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INTRODUCTION

Although this work at first might appear to be a collection of writings on dis-
connected subjects, in fact a single theme underlies the work presented. The
idea underlying the logical development of the various parts is the possibility
that gravitational waves can gravitationally lense distant light sources. This
idea is due to Bertotti ([63]; cited in [25]) and mentioned by Wheeler [25].
Thinking on this topic, new ideas and problems appeared, though here they
were sometimes treated in general, and not only regarding their specific appli-
cation to lensing by gravitational waves. These various topics are located in
different chapters, which will appear unrelated at a first sight.

Chapter 1 deals with the propagation of light through exact plane wave
solutions of Einstein equations (in particular with .the frequency shift effect).
This study provides some physical insight into the phenomenon, even if the
results can hardly be generalized to realistic (linearized) gravitational waves.
However such exact waves are of some relevance to high energy physics, and the
propagation of light through such waves is interesting from the mathematical
point of view, and has not received much attention in the literature.

Chapter 2 reviews the effects induced by linearized gravitational waves
(both of primordial origin, or generated by astrophysical sources) on the light
coming from distant sources and propagating through them. Though no origi-
nal result is contained in this chapter, some critical considerations are pointed
out there.

Chapter 3 is devoted to treat the gauge-dependence problems which arise
when considering experiments on gravitational waves, and linked to the use
of particular gauges (like the transverse-traceless one). A general view of the
problem is given, and then an application to gravitational wave detectors is

pointed out. The starting point of this work was the difficulty of describing a
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detailed model of lensing gravitational wave in a coordinate system different

from the one achieving the transverse-traceless gauge.

Chapter 4 contains the starting idea of this thesis, namely the possibility
of lensing by gravitational waves. Following Ref. [63], the vector formalism for
ordinary gravitational lenses is applied to gravitational waves acting as lenses.
Though this is not a priori correct, it is proved there that the results obtained
in this way are correct to first order in the gravitational wave amplitudes
(metric perturbations). This is accomplished by using a suitable version of
Fermat principle for arbitrary (nonstationary) spacetimes. This application to
fully nonstationary lenses in this thesis generalizes the work of Refs. [83] and
[84]. Finally, some order of magnitude estimates rule out certain sources of
gravitational waves as realistic lenses, while some other appear to be possible

lenses, though the probability of observing their effect on light is probably low.

Chapter 5 arises from the question whether the cosmological gravitational
waves taken in consideration in Chapters 2 and 4 are really distributed in a
homogeneous and isotropic way in the universe. If this is not the case, the
picture given there should be changed. A possible source of inhomogeneity is
the following phenomenon: backscattering off the curvature of the background
spacetime may cause radiation to propagate in the interior of the light cone,
in vacuo. The question whether this effect is important for long wavelength
radiation, from a cosmological point of view, is the so-called tail problem. The
relevance of this effect in Friedmann cosmologies is analyzed, reducing the prob-
lem to that of one-dimensional scattering of a quantum particle in a suitable
potential, and solving the corresponding Schrédinger equation. The standard
treatment of the scattering process in terms of reflection and transmission co-
efficients cannot be applied to this case, as pointed out. The tail problem

requires then a radically different approach, and it is not solved here.

In order to understand more deeply the problem, one realizes that the pres-
ence of tails for radiation in curved spacetimes has sometimes been understood
as a failure of Huygens principle. Chapter 5 clarifies then the relationship
between the tail-free property, Huygens principle and the characteristic propa-
gation property discussed in the literature. Huygens principle is reformulated

using the Green function representation for the solutions of the wave equations,
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and the relationship between it and the characteristic propagation property is
discussed.

The content of Chapter 1 can be found in Ref. [18]; that of Chapter 2
in Refs. [87, 88]. Chapter 4 is summarized in Ref. [114], and Chapter 5 in
Refs. [160] and [153].

Notation:

We adopt the notations of Ref. [1]. We use units in which G = c =1 (but
sometimes we will restore G and ¢). The metric signature is +-2. V, denotes
the covariant derivative operator, and O = g**V,V,.

The abstract index notation is adopted; Latin indices a, b, ¢, ... on a
tensor are part of its name; Greek indices (running from 0 to 3) denote tensor
components. Latin indices 7, j, k, ... are however needed sometimes to denote
spatial components, and run from 1 to 3. The convention on the definition of
the Riemann tensor is such that

Ry, =T7 , —T7 4+TT7 —T21I7

ppv vp,p ptav vptap
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Chapter 1

EXACT PLANE
GRAVITATIONAL WAVES

1.1 Introduction

Exact, analytic solutions of the Einstein field equations that describe plane
gravitational waves have been considered in the literature for a long time (e.g.
[2]-[6] and references therein), and it has been shown that plane waves exhibit
focusing properties on timelike and null geodesics propagating in them [7, 2,
8, 9]. The focusing property makes the study of propagation of light in exact
plane waves nontrivial.

More recent work has considered collisions of plane waves and the conse-
quent formation of singularities ([10]-[13] and references therein); it appears
that focusing plays a major role in the generation of such singularities. Fur-
ther, it has recently been realized that plane fronted waves with parallel rays
(pp-waves), of which plane waves are a subclass, are exact classical solutions
to string theory [14, 15], renewing previous interest [16, 17] of high energy
physicists in such waves. Here we consider photons propagating in plane grav-
itational waves in the geometric optics approximation. We take into account
the frequency shift of light. The effects induced on light by an exact pulse of
gravitational waves can be hardly generalized to realistic gravitational waves,
because they are enormously exaggerated, or are due to non generic symmetries
of spacetime. However by examining these effects we can get some insight into

the properties of lensing by gravitational waves. Moreover, the argument is in-
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teresting from a mathematical point of view. In addition, since plane waves can
be interpreted as the gravitational fields generated by highly energetic mass-
less particles, they could be applied to describe situations occurring in a hot,
primordial universe, or near black holes [16]. Finally, since they describe fully
non-linear gravitational wave pulses, if strong fields with properties similar to
those of our examples exist, they could be useful to study phenomena near
astrophysical sources of gravitational waves. As far as this point is concerned,
it has been suggested [10] that mutual focusing of gravitational waves could
produce gravitational waves with amplitudes larger than we would expect on

the basis of the linearized theory.

1.2 The frequency shift effect

Apparently, the frequency shift for light propagating through ezact gravita-
tional waves has never received much attention in the literature, even if its
astrophysical consequences for linearized waves (see later) have been taken

into account in various works. The following is based on Ref. [18].

1.2.1 The model
Let us consider the metric (Ref. [8], p. 166)
ds? = —dt* + p*(u) dz?® + ¢*(u) dy* + d2° (2.1)

where v = ¢ — z and the functions p(u) and g(u) are chosen so that spacetime
is curved only between the null hyperplanes v = 0 and v = a? (wavezone).
The metric Eq. (3.1) represents a particular case of plane fronted wave with

parallel rays (pp-wave). Emptiness of spacetime is equivalent to
1 1"
p q

(where a prime means derivation with respect to u), while flatness is equivalent

to



§ 1.2. The frequency shift effect 9

The simplest nontrivial way given in the literature (Ref. [8] p. 166; Ref. [9]
p. 229) to satisfy emptiness is

1 u <0
p(u) = ¢ cos(u/a) 0<u<a®
a+ Bu u > a’®

and
1 u <0
g(u) = { cosh(u/a) 0<u<a?
v + du u > a?,

where a, 3, v and § are constants determined by requiring that p and q are

continuous with their first derivatives. This gives

= cosa+asina,
—sina/a,

= cosha —asinha,

o = W R
il

= sinha/a.

The metric Eq. (2.1) represents then a plane sandwich gravitational wave prop-
agating along the positive z-axis. It takes the Minkowskian form in the be-
forezone (u < 0) in coordinates (t,z,y,z) and in the afterzone (u > @*) in

coordinates (T, X,Y, Z) given by the transformation

)

T = t+-§-p(tb) 2*+5q(u)y",
X = pu)z,
Y = g(w)y,

_ s 2 8 2
zZ = z+§p(u):v +—2—q(u)y . (2.2)

Since we have
curvature in the wavezone ~ |p”/p| = |¢"'/q| = 1/a*,

a small a gives a strong wave; we are actually interested in this case, even

though we allow any ¢ > 0 for the moment.
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1.2.2 Null and timelike geodesics

The only nonvanishing Christoffel symbols are

M, =13, =pp,
sz = I‘gz =qq,

1 .l ol o pl
Py =Tw=-Tip=-I5 =

2 172 _ 2 _ 12 —
1-‘02"‘I‘ZO_“FZS”~ I‘32 -

QR

The equation of null geodesics gives

dpt I T\2 . Yy\2
iy + 0" (p")* + qd'(p¥)" =0,
dpz P, ¢

2____1‘ — ) —
dpY q
a9 d puipt ) =
T qp(p p’)=0,
dp*

+pp'(P°)* + qd'(p¥)* =0,

dA
where A is an affine parameter along null geodesics and p* are the compo-
nents of the tangent to the null geodesic (photon’s 4-momentum). p,, p, and
py = —p*/2 (which is the momentum conjugate to the null coordinate v = t+2z)
are constants of motion, since they are conjugated to cyclic coordinates. More-
over, we get p* = du/dA = +1, with the positive or negative sign according to
the possibility that the photon is propagating with a component of its momen-
tum in the positive or negative z-direction. The solution of the null geodesic

equation is given by

P o= + o, +1/2 (2.4)
2p?  2¢? ’
N c
F =3, (2.5)
C2
py = 5 2.6
7 (2.6)
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where = respectively, and ¢; = p;, ¢ = p,, an e normalization
here p* +1 respectivel d D Y d th lizati

puP* = 0 has been used to eliminate a third integration constant. Moreover,

o .
t(u) = = —2—A+—2—-B +u/2,
z(u) = cAd+es,
y(uv) = aB+ys,
o 4. G
z(u) = =+ —Q—A+—2—B Fu/2,

where
du

Alu) = / ) (2.8)

v duy
B(u) = / o 2.9
= [ (2:9)
and zs5 = Xg, ys = Y5 and ug are the transverse and null coordinates of the
light source, respectively.

The equation of timelike geodesics gives

dut

B () + ag () =0,
d x /

;; +2;ux(ut——uz):0,
du? !
-i—-l—?%-uy(ut—uz)::ﬁ,
du*

+pp'(v*)’ + q¢'(v¥)* =0,

ds
(2.10)

where s is proper time and u* is the tangent to the timelike geodesics. One

gets
2 2
o o
¢ 1 2
o= o t1
2p*  2gq
e 4]
x —
U = —-5,
Y4
Q2
VA
(7 = **‘2—,
q
2 2
u: o= aq Q5

2p2 ng’
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where o, and o, are integration constants (corresponding to p,/m and py/m,
where p* is the 4-momentum and m the mass of a test particle; again p, and
p, are conserved quantities), and where the normalization u,u” = —1 has been
used!. We are interested in considering test particles with u# = §% in the
beforezone; this implies a; = @y = 0 and u* = §°* everywhere, in coordinates
(t,z,y,2). This coordinate system has the property that observers initially at
rest relative to each other in flat space remain such forever (this is not the case

however if u# # §% initially, i.e. aj,as # 0).

1.2.3 The frequency shift effect

Let us consider a test particle with 4-velocity v* = §° in coordinates (¢, z, ¥, 2),
emitting light in the beforezone. The light signal propagates through the sand-
wich wave and is received by an observer (with 4-velocity u* = §%) in the
afterzone; the light will suffer a frequency shift. We limit our study to the
geometric optics approximation, that holds if the wavelength of the electro-
magnetic signal is much smaller than the scale of variation of the gravitational
wave: A << a. The (angular) frequency emitted by the light source in the
beforezone is

w5 = ~gupls = 5( + &+ 1) (2.11)

(where we consider null geodesics with p* = —1). The (angular) frequency

received by the observer in the afterzone is

_ n, v — 1 C% Cg
wo = —gu P'u’|o = 3 {pz(uo) + () + 1] . (2.12)
The frequency shift is given by

“wo cf c3 2 2 -1

o = L??(uu) + Z(u0) + 1} (ci+c3+1). (2.13)

The integration constants ¢; and ¢, parameterize the spatial direction of the
light rays. We can write the condition for red-/blue- shift in observer’s co-

ordinates (7, X,Y, Z) by writing the solution of the null geodesic equation in

IThe equations of null and timelike geodesics and their solutions are valid in all the three
zones in which spacetime is divided by the wave. In the afterzone they must however be
written in coordinates (T, X,Y, Z), which are the most convenient there.



§ 1.2. The frequency shift effect 13

coordinates (T, X,Y, Z) using Eq. (2.2), and obtaining from these

X —plu)Xs
= 2.14
)V (214)
Y - q(u)Ys
cy = B (2.15)
where
p(u)A = —ug(cosa—asina)+ a(sina + afcosa) ,
g(u)B = —ug(cosha + afsinha)+ a(sinha+ aécosha) ,
_u
‘f = :1'—2 -1 )
so that
Wy ay 2 a2 2
— = == (X =0 X)) + —— (Y = bY5) +1] -
ws [Pz(uo) ( 1Ks) g*(wo) ( :¥5) }
. -1
o (X =03 Xs) +as (¥ — byYs) +1] (2.16)
where

a1 = [a(sina+aépcosa)—us(cosa—alpsina)]”™?

a; = [a(sinha+ aépcosha)—us(cosha + afpsinha)]™ ,
a3 = [a(sina+ aégcosa)—ug(cosa—afssina)]™”

ay = [a(sinha+ aéscosha)— ug(cosha + afssinh a)]"2 ,
by = cosa—apsina,

b, = cosha -+ aépsinha,

by = cosa—aégsina,

by = cosha+ afssinha.

We limit our considerations to strong waves and Taylor-expand for ¢ < 1.
Moreover, we consider an observer at z = 0: the sandwich wave is incident on

him at ¢ = 0 and leaves him at ¢ = a?. We then set ¢p = 0, getting

2a? U
a = “52[“7;(”‘5)}’
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ay ~ ug’ .1+-2££< "%ﬁ )

as ~ ug :1+—2§S-2-<1+96£): )

ay ~ ug :1+1255—2<1——3§>: ,

by ~ 1—?-;,

by, ~ l—l-%z,

by ~ 1—u5+%2(1+235),

by =~ 1+u5—§<1~%§> )
p’(a?) ~ 1-ad*,

¢Pa®) ~ 1+4+ad*.

The condition for redshift (wo/ws < 1) for {p = 0 and X5 = Y5 =0 1s

ay 2 a3 9
— X< lay———|Y".
Lﬂ(aﬁ) } " qﬁ(an]
Since

a1 —al 2 2 ( 2 2 1)]
_— ~ -1 2 2Uug — — — — ,
P (a?) as Ug {us +a Ug + 2ug ve 3

%2 o —4{1_ 2 2(2 2 __9 l,__l_ﬂ
ULy T us +a |\ 2us —2us+ - =g )l

we get that if —1 < ug < 0 the coefficient of X is negative, while that of ¥’
is positive, and there is redshift in the whole (X,Y") plane (except at (0,0)).
If ug < —1 the signs of the coefficients of X and Y are reversed, and there is
blueshift in the whole (X,Y’) plane (except at (0,0)). If us = —1 the condition
for redshift is |Y| > | X[, and the regions of red- and blue- shift are separated
by the lines ¥ = +X, in the (X,Y) system that has the polarization axes
of the wave as coordinate axes and the observer at the origin (see Fig. 1.1).
By continuity of the function (wp/ws) — 1, these results hold also for small,
positive {o. We have a frequency shift even if gy = —1 (a possibility already
pointed out by Burke [19]) and go; = 0 (7 =1,2,3 ), and a spatial dependence
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— M — T "M Cr- w
4 M — T LM r— @

- Figure 1.1: The pattern of frequency shifts for light propagating in a
strong plane sandwich wave, in the case us = —1, (Xs,Ys) = (0,0).

of the frequency shift (a differential effect) even if the wavefront is perfectly
uniform [£ and % are Killing vectors of the metric Eq. (2.1)].

The previous formulae do not hold if ug = 0. Actually it can be interesting
to examine this case, corresponding to emission of light taking place when the
plane wave collides with the light source. In this case we have (for Xg = Y5 =
0)

wo ay

9 Q2 2 2 2 -1
e | —— X+ 2 Y 41| (e X+ oY1),
ws | p*(vo) ¢*(uo) }( ’ ! )

where

2

a; = a *(sina+aépcosa)”?,

2

*(sina —acosa)™?,

Q

Qg =

2

*(sinha — acosha)™?.

N
a; = a *(sinha+afpcosha)™?,
X
ay = a
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The condition for redshift if £y = 0 is

(¢ 5] 2
[zﬂ(a‘*) - as} e

Expanding for small a, we get

_ %2 |y
*“ qz(fﬂ)]y'

a
5%17)'—&3 ~ —(1+CL—2)<0,
(e %) —9 :
C¥4—-Ez—(—a—2—)— a*—1>0.

Then there is redshift in the whole (X,Y") plane (except at (0,0)).

For small £p we have

a ~ uxi(l+a?),

a; ~ upi(l—a?),

and q(uy) increases linearly with ug, while p(uy) decreases linearly, vanishing at
u. = a(a+cota) (= 1+ 2a?/3 for strong waves): the factor wo /ws diverges at
u.. (regardless of the position in the (X, Y") plane). This reflects the fact that all
null and timelike geodesics are focused on the (Z,Y") plane (see Refs. (7,2, 8] for
the focusing property). The divergence of wo/ws is however a spurious effect,
since it is not physically meaningful to consider the frequency shift when p = 0.
To see this, consider a circular cloud of test particles (possibly emitting light)
in the plane z = 0 before the wave arrives, and suppose that light is emitted by
the test particles when they are in the afterzone (when the gravitational wave
has already passed); any frequency shift can be explained by Doppler effect
due to relative motions induced by the gravitational wave, since we are now
in flat space (while if we consider light emitted in the beforezone there is an
additional “gravitational”contribution due to the wave field). We describe the
situation in coordinates (t,z,y,z): when p approaches zero we have, retaining

only the leading terms

px ~ al/pzy
P>~ —ai/2p?,
pY < oo,

de/dz = p*/p° ~—-2]/ar,
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Figure 1.2: The “funnelling” of light rays near the line p = 0 for a
strong plane sandwich wave.

dy/dz ~ 0,
dy/dz ~ 0,
(2.17)

so light rays tend to move in the (z,z) plane but not in the (y,z) plane and
they are “funneled” near the line p = 0 (see Fig. 1.2).

The picture in a plane transversal to the z-axis is the following: the projec-
tion of the originally circular cloud of test particles on such a plane is now an
ellipse (due to the wave’s shear) with size shrinking to zero in the z-direction.
For a test particle on the ellipse, dz/dt ~ —2/a;, dy/dt ~ 0 and dz/dt ~ 1. In
the limit p — 0 such an observer A will receive light only from a test particle B
with yg = y4 (dy/dz ~ 0), that is from a test particle on the z-axis, approach-
ing him at the velocity of light (dz/dt ~ 1). The formula for the Doppler effect

gives then

ﬂ_\/l——zﬂ__\ﬁ—l—v

ws 11— V1—wv

— 00 as v-—1
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(the motion of test particles in coordinates (t,z,y, z) seems to violate causality;
see Refs. [8] and [9] for examples of motion of test particles in plane sandwich
waves). We conclude that the singularity in the frequency shift effect at p = 0 is
not physically meaningful; it comes from drawing conclusions with a formalism
failing on the line p = 0, that is a singularity of the geodesic congruence. Any
congruence of timelike geodesics in the sandwich wave spacetime has expansion

/ /

§=L419 L as p—0. (2.18)

p q

This scalar quantity is purely kinematical and its divergence does not at all
imply the existence of a singularity (the vanishing of gi1 at p = 0 is a purely
coordinate singularity, since the metric can be put in the Minkowskian form
in the afterzone), but it shows the relative motion of the timelike geodesic
observers we considered in our heuristic explanation. The situation is very
much like in Milne’s spacetime, the Minkowski space with a cloud of particles
expanding uniformly into it, that has scale function a(t) = t (where ¢ is the
cosmic time) and where the expansion of a congruence of fundamental observers
is

_ 5 8(t)
OREES

t
(a dot means derivation with respect to t); § diverges at the singularity a = 0.

1.3 Another example

Let us consider the metric [20]-[22], [7, 5, 6]
ds? = —dudv + dz* + dy* — H(u,z,y) du’ (3.1)

where v = ¢t — z and v = £ 4 z. The metric given by Eq. (2.1) corresponds to a
particular choice of H and of the (z,y) coordinates [23]. Equating to zero the

Ricci tensor gives
0*H N O*H
Oz? oy?
We choose H to decrease (at least) as 1/r as » = (2 + y?)'/? tends to in-

finity; the metric Eq. (3.1) describes an exact, sourceless gravitational wave

0.

propagating along the positive z-axis and spatially localized.
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Light rays propagating in the weak field region (large r’s) suffer only small

deflections §z#. The 4-momentum of such a photon is
pli = pl(lu) -+ 5pu ’

where dpf,)/dA = 0 (A is an affine parameter along null geodesics) and §p* are

small quantities, so that the photon path is the curve
zH(A) = 3:?0) + bzt = a¥ A + b + fz(A)

(where a* and b* are constants). Since the §p#, H and its derivatives are small
in the far region, we neglect quantities of order H -8, §%, §-8; H in the equation

of null geodesics, getting

d(ép") v g
— Tt Yep(o)Ploy = 0,

or
(@]
6" = — [ AN TZ, iy 2l

where the integral is computed along the photon’s path from the source to the

observer. Since the only non-vanishing Christoffel symbols are

Fﬁljo:Hu I —'P%O:HI F63:F§U:Hy

02 —

I‘g)o = Hm/z Pgo = Hy/2

(where H, = 0H/0z%) we get, to first order,

op* ~ 0,
Ao
bpt ~ — dA [Hu(a”)2 + 2H . a%a” + 2Hya"ayJ ,
As
1 plo
bp* = —= d\ H.(a*)?
p 5 )i, (a)*,
1 rto
dpY = —= d)\ H,(a%)?.
p 2 Jrs y(a")

The exact null geodesic equation gives

Pt =a"+ép" =1;
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to our order of approximation we may substitute a* with 1, getting

sp*(u) =~ 0,
p¥(u) ~ — /u du' (H, + 2Ha® + 2H,a"),
us
— l /u dv' H,
2 Jus

u

—}/udu’Hy.
2 Jus

>
3
P
&
12

>
3
—
&
12

Moreover,
d(6p') _ d(ép®) _ 1dp®
dx ~ dx 2dx’
§p4(0) = _/”" du' (Hya® + Hya¥ + H,/2) . (3.2)
us

Consider an observer and a source at rest relatively to each other in the
weak field region, with 4-velocities u* = (1 + §ut, §u*, fuY,6v*) and v¥ =
(1+ 80, 6v7, §vY, §v*) in coordinates (t,z,y, z) respectively, where du*, 6v* are
small velocity perturbations induced by the gravitational wave. The (angular)

frequency received by the observer is
wo = —gu p'u” = (1+ 8p' + fu' — u” + H)|p+0(2).
The normalization u,u” = —1 gives
Sut = —H/2 + 0(2),

so that
wo =1+ 6pH(0) — 6u* + H(O)/2 + O(2) . (3.3)

Analogously we find the (angular) frequency emitted by the source, ws =

—gup*v”]s. The frequency shift is given by the redshift parameter

= (6v" — §u”) + {8p'(0) + [H(0) — H(S)] /2} + 0(2) ,

where 6p'(0) is given by Eq. (3.2). The first term can be interpreted as a

Doppler effect due to the relative motion between source and observer induced
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by the gravitational wave; the remaining term can be interpreted as a “grav-
itational” contribution due to the wave’s field. (Such a separation of the two
contributions is however only a matter of interpretation, since only the total
effect is in principle observable). It is worth noting that the frequency shift
effect is of the first order in the metric and velocity perturbations; this is in
agreement with the works on linearized waves (see Chapter 2).

