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INTRODUCTION

The present work is concerned with applications of the density functional
theory of the liquid-solid equilibrium transition to various systems: (i)
freezing of a classical one-component plasma and of alkali metals and (ii)
freezing of a bond-particle model for elemental semiconductors, in particular
for liquid germanium.

During the past decade, the density functional theory (DFT) has
demonstrated its usefulness in relation to understanding the liquid-solid
phase coexistence for a variety of systems. The main idea behind the DFT
of freezing is that a good semiquantitative description of the thermodynamic
properties of the solid phase can be obtained by using only structural
properties of liquid phase as input. Knowledge of the free energies in both
phases constitutes the basic prerequisite for solving the coexistence aspect of
the phase transition problem. At the same time, the theory puts emphasis
and physical interpretation behind empirical criteria for the phase transition,
in particular the Lindemann criterion for melting and the Hansen-Verlet
criterion for freezing. Many earlier attempts using different approaches have
been devoted to predicting the conditions under which a solid will melt or
a fluid will freeze, often regarding the first-order phase transition as if it
were arising from an instability in either the liquid or the solid phase. The
DFT can bypass most of the difficulties of these traditional approaches by
expressing the thermodynamic potential of any system (say, liquid or solid) in
terms of (i) its one-body density p(r), which exhibits the system’s observable
symmetries, and (ii) its two-body direct correlation function c(r,r’;[p]),
which plays the role of an effective pair potential self-consistently determined
by p(r) through its dependence (indicated by the square brackets) on the
latter. Approximations must, of course, be brought in to concretely handle
the above direct correlation function in practical calculations.

In this work, chapter 1 presents some basic experimental and theoretical
facts concerning the freezing/melting phase transition. We start from the
empirical rules for freezing and melting which have been developed for
each individual phase, and the important relations that characterize the
thermodynamics of the transition in model systems with inverse-power
repulsive potentials. The various theories concerning this phenomenon are
also summarized. The basic points of the density functional approach to
liquid-solid coexistence are briefly reported, with main emphasis on the
study of the hard-sphere systems by this approach and on the different
approximations used in applications of the theory.

The DFT approach to crystallization is applied in chapter 2 to the
freezing of the classical one-component plasma (OCP) and of alkali metals.
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Freezing of the classical plasma on a rigid neutralizing background into
the bee structure is re-evaluated, taking account of the recent progress in
the determination of the thermodynamic properties of this model fluid by
computer simulation and of the known difficulties of the theory relating to
the order parameter at the (200) star of reciprocal lattice vectors. Freezing
into the fcc structure is also considered and found to be unfavoured.

The relationship between Wigner crystallization in the classical plasma
and the liquid-solid transition of alkali.metals is also examined in the same
chapter. We show that on allowing for long-wavelength deformability of
the background, the appearance of volume change on freezing into the bec
structure is accompanied by reduced stability of the fluid phase and by an
increase in the entropy of melting. Freezing of alkali metals into the bec
structure is also evaluated, taking their ionic pair structure as that of an ionic
plasma reference fluid screened by conduction electrons and asking that the
correct jonic coupling at liquid-solid coexistence should be approximately
reproduced. The values of the volume and entropy changes across the
phase transition, as estimated from the theory by two alternative routes,
are in reasonable agreement with the experiment. The order parameters of
the phase transition, excepting the (200) one, conform rather closely to a
Gaussian behaviour and yield a Lindemann ration in reasonable agreement
with the empirical value for melting of bee crystals.

Freezing of a bond-particle model for liquid germanium is evaluated in
chapter 3. In a short introduction to the structure of covalently bonded
systems in crystalline and disordered (liguid or amorphous) states, we recall
some of the basic experimental facts relating mainly to medium-range order
in the disordered states of these materials. Various theoretical approaches
are also discussed, where we have introduced the bond-particle model and
its early uses in lattice dynamics. The melting criteria which follow from
the bond-particle model and its use in evaluation of the liquid structure are
presented as a starting point to discuss the process of equilibrium freezing
qualitatively, and to evaluate phase coexistence within the framework of the
density wave theory of freezing. Finally, we report our evaluation of freezing
for a liquid having the structure of amorphous germanium.
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Chapter 1

THE MELTING/FREEZING
TRANSITION :
STRUCTURAL CRITERIA
AND THEORETICAL
APPROACHES



INTRODUCTION

The aim of this introductory chapter is to present some basic experimental
and theoretical facts concerning the freezing/melting phase transition.
Section 1 briefly reviews empirical criteria for freezing and melting, namely
the Lindemann rule, the Ross rule and the Hansen-Verlet rule. The criteria
are based on the ‘universality’ of the information gained from laboratory and
computer experiments. These are one-phase approaches, in which one starts
form the knowledge of the properties of one of the two phases (the solid or
the liquid phase) and tries to predict from them the occurrence of the phase
transition.

Section 2 deals with some important relations that characterize the
thermodynamics of the tramsition in model systems with inverse-power
repulsive potentials, along with recent results of computer simulation.

In section 3 we summarize various theories of melting and freezing,
relating melting to ‘avalanche’ generation of lattice defects and freezing to
the short- range order that is present in the liquid. A first-order melting
transition was successfully predicted on the basis of a dislocation model
by Edwards and Warner. The prediction of the solid-like state from the
knowledge of the liquid distribution function was initiated by Kirkwood
and Monroe, followed by many other authors who studied various systems
of integro-differential equations. Finally, the first attempt towards the
establishment of a density functional approach were made by Lovett and
Buff.

The basic points of the density functional approach to liquid-solid
coexistence are briefly discussed in section 4, whereas the application of this
approach to the hard-sphere system is examined in section 5. Here we briefly
review the main different approximations in the application of the theory,
i.e. the cluster expansion, the effective-liquid approximation, the weighted-
density approach and the parametrization of the density profile.

Finally, section 6 briefly covers applications of the density functional
approach to other systems, namely the soft spheres and the one-component
classical plasma, the Lennard-Jones system, alkali halides and binary alloys,
and superionic fluorites in the example of STCl,. We conclude by recalling
the extension of the theory to shear-deformed and dislocated crystals.



1.1 Empirical Criteria for Freezing and
Melting

The freezing/melting transition has attracted attention for a long time and
up to the present days. In this section we shall briefly survey some of the
empirical rules that were proposed by various authors in different contexts.

In 1910 Lindemann ! proposed his rule stating that along the melting
curve the ratio between the root-mean-square displacement of a particle from
its lattice site and the first-neighbour distance, L = /((Au)?)/d?, is constant.
It turns out that this ratio is about 10% for many different elements.

From an experiment point of view, it should be noted that, at least within
the harmonic approximation, the above mean-square displacement is related
to the well known Debye-Waller factor, measuring the intensity of the Bragg
diffraction spots of the crystal as a function of temperature. Indeed, the
harmonic approximation yields the intensity of the selective Bragg reflections
as

I < exp[-1/3((Au)?) | G |?] (1.1.1)

where G is the appropriate reciprocal lattice vector of the crystal. The expo-
nential in eqn.(1.1.1) is known as the Debye-Waller factor and conventionally
written as e™2% 2. Classically, if one expresses the crystal in the harmonic
approximation, the mean-square displacement is

9ksT
2y
(Au)) = -

where M is the atomic mass and w is the frequency of the oscillating atom,
which can be expressed in terms of the Debye temperature Op, i.e.

hwp/kpT=0p/T, then the Debye-Waller factor can be related to accessible

experimental parameters as *

3R2GET
Hence, the Lindemann ratio at melting is
3h . T 1y
= — B 1.1.
dOp ( MKpg ) (1.1.3)

Table (1.1) shows the value of L calculated using eqn.(1.1.3) * and from a
full lattice-dynamics calculation ® for certain elements, as well as the value
of the Debye-Waller factor for the alkali metals at the first reciprocal lattice
point &, based on a standard harmonic- lattice calculation which uses values
of the inverse second moment of the phonon spectrum "5.



Elements | L * LS |[e w6
B.C.C.
Li 0.125 | 0.116 | 0.64
Na 0.119 | 0.111 ] 0.66

K 0.125 { 0.112 | 0.65

Rb 0.115 | 0.67
Cs | 0.111 | 0.63
F.C.C. ‘

Al 0.100 |.0.072
Cu |0.117 | 0.069
Ag  |0.105 | 0.071
Au  |0.100 | 0.073
Pb 0.111 | 0.065

Table 1.1: Values of the Lindemann ratio L for some B.C.C. and F.C.C.
elements calculated in two different roots from ref.[4,5], and the Debye- Waller
factor for the alkali metals near melting from ref.[6].

The Lindemann melting rule was extended by Ross ? in terms of
the statistical mechanical partition function.With his reformulation, Ross
considered the excess part of a free energy, F.,, and concluded that this
should be constant along the melting curve. That is

N Y S
NksT  NkzT °V NksT

Where F is the free energy of the solid and V, is the potential energy of
the solid if all the particles are fixed at their lattice sites. This equation is
actually exact for the inverse power repulsive potentials, and has been tested
by Hoover et al '° as a function of the softness of the interaction. It was
found that F,, ~ 6 NkgT in all different cases, as can be seen in Fig. 1.1.

From the above discussion, it is clear that the two approaches to melting
that we have discussed consider only one phase, i.e. they treat the solid
and say nothing about the liquid. A freezing criterion based on the liquid
structural properties of the liquid phase has instead been formulated by
Hansen and Verlet ''. They have obtained a simple ‘law’ for crystallization,
which states that along the freezing curve the height of the main peak of
the liquid static structure factor, S(k), is constant. This constant reaches
the value S(kpear) = 2.85 for the Lennard-Jones system. Finally, the liquid
structure factors at melting for fluids of particles interacting through the
inverse-power repulsive potentials, to be discussed in more detail in the
following section (1.2), have been studied by Hansen and Shiff !?, generalizing

= const. . (1.1.4)
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Figure 1.1: Ross’s melting rule as a function of softness of the inverse power
potential, which indicates a proportionality constant 6 NkgT. From ref. [10].

the crystallization criterion of the Lennard-Jones system to systems with
n = 00 (S(kpear) = 2.85), n=12 (S(kpear) = 3.05), n=6 (S(kpear) = 2.99),
and finally n=1 (S(kpear) = 2.57). Table 1.2 shows the experimental values
of S(k) at the first peak for various elements near freezing '®, and the
corresponding values of the direct correlation function ¢(k) which is related

to S(k) through S(k) = [1 — c(k)]7".

Elements | S(k) | c(k)
B.C.C.
Li 2.64 | 0.62
Na 2.80 | 0.64
K 2.73 | 0.63
Rb 2.80 | 0.64
Cs 2.50 | 0.60
F.C.C.
Al 2.48 | 0.60
Cu 2.53 | 0.61
Ag | 2.59 | 0.61
Au 2.49 | 0.60
Pb 2.42 | 0.59

Table 1.2: ezperimental values of S(k) at the first peak for some B.C.C. and
F.C.C. elements near freezing, and the corresponding values of the direct
correlation function c(k). From ref.[13]



1.2 TFreezing for Model Systems with
Inverse-Power Repulsive Potentials

The liquid-solid transition is a first order phase transition, and the pioneering
work of Alder and Wanwright * on hard-sphere and hard- disk systems
showed that freezing is essentially governed by the repulsive part of the
potential, while the attractive part (though crucial for the liquid-vapour
transition) is not crucial for freezing. A simple generalization of hard-
sphere system is the ‘soft-sphere’ model of atoms interacting through purely
repulsive inverse-power potentials: (fig. 1.2)

- e(%)n , (1.2.1)

in which € and ¢ are constants with the dimensions of energy and length
and r is the distance between particles. The steepness of the repulsion is
governed by the exponent n: the two particularly interesting limiting cases
are the hard-sphere model (n = co) and the classical one- component-plasma
(OCP) of poirt ions interacting via the Coulomb potential (n = 1).

1 ] T 1 T I T
ul—

INVERSE POWERS
=€ o0’ "

?—-) /o
Figure 1.2: Interparticle potential energy functions for five inverse power
potentials, corresponding to n=4,6,9,12 and co. From ref [10].

An inverse-power potential actually introduces simple scaling property,
reducing the number of independent thermodynamic variables from two

(volume and temperature, say) to one, z = p(k;T)3/" with p = £o® (Klein’s
15,16

theorem Indeed, the canonical function can easily be ertten in terms

of a reduced chstance s = r(¥)'/3, given by

Z(T,V,N) = N'A3N// _p} kBT ™Yds; ds; (1.2.2)

where A\ = (2711:231")1/27 and then all thermodynamic properties obtained

by differentiating the partition function Z(7T,V,N), depend only on the




variable z 7. If one introduces z, and z for the corresponding pure-phase

compressibility factors, (—ﬁ%), and (—N—PI;—EZT“)I in the solid and liquid phase. A
state equation of the form

n=1+ 0, (p<k—§—f>3/”) , (1.2.3)

follows, where ¢ stands for either s(solid) or [(liquid).
The liquid-solid coexistence curve is then entirely determined by two
universal values of z, for the solid (z,) and for the liquid (=z;), given by

€ €
2o = po(—=)"" w=p(—)Y" (1.2.4)
kBT ]LBT

Here p, and p; are the density of the solid and liquid phase, respectively. The
equation of the melting curve and the volume and entropy discontinuities
across the phase transition can be expressed in terms of z; and z;, i.e. by

combining eqns.(1.2.3) and (1.2.4):

PO‘3 kBT

— = (=) 1.2.5
7 - (Fe s, (125
av _ constant ’ (1.2.6)
v
A
——Rs—:con.stant . (1.2.7)

In the case of hard spheres, the relations (1.2.6) and (1.2.7) remain
unchanged, while relations (1.2.4) and (1.2.5) become
T,=ps, 3 T = P (1.2.8)

and

P =const.xT . (1.2.9)

In the other extreme case, i.e. the OCP (system of point-like charged particles
embeded in a uniform background), the canonical partition function becomes

VN
Z(T,V,N) = ,/\SN/ /e:z:p(-I‘n(sl,...,sN))dsl dsy . (1.2.10)

in which n(sy, ...,sx) is a function that characterizes the spatial arrangement
of the ions, and the coupling constant I' defined as

(Ze)?

I'=
akBT !

(1.2.11)



which is a function that expresses the ratio between Coulomb energy and
thermal energy with a being the radius of the sphere containing one ion
(a = (4mp/3)~%/?). The thermodynamics of the phase transition in the OCP
is then determined by I' parameter, with zero volume change and the density
at the phase coexistence is given by

Psl X (kBT)s . (1212)

The fluid-solid coexistence for the model systems mentioned above has
been determined by computer simulation for several values of n, as well as
for a system of particles interacting via a Lennard-Jones potential 118~ 2!
and for the OCP 22~ 2%, In addition, the preceding thermodynamic relations
have been proved for all the systems having different values of n 1°.

In the thermodynamic theory of freezing, the Gibbs free energy of the two
phases at coexistence should be the same at equal pressure and temperature.
From computer experiments the free energies of the two phases cannot be
calculated directly, and will also depend on the number of particles included
in the run, since the fraction of particles in the interface between the two
phasesis of the order N%, which is not negligible for the systems that can be
studied with the computer. So, in order to determine the free energy one has
to start from a reference system in which the free energy is exactly known (for
instance, the ideal gas) and then calculate the free energy difference between
the free energy of the liquid (or solid) phase and that of the reference system.

Hoover and Ree ?° were able to locate two-phase coexistence by developing
an efficient method, where the reference system is the ideal gas and the solid
is artificially stabilized at low densities by dividing the whole volume into
Wigner-Seitz cells, and imposing that only one particle should occupy each
cell. In fig. 1.3 the thermodynamic equations of state for three inverse power
potentials is shown, and in fig. 1.4 the phase boundaries for the same systems.
It is evident that the melting and freezing densities for hard spheres (n = co)
are temperature independent, as expected from equation (1.2.8).

Fig. 1.5 shows the phase diagram of the Lennard-Jones system
(®(r) = Ar~*? — Br~%). The region corresponding to the phase separation
between liquid and vapour is generated by the introduction of an attractive
part in the potential. The resulting freezing characteristics are summarized
in table (1.3) for several of these model systems, along with the Lindemann
ratio and the height of the structure factor at the first peak from computer
simulation work !0:12:21,27.28
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Figure 1.3: Thermodynamic equations of state for three inverse power
potentials from computer ezperiments. APV/NkgT is the increase in the
compressibility factor over that of a perfect static lattice at the same density
and temperature. The discontinuities in the slopes of the three curves
correspond to the melting and freezing transition. From ref [17].
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Figure 1.4: Boundaries of the two phases, fluid and solid, for inverse
power potentials. The narrow strips (clear for n= oco. and black for n=12)
correspond to the two phase region where flutd and solid can coexist. This
region 1s very narrow for the case n=4. From ref [17].



Figure 1.5: The Lennard-Jones phase diagram.
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Superimposed on this
diagram s the soft-sphere phase diagram resulting when only repulsive forces
are used. The fluid-solid two-phase region for the soft-sphere potential is
lightly shaded. From ref [17]

n x; z, | Av/v10% | AS/NkgT | L | S(kpeak)
co | 0.95 | 1.05 10. 1.16 0.14 2.90
12 1 1.14 | 1.19 3.8 0.90 0.15 3.05
9 11331137 3.0 0.84 0.16 3.02
6 | 2.17 | 2.21 1.3 0.75 0.17 2.99
4 | 5.53 | 5.57 0.5 0.80 0.18 2.70
1 | Tepp | 178 0.0 0.82 0.15 2.70

Table 1.3: calculated parameters of the liquid-solid transition for different
value of the steepness n. Where z; = pi(= )3/”, T, = pof = )3/” and the

k5T

k5T

densities (pi,p,) are in units of (diameter)®. From ref. [27,28]
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In conclusion, one can summarize the general characteristics at freezing
as follows:

e The relative volume change on melting, Av/v, = (v; — v,)/v, decreases
with n, from ~ 10% for the hard spheres system to zero in the case of

OCP.
o The change in entropy at melting, AS/R, is relatively insensitive to n.

e The lindemann ratio L is constant for a given potential and depends
weakly on the steepness of the parameter n.

e The hight of the main peak of the static structure factor S(k) of the
fluid is approximately constant along the freezing curve for a given
potential and is nearly universal, i.e. essentially independent of the
steepness n.

1.3 Theories of Melting and Freezing

As evident from the discussion in the preceding section, a theory of the
liquid-solid phase transition can be developed for relatively simple systems
by starting from assumed pair-wise interactions between the component
atoms and evaluating the Helmholtz free energy and the pressure of the
two phases. While such an evaluation is best done nowadays by computer
simulation, various theoretical approaches have also been developed for
such thermodynamic calculations in the literature. These usually require
approximations of unclear relative accuracy for the two phases-for instance,
one has to resort to the harmonic or weakly anharmonic approximation for
the solid and to the several statistical mechanical approximations that are
available for liquid structure and thermodynamics.Interesting results have
nevertheless been obtained not only for Lennard-Jones-like systems such as
argon, but also for simple liquid metals like sodium or aluminium.

Our main interest here, however, lies in the theoretical approaches that
are directly related to the criteria for melting and freezing discussed in section
(1.1). As already noted there, these are one-phase approaches, in the sense
that one starts from knowledge of properties of one of the two phases and
tries to predict from them the occurrence of the phase transition. In the
early work along this direction the phase transition tended to be viewed
as an instability of the phase being explicitly considered: for instance, an
instability of the liquid phase would be signalled by the height of the main
peak in the liquid structure factor diverging to infinity as a function of the
thermodynamic state variables, or melting could be viewed as an instability
of the solid phase arising from an avalanche production of crystalline defects
like vacancies or dislocation ?°. Though a number of interesting idea have
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been emerged from this type of work, a single-phase instability is clearly in
conflict with the experimental fact that the phase transition is of the first
order. This basic aspect of the solid-liquid transition has been successfully
incorporated in the more recent theoretical developments.

In relation to melting, we should like to briefly mention here the approach
developed by Edwards and Warner 3°, which was based on the idea that a
liquid can be described in terms of a highly faulted solid. They successfully
predict a first-order melting transition on the basis of a dislocation model
in which a crucial contribution arises from mutual ‘screening’ in a dense of
dislocations.

The main contribution to the free energy of a dislocation arises from the
long-range elastic distortions induced in the material, but when dislocations
of opposite Burgers vectors are brought together most of this distortion is
eliminated. In fact, a dense assembly of dislocations can arrange itself so as
to maximize this reduction. Edwards and Warner find that the free energy
of the dislocation assembly can be expressed schematically as

Fy=pFi+p*F, — p**Fyp (1.3.1)

where p is the length of dislocation lines per unit volume and F; are
temperature-independent coeflicients. The first term on the right-hand side
represents the core energy and the entropy of the dislocations, the second
term is the energy associated with dilation induced by the dislocations,
and the last negative term arises from many-dislocation effects representing
reduction in the free energy due to ‘screening’ and leading to a first-order
transition. This latter term is evaluated by writing the energy of interaction
of two dislocation lines as

Eis oc/(bl.dll)(bg.dlz)/rlg , (1.3.2)

where b; are the Burgers vectors, and by calculating the corresponding
contribution to the partition function with techniques taken from the theory
of networks of random walks. Introducing a dimensionless variable y « p/T,
the free energy is calculated as a function of this variable y and has the form
indicated in fig. 1.6 for various values of the temperature.

The melting temperature T}, is identified with the temperature at which
the equilibrium condition 8F;/0y = 0 yields a finite concentration of
dislocations with no excess free energy over the undislocated crystal (F;
=0). The first-order character of the predicted transition is apparent from
the fact that such a finite concentration of dislocations at equilibrium arises
suddenly in the theory. Over a finite range of temperatures below T}, one
still has a local minimum of Fy at finite y, but corresponding to a metastable
situation (Fz > 0), which may be thought to describe a supercooled liquid
or a glass.

12



Figure 1.6: Qualitative shape of Fy in equation (1.3.1) vs y x p/T for various
values of T; Ty, is the melting temperature and T, the lowest temperature for

supercooling of the liquid (after Edwards and Warner(30]).

A freezing theory, which tries to predict the solid-like states from the
knowledge of the liquid distribution function, is the Kirkwood- Monroe
theory of the liquid-solid transition ®. This was based on the BBGKY
hierarchy for inhomogeneous systems, which requires at the simplest level
of approximation the knowledge of both the pair potential V(r) and the
homogeneous pair distribution function g(r). They formulated their theory
in the classical canonical ensemble and introduced an integral equation for a
distribution function p(r) specifying the average density at a point r, as

p(r) = pu eap( [ d'Ku(jr = Dlp() = pil] (1.3.3)

where p; is the density of the homogeneous phase. The kernel Ki(|r|) is
evaluated in the liquid phase and contains both the pair potential and the
pair distribution function, i.e.

Ki(Ir|) = ﬂ/]: dr’gz(r')dzgl) : (1.3.4)

For density distribution functions with the period of a specified lattice, the
determination of periodic solutions of the integral eqn.(1.3.3) is equivalent
to determining the solution of the set of transcendental equations for the
Fourier coeflicients pg of the periodic distribution function p(r),

p(r) =>_ pa expliG.r] (1.3.5)
G
where G is a reciprocal lattice vector of the structure under consideration
(the sum includes the case G=0). The spirit of the approach is similar to
the later density functional theory of freezing, which will be discussed in the
following section (1.4) and chapter 2.
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The stable periodic structure in the Kirkwood-Monroe theory was
selected as the one of minimum Helmholtz free energy. The coexistence of
the liquid and solid phases is determined with the aid of the thermodynamic
criteria of heterogeneous equilibrium, i.e. the equality of the chemical
potential and pressure in the two phase. Their theory predicts no critical
point for the face-centered lattice and they conclude that within their
framework the liquid-solid transition is of the first order.

The relation between the Kirkwood-Monroe theory and the modern
theory of freezing has been discussed by Baus ’, who showed that the
Kirkwood-Monroe theory misses a term related to the density derivative
of the pair correlation function. Baus starts from the first member of the

Yvon-Born-Green (YBG) hierarchy in the form

Vi p(r) + B(x)) = =8 [ dr'p()g(r, )YV (I ~1) ,  (L36)

where p(r) is the local number density and #(r) is the external potential.
Applying equation (1.3.6) to both the liquid phase having the singlet density
pi and the solid phase with the singlet density p,(r) in the limit of vanishing
¢(r), one gets the following equation,

V(Inlp,(v)/pi]) = =B [ de'lp(x)g(r,x") = gl — £V (Jr — x']) . (1.3.7)

Expanding the difference in the right-hand side of (1.3.7) around the liquid

as

pa(r) = pi+ Dpy(r) (1.3.8)
g(r, ') = g +/ 69 (r,r) Ap(r™) + ... (1.3.9)
one obtains
V(nlp(r)/p) =8 [ dr'la(le — ') Ap(x) +

§g(r, ')
] )
topfar 8p(x")

With a proper choice of integration constant, eqn.(1.3.10) can be transformed

+ VYV (e —r']) . (1.3. 10)

in to

pe(r) = pu eapl [ dr' Kl — 1)) + Hil|r — ') Ap(r')] (1.3.11)
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where

VE(|r —1') = =Ba(|jr = ' )VV(|r — ') (1.3.12)

ny _ y 6g9(r, 1) o
VH!([r—rl)——-Bplfdr S|, V=) (1.3.13)

Equation (1.3.11) is to be compared with the basic equation of the modern
theory of freezing, that is

o(r) = p1 exp] / dr'e|r — ¥ Ap(r)] . (1.3.14)

It is also clear that if one neglects the second term on the right-hand side
of eqn.(1.3.11) one can recover the average density that was introduced
by Kirkwood and Monroe (eqn.1.3.3.). Hence, neglecting the density
dependence of the pair correlation function, i.e. the term H(|r — r'|), may
explain the qualitatively poor results obtained from the Kirkwood-Monroe
approximation 33.

Various forms of integro-differential or non-linear integral equations have
been considered for -distribution functions. Developments in this direction
have been carried out by various authors: by Tyablikov ** on the basis of
the Bogoliubov hierarchy, Vlasov 3% using the Vlasov equation, Raveché -
Stuart 3¢ and Raveché-Kayser *7 using the YBG hierarchy, Weeks et al 2
and Jancovici *® with a modified version of the Kirkwood-Monroe theory.
None of these attempts has been applied to real systems, and in fact when
they were applied to hard spheres, the results are often contradictory. There
are three reasons behind these failures:(i) the linearization of the equations
is obtained by treating the liquid-solid transition as a “soft bifurcation”
problem while the first-order character of the transition requires the use
of a “hard bifurcation” treatment; (ii) the closure of hierarchical equations
leads one to put great emphasis on the first peak of the pair correlation
function while the phase transition is linked to the oscillation which follow the
first peak; (iii) in hierarchical equations the interparticle potential appears
explicitly, while the experimental data show a non-critical dependence on the
potential details in the transition phenomenon.

These difficulties are solved within the framework of the density functional
theories. This approach to the transition began with Lovett ** and Lovett
and Buff %!, who tried to determine the bifurcation point by investigating
the stability of the liquid compared to the crystalline state through a
relation that connects the one-particle distribution function with the direct
correlation function. Their approach still requires a pair potential and
the solutions found are characteristic of a second-order transition. The
discontinuous character in the density change at the liquid- solid transitions

was reexamined by Ryzhov and Tareeva *2 and Bagchi et al *3: their results
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are not qualitative and connections between the numerical instability of the
liquid, the bifurcation points and the transition point are not yet clear. In
the following section (1.4) we will give in brief the essential equations of
density functional theory, whereas in chapter 2 a full derivation of the set of
equilibrium equations for the freezing phenomenon will be given.

1.4 Density Functional Approach to Liquid
Solid Coexistence

A description of the crystalline solid as a microscopically inhomogeneous
system is provided by the cluster expansion *~ *¢. In particular, this
considers the solid as a perturbation (in principle, to infinite order) about the
uniform liquid, and is closely related to the density functional formalism *"48,
The formalism is based on a theorem by Mermin, proving that the Helmholtz
free energy F is a functional of the density profile p(r), reaching its minimum
value for the equilibrium profile. The general aim in the implementation of
the theory is an approximate evaluation of the free energy functional F[p(r)]
for a given inhomogeneous system from knowledge of the thermodynamic
and correlation-response properties of a corresponding homogeneous system.

The use of the density functional methods in the theory of freezing was
opened by the work of Ramakrishnan and Yussouff *°, in which the two
bulk phases were treated in the grand canonical ensemble and hence it was
easy to keep the temperature and the chemical potential constant in the two
phases at coexistence. At the same time the interparticle potential (pair-
wise or more complex) was not explicitly involved. The theory involves only
the direct correlation function &(k) [&(k) = 1 — 1/S(k)] of the liquid at
freezing. Haymet and Oxtoby *° have reformulated the Ramakrishnan and
Yussouft theory in the scheme of the density functional theory of non-uniform
system *’. March and Tosi °! have developed a scheme for the application
of the theory to more complex systems like alkali-halides and alkaline-earth
halides. We will briefly report some applications of the density functional
theory for different systems in the following sections.

