 K;.
Next we define

W(z) =log V(@)

and observe that
Im W(z) =+ (3.33)
lzl—tee
and
VW(z) =V(z)!-VV(2), (3.34)
with W : R2\B[0,K;] =R ofclass C1L
Let (x,A)e X be such that
min (x, ()2 + x (V2 <1y (3.35)
{0,T]
and fix a constant ¢; with
c; > max {r,K;}. (3.36)

Finally, we choose ty = to(x,A) such that

(xn(to)? + %, (1)) 12 = r[g{lr)]((xn(t)z +xy (D)2 1 = M(x).

If M(x) > ¢q , using (3.35) and (3.36) we can find t;€[0,T] such that
(Xﬂ(t1>2 + Xv(t1)2)1/2 = Cl.

Moreover, we note that by (3.2) we can always choose ty and t; such that the sign of ty—t; is the same
of that of V(z) for lzI>2K; and

(D2 + %, (D22 > ¢ for te[ty,tp] (or te [to.t, -

Now we consider the absolutely continuous function

w(t) 1 = W(xn(0),%,(1)
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for te[ty,to] (or te [ty t;], respectively) and, using (3.34) and (v2), from (3.11) we obtain

o
W(to) = W(tl) + J.V.V(S)ds < W(tl) +
B!

to

[o(s)as| <
2!

<max {W(2): lzl =¢;} +lcl; :=¢,
(see [98, p. 65] for a similar computation).
From (3.33) we have that there exists a constant K, 2 K; such that W(z) > ¢, for Izl > K, and hence
we get

(xq(t)? +%,(9)2) 2 < K, .
Thus the result is proved for

1, : = max{cy, Ky }. 3

Extensions of Proposition 3 could be easily obtained by suitably adapting the arguments dcvelopéd in [98,
Chapter VIJ; however, our result, as stated above, is sufficient for all the applications contained in,f.the next

Sections. In particular, Proposition 3 applies whenever the field (fn,fv) is quasibounded in' '(xn,xv),
uniformly with respect to the rest of the variables, that is when :

(E (602 + £, (LXVDI2 < a(D)(x, +X)H2 + b(D) (337

holds for a.e. te [0,T] and all xeRm™, Ae[0,1], with a(-), b(-)e L}([0,T],R,).
Indeed, from (3.37) we get (v1) and (v2) by the choices V(z) = 1zI2, K=1, o(t) = 2(a(t) + b(1)).

4. Applications to planar systems
In this section we give some corollaries of Theorem 2 of the periodic BVP

x(0) = x(T), (4.2)
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where h : [0,T]xR2 — R? satisfies the Caratheodory conditions and J = ((1) —(1)) is the previously

considered symplectic matrix. We also set @ := 21/T.

Systems of the form (4.1) naturally arise when dealing with the second-order scalar equation
u+ gtuw=0 (4.3)
in the phase-plane: X; = u, X, = u. In this case we set, for x = (X1,X9),
h(t,x) : = (g(t.x1,X2),X2)
and condition (4.2) corresponds to the T-periodic boundary condition, for equation 4.3),
u(T) — u(0) = uw(T) —u(0) = 0. (4.4)

Other possibilities to settle (4.3) into (4.1) are explored in the next examples 2 and 5. In any case,
however, the equivalence between (4.4) and (4.2) will be guaranteed.

In what follows we treat two different cases, according to the fact that the nonlinear map h(t,x) has linear
or superlinear growth at infinity. In order to make more transparent the use of the continuation theorem,
- we do not consider the most general hypotheses for the solvability of (4.1)-(4.2). Actually, we prefer to
focus our discussion on some assumptions which are meaningful for the examples, avoiding, at the same
time, cumbersome technicalities.

We recall that U, {Q) indicate, respectively, the mean value of ue L'([0,T],R) and the integral average of
1/Q on the unit circle S, for Q : domQ>S >R

4.a. Equations with linear growth

Through this subsection, we consider the growth restriction

GO) limsup Ih(t,x)l / x| < (D), uniformly a.e. int€[0,T],

x|+

with #e L1([0,T],R,).
Our main result is the following.

THEOREM 3. Assume (j0). Let S, S, : RZ5R be positively homogeneous functions of degree two
which are positive definite and satisfy

S1(x) € S,(x), for all xeR2 (4.5)
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Let oy, 0ie L1([0,T],R) be measurable functions with

o < 0y, (4.6)
such that
Gy liminf (h(t,x)Ix) / S1(x) 2 (1)
fxlo4eo
and
G2) limsup (h(t,x)Ix) / So(x) < a,(t)
. [xl—stoo

hold, uniformly a.e. in t[0,T].
Then, (4.1)-(4.2) has at least one solution, provided that

G3) [0./(S1), %/ Sl NwZ = 0.
Assumption (j3) can be viewed as a generalization of the classical hypothesis of non-resonance with
respect to the spectrum of the differential operator x—Jx with the T-periodic boundary conditions. This

aspect will be clarified through some examples.

Proof. From (4.5) and (j3) it follows that 00, > 0. Thus, we confine ourselves to the case in which
0<oy £Q,. 4.7)
If ;<0 for i=1,2, the proof is completely similar and so it will be omitted.

In order to apply Theorem 2 we have to introduce an appropriate homotopic vector field f(t,x;A). To this
end, we define

S(x) := ($1(x) + S,(x)) / 2,
a(t) := (o (1) + an(t)) /2

and set

- . ,f 0
£4(x) : = { o S(x/Ix) - Jx or X #

0 , for x =0
and, for Ae[0,1],
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f(t,x;0) = (1 = Mfy(x) — AJh(t,x).
As usual, we denote by X the set of the pairs (x,A), where x(-) is a T-periodic solution of
x = f(t,x;\). 4.9)

Observe that f(t,x;0) = f(x) and that (4.8) becomes (4.1) for A = 1.
At first, we check condition (h4) in Theorem 2. Indeed, by (jO) and the definition of fy(x), and using
also the Caratheodory hypotheses for h(t,x), we can finda, b € L1([0,T],R,) such that

If(t,x; )1 < a(t)Ixl + b(t),

for all xeR2, Ae [0,1] and a.e. te [0, T].

Hence, we can apply Proposition 3 via (3.37) and (h4) is fulfilled.

Secondly, we prove (hS5).

Using the homogeneity of S(x) and recalling the definition of the functional ¢ given in (3.32), we can

write

T
O(x,A) = (1/21) IJ[(l — MES(x(s)) + A(h(s,x(s)) | x(s))]- 8(x(s))dsl,

with 8 as in (3.12). The needed estimate for ¢ is now obtained by means of Proposition 2. Having this in
mind, and using (j3), we fix €>0 such that

[&I—e_ 0, + €

£, +e]nZ =0. (4.9)
o(Sy) o(Sy)

Observe that (T; — €)/a(S;) > € by (4.7) and (4.9).
From (j1) and the Caratheodory conditions on h(t,x), it follows that there is B;e L1([0,T],R,) such that

(h(t,0Ix) = (0y(8) —€) $;x) — By () Ix],

for all xe R2 and a.e. te [0,T].
Hence we have, for x20, A [0,1] and a.e. te [0,T],

[£,(tx;M)%; — £ (LxsA)x,] / 1xl = = [(1 =) & S(x) + Mh(e,x)x)] / Il
<—[(1=A) TS, (x) + Aoy () — £)S1(x) — By (©) IxI] / Ix]
=—[(1 =) @+ Moy () —&)] IxI Sy /xl) + By ()
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(recalling also that S(x) = S;(x) from (4.5)).
Thus, we are under assumption (w4) of Proposition 2 and we can conclude that there is a constant R;>1
such that, for each (x,A)e Z satisfying

x(H)l 2R, for all te[0,T],
it follows that

(_il ) _
o{Sy)

o) 2 ([ -0 @+ M@ —e)] /o (S)) —¢€ =

On the other hand, from (j2) and the Caratheodory conditions on h(t,x), it follows that there is
B,eL1([0,T],R,) such that

(h(t,0)1x) < (ata(t) + €) S(x) — By (D) Ixl,

for all xe RZand a.e. te [0, T].
Hence, arguing as above, it is possible to find a constant R,>1 such that

0, + €
(Sy)

oA < ([ -2) @+ M@, +8)] /0 (Sy) +¢ < +e,

for each (x,A)e T satisfying
Ix(t)l 2R, for all te [0,T].

(In this case, we use (w2) and the remark at the end of Proposition 2).
Now we set

R :=max{R; R,}

and claim that (h5) is fulfilled by taking, for any ne Z,, K, =R.
Indeed, let @(x,A) = ne Z, with x(-) solution of (4.8)-(4.2) and Ae [0,1]. If, by contradiction,

0 — € Oy + €

minlx(t)| > R, then, from the above inequalities, we get —e< O(x,A) £
[0,T] a(Sy) (Sy)
(4.9), we have @(x,A)¢ Z, a contradiction.

+ € and so, by

In this manner, (h5) is proved. We note that, by means of the above argument, we have also proved that

minlx(t)l <R for every (x,\)e Z. This fact, together with (h4) implies the existence of a priori bounds for
[0.T]
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the T-periodic solutions of (4.8), that is there is r,>0 such that Ixl_<rg, for every (x,A)e Z (use (h4) with
r;=R and choose 1y = ry+1). Thus, in particular, for A =0 we get (h1).