In conclusion, the study of propagation of light in exact wave-like solutions
of Einstein equations shows that the temporal and spatial dependence of the
frequency perturbation is a fundamental feature and is present even when one
does not expect it, due to the spacetime symmetries. There is a characteris-
tic pattern of frequency shifts caused by a simple plane wave; it changes at
different instants, for fixed positions of the source and the observer. The typ-
ical situation is such that one has, at a fixed instant and for a fixed source
position, red- (or blue-) shift at all the observer’s spatial positions (with the
value of the redshift parameter depending on the observer’s position). There
is a particular source position for which one has, at a fixed instant, redshift or

blueshift, according to the observer’s spatial position.
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Chapter 2

LINEARIZED
GRAVITATIONAL WAVES

2.1 Introduction

Gravitational waves in real world are described by linearized General Relativ-
ity [1, 24] in most (if not all) astrophysical situations. The possibility that
propagation of light through gravitational waves gives rise to observable ef-
fects was firstly considered by Bertotti [63], and by Wheeler [25] in a qual-
itatively way. This possibility was then considered by various authors, who
most commonly took into account propagation of light through the stochastic
gravitational wave background analogous to the 2.7 K electromagnetic back-
ground expected on the basis of the standard big bang theory of the universe
(see Refs. [26, 27, 28] and references therein), or in unconventional cosmologies
[29, 30, 31]. Sometimes however, light propagation through single bursts of
gravitational radiation of noncosmological origin has been considered. If one
considers isolated bursts of gravitational radiation from astrophysical sources,
certain conditions must be satisfied in order that the photons coming from a
luminous object cross the gravitational waves giving rise to a net effect. This
can reflect in a small probability that the effect takes place (unless one con-
siders very particular geometries in which the light source and the source of
gravitational radiation are continuously emitting, and light is forced to cross
a beam of gravitational waves). On the other hand the gravitational wave

background is present always and everywhere, and the light reaching us from
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distant sources travels through it, so any effect induced by gravitational waves
is surely present (but it is not necessarily so strong to be observable). In this
case, under some assumptions on the frequency range and the cosmological
density of lensing gravitational waves, one describes the various effects they
induce on photons propagating through them. Comparison with observations
allows one to put constraints on the gravitational wave amplitudes. In other
situations, the effects on light due to cosmological gravitational waves have
been proposed as an explanation of some puzzling observations.

The effects arising from the interaction of light with gravitational waves,

which could possibly be relevant in astrophysics, are

o amplification and intensity fluctuations of a light beam;

frequency shift;

spatial deflection of light rays;

multiple imaging and associated high amplification events;

o phase shift of electromagnetic waves;

o shear of a light beam.

Suppose that gravitational waves can be characterized by a single period P.
Then, if the observation times are longer than, or comparable to P, an observer
will notice the time-dependence of the effect induced by gravitational waves
on the light propagating through them. If instead the observation times are
shorter than P (this occurs when ultralow frequency gravitational waves of
cosmological origin are involved), the effect will appear to be “frozen” in time
(wavelengths A ~ 1 Mpc have been considered; they generate effects varying

on timescales ~ 10° years).

2.2 Amplification and intensity fluctuations
of a light beam

Let us consider, in the geometric optics approximation, a light beam prop-

agating through gravitational waves, which induce a time-dependence in the
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beam intensity. Intensity fluctuations (together with the time-dependent
deflection of light rays) cause scintillation of a distant light source. Various
authors [32]-[35], [37, 38] have considered intensity fluctuations for a beam of
light coming from a distant source and travelling through the gravitational
wave background.

Zipoy [32] derives a formula for the intensity fluctuations of a light beam
propagating through an arbitrarily varying gravitational field. He applies it
to the gravitational wave background, and finds for a small size source at a

distance ~ 10° light years, an average intensity fluctuation
2 1/2
81
— ~107°
(&)

for the extreme case of a homogeneous and isotropic universe dominated by
gravitational radiation. Zipoy considers also the case of a plane linearized
wave with amplitude h,, (the spacetime metric being g,., = 7, + A, in an
asymptotically Cartesian coordinate system). The wave has arbitrary profile,

a well defined direction of propagation, and is localized in a region of size [.

The intensity fluctuations it causes in a light beam are found to be

57{ 2h2—? (I —cosb) , (2.1)
where # is the angle between the directions of propagation of the gravitational
wave and the light beam, D = D;D;s/Ds and Ds, D; and D;s are the
observer-source, observer-lens and lens-source distances respectively (since the
background spacetime is flat these are Euclidean distances). Note that accord-

ing to this formula:

o the intensity fluctuations are of second order in the gravitational wave

amplitudes;

e if the light beam and the gravitational wave propagate along the same

axis (0 = 0), the intensity fluctuations vanish;

o the effect results from a balance between (very small values of ) A% and the
ratio D/l (which is very large for a light source at cosmological distance

and a well localized pulse of gravitational radiation).
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An optimistic estimate of the amplitude h comes from considering a pulse of
gravitational waves generated by a violent explosion involving a mass of order
108 M, at a distance ~ 10° light years, which gives 61/I ~ 107'>. The effect
appears to be exceedingly small.

Winterberg [33] considered this effect basing his calculations on a formula
derived in studies of scintillation produced by atmospheric turbulence, treating
gravitational waves as a randomly fluctuating medium with refractive index

n = ny + dn (where én describe stochastic fluctuations). The result is

@-E2E@E . e

where I, is the time average of the beam intensity, D is the distance between

the light source and the observer, and [ is the characteristic length scale of
the density inhomogeneities in the medium (which is connected with the auto-
correlation function (6n(z,),én(zs))). Winterberg used Eq. (2.2) to describe
the scintillation of a distant light source, taking into account waves emitted by
close binaries in our galaxies, by distant quasars, and the gravifational wave
background. He found large intensity fluctuations §1/1 ~ 1 in the last two
cases, contrary to Zipoy’s [32] conclusions. As shown explicitly by Zipoy and
Bertotti [34], this result is wrong, and the large effect found by Winterberg is
an untrue coordinate effect. Eq. (2.2) leads to two mistakes: firstly, there is no
first order effect in the gravitational wave amplitudes. The amplification of a
light beam is a second order effect, and consequently it is very small [35, 34].
This can be understood by considering a congruence of null geodesics in the
field of linearized gravitational waves around the Minkowski metric [36, 35],
and studying the propagation equations for the optical scalars. If k? is the
(null) tangent field to the null geodesics, the optical scalars expansion, shear

and vorticity are defined by

g = '2— ka;a y
1 .
!0'12 = 5 k(a;b) ka‘b — 92 ;
1
Lu‘2 = k[a;b] ka;b y



§ 2.2. Amplification and intensity fluctuations of a light beam 27

respectively, and the complex shear is (apart from a phase factor)

k t_a tb 1 [k ka.b 1 (ka )2} 1/2
0 = Rq. = === a; == ia )
ib \/ﬁ ( 7b) 2
where ¢% is a complex null vector orthogonal to k® and normalized according
to ¢,8* = —1. The optical scalars satisfy the equations
dé 2 2 2 1 b
— = 4 — = Ry kK,
0 g fo" + w 5 Ra
do 7a 1,b 7c 7,d
o= =200 — Caped " K t°k" = =200 — C(A)
dw
— = —-2wé
dx ©o

where A is an affine parameter along null geodesics. An approximate solution

to these equations for weak gravitational fields is [36]

9:—/1{—{—5«9 , o0=4680, w=~0w=20

(where we have chosen A = 0 at the position of the light source). In this

approximation, in empty space, §§ and o obey

%% (\66) = —|of ,
1d,.,
3\-:;Za(A §o) = —C(A).

Clearly, if h is the amplitude of perturbations of the Minkowski metric, fo ~ h
and 88 ~ [§o]* ~ h®. Thus the change in the expansion (and then in the
amplification of a pencil of light rays) vanishes to first order, reducing to a
second order effect !.

The second mistake to which one is led by using Eq. (2.2) is that the
relative fluctuations 61/ are proportional to D3/2, where D is the length of

IThis suggests an interesting observation concerning ordinary gravitational lenses: the
shear they induce on a beam of light propagating for a long time in a inhomogeneous universe
can generate an appreciable amount of expansion (a typical value for the dimensionless
Newtonian potential of galaxies is ®/c? ~ 1076, which is much larger than the amplitude
h of gravitational waves in most situations). Dyer and Oattes [39] have found that this
nonlinear effect influences the light beam more than the common linear treatments suggest.
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the path travelled by the photons. Such a dependence is wrong, since Eq. (2.2)
does not apply to a situation in which the inhomogeneities of the refracting
medium propagate with the speed of light (we will comment in the following the
dependence of the wave-induced effects on the path length). We have quoted
these works because it is important to realize that the amplification induced
by gravitational waves on a light beam 1s a second order effect in the wave
amplitudes in ordinary situations (a special treatment is however necessary
for situations involving multiple images — see later), and that, though treating
the gravitational waves as a medium with fluctuating index of refraction is in
principle correct [40, 41], one must be very careful in doing this, in order to
avoid mistakes like the dependence of §I/I on the travelled path length, that
completely vitiates the final results when numbers are put in.

Bertotti and Catenacci [38] studied the influence of a dispersive medium
on the dependence on the travelled distance for light propagating in the grav-
itational wave background. They examined fluctuations in the intensity and
position of a light source, and found a different dependence of these effects
on the source distance D, according to the fact that the refractive index of
the dispersive medium is greater or less than 1. Ifn > 1 a Cerenkov type
resonance produces scintillation proportional to D32, If instead n < 1, the
effect is proportional to D/2. They use this result to put an upper limit to
the spectrum of gravitational waves, but these limits are not very interesting
(as themselves remark), due to the fact that the interstellar and intergalactic

plasmas are too rarified.

2.3 Frequency shifts

~ Light propagating through gravitational waves suffers a time— and position—
dependent frequency shift (see Chapter 3 for detailed calculations). Vari-
ous authors dealt with this effect from different points of view. As one eas-
ily finds by solving the null geodesic equation, the redshift parameter z =
(Aobserved / Aemitted) — 1 1s of the order of the gravitational wave amplitudes (met-
ric perturbations): z ~ h. Then small effects are expected for astrophysically

generated gravitational waves, while waves of cosmological origin can be more
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interesting.
Zipoy [32] considers the frequency shift due to the gravitational wave back-
ground and finds z ~ 1078 for a universe dominated by gravitational radiation.
Kaufmann [42] considers explosions near the centre of our Galaxy involving
masses of order 1080 moving at velocities v ~ 1072, at a distance r ~ 10

light years, and finds
GM

cr
(corresponding to velocities ~ 3 - 1073 em/s). He points out that this effect

is within the sensitivity limit of devices based on the Mdssbauer effect (which

~ 10-—13

z~h~

may reach sensitivities up to ~ 1071%), but it is not at all clear how to separate
the effect due to gravitational waves from other contributions. Events outside
our galaxy (in the local supercluster) are not detectable, even in principle, by
these devices.

Rees [29, 43, 30] considers primordial gravitational waves in the wavelength
range 1-10 Mpc (a size intermediate between the separations of neighbouring
galaxies and the diameter of large clusters), and finds that the frequency shift
effect is of the same order of the Doppler effect due to the relative velocities
between galaxies induced by gravitational waves. Galaxies in a cluster are

treated as particles separated by a distance [ and it is found that

{ Qw0 (A Ar) 1> A

VR V2w) - (1/3) i1 <A,

where {1, is the energy density of gravitational waves in units of the critical
density p. o 2:107%° g-cm™3 (defined according to the prescription by Isaacson
[44]) in the frequency band considered, and Ay ~ H~! is the Hubble radius
(Ar, ~ 3000 Mpc). Note that z ~ h for [ > A, as follows from the equation

A
h ~ 1/ w. T .
Q’Q- AH (3 1)

[26]. In the canonical big bang theory of the universe one expects [26] a gravi-
tational wave background with Qg not exceeding the energy density of elec-
tromagnetic radiation (., =~ 2.5-1075. This gives amplitudes by far too small
to generate appreciable effects. Also astrophysically generated waves cannot

give rise to any effects in galaxy groups and clusters because their wavelengths



30 Chapter 2. Linearized gravitational waves

are too short (A < 1 pc). The waves considered by Rees are instead remnants
of primordial chaos in the early universe, in an unconventional cosmological
model [29, 30, 31] in which the universe is chaotic at z > 1000, and the spec-
trum of chaos is truncated on scales larger than clusters of galaxies, to account
for the observed homogeneity of the universe on large scales. These waves are
expected to be broad-band, with a predominant wavelength in the range 1-10
Mpc, and can have (,,, ~ 1 without contraddicting present observations (29].
They can give rise to substantial effects: if [ > X apparent velocity dispersions
~ 300 Km/s would be generated, being capable of accounting for the redshift
anomalies observed in small groups and clusters of galaxies. The apparent
motions in the Local Group (and in particular the negative velocity of M31)
are also considered [29, 43]. Though the purpose of Refs. [29, 43] (see also
Ref. [45]) is mainly to treat the effect of waves on the dynamics of clusters and
groups, these works are relevant here because the redshift variations we are
interested in are of the same order of the Doppler effect due to wave-induced
velocities of galaxies [29]. Egs. (2.3) later show that waves with {25, ~1 and
any X are capable of completely cancelling the Hubble recession on scales < A
These considerations do not depend on the precise spectrum of gravitational
waves.

Burke [19] proposed to explain part of the apparent velocity dispersion
in cluster galaxies with redshift fluctuations induced by long wavelength
random gravitational waves of cosmological origin. The wavelength should be
tuned such that the gravitational wave field is correlated across a single galaxy,
but is uncorrelated at different galaxies. Since such wave periods (A ~ 1 Mpc),
are greater than any reasonable observation time, the effect appears to be
“frozen” in time. Photons emitted by galaxies in the same cluster but located
at different positions, where the metric perturbations have different values,
will undergo different frequency shifts. Photons from some galaxies will be
redshifted, photons from others will be blueshifted, so these galaxies will appear

to have a relative velocity dispersion. The redshift parameter is found to satisfy

(27)

1
7
@

g
Z|>
2
P=pl



§ 2.3. Frequency shifts 31

Dautcourt [46] proposed to explain the redshift anomalies observed in galaxy
clusters, groups and chains by the the frequency shifts induced by waves with
wavelength greater than the Megaparsec scale. These waves should form a
non-thermal background originated in the early stages of the Universe by tur-
bulence in primordial matter motions. Ultralow frequency waves (wavelengths
in the range 1-3000 Mpc) can have amplitudes A in the range 3 - 10741, i.e.
extremely large when compared to the small amplitudes expected for radiation
impinging the Earth (A ~ 107!® for supernovae in our galaxy, A ~ 102! for
events in the Virgo cluster). Such large amplitudes are possible without su-
percritical cosmological densities of gravitational waves, due to the very long
wavelengths involved. In fact h, Q,.,,. and A are related by Eq. (3.1), where A
is an increasing function of the wavelength and can become appreciable if A is
some fraction of Ay, 1, being not too far from 1.

Dautcourt considers perturbations %, to the metric of a K = 0 Friedmann-
Lemaitre-Robertson-Walker (hereafter FLRW) spacetime (in the synchronous
gauge), treated as stochastic Fourier integrals, and derives equations for the
spectral densities. These are solved in the high frequency approximation
A/Ag < 1 (that allows also the introduction of the energy density of grav-
itational waves according to the prescription by Isaacson [44]). Due to gravi-

tational waves, the observed redshift of a light source will be
Ztotal = Z + 8z )

where z is the non-random mean of the redshift related to the distance by
D = cz/Hy for small z, while the fluctuating contribution 6z is a random
variable changing irregularly with the source position. The explicit dependence
of 6z on the spectral densities is derived. If the gravitational radiation is
quasimonochromatic §z exhibits periodicities in the source distance =z

and in the angular distance §. The predicted periods are

Az = (1+2)

A’
Ag o~ LEZ A
z Ay
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respectively. For quasimonochromatic radiation he finds

A4 22
V{623 ~ — 1= Qguw. |1 =1.
(52) AH\JS g..( +Z+2)

As a consequence, distances of extragalactic objects determined by redshift

measurements are subject to errors of order H;'w/(62*) ~ Xy/Qg.w. The red-
shift component §z induced by gravitational waves will appear to be frozen in
time. The values of §z for single galaxies vary with the depth and the apparent
sky position of the galaxy. One effect is an increase of the velocity disper-
sions of galaxies in clusters and groups (the same effects considered by
Burke for galaxies, but on a larger scale).

If the gravitational waves have wavelengths greatly exceeding the cluster
diameter, the effect is not to increase the apparent velocity dispersions, but
rather an anomalous redshift with nearly the same value for all galaxies. Waves
with angular correlation length A8 given by Eq. (3.2) will produce a system-
atic change of galaxy redshifts across a cluster or a group of galaxies.
This could explain, e.g. the systematic redshift variations in the chain of galax-
ies observed by Gregory and Connolly [47]: a redshift difference of ~ 750 Km/s
is observed between the ends of the chain and apparently cannot be explained
in terms of peculiar motions. Waves with A < 1 Mpc are required in order
to explain it. The same effect could also explain large discrepancies in other
groups of galaxies that almost surely are physically related.

It has been proposed that gravitational waves with A greater or of the
order 100 Mpc with a not too small cosmological density could explain the
anisotropy and nonlinearity of the redshift distribution of galaxies in the
local supercluster. Dautcourt finds that the redshift perturbation consists
of a change §z along the supergalactic equator, mainly of quadrupole type,
due to the local wave field in the neighborhood of the observer. As remarked
in Ref. [19], this quadrupole type anisotropy affects the redshifts of nearby
galaxies, cluster of galaxies, quasars and the microwave background. Limits on
Q.. coming from observations of the microwave background constrain simple
models explaining the local redshift anomaly with a wave-induced systematic
redshift perturbation. The question whether refined models can account for the

observed redshift anomalies without contraddicting observational limits on the
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isotropy of the microwave background apparently has not yet been answered.
A periodic redshift clustering for all extragalactic objects is predicted if
the waves generating the previous effects exist. The number density of sources

of a given type with redshifts between 2z and z 4 §z is

mita(2) = () = o (n52) |

where n(z) is the corresponding density were the waves absent. If the gravita-
tional waves have a broad spectrum, periodicities in m, are smeared out. If,
on the other hand, gravitational radiation is quasimonochromatic with wave-
length A, one has redshift clustering on a scale Az =~ (14 2)X/Ay. A sys-
tematic study of this conjecture considering all the present observations of
periodicities in the redshift of extragalactic objects apparently has not been
given.

Dautcourt’s approach treats the waves as coherent in phase, while a phase-
amplitude relation should exist. Moreover, it fails when A is some fraction «
of Ay, i.e. in the region where h takes its larger values, unless {1, peaks
at wavelengths much smaller than aly (however one expects that primordial
gravitational waves are broad-band [29, 43, 26]). In addition, there exists a
redshift z* such that for 2 > 2z~ the high frequency approximation breaks
down. In fact, if a(t) = (t/to)" is the scale factor (normalized to 1 at the

present epoch) in the K = 0 Friedmann model used, one has 2

A 1

Z = (1 ,

5= (1+3)

AH H(‘) —l/n
= — = (1

Y g =t

and then A/Ay = (1 + z)l/”—l (A/Ar), ~ Lat z*. If Q,,,. =1 for waves around
Ao = 3 Mpc, n =1/2 and z* ~ 1000.

The possibility that cosmological gravitational waves affect also microwave
background photons has been considered by various authors ([48, 46, 41, 49];
[560]-[52] and references therein). The temperature of the microwave back-

ground is

T:TU+6T,

2using H = (t/to) ' n/to and 1+ z = (t/1) ™"
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where §T describes the frequency shift induced by gravitational waves. Daut-
court [46] considers a K = 0 Friedmann model with metric perturbations Ay,
(in the synchronous gauge) and with scale factor a(t) = (¢/to)", and Fourier-

decomposes the temperature fluctuations:
68T = /T(E) eke-itkt B3k 1 complex conjugate ,
and integrates the equation of radiative transfer for 7, taking into account

Thomson scattering and the interaction with gravitational waves. He finds

_ kToh,'jninj Ag _  indg (12 ‘n o+ k) 1-1/n
T("}i)_2(&-@+k){1—(1+zl)exp{_/\cq+ 1~ [1 (14 z) }

(3.3)

where it is assumed that 7 = 0 at some initial epoch 21, A, = (nQUT)—l (where

no is the present density of matter, o7 is the Thomson cross section) and

g=[ dq(z) (142"
Q

g(2') is the degree of ionization of intergalactic matter at the epoch 2.

T consists of two terms: the first is slowly varying across the sky, and the
second (containing the exponential function) is a rapidly changing function
of the direction of observation n. The slowly varying contribution is due to
the local wave field in the neighborhood of the observer, while the rapidly
changing term is due to photons’ interaction with gravitational waves at some
early instant prior to the recombination [53]. A similar decomposition is found
by Burke [19].

The temperature variation on a large angular scale is decomposed in spher-
ical harmonics and it is found [53] that the induced anisotropy is of quadrupole
type, a dipole-type contribution being negligible. From observational limits on
the microwave background quadrupole anisotropy one sets the upper limit on

the cosmological density of gravitational waves with A ~ Ay [28]
Qg.w. S 2.5 - 10‘9 Qe.m. .

The anisotropy induced by waves produced at decoupling (z ~ 1000) with
wavelengths of order of the horizon is on scales minutes to degree. Observa-

tional limits on these scales give [28]

Qg.w. S 4 - 10—-10 Q'e.m.
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for A ~ 100 Mpc.

The frequency shift induced by gravitational waves affects radio signals
propagating from pulsars to the Earth, and has been taken into account ex-
tensively in the literature on pulsar timing (see Ref. [54] for a review). Pulsars
are extraordinarily accurate clocks and the frequency shift can be observable
as the time derivative of the timing residuals in the observational data. The
observational limits on the residual noise in pulsar timing can then be used
to set limits on the cosmological density of the gravitational wave background
[55]. The spectral response was studied theoretically by Mashoon [56] and by
Bertotti et al. [57], while Romani and Taylor [58] and Hellings and Downs [59)

performed actual data analysis. The result is the upper limit
Q. < 1.4-107 for P > 108 s .

Data from the millisecond pulsar PSR 1937+21 give [60]
Qgw. <5-107 for P~ 107 s .