In a theory of freezing one starts from the fluid phase side, described
by a uniform density p;. Then the existence of crystalline solutions will be
searched by looking for the presence of a density profile p,(r) which is a
periodic function of position, represented by the Fourier series

ps(r) =p, + O pa expliGr| (1.4.1)
G+#£0

where G are the reciprocal lattice vectors (RLV) of a crystal structure. At
coexistence with the liquid at density p;, the order parameters of the phase
transition, which are the mean density change (p,—p;)/p = 17 and the Fourier

16



components pg, take spontaneously finite values. The quantities |pg|?
measure the Debye-Waller factor at the Bragg reflections and are therefore
related, at least in the harmonic approximation for lattice vibrations, to the
mean-square atomic displacement entering Lindemann’s criterion for melting.

The Helmholtz free energy functional for a classical system in an external
potential U(r) reads:

Flp(x)] = kaT [ dep(r)in(3p(x) = 1]+ [ dep(x)U(x) + F[p(x)] , (1.42)

where ) is the thermal de Broglie wavelength and F, is the excess free energy
functional. Introducing suitable Lagrange multipliers allows one to take into
account some constraints in the minimization of the free energy leading to
the equilibrium conditions, in particular, one needs to consider variations
of the density profile while keeping constant the number of particle in the
system. Thus, one introduces the chemical potential 1 and minimize the
grand potential = F' — Ny, obtaining formal equations for the equilibrium
density profile,

60 oF

ép(r)  6p(r)

Satisfying eqn.(1.4.3) leads to a mechanical stable density profile, whereas

thermodynamic stability requires the stronger condition that Q[p(r)] be at
its absolute minimum.

The equilibrium condition can also be obtained in a differential form
by taking advantage of the one-to-one correspondence between the density
p(r) and the external potential U(r). By considering an infinitesimal rigid
translation of the whole system, one finds °*

—pu+Ur)=0 . (1.4.3)

V(g —U(r)) = — / dr'y "} (r,r')Vp(r") (1.4.4)

which reduces in the classical limit to %2

V(g = U(x)) = Vo(r)/p(r) — [ dr'c(r,r)Vplr') . (145)

This form of the equilibrium condition emphasizes the role of the
linear density response function x(r,r’) of the inhomogeneous system at
density p(r) to a weak external potential, or equivalently of the two-body
direct correlation function ¢(r,r’) in the classical case, in determining the
density profile. In relation to freezing, the external potential U(r) is to be
considered as an external potential of the desired lattice periodicity, which
is applied to the liquid approaching crystallization and hence modulates its
density through generation of density waves. At liquid-solid coexistence the
modulating potential can be allowed to vanish, while the amplitude of the
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density waves, pg, will have finite values, giving the order parameters of the
new phase.

The above discussion presents the main ideas behind the density func-
tional approach. In the following two sections (1.5 , 1.6) we will briefly
review tests of the approximations to the free energy functional and some
applications to various systems.

1.5 Application of the Density Functional
Approach to the Hard Sphere System

Freezing of the hard-sphere fluid has been studied extensively by different
authors using different approximations and different approaches to the free
energy functional. A common approximation concerns, of course, the
expansion (1.4.1) for the density profile, p(r). The sum that appear in it
is, in principle, over an infinity of reciprocal lattice vectors but for purposes
of calculation it must be truncated after a finite number of terms.

In this section we are going to discuss different approximations to the free
energy functional, which have been tested on the hard sphere system.

1.5.1 Cluster Expansion and its Truncation (TCE)

In the cluster expansion *¢~ 465054 the excess free energy functional F,[p(r)]
is expanded to infinite order around a homogenous fluid. It was noticed by
Yang et al ®° that the function

e(r) = 8F.[p(r)] (1.5.1)

6p(r)
plays the role of an effective one-body potential. Then the coeflicients of the
expansion are the Ornstein-Zernike *® two-body and higher direct correlation
functions of the fluid. A truncation of the expansion at the lowest order yields
the equilibrium condition for the density profile in the crystal at coexistence
with the liquid, at the same temperature and chemical potentials as

In[p(r)/pi] = /dr’w(\l‘ = 1'P)[p(x) = o1 (1.5.2)

where ¢;(r) is the two-body correlation function of the liquid. By comparison
with eqn.(1.4.5), we see that eqn.(1.5.2) can be obtained from it through
the replacement of c¢(r,r’) by the liquid direct correlation function °!. At
the same time eqn.(1.5.2) is in essence equivalent to the hypernetted-chain
theory (HNC) of bulk liquid structure.

At this level of approximation, and in relation to density profile of the
crystal in eqn.(1.4.1), one needs to invoke only the Fourier transform of ¢(r)
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evaluated at the stars of reciprocal lattice vectors and at k = 0. The value
of ¢,(0) is determined by the isothermal compressibility K1 of the liquid. In
terms of the liquid structure factor S(k), we have for a classical system

G(k) =1—1/5(k) (1.5.3)

and
1

 pikT Ky

Inclusion of higher-order terms, say at the level of three-body correlation

§(0)=1-1/5(0)=1 (1.5.4)

functions, involves nonlinear physical properties:

1. 553)(0, 0), i.e. the density dependence of the compressibility.
2. 653)((}, 0), i.e. the density dependence of the liquid structure factor
at the reciprocal lattice vectors.

3. El(s)(G, G’), i.e. the coupling between microscopic order param-
eters, where the angular dependence may start to play a role in
determining the stable crystal structure.

Haymet ** has been able to predict the liquid and solid densities at which
the hard sphere system freezes into a face centre lattice. In his work he used
Thiele-Wertheim ®"*® exact solution of the Percus-Yevick equation for the
liquid structure, which is a well defined approximate closure of the Ornstein-
Zernike equation, to reproduce the liquid structure to obtain the coefficients
¢(G) and &*(@,0). He took the coefficient Egs)(G,G’) equal to zero for
non vanishing G and G', which means a further approximation. In fact the
evaluation of third-order coefficients involves a large and delicate numerical
effort. Following this scheme we have in Fourier transform

&(k) = —4mpa®(ko) AL Li(k) + 6 A2 Da(k) + 1/2¢ Al (k) (1.5.5)

&(k,0) = —ai(k) + p(8/dp)ei(k) (1.5.6)

where

I.(k) = /Oldrc:z:"sin(kam)
A= (14207 0-07 5 A =(1+1/2001-07°

with the pacing fraction ( defined as { = m/6pc?®. In this calculation, fifteen
stars of reciprocal lattice vectors have been used to obtain convergence.
Table(1.4) and fig. 1.7 show the freezing results for the hard sphere fluid into
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the fcc lattice. In fig. 1.8 the structures factor (k) = [1—¢&(k)]~" is plotted at
a density p = 0.95 (in units of o) near the freezing density, and the positions
of the 15 shells of RLV (once the first one has been fixed at the first peak
position of S(k)) are also indicated. At the end of this section we will give
the results available for the freezing of the hard sphere system as obtained
by different approximations, in comparison with computer simulations.

27 8 333) | 0.686 | - 0.061 | - 0.237
27 | 24 | (511) | 0.680 | - 0.060 | - 0.237
32 | 12 | (440) | 0.636 | - 0.068 | - 0.407
35 | 48 | (531) | 0.608 | 0.017 | 0.017
(
(

|IG|? | se G PG TG Ag
0 0.060 | - 5.096
3 | 8 |(111)]0.998 | 0.719 | 0.895
4 6 | (200) | 0.891 | - 0.027 | 0.436
8 12 | (220) | 0.918 | - 0.151 | - 1.483
11 | 24 | (311) | 0.875 | 0.244 | 0.898
12 8 |(222) | 0.863 | 0.080 0.425
16 6 | (400) | 0.805 | - 0.252 | - 1.138
19 | 24 | (331) | 0.773 | 0.005 |- 0.188
20 | 24 | (420) | 0.760 | 0.079 0.164
24 | 24 | (422) | 0.717 | 0.079 0.383
(333)

36 | 24 | (442) | 0.601 | 0.039 | 0.146
36 6 600) | 0.593 | 0.039 | 0.146

Table 1.4: Freezing parameter for hard spheres at the density 0.976 from the
PY structure factor. zg is defined as z, = c(0)n + 1/2 T g é¥(G,0)pg,
z, = [{(G)+ @G, 0)n)pa - Ag is defined as {(G)+ (27 +1)é®)(G,0) , sq
is the number of RLV in each star. From ref. [54]
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Figure 1.7: The thermodynamic potential AW and the fractional density
change on freezing 1 for the hard sphere system. From ref.[54]
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Figure 1.8: The structure factor, S(k), for hard spheres at density close to
the freezing one, p = 0.95, and the relative magnitudes of the RLV of the fec
crystal. From ref. [54]

21



1.5.2 Effective Liquid Approximation (ELA)

Another line of approach was developed by Baus and Colot 96! and by Igléi
and Hafner®?, in which they used a reference liquid to describe the transition
to the crystalline phase. Since the excess free energy F.[p,(r)] is related to
the two-body direct correlation function by;

L 8BF[p.(r)]
e(r,r's [p,]) = _’m

they expand the excess free energy around the reference liquid, rather around
the real one:

(1.5.7)

Flpn)] = Eloal + [ arp(ry Sl

_ kBT/dr/dr’/old)\/(]AdA’

e(r,r's [or + N Ap(r)) Ap(r) Ap(r') (15. 8)

The solid phase is thus reached by starting from a reference state (A=0)
of density pp(r) and “charging” its density gradually along the path pr(r)+
AQp(r) up to the solid density p,(r)(A = 1). Here,Ap(r) = ps(r) — pr(r),
and the double integral over A and A’ can be simplified by using the identity

/01 d)\/ox ANR(N) = /01 AL = NA(\)

which is valid for any function A()). The first term in eqn.(1.5.8) is known
since it corresponds to the chosen reference liquid, while the second term
can be dropped by taking pr = pg(r) to be equal to the average density of
the solid; i.e. [drAp(r) = 0. One is then left with evaluating the direct
correlation function of the solid density pr + AAp(r) with 0 < A < 1 and
Ap(r) = p(r) — pr. This direct correlation function was approximated
by that of an effective liquid of density j, say c(Ir — r'l; 7), hence the
name effective-liquid approximation (ELA) is given to this approach. If the
effective-liquid density g corresponding to the solid of density ps(r) depends
only on the average density of the solid p,,

1 .
Ps = V/dl‘p,(l‘) )
then the effective liquids corresponding to p,(r) and pg + AAp(r) are the

same because here pr = p,. The excess free energy equation (i.e. eqn.1.5.8)
reduces to
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BEFH[p,) = BF.(pr) — %/ d“/ dr'c(|r — v'[; p(pr)) Ap(r)Ap(r'). (1.5.9)

where 5 = jp(p) is the density of the effective liquid corresponding to a solid of
average density p. Finally in order to fix 5(p), they choose the effective liquid
in such a way that its direct correlation function will mimic that of the solid.
The choice of 5(p) used by Baus and Colot ®° was obtained by imposing the
condition that the position of the main peak of the static structure factor of
the effective liquid of density p coincide with the smallest reciprocal lattice
vectors of the solid of average density p. The results obtained from the ELA
for the hard sphere system are quite good as shown in table (1.5).

Theory | Monte Carlo
simulation

ps | 1.035 1.036-1.041

o | 0.976 0.939-0.948

n | 0.060 | 0.090-0.110

Table 1.5: Numerical and computer predictions for freezing of hard spheres
into fec lattice. The values are in units of o, where o is the hard sphere
diameter and 7 the density change on freezing. From ref.[60]

Recently a modified ELA (MELA), proposed by Baus ®®, has taken into
account the possibility of extending the definition of the effective liquid to
other non-uniform system besides the solid, which was not obvious in the
ELA. This modified scheme is based on using the exact equation for the
excess free energy, (eqn.1.5.8), with pr = O,i.e.

BF.[p,] = —/dr/dr’/ol d /0A dNe(r, ' [N p.))po(r)pa(r’)  (1.5.10)

and introducing the ELA into this equation:

1 A
BEMELAL, ] — / dr / dr’ / d / dNey(r — ' NB)pe(r)pa(r') . (15.11)
0 0
Then one can obtain the MELA by requiring that the effective liquid density

p of eqn(1.5.11) be determined self-consistently from equating the excess free
energy per particles of the solid to that of the effective liquid itself (¢:(7)):
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ML) = (7)

1 A
= —-kBTp/dr/O az,\/0 d\a([rl; Np). (1.5. 12)

This determines 5 in terms of p,(r) at any given c(|r|;p). This modified
version seems simple to implement and has been shown to yield better results

than those obtained by ELA 8¢,

1.5.3 Weighted Density Approximation (WDA)

A new line of approach initiated by Tarazona® and later extended by Curtin
and Asheroft ®, proposes an alternative approximation to the free energy
functional of the crystal. It is based on a refinement of the well-known local-
density approximation for the quantal electron gas *® | whereby the free
energy density for a non-uniform system (say, the solid) is approximated by
evaluating it on the uniform phase (say, the liquid) at a density equal to
the local density of the non-uniform phase. In this refined approach the free
energy density of the non- uniform (inhomogeneous) phase is represented
as that of a uniform (homogeneous) phase, taken at an auxiliary density
which depends parametrically on the chosen point. The appropriate density
is obtained by weighting the physical density over a physical relevant range
about the given point. Thus the resultant weighted-density approximation
(WDA) takes into account the short-ranged, nonlocal effects present in
the real system. The WDA has an analogue in the quantal electron-
gas problem, where effective densities are frequently used to construct an
approximate exchange-correlation energy functional that has been analyzed
in that context 7.
The Helmholtz free energy F[p,] is thus given by

Flo) = [ dep(e}{ial\ou(x)] = 1} + [ depu(s)U(x) + Fulps]  (15.13)
the excess free energy functional F.[p,] is approximated as

FPP4 = [dep,(epu(p(e)) . (1.5.14)

Here,i(p) is the excess free energy per particle of the uniform phase of
density p, while p(r) is the weighted solid density,

pr) = [ drp,(ro(r —1'i5(x)) (1.5.15)

with w(r;p) the weighting function. The difficulty now appears in the
appropriate choice of the weighting function w(r;p), and the technical
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problem of solving eqn.(1.5.15), which is an implicit equation for p(r). At
this stage a connection is made with the exact density functional relation
between the direct correlation function of the solid and its excess free energy,
eqn.(1.5.7), in the limit of a uniform phase, p,(r) — p. In addition, one has
to impose that w(r;p) be normalized for any p,

/drw(r;p) =1

Curtin and Ashcroft considered the non-linear differential equation for
w(r; p) that follows from

B (52EFEWDA[ps(r)]
bps(r)éps(r’)

In Fourier transform, this leads to

) =¢(|lr —1')5p) . (1.5.186)
Pa—p

— BT e(ks p) = 241(p)w(k; p) + p—g/; (#i(p)w(k; p)1*) (1.5.17)

where ¥j(p) = 0O¥i(p)/dp. This approach yields good results, but is
elaborate. A modified WDA (or MWDA) has recently proposed by Denton
and Ashcroft ®8, in which almost all the technical difficulties of the WDA can
be avoided by replacing eqn.(1.5.14) by

1 .
—FMVPA ] = 4y(p) 1.5.18
[ FE4p] = () (15.18)
where 5 is a uniform weighted density in terms of a new weighting function
&(r; p)

J dr [dr'p(r)p(r')a(r —1'; p)

_ 1.5.19
P f dl‘”p(I"') ( )

Then eqn.(1.5.17) will lead to simpler equation, that is
— B (ks p) = 29(p)a(k; o) + pi (P)oro (1.5.20)

with ¥/ (p) = 0*¢i(p)/Fp?. The results obtained from this MWDA compare
well with those obtained from WDA. At this level Baus % has found an
unexpected relation between the MELA (section 1.5.2) and MEDA, that the
effective-liquid density p appearing in eqn.(1.5.11) and eqn.(1.5.12) in the
MELA, can be written in the form of eqn.(1.5.19) with

. Jo dX Jy dN'E(Jr]; X'p)
w(r;P) = ] TV :
Jdr' [y dA g dAE([r']; Ap)

(1.5.21)
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This is an explicit expression for the weighting function in terms of the direct
correlation function ¢(|r|;p). The MELA will thus have the same structure
as the WDA or the MWDA, but with weighting functions that are no longer
given by eqn.(1.5.17) or eqn.(1.5.20). The weighting functions are different
because in the (M)WDA the “weighted” density is introduced through the
thermodynamic of the solid and required to reproduce the structure of the
liquid, whereas in the (M)ELA the “effective” density is introduced through
the structure of the solid and required to produce the thermodynamics of the
liquid.

In conclusion, we present in table (1.6) the results for the freezing of the
hard sphere fluid into an fcc crystal, as obtained by the different available
approximation approaches.

G (s Pl Ps AS/kB S(kpeak) L
M(C?* 0.494 | 0.545 0.939 1.036 1.16 2.85 0.126
+ 0.948 | + 1.045
TCE - VW™ | 0.495 | 0.543 0.946 1.037 1.05 2.92 0.070
TCE — PY™ 0.506 | 0.541 0.966 1.033 0.94 3.35%
ELA — PYS%61 1 0,520 | 0.567 0.993 1.083 1.03 3.65 0.074
,1.36
ELA — PY®? 0.510 | 0.563 0.975 1.076 1.10 3.44 0.070
,1.42
MELA% 0.484 | 0.538 0.924 1.027 1.21 0.098
WDA — PY® | 0.497 | 0.547 0.905 1.025 1.41 2.82 0.093
MWD AS® 0.476 | 0.542 0.909 1.035 1.35 0.097

Table 1.6: Coezistence data for the freezing of hard sphere into an fec crystal
as obtained from the different approzimate approaches in the literature,
compared with Monte Carlo (MC) results. {; and (, are the packing fractions
of the liguid and solid at coexistence. The densities p; and p, are in units
of (diameter)®. AS is the change in the entropy. S(kpear) the value of
the structure factor at its first peak (values marked with an asterisk have
been calculated from the value of p; reported). L is the Lindemann ratio.
All theories used the Percus—Yevick theory (PY) for liguid phase, but from
TCE calculations of Haymet and Oztoby[72] we notice a dependence of
the results on the description of the bulk liquid structure, the Verlet -Weis
parametrization (VW) being more accurate than the PY theory.
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1.5.4 Parametrization of the Density Profile

The Fourier series for the right-hand side of eqn(1.5.2), which describes the
density profile of the solid, converges rather slowly, thus requiring explicit
calculation of rather large number of order parameters pg. Haymet °*
has retained all these terms of the Fourier expansion up to fifteen stars of
reciprocal lattice vectors. Later, Igléi and Hafner ? showed that the slow
convergence of the Fourier series (up to forty stars were retained) leads to an
oscillatory behaviour of the results. These oscillations will disappear when
sixty stars are retained (Barrat et al ).

Haymet 3¢ was the first to show that in the hard sphere system, excepting
the first few order parameters, a harmonic formula is approximately correct.
The implication is that, although the theory involves an infinite set of order
parameters, the first few ones dominate and ‘enslave’ the rest. Later workers
have often assumed this relationship between the first order parameter and
all the others, by representing the density profile p,(r) in real space as a
superposition of Gaussians centered at the various sites and with a width
that is to be evaluated variationally. That is,

pu(r) = (/n* T copl-alr =] | (15.22)

where {R} are the Bravais lattice vectors and « is the inverse width of the
Gaussian, which will be the only parameter describing the solid. The order
parameters of eqn.(1.4.1), pg, can easily be related to the inverse of the
Gaussian width by

pa = exp(—|G|*/4a) . (1.5.23)

Representing the density profile as a superpositions of Gaussian guarantees
apriori the positive character of p(r), a property which might be lost by
using eqn(1.4.1) truncated at a finite number of reciprocal lattice vectors ™.
Fig. 1.9 shows the average solid phase density for the hard sphere system at
freezing using both eqns.(1.5.22) and (1.4.1).
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Normalized solid -phase density

Distance along 100 direction
Figure 1.9: The solid phase density in the (100) direction for the hard sphere -
system at freezing, averaged over perpendicular planes. The solid line is the
result of eqn.(1.5.22) and the dashed line of eqn.(1.4.1), both truncated at the
same order of reciprocal lattice vectors. From ref [71]

1.6 Some Other Applications of the Density
Functional Approach

The density functional theory (DFT) of freezing has been successfully
applied to the hard sphere system by different authors in a test of different
approximate approaches, as we have seen in section (1.5). In the last five
years, the use of the density functional approach has been extended to more
“realistic’ potential models, such as the Lennard-Jones system. In this section
we are going to discuss the application of the DFT to the freezing of soft
spheres, the Lennard-Jones, alkali halides, binary alloys and ionic melts,
and finally we will discuss the extension of the DFT to shear-deformed and
dislocated crystals.

1.6.1 Freezing of Soft Spheres and of the One
Component Classical Plasma

The simplest family of potentials describing purely repulsive “soft” cores
are the inverse power (or soft sphere) potentials. These r~™ potentials have
been studied extensively by Monte Carlo simulation for several values of the
steepness n, as we have seen in section (1.2). The equation of state and the
freezing results are available for n = 12 2179 6, and 4 1012,

Barrat et al ™ have investigated freezing in the cases n = 12,6 and 4, using
the density functional theory on the basis of two different implementations:
(1) treating the two phases in the grand canonical ensemble following Haymet
and Oxtoby *° and truncating the expansion of the difference in the grand
potential after the second-order terms; (ii) following the approach formulated
by Baus and Colot %% and relating the thermodynamic properties of
the solid, characterized by the one-particle density p,(r), to those of the
homogenous fluid of equal mean density (p;y = p,), i.e. using the ELA
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approximation. Both implementations require as input the direct correlation
function of the soft sphere fluid, which were obtained from two schemes. The
first scheme was based on an interpolation between the hypernetted chain
equations (HNC) and the Percus-Yevick (PY) closure, whereas the second
approach was the modified HNC scheme.

In their calculation, the density profile of the solid in real space is
described as a superposition of Gaussians centered at lattice sites. They
have included sixty stars in the RLV summation. Their results are reported
in table (1.7) for various values of the steepness and compared with Monte
Carlo data. It is clear that both approaches overestimate the densities of
the coexisting fluid and solid phases, and the disagreement with computer
simulation data worsen as the steepnes n decreases. They found that
including higher terms in their first approach, i.e. the three-body correlation
function, is important in the case of the soft sphere system. Finally the two
approaches predict that the fcc phase is more stable than the bec phase for
all n, which contradicts the behaviour expected for soft repulsions, and the
values of the Lindemann ratio in the different cases were smaller than their
Monte Carlo counterparts. The Lindemann ratio is found to be practically
independent of n.

Crystallization of the classical one-component plasma (OCP) on a
uniform background (where the steepness of the potential is n = 1) was
first noted in Monte Carlo simulation by Brush et al ™ . Later and more
accurate computer simulation work **~ 2°27 has determined the free energies
of the liquid and the body-centered cubic solid phases and has led to a
refined assesment of the value I', of the coupling strength I' = Be?/a, where
B = (ksT)™' and a = (47p/3)"1/% in terms of the particle density p, at which
crystallization into the bec structure occurs, the best recent estimate being
I'. = 178. On the basis of Lindemann’s criterion for melting van Horn 7" had
estimated theoretically, assuming analogy with melting of alkali metals, that
. ~170.

A microscopic calculation on the crystallization of the OCP, which
involves a functional expansion of the free energy of the ordered phase around
homogenous liquid similarly to the density-wave theory of freezing, was
presented by Bagchi et al ®. They used a restricted set of order parameters
and went through a bifurcation analysis. Instead Haymet " was the first to
apply the standard DFT approach to this problem, using an extended set of
order parameters. Unfortunately his description of the liquid structure was
not sufficiently accurate 2. '

Within the truncated cluster expansion, Rovere and Tosi 3° gave a careful
treatment of the freezing of the OCP into the bec lattice. They considered
the phase transition in the OCP as occurring at constant temperature and
density, in order to make contact with the simulation evidence 222425,
this case the coexistence point (i.e. the value of T',, fixing the melting curve

In
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zy T, Av/vs | S(kpear) | L

n=12
Theory 1a | 1.280 | 1.370 | 0.070 3.85 0.07
Theory 1b | 1.300 | 1.380 | 0.060 3.85 0.07
Theory 2 | 1.305 | 1.380 | 0.060 3.85 0.07
MC 1.150 | 1.190 | 0.035 3.05 0.15
n=>6
Theory 1a | 3.430 | 3.520 | 0.026 4.44 0.07
Theory 1b | 3.450 | 3.540 | 0.026 4.44 0.07
Theory 2 | 3.330 | 3.390 | 0.020 4.10 0.07
MC 2.180 | 2.210 | 0.013 2.99 0.17
n=4
Theory 1a | 12.30 | 12.47 | 0.014 4.44 0.07
Theory 1b | 12.33 | 12.50 | 0.014 4.44 0.07
Theory 2 | 11.34 | 11.43 | 0.007 4.30 0.07
MC 5.540 | 5.570 | 0.005 2.68 0.18

Table 1.7: Freezing properties of the soft sphere system ¢e(o/r)™, for n=12,
6 and 4. where z; = (pFO'S)(E/]CBT)S/n, Ty = (pF0'3)(e/kBT)3/". The static
structure factor at the first peak and the lindemann ratio are also shown.
Theory 1a = following Haymet and Oztoby, and truncation of the expansion
at second-order terms. Theory 1b = including the three body correlation
function in the ezpansion. Theory 2 = using the ELA approzimation. MC
= Monte Carlo simulation. From ref[70]

1/3
m

Tm < p;!® ) is determined by the equality of the Helmholtz free energies for
the two bulk phases. Since oneis dealing with a system characterized by long-
range Coulomb forces, the chemical potential of a single phase on uniform
background is to be referred to the spatial average Vs of the Madelung
potential in the thermodynamic limit 3. Indeed, the value of Vj; depends on
the boundary condition assumed in taking the limit, so that it is crucial in
phase equilibrium to distinguish between the full electrochemical potential 1
and the quantity 4~ = p— Vs for a single bulk phase. Referring to the freezing
transition of the OCP at fixed background density p, the coexistence of the
two phases at the same temperature requires F, = F; and u, = p;. Hence
the equilibrium between two phases is maintained by an interfacial potential
drop equal to AVy = Vi — Viy = —(u; — 1f) = —Ap”. This balances an
interfacial pressure drop P, — P, = pAy~, since AF = 0 at coexistence.

The microscopic condition for equilibrium and coexistence in the OCP,
to second order, are
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BUE, ~F)N = (s — i)+ 55z [ [ drdr'ele = e/)(p(x) + o) (o) ~ o) + -
= 0 (1.6. 1)

and

p(r) = p ezp |B(p; — p;) + /Idr'CZ(lr =) —p)+ .|, (1.6.2)

where the suffixes s and [ denote properties of the bulk solid and fluid
phase at zero Madelung potential and the prime attached to the integral
in eqn.(1.6.2) is to indicate that the integral, which contains a contribution
from the Madelung potential at point r, is to be evaluated with Vjy = 0, asin
the Ewald method 2. The quantity B(u; — ) can be taken from computer
simulation data, or through the spatial average of eqn.(1.6.2), which yields

8wz = i) = =1 [ dreap( [ ar'ei(lr = ¥)(p(e) = p) + 1) - (163)

The search for the coexistence point was carried out using nineteen stars,
of RLV, but excluding the order parameter pg at the (200) star, i.e.
setting pGap = 0 and excluding the equilibrium equation for this order
parameter, since a self-consistent full solution of the equation was otherwise
impossible. The value of the direct correlation function in the liquid
phase were calculated using the modified hypernetted chain (MHNC) or
alternatively the generalized mean spherical (GMSA) approximation, which
are both in excellent agreement with simulation data on the fluid structure.
The solid-liquid coexistence point was found at I'. ~ 142 in the MHNC and
at I'c >~ 142 in the GMSA. These values for the coupling parameter I', are
not too far from the value I', ~ 178 obtained from computer simulation by
Slattery et al ?®, and should be regarded as a lower limit for the theoretical
coupling strength of bee solid-liquid coexistence, since the order parameter
PG, at the star (200) was suppressed as already noted.