Finally, we prove (h2).

Indeed, it is sufficient to observe that, from the definition of fy(x), we have

~(1 = Wz + pfy(2) 0,

for all pe[0,1] and Izl = r 2 1y (with 1y the constant considered above). Hence, by the homotopy
invariance of the Brouwer degree we obtain that

%o = ldg(fy, BO,R), O)l = ldp(~J, B(O,R), O)l = 1,

for any r 2 1.
Therefore, all the assumptions of Theorem 2 are fulfilled and the proof is complete. ¢

REMARK 4. Theorem 3 is closely related to some recent results by C. Fabry [43] and A. Fonda and P.
Habets [47], where the existence of a priori bounds for the T-periodic solutions of (4.1) is achieved by a
phase-plane analysis in which the use of the "time-map" is crucial. Another analogy with [47] comes from
the fact that a comparison with positively homogeneous functions is performed (see [47, § 4]). However,
with respect to [47, Th.1], some componentwise conditions which are required for —Jh are replaced here
by similar assumptions on the scalar product (h(t,x)Ix).

In the next example, we set, for ve L™([0,T],R),
v« : =essinf v(t), v*: = esssup v(b).

[0, T] [0,T]

EXAMPLE 2. Consider the second-order scalar equation

%(W(t)ix) +gt,u)=0 (4.10)

where w(t) is é positive function (sufficiently smooth) with w(0) = w(T) and g:[0,T]xXR - R isa
Caratheodory function satisfying

I'y() < liminf w(t) g(t,u)/u < limsup w(t) g(t,u)/u < I'(1),

[ul—+o0 ful—+o0

uniformly a.e. in te[0,T]. We assume that, for i=1, 2, [;e L™([0, T], R) and are such that
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0 <(T)* < (T« and T /w) < Tow) . (4.11)

Then, (4.10) has at least one T-periodic solution provided that

[T/ /1 (@TH?, Ty (TN 1N ez, =2 . (4.12)

This result is essentially contained in [43, Th. 2], where w(t) = 1 and (4.11) is replaced by the (more
general) condition (I'})* >0, (I',)« > 0. By standard computations, it can be easily checked that the result
fits into Theorem 3 when the following positions are made: x = (x;,X,) := (u,wi),
h(t,x):=(g(t.x,), Xp/W(1), S1(x) 1= (CP*xF + %5, Sp(x) = (T) X, + X5, aq (D) := T1(0) / (T w(t),

o(t) 1= I'p(t) / (I'p) ,w(t). In this case, (4.12) ensures the validity of (j3). For the computation of (S;)
(i=1,2), it is sufficient to recall that

2n
1 de 1

21 | acos?® +csen’® ac
0

(see [5D). e

EXAMPLE 3. Consider the second-order scalar equation
U+ b(tud) i + g(tu) = pltu,i), (4.13)

where b, g and p are Caratheodory functions, with b, p bounded and g satisfying (uniformly a.e. in t)

a_ < liminf g(t, u)/u < limsup g(t, u)/u < a-
U—>—o0 U—r—o0

a, < liminf g(t, u)/u < limsup g(t, w)/u < a*,
U—>+oo U—rtoo

with a, and a* positive constants. Let B >0 be such that

Ib(t, u, v)I £ 2B,

for all u,veR and a.e. te[0,T].
If we also assume that a, > BZ, then (4.13) has at least one T-periodic solution provided that there is
keZ, such that
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T

L +
200D~ Van? cos~1(B/ Va*) <

cos~1(B/Ja~) +

1
-
(4.14)

IA

cos~1(-B/+a_) +

2
a-B+ a,—

T
—1(_ —
cos~1(-B/+[a,) < K -

2

This result is a slight variation of [47, Proposition 2]. It can be easily deduced from Theorem 3 by the
following positions: x = (x5, X,) : = (u, 0) , h(t, x) : = (b(t, X, X)Xy + &(t, X;) — p(t, X1, X2), Xp),
oy =0y =1,

. ,
a_x%—-Zlell X, + x% , for x; £0 ,
Six):= A )
a, x> —2Blxql Ixyl + x5 , for x; 2 0 ,
Y
(a-x2 + 2BlIx,| Ix,! 2 f <0
a-xjy + Xl Ixpl + x5, for x; < ,
So(x) @ = X ,
a+x% + 2BIxyl Ixpl + x5 , for x; 2 0

\

In this case, (4.14) ensures the validity of (j3). The computation of (S;) (i = 1, 2) is reduced to the
estimate of integrals of the form

/2
de 1
= cos~}(zBAA) ,
j Acos20 + 2BcosOsinb + sin20  VA-B2
0
with A =a,, a* (see [5,47)). ¢

For related results, see [47,61].

4.b. Superlinear equations

In this subsection we deal with equation (4.1) in the case when the growth restirction (jO) is no more
satisfied.
For simplicity, we confine ourselves to the investigation of perturbed Hamiltonian systems with

superlinear growth. More precisely, we suppose that

(HO) h(t,x) = V HX) + p(t,x) ,
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with H: R? - R ofclass C! and p: [0,TIxR2— R2 a Caratheodory function. We also assume

(H1) lim [H&) =+eo,
[xl— +oo
(H2) VHX) #0 ,for xl21y>0,

(=Jp(t,x) 'V H(x))

(H3) limsup IE1E9)

IXl— o0

< R(t) ,uniformly a.e. in te[0, T],
with 2eL1([0, T],R,).
Besides the notations previously introduced, we also denote by
ut(s) : = max{u(s),, 0} , u<(s):=max{-u(s), 0},
the positive and the negative part of a function u(-) : domu(-) = R .

Our main result is the following

THEOREM 4. Assume (HO), (H1), (H2) and (H3). Suppose that there is a sequence {S,} of
positively homogeneous functions of degree two which are positive definite and there is a sequence
{o,) of Lebesgue integrable functions such that, for each neN,

(H4) lining (VH(x) IXS) zx()p(t,x) Ix)~ > ()

1X|—+o0

holds, uniformly a.e. in t[0,T] .
Then, (4.1)-(4.2) has at least one solution, provided that

(H5) lim @, /(S,) =+

n~3+e0

Proof. We apply Theorem 2 and so we introduce an appropriate homotopic vector field f(t,x;A). To this
end, we set, for Ae[0,1],

£(tx;0) 0 = = J(V HE) + Ap(t, ) + (1 = A) go(x) , (4.15)

where
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qo(x) : = (E(@H(x) / 9x;) , E(dH(x) / 9x5))

and E :R — R is a continuous function, bounded in R and such that E(s) - s <0 for s 0 (we could
take, for instance, E(s) = — tg-1(s)). By these assumptions, we get

Igo(x)| € By, for all xeRZ, (4.16)

with E;>0 a suitable constant and, from (H2),

(qox) IVH(®)) < 0, for Ixl = 5. 4.17)
From the above positions, we have that

f(t,x;1) = - J-h(t,x)

and

f(t,x;0) : = fd(x) = qo(x) — J-VH(x) .
We consider now the autonomous system

x = f5(x) . (4.18)

By (H1) and (4.17), we are in the situation met in the guiding function method for (4.18), according to
Theorem 4.3 and Corollary 4.4. of [131, p.188]. The proof of these theorems shows that the possible T-
periodic solutions are a priori bounded by ryand the corresponding coincidence degree is equal in absolute
value to the Brouwer degree of VH, which itself is equal to 1. Therefore, (h1) is satisfied. Moreover,
using also the fact that (fp(x) | VH(x)) < 0 for x>r;, we get

Yo = ldg(fp, B(0, 1) , 0)l = ldg(VH, B(0, 1), 0)l =1, for every r2r,.

In this manner, (h2) is proved.

In order to prove (h4), we use Proposition 3 with the obvious choice M =¢;,V =¢;,
X =Xp,Xy =%y and V(x) : = H(x). Clearly, in this case (v1) is exactly (H1). On the other hand, from
(H1) and (H3), we get that there is R > 1 such that

(= Jp(t, x) | VH(x)) < (2(t) + 1) [HX)I,

forall IxI=R and a.e. te [0,T] . Hence, recalling the definition of f(t,x;A) givenin (4.15) and using also
(4.17) we obtain that
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(f(t, x; M) I VHX) < (@) + 1) [H&)!,
holds for a.e. te [0,T] , all Ae[0,1] and each xeR?2? with Ixl 2 R . Thus, (v2) is satisfied with
o(t) :=R() +1 and K :=R and therefore (h4) of Theorem 2 is fulfilled.

Finally, we prove (h5). As usual, we denote by I the set of T-periodic solutions of x = f(t,x;\A),
A [0,1] . Recalling (4.15) and the definition of the functional ¢ given in (3.32), we can write

T
J [(VH(x()) + Ap(s,x()) 1 %(5)) = (1 = M) (qp(x()) 1 Ix())] 8(x(s))ds

1
A = —
o(x, A) -

with & asin (3.12). Now we produce estimates from below for ¢ using Proposition 2.

At first we observe that, from (HS5), we can suppose (passing possibly to a subsequence), that, for each
ne N,

O,/ 0(Sy=2n+1.