Bertotti ef al. considered data from the binary pulsar PSR 1913416 (in which
the knowledge of the orbital dynamics permits one to predict the time deriva-
tive of the orbital period F,, contrary to what happens for the spin period P,
of pulsars, for which P, is determined by a not well known physics) in order
to set an analogous limit in the wavelength range 1-10* light years. They find
25w, < 2. This is not an exciting result, but it is expected to improve as data

on PSR 1913416 continue to accumulate.

2.4 Spatial deflection of light rays

The time-varying field of gravitational waves deflects the null rays propagating
in it. Zipoy [32] finds for the angular deflection 66 of a light ray in a stochastic

gravitational wave background

5 oo
2—-._
<5a>_3/0 dw

where P(w) is the spectrum of gravitational waves (Zipoy’s definition of P(w)

b

P({ﬂ)

w

however is somewhat different from the usual one — compare Refs. [32] and

[26]). He estimates angular deflections of order 10~3 arcseconds.
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Linder [61] considers light propagating through a medium with refractive

index

n(z,t) =mno[l +€(z,t)] ,

where the inhomogeneities are described by € (| < 1) and propagate with
velocity v. For the case of the gravitational wave background and of a photon
propagating along the z-axis, v =1 and € = hzz/2 in the TT gauge °.

The angular deviation for a signal whose unperturbed path is along the

z-axis is, to first order,
D
9‘4 = / 8‘46 d.’E
0
(A = y,2), where it is assumed that the path length D the signal traverses

is much greater than the scale of inhomogeneities A. When the medium with

fluctuating refractive index is the gravitational wave background, we have
e(z,t) = Re (60 eik“‘”u> .

In non-relativistic treatments of wave propagation through inhomogeneous,
turbulent media, the mean square angular deflections (6%) grow as the path
length (“D-effect”). This can be understood by thinking that if IV is the num-
ber of scatterings the propagating wave has undergone, the N deflections add
stochastically, so that \/(—0”—) « +/N, according to the well-known law for the
standard deviation. However, when the inhomogeneities in the medium propa-
gate with relativistic velocities (as for the gravitational wave background), the
situation is different and the D—effect vanishes, a striking and counterintuitive
result.

Considering the “4” polarization, Linder finds
1
(92> = ‘2- kD<R82€+>I 3

where k = |k|, I = $2._, anl,, s is the spin of the field responsible for
inhomogeneities, a, are constants independent of kD, and
kD(1-v)/2

1= (k)™ | dy y" sin’
( ) —kD(1+v)/2 vy simy

3Note that for a monochromatic plane gravitational wave propagating along the z-axis,
one has k., = 0 in the TT gauge, and the effect vanishes (in any gauge, of course). This is
due to the transversality of the gravitational wave.
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(y = kD (cos§ —v)/2). It is found that the integrals I, for n > 0 do not
vary as any positive power of D. I_; and I_, contain no D-effect in the limit
v — 1. The absence of the D-effect for the gravitational wave background
is understood as due to the transversality of gravitational waves, and to the
equality between the velocities of propagation of the light signal and of the
inhomogeneities, so the vanishing of the effect is not a matter of relativistic,
but rather of relative velocities. (The absence of secular effects had also been
noted in Refs. [32, 38]). Linder actually treats the more general situation
of wave signals propagating with velocity V through a medium where the
inhomogeneities have velocity v and are due to a field of spin s ‘(v and V
are not necessarily 1, and s can be 0, 1 or 2) *.

The spatial deflection of null rays by random gravitational waves (together
with the already considered intensity fluctuations induced in a light beam)
causes scintillation of a light source. Dautcourt [46, 62] considers ultralow
frequency gravitational waves which give a frozen effect, i.e. a positional shift
of all sources in a region of the sky which varies on unobservably long time
scales. It is suggested that, if the displacements are correlated over the sky, the
position shift could lead to an apparent clustering. This would concern general
clustering tendencies, not distinct, well recognizable, clusters of galaxies. The

mean square root angular displacement is found to be

A
Ay
for quasimonochromatic radiation of wavelength ~ A, and for light sources

at redshifts 2 < 1. The angular displacement can be decomposed into two

(02) ~ 0.14/Qg 0.

contributions, analogously to what happens for the redshift effect. The first
contribution is due to the local field of gravitational waves in the neighbor-
hood of the observer and shows correlations over a large part of the sky. It
gives a rather large (for long wavelengths A and appreciable densities Qgw.)
effect. Since it is a systematic position shift on a large scale it is in practice

unobservable.

*It is interesting to note that if one considers lensing by ordinary mass concentrations
in an inhomogeneous universe as lenses, the deflections suffered by a pencil of light rays
cumulate with the travelled distance (at least for light sources at moderate redshifts). This
results in a “fuzzy” structure of the past null cone perceived by an observer, imposing limits
on the reliability of standard observations in determining the structure of the universe [39].
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The second contribution to 1/(§2) is connected to the wave field at the
source, and is smaller than the first by a factor A/ (2w Ag). This contribution

is responsible for the apparent clustering, and it is found to be

Jom =B () v

This gives a differential effect on a smaller scale than the first contribution.

The deflections can reach minutes of arc for waves with A > 100 Mpc. However,

it is difficult to separate apparent effects induced by gravitational waves from
real clustering tendencies, which are expected tobproduce stronger deviations
of the index of clumpiness from 1. As a consequence, Dautcourt concludes that
existing galaxy counts put no significant upper limits on the gravitational wave

amplitudes [62].

2.5 Multiple imaging and high amplification
events

The probability distribution of amplitudes for the waves considered by Daut-
court is not known, so one cannot rule out the possibility that high amplitudes
occur. If nonlinear waves really occur, they may have given rise to a network
of caustics due to the focusing property mentioned in Chapter 1 [62].

The possibility that gravitational waves multiply image light sources was
treated heuristically by Wheeler [25] and applied by Bertotti [63]. High am-
plification events are associated to the existence of caustics and critical lines
which separate regions corresponding to different numbers of images (see later
Chapter 4). The formalisms used in the literature to compute intensity fluc-
tuations of a light beam due to gravitational waves [32, 35, 34] give very small
effects. However they are known to break down when caustics describing mul-
tiple imaging are concerned, so it is possible that the known results do not tell
the whole story. These formalisms look very much like the propagation formal-
ism ([64] and references therein) used in the theory of ordinary gravitational
lenses. This is not able to describe multiple images and high amplification
events associated to the crossing of caustics by a light source. As an example,

we quote the amplification found by Zipoy [32] for a light beam crossing the
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time-dependent gravitational field of a binary system. Studies of the two point-
mass gravitational lens performed with the standard theory [65]-[68] give a dif-
ferent amplification. The formula found by Zipoy shows only a caustic point
(b = 0), while the caustic manifold found in [65]-[67] is more complicated?.
Thus it appears that the statement that gravitational waves always give a very
small amplification of a pencil of light rays can be untrue in circumstances in
which multiple imaging is involved. We know that for ordinary gravitational
lenses multiple imaging is not always possible, since a certain condition on the
projected mass density of the lens must be satisfied [69]. Thus a lens capable
of multiple imaging is more an exception than a rule, so we can ask whether
a lensing gravitational wave capable of multiple imaging is realistic. If the an-
swer is positive, we should expect high amplification events from such a wave.
The problem whether realistic gravitational waves can be capable of multiple
imaging is considered in Chap%er 4, and it is found that the answer is posi-
tive in some situations in which astrophysically generated waves are involved.
They do not appear to be very frequent, but there is room for the possibility

of multiple imaging and the associated high amplification events.

2.6 Phase shift of electromagnetic waves

A light beam propagating through gravitational waves experiences a phase
shift. This effect has been considered in order to build interferometric detectors
of gravitational waves ([70, 71, 72] - see [73] for gauge-dependence problems
connected with these detectors).

Braginsky et al. [74] have given a detailed treatment of this effect. They
solve Maxwell equations in the field of a monochromatic plane gravitational
wave, in the high frequency approximation (with A/Ay < 1) and to first order
in the wave amplitude h. Then they apply the result to a random superpo-

sition of linearized waves to find the phase shift of a plane electromagnetic

®One could raise doubts on the validity of the standard vector formalism (see later) used
in the above references for the case of a rapidly rotating binary lens, since the hypothesis
of lens stationarity is explicitly required to apply it. One can however be confident that at
least the order of magnitude of the amplification it gives is correct, since it is not expected
that the time variability of the gravitational field will cancel the effect.
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wave. They find that the phase shift does not increase with the travelled dis-
tance (the usual absence of secular effects), due to the transverse character of
gravitational waves and to the equality between the velocity of light and of
gravitational waves. An explicit comparison with a nonrelativistic randomly
fluctuating medium is made. They. consider also the phase shift effect due
to random gravitational waves in presence of a plasma with refractive index
n > 1. They find that the phase shift in this case cumulates with the trav-
elled distance, but even assuming that the density of matter in the Universe is
critical, and that the travelled distance is the Hubble radius, the effect turns
out to be extremely weak. This result is similar to that found by Bertotti and
Catenacci [38] for the intensity fluctuations of a light beam. To the second
order approximation, an effect quadratic in the wave amplitude h is found to
be relevant only for inadmissibly high densities {2g.u.. Finally, they analize
the capability of space radio interferometry to detect, by means of the phase
shift effect, gravitational radiation of both astrophysical and cosmological ori-
gin. Space radio interferometry is found to be competitive with other detection

methods for wavelengths A < 1 light year.

2.7 Shear of a light beam

Using the equations of propagation for the optical scalars of a congruence of
null geodesics, one finds that the shear of a light beam due to gravitational
waves is of first order in the gravitational wave amplitudes: o ~ h/A. For

cosmological gravitational waves one has

v/ Qg.w.

b
AH

g

i.e. the shear depends on the wavelength of gravitational radiation only through
its energy spectrum.

Let us consider a single plane gravitational wave; the shear it induces on
a bundle of null rays is zero when averaged over many wave periods. For
a random superposition of plane waves one expects that the shear vanishes
even prior to the time averaging (due to the ensemble averaging). To find

some effect one must consider a single plane wave with period longer than the
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observation times. Gravitational waves generated by astrophysical sources have
roughly P ~ 10 Rs and h ~ € Rs/D (where € is the efficiency of the process
generating waves, Rs and D are the Schwarzschild radius and the distance of
the source). A catastrophic event involving a mass ~ 108 M, gives P ~ 107 s,
h ~ 10~ (assuming D ~ 100 Mpc and a generous efficiency ~ 0.1), and
o ~ 107'® 57!, These numbers suggest that waves generated by astrophysical
sources are too weak to produce appreciable effects. However (as we have
noted before) when multiple imaging is involved, considerations based on the
optical scalar equations no longer hold, and the images of a light source suffer
substantial changes in shape (the giant arcs observed in galaxy clusters, the
small elongated images accompanying them, and the radio rings being dramatic
examples). Multiple imaging by astrophysically generated gravitational waves
cannot be ruled out (see Chapter 4). Unless P is of the order of a few hours
(the time scale required for observing faint, distant objects) or larger, the time
averaging of the shear makes the effect vanish. So we are left with a situation
that probably is very unlikely to occur: multiple imaging must take place, due
to a gravitational wave generated by an astrophysical source, in a narrow range
of amplitudes and periods. In addition, the observations should take place when
the lensing event (which is usually rare and does not last forever) occurs. If,
despite the difficulties suggested by these rough considerations, such an event
should ever be observed, a region of the sky would appear anisotropic, in the
sense that luminous objects would be elongated in one direction and flattened
in the perpendicular direction. It would be possible to observe variations in
the shape of the images during a single night of observations if the period of
the lensing waveis P ~ 10* s (longer periods are not expected by astrophysical

sources)‘.

Another (perhaps more realistic) possibility is that a fluctuation arises in
the gravitational wave background, with a well defined direction of propagation
and polarization [63]. In such a case, for wavelengths greater than ~ 10 pc one
would see the instantaneous, and not the time averaged, shear in the shape of
distant sources. The effect is inversely proportional to the wavelength of the
fluctuation. The simultaneous presence of a certain number of such lenses in

the sky would affect the distribution of ellipticities of high redshift galaxies. A
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similar effect has been considered for ordinary gravitational lenses [75]-[77].

Photon scattering in an anisotropic medium is accompanied by polarization
of the scattered photon. The effect of shear due to a long wavelength plane
wave is to create an anisotropy in the plane orthogonal to the wave propagation.
This phenomenon has been considered for the microwave background [28]. The
expected polarization is -

p~ocA~h~ d

(model calculations give p ~ 0.367/T). While temperature fluctuations tend
to be erased by scattering, polarization requires it. The scale on which the
polarization effect is relevant is greater, or of the order of the horizon size
at decoupling, since for smaller scales the superposition of many regions with
uncorrelated polarizations in the sky will destroy the effect. Observational
limits on the polarization anisotropy are comparable to limits on temperature
anisotropies, and the upper limits one obtains on Qgw. are comparable with
those obtained for the redshift fluctuations z ~ 6T /T [28].



Chapter 3

GAUGE-DEPENDENCE
PROBLEMS

3.1 Introduction

Among the various effects induced by gravitational waves on the light prop-
agating in them, there is the possibility that they create multiple images of
distant light sources, in the same way as mass concentrations perturbing the
background curvature of the universe do. This possibility has been suggested
by Bertotti ([63]; mentioned in [25]). In order to describe it, one would like to
use, as far as possible, the standard formalisms adopted for ordinary gravita-
tional lenses. Here we describe in detail only the vector formalism, which we
will actually employ.

The vector formalism ([78] and references therein) is the most commonly
adopted in the literature on gravitational lenses. It is the most well-suited to
treat point-like lenses (e.g. in microlensing), and is sometimes called “Newto-
nian approach”, because it describes deflection of rays with linearized General

Relativity and the lens by Newtonian theory. It assumes the following:
e linearized General Relativity;
e geometric optics;
e small-angle scattering;

e transparent, bounded, and stationary lenses;
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source plane image plane observer

Figure 3.1: The geometry adopted in the vector formalism for ordi-
nary gravitational lenses.

e thin screen approximation.

The propagation of a photon through the universe and the lens field is
described by a mapping from the image plane (the sky as we see) to the source
plane (the sky as it would look were the lens absent). The image plane is taken
orthogonal to the source-observer line of sight, and passing through the lens;
the source plane is analogously defined, passing through the source. Cartesian
coordinates 7 = (z,y) and s = (ss,s,) are used for the image and source
positions, respectively. The mapping is defined from the observer to the source,
because one wants to have a single-valued function even in case of multiple
imaging. The origin of coordinates in the sky is determined by a conveniently
chosen optic axis. s can be defined as the image coordinate in the image plane,
were the lens absent (see Fig. 3.1).

Let us consider the linear positions of the source and the image in the source

plane; they are obtained from the linear positions in the image plane and the

angles they subtend, as seen by the observer - see Fig. 3.2, where
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Figure 3.2: A simplified geometry for an heuristic derivation of the
lens equation.

z Ds/D; image linear position in the source plane;
3 Dgs/Dy source linear position in the source plane;
aDys linear deflection in the source plane;

D observer-lens distance;

Dg observer-source distance;

D, s lens-source distance.

We get
Dg Ds
| E_‘Dz—ﬁ—b‘z'{*(—Q_)DLS
Introducing
DpDps
D=
Ds '’

we get the lens equation

45
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where the deflection angle o can be obtained from linearized General Relativity
considering the path of a photon with 4-momentum

P=— (1+6p° 6p',8p%, 14 6p%)

suffering a net deflection
Ap = [ (h““ LY v~> -2 [oressofEnd] . (1)
' 2 c?
This gives the bending angle
2
gz_gfﬂy@, (1.4)

where the integral is taken along the unperturbed photon’s path between the
source and the observer. In the approximaf;ion employed, ¢ is a 2-dimensional
vector with no component parallel to the photon’s path, and depending on the
projected (2-dimensional) structure of the lens. The angular diameter distances
in the FLRW universe are used for the D’s to describe cosmology. The angular
diameter distance between two objects at redshifts z4 and zp (with z4 < zp)

is given by

b _ 2 (1=00)(Gi—Gs)+(GaGh — GiCh)
T H, Q3 (1 +24) (1 + 25)°

(1.5)

[79], where
G; = (1 + Qozi)l/z 1=A, B,

and Hy, Qo, and g are the present Hubble parameter, density parameter, and
deceleration parameter, respectively. Results in gravitational lensing theory
are more sensitive to the choice of the lens model than to the choice of . A
Qy = 1 (K = 0) Einstein-De Sitter model is most commonly used in literature.
The transformation described by the lens equation has the Jacobian matrix
0s
J(z) = Bz

Its inverse represents the amplification tensor

A(z)

H
Q)‘ QD
la |8
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whose determinant is the scalar amplification

Oz
A = Det (ﬁ_g) .
The loci of points in the image plane in which Det(J) = 0 are called critical
lines and the corresponding lines in the source plane are called caustics. They
separate regions in the source plane corresponding to different numbers of
images. As a point source is moved in the source plane, images appear, or
disappear, in pairs when the source crosses a caustic. Amplification is virtually

infinite on critical lines, but in practice it is limited by wave optics to the values

GM\'/?
A~ < Ac? > (L6)
on a fold caustic, and
GM\'?
A~ (55 (1.7)

on a cusp caustic, where M is the lens mass, the intensification becoming
chromatic [80]; A can however be very large. In case of multiple imaging,

different images will generally have different amplifications.

Complex notation

The 2-dimensional nature of the bending angle a allows the use of complex
notation; a is replaced by the complex number o = o, + i, and is completely

represented by the scattering function

1 too 0®(z, 1) . [t 0%(z, 1)
le) = 55 U_w S Y M (18)
via the expression
4G
a = —"‘CTI . (1.9)

Eqgs. (1.9) and (1.4) are equivalent. One makes also the substitutions

The scattering function I(z) is analytic outside the matter distribution (as

can be proved using the Cauchy-Riemann conditions) and its knowledge is
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equivalent to that of the projected lensing potential. The lens equation is

4GD

c?

I, (1.10)

Zg = Z —

and can have more than one solution z for a given source position z, (multiple

imaging). The amplification tensor is

a0 1 (Q+Re(.§’:) —Im(]—')) ’ (1.11)

5, T GEoIFE \ ~Im(F) G~ Re(%)

where

g = 1- 2sz (azf—kiayf) ,

2GD .

F = —c—i—(aII—zayI) .
The function G is real and can be written

G=1- 4rGD S(zy)=1-X, (1.12)
where

+oc
Se,y)= [ dple,v]) (1.13)

is the projected surface density of the lens, and x (called convergence) is the

same quantity measured in units of

CZ

47vGD "’

We have x > 0and § < 1. Fisa complex function. Clearly, ¢ — 1 and
|F| — 0 as 7 — oo . The eigenvalues of the amplification tensor A are
g+ |F|

G — |F|?

and are real. Their product is the amplification of the image located at 2

Y= (1.14)

Ap = (1.15)

resulting from a small source located at z,:

A= 1

=G (1.16)

In fact, since surface brightness is conserved by lensing [81], the amplification

(ratio of intensities with and without the lens) is simply the ratio

area of an infinitesimal Tegion in the image plane

area of the corresponding region in the source plane
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A small disk source will be imaged into an ellipse whose eccentricity € is given

by the ratio of the eigenvalues of A

g — |7l

Avl 1917
g+1|F|’

o (1.17)

(1 _ 62)1/2 —

while the eigenvectors of A give the orientation of the ellipse.

Transverse motions of the source or lens

Relative motion of the source and the lens will cause displacements §z of the

image which can be computed using the lens equation, giving
bz = Aébs, (1.18)

where §s is the displacement of the source in the image plane. For source
motions it is given by

bs = — wg bts,
S

and for lens motions it is given by

bs = vy 0tr

where

vs is the transverse velocity of the source (measured at the emission time tg);

vy, is the transverse velocity of the lens measured at the time ¢; the light passes

the lens;

6ts is the time interval during which the source moves (measured at emission

times tg);
6tr, is the time interval during which the lens moves (measured at times ¢,).

An observer measures a time interval §¢p during which the image moves. We

have

bts = 5to(l + zS)'l

for source motions, and
oty = 5to(1 + ZL)'I
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for lens motions, where zg and z;, are the source and lens redshifts respectively.

For source motions we get

5;_—_-,4%325 Sto(1 + 25)~" (1.19)

S

and for lens motions

bz = A_‘I_J_L 5t0(1 + ZL)"l . (120)

Realistic sources and lenses are at cosmological distances; however the way
in which cosmology is included in the model by using the relativistic angular
diameter distance as a distance measure is not satisfactory. It could ultimately
reveal to be correct since angular quantities are measured in observations,
but it mixes exact relativistic cosmology and linearized theory leaving the
more mathematically-minded workers unsatisfied. One would like to have more
rigorous bases for gravitational lensing theory. We will not try to tackle this
problem because it should be treated in a forthcoming book [82] L

Two other formalisms are currently used in gravitational lens theory; the
scalar formalism is based on Fermat’s principle, that holds in stationary space-
. times and can easily be used to treat ordinary gravitational lenses (which are
assumed to be time-independent). It allows a topological classification of mul-
tiple images using catastrophe optics, and uses angular diameter distances to
describe cosmology. This formalism cannot be applied directly to our situation,
but a generalization of Fermat principle to nonstationary spacetimes (83, 84]
will allow us to describe lensing by gravitati‘onal waves (see Chapter 4).

The propagation formalism actually collects several approaches which de-
scribe the propagation of light in an inhomogeneous spacetime without a well
defined lens plane and use the relativistic optical scalar equations (OSE) by
Sachs [85] and Penrose [86]. The thin screen and weak field approximations,
and the hypothesis of bounded and stationary lens are not needed. This formal-

ism unfortunately does not describe multiple images, but only the amplification

I%When one is under pressure, it is very depressing and time-consuming to obtain results
that one believes to be original but instead are already known, a thing that happened to the
author three times while writing this thesis.
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of a bundle of null rays, and so is not useful for studying multiple imaging by
gravitational waves.

When trying to apply the vector formalism to the problem of lensing by
gravitational waves, one immediately encounters a problem: the gravitational
wave profiles available in the literature, which one would like to adopt as lens
models, are given in the transverse-traceless (TT) gauge. A reference frame
can be naturally associated to the TT gauge, but it cannot be realized by
means of material bodies. On the other hand the vector formalism singles out
a special asymptotically Cartesian coordinate system which represents the sky
as seen from the Earth’s position (neglecting the Earth’s motions). The further
introduction of the notion of cosmological distance in some sense transforms
to a comoving reference frame in a Friedmann universe (this transformation

~however suffers from the problems we have pointed out above). This special
coordinate system has nothing to do with the frame associated with the TT
gauge, and describing gravitational waves in this system appearsﬂ to be difficult.
This problem arises very often when dealing with gravitational wave detection
[87]. We will then approach it from a more general point of view than our

situation suggests. The following is based on Refs. [87, 88].