The reason behind the theoretical difficulties associated with the order
parameter pg, at the star (200) can be seen from the values of the direct
correlation function in the Fourier space ¢(G) which is strongly negative in
this region of wave numbers (fig. 1.10. Alternatively, the liquid structure
factor S(k) has a deep minimum near the (200) star. The order parameter
pG, had been excluded also in the earlier application of DFT to freezing into
bece lattice, both for sodium in the work of Ramakrishnan and Yussouff 4°
and for the classical plasma in the work of Bagchi et al 8. The rationale
behind this procedure is that, since the liquid structure factor shows that
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Figure 1.10: The direct correlation function é(k) of the classical plasma in
the fluid phase at T' = 160 as a function of ka in the region of the first
stars of reciprocal lattice vectors for the body centered cubic lattice at density
n = (4ra®/3)t. The full circles are from computer simulation; the full curve
gives the GMSA results and the broken curve gives the results for the MHNC
approzimation. From ref.[80]

the homogenous liquid is rather rigid against a modulation by a density
wave with wave vector G, then the order parameter pg, can only be small
and likely arises from a cooperative process which is lost on decoupling the
various order parameters through the TCE. The indication arising from these
results is that some coupling between order parameters is playing a role in
the phase transition: more precisely, it is suggested that the order parameter
pG, may be driven by the order parameter pg, associated with the (110) star,
i.e. that the three body function ¢{*)(G;,G;) may have an important role.
When these couplings are neglected, agreement with the known coexistence
point requires either an implausibly low value of pg, or a value of é(G,)
which disagrees from the simulation evidence by roughly 30%.

The inclusion of terms of third order was considered by Barrat 8384,
Knowledge of three-body direct correlation function c¢!®) is needed, and a
factorization ansatz for this function was combined with the exact relation
between ¢{® and the derivative of the two-body direct correlation function
with respect to the density. Accuracy is limited, but still the conclusion could
be reached that such non-linear couplings tends to stabilize the bee structure

for the OCP.

1.6.2 Freezing of the Lennard-Jones System

Solid-liquid coexistence in the Lennard-Jones system (LJ) was examined
using the density functional approach by Marshall et al ® and by Curtin
and Ashcroft 8. The calculated phase diagram for the LJ is in good
agreement with simulation data, except at the highest temperatures. Curtin
and Ashcroft used the weighted density approximation (WDA) extended
to systems characterized by potentials for which hard sphere perturbation



theory is an appropriate starting point. In fact, they have expanded the
excess free energy per particle F,[p] for the inhomogeneous system about a
reference system, that of hard spheres of diameter d, i.e.

]‘ ! / !
F.lp] =~ Fus(p;d] + Y0 /drdr o(r' — 1)pCLIr' x5 p, d] (1.6.4)

where ¢(r) is the full pair potential, Fgs[p;d] and pgzs[r’,r;pd] are the

excess free energy per particle and the pair distribution function of the HS
system. They used the WDA for the HS reference energy and obtained an
approximation concerning the second term in eqn.(1.6.4), where they first
expand F.[p] about that of the liquid to all orders:

F[p] = F'(p,) — i N;n!

n=2

/../drn...drlc(")(rn...1‘1)Ap(rn)...Ap(rl).

(1.6.5)
The ¢ are the n* direct correlation functions of the liquid, which was
written as ¢ = c&?s + Acl™ as the difference between the actual c(™ of
the full system and that of the HS reference system. At this point they
used the homogenous limit of eqn.(1.6.4) for the liquid free energy, sum
the hard sphere contribution to all orders, and neglecting the higher-order
terms Ac™(n > 2). Following this sequence the excess free energy of
inhomogeneous liquid is

Rlp) = FPApd+ 5 [ deg(e)pEir)
Po
. 2—51J—\7 / / drdr' A (e — r)Ap(r)Ap(r) ,  (1.6. 6)

where pgqu is the pair distribution function of HS liquid of diameter d. They
added the ideal gas contribution to the excess energy, i.e.

o] = In(po?) <1+ o [ ax2L) [P_@] .

BFualp] = In(p,A°) — 1 + 7 dr o In o , (1.6.7)

with A the thermal wavelength, and the last term in this equation vanishes

in the liquid and is positive for any spatial distributions in p(r), reflecting

the loss of entropy arising from the restriction of available phase space upon
localizing particles.

Applying the above procedure to the LJ system, and assuming the solid
density profile in real space as a superposition of Gaussian centered on the
observed fcc lattice, fig. 1.11 shows the structure dependent parts of the
total free energy, F' = Fiy + FPP4 + AF, as a function of the Gaussian
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Figure 1.11: Structure dependent part of the free energy per particle F wvs
structural parameter ac? for the fcc LJ solid at kT = 0.75¢ and average
density p,a® = 1.0. The different constituents parts of F are shown as
discussed in the text. The total free energy ezhibit a minimum at o # 0
indicating the existence of particle localization. From ref.[86]

widths . A minimum at « # 0 occurs, indicating the existence of particle
localization, due to the competition between the monotonically increasing
F,4 and monotonically decreasing F¥P4. The contribution AF from the
attractive part in the potential has only minor effect of shifting the minimum
to slightly higher values of «.

1.6.3 Freezing of Alkali Halides and Binary Alloys

In the preceding sections we have reviewed applications of the density
functional approach to freezing of monatomic systems. The extension of the
theory to multi-component systems presents no difficulty and we are going
to discuss this extension, in brief, to system such as alkali halides and hard
sphere mixtures.

The crystalline alkali halides are commonly regarded as the prototype of
ionic insulators, and the molten alkali halides as a prototype of dense ionic
liquids. As a starting point it is reasonable to assume that the interionic
forces for these systems are not changed qualitatively across melting. The
short-range order in the dense ionic melt primarily reflects (a) Coulombic
attractions and closed-shell overlap repulsions between unlike ions, leading
to a sharp region of excluded volume and to a first-neighbour shell of unlike
ions around any given ions, and (b) Coulombic repulsions between like ions
which are pushed into second-neighbour shells with a less sharply defined
region of excluded volume. Ionic alternation in space thus preserved to
a considerable extent across melting, and the ionic screening is oscillatory
rather than monotonically decaying as in the Debye-Hiikel theory. These
features of liquid structure are clearly shown in X-ray and neutron diffraction
patterns. They imply that the simplest description of liquid structure and
freezing is in terms of the Bahatia-Thornton concentration-number (Q-N)

34



Figure 1.12: The Bahatia- Thornton structure factors Sgg(k) and Syn(k) of
molten NaCl near freezing, from neutron diffraction data (circle) and from
MHNC theory of a pair potentials model (curves). The location of the first few
stars of reciprocal lattice vectors of the NaCl type structure, after adjustment
of the (111) star to the peak of Sog(k), is shown on the horizontal azis. From

ref. [83] ,

structure factors ®. A detailed discussion of these structure factors will be
given in chapter 3, where we are going to use them in discussing freezing for
a bond-particle model of covalently bonded systems.

The most prominent feature in the concentration-concentration structure
factor Sgo(k), describing the relative short-range order of the two species, is
the main peak, which may be put in correspondence with the first odd-index
Bragg reflection of the solid, i.e. the (111) reflection that distinguishes the
NaC'l type structure (fcc lattice with a two-ion basis) from the simple cubic
lattice. Figure 1.12 shows the Bahatia-Thornton structure factors Sgo(k)
and Sy (k) of molten NaC('l near freezing. As already noted, the main peak
of the Sgo(k) reflects the short-range relative order of the two species from
Coulombic interactions in correspondence to the (111) star of RLV, whereas
Snw(k) shows a broad maximum overlying several of the even-index Bragg
reflections (Sc lattice). Its shape mainly reflects the low compressibility
of the molten salt. The available data suggest Sog(kpear) = 4 as freezing
criterion ® and freezing arises primarily from a balance between charge
ordering, reflected in the main peak of S..(k), and a relatively large volume
change in the order of 15 — 20%, reflected in the low value of Syn(k — 0) °°.

The basic equations needed to study freezing of alkali halides within the
DFT framework have been developed by March and Tosi °!, and it has been
shown ?? that these equations , when reduced to monatomic systems, are
closely related to those in the work of Ramakrishnan and Yussouff *°. The
basic set of equations relates the singlet densities p1(r) and ps(r) of a binary
system to the partial direct correlation functions é;;(k). The basic input is,
within the TCE, the knowledge of &;;(k), or more conveniently their charge-
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number (Q-N) counterparts. All these are directly related to the structure
factors and hence obtainable either from theory or directly from diffraction
experiments.

The singlet densities p;(r) of a system with v components % satisfy the
equilibrium conditions

Vp;
ALY r1 Z/d*rcw (r1,r)Vp;i(r) (1.6.8)

,01 rl

leading in the TCE to

LI z [ dreuins = Dlpsr) —pal - (169)

The two ionic components in the case of an alkali halide (v = 2) play
essentially equal roles and the most important structural parameters are
¢nvn(k = 0) (namely the compressibility) and cgg(G:) at the first set of
reciprocal lattice vectors {G}. The corresponding equation for the difference
in thermodynamic potential (2, — Q; = AQ) that must vanish at coexistence
between liquid and solid (for a system with v components) is

AQ
—]-{:—;f - Z / drl Pu 1'1) le + = Z ff dl‘1dl‘z[Pu(1‘1) + pzl]czg(rl,rz)

[pis(r2) — psi] - (1.6. 10)

The Fourier expansions for the solid phase densities read

1 .
p1s(r) = 5P (1 +n+ Y pGea:p[zG.r]> (1.6.11)
G#£0
and
1 .
pas(r) = zpi |14+ 7+ > pgerpliG.(r + h)] , (1.6.12)
2 G#0

where p; is the density of the liquid, h is the vector joining the two ions in
the unit cell of the crystal, and 7 is the volume change upon freezing.

In applying this set of equations to the prediction of freezing for NaC'l
and RbC'1 *°, the inclusion of first two sets of lattice vectors {G;} and {G,}
was sufficient. The set {Gy} are reciprocal lattice vectors of type (111) and
correspond to the main peak in the charge-charge structure factor Sggq(k)
in the liquid. For the second set {G,} they have chosen the vectors of the
type (220) corresponding to the main peak in Syn(k). Experimental data
on ¢gq(Gy) and éyn(k = 0) were used as input in order to determine the
volume change 7, and the theory was used to predict the values of cyn(G:2)
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and of the Fourier components of the single particle densities at Gy and G,.
Non-linear effects were included via the three-body quantity ¢yyn(0,0) at
long wavelengths. Table (1.8) contains the results obtained for both RbC'
and NaC'l.

RbCI NaCl
cwn(0) | -7.33 (-7.33) | -6.30 (-6.30)

Z0o(G1) | 0.75 (0.75) || 0.72 (0.72)
ivn(Ga) | 0.29(0.29) | 0.28 (0.15)
Enwn(0,0) -105 -31
7 0.140 (0.142) || 0.250 (0.250)
PG, 0.46 0.53
PGs 0.36 0.42

Table 1.8: Detailed numerical predictions on enn(G2), ennn(0,0) , pa,, and
PG, for RbCl and NaCl compared with experimental data in bracket. From

ref.[90]

The predicted value of éyn(G») for RbC! is in good agreement with ex-
periment, and the value of éyyn(0,0) = —105 is of the same order of mag-
nitude as that found by Ramakrishnan and Yussuoff for the corresponding
three-body function in liquid argon. In the case of Na('l the prediction of
¢nn(Gz) is semiquantitative where the value of eyyn(0,0) is only 1/3 of that
for RbC'l. In both cases the fourier components of the density are quit similar
in magnitude and behaviour 9994,

Barrat et al 8" have examined the effective liquid approximation (ELA)
the freezing of hard-sphere binary mixtures. The fluid-solid phase diagram
for disordered allows changes character on varying the relative sizes of the
components. This results are shown in fig. 1.13. As the size ratio « is
lowered from unity the phase diagram in the temperature-concentration
plane is found to evolve from a spindle shape (full miscibility in both phases
with solid enriched in large spheres, fig.(1.13a), for 1 > « > 0.94) into
an azeotropic diagram (fluid mixture stable below melting temperature of
pure components over a finite concentration range, for 0.94 > o > 0.92,
fig.(1.13b)) and finally into an entectic diagram (with phase separation in
the solid, for 0.92 > « > 0.85, fig(1.13c)). As the size ratio approaches 0.85,
the solubility of the large spheres into the solid of small ones shrinks to zero.
Partial contact is thus made with the empirical Hume-Rothery rule, which
state that the formation of a disordered solid alloy is very unlikely if the
atomic sizes differ by more than 15%.

The liquid-solid phase diagram of the restricted primitive model (RPM)
for iomnic liquids, i.e. a mixture of charged hard spheres of the same diameter
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Figure 1.13: Fluid solid phase diagram for a hard sphere mizture under
atmospheric pressure. T 1s the freezing temperature while © = xy s the
number concentration of large spheres. Inset: schematic representation of

. the concentration dependence of the solid and fluid free enthalpies at a given

pressure and temperature.(a): for o = 0.95, (b): for @ = 0.93 and (c): for
a = 0.90. From ref.[87].
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o and opposite charges, was carried out by Barrat °°. He applied the
generalized form of the effective-liquid approximation (ELA) ® which was
given by Barrat et al °. The thermodynamic equations hence, were given in
terms of the following linear combination:

p(r) = pi(r)+p7(r) (number density)

pZ(r) = p(r)—p;(r) (charge density)
MV(r) = ~2-(c++(r) + ¢4—(r)) (number number direct correlation function)
Z(r) = %(C_H_(l‘) — ¢4 (r)) (charge charge direct correlation function)

Three different solid structure were considered in this work: a fcc
disordered structure, a CsCl type structure ( a bec if the charges are
removed) and the NaCl type structure. The latter was never found to
be stable and the main results of this calculation are shown in fig. 1.14.
Fig(1.14a) shows the stability limits of the three structures in the (7,7
plane (3 = Be?/o is the reduced coupling constant). In the low 3~ limit
(high temperature), the fcc and the liquid phase are stable, whereas in the
high 3~ limit (low temperature) a stable C'sCl phase appears. Fig.(1.14b
and c) shows the phase diagram in the §*,n plane and in the T, P* plane
respectively (T* = kgTo/e?, P~ = Po*/e?). The point §* = 22, P~ ~ 0.6
where the three coexistence lines intersect in the 7™, P* plane is the liquid-
solid-solid triple point of the system:.
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Figure 1.15: Partial structure factors of molten SrCly near freezing, from
diffraction data of McGreevy and Mitchell [97, circles/, RI simulation of de
Leeuw [99, dots] and MHNC theory (curves). The location of the first few
stars of reciprocal lattice vectors of the flourite type structure is indicated,
after adjustment of the (111) star to the peak of Sy (k).

1.6.4 Freezing and Superionic Transition In SrCl,

Partial structure factors have also been determined by neutron diffraction
for a number of divalent metal-ion halides in the liquid state. We refer
in particular to the data on molten strontium chloride by McGreevy and
Mitchel °7 . From an examination of the data on the main features of the pair
correlation function g.s(7) and the partial structure factors, one can already
perceive a correlation with the fact that molten SrCl; freezes into superionic
phase anion-disordered, having the flourite structure. In particular, the main
peak in the Sr— S7 partial structure factor is very strong, reflecting ordering
of the cations under Coulomb repulsions °2, and may be put in correspondence
with the (111) star of RLV in the flourite structure (fcc lattice with a two-
ion basis). On the other hand the Cl-Cl structure factor shows a relatively
broad and low peak overlying the (200) star, indicating a noticeably poorer
state of ordering for the halogens in the melt. Fig. 1.15 illustrates the partial
structure factors. In contrast with the alkali chlorides, which freeze into a
normal fcc phase with a volume change of order 20 — 30%, the volume change
on freezing for superionic flourites is small, of order a few percent.

Application of the density functional approach to freezing has been first
made for SrCl, ?° by including only the (111) star. The Fourier expansion
of the singlet densities in the solid was expressed by

pis(X) = pis + pis Z pig ezp[iG.r| (1.6.13)
G+#0

for 1 = 1,2. The equation for the difference in the thermodynamic potentials
AS) between the two phases, which should be equated to zero at coexistence,
18
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the compressibility appearing through éyn(0). Table (1.9) reports the
numerical results obtained, where one can see that the agreement with
experiment is not quantitative for the values of é;_(G;) and ¢__(G;), and
probably this is due to the use of only one set of reciprocal lattice vectors.
The negative value of éyo(0) indicates that the molar volume of the cations
is greater than that of the anions.

Sr('l,; | theory || experiment
eno(0) -12
Sxn(0) | 0.066 0.066
cr+(Gy) | -0.46 -0.46
G (Gy) | -2.90 -2.50
c-_(Gy) | -1.20 -1.80
7 0.024 0.024
P+.G 0.42
P-.G 0.24

Table 1.9: Numerical results of microscopic theory for SrCl,.  From
ref.[90,94]

It is suggested that the negative sign may originate from the large charge
(+2e) on the cations, which tends to lead to a “classical Wigner lattice” in
the high temperature solid. The hole generated around a cation is related to
Coulomb repulsion rather than to the ionic core radius.

Although a non-linear set of equations was solved in this calculation,
the values of the Fourier components p;g agree with those obtained by a
linearisation scheme that was proposed by March and Tosi 1% in the case of
BaCl,, also freezing into superionic phase, namely

e (G
pog = —F (G)ere . (1.6.15)

(oifp-n) — 2 (G)
The main conclusion is that the anionic order parameters are only a fraction
of the dominant cationic order parameters associated with (111) star, as if
phase transition is caused by primary freezing of the cationic component, at
the same time modulating the anionic singlet density.
An extended calculation to include both the first two stars of reciprocal
lattice vectors, i.e. the (111) which is placed in correspondence with the
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main peak in measured cation-cation structure factor in the liquid and the
(200) which falls near the main peak in the anion-anion structure factor, has
been carried out by Rovere and Tosi '°'. They confirm the conclusion of
D’Aguanno et al, that yields [p_ g| > |p+,c|- They have also considered the
superionic-to-normal transition with cooling of solid Sr('l,, viewing it as a
process of continuous freezing of modulated anionic component in the field
of the metal-ion sublattice, i.e. a continuous growth of the (200) anionic
order parameter from its finite value near melting. The evaluation of this
continuous transition yields semiquantitative agreement with the observed
behaviour of Bragg diffraction intensities and the heat capacity anomaly
across the superionic transition.

1.6.5 Extension to Shear Deformed and Dislocated
Crystals

The density functional theory seems to describe well the freezing transition,
as we have seen in the previous subsections, for different systems. Since the
perfect crystalline solid and the liquid are both covered by this theory, density
configuration representing intermediate state can a;so be explored usefully.
The extension of the DFT to shear-deformed and dislocated crystals will be
discussed here in brief.

Michael et al '°2 has proposed a systematic method for calculating the
elastic constant of a dense medium in terms of the particle correlation
function which characterize the structure of that medium. When a stress
is applied to a crystal the strain which develops, measured by the elastic
constants, can be described in terms of changes in the reciprocal lattice
vectors of the unstressed, unstrained lattice.

Within the frame of DFT the change in the grand thermodynamic
potential between the unstressed solid and the uniform liquid, eqn.(1.6.10),
can be written in Fourier analysis (for one component system) as

AQ B 1, ., 1 . 5
ool = (=1 +¢&0))n + 2c(0)77 +5 ;OC(G)[)G , (1.6.16)
where 7 is fractional volume change upon freezing, ¢(G) are the Fourier
components of the direct correlation function of the liquid, and pg are
the Fourier components of the spatial density expressed in eqn.(1.6.11). A
homogenous shear deformation ¢ changes the reciprocal lattice vectors G
to G.(1 + €)7'. Then the difference in the grand thermodynamic potential
between the deformed solid and the undeformed solid is

A 1 ) _ 3
o7 = 5 5 (AG(1+ 9 s —dGIE) - (1617)
G#0
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Using the fact that pe — pg + O(e) and that the first derivative of the
Fourier components ¢(G) with respect to the reciprocal lattice vector is zero
when &(G) correspond to a peak in the structure factor, eqn.(1.6.17) can be
simplified to read

AQ 9*¢(G) )
== G;Gjej€x ( ey (1.6.18)
NkgT 4 ;/—;0213:4; FTTTTT\0G50Gy

But to the order in which eqn.(1.6.18) is valid, the change in molar Helmholtz
free energy is related to A} via

Ae = —AQ/N
1
= -Z—Zeijeiej (vigot notation) . (1.6. 19)

Then by combining eqn(1.6.19) with eqn.(1.6.18) one gets the elastic
constants e;; of the solid. This results can be compared Wlth the one first

derived by Ramakrishnan 1%, namely
ei; = kpTn ) AyG?E'(G)pg (1.6.20)
G#0

where A;; are geometric coefficients, G is the reciprocal lattice vector
corresponding to the first peak in the structure factor, and T}, is the melting
temperature,

Michael et al 1°2 have extended their formulation to binary mixtures,
where the difference in the grand potential between the solid and the liquid
was introduced in terms of the charge-charge, number-number and number-
charge correlation functions that were first introduced by March and Tosi *°°
for binary systems in the course of studying freezing of alkali halides and
binary systems. They have also considered the nematic state of a liquid
crystal, where the molecular centers of gravity are disordered as in a liquid,
but with a statistically parallel orientation of the long axes of the molecules
alone an axis (the director n). The nematic phase was also studied by
Singh 1% using the basic idea of the density functional approach.

In the case of dislocated crystals, Ramakrishnan 13

pointed out that
a screw dislocation is a topological singularity in the phase of the density
wave representing the perfect crystal, characterized by the fact that on going
around it the phase of the order parameter changes by 27n. In the case of a

crystal with a screw dislocation with its core along the z axis, one has

p(r) = pi(1+7(r) + 3 palz,y) ezpliG.&.b/27] expliG.r])  (1.6.21)
G#0
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where é.b is the Burgers vectors of dislocation and pg(z,y) is a smooth
function of z and y, going to zero at the origin (the order parameter has to
vanish there for a topological defect) and having the crystalline solid value for
(2 +y?) — oco. With the use of an energy functional similar to eqn.(1.6.10)
and functional minimization with respect to p(r), a differential equation for
the vortex structure (pg(z,y)) will be found.
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Chapter 2

FREEZING OF A
CLASSICAL PLASMA AND
OF ALKALI METALS
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INTRODUCTION

In this chapter we are going to discuss the application of the density
functional theory to the freezing of the classical one-component plasma
(OCP) and of the alkali metals. Before entering the description of our
calculations, we discuss in section 1 the reasons behind choosing the OCP
as a reference system for liquid alkeli metals. In fact, the structure factor
of the OCP, at the appropriate value of the coupling strength T' (calculated
from the nominal ionic valence, temperature and density of the metal) is
closely similar in the region of the main peak and beyond to the measured
structure factor of liquid alkali metals, near their freezing point and over a
range of temperature above it. This was first noticed by Minoo et al. In
the small angle scattering region this similarity is lost: electronic screening,
which reduces the ionic plasma excitation to the longitudinal acoustic mode,
simultaneously changes the k? behaviour of the OCP structure factor to the
Ornstein-Zernike behaviour of the structure factor of the metal (S(k) — 0)
proportional to the compressibility). The evaluation of the long-wavelength
limit of the liquid structure factor, as considered by Chaturvedi et al, is
discussed in the same section, together with the calculation of the full
structure factor of alkali metals near freezing as it was calculated by Pastore
and Tosi. In addition, the alternative use of the OCP as a reference system in
liquid-metal physics, concerning the calculation of the Helmholtz free energy
using the variational principle based on the Gibbs-Bogolyubov inequality, is
discussed.

Section 2 illustrates the main quantities (i.e. the Helmholtz free energy
and the grand-canonical potential), which as functionals of the one-particle
density provide the starting point for the density functional formalism
discussed in section 3, following Mermin.

In section 4, we describe the density functional theory of freezing, that
amounts to considering the hot solid as an inhomogeneous system having
a periodic one-particle density p,(r). The set of equations needed to study
freezing of the fluid into a prescribed crystal lattice structure are given. The
evaluation of the entropy and the volume changes across the phase transition
is presented and a discussion of the thermodynamic inconsistency, which
arises in the theory because of the approximations involved, is reported
following the previous work by D’Aguanno et al. In this section we also
explicitly show the relationship between the microscopic order parameters
pa (the Fourier components of the periodic density at the reciprocal lattice
vectors G) and the Debye-Waller factors of the crystal at melting. If the
density profile p,(r) of the solid phase in real space is represented by a
superposition of Gaussian centered at the various lattice sites, the Gaussian
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widths are immediately related to the Lindemann’s ratio.

Freezing of the OCP on a rigid background into the bec and the fec
structure is evaluated in section 5, taking account of the recent progress
in the determination of the thermodynamic functions of this model fluid
by computer simulation. The known difficulties of the theory relating to
the order parameter at the (200) star of reciprocal vectors (RLV) is also
discussed.

The relationship between Wigner crystallization in the classical ionic
plasma and the liquid-solid transition of alkali metals is examined in section
6 and 7. Freezing of the OCP on a deformable background is discussed in
section 7. We show that, on allowing for long-wavelength deformability of
the background, the appearance of a volume change on freezing into the
bee structure is accompanied by reduced stability of the fluid phase and by
an increase in the entropy of melting. Next, freezing of alkali metals into
the becc structure is evaluated, taking their ionic pair structure as that of
an lonic plasma reference fluid screened by conduction electrons and asking
that the correct ionic coupling strength at liquid-solid coexistence should be
approximately reproduced.
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2.1 Classical One-Component Plasma as a
Reference System

The simplest model of a Coulombic system is the so-called one-component
classical plasma (OCP), a system of identical point charges, interacting
purely through the coulomb potential and immersed in a rigid uniform
background of opposite charge to ensure charge neutrality. Although this
model is an over-simplification, it serves as a prototype for more “realistic”
systems and can be considered as a limiting case of real matter °°. The basic
parameter which characterizes the model system is the coupling strength
parameter I' = fe?/a, where § = (kgT)™* and a = (47n/3)7Y/? in terms of
the particle density n. The OCP has been considered by many authors as a
reference fluid for pertubative calculations of thermodynamic and structural
properties of liquid metals and we are going to discuss some of these aspects
in this section.

The choice of the OCP as a reference system is particularly successful for
liquid alkali metals. It was first noticed by Minoo et al *°® that the structure
factor of the OCP, at the appropriate value of the coupling strength I' is
closely similar in the region of the main peak and beyond to the measured
structure factor of the liquid alkali metals. In the small angle scattering
region this similarity is lost, since electronic screening is crucial in the liquid
metal. Chaturvedi et al 1976 have proposed a way to include the electronic
screening through a random phase approximation on the indirect ion-ion
interaction, that arises via the response of the sea of conduction electrons to
the ionic cores.

The evaluation of the long-wavelength limit of the liquid structure factor
corresponds to a calculation of the isothermal compressibility by the “method
of long waves”, i.e. one determines through it the value of dynamic
compressibility which is consistent with the speed of long acoustic waves 108,
Chaturvedi et al ® considered the liquid alkali metals as constituted of a fluid
of classical ions and degenerate electron gas. In such a system near freezing
the bare ion-ion coupling is very strong (I' >~ 200), while the electron-electron
coupling is by comparison only moderately strong (r, = a/a,, where a, is
the Bohr radius, with 7, ~ 3 — 6). The basic assumption made was that
the ionic liquid and electron gas are weakly coupled to each other through a
bare electron-ion pseudopotential v(k), which can be treated by second-order
perturbation theory. Then structure factor S(k) of the liquid metal can be

written as 1086

S(k) = So(k)[1 — &(k)S(R) ™", (2.1.1)

or equivalently the direct correlation function ¢(k) is given by
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i(k) = & (k) + &, (k) . (2.1.2)
Here S,(k) and &(k) are the structure factor and the direct correlation
function of the bare ionic system on a rigid electron background, i.e. those
of the OCP if one neglects the non-Coulombic terms in the direct ion-ion
interaction, while

nk*v?(k)

E(k) = CrettaT

is given by the usual expression for the contribution of electronic screening to

the effective ion-ion potential in terms of v(k) and of the dielectric function
€(k) of the homogeneous electron gas.

In order to examine how eqn.(2.1.1) accounts for the isothermal com-

pressibility Kt of liquid alkali metals through the Ornstein-Zernike relation,

[1—1/e(k)] | (2.1.3)

lim S(k) = TL]CBTKT 3 (214)

k—0

one starts from the well-known forms at long wavelength for the structure

factor of the OCP 1%,

: kpTk? 2/7,21-1
| }cl_l’% So(k) = yo— 14 k*/k] , | (2.1.5)
and for the electronic function °,
lim e(k) =1 + E2JRE . (2.1.6)

On the other hand, adopting for the electron-ion pseudopotential the simple
Ashcroft for v(k) = —(4we?/k?) cos(kr.) !, one has

limv(k) = —4dme?/k* 4 2mer? | (2.1.7)

k-0

the quantity r. being the Ashcroft core radius. The quantity k., in
eqn.(2.1.6) is the inverse screening length of the electron gas, related to its
compressibility "%, while in eqn.(2.1.5) k; is identified as “inverse screening
length” of the OCP, which is calculated from the excess internal energy u
per particle of the OCP, in units of k5T, as 1%

1 1du
Bk =14+ Sy i 1
b/ ks 1+3u+9dI‘ (2.1.8)
Here, kp is the Debye-Hiikel inverse screening length,
kp = (4mne?/kgT)? . (2.1.9)

The use of the eqns.(2.1.5)-(2.1.7) in eqn.(2.1.1) leads to
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kb kb

—1
S(0) = (7{2* + %2 -+ k%r?)