Then, for each ne N, we can choose €,> 0 such that

a‘n — &j >
o (Sp)

From (H4) and the Caratheodory conditions on p(t,x), it follows that for each ne N there is
B, LI([0,T], R,) , such that

(V HE) 1 x) - (p(t, x) 1 x)7 2 (0, (6) —£,) S,(x) — B(®) Ix! ,

for all xeR? and a.e. te[0,T] .
Hence we have, for x # 0, Ae[0,1] and a.e. te [0,T],

[£2(t, x5 A)xy — £y (8, x5 A)x,] / Ik

—[((V Hx) | x) + MPp(t, x) 1x) — (1 = A)(qpx) 1Jx)] / IxI
= [0t (t) — £,)S,(x) — B IxI = Eg Ix1] / IxI
— (0 () — &) IxI S(x / IxI) + (Eg + Br(t)

IN A

(recalling also (4.16)).
Thus we are under assumption (w4) of Proposition 2 with o (t) : = ot (t) — &, (constant with respect to

e [0,1]) and ¥(t) : = Eq + B, (). Accordingly, we can conclude that there is a constant R, =1 such that,
foreach (x, M)eX satisfying
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Ix(H) =R, for all te[0,T], (4.19)
it follows that
o — ¢
O(x,A) > —"—=2>n (4.20)
(S,

(observe that we have used the remark at the end of Proposition 2 and that (4.20) corresponds to (3.28)).
Now we claim that (h5) of Theorem 2 is fulfilled by taking, for any neZ,, K, =R_,. Indeed, let
o(x,\) =neZ, , with x(-) T-periodic solution of x = f(t, x; A) for some Ae[0,1]. If, by contradiction,

min x(t)l > R, , then, from (4.20), we get ¢©(x, A) = n + 1>n, a contradiction. Therefore, (h5) is
[0,T]

proved. Thus, all the assumptions of Theorem 2 are satisfied and the proof is complete. ¢

REMARK 5. It can be easily checked that our result is still true if the hypothesis (H4) is replaced by

+
(H'4) limsup (VH() 1 x) + (p(t.x) | %) < — o, () ,uniformly a.e. in te[0, T] .

Ixl—>+eo Sn(x) B

In this case, the only change in the proof consists in the use of (w3) of Proposition 2 instead of (w4).
We observe that the superlinear growth condition is contained in assumption (HS5). This aspect will be
clarified by the following examples.
EXAMPLE 4. Consider the second-order scalar equation
u+ g(u) =q(t, u, W (4.21)

where q is a Caratheodory function and g : R — R is continuous. We suppose that

Hm  gu)/u=+ oo (4.22)
[Xl— +eo
and
Iq(t, u, V) < K(lal + vl) + k(t) (4.23)

forall u,veR andae. te[0,T], with K >0 and ke L1([0, T], R ). Under these assumptions, M.
Struwe in [140] proved the existence of T-periodic solutions for (4.21), using a fixed point theorem for
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the Poincaré's operator due to S. Fucik and V. Lovicar [50] (actually, ke L2([0, T1, R,) is required in

[140]). Now we indicate how to get such result from Theorem 4.
We make the following positions: x = (X1, X5) : = (4, u) , h(t,x) : = (g(x;) — q(t, X1, X2) , X5) and define

G(u) : =0fg(s)ds .

Then h(t,x) can be decomposed as in (HO), with

H(O) : = G(xy) + 52

and
P(t,X) L= ('_ Q(t9 X1, XZ) ’ O)
Hence, (H1) and (H2) easily follow from (4.22), while from (4.23) we get

(=Jp(tx) | VH(x)) _

limsup
[Xl=> +oo HI
= limsup LEXLED X2 ¢ oy 4y
. H(x) = ’
xl— +oo

uniformly a.e. in te [0,T], and thus (H3) is achieved (for the estimate of the "limsup" we also used the
fact that G(u) / u? — +oo, as lul = +o0).

In order to prove (H4), we first observe that, using (4.22), for each ne N we can find a constant ¢; >0
such that

glw)-u = 2n2+2K2+K)u?—-c,
holds for all ue R . Then, with the above positions, we have (for each neN),

(VHR) 1 %) = (p(t, ) 107 = g0x7) x; + %5 + (q(t, Xq, %) - X)
> g(xy) xq + x5 — Kb — Kl Il = k(8) Ix4]
> 202 x2 + 2K2 5 — Kyl Ixgl + %5 — k(1) Ixyl - ¢,

1
M2 X} + 53 k(D) Ikl - ¢ .

v
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In this manner, (H4) is satisfied with

Sa(x) : = 2027 +%-x% , o) =1 — (k(t) / 2n2)..

Finally, we compute @, /{S,)=n—(k/2n) and so (H5) is fulfilled. ¢

We stress the fact that our result is more general then the above quoted theorem by Struwe, even as far as
the applicability to equations of the form (4.21) is concerned. This is shown by the next example.

EXAMPLE 5. Consider the second-order scalar (Liénard) equation
u+f(u) a+ {u}k=q(t, u,0), (4.25)

where q is a Caratheodory function, f : R — R is continuous and (following the notation in [140]),
{u}<:=u k1, with k> 1. We suppose that q is bounded and, for

FQ): = (j}(s)ds ,

we assume
liminf F(u)/u 2-M> - (4.26)
lul— oo
limsup F2(u) / lulx+l < 4 | 4.27)
lal— +eo

Then, (4.25) has at least one T-periodic solution.
In order to prove this result in the framework of Theorem 4, we make the following positions:

X = (X, %) 1 = (u, 0 + F(w)) , h(t,x) : = ({x;}% = qt, X1, X9) , % — F(x7)).
For the decomposition of h(t,x) according to (HO), we take

H(x)::é—l- b e+ + ;_.xg

and
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p(tx) @ = (- qt, Xg, xp) , — F(x9)) .

The hypotheses (H1) and (H2) are trivially satisfied, while (H3) follows from (4.26) as

(= JIp(tx) 1V Hx) _

limsu
Wil IH()!
—_ k
- limsup F(Xl){xl}H(—;)Q(t’xlaX'Z)XZ < (k + 1) M ,
IX|— +oo

uniformly a.e. in te [0,T].
In order to prove (H4), we first observe that, using (4.27), there is a constant & , with 0<4<1 such that,
for each ne N, we have

lulk+1 _M_ > (n2/8) ul-c,,
4(1 - 9)

for all ueR (with ¢, > 0, a suitable constant).
Let B >0 beabound for Iq(t, X1 xz)l. Then, with the above positions, we get (for each neN)

(VHE) 1x) = (p(t, %) %)™ = kg K+ + x2 + (F(xq)xg + q(t, X1, X)X;)~

> Ixy K+l 4+ %2 — [F(x )l Iyl — Bl

2 2
= by e 4+ 32 + (1 - 8) {xi _EGelp e B } _EC) Byl
(1-3) 4(1-8)2 4(1-3)
2
> Iyt 4+ 82— O gy
4(1-9)
2 (n?/8) xf + 5X§ - Blx;l —c,.
In this manner, (H4) is satisfied with
c = (n2 2 2 -
8,00 1 =2/ 8) < +8x2 , o) =1.
Finally, we compute o, /(S,) =n and so (H5) is fulfilled. ¢

We note that if we want to apply [140, Theorem 2] to equation (4.25) we have to require the boundedness
of f(u) on R. Such condition in turns implies

limsup IF(u)l / lul € M <+ 0. (4.28)

hal— +oo
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Now, it is easy to find examples of nonlinearities satisfying (for k > 1) (4.26) and (4.27) but not (4.28).
An example in this direction is given, for instance, by

F@) := {u}%sin*(go(u)) + u-g,(w), (4.29)
where 1<a<(k+1)/2 and gj,g; : R—R are continuously differentiable functions, with g; bounded on R.
We point out that even the theorem in [135] (which improves [140, Th.2]) is not applicable to equation

(4.25) when f(u) = F(u), with F(u) as in (4.29).

We also remark that the result stated in Example 5 is still true if the map q satisfies (4.23). Further
generalizations can also be produced for equations of the form

ut f(u) u + g(u) = q(t, u, v)

with g having superlinear growth as in (4.22) and f(u) or F(u) subject to suitable growth restrictions.

EXAMPLE 6. Consider the (planar) perturbed Hamiltonian system
x=J- VW) + q(t,x) (4.30)
with W : R%>R of class €1 and q: [O,T]><R2—>R2 a Caratheodory function. We suppose that
lqt,x)I < Q(t), fora.e. te[0,T] and all xe R? 4.31)
with Qe Ll([O,T],R +) and there are A, Be R, such that
VW) <A W) +B, forall xe R%. (4.32)
Assume also the superlinear growth condition

lim (VW) 1) 7 kP =+ 0. (4.33)

[X|— +oo
Then, (4.30) has at least one T-periodic solution.