3.2 The gauge-dependence problem

It is well known that General Relativity has a gauge freedom, that can ul-
timately be seen as freedom of coordinate transformations. This freedom is
usefully employed to simplify calculations in a variety of problems concerning
the effects of weak gravitational radiation, by achieving suitable gauges. A
situation in which we are interested will be used as an example, namely the
frequency perturbation induced by linearized gravitational waves on light in
the geometric optics approximation (that we have already considered for exact
plane waves in Chapter 1). The fact that light travelling through time fluctu-
ating media undergoes Doppler-like shifts is well known ([89, 90, 91] and refer-
ences therein) and has been tested with recent laboratory experiments [92, 93].
This effect could be present in photons coming from extragalactic sources or in

the microwave background, and could possibly explain redshift anomalies and
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periodicities [94] in galaxy clusters, galaxy chains and groups, due to the light
propagation in a background of cosmological gravitational waves, or in single
gravitational pulses, as seen in Chapter 2. Calculations of this effect in the lit-
erature consider linearized gravitational waves around a flat, ora K =0 FLRW
background, and are commonly performed in particular gauges (the radiation
or TT gauge in the former, the synchronous gauge in the latter situation).
More generally, the calculation of effects due to small metric perturbations will
be more easily performed in a particular gauge; the literature deals extensively
with gauge conditions suitable for numerical calculations of emission of grav-
itational radiation by compact sources (Ref. [95] and references therein), and
with non-covariant formalisms used in the analysis of tensor, vector and scalar
cosmological perturbations of Friedmann universes [96]. However, adopting a
particular gauge means choosing a particular coordinate system “adapted” to
the problem (in our case one with coordinates “following” the gravitational
wave), so that the results will be valid in that particular system only, unless
they refer to scalar quantities. Alternatively one can perform calculations in a
coordinate system that seems physically more appropriate than others, like a
freely-falling (geodesic) frame, or an asymptotically Cartesian frame. In fact
physically meaningful observers are naturally associated with such systems.
Usually, if h,, are the (small) metric perturbations, one performs calculations
at order O(h") for some n, and the gauge-dependent part of the results is of
order m, completely negligible if m > n; however this is not always the case,

as we are going to show.

3.2.1 Linearized G. R. and the radiation gauge

Let us consider small perturbations of Minkowski spacetime; the metric is given
by
Guv = Muv + huu 3 (21)

where we assume the existence of an asymptotically Cartesian coordinate sys-
tem {z"}, 7, are the components the Minkowski metric, and |h,,| < 1. We
raise and lower tensor indices with 7#* and 7,,. The linearized vacuum Einstein

equations turn out to be

078,k =0, (2.2)
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where
h/,uz = h/,w - :{2' 77uu hpp 9 (23)

and with the gauge choice

which is obtained by performing the gauge transformation
P = by + 0460 + 0u€, (2.5)
where £ is a vector field solution of the equation
00,8, = —0"hy (2.6)
One can perform a further gauge transformation Eq. (2.5), provided that
0"0,¢" =0.

This restricted gauge freedom can be employed to achieve the radiation gauge

hoi =0

(1 =1,2,3), from which we also obtain hyy = 0. How do we achieve this gauge?

We solve on an initial time surface ¢t = ¢, the equations

—~ %‘" +V-E=—h")/2, (2.7)
o¢ 1 OhH
_— 2g. . — = - - H
Vi + ¥ ((%) 55 (2.8)
06  0&%
5t t Ggi = Thoi (2:9)
8 650 ahui
2¢. R s B
V3 + 5 <3t> 5 (2.10)

where 7 = 1,2,3 and = (&1,&2,§3), to obtain the initial values ff}’), 3&&”/01&
(on the t = tq surface). Then we define the vector field ¢# to be the solution of
Egs. (2.7)-(2.10) with these initial data. In the coordinate system that achieves
the radiation gauge (“R. G. system”) one has
om, Ok
I T

R, =0
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(+ = 1,2,3) on the initial surface. The theory of the initial value problem
for hyperbolic partial differential equations guarantees that h#, and hg; vanish

everywhere in the source-free region. Moreover, Eq. (2.4) gives

3thg() = O y
and

0*0,hoo = 0
gives

Vzhoo == 0 .

Together these imply koo = 0. So far this is standard theory (see e.g. Ref. [14]).
The gauge transformation Eq. (2.5) can be obtained by

o — gt = P 4 EH

where the order of magnitude of é# is clearly related to the smallness of A,
Eqgs. (2.7)-(2.10) give 8,6, = O(h). The transformation equations

m/.u — mu + €H($a> ,

ot =o't — ¢ (z™) = ' — (")

give
Oz oe
Ozv Ozv
OzH s o .
Oz'v v Ox'v
Let us consider now a tensor quantity with components A##2,,, = O(R")

in the asymptotically Cartesian (“A. C.”) system. Its components in the R. G.

system will be

Iy g . —
A Vg, =

— L o¢m 2 o¢r BL 8€ﬁl B2 86[32 aloz..
“(551+‘a§«7) (552+~5;;;)"'<5,4~5;; be — 5w | AT B =

— Amuz---uluzm + O(hn+1) .

The metric perturbations h,, clearly are not components of a tensor, since

they do not satisfy the previous equation; this is evident from Eq. (2.5). In
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fact the metric perturbations in the R. G. system are not obtained from those
in the A. C. system via the tensor transformation law for h,,, but are defined
according to the transformation of the complete metric tensor (that is a real
tensor) as deviations from the Minkowski metric in the R. G. system. In fact

we have

% _ O ooy

I —
T = 9 ™ B ™ g

which gives

o= o (G2 5]
Here the term in brackets is of order A (the difference in the sign of ¢* with
respect to Eq. (2.5) is not relevant, since it can be absorbed in the definition
of the vector field ¢{* via Eqgs. (2.7)-(2.10)). The point here is that 7,, and
h,, are not tensors, except with respect to Lorentz transformations, and the
decomposition Eq. (1.3) is meaningful only in a given coordinate system (the
A. C. system).

Note that the definition of the metric perturbations in the R. G. system

does not change their smallness:
O(hy) = O(hw) .

In conclusion, if we are performing calculations to order A", we can forget the
problem of the gauge-dependence of the results only for real tensor quantities
of order n, not for the metric perturbations, or quantities constructed from
them.

The relation between the derivatives of the metric perturbations in the

R. G. system and in the A. C. system will be useful in the following:

oh,, _ Oh,,, 8z° _
Oz'e OzB Ofz'=
_(sP 88 8

- ( o Sx'le )Bﬁ(huv + 8.&6” + 8U£u) =

Oh,,
= am’; + 0a0u6y + 00,6, +O(h?) (2.11)
O(h)

where Eq. (2.5) has been used: note that the difference between the two deriva-

tives is of order A.
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3.2.2 The frequency shift effect induced by linearized
gravitational waves around a flat background

As already remarked, the basic fact that light travelling through a fluctuating
medium undergoes Doppler-like shifts is well known [89, 90, 91], and is astro-
physically important when the fluctuating medium is composed of gravitational
waves, since it could explain redshift anomalies and periodicities [94] in galaxy
clusters, galaxy chains and groups (see Chapter 2). It seems reasonable to be-
lieve that, if the present programs to detect gravitational waves are successful,
the very existence of a gravitational wave background implies the observation
of a non-cosmological frequency shift, at least on certain scales, in a not too
far future. Moreover, the phenomenon of frequency shift can be tested with
laboratory experiments [92], and the interesting possibility of connecting them
with extragalactic observations has been suggested [93].

Let us consider linearized gravitational waves around a flat background, an
asymptotically Cartesian system {z*}, and a light ray whose unperturbed path

is parallel to the z-axis. The photon describing this ray has 4-momentum
Pt = (1 + 5p03 1+ 5p1,5p275p3) )

where §p# are small deflections of order h,,, and the unperturbed photon’s 4-
momentum is p{y = (1,1,0,0). We work in the geometric optics approximation
and compute the frequency shift effect caused by gravitational waves to first

order. The null geodesic equation gives
- o 1 .
5p0 = —/S dz [5 (h11 - hoo),o “(hOO + hUl))l + O(hz) y (2'12)
where the integral is computed along the unperturbed photon’s path from the
source to the observer (computing it along the perturbed path simply adds a
correction of order h%). Let us consider now an observer and a light source
initially at rest in the A. C. system and freely-falling, with 4-velocities
ut = ufy +out = (14 su’, dut, 6u?, ou’)
vt = "’E‘o) + 6 = (14 §vY, 8vt, 602, 6v°)
respectively. We get (using also the normalizations u,u” = v,v" = —1) the

angular frequency received by the observer

wo = ——-puu“ = 1 + 5pu(0) - 5’LL1 - [huu/?- -I— huﬂ() + O(hz) , (213)



§ 3.2. The gauge-dependence problem 57

and the angular frequency emitted by the source
wg = _"pu'U# =1 -+ 6})0(5) — 6’[)1 - [huu/z -+ hOl]S + O(hz) . (2.14:)

The frequency perturbation induced by the gravitational waves is described by

the redshift parameter

o 1
7 = _‘5{5)_ — 1 = (51)1 —_— 51_1,1) — /:; dz {5 (hll - hOO)aO -
(hoo + ho1)y | + [hoo/2 + hm]g + O(hz) . (2'15)
Moreover,
but = /d‘r (huo’o — -;— hoo"u) + O(hz) y (216)

where T is the proper time of the observer, and the integral is along the ob-
server’s worldline. An analogous formula holds for §v#. In the R. G. system
bu' = §v! = 0. This tells us that the coordinate system achieving the radiation
gauge “follows” the oscillations between the source and the observer, so that
they see each other at a fixed distance, and consequently there is no Doppler
effect, i.e. no first term in Eq. (2.15). Since z is a scalar, we can compute it in
the R. G. system: .

s= =5 [ dwhuolng+ O(R). (2.17)

We cannot exchange the values of §u*, §v# and h,, in the R. G. system with
those in the A. C. system, since §u* and §v* are not real vectors (considerations
analogous to those for h,, apply) and A,, is not a real tensor.

We regard the A. C. system as physically more meaningful than the R. G.
system (which is in some sense “adapted;’ to the gravitational waves), and
consequently we keep Eq. (2.15), with quantities computed in the A. C. system
as our final result. This is because we choose as fundamental observers the
inertial observers of the flat background. Consider for example the situation
in which a gravitational wave comes from a distant source. Before the wave
arrives, we refer to the inertial observers that see the light source at rest in their
own coordinate system (v* = §°*); the subsequent evolution of these observers
can be computed from Eq. (2.16).

Moreover, the notions of the unperturbed photon path and its deflection,

and the integrals on this path in Eqs. (2.15), (2.17) are well defined in the A. C.
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system, while they are not intuitive in the R. G. system. However the literature
on the subject uses the expression in the radiation gauge [61, 97], being rather
ambiguous on such concepts. The order of magnitude of the results is the same

in the two coordinate systems, but their expressions and values are different.

3.2.3 The frequency shift effect induced by linearized
gravitational waves around a FLRW background

Linearized gravitational waves around a FLRW background with curvature
index K = 0, and the frequency perturbation effect have been considered by

Dautcourt [46] and Linder [49], using the synchronous gauge [98]

go = -1,
gi = 0, (2.18)
gi; = a’(t) (6 + hij)
in (t,z,y, z) coordinates, where a(t) is the scale factor. They derive expressions
for the angular deflection and frequency perturbation suffered by a light ray

travelling near the z-axis and propagating through gravitational waves. The

redshift parameter is [49)]

a(io) la to /
- - dt h 2.19
? CL(tE) 2a tE thoo ( )

where to and tz are the observation and emission times, and the integral must

be computed in the synchronous gauge. When the universe does not expand
(a = 1), we recover the result already found in the radiation gauge for weak
perturbations of Minkowski spacetime. Again, the meaning of the integral in
Eq. (2.19) and its evaluation in the synchronous gauge are rather ambiguous
for a physical observer whose unperturbed worldline coincides with the average
motion of matter (plus eventually a known peculiar velocity). Criticism of
the use of the synchronous gauge when considering tensor (vector and scalar)

perturbations in a cosmological context can be found in Ref. [96].

3.2.4 Remarks

We pointed out the difficulty of comparing the eventual outcoming of obser-

vations with the results of calculations available in the literature. This is due
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to the fact that these are always performed in the radiation gauge, when con-
sidering perturbations of a flat background (eventually relevant for laboratory
experiments), or in the synchronous gauge when dealing with perturbations
of a FLRW universe (relevant for astrophysical applications). The problem
is substantially that realistic measurements are not performed in the coordi-
nate systems achieving the radiation or synchronous gauge, while the literature
gives results in terms of quantities computed in such coordinate systems, where
their evaluation (and sometimes even their physical meaning) is unclear, since
these gauge choices greatly simplify the calculations. In other words, the ob-
servers considered in the literature are not clearly specified, while physically
meaningful observers are naturally associated, for example, with an asymp-
totically Cartesian system. The frequency shift effect is important in itself
because of its astrophysical implications (redshift anomalies and periodicities),
and for the possible connection with laboratory experiments. Our problem
however is not limited to the frequency shift effect on light travelling through
gravitational waves, but is more general: one expects to face it whenever a sit-
uation of theoretical or experimental interest, in which weak (that is realistic,
in our neighborhood) gravitational radiation is involved, and the final results
are expressed in terms of quantities evaluated in such gauges. As we pointed
out, however, exchanging the values.of the relevant quantities in the particular
gauges we considered with those in the physical observers’ coordinate systems

does not change the order of magnitude of the results.
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From the previous considerations it appears that the gauge dependence
problem is somewhat obscure. We present now a more concrete application of

the previous considerations to the problem of gravitational wave detection.

3.3 Theoretical problems on gravitational wave
detectors

As seen before, in General Relativity there are situations in which one can-
not, in practice, avoid the choice of a particular coordinate system in which
to perform calculations. This situation occurs when dealing with experimental
gravitation. Here we consider the detection of gravitational waves, for which a
number of coordinate systems and gauge choices can be found in the literature;
among them, the TT gauge is widely used. Theoretical works related to elec-
tromagnetic (e.m.) detectors claimed that Fermi normal coordinates (FNC),
instead of the usual TT-coordinates, must be used when describing the in-
teraction of gravitational waves with the e.m. field in the detector [99, 100].
Actually, in general, a coordinate system has no physical meaning in itself,
being only a chart on the spacetime manifold; one needs to specify a famaly
of observers, rather than a coordinate system. For the particular case of FNC
however, the coordinate system is associated with a well-defined observer, that
turns out to be the physical observer making experiments with the detector,
provided that this has size much smaller than the wavelength of the gravita-
tional waves to be detected (we will limit our considerations to this case for the
moment). On the contrary, it seems that the physical meaning of the observers
associated with the TT system (“TT observers”) has never been investigated.
Here we will try to remedy this lack, by describing (to first order in the gravita-
tional wave amplitudes) how they are accelerated, or rotated with respect to a
freely falling (geodesic) observer in the field of the gravitational wave. It turns
out that the TT observers undergo very complicated motions with respect to
freely falling ones, as one could expect (and infer from Ref. [100}), since TT
coordinates are in some sense “adapted” to the gravitational wave. We show
that the metric perturbations describing the incoming waves (that, by defini-

tion, are not gauge-invariant) differ in the TT and in the FNC systems not
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only in their functional dependence on the coordinates, but also by a factor
(I/A)?, where [ is the size of the detector, and A the wavelength of gravitational
radiation. This fact is well known in the theory of detectors, but is particularly
clear when seen using the geometric construction of FNC. As a consequence,
the Maxwell equations in the field of the gravitational wave, when specified to
a FNC system, show clearly the way in which e.m. detectors operate, and their
difference with respect to mechanical detectors. Finally, we consider detectors
with I/A > 1, and point out the difficulty of giving a precise definition of the

physical family of observers carrying out measurements in this case.

3.3.1 Detectors with [/ <« 1
The TT and FNC systems

Until explicitly specified, we will always limit our considerations to a detector
with size [ much smaller than the wavelength A of the gravitational radiation
to be detected (we assume that it can be characterized by a single wavelength;
in most cases real detectors are sensitive only to waves whose wavelengths are
close to the resonance values. Wavelengths much smaller or larger than these
will not influence the detector). This is described, in any coordinate system,
by the metric

Guv = TN + M (3.1)

and by linearized theory.

As remarked in Ref. [100], the interaction between gravitational waves
and the parts of a mechanical detector are described by the curvature ten-
sor Ry, = O(h) (since such a device essentially measures tidal accelerations
due to the waves) that, being a real tensor of order 1, is gauge independent to
first order, according to the previous considerations.

The interaction of a gravitational wave with the e.m. field of an e.m. de-
tector is described by the metric perturbations h,,. According to Ref. [100],
this fact obliges us to consider the problem of the coordinate system for e.m.
detectors, while it is unimportant for mechanical detectors. In our opinion the
problem is conceptually important for both kinds of devices, since one needs

to specify unambiguously the observers performing measurements.
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Let us consider now the construction of a FNC system ([102]; [155] pp.
327-332): a sufficiently small (I/A < 1) detector can be described by the
worldline of its centre of mass. We assume that no force other than the field
of the gravitational wave acts on the detector (any other known force can, in
principle, be taken into account separately), so that its worldline is a timelike
geodesic T', the worldline of the “FN(C-observer”. We choose his proper time
r as an affine parameter along I'. From any point Py on I depart spacelike
geodesics orthogonal to I' (i.e. their tangent vectors are orthogonal to the
tangent vector efy to I', the 4-velocity of the FNC-observer, in Fy). We choose
three such geodesics (that can be fixed using gyroscopes) with unit tangent

vectors efy), ey, €fy)- Then the tetrad {e‘(’o), el €2y e‘(’3)} = {e‘(’“)} satisfies

gabelo)¥lo) = ~L
gaefely = 0
gavelelsy = i

ie. it is a orthonormal tetrad in Py. We can define it at any other point P on
I' by parallel transport:
e‘(lo)vael(’ﬂ) =0.

Adopting this tetrad as a vector basis, the Fermi normal coordinates of a point
Q near I are given by {z#} = {r,s'}, where s' is the proper length of the
i-th spacelike geodesic from P to Q. Far away from P, FNC are not defined,
since the spacelike geodesics can cross, due to the curvature of spacetime. The
transformation equations from FNC to another, general, coordinate system, to
first order, are derived in Ref. [100] (see also Refs. [99, 101]). Other versions of
Fermi coordinates for an observer accelerating and/or rotating with respect to
a freely falling one have been considered in the literature [102, 155]. The metric
to first order for these other versions of Fermi systems is given in Ref. [104] (see
also Refs. [24, 155]). We will use the term FNC only for the system constructed

above.
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The physical meaning of the TT system

In order to explore the physical meaning of the TT observers, we consider a
particularly simple example: a plane monochromatic gravitational wave prop-
agating in the direction of the y*-axis in the TT coordinate system {y*}. The
TT components of the wave 4-vector are k* = (k,0,0,%). In the TT gauge the

only nonzero wave amplitudes are

hii = —hy = A sin [k‘ (y3 - yo)} )

h12 = hgl = AX sin {k (y3 - yLJ)] .
For calculation economics with this wave, the TT gauge is clearly the most
convenient, since the metric components are simplified to the maximum possi-
ble extent. This happens because TT coordinates are in some sense “adapted”
to the wave; note that they satisfy [105] the wave equation

ViVay =

We consider a family of T'T observers, whose 4-velocity field u® (a geometrical

object, defined in a coordinate-independent way) has TT components u(T7)# =

6% (from which u(7T) = —§;,). Its components in the FNC system {z*} are
Bl # u
given by
u(FNC)u — g(FNC)uuul(jFNC) , (3'2)
where 3 B0
(Fvey _ Y7 jary 0¥
uy, = 3o W v (3.3)

The transformation equations from the FNC system {z#} to the TT system
{y#} are derived in Refs. [100, 99, 101]:

: , A (2')? - (z%)?] + 24, zl2? cos(ku) — cos(kz") .
0f o _ 0 _ + X . . - 0
y(z?) = 53 e sin(kz")| ,
ooy 2\ |cos(ku) — cos(kz”)  sin(kz®)
y(z®) = zh 4+ (A+m1 + Agz ) [ o3 - 5 )

o cos(ku) — cos(kz’)  sin(kz")
v (z®) = 2+ (Axazl - A+a:2) [ e . ,

: Al [(2')? — (22)*] + 2Axz'2®  [cos(ku) — cos(kz")
3/ .o _ + X
y(e7) = =°- 2z3 - ka3

- sin(ia”)|
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(where u = y® — y° = 2° — 2°) for 2° # 0, and
o _ .0 0 132 2y2 1,2
¥y =z -}—Zcos(km){fh_[(z:) ——(:1:)]-{—2Ax:1:a:},
yto= '+ % sin(kz") (A+ac1 + Axmz) )

y? z? + —;— sin(kz?) (Ax:c1 - A+m2) ,

i

v o= le““)s(k"’o){AJr ()7 = (22)"] + 24x2"=" |

for 3 = 0. From these one obtains the derivatives dy®/dz”, and"

JPNO g Ay (z)? - (:262,2] + 24xz'e® [sin(ku) :Bsin(k:c”) B kcos(ko:“)] ’
WFNEY A+$1:-3Ax:c2 _ [cos(ku)k—m;os(kmo) B sin(kmo)] 7

WFNO) Axml;A+m2 _ [COS(kU),;;OS(kmU) B sin(km”)] 7

u = L —2((:8;,;23;3 2L {2 COS(kfﬂggm—;; cos(kv) + sin(kz") — Sin(ku)]

The metric tensor in the FNC system is given in Refs. [99, 101]:

N o kz® —sin(kz®) . » cos(kz?) — 1
(FNC) _ o [.m 0 0
hyo = Koomz'z [cos(km ) (6272 + sin(kz )—————~—-—(k$3)2 ,
(FNC) _ 7 I.m o [kz® —sin(kz®)  cos(kz®) — 1 + (kz®)?/2
hy; = Kjomz'z {cos(ka:“) [ (oz)? - L +
) or [cos(kz®) — 1 sin(ka®) — ka®
+ sin(kz") [ (o) - (hz?)? ,

. : 3 3
hl(J{TINC) = Kuyna'a™ {cos(kzg) { 2 sin(kz?) cos(kz )} N

(e P (e
+ sin(ka®) kz3 cos(kz )(—;j:)lgﬂ(km ) + kz } ,

where

Kuoma'e™ = K {A; () - (=] - 2450'%} |
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Kipmz'z™

I.m
Kiljmm T

2261 + (o1)267 + 222’8} — (27)°6]] +
12367 + 2:1:13325?)} ,

k2 { AL [(6262 - 616))(2°) — 2*2*(878} + 6767)+
+21ad(6162 + 6167) + 6262 [(2*)? — (21)?] +

+ A [~ (816] + 816))(2%) + 272%(826] + 6167)+
+2'2?(8362 + 6282) — 22'228%6%] } .

k? {A+ [—:nl

+ Ay (——mzm?’(ﬁ —z

Now, the inverse metric tensor is given, to first order, by

(where

in the FNC system. From

o
L(FNC)O

= 14

{[sm ku + sm k'ac )

+k? [cos(kw )

RUFNCpy —

'

(FNC)pv pyo_ h(FNC)uu

g =1

”ﬁhg;NC)), that gives
o = 1= h,
gt = 1-h{"MY,
g2 = 1-R{ENO)
g - 1- h(FNC) ,
g" = gw = hi",
goz — h(FNC
g® = ¢ =n",
g? = g =-hy" Y,
g% = ¢ =-n5"Y,
§® = g =-n"Y
Eq. (3.2) we get

00 (FNC)—I—O( )~
{4 e -

(z') ] — ZAXmla:Z} .