Table (2.1) reports the numerical results that were obtained, using the values
of r, deduced from an overall fit ** of the phonon dispersion curve in
crystalline alkali metals with the corresponding values of k. from Singwi et
al 113 compared with experimental data '**!*5. The good agreement indicates
that their model is giving a consistent account of sound waves in the liquid
and in the solid. The only exception may be Lithium, where 5(0) appears to
be low when compared with theoretical calculations '*® of the compressibility.

(2.1.10)

T(K) r TC(A) Ts S(O)galc S(O)gmpt
Ti | 453 | 211 | 0.741 | 3.299 | 0.0158(0.0201)
Na | 371 | 208 | 0.894 | 4.049 0.0215 0.0240(0.0233)
437 | 163 | 0.894 | 4.085 0.0289 0.0322(0.0308)
K 337 | 186 | 1.180 | 5.030 | 0.0231(0.0212) | 0.0247(0.0225)
408 | 153 | 1.180 | 5.072 | 0.0295(0.0270) | 0.0312(0.0283)
Rb | 312 | 188 1.270 | 5.388 | 0.0236(0.0207) (0.0220)
Cs | 301 |181]1.390 | 5.786 | 0.0235(0.0202) |  (0.0237)

Table 2.1: Structure factor at long wavelength for liquid alkali metals. The
superscript :(a) Values in parentheses include an effective mass correction
in the calculation of k? , as discussed by Price et al [112]. (b) Values in
parentheses are deduced from the sound wvelocities reporied by Webber and
Stephens [115], with a correction for the difference between the adiabatic and
isothermal compressibilities. The other values are from Greenfield et al [11{].

From ref.[6]

The full structure factor of alkali metals near freezing was calculated
by Pastore and Tosi *!7, starting from the classical plasma of bare ions
as reference liquid (OCP). The indirect ion-ion interaction arising irom
electronic screening is treated by an optimized random phase approximation
(ORPA), imposing physical requirements as in the original ORPA scheme
developed by Weeks et al !'® for liquids with strongly repulsive core
potentials. An independent justification of the accuracy of the theory was
first given by coupling its results with computer simulation data on liquid
Rb.

Figure 2.1 shows the result of S(k) for alkali metals compared with X-ray
diffraction data '%'® . Two choices were adopted for the indirect ion-ion
interaction, both based on the Ashcroft form for v(k). The first choice is the
potential adjusted by Price et al *'? to phonon dispersion curves (model I),
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and in the second choice (model II) they have used the results of Vashishta
and Singwi **° for the dielectric function in eqn.(2.1.3) and have at the same
time readjusted the core radius 7. to fit experimental values of S(0) 13121,
related to the isothermal compressibility of the liquid metal through the
Ornstein-Zernike relation. The results of this calculation shows an overall
good representation for sodium, potassium and cesium in the small angle
scattering region as well as in the height of the main peak, except for lithium,
when one uses a very simple form for the electron-ion potential adjusted
to the liquid compressibility, fig 2.2. It is clear from table (2.2) that the
theoretical values are sensitive to the details of the electron-ion coupling
(entering the results through core radius 7.), although the comparison with
the corresponding peak heights for the OCP in the same table shows that the
effect of this coupling is rather small outside the small-angle scattering region
(and excluding for the moment the case of Li from consideration). From the
above discussion it is clear that the OCP structure factor at the appropriate
value of the coupling I reproduce very well the measured structure factor of
real alkali metals near freezing, except in the small-angle scattering region.
It should be stressed for latter reference that indeed the correction due to
electronic screening have essentially died out when one reaches the region of
wave number corresponding to the main peak.

Ty T | o/a |r(A)] S(0) [ Sreak] Greak|
Lv | 3.28 212 1.463| 0.74 | 0.016 | 3.11 | 3.21
0.59 | 0.031* | 2.38
Na | 4.05 211 |1.462 | 0.95 | 0.017 | 3.21 | 3.20
0.86 | 0.0256% | 2.98
K | 502187 |1.450| 1.26 | 0.020 | 3.11 | 3.00
‘ 1.21 | 0.0241# | 3.11
Rb | 5.42 185 | 1.449 | 1.33 | 0.021 | 3.10 | 2.99
1.35 | 0.0245* | 3.18
Cs | 5.77 | 181 | 1.447 | 1.44 | 0.021 | 3.14 | 2.95
1.43 | 0.0256% | 3.14

Table 2.2: Input data and results for S(0) and SPee* for liguid alkalis. For
each metal, the two rows refer to model I and II. Measured values of 5(0)
are in parentheses #: from ref. [119]; =: from ref. [121] and have been fitted
to determine the values reported for r. in model II. 5P are the calculated
values for the height of the main peak, the corresponding theoretical values
for the OCP being given in the last column. In the case of Na the values of
Sreak and SPeak gre sensitive to the input data [24,123] on the free energy of
the OCP. From ref. [117].
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Figure 2.1: Structure factor of alkali metals, from model I (broken curve ) and
model II (full curve). a: Liquid Na at 100°C the ezperimental data are from
X-ray diffraction of Huijben and Van der Lugt [119] (dots) and of Greenfield
et al. [114] (circles). b: Liquid K at 5°C the experimental data form ref. [119]
(dots) and from ref.[11{] (circles). c: Liquid Cs at 30°C the ezperimental
data from ref. [119] (dots). d: Liquid Li at 190°C the experimental data are
taken from Waseda [121] (dots). From ref. [117]
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Figure 2.2: Structure factor of liquid Na, K, Rb and Cs in the small angle
scattering region (0.1471 < k < 1,4“1). The experimental data are from
Waseda [121] (broken curve), Huijben and Van der Lugt [119] (dots) and
Greenfield et al.[11{] (circles). The theoretical results (full curve) are from
model II, at temperatures equal to those of Waseda’s data (105°C' for Na,
70°C for K, 40°C for Rb and 30°C for Cs). The other ezperimental data for
Na and K are at slightly lower temperatures (100°C' for Na and 65°C for K).
From ref. [117]

A rather different use of the OCP as a reference system in liquid-metal
physics concerns the calculation of the Helmholtz free energy using the
variational principle based on Gibbs-Bogolyubov inequality. This ensures
an upper bound to the Helmholtz free energy F of a liquid giving by

FLF4<6H >, (2.1.11)

where F, is the Helmholtz free energy of a reference liquid at the same
density n and temperature T, while < §H >, is the difference between the
Hamiltonians of real and reference liquids evaluated with the distribution
function of the reference. Ross et al ?® observed that the OCP reference
system gives rise for alkali metals to a better (i.e., lower) variational upper
bound to the free energy than dose the hard sphere model, and found good
agreement with simulations for a model of liquid Li. In the case of liquid
Na and Al, Mon et al '** used also the variational principle based on Gibbs-
Bogolyubov inequality in conjunction with the hard sphere and the OCP
reference systems. In their work, for liquid Na, the OCP gives the lower
variational bound to the free energy, which was further supported by fitting
the measured structure ** factor with the OCP structure factor. Liquid
Al, on the other hand, described by the hard sphere reference system when
exchange-correlations to the pair potentials were properly included.
Thermodynamic calculation for liquid metals using the OCP as a
reference system were performed by Young !2° within the framework of the
Gibbs-Bogolyubov method. The OCP Helmholtz free energy per ion is:
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F, = %kBT LV, -TS, (2.1.12)

where V, and S, are the potential energy and the entropy respectively. The
OCP reference system is characterized by the effective coupling strength
I'* = (Z*e)?/akpT, where a = (47n/3)~Y/% and Z* is an effective ionic valence
which is determined variationally (having assumed density, temperature and
jonic mass as those of the real system). The free energy of the liquid was
written as:

F=F+ —;—/dr(u(r) — u,(r))go(r/a, T") + U(n) (2.1.13)

or alternatively

F = Fiy— TAS, + —;—/dr(u(r))go(r/a,I‘*) +UMm) (2.1.14)

where the subscript id corresponds to the ideal classical gas with Z2* = 0,
AS, = § — 0 — Sia, u,(r) and go(r/a,™) are the pairwise interaction and
the radial distribution function of the OCP system, and u(r) is the ion-ion
interaction. Finally, U(n) is a purely density dependent term arising from
the sea of conduction electrons. The optimal Z* is found from

OF \  _ (z~)oT)(0F/8Z )ur =0 , (2.1.15)
),
or, more explicitly
_ TOAS,/OT" + %n [ de(u(x))dg(r/a,T7)/0T" =0 . (2116)

The entropy is given by

S =254 + {AS,+T(0AS,/OT)n z-}
- %n/dr(u(r))[@go(r/a,I“)/@T]TL,Z. ) (2.1. 17)

Of the two terms in curly brackets, the first combine with Siy to give S,
while the second cancels against the integral on invoking eqn.(2.1.16) after

noting that T(8/0T)n z+ = —I'(0/0T )nr. The final result is

S=5
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that is the entropy of the liquid metals is given in the variational approach by
the entropy of the OCP at the value of the coupling strength which minimizes
the free energy.

Montella et al '?® have combined the variational treatment for the
structure-dependent part of the free energy with the electron-theory treat-
ment given earlier by Price *" on liquid Na for the structure-independent
part U(n) part of the internal energy, in order to have a complete evaluation
of thermodynamic properties. Eqn.(2.1.14) is the free energy equation, with
U(n) given by

U(n) =E, + %P_%[u(r) — ez/r] — % / dru(r) + an / drv(r) + ez/r] (2.1.18)

where Ej is the ground-state energy of the homogeneous electron gas, v(r) is
the bare electron-ion potential and « is a parameter introduced by Price to
fit the experimental pressure P for given n and T. This approach allows the
evaluation of higher thermodynamic derivatives such as thermal coefficient
Yv of the pressure, the isothermal compressibility K7, and the ratio of the
specific heats. A tabulation of results for the thermodynamic derivatives
of the free energy is given in table (2.3) together with experimental values
whenever available, the agreement with the data being very reasonable.

Li Na K Rb Cs
ASTkg -2.9(-3.61) | -3.4(-3.45) | -3.7(-3.45) | -3.8(-3.63) | -3.7(-3.56)
Cy/ks 2.9(34) | 3.3(34) | 3.3(34) | 3.4(3.3) | 3.4(3.2)
vv(bar/K) 24 13(13) | 6.6(7.60) | 5.2(6.86) | 4.4(5.74)
Kp(107252) | 9.5(9.43) | 20(18.6) | 40(38.2) | 51(49.3) | 65(68.8)
C,/Cy 1.1(1.07) | 1.1(1.12) | 1.1(1.11) | 1.1(1.15) | 1.1(1.20)
Table 2.3: Thermodynamic properties of liguid alkali near freezing at

atmospheric pressure. Measured values in parentheses. From, ref.[127].

It is evident from the above discussion that the use of the OCP as a ref-

erence system for pertubative calculations of the thermodynamic properties
of liquid metals predicts to a good extent the various thermodynamic deriva-
tives of the free energy. The main drawback is the prediction of the value of
the plasma parameter appropriate to the liquid metal, which is significantly
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lower (i.e. Z~ is appreciably less than unity) when it is determined varia-
tionally from the Gibbs-Bogolyubov inequality for the free energy, leading to
some deterioration in the predicted structure factor. This discrepancy has
been discussed by Iwamatsu et al 1%°.

The OCP model has been also used as a reference system to reproduce
the structure factor in the case of the liquid transition metals by Khanna
and Cyrot-Lackman '?°, with main attention to the first peak of the structure
factor. Itami and Shimoji 13°, on the other hand have applied the OCP model
to study the thermodynamic properties of the liquid transition metals. In
both calculations it is found that the value of the valence Z* in the coupling
parameter I' = (Z~e)?/akpT is somewhat larger than unity, which is taken
to indicate some effect of s-d hybridisation. Table (2.4) presents some of the
thermodynamic quantities of liquid transition metals, based on the use of the
OCP as a reference system and compared with experimental data.

Sc T V Cr Mn Fe Co Nz
T(K) | 1833 | 1973 | 2173 | 2173 | 1533 1833 | 1823 | 1773

T 100 110 110 120 120 110 110 110

zx 1.42 | 1.47 | 1.49 | 1.52 | 1.30 | 1.33 | 1.32 | 1.30
Socp | 11.87 | 11.55 | 11.61 | 11.34 | 10.87 | 11.39 | 11.49 11.56
Sezp | 12.05 | 12.01 12.08 11.58 | 12.05 | 12.11 | 12.08 | 11.69
CQCP | 3.91 | 3.85 | 3.87 | 3.88 | 3.75 3.94 | 4.01 | 4.13
C;P | 4.39 | 3.53 | 4.15 | 3.90 | 4.56 4.38 | 4.00 | 4.46
x9¢F | 2.31 | 1.56 | 1.23 | 1.01 | 1.52 1.26 | 1.23 | 1.26

x2er 1.04 | 0.97 | 0.98

Table 2.4: Thermodynamic properties of liguid metals. Entropy S (in units of
Nkg), the valence Z* calculated from the plasma parameter T', heat capacity
Cy at constant volume (in units of Nkp), and isothermal compressibility
xr(1071'm2N "), all compared with available experimental data. From

ref.[131]

The aim of our work in the later parts of this chapter will be to examine
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the usefulness of the OCP model as a reference for the liquid-solid transition
in the alkali metals, within the density wave theory of freezing. We start
in the next section by recalling some general point on the thermodynamic
potentials in inhomogeneous systems.
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2.2 Thermodynamic Potentials

Useful theories of non-uniform systems have been developed in the last twenty
years. These theories are of a variational character and the crucial entity is a
functional of the single-particle density that has as a lower bound the exact
grand potential of the system. The application to classical fluids was first
described by Ebner et al 1!, but similar methods had been used previously for
quantum-mechanical systems in the ground state by Hohenberg and Kohn *'
and extended to equilibrium states at finite temperature by Mermin 4. In
this section we are going to illustrate the key quantities Flp] and Qy[p]
(the Helmholtz free energy and the grand-canonical potential), which are
functionals of the one-particle density p(r). In the following section we are
going to give the density functional formalism and then proceed to describe
its use in the theory of freezing.

Let us consider a classical system of N identical particles in a volume
V. The Hamiltonian of the system is composed of (i) a term due to the
free motion of the particles, (ii) a term corresponding to the interactions of
particles with each other and (iii) a term describing the action of an arbitrary
external potential depending only on the coordinates of the particles:

Hy = En({p:}) + Vn({r:}) + &n({r:}) (2.2.1)

where
N
Kx({pd) = Spt/om
7=1

Pu({r)) = | dep()delr)

m is the mass of the particles. The potential energy Vy includes any
containing walls present in the system and no pairwise additivity is assumed
for it. The microscopic density p(r) is given by

N
p(r) = Zﬁ(r —-r;) . (2.2.2)
i=1
The system, with a prescribed potential p, is in thermal equilibrium in a
bath at temperature T'.

We are going to use the grand canonical ensemble to describe the
system, because the equilibrium conditions, i.e. the equality of pressure
P, temperature T' and chemical potential u are in it easily accessible. Let
F(r¥,pY; N) be the probability that a system chosen at random contains
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precisely N particles, with coordinates r" and momenta p¥. At equilibrium,

f :feq is

feo = 25" exp[-B(Hy — pN)] (2.2.3)

where the grand canonical partition function is given by

Ze(V,T,p) = Trcz{emé[—ﬁ(HN — )} . (2.2.4)

Try denotes the usual classical trace operation, that is

o0 dp;
Tra =3 5 H/drz B . (2.2.5)

The macroscopic value of a generic operator A is defined by taking the
configurational average

< A>=Try{f...4} , (2.2.6)
and for the equilibrium density p.,(r) we have

Peq(r) =< p(r) > (2.2.7)

starting from the relation between the grand potential  and the grand par-
tition function Zg, one can see the connection between the thermodynamic
properties and the grand canonical ensemble, i.e.

B InZg=-Q=PV . (2.2.8)

The other thermodynamic functions are the “intrinsic” Helmholtz free energy
F and the Helmholtz free energy F, which are defined as

F=0- / A0 peg(T) Geat(r) + / drpeg(r) (2.2.9)

and

F= F+/d1~peq(r)¢m(r) . (2.2.10)

2.3 The Density Functional Formalism

Following Mermin *7, we introduce the functional of the probability density

f

Qf] = Tra{f(Hy — N + 87 'Inf)} , (2.3.1)

which coincides with the grand canonical potential if f = f,,,
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Ok = UV, Typ) - (2.3.2)

From the Gibbs-Bogolyubov inequality **? for two arbitrary distribution
functions f and ¢

Tra(fInf) > Tra(glng) (2.3.3)

one immediately obtains the relation

Q[f] > Qlf.q] (2.3.4)

where we have used the relation (2.2.3), (2.3.1) and (2.3.2). Using the same
arguments of Hohenberg-Kohn-Mermin *7, one can show that for a given
interaction potential Viy({r;}) and chemical potential j, ¢.+(r) is a functional
of po(r)i.e. @eme(r) is uniquely determined by po(r) if this density is known
in all r points of the system. In fact, one can see from eqn.(2.2.3) that f, is
a function of @..:(r) and therefore f,, is a functional of p,(r).

The two key quantities of density functional theory are the functionals

Flpol = Tra{fee(En({p:}) + Vn({r:}) + 67" Infeg)} (2.3.5)

/drp(r Yezi(r) + Flp ,u/drp . (2.3.6)

Let us suppose at this point that ¢..:(r) changes to ¢, ,(r), with consequent
change in the Hamiltonian, equilibrium probability density and grand
potential given respectively, by Hy — Hiy,feq — fo, and € — Q. then

since fog # fogs

Q= Tra{fl,(Hy — N + 87 Inf))
< Tra{ps(H' — pN)+ 87" Inpo} (2.3.7)

and hence

< O+ [ dr(Plalr) = buarlr))olr) (2.3.8)

with p,(r) being the single-particle density for the distribution function
foq- The inequality in eqn.(2.3.7) remains valid when primed and unprimed
quantities are interchanged, and if p,(r) remains unaltered we find

0 <+ [ dr(fuedlr) — Blarlr))p(r) (2:3.9)
adding eqn.(2.3.8) and eqn.(2.3.9) leads to the contradiction Q'+ < Q4+ Q.

Hence the assumption that p,(r) remains the same must therefore be false,
since no other approximation has been made. The conclusion drawn is that
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for a system with prescribed interparticle potential there is one and only
one external potential that gives rise to a particular single-particle density.
From this it follows, since ¢..t(r) also determines £, is a unique functional of
po(r). Then we can conclude the Qy[p(r)] reaches its minimum value when
p(r) = po(r), this results being expressed through the relation

6Qv(p(r)] 0 (2.3.10)
6p(r)  omymptr)
Keeping in mined the general definition of a functional derivative,
Y2
6G = [ dyA(y,[9(»)5u(y) (2:3.11)
Y1
namely
e
= A(y, [¥(; , 2.3.12
59(y) (v, [¥(y)]) ( )

we can calculate the functional derivative of eqn.(2.3.9) using for Qy[p(r)]
the expression (2.3.6). In this way we obtain the fundamental equation of
the theory

Pext(r) + Hin[po;T] = 1 (2.3.13)
with
- 8F[p(r)]
b= g0y (2.3.14)

In fact, eqn.(2.3.13) is an explicit equation for the equilibrium density if we
apply it to the system of NV interacting particles introduced in section (2.2).
The effect of interactions may be put in evidence by decomposing F[p] into
an ideal part Fi4(p] and a part ¥[p(r)] corresponding to the interactions,

Flpl = Falpl = lp(x)] . (2.3.15)

The ideal part can be easily determined from non-interacting system (Vy =

0) as
Fidlel = 87 [ drln(po(r)A) ~ 1]py(r) (2.3.16)

and

po(r) = 2 exp[—Bpeat(r)] (2.3.17)

where A = (h?/2rmkpT)** and the fugacity z = A~lezp(Bu). Equation
(2.3.14) can be rewritten as
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Buin = In[Ap(r)] — c[p; 1] (2.3.18)
where
o[psr] = 2Ll
T ep(r)

is the contribution due to interactions. Equation (2.3.13) can be solved easily
and for the equilibrium density we obtain

(2.3.19)

Po(r) = z exp[—PPeat(r) + c[po; r] . (2.3.20)

From this equation, the effect of the interaction can be dealt through the
one-body effective potential ¢[p,;r]. The successive functional derivatives of
eqn.(2.3.19) generate a hierarchy of correlation functions,

SO .1 B
ClpsTy, T = =
Pt 6p(r) — 6p(r1)bp(r2)
§%c[p; 1]
@) e ry] = o L.etc.
¢ [p)r17r2713] 5p(r3)6p(r2) €Lc (23 21)

If we define now a local potential u(r) as

w(r) = p — Pext(T) , (2.3.22)
we can rewrite eqn.(2.3.6) as
Qvlp] = -/dr,o(r)u(r) +Flp . (2.3.23)
The functional derivative with respect to u(r) is
8Qv(p] _ :
Sl —po(r) (2.3.24)

and by successive iterations another series of hierarchic functions can be
derived. Explicitly

-1 dpo(r1)
Su(rs)

= p(z)(rl,rz) + Pgrlé(rl - 1‘2) - Po(rl)po(rZ) (23 2‘5)

G(rlar2) =

where p(*)(r1,r;) is the usual pair distribution function **%. Using eqn.(2.3.20)
one write the first of equations (2.3.21) in the form

du(ry) _ §(ry —ra)

B sou() ~ polrr)

—¢|pojT1,r2] = K(r1,12) (2.3.26)
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where K(ry,r;) is the inverse of G(ry,r;)

/drlG(rl,r)K(rl,r') =46(r—r') . (2.3.27)

With these definitions we can see that eqn.(2.3.27) is nothing but the
Ornstein-Zernike equation, providing that ¢[p,;r1, ;] is the direct correlation
function as generalized to the case of a non-uniform system.

Equations (2.3.6) and (2.3.10) allow a variational calculation of the single-
particle density and the grand potential of the inhomogeneous system. As
a last step one may expand the difference in the grand canonical potential
between the inhomogeneous and homogeneous fluid, AQ = Q[p] — Oy, in
terms of the corresponding difference in density, Ap(r) = p(r) — pi, leading
to practical approximate formulae for sufficiently small differences. In fact,
the effective potential c[p;r], as defined in eqn.(2.3.19), can be functionally
expanded around its value ¢; corresponding to the uniform fluid,

e(p(r)ir) = e+ [ drac(irs — ral)Ap(r)s +
1
+—2— / / dradrze®(r; — 11,15 — 11)Ap(ry) Ap(rs) + .... (2.3. 28)
where c(|r; — ry|) and c(s)(rg — r1,r3 — 1) are the quantities defined in

eqn.(2.3.21) for the homogeneous fluid at density p;. In the same manner
one can expand the contribution of the interactions to the free energy ¥,

=% + /drlclAp(rl)+
1
+ -2—//dr1dr2c(|r1 — 13])Ap(r1)Ap(rs) + oo (2.3. 29)

The difference AQ) which we are looking for can be determined by writing
eqn(2.3.23) as

0 = f-—ﬁﬁﬂd—/drp(r)wr)
— —\Il-{—ﬁ_l/drp(r)[c(r) ~1] (2.3. 30)

and by subsituting in it the functional expansions of eqn.(2.3.28) and (2.3.29)
we get

BAQ = -/drlAp(rl) + % //drldrzc(lrl —13])Ap(r)2[p(r1) + p1] +

1
-+ g / / dl‘]_dl‘zdl‘g,c(s)(l‘z —r1,T3 — 1)[2p(r1) + pi]Ap(rs)Ap(rs) 3. 31)

64



2.4 Density Functional Theory of Freezing

¥ amounts to considering

The modern density functional theory of freezing *
the solid as a inhomogeneous system having a periodic one-particle density
ps(r). Then, one starts from the liquid phase described by a uniform
density p; and inquires for the existence of coexisting crystalline solutions
of prescribed lattice symmetry at the equilibrium between the two phases.
In this section we simplify the problem by inquiring for freezing of the fluid
into a perscribed crystal lattice, leaving aside the question of the relative
thermodynamic stability of the different crystalline lattices.

As we have already mentioned in chapter 1 (section 1.4). the solid phase

density can be expanded in its Fourier components,

ps(r) = pi(L+ 1)+ p1 ) pa expliGx] (2.4.1)
G#0

where n = (p, — p1)/p1 is an “order parameter” giving the fractional density
change and the Fourier components pg are the “microscopic parameters” of
the theory (pg = 0) in the liquid phase, pg # 0 in the solid phase). The
translational and rotational crystalline symmetry of p,(r) are guaranteed
by eqn.(2.4.1) if (i) G is a reciprocal lattice vector of the given crystalline
lattice and (ii) if all the pg corresponding to a given ‘star’ of reciprocal lattice
vectors are identical. In the limit of a vanishing external potential @eu:(r),
we get for the non-uniform equilibrium density

pa(r) = A7eProes™) (2.4.2)

and using the expansion of ¢(r) in eqn.(2.3.28) truncated at three-body terms,
eqn.(2.4.2) becomes

pu(rs) = pueaplBAn] expl [ drsc(lrs = va)Ap(rs) +

1 , :
-+ 5 / / drzdrgc(g)(rg — 11,03 — 1) Ap(r2)Ap(rs) + ..{2.4. 3)

Here, p; = A Yexp[Bpu+c] and Ap is the difference in the chemical potentials
between the two phases (vanishing at coexistence).
Inserting eqn.(2.4.1) in eqn.(2.4.3) we obtain

s 1 - 9 1 P
In [—p—-—(—l—‘l} = BAp+ con + =&3(0,0)n% + = > NG, -G)pk
Pl 2 2 G#0
+ D (HG) +E(G,0)) pa expliGr]
G#0
1
+ 3 S &G, G) pa parezpli(G + G')r] . (2.4. 4)
G, G'#£0

65



where &(G) and é®)(G,G') are the Fourier transforms of the Ornstein-
Zernike direct correlation function ¢(r) and of the triplet direct correlation
function ¢®)(ry — ry,r3 — ry), evaluated at the reciprocal lattice vectors G:

é(k) = pfdrc(r)eik'r (2.4.5)

6(3)(1{, k') = ,02 / dr12dr136(3)(rg —T1,r3 — r1)e[ik'r‘2+k"r”] . (2.4.6)

Taking the exponential of both sides of eqn.(2.4.4) and integrating over r
leads, for the components at G = 0 and at G # 0, to the set of equations

ma+,BA/"' . . !
T4p=2 /dremP [Z 2Ge'ST+ 3 g eel©HC )'r} (2.4.7)
4 G0 G, G0

€m°+'BA“ et el " .
PG = /dremp Z (BGCzG T Z mG’,G”et(G +G")r ezG.r
4 G#0 G, G"+#£0
(2.4.8)

where we have introduced the following:

1. 1.
To = con+ §c(3)(0,0)772 + 5 > (G, -G
G

ze = [6G)+ (G, 0)n] pg
1.
mG,G’ = —2— (3)(G,GI) PG pIG

The set of equations (2.4.7) and (2.4.8) can be solved for a given set of
values of {¢(G)} and {&(G, G’)}. There always is a solution with n = 0 and
pa =0, representing the liquid phase, whereas a solution with 7 # 0 and
pG # 0 (and periodic p,(r) ) can occur for an appropriate choice of {¢(G)}
and {&(G,G")}.

The two phases will be in equilibrium if the difference between the
thermodynamic potential £, of the solid and that of the liquid ; is zero. The
thermodynamic potential variation in the liquid-solid transformation A is
obtained by subsituting in eqn.(2.3.31) the Fourier expansion (2.4.1) with
the use of eqn.’s (2.4.5) and (2.4.6):

1

1 - -
85 = (o= D+ 5l + 290,007 + 269(0, 07" +
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[E(G) + (20 + 1)E®(G,0)] pg

+

CQIF—-‘ [\DI}—J

G#0
Z &2 (G,G) pe pa' PG+ - (2.4. 9)
G,G'#0

Equations (2.4.7), (2.4.8) and (2.4.9) are the basic equations that need to be
solved in applying the theory.