Indeed, we can apply Theorem 4 observing that the decomposition (HO) follows by setting

H(x) :=-W(x),
p(t,x) = J-q(t,x).
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Then, from (4.33), we get lLim IVH(x)!/Ixl =+ o (use the Cauchy-Schwarz inequality) and thus (H2)

IXl—= +oo
and (H1) (via (4.32)) are fulfilled. Moreover, (H3) follows from (4.31) and (4.32), with 2(t) <(A+B)Q(1),
as 1(=Jp(t,x) | VHEO)! € Q(0) A IH(x)! + Q(t) B, for a.e. te [0,T] and all xe R% Finally, we note that
(4.33) implies either Lm ((VH(x) I x)l / x> =+, or lLm (VHE) | %)l / IxI* == oo,

[xI— +oo x> +oo
Assume the former condition (the treatment of the latter being completely similar) and take
S.(x) :=n IxI>. Then we have (using (4.31)):

(VHE 1x) - (x) 1x)  (VHE %) QM) 5y _ oy,

S I nixl =

for a.e. te [0,T] and Ix| large. Therefore, (H4) is reached with o (t) := 1 — (Q(t) / n). Hence,
&S,y = [1-(Q/n)] n and (H5) follows. In this manner, all the assumptions of Theorem 4 are satisfied
and the result is proved. M

Through the above example, we can make a comparison between Theorem 4 and some classical results
concerning superlinear hamiltonian systems (see, e.g., [3,42,126]).

First of all, we note that, in general, system (4.30) has not a variational structure (for q depending on x)
and so the theorems in [3,126] cannot be applied. On the other hand, we observe that we cannot
guarantee, like in [3], the existence of more than one T-periodic solution. Examples in this direction can be
easily obtained observing that if x(-) is any T-periodic solution of (4.30) then, necessarily,

T
O[(q(t,x(t» | VW(x(1)) dt = 0.

Hence, if we take q and W such that q(t,0) =0, YW(0) = 0 and (q(t,x) | VW(x)) > 0 for a.e. te [0,T] and
each x=0, it is clear that the only T-periodic solution of (4.30) is the trivial one.

Secondly, we consider the case in which q is independent of x, i.e. q(t,x) = q(t), with qe Ll([O,T] ,Rz).
In this situation, the theorems of P.H. Rabinowitz [126] and A. Bahri and H. Berestycki [3] can be
applied, under further regularity assumptions on W and q and growth restrictions on W, provided that the
superlinearity condition

0 <W(x) <k (VW(x) | x), for every xe RZ, IxI>R, (4.34)

with 0 <k < 1/2, is satisfied.

Since (4.34) implies that W(x) > a ik — b, with a, b e R,, we conclude that (4.34) implies (4.33), and
so we realize that our superlinear condition is more general that (4.34) (it is easy to find examples where
(4.33) holds but (4.34) is not satisfied).
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Finally, with respect to the results by I. Ekeland in [42], we just observe that in our Example 6 no
restriction on the L!-norm of q has to be assumed, while in [42] the existence of solutions is obtained for
Iql; sufficiently small.

For other theorems concerning the periodic BVP for Hamiltonian systems, see [104].

A major advantage of the above quoted results, based on critical point theory, lies on the fact that they can
be applied to even-dimensional systems of the form (4.30) (with q(t,x) = q(t)), without restriction on the
dimension of the space. On the other hand, all the examples presented here concern planar systems and so
a condition on the dimension has been imposed from the beginning.

In the next section, we show how this problem can be overcomed, at least in the case of weakly-coupled
systems.

S. An application to weakly coupled systems

In this Section we consider the problem of the existence of T-periodic solutions for the second-order
vector equation

u+ g(u) = p(t,u,u), (5.1)

where g : RY5RY is a continuous function and p: [O,T]dede—)Rd satisfies the Caratheodory
assumptions. As usual, the T-periodic boundary condition for equation (5.1) is expressed by

uw(T) = u(0) = u(T) — u(0) = 0. (5.2)

Our aim is to obtain an extension of the Theorem by Fudik and Lovicar [50] (recalled in Example 4) to
systems; therefore, we examine only the case in which the map g grows faster than a linear function as
lul—>+eo. We recall that in [50] the existence of a solution to (5.1)-(5.2) is proved for a scalar equation
(d=1), with p = p(e L*([0,T],R) and

lim  g(u)/u=+ oo, (5.3)

lul— +eo

Clearly, a trivial extension of this theorem to higher dimension works if system (5.1) is completely
uncoupled, i.e. if g(u) = col(gy(u))y-;
true generalization of this result has been obtained yet.

q- However, as far as we know, no

.....

A major difficulty which arises in this direction lies on the fact that many useful tools which are linked to
the possibility of developing a phase-plane analysis for the equivalent system
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Y (5.4)

)‘/ =- g(U) + p(t’u7y>

cannot be employed for d>1. A further problem is the absence of a priori bounds when g is superlinear.
As a consequence, very few theorems have been produced for the solvability of (5.1)-(5.2) in the vector
case and, in fact, we restrict our remarks to the papers of A. Castro and A.C. Lazer [20] and A. Bahri and
H. Berestycki [4]. Actually, we exclude here from our discussion the results whose applicability is
conditioned to the fulfilment of special bounds for the term p (like in [42]) or to the validity of symmetry
conditions which imply that u=0 is a solution of (5.1) (like in [23]); in both such cases, the corresponding
Theorems cannot be applied to equation '

u + g(u) = p(), (5.5)

with p(-) an arbitrary integrable function.
In [4], Bahri and Berestycki obtained the existence of infinitely many solutions for system (5.5) in the
conservative case, i.e. for g(u) = VG(u), under the assumption

0 <G(u) <k(g(u) lu), forhul=R>0, (5.6)

with 0 <k < 1/2. From (5.6), by an integration it follows that lim G(u)/lu? = 1lim Ig()!/ lul =+ eo.

al—+ee ful— 4o

However, even in the scalar case, it can be easily seen that condition (5.6) does not cover all the possible
superlinear terms. For instance, if g(u) behaves like u-loglul in a neighbourhood of e, assumption (5.6)
fails, while (5.3) is satisfied. On the other hand, in [20] Castro and Lazer obtained the existence of
assuming the oddness of all the considered functions. Hence, in the scalar case, such a theorem can be
applied to equation (5.5) only when g and p are odd.

Our main result, which generalizes Fucik and Lovicar's theorem to systems, deals (like in [20]), with a
weakly-coupled system of the form

U+ g(n) =peltuu),  k=1,..4d, (5.7)

.....

T-periodic solution. We note that, in general, we cannot hope to get the existence of more than one
solution for (5.1)-(5.2) or (5.7)-(5.2), because of the dependence in u of p. This fact is well-known
even in the scalar case (see, for instance, [70, p. 39], [140, p. 288]), and does not require further
explanations.

Now we state our main result.
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THEOREM 5. Suppose there is Pe L'([0,T],R,) such that

(11) Ipe(tuy)l < P(t), for ae.te[0,T], allu,yeRY, k=1,..d.
Assume
(12 im g (s)/s =+, foreach k=1,..4d.

Isl— +oo

Then, (5.7)-(5.2) has at least one solution.

Proof. 1In order to apply Theorem 1 in Section 3, we introduce an appropriate setting for the verification
of the needed assumptions.

At first, we write equation (5.7) as an equivalent first order system in R™ , with m=2d. To this end, we
set

X = col(Xy)i=1,...2d = (U1,¥15e--2U4>Yd)>

.....

so that (5.7) or, more precisely, system
g = Yk
Yie =~ gk(u) + pi(tu,y),
(k=1,...,d), takes the form
x = F(t), 68

with F = col(F))i.; . o4 : [0,TIXR2d—R2d a Caratheodory function such that, for each k=1,...d,

.....

For1(tx) = yx
For(tx) = — g (uy) + py(t,u,y).

The boundary condition (5.2) is clearly translated to x(0) = x(T).
As a second step, we embed system (5.8) into a one-parameter family of differential equations. To this

respect, we fix a scalar function E : R—R which is continuous and satisfies the conditions

E(s)s<0 fors#0 and |E(s)I<1 forallseR.

Then we consider the system
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x = f(t,x;1) (5.9)
for Ae [0,1], where f(t,x;A) is the second term of
U = Yk
Y = (1 = 1) E(yid) — gi(wo) + Api(t,u,y),
(k=1,...,d).
As usual, we denote by X the set of pairs (x,A), where x(-) is a T-periodic solution of (5.9) with Ae [0,1].
In this case, Xy is the set of T-periodic solutions of the autonomous equation
% = f(x) = f(t,x;0),
which, by the above positions, is exactly equation
Uy = ¥
Vi = E(y) — gi(u),

(k=1,...,d).
Clearly, system (5.10) is equivalent to the uncoupled second-order equation

:L.lk - E(ilk) + gk(uk) = 0, k=1,...,d, (5.10)

for which the only periodic solutions (of any period) are the constant ones. (To see this, suppose that

,,,,,

of (5.10) with u(t) and integrating over [0,T,], we get

da Ty

2 JE(ﬁk(t)) u(dt = 0
k=1

and therefore, by assumption on E(-), we have u(t) = 0, Vte [0,T]).
From (I2), we can find a constant Ry>0 such that

g(s)s>0 for Isl2Ry,  k=1,...d.
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Since we already know that all the periodic solutions of x = fo(x) (of any period) are constants Xe R%,
with % = (§;,0,8,,0,...,84,0) and g, (f,) = 0, for each k=1,...,d, then we also get Iii|<R, for each
k=1,...,d.