—k cos(ka:o)] +

kz® — sin(kz?) Ginlka cos(kz3) — 1
o et
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u(FNC)l _ gwugFNc) +gl1u§FNC) +0@2) = (A+$1 + Axm2) .
o [kz3 —sin(kz®)  cos(kz®) — 1+ (kxz®)?/2
)23 0 _
{k z” cos(kz") [ (o2 (oz)? +
cos(kz®) —1  sin(ka®) — ka’ N
(ka?)? (ka?)?
1 [cos(ku) — cos(kz®) . :
+;§ [ s — sin(kz®)| ¢ ,
SN 2 g 4 gl L 0(2) = (A’ — A,
kz3 — sin(kz®)  cos(kz®) — 1+ (kz®)*/2
)23 0 _
{k z° cos(kz”) [ (o2)? (ea?)? +
cos(kz®) —1  sin(kz®) — kx3 N
(k2?) (ka?)?

L1 [cos(ku)—cos(kmo) _sin(km“)]} :

+k2z3 sin(kaxo) {

+ k*z® sin(kz) [

z3 ka3
u(FNC)3 — QBOU((_)FNC) + g33u:(3FNC) +0(2) = {A+ [(ml)z _ (zZ)Z] + 2AX131:B2} .

) or | E2z® —sin(ka)  cos(kz®) — 1+ (kz®)*/2
.{—-k cos(kz”) [ (ka?)? - (k)3 ] —
cos(kz®) — 1 3 sin(kz>) — kxs} 4

- Ksin(ka) |

(kz3)? (kz?)?
+2(ml:3)2 [2 cos(kmo,‘)k;-SZ cos(ku) +sin(ka;”)” .

The 4-acceleration field of the TT-observers in the FNC system is given by
at = e?()) Ve u(FNC)u — 6Ou(FNC')u ,

that is

k cos(kz") — k cos(ku)

® = {4 ](=Y) - (")) - 24y z'a’} - { + k sin(kz") -

23
, ) kz® — sin(kz?) o cos(kz?) — 1
—ksin(kz") ) + k cos(kz") ————(—;3—)—2——-— ,
: . o [Rz® — sin(kz?)
1 1 2 3.3 0
at = (A+:z: + Ayz ) : {—k z° sin(kz") [ (o9)? -
cos(kz® — 1+ (kz3)?/2 9 3 cos(kz®) —1  sin(kz®) — kz®
_ < k 0 .
(o2 + k*z’ cos(kz”) (h7)? L
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N _13_ [sin(ku)+sin(km0) B kcos(kmﬁ)” ’

3

kz® — sin(kz?)

a? = (Ax;cl - A+932) . {—k%s sin(kz”) [ -

(ka?)?

_cos(kz®) — 1+ (ka®)?/2 343 cos( cos(ka®) —1  sin(kz?) — kz®
e el = (o7
+;1§ [sm(ku) —;sm(k:z: ) kcos(kmo)}} ’

@ = {4 (@) - (22)] + 24x2%2*} {k3 sin(kz") [’“‘”3 (‘k:;g’“’:”)_
_cos(kz®) — 1+ (=) /2] 3 cos(ka® cos(k-a:3) -1 sin(kz®) — kz?
e R ]
1 [—-2 sin(kz") — 2sin(ku) + ke cos(ha®) + kcos(ku)]} .

223

..}_

3

From the expressions of u(FN®# and a* one can see that the 3-dimensional
velocity and acceleration of a TT observer with respect to the freely falling FNC
observer are of order h,(f’;T). Moreover, a TT observer on the propagation axis
of the gravitational wave (that coincides in the TT and in the FNC system),
has zero (3-dimensional) acceleration and velocity with respect to the FNC
observer. On a fixed plane z® = constant, and at a fixed instant z", the level
curves of u', u?, a', a? in the (z!,2?) plane are straight lines, while the level
curves of u® and a® are hyperbolas. TT observers aligned along a straight
line 2 = pz! in a plane z° = constant experience, at a fixed instant z°, an
acceleration with components a!, a” linear in z', and component a® quadratic

in z!, in the FNC system:

a' = const. (A4y +pAy)zt,
a> = const. (Ay —pAdi)z,
a® = const. {A+(1 —p?)+ 2pAX] (z)?.

As a conclusion, TT observers undergo “strange” motions, when seen from a
freely falling frame, with velocities and accelerations that are very small, but

of the same order of magnitude of the quantities to be detected.

E
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The effects of gravitational waves in the FNC and in the TT system

In FNC one can Taylor-expand the metric in powers of the normal (spacelike)
distance from P € T, with vanishing first order terms (i.e. with vanishing

Christoffel symbols), getting [102, 155]

goo = -1 - R()lom(P) IDI(I}m “+ ... s
2
qo: = 0— 'é‘ Rol,‘m(P) :L'III:m -+ y (34)
1 m
g% = 653 Rijm(P)z'z™ + ..., (3.5)

where the Riemann components are evaluated at the spatial coordinates of P,
and contain the dependence on the timelike coordinate ' = 7. This expansion
actually motivates the introduction of FNC [102], and shows why they are

adequate only for detectors with size smaller than the curvature radius of the

spacetime.

We can now relate the gravitational wave amplitudes in the TT and in the

FNC systems. One has in the TT system

Gu = Muv + hEE;T) )

R/.u/pa' ~ h(TT)/AQ ,
while in FNC one has from the expansion Eq. (3.4), using z* ~ [
g = qu + RGD (/)

so that

RENC) o~ pTT) (1/0)? < AUTT) (3.6)
Since the interaction laws between the e.m. field in a e.m. detector are de-
scribed by the metric deviations from the Minkowski metric, it seems from
these results that small size e.m. detectors are completely useless; however

this is not the case, as we are going to show.

The e.m. field in a e.m. detector

The interaction between the e.m. field in a detector and the inpinging gravita-

tional waves are described by Maxwell equations that, in the absence of charges
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and currents, are

1
W =~ 0, (/=g F*) =0, 3.7
\V, = (v g ) (3.7)
8y Fyy + 8,F,s + 8, Fyp = 0 . (3.8)

The e.m. tensor F'® can be decomposed, in any coordinate system, into the

sum of an unperturbed term and a small perturbation [106, 107, 101]
Fo,=F)+FY (3.9)

with |F{))] < |F{9)|. The equations of motion for F(1) are derived, in the TT
system, in Ref. [106]:

%F(l)aﬁ — n”’“h'@”@eFﬂ) + nﬁuﬁgha“F,ES) . (3.10)

Baroni et al. [107, 101] were able to show that other expressions of F{!) in
the literature are wrong (because they do not take into account the Lorentz
condition). Moreover, they derive the equations of motion for F ,59 in a generic,

non-harmonic coordinate system:
af o 7 By (0 éz C v o ’
B F 1™ = 0 85hP FD) + o hPTFO) | 4 77 (85h) FY) (3.11)

where ﬁ#,, =h, — %77,”, h?,. These equations reduce to Eq. (3.10) in the TT

gauge. Due to the argument of the previous section, we get

POFNC F(l)TT(l/A)Q ’
since the perturbation in the e.m. field is given by the unperturbed field
“weighted” by the metric perturbations (the same reasoning may, of course, be
done using Maxwell potentials). Thus the direct coupling between gravitational
waves and the e.m. field is completely negligible in any detector with I/) <« 1
[24, 108, 109]. This shows clearly the deep difference between a mechanical
and a e.m. detector; the former detects tidal accelerations by direct coupling
between the gravitational wave and the normal modes of the oscillator, while
the latter operates through the parametric influence exerted by gravitational

waves on the e.m. field ([110, 109] and references therein).
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3.3.2 Breakdown of FNC and detectors with [/A > 1

Situations can occur in which FNC are not useful for practical purposes, even
for detectors with /A < 1. This can happen for microwave resonant cav-
ities in which the indirect coupling of gravitational waves to the e.m. field
(i.e. gravitational waves interact directly with the cavity walls, and the walls’
motion couples directly to the modes of the e.m. field) is not negligible: the
e.m. field is determined from Maxwell’s equations with boundary conditions
on the moving cavity walls. A tricky possibility [108] is to transform to new
coordinates in which the walls are at rest, getting usual boundary conditions:
this coordinate transformation is performed only in a small region near the
walls, retaining FNC in the other parts of the resonator. Then one regards the
curved space Maxwell equations as flat space Maxwell equations for a moving
anisotropic medium [111]. This approach treats the detector as a test parti-
cle with structure, whose centre of mass moves (to first order) along a timelike
geodesic, but whose walls do not; this corresponds to choosing non-FNC funda-
mental observers at the cavity walls. The physical meaning of these “boundary
observers” however is rather obscure; since they are “adapted” to the walls’
motion, they look much like TT observers.

When a detector with {/A > 1is considered, it is no longer useful, in general,
to specify the non rotating and non accelerating observers with respect to the
centre of mass of the detector. Gravitational waves will act at different instants,
and with different strength on the different parts of the detector; then it is not
trivial to define the family of physical observers associated with the detector.
FNC are no longer useful; they are adequate only for small distances from
a timelike geodesics. Different parts of the detectors would define different
worldlines that, in general, will not be geodesics. The detector should then be
seen as an extended body, satisfying Papapetrou’s equations of motion (105].
A lucky situation occurs when the walls of the resonator move with a frequency
that is much smaller than the gravitational wave frequency: in this case one
neglects completely the walls’ motion [109, 112], and adopts a synchronous

gauge [98, 113], in which
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gii = bij+hi.

A geometric construction of this coordinate system [113] shows that, when
matter is treated as a dust (pressure P = 0, i.e. as a collection of test particles),
and vorticity vanishes, then the time lines? are timelike geodesics, that one can
conceivably identify with the worldlines of the different parts of the detector
(“synchronous observers”). The resonator walls are described by z* = constant
by the synchronous observers.

In general, however, there is not a unique description, and one must spe-
cialize to particular detectors; this is beyond the purpose of this work. The
guiding line in this direction should however be the following: the family of fun-
damental observers has always to be specified (a not trivial task when handling
complicated devices described in ad hoc coordinate systems), and the “right”
coordinate system is associated to the physical family of observers performing

measurements with the detector.

3.3.3 Remarks

The physical meaning of the observers associated with the particular coordinate
systems adopted to describe gravitational wave detectors is not always clear.
For detectors with size much smaller than the wavelength of the radiation to be
detected, FNC are associated with the detector’s centre of mass and its timelike
geodesic. The observers associated with the commonly used TT gauge cannot
be regarded as the physical observers performing measurements; they undergo
very strange motions when seen by a freely falling observer.

However, when the detector must be regarded as a test particle with struc-
ture, FNC are no longer appropriate, even for [/A <« 1. For detectors with
[/AX > 1 the situation is less clear: in some lucky situations the coordinate
system used to perform calculations is associated to a well defined family of
observers, which can be regarded as the family of the physical observers making
measurements with the detector. In general however, one is faced with tricky

ways of performing computations in ad hoc coordinate systems, depending on

2The coordinate z° represents the proper time at each point of space.
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the particular kind of device considered. The family of fundamental observers
usually is not specified, or its physical meaning is not clear. The problem of the
physical significance of the family of fundamental observers is relevant when
one tries to compare the outcome of experiments with theoretical predictions,
in view of the day in which gravitational waves will be detected and the data

of a new astronomy will need to be understood.



Chapter 4

MULTIPLE IMAGING BY
GRAVITATIONAL WAVES

4.1 Introduction

As we have seen in Chapter 3, the application of the vector formalism for ordi-
nary gravitational lensing to gravitational waves leads to problems in describ-
ing gravitational waves in the appropriate coordinate system (a rather general
problem). Moreover, the vector formalism breaks down when nonstationary
lenses are considered. We have shown that the gauge-dependence problem
does not affect the order of magnitude of the relevant quantities. Then, if
we do not pretend to go in details, and limit ourselves to rough considerations
concerning mostly order of magnitude estimates, we can forget about this prob-
lem. It seems reasonable to expect that the use of the vector formalism still
can tell us something on lensing by gravitational waves, and in particular on
multiple imaging. The results we will obtain are in fact correct to first order,
and not only heuristic, as we will prove using the Fermat principle in a suitable
formulation for nonstationary spacetimes.

Gravitational waves can act as lenses for the light propagating in them
(25, 63], in the same way as mass concentrations perturbing the background
curvature of the universe do, giving rise to the spectacular objects observed
by the astronomers: multiple quasars [115], giant arcs [116] and radio rings
[117]. Here we study how linearized, realistic, gravitational waves deflect the

light coming from a distant source, and their capability of creating multiple
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images, approaching the problem with the usual vector formalism. We find
that a rough condition for multiple imaging analogous to that for ordinary
lenses holds. Some order of magnitude estimates show that this condition
can be satisfied by astrophysical sources of gravitational waves considered in
the literature [118]-[125]. This is due to the fact that the lensing waves can
have perturbation amplitudes greater than those expected in the Solar Sys-
tem, and to the balance between the (large) distances of the lens and source
and the (small) wave amplitudes. On the other hand, the gravitational wave
background considered in the literature [26]-[28] is not likely to be capable of
multiple imaging, on average. We conclude that multiple imaging by gravi-
tational waves has to be taken as a serious possibility, but the probability of

observing such a phenomenon is not high.

4.2 The vector formalism for lensing gravita-
tional waves

Let us consider gravitational waves localized in a region of space between a light
source and an observer. The spacetime metric is given, in an asymptotically

Cartesian coordinate system, by

G = M + P

where 7, are the components of the Minkowski metric and |h,,| < 1. Let
us consider a light ray whose unperturbed path is parallel to the z-axis. The

photon describing this ray has 4-momentum
P* = ply + 89" = (1 +6p°, 69", 6p%, 1 + 6p%)

where §p# are small deflections of order A, and the unperturbed photon 4-
momentum is pj,) = (1,0,0,1). We work again in the geometric optics approx-
imation, that holds if the wavelength A, of the gravitational wave is much

larger than the photon wavelength A, and if
A> )\g.w. - ()\g.w./DL) (21)

(where Dy, is the observer-lens distance). Eq. (2.1) ensures us that the size of

the interference fringes which eventually form at the observer’s position is not
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comparable with the “geometrical shadow” of the lens [35]. In order to make

computations to second order in h, we will lower and raise tensor indices with

9 and with
g = L O(R) = - Py £ O(RY) . (22)

The equation of null geodesics gives

d(ép” e
(d)\ ) + I‘ga (pfu) + 5pp> (p(u) -+ 6]7 ) =0 5 (23)
where A is an affine parameter along the null geodesics and
1
I‘go' = 5 gilV (hup,cr -+ hucr,p —_ hpcr,u) . (2,4)

We have then
d(ép*)
dA

1 1
+ gt (huo,o + hyos + huso — hosy — 3 hoo, — 5 h33,u)

+ n,uu (hv(),d + hu3,cr + huo,O + hmr,B - hUa,V - h3<7,u) 627”

1 1
- U'Jaﬂuﬁhaﬁ (hu0,0 + huos + huzo + huzs — hos — 3 hoo, — 3 h33,u)
1

* 5 s (hvp,rf + hvop — hprr,U) 6p”op”

- n”anuﬁhaa (hvoe + Puso + Puoo + Pues — hoow — Ragw) 697 =0, (2.5)
where the term in the first bracket is of order A, those in the second and the
third brackets are of order h?, and those in the fourth and the fifth brackets
are of order A3.

We now set the geometry of the problem as customary in gravitational lens
theory (see Fig. 3.1). We consider only waves which are localized near the plane
z = z,. In the thin lens approximation, the deflection takes place essentially
in this plane (lens or tmage plane in the usual language). Let z = (z,y) be
the apparent source position in the z = z, plane, and s = (s;,s,) the true
source position (i.e. its position were the lensing wave absent). The deflection
is described by a 2-dimensional vector field §p(z) (4 = 1,2) in this plane. The
action of the lens can be described by a plane-to-plane mapping =% —— s,

where s is given by the lens equation

DD
st=at - LDSLS sp(z) , (2.6)
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where D} is the observer-lens distance, Dygs is the lens-source distance, and
Dy is the observer-source distance. As customary in gravitational lens theory,
we could fit cosmology into the model by taking the D’s as angular diameter
distances in a FLRW universe. However we assume, for the sake of simplicity,
that the background is flat, so that the D’s denote euclidean distances, and
Ds =Dp+ Dis.

The map described by the lens equation has the Jacobian matrix

J( ) _ (as-4> _ ( 1 - Da,(6p°) —Dd,(6p") )

OzB ~D 8.(ép¥) 11— Doy(6p¥)-
where D = Dy Dps/Ds. The inverse matrix A = J~! represents the amplifica-

tion tensor, while its determinant A = Det(J)™! is the (scalar) amplification.

(2.7)

8 1=

Let us consider now the Jacobian determinant

o(6p" . "
Dei) = 1- 0 2OT) _ p2 s (67) - 0u(00) - 01069 - D080 5 (28)
the divergence (§p*)/0z* vanishes to first order [35] (see Appendix A). This
can be understood if one considers the Raychaudhuri’s equation without the

matter term for a congruence of null rays

where 8, o2 and w? are the expansion, shear and vorticity scalars of the con-
gruence. The right hand side is of order h*; any variation 66 in the expansion
(and then in the amplification of the source) induced by gravitational waves is

then of order A%, as seen in the previous chapter. We can write

Det(J) = 1+ /7o) Ds B 4 F(a) D% [5.(677) - 6,(59%) ~ 8,(677) - 0.(6p")] =
=1 + Jl + Jg 3

where o = D5/ Ds and f(a) = a?(1—a)?. The polynomial f(a) is symmetric
about a = 1/2 (corresponding to Dy = Dys), where it assumes its maximum
value 1/16 =~ 0.0625. In order for Det(J) to vanish (i.e. to have multiple
images), we must have J; + J; < 0. Since J; and J, are terms of order h?
times D/P or (D/P)? respectively (see Eq. (2.12) below and the following

considerations), in order to have Det(J) = 0, a large value of the distance D
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must balance small values of the wave amplitudes. Moreover, for large values of
D/ P, J, is negligible in comparison with J,. In order to have multiple imaging,
we need
fla) [Ds 0.4(6p%)]" ~ 1.

For standard gravitational lenses the probability of lensing of a distant source
is (roughly) maximum when the lens is halfway between the source and the
observer [126]. Something similar should presumably happen for lensing grav-
itational waves, and values of the numerical factor f(a) very far from the
maximum would not be statistically significant. We take f(a) in the range =

— . Then, in order to have multiple imaging, we need

16"
§ Dh
DY ~ = 2410,
where P is the period of the gravitational wave (computed at the redshift of
the lens plane, if the D’s are chosen to represent angular diameter distances in
a FLRW universe), and where we used §p ~ h (see Eq. (2.12) and the following
considerations). We write this inequality in the form

R
P > S, (2.9)
where S, = (4 — 10) ¢/ D. The rough condition for multiple imaging (2.9) in-
volves the “strength” h and the “size” P of gravitational waves, the geometry
of the problem (through D), and the fundamental constant c. (2.9) is strictly
analogous to the well-known condition for multiple imaging by ordinary grav-

itational lenses [69]

C2

4rGD '’
where ¥ is the 2-dimensional (projected) density of the lens, and the critical

density ¥, is determined only by the geometric factor D and by fundamental

>3 = (2.10)

constants. This is a condition on the “strength” (the mass) and the size of
the lens. Note that, since for gravitational waves the energy is not localized, a
condition on the amplitudes and the period is probably the best one can expect
when searching for the analog of (2.10).

The odd image number theorem [127] holds, since its proof requires only
boundedness, smoothness and transparency of the lens (conditions satisfied by

localized gravitational waves).



78 Chapter 4. Multiple imaging by gravitational waves

Let us compute now the deflection angles appearing in Eq. (2.6). We intro-
duce the notation [63]

Is)
A A= p 8:1:0‘ .
We have )
T4, = (hw -3 hw) +O(h?)

so that, from Eq. (2.5), we get

0 1
Spt = — /; ) (h“,\,,\ -3 hm) +0(h?),

where the indices are now raised with n*¥ and the integral is computed along
the photon path from the source to the observer. Since we consider a localized
pulse of gravitational waves, the first term in the integrand gives a vanishing

boundary term, and we get [63]

§'(0) = —3 [ d\ a4 O(KY) = |
1 o
= —5 /5 dA (hoo'A + 2}1103"4 + h33"4) + O(h2) . (211)
If we substitute the integral along the actual photon path with the integral
along the unperturbed path, we make an error of order h?, so we can write, to
first order,

1 o
‘51"(41) =73 /5 dz (hoo"h1 + 2hoy + h33"4> . (2.12)

For pulses of gravitational waves the integral is extended to a region of space
of order P (the characteristic period of the waves) where the pulse is localized,
so that we have, in order of magnitude, §p ~ P - h/P = h. As far as the
gravitational wave background is concerned, it could seem that computing the
integral along the whole photon path from the source to the observer gives
§p ~ Dh/P. Such a secular effect however is not present, i.e. the deflection
does not cumulate with the travelled distance, as discussed in Chapter 2.

In order to compute §p* to second order (and the divergence 8.6p*), we
must insert the first order expression of 5;)?1) given by Eq. (2.12) into the
equation of null geodesics

d(s .
(di ) s, 4o s + O(A) =0,
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which gives

6" = 8py + 6y »

where
0
ooy = ~2 [ dATH6 =
: 0
= —/ dz (O,h*y + O,k 3 + Ooh*s + O3h*, — 0% hoy — 0"h3,) 5P((r1) +
5
+ O, (2.13)

with 5p‘(1) given by Eq. (2.12), and where we have again performed the inte-
gration along the unperturbed photon’s path instead of the actual path, the
difference contributing only by a third order term. Eq. (2.13) permits us to

compute the second order divergence

8a(6p™) = - /5 ’ dz {513‘(’1) (hAo,m + b ea + Ao + hAo-,SA)
10, (517‘(71)) (hAO,a- + hAO + hAa,O + h‘4a,3 _ hUa’A N hza’A)} (2-14)

from which we get, in order of magnitude
D,
Jy ~ D 84(6p*) ~ 7 h* .

Since J; ~ (D/P)*h*, we can neglect J; in comparison to J, in the Jacobian
g

determinant in Eq. (2.8) when large values of D/P are considered.

4.3 Lensing by gravitational waves and Fer-
mat principle

As already remarked, the vector formalism commonly used to describe ordi-
nary gravitational lenses requires explicitly the stationarity of the lens poten-
tial (0®/0t = 0), so one expects the previous results for lensing gravitational
waves (a highly nonstationary case) to be correct only in order of magnitude.
However, in the literature on gravitational lenses, the hypotesis of lens sta-

tionarity is needed only to compute the deflection angle in the lens plane !.

!The transverse motion of the lens in such a plane (to which we can reduce every relative
motions of the lens and the observer), or along the line of sight, is almost unimportant,
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Since we have computed the deflection angle caused by gravitational waves in-
dependently, starting from the geodesic equation, we may hope that the vector
formalism nevertheless gives correct results (to our order of approximation).
This section approaches the problem of lensing by gravitational waves using
Fermat principle in a way parallel to the so-called scalar formalism [132, 133]
for ordinary lenses. We will prove that the results of the previous section are

correct to first order.