The quantity ¢(G) and é®)(Gq, G;), that appear in the equations for
freezing are connected to physical concepts in response theory, by which
more insight into the physical interpretation of the freezing process can be
gained. It is known that the static response function x(k) of a classical fluid
to a weak external perturbation coupled with density fluctuations, is related
to the static structure factor S(k) through the equation

From the Ornstein-Zernike relation one can also connect the response
function to the Fourier transform of the direct correlation function é&(k),
using the relation

S(k)=[1—¢&(k)]™ . (2.4.11)

It is also known in the k — 0 limit the relation between the structure factor
S(k) and the isothermal compressibility Kr, which denotes the degree of
“softness” of the system in response to a uniform compression, i.e.

]I‘;II% S(k) = pKBTK—T . (2.4.12)

In fact eqn.(2.4.10) is a generalization of eqn.(2.4.12) to a deformation with
arbitrary wave vector. Thus, ¢(G) in eqns.(2.4.7) - (2.4.9) measure the
“deformability” of the liquid to a weak modulation and can be obtained
directly from the structure factor of the liquid near freezing as measured by
diffraction or as evaluated from some theoretical model of the interactions
between the particles of the liquid. On the other hand, 3Gy, Gy) makes
allowance for non-linear respomnse to modulation, at the lowest level of
non-linearity, with specific relation to (i) the density dependence of the
compressibility (when G; = G, = 0), (ii) the density dependence of the
structure factor (when G, = 0 with G; # 0), and (iii) genuine microscopic
coupling between order parameters (when G; and G, are both different from
zero).

Let us return now to the equations of freezing (2.4.7), (2.4.8) and (2.4.9).
Equation (2.4.9) is composed of the sum of terms depending on 7 and
terms depending on pg. The condition A} = 0, which corresponds to the
equilibrium of the two phases, can be satisfied if the change in the free energy
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due to the change in the average density is compensated by the change in
the free energy due to the modulation in density. More particularly, free
energy is normally gained in the first (for 7 > 0) while it is expended in the
second case. Hence the transition will occur by spontaneous modulation of
the system at wave numbers such as to reduce the free energy expense, which
are those corresponding to the peaks in the structure factor.

2.4.1 Entropy and Volume Changes Across the Phase
Transition

We turn next to discuss the different routes that can be followed for
calculating the entropy and volume changes across the phase transition,
within the framework of the density functional theory. As already discussed,
the expansion of the appropriate thermodynamic potential of the ordered
phase around that of the homogeneous liquid requires (i) a functional
expansion in which direct correlation functions of any order appear, and
(ii) a Fourier representation of the one-body density p(r). In practical
applications ****% one has to truncate the expansion in both (1) and (i1) .
(see chapter 1, section 1.5.1 and 1.5.4). D’Aguanno et al !3* have pointed
out that thermodynamic inconsistency should be expected to arise from the
above approximations.

Upon freezing with finite volume change, one can calculate the entropy
change per particle (As) within the usual approach %4135 of relating As to
the difference in the grandcanonical potential between the two phases. In
fact, D’Aguanno et al '®* presented the correct expression for the entropy
change As across the phase transition, in which the effect of the finite
volume change at freezing is included, and also proposed a new methode
for calculating As which, in particular, avoids an unphysical dependence
of the entropy change on the mass of the particles yielded by approximate
calculations carried out within previous approaches. Following Haymet
and Oxtoby °° and D’Aguanno et al ¥, and including only second order
terms in the difference p(r) — p; (eqn.2.4.1), the equilibrium condition for
the microscopic order parameters (eqn.2.4.8) can can be written in a more
convenient way as

Jdre'STexple,n + Taz &(G)pge®' ]
[ drezpleon + Ygro (G )pg iG]
One also obtains expressions for the difference in chemical potential,

Ap = p, — pu,

pc = (1+1) (2.4.13)

1 T
Ap = —kpTIn{——= [ drezp|c,n + G)pge @]} (2.4.14
(1+7)V / (;Z¢:o )
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and an equation for the difference in pressure AP = P, — F),

AP = piks Tl 1+ e + 2eor + = 3 {@)lpal (2.4.15)

2 2 G0
In these equations. p; is the density of the fluid phase, pg are the microscopic
order parameters associated with the reciprocal lattice vectors G, and
n = (ps — p1)/p1 = Av/v, gives the percentual volume difference between the
two phases. The subscripts s and [ are to denote macroscopic properties of
the solid and fluid phase respectively. The &(G) are the Fourier components
of the Ornstein-Zernike correlation function ¢(r) of the fluid at the RLV stars
of the solid (eqn.2.4.5), and ¢, is the regular part of the Fourier transform
of ¢(r) at long wavelengths, which in the OCP on a deformable background
will embody thermodynamic properties to be assigned to the background. In
particular, this quantity will be related to the isothermal compressibility K7
of the full system of ions plus background, according to the Ornstein-Zernike
relation.

1 1
=15 T nEaTEr |

The set of order parameters pg and 7 at coexistence, must satisfy the
equilibrium equations (2.4.13) under the condition that the pressure and
chemical potential difference should vanish, AP = Ap = 0. This fixes the
freezing line (pys,T}), once the liquid structure is known as a function of p
and T', and gives the fractional volume change n and the Fourier components
pa of the density p in the coexistent solid.

The change on freezing of a thermodynamic property such as the entropy
per particle s can be calculated from the slopes of AP or of Ay near the
freezing point. These can be obtained, in turn, by solving eqn.(2.4.13) under
the only condition Ay = 0 (or AP = 0). In terms of AP the entropy per
particle can be written as

(2.4.16)

1 OAP
NAs = s, —8§ = ———— kgT ——
S $ 81 147 B T + 13y
B ps Ly
1 OAP| Op OAP
= —— —_— == kg1 —— 24. 17
7 |27 g, T +hpl —m| 4 s ( )
H P ps.T;

were the expression in the second row is obtained from the fact that AP
(eqn.2.4.15) is a function of temperature T" and of the density p of the liquid.
The contribution —ns;/(147) to the entropy change originates from the fact
that, in the grandcanonical ensemble, the number of particles in the volume
V for the crystalline phase,N,, is different from that for the liquid phase,V;,
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with (N, — N;)/N; = 1. Such a term, which has been neglected in previous
formulas **%4135 for As, has the unpleasant feature that it contains the mass
of the particles. This appears in the ideal part of s;. However, there is
another term in As which is proportional to p;. By utilizing thermodynamic
identities, in fact, eqn.(2.4.17) can be modified to read

a5, kgT OP
As = — —| Av— P 2.4.1
s=|(1 - a)pAvs; + « v, v . oT ( 8)
Pd s Ty
with Av = v, — v}, the volume per particle, and
kg1 OAP
a= [~~£— oAp P % ] (2.4.19)
7 Op |p° OP|, "y

The entropy per particle is now decomposed, in eqn.(2.4.18), into three terms.
The first term contains all the dependence on the mass m of the particles.
Since As cannot depend on m, an exact calculation must yield o = 1. [in the
case where the first term vanishes due to a = 1, one recover the partitioning
of the entropy change into a volume term plus a remainder as proposed by
Tallon %, where the term (85;/8V)rAv can be formally identified as the
change in entropy due to the isothermal compression of the liquid to the
density of the solid at constant (8.5,/0V)rAv]. It has been concluded by
D’Aguanno et al that eqn.(2.4.17) and (2.4.18) do not provide a convenient
way of evaluating the entropy change. In the case of freezing of hard spheres
by Haymet °*, the AP(p) around p; were given and the value of « is easily
evaluated to be 2.3.

Another route to evaluate As was proposed by D’Aguanno et al 3* by
exploiting the dependence of Ay on p and T, where one gets:

As — _|%8m ]
0T o), 1,
OAp Op OAu
= — | —=— — — 2.4. 20
9 |p BT |,  oT |, (2:4. 20)

pi Ty

This formula does not contain any dependence on the mass of the particles.
Moreover, from the slope of Ay around the freezing point it is to obtain an
alternative thermodynamic equation for the fractional volume change

pihv = ——1— = Pf[*a-é& }
1+17 OP |, s T
OAp dp }
= py [-~— + = (2.4. 21)
Op | OP|p oy Ty
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hence the comparison between 1 from eqn.(2.4.21) and 1 from the coexistence
conditions (eqn.2.4.13 and 2.4.15) with AP and Ay set to zero) provides
a simple check on the internal consistency of an approximate calculation.
The entropy change and the fractional volume change were calculated from
eqn’s.(2.4.20) and (2.4.21), respectively, by D’Aguanno et al 134 in the case
of the freezing of hard spheres. They found As = —1.9kp and n = 0.06.
These values should be compared with the computer simulation results,
As = —1.2kp and n = 0.10.

The above mentioned alternative routes for calculating the entropy change
and the volume change across the phase transition are going to be used in
the following sections (2.6 and 2.7).

2.4.2 Gaussian Width and Lindemann’s Ratio

Finally, we discuss the relationship between the microscopic order parameters
pa and the Debye-Waller factors of the crystal at melting. As we have
already discussed in chapter 1 (section 1.5.4), the density profile p,(r), of
the solid phase in real space can be approximated as a superposition of
Gaussian centered at the various sites and with a width that is to be evaluated
variationally. That is

p.(x) = - S(Z)7 eapl—alr ~ Ry)) (2.4.22)
1 ™
where p is the average density of the solid, V; the number of particles per
unit cell while j labels the lattice sites (located at {R;}), and the periodicity
is taken care of by the sum over the sites.
The connection between the Gaussian representation in eqn.(2.4.22) and
the density wave expansion eqn.(2.4.1) can easily be obtained from the

following Poisson sum formula ***

pu0)fp = - TSN copl—alr = By))
= > exp(—|G|*/da) exp[iG.r] . (2.4. 23)

G

Comparing eqn.(2.4.23) and eqn.(2.4.1) we can see that in the Gaussian
representation, the microscopic order parameters pg are
pa = (1 +n) ezp(—|G|*/4c) (2.4.24)

where we can relates these microscopic order parameters with the Lindemann

ratio L = \/< (Au)? > /d?, since
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< (Au)? >=<(r—R;)* >= — (2.4.25)

then

1 o
pe = (1+7) emp[—6L2G~d2] , (2.4.26)

where d is the first neighbour distance in the specific crystal structure under
consideration.

In fact, the series (2.4.22) is term by term positive and rapidly converging
as we have seen in chapter 1 (section 1.5.4 and fig.1.9). In the following
sections we are going to see how the microscopic order parameters pg conform
rather closely to a Gaussian behaviour and yield a Lindemann ratio in
reasonable agreement with the empirical value for melting for the different
cases that we are going to consider. This will be done by full evaluation of
the order parameters pg from the equilibrium conditions of the theory and
by representing them in the form

1
pe =(1+n) ewp[—gLZGszz] (2.4.27)

where Lg is a “star dependent Lindemann ratio”. Clearly, the accuracy of
a Gaussian representation of the density profile can be tested by examining
the dependence of Lg on G.

2.5 Freezing of One-Component Plasma on a
Rigid Background (OCP-RB)

Crystallization of the one-component plasma on a rigid background (OCP-
RB) has been studied by computer simulation 2% and within the density
functional theory ™8%%384 a5 discussed in chapter 1 (section 1.6).

In this sectiori we are going to reevaluate the theory of freezing of
the OCP-RB, in view of the recent progress in the determination of its
thermodynamic functions by computer simulation 7 and as a preliminary
step to our evaluation of the freezing of alkali metals 141, We shall discuss
the difficulties of the density wave theory of freezing for the OCP, related to
the order parameter at the (200) star of RLV and also consider freezing of
the OCP into the bee and the fee structure. In addition, the entropy change
across the phase transition will be evaluated.

The earlier Monte Carlo data **?° for the internal energy per particle in
the fluid OCP have been fitted, in terms of the coupling strength I', to the
form

U/NkpT = al' + bI'V* + ¢ 4 014 (2.5.1)
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where a, b, ¢ and d are constants and the exponent 1/4 was first proposed by
De Witt ’. The available Monte Carlo runs at that time did not permit to
obtain the exponent to a good degree of accuracy. Recently De Witt et al ™
have generated long runs for a larger number of particles and proposed for
the internal energy per particle the expression

U/NksT = —0.8992T + 0.596T°%2% — 0.268 . (2.5.2)

These authors have also calculated freezing into the bcc structure (which
occurs at I' = 178+ 1 and into the fcc structure (at I' = 192). The expression
for U enters the evaluation of the structure factor S(ga;T'), that we carry in
the generalized mean spherical approximation (GMSA) % and use as input
for the evaluation of freezing into both structures.

At this stage we would like to summarily present the main equations that
we use in the case of freezing of the OCP-RG. In fact the set of equations
derived by previous authors ®°, and in this case, however, the coexistence
condition is given by the vanishing of the Helmholtz free energy difference,
that is

AF/N = Ap—AP/p=0 (2.5.3)

whereas eqn.(2.4.14) (with n = 0) allows an estimate for the interfacial dipole
layer between the two phases.

Recalling our discussion in chapter 1 (section 1.6), the Fourier represen-
tation of the charge density in the solid in terms of the order parameters pg
as

p(r) = pr=p ) pa expliGr] (2.5.4)
G#£0
the microscopic conditions for equilibrium and phase coexistence in the OCP
(eqn’s. (1.6.1) and 1.6.2) of chapter 1) in the Fourier representation and up
to second order terms, are

1«
BE,~F)/N = ~ngo+5 3 dGu)local + .
G..5#0
=0 (2.5. 5)
and
pe. =P /dreiG‘remp[ S {Gm)pame’ ST + . (2.5.6)
G0

where ¢(G),, are the Fourier transform of the two-body direct correlation
function. The quantity 1, is related to the chemical potential and can be
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determined in two ways: (i) by using eqn.(1.6.3) (chapter 1) in eliminating
B(ps — 1), which yields

hy = /drexp[ > HGm)pg e ™ + ] (2.5.7)
G, #0
where one recovers the equations used by Bagchi et al ® and Haymet ™; or
(i) by using computer simulation data for 8(u, — 1) and the expression

bo = eplB(m— )~ T E(Gu0lan] (259
n#0

where we have included the next higher-order correction ¢®)(G,,0), which
can be calculated from

Op

NG, 0) = —E(Gn)+p<aE(G"))T

1
= —¢(Gn)+ §F ( (2.5. 9)
In either of the routes that we have mentioned, we can also evaluate the

difference in the chemical potential across the transition, (through the sum
rule (1.6.3) of chapter 1), i.e.

Blas =) = 5 3 &G, O)lp,l? ~In( [ dreas] 3 &Gl ™))
G0 Gn#£0
(2.5.10)
as a test of the results of the evaluation of the order parameters against the
simulation data.

the search for coexistence point is carried out by solving the set of
equations (2.5.6) for the order parameters pg,, at a given value of the coupling
strength and by varying the coupling strength I' until eqn.(2.5.5) is satisfied.
Satisfactory convergence in the determination of I'; is achieved by including
nineteen stars of reciprocal lattice vectors. Convergence can be accelerated
by including in successive steps the stars of RLV which lie between alternate
nodes of the direct correlation function ¢ (k). The equations were solved by
a refined version of the Newton-Raphson method.

We are going to discuss separately the results that we have obtained
by excluding the equilibrium equation for the order parameter pg, in the
“linearized” theory (G, denotes the (200) star) and the calculations that we
have carried out by including this order parameter also.
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2.5.1 Results with  Exclusion of  Equilibrium
Equation for pg,

The values of ¢(G); in figure (1.8) (chapter 1) is strongly negative, namely
the liquid structure factor S(k) has a deep minimum in this region of wave
number (i.e. near the (200) star). Following first the procedure suggested
by Rovere and Tosi 2%, the order parameter pg, was excluded from our
calculation. As already noted, the values of the direct correlation function in
the fluid phase were calculated using the generalized mean spherical (GMSA)
approximation combined with the recent simulation result for internal energy
of the fluid OCP by De Witt et al . However, we found only very small
changes from the earlier calculation of ¢(k) by Rovere and Tosi ®°, and
again the results are in very close agreement with the simulation data at
the representative value of I' = 160 (see figure 2.3).

The values for the coupling parameters I', at the solid-liquid transition
point, for freezing into the becc structure, is I, = 156.75, which is
approximately the same as in the previous calculation of Rovere and Tosi %°.
This theoretical value for I'. is not too far from the value I'. = 178 obtained
by De Witt ® from simulation data for the free energies of the two phases.
Table (2.5) summarise our results when the order parameter pg, is set to
zero and simultaneously excluding the equilibrium equation for this order
parameter from the set (2.5.6).

The value of B(ps — pi)|r=r, from the sum rule (2.5.10) is —0.70, which is
to be compared with the value —0.26 from the available data on the equation
of state of the two phases.

The entropy of freezing As = (s, — s;)|r=r, can be calculated from its
definition at coexistence,

As = —(8F,/8T), + (0F/8T), . (2.5.11)

The specific functional dependence of the free energy of the plasma on T and
p allows one to rewrite eqn.(2.6.11) as

A.S = kBTZZ%_[IB(F; - E)/-[V]I‘::F,; . (2512)

with (F, — F;)/N given by equation (2.5.5) as a function of I'. The
result is As/kg ~ —1.0 in our calculation, to be compared with the value

As/kp ~ —0.78 from the data of De Witt et al “°.
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Figure 2.3: The Ornstein-Zernike direct correlation function &(k) of the OCP
at I' = 160 as a function of reduced wave number ka. Full curve: present
GMSA results, using the internal energy of the OCP from De Witt et al [76];
dashed curve: GMSA results from earlier internal energy data by Slattery et
al [24]. The arrows give the locations of the stars of RLV for the bec lattice
(bottom) and for the fec lattice (top).
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StarG | & G) PG L
110 0.6330 | 0.7493 | 0.171
200 |- 0.5046 00
211 0.1117 | 0.4722 | 0.159
220 0.0911 | 0.3868 | 0.155
310 |- 0.0975|0.2995 | 0.156
222 | -0.0731 | 0.2600 | 0.151
321 0.0287 | 0.2140 | 0.149
400 0.0591 | 0.1590 | 0.153
411 0.0179 | 0.1374 | 0.150
330 0.0179 | 0.1525 | 0.145
420 |- 0.0289 | 0.1191 | 0.147
332 | -0.0394 | 0.1050 | 0.144
422 |- 0.0171 | 0.0870 | 0.144
510 0.0119 | 0.0648 | 0.146
431 0.0119 | 0.0756 | 0.142
521 0.0206 | 0.0497 | 0.142
440 0.0037 | 0.0486 | 0.138
530 |- 0.0123 | 0.0383 | 0.139
433 |- 0.0123 | 0.0379 | 0.140

Table 2.5: The bee freezing parameter of the OCP-RB (in the case with
PG, = 0). In the first column the various stars that were used, the second
column the values of the ¢(G) at the different stars, the third and fourth
column are the various values of the order parameters pg and the Lindemann
ratio respectively. For the coupling strength I' = 156.75 .
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2.5.2 Calculations with Inclusion of pg,

No solution of the full set of equilibrium equations (2.5.5) for the order
parameters was found in the range of values of I' where the phase transition
is expected when the equilibrium equation for pg, is also included and the
input structure data are calculated by the GMSA.

The difficulty with the order parameter pg, can be looked at from two
alternative points of view: (i) since the liquid structure factor shows that the
fluid is very rigid against a modulation by a density wave with wave vector
Gy, then the order parameter pg, can only be small and likely arises from a
cooperative process which is lost on decoupling the various order parameters
through the truncated cluster expansion; (ii) the order parameter pg, may
be driven by the other order parameters (in particular with those associated
with the (110) star %°), that the three body function ¢®)}( Gy, G,) may have
an important role, in some sense equivalent to raising the value of ¢(G;) at
the star (200) to an effectively higher value.

We have examined both view points. First we start by increasing the
order parameter pg, progressively in the equilibrium equations, as if this
order parameter were a free parameter, and we find that the predicted value
of T'. increases, approaching I' = 178 for pg, = 0.038. Table (2.6) shows
the values of the other order parameters at I'. = 178, which are slightly
higher than in table (2.5) (i.e. when pg, = 0). The corresponding values of
the thermodynamic parameter of the phase transition are 8(u, — p)|r=178 =
—0.72 and As/kp = —0.94.

Alternatively, we have considered ¢(G,) as a free parameter and tried to
solve the set of equilibrium equations for the order parameters pg including
also the equation for pg,, fixing I'. = 178 to the computer simulation results.
The effective value of ¢(G;) is —0.134, which is roughly 24% of the simulation
data. In table (2.7) we tabulate our results for the order parameters pg, were
we can see that the value of pg, is quite reasonable with respect to the rest
of the order parameters. The values of 3(u, — fu)|r, =178 is —0.5 whereas the
change in entropy is As/kg = —0.94.

The values of the order parameters pg for the different cases that we
have considered (section 2.5.1 and 2.5.2) are tabulated in tables (2.5-2.7).
These order parameters of the phase transition, excepting the (200) one,
conform rather closely to a Gaussian behaviour and yield Lindemann ratios
(tabulated in last column) in reasonable agreement with empirical values for
melting of bece crystal. In the case when we were looking for an effective
¢(G) at the (200) star (table 2.7), the Lindemann ratio for this star falls in
the general pattern set by the others, which strengthens the viewpoint of
the presence of microscopic coupling between the order parameters. All the
parameters of freezing into the bcc lattice for the OCP-RB and for the OCP
on a deformable background (that we are going to discuss in the following
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section 2.6) are collected in table (2.15).

StarG | & G) PG L
110 0.6567 | 0.7694 | 0.163
200 |- 0.5554 | 0.0038 | 0.531
211 0.1353 | 0.5016 | 0.153
220 0.0839 | 0.4172 | 0.149
310 - 0.1169 | 0.3261 | 0.151
222 - 0.0706 | 0.2895 | 0.145
321 0.0423 | 0.2401 | 0.144
400 0.0630 | 0.1776 | 0.148
411 0.0094 | 0.1565 | 0.144
330 0.0094 | 0.1765 | 0.140
420 |- 0.0389 | 0.1380 | 0.141
332 - 0.0416 | 0.1255 | 0.138
422 - 0.0111 | 0.1044 | 0.138
510 0.0199 | 0.0758 | 0.142
431 0.0199 | 0.0921 | 0.136
521 0.0182 | 0.0602 | 0.138
440 | - 0.0026 | 0.0613 | 0.133
530 |- 0.0182 | 0.0480 | 0.134
433 - 0.0182 | 0.0494 | 0.134

Table 2.6: The bcc freezing parameter of the OCP-RB in the case with pg,
were fized at 0.0038 to reproduce the computer simulation [76] with coupling
parameter I' = 178 .
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StarG | E(G) PG L
110 0.6567 | 0.723 | 0.181
200 - 0.1340 | 0.532 | 0.179
211 0.1353 | 0.440 | 0.166
220 0.0839 | 0.360 | 0.161
310 -0.1169 | 0.264 | 0.164
222 | -0.0706 | 0.237 | 0.156
321 0.0423 | 0.193 | 0.154
400 0.0630 | 0.130 | 0.161
411 0.0094 | 0.115 | 0.156
330 0.0094 | 0.140 | 0.149
420 - 0.0389 | 0.101 | 0.152
332 - 0.0416 | 0.094 | 0.148
422 - 0.0111 | 0.076 | 0.147
510 0.0199 | 0.050 | 0.153
431 0.0199 | 0.067 | 0.145

- 521 0.0182 | 0.040 | 0.147
440 - 0.0026 | 0.044 | 0.141
530 - 0.0182 | 0.032 | 0.143
433 - 0.0182 | 0.034 | 0.142

Table 2.7: The bce freezing parameter of the OCP-RB in the case where we
ask what is the effective é(G) at the (200) star, so that one reproduce the
computer simulation [76] with coupling parameter T' = 178 .

2.5.3 Freezing of OCP-RB Into the F.c.c. Structure

We turn to discuss the relative stability of the fcc structure for the OCP-
RB. The main input for our calculation in this section is again the direct
correlation function é(k) of the OCP as a function of the plasma parameter
I'. Reference to the locations of the stars of RLV for the bece and fec structures
relative to the peaks and valleys of ¢(k) in fig.(2.3) indicates that they may
be competitive, insofar as in both the first RLV star is close to the maximum
in the main peak of é(k) and a number of order parameters lie in the region
of the subsequent deep minimum of this function. The relative stability
of the two structures should thus be primarily determined by a balance
between the higher number of order parameters lying in this region for the
fce structure and the strongly negative value attained by ¢(G;) for freezing
into bee structure.

In fact, in the microscopic calculations that we have carried out for
freezing into the fcc lattice, we have solved the set of equations (2.5.6) for the
order parameters pg, monitoring at the same time the free energy difference
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in eqn.(2.5.5). The method of solution is the same as the one we followed
in the case of freezing of OCP-RB into the bec structure. We found no
self-consistent solution of eqns.(2.5.6) and (2.5.5) when we included all the
successive stars up to (551) star, but excluding the third star (220), which has
a stronger negative value of é(k), we obtain satisfactory convergence in the
results. We find in this case I' ~ 300 for the phase transition, and our results
are tabulated in table (2.8). The order parameters pg, excepting the (220)
one, conform rather closely to a Gaussian behaviour and yield a Lindemann
ratio in resonable agreement with the empirical value for melting of f.c.c.
crystals (with a Lindemann ratio ~ 0.12 + 0.065 *®. Qur results are broadly
consistent with available evidence from computer simulation from De Witt 76
(T'e = 190) in suggesting that freezing into f.c.c. structure is unfavoured and
confirm an earlier report by Barrat and Hansen 27 (T'c > 210 and excluding
the (220) star).

StarG | & @G) PG L
111 0.7475 | 0.888 | 0.089
200 |- 0.0160 | 0.856 | 0.089
220 | -0.1244 00
311 0.2380 | 0.688 | 0.083
222 0.1222 | 0.669 | 0.082
400 |- 0.1973 | 0.588 | 0.082
331 - 0.0421 | 0.541 | 0.081
420 0.0205 | 0.530 | 0.081
422 0.0939 | 0.470 | 0.080
911 0.0045 | 0.430 | 0.080
333 0.0045 | 0.434 | 0.079
440 |- 0.0724 | 0.373 | 0.078
931 - 0.0290 | 0.344 | 0.079
600 |- 0.0094 | 0.333 | 0.078
442 | - 0.0094 | 0.337 | 0.078
933 0.0410 | 0.289 | 0.078
622 0.0324 | 0.269 | 0.077
444 |- 0.0126 | 0.247 | 0.077
711 - 0.0336 | 0.222 | 0.077
551 - 0.0336 | 0.223 | 0.077

Table 2.8: The freezing parameter of the OCP-RB into fee structure for the
coupling parameter T' 2 300 .
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2.6 Freezing of OCP on a Deformable
Background (OCP-DB)

In this section we present our calciulations for freezing of an OCP on a
deformable background (OCP-DB) into the bec lattice, on allowing for long-
wavelength deformability of the background.

The first issue here is the value to be chosen for the quantity c, (the
regular part of the Fourier transform of ¢(r) at long-wavelength) expressing
the deformability, or equivalently for the long-wavelength structure factor
5(0) = [1 —¢c,]”'. In fact we have chosen the values of S(0) in the range
0.021 + 0.026 as appropriate for liquid alkali metal near freezing from data
in the literature (table (2.9)). We have carried out the calculations for three
different values of S(0) (S5(0) = 0.02,0.023 and 0.0256) and our results are
tabulated in tables (2.10-2.12). The common input to these calculations is, in
addition to §(0), the direct correlation function ¢(k) of the OCP as a function
of plasma parameter I' evaluated by the GMSA 8 using as an input the new
expression for the internal energy of the OCP as a function of T given by De

Witt et al S,

Element | S(0) '** | §(0) * | S(0) 1*7
L 0.0266 | 0.031 | 0.0310

Na 0.0230 | 0.024 | 0.0256

K 0.0224 | 0.023 | 0.0241

Rb 0.0213 | 0.022 | 0.0245

Cs 0.0240 | 0.028 | 0.0256

Table 2.9: The Long length structure factors S(0) for the liguid alkali metals
near freezing as avatlable in the literature.

Freezing of the OCP-DB is accompanied by a volume change, and
we assume exact cancellation of the divergent Coulombic terms at long
wavelengths through perfect screening of the ions by the charges in the
background. We have solved the set of equations (2.4.13) for the microscopic
order parameters pg as functions of I'. The conditions for phase coexistence
are

Ap =0 (2.6.1)
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by which eqn.(2.4.14) will be the equation for estimating the volume change
7, and

AP =0 (2.6.2)

that is eqn.(2.4.15). The method of solution follows the same manner as in
the case of the OCP-RB. we again could not find self-consistent solutions
of eqn.(2.4.13) and (2.4.15) when the order parameter pg at the (200)
star is included among the others to be determined from the appropriate
eqn.(2.4.13), but excluding the latter we obtained satisfactory convergence
in the results by including the stars of RLV up to the (433) star, in groups
which le between alternate nodes of é(k) as we have done in the OCP-RB.