In this manner, (h1) is satisfied via (h*1), for any 1y with

I'O_>.. Rgm

Moreover, setting, for each k=1,....d, t(ok) : Rz——>R2, t(ok) : (a,b) - (b, E(b) — g(a)), by standard
computations we have, for any r2r:

dB(fO’ B(O?r)a O) = dB(fo, B(O,I'O), O) =

d
dg(fy, -Rg,Ro[%, 0) = H(aBagﬂ, 1-Rg,Rol% 0))
k=1
d
= lcljll(dmgk, 1-Ro.Ro[, 0)) = 1.

Thus, hypothesis (h2) is satisfied with = 1.
For the rest of the proof, we note that, with the above notation, we have, for any j=1,...,d, xe R% and
Ae[0,1], that

X2-1 = Y5, X2 =Y¥p

foi-1(tXA) = y5,  ftxh) = (1 = A) E(yp) — gu) + A pj(tu,y),

----------

Then, it is easy to check that assumption (h*3) follows from (/1), since

l(fa-1(tx:A) L Byi(tx )| < (y7 + gup?)™ + V2d (P + 1)

holds for all (x,A)e R**x[0,1] and a.e. t< [0,T].

As a next step, we check condition (h*4).
To this end, we employ Proposition 3 with (1,v) = (g5;_;,€2;) and define, for each j=1,....d, the
functional

Vj:RZ—)R

given by
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1 a
Vi(a.b) =5b” + 0’{ gi(s)ds,

with VV; = (V;1, V;2).
From (12), we immediately get that lim V. (z) = +oo, for j=1,...,d, and hence (v1) of Proposition 3

jzl— oo

holds. Moreover, by the definition of V; and assumption (12), we can find a constant K>0 such that, for
each j=1,...,d,

bl < Vi(ab), for 2" +b)?2K.

Hence, we get, for each j=1,....d,

Vj,l(XZj—l 5 ij) fzj_l(t,X;K) + Vj,Z(XZj—l s X2J) fzj(t,X;X) =

= gi(u)y; + y;((1 = 1) E(yp — g;(up) + Ap;(t,u,y) < lyjlIpstuyl < PO Viluyy) =

= P(D) Vj(xg-1, X2),

for all (x,\)e R*x[0,1], with I(x5;_y, X,)| 2 K and a.e. te [0,T].
Therefore, condition (v2) is also proved and the "elastic property” (h*4) follows from Proposition 3, for
each j=1,...,d.
At last, we have to prove condition (h*5).
Accordingly, we recall that, for (x,\)e T with

§MM40+%mf”—%MMo+moW2 1,

we can write

T
(A = 1 IJXZr 1 (0) i (£,x(1);0) = xoi(1) fZJ (6x(0;R) a |
j

X2J~1(t) + xzj(t)

0

T
_ L] [ &(u®) wio + yi(t)2 ~ (1= M) E(y;(1) u;(t) = A p;(t,u(),y(1)) u;(t) a |
o ui(0” + y;(0°

Recalling again hypothesis (I2), we observe that, for each Ke R*, we can find a constant Dg=0 such that,
for each j=1,...,d,
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gj(s)s 2 K2 s? - Dy, forallseR

holds.
Hence, for every pair (a,b)e Rz, with a2 + b>> 1 and a.e. te [0,T], we can write (for j=1,...,d):

gi@a +b>— (1-4) E(b)a— & pi(tu,y)a> K%a®+b® - lal - P(t) lal - Dg >
>K?a? + b= (P(t) + 1 + Dg) (a2 + b2,
Therefore, we obtain that, for every j=1,...,d,

2}(Zi NV
(X25-1(D7 + x2;(D°)

Xz-_l
250 : — £ 1(t,x;A)
g (ij-l(t)z + ij(t)z)llz 2j-1

e 2 ap Xaj-1 ~2i
(a1 (07 + 207 6K((X2j—1(t)2 #2307 (g1 (07 + x50

1/2) +¥k(0)
holds, for a.e. te [0,T], all Ae[0,1] and each xe R™ such that (xzj_l(t)2 + xzj(t)z) > 1, where
O(ab) := K%a” + b

Yk (® = (P(t) + 1 + Dg).

Hence, we are under assumption (w4) of Proposition 2 and we can conclude (using also the remark at the
end of Proposition 2), that for each Ke R”, there is a constant Ck=1 such that for any (x,A)e T satisfying

Xg5 1 (07 + %oi(t)> 2 Cgfor all te[0,T],

it follows that

e(x,A) 2T /2n(Okg)=KT/2m.

2n
do 2n
(see (3.28) and observe that = ).
5:28) Jchosze +sin’g K
0

Now, the proof of (h*5) can be straightforwardly obtained arguing by contradiction.
Thus, all the assumptions of Theorem 1 are fulfilled and the proof is complete. ¢
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Chapter 6

Continuation results for operator equations in metric ANRs

1. Introduction

In this Chapter (which is based on [14]) we are concerned with the following boundary value
problem

x = F(t,x) (1.1)
x(0) = x(T), (1.2)

where F : [0,TIxC—R™ is continuous and CcR™ is a flow-invariant ENR (Euclidean Neighbourhood
Retract). As it was shown in Section 5 of Chapter 3 (generalizing Theorem 1 of Chapter 2), problem
(1.1)-(1.2) can be imbedded in a family of parametrized equations of the form

x = f(t,x;0), (1.3)

where f : [0,T]XCx[0,1]—R™ is continuous and such that f(t,x;1) = F(t,x), for all te [0,T]; xe C.
Furthermore, we assume that f is locally lipschitzian and

£(t,x;0) = £(x), (1.4)

for some function fy: C—R™ , and for all te [0,T], xe C. We denote by 7y the local semi-dynamical

system induced by
% = £5(x). (1.5)
Then, (1.3) is studied by means of a corresponding system of parameter-depending operator equations
x = M(x;A), Ael0,1], (1.6)
where M(+;A) : T—T is completely continuous, for every Ae [0,1], and the space I := {x : [0,T]—C} is

endowed with the sup-norm. In this situation, the solutions of (1.1)-(1.2) are the fixed points of the

operator M(-;1).
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Our aim is to extend, in the situation described above, the results in Sections 2 and 3 of Chapter 5
(obtained in the framework of coincidence degree theory for L-compact perturbations of linear Fredholm
mappings of index zero) to the general case of metric ANRs. We also give a general bifurcation result
(Theorem 3) for operator equations of the form (1.6), in the case when the only assumption is the non-
vanishing of the fixed point index of some (suitable) map.

In Section 2 we prove two abstract continuation results (Theorem 1 and Corollary 1) in the
framework of the fixed point index theory for the operator equation

x = Gx,

where G : X—X is completely continuous and X is a metric ANR, using, as in Chapter 5, a functional
@ : Xx[0,1]—R which is proper on the set of possible solutions of the homotopic family of equations

x = GGA) (1.7)

(G(x;1) = Gx, for all xe X), and which avoids two values during the homotopy. The use of the functional
@ is crucial in cases when no a priori bounds for the solutions of (1.3) are available (cf. Example 1 of
Chapter 5).

In Section 3 we apply Corollary 1 in order to prove (Theorem 2) the existence of at least one
solution x(-)eT to (1.1)-(1.2) such that x(t)e C, for all te [0,T]. To prove this result, it is assumed that
there exists a continuous functional y : A—=Z,, AcTi={xeT: x(0)=x(T)}, satisfying suitable
assumptions. We point out that in Chapter 5 the functional used is a modification of the classical "time
map" counting (for m=2) the number of rotations around the origin of the solutions of (1.3); in the more
general situation considered in this Chapter, it can be of interest to provide a general definition for the
functional y. This aspect is developed in the forthcoming paper [14].

In Section 4 we perform a result (Theorem 3) on the structure of the solution set of a parameter-
dependent operator equation defined on a (metric) ANR; more precisely, given an open set QCXxR such
that Qp:={xe X: (x,0)e Q) 2 Zp:={xe X: x=G(x)} (£, bounded), we prove, under the only
assumption of the non-vanishing of the fixed point index i{ Gy, ), the existence of a closed connected
subset (C of solutions to (1.7) such that for the sets C Ti= {(x,M)e C: L >0} and
C™:= {(x,\)e C: =<0} the following alternative holds: either C* (C7) is unbounded or C NrQ # &
(C NfrQ = D).

The proof is based on the fundamental properties of the fixed point index and on a lemma from general
topology on connected subsets of compact metric spaces; the use of this classical result was a crucial step
also in the proof of similar results such as [46,51]. As an immediate consequence, taking X =T,
Gy, = M,, and using the index of rest points of the flow mg induced by (1.5) instead of the fixed point
index, we obtain (Corollary 2) a result on the solutions to problem (1.1)-(1.2) analoguous to Theorem 3.
Corollary 2 contains Theorem 2.1 in [53], Corollary 2 in [51], and several existence results such as

Theorem 5 in Chapter 3, Theorem 1 and Corollaries 1 and 4 in Chapter 2.
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2. A continuation theorem

In this Section, we perform a continuation theorem for an operator equation defined on a metric
ANR (Absolute Neighbourhood Retract) by means of the fixed point index defined by Granas in [59]. We
refer to [113, Chap. 1] for a complete treatment of this concept.

Let X be a metric ANR and let G : X=X be a completely continuous map.