Fermat principle was derived by Weyl [128] for static spacetimes and by
Pham Mau Quan [129] and by Brill [130] for stationary spacetimes. These for-
mulations admit a straightforward generalization to the conformally stationary
case [131], and have proven to be very useful in the application to gravitational
lens theory [132, 133, 134, 135]. Kovner [83], in a rather obscure article, gener-
alized Fermat principle to arbitrary spacetimes, in order to be able to consider
essentially nonstationary lenses like cosmic strings, or nonstationary lens com-
ponents like gravitational waves superimposed to an ordinary gravitational lens
(an idea introduced by Mc Breen and Metcalfe [136], who suggested that such
a composite lens could be responsible for y-ray bursts, resulting from the cross-
ing of small hot cores of BLLac objects by microcaustics. In their model the
burst-like nature of the source is explained by the caustics motion caused by
gravitational waves). The validity of Fermat principle in arbitrary spacetimes
has been clearly explained and satisfactorily proved in a later paper by Perlick
[84].

For a photon deflected by a gravitational wave, the crossing time of the lens
is 7. ~ Ayw./c = P, while the variation scale of the lensing field is 7 ~ P. For
ordinary lenses T >> 7., while in our case 7 ~ 7. Under the assumption that
the lens is geometrically thin and the background is Euclidean, the actual light
rays differ from straight lines only within the gravitational field of the wave,
i.e. in a region much smaller than the distance travelled by the photons. This

permits us to substitute the true photon path in the 3-dimensional space with

even if it takes place with the velocity of light, since the displacement of the lens on a
timescale of, say, years, is negligible in comparison to the huge distances between lens,
source and observer. Such motions will possibly cause the merging/appearing of pairs of
images on timescales shorter than those characteristic of ordinary gravitational lenses, due
to the crossing of caustics.
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a zig-zag path composed of two straight lines from the source to the lens, and

from the lens to the observer. This zig-zag construction is accurate to first

order [83].
The zig-zag path is given by

7 _ mu(/\):f(’\) ﬁol if A< X
’ (A) - { g:nu(’\)af(/\)ﬁlsg ifA> /\1,

where A is the parameter along the photon path (with value A; at the lens

position), and 7, and 7i;, are three-dimensional vectors satisfying .

=2 __ =2 __
nol"'nls_17

pointing in the lens-observer and in the source-lens directions respectively. The

zig-zag path is assumed to be a null curve satisfying the on shell condition
G 5% =0, (3.1)
which gives
(=1 + hoo)(8°)? + 2 hoyn' 2° € + €2 (6;; + hyj)n'n = 0.

This can be written as a second degree equation for the variable £/z°

(—é—) 2 (1+ hijnin?) + 2 (hoin') (fa) +(hoo—1)=0

20

which has the solutions

20 1+ hijnini

£ —hon' £ /(hon )2 + (1 = hop)(1 + hijnind)

Choosing the “+” sign (corresponding to d¢/dz" > 0, i.e. to photons travelling
in the direction of increasing {) we get

z0 2 ! Y
We adopt now the geometry used for ordinary gravitational lenses, and in the

previous chapter. Perlick’s [84] first coordinate version of Fermat principle is
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Theorem: let (M, gq) be a spacetime; let U C M be an open set on
which a local (C*) coordinate system (z',z?,2% ¢*) is defined, such that &, is
timelike;

a future pointing null C* curve A : [a,b] — U with coordinate representa-

tion s = z'(s) is a geodesic iff it makes the functional

w(A)E/SO

stationary with respect to (C*) variations satisfying

(3s's) " — dii| (5) s (3.3)

§z#(S) =0
§2'(0) =0

5 (4 - (35'97) "+ dis) =0,

where
f = % log |gool (3.4)
¢ = —e o, (3.5)
gij = e—zfgij + Qg’isl?’j . (3.6)

Computing the functional Eq. (3.3), we get

0. hoini ? 1 -I— hijninj homi
= /"’fN(l—wm) T T hy T h| %S

0 . . . .
= /5 £ [1 + % (hoo + 2 hoin' + hijnlnj)] (s) ds + O(R*) =

_ /SO 30 ds + O(h?) , (3.7)

where Eq. (3.1) has been used. Note that the zig-zag path satisfies, to first

order, the conditions required to the varied curves in the theorem:

62'(0) =10,
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and

. IV Vo . : homi \° 1+ hynind  ; hon
) 0 __ » L] . z) — 0 __ : J _ —
(” (9ﬂm) + oz 5(” 5J(1_hm)'+ 1 — hoo €1~hw)

=¢ (io d [1 N %(hoo + 2hoin’ + hijninj)] ' [1 * '21‘(}“70 + 2hgin’ + hijni”j)D -
=0+ O(h?).

The zig-zag paths approximating the real null geodesics are extrema of the

travel time

S
H
U
8
[=}
I
\
Q
| &
0,
i
il

S
o . .
== /; ’:1 -+ %(hoo -+ 2]7,0,'72,1 -+ h,-jn’nj) df + O(hz) .

By subtracting from this integral the travel time calculated along a straight
line were the lens absent (compare the case of ordinary gravitational lenses in

Ref. [83]), we obtain

. D
£ = constant + - 7 ig (z—3)" —H+O0(h?), (3.8)
where
1 ro i i j
= — —2——(; & (hoo + 2hg;n' + h,‘jn TLJ) d¢ . : (39)

The first term in square brackets in Eq. (3.9) is called the geometrical time
delay, and results from the extra length travelled by the photon due to the
deflection. The second term in square brackets is the gravitational time delay
resulting from the wave’s field. Its analog for the case of an ordinary gravita-
tional lens is familiar from experiments in the Solar System.

If we adopt a FLRW universe as a background, the expression of the time
delay given by Eq. (3.8) is valid as long as the time 7. of crossing the lens is
small compared to the Hubble time.

The lens equation is now given by requiring stationarity of the arrival time
V,it=0, (3.10)

or
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Figure 4.1: The geometry used in the calculation of H.

where

H(z,t) . (3.12)

If we assume that the unperturbed photon path is the z-axis, we can substitute
the integral along the zig-zag path in Eq. (3.8) with the integral along the z-axis

(up to second order terms), getting

1 (@]
H=—-— / dz (hoo + 2ho3 + ha3)
2cJs

(see Fig. 4.1). The lens equation (3.10) can now be written

1 DrDrs
2¢c D5

s=z

(0]
/5 dz V. (hoo + 2hos + ha) - (3.13)

Notice that the deflection angle and the lens equation coincide with those given
by Egs. (2.11) and (2.6). This confirms our observation that the hypotesis of
lens stationarity in the vector formalism for ordinary gravitational lenses is
needed only in the computation of the deflection angle, and proves that our
results in the previous section are valid not only heuristically, but are correct

to first order.
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4.4 Comparison between a gravitational wave
and an ordinary gravitational lens

It is instructive to compare the action of a gravitational wave with that of an
ordinary gravitational lens. The latter is a mass distribution described by a
Newtonian potential ® (satisfying the Poisson equation V*® = 4wp, where p

is the lens mass density), and is smooth, bounded and stationary, i.e.
e & is continuous with its first and second derivatives;
e ® -0and V® — 0 a,er(:z:2+y2+zz)l/2——>+oo;
e 0%/0t ~ 0.

The plane-to-plane mapping describing the lens action is given by the lens

equation, and the Jacobian matrix can be written [64]

[ 1=x-=-2A — U
J“( Zp 1—x+>\) ’

where

+oo

» ~_-=/ dip,

X

X = "2—7
D oo Hd 5%
D ptee H%®

po= ZE/—m dl Oz0y

(where D has the same meaning as before). The Jacobian determinant is
Det(J) = (1 - x)" — (\ + 47)

The convergence x describes the action of matter in the light beam, while A
and p describe the action of shear. For a lensing gravitational wave we can

write (taking first order quantities)

1-2A —
‘]g.w. = ( ! 1___#’/1\2 ) ) (41)
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where

D 0 x 2

Moo= —2-/5 dA har® , + O(h?) (4.2)
D (0]

o= g /S dX b, + O(R?) (4.3)
‘D © x 2

b= 5/5 d\ han® , + O(R2) (4.4)
D 0]

mo= 5 /5 dX hax?, + O(h?) (4.5)

and where the integrals are computed along the photon’s path, from the source
to the observer. To first order, A, = —A; = —A and g1 = py = p (see

Appendix B), so we can write (to this order)
_(1-A -
Jow. = ( - 142 >

Det(Jgw.) =1 = (3 + %)

(where the term in brackets is of second order in AD/P). The convergence

and

term is clearly absent, the lens action being due only to the shear.

We expect that the images of a distant source created by a gravitational
wave show a variability on timescales of the order of the wave period. This
could possibly be used to explain the short-scale variability of some AGNs or
active galaxies. Moreover, the details of the images configuration will depend
on the detailed shape and parameters of the lensing wave, such as its spatial

and time profile, its duration, direction of propagation and polarization.

4.5 Order of magnitude estimates

In order to apply the previous theory, and the multiple images to be detectable,

the following conditions must be satified:

1. geometric optics holds;

2. the scale of separation between different images must not be smaller than
103 arcseconds. In fact structures on scales ~ 1073 arcseconds can be
resolved with VLBI, while VLA and optical techniques apply on larger

scales ;



§4.5. Order of magnitude estimates 87

3. the lens must not be exceptionally rare, i.e. the rate of occurrence of the

event generating the lensing wave must not be too low;

4. in order to appreciate variability in the images induced by a lensing

gravitational wave, its period must not be too short, let us say P < 108 s.

In order to satisfy 1), we limit our considerations to electromagnetic radi-
ation with wavelength A satisfying Ag.. - (Agw./D) < A < Ay
To satisfy 2), note that, if § ~ h is the deflection angle, the separation
scale § between the images must not be smaller than ~ 1073 arcseconds, which
gives
h>5-107°.

3) depends on the particular processes generating gravitational radiation;
since these are almost all purely speculative, their rates of occurrence are largely
or completely unknown, and we can only try to guess their values. Note that a
continuous source of gravitational radiation will give rise to a permanent lens,
while a gravitational wave burst will constitute a temporarily lens.

The sources of gravitational waves that are most often considered in the

literature are
e stellar collapse with non-spherical symmetry;
e formation of massive black holes in active galactic nuclei;

neutron star collision;

black hole collision;
e close binary systems;

black hole accretion.

The last two phenomena are continuous sources of gravitational radiation, while
the others give bursts. In addition, we will consider the stochastic gravita-

tional wave background, both primordial or generated ([26]-[28] and references
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therein). Gravitational waves generated by a process involving a body of mass
M and size R have dimensionless amplitudes (near the source) of order

hs ~ € -—JR‘;{ ,
where the efficiency ¢ is defined as the fraction of energy radiated away. For
processes involving neutron stars or black holes one can assume, respectively,
M/R ~ 1/20 and M/R ~ 1.

Multiple imaging by gravitational waves is realistic only if they satisfy the
rough condition (2.9). We examine the astrophysical sources of gravitational
radiation considered in the literature, and check if this is possible. When the
event generating gravitational waves involves neutron stars or black holes, the
ordinary lensing associated to these objects (“microlensing” [137]-[140]) should,
in principle, be taken into account: however the separation scale between mi-
croimages of a distant source created by a compact object is of order 1076
arcseconds, not detectable with present techniques. Moreover, the flux of a
microimage decreases with the distance r from the microlens approximately as
7= [121, 64], while the wave amplitudes h decrease as Rs/r (where Rg is the
Schwarzschild radius of the compact object). Thus we will neglect ordinary
microlensing, restricting our considerations to events which take place at some
distance from the source of gravitational waves (they are much more likely than
lensing very near the compact object(s)). Finally, the condition r > A, which
ensures us that we are considering fields in the wave zone (i.e. far enough from

the source of gravitational waves) must be satisfied.

Stellar core collapse

The gravitational collapse of stellar cores from the point of view of gravita-
tional waves generation has been reviewed by Eardley [122]. A research pro-
gramme on collapsing homogeneous ellipsoids has been taken over by Saenz
and Shapiro [118]-[120] ; they have found that the expected maximal effi-
ciences for a “cold” and “hot” equation of state are € ~ 1072 and ¢ ~ 107*
respectively, the spectrum of emitted gravitational radiation being broadly

peaked between 100 Hz and 1 KHz. Taking the lower value e ~ 107 we get
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hs ~ 5-107° for the wave amplitudes near the collapsing core, and the con-
dition A ~ hgRg/r > 5-107° implies r < 102Rs ~ 10° cm. On the other
hand we must have 7 > A;,. =~ 3-107 — 10® cm. There is a rather narrow
permitted range for the impact parameter (r ~ 108 cm), that gives Dh/P ~ 10
if D~ 610" cm.

If the late phase when the ellipsoid has settled down as a rapidly rotating
neutron star (evolving with timescale ~ 1 sec) is taken into account, it is found
[141] that the emitted spectrum is very narrowly peaked (Av/v-~ 10=?), and
€ ~ 107% at v ~ 1 KHz, that gives hg ~ 5-1078; A > 5. 10"° requires
7 < 10Rs ~ 107 cm. On the other hand, the condition r > Agw. =2 3-107 cm

does not allow for lensing on a relevant scale to take place in the wave zone.

If the core keeps bouncing, its eccentricity becomes large after enough
bounces; this asymmetry [120] makes the efficiency almost uniformly near its
maximum value for any initial period above 1 sec to several hundred seconds.
The growth of asymmetry can be understood as a parametric resonance, with
the core radial mode acting as the “pump” oscillator, and where a nonspherical
mode of the core is the driven oscillator [122]. One gets hg ~ 1072 at v ~ 1
KHz; A > 5-107° gives r < 2-10°Rs ~ 2-10'? ¢m, while » > A, ,, ~ 3-107 cm.
A rather large range of values of the impact parameter is permitted; we get
Dh/P ~ 10if D ~ 102 cm, r ~ 3-107 cm, and if D ~ 6-10'® cm, r ~ 2-1012

cm.

Studies on the perturbations of pressureless spherical collapse leading to
the formation of a black hole [125, 143, 144] give results that could possibly
be extrapolated to larger deviations from spherical symmetry [122], getting
e~2.1072 (%)4 at v~ 1KHz-(M/10Mg) ™" for J/M? <« 1 (where J is the
angular momentum, and J = M? corresponds to a maximally rotating Kerr
black hole). Taking J ~ 0.1 M? and M = 10M,, we get hs ~ 2 -107%, and
h > 5-107° implies 7 < 400Rs ~ 4-10® cm, while » > X, ~ 3107 cm. A
rather narrow range of values of 7 ~ 10% is permitted, that gives Dh/P ~ 10

if D~ 3.10% cm.
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Final decay of a neutron star/neutron star binary

Rough estimates for the final decay of a binary system composed of two neutron
stars [124] give € ~ 51073 at v < 2 — 3 KHz. Taking v ~ 500 Hz we get
hg ~2.5-107% h > 5-107° gives7 < 5-10*Rs ~ 5~ 100 ¢m, while » > 6 - 107
cm. A large range of values of r is permitted; we get Dh/P ~10if D ~ 3- 106

cm, 7 ~ 510 cm, and if D ~ 6107 cm, 7 ~ 6107 cm.

Black hole collisions

The head-on collision of two equally massive, non-rotating black holes has been
studied numerically [123], leading to a single, larger, black hole, with efficiency
€ ~ 7-10~*. If the two initial black holes have nearly enough angular momentum
to go into orbit before coalescing, a formula derived from extrapolation of
perturbation theory [122, 123] gives € ~ 3 - 10~2. This efficiency is expected
to hold for P ~ 1 s; b > 5-107° gives r < 6 - 10°Rs ~ 6 - 10'* cm, while
7> Agw. = 3-10'% cm. In the permitted range of values of »r we have Dh/P ~ 10
if D ~3-10'7 cm, r ~ 3-10' cm, and if D ~ 6 -10'° cm, 7 ~ 10! cm.

The binary pulsar

The binary pulsar PSR 191316 [145, 146] is believed to radiate gravitational
waves in a continuous way, according to the predictions of General Relativity
([147) and references therein ). The estimated distance of the binary system
(believed to be a neutron star/neutron star system)is D ~ 5 Kpc [145], and the
frequency of the radiation is twice the orbital frequency (due to the quadrupole
nature of the radiation). From these values we get® D/P ~ 3.5 - 107, and
Dh/P ~ 10 if h ~ 3-1077. An estimate of the amplitude of the waves emitted
by the binary pulsar gives

hNQw Ma?w?

T T

where Q is the quadrupole moment, M is the mass, and a ~ 7 - 10V cm is
the semimajor axis of the binary system [147], so that hs ~ (aw/c)* ~ 1075,
h > 5.10"° implies then » < 2+ 102Rs ~ 2 -10® cm, while the wave zone is

2The orbital period is ~ 2.8 - 10* s [147].
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approached for » > Ay, =~ 310 cm. Multiple imaging by the gravitational

waves emitted by the binary pulsar is not possible.

The gravitational wave background

A primordial gravitational wave background analogous to the 2.7 K electro-
magnetic background has been considered in the literature ([26] and references
therein). In addition, there can be a generated background coming from the
overlapping of gravitational waves generated by certain astrophysical processes.
For both of them one has [26]

h ~ \/ S’2g.w. % 3

where P, is the present gravitational wave period, R is the radius of the universe
and {2;,,. is the cosmological density of gravitational waves (in units of the

critical density). We have

Dh D
- "~ v/ g, 7

Upper bounds on )y, have been set in various bands of frequencies (see
Refs. [26]-[28] and references therein). One has §,, < 1 for all frequencies,
and {1, < 1in many bands. Moreover, D/R < 1, so it is likely that

_%<<1
P

(the exact value depending on the frequency band), and then one concludes
that multiple imaging by the gravitational wave background is impossible, or
only marginally possible. There can however be exceptionally large fluctua-
tions in the gravitational wave background, with a definite frequency, direction
of propagation and polarization, which could conceivably be capable of multi-
ple imaging [63]. Such exceptionally rare events are not unrealistic, but have
to be expected in any large enough sample; they have been considered for
the microwave background radiation [148]. Effects that are not due to local-
ized exceptionally large fluctuations cannot be approached with the thin lens
approximation; the gravitational wave background requires then a particular

treatment that will be the subject of further work.
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4.6 Remarks

Gravitational waves affect the propagation of light like other gravitational fields
do. Approaching the problem in the same way as for “ordinary” gravitational
lenses [35], one gets that a rough condition strictly analogous to that hold-
ing for ordinary lenses must be satisfied in order to have multiple images of a
distant light source. Certain astrophysical sources considered in the literature
[118]-[125] are shown to satisfy it, due to the balance between the large values
of the distances involved, and the small values of the gravitational wave am-
plitudes. Moreover, lensing takes place in regions not too far from the sources
of gravitational waves, where their amplitudes are larger than those expected
in the Solar System. The gravitational wave background [26]-[28], on the other
hand, is not likely to produce multiple images, apart possibly from excep-
tionally strong fluctuations. As a conclusion, multiple imaging of a distant
source by gravitational waves should be taken as a serious possibility in certain
favourable situations, including the collapse of stellar cores, the final decay of
neutron star/neutron star binaries, and black hole collisions. As far as stellar
core collapses are concerned, if the correlations found between the records of
gravitational wave antennae and neutrino detectors during supernova SN1987A
(1149, 150] and references therein) really represent gravitational waves 3, then
the signals would be 10* — 10° times larger than expected, and the gravitational
collapse activity would last for a few hours, instead of a fraction of a second.
This would certainly increase the probability of observing multiple imaging by
gravitational waves.

Unfortunately, these events are not very frequent (black hole collisions in
particular are believed to be very rare), so that the probability of observing the
phenomenon certainly is not high, mainly because the duration of the multiple
images would be limited to the period of intense emission of gravitational
radiation. Continuous sources of gravitational waves like the binary pulsar
PSR 1913+16 would give a much higher probability, but unfortunately they

emit gravitational waves too weakly.

31t seems hard this can really be the case.



Chapter 5

THE TAIL PROBLEM IN
COSMOLOGY

5.1 Introduction

In the second and fourth chapters we considered cosmological gravitational
waves, assuming that they are distributed in a homogeneous and isotropic way
through the universe, according to the cosmological principle. This assumption
is motivated by the analogy with the electromagnetic background, which is
observed to be homogeneous and isotropic with a high degree of accuracy.
However scattering off the background curvature of the universe can confine
gravitational radiation of very large wavelength to distant regions, even in
a Friedmann universe. This phenomenon is not present for electromagnetic
radiation in a FLRW spacetime. This could possibly change the considerations
of Chapters 2 and 4, but the problem is interesting in itself, apart from the
applications that Chapters 2 and 4 suggest, so we will consider it in general.
The following is based on Ref. [160].

The propagation of waves in a curved spacetime is sometimes accompanied
by diffusive effects: The usual picture of propagation along the light cone is
in these cases altered by the fact [151]-[153] that a nonvanishing part of the
radiation lies in the interior of the null cone. This phenomenon has been studied
for radiation around a compact object, in which case it appears not to be
particularly relevant from the astrophysical viewpoint, because the curvature

responsible for scattering dies off rapidly with the distance from the object
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itself [154]-[158]. Within a cosmological context, the corresponding problem
has been outlined by Ellis and Sciama [159]. Since the cosmological curvature
is present throughout all of spacetime, rather than being localized like happens
for a compact object, one cannot in principle exclude physically relevant effects.
The problem of finding solutions of the scalar wave equation which are free of
“diffusive” components in symmetric spacetimes is treated in Refs. [161]-[166]
(and references therein).

The presence of diffusive components of radiation can be understood by
examining the form of the Green function for the corresponding wave equation

[153]. In the simple case of a scalar field ® satisfying
00 -¢ERE=0 (1.1)

where ¢ is a numerical constant, the Green function G(z',z) is defined as a
solution of

[0 — ¢ R(2")] G(z',z) = —6(z,z) (1.2)
where §(z/, z) is the delta function on spacetime. The retarded Green function

can be written [152] in a normal domain as
G (¢, z) = £ (¢, 2) 60 (D(a',2)) + V (2/,2) ) (-T(a',2)) ,  (1.3)

where T'(z/, z) is the square of the proper distance calculated along the unique
geodesic connecting =’ and z, whereas §(-) and ©(-) are, respectively, the Dirac
delta distribution and the Heaviside step function with support in the past of
z'. It can be shown [151, 167, 153] that a necessary and sufficient condition for

the absence of tails is

Viz',z) =0. (1.4)

In Minkowski spacetime Eq. (1.4) is satisfied; therefore the responsible for
tails is the spacetime curvature. Actually, there are tails also in three and

two-dimensional Minkowski spacetime [151, 153], in which
Ve (1.5)

and
V=1/2 (1.6)
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respectively. This can be seen immediately by integrating the Green function

in the four-dimensional Minkowski spacetime

. 1
G("l)(a;{-),m'l,m'z,:vg;wo,wl,mg,wg,) = — §(T' (=}, ), T, T4 2o, T1, T2, 23))  (1.7)

2

with respect to one of the spatial coordinates of the point z, to get

@(—'I‘(w{)? 33/1, :212) Ty, 7111,2132))

GO (2!, 2}, 2 2y, 1, 20) = (1.8)
e 277\/“F($6»33'1,37'2;930,931a$2)
Repeating the same procedure for G, one obtains
(2) 1 W 7 1 / I
G\ (zy, zy;zo, 1) = 3 O(—T(zy, z\; 20, 21)) - (1.9)

The presence of tails in these cases can be intuitively understood regarding
the Green functions G(® and G(® as the solutions of the inhomogeneous wave
equation in four dimensions, with impulsive sources concentrated on the line
z3 = 0, or on the piane zy; = z3 = 0, respectively. At a fixed point of space
and at arbitrarily late times, the field ® is nonvanishing, since there are always
contributions coming from points located far away on the line or on the plane.
In this paper, however, we are interested in tails due to the curvature, rather
than to the specific topology.