Three different values of S(0) were used in our calculations (S5(0) =
0.02,0.023,0.0256). These quantity were kept fixed during our search for
the coexistence point, so that the latter is specified by the appropriate
coupling strength T, for the underlying ionic plasma which describes the
microscopic ionic pair structure of the liquid metal. Our results for the
various choices of S(0) are not significantly different, in both the values of
the order parameters pg and the coupling strength I'. [I'. = 147.75,146.44,
and 145.30 respectively], except for the value of the relative volume change
Nm [i-e. Tm = 0.054,0.063, and 0.072 respectively]. Naturally, the values of
Nm increases with increasing S(0). Our results for the case in which pg, =0
are tabulated in tables(2.10-2.12) and can be directly comparable with those
for the OCP-RB in tables (2.5-2.7). We have also estimated the change in
the entropy per particles across the phase transition in two different way,
i.e. from eqn.(2.4.17) with ns; = 0.19kp as appropriate to liquid Na, and
from the slope of Ay at coexistence using eqn.(2.4.20). The volume change
has been also calculated in two different routes: the first one is by solving
eqn.(2.4.14) with Ap = 0 at coexistence of the two phases , and the second
route by using eqn.(2.4.21) which we can rewrite as follows

7 2 BAN>
—— =p; K7 | — 2.6.3
Lt () (263

where the partial derivative of the density with respect to the pressure is
given through its relation with the isothermal compressibility. Finally, the
Lindemann ratio can be obtained using eqn.(2.4.27) and all our results are
tabulated in table (2.15) and compare with the available experimental data
of alkali metals.

Our results for freezing of the OCP-DB can be compared with those
for the OCP-RB (in the case were pg,). The main qualitative changes
which accompany the appearance of a finite volume change across the phase
transition are (a) a decrease in the value of T, i.e. reduced stability of the
fluid phase as first pointed out by Pollock and Hansen ?*; (b) an increase
in the entropy of melting; (c) a narrowing of the single particle distribution
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around each lattice site in the hot solid. We also notice that there is a
reasonable amount of internal thermodynamic consistency in the calculation
of As and in the calculation of 5 from the conditions (2.6.1) and (2.6.2),
whereas the route leading to a value of 77 via eqn.(2.6.3) yields a very different
result.

As we have already discussed in section (2.5), the most likely source of
uncertainty in our results is, of course, the handeling of ordering at the (200)
star. T'wo alternative extreme viewpoints could be taken with regard to this
failure of the theory. These are (i) the (200) order parameter is genuinly
small in the hot bcc crystal, or (ii) microscopic couplings between the ionic
order parameters and also between these and electronic order parameters
assist ordering in the (200) star. Clearly, our approach does not allow us to
discriminate between these possibility, which may in fact be simultaneously
correct. We have already examined their separate consequences in section
(2.5.1) and (2.5.2) where we asked which value of pg,, or alternatively of
¢(G2), would reproduce the value of I', for the OCP-RB of the computer
simulation of De Witt et al ™.

At this point we have examined the freezing of the OCP-DB with the
choice §(0) = 0.023 in various ways. First we included the order parameter
PGz = 0.0038 in our calculation (being fixed from outside from the OCP-RB).
we solved the set of equations (2.4.13) for the microscopic order parameter
PG, eqn.(2.4.14) for estimating the volume change n (using the condition
(2.6.1) for coexistence), and at the same time satisfying the condition (2.6.2).
Our results are tabulated in table (2.13), where we can see that freezing
occurs at I'; = 161.75 (a bit higher than in the previous case with pg, = 0),
whereas the estimated values for the volume change 1 and the change in
the entropy across phase transition are almost the same compared with the
values in table (2.9). We have also checked the freezing of the OCP-DB with
5(0) = 0.023 using the effective direct correlation function &(G;) = —0.134
that we found in the OCP-RB, and we can see that I, = 166.85 in this case;
the volume change has not been affected much whereas the change in the

entropy is improved. Our results for this test are also tabulated in table
(2.15).
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StarG | &(G) PG L
110 0.6214 | 0.770 | 0.162
200 | -0.4821 oo
211 0.1011 | 0.498 | 0.153
220 0.0935 | 0.412 | 0.150
310 |- 0.0887 | 0.324 | 0.151
222 - 0.0736 | 0.280 | 0.146
321 0.0227 | 0.232 | 0.145
400 0.0567 | 0.178 | 0.148
411 0.0211 | 0.155 | 0.145
330 0.0211 | 0.168 | 0.141
420 |- 0.0243 | 0.134 | 0.142
332 | -0.0378 | 0.116 | 0.141
422 | -0.0193 | 0.098 | 0.140
510 0.0083 | 0.076 | 0.141
431 0.0083 | 0.084 | 0.139

521 0.0211 | 0.058 | 0.138
440 0.0062 | 0.055 | 0.135
530 | - 0.0095 | 0.045 | 0.136
433 | - 0.0095 | 0.043 | 0.137

Table 2.10: The bec freezing parameter of the OCP-DB for S(0) = 0.02 and
I'. = 147.75 . &) are the direct correlation function as a function of I at
the different stars, pa = pa/(1 + 1), which can be compared with pg of the
OCP-RB and pg are the order parameters evaluated from eqn.(2.4.13). L 1s
the Lindemann ratio calculated by eqn.(2.4.27).
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StarG E(G) PG L
110 0.6197 | 0.773 | 0.161
200 - 0.4788 00
211 0.0996 | 0.502 | 0.152
220 0.0939 | 0.415 | 0.149
310 - 0.0874 | 0.330 | 0.150
222 -0.0735 | 0.284 | 0.145
321 0.0218 | 0.236 | 0.144
400 0.0563 | 0.182 | 0.146
411 0.0216 | 0.157 | 0.144
330 0.0216 | 0.170 | 0.141
420 - 0.0236 | 0.136 | 0.142
332 - 0.0375 | 0.118 | 0.140
422 - 0.0195 | 0.099 | 0.139
510 0.0087 | 0.078 | 0.141
431 0.0087 | 0.086 | 0.138
521 0.0211 | 0.059 | 0.138
440 0.0065 | 0.056 | 0.135
530 - 0.0091 | 0.045 | 0.135
433 - 0.0091 | 0.044 | 0.136

Table 2.11: The bec freezing parameter of the OCP-DB for S(0) = 0.023 and
I'. = 146.44 . &(G) are the direct correlation function as a function of T' at
the different stars, pa = pg/(1 +n), which can be compared with pg of the
OCP-RB and pg are the order parameters evaluated from eqn.(2.4.13). L is
the Lindemann ratio calculated by eqn.(2.4.27).
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StarG | &(G) PG L
110 0.6182 | 0.775 | 0.161
200 - 0.4759 00
211 0.0982 | 0.506 | 0.152
220 0.0942 | 0.420 | 0.148
310 |- 0.0863 | 0.333 | 0.149
222 - 0.0735 | 0.286 | 0.145
321 0.0211 | 0.239 | 0.144
400 0.0559 | 0.185 | 0.146
411 0.0220 | 0.159 | 0.144
330 0.0220 | 0.173 | 0.141
420 - 0.0230 | 0.138 | 0.142
332 | -0.0373 | 0.119 | 0.140
422 - 0.0198 | 0.101 | 0.139
510 0.0073 | 0.079 | 0.141
431 0.0073 | 0.088 | 0.138
521 | 0.0211 | 0.061 | 0.138
440 0.0068 | 0.057 | 0.135
530 - 0.0087 | 0.047 | 0.135
433 |- 0.0087 | 0.045 | 0.136

Table 2.12: The bce freezing parameter of the OCP-DB for S(0) = 0.0256
and I'. = 145.30 . &(G) are the direct correlation function as a function of
I' at the different stars, pa = pc/(1 + 1), which can be compared with pg of
the OCP-RB and pg are the order parameters evaluated from eqn.(2.4.13).

L is the Lindemann ratio calculated by eqn.(2.4.27).
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StarG | &(G) PG L ¢(@G) iZe} L
110 0.6387 | 0.790 | 0.154 || 0.6446 | 0.747 | 0.172
200 | -0.5168 | 0.0035 | 0.531 || - 0.1340 | 0.565 | 0.170
211 0.1175 | 0.530 | 0.146 || 0.1232 | 0.469 | 0.160
220 0.0895 | 0.444 | 0.143 || 0.0879 | 0.387 | 0.155
310 - 0.1023 | 0.356 | 0.145 }| - 0.1070 | 0.292 | 0.158
222 - 0.0727 | 0.312 | 0.140 || - 0.0722 | 0.259 | 0.151
321 0.0320 | 0.262 | 0.139 || 0.0353 | 0.213 | 0.150
400 0.0602 | 0.203 | 0.142 || 0.0612 | 0.150 | 0.155
411 0.0159 | 0.178 | 0.139 | 0.0139 | 0.132 | 0.151
330 0.0159 | 0.193 | 0.136 || 0.0139 | 0.155 | 0.145
420 - 0.0314 | 0.156 | 0.137 || - 0.0338 | 0.116 | 0.148
332 | -0.0401 | 0.138 | 0.135 || - 0.0407 | 0.106 | 0.144
422 - 0.0158 | 0.117 | 0.135 || - 0.0144 | 0.087 | 0.144
510 0.0138 | 0.091 | 0.137 || 0.0158 | 0.060 | 0.148
431 0.0138 | 0.103 | 0.133 || 0.0158 | 0.076 | 0.142
521 0.0201 | 0.071 | 0.134 || 0.0196 | 0.047 | 0.144
440 0.0022 | 0.069 | 0.130 || 0.0007 | 0.050 | 0.138
530 - 0.0138 | 0.056 | 0.131 || - 0.0152 | 0.038 | 0.140
433 - 0.0138 | 0.055 | 0.131 || - 0.0152 | 0.039 | 0.139

Table 2.13: The bcc freezing parameter of the OCP-DB for S(0) = 0.023 (
. = 161.75 in the 2™ — 4th when PG, was fized (very small);and T'. = 166.85
in the 5 — T when &(Gy) was fized to be —0.1340 ). pg = pa/(1 + 7).
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2.7 Freezing of Alkali Metals

The combination of the forementioned results for ionic pair structure of the
liquid alkalis and of empirical facts relating to their liquid-solid transition
(section 2.1 and 2.5) suggests that a primitive view of phase transition of the
liquid alkalis could be obtained by regarding the liquid phase near freezing
as a classical ionic plasma embeded on a background which is endowed with
deformability at long-wavelengths, to allow for perfect screening of the ions
by the conduction electrons and for a finite compressibility of the system.
Indeed, within the framework of the density wave theory of freezing 49 the
phase transition is associated with the spontaneous appearance of order
parameters which are driven, at the simplest level of approximation, by
the liquid compressibility and by the structure factor at wave numbers
corresponding to the various stars of reciprocal lattice vectors of the crystal.
The first star of RLV, i.e. the (110) star for the bcc lattice, is in approximate
correspondence with the main peak in the liquid structure factor and thus
lies in a region of wave numbers such that electronic screening is already
essentially immaterial in determining the ionic pair structure of the liquid
metal.

The above picture of the liquid-solid transition in alkali metals, though
appealing because of its simplicity, needs careful examination. As we have
already discussed the freezing of the OCP on a rigid background (section
2.6), the important role of higher-order corrections in the fluid phase is quite
evident in assisting the phase transition, In essence, the fluid structure of the
OCP, while appropriately soft to modulation in the (110) star of RLV of the
bec lattice, is rigid against modulation in th (200) star, which must therefore
be assisted by couplings to other order parameters. Extrapolating these
considerations to freezing of alkali metals, one expects that special attention
should be given to the volume change and to the (110) and (200) stars for
microscopic order parameters. An earlier evaluation of th phase transition in
Na *° has included only the (110) and (211) microscopic order parameters,
in correspondence with the first two peaks of the liquid structure factor.

The relative behaviour of the liquid metal and the OCP model at the
(200) star is particularly worth of attention in view of the analysis given
by Dobson % of X-ray and neutron diffraction intensity data for liquid Na
and Al, following an earlier proposal by Egelstaff et al '*°. Dobson analysis
gave evidence for some amount of medium range ordering for the conduction
electrons in these liquid metals, which is revealed by excess X-ray scattering
intensity peaking in correspondence with the appropriate (111) and (200)
stars (fir 2.4). Such ordering is, of course, completely missing in the OCP
model and may assist the phase transition in the liquid metals.

Our calculation of freezing of the OCP-DB into the bcc lattice, in the case
where we assumed pg, = 0 (section 2.6), can be related to the freezing of the
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Figure 2.4: Substracted structure factor results :(a) for sodium where indezed
positions of diffraction are from face centered cubic lattice of a, = 5.384, and
(b) for aluminium where indezed positions of diffraction are from a structure
of the original BiF; type, assuming that the lattice is made up from electrons
occupying the Flourine sites. From ref. [139]

alkali metals. In fact, the effect of deformability has been introduced through
the long-wavelength structure factor 5(0) [i.e. through the finite value of ¢,].
We have chosen different values of §(0) which falls in the range of the liquid
alkali metals near freezing as it is known from available data in the literature.
We have noticed an increase in the entropy of melting which is in qualitative
agreement with the data on the entropy of melting of alkalin metals relative
to that of the OCP-RB (table 2.15), while we have noticed a decrease in the
value of I'; which is in disagreement with the evidence that we have quoted
in section (2.1) for melting of alkali metals both at atmospheric pressure
(Te = 180 + 210) against I'. = 178 for the OCP-RB and under pressure
(T'c decreasing with decreasing volume change across the phase transition).
Thus, the most likely source of uncertainty in our results is the handeling
of ordering at (200) star. We have already stated two alternative extreme
viewpoints that could be taken with regard to this failure of the theory, that
is (i) either the order parameter at the (200) star is very small in the hot
solid, or (ii) the microscopic couplings between the ionic order parameters
and the electronic parameters assist ordering in the (200) star.

Since our approach does not allow us to check these possibilities, we
have examined their consequence separately by asking which value of pg,, or
alternatively of ¢(G,), would be compatible with a value of I'. for the QCP-
DB lying in the range appropriate for alkali metal at standard pressure. Our
calculations are tabulated in table (2.14), which can be compared with our
tabulated results in table (2.15) of the OCP-DB and with the empirical data
for alkali metals. The viewpoint (ii) gives overall better agreement with the
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data and it is remarkable that in this case the Lindemann ratio at the (200)
star near melting falls in the general pattern set by the others. However,
in view also of the fact that the diffraction patterns from the liquid alkalis
show that the separation between first and second neighbours in the bcc solid
has been obliterated on melting, we feel that the viewpoint (i) can not be
completely rejected.

In summary, we have interpreted the ionic pair structure in the liquid
metals as that of a classical ionic plasma with long-wavelength screening
by the conduction electrons. We have seen that within this simple model
and within the qualitative uncertainities that affect the theory of the phase
transition, a reasonable account of its thermodynamic parameters and of the
state of order obtaining in the bcc solid at melting can be obtained.

We have focussed attention in our discussion on the behaviour of the
Fourier transform of the periodic crystalline density at the (200) star of
reciprocal lattice vectors. The difficulties of the theory in this connection are
qualitatively similar to those already well known for Wigner crystallization
of the the classical plasma on a rigid background. Our results suggest that
the phase transition in the alkali metals may also assisted by medium range
ordering of the conduction electrons in the liquid, which is indicated by
differences of X-ray and neutron scattering intemsities from liquid Na as
analysed by Dobson '*?. However, the possibility also suggests itself that
anharmonicity in hot bee crystals may appear as a premelting phenomenon
through a rigid decrease of scattering at the (200) Bragg diffraction spots.
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StarG @) PG L ¢@G) PG L
110 0.6804 | 0.822 | 0.141 || 0.6804 | 0.690 | 0.194
200 |- 0.6108 | 0.009 | 0.488 || - 0.3503 | 0.475 | 0.194
211 0.1600 | 0.584 | 0.135 || 0.1600 | 0.401 | 0.175
220 0.0740 | 0.502 | 0.132 || 0.0740 | 0.365 | 0.162
310 | -0.1369 | 0.412 | 0.120 || - 0.1369 | 0.223 | 0.174
222 | -0.0660 | 0.373 | 0.117 || - 0.0660 | 0.212 | 0.162
321 0.0566 | 0.320 | 0.118 || 0.0566 | 0.172 | 0.159
400 0.0651 | 0.249 | 0.132 || 0.0651 | 0.099 | 0.171
411 |- 0.0010 | 0.224 | 0.129 || - 0.0010 | 0.090 | 0.164
330 |- 0.0010 | 0.247 | 0.125 || - 0.0010 | 0.128 | 0.152
420 |- 0.0488 | 0.202 | 0.127 || - 0.0488 | 0.083 | 0.158 |
332 | -0.0419 | 0.187 | 0.124 || - 0.0419 | 0.083 | 0.151 |
422 |- 0.0035 | 0.160 | 0.124 || - 0.0035 | 0.067 | 0.151
510 0.0279 | 0.121 | 0.128 || 0.0279 | 0.037 | 0.162
431 0.0279 | 0.144 | 0.123 || 0.0279 | 0.060 | 0.148
521 0.0139 | 0.100 | 0.124 || 0.0139 | 0.030 | 0.154
440 |- 0.0098 | 0.102 | 0.120 || - 0.0098 | 0.041 | 0.142
530 |- 0.0236 | 0.083 | 0.122 || - 0.0236 | 0.026 | 0.147
433 | -0.0236 | 0.087 | 0.120 || - 0.0236 | 0.030 | 0.144

Table 2.14: The bee freezing parameter of the alkali metals for S(0) = 0.023
( T. = 202.5 in the 2™ — 4% when pg, was fized (very small);and T'. = 202.5
in the 5% — 7" when &(G;) was fized to be —0.3503 ). pg = pg/(1 + 7).
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Chapter 3

FREEZING OF A BOND
PARTICLE MODEL FOR
LIQUID GERMANIUM
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INTRODUCTION

Considerable effort has been given for some years to developing models
of interatomic forces aimed at accounting for bond directionality in liquid
and amorphous state calculations. In this chapter we are concerned with the
freezing of a bond model for liquid germanium.

In section 1 we give a short introduction to the structure of covalently
bonded systems, by recalling some of the basic experimental facts relating
mainly to the medium-range order that exist in the disordered states of
these materials. Various theoretical approaches are also briefly discussed:
after a mention of the basic approach using quantal simulation techniques,
and in particular the Car-Parrinello method, we refer to models involving
three-body potentials to account for the directionality of covalent bonds, and
introduce the bond particle model. The early uses of this model in treating
the lattice dynamics are reviewed in section 2, which further presents the
melting criteria that follow from the model and its use in the evaluation of
liquid structure.

Starting from this calculated liquid pair structure, the process of
equilibrium freezing is discussed qualitatively in section 3, and evaluated
in section 4 within the framework of the density wave theory. Finally, in
section 5 we briefly report on an evaluation of freezing for a liquid having
the structure of amorphous germanium.
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3.1 Introduction to the Structure of
Covalently Bonded Systems

Increasing theoretical attention has been given in recent years to the structure
of covalently bonded systems in disordered states. An amorphous or vitreous
state can be prepared in many of these materials and it is useful to consider
its structure in parallel with that of the liquid near equilibrium freezing.
In this section we will consider the group-IV and III-V semiconductors,
dichalcogenides of group-IV element and some halides of divalent metals. We
shall consider in more detail liquid germanium near freezing and amorphous
germanium in the following sections.

The electropositive atom in a compound such as GeSe, or ZnCl,
is tetrahedrally coordinated by atoms of the other species. Fourfold
coordination is successfully distinguished from others in the crystal structure
classification diagram (fig. 3.1) built by Anderioni *2 for sp bonded (non-
transition) AB; compounds on the basis of ab initio electronic parameters
of the atomic constitutes. These are s and p orbitals (nodal) radii, which
measure the size of core orthogonalisation holes for valence electrons in each
angular momentum state. Such atomic parameters reflect basic information
on the valence electron states of the constituent elements and hence on the
bonding properties. '

The classification scheme for sp bonded AB; compounds is based on the
orbital nodal radii A/¥(l = 0,1) for each element E. Elemental coordinates

B = S(NF +307)
and
1
= Z(3N¢)E - NlE)

are constructed from these, and hence compound coordinated ¥ = y4 — yp
and X = z4 + zp. The elemental coordinate yg measures the average size
of the inner core seen by the valence electrons. Increasingly negative values
of ¥ broadly correspond to increasing ionicity of the bond, while X is an
inverse measure of bond directionality !*%. Figure 3.1 shows how the various
ABj; compounds distribute themselves in the (X,Y) plane. The coordination
number increase with increasingly negative ¥ and/or increasing ¥, and the
separation between structures with different coordination numbers is well
represented. Tetrahedral-type coordination are found near the left-hand top
of the plane, i.e. at low ionicity and strong bond directionality. Among these
lie the glass-forming systems.

Tetrahedral units can form a network by connecting in two basic
alternative way,i.e. by corner sharing or by edge sharing. There consequently
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Figure 3.1: Classification of crystal structures for sp bonded, double-octet
AB; compounds. The plot discriminates between three dimensional and layer
structures and between different coordinations (in parentheses). Misplace-
ments ocure for Hg halides. From ref. [1{2]

is variety already in the crystal structures that may be realized. For instance,
pure edge sharing in SiSe,, mixed edge and corner sharing in GeSe; and pure
corner sharing in 570, yield crystal structures composed of 1.D,2D and 3D
regular networks, respectively. Various allotropic crystalline forms may also
exist for a given compound, a well-Known case being 5:0,. Figure 3.2 shows
all the possible forms of bonding around a tetrahedral unit.

The structure of glassy and liquid states of these compounds can clearly
be viewed as disordered networks of somewhat deformable tetrahedra. An
important structural question concerns the relative weight of corner and edge
sharing in the disordered states. This also has dynamic implications, as
studied e.g. by Sugai ** in the case of Gie and 57 chalcogenide glasses: the
structure of the vitreous state is reflected in Ramman scattering peaks and
their splitting (fig. 3.3). The structure of vitreous silica a — 520, was studied
through inelastic neutron scattering by Price et al *°: the various peaks in
the effective density states G(E) (which is related to the average scattering
function < S(k, E) >) were ascribed to the rocking, bending, and stretching
motions of the S7 — O — St bond (fig. 3.4).
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Figure 3.2: All possible forms of bonding around a tetrahedral unit (for
Ge and Si chalcogenide glasses, a random network of methane like MX4/,
molecules): from (a)-(e) consist of X-X bonds and corner sharing bonds;
from (f)-(k) consist of X-X, corner sharing and edge sharing; and (i) is for
only edge sharing bonds.
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Figure 3.3: The Ramman spectra in GeS,, GeSes, SiSy and SiSe, glasses.
The lower scale is for selenides and the upper is for sulfide. The upper scale
is contracted by (Ms/Ms.)*?. From ref. [144]
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(c) density of state calculated from the 334-atom Bell and Dean model,
with boundary atoms damped. The features labeled As, $S, R and C in (c)
correspond respectively to different modes in terms of the direction of motion
of an O atom relative to its two Si neighbours being “asymmetric stretch”,

“symmetric stretch”, and “ rocking”, and to modes dominated by “cation”
(S1) motion. From Price et al [1{5].
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3.1.1 Some Basic Experimental Facts Concerning
Structure

In the analysis of glassy structure by diffraction methods,the standard
procedure involves the measurement of spherically averaged intensity data
over a range in k(= 4rsinf/)) from 0.247! to 204~'. These data are then
elaborated to extract the familiar pair distribution,or radial density, function.
There has been enormous amount of data collected over the years on glassy
(non-crystalline or amorphous) solids and our intent in this section is to
outline some general features of glassy structure.

The diffraction patterns of glasses reflect the medium-range order arising
from the connectivity of basic tetrahedral units through a first sharp
diffraction peak (FSDP) in the vicinity of k, ~ 1.0 — 1.54~'. Moss and
Price ¢ have noticed that the general relation k,d >~ 2.5 holds between the
FSDP position k, and the first-neighbour distance d in a variety of halide,
oxide and chalcogenide glasses, irrespectively of the network dimensionality
in their crystalline state. Figure 3.5 illustrates the FSDP for several glasses,
by plotting the neutron structure factor S(k) versus kd, whereas in table
(3.1) the position of the FSDP is given for a number of glasses along with
kyr,, where r, is the mean interatomic spacing derived from the macroscopic
number density p(p~' = =/67). For oxides (excepting B;O3),halides,
chalcogenides, As and P, k,d lies at about 2.5, with a spread between 2.3
and 3.1. k,7, also clusters between 3.7 and 4.8. For Se and Ge instead one
has k,d ~ 4.5, falling near the values given by the “pre-peak” in neutron
scattering from metallic glasses at k,d ~ 4.9. Moss and Price suggest that
the observed diffraction patterns could arise from essentially random packing
of structural units, through a combination of the form factor for individual
units and interference function for their centres.

The main observed features of the diffraction pattern, including the
FSDP, are preserved in the liquid state in ZnCl; *7 and in GeSe, 8. In
fact, the height of the FSDP in molten GeSe, is essentially the same as in
the low-temperature glass, whereas the other features of diffraction pattern
show the expected thermal attenuation and broadening. On the other hand,
although the diffraction patterns of amorphous Silicon '* and germanium !*°
show a FSDP lying at k, ~ 4.5, the diffraction patterns of these elemental
semiconductorsin the liquid state near freezing **! show clear differences from
those of their amorphous state. Indeed, melting at standard pressure brings
elemental and polar III-V semiconductors from tetrahedrally coordinated
open structures into metallic liquids having higher density than the solid
and first-neighbour coordination number close to seven %%!3, Their liquid
structure is nevertheless quite distinct from that of other liquid metals .
Specifically, their first-neighbour coordination number of order seven is still
relatively low and a second shell of neighboursis seen to lie at a short distance
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System E (AN [ d(A) | kpd | ro(A4) | kpre |
Ozides and halide glasses
B,0; 1.57 1.36 | 2.14 | 2.90 | 4.55
510, 1.55 1.61 | 2.50 | 3.07 | 4.75
GeO; 1.55 1.74 | 2.70 | 3.12 | 4.83
BeF, 1.63 1.54 | 2.51 | 2.92 | 4.76
ZnCl, 1.09 2.29 | 2.49 | 3.76 | 4.10
Chalcogenide Glasses
PypSego 1.16 2.29 | 2.66 | 3.78 | 4.38
Si32Sess 1.02 2.30 | 2.35 ] 3.92 | 3.99
St94T erg 1 1.04 2.60 | 2.69 | 4.09 | 4.25
GeS, 1.04 2.22 | 2.31 | 3.76 | 3.91
GeSe, 1.01 2.37 | 2.39 | 3.86 | 3.90
AsySes 1.27 2.44 | 3.10 | 3.77 | 4.79
Ass 5, 1.26 2.28 | 2.87 | 3.66 | 4.61
FElemental Semiconducting Glasses
Se 1.88 2.37 | 4.56 | 3.89 | 7.32
P(red) 1.04 2.29 | 2.38 | 3.54 | 3.69
As 1:03 2.49 | 2,56 | 3.69 | 3.80
Ge 1.89 2.46 | 4.43 | 3.64 | 6.88
Metallic Glasses(Pre Peak)
C'ogo Pag 2.30 2.34 | 5.38 | 2.77 | 6.37
Nigs Zrgs 1.62 2.66 | 4.30 | 3.31 | 5.36
Ni4oPso 1.90 2.60 | 4.94 | 3.03 | 5.76
Metallic Glasses(Main Peak)
Nigs Zres 2.62 2.66 | 6.97 | 3.31 | 8.67
Fe 3.09 2.55 | 7.88

Table 3.1: Positions k, of the first peak in the diffraction pattern com-
pared with the nearest neighbour distance d and mean interatomic spacing

(-t = /6. Erom ref146].
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Figure 3.5: Neutron structure factors S(Q) for vitreous Si0;, GeSey, 435,
and B,O3. From ref. [146]

beyond the first shell, in a region of interatomic separations where the pair
distribution function g(7) in other liquid metals has its minimum (fig. 3.6) %2,
Similarly, the liquid structure factor S(k) shows a distinctive shoulder on the
large-k side of its main peak, merging into a single symmetric broad peak
with increasing temperature of the liquid phase (fig. 3.7) %%, The FSDP
observed in the amorphous state at k, ~ 1.947! is no longer evident in the
melt. Similar structural features have been observed in the total diffraction
pattern from molten Gads 154,
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Figure 3.7: The S(k) for liguid Ge obtained from neutron diffraction data
(full curve, at 1000°C, by Salmon []) and from X-ray diffraction data (broken
curve, at 980°C, by Waseda [13]); doted curve represent also X-ray diffraction
data at 1047°C. After Salmon [153].
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3.1.2 Theoretical Approaches

A number of theoretical approaches have been developed in the recent
literature to deal with the disordered states of the above systems. A specific
role of the valence electrons is clearly expected in group-IV elements or
III-V compounds and can be exhaustively examined by quantal simulation
techniques. The Car-Parrinello method, combining density functional theory
for the valence electron density with molecular dynamics for the ionic cores,
has been tested on silicon '°° and has usefully supplemented experiment in
the case of liquid carbon !*¢. The metallic melt of elemental semiconductors
has also been investigated by conventional pseudoatom approach of the
electron theory of metals 157,

Within the theoretical framework provided by the concept of effective
atom-atom interactions, the directionality of covalent bonds can be success-
fully modelled by invoking suitable three-body contributions to the inter-
atomic potential energy function for computer simulation, in addition to
pair-potentials 1°8. Without inclusion of such three-body forces, the diamond
crystal structure in elemental semiconductors is found to be unstable against
close-packed structures. Table (3.2) compares the structure factor features
from calculation of Stillinger and Weber '°® with experimental results for
liquid Si. The model potential-energy function proposed by Stillinger and
Weber has been adopted by a number of other authors, among which we
mention Kluge et al '*® and Luedtke and Landman **° for amorphous silicon
(fig. 3.8) and Vashishta et al *® for the molten and glassy states of GeSe,
(fig 3.9). These models attribute to three-body forces the role of select-
ing preferred values for bond angles and of describing stiffness against bond
bending. It is remarkable that such interatomic force models are able to ac-
count for the observed structural features of the disordered solid and liquid
states for both dichalcogenides and elemental semiconductors, in spite of the
fact that the melting process is qualitatively different in these two types of
material and that the models do not explicitly display the structural role
of the valence electrons. The evaluation of partial structure factors and of
distributions of bond angles in these simulations provides additional insight
into the state of short- and medium-range order in the disordered materials,
subject to the limits of realism and accuracy of the model. In addition, the
approach of Vashishta et al '8! to vitreous and liquid GeSe, offers a natural
explanation for the afore-mentioned observed insensitivity of the FSDP to
temperature, by suggesting frustration of medium-range order in the glass
by its higher density.