We are concerned with the existence of at least one solution of the operator equation

Gx =x, (2.1)

i.e of a fixed point of G.
We begin the study of this problem by a standard procedure, i.e. we consider a completely continuous
operator G : Xx[0,1]—X such that

G(x;1) = Gx, forevery xe X.
Some estimates on the (possible) solutions of the parametrized equation
Gx;A) =x (2.2)
_are needéd; to this end, we first define the following sets:

T = {xMe Xx[0,1]: G(x;A) =x},

Ty = {xe X: xMeX}.
Now, let
¢ : Xx[0,1]-R

be a continuous functional; the admissibility of the homotopies obtained by (2.2) will be proved by means
of the properties of Q5.

As we mentioned in the introduction, in the applications of the main result of this Section (Theorem 1) to
first order differential systems in R™ (m even) (developed in Section 3) the functional ¢ is a modification

of the so-called "time map".

REMARK 1. We observe that the (continuous) functional @(-;A) is bounded whenever the set Z; is
bounded. Indeed, by the properties of the operator G, if the set X, (Z, respectively) is bounded, then it is
compact. In this case, there exist min{®(-;A), x€ Z; } and max{@(;A), x€ Zy } and they are finite.
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We denote by
o_ :=1inf{Q(;0), xe Xy }, @, = sup{0(-;0), xe Zy}.
The following lemma is a slightly more general form of the homotopy invariance property of the fixed
point index (cf. [113, p. 26]) and is crucial for the proof of Lemma 1. Its analogue for the Leray-Schauder
degree can be found in [90, p. 60], [12], [125, Lemma 1.8].

For an open bounded set UcXx[0,1], we define

U, = {xe X: x,MeU}, (2.3)

@U)y, = {xe X : (x,N)e fryxp0,1]U }- (2.4)

LEMMA 1. Let UcXx[0,1] be open and bounded. Assume that

Gx,A) #x for every xe(9U),, foreveryre[0,1];
Then,

i{G(N), Uy) is independent of X, Ae[0,1].

REMARK 2. We point out that a proof of Lemma 1 can be performed by means of the usual homotopy
and multiplication properties. We also note that an analogue of Lemma 1 is valid for UcXXR, as it was
remarked by Leray and Schauder in [90, p. 59].

Now, we can state the main result of this Section.

THEOREM 1. Assume

il) o:Xx[0,1] — Ris proper on Z;
(12) X is bounded,

(3) there are constants c, ,c_€R,

C_<¢ Ci> 0, (2.5)
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such that

o(x;M)e {c_, c,}.
Let QDX be an open bounded subset of X and suppose that
(i4) i{(G(;0), Q) = 0.

Then, equation (2.1) has at least one solution.

We remark that, since QDX and the operators G(-;A) are completely continuous, then the fixed point
index in (i4) is well defined.

As for the validity of (i1), we observe that, by the continuity of ¢ and recalling Remark 1, the properness
of @y is guaranteed if X is bounded. However, as it was already observed in Chapter 5, if 2 is unbounded
then assumption (11) holds provided that

im  ( inf lpx,A)]) = +oo.
d(x,xg)—+e  Ae[0,1]
(x,A)eX

for some xpe X.
Proof of Theorem 1. Assume, by contradiction, that (2.1) has no solution, i.e.

G(x;1) #x, forall xe X. (26)

We argue, using the fixed point index for ANRs, along the lines of the proof of Lemma 1 in Chapter 5.
First, let us consider the sets

$ =0 ' (Jeocul) & Xx[0,11,
¢ = ¢ ([ele) N < Xx[0,1].

Observe that S is open in Xx[0,1] and, by (i1), Z* is compact.
By (2.6) and (13),

0@ N fce,) = .

Hence, £*cS. By a standard procedure, we can find a set B < X%[0,1], bounded and open, such that
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¥ € B < clypp,11B < S.

By (2.6), i,{G(1), B;) = 0. Now, we want to apply Lemma 1, with U = B. To this end, it is sufficient
to prove that
Gx;A) #x

for every xe (dB),, A€ [0,1]. Suppose not; then, G(x*A*) = x* for some A*e [0,1], x*e (dB)+ . Hence,
(x*, A*)eZ N clyo,1) B <X NS = Z¥*, so that (x*, A*)e B, a contradiction. Thus, Lemma 1 gives

0=1,{G(:1), By) =1 G(:0), Bo) -
On the other hand, by (2.3),
Xox {0} € Z* < B,
hence 23 < Bj and so, by the excision property of the fixed point index and (i4)

1 G(50), Bo) =1 G(50), ) 0.

Thus, a contradiction is achieved and the proof is complete. +

REMARK 3. Theorem 1 generalizes to metric ANRs Lemma 1 in Chapter 5, where an analogue
continuation lemma is performed for an operator equation in normed spaces.

As it was pointed out in Example 1 in Chapter 5, with a suitable choice of the functional ¢ it can be easily
seen that by Theorem 1 we can treat the classical situation when a priori bounds for the (possible)

solutions of (2.2) are available, i.e. when (for Q2% open and bounded) the condition

G(x;A) =x  for every xe fr &2, Ae ]0,1[

is satisfied.
Indeed, it is sufficient to define

— dist(x, frQ) for xe Q,
O(x;A) =
dist(x,frQ) for xg Q ;

then, since —diam(cl,Q) <o¢_, ¢, < 0, Theorem 1 can be applied, with ¢, = 0 and
c_< diam(cl£2).
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By Theorem 1 we can therefore reobtain some results on the existence of periodic solutions to differential
systems in flow-invariant ENRs such as, for example, Theorem 1 in Chapter 2, Theorem 5 in Chapter 3,
[53, Th. 2.1].

Finally, we point out that an alternative proof of Theorem 1 can be performed by means of Theorem 3 in
Section 4; it is based on a careful study of the set of solutions of (2.2), on the lines of [46,51].

We state now a consequence of Theorem 1 which will be used to prove a result for the existence of
periodic solutions to some differential system (Theorem 2). The meaning of (j1)-(j2) will be made clear in
the applications developed in Section 3.

COROLLARY 1. Let A be a subset of X. Assume (i2), (i4) and lety : A—=Z_ be a continuous

functional. Assume

G1) I R>0 such that, Vxeh\A = kI, <R, Vie[0,1];
(G2) VneZ, 3K, 20 suchthat, Vxe AnZ,, yx)=n = l,<K,,Vie[0,1].
Then, equation (2.1) has at least one solution.

Proof. In order to apply Theorem 1, we first need to construct a functional defined on the space Xx[0,1],
and, subsequently, we must check (for the new functional) the validity of (i1) and (i3). By (1),

2 \A < BlxgR], Q7

for some xpe X and for every Ae [0,1]. Define X* := U Z, ; consider R* > R and the restriction of the
re[0,1]

functional y to the set D := E*m(Am(B [x0.R*]\B (XO,R))) We claim that D is a closed (bounded) subset

of Z*MB[xy,R*]. Indeed, it is sufficient to prove that D is equal to the closed set
Z*M(B[x0,R*]\B(x(,R)). By the definition, D < Z*N(B[x0,R*]\B(x,R)); on the other hand, if there is
x*e Z*M(B[xg,R*]\B(x(,R)) such that x* A, then, by (2.7), x*€ B[xq,R], a contradiction. Hence, the
claim is proved and, by Tietze's theorem, there exists a real valued functional y, defined on
2*MB[x(,R*], a continuous extension of Y, such that

0 <y, (x) <M, (2.8)

where M := sup {W(x), xe D} < +o. We note that, since D < Z*, by the properties of Z* it follows that D
is compact. Now, we introduce a functional y, defined on Z* as follows:
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¥(x), xe Z*N(A\B[xq,R*])

Yo(x) = {
Yi(x), xeX* N B[xg,R*].

We observe that Z*m(A\B[xO,R*]) = 2Z*\ B[x(,R*]. One of the inclusions is obvious. On the other
hand, it is sufficient to note that if, by contradiction, there exists x*e X* \ B[xo,R*], with x*¢ A, then, by
(2.7), x*e B[xg,R]cB[x(,R*], a contradiction. By the defintion of y,, it follows that
Imy, € Imyu[0,M].

Furthermore, whenever xe *, with xe frB[xo,R*], then, by construction of y;, we have y(x) = y(x).
This argument, together with the continuity of y and \Vl,‘proves the continuity of .

Finally, again by Tietze's theorem, we can prove the existence of a real valued functional W3 defined on
Xx[0,1], a continuous extension of ;.

Finally, we define ¢* : Xx[0,1]—>R as follows: ¢*(x,A) = y3(P(x,A)), where P : Xx[0,1]—X is such
that P(x,A) = x.

Now, in order to apply Theorem 1 to the functional ¢*, it is necessary to prove that @* is suitable for the
validity of (i1) and (i3). As for (il), it follows from (j1), (j2) and the compactness of the operators G(-;A).
In order to get (i3), we observe that, by the definition of ¢ and the construction of @*, there is M > 0 such
that @*(Z) < [0,M]JUN; then, we can take c_=0; on the other hand, if we consider the sequence
cp = M+(2n+1/2), it is easily seen that the choice c, := ¢z, for n sufficiently large, is suitable for the
validity of (i3). Hence, Theorem 1 can be applied and the proof is complete. 23

3. Applications to periodic boundary value problems

In this Section, we apply Corollary 1 to a differential system inducing a flow on a closed subset of
the space R™ . More precisely, let CCR™ be a closed ENR. Our aim is to prove the existence of at least
one solution x(-) to the following boundary value problem:

x = F(t,x) (3.1)
x(0) = x(), (3.2)

such that x(t) belongs to some subset of C for all te [0,T]. We assume that the function F : [0, T]xC—R™
is continuous and locally lipschitzian in x.