Even if the responsible for tails is the spacetime curvature, Ra? # 0is not a
sufficient condition for the development of tails; in fact in plane wave spacetimes
one has V = 0 as well, although some components of the Riemann tensor
are nonvanishing [167]. It might be tempting to attribute to the term ¢R &
the responsability for the diffusive propagation. Actually this non minimal
coupling influences the occurrence of tails, but the latter arise even when ¢ = 0
(e.g., in de Sitter spacetime V (2/,z) does not vanish [152] even if ¢ = 0). The
occurrence of tails can therefore be studied excluding nonessential effects by

considering simply the scalar wave equation
d® =0, (1.10)

in which the curvature-field coupling occurs only through the d’Alembertian

a.
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Figure 5.1: A very schematic representation of tail generation: Cur-
vature is nonzero only in the shaded region. The ray 1 not entering
the region propagates freely, whereas ray 2 is decomposed into a
transmitted (3) and a reflected (4) part (null coordinates are em-
ployed).

The formation of tails can be understood as an effect of the backscattering
of curvature on the waves; this is schematically represented in Fig. 5.1, which
represents a portion of spacetime in null coordinates u, v. The curvature is
nonzero only in the shaded region, and scatters waves analogously to what
happens under the action of a potential. The ray 1, which does not enter the
curved region, remains unperturbed, whereas the ray 2 can be decomposed
into a transmitted (3) and a reflected (4) part; nevertheless we emphasize that
such a representation is purely pictorial and does not properly describe many
features of the real phenomenon, which has a continuous, rather than localized

character: A better, although still schematic, picture is given in Fig. 5.2.

As in the usual scattering processes reflection is due to the variations of the
potential, so here it is caused by the curvature. In fact, a region of spacetime
containing a homogeneous gravitational field is flat: Consequently Eq. (1.4)

is satisfied and there is no diffusion. Even in presence of curvature, however,
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reflection will not affect equally all the frequency components of the field &;
it is well known from the study of scattering in more common situations that
only wavelengths greater than a typical length defined by the shape and size of
the potential are significantly scattered. We expect therefore that reflection of
waves by the background spacetime is important only for wavelengths greater
than the typical scale of variation of the gravitational field (i.e., than the radius
of curvature).

The decomposition (1.3) is fbrmal; it does not give information neither
about the importance of the diffusive term as compared to the “sharp” one,
nor about the relative effect of backscattering on components of different fre-
quencies. The previous remarks suggest that an alternative treatment in terms
of reflection and transmission coefficients should be more helpful in clarifying
these points. This method can be successfully applied to describe scattering by
compact objects [154]-[158], but fails in the case of diffusion by the cosmological
curvature, as will be discussed later.

Here we study the problem in a FLRW universe, deserving attention in
particular to the K = —1 case, in which the situation is not complicated
by the possibility that radiation could travel more than once through space
sections, giving rise to spurious effects. In the case K = 0, on the other hand,
the phenomenon turns out to be absent.

In the next section we reduce the problem to the study of a stationary
Schrédinger equation, which is solved exactly in the following section. Then it
is explained why the standard treatment in terms of reflection and transmission

coefficients is not adequate to investigate this topic.

5.2 Tails in FLRW spacetimes

The scattering off the background curvature has been considered for waves
emitted by a compact source [154]-[158]. Scattering appears to be relevant
only in the induction zone and for long wavelengths, becoming negligible at
large distances from the source and at late times, so that it is irrelevant for the
problem of wave propagation in presence of astrophysical objects [24]. These

general results can be qualitatively understood remembering that, as pointed
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Figure 5.2: Another schematic representation of tail generation in a
curved (shaded) region of spacetime.

out before, scattering occurs only in the regions of appreciable curvature. Since
around a compact object the curvature drops off quickly as M/r3, where M is
the mass of the object and r is a Schwarzschild-like radial coordinate, the region
of scattering is localized very near the source, as in Fig. 5.3. Moreover,r > 2M
and the “potential barrier” turns out to be not very high; consequently, most of
the radiation escapes in the region where the curvature is negligible, and where
it is no more backscattered. Reflection is appreciable only for wavelengths
A>M.

The situation can be quite different when considering wave propagation in
a cosmological model. In this case, the curvature never drops off, and scatter-
ing can in principle last forever; hence the fraction of radiation present at late
times in the form of tails might be non negligible (see Fig. 5.4). Whether this
effect is physically important constitutes the so-called tail problem; apparently
such a possibility has been considered in the literature only in Ref. [159].

Electromagnetic radiation in conformally flat spacetimes (and in particu-
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Figure 5.3: The darker region represents the world-tube of a compact
object emitting radiation. In the grey region around the compact
object curvature is not negligible and scatters the waves, like a “po-
tential barrier”. Outside this region the curvature drops off quickly,
and scattering does not take place appreciably.

lar in FLRW spacetimes — see e.g. Ref. [23]) has no tails [153]. However the
problem still holds for scalar and gravitational radiation. For the sake of sim-
plicity, we shall treat explicitly only the case of a scalar field; the problem will
be reduced to the solution of a quantum scattering problem, described by a
Schrédinger equation with a suitable potential, in analogy to Refs. [155, 158].
Since the scalar and tensor wave equations admit the same kind of integral rep-
resentation with Green functions, our conclusions are intended to hold broadly
for gravitational radiation as well, with the FLRW metric as a background.

The simple wave equation (1.10) can be rewritten in the form
0u(v/—99%0,®) = 0. (2.1)
In a FLRW background,

ds® = —dt* + a*(t) [dx* + f(x) (d6* + sin” 6dp?)] (2.2)
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Figure 5.4: Tail generation in a cosmological situation; since the
curvature never drops off, scattering can last forever, and the fraction
of radiation in tails can, in principle, be relevant.

where

flx) = X if K=0 ' (2.3)

sinh x if K=-1
sin x if K=+1,

Eq. (2.1) becomes

1 1 1 ) 1
-20,(a03) + [ax (20,2) + = 8 (sin 0 8y®) + —— a¢a,,q>] —0.

2
(2.4)
Separation of time and space variables
®(t, x,0,9) = T(t)S5(x,6,%) (2:3)
leads to J T
1 3
= — kT = .
adt(a dt)+T 0 (2.6)
and

2 1 . 1 \
8, (£26,5) + = 0 (sin88yS) + =5 8,0,S + kSf1 =0, (2.7)
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where k is a separation constant. Further separation of radial and angular

coordinates

S(x,0,0) =X(x)Y(8,9)

leads to the usual equation for spherical harmonics ¥,,(8, ¢)

1 ) 1
sin@ 59 (SIII g agy‘,;m) t m 64;6@}/;”1 = —l(l -+ l)}/;m 5 (28)
and to J
d X
™ <f2 “Ej) FEX =11+ 1)X . (2.9)

Setting ¥;(x) = f(x)Xi(x) and using Eq. (2.3), the radial equation becomes

, ‘
4@142 i+

dx? F(x) } he=0 (210)

where
2FE=k+ K. (2.11)

Eq. (2.10) describes also the stationary Schrédinger problem for a particle

subject to the central potential

I+ 11
Vilx) = = (fg(x) X2> (2.12)

(x plays now the role of an ordinary radial coordinate in the three-dimensional

Euclidean space), simply writing the radial part of the Schrédinger wave func-
tion as ¥;(x)/x. The problem of wave propagation in a FLRW model is thus
reduced to the study of the solutions of Eq. (2.10), i.e. of the behaviour of
stationary states with given orbital quantum number [ for a particle moving in
the potential (2.12). In particular, the existence and relevance of tails can be
investigated by considering the process of emission of particles from the centre
x = 0 within this analogy.

For K = +1 the spacetime has closed spatial sections; the transmitted radi-
ation might therefore be allowed to pass more than once through a given point
of space, superposing to the fraction of radiation which is possibly reflected.
Hence, the analysis of diffusion produced by the background curvature would

be, in this model, complicated by such a spurious effect. Being interested only
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in the essential features of the phenomenon of tails, we shall not deal any more

with this case.
For K = 0, on the other hand, Eq. (2.10) becomes

2 [
dq”+ zE_f(_i_ll T, =0, (2.13)
dx?

X2

which is familiar from the quantum mechanical description of a free particle in
spherical coordinates (see e.g. Ref. [168]). Its general solution is a superposition
of spherical waves, and corresponds to the absence of any scattering off the
background curvature, i.e. to the absence of tails.

The case K = —1 is more interesting, and we shall concentrate on it
throughout all the rest of the paper. Eq. (2.10) takes the form

2
o ot

sinh® x

] U, =0, (2.14)

which allows the eigenvalue F to assume any positive value: It is convenient

to define
2F = p* ' (2.15)

with p > 0. The shape of Vj(xx) for this case is reported in Fig. 5.5 for various
values of I, and corresponds to a potential well whose depth and size increase
with [. Insight in scattering problems suggests that reflection will be important
only for values of E smaller than (I + 1), the depth of the well, i.e. for

p<li. (2.16)

~

The quantity p plays the role of a wave number; therefore the conclusion that
only waves with p < ! undergo reflection can be interpreted saying that the
backscattering off curvature is efficient only for wavelengths greater than a(t)/I.
The phenomenon admits an interesting alternative representation observing
that, for travelling waves, & > 0 can be written as k& = w?; Eqs. (2.11) and
(2.15) give then

wi=p"+1, (2.17)

which can be regarded as the dispersion relation for waves with an effective
“mass” a(t)~!: Only components with frequency and wave numbers much

greater than a(¢)~! propagate without diffusion.
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Figure 5.5: The potential Vj(x) for | = 1 (solid line), [ = 2 (dotted
line), and [ = 3 (dashed line). The value of the minimum, attained

for x =0,1is —I(l +1)/6.

5.3 Exact solution

Let us rewrite Eq. (2.14) using the definition (2.15):

d*¥, » WI+1)
dx?

¥, =0.
sinhzx] :

Writing
Ti(x) = ™ di(x) ,
Eq. (3.1) transforms in the following equation for ¢;:
z I(1
d¢z+2.d¢z (+1)¢

o T g =0.
dx? ‘P dx  sinh?y l

It is now convenient to define the new variable z € (—00,0) as

1
ZZE(I—COthX)Zl—ezﬂé;

in terms of z, Eq. (3.3) takes the form

z(l~z)~c-l-2—§é£+(1—~ip—~2z)éﬁ+l(l+l)¢z=0a

dz? dz

103

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)
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which is immediately recognized as an hypergeometric equation [168] with co-

eflicients

= 1-1p.
This equation admits two independent solutions [168],
Y = F(a,B,7;2) = F(=1,1+ 1,1 —ip; z) (3.7)
and
B = (1= 2 PF(1 =B, 1 —a, 2 —7;2) =
= (=1)Pe”¥PXF(=1,1+ 1,1 + ip; 2) , (3.8)

where F' denotes the hypergeometric function. Correspondingly, Eq. (3.2) gives
the two independent solutions of Eq. (3.1):

T(x) = ePXF(=1,1+ 1,1 —ip; 2(x)) ; (3.9)
T (x) = (=1)Pe™PXF (=1, + 1,1 +ip; 2(x)) - (3.10)

The general solution of Eq. (3.1) is thus
Uilx) = 4900 + B (x) (3.11)

with 4;, B; € C arbitrary.

In our specific physical problem, the presence of tails is characterized by
the fact that a pulse of radiation emitted at y = 0 is partially backscattered. A
stationary emission must therefore correspond to a solution ¥;(x) of Eq. (3.1)
which for x — 0 contains incoming (reflected) as well as outgoing (emitted)
radiation, whereas for x — +oo only outgoing (transmitted) waves are present.
Therefore, we must impose to the general solution (3.11) a boundary condition
that corresponds to the absence of incoming waves at x — +co. This is easily
accomplished by noticing that for x — 400 one has z — 0, and F — 1. Hence,
the asymptotic form of ‘I’,(I) and \Ill(z) is

T (x - +o0) & e?X (3.12)

TP (x = +o0) & (=1)P X | (3.13)
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which correspond, respectively, to outgoing and ingoing waves. The required

boundary condition is therefore B; = 0, leading to
Wi(x) = AP (=114 1,1 - ip; 2(x)) (3.14)

as the specific solution of our problem.
It is important to remark that, since @ = —I, the series defining F termi-

nates [168], and F is therefore a polynomial of degree [ in z:

F(——l,l+1,1——ip;z)=¥(ltn>z£—%;z", (3.15)
where Va € C,
(a)n=a(la+1)(at+n—1)= M (3.16)

P(a)
and (@) = 1. This result is useful in comparing the exact solution (3.14) with

the asymptotic one for x — 0.
For I = 0, the hypergeometric function is identically equal to 1, and

Eq. (3.14) reduces to
Ty(x) = Ap X, (3.17)

which contains no incoming waves for x — 0. Therefore, in this case reflection

is absent.

5.4 Asymptotic analysis for y — 0

Looking for solutions of Eq. (3.1) of the form

Ti(x) ~ x™+0(x™), (4.1)
one finds immediately that either m = —[ or m = [ + 1. The general solution
of Eq. (3.1) can therefore be written as

Vi(x) = CLflx) + Digi(x) (4.2)

with C;, D; € C arbitrary and fj, g; two particolar solutions which behave, for

x — 0, as

mm:%+mvﬂ, (4.3)
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and

a(x) = X' +0(x"*?) - (4.4)
The coefficients C; and D; for any particular solution ¥; can be obtained by
comparing Eqs. (4.2)-(4.4) with the expansion of ¥;(x) for x — 0. In the
particular case of Eq. (3.14) one gets, by Eq. (C.8),

(2 — !

Cr=A—%, 4.5

= AT, (4.5)
and (1 + . )
L p 1)

D=4 —~————————~(2l Y (4.6)

However, as far as a calculation of the reflection and transmission coefficients
is concerned, one does not need C; and D, but rather the coeflicients Al(i)

characterized by writing ¥;(x) as
(x) = A ¥ + 47 9000, (47)

where \Ifl(i) are independent solutions of Eq. (3.1) corresponding to waves which
are purely outgoing (+) and ingoing (—) for x — 0. Since, as done above, a
comparison between Egs. (4.2)-(4.4) and the exact solution (3.14) allows one
to determine C; and D;, but not directly A,(i), one needs to express the former
coefficients in terms of the latter ones.

In order to do this, notice that, since \I’,(:b) are particular solutions of

Eq. (3.1), they can be written, according to Eqgs. (4.2)-(4.4), as
v900 = 0 £ix) + D aix) - (438)

The coefficients C’l(i) and Dl(i) in Eq. (4.8) should be chosen in such a way
as to guarantee the prescribed character (purely outgoing or ingoing) of the
solutions ‘I’,(i) for x — 0. Unfortunately, such solutions do not exist for I # 0.
This can be qualitatively understood by observing that in the neighbourhood
of x = 0 the centrifugal potential I(I+41)/x? varies extremely rapidly; therefore,
waves in that region are continuously backscattered!. As a consequence, one

cannot select purely outgoing or ingoing solutions of Eq. (3.1) as x — 0.

Tn the analogy with the quantum particle, based on the Schrédinger equation (3.1), one
can remark that particles with nonzero angular momentum cannot “enter” or “exit” from
the centre x = 0.
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Formally, this can be realized by characterizing such solutions as asymptotic

eigenstates of the radial momentum operator P, = —id/dx, i.e.
du(F)
-1 \31 =4\ lI',(i) + (higher powers of x) , (4.9)
X

with A > 0. Since for [ # 0

A~

A B = 0(®) #0, (4.10)

where | g 1+ 1
fj{lE——— + (+)

4.11
2 dx?  2sinh?y’ ( )

it follows that there are no common eigenstates of the operators H; and px:
l.e. there are no solutions of Eq. (3.1) which satisfy the asymptotic condition
(4.9). An explicit check can be performed by substituting Eq. (4.8) into (4.9)
and requiring the coeflicients of the leading powers of ¥ to vanish; one obtains
the trivial result C’l(d:) = D,(i) = 0.

The non-existence of solutions of Eq. (3.1) which are purely ingoing or
outgoing in the region x — 0, prohibits one to define reflection and transmission
coefficients as in the usual treatments of scattering problems. To the authors’
knowledge, no method has been developed in the literature to deal with similar
situations. The case considered here is quite different from the simpler ones
arising when studying diffusion of waves by Schwarzschild black holes, where
a coordinate transformation can be found for which the corresponding one

dimensional Schrédinger problem involves a localized potential barrier [155].

5.5 Remarks

The most appropriate treatment of the physical problem pointed out in this
paper would be the explicit determination of the reflection coefficient describing
backscattering by the cosmological curvature, and characterizing quantitatively
the fraction of radiation which does not propagate along the light cone. The
impossibility of carrying on this approach leads one to look for alternative ways
of studying the phenomenon. A straightforward idea could be to pursue the

formal analogy between the tail problem and quantum scattering, computing
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the cross section for the central potential Vi(x). Although such a calculation is
in principle possible, it cannot however be regarded as a satisfactory solution
to our specific physical problem, which concerns waves emitted from x = 0
rather than incoming from infinity. Consequently, the expression of the cross
section will give nothing but the qualitative bounds already discussed at the
end of Sec. 5.2. A satisfactory study of the subject seems thus to require a
radically different approach.

In spite of these formal deficiencies of the treatment, some features of the
phenomenon emerge clearly: The tail problem for radiation in FLRW space-
times regards only waves whose wavelengths are at least of order a(t); waves
with wavelengths much smaller than the scale factor are not affected by scat-
tering off the background curvature. Radiation of such a long wavelength is
then “confined” at high redshifts. Since this effect regards only a very small,
extreme part of the spectrum of the gravitational radiation content of the uni-
verse, and since the variability of these waves on scales of order a(t) is too
slow to be observed, it appears that the effect is hardly observable. However,
no conclusion can be drawn without a careful investigation; in fact radiation
of very long wavelengths can possibly lead to physically relevant effects (see
e.g. Ref. [169]). These considerations about the way the background curva-
ture affects scalar waves can be extended to gravitational waves, due to the
common structure of the integral representation for the scalar and tensor wave
equation [153], and to the fact that the effect is present even without direct
curvature coupling. Moreover, the tail problem still holds in cosmological mod-
els others than the FLRW ones, and, what is more important, it concerns also
electromagnetic radiation in non conformally flat spacetimes.

Scalar fields satisfying the wave equation

oV
O —_— = .
¢+ 5z =0, (5.1)

(which reduces to Eq. (1.10) in the slowly rolling regime), where V(@) is a
suitable function, are considered in the inflationary models of the universe (see
e.g. [170] and references therein). The tail problem for the inflaton regards
length scales relevant for cosmology, so it could possibly have some importance

in problems connected to the physics of the early universe. The cosmological
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model most commonly used in inflationary theories is de Sitter spacetime, and

the considerations of Ref. [162] apply. This is however beyond the scope of the

present work.
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5.6 Huygens’ principle and characteristic prop-
agation property for waves in curved space-
times

The occurrence of tails for scalar, electromagnetic, and gravitational radiation
is particularly evident from the form of the Green function for the correspond-
ing wave equation, which can be decomposed, at any point z of spacetime, into
a “sharp” and a “diffusive” term, with support along and inside the light cone
through z, respectively [152, 171].

This circumstance has been associated in the literature both to the failure
of Huygens’ principle [152, 23, 151, 172] and to violations of the “characteristic
propagation property” (CPP) [173]. However, the relationship between these
two characterizations of the effect has never received much attention, remaining
somewhat unclear.

Our purpose is to give a unitary formulation of the properties mentioned
above, which allows one to compare them. Sec. 5.7 is devoted to the introduc-
tion and discussion of the “tail-free property”, that characterizes formally the
absence of diffusive effects. In Sec. 5.8 the relationship between the tail-free
and the characteristic propagation properties is investigated. It is found that
the CPP holds independently of the tail-free property only in the case of mini-
mal coupling in two spacetime dimensions. The peculiarity of gauge fields, for
which tails in the potentials do not necessarily correspond to physical effects,
is considered in Sec. 5.9 for the case of electromagnetism. Sec. 5.10 contains
the conclusions and outlines possible generalizations. The following is based

on Ref. [153].

5.7 Formal characterization of tails

The propagation of weak gravitational radiation on a curved spacetime can be

studied writing the metric as

.aab = Gab + hal) 3
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where hy, are “small” perturbations around the background metric gqp. In the
transverse-traceless gauge *
Vehg = 0, (7.1)
%hay = 0, (7.2)

the vacuum Einstein equations lead to the wave-like equation
Ohay — 2R°0p%heg = 0 . (7.3)

Analogously, the electromagnetic potential on a curved spacetime in the ab-

sence of sources and in the Lorentz gauge
V@4, =0 (7.4)
satisfies the wave equation
OA, — RpA° = 0. (7.5)

Together with Eqgs. (7.3) and (7.5) one can consider also the wave equation for

a scalar field

0% —¢(RE =0, (7.6)

where ¢ is a numerical constant.

The behaviour of the fields ®; A, and hg satisfying Egs. (7.6), (7.5) and
(7.3) can be conveniently studied by introducing the concept of Green function
(152, 171]. Denoting as G (z/,z), G*, (z',z) and G, (z',z) the Green
functions for a scalar, vector and symmetric tensor field respectively, they

satisfy the following equations:

[O' — ¢R(2)] G (2, 2) = =6 (¢',2) , (7.7)
6w D — B¥y] G¥o(,2) = —8%u(2, ) (7.8)
[5@’6, 0 — 2Ra’c,d,b'} GO (2, 2) = =6 (o' x) (7.9)

where ¢ (2, z) is the delta function on spacetime such that for each test function

[174] £,
/dw,/—g(w) f(2)6 (2, 2) = f(z), (7.10)

2All quantities except hgp are associated with the unperturbed spacetime.
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and §%, (2, z), §(5)¢% ;y (2/,z) are the “elementary sources”, which can be con-
structed out of § (z’,z) and the two-point vector of geodesic parallel transport
(171, 175].

If A is a normal domain of spacetime not containing sources, the use of the
Green functions allows one to write the fields at each point z € A in terms of

their values on the boundary ON as

$(z) = /dsa’(w')a(w',mﬁa,@(z'), (7.11)
AN

Au(e) = / 45¥(2') G o (2, 2) V y Au(z') , (7.12)
N

hao(z) = / d5° (") GO oy (2, 2) V o ham(2') (7.13)
AN

where dS%(z') is the oriented volume element on the hypersurface ON at =z,

and
AV o= iVfa— 2V, (7-14)

for any differentiable functions f;, f,. Since the integral representation is
essentially the same for &, A, and h,; we shall limit ourselves, in the following,
to consider a scalar field, keeping in mind that the results can be generalized
to the other cases without introducing substantial conceptual differences.