From the viewpoint of conventional liquid structure theory based on
the use of integral equations relating structure to interatomic forces, it is
pertinent to ask whether strongly directional interatomic forces could still
be mimicked through suitable pair potentials. Ballone et al '®2 have drawn
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Feature Moleculardynamics | Ezperiment
FirstPeak 2.53 2.80
Shoulder 3.25 3.25
SecondPeak - 5.35 5.75
ThirdPeak 8.16 8.50
FourthPeak 10.60 11.20

Table 3.2: Comparison of structure factor positions in k space. (Units for k
are A7) from ref [158].
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Figure 3.8: A comparison of the neutron scattering structure factor S(k) for
amorphous silicon and the Kluge et al calculation [159] using Stillinger and
Weber potential for the system at 27 K.
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Figure 3.9: Neutron static structure factors in glassy and molten GeSe,.
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attention to non-additive charged hard sphere models in relation to molten
ZnCl,. The crucial observation *7 is that Zn — Zn first neighbour distance
in the melt lies at about 3.8 4, whereas Coulomb repulsions between cations
would place their separation at about 54 as is indeed observed in molten
alkaline earth chloride ®1%%, Both central distance-dependent screening of
Coulomb interactions and angular-dependent forces, which may be mimicked
through nonadditivity of ionic radii, are needed for a qualitative account of
the structural data 162,

At a more general theoretical level an interesting proposal, pertaining to
three-body interaction models, has been made by Iyetomi and Vashishta 54,
By an extension of density functional theory for inhomogeneous systems, in
which they regard the free energy as a functional of both the single-particle
density and the two-body distribution function, they discuss how three-body
interactions could be incorporated into an effective pair potential for the
evaluation of the two-body distribution function g(r) of the homogeneous
disordered material. The simplest expression for the effective pair potential,
as obtained within a hypernetted chain (HNC) approximation scheme,
involves a dependence on g(r), since it is obtained by averaging the three-
body interaction between a given pair of particles and a third particle by
means of the two-body distribution function relating each member of the
pair to the third particle. :

An alternative route for the theory involves the development of models
which describe at a primitive level the interatomic bonds and keep track of
their correlations. A model of this type has been proposed in an entirely
different context by Smith and Nezbeda !®°. It relies on near-peripheral
attraction sites on hard spheres or dumbbells in order to mimic association
and polymerization in hydrogen-bonded fluids. Kolafa and Nezbeda °® have
used such a model in Monte Carlo studies of water and methanol, while
Wertheim '®7 has made significant progress in solving it by integral equation
techniques of the Percus-Yevick type. Extensions of this model, invoking
direct correlations between the peripheral interaction sites, may possibly be
useful to deal with glass-forming liquids. The configuration of the interaction
sites on the periphery of each atomic sphere would be determined by the
preferred bond angles and strong directionality in the effective atom-atom
interactions would clearly result.

In relation to the molten state of semiconductors, on the other hand,
Ferrante and Tosi '® have proposed and examined pseudoclassical models
for germanium, which are inspired to the bond-charge model proposed a long
time ago by Phillips '® for their crystalline state. We are going to report
the main features and results of the bond-particle models in the following
section.
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3.2 DBond - Particle Model for FElemental
Semiconductors

In this section we are going to discuss the bond-particle model and its
application to the structure of elemental semiconductors in the liquid and
supercooled liquid state. This model introduce along with the atomic
component, an auxiliary component (the bond-particle) to account for the
chemical bonding and to mimic the angular dependence of the atom-atom
interactions.

The bond-charge model was first proposed by Phillips '"® for crystalline
elemental semiconductors. Martin "2 applied this model in the calculation
of phonon-dispersion curves in silicon. A modified bond-charge model was
proposed by Weber 1™, with application to phonons in Ge.

3.2.1 Bond-Charge Model for Lattice Dynamics

The bond-charge model as proposed by Phillips represents the electronic
charge distribution in each covalent bond as a point-like charge of suitable
amount, localised at mid distance between each pair of neighbouring atoms.
the bond charges participate in the lattice dynamics and indeed an important
application of the model has been its use in the calculation of phonon
dispersion curves by Martin. He obtained fair agreement with experimental
dispersion curves, except that the flattening of the transverse acoustic (TA)
phonons could not be reproduced.

As early as 1959, Cochran '™ pointed out that this flattening of the
TA branches, which in a Born and von Karman model requires very long-
range forces constants with a large number of parameters of doubtful
significance 1%, is in fact due to mainly short-range ion-electron and electron-
electron interactions. Cochran suggested a model known as the shell model
(SM), in which he represented the valence electron charge density around
the atom as a rigid shell coupled with the atom through an elastic force, and
introduces non-central forces between the nearest-neighbour shells to account
for the interaction between the atoms.

In what follows we will give in some detail the argument presented by
Phillips '™ and the calculation of Martin '">. The electronic dielectric
constant €,, which describes the screening of ion-ion forces at distance large
compared to a nearest-neighbour distance, in semiconductors has a finite
value. This is due to the presence of the gap, given by the Penn relation '™

€, = (hw,/E,)*C + 1

where w, is the frequency and C' is a constant of order unity.
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Figure 3.10: Separation of wvalence charge distribution in diamond-type
semiconductors into atomic and bonding parts. From ref. [170]

In a diamond-type semiconductor, the valence charge is next subdivided
into two parts. The first (of magnitude Z()) is centered on the atoms and
consists of screening clouds which are approximately spherically symmetric
about each atom. The second part of the valence charge, which describes the
valence bonds, is represented by point charges of magnitude Z(?) centered
at bond sites half-way between nearest-neighbours. The bonding charge is
given by

Z® = _le|/e,

per atom, so the charge per bond is Z, = 2Z(3). The nature of the
electron charge distribution is sketched in fig. 3.10, where we can see that
the charge per bond is Z, = —2¢/e and the charge of the screening cloud is
Z(") = —4e(1 — 1/e,) surrounding the atomic cores of Z = --4de. In the case
of Ge with ¢, = 16, Z;, = 0.125e.

Following Phillips’s bond-particle model, Martin has used a dielectric
screening model to calculate the phonon spectrum of Si. He assumed that the
bare-ion-core potentials are screened in a nearly free-electron-like manner, i.e.
by the diagonal elements of the inverse dielectric function e~ (q+ G, q' + G').
This metal-like binding gives rise to short-range central forces between the
ions, which die out rapidly beyond nearest neighbours. The effect of the off-
diagonal elements of ¢~* is described by Coulombic interactions involving the
bond charges. These forces represent the covalent character of the binding;
they lead to effective noncentral forces between the ions, which produce the
stability of the diamond structure against shear. The specific assumption
was made that the bond charges stay midway between the ions, even when
the ions are displaced. '

In detailed calculations Martin '™ considered the Coulombic interaction
between the bond charge-ion and bond charge-bond charge as (Z,2_)/e,r

108



Frequency in units of 10" cps

2 o =
T T ¥
- r

~
T

T

LI I O B R S U |

{131

T
+ . s
N o
4 s {14
a

AL
ar’]

a

-1z

—10

— &

4t

T O T O T O I

cll!'lll!l
0 02 04 06 08 1O

0 02 04 06 08

mLe 0.8
Reduced Wove Vector Coordinate

Figure 3.11: Phonon dispersion curves for Si for the principle symmetry
directions [100], [110], [111] after Martin [172]. Solid line shows the
theoretical calculations, circles, triangles and squares are the ezperimental

data. From ref. [172]

and (Z_Z_)/e,r with Phillips’s values Z, = 4 and Z_ —2. Then
the dynamical matrix D was expressed as D = D 4 DIB 4 DBB where
D' includes all the diagonal terms, which are of the form of central ion-
ion interaction, and the terms DB and D23 are, respectively, appropriate
sums over ion-bond and bond-bond interactions, thus introducing effective
noncentral forces between the ions. Within this model the phonon dispersion
curves for i were calculated for the principal symmetry directions [100],
[110] and [111] and are represented in fig. 3.11. The results obtained in
this model suggested a two-parameter “simple bond-charge” model which
is applicable to all the diamond-structure crystals because it contains only
purely Coulombic and nearest neighbour non-Coulombic forces. In this
simplified model the bond charge Z] is one of the two parameters, to be
compared with the value given by Phillips (Z, = —2e), whereas the second
parameter describes the non-Coulombic forces. Within this simple bond-
charge model the dispersion curve along the [100] direction in diamond and
S are illustrated in fig. 3.12, and the resulting values for the parameter 7
are Z, = —3.2e for diamond and Z] = —2.6e for Ge. This simplified model
reproduce qualitatively the main feature of the dispersion curves.

A modified bond-charge model was later proposed by Weber '™ for
phonons in semiconductors of diamond structure. The flattening of the
transverse acoustic phonon branches in these materials was reproduced
and is due to interactions involving the bond charges, when these move
adiabatically. Good agreement with experiment was obtained using this
model for phonons in Ge.

Weber introduces four type of interactions: (a) central ion-ion forces;
(b) Coulomb interactions of the ions and bond charges; (c) central ion-bond
charge forces and (d) bond-bending forces. These forces are metal-like in (a)
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Figure 3.12: Comparison of diamond and §1 [100] vibration frequencies, using
the simple bond charge model suggested by Martin [172].

Figure 3.13: Schematic presentation of the adiabatic bond charge model
proposed by Weber [173]. (a) represents ion-ion interaction. (b) represents
ion-bond charge interaction responsible for stabilizing the bond-charge in its
equilibrium position. (c) represents bond-bond (noncentral) interaction.

and covalent in (b)-(d). These four types of interactions are schematically
sketched in fig 3.13 and the constraint that the bond charges are fixed on the
midway position between the atoms is removed. Instead, they are allowed
to move adiabatically following the movement of the ions. Short rang ion-
bond charge forces are introduced to stabelize the bond charges in their
sites. This model employs four-five disposable parameters and was applied
in lattice dynamics calculation, 57, Ge and a— Sn, with good agreement with
experimental data (fig. 3.14).

An extension of Weber’s model had been developed by Goldberg et al ™"
and Winer and Wooten '™ in order to study the vibrational properties of
metastable phases of Si and Ge. The extension takes into account distorted
bond lengths and angles.

Finally, electronic charge densities were calculated by Walter and Co-
hen '™ for different diamond and Zinc-blend semiconductors, using wave
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Figure 3.15: A topological map of the valence pseudocharge of Ge in the (110)
plane. The position of this plane in the unit cell is shown in the inset. From

ref. [179]

functions derived from pseudopotential band-structure calculations. The re-
sults of these calculation were used to analyse the bonding properties of
the different crystals, and were also used to estimate the covalent-bonding
charge Z,. In the case of Ge the calculated value was Z, = —0.146, which is
not far from the value calculated within the Phillips model (Z, = —0.125).
Figure 3.15 illustrates the valence electron density contour map in the [110]
plane, where the covalent bonding is seen to be an important factor in the
total valence charge distribution. The symmetry of the bond charge (ne-
glecting the effect of overlap with adjacent bonds), but the actual ellipsoidal
distribution is nearly spherical, with a small elongation along the bond axis.
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3.2.2 Melting of Elemental and III-V Semiconductors

At melting group IV elemental and group III- group V polar semiconductors
suffer breakage in the covalent bond with a collapse in volume, a marked
increase in near neighbour coordination, and a change in electrical transport
character to metallic-type conductivity. Such radical changes in atomic and
electronic structure on melting can be viewed in a primitive chemical picture
of bonding as associated with a release of valence electrons from interatomic
bonds into conduction states.

The above elementary picture of semiconductor melting is naturally
related to the bond charge model of Phillips %, that we have already
discussed in the previous section. Such a primitive model for semiconductor
melts was explored by Ferrante and Tosi *® with specific application to
the liquid structure of germanium as a test case. They regarded the
Ge as a mixture of hard-sphere atoms and point-like bond particles, with
mutual attractive interactions which can induce localization of bond particles
between pairs of atoms under steric constraints limiting the coordination of
an atom by bond particles to a maximum of 4 in tetrahedral configuration.
Such constraints can be most simply imposed by fixing the distance of closest
approach between bond particle from tetrahedral coordination geometry.
The localizing interaction are alternatively chosen as Coulombic, as in the
original model of Phillips, or represented by a narrow attractive well attached
to the surface of each atom. In either case there is a simple coupling strength
parameter in units of the thermal energy, which can be continuously varied
through the liquid phase. It is given respectively, by I' = z®¢*/akpT', where
z is the amount of bond charge and a = (47n4)""/? in terms of the atomic
number density na, or by V= = V/kpT, where V is the well depth. This
model resembles the structure of real liquid germanium when the coupling
strength parameters take the approximate values V=~ 7.5 or I' ~ 24. Given
the melting temperature and the density of germanium. these values can
be compared with the estimated values (a) from knowledge of the valence-
conduction energy gap Eg of Ge at room temperature (V =~ E; >~ 0.7ev yields
V* ~ 6) and (b) from the estimates of bond charges (z ~ 2/,/e; ~ 0.5, or
z ~ 0.65 and z ~ 0.40 from the fits of Martin "> and Weber '™ to phonons,
yield T in the range 50 — 20).

The similarity in melting behaviour for elemental and III-V polar
semiconductors immediately suggests the alternative melting criteria T3,
n'/?/e, or T, < E, for the melting temperature satisfied in these materials

168 Figure 3.16 shows the correlations of the melting

at standard pressure
temperature with the valence-conduction band gap and with the quantity
n'/3¢,, which reflect satisfaction of the relations stated above for the group

IV elements and group III-group V compounds.
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Figure 3.16: Correlation of the melting temperature T, of elemental semi-
conductors and III-V compounds with the valence conduction band gap E,
(left) and with the quantity n'/3¢, (right), where n is the number of atoms
per unit volume and €, the static dielectric constant of the crystal. From ref.

[168).

3.2.3 DBond Particle Models for Liquid Structure

In this section the extension and application of bond-particle models to the
liquid structure of Ge by Ferrante and Tosi '8 are presented. Their starting
point is well known of a two-component liquid as a mixture of hard spheres
(of very different sizes in this case). As we have mentioned the bond particle
component is subject to localization between pairs of atoms by attractions to
the atomic components. Localization is constrained by an upper limit of four
on the local coordination of atoms by bond particles through non-additivity
of hard-sphere diameters, by fixing a distance of closest approach between
bond particles from the size of a tetrahedron inscribed in the atomic sphere.

Their aim behind examining the model as formulated above was to
follow the structural evolution of both the atomic (4) component and the
bond particle (B) component as temperature is lowered from hot liquid
states to strongly supercooled states. Directionality of effective atom-
atom interactions and angular interatomic correlations, ultimately leading
to fourfold interatomic coordination, are progressively built into the model
as localization of bond particles sets in and grows. The model involves
only atom-atom (4 — A), atom-bond (4 — B) and bond-bond (B — B)
pair potentials and can be solved for liquid structure by standard integral
equations techniques of liquid-state theory. They examined its solution in the
hypernetted chain approximation (HNC) and in one of its currently available
refinements (HMSA) due to Zerah and Hansen 52,

Ferrante and Tosi evaluated the structure of a two-component fluid of
hard spheres, with components 4 and B having number density n4 and
np = 2n4 at temperature 7. The hard-sphere interactions are characterized
by three distances of closest approach (caa,04p and opp, say). The hard-
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sphere contact distances satisfy the approximate relations 44 ~ 2045 < d,
where d is the first-neighbour distance in the liquid, and ogg > (2/3)Y2044.
These relations imply that, even though the B component is essentially point-
like compared with the A component, no more than four B particles can be
found in immediate contact with the A particle. The atom-bond interactions
lead to strong relative ordering of the two components in the liquid can be
chosen as a localized attraction (localized attractive model, or LAM) in the
form of a narrow potential well centered at a distance d/2 from the center
of each A particle and uniformly spread over its surface (see fig. 3.17). The
well is taken to have a Gaussian shape of half-width ¢ and depth V, with
o ~ 1/2d — 645. The well depth V enters the model only in units of the
thermal energy kpT, yielding a coupling strength parameter V* = V/kgT
which is allowed to increase continuously from zero in order to follow the
process of localization of the bond particles.

Alternatively, the hard-spheres are allowed to carry charges and localiza-
tion is left to A — B attractive Coulomb interactions. We shall focus bellow
on the results obtained in the LAM starting from the atom-bond (4B) and
atom-atom (AA) pair distribution functions at V* = 0, fig 3.18 illustrates
how localization of bond particles proceeds in the LAM with increasing V'~
and the structural changes that it induces in the atomic component, down
to strongly supercooled liquid states. Bond-particle localization starts to
appear at V™ ~ 2 and grows rapidly henceforward, with the exchange of
bond particles between localized states and free states (as measured by the
height g4p of the main minimum in g4p(r)) being rapidly suppressed and
the atom-bond coordination number (VN p5) increasing towards the value 4.
At V* ~ 7 (close to the value of E,/kpT,, for Ge), localization is sufficiently
strong to split the first atom-atom coordination shell into two shells. This
is seen in fig 3.18 32183 from the behaviour of the atom-atom coordination
number (N4 ) and of the position of the main minimum (Ra4) in gaa(r). At
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Figure 3.18: Schematic representation of bond particle localization and
induced atomic structure changes with increasing coupling strength V™.
The top drawing show the atom-bond (left) and atom-atom (right) pair
distribution functions at zero coupling strength. The evolution of special
features of these functions, as defined in the top drawings, is shown at
constant liquid density in the bottom drawings. The dashed portion in
the curve for the atom-atom coordination number No4 shows the effect of
reducing the density from that of freezing germanium to that of compacted
amorphous germanium. The value V* = E,/kpTy, is marked on the bottom

azes. From Tosi, ref.[182].

approximately this value of the coupling strength, the atom-atom structure
in the model starts to qualitatively resemble the observed liquid structure
of germanium near freezing. In particular the value of N4, in the model is
approximately 7. It slowly decreases on supercooling, but a volume expan-
sion of the order of the observed Av/v on freezing is necessary for N4 to
move towards the value 4. Thus , the unusual sign of the volume change
on freezing is related to the need to accommodate the decrease in the atom-
atom coordination number, which is frustrated at the relatively high liquid
density.

Figure 3.19 (a) shows the evolution of liquid structure with increasing V=
at constant density. Upon incipient localization of B particles at V=~ 1—2,
the valley in S4p(k) is shifted towards the position of the main peak in
Spp(k) and a weak prepeak in S4p(k) appears in correspondence with the
main peak in S44(k). Splitting of the 4 — A first coordination shell into two
shells at V* o~ 7 appears in S44(k) as a new structure in the main peak, in
the shape of a shoulder on its large-k side. A well known qualitative feature
of the observed structure factor of liquid germanium is indeed the presence
of such a shoulder near freezing, which reduces to an asymmetry in the peak
shape at appreciably higher temperatures 3. The position of the shoulder
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Figure 3.19: In (a) partial structure factors Saa(k) (left), Sap(k) (right,
dotted curves) and Spp(k) (right, full curves) for the LAM in the HNC at
sertes of values of V™ (V* = 0,3,5,7.5,14 and24, the first and last values
being marked in the figures). The broken lines gives the HMSA results for
V* =24 and b=1. In (b) HNC partial structure factor Ssa(k) (left) and pair
distribution function gaa(r) (right) for the LAM at V* = 7.5 (full curves) and
for the BOM at I' = 24 (broken lines). The circles reports X-ray diffraction
data on liquid germanium at T = 1253 from Waseda and Suzuki [151].From

ref.[168]

in S544(k) lies in correspondence with the main peak in Spp(k). On further
increase in V™ the shoulder grows into a strong peak at essentially unshifted
position, while the former main peak is reduced to a prepeak at progressively
lower wave numbers.

While the above results are based on the HNC, Monte Carlo tests '%®
shows that this standard approximation in liquid-structure theory is surpris-
ingly accurate even for the LAM up to V* ~ 7, above which accuracy in
quantitative details is progressively being lost in the atom-atom correlations.
The Monte Carlo runs requires large numbers of steps for equilibration and
statistical accuracy and indeed indicate strong stickiness in the model when
V™ is appreciably larger than 7.

In fig. 3.19 (b) we report the HNC results for gsa(r) and Saa(k) at
V= =17.5, together with the liquid structure data on germanium near freezing
from the X-ray diffraction experiments of Waseda and Suzuki *“*3. For

detailed discussion the reader should consult the original work of Ferrante
and Tosi 198,
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3.3 Qualitative Discussion of Freezing of a
Bond-Particle Model

In this section we are going to discuss equilibrium freezing of the bond particle
model from a qualitative point of view 182,

As show in fig 3.20, the main peak in the atom-atom structure factor
(S44(k)) in the model at V= = 7.5 has the characteristic structure of a peak
with a shoulder on its large-k side. These two features have been crudely
separated in the figure by drawing a dotted line, to indicate that they could be
viewed as a peak (the “shoulder”) with a prepeak superposed on it. We also
notice in the same figure the main feature of the other partial structure factor
of the model, namely the strong peak in the bond-bond structure factor,
Spp(k), and the deep valley in the atom-bond structure factor, S45(k), which
are in superposition with the “shoulder” in this position. These features and
their superposition with the “shoulder” show that in the liquid near freezing
there is strong short-range order in the subsystem of bond particles and in
their alternation with atoms in space.

The above observations suggest the following interpretation for the
structural results shown in fig 3.20. A part of the patterns, consisting of the
“shoulder” in S44(k) (as separated by the dotted line), the valley in S,p5(k)
and the peak in Spp(k) plus all the structures at higher wave number, could
in essence represent the form factor of relatively long-lived units consisting
of an atom surrounded by bond particles and by first-neighbour atoms in
approximate tetrahedral configuration. The remaining part of the structure,
consisting just of the peak in S44(k) (dashed line) after separation from the
shoulder, would then represent the interference between the centers of such
units. We shall for convenience refer bellow to this approximate partition of
the partial structure factors as Sfjﬁ)(k) and Sgli(k) respectively.

The qualitative structural interpretation that we have suggested above is
confirmed by the behaviour of the model on supercooling (i.e. on further
increase of V= at constant density %%, as we have already discussed in
the previous section. The shoulder in S44(k) grows in intensity without
shift in position, and indeed the whole of S,ffg(k) just shows the usual
sharpening and increase in peak intensity that are associated with a decrease
in temperature. Instead, Sﬁfj(k) decreases in intensity and moves towards
lower wave numbers, thus acquiring the nature of a FSDP ( characteristic
feature observed in glassy structures ¢, as discussed in section (3.1.1)).
The position of such FSDP is very sensitive to the detailed shape of the
second neighbour atom-atom coordination shell, showing that indeed this
structural feature directly reflects the nature of the medium-range order in
the disordered material. This behaviour of the model mimics observations on

amorphous germanium '*°, which shows a main diffraction peak at a wave
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Figure 3.20: Partial structure factors for a bond model of liquid germanium
near freezing. The various curves show the atom atom (full line), atom bond
(dashed dot) and bond bond (dashed) structure factors. The vertical bars at

the top mark the location of the allowed Bragg reflections from the diamond
structure.

number in correspondence with the shoulder in the liquid structure factor
and FSDP in approximate correspondence with the (111) star of reciprocal
lattice vectors of the diamond structure. In this viewpoint, the low density
of amorphous germanium allows a degree of medium -range order which is
strongly reduced in the liquid phase, the latter being kept at a higher density
by valence electrons in conducting states.

Using the above insight we discuss now what qualitative features may
be expected for equilibrium freezing of the bond particle model and by
implication of germanium. We refer first to our earlier discussion on the
application of density functional theory to freezing of alkali halides and binary
alloys (chapter 1, section 1.6.3). Within the same frame, the microscopic
order parameters of the phase transition are the Fourier components ps¢
and ppg of the periodic single-particle densities for atoms (4) and bonds
(B) in the crystal, G denoting the reciprocal lattice vectors (RLV). The
location of the allowed Bragg reflections from the diamond structure are
superposed at the top of fig. 3.20 on the partial liquid structure factors of
the of the bond-particle model. There clearly is good correspondence between
the (220) and (311) RLV stars and the main features in Sglﬁ)(k) Thus the
Fourier components of the periodic crystalline densities at the above RLV’s
describe “freezing of bonds” driven by tetrahedrally constrained attractions
between ionic cores and valence electrons and leading to regular tetrahedra
as components of the crystal. The connectivity that these tetrahedral
units have in the diamond structure is to be described by the microscopic
order parameters associated with the (111) star of RLV. We infer this from
the above interpretation of Sﬁi(k) and from the fact that the FSDP at
wave number in correspondence with (111) RLV star is well developed in
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amorphous germanium. However, formation of such connectivity in the
liquid is frustrated by its relatively high density. Hence, crystallization of
the liquid into the diamond structure requires volume expansion. On the
contrary, crystallization of compacted amorphous germanium is accompanied
by volume contraction. In section 4 of this chapter we shall report our
detailed results on the freezing of a bond particle model within the density
wave theory of freezing, whereas in section 5 we shall discuss our evaluation
of freezing for a liquid having the structure of amorphous germanium. In the
rest of this section we shall try to give some simple calculation in support of
the inferences that we have just made.

The main order parameters of the phase transition, in addition to the
percentual density difference n = (p, — p;)/p; between solid and liquid at
coexistence, are thus expected to be: a) charge density waves (opposite signs
for pag and ppg) at the (220) and (311) stars, and b) number density
waves (equal signs for psq and ppg) at the (111) star. For an estimate
we proceed within the framework of the density wave theory of freezing,
as extended to two-component systems by March and Tosi 2. We recall
that the theory yields a set of nonlinear equilibrium equations for the order
parameters and an equation expressing equality of the grand thermodynamic
potential in the liquid and in the crystal at coexistence. These equations
involve knowledge of the isothermal compressibility K7 and of the Ornstein-
Zernike direct correlation functions ¢,s(G) in the liquid at wave numbers
corresponding to the various stars of RLV. The relevant values of &,s(G)
are obtained from partial structure factors shown in fig. 3.20 through use
of the Pearson-Rushbrook relations and are tabulated in table (3.3). We
estimate a value of K1 o~ 2.5 x 1072cm?/dyn for molten germanium, in the
apparent lack of experimental data, by estimating the sound velocity « in the
liquid from an empirical relation between u and the atomic mass and molar
volume '®%, which is very well satisfied by the measured values of the sound
velocity in molten silicon and tin. This estimate is in good agreement with
measured value from sound velocity in molten germanium by Glasove 186,

For an order-of-magnitude estimate of the ratio psq/psg for the
microscopic order parameters at the various RLV stars,one may look at the
corresponding equilibrium equations after linearization. These give !