In order to apply the continuation results of Section 2, we introduce, by a standard procedure, a function
f = f(t,x;A) :[0,T]xCx[0,1]=R™, continuous and locally lipschitzian in x, uniformly in t, A, such that

f(t,x;1) = F(t,x), (3.3)

for each te [0,T], xe C. Furthermore, we assume that
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f(t,x;0) = fp(x), (3.4)

for some function fy: C—R™ , and for all te [0,T], xe C. We denote by my the local semi-dynamical
system induced by (3.4). Suitable homotopies on the (possible) T-periodic solutions of the parametrized

system
x = f(t,x;\), (3.5)
together with (3.4), will transform (3.1)-(3.2) in a simpler problem, as in Chapter 3.

Before giving a precise description of the functional frame in which we work (in the general case of
ENRs), the following assumptions must be made. (See Remark 4 for comments on their verification).

(h1) The set Cis invariant for the flow induced by

x = f(t,x;A), Ae[0,1].
The so-called "cone conditions” provide efficient equivalent formulations of assumption (h1) (cf. Chap.
1). These have been frequently used by many authors, and we omit for brevity more comments.

In the case of arbitrary ENRs, for the general homotopized system (3.5) we assume

(h2) PROPERTY (A). If

fy(2)e T(z;C)

for all zefrC, there exists a sequence of locally lipschitzian functions (@), ¢ : C— R™ such that:

(a) 0 (2)e T(z; C) for all zefrC, keN;
(b" 0, — fy uniformly on compact sets

and
(c") for every compact subset K of C and for every ke N system

X = @y(x)

has finitely many singular orbits (i.e., rest points and closed orbits) with minimal period in

[0, T+1] which are contained in K.

In order to apply Corollary 1, we introduce the following space

I' == {x(-) : [0,T]—>C, continuous},
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endowed with the distance d*, d*(x;,X,) := [x;—X3l... The following result [75] is crucial: "the space I" is
an ANR if and only if the set C is an ENR". This theorem enables us to work with the fixed point index
for ANRs.

Now, we introduce the operator, defined on I', whose fixed points x(-) (which we will obtain by means of
Corollary 1), are solutions of (3.1)-(3.2) such that x(t)e C, for all te [0,T].

We use the idea introduced in Chapter 2 and developed in Chapter 3.

Let us consider the Cauchy problem

y = f(t,x;\) (3.7
y(o) = z. (3.8)

By the regularity assumptions on f, uniqueness and global existence for (3.7)-(3.8) are guaranteed.
Hence, we can define the family of operators M : I'x[0,1]—I" as follows:

M(x;A) = u0x(T),;A), Ae[0,1], 3.9

where u(0,z,-;A) is a one-parameter family of processes induced by (3.7)-(3.8).
By (3.9), it is easily seen that xe I is a fixed point of M(+;1) if and only if x is a T-periodic solution of
(3.1)-(3.2).

REMARK 4. Suppose that C = R™ ; then, assumptions (h1) and (h2) are obviously satisfied; observe
also that, in this case, the index of rest points of the flow 7y with respect to some GER™ , open and
bounded, is such that I(rry, G) = (=1)"dg(f,, G, 0), so that the classical situation when the phase space is
R™ isrecovered.

If C is a manifold (satisfying suitable assumptions), and f(t,;A) is a vector field tangent to C, then, since
f(t,z;A) € T(z;C)N—T(z;C), assumption (h1) is satisfied; by the Kupka-Smale theorem [22], (h2) holds as
well. Moreover, I(rty, G) = (- f;), where y is the "characteristic of the vector field" f; introduced in
[53].

Now, we can give the main result of this Section.
In what follows, I'r denotes the set of functions xe I" such that x(0) = x(T).

We set:

S = {(x,A)e Tpx[0,1] : x = f(t,x;A)}, Sy = {xe': (x,A)eS}. (3.10)

THEOREM 2. Assume (hl), (h2) and
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(h3) there is Ty > O such that, for any x(-)el’, T -periodic solution of x = fy(x), Ixl.<71g ;
(h4) I (my, BONC) #0 forall r=21p.
Let A be a subset of T'r, and suppose that there exists a COntinuous functional \y : A = 7, such that:

(h5) there exists ry >0 such that, for any x(-)& A, T-periodic solution of (3.5), Ixl,, <11, for every
Ae [0,11;

(h6) VneZ, IK, 20 such that, v x(-),T-periodic solution of (3.5, yx)=n = kl,=<
YAe[0,1].

Then, (3.1)-(3.2) has at least one solution x(+) such thar x(t)e C, for all te [0,T].

It is worth noticing that Theorem 2 is specially suitable in the case when no a priori bounds are available;
in this case, the use of the new ingredient of the functional \y is crucial. See also Remark 3 in Section 2.

Proof. We apply Corollary 1 of Section 2, with X =T and G(x;A) = M(x; A). By the definition and
Ascoli-Arzeld theorem it follows that the operator M(- :A) is completely continuous. Recalling (3:4), it is
clear that (h3) is the same as (i2). Moreover, (h5)-(h6) imply (G1)-G2), respectively. In order to conclude
the proof, it is sufficient to show that

I (my, BO,)NC) = iX(M(-;O),BrO), (3.1 9]

where B = {xe X : x(t)e B(0,0), for all te [0, T]}.

The above equality can be obtained by performing a series of homotopies which are shown to be
admissible by the use of (h1), (k2), (h3). This procedure has been developed in Section 5 of Chapter 3]
and we do not repeat the details here.

Hence, Corollary 1 is applicable and the proof is complete. ¢

Theorem 2 generalizes to closed ENRs Theorem 1 in Chapter 5, where an analogue continuation theorem
is performed through the standard Liapunov- -Schmidt reduction (on normed spaces) and the coincidence

degree.

We end this Section with an illustration of Theorem 2 by means of two par‘ucular cases in which the
phase space C of (3.1)-(3.2) is, respectively, R™ and the two-dimensonal sphere S and a priori bounds

for the solutions of (3.5) are not available.
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The former situation has been treated in Chapter 5, the latter by M. Furi and M. P. Pera in [54]. In both
cases, one is led to develop some estimates on the (possible) T-periodic solutions of (3.5) in order to
construct some map & : s'—st and, therefore, to use the "degree" (or "winding number") of such a map.
In this way, some admissible homotopies can be performed and a continuation theorem analogue to
Corollary 1 is applied.

In Chapter 5, we introduced a functional { which is a modification of the classical "time-map" which
counts (for m=2) the number of rotations around the origin of the solutions of (3.5). More precisely, in
Section 3 of Chapter 5 we defined :

T
<:<x,7»>:=21—7r [Gaex®) 1 7x) s(x)dt|
0

where J : R°>5R? is the usual sympletic matrix and d(a,b) = 1 for a? +b% < 1, 8(a,b) = Tl'gi" for
a“+

a%+b* > 1. In that situation, some estimates on the (possible) solutions of (3.5) were performed ensuring
that, roughly speaking, the functional { takes only positive integer values on large norm solutions and
whose corresponding level sets have a bounded intersection with . In the framework proposed in this
paper (which is slightly different from the one in Chapter 5), when (for simplicity) itis C = R?‘, we may
take in Theorem 2

A= {xeTp:x(t)#0, Ve [0,T]};

then, for x=(x;,x,)€A, we can define Y (x) to be the degree of the map § : stsgst ,
&0 = (x1(/p(0), xp()/p (1)), where p(t) = ((x1()? + xo(0)%) 2. Note that (h5)-(h6) in Theorem 2 are
analogue to (h4)-(h5) in Theorem 2 in Chapter 5. For more comments on the verification of (h5)-(h6) we
refer to Propositions 2, 3 and Remark 3 in Chapter 5. By means of Theorem 2, which, in the particular
case of C = R™ is analogue to Theorems 1, 2 in Chapter 5, all the applications to linear and superlinear
periodic boundary value problems developed in Chapter 5 can be reobtained.

Secondly, we briefly describe the contribution given by M. Furi and M. P. Pera in [54] to the
problem of the existence of forced oscillations for the spherical pendulum. In [54], any given orbit x(-) of
(3.5) on the sphere is prevented to intersect some axis through the origin (which depends on the given
orbit), and the classical "winding number” for some defined on S' with values in S’ is used. In this
situation, some estimates analogue to (h5)-(h6) are obtained from the geometrical properties of the
problem. Then, the existence of forced oscillations is proved using a result [54, Th. 2] on the existence of
an unbounded connected branch of nontrivial solutions to (3.5). For a similar result in the framework of
arbitrary ANRs, see Corollary 3 in Section 4.
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An investigation on a (possible) general definition for the functional W in Theorem 2 is in process;
further developments on this subject will appear in a forthcoming paper [14].