The advanced (+) and retarded (—) Green functions can be written [152] as
GH) (¢',2) = B (2, z) §F(D(e',2)) + V (¢',2) OF)(=T(z',z)), (7.15)

where I' (2, z) is the square of the proper distance calculated along the unique
geodesic connecting ¢’ and z in the normal domain A; §(*) and ©) are, re-
spectively, the Dirac delta distribution and the Heaviside step function with
support in the future (+) and past (—) of z’. Hereafter we shall restrict our-
selves to consider the retarded Green function, dropping the (—). The functions
Y and V can be determined uniquely once the spacetime is given [152, 171].
The equations for V are hard to solve, and no analytic expression for V (z/, z)
is known in a general spacetime. The only known solutions correspond to
Minkowski, plane wave, and de Sitter spacetimes. In the first two cases, V

turns out to be identically zero [167] and the diffusive term is thus absent;
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moreover, it has been proved [176] that these are the only empty spacetimes
which enjoy this property. In the case of de Sitter spacetime the explicit ex-
pression for V is given in Ref. [152] (p. 163); in particular, if { = 0, V is
constant 3.

In general V is different from zero, and both the terms in the right hand side
of Eq. (7.15) contribute to the propagation of waves. The first term has support
entirely along the null cone, and represents therefore a lightlike propagation
of the initial data, according to Eq. (7.11). The second one accounts for the
possibility of a diffusive contribution from the interior of the light cone, that is
for a timelike propagation of the initial data. Hence, a nonvanishing function
V (2’,z) might convey part of the radiation in the interior of the light come.
This effect has sometimes been regarded as a deviation from Huygens’ principle
[23, 151, 172], because it leads one to conclude that radiation is not, in general,
concentrated on the wavefront * (for example, using the retarded function and
restricting, for sake of simplicity, to a spacetime that is spherically symmetric
around some point 7 = 0, one sees that the radiation emitted as a pulse at
r =0, t = 0 is distributed, at £ > 0, within an entire region r < R(t), and is
not simply concentrated on the sphere r = R(t)).

From now on, we shall refer to the part of radiation present in the interior
of the null cone as the tail. This name is justified by the fact that this fraction
of the radiation stays back with respect to that propagating on the wavefront.

These heuristic considerations can be formalized as follows. Let M be a
globally hyperbolic region of spacetime, and let S be a Cauchy hypersurface
with normal n?, over which a set of smooth data D for Eq. (7.6) is specified °.

Moreover, let D have compact support C C S. We say that the data D produce

3Remarkably enough, when £ = 1/6 one has V (z/,z) = 0. This fact can be explained
by noticing that for such value of £, Eq. (7.6) is conformally invariant [1]: The absence of
diffusion in Minkowski spacetime is therefore transferred to conformally flat spacetimes (de
Sitter being an example).

‘Huygens’ principle (see [151] for a precise formulation) is violated by any linear, normal
hyperbolic partial differential equation in which the solution depends on an odd number
of variables [151, 172]. When the number of variables is even, as in a four-dimensional
spacetime, Huygens’ principle may or may not hold. The tail-free property defined below
turns out to be equivalent to the Huygens’ principle defined in Ref. [151].

5Where S is spacelike (ngn® = —1), D = {(®, n®V,®)}; where S is null (n,n® = 0),
D = {@} (cf. Ref. [151], p. 179).
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Figure 5.6: The spacetime region K+(C).

no tails in M iff Ve € K+ (C) N M, &(z) = 0, where & is the unique solution
of the Cauchy problem for Eq. (7.6) with initial data D, and K* (C) is the set
of all points in J* (C) (the causal future of C) which cannot be reached from C
by a null geodesic (see Fig. 5.6). Eq. (7.6) is said to be tail-free in the region
M iff each set of initial data D in M with compact support produces no tails
in M.

When M is also a normal domain, the previous definitions can be refor-
mulated more explicitly. In fact, given the Cauchy hypersurface S, the region
J*(8) N M is normal as well, and we can use the integral representation,
Eq. (7.11), to specify the value of ® at each ¢ € J*(§) N M in terms of the
data D, as

B(z) = /dS"'(z:’) G(e,2)V o (') . (7.16)
s

In particular, if D have compact support C on S, and z € K*(C) N M, the
§-term in Eq. (7.15) gives a vanishing contribution to the right hand side of
Eq. (7.16), which becomes

s

B(z) = /dsa’(m') [©(-D(z,2)V (,2)] V().  (7.17)
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Since

Vu[®(=T'(2,2))V (e,2)] = =6 (T (2',z)) VoI (2, 2) V (2, 2) +
+0(-T(2',2)) V'V (2 z) , (7.18)

we have that Vz € K+ (C) N M

B(z) = /dsa’(m') V(2',2)V o () . (7.19)

The no-tail condition can therefore be expressed in terms of vanishing of the
integral on the right hand side of Eq. (7.19). It is obvious from this equation
that

V(zhz)=0 (7.20)

is a sufficient condition for Eq. (7.6) to be tail-free in M; in particular we
recover the result that the propagation of radiation in Minkowski and plane
wave spacetimes is not accompanied by tails. Actually, Eq. (7.20) is also a
necessary condition; this can be proved taking advantage of the arbitrariness

of the initial data D. Choosing in fact C spacelike and, Vz' € C,
®(z')=0 (7.21)
and
n® (2 )V ®(z') = & 6c (¢',7) (7.22)

where Z' is an arbitrary point in C, ®; is an arbitrary nonzero constant, and
6¢ is the three-dimensional delta function in the region C, we trivially get

Eq. (7.20).

5.8 Relationship between tail-free and char-
acteristic propagation property

Even if Eq. (7.6) is not tail-free in a region M, one might nevertheless be
interested in data that produce no tail in M. In the literature particular
attention has been devoted to the characteristic Cauchy problem, in which the

support C is null; in this context, the characteristic propagation property for
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Eq. (7.6) has been defined [173]. With our terminology, Eq. (7.6) satisfies the
CPP in a region M iff each set of data with null compact support C produces
no tailin M. It is obvious that in a tail-free region, Eq. (7.6) satisfies the CPP.
As far as the converse is concerned, apparently the CPP is a weaker condition,
but the question whether the CPP implies the tail-free property is not a trivial
one. The present section is devoted to this problem.

As the tail-free property, so the CPP becomes particularly treatable if M
is assumed to be a normal domain. In this case the field at each point = €

K*(C)N M is given by Eq. (7.19) which becomes, using the Leibnitz rule,

8(z) = [ s () Va [V(e',2) 8(2)] - 2 [ dS”/(+') $(2) VoV (&, 2) . (8.1)
C c

Let now 4 C M be a region containing C, and let f : &/ — R be a suitable
function defining C through the condition f(z) = constant. If C is a null

hypersurface, we can introduce in &/ the coordinates [177]
(:1:1 = f,2’= p,z3,m4) , : (8.2)

where p is the affine parameter along the geodesics that are integral curves of
the vector field
n® = g®V,f, (8.3)

which is tangent to C; 2 and z* label these geodesics on C. In such coordinates,

the components of the metric g®® can be written [177] as

n? = 63 (8.5)

and

ng =6, . (8.6)
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The first term on the right hand side of Eq. (8.1) can now be transformed as

/ 5% (') V. V(' 2) B(z')] =

= /dsw'\/——g(m’) n® (') Bo [V (2',2) B(2")] =
° N
v —9(z’)

where Gauss’ theorem in R® has been applied, and a term has been dropped

__ / 45 (') ®(2 V(2,2 aa,[ —g(m’)n“l(m')] . (8.7)

using the compactness of C. Eq. (8.5) allows us to write

L 3 [\ a(e) (2] = e B [y =907 ()] = V()5

T @)
(8.8)

consequently, Eq. (8.1) becomes, using Eq. (8.3),

2(z) = - [ d5(2') 3(e") [V (2',2)0'f(2') + 29" f(=)VuV (',2)] , (8:9)

which expresses the value of the field at z € K+(C)NM in terms of its values on
the compact null region C, defined by the condition f(z) = constant. Therefore,
Eq. (7.6) satisfies the CPP iff the right hand side of Eq. (8.9) vanishes for each
choice of data on an arbitrary C with the properties above. We shall now show

that necessary and sufficient conditions for this to happen are

V(z',z) = constant (8.10)
and
Of =0 (8.11)
for each f such that
GV fVf =0 (8.12)

Obviously, conditions (8.10), (8.11), and (8.12) are sufficient. To prove that

they are also necessary, let us choose the initial data on C as
@(Q)I) = @0 5(7(3)’, 53,) y (813)
with @ € C arbitrary and ®, an arbitrary nonzero constant; this leads one to

V(e',2)Q' f(2') + 2V f(z')VaV(2',z) =0, (8.14)
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which must be satisfied by every f for which Eq. (8.12) holds. The case V =0
corresponds to the tail-free property, which evidently contains the CPP; let us
therefore suppose V # 0. Eq. (8.14) becomes

o'f(z') = “‘ZVGIf(m,)va’ In IV(:E,, z)|, (8.15)

which can be satisfied only if conditions (8.10) and (8.11) hold separately.

As already remarked, if V = 0 the CPP holds trivially, since Eq. (7.6) is

tail-free in that case. The interesting situation corresponds to
V(z',z) = constant # 0 , (8.16)

supplemented by the condition that Eq. (8.11) holds for each f which satisfies
Eq. (8.12). We shall now comment separately about these two requirements.
Let us consider (8.16) first. For generic initial data with support (spacelike,
null or both) C, Eq. (7.19) leads to conclude that & is constant throughout
K*(C)Nn M, with value

v / 4S% (2') Vo d(2') . (8.17)

Since the field expressed by (8.17) must satisfy Eq. (7.6), one gets immediately,
for nontrivial choices of the data, that Yz € K*(C) N M it must be

¢R(z)V =0. (8.18)

Considering all the possible specifications of C, it is obvious that Eq. (8.18)
must hold everywhere in M. We arrive therefore to the conclusion that V can

be a nonvanishing constant only for a field satisfying the equation
0d=0. (8.19)

De Sitter and anti-de Sitter spacetimes are examples of this circumstance [152];
it is interesting to notice that Eq. (8.16) weakens the no-tail property only by
allowing the presence of uniform tails — a feature involving only zero multipole
moments. If one requires, as usual, that ® vanishes approaching the spatial

infinity, such constant tails are of course ruled out.
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Regarding the other condition for the CPP, i.e. the requirement that
Eq. (8.11) be satisfied by every f for which Eq. (8.12) holds, it is easy to
see that it is extremely restrictive. Consider in fact an n-dimensional (n > 2)

Minkowski spacetime, with usual coordinates (t,Z). The functions
f& =t + |3 (8.20)

trivially satisfy Eq. (8.12); nevertheless

n—2
iED
does not vanish unless n = 2. Since in any spacetime, coordinates can always
be chosen in which the metric takes locally the Minkowskian form, this simple
example shows that, for n > 2, null hypersurfaces exist for which Eg. (8.11)
does not hold . Consequently, the CPP cannot be satisfied independently of
the tail-free property whenever n > 2. In other words, the CPP is equivalent to

Of®) = +V%3| = + (8.21)

the tail-free property in every spacetime with more than two dimensions. For
n = 2, the condition (8.11) is automatically fulfilled by any function f for which
Eq. (8.12) holds. This can be proved remembering that any two-dimensional
spacetime is conformally flat [1], and that the metric can therefore be written
as

Gap = * Nap (8.22)
where (0 is a nonvanishing function and 74 is the metric of Minkowski space-

time. Introducing the null coordinates

u = \—}—5 (t—z), (8.23)
v = —;—5 (t+a), (8.24)
Egs. (8.11) and (8.12) become, respectively:
2 0%f
D i = N .
f 02 fudv ’ (8.25)

6For n = 4 this can be physically understood as follows. To require that Eq. (8.11)
holds whenever f satisfies Eq. (8.12), would amount to say that, if f satisfies Eq. (8.12),
then an arbitrary function F(f) solves the wave equation (8.19). In the particular case of
F(£) given by Eq. (8.20), it would follow that F (¢ & |Z|) are local solutions of Eq. (8.19)
near t = |#| = 0. However, this would be an erroneous conclusion, since we know that the
generic advanced and retarded solutions of Eq. (8.19) with spherical symmetry are, locally,
P (t+1d]) /3.
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of of

— —==0. .26

Ou Ov (8.26)
Eq. (8.26) can be satisfied only if f depends on only one of the two coordinates

u, v, i.e., if either

f=fi(u) (8.27)
or

f=fiv). (8.28)
But both (8.27) and (8.28) satisfy identically Eq. (8.25), thus proving our

assert.

This result leaves open a last chance for the CPP to be satisfied indepen-
dently of the tail-free property, namely, that condition (8.16) be fulfilled in a
two-dimensional spacetime. As previously seen, (8.16) necessarily requires *
that @ satisfies Eq. (8.19), which is conformally invariant [1] for n = 2: The
corresponding Green function is therefore the same as in Minkowski spacetime.
It is straightforward to find, performing the calculations in u, v coordinates,
that this is

. .
G(z',z) = 3 O (-TI'(z',2)) , : (8.29)
where I' has now the simple expression

T(z',z) = 7% (¢' — 2)a(2 — ) - (8.30)

Since Eq. (8.29) satisfies indeed the condition (8.16), we are led to the remark-
able conclusion that Eq. (7.6) satisfies the CPP independently of the tail-free

property only in the case of minimal coupling in two spacetime dimensions.

The independence of the CPP from the tail-free property in the two dimen-
sional case, can be checked explicitly calculating the value of ® at a generic
point z € K+(C) N M according to Eq. (7.19). The result is

B(z) = % [ 457 (@)Vua(=), (8.31)

where now the integral is performed over the one-dimensional support C of

data, with normal n®. It is trivial to verify that, in the case of C spacelike, it

"The proof holds obviously for any number of dimensions.
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is always possible to choose data on C such that the constant right hand side

of Eq. (8.31) is nonzero (for example, choosing on C
Vao®(z) = ®pnq(z), (8.32)

with @, # 0 a nonzero constant): Eq. (8.19) is therefore not tail-free. Never-

theless, if C is null, then we can always choose it either in the form
{(u,v) [ = uo, v € [vy,v5]} , (8.33)

{(w,v) [u € [u1,u2], v=w0}, (8.34)

where ug, u1, s, v9,v1 and v, are specified values of the coordinates. Eq. (8.31)

becomes respectively

5&
(p / d‘UQ Uo,’l))mama Q,’U) ‘/‘vL dU—(’ILU, )-——0
(8.35)
and
82 o od
(z) = / 0y 0) gzt 5 (y00) = 2 i du8 (w,v0) = 0 .
(8.36)

The validity of the CPP for Eq. (8.19) in a two-dimensional spacetime is thus
explicitly established.

We can get insight into the possibility to have CPP independently of the
tail-free property in two dimensions with the following argument. Let D be
some data with compact spacelike support C; the value of & at z € K*(C)Nn M
is given by Eq. (8.31), and is a constant that we can always make different
from zero by a suitable choice of the initial data, as already remarked. We
can, however, give another form to the initial value problem. Let us propagate
the data to H*(C), the future Cauchy horizon of C; in two dimensions H*(C)
is composed of null lines. For sake of simplicity we restrict ourselves to the
simplest case in which there are only two components C;, and C, with one point

p in common ® - see Fig. 5.7. The values of the field and its gradient on H*(C)

8Examples of more complicated situations can be easily constructed by removing regions
in M.
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Figure 5.7: The new Cauchy problem obtained propagating initial
data from C to H*(C).

can be chosen as data for a new Cauchy problem, which must of course be

compatible with the previous one. The integral

@(m):% [ ast &) vaa), (8.37)
H+(C)

analog to the one in Eq. (8.31), results from three contributions, two of which
~ coming from integration over C, and Cj — vanish due to the CPP, while the
third one — deriving from integration in the neighbourhood of p - requires a
particular care, since the integrand exhibits a delta-like singularity at p. The
problem is essentially that H*(C) fails to be a differentiable manifold at p;
we can however regard the integral in Eq. (8.37) as the limit of a sequence
of integrals over smooth approximations to H*(C). These can be constructed
by substituting a small region O(p) C H*(C) around p with a spacelike curve
O smoothly joined to H*(C) — O(p) (see Figs. 5.8 and 5.9). The sequence
of integrals is constant since each of them differs from the others only by
integrations over null regions which give vanishing contributions thanks to the

CPP. The constant value is therefore due to the integration over O, which in
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Figure 5.8: A smooth submanifold approximating H*(C).

the limit amounts to a contribution from the point p alone.

5.9 Electromagnetic radiation

As far as the electromagnetic field is concerned, it is well known [1] that

Maxwell equations in vacuum,
VbFE, =0, (9.1)

ViaFog =0, (9.2)

are conformally invariant in four dimensions. Consequently, electromagnetic
radiation in a conformally flat spacetime has no tails. However, this point de-
serves a few comments. In fact, although the equation for the electromagnetic
potential

OA, — R,PA4y — V,V%4, = 0 (9.3)

is conformally invariant, the wave equation (7.5) is not. A straightforward

way to realize this is to notice that, under a conformal transformation with
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Figure 5.9: The sequence of smooth submanifolds approximating

HH(C).

conformal factor {2, the gauge condition (7.4) gives
Ved, =207V A4, £0, (9.4)

where a tilde denotes transformed quantities. The conformal invariance of
Maxwell equations does not therefore guarantee that the solutions of Eq. (7.5)
have no tails in a conformally flat spacetime. The possibility of having tails in
the potentials, but not in the fields [167] is not, however, a problem, provided
the tails in A, are purely gauge terms, corresponding to Fyp = 0. A necessary
and sufficient condition on V“'a(:c’,:c) for this to occur in a normal region M
is [167]

ViV a(2,2) = 0. (9.5)
To prove this, we use Eq. (7.12) and

Fup = VaAs — Vi,
to express the field at a point z € K*(C)N M as

Fo(z) = —2 / dS¥ (2') ViV (e’ 2)V o Aw(z) , (9.6)
C
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where a decomposition analogous to (7.15) has been adopted for G*,(z/, z).
Fap is tail-free in M iff the integral on the right hand side of Eq. (9.6) vanishes
identically for each choice of the initial data subject to the constraints deriving
from the gauge condition (7.4). Choosing C spacelike with unit normal vector

n?, we write such a constraint as
n® (n,V°4,) = D4, (9.7)

where D, is the covariant derivative operator on C induced by V, (see e.g.
Ref. [1]). With the specific choice of data on C

Aaz(a:') =0 5

0 (2) Vo Au(2') = By (') be (', 7 ,

where &’ € C is arbitrary and B® is orthogonal to n? (as follows from Eq. (9.7))
one gets immediately Eq. (9.5).

Due to the gauge freedom of General Relativity, we expect an analogous
situation for gravitational radiation. Possible tails for A, are not necessarily
associated to physical effects in K+, since they could be removed by a co-
ordinate transformation. This subject will be investigated further in future

work.

5.10 Outlooks

The formulation of the tail-free property discussed in this paper is based essen-
tially on the requirement that the field in the region K+ vanish. This definition
allows one to give a unitary treatment both of the Huygens’ principle and of
the CPP, and is therefore particularly useful in order to clarify the relationship
between them. In a normal region of spacetime, the validity of these proper-
ties is expressed in terms of simple conditions on the coefficient V(z/,z) in the
diffusive part of the Green function.

Considering the scalar wave equation (7.6), we have been led to conclude

that the CPP holds independently of the tail-free property only for the case of
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minimal coupling in a two-dimensional spacetime®.

Wave equations in two spacetime dimensions, of a more general form than
Eq. (7.6), have been considered in Refs. [173] as describing wave propagation
in four dimensional spherically symmetric spacetimes. It has been shown that
in this case Eq. (7.6) reduces, expanding the solution in spherical harmonics,

to a family of equations of the form

2

T 0 S Gt =0, (10.1)
where | € {0,1,2,---} labels the various multipole moments, and ar, Bi, 7t are
given functions of u, v. Within this context, it may be interesting to investigate,
with the methods employed here, the validity of the CPP and of the tail-free
property for Eq. (10.1), since the results apply to the wave equation (7.6) in
four dimensional spacetime as well. This could extend and clarify the existing

work on the subject [173].

9Regarding the dimensionality of spacetime, it is interesting to note that the anthropic
principle requires Huygens’ principle, and thus that the spacetime in which we live has even
dimension [178].
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APPENDICES

6.1 Appendix A: the divergence 94(6p*)

From Eq. (2.11) we get

8(sp* 1 0 ,
éi ) _ -5 /. d (v 2 + Bar?,) + O(h?) . (A.1)

Introducing the null coordinates u =t — z and v = ¢ + z one easily gets
0* 6? 0? 02
=0 g Tes
52 52 52

=522 "o SGuge

Since we are considering gravitational waves propagating in the radiation zone
along a definite direction, we have Oh,, = 0 and 8%A,,/0udv = 0, so that

H? H*
<(9m2+(9 )h,w_o (A.2)
and
Ba(6p™) + O(h*) =0. (A.3)

6.2 Appendix B: Ay = —A; and p; = us to first

order
From Eqgs. (4.2)- 5) and (A.2), we get

(4
D
AL+ A = 5 / h,\,\’z,x + h,\A’y,y) + O(h2) =
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D o
= /5 X 97 (has™ , + hes” ) + O(R?) =0+ O(A?)

and

Ao = —A1 + O(R?) . (B.1)

Since, to first order, we raise and lower tensor indices with 7#¥ and 7., and
4B =qup = 84 for A,B =1,2, we have (to this order)

A B
huw™ g = huw'™ 4

and

= 1y + O(R?) . (B.2)

6.3 Appendix C: Asymptotic expansion of ¥;(x)
for x — 0

The function z(x) given by Eq. (3.4) can be expanded for small x as (see

Ref. [179], p. 1076)

1 ;5 2By .
ZX k=0
where B, are the Bernoulli numbers. From Eq. (3.15) it follows that the

hypergeometric function can be expanded in powers of x if an expression is

z(x) = (C.1)

available for z", with n > 1. The latter can be obtained using the following

generalization of the well known Cauchy formula for the square of a series,
400 n +-00 n
(Fa) -5 ¥ - S b s (C2)
k=0 kn=0 kn_1=0  ki=0

whose proof is straightforward (it suffices to apply n — 1 times the Cauchy

relation). One obtains, for n > 1,

to9kRB, n +oc )
(Z k' u Xk> = Z Qnk Xl‘ ) (03)

k=0 fe=0)

where .

* B - B

k k—kn_ k
Otk = 2 Z Z (k- n1)’ kgt

kn_1=0

(C.4)
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Defining
ok = ok (C.5)

where o, is the Kronecker symbol, the following expression holds Vn > 0:

2"(x) = )n - Z g X (C.6)

Expanding the exponential and applying Eq. (C.2) with n = 2, we get

ipx n _ 1 mE A zp)h k h—-n I+2
00 = g 2 D L0y, (o)
("'2) h=0 k=0 )

and finally, by Eqs. (3.14) and (3.15),

— Sl n+1 (=0n "HT L (i) 1+2
w0=4 5 (1) dh Do (ot >)°
(C.8
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