Jome = Y22an(G) __ (pi/ps) — 255(G)
paclrpe = (p1/ps) — €aa(G) — E45(G)/V2

where pag and ppg are expressed in units of the respective average partial
densities p4 and pp (with ps = pg = n, n being the atom number density).
Using the values of the Ornstein-Zernike functions in table (3.3), it is easily
seen that the above ratio is positive at the (111) star and negative at the
(220) and (311) stars. The preceding discussion of the phase transition in
terms of number density and charge density waves is therefore confirmed at

(3.3.1)
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AA AB BB
Cop(111) | - 2.20 | 2.50 | - 3.20

Z.p(220) | 0.13 |- 022 0.24

Zap(311) | - 0.43 |- 0.31 | 0.24

Table 3.3: Selected values of the direct correlation functions in the bond
particle model for molten germanium at V> =17.5

this level of approximation. We shall see below (end of section 3.4.2) that the
above qualitative picture is also consistent with a volume expansion across
the transition from liquid to solid.

3.4 Density Wave Theory of Freezing for a
Bond-Particle Model

In the previous sections we have described the bond particle model as adapted
to the liquid structure of elemental semiconductors (in particular germanium)
and given a simple qualitative picture of the freezing process in such a
liquid. Within the framework of the density wave theory of freezing of two-
component fluids, as developed for alkali halides and binary alloys by March
and Tosi °? (see chapter 1, section 1.6.3), we are going to evaluate in this
section the relation between liquid structure in the bond-particle model and
crystallization of elemental semiconductors. We start with brief discussion
of the partial structure factors and partial correlation functions for binary

fluids.

3.4.1 Pearson - Rushbrooke Relations .and Bahatia-
Thornton Structure Factors for Two Component
Systems

The structure of a binary fluid mixture of 4 and B particles requires for its
description three radial distribution functions (ga4(r), gss(r) and gap(r),
say). Pearson and Rushbrooke 7 introduced relations between the partial
distribution functions g.s(r) and the partial direct correlation functions
cap(r) generalizing the Ornstein-Zernike relation. These are (for o, = 1,2)

haplr) = cas(r) + 2. py [ dr'eas(r = £ )hag(r') (3.4.1)
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where hop = gag — 1, and p,’s are the number densities of species -~y
(v =< Ny > /V). At the same time the partial structure factor for a
two-component system are defined by

Sup(k) = bup + 47(paps)'’? /()m[gaﬁ(r) —1] SiZf’"rzdr : (3.4.2)
Subsituting eqn.(3.4.1) in eqn.(3.4.2), one gets
1 — (k)
) = TR el - &
~ 1 - &(k)
P T etk - B
S1a(k) 1z(k) (3.4. 3)

(1= eu1(k))(1 = E22(k)) — (k)

where ¢np(k) are the Fourier transform of the direct correlation function

cap(r).
Bahatia and Thornton '® have shown that the scattering function for a
binary structure factors Syn(k), Snc(k) and Sge (k) which are defined as

Svn(k) = N7" < p(k)p(—k) >
Scc(k) = N < A(k)A(=k) >
SNc(k) = Re< p(k)A(—k) >, (34 4)

where p(k) is the Fourier transform of the total singlet density p(r) =
p1(r) + p2(r) and A(k) is the Fourier transform of a density difference A(r)
weighted with the concentrations ¢; and ¢, = 1 — ¢1, namely

A(r) = copi(r) — cip2(r) . (3.4.5)

The structure factor (3.4.4) are linear combinations of the Sap(k) in
eqn.(3.4.2), and appropriate Ornstein-Zernike function can be correspond-
ingly defined. In particular, in the long-wavelength limit k — 0 one obtains

Scc(0) = NkpT/(8G/sc*)rpy
Swn(0) = (N/V)kgTKr 4 §*Soc(0)
Snc(0) = —§Scc(0) (3.4. 6)

where Kt is the isothermal compressibility, G is the Gibbs free energy and
6 is a dilation factor defined by
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Uy — Vg N
5 = 2 = Ty — 3.4.7
civy +cv2 V (o =) ( )
where v; and v, are the partial molar volumes, per atom of the two species.
If the partial molar volumes v; and v, are equal then Syc(0) = 0 and Syn(0)

has the form

Syn(0) = (N/V)ksTKr . (3.4.8)

In fact, in most alloys § is very small and considering Syc(0) =~ 0 is a
resonable approximation. From eqn.(3.4.4) it is clear that in the long-wave
length limit Syx(0) and Syc(0) represent, respectively, the mean square
fluctuation in the particle number and in concentration and Syc(0) is the
correlation between these two fluctuations.

In the case of ionic systems it is convenient to work with the charge density
Q(r) = pi(r) — pa(r) that replaces the A(r), as we have already discussed
(see chapter 1, section 1.6.3).

3.4.2 Density Wave Theory of Freezing for a Two
Component System

We turn now to the freezing of an elemental semiconductor regarded as two-
component system of atoms and bond particles. Following the approach
already presented summarily in section 1.6.3, the theory is formulated
in terms of the thermodynamic potential {1 as a functional of the single
particle densities p4(r) and pp(r). A set of coupled equilibrium equations
for these densities are obtained by requiring that {2 be a minimum. For
coexistence between liquid (I) and solid (s) phases, the difference A =
Q, — Q; must vanish. The equations involve the knowledge of the isothermal
compressibility Kr and of the partial Ornstein-Zermike direct correlation
functions in the liquid at wave numbers corresponding to the various stars

of RLV. |
The equations for the density profiles (see eqn.(1.6.8)) are

Vpi(r) _ ey e
pi(1) - ng/dTCza(llal)VPj(l) (1 = A4, B). (3.4.9)

Following the work of of Lovett *°, one can integrate eqn.(3.4.9) under the
assumption that ¢;;(r1,r) depends only on |r; — r| as in a liquid. The result
is

In pi(ry) = Z /dTCij(|1‘1 —r|)p;(r) +p: (3.4.10)
j=AB

122



where p; is a constant of integration. It has shown that °!, given the
partial liquid direct correlation functions ¢;;, this equation exhibits a periodic
solution p;,(r) for the solid phase in coexistence with the homogeneous
solution p;, when the constant u; is the same in the two phases. Then
" the difference between eqn.(3.4.10) for periodic and homogeneous singlet
densities is

PistT1

].Il (————g————)—) = Z /drc,-j(lrl —_ 1‘1)[pj3(1‘) - le] (3411)
Pl j=AB

as reported in section (1.6.3) from the truncated cluster expansion. The

corresponding equation for the difference A2 in grand potentials is

Pil

-];A—;% = j:;,B‘/dT (Pis(r)ln [EE—(LI—)} — [pis(r) — Pil])
_% 3 //d’ﬁde[,Dis(rl) = paleii(|rs — ra2|)[pjs(re) — pz] (3.4 12)

i,j=A,B

Varying A} with respect to the periodic singlet densities, it is readily
verified that eqn.(3.4.12) leads back to eqn.(3.4.11) as the Euler equation
of a variational problem. Next if we subsitute in eqn.(3.4.12) the term
In{p;s(r)/pal from eqn.(3.4.11) we have

AQ
T T T drpis(r — pu] +
T j:—EA:,B‘/ [pis(r = pa]

"{é“ 2. //dTlde[Pis(l‘l) + paleii([r1 = r2])[pss(r2) — psu] (3.4, 13)

,j=A,B

(see eqn.(1.6.10)). This quantity vanish at coexistence, at which the periodic
singlet densities are to be obtained from eqn.(3.4.11).
We introduce next the Fourier expansions of the periodic singlet densities

by

pis(r) = pa(l+n+ 3 pig expliGur])  (i=A4,B) (3.4.14)
G#£0

where 7 = (p, — p1)/p:i is the fractional density change. With the further

definition of the Fourier transform of the direct correlation functions,

1
(1) = ——> ¢y k.r ,7 = A, ) 4.
ci;(7) V ?c](k) explik.r] (1,7 = 4,B) (3.4.15)
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we have the equilibrium conditions for the G # 0 components of the densities,

/dTln{l Iy > pigr exp[iG'r]} ezp[—iG.r] =
Pis G0

Pt =
14 p;G ii(G) 3.4. 16)
1 JXA;B \/Psz;l— ’ ’ ‘ (
After linearization of the left-hand side and integration we get eqn.(3.3.1),
that was used in section (3.3.3) for a qualitative discussion of the ratios

PAG/PBG-
The corresponding expression for AQ is

A V [ p? -
==~ ()W (B 1) S pamaes(0)
kgT 2 \p

l 1,7=4,B
V -
) 2. 2 /Pupicii(G) pic piG (3.4.17)
i,j=A,B G£0

The particular combination of &;(0) in eqn.(3.4.17) is related to the
isothermal compressibility by

\/Pilpjl 1
¢;ii(0) = ————— 3.4.18
i,jg'B 1 J( ) PlkBTKT ( )

The equality of the grand potentials in the two phases ((AQ/NkpT) = 0)
with ps = pp/2 = n yields

————— = Z Eaa(G)phq + 2V2845(G)pacrc + 2888(G)pha]
nkBT I&T G;ﬁo

(3.4.19)
The measured value of 1 for germanium is —5% and hence the left-hand side
of eqn.(3.4.19) is of order —2.4. Then, given the signs of the corresponding
Ornstein-Zernike functions in table (3.3), the contributions to the sum of
the right-hand side from charge density waves at the (220) and (311) stars
are positive. On the other hand, the signs and magnitudes of the Ornstein-
Zernike functions at the (111) star in table (3.3) show that the corresponding
contribution to the right-hand side of eqn.(3.4.19) is large and negative. A
balance between these contributions, which is obviously very delicate, will

have to lead to the indicated negative value for the left-hand side.

3.4.3 Results and Discussion

Figure 3.21 shows the diamond-type crystal structure of germanium after
decoration of the interatomic bonds by bond particles (this is actually known
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Figure 3.21: Cubic cell of crystalline germanium showing decoration of
interatomic bonds by bond particles. From ref.[183]

in crystallography as the ideal f-crystobalite structure for §:0; '8%). This
figure is helpful in constructing the Fourier transforms of the single-particle
densities for atoms and bonds, as we do immediately below. Bearing in mind
that the structure in fig.(3.21) can be viewed as formed by a multiplicity of
fcc sublattices (two such sublattices for atoms and four for bonds), we shall
express the p;g’s (¢ = 4, B) as products of density components appropriate
to an fcc sublattice (n;g say, with 1 = 4, B) times phase factors containing
the phase relation between the various sublattices.

Explicitly, we write

2
pas(r) = pa(l+1 > nuq expliG.(r + 3 W) (3.4.20)
G#£0 n=1
4
pes(r) = pmi(l +n > npg expliG.(r + ) hEh)) (3.4.21)
G#0 n=1
where h{*) are the vector positions of the atoms in the unit cell (th) =

(0,0,0)a,th) = (1/4,1/4,1/4)a) and h'®) are the vector position of the
bonds (h®) = (1/8,3/8,3/8)a;(3/8,1/8,,3/8)a;(3/8,3/8,1/8)a), a being
the side of the cube. Specifically we have for the contribution to the density
profiles coming from the first three stars of RLV’s the following expressions:

p(111)(

4 (r) = pau(l4+n+8nsglcoszcosycosz — sinzsinysin z))

pgll)(r) = pai(1+1n+8V2npg[cosz cosy cos z —
— sin z sin y sin z]) (3.4. 22)

P(Azzo)(r) = pa(l+n+ 8nyg[cos2z cos 2y + cos 2z cos 2z + cos 2y cos 2z])
P5(x) = pm(l+7) (3.4. 23)
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pu (r) = pa(l+n+nsglcos3zcosycosz + coszcos 3y cos z
+ cosz cosycos 3z + sin3zsinysin z
+ sin z sin 3y sin z + sin z sin y sin 3z])

P () = ppi(l + 71— 8v2npglcos 3z cosy cos z + cos z cos 3y cos 2
+coszcosycos3z + sin 3z sinysin z

+ sin  sin 3y sin z + sin z sin y sin 3z]) (3.4. 24)

It is instead convenient to reexpress A in terms of the total density
p(r) = pa(r) + ps(r) and the difference density A(r) weighted with the
concentrations (see eqn.(3.4.5)). We introduce first the density-concentration
correlation functions cyn(r),enc(r) and coe(r) as in ref.[93] with the
concentration ¢; = 1/3 for atoms and ¢; = 2/3 for bonds:

enn(r) = cicaa(r) + 2cic2can(r) + ciepn(r)
enve(r) = cieafercaa(r) + (e1 — ca)ean(r) — c2cpp(r))
Ccc(’l‘) = C%C%[CAA(T) - CAB(’T‘) + CBB(T')] . (34 25)

In terms of these quantities we have

S = = [l = o+ 5 [ [ dridnallo(as) + pdewn(lrs = xaDlp(e2) ~ ol
+Cl—cz‘[P(1‘1) + pilenc(|r1 — r2|)A(r2)
+-C:1—C-2—A(1‘1)CNC(|1‘1 — ral)lp(r2) — pi
—}-Egc—%A(rl)ccc(!rl o)A} (3.4. 26)

The equations that follow from eqn.(3.4.11) and (3.4.25), and that we
have actually used in our calculations, are finally as follows:

1+ = —;—{emp[ Y o /dle.’cp [ >° Dj(r)]

j=AB j=A,B
+ ezp[ Y. ain] /dl exp[ Y Dif (3.4. 27)
1=A4,B 1=A,B
neH; = exp| > of /dre:cp [-1G.r + Z D;(r)] . (3.4.28)
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Here, we have defined the following quantities:

0 Pt .
o = ci;(0 3.4.29
= oara i(0) ( )

Pil -
a;(G) = ¢i; (G 3.4.30
(&) Vi (&) ( )
Di(r) = > a;j(G)n;gH; ezp[iG.r] (3.4.31)
G#0
and _

H; =3 expliG.h{] (3.4.32)

We have included in our calculations the first three stars of RLV, the
relevant values of the ¢,5(G) being obtained directly from the partial
structure factors shown in fig.(3.20) through use of the Pearson-Rushbrooke
relations (see table (3.3)). On the other hand, we have tried to adapt the
behaviour of the model in the long-wavelength limit to real Ge by taking
the isothermal compressibility from measurements on liquid Ge (Kr =
2.5 x 1072 em?/dyn '%¢). This determines cyy(0) according to eqn.(3.4.18)
and equivalently a linear combination of % and a% through

1 2 4 1

0
bt z =1 —
3% T 3% piksT Ky

We are also faced with the need of having separate values of a9 and of.
In this connection, the model indicates that the dominant contribution to
eqn.(3.4.33) comes from a%. The specific choice of o) should therefore be
essentially unimportant , we estimate a% ~ 2.7 from the HNC solution of the
bond particle model. Nevertheless, throughout our calculations we have not
been able to satisfy the equilibrium equation for 7 (eqn.(3.4.27)) with the
required accuracy. We have therefore discarded this equation and examined
the solution of the remaining equations with the assumed value n = —0.05,
which corresponds to the volume change of real Ge on freezing.

In our calculations the density profiles p;,(r) of the solid phase are

(3.4.33)

approximately represented by superpositions of Gaussians centered at the
various lattice sites, with widths that are to be calculated variationally
(one Gaussian for atoms and one for bonds on an fec sublattice). We first
include the order parameters at the (111) star and at the (220) star and
find the two Gaussian widths that approximately satisfy the four equilibrium
equations at these two stars. At this point we go to the coexistence condition
(AQ/NkpT) = 0 and find that this is not satisfied, AQ being of the order of
few kpT'. Clearly, we should reevaluate the structure at a different value of
the coupling strength V/kpT, in order to determine the coexistence point.
We have not carried out such a massive program of numerical structure
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evaluation, but simply examined what would be the change in the most
sensitive structural parameter,i.e. ¢gp(111), that would be needed to obtain
phase coexistence. A moderate increase in the magnitude of this quantity
relative to the value in table (3.3), to ¢pp(111) ~ —4, would satisfy the
coexistence condition. The result of this calculations is an estimate of the
Gaussian width, which (according to the definitions given in section 2.5.1),
turn out to be azl/z ~ 0.44 and a;/z’: 1.1A. These values correspond to
Lindemann ratios (see section 2.5.1) having the values

Li~016 , Lp~055 . (3.4.34)

The estimated value of the Lindemann ratio for atoms is therefore of the same
order of magnitude as for simple fcc or bec lattices, whereas the localization of
the bond particles in the hot solid at melting is appreciably more spread out.
In addition, from the phase factors between the various sublattices it follows
that order in the (111) star, in the Gaussian approximation, is described by
a density wave, whereas the order at the (220) star is just an atom density
wave.

We turn next to include the (311) star. The main features of the
calculations and their results remain as indicated just above, except that
the magnitude of égp(111) should be decreased to épp(111) ¥ —2, in order
to satisfy the coexistence condition. An illustration of the numerical solution
for épp(111) = —3 is given in fig. 3.22. The width of the Gaussians for bonds
is essentially unchanged, while that for atoms is found to be a:il/z ~ 0.74,
corresponding to a rather large value for the Lindemann ratio, L4 =~ 0.33.
Again, the phase factors between the various sublattices are such that order
in the (311) star is described in the Gaussian approximation as a charge
density wave.

In conclusion, the microscopic liquid structure of the bond particle
model at coupling strength V* =~ 7.5, where the atom-atom structure is in
approximated agreement with the observed liquid structure of Ge, is broadly
consistent with a freezing mechanism in which density waves at the (111)
star, atomic density waves at the (220) star and charge density waves at
the (311) star are spontaneously generated, as well as with the fact that
the volume change on freezing is negative. In more pictorial terms, one is
led to view the freezing of G'e as driven by the freezing of the bonds (i.e.
by the metal-to-semiconductor transition in the system of valence electrons)
in a tetrahedral bond configuration inducing local tetrahedral interatomic
coordination. The long-range order of the crystal is associated with relative
order in such tetrahedral units, forming a very open structure which requires
volume dilation. However, the estimated Lindemann ratios that emerge from
our calculations are rather large, at least by comparison with typical values
for monatomic systems crystallizing in fcc or bee Bravais structures.
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Figure 3.22: An illustration of the numerical solution for épp(111) = —3

for the different order parameters n;g;i = A,B. The y-aris and the
z-azis represents, respectively the left- and right-hand side of the equtltbrium
eqn.(3.4.28). The dashed lines indicate when both sides of the equation are
equal. Full curves are the values of the right-hand side. The corssing point
represents the solution of the equilibrium, eqn.(3.4.28). In the case with NG
at the (311) star it was impossible to reach the solution.
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3.5 Evaluation of Freezing for a Liquid
Having the Structure of Amorphous
Germanium

In the preceding sections we have discussed qualitatively and numerically the
freezing of a bond-particle model applied in a special case to germanium. We
have seen that the microscopic order parameters associated with the (220)
and (311) star are responsible for “freezing of bonds” and leading to regular
tetrahedra as components of the crystal, whereas the connectivity that these
tetrahedral units have in the diamond structure is related to the microscopic
order parameters associated with the (111) star. In this section, we are going
to evaluate the freezing of a one-component liquid having the structure of
amorphous germanium. This evaluation is interesting in relation to the role
that we have attributed to the (111) star, when one recalls that the FSDP in
the diffraction pattern of amorphous germanium lies in correspondence with
this RLV star.

We should comment on the reason why we consider in the present context
only the atomic component and omit consideration of the atom-bond and
bond-bond partial structure factors. The latter have been evaluated by
Stenhouse et al 1% for amorphous S¢ from a continuous random network
model of the atomic pair structure. Their calculation shows that both S4p(k)
and Spp(k) show a prominant peak in correspondence with the FSDP in
S44(k), as well as the main features associated with ‘relative’ ordering of
atoms and bonds (a valley in Sap(k) and a peak in Spp(k) in approximate
correspondence with the main peak in S44(k)). Thus, consistently with the
semiconducting nature of the amorphous material, the bonds are already
frozen in it and can only follow the atomic component as it crystallizes.
We therefore expect that an explicit inclusion of the bonds in the present
calculation would not alter its conclusions, except that it would further
stabilize the crystalline state relative to the disordered state.

The microscopic order parameters of the phase transition are the Fourier
components pg’s of the periodic single-particle density in the crystal. The set
of equilibrium equations needed to locate the phase transition have already
been given in chapter 2, i.e. the set of equations (2.4.13) for the microscopic
parameters pq, eqn.(2.4.14) for the volume change and eqn.(2.4.15) to assure
equality of the grand potential in the two phases. These equations involve
the knowledge of the isothermal compressibility A'r and the Ornstein-Zernike
direct correlation function ¢(G) in the fluid at wave numbers corresponding
to the various stars of RLV. The relevant values of the ¢(G) (see table (3.4))
are obtained from the experimental structure factor reported by Etherington
et al ' for amorphous Ge and shown in fig. 3.23. From elastic constant
data by Grimsditch et al ! on amorphous Si we estimate Kr(amorphous)=
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Figure 3.23: The reduced interference function ki(k)/8%. Dots are experi-
mental data, full line is hand smothe line and dashed curve is peak fit to the
first two peaks in the total correlation function. The location of the first few

allowed Bragg reflections from the diamond structure are superposed at the
top. From ref.[191].

(3 + 2)Kr(crystal) and assume that this is also approximately applicable for
Ge, yielding K7 in the range (4.6 x 10712 = 3.1 x 1072)em? /dyn.

Figure (3.23) shows the reduced interference function as measured by
Etherington et al %0 which is directly related to structure factor S(k) [ie.
S(k) = (i(k)/b%)+1] and the location of the first few allowed Bragg reflections
from the diamond structure are superposed at the top of the figure. The first
step in our calculations is to include the first three RLV stars [(111), (220)and
(311)] using two different values of ¢(0) (the direct correlation function in
the long-wavelength limit from our estimated range of Kr). Convergence has
been achieved for the set of equations for the order parameters pG’s which are
tabulated in table (3.5) with the value of the volume change 7. The difference
in the grand potential A0 was negative, which indicate that the crystal is
more stable when the disordered system has the assumed structure. The
following observations can be made (i) the profile is very closely Gaussian;
(ii) the values of the various pG’s are close to 1, i.e. the mean square
displacements are rather low; (iii) the value of 7 = 0.0273 = 0.043] is
reasonable, since the density difference between compacted amorphous Ge
and crystalline Ge is Nexp = 0.035.

We have next enlarged the set of order parameters to include up to
9 stars, covering complete cycle in the structure factor. We find that
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Multiplicity | StarG | LengthA | S(k) (k)
8 111 1.923 1.410 | 0.291
12 220 3.141 1.520 | 0.342
24 311 3.683 1.510 | 0.338
6 400 4.440 0.614 | - 0.602
24 331 4.840 0.800 | - 0.250
24 422 5.440 1.330 | 0.248
8 333 5.770 1.123 | 0.110
12 440 5.280 1.034 | 0.033
48 531 6.570 1.011 | 0.011

Table 3.4: The different values of the structure factor S(k) and the direct
correlation function ¢(k) at wave numbers corresponding to the various stars

of RIV. As obtained from fig 3.23 (ref.[191]).

we always get a solution for the order parameters pg’s and n which are
qualitatively reasonable, while the values of AQ is approaching zero. The
star-dependent Lindemann ratio are somewhat larger but still essentially
constant. The approximate vanishing of AQ in this calculation arises from a
balance between (a) the order parameter at the fourth star, i.e. the (400) star,
which corresponds to a trough in (k) and hence disfavours crystallization,
and (b) the order parameters at the other stars, which favour crystallization.

In conclusion, the main point that we should stress is that a ome-
component fluid system having the liquid structure of amorphous Ge would
crystallize with a volume contraction, being essentially driven by the order
parameters at the RLV stars that we have considered in dealing with the
liquid-solid transition of the bond particle model in section (3.3) and (3.4).
In particular, our present calculation gives support to the role that we have
attributed there to the (111) star.
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Z(0) = —230.0 | 5 =10.0273 | &0) = —150.0 | 7 =0.043
pG(lll) = 0.977 L(lll) =0.116 pG(lll) =0.994 L(lll) = 0.115

pG(220) = 0.906 L(ggo) =0.113 PG(zzo) = 0.923 L(ggo) =0.112

pG(311) = (.865 L(Sll) =0.113 pG(Sll) = 0.880 L(311) = 0.112
AQ = —0.55 Af) = —0.60

Table 3.5: The various parameters as calculated using two different choices
of the ¢(0), when only the first three RLV were included in the calculations.



SUMMARY

The main results of this work can be summarized as follows:

1) Freezing of the classical-one-component plasma on a rigid neutralizing
background into bec structure has been re-evaluated, within the recent
progress in computer simulation for the thermodynamic properties of this
mode] fluid. The value of the coupling parameter I'. at the phase transition
is approximately the same as from previous calculation of Rovere and Tosi °.
The difficulties of the theory relating to the order parameter at the (200) star
of reciprocal lattice vectors is also considered from two alternative point of
view, namely (i) the fourier transform of the periodic crystalline density
(the microscopic order parameter) at this star of RLV may be very small,
or (ii) this order parameter may be driven by the others in particular those
associated with the (110) star, and such a cooperative effect may be simulated
by rasing the value of the two-body direct correlation function at the (200)
star to an effectively higher value.

The microscopic order parameters, excepting the (200) one, follow a
Gaussian behaviour and yield Lindemann ratios in reasonable agreement
with simulation results by Pollock and Hansen 2. The Lindemann ratio
appropriate to the (200) star falls in the general pattern set by the others
when the viewpoint (ii) is taken. Freezing of the OCP into the fcc structure
is also considered and found to be unfavoured.

2) Freezing of an OCP on a deformable background (OCP-DB) into the
bee lattice has been evaluated by a parallel approach. The main qualitative
changes which accompany the appearance of a finite volume change across
the phase transition are (i) a decrease in the value of I',, i.e. reduced stability
of the fluid phase as first pointed by Pollock and Hansen 3 (ii) an increase in
the entropy of melting and (iii) a narrowing of the single particle distribution
around each lattice site in the hot solid.

3) Freezing of alkali metals as screened ionic plasmas has been evaluated,
the freezing of the OCP-DB into the bec lattice being our starting point.
The consequences of the two alternative viewpoints in (1) above have been
examined by asking which value of the order parameter, or alternatively of
the two-body direct correlation function, would be compatible with a value
of I'; lying in the range appropriate to alkali metals at standard pressure.
Our results suggest that the phase transition in the alkali metals may also
be assisted by some ordering in the conduction electrons, which is indicated
by differences of X-ray and neutron scattering intensities from liquid Na
as analysed by Dobson '*. However, the possibility also suggests’ itself
that anharmonicity in hot crystal may appear as a premelting phenomenon
through a rapid decréase of scattering intensity at the (200) Bragg diffraction
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spots.

4) Freezing of bond-particle model for liquid germanium has been
evaluated. The microscopic order parameters of the phase transition are
the Fourier components of the periodic single-particle densities for atoms
(pac) and bonds (ppg) in the crystal. The location of the allowed Bragg
reflections from the diamond structure (i.e. the (220) and (311) RLV
stars) are in good correspondence with the main features in the partial
structure factors of the bond-particle model. Thus the Fourier components
of the periodic crystalline densities of the above RLV’s describe “freezing
of bonds” driven by tetrahedrally constrained attractions and leading to
local tetrahedral coordination. The connectivity that such tetrahedral units
have in the diamond structure is mainly described by the microscopic
order parameters associated with the (111) star of RLV. We mainly infer
this from the fact that the first sharp diffraction peak (FSDP) at a wave
number in correspondence with the (111) RLV star is well developed in
amorphous germanium. However, formation of such connectivity in the liquid
is frustrated by its relatively high density. Hence, crystallization of the liquid
into the diamond structure requires a volume expansion. On the contrary,
crystallization of compact amorphous germanium is accompanied by volume
contraction.

From a qualitative discussion, the main order parameters of the phase
transition, in addition to the percentual density difference between solid
and liquid at coexistence, are thus expected to be: a) charge waves at the
(200) and (311) stars; and b) number density waves at the (111) star. Our
quantitative calculations are consistent with a volume expansion across the
transition from liquid to solid, in which density waves at the (111) star,
atomic waves at the (220) star and charge density waves at the (311) star
are spontaneously generated. However, the estimated Lindemann ratios that
emerge from our calculations are rather large at least by comparison with
typical values for monatomic system crystallizing in the fcc or bee structures.

Finally, evaluation of freezing of a one-component fluid system having
the liquid structure of amorphous germanium has also been considered.
Crystallization is essentially driven by the order parameters at the (111),
(220) and (311) RLV stars, and is accompanied by a volume contraction.
Our calculation gives support to the role that we have attributed to the
(111) star in the liquid-solid transition of the bond particle model.
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