REMARK 5. A result analogue to Theorem 2 can be performed for the non-autonomous retarded
functional differential equation

x = F(t,x,).

It consists of generalizing to flow-invariant ENRs (in the framework of the fixed-point index theory) the
formula for the computation of the coincidence degree obtained in Theorem 1 in Chapter 4. In this way,

we can write the analogue of (3.11) and proceed as in the proof of Theorem 2.

4, A further result

In this Section, we give a theorem on the structure of the solution set of a parameter-dependent
operator equation defined on a (metric) ANR, in the case when the only assumption is the non-vanishing
of the fixed point index of some (suitable) map.

The proof is performed by means of the basic properties of the fixed point index.
Before stating this result, we recall a result from general topology which is crucial for the proof of
Theorem 3.

LEMMA 2. [83, Ch.9]. Let K be a compact metric space and let A, B be nonempty disjoint subsets of
K. Then, either there exists a pair (Fa,Fp) of closed disjoint subsets of K such that FA2A, Fg2B,
FAUFg =K, or there exists a connected subset D of KNAUB) whose closure meets both A and B.

When the second alternative holds, we say that the set D "connects” A and B.

Let X be a metric ANR. Let € be an open subset of XxR and consider a completely continuous operator
G : clQ—=X Set Gh(-) = G(;A), AeR. We deal with equation

x = Gh(x). (4.1)

We use the following notations: I := {(x,M)eclQ : x= G3(x)}, Z, = {xA)eZ:h > 0},
Z_= {(xA)e X A<0), Zg={(x,0eclQ: x= Gy(x) }; as usual, Qj = {xe X: (x,0)e Q}.
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THEOREM 3. Assume that X is bounded, and
(ml) i{Go. Q) = 0.

Then, there exists a closed connected set CCX, CNZy # &, such that for the sets C,:= {(x,\M)e C:
A>0} and C_:= {(x,\e C A <0} the following alternative holds: either (i) C, (C_) is unbounded
or (i) C.nfrQ =& (C_NfrQ = ).

Proof. First, we note that X, # & ,%_= . Itis a consequence of (m1) and of the homotopy property
of the fixed point index.
- Consider the sets Z* := ZuU({+o}U{—o0}) , E: = XU ({+o0 U {—0}) , Zi =2 _ U({+eojuf—}),

QF := clQU({+eo}U{—0}) . We say that a subset O of Q* is an open neighbourhood of {+e0} ({—eo}) if
{+0}eQ ({-=}e Q) and the set O* := clQ \ O is a closed subset of clQ such that
O*N{(x)eclQ: A>0} (O*n{(x,M)eclQ : A <0}, resp.) is bounded. In this way, {+e} and {—eo} are
closed in the (Hausdorff) topology of Q*; if Q is bounded, then {+e} and {—<} are isolated points.

Now, we apply Lemma 2 with Z* =K, Z: =A, 2‘: = B . If we can prove that there exists a connected

subset e of £* which "connects" Z: and Zf , then it will be sufficient for the completion of the proof
to define C:= Clclg*é M cl€ . Suppose not. Then, by Lemma 1, we can find two closed disjoint sets F:,
Fi such that F::Zi , Fj:)Zf ; MOTeover, Fquj =2X*  Since Q* is Hausdorff, there exist two disjoint
open subsets Qi, Qf such that Q::Fj_ , Qf:)Fi . We alsoset Q= Q:mQ ,Q = .Q_*mQ .

Note that the sets Q_N{(x,AM)eclQ: A >0} and Q N {(x,A)eclQ : A <0} are bounded.
By the above construction, which is analogous to the one developed in the proof of Theorem 1.1 in [51], it
follows that

(A )NQ = Q, N Q. (4.2)

Now, we apply the excision property of the fixed point index. To this end, consider the set £y = {xe X :
(x,0)e €2_} ; by (4.2), we obtain that Gy(x) #x for all xe Q;\ €. Hence

(G Q) % 0. (4.3)

Now, we claim that there is Xe er; such that X 1is a solution of (4.1) with A > 0.
Suppose not. This means that G, (x) = x for every (x,A)e (frQ_), ,A > 0. Hence, we can apply Lemma
1in Section 2 (cf. Remark 2) and obtain



- 163 -

iy gk,Q;) = constant w.r.t. A >0

observe that Q; = {x: (x,A)e Q~} is empty for A large; thus, i{(Gx, Q25 =0, for some A>0 . Hence,
a contradiction with (4.3) is achieved and the claim is proved.
Now, observe that, by the construction performed in the first part of the proof, we have

T NfrQ- = (F,UF )NrQ_

= (F.nfrQ)UE UfQ) =D .

A *
This contradicts the above claim. Hence, there exists Ccx™ which connects X . and Ei and the set
A
C := clgo*C N clQ satisfies either (i) or (ii). The proof is complete. ¢

Theorem 3 generalizes Theorem 1.1 in [51] to metric ANRSs; we point out that in [51], instead of the fixed-
point index, the concept of "regular map" is used.

REMARK 6. Itis easy to see that if, under the hypotheses of Theorem 3, Q2 = UXR, UCX open and
bounded and

GxA) =x, forallxefr,U, Ael[0,1],
holds, then (ii) is impossible; thus, the subset C obtained in Theorem 3 is unbounded in the variable A
and, taking A = 1, the existence of at least one solution of equation G(x;1) = x is proved. See [51, Cor.
2.1] for a similar result in the case when G(x,A) = AG*(x), with M* : clU—X compact.
Furthermore, we remark that, by the choice Q = XxR, it is possible to prove the analogue of Rabinowitz
non-bifurcation result [124, Th. 3.2] for ANRs.

REMARK 7. By means of Theorem 3 we can provide a different proof of Theorem 1; it consists of the
use the continuity of the real-valued functional @, together with the connectedness of the unbounded set
(CcX (in the case considered in Theorem 1, the alternative (ii) is impossible). More precisely, the fact that
solutions having a sufficiently large norm take values in the discrete set ZCR is crucial for the proof. We
omit the details, which are similar those developed in the proof of Lemma 1 in Chapter 5.

Finally, we examine the case when the operator G in Theorem 3 arises from the study of the

boundary value problem
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x = F(t,x) = f(t,x;1) (3.1)
x(0) = x(T), (3.2)

(with f : [0,T]JxCxR—R™) whose phase space is a closed ENR CcR™. This aspect has been developed in
Section 3. According to (3.10) (with a slight abuse of notation), we recall that
S ={(x.MeTxR: x = f(t,x;A)}, Sp= {xe1: x = f3(x)}, where I't := {x(-) : [0,T]-=C,
continuous and such that x(0)=x(T)}.

COROLLARY 2. Assume (hl), (h2) and

(nl)  Syis bounded ;

Let QcI'xR, Q) 2S, be an open set, and assume that
(nl) I(1,Q20M C) = 0.

Then, there exists a closed connected set D c 8§, DN (Sox{0}) # &, such that for the sets
D= {(x\)eD: A > 0} and D™ = {(x,\)e D: A < 0} the following alternative holds:
either (i) D (D7) is unbounded or (i) D' NfrQ # @ (D Q= ).

We remark that, accordin g to the definition and properties of the index of rest points (cf. Chapter 1),
we have I(5,QqN C) := I(ﬂ:o,ﬁom C), for any open bounded set ﬁOCI‘ such that SOCQOCQO.

Proof. In the framework of Section 3, it is sufficient to prove that, under the given conditions,
I(TCO,Q()K\ C) = II‘(Mo,Qo>, (44)

(the operator M(+;A)) is defined in (3.9)) and to apply Theorem 3 with G(;A) = M(;A). The argument
needed for the proof of (4.4) is the same as the one used to get (3.10), again on the lines of Section 5 in
Chapter 3. ¢

REMARK 8. Corollary 2 shows that, in the general framework of the fixed point index theory for
arbitrary ANRs it is possible to improve many results (obtained with different techniques) concernin g
various periodic boundary value problems. On the one hand, Corollary 2 is a global bifurcation result; it
contains Theorem 2.1 in [53], where the phase space is an m-dimensional manifold satisfying suitable
assumptions and the "characteristic of the vector field" x(f,) is assumed to be non-zero. Corollary 2 also
generalizes Theorem 2.1 in [51], where, in order to perform a proof based on Taylor's formula, more
regularity for the operators arising from the given system of ODEs is required. On the other hand, from
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Corollary 2 several existence results can be obtained too; more precisely, if a priori bounds for the
solutions of the parametrized system (3.5) are available, then, according to Remark 6, we reobtain, among
others, Theorem 5 in Chapter 3, Theorem 1 in Chapter 2 and Corollaries 1 and 4 in Chapter 2; in these last
ones, we considered the following different choices for the set £2: |

Q= {xel:x(eG, Vte[0,T]}, Q= {xel:x(0)eq, <R},

for G < C bounded and open relatively to C.

Finally, since, according to Remark 7, Theorem 1 (and, as a consequence, Theorem 2) can be proved by
means of Theorem 3, it turns out that the detailed study of the solution set of a parameter-dependent
equation developed in this Section, together with the idea of using an integer-valued functional y as in
Theorem 2 has a crucial importance also when there are no a priori bounds, like, e.g., in the "superlinear
case" studied in Chapter 5 for C = R™.
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